|
|
--- |
|
|
language: |
|
|
- en |
|
|
- zh |
|
|
tags: |
|
|
- robotics |
|
|
- manipulation |
|
|
- vla |
|
|
- trajectory-data |
|
|
- multimodal |
|
|
- vision-language-action |
|
|
license: other |
|
|
task_categories: |
|
|
- robotics |
|
|
- reinforcement-learning |
|
|
multimodal: vision+language+action |
|
|
dataset_info: |
|
|
features: |
|
|
- name: rgb_images |
|
|
dtype: image |
|
|
description: Multi-view RGB images |
|
|
- name: slam_poses |
|
|
sequence: float32 |
|
|
description: SLAM pose trajectories |
|
|
- name: vive_poses |
|
|
sequence: float32 |
|
|
description: Vive tracking system poses |
|
|
- name: point_clouds |
|
|
sequence: float32 |
|
|
description: Time-of-Flight point cloud data |
|
|
- name: clamp_data |
|
|
sequence: float32 |
|
|
description: Clamp sensor readings |
|
|
- name: merged_trajectory |
|
|
sequence: float32 |
|
|
description: Fused trajectory data |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: "**/*" |
|
|
--- |
|
|
|
|
|
<div align="center"> |
|
|
FastUMI Pro Dataset |
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
 |
|
|
 |
|
|
 |
|
|
|
|
|
**Enterprise-grade Robotic Manipulation Dataset for Universal Manipulation Interface** |
|
|
|
|
|
[Project Homepage](https://fastumi.com/pro/) | [FastUMI Home](https://fastumi.com) | [Example Data](https://huggingface.co/datasets/FastUMIPro/example_data_fastumi_pro_raw) |
|
|
|
|
|
</div> |
|
|
|
|
|
## 📖 Overview |
|
|
|
|
|
FastUMI (Fast Universal Manipulation Interface) is a dataset and interface framework for general-purpose robotic manipulation tasks, designed to support hardware-agnostic, scalable, and efficient data collection and model training. |
|
|
|
|
|
The project provides: |
|
|
- Physical prototype systems |
|
|
- Complete data collection codebase |
|
|
- Standardized data formats and utilities |
|
|
- Tools for real-world manipulation learning research |
|
|
|
|
|
## 🚀 Features |
|
|
|
|
|
### FastUMI Pro Enhancements |
|
|
- ✅ **Higher precision trajectory data** |
|
|
- ✅ **Diverse embodiment support** for true "one-brain-multiple-forms" |
|
|
- ✅ **Enterprise-ready** pipeline and full-link data processing |
|
|
|
|
|
### FastUMI-150K |
|
|
- ~150,000 real-world manipulation trajectories |
|
|
- Used by research partners for large-scale VLA (Vision-Language-Action) model training |
|
|
- Demonstrated significant multi-task generalization capabilities |
|
|
|
|
|
## 📊 Model Performance |
|
|
|
|
|
|
|
|
**VLA Model Results**: [TBD] |
|
|
|
|
|
## 🛠️ Toolchain |
|
|
|
|
|
### Core Tools |
|
|
|
|
|
| Tool | Description | Link | |
|
|
|------|-------------|------| |
|
|
| **Single-Arm Demo Replay** | Single-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_singleARM) | |
|
|
| **Dual-Arm Demo Replay** | Dual-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_dualARM) | |
|
|
| **Hardware SDK** | FastUMI hardware development kit | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Hardware_SDK) | |
|
|
| **Monitor Tool** | Real-time device monitoring | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Monitor_Tool) | |
|
|
| **Data Collection** | Data collection utilities | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Data_Collection) | |
|
|
|
|
|
### Research & Applications |
|
|
- **Paper**: [MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm](https://arxiv.org/abs/2508.10538) |
|
|
