seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
26606119063
#!/usr/bin/env python # coding: utf-8 # # Import Library # In[387]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from glob import glob from sklearn.metrics import mean_absolute_error from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import accuracy_score , classification_report import pandas_profiling from category_encoders import OneHotEncoder from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_validate # In[388]: t=pd.read_csv("test.csv") t.info() # # Import Data # In[389]: def wrangel(path): # read data df=pd.read_csv(path) #extract the social name df["title"]=df["Name"].str.extract("([A-Za-z]+)\.",expand=False) #convert title categorcal data df.loc[df["title"]=="Mr" , "title"] = 0 df.loc[df["title"]=="Miss" , "title"] = 1 df.loc[df["title"]=="Mrs" , "title"] = 2 df.loc[df["title"]=="Master" , "title"] = 3 conditions = (df["title"] == 'Ms') | (df["title"] == 'Col') | (df["title"] == 'Rev') | (df["title"] == 'Dr') | (df["title"] == 'Dona') df.loc[conditions, "title"] = 4 #fill NAN Value of Fare Accorging to Social Name df["Fare"].fillna(df.groupby("Pclass")["Fare"].transform("median"),inplace=True) #fill NAN Value of Age Accorging to Social Name df["Age"].fillna(df.groupby("title")["Age"].transform("median"),inplace=True) #fill NAN Value of Embarked Accorging to Median df["Embarked"]=df["Embarked"].fillna("S") #remove nan columns drop=[] drop.append("Cabin") drop.append("Name") drop.append("Ticket") drop.append("title") df.drop(columns=drop,inplace=True) #convert Sex categorcal data df.loc[df["Sex"]=="male" , "Sex"] = 0 # Male ---> 0 df.loc[df["Sex"]=="female" , "Sex"] = 1 # Female ---> 1 #convert Embarked categorcal data df.loc[df["Embarked"]=="S" , "Embarked"] = 0 # S ---> 1 df.loc[df["Embarked"]=="C" , "Embarked"] = 1 # C ---> 2 df.loc[df["Embarked"]=="Q" , "Embarked"] = 2 # Q ---> 3 return df # In[390]: test = wrangel("test.csv") df = wrangel("train.csv") # In[340]: df.head() # In[341]: df.info() # In[391]: pandas_profiling.ProfileReport(df) # In[343]: df["Embarked"].value_counts() # In[344]: test.info() # In[352]: test.isnull().sum() # # Exploer Data # In[353]: print("Survive :",(df["Survived"]==1).sum()) print("Deceased :",(df["Survived"]==0).sum()) # In[354]: df.describe() # In[355]: # Create the pie chart values=df["Survived"].value_counts() label=["Deceased ","Survive "] plt.pie(values, labels=label,autopct='%1.1f%%') # Add a title plt.title('Distribution of Survived') # Display the chart plt.show() # In[356]: plt.hist(df["Parch"],bins=5, edgecolor='black'); plt.xlabel('Values') plt.ylabel('Frequancy') plt.title("Values of Parch") plt.show(); # In[357]: survive=df[df["Survived"]==1]["SibSp"].value_counts() death=df[df["Survived"]==0]["SibSp"].value_counts() dx=pd.DataFrame([survive,death],index=["survive","death"]) dx.plot(kind="bar"); plt.title("Survive of SibSp "); # In[358]: survive=df[df["Survived"]==1]["Pclass"].value_counts() death=df[df["Survived"]==0]["Pclass"].value_counts() dx=pd.DataFrame([survive,death],index=["survive","death"]) dx.plot(kind="bar"); plt.title("Survive of Pclass "); # In[359]: class1=df[df["Pclass"]==1]["Embarked"].value_counts() class2=df[df["Pclass"]==2]["Embarked"].value_counts() class3=df[df["Pclass"]==3]["Embarked"].value_counts() dx=pd.DataFrame([class1,class2,class3],index=["class 1","class 2","class 3"]) dx.plot(kind="bar",stacked=True); plt.title("Survive of Pclass "); # We Found that Embarked from S in 1st & 2nd & 3rd Class # In[360]: # Create the pie chart values=df["Sex"].value_counts() label=["male","female"] plt.pie(values, labels=label,autopct='%1.1f%%') # Add a title plt.title('Distribution of Survived') # Display the chart plt.show() # In[361]: survive = df[df["Survived"]==1]["Sex"].value_counts() death = df[df["Survived"]==0]["Sex"].value_counts() dx = pd.DataFrame([survive,death],index=["survive","death"]) dx=dx.rename(columns={0:"male",1:"female"}) dx.plot(kind="bar") plt.legend() plt.title("Survive of Sex"); # In[ ]: # In[362]: corrleation = df.drop(columns="Survived").corr() sns.heatmap(corrleation) # # Split Data # In[ ]: # In[363]: df # In[364]: target="Survived" y = df[target] X = df.drop(columns=target) x_train , x_test , y_train , y_test = train_test_split(X,y,test_size=0.2,random_state=42) print("X_train shape:", x_train.shape) print("y_train shape:", y_train.shape) print("X_test shape:", x_test.shape) print("y_test shape:", y_test.shape) # # Baseline # In[365]: y_train_mean = y_train.mean() print ("Baseline :",round(y_train_mean,2)) # # Logestic Regression # # Itrate # In[366]: log_model = LogisticRegression(max_iter=10000) # In[367]: log_model.fit(x_train,y_train) # # # # Evaluate # In[368]: accuracy=classification_report(y_test,log_model.predict(x_test)) print(accuracy) # In[369]: acc_test = accuracy_score(y_test,log_model.predict(x_test)) acc_test = accuracy_score(y_test,log_model.predict(x_test)) acc_train= accuracy_score(y_train,log_model.predict(x_train)) print("Accuracy test:",round(acc_test,2)) print("Accuracy train:",round(acc_train,2)) # # KNN Classfier # In[370]: knn= KNeighborsClassifier(n_neighbors=13) knn.fit(x_train,y_train) # In[371]: accuracy=classification_report(y_test,knn.predict(x_test)) print(accuracy) # In[372]: scoring="accuracy" score = cross_validate(knn , x_train.drop(columns=["PassengerId"],axis=1),y_train,cv=k_fold, n_jobs=1,scoring=scoring) print(score['test_score']) # In[373]: print("Accuracy :",round(np.mean(score['test_score']),2)) # # Descion Tree # In[374]: # Create a decision tree classifier dec_tree= DecisionTreeClassifier() # Train the classifier dec_tree.fit(x_train, y_train) # In[375]: accuracy=classification_report(y_test,dec_tree.predict(x_test)) print(accuracy) # In[376]: acc_test = accuracy_score(y_test,dec_tree.predict(x_test)) print("Accuracy test:",round(acc_test,2)) # In[377]: scoring="accuracy" score = cross_validate(dec_tree , x_train.drop(columns=["PassengerId"],axis=1),y_train,cv=k_fold, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),2)) # # Random Forest # In[378]: # Create a Random Forest classifier rf_classifier = RandomForestClassifier() # Train the classifier rf_classifier.fit(x_train, y_train) # In[379]: # Calculate the accuracy accuracy = accuracy_score(y_test, rf_classifier.predict(x_test)) print("Accuracy:", round(accuracy,2)) # In[380]: scoring="accuracy" score = cross_validate(rf_classifier , x_train.drop(columns=["PassengerId"],axis=1),y_train, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),1)) # # Naive Bayes # In[381]: nav= GaussianNB() # Train the classifier nav.fit(x_train, y_train) # In[382]: # Calculate the accuracy accuracy = accuracy_score(y_test, nav.predict(x_test)) print("Accuracy:", round(accuracy,2)) # In[383]: scoring="accuracy" score = cross_validate(nav , x_train.drop(columns=["PassengerId"],axis=1),y_train, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),2)) # # Communicat # The best model is Random Forest with Accuracy : 82 # In[384]: pred_test=rf_classifier.predict(test) data = pd.DataFrame({'PassengerId': test["PassengerId"], 'Survived': pred_test}) # In[385]: data.head() # In[386]: data.to_csv(r'D:\projects\gender_submission.csv', index=False) # In[ ]:
tamerelateeq/Titanc
titank.py
titank.py
py
8,173
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 34, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 45, "usage_type": "call" }, { "api_name": "pandas_profiling.ProfileReport", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pie", "line_number": 143, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 143, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 145, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 145, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 147, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 147, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 153, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 154, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 155, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 155, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 156, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 156, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 157, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 157, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 167, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 175, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 177, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 177, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 186, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 188, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 188, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pie", "line_number": 199, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 199, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 201, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 201, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 203, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 203, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 211, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 214, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 214, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 215, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 215, "usage_type": "name" }, { "api_name": "seaborn.heatmap", "line_number": 228, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 251, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 274, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 290, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 297, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 298, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 299, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 309, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 316, "usage_type": "call" }, { "api_name": "sklearn.model_selection.cross_validate", "line_number": 324, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 331, "usage_type": "call" }, { "api_name": "sklearn.tree.DecisionTreeClassifier", "line_number": 340, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 348, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 355, "usage_type": "call" }, { "api_name": "sklearn.model_selection.cross_validate", "line_number": 363, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 364, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 373, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 382, "usage_type": "call" }, { "api_name": "sklearn.model_selection.cross_validate", "line_number": 390, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 391, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.GaussianNB", "line_number": 399, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 408, "usage_type": "call" }, { "api_name": "sklearn.model_selection.cross_validate", "line_number": 416, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 417, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 429, "usage_type": "call" } ]
36060029870
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class LocalizationNetwork(nn.Module): def __init__(self, numOfControlPoints=10): super().__init__() self.numOfControlPoints = numOfControlPoints self.pool = nn.MaxPool2d(2, 2) self.aPool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 512, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.bn2 = nn.BatchNorm2d(128) self.bn3 = nn.BatchNorm2d(256) self.bn4 = nn.BatchNorm2d(512) self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(512, 256) self.fc2 = nn.Linear(256, numOfControlPoints * 2) self.init_stn() def forward(self, x): x = self.bn1(F.relu(self.conv1(x))) x = self.pool(x) x = self.bn2(F.relu(self.conv2(x))) x = self.pool(x) x = self.bn3(F.relu(self.conv3(x))) x = self.pool(x) x = self.bn4(F.relu(self.conv4(x))) x = self.aPool(x) x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = x.view(-1, 2, self.numOfControlPoints) return x def init_stn(self): interval = np.linspace(0.05, 0.95, self.numOfControlPoints // 2) controlPoints = [[],[]] for y in [0.1,0.9]: for i in range(self.numOfControlPoints // 2): controlPoints[1].append(y) for x in interval: controlPoints[0].append(x) self.fc2.weight.data.zero_() self.fc2.bias.data = torch.Tensor(controlPoints).view(-1).float().to(device)
xpiste05/knn_projekt
models/localizationNetwork.py
localizationNetwork.py
py
1,925
python
en
code
0
github-code
6
[ { "api_name": "torch.device", "line_number": 6, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 6, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 6, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 8, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 8, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.nn.AdaptiveAvgPool2d", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 15, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 19, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 20, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 22, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 36, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 38, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 42, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 68, "usage_type": "call" } ]
32841420589
import pandas as pd import numpy as np import pickle as pkl import matplotlib.pyplot as plt import re import jieba import subprocess from gensim.test.utils import get_tmpfile, common_texts from gensim.models import Word2Vec, KeyedVectors from sklearn.metrics.pairwise import cosine_similarity from sklearn.manifold import TSNE from matplotlib.font_manager import FontManager from pylab import mpl jieba.load_userdict('C:/Users/choose/venv/Lib/site-packages/jieba/dict.blue.txt') def load_stopwords(): with open('util/stopwords.pkl', 'rb') as f: stopwords = pkl.load(f) return stopwords def load_symbols(): ret = [] with open('util/symbols_20181216.txt', 'r', encoding='utf-8') as f: rows = f.readlines() f.close() for row in rows: if row[:-1] not in ret: ret.append(row[:-1]) return ret def load_pattern(): symbols = load_symbols() symbols += ['\n', '\r\n', '\r'] symbols_str = '' for symbol in symbols: if symbol in '[]()-': symbol = '\\' + symbol symbols_str += symbol return re.compile(r'([0-9]+|\.+|[a-zA-Z])|[{}]+'.format(symbols_str)) def to_sentence(document): ret = list() rule = re.compile('[\W]+') result = rule.split(document) for sentence in result: if len(sentence) > 0: ret.append(sentence) return ret def tokenize(corpus, stopwords=load_stopwords(), pattern=re.compile(r'[\WA-Za-z0-9]+'), length_constraint=2): tokenized_corpus = [] for doc in corpus: tokenized_doc = jieba.lcut(doc) words = [] for word in tokenized_doc: if word in stopwords or pattern.match(word): continue elif len(word) < length_constraint: continue else: words.append(word) tokenized_corpus.append(words) return tokenized_corpus
kartd0094775/IdentifyKOL
util/preprocessing.py
preprocessing.py
py
1,846
python
en
code
0
github-code
6
[ { "api_name": "jieba.load_userdict", "line_number": 16, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 20, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 40, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 44, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 51, "usage_type": "call" }, { "api_name": "jieba.lcut", "line_number": 54, "usage_type": "call" } ]
19617294623
# _*_ coding: utf-8 _*_ import os import csv import time import json import logging import numpy as np import tensorflow as tf from sklearn.metrics import auc, roc_curve # calculate_auc : calculate AUC rate def calculate_auc(labels, predicts): fpr, tpr, _ = roc_curve(labels, predicts, pos_label=1) AUC = auc(fpr, tpr) return fpr, tpr, AUC def contrastive_loss(labels, distance): loss = tf.to_float(tf.reduce_sum(tf.square(distance - labels))) return loss def compute_accuracy(prediction, labels, threshold=0.5): accu = 0.0 for i in xrange(len(prediction)): if labels[i][0] == 1: if prediction[i][0] > threshold: accu += 1.0 else: if prediction[i][0] < threshold: accu += 1.0 acc = accu / len(prediction) return acc # read_and_decode : generate a queue based on filename def read_and_decode(filename): filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'cfg_1': tf.FixedLenFeature([], tf.string), 'cfg_2': tf.FixedLenFeature([], tf.string), 'dfg_1': tf.FixedLenFeature([], tf.string), 'dfg_2': tf.FixedLenFeature([], tf.string), 'fea_1': tf.FixedLenFeature([], tf.string), 'fea_2': tf.FixedLenFeature([], tf.string), 'num1': tf.FixedLenFeature([], tf.int64), 'num2': tf.FixedLenFeature([], tf.int64), 'max': tf.FixedLenFeature([], tf.int64)}) label = tf.cast(features['label'], tf.int32) cfg_1 = features['cfg_1'] cfg_2 = features['cfg_2'] dfg_1 = features['dfg_1'] dfg_2 = features['dfg_2'] num1 = tf.cast(features['num1'], tf.int32) fea_1 = features['fea_1'] num2 = tf.cast(features['num2'], tf.int32) fea_2 = features['fea_2'] max_num = tf.cast(features['max'], tf.int32) return label, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, num1, num2, max_num # GoCloneTfHandler : handler using tensorflow to detect code clone in Golang class GoCloneTfHandler(object): def __init__(self, iteration_times=5, embedding_depth=2, embedding_size=64, feature_num=10, mini_batch=10, learning_rate=0.0001, max_iter=1, decay_steps=10, decay_rate=0.0001, snapshot=1, test_num=1000, train_tfrecord="tfrecord/train.tfrecord",test_tfrecord="tfrecord/test.tfrecord",valid_tfrecord="tfrecord/valid.tfrecord", exist_model="", ckpt_file="", test_file="", result_file="",func_info_path=""): # self.iteration_times = iteration_times # T self.embedding_depth = embedding_depth # N self.embedding_size = embedding_size # P self.feature_num = feature_num # D self.mini_batch = mini_batch # B self.learning_rate = learning_rate # lr self.max_iter = max_iter self.decay_steps = decay_steps self.decay_rate = decay_rate self.snapshot = snapshot self.test_file = test_file self.result_file = result_file self.test_num = test_num self.train_tfrecord = train_tfrecord self.test_tfrecord = test_tfrecord self.valid_tfrecord = valid_tfrecord self.exist_model = exist_model self.ckpt_file = ckpt_file self.func_info_path = func_info_path self.pair_list = [] self.logger = logging.getLogger("default") self.logger_init() def load_csv_as_pair(self, pair_label_file): with open(pair_label_file, "r") as fp: pair_label = csv.reader(fp) for line in pair_label: self.pair_list.append((line[0], line[1])) # logger_init : initialize logger for console and file def logger_init(self): self.logger.setLevel(logging.DEBUG) log_format = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) console_handler.setFormatter(log_format) self.logger.addHandler(console_handler) log_file_name = "logs/log%s.txt" % time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()) file_handler = logging.FileHandler(log_file_name, mode='w', encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(log_format) self.logger.addHandler(file_handler) # structure2vec : Construct pairs dataset to train the model. def structure2vec(self, mu_prev, cfg, dfg, x, name="structure2vec"): with tf.variable_scope(name): W_1 = tf.get_variable('W_1', [self.feature_num, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) param_cfg = tf.get_variable('param_cfg', 1, tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_CFG_1 = tf.get_variable('P_CFG_1', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_CFG_2 = tf.get_variable('P_CFG_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) L_CFG = tf.reshape(tf.matmul(cfg, mu_prev, transpose_a=True), (-1, self.embedding_size)) S_CFG =param_cfg*tf.reshape(tf.matmul(tf.nn.relu(tf.matmul(L_CFG, P_CFG_2)), P_CFG_1), (-1, self.embedding_size)) param_dfg = tf.get_variable('param_dfg', 1, tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_DFG_1 = tf.get_variable('P_DFG_1', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_DFG_2 = tf.get_variable('P_DFG_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) L_DFG = tf.reshape(tf.matmul(dfg, mu_prev, transpose_a=True), (-1, self.embedding_size)) S_DFG = param_dfg*tf.reshape(tf.matmul(tf.nn.relu(tf.matmul(L_DFG, P_DFG_2)), P_DFG_1), (-1, self.embedding_size)) return tf.tanh(tf.add(tf.add(tf.reshape(tf.matmul(tf.reshape(x, (-1, self.feature_num)), W_1), (-1, self.embedding_size)), S_CFG), S_DFG)) def structure2vec_net(self, cfgs, dfgs, x, v_num): with tf.variable_scope("structure2vec_net") as structure2vec_net: B_mu_5 = tf.Variable(tf.zeros(shape = [0, self.embedding_size]), trainable=False) w_2 = tf.get_variable('w_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) for i in range(self.mini_batch): cur_size = tf.to_int32(v_num[i][0]) mu_0 = tf.reshape(tf.zeros(shape = [cur_size, self.embedding_size]), (cur_size, self.embedding_size)) cfg = tf.slice(cfgs[i], [0, 0], [cur_size, cur_size]) dfg = tf.slice(dfgs[i], [0, 0], [cur_size, cur_size]) fea = tf.slice(x[i],[0,0], [cur_size, self.feature_num]) mu_1 = self.structure2vec(mu_0, cfg, dfg, fea) structure2vec_net.reuse_variables() mu_2 = self.structure2vec(mu_1, cfg, dfg, fea) mu_3 = self.structure2vec(mu_2, cfg, dfg, fea) mu_4 = self.structure2vec(mu_3, cfg, dfg, fea) mu_5 = self.structure2vec(mu_4, cfg, dfg, fea) B_mu_5 = tf.concat([B_mu_5,tf.matmul(tf.reshape(tf.reduce_sum(mu_5, 0), (1, self.embedding_size)), w_2)],0) return B_mu_5 def cal_distance(self, model1, model2): a_b = tf.reduce_sum(tf.reshape(tf.reduce_prod(tf.concat([tf.reshape(model1,(1,-1)), tf.reshape(model2,(1,-1))],0),0),(self.mini_batch,self.embedding_size)),1,keep_dims=True) a_norm = tf.sqrt(tf.reduce_sum(tf.square(model1),1,keep_dims=True)) b_norm = tf.sqrt(tf.reduce_sum(tf.square(model2),1,keep_dims=True)) distance = a_b/tf.reshape(tf.reduce_prod(tf.concat([tf.reshape(a_norm,(1,-1)), tf.reshape(b_norm,(1,-1))],0),0),(self.mini_batch,1)) return distance def get_batch(self, label, cfg_str1, cfg_str2, dfg_str1, dfg_str2, fea_str1, fea_str2, num1, num2, max_num): y = np.reshape(label, [self.mini_batch, 1]) v_num_1 = [] v_num_2 = [] for i in range(self.mini_batch): v_num_1.append([int(num1[i])]) v_num_2.append([int(num2[i])]) cfg_1 = [] cfg_2 = [] dfg_1 = [] dfg_2 = [] for i in range(self.mini_batch): cfg_arr = np.array(cfg_str1[i].split(',')) cfg_adj = np.reshape(cfg_arr, (int(num1[i]), int(num1[i]))) cfg_ori1 = cfg_adj.astype(np.float32) cfg_ori1.resize(int(max_num[i]), int(max_num[i]), refcheck=False) cfg_1.append(cfg_ori1.tolist()) cfg_arr = np.array(cfg_str2[i].split(',')) cfg_adj = np.reshape(cfg_arr, (int(num2[i]), int(num2[i]))) cfg_ori2 = cfg_adj.astype(np.float32) cfg_ori2.resize(int(max_num[i]), int(max_num[i]), refcheck=False) cfg_2.append(cfg_ori2.tolist()) dfg_arr = np.array(dfg_str1[i].split(',')) dfg_adj = np.reshape(dfg_arr, (int(num1[i]), int(num1[i]))) dfg_ori1 = dfg_adj.astype(np.float32) dfg_ori1.resize(int(max_num[i]), int(max_num[i]), refcheck=False) dfg_1.append(dfg_ori1.tolist()) dfg_arr = np.array(dfg_str2[i].split(',')) dfg_adj = np.reshape(dfg_arr, (int(num2[i]), int(num2[i]))) dfg_ori2 = dfg_adj.astype(np.float32) dfg_ori2.resize(int(max_num[i]), int(max_num[i]), refcheck=False) dfg_2.append(dfg_ori2.tolist()) fea_1 = [] fea_2 = [] for i in range(self.mini_batch): fea_arr = np.array(fea_str1[i].split(',')) fea_ori = fea_arr.astype(np.float32) fea_vec1 = np.resize(fea_ori, (np.max(v_num_1), self.feature_num)) fea_1.append(fea_vec1) fea_arr = np.array(fea_str2[i].split(',')) fea_ori= fea_arr.astype(np.float32) fea_vec2 = np.resize(fea_ori, (np.max(v_num_2), self.feature_num)) fea_2.append(fea_vec2) return y, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, v_num_1, v_num_2 def run(self): tf.global_variables_initializer() global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(self.learning_rate, global_step, self.decay_steps, self.decay_rate, staircase=True) v_num_left = tf.placeholder(tf.float32, shape=[self.mini_batch, 1], name='v_num_left') cfg_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='cfg_left') dfg_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='dfg_left') fea_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, self.feature_num]), name='fea_left') v_num_right = tf.placeholder(tf.float32, shape=[self.mini_batch, 1], name='v_num_right') cfg_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='cfg_right') dfg_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='dfg_right') fea_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, self.feature_num]), name='fea_right') labels = tf.placeholder(tf.float32, shape=([self.mini_batch, 1]), name='gt') dropout_f = tf.placeholder("float") with tf.variable_scope("siamese") as siamese: model1 = self.structure2vec_net(cfg_left, dfg_left, fea_left, v_num_left) siamese.reuse_variables() model2 = self.structure2vec_net(cfg_right, dfg_right, fea_right, v_num_right) dis = self.cal_distance(model1, model2) loss = contrastive_loss(labels, dis) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) list_test_label, list_test_cfg_1, list_test_cfg_2, list_test_dfg_1, list_test_dfg_2, list_test_fea_1, \ list_test_fea_2, list_test_num1, list_test_num2, list_test_max = read_and_decode(self.test_tfrecord) batch_test_label, batch_test_cfg_1, batch_test_cfg_2, batch_test_dfg_1, batch_test_dfg_2, batch_test_fea_1, \ batch_test_fea_2, batch_test_num1, batch_test_num2, batch_test_max \ = tf.train.batch([list_test_label, list_test_cfg_1, list_test_cfg_2, list_test_dfg_1, list_test_dfg_2, list_test_fea_1, list_test_fea_2, list_test_num1, list_test_num2, list_test_max], batch_size=self.mini_batch, capacity=10) init_opt = tf.global_variables_initializer() saver = tf.train.Saver() os.environ["CUDA_VISIBLE_DEVICES"] = "0" # read json from func_info_path with open(self.func_info_path, 'r') as f: func_info_dic = json.load(f) result_dic = {} with tf.Session() as sess: writer = tf.summary.FileWriter('logs/', sess.graph) # check whether to load exist models if self.exist_model == "": sess.run(init_opt) else: saver = tf.train.import_meta_graph(self.ckpt_file) saver.restore(sess, tf.train.latest_checkpoint(self.exist_model)) self.logger.info("Loading models from %s" % self.ckpt_file) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # Training cycle iter=0 self.load_csv_as_pair(self.test_file) while iter < self.max_iter: iter += 1 total_batch = int(self.test_num / self.mini_batch) if iter % self.snapshot == 0: total_labels = [] total_predicts = [] avg_loss = 0. avg_acc = 0. test_total_batch = int(self.test_num / self.mini_batch) start_time = time.time() for m in range(test_total_batch): test_label, test_cfg_1, test_cfg_2, test_dfg_1, test_dfg_2, \ test_fea_1, test_fea_2, test_num1, test_num2, test_max = sess.run( [batch_test_label, batch_test_cfg_1, batch_test_cfg_2, batch_test_dfg_1, batch_test_dfg_2, batch_test_fea_1, batch_test_fea_2, batch_test_num1, batch_test_num2, batch_test_max]) y, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, v_num_1, v_num_2 \ = self.get_batch(test_label, test_cfg_1, test_cfg_2, test_dfg_1, test_dfg_2, test_fea_1, test_fea_2, test_num1, test_num2, test_max) predict = dis.eval( feed_dict={cfg_left: cfg_1, dfg_left: dfg_1, fea_left: fea_1, v_num_left: v_num_1, cfg_right: cfg_2, dfg_right: dfg_2, fea_right: fea_2, v_num_right: v_num_2, labels: y, dropout_f: 1.0}) for k, p in enumerate(predict): (id1, id2) = self.pair_list[y[k][0]] result_dic[(func_info_dic[id1], func_info_dic[id2])] = p[0] if m % 20 == 0: self.logger.info("Testing: %s/%s" % (m, test_total_batch)) coord.request_stop() coord.join(threads) result_desc = sorted(result_dic.items(), key=lambda item:-item[1]) with open(self.result_file, "w") as f: for r in result_desc: f.write("%s\n%s\n%.4f\n\n" % (r[0][0], r[0][1], r[1]))
wangcong15/go-clone
Go-CloneF/src/tfrecord2test.py
tfrecord2test.py
py
15,894
python
en
code
5
github-code
6
[ { "api_name": "sklearn.metrics.roc_curve", "line_number": 14, "usage_type": "call" }, { "api_name": "sklearn.metrics.auc", "line_number": 15, "usage_type": "call" }, { "api_name": "tensorflow.to_float", "line_number": 19, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 19, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 19, "usage_type": "call" }, { "api_name": "tensorflow.train.string_input_producer", "line_number": 36, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 36, "usage_type": "attribute" }, { "api_name": "tensorflow.TFRecordReader", "line_number": 37, "usage_type": "call" }, { "api_name": "tensorflow.parse_single_example", "line_number": 39, "usage_type": "call" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.int64", "line_number": 40, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 41, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 41, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 42, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 42, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 43, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 44, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 45, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 45, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 46, "usage_type": "call" }, { "api_name": "tensorflow.string", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 47, "usage_type": "call" }, { "api_name": "tensorflow.int64", "line_number": 47, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.int64", "line_number": 48, "usage_type": "attribute" }, { "api_name": "tensorflow.FixedLenFeature", "line_number": 49, "usage_type": "call" }, { "api_name": "tensorflow.int64", "line_number": 49, "usage_type": "attribute" }, { "api_name": "tensorflow.cast", "line_number": 51, "usage_type": "call" }, { "api_name": "tensorflow.int32", "line_number": 51, "usage_type": "attribute" }, { "api_name": "tensorflow.cast", "line_number": 58, "usage_type": "call" }, { "api_name": "tensorflow.int32", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tensorflow.cast", "line_number": 60, "usage_type": "call" }, { "api_name": "tensorflow.int32", "line_number": 60, "usage_type": "attribute" }, { "api_name": "tensorflow.cast", "line_number": 63, "usage_type": "call" }, { "api_name": "tensorflow.int32", "line_number": 63, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 90, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 96, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 102, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 103, "usage_type": "call" }, { "api_name": "logging.StreamHandler", "line_number": 105, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 106, "usage_type": "attribute" }, { "api_name": "time.strftime", "line_number": 110, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 110, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 111, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 112, "usage_type": "attribute" }, { "api_name": "tensorflow.variable_scope", "line_number": 118, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 119, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 121, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 121, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 121, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 122, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 122, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 122, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 123, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 123, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 123, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 124, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 124, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 125, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 125, "usage_type": "call" }, { "api_name": "tensorflow.nn.relu", "line_number": 125, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 125, "usage_type": "attribute" }, { "api_name": "tensorflow.get_variable", "line_number": 127, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 127, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 127, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 128, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 128, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 128, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 129, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 129, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 129, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 130, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 130, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.nn.relu", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 131, "usage_type": "attribute" }, { "api_name": "tensorflow.tanh", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.add", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.variable_scope", "line_number": 136, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 137, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 137, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 138, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 138, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 138, "usage_type": "call" }, { "api_name": "tensorflow.to_int32", "line_number": 140, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 141, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 141, "usage_type": "call" }, { "api_name": "tensorflow.slice", "line_number": 142, "usage_type": "call" }, { "api_name": "tensorflow.slice", "line_number": 143, "usage_type": "call" }, { "api_name": "tensorflow.slice", "line_number": 144, "usage_type": "call" }, { "api_name": "tensorflow.concat", "line_number": 151, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 151, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 151, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 151, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 155, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 155, "usage_type": "call" }, { "api_name": "tensorflow.reduce_prod", "line_number": 155, "usage_type": "call" }, { "api_name": "tensorflow.concat", "line_number": 155, "usage_type": "call" }, { "api_name": "tensorflow.sqrt", "line_number": 156, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 156, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 156, "usage_type": "call" }, { "api_name": "tensorflow.sqrt", "line_number": 157, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 157, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 157, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 158, "usage_type": "call" }, { "api_name": "tensorflow.reduce_prod", "line_number": 158, "usage_type": "call" }, { "api_name": "tensorflow.concat", "line_number": 158, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 176, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 177, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 181, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 182, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 183, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 187, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 188, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 189, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 195, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 203, "usage_type": "attribute" }, { "api_name": "numpy.resize", "line_number": 204, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 204, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 207, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 208, "usage_type": "attribute" }, { "api_name": "numpy.resize", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 209, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 215, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 216, "usage_type": "call" }, { "api_name": "tensorflow.train.exponential_decay", "line_number": 217, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 217, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 219, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 219, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 220, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 220, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 221, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 221, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 222, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 222, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 224, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 224, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 225, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 225, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 226, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 226, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 227, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 227, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 229, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 229, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 231, "usage_type": "call" }, { "api_name": "tensorflow.variable_scope", "line_number": 233, "usage_type": "call" }, { "api_name": "tensorflow.train.AdamOptimizer", "line_number": 242, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 242, "usage_type": "attribute" }, { "api_name": "tensorflow.train.batch", "line_number": 248, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 248, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 251, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 253, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 253, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 254, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 258, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 261, "usage_type": "call" }, { "api_name": "tensorflow.summary.FileWriter", "line_number": 262, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 262, "usage_type": "attribute" }, { "api_name": "tensorflow.train.import_meta_graph", "line_number": 268, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 268, "usage_type": "attribute" }, { "api_name": "tensorflow.train.latest_checkpoint", "line_number": 269, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 269, "usage_type": "attribute" }, { "api_name": "tensorflow.train.Coordinator", "line_number": 272, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 272, "usage_type": "attribute" }, { "api_name": "tensorflow.train.start_queue_runners", "line_number": 273, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 273, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 287, "usage_type": "call" } ]
6575851777
from time import sleep from digitemp.master import UART_Adapter from digitemp.device import DS18B20 import random import asyncio import logging class TemperatureMonitor: def __init__(self): self.bus = UART_Adapter('/dev/ttyUSB0') self.sensor = DS18B20(self.bus) self.listeners = [] def register_listener(self, listener): # A listener has a on_notify(new_temp) async function self.listeners.append(listener) def unregister_listener(self, listener): self.listeners.remove(listener) async def notify_listeners(self): cur_temp = self.sensor.get_temperature() # f = open('afile', 'r') # cur_temp = int(f.readline().strip()) # f.close() self.cur_temp = cur_temp logging.info(f'Temperature is: {cur_temp}') await asyncio.gather( *(l.on_notify(cur_temp) for l in self.listeners) ) async def monitor(self): while True: await asyncio.gather( self.notify_listeners(), asyncio.sleep(10) )
SchrodingersCat00/vuurwachter
src/temp_monitor.py
temp_monitor.py
py
1,091
python
en
code
0
github-code
6
[ { "api_name": "digitemp.master.UART_Adapter", "line_number": 11, "usage_type": "call" }, { "api_name": "digitemp.device.DS18B20", "line_number": 12, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 28, "usage_type": "call" }, { "api_name": "asyncio.gather", "line_number": 29, "usage_type": "call" }, { "api_name": "asyncio.gather", "line_number": 35, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 37, "usage_type": "call" } ]
18164640711
import pickle import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download NLTK data (you only need to do this once) nltk.download('stopwords') nltk.download('wordnet') # Load the trained model and vectorizer with open('check_spam_classifier.pkl', 'rb') as clf_file: clf = pickle.load(clf_file) with open('check_spam_vectorizer.pkl', 'rb') as vectorizer_file: vectorizer = pickle.load(vectorizer_file) # Load labels from the text file with open('labels.txt', 'r') as labels_file: labels = labels_file.read().splitlines() # Define stopwords and lemmatizer stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() def preprocess_input(text): # Preprocess the input text in the same way as the training data text = text.lower() text = ' '.join([word for word in text.split() if word not in stop_words]) text = ' '.join([lemmatizer.lemmatize(word) for word in text.split()]) return text def is_scam(input_text): # Preprocess the input text input_text = preprocess_input(input_text) # Vectorize the preprocessed text input_text_tfidf = vectorizer.transform([input_text]) # Make a prediction prediction = clf.predict(input_text_tfidf) # Get the label using the labels list predicted_label = labels[prediction[0]] return predicted_label if __name__ == "__main__": user_input = input("Enter text to check if it's a scam: ") result = is_scam(user_input) print(f"Predicted label: {result}")
GOVINDFROMINDIA/Twitter-Scam-Victims
dsg.py
dsg.py
py
1,596
python
en
code
0
github-code
6
[ { "api_name": "nltk.download", "line_number": 7, "usage_type": "call" }, { "api_name": "nltk.download", "line_number": 8, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 12, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 15, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 22, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 22, "usage_type": "name" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 23, "usage_type": "call" } ]
39729133373
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('store', '0010_auto_20151113_1608'), ] operations = [ migrations.AddField( model_name='review', name='author', field=models.CharField(default=b'Anonymous', max_length=30), ), ]
midnitehighways/shop
store/migrations/0011_review_author.py
0011_review_author.py
py
420
python
en
code
0
github-code
6
[ { "api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" } ]
36867613594
from datetime import datetime from sqlalchemy import Column, TIMESTAMP class TimestampsMixin: __abstract__ = True __created_at_name__ = 'created_at' __updated_at_name__ = 'updated_at' __datetime_func__ = datetime.now() created_at = Column( __created_at_name__, TIMESTAMP(timezone=False), default=__datetime_func__, nullable=False ) updated_at = Column( __updated_at_name__, TIMESTAMP(timezone=False), default=__datetime_func__, onupdate=__datetime_func__, nullable=False )
siarie/fastapi-start
app/db/mixins.py
mixins.py
py
581
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 10, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 10, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 12, "usage_type": "call" }, { "api_name": "sqlalchemy.TIMESTAMP", "line_number": 14, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 18, "usage_type": "call" }, { "api_name": "sqlalchemy.TIMESTAMP", "line_number": 20, "usage_type": "call" } ]
14555529648
from time import sleep import btc import click from core import BitcoinTwitterProfile import schedule @click.group() def bitc0in_twitter(): """ Syncs your twitter profile with bitcoin's volatility. """ @bitc0in_twitter.command() def run(): """Start Program""" bitcoin_percent_change = btc.get_percent_change() profile = BitcoinTwitterProfile(bitcoin_percent_change=bitcoin_percent_change) def job(): bitcoin_percent_change = btc.get_percent_change() state = profile.get_market_state(bitcoin_percent_change) if state == "bearish": profile.dumping() else: profile.pumping() schedule.every(10).minutes.do(job) while True: schedule.run_pending() sleep(1) # print(".", end="", flush=True) @bitc0in_twitter.command() def test(): """Tests everything is setup correctly.""" click.echo("TESTING!!!") bms = BitcoinTwitterProfile(bitcoin_percent_change=5) bms.dumping() click.echo("check the for bearish profile") click.echo(f"state: {bms.state}") click.echo("Sleeping for 15 seconds.") sleep(15) bms.pumping() click.echo("check the for bullish profile") click.echo(f"state: {bms.state}") sleep(15) bms.dumping() if __name__ == "__main__": bitc0in_twitter()
dgnsrekt/bitc0in-twitter
bitc0in_twitter/cli.py
cli.py
py
1,335
python
en
code
1
github-code
6
[ { "api_name": "click.group", "line_number": 12, "usage_type": "call" }, { "api_name": "btc.get_percent_change", "line_number": 22, "usage_type": "call" }, { "api_name": "core.BitcoinTwitterProfile", "line_number": 23, "usage_type": "call" }, { "api_name": "btc.get_percent_change", "line_number": 26, "usage_type": "call" }, { "api_name": "schedule.every", "line_number": 34, "usage_type": "call" }, { "api_name": "schedule.run_pending", "line_number": 37, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 38, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 45, "usage_type": "call" }, { "api_name": "core.BitcoinTwitterProfile", "line_number": 46, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 48, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 49, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 50, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 51, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 53, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 54, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 55, "usage_type": "call" } ]
6401924379
# version: python 3.7 # zID: z5052292 from socket import * from datetime import datetime import time import sys serverIP = sys.argv[1] serverPort = int(sys.argv[2]) clientSocket = socket(AF_INET, SOCK_DGRAM) list_rtts = [] packets_lost = 0 for i in range(10): time_stamp = datetime.now().isoformat(sep=' ')[:-3] ping_message = "PING" + str(i) + ' ' + time_stamp + '\r\n' time_send = datetime.now() clientSocket.sendto(ping_message.encode(), (serverIP, serverPort)) try: clientSocket.settimeout(1) response, severAddress = clientSocket.recvfrom(2048) time_receive = datetime.now() rtt = round((time_receive - time_send).total_seconds() * 1000) list_rtts.append(rtt) print(f'Ping to {serverIP}, seq = {i}, rtt = {rtt} ms') clientSocket.settimeout(None) except timeout: packets_lost += 1 print(f'Ping to {serverIP}, seq = {i}, rtt = time out') print("\n") print(f'Minimun RTT = {min(list_rtts)} ms') print(f'Maximun RTT = {max(list_rtts)} ms') print(f'Average RTT = {round(float(sum(list_rtts)/len(list_rtts)))} ms') print(f'10 packets transmitted, {10 - int(packets_lost)} packets received, {float(packets_lost) / 10 * 100}% of packets loss.') clientSocket.close()
YuanG1944/COMP9331-Computer-Networks-and-Applications
Lab2/PingClient_zhou.py
PingClient_zhou.py
py
1,235
python
en
code
4
github-code
6
[ { "api_name": "sys.argv", "line_number": 10, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 11, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 17, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 19, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 19, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 25, "usage_type": "name" } ]
10426011052
"""Conceptual model page.""" from django.db import models from wagtail.core.models import Page from wagtail.core.fields import RichTextField from wagtail.admin.edit_handlers import FieldPanel from wagtail.images.edit_handlers import ImageChooserPanel class CMPage(Page): template = "ecos_cm/cm_page.html" ECOLOGICAL_PROCESSES = "ecological processes" TARGET_SPECIES = "target species" CONCELTUAL_MODEL_TYPE_CHOICES = [ (ECOLOGICAL_PROCESSES,'ecological processes'), (TARGET_SPECIES, 'target species'), ] conceptual_model_type = models.CharField( choices=CONCELTUAL_MODEL_TYPE_CHOICES, max_length=100, default=ECOLOGICAL_PROCESSES, ) cm_title = models.CharField(max_length=300, null=True, blank=True) cm_image = models.ForeignKey( "wagtailimages.Image", null=True, blank=False, on_delete=models.SET_NULL, related_name="+" ) cm_human_interactions = RichTextField( null=True, blank=True) cm_ecolagical_processes = RichTextField( null=True, blank=True) cm_oceanographic_variables = RichTextField( null=True, blank=True) cm_performance_indicators = RichTextField( null=True, blank=True) content_panels = Page.content_panels + [ FieldPanel("conceptual_model_type"), FieldPanel("cm_title"), ImageChooserPanel("cm_image"), FieldPanel("cm_human_interactions"), FieldPanel("cm_ecolagical_processes"), FieldPanel("cm_oceanographic_variables"), FieldPanel("cm_performance_indicators"), ]
CNR-ISMAR/ecoads
ecos_cm/models.py
models.py
py
1,600
python
en
code
0
github-code
6
[ { "api_name": "wagtail.core.models.Page", "line_number": 10, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 30, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 35, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 35, "usage_type": "name" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 39, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 40, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 41, "usage_type": "call" }, { "api_name": "wagtail.core.fields.RichTextField", "line_number": 42, "usage_type": "call" }, { "api_name": "wagtail.core.models.Page.content_panels", "line_number": 46, "usage_type": "attribute" }, { "api_name": "wagtail.core.models.Page", "line_number": 46, "usage_type": "name" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 47, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 48, "usage_type": "call" }, { "api_name": "wagtail.images.edit_handlers.ImageChooserPanel", "line_number": 49, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 50, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 51, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 52, "usage_type": "call" }, { "api_name": "wagtail.admin.edit_handlers.FieldPanel", "line_number": 53, "usage_type": "call" } ]
34600680585
import numpy as np import matplotlib.pyplot as plt def sigmoid(Z): """sigmoid Arguments: Z {[np.array]} -- [Wx + b] Returns: A - [np.array] -- [1 / 1+exp(- Wx + b)] cache - Z """ A = 1/(1+np.exp(-Z)) cache = Z return A, cache def relu(Z): """rectified linear unit Arguments: Z {[np.array]} -- [Wx + b] Returns: A - [np.array] -- [max(0,Z)] cache - Z """ A = np.maximum(0,Z) assert(A.shape == Z.shape) cache = Z return A, cache def relu_backward(dA, cache): """ Implement the backward propagation for a single RELU unit. Arguments: dA - the activated gradient cache - Z Returns: dZ - Gradient of the cost with respect to Z """ Z = cache dZ = np.array(dA, copy=True) # just converting dz to a correct object. # for z <= 0, set dz to 0 dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ def sigmoid_backward(dA, cache): """ Implement the backward propagation for a single SIGMOID unit. Arguments: dA - the acitvated gradient cache - Z Returns: dZ - Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ def print_mislabeled_images(classes, X, y, p): """ Plots images where predictions and truth were different. X -- dataset y -- true labels p -- predictions """ a = p + y mislabeled_indices = np.asarray(np.where(a == 1)) print(mislabeled_indices) num_images = len(mislabeled_indices[0]) for i in range(num_images): index = mislabeled_indices[1][i] plt.subplot(2, num_images, i + 1) plt.imshow(X[:,index].reshape(64,64,3)) plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8")) plt.show()
anantsrivastava30/deeplearning
dnn_utils.py
dnn_utils.py
py
1,924
python
en
code
2
github-code
6
[ { "api_name": "numpy.exp", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 95, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 96, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 97, "usage_type": "name" } ]
38030500642
import numpy as np import matplotlib.pyplot as plt from tqdm.auto import tqdm """ Reads Siemens rawdata file and returns the DICOs values Author: Ali Aghaeifar <[email protected]> """ def read_dico(twixObj): mdb_vop = [mdb for mdb in twixObj[-1]['mdb'] if mdb.is_flag_set('MDH_VOP')] # concatenate segments of RFs longer than 1ms DICO_comb = [] for mdb in tqdm(mdb_vop, desc='Reading DICO'): if mdb.mdh.Counter.Ide == 0: DICO_comb.append(mdb.data) else: DICO_comb[-1] = np.concatenate((DICO_comb[-1],mdb.data), axis=1) DICO = [] shapes = [dico.shape for dico in DICO_comb] # all shapes shapes = sorted(set(shapes), key=shapes.index) # unique shapes for i, shape in enumerate(shapes): temp = [dico for dico in tqdm(DICO_comb, desc=f'RF Pulse {i}') if dico.shape == shape] DICO.append(np.stack(temp, axis=-1)) forward = [dico_frw[::2] for dico_frw in DICO] reflect = [dico_rfl[1::2] for dico_rfl in DICO] return forward, reflect # memory optimized version, but slower. Only save integral of forward signal def read_dico_memOpt(twixObj): mdb_vop = [mdb for mdb in twixObj[-1]['mdb'] if mdb.is_flag_set('MDH_VOP')] forward_integral = [] forward_length = [] for mdb in tqdm(mdb_vop, desc = 'Reading DICO'): DICO_integral = np.sum(np.abs(mdb.data[::2]), axis=1) DICO_length = mdb.data.shape[1] if mdb.mdh.Counter.Ide == 0: forward_integral.append(DICO_integral) forward_length.append(DICO_length) else: forward_integral[-1] = forward_integral[-1] + DICO_integral forward_length[-1] = forward_length[-1] + DICO_length forward_integral = np.stack(forward_integral, axis=-1) # split RFs with different lengths forward_length_unq = sorted(set(forward_length), key=forward_length.index) forward_integral = [forward_integral[:, np.where(np.array(forward_length) == l)[0]] for l in forward_length_unq] return forward_integral, forward_length_unq def plot_drift(twixObj): forward_integral, _ = read_dico_memOpt(twixObj) for dico in forward_integral: _, ax = plt.subplots() ax.plot(forward_integral[0].squeeze().T) plt.show()
aghaeifar-publications/RFPA_drift
dico_tools.py
dico_tools.py
py
2,283
python
en
code
0
github-code
6
[ { "api_name": "tqdm.auto.tqdm", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 18, "usage_type": "call" }, { "api_name": "tqdm.auto.tqdm", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 25, "usage_type": "call" }, { "api_name": "tqdm.auto.tqdm", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" } ]
29282262756
# -*- coding: utf-8 -*- import ispformat.schema as _schema from jsonschema import Draft4Validator, RefResolver, draft4_format_checker from jsonschema.exceptions import RefResolutionError, ValidationError from urlparse import urlsplit class MyRefResolver(RefResolver): def resolve_remote(self, uri): # Prevent remote resolving raise RefResolutionError("LOL NOPE") geojson_allowed_types=('Polygon', 'MultiPolygon') def validate_geojson_type(d): """ Make sure a geojson dict only contains allowed geometry types """ type_=d.get('type') if type_ not in geojson_allowed_types: return False return True def validate_geojson(geodict): """ Convenience function to validate a geojson dict """ _version = 0.1 schema = _schema.load_schema(_version, 'geojson/geojson') v = Draft4Validator( schema, resolver=MyRefResolver.from_schema(schema, store=_schema.deps_for_version(_version)), format_checker=draft4_format_checker, ) for err in v.iter_errors(geodict): return False if not validate_geojson_type(geodict): return False return True def validate_isp(jdict): """ Validate a json-object against the isp json-schema """ if not 'version' in jdict: raise ValidationError(u'version is a required property') try: schema=_schema.versions[jdict['version']] except (AttributeError, TypeError, KeyError): raise ValidationError(u'version %r unsupported'%jdict['version']) v=Draft4Validator( schema, resolver=MyRefResolver.from_schema(schema, store=_schema.deps_for_version(jdict['version'])), format_checker=draft4_format_checker, ) for err in v.iter_errors(jdict): yield err def is_valid_url(u): try: pu=urlsplit(u) except: return False if pu.scheme not in ('', 'http', 'https'): return False if not pu.netloc: return False return True if 'website' in jdict and not is_valid_url(jdict['website']): yield ValidationError(u'%r must be an absolute HTTP URL'%u'website', instance=jdict[u'website'], schema=schema[u'properties'][u'website'], path=[u'website'], schema_path=[u'properties', u'website', u'description'], validator=u'validate_url', validator_value=jdict['website']) if 'logoURL' in jdict and not is_valid_url(jdict['logoURL']): yield ValidationError(u'%r must be an absolute HTTP URL'%u'logoURL', instance=jdict[u'logoURL'], schema=schema[u'properties'][u'logoURL'], path=[u'logoURL'], schema_path=[u'properties', u'logoURL', u'description'], validator=u'validate_url', validator_value=jdict['logoURL']) sch=schema[u'properties'][u'otherWebsites'][u'patternProperties'][u'^.+$'] for name, url in jdict.get('otherWebsites', {}).iteritems(): if is_valid_url(url): continue yield ValidationError(u'%r must be an absolute HTTP URL'%name, instance=url, schema=sch, path=[u'otherWebsite', name], schema_path=[u'properties', u'otherWebsites', u'patternProperties', u'^.+$', 'description'], validator=u'validate_url', validator_value=url) for i, ca in enumerate(jdict.get('coveredAreas', [])): area=ca.get('area') if area and validate_geojson_type(area): continue elif not area: continue yield ValidationError( u'GeoJSON can only contain the following types: %s'%repr(geojson_allowed_types), instance=ca, schema=schema[u'definitions'][u'coveredArea'][u'properties'][u'area'], path=['coveredAreas', i, 'area'], schema_path=[u'properties', u'coveredAreas', u'items', u'properties', u'area'], validator=u'validate_geojson_type', validator_value=ca )
Psycojoker/isp-format
ispformat/validator/schemavalidator.py
schemavalidator.py
py
4,121
python
en
code
0
github-code
6
[ { "api_name": "jsonschema.RefResolver", "line_number": 9, "usage_type": "name" }, { "api_name": "jsonschema.exceptions.RefResolutionError", "line_number": 12, "usage_type": "call" }, { "api_name": "ispformat.schema.load_schema", "line_number": 31, "usage_type": "call" }, { "api_name": "ispformat.schema", "line_number": 31, "usage_type": "name" }, { "api_name": "jsonschema.Draft4Validator", "line_number": 32, "usage_type": "call" }, { "api_name": "ispformat.schema.deps_for_version", "line_number": 34, "usage_type": "call" }, { "api_name": "ispformat.schema", "line_number": 34, "usage_type": "name" }, { "api_name": "jsonschema.draft4_format_checker", "line_number": 35, "usage_type": "name" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 52, "usage_type": "call" }, { "api_name": "ispformat.schema.versions", "line_number": 54, "usage_type": "attribute" }, { "api_name": "ispformat.schema", "line_number": 54, "usage_type": "name" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 56, "usage_type": "call" }, { "api_name": "jsonschema.Draft4Validator", "line_number": 58, "usage_type": "call" }, { "api_name": "ispformat.schema.deps_for_version", "line_number": 60, "usage_type": "call" }, { "api_name": "ispformat.schema", "line_number": 60, "usage_type": "name" }, { "api_name": "jsonschema.draft4_format_checker", "line_number": 61, "usage_type": "name" }, { "api_name": "urlparse.urlsplit", "line_number": 69, "usage_type": "call" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 79, "usage_type": "call" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 85, "usage_type": "call" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 94, "usage_type": "call" }, { "api_name": "jsonschema.exceptions.ValidationError", "line_number": 106, "usage_type": "call" } ]
41237359815
