seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
13895478896
######################################################################################## # Run examples from our paper in RBEF ######################################################################################## import sys import numpy as np import matplotlib.pyplot as plt import multiprocessing import scipy import scipy.signal from scipy.integrate import simps from joblib import Parallel, delayed from ar_model import * import pygc.pySpec import pygc.parametric import pygc.non_parametric import pygc.granger import plot_results p = int(sys.argv[-1]) if p == 0: # Generates figure 3 from the paper print('Generating Figure 3 from RBEF paper...') N = 5000 # Number of observations Fs = 200 # Sampling frequency dt = 1.0 / Fs # Time resolution C = 0.25 # Coupling parameter Trials = 5000 # Number of trials # Covariance matrix cov = np.array([ [1.00, 0.00], [0.00, 1.00] ]) f = pygc.pySpec.compute_freq(N, Fs) S = np.zeros([2,2,N//2+1]) + 1j*np.zeros([2,2,N//2+1]) print('Generating AR model time series...') Z = ar_model_dhamala(N=N, Trials = Trials, C=C, Fs=Fs, t_start=0, t_stop=None, cov=cov) print('Estimating spectral matrix from ' + str(Trials) + ' trials...') for i in range(Trials): if i%500 == 0: print('Trial = ' + str(i)) S[0,0] += pygc.pySpec.cxy(X=Z[0,i,:], Y=[], f=f, Fs=Fs) / Trials S[0,1] += pygc.pySpec.cxy(X=Z[0,i,:], Y=Z[1,i,:], f=f, Fs=Fs) / Trials S[1,0] += pygc.pySpec.cxy(X=Z[1,i,:], Y=Z[0,i,:], f=f, Fs=Fs) / Trials S[1,1] += pygc.pySpec.cxy(X=Z[1,i,:], Y=[], f=f, Fs=Fs) / Trials print('Computing Granger Causality...') Snew, Hnew, Znew = pygc.non_parametric.wilson_factorization(S, f, Fs, Niterations=30) Ix2y, Iy2x, Ixy = pygc.granger.granger_causality(S, Hnew, Znew) print('Saving data...') np.save('data/fig3.npy', {'f': f, 'S': S, 'H': Hnew, 'Z': Znew, 'Ix2y': Ix2y, 'Iy2x': Iy2x, 'Ixy': Ixy}) print('Plotting results...') plot_results.fig3() if p == 1: # Generates figure 4 from the paper N = 900 # Number of observations Fs = 200 # Sampling frequency dt = 1.0 / Fs # Time resolution C = 0.25 # Coupling parameter Trials = 5000 # Number of trials cov = np.array([ [1.00, 0.00], [0.00, 1.00] ]) f = pygc.pySpec.compute_freq(N, Fs) S = np.zeros([2,2,N,N//2+1]) + 1j*np.zeros([2,2,N,N//2+1]) print('Generating AR model time series...') Z = ar_model_dhamala(N=N, Trials = Trials, C=C, Fs=Fs, t_start=0, t_stop=2.25, cov=cov) print('Estimating wavelet matrix from ' + str(Trials) + ' trials...') for i in range(Trials): if i%500 == 0: print('Trial = ' + str(i)) Wx = pygc.pySpec.morlet(Z[0,i,:], f, Fs) Wy = pygc.pySpec.morlet(Z[1,i,:], f, Fs) S[0,0] += Wx*np.conj(Wx) / Trials S[0,1] += Wx*np.conj(Wy) / Trials S[1,0] += Wy*np.conj(Wx) / Trials S[1,1] += Wy*np.conj(Wy) / Trials # S = S[:,:,idx,:] print('Computing Granger Causality...') def save_granger(S, idx): Snew, Hnew, Znew = pygc.non_parametric.wilson_factorization(S[:,:,idx,:], f, Fs, Niterations=30, verbose=False) Ix2y, Iy2x, Ixy = pygc.granger.granger_causality(S[:,:,idx,:], Hnew, Znew) np.save('data/fig4_'+str(idx)+'.npy', {'f': f, 'Ix2y': Ix2y, 'Iy2x': Iy2x, 'Ixy': Ixy}) Parallel(n_jobs=40, backend='loky', max_nbytes=1e6)(delayed(save_granger)(S, idx) for idx in range(N)) print('Plotting results...') plot_results.fig4() if p == 2: # Generates figure 7 and 8 from the paper N = 5000 # Number of observations Trials = 1000 # Number of trials nvars = 5 # Number of variables Fs = 2*np.pi dt = 1.0 / Fs f = pygc.pySpec.compute_freq(N, Fs) print('Generating AR model time series...') Y = ar_model_baccala(nvars, N, Trials) print('Estimating spectral matrix from ' + str(Trials) + ' trials...') S = np.zeros([nvars, nvars, N//2 + 1]) * (1 + 1j) for trial in range(Trials): if (trial % 100 == 0): print('Trial = ' + str(trial)) for i in range(nvars): for j in range(nvars): S[i,j] += pygc.pySpec.cxy(X=Y[i,:,trial], Y=Y[j,:,trial], f=f, Fs=Fs) / Trials print('Estimating pairwise Granger casalities') GC = np.zeros([nvars, nvars]) for i in range(nvars): for j in range(nvars): if i == j: continue else: S_aux = np.array([[S[i,i], S[i,j]],[S[j,i], S[j,j]]]) _, H, Z = pygc.non_parametric.wilson_factorization(S_aux, f, Fs, Niterations=10, tol=1e-12, verbose=False) Ix2y, Iy2x, _ = pygc.granger.granger_causality(S_aux, H, Z) GC[i,j] = simps(Ix2y, f) / 2*np.pi GC[j,i] = simps(Iy2x, f) / 2*np.pi print('Estimating conditional Granger casalities') F = pygc.granger.conditional_granger_causality(S, f, Fs, Niterations = 10, verbose=False) cGC = pygc.granger.conditional_spec_granger_causality(S, f, Fs, Niterations=100, tol=1e-12, verbose=False) print('Saving data...') np.save('data/fig_7_8.npy', {'f':f,'GC': GC, 'F': F, 'cGC': cGC}) print('Plotting results...') plot_results.fig7_8() if p == 3: # Fits an AR model by solving YW equations as in appendix A of the paper. Trials = 1000 # Number of trials Fs = 200 # Sampling frequency N = 1000 # Number of data points X = np.zeros([1,N, Trials]) # Data matrix tsim = N/Fs # Simulation time # Coefficients of the ar model c = [0.7, 0.2, -0.1, -0.3] print('Generating AR model time series...') for T in range(Trials): X[0,:,T] = scipy.signal.lfilter([1], -np.array([-1]+c), np.random.randn(N)) print('Estimating AR model coefficients for ' + str(Trials) + ' trials') for m in [2, 3, 4, 5, 6]: print() AR = np.zeros([1,1,m]) SIG = np.zeros([1,1]) for T in range(Trials): aux1, aux2 = pygc.parametric.YuleWalker(X[:,:,T], m, maxlags=100) AR += aux1.T/Trials SIG += aux2.T/Trials AR = np.round(AR, 2) SIG = np.round(SIG, 2) print('Using order = ' + str(m)+ '. Original coefficients: ' + str(c) + '. Estimated coefficients ' + str(AR[0][0]) + '. Noise variace: ' + str(SIG[0][0])) if p == 4: # Generates figure 3C from the paper, but using a paramtreic method # Generates figure 3 from the paper print('Generating Figure 3 from RBEF paper...') N = 5000 # Number of observations Fs = 200 # Sampling frequency dt = 1.0 / Fs # Time resolution C = 0.25 # Coupling parameter Trials = 5000 # Number of trials # Covariance matrix cov = np.array([ [1.00, 0.00], [0.00, 1.00] ]) print('Generating AR model time series...') X = ar_model_dhamala(N=N, Trials = Trials, C=C, Fs=Fs, t_start=0, t_stop=None, cov=cov) print('Estimating VAR coefficients using oreder m=2...') m = 2 AR = np.zeros([m, 2,2]) SIG = np.zeros([2,2]) for T in range(Trials): aux1, aux2 = pygc.parametric.YuleWalker(X[:,T,:], m, maxlags=100) AR += aux1/Trials SIG += aux2/Trials print('Computing Granger Causality...') f = pygc.pySpec.compute_freq(N, Fs) H, S = pygc.parametric.compute_transfer_function(AR, SIG, f, Fs) Ix2y, Iy2x, _ = pygc.granger.granger_causality(S, H, SIG) plt.figure(figsize=(6,2)) plt.plot(f, Ix2y) plt.plot(f, Iy2x) plt.xlim([0, 100]) plt.ylim([-0.01, 1.2]) plt.ylabel('GC') plt.xlabel('Frequency [Hz]') plt.legend([r'$X_{1}\rightarrow X_{2}$', r'$X_{2}\rightarrow X_{1}$']) plt.savefig('figures/fig9.pdf', dpi = 600) plt.close()
ViniciusLima94/pyGC
runRBEF.py
runRBEF.py
py
7,302
python
en
code
30
github-code
6
[ { "api_name": "sys.argv", "line_number": 19, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec.compute_freq", "line_number": 35, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 35, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 35, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec.cxy", "line_number": 47, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 47, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 47, "usage_type": "name" }, { "api_name": "pygc.pySpec.pySpec.cxy", "line_number": 48, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 48, "usage_type": "name" }, { "api_name": "pygc.pySpec.pySpec.cxy", "line_number": 49, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 49, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 49, "usage_type": "name" }, { "api_name": "pygc.pySpec.pySpec.cxy", "line_number": 50, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 50, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 50, "usage_type": "name" }, { "api_name": "pygc.pySpec.non_parametric.wilson_factorization", "line_number": 53, "usage_type": "call" }, { "api_name": "pygc.pySpec.non_parametric", "line_number": 53, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 53, "usage_type": "name" }, { "api_name": "pygc.pySpec.granger.granger_causality", "line_number": 54, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 54, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 54, "usage_type": "name" }, { "api_name": "numpy.save", "line_number": 57, "usage_type": "call" }, { "api_name": "plot_results.fig3", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 71, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec.compute_freq", "line_number": 74, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 74, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 74, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 76, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec.morlet", "line_number": 86, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 86, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 86, "usage_type": "name" }, { "api_name": "pygc.pySpec.pySpec.morlet", "line_number": 87, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 87, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 87, "usage_type": "name" }, { "api_name": "numpy.conj", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.conj", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.conj", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.conj", "line_number": 92, "usage_type": "call" }, { "api_name": "pygc.pySpec.non_parametric.wilson_factorization", "line_number": 98, "usage_type": "call" }, { "api_name": "pygc.pySpec.non_parametric", "line_number": 98, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 98, "usage_type": "name" }, { "api_name": "pygc.pySpec.granger.granger_causality", "line_number": 99, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 99, "usage_type": "name" }, { "api_name": "numpy.save", "line_number": 100, "usage_type": "call" }, { "api_name": "joblib.Parallel", "line_number": 102, "usage_type": "call" }, { "api_name": "joblib.delayed", "line_number": 102, "usage_type": "call" }, { "api_name": "plot_results.fig4", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 112, "usage_type": "attribute" }, { "api_name": "pygc.pySpec.pySpec.compute_freq", "line_number": 114, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 114, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 120, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec.cxy", "line_number": 127, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 127, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 127, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 130, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 136, "usage_type": "call" }, { "api_name": "pygc.pySpec.non_parametric.wilson_factorization", "line_number": 137, "usage_type": "call" }, { "api_name": "pygc.pySpec.non_parametric", "line_number": 137, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 137, "usage_type": "name" }, { "api_name": "pygc.pySpec.granger.granger_causality", "line_number": 138, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 138, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 138, "usage_type": "name" }, { "api_name": "scipy.integrate.simps", "line_number": 139, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 139, "usage_type": "attribute" }, { "api_name": "scipy.integrate.simps", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 140, "usage_type": "attribute" }, { "api_name": "pygc.pySpec.granger.conditional_granger_causality", "line_number": 143, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 143, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 143, "usage_type": "name" }, { "api_name": "pygc.pySpec.granger.conditional_spec_granger_causality", "line_number": 144, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 144, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 144, "usage_type": "name" }, { "api_name": "numpy.save", "line_number": 147, "usage_type": "call" }, { "api_name": "plot_results.fig7_8", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 159, "usage_type": "call" }, { "api_name": "scipy.signal.lfilter", "line_number": 167, "usage_type": "call" }, { "api_name": "scipy.signal", "line_number": 167, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 167, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 167, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 167, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 176, "usage_type": "call" }, { "api_name": "pygc.pySpec.parametric.YuleWalker", "line_number": 178, "usage_type": "call" }, { "api_name": "pygc.pySpec.parametric", "line_number": 178, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 178, "usage_type": "name" }, { "api_name": "numpy.round", "line_number": 182, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 183, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 207, "usage_type": "call" }, { "api_name": "pygc.pySpec.parametric.YuleWalker", "line_number": 209, "usage_type": "call" }, { "api_name": "pygc.pySpec.parametric", "line_number": 209, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 209, "usage_type": "name" }, { "api_name": "pygc.pySpec.pySpec.compute_freq", "line_number": 214, "usage_type": "call" }, { "api_name": "pygc.pySpec.pySpec", "line_number": 214, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 214, "usage_type": "name" }, { "api_name": "pygc.pySpec.parametric.compute_transfer_function", "line_number": 215, "usage_type": "call" }, { "api_name": "pygc.pySpec.parametric", "line_number": 215, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 215, "usage_type": "name" }, { "api_name": "pygc.pySpec.granger.granger_causality", "line_number": 216, "usage_type": "call" }, { "api_name": "pygc.pySpec.granger", "line_number": 216, "usage_type": "attribute" }, { "api_name": "pygc.pySpec", "line_number": 216, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 218, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 218, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 219, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 219, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 220, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 220, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 221, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 221, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 223, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 223, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 224, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 224, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 225, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 226, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 226, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 227, "usage_type": "name" } ]
10731823816
import torch from torch import nn import torchvision.transforms as T ####################################################################################### ######################################## DRML ######################################## ####################################################################################### class RegionLayer(nn.Module): def __init__(self, in_channels, grid=(8, 8)): super(RegionLayer, self).__init__() self.in_channels = in_channels self.grid = grid self.region_layers = dict() for i in range(self.grid[0]): for j in range(self.grid[1]): module_name = 'region_conv_%d_%d' % (i, j) self.region_layers[module_name] = nn.Sequential( nn.BatchNorm2d(self.in_channels), nn.ReLU(), nn.Conv2d(in_channels=self.in_channels, out_channels=self.in_channels, kernel_size=3, stride=1, padding=1) ) self.add_module(name=module_name, module=self.region_layers[module_name]) def forward(self, x): """ :param x: (b, c, h, w) :return: (b, c, h, w) """ batch_size, _, height, width = x.size() input_row_list = torch.split(x, split_size_or_sections=height//(self.grid[0]-1), dim=2) output_row_list = [] for i, row in enumerate(input_row_list): input_grid_list_of_a_row = torch.split(row, split_size_or_sections=width//(self.grid[1]-1), dim=3) output_grid_list_of_a_row = [] for j, grid in enumerate(input_grid_list_of_a_row): module_name = 'region_conv_%d_%d' % (i, j) # print(module_name) # print(i,j) grid = self.region_layers[module_name](grid.contiguous()) + grid output_grid_list_of_a_row.append(grid) output_row = torch.cat(output_grid_list_of_a_row, dim=3) output_row_list.append(output_row) output = torch.cat(output_row_list, dim=2) return output class DRML(nn.Module): def __init__(self, class_number=12): super(DRML, self).__init__() print('Init DRML... pls god work...') self.class_number = class_number self.extractor = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=11, stride=1), RegionLayer(in_channels=32, grid=(8, 8)), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.BatchNorm2d(num_features=32), nn.Conv2d(in_channels=32, out_channels=16, kernel_size=8, stride=1), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=8,), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=6, stride=2), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=5, stride=1), nn.ReLU(), ) self.classifier = nn.Sequential( nn.Linear(in_features=6400, out_features=4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(in_features=4096, out_features=2048), nn.ReLU(), nn.Dropout(0.5), nn.Linear(in_features=2048, out_features=class_number) ) def forward(self, data): """ :param x: (b, c, h, w) :return: (b, class_number) """ x = data[0] batch_size = x.size(0) output = self.extractor(x) output = output.view(batch_size, -1) output = self.classifier(output) return output ####################################################################################### ####################################### AlexNet ###################################### ####################################################################################### class AlexNet(nn.Module): def __init__(self, num_classes = 12, dropout = 0.5): #0.5 super().__init__() print('INIT AU AlexNet') self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=False), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=False), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=False), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=False), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=False), nn.MaxPool2d(kernel_size=3, stride=2), ) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(2304, 4096), # assuming 144x144 input nn.ReLU(inplace=False), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=False), nn.Linear(4096, num_classes), ) def forward(self, data): x = data[0] x = self.features(x) x = torch.flatten(x, 1) out = self.classifier(x) return out ####################################################################################### ####################################### MTTSCAN ###################################### ####################################################################################### class Attention_mask(nn.Module): def __init__(self): super(Attention_mask, self).__init__() def forward(self, x): xsum = torch.sum(x, dim=2, keepdim=True) xsum = torch.sum(xsum, dim=3, keepdim=True) xshape = tuple(x.size()) return x / xsum * xshape[2] * xshape[3] * 0.5 def get_config(self): """May be generated manually. """ config = super(Attention_mask, self).get_config() return config class TSM(nn.Module): def __init__(self, n_segment=10, fold_div=3): super(TSM, self).__init__() self.n_segment = n_segment self.fold_div = fold_div def forward(self, x): nt, c, h, w = x.size() n_batch = nt // self.n_segment x = x.view(n_batch, self.n_segment, c, h, w) fold = c // self.fold_div out = torch.zeros_like(x) out[:, :-1, :fold] = x[:, 1:, :fold] # shift left out[:, 1:, fold: 2 * fold] = x[:, :-1, fold: 2 * fold] # shift right out[:, :, 2 * fold:] = x[:, :, 2 * fold:] # not shift return out.view(nt, c, h, w) class MTTS_CAN_SMALL(nn.Module): """MTTS_CAN is the multi-task (respiration) version of TS-CAN""" def __init__(self, in_channels=3, nb_filters1=32, nb_filters2=64, kernel_size=3, dropout_rate1=0.25, dropout_rate2=0.5, pool_size=(2, 2), nb_dense=128, frame_depth=20): super(MTTS_CAN_SMALL, self).__init__() print('init MTTS_CAN_SMALL') self.in_channels = in_channels self.kernel_size = kernel_size self.dropout_rate1 = dropout_rate1 self.dropout_rate2 = dropout_rate2 self.pool_size = pool_size self.nb_filters1 = nb_filters1 self.nb_filters2 = nb_filters2 self.nb_dense = nb_dense # TSM layers self.TSM_1 = TSM(n_segment=frame_depth) self.TSM_2 = TSM(n_segment=frame_depth) self.TSM_3 = TSM(n_segment=frame_depth) self.TSM_4 = TSM(n_segment=frame_depth) # Motion branch convs self.motion_conv1 = nn.Conv2d(self.in_channels, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv2 = nn.Conv2d(self.nb_filters1, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv3 = nn.Conv2d(self.nb_filters1, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv4 = nn.Conv2d(self.nb_filters2, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) # Apperance branch convs self.apperance_conv1 = nn.Conv2d(self.in_channels, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv2 = nn.Conv2d(self.nb_filters1, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv3 = nn.Conv2d(self.nb_filters1, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv4 = nn.Conv2d(self.nb_filters2, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) # Attention layers self.apperance_att_conv1 = nn.Conv2d(self.nb_filters1, 1, kernel_size=1, padding=(0, 0),bias=True) self.attn_mask_1 = Attention_mask() self.apperance_att_conv2 = nn.Conv2d(self.nb_filters2, 1, kernel_size=1, padding=(0, 0),bias=True) self.attn_mask_2 = Attention_mask() # Dropout layers self.dropout_4_y = nn.Dropout(self.dropout_rate2) self.dropout_4_r = nn.Dropout(self.dropout_rate2) # Dense layers self.final_dense_1_y = nn.Linear(5184, self.nb_dense, bias=True) self.final_dense_2_y = nn.Linear(self.nb_dense, 1, bias=True) self.final_dense_1_r = nn.Linear(5184, self.nb_dense, bias=True) self.final_dense_2_r = nn.Linear(self.nb_dense, 1, bias=True) def forward(self, inputs, params=None): big = inputs[0] small = inputs[1] raw_input = torch.zeros_like(small) diff_input = small transform = T.Resize((9,9)) for i in range(big.shape[0]): # iterate through batch raw_input[i,:,:,:] = transform(big[i,:,:,:]) diff_input = self.TSM_1(diff_input) d1 = torch.tanh(self.motion_conv1(diff_input)) d1 = self.TSM_2(d1) d2 = torch.tanh(self.motion_conv2(d1)) r1 = torch.tanh(self.apperance_conv1(raw_input)) r2 = torch.tanh(self.apperance_conv2(r1)) g1 = torch.sigmoid(self.apperance_att_conv1(r2)) g1 = self.attn_mask_1(g1) gated1 = d2 * g1 # d3 = self.avg_pooling_1(gated1) # d4 = self.dropout_1(d3) # r3 = self.avg_pooling_2(r2) # r4 = self.dropout_2(r3) d4 = self.TSM_3(gated1) d5 = torch.tanh(self.motion_conv3(d4)) d5 = self.TSM_4(d5) d6 = torch.tanh(self.motion_conv4(d5)) r5 = torch.tanh(self.apperance_conv3(r2)) r6 = torch.tanh(self.apperance_conv4(r5)) g2 = torch.sigmoid(self.apperance_att_conv2(r6)) g2 = self.attn_mask_2(g2) gated2 = d6 * g2 # d7 = self.avg_pooling_3(gated2) # d8 = self.dropout_3(d7) d9 = gated2.view(gated2.size(0), -1) d10 = torch.tanh(self.final_dense_1_y(d9)) d11 = self.dropout_4_y(d10) out_y = self.final_dense_2_y(d11) d10 = torch.tanh(self.final_dense_1_r(d9)) d11 = self.dropout_4_r(d10) out_r = self.final_dense_2_r(d11) return out_y, out_r ####################################################################################### ####################################### DEEPPHYS ###################################### ####################################################################################### class DeepPhys(nn.Module): def __init__(self, in_channels=3, nb_filters1=32, nb_filters2=64, kernel_size=3, dropout_rate1=0.25, dropout_rate2=0.5, pool_size=(2, 2), nb_dense=128, out_size=1, img_size=36): """Definition of DeepPhys. Args: in_channels: the number of input channel. Default: 3 img_size: height/width of each frame. Default: 36. Returns: DeepPhys model. """ super(DeepPhys, self).__init__() print("INIT DEEPPHYS") self.in_channels = in_channels self.kernel_size = kernel_size self.dropout_rate1 = dropout_rate1 self.dropout_rate2 = dropout_rate2 self.pool_size = pool_size self.nb_filters1 = nb_filters1 self.nb_filters2 = nb_filters2 self.nb_dense = nb_dense self.out_size = out_size # Motion branch convs self.motion_conv1 = nn.Conv2d(self.in_channels, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv2 = nn.Conv2d(self.nb_filters1, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv3 = nn.Conv2d(self.nb_filters1, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.motion_conv4 = nn.Conv2d(self.nb_filters2, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) # Apperance branch convs self.apperance_conv1 = nn.Conv2d(self.in_channels, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv2 = nn.Conv2d(self.nb_filters1, self.nb_filters1, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv3 = nn.Conv2d(self.nb_filters1, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) self.apperance_conv4 = nn.Conv2d(self.nb_filters2, self.nb_filters2, kernel_size=self.kernel_size, padding=(1, 1), bias=True) # Attention layers self.apperance_att_conv1 = nn.Conv2d(self.nb_filters1, 1, kernel_size=1, padding=(0, 0), bias=True) self.attn_mask_1 = Attention_mask() self.apperance_att_conv2 = nn.Conv2d(self.nb_filters2, 1, kernel_size=1, padding=(0, 0), bias=True) self.attn_mask_2 = Attention_mask() # Dropout layers self.dropout_4 = nn.Dropout(self.dropout_rate2) # Dense layers self.final_dense_1 = nn.Linear(5184, self.nb_dense, bias=True) self.final_dense_2 = nn.Linear(self.nb_dense, self.out_size, bias=True) def forward(self, inputs, params=None): big = inputs[0] small = inputs[1] raw_input = torch.zeros_like(small) diff_input = small transform = T.Resize((9,9)) for i in range(big.shape[0]): raw_input[i,:,:,:] = transform(big[i,:,:,:]) d1 = torch.tanh(self.motion_conv1(diff_input)) d2 = torch.tanh(self.motion_conv2(d1)) r1 = torch.tanh(self.apperance_conv1(raw_input)) r2 = torch.tanh(self.apperance_conv2(r1)) g1 = torch.sigmoid(self.apperance_att_conv1(r2)) g1 = self.attn_mask_1(g1) gated1 = d2 * g1 d5 = torch.tanh(self.motion_conv3(gated1)) d6 = torch.tanh(self.motion_conv4(d5)) r5 = torch.tanh(self.apperance_conv3(r2)) r6 = torch.tanh(self.apperance_conv4(r5)) g2 = torch.sigmoid(self.apperance_att_conv2(r6)) g2 = self.attn_mask_2(g2) gated2 = d6 * g2 d9 = gated2.view(gated2.size(0), -1) d10 = torch.tanh(self.final_dense_1(d9)) d11 = self.dropout_4(d10) out = self.final_dense_2(d11) return out
girishvn/BigSmall
code/neural_methods/model/literature_models.py
literature_models.py
py
15,138
python
en
code
14
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 11, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.split", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.split", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 69, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 70, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 70, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 74, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 74, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 79, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 80, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 82, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 82, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 83, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 85, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 85, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 86, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 89, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 90, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 91, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 92, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 94, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 95, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 95, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 96, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 98, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 117, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 117, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 123, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 124, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 125, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 126, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 133, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 134, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 135, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 136, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 136, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 138, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 139, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 139, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 140, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 141, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 141, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 142, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 142, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 143, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 144, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 145, "usage_type": "name" }, { "api_name": "torch.flatten", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 164, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 164, "usage_type": "name" }, { "api_name": "torch.sum", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 170, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 179, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 179, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 190, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 196, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 196, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 220, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 220, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 221, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 222, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 222, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 223, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 225, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 226, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 226, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 227, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 227, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 228, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 228, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 230, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 230, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 232, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 232, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 236, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 236, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 237, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 237, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 240, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 240, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 241, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 241, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 242, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 242, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 243, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 243, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 250, "usage_type": "call" }, { "api_name": "torchvision.transforms.Resize", "line_number": 253, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 253, "usage_type": "name" }, { "api_name": "torch.tanh", "line_number": 259, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 261, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 263, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 264, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 266, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 277, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 279, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 281, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 282, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 284, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 292, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 296, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 308, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 308, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 334, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 334, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 335, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 335, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 336, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 336, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 337, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 337, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 339, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 339, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 340, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 340, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 341, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 341, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 342, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 342, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 344, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 344, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 346, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 346, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 349, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 349, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 351, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 351, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 352, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 352, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 360, "usage_type": "call" }, { "api_name": "torchvision.transforms.Resize", "line_number": 363, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 363, "usage_type": "name" }, { "api_name": "torch.tanh", "line_number": 367, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 368, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 370, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 371, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 373, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 377, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 378, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 380, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 381, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 383, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 388, "usage_type": "call" } ]
13085423175
import json # this will create a tweet, with possiblities of adding medias and replying to other tweets def create_tweet(tas, message, media_ids = None, reply_ids = None): payload = {"status": message} if media_ids != None: payload["media_ids"] = media_ids if reply_ids != None: payload["in_reply_to_status_id"] = reply_ids r = tas.post("https://api.twitter.com/1.1/statuses/update.json", data = payload) resp = json.loads(r.text) if r.status_code == 200: tweet_id = resp["id"] return 0, (tweet_id,) return 1, (r.text,) # this will delete a tweet based on a given tweet-id def delete_tweet(tas, tweet_id): r = tas.delete(f"https://api.twitter.com/2/tweets/{tweet_id}") resp = json.loads(r.text)
filming/Twitter
src/Twitter/tweet/tweet.py
tweet.py
py
723
python
en
code
0
github-code
6
[ { "api_name": "json.loads", "line_number": 14, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 25, "usage_type": "call" } ]
15018029353
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 5 16:56:55 2022 @author: josephbriggs """ import pathlib import argparse import cv2 def main(): ''' Converts files to greyscale. ''' parser = argparse.ArgumentParser(description='Convert files to greyscale.') parser.add_argument('--input_path', "-i", type=str, help='path to the image or directory of images. \ If converting a directory, use *') parser.add_argument('--output_path', "-o", type=str, help='output path where images will be saved.') parser.add_argument('--res', "-r", type=int, help='downscale factor.') args = parser.parse_args() pathlib.Path(args.output_path).mkdir(parents=True, exist_ok=True) # files = pathlib.Path(args.input_path).glob(r'/*.png|') file_extentions = ['png', 'jpeg', 'jpg'] files = [] for file_extension in file_extentions: files += pathlib.Path(args.input_path).glob(fr'*.{file_extension}') for file in files: file_name = file.name image = cv2.imread(str(file)) image_gs = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) file_name_to_save = args.output_path+"/"+file_name print(file_name_to_save) cv2.imwrite(file_name_to_save, image_gs) print('converted files to greyscale') if __name__ == "__main__": main()
jhb123/enhance_greyscale
imgs_to_gs.py
imgs_to_gs.py
py
1,430
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 19, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 30, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 40, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 44, "usage_type": "call" } ]
12598627326
from airflow.hooks.postgres_hook import PostgresHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class DataQualityOperator(BaseOperator): """ Runs data quality check by passing test SQL Parameters redshift_conn_id: Redshift Connection ID test_sql: SQL query to run on Redshift for data validation expected_result: Expected result to match the test result. """ ui_color = '#89DA59' @apply_defaults def __init__(self, redshift_conn_id="", test_sql="", expected_result="", *args, **kwargs): super(DataQualityOperator, self).__init__(*args, **kwargs) self.redshift_conn_id=redshift_conn_id self.test_sql=test_sql self.expected_result=expected_result def execute(self, context): self.log.info("Start data validation...") redshift_hook = PostgresHook(Postgres_conn_in=self.redshift_conn_id) self.log.info("Got credentials.") records=redshift_hook.get_records(self.test_sql) if records[0][0] != self.expected_result: raise ValueError(f"Data quality check failed. {records[0][0]} does not equal {self.expected_result}") else: self.log.info("Data quality check passed!!!")
