|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- moonshotai/Kimi-K2-Instruct |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [moonshotai/Kimi-K2-Instruct](https://huggingface.co/moonshotai/Kimi-K2-Instruct). |
|
|
|
### Example usage: |
|
|
|
- vLLM |
|
|
|
```bash |
|
vllm serve tiny-random/kimi-k2 --trust-remote-code |
|
``` |
|
|
|
- Transformers |
|
|
|
```python |
|
import torch |
|
import transformers |
|
|
|
model_id = "tiny-random/kimi-k2" |
|
pipe = transformers.pipelines.pipeline( |
|
'text-generation', |
|
model=model_id, |
|
trust_remote_code=True, |
|
device_map='cuda', |
|
torch_dtype=torch.bfloat16, |
|
) |
|
messages = [ |
|
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."}, |
|
{"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]}, |
|
] |
|
print(pipe(messages, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95)) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "moonshotai/Kimi-K2-Instruct" |
|
save_folder = "/tmp/tiny-random/kimi-k2" |
|
|
|
Path(save_folder).mkdir(parents=True, exist_ok=True) |
|
with open(hf_hub_download(source_model_id, filename='tokenizer_config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
tokenizer_config_json = json.load(f) |
|
tokenizer_config_json['auto_map']['AutoTokenizer'][0] = f'{source_model_id}--' + \ |
|
tokenizer_config_json["auto_map"]["AutoTokenizer"][0] |
|
with open(f"{save_folder}/tokenizer_config.json", "w", encoding='utf-8') as f: |
|
json.dump(tokenizer_config_json, f, indent=2) |
|
hf_hub_download(source_model_id, filename='tiktoken.model', repo_type='model', |
|
local_dir=save_folder, local_dir_use_symlinks=True, cache_dir='/tmp/') |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
config_json.update({ |
|
'first_k_dense_replace': 1, |
|
'num_hidden_layers': 2, |
|
'hidden_size': 32, |
|
'intermediate_size': 64, |
|
'kv_lora_rank': 384, |
|
'moe_intermediate_size': 64, |
|
'n_routed_experts': 32, |
|
'n_shared_experts': 1, |
|
'num_attention_heads': 1, |
|
'num_experts_per_tok': 8, |
|
'num_key_value_heads': 1, |
|
'q_lora_rank': 32, |
|
'qk_nope_head_dim': 64, |
|
'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256 |
|
'v_head_dim': 64, |
|
'tie_word_embeddings': False, |
|
}) |
|
config_json['rope_scaling']['rope_type'] = 'yarn' |
|
del config_json['quantization_config'] |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
# print(model) |
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()} |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
# for python_file in Path(save_folder).glob('*.py'): |
|
# python_file.unlink() |
|
with open(f'{save_folder}/modeling_deepseek.py', 'r', encoding='utf-8') as f: |
|
codes = f.read() |
|
codes = codes.replace( |
|
"past_length = past_key_values.seen_tokens", |
|
"past_length = past_key_values.seen_tokens if hasattr(past_key_values, 'seen_tokens') else past_key_values.get_seq_length() # fix cache api deprecation" |
|
) |
|
codes = codes.replace( |
|
"max_cache_length = past_key_values.get_max_length()", |
|
"max_cache_length = past_key_values.get_max_length() if hasattr(past_key_values, 'get_max_length') else past_key_values.get_max_cache_shape() # fix cache api deprecation" |
|
) |
|
with open(f'{save_folder}/modeling_deepseek.py', 'w', encoding='utf-8') as f: |
|
f.write(codes) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
DeepseekV3ForCausalLM( |
|
(model): DeepseekV3Model( |
|
(embed_tokens): Embedding(163840, 32) |
|
(layers): ModuleList( |
|
(0): DeepseekV3DecoderLayer( |
|
(self_attn): DeepseekV3Attention( |
|
(q_a_proj): Linear(in_features=32, out_features=32, bias=False) |
|
(q_a_layernorm): DeepseekV3RMSNorm() |
|
(q_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False) |
|
(kv_a_layernorm): DeepseekV3RMSNorm() |
|
(kv_b_proj): Linear(in_features=384, out_features=128, bias=False) |
|
(o_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(rotary_emb): DeepseekV3YarnRotaryEmbedding() |
|
) |
|
(mlp): DeepseekV3MLP( |
|
(gate_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): DeepseekV3RMSNorm() |
|
(post_attention_layernorm): DeepseekV3RMSNorm() |
|
) |
|
(1): DeepseekV3DecoderLayer( |
|
(self_attn): DeepseekV3Attention( |
|
(q_a_proj): Linear(in_features=32, out_features=32, bias=False) |
|
(q_a_layernorm): DeepseekV3RMSNorm() |
|
(q_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False) |
|
(kv_a_layernorm): DeepseekV3RMSNorm() |
|
(kv_b_proj): Linear(in_features=384, out_features=128, bias=False) |
|
(o_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(rotary_emb): DeepseekV3YarnRotaryEmbedding() |
|
) |
|
(mlp): DeepseekV3MoE( |
|
(experts): ModuleList( |
|
(0-31): 32 x DeepseekV3MLP( |
|
(gate_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
) |
|
(gate): MoEGate() |
|
(shared_experts): DeepseekV3MLP( |
|
(gate_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
) |
|
(input_layernorm): DeepseekV3RMSNorm() |
|
(post_attention_layernorm): DeepseekV3RMSNorm() |
|
) |
|
) |
|
(norm): DeepseekV3RMSNorm() |
|
) |
|
(lm_head): Linear(in_features=32, out_features=163840, bias=False) |
|
) |
|
``` |