license: mit
task_categories:
- text-classification
- feature-extraction
language:
- en
tags:
- software-engineering
- testing
- performance
- llm-serving
- vllm
- benchmarking
- ml-evaluation
pretty_name: vLLM PR Test Classification
size_categories:
- n<1K
configs:
- config_name: default
data_files:
- split: train
path: data/*
vLLM PR Test Classification Dataset
🎯 Overview
This dataset contains 98 vLLM project commits with their corresponding Pull Request (PR) timeline data and comprehensive test type classifications. It provides insights into testing patterns in a major LLM serving infrastructure project.
📊 Dataset Description
Purpose
This dataset was created by analyzing vLLM project PR timelines to:
- Identify different types of testing and benchmarking activities
- Understand testing patterns in LLM infrastructure development
- Provide labeled data for ML models to classify test types in software PRs
- Enable research on performance optimization trends in LLM serving
Test Categories
Each commit is classified across four test categories:
Category | Description | Keywords | Prevalence |
---|---|---|---|
LM Evaluation | Language model evaluation tests | lm_eval , gsm8k , mmlu , hellaswag , truthfulqa |
25.5% |
Performance | Performance benchmarking tests | TTFT , throughput , latency , ITL , TPOT , tok/s |
81.6% |
Serving | Serving functionality tests | vllm serve , API server , frontend , online serving |
53.1% |
General Test | General testing activities | CI , pytest , unittest , buildkite , fastcheck |
96.9% |
📈 Dataset Statistics
Overall Distribution
- Total commits: 98
- Multi-category commits: 76 (77.6%)
- Average test types per commit: 2.57
Detailed Keyword Frequency
Top Performance Keywords (80 commits)
throughput
: 241 mentionslatency
: 191 mentionsprofiling
: 114 mentionsTTFT
(Time To First Token): 114 mentionsITL
(Inter-token Latency): 114 mentionsTPOT
(Time Per Output Token): 108 mentionsoptimization
: 87 mentionstok/s
(tokens per second): 66 mentions
Top LM Evaluation Keywords (25 commits)
gsm8k
: 62 mentionslm_eval
: 33 mentionslm-eval
: 9 mentionsmmlu
: 3 mentionshumaneval
: 1 mention
Top Serving Keywords (52 commits)
frontend
: 181 mentionsserving
: 74 mentionsapi server
: 42 mentionsvllm serve
: 23 mentionsonline serving
: 19 mentions
🗂️ Data Schema
{
'commit_hash': str, # Git commit SHA-1 hash (40 chars)
'pr_url': str, # GitHub PR URL (e.g., https://github.com/vllm-project/vllm/pull/12601)
'has_lm_eval': bool, # True if commit contains LM evaluation tests
'has_performance': bool, # True if commit contains performance benchmarks
'has_serving': bool, # True if commit contains serving tests
'has_general_test': bool, # True if commit contains general tests
'test_details': str, # Pipe-separated test keywords (e.g., "PERF: ttft, throughput | TEST: ci, pytest")
'timeline_text': str, # Full PR timeline text with comments, reviews, and commit messages
'extracted_at': str # ISO timestamp when data was extracted
}
💻 Usage Examples
Basic Loading
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-username/vllm-pr-test-classification")
# Explore the data
print(f"Total examples: {len(dataset['train'])}")
print(f"Features: {dataset['train'].features}")
print(f"First example: {dataset['train'][0]}")
Filtering Examples
# Get commits with performance benchmarks
perf_commits = dataset['train'].filter(lambda x: x['has_performance'])
print(f"Performance commits: {len(perf_commits)}")
# Get commits with LM evaluation
lm_eval_commits = dataset['train'].filter(lambda x: x['has_lm_eval'])
print(f"LM evaluation commits: {len(lm_eval_commits)}")
# Get commits with multiple test types
multi_test = dataset['train'].filter(
lambda x: sum([x['has_lm_eval'], x['has_performance'],
x['has_serving'], x['has_general_test']]) >= 3
)
print(f"Commits with 3+ test types: {len(multi_test)}")
Analysis Example
import pandas as pd
# Convert to pandas for analysis
df = dataset['train'].to_pandas()