import os, sys import multiprocessing as mp def pipeline(config, genome, protocol, cells, minreads, name, fq1, fq2, dir, top_million_reads, step, parallel): """ Run the Data Processing Pipeline... #. Stats and count the barcode from pair-end 1 sequences; #. Read the barcode counts files; #. Correct the barcode with 1bp mismatch; #. Stats the mismatch barcode reads and sequences; #. Determine wheather mutate on the last base (show A/T/C/G with similar ratio at the last base); #. Filter by whitelist; #. Filter by read counts (>=min_reads); #. Print the number of barcode and reads retained after each steps. Usage: :: from baseqDrops import pipeline pipeline("", "hg38", "10X", 1000, minreads, name, fq1, fq2, dir, top_million_reads, step, parallel) #specify the length of UMI and barcodes pipeline("", "hg38", "10X", 1000, minreads, name, fq1, fq2, dir, top_million_reads, step, parallel) #Run in command line baseqdrops Protocols: #. For 10X: 16bp Barcode and 10 bp UMI => 10X (most commonly used) #. For 10X: 14bp Barcode and 5/10 bp UMIs => 10X_14_10 / 10X_14_5 (For some old version data) #. For DropSeq ==> dropseq #. For inDrop ==> indrop Args: config: The path of configuration file; genome: Genome version (hg38, mm10, hg38_mm10); cells: Max number of cells; minreads: Minimum number of reads for a cell barcode (10000); name: Samplename; fq1, fq2: Path to fastq reads; dir: The folder for processing, a folder with samplename will be created; top_million_reads: Number of reads used for processing in Million; step: Steps to run; parallel: How many thread to use; Steps: count stats split star tagging table """ from . import count_barcode from . import valid_barcode from . import split_by_barcode from .barcode.split_fast import split_by_barcode_faster from .tagging.prime3 import check_reference_files #Set Config Files... if config: if not os.path.exists(config): sys.exit("[error] The config file does not exist in: {}!".format(config)) os.environ["BASEQCFG"] = config #Check Annotation Files print('[info] Checking Reference Files...') check_reference_files(genome) print('[info] Start Processing Your RNA-Seq Dataset ...') dir = os.path.abspath(os.path.join(dir, name)) bc_counts = os.path.join(dir, "barcode_count_{}.csv".format(name)) bc_stats = os.path.join(dir, "barcode_stats_{}.csv".format(name)) bc_splits_dir = os.path.join(dir, "barcode_splits") align_dir = os.path.join(dir, "star_align") tagging_dir = os.path.join(dir, "read_tagging") tpm_table = os.path.join(dir, "Result.UMIs.{}.txt".format(name)) reads_table = os.path.join(dir, "Result.Reads.{}.txt".format(name)) from itertools import product barcode_prefix = [x[0] + x[1] for x in list(product('ATCG', repeat=2))] dirs = [dir, align_dir, tagging_dir, bc_splits_dir] for dir in dirs: if not os.path.exists(dir): os.mkdir(dir) #Check the existance of the files if not os.path.exists(fq1): sys.exit("[error] Fastq-1 does not exist!") if not os.path.exists(fq2): sys.exit("[error] Fastq-2 does not exist!") #count barcode if step in ["all", "count"]: print("[info] Counting the barcodes ...") count_barcode(fq1, bc_counts, protocol, min_reads=50, topreads=int(top_million_reads)) #aggregate if step in ["all", "stats"]: print("[info] Aggregating the barcodes errors and get valid ones ...") valid_barcode(protocol, bc_counts, max_cell=cells, min_reads=minreads, output=bc_stats) #barcode split if step in ["all", "split"]: print("[info] Split the barcode for each Barcode Prefix ...") split_by_barcode_faster(name, protocol, bc_stats, fq1, fq2, bc_splits_dir, int(top_million_reads)) #run alignment if step in ["all", "star"]: from .star import star_align star_align(bc_splits_dir, align_dir, name, genome, parallel=int(parallel)) #run reads tagging if step in ["all", "tagging"]: from .tagging.prime3 import tagging_reads print('[info] Tagging the reads to genes...') pool = mp.Pool(processes=int(parallel)) result = [] for bc in barcode_prefix: bamfile = os.path.join(align_dir, "{}/{}.sort.bam".format(bc, bc)) outfile = os.path.join(tagging_dir, "tagging.{}.txt".format(bc)) #tagging_reads(genome, bamfile, outfile) result.append(pool.apply_async(tagging_reads, (genome, bamfile, outfile,))) pool.close() pool.join() #run Table aggragation if step in ["all", "table"]: print('[info] Build gene expression table from the tagging files...') from .aggregate import read_barcode_gene_file, write_to_table pool = mp.Pool(processes=int(parallel)) result = [] for bc in barcode_prefix: filepath = os.path.join(tagging_dir, "tagging.{}.txt".format(bc)) result.append(pool.apply_async(read_barcode_gene_file, (filepath, 1))) pool.close() pool.join() from itertools import chain barcodes_all = [x.get()[0] for x in result] barcodes_lists = list(chain(*barcodes_all)) exp = {} UMIs_all = [x.get()[1] for x in result] for UMI in UMIs_all: for gene in UMI: if gene in exp: exp[gene].update(UMI[gene]) else: exp[gene] = UMI[gene] write_to_table(barcodes_lists, exp, tpm_table, "UMI Table") exp = {} Reads_all = [x.get()[2] for x in result] for UMI in Reads_all: for gene in UMI: if gene in exp: exp[gene].update(UMI[gene]) else: exp[gene] = UMI[gene] write_to_table(barcodes_lists, exp, reads_table, "Read Count Table") if __name__ == "__main__": print("begin running pipeline")
beiseq/baseqDrops
package/baseqDrops/pipeline.py
pipeline.py
py
6,329
python
en
code
13
github-code
6
[ { "api_name": "os.path.exists", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 66, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 67, "usage_type": "attribute" }, { "api_name": "tagging.prime3.check_reference_files", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path", "line_number": 75, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path", "line_number": 78, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path", "line_number": 81, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 82, "usage_type": "call" }, { "api_name": "os.path", "line_number": 82, "usage_type": "attribute" }, { "api_name": "itertools.product", "line_number": 85, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path", "line_number": 94, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 97, "usage_type": "call" }, { "api_name": "os.path", "line_number": 97, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 98, "usage_type": "call" }, { "api_name": "barcode.split_fast.split_by_barcode_faster", "line_number": 113, "usage_type": "call" }, { "api_name": "star.star_align", "line_number": 119, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 125, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path", "line_number": 128, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 129, "usage_type": "call" }, { "api_name": "os.path", "line_number": 129, "usage_type": "attribute" }, { "api_name": "tagging.prime3.tagging_reads", "line_number": 131, "usage_type": "argument" }, { "api_name": "multiprocessing.Pool", "line_number": 140, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 143, "usage_type": "call" }, { "api_name": "os.path", "line_number": 143, "usage_type": "attribute" }, { "api_name": "aggregate.read_barcode_gene_file", "line_number": 144, "usage_type": "argument" }, { "api_name": "itertools.chain", "line_number": 150, "usage_type": "call" }, { "api_name": "aggregate.write_to_table", "line_number": 160, "usage_type": "call" }, { "api_name": "aggregate.write_to_table", "line_number": 170, "usage_type": "call" } ]
31036723867
''' Source code modified from https://github.com/budzianowski/PyTorch-Beam-Search-Decoding/blob/master/decode_beam.py implementation of beam search on GPT-2's logits ''' import operator import torch import torch.nn as nn import torch.nn.functional as F from queue import PriorityQueue import sys class BeamSearchNode(object): def __init__(self, hiddenstate, previousNode, wordId, logProb, length): ''' :param hiddenstate: :param previousNode: :param wordId: :param logProb: :param length: ''' self.h = hiddenstate self.prevNode = previousNode self.wordid = wordId self.logp = logProb self.leng = length def eval(self, alpha=1.0): reward = 0 # Add here a function for shaping a reward return self.logp / float(self.leng - 1 + 1e-6) + alpha * reward def __lt__(self, x): if(self.eval() < x.eval()): return True else: return False def beam_decode_sentence(hidden_X, config,num_generate=1, beam_size = 5, batch_size = 1): ''' generate a sentence based on beam search :param hidden_X: hidden_X of sentence embedding (1024) with/without projection :param model: GPT-2 model :param tokenizer: GPT-2 tokenizer :return: decoded_batch ''' #SOS_token = tokenizer.encode("<|endoftext|>") beam_width = beam_size topk = num_generate # how many sentence do you want to generate past = None model = config['model'] tokenizer =config['tokenizer'] eos = [tokenizer.encode(tokenizer.eos_token)] EOS_token = eos hidden_X_unsqueeze = torch.unsqueeze(hidden_X, 0) hidden_X_unsqueeze = torch.unsqueeze(hidden_X_unsqueeze, 0) #[1,1,embed_dim] decoded_batch = [] # decoding goes sentence by sentence for idx in range(batch_size): # Number of sentence to generate endnodes = [] number_required = min((topk + 1), topk - len(endnodes)) # starting node - hidden vector, previous node, word id, logp, length hiddenstate, previousNode, wordId, logProb, length node = BeamSearchNode(past, None, torch.tensor([[220]]).cuda(), 0, 1) # 220 refers to single space ' ' on GPT nodes = PriorityQueue() # start the queue nodes.put((-node.eval(), node)) qsize = 1 # start beam search for text_len in range(50): # give up when decoding takes too long if qsize > 2000: break # fetch the best node try: score, n = nodes.get() except: print('Cannot get nodes') while not nodes.empty(): next_item = nodes.get() print(next_item) prev_input = n.wordid past = n.h if n.wordid.item() == EOS_token[0] and n.prevNode != None: endnodes.append((score, n)) # if we reached maximum # of sentences required if len(endnodes) >= number_required: break else: print('continue') continue # decode for one step using decoder if(text_len == 0): logits, past = model(inputs_embeds=hidden_X_unsqueeze,past_key_values = past,return_dict=False) else: logits, past = model(prev_input,past_key_values = past, attention_mask=None, return_dict=False) logits = logits[:, -1, :] probs = torch.softmax(logits, dim=-1) # PUT HERE REAL BEAM SEARCH OF TOP log_prob, indexes = torch.topk(probs, beam_width) nextnodes = [] for new_k in range(beam_width): decoded_t = indexes[0][new_k].view(1, -1) log_p = log_prob[0][new_k].item() #### hiddenstate, previousNode, wordId, logProb, length node = BeamSearchNode(past, n, decoded_t, n.logp + log_p, n.leng + 1) score = -node.eval() nextnodes.append((score, node)) # put them into queue for i in range(len(nextnodes)): score, nn = nextnodes[i] try: nodes.put((score, nn)) except: print('Cannot put nodes') print(score) print(nn) # increase qsize qsize += len(nextnodes) - 1 # for loop ends here # choose nbest paths, back trace them if len(endnodes) == 0: endnodes = [nodes.get() for _ in range(topk)] utterances = [] text = [] for score, n in sorted(endnodes, key=operator.itemgetter(0)): utterance = [] utterance.append(n.wordid.item()) # back trace while n.prevNode != None: n = n.prevNode utterance.append(n.wordid.item()) utterance = utterance[::-1] utterances.append(utterance) decode_process = tokenizer.decode(utterance[1:-1]) text.append(decode_process) decoded_batch.append(utterances) return text def greedy_decode(decoder_hidden, encoder_outputs, target_tensor): ''' :param target_tensor: target indexes tensor of shape [B, T] where B is the batch size and T is the maximum length of the output sentence :param decoder_hidden: input tensor of shape [1, B, H] for start of the decoding :param encoder_outputs: if you are using attention mechanism you can pass encoder outputs, [T, B, H] where T is the maximum length of input sentence :return: decoded_batch ''' batch_size, seq_len = target_tensor.size() decoded_batch = torch.zeros((batch_size, MAX_LENGTH)) decoder_input = torch.LongTensor([[SOS_token] for _ in range(batch_size)], device=device) for t in range(MAX_LENGTH): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) topv, topi = decoder_output.data.topk(1) # get candidates topi = topi.view(-1) decoded_batch[:, t] = topi decoder_input = topi.detach().view(-1, 1) return decoded_batch
HKUST-KnowComp/GEIA
decode_beam_search.py
decode_beam_search.py
py
6,377
python
en
code
22
github-code
6
[ { "api_name": "torch.unsqueeze", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.unsqueeze", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 74, "usage_type": "call" }, { "api_name": "queue.PriorityQueue", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.softmax", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.topk", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 133, "usage_type": "argument" }, { "api_name": "operator.itemgetter", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 170, "usage_type": "call" } ]
50277551
from typing import * # ref https://leetcode.cn/problems/naming-a-company/solution/by-endlesscheng-ruz8/ from collections import defaultdict class Solution: def distinctNames(self, ideas: List[str]) -> int: group = defaultdict(int) for s in ideas: group[s[1:]] |= 1 << (ord(s[0]) - ord('a')) ans = 0 # 定义 \textit{cnt}[i][j]cnt[i][j] 表示组中首字母不包含 ii 但包含 jj 的组的个数。枚举每个组,统计 \textit{cnt}cnt, # 同时枚举该组的首字母 ii 和不在该组的首字母 jj,答案即为 \textit{cnt}[i][j]cnt[i][j] 的累加值 cnt = [[0] * 26 for _ in range(26)] for mask in group.values(): for i in range(26): if mask >> i & 1 == 0: for j in range(26): if mask >> j & 1: cnt[i][j] += 1 else: for j in range(26): if mask >> j & 1 == 0: ans += cnt[i][j] return ans * 2
code-cp/leetcode
solutions/6094/main.py
main.py
py
1,093
python
en
code
0
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 7, "usage_type": "call" } ]
74492815226
"""Wrapper a los proceso de scrapping """ import tempfile import os from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.desired_capabilities import DesiredCapabilities # pylint: disable=unused-import from scrapper.procesos.patentes_inpi_novedades import patentes_inpi_novedades from scrapper.procesos.zonaprop import zonaprop from scrapper.procesos.dummy import dummy_download_file from scrapper.procesos.inpi_novedades import inpi_novedades def get_chrome_driver(download_folder, show=False): """Configura y retorna el driver chrome Args: download_folder (str): Carpeta de descarga deseada show (bool): Establece si se muestra la operación en el navegador Returns: driver: retorna el objeto driver """ chrome_options = Options() if not show: chrome_options.add_argument("--headless=new") chrome_options.add_argument(f"--download-directory={download_folder}") chrome_options.add_argument("--start-maximized") chrome_options.add_experimental_option("prefs", { "download.prompt_for_download": False, "download.directory_upgrade": True, "download.default_directory": download_folder, "safebrowsing.enabled": True, 'safebrowsing.disable_download_protection': True }) chrome_options.add_experimental_option('excludeSwitches', ['enable-logging']) caps = DesiredCapabilities().CHROME #caps["pageLoadStrategy"] = "normal" # complete #caps["pageLoadStrategy"] = "eager" # interactive caps["pageLoadStrategy"] = "none" driver = webdriver.Chrome(options=chrome_options, desired_capabilities=caps) return driver def scrap(proceso, config, log, inputparam=None, inputfile=None, outputpath = None, show_browser=False): """Ejecución generica de un proceso modelo de scrapping Args: proceso (str): Nombre del proceps config (Config): Objeto de Configuración log (Log): Objeto de Logging inputparam (str, optional): Cadena variable de parámetros dada por el usuario. Defaults to None. inputfile (str, optional): Archivo de entrada. Defaults to None. outputpath (str, optional): Carpeta de salida de los resultados. Defaults to None. show_browser (bool, optional): Se muestra muestra el navegador durante el proceso de scrapping. Defaults to False. Returns: List: Lista de valores capturados """ if outputpath is None: workpath = tempfile.mkdtemp() else: workpath = outputpath temp_download_folder = os.path.join(workpath, "tmp") os.makedirs(temp_download_folder, exist_ok=True) log.info(f"Carpeta de descarga: {temp_download_folder}") driver = get_chrome_driver(download_folder=temp_download_folder, show=show_browser) section = "proc:" + proceso function_name = config[section]["function"] datos = [] if function_name in globals(): function = globals()[function_name] log.info(f"Invocando a: {function_name}") try: datos = function(driver=driver, log=log, parametros=config[section], inputfile=inputfile, tmpdir=workpath, inputparam=inputparam, outputpath=outputpath, show_browser = show_browser) # pylint: disable=broad-except except Exception as err: log.exception("General en la invocación a la función de scrapping") log.exception(str(err)) else: log.error(f"proceso {function_name} no implementado") return datos
pmoracho/scrapper-2
scrapper/scrapping.py
scrapping.py
py
3,958
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 28, "usage_type": "call" }, { "api_name": "selenium.webdriver.common.desired_capabilities.DesiredCapabilities", "line_number": 43, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 48, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 48, "usage_type": "name" }, { "api_name": "tempfile.mkdtemp", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 84, "usage_type": "call" } ]
21669508962
import requests from common.log import GetLogger log = GetLogger().get_logger() class BaseRequest(): def __init__(self): pass def get(self,url,params=None,**kwargs): try: response=requests.get(url,params=params,**kwargs) log.info("==========接口API请求开始===========") log.info("请求URL:{}/n请求参数:{}".format(url,params)) log.info("接口请求成功!返回参数:{}".format(response.text)) log.info("===========结束===========") except Exception as e: log.error("接口请求异常!{0}".format(e)) def post(self,url,data=None,json=None,headers=None,**kwargs): try: respose = requests.post(url=url,data=data.encode("utf-8"),json=json,headers=headers,**kwargs) log.info("===========接口API请求开始===========") log.info("请求URL:{}".format(url)) log.info("请求参数:{}".format(data,json)) log.info("响应参数:{}".format(respose.text)) log.info("响应时间:{}ms".format(respose.elapsed.total_seconds()*1000)) log.info("===========结束===========") return respose except Exception as e: log.error("接口请求异常!{0}".format(e)) # if __name__ == '__main__': # Headers = { # "content-type": "application/json" # } # a=BaseRequest() # a.get("http://192.168.122.105:9900/basic-user/web/business/system/list") # data={ # "businessSystemCode": "DAC", # "businessSystemId": 0, # "businessSystemKey": "DAC", # "businessSystemName": "基础配置中心" # } # a.post("http://192.168.122.105:9900/basic-user/web/business/system/save",data=data,headers=Headers)
menghuai1995/PythonAutoCode
API_Autotest/common/baseRequest.py
baseRequest.py
py
1,787
python
en
code
0
github-code
6
[ { "api_name": "common.log.GetLogger", "line_number": 4, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 12, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 23, "usage_type": "call" } ]
10775113939
import re import os from collections import Counter, defaultdict, namedtuple from itertools import combinations, product from pprint import pprint from parse import parse, findall from math import prod, sqrt dirname = os.path.dirname(__file__) data = open(f'{dirname}/21-input.txt').read().splitlines() data = [parse('{} (contains {})', d).fixed for d in data] data = [(set(i.split(' ')), a.split(', ')) for i, a in data] set_of_all_ingredients = set.union(*[i for i, _ in data]) all_ingredients = sum((list(i) for i, _ in data), list()) result = dict() for ingredients, allergens in data: for allergen in allergens: if allergen in result: result[allergen] &= ingredients else: result[allergen] = ingredients.copy() set_of_ingredients_with_no_allergens = set_of_all_ingredients.copy() for allergen, ingredients in result.items(): set_of_ingredients_with_no_allergens -= ingredients print(sum([all_ingredients.count(s) for s in set_of_ingredients_with_no_allergens])) result2 = {} allergens_left = list(result.keys()) ingredients_identified = set() while allergens_left: for allergen in allergens_left.copy(): possibles = result[allergen] - ingredients_identified if len(possibles) == 1: ingredient = possibles.pop() result2[allergen] = ingredient ingredients_identified.add(ingredient) allergens_left.remove(allergen) print(','.join(result2[allergen] for allergen in sorted(result2.keys())))
knjmooney/Advent-Of-Code
2020/21-allergens.py
21-allergens.py
py
1,513
python
en
code
0
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "attribute" }, { "api_name": "parse.parse", "line_number": 10, "usage_type": "call" } ]
37111986575
#얘는 계속 실행이 되어야 해서, jupyter notebook에서는 안된다. #이걸 하는 목적 : dialog flow로부터 데이터를 받아, 여기서 처리한 후 다시 dialog flow로 반환 #그걸 위해서는 json으로 리턴해야 한다. import requests import urllib import IPython.display as ipd import json from bs4 import BeautifulSoup from flask import Flask, request, jsonify def getWeather(city) : url = "https://search.naver.com/search.naver?query=" url = url + urllib.parse.quote_plus(city + "날씨") print(url) bs = BeautifulSoup(urllib.request.urlopen(url).read(), "html.parser") temp = bs.select('span.todaytemp') desc = bs.select('p.cast_txt') #dictionery가 좋은 리턴방식이다. return {"temp":temp[0].text, "desc":desc[0].text} #temp가 온도, desc가 어제보다 4도 낮아요. #return {"temp":temp[4+7].text, "desc":desc[0].text} #dctionery방식으로 하면, 이런식으로, 수정할때 용이하다. #return temp[0].text + "/" + desc[0].text #리턴 값을 문자열로 준다. #Flask 객체 생성 app = Flask(__name__) @app.route('/') #'데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def home(): name = request.args.get("name") item = request.args.get("item") return "hello"#호출할때, 반드시 name이라는 파라미터를 호출해야한다. @app.route('/abc')#데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def abc(): return "test" @app.route('/weather')#데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def weather(): city = request.args.get("city") info = getWeather(city) #return "<font color=red>" + info["temp"] + "도 " + info["desc"] + "</font>" #return info #웹표준방식이 아니어서, 안된다. #return json.dumps(info) return jsonify(info) #어떤 요청이 들어와도, 무조건, Hello만 리턴하는 서버 #GET방식으로도, POST방식으로도 호출 가능하게 한것, 서비스 할때는, GET방식을 빼준다. #GET방식은 디버깅할때 사용, 공인 서버가 아니다 보니까, dialog가 우리서버를 호출할 수 없다. @app.route('/dialogflow', methods=['GET', 'POST']) def dialogflow(): req = request.get_json(force=True) print(json.dumps(req, indent=4)) res = {'fulfillmentText':'Hello~~~'} return jsonify(res) #dialogflow에서 만든 규약을 지켜서 return을 해야한다. json파일로 해야한다. if __name__ == '__main__': #host = 0.0.0.0에는 실제 ip를 넣어주면 된다. 0.0.0.0은 ip를 모르더라도 접속할 수 있다. 원래는 자기 ip를 써야 한다. #그럴때, 쓸 수 있는게 0.0.0.0, 127.0.0.1 두가지를 사용할 수 있다. app.run(host='0.0.0.0', port = 3000, debug=True)
ssh6189/2020.02.05
server.py
server.py
py
3,365
python
ko
code
0
github-code
6
[ { "api_name": "urllib.parse.quote_plus", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 14, "usage_type": "attribute" }, { "api_name": "bs4.BeautifulSoup", "line_number": 16, "usage_type": "call" }, { "api_name": "urllib.request.urlopen", "line_number": 16, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 33, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 34, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 34, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 46, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 46, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 59, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 59, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 60, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 62, "usage_type": "call" } ]
41794735960
import datetime import unittest from pyspark import SparkConf from pyspark.sql import SparkSession import pyspark.sql.functions as f from pyspark.sql.types import StructType, StructField, IntegerType, StringType, MapType, ArrayType import json import csv from src.transformations import add_columns, running_total, group_sales_by_type # TODO: Include testing output map and array data class TestTransformations(unittest.TestCase): def setUp(self) -> None: print("Setting up Spark") conf = SparkConf().set("spark.driver.memory", "8g") self.spark = SparkSession \ .builder \ .master("local[4]") \ .config(conf=conf) \ .appName("test simple transformation") \ .getOrCreate() def test_add_columns(self): # Create test data with each row as tuple test_data = [(1, 2), (3, 4), (5, 6)] # Create test DataFrame from the test data, pass the column names as required test_df = self.spark.createDataFrame(data=test_data, schema=["first", "second"]) # Show data-frame test_df.show(truncate=False) # Execute transformation on the test data-frame and show the results result_df = test_df.transform(add_columns) result_df.show(truncate=False) # Validate column result_columns = result_df.columns self.assertIn("sum", result_columns) # Get rest column out of the data frame as list result_data = result_df.select("sum").collect() result_data = [item["sum"] for item in result_data] # Validate result column values self.assertListEqual(result_data, [3, 7, 11]) def test_map_data(self): test_data = [ (1, "product_1", "2022-11-01", {"store 1": 12, "store 2": 3, "online": 5}), (2, "product_1", "2022-11-02", {"store 1": 5, "online": 2}), (3, "product_1", "2022-11-04", {"store 1": 8, "store 2": 12, "online": 11}), (4, "product_1", "2022-11-05", {"store 1": 3, "store 2": 3}) ] test_df = self.spark.createDataFrame(test_data, schema=["order_id", "product", "date", "sales"]) test_df.show(truncate=False) test_df.printSchema() test_df_schema = StructType([ StructField(name="order_id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="date", dataType=StringType(), nullable=False), StructField(name="sales", dataType=MapType(StringType(), IntegerType(), valueContainsNull=False), nullable=False), ]) test_df = self.spark.createDataFrame(test_data, schema=test_df_schema) test_df.show(truncate=False) test_df.printSchema() def test_list_data(self): test_data = [ (1, "product_1", "2022-11-01", "2022-11-05", [3, 4, 6, 7, 12]), (2, "product_1", "2022-11-06", "2022-11-12", [8, 4, 3, 1, 16, 13, 25]), (3, "product_1", "2022-11-13", "2022-11-15", [3, 3, 6]), (4, "product_2", "2022-11-01", "2022-11-07", [1, 12, 6, 9, 12, 2, 2]), ] test_df_schema = StructType([ StructField(name="order_id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="start_date", dataType=StringType(), nullable=False), StructField(name="end_date", dataType=StringType(), nullable=False), StructField(name="sales", dataType=ArrayType(IntegerType()), nullable=False), ]) test_df = self.spark.createDataFrame(test_data, schema=test_df_schema)\ .withColumn("start_date", f.to_date("start_date"))\ .withColumn("end_date", f.to_date("end_date")) test_df.show(truncate=False) test_df.printSchema() sales_data_raw = test_df.select("sales").collect() print(sales_data_raw) sales_data = [item["sales"] for item in sales_data_raw] print(sales_data) print(type(sales_data)) print([[type(item) for item in data] for data in sales_data]) self.assertListEqual( sales_data, [[3, 4, 6, 7, 12], [8, 4, 3, 1, 16, 13, 25], [3, 3, 6], [1, 12, 6, 9, 12, 2, 2]] ) def test_group_sales_by_type(self): # Create test data test_data = [ (1, "product_1", "online", "2022-11-01", 8), (2, "product_1", "online", "2022-11-02", 6), (3, "product_1", "online", "2022-11-04", 12), (4, "product_1", "retail", "2022-11-01", 11), (5, "product_1", "retail", "2022-11-02", 15), (6, "product_1", "retail", "2022-11-03", 22), (7, "product_1", "retail", "2022-11-04", 21), (8, "product_2", "online", "2022-11-02", 1), (9, "product_2", "online", "2022-11-03", 3), (10, "product_2", "retail", "2022-11-01", 1), (11, "product_2", "retail", "2022-11-02", 5), (12, "product_2", "retail", "2022-11-04", 2) ] # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_type", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=IntegerType(), nullable=False), ]) # Create test DataFrame test_df = self.spark.createDataFrame(test_data, schema=test_df_schema)\ .withColumn("sale_date", f.to_date("sale_date")) # Print the data frame and its schema test_df.show(truncate=False) test_df.printSchema() # Run the transformation on test data grouped_data = test_df.transform(group_sales_by_type) grouped_data.show(truncate=False) grouped_data.printSchema() # Collect results to validate validation_cols = grouped_data.select("sale_dates", "num_sales").collect() sale_dates = [item['sale_dates'] for item in validation_cols] num_sales = [item['num_sales'] for item in validation_cols] # Print sale_dates column result print(sale_dates) # Create and validate expected `sale_dates` result expected_sale_dates = [ [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-03", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-03", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date(), ] ] self.assertListEqual(sale_dates, expected_sale_dates) # Validate number of sales result self.assertListEqual(num_sales, [[8, 6, 12], [11, 15, 22, 21], [1, 3], [1, 5, 2]]) def test_create_struct_data(self): # Create test data test_data = [ (1, "product_1", "2022-11-01", {"retail": 8, "online": 12}), (2, "product_1", "2022-11-02", {"retail": 3}), (3, "product_1", "2022-11-03", {"retail": 5, "online": 2}), (4, "product_1", "2022-11-04", {"online": 8}), (5, "product_2", "2022-11-02", {"retail": 2, "online": 1}), (6, "product_2", "2022-11-03", {"retail": 3, "online": 2}), ] # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=StructType([ StructField("retail", IntegerType(), nullable=True), StructField("online", IntegerType(), nullable=True), ])) ]) # Create test DataFrame test_df = self.spark.createDataFrame(test_data, schema=test_df_schema) \ .withColumn("sale_date", f.to_date("sale_date")) # Print the data frame and its schema test_df.show(truncate=False) test_df.printSchema() # method 1 - process the nested Row instances: num_sales = test_df.select("num_sales").collect() print(num_sales) online_sales = [item['num_sales']['online'] for item in num_sales] retail_sales = [item['num_sales']['retail'] for item in num_sales] self.assertListEqual(online_sales, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales, [8, 3, 5, None, 2, 3]) # method 2 - select to separate columns num_sales_method_2 = test_df.select("num_sales").select("num_sales.*").collect() print(num_sales_method_2) online_sales_method_2 = [item['online'] for item in num_sales_method_2] retail_sales_method_2 = [item['retail'] for item in num_sales_method_2] self.assertListEqual(online_sales_method_2, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales_method_2, [8, 3, 5, None, 2, 3]) # method 3 - convert the struct column to json num_sales_method_3 = test_df.withColumn("num_sales", f.to_json(f.col("num_sales"))).select("num_sales").collect() print(num_sales_method_3) online_sales_method_3 = [ json.loads(item['num_sales'])['online'] if 'online' in json.loads(item['num_sales']) else None for item in num_sales_method_3 ] retail_sales_method_3 = [ json.loads(item['num_sales'])['retail'] if 'retail' in json.loads(item['num_sales']) else None for item in num_sales_method_3 ] self.assertListEqual(online_sales_method_3, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales_method_3, [8, 3, 5, None, 2, 3]) def test_running_total(self): # # Option 1 - provide a date column # test_data = [ # (1, "product_1", datetime.strptime("2022-11-01", "%Y-%m-%d").date(), 1), # (2, "product_1", datetime.strptime("2022-11-03", "%Y-%m-%d").date(), 1), # (3, "product_1", datetime.strptime("2022-11-04", "%Y-%m-%d").date(), 3), # (4, "product_1", datetime.strptime("2022-11-05", "%Y-%m-%d").date(), 2), # (5, "product_2", datetime.strptime("2022-11-02", "%Y-%m-%d").date(), 4), # (6, "product_2", datetime.strptime("2022-11-04", "%Y-%m-%d").date(), 3), # ] # Option 2 - input date as string and cast in Spark test_data = [ (1, "product_1", "2022-11-01", 1), (2, "product_1", "2022-11-03", 1), (3, "product_1", "2022-11-04", 3), (4, "product_1", "2022-11-05", 2), (5, "product_2", "2022-11-02", 4), (6, "product_2", "2022-11-04", 3), ] test_df_columns = ["order_id", "product", "order_date", "qty"] test_df = self.spark.createDataFrame(test_data, test_df_columns)\ .withColumn("order_date", f.to_date("order_date")) test_df.show(truncate=False) test_df.printSchema() result_df = test_df.transform(running_total) result_df.show(truncate=False) result_data = result_df.select("running_sum_qty").collect() result_data = [item['running_sum_qty'] for item in result_data] self.assertListEqual(result_data, [1, 2, 5, 7, 4, 7]) def test_group_sales_by_type_from_file(self): # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_type", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=IntegerType(), nullable=False), ]) # Read test data from .csv file test_df = self.spark.read.option("header", True).schema(test_df_schema).csv("test_data/test_data.csv") test_df.show(truncate=False) test_df.printSchema() # Perform the transformation result_df = test_df.transform(group_sales_by_type) result_df.show(truncate=False) result_df.printSchema() # Extract result data frame to list result_data_raw = result_df.select("num_sales").collect() result_data = [item["num_sales"] for item in result_data_raw] # Load expected data with open("test_data/test_result.csv", mode='r') as file_handle: expected_data = [json.loads(line[0]) for line in csv.reader(file_handle)] print(f"Expected data: {expected_data}") self.assertListEqual(result_data, expected_data)
SA01/spark-unittest-tutorial
tests/test_transformations.py
test_transformations.py
py
13,745
python
en
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pyspark.SparkConf", "line_number": 19, "usage_type": "call" }, { "api_name": "pyspark.sql.SparkSession.builder.master", "line_number": 21, "usage_type": "call" }, { "api_name": "pyspark.sql.SparkSession.builder", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession", "line_number": 21, "usage_type": "name" }, { "api_name": "src.transformations.add_columns", "line_number": 39, "usage_type": "argument" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 65, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 66, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 66, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 67, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 67, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 68, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 68, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 69, "usage_type": "call" }, { "api_name": "pyspark.sql.types.MapType", "line_number": 69, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 69, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 69, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 84, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 85, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 85, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 86, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 86, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 87, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 87, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 88, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 88, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 89, "usage_type": "call" }, { "api_name": "pyspark.sql.types.ArrayType", "line_number": 89, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 89, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.to_date", "line_number": 93, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 93, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.to_date", "line_number": 94, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 94, "usage_type": "name" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 128, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 129, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 129, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 130, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 130, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 131, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 131, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 132, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 132, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 133, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 133, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.to_date", "line_number": 138, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 138, "usage_type": "name" }, { "api_name": "src.transformations.group_sales_by_type", "line_number": 145, "usage_type": "argument" }, { "api_name": "datetime.datetime.strptime", "line_number": 160, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 160, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 161, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 161, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 162, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 162, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 164, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 164, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 165, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 165, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 166, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 166, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 167, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 167, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 170, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 170, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 171, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 171, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 174, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 174, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 175, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 175, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 176, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 176, "usage_type": "attribute" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 196, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 197, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 197, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 198, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 198, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 199, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 199, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 200, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 200, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 201, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 201, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 202, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 202, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.to_date", "line_number": 208, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 208, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.to_json", "line_number": 234, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 234, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.col", "line_number": 234, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 238, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 242, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.to_date", "line_number": 272, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 272, "usage_type": "name" }, { "api_name": "src.transformations.running_total", "line_number": 277, "usage_type": "argument" }, { "api_name": "pyspark.sql.types.StructType", "line_number": 287, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 288, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 288, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 289, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 289, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 290, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 290, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 291, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StringType", "line_number": 291, "usage_type": "call" }, { "api_name": "pyspark.sql.types.StructField", "line_number": 292, "usage_type": "call" }, { "api_name": "pyspark.sql.types.IntegerType", "line_number": 292, "usage_type": "call" }, { "api_name": "src.transformations.group_sales_by_type", "line_number": 302, "usage_type": "argument" }, { "api_name": "json.loads", "line_number": 312, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 312, "usage_type": "call" } ]
71176383548
import boto3, datetime, time region = 'us-west-2' accesskey = os.environ['ACCESSKEY'] secretkey = os.environ['SECRET_ACCESSKEY'] def send_firehose(message: str): client = boto3.client('firehose', aws_access_key_id=accesskey, aws_secret_access_key=secretkey, region_name=region) # Send message to firehose response = client.put_record( DeliveryStreamName=os.environ['FIREHOSE_NAME'], Record={ 'Data': message } ) return response
kfunamizu/python_commonlib
firehose/src/firehose.py
firehose.py
py
479
python
en
code
0
github-code
6
[ { "api_name": "boto3.client", "line_number": 9, "usage_type": "call" } ]
12064640805
""" A Module for Encrypt and Decrypt message """ import ReadWriteFileManagement # Import the Fernet module from cryptography.fernet import Fernet DATABASE_DIR_PATH = "../../databases/chat_db/" FILE_NAME = "encryptKey.key" """ A function for generating an encryption key. the function generate the using Fernet class, and saves the key into file in a specific path """ def generate_encryption_key(): # generate a random key for encryption encrypt_key = Fernet.generate_key() # Writing the key into a file in order to decode the messages when needed if ReadWriteFileManagement.create_chat_file(FILE_NAME) is not None: ReadWriteFileManagement.create_chat_file(FILE_NAME) # Stores the encryption key into the encryption file with open(DATABASE_DIR_PATH + FILE_NAME, 'wb') as encryptKey: encryptKey.write(encrypt_key) """ A function for Encrypt a text message """ def message_encrypt(message_to_encrypt): # Opening the file that stores the encrypt key with open(DATABASE_DIR_PATH + FILE_NAME, 'rb') as en_Key: key = en_Key.read() # Creating an instant of the Fernet class with encrypt_key, # so we can encrypt each message using Fernet methods fernet = Fernet(key) # E ncrypt message enc_message = fernet.encrypt(message_to_encrypt.encode()) return enc_message """ A function for Decrypt a text message """ def message_decrypt(message_to_decrypt): # Opening the file that stores the encrypt key with open(DATABASE_DIR_PATH + FILE_NAME, 'rb') as encryptKey: key = encryptKey.read() # Creating an instant of the Fernet class with encrypt_key, # so we can encrypt each message using Fernet methods fernet = Fernet(key) decode_message = fernet.decrypt(message_to_decrypt.decode()) return decode_message if __name__ == "__main__": generate_encryption_key() message = "Hello" enc_m = message_encrypt(message) print(enc_m.decode()) dec_m = message_decrypt(enc_m) print(dec_m.decode())
RoyYotam/My-Chat
src/help classes/EncryptMessage.py
EncryptMessage.py
py
2,030
python
en
code
0
github-code
6
[ { "api_name": "cryptography.fernet.Fernet.generate_key", "line_number": 21, "usage_type": "call" }, { "api_name": "cryptography.fernet.Fernet", "line_number": 21, "usage_type": "name" }, { "api_name": "ReadWriteFileManagement.create_chat_file", "line_number": 23, "usage_type": "call" }, { "api_name": "ReadWriteFileManagement.create_chat_file", "line_number": 24, "usage_type": "call" }, { "api_name": "cryptography.fernet.Fernet", "line_number": 41, "usage_type": "call" }, { "api_name": "cryptography.fernet.Fernet", "line_number": 59, "usage_type": "call" } ]
31973217705
"""filename and file size in file model Revision ID: 6d23296b922b Revises: 6ec29c8de008 Create Date: 2023-03-02 17:47:25.025321 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6d23296b922b' down_revision = '6ec29c8de008' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('files', schema=None) as batch_op: batch_op.add_column(sa.Column('filename', sa.String(length=255), nullable=True)) batch_op.add_column(sa.Column('file_size', sa.String(length=255), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('files', schema=None) as batch_op: batch_op.drop_column('file_size') batch_op.drop_column('filename') # ### end Alembic commands ###
synzr/file-transfer-service
migrations/versions/6d23296b922b_filename_and_file_size_in_file_model.py
6d23296b922b_filename_and_file_size_in_file_model.py
py
952
python
en
code
0
github-code
6
[ { "api_name": "alembic.op.batch_alter_table", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 23, "usage_type": "call" }, { "api_name": "alembic.op.batch_alter_table", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" } ]
2931948188
from typing import Dict from network.api.base import BaseRepository import re from http.cookies import SimpleCookie import dukpy import requests import http.client from network.api.base_mainpage_cookies_loader import BaseMainPageCookiesLoader IPP_JS_PATH = 'resources/ipp.js' class PagesRepository(BaseRepository, BaseMainPageCookiesLoader): def __init__(self, user_agent: str, cookies: Dict[str, str] = None): super().__init__(user_agent=user_agent, cookies=cookies) def get_main_page_cookies(self): # first we get ipp cookies self.get_ipp_cookies() # then we load main page with ipp cookies # and get more cookies self.load_main_page() def get_cookies(self): # override BaseMainPageCookiesLoader's method return self.get_main_page_cookies() def get_ipp_cookies(self): # send request to main page response = self.load_main_page(False) # get js for tokens generation js_code_regex_result = \ re.findall(r'<script type=\"text/javascript\">(.*)</script>', response.text, flags=re.S | re.M) assert len(js_code_regex_result) > 0 js_code = js_code_regex_result[0] # edit js to extract cookies from script's result with open(IPP_JS_PATH, encoding='utf8') as f: part_of_code = f.read() js_code = part_of_code + '\r\n' + js_code + '\r\n' + 'document.cookie' # evaluate js ipp_cookies_string = dukpy.evaljs(js_code, user_agent=self.user_agent) # update cookies ipp_cookies = SimpleCookie() ipp_cookies.load(ipp_cookies_string) for k, v in ipp_cookies.items(): self.cookies[k] = v.value def load_main_page(self, update_cookies=True) -> requests.Response: http.client._MAXHEADERS = 1000 # send request to main page response = requests.get( 'https://dns-shop.ru/', headers={ 'accept': '*/*', 'user-agent': self.user_agent, 'accept-language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7', }, cookies=self.cookies, ) if update_cookies: self.update_cookies(response.cookies) return response
Emperator122/dns-shop_price_comparator
network/api/pages.py
pages.py
py
2,270
python
en
code
0
github-code
6
[ { "api_name": "network.api.base.BaseRepository", "line_number": 13, "usage_type": "name" }, { "api_name": "network.api.base_mainpage_cookies_loader.BaseMainPageCookiesLoader", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 14, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 32, "usage_type": "call" }, { "api_name": "re.S", "line_number": 32, "usage_type": "attribute" }, { "api_name": "re.M", "line_number": 32, "usage_type": "attribute" }, { "api_name": "dukpy.evaljs", "line_number": 42, "usage_type": "call" }, { "api_name": "http.cookies.SimpleCookie", "line_number": 45, "usage_type": "call" }, { "api_name": "http.cookies.client", "line_number": 51, "usage_type": "attribute" }, { "api_name": "http.cookies", "line_number": 51, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 53, "usage_type": "call" }, { "api_name": "requests.Response", "line_number": 50, "usage_type": "attribute" } ]
20794460102
import numpy as np import matplotlib.pyplot as plt x = []; y = [] for i in range(100): x.append(np.sin(np.pi/48*i)) y.append(2-2*np.cos(np.pi/48*i)) plt.plot(x, y) plt.show()
duynamrcv/mpc_ros
test.py
test.py
py
185
python
en
code
1
github-code
6
[ { "api_name": "numpy.sin", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 6, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 7, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 9, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 9, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 10, "usage_type": "name" } ]
12701288482
from collections import deque import sys d = deque() n = int(sys.stdin.readline().rstrip()) for i in range(n): order = sys.stdin.readline().rstrip().split() a = order[0] if a == "push": d.append(order[1]) elif a == "pop": if d: print(d.popleft()) else: print(-1) elif a == "size": print(len(d)) elif a == "empty": if d: print(0) else: print(1) elif a == "front": if d: print(d[0]) else: print(-1) else: if d: print(d[-1]) else: print(-1)
MinChoi0129/Algorithm_Problems
BOJ_Problems/18258.py
18258.py
py
647
python
en
code
2
github-code
6
[ { "api_name": "collections.deque", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.stdin.readline", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 5, "usage_type": "attribute" }, { "api_name": "sys.stdin.readline", "line_number": 8, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 8, "usage_type": "attribute" } ]
73886255546
import psycopg2 import os import http.server import socketserver import logging import sys class IndexHandler(http.server.SimpleHTTPRequestHandler): def do_GET(self): self.path = 'index.html' return http.server.SimpleHTTPRequestHandler.do_GET(self) print("start app") app_port = os.environ.get("APP_PORT") connection = psycopg2.connect( user=os.environ.get("DB_USER"), password=os.environ.get("DB_PASSWORD"), host=os.environ.get("DB_HOST"), port=os.environ.get("DB_PORT"), database=os.environ.get("DB_NAME") ) cursor = connection.cursor() with open("index.html", "w") as f: try: cursor.execute("SELECT * from test;") for i in cursor: f.write(f"{i}\n") except (Exception, Error) as error: print(error) Handler = IndexHandler with socketserver.TCPServer(("", int(app_port)), Handler) as httpd: print("Serving at port: ", int(app_port)) httpd.serve_forever()
hed854/tp3-kubernetes
frontend/app.py
app.py
py
978
python
en
code
0
github-code
6
[ { "api_name": "http.server.server", "line_number": 9, "usage_type": "attribute" }, { "api_name": "http.server", "line_number": 9, "usage_type": "name" }, { "api_name": "http.server.server.SimpleHTTPRequestHandler.do_GET", "line_number": 12, "usage_type": "call" }, { "api_name": "http.server.server", "line_number": 12, "usage_type": "attribute" }, { "api_name": "http.server", "line_number": 12, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 16, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "psycopg2.connect", "line_number": 18, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 19, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 20, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 21, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 22, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 23, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 23, "usage_type": "attribute" }, { "api_name": "socketserver.TCPServer", "line_number": 38, "usage_type": "call" } ]
73510645947
from collections import defaultdict N = int(input()) for i in range(N): forwared = defaultdict(int) reverse = defaultdict(int) m,n= map(int,input().split()) nums = [] ans = 0 for i in range(m): temp = list(map(int,input().split())) nums.append(temp) for i in range(m): for j in range(n): temp = i-j temp2 = i+j forwared[temp]+=nums[i][j] reverse[temp2]+=nums[i][j] for i in range(m): for j in range(n): sum = forwared[i-j]+reverse[i+j]-nums[i][j] ans = max(ans,sum) print(ans)
yonaSisay/a2sv-competitive-programming
xsum.py
xsum.py
py
627
python
en
code
0
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 4, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 5, "usage_type": "call" } ]
2046128502
import os import sys RASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(RASE_DIR) import time import threading from verify import Verify from scrapy import cmdline from multiprocessing import Process from Bearcat_ProxyPool.settings import SPIDER_TIME curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.append(rootPath) def start_blspider(spider_name, frequency): args = ['scrapy', 'crawl', spider_name] while True: p = Process(target=cmdline.execute, args=(args,)) p.start() p.join() time.sleep(frequency) if __name__ == '__main__': confs = [{"spider_name": "xici", "frequency": SPIDER_TIME}, {"spider_name": "xila", "frequency": SPIDER_TIME}, {"spider_name": "ihuan", "frequency": SPIDER_TIME}, {"spider_name": "ip3366", "frequency": SPIDER_TIME}, {"spider_name": "nima", "frequency": SPIDER_TIME}, {"spider_name": "kuai", "frequency": SPIDER_TIME}] for conf in confs: process = Process(target=start_blspider, args=(conf.get("spider_name"), conf.get("frequency", 0))) process.start() proces = threading.Thread(target=Verify().main()) proces.start()
yuzhiyizhan/Bearcat_ProxyPool
main.py
main.py
py
1,261
python
en
code
2
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 4, "usage_type": "call" }, { "api_name": "os.path", "line_number": 4, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.path.append", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.split", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 15, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "multiprocessing.Process", "line_number": 21, "usage_type": "call" }, { "api_name": "scrapy.cmdline.execute", "line_number": 21, "usage_type": "attribute" }, { "api_name": "scrapy.cmdline", "line_number": 21, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 24, "usage_type": "call" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 28, "usage_type": "name" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 29, "usage_type": "name" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 30, "usage_type": "name" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 31, "usage_type": "name" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 32, "usage_type": "name" }, { "api_name": "Bearcat_ProxyPool.settings.SPIDER_TIME", "line_number": 33, "usage_type": "name" }, { "api_name": "multiprocessing.Process", "line_number": 36, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 38, "usage_type": "call" }, { "api_name": "verify.Verify", "line_number": 38, "usage_type": "call" } ]
8454082456
from uuid import uuid4 from sqlalchemy import text from critique_wheel.adapters.sqlalchemy import iam_repository from critique_wheel.critiques.models.critique import Critique from critique_wheel.members.models.IAM import MemberStatus from critique_wheel.members.value_objects import MemberId from critique_wheel.works.models.work import Work from critique_wheel.works.value_objects import WorkId def test_repository_can_save_a_basic_member( session, active_valid_member, valid_work, valid_critique ): member = active_valid_member member.id = MemberId() repo = iam_repository.SqlAlchemyMemberRepository(session) assert member.works == [] assert member.critiques == [] repo.add(member) valid_work.id = WorkId() valid_work.member_id = member.id member.add_work(valid_work) member.add_critique(valid_critique) session.commit() rows = list( session.execute( text( "SELECT id, username, email, password, member_type, status FROM members" ) ) ) assert rows == [ ( member.id.get_uuid(), member.username, member.email, member.password, member.member_type.value, member.status.value, ) ] def test_repository_can_get_a_member_by_id( session, valid_member, valid_work, valid_critique ): valid_member.id = MemberId() valid_member.status = MemberStatus.ACTIVE member = valid_member repo = iam_repository.SqlAlchemyMemberRepository(session) repo.add(member) valid_work.member_id = member.id valid_critique.member_id = member.id member.add_work(valid_work) member.add_critique(valid_critique) assert len(member.works) == 1 assert len(member.critiques) == 1 session.commit() stmt = text('SELECT * FROM "members" WHERE id=:id').bindparams( id=valid_member.id.get_uuid(), ) rows = session.execute(stmt).fetchall() assert len(rows) == 1 retrieved_works = session.query(Work).filter_by(member_id=valid_member.id).all() assert len(retrieved_works) == 1 assert retrieved_works[0].title == valid_work.title retrieved_critiques = session.query(Critique).filter_by(member_id=member.id).all() assert len(retrieved_critiques) == 1 assert retrieved_critiques[0].critique_about == valid_critique.critique_about assert retrieved_works[0].member_id == member.id assert retrieved_critiques[0].member_id == member.id assert repo.get_member_by_id(member.id) == member assert member in repo.list() def test_repository_can_get_a_member_by_email(session, valid_member): valid_member.id = MemberId() valid_member.status = MemberStatus.ACTIVE valid_member.email = "[email protected]" member = valid_member repo = iam_repository.SqlAlchemyMemberRepository(session) repo.add(member) session.commit() assert repo.get_member_by_email(member.email) == member def test_resository_can_get_a_member_by_username(session, valid_member): valid_member.id = MemberId() valid_member.status = MemberStatus.ACTIVE valid_member.username = "yet_another_username" member = valid_member repo = iam_repository.SqlAlchemyMemberRepository(session) repo.add(member) session.commit() assert repo.get_member_by_username(member.username) == member def test_resository_can_get_a_list_of_members( session, valid_member, active_valid_member ): member = valid_member member_2 = active_valid_member valid_member.status = MemberStatus.ACTIVE repo = iam_repository.SqlAlchemyMemberRepository(session) repo.add(member) repo.add(member_2) session.commit() assert member and member_2 in repo.list() def test_repository_returns_None_for_no_member_found(session): repo = iam_repository.SqlAlchemyMemberRepository(session) username, email, id = "not_in_db", "[email protected]", uuid4() assert repo.get_member_by_username(username) is None assert repo.get_member_by_email(email) is None assert repo.get_member_by_id(id) is None
davidjnevin/ddd_critiquewheel
critique_wheel/tests/integration/test_IAM_repository.py
test_IAM_repository.py
py
4,132
python
en
code
1
github-code
6
[ { "api_name": "critique_wheel.members.value_objects.MemberId", "line_number": 17, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 18, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 18, "usage_type": "name" }, { "api_name": "critique_wheel.works.value_objects.WorkId", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.text", "line_number": 31, "usage_type": "call" }, { "api_name": "critique_wheel.members.value_objects.MemberId", "line_number": 51, "usage_type": "call" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus.ACTIVE", "line_number": 52, "usage_type": "attribute" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus", "line_number": 52, "usage_type": "name" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 54, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 54, "usage_type": "name" }, { "api_name": "sqlalchemy.text", "line_number": 64, "usage_type": "call" }, { "api_name": "critique_wheel.works.models.work.Work", "line_number": 70, "usage_type": "argument" }, { "api_name": "critique_wheel.critiques.models.critique.Critique", "line_number": 74, "usage_type": "argument" }, { "api_name": "critique_wheel.members.value_objects.MemberId", "line_number": 86, "usage_type": "call" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus.ACTIVE", "line_number": 87, "usage_type": "attribute" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus", "line_number": 87, "usage_type": "name" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 90, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 90, "usage_type": "name" }, { "api_name": "critique_wheel.members.value_objects.MemberId", "line_number": 98, "usage_type": "call" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus.ACTIVE", "line_number": 99, "usage_type": "attribute" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus", "line_number": 99, "usage_type": "name" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 102, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 102, "usage_type": "name" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus.ACTIVE", "line_number": 114, "usage_type": "attribute" }, { "api_name": "critique_wheel.members.models.IAM.MemberStatus", "line_number": 114, "usage_type": "name" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 115, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 115, "usage_type": "name" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository.SqlAlchemyMemberRepository", "line_number": 124, "usage_type": "call" }, { "api_name": "critique_wheel.adapters.sqlalchemy.iam_repository", "line_number": 124, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 125, "usage_type": "call" } ]
