|
--- |
|
library_name: transformers |
|
license: cc-by-sa-4.0 |
|
base_model: klue/bert-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: bert-base-nsmc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-nsmc |
|
|
|
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0289 |
|
- Train Accuracy: 0.9915 |
|
- Validation Loss: 0.5277 |
|
- Validation Accuracy: 0.8766 |
|
- Epoch: 4 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.3956 | 0.8159 | 0.3503 | 0.8529 | 0 | |
|
| 0.2169 | 0.9147 | 0.3258 | 0.8753 | 1 | |
|
| 0.1077 | 0.9641 | 0.3907 | 0.8777 | 2 | |
|
| 0.0498 | 0.9849 | 0.4785 | 0.8716 | 3 | |
|
| 0.0289 | 0.9915 | 0.5277 | 0.8766 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.55.2 |
|
- TensorFlow 2.19.0 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |
|
|