ljia-ch/airflow_data_pipeline_project
plugins/operators/data_quality.py
data_quality.py
py
1,362
python
en
code
0
github-code
6
[ { "api_name": "airflow.models.BaseOperator", "line_number": 5, "usage_type": "name" }, { "api_name": "airflow.utils.decorators.apply_defaults", "line_number": 18, "usage_type": "name" }, { "api_name": "airflow.hooks.postgres_hook.PostgresHook", "line_number": 32, "usage_type": "call" } ]
21368565276
import numpy as np import time import matplotlib.pyplot as plt a=np.loadtxt('meas2/magnitude_0to40.0mA_freq_sweep.csv', delimiter=',') c=np.loadtxt('meas2/phase_0to40.0mA_freq_sweep.csv', delimiter=',') b=np.loadtxt('meas2/sweep_feq.csv', delimiter=',') cstart=0 #start current cstop=40E-3 # stop current cstep=5E-3 # current step csteps=int((cstop-cstart)/cstep) fig, (ax0,ax1)=plt.subplots(2,1, sharex=True) for i in range(csteps): current=cstart+i*cstep ax0.plot(b,a[:,i], label="{0:d}mA".format(int((current)*1000))) ax1.plot(b,c[:,i], label="{0:d}mA".format(int((current)*1000))) ax1.set_xlabel("Larmor frequency in kHz") ax1.axhline(y=0, color='r', ls='--') plt.legend(prop={'size':6}) #plt.savefig('meas2/phase_amplitude.png') plt.show()
physikier/magnetometer
src/plot.py
plot.py
py
775
python
en
code
0
github-code
6
[ { "api_name": "numpy.loadtxt", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 7, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" } ]
42656181560
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os.path import argparse import logging from tarfile import TarFile from thirdparty.dagflow import ParallelTask, Task, DAG, do_dag from ontbc.common import mkdir, touch, read_tsv from ontbc.parser import add_barcode_parser from ontbc.config import PORECHOP_BIN, QUEUE from ontbc import __file__, __version__, __email__, __author__ LOG = logging.getLogger(__name__) def read_tar(file): a = os.path.dirname(file) return [os.path.join(a, i) for i in TarFile(file).getnames()] def scan_cell(cell): fastqs = [] summarys = [] fast5s = [] for root, dirs, files in os.walk(cell, followlinks=True, topdown=False): for name in files: path = os.path.join(root, name) if name.endswith(".fastq"): fastqs.append(path) elif name.endswith(".txt"): summarys.append(path) elif name.endswith(".fast5"): fast5s.append(path) elif name.endswith(".tar"): fast5s += read_tar(path) else: pass return fastqs, summarys, fast5s def create_porechop_tasks(cell, barcodes, job_type, work_dir, out_dir): LOG.info("find fastq, summary and fast5 files in %r" % cell) fastq_fofn = os.path.join(work_dir, "fastq.fofn") summary_fofn = os.path.join(work_dir, "summary.fofn") fast5_fofn = os.path.join(work_dir, "fast5.fofn") find_done = os.path.join(work_dir, "find_done") if not os.path.exists(find_done): fastqs, summarys, fast5s = scan_cell(cell) for i, j in zip([fastq_fofn, summary_fofn, fast5_fofn], [fastqs, summarys, fast5s]): with open(i, "w") as fh: fh.write("%s\n" % "\n".join(j)) del fastqs, summarys, fast5s touch(find_done) fastqs = [i[0] for i in read_tsv(fastq_fofn)] summarys = [i[0] for i in read_tsv(summary_fofn)] fast5s = [i[0] for i in read_tsv(fast5_fofn)] LOG.info("%s fastq, %s summary and %s fast5 files found" % (len(fastqs), len(summarys), len(fast5s))) del summarys, fast5s if job_type == "local": _option = "" else: _option = "-q %s" % ",".join(QUEUE) tasks = ParallelTask( id="bc", work_dir="%s/{id}" % work_dir, type=job_type, option=_option, script=""" {ontbc}/ontbc.py clean {{fastq}} > clean.fastq {porechop}/porechop-runner.py -i clean.fastq -b . -t 1 --verbosity 2 --no_split > porechop.log rm -rf clean.fastq """.format( porechop=PORECHOP_BIN, ontbc=os.path.join(os.path.dirname(__file__), "..") ), fastq=fastqs, ) summary = os.path.join(work_dir, "all.summary.txt") join_summary = Task( id="join_summary", work_dir=work_dir, type=job_type, script=""" less {summary} | xargs cat - > all.summary.txt """.format( summary=summary_fofn ), ) join_tasks = ParallelTask( id="join", work_dir=work_dir, type=job_type, script=""" mkdir -p {out}/{{barcode}} if [ ! -e {{barcode}}_cat_done ]; then cat */{{barcode}}.fastq > {out}/{{barcode}}/{{barcode}}.fastq touch {{barcode}}_cat_done fi rm -rf */{{barcode}}.fastq cd {out}/{{barcode}} {ontbc}/ontbc.py filter --fastq {{barcode}}.fastq --summary {summary} --fast5 {fast5} \\ --min_score -100 --min_length 0 --out {{barcode}} rm {{barcode}}.filtered.fastq mv {{barcode}}.filtered.summary.txt {{barcode}}.summary.txt """.format( summary=summary, ontbc=os.path.join(os.path.dirname(__file__), ".."), fast5=fast5_fofn, out=out_dir ), barcode=barcodes ) for i in join_tasks: i.set_upstream(*tasks) i.set_upstream(join_summary) return tasks, join_tasks, join_summary def run_porechop(cell, barcodes, job_type, threads, work_dir, out_dir): assert os.path.isdir(cell), "%r not exist" % cell out_dir = mkdir(out_dir) work_dir = mkdir(work_dir) tasks, join_tasks, join_summary = create_porechop_tasks( cell=cell, barcodes=barcodes, job_type=job_type, work_dir=work_dir, out_dir=out_dir ) dag = DAG("porechop") dag.add_task(*tasks) dag.add_task(join_summary) dag.add_task(*join_tasks) do_dag(dag, concurrent_tasks=threads, refresh_time=30) def barcode(args): run_porechop( cell=args.cell, barcodes=args.barcode, job_type=args.job_type, threads=args.threads, work_dir=args.work_dir, out_dir=args.out_dir ) def main(): logging.basicConfig( stream=sys.stderr, level=logging.INFO, format="[%(levelname)s] %(message)s" ) parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=""" version: %s contact: %s <%s>\ """ % (__version__, " ".join(__author__), __email__)) parser = add_barcode_parser(parser) args = parser.parse_args() barcode(args) if __name__ == "__main__": main()
FlyPythons/ontbc
ontbc/barcode.py
barcode.py
py
5,174
python
en
code
5
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.path.dirname", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 22, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 24, "usage_type": "name" }, { "api_name": "tarfile.TarFile", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.walk", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 36, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 55, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 56, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 56, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 56, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 57, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 57, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 58, "usage_type": "name" }, { "api_name": "os.path.path.exists", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 60, "usage_type": "name" }, { "api_name": "ontbc.common.touch", "line_number": 68, "usage_type": "call" }, { "api_name": "ontbc.common.read_tsv", "line_number": 70, "usage_type": "call" }, { "api_name": "ontbc.common.read_tsv", "line_number": 71, "usage_type": "call" }, { "api_name": "ontbc.common.read_tsv", "line_number": 72, "usage_type": "call" }, { "api_name": "ontbc.config.QUEUE", "line_number": 80, "usage_type": "argument" }, { "api_name": "thirdparty.dagflow.ParallelTask", "line_number": 82, "usage_type": "call" }, { "api_name": "ontbc.config.PORECHOP_BIN", "line_number": 92, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 93, "usage_type": "name" }, { "api_name": "os.path.path.dirname", "line_number": 93, "usage_type": "call" }, { "api_name": "ontbc.__file__", "line_number": 93, "usage_type": "argument" }, { "api_name": "os.path.path.join", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 98, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 98, "usage_type": "name" }, { "api_name": "thirdparty.dagflow.Task", "line_number": 100, "usage_type": "call" }, { "api_name": "thirdparty.dagflow.ParallelTask", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path.path.join", "line_number": 132, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 132, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 132, "usage_type": "name" }, { "api_name": "os.path.path.dirname", "line_number": 132, "usage_type": "call" }, { "api_name": "ontbc.__file__", "line_number": 132, "usage_type": "argument" }, { "api_name": "os.path.path.isdir", "line_number": 148, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 148, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 148, "usage_type": "name" }, { "api_name": "ontbc.common.mkdir", "line_number": 150, "usage_type": "call" }, { "api_name": "ontbc.common.mkdir", "line_number": 151, "usage_type": "call" }, { "api_name": "thirdparty.dagflow.DAG", "line_number": 161, "usage_type": "call" }, { "api_name": "thirdparty.dagflow.do_dag", "line_number": 167, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 183, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 184, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 185, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 189, "usage_type": "call" }, { "api_name": "argparse.RawDescriptionHelpFormatter", "line_number": 190, "usage_type": "attribute" }, { "api_name": "ontbc.__version__", "line_number": 196, "usage_type": "name" }, { "api_name": "ontbc.__author__", "line_number": 196, "usage_type": "argument" }, { "api_name": "ontbc.__email__", "line_number": 196, "usage_type": "name" }, { "api_name": "ontbc.parser.add_barcode_parser", "line_number": 198, "usage_type": "call" } ]
39865467891
from IPython import get_ipython def type_of_script(): """ Detects and returns the type of python kernel :return: string 'jupyter' or 'ipython' or 'terminal' """ try: ipy_str = str(type(get_ipython())) if 'zmqshell' in ipy_str: return 'jupyter' if 'terminal' in ipy_str: return 'ipython' except: return 'terminal' if type_of_script() == 'jupyter': from tqdm.notebook import tqdm else: from tqdm import tqdm import matplotlib.pyplot as plt # type: module import matplotlib.ticker as ticker from matplotlib import colormaps from matplotlib.colors import Normalize import matplotlib.gridspec as gridspec import numpy as np import os, glob import time import warnings from rur.fortranfile import FortranFile from rur import uri, uhmi, painter, drawer from rur.sci.photometry import measure_luminosity from rur.sci.geometry import get_angles, euler_angle from rur.utool import rotate_data from scipy.ndimage import gaussian_filter uri.timer.verbose=1 # from rur.sci.kinematics import f_getpot from icl_IO import mode2repo, pklsave, pklload from icl_tool import * from icl_numba import large_isin, large_isind, isin from icl_draw import drawsnap, add_scalebar, addtext, MakeSub_nolabel, label_to_in, fancy_axis, circle import argparse, subprocess from importlib import reload import cmasher as cmr from copy import deepcopy from multiprocessing import Pool, shared_memory mode = 'nh' iout = 1026 repo, rurmode, dp = mode2repo(mode) snap = uri.RamsesSnapshot(repo, iout, mode=rurmode) snaps = uri.TimeSeries(snap) snaps.read_iout_avail() nout = snaps.iout_avail['iout'] gals = uhmi.HaloMaker.load(snap, galaxy=True, double_precision=dp) hals = uhmi.HaloMaker.load(snap, galaxy=False, double_precision=dp) database = f"/home/jeon/MissingSat/database" from common_func import * tree = pklload(f"{database}/02_main_progenitors.pickle") if(os.path.exists(f"{database}/halo_dict.pickle")): halos = pklload(f"{database}/halo_dict.pickle") else: halos = {'catalog':{}, 'index':{}} uri.timer.verbose=0 for iout in tqdm(np.unique(tree['timestep'])): isnap = snaps.get_snap(iout) ihals = uhmi.HaloMaker.load(isnap, galaxy=False, double_precision=dp) indicies = np.zeros(len(ihals), dtype=int) iids = tree[tree['timestep'] == iout]['id'] ihals = ihals[iids-1] indicies[iids-1] = np.arange(len(iids)) halos['catalog'][iout] = ihals halos['index'][iout] = indicies pklsave(halos, f"{database}/halo_dict.pickle") def _ibox(h, factor=1): return np.array([ [h['x']-factor*h['r'], h['x']+factor*h['r']], [h['y']-factor*h['r'], h['y']+factor*h['r']], [h['z']-factor*h['r'], h['z']+factor*h['r']] ]) uri.timer.verbose=0 for iout in np.unique(tree['timestep'])[::-1]: if(os.path.exists(f"{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle")): continue cpudict = {} targets = halos['catalog'][iout] isnap = snaps.get_snap(iout) cpulists = [] with Pool(32) as pool: async_result = [ pool.apply_async( uri.get_cpulist, (_ibox(h,factor=1.1), None, isnap.levelmax, isnap.bound_key, isnap.ndim, 5, isnap.ncpu) ) for h in targets ] iterobj = tqdm(async_result, total=len(targets), desc=f"iout={iout:05d}") for r in iterobj: cpulists.append(r.get()) cpulists = np.unique( np.concatenate(cpulists) ) cpudict['all'] = cpulists pklsave(cpudict, f"{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle") print(f"`{database}/main_prog/cpulist/cpulist_{iout:05d}.pickle` save done") isnap.clear()
syj3514/MissingSat
befo231205/05b_get_involved_cpu.py
05b_get_involved_cpu.py
py
3,847
python
en
code
0
github-code
6
[ { "api_name": "IPython.get_ipython", "line_number": 10, "usage_type": "call" }, { "api_name": "rur.uri.timer", "line_number": 41, "usage_type": "attribute" }, { "api_name": "rur.uri", "line_number": 41, "usage_type": "name" }, { "api_name": "icl_IO.mode2repo", "line_number": 56, "usage_type": "call" }, { "api_name": "rur.uri.RamsesSnapshot", "line_number": 57, "usage_type": "call" }, { "api_name": "rur.uri", "line_number": 57, "usage_type": "name" }, { "api_name": "rur.uri.TimeSeries", "line_number": 58, "usage_type": "call" }, { "api_name": "rur.uri", "line_number": 58, "usage_type": "name" }, { "api_name": "rur.uhmi.HaloMaker.load", "line_number": 61, "usage_type": "call" }, { "api_name": "rur.uhmi.HaloMaker", "line_number": 61, "usage_type": "attribute" }, { "api_name": "rur.uhmi", "line_number": 61, "usage_type": "name" }, { "api_name": "rur.uhmi.HaloMaker.load", "line_number": 62, "usage_type": "call" }, { "api_name": "rur.uhmi.HaloMaker", "line_number": 62, "usage_type": "attribute" }, { "api_name": "rur.uhmi", "line_number": 62, "usage_type": "name" }, { "api_name": "icl_IO.pklload", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "icl_IO.pklload", "line_number": 73, "usage_type": "call" }, { "api_name": "rur.uri.timer", "line_number": 76, "usage_type": "attribute" }, { "api_name": "rur.uri", "line_number": 76, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 77, "usage_type": "call" }, { "api_name": "rur.uhmi.HaloMaker.load", "line_number": 79, "usage_type": "call" }, { "api_name": "rur.uhmi.HaloMaker", "line_number": 79, "usage_type": "attribute" }, { "api_name": "rur.uhmi", "line_number": 79, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 83, "usage_type": "call" }, { "api_name": "icl_IO.pklsave", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 91, "usage_type": "call" }, { "api_name": "rur.uri.timer", "line_number": 97, "usage_type": "attribute" }, { "api_name": "rur.uri", "line_number": 97, "usage_type": "name" }, { "api_name": "numpy.unique", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "multiprocessing.Pool", "line_number": 105, "usage_type": "call" }, { "api_name": "rur.uri.get_cpulist", "line_number": 108, "usage_type": "attribute" }, { "api_name": "rur.uri", "line_number": 108, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 115, "usage_type": "call" }, { "api_name": "icl_IO.pklsave", "line_number": 117, "usage_type": "call" } ]
12190600050
# # db.py # import os import sqlite3 import time import datetime from flask import g import db_init def test_db_conn(): dbname = os.environ.get("SEVENS_DB_NAME") try: os.remove(dbname) except OSError: pass """ Check if db connection can open, create and init db if doesn't already exist """ print("********dbname: "+dbname) assert dbname is not None # If db file doesn't exist call the initialize module to create and init if not os.path.isfile(dbname): print("!!!!!!!!!dbname: "+dbname) db_init.init(dbname) def get_db(): dbname = os.environ.get("SEVENS_DB_NAME") assert dbname is not None if not hasattr(g,'sqlite_db'): g.sqlite_db = sqlite3.connect(dbname) return g.sqlite_db def close_db(): if hasattr(g,'sqlite_db'): g.sqlite_db.close() # CREATE TABLE players (id INTEGER PRIMARY KEY AUTOINCREMENT, points INTEGER, name STRING); def players_row_to_dict(row): players = {} players['id'] = row[0] players['points'] = row[1] players['name'] = row[2] return players #CREATE TABLE hands (player_id INTEGER FOREIGN KEY, clubs STRING, hearts STRING, diamonds STRING, spades STRING); def hands_row_to_dict(row): hands = {} hands['player_id'] = row[0] hands['clubs'] = str(row[1]) hands['hearts'] = str(row[2]) hands['diamonds'] = str(row[3]) hands['spades'] = str(row[4]) return hands # CREATE TABLE board (cur_player_id INTEGER FOREIGN KEY, clubs STRING, hearts STRING, diamonds STRING, spades STRING); def board_row_to_dict(row): board = {} board['cur_player_id'] = row[0] board['clubs'] = str(row[1]) board['hearts'] = str(row[2]) board['diamonds'] = str(row[3]) board['spades'] = str(row[4]) return board def get_game_state(): conn = get_db() curs = conn.cursor() rows = curs.execute ("SELECT * FROM board").fetchall() board = [] for row in rows: b = board_row_to_dict(row) board.append(b) return board def get_games(): conn = get_db() curs = conn.cursor() rows = curs.execute ("SELECT * FROM games ORDER BY date").fetchall() games = [] for row in rows: game = game_row_to_dict(row) games.append(game) return games ''' def update_game(gameid,score,lines,user): conn = get_db() curs = conn.cursor() curs.execute("UPDATE games SET score=?, lines=?, user=?, haveResult=? WHERE id=?;", (score, lines, user, True, gameid)) conn.commit() res = curs.execute("SELECT * FROM games WHERE id=?;",(gameid,)).fetchall() if len(res) != 0: return game_row_to_dict(res[0]) else: return None def add_access_log(game_id, func, method, auth, ip, user_agent): """ Add access log to global access_log list """ conn = get_db() curs = conn.cursor() curs.execute("INSERT INTO accesslog (id, function, method, date, ipaddress, useragent, user) VALUES (?,?,?,?,?,?,?);", (game_id, func, method, time.time(),ip, user_agent, auth)) conn.commit() def get_access_logs(): conn = get_db() curs = conn.cursor() rows = curs.execute ("SELECT * FROM accesslog ORDER BY date").fetchall() access_log = [] for row in rows: access = accesslog_row_to_dict(row) access_log.append(access) return access_log def get_rng_seed(): """ Generate rng seed """ return 0xDEADBEEF '''
tolkamps1/sevens7
db.py
db.py
py
3,441
python
en
code
0
github-code
6
[ { "api_name": "os.environ.get", "line_number": 12, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "db_init.init", "line_number": 26, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 29, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 29, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 32, "usage_type": "argument" }, { "api_name": "flask.g.sqlite_db", "line_number": 33, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 33, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.g.sqlite_db", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 34, "usage_type": "name" }, { "api_name": "flask.g", "line_number": 37, "usage_type": "argument" }, { "api_name": "flask.g.sqlite_db.close", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.g.sqlite_db", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 38, "usage_type": "name" } ]
11941164377
#!/usr/bin/env python # # fast_mr -> # # Fast molecular replacement in the spirit of fast_dp, starting from coordinate # files and using brute force (and educated guesses) to get everything going. # # fast_mr - main program. import os import sys import time import shutil import math import traceback from multiprocessing import Pool from iotbx import mtz from iotbx import pdb from libtbx.phil import parse from cctbx.sgtbx import space_group, space_group_symbols from iotbx.scalepack import merge as merge_scalepack from libtbx import introspection if not 'FAST_EP_ROOT' in os.environ: raise RuntimeError('FAST_EP_ROOT not set') fast_ep_lib = os.path.join(os.environ['FAST_EP_ROOT'], 'lib') if not fast_ep_lib in sys.path: sys.path.append(fast_ep_lib) from xml_output import write_ispyb_xml from generate_possible_spacegroups import generate_chiral_spacegroups, \ spacegroup_enantiomorph, spacegroup_full, sanitize_spacegroup from run_job import run_job, run_job_cluster, is_cluster_job_finished from fast_mr_phaser import run_phaser_cluster from parse_pdb import pdb_file_nres class logger: def __init__(self): self._fout = open('fast_mr.log', 'w') return def __del__(self): self._fout.close() self._cout = None return def __call__(self, _line): sys.stdout.write('%s\n' % _line) self._fout.write('%s\n' % _line) return class Fast_mr: def __init__(self, hklin, xyzin_and_ids): self._hklin = os.path.abspath(hklin) self._xyzins = [os.path.abspath(xyzin_and_id[0]) for xyzin_and_id in xyzin_and_ids] self._ids = [xyzin_and_id[1] for xyzin_and_id in xyzin_and_ids] self._cpu = 2 self._machines = 10 self._wd = os.getcwd() self._log = logger() self._log('Using %d cpus / %d machines' % (self._cpu, self._machines)) self._full_command_line = ' '.join(sys.argv) # pull information we'll need from the input MTZ file - the unit cell, # the pointgroup and the number of reflections in the file. select # first Miller array in file which has native data # --- SAD DATA --- m = mtz.object(self._hklin) mas = m.as_miller_arrays() self._data = None for ma in mas: if str(ma.observation_type()) != 'xray.amplitude': continue self._data = ma break if not self._data: raise RuntimeError('no intensity data found in %s' % \ self._hklin) self._pointgroup = self._data.space_group().type().number() self._unit_cell = self._data.unit_cell().parameters() self._nrefl = m.n_reflections() self._spacegroups = generate_chiral_spacegroups(self._pointgroup) # write out a nice summary of the data set properties and what columns # were selected for analysis self._log('Input: %s' % self._hklin) self._log('Columns: %s' % self._data.info().label_string()) self._log('Unit cell: %.2f %.2f %.2f %.2f %.2f %.2f' % \ self._unit_cell) self._log('Pointgroup: %s' % m.space_group().type().lookup_symbol()) self._log('Resolution: %.2f - %.2f' % self._data.resolution_range()) self._log('Nrefl: %d' % self._nrefl) self._log('Spacegroups: %s' % ' '.join(self._spacegroups)) self._log('Input coordinate files:') self._nres = [] for xyzin, _id in zip(self._xyzins, self._ids): nres = pdb_file_nres(xyzin) self._nres.append(nres) self._log('%40s %8d %.3f' % (os.path.split(xyzin)[1], nres, _id)) total_nres = sum(self._nres) # FIXME calculate probable number of complexes in here self._copies = 1 return def do_mr(self): t0 = time.time() cluster = True njobs = self._machines ncpu = self._cpu # set up N phaser jobs jobs = [ ] for spacegroup in self._spacegroups: wd = os.path.join(self._wd, spacegroup) if not os.path.exists(wd): os.makedirs(wd) commands = ['mode mr_auto', 'spacegroup %s' % spacegroup, 'hklin %s' % self._hklin, 'labin F=F SIGF=SIGF', 'root mr%s' % spacegroup] for j, (xyzin, _id, nres) in enumerate( zip(self._xyzins, self._ids, self._nres)): commands.append('ensemble m%d pdb %s identity %f' % (j, xyzin, 100 * _id)) for j, (xyzin, _id, nres) in enumerate( zip(self._xyzins, self._ids, self._nres)): commands.append('composition protein nres %d num %d' % (nres, self._copies)) for j, (xyzin, _id, nres) in enumerate( zip(self._xyzins, self._ids, self._nres)): commands.append('search ensemble m%d num %d' % (j, self._copies)) jobs.append((wd, commands)) # actually execute the tasks - either locally or on a cluster, allowing # for potential for fewer available machines than jobs self._log('Running %d x phaser jobs' % len(jobs)) pool = Pool(min(njobs, len(jobs))) if cluster: pool.map(run_phaser_cluster, jobs) else: print(1/0) # now look for the results worked = [] for job in jobs: wd = job[0] spacegroup = os.path.split(wd)[-1] if os.path.exists(os.path.join(wd, 'mr%s.sol' % spacegroup)): worked.append(os.path.join(wd, 'mr%s.sol' % spacegroup)) for w in worked: sol = open(w).read() for record in sol.split('\n'): if 'SOLU SPAC' in record: spacegroup = record.replace( 'SOLU SPAC', '').replace(' ', '') if 'SOLU SET' in record: tfz = float(record.replace('=', ' ').split()[5]) print('Solution: %s %.2f' % (spacegroup, tfz)) t1 = time.time() self._log('Time: %.2f' % (t1 - t0)) if __name__ == '__main__': xyzin_and_ids = [] for arg in sys.argv[2:]: if ':' in arg: xyzin = arg.split(':')[0] _id = float(arg.split(':')[1]) if _id > 1.0: _id /= 100.0 xyzin_and_ids.append((xyzin, _id)) else: xyzin_and_ids.append((arg, 1.0)) fast_mr = Fast_mr(sys.argv[1], xyzin_and_ids) try: fast_mr.do_mr() except RuntimeError as e: fast_mr._log('*** MR: %s ***' % str(e)) traceback.print_exc(file = open('fast_mr.error', 'w')) sys.exit(1)