18525593045
import argparse import os import mmcv import torch from mmcv.runner import get_dist_info, init_dist, load_checkpoint from drp.apis import set_random_seed, single_gpu_test from drp.datasets import build_dataloader, build_dataset from drp.models import build_model from drp.datasets.pipelines.utils import get_weight def parse_args(): parser = argparse.ArgumentParser(description='drp tester') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument('--out', help='output result pickle file') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results') parser.add_argument( '--save-path', default=None, type=str, help='path to store images and if not given, will not save image') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() # set random seeds if args.seed is not None: if rank == 0: print('set random seed to', args.seed) set_random_seed(args.seed, deterministic=args.deterministic) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) loader_cfg = { **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data), **dict( samples_per_gpu=1, drop_last=False, shuffle=False, dist=distributed), **cfg.data.get('test_dataloader', {}) } data_loader = build_dataloader(dataset, **loader_cfg) model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) for k,v in model.state_dict().items(): print(f'{k} : {v.shape}') model.load_state_dict(torch.load(args.checkpoint)) if cfg.edges is not None: gsea_path, ppi_path, pearson_path = cfg.edges[0], cfg.edges[1], cfg.edges[2] cell_edges_index, cell_edges_attr = get_weight(gsea_path, ppi_path, pearson_path) model.update_encoder_buffer(cfg.test_batch_size, cell_edges_attr, cell_edges_index, 18498) for k,v in model.state_dict().items(): print(f'{k} : {v.shape}') outputs = single_gpu_test( model.cuda(), data_loader) if rank == 0: print('') # print metrics stats = dataset.evaluate(outputs) for stat in stats: print('Eval-{}: {}'.format(stat, stats[stat])) # save result pickle if args.out: print('writing results to {}'.format(args.out)) mmcv.dump(outputs, args.out) if __name__ == '__main__': main()
yivan-WYYGDSG/AGMI
tools/test.py
test.py
py
3,775
python
en
code
1
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 17, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 44, "usage_type": "attribute" }, { "api_name": "mmcv.Config.fromfile", "line_number": 51, "usage_type": "call" }, { "api_name": "mmcv.Config", "line_number": 51, "usage_type": "attribute" }, { "api_name": "torch.backends", "line_number": 54, "usage_type": "attribute" }, { "api_name": "mmcv.runner.init_dist", "line_number": 62, "usage_type": "call" }, { "api_name": "mmcv.runner.get_dist_info", "line_number": 64, "usage_type": "call" }, { "api_name": "drp.apis.set_random_seed", "line_number": 70, "usage_type": "call" }, { "api_name": "drp.datasets.build_dataset", "line_number": 74, "usage_type": "call" }, { "api_name": "drp.datasets.build_dataloader", "line_number": 86, "usage_type": "call" }, { "api_name": "drp.models.build_model", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 90, "usage_type": "call" }, { "api_name": "drp.datasets.pipelines.utils.get_weight", "line_number": 94, "usage_type": "call" }, { "api_name": "drp.apis.single_gpu_test", "line_number": 99, "usage_type": "call" }, { "api_name": "mmcv.dump", "line_number": 114, "usage_type": "call" } ]
26986918036
# -*- coding: utf-8 -*- import base64 import pytest from nameko_grpc.headers import ( HeaderManager, check_decoded, check_encoded, comma_join, decode_header, encode_header, filter_headers_for_application, sort_headers_for_wire, ) class TestEncodeHeader: def test_binary(self): assert encode_header(("foo-bin", b"123")) == ( b"foo-bin", base64.b64encode(b"123"), ) def test_string_value(self): assert encode_header(("foo", "123")) == (b"foo", b"123") class TestDecodeHeader: def test_binary(self): assert decode_header((b"foo-bin", base64.b64encode(b"123"))) == ( "foo-bin", b"123", ) def test_binary_with_truncated_padding(self): padded_value = base64.b64encode(b"1234") assert padded_value.endswith(b"=") trimmed_value = padded_value[:-2] assert decode_header((b"foo-bin", trimmed_value)) == ( "foo-bin", b"1234", ) def test_string_value(self): assert decode_header((b"foo", b"123")) == ("foo", "123") class TestFilterHeadersForApplication: def test_no_application(self): headers = [(":status", "1"), ("content-type", "2"), ("grpc-foo", "3")] assert filter_headers_for_application(headers) == [] def test_all_application(self): headers = [("foo", "1"), ("bar", "2"), ("baz", "3")] assert filter_headers_for_application(headers) == headers def test_filter(self): headers = [ ("foo", "1"), (":status", "1"), ("bar", "2"), ("content-type", "2"), ("baz", "3"), ] assert filter_headers_for_application(headers) == [ ("foo", "1"), ("bar", "2"), ("baz", "3"), ] class TestSortHeadersForWire: def test_empty(self): unsorted = [] for_wire = [] assert sort_headers_for_wire(unsorted) == for_wire def test_already_sorted(self): unsorted = [ (":status", "1"), ("content-type", "2"), ("grpc-foo", "3"), ("other", "4"), ] for_wire = [ (":status", "1"), ("content-type", "2"), ("grpc-foo", "3"), ("other", "4"), ] assert sort_headers_for_wire(unsorted) == for_wire def test_sort(self): unsorted = [ ("content-type", "2"), (":status", "1"), ("other", "4"), ("grpc-foo", "3"), ] for_wire = [ (":status", "1"), ("content-type", "2"), ("grpc-foo", "3"), ("other", "4"), ] assert sort_headers_for_wire(unsorted) == for_wire def test_multi_sort(self): unsorted = [ ("content-type", "1"), ("te", "2"), (":status", "3"), (":authority", "4"), ("other", "5"), ("grpc-foo", "6"), ("grpc-bar", "7"), ("more", "8"), (":method", "9"), ] for_wire = [ (":status", "3"), (":authority", "4"), (":method", "9"), ("content-type", "1"), ("te", "2"), ("grpc-foo", "6"), ("grpc-bar", "7"), ("other", "5"), ("more", "8"), ] assert sort_headers_for_wire(unsorted) == for_wire class TestCheckEncoded: def test_empty(self): assert check_encoded([]) is None def test_good(self): assert check_encoded([(b"foo", b"bar")]) is None def test_bad_name(self): with pytest.raises(AssertionError): check_encoded([("foo", b"bar")]) def test_bad_value(self): with pytest.raises(AssertionError): check_encoded([(b"foo", "bar")]) class TestCheckDecoded: def test_empty(self): assert check_decoded([]) is None def test_good(self): assert check_decoded([("foo", "bar")]) is None def test_bad_name(self): with pytest.raises(AssertionError): check_decoded([(b"foo", "bar")]) def test_bad_value(self): with pytest.raises(AssertionError): check_decoded([("foo", b"bar")]) def test_good_binary(self): assert check_decoded([("foo-bin", b"bar")]) is None def test_bad_binary(self): with pytest.raises(AssertionError): check_decoded([("foo-bin", "bar")]) class TestCommaJoin: def test_string(self): assert comma_join(["foo", "bar"]) == "foo,bar" def test_bytes(self): assert comma_join([b"foo", b"bar"]) == b"foo,bar" def test_mixed(self): with pytest.raises(TypeError): comma_join([b"foo", "bar"]) class TestHeaderManager: def test_get(self): manager = HeaderManager() manager.set(("foo", "bar")) assert manager.get("foo") == "bar" def test_get_with_default(self): manager = HeaderManager() assert manager.get("foo", "baz") == "baz" def test_get_multi(self): manager = HeaderManager() manager.set(("foo", "bar"), ("foo", "baz")) assert manager.get("foo") == "bar,baz" def test_set(self): manager = HeaderManager() manager.set(("x", "y"), ("foo", "bar")) assert manager.get("x") == "y" assert manager.get("foo") == "bar" manager.set(("foo", "baz")) # clears existing foo, only assert manager.get("foo") == "baz" assert manager.get("x") == "y" def test_set_from_wire(self): manager = HeaderManager() manager.set((b"foo", b"bar"), from_wire=True) assert manager.get("foo") == "bar" def test_append(self): manager = HeaderManager() manager.set(("x", "y"), ("foo", "bar")) assert manager.get("x") == "y" assert manager.get("foo") == "bar" manager.append(("foo", "baz")) # appends to foo assert manager.get("foo") == "bar,baz" assert manager.get("x") == "y" def test_append_from_wire(self): manager = HeaderManager() manager.set(("foo", "bar")) manager.append((b"foo", b"baz"), from_wire=True) assert manager.get("foo") == "bar,baz" def test_for_wire(self): manager = HeaderManager() manager.set(("x", "y"), ("foo", "bar")) assert manager.for_wire == [(b"x", b"y"), (b"foo", b"bar")]
nameko/nameko-grpc
test/test_headers.py
test_headers.py
py
6,536
python
en
code
57
github-code
6
[ { "api_name": "nameko_grpc.headers.encode_header", "line_number": 20, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 22, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.encode_header", "line_number": 26, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.decode_header", "line_number": 31, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 31, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 37, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.decode_header", "line_number": 41, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.decode_header", "line_number": 47, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.filter_headers_for_application", "line_number": 53, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.filter_headers_for_application", "line_number": 57, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.filter_headers_for_application", "line_number": 67, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.sort_headers_for_wire", "line_number": 78, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.sort_headers_for_wire", "line_number": 93, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.sort_headers_for_wire", "line_number": 108, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.sort_headers_for_wire", "line_number": 133, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_encoded", "line_number": 138, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_encoded", "line_number": 141, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 144, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_encoded", "line_number": 145, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 148, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_encoded", "line_number": 149, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 154, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 157, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 160, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 161, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 164, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 165, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 168, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 171, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.check_decoded", "line_number": 172, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.comma_join", "line_number": 177, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.comma_join", "line_number": 180, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 183, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.comma_join", "line_number": 184, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 189, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 195, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 200, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 206, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 216, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 222, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 232, "usage_type": "call" }, { "api_name": "nameko_grpc.headers.HeaderManager", "line_number": 239, "usage_type": "call" } ]
5200005552
""" The production code for predicting smell events and sending push notifications (sending push notifications requires the rake script in the smell-pittsburgh-rails repository) """ import sys from util import log, generateLogger, computeMetric, isFileHere import pandas as pd from getData import getData from preprocessData import preprocessData from computeFeatures import computeFeatures #from selectFeatures import selectFeatures from trainModel import trainModel import joblib from datetime import timedelta, datetime import os import subprocess # The flag to determine the server type SERVER = "staging" #SERVER = "production" # The flag for enabling the rake call to send push notifications #ENABLE_RAKE_CALL = False ENABLE_RAKE_CALL = True # The path for storing push notification data DATA_PATH = "data_production/" def main(argv): mode = None if len(argv) >= 2: mode = argv[1] if mode == "train": train() elif mode == "predict": predict() else: print("Use 'python main.py [mode]'; mode can be 'train' or 'predict'") def train(f_hr=8, b_hr=3, thr=40, method="HCR"): """ Train the machine learning model for predicting smell events Input: f_hr: the number of hours to look further and compute responses (Y), ...which is the sum of smell ratings (that are larger than 3) over the future f_hr hours b_hr: the number of hours to look back and compute features (X), ...which are the sensor readings (on ESDR) over the past b_hr hours thr: the threshold for binning the smell value into two classes (for classification) method: the method used in the "trainModel.py" file """ p = DATA_PATH # Set logger logger = generateLogger(p+"log.log") log("--------------------------------------------------------------------------", logger) log("--------------------------------- Train --------------------------------", logger) # Get and preprocess data end_dt = datetime.now() - timedelta(hours=24) start_dt = end_dt - timedelta(hours=8000) log("Get data from " + str(start_dt) + " to " + str(end_dt), logger) df_esdr_array_raw, df_smell_raw = getData(start_dt=start_dt, end_dt=end_dt, logger=logger) df_esdr, df_smell = preprocessData(df_esdr_array_raw=df_esdr_array_raw, df_smell_raw=df_smell_raw, logger=logger) # Compute features df_X, df_Y, df_C = computeFeatures(df_esdr=df_esdr, df_smell=df_smell, f_hr=f_hr, b_hr=b_hr, thr=thr, is_regr=False, add_inter=False, add_roll=False, add_diff=False, logger=logger, out_p_mean=p+"mean.csv", out_p_std=p+"std.csv") # Select features # NOTE: currently, the best model uses all the features #df_X, df_Y = selectFeatures(df_X, df_Y, logger=logger, out_p=p+"feat_selected.csv") # Train, save, and evaluate model # NOTE: to know more about the model, see the "HybridCrowdClassifier.py" file model = trainModel({"X": df_X, "Y": df_Y, "C": df_C}, method=method, out_p=p+"model.pkl", logger=logger) metric = computeMetric(df_Y, model.predict(df_X, df_C), False) for m in metric: log(metric[m], logger) def predict(f_hr=8, b_hr=3, thr=40): """ Predict smell events using the trained machine learning model For the description of the input arguments, see the docstring in the train() function """ p = DATA_PATH # Set logger logger = generateLogger(p+"log.log") log("--------------------------------------------------------------------------", logger) log("-------------------------------- Predict -------------------------------", logger) # Get data for previous b_hr hours end_dt = datetime.now() start_dt = end_dt - timedelta(hours=b_hr+1) log("Get data from " + str(start_dt) + " to " + str(end_dt), logger) df_esdr_array_raw, df_smell_raw = getData(start_dt=start_dt, end_dt=end_dt, logger=logger) df_esdr, df_smell = preprocessData(df_esdr_array_raw=df_esdr_array_raw, df_smell_raw=df_smell_raw, logger=logger) if len(df_esdr) < b_hr+1: log("ERROR: Length of esdr is less than " + str(b_hr+1) + " hours", logger) log("Length of esdr = " + str(len(df_esdr)), logger) return # Compute features df_X, _, df_C = computeFeatures(df_esdr=df_esdr, df_smell=df_smell, f_hr=f_hr, b_hr=b_hr, thr=thr, is_regr=False, add_inter=False, add_roll=False, add_diff=False, logger=logger, in_p_mean=p+"mean.csv", in_p_std=p+"std.csv") if len(df_X) != 1: log("ERROR: Length of X is not 1", logger) log("Length of X = " + str(len(df_X)), logger) return # Select features # NOTE: currently, the best model uses all the features #df_feat_selected = pd.read_csv(p+"feat_selected.csv") #df_X = df_X[df_feat_selected.columns] # Load model log("Load model...", logger) model = joblib.load(p+"model.pkl") # Predict result # For the hybrid crowd classifier # if pred==0, no event # if pred==1, event predicted by the base estimator # if pred==2, event detected by the crowd # if pred==3, event both predicted by the base estimator and detected by the crowd y_pred = model.predict(df_X, df_C)[0] log("Prediction for " + str(end_dt) + " is " + str(y_pred), logger) # Send the predictive push notification if y_pred in (1, 3): pushType1(end_dt, logger) # Send the crowd-based notification # NOTE: comment out the next line when migrating its function to the rails server if y_pred in (2, 3): pushType2(end_dt, logger) def pushType1(end_dt, logger): """ Send type 1 push notification (predicted by the classifier) Input: end_dt: the ending time for getting the ESDR data that is used for prediction (which is the current time) logger: the python logger created by the generateLogger() function """ p = DATA_PATH # Read the push notification file nst_p = p + "notification_sent_times.csv" if isFileHere(nst_p): # If the file that stores the notification sending time exist, # ...load the times and check if we already sent the notification at the same date before df_nst = pd.read_csv(nst_p, parse_dates=["DateTime"]) last_date = df_nst["DateTime"].dt.date.iloc[-1] # the last date that we send the notification current_date = end_dt.date() if current_date == last_date: # check if the dates (only year, month, and day) match # We already sent push notifications to users today, do not send it again until next day log("Ignore this prediction because we already sent a push notification today", logger) return else: # If the file did not exist, create a new pandas Dataframe to store the time when we send notifications df_nst = pd.DataFrame(data=[], columns=["DateTime"]) # Send push notification to users if ENABLE_RAKE_CALL: # NOTE: Python by default uses the sh terminal but we want it to use bash, # ...because "source" and "bundle" only works for bash on the Hal11 machine # ...(on the sh terminal we will want to use "." instead of "source") cmd = 'source /etc/profile ; cd /var/www/rails-apps/smellpgh/' + SERVER + '/current/ ; bundle exec rake firebase_push_notification:send_prediction["/topics/SmellReports"] RAILS_ENV=' + SERVER + ' >> /var/www/smell-pittsburgh-prediction/py/prediction/data_production/push.log 2>&1' subprocess.call(["bash", "-c", cmd]) # Create a CSV file that writes the time when the system send the push notification log("A prediction push notification was sent to users", logger) df_nst = df_nst.append({"DateTime": end_dt}, ignore_index=True) # append a row to the pandas Dataframe df_nst.to_csv(nst_p, index=False) # re-write the Dataframe to a CSV file def pushType2(end_dt, logger): """ Send type 2 push notification (verified by the crowd) Input: end_dt: the ending time for getting the ESDR data that is used for prediction (which is the current time) logger: the python logger created by the generateLogger() function """ p = DATA_PATH # Read the crowd push notification file cvnst_p = p + "crow_verified_notification_sent_times.csv" if isFileHere(cvnst_p): # If the file that stores the notification sending time exist, # ...load the times and check if we already sent the notification at the same date before df_cvnst = pd.read_csv(cvnst_p, parse_dates=["DateTime"]) last_date = df_cvnst["DateTime"].dt.date.iloc[-1] # the last date that we send the notification current_date = end_dt.date() if current_date == last_date: # check if the dates (only year, month, and day) match # We already sent crowd-verified push notifications to users today, do not send it again until next day log("Ignore this crowd-verified event because we already sent a push notification today", logger) return else: # If the file did not exist, create a new pandas Dataframe to store the time when we send notifications df_cvnst = pd.DataFrame(data=[], columns=["DateTime"]) # Send crowd-verified push notification to users if ENABLE_RAKE_CALL: # NOTE: Python by default uses the sh terminal but we want it to use bash, # ...because "source" and "bundle" only works for bash on the Hal11 machine # ...(on the sh terminal we will want to use "." instead of "source") cmd = 'source /etc/profile ; cd /var/www/rails-apps/smellpgh/' + SERVER + '/current/ ; bundle exec rake firebase_push_notification:send_prediction_type2["/topics/SmellReports"] RAILS_ENV=' + SERVER + ' >> /var/www/smell-pittsburgh-prediction/py/prediction/data_production/crow_verified_push.log 2>&1' subprocess.call(["bash", "-c", cmd]) # Create a CSV file that writes the time when the system send the push notification log("A crowd-verified push notification was sent to users", logger) df_cvnst = df_cvnst.append({"DateTime": end_dt}, ignore_index=True) # append a row to the pandas Dataframe df_cvnst.to_csv(cvnst_p, index=False) # re-write the Dataframe to a CSV file if __name__ == "__main__": main(sys.argv)
CMU-CREATE-Lab/smell-pittsburgh-prediction
py/prediction/production.py
production.py
py
10,561
python
en
code
6
github-code
6
[ { "api_name": "util.generateLogger", "line_number": 60, "usage_type": "call" }, { "api_name": "util.log", "line_number": 61, "usage_type": "call" }, { "api_name": "util.log", "line_number": 62, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 65, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 65, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 65, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 66, "usage_type": "call" }, { "api_name": "util.log", "line_number": 67, "usage_type": "call" }, { "api_name": "getData.getData", "line_number": 68, "usage_type": "call" }, { "api_name": "preprocessData.preprocessData", "line_number": 69, "usage_type": "call" }, { "api_name": "computeFeatures.computeFeatures", "line_number": 72, "usage_type": "call" }, { "api_name": "trainModel.trainModel", "line_number": 81, "usage_type": "call" }, { "api_name": "util.computeMetric", "line_number": 82, "usage_type": "call" }, { "api_name": "util.log", "line_number": 84, "usage_type": "call" }, { "api_name": "util.generateLogger", "line_number": 96, "usage_type": "call" }, { "api_name": "util.log", "line_number": 97, "usage_type": "call" }, { "api_name": "util.log", "line_number": 98, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 101, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 101, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 102, "usage_type": "call" }, { "api_name": "util.log", "line_number": 103, "usage_type": "call" }, { "api_name": "getData.getData", "line_number": 104, "usage_type": "call" }, { "api_name": "preprocessData.preprocessData", "line_number": 105, "usage_type": "call" }, { "api_name": "util.log", "line_number": 107, "usage_type": "call" }, { "api_name": "util.log", "line_number": 108, "usage_type": "call" }, { "api_name": "computeFeatures.computeFeatures", "line_number": 112, "usage_type": "call" }, { "api_name": "util.log", "line_number": 115, "usage_type": "call" }, { "api_name": "util.log", "line_number": 116, "usage_type": "call" }, { "api_name": "util.log", "line_number": 125, "usage_type": "call" }, { "api_name": "joblib.load", "line_number": 126, "usage_type": "call" }, { "api_name": "util.log", "line_number": 135, "usage_type": "call" }, { "api_name": "util.isFileHere", "line_number": 157, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 160, "usage_type": "call" }, { "api_name": "util.log", "line_number": 165, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 169, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 177, "usage_type": "call" }, { "api_name": "util.log", "line_number": 180, "usage_type": "call" }, { "api_name": "util.isFileHere", "line_number": 197, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 200, "usage_type": "call" }, { "api_name": "util.log", "line_number": 205, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 209, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 217, "usage_type": "call" }, { "api_name": "util.log", "line_number": 220, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 226, "usage_type": "attribute" } ]
911733982
import pdfplumber import os,re file_path = "/home/FDDC_announcements_round2_train_pdf/" def pdf_tbl2txt(file): pdf = pdfplumber.open(file_path + "my.pdf") for i in pdf.pages: # page = pdf.pages[0] # i.extract_table() if i.find_tables(table_settings={}): i.crop(boundiipng_box)
YankeeMarco/aliyun-FDDC-2018-Financial-Challenge-
pdf_to_text_with_table_tags.py
pdf_to_text_with_table_tags.py
py
322
python
en
code
14
github-code
6
[ { "api_name": "pdfplumber.open", "line_number": 6, "usage_type": "call" } ]
7705288630
import json import torch from transformers import GPT2Tokenizer from transformers import GPT2DoubleHeadsModel from MTDNN import MTDNN from tqdm import trange, tqdm from keras_preprocessing import sequence import pandas as pd import Utils import pickle import os from torch.utils.data import TensorDataset, DataLoader from torch.utils.tensorboard import SummaryWriter import datetime SPECIAL_TOKENS = ['<pad>', '<eos>', '<rstokn>', '<bos>', '<question>', '<commonsensetask>', '<cose>', '<openbook>'] ATTR_TO_SPECIAL_TOKEN = {'bos_token': '<bos>', 'pad_token': '<pad>', 'eos_token': '<eos>', 'additional_special_tokens': ['<rstokn>', '<question>', '<reply>', '<commonsensetask>', '<cose>', '<openbook>'] } current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") logs_dir_tensorboard = "runs2nomcs/" + (str(current_time) + "morecheckpoint-melco-update-ros") writer = SummaryWriter(logs_dir_tensorboard) device = 'cuda:5' def data_preprocess(): final_data = [] questions = [] choices = [] label = [] facts = [] file_name = 'data/OpenBookFacts/train_complete.jsonl' for line in open(file_name, 'r') : data = (json.loads(line)) questions.append(data['question']['stem']) choices.append([data['question']['choices'][0]['text'], data['question']['choices'][1]['text'], data['question']['choices'][2]['text'], data['question']['choices'][3]['text']]) if data['answerKey'] == 'A' : answer = 0 elif data['answerKey'] == 'B' : answer = 1 elif data['answerKey'] == 'C' : answer = 2 else: answer = 3 label.append(answer) facts.append(data['fact1']) openBook_Data = [["openBook"], questions, choices, label, facts] final_data.append(openBook_Data) file_name = 'data/CoS-E/cose_train_data.csv' data = pd.read_csv(file_name) final_data.append([["CoS-E"], data]) file_name_1 = 'data/commonsense/subtaskB_data_all-2.csv' file_name_2 = 'data/commonsense/subtaskC-alldata.csv' data1 = pd.read_csv(file_name_1) data2 = pd.read_csv(file_name_2) data = data1.merge(data2, on='FalseSent').dropna() final_data.append([["commonsense"], data]) # leave the last 500 return final_data def convert_to_tokens(input, tokenizer): if isinstance(input, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(input)) elif isinstance(input, list): return [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(val)) if not isinstance(val, int) else val for val in input ] elif isinstance(input, pd.Series): input = input.tolist() return [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(val)) if not isinstance(val, int) else val for val in input ] else: import sys print("Conversion Error") sys.exit() def padding_falsesent_choices(datas, tokenizer): pad = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[0])] eos = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[1])] rstokn = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[2])] bos = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[3])] questons = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[4])] commonsensetask = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[5])] COSE = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[6])] openBook = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[7])] choice_padding = -1 input_ids = [] lm_labels = [] token_type_ids = [] mc_token_ids = [] mc_labels = [] max_length = 128 for data in datas: if data[0] == ["openBook"]: for question, choices, labels, facts in zip( data[1], data[2], data[3], data[4]): # /mc_labels = [] question, choices, facts = convert_to_tokens(question, tokenizer), convert_to_tokens(choices, tokenizer), convert_to_tokens(facts, tokenizer) input1 = [bos + openBook + rstokn + question + rstokn + choices[0] + rstokn + choices[1] + rstokn + choices[2] + rstokn + choices[3] + eos] input2 = [bos + openBook + rstokn + question + rstokn + facts + eos] mc_token_ids.append(len(input1[0])) mc_token_ids.append(len(input2[0])) input1 = sequence.pad_sequences(input1, maxlen=max_length, padding='post', value=pad) input_ids.append(input1[0]) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(fakechoice[0]) tt_id1 = [ (len(openBook) + 1) * rstokn + (len(question) + 1) * questons + (len(choices[0]) + 1) * rstokn + (len(choices[1]) + 1) * questons + (len(choices[2]) + 1) * rstokn + (len(choices[3]) + 2) * questons ] tt_id1 = sequence.pad_sequences(tt_id1, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id1[0]) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] * (len(openBook) + 2) + [-1] * len(question) + [-1] + facts + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(openBook) + 1) * rstokn + (len(question) + 1) * questons + (len(choices[labels]) + 2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(labels) mc_labels.append(labels) elif data[0] == ["CoS-E"]: for idx, value in data[1].iterrows(): value = value[1:] value = convert_to_tokens(value, tokenizer) input1 = [bos + COSE + rstokn + value[1] + rstokn + value[2] + rstokn + value[3] + rstokn + value[4] + rstokn + value[5] + rstokn + value[6] + eos] input2 = [bos + COSE + rstokn + value[1] + rstokn + value[8] + eos] mc_token_ids.append(len(input1[0])) mc_token_ids.append(len(input2[0])) input1 = sequence.pad_sequences(input1, maxlen= max_length, padding='post', value=pad) input_ids.append(input1[0]) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(fakechoice[0]) tt_id1 = [(len(COSE) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[2]) + 1) * rstokn + (len(value[3]) + 1) * questons + (len(value[4]) + 1) * rstokn + (len(value[5]) + 1) * questons + (len(value[6]) + 2) * rstokn] tt_id1 = sequence.pad_sequences(tt_id1, maxlen= max_length, padding='post', value=pad) token_type_ids.append(tt_id1[0]) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] * (len(COSE) + 2) + [-1] * len(value[1]) + [-1] + value[8] + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(COSE) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[8]) +2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(value[7]) mc_labels.append(value[7]) elif data[0] == ["commonsense"]: for idx, value in data[1].iterrows(): # call tokenizer value = convert_to_tokens(value, tokenizer) input1 = [bos + commonsensetask + rstokn + value[1] + rstokn + value[2] + rstokn + value[3] + rstokn + value[4]+ eos] ml = input1 input1 = sequence.pad_sequences(input1, maxlen=max_length, padding='post', value=pad) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) tt_id1 = [ (len(commonsensetask) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[2]) + 1) * rstokn + (len(value[3]) + 1) * questons + (len(value[4]) + 2) * rstokn ] tt_id1 = sequence.pad_sequences(tt_id1, maxlen=max_length, padding='post', value=pad) for i in range(3): mc_token_ids.append(len(ml)) input_ids.append(input1[0]) lm_labels.append(fakechoice[0]) token_type_ids.append(tt_id1[0]) input2 = [bos + commonsensetask + rstokn + value[1] + rstokn + value[7 + i] + eos] mc_token_ids.append(len(input2[0])) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] + [-1] * len(commonsensetask) + [-1] + [-1] * len(value[1]) + [-1] + value[7 + i] + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(commonsensetask) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[7 + i]) + 2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(value[5]) mc_labels.append(value[5]) # mc_labels.append(0) return input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels def converting_tokens(data, tokenizer): print("Converting tokens to ids ...", flush=True) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = padding_falsesent_choices(data, tokenizer) input_ids = torch.tensor(input_ids) input_ids = input_ids.view((-1, 2) + input_ids.shape[1:]) mc_token_ids = torch.tensor(mc_token_ids) mc_token_ids = mc_token_ids.view((-1, 2) + mc_token_ids.shape[1:]) lm_labels = torch.tensor(lm_labels) lm_labels = lm_labels.view((-1, 2) + lm_labels.shape[1:]) token_type_ids = torch.tensor(token_type_ids) token_type_ids = token_type_ids.view((-1, 2) + token_type_ids.shape[1:]) mc_labels = torch.tensor(mc_labels) mc_labels = mc_labels.view((-1, 2) + mc_labels.shape[1:]) pickle.dump(input_ids, open("data/pickle/input_ids.p", "wb")) pickle.dump(mc_token_ids, open("data/pickle/mc_token_ids.p", "wb")) pickle.dump(lm_labels, open("data/pickle/lm_labels.p", "wb")) pickle.dump(token_type_ids, open("data/pickle/token_type_ids.p", "wb")) pickle.dump(mc_labels, open("data/pickle/mc_labels.p", "wb")) return input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels def train(model, optimizer, scheduler, train_data, output_dir, num_train_epochs, tokenizer, lm_coef, mc_coef,gradient_accumulation_steps, mgpu, temp=[], valid_data = []): training_loss = {} evaluation_loss = {} global_steps = 0 for epochs in range(num_train_epochs): model.train() print("Training start for epoch {}".format(epochs), flush=True) nb_tr_steps, tr_loss = 0, 0 optimizer.zero_grad() lm_sub_batch_loss, mc_sub_batch_loss, sub_batch_loss = 0, 0, 0 print("sub_batch_loss \t lm_sub_batch_loss \t mc_sub_batch_loss") for step, batch in (enumerate(train_data)): model.train() batch = tuple(t.to(device).type(torch.cuda.LongTensor) for t in batch) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = batch lm_loss, mc_loss, *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, mc_labels=mc_labels, lm_labels=lm_labels, task=input_ids[0][0][1] ) mc_loss = mc_loss[0] del input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels loss = (lm_loss * lm_coef) + (mc_loss * mc_coef) loss = loss.mean() loss /= gradient_accumulation_steps loss.backward() tr_loss += loss.item() lm_sub_batch_loss += lm_loss.item() mc_sub_batch_loss += mc_loss.item() sub_batch_loss += loss.item() if (global_steps + 1) % gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # global_steps +=1 optimizer.zero_grad() print("{} \t {} \t {}".format(sub_batch_loss, lm_sub_batch_loss/gradient_accumulation_steps, mc_sub_batch_loss/gradient_accumulation_steps)) writer.add_scalar('Training batch loss', sub_batch_loss, global_steps+1) writer.add_scalar('Training lm batch loss', lm_sub_batch_loss/gradient_accumulation_steps, global_steps+1) writer.add_scalar('Training mc batch loss', mc_sub_batch_loss/gradient_accumulation_steps, global_steps+1) training_loss[(global_steps+1)] = (sub_batch_loss, lm_sub_batch_loss/gradient_accumulation_steps, mc_sub_batch_loss/gradient_accumulation_steps) lm_sub_batch_loss, mc_sub_batch_loss, sub_batch_loss = 0, 0, 0 if (global_steps + 1) % 800 == 0: eval_loss, eval_lm_loss, eval_mc_loss = evaluate_gpt2(model, valid_data) print("{} \t {} \t {}".format(eval_mc_loss, eval_lm_loss, eval_mc_loss)) writer.add_scalar('Eval total loss - 100', eval_loss, (global_steps + 1)) writer.add_scalar('Eval total LM loss - 100', eval_lm_loss, (global_steps + 1)) writer.add_scalar('Eval total MC loss - 100', eval_mc_loss, (global_steps + 1)) evaluation_loss[(global_steps + 1)] = (eval_loss, eval_lm_loss, eval_mc_loss) if not os.path.exists(output_dir + '/' + str(global_steps + 1)): os.makedirs(output_dir + '/' + str(global_steps + 1)) torch.save(model, output_dir + '/' + str(global_steps + 1) + '/' + str(global_steps + 1) + '.pt') # model.save_state_dict(output_dir + '/' + str(global_steps + 1)) global_steps += 1 print("Epoch Completed at Step Size {}".format(global_steps)) if not os.path.exists(output_dir + '/' + '_epoch_' + str(epochs)): os.makedirs(output_dir + '/' + '_epoch_' + str(epochs)) torch.save(model, output_dir + '/' + '_epoch_' + str(epochs) + '/' + str(epochs) + '.pt') # model.save_state_dict(output_dir + '/' + '_epoch_' + str(epochs)) pickle.dump(training_loss, open("data/pickle/training_loss-melco-update.p", "wb")) pickle.dump(evaluation_loss, open("data/pickle/evaluation_loss-melco-update.p", "wb")) return model def evaluate_gpt2(model, valid_data): lm_sub_batch_loss, mc_sub_batch_loss = 0, 0 model.eval() print("\n *************************Evaluation************************************ \n") for step, batch in (enumerate(valid_data)): batch = tuple(t.to(device).type(torch.cuda.LongTensor) for t in batch) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = batch lm_loss, mc_loss, *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, mc_labels=mc_labels, lm_labels=lm_labels, task=input_ids[0][0][1] ) del input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels lm_sub_batch_loss += lm_loss.item() mc_sub_batch_loss += mc_loss[0].item() return (lm_sub_batch_loss + mc_sub_batch_loss)/len(valid_data), (lm_sub_batch_loss)/len(valid_data), (mc_sub_batch_loss)/len(valid_data) def main(): flag = True mgpu = True output_dir= 'checkpoints-More-melco-new' epochs = 3 gradient_accumulation_steps = 8 lm_coef, mc_coef = 1, 0 token_class = GPT2Tokenizer model_Class = MTDNN gpt_model = model_Class.from_pretrained('omcs/-Final') # gpt_model = model_Class.from_pretrained('gpt2-large') gpt_tokenizer = token_class.from_pretrained('omcs/-Final', do_lower_case=True) # gpt_tokenizer = token_class.from_pretrained('gpt2-large', do_lower_case=True) gpt_model, gpt_tokenizer = Utils.add_special_tokens(gpt_model, gpt_tokenizer, ATTR_TO_SPECIAL_TOKEN) gpt_model.to(device) #gpt_model = torch.nn.DataParallel(gpt_model, output_device=1, device_ids=[0, 1]) cache_input_ids, cache_mc_token_ids, cache_lm_labels, cache_token_type_ids, cache_mc_labels = \ "data/pickle/input_ids.p", "data/pickle/mc_token_ids.p", "data/pickle/lm_labels.p", "data/pickle/token_type_ids.p", "data/pickle/mc_labels.p" if flag and os.path.exists(cache_input_ids) and os.path.exists(cache_mc_token_ids) and os.path.exists( cache_lm_labels) and os.path.exists(cache_token_type_ids) and os.path.exists(cache_mc_labels): print("Token ids loaded from previous processed file ... ", flush=True) input_ids, mc_token_ids, lm_labels, token_type_ids, mc_labels = pickle.load(open(cache_input_ids, "rb")), pickle.load(open(cache_mc_token_ids, "rb")), \ pickle.load(open(cache_lm_labels, "rb")), pickle.load(open(cache_token_type_ids, "rb")), \ pickle.load(open(cache_mc_labels, "rb")) else: data = data_preprocess() input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = converting_tokens(data, gpt_tokenizer) temp = [input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels] train_data, valid_data = Utils.build_dataloader((input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels)) train_data, valid_data = Utils.generate_batch(train_data, valid_data, 1) t_total = len(train_data) / epochs learning_rate, adam_epsilon, weight_decay, warmup_steps = 1e-5, 1e-8, 0, 0 optimizer, scheduler = Utils.optimizer_generater(gpt_model, learning_rate, adam_epsilon, weight_decay, warmup_steps, t_total) model = train(gpt_model, optimizer, scheduler, train_data, output_dir, epochs, gpt_tokenizer, lm_coef, mc_coef, gradient_accumulation_steps, mgpu, temp, valid_data) print("End of execution", flush=True) output_dir = output_dir + '/' + 'final' if not os.path.exists(output_dir): os.makedirs(output_dir) gpt_tokenizer.save_pretrained(output_dir) if __name__ == '__main__': main()
anandhperumal/ANA-at-SemEval-2020-Task-4-UNION
MTD-NCH.py
MTD-NCH.py
py
19,668
python
en
code
5
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 22, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 22, "usage_type": "attribute" }, { "api_name": "torch.utils.tensorboard.SummaryWriter", "line_number": 24, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 36, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 56, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 61, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 62, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 77, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 87, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 123, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 123, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 126, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 126, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 133, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 133, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 136, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 136, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 140, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 140, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 144, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 144, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 164, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 164, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 167, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 167, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 173, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 173, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 176, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 176, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 180, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 180, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 184, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 184, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 196, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 196, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 197, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 197, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 202, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 202, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 213, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 213, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 217, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 217, "usage_type": "name" }, { "api_name": "keras_preprocessing.sequence.pad_sequences", "line_number": 221, "usage_type": "call" }, { "api_name": "keras_preprocessing.sequence", "line_number": 221, "usage_type": "name" }, { "api_name": "torch.tensor", "line_number": 239, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 242, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 245, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 248, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 251, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 254, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 255, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 256, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 257, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 258, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 278, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 316, "usage_type": "call" }, { "api_name": "os.path", "line_number": 316, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 317, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 318, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 322, "usage_type": "call" }, { "api_name": "os.path", "line_number": 322, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 323, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 324, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 327, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 328, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 337, "usage_type": "attribute" }, { "api_name": "transformers.GPT2Tokenizer", "line_number": 358, "usage_type": "name" }, { "api_name": "MTDNN.MTDNN", "line_number": 359, "usage_type": "name" }, { "api_name": "Utils.add_special_tokens", "line_number": 366, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 372, "usage_type": "call" }, { "api_name": "os.path", "line_number": 372, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 373, "usage_type": "call" }, { "api_name": "os.path", "line_number": 373, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 375, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 376, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 377, "usage_type": "call" }, { "api_name": "Utils.build_dataloader", "line_number": 383, "usage_type": "call" }, { "api_name": "Utils.generate_batch", "line_number": 384, "usage_type": "call" }, { "api_name": "Utils.optimizer_generater", "line_number": 389, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 395, "usage_type": "call" }, { "api_name": "os.path", "line_number": 395, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 396, "usage_type": "call" } ]
34042438403
from django.db.models import Q from django_filters.rest_framework import DjangoFilterBackend from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from gcloud.core.apis.drf.exceptions import ValidationException from gcloud.core.apis.drf.viewsets import ApiMixin, permissions from gcloud.label.models import Label, TemplateLabelRelation from gcloud.label.serilaziers import LabelSerializer from gcloud.iam_auth import IAMMeta, get_iam_client, res_factory from iam.contrib.drf.shortcuts import allow_or_raise_immediate_response from iam import Subject, Action iam = get_iam_client() class LabelViewSet(ApiMixin, ModelViewSet): queryset = Label.objects.all() serializer_class = LabelSerializer permission_classes = [permissions.IsAuthenticated] filter_backends = [DjangoFilterBackend] filterset_fields = "__all__" def list(self, request, *args, **kwargs): project_id = request.query_params.get("project_id") if not project_id: raise ValidationException("project_id should be provided.") allow_or_raise_immediate_response( iam=iam, system=IAMMeta.SYSTEM_ID, subject=Subject("user", request.user.username), action=Action(IAMMeta.PROJECT_VIEW_ACTION), resources=res_factory.resources_for_project(project_id), ) return super(LabelViewSet, self).list(request, *args, **kwargs) def update(self, request, *args, **kwargs): label = self.get_object() if label.is_default: raise ValidationException("default label cannot be updated.") project_id = label.project_id allow_or_raise_immediate_response( iam=iam, system=IAMMeta.SYSTEM_ID, subject=Subject("user", request.user.username), action=Action(IAMMeta.PROJECT_EDIT_ACTION), resources=res_factory.resources_for_project(project_id), ) return super(LabelViewSet, self).update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): label = self.get_object() if label.is_default: raise ValidationException("default label cannot be deleted.") project_id = label.project_id allow_or_raise_immediate_response( iam=iam, system=IAMMeta.SYSTEM_ID, subject=Subject("user", request.user.username), action=Action(IAMMeta.PROJECT_EDIT_ACTION), resources=res_factory.resources_for_project(project_id), ) self.perform_destroy(label) return Response({"result": True, "message": "success"}) @action(methods=["get"], detail=False) def list_with_default_labels(self, request, *args, **kwargs): project_id = request.query_params.get("project_id") if not project_id: raise ValidationException("project_id should be provided.") allow_or_raise_immediate_response( iam=iam, system=IAMMeta.SYSTEM_ID, subject=Subject("user", request.user.username), action=Action(IAMMeta.PROJECT_VIEW_ACTION), resources=res_factory.resources_for_project(project_id), ) queryset = Label.objects.filter(Q(project_id=project_id) | Q(is_default=True)) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) @action(methods=["get"], detail=False) def get_templates_labels(self, request): return self._fetch_label_or_template_ids(request, fetch_label=True) @action(methods=["get"], detail=False) def get_label_template_ids(self, request): return self._fetch_label_or_template_ids(request, fetch_label=False) @staticmethod def _fetch_label_or_template_ids(request, fetch_label): base_id_name = "template_ids" if fetch_label else "label_ids" if fetch_label: fetch_func = TemplateLabelRelation.objects.fetch_templates_labels else: fetch_func = TemplateLabelRelation.objects.fetch_label_template_ids base_ids = request.query_params.get(base_id_name) if not base_ids: raise ValidationException("{} must be provided.".format(base_id_name)) project_id = request.query_params.get("project_id") allow_or_raise_immediate_response( iam=iam, system=IAMMeta.SYSTEM_ID, subject=Subject("user", request.user.username), action=Action(IAMMeta.PROJECT_VIEW_ACTION), resources=res_factory.resources_for_project(project_id), ) base_ids = [int(base_id) for base_id in base_ids.strip().split(",")] return Response(fetch_func(base_ids))
caiyj/bk-sops
gcloud/label/viewsets.py
viewsets.py
py
4,792
python
en
code
null
github-code
6
[ { "api_name": "iam.contrib.drf.shortcuts", "line_number": 15, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.get_iam_client", "line_number": 15, "usage_type": "call" }, { "api_name": "gcloud.core.apis.drf.viewsets.ApiMixin", "line_number": 18, "usage_type": "name" }, { "api_name": "rest_framework.viewsets.ModelViewSet", "line_number": 18, "usage_type": "name" }, { "api_name": "gcloud.label.models.Label.objects.all", "line_number": 19, "usage_type": "call" }, { "api_name": "gcloud.label.models.Label.objects", "line_number": 19, "usage_type": "attribute" }, { "api_name": "gcloud.label.models.Label", "line_number": 19, "usage_type": "name" }, { "api_name": "gcloud.label.serilaziers.LabelSerializer", "line_number": 20, "usage_type": "name" }, { "api_name": "gcloud.core.apis.drf.viewsets.permissions.IsAuthenticated", "line_number": 21, "usage_type": "attribute" }, { "api_name": "gcloud.core.apis.drf.viewsets.permissions", "line_number": 21, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.DjangoFilterBackend", "line_number": 22, "usage_type": "name" }, { "api_name": "gcloud.core.apis.drf.exceptions.ValidationException", "line_number": 28, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts.allow_or_raise_immediate_response", "line_number": 29, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts", "line_number": 30, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.IAMMeta.SYSTEM_ID", "line_number": 31, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 31, "usage_type": "name" }, { "api_name": "iam.Subject", "line_number": 32, "usage_type": "call" }, { "api_name": "iam.Action", "line_number": 33, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.IAMMeta.PROJECT_VIEW_ACTION", "line_number": 33, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 33, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.res_factory.resources_for_project", "line_number": 34, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.res_factory", "line_number": 34, "usage_type": "name" }, { "api_name": "gcloud.core.apis.drf.exceptions.ValidationException", "line_number": 41, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts.allow_or_raise_immediate_response", "line_number": 43, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts", "line_number": 44, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.IAMMeta.SYSTEM_ID", "line_number": 45, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 45, "usage_type": "name" }, { "api_name": "iam.Subject", "line_number": 46, "usage_type": "call" }, { "api_name": "iam.Action", "line_number": 47, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.IAMMeta.PROJECT_EDIT_ACTION", "line_number": 47, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 47, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.res_factory.resources_for_project", "line_number": 48, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.res_factory", "line_number": 48, "usage_type": "name" }, { "api_name": "gcloud.core.apis.drf.exceptions.ValidationException", "line_number": 55, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts.allow_or_raise_immediate_response", "line_number": 57, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts", "line_number": 58, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.IAMMeta.SYSTEM_ID", "line_number": 59, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 59, "usage_type": "name" }, { "api_name": "iam.Subject", "line_number": 60, "usage_type": "call" }, { "api_name": "iam.Action", "line_number": 61, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.IAMMeta.PROJECT_EDIT_ACTION", "line_number": 61, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 61, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.res_factory.resources_for_project", "line_number": 62, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.res_factory", "line_number": 62, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 65, "usage_type": "call" }, { "api_name": "gcloud.core.apis.drf.exceptions.ValidationException", "line_number": 71, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts.allow_or_raise_immediate_response", "line_number": 72, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts", "line_number": 73, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.IAMMeta.SYSTEM_ID", "line_number": 74, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 74, "usage_type": "name" }, { "api_name": "iam.Subject", "line_number": 75, "usage_type": "call" }, { "api_name": "iam.Action", "line_number": 76, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.IAMMeta.PROJECT_VIEW_ACTION", "line_number": 76, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 76, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.res_factory.resources_for_project", "line_number": 77, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.res_factory", "line_number": 77, "usage_type": "name" }, { "api_name": "gcloud.label.models.Label.objects.filter", "line_number": 79, "usage_type": "call" }, { "api_name": "gcloud.label.models.Label.objects", "line_number": 79, "usage_type": "attribute" }, { "api_name": "gcloud.label.models.Label", "line_number": 79, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 79, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 81, "usage_type": "call" }, { "api_name": "rest_framework.decorators.action", "line_number": 67, "usage_type": "call" }, { "api_name": "rest_framework.decorators.action", "line_number": 83, "usage_type": "call" }, { "api_name": "rest_framework.decorators.action", "line_number": 87, "usage_type": "call" }, { "api_name": "gcloud.label.models.TemplateLabelRelation.objects", "line_number": 95, "usage_type": "attribute" }, { "api_name": "gcloud.label.models.TemplateLabelRelation", "line_number": 95, "usage_type": "name" }, { "api_name": "gcloud.label.models.TemplateLabelRelation.objects", "line_number": 97, "usage_type": "attribute" }, { "api_name": "gcloud.label.models.TemplateLabelRelation", "line_number": 97, "usage_type": "name" }, { "api_name": "gcloud.core.apis.drf.exceptions.ValidationException", "line_number": 100, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts.allow_or_raise_immediate_response", "line_number": 102, "usage_type": "call" }, { "api_name": "iam.contrib.drf.shortcuts", "line_number": 103, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.IAMMeta.SYSTEM_ID", "line_number": 104, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 104, "usage_type": "name" }, { "api_name": "iam.Subject", "line_number": 105, "usage_type": "call" }, { "api_name": "iam.Action", "line_number": 106, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.IAMMeta.PROJECT_VIEW_ACTION", "line_number": 106, "usage_type": "attribute" }, { "api_name": "gcloud.iam_auth.IAMMeta", "line_number": 106, "usage_type": "name" }, { "api_name": "gcloud.iam_auth.res_factory.resources_for_project", "line_number": 107, "usage_type": "call" }, { "api_name": "gcloud.iam_auth.res_factory", "line_number": 107, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 110, "usage_type": "call" } ]
31011028990
""" Name: Timothy James Duffy, Kevin Falconett File: metrics.py Class: CSc 483; Spring 2023 Project: TextSummarizer Provides methods to calculate the ROUGE metric and print the results. """ # Filter tensorflow warnings. import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from database import * from rouge import Rouge from config import DATABASE_NAME from summarizer import generate_summary def get_rouge_scores(num_docs, offset): """Gets the rogue scores using documents in the database. Documents can be offset by id.""" # Get articles and summaries from the database. database = Database(DATABASE_NAME) articles, summaries = zip(*database.get_data(num_docs, offset)) # Holds the generated summaries. generated_summaries = [] # Generate summaries for the articles. for i, article in enumerate(articles): summary = generate_summary(article) generated_summaries.append(summary) print('Actual summary:\n{}'.format(summaries[i])) print('Generated summary:\n{}\n'.format(generated_summaries[i])) # Calculate ROUGE scores for the sample set. rouge = Rouge() scores = rouge.get_scores(generated_summaries, list(summaries), avg=True) return scores def print_scores(scores): """Prints the given ROUGE scores in a nice format.""" # Get ROUGE dictionaries. Each contains recall, precision, accuracy scores. r1 = scores['rouge-1'] r2 = scores['rouge-2'] rl = scores['rouge-l'] # Print out the scores for Rouge-1, Rouge-2, and Rouge-l. print('Rouge-1\trecall:\t{:.2f}\tprecision:\t{:.2f}\tf1_score:\t{:.2f}'.format(r1['r'], r1['p'], r1['f'])) print('Rouge-2\trecall:\t{:.2f}\tprecision:\t{:.2f}\tf1_score:\t{:.2f}'.format(r2['r'], r2['p'], r2['f'])) print('Rouge-l\trecall:\t{:.2f}\tprecision:\t{:.2f}\tf1_score:\t{:.2f}\n'.format(rl['r'], rl['p'], rl['f'])) def main(): # Prints the ROUGE results for data the model has been trained on. print('Trained Data ROUGE Scores:') trained_data = get_rouge_scores(1, 0) print_scores(trained_data) # Prints the ROUGE results for data the model has NOT been trained on. print('Untrained Data ROUGE Scores:') untrained_data = get_rouge_scores(1, 1200) print_scores(untrained_data) if __name__ == '__main__': main()
tjdaz/TextSummarizer
metrics.py
metrics.py
py
2,310
python
en
code
0
github-code
6
[ { "api_name": "os.environ", "line_number": 12, "usage_type": "attribute" }, { "api_name": "config.DATABASE_NAME", "line_number": 22, "usage_type": "argument" }, { "api_name": "database.get_data", "line_number": 23, "usage_type": "call" }, { "api_name": "summarizer.generate_summary", "line_number": 30, "usage_type": "call" }, { "api_name": "rouge.Rouge", "line_number": 36, "usage_type": "call" }, { "api_name": "rouge.get_scores", "line_number": 37, "usage_type": "call" } ]
26113055515
