aimedlab-pulse-hf / working-handler.py
ubden's picture
Upload 16 files
717bb83 verified
"""
PULSE-7B Enhanced Handler
Ubden® Team - Edited by https://github.com/ck-cankurt
Support: Text, Image URLs, and Base64 encoded images
"""
import torch
from typing import Dict, List, Any
import base64
from io import BytesIO
from PIL import Image
import requests
class EndpointHandler:
def __init__(self, path=""):
"""
Hey there! Let's get this PULSE-7B model up and running.
We'll load it from the HuggingFace hub directly, so no worries about local files.
Args:
path: Model directory path (we actually ignore this and load from HF hub)
"""
print("🚀 Starting up PULSE-7B handler...")
print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
# Let's see what hardware we're working with
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🖥️ Running on: {self.device}")
try:
# First attempt - using pipeline (easiest and most stable way)
from transformers import pipeline
print("📦 Fetching model from HuggingFace Hub...")
self.pipe = pipeline(
"text-generation",
model="PULSE-ECG/PULSE-7B",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device=0 if torch.cuda.is_available() else -1,
trust_remote_code=True,
model_kwargs={
"low_cpu_mem_usage": True,
"use_safetensors": True
}
)
print("✅ Model loaded successfully via pipeline!")
except Exception as e:
print(f"⚠️ Pipeline didn't work out: {e}")
print("🔄 Let me try a different approach...")
try:
# Plan B - load model and tokenizer separately
from transformers import AutoTokenizer, LlamaForCausalLM
# Get the tokenizer ready
print("📖 Setting up tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
"PULSE-ECG/PULSE-7B",
trust_remote_code=True
)
# Load the model as Llama (it works, trust me!)
print("🧠 Loading the model as Llama...")
self.model = LlamaForCausalLM.from_pretrained(
"PULSE-ECG/PULSE-7B",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=True
)
# Quick fix for padding token if it's missing
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.model.eval()
self.use_pipeline = False
print("✅ Model loaded successfully via direct loading!")
except Exception as e2:
print(f"😓 That didn't work either: {e2}")
# If all else fails, we'll handle it gracefully
self.pipe = None
self.model = None
self.tokenizer = None
self.use_pipeline = None
else:
self.use_pipeline = True
def process_image_input(self, image_input):
"""
Handle both URL and base64 image inputs like a champ!
Args:
image_input: Can be a URL string or base64 encoded image
Returns:
PIL Image object or None if something goes wrong
"""
try:
# Check if it's a URL (starts with http/https)
if isinstance(image_input, str) and (image_input.startswith('http://') or image_input.startswith('https://')):
print(f"🌐 Fetching image from URL: {image_input[:50]}...")
response = requests.get(image_input, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert('RGB')
print("✅ Image downloaded successfully!")
return image
# Must be base64 then
elif isinstance(image_input, str):
print("🔍 Decoding base64 image...")
# Remove the data URL prefix if it exists
if "base64," in image_input:
image_input = image_input.split("base64,")[1]
image_data = base64.b64decode(image_input)
image = Image.open(BytesIO(image_data)).convert('RGB')
print("✅ Image decoded successfully!")
return image
except Exception as e:
print(f"❌ Couldn't process the image: {e}")
return None
return None
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Main processing function - where the magic happens!
Args:
data: Input data with 'inputs' and optional 'parameters'
Returns:
List with the generated response
"""
# Quick check - is our model ready?
if self.use_pipeline is None:
return [{
"generated_text": "Oops! Model couldn't load properly. Please check the deployment settings.",
"error": "Model initialization failed",
"handler": "Ubden® Team Enhanced Handler"
}]
try:
# Parse the inputs - flexible format support
inputs = data.get("inputs", "")
text = ""
image = None
if isinstance(inputs, dict):
# Dictionary input - check for text and image
text = inputs.get("text", inputs.get("prompt", str(inputs)))
# Check for image in various formats
image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
if image_input:
image = self.process_image_input(image_input)
if image:
# For now, we'll add a note about the image since we're text-only
text = f"[Image provided - {image.size[0]}x{image.size[1]} pixels] {text}"
else:
# Simple string input
text = str(inputs)
if not text:
return [{"generated_text": "Hey, I need some text to work with! Please provide an input."}]
# Get generation parameters with sensible defaults
parameters = data.get("parameters", {})
max_new_tokens = min(parameters.get("max_new_tokens", 256), 1024)
temperature = parameters.get("temperature", 0.7)
top_p = parameters.get("top_p", 0.95)
do_sample = parameters.get("do_sample", True)
repetition_penalty = parameters.get("repetition_penalty", 1.0)
# Using pipeline? Let's go!
if self.use_pipeline:
result = self.pipe(
text,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
return_full_text=False # Just the new stuff, not the input
)
# Pipeline returns a list, let's handle it
if isinstance(result, list) and len(result) > 0:
return [{"generated_text": result[0].get("generated_text", "")}]
else:
return [{"generated_text": str(result)}]
# Manual generation mode
else:
# Tokenize the input
encoded = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=2048
)
input_ids = encoded["input_ids"].to(self.device)
attention_mask = encoded.get("attention_mask")
if attention_mask is not None:
attention_mask = attention_mask.to(self.device)
# Generate the response
with torch.no_grad():
outputs = self.model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode only the new tokens (not the input)
generated_ids = outputs[0][input_ids.shape[-1]:]
generated_text = self.tokenizer.decode(
generated_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
return [{"generated_text": generated_text}]
except Exception as e:
error_msg = f"Something went wrong during generation: {str(e)}"
print(f"❌ {error_msg}")
return [{
"generated_text": "",
"error": error_msg,
"handler": "Ubden® Team Enhanced Handler"
}]