DiamondLightSource/fast_ep
src/fast_mr.py
fast_mr.py
py
6,927
python
en
code
2
github-code
6
[ { "api_name": "os.environ", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 28, "usage_type": "attribute" }, { "api_name": "sys.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 31, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 52, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 52, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 66, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 71, "usage_type": "attribute" }, { "api_name": "iotbx.mtz.object", "line_number": 79, "usage_type": "call" }, { "api_name": "iotbx.mtz", "line_number": 79, "usage_type": "name" }, { "api_name": "generate_possible_spacegroups.generate_chiral_spacegroups", "line_number": 98, "usage_type": "call" }, { "api_name": "parse_pdb.pdb_file_nres", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path.split", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 127, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 138, "usage_type": "call" }, { "api_name": "os.path", "line_number": 138, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path", "line_number": 139, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 140, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 166, "usage_type": "call" }, { "api_name": "fast_mr_phaser.run_phaser_cluster", "line_number": 169, "usage_type": "argument" }, { "api_name": "os.path.split", "line_number": 177, "usage_type": "call" }, { "api_name": "os.path", "line_number": 177, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 178, "usage_type": "call" }, { "api_name": "os.path", "line_number": 178, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 178, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 179, "usage_type": "call" }, { "api_name": "os.path", "line_number": 179, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 191, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 196, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 206, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 211, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 212, "usage_type": "call" } ]
40471740091
import os import cv2 import numpy as np import shutil import sys sys.path.insert(0,os.path.realpath('..')) sys.path.insert(0,os.path.join(os.path.realpath('..'),'piano_utils')) from tools.warper import order_points from config import cfg from piano_utils.networks import PSPNet from piano_utils.util import colorize_mask from piano_utils.keyboard import KeyBoard from PIL import Image from tqdm import tqdm import shapely from shapely.geometry import Polygon,MultiPoint import time from skimage.measure import label, regionprops from collections import Counter import json from IPython import embed import pickle exp_cfg = { 'exp_imgs':'/home/data/lj/Piano/experment/keyboard/exp_imgs', 'tmp_dir':'/home/data/lj/Piano/experment/keyboard/tmp_dir', 'figure_dir':'/home/data/lj/Piano/experment/keyboard_figure' } class HoughKeyBoard(object): def __init__(self): self.theta_thersh = 0.08 def hough_transform(self,img): res = {} img_ori = img.copy() h, w = img.shape[:2] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edges = cv2.Canny(gray, 50, 150, 3) lines = cv2.HoughLines(edges, 1.0, np.pi / 180, 120) thetas = [x[0][1] for x in lines if not (x[0][1] < (np.pi / 4.) or x[0][1] > (3.*np.pi/4.0))] dic = dict(Counter(thetas)) theta = sorted(dic.items(), key=lambda x: x[1], reverse=True) if len(theta) > 0 and theta[0][1] > 1: #---统计角度最多重复的直线 most_theta = theta[0][0] else: return x_loc, y_loc, pts = [], [], [] for line in lines: rho, theta = line[0] if abs(most_theta * 180 / np.pi - 90) > 1.5: #--键盘是斜着的 if abs(theta - most_theta) > self.theta_thersh: continue else: #---其他情况 if not theta == most_theta: continue pt1 = (0, max(int(rho / np.sin(theta)), 0)) pt2 = (img_ori.shape[1], max(int((rho - img_ori.shape[1] * np.cos(theta)) / np.sin(theta)),0)) cv2.line(img_ori, pt1, pt2, (0, 255, 0), 1) pts.append((pt1, pt2)) return img_ori def get_img_box_dict(): img_box_dict = dict() file_name = '/home/data/lj/Piano/Segment/train.txt' with open(file_name,'r') as fr: items = [l.strip() for l in fr.readlines()] mask_lists = [] for item in items: item = item.split() if 'tools' in item[0]: #mask_dir = item[0].split('/')[-2] continue else: mask_dir = os.path.basename(item[0]).split('_img_') [0] if 'segment' in item[0]:continue if mask_dir in mask_lists:continue mask_lists.append(mask_dir) img_mask = cv2.imread(item[1],cv2.IMREAD_GRAYSCALE) img_mask[img_mask==2] = 1 img_mask[img_mask==1] = 255 contours,_ = cv2.findContours(img_mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) assert len(contours)==1,'value wrong' contours = np.squeeze(contours) rect = order_points(contours).reshape(-1,1,2).astype(int) img_box_dict[mask_dir] = rect json_path = os.path.join(exp_cfg['exp_imgs'],'need_labels') json_files = [os.path.join(json_path,x) for x in os.listdir(json_path) if x.endswith('json')] json_files.sort() for json_file in json_files: with open(json_file,'r') as fr: items = json.load(fr) basename = os.path.basename(json_file).split('.')[0] points = np.array(items['shapes'][0]['points']) rect = order_points(points).reshape(-1,1,2).astype(int) img_box_dict[basename] = rect return img_box_dict class KeyBoard_Exp(KeyBoard): def __init__(self): KeyBoard.__init__(self) print('KeyBoard load finish') def detect(self,img): image = img.convert('RGB') self.prediction = self.inference(img) contours,_ = self.find_contours(image,self.prediction) rect = order_points(contours).reshape(-1,1,2).astype(int) return rect def mask2image(self,image): image = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB)) w, h = image.size colorized_mask = colorize_mask(self.prediction, self.palette) output_im = Image.new('RGB', (w*2, h)) output_im.paste(image, (0,0)) output_im.paste(colorized_mask, (w,0)) output_im = cv2.cvtColor(np.asarray(output_im),cv2.COLOR_RGB2BGR) return output_im def cal_iou(gt_rect, det_rect): #---不规则的两个四边形计算Iou,不是矩形了 gt_rect = gt_rect.reshape(4, 2) poly1 = Polygon(gt_rect).convex_hull det_rect = det_rect.reshape(4,2) poly2 = Polygon(det_rect).convex_hull union_poly = np.concatenate((gt_rect,det_rect)) if not poly1.intersects(poly2): iou = 0 else: try: inter_area = poly1.intersection(poly2).area union_area = MultiPoint(union_poly).convex_hull.area if union_area == 0: iou= 0 iou=float(inter_area) / union_area except shapely.geos.TopologicalError: print('shapely.geos.TopologicalError occured, iou set to 0') iou = 0 return iou def ensure_dir(path): if not os.path.exists(path): os.makedirs(path) def main(): seg_pickle_file = os.path.join(exp_cfg['tmp_dir'],'seg.pkl') hour_pickle_file = os.path.join(exp_cfg['tmp_dir'],'hourgh.pkl') path = exp_cfg['exp_imgs'] save_seg_dir = os.path.join(exp_cfg['figure_dir'],'segment') save_hourgh_dir = os.path.join(exp_cfg['figure_dir'],'hourgh') ensure_dir(save_seg_dir) ensure_dir(save_hourgh_dir) img_files = [os.path.join(path,x) for x in os.listdir(path)] gt_box_dict = get_img_box_dict() with open(seg_pickle_file,'rb') as f1: seg_box_dict = pickle.load(f1) with open(hour_pickle_file,'rb') as f2: hour_box_dict = pickle.load(f2) seg_ious = [] for img_mark,det_rect in seg_box_dict.items(): gt_rect = gt_box_dict[img_mark] iou = cal_iou(gt_rect,det_rect) if iou>0.5: seg_ious.append(iou) else:print(img_mark) hour_detector = HoughKeyBoard() keyboard_net = KeyBoard_Exp() hour_ious = [] for img_mark,det_rect in hour_box_dict.items(): gt_rect = gt_box_dict[img_mark] iou = cal_iou(gt_rect,det_rect) if iou>0.5: hour_ious.append(iou) else: img = cv2.imread(os.path.join(path,img_mark+'.jpg')) img_copy = img.copy() img_input = Image.fromarray(cv2.cvtColor(img_copy,cv2.COLOR_BGR2RGB)) seg_rect = keyboard_net.detect(img_input) for rect in det_rect: rect = rect[0] cv2.circle(img,(rect[0],rect[1]),5,(0,255,0),3) for rect in seg_rect: rect = rect[0] cv2.circle(img_copy,(rect[0],rect[1]),5,(0,255,0),3) img_copy = keyboard_net.mask2image(img_copy) img = hour_detector.hough_transform(img) cv2.imwrite(os.path.join(save_hourgh_dir,img_mark+'.jpg'),img) cv2.imwrite(os.path.join(save_seg_dir,img_mark+'.jpg'),img_copy) if __name__=='__main__': main()
yxlijun/vision-piano-amt
figures/plt_keyboard.py
plt_keyboard.py
py
7,430
python
en
code
2
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "sys.path.insert", "line_number": 7, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 37, "usage_type": "attribute" }, { "api_name": "cv2.GaussianBlur", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.Canny", "line_number": 39, "usage_type": "call" }, { "api_name": "cv2.HoughLines", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 40, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 41, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 42, "usage_type": "attribute" }, { "api_name": "collections.Counter", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 52, "usage_type": "attribute" }, { "api_name": "numpy.sin", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.IMREAD_GRAYSCALE", "line_number": 80, "usage_type": "attribute" }, { "api_name": "cv2.findContours", "line_number": 83, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 83, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_NONE", "line_number": 83, "usage_type": "attribute" }, { "api_name": "numpy.squeeze", "line_number": 85, "usage_type": "call" }, { "api_name": "tools.warper.order_points", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path", "line_number": 89, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 90, "usage_type": "call" }, { "api_name": "json.load", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path", "line_number": 95, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 96, "usage_type": "call" }, { "api_name": "tools.warper.order_points", "line_number": 97, "usage_type": "call" }, { "api_name": "piano_utils.keyboard.KeyBoard", "line_number": 102, "usage_type": "name" }, { "api_name": "piano_utils.keyboard.KeyBoard.__init__", "line_number": 104, "usage_type": "call" }, { "api_name": "piano_utils.keyboard.KeyBoard", "line_number": 104, "usage_type": "name" }, { "api_name": "tools.warper.order_points", "line_number": 111, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 115, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 115, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 115, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 115, "usage_type": "attribute" }, { "api_name": "piano_utils.util.colorize_mask", "line_number": 117, "usage_type": "call" }, { "api_name": "PIL.Image.new", "line_number": 118, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 118, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 121, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 121, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 121, "usage_type": "attribute" }, { "api_name": "shapely.geometry.Polygon", "line_number": 128, "usage_type": "call" }, { "api_name": "shapely.geometry.Polygon", "line_number": 130, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 131, "usage_type": "call" }, { "api_name": "shapely.geometry.MultiPoint", "line_number": 137, "usage_type": "call" }, { "api_name": "shapely.geos", "line_number": 141, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 148, "usage_type": "call" }, { "api_name": "os.path", "line_number": 148, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 149, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 152, "usage_type": "call" }, { "api_name": "os.path", "line_number": 152, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 153, "usage_type": "call" }, { "api_name": "os.path", "line_number": 153, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 155, "usage_type": "call" }, { "api_name": "os.path", "line_number": 155, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 156, "usage_type": "call" }, { "api_name": "os.path", "line_number": 156, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 160, "usage_type": "call" }, { "api_name": "os.path", "line_number": 160, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 160, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 164, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 166, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 186, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 186, "usage_type": "call" }, { "api_name": "os.path", "line_number": 186, "usage_type": "attribute" }, { "api_name": "PIL.Image.fromarray", "line_number": 188, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 188, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 188, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 188, "usage_type": "attribute" }, { "api_name": "cv2.circle", "line_number": 192, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 195, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path", "line_number": 198, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 199, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 199, "usage_type": "call" }, { "api_name": "os.path", "line_number": 199, "usage_type": "attribute" } ]
1383718733
from .base import metadata from sqlalchemy import Table, Column, BigInteger,\ String, Boolean, DateTime t_users = Table( "users", metadata, Column('u_id', BigInteger), # telegram id Column('name', String), # фамилия c инициалами Column('name_tg', String), # имя пользователя в телеге если есть Column('admin', Boolean), # является ли администратором Column('org_name', String), Column('org_code', String), Column('date_update', DateTime), )
oleg-medovikov/eventlog
base/users.py
users.py
py
618
python
ru
code
0
github-code
6
[ { "api_name": "sqlalchemy.Table", "line_number": 6, "usage_type": "call" }, { "api_name": "base.metadata", "line_number": 8, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 9, "usage_type": "call" }, { "api_name": "sqlalchemy.BigInteger", "line_number": 9, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 10, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 10, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 11, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 11, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 12, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 12, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 13, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 13, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 14, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 14, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 15, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 15, "usage_type": "argument" } ]
5759912904
# -*- coding: utf-8 -*- """ Created on Wed Feb 20 09:17:19 2019 @author: if715029 """ import numpy as np import matplotlib.pyplot as plt import scipy.spatial.distance as sc import pandas as pd #%% data = pd.read_excel('../data/Datos_2015.xlsx',sheet_name='Atemajac') #%% data = data.iloc[:,2:7].dropna() #%% D1 = sc.squareform(sc.pdist(data.iloc[:,2:],'euclidean')) #%% data_norm = (data-data.mean(axis=0))/data.std(axis=0) #%% plt.subplot(1,2,1) plt.scatter(data['CO'],data['PM10']) plt.axis('square') plt.subplot(1,2,2) plt.scatter(data_norm['CO'],data_norm['PM10']) plt.axis('square') plt.show()
OscarFlores-IFi/CDINP19
code/p6.py
p6.py
py
616
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_excel", "line_number": 14, "usage_type": "call" }, { "api_name": "scipy.spatial.distance.squareform", "line_number": 20, "usage_type": "call" }, { "api_name": "scipy.spatial.distance", "line_number": 20, "usage_type": "name" }, { "api_name": "scipy.spatial.distance.pdist", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" } ]
18659651890
import models import typing import sqlite3 import os import sys class Storage: def __init__(self): self._conn = sqlite3.connect('v_store.db') self._cursor = self._conn.cursor() self._queries: dict[str, str] = self.read_queries() def __del__(self): self._cursor.close() self._conn.close() def read_queries(self) -> dict[str, str]: queries = {} current_key = None current_query = [] with open("./queries.sql", "r") as f: for line in f: line = line.strip() if line.startswith("--"): if current_key is not None: queries[current_key] = "\n".join(current_query) current_query = [] current_key = line[2:].strip() else: current_query.append(line) if current_key is not None: queries[current_key] = "\n".join(current_query) return queries def make_table(self) -> int: try: self._cursor.execute(self._queries["make_vector_table"]) return 0 except Exception as e: raise e def add_point(self, point: models.Point) -> int: try: query = self._queries["add_point"].format(str(point), repr(point)) self._cursor.execute(query) return 0 except Exception as e: raise e def get_point(self, id) -> int | models.Vector: try: query = self._queries["get_point_by_id"].format(id) self._cursor.execute(query) vec: models.Vector = self._cursor.fetchone() if vec: return exec(vec) else: raise ValueError("Point with that id does not exist") except Exception as e: raise e def delete_point(self, id) -> int: try: query = self._queries["delete_point_by_id"].format(id) self._cursor.execute(query) return 0 except Exception as e: raise e s = Storage() print(s.read_queries())
Ayon-Bhowmick/Vec4Rec
src/storage.py
storage.py
py
2,150
python
en
code
0
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 9, "usage_type": "call" }, { "api_name": "models.Point", "line_number": 42, "usage_type": "attribute" }, { "api_name": "models.Vector", "line_number": 54, "usage_type": "attribute" }, { "api_name": "models.Vector", "line_number": 50, "usage_type": "attribute" } ]
22951595310
#!/usr/bin/env python2.7 """ A tool to update the Product Version and Code of a C# VS2010 setup package (*.vdproj). Intended to be used with an automated build process. """ import re import uuid import argparse import os, shutil import tempfile ##"ProductCode" = "8:{35424778-8534-431B-9492-5CD84B1EDE03}" productcode_re = re.compile(r"(?:\"ProductCode\" = \"8.){([\d\w-]+)}") ##"ProductVersion" = "8:1.0.89" productversion_re = re.compile(r"(?:\"ProductVersion\" = \"8.)([\d\w\.]+)\"") def replace_code_and_version(src_fname, version="1.0.0", code="12345678-1234-1234-1234-1233456789012"): fd, tmp_fname = tempfile.mkstemp() tmp = open(tmp_fname, 'w') src = open(src_fname) for l in src: if productcode_re.search(l): m = productcode_re.search(l) l = l.replace(m.group(1), code) if productversion_re.search(l): m = productversion_re.search(l) l = l.replace(m.group(1), version) tmp.write(l) tmp.close() os.close(fd) src.close() os.remove(src_fname) shutil.move(tmp_fname, src_fname) def parse_commands(test_args=None): descrip = "Utility to update ProductCode and ProductVersion of VS2010 setup projects" parser = argparse.ArgumentParser(description=descrip) parser.add_argument("-f", "--file", dest="vdproj", action="store", default=None, help="The vdproj file to be 'adjusted'", required=True) parser.add_argument("-v", "--version", action="store", dest="version", default="1.0.0", help="The new version to be set conforming to: major, minor, build e.g '1.0.195'") parser.add_argument("-c", "--code", dest="code", action="store", default=str(uuid.uuid4()), help="The new product code GUID. If not provided one is generated. ") ## Don't update the UpgradeCode that needs to stay the same for the product duration if test_args is None: args = parser.parse_args() else: args = parser.parse_args(test_args) return args def main(): args = parse_commands() replace_code_and_version(args.file, args.version, args.code) if __name__ == '__main__': main()
wfriedl/pvc_changer
pvc_changer.py
pvc_changer.py
py
2,183
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 16, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 19, "usage_type": "call" }, { "api_name": "tempfile.mkstemp", "line_number": 23, "usage_type": "call" }, { "api_name": "os.close", "line_number": 35, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 37, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 38, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 43, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 48, "usage_type": "call" } ]
19882708740
import os import click from guardata.utils import trio_run from guardata.api.protocol import OrganizationID from guardata.logging import configure_logging from guardata.cli_utils import spinner, cli_exception_handler from guardata.client.types import BackendAddr, BackendOrganizationBootstrapAddr from guardata.client.backend_connection import apiv1_backend_administration_cmds_factory async def _create_organization(debug, name, backend_addr, administration_token, expiration_date): async with spinner("Creating group in backend"): async with apiv1_backend_administration_cmds_factory( backend_addr, administration_token ) as cmds: rep = await cmds.organization_create(name, expiration_date) if rep["status"] != "ok": raise RuntimeError(f"Backend refused to create group: {rep}") bootstrap_token = rep["bootstrap_token"] organization_addr = BackendOrganizationBootstrapAddr.build(backend_addr, name, bootstrap_token) organization_addr_display = click.style(organization_addr.to_url(), fg="yellow") click.echo(f"Bootstrap group url: {organization_addr_display}") @click.command(short_help="create new group") @click.argument("name", required=True, type=OrganizationID) @click.option("--addr", "-B", required=True, type=BackendAddr.from_url) @click.option("--administration-token", "-T", required=True) @click.option("--expiration-date", "-E", default=None, type=click.DateTime()) def create_organization(name, addr, administration_token, expiration_date): debug = "DEBUG" in os.environ configure_logging(log_level="DEBUG" if debug else "WARNING") with cli_exception_handler(debug): trio_run(_create_organization, debug, name, addr, administration_token, expiration_date)
bitlogik/guardata
guardata/client/cli/create_organization.py
create_organization.py
py
1,793
python
en
code
9
github-code
6
[ { "api_name": "guardata.cli_utils.spinner", "line_number": 13, "usage_type": "call" }, { "api_name": "guardata.client.backend_connection.apiv1_backend_administration_cmds_factory", "line_number": 14, "usage_type": "call" }, { "api_name": "guardata.client.types.BackendOrganizationBootstrapAddr.build", "line_number": 22, "usage_type": "call" }, { "api_name": "guardata.client.types.BackendOrganizationBootstrapAddr", "line_number": 22, "usage_type": "name" }, { "api_name": "click.style", "line_number": 23, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 24, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 33, "usage_type": "attribute" }, { "api_name": "guardata.logging.configure_logging", "line_number": 34, "usage_type": "call" }, { "api_name": "guardata.cli_utils.cli_exception_handler", "line_number": 35, "usage_type": "call" }, { "api_name": "guardata.utils.trio_run", "line_number": 36, "usage_type": "call" }, { "api_name": "click.command", "line_number": 27, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 28, "usage_type": "call" }, { "api_name": "guardata.api.protocol.OrganizationID", "line_number": 28, "usage_type": "name" }, { "api_name": "click.option", "line_number": 29, "usage_type": "call" }, { "api_name": "guardata.client.types.BackendAddr.from_url", "line_number": 29, "usage_type": "attribute" }, { "api_name": "guardata.client.types.BackendAddr", "line_number": 29, "usage_type": "name" }, { "api_name": "click.option", "line_number": 30, "usage_type": "call" }, { "api_name": "click.option", "line_number": 31, "usage_type": "call" }, { "api_name": "click.DateTime", "line_number": 31, "usage_type": "call" } ]
3345758956
from tkinter import * from tkinter import messagebox import tkinter as tk import time, sys from pygame import mixer from PIL import Image, ImageTk def alarm(): alarm_time=user_input.get() if alarm_time=="": messagebox.askretrycancel("Error Message","Please Enter value") else: while True: time.sleep(1) if(alarm_time==time.strftime("%H:%M")): playmusic() def playmusic(): mixer.init() mixer.music.load(' clock.mp3') mixer.music.play() while mixer.music.get_busy(): time.sleep(30) mixer.music.stop() sys.exit() root=Tk() root.title(" Alarm clock") canvas=Canvas(root, width=600,height=380) image=ImageTk.PhotoImage(Image.open("clock image .png")) canvas.create_image(0,0,anchor=NW, image=image) canvas.pack() header=Frame(root) box1=Frame(root) box1.place(x=250,y=180) box2=Frame(root) box2.place(x=250,y=180) #time taken by user #helv36 = tkFont.Font(family="Helvetica",size=36,weight="bold") user_input=Entry(box1,font=('ArialNarrow', 20),width=8) user_input.grid(row=0, column=2) #set alarm button start_button = Button( ) root.mainloop()
