seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
2614278018
# topics = ['动态规划'] from typing import List class Solution: def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int: """ Dynamic Programming time O(mn), space O(mn), m 和 n 分别为 nums1 和 nums2 的长度 """ m, n = len(nums1), len(nums2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i, num1 in enumerate(nums1): for j, num2 in enumerate(nums2): if num1 == num2: dp[i + 1][j + 1] = dp[i][j] + 1 else: dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]) return dp[m][n]
show-me-code/signInHelper-using-face-
algorithms/[1035]不相交的线/solution.py
solution.py
py
655
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 7, "usage_type": "name" } ]
10502969372
from rest_framework.test import APITestCase from ...services.notification_service import NotificationService from ...api_services.notification import NotificationAPIService from django.urls import reverse class TestNotificationAPIServices(APITestCase): def setUp(self): self.payload = { "title": "Winter discount sale started", "description": "Enter coupon-code to get flat 10% discount" } self.notification_id = NotificationService().create(self.payload).id self.url = reverse("notification") def test_create_notification(self): data = { "title": "Summer discount sale started", "description": "Enter coupon-code to get flat 10% discount" } notification = NotificationAPIService().create_notification(data) self.assertEqual(notification.get('title'), data.get('title')) def test_get_all_notification(self): notifications = NotificationAPIService().get_all_notification() self.assertNotEqual(len(notifications), 0) def test_get_notification_by_id(self): notification = NotificationAPIService().get_notification_by_id(self.notification_id) self.assertEqual(notification.get('id'), self.notification_id) def test_delete_notification_by_id(self): response = NotificationAPIService().delete_notification(self.notification_id) self.assertEqual(response, True)
anojkr/onboarding-project
push_notification/apps/notification/tests/unit/test_notification_api_services.py
test_notification_api_services.py
py
1,441
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.test.APITestCase", "line_number": 6, "usage_type": "name" }, { "api_name": "services.notification_service.NotificationService", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 14, "usage_type": "call" }, { "api_name": "api_services.notification.NotificationAPIService", "line_number": 21, "usage_type": "call" }, { "api_name": "api_services.notification.NotificationAPIService", "line_number": 25, "usage_type": "call" }, { "api_name": "api_services.notification.NotificationAPIService", "line_number": 29, "usage_type": "call" }, { "api_name": "api_services.notification.NotificationAPIService", "line_number": 33, "usage_type": "call" } ]
7295749579
import discord, datetime, time from discord.ext import commands, tasks from itertools import cycle start_time = time.time() class Events(commands.Cog): def __init__(self, client): self.client = client self.status = cycle(['Bind', 'Haven', 'Ascent','Split','Fracture']) @tasks.loop(seconds=10.0) async def change_status(self): await self.client.change_presence(activity=discord.Game(next(self.status))) @commands.Cog.listener() async def on_ready(self): await self.client.wait_until_ready() self.change_status.start() print("Event Commands Are Ready!") @commands.command(pass_context=True) async def uptime(self, ctx): current_time = time.time() difference = int(round(current_time - start_time)) text = str(datetime.timedelta(seconds=difference)) def setup(bot): bot.add_cog(Events(bot))
awesomedustyn/CAP-N-
cogs/Events.py
Events.py
py
908
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 5, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 7, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 7, "usage_type": "name" }, { "api_name": "itertools.cycle", "line_number": 10, "usage_type": "call" }, { "api_name": "discord.Game", "line_number": 15, "usage_type": "call" }, { "api_name": "discord.ext.tasks.loop", "line_number": 13, "usage_type": "call" }, { "api_name": "discord.ext.tasks", "line_number": 13, "usage_type": "name" }, { "api_name": "discord.ext.commands.Cog.listener", "line_number": 17, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 17, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 17, "usage_type": "name" }, { "api_name": "time.time", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 27, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 23, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 23, "usage_type": "name" } ]
8733632634
from hmmlearn import hmm import numpy as np class CustomHMM: def __init__(self): def build_hmm(): model = hmm.GMMHMM(n_components=3, n_mix=3, covariance_type="diag", init_params="t") model.transmat_ = np.array([[0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0]]) return model self.hmm_0 = build_hmm() self.hmm_1 = build_hmm() def fit(self, X_train, y_train): # X_train shape(n_instances, n_samples) labels = set(y_train) if len(labels) != 2: raise Exception("y_train doesn't contain 2 classes") X_0 = X_train[y_train == 0, :] X_1 = X_train[y_train == 1, :] self.hmm_0.fit(X_0) self.hmm_1.fit(X_1) def predict(self, X_test): res = [] for x in X_test: x = np.reshape(x,[1,len(x)]) res.append(0 if self.hmm_0.score(x) > self.hmm_1.score(x) else 1) return np.array(res)
mattschaff/upennvoicerecog
CustomHMM.py
CustomHMM.py
py
986
python
en
code
1
github-code
6
[ { "api_name": "hmmlearn.hmm.GMMHMM", "line_number": 7, "usage_type": "call" }, { "api_name": "hmmlearn.hmm", "line_number": 7, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" } ]
41655800194
import dash import dash_html_components as html from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_bootstrap_components as dbc import base64 import pandas as pd import io import dash_table import os import ast from seaborn.matrix import heatmap from .layouts.layout import html_layout from dash.exceptions import PreventUpdate import requests import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff import matplotlib.pyplot as plt import base64 from flask_sqlalchemy import SQLAlchemy import psycopg2 from .layouts.page2_layout import server_layout from .layouts.page3_layout import layout3 from .modelHelperFunctions import * # from .layouts.EDA_layout import EDA_layout # from .EDA_callbacks import EDA_callback ## size convert import enum # Enum for size units df = pd.DataFrame([]) file = open('data/var_info.txt', 'r') contents = file.read() dictionary = ast.literal_eval(contents) file. close() file1 = open('data/section_name.txt', 'r') contents1 = file1.read() dictionary_name = ast.literal_eval(contents1) file1.close() file2 = open('data/categorized_type.txt', 'r') contents2 = file2.read() categories = ast.literal_eval(contents2) file2.close() def load_info_dict(file): f = open(file, 'r') cont = f.read() f.close() return ast.literal_eval(cont) VAR_PATH = 'data/var_info.txt' STATE_PATH = 'data/state_info.txt' SECTION_PATH = 'data/section_name.txt' REGRESSON_LIST = ["Linear", "Lasso", "Ridge", "LassoLars", "Bayesian Ridge", "Elastic Net"] REG_CRITERION = ['Index', 'Label', 'Model', 'Penalty', 'MAE', 'MSE', ''] CLASSIFICATION_LIST = ["Logistic", "LDA"] #CLF_CRITERION = ["Index", "Label", "Model", "Penalty", "Accuracy", "ROC_AUC score", "Precision", "Recall", "F1-Score"] CLF_CRITERION = ["Index", "Label", "Model", "Penalty", "Accuracy"] var_info = load_info_dict(VAR_PATH) section_info = load_info_dict(SECTION_PATH) state_info = load_info_dict(STATE_PATH) SECTION = list(section_info.keys()) STATE = list(state_info.keys()) class SIZE_UNIT(enum.Enum): BYTES = 1 KB = 2 MB = 3 GB = 4 def convert_unit(size_in_bytes, unit): """ Convert the size from bytes to other units like KB, MB or GB""" if unit == SIZE_UNIT.KB: return size_in_bytes/1024 elif unit == SIZE_UNIT.MB: return size_in_bytes/(1024*1024) elif unit == SIZE_UNIT.GB: return size_in_bytes/(1024*1024*1024) else: return size_in_bytes def download_file_from_google_drive(id, destination): def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params = { 'id' : id }, stream = True) token = get_confirm_token(response) if token: params = { 'id' : id, 'confirm' : token } response = session.get(URL, params = params, stream = True) save_response_content(response, destination) all_performance_layouts = [] history_html = None def dataDownload(server): global df app = dash.Dash(server=server, routes_pathname_prefix='/dashapp/', external_stylesheets=[ 'https://codepen.io/dapraxis/pen/gOPGzPj.css', '/static/dist/css/styles.css', 'https://fonts.googleapis.com/css?family=Lato', 'https://codepen.io/chriddyp/pen/bWLwgP.css' ]) allData = {'BRFSS':'1tNWPT9xW1jc3Qta_h4CGHp9lRbHM1540'} app.index_string = html_layout db = SQLAlchemy(server) app.scripts.config.serve_locally = True # Uploaded to npm, this can work online now too. df = pd.DataFrame([]) # df.to_csv(os.stat(r`str(os.getcwd())+'\\uploads\\'+str('download.csv')`)) org_layout = html.Div([ html.Div([], id='hidden-div', style={'display': 'none'}), dcc.Dropdown( id='demo-dropdown', options=[ {'label': 'BRFSS', 'value': 'BRFSS'} ], searchable=False, placeholder="Select A Medical Dataset", style = { 'width':'50%', 'margin':'2% 0%' } ), html.Div(id='dd-output-container'), # html.Div(id='output') dcc.Loading( children=[ html.Div(id='output') ], type='cube') ],style={ 'width': '70%', 'margin': '5% 15%', # 'text-align': 'center', }) app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ]) # @app.callback(Input('test', 'n_clicks')) @app.callback(Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/dashapp/': return org_layout elif pathname == '/dashapp/EDA/': # create_EDA(app, df) return server_layout elif pathname == '/dashapp/RFA/': return layout3 # return '404' @app.callback( dash.dependencies.Output('dd-output-container', 'children'), [dash.dependencies.Input('demo-dropdown', 'value')]) def update_output(value): if(not value): raise PreventUpdate return 'You have selected "{}"'.format(value) @app.callback(Output('output', 'children'), [Input('demo-dropdown', 'value')]) def update_output(value): global df if value is not None: # file_id = allData[value] # destination = 'download.csv' # download_file_from_google_drive(file_id, destination) # connection = False if value =='BRFSS': df = pd.read_sql_query(sql = 'SELECT * FROM brfss2 LIMIT 100', con=db.engine, index_col='object_id') df.columns = df.columns.str.upper() return parse_contents(value) def parse_contents(filename): global df ''' profile = ProfileReport(df, title = "Pandas Profiling Report") profile.to_file("report.html") #change it so that it automatically saves it in the folder where this file is These lines create the report using pandas profiling, however it takes quite long as the report is 11 MB. For now, only one dataset is used so these lines don't neeed to run each time ''' new_df = df.iloc[:5, :5] return html.Div([ # html.H5("Upload File: {}".format(filename)), html.Hr(), html.A(html.Button('Next', id='btn'), href='/dashapp/EDA/'), html.Hr(), dcc.Loading(children=[ dash_table.DataTable( id='database-table', columns=[{'name': i, 'id': i} for i in new_df.columns], data=new_df.to_dict('records'), sort_action="native", sort_mode='native', page_size=300, fixed_rows = 100, style_table={ 'maxHeight': '80ex', #'overflowY': 'scroll', #'overflowX': 'scroll', 'width': '100%', 'border' : '1px solid blue' }, style_cell={ 'color': 'blue' }, ), html.Hr(), # horizontal line #html.A(html.Button('Next', id='btn'), href='/dashapp/EDA/') ], type='cube') ]) ## EDA STARTS @app.callback(dash.dependencies.Output('dropdown_content', 'children'), [dash.dependencies.Input('dropdown_section_name', 'value')]) def render_tab_preparation_multiple_dropdown(value): #print (dictionary_name) all_vals = [] for i in dictionary_name.values(): for j in i: all_vals.append(j) if value: for key in dictionary_name: if key == value: return_div = html.Div([ html.Br(), dcc.Dropdown( id='dropdown', options=[ {'label': i, 'value': i} for i in dictionary_name[key] ], placeholder="Select Feature", # value='features' ), #dcc.Dropdown( # id = 'dropdown2', # options = [ # {'label': i, 'value' : i} for i in all_vals # ], # placeholder="Select Second Feature", #), html.Div(id='single_commands'), ]) return return_div else: raise PreventUpdate ''' @app.callback(dash.dependencies.Output('dropdown_content2', 'children'), [dash.dependencies.Input('dropdown_section_name2', 'value')]) def render_tab_preparation_multiple_dropdown2(value2): all_vals = [] for i in dictionary_name.values(): for j in i: all_vals.append(j) return_div = html.Div([ html.Br(), dcc.Dropdown( id = 'dropdown2', options = [ {'label': i, 'value' : i} for i in all_vals ], placeholder="Select Second Feature", ), html.Div(id='single_commands2'), ]) return return_div ''' @app.callback( dash.dependencies.Output('dd-notice', 'children'), [dash.dependencies.Input('dropdown', 'value'),]) def update_selected_feature_div(value): if value: result = [] for key, values in dictionary[value].items(): result.append('{}:{}'.format(key, values)) div = html.Div([ html.Div([ html.H3('Feature Informatation') ]), html.Div([ html.Ul([html.Li(x) for x in result]) ]), ]) return div else: raise PreventUpdate @app.callback( [dash.dependencies.Output('dd-output-container2', 'children'), dash.dependencies.Output('graph_plot', 'children')], [dash.dependencies.Input('dropdown', 'value')]) def preparation_tab_information_report(value): global df if value: str_value = str(value) df = pd.read_sql_query(sql = 'SELECT {}, object_id FROM brfss2 LIMIT 100'.format(str_value.lower()), con=db.engine, index_col='object_id') R_dict = df.describe().to_dict() result = [] for key in R_dict[str_value.lower()]: result.append('{}: {}'.format(key, R_dict[str_value.lower()][key])) div = html.Div([ html.Div([ html.H3('Feature Statistics') ]), html.Div([ html.Ul([html.Li(x) for x in result]) # dcc.Graph(figure= px.box(df[str_value.lower()], points="all")) ]), ]) g = dcc.Loading(id='graph_loading', children=[ dcc.Graph( figure={"layout": { "xaxis": {"visible": False}, "yaxis": {"visible": False}, "annotations": [{ "text": "Please Select the Feature you would like to Visualize", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 28} }] }}, id='dd-figure'), ]) return [div, g] else: raise PreventUpdate # Define a function for drawing box plot for selected feature @app.callback( dash.dependencies.Output('dd-figure', 'figure'), # [dash.dependencies.Input('dropdown', 'value'),dash.dependencies.Input("hidden-div", 'children')]) [dash.dependencies.Input('dropdown', 'value')]) def preparation_tab_visualize_features(value): global df if value: str_value = str(value).lower() df = pd.read_sql_query(sql = 'SELECT {}, object_id FROM brfss2 LIMIT 100'.format(str_value.lower()), con=db.engine, index_col='object_id') integers = categories[0] floats = categories[1] if str_value in integers: fig = px.histogram(df[str_value], y=str_value) elif str_value in floats: fig = px.box(df[str_value], y=str_value) else: fig = px.histogram(df[str_value], y=str_value) return fig else: raise PreventUpdate @app.callback(Output(component_id='feature_dropdown', component_property='options'), [Input(component_id='section_dropdown', component_property='value')]) def update_feature_dropdown(section): if section == None: return dash.no_update lst = section_info.get(section) return [{'label': '{}: {}'.format(i, var_info.get(i).get('Label')), 'value': i} for i in lst] @app.callback(Output(component_id='model_dropdown', component_property='options'), [Input(component_id='type_dropdown', component_property='value')]) def update_model_dropdown(task): if task == "Regression": return [{'label': i, 'value': i} for i in REGRESSON_LIST] elif task == "Classification": return [{'label': i, 'value': i} for i in CLASSIFICATION_LIST] else: return dash.no_update @app.callback(Output('slider-output-container', 'children'), [Input('num-of-factors', 'value')]) def update_output(value): return 'You have selected {} top risk factors'.format(value) @app.callback(Output('penalty-output-container', 'children'), [Input('penalty', 'value')]) def update_output(value): return 'You have selected {} as penalty multiplier'.format(value) @app.callback([Output('RFA_output', 'children'), Output('reg_rec', 'data'), Output('clf_rec', 'data')], [Input('run_button', 'n_clicks')], [State('state_dropdown', 'value'), State('feature_dropdown', 'value'), State('type_dropdown', 'value'), State('model_dropdown', 'value'), State('penalty', 'value'), State('num-of-factors', 'value'), State('reg_rec', 'data'), State('clf_rec', 'data')]) def perform_risk_factor_analysis(n_clicks, state, label, task_type, model_type, penalty, num_of_factor, reg_data, clf_data): global df global history_html if n_clicks > 0: if((label == None) or (task_type == None) or (model_type == None)): # return [], reg_data, clf_data, True return dash.no_update, dash.no_update, dash.no_update state_df = pd.read_sql_query(sql = 'SELECT * FROM brfss2 WHERE _state = {}'.format(int(state)), con=db.engine, index_col='object_id') state_df.columns = state_df.columns.str.upper() y = state_df[label] X = state_df.drop([label], axis=1) col_names = X.columns if task_type == "Regression": model_res = regression_models( X, y, model_type, True, alpha=penalty) model = model_res[0] res = reg_risk_factor_analysis(model, col_names, num_of_factor) performance_layout = html.Div( html.Div( dash_table.DataTable( id="reg_table", columns=[{'name': val, 'id': val} for val in REG_CRITERION[1:]], data=[{"Label": label, 'Model': model_type, 'Penalty': penalty, 'MAE': round(model_res[1], 5), 'MSE':round(model_res[2], 5), 'R2':round(model_res[3], 5)}], style_cell={ 'height': 'auto', 'textAlign': 'right' # all three widths are needed # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # 'whiteSpace': 'normal' }, ) ), ) info = "Perform Risk Factor Analysis with normalized data based on {} regression".format( model_type) elif task_type == "Classification": model_res = classification_models( X, y, model_type, True, C=penalty) model = model_res[0] cfn_matrix = model_res[5] #heatmap_filename = model_res[-1] #encoded_image = base64.b64encode(open(heatmap_filename, 'rb').read()) res = clf_risk_factor_analysis(model, col_names, num_of_factor, label)[0] table_columns = [] categories = clf_risk_factor_analysis(model, col_names, num_of_factor, label)[1] table_columns.append(categories) #categories (yes, no, etc.) table_columns.append(model_res[2]) #precision table_columns.append(model_res[3]) #recall table_columns.append(model_res[4]) #f1 accuracy_column = [model_res[1]] * len(table_columns[1]) table_columns.append(accuracy_column) #print (accuracy_column) CLF_CRITERION2 = ["Category", "Precision", "Recall", "F1", "Accuracy"] #print (table_columns) if len(table_columns[0]) == len(table_columns[1]) + 1: table_columns[0] = table_columns[0][:-1] elif len(table_columns[0]) == len(table_columns[1]) + 2: table_columns[0] = table_columns[0][:-2] elif len(table_columns[0]) == len(table_columns[1]) - 1: i = 1 while (i <= 4): table_columns[i] = table_columns[i][:-1] i += 1 table_dict = {"Category" : table_columns[0], "Precision" : table_columns[1], "Recall" : table_columns[2], "F1": table_columns[3], "Accuracy" : table_columns[4]} table_df = pd.DataFrame(table_dict) #print (table_df) performance_layout = html.Div( #html.Div( # dash_table.DataTable( # id="clf_table", # columns=[{'name': val, 'id': val} # for val in CLF_CRITERION[1:]], # #data=[{"Label": label, 'Model': model_type, "Penalty": penalty, "Accuracy": round(model_res[1], 5), # # "Precision":round(model_res[2], 5), "Recall":round(model_res[3], 5), "F1-Score":round(model_res[4], 5)}], # data=[{"Label": label, 'Model': model_type, "Penalty": penalty, "Accuracy": model_res[1]}], # style_cell={ # 'height': 'auto', # 'textAlign': 'right' # # all three widths are needed # # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # # 'whiteSpace': 'normal' # } # ) #), html.Div( dash_table.DataTable( id="clf_table", columns = [{'name' : val, 'id' : val} for val in CLF_CRITERION2], data = table_df.to_dict('records'), style_cell = { # 'height' : 'auto', # 'textAllign' : 'right', } ) ) ) all_performance_layouts.append(performance_layout) info = "Perform Risk Factor Analysis with normalized data based on {} model".format( model_type) else: return [], reg_data, clf_data res_tab_col = ["Rank", "Factor", "Absolute Weight", "Sign"] #res = reg_risk_factor_analysis(model, col_names, num_of_factor) def return_history(history_html): history_all = html.Div([ html.Details([ html.Summary("Performance of History Models"), html.Details([ html.Summary("Performance Records for Classification Model"), html.Div( dash_table.DataTable( id="clf_rec", columns=[{'name': val, 'id': val} for val in CLF_CRITERION], data=[], style_cell={ 'height': 'auto', 'textAlign': 'right' # all three widths are needed # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # 'minWidth': '100px', 'width': '120px', 'maxWidth': '240px', # 'whiteSpace': 'normal' } ) ), #html.Details([ #html.Summary("Performance Table"), #performance_layout]) history_html ], style={'paddingLeft':'25px'}), html.Details([ html.Summary("Performance Records for Regression Model"), html.Div( dash_table.DataTable( id="reg_rec", columns=[{'name': val, 'id': val} for val in REG_CRITERION], data=[], style_cell={ 'height': 'auto', 'textAlign': 'right' # all three widths are needed # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # 'minWidth': '100px', 'width': '120px', 'maxWidth': '240px', # 'whiteSpace': 'normal' } ) ), ], style={'paddingLeft':'25px'}) ]) ]) return history_all if task_type == "Classification": history_html = html.Div(children=[], style={'paddingLeft':'25px'}) for i in range(len(all_performance_layouts)): text = "Performance table for Index " + str(i+1) temp_html = html.Details([ html.Summary(text), all_performance_layouts[i]]) history_html.children.append(temp_html) ######## so history_html is a list with all the temp_htmls, and they need to be combined via comments like ''' html.Details([ html.Summray(text), all_performance_layouts[0])], html.Details([ html.Summary(text), all_performance_layouts[1])], and so on ''' #print (cfn_matrix) #print (categories) if len(categories) == len(cfn_matrix) - 1: categories.append('Refused ') elif len(categories) == len(cfn_matrix) + 1: categories = categories[:-1] #print (categories) heatmap_fig = ff.create_annotated_heatmap(cfn_matrix.T, x = categories, y = categories) layout = html.Div(children=[ html.P( html.Label(info) ), html.Div( dash_table.DataTable( id="RFA_table", columns=[ {'name': i, 'id': i} for i in res_tab_col ], data=res, style_cell={ 'height': 'auto', 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', 'whiteSpace': 'normal', 'textAlign': 'right' }, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_data_conditional=[ { 'if': { 'column_id': 'Sign', 'filter_query': '{Sign} = "-"' }, 'backgroundColor': 'dodgerblue', 'color': 'white' }, { 'if': { 'column_id': 'Sign', 'filter_query': '{Sign} = "+"' }, 'backgroundColor': '#85144b', 'color': 'white' }, ], ) ), html.P( html.Label("{} model performance: ".format(model_type)) ), performance_layout, #html.Div([ # html.Label("Heatmap for the Confusion Matrix:"), # html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode())) #encoded_image does not exist for continous variables #]), html.Div([ dcc.Graph(figure=heatmap_fig) ]), return_history(history_html) ]) elif task_type == "Regression": layout = html.Div(children=[ html.P( html.Label(info) ), html.Div( dash_table.DataTable( id="RFA_table", columns=[ {'name': i, 'id': i} for i in res_tab_col ], data=res, style_cell={ 'height': 'auto', 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', 'whiteSpace': 'normal', 'textAlign': 'right' }, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_data_conditional=[ { 'if': { 'column_id': 'Sign', 'filter_query': '{Sign} = "-"' }, 'backgroundColor': 'dodgerblue', 'color': 'white' }, { 'if': { 'column_id': 'Sign', 'filter_query': '{Sign} = "+"' }, 'backgroundColor': '#85144b', 'color': 'white' }, ], ) ), html.P( html.Label("{} model performance: ".format(model_type)) ), performance_layout, return_history(history_html) # html.Div([ # html.Details([ # html.Summary("Performance of History Models"), # html.Details([ # html.Summary("Performance Records for Regression Model"), # html.Div( # dash_table.DataTable( # id="reg_rec", # columns=[{'name': val, 'id': val} # for val in REG_CRITERION], # data=[], # style_cell={ # 'height': 'auto', # 'textAlign': 'right' # # all three widths are needed # # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # # 'minWidth': '100px', 'width': '120px', 'maxWidth': '240px', # # 'whiteSpace': 'normal' # } # ) # ), # ]), # html.Details([ # html.Summary("Performance Records for Classification Model"), # html.Div([ # dash_table.DataTable( # id="clf_rec", # columns=[{'name': val, 'id': val} # for val in CLF_CRITERION], # data=[], # style_cell={ # 'height': 'auto', # 'textAlign': 'right' # # all three widths are needed # # 'minWidth': '180px', 'width': '180px', 'maxWidth': '180px', # # 'minWidth': '100px', 'width': '120px', 'maxWidth': '240px', # # 'whiteSpace': 'normal' # } # ),history_html] # ), # ]) # ]) # ]) ]) if task_type == "Regression": return layout, reg_data + [{"Index": len(reg_data)+1, "Label": label, 'Model': model_type, 'Penalty': penalty, 'MAE': round(model_res[1], 5), 'MSE':round(model_res[2], 5), }], clf_data elif task_type == "Classification": return layout, reg_data, clf_data + [{"Index": len(clf_data)+1, "Label": label, 'Model': model_type, "Penalty": penalty, "Accuracy": model_res[1]}] else: return [], reg_data, clf_data else: # return [], reg_data, clf_data, False return dash.no_update, dash.no_update, dash.no_update
DaPraxis/Interactive-Machine-Learning-Tool-for-Risk-Factor-Analysis2
application/plotlydash/dataDownload.py
dataDownload.py
py
34,472
python
en
code
0
github-code
6
[ { "api_name": "pandas.DataFrame", "line_number": 36, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 40, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 45, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 50, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 57, "usage_type": "call" }, { "api_name": "enum.Enum", "line_number": 76, "usage_type": "attribute" }, { "api_name": "requests.Session", "line_number": 110, "usage_type": "call" }, { "api_name": "dash.Dash", "line_number": 127, "usage_type": "call" }, { "api_name": "layouts.layout.html_layout", "line_number": 138, "usage_type": "name" }, { "api_name": "flask_sqlalchemy.SQLAlchemy", "line_number": 140, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 144, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 147, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 148, "usage_type": "call" }, { "api_name": "dash_core_components.Dropdown", "line_number": 149, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 161, "usage_type": "call" }, { "api_name": "dash_core_components.Loading", "line_number": 163, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 165, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 173, "usage_type": "call" }, { "api_name": "dash_core_components.Location", "line_number": 174, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 175, "usage_type": "call" }, { "api_name": "layouts.page2_layout.server_layout", "line_number": 187, "usage_type": "name" }, { "api_name": "layouts.page3_layout.layout3", "line_number": 189, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 180, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 181, "usage_type": "call" }, { "api_name": "dash.exceptions.PreventUpdate", "line_number": 198, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 194, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 194, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Input", "line_number": 195, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 195, "usage_type": "attribute" }, { "api_name": "pandas.read_sql_query", "line_number": 211, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 201, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 202, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 224, "usage_type": "call" }, { "api_name": "dash_html_components.Hr", "line_number": 226, "usage_type": "call" }, { "api_name": "dash_html_components.A", "line_number": 227, "usage_type": "call" }, { "api_name": "dash_html_components.Button", "line_number": 227, "usage_type": "call" }, { "api_name": "dash_html_components.Hr", "line_number": 228, "usage_type": "call" }, { "api_name": "dash_core_components.Loading", "line_number": 229, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 230, "usage_type": "call" }, { "api_name": "dash_html_components.Hr", "line_number": 250, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 267, "usage_type": "call" }, { "api_name": "dash_html_components.Br", "line_number": 268, "usage_type": "call" }, { "api_name": "dash_core_components.Dropdown", "line_number": 269, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 284, "usage_type": "call" }, { "api_name": "dash.exceptions.PreventUpdate", "line_number": 288, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 256, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 256, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Input", "line_number": 257, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 257, "usage_type": "attribute" }, { "api_name": "dash_html_components.Div", "line_number": 322, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 323, "usage_type": "call" }, { "api_name": "dash_html_components.H3", "line_number": 324, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 326, "usage_type": "call" }, { "api_name": "dash_html_components.Ul", "line_number": 327, "usage_type": "call" }, { "api_name": "dash_html_components.Li", "line_number": 327, "usage_type": "call" }, { "api_name": "dash.exceptions.PreventUpdate", "line_number": 333, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 315, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 315, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Input", "line_number": 316, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 316, "usage_type": "attribute" }, { "api_name": "pandas.read_sql_query", "line_number": 343, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 349, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 350, "usage_type": "call" }, { "api_name": "dash_html_components.H3", "line_number": 351, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 353, "usage_type": "call" }, { "api_name": "dash_html_components.Ul", "line_number": 354, "usage_type": "call" }, { "api_name": "dash_html_components.Li", "line_number": 354, "usage_type": "call" }, { "api_name": "dash_core_components.Loading", "line_number": 359, "usage_type": "call" }, { "api_name": "dash_core_components.Graph", "line_number": 360, "usage_type": "call" }, { "api_name": "dash.exceptions.PreventUpdate", "line_number": 375, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 336, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 336, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Output", "line_number": 337, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 337, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Input", "line_number": 338, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 338, "usage_type": "attribute" }, { "api_name": "pandas.read_sql_query", "line_number": 387, "usage_type": "call" }, { "api_name": "plotly.express.histogram", "line_number": 391, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 391, "usage_type": "name" }, { "api_name": "plotly.express.box", "line_number": 393, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 393, "usage_type": "name" }, { "api_name": "plotly.express.histogram", "line_number": 395, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 395, "usage_type": "name" }, { "api_name": "dash.exceptions.PreventUpdate", "line_number": 398, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 380, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 380, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Input", "line_number": 382, "usage_type": "call" }, { "api_name": "dash.dependencies", "line_number": 382, "usage_type": "attribute" }, { "api_name": "dash.no_update", "line_number": 404, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Output", "line_number": 400, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 401, "usage_type": "call" }, { "api_name": "dash.no_update", "line_number": 416, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Output", "line_number": 408, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 409, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 418, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 418, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 422, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 422, "usage_type": "call" }, { "api_name": "dash.no_update", "line_number": 446, "usage_type": "attribute" }, { "api_name": "pandas.read_sql_query", "line_number": 448, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 460, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 461, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 462, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 509, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 511, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 529, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 530, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 552, "usage_type": "call" }, { "api_name": "dash_html_components.Details", "line_number": 553, "usage_type": "call" }, { "api_name": "dash_html_components.Summary", "line_number": 554, "usage_type": "call" }, { "api_name": "dash_html_components.Details", "line_number": 555, "usage_type": "call" }, { "api_name": "dash_html_components.Summary", "line_number": 556, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 557, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 558, "usage_type": "call" }, { "api_name": "dash_html_components.Details", "line_number": 578, "usage_type": "call" }, { "api_name": "dash_html_components.Summary", "line_number": 579, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 580, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 581, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 602, "usage_type": "call" }, { "api_name": "dash_html_components.Details", "line_number": 605, "usage_type": "call" }, { "api_name": "dash_html_components.Summary", "line_number": 606, "usage_type": "call" }, { "api_name": "plotly.figure_factory.create_annotated_heatmap", "line_number": 626, "usage_type": "call" }, { "api_name": "plotly.figure_factory", "line_number": 626, "usage_type": "name" }, { "api_name": "dash_html_components.Div", "line_number": 627, "usage_type": "call" }, { "api_name": "dash_html_components.P", "line_number": 628, "usage_type": "call" }, { "api_name": "dash_html_components.Label", "line_number": 629, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 631, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 632, "usage_type": "call" }, { "api_name": "dash_html_components.P", "line_number": 669, "usage_type": "call" }, { "api_name": "dash_html_components.Label", "line_number": 670, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 677, "usage_type": "call" }, { "api_name": "dash_core_components.Graph", "line_number": 678, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 683, "usage_type": "call" }, { "api_name": "dash_html_components.P", "line_number": 684, "usage_type": "call" }, { "api_name": "dash_html_components.Label", "line_number": 685, "usage_type": "call" }, { "api_name": "dash_html_components.Div", "line_number": 687, "usage_type": "call" }, { "api_name": "dash_table.DataTable", "line_number": 688, "usage_type": "call" }, { "api_name": "dash_html_components.P", "line_number": 725, "usage_type": "call" }, { "api_name": "dash_html_components.Label", "line_number": 726, "usage_type": "call" }, { "api_name": "dash.no_update", "line_number": 784, "usage_type": "attribute" }, { "api_name": "dash.dependencies.Output", "line_number": 426, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 427, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 428, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 429, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 430, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 431, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 432, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 433, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 434, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 435, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 436, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 437, "usage_type": "call" } ]
71452829947
import numpy as np from functools import partial #from multiprocessing import Pool import matplotlib.pyplot as plt from matplotlib import cm from pandas import DataFrame import scipy as sc import scipy.signal import os import pdb import time def group_into_bands(fft, fft_freq, nfreq_bands): if nfreq_bands == 178: bands = range(1, 180) elif nfreq_bands == 4: bands = [0.1, 4, 8, 12, 30] elif nfreq_bands == 6: bands = [0.1, 4, 8, 12, 30, 70, 180] # http://onlinelibrary.wiley.com/doi/10.1111/j.1528-1167.2011.03138.x/pdf elif nfreq_bands == 8: bands = [0.1, 4, 8, 12, 30, 50, 70, 100, 180] elif nfreq_bands == 12: bands = [0.5, 4, 8, 12, 30, 40, 50, 60, 70, 85, 100, 140, 180] elif nfreq_bands == 9: bands = [0.1, 4, 8, 12, 21, 30, 50, 70, 100, 180] else: raise ValueError('wrong number of frequency bands') freq_bands = np.digitize(fft_freq, bands) #print(freq_bands) #st = time.clock() df = DataFrame({'fft': fft, 'band': freq_bands}) #end = time.clock() #print("DF: " + str(end-st)) #st = time.clock() df = df.groupby('band').mean() #end = time.clock() #print("DFM: " + str(end-st)) return df.fft[1:-1] def fgroup_into_bands(fft, fft_freq, nfreq_bands): if nfreq_bands == 178: bands = range(1, 180) elif nfreq_bands == 4: bands = [0.1, 4, 8, 12, 30] elif nfreq_bands == 6: bands = [0.1, 4, 8, 12, 30, 70, 180] # http://onlinelibrary.wiley.com/doi/10.1111/j.1528-1167.2011.03138.x/pdf elif nfreq_bands == 8: bands = [0.1, 4, 8, 12, 30, 50, 70, 100, 180] elif nfreq_bands == 12: bands = [0.5, 4, 8, 12, 30, 40, 50, 60, 70, 85, 100, 140, 180] elif nfreq_bands == 9: bands = [0.1, 4, 8, 12, 21, 30, 50, 70, 100, 180] else: raise ValueError('wrong number of frequency bands') freq_bands = np.digitize(fft_freq, bands) cutoff_index = [0] for n in xrange(freq_bands.size): if(freq_bands[n] != freq_bands[cutoff_index[-1]]): cutoff_index.append(n) # the last case is special since it goes to the end # also we dont need the first bin since we disregard frequencies below lowest bin df=np.zeros(nfreq_bands) for n in xrange(2,len(cutoff_index)-1): df[n-2] = np.mean(fft[cutoff_index[n-1]:cutoff_index[n]]) df[-1] = np.mean(fft[cutoff_index[-2]:cutoff_index[-1]]) # we assume that fft_freq is only increasing #df = DataFrame({'fft': fft, 'band': freq_bands}) #df = df.groupby('band').mean() return df # returns channels x bins x time-frames def compute_fft(x, data_length_sec, sampling_frequency, nfreq_bands, win_length_sec, stride_sec, features): n_channels = x.shape[0] n_timesteps = (data_length_sec - win_length_sec) / stride_sec + 1 n_fbins = nfreq_bands + 1 if 'std' in features else nfreq_bands x2 = np.zeros((n_channels, n_fbins, n_timesteps)) count = 0 for i in range(n_channels): xc = np.zeros((n_fbins, n_timesteps)) for frame_num, w in enumerate(range(0, data_length_sec - win_length_sec + 1, stride_sec)): count += 1 #print frame_num, w xw = x[i, w * sampling_frequency: (w + win_length_sec) * sampling_frequency] #st = time.clock() fft = np.log10(np.absolute(np.fft.rfft(xw, axis = -1))) #end = time.clock() #if(count % 111 == 0): print("LOGFFT: " + str(end-st)) #st = time.clock() fft_freq = np.fft.rfftfreq(n=xw.shape[-1], d=1.0 / sampling_frequency) fft = np.log10(np.absolute(np.fft.rfft(xw, axis = -1))) #end = time.clock() #if(count % 111 == 0): print("RFFTFREQ: " + str(end-st)) #if(frame_num == 1): print(fft_freq) ''' st = time.clock() if(count % 111 == 0):print(group_into_bands(fft, fft_freq, nfreq_bands)) end = time.clock() if(count % 111 == 0): print("GroupBands: " + str(end-st)) st = time.clock() if(count % 111 == 0):print(fgroup_into_bands(fft, fft_freq, nfreq_bands)) end = time.clock() if(count % 111 == 0): print("FGroupBands: " + str(end-st)) ''' # test if both are equivalent #print(fgroup_into_bands(fft, fft_freq, nfreq_bands)-group_into_bands(fft, fft_freq, nfreq_bands)) #st = time.clock() xc[:nfreq_bands, frame_num] = fgroup_into_bands(fft, fft_freq, nfreq_bands) #end = time.clock() #if(count % 111 == 0): print("FGroupBands: " + str(end-st)) #st = time.clock() if 'std' in features: xc[-1, frame_num] = np.std(xw) #end = time.clock() #if(count % 111 == 0): print("STD: " + str(end-st)) #st = time.clock() x2[i, :, :] = xc #end = time.clock() #print("ASSIGN: " + str(end-st)) print(count) print(np.amax(x2)) print(np.amin(x2)) return x2 # filters out the low freq and high freq def filter_opt(x, new_sampling_frequency, data_length_sec, lowcut, highcut): st = time.clock() x1 = scipy.signal.resample(x, new_sampling_frequency * data_length_sec, axis=1) end = time.clock() print("Resample: " + str(end-st)) nyq = 0.5 * new_sampling_frequency st = time.clock() b, a = sc.signal.butter(5, np.array([lowcut, highcut]) / nyq, btype='band') end = time.clock() print("Butter: " + str(end-st)) st = time.clock() x_filt = sc.signal.lfilter(b, a, x1, axis=1) end = time.clock() print("lFilter: " + str(end-st)) return np.float32(x_filt) # Computes X and y from all the .npy files in a directory # X = n x channels x filters x time-frames # y = n x 1 def compute_X_Y(direc): n = len([name for name in os.listdir(direc)]) X = np.zeros((n, 16, 7, 10)) y = np.empty((n, 1)) for i, filename in enumerate(os.listdir(direc)): if filename.endswith('.npy'): f = np.load(direc + filename) f = f.T filtered = filter_freq(f, 400, 600, 0.1, 180.0) new_x = compute_fft(filtered, data_length_sec, sampling_frequency, nfreq_bands, win_length_sec, stride_sec, features) X[i, ] = new_x if filename.endswith('1.npy'): y[i] = 1 elif filename.endswith('0.npy'): y[i] = 0 continue else: continue return X, y ''' direc_train = '/Users/Anuar_The_Great/desktop/ML/train_1_npy_train/' direc_test = '/Users/Anuar_The_Great/desktop/ML/train_1_npy_test/' X_train, y_train = compute_X_Y(direc_train) X_test, y_test = compute_X_Y(direc_test) ''' if __name__ == "__main__": data_length_sec = 600 sampling_frequency = 400 nfreq_bands = 12 # can play around with these: win_length_sec = 25 stride_sec = 1 features = "meanlog_std" # will create a new additional bin of standard deviation of other bins f = np.load('data/train_1_npy/1_1_0.npy')['data'][()] # compute_fft accepts a matrix of channels x time, so we gotta transpose x = f.T # Test one observation filtered = filter(x, 400, 600, 0.1, 180.0) new_x = compute_fft(x, data_length_sec, sampling_frequency, nfreq_bands, win_length_sec, stride_sec, features) #pdb.set_trace() print(new_x.shape) #print new_x print(new_x[0]) img2 = plt.imshow(new_x[0][0:-1],interpolation='nearest', cmap = cm.gist_rainbow, origin='lower') plt.show() img2 = plt.imshow(new_x[1][0:-1],interpolation='nearest', cmap = cm.gist_rainbow, origin='lower') plt.show()
Anmol6/kaggle-seizure-competition
preprocess/pre_processing.py
pre_processing.py
py
7,809
python
en
code
0
github-code
6
[ { "api_name": "numpy.digitize", "line_number": 30, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.absolute", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.fft.rfft", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.fft.rfftfreq", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 103, "usage_type": "attribute" }, { "api_name": "numpy.log10", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.absolute", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.fft.rfft", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 104, "usage_type": "attribute" }, { "api_name": "numpy.std", "line_number": 132, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.amin", "line_number": 142, "usage_type": "call" }, { "api_name": "time.clock", "line_number": 147, "usage_type": "call" }, { "api_name": "scipy.signal.resample", "line_number": 148, "usage_type": "call" }, { "api_name": "scipy.signal", "line_number": 148, "usage_type": "attribute" }, { "api_name": "time.clock", "line_number": 149, "usage_type": "call" }, { "api_name": "time.clock", "line_number": 153, "usage_type": "call" }, { "api_name": "scipy.signal.butter", "line_number": 154, "usage_type": "call" }, { "api_name": "scipy.signal", "line_number": 154, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 154, "usage_type": "call" }, { "api_name": "time.clock", "line_number": 155, "usage_type": "call" }, { "api_name": "time.clock", "line_number": 158, "usage_type": "call" }, { "api_name": "scipy.signal.lfilter", "line_number": 159, "usage_type": "call" }, { "api_name": "scipy.signal", "line_number": 159, "usage_type": "attribute" }, { "api_name": "time.clock", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 162, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 167, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 168, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 169, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 170, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 172, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 202, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 213, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 213, "usage_type": "name" }, { "api_name": "matplotlib.cm.gist_rainbow", "line_number": 213, "usage_type": "attribute" }, { "api_name": "matplotlib.cm", "line_number": 213, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 214, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 214, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 215, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 215, "usage_type": "name" }, { "api_name": "matplotlib.cm.gist_rainbow", "line_number": 215, "usage_type": "attribute" }, { "api_name": "matplotlib.cm", "line_number": 215, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 216, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 216, "usage_type": "name" } ]
34002077692
# SWEA 5105 미로의 거리 from collections import deque def bfs(x, y): q = deque([(x, y)]) arr[x][y] = 0 dr = [-1, 1, 0, 0] dc = [0, 0, -1, 1] while q: r, c = q.popleft() for i in range(4): nr = r + dr[i] nc = c + dc[i] if 0 <= nr < N and 0 <= nc < N and arr[nr][nc] == -1: if maze[nr][nc] == 0: arr[nr][nc] = arr[r][c] + 1 q.append((nr, nc)) elif maze[nr][nc] == 3: arr[nr][nc] = arr[r][c] return T = int(input()) for tc in range(1, T + 1): N = int(input()) maze = [list(map(int, list(input()))) for _ in range(N)] arr = [[-1 for _ in range(N)] for _ in range(N)] for i in range(N): for j in range(N): if maze[i][j] == 2: bfs(i, j) for i in range(N): for j in range(N): if maze[i][j] == 3: if arr[i][j] == -1: print(f"#{tc} 0") else: print(f"#{tc} {arr[i][j]}")
jinmoonJ/algorithm
0825/SWEA_5105.py
SWEA_5105.py
py
1,147
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 6, "usage_type": "call" } ]
24696329244
""" Author : Animesh Bhasin Version : 1 Version Date : 16th Nov 2022 Description : This script is to read the data from City of New York API and load into postgres db """ import requests import pandas as pd from datetime import date, timedelta from sqlalchemy import create_engine import os def main(): """ Main function """ crashes_url = 'https://data.cityofnewyork.us/resource/h9gi-nx95.json' column_list = ['crash_date', 'crash_time', 'borough', 'zip_code', 'location_latitude', 'location_longitude', 'location_location', 'on_street_name', 'off_street_name', 'cross_street_name', 'number_of_persons_injured', 'number_of_persons_killed', 'number_of_pedestrians_injured', 'number_of_pedestrians_killed', 'number_of_cyclist_injured', 'number_of_cyclist_killed', 'number_of_motorist_injured', 'number_of_motorist_killed', 'contributing_factor_vehicle_1', 'contributing_factor_vehicle_2', 'contributing_factor_vehicle_3', 'contributing_factor_vehicle_4', 'contributing_factor_vehicle_5', 'collision_id', 'vehicle_type_code1', 'vehicle_type_code2', 'vehicle_type_code_3', 'vehicle_type_code_4', 'vehicle_type_code_5'] #Connect to database database_url = os.getenv('database_url') schema_name = 'crash' crashes_table_name = 'crashes' engine = create_engine(database_url, echo=False) #Find maximum date for which data is present in db( to intelligently incrementally process data) crash_start_date = get_date_max_date_in_db(engine, schema_name, crashes_table_name) #Find dates to process date_list = get_list_of_dates_to_process(crash_start_date) print ('Processing dates : {}'.format(date_list)) #Process data for each date for crash_date in date_list: print('Processing date : {}'.format(crash_date)) #Read data from API data = read_data_for_crash_date(crash_date, crashes_url) if data: #convert dictionary data to dataframe df, collision_id_list_str = get_data_df(data, column_list) #Write data to database write_to_db(engine, df, collision_id_list_str, schema_name, crashes_table_name) def get_date_max_date_in_db(engine, schema_name, table_name): """ Function to get max crash date from database Args: engine (SQLAlchemyEngine): SQL Alchemy engine created from database schema_name(str): Schema Name table_name(str): Table Name Returns: (date): Max date from database """ sql_statement = '''select max(crash_date + interval '1' day) from {}.{};'''.format(schema_name, table_name) with engine.connect() as connection: result = connection.execute(sql_statement) for row in result: max_date = row[0] if max_date: return max_date else: return (date.today() - timedelta(days=5)).strftime('%Y-%m-%d') def get_list_of_dates_to_process(start_date): """ Function to list of dates to process Args: start_date(date): Starting date Returns: (date): List of dates from start date to yesterday's date """ end_date = date.today() - timedelta(days=2) date_df = pd.date_range(start_date, end_date, freq='d') return date_df.strftime('%Y-%m-%d').to_list() def read_data_for_crash_date(crash_date, api_url): """ Function to read json data from API using requests library Args: crash_date(date): Date for which crashes data is fetched api_url(string): API endpoint for crashes data Returns: data(dict): Return the json response of API containing crashes data for that date """ params = {'crash_date': crash_date} r = requests.get(url=api_url, params=params) # extracting data in json format data = r.json() return data def get_data_df(data, column_list): """ Function to convert json data to dataframe Args: data(dict): json response of API containing crashes data column_list(list): List containing key names to be processed from data dict Returns: df(Dataframe) : Dataframe containing collisions data collision_id_list_str(str) : A String of list of collision ids being processed needed so that existing collision id records can be deleted from database before inserting them to avoid duplicates in database """ df = pd.json_normalize(data, sep='_') df = df.drop(columns=[col for col in df if col not in column_list]) collision_id_list = df['collision_id'].tolist() collision_id_list_str = str(collision_id_list)[1:-1] return df, collision_id_list_str def write_to_db(engine, df, collision_id_list_str, schema_name, table_name): """ Function to write the dataframe to database Args: engine (SQLAlchemyEngine): SQL Alchemy engine created from database df(Dataframe) : Dataframe containing collisions data collision_id_list_str(str) : A String of list of collision ids being processed needed so that existing collision id records can be deleted from database before inserting them to avoid duplicates in database schema_name(str): Schema Name table_name(str): Table Name """ #Delete existing collision id records to ensure deduplication sql_statement = 'delete from {}.{} where collision_id in ({})'.format(schema_name, table_name, collision_id_list_str) engine.execute(sql_statement) df.to_sql(name=table_name, schema=schema_name, con=engine, if_exists='append', index=False) if __name__ == '__main__': main()
Sapphirine/202112-26-NYC-Vehicle-Crash-Analysis
get_crashes.py
get_crashes.py
py
5,844
python
en
code
1
github-code
6
[ { "api_name": "os.getenv", "line_number": 29, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 74, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 74, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 74, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 86, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 86, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 86, "usage_type": "call" }, { "api_name": "pandas.date_range", "line_number": 87, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 102, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 122, "usage_type": "call" } ]
21776740540
import sys import os import click import json import re import pandas as pd import numpy as np from PIL import ImageTk, Image from tkinter import Tk from .modules.interface import AnnotationInterface @click.version_option("0.0.1") @click.command() @click.argument('image_dir', required=True) @click.argument('bindings_json', required=True) @click.option('--csv', required=False, default=None, help='Location of annotation CSV file') @click.option('--o', default="output.csv", required=False, help='File to save annotations to') @click.option('--start_i', default=0, required=False) @click.option('--window_w', default=764, required=False) @click.option('--window_h', default=1200, required=False) @click.option('--resize_w', default=382, required=False) @click.option('--resize_h', default=470, required=False) @click.option('--filetype', default='jpg', required=False) def main(image_dir, bindings_json, csv, o, start_i, window_w, window_h, resize_w, resize_h, filetype): r""" EXPERIMENTAL Picture annotation tool. CSV should contain 'image' column as first column specifying image names without the directory. """ print("csv =", csv) print("output file=", o) print("image_dir=", image_dir) print("bindings_json =", bindings_json) print("start_i =", start_i) print("window_w =", window_w) print("window_h =", window_h) print("resize_w =", resize_w) print("resize_h =", resize_h) print("filetype =", filetype) with open(bindings_json) as json_file: json_dict = json.load(json_file) bindings = json_dict['bindings'] print("bindings =", bindings) classes = list(bindings.values()) print("classes = ", classes) filetype_regex = re.compile(f".+\\.{filetype}$") # Default behaviour: if CSV is not provided, create empty dataframe with the # categories set to the classes from the keybindings and the number of # rows corresponding to the pictures . # If CSV is provided, use that as the annotation df (make sure the # keybinding classes are a subset of the annotation classes) if csv is None: assert not os.path.isfile(o), "csv not specified but output.csv file exists" files_in_image_dir = os.listdir(image_dir) image_names = list(filter(filetype_regex.match, files_in_image_dir)) num_pictures = len(image_names) annotation_classes = classes annotation_values = np.zeros((num_pictures, len(annotation_classes))) annotations = pd.concat((pd.DataFrame(image_names), pd.DataFrame(annotation_values)), axis=1) annotations.columns = ['image'] + annotation_classes else: annotations = pd.read_csv(csv) annotation_classes = [x for i,x in enumerate(annotations.columns) if i>0] root = Tk() ai = AnnotationInterface(master=root, bindings=bindings, classes=classes, image_dir=image_dir, data_df=annotations, save_csv=o, window_w = window_w, window_h = window_h, start_i = start_i) # Key bindings for curr_key, curr_class in zip(bindings.keys(), classes): print(f"bound {curr_key} to {curr_class}") root.bind(curr_key, ai.pressEvent) root.bind("<Return>", ai.prev_picture) root.bind("<space>", ai.next_picture) root.mainloop() if __name__ == '__main__': args = sys.argv if "--help" in args or len(args) == 1: print("Picture annotation tool") main()
jacobhepkema/annotpics
annotpics/__main__.py
__main__.py
py
3,726
python
en
code
1
github-code
6
[ { "api_name": "json.load", "line_number": 51, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 71, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 72, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 72, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 75, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 79, "usage_type": "call" }, { "api_name": "modules.interface.AnnotationInterface", "line_number": 81, "usage_type": "call" }, { "api_name": "click.version_option", "line_number": 14, "usage_type": "call" }, { "api_name": "click.command", "line_number": 15, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 16, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 17, "usage_type": "call" }, { "api_name": "click.option", "line_number": 18, "usage_type": "call" }, { "api_name": "click.option", "line_number": 20, "usage_type": "call" }, { "api_name": "click.option", "line_number": 22, "usage_type": "call" }, { "api_name": "click.option", "line_number": 23, "usage_type": "call" }, { "api_name": "click.option", "line_number": 24, "usage_type": "call" }, { "api_name": "click.option", "line_number": 25, "usage_type": "call" }, { "api_name": "click.option", "line_number": 26, "usage_type": "call" }, { "api_name": "click.option", "line_number": 27, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 100, "usage_type": "attribute" } ]
21246199914
import os import pytest import pandas as pd from typing import List from faker import Faker from dataclasses import dataclass from prepare_dataset import read_data, train_target @dataclass() class TrainingPipelineParams: input_data_path: str @pytest.fixture() def dataset_path(tmpdir): fake = Faker() fake.set_arguments('age', {'min_value': 29, 'max_value': 100}) fake.set_arguments('sex', {'min_value': 0, 'max_value': 1}) fake.set_arguments('resteg', {'min_value': 0, 'max_value': 3}) fake.set_arguments('target', {'min_value': 0, 'max_value': 1}) sample_csv = fake.csv(header=('age', 'sex', 'resteg', 'target'), data_columns=('{{pyint: age}}', '{{pyint: sex}}', '{{pyint: resteg}}', '{{pyint: target}}'), num_rows=10) dataset_fio = tmpdir.join('sample.csv') dataset_fio.write(sample_csv) return dataset_fio @pytest.fixture() def train_pipeline_params(dataset_path): params = TrainingPipelineParams params.input_data_path = dataset_path return params @pytest.fixture() def target_col(): return 'target' def test_load_dataset_using_path(train_pipeline_params, target_col): df = read_data(train_pipeline_params) assert isinstance(df, pd.DataFrame) assert 10 == len(df) assert target_col in df.keys() def test_train_target(tmpdir, train_pipeline_params): df = read_data(train_pipeline_params) columns = ['age', 'sex', 'resteg'] train, target = train_target(df, columns, 'target') assert (10, 3) == train.shape assert pd.Series == type(target) assert (10,) == target.shape
made-ml-in-prod-2021/alexshevchuk7
ml_project/tests/test_prepare_data.py
test_prepare_data.py
py
1,815
python
en
code
0
github-code
6
[ { "api_name": "dataclasses.dataclass", "line_number": 11, "usage_type": "call" }, { "api_name": "faker.Faker", "line_number": 18, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 16, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 37, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 44, "usage_type": "call" }, { "api_name": "prepare_dataset.read_data", "line_number": 50, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 51, "usage_type": "attribute" }, { "api_name": "prepare_dataset.read_data", "line_number": 57, "usage_type": "call" }, { "api_name": "prepare_dataset.train_target", "line_number": 59, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 61, "usage_type": "attribute" } ]
3361094578
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from functions import noso from functions import dtdu_backward from functions import dodt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.float class fcn(nn.Module): def __init__(self, task, thresh, tau_m, tau_s, num_steps, frate): super(fcn, self).__init__() self.task = task self.thresh = thresh self.tau_m = tau_m self.tau_s = tau_s self.num_steps = num_steps self.frate = frate if self.task == 'mnist': self.cfg_fc = [784, 400, 10] elif self.task == 'nmnist': self.cfg_fc = [34*34*2, 800, 10] self.num_steps = 300 self.fc1 = nn.Linear(self.cfg_fc[0], self.cfg_fc[1], bias=False).float() self.fc2 = nn.Linear(self.cfg_fc[1], self.cfg_fc[2], bias=False).float() nn.init.normal_(self.fc1.weight, mean=0, std=np.sqrt(2/self.cfg_fc[0])) nn.init.normal_(self.fc2.weight, mean=0, std=np.sqrt(2/self.cfg_fc[1])) def forward(self, input, batch_size): h1_vm = h1_vs = torch.zeros(batch_size, self.cfg_fc[0], dtype=dtype, device=device) h1_um = h1_us = h1_spike = torch.zeros(batch_size, self.cfg_fc[1], dtype=dtype, device=device) h1_sav = torch.ones(batch_size, self.cfg_fc[1], dtype=dtype, device=device) h2_vm = h2_vs = torch.zeros(batch_size, self.cfg_fc[1], dtype=dtype, device=device) h2_um = h2_us = h2_spike = h2_u = torch.zeros(batch_size, self.cfg_fc[2], dtype=dtype, device=device) h2_sav = torch.ones(batch_size, self.cfg_fc[2], dtype=dtype, device=device) # output out_t = self.num_steps * torch.ones(batch_size, self.cfg_fc[2], dtype=dtype, device=device) out_u = torch.zeros(batch_size, self.cfg_fc[2], dtype=dtype, device=device) sum_sp = torch.zeros(len(self.cfg_fc)) # for backprop h1_v = torch.zeros(batch_size, self.cfg_fc[1], self.cfg_fc[0], dtype=dtype, device=device) h2_v = torch.zeros(batch_size, self.cfg_fc[2], self.cfg_fc[1], dtype=dtype, device=device) h1_dvdt = torch.zeros(batch_size, self.cfg_fc[1], self.cfg_fc[0], dtype=dtype, device=device) h2_dvdt = torch.zeros(batch_size, self.cfg_fc[2], self.cfg_fc[1], dtype=dtype, device=device) h1_dtdu = torch.zeros(batch_size, self.cfg_fc[1], dtype=dtype, device=device) h2_dtdu = torch.zeros(batch_size, self.cfg_fc[2], dtype=dtype, device=device) for step in range(self.num_steps): # MNIST input encoding : Poisson spike generation if self.task == 'mnist': in_spike = (input * self.frate > torch.rand(input.size(), device=device)).view(batch_size, -1).float() # N-MNIST input encoding elif self.task == 'nmnist': in_spike = input[:,:,:,:, step].view(batch_size, -1) # Calculation of first hidden layer h1_sav, h1_vm, h1_vs, h1_um, h1_us, h1_spike = noso(self.thresh, self.tau_m, self.tau_s, self.fc1, in_spike, h1_sav, h1_vm, h1_vs, h1_spike, outneuron=False) # Calculation of output layer h2_sav, h2_vm, h2_vs, h2_um, h2_us, h2_u, h2_spike = noso(self.thresh, self.tau_m, self.tau_s, self.fc2, h1_spike, h2_sav, h2_vm, h2_vs, h2_spike, outneuron=True) # Recoding of output spike timings and output membrane potential out_t += dodt.apply(h2_spike, step, self.num_steps) out_u += h2_spike * h2_u sum_sp[0] += in_spike.sum().item() sum_sp[1] += h1_spike.sum().item() sum_sp[2] += h2_spike.sum().item() # for backprop h1_v += torch.unsqueeze((h1_vm - h1_vs), 1) * torch.unsqueeze(h1_spike, 2) h2_v += torch.unsqueeze((h2_vm - h2_vs), 1) * torch.unsqueeze(h2_spike, 2) h1_dvdt += torch.unsqueeze((h1_vm / self.tau_m - h1_vs / self.tau_s), 1) * torch.unsqueeze(h1_spike, 2) h2_dvdt += torch.unsqueeze((h2_vm / self.tau_m - h2_vs / self.tau_s), 1) * torch.unsqueeze(h2_spike, 2) h1_dtdu += dtdu_backward(h1_um, h1_us, h1_spike, self.thresh, self.tau_m, self.tau_s) h2_dtdu += dtdu_backward(h2_um, h2_us, h2_spike, self.thresh, self.tau_m, self.tau_s) if out_t.max() < self.num_steps: return out_t, out_u, sum_sp, [h1_v, h2_v], [h1_dvdt, h2_dvdt], [h1_dtdu, h2_dtdu] return out_t, out_u, sum_sp, [h1_v, h2_v], [h1_dvdt, h2_dvdt], [h1_dtdu, h2_dtdu]