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "28/06/2018" import logging import numpy import weakref import functools from typing import Optional from ....utils.weakref import WeakList from ... import qt from .. import items from ..items import core from ...colors import rgba logger = logging.getLogger(__name__) class _RegionOfInterestBase(qt.QObject): """Base class of 1D and 2D region of interest :param QObject parent: See QObject :param str name: The name of the ROI """ sigAboutToBeRemoved = qt.Signal() """Signal emitted just before this ROI is removed from its manager.""" sigItemChanged = qt.Signal(object) """Signal emitted when item has changed. It provides a flag describing which property of the item has changed. See :class:`ItemChangedType` for flags description. """ def __init__(self, parent=None): qt.QObject.__init__(self) if parent is not None: self.setParent(parent) self.__name = '' def getName(self): """Returns the name of the ROI :return: name of the region of interest :rtype: str """ return self.__name def setName(self, name): """Set the name of the ROI :param str name: name of the region of interest """ name = str(name) if self.__name != name: self.__name = name self._updated(items.ItemChangedType.NAME) def _updated(self, event=None, checkVisibility=True): """Implement Item mix-in update method by updating the plot items See :class:`~silx.gui.plot.items.Item._updated` """ self.sigItemChanged.emit(event) def contains(self, position): """Returns True if the `position` is in this ROI. :param tuple[float,float] position: position to check :return: True if the value / point is consider to be in the region of interest. :rtype: bool """ return False # Override in subclass to perform actual test class RoiInteractionMode(object): """Description of an interaction mode. An interaction mode provide a specific kind of interaction for a ROI. A ROI can implement many interaction. """ def __init__(self, label, description=None): self._label = label self._description = description @property def label(self): """Short name""" return self._label @property def description(self): """Longer description of the interaction mode""" return self._description class InteractionModeMixIn(object): """Mix in feature which can be implemented by a ROI object. This provides user interaction to switch between different interaction mode to edit the ROI. This ROI modes have to be described using `RoiInteractionMode`, and taken into account during interation with handles. """ sigInteractionModeChanged = qt.Signal(object) def __init__(self): self.__modeId = None def _initInteractionMode(self, modeId): """Set the mode without updating anything. Must be one of the returned :meth:`availableInteractionModes`. :param RoiInteractionMode modeId: Mode to use """ self.__modeId = modeId def availableInteractionModes(self): """Returns the list of available interaction modes Must be implemented when inherited to provide all available modes. :rtype: List[RoiInteractionMode] """ raise NotImplementedError() def setInteractionMode(self, modeId): """Set the interaction mode. :param RoiInteractionMode modeId: Mode to use """ self.__modeId = modeId self._interactiveModeUpdated(modeId) self.sigInteractionModeChanged.emit(modeId) def _interactiveModeUpdated(self, modeId): """Called directly after an update of the mode. The signal `sigInteractionModeChanged` is triggered after this call. Must be implemented when inherited to take care of the change. """ raise NotImplementedError() def getInteractionMode(self): """Returns the interaction mode. Must be one of the returned :meth:`availableInteractionModes`. :rtype: RoiInteractionMode """ return self.__modeId def createMenuForInteractionMode(self, parent: qt.QWidget) -> qt.QMenu: """Create a menu providing access to the different interaction modes""" availableModes = self.availableInteractionModes() currentMode = self.getInteractionMode() submenu = qt.QMenu(parent) modeGroup = qt.QActionGroup(parent) modeGroup.setExclusive(True) for mode in availableModes: action = qt.QAction(parent) action.setText(mode.label) action.setToolTip(mode.description) action.setCheckable(True) if mode is currentMode: action.setChecked(True) else: callback = functools.partial(self.setInteractionMode, mode) action.triggered.connect(callback) modeGroup.addAction(action) submenu.addAction(action) submenu.setTitle("Interaction mode") return submenu class RegionOfInterest(_RegionOfInterestBase, core.HighlightedMixIn): """Object describing a region of interest in a plot. :param QObject parent: The RegionOfInterestManager that created this object """ _DEFAULT_LINEWIDTH = 1. """Default line width of the curve""" _DEFAULT_LINESTYLE = '-' """Default line style of the curve""" _DEFAULT_HIGHLIGHT_STYLE = items.CurveStyle(linewidth=2) """Default highlight style of the item""" ICON, NAME, SHORT_NAME = None, None, None """Metadata to describe the ROI in labels, tooltips and widgets Should be set by inherited classes to custom the ROI manager widget. """ sigRegionChanged = qt.Signal() """Signal emitted everytime the shape or position of the ROI changes""" sigEditingStarted = qt.Signal() """Signal emitted when the user start editing the roi""" sigEditingFinished = qt.Signal() """Signal emitted when the region edition is finished. During edition sigEditionChanged will be emitted several times and sigRegionEditionFinished only at end""" def __init__(self, parent=None): # Avoid circular dependency from ..tools import roi as roi_tools assert parent is None or isinstance(parent, roi_tools.RegionOfInterestManager) _RegionOfInterestBase.__init__(self, parent) core.HighlightedMixIn.__init__(self) self.__text = None self._color = rgba('red') self._editable = False self._selectable = False self._focusProxy = None self._visible = True self._child = WeakList() def _connectToPlot(self, plot): """Called after connection to a plot""" for item in self.getItems(): # This hack is needed to avoid reentrant call from _disconnectFromPlot # to the ROI manager. It also speed up the item tests in _itemRemoved item._roiGroup = True plot.addItem(item) def _disconnectFromPlot(self, plot): """Called before disconnection from a plot""" for item in self.getItems(): # The item could be already be removed by the plot if item.getPlot() is not None: del item._roiGroup plot.removeItem(item) def _setItemName(self, item): """Helper to generate a unique id to a plot item""" legend = "__ROI-%d__%d" % (id(self), id(item)) item.setName(legend) def setParent(self, parent): """Set the parent of the RegionOfInterest :param Union[None,RegionOfInterestManager] parent: The new parent """ # Avoid circular dependency from ..tools import roi as roi_tools if (parent is not None and not isinstance(parent, roi_tools.RegionOfInterestManager)): raise ValueError('Unsupported parent') previousParent = self.parent() if previousParent is not None: previousPlot = previousParent.parent() if previousPlot is not None: self._disconnectFromPlot(previousPlot) super(RegionOfInterest, self).setParent(parent) if parent is not None: plot = parent.parent() if plot is not None: self._connectToPlot(plot) def addItem(self, item): """Add an item to the set of this ROI children. This item will be added and removed to the plot used by the ROI. If the ROI is already part of a plot, the item will also be added to the plot. It the item do not have a name already, a unique one is generated to avoid item collision in the plot. :param silx.gui.plot.items.Item item: A plot item """ assert item is not None self._child.append(item) if item.getName() == '': self._setItemName(item) manager = self.parent() if manager is not None: plot = manager.parent() if plot is not None: item._roiGroup = True plot.addItem(item) def removeItem(self, item): """Remove an item from this ROI children. If the item is part of a plot it will be removed too. :param silx.gui.plot.items.Item item: A plot item """ assert item is not None self._child.remove(item) plot = item.getPlot() if plot is not None: del item._roiGroup plot.removeItem(item) def getItems(self): """Returns the list of PlotWidget items of this RegionOfInterest. :rtype: List[~silx.gui.plot.items.Item] """ return tuple(self._child) @classmethod def _getShortName(cls): """Return an human readable kind of ROI :rtype: str """ if hasattr(cls, "SHORT_NAME"): name = cls.SHORT_NAME if name is None: name = cls.__name__ return name def getColor(self): """Returns the color of this ROI :rtype: QColor """ return qt.QColor.fromRgbF(*self._color) def setColor(self, color): """Set the color used for this ROI. :param color: The color to use for ROI shape as either a color name, a QColor, a list of uint8 or float in [0, 1]. """ color = rgba(color) if color != self._color: self._color = color self._updated(items.ItemChangedType.COLOR) def isEditable(self): """Returns whether the ROI is editable by the user or not. :rtype: bool """ return self._editable def setEditable(self, editable): """Set whether the ROI can be changed interactively. :param bool editable: True to allow edition by the user, False to disable. """ editable = bool(editable) if self._editable != editable: self._editable = editable self._updated(items.ItemChangedType.EDITABLE) def isSelectable(self): """Returns whether the ROI is selectable by the user or not. :rtype: bool """ return self._selectable def setSelectable(self, selectable): """Set whether the ROI can be selected interactively. :param bool selectable: True to allow selection by the user, False to disable. """ selectable = bool(selectable) if self._selectable != selectable: self._selectable = selectable self._updated(items.ItemChangedType.SELECTABLE) def getFocusProxy(self): """Returns the ROI which have to be selected when this ROI is selected, else None if no proxy specified. :rtype: RegionOfInterest """ proxy = self._focusProxy if proxy is None: return None proxy = proxy() if proxy is None: self._focusProxy = None return proxy def setFocusProxy(self, roi): """Set the real ROI which will be selected when this ROI is selected, else None to remove the proxy already specified. :param RegionOfInterest roi: A ROI """ if roi is not None: self._focusProxy = weakref.ref(roi) else: self._focusProxy = None def isVisible(self): """Returns whether the ROI is visible in the plot. .. note:: This does not take into account whether or not the plot widget itself is visible (unlike :meth:`QWidget.isVisible` which checks the visibility of all its parent widgets up to the window) :rtype: bool """ return self._visible def setVisible(self, visible): """Set whether the plot items associated with this ROI are visible in the plot. :param bool visible: True to show the ROI in the plot, False to hide it. """ visible = bool(visible) if self._visible != visible: self._visible = visible self._updated(items.ItemChangedType.VISIBLE) def getText(self) -> str: """Returns the currently displayed text for this ROI""" return self.getName() if self.__text is None else self.__text def setText(self, text: Optional[str] = None) -> None: """Set the displayed text for this ROI. If None (the default), the ROI name is used. """ if self.__text != text: self.__text = text self._updated(items.ItemChangedType.TEXT) def _updateText(self, text: str) -> None: """Update the text displayed by this ROI Override in subclass to custom text display """ pass @classmethod def showFirstInteractionShape(cls): """Returns True if the shape created by the first interaction and managed by the plot have to be visible. :rtype: bool """ return False @classmethod def getFirstInteractionShape(cls): """Returns the shape kind which will be used by the very first interaction with the plot. This interactions are hardcoded inside the plot :rtype: str """ return cls._plotShape def setFirstShapePoints(self, points): """Initialize the ROI using the points from the first interaction. This interaction is constrained by the plot API and only supports few shapes. """ raise NotImplementedError() def creationStarted(self): """Called when the ROI creation interaction was started. """ pass def creationFinalized(self): """Called when the ROI creation interaction was finalized. """ pass def _updateItemProperty(self, event, source, destination): """Update the item property of a destination from an item source. :param items.ItemChangedType event: Property type to update :param silx.gui.plot.items.Item source: The reference for the data :param event Union[Item,List[Item]] destination: The item(s) to update """ if not isinstance(destination, (list, tuple)): destination = [destination] if event == items.ItemChangedType.NAME: value = source.getName() for d in destination: d.setName(value) elif event == items.ItemChangedType.EDITABLE: value = source.isEditable() for d in destination: d.setEditable(value) elif event == items.ItemChangedType.SELECTABLE: value = source.isSelectable() for d in destination: d._setSelectable(value) elif event == items.ItemChangedType.COLOR: value = rgba(source.getColor()) for d in destination: d.setColor(value) elif event == items.ItemChangedType.LINE_STYLE: value = self.getLineStyle() for d in destination: d.setLineStyle(value) elif event == items.ItemChangedType.LINE_WIDTH: value = self.getLineWidth() for d in destination: d.setLineWidth(value) elif event == items.ItemChangedType.SYMBOL: value = self.getSymbol() for d in destination: d.setSymbol(value) elif event == items.ItemChangedType.SYMBOL_SIZE: value = self.getSymbolSize() for d in destination: d.setSymbolSize(value) elif event == items.ItemChangedType.VISIBLE: value = self.isVisible() for d in destination: d.setVisible(value) else: assert False def _updated(self, event=None, checkVisibility=True): if event == items.ItemChangedType.TEXT: self._updateText(self.getText()) elif event == items.ItemChangedType.HIGHLIGHTED: style = self.getCurrentStyle() self._updatedStyle(event, style) else: styleEvents = [items.ItemChangedType.COLOR, items.ItemChangedType.LINE_STYLE, items.ItemChangedType.LINE_WIDTH, items.ItemChangedType.SYMBOL, items.ItemChangedType.SYMBOL_SIZE] if self.isHighlighted(): styleEvents.append(items.ItemChangedType.HIGHLIGHTED_STYLE) if event in styleEvents: style = self.getCurrentStyle() self._updatedStyle(event, style) super(RegionOfInterest, self)._updated(event, checkVisibility) # Displayed text has changed, send a text event if event == items.ItemChangedType.NAME and self.__text is None: self._updated(items.ItemChangedType.TEXT, checkVisibility) def _updatedStyle(self, event, style): """Called when the current displayed style of the ROI was changed. :param event: The event responsible of the change of the style :param items.CurveStyle style: The current style """ pass def getCurrentStyle(self): """Returns the current curve style. Curve style depends on curve highlighting :rtype: CurveStyle """ baseColor = rgba(self.getColor()) if isinstance(self, core.LineMixIn): baseLinestyle = self.getLineStyle() baseLinewidth = self.getLineWidth() else: baseLinestyle = self._DEFAULT_LINESTYLE baseLinewidth = self._DEFAULT_LINEWIDTH if isinstance(self, core.SymbolMixIn): baseSymbol = self.getSymbol() baseSymbolsize = self.getSymbolSize() else: baseSymbol = 'o' baseSymbolsize = 1 if self.isHighlighted(): style = self.getHighlightedStyle() color = style.getColor() linestyle = style.getLineStyle() linewidth = style.getLineWidth() symbol = style.getSymbol() symbolsize = style.getSymbolSize() return items.CurveStyle( color=baseColor if color is None else color, linestyle=baseLinestyle if linestyle is None else linestyle, linewidth=baseLinewidth if linewidth is None else linewidth, symbol=baseSymbol if symbol is None else symbol, symbolsize=baseSymbolsize if symbolsize is None else symbolsize) else: return items.CurveStyle(color=baseColor, linestyle=baseLinestyle, linewidth=baseLinewidth, symbol=baseSymbol, symbolsize=baseSymbolsize) def _editingStarted(self): assert self._editable is True self.sigEditingStarted.emit() def _editingFinished(self): self.sigEditingFinished.emit() def populateContextMenu(self, menu: qt.QMenu): """Populate a menu used as a context menu""" pass class HandleBasedROI(RegionOfInterest): """Manage a ROI based on a set of handles""" def __init__(self, parent=None): RegionOfInterest.__init__(self, parent=parent) self._handles = [] self._posOrigin = None self._posPrevious = None def addUserHandle(self, item=None): """ Add a new free handle to the ROI. This handle do nothing. It have to be managed by the ROI implementing this class. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="user") def addLabelHandle(self, item=None): """ Add a new label handle to the ROI. This handle is not draggable nor selectable. It is displayed without symbol, but it is always visible anyway the ROI is editable, in order to display text. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="label") def addTranslateHandle(self, item=None): """ Add a new translate handle to the ROI. Dragging translate handles affect the position position of the ROI but not the shape itself. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="translate") def addHandle(self, item=None, role="default"): """ Add a new handle to the ROI. Dragging handles while affect the position or the shape of the ROI. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ if item is None: item = items.Marker() color = rgba(self.getColor()) color = self._computeHandleColor(color) item.setColor(color) if role == "default": item.setSymbol("s") elif role == "user": pass elif role == "translate": item.setSymbol("+") elif role == "label": item.setSymbol("") if role == "user": pass elif role == "label": item._setSelectable(False) item._setDraggable(False) item.setVisible(True) else: self.__updateEditable(item, self.isEditable(), remove=False) item._setSelectable(False) self._handles.append((item, role)) self.addItem(item) return item def removeHandle(self, handle): data = [d for d in self._handles if d[0] is handle][0] self._handles.remove(data) role = data[1] if role not in ["user", "label"]: if self.isEditable(): self.__updateEditable(handle, False) self.removeItem(handle) def getHandles(self): """Returns the list of handles of this HandleBasedROI. :rtype: List[~silx.gui.plot.items.Marker] """ return tuple(data[0] for data in self._handles) def _updated(self, event=None, checkVisibility=True): """Implement Item mix-in update method by updating the plot items See :class:`~silx.gui.plot.items.Item._updated` """ if event == items.ItemChangedType.VISIBLE: for item, role in self._handles: visible = self.isVisible() editionVisible = visible and self.isEditable() if role not in ["user", "label"]: item.setVisible(editionVisible) else: item.setVisible(visible) elif event == items.ItemChangedType.EDITABLE: for item, role in self._handles: editable = self.isEditable() if role not in ["user", "label"]: self.__updateEditable(item, editable) super(HandleBasedROI, self)._updated(event, checkVisibility) def _updatedStyle(self, event, style): super(HandleBasedROI, self)._updatedStyle(event, style) # Update color of shape items in the plot color = rgba(self.getColor()) handleColor = self._computeHandleColor(color) for item, role in self._handles: if role == 'user': pass elif role == 'label': item.setColor(color) else: item.setColor(handleColor) def __updateEditable(self, handle, editable, remove=True): # NOTE: visibility change emit a position update event handle.setVisible(editable and self.isVisible()) handle._setDraggable(editable) if editable: handle.sigDragStarted.connect(self._handleEditingStarted) handle.sigItemChanged.connect(self._handleEditingUpdated) handle.sigDragFinished.connect(self._handleEditingFinished) else: if remove: handle.sigDragStarted.disconnect(self._handleEditingStarted) handle.sigItemChanged.disconnect(self._handleEditingUpdated) handle.sigDragFinished.disconnect(self._handleEditingFinished) def _handleEditingStarted(self): super(HandleBasedROI, self)._editingStarted() handle = self.sender() self._posOrigin = numpy.array(handle.getPosition()) self._posPrevious = numpy.array(self._posOrigin) self.handleDragStarted(handle, self._posOrigin) def _handleEditingUpdated(self): if self._posOrigin is None: # Avoid to handle events when visibility change return handle = self.sender() current = numpy.array(handle.getPosition()) self.handleDragUpdated(handle, self._posOrigin, self._posPrevious, current) self._posPrevious = current def _handleEditingFinished(self): handle = self.sender() current = numpy.array(handle.getPosition()) self.handleDragFinished(handle, self._posOrigin, current) self._posPrevious = None self._posOrigin = None super(HandleBasedROI, self)._editingFinished() def isHandleBeingDragged(self): """Returns True if one of the handles is currently being dragged. :rtype: bool """ return self._posOrigin is not None def handleDragStarted(self, handle, origin): """Called when an handler drag started""" pass def handleDragUpdated(self, handle, origin, previous, current): """Called when an handle drag position changed""" pass def handleDragFinished(self, handle, origin, current): """Called when an handle drag finished""" pass def _computeHandleColor(self, color): """Returns the anchor color from the base ROI color :param Union[numpy.array,Tuple,List]: color :rtype: Union[numpy.array,Tuple,List] """ return color[:3] + (0.5,)
silx-kit/silx
src/silx/gui/plot/items/_roi_base.py
_roi_base.py
py
27,769
python
en
code
106
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "items.ItemChangedType", "line_number": 61, "usage_type": "attribute" }, { "api_name": "functools.partial", "line_number": 179, "usage_type": "call" }, { "api_name": "items.core.HighlightedMixIn", "line_number": 187, "usage_type": "attribute" }, { "api_name": "items.core", "line_number": 187, "usage_type": "name" }, { "api_name": "items.CurveStyle", "line_number": 200, "usage_type": "call" }, { "api_name": "tools.roi.RegionOfInterestManager", "line_number": 223, "usage_type": "attribute" }, { "api_name": "tools.roi", "line_number": 223, "usage_type": "name" }, { "api_name": "items.core.HighlightedMixIn.__init__", "line_number": 225, "usage_type": "call" }, { "api_name": "items.core.HighlightedMixIn", "line_number": 225, "usage_type": "attribute" }, { "api_name": "items.core", "line_number": 225, "usage_type": "name" }, { "api_name": "colors.rgba", "line_number": 227, "usage_type": "call" }, { "api_name": "utils.weakref.WeakList", "line_number": 232, "usage_type": "call" }, { "api_name": "tools.roi.RegionOfInterestManager", "line_number": 262, "usage_type": "attribute" }, { "api_name": "tools.roi", "line_number": 262, "usage_type": "name" }, { "api_name": "colors.rgba", "line_number": 346, "usage_type": "call" }, { "api_name": "items.ItemChangedType", "line_number": 349, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 367, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 385, "usage_type": "attribute" }, { "api_name": "weakref.ref", "line_number": 408, "usage_type": "call" }, { "api_name": "items.ItemChangedType", "line_number": 434, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 440, "usage_type": "name" }, { "api_name": "items.ItemChangedType", "line_number": 447, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 503, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 507, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 511, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 515, "usage_type": "attribute" }, { "api_name": "colors.rgba", "line_number": 516, "usage_type": "call" }, { "api_name": "items.ItemChangedType", "line_number": 519, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 523, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 527, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 531, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 535, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 543, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 545, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 549, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 550, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 551, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 552, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 553, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 555, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 564, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 565, "usage_type": "attribute" }, { "api_name": "colors.rgba", "line_number": 582, "usage_type": "call" }, { "api_name": "items.core.LineMixIn", "line_number": 583, "usage_type": "attribute" }, { "api_name": "items.core", "line_number": 583, "usage_type": "name" }, { "api_name": "items.core.SymbolMixIn", "line_number": 589, "usage_type": "attribute" }, { "api_name": "items.core", "line_number": 589, "usage_type": "name" }, { "api_name": "items.CurveStyle", "line_number": 604, "usage_type": "call" }, { "api_name": "items.CurveStyle", "line_number": 611, "usage_type": "call" }, { "api_name": "{'roi_tools': 'tools.roi'}.__init__", "line_number": 633, "usage_type": "call" }, { "api_name": "items.Marker", "line_number": 691, "usage_type": "call" }, { "api_name": "colors.rgba", "line_number": 692, "usage_type": "call" }, { "api_name": "items.ItemChangedType", "line_number": 739, "usage_type": "attribute" }, { "api_name": "items.ItemChangedType", "line_number": 747, "usage_type": "attribute" }, { "api_name": "colors.rgba", "line_number": 758, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 785, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 786, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 794, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 800, "usage_type": "call" } ]
24528285056
import concurrent.futures import logging import time def thread_function(name): logging.info("Thread %s: starting", name) time.sleep(2) logging.info("Thread %s: finishing", name) class FakeDatabase: def __init__(self): self.value = 0 def update(self, name): logging.info("Thread %s: starting update", name) local_copy = self.value local_copy += 1 time.sleep(0.1) self.value = local_copy logging.info("Thread %s: finishing update", name) if __name__ == "__main__": format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") # threads = list() # for index in range(3): # logging.info("Main : create and start thread %d.", index) # x = threading.Thread(target=thread_function, args=(index,)) # threads.append(x) # x.start() # # for index, thread in enumerate(threads): # logging.info("Main : before joining thread %d.", index) # thread.join() # logging.info("Main : thread %d done", index) # # with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # replace Max_Workers with number of threads and execute it using .map # executor.map(thread_function, range(3)) format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") database = FakeDatabase() logging.info("Testing update. Starting value is %d.", database.value) with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: for index in range(2): executor.submit(database.update, index) logging.info("Testing update. Ending value is %d.", database.value)
hiddenxx/Scripts
Learning/LearningThreads.py
LearningThreads.py
py
1,819
python
en
code
1
github-code
6
[ { "api_name": "logging.info", "line_number": 7, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 9, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 17, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 20, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 22, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 27, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 27, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 46, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 46, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 50, "usage_type": "call" }, { "api_name": "concurrent.futures.futures.ThreadPoolExecutor", "line_number": 51, "usage_type": "call" }, { "api_name": "concurrent.futures.futures", "line_number": 51, "usage_type": "attribute" }, { "api_name": "concurrent.futures", "line_number": 51, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 54, "usage_type": "call" } ]
70777980988
import random import re import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from keras.preprocessing.text import Tokenizer import torch def transform_to_index_tensor(pairs,rus_w2i,en_w2i,device): rus_tensor = [] en_tensor = [] for word in range(len(pairs[0])): en_tensor.append(en_w2i[pairs[0][word]]) for word in range(len(pairs[1])): rus_tensor.append(rus_w2i[pairs[1][word]]) return en_tensor,rus_tensor def split_dataset(pairs,val_size=20.000,test_size=20.000): pairs = random.sample(pairs,len(pairs)) pairs_test = pairs[:test_size] pairs_val = pairs[test_size:test_size+val_size] pairs_train = pairs[test_size+val_size:len(pairs)] return pairs_train,pairs_val,pairs_test def custom_index_tokenizer(phrase,w2i,i2w): for word in phrase: if word in w2i: continue else: if bool(w2i) == False: w2i[word] = 0 i2w[0] = word else: new_idx = list(i2w)[-1]+1 w2i[word] = new_idx i2w[new_idx] = word return w2i,i2w def filter_double_spaces(word_list): updated_word_list = [] for w in range(len(word_list)): if not word_list[w] == '': updated_word_list.append(word_list[w]) return updated_word_list def get_data(filename='fra.txt',max_words=-1,plot_res=False): russian_word_list = [] english_word_list = [] #dictionaries for converting a word to a unique integer and the opposite russian_word_to_idx = {'<SOS>':0,'<EOS>':1,'<PAD>':2} english_word_to_idx = {'<SOS>':0,'<EOS>':1,'<PAD>':2} russian_idx_to_word = {0:'<SOS>',1:'<EOS>',2:'<PAD>'} english_idx_to_word = {0:'<SOS>',1:'<EOS>',2:'<PAD>'} pairs = [] #read the dataset from the file with open(filename, "r", encoding="utf-8") as f: lines_list = f.read().split("\n") print("The file total translated words/phrases are: "+str(len(lines_list))) #get the phrases for each language to a different list word_counter = 0 for i in range(len(lines_list)): if not max_words == -1: word_counter += 1 if word_counter > max_words: break try: lines_list[i].split('\t')[1] except: continue russian_word_list.append(lines_list[i].split('\t')[1]) english_word_list.append(lines_list[i].split('\t')[0]) print("The total english phrases are: " + str(len(english_word_list))) print("The total russian phrases are: "+str(len(russian_word_list))) russian_lengths = [] english_lengths = [] russian_words_final = [] english_words_final = [] for phrase in range(len(russian_word_list)): #remove punc russian_words = re.sub(r'[^\w\s]', '', russian_word_list[phrase]) english_words = re.sub(r'[^\w\s]', '', english_word_list[phrase]) #to lower case russian_words = russian_words.lower() english_words = english_words.lower() russian_lengths.append(len(russian_words)) english_lengths.append(len(english_words)) #split to space russian_words = russian_words.split(' ') english_words = english_words.split(' ') #filter double spaces russian_words = filter_double_spaces(russian_words) english_words = filter_double_spaces(english_words) #add SOS and EOS tokens russian_words.insert(0, "<SOS>") russian_words.append("<EOS>") english_words.insert(0, "<SOS>") english_words.append("<EOS>") pairs.append([english_words,russian_words]) russian_word_to_idx,russian_idx_to_word = custom_index_tokenizer(russian_words,russian_word_to_idx,russian_idx_to_word) english_word_to_idx, english_idx_to_word = custom_index_tokenizer(english_words, english_word_to_idx,english_idx_to_word) russian_words_final.append(russian_words) english_words_final.append(english_words) if plot_res: plt.hist(english_lengths, 15, alpha=0.5, label='English Lengths',edgecolor = "black") plt.hist(russian_lengths, 30, alpha=0.5, label='Russian Lengths',edgecolor = "black") plt.legend(loc='upper right') plt.show() print("Found "+str(len(list(russian_idx_to_word.keys())))+" unique russian words.") print("Found " + str(len(list(english_idx_to_word.keys()))) + " unique english words.") return russian_words_final,english_words_final,russian_word_to_idx,russian_idx_to_word,english_word_to_idx,english_idx_to_word,pairs,russian_words_final,english_words_final
stefanos50/Seq2Seq-Machine-Translation
DataPreprocessing.py
DataPreprocessing.py
py
4,664
python
en
code
0
github-code
6
[ { "api_name": "random.sample", "line_number": 22, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 89, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 123, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" } ]
13301085850
import requests from prettytable import PrettyTable #write this into terminal if using linux or cmd if using windows #pip3 install Prettytable requests city = input('Enter City => ')#City name here api = "your api here"#api of https://openweathermap.org get urs from the website response = requests.get(f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api}")#request a response #if the response equal 200 = OK thats mean everything is okey if response: weather = response.json()["weather"]#get weather info temp = response.json()["main"]#get temperature info wind = response.json()["wind"]#get wind info clouds = response.json()["clouds"]#get clouds info coord = response.json()["coord"]#get coordinates weather_cloud = weather[0]["description"] temp_feels = temp["temp"] temp_feels_like = temp["feels_like"] temp_feels_min = temp["temp_min"] temp_feels_max = temp["temp_max"] wind_speed = wind["speed"] clouds_deg = clouds["all"] coordination_lon = coord["lon"] coordination_lat= coord["lat"] #write everything into a table table = PrettyTable() table.field_names = ["City", "weather Description", "Temperature", "Feels Like", "Temperature Min", "Temperature Max", "Win Speed", "Cloud", "Coordinates Long", "Coordinates Lat"] table.add_row([city.capitalize(), weather_cloud, temp_feels, temp_feels_like, temp_feels_min, temp_feels_max, wind_speed, clouds_deg, coordination_lon, coordination_lat]) print(table) else: print("Invalid Input")
xavian1996/weatherpy
main.py
main.py
py
1,968
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 9, "usage_type": "call" }, { "api_name": "prettytable.PrettyTable", "line_number": 35, "usage_type": "call" } ]
23210233427
import pandas as pd from morpheus import SequentialComposition, ParallelComposition from morpheus.algo.selection import base_selection_algorithm, random_selection_algorithm from morpheus.utils.encoding import * from morpheus.utils import debug_print from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor VERBOSITY = 0 def default_dataset(n_features=7, random_state=997): """ Generate a dataset to be used in tests. Returns: """ X, y = make_classification( n_samples=10 ** 3, n_features=n_features, n_informative=n_features, n_repeated=0, n_redundant=0, n_clusters_per_class=2, random_state=random_state, ) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=random_state ) train = pd.DataFrame(X_train) train = train.assign(y=y_train) test = pd.DataFrame(X_test) test = test.assign(y=y_test) return train, test def default_chain(random_state=997): """ Default classifier chain. For use in further tests. Returns: """ train, _ = default_dataset(random_state=random_state) m_list = default_m_list_for_chain(train.values) sc = SequentialComposition() for m in m_list: sc.add_estimator(m, location="back") return sc def default_ensemble(random_state=997): """ Default classifier ensmeble. For use in further tests. Returns: """ train, _ = default_dataset(random_state=random_state) m_list = default_m_list_for_ensemble(train.values) pc = ParallelComposition() for m in m_list: pc.add_estimator(m) return pc def default_m_list_for_chain(data): targ_ids_1 = [4, 5] desc_ids_1 = [0, 1, 2] targ_ids_2 = [7] desc_ids_2 = [1, 2, 5] all_desc_ids = [desc_ids_1, desc_ids_2] all_targ_ids = [targ_ids_1, targ_ids_2] m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset({6, 7}): learner = RandomForestClassifier elif set(targ_ids).issubset({0, 1, 2, 3, 4, 5}): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def default_m_list_for_ensemble(data): targ_ids_1 = [5] desc_ids_1 = [0, 1, 2] targ_ids_2 = [4, 5] desc_ids_2 = [0, 1, 3] all_desc_ids = [desc_ids_1, desc_ids_2] all_targ_ids = [targ_ids_1, targ_ids_2] m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset({6, 7}): learner = RandomForestClassifier elif set(targ_ids).issubset({0, 1, 2, 3, 4, 5}): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def default_m_list_for_mercs(data): n, m = data.shape attributes = list(range(m)) metadata = {"nb_atts": m} settings = {"param": 1, "its": 1} m_codes = base_selection_algorithm(metadata, settings) all_desc_ids, all_targ_ids = [], [] for m_code in m_codes: desc_ids, targ_ids, _ = code_to_query(m_code) all_desc_ids.append(desc_ids) all_targ_ids.append(targ_ids) m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset(attributes[-1:]): learner = RandomForestClassifier elif set(targ_ids).issubset(attributes[:-1]): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def random_m_list_for_mercs(data, its=1, fraction=0.3, random_state=997): n, m = data.shape attributes = list(range(m)) metadata = {"nb_atts": m} settings = {"param": 1, "its": its, "fraction": fraction} m_codes = random_selection_algorithm(metadata, settings, random_state=random_state) all_desc_ids, all_targ_ids = [], [] for m_code in m_codes: desc_ids, targ_ids, _ = code_to_query(m_code) all_desc_ids.append(desc_ids) all_targ_ids.append(targ_ids) m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) debug_print(msg, level=1, V=VERBOSITY) if set(targ_ids).issubset(attributes[-1:]): learner = RandomForestClassifier elif set(targ_ids).issubset(attributes[:-1]): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model( data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5, random_state=random_state, ) m_list.append(m) return m_list def learn_model(data, desc_ids, targ_ids, model, **kwargs): """ Learn a model from the data. The desc ids and targ ids identify which algo task you should try to learn from the data. Model is a machine learning method that has a .fit() method. Args: data: desc_ids: targ_ids: model: **kwargs: Returns: """ X, Y = data[:, desc_ids], data[:, targ_ids] if X.shape[1] == 1: X = X.ravel() if Y.shape[1] == 1: Y = Y.ravel() try: clf = model(**kwargs) clf.fit(X, Y) except ValueError as e: print(e) # Bookkeeping clf.desc_ids = desc_ids clf.targ_ids = targ_ids return clf
eliavw/morpheus
src/morpheus/tests/basics.py
basics.py
py
7,311
python
en
code
0
github-code
6
[ { "api_name": "sklearn.datasets.make_classification", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 33, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 37, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 40, "usage_type": "call" }, { "api_name": "morpheus.SequentialComposition", "line_number": 59, "usage_type": "call" }, { "api_name": "morpheus.ParallelComposition", "line_number": 79, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 109, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 111, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 148, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 150, "usage_type": "name" }, { "api_name": "morpheus.algo.selection.base_selection_algorithm", "line_number": 171, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 192, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 194, "usage_type": "name" }, { "api_name": "morpheus.algo.selection.random_selection_algorithm", "line_number": 215, "usage_type": "call" }, { "api_name": "morpheus.utils.debug_print", "line_number": 233, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 236, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 238, "usage_type": "name" } ]
4534058436
#!/usr/bin/env python # -*- coding: UTF-8 -*- import SPARQLWrapper # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def select_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://vocabs.ardc.edu.au/repository/api/sparql/csiro_international-chronostratigraphic-chart_geologic-time-scale-2020") sparql.setReturnFormat(SPARQLWrapper.JSON) # Gets the first 3 geological ages from a Geological Timescale database, via a SPARQL endpoint. sparql.setQuery(""" PREFIX gts: <http://resource.geosciml.org/ontology/timescale/gts#> SELECT * WHERE { ?a a gts:Age . } ORDER BY ?a LIMIT 3 """ ) try: ret = sparql.queryAndConvert() for r in ret["results"]["bindings"]: print(r) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def ask_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery(""" ASK WHERE { <http://dbpedia.org/resource/Asturias> rdfs:label "Asturias"@es } """ ) sparql.setReturnFormat(SPARQLWrapper.XML) try: results = sparql.query().convert() print(results.toxml()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def construct_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX sdo: <https://schema.org/> CONSTRUCT { ?lang a sdo:Language ; sdo:alternateName ?iso6391Code . } WHERE { ?lang a dbo:Language ; dbo:iso6391Code ?iso6391Code . FILTER (STRLEN(?iso6391Code)=2) # To filter out non-valid values. } LIMIT 3 """ ) try: results = sparql.queryAndConvert() print(results.serialize()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def describe_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery("DESCRIBE <http://dbpedia.org/resource/Asturias>") try: results = sparql.queryAndConvert() print(results.serialize(format="json-ld")) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def update_example(): sparql = SPARQLWrapper.SPARQLWrapper("https://example.org/sparql") sparql.setHTTPAuth(SPARQLWrapper.DIGEST) sparql.setCredentials("some-login", "some-password") sparql.setMethod(SPARQLWrapper.POST) sparql.setQuery(""" PREFIX dbp: <http://dbpedia.org/resource/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> WITH <http://example.graph> DELETE { dbo:Asturias rdfs:label "Asturies"@ast } """ ) try: results = sparql.query() print(results.response.read()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def SPARQLWrapper2_example(): sparql = SPARQLWrapper.SPARQLWrapper2("http://dbpedia.org/sparql") sparql.setQuery(""" PREFIX dbp: <http://dbpedia.org/resource/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?label WHERE { dbp:Asturias rdfs:label ?label } LIMIT 3 """ ) try: for result in sparql.query().bindings: print(f"{result['label'].lang}, {result['label'].value}") except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def partial_interpretation_of_results(): sparql = SPARQLWrapper.SPARQLWrapper2("http://example.org/sparql") sparql.setQuery(""" SELECT ?subj ?prop WHERE { ?subj ?prop ?obj } """ ) try: ret = sparql.query() print(ret.variables) # This is an array consisting of "subj" and "prop". for binding in ret.bindings: # Each binding is a dictionary. Let us just print the results. print(f"{binding['subj'].value}, {binding['subj'].type}") print(f"{binding['prop'].value}, {binding['prop'].type}") except Exception as ex: print(ex) #----- sparql.setQuery(""" SELECT ?subj ?obj ?opt WHERE { ?subj <http://a.b.c> ?obj . OPTIONAL { ?subj <http://d.e.f> ?opt } } """ ) try: ret = sparql.query() print(ret.variables) # This is an array consisting of "subj", "obj", "opt". if ("subj", "prop", "opt") in ret: # There is at least one binding covering the optional "opt", too. bindings = ret["subj", "obj", "opt"] # Bindings is an array of dictionaries with the full bindings. for b in bindings: subj = b["subj"].value o = b["obj"].value opt = b["opt"].value # Do something nice with subj, o, and opt. # Another way of accessing to values for a single variable: take all the bindings of the "subj", "obj", "opt". subjbind = ret.getValues("subj") # An array of Value instances. objbind = ret.getValues("obj") # An array of Value instances. optbind = ret.getValues("opt") # An array of Value instances. except Exception as ex: print(ex) def dbpedia_test(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setReturnFormat(SPARQLWrapper.JSON) if True: sparql.setQuery(""" SELECT ?uri ?name ?page ?nick WHERE { ?uri a foaf:Person ; foaf:name ?name; foaf:page ?page; foaf:nick ?nick. } LIMIT 100 """ ) elif False: sparql.setQuery(""" SELECT ?name ?birth ?role WHERE{ ?x a foaf:Person ; dbpprop:fullname ?name; dbpprop:countryofbirth ?birth; dbpprop:role ?role. FILTER regex(?birth, "land$"). FILTER regex(?birth, "^Eng"). FILTER regex(?birth, "England"). } LIMIT 100 """ ) try: ret = sparql.queryAndConvert() print(ret["results"]["bindings"]) except Exception as ex: print(ex) def dbpedia_ko_test(): sparql = SPARQLWrapper.SPARQLWrapper("http://ko.dbpedia.org/sparql") sparql.setReturnFormat(SPARQLWrapper.JSON) if False: sparql.setQuery(""" PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> SELECT DISTINCT ?comment WHERE { ?s foaf:name ?name; rdfs:comment ?comment; dbp:occupation ?occupation. FILTER(REGEX(STR(?occupation), '정치')) } LIMIT 30 """ ) elif False: sparql.setQuery(""" PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> SELECT ?comment, ?relative, ?parent WHERE { ?s foaf:name ?name; rdfs:comment ?comment. FILTER(STR(?name) = '하정우') OPTIONAL{?relative dbo:relative ?s.} OPTIONAL{?parent dbo:child ?s.} } LIMIT 30 """ ) elif True: sparql.setQuery(""" select * where { ?s <http://ko.dbpedia.org/property/장소> ?o } LIMIT 100 """ ) elif False: sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> PREFIX res: <http://ko.dbpedia.org/resource/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select * where { ?s rdf:type foaf:Person. ?s <http://ko.dbpedia.org/property/국가> '대한민국'@ko. } """ ) elif False: sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> PREFIX res: <http://ko.dbpedia.org/resource/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select count(*) where { ?s rdf:type foaf:Person. {?s dbp:출생일 ?Bdate.} UNION {?s dbp:사망일 ?Ddate.} ?s dbo:abstract ?abstract. ?s dbp:국적 ?nation. } """ ) try: ret = sparql.queryAndConvert() print(ret["results"]["bindings"]) except Exception as ex: print(ex) def main(): #select_example() #ask_example() #construct_example() #describe_example() #update_example() #SPARQLWrapper2_example() #partial_interpretation_of_results() #----- dbpedia_test() dbpedia_ko_test() #-------------------------------------------------------------------- if "__main__" == __name__: main()
sangwook236/SWDT
sw_dev/python/ext/test/database/sparqlwrapper_test.py
sparqlwrapper_test.py
py
7,970
python
en
code
17
github-code
6
[ { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 8, "usage_type": "call" }, { "api_name": "SPARQLWrapper.JSON", "line_number": 9, "usage_type": "attribute" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 34, "usage_type": "call" }, { "api_name": "SPARQLWrapper.XML", "line_number": 41, "usage_type": "attribute" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 51, "usage_type": "call" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 78, "usage_type": "call" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 89, "usage_type": "call" }, { "api_name": "SPARQLWrapper.DIGEST", "line_number": 90, "usage_type": "attribute" }, { "api_name": "SPARQLWrapper.POST", "line_number": 92, "usage_type": "attribute" }, { "api_name": "SPARQLWrapper.SPARQLWrapper2", "line_number": 113, "usage_type": "call" }, { "api_name": "SPARQLWrapper.SPARQLWrapper2", "line_number": 134, "usage_type": "call" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 187, "usage_type": "call" }, { "api_name": "SPARQLWrapper.JSON", "line_number": 188, "usage_type": "attribute" }, { "api_name": "SPARQLWrapper.SPARQLWrapper", "line_number": 225, "usage_type": "call" }, { "api_name": "SPARQLWrapper.JSON", "line_number": 226, "usage_type": "attribute" } ]
16292938825
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 11 14:27:38 2021 @author: maximelucas """ import numpy as np import matplotlib.pyplot as plt rho_max=250 v_max=130 long=1000 A=150 B=40000 ga=[0 for i in range(B)] gb=[0 for i in range(B)] rho0=[200 for i in range(A//5)]+[0 for i in range(4*A//5)] deltaX = long/A deltaT=deltaX * (1/(v_max+1)) rho_critique = 125 def gG(s1, s2): if (s1 <= 125 and s2 <= 125): res = f(s1) elif (s1 >= 125 and s2 >= 125): res = f(s2) elif (s1 < 125 and s2 > 125): res = min(f(s1),f(s2)) else : res = f(125) return res #return f(s1) def f(rho): res = rho*v(rho) return res #def v(rho): #res = v_max #res = (v_max/rho_max)*(rho_max-rho) # return res def v(rho): res = v_max if rho != 0: res = np.sqrt(100*((1000/rho)-4)) if res > v_max : res = v_max return res def rho_c(X): l = (deltaT)/(deltaX) Y = [0 for i in range(len(X))] for i in range(1, len(X)-1): Y[i] = X[i] -( l * (gG(X[i], X[i+1]) - gG(X[i-1], X[i]))) return Y v = [v(i) for i in range(250)] plt.plot(v) #line, = plt.plot(rho0) #X=rho0 #for i in range(1000): # X = rho_c(X) # line.set_ydata(X) # plt.pause(1e-4) # plt.draw()
Maksime0/Mod-lisation-et-mesures-pour-le-trafic-routier
Documents annexes/Godonov/godonov_anime.py
godonov_anime.py
py
1,309
python
en
code
0
github-code
6
[ { "api_name": "numpy.sqrt", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" } ]
74787884667
# This file is part of "Junya's self learning project about Neural Network." # # "Junya's self learning project about Neural Network" # is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # "Junya's self learning project about Neural Network" # is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Foobar. If not, see <http://www.gnu.org/licenses/>. # # (c) Junya Kaneko <[email protected]> import numpy as np from matplotlib import pyplot import logging __author__ = 'Junya Kaneko <[email protected]>' def sigmoid(z, alpha=1, theta=0): return 1 / (1 + np.exp(-alpha * (z - theta))) def draw_sigmoid_graphs(): dom = np.array([x / 100 for x in range(-300, 300)]) alphas = [1, 10, 50, 100] nrows = 2 ncols = int(len(alphas)/2) for i, alpha in enumerate(alphas): values = np.array([0.0] * len(dom)) for j, x in enumerate(dom): values[j] = sigmoid(x, alpha=alpha) pyplot.subplot(nrows, ncols, i + 1) pyplot.title('Alpha = %s' % alpha) pyplot.xlabel('x') pyplot.ylabel('sigmoid(x)') pyplot.plot(dom, values) pyplot.tight_layout() pyplot.show() class Element: def __init__(self, w, alpha, theta): self._w = w if isinstance(w, np.ndarray) else np.array(w) self._alpha = alpha self._theta = theta def out(self, input, alpha=None, theta=None): _input = input if isinstance(input, np.ndarray) else np.array(input) _alpha = alpha if alpha else self._alpha _theta = theta if theta else self._theta logging.debug('PARAMETERS (alpha, theta): (%s, %s)' % (_alpha, _theta)) logging.debug('INPUT: (%s), SIGMOID: %s' % (','.join([str(i) for i in _input]), sigmoid(self._w.dot(_input), _alpha, _theta))) if sigmoid(self._w.dot(_input), _alpha, _theta) > 0.5: logging.debug('OUTPUT: %s' % 1) return 1 else: logging.debug('OUTPUT: %s' % 0) return 0 def __call__(self, input, alpha=None, theta=None): return self.out(input, alpha, theta) class AndElement(Element): def __init__(self): super().__init__(w=[1, 1], alpha=1, theta=1.5) class OrElement(Element): def __init__(self): super().__init__(w=[1, 1], alpha=1, theta=0.5) class XorElement: def out(self, input): or_element = OrElement() i1 = np.array([input[0], -input[1]]) i2 = np.array([-input[0], input[1]]) o1 = or_element(i1) o2 = or_element(i2) return or_element([o1, o2]) def __call__(self, input): return self.out(input) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) draw_sigmoid_graphs() and_element = AndElement() or_element = OrElement() xor_element = XorElement() assert and_element([1, 1]) assert not and_element([1, 0]) assert not and_element([0, 1]) assert not and_element([0, 0]) assert or_element([1, 1]) assert or_element([1, 0]) assert or_element([0, 1]) assert not or_element([0, 0]) assert not xor_element([1, 1]) assert xor_element([1, 0]) assert xor_element([0, 1]) assert not xor_element([0, 0])
junyakaneko/learning-and-neural-network
chapter3/problem1.py
problem1.py
py
3,651
python
en
code
1
github-code
6
[ { "api_name": "numpy.exp", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 54, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 59, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 62, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 63, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 65, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 91, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 101, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 101, "usage_type": "attribute" } ]
8927199604
import contextlib import os import shutil import tempfile import mandrel import unittest class TestCase(unittest.TestCase): def assertIs(self, a, b): # python 2.6/2.7 compatibility self.assertTrue(a is b) @contextlib.contextmanager def tempdir(dir=None): """Context manager that yields a temporary directory. Cleans up afterwards.""" if dir is not None: dir = os.path.realpath(os.path.expanduser(dir)) path = os.path.realpath(tempfile.mkdtemp(dir=dir)) try: yield path finally: shutil.rmtree(path, ignore_errors=True) @contextlib.contextmanager def chdir(path): """Context manager that moves to path in context; returns to original dir afterwards.""" start_path = os.path.realpath('.') try: os.chdir(os.path.realpath(os.path.expanduser(path))) yield finally: os.chdir(start_path) @contextlib.contextmanager def workdir(dir=None): """Context manager that creates a temp dir, moves to it, and yields the path. Moves back to original dir and cleans up afterwards.""" with tempdir(dir) as path: with chdir(path): yield path def refresh_bootstrapper(): if hasattr(mandrel, 'bootstrap'): reload(mandrel.bootstrap) else: __import__('mandrel.bootstrap') BOOTSTRAP_FILE = 'Mandrel.py' @contextlib.contextmanager def bootstrap_scenario(text="", dir=None): with workdir(dir=dir) as path: bootstrapper = os.path.join(path, BOOTSTRAP_FILE) with open(bootstrapper, 'w') as f: f.write(text) yield path, bootstrapper
ethanrowe/python-mandrel
mandrel/test/utils.py
utils.py
py
1,612
python
en
code
4
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.expanduser", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "tempfile.mkdtemp", "line_number": 19, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 23, "usage_type": "call" }, { "api_name": "contextlib.contextmanager", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "os.chdir", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.path.expanduser", "line_number": 30, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 33, "usage_type": "call" }, { "api_name": "contextlib.contextmanager", "line_number": 25, "usage_type": "attribute" }, { "api_name": "contextlib.contextmanager", "line_number": 35, "usage_type": "attribute" }, { "api_name": "mandrel.bootstrap", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "contextlib.contextmanager", "line_number": 52, "usage_type": "attribute" } ]
73676828986
import serial,os,sys ser = serial.Serial('/dev/ttyAMA1', 115200) drawPath = "/home/ubuntu/my_ws/src/test_odom_rap/drawLcd/drawLcd.py" byte_list = [0x55, 0x0E, 0x01, 0x02, int(0 / 256), int(0 % 256), 0,0, 0,0, 0, 0, 1] k = 0 for i in range(len(byte_list)): k += byte_list[i] k = k % 256 byte_list.append(k) contr_law = b"%c%c%c%c%c%c%c%c%c%c%c%c%c%c" % (byte_list[0], byte_list[1], byte_list[2], byte_list[3], byte_list[4], byte_list[5], byte_list[6], byte_list[7], byte_list[8], byte_list[9], byte_list[10], byte_list[11], byte_list[12], byte_list[13]) ser.write(contr_law) try: if ord(ser.read())==85: flag = False receive = [ord(ser.read()) for i in range(13)] bettery = int(27.322*((receive[9] * 256 + receive[10]) /100.0) - 245.9) print(bettery) if bettery <0: bettery = 0 elif bettery>100: bettery = 100 try: print(bettery) os.popen("python "+" "+drawPath+" "+str(bettery)+" 0 0") except IOError: res = os.system("sudo chmod 777 /dev/i2c-1&sudo chown root.gpio /dev/gpiomem&sudo chmod g+rw /dev/gpiomem&sudo chmod 777 /dev/spidev0.*") os.popen("python "+" "+drawPath+" "+str(bettery)+" 0 0") except TypeError: print('error')
caiyilian/INTELLIGENT-FOOD-DELIVERY-ROBOT
树莓派代码/drawLcd/auto_startup.py.py
auto_startup.py.py
py
1,524
python
en
code
2
github-code
6
[ { "api_name": "serial.Serial", "line_number": 3, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 33, "usage_type": "call" }, { "api_name": "os.system", "line_number": 35, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 36, "usage_type": "call" } ]
18023127994
import os import sqlite3 import shutil import sys import psutil def is_browser_running(browser_name): for process in psutil.process_iter(): try: if browser_name in process.name().lower(): return True except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass return False if is_browser_running('firefox'): print("Firefox가 실행 중입니다. 브라우저를 닫고 다시 시도하세요.") # 환경에 따른 경로 설정 if os.name == 'nt': # Windows 환경 base_path = "C:/Users" else: # WSL 환경 base_path = "/mnt/c/Users" # Windows 사용자 이름 windows_username = "user" # 여기에 실제 Windows 사용자 이름을 입력하세요 # Firefox 프로필 경로 firefox_path = os.path.join(base_path, windows_username, "AppData", "Roaming", "Mozilla", "Firefox") # Chrome 프로필 경로 chrome_path = os.path.join(base_path, windows_username, "AppData", "Local", "Google", "Chrome", "User Data", "Default", "History") # SQLite 데이터를 추출하는 함수 def extract_sqlite_data(db_path, query): try: conn = sqlite3.connect(db_path) cursor = conn.cursor() cursor.execute(query) rows = cursor.fetchall() conn.close() return rows except Exception as e: print(f"Error reading {db_path}: {str(e)}") return [] if not os.access(firefox_path, os.R_OK): print("Firefox 경로에 접근할 수 없습니다. 권한을 확인하세요.") # 출력을 파일에 저장할 경로 output_file_path = "linuxweboutput.txt" # 기존 출력 스트림을 백업하고 파일로 변경 original_stdout = sys.stdout with open(output_file_path, "w") as f: sys.stdout = f # Firefox 인터넷 기록을 추출합니다. for profile_directory in os.listdir(firefox_path): if profile_directory.endswith('.default-release'): places_db = os.path.join(firefox_path, profile_directory, 'places.sqlite') if os.path.exists(places_db): temp_copy = os.path.join("/tmp", "temp_places.sqlite") shutil.copy(places_db, temp_copy) query = "SELECT url, title, last_visit_date FROM moz_places" records = extract_sqlite_data(temp_copy, query) os.remove(temp_copy) for record in records: print(record) # Chrome 인터넷 기록을 추출합니다. if os.path.exists(chrome_path): temp_copy = os.path.join("/tmp", "temp_history.sqlite") shutil.copy(chrome_path, temp_copy) query = "SELECT url, title, last_visit_time FROM urls" records = extract_sqlite_data(temp_copy, query) os.remove(temp_copy) for record in records: print(record) # 기존 출력 스트림을 복원 sys.stdout = original_stdout
KIMJOONSIG/Reboot3
Linux/p3_BrowserHistory.py
p3_BrowserHistory.py
py
2,892
python
ko
code
0
github-code
6
[ { "api_name": "psutil.process_iter", "line_number": 8, "usage_type": "call" }, { "api_name": "psutil.NoSuchProcess", "line_number": 12, "usage_type": "attribute" }, { "api_name": "psutil.AccessDenied", "line_number": 12, "usage_type": "attribute" }, { "api_name": "psutil.ZombieProcess", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.name", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "sqlite3.connect", "line_number": 37, "usage_type": "call" }, { "api_name": "os.access", "line_number": 47, "usage_type": "call" }, { "api_name": "os.R_OK", "line_number": 47, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 54, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 56, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 59, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path", "line_number": 63, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 64, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 74, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 77, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 82, "usage_type": "attribute" } ]
29716875304