shuchi111/Alarm_clockGUI.py
alarm.py
alarm.py
py
1,256
python
en
code
1
github-code
6
[ { "api_name": "tkinter.messagebox.askretrycancel", "line_number": 12, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 12, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 15, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 16, "usage_type": "call" }, { "api_name": "pygame.mixer.init", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 19, "usage_type": "name" }, { "api_name": "pygame.mixer.music.load", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.mixer.music", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygame.mixer", "line_number": 20, "usage_type": "name" }, { "api_name": "pygame.mixer.music.play", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.mixer.music", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.mixer", "line_number": 21, "usage_type": "name" }, { "api_name": "pygame.mixer.music.get_busy", "line_number": 22, "usage_type": "call" }, { "api_name": "pygame.mixer.music", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pygame.mixer", "line_number": 22, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 23, "usage_type": "call" }, { "api_name": "pygame.mixer.music.stop", "line_number": 24, "usage_type": "call" }, { "api_name": "pygame.mixer.music", "line_number": 24, "usage_type": "attribute" }, { "api_name": "pygame.mixer", "line_number": 24, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 25, "usage_type": "call" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 30, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 30, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 30, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 30, "usage_type": "name" } ]
17345627172
import os import glob import torch from torchvision import transforms as T from torch.utils.data import DataLoader,Dataset from torch.utils.data.distributed import DistributedSampler from codes.utils import img_processing from codes.data import data_utils import math import numpy as np class Load_Data(Dataset): ''' 读取图片 获取低照度图像的Y通道 读取低照度图像、低照度+噪声图像、正常照度图像 ''' def __init__(self, data_root, data_son=None, img_type='jpg', is_resize=False, is_long_resize=False, resize_h=512, resize_w=512): if data_son is not '': # 如果非None,则读取成对的低照度-正常照度图像 imgs_ll = glob.glob(os.path.join(data_root, data_son['ll'], '*.*' )) imgs_ll_noise = glob.glob(os.path.join(data_root, data_son['ll_noise'], '*.*' )) imgs_org = glob.glob(os.path.join(data_root, data_son['org'], '*.*')) imgs_org_enhance = glob.glob(os.path.join(data_root, data_son['org_en'], '*.*')) self.imgs_ll = imgs_ll self.imgs_org = imgs_org self.imgs_org_enhance = imgs_org_enhance else: imgs_ll_noise = glob.glob(os.path.join(data_root, '*.*')) self.imgs_ll_noise = imgs_ll_noise self.data_son = data_son self.is_resize = is_resize self.resize_h = resize_h self.resize_w = resize_w self.is_long_resize = is_long_resize # 对图片的操作 self.img_ll_transform = data_utils.train_ll_transforms() self.img_org_transform = data_utils.train_org_transforms() def __getitem__(self, index): ''' 读取图片,并对图片进行相应的处理 :param index: :return: ''' imgs_ll_path = self.imgs_ll[index] # 低照度,返回下标为index的低照度图片路径 imgs_ll_noise_path = imgs_ll_path.replace(self.data_son['ll'], self.data_son['ll_noise']) # 低照度 + noise [_, name] = os.path.split(imgs_ll_path) suffix = name[name.find('.') + 1:] # 图片类型 name = name[:name.find('.')] img_ll = img_processing.read_image(imgs_ll_path, is_resize=self.is_resize, resize_height=self.resize_h, resize_width=self.resize_w, normalization=True, is_long_resize=self.is_long_resize) img_ll_noise, y = img_processing.read_image(imgs_ll_noise_path, is_resize=self.is_resize, resize_height=self.resize_h, resize_width=self.resize_w, normalization=True, is_long_resize=self.is_long_resize, is_cvtColor='YCrCb') # t0 = abs(img_ll_noise - img_ll) # t = abs(img_ll_noise - img_ll) / (img_ll + 1e-7) # r_max = t[:,:,0].max() # noise_map = np.max(abs(img_ll_noise - img_ll) / img_ll_noise, axis=(0,1,2)) # noise = self.noise_map(img_ll_noise) noise_map = img_ll_noise - img_ll # 对于非加性噪声,这种求法不对 noise_map = self.img_org_transform(noise_map) img_ll = self.img_org_transform(img_ll) img_ll_noise = self.img_org_transform(img_ll_noise) if self.data_son is not '': # 读取正常照度图像 imgs_org_path = imgs_ll_path.replace(self.data_son['ll'], self.data_son['org']) imgs_org_path = imgs_org_path.replace('png', 'jpg') # org集的图片格式为jpg img_org = img_processing.read_image(imgs_org_path, is_resize=self.is_resize, resize_height=self.resize_h, resize_width=self.resize_w, normalization=False, is_long_resize=self.is_long_resize) img_org = self.img_org_transform(img_org) imgs_org_en_path = imgs_ll_path.replace(self.data_son['ll'], self.data_son['org_en']) img_org_en, y_en = img_processing.read_image(imgs_org_en_path, is_resize=self.is_resize, resize_height=self.resize_h, resize_width=self.resize_w, normalization=False, is_long_resize=self.is_long_resize, is_cvtColor='YCrCb') img_org_en = self.img_org_transform(img_org_en) return img_ll, img_ll_noise, img_org, img_org_en, y, noise_map, name else: return img_ll, y, name def __len__(self): return len(self.imgs_ll) # 总图片数量 def get_loader(data_root, data_son, batch_size, is_resize=False,resize_h=384, resize_w=384, img_type='jpg', is_long_resize=False): dataset = Load_Data(data_root, data_son, is_resize=is_resize, resize_h=resize_h, resize_w=resize_w, img_type=img_type, is_long_resize=is_long_resize) data_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=1, pin_memory=True) # 锁页内存,设置pin_memory=True,则意味着生成的Tensor数据最开始是属于内存中的锁页内存, # 这样将内存的Tensor转义到GPU的显存就会更快一些 # 显卡中的显存全部是锁页内存,当计算机的内存充足的时候,可以设置pin_memory=True # 省掉将数据从CPU传入到RAM中,再传到GPU上的过程。而是直接将数据映射到GPU的相关内存上,节省数据传输的时间 return data_loader
csxuwu/LRCR_Net
codes/data/data_loader4.py
data_loader4.py
py
5,103
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 14, "usage_type": "name" }, { "api_name": "glob.glob", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "codes.data.data_utils.train_ll_transforms", "line_number": 41, "usage_type": "call" }, { "api_name": "codes.data.data_utils", "line_number": 41, "usage_type": "name" }, { "api_name": "codes.data.data_utils.train_org_transforms", "line_number": 42, "usage_type": "call" }, { "api_name": "codes.data.data_utils", "line_number": 42, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "codes.utils.img_processing.read_image", "line_number": 58, "usage_type": "call" }, { "api_name": "codes.utils.img_processing", "line_number": 58, "usage_type": "name" }, { "api_name": "codes.utils.img_processing.read_image", "line_number": 61, "usage_type": "call" }, { "api_name": "codes.utils.img_processing", "line_number": 61, "usage_type": "name" }, { "api_name": "codes.utils.img_processing.read_image", "line_number": 78, "usage_type": "call" }, { "api_name": "codes.utils.img_processing", "line_number": 78, "usage_type": "name" }, { "api_name": "codes.utils.img_processing.read_image", "line_number": 84, "usage_type": "call" }, { "api_name": "codes.utils.img_processing", "line_number": 84, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 101, "usage_type": "call" } ]
33699952990
from django.contrib import admin from django.urls import path from web.views import home_page from django.contrib.auth.views import LoginView, LogoutView from ckt.views import ( CircuitControlView, CircuitStatusView, write_api_view, read_api_view, to_circuit, plot_graph, chartview, graph_two, usercreation, aboutpage, privacy, Register, Method, widgets, ) urlpatterns = [ path("admin/", admin.site.urls), path("", home_page, name="home"), path("circuit/", CircuitControlView.as_view(), name="ckt"), path("circuit_status/", CircuitStatusView.as_view(), name="ckt_status"), path("control/", to_circuit, name="control"), path("api_write/", write_api_view, name="write_api"), path("api_read/", read_api_view, name="read_api"), path("graph_plot/", plot_graph, name="plot_graph"), path("chartview/", chartview, name="viewchart"), path("graph_two/", graph_two, name="chartview_two"), path("register/", usercreation, name="register"), path("login/", LoginView.as_view(template_name="Login.html"), name="login"), path("logout/", LogoutView.as_view(template_name="logout.html"), name="logout"), path("aboutpage/", aboutpage, name="about_page"), path("privacy/", privacy, name="privacy_policy"), path("Register/", Register, name="Register_page"), path("Method/", Method, name="Method_page"), path("widgets/", widgets, name="widgets_page"), ]
sumansam312/IOT_Platform
iot/urls.py
urls.py
py
1,462
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 24, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 24, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 24, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 25, "usage_type": "call" }, { "api_name": "web.views.home_page", "line_number": 25, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 26, "usage_type": "call" }, { "api_name": "ckt.views.CircuitControlView.as_view", "line_number": 26, "usage_type": "call" }, { "api_name": "ckt.views.CircuitControlView", "line_number": 26, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 27, "usage_type": "call" }, { "api_name": "ckt.views.CircuitStatusView.as_view", "line_number": 27, "usage_type": "call" }, { "api_name": "ckt.views.CircuitStatusView", "line_number": 27, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 28, "usage_type": "call" }, { "api_name": "ckt.views.to_circuit", "line_number": 28, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 29, "usage_type": "call" }, { "api_name": "ckt.views.write_api_view", "line_number": 29, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 30, "usage_type": "call" }, { "api_name": "ckt.views.read_api_view", "line_number": 30, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 31, "usage_type": "call" }, { "api_name": "ckt.views.plot_graph", "line_number": 31, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 32, "usage_type": "call" }, { "api_name": "ckt.views.chartview", "line_number": 32, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 33, "usage_type": "call" }, { "api_name": "ckt.views.graph_two", "line_number": 33, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 34, "usage_type": "call" }, { "api_name": "ckt.views.usercreation", "line_number": 34, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 35, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.LoginView.as_view", "line_number": 35, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.LoginView", "line_number": 35, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 36, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.LogoutView.as_view", "line_number": 36, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.LogoutView", "line_number": 36, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 37, "usage_type": "call" }, { "api_name": "ckt.views.aboutpage", "line_number": 37, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 38, "usage_type": "call" }, { "api_name": "ckt.views.privacy", "line_number": 38, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 39, "usage_type": "call" }, { "api_name": "ckt.views.Register", "line_number": 39, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 40, "usage_type": "call" }, { "api_name": "ckt.views.Method", "line_number": 40, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 41, "usage_type": "call" }, { "api_name": "ckt.views.widgets", "line_number": 41, "usage_type": "argument" } ]
38907427149
import tkinter as tk try: import pygame except ImportError: audio = None else: audio = True import sys import random import time ### Stopped Let's code: Tetris episode 19 by TigerhawkT3 at 00:58:42 ### Use score_lines or high_score_lines to increase level and speed etc. class Shape: def __init__(self, shape, key, piece, row, column, coords): self.shape = shape self.key = key self.piece = piece self._row = row self.kicked = False self._rotation_index = 0 self.column = column self.coords = coords self.hover_time = self.spin_time = time.perf_counter() @property def row(self): return self._row @row.setter def row(self, x): if x != self._row and not self.kicked: self._row = x self.hover_time = time.perf_counter() @property def rotation_index(self): return self._rotation_index @rotation_index.setter def rotation_index(self, x): self._rotation_index = x self.spin_time = time.perf_counter() @property def hover(self): return time.perf_counter() - self.hover_time < 0.5 @property def spin(self): return time.perf_counter() - self.spin_time < 0.5 class Tetris: def __init__(self, parent, audio): self.debug = 'debug' in sys.argv[1:] self.random = 'random' in sys.argv[1:] self.hover = 'nohover' not in sys.argv[1:] self.spin = 'spin' in sys.argv[1:] self.kick = 'kick' in sys.argv[1:] parent.title('Pythris') self.parent = parent self.audio = audio if self.audio: pygame.mixer.init(buffer=512) try: self.sounds = {name: pygame.mixer.Sound(name) for name in ('music.ogg', 'settle.ogg', 'clear.ogg', 'lose.ogg')} except pygame.error as err: self.audio = None print(err) else: self.audio = {'m': True, 'e': True} for char in 'mMeE': self.parent.bind(char, self.toggle_audio) self.sounds['music.ogg'].play(loops=-1) self.board_width = 10 self.board_height = 24 self.high_score = 0 self.high_score_lines = 0 self.width = 200 self.height = 480 self.square_width = self.width//10 self.max_speed_score = 5000 self.speed_factor = 250 self.shapes = {'S':[['*', ''], ['*', '*'], ['', '*']], 'Z':[['', '*'], ['*', '*'], ['*', '']], 'J':[['*', '*'], ['*', ''], ['*', '']], 'L':[['*', ''], ['*', ''], ['*', '*']], 'O':[['*', '*'], ['*', '*']], 'I':[['*'], ['*'], ['*'], ['*']], 'T':[['*', '*', '*'], ['', '*', '']] } self.colours = {'S': '#6495ED', 'Z': '#F08080', 'J': '#B0C4DE', 'L': '#FFDAB9', 'O': '#DB7093', 'I': '#BA55D3', 'T': '#40E0D0'} for key in ('<Down>', '<Left>', '<Right>'): self.parent.bind(key, self.shift) self.parent.bind('<Up>', self.rotate) for key in ('a', 'A', 'd', 'D', 's', 'S'): self.parent.bind(key, self.snap) self.parent.bind('<Escape>', self.pause) for key in ('<Control-n>', '<Control-N>'): self.parent.bind(key, self.draw_board) for key in ('g', 'G'): self.parent.bind(key, self.toggle_guides) self.canvas = None self.preview_canvas = None self.ticking = None self.spawning = None self.guide_fill = '' self.score_var = tk.StringVar() self.score_label = tk.Label(ROOT, textvariable=self.score_var, width=25, height=5, font=('Helvetica', 12)) self.score_label.grid(row=2, column=1, sticky="S") self.high_score_var = tk.StringVar() self.high_score_var.set('High Score:\n0 (0)') self.high_score_label = tk.Label(ROOT, textvariable=self.high_score_var, width=25, height=5, font=('Helvetica', 12)) self.high_score_label.grid(row=3, column=1, sticky="N") self.preview_label = tk.Label(ROOT, text='Next Piece', width=25, height=5, font=('Helvetica', 12)) self.preview_label.grid(row=0, column=1, sticky="S") self.draw_board() def tick(self): if self.piece_is_active and not (self.spin and self.active_piece.spin): self.shift() self.ticking = self.parent.after(self.tickrate, self.tick) def shift(self, event=None): if not self.piece_is_active: return r = self.active_piece.row c = self.active_piece.column l = len(self.active_piece.shape) w = len(self.active_piece.shape[0]) direction = (event and event.keysym) or 'Down' # use event-keysym to check event/direction if direction == 'Down': rt = r+1 # row temporary ct = c # column temporary elif direction == 'Left': rt = r ct = c-1 elif direction == 'Right': rt = r ct = c+1 success = self.check_and_move(self.active_piece.shape, rt, ct, l, w) if direction in 'Down' and not success and not (self.hover and self.active_piece.hover): self.settle() def draw_board(self, event=None): if self.ticking: self.parent.after_cancel(self.ticking) if self.spawning: self.parent.after_cancel(self.spawning) self.score_var.set('Score:\n0') self.board = [['' for column in range(self.board_width)] for row in range(self.board_height)] self.field = [[None for column in range(self.board_width)] for row in range(self.board_height)] if self.canvas: self.canvas.destroy() self.canvas = tk.Canvas(ROOT, width=self.width, height=self.height) self.canvas.grid(row=0, column=0, rowspan=4) self.border = self.canvas.create_rectangle(2, 2, self.width - 2, self.height - 2, width=2) self.h_separator = self.canvas.create_line(0, self.height//6, self.width, self.height//6, width=2) self.v_separator = self.canvas.create_line(self.width, 0, self.width, self.height, width=2) if self.preview_canvas: self.preview_canvas.destroy() self.preview_canvas = tk.Canvas(ROOT, width=5*self.square_width, height=5*self.square_width) self.preview_canvas.grid(row=1, column=1) self.tickrate = 1000 self.score = 0 self.score_lines = 0 self.piece_is_active = False self.paused = False self.bag = [] self.preview() self.guides = [self.canvas.create_line(0, 0, 0, self.height), self.canvas.create_line(0, 0, self.width, self.height)] self.spawning = self.parent.after(self.tickrate, self.spawn) self.ticking = self.parent.after(self.tickrate*2, self.tick) def toggle_guides(self, event=None): self.guide_fill = '' if self.guide_fill else 'black' self.canvas.itemconfig(self.guides[0], fill=self.guide_fill) self.canvas.itemconfig(self.guides[1], fill=self.guide_fill) def toggle_audio(self, event=None): if not event: return key = event.keysym.lower() self.audio[key] = not self.audio[key] if key == 'm': if not self.audio['m']: self.sounds['music.ogg'].stop() else: self.sounds['music.ogg'].play(loops=-1) def pause(self, event=None): if self.piece_is_active and not self.paused: self.paused = True self.piece_is_active = False self.parent.after_cancel(self.ticking) elif self.paused: self.paused = False self.piece_is_active = True self.ticking = self.parent.after(self.tickrate, self.tick) def print_board(self): for row in self.board: print(*(cell or ' ' for cell in row)) def check(self, shape, r, c, l, w): for row, squares in zip(range(r, r+l), shape): for column, square in zip(range(c, c+w), squares): if ((row not in range(self.board_height)) or (column not in range(self.board_width)) or (square and self.board[row][column] == 'x')): return return True def move(self, shape, r, c, l, w): square_idxs = iter(range(4)) for row in self.board: row[:] = ['' if cell == '*' else cell for cell in row] for row, squares in zip(range(r, r+l), shape): for column, square in zip(range(c, c+w), squares): if square: self.board[row][column] = square square_idx = next(square_idxs) coord = (column*self.square_width, row*self.square_width, (column+1)*self.square_width, (row+1)*self.square_width) self.active_piece.coords[square_idx] = coord self.canvas.coords(self.active_piece.piece[square_idx], coord) self.active_piece.row = r self.active_piece.column = c self.active_piece.shape = shape self.move_guides(c, (c+w)) if self.debug: self.print_board() return True def check_and_move(self, shape, r, c, l, w): return self.check(shape, r, c, l, w) and self.move(shape, r, c, l, w) def rotate(self, event=None): if not self.active_piece: return if len(self.active_piece.shape) == len(self.active_piece.shape[0]): self.active_piece.rotation_index = self.active_piece.rotation_index return r = self.active_piece.row c = self.active_piece.column l = len(self.active_piece.shape) w = len(self.active_piece.shape[0]) x = c + w//2 y = r + l//2 direction = event.keysym '''if direction in ('a', 'A'): # left shape = rotate_array(self.active_piece.shape, -90) rotation_index = (self.active_piece.rotation_index - 1) % 4 ra, rb = self.active_piece.rotation[rotation_index] rotation_offsets = -ra, -rb else: # right''' shape = rotate_array(self.active_piece.shape, 90) rotation_index = self.active_piece.rotation_index rotation_offsets = self.active_piece.rotation[rotation_index] rotation_index = (rotation_index + 1) % 4 l = len(shape) w = len(shape[0]) rt = y - l//2 ct = x - w//2 x_correction, y_correction = rotation_offsets rt += y_correction ct += x_correction if self.check_and_move(shape, rt, ct, l, w): self.active_piece.rotation_index = rotation_index if self.active_piece.kicked: self.snap() return if self.kick: for a, b in zip((0, 0, -1, 0, 0, -2, -1, -1, -1, -1, -2, -2, -2, -2), (-1, 1, 0, -2, 2, 0, -1, 1, -2, 2, -1, 1, -2, 2)): if self.check_and_move(shape, rt+a, ct+b, l, w): self.active_piece.rotation_index = rotation_index if not self.active_piece.kicked: self.active_piece.kicked = a if self.active_piece.kicked and not a: self.snap() return def settle(self): self.piece_is_active = False for row in self.board: row[:] = ['x' if cell == '*' else cell for cell in row] if self.debug: self.print_board() for (x1, y1, x2, y2), id in zip(self.active_piece.coords, self.active_piece.piece): self.field[y1//self.square_width][x1//self.square_width] = id indices = [idx for idx, row in enumerate(self.board) if all(row)] if indices: self.score += (40, 100, 300, 1200)[len(indices) - 1] self.score_lines += len(indices) self.clear(indices) if all(not cell for row in self.board for cell in row): self.score += 2000 self.high_score = max(self.score, self.high_score) self.high_score_lines = max(self.score_lines, self.high_score_lines) self.score_var.set(f"Score:\n{self.score} ({self.score_lines})") self.high_score_var.set(f"High Score:\n{self.high_score} ({self.high_score_lines})") if self.score < self.max_speed_score: self.tickrate = 1000 // (self.score//self.speed_factor + 1) if any(any(row) for row in self.board[:4]): self.lose() return if self.audio['e'] and not indices: self.sounds['settle.ogg'].play() self.spawning = self.parent.after(500 if indices and self.tickrate < 500 else self.tickrate, self.spawn) def preview(self): self.preview_canvas.delete(tk.ALL) if not self.bag: if self.random: self.bag.append(random.choice('IJLOSTZ')) else: self.bag = random.sample('IJLOSTZ', 7) key = self.bag.pop() shape = rotate_array(self.shapes[key], random.choice((0, 90, 180, 270))) self.preview_piece = Shape(shape, key, [], 0, 0, []) width = len(shape[0]) half = self.square_width//2 for y, row in enumerate(shape): for x, cell in enumerate(row): if cell: self.preview_piece.coords.append((self.square_width*x + half, self.square_width*y + half, self.square_width*(x+1) + half, self.square_width*(y+1) + half)) self.preview_piece.piece.append(self.preview_canvas.create_rectangle(self.preview_piece.coords[-1], fill=self.colours[key], width=2)) self.preview_piece.rotation_index = 0 self.preview_piece.i_nudge = (len(shape) < len(shape[0])) and 4 in (len(shape), len(shape[0])) self.preview_piece.row = self.preview_piece.i_nudge if 3 in (len(shape), len(shape[0])): self.preview_piece.rotation = [(0, 0), (1, 0), (-1, 1), (0, -1)] else: self.preview_piece.rotation = [(1, -1), (0, 1), (0, 0), (-1, 0)] if len(shape) < len(shape[0]): self.preview_piece.rotation_index += 1 def move_guides(self, left, right): self.canvas.coords(self.guides[0], left*self.square_width, 0, left*self.square_width, self.height) self.canvas.coords(self.guides[1], right*self.square_width, 0, right*self.square_width, self.height) def spawn(self): self.piece_is_active = True self.active_piece = self.preview_piece self.preview() width = len(self.active_piece.shape[0]) start = (10-width)//2 self.active_piece.column = start self.active_piece.start = start self.active_piece.coords = [] self.active_piece.piece = [] for y, row in enumerate(self.active_piece.shape): self.board[y+self.active_piece.i_nudge][start:start+width] = self.active_piece.shape[y] for x, cell in enumerate(row, start=start): if cell: self.active_piece.coords.append((self.square_width*x, self.square_width*(y+self.active_piece.i_nudge), self.square_width*(x+1), self.square_width*(y+self.active_piece.i_nudge+1))) self.active_piece.piece.append(self.canvas.create_rectangle(self.active_piece.coords[-1], fill=self.colours[self.active_piece.key], width=2)) self.move_guides(start, (start+width)) if self.debug: self.print_board() def lose(self): self.piece_is_active = False if self.audio['e']: self.sounds['lose.ogg'].play() self.parent.after_cancel(self.ticking) self.parent.after_cancel(self.spawning) self.clear_iter(range(len(self.board))) def snap(self, event=None): down = {'s', 'S'} left = {'a', 'A'} right = {'d', 'D'} if not self.piece_is_active: return r = self.active_piece.row c = self.active_piece.column l = len(self.active_piece.shape) w = len(self.active_piece.shape[0]) direction = event.keysym if event is not None else 's' while 1: if self.check(self.active_piece.shape, r+(direction in down), c + (direction in right) - (direction in left), l, w): r += direction in down c += (direction in right) - (direction in left) else: break self.move(self.active_piece.shape, r, c, l, w) if direction in down: self.settle() def clear(self, indices): if self.audio['e']: self.sounds['clear.ogg'].play() for idx in indices: self.board.pop(idx) self.board.insert(0, ['' for column in range(self.board_width)]) self.clear_iter(indices) def clear_iter(self, indices, current_column=0): for row in indices: if row%2: cc = current_column else: cc = self.board_width - current_column - 1 id = self.field[row][cc] self.field[row][cc] = None self.canvas.delete(id) if current_column < self.board_width-1: self.parent.after(50, self.clear_iter, indices, current_column+1) else: for idx, row in enumerate(self.field): offset = sum(r > idx for r in indices)*self.square_width for square in row: if square: self.canvas.move(square, 0, offset) for row in indices: self.field.pop(row) self.field.insert(0, [None for x in range(self.board_width)]) def rotate_array(array, angle, wide=False): ''' Rotates a rectangular or diamond 2D array in increments of 45 degrees. Parameters: array (list): a list containing sliceable sequences, such as list, tuple, or str angle (int): a positive angle for rotation, in 45-degree increments. wide (bool): whether a passed diamond array should rotate into a wide array instead of a tall one (tall is the default). No effect on square matrices. ''' angle = angle%360 if angle < 1: return [list(row) for row in array] lengths = list(map(len, array)) rect = len(set(lengths)) == 1 width = max(lengths) height = sum(lengths)/width if wide: width, height = height, width if not rect: array = [list(row) for row in array] array = [[array[row+col].pop() for row in range(width)] for col in range(height)] angle += 45 nineties, more = divmod(angle, 90) if nineties == 3: array = list(zip(*array))[::-1] else: for i in range(nineties): array = list(zip(*array[::-1])) if more: ab = abs(len(array)-len(array[0])) m = min(len(array), len(array[0])) tall = len(array) > len(array[0]) array = [[array[r][c] for r,c in zip(range(row-1, -1, -1), range(row)) ] for row in range(1, m+1) ] + [[array[r][c] for r,c in zip(range(m-1+row*tall, row*tall-1, -1), range(row*(not tall), m+row*(not tall)+1)) ] for row in range(1, ab+(not tall)) ] + [[array[r][c] for r,c in zip(range(len(array)-1, ab*tall+row-1, -1), range(ab*(not tall)+row, len(array[0])+(not tall))) ] for row in range((not tall), m) ] return array ROOT = tk.Tk() TETRIS = Tetris(ROOT, audio) ROOT.mainloop()
