language:
- ja
base_model:
- webbigdata/VoiceCore
tags:
- tts
- vllm
VoiceCore_smoothquant
webbigdata/VoiceCoreをvLLMで高速に動かすためにgptq(W4A16)量子化したモデルです
詳細はwebbigdata/VoiceCoreのモデルカードを御覧ください
This is a model quantized using gptq(W4A16) to run webbigdata/VoiceCore at high speed using vLLM.
See the webbigdata/VoiceCore model card for details.
Install/Setup
vLLMはAMDのGPUでも動作するそうですがチェックは出来ていません。
Mac(CPU)でも動くようですが、gguf版を使った方が早いかもしれません
vLLM seems to work with AMD GPUs, but I haven't checked.
It also seems to work with Mac (CPU), but gguf version seems to be better.
以下はLinuxのNvidia GPU版のセットアップ手順です
Below are the setup instructions for the Nvidia GPU version of Linux.
python3 -m venv VL
source VL/bin/activate
pip install vllm
pip install snac
pip install numpy==1.26.4
pip install transformers==4.53.2
Sample script
import torch
import scipy.io.wavfile as wavfile
from transformers import AutoTokenizer
from snac import SNAC
from vllm import LLM, SamplingParams
QUANTIZED_MODEL_PATH = "webbigdata/VoiceCore_gptq"
prompts = [
"テストです",
"ジーピーティーキュー、問題なく動いてますかね?あ~、笑い声が上手く表現できなくなっちゃってますかね、仕方ないか、えへへ"
]
chosen_voice = "matsukaze_male[neutral]"
print("Loading tokenizer and preparing inputs...")
tokenizer = AutoTokenizer.from_pretrained(QUANTIZED_MODEL_PATH)
prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts]
start_token, end_tokens = [128259], [128009, 128260, 128261]
all_prompt_token_ids = []
for prompt in prompts_:
input_ids = tokenizer.encode(prompt)
final_token_ids = start_token + input_ids + end_tokens
all_prompt_token_ids.append(final_token_ids)
print("Inputs prepared successfully.")
print(f"Loading SmoothQuant model with vLLM from: {QUANTIZED_MODEL_PATH}")
llm = LLM(
model=QUANTIZED_MODEL_PATH,
trust_remote_code=True,
max_model_len=10000, # メモリ不足になる場合は減らしてください f you run out of memory, reduce it.
#gpu_memory_utilization=0.9 # 「最大GPUメモリの何割を使うか?」適宜調整してください "What percentage of the maximum GPU memory should be used?" Adjust accordingly.
)
sampling_params = SamplingParams(
temperature=0.6,
top_p=0.90,
repetition_penalty=1.1,
max_tokens=8192, # max_tokens + input_prompt <= max_model_len
stop_token_ids=[128258]
)
print("vLLM model loaded.")
print("Generating audio tokens with vLLM...")
outputs = llm.generate(prompt_token_ids=all_prompt_token_ids, sampling_params=sampling_params)
print("Generation complete.")
# GPUの方が早いがvllmが大きくメモリ確保していると失敗するため GPU is faster, but if vllm allocates a lot of memory it will fail to run.
print("Loading SNAC decoder to CPU...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model.to("cpu")
print("SNAC model loaded.")
print("Decoding tokens to audio...")
audio_start_token = 128257
def redistribute_codes(code_list):
layer_1, layer_2, layer_3 = [], [], []
for i in range(len(code_list) // 7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1] - 4096)
layer_3.append(code_list[7*i+2] - (2*4096))
layer_3.append(code_list[7*i+3] - (3*4096))
layer_2.append(code_list[7*i+4] - (4*4096))
layer_3.append(code_list[7*i+5] - (5*4096))
layer_3.append(code_list[7*i+6] - (6*4096))
codes = [torch.tensor(layer).unsqueeze(0)
for layer in [layer_1, layer_2, layer_3]]
audio_hat = snac_model.decode(codes)
return audio_hat
code_lists = []
for output in outputs:
generated_token_ids = output.outputs[0].token_ids
generated_tensor = torch.tensor([generated_token_ids])
token_indices = (generated_tensor == audio_start_token).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
cropped_tensor = generated_tensor[:, token_indices[1][-1].item() + 1:]
else:
cropped_tensor = generated_tensor
masked_row = cropped_tensor.squeeze()
row_length = masked_row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = masked_row[:new_length]
code_list = [t.item() - 128266 for t in trimmed_row]
code_lists.append(code_list)
for i, code_list in enumerate(code_lists):
if i >= len(prompts): break
print(f"Processing audio for prompt: '{prompts[i]}'")
samples = redistribute_codes(code_list)
sample_np = samples.detach().squeeze().numpy()
safe_prompt = "".join(c for c in prompts[i] if c.isalnum() or c in (' ', '_')).rstrip()
filename = f"audio_final_{i}_{safe_prompt[:20].replace(' ', '_')}.wav"
wavfile.write(filename, 24000, sample_np)
print(f"Saved audio to: {filename}")
Streaming sample
vLLMをサーバーとして動作させてストリーミングでアクセスさせ、クライアントが逐次再生するデモです。
品質は劣化してしまいますがRTX 4060くらいの性能をもつGPUなら疑似リアルタイム再生が実現できます。
理想は雑音が生成されないタイミングで生成する事ですが、まだ実現出来ておらず、実証実験レベルとお考え下さい
Sever side command
(Linux server前提)
python3 -m vllm.entrypoints.openai.api_server --model VoiceCore_gptq --host 0.0.0.0 --port 8000 --max-model-len 9000
Client side scripyt
(Windows前提)
SERVER_URLを書き換えてください
import torch
from transformers import AutoTokenizer
from snac import SNAC
import requests
import json
import sounddevice as sd
import numpy as np
import queue
import threading
# --- サーバー設定とモデルの準備 (変更なし) ---
SERVER_URL = "http://192.168.1.16:8000/v1/completions"
TOKENIZER_PATH = "webbigdata/VoiceCore_gptq"
MODEL_NAME = "VoiceCore_gptq"
prompts = [
"テストです",
"ジーピーティーキュー、問題なく動いてますかね?圧縮しすぎると別人の声になっちゃう事があるんですよね、ふふふ"
]
chosen_voice = "matsukaze_male[neutral]"
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
start_token, end_tokens = [128259], [128009, 128260, 128261]
print("Loading SNAC decoder to CPU...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model.to("cpu")
print("SNAC model loaded.")
