bert-base-nsmc / README.md
use08168's picture
Upload TFBertForSequenceClassification
111e70d verified
---
library_name: transformers
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_keras_callback
model-index:
- name: bert-base-nsmc
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-base-nsmc
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0289
- Train Accuracy: 0.9915
- Validation Loss: 0.5277
- Validation Accuracy: 0.8766
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3956 | 0.8159 | 0.3503 | 0.8529 | 0 |
| 0.2169 | 0.9147 | 0.3258 | 0.8753 | 1 |
| 0.1077 | 0.9641 | 0.3907 | 0.8777 | 2 |
| 0.0498 | 0.9849 | 0.4785 | 0.8716 | 3 |
| 0.0289 | 0.9915 | 0.5277 | 0.8766 | 4 |
### Framework versions
- Transformers 4.55.2
- TensorFlow 2.19.0
- Datasets 4.0.0
- Tokenizers 0.21.4