Jack-Evitts/Pythtris
Tetris.py
Tetris.py
py
22,949
python
en
code
0
github-code
6
[ { "api_name": "time.perf_counter", "line_number": 26, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 34, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 41, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 44, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 47, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 54, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 55, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 56, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 57, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 58, "usage_type": "attribute" }, { "api_name": "pygame.mixer.init", "line_number": 63, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 63, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Sound", "line_number": 65, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 65, "usage_type": "attribute" }, { "api_name": "pygame.error", "line_number": 69, "usage_type": "attribute" }, { "api_name": "tkinter.StringVar", "line_number": 136, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 137, "usage_type": "call" }, { "api_name": "tkinter.StringVar", "line_number": 143, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 145, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 151, "usage_type": "call" }, { "api_name": "tkinter.Canvas", "line_number": 203, "usage_type": "call" }, { "api_name": "tkinter.Canvas", "line_number": 222, "usage_type": "call" }, { "api_name": "tkinter.ALL", "line_number": 394, "usage_type": "attribute" }, { "api_name": "random.choice", "line_number": 397, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 399, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 403, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 577, "usage_type": "call" } ]
27592948212
import serial inp=input("Enter the port : ") ser=serial.Serial(inp,baudrate=230400,timeout=None) data_old=0 # always the first-fixed bit skipped=0 cntr=0 fl=1 su=0 cx=0 while True: if (skipped!=0): data_old=ser.readline().decode('ascii')[0] data_old=int(data_old) skipped-=1 continue data_new=ser.readline().decode('ascii')[0] data_new=int(data_new) if (data_old!=data_new): skipped=3 # print(data_old) if(fl==1): if(data_old==0): cntr+=1 if(data_old==1): cntr=0 if(cntr==27): # print("Connection Established") cntr=0 fl=0 continue if(fl==0): cx+=1 su=int(data_old)+su*2 if(cx==8): print(chr(su), end='') cx=0 su=0
eclubiitk/Li-Fi-E-Club
Old Codes/non-queue implementation/Receiver.py
Receiver.py
py
910
python
en
code
0
github-code
6
[ { "api_name": "serial.Serial", "line_number": 3, "usage_type": "call" } ]
22938524534
import cv2 import numpy as np from model import Model import math as m import time import logging as log class headPoseEstimation(): def __init__(self, MODEL_PATH, DEVICE): self.model_loaded = Model(MODEL_PATH, DEVICE) self.model_loaded.get_unsupported_layer() self.model_name = self.model_loaded.get_model_name() self.initial_w = None self.initial_h = None self.frame = None self.image_input_shape = self.model_loaded.get_input_shape() def input_blobs(self): return self.model_loaded.get_input_blob() def output_blobs(self): return self.model_loaded.get_output_blob() def set_params(self, frame, initial_w, initial_h): self.frame = frame self.initial_w = initial_w self.initial_h = initial_h def get_inference_outputs(self): t0 = time.perf_counter() t_count = 0 inputs_model = self.input_blobs() prepro_img_face = self.preprocess_frame(self.frame) inputs_to_feed = {inputs_model[0]:prepro_img_face} t_start = time.perf_counter() head_pose_angles = self.inference(inputs_to_feed) t_end = time.perf_counter() t_count += 1 log.info("model {} is processed with {:0.2f} requests/sec ({:0.2} sec per request)".format(self.model_name, 1 / (t_end - t_start), t_end - t_start)) return head_pose_angles def preprocess_frame(self, frame): resize_frame = cv2.resize(frame, (self.image_input_shape[0][3], self.image_input_shape[0][2]), interpolation=cv2.INTER_AREA) resize_frame = resize_frame.transpose((2,0,1)) resize_frame = resize_frame.reshape(1, *resize_frame.shape) return resize_frame def inference(self, input_data): return self.model_loaded.get_infer_output(input_data)
SamyTahar/Computer-Pointer-Controller
src/headposeestimation.py
headposeestimation.py
py
1,885
python
en
code
0
github-code
6
[ { "api_name": "model.Model", "line_number": 14, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 40, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 47, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 51, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 59, "usage_type": "attribute" } ]
26971894453
import logging import mtcorr import statistics as stats import math import h5py import numpy import sys log = logging.getLogger(__name__) def load_from_hdf5(filename): f = h5py.File(filename,'r') quantiles_dict = {} stats = {} if 'quantiles' in f: quantiles_dict['exp_quantiles'] = f['quantiles']['quantiles'][:,0].tolist() quantiles_dict['quantiles'] = f['quantiles']['quantiles'][:,1].tolist() quantiles_dict['exp_log_quantiles'] = f['quantiles']['log_quantiles'][:,0].tolist() quantiles_dict['log_quantiles'] = f['quantiles']['log_quantiles'][:,1].tolist() stats['quantiles_dict'] = quantiles_dict pvals_group = f['pvalues'] method = pvals_group.attrs.get('analysis_method','') transformation = pvals_group.get('transformation','') if 'ks_stat' in pvals_group.attrs: stats['ks_stats'] = {'D':pvals_group.attrs['ks_stat']} if 'ks_pval' in pvals_group.attrs: stats['ks_stats']['p_val'] = pvals_group.attrs['ks_pval'] if 'med_pval' in pvals_group.attrs: stats['med_pval'] = pvals_group.attrs['med_pval'] if 'bh_thres' in pvals_group.attrs: stats['bh_thres_d'] = {'thes_pval': math.pow(10,-pvals_group.attrs['bh_thres'])} chromosomes = [] positions = [] scores = [] mafs = [] macs = [] additional_columns = {} chrs = map(lambda x:x[3:],f['pvalues'].keys()) for ix,chr in enumerate(chrs): chr_group = pvals_group['chr%s'% chr] chromosomes.extend([chr]*len(chr_group['positions'])) positions.extend(chr_group['positions'][:].tolist()) scores.extend(chr_group['scores'][:].tolist()) mafs.extend(chr_group['mafs'][:].tolist()) macs.extend(chr_group['macs'][:].tolist()) for i,key in enumerate(chr_group.keys()): if key not in ('positions','scores','mafs','macs'): values = chr_group[key][:].tolist() if key not in additional_columns: additional_columns[key] = values else: additional_columns[key].extend(values) f.close() scores = map(lambda x:math.pow(10,-1*x), scores) maf_dict = {'mafs':mafs,'macs':macs} return GWASResult(chrs,chromosomes,positions,scores,maf_dict,method,transformation,stats=stats,additional_columns=additional_columns) def load_from_csv(filename): chromosomes = [] positions = [] pvals = [] mafs = [] macs = [] additional_columns = {} chrs = [] chr = None is_pval = False with open(filename,'r') as f: header = f.readline().rstrip() add_header = header.split(",")[5:] for key in add_header: key = key.replace('"','') additional_columns[key] = [] for row in f: fields = row.rstrip().split(",") if chr != fields[0]: chr = fields[0] chrs.append(chr) chromosomes.append(chr) positions.append(int(float(fields[1]))) pvals.append(float(fields[2])) mafs.append(float(fields[3])) macs.append(int(float(fields[4]))) if len(add_header) > 0: for i,key in enumerate(add_header): key = key.replace('"','') addit_value = None if fields[(5+i)] != '': addit_value = float(fields[(5+i)]) additional_columns[key].append(addit_value) is_pval = max(pvals) <= 1.0 if is_pval is False: pvals = map(lambda x:math.pow(10,-1*x),pvals) return GWASResult(chrs,chromosomes,positions,pvals,{'mafs':mafs,'macs':macs},additional_columns = additional_columns) class GWASResult(object): def __init__(self,chrs,chromosomes,positions,pvals,maf_dict,method = 'N/A',transformation = None,stats = None,additional_columns = None,step_stats = None): self.ix_with_bad_pvalues = ix_with_bad_pvalues = numpy.where(pvals == 0.0)[0] if len(ix_with_bad_pvalues) > 0: pvals[ix_with_bad_pvalues] = sys.float_info.min self.pvals = pvals self.method = method self.transformation = transformation self.chrs = chrs self.chromosomes = chromosomes self.positions = positions self.stats = stats self.maf_dict = maf_dict self.additional_columns = additional_columns self.step_stats = step_stats self.bonferroni_threshold = -math.log10(0.05 / len(pvals)) self.min_pval = min(pvals) if not self.stats: self._calculate_stats_() def _calculate_stats_(self): log.info('Calculating Benjamini-Hochberg threshold',extra={'progress':90}) #Calculate Benjamini-Hochberg threshold self.stats = {} self.stats['bh_thres_d'] = mtcorr.get_bhy_thres(self.pvals, fdr_thres=0.05) #Calculate Median p-value self.stats['med_pval'] = stats.calc_median(self.pvals) #Calculate the Kolmogorov-Smirnov statistic self.stats['ks_stats'] = stats.calc_ks_stats(self.pvals) self.stats['quantiles_dict'] = stats.calculate_qqplot_data(self.pvals) def get_top_snps(self,top_ratio=2500): data = numpy.core.records.fromrecords(zip(self.chromosomes, self.positions, self.pvals, self.maf_dict['mafs'], self.maf_dict['macs'],*self.additional_columns.values()),names='chr,positions,scores,mafs,macs') data_to_return=[] for ix,chr in enumerate(self.chrs): chr_data = data[numpy.where(data['chr'] == chr)] chr_data =chr_data[chr_data['scores'].argsort()[::]][:top_ratio] data_to_return.append(chr_data) return numpy.concatenate(data_to_return) def save_as_csv(self,csv_file): data = numpy.array(zip(self.chromosomes, self.positions, self.pvals, self.maf_dict['mafs'], self.maf_dict['macs'],*self.additional_columns.values())) data =data[numpy.lexsort((data[:,1],data[:,0]))] additional_column_headers = self.additional_columns.keys() header = ['chromosomes','positions','pvals','mafs','macs'] header.extend(additional_column_headers) with open(csv_file,'w') as f: f.write(','.join(header)+"\n") for row in data: rows_to_write = row.tolist() rows_to_write[0] = int(rows_to_write[0]) rows_to_write[1] = int(rows_to_write[1]) rows_to_write[4] = int(float(rows_to_write[4])) f.write(','.join(map(str,rows_to_write))+"\n") def save_as_hdf5(self,hdf5_file): positions = self.positions chromosomes = self.chromosomes maf_dict = self.maf_dict scores = map(lambda x:-math.log10(x), self.pvals) quantiles_dict = self.stats['quantiles_dict'] f = h5py.File(hdf5_file,'w') # store quantiles quant_group = f.create_group('quantiles') quantiles_array = zip(quantiles_dict['exp_quantiles'],quantiles_dict['quantiles']) log_quantiles_array = zip(quantiles_dict['exp_log_quantiles'],quantiles_dict['log_quantiles']) quant_group.create_dataset('quantiles',(len(quantiles_dict['quantiles']), 2),'f8',data=quantiles_array) quant_group.create_dataset('log_quantiles',(len(quantiles_dict['log_quantiles']), 2),'f8',data=log_quantiles_array) #store pvalues pvals_group = f.create_group('pvalues') if len(self.ix_with_bad_pvalues) > 0: pvals_group.attrs['ix_with_bad_pvalues'] = self.ix_with_bad_pvalues pvals_group.attrs['numberOfSNPs'] = len(scores) pvals_group.attrs['max_score'] = max(scores) if self.method is not None: pvals_group.attrs['analysis_method'] = self.method transformation = "raw" if self.transformation is not None: transformation = self.transformation pvals_group.attrs['transformation'] = transformation pvals_group.attrs['bonferroni_threshold'] = self.bonferroni_threshold pvals_group.attrs['ks_stat'] = self.stats['ks_stats']['D'] pvals_group.attrs['ks_pval'] = self.stats['ks_stats']['p_val'] pvals_group.attrs['med_pval'] = self.stats['med_pval'] pvals_group.attrs['bh_thres'] =-math.log10(self.stats['bh_thres_d']['thes_pval']) data = numpy.core.records.fromrecords(zip(chromosomes, positions, scores, maf_dict['mafs'], maf_dict['macs'],*self.additional_columns.values()),names='chr,positions,scores,mafs,macs') for ix,chr in enumerate(self.chrs): chr_group = pvals_group.create_group("chr%s" % chr) chr_data = data[numpy.where(data['chr'] == chr)] chr_data =chr_data[chr_data['scores'].argsort()[::-1]] positions = chr_data['positions'] chr_group.create_dataset('positions',(len(positions),),'i4',data=positions) scores = chr_data['scores'] chr_group.create_dataset('scores',(len(scores),),'f8',data=scores) mafs = chr_data['mafs'] chr_group.create_dataset('mafs',(len(mafs),),'f8',data=mafs) macs = chr_data['macs'] chr_group.create_dataset('macs',(len(macs),),'i4',data=macs) if len(chr_data.dtype) > 5: for i,key in enumerate(self.additional_columns.keys()): values = chr_data['f%s'% (5+i)] chr_group.create_dataset(key,values.shape,values.dtype,data=values) f.close()
timeu/PyGWAS
pygwas/core/result.py
result.py
py
9,529
python
en
code
20
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 14, "usage_type": "call" }, { "api_name": "math.pow", "line_number": 33, "usage_type": "call" }, { "api_name": "math.pow", "line_number": 57, "usage_type": "call" }, { "api_name": "math.pow", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 107, "usage_type": "call" }, { "api_name": "sys.float_info", "line_number": 109, "usage_type": "attribute" }, { "api_name": "math.log10", "line_number": 120, "usage_type": "call" }, { "api_name": "mtcorr.get_bhy_thres", "line_number": 131, "usage_type": "call" }, { "api_name": "statistics.calc_median", "line_number": 133, "usage_type": "call" }, { "api_name": "statistics.calc_ks_stats", "line_number": 135, "usage_type": "call" }, { "api_name": "statistics.calculate_qqplot_data", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.core.records.fromrecords", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.core", "line_number": 140, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.lexsort", "line_number": 151, "usage_type": "call" }, { "api_name": "math.log10", "line_number": 170, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 172, "usage_type": "call" }, { "api_name": "math.log10", "line_number": 197, "usage_type": "call" }, { "api_name": "numpy.core.records.fromrecords", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.core", "line_number": 199, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 202, "usage_type": "call" } ]
40684104940
#!/usr/bin/python3 """ function that queries the Reddit API and returns the number of subscribers """ import requests def number_of_subscribers(subreddit): """initializate""" if (type(subreddit) is not str): return(0) url_api = ("https://www.reddit.com/r/{}/about.json".format(subreddit)) headers = {'user-agent': 'safari:holberton/0.1.0'} response = requests.get(url_api, headers=headers) if response.status_code is not 200: return(0) return(response.json().get("data").get("subscribers"))
manosakpujiha/alx-system_engineering-devops
0x16-api_advanced/0-subs.py
0-subs.py
py
539
python
en
code
3
github-code
6
[ { "api_name": "requests.get", "line_number": 15, "usage_type": "call" } ]
7997489923
""" Before executing this script make sure that all packages are installed properly and also select 3 ips from resource pool wiki which are not in use.(check using ping command) purpose: ------- This script is for first time setup of dcs vm which includes accepting eula,changing password,configure the ip and changing the schema of dcs vm. """ from re import search, IGNORECASE from SSHLibrary import SSHLibrary import json import platform, os, sys import time import netifaces BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) from auto_loader import load_from_file import logging logging.basicConfig(level=logging.INFO) class dcs(object): def __init__(self, ipv6="", vmInterface="", user="", userpwd=""): """ Constructor method to RestAppliance. We compute the correct API-Version for REST calls. Parameters ---------- ipv6 : str Ipv6 of the dcs vm to connect. vmInterface: str Interface of the ubuntu VM. IPv6 address starts with fe80:: i.e. it's a link-local address, reachable only in the network segment it's directly connected to. Using the NIC that connects to that segment specifically. user: str Username of the DCS VM name userpwd: str DCS VM password """ # builds endpoint self.ipv6Endpoint = ipv6 + "%" + vmInterface self.sshlib = SSHLibrary() self.stdout = None self.sshlib.open_connection(self.ipv6Endpoint) self.sshlib.login(username=user, password=userpwd) # sets API version self.api_version = self.get_api_version() logging.debug("The API Version utilized is {0}.".format( self.api_version)) print(self.api_version) # header information self._header = "-H \"X-API-Version: {0}\" -H \"Content-Type: application/json\"".format( self.api_version) self._secure_header = None def get_api_version(self): """ Helper method get_api_version Gets latest API verisons supported from the appliance. On failure, sets api_verison to 120 Parameters ---------- none """ api_command = "curl --request GET https://localhost/rest/version" apiversions, exit_code = self.sshlib.execute_command( command=api_command, return_rc=True) if exit_code == 0: api_version = json.loads(apiversions) return api_version["currentVersion"] else: logging.warning( "The API Version utilized is 120 as get_api_version return exit code 1" ) return "120" def build_command(self, url, request_type, payload={}, *options): """ Helper method build_command creates the curl command along with headers for GEt and POST call to the appliance. Parameters: ---------- url: str URL location of the endpoint. request_type: str specifies the type of REST request. For isntance, Get, Post. payload: dict data to be sent to the appliance, only applicable when making a post call. *options: list of strings any arguments that needs to be concatinated with the curl command. For instance, "-i", "-s" """ url = "https://localhost" + url if request_type == "GET": command = "curl -X {0} {1} {2}".format(request_type, self._header, url) if self._secure_header != None: command = "curl -X {0} {1} {2}".format(request_type, self._secure_header, url) elif request_type == "POST": payload = '{0}'.format(json.dumps(payload).replace("'", '"')) command = 'curl -X {0} {1} -d \'{2}\' {3}'.format( request_type, self._header, payload, url) if self._secure_header != None: command = 'curl -X {0} {1} -d \'{2}\' {3}'.format( request_type, self._secure_header, payload, url) if options: option = "" for op in options: option = option + " " + op command = "curl{0} -X {1} {2} -d '{3}' {4}".format( option, request_type, self._header, payload, url) if self._secure_header != None: command = "curl{0} -X {1} {2} -d '{3}' {4}".format( option, request_type, self._secure_header, payload, url) logging.info('Executing URI {0} Request Type: {1}'.format( url, request_type)) return command def accept_eula_once(self, service_access="yes"): """ On initial communication with the appliance, the end user service agreement (EULA) must be accepted. This only needs to occur once. Additional calls will not change the status of the EULA nor the status of the service access. If a change to the service access is required, see the function change_service_access() If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. No authentication on the appliance is required. Parameters ---------- service_access (optional): str "yes" will accept service access "no" will not allow service access empty value will default to "yes" """ url = '/rest/appliance/eula/status' eula_command = self.build_command(url, "GET") json_result, exit_code = self.sshlib.execute_command(eula_command, return_rc=True) if not json_result: # if False, eula acceptance has already occurred. logging.warning('EULA does not need to be saved.') if exit_code != 0 or json_result: logging.debug( 'Call EULA Acceptance with enable service access={0}'.format( service_access)) url = '/rest/appliance/eula/save' payload = {"supportAccess": service_access} save_eula_command = self.build_command(url, "POST", payload) logging.warning(save_eula_command) save_success, exit_code = self.sshlib.execute_command( save_eula_command, return_rc=True) if exit_code == 0: logging.info('EULA Response {0}'.format(save_success)) else: raise Exception('accept_eula failed. JSON Response {0}'.format( json.dumps(save_success))) def change_administrator_password(self): """ On initial logon, the administrator's password has to be changed from the default value. The call to the administrator password change is attempted. If the change administrator password call fails, then we attempt to login with the administrator password. If successful, we log a message and the accurate administrator password. If the administrator login is not successful, an error is raised. The administrator data is pulled from the dictionary in this file. This needs to be moved to a more formal location. Parameters ---------- none """ url = "/rest/users/changePassword" payload = { "userName": "Administrator", "oldPassword": "admin", "newPassword": "admin123" } change_pass_command = self.build_command(url, "POST", payload) status, success = self.sshlib.execute_command( command=change_pass_command, return_rc=True) if success == 0: logging.info('Administrator password change was accepted.') else: raise Exception( 'change_administrator_password failed. JSON Response: {0}'. format(json.dumps(status))) def get_secure_headers(self): """ Helper method to appliance_request(). Gives header information required by the appliance with authentication information. Return ------ _secure_header: dict. Dictionary containing X-API-Verions, Content-Type, and Auth. The Auth parameter value is a sessionID. """ # Once _secure_header is defined, we can use it over and over again for the duration of its life. # Note, the header is only good for that user (administrator), 24 hours, and until the next reboot. if self._secure_header != None: return self._secure_header payload = {"userName": "Administrator", "password": "admin123"} url = '/rest/login-sessions' authentication_command = self.build_command(url, "POST", payload) status, exit_code = self.sshlib.execute_command( command=authentication_command, return_rc=True) if exit_code != 0: raise Exception( "There was an issue with the HTTP Call to get headers. Exception message: {0}" .format(status)) try: safe_json = json.loads(status) self._secure_header = self._header if 'sessionID' not in safe_json: raise Exception( 'Auth token for the header is undefined. No Session ID available. Status: {0}.' .format(status)) self._secure_header = self._header + ' -H "Auth: {0}"'.format( safe_json['sessionID']) return self._secure_header except: raise Exception( 'Failure to access the sessionID from the response. JSON: {0}'. format(status)) def get_mac(self): """ Helper method get_mac Used when creating the payload for setting the ip address of the oneview dcs appliance. returns mac address of the oneview dcs appliance. Parameters: ---------- none """ url = "/rest/appliance/network-interfaces" self.get_secure_headers() mac_command = self.build_command(url, "GET") data, exit_code = self.sshlib.execute_command(command=mac_command, return_rc=True) if exit_code != 0: raise Exception( 'Failure to get mac address of the interface: {0}'.format( data)) data = json.loads(data) try: return data["applianceNetworks"][0]["macAddress"] except: raise Exception('Failure to fetch macAddress from the reponse') def change_ovDcs_ip(self, app1Ipv4Addr, app2Ipv4Addr, virtIpv4Addr, ipv4Gateway, ipv4Subnet, ): """ Changes the Ip address of the oneview dcs appliance. Parameters: ---------- app1Ipv4Addr: str Node1 IPv4 address in a two-node cluster app2Ipv4Addr: str Node2 IPv4 address in a two-node cluster. virtIpv4Addr: str Virtual IPv4 address. Oneview dcs will be reachable from this IP. ipv4Gateway: str IPv4 gateway address. ipv4Subnet: str IPv4 subnet mask or CIDR bit count. """ url = "/rest/appliance/network-interfaces" macAddress = self.get_mac() payload = { "applianceNetworks": [{ "activeNode": 1, "app2Ipv4Addr": app2Ipv4Addr, "app1Ipv4Addr": app1Ipv4Addr, "confOneNode": True, "hostname": "ThisIsAutomated.com", "networkLabel": "Managed devices network", "interfaceName": "Appliance", "device": "eth0", "ipv4Gateway": ipv4Gateway, "ipv4Subnet": ipv4Subnet, "ipv4Type": "STATIC", "ipv6Type": "UNCONFIGURE", "macAddress": macAddress, "overrideIpv4DhcpDnsServers": False, "unconfigure": False, "slaacEnabled": "yes", "virtIpv4Addr": virtIpv4Addr }] } changeIp_command = self.build_command(url, "POST", payload, "-i") data, exit_code = self.sshlib.execute_command(command=changeIp_command, return_rc=True) x = json.dumps(data) time.sleep(2) uri = search('Location: (.