from basePlayer import BasePlayer import itertools from math import inf from random import choice import numpy as np from generals import State import pickle from minimaxPlayer import MinMaxPlayer from generals import PlayerEnum from game import Board from game import Controller from generals import g from sklearn.preprocessing import StandardScaler from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import KNeighborsClassifier class SVMPlayer(BasePlayer): def __init__(self, sign, board): BasePlayer.__init__(self, board) self.states_value = {} # state -> value # get unique hash of current board state def getHash(self, boardState): boardHash = "" for k in range(len(boardState)): for l in range(len(boardState)): boardHash += str(boardState[k][l].state.value) return boardHash def training(self, X, Y, rounds=10000): X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42) """scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) print(X_scaled) """ """ for i in range(len(X)): print(str(X[i]) + " " + str(Y[i])) """ """ reg = svm.SVR(C=1.0, cache_size=1000, coef0=0.0, degree=3, epsilon=0.1, gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) """ #SVRmodel.fit(X_scaled, Y) #reg = RandomForestRegressor(max_depth=3, random_state=0, n_estimators=200) reg = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial') #reg = LinearRegression() #reg = linear_model.BayesianRidge() #reg = linear_model.Lasso(alpha=0.1) #reg = linear_model.Ridge(alpha=1.0) #reg = RandomForestClassifier(n_estimators=150, max_depth=4, random_state=0) #reg = MultinomialNB() #reg = KNeighborsClassifier(n_neighbors=3) reg.fit(X, Y) #print(reg.feature_importances_) result = reg.score(X_train, Y_train) print("Accuracy: %.2f%%" % (result*100.0)) print() #print(X[3]) """ print(X_scaled[1]) """ #print(Y[3]) """ for i in range(len(X_test)): print(X_test[i]) print(reg.predict([X_test[i]])) print(Y_test[i]) """ return reg def generateStates(self, boardSize, gameNumber): board = Board(boardSize) cont = Controller(PlayerEnum.Random, PlayerEnum.Random, board) boardStates = [] winStates = [] winner = -1 for _ in itertools.repeat(None, gameNumber): end = False number_of_appends = 0 while board.freeCellCheck(): win = False move = cont.player1.move() boardState = self.transfromBoardState4(self.getHash(board.table)) if boardState not in boardStates: boardStates.append(boardState) number_of_appends = number_of_appends + 1 if cont.checkWin(cont.player1.sign, move): win = True end = True winner = 1 board.reset() break if not board.freeCellCheck(): break move = cont.player2.move() boardState = self.transfromBoardState4(self.getHash(board.table)) if boardState not in boardStates: boardStates.append(boardState) number_of_appends = number_of_appends + 1 if cont.checkWin(cont.player2.sign, move): win = True end = True winner = 2 board.reset() break if not win: board.reset() end = True winner = 0 if end: for _ in itertools.repeat(None, number_of_appends): winStates.append(winner) return [boardStates, winStates] def transfromBoardState4(self, boardStateHash): result = [] for i in range(len(boardStateHash)): if boardStateHash[i] == '1': result.append(1) result.append(0) result.append(0) elif boardStateHash[i] == '2': result.append(0) result.append(1) result.append(0) else: result.append(0) result.append(0) result.append(1) return result def transfromBoardState5(self, boardStateHash): result = [] for i in range(len(boardStateHash)): if boardStateHash[i] == '1': result.append(1) result.append(0) elif boardStateHash[i] == '2': result.append(0) result.append(1) else: result.append(0) result.append(0) return result
Gbor97/TicTacToe
SVMPlayer.py
SVMPlayer.py
py
5,736
python
en
code
0
github-code
6
[ { "api_name": "basePlayer.BasePlayer", "line_number": 27, "usage_type": "name" }, { "api_name": "basePlayer.BasePlayer.__init__", "line_number": 29, "usage_type": "call" }, { "api_name": "basePlayer.BasePlayer", "line_number": 29, "usage_type": "name" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 41, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 58, "usage_type": "call" }, { "api_name": "game.Board", "line_number": 91, "usage_type": "call" }, { "api_name": "game.Controller", "line_number": 92, "usage_type": "call" }, { "api_name": "generals.PlayerEnum.Random", "line_number": 92, "usage_type": "attribute" }, { "api_name": "generals.PlayerEnum", "line_number": 92, "usage_type": "name" }, { "api_name": "itertools.repeat", "line_number": 96, "usage_type": "call" }, { "api_name": "itertools.repeat", "line_number": 130, "usage_type": "call" } ]
36180496136
""" Zimri Leisher and Luca Araujo Codeforces database, API and web app """ import sys import traceback import psycopg2 import json import config import flask from collections import defaultdict api = flask.Blueprint('api', __name__) def get_connection(): return psycopg2.connect(database=config.database, user=config.user, password=config.password) @api.route('/help') def get_help(): return flask.send_file('.' + flask.url_for('static', filename='api-design.txt'), mimetype='text') @api.route('/users/<institution_type>') def get_users(institution_type): """REQUEST: /users/<institution_type> institution_type (Required) -- defines whether we should search users by their university or country GET parameters search_name (Optional, default: '') -- gives the name of the unversity/country to search for lowest_rating (Optional, default: -infinity) -- return only users with rating bigger than or equal to the one given highest_rating (Optional, default: infinity) -- return only users with rating less than or equal to the one given max_users (Optional, default: 10) -- the maximum number of users to return if value given is higher than 500 it is changed to 500 RESPONSE: a JSON list of dictionaries, each of which represents one user, sorted decreasingly by rating. Each dictionary in this list will have the following fields. handle -- (TEXT) the user's handle name -- (TEXT) the user's name rating -- (INTEGER) the user's current rating max_rating -- (INTEGER) the user's maximum rating rank -- (TEXT) the user's current rank max_rank -- (TEXT) the user's maximum rank""" lowest_rating = flask.request.args.get("lowest_rating") highest_rating = flask.request.args.get("highest_rating") max_users = flask.request.args.get("max_users") institution_name = flask.request.args.get("institution_name") query = """SELECT handle, first_name, last_name, rating, max_rating, user_rank, max_user_rank FROM users""" predicates = [] args = {} if lowest_rating: predicates.append("""users.rating >= %(lowest_rating)s""") args["lowest_rating"] = int(lowest_rating) if highest_rating: predicates.append("""users.rating <= %(highest_rating)s""") args["highest_rating"] = int(highest_rating) if institution_type and institution_name: if institution_type == 'country': predicates.append("""users.country ILIKE CONCAT('%%', %(institution_name)s, '%%')""") else: predicates.append("""users.organization ILIKE CONCAT('%%', %(institution_name)s, '%%')""") args["institution_name"] = institution_name if len(predicates) > 0: query += " WHERE " + " AND ".join(predicates) query += " ORDER BY (-users.rating, users.handle) LIMIT %(max_users)s" args["max_users"] = int(max_users) if max_users else 50 users = [] try: connection = get_connection() cursor = connection.cursor() cursor.execute(query, args) for row in list(cursor): users.append({"handle": row[0], "name": (row[1] if row[1] else "") + " " + (row[2] if row[2] else ""), "rating": row[3], "max_rating": row[4], "user_rank": row[5], "max_user_rank": row[6]}) cursor.close() connection.close() except Exception as e: traceback.print_exc() return json.dumps(users) @api.route('/problems') def get_problems(): """REQUEST: /problems GET parameters tag (Optional, default: '') -- returns only problems that contain the defined tag. If left blank returns problems of any tag lowest_rating (Optional, default: -infinity) -- return only problems with rating bigger than or equal to the one given highest_rating (Optional, default: infinity) -- return only problems with rating less than or equal to the one given max_problems (Optional, default: 10) -- the maximum number of problems to return if value given is higher than 500 it is changed to 500 RESPONSE: a JSON list of dictionaries, each of which represents one problem, sorted decreasingly by number of users who solved the problem. Each dictionary in this list will have the following fields. id -- (INTEGER) the codeforces id of the problem name -- (TEXT) the problem's name rating -- (INTEGER) the problem's rating tags -- (TEXT) the list of tags of a problem separated by commas solved_count -- (INTEGER) the number of users that solved that problem""" # a user can ask for a query without any tag tag = flask.request.args.get("tag") lowest_rating = flask.request.args.get("lowest_rating") highest_rating = flask.request.args.get("highest_rating") max_problems = flask.request.args.get("max_problems") query = """SELECT problems.problem_id, problems.name, rating, solved_count FROM problems""" predicates = [] args = {} if tag: query += ", problem_tags, tags" # we only search through the tags if we need predicates.append("""tags.name = %(tag)s AND tags.id = problem_tags.tag_id AND problem_tags.problem_id = problems.problem_id""") args["tag"] = tag if lowest_rating: predicates.append("""problems.rating >= %(lowest_rating)s""") args["lowest_rating"] = int(lowest_rating) if highest_rating: predicates.append("""problems.rating <= %(highest_rating)s""") args["highest_rating"] = int(highest_rating) if len(predicates) > 0: query += " WHERE " + " AND ".join(predicates) query += " ORDER BY problems.solved_count DESC LIMIT %(max_problems)s" args["max_problems"] = int(max_problems) if max_problems else 50 problems = [] try: connection = get_connection() cursor = connection.cursor() cursor.execute(query, args) for row in list(cursor): problems.append({"id": row[0], "name": row[1], "rating": row[2], "solved_count": row[3]}) for problem in problems: local_query= """SELECT tags.name FROM tags, problem_tags WHERE problem_tags.problem_id = %(id)s AND problem_tags.tag_id = tags.id""" local_args = {"id" : problem['id']} cursor.execute(local_query, local_args) problem["tags"] = [] for tag in list(cursor): problem["tags"].append(tag[0]) problem["tags"] = ", ".join(problem["tags"]) cursor.close() connection.close() except Exception as e: traceback.print_exc() return json.dumps(problems) @api.route('/contests/<data_requested>') def get_contest_graph(data_requested): """REQUEST: /contests/<data_requested> data_requested (Required) -- defines whether to display the graph by difficulty of the contest (calculated by the average difficulty of each contest) or by the number of users that solved any problem of that contest GET parameters lowest_id (Optional, default: 0) -- return only the contests with id bigger than or equal to the given value highest_id (Optional, default: infinity) -- return only the contests with id less than or equal to the given value RESPONSE: a JSON list of tuples of two elements, each of which represents one contest, sorted increasingly by index. Each tuple contains a pair of (id, difficulty) if the requested information was difficulty or a pair of (index, solved_count) if the requested information was solved count""" # values of the data requested must be either total_solves or difficulty lowest_id = flask.request.args.get("lowest_id") highest_id = flask.request.args.get("highest_id") print("received args:", flask.request.args) predicates = [] args = {} query = """SELECT contests.id, contests.%(data_requested)s FROM contests""" args["data_requested"] = psycopg2.extensions.AsIs(data_requested) if lowest_id: predicates.append("""contests.id >= %(lowest_id)s""") args["lowest_id"] = int(lowest_id) if highest_id: predicates.append("""contests.id <= %(highest_id)s""") args["highest_id"] = int(highest_id) if len(predicates) > 0: query += " WHERE " + " AND ".join(predicates) query += " ORDER BY contests.id" contests = [] try: connection = get_connection() cursor = connection.cursor() cursor.execute(query, args) for row in list(cursor): contests.append((row[0], row[1])) cursor.close() connection.close() except Exception as e: traceback.print_exc() return json.dumps(contests) @api.route('/tags_graph/<received_tags>') def get_tags_graph(received_tags): """REQUEST: /tags_graph/<tags> tags (Required) -- returns a plot graph for each of the required tags. The input is a list of tags separated by commas RESPONSE: a JSON dictionary, each of which represents one tag, sorted alphabetically by the name of the tag. There is a field of the dictionary for every tag, the field contains a list of tuples with the following parameters: rating -- (INTEGER) the rating range being counted count -- (INTEGER) the number of problems with that tag in that rating range""" received_tags = received_tags.split(',') print("received args:", received_tags) tags = {} for tag in received_tags: args = {} query = """SELECT problems.rating, COUNT(problems.rating) FROM tags, problem_tags, problems WHERE tags.name = %(tag)s AND tags.id = problem_tags.tag_id AND problem_tags.problem_id = problems.problem_id GROUP BY problems.rating ORDER BY problems.rating""" args["tag"] = tag try: connection = get_connection() cursor = connection.cursor() cursor.execute(query, args) tags[tag] = [] for element in list(cursor): if(element[0]): # I don't want the problems that have no rating (which is represented as 0) tags[tag].append((element[0], element[1])) cursor.close() connection.close() except Exception as e: traceback.print_exc() return json.dumps(tags) @api.route('/tag_names') def get_tag_names(): """REQUEST: /tag_names RESPONSE: a JSON list of TEXT with all the tag names""" query = """SELECT name FROM tags""" tags = [] try: connection = get_connection() cursor = connection.cursor() cursor.execute(query,) tags = [] for tag in list(cursor): tags.append(tag[0]) cursor.close() connection.close() except Exception as e: traceback.print_exc() return json.dumps(tags) @api.route('/tags_intersection/<received_tags>') def get_tags_intersection(received_tags): """REQUEST: /tags_intersection/<tags> tags (Required) -- returns the information for the problems that contain all tags. The input is a list of tags separated by commas RESPONSE: a JSON list of tuples, each of which represents a rating range, sorted decreasingly by rating. Each tuple will have the following fields: rating -- (INTEGER) the beginning of the rating range (all problems ratings' are multiples of 100) problem_count -- (INTEGER) the count of problems in that range with those tags solved_count -- (INTEGER) the count of solutions of problems in that range with those tags""" received_tags = received_tags.split(',') query = """SELECT problems.rating, problems.solved_count FROM problems, problem_tags, tags WHERE problem_tags.tag_id = tags.id AND problems.problem_id = problem_tags.problem_id AND tags.name IN ( """ # match only problems with all of the given tags query += ','.join(['%s' for i in range(len(received_tags))]) query += """) GROUP BY (problems.problem_id, problems.rating, problems.solved_count) HAVING COUNT(problems.problem_id) = %s""" ratingCount = defaultdict(int) solvedCount = defaultdict(int) try: connection = get_connection() cursor = connection.cursor() cursor.execute(query, received_tags + [len(received_tags)]) for element in list(cursor): rating = element[0] solves = element[1] if not rating: continue ratingCount[rating] += 1 solvedCount[rating] += solves cursor.close() connection.close() except Exception as e: traceback.print_exc() # return a list of (rating, count at that rating, solutions at that rating) of problems with these tags return json.dumps(sorted([(rating, ratingCount[rating], solvedCount[rating]) for rating in ratingCount]))
LucaDantas/cs257
webapp/api.py
api.py
py
13,186
python
en
code
0
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 15, "usage_type": "call" }, { "api_name": "psycopg2.connect", "line_number": 19, "usage_type": "call" }, { "api_name": "config.database", "line_number": 19, "usage_type": "attribute" }, { "api_name": "config.user", "line_number": 20, "usage_type": "attribute" }, { "api_name": "config.password", "line_number": 21, "usage_type": "attribute" }, { "api_name": "flask.send_file", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 58, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 58, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 59, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 59, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 60, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 60, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 61, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 61, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 103, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 105, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 135, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 135, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 136, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 136, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 137, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 137, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 138, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 138, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 192, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 194, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 216, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 216, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 217, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 217, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 219, "usage_type": "attribute" }, { "api_name": "psycopg2.extensions.AsIs", "line_number": 225, "usage_type": "call" }, { "api_name": "psycopg2.extensions", "line_number": 225, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 252, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 254, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 301, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 303, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 324, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 326, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 356, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 357, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 374, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 377, "usage_type": "call" } ]
10062234348
import dataclasses import logging import typing import httpx from sequoia.exceptions import DiscoveryResourcesError, DiscoveryServicesError, ResourceNotFound, ServiceNotFound logger = logging.getLogger(__name__) __all__ = ["Resource", "ResourcesRegistry", "Service", "ServicesRegistry"] @dataclasses.dataclass class Resource: """ Representation of a resource part of a Sequoia service. """ name: str path: str class ResourcesRegistry(dict): """ Mapping of available resources by name. """ def __getitem__(self, key: str) -> Resource: try: return super().__getitem__(key) except KeyError: raise ResourceNotFound(key) @dataclasses.dataclass class Service: """ Representation of a Sequoia service. """ name: str url: str title: typing.Optional[str] = dataclasses.field(default=None, hash=False, compare=False) description: typing.Optional[str] = dataclasses.field(default=None, hash=False, compare=False) async def discover(self): """ Request a service description endpoint to discover its resources and metadata. """ async with httpx.AsyncClient(timeout=60) as client: try: response = await client.get(f"{self.url}/descriptor/raw/") response.raise_for_status() response = response.json() self.title = response["title"] self.description = response["description"] self._resources = ResourcesRegistry( { i["hyphenatedPluralName"].replace("-", "_"): Resource( name=i["pluralName"], path=f"{i['path']}/{i['hyphenatedPluralName']}" ) for i in response["resourcefuls"].values() } ) except KeyError: logger.exception("Wrong response retrieving description of service '%s': %s", self.name, str(response)) raise DiscoveryResourcesError(service=self.name) except (httpx.exceptions.HTTPError, OSError): raise DiscoveryResourcesError(service=self.name) @property async def resources(self) -> ResourcesRegistry: """ Return the registry containing all the resources that are part of this service. This registry will be loaded when requested, following lazy pattern. :return: Resources registry. """ if not hasattr(self, "_resources"): await self.discover() return self._resources class ServicesRegistry(dict): """ Mapping of available services by name. """ def __getitem__(self, item): try: value = super().__getitem__(item) except KeyError: raise ServiceNotFound(item) return value async def discover(self, registry_url: str, owner: typing.Optional[str] = None): """ Request Registry service to update the list of all available services. :return: Services registry. """ async with httpx.AsyncClient(timeout=60) as client: try: response = await client.get(f"{registry_url}/services/{owner or 'root'}/") response.raise_for_status() response = response.json() self.clear() self.update( sorted( {i["name"]: Service(name=i["name"], url=i["location"]) for i in response["services"]}.items() ) ) except KeyError: logger.exception("Wrong response retrieving list of services from 'registry': %s", str(response)) raise DiscoveryServicesError() except (httpx.exceptions.HTTPError, OSError): raise DiscoveryServicesError()
pikselpalette/sequoia-python-client-sdk-async
sequoia/types.py
types.py
py
3,925
python
en
code
1
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 9, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 14, "usage_type": "attribute" }, { "api_name": "sequoia.exceptions.ResourceNotFound", "line_number": 33, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 44, "usage_type": "attribute" }, { "api_name": "dataclasses.field", "line_number": 44, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 45, "usage_type": "attribute" }, { "api_name": "dataclasses.field", "line_number": 45, "usage_type": "call" }, { "api_name": "httpx.AsyncClient", "line_number": 51, "usage_type": "call" }, { "api_name": "sequoia.exceptions.DiscoveryResourcesError", "line_number": 69, "usage_type": "call" }, { "api_name": "httpx.exceptions", "line_number": 70, "usage_type": "attribute" }, { "api_name": "sequoia.exceptions.DiscoveryResourcesError", "line_number": 71, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sequoia.exceptions.ServiceNotFound", "line_number": 96, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 100, "usage_type": "attribute" }, { "api_name": "httpx.AsyncClient", "line_number": 106, "usage_type": "call" }, { "api_name": "sequoia.exceptions.DiscoveryServicesError", "line_number": 120, "usage_type": "call" }, { "api_name": "httpx.exceptions", "line_number": 121, "usage_type": "attribute" }, { "api_name": "sequoia.exceptions.DiscoveryServicesError", "line_number": 122, "usage_type": "call" } ]
30578251026
import logging import itertools import math import sys import collections import datetime import shutil import click from .status import JobStatus, JOB_EVENT_STATUS_TRANSITIONS logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) SYMBOLS = [" ", "I", "R", "X", "C", "H", "S"] STATUS_TO_SYMBOL = dict(zip(JobStatus, SYMBOLS)) COLORS = ["black", "yellow", "blue", "magenta", "green", "red", "magenta"] SYMBOL_TO_COLOR = dict(zip(SYMBOLS, COLORS)) def make_state_graph(events): job_states = {} job_state_counts = collections.Counter() counts_over_time = [] for event in sorted(events, key=lambda e: e.timestamp): event_key = (event.cluster, event.proc) new_status = JOB_EVENT_STATUS_TRANSITIONS.get(event.type, None) if new_status is not None: old_status = job_states.get(event_key, None) job_states[event_key] = new_status job_state_counts[new_status] += 1 if old_status is not None: job_state_counts[old_status] -= 1 counts_over_time.append((event.timestamp, job_state_counts.copy())) term = shutil.get_terminal_size((80, 20)) width = term.columns - 10 height = term.lines - 10 graph = make_bars(counts_over_time, width, height) rows = ["│" + row for row in graph.splitlines()] rows.append("└" + ("─" * (width))) first_time, _ = counts_over_time[0] last_time, _ = counts_over_time[-1] left_date_str = ( datetime.datetime.fromtimestamp(first_time) .strftime("%y-%m-%d %H:%M:%S") .ljust(width + 1) ) right_date_str = ( datetime.datetime.fromtimestamp(last_time) .strftime("%y-%m-%d %H:%M:%S") .rjust(width + 1) ) time_str = "Time".center(width + 1) rows.append(merge_strings(left_date_str, right_date_str, time_str)) max_jobs = max(total_counts(c) for _, c in counts_over_time) extra_len = max(len(str(max_jobs)), len("# Jobs")) new_rows = [] for idx, row in enumerate(rows): if idx == 0: new_rows.append(str(max_jobs).rjust(extra_len) + row) elif idx == len(rows) - 2: new_rows.append("0".rjust(extra_len) + row) elif idx == len(rows) // 2: new_rows.append("# Jobs".rjust(extra_len) + row) else: new_rows.append((" " * extra_len) + row) rows = new_rows graph = "\n".join(rows) return graph def merge_strings(*strings): max_len = max(len(s) for s in strings) out = [" "] * max_len for string in strings: for idx, char in enumerate(string): if out[idx] == " " and char != " ": out[idx] = char return "".join(out) def make_bars(counts_over_time, width, height): first_time, _ = counts_over_time[0] last_time, last_counts = counts_over_time[-1] groups = list(group_counts_by_time(counts_over_time, width)) counts = [avg_counts(group) for group in groups] counts[0] = groups[0][-1][1] counts[-1] = last_counts max_jobs = max(total_counts(c) for c in counts if c is not None) columns = [] for count in counts: if count is None: columns.append(columns[-1]) continue bar_lens = calculate_column_partition(count, max_jobs, height) columns.append( "".join( symbol * bar_lens[status] for status, symbol in STATUS_TO_SYMBOL.items() ) ) rows = list( reversed(list(map(list, itertools.zip_longest(*columns, fillvalue=" ")))) ) rows = [ "".join( click.style("█" * len(list(group)), fg=SYMBOL_TO_COLOR[symbol]) for symbol, group in itertools.groupby(row) ) for row in rows ] return "\n".join(rows) def calculate_column_partition(counts, max_jobs, height): raw_split = [(counts.get(status, 0) / max_jobs) * height for status in JobStatus] int_split = [0 for _ in range(len(raw_split))] carry = 0 for idx, entry in enumerate(raw_split): dec = entry - math.floor(entry) if entry == 0: int_split[idx] = 0 elif dec >= 0.5: int_split[idx] = math.ceil(entry) elif math.floor(entry) == 0: int_split[idx] = 1 carry += 1 elif dec < 0.5: int_split[idx] = math.floor(entry) else: raise Exception("Unreachable") int_split[int_split.index(max(int_split))] -= carry return {k: v for k, v in zip(JobStatus, int_split)} def _calculate_bar_component_len(count, total, bar_width): if count == 0: return 0 return max(int((count / total) * bar_width), 1) def total_counts(counter): return sum(counter.values()) def group_counts_by_time(counts_over_time, n_divisions): first_time, _ = counts_over_time[0] last_time, _ = counts_over_time[-1] dt = (last_time - first_time) / n_divisions left_idx = 0 right_idx = 0 for left_time in (first_time + (n * dt) for n in range(n_divisions)): right_time = left_time + dt for right_idx, (timestamp, _) in enumerate( counts_over_time[left_idx:], start=left_idx ): if timestamp > right_time: break yield counts_over_time[left_idx:right_idx] left_idx = right_idx def avg_counts(counts_over_time): lc = len(counts_over_time) if lc == 0: return None counts = [counts for _, counts in counts_over_time] return collections.Counter( {k: v / lc for k, v in sum(counts, collections.Counter()).items()} ) if __name__ == "__main__": make_state_graph(sys.argv[1])
JoshKarpel/condor_necropsy
condor_necropsy/state_graph.py
state_graph.py
py
5,724
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 14, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 15, "usage_type": "attribute" }, { "api_name": "status.JobStatus", "line_number": 18, "usage_type": "argument" }, { "api_name": "collections.Counter", "line_number": 26, "usage_type": "call" }, { "api_name": "status.JOB_EVENT_STATUS_TRANSITIONS.get", "line_number": 31, "usage_type": "call" }, { "api_name": "status.JOB_EVENT_STATUS_TRANSITIONS", "line_number": 31, "usage_type": "name" }, { "api_name": "shutil.get_terminal_size", "line_number": 44, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 58, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 58, "usage_type": "attribute" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 63, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 63, "usage_type": "attribute" }, { "api_name": "itertools.zip_longest", "line_number": 129, "usage_type": "call" }, { "api_name": "click.style", "line_number": 133, "usage_type": "call" }, { "api_name": "itertools.groupby", "line_number": 134, "usage_type": "call" }, { "api_name": "status.JobStatus", "line_number": 143, "usage_type": "name" }, { "api_name": "math.floor", "line_number": 148, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 153, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 154, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 158, "usage_type": "call" }, { "api_name": "status.JobStatus", "line_number": 164, "usage_type": "argument" }, { "api_name": "collections.Counter", "line_number": 206, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 207, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 212, "usage_type": "attribute" } ]
39830489884
from collections import deque def solution(n, info): answer = [] diff = 0 queue = deque() queue.append((0, [0,0,0,0,0,0,0,0,0,0,0])) while queue: idx, arr = queue.popleft() # 화살을 전부 쐈을경우 if sum(arr) == n: # 어피치와 라이언 점수 체크 apeach, lion = 0, 0 for i in range(11): if info[i] == arr[i] == 0: continue if info[i] >= arr[i]: apeach += 10 - i else: lion += 10 - i # 라이언의 점수가 어피치 보다 크면 if apeach < lion: curr_diff = lion - apeach # 점수차가 이전보다 작을경우 if diff > curr_diff: continue # 점수차가 이전보다 클경우 if diff < curr_diff: # 점수차 변경 diff = curr_diff # 결과 리스트 초기화 answer.clear() # 결과 리스트에 추가 answer.append(arr) # 화살을 제한 개수보다 많이 쐈을경우 elif sum(arr) > n: continue # 현재 인덱스가 0점인 과녁일경우 elif idx == 10: temp = arr.copy() # 남은 화살 개수 만큼 0점에 쏘기 temp[idx] = n - sum(arr) queue.append((-1, temp)) else: # 어피치보다 해당 과녁을 더많이 맞춤 temp = arr.copy() temp[idx] = info[idx] + 1 queue.append((idx + 1, temp)) # 해당과녁 맞추지 않음 temp2 = arr.copy() temp2[idx] = 0 queue.append((idx + 1, temp2)) return answer[-1] if answer else [-1] print(solution(5, [2,1,1,1,0,0,0,0,0,0,0])) print(solution(1, [1,0,0,0,0,0,0,0,0,0,0])) print(solution(9, [0,0,1,2,0,1,1,1,1,1,1])) print(solution(10, [0,0,0,0,0,0,0,0,3,4,3]))
omg7152/CodingTestPractice
kakaoBlindRecruitment2022/Q4.py
Q4.py
py
2,081
python
ko
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 7, "usage_type": "call" } ]
21160883826
import os import math import torch import pytorch_lightning as pl import torch.nn.functional as F import torch.nn as nn from numpy import sqrt, argmax from torch.optim import lr_scheduler from .model import CNN import numpy as np import pandas as pd from sklearn.metrics import roc_curve, confusion_matrix, roc_auc_score from matplotlib import pyplot from backbone.vit_pytorch import cait, vit, deepvit from backbone.torchvision.models_orig import resnet, densenet, inception from factory.config import * class Model(pl.LightningModule): def __init__(self, model_name): super().__init__() self.model_name = model_name # efficientnet-b0 ~ efficientnet-b5 if model_name == 'efficientnet-b0': self.net = CNN(backbone="efficientnet-b0", freeze=False) if model_name == 'efficientnet-b1': self.net = CNN(backbone="efficientnet-b1", freeze=False) if model_name == 'efficientnet-b2': self.net = CNN(backbone="efficientnet-b1", freeze=False) if model_name == 'efficientnet-b3': self.net = CNN(backbone="efficientnet-b2", freeze=False) if model_name == 'efficientnet-b4': self.net = CNN(backbone="efficientnet-b4", freeze=False) if model_name == 'efficientnet-b5': self.net = CNN(backbone="efficientnet-b5", freeze=False) #naive vit elif model_name == 'vit': self.net = vit.ViT(image_size=IMG_SIZE , patch_size=32, num_classes=2, dim=1024, depth=6, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1) #Cait elif model_name == 'cait': self.net = cait.CaiT(image_size=IMG_SIZE, patch_size=32, num_classes=2, dim=1024, depth=12, cls_depth=2, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1, layer_dropout=0.05) #deep vit elif model_name == 'deepvit': self.net = deepvit.DeepViT(image_size=IMG_SIZE, patch_size=32, num_classes=2, dim=1024, depth=6, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1) #resnet50 elif model_name == 'resnet50': self.net = resnet.resnet50(pretrained=True) #resnet101 elif model_name == 'resnet101': self.net = resnet.resnet101(pretrained=True) #resnet152 elif model_name == 'resnet152': self.net = resnet.resnet152(pretrained=True) #densenet121 elif model_name == 'densenet121': self.net = densenet.densenet121(pretrained=True) #densenet161 elif model_name == 'densenet161': self.net = densenet.densenet161(pretrained=True) #densenet169 elif model_name == 'densenet169': self.net = densenet.densenet169(pretrained=True) #densenet201 elif model_name == 'densenet201': self.net = densenet.densenet201(pretrained=True) #inception_v3 elif model_name == 'inception_v3': self.net = inception.inception_v3(pretrained=True) hidden_dim1 = 256 hidden_dim2 = 64 num_classes = 2 dropout = 0.1 self.classifier = nn.Sequential( nn.Linear(1000, hidden_dim1), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim1, hidden_dim2), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim2, num_classes) ) self.train_preds = [] self.train_gts = [] self.valid_preds = [] self.valid_gts = [] self.test_preds = [] self.test_probs = [] self.test_gts = [] def forward(self, x): if 'efficientnet' in self.model_name: return self.net(x) elif 'inception' in self.model_name: x = self.net(x) return self.classifier(x.logits) else: x = self.net(x) return self.classifier(x) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-4) scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) return [optimizer], [scheduler] def training_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.train_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) self.train_preds.append(c.cpu().item()) self.log("loss", loss, on_epoch=True, prog_bar=True) return loss def training_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.train_gts, self.train_preds ) avg_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log("train_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("train_acc", acc, on_epoch=True, prog_bar=True) self.log("train_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("train_specificity", spe, on_epoch=True, prog_bar=True) self.log("train_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("train_npv", npv, on_epoch=True, prog_bar=True) self.log("train_tn", tn , on_epoch=True, prog_bar=True) self.log("train_fp", fp, on_epoch=True, prog_bar=True) self.log("train_fn", fn, on_epoch=True, prog_bar=True) self.log("train_tp", tp, on_epoch=True, prog_bar=True) self.train_preds = [] self.train_gts = [] def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.valid_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) self.valid_preds.append(c.cpu().item()) acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.valid_gts, self.valid_preds ) self.log("val_bat_loss", loss, on_epoch=True, prog_bar=True) self.log("val_acc", acc, on_epoch=True, prog_bar=True) self.log("val_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("val_specificity", spe, on_epoch=True, prog_bar=True) self.log("val_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("val_npv", npv, on_epoch=True, prog_bar=True) self.log("val_tn", tn , on_epoch=True, prog_bar=True) self.log("val_fp", fp, on_epoch=True, prog_bar=True) self.log("val_fn", fn, on_epoch=True, prog_bar=True) self.log("val_tp", tp, on_epoch=True, prog_bar=True) return { "val_bat_loss": loss, "val_acc": acc, "val_sensitivity(recall)": sen, "val_specificity": spe, "val_ppv(precision)":ppv, "val_npv": npv, "val_tn": tn, "val_fp": fp, "val_fn": fn, "val_tp": tp, } def validation_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.valid_gts, self.valid_preds ) avg_loss = torch.stack([x['val_bat_loss'] for x in outputs]).mean() self.log("val_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("val_acc", acc, on_epoch=True, prog_bar=True) self.log("val_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("val_specificity", spe, on_epoch=True, prog_bar=True) self.log("val_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("val_npv", npv, on_epoch=True, prog_bar=True) self.log("val_tn", tn , on_epoch=True, prog_bar=True) self.log("val_fp", fp, on_epoch=True, prog_bar=True) self.log("val_fn", fn, on_epoch=True, prog_bar=True) self.log("val_tp", tp, on_epoch=True, prog_bar=True) self.valid_preds = [] self.valid_gts = [] def test_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.test_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) p = F.softmax(py, dim=0)[1] self.test_probs.append(p.cpu().item()) self.test_preds.append(c.cpu().item()) self.log("test_loss", loss, on_epoch=True, prog_bar=True) return {'test_loss': loss} def test_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.test_gts, self.test_preds ) auc = self.calculate_auc(self.test_gts, self.test_probs) avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() self.log("test_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("test_acc", acc, on_epoch=True, prog_bar=True) self.log("test_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("test_specificity", spe, on_epoch=True, prog_bar=True) self.log("test_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("test_npv", npv, on_epoch=True, prog_bar=True) self.log("test_auc", auc, on_epoch=True, prog_bar=True) self.log("test_tn", tn , on_epoch=True, prog_bar=True) self.log("test_fp", fp, on_epoch=True, prog_bar=True) self.log("test_fn", fn, on_epoch=True, prog_bar=True) self.log("test_tp", tp, on_epoch=True, prog_bar=True) print('============' * 5) print('Accuracy : {:.4f}, Recall(Sensitivity) : {:.4f}, Specificity :{:.4f}, PPV(Precision) : {:.4f}, NPV : {:.4f}, Auc : {:.4f}, Confusion : ( TP-{} | FP-{} | FN-{} | TN-{} )'.format(acc, sen, spe, ppv, npv, auc, tp, fp, fn, tn)) print('============' * 5) dfGTs = pd.DataFrame(np.round_(np.array(self.test_gts))) dfPreds = pd.DataFrame(np.round_(np.array(self.test_preds))) dfProbs = pd.DataFrame(np.round_(np.array(self.test_probs) * 100, 3)) pd.concat([dfGTs, dfPreds, dfProbs], axis=1).to_csv('./test.csv', index=False) def calculate_metrics(self, gts, preds): tn, fp, fn, tp = confusion_matrix(gts, preds, labels=[0,1]).ravel() if math.isnan(tn): tn = 0 if math.isnan(fp): fp = 0 if math.isnan(fn): fn = 0 if math.isnan(tp): tp = 0 acc = (tp + tn) / (tn + fp + fn + tp) sen = tp / (tp + fn) spe = tn / (tn + fp) ppv = tp / (tp + fp) npv = tn / (tn + fn) if math.isnan(acc): acc = 0 if math.isnan(sen): sen = 0 if math.isnan(spe): spe = 0 if math.isnan(ppv): ppv = 0 if math.isnan(npv): npv = 0 return np.float32(acc), np.float32(sen), np.float32(spe), np.float32(ppv), np.float32(npv), tn, fp, fn, tp def calculate_auc(self, gts, probs): try: auc = roc_auc_score(gts, probs) ns_probs = [0 for _ in range(len(gts))] lr_probs = probs ns_auc = roc_auc_score(gts, ns_probs) lr_auc = roc_auc_score(gts, lr_probs) ns_fpr, ns_tpr, _ = roc_curve(gts, ns_probs) lr_fpr, lr_tpr, _ = roc_curve(gts, lr_probs) # calculate g-mean for each threshold gmeans = sqrt(lr_tpr * (1-lr_fpr)) ix = argmax(gmeans) # plot True, Predict, Best pyplot.scatter(lr_fpr[ix], lr_tpr[ix], marker='*', color='black', label='Best') pyplot.text(lr_fpr[ix] + 0.05, lr_tpr[ix] - 0.05, "FPR: {}\nTPR: {}".format(lr_fpr[ix], lr_tpr[ix]), fontsize=7) pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='True') pyplot.plot(lr_fpr, lr_tpr, marker=',', label='Predict (auc={})'.format(round(auc, 3))) pyplot.xlabel('False Positive Rate (1 - Specificity)') pyplot.ylabel('True Positive Rate (Sensitivity)') pyplot.legend() pyplot.savefig('test_roc.png', dpi=600) except ValueError: auc=0 return auc
Junkkkk/ovarian_cancer_detection
models/lightning_model.py
lightning_model.py
py
12,263
python
en
code
1
github-code
6
[ { "api_name": "pytorch_lightning.LightningModule", "line_number": 22, "usage_type": "attribute" }, { "api_name": "model.CNN", "line_number": 31, "usage_type": "call" }, { "api_name": "model.CNN", "line_number": 33, "usage_type": "call" }, { "api_name": "model.CNN", "line_number": 35, "usage_type": "call" }, { "api_name": "model.CNN", "line_number": 37, "usage_type": "call" }, { "api_name": "model.CNN", "line_number": 39, "usage_type": "call" }, { "api_name": "model.CNN", "line_number": 41, "usage_type": "call" }, { "api_name": "backbone.vit_pytorch.vit.ViT", "line_number": 45, "usage_type": "call" }, { "api_name": "backbone.vit_pytorch.vit", "line_number": 45, "usage_type": "name" }, { "api_name": "backbone.vit_pytorch.cait.CaiT", "line_number": 49, "usage_type": "call" }, { "api_name": "backbone.vit_pytorch.cait", "line_number": 49, "usage_type": "name" }, { "api_name": "backbone.vit_pytorch.deepvit.DeepViT", "line_number": 53, "usage_type": "call" }, { "api_name": "backbone.vit_pytorch.deepvit", "line_number": 53, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.resnet.resnet50", "line_number": 57, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.resnet", "line_number": 57, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.resnet.resnet101", "line_number": 61, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.resnet", "line_number": 61, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.resnet.resnet152", "line_number": 65, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.resnet", "line_number": 65, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.densenet.densenet121", "line_number": 69, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.densenet", "line_number": 69, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.densenet.densenet161", "line_number": 73, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.densenet", "line_number": 73, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.densenet.densenet169", "line_number": 77, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.densenet", "line_number": 77, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.densenet.densenet201", "line_number": 81, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.densenet", "line_number": 81, "usage_type": "name" }, { "api_name": "backbone.torchvision.models_orig.inception.inception_v3", "line_number": 85, "usage_type": "call" }, { "api_name": "backbone.torchvision.models_orig.inception", "line_number": 85, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 92, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 93, "usage_type": "name" }, { "api_name": "torch.nn.GELU", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 94, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 95, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 95, "usage_type": "name" }, { "api_name": "torch.nn.GELU", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 96, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 97, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 122, "usage_type": "attribute" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler", "line_number": 123, "usage_type": "name" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.argmax", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 164, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 164, "usage_type": "name" }, { "api_name": "torch.argmax", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 198, "usage_type": "call" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 218, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 218, "usage_type": "name" }, { "api_name": "torch.argmax", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 224, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 224, "usage_type": "name" }, { "api_name": "torch.stack", "line_number": 237, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 256, "usage_type": "call" }, { "api_name": "numpy.round_", "line_number": 256, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 256, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.round_", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 257, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 258, "usage_type": "call" }, { "api_name": "numpy.round_", "line_number": 258, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 258, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 260, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 264, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 266, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 267, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 268, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 269, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 277, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 278, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 279, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 280, "usage_type": "call" }, { "api_name": "math.isnan", "line_number": 281, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 283, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 287, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 292, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 293, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 295, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 296, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 299, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 300, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 303, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 303, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 304, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 304, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 306, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 306, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 307, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 307, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 309, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 309, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 310, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 310, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 312, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 312, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 314, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 314, "usage_type": "name" } ]
32059806236
#!/usr/bin/env python3 """ led.py Notes ----- - Docstrings follow the numpydoc style: https://numpydoc.readthedocs.io/en/latest/format.html - Code follows the PEP 8 style guide: https://www.python.org/dev/peps/pep-0008/ """ import RPi.GPIO as GPIO from time import sleep import logging import constants as c LED_OUTPUT_PIN = 21 LED_TEST_TIME_SECS = 0.5 GPIO_WARNINGS_OFF = False ON_STRING = 'ON' OFF_STRING = 'OFF' class Led: """ Class to represent Led actuator Attributes ---------- __pin : int BCM GPIO pin number __led_on : bool True if LED on Methods ------- get_led_status() Returns the status of LED set_led_status(status) Sets the LED status invert_status() Inverts the status of the LED """ def __init__(self, pin=LED_OUTPUT_PIN): """ Initializes the Led Parameters ---------- pin : int BCM GPIO pin number """ self.__pin = pin self.__led_on = c.LED_OFF GPIO.setmode(GPIO.BCM) GPIO.setwarnings(GPIO_WARNINGS_OFF) GPIO.setup(self.__pin, GPIO.OUT) def get_status(self): """ Returns ------- self.__led_on : bool True if LED on """ return self.__led_on def set_status(self, status): """ Sets the LED status Parameters ---------- status : bool True if LED on, False if LED off """ output_gpio = None output_string = '' if status == c.LED_ON: output_gpio = GPIO.HIGH output_string = ON_STRING else: output_gpio = GPIO.LOW output_string = OFF_STRING GPIO.output(self.__pin, output_gpio) self.__led_on = status logging.debug('LED status updated to {}'.format(output_string)) def invert_status(self): """ Inverts the LED status - If LED status on, turn off LED - If LED status off, turn on LED Returns ------- self.__led_on : bool True if LED on """ self.set_status(not self.__led_on) return self.__led_on def led_test(): """ Creates an Led object for manual LED verification """ led = Led() led.set_status(c.LED_ON) sleep(LED_TEST_TIME_SECS) led.set_status(c.LED_OFF) GPIO.cleanup() if __name__ == '__main__': logging.basicConfig(format=c.LOGGING_FORMAT, level=c.LOGGING_DEFAULT_LEVEL) led_test()
Hasan-Baig/SYSC3010_Home_Pixel
lightclapper/led.py
led.py
py
2,584
python
en
code
0
github-code
6
[ { "api_name": "constants.LED_OFF", "line_number": 55, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.setmode", "line_number": 56, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 56, "usage_type": "name" }, { "api_name": "RPi.GPIO.BCM", "line_number": 56, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.setwarnings", "line_number": 57, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 57, "usage_type": "name" }, { "api_name": "RPi.GPIO.setup", "line_number": 58, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 58, "usage_type": "name" }, { "api_name": "RPi.GPIO.OUT", "line_number": 58, "usage_type": "attribute" }, { "api_name": "constants.LED_ON", "line_number": 81, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.HIGH", "line_number": 82, "usage_type": "attribute" }, { "api_name": "RPi.GPIO", "line_number": 82, "usage_type": "name" }, { "api_name": "RPi.GPIO.LOW", "line_number": 85, "usage_type": "attribute" }, { "api_name": "RPi.GPIO", "line_number": 85, "usage_type": "name" }, { "api_name": "RPi.GPIO.output", "line_number": 88, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 88, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 90, "usage_type": "call" }, { "api_name": "constants.LED_ON", "line_number": 113, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 114, "usage_type": "call" }, { "api_name": "constants.LED_OFF", "line_number": 115, "usage_type": "attribute" }, { "api_name": "RPi.GPIO.cleanup", "line_number": 117, "usage_type": "call" }, { "api_name": "RPi.GPIO", "line_number": 117, "usage_type": "name" }, { "api_name": "logging.basicConfig", "line_number": 121, "usage_type": "call" }, { "api_name": "constants.LOGGING_FORMAT", "line_number": 121, "usage_type": "attribute" }, { "api_name": "constants.LOGGING_DEFAULT_LEVEL", "line_number": 121, "usage_type": "attribute" } ]
40128251295
""" http://www.sphinx-doc.org/en/stable/ext/doctest.html https://github.com/sphinx-doc/sphinx/blob/master/sphinx/ext/doctest.py * TODO ** CLEANUP: use the sphinx directive parser from the sphinx project """ import doctest import enum import re import sys import textwrap import traceback from pathlib import Path from typing import TYPE_CHECKING from typing import Any from typing import Dict from typing import Iterator from typing import List from typing import Optional from typing import Tuple from typing import Union import _pytest.doctest import pytest from _pytest.config import Config from _pytest.doctest import DoctestItem from _pytest.doctest import _is_mocked from _pytest.doctest import _patch_unwrap_mock_aware from _pytest.main import Session from _pytest.pathlib import import_path from _pytest.python import Package if TYPE_CHECKING: import io import pdb from doctest import _Out _SpoofOut = io.StringIO class SphinxDoctestDirectives(enum.Enum): TESTCODE = 1 TESTOUTPUT = 2 TESTSETUP = 3 TESTCLEANUP = 4 DOCTEST = 5 _DIRECTIVES_W_OPTIONS = ( SphinxDoctestDirectives.TESTOUTPUT, SphinxDoctestDirectives.DOCTEST, ) _DIRECTIVES_W_SKIPIF = ( SphinxDoctestDirectives.TESTCODE, SphinxDoctestDirectives.TESTOUTPUT, SphinxDoctestDirectives.TESTSETUP, SphinxDoctestDirectives.TESTCLEANUP, SphinxDoctestDirectives.DOCTEST, ) def pytest_collect_file( file_path: Path, parent: Union[Session, Package] ) -> Optional[Union["SphinxDoctestModule", "SphinxDoctestTextfile"]]: config = parent.config if file_path.suffix == ".py": if config.option.doctestmodules: mod: Union[ "SphinxDoctestModule", "SphinxDoctestTextfile" ] = SphinxDoctestModule.from_parent(parent, path=file_path) return mod elif _is_doctest(config, file_path, parent): return SphinxDoctestTextfile.from_parent(parent, path=file_path) # type: ignore return None GlobDict = Dict[str, Any] def _is_doctest(config: Config, path: Path, parent: Union[Session, Package]) -> bool: if path.suffix in (".txt", ".rst") and parent.session.isinitpath(path): return True globs = config.getoption("doctestglob") or ["test*.txt"] assert isinstance(globs, list) for glob in globs: if path.match(path_pattern=glob): return True return False # This regular expression looks for option directives in the expected output # (testoutput) code of an example. Option directives are comments starting # with ":options:". _OPTION_DIRECTIVE_RE = re.compile(r':options:\s*([^\n\'"]*)$') _OPTION_SKIPIF_RE = re.compile(r':skipif:\s*([^\n\'"]*)$') _DIRECTIVE_RE = re.compile( r""" \s*\.\.\s (?P<directive>(testcode|testoutput|testsetup|testcleanup|doctest)) ::\s* (?P<argument>([^\n'"]*)) $ """, re.VERBOSE, ) def _split_into_body_and_options( section_content: str, ) -> Tuple[str, Optional[str], Dict[int, bool]]: """Parse the the full content of a directive and split it. It is split into a string, where the options (:options:, :hide: and :skipif:) are removed, and into options. If there are options in `section_content`, they have to appear at the very beginning. The first line that is not an option (:options:, :hide: and :skipif:) and not a newline is the first line of the string that is returned (`remaining`). Parameters ---------- section_content : str String consisting of optional options (:skipif:, :hide: or :options:), and of a body. Returns ------- body : str skipif_expr : str or None flag_settings : dict Raises ------ ValueError * If options and the body of the section are not separated by a newline. * If the body of the section is empty. """ lines = section_content.strip().splitlines() skipif_expr = None flag_settings = {} i = 0 for line in lines: stripped = line.strip() if _OPTION_SKIPIF_RE.match(stripped): skipif_match = _OPTION_SKIPIF_RE.match(stripped) assert skipif_match is not None skipif_expr = skipif_match.group(1) i += 1 elif _OPTION_DIRECTIVE_RE.match(stripped): directive_match = _OPTION_DIRECTIVE_RE.match(stripped) assert directive_match is not None option_strings = directive_match.group(1).replace(",", " ").split() for option in option_strings: if ( option[0] not in "+-" or option[1:] not in doctest.OPTIONFLAGS_BY_NAME ): raise ValueError(f"doctest has an invalid option {option}") flag = doctest.OPTIONFLAGS_BY_NAME[option[1:]] flag_settings[flag] = option[0] == "+" i += 1 elif stripped == ":hide:": i += 1 else: break if i == len(lines): raise ValueError("no code/output") body = "\n".join(lines[i:]).lstrip() if not body: raise ValueError("no code/output") if i and lines[i].strip(): # no newline between option block and body raise ValueError(f"invalid option block: {section_content!r}") return body, skipif_expr, flag_settings def _get_next_textoutputsections( sections: List["Section"], index: int ) -> Iterator["Section"]: """Yield successive TESTOUTPUT sections.""" for j in range(index, len(sections)): section = sections[j] if section.directive == SphinxDoctestDirectives.TESTOUTPUT: yield section else: break SectionGroups = Optional[List[str]] class Section: def __init__( self, directive: SphinxDoctestDirectives, content: str, lineno: int, groups: SectionGroups = None, ) -> None: super().__init__() self.directive = directive self.groups = groups self.lineno = lineno body, skipif_expr, options = _split_into_body_and_options(content) if skipif_expr and self.directive not in _DIRECTIVES_W_SKIPIF: raise ValueError(f":skipif: not allowed in {self.directive}") if options and self.directive not in _DIRECTIVES_W_OPTIONS: raise ValueError(f":options: not allowed in {self.directive}") self.body = body self.skipif_expr = skipif_expr self.options = options def get_sections(docstring: str) -> List[Union[Any, Section]]: lines = textwrap.dedent(docstring).splitlines() sections = [] def _get_indentation(line: str) -> int: return len(line) - len(line.lstrip()) def add_match( directive: SphinxDoctestDirectives, i: int, j: int, groups: SectionGroups ) -> None: sections.append( Section( directive, textwrap.dedent("\n".join(lines[i + 1 : j])), lineno=j - 1, groups=groups, ) ) i = 0 while True: try: line = lines[i] except IndexError: break match = _DIRECTIVE_RE.match(line) if match: group = match.groupdict() directive = getattr(SphinxDoctestDirectives, group["directive"].upper()) groups = [x.strip() for x in (group["argument"] or "default").split(",")] indentation = _get_indentation(line) # find the end of the block j = i while True: j += 1 try: block_line = lines[j] except IndexError: add_match(directive, i, j, groups) break if block_line.lstrip() and _get_indentation(block_line) <= indentation: add_match(directive, i, j, groups) i = j - 1 break i += 1 return sections def docstring2examples( docstring: str, globs: Optional[GlobDict] = None ) -> List[Union[Any, doctest.Example]]: """ Parse all sphinx test directives in the docstring and create a list of examples. """ # TODO subclass doctest.DocTestParser instead? if globs is None: globs = {} sections = get_sections(docstring) def get_testoutput_section_data( section: "Section", ) -> Tuple[str, Dict[int, bool], int, Optional[Any]]: want = section.body exc_msg = None options: Dict[int, bool] = {} if section.skipif_expr and eval(section.skipif_expr, globs): want = "" else: options = section.options match = doctest.DocTestParser._EXCEPTION_RE.match(want) # type: ignore if match: exc_msg = match.group("msg") return want, options, section.lineno, exc_msg examples = [] for i, current_section in enumerate(sections): # TODO support SphinxDoctestDirectives.TESTSETUP, ... if current_section.directive == SphinxDoctestDirectives.TESTCODE: next_testoutput_sections = _get_next_textoutputsections(sections, i + 1) section_data_seq = [ get_testoutput_section_data(s) for s in next_testoutput_sections ] num_unskipped_sections = len([d for d in section_data_seq if d[0]]) if num_unskipped_sections > 1: raise ValueError("There are multiple unskipped TESTOUTPUT sections") if num_unskipped_sections: want, options, _, exc_msg = next(d for d in section_data_seq if d[0]) else: # no unskipped testoutput section # do we really need doctest.Example to test # independent TESTCODE sections? want, options, exc_msg = "", {}, None if current_section.skipif_expr and eval(current_section.skipif_expr, globs): # TODO add the doctest.Example to `examples` but mark it as # skipped. continue examples.append( doctest.Example( source=current_section.body, want=want, exc_msg=exc_msg, # we want to see the ..testcode lines in the # console output but not the ..testoutput # lines # TODO why do we want to hide testoutput?? lineno=current_section.lineno, options=options, ) ) return examples class SphinxDocTestRunner(doctest.DebugRunner): """ overwrite doctest.DocTestRunner.__run, since it uses 'single' for the `compile` function instead of 'exec'. """ _checker: "doctest.OutputChecker" _fakeout: "_SpoofOut" debugger: "pdb.Pdb" def _DocTestRunner__run( self, test: doctest.DocTest, compileflags: int, out: "_Out" ) -> doctest.TestResults: """ Run the examples in `test`. Write the outcome of each example with one of the `DocTestRunner.report_*` methods, using the writer function `out`. `compileflags` is the set of compiler flags that should be used to execute examples. Return a tuple `(f, t)`, where `t` is the number of examples tried, and `f` is the number of examples that failed. The examples are run in the namespace `test.globs`. """ # Keep track of the number of failures and tries. failures = tries = 0 # Save the option flags (since option directives can be used # to modify them). original_optionflags = self.optionflags SUCCESS, FAILURE, BOOM = range(3) # `outcome` state check = self._checker.check_output # Process each example. for examplenum, example in enumerate(test.examples): # If REPORT_ONLY_FIRST_FAILURE is set, then suppress # reporting after the first failure. quiet = ( self.optionflags & doctest.REPORT_ONLY_FIRST_FAILURE and failures > 0 ) # Merge in the example's options. self.optionflags = original_optionflags if example.options: for (optionflag, val) in example.options.items(): if val: self.optionflags |= optionflag else: self.optionflags &= ~optionflag # If 'SKIP' is set, then skip this example. if self.optionflags & doctest.SKIP: continue # Record that we started this example. tries += 1 if not quiet: self.report_start(out, test, example) # Use a special filename for compile(), so we can retrieve # the source code during interactive debugging (see # __patched_linecache_getlines). filename = "<doctest %s[%d]>" % (test.name, examplenum) # Run the example in the given context (globs), and record # any exception that gets raised. (But don't intercept # keyboard interrupts.) try: # Don't blink! This is where the user's code gets run. exec( compile(example.source, filename, "exec", compileflags, 1), test.globs, ) self.debugger.set_continue() # ==== Example Finished ==== exception = None except KeyboardInterrupt: raise except Exception: exception = sys.exc_info() self.debugger.set_continue() # ==== Example Finished ==== got = self._fakeout.getvalue() # the actual output self._fakeout.truncate(0) outcome = FAILURE # guilty until proved innocent or insane # If the example executed without raising any exceptions, # verify its output. if exception is None: if check(example.want, got, self.optionflags): outcome = SUCCESS # The example raised an exception: check if it was expected. else: exc_msg = traceback.format_exception_only(*exception[:2])[-1] if not quiet: got += doctest._exception_traceback(exception) # type:ignore # If `example.exc_msg` is None, then we weren't expecting # an exception. if example.exc_msg is None: outcome = BOOM # We expected an exception: see whether it matches. elif check(example.exc_msg, exc_msg, self.optionflags): outcome = SUCCESS # Another chance if they didn't care about the detail. elif self.optionflags & doctest.IGNORE_EXCEPTION_DETAIL: if check( doctest._strip_exception_details( # type:ignore example.exc_msg, ), doctest._strip_exception_details(exc_msg), # type:ignore self.optionflags, ): outcome = SUCCESS # Report the outcome. if outcome is SUCCESS: if not quiet: self.report_success(out, test, example, got) elif outcome is FAILURE: if not quiet: self.report_failure(out, test, example, got) failures += 1 elif outcome is BOOM: if not quiet: assert exception is not None assert out is not None self.report_unexpected_exception( out, test, example, exception, # type:ignore ) failures += 1 else: assert False, ("unknown outcome", outcome) if failures and self.optionflags & doctest.FAIL_FAST: break # Restore the option flags (in case they were modified) self.optionflags = original_optionflags # Record and return the number of failures and tries. self._DocTestRunner__record_outcome(test, failures, tries) # type:ignore return doctest.TestResults(failures, tries) class SphinxDocTestParser: def get_doctest( self, docstring: str, globs: Dict[str, Any], name: str, filename: str, lineno: int, ) -> doctest.DocTest: # TODO document why we need to overwrite? get_doctest return doctest.DocTest( examples=docstring2examples(docstring, globs=globs), globs=globs, name=name, filename=filename, lineno=lineno, docstring=docstring, ) class SphinxDoctestTextfile(pytest.Module): obj = None def collect(self) -> Iterator[_pytest.doctest.DoctestItem]: # inspired by doctest.testfile; ideally we would use it directly, # but it doesn't support passing a custom checker encoding = self.config.getini("doctest_encoding") text = self.fspath.read_text(encoding) name = self.fspath.basename optionflags = _pytest.doctest.get_optionflags(self) # type:ignore runner = SphinxDocTestRunner( verbose=False, optionflags=optionflags, checker=_pytest.doctest._get_checker(), ) test = doctest.DocTest( examples=docstring2examples(text), globs={}, name=name, filename=name, lineno=0, docstring=text, ) if test.examples: yield DoctestItem.from_parent( parent=self, # type:ignore name=test.name, runner=runner, dtest=test, ) class SphinxDoctestModule(pytest.Module): def collect(self) -> Iterator[_pytest.doctest.DoctestItem]: if self.fspath.basename == "conftest.py": module = self.config.pluginmanager._importconftest( self.path, self.config.getoption("importmode"), rootpath=self.config.rootpath, ) else: try: module = import_path(self.path, root=self.config.rootpath) except ImportError: if self.config.getvalue("doctest_ignore_import_errors"): pytest.skip("unable to import module %r" % self.path) else: raise optionflags = _pytest.doctest.get_optionflags(self) # type:ignore class MockAwareDocTestFinder(doctest.DocTestFinder): """ a hackish doctest finder that overrides stdlib internals to fix a stdlib bug https://github.com/pytest-dev/pytest/issues/3456 https://bugs.python.org/issue25532 fix taken from https://github.com/pytest-dev/pytest/pull/4212/ """ def _find( self, tests: List[doctest.DocTest], obj: str, name: str, module: Any, source_lines: Optional[List[str]], globs: GlobDict, seen: Dict[int, int], ) -> None: if _is_mocked(obj): return with _patch_unwrap_mock_aware(): doctest.DocTestFinder._find( # type:ignore self, tests, obj, name, module, source_lines, globs, seen, ) if sys.version_info < (3, 10): finder = MockAwareDocTestFinder( parser=SphinxDocTestParser() # type:ignore ) else: finder = doctest.DocTestFinder(parser=SphinxDocTestParser()) # type:ignore runner = SphinxDocTestRunner( verbose=False, optionflags=optionflags, checker=_pytest.doctest._get_checker(), ) for test in finder.find(module, module.__name__): if test.examples: yield DoctestItem.from_parent( parent=self, # type: ignore name=test.name, runner=runner, dtest=test, )