dooseokjeong/BPTC-NOSO
SNN_folded/network.py
network.py
py
5,968
python
en
code
3
github-code
6
[ { "api_name": "torch.device", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 10, "usage_type": "attribute" }, { "api_name": "torch.float", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 32, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "numpy.sqrt", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn.init.normal_", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 33, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "numpy.sqrt", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 62, "usage_type": "call" }, { "api_name": "functions.noso", "line_number": 69, "usage_type": "call" }, { "api_name": "functions.noso", "line_number": 80, "usage_type": "call" }, { "api_name": "functions.dodt.apply", "line_number": 92, "usage_type": "call" }, { "api_name": "functions.dodt", "line_number": 92, "usage_type": "name" }, { "api_name": "torch.unsqueeze", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.unsqueeze", "line_number": 101, "usage_type": "call" }, { "api_name": "torch.unsqueeze", "line_number": 103, "usage_type": "call" }, { "api_name": "torch.unsqueeze", "line_number": 104, "usage_type": "call" }, { "api_name": "functions.dtdu_backward", "line_number": 106, "usage_type": "call" }, { "api_name": "functions.dtdu_backward", "line_number": 107, "usage_type": "call" } ]
30451465881
from calendar import c from re import S import sys import time import smbus import spidev import RPi.GPIO as GPIO import logging from ctypes import * logger = logging.getLogger() # logger.setLevel(logging.INFO) # Display all print information logger.setLevel(logging.FATAL) # If you don’t want to display too many prints, only print errors, please use this option ph = logging.StreamHandler() formatter = logging.Formatter("%(asctime)s - [%(filename)s %(funcName)s]:%(lineno)d - %(levelname)s: %(message)s") ph.setFormatter(formatter) logger.addHandler(ph) ## I2C communication address when SDO is grounded DFROBOT_BME280_I2C_ADDR_SDO_GND = 0x76 ## I2C communication address when SDO is connected to power DFROBOT_BME280_I2C_ADDR_SDO_VDD = 0x77 ## BME280 chip version BME280_REG_CHIP_ID_DEFAULT = 0x60 # BME280 register address ## 0x88-0xA1 is calibration data, calib00..calib25 BME280_CALIB_DATA_00_25 = 0x88 ## The “CHIP_ID” register contains the chip identification code. BME280_CHIP_ID = 0xD0 ## Triggers a reset, all user configuration settings are overwritten with their default state. BME280_CMD_RESET = 0xE0 ## 0xE1-0xF0 is calibration data, calib26..calib41 BME280_CALIB_DATA_26_41 = 0xE1 ## The “CTRL_HUM” register BME280_CTRL_HUM = 0xF2 ## The Sensor Status Flags are stored in the “STATUS” register. BME280_STATUS = 0xF3 ## The “CTRL_MEAS” register BME280_CTRL_MEAS = 0xF4 ## The “CONFIG” register BME280_CONFIG = 0xF5 ## The 24Bit pressure data is split and stored in three consecutive registers. BME280_PRESS_DATA_MSB = 0xF7 ## The 24Bit temperature data is split and stored in three consecutive registered. BME280_TEMP_DATA_MSB = 0xFA ## The 16Bit temperature data is split and stored in two consecutive registered. BME280_HUM_DATA_MSB = 0xFD # Sensor configuration ## Sleep mode: It will be in sleep mode by default after power-on reset. In this mode, no measurement is performed and power consumption is minimal. ## All registers are accessible for reading the chip ID and compensation coefficient. SLEEP_MODE = 0x00 ## Forced mode: In this mode, the sensor will take a single measurement according to the selected measurement and filtering options. After the ## measurement is completed, the sensor will return to sleep mode, and the measurement result can be obtained in the register. FORCED_MODE = 0x01 ## Normal mode: Continuously loop between the measurement period and the standby period. The output data rates are related to the ODR mode setting. NORMAL_MODE = 0x03 ## temperature oversampling settings BME280_TEMP_OSR_SETTINGS = (0x00, 0x20, 0x40, 0x60, 0x80, 0xA0) ## pressure oversampling settings BME280_PRESS_OSR_SETTINGS = (0x00, 0x04, 0x08, 0x0C, 0x10, 0x14) ## humidity oversampling settings BME280_HUMI_OSR_SETTINGS = (0x00, 0x01, 0x02, 0x03, 0x04, 0x05) ## IIR filter settings BME280_IIR_FILTER_SETTINGS = (0x00, 0x04, 0x08, 0x0C, 0x10) # Controls inactive duration tstandby in normal mode. ## Controls inactive duration tstandby; ODR 2000Hz; Sampling period:0.5 ms BME280_CONFIG_STANDBY_TIME_0P5 = 0x00 ## Sampling period:62.5 ms BME280_CONFIG_STANDBY_TIME_62P5 = 0x20 ## Sampling period:125 ms BME280_CONFIG_STANDBY_TIME_125 = 0x40 ## Sampling period:250 ms BME280_CONFIG_STANDBY_TIME_250 = 0x60 ## Sampling period:500 ms BME280_CONFIG_STANDBY_TIME_500 = 0x80 ## Sampling period:1000 ms BME280_CONFIG_STANDBY_TIME_1000 = 0xA0 ## Sampling period:10 ms BME280_CONFIG_STANDBY_TIME_10 = 0xC0 ## Sampling period:20 ms BME280_CONFIG_STANDBY_TIME_20 = 0xE0 ## Triggers a reset, all user configuration settings are overwritten with their default state. BME280_CMD_RESET_VALUE = 0xB6 ## Standard sea level pressure, unit: pa STANDARD_SEA_LEVEL_PRESSURE_PA = 101325.00 class DFRobot_BME280(object): '''! @brief define DFRobot_BME280 base class @details for driving the pressure sensor ''' def __init__(self): '''! @brief Module init ''' # Sea level pressure in Pa. self.sea_level_pressure = STANDARD_SEA_LEVEL_PRESSURE_PA self._t_fine = 0 def begin(self): '''! @brief Initialize sensor @return return initialization status @retval True indicate initialization succeed @retval False indicate initialization failed ''' ret = False chip_id = self._read_reg(BME280_CHIP_ID, 1) logger.info(chip_id[0]) if chip_id[0] == BME280_REG_CHIP_ID_DEFAULT: self.reset() time.sleep(0.3) self._get_coefficients() self.set_config_filter(BME280_IIR_FILTER_SETTINGS[0]) self.set_config_T_standby(BME280_CONFIG_STANDBY_TIME_125) self.set_ctrl_meas_sampling_temp(BME280_TEMP_OSR_SETTINGS[3]) self.set_ctrl_meas_sampling_press(BME280_PRESS_OSR_SETTINGS[3]) self.set_ctrl_sampling_humi(BME280_HUMI_OSR_SETTINGS[3]) self.set_ctrl_meas_mode(NORMAL_MODE) time.sleep(2) # warm-up ret = True return ret @property def get_temperature(self): '''! @brief Get pressure measurement value from register, working range (-40 ~ +85 °C) @return Return temperature measurements, unit: °C ''' data = self._read_reg(BME280_TEMP_DATA_MSB, 3) raw = data[0] << 12 | data[1] << 4 | (data[2] & 0x0F) # datasheet, Trimming Coefficient listing in register map with size and sign attributes t1, t2, t3, p1, p2, p3, p4, p5, p6, p7, p8, p9, h1, h2, h3, h4, h5, h6 = self._data_calib v1 = ((((raw >> 3) - (t1 << 1))) * t2) >> 11 v2 = (((((raw >> 4) - t1) * ((raw >> 4) - t1)) >> 12) * t3) >> 14 self._t_fine = v1 + v2 rslt = (self._t_fine * 5 + 128) >> 8 return (float(rslt) / 100) # round((rslt / 100), 2) @property def get_pressure(self): '''! @brief Get pressure measurement value from register, working range (300 ~ 1100 hPa) @return Return pressure measurements, unit: Pa @attention If the reference value is provided before, the absolute value of the current @n position pressure is calculated according to the calibrated sea level atmospheric pressure ''' data = self._read_reg(BME280_PRESS_DATA_MSB, 3) raw = data[0] << 12 | data[1] << 4 | (data[2] & 0x0F) # datasheet, Trimming Coefficient listing in register map with size and sign attributes t1, t2, t3, p1, p2, p3, p4, p5, p6, p7, p8, p9, h1, h2, h3, h4, h5, h6 = self._data_calib self.get_temperature # update _t_fine v1 = self._t_fine - 128000 v2 = v1 * v1 * p6 v2 = v2 + ((v1 * p5) << 17) v2 = v2 + (p4 << 35) v1 = ((v1 * v1 * p3) >> 8) + ((v1 * p2) << 12) v1 = (((1 << 47) + v1)) * p1 >> 33 if(v1 == 0): return 0 rslt = 1048576 - raw rslt = (((rslt << 31) - v2) * 3125) / v1 v1 = (p9 * (int(rslt) >> 13) * (int(rslt) >> 13)) >> 25 v2 = (p8 * int(rslt)) >> 19 rslt = ((int(rslt) + v1 + v2) >> 8) + (p7 << 4) return (float(rslt) / 256) @property def get_humidity(self): '''! @brief Get humidity measurement value from register, working range (0 ~ 100 %RH) @return Return humidity measurements, unit: %RH ''' data = self._read_reg(BME280_HUM_DATA_MSB, 2) raw = data[0] << 8 | data[1] # datasheet, Trimming Coefficient listing in register map with size and sign attributes t1, t2, t3, p1, p2, p3, p4, p5, p6, p7, p8, p9, h1, h2, h3, h4, h5, h6 = self._data_calib self.get_temperature # update _t_fine v1 = self._t_fine - 76800 v1 = (((((raw <<14) - (h4 << 20) - (h5 * v1)) + 16384) >> 15) * (((((((v1 * h6) >> 10) * (((v1 * h3) >> 11) + 32768)) >> 10) + 2097152) * h2 + 8192) >> 14)) v1 = (v1 - (((((v1 >> 15) * (v1 >> 15)) >> 7) * h1) >> 4)) if v1 < 0: v1 = 0 elif v1 > 419430400: v1 = 419430400 return (v1 >> 12) / 1024.0 @property def get_altitude(self): '''! @brief Calculate the altitude based on the atmospheric pressure measured by the sensor @return Return altitude, unit: m @attention If the reference value is provided before, the absolute value of the current @n position pressure is calculated according to the calibrated sea level atmospheric pressure ''' # see https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf return 44307.7 * (1 - (self.get_pressure / self.sea_level_pressure) ** 0.190284) @property def get_data_ready_status(self): '''! @brief get data ready status @return True is data ready ''' temp = self._read_reg(BME280_STATUS, 1)[0] if temp & 0b00001000: # measuring[3] return False else: return True def reset(self): '''! @brief Reset and restart the sensor, restoring the sensor configuration to the default configuration ''' self._write_reg(BME280_CMD_RESET, BME280_CMD_RESET_VALUE) time.sleep(0.1) def calibrated_absolute_difference(self, altitude): '''! @brief Take the given current location altitude as the reference value @n to eliminate the absolute difference for subsequent pressure and altitude data @param altitude Altitude in current position @return Pass the benchmark value successfully will return ture, if failed it will return false ''' # The altitude in meters based on the currently set sea level pressure. ret = False if STANDARD_SEA_LEVEL_PRESSURE_PA == self.sea_level_pressure: self.sea_level_pressure = (self.get_pressure / pow(1.0 - (altitude / 44307.7), 5.255302)) ret = True return ret def set_ctrl_meas_mode(self, mode): '''! @brief Configure measurement mode and power mode @param mode The measurement mode and power mode that need to be set: @n SLEEP_MODE(Sleep mode): It will be in sleep mode by default after power-on reset. In this mode,no @n measurement is performed and power consumption is minimal. All registers @n are accessible for reading the chip ID and compensation coefficient. @n FORCED_MODE(Forced mode): In this mode, the sensor will take a single measurement according to the selected @n measurement and filtering options. After the measurement is completed, the sensor @n will return to sleep mode, and the measurement result can be obtained in the register. @n NORMAL_MODE(Normal mode): Continuously loop between the measurement period and the standby period. @n The output data rates are related to the ODR mode setting. ''' mask = 0b00000011 # mode[1:0] self._write_reg_bits(BME280_CTRL_MEAS, mask, mode) def set_ctrl_meas_sampling_temp(self, osrs_t): '''! @brief Configure the oversampling when measuring temperature (OSR:over-sampling register) @details When the IIR filter is enabled, the temperature resolution is 20 bit. @n When the IIR filter is disabled, the temperature resolution is 16 + (osrs_t – 1) bit, @n e.g. 18 bit when osrs_t is set to ‘3’. @param - osrs_t 6 temp oversampling mode: @n BME280_TEMP_OSR_SETTINGS[0], temperature sampling×0, Skipped (output set to 0x80000) @n BME280_TEMP_OSR_SETTINGS[1], temperature sampling×2, 16 bit @n BME280_TEMP_OSR_SETTINGS[2], temperature sampling×4, 17 bit @n BME280_TEMP_OSR_SETTINGS[3], temperature sampling×8, 18 bit @n BME280_TEMP_OSR_SETTINGS[4], temperature sampling×16, 19 bit @n BME280_TEMP_OSR_SETTINGS[5], temperature sampling×32, 20 bit ''' mask = 0b11100000 # osrs_t[7:5] self._write_reg_bits(BME280_CTRL_MEAS, mask, osrs_t) def set_ctrl_meas_sampling_press(self, osrs_p): '''! @brief Configure the oversampling when measuring press (OSR:over-sampling register) @details When the IIR filter is enabled, the pressure resolution is 20 bit. @n When the IIR filter is disabled, the pressure resolution is 16 + (osrs_p – 1) bit, @n e.g. 18 bit when osrs_p is set to ‘3’. @param - osrs_t 6 temp oversampling mode: @n BME280_PRESS_OSR_SETTINGS[0], pressure sampling×0, Skipped (output set to 0x80000) @n BME280_PRESS_OSR_SETTINGS[1], pressure sampling×2, 16 bit @n BME280_PRESS_OSR_SETTINGS[2], pressure sampling×4, 17 bit @n BME280_PRESS_OSR_SETTINGS[3], pressure sampling×8, 18 bit @n BME280_PRESS_OSR_SETTINGS[4], pressure sampling×16, 19 bit @n BME280_PRESS_OSR_SETTINGS[5], pressure sampling×32, 20 bit ''' mask = 0b00011100 # osrs_t[4:2] self._write_reg_bits(BME280_CTRL_MEAS, mask, osrs_p) def set_ctrl_sampling_humi(self, osrs_h): '''! @brief Configure the oversampling when measuring humidity (OSR:over-sampling register) @details For the humidity measurement, oversampling is possible to reduce the noise. @n The resolution of the humidity measurement is fixed at 16 bit ADC output. @param - osrs_t 6 temp oversampling mode: @n BME280_HUMI_OSR_SETTINGS[0], humidity sampling×0, Skipped (output set to 0x80000) @n BME280_HUMI_OSR_SETTINGS[1], humidity sampling×2, 16 bit @n BME280_HUMI_OSR_SETTINGS[2], humidity sampling×4, 17 bit @n BME280_HUMI_OSR_SETTINGS[3], humidity sampling×8, 18 bit @n BME280_HUMI_OSR_SETTINGS[4], humidity sampling×16, 19 bit @n BME280_HUMI_OSR_SETTINGS[5], humidity sampling×32, 20 bit ''' mask = 0b00000111 # osrs_t[2:0] self._write_reg_bits(BME280_CTRL_HUM, mask, osrs_h) def set_config_filter(self, iir_config_coef): '''! @brief IIR filter coefficient setting(IIR filtering) @param - iir_config_coef Set IIR filter coefficient, configurable mode: @n BME280_IIR_FILTER_SETTINGS[0], filter off @n BME280_IIR_FILTER_SETTINGS[1], filter coefficient 2 @n BME280_IIR_FILTER_SETTINGS[2], filter coefficient 4 @n BME280_IIR_FILTER_SETTINGS[3], filter coefficient 8 @n BME280_IIR_FILTER_SETTINGS[4], filter coefficient 16 ''' mask = 0b00011100 # osrs_t[4:2] self._write_reg_bits(BME280_CONFIG, mask, iir_config_coef) def set_config_T_standby(self, odr_set): '''! @brief Set output data rate in subdivision/sub-sampling mode (ODR:output data rates) @param odr_set The output data rate needs to be set, configurable mode: @n BME280_CONFIG_STANDBY_TIME_0P5, BME280_CONFIG_STANDBY_TIME_62P5, BME280_CONFIG_STANDBY_TIME_125, @n BME280_CONFIG_STANDBY_TIME_250, BME280_CONFIG_STANDBY_TIME_500, BME280_CONFIG_STANDBY_TIME_1000, @n BME280_CONFIG_STANDBY_TIME_10, BME280_CONFIG_STANDBY_TIME_20 @return return configuration results @retval True indicate configuration succeed @retval False indicate configuration failed and remains its original state ''' # The IIR filter coefficient. ret = True mask = 0b11100000 # osrs_t[7:5] self._write_reg_bits(BME280_CONFIG, mask, odr_set) if (self._read_reg(BME280_CONFIG, 1)[0] & 0xE0): logger.warning("Sensor configuration error detected!") ret = False return ret def _uint8_to_int(self,num): '''! @brief Convert the incoming uint8 type data to int type @param num Incoming uint8 type data @return data converted to int type ''' if(num>127): num = num - 256 return num def _uint16_to_int(self,num): '''! @brief Convert the incoming uint16 type data to int type @param num Incoming uint16 type data @return data converted to int type ''' if(num>32767): num = num - 65536 return num def _get_coefficients(self): '''! @brief Get the calibration data in the NVM register of the sensor ''' calib = self._read_reg(BME280_CALIB_DATA_00_25, 26) calib1 = self._read_reg(BME280_CALIB_DATA_26_41, 7) self._data_calib = ( (calib[1] << 8) | calib[0], # T1 self._uint16_to_int((calib[3] << 8) | calib[2]), # T2 self._uint16_to_int((calib[5] << 8) | (calib[4])), # T3 (calib[7] << 8) | calib[6], # P1 self._uint16_to_int((calib[9] << 8) | calib[8]), # P2 self._uint16_to_int((calib[11] << 8) | calib[10]), # P3 self._uint16_to_int((calib[13] << 8) | calib[12]), # P4 self._uint16_to_int((calib[15] << 8) | calib[14]), # P5 self._uint16_to_int((calib[17] << 8) | calib[16]), # P6 self._uint16_to_int((calib[19] << 8) | calib[18]), # P7 self._uint16_to_int((calib[21] << 8) | calib[20]), # P8 self._uint16_to_int((calib[23] << 8) | calib[22]), # P9 calib[25], # H1 self._uint16_to_int((calib1[1] << 8) | calib1[0]), # H2 calib1[2], # H3 self._uint16_to_int((calib1[3] << 4) | (calib1[4] & 0x0F)), # H4 self._uint16_to_int((calib1[5] << 4) | ((calib1[4] >> 4) & 0x0F)), # H5 self._uint8_to_int(calib1[6]), # H6 ) def _write_reg_bits(self, reg, field, val): '''! @brief writes data to a register @param reg register address @param data written data ''' temp = self._read_reg(reg, 1)[0] temp &= ~field temp |= val self._write_reg(reg, temp) def _write_reg(self, reg, data): '''! @brief writes data to a register @param reg register address @param data written data ''' # Low level register writing, not implemented in base class raise NotImplementedError() def _read_reg(self, reg, length): '''! @brief read the data from the register @param reg register address @param length read data length @return read data list ''' # Low level register writing, not implemented in base class raise NotImplementedError() class DFRobot_BME280_I2C(DFRobot_BME280): '''! @brief define DFRobot_BME280_I2C base class @details for using I2C protocol to drive the pressure sensor ''' def __init__(self, i2c_addr=0x77, bus=1): '''! @brief Module I2C communication init @param i2c_addr I2C communication address @param bus I2C bus ''' self._addr = i2c_addr self._i2c = smbus.SMBus(bus) super(DFRobot_BME280_I2C, self).__init__() def _write_reg(self, reg, data): '''! @brief writes data to a register @param reg register address @param data written data ''' if isinstance(data, int): data = [data] #logger.info(data) self._i2c.write_i2c_block_data(self._addr, reg, data) def _read_reg(self, reg, length): '''! @brief read the data from the register @param reg register address @param length read data length @return read data list ''' return self._i2c.read_i2c_block_data(self._addr, reg, length) class DFRobot_BME280_SPI(DFRobot_BME280): '''! @brief define DFRobot_BME280_SPI base class @details for using SPI protocol to drive the pressure sensor ''' def __init__(self, cs=8, bus=0, dev=0, speed=500000): '''! @brief Module SPI communication init @param cs cs chip select pin @param bus SPI bus @param dev SPI device number @param speed SPI communication frequency ''' self._cs = cs GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self._cs, GPIO.OUT, initial=1) GPIO.output(self._cs, GPIO.LOW) self._spi = spidev.SpiDev() self._spi.open(bus, dev) self._spi.no_cs = True self._spi.max_speed_hz = speed super(DFRobot_BME280_SPI, self).__init__() def _write_reg(self, reg, data): '''! @brief writes data to a register @param reg register address @param data written data ''' if isinstance(data, int): data = [data] #logger.info(data) reg_addr = [reg & 0x7f] GPIO.output(self._cs, GPIO.LOW) self._spi.xfer(reg_addr) self._spi.xfer(data) GPIO.output(self._cs, GPIO.HIGH) def _read_reg(self, reg, length): '''! @brief read the data from the register @param reg register address @param length read data length @return read data list ''' reg_addr = [reg | 0x80] GPIO.output(self._cs, GPIO.LOW) #logger.info(reg_addr) self._spi.xfer(reg_addr) time.sleep(0.01) # self._spi.readbytes(1) rslt = self._spi.readbytes(length) GPIO.output(self._cs, GPIO.HIGH) return rslt
DFRobot/DFRobot_BME280
python/raspberrypi/DFRobot_BME280.py
DFRobot_BME280.py
py
22,063
python
en
code
9
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.FATAL", "line_number": 15, "usage_type": "attribute" }, { "api_name": "logging.StreamHandler", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 17, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 123, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 131, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 236, "usage_type": "call" }, { "api_name": "smbus.SMBus", "line_number": 442, "usage_type": "call" }, { "api_name": "RPi.GPIO.setmode", "line_number": 481, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 481, "usage_type": "name" }, { "api_name": "RPi.GPIO.BCM", "line_number": 481, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.setwarnings", "line_number": 482, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 482, "usage_type": "name" }, { "api_name": "RPi.GPIO.setup", "line_number": 483, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 483, "usage_type": "name" }, { "api_name": "RPi.GPIO.OUT", "line_number": 483, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.output", "line_number": 484, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 484, "usage_type": "name" }, { "api_name": "RPi.GPIO.LOW", "line_number": 484, "usage_type": "attribute" }, { "api_name": "spidev.SpiDev", "line_number": 485, "usage_type": "call" }, { "api_name": "RPi.GPIO.output", "line_number": 501, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 501, "usage_type": "name" }, { "api_name": "RPi.GPIO.LOW", "line_number": 501, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.output", "line_number": 504, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 504, "usage_type": "name" }, { "api_name": "RPi.GPIO.HIGH", "line_number": 504, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.output", "line_number": 514, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 514, "usage_type": "name" }, { "api_name": "RPi.GPIO.LOW", "line_number": 514, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 517, "usage_type": "call" }, { "api_name": "RPi.GPIO.output", "line_number": 520, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 520, "usage_type": "name" }, { "api_name": "RPi.GPIO.HIGH", "line_number": 520, "usage_type": "attribute" } ]
9202548056
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import os import h5py import random import numpy as np from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import Dataset from torchvision import models, transforms from superpixel.slic import SLIC from lib.make_index import make_data_index, default_loader from lib.image_process import RandomCropPatches, NonOverlappingCropPatches from lib.utils import mos_rescale class IQADataset(Dataset): """ IQA Dataset """ def __init__(self, args, status='train', loader=default_loader): """ :param args: arguments of the model :param status: train/val/test :param loader: image loader """ self.args = args self.status = status self.loader = loader self.train_database = args.train_database self.test_database = args.test_database self.image_n_nodes = args.image_n_nodes self.patch_n_nodes = args.patch_n_nodes self.region_size = args.region_size self.ruler = args.ruler self.iterate = args.iterate self.patch_size = args.patch_size self.n_patches_train = args.n_patches_train # Train train_Info = h5py.File(args.train_info, 'r') train_index = train_Info['index'] train_index = train_index[:, 0 % train_index.shape[1]] train_ref_ids = train_Info['ref_ids'][0, :] # Test test_Info = h5py.File(args.test_info, 'r') test_index = test_Info['index'] test_index = test_index[:, 0 % test_index.shape[1]] test_ref_ids = test_Info['ref_ids'][0, :] # Get dataset index train_index_, test_index_ = [], [] if 'train' in status: print('The Training Set Index is ', train_index, ' and num of Training index is ', len(train_index)) for i in range(len(train_ref_ids)): train_index_.append(i) self.index = train_index_ print("Number of Training Images: {}\n".format(len(self.index))) self.mos = train_Info['subjective_scores'][0, self.index] # self.mos_std = train_Info['subjective_scoresSTD'][0, self.index] im_names = [train_Info[train_Info['im_names'][0, :][i]][()].tobytes()[::2].decode() for i in self.index] self.label = [] self.im_names = [] self.dis_type = [] for idx in range(len(self.index)): self.im_names.append(os.path.join(args.train_im_dir, im_names[idx])) self.label.append(self.mos[idx]) if self.train_database == 'TID2008' or self.train_database == 'TID2013': self.dis_type.append(int(im_names[idx][4:6]) - 1) elif self.train_database == 'KADID': self.dis_type.append(int(im_names[idx][4:6]) - 1) elif self.train_database == 'CSIQ': # Distortion Type if 'AWGN' in im_names[idx]: self.dis_type.append(0) elif 'BLUR' in im_names[idx]: self.dis_type.append(1) elif 'contrast' in im_names[idx]: self.dis_type.append(2) elif 'fnoise' in im_names[idx]: self.dis_type.append(3) elif 'JPEG' in im_names[idx]: self.dis_type.append(4) elif 'jpeg2000' in im_names[idx]: self.dis_type.append(5) elif self.train_database == 'LIVE': # Distortion Type if 'jp2k' in im_names[idx]: self.dis_type.append(0) elif 'jpeg' in im_names[idx]: self.dis_type.append(1) elif 'wn' in im_names[idx]: self.dis_type.append(2) elif 'gblur' in im_names[idx]: self.dis_type.append(3) elif 'fastfading' in im_names[idx]: self.dis_type.append(4) elif self.train_database == 'SIQAD': loc = im_names[idx].find('_') self.dis_type.append(int(im_names[idx][loc + 1]) - 1) elif self.train_database == 'SCID': self.dis_type.append(int(im_names[idx][6]) - 1) else: print('The Testing Set Index is ', test_index, ' and num of test index is ', len(test_index)) for i in range(len(test_ref_ids)): test_index_.append(i) self.index = test_index_ print("Number of Testing Images: {}".format(len(self.index)), '\n') self.mos = test_Info['subjective_scores'][0, self.index] im_names = [test_Info[test_Info['im_names'][0, :][i]][()].tobytes()[::2].decode() for i in self.index] self.label = [] self.im_names = [] self.dis_type = [] for idx in range(len(self.index)): self.im_names.append(os.path.join(args.test_im_dir, im_names[idx])) self.label.append(self.mos[idx]) self.dis_type.append(0) def __len__(self): return len(self.index) def __getitem__(self, idx): im = self.loader(self.im_names[idx]) # Get CNN input if self.status == 'train': cnn_input, patch, patch_graph = RandomCropPatches(im, args=self.args, transforms=True) else: cnn_input, patch, patch_graph = NonOverlappingCropPatches(im, args=self.args, transforms=True) # Get labels label = torch.as_tensor([self.label[idx], ]) # Choose whether to use distortion type or distortion level dis_type = torch.as_tensor([self.dis_type[idx], ]) return patch, patch_graph, cnn_input, label, dis_type
SuperBruceJia/NLNet-IQA
Cross Database Evaluations/data_process/get_data.py
get_data.py
py
6,026
python
en
code
8
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 24, "usage_type": "name" }, { "api_name": "lib.make_index.default_loader", "line_number": 28, "usage_type": "name" }, { "api_name": "h5py.File", "line_number": 51, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path", "line_number": 139, "usage_type": "attribute" }, { "api_name": "lib.image_process.RandomCropPatches", "line_number": 151, "usage_type": "call" }, { "api_name": "lib.image_process.NonOverlappingCropPatches", "line_number": 153, "usage_type": "call" }, { "api_name": "torch.as_tensor", "line_number": 156, "usage_type": "call" }, { "api_name": "torch.as_tensor", "line_number": 159, "usage_type": "call" } ]
45805692666
from selenium import webdriver import math import time import os import eel eel.init('web') def getUrl(url, volume, chapter): if url[-1] != '/': url += '/' return str(url) + 'v' + str(volume) + '/c' + str(chapter) def startDriver(url, chapterNumbers, outputFolder='', outputName='output', firstChapter=1, volumeNumber=1): options = webdriver.FirefoxOptions() options.add_argument('--disable-blink-features=AutomationControlled') options.add_argument('--headless') chapter = firstChapter url = getUrl(url, volumeNumber, chapter) print('Запуск парсинга...') eel.consoleArea('Запуск парсинга...') for i in range(firstChapter, chapterNumbers + 1): try: print(i) eel.consoleArea(i) driver = webdriver.Firefox( executable_path='geckodriver.exe', options=options ) driver.get(url=url) outputSource = 'output/' + outputFolder + '/' + outputName + '_c' + str(chapter) + '.txt' title = 'Том '+str(volumeNumber)+' глава '+str(chapter)+'\n' time.sleep(5) print('Запись файла...') eel.consoleArea('Запись файла...') p = driver.find_element_by_xpath("//*[@class='reader-container container container_center']") t = title + p.text with open(outputSource, 'w', encoding='utf-8') as file: file.write(t) print('[' + str(chapter) + '] глава готова') eel.consoleArea('[' + str(chapter) + '] глава готова') url = driver.find_element_by_xpath( "//*[@class='reader-next__btn button text-truncate button_label button_label_right']").get_attribute( "href") chapter += 1 except Exception as ex: print(ex) finally: driver.close() driver.quit() # url = 'https://ranobelib.me/sss-class-suicide-hunter' # chapterNumbers = 1 # outputFolder = 'F:/Project/Python/RanobeLib downloader/output/SSS-Class Suicide Hunter' # outputName = 'SSS-Class Suicide Hunter' # firstChapter = 1 # volumeNumber = 1 @eel.expose def start(url, chapterNumbers, outputFolder, outputName, firstChapter, volumeNumber): url = str(url) chapterNumbers = int(chapterNumbers) outputFolder = str(outputFolder) outputName = str(outputName) firstChapter = int(firstChapter) volumeNumber = int(volumeNumber) t0 = time.time() if not os.path.exists('output/' + outputFolder): os.mkdir('output/' + outputFolder) outFile = open('output/' + outputFolder + '/outFile.txt', 'w', encoding='utf-8') startDriver(url, chapterNumbers, outputFolder, outputName, firstChapter, volumeNumber) t1 = time.time() - t0 print("Time elapsed: ", math.ceil(t1), "second") eel.consoleArea("Прошло: " + str(math.ceil(t1)) + " секунд" + '\n' + "Глав сохранено: " + str(chapterNumbers)) outFile.write( "Прошло: " + str(math.ceil(t1)) + " секунд" + '\n' + "Глав сохранено: " + str(chapterNumbers) ) eel.start('index.html', size=(700, 700))
STmihan/RanobeLib-downloader
main.py
main.py
py
3,255
python
en
code
3
github-code
6
[ { "api_name": "eel.init", "line_number": 7, "usage_type": "call" }, { "api_name": "selenium.webdriver.FirefoxOptions", "line_number": 17, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 17, "usage_type": "name" }, { "api_name": "eel.consoleArea", "line_number": 23, "usage_type": "call" }, { "api_name": "eel.consoleArea", "line_number": 27, "usage_type": "call" }, { "api_name": "selenium.webdriver.Firefox", "line_number": 28, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 28, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 35, "usage_type": "call" }, { "api_name": "eel.consoleArea", "line_number": 37, "usage_type": "call" }, { "api_name": "eel.consoleArea", "line_number": 43, "usage_type": "call" }, { "api_name": "time.time", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path", "line_number": 74, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 75, "usage_type": "call" }, { "api_name": "time.time", "line_number": 79, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 80, "usage_type": "call" }, { "api_name": "eel.consoleArea", "line_number": 81, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 81, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 83, "usage_type": "call" }, { "api_name": "eel.expose", "line_number": 62, "usage_type": "attribute" }, { "api_name": "eel.start", "line_number": 86, "usage_type": "call" } ]
22633446316
import ply.lex as lex # List of token names. This is always required tokens = ( 'PROP', 'TRUE', 'FALSE', 'NOT', 'AND', 'OR', 'IMPLY', 'X', 'U', 'F', 'G', 'R', 'LPAREN', 'RPAREN', ) # Regular expression rules for simple tokens t_PROP = r'[a-zA-Z_][a-zA-Z0-9_]*' t_TRUE = r'True' t_FALSE = r'False' t_NOT = r'Not' t_AND = r'And' t_OR = r'Or' t_IMPLY = r'Imply' t_X = r'X' t_U = r'U' t_F = r'F' t_G = r'G' t_R = r'R' t_LPAREN = r'\(' t_RPAREN = r'\)' # A regular expression rule with some action code def t_NUMBER(t): r'\d+' t.value = int(t.value) return t # Define a rule so we can track line numbers def t_newline(t): r'\n+' t.lexer.lineno += len(t.value) # A string containing ignored characters (spaces and tabs) t_ignore = ' \t' # Error handling rule def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) # Build the lexer lexer = lex.lex()
AriRodriguezCruz/mcfgpr
parser.py
parser.py
py
1,058
python
en
code
0
github-code
6
[ { "api_name": "ply.lex.lex", "line_number": 58, "usage_type": "call" }, { "api_name": "ply.lex", "line_number": 58, "usage_type": "name" } ]
34294677016
from django.contrib import admin from django.urls import path from final import views urlpatterns = [ path("", views.index, name="root"), path("about/", views.about, name="about"), path("signup/", views.signup, name="signup"), path("login/", views.loginUser, name="login"), path("contact/", views.contact, name="contact"), path("logout/", views.logoutUser, name="logout"), path("services/", views.services, name="services") ]
supratim531/useless-django-app
final/urls.py
urls.py
py
455
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "final.views.index", "line_number": 6, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 6, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "final.views.about", "line_number": 7, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 7, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "final.views.signup", "line_number": 8, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 8, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "final.views.loginUser", "line_number": 9, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 9, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "final.views.contact", "line_number": 10, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 10, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "final.views.logoutUser", "line_number": 11, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 11, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "final.views.services", "line_number": 12, "usage_type": "attribute" }, { "api_name": "final.views", "line_number": 12, "usage_type": "name" } ]
31357581621
import os from setuptools import setup, find_packages from nats import __version__ this_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(this_dir, 'requirements.txt')) as f: requirements = f.read().splitlines() setup( name='nats-client', version=__version__, description='NATS client for Python 2', long_description= 'Tornado based Python client for NATS, a lightweight, high-performance cloud native messaging system', url='https://github.com/nats-io/nats.py2', author='Waldemar Quevedo', author_email='[email protected]', license='Apache 2.0 License', packages=['nats', 'nats.io', 'nats.protocol'], install_requires=requirements, zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python', ])
nats-io/nats.py2
setup.py
setup.py
py
834
python
en
code
62
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 9, "usage_type": "call" }, { "api_name": "nats.__version__", "line_number": 11, "usage_type": "name" } ]
7377958665
from flask import Flask,request,jsonify import numpy as np from scipy.signal import find_peaks import pandas as pd app = Flask(__name__) @app.route('/data_process',methods=['GET']) def data_process(): dict1={} if '[' and ']' and "," in request.args['C1 raw']: input_control=request.args['C1 raw'].strip('[').strip(']').split(',') #print(input_control) input_test=request.args['T1 raw'].strip('[').strip(']').split(',') elif ',' in request.args['C1 raw']: input_control=request.args['C1 raw'].split(',') print(input_control) input_test=request.args['T1 raw'].split(',') elif '\n' in request.args['C1 raw']: input_control=request.args['C1 raw'].split('\n') input_control=input_control[0:-2] #print(input_control) input_test=request.args['T1 raw'].split('\n') input_test = input_test[0:-2] else: input_control=request.args['C1 raw'].split(' ') #print(input_control) input_test=request.args['T1 raw'].split(' ') peaks1, _ = find_peaks(input_control, prominence=1,width=15) peaks2, _ = find_peaks(input_test, prominence=1,width=15) if len(peaks1)!=0 or len(peaks2)!=0: print('Peak1: {} Peak2: {}'.format(peaks1, peaks2)) peak_diff = float(input_control[peaks1[0]]) - float(input_test[peaks2[0]]) percentage_change = (peak_diff) / float(input_control[peaks1[0]]) * 100 if percentage_change < 19: result = 'Negative' elif percentage_change >= 19: result = 'Positive' dict1['Result']=result dict1['Peak C1 raw index']=str(peaks1[0]) dict1['Peak T1 raw index']=str(peaks2[0]) dict1['Peak C1 raw']=str(input_control[peaks1[0]]) dict1['Peak T1 raw']=str(input_test[peaks2[0]]) dict1['Peak Difference']=str(peak_diff) dict1['Percentage Change']=str(percentage_change) return jsonify(dict1) else: dict1['Result']='Inconclusive' dict1['Peak C1 raw index']='0' dict1['Peak T1 raw index']='0' dict1['Peak C1 raw']='0' dict1['Peak T1 raw']='0' dict1['Peak Difference']='0' dict1['Percentage Change']='0' return jsonify(dict1) if __name__ == '__main__': app.run(debug=True) #http://127.0.0.1:5000/data_process?control=[123456]&test=[546789]
Owaiskhan9654/Pelican-API-for-data-Processing-Canary-Global
app.py
app.py
py
2,388
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 7, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 13, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 13, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 14, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 14, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 16, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 17, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 17, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 18, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 18, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 20, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 22, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 22, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 23, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 32, "usage_type": "name" }, { "api_name": "scipy.signal.find_peaks", "line_number": 35, "usage_type": "call" }, { "api_name": "scipy.signal.find_peaks", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 66, "usage_type": "call" } ]
38903741775
#SIEMPRE SIEMPRE SIEMPRE que abrimos un fichero lo tenemos que CERRAR después #Si abrimos un fichero con with, python hace el close() por nosotros :)) fichero = 'nombres2.txt' #qué tengo que poner como fichero? #qué pasa si no está en la misma carpeta? import pickle import csv with open(fichero) as f: print(f) #qué imprime? with open(fichero) as f: #qué ha pasado? print(f.read()) with open(fichero,encoding='utf8') as f: #qué ha pasado? print(f.read()) with open(fichero,encoding='utf8') as f: #por qué sale así? cómo podemos solucionarlo? for line in f: print(line.strip()) with open(fichero,encoding='utf8') as f: lines=f.readlines() #lines=[Rocío,Ana...] for l in lines: print(l) with open(fichero,mode='a',encoding='utf8') as f: f.write('\nIrene') #probar primero sin \n lista=[1,2,3,4] with open('lista.pickle',mode='wb') as f: pickle.dump(lista, f) with open('lista.pickle',mode='rb') as f: print(pickle.load(f)) with open('lista.pickle',mode='rb') as f: x = pickle.load(f) x[0]=9 with open('lista.pickle',mode='wb') as f: pickle.dump(x,f) with open('lista.pickle',mode='rb') as f: print(pickle.load(f)) import csv with open('personas.csv', mode='r') as fichero: csv_reader = csv.reader(fichero, delimiter=',')#guardamos las líneas del fichero en csv_reader contador = 0 for linea in csv_reader:#¿qué es una línea en un csv? if contador == 0: cabeceras = linea contador += 1 else: print('Línea ' + str(contador) + ':') for i in range(len(cabeceras)): print(cabeceras[i], '->', linea[i]) contador += 1 with open('personas.csv', mode='a', encoding='utf8', newline='') as fichero: csv_writer = csv.writer(fichero, delimiter=',') linea = ['Pablo','Buendía','24'] csv_writer.writerow(linea) linea = ['Enrique', None,'15'] csv_writer.writerow(linea) import json diccionario = { 'nombre':'Marta', 'edad':25 } with open('diccionario.json',mode='w',encoding='utf8') as f: json.dump(diccionario,f) with open('diccionario.json',mode='w',encoding='utf8') as f: json.dump(diccionario,f)
rjvillen/clases-particulares-python
ficheros/ficheros_ejemplos_sol.py
ficheros_ejemplos_sol.py
py
2,343
python
es
code
0
github-code
6
[ { "api_name": "pickle.dump", "line_number": 33, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 36, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 39, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 42, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 44, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 51, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 67, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 82, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 85, "usage_type": "call" } ]
74186588989
""" Loading logic """ import sqlite3 import sys from decimal import Decimal from datetime import datetime def load_data(database_uri: str, data: list) -> bool: """ Loads Bitcoin rate data into an SQLite database. Args: database_uri (str): The URI of the SQLite database. data (list): The list containing the data to load. Returns: bool: True if the data was successfully loaded, False otherwise. """ schema = { "database_name": "bitcoin_rate_tracker", "schema_name": "dbo", "table": "bitcoin_rates", "fields": { "unique_number": "INTEGER PRIMARY KEY AUTOINCREMENT", "timestamp": "DATETIME2 NOT NULL", "chart_name": "VARCHAR(10) NOT NULL", "usd_rate": "DECIMAL(18, 4) NOT NULL", "gbp_rate": "DECIMAL(18, 4) NOT NULL", "eur_rate": "DECIMAL(18, 4) NOT NULL", }, } try: # Prepare the data for insertion formatted_data = [ str(item) if isinstance(item, Decimal) else item.isoformat() if isinstance(item, datetime) else str(item) for item in data ] # Connect to SQLite database connection = sqlite3.connect(database_uri) with connection: cursor = connection.cursor() # Create table schema create_table_query = f""" CREATE TABLE IF NOT EXISTS {schema['table']} ( {', '.join(f'{column} {specification}' for column, specification in schema['fields'].items())}, UNIQUE (timestamp) ); """ cursor.execute(create_table_query) # Insert data into SQLite table insert_query = f""" INSERT INTO {schema['table']} ({', '.join(field for field in schema['fields'] if field != 'unique_number')}) VALUES ({', '.join(['?'] * (len(schema['fields']) - 1))}) ON CONFLICT (timestamp) DO UPDATE SET {', '.join(f"{field} = excluded.{field}" for field in schema['fields'] if field not in ('unique_number', 'timestamp'))} """ cursor.execute(insert_query, formatted_data) connection.commit() # The maximum timestamp is the timestamp of the last inserted record max_timestamp = formatted_data[0] # Delete records older than 48 hours from the maximum timestamp in the SQLite table delete_query = f""" DELETE FROM {schema['table']} WHERE datetime(timestamp) < datetime('{max_timestamp}', '-48 hours') """ cursor.execute(delete_query) connection.commit() return cursor.lastrowid > 0 except sqlite3.Error as error_msg: print("Error: " + str(error_msg)) sys.exit() finally: connection.close()
richardogoma/bitcoin-rate-etl
etl/load/loader.py
loader.py
py
2,943
python
en
code
0
github-code
6
[ { "api_name": "decimal.Decimal", "line_number": 37, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 39, "usage_type": "argument" }, { "api_name": "sqlite3.connect", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlite3.Error", "line_number": 81, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 83, "usage_type": "call" } ]
36345253262
""" EECS 445 - Winter 2017 - Project 2 FER2013 - Skeleton This file reads the dataset and provides a function `preprocessed_data` that returns preprocessed images, labels Usage: python -m data_scripts.fer2013 """ import numpy as np from scipy.misc import imresize from sklearn.utils import resample import pandas from utils.config import get, print_if_verbose class FER2013: filename = '' data_stored = False train_images = np.zeros(0) train_labels = np.zeros(0) val_images = np.zeros(0) val_labels = np.zeros(0) test_images = np.zeros(0) test_labels = np.zeros(0) def __init__(self): self.filename = get('DATA.FER_PATH') self.data_stored = False def get_images_labels(self, matrix): image_row_len = len(np.fromstring(matrix[0, 1], dtype=int, sep=' ')) image_dim = int(np.sqrt(image_row_len)) # images = np.zeros((matrix.shape[0], image_dim, image_dim)) labels = matrix[:, 0] images = [] for i in range(matrix.shape[0]): image_row = np.fromstring(matrix[i, 1], dtype=int, sep=' ') images.append(np.reshape(image_row, (image_dim, image_dim))) images = np.array(images) return images, labels def read_csv(self): df = pandas.read_csv(self.filename) mat = df.as_matrix() train_mat = mat[mat[:, 2] == 'Training', :] val_mat = mat[mat[:, 2] == 'PublicTest', :] test_mat = mat[mat[:, 2] == 'PrivateTest', :] self.train_images, self.train_labels = self.get_images_labels( train_mat) self.val_images, self.val_labels = self.get_images_labels(val_mat) self.test_images, self.test_labels = self.get_images_labels(test_mat) self.data_stored = True def balance_classes(self, images, labels, count=5000): balanced_images, balanced_labels = [], [] unique_labels = set(labels) for l in unique_labels: l_idx = np.where(labels == l)[0] l_images, l_labels = images[l_idx], labels[l_idx] # Consistent resampling to facilitate debugging resampled_images, resampled_labels = resample(l_images, l_labels, n_samples=count, random_state=0) balanced_images.extend(resampled_images) balanced_labels.extend(resampled_labels) balanced_images = np.array(balanced_images) balanced_labels = np.array(balanced_labels) print('---Shuffled images shape: {}'.format(balanced_images.shape)) print('---Shuffled labels shape: {}'.format(balanced_labels.shape)) assert(len(balanced_images) == len(balanced_labels)) shuffle_idx = np.random.permutation(len(balanced_images)) return balanced_images[shuffle_idx], balanced_labels[shuffle_idx] def resize(self, images, new_size=32): resized = [] for i in range(images.shape[0]): resized_image = imresize(images[i], size=(new_size, new_size), interp='bicubic') resized.append(resized_image) return np.array(resized) def preprocessed_data(self, split, dim=32, one_hot=False, balance_classes=True): if not self.data_stored: self.read_csv() if split == 'train': print_if_verbose('Loading train data...') images, labels = self.train_images, self.train_labels # TODO: Remove blank images temp_im = []; temp_lb = []; for i in range(len(images)): if(np.linalg.norm(images[i]) >= 1): temp_im += [images[i]]; temp_lb += [labels[i]]; images = np.array(temp_im); labels = np.array(temp_lb); if balance_classes: images, labels = self.balance_classes(images, labels, 5000) elif split == 'val': print_if_verbose('Loading validation data...') images, labels = self.val_images, self.val_labels # TODO: Remove blan k images temp_im = []; temp_lb = []; for i in range(len(images)): if(np.linalg.norm(images[i]) >= 1): temp_im += [images[i]]; temp_lb += [labels[i]]; images = np.array(temp_im); labels = np.array(temp_lb); if balance_classes: images, labels = self.balance_classes(images, labels, 500) elif split == 'test': print_if_verbose('Loading test data...') images, labels = self.test_images, self.test_labels # TODO: Remove blank images temp_im = []; temp_lb = []; for i in range(len(images)): if(np.linalg.norm(images[i]) >= 1): temp_im += [images[i]]; temp_lb += [labels[i]]; images = np.array(temp_im); labels = np.array(temp_lb); if balance_classes: images, labels = self.balance_classes(images, labels, 500) else: print_if_verbose('Invalid input!') return images = self.resize(images, dim) # TODO: Normalize, add dimension, one-hot encoding of labels temp_im = []; temp_lb = []; for i in range(len(images)): t_im = images[i]; mu = np.mean(t_im); t_im = np.add(t_im, -mu); std = np.std(t_im); t_im = np.divide(t_im, std); temp_im.append(np.expand_dims(t_im,axis = 2)) if(one_hot): temp_vec = [0, 0, 0, 0, 0, 0, 0]; temp_vec[labels[i]] = 1 temp_lb += [temp_vec]; images = np.array(temp_im); if(one_hot): labels = np.array(temp_lb); print_if_verbose('---Images shape: {}'.format(images.shape)) print_if_verbose('---Labels shape: {}'.format(labels.shape)) return images, labels if __name__ == '__main__': data = FER2013() images, labels = data.preprocessed_data('train') # 'train' or 'val' or 'test'
lixhuang/EECS445p2
data_scripts/fer2013.py
fer2013.py
py
6,969
python
en
code
0
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 25, "usage_type": "call" }, { "api_name": "utils.config.get", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.fromstring", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.fromstring", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 40, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.utils.resample", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 73, "usage_type": "attribute" }, { "api_name": "scipy.misc.imresize", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 83, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 95, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 99, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 110, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 114, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 119, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 125, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 125, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 129, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.add", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 153, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 154, "usage_type": "call" }, { "api_name": "utils.config.print_if_verbose", "line_number": 155, "usage_type": "call" } ]
716717090
from plenum.common.constants import SERVICES, VALIDATOR, TARGET_NYM, DATA from sovrin_common.roles import Roles from stp_core.network.port_dispenser import genHa import pytest from sovrin_client.test.cli.helper import doSendNodeCmd def testSuspendNode(be, do, trusteeCli, newNodeAdded): """ Suspend a node and then cancel suspension. Suspend while suspended to test that there is no error """ newNodeVals = newNodeAdded be(trusteeCli) newNodeVals['newNodeData'][SERVICES] = [] doSendNodeCmd(do, newNodeVals) # Re-suspend node newNodeVals['newNodeData'][SERVICES] = [] doSendNodeCmd(do, newNodeVals, expMsgs=['node already has the same data as requested']) # Cancel suspension newNodeVals['newNodeData'][SERVICES] = [VALIDATOR] doSendNodeCmd(do, newNodeVals) # Re-cancel suspension newNodeVals['newNodeData'][SERVICES] = [VALIDATOR] doSendNodeCmd(do, nodeVals=newNodeVals, expMsgs=['node already has the same data as requested']) @pytest.mark.skip(reason='INDY-133. Broken compatibility') def testSuspendNodeWhichWasNeverActive(be, do, trusteeCli, nymAddedOut, poolNodesStarted, trusteeMap): """ Add a node without services field and check that the ledger does not contain the `services` field and check that it can be blacklisted and the ledger has `services` as empty list """ newStewardSeed = '0000000000000000000KellySteward2' newStewardIdr = 'DqCx7RFEpSUMZbV2mH89XPH6JT3jMvDNU55NTnBHsQCs' be(trusteeCli) do('send NYM dest={{remote}} role={role}'.format( role=Roles.STEWARD.name), within=5, expect=nymAddedOut, mapper={'remote': newStewardIdr}) do('new key with seed {}'.format(newStewardSeed)) nport, cport = (_[1] for _ in genHa(2)) nodeId = '6G9QhQa3HWjRKeRmEvEkLbWWf2t7cw6KLtafzi494G4G' newNodeVals = { 'newNodeIdr': nodeId, 'newNodeData': {'client_port': cport, 'client_ip': '127.0.0.1', 'alias': 'Node6', 'node_ip': '127.0.0.1', 'node_port': nport } } doSendNodeCmd(do, newNodeVals) for node in poolNodesStarted.nodes.values(): txn = [t for _, t in node.poolLedger.getAllTxn()][-1] assert txn[TARGET_NYM] == nodeId assert SERVICES not in txn[DATA] do('new key with seed {}'.format(trusteeMap['trusteeSeed'])) newNodeVals['newNodeData'][SERVICES] = [] doSendNodeCmd(do, newNodeVals) for node in poolNodesStarted.nodes.values(): txn = [t for _, t in node.poolLedger.getAllTxn()][-1] assert txn[TARGET_NYM] == nodeId assert SERVICES in txn[DATA] and txn[DATA][SERVICES] == []
hyperledger-archives/indy-client
sovrin_client/test/cli/test_node_suspension.py
test_node_suspension.py
py
2,820
python
en
code
18
github-code
6
[ { "api_name": "plenum.common.constants.SERVICES", "line_number": 19, "usage_type": "name" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 20, "usage_type": "call" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 22, "usage_type": "name" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 23, "usage_type": "call" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 27, "usage_type": "name" }, { "api_name": "plenum.common.constants.VALIDATOR", "line_number": 27, "usage_type": "name" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 28, "usage_type": "call" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 31, "usage_type": "name" }, { "api_name": "plenum.common.constants.VALIDATOR", "line_number": 31, "usage_type": "name" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 32, "usage_type": "call" }, { "api_name": "sovrin_common.roles.Roles.STEWARD", "line_number": 48, "usage_type": "attribute" }, { "api_name": "sovrin_common.roles.Roles", "line_number": 48, "usage_type": "name" }, { "api_name": "stp_core.network.port_dispenser.genHa", "line_number": 52, "usage_type": "call" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 63, "usage_type": "call" }, { "api_name": "plenum.common.constants.TARGET_NYM", "line_number": 67, "usage_type": "name" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 68, "usage_type": "name" }, { "api_name": "plenum.common.constants.DATA", "line_number": 68, "usage_type": "name" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 71, "usage_type": "name" }, { "api_name": "sovrin_client.test.cli.helper.doSendNodeCmd", "line_number": 72, "usage_type": "call" }, { "api_name": "plenum.common.constants.TARGET_NYM", "line_number": 76, "usage_type": "name" }, { "api_name": "plenum.common.constants.SERVICES", "line_number": 77, "usage_type": "name" }, { "api_name": "plenum.common.constants.DATA", "line_number": 77, "usage_type": "name" }, { "api_name": "pytest.mark.skip", "line_number": 36, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 36, "usage_type": "attribute" } ]
21215563455
# -*- coding: utf-8 -*- from django.db.models import Count, Case, When from django.db.models.functions import TruncDate from django.utils.translation import gettext as _ from django.utils.translation import get_language import plotly.offline as plotly import plotly.graph_objs as go from core.utils import duration_parts from reports import utils def diaperchange_intervals(changes): """ Create a graph showing intervals of diaper changes. :param changes: a QuerySet of Diaper Change instances. :returns: a tuple of the the graph's html and javascript. """ changes = changes.order_by("time") intervals = [] intervals_solid = [] intervals_wet = [] last_change = changes.first() for change in changes[1:]: interval = change.time - last_change.time if interval.total_seconds() > 0: intervals.append(interval) if change.solid: intervals_solid.append(interval) if change.wet: intervals_wet.append(interval) last_change = change trace_solid = go.Scatter( name=_("Solid"), line=dict(shape="spline"), x=list(changes.values_list("time", flat=True))[1:], y=[i.total_seconds() / 3600 for i in intervals_solid], hoverinfo="text", text=[_duration_string_hms(i) for i in intervals_solid], ) trace_wet = go.Scatter( name=_("Wet"), line=dict(shape="spline"), x=list(changes.values_list("time", flat=True))[1:], y=[i.total_seconds() / 3600 for i in intervals_wet], hoverinfo="text", text=[_duration_string_hms(i) for i in intervals_wet], ) trace_total = go.Scatter( name=_("Total"), line=dict(shape="spline"), x=list(changes.values_list("time", flat=True))[1:], y=[i.total_seconds() / 3600 for i in intervals], hoverinfo="text", text=[_duration_string_hms(i) for i in intervals], ) layout_args = utils.default_graph_layout_options() layout_args["barmode"] = "stack" layout_args["title"] = _("<b>Diaper Change Intervals</b>") layout_args["xaxis"]["title"] = _("Date") layout_args["xaxis"]["rangeselector"] = utils.rangeselector_date() layout_args["yaxis"]["title"] = _("Interval (hours)") fig = go.Figure( { "data": [trace_solid, trace_wet, trace_total], "layout": go.Layout(**layout_args), } ) output = plotly.plot( fig, output_type="div", include_plotlyjs=False, config={"locale": get_language()}, ) return utils.split_graph_output(output) def _duration_string_hms(duration): """ Format a duration string with hours, minutes and seconds. This is intended to fit better in smaller spaces on a graph. :returns: a string of the form Xm. """ h, m, s = duration_parts(duration) return "{}h{}m{}s".format(h, m, s)
babybuddy/babybuddy
reports/graphs/diaperchange_intervals.py
diaperchange_intervals.py
py
2,953
python
en
code
1,766
github-code
6
[ { "api_name": "plotly.graph_objs.Scatter", "line_number": 37, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 37, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 38, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Scatter", "line_number": 46, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 46, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 47, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Scatter", "line_number": 55, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 55, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 56, "usage_type": "call" }, { "api_name": "reports.utils.default_graph_layout_options", "line_number": 64, "usage_type": "call" }, { "api_name": "reports.utils", "line_number": 64, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 66, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext", "line_number": 67, "usage_type": "call" }, { "api_name": "reports.utils.rangeselector_date", "line_number": 68, "usage_type": "call" }, { "api_name": "reports.utils", "line_number": 68, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 69, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Figure", "line_number": 71, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 71, "usage_type": "name" }, { "api_name": "plotly.graph_objs.Layout", "line_number": 74, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 74, "usage_type": "name" }, { "api_name": "plotly.offline.plot", "line_number": 77, "usage_type": "call" }, { "api_name": "plotly.offline", "line_number": 77, "usage_type": "name" }, { "api_name": "django.utils.translation.get_language", "line_number": 81, "usage_type": "call" }, { "api_name": "reports.utils.split_graph_output", "line_number": 83, "usage_type": "call" }, { "api_name": "reports.utils", "line_number": 83, "usage_type": "name" }, { "api_name": "core.utils.duration_parts", "line_number": 92, "usage_type": "call" } ]
8631506734
#!/usr/bin/env python3 import argparse import logging import requests import sys from alert_autoconf.config import read_from_file from json import JSONDecodeError LOG_LEVEL = "DEBUG" def parse_params() -> dict: parser = argparse.ArgumentParser(add_help=True) parser.add_argument( "-u", "--url", default="localhost", help="Graphite system render url", required=False, ) parser.add_argument( "-c", "--config", help="Path to trigger description", required=True ) parser.add_argument( "-l", "--log-level", default=LOG_LEVEL, help="Log level.", required=False ) parser.add_argument( "-C", "--cluster", help="Cluster name. If specified, {cluster} will be replaced with this name.", required=False, ) return parser.parse_args() def main(): frmt = "[%(asctime)s] %(levelname)s:%(name)s:%(funcName)s:%(message)s" logging.basicConfig( level=logging.getLevelName(LOG_LEVEL), stream=sys.stdout, format=frmt, datefmt="%Y-%m-%d %H:%M:%S", ) _logger = logging.getLogger("validate") params = parse_params() log_level = params.log_level.upper() if LOG_LEVEL != log_level: logging.getLogger().setLevel(logging.getLevelName(log_level)) _logger.setLevel(logging.getLevelName(log_level)) is_valid = True data = read_from_file(params.config, params.cluster) for trigger in data.triggers: for n, target in enumerate(trigger.targets): request_params = { "format": "json", "target": target, "from": "-1min", "noNullPoints": "true", "maxDataPoints": 1, } try: r = requests.get(params.url, params=request_params) r.json() _logger.info('Trigger: "%s", target: "%s" OK' % (trigger.name, n)) except JSONDecodeError as e: is_valid = False _logger.error( 'Trigger: "%s", target: "%s" ERROR: %s' % (trigger.name, n, r.text) ) except Exception as e: is_valid = False _logger.error( 'Trigger: "%s", target: "%s", exception: "%s"' % (trigger.name, n, e) ) if not is_valid: sys.exit(1) if __name__ == "__main__": main()
avito-tech/alert-autoconf
bin/validate.py
validate.py
py
2,475
python
en
code
1
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 15, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 40, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 41, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 42, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 47, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 53, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 53, "usage_type": "call" }, { "api_name": "logging.getLevelName", "line_number": 54, "usage_type": "call" }, { "api_name": "alert_autoconf.config.read_from_file", "line_number": 57, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 69, "usage_type": "call" }, { "api_name": "json.JSONDecodeError", "line_number": 72, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 85, "usage_type": "call" } ]
19238997232
from collections import deque N = int(input()) def bfs(): cnt = -1 q = deque() for i in range(10): q.append(i) while q: s = q.popleft() cnt += 1 if cnt == N: print(s) break for i in range(s%10): q.append(s * 10 + i) else: print(-1) bfs()
sdh98429/dj2_alg_study
BAEKJOON/backtracking/b1038.py
b1038.py
py
344
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 6, "usage_type": "call" } ]
21884520657
"""Use simple rate comparisions, try predicting event rates.""" import numpy as np import matplotlib.pyplot as plt from frbpoppy import Survey from tests.convenience import plot_aa_style, rel_path ALPHAS = np.around(np.linspace(-0.2, -2.5, 7), decimals=2) SURVEYS = ('parkes-htru', 'arecibo-palfa', 'askap-fly', 'fast-crafts') def compare_surveys(surv1, surv2, alpha): """Event rate surv1 / Event rate surv2 for an alpha.""" omega = surv1.beam_size_at_fwhm/surv2.beam_size_at_fwhm T_rec = surv1.T_rec/surv2.T_rec gain = surv1.gain/surv2.gain beta = surv1.beta/surv2.beta SEFD = T_rec*beta/gain bw = surv1.bw/surv2.bw S_min = surv1.snr_limit/surv2.snr_limit return omega * (SEFD * S_min)**alpha * (bw)**(-alpha/2) def analytical_rates(surveys=SURVEYS, alphas=ALPHAS): """Use a analytical model to scale detection rates to various alphas.""" rates = {} for surv in surveys: # Get survey parameters surv1 = Survey(surv) surv1.set_beam('perfect', n_sidelobes=0.5) surv2 = Survey(surveys[0]) surv2.set_beam('perfect', n_sidelobes=0.5) # Calculate rate per alpha rate = [] for alpha in alphas: rate.append(compare_surveys(surv1, surv2, alpha)) rates[surv] = rate return rates def main(): """Plot analytical rates.""" rates = analytical_rates() for surv in rates: rate = rates[surv] plot_aa_style() plt.plot(ALPHAS, rate, label=surv) plt.xlabel(r'$\alpha_{\text{in}}$') plt.ylabel(rf'Events / {SURVEYS[0]}') plt.xlim((min(ALPHAS), max(ALPHAS))) plt.yscale('log') plt.legend() plt.gca().invert_xaxis() plt.grid(True) plt.tight_layout() plt.savefig(rel_path('./plots/rates_analytical.pdf')) if __name__ == '__main__': main()
TRASAL/frbpoppy
tests/rates/alpha_analytical.py