+?)\r\nCache-Control', x) print(uri, x) if uri != None: task_uri = uri.group(1) if (self.get_task(task_uri)): logging.info("Oneview Ip is set to: {0}".format(virtIpv4Addr)) f = open('ipaddress.txt', 'w') f.write(str(virtIpv4Addr)) return None def get_task(self, uri): """Gets the task corresponding to a given task ID. Will wait until the task is not completed. No failure will rasie an exception. On successful completion will return True Parameters: ---------- uri: str Uri of the task """ self.get_secure_headers() task_command = self.build_command(uri, "GET") data, exit_code = self.sshlib.execute_command(command=task_command, return_rc=True) if exit_code == 0: task_data = json.loads(data) while task_data["taskState"] == "Running": logging.info("task \"{0}\" is running...".format(uri)) time.sleep(10) data, exit_code = self.sshlib.execute_command(command=task_command, return_rc=True) task_data = json.loads(data) if task_data["taskState"] == "Completed": logging.info("task \"{0}\" completed".format(uri)) return True else: logging.warning( "Unexpected failure. Task ended with state {0}, URI:{1}". format(task_data["taskState"], uri)) return None def search_task(self, param): """Gets all the tasks based upon filters provided. Note: filters are optional. iterate through all the task collected and calls get_task() to check the status. Used while running hardware discovery Parameters: ---------- param: str Filters for the finding the task uris. For example: ?filter="'name' = 'alertMax'" filters are concatenated with the URI """ self.get_secure_headers() uri = "/rest/tasks" + param task_command = self.build_command(uri, "GET") data, exit_code = self.sshlib.execute_command(command=task_command, return_rc=True) all_members = json.loads(data) for i in all_members["members"]: self.get_task(i["uri"]) def execute_command_in_dcs_and_verify(self, dcs_command, expected_output): '''Execute the given Command in DCS and verify the response with Expected output. Example Execute Command In DCS And Verify | <dcs_command> | <expected_output> | :param dcs_command: Command that need to be executed in DCS vm :param expected_output: expected output from the DCS command executed :raises AssertionError if output does not match with expected output :return stdout: return response obtained after command execution ''' logging.info("executing {0}".format(dcs_command)) self.stdout = self.sshlib.execute_command(dcs_command, return_stdout=True) if search(expected_output, self.stdout, IGNORECASE) is None: raise AssertionError( "DCS command output is not as expected: {} found: {}".format( expected_output, self.stdout)) return self.stdout def change_dcs_schematic(self, dcs_commands): '''Changes DCS schematic to given schematic Example Change DCS Schematic | <dcs_commands> | :param dcs_commands: DCS commands to be executed along with its expected output for changing the schematic ex:[["dcs stop", "DCS is Stopped"]] ''' for cmd in dcs_commands: self.execute_command_in_dcs_and_verify(cmd[0], cmd[1]) time.sleep(60) def dcs_hardware_setup(self): '''Performs Hardware Setup in DCS appliance Parameters: none ''' logging.info("executing appliance set up") status, exit_code = self.sshlib.execute_command( command= "curl -i -s -o /dev/nul -I -w '%{http_code}\n' -X POST -H \"X-API-Version: " + str(self.api_version) + "\" https://localhost/rest/appliance/tech-setup", return_rc=True) if exit_code != 0: raise AssertionError( "Failed to Invoke Sever Hardware discovery with status:{} and exit code:{}" .format(status, exit_code)) elif status == "202": self.search_task( "?filter=\"'name'='Discover%20hardware'\"&sort=created:descending&count=1" ) def dcs_network_configuration(self, app1Ipv4Addr, app2Ipv4Addr, virtIpv4Addr, ipv4Gateway, ipv4Subnet): """Changes the passwordthe dcs appliance and sets new Ip of the appliamce. Parameters: app1Ipv4Addr: str Node1 IPv4 address in a two-node cluster app2Ipv4Addr: str Node2 IPv4 address in a two-node cluster. virtIpv4Addr: str Virtual IPv4 address. Oneview dcs will be reachable from this IP. ipv4Gateway: str IPv4 gateway address. ipv4Subnet: str IPv4 subnet mask or CIDR bit count. """ self.accept_eula_once() self.change_administrator_password() self.change_ovDcs_ip(app1Ipv4Addr, app2Ipv4Addr, virtIpv4Addr, ipv4Gateway, ipv4Subnet) def dcs_schematic_configuration(self, dcs_commands): '''Change DCS schematic then perform Hardware setup :param dcs_commands: Sequence of DCS commands to be executed along with its expected output for changing the schematic ex:[["dcs stop", "DCS is Stopped"]] ''' # need to check if the surnning schematic is 3endl_demo then skip this step self.change_dcs_schematic(dcs_commands) self.dcs_hardware_setup() self.sshlib.close_connection() dcs_commands = [ ["dcs status", "dcs is running"], ["dcs stop", "dcs is stopped"], ["dcs status", "dcs is not running"], ["dcs start /dcs/schematic/synergy_3encl_demo cold", "DCS httpd daemon started"], [ "dcs status", "DCS is Running\n Schematic used: /dcs/schematic/synergy_3encl_demo", ], ] def ping(hosts): """ Returns True if host (str) responds to a ping request. """ host=hosts.strip() # operating_sys = platform.system().lower() exit_code = os.system("ping6 "+host+"%"+interfaces[0]+" -c 5") # print("ping6 "+hosts+"%"+interfaces[0]+" -c 5") if exit_code == 0: return True return False interfaces = list(filter(lambda x: "ens" in x, netifaces.interfaces())) config = load_from_file("auto_config")["fts"] if __name__ == "__main__": if len(interfaces) > 0: f=open("ipv6.txt") ipv6=f.readline() while ipv6: if ping(ipv6): ipv6=ipv6.strip() dcs_inst = dcs(ipv6, interfaces[0], config["dcs_username"], config["dcs_password"]) dcs_inst.dcs_network_configuration( config["dcs_ipv4_1"], config["dcs_ipv4_2"], config["dcs_ipv4_3"], config["gateway"], config["subnet_mask"],) dcs_inst.dcs_schematic_configuration(dcs_commands) break else: ipv6=f.readline()
Srija-Papinwar/CD
scripts/dcs_fts.py
dcs_fts.py
py
20,662
python
en
code
0
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.path.append", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 20, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 20, "usage_type": "attribute" }, { "api_name": "SSHLibrary.SSHLibrary", "line_number": 45, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 52, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 75, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 78, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 111, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 126, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 149, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 151, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 157, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 161, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 164, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 189, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 193, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 219, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 252, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 307, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 308, "usage_type": "call" }, { "api_name": "re.search", "line_number": 309, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 316, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 337, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 339, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 340, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 343, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 345, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 348, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 369, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 382, "usage_type": "call" }, { "api_name": "re.search", "line_number": 385, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 385, "usage_type": "argument" }, { "api_name": "time.sleep", "line_number": 400, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 408, "usage_type": "call" }, { "api_name": "os.system", "line_number": 478, "usage_type": "call" }, { "api_name": "netifaces.interfaces", "line_number": 485, "usage_type": "call" }, { "api_name": "auto_loader.load_from_file", "line_number": 486, "usage_type": "call" } ]
30366445741
from traits.api import Bool, Instance, Float, Property # Local relative imports from .abstract_mapper import AbstractMapper from .data_range_1d import DataRange1D class Base1DMapper(AbstractMapper): """Defines an abstract mapping from a 1-D region in input space to a 1-D region in output space. """ #: The data-space bounds of the mapper. range = Instance(DataRange1D) #: The screen space position of the lower bound of the data space. low_pos = Float(0.0) #: The screen space position of the upper bound of the data space. high_pos = Float(1.0) #: Convenience property to get low and high positions in one structure. #: Must be a tuple (low_pos, high_pos). screen_bounds = Property #: Should the mapper stretch the dataspace when its screen space bounds are #: modified (default), or should it preserve the screen-to-data ratio and #: resize the data bounds? If the latter, it will only try to preserve #: the ratio if both screen and data space extents are non-zero. stretch_data = Bool(True) #: The sign of the mapping: 1 if deltas match sign, -1 if opposite sign sign = Property # If the subclass uses a cache, _cache_valid is maintained to # monitor its status _cache_valid = Bool(False, transient=True) # Indicates whether or not the bounds have been set at all, or if they # are at their initial default values. _low_bound_initialized = Bool(False) _high_bound_initialized = Bool(False) # ------------------------------------------------------------------------ # Event handlers # ------------------------------------------------------------------------ def _low_pos_changed(self, old, new): self._cache_valid = False if not self.stretch_data: self._adjust_range((old, self.high_pos), (new, self.high_pos)) self._low_bound_initialized = True self.updated = True def _high_pos_changed(self, old, new): self._cache_valid = False if not self.stretch_data: self._adjust_range((self.low_pos, old), (self.low_pos, new)) self._high_bound_initialized = True self.updated = True def _range_changed(self, old, new): if old is not None: old.observe(self._range_change_handler, "updated", remove=True) if new is not None: new.observe(self._range_change_handler, "updated") self._cache_valid = False self.updated = new def _range_change_handler(self, event): "Handles the range changing; dynamically attached to our ranges" self._cache_valid = False self.updated = event.object def _get_screen_bounds(self): return (self.low_pos, self.high_pos) def _get_sign(self): delta_screen = self.high_pos - self.low_pos delta_data = self.range.high - self.range.low if delta_screen == 0 or delta_data == 0: return 0 elif delta_screen / float(delta_data) < 0: return -1 else: return 1 def _set_screen_bounds(self, new_bounds): if new_bounds[0] == self.low_pos and new_bounds[1] == self.high_pos: return if not self.stretch_data: self._adjust_range((self.low_pos, self.high_pos), new_bounds) self.trait_setq(low_pos=new_bounds[0]) self.trait_setq(high_pos=new_bounds[1]) self._cache_valid = False self._low_bound_initialized = True self._high_bound_initialized = True self.updated = True def _adjust_range(self, old_bounds, new_bounds): initialized = ( self._low_bound_initialized and self._high_bound_initialized ) if self.range is not None and initialized: rangelow = self.range.low rangehigh = self.range.high d_data = rangehigh - rangelow old_d_screen = old_bounds[1] - old_bounds[0] if d_data != 0 and old_d_screen != 0: new_data_extent = ( d_data / old_d_screen * (new_bounds[1] - new_bounds[0]) ) self.range.set_bounds(rangelow, rangelow + new_data_extent)
enthought/chaco
chaco/base_1d_mapper.py
base_1d_mapper.py
py
4,221
python
en
code
286
github-code
6
[ { "api_name": "abstract_mapper.AbstractMapper", "line_number": 8, "usage_type": "name" }, { "api_name": "traits.api.Instance", "line_number": 14, "usage_type": "call" }, { "api_name": "data_range_1d.DataRange1D", "line_number": 14, "usage_type": "argument" }, { "api_name": "traits.api.Float", "line_number": 17, "usage_type": "call" }, { "api_name": "traits.api.Float", "line_number": 20, "usage_type": "call" }, { "api_name": "traits.api.Property", "line_number": 24, "usage_type": "name" }, { "api_name": "traits.api.Bool", "line_number": 30, "usage_type": "call" }, { "api_name": "traits.api.Property", "line_number": 33, "usage_type": "name" }, { "api_name": "traits.api.Bool", "line_number": 37, "usage_type": "call" }, { "api_name": "traits.api.Bool", "line_number": 41, "usage_type": "call" }, { "api_name": "traits.api.Bool", "line_number": 42, "usage_type": "call" } ]
27103152939
from itertools import product import numpy as np import pytest from dcegm.pre_processing.params import process_params from numpy.testing import assert_array_almost_equal as aaae from scipy.special import roots_sh_legendre from scipy.stats import norm from toy_models.consumption_retirement_model.budget_functions import ( _calc_stochastic_income, ) from toy_models.consumption_retirement_model.budget_functions import budget_constraint model = ["deaton", "retirement_taste_shocks", "retirement_no_taste_shocks"] labor_choice = [0, 1] period = [0, 5, 7] max_wealth = [11, 33, 50] n_grid_points = [101, 444, 1000] TEST_CASES = list(product(model, period, labor_choice, max_wealth, n_grid_points)) @pytest.mark.parametrize( "model, period, labor_choice, max_wealth, n_grid_points", TEST_CASES ) def test_get_beginning_of_period_wealth( model, period, labor_choice, max_wealth, n_grid_points, load_example_model ): params, options = load_example_model(f"{model}") params = process_params(params) sigma = params["sigma"] r = params["interest_rate"] consump_floor = params["consumption_floor"] n_quad_points = options["quadrature_points_stochastic"] child_state_dict = {"period": period, "lagged_choice": labor_choice} savings_grid = np.linspace(0, max_wealth, n_grid_points) _quad_points, _ = roots_sh_legendre(n_quad_points) quad_points = norm.ppf(_quad_points) * sigma random_saving_scalar = np.random.randint(0, n_grid_points) random_shock_scalar = np.random.randint(0, n_quad_points) wealth_beginning_of_period = budget_constraint( **child_state_dict, savings_end_of_previous_period=savings_grid[random_saving_scalar], income_shock_previous_period=quad_points[random_shock_scalar], options=options, params=params, ) _labor_income = _calc_stochastic_income( **child_state_dict, wage_shock=quad_points[random_shock_scalar], min_age=options["min_age"], constant=params["constant"], exp=params["exp"], exp_squared=params["exp_squared"], ) budget_expected = (1 + r) * savings_grid[random_saving_scalar] + _labor_income aaae(wealth_beginning_of_period, max(consump_floor, budget_expected))
OpenSourceEconomics/dcegm
tests/test_budget_equation.py
test_budget_equation.py
py
2,269
python
en
code
15
github-code
6
[ { "api_name": "itertools.product", "line_number": 20, "usage_type": "call" }, { "api_name": "dcegm.pre_processing.params.process_params", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 40, "usage_type": "call" }, { "api_name": "scipy.special.roots_sh_legendre", "line_number": 42, "usage_type": "call" }, { "api_name": "scipy.stats.norm.ppf", "line_number": 43, "usage_type": "call" }, { "api_name": "scipy.stats.norm", "line_number": 43, "usage_type": "name" }, { "api_name": "numpy.random.randint", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 45, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 46, "usage_type": "attribute" }, { "api_name": "toy_models.consumption_retirement_model.budget_functions.budget_constraint", "line_number": 48, "usage_type": "call" }, { "api_name": "toy_models.consumption_retirement_model.budget_functions._calc_stochastic_income", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.testing.assert_array_almost_equal", "line_number": 66, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 23, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 23, "usage_type": "attribute" } ]
40546336482
import dlib import os import numpy as np import matplotlib.pyplot as plt """ 此文件为正向人脸检测模块,采用dlib实现 """ def _shape_to_np(shape): xy = [] for i in range(68): xy.append((shape.part(i).x, shape.part(i).y,)) xy = np.asarray(xy, dtype='float32') return xy def get_landmarks(img, detector, predictor, PlotOn=False): """ 获取人脸特征点 """ lmarks = [] dets, scores, idx = detector.run(img, 1) # dets = [dlib.rectangle(left=0, top=0, right=img.shape[1], bottom=img.shape[0])] print("Number of faces detected: {}".format(len(dets))) if len(dets) > 0: shapes = [] for k, det in enumerate(dets): shape = predictor(img, det) shapes.append(shape) xy = _shape_to_np(shape) lmarks.append(xy) lmarks = np.asarray(lmarks, dtype='float32') lmarks = lmarks[0, :, :].T if PlotOn: display_landmarks(img, lmarks) return lmarks else: return lmarks def display_landmarks(img, lmarks): for i in range(68): xy = lmarks[:, i] plt.plot(xy[0], xy[1], 'ro') plt.text(xy[0], xy[1], str(i)) plt.imshow(img) plt.show()
hamster1963/face-all-in-one-machine-backend
face_irobot_main/facial_feature_detector.py
facial_feature_detector.py
py
1,246
python
en
code
0
github-code
6
[ { "api_name": "numpy.asarray", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" } ]
2696828667
from collections import Counter from trava.ext.boosting_eval.boosting_logic import CommonBoostingEvalLogic from trava.ext.boosting_eval.eval_steps import EvalFitSteps from trava.fit_predictor import FitPredictConfig, FitPredictConfigUpdateStep, FitPredictorSteps from trava.split.result import SplitResult from trava.tracker import Tracker class _GroupConfigUpdateStep(FitPredictConfigUpdateStep): def __init__(self, group_col_name: str): self._group_col_name = group_col_name def fit_split_data(self, raw_split_data: SplitResult, config: FitPredictConfig, tracker: Tracker) -> SplitResult: X_valid = None if raw_split_data.X_valid is not None: X_valid = raw_split_data.X_valid.drop(self._group_col_name, axis=1) result = SplitResult( X_train=raw_split_data.X_train.drop(self._group_col_name, axis=1), y_train=raw_split_data.y_train, X_test=raw_split_data.X_test.drop(self._group_col_name, axis=1), y_test=raw_split_data.y_test, X_valid=X_valid, y_valid=raw_split_data.y_valid, ) return result def fit_params( self, fit_params: dict, fit_split_data: SplitResult, config: FitPredictConfig, tracker: Tracker ) -> dict: raw_split_data = config.raw_split_data assert raw_split_data train_counted_groups = self._counted_groups(X=raw_split_data.X_train) fit_params["group"] = train_counted_groups return fit_params def _counted_groups(self, X): train_groups = X[self._group_col_name].values counted_groups = list(Counter(train_groups).values()) return counted_groups class _GroupEvalConfigUpdateStep(_GroupConfigUpdateStep): def __init__(self, group_col_name: str): super().__init__(group_col_name=group_col_name) def fit_params( self, fit_params: dict, fit_split_data: SplitResult, config: FitPredictConfig, tracker: Tracker ) -> dict: fit_params = super().fit_params( fit_params=fit_params, fit_split_data=fit_split_data, config=config, tracker=tracker ) raw_split_data = config.raw_split_data assert raw_split_data assert raw_split_data.X_valid is not None, "X_valid set must be present to run evaluation" eval_counted_groups = self._counted_groups(X=raw_split_data.X_valid) fit_params["eval_group"] = [fit_params["group"], eval_counted_groups] return fit_params def _counted_groups(self, X): train_groups = X[self._group_col_name].values counted_groups = list(Counter(train_groups).values()) return counted_groups class GroupFitSteps(FitPredictorSteps): """ Simple extension for problems that are based on groups ( e.g. ranking ) that provides group parameter for training a model. Init parameters ---------- group_col_name: str Which column is used to store groups """ def __init__(self, group_col_name: str): group_config_step = _GroupConfigUpdateStep(group_col_name=group_col_name) super().__init__(config_steps=[group_config_step]) class GroupEvalFitSteps(EvalFitSteps): """ Same as GroupFitSteps, but also adds some modifications to support evaluation. Init parameters ---------- eval_logic: Eval Contains logic of how to perform evaluation on the model. group_col_name: str Which column is used to store groups """ def __init__(self, eval_logic: CommonBoostingEvalLogic, group_col_name: str): group_eval_config_step = _GroupEvalConfigUpdateStep(group_col_name=group_col_name) super().__init__(eval_logic=eval_logic) self.config_steps.insert(0, group_eval_config_step)
ityutin/trava
trava/ext/grouped/group_steps.py
group_steps.py
py
3,781
python
en
code
2
github-code
6
[ { "api_name": "trava.fit_predictor.FitPredictConfigUpdateStep", "line_number": 10, "usage_type": "name" }, { "api_name": "trava.split.result.SplitResult", "line_number": 14, "usage_type": "name" }, { "api_name": "trava.fit_predictor.FitPredictConfig", "line_number": 14, "usage_type": "name" }, { "api_name": "trava.tracker.Tracker", "line_number": 14, "usage_type": "name" }, { "api_name": "trava.split.result.SplitResult", "line_number": 19, "usage_type": "call" }, { "api_name": "trava.split.result.SplitResult", "line_number": 31, "usage_type": "name" }, { "api_name": "trava.fit_predictor.FitPredictConfig", "line_number": 31, "usage_type": "name" }, { "api_name": "trava.tracker.Tracker", "line_number": 31, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 42, "usage_type": "call" }, { "api_name": "trava.split.result.SplitResult", "line_number": 51, "usage_type": "name" }, { "api_name": "trava.fit_predictor.FitPredictConfig", "line_number": 51, "usage_type": "name" }, { "api_name": "trava.tracker.Tracker", "line_number": 51, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 68, "usage_type": "call" }, { "api_name": "trava.fit_predictor.FitPredictorSteps", "line_number": 72, "usage_type": "name" }, { "api_name": "trava.ext.boosting_eval.eval_steps.EvalFitSteps", "line_number": 88, "usage_type": "name" }, { "api_name": "trava.ext.boosting_eval.boosting_logic.CommonBoostingEvalLogic", "line_number": 100, "usage_type": "name" } ]
30031301327