audio_start_token = 128257
def redistribute_codes(code_list):
if len(code_list) % 7 != 0: return torch.tensor([])
layer_1, layer_2, layer_3 = [], [], []
for i in range(len(code_list) // 7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1] - 4096)
layer_3.append(code_list[7*i+2] - (2*4096)); layer_3.append(code_list[7*i+3] - (3*4096))
layer_2.append(code_list[7*i+4] - (4*4096)); layer_3.append(code_list[7*i+5] - (5*4096))
layer_3.append(code_list[7*i+6] - (6*4096))
codes = [torch.tensor(layer).unsqueeze(0) for layer in [layer_1, layer_2, layer_3]]
return snac_model.decode(codes)
def audio_playback_worker(q, stream):
while True:
data = q.get()
if data is None:
break
stream.write(data)
for i, prompt in enumerate(prompts):
print("\n" + "="*50)
print(f"Processing prompt ({i+1}/{len(prompts)}): '{prompt}'")
print("="*50)
prompt_ = (f"{chosen_voice}: " + prompt) if chosen_voice else prompt
input_ids = tokenizer.encode(prompt_)
final_token_ids = start_token + input_ids + end_tokens
payload = {
"model": MODEL_NAME, "prompt": final_token_ids,
"max_tokens": 8192, "temperature": 0.6, "top_p": 0.90,
"repetition_penalty": 1.1, "stop_token_ids": [128258],
"stream": True
}
token_buffer = []
found_audio_start = False
CHUNK_SIZE = 28
audio_queue = queue.Queue()
playback_stream = sd.OutputStream(samplerate=24000, channels=1, dtype='float32')
playback_stream.start()
playback_thread = threading.Thread(target=audio_playback_worker, args=(audio_queue, playback_stream))
playback_thread.start()
try:
response = requests.post(SERVER_URL, headers={"Content-Type": "application/json"}, json=payload, stream=True)
response.raise_for_status()
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
content = decoded_line[6:]
if content == '[DONE]':
break
try:
chunk = json.loads(content)
text_chunk = chunk['choices'][0]['text']
if text_chunk:
token_buffer.extend(tokenizer.encode(text_chunk, add_special_tokens=False))
if not found_audio_start:
try:
start_index = token_buffer.index(audio_start_token)
token_buffer = token_buffer[start_index + 1:]
found_audio_start = True
print("Audio start token found. Starting playback...")
except ValueError:
continue
while len(token_buffer) >= CHUNK_SIZE:
tokens_to_process = token_buffer[:CHUNK_SIZE]
token_buffer = token_buffer[CHUNK_SIZE:]
code_list = [t - 128266 for t in tokens_to_process]
samples = redistribute_codes(code_list)
if samples.numel() > 0:
sample_np = samples.detach().squeeze().numpy()
audio_queue.put(sample_np)
except (json.JSONDecodeError, Exception) as e:
print(f"処理中にエラー: {e}")
if found_audio_start and token_buffer:
remaining_length = (len(token_buffer) // 7) * 7
if remaining_length > 0:
tokens_to_process = token_buffer[:remaining_length]
code_list = [t - 128266 for t in tokens_to_process]
samples = redistribute_codes(code_list)
if samples.numel() > 0:
sample_np = samples.detach().squeeze().numpy()
audio_queue.put(sample_np)
except requests.exceptions.RequestException as e:
print(f"サーバーへのリクエストでエラーが発生しました: {e}")
finally:
audio_queue.put(None)
playback_thread.join()
playback_stream.stop()
playback_stream.close()
print("Playback finished for this prompt.")
print("\nAll processing complete!")