- **Tutorial**: PI0 (FastUMI Data Lightweight Adaptation, Version V0) Full Pipeline |
|
|
|
|
|
## 📥 Data Download |
|
|
|
|
|
### Example Dataset |
|
|
```bash |
|
|
# Direct download (may be slow in some regions) |
|
|
huggingface-cli download FastUMIPro/example_data_fastumi_pro_raw --repo-type dataset --local-dir ~/fastumi_data/ |
|
|
``` |
|
|
|
|
|
Mirror Download (Recommended) |
|
|
```bash |
|
|
# Set mirror endpoint |
|
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
``` |
|
|
|
|
|
# Download via mirror |
|
|
huggingface-cli download --repo-type dataset --resume-download FastUMIPro/example_data_fastumi_pro_raw --local-dir ~/fastumi_data/ |
|
|
📁 Data Structure |
|
|
Each session represents an independent operation "episode" containing observation data and action sequences. |
|
|
``` |
|
|
Directory Structure |
|
|
text |
|
|
session_001/ |
|
|
└── device_label_xv_serial/ |
|
|
└── session_timestamp/ |
|
|
├── RGB_Images/ |
|
|
│ ├── timestamps.csv |
|
|
│ └── Frames/ |
|
|
│ ├── frame_000001.jpg |
|
|
│ └── ... |
|
|
├── SLAM_Poses/ |
|
|
│ └── slam_raw.txt |
|
|
├── Vive_Poses/ |
|
|
│ └── vive_data_tum.txt |
|
|
├── ToF_PointClouds/ |
|
|
│ ├── timestamps.csv |
|
|
│ └── PointClouds/ |
|
|
│ └── pointcloud_000001.pcd |
|
|
├── Clamp_Data/ |
|
|
│ └── clamp_data_tum.txt |
|
|
└── Merged_Trajectory/ |
|
|
├── merged_trajectory.txt |
|
|
└── merge_stats.txt |
|
|
``` |
|
|
|
|
|
## Data Specifications |
|
|
|
|
|
| Data Type | Path | Shape| Type | Description | |
|
|
| :--- | :--- | :--- | :--- | :--- | |
|
|
| **RGB Images** | `session_XXX/RGB_Images/Video.MP4` | `(frames, 1080, 1920, 3)`| `uint8`| Camera video data, 60 FPS | |
|
|
| **SLAM Poses** | `session_XXX/SLAM_Poses/slam_raw.txt` | `(timestamps, 7)`| `float` | UMI end-effector poses | |
|
|
| **Vive Poses** | `session_XXX/Vive_Poses/vive_data_tum.txt` | `(timestamps, 7)`| `float` | Vive base station poses | |
|
|
| **ToF PointClouds** | `session_XXX/PointClouds/pointcloud_...pcd` | `pcd format` | Time-of-Flight point cloud data | |
|
|
| **Clamp Data** | `session_XXX/Clamp_Data/clamp_data_tum.txt` | `(timestamps, 1)`| `float` | Gripper spacing (mm) | |
|
|
| **Merged Trajectory** | `session_XXX/Merged_Trajectory/merged_trajectory.txt` | `(timestamps, 7)`| `float` | Fused trajectory (Vive/UMI based on velocity) | |
|
|
|
|
|
### Pose Data Format |
|
|
|
|
|
All pose data (SLAM, Vive, Merged) follow the same format: |
|
|
| Column Name | Description | |
|
|
| :--- | :--- | |
|
|
| **Timestamp** | Unix timestamp of the trajectory data | |
|
|
| **Pos X** | X-coordinate of position (meters) | |
|
|
| **Pos Y** | Y-coordinate of position (meters) | |
|
|
| **Pos Z** | Z-coordinate of position (meters) | |
|
|
| **Q_X** | X-component of orientation quaternion | |
|
|
| **Q_Y** | Y-component of orientation quaternion | |
|
|
| **Q_Z** | Z-component of orientation quaternion | |
|
|
| **Q_W** | W-component of orientation quaternion | |
|
|
## 🔄 Data Conversion |
|
|
[TBD - Data conversion methods will be added here] |
|
|
|
|
|
## 🤝 Collaboration |
|
|
FastUMI Pro dataset is available for research collaboration. The full FastUMI-150K dataset has been provided to partner research teams for large-scale model training. |
|
|
|
|
|
## 📞 Contact |
|
|
For questions or suggestions, please contact the development team |
|
|
Lead: Ding Yan |
|
|
Email: [email protected] |
|
|
WeChat: Duke_dingyan |
|
|
|