import json import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout import matplotlib import matplotlib.pyplot as plt import networkx as nx def read_details(pd_details): """[summary] Args: pd_details ([type]): [description] Returns: [type]: [description] """ with open(pd_details) as f: data = json.load(f) return data def update_annot(ind, nodelist, pos, data, annot, G): """[summary] Args: ind ([type]): [description] nodelist ([type]): [description] pos ([type]): [description] data ([type]): [description] annot ([type]): [description] G ([type]): [description] """ node_idx = ind["ind"][0] node = list(nodelist)[node_idx] xy = pos[node] annot.xy = xy node_attr = {"ID": node} node_attr.update(G.nodes[node]) all_details = data[node] patient_string = "Patient: {} , {}, {}".format( "Ramesh", all_details["pBgrp"], all_details["pAge"] ) donor_string = "Donor: {} , {}, {}".format( "arun", all_details["dBgrp"], all_details["dAge"] ) text = "\n".join([patient_string, donor_string]) annot.set_text(text) return def hover( event, annot, nodes1, nodes2, nodes3, nodes4, top_nodes, rest, pos, data, fig, ax, G ): """[summary] Args: event ([type]): [description] annot ([type]): [description] nodes1 ([type]): [description] nodes2 ([type]): [description] nodes3 ([type]): [description] nodes4 ([type]): [description] top_nodes ([type]): [description] rest ([type]): [description] pos ([type]): [description] data ([type]): [description] fig ([type]): [description] ax ([type]): [description] G ([type]): [description] """ vis = annot.get_visible() if event.inaxes == ax: if nodes1 is not None: cont1, ind1 = nodes1.contains(event) cont2, ind2 = nodes2.contains(event) else: cont1, cont2 = False, False if nodes3 is not None: cont3, ind3 = nodes3.contains(event) cont4, ind4 = nodes4.contains(event) else: cont3, cont4 = False, False if cont1: update_annot(ind1, top_nodes, pos, data, annot, G) annot.set_visible(True) fig.canvas.draw_idle() elif cont2: update_annot(ind2, top_nodes, pos, data, annot, G) annot.set_visible(True) fig.canvas.draw_idle() elif cont3: update_annot(ind3, rest, pos, data, annot, G) annot.set_visible(True) fig.canvas.draw_idle() elif cont4: update_annot(ind4, rest, pos, data, annot, G) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() def hover_graph(G, cycles, solution_values, weight, pd_details): """ G : networkx graph object with all nodes, but only solution edges cycles : list -> all possible cycles in G solution : list -> 1 if corresponding cycle is chosen for final solution else 0 weight : dict -> keys: edges, values: edgeweights pd_details : string -> path to JSON file (dump) with patient donor details """ fig, ax = plt.subplots() pos = graphviz_layout(G) data = read_details(pd_details) rest = [] two_cycle_nodes_top = {} two_cycle_nodes_bottom = {} top_edges = [] bottom_edges = [] colour1 = "orange" colour2 = "purple" for i, cycle in enumerate(cycles): if len(cycle) == 3 and solution_values[i] == 1: ### selects chosen 2 cycles and colours the top and bottom halves of the two nodes in an opposite ### manner to signify corresponding PD pairs two_cycle_nodes_top[cycle[0]] = colour1 two_cycle_nodes_bottom[cycle[0]] = colour2 two_cycle_nodes_top[cycle[1]] = colour2 two_cycle_nodes_bottom[cycle[1]] = colour1 top_edges.append((cycle[0], cycle[1])) bottom_edges.append((cycle[1], cycle[0])) pos = graphviz_layout(G) # drawing two cycle nodes top_nodes, top_colours = two_cycle_nodes_top.keys(), two_cycle_nodes_top.values() bottom_nodes, bottom_colours = ( two_cycle_nodes_bottom.keys(), two_cycle_nodes_bottom.values(), ) # nodes other than those part of two cycles, including ones that are not part of any solution cycle rest = [n for n in G.nodes() if n not in top_nodes] """ nodes1 : top half of two cycle nodes nodes2 : bottom half of two cycle nodes nodes3 : top half of remaining nodes nodes4 : bottom half of remaining nodes """ nodes1 = nx.draw_networkx_nodes( G, pos, nodelist=top_nodes, node_color=top_colours, node_size=600, node_shape=matplotlib.markers.MarkerStyle(marker="o", fillstyle="top"), label="P", ) nodes2 = nx.draw_networkx_nodes( G, pos, nodelist=bottom_nodes, node_color=bottom_colours, node_size=600, node_shape=matplotlib.markers.MarkerStyle(marker="o", fillstyle="bottom"), label="D", ) # drawing remaining nodes nodes3 = nx.draw_networkx_nodes( G, pos, nodelist=rest, label="P", node_color=colour1, node_size=600, node_shape=matplotlib.markers.MarkerStyle(marker="o", fillstyle="top"), ) nodes4 = nx.draw_networkx_nodes( G, pos, nodelist=rest, node_color=colour2, node_size=600, node_shape=matplotlib.markers.MarkerStyle(marker="o", fillstyle="bottom"), ) """ Networkx by default draws straight arcs and places edge labels on the middle of those arcs. However, we draw curved arcs but edge labels still remain at their default position (midpoint of NodeA and NodeB) {inside the cycle} Thus we need to offset this by supplying new positions. To maintain consistency across all scales of X and Y axis, and positions of nodes we take the offset as 0.3 times difference between x-coordinates of the two nodes between which the edge is drawn. Different offsets are required for top edge and bottom edge of two cycles. For three cycles, the default placement causes no issue. """ pos_higher, pos_lower = {}, {} # calculating offset if not top_edges: y_off = 20 else: a, b = top_edges[0] y_off = 0.3 * abs(pos[a][0] - pos[b][0]) for k, v in pos.items(): pos_higher[k] = (v[0], v[1] + y_off) for k, v in pos.items(): pos_lower[k] = (v[0], v[1] - y_off) """ w_top : edge weights of top edges of two cycles w_bottom : edge weights of bottom edges of two cycles w_rest : edge weights of remaining edges which can be placed in their default location """ w_top = {e: str(weight[e]) for e in weight if (e in top_edges and e in G.edges())} w_bottom = { e: str(weight[e]) for e in weight if (e in bottom_edges and e in G.edges()) } w_rest = { e: str(weight[e]) for e in weight if (e in G.edges() and e not in top_edges and e not in bottom_edges) } ### Drawing edge labels nx.draw_networkx_edges( G, pos, edgelist=G.edges(), connectionstyle="arc3,rad=0.2", arrowsize=20 ) nx.draw_networkx_edge_labels( G, pos_higher, edge_labels=w_top, label_pos=0.5, verticalalignment="top" ) nx.draw_networkx_edge_labels( G, pos_lower, edge_labels=w_bottom, label_pos=0.5, verticalalignment="bottom" ) nx.draw_networkx_edge_labels(G, pos, edge_labels=w_rest, label_pos=0.5) # =================== HOVERING ========================= ### setting annotation style annot = ax.annotate( "", xy=(0, 0), xytext=(20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->"), ) annot.set_visible(False) idx_to_node_dict = {idx: node for idx, node in enumerate(G.nodes)} fig.canvas.mpl_connect( "motion_notify_event", lambda event: hover( event, annot, nodes1, nodes2, nodes3, nodes4, top_nodes, rest, pos, data, fig, ax, G, ), ) plt.show() plt.savefig("./result/output.svg", format="svg")
siv2r/kidney-exchange
global_match/hovering.py
hovering.py
py
8,711
python
en
code
45
github-code
6
[ { "api_name": "json.load", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "networkx.drawing.nx_agraph.graphviz_layout", "line_number": 118, "usage_type": "call" }, { "api_name": "networkx.drawing.nx_agraph.graphviz_layout", "line_number": 139, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_nodes", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.markers.MarkerStyle", "line_number": 159, "usage_type": "call" }, { "api_name": "matplotlib.markers", "line_number": 159, "usage_type": "attribute" }, { "api_name": "networkx.draw_networkx_nodes", "line_number": 163, "usage_type": "call" }, { "api_name": "matplotlib.markers.MarkerStyle", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.markers", "line_number": 169, "usage_type": "attribute" }, { "api_name": "networkx.draw_networkx_nodes", "line_number": 174, "usage_type": "call" }, { "api_name": "matplotlib.markers.MarkerStyle", "line_number": 181, "usage_type": "call" }, { "api_name": "matplotlib.markers", "line_number": 181, "usage_type": "attribute" }, { "api_name": "networkx.draw_networkx_nodes", "line_number": 183, "usage_type": "call" }, { "api_name": "matplotlib.markers.MarkerStyle", "line_number": 189, "usage_type": "call" }, { "api_name": "matplotlib.markers", "line_number": 189, "usage_type": "attribute" }, { "api_name": "networkx.draw_networkx_edges", "line_number": 226, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_edge_labels", "line_number": 229, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_edge_labels", "line_number": 232, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_edge_labels", "line_number": 235, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 268, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 268, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 269, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 269, "usage_type": "name" } ]
24270720132
import random import os import glob import cv2 import numpy as np import json from detectron2.structures import BoxMode import itertools import sys # import some common detectron2 utilities import pdb from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog import torch class_list = ['cone','duckie','duckiebot'] """Now, let's fine-tune a coco-pretrained R50-FPN Mask R-CNN model on the balloon dataset. It takes ~6 minutes to train 300 iterations on Colab's K80 GPU.""" from detectron2.engine import DefaultTrainer from detectron2.config import get_cfg cfg = get_cfg() cfg.merge_from_file("/network/home/bhattdha/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml") class_list = ['cone','duckie','duckiebot'] # write a function that loads the dataset into detectron2's standard format def get_duckietown_dicts(root_dir): annotation_file = root_dir + 'annotations/final_anns.json' frame_path = root_dir + 'final_frames/frames/' with open(annotation_file) as f: data = json.load(f) record = {} dataset_dicts = [] class_label = {} ## giving labels to the classes for idx,class_val in enumerate(class_list): class_label[class_val] = idx for name in data.keys(): # print(name) image_name = frame_path + name record = {} height, width = cv2.imread(image_name).shape[:2] record["file_name"] = image_name record["height"] = height record["width"] = width objs = [] for annotation in data[name]: ob_list = [] obj_ann = { "bbox": [annotation['bbox'][0], annotation['bbox'][1], annotation['bbox'][0] + annotation['bbox'][2], annotation['bbox'][1] + annotation['bbox'][3]], "bbox_mode": BoxMode.XYXY_ABS, "category_id": annotation['cat_id'] - 1, "iscrowd": 0 } objs.append(obj_ann) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts from detectron2.data import DatasetCatalog, MetadataCatalog root_dir = '/network/tmp1/bhattdha/duckietown_dataset/' for d in ["train", "test"]: DatasetCatalog.register("duckietown/" + d, lambda d=d: get_duckietown_dicts(root_dir)) MetadataCatalog.get('duckietown/' + d).set(thing_classes=class_list) duckietown_metadata = MetadataCatalog.get('duckietown/train') cfg_load = torch.load('/network/tmp1/bhattdha/duckietown_dataset/probabilistic_duckietown_OD/probabilistic_duckietown_OD_cfg.final') ##loading the config used at train time cfg = cfg_load['cfg'] # import pdb; pdb.set_trace() # cfg.DATASETS.TEST = () # no metrics implemented for this dataset cfg.DATASETS.TEST = ('coco_2017_val',) # no metrics implemented for this dataset cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # faster, and good enough for this toy dataset cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(class_list) # (kitti) cfg.OUTPUT_DIR = '/network/tmp1/bhattdha/duckietown_dataset/probabilistic_duckietown_OD/' # cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(class_list) # (kitti) """Now, we perform inference with the trained model on the kitti dataset. First, let's create a predictor using the model we just trained:""" cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_0014999.pth") cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model # cfg.DATASETS.TEST = ("kitti/test", ) predictor = DefaultPredictor(cfg) """Then, we randomly select several samples to visualize the prediction results.""" from detectron2.utils.visualizer import ColorMode # im = cv2.imread('test.png') # outputs = predictor(im) # v = Visualizer(im[:, :, ::-1], # metadata=duckietown_metadata, # scale=1.0, # instance_mode=ColorMode.IMAGE # ) # v = v.draw_instance_predictions(outputs["instances"].to("cpu")) # cv2.imwrite("test_out.png", v.get_image()[:, :, ::-1]) # import pdb; pdb.set_trace() # import time # inf_time = [] # # If the input is the camera, pass 0 instead of the video file name # cap = cv2.VideoCapture('/network/home/bhattdha/manfred_vid.mov') # frame_width = int(cap.get(3)) # frame_height = int(cap.get(4)) # out = cv2.VideoWriter('/network/home/bhattdha/output_prob.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 20, (frame_width,frame_height)) # while(cap.isOpened()): # ret, frame = cap.read() # st_time = time.time() # outputs = predictor(frame) # end_time = time.time() - st_time # inf_time.append(time.time() - st_time) # # pdb.set_trace() # v = Visualizer(frame[:, :, ::-1], # metadata=duckietown_metadata, # scale=1.0, # instance_mode=ColorMode.IMAGE # ) # # out.write(frame) # v = v.draw_instance_predictions(outputs["instances"].to("cpu")) # print("Tot time is: ", end_time) # # print(type(v)) # # import ipdb; ipdb.set_trace() # out.write(v.get_image()[:, :, ::-1]) # # When everything done, release the video capture and video write objects # cap.release() # out.release() # print("Inference time: ", np.mean(np.array(inf_time))) # dataset_dicts = get_kitti_dicts("/network/tmp1/bhattdha/kitti_dataset", 'test') image_names = glob.glob("/network/tmp1/bhattdha/duckietown_dataset/final_frames/test/*.png") for idx, im_name in enumerate(image_names): print(idx, im_name) im = cv2.imread(im_name) outputs = predictor(im) # pdb.set_trace() v = Visualizer(im[:, :, ::-1], metadata=duckietown_metadata, scale=1.0, instance_mode=ColorMode.IMAGE ) v = v.draw_instance_predictions(outputs["instances"].to("cpu")) print("saving images") print(type(v)) cv2.imwrite("/network/tmp1/bhattdha/duckietown_dataset/probabilistic_duckietown_OD/test_outputs/" + str(idx).zfill(5) + '.png', v.get_image()[:, :, ::-1]) # cv2_imshow(v.get_image()[:, :, ::-1])
dhaivat1729/detectron2_CL
experiments/test_duckietown_detectron.py
test_duckietown_detectron.py
py
6,268
python
en
code
0
github-code
6
[ { "api_name": "detectron2.config.get_cfg", "line_number": 25, "usage_type": "call" }, { "api_name": "json.load", "line_number": 39, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 54, "usage_type": "call" }, { "api_name": "detectron2.structures.BoxMode.XYXY_ABS", "line_number": 67, "usage_type": "attribute" }, { "api_name": "detectron2.structures.BoxMode", "line_number": 67, "usage_type": "name" }, { "api_name": "detectron2.data.DatasetCatalog.register", "line_number": 84, "usage_type": "call" }, { "api_name": "detectron2.data.DatasetCatalog", "line_number": 84, "usage_type": "name" }, { "api_name": "detectron2.data.MetadataCatalog.get", "line_number": 85, "usage_type": "call" }, { "api_name": "detectron2.data.MetadataCatalog", "line_number": 85, "usage_type": "name" }, { "api_name": "detectron2.data.MetadataCatalog.get", "line_number": 87, "usage_type": "call" }, { "api_name": "detectron2.data.MetadataCatalog", "line_number": 87, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 102, "usage_type": "call" }, { "api_name": "os.path", "line_number": 102, "usage_type": "attribute" }, { "api_name": "detectron2.engine.DefaultPredictor", "line_number": 107, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 162, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 166, "usage_type": "call" }, { "api_name": "detectron2.utils.visualizer.Visualizer", "line_number": 169, "usage_type": "call" }, { "api_name": "detectron2.utils.visualizer.ColorMode.IMAGE", "line_number": 172, "usage_type": "attribute" }, { "api_name": "detectron2.utils.visualizer.ColorMode", "line_number": 172, "usage_type": "name" }, { "api_name": "cv2.imwrite", "line_number": 178, "usage_type": "call" } ]
8167072903
from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import regularizers import numpy as np import pandas as pd import math as math import sys import os import keras from keras.models import load_model from keras.layers import Dropout , Flatten from keras.layers import BatchNormalization from keras.preprocessing.text import text_to_word_sequence from keras.preprocessing.text import one_hot import string from keras.layers import MaxPooling1D from keras.layers import Flatten from keras.layers import ConvLSTM2D from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import LSTM,GRU,TimeDistributed from keras.layers import Dense from keras.layers.embeddings import Embedding from gensim.models.word2vec import Word2Vec def normal_string(string): if not string: return "" if len(string) <= 2: return string if len(string) > 2 and string[0] == string[1] and string[1] == string[2]: return normal_string(string[1:]) return string[0] + normal_string(string[1:]) def remove_space(text): index_list = [i for i, letter in enumerate(text) if letter == '\''] remove_list = [] for i in range(0,len(index_list)): if index_list[i]-1 >= 0 and text[index_list[i]-1] == ' ': remove_list.append(index_list[i]-1) if index_list[i]+1 < len(text) and text[index_list[i]+1] == ' ': remove_list.append(index_list[i]+1) #remove_list.append(index_list[i]) text = "".join([char for idx, char in enumerate(text) if idx not in remove_list]) return text mode = sys.argv[3] test_data_filename = sys.argv[1] t_lines = [line.rstrip('\n') for line in open(test_data_filename,'r' , errors='replace' , encoding='utf-8')] t_lines = t_lines[1:] for i in range(0,len(t_lines)): num = len(str(i)) t_lines[i] = t_lines[i][num+1:] w2v_t_lines = [] for i in range(0, len(t_lines)): t_lines[i] = remove_space(t_lines[i]) tk = text_to_word_sequence(t_lines[i], filters='', lower=True, split=' ') tmp_line = [] tmp = "" for j in range(0,len(tk)): tk[j] = tk[j].encode("ascii", errors="ignore").decode() tk[j] = normal_string(tk[j]) tmp_line.append(tk[j]) tmp = tmp + tk[j] + " " t_lines[i] = tmp w2v_t_lines.append(tmp_line) model = Word2Vec.load("gensim_w2v_0.82693_0602_model") word_vectors = model.wv vocab = [] for k, v in word_vectors.vocab.items(): vocab.append( (k,v.index) ) vocab = sorted(vocab , key=lambda x:x[1]) word_index_dict = {} for i in range(0,len(vocab)): word = vocab[i][0] word_index_dict[word] = i+1 word_index_dict["unknown_word"] = len(vocab)+1 test_ind = [] for i in range(len(w2v_t_lines)): tmp = [] for w in w2v_t_lines[i]: if w not in word_index_dict: tmp.append(word_index_dict["unknown_word"]) else: tmp.append(word_index_dict[w]) test_ind.append(tmp) rnn_model = load_model("0602_gensim_0.82693.h5") test = sequence.pad_sequences(test_ind, maxlen=33) p = 0.0 p += rnn_model.predict(test) ans_filename = sys.argv[2] ans_file = open(ans_filename , 'w') ans_file.write("id,label\n") for i in range(0,len(p)): ans_file.write(str(i)) ans_file.write(',') if p[i][0] >= 0.5: ans_file.write('1') else: ans_file.write('0') ans_file.write('\n')
muachilin/Machine-Learning
hw5/hw5_test.py
hw5_test.py
py
3,172
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 49, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 51, "usage_type": "attribute" }, { "api_name": "keras.preprocessing.text.text_to_word_sequence", "line_number": 60, "usage_type": "call" }, { "api_name": "gensim.models.word2vec.Word2Vec.load", "line_number": 73, "usage_type": "call" }, { "api_name": "gensim.models.word2vec.Word2Vec", "line_number": 73, "usage_type": "name" }, { "api_name": "keras.models.load_model", "line_number": 98, "usage_type": "call" }, { "api_name": "keras.preprocessing.sequence.pad_sequences", "line_number": 99, "usage_type": "call" }, { "api_name": "keras.preprocessing.sequence", "line_number": 99, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 102, "usage_type": "attribute" } ]
31975617255
from django import template from ..models import Page register = template.Library() @register.simple_tag def main_menu(): "Query top-level pages" return Page.objects.with_tree_fields().filter( parent=None, is_active=True)
dnknth/feincms-demo
pages/templatetags/menus.py
menus.py
py
240
python
en
code
1
github-code
6
[ { "api_name": "django.template.Library", "line_number": 4, "usage_type": "call" }, { "api_name": "django.template", "line_number": 4, "usage_type": "name" }, { "api_name": "models.Page.objects.with_tree_fields", "line_number": 9, "usage_type": "call" }, { "api_name": "models.Page.objects", "line_number": 9, "usage_type": "attribute" }, { "api_name": "models.Page", "line_number": 9, "usage_type": "name" } ]
23552963573
######################################################################### # File Name: getKmerFromVCF_REF.py # Author: yanbo # mail: [email protected] # Created Time: Thu 09 May 2019 10:45:06 AEST ######################################################################### #!/bin/bash import collections from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord import re import sys import tools import read def write_pair_kmer(outFile, kmers): sortedKmers = sorted(kmers) with open(outFile, "w") as f: for (kmer1, kmer2, pos) in sortedKmers: #f.write("%s %s %s %s %s %s %s %s\n" % (ele[0], ele[1], ele[2], ele[3], ele[4], ele[5], tools.reverse(ele[0]), tools.reverse(ele[1]) ) ) f.write("%s %s %s\n" % (kmer1, kmer2, pos) ) def get_snp_pair_kmer(vcfFilename): snps = read.read_vcf(vcfFilename) kmerFilename="chr" + sys.argv[1] + ".snp.real." + sys.argv[2] + "mer" kmers = [] for key in snps: #assert seq[key-1] == snps[key][0] or seq[key-1] == snps[key][1] assert seq[key-1] == snps[key][0] h1 = seq[key-int(k/2)-1 : key-1] + snps[key][0] + seq[key : key+int(k/2) ] # 0 h2 = seq[key-int(k/2)-1 : key-1] + snps[key][1] + seq[key : key+int(k/2) ] # 1 if h1.count('N') > 0 or h2.count('N') > 0: continue ''' new_h1 = tools.reverse(h1) # 0 new_h2 = tools.reverse(h2) # 1 min_h= min(h1,h2) min_newh = min(new_h1, new_h2) ID = snps[key][2] if min_h < min_newh: if h1 < h2: kmers.append( (h1, h2, key, ID, 0, 1) ) else: kmers.append( (h2, h1, key, ID, 1, 0) ) else: if new_h1 < new_h2: kmers.append( (new_h1, new_h2, key, ID, 0, 1) ) else: kmers.append( (new_h2, new_h1, key, ID, 1, 0) ) ''' smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) kmers.append( (smallerH1, smallerH2, key) ) write_pair_kmer(kmerFilename, kmers) def get_indel_pair_kmer(vcfFilename): indels = read.read_vcf(vcfFilename) kmerFilename="chr" + sys.argv[1] + ".indel.real." + sys.argv[2] + "mer" kmers = [] indel_length1_cnt = 0 for key in indels: s1, s2, ID = indels[key] lenS1, lenS2 = len(s1), len(s2) if lenS1 + lenS2 > 3: continue indel_length1_cnt += 1 assert lenS1 + lenS2 >= 2 if len(s1) == 1 and len(s2) == 2: assert seq[key-1] == s1 assert s2[0] != s2[1] #while s2[1] == seq[key-1]: # delete content is s2[1] #key = key-1 # delete happen at "AAA" region, always think delete first poisition h1 = seq[key-int(k/2) : key+int(k/2)] # k-1 h2 = seq[key-int(k/2) : key-1] + s2 + seq[key : key+int(k/2)] # 1 # len: k assert len(h1) == k-1 and len(h2) == k h1, h2 = h2, h1 # h1 always is longer one initialH1 = h1 if h1.count('N') > 0 or h2.count('N') > 0: continue #print key, "11", h1 smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) kmers.append( (smallerH1, smallerH2, key) ) # delete happen at multipe "AAAA" region, more pair kmer happen l = len(h1) mid = l/2 i=1 while mid+i<l and initialH1[mid+i] == initialH1[mid]: h1 = seq[key-int(k/2)+i : key+int(k/2)+i] # move right i h2 = seq[key-int(k/2)+i : key-1] + s2 + seq[key : key+int(k/2)+i] # move right i h1, h2 = h2, h1 # h1 always is longer one smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) #print key, "aa" kmers.append( (smallerH1, smallerH2, key) ) i+=1 i=1 while mid-i>=0 and initialH1[mid-i] == initialH1[mid]: h1 = seq[key-int(k/2)-i : key+int(k/2)-i] # move left i h2 = seq[key-int(k/2)-i : key-1] + s2 + seq[key : key+int(k/2)-i] # move right i h1, h2 = h2, h1 # h1 always is longer one smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) #print key, "bb" kmers.append( (smallerH1, smallerH2, key) ) i+=1 ''' # for test can grouth-truth can always keep min strand delete first if h1 > tools.reverse(h1): print "aa" print h1, h2 print tools.reverse(h1), tools.reverse(h2) while s2[1] == seq[key]: key+=1 h1 = seq[key-int(k/2) : key+int(k/2)] # k-1 h2 = seq[key-int(k/2) : key] + s2[1] + seq[key : key+int(k/2)] # 1 # len: k h1, h2 = h2, h1 print h1, h2 print tools.reverse(h1), tools.reverse(h2) ''' elif len(s1) == 2 and len(s2) == 1: assert seq[key-1:key+1] == s1 assert s1[0] != s1[1] h1 = seq[key-int(k/2) : key+int(k/2)+1] # k h2 = seq[key-int(k/2) : key] + seq[key+1 : key+int(k/2)+1] # 1 # len: k-1 assert len(h1) == k and len(h2) == k-1 initialH1 = h1 if h1.count('N') > 0 or h2.count('N') > 0: continue smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) #print key, "22" kmers.append( (smallerH1, smallerH2, key) ) l = len(h1) mid = l/2 i=1 while initialH1[mid+i] == initialH1[mid]: h1 = seq[key-int(k/2)+i : key+int(k/2)+1+i] # k h2 = seq[key-int(k/2)+i : key] + seq[key+1 : key+int(k/2)+1+i] # 1 # len: k-1 smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) #print key, "cc" kmers.append( (smallerH1, smallerH2, key) ) i+=1 i=1 while initialH1[mid-i] == initialH1[mid]: h1 = seq[key-int(k/2)-i : key+int(k/2)+1-i] # k h2 = seq[key-int(k/2)-i : key] + seq[key+1 : key+int(k/2)+1-i] # 1 # len: k-1 smallerH1, smallerH2 = tools.get_smaller_pair_kmer(h1, h2) #print key, "dd" kmers.append( (smallerH1, smallerH2, key) ) i+=1 print ("there are ", indel_length1_cnt, "indels, create ", len(kmers), "indel pair kmer") write_pair_kmer(kmerFilename, kmers) ''' allFile = "chr" + sys.argv[1] + ".all." + sys.argv[2] + "mer" foutAll = open(allFile, "w") for i in range(seqLen-21): mer = seq[i:i+k] if mer.count('N') > 0: continue Rmer = tools.reverse(mer) if Rmer < mer: mer = Rmer foutAll.write("%s %s\n" % (mer, i)) foutAll.close() ''' # this simulate data is based on hg18 refFilename="/home/yulin/bio/Data/reference/NCBI36_hg18/chr22.fa" snpVCFFile="/home/yulin/bio/VariationCalling/data/NA12878/VCF/NA12878_hg18_snp_VCFs/chr22.vcf" indelVCFFile="/home/yulin/bio/VariationCalling/data/NA12878/VCF/NA12878_hg18_indel_VCFs/chr22.vcf" # this illumina data align to hg19 #print ("input chrID kmer-size") #refFilename ="/home/yulin/bio/Data/reference/GRCh37_hg19/chr" + sys.argv[1] + ".fa" #vcfFilename ="/home/yulin/software/HapCUT2/reproduce_hapcut2_paper/run_hapcut2_fosmid/data/NA12878_hg19_VCFs/chr" + sys.argv[1] + ".phased.vcf" record = SeqIO.read(open(refFilename), "fasta") print (record.id) seq = str(record.seq).upper() seqLen = len(seq) k=int(sys.argv[2]) get_snp_pair_kmer(snpVCFFile) get_indel_pair_kmer(indelVCFFile)