alpha_analytical.py
py
1,884
python
en
code
26
github-code
6
[ { "api_name": "numpy.around", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 9, "usage_type": "call" }, { "api_name": "frbpoppy.Survey", "line_number": 33, "usage_type": "call" }, { "api_name": "frbpoppy.Survey", "line_number": 35, "usage_type": "call" }, { "api_name": "tests.convenience.plot_aa_style", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yscale", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "tests.convenience.rel_path", "line_number": 66, "usage_type": "call" } ]
10790083831
import html import os import re import requests class DirFile: def __init__(self, shop_data_dict, img_list, path, shop): self.shop_data_dict = shop_data_dict self.img_list = img_list self.path = path self.shop = shop def save_to_local(self): try: folder_name = self.shop_data_dict["title"] folder_name = folder_name.replace(" ", "") folder = self.path + "/" + self.shop + "-" + folder_name print("===================================================================") if not os.path.exists(folder): os.makedirs(folder) print("파일생성") else: print("파일 존재") except OSError: print('Error : Creating folder with ' + folder) except Exception as e: print('Exception 에러 발생!') print(str(e)) else: txt_file_location = folder + "/" + folder_name + ".txt" cleanr = re.compile("<.*?>") print(txt_file_location) # txt 파일 저장 with open(txt_file_location, "w", encoding="utf-8") as txtFile: for shop_data in self.shop_data_dict.values(): txtFile.write(html.unescape(re.sub(cleanr, "", str(shop_data).replace("</p>", "\n").replace("<br />", "\n"))) + "\n\n") print("txt 파일 저장 완료") # 이미지 저장 key = 0 for img_file in self.img_list: img_file_name = folder + "/" + folder_name + '_' + str(key + 1) + '.jpg' r = requests.get(img_file) file = open(img_file_name, "wb") file.write(r.content) file.close() key += 1 print("이미지 저장 완료") print("===================================================================")
kimbackdoo/Hareubang-Crawler
crawl/dir_file.py
dir_file.py
py
1,955
python
en
code
0
github-code
6
[ { "api_name": "os.path.exists", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 22, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 36, "usage_type": "call" }, { "api_name": "html.unescape", "line_number": 41, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 41, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 49, "usage_type": "call" } ]
33781322730
import copy import datetime as dt import decimal import re import pytest import pytz from google.cloud import bigquery from google.cloud import bigquery_storage_v1beta1 from google.protobuf import timestamp_pb2 def _to_bq_table_ref(proto_table_ref, partition_suffix=""): """Converts protobuf table reference to bigquery table reference. Args: proto_table_ref (bigquery_storage_v1beta1.types.TableReference): A protobuf reference to a table. partition_suffix (str): An optional suffix to append to the table_id, useful for selecting partitions of ingestion-time partitioned tables. Returns: google.cloud.bigquery.table.TableReference """ return bigquery.table.TableReference.from_api_repr( { "projectId": proto_table_ref.project_id, "datasetId": proto_table_ref.dataset_id, "tableId": proto_table_ref.table_id + partition_suffix, } ) @pytest.mark.parametrize( "data_format,expected_schema_type", ( (None, "avro_schema"), # Default format (Avro). (bigquery_storage_v1beta1.enums.DataFormat.AVRO, "avro_schema"), (bigquery_storage_v1beta1.enums.DataFormat.ARROW, "arrow_schema"), ), ) def test_read_rows_as_blocks_full_table( client, project_id, small_table_reference, data_format, expected_schema_type ): session = client.create_read_session( small_table_reference, "projects/{}".format(project_id), format_=data_format, requested_streams=1, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) schema_type = session.WhichOneof("schema") assert schema_type == expected_schema_type blocks = list(client.read_rows(stream_pos)) assert len(blocks) > 0 block = blocks[0] assert block.status.estimated_row_count > 0 @pytest.mark.parametrize( "data_format,expected_schema_type", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO, "avro_schema"), (bigquery_storage_v1beta1.enums.DataFormat.ARROW, "arrow_schema"), ), ) def test_read_rows_as_rows_full_table( client, project_id, small_table_reference, data_format, expected_schema_type ): session = client.create_read_session( small_table_reference, "projects/{}".format(project_id), format_=data_format, requested_streams=1, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) assert len(rows) > 0 @pytest.mark.parametrize( "data_format", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO), (bigquery_storage_v1beta1.enums.DataFormat.ARROW), ), ) def test_basic_nonfiltered_read(client, project_id, table_with_data_ref, data_format): session = client.create_read_session( table_with_data_ref, "projects/{}".format(project_id), format_=data_format, requested_streams=1, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) assert len(rows) == 5 # all table rows def test_filtered_rows_read(client, project_id, table_with_data_ref): read_options = bigquery_storage_v1beta1.types.TableReadOptions() read_options.row_restriction = "age >= 50" session = client.create_read_session( table_with_data_ref, "projects/{}".format(project_id), format_=bigquery_storage_v1beta1.enums.DataFormat.AVRO, requested_streams=1, read_options=read_options, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) assert len(rows) == 2 @pytest.mark.parametrize( "data_format", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO), (bigquery_storage_v1beta1.enums.DataFormat.ARROW), ), ) def test_column_selection_read(client, project_id, table_with_data_ref, data_format): read_options = bigquery_storage_v1beta1.types.TableReadOptions() read_options.selected_fields.append("first_name") read_options.selected_fields.append("age") session = client.create_read_session( table_with_data_ref, "projects/{}".format(project_id), format_=data_format, requested_streams=1, read_options=read_options, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) for row in rows: assert sorted(row.keys()) == ["age", "first_name"] def test_snapshot(client, project_id, table_with_data_ref, bq_client): before_new_data = timestamp_pb2.Timestamp() before_new_data.GetCurrentTime() # load additional data into the table new_data = [ {u"first_name": u"NewGuyFoo", u"last_name": u"Smith", u"age": 46}, {u"first_name": u"NewGuyBar", u"last_name": u"Jones", u"age": 30}, ] destination = _to_bq_table_ref(table_with_data_ref) bq_client.load_table_from_json(new_data, destination).result() # read data using the timestamp before the additional data load session = client.create_read_session( table_with_data_ref, "projects/{}".format(project_id), format_=bigquery_storage_v1beta1.enums.DataFormat.AVRO, requested_streams=1, table_modifiers={"snapshot_time": before_new_data}, ) stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) # verify that only the data before the timestamp was returned assert len(rows) == 5 # all initial records for row in rows: assert "NewGuy" not in row["first_name"] # no new records def test_column_partitioned_table( client, project_id, col_partition_table_ref, bq_client ): data = [ {"description": "Tracking established.", "occurred": "2017-02-15"}, {"description": "Look, a solar eclipse!", "occurred": "2018-02-15"}, {"description": "Fake solar eclipse reported.", "occurred": "2018-02-15"}, {"description": "1 day after false eclipse report.", "occurred": "2018-02-16"}, {"description": "1 year after false eclipse report.", "occurred": "2019-02-15"}, ] destination = _to_bq_table_ref(col_partition_table_ref) bq_client.load_table_from_json(data, destination).result() # Read from the table with a partition filter specified, and verify that # only the expected data is returned. read_options = bigquery_storage_v1beta1.types.TableReadOptions() read_options.row_restriction = "occurred = '2018-02-15'" session = client.create_read_session( col_partition_table_ref, "projects/{}".format(project_id), format_=bigquery_storage_v1beta1.enums.DataFormat.AVRO, requested_streams=1, read_options=read_options, ) assert session.streams # there should be some data to fetch stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) assert len(rows) == 2 expected_descriptions = ("Look, a solar eclipse!", "Fake solar eclipse reported.") for row in rows: assert row["occurred"] == dt.date(2018, 2, 15) assert row["description"] in expected_descriptions @pytest.mark.parametrize( "data_format", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO), (bigquery_storage_v1beta1.enums.DataFormat.ARROW), ), ) def test_ingestion_time_partitioned_table( client, project_id, ingest_partition_table_ref, bq_client, data_format ): data = [{"shape": "cigar", "altitude": 1200}, {"shape": "disc", "altitude": 750}] destination = _to_bq_table_ref( ingest_partition_table_ref, partition_suffix="$20190809" ) bq_client.load_table_from_json(data, destination).result() data = [ {"shape": "sphere", "altitude": 3500}, {"shape": "doughnut", "altitude": 100}, ] destination = _to_bq_table_ref( ingest_partition_table_ref, partition_suffix="$20190810" ) bq_client.load_table_from_json(data, destination).result() data = [ {"shape": "elephant", "altitude": 1}, {"shape": "rocket", "altitude": 12700}, ] destination = _to_bq_table_ref( ingest_partition_table_ref, partition_suffix="$20190811" ) bq_client.load_table_from_json(data, destination).result() read_options = bigquery_storage_v1beta1.types.TableReadOptions() read_options.row_restriction = "DATE(_PARTITIONTIME) = '2019-08-10'" session = client.create_read_session( ingest_partition_table_ref, "projects/{}".format(project_id), format_=data_format, requested_streams=1, read_options=read_options, ) assert session.streams # there should be some data to fetch stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) assert len(rows) == 2 actual_items = {(row["shape"], row["altitude"]) for row in rows} expected_items = {("sphere", 3500), ("doughnut", 100)} assert actual_items == expected_items @pytest.mark.parametrize( "data_format", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO), (bigquery_storage_v1beta1.enums.DataFormat.ARROW), ), ) def test_decoding_data_types( client, project_id, all_types_table_ref, bq_client, data_format ): data = [ { u"string_field": u"Price: € 9.95.", u"bytes_field": bigquery._helpers._bytes_to_json(b"byteees"), u"int64_field": -1085, u"float64_field": -42.195, u"numeric_field": "1.4142", u"bool_field": True, u"geography_field": '{"type": "Point", "coordinates": [-49.3028, 69.0622]}', u"person_struct_field": {u"name": u"John", u"age": 42}, u"timestamp_field": 1565357902.017896, # 2019-08-09T13:38:22.017896 u"date_field": u"1995-03-17", u"time_field": u"16:24:51", u"datetime_field": u"2005-10-26T19:49:41", u"string_array_field": [u"foo", u"bar", u"baz"], } ] # Explicit schema is needed to recognize bytes_field as BYTES, and not STRING. # Since partial schemas are not supported in load_table_from_json(), a full # schema needs to be specified. schema = [ bigquery.SchemaField("string_field", "STRING"), bigquery.SchemaField("bytes_field", "BYTES"), bigquery.SchemaField("int64_field", "INT64"), bigquery.SchemaField("float64_field", "FLOAT64"), bigquery.SchemaField("numeric_field", "NUMERIC"), bigquery.SchemaField("bool_field", "BOOL"), bigquery.SchemaField("geography_field", "GEOGRAPHY"), bigquery.SchemaField( "person_struct_field", "STRUCT", fields=( bigquery.SchemaField("name", "STRING"), bigquery.SchemaField("age", "INT64"), ), ), bigquery.SchemaField("timestamp_field", "TIMESTAMP"), bigquery.SchemaField("date_field", "DATE"), bigquery.SchemaField("time_field", "TIME"), bigquery.SchemaField("datetime_field", "DATETIME"), bigquery.SchemaField("string_array_field", "STRING", mode="REPEATED"), ] job_config = bigquery.LoadJobConfig(schema=schema) destination = _to_bq_table_ref(all_types_table_ref) bq_client.load_table_from_json(data, destination, job_config=job_config).result() session = client.create_read_session( all_types_table_ref, "projects/{}".format(project_id), format_=data_format, requested_streams=1, ) assert session.streams # there should be data available stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=session.streams[0] ) rows = list(client.read_rows(stream_pos).rows(session)) expected_result = { u"string_field": u"Price: € 9.95.", u"bytes_field": b"byteees", u"int64_field": -1085, u"float64_field": -42.195, u"numeric_field": decimal.Decimal("1.4142"), u"bool_field": True, u"geography_field": "POINT(-49.3028 69.0622)", u"person_struct_field": {u"name": u"John", u"age": 42}, u"timestamp_field": dt.datetime(2019, 8, 9, 13, 38, 22, 17896, tzinfo=pytz.UTC), u"date_field": dt.date(1995, 3, 17), u"time_field": dt.time(16, 24, 51), u"string_array_field": [u"foo", u"bar", u"baz"], } result_copy = copy.copy(rows[0]) del result_copy["datetime_field"] assert result_copy == expected_result # Compare datetime separately, AVRO and PYARROW return different object types, # although they should both represent the same value. # TODO: when fixed, change assertion to assert a datetime instance! expected_pattern = re.compile(r"2005-10-26( |T)19:49:41") assert expected_pattern.match(str(rows[0]["datetime_field"])) @pytest.mark.parametrize( "data_format", ( (bigquery_storage_v1beta1.enums.DataFormat.AVRO), (bigquery_storage_v1beta1.enums.DataFormat.ARROW), ), ) def test_resuming_read_from_offset(client, project_id, data_format): shakespeare_ref = bigquery_storage_v1beta1.types.TableReference() shakespeare_ref.project_id = project_id shakespeare_ref.dataset_id = "public_samples_copy" shakespeare_ref.table_id = "shakespeare" read_session = client.create_read_session( shakespeare_ref, "projects/{}".format(project_id), format_=data_format, requested_streams=1, ) assert read_session.streams # there should be data available stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=read_session.streams[0], offset=0 ) read_rows_stream = client.read_rows(stream_pos) # fetch the first two batches of rows rows_iter = iter(read_rows_stream) some_rows = next(rows_iter) more_rows = next(rows_iter) # fetch the rest of the rows using the stream offset new_stream_pos = bigquery_storage_v1beta1.types.StreamPosition( stream=read_session.streams[0], offset=some_rows.row_count + more_rows.row_count ) remaining_rows_count = sum( 1 for _ in client.read_rows(new_stream_pos).rows(read_session) ) # verify that the counts match expected_len = 164656 # total rows in shakespeare table actual_len = remaining_rows_count + some_rows.row_count + more_rows.row_count assert actual_len == expected_len
silverdev/google-cloud-python
bigquery_storage/tests/system/test_reader.py
test_reader.py
py
15,016
python
en
code
0
github-code
6
[ { "api_name": "google.cloud.bigquery.table.TableReference.from_api_repr", "line_number": 27, "usage_type": "call" }, { "api_name": "google.cloud.bigquery.table", "line_number": 27, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery", "line_number": 27, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 53, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 53, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 53, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 36, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 36, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 40, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 40, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 41, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 41, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 82, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 82, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 82, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 66, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 66, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 69, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 69, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 70, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 70, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 105, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 105, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 105, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 91, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 91, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 94, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 94, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 95, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 95, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.TableReadOptions", "line_number": 115, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 115, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 115, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 121, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 121, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 125, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 125, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 125, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.TableReadOptions", "line_number": 142, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 142, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 142, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 153, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 153, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 153, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 134, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 134, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 137, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 137, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 138, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 138, "usage_type": "name" }, { "api_name": "google.protobuf.timestamp_pb2.Timestamp", "line_number": 164, "usage_type": "call" }, { "api_name": "google.protobuf.timestamp_pb2", "line_number": 164, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 180, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 180, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 184, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 184, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 184, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.TableReadOptions", "line_number": 213, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 213, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 213, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 219, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 219, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 226, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 226, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 226, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 235, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.TableReadOptions", "line_number": 273, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 273, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 273, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 286, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 286, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 286, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 239, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 239, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 242, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 242, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 243, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 243, "usage_type": "name" }, { "api_name": "google.cloud.bigquery._helpers._bytes_to_json", "line_number": 310, "usage_type": "call" }, { "api_name": "google.cloud.bigquery._helpers", "line_number": 310, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery", "line_number": 310, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 329, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 329, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 330, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 330, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 331, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 331, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 332, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 332, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 333, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 333, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 334, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 334, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 335, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 335, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 336, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 336, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 340, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 340, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 341, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 341, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 344, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 344, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 345, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 345, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 346, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 346, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 347, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 347, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.SchemaField", "line_number": 348, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 348, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.LoadJobConfig", "line_number": 351, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 351, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 364, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 364, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 364, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 375, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 379, "usage_type": "call" }, { "api_name": "pytz.UTC", "line_number": 379, "usage_type": "attribute" }, { "api_name": "datetime.date", "line_number": 380, "usage_type": "call" }, { "api_name": "datetime.time", "line_number": 381, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 385, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 392, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 297, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 297, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 300, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 300, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 301, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 301, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.TableReference", "line_number": 404, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 404, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 404, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 418, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 418, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 418, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types.StreamPosition", "line_number": 429, "usage_type": "call" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.types", "line_number": 429, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 429, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 396, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 396, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 399, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 399, "usage_type": "name" }, { "api_name": "google.cloud.bigquery_storage_v1beta1.enums", "line_number": 400, "usage_type": "attribute" }, { "api_name": "google.cloud.bigquery_storage_v1beta1", "line_number": 400, "usage_type": "name" } ]
19692262120
#Socratica Video 22 List Comprehension #list comprehension [expression for variable in collection if test1 and test2] #list comprehension [expression for variable1 in collection1 and variable2 in collection2] squares = [] for i in range(1, 11): squares.append(i**2) print(squares) #print [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] squares2 = [i**2 for i in range(1,11)] print(squares2) #print [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] movies = ["Star Wars", "Gandhi", "Casablanca", "Shawshank Redemption", "Toy Story" "Gone With The Wind", "Citizen Kane", "It's A Wonderful Life", "The Wizard Of Oz", "Gattaca", "Rear Window", "Ghostbusters", "To Kill A Mockingbird", "Good Will Hunting", "2001: A Space Odyssey", "Raiders Of The Lost Ark", "Groundhog Day", "Close Encounters Of The Third Kind"] gmovies = [] for title in movies: if title.startswith("G"): gmovies.append(title) print(gmovies) #print ['Gandhi', 'Gattaca', 'Ghostbusters', 'Good Will Hunting', 'Groundhog Day'] gmovies2 = [title for title in movies if title.startswith("G")] print(gmovies2) #print ['Gandhi', 'Gattaca', 'Ghostbusters', 'Good Will Hunting', 'Groundhog Day'] movies2 = [("Citizen Kane", 1941), ("Spirited Away", 2001), ("It's A Wonderful Life", 1946), ("Gattaca", 1997), ("No Country For Old Men", 2007), ("Rear Window", 1954), ("The Lord Of The Rings: The Fellowship Of The Ring", 2001), ("Groundhog Day", 1993), ("Close Encounters Of The Third Kind", 1977), ("The Royal Tenenbaums", 2001), ("The Aviator", 2004), ("Raiders Of The Lost Ark", 1981)] movies2001 = [] for key, value in movies2: if value > 2000: movies2001.append(key) print(movies2001) #print ['Spirited Away', 'No Country For Old Men', 'The Lord Of The Rings: The Fellowship Of The Ring', 'The Royal Tenenbaums', 'The Aviator'] movies20012 = [title for (title, year) in movies2 if year > 2000] print(movies20012) #print ['Spirited Away', 'No Country For Old Men', 'The Lord Of The Rings: The Fellowship Of The Ring', 'The Royal Tenenbaums', 'The Aviator'] vectorlist = [2, -3, 1] print(4*vectorlist) #print [2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1] or vectorlist+vectorlist+vectorlist+vectorlist. Adding lists concatenates them. wvectorlist = [4*x for x in vectorlist] print(wvectorlist) #print [8, -12, 4] #Cartesian product a={1,3} b={x,y} a*b={(1,x), (1,y), (3,x), (3,y)} oddlist = [1, 3, 5, 7] evenlist = [2, 4, 6, 8] cartesianproduct = [(a,b) for a in oddlist for b in evenlist] print(cartesianproduct) #print [(1, 2), (1, 4), (1, 6), (1, 8), (3, 2), (3, 4), (3, 6), (3, 8), (5, 2), (5, 4), (5, 6), (5, 8), (7, 2), (7, 4), (7, 6), (7, 8)] cartesianproductproduct = [a*b for a in oddlist for b in evenlist] print(cartesianproductproduct) #print [2, 4, 6, 8, 6, 12, 18, 24, 10, 20, 30, 40, 14, 28, 42, 56] print(max(cartesianproductproduct)) #print 56 list1 = [1] list2 = [2, 3] list3 = [4, 5, 6] list123 = [a*b*c for a in list1 for b in list2 for c in list3] print(list123) #print [8, 10, 12, 12, 15, 18] listall = [[1], [2, 3], [4, 5, 6]] listallproduct = [a for a in listall] print(listallproduct) #print [[1], [2, 3], [4, 5, 6]] #RM 018maximumpathsumi.py Project Euler # lista = [3] # listb = [7, 4] # listc = [2, 4, 6] # listd = [8, 5, 9, 3] # listabcd = [print(a, b, c, d) for a in lista for b in listb for c in listc for d in listd if a+b+c+d==23] #print 3 7 6 9 which is incorrect. Want 3 7 4 9 #https://www.pythonforbeginners.com/basics/list-comprehensions-in-python #result = [transform for iteration if filter] result = [evennumber for evennumber in range(0,6) if evennumber % 2 == 0] print(result) #print [0, 2, 4] x = [i for i in range(0,11)] print(x) #print [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] listofwords = ["this","is","a","list","of","words"] firstletters = [eachlistofwords[0] for eachlistofwords in listofwords] print(firstletters) #print ['t', 'i', 'a', 'l', 'o', 'w'] print(x.upper() for x in ["a","b","c"]) #print <generator object <genexpr> at 0x7facced5c360> print([x.upper() for x in ["a","b","c"]]) #print ["A","B","C"] extractnumbersinstring = "Hello 12345 World" numbersasstring = [x for x in extractnumbersinstring if x.isdigit()] print(numbersasstring) #print ['1', '2', '3', '4', '5'] stringasstring = [x for x in extractnumbersinstring if x.isalpha()] print(stringasstring) #print ['H', 'e', 'l', 'l', 'o', 'W', 'o', 'r', 'l', 'd'] def double(x): return x*2 print([double(x) for x in range(0,11)]) #print [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20] print([double(x) for x in range(0,11) if x % 2 == 0]) #print [0, 4, 8, 12, 16, 20] #https://hackernoon.com/list-comprehension-in-python-8895a785550b lista = [1, 2, 3, 4] listb = [2, 3, 4, 5] matchnumbers = [a for a in lista for b in listb if a == b] print(matchnumbers) #print [2, 3, 4] #https://docs.python.org/3.5/tutorial/datastructures.html listx = [1, 2, 3] listy = [3, 1, 4] xandytuple = [(x,y) for x in listx for y in listy if x!= y] print(xandytuple) #print [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)] #long way xandytuple = [] for x in listx: for y in listy: if x != y: xandytuple.append((x,y)) print(xandytuple) #print [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)] vector = [-4, -2, 0, 2, 4] absolutevector = [abs(eachvector) for eachvector in vector] print(absolutevector) #print [4, 2, 0, 2, 4] from math import pi pinumbers = [str(round(pi, i)) for i in range(1,7)] print(pinumbers) #print ['3.1', '3.14', '3.142', '3.1416', '3.14159', '3.141593'] #continue 5.1.4 Nested List Comprehensions 07/17/18 a1 = [[3, 0, 0], [7, 4, 0], [2, 4, 6]] transpose = [[row[i] for row in a1] for i in range(0,3)] print(transpose) #print [[3, 7, 2], [0, 4, 4], [0, 0, 6]] transpose = [[row[i] for row in a1 for i in range(0,3)]] print(transpose) #print [[3, 0, 0, 7, 4, 0, 2, 4, 6]] #3x4 matrix 3 lists length 4 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] onelist = [] for i in range(0,3): for j in range(0,3): print(matrix[i][j]) #print 1\n 2\n 3\n 5\n 6\n 7\n \n 10\n 11 onelist.append(matrix[i][j]) print(onelist) #print [1, 2, 3, 5, 6, 7, 9, 10, 11] print([row[i] for row in matrix for i in range(0,3)]) #print [1, 2, 3, 5, 6, 7, 9, 10, 11] #3x4 matrix 3 lists length 4 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] onelist = [] for i in range(0,3): for j in range(0,4): print(matrix[i][j]) #print 1\n 2\n 3\n 4\n 5\n 6\n 7\n 8\n 9\n 10\n 11\n 12 onelist.append(matrix[i][j]) print(onelist) #print [1, 2, 3, 5, 6, 7, 9, 10, 11, 12] print([row[i] for row in matrix for i in range(0,4)]) #print [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] #3x4 matrix 3 lists length 4 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] transposed = [] for i in range(0,3): transposedrow = [] for eachlist in matrix: print(eachlist[i]) #print 1\n 5\n 9\n 2\n 6\n 10\n 3\n 7\n 11 transposedrow.append(eachlist[i]) transposed.append(transposedrow) print(transposed) #print [[1, 5, 9], [2, 6, 10], [3, 7, 11]] print([[row[i] for row in matrix] for i in range(0,3)]) #print [[1, 5, 9], [2, 6, 10], [3, 7, 11]] #3x4 matrix 3 lists length 4 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] transposed = [] for i in range(0,4): transposedrow = [] for eachlist in matrix: print(eachlist[i]) #print 1\n 5\n 9\n 2\n 6\n 10\n 3\n 7\n 11\n 4\n 8 transposedrow.append(eachlist[i]) transposed.append(transposedrow) print(transposed) #print [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]] print([[row[i] for row in matrix] for i in range(0,4)]) #print [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]] #zip() function creates a list of tuples matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] print(list(zip(*matrix))) #print [(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)] print(zip(*matrix)) #print <zip object at 0x7ff55d585f88> letterhundreds = [("a",232), ("b",343), ("c", 543), ("d",23)] print(letterhundreds) #print [('a', 232), ('b', 343), ('c', 543), ('d', 23)] pivotletterhundreds = list(zip(*letterhundreds)) print(pivotletterhundreds) #print [('a', 'b', 'c', 'd'), (232, 343, 543, 23)] print(pivotletterhundreds[0]) #print ('a', 'b', 'c', 'd') print(list(pivotletterhundreds[0])) #print ['a', 'b', 'c', 'd'] #Python Implementing _zip_ with list comprehensions — Reuven Lerner.pdf https://lerner.co.il/2016/08/30/implementing-zip-list-comprehensions/ #Python 2’s “zip” returns a list, but Python 3’s “zip” returns an iterator object or <zip object at . . . > #Use zip for string and tuples sletters = "abcde" tnumbers = (1, 2, 3, 4, 5) tnumbersoneless = (1, 2, 3, 4) umore = ("jack","sack","tack","back","pack") print(zip(sletters, tnumbers)) #print <zip object at 0x7f66c7048b08> print(list(zip(sletters, tnumbers))) #print [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)] print(list(zip(sletters, tnumbersoneless))) #print [('a', 1), ('b', 2), ('c', 3), ('d', 4)] print(list(zip(sletters, tnumbers, umore))) #print [('a', 1, 'jack'), ('b', 2, 'sack'), ('c', 3, 'tack'), ('d', 4, 'back'), ('e', 5, 'pack')] #Lists to dictionaries names = ["Tom", "Dick", "Harry"] ages = [50, 35, 60] print(dict(zip(names, ages))) #print {'Tom': 50, 'Dick': 35, 'Harry': 60} from itertools import repeat def zip_longest(*args, fillvalue="put fillvalue here"): # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D- iterators = [iter(it) for it in args] num_active = len(iterators) if not num_active: return while True: values = [] for i, it in enumerate(iterators): try: value = next(it) except StopIteration: num_active -= 1 if not num_active: return iterators[i] = repeat(fillvalue) #repeat() function is from the itertools module value = fillvalue values.append(value) yield tuple(values) print(zip_longest(sletters, tnumbersoneless)) #print <generator object zip_longest at 0x7fe1faac9a98> print(zip(zip_longest(sletters, tnumbersoneless))) #print <zip object at 0x7f6a2b8e64c8> print(list(zip_longest(sletters, tnumbersoneless))) #print [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 'put fillvalue here')] #Zip in list comprehension sletterstnumbers = [(sletters[i], tnumbers[i]) for i in range(0,len(sletters))] print(sletterstnumbers) #print [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)] #Author wanted to create a function to clean things up def shortest_sequence_range(*args): return range(len(sorted(args, key=len)[0])) print([(sletters[i], tnumbers[i]) for i in shortest_sequence_range(sletters, tnumbers)]) #print [('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)]
raymondmar61/pythonoutsidethebook
listcomprehension.py
listcomprehension.py
py
10,585
python
en
code
0
github-code
6
[ { "api_name": "math.pi", "line_number": 104, "usage_type": "argument" }, { "api_name": "itertools.repeat", "line_number": 199, "usage_type": "call" } ]
73268001788
# Uncomment the next two lines to enable the admin: from django.conf.urls import patterns, include, url from productes import views urlpatterns = patterns('', url(r'^$', views.llistarProductes, name='llistarProductes'), url(r'^llistarCategories/$', views.llistarCategories, name='llistarCategories'), url(r'^llistarCategoriesAjax/$', views.llistarCategoriesAjax, name='llistarCategoriesAjax'), url(r'^llistarProductes/$', views.llistarProductes, name='llistarProductes'), url(r'^afegirProducte/(?P<categoria>\w+)/$', views.afegirProducte, name='afegirProducte'), url(r'^afegirProducte/$', views.afegirProducte, name='afegirProducte'), url(r'^afegirCategoria/$', views.afegirCategoria, name='afegirCategoria'), url(r'^editarProducte/(?P<idProducte>\d+)/$', views.editarProducte, name='editarProducte'), url(r'^dadesProducte/(?P<idProducte>\d+)/$', views.dadesProducte, name='dadesProducte'), )
kimpa2007/restoGestio
tpv/productes/urls.py
urls.py
py
938
python
en
code
0
github-code
6
[ { "api_name": "django.conf.urls.patterns", "line_number": 5, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "productes.views.llistarProductes", "line_number": 6, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 6, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call" }, { "api_name": "productes.views.llistarCategories", "line_number": 7, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 7, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "productes.views.llistarCategoriesAjax", "line_number": 8, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 8, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call" }, { "api_name": "productes.views.llistarProductes", "line_number": 9, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 9, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call" }, { "api_name": "productes.views.afegirProducte", "line_number": 10, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 10, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "productes.views.afegirProducte", "line_number": 11, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 11, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "productes.views.afegirCategoria", "line_number": 12, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 12, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call" }, { "api_name": "productes.views.editarProducte", "line_number": 13, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 13, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "productes.views.dadesProducte", "line_number": 14, "usage_type": "attribute" }, { "api_name": "productes.views", "line_number": 14, "usage_type": "name" } ]
37950158304
import copy import matplotlib.pyplot as plt from numpy import sqrt, inf from sklearn.model_selection import train_test_split from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim from models.cnn import CNN from linegeneration.generate_lines import create_image_set from utils.logger import logger from plot.lines_visualisation import create_multiplots from utils.angle_operations import normalize_angle from utils.misc import load_list_from_file from models.model import loss_fn_dic from utils.save_model import save_model from utils.settings import settings from utils.statistics import calculate_std_dev, accuracy plt.rcParams.update({ "text.usetex": True, "font.family": "serif" }) def main(): if settings.synthetic: # Read Synthetic data N = settings.patch_size_x n = settings.n_synthetic X, y = create_image_set(n, N, background=True, aa=True) # n images of size NxN image_set_test, angles_test = create_image_set(n, N, background=True, aa=True) fig, axes = create_multiplots(image_set_test, angles_test, number_sample=n, cmap='copper') plt.show() # X = X.reshape(n, N*N) # # Set title for loss evolution with respect to epoch and model name # model_name = f'best_model_experimental_Dx_convolution_{settings.loss_fn}_batch{settings.batch_size}_epoch{settings.n_epochs}_kernel{settings.kernel_size_conv}' # # ax_title = f'Training on the synthetic patches (convolution) \n Learning rate: {settings.learning_rate} | Epochs: {settings.n_epochs} | Batch: {settings.batch_size} | Kernel: {settings.kernel_size_conv}' else: X_path = settings.x_path y_path = settings.y_path X, y = torch.load(X_path), [float(x) for x in load_list_from_file(y_path)] # Set title for loss evolution with respect to epoch and model name model_name = f'best_model_experimental_Dx_convolution_{settings.loss_fn}_batch{settings.batch_size}_epoch{settings.n_epochs}_kernel{settings.kernel_size_conv}' ax_title = f'Training on the experimental patches (convolution + Dx) \n Learning rate: {settings.learning_rate} | Epochs: {settings.n_epochs} | Batch: {settings.batch_size} | Kernel: {settings.kernel_size_conv}' # Load data X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle=True) # Convert to 2D PyTorch tensors X_train = torch.tensor(X_train, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.float32).reshape(-1, 1) X_test = torch.tensor(X_test, dtype=torch.float32) y_test = torch.tensor(y_test, dtype=torch.float32).reshape(-1, 1) logger.info('Dataset has been set up successfully') # Set hyperparameters batch_size = settings.batch_size learning_rate = settings.learning_rate num_epochs = settings.n_epochs # Initialize model kernel_size_conv = settings.kernel_size_conv network = CNN(kernel_size_conv) name_criterion = settings.loss_fn criterion = loss_fn_dic[name_criterion] optimizer = optim.Adam(network.parameters(), lr=learning_rate) # optimizer logger.info('Model has been initialized') # Move network and data tensors to device device = network.device network.to(device) X_train = X_train.to(device) y_train = y_train.to(device) X_test = X_test.to(device) y_test = y_test.to(device) # We use the pre-defined number of epochs to determine how many iterations to train the network on batch_start = torch.arange(0, len(X_train), batch_size) # Hold the best model best_loss = inf # init to infinity best_weights = None history = [] # Initialize the progress bar pbar = tqdm(range(num_epochs), desc="Training Progress", unit="epoch") for epoch in range(num_epochs): network.train() # prepare model for training # Load in the data in batches using the train_loader object for start in batch_start: # Take a batch X_batch = X_train[start:start + batch_size] y_batch = y_train[start:start + batch_size] # Forward pass y_pred = network(X_batch) loss = criterion(y_pred, y_batch) # Backward pass optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate accuracy at the end of each epoch network.eval() y_pred = network(X_test) mse = criterion(y_pred, y_test) mse = float(mse) history.append(mse) # Update the progress bar description pbar.update(1) pbar.set_postfix({"Loss": mse}) if mse < best_loss: best_loss = mse best_weights = copy.deepcopy(network.state_dict()) acc = accuracy(y_test, y_pred) # Close the progress bar pbar.close() # logger.info('Training is ended') # Restore model and return best accuracy network.load_state_dict(best_weights) y_pred = network(X_test) std = calculate_std_dev(y_pred, y_test) # if anti_alias: # model_name = f'best_model_cnn_synthetic_gaussian{sigma}_kernel{kernel_size_conv}_aa.pt' # save_model(network, model_name, 'cnn') # Plot accuracy fig, ax = plt.subplots() ax.set_title(ax_title, fontsize=12) print("MSE: %.4f" % best_loss) print("STD: % .4f" % std) print(f"Accuracy: {acc}") ax.set_xlabel('Epoch') ax.set_ylabel(f'Loss ({name_criterion})') ax.plot(history) # Add a text box to the plot textstr = '\n'.join(( r'$Loss = %.4f$' % (best_loss, ) + f' ({settings.loss_fn})', r'$\sigma = %.4f$' % (std, ), r'$Accuracy = %.4f$' % (acc, ) )) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax.text(0.9, 0.9, textstr, transform=ax.transAxes, fontsize=14, ha='right', va='top', bbox=props) # plt.savefig(f".\saved\plot\{model_name}.png") plt.show() # Plot some lines and patches # if torch.cuda.is_available(): # y_pred_numpy = y_pred.cpu().cpu().detach().numpy() # else: # y_pred_numpy = y_pred.cpu().detach().numpy() # fig1, axes1 = create_multiplots(X_test.cpu(), y_test.cpu(), y_pred_numpy, number_sample=16) # plt.tight_layout() # plt.savefig(f".\saved\plot\{model_name}_patches.png") # plt.show() if __name__ == '__main__': main()
3it-inpaqt/line-classification-slope
models/run_cnn.py
run_cnn.py
py
6,433
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams.update", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "utils.settings.settings.synthetic", "line_number": 29, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 29, "usage_type": "name" }, { "api_name": "utils.settings.settings.patch_size_x", "line_number": 31, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 31, "usage_type": "name" }, { "api_name": "utils.settings.settings.n_synthetic", "line_number": 32, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 32, "usage_type": "name" }, { "api_name": "linegeneration.generate_lines.create_image_set", "line_number": 33, "usage_type": "call" }, { "api_name": "linegeneration.generate_lines.create_image_set", "line_number": 35, "usage_type": "call" }, { "api_name": "plot.lines_visualisation.create_multiplots", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" }, { "api_name": "utils.settings.settings.x_path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 46, "usage_type": "name" }, { "api_name": "utils.settings.settings.y_path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 47, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 48, "usage_type": "call" }, { "api_name": "utils.misc.load_list_from_file", "line_number": 48, "usage_type": "call" }, { "api_name": "utils.settings.settings.loss_fn", "line_number": 50, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 50, "usage_type": "name" }, { "api_name": "utils.settings.settings.batch_size", "line_number": 50, "usage_type": "attribute" }, { "api_name": "utils.settings.settings.n_epochs", "line_number": 50, "usage_type": "attribute" }, { "api_name": "utils.settings.settings.kernel_size_conv", "line_number": 50, "usage_type": "attribute" }, { "api_name": "utils.settings.settings.learning_rate", "line_number": 51, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 51, "usage_type": "name" }, { "api_name": "utils.settings.settings.n_epochs", "line_number": 51, "usage_type": "attribute" }, { "api_name": "utils.settings.settings.batch_size", "line_number": 51, "usage_type": "attribute" }, { "api_name": "utils.settings.settings.kernel_size_conv", "line_number": 51, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 57, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 58, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 59, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 60, "usage_type": "attribute" }, { "api_name": "utils.logger.logger.info", "line_number": 61, "usage_type": "call" }, { "api_name": "utils.logger.logger", "line_number": 61, "usage_type": "name" }, { "api_name": "utils.settings.settings.batch_size", "line_number": 64, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 64, "usage_type": "name" }, { "api_name": "utils.settings.settings.learning_rate", "line_number": 65, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 65, "usage_type": "name" }, { "api_name": "utils.settings.settings.n_epochs", "line_number": 66, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 66, "usage_type": "name" }, { "api_name": "utils.settings.settings.kernel_size_conv", "line_number": 69, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 69, "usage_type": "name" }, { "api_name": "models.cnn.CNN", "line_number": 70, "usage_type": "call" }, { "api_name": "utils.settings.settings.loss_fn", "line_number": 72, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 72, "usage_type": "name" }, { "api_name": "models.model.loss_fn_dic", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 75, "usage_type": "name" }, { "api_name": "utils.logger.logger.info", "line_number": 76, "usage_type": "call" }, { "api_name": "utils.logger.logger", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.arange", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 89, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 94, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 127, "usage_type": "call" }, { "api_name": "utils.statistics.accuracy", "line_number": 128, "usage_type": "call" }, { "api_name": "utils.statistics.calculate_std_dev", "line_number": 137, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 144, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 144, "usage_type": "name" }, { "api_name": "utils.settings.settings.loss_fn", "line_number": 155, "usage_type": "attribute" }, { "api_name": "utils.settings.settings", "line_number": 155, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 163, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 163, "usage_type": "name" } ]
21098037404
# -*- coding: utf-8 -*- from flask import Blueprint, g, request, redirect, url_for, current_app import os from invenio.ext.template.context_processor import \ register_template_context_processor, template_args from invenio.base.decorators import templated from invenio.modules.formatter import format_record from invenio.modules.search.models import Collection from invenio.modules.search.forms import EasySearchForm from invenio.modules.search.views.search import collection blueprint = Blueprint('main', __name__, url_prefix="", template_folder='templates', static_url_path='', # static url path has to be empty # if url_prefix is empty static_folder='static') @blueprint.route('/', methods=['GET', 'POST']) @templated('index.html') def index(): """ Renders homepage. """ # legacy app support c = request.values.get('c') if c == current_app.config['CFG_SITE_NAME']: return redirect(url_for('.index', ln=g.ln)) elif c is not None: return redirect(url_for('.collection', name=c, ln=g.ln)) collection = Collection.query.get_or_404(1) from invenio.b2share.modules.b2deposit.latest_deposits import get_latest_deposits latest_deposits = get_latest_deposits() func = current_app.config.get("CFG_SITE_FUNCTION") or "" @register_template_context_processor def index_context(): return dict( of=request.values.get('of', collection.formatoptions[0]['code']), easy_search_form=EasySearchForm(csrf_enabled=False), format_record=format_record, ) return dict(collection=collection,latest_deposits=latest_deposits, pagetitle="EUDAT B2SHARE",site_function=func) # list all domain logos in this module's static assets folder domain_logos = [ img for img in os.listdir(os.path.join(blueprint.static_folder, 'img')) if img.startswith('domain-') ] @template_args(collection) def domain_collection_helpers(): """Add helpers to the '/collection' templates""" def get_domain_icon(collection_name): """Return the url to the given domain collection logo if it exists""" if not collection_name or not isinstance(collection_name, basestring): return; logo_file_prefix = 'domain-' + collection_name.lower() matching_logo = [ logo for logo in domain_logos if logo.startswith(logo_file_prefix)] if len(matching_logo) == 1: return url_for('static', filename=os.path.join('img', matching_logo[0])) elif len(matching_logo) > 0: raise Exception('multiple logos matching domain collection ' + collection_name) return { 'get_domain_icon': get_domain_icon }
cjhak/b2share
invenio/b2share/modules/main/views.py
views.py
py
2,867
python
en
code
null
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 18, "usage_type": "call" }, { "api_name": "flask.request.values.get", "line_number": 30, "usage_type": "call" }, { "api_name": "flask.request.values", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.current_app.config", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 31, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.g.ln", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 32, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 34, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 34, "usage_type": "call" }, { "api_name": "flask.g.ln", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 34, "usage_type": "name" }, { "api_name": "invenio.modules.search.views.search.collection", "line_number": 36, "usage_type": "name" }, { "api_name": "invenio.modules.search.models.Collection.query.get_or_404", "line_number": 36, "usage_type": "call" }, { "api_name": "invenio.modules.search.models.Collection.query", "line_number": 36, "usage_type": "attribute" }, { "api_name": "invenio.modules.search.models.Collection", "line_number": 36, "usage_type": "name" }, { "api_name": "invenio.b2share.modules.b2deposit.latest_deposits.get_latest_deposits", "line_number": 39, "usage_type": "call" }, { "api_name": "flask.current_app.config.get", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.current_app.config", "line_number": 41, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 41, "usage_type": "name" }, { "api_name": "flask.request.values.get", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.request.values", "line_number": 46, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 46, "usage_type": "name" }, { "api_name": "invenio.modules.search.views.search.collection.formatoptions", "line_number": 46, "usage_type": "attribute" }, { "api_name": "invenio.modules.search.views.search.collection", "line_number": 46, "usage_type": "name" }, { "api_name": "invenio.modules.search.forms.EasySearchForm", "line_number": 47, "usage_type": "call" }, { "api_name": "invenio.modules.formatter.format_record", "line_number": 48, "usage_type": "name" }, { "api_name": "invenio.ext.template.context_processor.register_template_context_processor", "line_number": 43, "usage_type": "name" }, { "api_name": "invenio.modules.search.views.search.collection", "line_number": 50, "usage_type": "name" }, { "api_name": "invenio.base.decorators.templated", "line_number": 25, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "flask.url_for", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path", "line_number": 68, "usage_type": "attribute" }, { "api_name": "invenio.ext.template.context_processor.template_args", "line_number": 58, "usage_type": "call" }, { "api_name": "invenio.modules.search.views.search.collection", "line_number": 58, "usage_type": "argument" } ]
39956836499
# -*- coding: utf-8 -*- """ Created on Wed Oct 19 14:11:57 2022 @author: Saskia Hustinx """ import re import gpt_2_simple as gpt2 import tensorflow as tf import json import tweepy import random import time ### NLP SECTION ### def words_in_string(word_list, a_string): return set(word_list).intersection(a_string.split()) def generate_tweets(num): texts = gpt2.generate(sess, run_name='run2', temperature=0.9, length=50, nsamples=num, return_as_list=True) res = [] for text in texts: match = re.findall('<|startoftext|>(.*?[\.\?!])', text) if len(match) == 3 and len(match[2]) > 40: if not words_in_string(filter_list, match[2]): res.append(match[2]) return res ### TWITTER ### # Parse the credentials for the twitter bot with open("cred.json", "r") as json_file: twitter_creds = json.load(json_file) # Set the credentials based on the credentials file API_KEY = twitter_creds['api-key'] API_SECRET = twitter_creds['api-secret'] BEARER_TOKEN = twitter_creds['bearer-token'] ACCESS_KEY = twitter_creds['access-token'] ACCESS_SECRET = twitter_creds['access-secret'] def api(): auth = tweepy.OAuthHandler(API_KEY, API_SECRET) auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) return tweepy.API(auth) def fetch_dms(): # fetching the direct messages direct_messages = api.get_direct_messages() print(len(direct_messages)) print(direct_messages) return direct_messages def respond_dm(dms): recipients = [] for dm in dms: if dm.message_create['sender_id'] != '1577695345865367553' and dm.message_create['sender_id'] not in recipients: recipients.append(dm.message_create['sender_id']) res_tweets = [] while len(res_tweets) < len(recipients): res_tweets = generate_tweets(len(recipients) + 10) for recipient in recipients: api.send_direct_message(recipient_id = recipient, text = str("My message for you is: \n \n"+ random.choice(res_tweets) + " ✨")) time.sleep(5) # main api = api() dms = fetch_dms() if len(dms) > 0: tf.config.set_visible_devices([], 'GPU') sess = gpt2.start_tf_sess() gpt2.load_gpt2(sess, run_name='run2') # delete the outgoing dms dms = fetch_dms() for dm in dms: if dm.message_create['sender_id'] == '1577695345865367553': api.delete_direct_message(dm.id) dms.remove(dm) filter_list = ['victim', 'abuse', 'sex', 'planetary'] respond_dm(dms) # delete reponded dms for dm in dms: api.delete_direct_message(dm.id)
sHustinx/nlp-fortune-cookie-bot
respond-dms.py
respond-dms.py
py
2,664
python
en
code
0
github-code
6
[ { "api_name": "gpt_2_simple.generate", "line_number": 22, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 26, "usage_type": "call" }, { "api_name": "json.load", "line_number": 38, "usage_type": "call" }, { "api_name": "tweepy.OAuthHandler", "line_number": 48, "usage_type": "call" }, { "api_name": "tweepy.API", "line_number": 51, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 74, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 76, "usage_type": "call" }, { "api_name": "tensorflow.config.set_visible_devices", "line_number": 85, "usage_type": "call" }, { "api_name": "tensorflow.config", "line_number": 85, "usage_type": "attribute" }, { "api_name": "gpt_2_simple.start_tf_sess", "line_number": 86, "usage_type": "call" }, { "api_name": "gpt_2_simple.load_gpt2", "line_number": 87, "usage_type": "call" } ]
33626981361
from flask import Flask, request import requests import tkinter as tk from tkinter import simpledialog import pdfrw import json from flask_cors import CORS import io import base64 app = Flask(__name__) CORS(app) @app.route("/") def hello_world(): ROOT = tk.Tk() ROOT.withdraw() # the input dialog # USER_INP = simpledialog.askstring(title="Wallet Info", # prompt="Please Enter your Wallet ID:") APIKEY = '43044ac0170dc40fa60cfd249ef3307b64edbab8' BASE = 'https://rest.cryptoapis.io/v2' BLOCKCHAIN = 'bitcoin' NETWORK = 'mainnet' WALLETID = request.args.get('walletId') print(WALLETID) #used if we are looking for data on a particular transaction # myTestNetWallet - 62a8e61a25a05500079dda90 # random MainnetWallet - 3R2UHDGKLQkPmAjBGbdzpET95xYV59hkyw #TID = '4b66461bf88b61e1e4326356534c135129defb504c7acb2fd6c92697d79eb250' #blockchain-data/bitcoin/testnet/addresses/mzYijhgmzZrmuB7wBDazRKirnChKyow4M3? #get Bitcoin amount from wallet with requests.Session() as session: h = {'Content-Type': 'application/json', 'X-API-KEY': APIKEY} r = session.get(f'https://rest.cryptoapis.io/v2/wallet-as-a-service/wallets/{WALLETID}/bitcoin/testnet',headers=h) r.raise_for_status() qdata = r.json() bitCoinAmount = qdata['data']['item']['confirmedBalance']['amount'] #get Ethereum amount from wallet with requests.Session() as session: h1 = {'Content-Type': 'application/json', 'X-API-KEY': APIKEY} r1 = session.get(f'https://rest.cryptoapis.io/v2/wallet-as-a-service/wallets/{WALLETID}/ethereum/ropsten',headers=h1) r1.raise_for_status() qdata1 = r1.json() ethereumAmount = qdata1['data']['item']['confirmedBalance']['amount'] # #test for a wallet on the chain # #blockchain-data/bitcoin/testnet/addresses/mzYijhgmzZrmuB7wBDazRKirnChKyow4M3? # with requests.Session() as session: # h = {'Content-Type': 'application/json', # 'X-API-KEY': APIKEY} # r = session.get(f'https://rest.cryptoapis.io/v2/blockchain-data/bitcoin/testnet/addresses/{WALLETID}', headers=h) # r.raise_for_status() # print(json.dumps(r.json(), indent=4, sort_keys=True)) import os #directory = os.getcwd() #print(os.path.abspath("AtomicTest.pdf")) #pdf_template = "/Users/adityabora/Desktop/AtomicTest.pdf" pdf_template = "./PortfolioAnalysisV2.pdf" pdf_output = "output7.pdf" #template_pdf = pdfrw.PdfReader(pdf_template) # create a pdfrw object from our template.pdf print(os.path.exists(pdf_template)) template_pdf = pdfrw.PdfReader(pdf_template) ANNOT_KEY = '/Annots' ANNOT_FIELD_KEY = '/T' ANNOT_VAL_KEY = '/V' ANNOT_RECT_KEY = '/Rect' SUBTYPE_KEY = '/Subtype' WIDGET_SUBTYPE_KEY = '/Widget' for page in template_pdf.pages: annotations = page[ANNOT_KEY] for annotation in annotations: if annotation[SUBTYPE_KEY] == WIDGET_SUBTYPE_KEY: if annotation[ANNOT_FIELD_KEY]: key = annotation[ANNOT_FIELD_KEY][1:-1] print(key) from datetime import date data_dict = { 'Risk': '3.8', 'BitcoinAmount': bitCoinAmount, 'EthAmount': ethereumAmount, 'USDCAmount': '30', 'RiskGPA': '3.7' } def fill_pdf(input_pdf_path, data_dict): template_pdf = pdfrw.PdfReader(input_pdf_path) for page in template_pdf.pages: annotations = page[ANNOT_KEY] for annotation in annotations: if annotation[SUBTYPE_KEY] == WIDGET_SUBTYPE_KEY: if annotation[ANNOT_FIELD_KEY]: key = annotation[ANNOT_FIELD_KEY][1:-1] if key in data_dict.keys(): if type(data_dict[key]) == bool: if data_dict[key] == True: annotation.update(pdfrw.PdfDict( AS=pdfrw.PdfName('Yes'))) else: annotation.update( pdfrw.PdfDict(V='{}'.format(data_dict[key])) ) annotation.update(pdfrw.PdfDict(AP='')) # pdfrw.PdfWriter().write(output_pdf_path, template_pdf) buf = io.BytesIO() pdfrw.PdfWriter().write(buf, template_pdf) buf.seek(0) return base64.encodebytes(buf.read()).decode() data = fill_pdf(pdf_template, data_dict) template_pdf.Root.AcroForm.update(pdfrw.PdfDict(NeedAppearances=pdfrw.PdfObject('true'))) # NEW return data
MHSiles/yoloco-be
other/main-2.py
main-2.py
py
4,824
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "flask_cors.CORS", "line_number": 12, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 16, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 26, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "name" }, { "api_name": "requests.Session", "line_number": 38, "usage_type": "call" }, { "api_name": "requests.Session", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "pdfrw.PdfReader", "line_number": 77, "usage_type": "call" }, { "api_name": "pdfrw.PdfReader", "line_number": 105, "usage_type": "call" }, { "api_name": "pdfrw.PdfDict", "line_number": 115, "usage_type": "call" }, { "api_name": "pdfrw.PdfName", "line_number": 116, "usage_type": "call" }, { "api_name": "pdfrw.PdfDict", "line_number": 119, "usage_type": "call" }, { "api_name": "pdfrw.PdfDict", "line_number": 121, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 123, "usage_type": "call" }, { "api_name": "pdfrw.PdfWriter", "line_number": 124, "usage_type": "call" }, { "api_name": "base64.encodebytes", "line_number": 126, "usage_type": "call" }, { "api_name": "pdfrw.PdfDict", "line_number": 129, "usage_type": "call" }, { "api_name": "pdfrw.PdfObject", "line_number": 129, "usage_type": "call" } ]
5592159173
from .http import * from .abc import User, Channel from .channels import DMChannel import asyncio as aio class Client: """ Base class for interacting with discord """ def __init__(self, token: str): self.http = HTTPClient(token) self.event_loop = aio.new_event_loop() aio.set_event_loop(self.event_loop) self.events = { "ready":None, "tick":None } def event(self, _coro): """ Override event ===== event_name: can be 'ready' to initiate on login """ self.events[_coro.__name__] = _coro return _coro async def login(self) -> User: """ Get the bot's userdata """ response = await self.http.connect(Route("GET", "users/@me")) if self.events["ready"]: await self.events["ready"]() user = User() await user.from_dictionary(response) return user async def run(self): await self.login() while True: await aio.sleep(0.05) await self.events["tick"]() async def send_typing(self, channel:Channel): response = await self.http.connect(Route("POST", f"channels/{channel.id}/typing")) return response async def get_user(self, id:int) -> User: """ Get userdata from ID """ response = await self.http.connect(Route("GET", f"users/{id}")) user = User() await user.from_dictionary(response) return user async def get_channel(self, id: int, dm:bool=False): """ Get a channel """ url = f"channels/@me/{id}" if dm else f"channels/{id}" response = await self.http.connect(Route("GET", url)) channel = Channel() if not dm else DMChannel() await channel.from_dictionary(response) channel.bot_caller = self return channel async def close_connection(self): await self.http.close_session()
ledanne/descapede
diswrap/client.py
client.py
py
2,060
python
en
code
1
github-code
6
[ { "api_name": "asyncio.new_event_loop", "line_number": 15, "usage_type": "call" }, { "api_name": "asyncio.set_event_loop", "line_number": 16, "usage_type": "call" }, { "api_name": "abc.User", "line_number": 46, "usage_type": "call" }, { "api_name": "abc.User", "line_number": 36, "usage_type": "name" }, { "api_name": "asyncio.sleep", "line_number": 56, "usage_type": "call" }, { "api_name": "abc.Channel", "line_number": 60, "usage_type": "name" }, { "api_name": "abc.User", "line_number": 72, "usage_type": "call" }, { "api_name": "abc.User", "line_number": 65, "usage_type": "name" }, { "api_name": "abc.Channel", "line_number": 87, "usage_type": "call" }, { "api_name": "channels.DMChannel", "line_number": 87, "usage_type": "call" } ]
28156207354