# Analyze test type combinations
test_combinations = df[['has_lm_eval', 'has_performance', 'has_serving', 'has_general_test']]
combination_counts = test_combinations.value_counts()
print("Most common test combinations:")
print(combination_counts.head())
# Extract performance metrics mentioned
perf_df = df[df['has_performance']]
print(f"\nCommits mentioning specific metrics:")
print(f"TTFT mentions: {perf_df['test_details'].str.contains('TTFT').sum()}")
print(f"Throughput mentions: {perf_df['test_details'].str.contains('throughput', case=False).sum()}")
Text Classification Training
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
# Prepare for multi-label classification
def preprocess_function(examples):
# Create multi-label targets
labels = []
for i in range(len(examples['commit_hash'])):
label = [
int(examples['has_lm_eval'][i]),
int(examples['has_performance'][i]),
int(examples['has_serving'][i]),
int(examples['has_general_test'][i])
]
labels.append(label)
# Tokenize timeline text
tokenized = tokenizer(
examples['timeline_text'],
truncation=True,
padding='max_length',
max_length=512
)
tokenized['labels'] = labels
return tokenized
# Train a classifier to identify test types from PR text
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=4,
problem_type="multi_label_classification"
)
🔍 Sample Data
Example 1: Performance-focused commit
{
"commit_hash": "fc542144c4477ffec1d3de6fa43e54f8fb5351e8",
"pr_url": "https://github.com/vllm-project/vllm/pull/12563",
"has_lm_eval": false,
"has_performance": true,
"has_serving": false,
"has_general_test": true,
"test_details": "PERF: tok/s, optimization | TEST: CI",
"timeline_text": "[Guided decoding performance optimization]..."
}
Example 2: Comprehensive testing commit
{
"commit_hash": "aea94362c9bdd08ed2b346701bdc09d278e85f66",
"pr_url": "https://github.com/vllm-project/vllm/pull/12287",
"has_lm_eval": true,
"has_performance": true,
"has_serving": true,
"has_general_test": true,
"test_details": "LM_EVAL: lm_eval, gsm8k | PERF: TTFT, ITL | SERVING: vllm serve | TEST: test, CI",
"timeline_text": "[Frontend][V1] Online serving performance improvements..."
}
🛠️ Potential Use Cases
- Test Type Classification: Train models to automatically classify test types in software PRs
- Testing Pattern Analysis: Study how different test types correlate in infrastructure projects
- Performance Optimization Research: Analyze performance testing trends in LLM serving systems
- CI/CD Insights: Understand continuous integration patterns in ML infrastructure projects
- Documentation Generation: Generate test documentation from PR timelines
- Code Review Automation: Build tools to automatically suggest relevant tests based on PR content
📚 Source
This dataset was extracted from the vLLM project GitHub repository PR timelines. vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.
🔄 Updates
- v1.0.0 (2025-01): Initial release with 98 commits
📜 License
This dataset is released under the MIT License, consistent with the vLLM project's licensing.
📖 Citation
If you use this dataset in your research or applications, please cite:
@dataset{vllm_pr_test_classification_2025,
title={vLLM PR Test Classification Dataset},
author={vLLM Community Contributors},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/your-username/vllm-pr-test-classification},
note={A dataset of 98 vLLM commits with test type classifications extracted from GitHub PR timelines}
}
🤝 Contributing
If you'd like to contribute to this dataset or report issues:
- Open an issue on the Hugging Face dataset repository
- Submit improvements via pull requests
- Share your use cases and findings
⚠️ Limitations
- Dataset size is limited to 98 commits
- Timeline text may be truncated for very long PR discussions
- Classification is based on keyword matching, which may miss context-dependent references
- Dataset represents a snapshot from specific time period of vLLM development
🙏 Acknowledgments
Thanks to the vLLM project maintainers and contributors for their open-source work that made this dataset possible.