thisch/pytest-sphinx
src/pytest_sphinx.py
pytest_sphinx.py
py
20,904
python
en
code
27
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 34, "usage_type": "name" }, { "api_name": "io.StringIO", "line_number": 39, "usage_type": "attribute" }, { "api_name": "enum.Enum", "line_number": 42, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 64, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 64, "usage_type": "name" }, { "api_name": "_pytest.main.Session", "line_number": 64, "usage_type": "name" }, { "api_name": "_pytest.python.Package", "line_number": 64, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 69, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 78, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 78, "usage_type": "name" }, { "api_name": "_pytest.config.Config", "line_number": 81, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 81, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 81, "usage_type": "name" }, { "api_name": "_pytest.main.Session", "line_number": 81, "usage_type": "name" }, { "api_name": "_pytest.python.Package", "line_number": 81, "usage_type": "name" }, { "api_name": "re.compile", "line_number": 95, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 96, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 98, "usage_type": "call" }, { "api_name": "re.VERBOSE", "line_number": 106, "usage_type": "attribute" }, { "api_name": "doctest.OPTIONFLAGS_BY_NAME", "line_number": 162, "usage_type": "attribute" }, { "api_name": "doctest.OPTIONFLAGS_BY_NAME", "line_number": 165, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 188, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 189, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 199, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 199, "usage_type": "name" }, { "api_name": "textwrap.dedent", "line_number": 226, "usage_type": "call" }, { "api_name": "textwrap.dedent", "line_number": 238, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 225, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 225, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 225, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 275, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 293, "usage_type": "name" }, { "api_name": "doctest.DocTestParser._EXCEPTION_RE.match", "line_number": 299, "usage_type": "call" }, { "api_name": "doctest.DocTestParser", "line_number": 299, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 290, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 290, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 290, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 290, "usage_type": "name" }, { "api_name": "doctest.Example", "line_number": 332, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 276, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 276, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 276, "usage_type": "name" }, { "api_name": "doctest.Example", "line_number": 276, "usage_type": "attribute" }, { "api_name": "doctest.DebugRunner", "line_number": 347, "usage_type": "attribute" }, { "api_name": "doctest.DocTest", "line_number": 358, "usage_type": "attribute" }, { "api_name": "doctest.REPORT_ONLY_FIRST_FAILURE", "line_number": 389, "usage_type": "attribute" }, { "api_name": "doctest.SKIP", "line_number": 402, "usage_type": "attribute" }, { "api_name": "sys.exc_info", "line_number": 429, "usage_type": "call" }, { "api_name": "traceback.format_exception_only", "line_number": 444, "usage_type": "call" }, { "api_name": "doctest._exception_traceback", "line_number": 446, "usage_type": "call" }, { "api_name": "doctest.IGNORE_EXCEPTION_DETAIL", "line_number": 458, "usage_type": "attribute" }, { "api_name": "doctest._strip_exception_details", "line_number": 460, "usage_type": "call" }, { "api_name": "doctest._strip_exception_details", "line_number": 463, "usage_type": "call" }, { "api_name": "doctest.FAIL_FAST", "line_number": 490, "usage_type": "attribute" }, { "api_name": "doctest.TestResults", "line_number": 498, "usage_type": "call" }, { "api_name": "doctest.TestResults", "line_number": 359, "usage_type": "attribute" }, { "api_name": "typing.Dict", "line_number": 505, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 505, "usage_type": "name" }, { "api_name": "doctest.DocTest", "line_number": 511, "usage_type": "call" }, { "api_name": "doctest.DocTest", "line_number": 509, "usage_type": "attribute" }, { "api_name": "pytest.Module", "line_number": 521, "usage_type": "attribute" }, { "api_name": "_pytest.doctest.doctest.get_optionflags", "line_number": 531, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest", "line_number": 531, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 531, "usage_type": "name" }, { "api_name": "_pytest.doctest.doctest._get_checker", "line_number": 535, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest", "line_number": 535, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 535, "usage_type": "name" }, { "api_name": "doctest.DocTest", "line_number": 538, "usage_type": "call" }, { "api_name": "_pytest.doctest.DoctestItem.from_parent", "line_number": 548, "usage_type": "call" }, { "api_name": "_pytest.doctest.DoctestItem", "line_number": 548, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 524, "usage_type": "name" }, { "api_name": "_pytest.doctest.doctest", "line_number": 524, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 524, "usage_type": "name" }, { "api_name": "pytest.Module", "line_number": 556, "usage_type": "attribute" }, { "api_name": "_pytest.pathlib.import_path", "line_number": 566, "usage_type": "call" }, { "api_name": "pytest.skip", "line_number": 569, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest.get_optionflags", "line_number": 572, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest", "line_number": 572, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 572, "usage_type": "name" }, { "api_name": "doctest.DocTestFinder", "line_number": 574, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 586, "usage_type": "name" }, { "api_name": "doctest.DocTest", "line_number": 586, "usage_type": "attribute" }, { "api_name": "typing.Any", "line_number": 589, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 590, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 590, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 592, "usage_type": "name" }, { "api_name": "_pytest.doctest._is_mocked", "line_number": 594, "usage_type": "call" }, { "api_name": "_pytest.doctest._patch_unwrap_mock_aware", "line_number": 596, "usage_type": "call" }, { "api_name": "doctest.DocTestFinder._find", "line_number": 597, "usage_type": "call" }, { "api_name": "doctest.DocTestFinder", "line_number": 597, "usage_type": "attribute" }, { "api_name": "sys.version_info", "line_number": 608, "usage_type": "attribute" }, { "api_name": "doctest.DocTestFinder", "line_number": 613, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest._get_checker", "line_number": 618, "usage_type": "call" }, { "api_name": "_pytest.doctest.doctest", "line_number": 618, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 618, "usage_type": "name" }, { "api_name": "_pytest.doctest.DoctestItem.from_parent", "line_number": 623, "usage_type": "call" }, { "api_name": "_pytest.doctest.DoctestItem", "line_number": 623, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 557, "usage_type": "name" }, { "api_name": "_pytest.doctest.doctest", "line_number": 557, "usage_type": "attribute" }, { "api_name": "_pytest.doctest", "line_number": 557, "usage_type": "name" } ]
10808451041
from typing import Dict, Tuple from AnalysisOfUnstructuredData.helpers.hsc.publisher import Publisher class PublisherRelation: titles_types: Dict[str, str] _id: Tuple[int, int] def __init__(self, publisher_1: Publisher, publisher_2: Publisher): self.publisher_1 = publisher_1 self.publisher_2 = publisher_2 self.titles_types = {} self.id = (publisher_1.id, publisher_2.id) @property def id(self): return self._id @id.setter def id(self, set_val: Tuple[int, int]): if set_val[0] > set_val[1]: self._id = (set_val[1], set_val[0]) else: self._id = set_val def add_publication(self, publication_type: str, title: str): self.titles_types[title] = publication_type @property def times_linked(self): return len(self.titles_types) def __eq__(self, other: 'PublisherRelation'): return self.id == other.id def __hash__(self): return self.id def html_label(self) -> str: lab = """{} publications of {}. {} and {}. {}. <table border="1" class="dataframe">\n\t<thead>\n\t\t<tr style="text-align: left;">\n\t\t\t<th>Type</th> \t\t\t<th>Title</th>\n\t\t</tr>\n\t</thead>\n\t<tbody>\n""".format( self.times_linked, self.publisher_1.name, '-'.join(self.publisher_1.surname), self.publisher_2.name, '-'.join(self.publisher_2.surname) ) lab += '\n'.join(["\t\t<tr>\n\t\t\t<td>{}</td>\n\t\t\t<td>{}</td>\n\t\t</tr>".format(p_type, title) for title, p_type in self.titles_types.items()]) lab += '\n\t</tbody>\n</table>' return lab
TheDecks/Studies
AnalysisOfUnstructuredData/helpers/hsc/relation.py
relation.py
py
1,688
python
en
code
0
github-code
6
[ { "api_name": "typing.Dict", "line_number": 8, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 9, "usage_type": "name" }, { "api_name": "AnalysisOfUnstructuredData.helpers.hsc.publisher.Publisher", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 22, "usage_type": "name" } ]
40319717427
from ansible.module_utils.basic import AnsibleModule from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.handler import \ module_dependency_error, MODULE_EXCEPTIONS try: from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api import single_post from ansible_collections.ansibleguy.opnsense.plugins.module_utils.defaults.main import OPN_MOD_ARGS from ansible_collections.ansibleguy.opnsense.plugins.module_utils.helper.system import wait_for_response except MODULE_EXCEPTIONS: module_dependency_error() DOCUMENTATION = 'https://opnsense.ansibleguy.net/en/latest/modules/package.html' EXAMPLES = 'https://opnsense.ansibleguy.net/en/latest/modules/package.html' def run_module(): module_args = dict( action=dict( type='str', required=True, choices=['poweroff', 'reboot', 'update', 'upgrade', 'audit'] ), wait=dict(type='bool', required=False, default=True), wait_timeout=dict(type='int', required=False, default=90), poll_interval=dict(type='int', required=False, default=2), **OPN_MOD_ARGS ) module = AnsibleModule( argument_spec=module_args, supports_check_mode=True, ) result = { 'changed': True, 'failed': False, 'timeout_exceeded': False, } if not module.check_mode: single_post( module=module, cnf={ 'command': module.params['action'], 'module': 'core', 'controller': 'firmware', } ) if module.params['action'] in ['reboot', 'upgrade'] and module.params['wait']: if module.params['debug']: module.warn(f"Waiting for firewall to complete '{module.params['action']}'!") result['failed'] = not wait_for_response(module=module) if result['failed']: result['timeout_exceeded'] = True module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
ansibleguy/collection_opnsense
plugins/modules/system.py
system.py
py
2,071
python
en
code
158
github-code
6
[ { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.handler.MODULE_EXCEPTIONS", "line_number": 11, "usage_type": "name" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.handler.module_dependency_error", "line_number": 12, "usage_type": "call" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.defaults.main.OPN_MOD_ARGS", "line_number": 27, "usage_type": "name" }, { "api_name": "ansible.module_utils.basic.AnsibleModule", "line_number": 30, "usage_type": "call" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api.single_post", "line_number": 42, "usage_type": "call" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.helper.system.wait_for_response", "line_number": 55, "usage_type": "call" } ]
4456513686
from dataclasses import dataclass from fnmatch import fnmatch from typing import cast, Optional from urllib.parse import urljoin from .config import Config from .download import DownloaderMixIn, HTTPXDownloaderMixIn from .exceptions import ( ArbitrarySoftwareAttack, DownloadNotFoundError, EndlessDataAttack, FreezeAttack, InconsistentTargetError, MixAndMatchAttack, NoConsistentSnapshotsError, RollbackAttack, TargetNotFoundError, ) from .models.common import ( Comparable, Filepath, Hash, Hashes, Length, Positive, Rolename, Rolenames, Url, Version, ) from .models.metadata import ( Metadata, Root, Signed, Snapshot, TargetFile, Targets, ThresholdOfPublicKeys, TimeSnap, Timestamp, ) from .readers import JSONReaderMixIn, ReaderMixIn from .writers import WriterMixIn @dataclass class Target: path: Filepath target: TargetFile # This is a Repository, not a Client, because I want to make it clear that you # can compose these objects to traverse multiple Repositories. class Repository(WriterMixIn, DownloaderMixIn, ReaderMixIn): """A class to abstractly handle the TUF client application workflow for a single repository. Do not instantiate this class.""" ROOT_ROLENAME = "root" SNAPSHOT_ROLENAME = "snapshot" TARGETS_ROLENAME = "targets" TIMESTAMP_ROLENAME = "timestamp" def __init__(self, config: Config): super().init_downloader() self.config = config self.__refresh() def close(self) -> None: self.config.close() super().close_downloader() def __check_expiry(self, signed: Signed) -> None: if signed.expires <= self.config.NOW: raise FreezeAttack(f"{signed}: {signed.expires} <= {self.config.NOW}") def __check_hashes(self, abspath: Filepath, expected: Hashes) -> None: if not self.check_hashes(abspath, expected): raise ArbitrarySoftwareAttack(f"{abspath} != {expected}") def __check_length(self, abspath: Filepath, expected: Length) -> None: if not self.check_length(abspath, expected): raise EndlessDataAttack(f"{abspath} > {expected} bytes") def __check_rollback(self, prev: Comparable, curr: Comparable) -> None: if prev > curr: raise RollbackAttack(f"{prev} > {curr}") def __check_signatures( self, role: ThresholdOfPublicKeys, metadata: Metadata ) -> None: if not role.verified(metadata.signatures, metadata.canonical): raise ArbitrarySoftwareAttack(f"{metadata.signed}") def __check_version(self, signed: Signed, timesnap: TimeSnap) -> None: if signed.version != timesnap.version: raise MixAndMatchAttack(f"{signed.version} != {timesnap.version}") def __local_metadata_filename(self, rolename: Rolename) -> Filepath: return self.join_path(self.config.metadata_cache, self.role_filename(rolename)) def __local_targets_filename(self, relpath: Filepath) -> Filepath: return self.join_path(self.config.targets_cache, relpath) def __remote_metadata_filename( self, rolename: Rolename, version: Version ) -> Filepath: return f"{version.value}.{self.role_filename(rolename)}" def __remote_metadata_path(self, relpath: Filepath) -> Url: return urljoin(self.config.metadata_root, relpath) def __remote_targets_path(self, relpath: Filepath, _hash: Hash) -> Url: dirname, basename = self.split_path(relpath) basename = f"{_hash}.{basename}" relpath = self.join_path(dirname, basename) return urljoin(self.config.targets_root, relpath) def __refresh(self) -> None: """Refresh metadata for root, timestamp, and snapshot so that we have a consistent snapshot of the repository.""" try: self.__load_root() self.__update_root() self.__update_timestamp() self.__update_snapshot() except Exception: self.close() raise def __load_root(self) -> None: """5.1. Load the trusted root metadata file.""" # NOTE: we must parse the root metadata file on disk in order to get # the keys to verify itself in the first place. filename = self.__local_metadata_filename(self.ROOT_ROLENAME) metadata = self.read_from_file(filename) # FIXME: the following line is purely to keep mypy happy; otherwise, # it complains that the .signed.root attribute does not exist. metadata.signed = cast(Root, metadata.signed) # Verify self-signatures on previous root metadata file. self.__check_signatures(metadata.signed.root, metadata) # NOTE: the expiration of the trusted root metadata file does not # matter, because we will attempt to update it in the next step. # We do not support non-consistent-snapshot repositories. if not metadata.signed.consistent_snapshot: raise NoConsistentSnapshotsError # Now that we have verified signatures, throw them away, and set the # current root to the actual metadata of interest. self.__root = metadata.signed def __update_root(self) -> None: """5.2. Update the root metadata file.""" # 5.2.1. Let N denote the version number of the trusted root metadata # file. prev_root = self.__root curr_root = prev_root n = curr_root.version # 5.2.8. Repeat steps 5.2.1 to 5.2.8. for _ in range(self.config.MAX_ROOT_ROTATIONS): # 5.2.2. Try downloading version N+1 of the root metadata file. n += 1 remote_filename = self.__remote_metadata_filename(self.ROOT_ROLENAME, n) remote_path = self.__remote_metadata_path(remote_filename) try: tmp_file = self.download( remote_path, self.config.MAX_ROOT_LENGTH, self.config ) except DownloadNotFoundError: break self.__check_length(tmp_file, self.config.MAX_ROOT_LENGTH) # 5.2.3. Check for an arbitrary software attack. metadata = self.read_from_file(tmp_file) metadata.signed = cast(Root, metadata.signed) self.__check_signatures(curr_root.root, metadata) self.__check_signatures(metadata.signed.root, metadata) # 5.2.4. Check for a rollback attack. if metadata.signed.version != n: raise RollbackAttack( f"{metadata.signed.version} != {n} in {remote_path}" ) # 5.2.5. Note that the expiration of the new (intermediate) root # metadata file does not matter yet. # 5.2.6. Set the trusted root metadata file to the new root metadata # file. curr_root = metadata.signed # 5.2.9. Check for a freeze attack. self.__check_expiry(curr_root) if prev_root < curr_root: # 5.2.11. Set whether consistent snapshots are used as per the # trusted root metadata file. # NOTE: We violate the spec in checking this *before* deleting local # timestamp and/or snapshot metadata, which I think is reasonable. if not curr_root.consistent_snapshot: raise NoConsistentSnapshotsError # 5.2.10. If the timestamp and / or snapshot keys have been rotated, # then delete the trusted timestamp and snapshot metadata files. if ( self.__root.timestamp != curr_root.timestamp or self.__root.snapshot != curr_root.snapshot ): filename = self.__local_metadata_filename(self.SNAPSHOT_ROLENAME) if self.file_exists(filename): self.rm_file(filename) filename = self.__local_metadata_filename(self.TIMESTAMP_ROLENAME) if self.file_exists(filename): self.rm_file(filename) # 5.2.7. Persist root metadata. # NOTE: We violate the spec in persisting only *after* checking # everything, which I think is reasonable. self.mv_file(tmp_file, self.__local_metadata_filename(self.ROOT_ROLENAME)) self.__root = curr_root def __get_prev_metadata(self, rolename: Rolename) -> Optional[Metadata]: filename = self.__local_metadata_filename(rolename) if self.file_exists(filename): return self.read_from_file(filename) return None def __update_timestamp(self) -> None: """5.3. Download the timestamp metadata file.""" role_filename = self.role_filename(self.TIMESTAMP_ROLENAME) remote_path = self.__remote_metadata_path(role_filename) tmp_file = self.download( remote_path, self.config.MAX_TIMESTAMP_LENGTH, self.config ) self.__check_length(tmp_file, self.config.MAX_TIMESTAMP_LENGTH) # 5.3.1. Check for an arbitrary software attack. curr_metadata = self.read_from_file(tmp_file) curr_metadata.signed = cast(Timestamp, curr_metadata.signed) self.__check_signatures(self.__root.timestamp, curr_metadata) # 5.3.2. Check for a rollback attack. prev_metadata = self.__get_prev_metadata(self.TIMESTAMP_ROLENAME) if prev_metadata: prev_metadata.signed = cast(Timestamp, prev_metadata.signed) self.__check_rollback(prev_metadata.signed, curr_metadata.signed) self.__check_rollback( prev_metadata.signed.snapshot, curr_metadata.signed.snapshot ) # 5.3.3. Check for a freeze attack. self.__check_expiry(curr_metadata.signed) # 5.3.4. Persist timestamp metadata. self.mv_file(tmp_file, self.__local_metadata_filename(self.TIMESTAMP_ROLENAME)) self.__timestamp = curr_metadata.signed def __update_snapshot(self) -> None: """5.4. Download snapshot metadata file.""" prev_metadata = self.__get_prev_metadata(self.SNAPSHOT_ROLENAME) obsolete = ( not prev_metadata or prev_metadata.signed.version < self.__timestamp.snapshot.version ) local_filename = self.__local_metadata_filename(self.SNAPSHOT_ROLENAME) length = self.__timestamp.snapshot.length or self.config.MAX_SNAPSHOT_LENGTH # Download metadata only if not cached or if it is obsolete. if not obsolete: tmp_file = local_filename else: remote_filename = self.__remote_metadata_filename( self.SNAPSHOT_ROLENAME, self.__timestamp.snapshot.version ) remote_path = self.__remote_metadata_path(remote_filename) tmp_file = self.download(remote_path, length, self.config) self.__check_length(tmp_file, length) # 5.4.1. Check against timestamp role's snapshot hash. if self.__timestamp.snapshot.hashes: self.__check_hashes(tmp_file, self.__timestamp.snapshot.hashes) # 5.4.2. Check for an arbitrary software attack. curr_metadata = self.read_from_file(tmp_file) curr_metadata.signed = cast(Snapshot, curr_metadata.signed) self.__check_signatures(self.__root.snapshot, curr_metadata) # 5.4.3. Check against timestamp role's snapshot version. self.__check_version(curr_metadata.signed, self.__timestamp.snapshot) # 5.4.4. Check for a rollback attack. if prev_metadata: prev_metadata.signed = cast(Snapshot, prev_metadata.signed) for filename, prev_timesnap in prev_metadata.signed.targets.items(): curr_timesnap = curr_metadata.signed.targets.get(filename) if not curr_timesnap: raise RollbackAttack( f"{filename} was in {prev_metadata.signed.version} but missing in {curr_metadata.signed.version}" ) self.__check_rollback(prev_timesnap, curr_timesnap) # 5.4.5. Check for a freeze attack. self.__check_expiry(curr_metadata.signed) # 5.4.6. Persist snapshot metadata. if obsolete: self.mv_file(tmp_file, local_filename) self.__snapshot = curr_metadata.signed def __preorder_dfs( self, targets: Targets, target_relpath: Filepath, visited: Rolenames, counter: Positive, ) -> Optional[TargetFile]: target_file = targets.targets.get(target_relpath) if target_file: return target_file else: for rolename, delegation in targets.delegations.items(): if rolename not in visited: for path in delegation.paths: if fnmatch(target_relpath, path): target_file = self.__update_targets( visited, counter + 1, rolename, delegation.role, target_relpath, ) if target_file or delegation.terminating: return target_file return None def __update_targets( self, visited: Rolenames, counter: Positive, rolename: Rolename, role: ThresholdOfPublicKeys, target_relpath: Filepath, ) -> Optional[TargetFile]: """5.5. Download the top-level targets metadata file.""" if rolename in visited or counter > self.config.MAX_PREORDER_DFS_VISITS: return None visited.add(rolename) role_filename = self.role_filename(rolename) timesnap = self.__snapshot.targets.get(role_filename) if not timesnap: raise MixAndMatchAttack(f"{rolename} not in {self.__snapshot}") prev_metadata = self.__get_prev_metadata(rolename) obsolete = not prev_metadata or prev_metadata.signed.version < timesnap.version local_filename = self.__local_metadata_filename(rolename) length = timesnap.length or self.config.MAX_TARGETS_LENGTH # Download metadata only if not cached or if it is obsolete. if not obsolete: tmp_file = local_filename else: remote_filename = self.__remote_metadata_filename( rolename, timesnap.version ) remote_path = self.__remote_metadata_path(remote_filename) tmp_file = self.download(remote_path, length, self.config) self.__check_length(tmp_file, length) # 5.5.1. Check against snapshot role's targets hash. if timesnap.hashes: self.__check_hashes(tmp_file, timesnap.hashes) # 5.5.2. Check for an arbitrary software attack. curr_metadata = self.read_from_file(tmp_file) curr_metadata.signed = cast(Targets, curr_metadata.signed) self.__check_signatures(role, curr_metadata) # 5.5.3. Check against snapshot role's targets version. self.__check_version(curr_metadata.signed, timesnap) # 5.5.4. Check for a freeze attack. self.__check_expiry(curr_metadata.signed) # 5.5.5. Persist targets metadata. if obsolete: self.mv_file(tmp_file, local_filename) # 5.5.6. Perform a pre-order depth-first search for metadata about the # desired target, beginning with the top-level targets role. return self.__preorder_dfs( curr_metadata.signed, target_relpath, visited, counter ) def __get_target(self, target_file: TargetFile, relpath: Filepath) -> Filepath: for _hash in target_file.hashes.values(): remote_path = self.__remote_targets_path(relpath, _hash) try: return self.download(remote_path, target_file.length, self.config) except DownloadNotFoundError: continue raise InconsistentTargetError(f"{relpath}") # FIXME: consider using a context manager for cleanup. def get(self, relpath: Filepath) -> Target: """Use this function to securely download and verify an update.""" try: # 5.6. Verify the desired target against its targets metadata. target_file = self.__update_targets( set(), Positive(1), self.TARGETS_ROLENAME, self.__root.targets, relpath ) # 5.6.2. Otherwise (if there is targets metadata about this target), # download the target, and verify that its hashes match the targets # metadata. if target_file: local_path = self.__local_targets_filename(relpath) file_exists = self.file_exists(local_path) # Download target only if not cached. if file_exists: tmp_file = local_path else: tmp_file = self.__get_target(target_file, relpath) self.__check_length(tmp_file, target_file.length) self.__check_hashes(tmp_file, target_file.hashes) if not file_exists: self.mv_file(tmp_file, local_path) return Target(local_path, target_file) except Exception as e: self.close() raise TargetNotFoundError(f"{relpath}") from e else: # 5.6.1. If there is no targets metadata about this target, abort # the update cycle and report that there is no such target. self.close() raise TargetNotFoundError(f"{relpath}") class JSONRepository(Repository, HTTPXDownloaderMixIn, JSONReaderMixIn): """Instantiate this class to read canonical JSON TUF metadata from a remote repository.""" pass
trishankatdatadog/tuf-on-a-plane
src/tuf_on_a_plane/repository.py
repository.py
py
18,018
python
en
code
4
github-code
6
[ { "api_name": "models.common.Filepath", "line_number": 48, "usage_type": "name" }, { "api_name": "models.metadata.TargetFile", "line_number": 49, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 46, "usage_type": "name" }, { "api_name": "writers.WriterMixIn", "line_number": 54, "usage_type": "name" }, { "api_name": "download.DownloaderMixIn", "line_number": 54, "usage_type": "name" }, { "api_name": "readers.ReaderMixIn", "line_number": 54, "usage_type": "name" }, { "api_name": "config.Config", "line_number": 65, "usage_type": "name" }, { "api_name": "models.metadata.Signed", "line_number": 74, "usage_type": "name" }, { "api_name": "exceptions.FreezeAttack", "line_number": 76, "usage_type": "call" }, { "api_name": "models.common.Filepath", "line_number": 78, "usage_type": "name" }, { "api_name": "models.common.Hashes", "line_number": 78, "usage_type": "name" }, { "api_name": "exceptions.ArbitrarySoftwareAttack", "line_number": 80, "usage_type": "call" }, { "api_name": "models.common.Filepath", "line_number": 82, "usage_type": "name" }, { "api_name": "models.common.Length", "line_number": 82, "usage_type": "name" }, { "api_name": "exceptions.EndlessDataAttack", "line_number": 84, "usage_type": "call" }, { "api_name": "models.common.Comparable", "line_number": 86, "usage_type": "name" }, { "api_name": "exceptions.RollbackAttack", "line_number": 88, "usage_type": "call" }, { "api_name": "models.metadata.ThresholdOfPublicKeys", "line_number": 91, "usage_type": "name" }, { "api_name": "models.metadata.Metadata", "line_number": 91, "usage_type": "name" }, { "api_name": "exceptions.ArbitrarySoftwareAttack", "line_number": 94, "usage_type": "call" }, { "api_name": "models.metadata.Signed", "line_number": 96, "usage_type": "name" }, { "api_name": "models.metadata.TimeSnap", "line_number": 96, "usage_type": "name" }, { "api_name": "exceptions.MixAndMatchAttack", "line_number": 98, "usage_type": "call" }, { "api_name": "models.common.Rolename", "line_number": 100, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 100, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 103, "usage_type": "name" }, { "api_name": "models.common.Rolename", "line_number": 107, "usage_type": "name" }, { "api_name": "models.common.Version", "line_number": 107, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 108, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 111, "usage_type": "name" }, { "api_name": "urllib.parse.urljoin", "line_number": 112, "usage_type": "call" }, { "api_name": "models.common.Url", "line_number": 111, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 114, "usage_type": "name" }, { "api_name": "models.common.Hash", "line_number": 114, "usage_type": "name" }, { "api_name": "urllib.parse.urljoin", "line_number": 118, "usage_type": "call" }, { "api_name": "models.common.Url", "line_number": 114, "usage_type": "name" }, { "api_name": "typing.cast", "line_number": 141, "usage_type": "call" }, { "api_name": "models.metadata.Root", "line_number": 141, "usage_type": "argument" }, { "api_name": "exceptions.NoConsistentSnapshotsError", "line_number": 151, "usage_type": "name" }, { "api_name": "exceptions.DownloadNotFoundError", "line_number": 175, "usage_type": "name" }, { "api_name": "typing.cast", "line_number": 181, "usage_type": "call" }, { "api_name": "models.metadata.Root", "line_number": 181, "usage_type": "argument" }, { "api_name": "exceptions.RollbackAttack", "line_number": 187, "usage_type": "call" }, { "api_name": "exceptions.NoConsistentSnapshotsError", "line_number": 207, "usage_type": "name" }, { "api_name": "models.common.Rolename", "line_number": 229, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 229, "usage_type": "name" }, { "api_name": "models.metadata.Metadata", "line_number": 229, "usage_type": "name" }, { "api_name": "typing.cast", "line_number": 246, "usage_type": "call" }, { "api_name": "models.metadata.Timestamp", "line_number": 246, "usage_type": "argument" }, { "api_name": "typing.cast", "line_number": 252, "usage_type": "call" }, { "api_name": "models.metadata.Timestamp", "line_number": 252, "usage_type": "argument" }, { "api_name": "typing.cast", "line_number": 293, "usage_type": "call" }, { "api_name": "models.metadata.Snapshot", "line_number": 293, "usage_type": "argument" }, { "api_name": "typing.cast", "line_number": 301, "usage_type": "call" }, { "api_name": "models.metadata.Snapshot", "line_number": 301, "usage_type": "argument" }, { "api_name": "exceptions.RollbackAttack", "line_number": 306, "usage_type": "call" }, { "api_name": "models.metadata.Targets", "line_number": 321, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 322, "usage_type": "name" }, { "api_name": "models.common.Rolenames", "line_number": 323, "usage_type": "name" }, { "api_name": "models.common.Positive", "line_number": 324, "usage_type": "name" }, { "api_name": "fnmatch.fnmatch", "line_number": 333, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 325, "usage_type": "name" }, { "api_name": "models.metadata.TargetFile", "line_number": 325, "usage_type": "name" }, { "api_name": "models.common.Rolenames", "line_number": 347, "usage_type": "name" }, { "api_name": "models.common.Positive", "line_number": 348, "usage_type": "name" }, { "api_name": "models.common.Rolename", "line_number": 349, "usage_type": "name" }, { "api_name": "models.metadata.ThresholdOfPublicKeys", "line_number": 350, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 351, "usage_type": "name" }, { "api_name": "exceptions.MixAndMatchAttack", "line_number": 361, "usage_type": "call" }, { "api_name": "typing.cast", "line_number": 386, "usage_type": "call" }, { "api_name": "models.metadata.Targets", "line_number": 386, "usage_type": "argument" }, { "api_name": "typing.Optional", "line_number": 352, "usage_type": "name" }, { "api_name": "models.metadata.TargetFile", "line_number": 352, "usage_type": "name" }, { "api_name": "models.metadata.TargetFile", "line_number": 405, "usage_type": "name" }, { "api_name": "models.common.Filepath", "line_number": 405, "usage_type": "name" }, { "api_name": "exceptions.DownloadNotFoundError", "line_number": 410, "usage_type": "name" }, { "api_name": "exceptions.InconsistentTargetError", "line_number": 412, "usage_type": "call" }, { "api_name": "models.common.Filepath", "line_number": 415, "usage_type": "name" }, { "api_name": "models.common.Positive", "line_number": 420, "usage_type": "call" }, { "api_name": "exceptions.TargetNotFoundError", "line_number": 445, "usage_type": "call" }, { "api_name": "exceptions.TargetNotFoundError", "line_number": 451, "usage_type": "call" }, { "api_name": "download.HTTPXDownloaderMixIn", "line_number": 454, "usage_type": "name" }, { "api_name": "readers.JSONReaderMixIn", "line_number": 454, "usage_type": "name" } ]
11322722554
from keras.models import * from keras.layers import * from model.model_basic import BasicDeepModel from keras.utils.vis_utils import plot_model from keras import regularizers dp = 7 filter_nr = 64 filter_size = 3 max_pool_size = 3 max_pool_strides = 2 dense_nr = 256 spatial_dropout = 0.2 dense_dropout = 0.5 conv_kern_reg = regularizers.l2(0.00001) conv_bias_reg = regularizers.l2(0.00001) class DpcnnModel(BasicDeepModel): def __init__(self, name='basicModel', num_flods=5, config=None): name = 'dpcnn' + config.main_feature BasicDeepModel.__init__(self, name=name, n_folds=num_flods, config=config) def create_model(self): char_embedding = Embedding(self.max_c_features, self.char_embed_size, weights=[self.char_embedding], trainable=True, name='char_embedding') word_embedding = Embedding(self.max_w_features, self.word_embed_size, weights=[self.word_embedding], trainable=True, name='word_embedding') char_input = Input(shape=(self.char_max_len,), name='char') word_input = Input(shape=(self.word_max_len,), name='word') if not self.config.main_feature == 'char': char_input, word_input = word_input, char_input char_embedding, word_embedding = word_embedding, char_embedding self.char_max_len, self.word_max_len = self.word_max_len, self.char_max_len x = char_embedding(char_input) x = BatchNormalization()(x) block1 = Conv1D(filter_nr, kernel_size=filter_size, padding='same', activation='linear', kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(x) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) block1 = Conv1D(filter_nr, kernel_size=filter_size, padding='same', activation='linear', kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(block1) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) # we pass embedded comment through conv1d with filter size 1 because it needs to have the same shape as block output # if you choose filter_nr = embed_size (300 in this case) you don't have to do this part and can add emb_comment directly to block1_output resize_emb = Conv1D(filter_nr, kernel_size=1, padding='same', activation='linear', kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(x) resize_emb = PReLU()(resize_emb) block1_output = add([block1, resize_emb]) x = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block1_output) for i in range(dp): block1 = Conv1D(filter_nr, kernel_size=filter_size, padding='same', activation='linear', kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(x) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) block1 = Conv1D(filter_nr, kernel_size=filter_size, padding='same', activation='linear', kernel_regularizer=conv_kern_reg, bias_regularizer=conv_bias_reg)(block1) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) block_output = add([block1, x]) print(i) if i + 1 != dp: x = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block_output) x = GlobalMaxPooling1D()(block_output) output = Dense(dense_nr, activation='linear')(x) output = BatchNormalization()(output) output = PReLU()(output) if self.config.main_feature == 'all': recurrent_units = 60 word_embedding = Embedding(self.max_w_features, self.word_embed_size, weights=[self.word_embedding], trainable=False, name='word_embedding') word_input = Input(shape=(self.word_max_len,), name='word') word_embedding_layer = word_embedding(word_input) word_embedding_layer = SpatialDropout1D(0.5)(word_embedding_layer) word_rnn_1 = Bidirectional(CuDNNGRU(recurrent_units // 2, return_sequences=True))(word_embedding_layer) word_rnn_1 = SpatialDropout1D(0.5)(word_rnn_1) word_rnn_2 = Bidirectional(CuDNNGRU(recurrent_units // 2, return_sequences=True))(word_rnn_1) word_maxpool = GlobalMaxPooling1D()(word_rnn_2) word_average = GlobalAveragePooling1D()(word_rnn_2) output = concatenate([output, word_maxpool, word_average], axis=-1) output = Dropout(dense_dropout)(output) dense2 = Dense(self.n_class, activation="softmax")(output) res_model = Model(inputs=[char_input, word_input], outputs=dense2) else: output = Dropout(dense_dropout)(output) # dense2 = Dense(self.n_class, activation="softmax", kernel_regularizer=regularizers.l2(self.wd))(output) dense2 = Dense(self.n_class, activation="softmax")(output) res_model = Model(inputs=[char_input], outputs=dense2) plot_model(res_model, to_file="{}.png".format(self.name), show_shapes=True) return res_model
nlpjoe/daguan-classify-2018
src/model/dpcnn_model.py
dpcnn_model.py
py
5,042
python
en
code
154
github-code
6
[ { "api_name": "keras.regularizers.l2", "line_number": 16, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 16, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 17, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 17, "usage_type": "name" }, { "api_name": "model.model_basic.BasicDeepModel", "line_number": 20, "usage_type": "name" }, { "api_name": "model.model_basic.BasicDeepModel.__init__", "line_number": 23, "usage_type": "call" }, { "api_name": "model.model_basic.BasicDeepModel", "line_number": 23, "usage_type": "name" }, { "api_name": "keras.utils.vis_utils.plot_model", "line_number": 95, "usage_type": "call" } ]
22906645455
import xlrd class XLDateInfo(object): def __init__(self, path=''): self.xl = xlrd.open_workbook(path) self.sheet = None def get_sheet_info_by_name(self, name): self.sheet = self.xl.sheet_by_name(name) return self.get_sheet_info() def get_sheet_info(self): infolist = [] for row in range(0, self.sheet.nrows): info = self.sheet.row_values(row) infolist.append(info) return infolist if __name__ == "__main__": data_info = XLDateInfo(r'..\test_data\get_params_headers_data.xlsx') all_data = data_info.get_sheet_info_by_name('TestData') print(all_data)
weijianhui011/uploadfile
public/read_excel.py
read_excel.py
py
659
python
en
code
0
github-code
6
[ { "api_name": "xlrd.open_workbook", "line_number": 6, "usage_type": "call" } ]
30980414030
from matplotlib.pyplot import draw import pygame from pygame.locals import * pygame.init() pygame.mixer.init() # set screen resolution resolution = (725,725) # open a screen of above resolution screen = pygame.display.set_mode(resolution) # storing screen variable values width = screen.get_width() height = screen.get_height() # text_on_screen() not affected by catPath variable # main_menu() not affected by catPath variable # tableGen() not affected by catPath variable # get appropriate cat path to display in outcome screen def getCatPath(state): if state == 0: catPath = "assets/wincat.png" elif state == 1: catPath = "assets/losecat.png" elif state == 2: catPath = "assets/draw.png" return catPath # updateScore() not affected by catPath variable # displayScore() not affected by catPath variable # gameTime() not affected by catPath variable # checkWinner() not affected by catPath variable # getDice() not affected by catPath variable # showDice() not affected by catPath variable # gameLogic() not affected by catPath variable # user won def winScreen(die1, die2, num, score): status = num # get path to cat image based on win/lose/draw state passed catPath = getCatPath(status) cat = pygame.transform.scale(pygame.image.load(catPath).convert_alpha(), (400, 450)) #display cat screen.blit(cat, ((width/4),(height/2)-325)) # screen for when user loses def loseScreen(die1, die2, num, score): status = num # get path to cat image based on win/lose/draw state passed catPath = getCatPath(status) cat = pygame.transform.scale(pygame.image.load(catPath).convert_alpha(), (400, 450)) #display cat screen.blit(cat, ((width/4),(height/2)-325)) # screen for when computer and user dice are equal def drawScreen(die1, num, score): status = num # get appropriate cat based on game status (win/loss/draw) catPath = getCatPath(status) cat = pygame.transform.scale(pygame.image.load(catPath).convert_alpha(), (400, 450)) # Display cat on screeen screen.blit(cat, ((width/4),(height/2)-325))
jessica-leishman/high-rollers
analysis_static/manual slices/hrStatic4.py
hrStatic4.py
py
2,135
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 6, "usage_type": "call" }, { "api_name": "pygame.mixer.init", "line_number": 7, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 7, "usage_type": "attribute" }, { "api_name": "pygame.display.set_mode", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 56, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 56, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 66, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 66, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 79, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 79, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 79, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 79, "usage_type": "attribute" } ]
27959320759
import os from os import getenv from dotenv import load_dotenv load_dotenv() # FOR CODES API_ID = int(getenv("API_ID","2302493")) API_HASH = getenv("API_HASH","1bf8344851a88633343fde339f2eee20") SUDO_USERS = list(map(int, getenv("SUDO_USERS", "5366284852").split())) LOGGER = int(getenv("LOGGER","-1001804302628")) OWNER = int(getenv("OWNER_ID","5366284852")) NAME = getenv("ALIVE_NAME","ANIRUDH OP") OWN_USERNAME= getenv("OWN_USERNAME","@KATTAR_HINDU_OP") ALIVE_PIC = getenv("ALIVE_PIC","https://te.legra.ph/file/a66beb72764269e744911.jpg") # FOR SPAMBOT TOKEN1 = getenv("TOKEN1", None) TOKEN2 = getenv("TOKEN2", None) TOKEN3 = getenv("TOKEN3", None) TOKEN4 = getenv("TOKEN4", None) TOKEN5 = getenv("TOKEN5", None) TOKEN6 = getenv("TOKEN6", None) TOKEN7 = getenv("TOKEN7", None) TOKEN8 = getenv("TOKEN8", None) TOKEN9 = getenv("TOKEN9", None) TOKEN10 = getenv("TOKEN10", None)
Anirudh1212121/DcSpamBot
config.py
config.py
py
899
python
en
code
null
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 5, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 10, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 11, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 12, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 13, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 14, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 15, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 16, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 17, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 21, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 22, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 23, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 24, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 25, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 26, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 27, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 28, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 29, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 30, "usage_type": "call" } ]
31350011958
import unittest from seleniumwire import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.common.by import By #This code uses the google chrome browser to conduct a single test on the python.org website #It uses the website search bar to search for "pycon" # Selenium installation: 3 marks."pip install selenium" # Conducting API testing: 5 marks."Created unittest for API Testing" # Sharing the right code and configurations used for API testing: 5 marks."Test passed so code is right" class PythonOrgSearch(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome(ChromeDriverManager().install()) def test_search_in_python_org(self): driver = self.driver driver.get("http://www.python.org") self.assertIn("Python", driver.title) elem = driver.find_element(By.NAME, "q") elem.send_keys("pycon") elem.submit() self.assertNotIn("No results found.", driver.page_source) for i in driver.requests: print("/n %s",i) print(i.response) a=a+1 def tearDown(self): self.driver.close() if __name__ == "__main__": unittest.main()
Kitchlew/Summer
SQA/sel.py
sel.py
py
1,254
python
en
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 11, "usage_type": "attribute" }, { "api_name": "seleniumwire.webdriver.Chrome", "line_number": 14, "usage_type": "call" }, { "api_name": "seleniumwire.webdriver", "line_number": 14, "usage_type": "name" }, { "api_name": "webdriver_manager.chrome.ChromeDriverManager", "line_number": 14, "usage_type": "call" }, { "api_name": "selenium.webdriver.common.by.By.NAME", "line_number": 21, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 21, "usage_type": "name" }, { "api_name": "unittest.main", "line_number": 36, "usage_type": "call" } ]
16407449430
import mysql.connector import csv import matplotlib.pyplot as plt import matplotlib from matplotlib import colors as mcolors import datetime import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) # Sort colors by hue, saturation, value and name. by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name) for name, color in colors.items()) colors = [name for hsv, name in by_hsv] hostname = 'localhost' username = '' # no privlidges set so this works password = '' database = 'msr14' conn = mysql.connector.connect(host=hostname, user=username, passwd=password, db=database) # Simple routine to run a query on a database and print the results: def queryDB(conn, query) : cur = conn.cursor() cur.execute(query) return cur.fetchall() ## PR COMMENTS project_ids = queryDB(conn, "select projects.id as id, pull_requests.pullreq_id as pullred_id from (select id from projects where forked_from is null) as projects join pull_requests on projects.id = pull_requests.base_repo_id;")[:-1] projects_to_pr_comments = {} sid = SentimentIntensityAnalyzer() for ID, PR_ID in project_ids: comments = "select created_at, body from pull_request_comments where pull_request_id = {} ORDER BY created_at;".format(PR_ID) rows = queryDB(conn, comments) dates = [] scores = [] for date, comment in rows: ss = sid.polarity_scores(comment) dates.append(date) scores.append(ss['compound']) """ if ss['compound'] < -0.75 or ss['compound'] > 0.75: print comment print ss""" if len(dates) > 0: if ID in projects_to_pr_comments: current = projects_to_pr_comments[ID] current[0].extend(dates) current[1].extend(scores) else: projects_to_pr_comments[ID] = [dates,scores] ## COMMITS project_ids = queryDB(conn, "select id from projects where forked_from is null;")[:-1] projects_to_commits = {} for ID in [x[0] for x in project_ids]: commits = "select project_id, created_at from commits where project_id = {} ORDER BY created_at;".format(ID) rows = queryDB(conn, commits) rows = [r[1] for r in rows] #.strftime('%m/%d/%Y') projects_to_commits[ID] = rows conn.close() ## PLOT # Ensure that the axis ticks only show up on the bottom and left of the plot. # Ticks on the right and top of the plot are generally unnecessary chartjunk. j = 0 for ID,date_scores in projects_to_pr_comments.items(): fig = plt.figure(figsize=(9, 9)) ax = plt.subplot(111) plt.title("Total Commits and Sentiment Analysis for Pull Requests Over Time For Repository {} on Github".format(ID), fontsize=10) #plt.ylabel("Average Sentiment", fontsize=12) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() indices = [i[0] for i in sorted(enumerate(date_scores[0]), key=lambda x:x[1])] sorted_dates = [] sorted_scores = [] current_sum = 0.0 count = 0 for i in indices: sorted_dates.append(date_scores[0][i]) current_sum += date_scores[1][i] count += 1.0 sorted_scores.append(current_sum) sorted_scores = [i / current_sum for i in sorted_scores] plt.plot_date(sorted_dates,sorted_scores, '-b', label="Total Sentiment") datetime_p = projects_to_commits[ID] datetime = [] for d in datetime_p: if d >= date_scores[0][0]: datetime.append(datetime_p) normalized = [i / float(len(datetime)) for i in range(1, len(datetime) + 1)] plt.plot_date(datetime,normalized, '-g', label="Total Commits (Normalized)") ax.legend(loc=0) fig.savefig('plots/total_commits_and_total_sentiment_date_normalized/{}_total_commits_and_total_sentiment.png'.format(ID)) plt.close(fig) #plt.show()
natashaarmbrust/github-sentiment
pr_sentiments.py
pr_sentiments.py
py
3,745
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.colors.BASE_COLORS", "line_number": 10, "usage_type": "attribute" }, { "api_name": "matplotlib.colors", "line_number": 10, "usage_type": "name" }, { "api_name": "matplotlib.colors.CSS4_COLORS", "line_number": 10, "usage_type": "attribute" }, { "api_name": "matplotlib.colors.rgb_to_hsv", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.colors", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.colors.to_rgba", "line_number": 13, "usage_type": "call" }, { "api_name": "mysql.connector.connector.connect", "line_number": 22, "usage_type": "call" }, { "api_name": "mysql.connector.connector", "line_number": 22, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 22, "usage_type": "name" }, { "api_name": "nltk.sentiment.vader.SentimentIntensityAnalyzer", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot_date", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "datetime.append", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot_date", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 114, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 114, "usage_type": "name" } ]
10136905988
import cv2 as cv import copy import numpy as np from matplotlib import pyplot as plt img = cv.imread("/home/arkaprabha/CViiing/photos/cameron.jpeg") cv.imshow("image",img) def reframe(frame=None,scale=0.75): width= int(frame.shape[1] + scale) height = int(frame.shape[0] + scale) dimen = (width,height) return cv.resize(frame,dimen,cv.INTER_AREA) def drawshapes(frame,n1,m1,n2,m2): cv.rectangle(frame,(n1,m1),(n2,m2),(0,255,0),thickness=2) cv.circle(frame,(n2//2,m2 + m2//2),40,(0,0,255),thickness = 3) cv.putText(frame,"Didn't meant to put the circle there :)",(0,m2+10),cv.FONT_HERSHEY_TRIPLEX,0.25,(255,255,255),1) cv.imshow("Bound",frame) def translate(img, x,y): # -x -> Left # -y -> Up # x -> Right # y -> Down transMat = np.float32([[1,0,x],[0,1,y]]) dimensions = (img.shape[1],img.shape[0]) return cv.warpAffine(img, transMat, dimensions) def rotate(img,angle,rotPoint = None,scale=1.0): (height,width)= img.shape[:2] if (rotPoint is None): rotPoint= (width//2,height//2) rotmat = cv.getRotationMatrix2D(rotPoint, angle,scale) #third factor is scale here we pass 1.0 as we dont need to scale for rotation dimens = (width,height) return cv.warpAffine(img,rotmat,dimens) #basically shows our hot Dr.Cameron magnified/zoomed 50 times im2 = reframe(img,500) cv.imshow("image2",im2) #draw shapes on the image x = copy.copy(img) drawshapes(x,10,10,img.shape[0]//2,img.shape[1]//2) #grayscale gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) cv.imshow("Gray",gray) # blur # gaussian blurr x = copy.copy(im2) blurrr = cv.GaussianBlur(x,(41,41),cv.BORDER_DEFAULT) cv.imshow("Blur",blurrr) # median blurr mblur = cv.medianBlur(x,3) cv.imshow("Median blur",mblur) # bilateral bilateral = cv.bilateralFilter(x, 5 ,15,15) cv.imshow("Bilateral",bilateral) #edge cascade canny = cv.Canny(x,90,100) cv.imshow("canny",canny) #dilating the image dilated = cv.dilate(x,(40,40),iterations=5) cv.imshow("Dilated",dilated) #eroding the image eroded = cv.erode(x,(10,10),iterations = 5) cv.imshow("eroded",eroded) #translate translated = translate(x,-100,10) cv.imshow("Translated",translated) #rotate rotated = rotate(x,45) cv.imshow("Rotated",rotated) #resize resized = cv.resize(x,(1000,1000), interpolation = cv.INTER_CUBIC) cv.imshow("Resized", resized) #flipping flip = cv.flip(x,0) cv.imshow('Flipped',flip) #thresholding gray2 = cv.cvtColor(im2,cv.COLOR_BGR2GRAY) ret,thresh = cv.threshold(gray2,100,125,cv.THRESH_BINARY) cv.imshow("Thresholded",thresh) #produces a really hot image print(ret) #contours #RETR_LIST = list of all contours #RETR_EXTERNAL = list of all external contours #RETR_TREE = list of all heirarchical contours #Contour approximations #CHAIN_APPROX_NONE = No approximations #CHAIN_APPROX_SIMPLE = Compresses all contours into simpler ones(layman explanation) contours, heirarchies = cv.findContours(thresh,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE) print(f'{len(contours)} contours found') blank = np.zeros(x.shape[:2],dtype='uint8') cv.drawContours(blank,contours,-1,(255,0,0),1) cv.imshow("Contours",blank) #color spaces hsv = cv.cvtColor(x, cv.COLOR_BGR2HSV) cv.imshow("HSV",hsv) #rgb rgb = cv.cvtColor(x, cv.COLOR_BGR2RGB) cv.imshow("RGB",rgb) #lab lab = cv.cvtColor(x, cv.COLOR_BGR2LAB) cv.imshow("LAB",lab) #color_channels b,g,r = cv.split(im2) blank = np.zeros(im2.shape[:2],dtype='uint8') blue = cv.merge([b,blank,blank]) green = cv.merge([blank,g,blank]) red = cv.merge([blank,blank,r]) cv.imshow("Blue",blue) cv.imshow("Green",green) cv.imshow("red",red) #edge detection #laplacian lap = cv.Laplacian(gray, cv.CV_64F) lap = np.uint8(np.absolute(lap)) cv.imshow("Laplacian edge",lap) #sobel sobelx = cv.Sobel(gray, cv.CV_64F,1,0) sobely = cv.Sobel(gray, cv.CV_64F,0,1) cv.imshow("Sobelx gray",sobelx) cv.imshow("Sobely gray",sobely) #histogram #grayscale histogram gray_hist = cv.calcHist([gray],[0],None,[256],[0,256]) plt.plot(gray_hist) plt.title("HISTORGRAM") #color histogram colors = ('b','g','r') for i,col in enumerate(colors): hist = cv.calcHist([img],[i],None,[256],[0,256]) plt.plot(hist , color = col) plt.show() cv.waitKey(0)
ArkaprabhaChakraborty/CViiing
python/basics.py
basics.py
py
4,193
python
en
code
1
github-code
6