import torch from projects.thre3ingan.singans.networks import Thre3dGenerator from torch.backends import cudnn cudnn.benchmark = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def test_thre3d_generator() -> None: batch_size = 1 random_input = torch.randn(batch_size, 128, 64, 64, 64).to(device) network = Thre3dGenerator().to(device) print(network) output = network(random_input) assert output.shape == (batch_size, 8, 64, 64, 64)
akanimax/3inGAN
projects/thre3ingan/singans/tests/test_networks.py
test_networks.py
py
491
python
en
code
3
github-code
6
[ { "api_name": "torch.backends.cudnn.benchmark", "line_number": 6, "usage_type": "attribute" }, { "api_name": "torch.backends.cudnn", "line_number": 6, "usage_type": "name" }, { "api_name": "torch.device", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 8, "usage_type": "attribute" }, { "api_name": "torch.randn", "line_number": 13, "usage_type": "call" }, { "api_name": "projects.thre3ingan.singans.networks.Thre3dGenerator", "line_number": 15, "usage_type": "call" } ]
39400883437
import boto3 import pickle from typing import Any, Tuple import logging from re import sub import pandas as pd import numpy as np from sklearn.metrics import average_precision_score from sklearn.model_selection import StratifiedShuffleSplit import xgboost as xgb # ----- Class for uploading and downloading Python objects to and from S3 ---- # class S3Pickle: """ A class for uploading and downloading Python objects to and from S3. """ def __init__(self, s3_client=None): """ Constructor for S3Pickle class. Parameters ---------- s3_client : _type_, optional A boto3 S3 client. The default is None. """ if s3_client is None: self.s3_client = boto3.client('s3') else: self.s3_client = s3_client def upload_pickle(self, obj: Any, bucket_name: str, key_name: str) -> None: """ Upload a Python object to S3 as a pickle byte string. Parameters ---------- obj : Any A Python object. bucket_name : str S3 bucket name. key_name : str S3 key name. """ # Serialize the object to a pickle byte string pickle_byte_string = pickle.dumps(obj) # Upload the pickle byte string to S3 self.s3_client.put_object(Body=pickle_byte_string, Bucket=bucket_name, Key=key_name) return None def download_pickle(self, bucket_name: str, key_name: str) -> Any: """ Download a Python object from S3 as a pickle byte string. Parameters ---------- bucket_name : str S3 bucket name. key_name : str S3 key name. """ # Download the pickle byte string from S3 response = self.s3_client.get_object(Bucket=bucket_name, Key=key_name) pickle_byte_string = response['Body'].read() # Deserialize the pickle byte string to a Python object obj = pickle.loads(pickle_byte_string) return obj # ----------------------------------- Data ----------------------------------- # def load_data(data_s3_url: str, logger: logging.Logger = None) -> Tuple[pd.DataFrame, np.ndarray]: """ Load data from S3 bucket and return X and y. Parameters ---------- data_s3_url : str S3 url of data. logger : logging.Logger Logger object. Returns ------- Tuple[pd.DataFrame, np.ndarray] Feature matrix and target array. """ data = pd.read_csv( data_s3_url, index_col=0 ) # Drop ID column and 'churn category' column (not useful for prediction) data.drop(['Customer ID', 'Churn Category'], axis=1, inplace=True) # Change column names to lower case and relace white spaces with underscore data.columns = [sub('\s', '_', col.lower()) for col in data.columns] X, y = data.drop(['churn_value'], axis=1), data.churn_value.values if logger is not None: logger.info('Data Loaded') logger.info(f'The shape of training set: {(X.shape, y.shape)}') return X, y # ----------------------- Custom metric for evaluation ----------------------- # def weighted_ap_score(predt: np.ndarray, data: np.ndarray) -> Tuple[str, float]: y_true = data y_score = predt weighted_ap_score = average_precision_score(y_true=y_true, y_score=y_score, average='weighted', pos_label=1) return 'avgAP', weighted_ap_score # ------------------------ Stratified train/test split ----------------------- # def stratified_split(X_train: pd.DataFrame, y_train: np.ndarray) -> Tuple[pd.DataFrame, np.ndarray, pd.DataFrame, np.ndarray]: """ Split the training set into train and validation sets, stratifying on the target variable. Parameters ---------- X_train : pd.DataFrame Training features. y_train : np.ndarray Training target. Returns ------- Tuple[pd.DataFrame, np.ndarray, pd.DataFrame, np.ndarray] X_train, y_train, X_val, y_val. """ ssf = StratifiedShuffleSplit(n_splits=1, test_size=0.2) for train_index, val_index in ssf.split(X_train, y_train): X_train, X_val = X_train.iloc[train_index], X_train.iloc[val_index] y_train, y_val = y_train[train_index], y_train[val_index] return X_train, y_train, X_val, y_val
YangWu1227/python-for-machine-learning
tree_based/projects/telco_churn_sagemaker/src/custom_utils.py
custom_utils.py
py
4,461
python
en
code
0
github-code
6
[ { "api_name": "boto3.client", "line_number": 31, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 35, "usage_type": "name" }, { "api_name": "pickle.dumps", "line_number": 49, "usage_type": "call" }, { "api_name": "pickle.loads", "line_number": 72, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 56, "usage_type": "name" }, { "api_name": "logging.Logger", "line_number": 78, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 94, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 103, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 78, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 78, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 78, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 115, "usage_type": "attribute" }, { "api_name": "sklearn.metrics.average_precision_score", "line_number": 118, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 115, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 123, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 123, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.StratifiedShuffleSplit", "line_number": 139, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 123, "usage_type": "name" } ]
27259802510
"""We are the captains of our ships, and we stay 'till the end. We see our stories through. """ """513. Find Bottom Left Tree Value [Two Passes] """ from collections import deque class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class Solution: def height(self, root): if not root: return 0 return 1 + max(self.height(root.left), self.height(root.right)) def findBottomLeftValue(self, root): final_row = self.height(root) queue = deque() queue.append((root, 1)) while queue: node, level = queue.popleft() if level == final_row: return node.val if node.left: queue.append((node.left, level+1)) if node.right: queue.append((node.right, level+1))
asperaa/back_to_grind
Trees/bottom_left_tree.py
bottom_left_tree.py
py
890
python
en
code
1
github-code
6
[ { "api_name": "collections.deque", "line_number": 25, "usage_type": "call" } ]
2018426878
import unittest import sys import os import tempfile import shutil from appliapps.flow.branch import Branch from appliapps.flow.collate import Collate from appliapps.flow.merge import Merge from appliapps.flow.split import Split class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.tdir = tempfile.mkdtemp(dir=".") os.chdir(cls.tdir) with open("input.ini", "w") as f: f.write("""COMMENT = comm,ent SOMEKEY = some, key LOG_LEVEL = INFO LOG_STORAGE = memory""") def test1_branch(self): sys.argv = ['--INPUT', 'input.ini', '--BRANCH', 'tandem.ini', 'omssa.ini', '--COMMENT', 'kommentar'] Branch.main() assert os.path.exists('tandem.ini') assert os.path.exists('omssa.ini') def test2_collate(self): sys.argv = ['--COLLATE', 'tandem.ini', 'omssa.ini', '--OUTPUT', 'collate.ini'] Collate.main() assert os.path.exists('collate.ini') def test3_split(self): sys.argv = ['--INPUT', 'input.ini', '--SPLIT', 'split.ini', '--SPLIT_KEY', 'SOMEKEY'] Split.main() assert os.path.exists('split.ini_0') assert os.path.exists('split.ini_1') def test4_merge(self): sys.argv = ['--MERGE', 'split.ini', '--MERGED', 'merged.ini'] Merge.main() assert os.path.exists('merged.ini_0') @classmethod def tearDownClass(cls): os.chdir("..") shutil.rmtree(cls.tdir)
lcb/applicake
tests/test_flow.py
test_flow.py
py
1,454
python
en
code
1
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 13, "usage_type": "attribute" }, { "api_name": "tempfile.mkdtemp", "line_number": 16, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 25, "usage_type": "attribute" }, { "api_name": "appliapps.flow.branch.Branch.main", "line_number": 26, "usage_type": "call" }, { "api_name": "appliapps.flow.branch.Branch", "line_number": 26, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 31, "usage_type": "attribute" }, { "api_name": "appliapps.flow.collate.Collate.main", "line_number": 32, "usage_type": "call" }, { "api_name": "appliapps.flow.collate.Collate", "line_number": 32, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 36, "usage_type": "attribute" }, { "api_name": "appliapps.flow.split.Split.main", "line_number": 37, "usage_type": "call" }, { "api_name": "appliapps.flow.split.Split", "line_number": 37, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path", "line_number": 39, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 43, "usage_type": "attribute" }, { "api_name": "appliapps.flow.merge.Merge.main", "line_number": 44, "usage_type": "call" }, { "api_name": "appliapps.flow.merge.Merge", "line_number": 44, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.chdir", "line_number": 49, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 50, "usage_type": "call" } ]
32108920209
import json from typing import List import mlflow import pandas from pandas import DataFrame class SpambugInference(mlflow.pyfunc.PythonModel): """ Inference code copied from MLFlow bugs.py """ def __init__(self, extraction_pipeline, clf, le): self.extraction_pipeline = extraction_pipeline self.clf = clf self.le = le def predict(self, context, bugs: List[str]): """ Args: context ([type]): MLflow context where the model artifact is stored. model_input ([type]): the input data to fit into the model. """ bugs = [json.loads(s) for s in bugs] probs = self.classify(bugs, True) indexes = probs.argmax(axis=-1) suggestions = self.le.inverse_transform(indexes) return {"probs": probs, "indexes": indexes, "suggestions": suggestions} def classify( self, items, probabilities=False ): assert items is not None assert ( self.extraction_pipeline is not None and self.clf is not None ), "The module needs to be initialized first" if not isinstance(items, list): items = [items] assert isinstance(items[0], (dict, tuple)) X = self.extraction_pipeline.transform(lambda: items) if probabilities: classes = self.clf.predict_proba(X) else: classes = self.clf.predict(X) classes = self.overwrite_classes(items, classes, probabilities) return classes def overwrite_classes(self, bugs, classes, probabilities): for i, bug in enumerate(bugs): if "@mozilla" in bug["creator"]: if probabilities: classes[i] = [1.0, 0.0] else: classes[i] = 0 return classes
mozilla/mlops-platform-spike-library
bugbug/mlflow/bugbug/trackers/spambug_inference.py
spambug_inference.py
py
1,839
python
en
code
0
github-code
6
[ { "api_name": "mlflow.pyfunc", "line_number": 9, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 17, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 23, "usage_type": "call" } ]
75246891067
import collections import copy import numpy as np import mindspore as ms from mindspore import nn, ops from mindspore import Tensor, Parameter from mindspore.nn.layer.normalization import _BatchNorm from mindspore.nn.probability.distribution import Normal from mindspore_gl import Graph from mindspore_gl import GNNCell from mindspore_gl.nn import AvgPooling class SparseDispatcher(): """Helper for implementing a mixture of experts. The purpose of this class is to create input minibatches for the experts and to combine the results of the experts to form a unified output tensor. There are two functions: dispatch - take an input Tensor and create input Tensors for each expert. combine - take output Tensors from each expert and form a combined output Tensor. Outputs from different experts for the same batch element are summed together, weighted by the provided "gates". The class is initialized with a "gates" Tensor, which specifies which batch elements go to which experts, and the weights to use when combining the outputs. Batch element b is sent to expert e iff gates[b, e] != 0. The inputs and outputs are all two-dimensional [batch, depth]. Caller is responsible for collapsing additional dimensions prior to calling this class and reshaping the output to the original shape. See common_layers.reshape_like(). Example use: gates: a float32 `Tensor` with shape `[batch_size, num_experts]` inputs: a float32 `Tensor` with shape `[batch_size, input_size]` experts: a list of length `num_experts` containing sub-networks. dispatcher = SparseDispatcher(num_experts, gates) expert_inputs = dispatcher.dispatch(inputs) expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)] outputs = dispatcher.combine(expert_outputs) The preceding code sets the output for a particular example b to: output[b] = Sum_i(gates[b, i] * experts[i](inputs[b])) This class takes advantage of sparsity in the gate matrix by including in the `Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`. """ def __init__(self, num_experts, gates): """Create a SparseDispatcher.""" self._gates = gates self._num_experts = num_experts # sort experts sorted_experts, index_sorted_experts = ops.nonzero(gates).sort(0) # drop indices _, self._expert_index = sorted_experts.split(1, axis=1) # get according batch index for each expert self._batch_index = ops.nonzero(gates)[index_sorted_experts[:, 1], 0] self._batch_index = self._batch_index.int() # calculate num samples that each expert gets self._part_sizes = (gates > 0).sum(0).asnumpy().tolist() # expand gates to match with self._batch_index gates_exp = gates[ops.flatten(self._batch_index, start_dim=0)] self._nonzero_gates = ops.gather_elements(gates_exp, 1, self._expert_index) self.cat = ops.Concat(axis=0) def dispatch(self, inp): """Create one input Tensor for each expert. The `Tensor` for a expert `i` contains the slices of `inp` corresponding to the batch elements `b` where `gates[b, i] > 0`. Args: inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]` Returns: a list of `num_experts` `Tensor`s with shapes `[expert_batch_size_i, <extra_input_dims>]`. """ if isinstance(inp, list): inps, result = [], [] for index in self._batch_index: inps.append(inp[index]) i = 0 for index in self._part_sizes: result.append(inps[i:i + index]) i += index return result # assigns samples to experts whose gate is nonzero # expand according to batch index so we can just split by _part_sizes inp_exp = inp[self._batch_index].squeeze(1) return ops.split(inp_exp, self._part_sizes, axis=0) def combine(self, expert_out, multiply_by_gates=True): """Sum together the expert output, weighted by the gates. The slice corresponding to a particular batch element `b` is computed as the sum over all experts `i` of the expert output, weighted by the corresponding gate values. If `multiply_by_gates` is set to False, the gate values are ignored. Args: expert_out: a list of `num_experts` `Tensor`s, each with shape `[expert_batch_size_i, <extra_output_dims>]`. multiply_by_gates: a boolean Returns: a `Tensor` with shape `[batch_size, <extra_output_dims>]`. """ # apply exp to expert outputs, so we are not longer in log space stitched = self.cat(expert_out).exp() if multiply_by_gates: stitched = ops.mul(stitched, self._nonzero_gates) zeros = ops.zeros((self._gates.shape[0], expert_out[-1].shape[1])) # combine samples that have been processed by the same k experts combined = ops.index_add(zeros, self._batch_index, stitched.float(), 0) # add eps to all zero values in order to avoid nans when going back to log space combined[combined == 0] = np.finfo(float).eps # back to log space return combined.log() def expert_to_gates(self): """Gate values corresponding to the examples in the per-expert `Tensor`s. Returns: a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32` and shapes `[expert_batch_size_i]` """ # split nonzero gates for each expert return ops.split(self._nonzero_gates, self._part_sizes, dim=0) class EDISMOE(nn.Cell): """Call a Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts. Args: input_size: integer - size of the input output_size: integer - size of the input num_experts: an integer - number of experts hidden_size: an integer - hidden size of the experts noisy_gating: a boolean k: an integer - how many experts to use for each batch element """ def __init__(self, input_size, num_experts, hidden_size, noisy_gating, k, block_num, embedding_size, filter_num, out_dim): super(EDISMOE, self).__init__() self.noisy_gating = noisy_gating self.num_experts = num_experts self.input_size = input_size self.hidden_size = hidden_size self.k = k # instantiate experts models = [] for _ in range(self.num_experts): models.append(MGraphDTA(block_num, embedding_size, filter_num, out_dim)) self.experts = nn.CellList(models) self.w_gate = Parameter(ops.zeros((input_size, num_experts), dtype=ms.float32), requires_grad=True) self.w_noise = Parameter(ops.zeros((input_size, num_experts), dtype=ms.float32), requires_grad=True) self.softplus = ops.Softplus() self.softmax = nn.Softmax(axis=1) self.mea = Parameter(Tensor(np.array([0.0]), ms.float32), requires_grad=False) self.std = Parameter(Tensor(np.array([1.0]), ms.float32), requires_grad=False) def cv_squared(self, x): """The squared coefficient of variation of a sample. Useful as a loss to encourage a positive distribution to be more uniform. Epsilons added for numerical stability. Returns 0 for an empty Tensor. Args: x: a `Tensor`. Returns: a `Scalar`. """ eps = 1e-10 # if only num_experts = 1 if ops.shape(x)[0] == 1: return Tensor(np.array([0]), dtype=x.dtype) return x.float().var(ddof=True) / (x.float().mean() ** 2 + eps) def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2): """Noisy top-k gating. Args: x: input Tensor with shape [batch_size, input_size] train: a boolean - we only add noise at training time. noise_epsilon: a float Returns: gates: a Tensor with shape [batch_size, num_experts] load: a Tensor with shape [num_experts] """ clean_logits = x @ self.w_gate if self.noisy_gating and train: raw_noise_stddev = x @ self.w_noise noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon)) noisy_logits = clean_logits + (ops.randn_like(clean_logits) * noise_stddev) logits = noisy_logits else: logits = clean_logits # calculate topk + 1 that will be needed for the noisy gates top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1) top_k_logits = top_logits[:, :self.k] top_k_indices = top_indices[:, :self.k] top_k_gates = self.softmax(top_k_logits) zeros = ops.zeros_like(logits) gates = ops.scatter(zeros, 1, top_k_indices, top_k_gates) if self.noisy_gating and self.k < self.num_experts and train: load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0) else: load = self._gates_to_load(gates) return gates, load def construct(self, data, x, loss_coef=1e-2): """Args: x: tensor shape [batch_size, input_size] train: a boolean scalar. loss_coef: a scalar - multiplier on load-balancing losses Returns: y: a tensor with shape [batch_size, output_size]. extra_training_loss: a scalar. This should be added into the overall training loss of the model. The backpropagation of this loss encourages all experts to be approximately equally used across a batch. """ gates, load = self.noisy_top_k_gating(x, self.training) # calculate importance loss importance = gates.sum(0) # loss = self.cv_squared(importance) + self.cv_squared(load) loss *= loss_coef dispatcher = SparseDispatcher(self.num_experts, gates) expert_outputs = [self.experts[i](*copy.deepcopy(data))[0] for i in range(self.num_experts)] out_experts = [] for i, out in enumerate(expert_outputs): out_experts.append(dispatcher.dispatch(out)[i].unsqueeze(1)) y = dispatcher.combine(out_experts) return y, loss def _gates_to_load(self, gates): """Compute the true load per expert, given the gates. The load is the number of examples for which the corresponding gate is >0. Args: gates: a `Tensor` of shape [batch_size, n] Returns: a float32 `Tensor` of shape [n] """ return (gates > 0).sum(axis=0) def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values): """Helper function to NoisyTopKGating. Computes the probability that value is in top k, given different random noise. This gives us a way of backpropagating from a loss that balances the number of times each expert is in the top k experts per example. In the case of no noise, pass in None for noise_stddev, and the result will not be differentiable. Args: clean_values: a `Tensor` of shape [batch, n]. noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus normally distributed noise with standard deviation noise_stddev. noise_stddev: a `Tensor` of shape [batch, n], or None noisy_top_values: a `Tensor` of shape [batch, m]. "values" Output of tf.top_k(noisy_top_values, m). m >= k+1 Returns: a `Tensor` of shape [batch, n]. """ batch = ms.ops.shape(clean_values)[0] m = ms.ops.shape(noisy_top_values)[1] top_values_flat = ops.flatten(noisy_top_values, start_dim=0) threshold_positions_if_in = ops.arange(batch, device=clean_values.device) * m + self.k threshold_if_in = ops.unsqueeze(ops.gather_elements(top_values_flat, 0, threshold_positions_if_in), 1) is_in = ms.Tensor.gt(noisy_values, threshold_if_in) threshold_positions_if_out = threshold_positions_if_in - 1 threshold_if_out = ops.unsqueeze(ops.gather_elements(top_values_flat, 0, threshold_positions_if_out), 1) # is each value currently in the top k. normal = Normal(self.mea, self.std) prob_if_in = normal.cdf((clean_values - threshold_if_in) / noise_stddev) prob_if_out = normal.cdf((clean_values - threshold_if_out) / noise_stddev) prob = ms.Tensor.where(is_in, prob_if_in, prob_if_out) return prob class Conv1dReLU(nn.Cell): ''' kernel_size=3, stride=1, padding=1 kernel_size=5, stride=1, padding=2 kernel_size=7, stride=1, padding=3 ''' def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super().__init__() self.inc = nn.SequentialCell( nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, pad_mode="pad", padding=padding, has_bias=True), nn.ReLU() ) def construct(self, x): return self.inc(x) class StackCNN(nn.Cell): """cnn""" def __init__(self, layer_num, in_channels, out_channels, kernel_size, stride=1, padding=0): super().__init__() d = collections.OrderedDict() d["conv_layer0"] = Conv1dReLU(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) for layer_idx in range(layer_num - 1): d[f"conv_layer{layer_idx + 1}"] = Conv1dReLU(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) d['pool_layer'] = nn.AdaptiveMaxPool1d(1) self.inc = nn.SequentialCell(d) def construct(self, x): y = self.inc(x) y = ops.squeeze(y, axis=-1) return y class TargetRepresentation(nn.Cell): """target representation""" def __init__(self, block_num, embedding_num): super().__init__() self.block_list = nn.CellList() for block_idx in range(block_num): self.block_list.append(StackCNN(block_idx + 1, embedding_num, 96, 3)) self.cat = ops.Concat(axis=-1) self.linear = nn.Dense(block_num * 96, 96) def construct(self, x): feats = [block(x) for block in self.block_list] x = self.cat(feats) x = self.linear(x) return x class GraphConv(GNNCell): """GCN""" def __init__(self, in_feat_size: int, out_size: int, bias: bool = True): super().__init__() assert isinstance(in_feat_size, int) and in_feat_size > 0, "in_feat_size must be positive int" assert isinstance(out_size, int) and out_size > 0, "out_size must be positive int" self.in_feat_size = in_feat_size self.out_size = out_size in_feat_size = (in_feat_size, in_feat_size) self.lin_rel = nn.Dense(in_feat_size[0], out_size, has_bias=bias) self.lin_root = nn.Dense(in_feat_size[1], out_size, has_bias=False) def construct(self, x, g: Graph): """ Construct function for GraphConv. """ x = ops.Squeeze()(x) x_r = x g.set_vertex_attr({"x": x}) for v in g.dst_vertex: v.x = g.sum([u.x for u in v.innbs]) x = [v.x for v in g.dst_vertex] x = self.lin_rel(x) x = self.lin_root(x_r) + x return x class NodeLevelBatchNorm(_BatchNorm): r""" Applies Batch Normalization over a batch of graph data. Shape: - Input: [batch_nodes_dim, node_feature_dim] - Output: [batch_nodes_dim, node_feature_dim] batch_nodes_dim: all nodes of a batch graph """ def __init__(self, num_features, eps=1e-5, momentum=0.9, affine=True, use_batch_statistics=None): super(NodeLevelBatchNorm, self).__init__( num_features, eps, momentum, affine, use_batch_statistics=use_batch_statistics) def construct(self, input_data): exponential_average_factor = self.momentum return ops.batch_norm( input_data, self.moving_mean, self.moving_variance, self.gamma, self.beta, self.training, exponential_average_factor, self.eps) class GraphConvBn(nn.Cell): """GCB""" def __init__(self, in_channels, out_channels): super().__init__() self.conv = GraphConv(in_channels, out_channels) self.norm = NodeLevelBatchNorm(out_channels) self.relu = nn.ReLU() def construct(self, data): x, edge_index, atom_n, edge_n = data['x'], data['edge_index'], data['atom_n'], data['edge_n'] y = self.conv(x, edge_index[0], edge_index[1], atom_n, edge_n) mask_tmp = ops.ExpandDims()(data['x_mask'], -1) y = y * mask_tmp y = self.norm(y) data['x'] = self.relu(y) data['x'] = data['x'] * mask_tmp return data class DenseLayer(nn.Cell): """Dense Layer""" def __init__(self, num_input_features, growth_rate=32, bn_size=4): super().__init__() self.conv1 = GraphConvBn(num_input_features, int(growth_rate * bn_size)) self.conv2 = GraphConvBn(int(growth_rate * bn_size), growth_rate) self.cat = ops.Concat(axis=1) def bn_function(self, data): concated_features = self.cat(data['x']) data['x'] = concated_features data = self.conv1(data) return data def construct(self, data): if isinstance(data['x'], Tensor): data['x'] = [data['x']] data = self.bn_function(data) data = self.conv2(data) return data class DenseBlock(nn.Cell): """Dense Block""" def __init__(self, num_layers, num_input_features, growth_rate=32, bn_size=4): super().__init__() self.dense_layer = nn.CellList() for i in range(num_layers): layer = DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size) self.dense_layer.append(layer) self.cat = ops.Concat(axis=1) def construct(self, data): features = [data['x']] for layer in self.dense_layer: data = layer(data) features.append(data['x']) data['x'] = features data['x'] = self.cat(data['x']) return data class GraphDenseNet(nn.Cell): """Graph Dense Network""" def __init__(self, out_dim, num_input_features, block_config, bn_sizes, growth_rate=32): super().__init__() d = collections.OrderedDict() d['conv0'] = GraphConvBn(num_input_features, 32) num_input_features = 32 for i, num_layers in enumerate(block_config): block = DenseBlock( num_layers, num_input_features, growth_rate=growth_rate, bn_size=bn_sizes[i]) d[f'block{i + 1}'] = block num_input_features += int(num_layers * growth_rate) trans = GraphConvBn(num_input_features, num_input_features // 2) d[f'transition{i + 1}'] = trans num_input_features = num_input_features // 2 self.features = nn.SequentialCell(d) self.atom_num = 144 self.edge_num = 320 self.mean_pooling = AvgPooling() self.classifier = nn.Dense(num_input_features, out_dim) def construct(self, data): """Graph Dense Network""" batch_size = ops.shape(data['target'])[0] data['atom_n'] = self.atom_num * batch_size data['edge_n'] = self.edge_num * batch_size graph_mask = np.ones(batch_size).tolist() graph_mask.append(0) graph_mask = np.array(graph_mask) graph_mask = ms.Tensor(graph_mask, ms.int32) data = self.features(data) x = self.mean_pooling(data['x'], data['edge_index'][0], data['edge_index'][1], data['atom_n'], data['edge_n'], data['batch'], data['batch'], graph_mask) x = x[:batch_size] x = self.classifier(x) return x class MGraphDTA(nn.Cell): """MGraphDTA""" def __init__(self, block_num, embedding_size=128, filter_num=32, out_dim=1): super().__init__() self.protein_encoder = TargetRepresentation(block_num, embedding_size) self.ligand_encoder = GraphDenseNet(num_input_features=22, out_dim=filter_num * 3, block_config=[8, 8, 8], bn_sizes=[2, 2, 2]) self.cat = ops.Concat(axis=1) self.classifier = nn.SequentialCell( nn.Dense(filter_num * 3 * 2, 1024), nn.ReLU(), nn.Dropout(0.9), nn.Dense(1024, 1024), nn.ReLU(), nn.Dropout(0.9), nn.Dense(1024, 256), nn.ReLU(), nn.Dropout(0.9), nn.Dense(256, out_dim) ) def construct(self, x, edge_attr, edge_index, target, batch, x_mask=None): """MGraphDTA""" target = target.float() target = ops.reshape(target, (-1, 1200, 33)) target = ops.permute(target, (0, 2, 1)) protein_x = self.protein_encoder(target) data = {'batch': batch, 'x': x, 'edge_attr': edge_attr, 'edge_index': edge_index, 'target': target, 'x_mask': x_mask} ligand_x = self.ligand_encoder(data) feature = self.cat((protein_x, ligand_x)) out = self.classifier(feature) return out, feature
shuoliu0-0/EDIS
model.py
model.py
py
21,685
python
en
code
1
github-code
6
[ { "api_name": "mindspore.ops.nonzero", "line_number": 54, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 54, "usage_type": "name" }, { "api_name": "mindspore.ops.nonzero", "line_number": 58, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 58, "usage_type": "name" }, { "api_name": "mindspore.ops.flatten", "line_number": 63, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 63, "usage_type": "name" }, { "api_name": "mindspore.ops.gather_elements", "line_number": 64, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 64, "usage_type": "name" }, { "api_name": "mindspore.ops.Concat", "line_number": 65, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 65, "usage_type": "name" }, { "api_name": "mindspore.ops.split", "line_number": 91, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 91, "usage_type": "name" }, { "api_name": "mindspore.ops.mul", "line_number": 110, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 110, "usage_type": "name" }, { "api_name": "mindspore.ops.zeros", "line_number": 111, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 111, "usage_type": "name" }, { "api_name": "mindspore.ops.index_add", "line_number": 113, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 113, "usage_type": "name" }, { "api_name": "numpy.finfo", "line_number": 115, "usage_type": "call" }, { "api_name": "mindspore.ops.split", "line_number": 126, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 126, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 129, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "mindspore.nn.CellList", "line_number": 152, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 152, "usage_type": "name" }, { "api_name": "mindspore.Parameter", "line_number": 153, "usage_type": "call" }, { "api_name": "mindspore.ops.zeros", "line_number": 153, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 153, "usage_type": "name" }, { "api_name": "mindspore.float32", "line_number": 153, "usage_type": "attribute" }, { "api_name": "mindspore.Parameter", "line_number": 154, "usage_type": "call" }, { "api_name": "mindspore.ops.zeros", "line_number": 154, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 154, "usage_type": "name" }, { "api_name": "mindspore.float32", "line_number": 154, "usage_type": "attribute" }, { "api_name": "mindspore.ops.Softplus", "line_number": 156, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 156, "usage_type": "name" }, { "api_name": "mindspore.nn.Softmax", "line_number": 157, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 157, "usage_type": "name" }, { "api_name": "mindspore.Parameter", "line_number": 158, "usage_type": "call" }, { "api_name": "mindspore.Tensor", "line_number": 158, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 158, "usage_type": "call" }, { "api_name": "mindspore.float32", "line_number": 158, "usage_type": "attribute" }, { "api_name": "mindspore.Parameter", "line_number": 159, "usage_type": "call" }, { "api_name": "mindspore.Tensor", "line_number": 159, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 159, "usage_type": "call" }, { "api_name": "mindspore.float32", "line_number": 159, "usage_type": "attribute" }, { "api_name": "mindspore.ops.shape", "line_number": 174, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 174, "usage_type": "name" }, { "api_name": "mindspore.Tensor", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 175, "usage_type": "call" }, { "api_name": "mindspore.ops.randn_like", "line_number": 192, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 192, "usage_type": "name" }, { "api_name": "mindspore.ops.zeros_like", "line_number": 203, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 203, "usage_type": "name" }, { "api_name": "mindspore.ops.scatter", "line_number": 204, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 204, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 233, "usage_type": "call" }, { "api_name": "mindspore.ops.shape", "line_number": 267, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 267, "usage_type": "attribute" }, { "api_name": "mindspore.ops.shape", "line_number": 268, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 268, "usage_type": "attribute" }, { "api_name": "mindspore.ops.flatten", "line_number": 269, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 269, "usage_type": "name" }, { "api_name": "mindspore.ops.arange", "line_number": 271, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 271, "usage_type": "name" }, { "api_name": "mindspore.ops.unsqueeze", "line_number": 272, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 272, "usage_type": "name" }, { "api_name": "mindspore.ops.gather_elements", "line_number": 272, "usage_type": "call" }, { "api_name": "mindspore.Tensor.gt", "line_number": 273, "usage_type": "call" }, { "api_name": "mindspore.Tensor", "line_number": 273, "usage_type": "attribute" }, { "api_name": "mindspore.ops.unsqueeze", "line_number": 275, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 275, "usage_type": "name" }, { "api_name": "mindspore.ops.gather_elements", "line_number": 275, "usage_type": "call" }, { "api_name": "mindspore.nn.probability.distribution.Normal", "line_number": 277, "usage_type": "call" }, { "api_name": "mindspore.Tensor.where", "line_number": 280, "usage_type": "call" }, { "api_name": "mindspore.Tensor", "line_number": 280, "usage_type": "attribute" }, { "api_name": "mindspore.nn.Cell", "line_number": 284, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 284, "usage_type": "name" }, { "api_name": "mindspore.nn.SequentialCell", "line_number": 293, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 293, "usage_type": "name" }, { "api_name": "mindspore.nn.Conv1d", "line_number": 294, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 294, "usage_type": "name" }, { "api_name": "mindspore.nn.ReLU", "line_number": 296, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 296, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 303, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 303, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 307, "usage_type": "call" }, { "api_name": "mindspore.nn.AdaptiveMaxPool1d", "line_number": 313, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 313, "usage_type": "name" }, { "api_name": "mindspore.nn.SequentialCell", "line_number": 314, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 314, "usage_type": "name" }, { "api_name": "mindspore.ops.squeeze", "line_number": 318, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 318, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 323, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 323, "usage_type": "name" }, { "api_name": "mindspore.nn.CellList", "line_number": 327, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 327, "usage_type": "name" }, { "api_name": "mindspore.ops.Concat", "line_number": 331, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 331, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 332, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 332, "usage_type": "name" }, { "api_name": "mindspore_gl.GNNCell", "line_number": 341, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 354, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 354, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 355, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 355, "usage_type": "name" }, { "api_name": "mindspore_gl.Graph", "line_number": 357, "usage_type": "name" }, { "api_name": "mindspore.ops.Squeeze", "line_number": 361, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 361, "usage_type": "name" }, { "api_name": "mindspore.nn.layer.normalization._BatchNorm", "line_number": 372, "usage_type": "name" }, { "api_name": "mindspore.ops.batch_norm", "line_number": 388, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 388, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 394, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 394, "usage_type": "name" }, { "api_name": "mindspore.nn.ReLU", "line_number": 400, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 400, "usage_type": "name" }, { "api_name": "mindspore.ops.ExpandDims", "line_number": 405, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 405, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 414, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 414, "usage_type": "name" }, { "api_name": "mindspore.ops.Concat", "line_number": 420, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 420, "usage_type": "name" }, { "api_name": "mindspore.Tensor", "line_number": 430, "usage_type": "argument" }, { "api_name": "mindspore.nn.Cell", "line_number": 438, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 438, "usage_type": "name" }, { "api_name": "mindspore.nn.CellList", "line_number": 442, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 442, "usage_type": "name" }, { "api_name": "mindspore.ops.Concat", "line_number": 446, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 446, "usage_type": "name" }, { "api_name": "mindspore.nn.Cell", "line_number": 460, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 460, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 464, "usage_type": "call" }, { "api_name": "mindspore.nn.SequentialCell", "line_number": 476, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 476, "usage_type": "name" }, { "api_name": "mindspore_gl.nn.AvgPooling", "line_number": 479, "usage_type": "call" }, { "api_name": "mindspore.nn.Dense", "line_number": 480, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 480, "usage_type": "name" }, { "api_name": "mindspore.ops.shape", "line_number": 484, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 484, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 487, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 489, "usage_type": "call" }, { "api_name": "mindspore.Tensor", "line_number": 490, "usage_type": "call" }, { "api_name": "mindspore.int32", "line_number": 490, "usage_type": "attribute" }, { "api_name": "mindspore.nn.Cell", "line_number": 502, "usage_type": "attribute" }, { "api_name": "mindspore.nn", "line_number": 502, "usage_type": "name" }, { "api_name": "mindspore.ops.Concat", "line_number": 510, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 510, "usage_type": "name" }, { "api_name": "mindspore.nn.SequentialCell", "line_number": 511, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 511, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 512, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 512, "usage_type": "name" }, { "api_name": "mindspore.nn.ReLU", "line_number": 513, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 513, "usage_type": "name" }, { "api_name": "mindspore.nn.Dropout", "line_number": 514, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 514, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 515, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 515, "usage_type": "name" }, { "api_name": "mindspore.nn.ReLU", "line_number": 516, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 516, "usage_type": "name" }, { "api_name": "mindspore.nn.Dropout", "line_number": 517, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 517, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 518, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 518, "usage_type": "name" }, { "api_name": "mindspore.nn.ReLU", "line_number": 519, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 519, "usage_type": "name" }, { "api_name": "mindspore.nn.Dropout", "line_number": 520, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 520, "usage_type": "name" }, { "api_name": "mindspore.nn.Dense", "line_number": 521, "usage_type": "call" }, { "api_name": "mindspore.nn", "line_number": 521, "usage_type": "name" }, { "api_name": "mindspore.ops.reshape", "line_number": 527, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 527, "usage_type": "name" }, { "api_name": "mindspore.ops.permute", "line_number": 528, "usage_type": "call" }, { "api_name": "mindspore.ops", "line_number": 528, "usage_type": "name" } ]
6153769301
from django.shortcuts import render from . models import Department, Employee, User, Phone, Book, Store from django.http import HttpResponse # Create your views here. def index(request): # without relationship: user = User.objects.get(pk=1) phone = Phone.objects.get(user_id=user) # with relationship: # related to the model Phone # user = User.objects.get(pk=1).phone # using related_name = "number" # returning object user_phone = User.objects.get(pk=1).number # returning string user_phone_str = User.objects.get(pk=1).number.phone_no print("--------------------------------------") print(user_phone) # reverse geting user from phone user = Phone.objects.get(id=1).user_id return HttpResponse(user) def foreign_key(request): # using REVERSE !!!IMPORTANT!!! user = Employee.objects.get(name="Simpson").department_name user = Employee.objects.get(name="Simpson").department_name.name # print(user) # print(type(user)) first_deparment = Department.objects.get(pk=1) #hr second_deparment = Department.objects.get(pk=2) #accouts third_deparment = Department.objects.get(pk=5) #purchase deparments = Employee.objects.filter(department_name=third_deparment) # related name !!! IMPORTANT!!! -- another way employee_set.all() -- doesnt work employees_from_dep = first_deparment.employeees_rel.all() employees_from_dep = first_deparment.employeees_rel.all().filter() #print(employees_from_dep) # related name !!! IMPORTANT!!! # after rel name __double underscore through which i can manipulate others model fields dep_all_empl = Department.objects.all().filter(employeees_rel__name__startswith="John") #if there is NO related name it will work next line will work with name of model #dep_all_empl = Department.objects.all().filter(employee__name__startswith="John") # reverse !!!!!!! VERY IMPORTANT !!!!!! employees_in_HR = Employee.objects.filter(department_name__name='Accounts') print(employees_in_HR) return HttpResponse(employees_in_HR) # select_related # https://docs.djangoproject.com/en/3.0/ref/models/querysets/#select-related def sel_related(request): # fetching all employees and printing their names #INNER join employees = Employee.objects.all().select_related('department_name') #employees = Employee.objects.all() for i in employees: print(i.name, i.department_name.name) return render(request, 'core/stuff.html') # for debuger def users(request): qs = User.objects.all() return render(request, 'core/users.html',{ "users": qs, }) def prefetched(request): books = Book.objects.all() books = Book.objects.all().prefetch_related('store_set') #looking for all STORES and check THIS BOOK in it for i in books: print(i.store_set.all()) return render(request, 'core/users.html')
oruchkin/biteofpithon
django relationships/relation/core/views.py
views.py
py
3,072
python
en
code
0
github-code
6
[ { "api_name": "models.User.objects.get", "line_number": 10, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 10, "usage_type": "name" }, { "api_name": "models.Phone.objects.get", "line_number": 11, "usage_type": "call" }, { "api_name": "models.Phone.objects", "line_number": 11, "usage_type": "attribute" }, { "api_name": "models.Phone", "line_number": 11, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 21, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 21, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 23, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 23, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 23, "usage_type": "name" }, { "api_name": "models.Phone.objects.get", "line_number": 29, "usage_type": "call" }, { "api_name": "models.Phone.objects", "line_number": 29, "usage_type": "attribute" }, { "api_name": "models.Phone", "line_number": 29, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 31, "usage_type": "call" }, { "api_name": "models.Employee.objects.get", "line_number": 37, "usage_type": "call" }, { "api_name": "models.Employee.objects", "line_number": 37, "usage_type": "attribute" }, { "api_name": "models.Employee", "line_number": 37, "usage_type": "name" }, { "api_name": "models.Employee.objects.get", "line_number": 38, "usage_type": "call" }, { "api_name": "models.Employee.objects", "line_number": 38, "usage_type": "attribute" }, { "api_name": "models.Employee", "line_number": 38, "usage_type": "name" }, { "api_name": "models.Department.objects.get", "line_number": 42, "usage_type": "call" }, { "api_name": "models.Department.objects", "line_number": 42, "usage_type": "attribute" }, { "api_name": "models.Department", "line_number": 42, "usage_type": "name" }, { "api_name": "models.Department.objects.get", "line_number": 43, "usage_type": "call" }, { "api_name": "models.Department.objects", "line_number": 43, "usage_type": "attribute" }, { "api_name": "models.Department", "line_number": 43, "usage_type": "name" }, { "api_name": "models.Department.objects.get", "line_number": 44, "usage_type": "call" }, { "api_name": "models.Department.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "models.Department", "line_number": 44, "usage_type": "name" }, { "api_name": "models.Employee.objects.filter", "line_number": 46, "usage_type": "call" }, { "api_name": "models.Employee.objects", "line_number": 46, "usage_type": "attribute" }, { "api_name": "models.Employee", "line_number": 46, "usage_type": "name" }, { "api_name": "models.Department.objects.all", "line_number": 55, "usage_type": "call" }, { "api_name": "models.Department.objects", "line_number": 55, "usage_type": "attribute" }, { "api_name": "models.Department", "line_number": 55, "usage_type": "name" }, { "api_name": "models.Employee.objects.filter", "line_number": 61, "usage_type": "call" }, { "api_name": "models.Employee.objects", "line_number": 61, "usage_type": "attribute" }, { "api_name": "models.Employee", "line_number": 61, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 65, "usage_type": "call" }, { "api_name": "models.Employee.objects.all", "line_number": 73, "usage_type": "call" }, { "api_name": "models.Employee.objects", "line_number": 73, "usage_type": "attribute" }, { "api_name": "models.Employee", "line_number": 73, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 79, "usage_type": "call" }, { "api_name": "models.User.objects.all", "line_number": 84, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 84, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 84, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 85, "usage_type": "call" }, { "api_name": "models.Book.objects.all", "line_number": 91, "usage_type": "call" }, { "api_name": "models.Book.objects", "line_number": 91, "usage_type": "attribute" }, { "api_name": "models.Book", "line_number": 91, "usage_type": "name" }, { "api_name": "models.Book.objects.all", "line_number": 92, "usage_type": "call" }, { "api_name": "models.Book.objects", "line_number": 92, "usage_type": "attribute" }, { "api_name": "models.Book", "line_number": 92, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 98, "usage_type": "call" } ]
28114724866
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 数据 sizes = ["0.5x0.5", "2x2", "5x5", "7x7"] postgres = [2, 10, 94, 153] accumulo = [8, 15, 22, 41] # 绘图 plt.plot(sizes, postgres, label="PostgreSQL") plt.plot(sizes, accumulo, label="Accumulo") plt.xlabel("Extent(km²)") plt.ylabel("Read Time(s)") plt.legend() # 显示图形 plt.show()
KiktMa/gdal_tiff
shange/paintsd.py
paintsd.py
py
386
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams", "line_number": 3, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 3, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 11, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 11, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 12, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" } ]
31127201950
# to run, execute this command in the command line: # python create_plots.py pagecounts-20160802-150000.txt pagecounts-20160803-150000.txt import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt filename1 = sys.argv[1] filename2 = sys.argv[2] data1 = pd.read_table(filename1, sep=' ', header=None, index_col=1, names=['lang', 'page', 'views', 'bytes']) data1_sort = data1.sort_values(by=['views'], ascending=False) # print(data1_sort) data2 = pd.read_table(filename2, sep=' ', header=None, index_col=1, names=['lang', 'page', 'views', 'bytes']) data2_sort = data2.sort_values(by=['views'], ascending=False) data1_sort['views2'] = data2_sort['views'] # print (data1_sort) # print (data2_sort) plt.figure(figsize=(10, 5)) # change the size to something sensible plt.subplot(1, 2, 1) # subplots in 1 row, 2 columns, select the first plt.plot(data1_sort['views'].values) plt.title('Popularity Distribution') plt.xlabel('Rank') plt.ylabel('Views') plt.subplot(1, 2, 2) # ... and then select the second plt.scatter(data1_sort['views'].values, data1_sort['views2'].values) plt.title('Daily Correlation') plt.xlabel('Day 1 views') plt.ylabel('Day 2 views') plt.xscale('log') plt.yscale('log') # plt.show() plt.savefig('wikipedia_Tom.png')
tomliangg/Plotting_Wikipedia_Page_Views
create_plots.py
create_plots.py
py
1,324
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 7, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pandas.read_table", "line_number": 10, "usage_type": "call" }, { "api_name": "pandas.read_table", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xscale", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yscale", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" } ]
70111562109
import requests def run(): api_key = 'f258ca5a16d84339a5f6cdb4c7700756' query_map = {} url = 'http://api.weatherbit.io/v2.0/current' query_map['lat'] = 39.757 query_map['lon'] = -75.742 query_map['key'] = api_key query_map['lang'] = 'en' response = requests.get(url,params=query_map).json() return [(float(response['data'][0]['temp']) * 9/5) + 32,response['data'][0]['weather']['description']] run()
cthacker-udel/Raspberry-Pi-Scripts
py/getcurrweather.py
getcurrweather.py
py
441
python
en
code
7
github-code
6
[ { "api_name": "requests.get", "line_number": 12, "usage_type": "call" } ]
3981685761
from django.test import TestCase from django import forms from parameterized import parameterized from MDM.forms import ItemGroupForm from MDM.bootstrap import INPUT class ItemGroupFormTest(TestCase): @parameterized.expand([ ('description', 'Descrição do Grupo de Item'), ]) def test_form_labels(self, field, label): form = ItemGroupForm() self.assertEqual(form.fields[field].label, label) @parameterized.expand([ ('description', forms.TextInput), ]) def test_form_widgets(self, field, widget): form = ItemGroupForm() self.assertIsInstance(form.fields[field].widget, widget) def test_form_valid_data(self): form = ItemGroupForm(data={ 'description': 'Grupo de Itens', }) self.assertTrue(form.is_valid()) def test_form_invalid_data(self): form = ItemGroupForm(data={ 'description': '', }) self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) @parameterized.expand([ ('description', INPUT['class']), ]) def test_form_widgets_attrs(self, field, attrs): form = ItemGroupForm() self.assertEqual(form.fields[field].widget.attrs['class'], attrs)
tiagomend/flow_erp
MDM/tests/test_item_group_form.py
test_item_group_form.py
py
1,264
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 9, "usage_type": "name" }, { "api_name": "MDM.forms.ItemGroupForm", "line_number": 15, "usage_type": "call" }, { "api_name": "parameterized.parameterized.expand", "line_number": 11, "usage_type": "call" }, { "api_name": "parameterized.parameterized", "line_number": 11, "usage_type": "name" }, { "api_name": "MDM.forms.ItemGroupForm", "line_number": 22, "usage_type": "call" }, { "api_name": "parameterized.parameterized.expand", "line_number": 18, "usage_type": "call" }, { "api_name": "parameterized.parameterized", "line_number": 18, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 19, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 19, "usage_type": "name" }, { "api_name": "MDM.forms.ItemGroupForm", "line_number": 26, "usage_type": "call" }, { "api_name": "MDM.forms.ItemGroupForm", "line_number": 32, "usage_type": "call" }, { "api_name": "MDM.forms.ItemGroupForm", "line_number": 42, "usage_type": "call" }, { "api_name": "parameterized.parameterized.expand", "line_number": 38, "usage_type": "call" }, { "api_name": "parameterized.parameterized", "line_number": 38, "usage_type": "name" }, { "api_name": "MDM.bootstrap.INPUT", "line_number": 39, "usage_type": "name" } ]
25390435322
import logging import requests import pandas as pd import time from .sqlite import Orders from .sqlite import Balances class BitMex(): def pull_bitmex_orderbooks(symbol, limit, mode='live'): # Tracking execution time start_ts = time.time() * 1000 # Get request request = requests.get('https://www.bitmex.com/api/v1/orderBook/L2?symbol={}&depth={}'.format(symbol, limit)) bitmex = request.json() # Check to make sure data is pulled properly if request.status_code == 200: # Track latency req_ts = int(time.time()) sell_arr = [] buy_arr = [] for item in bitmex: # ['Price','Amount','Value'] row = [item['price'], item['size'], item['price'] * item['size']] if item['side'] == "Sell": sell_arr.append(row) if item['side'] == "Buy": buy_arr.append(row) # Extract Bids and Asks to DFs df_buy = pd.DataFrame(buy_arr) df_sell = pd.DataFrame(sell_arr) #Ensure that DFs are not empty if len(df_buy) == 0: df_buy = pd.DataFrame([[0,0,0]]) if len(df_sell) == 0: df_sell = pd.DataFrame([[0,0,0]]) df_buy.columns = df_sell.columns = ['Price','Amount','Value'] # # Write order book data to databae for row in buy_arr: Orders.create( ts=req_ts, price=row[0], amount=row[1], value=row[2], b_a='b' ) for row in sell_arr: Orders.create( ts=req_ts, price=row[0], amount=row[1], value=row[2], b_a='a' ) final_ts = time.time() * 1000 # Log request req_log = [start_ts, req_ts, final_ts, request.status_code, symbol, 'orders'] logging.info(req_log) return (df_buy, df_sell) else: logging.warning("Orderbook request failure.") logging.warning(request.json()) return(None, None) ## check_pending_orders will check if there are pending orders. ## It makes decision based on whether there are pending orders and whether we have ## an appropriate balance and will return a decision of 'BUY' or 'SELL' ## default: 'SELL' def check_pending_orders(symbol, client, c_maj, c_min, current_balance, thresh, trade_alloc): # Get pending orders logging.info("Checking pending orders...") # TODO: get this dynamically symbol = "BTC/USD" bitmex = client.fetch_open_orders(symbol) ## this is some data munging that we have to do because bitmex doesn't ## return a nice object sell_arr = [] buy_arr = [] for item in bitmex: # ['orderID','Price','Amount','Value'] row = [item['info']['orderID'], item['info']['price'], item['info']['orderQty'], item['info']['price'] * item['info']['orderQty']] if item['info']['side'] == "Sell": sell_arr.append(row) if item['info']['side'] == "Buy": buy_arr.append(row) pending_orders = {'BUY': buy_arr, 'SELL': sell_arr} if pending_orders != []: if(len(pending_orders['BUY']) + len(pending_orders['SELL']) == 0): for c in (c_maj, c_min): coin = Balances.select().where(Balances.coin == c).order_by(Balances.id.desc()).get() current_balance[c] = coin.balance logging.info("Checking balances....") # do a balance check to see whether we can trade with current balance # based on threshold decision = BitMex.balance_check(current_balance[c_maj], current_balance[c_min], thresh, trade_alloc) if decision: return('BUY', pending_orders) else: return('SELL', pending_orders) else: if(len(pending_orders['BUY']) > 0): return('BUY', pending_orders) else: return('SELL', pending_orders) # TODO: what should we do if no pending orders? # return('SELL', pending_orders) ## DONE def balance_check(balance_maj, balance_min, thresh, trade_alloc): # major = the one you're quoting. # minor = the one you're quoting in. # balance_maj is major coin balance # balance_min is minor coin balance # thresh is threshold under which you buy the major pair # trade_alloc is the allocated amount to trade return((balance_maj <= thresh) and (balance_min >= trade_alloc)) ## eliminate_excess_orders will _ all but the best order def eliminate_excess_orders(df, decision): # checks for all excess orders and returns list of non-optimal oID to cancel logging.info("Eliminating excess orders...") print(o_df) o_df = pd.DataFrame(df) o_df.columns = ['ts','bs','p','a','deal','oid'] if(decision == 'BUY'): o_optimal = o_df.p.max() else: o_optimal = o_df.p.min() oid_keep = o_df[o_df.p == o_optimal].oid orders_to_cancel = [i for i in o_df[o_df.oid != oid_keep[0]].oid] return orders_to_cancel def update_order(pending_orders, o_optimal, decision, trade_alloc, client, symbol): pair = symbol.replace('-','') # cancel all orders resp = self.cancel_all_orders(client, pending_orders, decision) logging.info("Canceling All Orders for {}: {} Side: {}".format(pair, resp, decision)) log_request(conn, time.time(), resp, pair, 'cancel_order - {}'.format(decision)) # issue order resp = issue_order(decision, symbol, o_optimal, trade_alloc/o_optimal, conn) logging.info("Issuing Orders for {}: {} Side: {}".format(pair, resp, decision)) return('Order Updated') def cancel_all_orders(self, client, orders, decision): # order[0] = orderID for order in orders[decision]: logging.info("Cancelling order: {}".format(order[0])) try: client.cancelOrder(order[0]) except OrderNotFound as e: logging.info("Cancelling Excess Orders {} [Fail]:".format(order[0], e)) ## TODO: update with better logging def issue_order(decision, symbol, price, amount, client, precision=0): try: # initialize temporary client to avoid UNAUTH # TODO: don't hard code this ccxt_sym = "BTC/USD" print("issue order") if(decision == 'BUY'): rresp = client.create_limit_buy_order(ccxt_sym, amount, price) oid = rresp['id'] log_trade(conn, symbol, price, amount, oid, decision) return(oid) if(decision == 'SELL'): # To catch bad precision loopback re-order if (precision > 0): print('Debug precision: ', amount, str(amount)) rresp = client.create_limit_sell_order(ccxt_sym, amount, price) else: rresp = client.create_limit_sell_order(ccxt_sym, amount, price) oid = rresp['id'] log_trade(conn, symbol, price, amount, oid, decision) return(oid) except Exception as issue_error: print(type(issue_error)) print(issue_error.args) print(str(issue_error.args[0]).replace(',','|')) # In scenario with improper amount precision if ('precision of amount' in str(issue_error.args)): logging.warning(str('Improper Amount Precision - {}'.format(str(issue_error.args[0])))) m = re.search('(The precision of amount).*[0-9]{1}', str(issue_error.args[0])) precision = int(m.group(0)[-1]) print(precision) order_amount = truncate(amount, precision) if (order_amount > 0.0): print('Reissuing order', order_amount, precision) issue_order(decision, symbol, price, order_amount, conn, precision) return('Reissued Order') else: return('Error issueing order: order_amount too low for precision') return(str(issue_error).replace(',','|')) def is_best_order(decision, symbol, o_optimal, client, pending_orders, order_df): pair = symbol.replace('-','') if (decision == 'BUY'): if (o_optimal > pending_orders['BUY'][0][2]): return(False) else: return(True) elif (decision == 'SELL'): if (o_optimal < pending_orders['SELL'][0][2]): return(False) else: return(True)
noqcks/bmex-algo
src/bitmex.py
bitmex.py
py
8,025
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 13, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 16, "usage_type": "call" }, { "api_name": "time.time", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 35, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 36, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 40, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlite.Orders.create", "line_number": 49, "usage_type": "call" }, { "api_name": "sqlite.Orders", "line_number": 49, "usage_type": "name" }, { "api_name": "sqlite.Orders.create", "line_number": 58, "usage_type": "call" }, { "api_name": "sqlite.Orders", "line_number": 58, "usage_type": "name" }, { "api_name": "time.time", "line_number": 67, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 71, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 74, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 75, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 84, "usage_type": "call" }, { "api_name": "sqlite.Balances.select", "line_number": 106, "usage_type": "call" }, { "api_name": "sqlite.Balances", "line_number": 106, "usage_type": "name" }, { "api_name": "sqlite.Balances.coin", "line_number": 106, "usage_type": "attribute" }, { "api_name": "sqlite.Balances.id.desc", "line_number": 106, "usage_type": "call" }, { "api_name": "sqlite.Balances.id", "line_number": 106, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 109, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 140, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 142, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 160, "usage_type": "call" }, { "api_name": "time.time", "line_number": 161, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 165, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 172, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 176, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 211, "usage_type": "call" } ]
776580237
from pprint import pprint import requests import json # Задание 1 Посмотреть документацию к API GitHub, разобраться как вывести список репозиториев для конкретного пользователя, # сохранить JSON-вывод в файле *.json. url = 'https://api.github.com/users/Karamba278/repos' #Сразу вставил имя юзера (себя) в ссылку, но можнод для # удобства и отдельно его вводить response = requests.get(url) j_data = response.json() #pprint(j_data) for repos in j_data: print(repos['name']) # т.к. нам могут потребоваться и другие данные, то запишем в файл всю информацию о репозиториях with open('GitHubUserRep.json', "w") as write_f: json.dump(j_data, write_f) # Задание 2 Изучить список открытых API. Найти среди них любое, требующее авторизацию (любого типа). # Выполнить запросы к нему, пройдя авторизацию. Ответ сервера записать в файл. # Раз на вебинаре разрекламировали НАСА, то возьмем НАСА API :) url = 'https://api.nasa.gov/planetary/apod' api_key = 'aydx4dSBSpKHD8tGxFrVqOYxxe2df2lirt0rKGxj' params = {'api_key':api_key} response2 = requests.get(url, params=params) j_data2 = response2.json() pprint(j_data2) with open('NASA_data.json', "w") as write_f2: json.dump(j_data2, write_f2)
Karamba278/parsing
DZ1/lesson1.py
lesson1.py
py
1,643
python
ru
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 9, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 17, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 29, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 31, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 34, "usage_type": "call" } ]
