tgrhn's picture
Update README.md
bdb5aa1 verified
metadata
language:
  - tr
base_model:
  - artiwise-ai/modernbert-base-tr-uncased
pipeline_tag: text-classification
library_name: transformers
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ModernBERT-Sentiment-Classifier
    results: []
datasets:
  - winvoker/turkish-sentiment-analysis-dataset

ModernBERT-Turkish-Sentiment-Classifier

This model is a fine-tuned version of artiwise-ai/modernbert-base-tr-uncased on a Sentiment Analysis dataset winvoker/turkish-sentiment-analysis-dataset. It achieves the following results on the evaluation set:

  • Loss: 0.280550
  • Accuracy: 0.956000
  • Precision: 0.956370
  • Recall: 0.956000
  • F1: 0.956175

Training and evaluation data

The data cannot be shared.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Epoch Training Loss Validation Loss Accuracy Precision Recall F1 Score
1 0.161400 0.163402 0.945000 0.945220 0.945000 0.945107
2 0.034400 0.286277 0.942000 0.949040 0.942000 0.944231
3 0.003100 0.280550 0.956000 0.956370 0.956000 0.956170

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1