[ { "api_name": "cv2.imread", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 13, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_TRIPLEX", "line_number": 18, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.warpAffine", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.getRotationMatrix2D", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.warpAffine", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 40, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 43, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 47, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 47, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 48, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.GaussianBlur", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.BORDER_DEFAULT", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 54, "usage_type": "call" }, { "api_name": "cv2.medianBlur", "line_number": 56, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 57, "usage_type": "call" }, { "api_name": "cv2.bilateralFilter", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 60, "usage_type": "call" }, { "api_name": "cv2.Canny", "line_number": 64, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 65, "usage_type": "call" }, { "api_name": "cv2.dilate", "line_number": 68, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.erode", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 77, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 81, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 84, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 84, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 85, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 88, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 89, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 92, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 92, "usage_type": "attribute" }, { "api_name": "cv2.threshold", "line_number": 93, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 93, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 94, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.RETR_LIST", "line_number": 106, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 106, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.drawContours", "line_number": 110, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 111, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 115, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2HSV", "line_number": 115, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 116, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 119, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 119, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 120, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 123, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2LAB", "line_number": 123, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 124, "usage_type": "call" }, { "api_name": "cv2.split", "line_number": 127, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 130, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 131, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 132, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 133, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 136, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 137, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 138, "usage_type": "call" }, { "api_name": "cv2.Laplacian", "line_number": 142, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 142, "usage_type": "attribute" }, { "api_name": "numpy.uint8", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.absolute", "line_number": 143, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 144, "usage_type": "call" }, { "api_name": "cv2.Sobel", "line_number": 147, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 147, "usage_type": "attribute" }, { "api_name": "cv2.Sobel", "line_number": 148, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 148, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 151, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 152, "usage_type": "call" }, { "api_name": "cv2.calcHist", "line_number": 158, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 159, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 159, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 160, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 160, "usage_type": "name" }, { "api_name": "cv2.calcHist", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 166, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 166, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 167, "usage_type": "name" }, { "api_name": "cv2.waitKey", "line_number": 170, "usage_type": "call" } ]
36615991000
import asyncio import logging import random import sys from time import sleep def run_async(): async def mytask(tid: str): n = random.randint(1, 3) for i in range(n): logging.info(f"task {tid} {i} of {n}") await asyncio.sleep(1) logging.info(f"finished {tid} {n}") async def async_mytasks(): ids = [f"t-{i}" for i in range(100)] ts = [asyncio.create_task(mytask(tid)) for tid in ids] await asyncio.wait(ts) logging.info("all finished") asyncio.run(async_mytasks()) def call_worker(): import requests logging.info("call worker") rs = f"http://172.17.0.2:8080/1" logging.info(f"sending {rs}") r = requests.get(rs) r1 = r.json()["result"] logging.info(f"result for {rs}: {r.reason} {r1}") def run_concurrent(): from concurrent.futures import ThreadPoolExecutor def square(n): print(f"Started square({n})") st = 0.5 + random.random() * 2 sleep(st) print(f"Almost finished square({n})") return n * n values = range(20) with ThreadPoolExecutor(max_workers=15) as executor: results = executor.map(square, values) print(list(results)) def main(): # run_async() # call_worker() run_concurrent() if __name__ == '__main__': logging.basicConfig(stream=sys.stdout, level='INFO') main()
wwagner4/pymultiworker
tryout.py
tryout.py
py
1,397
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 12, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 14, "usage_type": "call" }, { "api_name": "asyncio.create_task", "line_number": 18, "usage_type": "call" }, { "api_name": "asyncio.wait", "line_number": 19, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 20, "usage_type": "call" }, { "api_name": "asyncio.run", "line_number": 22, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 28, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 30, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 31, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 33, "usage_type": "call" }, { "api_name": "random.random", "line_number": 41, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 42, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 47, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 60, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 60, "usage_type": "attribute" } ]
9887556442
import cv2, sys, time def start_split(filename): start = time.time() video = cv2.VideoCapture(filename) if not video: print("无法读取视频文件") sys.exit(1) count = 0 while video.isOpened(): print("\r正在处理第{0}帧图像".format(count), end="") ret, frame = video.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) resize = cv2.resize(gray, (8, 8)) cv2.imwrite("./pic/" + str(count).zfill(5) + ".jpg", resize) count += 1 video.release() end = time.time() print("\n处理完成,处理了{0}帧图像,用时{1}秒".format(count, round(end - start, 3))) return if __name__ == "__main__": file = "ba10s.mp4" start_split(file)
Temperature6/BadAppleVideoProcess
VideoSplit.py
VideoSplit.py
py
825
python
en
code
1
github-code
6
[ { "api_name": "time.time", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 9, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 18, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 20, "usage_type": "call" }, { "api_name": "time.time", "line_number": 25, "usage_type": "call" } ]
27322987878
from __future__ import print_function, division, absolute_import, unicode_literals import logging import os from inspect import isclass from tempfile import NamedTemporaryFile from collections import OrderedDict from fontTools.misc.py23 import tobytes, tounicode, UnicodeIO from fontTools.feaLib.parser import Parser from fontTools.feaLib.builder import addOpenTypeFeaturesFromString from fontTools.feaLib.error import IncludedFeaNotFound, FeatureLibError from fontTools import mtiLib from ufo2ft.constants import MTI_FEATURES_PREFIX from ufo2ft.featureWriters import ( KernFeatureWriter, MarkFeatureWriter, loadFeatureWriters, ast, ) logger = logging.getLogger(__name__) def parseLayoutFeatures(font): """ Parse OpenType layout features in the UFO and return a feaLib.ast.FeatureFile instance. """ featxt = tounicode(font.features.text or "", "utf-8") if not featxt: return ast.FeatureFile() buf = UnicodeIO(featxt) ufoPath = font.path includeDir = None if ufoPath is not None: # The UFO v3 specification says "Any include() statements must be relative to # the UFO path, not to the features.fea file itself". We set the `name` # attribute on the buffer to the actual feature file path, which feaLib will # pick up and use to attribute errors to the correct file, and explicitly set # the include directory to the parent of the UFO. ufoPath = os.path.normpath(ufoPath) buf.name = os.path.join(ufoPath, "features.fea") includeDir = os.path.dirname(ufoPath) glyphNames = set(font.keys()) try: parser = Parser(buf, glyphNames, includeDir=includeDir) doc = parser.parse() except IncludedFeaNotFound as e: if ufoPath and os.path.exists(os.path.join(ufoPath, e.args[0])): logger.warning( "Please change the file name in the include(...); " "statement to be relative to the UFO itself, " "instead of relative to the 'features.fea' file " "contained in it." ) raise return doc class BaseFeatureCompiler(object): """Base class for generating OpenType features and compiling OpenType layout tables from these. """ def __init__(self, ufo, ttFont=None, glyphSet=None, **kwargs): """ Args: ufo: an object representing a UFO (defcon.Font or equivalent) containing the features source data. ttFont: a fontTools TTFont object where the generated OpenType tables are added. If None, an empty TTFont is used, with the same glyph order as the ufo object. glyphSet: a (optional) dict containing pre-processed copies of the UFO glyphs. """ self.ufo = ufo if ttFont is None: from fontTools.ttLib import TTFont from ufo2ft.util import makeOfficialGlyphOrder ttFont = TTFont() ttFont.setGlyphOrder(makeOfficialGlyphOrder(ufo)) self.ttFont = ttFont glyphOrder = ttFont.getGlyphOrder() if glyphSet is not None: assert set(glyphOrder) == set(glyphSet.keys()) else: glyphSet = ufo self.glyphSet = OrderedDict((gn, glyphSet[gn]) for gn in glyphOrder) def setupFeatures(self): """ Make the features source. **This should not be called externally.** Subclasses must override this method. """ raise NotImplementedError def buildTables(self): """ Compile OpenType feature tables from the source. **This should not be called externally.** Subclasses must override this method. """ raise NotImplementedError def setupFile_features(self): """ DEPRECATED. Use 'setupFeatures' instead. """ _deprecateMethod("setupFile_features", "setupFeatures") self.setupFeatures() def setupFile_featureTables(self): """ DEPRECATED. Use 'setupFeatures' instead. """ _deprecateMethod("setupFile_featureTables", "buildTables") self.buildTables() def compile(self): if "setupFile_features" in self.__class__.__dict__: _deprecateMethod("setupFile_features", "setupFeatures") self.setupFile_features() else: self.setupFeatures() if "setupFile_featureTables" in self.__class__.__dict__: _deprecateMethod("setupFile_featureTables", "buildTables") self.setupFile_featureTables() else: self.buildTables() return self.ttFont def _deprecateMethod(arg, repl): import warnings warnings.warn( "%r method is deprecated; use %r instead" % (arg, repl), category=UserWarning, stacklevel=3, ) class FeatureCompiler(BaseFeatureCompiler): """Generate automatic features and compile OpenType tables from Adobe Feature File stored in the UFO, using fontTools.feaLib as compiler. """ defaultFeatureWriters = [KernFeatureWriter, MarkFeatureWriter] def __init__(self, ufo, ttFont=None, glyphSet=None, featureWriters=None, **kwargs): """ Args: featureWriters: a list of BaseFeatureWriter subclasses or pre-initialized instances. The default value (None) means that: - first, the UFO lib will be searched for a list of featureWriters under the key "com.github.googlei18n.ufo2ft.featureWriters" (see loadFeatureWriters). - if that is not found, the default list of writers will be used: [KernFeatureWriter, MarkFeatureWriter]. This generates "kern" (or "dist" for Indic scripts), "mark" and "mkmk" features. If the featureWriters list is empty, no automatic feature is generated and only pre-existing features are compiled. """ BaseFeatureCompiler.__init__(self, ufo, ttFont, glyphSet) self.initFeatureWriters(featureWriters) if kwargs.get("mtiFeatures") is not None: import warnings warnings.warn( "mtiFeatures argument is ignored; " "you should use MtiLibFeatureCompiler", category=UserWarning, stacklevel=2, ) def initFeatureWriters(self, featureWriters=None): """ Initialize feature writer classes as specified in the UFO lib. If none are defined in the UFO, the default feature writers are used: currently, KernFeatureWriter and MarkFeatureWriter. The 'featureWriters' argument can be used to override these. The method sets the `self.featureWriters` attribute with the list of writers. Note that the writers that generate GSUB features are placed first in this list, before all others. This is because the GSUB table may be used in the subsequent feature writers to resolve substitutions from glyphs with unicodes to their alternates. """ if featureWriters is None: featureWriters = loadFeatureWriters(self.ufo) if featureWriters is None: featureWriters = self.defaultFeatureWriters gsubWriters = [] others = [] for writer in featureWriters: if isclass(writer): writer = writer() if writer.tableTag == "GSUB": gsubWriters.append(writer) else: others.append(writer) self.featureWriters = gsubWriters + others def setupFeatures(self): """ Make the features source. **This should not be called externally.** Subclasses may override this method to handle the file creation in a different way if desired. """ if self.featureWriters: featureFile = parseLayoutFeatures(self.ufo) for writer in self.featureWriters: writer.write(self.ufo, featureFile, compiler=self) # stringify AST to get correct line numbers in error messages self.features = featureFile.asFea() else: # no featureWriters, simply read existing features' text self.features = tounicode(self.ufo.features.text or "", "utf-8") def writeFeatures(self, outfile): if hasattr(self, "features"): outfile.write(self.features) def buildTables(self): """ Compile OpenType feature tables from the source. Raises a FeaLibError if the feature compilation was unsuccessful. **This should not be called externally.** Subclasses may override this method to handle the table compilation in a different way if desired. """ if not self.features: return # the path is used by the lexer to follow 'include' statements; # if we generated some automatic features, includes have already been # resolved, and we work from a string which does't exist on disk path = self.ufo.path if not self.featureWriters else None try: addOpenTypeFeaturesFromString(self.ttFont, self.features, filename=path) except FeatureLibError: if path is None: # if compilation fails, create temporary file for inspection data = tobytes(self.features, encoding="utf-8") with NamedTemporaryFile(delete=False) as tmp: tmp.write(data) logger.error("Compilation failed! Inspect temporary file: %r", tmp.name) raise class MtiFeatureCompiler(BaseFeatureCompiler): """ Compile OpenType layout tables from MTI feature files using fontTools.mtiLib. """ def setupFeatures(self): ufo = self.ufo features = {} # includes the length of the "/" separator prefixLength = len(MTI_FEATURES_PREFIX) + 1 for fn in ufo.data.fileNames: if fn.startswith(MTI_FEATURES_PREFIX) and fn.endswith(".mti"): content = tounicode(ufo.data[fn], encoding="utf-8") features[fn[prefixLength:-4]] = content self.mtiFeatures = features def buildTables(self): for tag, features in self.mtiFeatures.items(): table = mtiLib.build(features.splitlines(), self.ttFont) assert table.tableTag == tag self.ttFont[tag] = table
Torneo-Tipografico-Comunidad/Torneo-2020
Calmadita /05_SOURCES/sources/venv/lib/python3.7/site-packages/ufo2ft/featureCompiler.py
featureCompiler.py
py
10,497
python
en
code
7
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 23, "usage_type": "call" }, { "api_name": "fontTools.misc.py23.tounicode", "line_number": 30, "usage_type": "call" }, { "api_name": "ufo2ft.featureWriters.ast.FeatureFile", "line_number": 32, "usage_type": "call" }, { "api_name": "ufo2ft.featureWriters.ast", "line_number": 32, "usage_type": "name" }, { "api_name": "fontTools.misc.py23.UnicodeIO", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path.normpath", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path", "line_number": 42, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "fontTools.feaLib.parser.Parser", "line_number": 47, "usage_type": "call" }, { "api_name": "fontTools.feaLib.error.IncludedFeaNotFound", "line_number": 49, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 50, "usage_type": "call" }, { "api_name": "fontTools.ttLib.TTFont", "line_number": 83, "usage_type": "call" }, { "api_name": "ufo2ft.util.makeOfficialGlyphOrder", "line_number": 84, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 92, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 139, "usage_type": "call" }, { "api_name": "ufo2ft.featureWriters.KernFeatureWriter", "line_number": 151, "usage_type": "name" }, { "api_name": "ufo2ft.featureWriters.MarkFeatureWriter", "line_number": 151, "usage_type": "name" }, { "api_name": "{'TTFont': 'fontTools.ttLib.TTFont', 'makeOfficialGlyphOrder': 'ufo2ft.util.makeOfficialGlyphOrder'}.__init__", "line_number": 167, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 174, "usage_type": "call" }, { "api_name": "ufo2ft.featureWriters.loadFeatureWriters", "line_number": 195, "usage_type": "call" }, { "api_name": "inspect.isclass", "line_number": 202, "usage_type": "call" }, { "api_name": "fontTools.misc.py23.tounicode", "line_number": 229, "usage_type": "call" }, { "api_name": "fontTools.feaLib.builder.addOpenTypeFeaturesFromString", "line_number": 253, "usage_type": "call" }, { "api_name": "fontTools.feaLib.error.FeatureLibError", "line_number": 254, "usage_type": "name" }, { "api_name": "fontTools.misc.py23.tobytes", "line_number": 257, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 258, "usage_type": "call" }, { "api_name": "ufo2ft.constants.MTI_FEATURES_PREFIX", "line_number": 274, "usage_type": "argument" }, { "api_name": "ufo2ft.constants.MTI_FEATURES_PREFIX", "line_number": 276, "usage_type": "argument" }, { "api_name": "fontTools.misc.py23.tounicode", "line_number": 277, "usage_type": "call" }, { "api_name": "fontTools.mtiLib.build", "line_number": 283, "usage_type": "call" }, { "api_name": "fontTools.mtiLib", "line_number": 283, "usage_type": "name" } ]
26260800957
import pygame class Item: def __init__(self, image, x, y, id, player): self.image = pygame.image.load(image) self.x, self.y = x, y self.player = player self.id = id def draw(self, screen): screen.blit(self.image, (self.x, self.y)) def onPlayerCollision(self): pygame.mixer.music.load("other\\itempickup.wav") pygame.mixer.music.play(1) if self.id == 1: self.player.hasSnorkel = True if self.id == 2: self.player.hasMachete = True self.player.attack_damage = 5 if self.id == 3: self.player.hasBombs = True self.player.bombs = 15
SeaPickle754/zeldaish
item.py
item.py
py
588
python
en
code
0
github-code
6
[ { "api_name": "pygame.image.load", "line_number": 5, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 5, "usage_type": "attribute" }, { "api_name": "pygame.mixer.music.load", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pygame.mixer.music.play", "line_number": 14, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 14, "usage_type": "attribute" } ]
20546789103
import discord from discord.ext import commands from discord.ext.commands import Command from chime.main import prefix from chime.misc.CustomCommand import CustomCommand from chime.misc.StyledEmbed import StyledEmbed class EmbedHelpCommand(commands.HelpCommand): """This is an example of a HelpCommand that utilizes embeds. It's pretty basic but it lacks some nuances that people might expect. 1. It breaks if you have more than 25 cogs or more than 25 subcommands. (Most people don't reach this) 2. It doesn't DM users. To do this, you have to override `get_destination`. It's simple. Other than those two things this is a basic skeleton to get you started. It should be simple to modify if you desire some other behaviour. To use this, pass it to the bot constructor e.g.: bot = commands.Bot(help_command=EmbedHelpCommand()) """ # Set the embed colour here COLOUR = discord.colour.Color.from_rgb(r=255, g=197, b=84) def get_command_signature(self, command): return '{0.qualified_name} {0.signature}'.format(command) async def send_bot_help(self, mapping): embed = StyledEmbed(title='chime help') embed.set_thumbnail(url="https://raw.githubusercontent.com/realmayus/chime/master/assets/chime_banner.png?token=AJC6B5VTHEZ5UHNY7QNDCU263LCCK") embed.description = "chime is a versatile, yet intuitive music bot for discord. It aims to be as user-friendly as possible while still boasting many features. \n\n" \ "**More info and invite link [here](https://chime.realmayus.xyz)** \n\n" \ "Chime has a **web app** where you can manage and set up personal playlists and manage settings of your servers! https://chime.realmayus.xyz \n\n" \ "**Use** `" + self.clean_prefix + "help [command]` **for more info on a command.**" for cog, commands in mapping.items(): if cog is not None: # We don't want commands without categories! >:c name = cog.qualified_name filtered = await self.filter_commands(commands, sort=True) if filtered: builder = [] for command in commands: # filtering out hidden commands command: Command builder.append(f"`{prefix + command.name}`" if not command.hidden else "") value = ' '.join(builder) if cog and cog.description: value = '{0}\n{1}'.format(cog.description, value) embed.add_field(name=name, value=value) await self.get_destination().send(embed=embed) async def send_cog_help(self, cog): pass async def send_group_help(self, group: CustomCommand): embed = StyledEmbed(title='`' + group.qualified_name + '`') desc = "" if group.help: desc += group.help if group.usage: embed.add_field(name="**Usage**", value=f"`{prefix + group.usage}`", inline=False) if group.aliases and len(group.aliases) > 0: embed.add_field(name="**Aliases**", value=' '.join([f"`{prefix + alias}`" for alias in group.aliases]), inline=False) if hasattr(group, "available_args") and group.available_args: arg_builder = "" for typ in group.available_args: arg_builder += f"\n**{typ['type']}**" for arg in typ['args']: arg_builder += f"\n`{arg['name']}`\n***{arg['desc']}***" embed.add_field(name="**Arguments**", value=arg_builder) if hasattr(group, "examples") and group.examples: example_builder = "" for ex in group.examples: example_builder += f"\n`{ex['ex']}`\n{ex['desc']}" embed.add_field(name="**Examples**", value=example_builder) embed.description = desc await self.get_destination().send(embed=embed) # This makes it so it uses the function above # Less work for us to do since they're both similar. # If you want to make regular command help look different then override it send_command_help = send_group_help
realmayus/chime
chime/cogs/HelpCommandCog.py
HelpCommandCog.py
py
4,233
python
en
code
1
github-code
6
[ { "api_name": "discord.ext.commands.HelpCommand", "line_number": 10, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 10, "usage_type": "name" }, { "api_name": "discord.colour.Color.from_rgb", "line_number": 23, "usage_type": "call" }, { "api_name": "discord.colour", "line_number": 23, "usage_type": "attribute" }, { "api_name": "chime.misc.StyledEmbed.StyledEmbed", "line_number": 29, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 35, "usage_type": "name" }, { "api_name": "discord.ext.commands", "line_number": 38, "usage_type": "argument" }, { "api_name": "discord.ext.commands", "line_number": 41, "usage_type": "name" }, { "api_name": "discord.ext.commands.Command", "line_number": 42, "usage_type": "name" }, { "api_name": "chime.main.prefix", "line_number": 43, "usage_type": "name" }, { "api_name": "chime.misc.CustomCommand.CustomCommand", "line_number": 55, "usage_type": "name" }, { "api_name": "chime.misc.StyledEmbed.StyledEmbed", "line_number": 56, "usage_type": "call" }, { "api_name": "chime.main.prefix", "line_number": 62, "usage_type": "name" }, { "api_name": "chime.main.prefix", "line_number": 65, "usage_type": "name" } ]
19202891943
#!/usr/bin/python3 """ A module that include the parent class Basemodel """ import models from datetime import datetime from uuid import uuid4 class BaseModel: """ class BaseModel that defines all common attributes/methods for other classes. """ def __init__(self, *args, **kwargs): """ __init__ method to initise the an object during its creation Args: *args: tuple of arguments **kwags: key value variables """ self.id = str(uuid4()) self.created_at = datetime.now() self.updated_at = datetime.now() if kwargs: for key, value in kwargs.items(): if key != '__class__': if key in ['created_at', 'updated_at']: fformat = '%Y-%m-%dT%H:%M:%S.%f' """convert the string values to datetime objects""" value = datetime.strptime(value, fformat) setattr(self, key, value) """ ^^^this is like self.key = value and this line solves the purpose of each value of this dictionary is the value of this attribute name """ else: self.id = str(uuid4()) self.created_at = datetime.now() self.updated_at = datetime.now() models.storage.new(self) def __str__(self): """ __str__: should print: [<class name>] (<self.id>) <self.__dict__> """ class_name = self.__class__.__name__ return "[{}] ({}) {}".format(class_name, self.id, self.__dict__) def save(self): """ save(self): updates the public instance attribute updated_at with the current datetime """ self.updated_at = datetime.now() models.storage.save() def to_dict(self): """ returns a dictionary containing all keys/values of __dict__ of the instance """ c_dict = self.__dict__.copy() c_dict['__class__'] = self.__class__.__name__ c_dict['created_at'] = self.created_at.isoformat() c_dict['updated_at'] = self.updated_at.isoformat() return c_dict
sanotogii/AirBnB_clone
models/base_model.py
base_model.py
py
2,261
python
en
code
0
github-code
6
[ { "api_name": "uuid.uuid4", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 27, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 27, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 34, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 42, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 43, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 43, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 44, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 44, "usage_type": "name" }, { "api_name": "models.storage.new", "line_number": 45, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 45, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 61, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 61, "usage_type": "name" }, { "api_name": "models.storage.save", "line_number": 62, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 62, "usage_type": "attribute" } ]
18801821077
import requests requests.packages.urllib3.disable_warnings() # noqa url = "https://api.github.com/repos/milvus-io/milvus/actions/workflows" payload = {} token = "" # your token headers = { "Authorization": f"token {token}", } response = requests.request("GET", url, headers=headers, data=payload) def analysis_workflow(workflow_name, workflow_response): """ Used to count the number of successes and failures of jobs in the chaos test workflow, so as to understand the robustness of different components(each job represents a component). """ workflow_id = [w["id"] for w in workflow_response.json()["workflows"] if workflow_name in w["name"]][0] runs_response = requests.request("GET", f"https://api.github.com/repos/milvus-io/milvus/actions/workflows/{workflow_id}/runs", headers=headers, data=payload, verify=False) workflow_runs = [r["id"] for r in runs_response.json()["workflow_runs"] if r["status"] == "completed" and r["event"] == "schedule"] results = {} for run in workflow_runs: job_url = f"https://api.github.com/repos/milvus-io/milvus/actions/runs/{run}/jobs" job_response = requests.request("GET", job_url, headers=headers, data=payload, verify=False) for r in job_response.json()["jobs"]: if r["name"] not in results: results[r["name"]] = {"success": 0, "failure": 0} if r["status"] == "completed" and r["conclusion"] == "success": results[r["name"]]["success"] += 1 elif r["status"] == "completed" and r["conclusion"] != "success": results[r["name"]]["failure"] += 1 return results for workflow in ["Pod Kill"]: result = analysis_workflow(workflow, response) print(f"{workflow}:") for k, v in result.items(): print(f"{k} success: {v['success']}, failure: {v['failure']}") print("\n")
milvus-io/milvus
tests/python_client/chaos/scripts/workflow_analyse.py
workflow_analyse.py
py
1,895
python
en
code
24,190
github-code
6
[ { "api_name": "requests.packages.urllib3.disable_warnings", "line_number": 2, "usage_type": "call" }, { "api_name": "requests.packages", "line_number": 2, "usage_type": "attribute" }, { "api_name": "requests.request", "line_number": 11, "usage_type": "call" }, { "api_name": "requests.request", "line_number": 20, "usage_type": "call" }, { "api_name": "requests.request", "line_number": 25, "usage_type": "call" } ]
29285921224
from rply import LexerGenerator # type: ignore # lexer for the "calc" command lg = LexerGenerator() lg.add('NUMBER', r'[0-9]+[\.]?[0-9]*') # number token lg.add('ADDITION', r'\+') # operator tokens lg.add('SUBTRACTION', r'-') lg.add('MULTIPLICATION', r'\*') lg.add('EXPONENT', r'\^') lg.add('DIVISION', r'\/') lg.add('FIRST_BRACKETS', r'\[') # grouping tokens lg.add('SECOND_BRACKETS', r'\]') lg.add('FIRST_BRACES', r'\{') lg.add('SECOND_BRACES', r'\}') lg.add('FIRST_PARENTHESIS', r'\(') lg.add('SECOND_PARENTHESIS', r'\)') lg.ignore('\s+') # ignore whitespace l = lg.build()
Chrovo/Productivity
cogs/utils/lexer.py
lexer.py
py
582
python
en
code
0
github-code
6
[ { "api_name": "rply.LexerGenerator", "line_number": 4, "usage_type": "call" } ]
22021920480
''' Jessica Dutton Store Manager (user entity) ''' from google.cloud import datastore from flask import Blueprint, Flask, request, make_response import json import constants from google.oauth2 import id_token from google.auth.transport import requests client = datastore.Client() bp = Blueprint('store_manager', __name__, url_prefix='/store_managers') @bp.route('', methods=['GET']) def store_managers_get(): if request.method == 'GET': store_managers = [] if 'application/json' not in request.accept_mimetypes: response = {"Error": "Response type must be JSON"} res = make_response(response) res.mimetype = 'application/json' res.status_code = 406 return res # get the dvds query = client.query(kind=constants.dvds) results = list(query.fetch()) for dvd in results: if dvd['store_manager'] not in store_managers: store_managers.append(dvd['store_manager']) if len(store_managers) != 0: response = {"List of store manager IDs": store_managers} else: response = {"Results" : "No store managers currently registered in app"} return (response, 200) else: return 'Method not recognized'
jdutt25/dvd_store
store_manager.py
store_manager.py
py
1,310
python
en
code
0
github-code
6
[ { "api_name": "google.cloud.datastore.Client", "line_number": 14, "usage_type": "call" }, { "api_name": "google.cloud.datastore", "line_number": 14, "usage_type": "name" }, { "api_name": "flask.Blueprint", "line_number": 15, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 19, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 19, "usage_type": "name" }, { "api_name": "flask.request.accept_mimetypes", "line_number": 21, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 21, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 23, "usage_type": "call" }, { "api_name": "constants.dvds", "line_number": 29, "usage_type": "attribute" } ]
3670374638
import math from collections import defaultdict from typing import Union, Callable, Tuple, List import gevent from gevent.queue import Queue from requests import PreparedRequest, Response from lib.utils.logger import Logger from lib.utils.request_helper import RequestHelper, RequestInfo class BaseFinder(RequestHelper): # Формат: # {'example.com:8443': {'some_bucket': {'size': Union[int, None], 'in_progress': Union[bool, None]}, ...}, ...} bucket_size_cache = defaultdict(lambda: defaultdict(dict)) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def determine_bucket_size(self, info: RequestInfo): raise NotImplementedError def find_secrets(self, info: RequestInfo, words: List[str]): """ Проверяет изменения в ответе для заданного списка параметров `words` в теле запроса :param info: :param words: Названия параметров :return: dict([(`param`, `reasons`)]) - если найдено конкретное слово int - если со словами требуется провести манипуляции """ raise NotImplementedError def get_bucket_size(self, info: RequestInfo): """ Возвращает общие число хидеров в запросе """ raise NotImplementedError def get_word_chunks(self, info: RequestInfo): raise NotImplementedError def is_info_searchable(self, info: RequestInfo): raise NotImplementedError def set_bucket_size(self, info: RequestInfo): """ Устанавивает для запроса в `info` общее число хидеров """ raise NotImplementedError def setup_requests_info(self, info_list: List[RequestInfo]): raise NotImplementedError def do_request(self, prepared_request: PreparedRequest, **kwargs) -> Union[Response, None]: """ Выполняет подготовленных запрос с отчисткой промежуточного кэша :param prepared_request: :return: `None` - если по истечении `self.retry` попыток не удалось получить ответ от сервера `requests.Response` - если удалось получить ответ от сервера """ return super().do_request(prepared_request, self.retry, self.timeout, self.delay, self.proxies, self.arguments.allow_redirects, self.logger) def filter_requests(self, *args, **kwargs): kwargs.update({'logger': self.logger}) return super().filter_requests(*args, **kwargs) def get_optimal_bucket(self, info: RequestInfo, min_chunk: int, add_random: Callable, additional_size: Callable, logger: Logger) -> Union[int, None]: """ Ищет оптимальный размер порции параметров соотношение (Длина порции) / (время ответа) :param info: :return: """ left, cur, right = 1024, 2048, 4096 left_border = 0 right_border = math.inf counter = 5 optimal_size = None optimal_rate = 0 # Ограничение на число циклов while counter: counter -= 1 # Если левая граница обнулилась if left == 0: break # Если диапазон неделим, то прекратить цикл if right - cur < 2 or cur - left < 2: break # Подготавливаем запросы _requests = [info.copy_request() for _ in range(3)] for request, length in zip(_requests, [left, cur, right]): add_random(request, length) # Отправляем jobs = [gevent.spawn(self.do_request, request) for request in _requests] gevent.joinall(jobs) responses = [job.value for job in jobs] # Получаем результаты results = [] # results = [response.status_code == info.response.status_code if response is not None else response # for response in responses] for response in responses: if not response: results.append(None) # Если совпадают коды ответа elif response.status_code == info.response.status_code: results.append(True) # Если Payload Too Large/URI Too Long/Request Header Fields Too Large elif response.status_code in {413, 414, 431}: results.append(False) # Если код ответа на отрезке [500, 599], а оригинальный код не в этом отрезке elif 500 <= response.status_code < 600 and not 500 <= info.response.status_code < 600: results.append(False) # Если код ответа на отрезке [400, 499], а оригинальный код не в этом отрезке elif 400 <= response.status_code < 500 and not 400 <= info.response.status_code < 500: results.append(False) else: logger.debug(f'Необработанный случай: act_status_code={response.status_code}, orig_status_cod={info.response.status_code}') results.append(True) # Если все запросы не получили ответа от сервера, то сдвигаемся влево if not any(results): right_border = left right = right_border cur = right >> 1 left = cur >> 1 continue # Иначе выбираем среди ответов оптимальный rates = [] for response, size, result in zip([response for response in responses], [left, cur, right], results): # Рассматриваем только те случаи, когда мы не вышли за границы elapsed = response.elapsed.total_seconds() if (response is not None and result == True) else math.inf rate = round(size / elapsed, 1) rates.append(rate) if rate > optimal_rate and result: optimal_rate = rate optimal_size = size # Cмотрим, в какую сторону развивается динамика max_rate = max(rates) # Если все запросы не превысили границу, то двигаемся в сторону динамики if all(results): # Если динамика увеличивается слева if rates[0] == max_rate: right_border = right # То смещаемся влево right = left - 1 cur = right >> 1 left = cur >> 1 # Если левый указатель меньше левой границы if left < left_border: # То пересчитываем указатели в пределах границ left, cur, right = self.shift_bounds(left_border, right_border) # Если динамика увеличивается справа elif rates[2] == max_rate: left_border = left # То смещаемся вправо left = right + 1 cur = left << 1 right = cur << 1 # Если правый указатель вышел за пределы правой границы if right > right_border: # То пересчитываем указатели в пределах границ left, cur, right = self.shift_bounds(left_border, right_border) # Иначе рассматриваем окрестности центра else: left_border = left if left > left_border else left_border right_border = right if right < right_border else right_border left = (left + cur) // 2 right = (cur + right) // 2 # Если результаты [True, False|None, False|None] elif results[0] == True and all([not r for r in results[1:]]): right_border = cur if cur < right_border else right_border # То сдвигаемся влево right = left - 1 cur = right >> 1 left = cur >> 1 # Если результаты [True, True, False|None] elif results[2] in {None, False} and all([r for r in results[:2]]): right_border = right if right < right_border else right_border # То смотрим на динамику слева и посередине # Если динамика увеличивается слева if rates[0] == max_rate: # То сдвигаемся влево right = left - 1 # Сдвигаем рассматриваемую правую границу на 1 от ранее рассматриваемой левой cur = right >> 1 left = cur >> 1 # Если левый указатель меньше левой границы if left < left_border: # То пересчитываем указатели в пределах границ left, cur, right = self.shift_bounds(left_border, right_border) # Иначе копаем в пределах cur else: right = round((cur + right) / 2) left = (left + cur) // 2 else: # Сдвигаемся влево right = left - 1 # Сдвигаем рассматриваемую правую границу на 1 от ранее рассматриваемой левой cur = right >> 1 left = cur >> 1 # Если по итогу оптимальный размер меньше минимально требуемого, то вернуть минимально требуемый требуемый if optimal_size is not None: if optimal_size < min_chunk < right_border: return min_chunk + additional_size(info) return optimal_size + additional_size(info) return optimal_size @staticmethod def parse_results_queue(results_queue: Queue): results = defaultdict(lambda: defaultdict(list)) while results_queue.qsize(): result = results_queue.get() for param_name, value in result.items(): url, reasons, type, response = value['url'], value['reasons'], value['type'], value['response'] results[url][type].append({'param': param_name, 'reasons': reasons, 'response': response}) return results @staticmethod def parse_results(results: list): _results = defaultdict(lambda: defaultdict(list)) for result in results: for param_name, value in result.items(): url, reasons, type, response = value['url'], value['reasons'], value['type'], value['response'] _results[url][type].append({'param': param_name, 'reasons': reasons, 'response': response}) return _results @staticmethod def shift_bounds(left_bound: int, right_bound: int) -> Tuple[int, int, int]: """ Сдвигает тройку `left`, `cur`, `right` согласно новым границам `left_bound` и `right_bound` """ cur = (left_bound + right_bound) // 2 left = (left_bound + cur) // 2 right = round((cur + right_bound) / 2) return left, cur, right @staticmethod def update_results(results: dict, new_results: dict) -> dict: """ Обновляет словарь `results` данными из `new_results` :param results: :param new_results: :return: """ if not len(results.keys()): results = defaultdict(lambda: defaultdict(list)) for url in new_results: for type in new_results[url]: for new_info in new_results[url][type]: new_param, new_reasons, new_response = new_info['param'], new_info['reasons'], new_info['response'] results[url][type].append({'param': new_param, 'reasons': new_reasons, 'response': new_response}) return results
medalahonor/suseeker
lib/finders/base_finder.py
base_finder.py
py
13,362
python
ru
code
3
github-code
6
[ { "api_name": "lib.utils.request_helper.RequestHelper", "line_number": 13, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 16, "usage_type": "call" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 21, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 24, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 24, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 34, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 38, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 41, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 44, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 48, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 48, "usage_type": "name" }, { "api_name": "requests.PreparedRequest", "line_number": 51, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 51, "usage_type": "name" }, { "api_name": "requests.Response", "line_number": 51, "usage_type": "name" }, { "api_name": "lib.utils.request_helper.RequestInfo", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 66, "usage_type": "name" }, { "api_name": "lib.utils.logger.Logger", "line_number": 66, "usage_type": "name" }, { "api_name": "math.inf", "line_number": 74, "usage_type": "attribute" }, { "api_name": "gevent.spawn", "line_number": 99, "usage_type": "call" }, { "api_name": "gevent.joinall", "line_number": 100, "usage_type": "call" }, { "api_name": "math.inf", "line_number": 142, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 66, "usage_type": "name" }, { "api_name": "gevent.queue.Queue", "line_number": 233, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 234, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 245, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 254, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 270, "usage_type": "call" } ]
24847039251
import pygame class Character(): """Create a character - inherits from the Sprite class""" def __init__(self, screen, game_settings): self.screen = screen self.settings = game_settings # Load the character image and get its rect self.image = pygame.image.load("images/Robot.png") self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # Start the character at the bottom-left of the screen self.rect.left = self.screen_rect.left self.rect.bottom = self.screen_rect.bottom # Store a decimal value for the character's center self.centerx = float(self.rect.centerx) self.bottom = float(self.rect.bottom) self.start_y = 0.0 # Movement flags self.moving_right = False self.moving_left = False self.jumping = False self.falling = False # Get width of character for entering and exiting screen self.width = self.rect.width self.height = self.rect.height def update(self): """Update the character's position on the screen""" # Update center for float value if self.moving_right and self.rect.right < self.screen_rect.right + self.width: self.centerx += self.settings.movement_speed if self.moving_left and self.rect.left > 0: self.centerx -= self.settings.movement_speed if self.jumping: self.bottom -= self.settings.jumping_speed if self.bottom <= (self.start_y - self.settings.jump_height): self.jumping = False if self.falling: self.bottom += self.settings.gravity # Update rect using new centerx and bottom values self.rect.centerx = self.centerx self.rect.bottom = self.bottom def reset(self): """Reset the character to the bottom-left of the screen""" self.centerx = self.width / 2 self.bottom = self.screen_rect.bottom def blitme(self): """Draw the character at its present location""" self.screen.blit(self.image, self.rect)
YorkshireStu83/Flatpormer
character.py
character.py
py
2,187
python
en
code
0
github-code
6
[ { "api_name": "pygame.image.load", "line_number": 11, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 11, "usage_type": "attribute" } ]
36807817632
import numpy as np from scipy import signal from scipy.signal import butter, lfilter def createSpec(signals, sr, n_channels=22): # Reference: https://github.com/MesSem/CNNs-on-CHB-MIT, DataSetToSpectrogram n_channels = min(n_channels, 22) for channel in range(n_channels): y = signals[channel] Pxx = signal.spectrogram(y, nfft=sr, fs=sr, return_onesided=True, noverlap=128)[2] Pxx = np.delete(Pxx, np.s_[117:123 + 1], axis=0) Pxx = np.delete(Pxx, np.s_[57:63 + 1], axis=0) Pxx = np.delete(Pxx, 0, axis=0) result = ((10 * np.log10(Pxx).T - (10 * np.log10(Pxx)).T.mean(axis=0)) / (10 * np.log10(Pxx)).T.std(axis=0)) if channel == 0: spect = np.zeros((n_channels, *result.shape)) result = np.nan_to_num(result) spect[channel] = result return spect # Filtro taglia banda def butter_bandstop_filter(data, lowcut, highcut, fs, order): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq i, u = butter(order, [low, high], btype='bandstop') y = lfilter(i, u, data) return y # Filtro taglia banda, passa alta def butter_highpass_filter(data, cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='high', analog=False) y = lfilter(b, a, data) return y
koike-ya/eeglibrary
eeglibrary/src/chb_mit_cnn_spectrogram.py
chb_mit_cnn_spectrogram.py
py
1,357
python
en
code
1
github-code
6
[ { "api_name": "scipy.signal.spectrogram", "line_number": 14, "usage_type": "call" }, { "api_name": "scipy.signal", "line_number": 14, "usage_type": "name" }, { "api_name": "numpy.delete", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.s_", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.delete", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.s_", "line_number": 16, "usage_type": "attribute" }, { "api_name": "numpy.delete", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.nan_to_num", "line_number": 24, "usage_type": "call" }, { "api_name": "scipy.signal.butter", "line_number": 37, "usage_type": "call" }, { "api_name": "scipy.signal.lfilter", "line_number": 38, "usage_type": "call" }, { "api_name": "scipy.signal.butter", "line_number": 45, "usage_type": "call" }, { "api_name": "scipy.signal.lfilter", "line_number": 46, "usage_type": "call" } ]
8017799306
import tkinter as tk from tkinter import ttk from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import numpy as np class GraphPlt(): def __init__(self): """インスタンス化。Figureの作成 """ self.fig = Figure(figsize=(6,6)) def plt(self, title="plot graph",topLevel=True,kind_grid=None, is_legend = False,is_twin=False, rotate_xlim=0,show_bar=20): """作成したグラフのプロット Args: title (str, optional): ウィンドウのタイトル. Defaults to "plot graph". topLevel (bool, optional): ウィンドウをトップレベルにするか. Defaults to True. kind_grid (str, optional): グリッドの有無と方向. Defaults to None. is_legend (bool, optional): 凡例の有無. Defaults to False. is_twin (bool, optional): 2軸グラフか否か. Defaults to False. rotate_xlim (int, optional): x軸ラベルの角度. Defaults to 0. show_bar (int, optional): スクロールのスケール. Defaults to 20. """ if topLevel: frame = tk.Toplevel() else: frame = tk.Tk() frame.focus_force() frame.title(title) canvasFrame = tk.Frame(frame) canvasFrame.pack(side=tk.TOP) controlFrame = tk.Frame(frame) controlFrame.pack(side=tk.BOTTOM) canvas = FigureCanvasTkAgg(self.fig, canvasFrame) tmp = canvas.get_tk_widget() tmp.pack(side=tk.TOP, fill=tk.BOTH, expand=True) showbars = show_bar if not kind_grid == None: self.ax.grid(axis = kind_grid,linestyle="--") if is_legend: self.ax.legend() if is_twin: self.ax.legend(self.twin_label_handle[0][0]+self.twin_label_handle[1][0],self.twin_label_handle[0][1]+self.twin_label_handle[1][1],loc=2,borderaxespad=0.) self.fig.autofmt_xdate(rotation=rotate_xlim) def draw_plot(pos): pos_ = float(pos) self.ax.set_xlim(pos_-1, pos_+showbars+1) canvas.draw() y_scale = ttk.Scale(controlFrame, from_=0.0, to=self.data_len-showbars, length=480, orient=tk.HORIZONTAL, command=draw_plot) y_scale.pack(fill=tk.X) btn = tk.Button(controlFrame, text="閉じる", command = frame.destroy) btn.pack() draw_plot(0) def make_graph(self, x, y, graph_type,color = None,marker = None,label=None): """最初のグラフの作成 Args: x (list)): x軸のデータ y (list): y軸のデータ graph_type (str)): グラフの種類 color (str, optional): グラフの色. Defaults to None. label (str, optional): グラフのラベル. Defaults to None. """ self.axes_set() self.handler, self.label = self.graph_set(self.ax,x, y, graph_type,color,marker,label) def add_graph(self, x, y, graph_type,color = None,marker=None,label=None): """グラフの追加 Args: x (list): x軸のデータ y (list): y軸のデータ graph_type (str)): グラフの種類 color (str, optional): グラフの色. Defaults to None. label (str, optional): グラフのラベル. Defaults to None. """ self.graph_set(self.ax,x, y, graph_type,color,marker,label) def twin_axes(self): """2軸グラフにする """ self.ax_t = self.ax.twinx() self.twin_label_handle=list() self.twin_label_handle.append((self.handler,self.label)) def twin_add_graph(self,x,y,graph_type,color=None, marker = None,label=None): """2軸グラフに新たなデータの追加 Args: x (list): x軸のデータ y (list)): y軸のデータ graph_type (str): グラフの種類 color (str, optional): グラフの色. Defaults to None. label (str, optional): グラフのラベル. Defaults to None. """ handler, labels=self.graph_set(self.ax_t,x,y,graph_type,color,marker,label) self.twin_label_handle.append((handler,labels)) def axes_set(self): """新たなグラフの追加 """ self.ax = self.fig.add_subplot(111) def graph_set(self,ax,x,y,graph_type,color,marker,label): """グラフのセット Args: ax (plt.axes): 追加先のグラフ x (list): x軸のデータ y (list): y軸のデータ graph_type (str): グラフの種類 color (str): グラフの色 label (str): グラフのラベル Returns: [type]: [description] """ g = self._graph_select(ax,graph_type) if graph_type=="line": g(x,y,color=color,label=label,marker=marker) else: g(x,y,color=color,label=label) self.data_len = len(x) handler, label = ax.get_legend_handles_labels() return handler, label def set_span_xlim(self,span,last=0,first=0,delta = None): """x軸の設定 Args: span (int): 間隔 last (int, optional): 最後の数値. Defaults to 0. first (int, optional): 最初のデータ. Defaults to 0. delta (int, optional): last-firstの値. Defaults to None. """ if delta == None: xtick = [first] xtick.extend([i * span for i in range(1, (( last-first -1)//span) + 1)]) else: xtick = [1] xtick.extend([i * span for i in range(1, ((delta-1)//span) + 1)]) self.ax.set_xticks(xtick) def _graph_select(self,ax,graph_type): """graph_typeから適するグラフメソッドを返す Args: ax (plt.axes): 対象のグラフ graph_type (str): グラフタイプ.line:折れ線, bar:棒 Returns: plt.axes.method: 適切なグラフメソッド """ if graph_type == "bar": return ax.bar elif graph_type == "line": return ax.plot
komepi/komepiTkinter
komepiTkinter/GraphPlt.py
GraphPlt.py
py
6,239
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.figure.Figure", "line_number": 11, "usage_type": "call" }, { "api_name": "tkinter.Toplevel", "line_number": 26, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 28, "usage_type": "call" }, { "api_name": "tkinter.Frame", "line_number": 31, "usage_type": "call" }, { "api_name": "tkinter.TOP", "line_number": 32, "usage_type": "attribute" }, { "api_name": "tkinter.Frame", "line_number": 34, "usage_type": "call" }, { "api_name": "tkinter.BOTTOM", "line_number": 35, "usage_type": "attribute" }, { "api_name": "matplotlib.backends.backend_tkagg.FigureCanvasTkAgg", "line_number": 37, "usage_type": "call" }, { "api_name": "tkinter.TOP", "line_number": 40, "usage_type": "attribute" }, { "api_name": "tkinter.BOTH", "line_number": 40, "usage_type": "attribute" }, { "api_name": "tkinter.ttk.Scale", "line_number": 54, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 54, "usage_type": "name" }, { "api_name": "tkinter.HORIZONTAL", "line_number": 54, "usage_type": "attribute" }, { "api_name": "tkinter.X", "line_number": 55, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 56, "usage_type": "call" } ]
71781182589
import glob import os from datetime import datetime import cv2 # isResize = False isResize = True # change this to False, if resize is not required images = [] image_src_folder = "images" files = glob.glob(image_src_folder+"/*") for file in files: print(f"Processing: {os.path.basename(file)}") if file.endswith(".jpg") or file.endswith(".png"): image = cv2.imread(file) print(f"original image dimension: {image.shape}") # image shape is displayed as height,width, channel if isResize: resize_scale = 0.45 image = cv2.resize(image, None, fx=resize_scale, fy=resize_scale, interpolation=cv2.INTER_AREA) # resize by scale # image = cv2.resize(image, (640,480), interpolation=cv2.INTER_AREA) # resize by fixed output dimension print(f"new image dimension: {image.shape}") images.append(image) # if your stitch don't go well, try the STITCHER_SCANS stitcher = cv2.Stitcher.create(mode=cv2.STITCHER_PANORAMA) # stitcher = cv2.Stitcher.create(mode=cv2.STITCHER_SCANS) ret, stitched = stitcher.stitch(images) if ret == cv2.STITCHER_OK: output_fn = f'{datetime.now().strftime("%Y%m%d_%H%M%S")}.png' cv2.imshow('Panorama', stitched) cv2.imwrite(output_fn, stitched) cv2.waitKey(0) cv2.destroyAllWindows() else: print("Error during Stitching")
yptheangel/opencv-starter-pack
python/examples/image_stitching/stitching.py
stitching.py
py
1,349
python
en
code
8
github-code
6
[ { "api_name": "glob.glob", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 20, "usage_type": "attribute" }, { "api_name": "cv2.Stitcher.create", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.Stitcher", "line_number": 26, "usage_type": "attribute" }, { "api_name": "cv2.STITCHER_PANORAMA", "line_number": 26, "usage_type": "attribute" }, { "api_name": "cv2.STITCHER_OK", "line_number": 30, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "name" }, { "api_name": "cv2.imshow", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 37, "usage_type": "call" } ]
1698064062
import pygame # define constants for the window size and stack element size ELEMENT_WIDTH = 50 ELEMENT_HEIGHT = 200 # initialize Pygame pygame.init() # create a window window = pygame.display.set_mode((1000, 500)) # define a font to use for displaying the stack elements font = pygame.font.Font(None, 36) # define a stack to hold the operands stack = [] # define a list of tokens (operators and operands) in RPN tokens = ["2", "3", "5", "*", "8", "+", "4", "2", "/", "-"] # iterate through the tokens for token in tokens: # if the token is an operand, push it onto the stack and draw it on the window if token.isdigit(): stack.append(int(token)) text = font.render(token, True, (255, 255, 255)) window.blit(text, (10, (len(stack) - 1) * ELEMENT_HEIGHT)) # if the token is an operator, pop the top two operands from the stack, # perform the operation, and push the result back onto the stack else: right = stack.pop() left = stack.pop() if token == "+": result = left + right elif token == "-": result = left - right elif token == "*": result = left * right elif token == "/": result = left / right stack.append(result) text = font.render(str(result), True, (255, 255, 255)) window.blit(text, (10, (len(stack) - 1) * ELEMENT_HEIGHT)) # update the window to show the new stack element pygame.display.update() # pause for a moment to allow the user to see the update pygame.time.delay(500) # the final result will be the top item on the stack result = stack.pop() text = font.render(str(result), True, (255, 255, 255)) window.blit(text, (10, (len(stack) - 1) * ELEMENT_HEIGHT)) pygame.display.update() # run the Pygame loop until the user closes the window running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False # quit Pygame pygame.quit()
Dhivyno/Programming-projects
All files/test.py
test.py
py
2,005
python
en
code
2
github-code
6
[ { "api_name": "pygame.init", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 11, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 11, "usage_type": "attribute" }, { "api_name": "pygame.font.Font", "line_number": 14, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 46, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 46, "usage_type": "attribute" }, { "api_name": "pygame.time.delay", "line_number": 48, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 54, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 54, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 59, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 59, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 60, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 64, "usage_type": "call" } ]
26922909604
""" Imports the various compute backends """ from typing import Set from ..exceptions import InputError, ResourceError from .cfour import CFOURHarness from .dftd3 import DFTD3Harness from .entos import EntosHarness from .gamess import GAMESSHarness from .molpro import MolproHarness from .mopac import MopacHarness from .mp2d import MP2DHarness from .nwchem import NWChemHarness from .psi4 import Psi4Harness from .rdkit import RDKitHarness from .terachem import TeraChemHarness from .torchani import TorchANIHarness __all__ = ["register_program", "get_program", "list_all_programs", "list_available_programs"] programs = {} def register_program(entry_point: 'ProgramHarness') -> None: """ Register a new ProgramHarness with QCEngine. """ name = entry_point.name if name.lower() in programs.keys(): raise ValueError('{} is already a registered program.'.format(name)) programs[name.lower()] = entry_point def unregister_program(name: str) -> None: """ Unregisters a given program. """ ret = programs.pop(name.lower(), None) if ret is None: raise KeyError(f"Program {name} is not registered with QCEngine") def get_program(name: str, check: bool = True) -> 'ProgramHarness': """ Returns a program's executor class Parameters ---------- check ``True`` Do raise error if program not found. ``False`` is handy for the specialized case of calling non-execution methods (like parsing for testing) on the returned ``Harness``. """ name = name.lower() if name not in programs: raise InputError(f"Program {name} is not registered to QCEngine.") ret = programs[name] if check and not ret.found(): raise ResourceError(f"Program {name} is registered with QCEngine, but cannot be found.") return ret def list_all_programs() -> Set[str]: """ List all programs registered by QCEngine. """ return set(programs.keys()) def list_available_programs() -> Set[str]: """ List all programs that can be exectued (found) by QCEngine. """ ret = set() for k, p in programs.items(): if p.found(): ret.add(k) return ret register_program(Psi4Harness()) register_program(RDKitHarness()) register_program(TorchANIHarness()) register_program(MolproHarness()) register_program(MopacHarness()) register_program(DFTD3Harness()) register_program(TeraChemHarness()) register_program(MP2DHarness()) register_program(GAMESSHarness()) register_program(NWChemHarness()) register_program(CFOURHarness()) register_program(EntosHarness())
ChemRacer/QCEngine
qcengine/programs/base.py
base.py
py
2,624
python
en
code
null
github-code
6
[ { "api_name": "exceptions.InputError", "line_number": 63, "usage_type": "call" }, { "api_name": "exceptions.ResourceError", "line_number": 67, "usage_type": "call" }, { "api_name": "typing.Set", "line_number": 72, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 79, "usage_type": "name" }, { "api_name": "psi4.Psi4Harness", "line_number": 92, "usage_type": "call" }, { "api_name": "rdkit.RDKitHarness", "line_number": 93, "usage_type": "call" }, { "api_name": "torchani.TorchANIHarness", "line_number": 94, "usage_type": "call" }, { "api_name": "molpro.MolproHarness", "line_number": 95, "usage_type": "call" }, { "api_name": "mopac.MopacHarness", "line_number": 96, "usage_type": "call" }, { "api_name": "dftd3.DFTD3Harness", "line_number": 97, "usage_type": "call" }, { "api_name": "terachem.TeraChemHarness", "line_number": 98, "usage_type": "call" }, { "api_name": "mp2d.MP2DHarness", "line_number": 99, "usage_type": "call" }, { "api_name": "gamess.GAMESSHarness", "line_number": 100, "usage_type": "call" }, { "api_name": "nwchem.NWChemHarness", "line_number": 101, "usage_type": "call" }, { "api_name": "cfour.CFOURHarness", "line_number": 102, "usage_type": "call" }, { "api_name": "entos.EntosHarness", "line_number": 103, "usage_type": "call" } ]
10795571321