42433734628
import pytest import random from torchrl.envs import make_gym_env, TransitionMonitor @pytest.mark.parametrize('spec_id', [ 'Acrobot-v1', 'CartPole-v1', 'MountainCar-v0', 'MountainCarContinuous-v0', 'Pendulum-v0', ]) def test_transition_monitor(spec_id: str): env = TransitionMonitor(make_gym_env(spec_id)) for _ in range(3): env.reset() info = env.info assert not env.is_done assert len(env.transitions) == 0 assert info.get('len') == 0 assert info.get('return') == 0.0 flushed_transitions = [] while not env.is_done: env.step(env.action_space.sample()) if random.random() < 0.2: # Flush with probability 0.2 flushed_transitions += env.flush() flushed_transitions += env.flush() info = env.info assert info.get('return') is not None assert info.get('len') > 0 assert info.get('len') == len(flushed_transitions) assert len(env.transitions) == 0 env.close()
activatedgeek/torchrl
torchrl/envs/test_wrappers.py
test_wrappers.py
py
968
python
en
code
110
github-code
6
[ { "api_name": "torchrl.envs.TransitionMonitor", "line_number": 15, "usage_type": "call" }, { "api_name": "torchrl.envs.make_gym_env", "line_number": 15, "usage_type": "call" }, { "api_name": "random.random", "line_number": 29, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 7, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 7, "usage_type": "attribute" } ]
8516167540
import numpy as np import matplotlib.pyplot as plt import h5py path_Lf3D = "/mn/stornext/d19/RoCS/alma/emissa_sim/linfor3D/outhdf/" f = {"500nm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_05000_mu1_00_linfor_3D_2.hdf", "r"), "1mm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_01mm_mu1_00_linfor_3D_2.hdf", "r"), "3mm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_03mm_mu1_00_linfor_3D_2.hdf", "r")} F = h5py.File("/mn/stornext/d19/RoCS/svenwe/jonast/data/art/input/tst/d3t57g44_v000G_n019_art_it000_mode1.h5", "r") fig,ax = plt.subplots(figsize=(8,6)) for i,key in enumerate(f.keys()): z_CF = np.array(f[key]["contfctz"])*1e-8 k = np.argmax(z_CF) z_CF = z_CF[:k+1] CF = np.mean(np.array(f[key]["contfunc"][:k+1,:,:]), axis=(1,2)) ax.plot(z_CF, CF/np.max(CF)) ax.fill_between(z_CF, np.zeros(len(CF)), CF/np.max(CF), alpha=0.5, label=r"$\lambda = $ {:} {:}".format(key[:-2], key[-2:])) ax.set_axisbelow(True) ax.grid() #ax.axvline(x= ax.legend() ax.set_xlabel("z [Mm]") ax.set_ylabel("norm. cont. func.") figname="mean_CF.pdf" plt.savefig("figures/"+figname, bbox_inches="tight")
jonasrth/MSc-plots
mean_CF.py
mean_CF.py
py
1,183
python
en
code
0
github-code
6
[ { "api_name": "h5py.File", "line_number": 7, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 8, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 9, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 11, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" } ]
43970042116
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ AUTHOR Pedro Cerqueira github: @pedrorvc DESCRIPTION This script serves to create xml files contaning the information necessary for the execution of BRIG (Blast Ring Image Generator), reducing the time performing the tedious task of setting up all the information on the GUI and provides a quick way to produce an image. The arguments for this script provide some (but not all) of the available options in BRIG, which were the ones I used to change the most. USAGE: brigaid.py -q reference_sequence.fna -rfd path/to/reference/dir -od path/to/output/dir -of path/to/output/dir/output_file -oi path/to/output/BRIG/output_image -t Image_title -a annotation_file.gbk --genes genes_of_interest.txt --contig-order contig_order.tsv """ import argparse import csv import os import xml.etree.ElementTree as ET from collections import OrderedDict from xml.dom import minidom from Bio import SeqIO from matplotlib import cm def listdir_fullpath(path): """ Gets the full path of the files from a directory Args: path (str): full path to a directory Returns: list containing the full path of every file contained in the input directory """ return [os.path.join(path, f) for f in os.listdir(path)] def ring_attributes(colour, name, position): """ Creates ring attributes. Args: colour (str): color of the ring. name (str): name of the ring. position (str): position of the ring. Returns: ring_attrs (dict): attributes of any regular ring of the BRIG xml. """ ring_attrs = {"colour" : colour, "name": name, "position" : position, "upperInt" : "90", "lowerInt" : "70", "legend" : "yes", "size" : "30", "labels" : "no", "blastType" : "blastn"} return ring_attrs def annotation_ring_attributes(position): """ Creates annotation ring attributes. Args: position (str): position of the ring. Returns: annotation_ring_attrs (dict): attributes of the annotation ring of the BRIG xml. """ annotation_ring_attrs = {"colour" : '172,14,225', "name": 'null', "position" : position, "upperInt" : "70", "lowerInt" : "50", "legend" : "yes", "size" : "30", "labels" : "no", "blastType" : "blastn"} return annotation_ring_attrs def create_feature_attrs(label, colour, decoration, start, stop): """ Create attributes for the Feature SubElements of the annotation ring. Args: label (str): name of the gene/CDS to annotate colour (str): colour of the decoration for the annotation decoration (str): shape of the gene/CDS to annotate, for example, 'clockwise-arrow' start (str): start of the gene/CDS to annotate stop (str): stop of the gene/CDS to annotate Results: feature_element_attrs (dict): attributes of the feature element. feature_range_element_attrs (dict): attributes of the feature range element """ feature_element_attrs = {'label' : label, 'colour' : colour, 'decoration' : decoration} feature_range_element_attrs = {'start' : start, 'stop' : stop} return feature_element_attrs, feature_range_element_attrs def create_annotation_ring_tsv(annotation_ring, annotation_file): """ Uses a tsv file to annotate the reference genome. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. """ with open(annotation_file) as tsvfile: reader = csv.DictReader(tsvfile, dialect='excel-tab') # Obtain the annotations from the file contents for row in reader: start = row['#START'] stop = row['STOP'] label = row['Label'] colour = row['Colour'] decoration = row['Decoration'] # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, colour, decoration, start, stop) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) def annotation_ring_feature_elements_gbk_concat(annotation_ring, record, genome_size=False): """ Creates the annotation ring feature elements, using a concatenated Genbank annotation file. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. record (SeqRecord): Object of BioPython containing the information of the input Genbank. genome_size (bool): Size of genome. Integer when a Genbank divided by contigs is provided. Boolean (False) when a concatenated Genbank is provided. """ #if type(genome_size) == int: # Obtain the features of the Genbank file records for fea in record.features: # Get the start and end position of the genome # Also get the strand if fea.type == 'CDS': start = str(fea.location.start.position) end = str(fea.location.end.position) strand = fea.location.strand # Get the label of the gene or product if 'gene' in fea.qualifiers: label = str(fea.qualifiers['gene'][0]) elif 'product' in fea.qualifiers: product = fea.qualifiers['product'][0] label = str(product) else: continue # Define the decoration of the annotation based on the strand if strand == -1: decoration = 'counterclockwise-arrow' elif strand == 1: decoration = 'clockwise-arrow' # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, "black", decoration, start, end) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) # If a genome size is provided, get the size of the records if type(genome_size) == int: if fea.type == 'source': size = fea.location.end.position try: size genome_size += size return genome_size except NameError: pass def annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, record, genes, genome_size=False): """ Creates the annotation ring feature elements, using a concatenated Genbank annotation file and specific gene annotations. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. record (SeqRecord): Object of BioPython containing the information of the input Genbank. genome_size (bool): Size of genome. Integer when a Genbank divided by contigs is provided. Boolean (False) when a concatenated Genbank is provided. """ for f in record.features: if f.type == 'CDS': # Find the 'gene' tag and determine if the gene belongs to the specified genes to be annotated if 'gene' in f.qualifiers and f.qualifiers['gene'][0] in genes: label = f.qualifiers['gene'][0] elif 'product' in f.qualifiers and f.qualifiers['product'][0] in genes: product = f.qualifiers['product'][0] label = product else: continue # Determine the start, stop and strand of the gene start = str(f.location.start.position + genome_size) end = str(f.location.end.position + genome_size) strand = f.location.strand # Define the decoration of the annotation based on the strand if strand == -1: decoration = 'counterclockwise-arrow' elif strand == 1: decoration = 'clockwise-arrow' # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, "black", decoration, start, end) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) # If a genome size is provided, get the size of the records if type(genome_size) == int: if f.type == "source": size = f.location.end.position try: size genome_size += size return genome_size except NameError: pass def create_annotation_ring_gbk_concat(annotation_ring, annotation_file, genes_of_interest, records): """ Create annotation ring using a concatenated Genbank annotation file. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing the genes to search for in the Genbank file. records (SeqRecord): Object of BioPython containing the information of the input Genbank. """ if genes_of_interest != []: # Get the genes to serach in the Genbank file with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] # Create feature elements of the annotation ring for seq_record in records: annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, seq_record, genes) else: for seq_record in records: annotation_ring_feature_elements_gbk_concat(annotation_ring, seq_record) def create_annotation_ring_gbk_contigs(annotation_ring, annotation_file, records, genes_of_interest, contig_order): """ Create annotation ring using a Genbank annotation file divided by contigs. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing the genes to search for in the Genbank file. records (SeqRecord): Object of BioPython containing the information of the input Genbank. contig_order (str): Full path to the file containing the order of the contigs. """ if contig_order != []: with open(contig_order) as tsvfile: reader = csv.DictReader(tsvfile, dialect='excel-tab') # Create an OrderedDict with the contents of the file # The keys are the order are a number representing the order of the contig # The values are the names of the contigs content_dict = OrderedDict() for r in reader: content_dict[r["order"]] = r["contig"] # Create an OrderedDict with the content of each contig # The keys are the names of the contigs # The values are SeqRecord objects from BipPython seq_records_dict = OrderedDict() for record in records: seq_records_dict[record.id] = record if genes_of_interest != []: with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] genome_size = 0 for i in range(1, len(records)+1): ord_record = seq_records_dict[content_dict[str(i)]] gsize = annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, ord_record, genes, genome_size) genome_size = gsize else: genome_size = 0 for i in range(1, len(records)+1): ord_record = seq_records_dict[content_dict[str(i)]] gsize = annotation_ring_feature_elements_gbk_concat(annotation_ring, ord_record, genome_size) genome_size = gsize else: if genes_of_interest != []: with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] for seq_record in records: annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, seq_record, genes) else: for seq_record in records: annotation_ring_feature_elements_gbk_concat(annotation_ring, seq_record) def write_xml(root_elem, output_file): """ Writes a xml file. Args: root_elem is a ElementTree Element object containing all the information required for the output file. output_file (str): full path to the output file """ xml_file = ET.tostring(root_elem, encoding='utf8').decode('utf8') pretty_xml_file = minidom.parseString(xml_file).toprettyxml(indent=' ') output_file = output_file + ".xml" with open(output_file, "w") as f: f.write(pretty_xml_file) ####### Create xml elemnts # Create root element def create_root_element(blast_options, legend_position, query_file, output_folder, image_output_file, title, image_format): """ Creates the root element of the xml file and its attributes. Args: blast_options (str): additional options for blast, for example, -evalue or num_threads legend_position (str): position of the legend on the image query_file (str): full path to the query file output_folder (str): full path to the output folder image_output_file (str): full path to the image output file title (str): title of the output image image_format (str): format of the image output file Returns: root: ElementTree Element object containing the BRIG tag and its attributes """ root_attrs = {"blastOptions" : blast_options, "legendPosition" : legend_position, "queryFile" : query_file, "outputFolder" : output_folder, "blastPlus" : "yes", "outputFile" : os.path.join(output_folder, image_output_file), "title" : title, "imageFormat" : image_format, "queryFastaFile" : query_file, "cgXML" : os.path.join(output_folder + "/scratch", os.path.basename(query_file) + ".xml")} root = ET.Element('BRIG', attrib=root_attrs) return root #### Create root children # Create cgview_settings element def create_cgview_settings_element(root, height, width): """ Creates the cgview_settings element of the xml file and its attributes. Args: root: ElementTree Element object containing the BRIG tag and its attributes. height (str): height of the output image in pixels width (str): width of the output image in pixels Returns: cgview_settings: ElementTree SubElement object containing the cgview settings tag and its attributes """ cgview_settings_attrs = {"arrowheadLength" : "medium", "backboneColor" : "black", "backboneRadius" : "600", "backboneThickness" : "medium", "backgroundColor" : "white", "borderColor" : "black", "featureSlotSpacing" : "medium", "featureThickness" : "30", "giveFeaturePositions" : "false", "globalLabel" : "true", "height" : height, "isLinear" : "false", "labelFont" : "SansSerif,plain,25", "labelLineLength" : "medium", "labelLineThickness" : "medium", "labelPlacementQuality" : "best", "labelsToKeep" : "1000", "longTickColor" : "black", "minimumFeatureLength" : "medium", "moveInnerLabelsToOuter" :"true", "origin" : "12", "rulerFont" : "SansSerif,plain,35", "rulerFontColor" : "black", "rulerPadding" : "40", "rulerUnits" : "bases", "shortTickColor" : "black", "shortTickThickness" : "medium", "showBorder" : "false", "showShading" : "true", "showWarning" : "false", "tickDensity" : "0.2333", "tickThickness" : "medium", "titleFont" : "SansSerif,plain,45", "titleFontColor" : "black", "useColoredLabelBackgrounds" : "false", "useInnerLabels" : "true", "warningFont" : "Default,plain,35", "warningFontColor" : "black", "width" : width, "zeroTickColor" : "black", "tickLength" : "medium"} cgview_settings = ET.SubElement(root, 'cgview_settings', attrib=cgview_settings_attrs) return cgview_settings # Create brig_settings element def create_brig_settings_element(root, java_memory): """ Creates the brig_settings element of the xml file and its attributes. Args: root: ElementTree Element object containing the BRIG tag and its attributes. java_memory (str): amount of memory (in bytes) java is allowed to use for BRIG Returns: brig_settings: ElementTree SubElement object containing the brig settings tag and its attributes """ brig_settings_attrs = {"Ring1" : "172,14,225", "Ring2" : "222,149,220", "Ring3" : "161,221,231", "Ring4" : "49,34,221", "Ring5" : "116,152,226", "Ring6" : "224,206,38", "Ring7" : "40,191,140", "Ring8" : "158,223,139", "Ring9" : "226,38,122", "Ring10" :"211,41,77", "defaultUpper" : "70", "defaultLower" : "50", "defaultMinimum" : "50", "genbankFiles" : "gbk,gb,genbank", "fastaFiles" : "fna,faa,fas,fasta,fa", "emblFiles" : "embl", "blastLocation" : "", "divider" : "3", "multiplier" : "3", "memory" : java_memory, "defaultSpacer" : "0"} brig_settings = ET.SubElement(root, "brig_settings", attrib=brig_settings_attrs) return brig_settings ## Create special element def create_special_element(root): """Creates the 'special' element of the xml file and its attributes Args: root: ElementTree Element object containing the BRIG tag and its attributes. Returns: gc_content_special: ElementTree SubElement object containing the 'special' tag and its attributes gc_skew_special: ElementTree SubElement object containing the 'special' tag and its attributes """ gc_content_special = ET.SubElement(root, 'special', attrib={'value' : 'GC Content'}) gc_skew_special = ET.SubElement(root, 'special', attrib={'value' : 'GC Skew'}) return gc_content_special, gc_skew_special # Create reference dir element def create_reference_directory_element(root, reference_directory): """ Creates the 'reference directory' element of the xml file and its attributes. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. Returns: ref_file: ElementTree SubElement object containing the 'refFile' tag and its attributes """ ref_dir = ET.SubElement(root, "refDir", attrib={"location" : reference_directory}) # Obtain the full path for all the files in the directory ref_dir_list = listdir_fullpath(reference_directory) for f in ref_dir_list: ref_file = ET.SubElement(ref_dir, "refFile", attrib={"location" : f}) return ref_file # Create the ring where the annotations are defined def create_annotation_ring(root, reference_directory, annotation_file, genes_of_interest, contig_order): """ Creates the ring that will contain the annotations for the reference genome. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing a list of specific genes. contig_order (str): Full path to the tab-delimited file containing the order of the contigs. """ # Determine the position of the annotation ring, which will be the position after the last reference genome ring_position = len(os.listdir(reference_directory)) + 2 # Create the annotation ring element annotation_ring = ET.SubElement(root, 'ring', attrib=annotation_ring_attributes(str(ring_position))) # Check for tab-delimited annotation file input if list(SeqIO.parse(annotation_file, "genbank")) == []: create_annotation_ring_tsv(annotation_ring, annotation_file) else: # Get the records of the Genbank file records = [r for r in SeqIO.parse(annotation_file, "genbank")] ### Check if a contig order file has been provided if len(records) > 1: # If more than 1 record exists, then the Genbank file is divided by contigs create_annotation_ring_gbk_contigs(annotation_ring, annotation_file, records, genes_of_interest, contig_order) else: create_annotation_ring_gbk_concat(annotation_ring, annotation_file, genes_of_interest, records) ## Create remaining rings def create_ring_element(root, reference_directory, colormap): """ Creates the ring elements of the xml file, containing the position and color of the rings. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. colormap (str): name of the colormap (available in matplotlib) to use for the color of the rings Returns: ring_number_element: ElementTree SubElement object containing the 'ring' tag and its attributes ring_sequence_element: ElementTree SubElement object containing the 'sequence' tag and its attributes """ ref_dir_list = listdir_fullpath(reference_directory) # Gets the colormap from matplotlib with as many colors as the number of files cmap = cm.get_cmap(colormap, len(ref_dir_list)) list_colormap = cmap.colors.tolist() # Remove the fourth element (transparency) because it is not necessary colors_to_use = [] for l in list_colormap: convert = [round(x * 255) for x in l] convert.pop() colors_to_use.append(convert) #reversed_colors_to_use = colors_to_use[::-1] # Check if the user provided an order for the rings has_digit = [os.path.basename(x).split("_")[0].isdigit() for x in ref_dir_list] if True in has_digit: # Obtain the ring positions ring_positions = [os.path.basename(x).split("_")[0] for x in ref_dir_list] # Reverse sort the positions of the rings, because they will be created # in a descending order of their positions ring_positions.sort(reverse=True) ref_dir_list.sort(reverse=True) for ring in range(len(ref_dir_list)): # The ring positions start at 2 due to the special rings (GC Content and GC Skew) ring_position = int(ring_positions[ring]) + 1 # Select a color for the ring ring_color = ",".join([str(e) for e in colors_to_use[ring]]) # Define the name of the ring ring_name = os.path.basename(ref_dir_list[ring]).split("_")[1] # Create the xml elements ring_number_element = ET.SubElement(root, 'ring', ring_attributes(ring_color, ring_name, str(ring_position))) ring_sequence_element = ET.SubElement(ring_number_element, "sequence", attrib={"location" : ref_dir_list[ring]}) else: # Sort files by lowercase ref_dir_list.sort(key=lambda y: y.lower()) # The number of rings starts at 2 due to the GC Content and GC Skew ring_number = len(ref_dir_list) + 1 for ring in range(len(ref_dir_list)): # Select a color for the ring ring_color = ",".join([str(e) for e in colors_to_use[ring]]) # Define the name of the ring ring_name = os.path.basename(ref_dir_list[ring]).split("_")[0] # Create the xml elements ring_number_element = ET.SubElement(root, 'ring', ring_attributes(ring_color, ring_name, str(ring_number))) ring_sequence_element = ET.SubElement(ring_number_element, "sequence", attrib={"location" : ref_dir_list[ring]}) ring_number -= 1 return ring_number_element, ring_sequence_element ## Create special rings def create_special_ring_element(root): """ Create the 'special' ring element and its attributes. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. Returns: gc_content_location: ElementTree SubElement object containing the 'sequence' tag and its attributes gc_skew_location: ElementTree SubElement object containing the 'sequence' tag and its attributes """ # Create ring attributes gc_content_ring_attrs = ring_attributes('225,0,0', "GC Content", "0") gc_skew_ring_attrs = ring_attributes('225,0,0', "GC Skew", "1") # Add ring element to root gc_skew_ring = ET.SubElement(root, 'ring', attrib=gc_skew_ring_attrs) gc_content_ring = ET.SubElement(root, 'ring', attrib=gc_content_ring_attrs) # Add sequence element to ring gc_content_location = ET.SubElement(gc_content_ring, 'sequence', attrib={'location' : 'GC Content'}) gc_skew_location = ET.SubElement(gc_skew_ring, 'sequence', attrib={'location' : 'GC Skew'}) return gc_content_location, gc_skew_location def main(query_file, reference_directory, output_folder, output_xml, image_output_file, title, annotation_file, genes_of_interest, contig_order, blast_options, legend_position, image_format, height, width, java_memory, colormap): root = create_root_element(blast_options, legend_position, query_file, output_folder, image_output_file, title, image_format) cgview_settings = create_cgview_settings_element(root, height, width) brig_settings = create_brig_settings_element(root, java_memory) special = create_special_element(root) refdir = create_reference_directory_element(root, reference_directory) if annotation_file: create_annotation_ring(root, reference_directory, annotation_file, genes_of_interest, contig_order) rings = create_ring_element(root, reference_directory, colormap) special_ring = create_special_ring_element(root) write_xml(root, output_xml) print("\n File written to {}".format(output_xml)) def parse_arguments(): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-q', '--query', type=str, required=True, dest='query_file', help='Path to the query/reference FASTA file.') parser.add_argument('-rfd', '--ref_dir', type=str, required=True, dest='reference_directory', help='Path to the directory where the FASTA files to compare against the reference are located.') parser.add_argument('-od', '--out_dir', type=str, required=True, dest='output_folder', help='Path to the output directory for the results of BRIG.') parser.add_argument('-of', '--out_xml', type=str, required=True, dest='output_file', help='Path to the output of this script.') parser.add_argument('-oi', '--out_img', type=str, required=True, dest='image_output_file', help='Path to the output file of the resulting image of BRIG.') parser.add_argument('-t', '--title', type=str, required=True, dest='title', help='Title of the resulting image from BRIG.') parser.add_argument('-a', '--annotation', type=str, required=False, dest='annotation_file', default=False, help='File containing annotations for the reference genome. ' 'The annoation file can be a tab-delimited file (.tsv) or a Genbank format file (.gbk, .gb)') parser.add_argument('--genes', type=str, required=False, dest='genes_of_interest', default=[], help='File containing a list of specific genes (one gene per line) to search when a Genbank annotation file is provided. ') parser.add_argument('--contig_order', type=str, required=False, dest='contig_order', default=[], help='Tab-delimited file containing the order of the contigs when a Genbank (divided by contigs) annotation file is provided. ' 'Example: order contig ' '1 Contig8') parser.add_argument('-b', '--blast_options', type=str, required=False, dest="blast_options", default="-evalue 0.001 -num_threads 6", help='Options for running BLAST.') parser.add_argument('-l', '--legend_pos', type=str, required=False, dest="legend_position", default="middle-right", help='Positon of the legend on the resulting image.' 'The options available are upper, center or lower, ' 'paired with left, center or right') parser.add_argument('-if', '--image_format', type=str, required=False, dest="image_format", default="jpg", help='Format of the resulting image file.' 'The available options are: jpg, png, svg or svgz.') parser.add_argument('-ht', '--height', type=str, required=False, dest="height", default="3000", help='Height (in pixels) of the resulting image.') parser.add_argument('-wd', '--width', type=str, required=False, dest="width", default="3000", help='Width (in pixels) of the resulting image.') parser.add_argument('-jm', '--java_memory', type=str, required=False, dest="java_memory", default="1500", help='Amount of memory (in bytes) that Java is allowed to use for BRIG.') parser.add_argument('-cm', '--colormap', type=str, required=False, dest="colormap", default="viridis", help='Colormap from matplotlib to use for the color of the rings. ' 'The available options are: viridis, plasma, inferno, magma and cividis.' 'More options for colormaps at: ' 'https://matplotlib.org/users/colormaps.html') args = parser.parse_args() return [args.query_file, args.reference_directory, args.output_folder, args.output_file, args.image_output_file, args.title, args.annotation_file, args.genes_of_interest, args.contig_order, args.blast_options, args.legend_position, args.image_format, args.height, args.width, args.java_memory, args.colormap] if __name__ == '__main__': args = parse_arguments() main(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9], args[10], args[11], args[12], args[13], args[14], args[15])
TAMU-CPT/galaxy-tools
tools/genome_viz/brigaid.py
brigaid.py
py
36,126
python
en
code
5
github-code
6
[ { "api_name": "os.path.join", "line_number": 49, "usage_type": "call" }, { "api_name": "os.path", "line_number": 49, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 49, "usage_type": "call" }, { "api_name": "csv.DictReader", "line_number": 136, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 150, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 150, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 151, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 151, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 198, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 198, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 199, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 199, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 262, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 262, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 263, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 263, "usage_type": "name" }, { "api_name": "csv.DictReader", "line_number": 325, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 330, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 337, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 392, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 392, "usage_type": "name" }, { "api_name": "xml.dom.minidom.parseString", "line_number": 394, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 394, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 430, "usage_type": "call" }, { "api_name": "os.path", "line_number": 430, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 434, "usage_type": "call" }, { "api_name": "os.path", "line_number": 434, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 434, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 437, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 437, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 500, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 500, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 543, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 543, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 565, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 565, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 566, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 566, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 587, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 587, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 595, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 595, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 619, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 622, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 622, "usage_type": "name" }, { "api_name": "Bio.SeqIO.parse", "line_number": 625, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 625, "usage_type": "name" }, { "api_name": "Bio.SeqIO.parse", "line_number": 631, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 631, "usage_type": "name" }, { "api_name": "matplotlib.cm.get_cmap", "line_number": 663, "usage_type": "call" }, { "api_name": "matplotlib.cm", "line_number": 663, "usage_type": "name" }, { "api_name": "os.path.basename", "line_number": 677, "usage_type": "call" }, { "api_name": "os.path", "line_number": 677, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 681, "usage_type": "call" }, { "api_name": "os.path", "line_number": 681, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 697, "usage_type": "call" }, { "api_name": "os.path", "line_number": 697, "usage_type": "attribute" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 700, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 700, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 704, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 704, "usage_type": "name" }, { "api_name": "os.path.basename", "line_number": 721, "usage_type": "call" }, { "api_name": "os.path", "line_number": 721, "usage_type": "attribute" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 724, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 724, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 728, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 728, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 754, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 754, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 755, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 755, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 758, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 758, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.SubElement", "line_number": 759, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 759, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 793, "usage_type": "call" }, { "api_name": "argparse.RawDescriptionHelpFormatter", "line_number": 794, "usage_type": "attribute" } ]
71783932668
from setuptools import setup, find_packages def readme(): with open('README.rst', encoding='utf-8') as f: content = f.read() return content def get_version(): with open('VERSION', encoding='utf-8') as f: version = f.read() return version setup( name='thonny-quecpython', version=get_version(), description='quecpython programing kits for thonny', long_description=readme(), long_description_content_type='text/x-rst', python_requires='>=3.7', license="MIT License", author='dustin.wei', author_email='[email protected]', keywords=["QuecPython", "quecpython", "QuecPython Kits", "quecpython kits"], url='https://github.com/QuecPython/thonny-quecpython', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], platforms=["windows"], packages=find_packages(), package_data={ "thonnycontrib.quecpython.fw": [ "fw_config.json", "exes/aboot/*", "exes/blf_tools/*", "exes/NB/*", "exes/rda/*", ], }, install_requires=[ 'thonny>=4.1.1', 'Pypubsub>=4.0.3' ], )
wcache/thonny_quecpython
setup.py
setup.py
py
1,267
python
en
code
0
github-code
6
[ { "api_name": "setuptools.setup", "line_number": 16, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 34, "usage_type": "call" } ]
34398796086
from typing import List import docx from .IngestorInterface import IngestorInterface from .QuoteModel import QuoteModel class DocxIngestor(IngestorInterface): allowed_extensions = ['docx'] @classmethod def parse(cls, path: str) -> List[QuoteModel]: if not cls.can_ingest(path): raise Exception('Cannot Ingest Exception') quotes = [] doc = docx.Document(path) for para in doc.paragraphs: if para.text != "": parsed = para.text.split('-') parsed[0] = parsed[0].strip(' ').strip('"') parsed[1] = parsed[1].strip(' ') new_quote = QuoteModel(parsed[0], parsed[1]) quotes.append(new_quote) return quotes
KosziDrimi/Meme-Generator-project
QuoteEngine/DocxIngestor.py
DocxIngestor.py
py
800
python
en
code
0
github-code
6
[ { "api_name": "IngestorInterface.IngestorInterface", "line_number": 8, "usage_type": "name" }, { "api_name": "docx.Document", "line_number": 18, "usage_type": "call" }, { "api_name": "QuoteModel.QuoteModel", "line_number": 25, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 12, "usage_type": "name" }, { "api_name": "QuoteModel.QuoteModel", "line_number": 12, "usage_type": "name" } ]
38137944576
import dash from dash import html, dcc from dash.dependencies import Input, Output import plotly.graph_objs as go from plotly.subplots import make_subplots import pandas as pd # Load data df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv") # Create subplots fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05) # Add candlestick chart fig.add_trace(go.Candlestick(x=df['Date'], open=df['AAPL.Open'], high=df['AAPL.High'], low=df['AAPL.Low'], close=df['AAPL.Close'], name='Candlestick'), row=1, col=1) # Add volume chart fig.add_trace(go.Bar(x=df['Date'], y=df['AAPL.Volume'], name='Volume'), row=2, col=1) # Update layout fig.update_layout(height=600, title_text="Candlestick and Volume Chart") # Create Dash app app = dash.Dash(__name__) # Define dropdown options dropdown_options = [{'label': 'Hour', 'value': '1H'}, {'label': 'Day', 'value': '1D'}, {'label': 'Week', 'value': '1W'}, {'label': 'Month', 'value': '1M'}] # Define app layout app.layout = html.Div(children=[ html.Label('Select timeframe:'), dcc.Dropdown(id='timeframe-dropdown', options=dropdown_options, value='1H', clearable=False), dcc.Graph(id='graph', figure=fig), html.Br(), ]) # Define callback to update chart based on dropdown selection @app.callback(Output('graph', 'figure'), [Input('timeframe-dropdown', 'value')]) def update_chart(timeframe): # Filter data based on selected timeframe if timeframe == '1H': df_filtered = df[-252:] elif timeframe == '1D': df_filtered = df[-126:] elif timeframe == '1W': df_filtered = df[-63:] elif timeframe == '1M': df_filtered = df[-21:] # Create new chart based on filtered data fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05) fig.add_trace(go.Candlestick(x=df_filtered['Date'], open=df_filtered['AAPL.Open'], high=df_filtered['AAPL.High'], low=df_filtered['AAPL.Low'], close=df_filtered['AAPL.Close'], name='Candlestick'), row=1, col=1) fig.add_trace(go.Bar(x=df_filtered['Date'], y=df_filtered['AAPL.Volume'], name='Volume'), row=2, col=1) fig.update(layout_xaxis_rangeslider_visible=False) return fig # Run app if __name__ == '__main__': app.run_server(debug=True, port=5000)
TIIIIIIW/SOFTWARE-DEVELOPMENT-2
ML/Data/TestDash.py
TestDash.py
py
2,975
python
en
code
1
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 9, "usage_type": "call" }, { "api_name": "plotly.subplots.make_subplots", "line_number": 12, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Candlestick", "line_number": 15, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 15, "usage_type": "name" }, { "api_name": "plotly.graph_objs.Bar", "line_number": 24, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 24, "usage_type": "name" }, { "api_name": "dash.Dash", "line_number": 33, "usage_type": "call" }, { "api_name": "dash.html.Div", "line_number": 42, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 42, "usage_type": "name" }, { "api_name": "dash.html.Label", "line_number": 43, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 43, "usage_type": "name" }, { "api_name": "dash.dcc.Dropdown", "line_number": 44, "usage_type": "call" }, { "api_name": "dash.dcc", "line_number": 44, "usage_type": "name" }, { "api_name": "dash.dcc.Graph", "line_number": 45, "usage_type": "call" }, { "api_name": "dash.dcc", "line_number": 45, "usage_type": "name" }, { "api_name": "dash.html.Br", "line_number": 46, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 46, "usage_type": "name" }, { "api_name": "plotly.subplots.make_subplots", "line_number": 64, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Candlestick", "line_number": 65, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 65, "usage_type": "name" }, { "api_name": "plotly.graph_objs.Bar", "line_number": 72, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 72, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 50, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 51, "usage_type": "call" } ]
42242066819
from random import Random from torch.utils.data import DataLoader from torchvision import transforms, datasets class Partition: def __init__(self, data, index): self.data = data self.index = index def __len__(self): return len(self.index) def __getitem__(self, idx): data_idx = self.index[idx] return self.data[data_idx] class DataPartitioner: def __init__(self, data, sizes=[1], seed=1340): self.data = data self.partitions = [] rng = Random() rng.seed(seed) data_len = len(data) indexes = list(range(data_len)) rng.shuffle(indexes) for part in sizes: part_len = int(part * data_len) self.partitions.append(indexes[0: part_len]) indexes = indexes[part_len:] def use(self, rank): return Partition(self.data, self.partitions[rank]) def get_mnist(data_dir, rank, size): trans = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(0.1307, 0.3081), ]) batch_size = 128 num_workers = 8 download = True dataset_train = datasets.MNIST(root=data_dir, train=False, transform=trans, download=download) batch_size_part = int(batch_size / size) partition_sizes = [1.0 / size for _ in range(size)] paritition = DataPartitioner(dataset_train, partition_sizes) paritition = paritition.use(rank) train_data = DataLoader(dataset=paritition, batch_size=batch_size_part, num_workers=num_workers, shuffle=True) print('data shape', next(iter(train_data))[0].shape) return train_data if __name__ == '__main__': data = get_mnist('~/data/', 0, 3)
DragonChen-TW/torch_DDP
data_partition.py
data_partition.py
py
1,832
python
en
code
1
github-code
6
[ { "api_name": "random.Random", "line_number": 22, "usage_type": "call" }, { "api_name": "torchvision.transforms.Compose", "line_number": 38, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 38, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 39, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 39, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 40, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 40, "usage_type": "name" }, { "api_name": "torchvision.datasets.MNIST", "line_number": 47, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 47, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 56, "usage_type": "call" } ]
12138793296
from dataclasses import fields from pyexpat import model import django from django import forms from django.db.models import fields from django.contrib.auth.forms import UserCreationForm,AuthenticationForm from django.forms import ModelForm from .models import * class CustomUserCreationForm(UserCreationForm): class Meta: model=Userreg fields=('username','email','phoneno','password1','password2') def clean(self): val = super(CustomUserCreationForm, self).clean() email = val.get("email") if email == "": self.add_error('email','this field is required') return val class EditUserForm(forms.ModelForm): class Meta: model=Userreg fields=('username','email','phoneno') class Productform(ModelForm): class Meta: model = Product fields = ('product_name','description','category','mrp_price','stocks','product_image1','product_image2','product_image3','product_image4','descriptionone','descriptiontwo','descriptionthree','descriptionfour') labels = { 'product_name':'Product name', 'description' : 'Description', 'descriptionone' : 'Specification 1', 'descriptiontwo' : 'Specification 2', 'descriptionthree' : 'Specification 3', 'descriptionfour' : 'Specification 4', 'category' : 'Category', 'mrp_price' : 'Price', 'stocks' : 'InStock', 'product_image1' : 'Cover Image 1', 'product_image2' : 'Cover Image 2', 'product_image3' : 'Cover Image 3', 'product_image4' : 'Cover Image 4', } class CategoryForm(forms.ModelForm): class Meta: model=Category fields = '__all__' class EditCategoryForm(forms.ModelForm): class Meta: model=Category fields = '__all__' class AddressForm(ModelForm): class Meta: model = Address fields = ('type','first_name','last_name','mobile','email','address_lane_1','address_lane_2','city','district','state','country','pincode') labels = { 'type' : 'Address Type', 'first_name':'First name', 'last_name' : 'Last name', 'mobile' : 'Mobile', 'address_lane_1' : 'Address Lane 1', 'address_lane_2' : 'Address Lane 1', 'city' : 'City', 'state' : 'State', 'country' : 'Country', 'pincode' : 'Pincode', } class DateInput(forms.DateTimeInput): input_type = 'date' # class CouponForm(ModelForm): # class Meta: # model=Coupon # fields = ('coupon_title','coupon_code','coupon_limit','coupn_offer') # labels = { # 'coupon_title' : 'Coupon Title', # 'coupon_code':'Coupon Code', # 'coupon_limit' : 'Coupon Limit', # 'coupn_offer' : 'Coupon Offer Price', # } class CouponApplyForm(forms.ModelForm): class Meta: model = CouponCode fields = ['code','valid_from','valid_to','discount','active'] widgets = { 'valid_from': DateInput(), 'valid_to':DateInput(), } def __init__(self,*args,**kwargs): super(CouponApplyForm, self).__init__(*args, **kwargs) class EditCouponForm(forms.ModelForm): class Meta: model=CouponCode fields=('code','valid_from','valid_to','discount','active') class ProductOfferForm(forms.ModelForm): class Meta: model = ProductOffer fields = ['code','product_id', 'valid_from','valid_to','discount','is_active'] widgets = { 'valid_from': DateInput(), 'valid_to':DateInput(), } def __init__(self,*args,**kwargs): super(ProductOfferForm, self).__init__(*args, **kwargs) class CategoryOfferForm(forms.ModelForm): class Meta: model = CategoryOffer fields = ['code','category_id', 'valid_from','valid_to','discount','is_active'] widgets = { 'valid_from': DateInput(), 'valid_to': DateInput(), } def __init__(self,*args,**kwargs): super(CategoryOfferForm, self).__init__(*args, **kwargs) class EditCouponCatForm(forms.ModelForm): class Meta: model=CategoryOffer fields=('code','category_id', 'valid_from','valid_to','discount','is_active') class EditProductOffer(forms.ModelForm): class Meta: model=ProductOffer fields=('code','product_id', 'valid_from','valid_to','discount','is_active')
baadhira/shopify-ecommerce
adminapp/forms.py
forms.py
py
4,635
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.forms.UserCreationForm", "line_number": 10, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 12, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 13, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 23, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 23, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 26, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 28, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 31, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 48, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 48, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 51, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 52, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 52, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 54, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 55, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 58, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 60, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 61, "usage_type": "name" }, { "api_name": "django.forms.DateTimeInput", "line_number": 76, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 76, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 92, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 92, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 94, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 95, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 103, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 103, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 105, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 106, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 110, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 110, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 112, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 113, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 122, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 122, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 124, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 125, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 134, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 134, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 136, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 137, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 138, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 138, "usage_type": "name" }, { "api_name": "pyexpat.model", "line_number": 140, "usage_type": "name" }, { "api_name": "django.db.models.fields", "line_number": 141, "usage_type": "name" } ]
27615702847
""" Get 10 titles of the most popular movies/series etc. by each genre. Получите 10 наименований самых популярных фильмов/сериалов и т. д. в каждом жанре. title.basics.tsv.gz title.ratings.tsv.gz """ from pyspark import SparkConf from pyspark.sql import SparkSession import pyspark.sql.types as t import pyspark.sql.functions as f from pyspark.sql import Window def task8(): spark_session = (SparkSession.builder .master("local") .appName("task app") .config(conf=SparkConf()) .getOrCreate()) schema_title_basics = t.StructType([ t.StructField("tconst", t.StringType(), nullable=True), t.StructField("titleType", t.StringType(), nullable=True), t.StructField("primaryTitle", t.StringType(), nullable=True), t.StructField("originalTitle", t.StringType(), nullable=True), t.StructField("isAdult", t.StringType(), nullable=True), t.StructField("startYear", t.IntegerType(), nullable=True), t.StructField("endYear", t.IntegerType(), nullable=True), t.StructField("runtimeMinutes", t.IntegerType(), nullable=True), t.StructField("genres", t.StringType(), nullable=True), ]) schema_ratings_basics = t.StructType([ t.StructField("tconst", t.StringType(), nullable=True), t.StructField("averageRating", t.DoubleType(), nullable=True), t.StructField("numVotes", t.IntegerType(), nullable=True) ]) file_read_basics = r'.\Data\input\title.basics.tsv.gz' file_read_ratings = r'.\Data\input\title.ratings.tsv.gz' from_csv_basics_df = spark_session.read.csv( file_read_basics, header=True, nullValue='null', sep=r'\t', schema=schema_title_basics) from_csv_ratings_df = spark_session.read.csv( file_read_ratings, header=True, nullValue='null', sep=r'\t', schema=schema_ratings_basics) temp_df1 = from_csv_basics_df.withColumn("genres", f.explode(f.split(f.col("genres"), ","))) temp_df1 = temp_df1.select("tconst", "titleType", "primaryTitle", "genres") temp_df2 = from_csv_ratings_df.select("tconst", "averageRating") temp_df3 = temp_df1.join(temp_df2, "tconst") window = (Window.orderBy(f.desc("genres"), f.desc("averageRating")).partitionBy("genres")) from_csv_df_task8 = temp_df3.withColumn("Rating_genre", f.row_number().over(window)).where(f.col("Rating_genre") <= 10) #from_csv_df_task8.show(100) file_write = r'.\Data\output\task08' from_csv_df_task8.write.csv(file_write, header=True, mode="overwrite") return 0
Tetyana83/spark
task8.py
task8.py
py
2,591
python
en
code
0
github-code
6
[ { "api_name": "pyspark.sql.SparkSession.builder.master", "line_number": 12, "usage_type": "call" }, { "api_name": "pyspark.sql.SparkSession.builder", "line_number": 12, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession", "line_number": 12, "usage_type": "name" }, { "api_name": "pyspark.SparkConf", "line_number": 15, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 17, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 17, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 18, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 18, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 18, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 19, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 19, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 19, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 20, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 20, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 20, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 21, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 21, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 21, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 22, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 22, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 22, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 23, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 23, "usage_type": "name" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 23, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 24, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 24, "usage_type": "name" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 24, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 25, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 25, "usage_type": "name" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 25, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 26, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 26, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 26, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 28, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 28, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 29, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 29, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 29, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 30, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 30, "usage_type": "name" }, { "api_name": "pyspark.sql.types.DoubleType", "line_number": 30, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 31, "usage_type": "call" }, { "api_name": "pyspark.sql.types", "line_number": 31, "usage_type": "name" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 31, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.explode", "line_number": 39, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 39, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.split", "line_number": 39, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.col", "line_number": 39, "usage_type": "call" }, { "api_name": "pyspark.sql.Window.orderBy", "line_number": 43, "usage_type": "call" }, { "api_name": "pyspark.sql.Window", "line_number": 43, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.desc", "line_number": 43, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 43, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.row_number", "line_number": 44, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 44, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.col", "line_number": 44, "usage_type": "call" } ]
36551632681
import matplotlib.pyplot as plt from DataHandler import DataHandler from LinearClassifier import LinearClassifier if __name__ == '__main__': #generating a normal distributed data (1000 samples per class) data_handler = DataHandler() class0Dataset = data_handler.get2DGaussian(1000, [-2, -2]) class1Dataset = data_handler.get2DGaussian(1000, [2, 2]) #labling the data class0Dataset = data_handler.label(class0Dataset, 0) class1Dataset = data_handler.label(class1Dataset, 1) #shuffling the data dataset = data_handler.shuffle(class0Dataset + class1Dataset) ############################################################### classifier = LinearClassifier() print("initial weights : ", classifier.weights) print("initial bais : ", classifier.bais) actual = [row[-1] for row in dataset] pridected = [classifier.predict(row) for row in dataset] print("Accuracy before training : %.2f%%\n" % data_handler.accuracy(actual, pridected)) classifier.plot() plt.show() learning_rate = 0.01 n_folds = 5 n_epoch = 2 scores = data_handler.evaluate_model(dataset, classifier, n_folds, learning_rate, n_epoch) print('Scores: %s' % scores) print('Average Accuracy: %.2f%%' % (sum(scores) / float(len(scores)))) print("final weights : ", classifier.weights) print("final bais : ", classifier.bais) # plot results x, y, label = zip(*class0Dataset) X, Y, label = zip(*class1Dataset) plt.plot(x, y, 'x') plt.plot(X, Y, 'x') classifier.plot() plt.show()
Mustapha-Belkacim/Linear-classifier
main.py
main.py
py
1,623
python
en
code
0
github-code
6
[ { "api_name": "DataHandler.DataHandler", "line_number": 7, "usage_type": "call" }, { "api_name": "LinearClassifier.LinearClassifier", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" } ]
12091024325
from typing import List, Iterator import torch from torch.utils.data.sampler import Sampler from nltk import Tree from nltk.tokenize.treebank import TreebankWordTokenizer class TokenizedLengthSampler(Sampler[List[int]]): """ PyTorch DataLoader - compatible sampler class that batchify sentences with the most similar lengths for maximum efficiency. """ def __init__(self, data_source: List[str], batch_size: int, seed: int): self.data_source = data_source self.length = len(data_source) self.batch_size = batch_size tokenize = TreebankWordTokenizer().tokenize seq_lengths = [len(tokenize(sent)) for sent in data_source] indices = list(range(len(data_source))) indices = sorted(indices, key=lambda i: seq_lengths[i]) batches = [] if self.length % self.batch_size != 0 : batches.append(indices[:self.length % self.batch_size]) for start in range(self.length % self.batch_size, self.length, batch_size): end = start + batch_size batches.append(indices[start:end]) self.length_batches = len(batches) self.batches = [batches[i] for i in torch.randperm(n=self.length_batches, dtype=torch.long).tolist()] self.seq_lengths = seq_lengths def __len__(self): return self.length_batches def __iter__(self) -> Iterator[List[int]]: for batch in self.batches: yield batch
jinulee-v/bert_diora
bert_diora/utils.py
utils.py
py
1,470
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.sampler.Sampler", "line_number": 9, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 9, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 14, "usage_type": "name" }, { "api_name": "nltk.tokenize.treebank.TreebankWordTokenizer", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.randperm", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 32, "usage_type": "attribute" }, { "api_name": "typing.Iterator", "line_number": 38, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 38, "usage_type": "name" } ]
75137098747
from django.contrib.auth.backends import ModelBackend from django.contrib.auth.models import Permission from .models import Organization, OrganizationUser class OrganizationBackend(ModelBackend): supports_object_permissions = True def authenticate(self, organization=None, username=None, password=None): if organization is None: return None try: organization = Organization.objects.get(code__iexact=organization) except Organization.DoesNotExist: return None try: user = OrganizationUser.objects.get(organization=organization, username__iexact=username, user__is_active=True) if user.check_password(password): return user except OrganizationUser.DoesNotExist: return None def _create_permission_set(self, perms=None): """ Expects a queryset of permissions, returns a formatted set. """ if perms is None: return set() if isinstance(perms, (list, tuple)): perms = [(perm.content_type.app_label, perm.codename) for perm in perms] else: perms = perms.values_list('content_type__app_label', 'codename').order_by() return set(['%s.%s' % (ct, name) for ct, name in perms]) def get_group_permissions(self, user_obj, obj=None): """ Returns a set of all permission strings that this user has through his/her roles for the given object. We accomplish this by pulling the set of all available permissions, then checking the object. A superuser immediately gets all of the available permissions, and a super role gets all of their super role permissions. The supplied object can be None, an `Organization` object, or an object with an organization attribute. If the object is None, then this function returns all permissions that this user has available, regardless of object. This facilitates situations where you want to limit functionality based off of whether or not a permission exists at all. If the object is an `Organization` object, we only return permissions granted via SuperRoles and Roles the user is a member of, that are part of the supplied organization. If the supplied object has an `organization` attribute (or an _ORGANIZATION_ATTRIBUTE attribute with the name of an actual attribute that returns an `Organization` object), then the returned permissions are all permissions granted via SuperRoles, as well as permissions granted from Roles that the user is a member of, that are part of the organization that owns the object. Finally, if an object is supplied, but it is not an `Organization` object, nor does it have an attribute that points to an `Organization` object, then return all available permissions (as if the supplied object was None) """ # superusers get all permissions, like usual if user_obj.is_superuser: perms = Permission.objects.all() return self._create_permission_set(perms) # if the user is not an OrganizationUser, they get no permissions if not isinstance(user_obj, OrganizationUser): return set() # if the user is not in any roles, they get no permissions if not any([user_obj.super_roles.count(), user_obj.roles.count()]): return set() # at this point, they should have some permissions # start off with the set of super role permissions perms = Permission.objects.filter(superrole__organizationuser=user_obj) # next, get the set of permissions provided by the regular roles if isinstance(obj, Organization): # if the supplied object is an `Organization` object object_org = obj else: # check the object's organization attname = getattr(obj, '_ORGANIZATION_ATTRIBUTE', 'organization') # if no object was passed in, or the object doesn't have an # organization attribute, include all permissions from all roles if obj is None or not hasattr(obj, attname): roles = user_obj.roles.all() perms = perms | Permission.objects.filter(role__in=roles) # done calculating at this point, return early return self._create_permission_set(perms) # At this point, we know the object is not None and the object # has an organization attribute, so fetch the value of the # organization object_org = getattr(obj, attname, None) # If the value of the organization attribute is None, then return # the currently collected permissions if object_org is None: return self._create_permission_set(perms) # Finally, collect the permissions this user has on this object, based # off of the set of organizations they are a member of # If the user is not a member of the organization attached to this # object, then return the collected permissions if object_org not in user_obj.get_all_organizations(): return self._create_permission_set(perms) # The user is in the organization that owns this object, so collect # all of the permissions this user has for this organization roles = user_obj.roles.filter(organization=object_org) perms = perms | Permission.objects.filter(role__in=roles) return self._create_permission_set(perms) def get_all_permissions(self, user_obj, obj=None): if user_obj.is_anonymous(): return set() # we don't support user permissions return self.get_group_permissions(user_obj, obj=obj) def has_perm(self, user_obj, perm, obj=None): if not user_obj.is_active: return False return perm in self.get_all_permissions(user_obj, obj=obj) def has_module_perms(self, user_obj, app_label, obj=None): if not user_obj.is_active: return False for perm in self.get_all_permissions(user_obj, obj=obj): if perm[:perm.index('.')] == app_label: return True return False def get_user(self, user_id): try: return OrganizationUser.objects.get(pk=user_id) except OrganizationUser.DoesNotExist: return None
avidal/django-organizations
organizations/backends.py
backends.py
py
6,718
python
en
code
1
github-code
6
