Bl4ckJack777's picture
Update README.md
0d91ffd verified
|
raw
history blame
6.51 kB
---
language:
- en
- zh
tags:
- robotics
- manipulation
- vla
- trajectory-data
- multimodal
- vision-language-action
license: other
task_categories:
- robotics
- reinforcement-learning
multimodal: vision+language+action
dataset_info:
features:
- name: rgb_images
dtype: image
description: Multi-view RGB images
- name: slam_poses
sequence: float32
description: SLAM pose trajectories
- name: vive_poses
sequence: float32
description: Vive tracking system poses
- name: point_clouds
sequence: float32
description: Time-of-Flight point cloud data
- name: clamp_data
sequence: float32
description: Clamp sensor readings
- name: merged_trajectory
sequence: float32
description: Fused trajectory data
configs:
- config_name: default
data_files: "**/*"
---
<div align="center">
FastUMI Pro Dataset
</div>
<div align="center">
![FastUMI](https://img.shields.io/badge/FastUMI-Pro-brightgreen)
![Dataset](https://img.shields.io/badge/Dataset-150K-blue)
![VLA](https://img.shields.io/badge/VLA-Ready-orange)
**Enterprise-grade Robotic Manipulation Dataset for Universal Manipulation Interface**
[Project Homepage](https://fastumi.com/pro/) | [FastUMI Home](https://fastumi.com) | [Example Data](https://huggingface.co/datasets/FastUMIPro/example_data_fastumi_pro_raw)
</div>
## 📖 Overview
FastUMI (Fast Universal Manipulation Interface) is a dataset and interface framework for general-purpose robotic manipulation tasks, designed to support hardware-agnostic, scalable, and efficient data collection and model training.
The project provides:
- Physical prototype systems
- Complete data collection codebase
- Standardized data formats and utilities
- Tools for real-world manipulation learning research
## 🚀 Features
### FastUMI Pro Enhancements
-**Higher precision trajectory data**
-**Diverse embodiment support** for true "one-brain-multiple-forms"
-**Enterprise-ready** pipeline and full-link data processing
### FastUMI-150K
- ~150,000 real-world manipulation trajectories
- Used by research partners for large-scale VLA (Vision-Language-Action) model training
- Demonstrated significant multi-task generalization capabilities
## 📊 Model Performance
**VLA Model Results**: [TBD]
## 🛠️ Toolchain
### Core Tools
| Tool | Description | Link |
|------|-------------|------|
| **Single-Arm Demo Replay** | Single-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_singleARM) |
| **Dual-Arm Demo Replay** | Dual-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_dualARM) |
| **Hardware SDK** | FastUMI hardware development kit | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Hardware_SDK) |
| **Monitor Tool** | Real-time device monitoring | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Monitor_Tool) |
| **Data Collection** | Data collection utilities | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Data_Collection) |
### Research & Applications
- **Paper**: [MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm](https://arxiv.org/abs/2508.10538)
- **Tutorial**: PI0 (FastUMI Data Lightweight Adaptation, Version V0) Full Pipeline
## 📥 Data Download
### Example Dataset
```bash
# Direct download (may be slow in some regions)
huggingface-cli download FastUMIPro/example_data_fastumi_pro_raw --repo-type dataset --local-dir ~/fastumi_data/
```
Mirror Download (Recommended)
```bash
# Set mirror endpoint
export HF_ENDPOINT=https://hf-mirror.com
```
# Download via mirror
huggingface-cli download --repo-type dataset --resume-download FastUMIPro/example_data_fastumi_pro_raw --local-dir ~/fastumi_data/
📁 Data Structure
Each session represents an independent operation "episode" containing observation data and action sequences.
```
Directory Structure
text
session_001/
└── device_label_xv_serial/
└── session_timestamp/
├── RGB_Images/
│ ├── timestamps.csv
│ └── Frames/
│ ├── frame_000001.jpg
│ └── ...
├── SLAM_Poses/
│ └── slam_raw.txt
├── Vive_Poses/
│ └── vive_data_tum.txt
├── ToF_PointClouds/
│ ├── timestamps.csv
│ └── PointClouds/
│ └── pointcloud_000001.pcd
├── Clamp_Data/
│ └── clamp_data_tum.txt
└── Merged_Trajectory/
├── merged_trajectory.txt
└── merge_stats.txt
```
## Data Specifications
| Data Type | Path | Shape| Type | Description |
| :--- | :--- | :--- | :--- | :--- |
| **RGB Images** | `session_XXX/RGB_Images/Video.MP4` | `(frames, 1080, 1920, 3)`| `uint8`| Camera video data, 60 FPS |
| **SLAM Poses** | `session_XXX/SLAM_Poses/slam_raw.txt` | `(timestamps, 7)`| `float` | UMI end-effector poses |
| **Vive Poses** | `session_XXX/Vive_Poses/vive_data_tum.txt` | `(timestamps, 7)`| `float` | Vive base station poses |
| **ToF PointClouds** | `session_XXX/PointClouds/pointcloud_...pcd` | `pcd format` | Time-of-Flight point cloud data |
| **Clamp Data** | `session_XXX/Clamp_Data/clamp_data_tum.txt` | `(timestamps, 1)`| `float` | Gripper spacing (mm) |
| **Merged Trajectory** | `session_XXX/Merged_Trajectory/merged_trajectory.txt` | `(timestamps, 7)`| `float` | Fused trajectory (Vive/UMI based on velocity) |
### Pose Data Format
All pose data (SLAM, Vive, Merged) follow the same format:
| Column Name | Description |
| :--- | :--- |
| **Timestamp** | Unix timestamp of the trajectory data |
| **Pos X** | X-coordinate of position (meters) |
| **Pos Y** | Y-coordinate of position (meters) |
| **Pos Z** | Z-coordinate of position (meters) |
| **Q_X** | X-component of orientation quaternion |
| **Q_Y** | Y-component of orientation quaternion |
| **Q_Z** | Z-component of orientation quaternion |
| **Q_W** | W-component of orientation quaternion |
## 🔄 Data Conversion
[TBD - Data conversion methods will be added here]
## 🤝 Collaboration
FastUMI Pro dataset is available for research collaboration. The full FastUMI-150K dataset has been provided to partner research teams for large-scale model training.
## 📞 Contact
For questions or suggestions, please contact the development team
Lead: Ding Yan
Email: [email protected]
WeChat: Duke_dingyan