""" 作为初始代码,目标是有的一个固定大小的球,给定一个初识速度,和一个固定阻力,演示球运动的过程。每一个循环的时间与现实时间一致。 从最初代码开始演示如何一步步完善代码最终完成功能的过程。 """ import sys, pygame import os.path import random import time import math #pygame.font.init() #myfont = pygame.font.SysFont('Comic Sans MS', 30) def hit_A(x, y): return y <= 10 def hit_B(x, y): return x >= 590 def hit_C(x, y): return y >= 470 def hit_D(x, y): return x <= 10 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) print(BASE_DIR) pygame.init() screen = pygame.display.set_mode((600, 480)) ball_color = [255, 0, 0] x, y = random.randint(10, 590), random.randint(10, 390) speed = random.randint(100, 300) u = random.random()*math.pi f = 20 t = time.time() while 1: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() screen.fill((255, 255, 255)) t1 = time.time() dt = t1-t d = speed*dt dx, dy = d*math.cos(u), d*math.sin(u) x += dx y += dy if hit_B(x, y): u = math.pi - u elif hit_C(x,y): u = 2*math.pi - u elif hit_D(x,y): u = 3*math.pi - u elif hit_A(x, y): u = 2*math.pi - u speed -= f*dt if speed < 0: speed = 0 # 在前进方向上移动一步 pygame.draw.circle(screen, ball_color, (int(x), int(y)), 10) #textsurface = myfont.render(f'{dx} {dy}', False, (0, 0, 0)) #screen.blit(textsurface,(x,y)) pygame.display.flip() t = t1
sillyemperor/pygame-study
rebound-ball-walls.py
rebound-ball-walls.py
py
1,622
python
en
code
0
github-code
6
[ { "api_name": "os.path.path.dirname", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 26, "usage_type": "name" }, { "api_name": "os.path.path.abspath", "line_number": 26, "usage_type": "call" }, { "api_name": "pygame.init", "line_number": 30, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 32, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 32, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 37, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 38, "usage_type": "call" }, { "api_name": "random.random", "line_number": 39, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 39, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 41, "usage_type": "call" }, { "api_name": "pygame.event.get", "line_number": 43, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 43, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 44, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 45, "usage_type": "call" }, { "api_name": "time.time", "line_number": 47, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 50, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 50, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 54, "usage_type": "attribute" }, { "api_name": "math.pi", "line_number": 56, "usage_type": "attribute" }, { "api_name": "math.pi", "line_number": 58, "usage_type": "attribute" }, { "api_name": "math.pi", "line_number": 60, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 65, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 65, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 70, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 70, "usage_type": "attribute" } ]
24657079519
from django.contrib import admin from django.urls import reverse from django.utils.html import format_html from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from . import models import json # Register your models here. class BaseAdmin(admin.ModelAdmin): list_per_page = 50 list_max_show_all = 200 show_full_result_count = False preserve_filters = True @admin.register(models.Statistics) class StatisticsAdmin(BaseAdmin): list_display = ( 'id', 'jsonGlobalStatistics', 'jsonDomesticStatistics', 'jsonInternationalStatistics', 'modifyTime', 'crawlTime' ) search_fields = ('crawlTime', 'modifyTime') def jsonGlobalStatistics(self, obj): return self.to_json(obj.globalStatistics) jsonGlobalStatistics.short_description = _('globalStatistics') jsonGlobalStatistics.admin_order_field = 'globalStatistics' def jsonDomesticStatistics(self, obj): return self.to_json(obj.domesticStatistics) jsonDomesticStatistics.short_description = _('domesticStatistics') jsonDomesticStatistics.admin_order_field = 'domesticStatistics' def jsonInternationalStatistics(self, obj): return self.to_json(obj.internationalStatistics) jsonInternationalStatistics.short_description \ = _('internationalStatistics') jsonInternationalStatistics.admin_order_field \ = 'internationalStatistics' def to_json(self, data): try: data = json.loads(data) except: return result = [] for k, v in sorted(data.items()): result.append(format_html('{}: {}', k, v)) return mark_safe(format_html( '<pre>{}</pre>', format_html('<br>'.join(result)))) @admin.register(models.City) class CityAdmin(BaseAdmin): list_display = ( 'countryCode', 'provinceName', 'provinceCode', 'cityName', 'currentConfirmedCount', 'confirmedCount', 'suspectedCount', 'curedCount', 'deadCount', 'createTime', 'modifyTime' ) search_fields = ( 'cityName', 'countryCode', 'provinceCode', 'provinceName' ) @admin.register(models.Province) class ProvinceAdmin(BaseAdmin): list_display = ( 'countryCode', 'provinceName', 'currentConfirmedCount', 'confirmedCount', 'suspectedCount', 'curedCount', 'deadCount', 'createTime', 'modifyTime' ) search_fields = ('provinceName', 'countryCode') @admin.register(models.Country) class CountryAdmin(BaseAdmin): list_display = ( 'continents', 'countryCode', 'countryName', 'countryFullName', 'currentConfirmedCount', 'confirmedCount', 'suspectedCount', 'curedCount', 'deadCount', 'createTime', 'modifyTime' ) search_fields = ( 'continents', 'countryFullName', 'countryCode', 'countryName' ) @admin.register(models.CountryCode) class CountryCodeAdmin(BaseAdmin): list_display = ( 'numericCode', 'countryCode', 'shortCountryCode', 'countryName', 'englishCountryName', 'englishCountryFullName', 'comment' ) search_fields = ( 'numericCode', 'countryCode', 'shortCountryCode', 'countryName', 'englishCountryName', 'englishCountryFullName', 'comment' )
leafcoder/django-covid19
django_covid19/admin.py
admin.py
py
3,276
python
en
code
155
github-code
6
[ { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 12, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 12, "usage_type": "name" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 34, "usage_type": "call" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 39, "usage_type": "call" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 45, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 51, "usage_type": "call" }, { "api_name": "django.utils.html.format_html", "line_number": 56, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 57, "usage_type": "call" }, { "api_name": "django.utils.html.format_html", "line_number": 57, "usage_type": "call" }, { "api_name": "django.utils.html.format_html", "line_number": 58, "usage_type": "call" }, { "api_name": "django.contrib.admin.register", "line_number": 23, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 23, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 60, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 60, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 73, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 73, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 84, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 84, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 97, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 97, "usage_type": "name" } ]
36396180382
from ast import Lambda from itertools import groupby import pandas as pd import pymysql from pyecharts.charts import Bar, Line, Pie from pyecharts import options as opts conn = pymysql.connect(host="localhost", user="root", passwd="123456", port=3306, db="591") cursor = conn.cursor() sql = 'select * from rent' cursor.execute(sql) result = cursor.fetchall() df = pd.read_sql(sql, conn) location_group = df.groupby(["location"]) location_com = location_group["price"].aggregate(["mean", "count"]) location_com.reset_index(inplace=True) location_message = location_com.sort_values("count", ascending=False) locationr = location_message["location"] l1 = location_message["count"] l2 = location_message["mean"] l2 = ['%.2f' % i for i in l2.tolist()] # print(l2) # print(location_com) # #%% # #租房數&租金直方折線圖 bar = ( Bar(init_opts=opts.InitOpts(width="1200px", height="500px", theme='light')) .add_xaxis(locationr.tolist()) .add_yaxis("房屋出租數", l1.tolist()) .extend_axis( yaxis=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} 元"), interval=10000 ) ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="台北市各行政區出租房數&平均租金"), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} 間")), ) ) line = Line().add_xaxis(locationr.tolist()).add_yaxis( "平均租金", l2, yaxis_index=1) bar.overlap(line) bar.render("台北市各行政區出租房數&平均租金.html") # 出租房面積圓環圖 square_info = df['size'].astype(float) print(type(square_info[0])) bins = [0, 10, 20, 40, 60, 100, 300] level = ['0-10坪', '10-20坪', '20-40坪', '40-60坪', '60-100坪', '100-300坪'] square_stage = pd.cut(square_info, bins=bins, labels=level).value_counts().sort_index() attr = square_stage.index.tolist() v1 = square_stage.values.tolist() pie = ( Pie() .add("", [list(z)for z in zip(attr, v1)], radius=[80, 150]) # 加入百分比 .set_series_opts(label_opts=opts.LabelOpts(is_show=True, formatter="{d}%")) .set_global_opts(title_opts=opts.TitleOpts(title="台北市出租房房屋面積分布", pos_left="center", pos_bottom="center"), legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"), )) pie.render("台北市出租房房屋面積分布.html") # #%% # 出租房型疊加直方圖 mask = (df["kind"] != "其他") # 過濾掉其他 location_group = df[mask].groupby("location") location_values = [k[0] for k in location_group] gp = df[mask].sort_values("location").groupby("kind") s1 = gp.get_group("獨立套房")["location"].value_counts().tolist() s2 = gp.get_group("分租套房")["location"].value_counts().tolist() s3 = gp.get_group("雅房")["location"].value_counts().tolist() s4 = gp.get_group("整層住家")["location"].value_counts().tolist() # s5 = gp.get_group("車位")["location"].value_counts().tolist() bar = ( Bar(init_opts=opts.InitOpts(width="1200px", height="500px", theme='light')) .add_xaxis(location_values) .add_yaxis("獨立套房", s1, stack="stack1") .add_yaxis("分租套房", s2, stack="stack1") .add_yaxis("雅房", s3, stack="stack1") .add_yaxis("整層住家", s4, stack="stack1") # .add_yaxis("車位", s5, stack="stack1") .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="房型分類"), yaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value} 間")), ) ) bar.render("台北市各行政區出租房型分類.html") # ----------------------------------------- # 單坪租金折現面積圖 df["location"] = df["location"].apply( lambda x: "".join([i for i in x if not i.isdigit()])) df = (df[df["kind"].isin(["雅房", "整層住家", "獨立套房", "分租套房", "車位"])]. groupby(["location", "kind"])[["price", "size"]] .sum() .reset_index() .sort_values("location")) df.insert(4, column="average", value=df["price"]//df["size"]) line = ( Line() .add_xaxis(location_values) .add_yaxis("雅房", df.groupby("kind").get_group("雅房")["average"], areastyle_opts=opts.AreaStyleOpts(opacity=0.5)) .add_yaxis("整層住家", df.groupby("kind").get_group("整層住家")["average"], areastyle_opts=opts.AreaStyleOpts(opacity=0.4)) .add_yaxis("獨立套房", df.groupby("kind").get_group("獨立套房")["average"], areastyle_opts=opts.AreaStyleOpts(opacity=0.3)) .add_yaxis("分租套房", df.groupby("kind").get_group("分租套房")["average"], areastyle_opts=opts.AreaStyleOpts(opacity=0.2)) # .add_yaxis("車位", df.groupby("kind").get_group("車位")["average"], # areastyle_opts=opts.AreaStyleOpts(opacity=0.1)) .set_global_opts(title_opts=opts.TitleOpts(title="各房型單坪租金")) ) line.render("單坪租金圖.html") # ------------------------------------------------------
dichotomania/project
visual.py
visual.py
py
5,336
python
en
code
0
github-code
6
[ { "api_name": "pymysql.connect", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 18, "usage_type": "call" }, { "api_name": "pyecharts.charts.Bar", "line_number": 35, "usage_type": "call" }, { "api_name": "pyecharts.options.InitOpts", "line_number": 35, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 35, "usage_type": "name" }, { "api_name": "pyecharts.options.AxisOpts", "line_number": 39, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 39, "usage_type": "name" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 40, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 40, "usage_type": "name" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 43, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 43, "usage_type": "name" }, { "api_name": "pyecharts.options.TitleOpts", "line_number": 45, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 45, "usage_type": "name" }, { "api_name": "pyecharts.options.AxisOpts", "line_number": 46, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 46, "usage_type": "name" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 47, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 47, "usage_type": "name" }, { "api_name": "pyecharts.charts.Line", "line_number": 51, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 63, "usage_type": "call" }, { "api_name": "pyecharts.charts.Pie", "line_number": 69, "usage_type": "call" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 72, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 72, "usage_type": "name" }, { "api_name": "pyecharts.options.TitleOpts", "line_number": 73, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 73, "usage_type": "name" }, { "api_name": "pyecharts.options.LegendOpts", "line_number": 76, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 76, "usage_type": "name" }, { "api_name": "pyecharts.charts.Bar", "line_number": 95, "usage_type": "call" }, { "api_name": "pyecharts.options.InitOpts", "line_number": 95, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 95, "usage_type": "name" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 102, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 102, "usage_type": "name" }, { "api_name": "pyecharts.options.TitleOpts", "line_number": 104, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 104, "usage_type": "name" }, { "api_name": "pyecharts.options.AxisOpts", "line_number": 105, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 105, "usage_type": "name" }, { "api_name": "pyecharts.options.LabelOpts", "line_number": 106, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 106, "usage_type": "name" }, { "api_name": "pyecharts.charts.Line", "line_number": 126, "usage_type": "call" }, { "api_name": "pyecharts.options.AreaStyleOpts", "line_number": 129, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 129, "usage_type": "name" }, { "api_name": "pyecharts.options.AreaStyleOpts", "line_number": 131, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 131, "usage_type": "name" }, { "api_name": "pyecharts.options.AreaStyleOpts", "line_number": 133, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 133, "usage_type": "name" }, { "api_name": "pyecharts.options.AreaStyleOpts", "line_number": 135, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 135, "usage_type": "name" }, { "api_name": "pyecharts.options.TitleOpts", "line_number": 138, "usage_type": "call" }, { "api_name": "pyecharts.options", "line_number": 138, "usage_type": "name" } ]
14564990421
import numpy as np from IO.Pinocchio.ReadPinocchio import mf import matplotlib.pyplot as plt # Box Size boxsize = 150.0 aux = mf("../TestRuns/pinocchio.1.9775.example.mf.out", "mf") mf0 = mf("../TestRuns/pinocchio.1.9775.example.catalog.out", "catalog", 64, boxsize) mf0.dndm_teo = np.interp(mf0.m, aux.m, aux.dndm_teo) mf0.dndlnm_teo = np.interp(mf0.m, aux.m, aux.dndlnm_teo) plt.loglog(mf0.m, mf0.dndlnm, label='dn/dm Pin.') plt.loglog(mf0.m, mf0.dndlnm_teo, label='dn/dm Teo.') plt.legend() plt.show() plt.plot(mf0.m, mf0.dndlnm/mf0.dndlnm_teo, label='dn/dlnm Pin.') plt.axhline(1.0) plt.ylim([0.5, 1.05]) plt.xscale('log') plt.legend() plt.show()
TiagoBsCastro/PITILESS-SLICER
Test/test_mf.py
test_mf.py
py
657
python
en
code
1
github-code
6
[ { "api_name": "IO.Pinocchio.ReadPinocchio.mf", "line_number": 8, "usage_type": "call" }, { "api_name": "IO.Pinocchio.ReadPinocchio.mf", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.interp", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.interp", "line_number": 11, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.loglog", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.loglog", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axhline", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xscale", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name" } ]
39122258660
from service_info import dp, bot, greeting, download_url, path_to_file_url, PhotoStatesGroup, dict_config, lang_dict import aiohttp from visor import tess_visor, easy_visor, keras_visor from aiogram import types, executor from keyboards import type_kb, lang_kb from aiogram.dispatcher import FSMContext import logging import shutil async def on_startup(_): logging.info('bot was started') @dp.message_handler(commands = ['start']) async def command_start(message: types.Message): logging.info('User sent a command /start') await bot.send_message(chat_id=message.chat.id, text=greeting) await bot.send_sticker(chat_id=message.chat.id, sticker='CAACAgIAAxkBAAEJO-Jkf5GZ-dCO4T3wGzzFjksgFB_JgwACYAIAAgvNDgNERok1XlXTOS8E') await PhotoStatesGroup.photo.set() @dp.message_handler(content_types=['photo'], state=PhotoStatesGroup.photo) async def photo_handler(message: types.message, state: FSMContext): logging.info('State: Photo ') logging.info('The bot received the photo ') picture = bytearray() logging.info('Aiohttp request is processing') async with aiohttp.ClientSession() as session: resp = await session.get(download_url+message.photo[2].file_id) resp = await resp.json(encoding='UTF-8') async with session.get(path_to_file_url+resp['result']['file_path']) as responce: async for chunk in responce.content.iter_chunked(64*1024): picture += chunk logging.info('Photo has been downloaded from Telegram Server') async with state.proxy() as data: data['photo'] = picture logging.info('Photo saved in MemoryStorage') await message.answer('Какой тип больше подходит данному тексту?', reply_markup=type_kb) await PhotoStatesGroup.next() @dp.message_handler(state=PhotoStatesGroup.type_photo) async def type_picture(message: types.message, state: FSMContext): logging.info('State: Mode for OCR') logging.info('Mode for OCR was recieved') if message.text in list(dict_config.keys()): async with state.proxy() as data: logging.info('Mode saved in MemoryStorage') data['type'] = message.text else: await message.answer('Некорретный ответ, выбрал стандартный режим') logging.warning('Was set a standart Mode. User sent uncorrect mode') async with state.proxy() as data: data['type'] = 'Однородный блок текста на картинке' logging.info('Mode saved in MemoryStorage') await message.answer('Какой язык на картинке?', reply_markup=lang_kb) await PhotoStatesGroup.lang.set() @dp.message_handler(state=PhotoStatesGroup.lang) async def type_picture(message: types.message, state: FSMContext): logging.info('State: Language') logging.info('Language was recieved') if message.text in list(lang_dict.keys()): async with state.proxy() as data: data['lang'] = message.text else: await message.answer('Некорректный ответ. Выбран английский язык по умолчанию') async with state.proxy() as data: data['lang'] = 'Английский' logging.info('Uncorrect language. Was set a stardart language') logging.info('Language was saved in MemoryStorage') await message.answer('Обработка... Это может занять минуту.') logging.info("Was start a function 'Visor'. Data was sent to processing") text = tess_visor(image=data['photo'], type_picture=data['type'], language=data['lang']) await message.answer(f" {text[0]}\n Pytessart\n Time: {text[1]}") text = easy_visor(image=data['photo'], type_picture=data['type'], language=data['lang']) await message.answer(f" {text[0]}\n EasyOCR\n Time: {text[1]}") text = keras_visor() await message.answer(f" {text[0]}\n KerasOCR\n Time: {text[1]}") shutil.rmtree('images') await message.answer('Ожидаю следующую картинку!') await PhotoStatesGroup.photo.set() if __name__ == "__main__": logging.basicConfig(level=logging.INFO, filename="bot.log", filemode="w", format="%(asctime)s %(levelname)s %(message)s") executor.start_polling(dispatcher=dp, skip_updates = True, on_startup=on_startup)
dfgion/VisorBot
bot.py
bot.py
py
4,388
python
en
code
0
github-code
6
[ { "api_name": "logging.info", "line_number": 11, "usage_type": "call" }, { "api_name": "aiogram.types.Message", "line_number": 14, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 14, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 15, "usage_type": "call" }, { "api_name": "service_info.bot.send_message", "line_number": 16, "usage_type": "call" }, { "api_name": "service_info.bot", "line_number": 16, "usage_type": "name" }, { "api_name": "service_info.greeting", "line_number": 16, "usage_type": "name" }, { "api_name": "service_info.bot.send_sticker", "line_number": 17, "usage_type": "call" }, { "api_name": "service_info.bot", "line_number": 17, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.photo.set", "line_number": 18, "usage_type": "call" }, { "api_name": "service_info.PhotoStatesGroup.photo", "line_number": 18, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 18, "usage_type": "name" }, { "api_name": "service_info.dp.message_handler", "line_number": 13, "usage_type": "call" }, { "api_name": "service_info.dp", "line_number": 13, "usage_type": "name" }, { "api_name": "aiogram.types.message", "line_number": 21, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 21, "usage_type": "name" }, { "api_name": "aiogram.dispatcher.FSMContext", "line_number": 21, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 22, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 23, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 25, "usage_type": "call" }, { "api_name": "aiohttp.ClientSession", "line_number": 26, "usage_type": "call" }, { "api_name": "service_info.download_url", "line_number": 27, "usage_type": "name" }, { "api_name": "service_info.path_to_file_url", "line_number": 29, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 32, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 35, "usage_type": "call" }, { "api_name": "keyboards.type_kb", "line_number": 36, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.next", "line_number": 37, "usage_type": "call" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 37, "usage_type": "name" }, { "api_name": "service_info.dp.message_handler", "line_number": 20, "usage_type": "call" }, { "api_name": "service_info.dp", "line_number": 20, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.photo", "line_number": 20, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 20, "usage_type": "name" }, { "api_name": "aiogram.types.message", "line_number": 40, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 40, "usage_type": "name" }, { "api_name": "aiogram.dispatcher.FSMContext", "line_number": 40, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 42, "usage_type": "call" }, { "api_name": "service_info.dict_config.keys", "line_number": 43, "usage_type": "call" }, { "api_name": "service_info.dict_config", "line_number": 43, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 45, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 49, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 52, "usage_type": "call" }, { "api_name": "keyboards.lang_kb", "line_number": 53, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.lang.set", "line_number": 54, "usage_type": "call" }, { "api_name": "service_info.PhotoStatesGroup.lang", "line_number": 54, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 54, "usage_type": "name" }, { "api_name": "service_info.dp.message_handler", "line_number": 39, "usage_type": "call" }, { "api_name": "service_info.dp", "line_number": 39, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.type_photo", "line_number": 39, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 39, "usage_type": "name" }, { "api_name": "aiogram.types.message", "line_number": 57, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 57, "usage_type": "name" }, { "api_name": "aiogram.dispatcher.FSMContext", "line_number": 57, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 58, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 59, "usage_type": "call" }, { "api_name": "service_info.lang_dict.keys", "line_number": 60, "usage_type": "call" }, { "api_name": "service_info.lang_dict", "line_number": 60, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 67, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 68, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 70, "usage_type": "call" }, { "api_name": "visor.tess_visor", "line_number": 71, "usage_type": "call" }, { "api_name": "visor.easy_visor", "line_number": 73, "usage_type": "call" }, { "api_name": "visor.keras_visor", "line_number": 75, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 77, "usage_type": "call" }, { "api_name": "service_info.PhotoStatesGroup.photo.set", "line_number": 79, "usage_type": "call" }, { "api_name": "service_info.PhotoStatesGroup.photo", "line_number": 79, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 79, "usage_type": "name" }, { "api_name": "service_info.dp.message_handler", "line_number": 56, "usage_type": "call" }, { "api_name": "service_info.dp", "line_number": 56, "usage_type": "name" }, { "api_name": "service_info.PhotoStatesGroup.lang", "line_number": 56, "usage_type": "attribute" }, { "api_name": "service_info.PhotoStatesGroup", "line_number": 56, "usage_type": "name" }, { "api_name": "logging.basicConfig", "line_number": 82, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 82, "usage_type": "attribute" }, { "api_name": "aiogram.executor.start_polling", "line_number": 83, "usage_type": "call" }, { "api_name": "aiogram.executor", "line_number": 83, "usage_type": "name" }, { "api_name": "service_info.dp", "line_number": 83, "usage_type": "name" } ]
13303759601
import requests, asyncio from app import ACCESS_TOKEN, PYONET_API_URL, db from app.tools.p3log import P3Log class Poller: def __init__(self): self.p3log = P3Log("poller.log") self.poll_task = None self.devices = [] async def test_access_token(self): try: r = requests.get(f"{PYONET_API_URL}/auth/test/api_key", headers={"Authorization": f"{ACCESS_TOKEN}"}) r.raise_for_status() self.p3log.log_success("Successfully authenticated with Pyonet-API") return True except requests.exceptions.ConnectionError as ce: self.p3log.log_warning(f"Could not connect to Pyonet-API. Suggested: check if Pyonet-API is running and the PYONET_API_URL is correctly configured in the .env. Error: {str(ce)}") return False except Exception as e: self.p3log.log_error(f"ACCESS_TOKEN is invalid. Suggested: generate a new access token from the Pyonet-Dashboard interface and add it to the .env file. {str(e)}") return False async def init_polling(self): ''' Retrieves devices from Pyonet-API and starts the polling loop ''' try: r = requests.get(f"{PYONET_API_URL}/poller/devices", headers={"Authorization": ACCESS_TOKEN}) r.raise_for_status() self.devices = r.json() self.p3log.log_success(f"Successfully retrieved {len(self.devices)} devices from Pyonet-API") # Start polling loop loop = asyncio.get_event_loop() self.poll_task = loop.create_task(self.start_poll_loop()) except Exception as e: self.p3log.log_error(f"Initialization failed. Error: {str(e)}") return False # Main Polling Loop async def start_poll_loop(self): ''' Polls devices in a loop ''' try: for i in range(10): await self.poll_devices() await asyncio.sleep(1) except asyncio.CancelledError as e: self.p3log.log(f"Polling loop exited") return False async def poll_devices(self): for device in self.devices: print("Polling device: ", device["name"])
treytose/Pyonet-Poller
pyonet-poller/app/libraries/libpoller.py
libpoller.py
py
2,336
python
en
code
0
github-code
6
[ { "api_name": "app.tools.p3log.P3Log", "line_number": 7, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 13, "usage_type": "call" }, { "api_name": "app.PYONET_API_URL", "line_number": 13, "usage_type": "name" }, { "api_name": "app.ACCESS_TOKEN", "line_number": 13, "usage_type": "name" }, { "api_name": "requests.exceptions", "line_number": 17, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 29, "usage_type": "call" }, { "api_name": "app.PYONET_API_URL", "line_number": 29, "usage_type": "name" }, { "api_name": "app.ACCESS_TOKEN", "line_number": 29, "usage_type": "name" }, { "api_name": "asyncio.get_event_loop", "line_number": 35, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 49, "usage_type": "call" }, { "api_name": "asyncio.CancelledError", "line_number": 50, "usage_type": "attribute" } ]
19346820391
from pyparsing import FollowedBy import tweepy from app.config import TWITTER_API_KEY,TWITTER_API_KEY_SECRET,get_logger class TwitterAPI: def __init__(self,access_token,access_token_secret) -> None: self.api_key = TWITTER_API_KEY self.api_key_secret = TWITTER_API_KEY_SECRET self.access_token = access_token self.access_token_secret = access_token_secret self.logger = get_logger() auth = tweepy.OAuth1UserHandler(self.api_key,self.api_key_secret,self.access_token,self.access_token_secret) self.api = tweepy.API(auth,parser=tweepy.parsers.JSONParser()) def get_user_profile(self,user_id,screen_name): try: profile = self.api.get_user(user_id=user_id,screen_name=screen_name,include_entities=1) except Exception as e: self.logger.error(f"Something went wrong while getting user profile: {str(e)}") return None return{ "user_id":profile['id_str'], "name":profile['name'], "description":profile['description'], "screen_name":profile['screen_name'], "profile_image_url":profile['profile_image_url'] } def get_user_feed(self, page_num): feed = [] try: for page in tweepy.Cursor(self.api.home_timeline, tweet_mode="extended").pages(page_num): feed = page except Exception as e: self.logger.error(f"Something went wrong while fetching Feed: {str(e)}") return None return feed # geocode format --> '18.520430,73.856743,25km' (string) def get_searched_tweets(self, query, page ,geocode): searched_tweets=None try: for pageResult in tweepy.Cursor(self.api.search_tweets, q=query, geocode=geocode, tweet_mode="extended").pages(page): searched_tweets = pageResult except Exception as e: self.logger.error(f"Something went wrong while searching Topic: {str(e)}") return None return searched_tweets def upload_media(self,filename): try: media = self.api.media_upload(filename=filename) except Exception as e: self.logger.error(f"Something went wrong while uploading the File: {str(e)}") return None return media['media_id_string'] def create_tweet(self,text,media_ids): try: new_tweet = self.api.update_status(status =text,media_ids = media_ids) except Exception as e: self.logger.error(f"Something went wrong while creating new tweet: {str(e)}") return None return new_tweet def reply_tweet(self, text, media_ids, tweet_id): try: reply = self.api.update_status(status = text, media_ids = media_ids, in_reply_to_status_id = tweet_id , auto_populate_reply_metadata=True) except Exception as e: self.logger.error(f"Something went wrong while replying to tweet: {str(e)}") return None return reply def get_tweet(self, tweet_id): try: tweet = self.api.get_status(id = tweet_id) except Exception as e: self.logger.error(f"Something went wrong while fetching tweet by id: {str(e)}") return None return tweet def favorites_tweet(self, tweet_id): try: fav_tweet = self.api.create_favorite(id = tweet_id) except Exception as e: self.logger.error(f"Something went wrong while liking the tweet: {str(e)}") return None return fav_tweet def destory_favorite_tweet(self,tweet_id): try: destroy_tweet = self.api.destroy_favorite(id = tweet_id) except Exception as e: self.logger.error(f"Something went wrong while disliking the tweet: {str(e)}") return None return destroy_tweet def re_tweet(self, tweet_id): try: retweet = self.api.retweet(id = tweet_id) except Exception as e: self.logger.error(f"Something went wrong while retweeting: {str(e)}") return None return retweet def un_retweet(self, tweet_id): try: retweet = self.api.unretweet(id = tweet_id) except Exception as e: self.logger.error(f"Something went wrong while unretweeting the tweet: {str(e)}") return None return retweet def get_user_posts(self, user_id, screen_name, page): posts = [] try: for page in tweepy.Cursor(self.api.user_timeline, user_id=user_id, screen_name=screen_name, tweet_mode="extended").pages(page): posts = page except Exception as e: self.logger.error( f"Something went wrong while fetching Posts: {str(e)}") return None return posts def get_user_mentions_timeline(self, page): mentions = [] try: for page in tweepy.Cursor(self.api.mentions_timeline, tweet_mode="extended").pages(page): mentions = page except Exception as e: self.logger.error( f"Something went wrong while fetching Posts: {str(e)}") return None return mentions def get_user_followers(self, user_id, screen_name, page): followers = [] try: for page in tweepy.Cursor(self.api.get_followers, user_id=user_id, screen_name=screen_name, tweet_mode="extended").pages(page): followers = page except Exception as e: self.logger.error( f"Something went wrong while fetching User Followers: {str(e)}") return None return followers def get_user_following(self, user_id, screen_name, page): following = [] try: for page in tweepy.Cursor(self.api.get_friends, user_id=user_id, screen_name=screen_name, tweet_mode="extended").pages(page): following = page except Exception as e: self.logger.error( f"Something went wrong while fetching User Following: {str(e)}") return None return following def get_user(self, user_id, screen_name): try: profile = self.api.get_user( user_id=user_id, screen_name=screen_name) except Exception as e: self.logger.error( f"Something went wrong while fetching User Profile: {str(e)}") return None return profile def follow_user(self, user_id): try: follow_tweet = self.api.create_friendship( user_id=user_id, follow=True) except Exception as e: self.logger.error( f"Something went wrong while following the user: {str(e)}") return None return follow_tweet def unfollow_user(self, user_id): try: unfollow_tweet = self.api.destroy_friendship( user_id=user_id, follow=True) except Exception as e: self.logger.error( f"Something went wrong while following the user: {str(e)}") return None return unfollow_tweet def get_followers(self, user_id): try: followers = self.api.get_followers(user_id=user_id) except Exception as e: self.logger.error( f"Something went wrong while fetching user followers: {str(e)}") return None return followers def get_my_tweets(self, user_id): try: tweets = self.api.user_timeline(tweet_mode="extended") except Exception as e: self.logger.error( f"Something went wrong while fetching user tweets: {str(e)}") return None return tweets def get_my_200_tweets(self, user_id): try: tweets = self.api.user_timeline(tweet_mode="extended",count=200) except Exception as e: self.logger.error( f"Something went wrong while fetching user tweets: {str(e)}") return None return tweets def get_mentions(self, user_id): try: timeline = self.api.mentions_timeline( user_id=user_id, include_rts=False) except Exception as e: self.logger.error( f"Something went wrong while fetching user mentions timeline: {str(e)}") return None return timeline def get_closest_trends(self,latitude,longitude): try: trends = self.api.closest_trends(latitude,longitude) except Exception as e: self.logger.error( f"Something went wrong while fetching closest trends: {str(e)}") return None return trends def get_place_trends(self,woeId): try: trends = self.api.get_place_trends(woeId) except Exception as e: self.logger.error( f"Something went wrong while fetching place trends: {str(e)}") return None return trends
Socialet/web-backend
app/services/api/twitterAPI.py
twitterAPI.py
py
9,191
python
en
code
0
github-code
6
[ { "api_name": "app.config.TWITTER_API_KEY", "line_number": 7, "usage_type": "name" }, { "api_name": "app.config.TWITTER_API_KEY_SECRET", "line_number": 8, "usage_type": "name" }, { "api_name": "app.config.get_logger", "line_number": 11, "usage_type": "call" }, { "api_name": "tweepy.OAuth1UserHandler", "line_number": 13, "usage_type": "call" }, { "api_name": "tweepy.API", "line_number": 14, "usage_type": "call" }, { "api_name": "tweepy.parsers.JSONParser", "line_number": 14, "usage_type": "call" }, { "api_name": "tweepy.parsers", "line_number": 14, "usage_type": "attribute" }, { "api_name": "tweepy.Cursor", "line_number": 34, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 45, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 119, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 130, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 141, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 152, "usage_type": "call" } ]
7725611508
import itertools def det_4x4(matrix): if len(matrix) != 4 or len(matrix[0]) != 4: raise ValueError("A matriz não é 4x4") indices = [0, 1, 2, 3] permuta = itertools.permutations(indices) det = 0 for perm in permuta: sinal = 1 for i in range(4): for j in range(i + 1, 4): if perm[i] > perm[j]: sinal *= -1 produto = 1 for i in range(4): produto *= matrix[i][perm[i]] det += sinal * produto return det # solicita ao usuário para digitar os elementos da matriz 4x4 matrix = [] for i in range(4): row = input(f"Digite os elementos da {i+1}ª linha separados por espaço: ") matrix.append([int(x) for x in row.split()]) # calcula a determinante usando a fórmula de Leibniz det = det_4x4(matrix) # imprime o resultado print(f"A determinante da matriz é {det}.")
AlexApLima/CalculoDeterminantesLeibniz
CalFormula.py
CalFormula.py
py
903
python
pt
code
0
github-code
6
[ { "api_name": "itertools.permutations", "line_number": 7, "usage_type": "call" } ]
31356519066
import pygame import sys # 게임 창 크기 설정 screen_width = 800 screen_height = 600 # 버튼 클래스 정의 class Button: def __init__(self, x, y, width, height, idle_image, hover_image): self.rect = pygame.Rect(x, y, width, height) self.idle_image = idle_image self.hover_image = hover_image self.image = idle_image self.clicked = False def draw(self, surface): surface.blit(self.image, self.rect) def handle_event(self, event): if event.type == pygame.MOUSEMOTION: if self.rect.collidepoint(event.pos): self.image = self.hover_image else: self.image = self.idle_image elif event.type == pygame.MOUSEBUTTONDOWN: if self.rect.collidepoint(event.pos): self.clicked = True elif event.type == pygame.MOUSEBUTTONUP: self.clicked = False # 게임 클래스 정의 class Game: def __init__(self): pygame.init() self.screen = pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("Empire Builder") self.clock = pygame.time.Clock() # 버튼 이미지 로드 self.button_idle_img = pygame.image.load("resources/images/slimes.png").convert_alpha() self.button_hover_img = pygame.image.load("resources/images/slime_top.png").convert_alpha() # 버튼 생성 button_width = 150 button_height = 50 button_x = (screen_width - button_width) // 2 button_y = (screen_height - button_height) // 2 self.button = Button(button_x, button_y, button_width, button_height, self.button_idle_img, self.button_hover_img) def run(self): running = True while running: self.clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False # 버튼 이벤트 처리 self.button.handle_event(event) self.update() self.render() pygame.quit() sys.exit() def update(self): # 게임 상태 업데이트 if self.button.clicked: print("버튼이 클릭되었습니다!") def render(self): # 게임 화면 그리기 self.screen.fill((0, 0, 0)) # 검은색 배경 self.button.draw(self.screen) # 버튼 그리기 pygame.display.flip() # 게임 시작 game = Game() game.run()
frogress/prac_pygame
opentutorials/chatgpt.py
chatgpt.py
py
2,576
python
en
code
0
github-code
6
[ { "api_name": "pygame.Rect", "line_number": 11, "usage_type": "call" }, { "api_name": "pygame.MOUSEMOTION", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONUP", "line_number": 29, "usage_type": "attribute" }, { "api_name": "pygame.init", "line_number": 35, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 36, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 37, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pygame.time.Clock", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 41, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 41, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 42, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 42, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 55, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 55, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 65, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 66, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 77, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 77, "usage_type": "attribute" } ]
37841455471
import logging logger = logging.getLogger() logger.setLevel(level="DEBUG") logging.Formatter # 创建文本处理器 file_handle = logging.FileHandler("./log.txt", mode="a", encoding="utf-8") file_handle.setLevel(level="ERROR") logger.addHandler(file_handle) fmt = "%(name)s--->%(message)s--->%(asctime)s" logging.basicConfig(level="DEBUG", format=fmt) logging.debug("This is debug message") logging.info("This is info message") logging.warning("This is warning message") logging.error("This is error") logging.critical("This is critical message")
amespaces/pythonProject
common/创建文件处理器.py
创建文件处理器.py
py
552
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 3, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 5, "usage_type": "attribute" }, { "api_name": "logging.FileHandler", "line_number": 7, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 15, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.critical", "line_number": 19, "usage_type": "call" } ]
1544268645
import itertools def test(kenken_grid): n = kenken_grid[0][0] dom = [] for i in range(n): dom.append(i + 1) vars = [] for i in dom: for j in dom: vars.append('V{}{}'.format(i, j)) cons = [] for i in range(n): vars_row = vars[(i * n): ((i + 1) * n)] vars_col = [] for j in range(n): vars_col.append(vars[i + (j * n)]) for var_pair in itertools.combinations(vars_row, 2): cons.append("C-{},{})".format(var_pair[0],var_pair[1])) for var_pair in itertools.combinations(vars_col, 2): cons.append("C-{},{})".format(var_pair[0],var_pair[1])) return cons
monkeykingg/projects
3rd_year/csc384/A2/sol/test.py
test.py
py
691
python
en
code
2
github-code
6
[ { "api_name": "itertools.combinations", "line_number": 24, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 27, "usage_type": "call" } ]
70740769147
from __future__ import print_function import torch def diff_mse(x, y): x_vec = x.view(1, -1).squeeze() y_vec = y.view(1, -1).squeeze() return torch.mean(torch.pow((x_vec - y_vec), 2)).item() def ax_plus_b_vector(x, weight, bias): return weight.mm(x).add(bias) def ax_plus_b_scalar(x, weight, bias, h, w, number_of_channels, kernel_size): result = 0 for c_in in range(number_of_channels): for i in range(kernel_size): for j in range(kernel_size): result += x[c_in, h + i, w + j] * weight[c_in, i, j] return result + bias def convolved_image_size(size, kernel_size, padding, stride): return ((size - kernel_size + 2 * padding) // stride) + 1 def im2col(img, kernel_size, device, stride=1, padding=0): N_batch, C_in, img_size, _ = img.shape out_size = convolved_image_size(img_size, kernel_size, padding, stride) col = torch.zeros((kernel_size, kernel_size, N_batch, C_in, out_size, out_size)) margin = stride * out_size for x in range(kernel_size): for y in range(kernel_size): col[x, y] = img[:, :, x:x + margin:stride, y:y + margin:stride] return col.view(kernel_size*kernel_size, -1).to(device)
IvanProdaiko94/UCU-deep-learning-homework
layers/utilities.py
utilities.py
py
1,222
python
en
code
1
github-code
6
[ { "api_name": "torch.mean", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 32, "usage_type": "call" } ]
72757283709
""" Utilities I can't put anywhere else... """ import time from math import copysign, gcd from copy import copy import sys import numpy as np import datetime import functools def true_if_answer_is_yes(prompt=""): invalid = True while invalid: x = input(prompt) x = x.lower() if x[0] == "y": return True elif x[0] == "n": return False print("Need one of yes/no, Yes/No, y/n, Y/N") def flatten_list(some_list): flattened = [item for sublist in some_list for item in sublist] return flattened class not_required_flag(object): def __repr__(self): return "Not required" NOT_REQUIRED = not_required_flag() def group_dict_from_natural(dict_group): """ If we're passed a natural grouping dict (eg dict(bonds=["US10", "KR3", "DE10"], equity=["SP500"])) Returns the dict optimised for algo eg dict(US10=["KR3", "DE10"], SP500=[], ..) :param dict_group: dictionary of groupings :type dict_group: dict :returns: dict >>> a=dict(bonds=["US10", "KR3", "DE10"], equity=["SP500"]) >>> group_dict_from_natural(a)['KR3'] ['US10', 'DE10'] """ if len(dict_group) == 0: return dict() all_names = sorted( set(sum([dict_group[groupname] for groupname in dict_group.keys()], [])) ) def _return_without(name, group): if name in group: g2 = copy(group) g2.remove(name) return g2 else: return None def _return_group(name, dict_group): ans = [ _return_without(name, dict_group[groupname]) for groupname in dict_group.keys() ] ans = [x for x in ans if x is not None] if len(ans) == 0: return [] ans = ans[0] return ans gdict = dict([(name, _return_group(name, dict_group)) for name in all_names]) return gdict def str2Bool(x): if isinstance(x, bool): return x return x.lower() in ("t", "true") def str_of_int(x): """ Returns the string of int of x, handling nan's or whatever :param x: Name of python package :type x: int or float :returns: 1.0 or -1.0 >>> str_of_int(34) '34' >>> str_of_int(34.0) '34' >>> import numpy as np >>> str_of_int(np.nan) '' """ if isinstance(x, int): return str(x) try: return str(int(x)) except BaseException: return "" def sign(x): """ Return the sign of x (float or int) :param x: Thing we want sign of :type x: int, float :returns: 1 or -1 >>> sign(3) 1.0 >>> sign(3.0) 1.0 >>> sign(-3) -1.0 >>> sign(0) 1.0 """ return copysign(1, x) def value_or_npnan(x, return_value=None): """ If x is np.nan return return_value else return x :param x: np.nan or other :return: x or return_value >>> value_or_npnan(np.nan) >>> value_or_npnan(np.nan, -1) -1 >>> value_or_npnan("thing") 'thing' >>> value_or_npnan(42) 42 """ try: if np.isnan(x): return return_value else: pass # Not a nan will return x except BaseException: # Not something that can be compared to a nan pass # Either wrong type, or not a nan return x def are_dicts_equal(d1, d2): d1_keys = set(d1.keys()) d2_keys = set(d2.keys()) intersect_keys = d1_keys.intersection(d2_keys) if len(intersect_keys) != len(d1_keys): return False same = set(o for o in intersect_keys if d1[o] == d2[o]) if len(same) != len(d1_keys): return False return True PROGRESS_EXP_FACTOR = 0.9 class progressBar(object): """ Example (not docstring as won't work) import time thing=progressBar(10000) for i in range(10000): # do something time.sleep(0.001) thing.iterate() thing.finished() """ def __init__( self, range_to_iter, suffix="Progress", toolbar_width=80, show_each_time=False, show_timings=True, ): self._start_time = time.time() self.toolbar_width = toolbar_width self.current_iter = 0 self.suffix = suffix self.range_to_iter = range_to_iter self.range_per_block = range_to_iter / np.float(toolbar_width) self._how_many_blocks_displayed = -1 # will always display first time self._show_each_time = show_each_time self._show_timings = show_timings self.display_bar() def estimated_time_remaining(self): total_iter = self.range_to_iter iter_left = total_iter - self.current_iter time_per_iter = self.current_estimate_of_times if time_per_iter is None: return 0 return iter_left * time_per_iter def update_time_estimate(self): ## don't maintain a list per se, instead exponential time_since_last_call = self.time_since_last_called() current_estimate = self.current_estimate_of_times if current_estimate is None: ## seed current_estimate = time_since_last_call else: current_estimate = ((1 - PROGRESS_EXP_FACTOR) * time_since_last_call) + ( PROGRESS_EXP_FACTOR * current_estimate ) self.current_estimate_of_times = current_estimate @property def current_estimate_of_times(self) -> float: current_estimate = getattr(self, "_current_estimate_of_times", None) return current_estimate @current_estimate_of_times.setter def current_estimate_of_times(self, current_estimate: float): self._current_estimate_of_times = current_estimate def time_since_last_called(self) -> float: time_of_last_call = self.get_and_set_time_of_last_call() current_time = self.current_time return current_time - time_of_last_call def get_and_set_time_of_last_call(self): time_of_last_iter = copy(getattr(self, "_time_of_last_call", self.start_time)) self._time_of_last_call = self.current_time return time_of_last_iter def elapsed_time(self): return self.current_time - self.start_time @property def start_time(self): return self._start_time @property def current_time(self): return time.time() def iterate(self): self.current_iter += 1 self.update_time_estimate() if self.number_of_blocks_changed() or self._show_each_time: self.display_bar() if self.current_iter == self.range_to_iter: self.finished() def how_many_blocks_had(self): return int(self.current_iter / self.range_per_block) def how_many_blocks_left(self): return int((self.range_to_iter - self.current_iter) / self.range_per_block) def number_of_blocks_changed(self): original_blocks = self._how_many_blocks_displayed new_blocks = self.how_many_blocks_had() if new_blocks > original_blocks: return True else: return False def display_bar(self): percents = round(100.0 * self.current_iter / float(self.range_to_iter), 1) if self._show_timings: time_remaining = self.estimated_time_remaining() time_elapsed = self.elapsed_time() total_est_time = time_elapsed + time_remaining time_str = "(%.1f/%.1f/%.1f secs left/elapsed/total)" % ( time_remaining, time_elapsed, total_est_time, ) else: time_str = "" bar = "=" * self.how_many_blocks_had() + "-" * self.how_many_blocks_left() progress_string = "\0\r [%s] %s%s %s %s\n" % ( bar, percents, "%", self.suffix, time_str, ) sys.stdout.write(progress_string) sys.stdout.flush() self._how_many_blocks_displayed = self.how_many_blocks_had() def finished(self): self.display_bar() sys.stdout.write("\n") class quickTimer(object): def __init__(self, seconds=60): self._started = datetime.datetime.now() self._time_limit = seconds @property def unfinished(self): return not self.finished @property def finished(self): time_now = datetime.datetime.now() elapsed = time_now - self._started if elapsed.seconds > self._time_limit: return True else: return False # avoids encoding problems with mongo _none = "" def none_to_object(x, object): if x is _none: return object else: return x def object_to_none(x, object, y=_none): if x is object: return y else: return x def get_unique_list(somelist): uniquelist = [] for letter in somelist: if letter not in uniquelist: uniquelist.append(letter) return uniquelist MISSING_STR = -1 def transfer_object_attributes(named_tuple_object, original_object): kwargs = dict( [ (field_name, getattr(original_object, field_name)) for field_name in named_tuple_object._fields ] ) new_object = named_tuple_object(**kwargs) return new_object def highest_common_factor_for_list(list_of_ints: list) -> int: """ :param list_of_ints: :return: int >>> highest_common_factor_for_list([2,3,4]) 1 >>> highest_common_factor_for_list([2,6,4]) 2 """ return functools.reduce(gcd, list_of_ints) def divide_list_of_ints_by_highest_common_factor(list_of_ints: list) -> list: """ :param list_of_ints: :return: list >>> divide_list_of_ints_by_highest_common_factor([1,2]) [1, 2] >>> divide_list_of_ints_by_highest_common_factor([2,4]) [1, 2] >>> divide_list_of_ints_by_highest_common_factor([1,2,3]) [1, 2, 3] >>> divide_list_of_ints_by_highest_common_factor([1]) [1] """ gcd_value = highest_common_factor_for_list(list_of_ints) new_list = [int(float(x) / gcd_value) for x in list_of_ints] return new_list def list_of_ints_with_highest_common_factor_positive_first(list_of_ints: list) -> list: """ Used to identify the unique version of a spread or fly contract :param list_of_ints: :return: list >>> list_of_ints_with_highest_common_factor_positive_first([1]) [1] >>> list_of_ints_with_highest_common_factor_positive_first([-1]) [1] >>> list_of_ints_with_highest_common_factor_positive_first([1,-1]) [1, -1] >>> list_of_ints_with_highest_common_factor_positive_first([-1,1]) [1, -1] >>> list_of_ints_with_highest_common_factor_positive_first([-1,2]) [1, -2] >>> list_of_ints_with_highest_common_factor_positive_first([-2,2]) [1, -1] >>> list_of_ints_with_highest_common_factor_positive_first([2,-2]) [1, -1] >>> list_of_ints_with_highest_common_factor_positive_first([2,-4,2]) [1, -2, 1] >>> list_of_ints_with_highest_common_factor_positive_first([-2,4,-2]) [1, -2, 1] """ new_list = divide_list_of_ints_by_highest_common_factor(list_of_ints) multiply_sign = sign(new_list[0]) new_list = [int(x * multiply_sign) for x in new_list] return new_list def np_convert(val): """ Converts the passed numpy value to a native python type >>> val = np.int64(1) >>> type(val) <class 'numpy.int64'> >>> type(np_convert(val)) <class 'int'> :param val: :return: val as native type """ return val.item() if isinstance(val, np.generic) else val if __name__ == "__main__": import doctest doctest.testmod()
ahalsall/pysystrade
syscore/genutils.py
genutils.py
py
11,815
python
en
code
4
github-code
6
[ { "api_name": "copy.copy", "line_number": 65, "usage_type": "call" }, { "api_name": "math.copysign", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 169, "usage_type": "call" }, { "api_name": "time.time", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 225, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 271, "usage_type": "call" }, { "api_name": "time.time", "line_number": 285, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 333, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 333, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 334, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 334, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 339, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 339, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 344, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 344, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 353, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 353, "usage_type": "attribute" }, { "api_name": "functools.reduce", "line_number": 415, "usage_type": "call" }, { "api_name": "math.gcd", "line_number": 415, "usage_type": "argument" }, { "api_name": "numpy.generic", "line_number": 485, "usage_type": "attribute" }, { "api_name": "doctest.testmod", "line_number": 491, "usage_type": "call" } ]
28521323695
"""change precision of order amount Revision ID: fb84527fc0b3 Revises: 5c6f2d25c2f0 Create Date: 2018-04-07 18:51:12.160012+00:00 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = 'fb84527fc0b3' down_revision = '5c6f2d25c2f0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('order', 'amount', existing_type=mysql.DECIMAL(precision=2, scale=0), type_=sa.DECIMAL(precision=10), existing_nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('order', 'amount', existing_type=sa.DECIMAL(precision=10), type_=mysql.DECIMAL(precision=2, scale=0), existing_nullable=False) # ### end Alembic commands ###
harveyslash/backend-cleaned
beatest/migrations/versions/20180407185112_fb84527fc0b3_change_type_of_order_amount.py
20180407185112_fb84527fc0b3_change_type_of_order_amount.py
py
1,011
python
en
code
0
github-code
6
[ { "api_name": "alembic.op.alter_column", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.dialects.mysql.DECIMAL", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 22, "usage_type": "name" }, { "api_name": "sqlalchemy.DECIMAL", "line_number": 23, "usage_type": "call" }, { "api_name": "alembic.op.alter_column", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" }, { "api_name": "sqlalchemy.DECIMAL", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.DECIMAL", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 32, "usage_type": "name" } ]
12940606913
import json import logging import avro.schema from avro.datafile import DataFileWriter from avro.io import DatumWriter # Login config logging.basicConfig( filename='writer.log', filemode='w', format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO ) # read records from sample_data and schema raw_data = [] try: with open('raw_data.txt','r') as txt: for raw_record in txt.readlines(): record = raw_record.strip() raw_data.append(record) except Exception as err: logging.error(err) # Load schema try: schema = avro.schema.parse(open("schema.avsc").read()) except Exception as err: logging.error(err) raise # Write records try: with open('encoded_data.avro', 'wb') as f: writer = DataFileWriter(f, DatumWriter(), schema) for row in raw_data: try: writer.append(json.loads(row)) except Exception as err: logging.error(err) logging.info(row.strip()) writer.close() except Exception as err: logging.error(err) raise
jocerfranquiz/avro_test
write_avro.py
write_avro.py
py
1,116
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 12, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 24, "usage_type": "call" }, { "api_name": "avro.schema.schema.parse", "line_number": 29, "usage_type": "call" }, { "api_name": "avro.schema.schema", "line_number": 29, "usage_type": "attribute" }, { "api_name": "avro.schema", "line_number": 29, "usage_type": "name" }, { "api_name": "logging.error", "line_number": 31, "usage_type": "call" }, { "api_name": "avro.datafile.DataFileWriter", "line_number": 38, "usage_type": "call" }, { "api_name": "avro.io.DatumWriter", "line_number": 38, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 43, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 44, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 47, "usage_type": "call" } ]
74473909946
from datetime import date from django.test import Client from django.test import TestCase from django.urls import resolve from .views import index, mhs_name, calculate_age class Lab1UnitTest(TestCase): def test_hello_name_is_exist(self): response = Client().get('/lab-1/') self.assertEqual(response.status_code, 200) def test_using_index_func(self): found = resolve('/lab-1/') self.assertEqual(found.func, index) def test_name_is_changed(self): response = Client().get('/lab-1/') self.assertTemplateUsed(response, 'lab_9/session/login.html') session = self.client.session session['user_login'] = 'user' session['kode_identitas'] = '123' session.save() response = self.client.get('/lab-1/') html_response = response.content.decode('utf8') self.assertIn('<title>' + mhs_name + '</title>', html_response) self.assertIn('<h1>Hello my name is ' + mhs_name + '</h1>', html_response) self.assertFalse(len(mhs_name) == 0) def test_calculate_age_is_correct(self): self.assertEqual(0, calculate_age(date.today().year)) self.assertEqual(17, calculate_age(2000)) self.assertEqual(27, calculate_age(1990)) def test_index_contains_age(self): response = Client().get('/lab-1/') self.assertTemplateUsed(response, 'lab_9/session/login.html') session = self.client.session session['user_login'] = 'username' session['kode_identitas'] = 'npm' session.save() response = self.client.get('/lab-1/') html_response = response.content.decode('utf8') self.assertRegex(html_response, r'<article>I am [0-9]\d+ years old</article>')
argaghulamahmad/ppw-lab-arga
lab_1/tests.py
tests.py
py
1,752
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 10, "usage_type": "name" }, { "api_name": "django.test.Client", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.resolve", "line_number": 16, "usage_type": "call" }, { "api_name": "views.index", "line_number": 17, "usage_type": "argument" }, { "api_name": "django.test.Client", "line_number": 20, "usage_type": "call" }, { "api_name": "views.mhs_name", "line_number": 30, "usage_type": "name" }, { "api_name": "views.mhs_name", "line_number": 31, "usage_type": "name" }, { "api_name": "views.mhs_name", "line_number": 32, "usage_type": "argument" }, { "api_name": "views.calculate_age", "line_number": 35, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 35, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 35, "usage_type": "name" }, { "api_name": "views.calculate_age", "line_number": 36, "usage_type": "call" }, { "api_name": "views.calculate_age", "line_number": 37, "usage_type": "call" }, { "api_name": "django.test.Client", "line_number": 40, "usage_type": "call" } ]