[ { "api_name": "django.contrib.auth.backends.ModelBackend", "line_number": 7, "usage_type": "name" }, { "api_name": "models.Organization.objects.get", "line_number": 17, "usage_type": "call" }, { "api_name": "models.Organization.objects", "line_number": 17, "usage_type": "attribute" }, { "api_name": "models.Organization", "line_number": 17, "usage_type": "name" }, { "api_name": "models.Organization.DoesNotExist", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.Organization", "line_number": 18, "usage_type": "name" }, { "api_name": "models.OrganizationUser.objects.get", "line_number": 22, "usage_type": "call" }, { "api_name": "models.OrganizationUser.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "models.OrganizationUser", "line_number": 22, "usage_type": "name" }, { "api_name": "models.OrganizationUser.DoesNotExist", "line_number": 28, "usage_type": "attribute" }, { "api_name": "models.OrganizationUser", "line_number": 28, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.Permission.objects.all", "line_number": 86, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.Permission.objects", "line_number": 86, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.Permission", "line_number": 86, "usage_type": "name" }, { "api_name": "models.OrganizationUser", "line_number": 90, "usage_type": "argument" }, { "api_name": "django.contrib.auth.models.Permission.objects.filter", "line_number": 100, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.Permission.objects", "line_number": 100, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.Permission", "line_number": 100, "usage_type": "name" }, { "api_name": "models.Organization", "line_number": 104, "usage_type": "argument" }, { "api_name": "django.contrib.auth.models.Permission.objects.filter", "line_number": 115, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.Permission.objects", "line_number": 115, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.Permission", "line_number": 115, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.Permission.objects.filter", "line_number": 141, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.Permission.objects", "line_number": 141, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.Permission", "line_number": 141, "usage_type": "name" }, { "api_name": "models.OrganizationUser.objects.get", "line_number": 170, "usage_type": "call" }, { "api_name": "models.OrganizationUser.objects", "line_number": 170, "usage_type": "attribute" }, { "api_name": "models.OrganizationUser", "line_number": 170, "usage_type": "name" }, { "api_name": "models.OrganizationUser.DoesNotExist", "line_number": 171, "usage_type": "attribute" }, { "api_name": "models.OrganizationUser", "line_number": 171, "usage_type": "name" } ]
70384349309
import numpy as np import scipy import cv2 import matplotlib.pyplot as plt from matplotlib.colors import LightSource def rotate_and_crop(arr, ang): """Array arr to be rotated by ang degrees and cropped afterwards""" arr_rot = scipy.ndimage.rotate(arr, ang, reshape=True, order=0) shift_up = np.ceil(np.arcsin(abs(ang) / 360 * 2 * np.pi) * arr.shape[1]) shift_right = np.ceil(np.arcsin(abs(ang) / 360 * 2 * np.pi) * arr.shape[0]) arr_crop = arr_rot[ int(shift_up) : arr_rot.shape[0] - int(shift_up), int(shift_right) : arr_rot.shape[1] - int(shift_right), ] return arr_crop def contourf_to_array(cs, nbpixels_x, nbpixels_y, scale_x, scale_y): """Draws filled contours from contourf or tricontourf cs on output array of size (nbpixels_x, nbpixels_y)""" image = np.zeros((nbpixels_x, nbpixels_y)) - 5 for i, collection in enumerate(cs.collections): z = cs.levels[i] # get contour levels from cs for path in collection.get_paths(): verts = ( path.to_polygons() ) # get vertices of current contour level (is a list of arrays) for v in verts: # rescale vertices to image size v[:, 0] = ( (v[:, 0] - np.min(scale_x)) / (np.max(scale_x) - np.min(scale_x)) * nbpixels_y ) v[:, 1] = ( (v[:, 1] - np.min(scale_y)) / (np.max(scale_y) - np.min(scale_y)) * nbpixels_x ) poly = np.array( [v], dtype=np.int32 ) # dtype integer is necessary for the next instruction cv2.fillPoly(image, poly, z) return image def contourf_to_array_3d(cs, nbpixels_x, nbpixels_y, scale_x, scale_y, levels): res = np.zeros((nbpixels_x, nbpixels_y, cs.shape[-1])) - 5 for i in range(res.shape[-1]): cf = plt.contourf(scale_x, scale_y, cs[:, :, i], levels=levels) res[:, :, i] = np.flip( contourf_to_array(cf, nbpixels_x, nbpixels_y, scale_x, scale_y), axis=0 ) res[:, :, i][np.where(res[:, :, i] < -4)] = np.nan plt.close("all") return res def create_bounds(): bounds_k = { 'x': { 'min': 137089.2373932857299224, 'max': 168249.9520578108495101, }, 'y': { 'min': 589482.3877100050449371, 'max': 610702.8749795859912410, }, } bounds_g = { 'x': { 'min': 129971.5049754020292312, 'max': 170784.9834783510013949, }, 'y': { 'min': 584191.5390384565107524, 'max': 611985.5710535547696054, }, } for key, value in bounds_k.items(): bounds_k[key]['delta'] = ((bounds_k[key]['max'] - bounds_k[key]['min']) / (8.94 / 10.22) - (bounds_k[key]['max'] - bounds_k[key]['min'])) / 2 bounds_g[key]['delta'] = ((bounds_g[key]['max'] - bounds_g[key]['min']) / (8.94 / 10.22) - (bounds_g[key]['max'] - bounds_g[key]['min'])) / 2 bounds_k[key]['min'] -= bounds_k[key]['delta'] bounds_k[key]['max'] += bounds_k[key]['delta'] bounds_g[key]['min'] -= bounds_g[key]['delta'] bounds_g[key]['max'] += bounds_g[key]['delta'] return bounds_k, bounds_g def get_bathymetry_extent(ds, bounds): print(np.where(ds.x.values >= bounds['x']['min'])[0].min()) x_index_min = np.where(ds.x.values >= bounds['x']['min'])[0].min() - 1 x_index_max = np.where(ds.x.values >= bounds['x']['max'])[0].min() y_index_min = np.where(ds.y.values >= bounds['y']['min'])[0].max() + 1 y_index_max = np.where(ds.y.values >= bounds['y']['max'])[0].max() extent = (x_index_min, x_index_max, y_index_min, y_index_max) return extent def prep_bathymetry_data(ds, extent): x_b, y_b = np.array(ds.x[extent[0]:extent[1]]), np.array(ds.y[extent[3]:extent[2]]) bodem = np.array(ds[0, extent[3]:extent[2], extent[0]:extent[1]]) bodem[np.where(bodem == -9999)] = -43.8 return x_b, y_b, bodem def get_conc_extent(ds, x_b, y_b): x_min = np.where(x_b >= ds.x.values.min())[0].min() - 1 x_max = np.where(x_b <= ds.x.values.max())[0].max() + 1 y_min = np.where(y_b >= ds.y.values.min())[0].max() + 1 y_max = np.where(y_b <= ds.y.values.max())[0].min() - 1 extent = (x_min, x_max, y_min, y_max) return extent def rescale_and_fit_ds(ds, ds_bounds, rescale_size1, rescale_size2, axis=0): """ Rescales dataset ds to fit over the satellite image with size rescale_size2 It also fits the dataset values such that the x and y bounds of the dataset are placed on the right positions over the satellite image Input: ds - dataset to rescale and fit ds_bounds - indices of the bounds of the bathymetry, corresponding to the ds bounds rescale_size1 - shape of the bathymetry rescale_size2 - shape of the satellite image axis - axis of ds over which we want to rescale and fit Output: ds_rescaled - dataset with known values on the right positions over the satellite and nan's everywhere else """ xmin, ymin = ds_bounds[0] xmax, ymax = ds_bounds[1] ds_sub = np.zeros(rescale_size1) ds_sub[:] = np.nan for i in range(ds.shape[axis]): ds_inter = cv2.resize(ds[i, :, :], dsize=(xmax - xmin, ymin - ymax), interpolation=cv2.INTER_CUBIC) ds_sub[ymax:ymin, xmin:xmax] = ds_inter ds_sub2 = np.expand_dims(cv2.resize(ds_sub, dsize=(rescale_size2[1], rescale_size2[0]), interpolation=cv2.INTER_CUBIC), axis=axis) if i == 0: ds_rescaled = ds_sub2 else: ds_rescaled = np.concatenate([ds_rescaled, ds_sub2], axis=axis) return ds_rescaled def create_shaded_image(sat, bodem, shape): ls = LightSource(azdeg=315, altdeg=45) # Create shade using lightsource rgb = ls.hillshade(bodem, vert_exag=5, dx=20, dy=20) # Scale satellite image to bathymetry shapes sat_scaled = cv2.resize(sat, dsize=(bodem.shape[1], bodem.shape[0]), interpolation=cv2.INTER_CUBIC).astype('float64') # Add shade to scaled image img_shade = ls.shade_rgb(sat_scaled, bodem, vert_exag=5, blend_mode='soft') img_shade = cv2.resize(img_shade, dsize=shape, interpolation=cv2.INTER_CUBIC).astype('float64') return img_shade
openearth/vcl
vcl/data.py
data.py
py
6,478
python
en
code
2
github-code
6
[ { "api_name": "scipy.ndimage.rotate", "line_number": 9, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.ceil", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.arcsin", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.ceil", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.arcsin", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 12, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 45, "usage_type": "attribute" }, { "api_name": "cv2.fillPoly", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.contourf", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "numpy.flip", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 57, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.close", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.where", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 111, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 137, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 139, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 139, "usage_type": "attribute" }, { "api_name": "numpy.expand_dims", "line_number": 141, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 141, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 141, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 145, "usage_type": "call" }, { "api_name": "matplotlib.colors.LightSource", "line_number": 149, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 154, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 154, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 158, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 158, "usage_type": "attribute" } ]
29476131174
#! /usr/bin/env python # -*- coding: utf-8 -*- """Fine tune CTC network (CSJ corpus, for dialog).""" import os import sys import time import tensorflow as tf from setproctitle import setproctitle import yaml import shutil import tensorflow.contrib.slim as slim sys.path.append('../') sys.path.append('../../') sys.path.append('../../../') from data.read_dataset_ctc import DataSet from data.read_dataset_ctc_dialog import DataSet as DataSetDialog from models.ctc.load_model import load from evaluation.eval_ctc import do_eval_per, do_eval_cer from evaluation.eval_ctc_dialog import do_eval_fmeasure from utils.data.sparsetensor import list2sparsetensor, sparsetensor2list from utils.util import mkdir, join from utils.parameter import count_total_parameters from utils.loss import save_loss from utils.labels.phone import num2phone from utils.labels.character import num2char def do_fine_tune(network, optimizer, learning_rate, batch_size, epoch_num, label_type, num_stack, num_skip, social_signal_type, trained_model_path, restore_epoch=None): """Run training. Args: network: network to train optimizer: adam or adadelta or rmsprop learning_rate: initial learning rate batch_size: size of mini batch epoch_num: epoch num to train label_type: phone or character num_stack: int, the number of frames to stack num_skip: int, the number of frames to skip social_signal_type: insert or insert2 or insert3 or remove trained_model_path: path to the pre-trained model restore_epoch: epoch of the model to restore """ # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(): # Read dataset train_data = DataSetDialog(data_type='train', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=True) dev_data = DataSetDialog(data_type='dev', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=False) test_data = DataSetDialog(data_type='test', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=False) # TODO:作る # eval1_data = DataSet(data_type='eval1', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # eval2_data = DataSet(data_type='eval2', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # eval3_data = DataSet(data_type='eval3', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # Add to the graph each operation loss_op = network.loss() train_op = network.train(optimizer=optimizer, learning_rate_init=learning_rate, is_scheduled=False) decode_op = network.decoder(decode_type='beam_search', beam_width=20) per_op = network.ler(decode_op) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(network.summaries_train) summary_dev = tf.summary.merge(network.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000))) csv_steps = [] csv_train_loss = [] csv_dev_loss = [] # Create a session for running operation on the graph with tf.Session() as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter( network.model_dir, sess.graph) # Initialize parameters sess.run(init_op) # Restore pre-trained model's parameters ckpt = tf.train.get_checkpoint_state(trained_model_path) if ckpt: # Use last saved model model_path = ckpt.model_checkpoint_path if restore_epoch is not None: model_path = model_path.split('/')[:-1] model_path = '/'.join(model_path) + \ '/model.ckpt-' + str(restore_epoch) else: raise ValueError('There are not any checkpoints.') exclude = ['output/Variable', 'output/Variable_1'] variables_to_restore = slim.get_variables_to_restore( exclude=exclude) restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, model_path) print("Model restored: " + model_path) # Train model iter_per_epoch = int(train_data.data_num / batch_size) if (train_data.data_num / batch_size) != int(train_data.data_num / batch_size): iter_per_epoch += 1 max_steps = iter_per_epoch * epoch_num start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() fmean_best = 0 for step in range(max_steps): # Create feed dictionary for next mini batch (train) inputs, labels, seq_len, _ = train_data.next_batch( batch_size=batch_size) indices, values, dense_shape = list2sparsetensor(labels) feed_dict_train = { network.inputs_pl: inputs, network.label_indices_pl: indices, network.label_values_pl: values, network.label_shape_pl: dense_shape, network.seq_len_pl: seq_len, network.keep_prob_input_pl: network.dropout_ratio_input, network.keep_prob_hidden_pl: network.dropout_ratio_hidden, network.lr_pl: learning_rate } # Create feed dictionary for next mini batch (dev) inputs, labels, seq_len, _ = dev_data.next_batch( batch_size=batch_size) indices, values, dense_shape = list2sparsetensor(labels) feed_dict_dev = { network.inputs_pl: inputs, network.label_indices_pl: indices, network.label_values_pl: values, network.label_shape_pl: dense_shape, network.seq_len_pl: seq_len, network.keep_prob_input_pl: network.dropout_ratio_input, network.keep_prob_hidden_pl: network.dropout_ratio_hidden } # Update parameters & compute loss _, loss_train = sess.run( [train_op, loss_op], feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_train_loss.append(loss_train) csv_dev_loss.append(loss_dev) if (step + 1) % 10 == 0: # Change feed dict for evaluation feed_dict_train[network.keep_prob_input_pl] = 1.0 feed_dict_train[network.keep_prob_hidden_pl] = 1.0 feed_dict_dev[network.keep_prob_input_pl] = 1.0 feed_dict_dev[network.keep_prob_hidden_pl] = 1.0 # Compute accuracy & \update event file ler_train, summary_str_train = sess.run([per_op, summary_train], feed_dict=feed_dict_train) ler_dev, summary_str_dev, labels_st = sess.run([per_op, summary_dev, decode_op], feed_dict=feed_dict_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() # Decode # try: # labels_pred = sparsetensor2list(labels_st, batch_size) # except: # labels_pred = [[0] * batch_size] duration_step = time.time() - start_time_step print('Step %d: loss = %.3f (%.3f) / ler = %.4f (%.4f) (%.3f min)' % (step + 1, loss_train, loss_dev, ler_train, ler_dev, duration_step / 60)) # if label_type == 'character': # if social_signal_type == 'remove': # map_file_path = '../evaluation/mapping_files/ctc/char2num_remove.txt' # else: # map_file_path = '../evaluation/mapping_files/ctc/char2num_' + \ # social_signal_type + '.txt' # print('True: %s' % num2char(labels[-1], map_file_path)) # print('Pred: %s' % num2char( # labels_pred[-1], map_file_path)) # elif label_type == 'phone': # if social_signal_type == 'remove': # map_file_path = '../evaluation/mapping_files/ctc/phone2num_remove.txt' # else: # map_file_path = '../evaluation/mapping_files/ctc/phone2num_' + \ # social_signal_type + '.txt' # print('True: %s' % num2phone( # labels[-1], map_file_path)) # print('Pred: %s' % num2phone( # labels_pred[-1], map_file_path)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps: duration_epoch = time.time() - start_time_epoch epoch = (step + 1) // iter_per_epoch print('-----EPOCH:%d (%.3f min)-----' % (epoch, duration_epoch / 60)) # Save model (check point) checkpoint_file = os.path.join( network.model_dir, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=epoch) print("Model saved in file: %s" % save_path) start_time_eval = time.time() if label_type == 'character': print('■Dev Evaluation:■') fmean_epoch = do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=dev_data, label_type=label_type, social_signal_type=social_signal_type) # error_epoch = do_eval_cer(session=sess, # decode_op=decode_op, # network=network, # dataset=dev_data, # eval_batch_size=batch_size) if fmean_epoch > fmean_best: fmean_best = fmean_epoch print('■■■ ↑Best Score (F-measure)↑ ■■■') do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=test_data, label_type=label_type, social_signal_type=social_signal_type) # print('■eval1 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval1_data, # eval_batch_size=batch_size) # print('■eval2 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval2_data, # eval_batch_size=batch_size) # print('■eval3 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval3_data, # eval_batch_size=batch_size) else: print('■Dev Evaluation:■') fmean_epoch = do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=dev_data, label_type=label_type, social_signal_type=social_signal_type) # error_epoch = do_eval_per(session=sess, # per_op=per_op, # network=network, # dataset=dev_data, # eval_batch_size=batch_size) if fmean_epoch < fmean_best: fmean_best = fmean_epoch print('■■■ ↑Best Score (F-measure)↑ ■■■') do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=test_data, label_type=label_type, social_signal_type=social_signal_type) # print('■eval1 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval1_data, # eval_batch_size=batch_size) # print('■eval2 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval2_data, # eval_batch_size=batch_size) # print('■eval3 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval3_data, # eval_batch_size=batch_size) duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) start_time_epoch = time.time() start_time_step = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Save train & dev loss save_loss(csv_steps, csv_train_loss, csv_dev_loss, save_path=network.model_dir) # Training was finished correctly with open(os.path.join(network.model_dir, 'complete.txt'), 'w') as f: f.write('') def main(config_path, trained_model_path): restore_epoch = None # if None, restore the final epoch # Read a config file (.yml) with open(config_path, "r") as f: config = yaml.load(f) corpus = config['corpus'] feature = config['feature'] param = config['param'] if corpus['label_type'] == 'phone': if corpus['social_signal_type'] in ['insert', 'insert3']: output_size = 41 elif corpus['social_signal_type'] == 'insert2': output_size = 44 elif corpus['social_signal_type'] == 'remove': output_size = 38 elif corpus['label_type'] == 'character': if corpus['social_signal_type'] in ['insert', 'insert3']: output_size = 150 elif corpus['social_signal_type'] == 'insert2': output_size = 153 elif corpus['social_signal_type'] == 'remove': output_size = 147 # Load model CTCModel = load(model_type=config['model_name']) network = CTCModel(batch_size=param['batch_size'], input_size=feature['input_size'] * feature['num_stack'], num_cell=param['num_cell'], num_layer=param['num_layer'], output_size=output_size, clip_gradients=param['clip_grad'], clip_activation=param['clip_activation'], dropout_ratio_input=param['dropout_input'], dropout_ratio_hidden=param['dropout_hidden'], num_proj=param['num_proj'], weight_decay=param['weight_decay']) network.model_name = config['model_name'].upper() network.model_name += '_' + str(param['num_cell']) network.model_name += '_' + str(param['num_layer']) network.model_name += '_' + param['optimizer'] network.model_name += '_lr' + str(param['learning_rate']) if feature['num_stack'] != 1: network.model_name += '_stack' + str(feature['num_stack']) network.model_name += '_transfer_' + corpus['transfer_data_size'] # Set save path network.model_dir = mkdir('/n/sd8/inaguma/result/csj/dialog/') network.model_dir = join(network.model_dir, 'ctc') network.model_dir = join(network.model_dir, corpus['label_type']) network.model_dir = join(network.model_dir, corpus['social_signal_type']) network.model_dir = join(network.model_dir, network.model_name) # Reset model directory if not os.path.isfile(os.path.join(network.model_dir, 'complete.txt')): tf.gfile.DeleteRecursively(network.model_dir) tf.gfile.MakeDirs(network.model_dir) else: raise ValueError('File exists.') # Set process name setproctitle('ctc_csj_dialog_' + corpus['label_type'] + '_' + param['optimizer'] + '_' + corpus['social_signal_type'] + '_transfer_' + corpus['transfer_data_size']) # Save config file shutil.copyfile(config_path, os.path.join(network.model_dir, 'config.yml')) sys.stdout = open(os.path.join(network.model_dir, 'train.log'), 'w') print(network.model_name) do_fine_tune(network=network, optimizer=param['optimizer'], learning_rate=param['learning_rate'], batch_size=param['batch_size'], epoch_num=param['num_epoch'], label_type=corpus['label_type'], num_stack=feature['num_stack'], num_skip=feature['num_skip'], social_signal_type=corpus['social_signal_type'], trained_model_path=trained_model_path, restore_epoch=restore_epoch) sys.stdout = sys.__stdout__ if __name__ == '__main__': args = sys.argv if len(args) != 3: ValueError( 'Usage: python fine_tune_ctc.py path_to_config path_to_trained_model') main(config_path=args[1], trained_model_path=args[2])
hirofumi0810/tensorflow_end2end_speech_recognition
examples/csj/fine_tuning/finetune_ctc_dialog.py
finetune_ctc_dialog.py
py
20,860
python
en
code
312
github-code
6
[ { "api_name": "sys.path.append", "line_number": 15, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "tensorflow.Graph", "line_number": 49, "usage_type": "call" }, { "api_name": "data.read_dataset_ctc_dialog.DataSet", "line_number": 51, "usage_type": "call" }, { "api_name": "data.read_dataset_ctc_dialog.DataSet", "line_number": 55, "usage_type": "call" }, { "api_name": "data.read_dataset_ctc_dialog.DataSet", "line_number": 59, "usage_type": "call" }, { "api_name": "tensorflow.summary.merge", "line_number": 88, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 88, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.merge", "line_number": 89, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 89, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 92, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 95, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 95, "usage_type": "attribute" }, { "api_name": "utils.parameter.count_total_parameters", "line_number": 98, "usage_type": "call" }, { "api_name": "tensorflow.trainable_variables", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 110, "usage_type": "call" }, { "api_name": "tensorflow.summary.FileWriter", "line_number": 112, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 112, "usage_type": "attribute" }, { "api_name": "tensorflow.train.get_checkpoint_state", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 119, "usage_type": "attribute" }, { "api_name": "tensorflow.contrib.slim.get_variables_to_restore", "line_number": 130, "usage_type": "call" }, { "api_name": "tensorflow.contrib.slim", "line_number": 130, "usage_type": "name" }, { "api_name": "tensorflow.train.Saver", "line_number": 132, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 132, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 141, "usage_type": "call" }, { "api_name": "time.time", "line_number": 142, "usage_type": "call" }, { "api_name": "time.time", "line_number": 143, "usage_type": "call" }, { "api_name": "utils.data.sparsetensor.list2sparsetensor", "line_number": 149, "usage_type": "call" }, { "api_name": "utils.data.sparsetensor.list2sparsetensor", "line_number": 164, "usage_type": "call" }, { "api_name": "time.time", "line_number": 205, "usage_type": "call" }, { "api_name": "sys.stdout.flush", "line_number": 229, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 229, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 230, "usage_type": "call" }, { "api_name": "time.time", "line_number": 234, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 240, "usage_type": "call" }, { "api_name": "os.path", "line_number": 240, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 246, "usage_type": "call" }, { "api_name": "evaluation.eval_ctc_dialog.do_eval_fmeasure", "line_number": 249, "usage_type": "call" }, { "api_name": "evaluation.eval_ctc_dialog.do_eval_fmeasure", "line_number": 263, "usage_type": "call" }, { "api_name": "evaluation.eval_ctc_dialog.do_eval_fmeasure", "line_number": 282, "usage_type": "call" }, { "api_name": "evaluation.eval_ctc_dialog.do_eval_fmeasure", "line_number": 296, "usage_type": "call" }, { "api_name": "time.time", "line_number": 313, "usage_type": "call" }, { "api_name": "time.time", "line_number": 317, "usage_type": "call" }, { "api_name": "time.time", "line_number": 318, "usage_type": "call" }, { "api_name": "time.time", "line_number": 320, "usage_type": "call" }, { "api_name": "utils.loss.save_loss", "line_number": 324, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 328, "usage_type": "call" }, { "api_name": "os.path", "line_number": 328, "usage_type": "attribute" }, { "api_name": "yaml.load", "line_number": 338, "usage_type": "call" }, { "api_name": "models.ctc.load_model.load", "line_number": 359, "usage_type": "call" }, { "api_name": "utils.util.mkdir", "line_number": 382, "usage_type": "call" }, { "api_name": "utils.util.join", "line_number": 383, "usage_type": "call" }, { "api_name": "utils.util.join", "line_number": 384, "usage_type": "call" }, { "api_name": "utils.util.join", "line_number": 385, "usage_type": "call" }, { "api_name": "utils.util.join", "line_number": 386, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 389, "usage_type": "call" }, { "api_name": "os.path", "line_number": 389, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 389, "usage_type": "call" }, { "api_name": "tensorflow.gfile.DeleteRecursively", "line_number": 390, "usage_type": "call" }, { "api_name": "tensorflow.gfile", "line_number": 390, "usage_type": "attribute" }, { "api_name": "tensorflow.gfile.MakeDirs", "line_number": 391, "usage_type": "call" }, { "api_name": "tensorflow.gfile", "line_number": 391, "usage_type": "attribute" }, { "api_name": "setproctitle.setproctitle", "line_number": 396, "usage_type": "call" }, { "api_name": "shutil.copyfile", "line_number": 401, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 401, "usage_type": "call" }, { "api_name": "os.path", "line_number": 401, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 403, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 403, "usage_type": "call" }, { "api_name": "os.path", "line_number": 403, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 416, "usage_type": "attribute" }, { "api_name": "sys.__stdout__", "line_number": 416, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 421, "usage_type": "attribute" } ]
43133597312
# This script is developed by Team 11 CIS 3760 # Parser - to parse the plain text file into json file import sys import re import json import os sys.path.insert(1, os.path.join(sys.path[0], '..')) import course_util uOCourseCodeIsolatedPat = re.compile(r'^\w{3}[ ]?\d{4}$') uOCourseCodePat = re.compile(r'\w{3}[ ]?\d{4}') uOOneOfCondPat = re.compile(r'One of .+', re.IGNORECASE) uOAntiReqPat = re.compile(r'The courses? (\w{3}\w?[ ]?\d{4},?[ ]?)+', re.IGNORECASE) uOCarlAltPat = re.compile(r'\w{3}[ ]?\d{4} \(\w{4}[ ]?\d{4}(?:(?: or | ou | and | et )\w{4}[ ]?\d{4})+\)') uOOrListPat = re.compile(r'\(\w{3,4}[ ]?\d{4}(?:(?: or | ou )\w{3,4}[ ]?\d{4})\)') uOOrListNoBracketPat = re.compile(r'\w{3}[ ]?\d{4}(?:(?: or | ou )\w{3}[ ]?\d{4})+') uOOrCondNoBracketIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: or | ou )\w{3}[ ]?\d{3,4})[.]?$') uOEnglishCoursePat = re.compile(r'\w{3}[ ]?\d[1234]\d{2}') uOAndListIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})+$') uOAndCondIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})$') uOAndCondPat = re.compile(r'\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})') uOAndOptionPat = re.compile(r'^\(?\w{3}[ ]?\d{4}(?:(?: and | et |, )\w{3}[ ]?\d{4})\)?$') uOAndListPat = re.compile(r'^\(?\w{3}[ ]?\d{4}(?:(?: and | et |, )\w{3}[ ]?\d{4})+\)?$') uONotCombineFRPat = re.compile(r'^Les cours \w{3}[ ]?\d{3,4}(?:(?: or | ou | and | et |, )\w{3,4}[ ]?\d{4})+ ne peuvent être combinés pour l\'obtention de crédits[.;]?', re.IGNORECASE) uONotCombineENGPat = re.compile(r'^\w{3}[ ]?\d{3,4}(?:(?: or | ou | and | et |, )\w{3,4}[ ]?\d{4})+ cannot be combined for units[.;]?', re.IGNORECASE) uOSingleThirdPartyOptPat = re.compile(r'^\w{3}[ ]?\d{4} \(\w{4}[ ]?\d{4}\)$') uOThirdPartyCourseListPat = re.compile(r'\(?\w{4}[ ]?\d{4}(?:(?: or | ou | and | et |, )\w{4}[ ]?\d{4})\)?') uOCreditPrereqENGPat = re.compile(r'^\d+ university units[.;]?$') uOCreditPrereqFRPat = re.compile(r'^\d+ crédits universitaires[.;]?$') # splits string by commas not appearing within () or [] stringListSplitterPat = re.compile(r'(?=,\s*(?![^\[\]\[\]]*[\]\]]))(?=,\s*(?![^()\[\]]*[\)\]]))') def splitCourseOrCond(raw : str, pattern, coursePat=None) -> list: courseOrList = [] splitOrCond = re.split(pattern, raw) for courseCode in splitOrCond: # remove any parenthesis courseCode = courseCode.replace('(', '') courseCode = courseCode.replace(')', '') if coursePat: if re.search(pattern, courseCode): courseOrList.append(courseCode.strip()) else: courseOrList.append(courseCode.strip()) return courseOrList def splitOnPeriod(string : str): splitList = re.split(r'\.', string) return splitList def splitOnComma(string : str): newList = re.split(stringListSplitterPat, string) for i, item in enumerate(newList): if item.startswith(', '): newList[i] = item[2:] if item == '': newList.pop(i) return newList def normalizeUnicodeString(string : str) -> str: string = string.replace(u'\xa0', ' ') # item = unicodedata.normalize('NFKC', item) string = string.strip() string = string.replace('Préalable : ', '') string = string.replace('Préalables : ', '') string = string.replace('Prerequisite: ', '') string = string.replace('Prerequisites: ', '') return string def parseUOttawaPrereqElm(prereqString : str): prereqList = [] splitList = splitOnPeriod(prereqString) # print('splitList:', splitList) for item in splitList: item = normalizeUnicodeString(item) if item == '' or re.search(uOAntiReqPat, item) or re.match(uONotCombineENGPat, item) \ or re.match(uONotCombineFRPat, item): continue # Case where or condition list in the form 'One of Calculus and Vectors (MCV4U) or MAT 1339' if re.match(uOOneOfCondPat, item): temp = item[7:] orList = splitCourseOrCond(temp, r' or | ou ') newList = [] numCourses = len(orList) for newElem in orList: newList.append(parseUOttawaPrereqElm(newElem)) prereqList.append((numCourses, newList)) commaSplitList = splitOnComma(item) for element in commaSplitList: # Single isolated couse code if re.match(uOCourseCodeIsolatedPat, element): prereqList.append(element) # Message regarding 'cannot be combined' -- ignore case elif re.match(uONotCombineFRPat, element) or re.match(uONotCombineENGPat, element): continue # premission required case (2 of several) -- rest ignored elif re.match(r'Permission de l\'Institut', element) \ or re.match(r'permission of the instructor', element): prereqList.append(element) elif re.match(uOCreditPrereqENGPat, element) or re.match(uOCreditPrereqFRPat, element): prereqList.append(element) elif re.search(r'This course is (?:primarily )?intended', element) \ or re.search(r'principalement aux étudiants', element) \ or re.search(r'cours est destiné', element) or re.search(r'cours ne peut pas', element)\ or re.search(r'an equivalent', element) \ or re.search(r'verify your program', element) \ or re.search(r'cannot count', element): pass # case of a list with third party courses elif re.search(uOThirdPartyCourseListPat, element): temp = re.split(uOThirdPartyCourseListPat, element) for item in temp: if re.search(r'\w{4}[ ]?\d{4}', item): pass else: prereqList.append(parseUOttawaPrereqElm(item)) # case where single course code has third party alternative elif re.match(uOSingleThirdPartyOptPat, element): newCourse = re.search(uOCourseCodePat, element).group() prereqList.append(newCourse) # single or condition without brackets elif re.match(uOOrCondNoBracketIsoPat, element): orList = splitCourseOrCond(element, r' or | ou ') tempList = [] for item in orList: if re.match(uOCourseCodeIsolatedPat, item): tempList.append(item) # case where something other than a course code is part of an OR group # which then becomes of length 1 if len(tempList) == 1: prereqList.append(tempList[0]) elif len(tempList) > 1: prereqList.append(tempList) # and list, possibly multiple elif re.match(uOAndListIsoPat, element): # single and condition (two courses) if re.match(uOAndCondIsoPat, element): andList = splitCourseOrCond(element, r' and | et |, ') for item in andList: if re.match(uOCourseCodeIsolatedPat, item): prereqList.append(item) # Ontario Highschool course code elif re.search(r'[ \(][A-Z]{3}[ ]?\d[A-Z]', element): newItem = re.search(r'[ \(][A-Z]{3}[ ]?\d[A-Z]', element).group() if newItem.startswith('(') or newItem.startswith(' '): newItem = newItem[1:] prereqList.append(newItem) # check if brackets surrounding text exist elif re.search(r'\(.+\)', element): #case where there is an OR list if re.match(uOOrListPat, element): prereqList.append(splitCourseOrCond(element, r' or | ou ', uOCourseCodePat)) # check if a uOttawa course code exists elif re.search(uOCourseCodePat, element): #split by commas outside of brackets bracketSplitList = re.split(stringListSplitterPat, element) tempList = [] for item in bracketSplitList: # filter out split prereqs starting with 'or' if re.search(r' or | ou ', item): if item.startswith('or'): pass splitList = splitCourseOrCond(item, r' or | ou ', uOCourseCodePat) for ele in splitList: tempList.append(parseUOttawaPrereqElm(ele)) # filter out coreq cases elif re.search(r'coreq', item) or re.search(r'concomitant', item): pass # if starting with a uOttawa course code, add it elif re.match(r'^[a-zA-Z]{3}[ ]?\d{4}', item): prereqList.append(re.match(r'^[a-zA-Z]{3}[ ]?\d{4}', item).group()) prereqList.append(tempList) # filter everything else else: pass return prereqList def parseUOttawaPrereqs(courseData : list): for i, element in enumerate(courseData): # print('subject:', element['course_name']) prereqString = element['prereqs'] # print('prereqstring:', prereqString) if len(prereqString) == 0: continue prereqList = [] for ele in prereqString: # if it is not an english course split and discard english translations if they exist # potentially breaking if the ` / ` sequence exists for a different purpose if not re.match(uOEnglishCoursePat, element['course_num']): ele = ele.split(' / ', 2)[0] prereq = parseUOttawaPrereqElm(ele) if len(prereq) == 1 and prereq[0] == '': pass else: if isinstance(prereq, list): for item in prereq: prereqList.append(item) else: prereqList.append(prereq) # #TODO: convert prereq to new object as per #115 #print(newPrereq) # courseData[i]['prereqs'] = prereqList ################################## if __name__ == "__main__": if not len(sys.argv) == 3: exit('Invalid Arguments') fileIn = sys.argv[1] # plain text file fileOut = sys.argv[2] # output JSON file tempList = [] courseDataList = course_util.get_courses(fileIn) parseUOttawaPrereqs(courseDataList) json_object = json.dumps(courseDataList, indent=2, ensure_ascii=False) # dumping into JSON # Writing to sample.json with open(fileOut, "w") as outfile: # writing to JSON file outfile.truncate(0) outfile.write(json_object)
jessendasilva1/UniveristySearch
graphing/util/parser/ottawaCourseParser.py
ottawaCourseParser.py
py
11,463
python
en
code
0
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 9, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 12, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 13, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 14, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 14, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 15, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 15, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 17, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 19, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 20, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 22, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 24, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 26, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 27, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 28, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 30, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 31, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 33, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 33, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 34, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 34, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 36, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 37, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 39, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 40, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 43, "usage_type": "call" }, { "api_name": "re.split", "line_number": 47, "usage_type": "call" }, { "api_name": "re.search", "line_number": 53, "usage_type": "call" }, { "api_name": "re.split", "line_number": 60, "usage_type": "call" }, { "api_name": "re.split", "line_number": 64, "usage_type": "call" }, { "api_name": "re.search", "line_number": 93, "usage_type": "call" }, { "api_name": "re.match", "line_number": 93, "usage_type": "call" }, { "api_name": "re.match", "line_number": 94, "usage_type": "call" }, { "api_name": "re.match", "line_number": 97, "usage_type": "call" }, { "api_name": "re.match", "line_number": 110, "usage_type": "call" }, { "api_name": "re.match", "line_number": 113, "usage_type": "call" }, { "api_name": "re.match", "line_number": 116, "usage_type": "call" }, { "api_name": "re.match", "line_number": 117, "usage_type": "call" }, { "api_name": "re.match", "line_number": 120, "usage_type": "call" }, { "api_name": "re.search", "line_number": 123, "usage_type": "call" }, { "api_name": "re.search", "line_number": 124, "usage_type": "call" }, { "api_name": "re.search", "line_number": 125, "usage_type": "call" }, { "api_name": "re.search", "line_number": 126, "usage_type": "call" }, { "api_name": "re.search", "line_number": 127, "usage_type": "call" }, { "api_name": "re.search", "line_number": 128, "usage_type": "call" }, { "api_name": "re.search", "line_number": 131, "usage_type": "call" }, { "api_name": "re.split", "line_number": 132, "usage_type": "call" }, { "api_name": "re.search", "line_number": 134, "usage_type": "call" }, { "api_name": "re.match", "line_number": 139, "usage_type": "call" }, { "api_name": "re.search", "line_number": 140, "usage_type": "call" }, { "api_name": "re.match", "line_number": 143, "usage_type": "call" }, { "api_name": "re.match", "line_number": 147, "usage_type": "call" }, { "api_name": "re.match", "line_number": 157, "usage_type": "call" }, { "api_name": "re.match", "line_number": 159, "usage_type": "call" }, { "api_name": "re.match", "line_number": 163, "usage_type": "call" }, { "api_name": "re.search", "line_number": 166, "usage_type": "call" }, { "api_name": "re.search", "line_number": 167, "usage_type": "call" }, { "api_name": "re.search", "line_number": 172, "usage_type": "call" }, { "api_name": "re.match", "line_number": 174, "usage_type": "call" }, { "api_name": "re.search", "line_number": 177, "usage_type": "call" }, { "api_name": "re.split", "line_number": 179, "usage_type": "call" }, { "api_name": "re.search", "line_number": 183, "usage_type": "call" }, { "api_name": "re.search", "line_number": 190, "usage_type": "call" }, { "api_name": "re.match", "line_number": 193, "usage_type": "call" }, { "api_name": "re.match", "line_number": 194, "usage_type": "call" }, { "api_name": "re.match", "line_number": 217, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 240, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 243, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 244, "usage_type": "attribute" }, { "api_name": "course_util.get_courses", "line_number": 248, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 252, "usage_type": "call" } ]
41211802240
#import cv2 from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input, decode_predictions import numpy as np import os import sys import json from PIL import Image # import Image import requests from io import BytesIO import urllib3 import h5py urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) # y_test = [] # 計算相似矩陣 def cosine_similarity(ratings): sim = ratings.dot(ratings.T) if not isinstance(sim, np.ndarray): sim = sim.toarray() norms = np.array([np.sqrt(np.diagonal(sim))]) return (sim / norms / norms.T) def saveVector(vector): ## don't use, just use it in colab to get the vector save_file = h5py.File('../test.h5', 'w') save_file.create_dataset('test', data=vector) save_file.close() def readvector(): open_file = h5py.File('/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/vgg16_p/test.h5', 'r') vector = open_file['test'][:] open_file.close() return vector def getTitleCheck_VGG(): a = np.load('/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/vgg16_p/title.npy', allow_pickle= True) return a.item() def compare(): # y_test = [] model = VGG16(weights='imagenet', include_top=False) # 取样本 image_sample = Image.open("/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/frontend/static/frontend/images/temp.jpg") imageS = image_sample.crop() thisImage = imageS.resize((224, 224)) my_image = image.img_to_array(thisImage) my_x = np.expand_dims(my_image, axis=0) my_x = preprocess_input(my_x) my_features = model.predict(my_x) my_features_compress = my_features.reshape(1, 7 * 7 * 512) # features_compress.append(my_features_compress) features_compress = readvector() # print(np.shape(features_compress)) # print(np.shape(my_features_compress)) new_features = np.append(features_compress, my_features_compress, axis=0) # print(np.shape(new_features)) # exit(0) sim = cosine_similarity(new_features) # print("sim:", np.shape(sim)) # # 依命令行參數,取1個樣本測試測試 # inputNo = int(sys.argv[1]) # tiger, np.random.randint(0,len(y_test),1)[0] # sample = y_test[inputNo] # print(sample) top = np.argsort(-sim[-1, :], axis=0)[1:3] # 取得最相似的前2名序號 y_test = getTitleCheck_VGG() recommend = [y_test[i] for i in top] print(recommend) # print(sim) def compare_melanger(): # y_test = [] model = VGG16(weights='imagenet', include_top=False) # 取样本 image_sample = Image.open("/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/frontend/static/frontend/images/temp.jpg") # 此处添加修改地址 imageS = image_sample.crop() thisImage = imageS.resize((224, 224)) my_image = image.img_to_array(thisImage) my_x = np.expand_dims(my_image, axis=0) my_x = preprocess_input(my_x) my_features = model.predict(my_x) my_features_compress = my_features.reshape(1, 7 * 7 * 512) # features_compress.append(my_features_compress) features_compress = readvector() # print(np.shape(features_compress)) # print(np.shape(my_features_compress)) new_features = np.append(features_compress, my_features_compress, axis=0) # print(np.shape(new_features)) # exit(0) sim = cosine_similarity(new_features) return sim def main(): # 自 images 目錄找出所有 JPEG 檔案 y_test = [] x_test = [] # x_test_final = [] # FILE_PATH = "/Users/panda/Desktop/movie_1202" FILE_PATH = "/Users/panda/Downloads/archive/movies/movies" IMAGE_BASE_PATH = "https://image.tmdb.org/t/p/w500" flag = 0 # read file which is in the id_list open_file = h5py.File('./id_list.h5', 'r') id = open_file['id'][:] open_file.close() tmp = [] for i in range(len(id)): tmp.append(int(id[i].decode('UTF-8'))) # print(tmp) for movie in os.listdir(FILE_PATH): # if flag < 50: # flag += 1 # if flag == 245 or flag == 246 or flag == 247 or flag == 248: # print(movie) # else: # continue if movie.split(".")[1] != "json": continue movie_id = int(movie.split('_')[1].split('.')[0]) if movie_id in tmp: # print(movie_id) # open file fr = open(FILE_PATH + "/" + movie) # print(movie) # print(movie_id) movie_model = json.load(fr) fr.close() if movie_model['poster_path']: img_path = IMAGE_BASE_PATH + movie_model['poster_path'] html = requests.get(img_path, verify=False) poster = Image.open(BytesIO(html.content)) poster_img = poster.crop() # poster = html.content # imgByteArr = BytesIO() # poster.save(imgByteArr, format=poster.format) # poster = imgByteArr.getvalue() # poster_img.show() # img = poster_img.resize((224, 224)) # img.show() # exit(1) if poster: # img = image.load_img(poster_img, target_size=(224, 224)) img = poster_img.resize((224, 224)) # img.show() y_test.append(movie_id) x = image.img_to_array(img) # print(movie_id) # print(x[:,:,0]) # print(np.shape(x[:,:,0])) # exit(0) if np.shape(x)[2] == 1: x = np.stack((x[:, :, 0],) * 3, axis=-1) x = np.expand_dims(x, axis=0) if len(x_test) > 0: # print(1) # print(np.shape(x_test)) # print(np.shape(x)) # exit(0) x_test = np.concatenate((x_test, x)) else: # print(2) x_test = x # flag = flag + 1 # else: # if len(x_test_final) > 0: # # print(np.shape(x_test)) # # print(np.shape(x)) # # exit(0) # #x_test = preprocess_input(x_test) # x_test_final = np.concatenate((x_test_final, x_test)) # else: # # x_test = preprocess_input(x_test) # x_test_final = x_test # x_test = [] # flag = 0 # x_test_final = np.concatenate((x_test_final, x_test)) # 轉成 VGG 的 input 格式 # print(x_test) # print(type(x_test)) # print(np.shape(x_test)) x_test = preprocess_input(x_test) # print(np.shape(x_test_final)) np.save("title.npy", y_test) # include_top=False,表示會載入 VGG16 的模型,不包括加在最後3層的卷積層,通常是取得 Features (1,7,7,512) model = VGG16(weights='imagenet', include_top=False) # 萃取特徵 features = model.predict(x_test) # print(np.shape(features)) # 計算相似矩陣 features_compress = features.reshape(len(y_test), 7 * 7 * 512) # print(np.shape(features_compress)) # sim = cosine_similarity(features_compress) saveVector(features_compress) compare() # # 取样本 # image_sample = Image.open("/Users/panda/Desktop/test_image/test.jpg") # imageS = image_sample.crop() # thisImage = imageS.resize((224, 224)) # my_image = image.img_to_array(thisImage) # my_x = np.expand_dims(my_image, axis=0) # # my_x = preprocess_input(my_x) # # my_features = model.predict(my_x) # # my_features_compress = my_features.reshape(1, 7 * 7 * 512) # # # features_compress.append(my_features_compress) # # # print(np.shape(features_compress)) # # print(np.shape(my_features_compress)) # new_features = np.append(features_compress, my_features_compress, axis=0) # # print(np.shape(new_features)) # # exit(0) # sim = cosine_similarity(new_features) # # print("sim:", np.shape(sim)) # # # # # 依命令行參數,取1個樣本測試測試 # # inputNo = int(sys.argv[1]) # tiger, np.random.randint(0,len(y_test),1)[0] # # sample = y_test[inputNo] # # print(sample) # top = np.argsort(-sim[-1,:], axis=0)[1:3] # # # 取得最相似的前2名序號 # recommend = [y_test[i] for i in top] # print(recommend) # #print(sim) # if __name__ == "__main__": # main() print(getTitleCheck_VGG())
ming19956/PFE
information-retrival-search-engine/informationRetrival/vgg16_p/newvgg.py
newvgg.py
py
9,112
python
en
code
2
github-code
6
[ { "api_name": "urllib3.disable_warnings", "line_number": 16, "usage_type": "call" }, { "api_name": "urllib3.exceptions", "line_number": 16, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 23, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.diagonal", "line_number": 25, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 29, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 40, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.VGG16", "line_number": 45, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 47, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 47, "usage_type": "name" }, { "api_name": "keras.preprocessing.image.img_to_array", "line_number": 50, "usage_type": "call" }, { "api_name": "keras.preprocessing.image", "line_number": 50, "usage_type": "name" }, { "api_name": "numpy.expand_dims", "line_number": 51, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.preprocess_input", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 74, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.VGG16", "line_number": 84, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 86, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 86, "usage_type": "name" }, { "api_name": "keras.preprocessing.image.img_to_array", "line_number": 89, "usage_type": "call" }, { "api_name": "keras.preprocessing.image", "line_number": 89, "usage_type": "name" }, { "api_name": "numpy.expand_dims", "line_number": 90, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.preprocess_input", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 103, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 125, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 133, "usage_type": "call" }, { "api_name": "json.load", "line_number": 151, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 155, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 156, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 156, "usage_type": "name" }, { "api_name": "io.BytesIO", "line_number": 156, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.img_to_array", "line_number": 172, "usage_type": "call" }, { "api_name": "keras.preprocessing.image", "line_number": 172, "usage_type": "name" }, { "api_name": "numpy.shape", "line_number": 177, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 178, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 179, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 186, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.preprocess_input", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 216, "usage_type": "call" }, { "api_name": "keras.applications.vgg16.VGG16", "line_number": 219, "usage_type": "call" } ]
12028632350
import tkinter from tkinter import messagebox from src.game.minesweeper import Minesweeper from src.game.minesweeper import CellStatus from src.game.minesweeper import GameStatus from datetime import datetime import platform class MineweeperUI: def __init__(self, root): self.ui_window = root self.ui_window.title("Minesweeper") self.minesweeper = Minesweeper() self.minesweeper.set_mines((int(round(datetime.now().timestamp() * 1000)))) self.cells= [] self.grid_init() def grid_init(self): right_click_type = self.button_os_config() for row in range(0, 10): self.cells.append([]) for column in range(0, 10): cell = tkinter.Button(self.ui_window, text=" ", width=5, height=3, command=lambda row=row, column=column, left_button = True: self.button_clicked(row, column, left_button)) cell.bind(right_click_type, lambda event, row=row, column=column, left_button = False: self.button_clicked(row, column, left_button)) cell.grid(row=row + 1, column=column) self.cells[row].append(cell) def button_os_config(self): if platform.system() == "Darwin": return "<Button-2>" else: return "<Button-3>" def button_clicked(self,row, column, left_button): if left_button: self.minesweeper.expose(row, column) else: self.minesweeper.toggle_seal(row, column) self.update_grid() if self.minesweeper.get_game_status() == GameStatus.LOST: self.show_mines() messagebox.showinfo("Game Over", "You have step on a mine! ") if platform.system() == "Windows": exit() elif self.minesweeper.get_game_status() == GameStatus.WON: messagebox.showinfo("Congratulations!", "You are a minesweeper master! ") if platform.system() == "Windows": exit() def show_mines(self): for row in range(10): for column in range(10): if self.minesweeper.is_mine_at(row,column): self.cells[row][column]["text"] = "*" if platform.system() == "Darwin": self.cells[row][column].config(highlightbackground="red", highlightthickness=1) else: self.cells[row][column].config(background='red') def update_grid(self): for row in range(10): for column in range(10): if platform.system() == "Darwin": if self.minesweeper.get_status(row,column) == CellStatus.EXPOSED: adjacent_value = self.minesweeper.adjacent_mine_count(row, column) if adjacent_value > 0: self.cells[row][column]["text"] = str(adjacent_value) self.cells[row][column].config(highlightbackground="Yellow", highlightthickness=1) elif self.minesweeper.get_status(row, column) == CellStatus.SEAL: self.cells[row][column].config(highlightbackground="green", highlightthickness=1) else: self.cells[row][column].config(highlightbackground="#DCDCDC", highlightthickness=1) else: if self.minesweeper.get_status(row, column) == CellStatus.EXPOSED: adjacent_value = self.minesweeper.adjacent_mine_count(row, column) if adjacent_value > 0: self.cells[row][column]["text"] = str(adjacent_value) self.cells[row][column].config(background='Yellow') elif self.minesweeper.get_status(row, column) == CellStatus.SEAL: self.cells[row][column].config(background='green') else: self.cells[row][column].config(background='#DCDCDC') class Main: def __init__(self): root = tkinter.Tk() MineweeperUI(root) root.mainloop()
PriscillaRoy/MinesweeperGame
src/gui/minesweeper_ui.py
minesweeper_ui.py
py
3,636
python
en
code
0
github-code
6
[ { "api_name": "src.game.minesweeper.Minesweeper", "line_number": 14, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "name" }, { "api_name": "tkinter.Button", "line_number": 25, "usage_type": "call" }, { "api_name": "platform.system", "line_number": 32, "usage_type": "call" }, { "api_name": "src.game.minesweeper.GameStatus.LOST", "line_number": 45, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.GameStatus", "line_number": 45, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 47, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 47, "usage_type": "name" }, { "api_name": "platform.system", "line_number": 48, "usage_type": "call" }, { "api_name": "src.game.minesweeper.GameStatus.WON", "line_number": 51, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.GameStatus", "line_number": 51, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 52, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 52, "usage_type": "name" }, { "api_name": "platform.system", "line_number": 53, "usage_type": "call" }, { "api_name": "platform.system", "line_number": 63, "usage_type": "call" }, { "api_name": "platform.system", "line_number": 73, "usage_type": "call" }, { "api_name": "src.game.minesweeper.CellStatus.EXPOSED", "line_number": 74, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.CellStatus", "line_number": 74, "usage_type": "name" }, { "api_name": "src.game.minesweeper.CellStatus.SEAL", "line_number": 78, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.CellStatus", "line_number": 78, "usage_type": "name" }, { "api_name": "src.game.minesweeper.CellStatus.EXPOSED", "line_number": 84, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.CellStatus", "line_number": 84, "usage_type": "name" }, { "api_name": "src.game.minesweeper.CellStatus.SEAL", "line_number": 89, "usage_type": "attribute" }, { "api_name": "src.game.minesweeper.CellStatus", "line_number": 89, "usage_type": "name" }, { "api_name": "tkinter.Tk", "line_number": 98, "usage_type": "call" } ]
22837983090
import pandas as pd import networkx as nx # def splitDataFrameList(df,target_column,separator): # ''' df = dataframe to split, # target_column = the column containing the values to split # separator = the symbol used to perform the split # returns: a dataframe with each entry for the target column separated, with each element moved into a new row. # The values in the other columns are duplicated across the newly divided rows. # ''' # def splitListToRows(row,row_accumulator,target_column,separator): # split_row = row[target_column].split(separator) # for s in split_row: # new_row = row.to_dict() # new_row[target_column] = s # row_accumulator.append(new_row) # new_rows = [] # df.apply(splitListToRows,axis=1,args = (new_rows,target_column,separator)) # new_df = pd.DataFrame(new_rows) # return new_df # df = pd.read_csv('../reading_and_cleaning/cleaned_podcasts.csv', sep='\t', index_col=0) # df = df.replace(r'', np.nan, regex=True) # df = df[pd.notnull(df['guests'])] # split_hosts = splitDataFrameList(df, 'hosts', ', ') #G1 = nx.from_pandas_dataframe(split_hosts, 'guests', 'hosts', edge_attr=['date', 'duration', 'podcast'], create_using=nx.MultiDiGraph()) # for index, row in split_hosts.iterrows(): # if(row['hosts'] == row['guests']): # split_hosts.drop(index=index, inplace=True) # guest_durations = split_hosts.groupby(['hosts', 'guests'])['duration'].sum() # guest_durations = guest_durations.reset_index() guest_durations = pd.read_csv('../reading_and_cleaning/guest_durations.csv', sep='\t', index_col=0) G1 = nx.from_pandas_dataframe(guest_durations, 'guests', 'hosts', edge_attr=['duration'], create_using=nx.DiGraph()) G2 = nx.from_pandas_dataframe(guest_durations, 'guests', 'hosts', edge_attr=['duration'], create_using=nx.Graph()) ################################################################################################################################## remove = [node for node,degree in G2.degree().items() if degree < 3] G2.remove_nodes_from(remove) #print(nx.number_of_nodes(G2)) remove = [node for node,degree in G1.degree().items() if degree < 3] G1.remove_nodes_from(remove) #print(nx.number_of_nodes(G1)) ################################################################################################################################## pr = nx.pagerank(G1, weight='duration') hubs, authorities = nx.hits(G1) nodes_df = pd.DataFrame.from_dict(pr, orient='index') nodes_df.rename(columns = {0:'pr'}, inplace = True) nodes_df['hub'] = hubs.values() nodes_df['auth'] = authorities.values() #print(len(nodes_df), len(nx.eccentricity(G2).values())) nodes_df['eccentricity'] = nx.eccentricity(G2).values() nodes_df['closeness'] = nx.closeness_centrality(G2).values() nodes_df['betweenness'] = nx.betweenness_centrality(G2).values() nodes_df['degree_cen'] = nx.degree_centrality(G2).values() nodes_df['eigen'] = nx.eigenvector_centrality(G2).values() nodes_df.to_csv('node_values.csv', sep='\t')
brooksjaredc/podcast_network_analysis
analyzing_functions/set_node_attr.py
set_node_attr.py
py
2,988
python
en
code
1
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 39, "usage_type": "call" }, { "api_name": "networkx.from_pandas_dataframe", "line_number": 41, "usage_type": "call" }, { "api_name": "networkx.DiGraph", "line_number": 41, "usage_type": "call" }, { "api_name": "networkx.from_pandas_dataframe", "line_number": 44, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 44, "usage_type": "call" }, { "api_name": "networkx.pagerank", "line_number": 58, "usage_type": "call" }, { "api_name": "networkx.hits", "line_number": 59, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 61, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 61, "usage_type": "attribute" }, { "api_name": "networkx.eccentricity", "line_number": 68, "usage_type": "call" }, { "api_name": "networkx.closeness_centrality", "line_number": 69, "usage_type": "call" }, { "api_name": "networkx.betweenness_centrality", "line_number": 70, "usage_type": "call" }, { "api_name": "networkx.degree_centrality", "line_number": 71, "usage_type": "call" }, { "api_name": "networkx.eigenvector_centrality", "line_number": 72, "usage_type": "call" } ]
35226848142
import torch import torch.nn.functional from .calculate_ssim import ssim from .utils import fspecial_gauss def ms_ssim(image1: torch.Tensor, image2: torch.Tensor, filter_weight: torch.Tensor) -> float: """ Multi scale structural similarity Args: image1 (np.array): Original tensor picture. image2 (np.array): Target tensor picture. filter_weight (torch.Tensor): Gaussian filter weight. Returns: MS_SSIM value. """ assert image1.shape == image2.shape ssim_value = ssim(image1, image2, filter_weight=filter_weight) weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(image1.device, dtype=image2.dtype) mcs = [] for _ in range(weights.shape[0]): _, cs_value = ssim(image1, image2, filter_weight=filter_weight, cs=True) mcs.append(cs_value) padding = (image1.shape[2] % 2, image2.shape[3] % 2) image1 = torch.nn.functional.avg_pool2d(image1, kernel_size=2, padding=padding) image2 = torch.nn.functional.avg_pool2d(image2, kernel_size=2, padding=padding) mcs = torch.stack(mcs, dim=0) out = torch.prod((mcs[:-1] ** weights[:-1].unsqueeze(1)) * (ssim_value ** weights[-1]), dim=0) return out class MS_SSIM(torch.nn.Module): def __init__(self) -> None: super(MS_SSIM, self).__init__() self.filter_weight = fspecial_gauss(11, 1.5) def forward(self, image1_tensor: torch.Tensor, image2_tensor: torch.Tensor) -> torch.Tensor: """ Args: image1_tensor (torch.Tensor): Original tensor picture. image2_tensor (torch.Tensor): Target tensor picture. Returns: torch.Tensor. """ assert image1_tensor.shape == image2_tensor.shape out = torch.mean(ms_ssim(image1_tensor, image2_tensor, filter_weight=self.filter_weight)) return out
avacaondata/SpainAI_Hackaton_ComputerVision
ESRGAN-PyTorch/esrgan_pytorch/utils/image_quality_assessment/calculate_mssim.py
calculate_mssim.py
py
1,882
python
en
code
1
github-code
6
[ { "api_name": "torch.Tensor", "line_number": 8, "usage_type": "attribute" }, { "api_name": "calculate_ssim.ssim", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 22, "usage_type": "call" }, { "api_name": "calculate_ssim.ssim", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "attribute" }, { "api_name": "torch.stack", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.prod", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 37, "usage_type": "attribute" }, { "api_name": "utils.fspecial_gauss", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 42, "usage_type": "attribute" }, { "api_name": "torch.mean", "line_number": 52, "usage_type": "call" } ]
74077927228
from PyQt5.QtCore import QFile, QTextStream, QIODevice class StyleLoader: def __init__(self, variables_path: str = None): self._variables = {} self._stylesheets = {} self._init_variables(variables_path) def get_merged_stylesheets(self, names: list): return self._merge_stylesheets([self.get_stylesheet(name=name) for name in names]) def get_stylesheet(self, name: str) -> str: stylesheet = self._stylesheets.get(name) if stylesheet is None: stylesheet = self._create_stylesheet(name) self._stylesheets[name] = stylesheet return stylesheet def _merge_stylesheets(self, stylesheets: list) -> str: return "\n".join(stylesheets) def _create_stylesheet(self, path: str) -> str: stylesheet = self._load_unmapped_stylesheet(path) return self._map_stylesheet(stylesheet) def _load_unmapped_stylesheet(self, path: str) -> str: file = QFile(path) if not file.open(QIODevice.ReadOnly | QIODevice.Text): return "" content = file.readAll().data().decode("utf-8") file.close() return content def _map_stylesheet(self, stylesheet: str) -> str: for variable_name, variable_value in self._variables.items(): stylesheet = stylesheet.replace(variable_name, variable_value) return stylesheet def _init_variables(self, path: str) -> None: if path is None: return file = QFile(path) if not file.open(QIODevice.ReadOnly | QIODevice.Text): return stream = QTextStream(file) while not stream.atEnd(): line = stream.readLine().strip().replace(" ", "") if line.startswith("@"): variable_name, variable_value = line.split("=", 1) self._variables[variable_name] = variable_value file.close()
lennertsoffers/KeyCursor
key_cursor_config/model/StyleLoader.py
StyleLoader.py
py
1,926
python
en
code
1
github-code
6
[ { "api_name": "PyQt5.QtCore.QFile", "line_number": 31, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QIODevice.ReadOnly", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QIODevice", "line_number": 32, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QIODevice.Text", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QFile", "line_number": 50, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QIODevice.ReadOnly", "line_number": 51, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QIODevice", "line_number": 51, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QIODevice.Text", "line_number": 51, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QTextStream", "line_number": 54, "usage_type": "call" } ]
22781339759
import IMP import IMP.pmi import IMP.pmi.macros import RMF import matplotlib.pyplot as plt import seaborn as sns import sys import numpy as np import argparse ######### # PARSER ######### p = argparse.ArgumentParser( description="Align selected RMF files. \n" "Example of usage: align_rmf.py -d mc_tags -cl 2 -st 0" ) p.add_argument('-d', action="store", dest="dir_name", help="directory name to process") p.add_argument('-cl', action="store", dest="cluster", help="Specify cluster") p.add_argument('-st', action="store", dest="state", help="Specify RMF state") parsero = p.parse_args() def get_coordinates_alignment(hier, selection=None): coord_dict = {} if selection: for k, v in selection.items(): sel = IMP.atom.Selection(hier, molecule=v[0], residue_indexes=np.arange(v[1], v[2], 1), resolution=IMP.atom.ALL_RESOLUTIONS, copy_index=v[3]).get_selected_particles() coords = [np.array(IMP.core.XYZ(p).get_coordinates()) for p in sel] coord_dict[k] = coords else: mols = IMP.pmi.tools.get_molecules(hier) # print(mols) for m in mols: sel = IMP.atom.Selection(hier, molecule=m.get_name(), copy_index=IMP.atom.Copy(m).get_copy_index(), resolution=IMP.atom.ALL_RESOLUTIONS).get_selected_particles() coords = [np.array(IMP.core.XYZ(p).get_coordinates()) for p in sel] coord_dict[m.get_name()] = coords return coord_dict def transform_coordinates(hier, transformation): # Transform all coordinates rbs, beads = IMP.pmi.tools.get_rbs_and_beads(hier) for rb in rbs: IMP.core.transform(rb, transformation) for p in beads: temp_coord = IMP.core.XYZ(p) IMP.core.transform(temp_coord, transformation) def get_reference_coordinates(rmf_in, selection=None): """ Get reference coordinates in reference rmf file :param rmf_in: reference rmf file :return: coordinates """ m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in) hier = IMP.rmf.create_hierarchies(f, m)[0] IMP.rmf.load_frame(f, RMF.FrameID(0)) # Get coordinates from frame 1 ref_coord = get_coordinates_alignment(hier, selection) del m, f return ref_coord def align_rmf(rmf_in, rmf_out, ref_coord, selection=None, frames=None): """ Align selected frames in rmf_in to ref_coordinates and calculate RMSD. :param rmf_in: input rmf :param rmf_out: output rmf :param selection: selection of particles :param ref_coord: reference coordinates after running Sampcon.py :param frames: passing selected frames :return: """ fh_out = RMF.create_rmf_file(rmf_out) m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in) print('Number of frames', f.get_number_of_frames()) if not frames: frames = np.arange(0, f.get_number_of_frames(), 100) hier = IMP.rmf.create_hierarchies(f, m)[0] states = IMP.atom.get_by_type(hier, IMP.atom.STATE_TYPE) for i, s in enumerate(states): if i == sel_state: p = IMP.Particle(m, 'System') hier_temp = IMP.atom.Hierarchy.setup_particle(p) hier_temp.add_child(s) IMP.rmf.add_hierarchy(fh_out, hier_temp) RMSD = [] for i in frames: if i % 100 == 0: print('Frame:', i) IMP.rmf.load_frame(f, RMF.FrameID(i)) temp_coord = get_coordinates_alignment(hier, selection) ali = IMP.pmi.analysis.Alignment(ref_coord, temp_coord) (rmsd, transformation) = ali.align() RMSD.append(rmsd) transform_coordinates(hier, transformation) IMP.rmf.save_frame(fh_out, str(i)) del temp_coord del f print('Mean RMSD:', np.mean(np.array(RMSD))) return RMSD if __name__ == '__main__': ##################### # MAIN ##################### # IO files dir_name = parsero.dir_name # mc_tags_k1 cl = parsero.cl # 2 st = parsero.st # 0 sel_state = 0 ref_rmf = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}/cluster_center_model.rmf3' rmf_in_A = f'../output/{dir_name}/analysis/A_models_clust{cl}_{st}.rmf3' rmf_out_A = f'../output/{dir_name}/analysis/A_models_clust{cl}_{st}_aligned.rmf3' rmf_in_B = f'../output/{dir_name}/analysis/B_models_clust{cl}_{st}.rmf3' rmf_out_B = f'../output/{dir_name}/analysis/B_models_clust{cl}_{st}_aligned.rmf3' cluster_frames_A = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}.sample_A.txt' cluster_frames_B = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}.sample_B.txt' m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in_A) nframes_A = f.get_number_of_frames() frames_A = [int(l.strip()) for l in open(cluster_frames_A, 'r')] frames_B = [int(l.strip()) - nframes_A for l in open(cluster_frames_B, 'r')] del m, f ################################# # Get reference and align ################################# reference_coordinates = get_reference_coordinates(ref_rmf) rmsd_A = align_rmf(rmf_in_A, rmf_out_A, reference_coordinates, frames=frames_A) rmsd_B = align_rmf(rmf_in_B, rmf_out_B, reference_coordinates, frames=frames_B) ################################# # Plot RMSD distribution ################################# sns.set(font_scale=3) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(30, 40)) ax1.set_title(f'RMSD_A', size=50, y=1.15, fontweight='bold') sns.histplot(x=rmsd_A, stat='density', fill=True, ax=ax1) ax2.set_title(f'RMSD_B', size=50, y=1.15, fontweight='bold') sns.histplot(x=rmsd_B, stat='density', fill=True, ax=ax2) plt.tight_layout(pad=3.0) # plt.show() plt.savefig(f'../output/{dir_name}/analysis/pict_tags_rmsd.png') print('\nDONE!\n') sys.exit(0)
Altairch95/ExocystDYN
scripts/align_rmf.py
align_rmf.py
py
5,528
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 14, "usage_type": "call" }, { "api_name": "IMP.atom.Selection", "line_number": 32, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 32, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 34, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 35, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 37, "usage_type": "call" }, { "api_name": "IMP.core.XYZ", "line_number": 37, "usage_type": "call" }, { "api_name": "IMP.core", "line_number": 37, "usage_type": "attribute" }, { "api_name": "IMP.pmi.tools.get_molecules", "line_number": 42, "usage_type": "call" }, { "api_name": "IMP.pmi", "line_number": 42, "usage_type": "attribute" }, { "api_name": "IMP.atom.Selection", "line_number": 45, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 45, "usage_type": "attribute" }, { "api_name": "IMP.atom.Copy", "line_number": 47, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 47, "usage_type": "attribute" }, { "api_name": "IMP.atom", "line_number": 48, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 50, "usage_type": "call" }, { "api_name": "IMP.core.XYZ", "line_number": 50, "usage_type": "call" }, { "api_name": "IMP.core", "line_number": 50, "usage_type": "attribute" }, { "api_name": "IMP.pmi.tools.get_rbs_and_beads", "line_number": 60, "usage_type": "call" }, { "api_name": "IMP.pmi", "line_number": 60, "usage_type": "attribute" }, { "api_name": "IMP.core.transform", "line_number": 62, "usage_type": "call" }, { "api_name": "IMP.core", "line_number": 62, "usage_type": "attribute" }, { "api_name": "IMP.core.XYZ", "line_number": 64, "usage_type": "call" }, { "api_name": "IMP.core", "line_number": 64, "usage_type": "attribute" }, { "api_name": "IMP.core.transform", "line_number": 65, "usage_type": "call" }, { "api_name": "IMP.core", "line_number": 65, "usage_type": "attribute" }, { "api_name": "IMP.Model", "line_number": 74, "usage_type": "call" }, { "api_name": "RMF.open_rmf_file_read_only", "line_number": 76, "usage_type": "call" }, { "api_name": "IMP.rmf.create_hierarchies", "line_number": 77, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 77, "usage_type": "attribute" }, { "api_name": "IMP.rmf.load_frame", "line_number": 79, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 79, "usage_type": "attribute" }, { "api_name": "RMF.FrameID", "line_number": 79, "usage_type": "call" }, { "api_name": "RMF.create_rmf_file", "line_number": 98, "usage_type": "call" }, { "api_name": "IMP.Model", "line_number": 100, "usage_type": "call" }, { "api_name": "RMF.open_rmf_file_read_only", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 105, "usage_type": "call" }, { "api_name": "IMP.rmf.create_hierarchies", "line_number": 107, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 107, "usage_type": "attribute" }, { "api_name": "IMP.atom.get_by_type", "line_number": 108, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 108, "usage_type": "attribute" }, { "api_name": "IMP.Particle", "line_number": 111, "usage_type": "call" }, { "api_name": "IMP.atom.Hierarchy.setup_particle", "line_number": 112, "usage_type": "call" }, { "api_name": "IMP.atom", "line_number": 112, "usage_type": "attribute" }, { "api_name": "IMP.rmf.add_hierarchy", "line_number": 114, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 114, "usage_type": "attribute" }, { "api_name": "IMP.rmf.load_frame", "line_number": 119, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 119, "usage_type": "attribute" }, { "api_name": "RMF.FrameID", "line_number": 119, "usage_type": "call" }, { "api_name": "IMP.pmi.analysis.Alignment", "line_number": 123, "usage_type": "call" }, { "api_name": "IMP.pmi", "line_number": 123, "usage_type": "attribute" }, { "api_name": "IMP.rmf.save_frame", "line_number": 128, "usage_type": "call" }, { "api_name": "IMP.rmf", "line_number": 128, "usage_type": "attribute" }, { "api_name": "numpy.mean", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 134, "usage_type": "call" }, { "api_name": "IMP.Model", "line_number": 157, "usage_type": "call" }, { "api_name": "RMF.open_rmf_file_read_only", "line_number": 158, "usage_type": "call" }, { "api_name": "seaborn.set", "line_number": 176, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 177, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 177, "usage_type": "name" }, { "api_name": "seaborn.histplot", "line_number": 179, "usage_type": "call" }, { "api_name": "seaborn.histplot", "line_number": 181, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 182, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 182, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 184, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 184, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 187, "usage_type": "call" } ]
32562155548
from django.conf.urls.defaults import * from django.conf import settings from gallery.feeds import Photos, Videos, Tags, TagContents, Comments try: import django_openidconsumer except ImportError: django_openidconsumer = None feeds = { 'comments': Comments, 'photos': Photos, 'videos': Videos, 'tags': Tags, 'tag': TagContents, } urls = [ (r'^$', 'gallery.views.index'), (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed', {'feed_dict': feeds}), (r'^tag/(?P<tag_name>[\w\+\-]*)/$', 'gallery.views.medias_in_tag'), (r'^tag/(?P<tag_name>[\w\+\-]*)/(?P<page>\d+)/$', 'gallery.views.medias_in_tag'), (r'^event/(?P<media_type>\w+)/(?P<media_id>\d+)/(?P<event_id>\d+)/$', 'gallery.views.medias_in_event'), (r'^photo/(?P<photo_id>\d+)/(?P<tag_name>[\w\-]*)/$', 'gallery.views.medias_in_tag'), (r'^photo/(?P<photo_id>\d+)/$', 'gallery.views.photo'), (r'^video/(?P<video_id>\d+)/(?P<tag_name>[\w\-]*)/$', 'gallery.views.medias_in_tag'), (r'^date/(?P<year>\d+)/(?P<month>\d+)/(?P<day>\d+)/$', 'gallery.views.date'), (r'^date/(?P<year>\d+)/(?P<month>\d+)/(?P<day>\d+)/(?P<page>\d+)/$', 'gallery.views.date'), (r'^recent/$', 'gallery.views.recent'), (r'^recent/(?P<tag_name>[\w\+\-]*)/$', 'gallery.views.recent'), (r'^recent/(?P<tag_name>[\w\+\-]*)/(?P<page>\d+)/$', 'gallery.views.recent'), (r'^events/$', 'gallery.views.events'), (r'^event/(?P<event_id>\d+)/$', 'gallery.views.event'), (r'^slideshow/(?P<tag_name>[\w\+\-]*)/(?P<photo_id>\d+)/$', 'gallery.views.slideshow'), ] if django_openidconsumer: urls.extend([ #(r'^comment/(?P<comment_id>\d+)/$', 'gallery.views.comment'), (r'^openid/$', 'django_openidconsumer.views.begin', {'sreg': 'fullname'}), (r'^openid/complete/$', 'django_openidconsumer.views.complete'), (r'^openid/signout/$', 'django_openidconsumer.views.signout'), (r'^status/cache/$', 'gallery.memcached_status.cache_status'), ]) media_path = settings.GALLERY_SETTINGS.get('media_path') static_path = settings.GALLERY_SETTINGS.get('static_path') if media_path: urls.append((r'^media/(.*)$', 'django.views.static.serve', {'document_root': media_path})) if static_path: urls.append((r'^static/(.*)$', 'django.views.static.serve', {'document_root': static_path})) urlpatterns = patterns('', *urls)
ginking/Gallery-1
urls.py
urls.py
py
2,422
python
en
code
0
github-code
6
[ { "api_name": "gallery.feeds.Comments", "line_number": 11, "usage_type": "name" }, { "api_name": "gallery.feeds.Photos", "line_number": 12, "usage_type": "name" }, { "api_name": "gallery.feeds.Videos", "line_number": 13, "usage_type": "name" }, { "api_name": "gallery.feeds.Tags", "line_number": 14, "usage_type": "name" }, { "api_name": "gallery.feeds.TagContents", "line_number": 15, "usage_type": "name" }, { "api_name": "django.conf.settings.GALLERY_SETTINGS.get", "line_number": 53, "usage_type": "call" }, { "api_name": "django.conf.settings.GALLERY_SETTINGS", "line_number": 53, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 53, "usage_type": "name" }, { "api_name": "django.conf.settings.GALLERY_SETTINGS.get", "line_number": 54, "usage_type": "call" }, { "api_name": "django.conf.settings.GALLERY_SETTINGS", "line_number": 54, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 54, "usage_type": "name" } ]
32463868402
import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch import torchvision import torchvision.transforms as transforms class DataLoader: def __init__(self, batch_size = 4): ''' num_workers should be 0 in window env (otherwise pipe_error occurs) ''' print("---- downloading dataset from online... ----") trainset, testset = self.download_data() self.trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0) self.testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=0) def download_data(self): ''' download CIFAR-10 data which can be replaced by MNIST or etc later on. ''' transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) return trainset, testset def show_image(self): ''' Just for the testing. ''' # get some random training images dataiter = iter(self.trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show()
jindeok/XAI_torch_captum
XAI_torch/utils.py
utils.py
py
2,051
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.DataLoader", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 23, "usage_type": "attribute" }, { "api_name": "torchvision.transforms.Compose", "line_number": 31, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 31, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 32, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 32, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 33, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 33, "usage_type": "name" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 35, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 35, "usage_type": "attribute" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 38, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 38, "usage_type": "attribute" }, { "api_name": "torchvision.utils.make_grid", "line_number": 51, "usage_type": "call" }, { "api_name": "torchvision.utils", "line_number": 51, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "numpy.transpose", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" } ]
8915382368
from datetime import datetime from astral import Astral from pyHS100 import Discover, SmartPlug, SmartBulb import time, socket, requests, pytz, simplejson #Used to determine daylight status, occupancy status, and does the things #if the things are needed based on prior info class SmartSwitchControl(): a = Astral() city = a['Toronto'] count = 0 def run(self): global count global lightson now = datetime.now(pytz.utc) sun = city.sun(date = now, local = True) time.sleep(0.5) if now >= sun['dusk'] or now <= sun['dawn']: requests.post("https://maker.ifttt.com/trigger/motion/with/key/ctOeqYQKH00WbPhjj-fCRyio_MW6GdmEQ2as2h5bQvI") Lightson = True #print("Lights on") elif now >= sun['dawn']: #print("It's not dark yet") pass #Creates JSON syntaxed representation of current smart device info and status def updateStatus(self): devices = [] deviceCount = 0 try: for dev in Discover.discover().values(): ipBreak = str(dev).split(' (')[0] ip = ipBreak.split('at ')[1] idBreak = str(dev).split('(')[1] ID = idBreak.split(')')[0] statusBreak = str(dev).split('is_on: ')[1] status = statusBreak.split(' - ')[0] if status == "True": status = "on" if status == "False": status = "off" entry = {'id': "switch"+str(deviceCount), 'name': ID, 'is_on': status, 'ip': ip } devices.append(entry) deviceCount += 1 return devices except Exception as e: print("Error in device detection...resetting", e) pass
bradyjibanez/Voyager
occupantInference/smartSwitchControl.py
smartSwitchControl.py
py
2,417
python
en
code
0
github-code
6
[ { "api_name": "astral.Astral", "line_number": 9, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 16, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 16, "usage_type": "name" }, { "api_name": "pytz.utc", "line_number": 16, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 18, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 20, "usage_type": "call" }, { "api_name": "pyHS100.Discover.discover", "line_number": 32, "usage_type": "call" }, { "api_name": "pyHS100.Discover", "line_number": 32, "usage_type": "name" } ]
11735575748
"""Add File table Revision ID: 3822d04489a0 Revises: Create Date: 2021-06-26 16:18:52.167545 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3822d04489a0' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('files', sa.Column('id', sa.Integer(), nullable=False), sa.Column('filepath', sa.String(), nullable=False), sa.Column('storage', sa.String(), nullable=False), sa.Column('primary', sa.Boolean(), nullable=False), sa.Column('has_thumbnail', sa.Boolean(), nullable=False), sa.Column('category', sa.Enum('unknown', 'other', 'image', 'photo', 'scan', 'dump', 'dump_metadata', 'text', 'prose', 'transcription', 'collection', name='filecategory'), nullable=True), sa.Column('title', sa.String(), nullable=True), sa.Column('comment', sa.Text(), nullable=True), sa.Column('analyzed', sa.DateTime(), nullable=True), sa.Column('upload_date', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('asset_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['asset_id'], ['assets.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('files') # ### end Alembic commands ###
retroherna/rhinventory
alembic/versions/3822d04489a0_add_file_table.py
3822d04489a0_add_file_table.py
py
1,531
python
en
code
1
github-code
6
[ { "api_name": "alembic.op.create_table", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.Enum", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 29, "usage_type": "call" }, { "api_name": "sqlalchemy.Text", "line_number": 29, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 43, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 43, "usage_type": "name" } ]
16106180145
#!/usr/bin/env python3 if __name__ == "__main__": import argparse import os import benj ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", dest="h5ad", required=True) ap.add_argument("-o", "--output", required=True) ap.add_argument("--labels", required=True, nargs="+") ap.add_argument("-b", "--batch", required=True) ap.add_argument("--hvg", type=int, default=5000) ap.add_argument("--compression", type=int, default=6) ap.add_argument("--with-mean", dest="with_mean", action="store_true") ap.add_argument("--without-mean", dest="with_mean", action="store_false") ap.set_defaults(with_mean=False) args = benj.parse_args(ap, ["log", "scanpy", "anndata"]) if "subset" not in args or args["subset"] is None: args["subset"] = [] sw = benj.stopwatch() with sw("Reading H5AD"): adata = benj.parse_anndata(**args) adata = benj.integrate_rna(adata, batch=args["batch"], hvg=args["hvg"], use_scaling=True, use_harmony=True, use_bbknn=False, use_rgg=False, plot=args["labels"], target_sum=1e4, output=args["output"], compression=args["compression"]) with sw("Training celltypist for " + ",".join(label)): import celltypist import scanpy as sc ct = celltypist.train(adata.raw.to_adata(), labels=adata.obs.loc[:, labels], genes=adata.var_names, n_jobs=-1, with_mean=args["with_mean"]) ct.write(os.path.join(sc.settings.figdir, f"celltypist_{label}.pkl"))
KellisLab/benj
scripts/integrate_and_train.py
integrate_and_train.py
py
1,676
python
en
code
2
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 7, "usage_type": "call" }, { "api_name": "benj.parse_args", "line_number": 17, "usage_type": "call" }, { "api_name": "benj.stopwatch", "line_number": 20, "usage_type": "call" }, { "api_name": "benj.parse_anndata", "line_number": 22, "usage_type": "call" }, { "api_name": "benj.integrate_rna", "line_number": 23, "usage_type": "call" }, { "api_name": "celltypist.train", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "scanpy.settings", "line_number": 30, "usage_type": "attribute" } ]
24604094520
# Packages import time import selenium from selenium import webdriver import NameExtractor app_names = [] element_web = [] k = 0 count = 1 def decompiler(path, file_path): global app_names, driver driver = webdriver.Chrome(path) driver.maximize_window() app_names = NameExtractor.name_extractor(file_path) for i in app_names: try: driver.refresh() driver.get("https://www.apkdecompilers.com/") time.sleep(5) # find element # extra code print(app_names) driver.get("https://www.apkdecompilers.com/") driver.find_element_by_id('apk') time.sleep(10) # send element element_send = driver.find_element_by_id("apk") element_send.send_keys(i) print(i) driver.find_element_by_id("submit-btn").click() time.sleep(270) # download element driver.find_element_by_xpath("/html/body/section[1]/div/div/div/div/div/div/div/div[2]/div/div/div/div/div/div/div[2]/a/b/u/h3").click() time.sleep(50) except: # find element # extra code driver.refresh() driver.get("http://www.javadecompilers.com/apk") # send element element_send = driver.find_element_by_id("upload_datafile") element_send.send_keys(i) print(i) send_element = driver.find_element_by_xpath("/html/body/div[2]/div/div[2]/div/div[2]/div/form/div/div/div/div[2]/div[1]/div/button") webdriver.ActionChains(driver).move_to_element(send_element).click(send_element).perform() time.sleep(270) # download element down_element = driver.find_element_by_xpath("/html/body/div[2]/div/div[2]/div/div[2]/div/div[2]/div/div[1]/div/div[2]/div/div[1]/div[2]/a") webdriver.ActionChains(driver).move_to_element(down_element).click(down_element).perform() time.sleep(50) driver.close() driver_path = "C:\Program Files (x86)\Python38-32\Chrome Driver\chromedriver.exe" file_path = "D:\Project\Privacy Detection\Apps\App Data.xlsx" decompiler(driver_path,file_path)
Neilnarnaware/Privacy-Detection-of-Android-Application
Decompiler.py
Decompiler.py
py
2,296
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 16, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 16, "usage_type": "name" }, { "api_name": "NameExtractor.name_extractor", "line_number": 19, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 24, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 31, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 37, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 40, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 51, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 51, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 52, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 55, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 55, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 56, "usage_type": "call" } ]
32509221733
import numpy as np import matplotlib.pyplot as plt import scipy.stats as sc import csv def myAnova(Matrice, pvalue_crit): # Initialisation : H = 0 F = 0 var_intra = 0 var_inter = 0 obs_moy = 0 eff_tot = 0 # Moyenne des classes : for i in range(len(Matrice)): obs_moy = sum(Matrice[i]) + obs_moy eff_tot = len(Matrice[i]) + eff_tot # print("Moyenne de la classe", i, "=", round(obs_moy/eff_tot,1)) # print("Effectif total =", eff_tot, "\n") obs_moy = obs_moy / eff_tot # print("Moyenne de la moyenne des classes =", round(obs_moy,1)) # print("Effectif Total =", eff_tot) # Variance intra (= moyenne des classes) : sum_var_intra = 0 for j in range(0, len(Matrice)): for i in range(0, len(Matrice[j])): sum_var_intra = sum_var_intra + (Matrice[j][i] - np.mean(Matrice[j])) ** 2 var_intra = (1 / eff_tot) * sum_var_intra # print("Variance Intra = ", round(var_intra, 3)) # Variance inter (= moyenne des observations) : sum_var_inter = 0 for j in range(0, len(Matrice)): sum_var_inter = sum_var_inter + (len(Matrice[j]) * (np.mean(Matrice[j]) - obs_moy) ** 2) var_inter = (1 / eff_tot) * sum_var_inter # print("Variance Inter = ", round(var_inter, 3)) # Valeur de la stat F : # var_tot = var_intra + var_inter F = (var_inter / (len(Matrice) - 1)) / (var_intra / (eff_tot - len(Matrice))) # print("Variance Totale = ", round(var_tot, 3)) # print("Satistique F = ", round(F, 3)) # Hypothèse H (=0 ou 1) : p_value = sc.f.cdf(F, len(Matrice) - 1, eff_tot - len(Matrice)) # print("pValue = ", round(p_value, 4)) if (p_value > 1 - pvalue_crit): H = False # print("H =", H, "--> Donc on rejette H0.\n") else: H = True # print("H =", H, "--> Donc on valide H0.\n") return (H, F, var_intra, var_inter) def readDat_csv(NomDuFichierCSV, nbline, nbcol): # Auteur P. Maurine # Date : 13/12/2019 # Prend le fichier csv NomDuFichierCSV de n lignes p colonnes et retourne # une matrice de nxp floats L = [] Sample = np.array([], dtype=float) with open(NomDuFichierCSV, newline='') as f: read = csv.reader(f, delimiter=";") for row in read: L.extend(row) Sample = [float(i) for i in L] Sample = np.reshape(Sample, [nbline, nbcol]) return (Sample) def Temp_Dept(Sample, Departement): Temp = np.zeros(len(Sample[1]) - 1) indice = 0 for i in range(1, len(Sample[1])): Temp[indice] = Sample[np.where(Sample[:, 0] == Departement), i] indice += 1 return (Temp) def Temp_An(Sample, Annee): Temp = np.zeros((len(Sample) - 1)) indice = 0 for i in range(1, len(Sample)): Temp[indice] = Sample[i, np.where(Sample[0, :] == Annee)] indice += 1 return (Temp) def Temp_Dept(Sample, Departement): Temp = np.zeros(len(Sample[1]) - 1) indice = 0 for i in range(1, len(Sample[1])): Temp[indice] = Sample[np.where(Sample[:, 0] == Departement), i] indice += 1 return (Temp) matCSV = readDat_csv("DonneesMeteoFrance.csv", 95, 47) Temp_Fr_2000 = Temp_An(matCSV, 2000) # print("Températures enregistrées en France lors de l'an 2000 :\n", Temp_Fr_2000, "\n") Temp_Fr_2005 = Temp_An(matCSV, 2005) # print("Températures enregistrées en France lors de l'an 2005 :\n", Temp_Fr_2005, "\n") Temp_Fr_2010 = Temp_An(matCSV, 2010) # print("Températures enregistrées en France lors de l'an 2010 :\n", Temp_Fr_2010, "\n") Mat_An_1 = np.zeros((3, len(Temp_Fr_2000))) for i in range(0, len(Temp_Fr_2000)): Mat_An_1[0][i] = Temp_Fr_2000[i] Mat_An_1[1][i] = Temp_Fr_2005[i] Mat_An_1[2][i] = Temp_Fr_2010[i] # print("Matrice pour 2000, 2005 et 2010 :\n", Mat_An_1, "\n") H_An1, F_An1, var_intra_An1, var_inter_An1 = myAnova(Mat_An_1, 0.05) print("Utilisation de la fonction myAnova (Année 2000, 2005 et 2010) :") print("--> Hypothèse H =", H_An1, "(On rejette H0)") print("--> Statistique F =", round(F_An1, 2)) print("--> Variance Intra =", round(var_intra_An1, 2)) print("--> Variance Inter =", round(var_inter_An1, 2), "\n") # Températures en Frane entre 1970, 1975 et 1980 : ---------------------------- # Extraction des données : Temp_Fr_1970 = Temp_An(matCSV, 1970) # print("Températures enregistrées en France lors de l'an 1970 :\n", Temp_Fr_1970, "\n") Temp_Fr_1975 = Temp_An(matCSV, 1975) # print("Températures enregistrées en France lors de l'an 1975 :\n", Temp_Fr_1975, "\n") Temp_Fr_1980 = Temp_An(matCSV, 1980) # print("Températures enregistrées en France lors de l'an 1980 :\n", Temp_Fr_1980, "\n") Mat_An_2 = np.zeros((3, len(Temp_Fr_2000))) for i in range(0, len(Temp_Fr_2000)): Mat_An_2[0][i] = Temp_Fr_1970[i] Mat_An_2[1][i] = Temp_Fr_1975[i] Mat_An_2[2][i] = Temp_Fr_1980[i] # print("Matrice pour 1970, 1975 et 1980 :\n", Mat_An_2, "\n") H_An2, F_An2, var_intra_An2, var_inter_An2 = myAnova(Mat_An_2, 0.05) print("Utilisation de la fonction myAnova (Année 1970, 1975 et 1980) :") print("--> Hypothèse H =", H_An2, "(On rejette H0)") print("--> Statistique F =", round(F_An2, 2)) print("--> Variance Intra =", round(var_intra_An2, 2)) print("--> Variance Inter =", round(var_inter_An2, 2), "\n")
Varelafv/TD6.py
TD2-EXO2.py
TD2-EXO2.py
py
5,319
python
fr
code
0
github-code
6
[ { "api_name": "numpy.mean", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 35, "usage_type": "call" }, { "api_name": "scipy.stats.f.cdf", "line_number": 46, "usage_type": "call" }, { "api_name": "scipy.stats.f", "line_number": 46, "usage_type": "attribute" }, { "api_name": "scipy.stats", "line_number": 46, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 125, "usage_type": "call" } ]
45254772596
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 20 23 20:40:00 @author: kirsh012 """ import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns import joblib from sklearn.model_selection import PredefinedSplit, GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_curve, auc, precision_recall_curve from sklearn.utils import class_weight ### Load custom modules import nn_models as nnm import dataprocessing as dp import visualization as viz ### Load the data for comparison data, varnames, target = dp.load_data_nn('1-sf', sensor='both', dlh=0, keep_SH=False, return_target=True) # Split data into time oriented chunks train_idx, test_idx, val_idx = nnm.split_data_cv_indx(data,target) train_labels = target[train_idx] test_labels = target[test_idx] val_labels = target[val_idx] print("Train labels shape: ", train_labels.shape) print("Test labels shape: ", test_labels.shape) print("Val labels shape: ", val_labels.shape) train_data = data[train_idx,:] test_data = data[test_idx,:] val_data = data[val_idx,:] print("Train shape: ", train_data.shape) print("Test shape: ", test_data.shape) print("Val shape: ", val_data.shape) # Use indices to make PredefinedSplit for hyperparameter optimization train_idx = np.full( (train_data.shape[0],) , -1, dtype=int) val_idx = np.full( (val_data.shape[0], ) , 0, dtype=int) test_fold = np.append(train_idx, val_idx) print(test_fold.shape) ps = PredefinedSplit(test_fold) print(ps) combined_train_data = np.vstack((train_data, val_data)) combined_train_labels = np.vstack((train_labels.reshape(-1,1), val_labels.reshape(-1,1))).ravel() print("Combined train data shape: ", combined_train_data.shape) print("Combined labels shape:", combined_train_labels) param_grid = { 'n_estimators': [100, 200, 500, 1000, 2000, 5000], 'max_depth': [5, 10, 15, 20, 25, None] } # Compute the class weights train_weights = class_weight.compute_class_weight(class_weight='balanced', classes=np.unique(combined_train_labels), y=combined_train_labels) train_weights = {i: weight for i, weight in enumerate(train_weights)} from pathlib import Path filename = Path("tuned_rf_model_weighted.pkl") ### Save the model if not filename.exists(): print("Running the hyperparameter testing model...") clf = GridSearchCV(RandomForestClassifier(class_weight=train_weights), param_grid=param_grid, scoring='roc_auc_ovr_weighted', cv = ps, verbose=3) clf.fit(combined_train_data, combined_train_labels) joblib.dump(clf, filename) else: clf = joblib.load(filename) # Print hyperparameter esults print("Report: \n", pd.DataFrame(clf.cv_results_)) print("Best inner loop score: ", clf.best_score_) print("Best parameters: ", clf.best_params_) # Predict on the anomalous train_preds = clf.predict_proba(train_data) test_preds = clf.predict_proba(test_data) val_preds = clf.predict_proba(val_data) ### Visualize Performance # Return AU-ROC fpr_test, tpr_test, thresh_test = roc_curve(test_labels, test_preds[:,1]) fpr_train, tpr_train, thresh_train = roc_curve(train_labels, train_preds[:,1]) fpr_val, tpr_val, thresh_val = roc_curve(val_labels, val_preds[:,1]) # Return AU-PRC ppr_test, rec_test, pthresh_test = precision_recall_curve(test_labels, test_preds[:,1]) ppr_train, rec_train, pthresh_train = precision_recall_curve(train_labels, train_preds[:,1]) ppr_val, rec_val, pthresh_val = precision_recall_curve(val_labels, val_preds[:,1]) viz.plot_roc_curve(tpr_train, fpr_train, tpr_val, fpr_val, tpr_test, fpr_test, title = "RandomForest AU-ROC") viz.plot_prc_curve(rec_train, ppr_train, rec_val, ppr_val, rec_test, ppr_test, title = "RandomForest AU-PRC") plt.show()
tk27182/masters-thesis
Code/run_test_randomforest.py
run_test_randomforest.py
py
3,799
python
en
code
0
github-code
6
[ { "api_name": "dataprocessing.load_data_nn", "line_number": 26, "usage_type": "call" }, { "api_name": "nn_models.split_data_cv_indx", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 51, "usage_type": "call" }, { "api_name": "sklearn.model_selection.PredefinedSplit", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 56, "usage_type": "call" }, { "api_name": "sklearn.utils.class_weight.compute_class_weight", "line_number": 66, "usage_type": "call" }, { "api_name": "sklearn.utils.class_weight", "line_number": 66, "usage_type": "name" }, { "api_name": "numpy.unique", "line_number": 67, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 71, "usage_type": "call" }, { "api_name": "sklearn.model_selection.GridSearchCV", "line_number": 77, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 77, "usage_type": "call" }, { "api_name": "joblib.dump", "line_number": 80, "usage_type": "call" }, { "api_name": "joblib.load", "line_number": 82, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 85, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 96, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 97, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 98, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_recall_curve", "line_number": 101, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_recall_curve", "line_number": 102, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_recall_curve", "line_number": 103, "usage_type": "call" }, { "api_name": "visualization.plot_roc_curve", "line_number": 105, "usage_type": "call" }, { "api_name": "visualization.plot_prc_curve", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" } ]
25145519000
from dataclasses import dataclass from typing import Any from msg.serializers import BaseExpenseCreationSerializer, BaseExpensePropertySerializer @dataclass class ExpenseCreationHelper: data: dict def __call__(self, *args: Any, **kwds: Any) -> Any: if not self._parse_data(): return return True def _parse_data(self): user_id = self.data.pop('user_id', None) expense_category_name = self.data.pop('expense_category_name', None) expense_ser = BaseExpenseCreationSerializer(data={ 'user_id': user_id, 'expense_category_name': expense_category_name }) expense_ser.is_valid(raise_exception=True) expense_inst = expense_ser.save() self.data['expense_id'] = expense_inst.id expense_property_ser = BaseExpensePropertySerializer(data=self.data) expense_property_ser.is_valid(raise_exception=True) expense_property_ser.save() return True
enamsaraev/tg_api
msg/helpers.py
helpers.py
py
1,000
python
en
code
0
github-code
6
[ { "api_name": "typing.Any", "line_number": 11, "usage_type": "name" }, { "api_name": "msg.serializers.BaseExpenseCreationSerializer", "line_number": 22, "usage_type": "call" }, { "api_name": "msg.serializers.BaseExpensePropertySerializer", "line_number": 30, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 7, "usage_type": "name" } ]
5589205557
import re import plac import ujson as json from utils import load_jsonl_file, dumps_jsonl regex_ws = re.compile(r'\s+') def load_corpus(path): documents = json.load(open(path, 'r')) return documents def hydrate(parses, relation): doc = parses.get(relation['DocID']) text = doc.get('text', '') if doc else '' return { 'Arg1': { 'TokenList': relation['Arg1'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Arg1']]), }, 'Arg2': { 'TokenList': relation['Arg2'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Arg2']]), }, 'Connective': { 'TokenList': relation['Connective'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Connective']]), }, 'DocId': relation['DocID'] } def main(parses_path, relation_path): corpus = load_corpus(parses_path) relations = load_jsonl_file(relation_path) dumps_jsonl(map(lambda r: hydrate(corpus, r), relations)) if __name__ == '__main__': plac.call(main)
rknaebel/bbc-discourse
hydrate.py
hydrate.py
py
1,089
python
en
code
1
github-code
6
[ { "api_name": "re.compile", "line_number": 8, "usage_type": "call" }, { "api_name": "ujson.load", "line_number": 12, "usage_type": "call" }, { "api_name": "utils.load_jsonl_file", "line_number": 38, "usage_type": "call" }, { "api_name": "utils.dumps_jsonl", "line_number": 39, "usage_type": "call" }, { "api_name": "plac.call", "line_number": 43, "usage_type": "call" } ]
38081298604
import asyncio import threading from sqlalchemy.orm import Query from ConsumerService.consumer.persistence import db from ConsumerService.consumer.business import manage_event_data from aio_pika import connect, ExchangeType from flask import Flask, request, jsonify, Response app = Flask(__name__) @app.route('/getPatientMedsPeriods') def get_patient_med_period(): p_id = request.args['p_id'] med = request.args['med'] patient_meds_periods = [] result = manage_event_data.get_patient_med_period(p_id, med) if isinstance(result,Query): _len = result.count() else: _len = len(result) if _len > 0: for r in result: a = {"p_id": r.p_id, "medication_name": r.medication_name, "medication_period_start": r.medication_period_start, "medication_period_end": r.medication_period_end} patient_meds_periods.append(a) return jsonify(patient_meds_periods) else: # No elements in the result --> return NOT_FOUND_404 return Response('No medication periods has been found for patient {} with medication: {}'.format(p_id, med), 404) @app.route('/getPatientAllMedsPeriods') def get_patient_all_meds_period(): p_id = request.args['p_id'] patient_meds_periods = [] result = manage_event_data.get_patient_all_meds_periods(p_id) if isinstance(result,Query): _len = result.count() else: _len = len(result) if _len > 0: for r in result: a = {"p_id": r.p_id, "medication_name": r.medication_name, "medication_period_start": r.medication_period_start, "medication_period_end": r.medication_period_end} patient_meds_periods.append(a) return jsonify(patient_meds_periods) else: # No elements in the result --> return NOT_FOUND_404 return Response('No medication periods has been found for patient:{}'.format(p_id), 404) async def main(loop): print("Connecting to the PostgreSQL database...") if not db.is_table_exist(): conn = db.create_tables() else: conn = db.get_connection() connection = await connect(host="localhost", login="admin", password="password", loop=loop ) # connection = await connect(host=os.environ.get('RABBIT_HOST'), # login=os.environ.get('RABBIT_USER'), # password=os.environ.get('RABBIT_PASS'), # loop=loop # ) async with connection: # Creating a channel channel = await connection.channel() # Declaring the queue queue = await channel.declare_queue(name='events', auto_delete=True) exchange = await channel.declare_exchange("meds", ExchangeType.FANOUT) routing_key = "new.events" await queue.bind(exchange, routing_key) async with queue.iterator() as queue_iter: async for message in queue_iter: async with message.process(): event_str = message.body.decode('UTF-8') manage_event_data.save_event(event_str) if __name__ == '__main__': # start flask on separate thread threading.Thread(target=lambda : app.run(debug=True, use_reloader=False)).start() # Get the current event loop. # If there is no current event loop set in the current OS thread, # the OS thread is main, and set_event_loop() has not yet been called, # asyncio will create a new event loop and set it as the current one. loop = asyncio.get_event_loop() if loop is not None: loop.run_until_complete(main(loop)) else: print("Error establishing event loop!")
oran1980/clewMedical
application-assignment/ConsumerService/consumer/main.py
main.py
py
3,890
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 15, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 15, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 16, "usage_type": "name" }, { "api_name": "ConsumerService.consumer.business.manage_event_data.get_patient_med_period", "line_number": 18, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.business.manage_event_data", "line_number": 18, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Query", "line_number": 19, "usage_type": "argument" }, { "api_name": "flask.jsonify", "line_number": 30, "usage_type": "call" }, { "api_name": "flask.Response", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 38, "usage_type": "name" }, { "api_name": "ConsumerService.consumer.business.manage_event_data.get_patient_all_meds_periods", "line_number": 40, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.business.manage_event_data", "line_number": 40, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Query", "line_number": 41, "usage_type": "argument" }, { "api_name": "flask.jsonify", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.Response", "line_number": 54, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.persistence.db.is_table_exist", "line_number": 60, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.persistence.db", "line_number": 60, "usage_type": "name" }, { "api_name": "ConsumerService.consumer.persistence.db.create_tables", "line_number": 61, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.persistence.db", "line_number": 61, "usage_type": "name" }, { "api_name": "ConsumerService.consumer.persistence.db.get_connection", "line_number": 63, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.persistence.db", "line_number": 63, "usage_type": "name" }, { "api_name": "aio_pika.connect", "line_number": 65, "usage_type": "call" }, { "api_name": "aio_pika.ExchangeType.FANOUT", "line_number": 82, "usage_type": "attribute" }, { "api_name": "aio_pika.ExchangeType", "line_number": 82, "usage_type": "name" }, { "api_name": "ConsumerService.consumer.business.manage_event_data.save_event", "line_number": 90, "usage_type": "call" }, { "api_name": "ConsumerService.consumer.business.manage_event_data", "line_number": 90, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 95, "usage_type": "call" }, { "api_name": "asyncio.get_event_loop", "line_number": 100, "usage_type": "call" } ]
2721867306
""" api.py ~~~~~~ This file define simple REST APi for a Machine Learning Model """ from os import environ as env from joblib import load from flask import abort, Flask, jsonify, make_response, request from pandas import DataFrame service_name = env['SERVICE_NAME'] version = env['API_VERSION'] model = load('data/model.joblib') app = Flask(__name__) @app.route(f'/{service_name}/v{version}/predict', methods=['POST']) def predict(): """Predict Incoming Request""" try: req = request.json print(req) features = DataFrame(req) prediction = model.predict(features).tolist() return make_response(jsonify({'prediction': prediction})) except ValueError: raise RuntimeError('Features are not in the correct format.') if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)
repodevs/flask-machine-learning-service
api.py
api.py
py
846
python
en
code
0
github-code
6
[ { "api_name": "os.environ", "line_number": 15, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "name" }, { "api_name": "joblib.load", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 18, "usage_type": "call" }, { "api_name": "flask.request.json", "line_number": 25, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 25, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 29, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 29, "usage_type": "call" } ]
5145788640
import enum from ocrdgen.font.font import FontManager from ocrdgen.image.background import BgManager from pathlib import Path import numpy as np from PIL import ImageDraw, Image from ocrdgen.ops import boxes_ops import cv2 as cv from collections import OrderedDict from .base import BaseDrawer from ocrdgen import models class WordDrawer(BaseDrawer): def __init__(self, image: Image, font, text, xy, align="left", anchor=None, image_mode="RGBA", fill=(0,0,0)): super().__init__(image=image, font=font, text=text, xy=xy, anchor=anchor, align=align, image_mode=image_mode, fill=fill) text_test = self.text.strip().split(" ") # print(len(text_split), text_split) assert len(text_test) == 1, f"Error, expected one word only, but more word is given!" def draw_text(self, image=None): if type(image) == type(None): image = self.image.copy() idraw = ImageDraw.Draw(image) idraw.text(self.xy, self.text, font=self.font, fill=self.fill) # idraw.textbbox() return image def draw_bbox(self, image, color=(255,0,0,255), thick=1): xmin, ymin, xmax, ymax = self.xymm_with_offset(self.text, self.x, self.y) np_img = cv.rectangle(np.array(image), (xmin, ymin), (xmax, ymax), color, thick) return Image.fromarray(np_img) def draw(self, image=None, draw_bbox=False, bbox_color=(255, 0, 0, 255), bbox_thick=1): image = self.draw_text(image) bbox = self.wordbbox() if draw_bbox: image = self.draw_bbox(image, color=bbox_color, thick=bbox_thick) return image, bbox def wordbbox(self): wordbox = models.WordBox(text=self.text, bbox=self.textbbox(), chars=self.charbbox()) return wordbox def charbbox(self): data = [] xmin, ymin = self.x, self.y for i in range(len(self.text)): if len(self.text[i])>0: xymm = self.xymm_with_offset(self.text[i], xmin, ymin) xywh = boxes_ops.xymm_to_xywh(xymm) dt = models.CharBox(char=self.text[i], bbox=xywh, seq_id=i) # dt = (self.text[i], xywh) _, _, xmax, _ = xymm xmin = xmax data.append(dt) return data def draw_char_text(self, image=None): image = self.draw_text(image) return image def draw_char_bbox(self, image, color=(0,255,0,255), thick=1): image: np.ndarray = np.array(image) charboxes = self.charbbox() for idx, charbox in enumerate(charboxes): char, xywh = charbox.char, charbox.bbox xmin,ymin,xmax,ymax = boxes_ops.xywh_to_xymm(xywh) if char!=" ": # xmin, ymin, xmax, ymax = self.xymm_with_offset(char, x, y) image = cv.rectangle(image, (xmin, ymin), (xmax, ymax), color, thick) image: Image = Image.fromarray(image) return image def draw_char(self, image=None, draw_bbox=False, bbox_color=(0,255,0,255), bbox_thick=1): image = self.draw_char_text(image) bbox = self.charbbox() if draw_bbox: image = self.draw_char_bbox(image, color=bbox_color, thick=bbox_thick) return image, bbox
nunenuh/ocrdgen
ocrdgen/drawer/word.py
word.py
py
3,432
python
en
code
0
github-code
6
[ { "api_name": "base.BaseDrawer", "line_number": 15, "usage_type": "name" }, { "api_name": "PIL.Image", "line_number": 16, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 29, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 29, "usage_type": "name" }, { "api_name": "cv2.rectangle", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 36, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 38, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 38, "usage_type": "name" }, { "api_name": "ocrdgen.models.WordBox", "line_number": 48, "usage_type": "call" }, { "api_name": "ocrdgen.models", "line_number": 48, "usage_type": "name" }, { "api_name": "ocrdgen.ops.boxes_ops.xymm_to_xywh", "line_number": 57, "usage_type": "call" }, { "api_name": "ocrdgen.ops.boxes_ops", "line_number": 57, "usage_type": "name" }, { "api_name": "ocrdgen.models.CharBox", "line_number": 58, "usage_type": "call" }, { "api_name": "ocrdgen.models", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 72, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 72, "usage_type": "call" }, { "api_name": "ocrdgen.ops.boxes_ops.xywh_to_xymm", "line_number": 76, "usage_type": "call" }, { "api_name": "ocrdgen.ops.boxes_ops", "line_number": 76, "usage_type": "name" }, { "api_name": "cv2.rectangle", "line_number": 79, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 81, "usage_type": "name" }, { "api_name": "PIL.Image.fromarray", "line_number": 81, "usage_type": "call" } ]
73831952826
from odoo import api, models, fields, _ from odoo.exceptions import UserError import logging _logger = logging.getLogger(__name__) class LgpsPartner(models.Model): _inherit = 'res.partner' client_type = fields.Selection( [ ('new', _('New')), ('aftersales', _('After Sales')), ], default='new', string=_("Client Type") ) first_installation_day = fields.Date( string=_("First Installation Day") ) custom_status = fields.Selection( [ ('active', _('Active')), ('cancelled', _('Cancelled')), ('demo', _('Demo')), ('inactive', _('Inactive')), ('suspended', _('Suspended')), ('on_negotiation', _('On Negotiation')), ('in_credit_bureau', _('In Credit Bureau')), ], default='active' ) client_rank = fields.Selection( [ ('a', 'A'), ('b', 'B'), ('c', 'C'), ('d', 'D'), ('e', 'E'), ], default='e', string=_("Client Rank") ) coordination_executive = fields.Many2one( comodel_name="res.users", string=_("Coordination"), ondelete="set null", ) credit_collection_executive = fields.Many2one( comodel_name="res.users", string=_("Credit and Collection"), ondelete="set null", ) after_sales_executive = fields.Many2one( comodel_name="res.users", string=_("After Sales"), ondelete="set null", ) special_negotiations = fields.Boolean( string=_("Special Negotiations"), default=False ) special_negotiation_notes = fields.Html( string=_("Special Negotiations Notes") ) gpsdevice_ids = fields.One2many( comodel_name="lgps.device", inverse_name="client_id", string="Gps Devices", readonly=True, ) @api.model def create(self, values): if self._check_if_can_create(): new_record = super(LgpsPartner, self).create(values) return new_record # def write(self, values): # if self._check_if_can_create(): # return super(LgpsPartner, self).write(values) def _check_if_can_create(self): user = self.env.user if not user.has_group('lgps.lgps_group_create_contacts'): raise UserError('Solo personal de Administración y Finanzas puede dar alta de Clientes y Proveedores ' 'nuevos.') return True
intralix/odoo-addons
lgps/models/custom_partner.py
custom_partner.py
py
2,580
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 5, "usage_type": "call" }, { "api_name": "odoo.models.Model", "line_number": 7, "usage_type": "attribute" }, { "api_name": "odoo.models", "line_number": 7, "usage_type": "name" }, { "api_name": "odoo.fields.Selection", "line_number": 10, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 10, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 12, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 13, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 16, "usage_type": "call" }, { "api_name": "odoo.fields.Date", "line_number": 19, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 19, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 20, "usage_type": "call" }, { "api_name": "odoo.fields.Selection", "line_number": 23, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 23, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 25, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 26, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 27, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 28, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 29, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 30, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 31, "usage_type": "call" }, { "api_name": "odoo.fields.Selection", "line_number": 36, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 36, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 45, "usage_type": "call" }, { "api_name": "odoo.fields.Many2one", "line_number": 48, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 48, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 50, "usage_type": "call" }, { "api_name": "odoo.fields.Many2one", "line_number": 54, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 54, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 56, "usage_type": "call" }, { "api_name": "odoo.fields.Many2one", "line_number": 60, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 60, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 62, "usage_type": "call" }, { "api_name": "odoo.fields.Boolean", "line_number": 66, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 66, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 67, "usage_type": "call" }, { "api_name": "odoo.fields.Html", "line_number": 71, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 71, "usage_type": "name" }, { "api_name": "odoo._", "line_number": 72, "usage_type": "call" }, { "api_name": "odoo.fields.One2many", "line_number": 75, "usage_type": "call" }, { "api_name": "odoo.fields", "line_number": 75, "usage_type": "name" }, { "api_name": "odoo.api.model", "line_number": 82, "usage_type": "attribute" }, { "api_name": "odoo.api", "line_number": 82, "usage_type": "name" }, { "api_name": "odoo.exceptions.UserError", "line_number": 95, "usage_type": "call" } ]
13842222350
import cv2 import numpy as np import math from numpy import random as nr import sys def lines(code=None, step=12): l = np.zeros((h, w, 3), np.uint8) l[:] = 255 if code == 0: # - horizontal for i in range(0, h, step): l = cv2.line(l, (0, i), (w, i), black) elif code == 1: # | horizontal for i in range(0, w, step): l = cv2.line(l, (i, 0), (i, h), black) elif code == 2: # \ 45 l = lines(code=3, step=step) l = cv2.flip(l, 0) elif code == 3: # / 45 for i in range(0, 2*w, step): l = cv2.line(l, (i, 0), (0, i), black) elif code == 4: # / 22.5 cotheta = 2.4142 tantheta = 0.4142 for i in range(0, int(w+h*cotheta), step): l = cv2.line(l, (i, 0), (0, int(i*tantheta)), black) elif code == 5: # / 67.5 cotheta = 0.4142 tantheta = 2.4142 for i in range(0, int(w+h*cotheta), step): l = cv2.line(l, (i, 0), (0, int(i*tantheta)), black) else: pass # empty return l def tsh(img, stage=None, Numberoftsh=None, equalizeHist=False): type = cv2.THRESH_BINARY img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if equalizeHist == False: pass else: img_gray = cv2.equalizeHist(img_gray, img_gray) _, th = cv2.threshold(img_gray, 255-int(((stage)/Numberoftsh)*255), 255, type) th = cv2.cvtColor(th, cv2.COLOR_GRAY2BGR) return th def createmasks(img, Numberoftsh=None): global masks for i in range(Numberoftsh): if seqline[i] == 4: step = 16 elif seqline[i] == 5: step = 10 else: step = 8 if masks is not None: masks = np.append(masks, np.expand_dims(lines(code=seqline[i], step=step), axis=0), axis=0) else: masks = lines(code=seqline[i], step=step) masks = np.expand_dims(masks, axis=0) #print(masks.shape) return masks def crosshatching(img, Numberoftsh=None, equalizeHist=False, color=False): global frame, flag, w, h h, w, _ = img.shape frame = np.zeros((h, w, 3), np.uint8) frame[:] = 255 if flag is False: createmasks(img, Numberoftsh=Numberoftsh) flag = True for i in range(Numberoftsh): th = tsh(img, stage=i, Numberoftsh=Numberoftsh, equalizeHist=equalizeHist) dst = cv2.addWeighted(masks[i], 1, th, 1, 0) dst = cv2.bitwise_and(dst, frame) frame = dst if color is False: return frame else: frame = cv2.bitwise_or(frame, img) return frame def showimage(img, Numberoftsh = 7, equalizeHist=False): global w, h h, w, _ = img.shape dst = crosshatching(img, Numberoftsh=Numberoftsh, equalizeHist=equalizeHist, color=True) #dst = cv2.resize(dst, (int(w/2), int(h/2))) cv2.imshow('dst', dst) cv2.waitKey(0) cv2.destroyAllWindows() def playvideo(video=None, Numberoftsh=None, color=False): global w, h if video is None: cap = cv2.VideoCapture(0) else: cap = video while True: _, frame = cap.read() if video is None: frame = cv2.flip(frame, 1) frame = crosshatching(frame, Numberoftsh=Numberoftsh, equalizeHist=False, color=color) cv2.imshow('main', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break black = (0, 0, 0) white = (255, 255, 255) #red = (0, 0, 255) #green = (0, 255, 0) #blue = (255, 0, 0) seqline = (-1, 0, 4, 3, 5, 2, 1) masks = None flag = False # existence of line masks if __name__ == "__main__": if len(sys.argv) > 1: pass else: #img = cv2.imread('eagle.jpg') #h, w, _ = img.shape #img = cv2.resize(img, (int(w/8), int(h/8))) #showimage(img) #video = cv2.VideoCapture(0) #video = cv2.VideoCapture('video/Wildlife.wmv') playvideo(video=None, Numberoftsh=7, color=True)
ZZ76/filters
crosshatching.py
crosshatching.py
py
3,968
python
en
code
4
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 9, "usage_type": "attribute" }, { "api_name": "cv2.line", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 40, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.equalizeHist", "line_number": 45, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 46, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 47, "usage_type": "call" }, { "api_name": "cv2.COLOR_GRAY2BGR", "line_number": 47, "usage_type": "attribute" }, { "api_name": "numpy.append", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 72, "usage_type": "attribute" }, { "api_name": "cv2.addWeighted", "line_number": 79, "usage_type": "call" }, { "api_name": "cv2.bitwise_and", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.bitwise_or", "line_number": 85, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 96, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 97, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 103, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 111, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 112, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 126, "usage_type": "attribute" } ]
26822225482
import hashlib import base64 import os import sys from Crypto.Cipher import AES from hashlib import md5 from PyQt4 import QtGui, QtCore import collections from eclib import EC from eclib import DiffieHellman class MainWindow(QtGui.QWidget): def __init__(self): QtGui.QWidget.__init__(self) global to_enc global dec1 global dec2 global label_ans self.setGeometry(0, 0, 500, 650) self.setWindowTitle("Elliptic Curve Cryptography") self.setWindowIcon(QtGui.QIcon("icon.png")) self.resize(500, 650) self.setMinimumSize(500, 650) self.center() self.tab_widget = QtGui.QTabWidget() tab = QtGui.QWidget() tab2 = QtGui.QWidget() p3_vertical = QtGui.QVBoxLayout(tab) self.tab_widget.addTab(tab, "EC Diffie Hellman") # ECDH GUI DECLARATIONS labele1 = QtGui.QLabel(" Elliptical Curve EQUATION ") labele2 = QtGui.QLabel("y^3 = x^2 + ax + b( mod q )") labele1.setStyleSheet('font-size: 13pt') labele2.setStyleSheet('font-size: 12pt') labele1.setAlignment(QtCore.Qt.AlignCenter) labele2.setAlignment(QtCore.Qt.AlignCenter) labela = QtGui.QLabel("Enter value of a:") labelb = QtGui.QLabel("Enter value of b:") labelc = QtGui.QLabel("Enter value of q (prime):") label_PrivA = QtGui.QLabel("Enter Private Key of A:") label_PrivB = QtGui.QLabel("Enter Private Key of B:") label_result = QtGui.QLabel("ENCODED / DECODED TEXT") label_result.setStyleSheet('font-size: 12pt') textEdit = QtGui.QTextEdit() button_file = QtGui.QPushButton("Import File") button_encrypt = QtGui.QPushButton("Encrypt") button_decrypt = QtGui.QPushButton("Decrypt") button_file.clicked.connect(self.importfile) button_encrypt.clicked.connect(self.ecdhencrypt) button_decrypt.clicked.connect(self.ecdhdecrypt) self.vala = QtGui.QTextEdit() self.valb = QtGui.QTextEdit() self.valc = QtGui.QTextEdit() self.apriv = QtGui.QTextEdit() self.bpriv = QtGui.QTextEdit() self.textEdit = QtGui.QTextEdit() self.vala.setMaximumHeight(labela.sizeHint().height()*1.5) self.valb.setMaximumHeight(labelb.sizeHint().height()*1.5) self.valc.setMaximumHeight(labelc.sizeHint().height()*1.5) self.apriv.setMaximumHeight(label_PrivA.sizeHint().height()*1.5) self.bpriv.setMaximumHeight(label_PrivB.sizeHint().height()*1.5) hbox = QtGui.QHBoxLayout() hbox1 = QtGui.QHBoxLayout() vbox1 = QtGui.QHBoxLayout() vbox2 = QtGui.QHBoxLayout() # GUI LAYOUT p3_vertical.addWidget(labele1) p3_vertical.addWidget(labele2) vbox1.addWidget(labela) vbox1.addWidget(self.vala) vbox2.addWidget(labelb) vbox2.addWidget(self.valb) hbox1.addLayout(vbox1) hbox1.addLayout(vbox2) p3_vertical.addLayout(hbox1) p3_vertical.addWidget(labelc) p3_vertical.addWidget(self.valc) p3_vertical.addWidget(label_PrivA) p3_vertical.addWidget(self.apriv) p3_vertical.addWidget(label_PrivB) p3_vertical.addWidget(self.bpriv) p3_vertical.addWidget(button_file) p3_vertical.addWidget(label_result) p3_vertical.addWidget(self.textEdit) hbox.addWidget(button_encrypt) hbox.addWidget(button_decrypt) p3_vertical.addStretch(1) p3_vertical.addLayout(hbox) vbox = QtGui.QVBoxLayout() vbox.addWidget(self.tab_widget) self.setLayout(vbox) # GUI Functionality def ecdhencrypt(self): global A, B, C, PrivA, PrivB A = int(self.vala.toPlainText()) B = int(self.valb.toPlainText()) C = int(self.valc.toPlainText()) PrivA = int(self.apriv.toPlainText()) PrivB = int(self.bpriv.toPlainText()) txt = data ec = EC(A, B, C) g, _ = ec.at(7) assert ec.order(g) <= ec.q dh = DiffieHellman(ec, g) apub = dh.gen(PrivA) bpub = dh.gen(PrivB) assert dh.secret(PrivA, bpub) == dh.secret(PrivB, apub) BLOCK_SIZE = 64 PADDING = '{' pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * PADDING EncodeAES = lambda c, s: base64.b64encode(c.encrypt(pad(s))) x, y = dh.secret(PrivA, apub) secret = x+y secret = hashlib.md5('secret').hexdigest() cipher = AES.new(secret) encoded = EncodeAES(cipher, txt) self.textEdit.setText(encoded) fileName = open('Encrypted.txt', 'w') fileName.write(encoded) fileName.close() def ecdhdecrypt(self): global A, B, C, PrivA, PrivB A = int(self.vala.toPlainText()) B = int(self.valb.toPlainText()) C = int(self.valc.toPlainText()) PrivA = int(self.apriv.toPlainText()) PrivB = int(self.bpriv.toPlainText()) txt = data ec = EC(A, B, C) g, _ = ec.at(7) assert ec.order(g) <= ec.q dh = DiffieHellman(ec, g) apub = dh.gen(PrivA) bpub = dh.gen(PrivB) assert dh.secret(PrivA, bpub) == dh.secret(PrivB, apub) BLOCK_SIZE = 64 PADDING = '{' pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * PADDING DecodeAES = lambda c, e: c.decrypt(base64.b64decode(e)).rstrip(PADDING) x, y = dh.secret(PrivA, apub) secret = x+y secret = hashlib.md5('secret').hexdigest() cipher = AES.new(secret) decoded = DecodeAES(cipher, txt) self.textEdit.setText(decoded) fileName = open('Decrypted.txt', 'w') fileName.write(decoded) fileName.close() def importfile(self): global data fname = QtGui.QFileDialog.getOpenFileName(self, 'Open file', '/home') f = open(fname, 'r') with f: data = f.read() def center(self): screen = QtGui.QDesktopWidget().screenGeometry() size = self.geometry() self.move( (screen.width()-size.width())/2, (screen.height()-size.height())/2) def loadValues(self): global ec global eg idx = self.tab_widget.currentIndex() if idx == 1: global g global pub ec = EC(a, b, q) g, _ = ec.at(7) eg = ElGamal(ec, g) pub = eg.gen(priv) print_pub = str(pub[0]) + "," + str(pub[1]) self.elg_key.insertPlainText(print_pub) app = QtGui.QApplication(sys.argv) frame = MainWindow() frame.show() sys.exit(app.exec_())
iCHAIT/Elliptical-Curve-Cryptography
gui.py
gui.py
py
6,704
python
en
code
24
github-code
6
[ { "api_name": "PyQt4.QtGui.QWidget", "line_number": 13, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui", "line_number": 13, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QWidget.__init__", "line_number": 16, "usage_type": "call" }, { "api_name": "PyQt4.QtGui.QWidget", "line_number": 16, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui", "line_number": 16, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QIcon", "line_number": 24, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 24, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTabWidget", "line_number": 28, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 28, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QWidget", "line_number": 29, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 29, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QWidget", "line_number": 30, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 30, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QVBoxLayout", "line_number": 31, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 31, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 36, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 36, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 37, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 37, "usage_type": "name" }, { "api_name": "PyQt4.QtCore.Qt", "line_number": 40, "usage_type": "attribute" }, { "api_name": "PyQt4.QtCore", "line_number": 40, "usage_type": "name" }, { "api_name": "PyQt4.QtCore.Qt", "line_number": 41, "usage_type": "attribute" }, { "api_name": "PyQt4.QtCore", "line_number": 41, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 42, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 42, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 43, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 43, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 44, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 44, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 45, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 45, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 46, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 46, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 47, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 47, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 49, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 49, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QPushButton", "line_number": 50, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 50, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QPushButton", "line_number": 51, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 51, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QPushButton", "line_number": 52, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 52, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 56, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 56, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 57, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 57, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 58, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 58, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 59, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 59, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 60, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 60, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QTextEdit", "line_number": 61, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 61, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QHBoxLayout", "line_number": 67, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 67, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QHBoxLayout", "line_number": 68, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 68, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QHBoxLayout", "line_number": 69, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 69, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QHBoxLayout", "line_number": 70, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 70, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QVBoxLayout", "line_number": 96, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 96, "usage_type": "name" }, { "api_name": "eclib.EC", "line_number": 109, "usage_type": "call" }, { "api_name": "eclib.DiffieHellman", "line_number": 112, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 119, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 122, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES.new", "line_number": 123, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES", "line_number": 123, "usage_type": "name" }, { "api_name": "eclib.EC", "line_number": 138, "usage_type": "call" }, { "api_name": "eclib.DiffieHellman", "line_number": 141, "usage_type": "call" }, { "api_name": "base64.b64decode", "line_number": 148, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 151, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES.new", "line_number": 152, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES", "line_number": 152, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QFileDialog.getOpenFileName", "line_number": 161, "usage_type": "call" }, { "api_name": "PyQt4.QtGui.QFileDialog", "line_number": 161, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui", "line_number": 161, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QDesktopWidget", "line_number": 167, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 167, "usage_type": "name" }, { "api_name": "eclib.EC", "line_number": 179, "usage_type": "call" }, { "api_name": "PyQt4.QtGui.QApplication", "line_number": 186, "usage_type": "call" }, { "api_name": "PyQt4.QtGui", "line_number": 186, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 186, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 189, "usage_type": "call" } ]
30984123610
""" apps/docs/urls.py """ from django.urls import path from . import views app_name = 'docs' urlpatterns = [ path('', views.index, name='index'), path('overview/', views.overview, name='overview'), path('what_is_an_ordo/', views.what_is_an_ordo, name='what_is_an_ordo'), path('create_an_account/', views.create_an_account, name='create_an_account'), path('create_a_calendar/', views.create_a_calendar, name='create_a_calendar'), path('populate_your_calendar/', views.populate_your_calendar, name='populate_your_calendar'), path('create_an_ordo/', views.create_an_ordo, name='create_an_ordo'), path('for_developers/', views.for_developers, name='for_developers'), ]
BrRoman/ordomatic
ordomatic/apps/docs/urls.py
urls.py
py
709
python
en
code
3
github-code
6
[ { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" } ]
42579723690
import os import git import datetime import argparse class was_it_rufus: """ A class that instantiates all variables and methods about git status. ... Methods ------- Prints the git status """ def __init__(self, git_directory): """ Constructs all the necessary attributes for the Rufus object. Parameters ---------- repo : git object repo object to use for various functionalities active_branch : boolean true or false if the branch is active or not local_changes : boolean true or false if the changes were made local or not recent_commit : boolean true or false if there was a recent commit blame_rufus : boolean true or false if rufus was the author or not """ self.repo = git.Repo(git_directory) self.active_branch = self.repo.active_branch.name self.local_changes = self.repo.is_dirty() self.recent_commit = (datetime.datetime.now().date() - self.repo.head.commit.authored_datetime.date()) < datetime.timedelta( weeks=1) self.blame_rufus = self.repo.head.commit.author.name == "Rufus" def git_status(self): """ Prints the details of git status. Returns ------- None """ print("active branch: ", self.active_branch) print("local changes: ", self.local_changes) print("recent commit: ", self.recent_commit) print("blame Rufus: ", self.blame_rufus) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Was it rufus?') parser.add_argument('git_directory', type=str, help='name of the git repo directory') args = parser.parse_args() #checks if the parsed argument is a directory or not if os.path.isdir(args.git_directory): rufus_obj = was_it_rufus(args.git_directory) rufus_obj.git_status() else: print(args.git_directory, "Invalid directory")
srirammura/was_it_rufus
main.py
main.py
py
2,076
python
en
code
0
github-code
6
[ { "api_name": "git.Repo", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 38, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 38, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 38, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" } ]
5001531967
from datetime import datetime from django import template from tag.models import Tag register = template.Library() @register.inclusion_tag('toptags.html') def toptags(): tags=Tag.objects.all().order_by('-followers_count')[:5] args={} args['tags']=tags return args @register.inclusion_tag('trendingtags.html') def trending_tags(): today = datetime.now() tags=Tag.objects.filter(create__year=today.year,create__month=today.month).order_by('-followers_count')[:5] args={} args['tags']=tags return args @register.inclusion_tag('mytags.html',takes_context=True) def mytags(context): request=context['request'] tags=request.user.profile.follow_tags.all() args={} args['tags']=tags return args
duonghau/hoidap
tag/templatetags/tag_template.py
tag_template.py
py
745
python
en
code
0
github-code
6
[ { "api_name": "django.template.Library", "line_number": 4, "usage_type": "call" }, { "api_name": "django.template", "line_number": 4, "usage_type": "name" }, { "api_name": "tag.models.Tag.objects.all", "line_number": 8, "usage_type": "call" }, { "api_name": "tag.models.Tag.objects", "line_number": 8, "usage_type": "attribute" }, { "api_name": "tag.models.Tag", "line_number": 8, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "name" }, { "api_name": "tag.models.Tag.objects.filter", "line_number": 16, "usage_type": "call" }, { "api_name": "tag.models.Tag.objects", "line_number": 16, "usage_type": "attribute" }, { "api_name": "tag.models.Tag", "line_number": 16, "usage_type": "name" } ]
1059675909
""" This module defines the interface for the Server. .. autoclass:: Server :members: :undoc-members: :show-inheritance: """ import atexit import base64 import logging import os import threading from functools import partial, wraps import pluginbase import tornado.httpserver import tornado.web from flask import (Flask, flash, jsonify, redirect, render_template, request, send_from_directory, session, url_for) from flask_babel import Babel from flask_login import current_user, logout_user from sockjs.tornado import SockJSRouter from tornado import web from tornado.ioloop import IOLoop from tornado.wsgi import WSGIContainer from opsoro.apps import Apps from opsoro.console_msg import * from opsoro.expression import Expression from opsoro.preferences import Preferences from opsoro.robot import Robot from opsoro.server.request_handlers import RHandler from opsoro.users import SocketConnection, Users # Helper function get_path = partial(os.path.join, os.path.abspath(os.path.dirname(__file__))) class Server(object): def __init__(self): self.request_handler = RHandler(self) # Create flask instance for webserver self.flaskapp = Flask(__name__) # self.flaskapp.config['DEBUG'] = True self.flaskapp.config['TEMPLATES_AUTO_RELOAD'] = True # Translation support self.flaskapp.config.from_pyfile('settings.cfg') self.babel = Babel(self.flaskapp) # Setup key for sessions self.flaskapp.secret_key = "5\x075y\xfe$\x1aV\x1c<A\xf4\xc1\xcfst0\xa49\x9e@\x0b\xb2\x17" # Setup login manager Users.setup(self.flaskapp) # Setup app system Apps.register_apps(self) # self.activeapp = None # Initialize all URLs self.request_handler.set_urls() # Run stop function at exit atexit.register(self.at_exit) def at_exit(self): print_info('Goodbye!') # Sleep robot Robot.sleep() Apps.stop_all() if threading.activeCount() > 0: threads = threading.enumerate() for thread in threads: try: thread.stop() thread.join() except AttributeError: pass def render_template(self, template, **kwargs): return self.request_handler.render_template(template, **kwargs) def run(self): # Setup SockJS flaskwsgi = WSGIContainer(self.flaskapp) self.socketrouter = SockJSRouter(SocketConnection, '/sockjs') tornado_app = tornado.web.Application(self.socketrouter.urls + [(r".*", tornado.web.FallbackHandler, {"fallback": flaskwsgi})]) tornado_app.listen(80) # Wake up robot Robot.wake() # Start default app startup_app = Preferences.get('general', 'startup_app', None) if startup_app in Apps.apps: self.request_handler.page_openapp(startup_app) # SSL security # http_server = tornado.httpserver.HTTPServer(tornado_app, ssl_options={ # "certfile": "/etc/ssl/certs/server.crt", # "keyfile": "/etc/ssl/private/server.key", # }) # http_server.listen(443) try: # ioloop.PeriodicCallback(UserSocketConnection.dump_stats, 1000).start() IOLoop.instance().start() except KeyboardInterrupt: print_info('Keyboard interupt') self.at_exit() def shutdown(self): logging.info("Stopping server") io_loop = IOLoop.instance() io_loop.stop() def protected_view(self, f): @wraps(f) def wrapper(*args, **kwargs): if current_user.is_authenticated: if current_user.is_admin: # the actual page return f(*args, **kwargs) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) return wrapper def app_view(self, f): appname = f.__module__.split(".")[-1] @wraps(f) def wrapper(*args, **kwargs): # Protected page if current_user.is_authenticated: if not current_user.is_admin: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) # Check if app is active if appname in Apps.active_apps: # This app is active return f(*args, **kwargs) else: # Return app not active page assert appname in Apps.apps, "Could not find %s in list of loaded apps." % appname data = { "app": {}, # "appname": appname, "page_icon": Apps.apps[appname].config["icon"], "page_caption": Apps.apps[appname].config["full_name"] } data["title"] = self.request_handler.title # if self.activeapp in Apps.apps: # # Another app is active # data["app"]["active"] = True # data["app"]["name"] = Apps.apps[self.activeapp].config["full_name"] # data["app"]["icon"] = Apps.apps[self.activeapp].config["icon"] # data["title"] += " - %s" % Apps.apps[self.activeapp].config["full_name"] # else: # # No app is active # data["app"]["active"] = False return render_template("app_not_active.html", **data) return wrapper def app_api(self, f): appname = f.__module__.split(".")[-1] @wraps(f) def wrapper(*args, **kwargs): # Protected page if current_user.is_authenticated: if not current_user.is_admin: return jsonify(status="error", message="You do not have permission to access the requested page.") else: return jsonify(status="error", message="You do not have permission to access the requested page.") # Check if app is active if appname in Apps.active_apps: # This app is active data = f(*args, **kwargs) if data is None: data = {} if "status" not in data: data["status"] = "success" return jsonify(data) else: # Return app not active page assert appname in Apps.apps, "Could not find %s in list of loaded apps." % appname return jsonify(status="error", message="This app is not active.") return wrapper
OPSORO/OS
src/opsoro/server/__init__.py
__init__.py
py
7,251
python
en
code
9
github-code
6
[ { "api_name": "functools.partial", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 38, "usage_type": "call" }, { "api_name": "opsoro.server.request_handlers.RHandler", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 46, "usage_type": "call" }, { "api_name": "flask_babel.Babel", "line_number": 52, "usage_type": "call" }, { "api_name": "opsoro.users.Users.setup", "line_number": 58, "usage_type": "call" }, { "api_name": "opsoro.users.Users", "line_number": 58, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.register_apps", "line_number": 61, "usage_type": "call" }, { "api_name": "opsoro.apps.Apps", "line_number": 61, "usage_type": "name" }, { "api_name": "atexit.register", "line_number": 68, "usage_type": "call" }, { "api_name": "opsoro.robot.Robot.sleep", "line_number": 74, "usage_type": "call" }, { "api_name": "opsoro.robot.Robot", "line_number": 74, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.stop_all", "line_number": 76, "usage_type": "call" }, { "api_name": "opsoro.apps.Apps", "line_number": 76, "usage_type": "name" }, { "api_name": "threading.activeCount", "line_number": 78, "usage_type": "call" }, { "api_name": "threading.enumerate", "line_number": 79, "usage_type": "call" }, { "api_name": "tornado.wsgi.WSGIContainer", "line_number": 93, "usage_type": "call" }, { "api_name": "sockjs.tornado.SockJSRouter", "line_number": 95, "usage_type": "call" }, { "api_name": "opsoro.users.SocketConnection", "line_number": 95, "usage_type": "argument" }, { "api_name": "tornado.httpserver.web.Application", "line_number": 97, "usage_type": "call" }, { "api_name": "tornado.httpserver.web", "line_number": 97, "usage_type": "attribute" }, { "api_name": "tornado.httpserver", "line_number": 97, "usage_type": "name" }, { "api_name": "opsoro.robot.Robot.wake", "line_number": 101, "usage_type": "call" }, { "api_name": "opsoro.robot.Robot", "line_number": 101, "usage_type": "name" }, { "api_name": "opsoro.preferences.Preferences.get", "line_number": 104, "usage_type": "call" }, { "api_name": "opsoro.preferences.Preferences", "line_number": 104, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.apps", "line_number": 105, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 105, "usage_type": "name" }, { "api_name": "tornado.ioloop.IOLoop.instance", "line_number": 117, "usage_type": "call" }, { "api_name": "tornado.ioloop.IOLoop", "line_number": 117, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 123, "usage_type": "call" }, { "api_name": "tornado.ioloop.IOLoop.instance", "line_number": 124, "usage_type": "call" }, { "api_name": "tornado.ioloop.IOLoop", "line_number": 124, "usage_type": "name" }, { "api_name": "flask_login.current_user.is_authenticated", "line_number": 130, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 130, "usage_type": "name" }, { "api_name": "flask_login.current_user.is_admin", "line_number": 131, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 131, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 135, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 136, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 136, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 138, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 139, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 139, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 128, "usage_type": "call" }, { "api_name": "flask_login.current_user.is_authenticated", "line_number": 149, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 149, "usage_type": "name" }, { "api_name": "flask_login.current_user.is_admin", "line_number": 150, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 150, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 151, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 152, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 152, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 154, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 155, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 155, "usage_type": "call" }, { "api_name": "opsoro.apps.Apps.active_apps", "line_number": 158, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 158, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.apps", "line_number": 163, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 163, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.apps", "line_number": 167, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 167, "usage_type": "name" }, { "api_name": "opsoro.apps.Apps.apps", "line_number": 168, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 168, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 181, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 146, "usage_type": "call" }, { "api_name": "flask_login.current_user.is_authenticated", "line_number": 191, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 191, "usage_type": "name" }, { "api_name": "flask_login.current_user.is_admin", "line_number": 192, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 192, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 193, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 195, "usage_type": "call" }, { "api_name": "opsoro.apps.Apps.active_apps", "line_number": 198, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 198, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 206, "usage_type": "call" }, { "api_name": "opsoro.apps.Apps.apps", "line_number": 209, "usage_type": "attribute" }, { "api_name": "opsoro.apps.Apps", "line_number": 209, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 211, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 188, "usage_type": "call" } ]
41728763711
import os import datetime import time # requires import of opencv through pip # pip install opencv-python import cv2 # requires import of PIL pillow through pip # python -m pip install pillow from PIL import Image, ImageTk import sys import tkinter def my_VidFunction(vid_name): cap = cv2.VideoCapture(vid_name) #check if the video capture is open if(cap.isOpened() == False): print("Error Opening Video Stream Or File") while(cap.isOpened()): ret, frame =cap.read() if ret == True: cv2.namedWindow('frame', cv2.WINDOW_KEEPRATIO) cv2.setWindowProperty('frame',cv2.WND_PROP_ASPECT_RATIO,cv2.WINDOW_KEEPRATIO) #cv2.namedWindow('frame', cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty('frame', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) cv2.imshow('frame', frame) if cv2.waitKey(25) == ord('q'): break else: break cap.release() cv2.destroyAllWindows() def showPIL(pilImage): root = tkinter.Tk() w, h = root.winfo_screenwidth(), root.winfo_screenheight() root.overrideredirect(1) root.geometry("%dx%d+0+0" % (w, h)) root.focus_set() root.bind("<Escape>", lambda e: (e.widget.withdraw(), e.widget.quit())) canvas = tkinter.Canvas(root,width=w,height=h) canvas.pack() canvas.configure(background='black') imgWidth, imgHeight = pilImage.size if imgWidth > w or imgHeight > h: ratio = min(w/imgWidth, h/imgHeight) imgWidth = int(imgWidth*ratio) imgHeight = int(imgHeight*ratio) pilImage = pilImage.resize((imgWidth,imgHeight), Image.ANTIALIAS) image = ImageTk.PhotoImage(pilImage) imagesprite = canvas.create_image(w/2,h/2,image=image) root.after(2000, root.destroy) root.mainloop() #grab time now now = datetime.datetime.now() print('Press ctl and c in terminal or command window to exit slide show.') print('Make sure default image viewer opens full screen. Then close it when full screen.') im = Image.open(r"black_all.png") showPIL(im) while (True): # open method used to open different extension image file # resized_im = im.resize((round(im.size[0]*4), round(im.size[1]*4))) # This method will show image in any image viewer # resized_im.show() if ((now.hour >= 8) and (now.hour <= 22 )): if ((now.hour == 12) and ((now.minute % 30 == 0) or (now.minute % 30 == 1))) or ((now.hour == 17) and ((now.minute % 60 == 0) or (now.minute % 60 == 1))): my_VidFunction('ShiftChangeYouTubeHIGH.mp4') # grab time again, so not using time at stop of this loop instance now = datetime.datetime.now() else: my_VidFunction('cci_icommons_album.mp4') # grab time again, so not using time at stop of this loop instance now = datetime.datetime.now() else: showPIL(im) # close the image #im.close() #resized_im.close()
icommonscrc/Looney-Toon
OpenVideoAtTimeV8.py
OpenVideoAtTimeV8.py
py
2,716
python
en
code
0
github-code
6
[ { "api_name": "cv2.VideoCapture", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 24, "usage_type": "call" }, { "api_name": "cv2.WINDOW_KEEPRATIO", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.setWindowProperty", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.WND_PROP_ASPECT_RATIO", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.WINDOW_KEEPRATIO", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.setWindowProperty", "line_number": 27, "usage_type": "call" }, { "api_name": "cv2.WND_PROP_FULLSCREEN", "line_number": 27, "usage_type": "attribute" }, { "api_name": "cv2.WINDOW_FULLSCREEN", "line_number": 27, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 37, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 40, "usage_type": "call" }, { "api_name": "tkinter.Canvas", "line_number": 46, "usage_type": "call" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 54, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 54, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 55, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 55, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 61, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 61, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 66, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 66, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 80, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 80, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 84, "usage_type": "attribute" } ]
35023516423
import cv2 import time from base_camera import BaseCamera from Process import Process global sess class Camera(BaseCamera): video_source = 0 process = Process() @staticmethod def set_video_source(source): Camera.video_source = source # @staticmethod def frames(self): camera = cv2.VideoCapture(Camera.video_source) video_FourCC = int(camera.get(cv2.CAP_PROP_FOURCC)) video_fps = camera.get(cv2.CAP_PROP_FPS) video_size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) if not camera.isOpened(): raise RuntimeError('Could not start camera.') print("!!! TYPE:", type(video_FourCC), type(video_fps), type(video_size)) accum_time = 0 curr_fps = 0 fps = "FPS: ??" font = cv2.FONT_HERSHEY_SIMPLEX # prev_time = timer() in_num = 0 out_num = 0 num = 0 data = {} while True: # read current frame print(in_num, out_num, "in_numin_numin_numin_numin_numin_numoutin_numin_numin_numin_numin_num") _, img = camera.read() if img is None: break result, centers = self.process.process(img) for center in centers: x, y, w, h = center # cv2.circle(result,(x,y), 30, (0,0,255), -1) if len(data) == 0: data[f'{x},{y},{w},{h},{num}'] = [x, y, w, h, x, y, w, h] # 最初检测点 最后检测点 continue for key in list(data.keys()): tx, ty, tw, th, tn = key.split(',') tx, ty, tw, th, tn = int(tx), int(ty), int(tw), int(th), int(tn) if num - tn > 4: del data[key] continue else: print('distance', self.process.overlap([x, y, w, h], [tx, ty, tw, th])) if self.process.overlap([x, y, w, h], [tx, ty, tw, th]) > 0.5: value = data[key] value[4], value[5], value[6], value[7] = x, y, w, h del data[key] data[f'{x},{y},{w},{h},{num}'] = value else: data[f'{x},{y},{w},{h},{num}'] = [x, y, w, h, x, y, w, h] for key in list(data.keys()): value = data[key] y1 = value[1] + value[3] // 2 y2 = value[5] + value[7] // 2 # print(y1,y2,"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") if y1 < 700 and y2 >= 700: del data[key] out_num += 1 continue elif y1 > 700 and y2 < 700: del data[key] in_num += 1 continue elif num == video_fps: num = 0 tx, ty, tn = key.split(',') if video_fps - int(tn) > 4: del data[key] continue else: del data[key] data[f'{tx},{ty},{num}'] = value cv2.line(result, (0, 700), (800, 700), (0, 0, 255), 5) cv2.putText(result, f'in: {in_num} out: {out_num}', (50, 780), font, 1.5, (0, 0, 255), 2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if cv2.waitKey(1) & 0xFF == ord('q'): break print(data.keys(), "data.keys()data.keys()data.keys()") # encode as a jpeg image and return it yield cv2.imencode('.jpg', img)[1].tobytes()
Micbetter/ISense-flow
camera_opencv.py
camera_opencv.py
py
3,981
python
en
code
0
github-code
6
[ { "api_name": "base_camera.BaseCamera", "line_number": 8, "usage_type": "name" }, { "api_name": "Process.Process", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.CAP_PROP_FOURCC", "line_number": 19, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FPS", "line_number": 20, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FRAME_WIDTH", "line_number": 21, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FRAME_HEIGHT", "line_number": 22, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 29, "usage_type": "attribute" }, { "api_name": "cv2.line", "line_number": 87, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 88, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 89, "usage_type": "call" }, { "api_name": "cv2.WINDOW_NORMAL", "line_number": 89, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 90, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 91, "usage_type": "call" }, { "api_name": "cv2.imencode", "line_number": 97, "usage_type": "call" } ]
8665817734
import os import boto3 from elasticsearch import Elasticsearch from unittest import TestCase from me_articles_drafts_delete import MeArticlesDraftsDelete from tests_util import TestsUtil class TestMeArticlesDraftsDelete(TestCase): dynamodb = boto3.resource('dynamodb', endpoint_url='http://localhost:4569/') elasticsearch = Elasticsearch( hosts=[{'host': 'localhost'}] ) @classmethod def setUpClass(cls): TestsUtil.set_all_tables_name_to_env() os.environ['DOMAIN'] = 'example.com' cls.article_info_table = cls.dynamodb.Table('ArticleInfo') cls.article_content_table = cls.dynamodb.Table('ArticleContent') cls.article_content_edit_table = cls.dynamodb.Table('ArticleContentEdit') cls.article_history_table = cls.dynamodb.Table('ArticleHistory') cls.tag_table = cls.dynamodb.Table('Tag') def setUp(self): TestsUtil.delete_all_tables(self.dynamodb) article_info_items = [ { 'article_id': 'draftId00001', 'user_id': 'test01', 'status': 'draft', 'tags': ['a', 'b', 'c'], 'eye_catch_url': 'https://' + os.environ['DOMAIN'] + '/00001.png', 'sort_key': 1520150272000000, 'version': 2 }, { 'article_id': 'draftId00002', 'user_id': 'test01', 'status': 'public', 'sort_key': 1520150272000000, 'version': 2 } ] TestsUtil.create_table(self.dynamodb, os.environ['ARTICLE_INFO_TABLE_NAME'], article_info_items) def tearDown(self): TestsUtil.delete_all_tables(self.dynamodb) def assert_bad_request(self, params): me_articles_drafts_publish_with_header = MeArticlesDraftsDelete(params, {}, dynamodb=self.dynamodb) response = me_articles_drafts_publish_with_header.main() self.assertEqual(response['statusCode'], 400) def test_main_ok(self): params = { 'pathParameters': { 'article_id': 'draftId00001' }, 'requestContext': { 'authorizer': { 'claims': { 'cognito:username': 'test01', 'phone_number_verified': 'true', 'email_verified': 'true' } } } } response = MeArticlesDraftsDelete(params, {}, dynamodb=self.dynamodb).main() self.assertEqual(response['statusCode'], 200) article_info = self.article_info_table.get_item(Key={'article_id': params['pathParameters']['article_id']})['Item'] self.assertEqual(article_info['status'], 'delete') def test_main_ng_with_public_article(self): params = { 'pathParameters': { 'article_id': 'publicId00002' }, 'requestContext': { 'authorizer': { 'claims': { 'cognito:username': 'test01', 'phone_number_verified': 'true', 'email_verified': 'true' } } } } response = MeArticlesDraftsDelete(params, {}, dynamodb=self.dynamodb).main() self.assertEqual(response['statusCode'], 400) def test_validation_with_no_article_id(self): params = { 'queryStringParameters': {}, 'requestContext': { 'authorizer': { 'claims': { 'cognito:username': 'test01', 'phone_number_verified': 'true', 'email_verified': 'true' } } } } self.assert_bad_request(params) def test_validation_article_id_max(self): params = { 'queryStringParameters': { 'article_id': 'A' * 13, }, 'requestContext': { 'authorizer': { 'claims': { 'cognito:username': 'test01', 'phone_number_verified': 'true', 'email_verified': 'true' } } } } self.assert_bad_request(params) def test_validation_article_id_min(self): params = { 'queryStringParameters': { 'article_id': 'A' * 11, }, 'requestContext': { 'authorizer': { 'claims': { 'cognito:username': 'test01', 'phone_number_verified': 'true', 'email_verified': 'true' } } } } self.assert_bad_request(params)
AlisProject/serverless-application
tests/handlers/me/articles/drafts/delete/test_me_articles_drafts_delete.py
test_me_articles_drafts_delete.py
py
4,930
python
en
code
54
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "name" }, { "api_name": "boto3.resource", "line_number": 10, "usage_type": "call" }, { "api_name": "elasticsearch.Elasticsearch", "line_number": 11, "usage_type": "call" }, { "api_name": "tests_util.TestsUtil.set_all_tables_name_to_env", "line_number": 17, "usage_type": "call" }, { "api_name": "tests_util.TestsUtil", "line_number": 17, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 18, "usage_type": "attribute" }, { "api_name": "tests_util.TestsUtil.delete_all_tables", "line_number": 27, "usage_type": "call" }, { "api_name": "tests_util.TestsUtil", "line_number": 27, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 35, "usage_type": "attribute" }, { "api_name": "tests_util.TestsUtil.create_table", "line_number": 47, "usage_type": "call" }, { "api_name": "tests_util.TestsUtil", "line_number": 47, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 47, "usage_type": "attribute" }, { "api_name": "tests_util.TestsUtil.delete_all_tables", "line_number": 50, "usage_type": "call" }, { "api_name": "tests_util.TestsUtil", "line_number": 50, "usage_type": "name" }, { "api_name": "me_articles_drafts_delete.MeArticlesDraftsDelete", "line_number": 53, "usage_type": "call" }, { "api_name": "me_articles_drafts_delete.MeArticlesDraftsDelete", "line_number": 74, "usage_type": "call" }, { "api_name": "me_articles_drafts_delete.MeArticlesDraftsDelete", "line_number": 97, "usage_type": "call" } ]
23225332326
import copy import six from lxml import etree from ems.exceptions import SchemaException from ems.exceptions import ValidationException from ems.exceptions import XMLException from ems.schema import fields def parse_meta(name, bases, dct): """ Parse the _META_ attribute from a schema definition. """ # Set default metadata schema_meta = { # The XML tag for the root element. 'tag': name, # Validate the schema values when rendering. 'validate': True, # Always omit empty values for fields which are not required. 'omit_empty': False, # Omit strings which are equal to '' 'omit_blank': False, # Validation fails for Choice types with more than one value populated. 'strict_choice': False, } # Sets up defaults if the _META_ attribute is not found. if '_META_' in dct: for k, v in six.iteritems(dct['_META_']): schema_meta[k] = v # Remove original definition del dct['_META_'] dct['_schema_meta'] = schema_meta def parse_fields(name, bases, dct): """ Parse the _SCHEMA_ attribute and set up the appropriate methods for each defined field. """ if '_SCHEMA_' not in dct: raise SchemaException('No _SCHEMA_ attribute found for %s' % name) # Holds the fields from the schema definition schema_fields = {} # Holds a reverse lookup to the fields from their tag names. Used when # parsing an XML into an object. field_lookup = {} for k, v in six.iteritems(dct['_SCHEMA_']): if not isinstance(v, dict): raise SchemaException('Schema definitions must be dict objects') # Default to string type. field_type = v.get('type', 'string') # Tag name defaults to field name. if 'tag' not in v: v['tag'] = k # Get field class from factory helper method. schema_fields[k] = fields.factory(field_type, **v) # Lookup for the XML tag -> attribute name field_lookup[v['tag']] = k # Create new property functions for the field values. # Functions are wrapped to force 'k' to be evaluated now. Otherwise k # will always be the value of the last element in the loop. def wrap_get_f(k=k): def get_f(self): return self._schema_fields[k].value return get_f def wrap_set_f(k=k): def set_f(self, value): self._schema_fields[k].value = value return set_f dct[k] = property(wrap_get_f(), wrap_set_f()) # Remove the original schema definition and add the new one del dct['_SCHEMA_'] dct['_schema_fields'] = schema_fields dct['_field_lookup'] = field_lookup def webservice_meta(**kwds): """ Class decorator for creating new web service objects. Takes _META_ args as keyword arguments. """ def wrapper(cls): orig_vars = cls.__dict__.copy() slots = orig_vars.get('__slots__') if slots is not None: if isinstance(slots, str): slots = [slots] for slots_var in slots: orig_vars.pop(slots_var) orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) if orig_vars.get('_META_', None) is None: orig_vars['_META_'] = {} if kwds is not None: for k, v in six.iteritems(kwds): orig_vars['_META_'][k] = v return WebServiceMeta(cls.__name__, cls.__bases__, orig_vars) return wrapper class WebServiceMeta(type): """ Metaclass used to create new WebService objects from a schema, defined as a dictionary. """ def __new__(meta, name, bases, dct): # Sets up the _schema_meta attribute. parse_meta(name, bases, dct) # Sets up the _schema_fields attribute. parse_fields(name, bases, dct) return super(WebServiceMeta, meta).__new__(meta, name, bases, dct) class WebServiceObject(object): """ Base class for objects to be serialized/deserialized for the API. Also used by nested objects. Subclasses should also use the WebServiceMeta metaclass. """ def __init__(self, **kwds): # Ensure that the field values are NOT shared across instances of the # same class. self._schema_fields = copy.deepcopy(self._schema_fields) # Allow any field to be set via keyword arguments for k, v in six.iteritems(kwds): if k in self._schema_fields: self._schema_fields[k].value = v else: raise TypeError('%s got unexpected keyword argument %s' % (self.__class__.__name__, k)) def validate(self): """ Checks whether the values are valid for the class schema. Returns None if valid. Otherwise, raises ValidationException. """ for field in six.itervalues(self._schema_fields): field.validate() def is_valid(self): """ Convenience wrapper for validate() to return True or False. """ try: self.validate() except ValidationException: return False return True def to_element(self, root_element=None): """ Returns the object as an lxml.Element instance. """ if root_element is None: root_element = etree.Element(self._schema_meta['tag']) for field in six.itervalues(self._schema_fields): if self._schema_meta['validate']: field.validate() children = field.to_element( omit_empty=self._schema_meta['omit_empty'], omit_blank=self._schema_meta['omit_blank']) # Append each child element if the rendered elements form a list. # This means that each child gets a root tag. E.g. # <attribute> # <a>1</a> # </attribute> # <attribute> # <a>2</a> # </attribute> if isinstance(children, list): [root_element.append(elem) for elem in children] elif children is not None: root_element.append(children) return root_element def render(self, pretty=False): """ Renders the object into an XML string representation. """ element = self.to_element() return etree.tostring(element, pretty_print=pretty) @classmethod def parse(cls, root_element, strict=True): """ Returns a new instance of the class from an XML. """ # New instance of myself to return obj = cls() for elem in root_element: attr_name = cls._field_lookup.get(elem.tag, None) if attr_name is None and strict: raise XMLException('Unexpected element: %s' % elem.tag) elif attr_name is None: continue # Field objects should provide a parse method obj._schema_fields[attr_name].parse(elem) return obj @classmethod def from_file(cls, filename, strict=True): """ Parse an XML from a file. """ tree = etree.parse(filename) root = tree.getroot() return cls.parse(root, strict=strict) @classmethod def from_text(cls, text, strict=True): """ Parse an XML from a string. """ bytes_ = six.BytesIO(text.encode('utf-8')) return cls.from_file(bytes_)
ceramyq/python-ems
ems/schema/base.py
base.py
py
7,670
python
en
code
0
github-code
6
[ { "api_name": "six.iteritems", "line_number": 38, "usage_type": "call" }, { "api_name": "ems.exceptions.SchemaException", "line_number": 53, "usage_type": "call" }, { "api_name": "six.iteritems", "line_number": 62, "usage_type": "call" }, { "api_name": "ems.exceptions.SchemaException", "line_number": 64, "usage_type": "call" }, { "api_name": "ems.schema.fields.factory", "line_number": 74, "usage_type": "call" }, { "api_name": "ems.schema.fields", "line_number": 74, "usage_type": "name" }, { "api_name": "six.iteritems", "line_number": 125, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 157, "usage_type": "call" }, { "api_name": "six.iteritems", "line_number": 160, "usage_type": "call" }, { "api_name": "six.itervalues", "line_number": 172, "usage_type": "call" }, { "api_name": "ems.exceptions.ValidationException", "line_number": 181, "usage_type": "name" }, { "api_name": "lxml.etree.Element", "line_number": 191, "usage_type": "call" }, { "api_name": "lxml.etree", "line_number": 191, "usage_type": "name" }, { "api_name": "six.itervalues", "line_number": 193, "usage_type": "call" }, { "api_name": "lxml.etree.tostring", "line_number": 224, "usage_type": "call" }, { "api_name": "lxml.etree", "line_number": 224, "usage_type": "name" }, { "api_name": "ems.exceptions.XMLException", "line_number": 238, "usage_type": "call" }, { "api_name": "lxml.etree.parse", "line_number": 252, "usage_type": "call" }, { "api_name": "lxml.etree", "line_number": 252, "usage_type": "name" }, { "api_name": "six.BytesIO", "line_number": 262, "usage_type": "call" } ]
40106131495
from .auto import Auto import gettext def russian(text): text = text.replace("usage:", "использование:") text = text.replace("show this help message and exit", "показывает это сообщение и выходит") text = text.replace("error:", "ошибка:") text = text.replace("the following arguments are required", "требуются следующие аргументы") text = text.replace("argument ", "аргумент ") text = text.replace("invalid choice", "недопустимый вариант") text = text.replace("choose from ", "выберите из следующих ") return text gettext.gettext = russian import argparse gettext.bindtextdomain("argparse", "") gettext.textdomain("argparse") DESCRIPTION = """Система сборки Auto""" def cli(function): """ Декоратор, создаёт командную утилиту из функции :param function: - результат работы декоратора configure Использование: ~~~~~~~~ :: @cli @configure(**kwargs) def test(): ... Все цели будут доступны для исполнения *python source.py -h* """ manager: Auto = function() parser = argparse.ArgumentParser(description=DESCRIPTION) parser._positionals.title = "Позиционные аргументы" parser._optionals.title = "Опции" choices = manager.targets.keys() parser.add_argument("target", type=str, help="цель сборки", choices=choices) namespace = parser.parse_args() manager.execute(namespace.target)
Papr1ka/config
practice4/auto/cli.py
cli.py
py
1,875
python
ru
code
0
github-code
6
[ { "api_name": "gettext.gettext", "line_number": 23, "usage_type": "attribute" }, { "api_name": "gettext.bindtextdomain", "line_number": 26, "usage_type": "call" }, { "api_name": "gettext.textdomain", "line_number": 27, "usage_type": "call" }, { "api_name": "auto.Auto", "line_number": 51, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 52, "usage_type": "call" } ]
21529376169
from .base_view import ClassView def get_model_value(instance, field): try: value = getattr(instance, field) except Exception: if field.find('__') > 0: fields = field.split('__') elif field.find('.') > 0: fields = field.split('.') else: raise Exception() value = instance for field in fields: value = getattr(value, field) if value is None: return None return value class ModelListView(ClassView): fields = None has_pagination = True default_per_page = 10 def __init__(self, request): ClassView.__init__(self, request) get = request.GET.get self.per_page = get("per_page", self.default_per_page) self.per_page = int(self.per_page) self.page = get("page", 1) self.page = int(self.page) self.search = get("search", "") self.sort_param = get("sort", None) self.data = {} self.json_string = None self.validate_fields() def validate_fields(self): fields = self.fields if type(fields) not in (list, tuple): raise Exception("Fields format is not valid.") new_fields = [] for field in fields: if type(field) in (list, tuple): if len(field) > 2: raise Exception("Fields format is not valid.") field, json_key = field else: field, json_key = field, field new_fields.append((field, json_key)) self.fields = new_fields def get_query(self): raise NotImplementedError() def to_json(self, record): fields = self.fields data = {} for field, json_key in fields: fn = getattr(self, 'render_' + field, None) if fn is not None: value = fn(record) else: value = get_model_value(record, field) data[json_key] = value return data # noinspection PyBroadException def sort(self, query): sort = self.sort_param if not sort: return query try: param, asc = sort.split("|") if asc != "asc": param = "-" + param return query.order_by(param) except Exception: return query def get_count(self, query): from django.db.models.query import QuerySet if type(query) is QuerySet: return query.count() return len(query) def process(self, request): query = self.get_query() fields = [a for a, b in self.fields] if len(fields) > 0: query = query.only(*fields) query = self.sort(query) if self.has_pagination: data = self.paginate(query) else: data = [self.to_json(record) for record in query] self.add("status", True) self.add('total', self.get_count(query)) self.add("data", data) def paginate(self, query): from django.core.paginator import Paginator if not self.has_pagination: return paginator = Paginator(query, self.per_page) page = paginator.page(self.page) records = page.object_list data = [self.to_json(record) for record in records] self.add("last_page", paginator.num_pages) self.add("from", page.start_index()) self.add("current_page", self.page) self.add("per_page", self.per_page) self.add("to", page.end_index()) return data
sajithak52/store-django-app
myproject/base_class/views/list_view.py
list_view.py
py
3,646
python
en
code
0
github-code
6
[ { "api_name": "base_view.ClassView", "line_number": 22, "usage_type": "name" }, { "api_name": "base_view.ClassView.__init__", "line_number": 30, "usage_type": "call" }, { "api_name": "base_view.ClassView", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.query.QuerySet", "line_number": 101, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 129, "usage_type": "call" } ]
31333928448
#!/usr/bin/env python3 import atexit import copy import datetime import json import os import re import sys import threading import botocore from flask import Flask from prometheus_client import make_wsgi_app, Gauge from pyemvue import PyEmVue from pyemvue.enums import Scale, Unit from werkzeug.middleware.dispatcher import DispatcherMiddleware from werkzeug.serving import run_simple poller_thread = threading.Thread() minutesInAnHour = 60 wattsInAKw = 1000.0 USAGE_WATTS = Gauge(f'per_min_usage_total', f'Total usage for channel in watts.', labelnames=['channel', 'channel_num', 'device_name', 'device_gid', ], unit="watt") EXCLUDED_CHANNELS = ['Balance', 'TotalUsage', ] devices = {} def log(level, msg): now = datetime.datetime.utcnow() print('{} | {} | {}'.format(now, level.ljust(5), msg), flush=True) def debug(msg): log("INFO", msg) def info(msg): log("INFO", msg) def error(msg): log("ERROR", msg) def die(): global poller_thread error('Caught exit signal') try: poller_thread.cancel() except Exception as e: pass info('Shutting down.') sys.exit(0) def handle_exit(signum, frame): die() # get usage for each device def get_usage_data(device_names, device): device_name = device_names.get(device.device_gid, 'Unknown Device') info(f'Device: #{device.device_gid} "{device_name}" has {len(device.channels.items())} channels.') # Recurse thru the various channels, gathering rosebuds for number, channel in device.channels.items(): if number in EXCLUDED_CHANNELS: debug(f'Excluding data from channel "{number}".') continue if channel.nested_devices: for gid, dev in channel.nested_devices.items(): debug(f'Recursing into nested devices for channel "{number}".') get_channel_usage(device_names, dev) kwhUsage = channel.usage if kwhUsage is not None: channel_label = re.sub(r'_+', '_', re.sub(r'[^a-z0-9_]','_', channel.name.lower(), re.I | re.M)) watts = wattsInAKw * minutesInAnHour * kwhUsage USAGE_WATTS.labels(channel_label, number, device_name, device.device_gid).set(watts) info(f'Channel #{number} - {channel.name} recorded as {channel_label}.') # Thread to poll emporia for data def poll_emporia(vue=None, retry_login=False, devices={}, poll_interval=60): global poller_thread # retry login if needed if retry_login: try: info('logging in') vue.login(username=os.environ.get('VUE_USERNAME'), password=os.environ.get('VUE_PASSWORD')) info('successfully logged in') except Exception as e: error(f'Exception occurred during login: {e}') info(f'skipping run and trying again in {poll_interval} seconds') poller_thread = threading.Timer(poll_interval, poll_emporia, kwargs={"vue":vue, "retry_login":True, "devices":devices, "poll_interval":60,} ) poller_thread.start() return try: device_list = vue.get_devices() info(f'found {len(device_list)} devices.') # give the system time to catch up with data timestamp = datetime.datetime.utcnow() - datetime.timedelta(seconds=15) device_names = dict( filter(lambda x: x[1], map(lambda x:(x.device_gid, x.device_name), device_list))) # get the usage device_usage = vue.get_device_list_usage(list(map(lambda d: d.device_gid, device_list)), timestamp, scale=Scale.MINUTE.value, unit=Unit.KWH.value) if not device_usage: return for gid, device in device_usage.items(): get_usage_data(device_names, device) info(f'Finished polling run; next run in {poll_interval} seconds.') poller_thread = threading.Timer(poll_interval, poll_emporia, kwargs={"vue":vue, "retry_login":False, "devices":devices, "poll_interval":60,} ) poller_thread.start() except Exception as e: error(f'Exception occurred: {e}') info('restarting poll with login retry after 5s.') poller_thread = threading.Timer(5, poll_emporia, kwargs={"vue":vue, "retry_login":True, "devices":devices, "poll_interval":60,} ) poller_thread.start() return def create_app(devices): global poller_thread app = Flask(__name__) poll_interval = 60 vue = PyEmVue() info(f'Launching first poll.') poller_thread = threading.Timer(1, poll_emporia, kwargs={"vue":vue, "retry_login":True, "devices":devices, "poll_interval":60,} ) poller_thread.start() atexit.register(handle_exit) return app deviceFilename = os.environ.get('VUE_DEVICES_FILE') if deviceFilename: try: with open(deviceFilename) as deviceFile: devices = json.load(deviceFile) except FileNotFoundError: info(f'No device list file found at {deviceFilename}') try: app = create_app(devices.get('devices', {})) except: error('Unable to log in - check VUE_USERNAME/VUE_PASSWORD') sys.exit(-2) # add /metrics prom dumper app.wsgi_app = DispatcherMiddleware(app.wsgi_app, { '/metrics': make_wsgi_app() })
thebaron/vueprom
src/vueprom.py
vueprom.py
py
5,230
python
en
code
2
github-code
6
[ { "api_name": "threading.Thread", "line_number": 20, "usage_type": "call" }, { "api_name": "prometheus_client.Gauge", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 54, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 80, "usage_type": "call" }, { "api_name": "re.I", "line_number": 80, "usage_type": "attribute" }, { "api_name": "re.M", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 93, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 93, "usage_type": "attribute" }, { "api_name": "threading.Timer", "line_number": 98, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 107, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 107, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 107, "usage_type": "call" }, { "api_name": "pyemvue.enums.Scale.MINUTE", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pyemvue.enums.Scale", "line_number": 114, "usage_type": "name" }, { "api_name": "pyemvue.enums.Unit.KWH", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pyemvue.enums.Unit", "line_number": 114, "usage_type": "name" }, { "api_name": "threading.Timer", "line_number": 123, "usage_type": "call" }, { "api_name": "threading.Timer", "line_number": 128, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 136, "usage_type": "call" }, { "api_name": "pyemvue.PyEmVue", "line_number": 139, "usage_type": "call" }, { "api_name": "threading.Timer", "line_number": 142, "usage_type": "call" }, { "api_name": "atexit.register", "line_number": 144, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 148, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 148, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 152, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 160, "usage_type": "call" }, { "api_name": "werkzeug.middleware.dispatcher.DispatcherMiddleware", "line_number": 163, "usage_type": "call" }, { "api_name": "prometheus_client.make_wsgi_app", "line_number": 164, "usage_type": "call" } ]
23932718939
import os import numpy as np import pandas as pd from variables import csv_path, label_encode, file_name, cutoff from sklearn.utils import shuffle def preprocess_data(csv_path): df = pd.read_csv(csv_path) df = df.copy() df.dropna(axis=0, how='any', inplace=False) df['label'] = df.apply(y2indicator, axis=1) del df['species'] df = shuffle(df) df.to_csv(file_name, encoding='utf-8') def y2indicator(x): species = x['species'] return label_encode[species] def get_data(): if not os.path.exists(file_name): preprocess_data(csv_path) df = pd.read_csv(file_name) Xdata = df.copy()[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']].to_numpy() Ydata = df.copy()[['label']].to_numpy() train_set = int(cutoff * len(df)) Xtrain, Xtest = Xdata[:train_set], Xdata[train_set:] Ytrain, Ytest = Ydata[:train_set], Ydata[train_set:] return Xtrain, Xtest, Ytrain, Ytest def one_hot_encode(Ydata): N = len(Ydata) num_classes = 3 y = np.eye(num_classes) return y[Ydata]
1zuu/Pytroch-Examples
IrishClassifier/util.py
util.py
py
1,061
python
en
code
2
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 8, "usage_type": "call" }, { "api_name": "variables.csv_path", "line_number": 8, "usage_type": "argument" }, { "api_name": "sklearn.utils.shuffle", "line_number": 13, "usage_type": "call" }, { "api_name": "variables.file_name", "line_number": 14, "usage_type": "argument" }, { "api_name": "variables.label_encode", "line_number": 18, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 21, "usage_type": "call" }, { "api_name": "variables.file_name", "line_number": 21, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "variables.csv_path", "line_number": 22, "usage_type": "argument" }, { "api_name": "pandas.read_csv", "line_number": 23, "usage_type": "call" }, { "api_name": "variables.file_name", "line_number": 23, "usage_type": "argument" }, { "api_name": "variables.cutoff", "line_number": 26, "usage_type": "name" }, { "api_name": "numpy.eye", "line_number": 34, "usage_type": "call" } ]
32055141770
import sqlite3 connection = sqlite3.connect('data.db') cursor = connection.cursor() def initiate_db(): cursor.execute('CREATE TABLE IF NOT EXISTS books(name text primary key, author text, year integer, read integer)') connection.commit() def add_db(book, author, year): try: cursor.execute("INSERT INTO books VALUES(?, ?, ?, 0)", (book, author, year)) connection.commit() return (f"Added '{book}' {author} {year} to the book store.") except sqlite3.IntegrityError: return f"BOOK: '{book}' by {author} already exists in the database." def retrive_db(): cursor.execute('SELECT * from books') books_db = [{"BOOK": row[0], "AUTHOR": row[1], "YEAR": str(row[2]), "READ": row[3] } for row in cursor.fetchall()] if not books_db: return [{"BOOK": 0, "AUTHOR": 0, "YEAR": 0, "READ": 0}] return books_db def _check_book(book_info): books_found = [book for book in retrive_db() if book_info in book.values()] return books_found def mark_db(book): if [book_name for book_name in _check_book(book) if book_name["BOOK"] == book]: cursor.execute("UPDATE books SET read = 1 WHERE name = ?", (book,)) connection.commit() return f"Marked Book:'{book}' as 'Read' " return f"Book '{book}'' doesn't exist in Book Store" def delete_db(book): if _check_book(book) and _check_book(book)[0]["BOOK"] == book: cursor.execute("DELETE FROM books WHERE name = ?",(book,)) connection.commit() return f"'{book}' is removed from database" return f"Book '{book}' doesn't exist in Book Store"
minnalisa/book_shelf
database2.py
database2.py
py
1,624
python
en
code
0
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 3, "usage_type": "call" }, { "api_name": "sqlite3.IntegrityError", "line_number": 16, "usage_type": "attribute" } ]
9434937105
import random import datetime import urllib from optparse import make_option from django.core.management.base import BaseCommand from django.core.files.storage import default_storage from django.core.files.base import File try: from django.contrib.auth import get_user_model User = get_user_model() except ImportError: from django.contrib.auth.models import User # NOQA from fusionbox.blog.models import Blog word_list = [ 'john', 'intense', 'lucky', 'solid', 'hot', 'clever', 'amusing', 'wicked', 'damp', 'sticky', 'warm', 'courteous', 'young', 'slow', 'selfish', 'great', 'vigorous', 'glamorous', 'clean', 'placid', 'enthusiastic', 'instinctive', 'wild', 'hurt', 'tricky', 'diplomatic', 'sympathetic', 'painstaking', 'raspy', 'proud', 'thoughtful', 'delicious', 'itchy', 'cute', 'debtor', 'trip', 'france', 'cone', 'missile', 'statistic', 'equipment', 'push', 'fine', 'antarctica', 'apparel', 'meteorology', 'tsunami', 'head', 'balance', 'fowl', 'spoon', 'croissant', 'library', 'purchase', 'staircase', 'wasp', 'carnation', 'cannon', 'bronze', 'glass', 'kendo', 'cello', 'taiwan', 'shape', 'cauliflower', 'green', 'run', 'scarf', 'tower', 'regret', 'disgust', 'roof', 'hen', 'law', ] tags = ['broccoli', 'violin', 'disintermediate', 'infomediaries', '"compelling synergy"'] names = ['John', 'Patrick', 'Alberto', 'Bertha', 'Claudette', 'Arlene', 'Vince'] def random_text(nwords, choices=word_list): words = [] got_words = 0 while got_words < nwords: word = random.choice(choices) if got_words % 10 == 0 and got_words != 0: word += '.' if got_words % 50 == 0 and got_words != 0: words += '\n\n\n' words.append(word) got_words += 1 return ' '.join(words) def random_image(word='unicorn'): tmpfile, header = urllib.urlretrieve('http://placenoun.com/' + urllib.quote_plus(word)) name = random_text(3) return default_storage.save(name, File(open(tmpfile), name=name)) class Command(BaseCommand): help = "Creates some random blogs" option_list = BaseCommand.option_list + ( make_option('--images', action='store_true', default=False, help='Include some random images'), ) def handle(self, *args, **options): author = User.objects.create( first_name=random_text(1, names), last_name=random_text(1, names), username=random_text(3).replace(' ', ''), email="%s@%s.com" % (random_text(2), random_text(1)), ) for i in range(25): body = random_text(500) title_first = random_text(1) title = title_first + ' ' + random_text(4) Blog.objects.create( title=title, seo_title='Blog ' + title, seo_keywords=random_text(5), seo_description=body[:40], author=author, summary=body[:40], body=body, tags=random_text(2, tags), is_published=True, publish_at=datetime.datetime.now() - datetime.timedelta(days=random.randint(1, 1000)), created_at=datetime.datetime.now() - datetime.timedelta(days=random.randint(1, 1000)), image=random_image(title_first) if options['images'] and random.randint(0, 3) == 0 else None, )
fusionbox/django-fusionbox-blog
fusionbox/blog/management/commands/seed_blogs.py
seed_blogs.py
py
3,513
python
en
code
1
github-code
6
[ { "api_name": "django.contrib.auth.get_user_model", "line_number": 11, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 43, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 54, "usage_type": "call" }, { "api_name": "urllib.quote_plus", "line_number": 54, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.save", "line_number": 56, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 56, "usage_type": "name" }, { "api_name": "django.core.files.base.File", "line_number": 56, "usage_type": "call" }, { "api_name": "django.core.management.base.BaseCommand", "line_number": 59, "usage_type": "name" }, { "api_name": "django.core.management.base.BaseCommand.option_list", "line_number": 61, "usage_type": "attribute" }, { "api_name": "django.core.management.base.BaseCommand", "line_number": 61, "usage_type": "name" }, { "api_name": "optparse.make_option", "line_number": 62, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.create", "line_number": 69, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 69, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 69, "usage_type": "name" }, { "api_name": "fusionbox.blog.models.Blog.objects.create", "line_number": 80, "usage_type": "call" }, { "api_name": "fusionbox.blog.models.Blog.objects", "line_number": 80, "usage_type": "attribute" }, { "api_name": "fusionbox.blog.models.Blog", "line_number": 80, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 90, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 90, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 90, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 90, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 91, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 91, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 91, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 91, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 92, "usage_type": "call" } ]
15420800470
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import urllib.request # 132 명의 남자 연예인들 man_list = [ '장근석', '유아인', '유동근', '이서진', '송일국', '최재성', '장혁', '김민종', '지창욱', '주진모', '안성기', '이순재', '신영균', '이정재', '공유', '이영하', '권상우', '이승기', '김우빈', '최수종', '강석우', '차승원', '이민호', '차인표', '소지섭', '유승호', '박근형', '송중기', '송승헌', '고수', '현빈', '남궁원', '김수현', '강신성', '배용준', '강동원', '조인성', '정우성', '원빈', '장동건', '강다니엘', '지민', '백현', '뷔', '정국', '디오', '찬열', '진', '슈가', '카이', '수호', '세훈', '첸', '시우민', '제이홉', '레이', 'RM ', '김우석', '박지훈', '옹성우', '닉쿤', '탑', '서강준', '김선호', '차은우', '김현중', '엘', '박형식', '임시완', '김재중', '최시원', '정용화', '황민현', '동해', '강인', '태민', '남태현', '우지', '예성', '지코', '정지훈', '양요섭', '온유', '은혁', '마크', '루카스', '태양', '박해진', '김범', '박유천', '김준수', '이준기', '헨리', '이홍기', '박보검', '준호', '김지석', '김강우', '이상엽', '박서준', '이선균', '정일우', '변요한', '이준', '지성', '최강창민', '유노윤호', '이동욱', '이지훈', '우도환', '김래원', '장기용', '남주혁', '박시후', '주지훈', '서인국', '윤계상', '유연석', '조승우', '정해인', '하석진', '이제훈', '규현', '윤두준', '키', '윤시윤', '신성록', '안재현', '옥택연', '하정우', '류준열', '조정석' ] count = 0 driver = webdriver.Chrome('C:/Users/grand/Desktop/ML/CycleGAN/data_utils/chromedriver.exe') driver.get('https://www.google.co.kr/imghp?hl=ko&tab=wi&ogbl') for man in man_list: try: elem = driver.find_element_by_name("q") # Get Search Bar elem.send_keys('{} 얼굴 사진'.format(man)) # Type search words elem.send_keys(Keys.RETURN) # Press Enter time.sleep(3) try: images = driver.find_elements_by_css_selector(".rg_i.Q4LuWd") except: print('{} Passed'.format(man)) continue if len(images) == 0 : print('{} No Images'.format(man)) continue time.sleep(1) for image in images: inner_count = 0 try: image.click() time.sleep(3) imgUrl = driver.find_element_by_xpath("/html/body/div[2]/c-wiz/div[3]/div[2]/div[3]/div/div/div[3]/div[2]/c-wiz/div[1]/div[1]/div/div[2]/a/img").get_attribute('src') if imgUrl[:4] != 'http': continue else: urllib.request.urlretrieve(imgUrl, 'C:/Users/grand/Desktop/ML/CycleGAN/data/man/image_{}.jpg'.format(str(count))) inner_count += 1 count += 1 if inner_count == 25 : break except: continue elem = driver.find_element_by_name("q") elem.clear() except: print('{} Passed'.format(man)) continue
myoons/CycleGAN-Gender-Changer
data_utils/Korean_Crawling/man_crawling.py
man_crawling.py
py
4,090
python
en
code
6
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 144, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 144, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.keys.Keys.RETURN", "line_number": 152, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.keys.Keys", "line_number": 152, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 154, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 166, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 174, "usage_type": "call" }, { "api_name": "urllib.request.request.urlretrieve", "line_number": 181, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 181, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 181, "usage_type": "name" } ]