yanboANU/VariationCalling
libprism/evaluate/getKmerFromVCF_REF.py
getKmerFromVCF_REF.py
py
7,794
python
en
code
1
github-code
6
[ { "api_name": "read.read_vcf", "line_number": 28, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 29, "usage_type": "attribute" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 55, "usage_type": "call" }, { "api_name": "read.read_vcf", "line_number": 63, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 64, "usage_type": "attribute" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 88, "usage_type": "call" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 98, "usage_type": "call" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 107, "usage_type": "call" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 134, "usage_type": "call" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 145, "usage_type": "call" }, { "api_name": "tools.get_smaller_pair_kmer", "line_number": 153, "usage_type": "call" }, { "api_name": "Bio.SeqIO.read", "line_number": 188, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 188, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 192, "usage_type": "attribute" } ]
4991495509
#!/usr/bin/python3 # enable debugging import cgi, cgitb import json import requests import responses cgitb.enable() class Expense: def __init__(self, exp_name,exp_date,exp_amount,exp_type): self.name = exp_name self.date = exp_date self.amount = exp_amount self.type = exp_type form = cgi.FieldStorage() exp_name = form.getvalue('exp_name') exp_date = form.getvalue('exp_date') exp_amount = form.getvalue('exp_amount') exp_type = form.getvalue('exp_type') expense = Expense(exp_name,exp_date,exp_amount,exp_type) jsonString = json.dumps(expense.__dict__) jsonFile = open("/var/www/html/data.json", "a+") jsonFile.write(jsonString) jsonFile.close() print('Content-Type: text/plain') print('') print('sucessful') print('<br>') print(jsonString)
eliz-liu/money_site_html
form.py
form.py
py
795
python
en
code
0
github-code
6
[ { "api_name": "cgitb.enable", "line_number": 8, "usage_type": "call" }, { "api_name": "cgi.FieldStorage", "line_number": 17, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 25, "usage_type": "call" } ]
5200586519
""" This module contains the main transmittance/reflectance calculation bits. Users can run the calculations through `model.Model()` and avoid accessing `core` directly. """ import numpy as np import scipy as sp def rt_amp(index, delta, theta, pol): """Calculate the reflected and transmitted amplitudes through the system. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. delta : numpy array An array of wavenumber offsets. theta : numpy array An array of angles in radians. pol : string The polarization of the source wave: 's' or 'p', or 'u'. Returns ------- r, t : tuple A tuple where 'r' is the reflected amplitude, and 't' is the transmitted amplitude. """ t_amp, r_amp = make_rt_amp_matrix(index, theta, pol) m_mat = make_m_matrix(index, t_amp, r_amp, delta) m_prime = make_2x2(1., 0., 0., 1., dtype=complex) for i in range(1, len(index)-1): m_prime = np.dot(m_prime, m_mat[i]) C_m = make_2x2(1., r_amp[0, 1], r_amp[0, 1], 1., dtype=complex) m_prime = np.dot(C_m / t_amp[0, 1], m_prime) trans_amp = 1 / m_prime[0, 0] ref_amp = m_prime[1, 0] / m_prime[0, 0] return ref_amp, trans_amp def make_rt_amp_matrix(index, theta, pol): """Construct reflection and transmission amplitude matrices. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. theta : numpy array An array of angles in radians. pol : string The polarization of the source wave: 's' or 'p'. Returns ------- t_mat, r_mat : tuple The t- and r-amplitude matrices. """ t_mat = np.zeros((len(index), len(index)), dtype=complex) r_mat = np.zeros((len(index), len(index)), dtype=complex) for i in range(len(index) - 1): t_mat[i, i+1] = t_interface(index[i], index[i+1], theta[i], theta[i+1], pol) r_mat[i, i+1] = r_interface(index[i], index[i+1], theta[i], theta[i+1], pol) return t_mat, r_mat def make_m_matrix(index, t_matrix, r_matrix, delta): """Construct the characteristic matrix of the model. Parameters ---------- index : numpy array An array of refractive indices, ordered from source layer to terminator layer. t_matrix : numpy array The t-amplitude matrix r_matrix : numpy array The r-amplitude matrix delta : numpy array An array of wavenumber offsets. Returns ------- m_mat : numpy array The characteristic matrix of the model """ m_mat = np.zeros((len(index), 2, 2), dtype=complex) for i in range(1, len(index)-1): C_m = make_2x2(np.exp(-1j * delta[i]), 0., 0., np.exp(1j * delta[i]), dtype=complex) r_m = make_2x2(1., r_matrix[i, i+1], r_matrix[i, i+1], 1., dtype=complex) m_mat[i] = (1 / t_matrix[i, i+1]) * np.dot(C_m, r_m) return m_mat def r_power(r_amp): """Return the fraction of reflected power. Parameters ---------- r_amp : float The net reflection amplitude after calculating the transfer matrix. Returns ------- R : numpy array The model reflectance """ return np.abs(r_amp)**2 def t_power(t_amp, index_i, index_f, theta_i, theta_f): """Return the fraction of transmitted power. Parameters ---------- t_amp : float The net transmission amplitude after calculating the transfer matrix. index_i : float The index of refraction of the source material. index_f : float The index of refraction of the terminating material. theta_i : float The angle of incidence (radians) at the initial interface. theta_f : float The angle of incidence (radians) at the final interface. Returns ------- T : numpy array The model transmittance """ return np.abs(t_amp**2) * \ ( (index_f * np.cos(theta_f)) / (index_i * np.cos(theta_i) ) ) def r_interface(index1, index2, theta1, theta2, pol): """Calculate the reflected amplitude at an interface. Parameters ---------- index1 : float The index of refraction of the first material. index2 : float The index of refraction of the second material. theta1 : float The angle of incidence at interface 1, in radians theta2 : float The angle of incidence at interface 2, in radians pol : string The polarization of the source wave (either 's' or 'p'). Returns ------- reflected amplitude : float The amplitude of the reflected field at the interface """ if pol == 's': numerator = (index1 * np.cos(theta1) - index2 * np.cos(theta2)) denominator = (index1 * np.cos(theta1) + index2 * np.cos(theta2)) elif pol == 'p': numerator = (index2 * np.cos(theta1) - index1 * np.cos(theta2)) denominator = (index1 * np.cos(theta2) + index2 * np.cos(theta1)) else: raise ValueError("Polarization must be 's' or 'p'") return numerator / denominator def t_interface(index1, index2, theta1, theta2, pol): """Calculate the transmission amplitude at an interface. Parameters ---------- index1 : float The index of refraction of the first material. index2 : float The index of refraction of the second material. theta1 : float The angle of incidence at interface 1, in radians theta2 : float The angle of incidence at interface 2, in radians pol : string The polarization of the source wave (either 's' or 'p'). Returns ------- transmitted_amplitude : float The amplitude of the transmitted field at the interface """ if pol == 's': numerator = 2 * index1 * np.cos(theta1) denominator = (index1 * np.cos(theta1) + index2 * np.cos(theta2)) elif pol == 'p': numerator = 2 * index1 * np.cos(theta1) denominator = (index1 * np.cos(theta2) + index2 * np.cos(theta1)) else: raise ValueError("Polarization must be 's' or 'p'") return numerator / denominator def wavenumber(freq, index, tand): """Calculate the wavenumber in a material. Parameters ---------- freq : float The frequency at which to calculate the wavevector, k tand : numpy array An array of loss tangents, ordered from source to terminating index : numpy array An array of refractive indices, ordered from source to terminating layer Returns ------- k : array The complex wavenumber, k """ k = 2 * np.pi * (freq / 3e8) * index * np.sqrt(1 + 1j * tand) return k def alpha2imagn(freq, a, b, n): """Convert Halpern's 'a' and 'b' from an absorption coefficient of the form `a*freq**b` to a (frequency-dependent) . Parameters ---------- freq : numpy array or float The frequency (Hz) (or frequencies) at which to calculate the loss tangent. a : float Halpern's 'a' coefficient b : float Halpern's 'b' coefficient n : float The real part of the material's refractive index Returns ------- imagn : numpy array or float The imaginary component of the refractive index """ nu = freq / 30e9 # First we need the frequency-dependent absorption coefficient, # alpha, which we get from the Halpern fit. From that we will # calculate k(appa), the extinction coefficient, for each # frequency of interest alpha = 2 * a * nu**b # This is the absorption-extinction coefficient relation as ~written # in Born & Wolf Principles of Optics 1st Ed., 1959, Ch. 13.1, # Pg. 614, Eq. 21 # The factor of 3e10 (c in units of cms^-1) ensures that our k is # unitless, as it ought to be. imagn = (100 * 3e8 * alpha) / (4 * np.pi * n * freq) return imagn def alpha2tand(freq, a, b, n): """Convert Halpern's 'a' and 'b' from an absorption coefficient of the form `a*freq**b` to a (frequency-dependent) loss tangent. Parameters ---------- freq : numpy array or float The frequency (Hz) (or frequencies) at which to calculate the loss tangent. a : float Halpern's 'a' coefficient b : float Halpern's 'b' coefficient n : float The real part of the material's refractive index Returns ------- tand : numpy array The loss tangent of the material at the given frequency and Halpern coefficients. """ imagn = alpha2imagn(freq, a, b, n) # The complex index of refraction of a material is related to the # complex (relative) permittivity by the relation: # e_r = e' + i*e'' = n^2 = (n + i*k)^2 = n^2 - k^2 + i*2nk # By equating the real and imaginary parts we are left with: # e' = (n^2 - k^2); e'' = 2nk # With this information we can find the loss tangent, which is simply # the ratio of the real and imaginary parts of the relative # permittivity: # tand = (e''/e') ep = n**2 - imagn**2 epp = 2 * n * imagn tand = epp / ep return tand def make_2x2(a11, a12, a21, a22, dtype=float): """Return a 2x2 array quickly. Parameters ---------- a11 : float Array element [0, 0]. a12 : float Array element [0, 1]. a21 : float Array element [1, 0]. a22 : float Array element [1, 1]. dtype : dtype, optional The datatype of the array. Defaults to float. Returns ------- array : numpy array A 2x2 array [[a11, a12], [a21, a22]] """ array = np.empty((2, 2), dtype=dtype) array[0, 0] = a11 array[0, 1] = a12 array[1, 0] = a21 array[1, 1] = a22 return array def prop_wavenumber(k, d, theta): """Propagate the wave through a material and calculate its offset, delta. Parameters ---------- k : array The wavenumber d : array An array of distances (thicknesses), ordered from source to terminating layer theta : float The angle the wave passes through the medium Returns ------- delta : array The phase difference """ # Turn off 'invalid multiplication' error; it's just the 'inf' boundaries olderr = sp.seterr(invalid='ignore') delta = k * d * np.cos(theta) # Now turn the error back on sp.seterr(**olderr) return delta def refract(n, theta0): """Calculate the angle by which an incident ray is refracted Parameters ---------- n : numpy array An array of refractive indices, ordered from source layer to terminator layer. theta0 : float The initial angle of incidence (radians) Returns ------- thetas : numpy array The Snell angles at each interface """ # Make a nice pairwise generator so we can avoid playing games with # index counting thetas = [theta0] ngen = zip(n, n[1:]) for i, rind in enumerate(ngen): theta = np.arcsin(np.real_if_close( rind[0] * np.sin(thetas[i]) / rind[1] )) thetas.append(theta) return np.asarray(thetas) def replace_tand(freq, tand_array, halpern_dict): """Calculate a frequency-dependent loss tangent from a material's Halpern coefficiencts if they exist. Parameters ---------- freq : float The frequency at which to calculate the loss tangent tand_array : numpy array The loss tangents of the materials, ordered from Source to Terminator halpern_dict : dict A dictionary keyed by layer index, containing Halpern coefficients Returns ------- tand_array : numpy array The loss tangents of the materials, ordered from Source to Terminator. Where possible, the Halpern coefficients have been applied to make the terms frequency-dependent. """ for k, v in halpern_dict.items(): tand_array[k] = alpha2tand(freq, v['a'], v['b'], v['n']) return tand_array def main(params): """Run a transmittance/reflectance calculation for the given parameters. This function is the primary entry-point to the calculation, and should not be called directly. Instead, call `Model.run()`. If you must call `core.main()` directly, only do so after first calling `Model.set_up()`. Parameters ---------- params : dict The dictionary contructed by `Model.set_up`. See that function documentation for details. Returns ------- result : dict A dictionary with three keys: * `frequency`: the frequency (in Hz) at which T and R were calculated * `transmittance`: the output transmittance (T) of the model * `reflectance`: the output reflectance (R) of the model """ rind = params['rind'] thick = params['thick'] tand = params['tand'] pol = params['pol'] theta0 = params['theta0'] theta = refract(rind, theta0) freq = params['freq'] halps = params['halpern_layers'] # Create containers for the reflection/transmission values we calculate # at each frequency ts = [] rs = [] for f in freq: if len(halps.keys()) > 0: tand = replace_tand(f, tand, halps) ks = wavenumber(f, rind, tand) delta = prop_wavenumber(ks, thick, theta) r_amp, t_amp = rt_amp(rind, delta, theta, pol) t_pow = t_power(t_amp, rind[0], rind[-1], theta[0], theta[-1]) r_pow = r_power(r_amp) ts.append(t_pow) rs.append(r_pow) ts = np.asarray(ts) rs = np.asarray(rs) results = {'frequency':freq, 'transmittance':ts, 'reflectance':rs} return results
anadolski/armmwave
armmwave/core.py
core.py
py
13,897
python
en
code
1
github-code
6
[ { "api_name": "numpy.dot", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 139, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 167, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 168, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 195, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 222, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 222, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 258, "usage_type": "attribute" }, { "api_name": "numpy.empty", "line_number": 321, "usage_type": "call" }, { "api_name": "scipy.seterr", "line_number": 348, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 349, "usage_type": "call" }, { "api_name": "scipy.seterr", "line_number": 351, "usage_type": "call" }, { "api_name": "numpy.arcsin", "line_number": 375, "usage_type": "call" }, { "api_name": "numpy.real_if_close", "line_number": 375, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 375, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 377, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 452, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 453, "usage_type": "call" } ]
70994878268
# -*- coding: utf-8 -*- import PySide2.QtWidgets as qtwidgets import PySide2.QtCore as qtcore import PySide2.QtGui as qtgui import PySide2.QtNetwork as qtnetwork import os.path import signal import socket class HButtonBar(qtwidgets.QWidget): layout=qtwidgets.QHBoxLayout def __init__(self,def_list): qtwidgets.QWidget.__init__(self) b_layout=self.layout() for label,callback in def_list: button = qtwidgets.QPushButton(label) button.clicked.connect(callback) b_layout.addWidget(button) self.setLayout(b_layout) class VButtonBar(HButtonBar): layout=qtwidgets.QVBoxLayout class OpenFileWidget(qtwidgets.QWidget): def __init__(self): qtwidgets.QWidget.__init__(self) self.field=qtwidgets.QLineEdit() button=qtwidgets.QPushButton("Browse...") layout = qtwidgets.QHBoxLayout() layout.addWidget(self.field,stretch=1) layout.addWidget(button,stretch=0) self.setLayout(layout) button.pressed.connect(self._open) def text(self): return self.field.text() def setText(self,txt): self.field.setText(txt) def blockTextSignals(self,flag): self.field.blockSignals(flag) def _open(self): dialog = qtwidgets.QFileDialog(self) dialog.setFileMode(qtwidgets.QFileDialog.ExistingFile) dialog.setAcceptMode(qtwidgets.QFileDialog.AcceptOpen) old=self.field.text() if not old: dialog.setDirectory(".") else: dialog.setDirectory(os.path.dirname(old)) dialog.selectFile(old) if dialog.exec_(): fnames = dialog.selectedFiles() self.field.setText(fnames[0]) class SaveFileWidget(OpenFileWidget): def _open(self): dialog = qtwidgets.QFileDialog(self) dialog.setFileMode(qtwidgets.QFileDialog.AnyFile) dialog.setAcceptMode(qtwidgets.QFileDialog.AcceptSave) old=self.field.text() if not old: dialog.setDirectory(".") else: dialog.setDirectory(os.path.dirname(old)) dialog.selectFile(old) if dialog.exec_(): fnames = dialog.selectedFiles() self.field.setText(fnames[0]) class OpenDirWidget(OpenFileWidget): def _open(self): dialog = qtwidgets.QFileDialog(self) dialog.setFileMode(qtwidgets.QFileDialog.Directory) dialog.setAcceptMode(qtwidgets.QFileDialog.AcceptOpen) dialog.setOptions(qtwidgets.QFileDialog.ShowDirsOnly) old=self.field.text() if not old: dialog.setDirectory(".") else: dialog.setDirectory(os.path.dirname(old)) dialog.selectFile(old) if dialog.exec_(): fnames = dialog.selectedFiles() self.field.setText(fnames[0]) class SignalWakeupHandler(qtnetwork.QAbstractSocket): def __init__(self, parent=None): super().__init__(qtnetwork.QAbstractSocket.UdpSocket, parent) self.old_fd = None # Create a socket pair self.wsock, self.rsock = socket.socketpair(type=socket.SOCK_DGRAM) # Let Qt listen on the one end self.setSocketDescriptor(self.rsock.fileno()) # And let Python write on the other end self.wsock.setblocking(False) self.old_fd = signal.set_wakeup_fd(self.wsock.fileno()) # First Python code executed gets any exception from # the signal handler, so add a dummy handler first self.readyRead.connect(lambda : None) # Second handler does the real handling self.readyRead.connect(self._readSignal) def __del__(self): # Restore any old handler on deletion if self.old_fd is not None and signal and signal.set_wakeup_fd: signal.set_wakeup_fd(self.old_fd) def _readSignal(self): # Read the written byte. # Note: readyRead is blocked from occuring again until readData() # was called, so call it, even if you don't need the value. data = self.readData(1) # Emit a Qt signal for convenience self.signalReceived.emit(data[0]) signalReceived = qtcore.Signal(int) class FormDialog(qtwidgets.QDialog): def _font(self,style,size): font_db = qtgui.QFontDatabase() family="Raleway" font=font_db.font(family,style,size) return font def __init__(self,window,title,form,*args,**kwargs): super().__init__(window,*args,**kwargs) self.setWindowTitle(title) flags = qtwidgets.QDialogButtonBox.Ok | qtwidgets.QDialogButtonBox.Cancel button_box = qtwidgets.QDialogButtonBox(flags) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) for w in button_box.findChildren(qtwidgets.QWidget): w.setFont(self._font("Medium",10)) f_widget=qtwidgets.QWidget() self._form=form f_widget.setLayout(self._form) for w in f_widget.findChildren(qtwidgets.QWidget): w.setFont(self._font("Medium",10)) v_layout = qtwidgets.QVBoxLayout() v_layout.addWidget(f_widget) v_layout.addWidget(button_box) self.setLayout(v_layout) def get_data(self): print("dialog") ret=self.exec_() data=list(self._form.get_data()) data.append(ret==self.Accepted) return tuple(data) class AwesomeToolBar(qtwidgets.QToolBar): def _font(self,family,style,size): font_db = qtgui.QFontDatabase() family="Font Awesome 5 "+family font=font_db.font(family,style,size) return font def __init__(self,parent): #icon,tooltip,size=8,style="Solid",family="Free"): qtwidgets.QToolBar.__init__(self,parent) def addAction(self,icon,tooltip,size=8,style="Solid",family="Free"): action=qtwidgets.QToolBar.addAction(self,icon) action.setToolTip(tooltip) action.setFont(self._font(family,style,size)) return action class AddRootProxyModel(qtcore.QIdentityProxyModel): root="==root==" def data(self, index, role): parent=index.parent() if parent.isValid(): return qtcore.QIdentityProxyModel.data(self,index,role) row=index.row() if row==0: if role not in [ qtcore.Qt.DisplayRole, qtcore.Qt.EditRole]: ret=qtcore.QIdentityProxyModel.data(self,index,role) print(role,ret) return ret return "----" sibling=index.sibling(row-1,index.column()) return qtcore.QIdentityProxyModel.data(self,sibling,role) def flags(self,index): if not index.parent().isValid(): if index.row()==0: return qtcore.Qt.ItemIsEnabled | qtcore.Qt.ItemIsSelectable | qtcore.Qt.ItemNeverHasChildren return qtcore.Qt.ItemIsEnabled | qtcore.Qt.ItemIsSelectable def rowCount(self,index): if index.isValid(): if index.parent().isValid(): return qtcore.QIdentityProxyModel.rowCount(self,index) if index.row()==0: return 0 return qtcore.QIdentityProxyModel.rowCount(self,index) return 1+qtcore.QIdentityProxyModel.rowCount(self) def index(self,row,column,parent=qtcore.QModelIndex()): if parent.isValid(): return qtcore.QIdentityProxyModel.index(self,row,column,parent) if row==0: ret=self.createIndex(0,column,self.root) return ret old=qtcore.QIdentityProxyModel.index(self,row-1,column,parent) return self.createIndex(row,column,old.internalPointer()) def parent(self,index): if not index.isValid(): return qtcore.QModelIndex() obj=index.internalPointer() if obj==self.root: return qtcore.QModelIndex() return qtcore.QIdentityProxyModel.parent(self,index) def mapToSource(self,proxyIndex): new_index=qtcore.QIdentityProxyModel.mapToSource(self,proxyIndex) if new_index.internalPointer()==self.root: return qtcore.QModelIndex() return new_index def mapFromSource(self,sourceIndex): new_index=qtcore.QIdentityProxyModel.mapFromSource(self,sourceIndex) if new_index.parent().isValid(): return new_index return self.createIndex(1+new_index.row(),new_index.column(), new_index.internalPointer()) # def mapFromSource(self, sourceIndex): # if not sourceIndex.isValid(): return qtcore.QModelIndex() # parent=sourceIndex.parent() # if parent.isValid(): # return self.createIndex(sourceIndex.row(), # sourceIndex.column(), # sourceIndex.internalPointer()) # return self.createIndex(1+sourceIndex.row(), # sourceIndex.column(), # sourceIndex.internalPointer()) # def mapToSource(self, proxyIndex): # if not proxyIndex.isValid(): return qtcore.QModelIndex() # parent=proxyIndex.parent() # if parent.isValid: # return qtcore.QIdentityProxyModel.mapToSource(self,proxyIndex) # obj=proxyIndex.internalPointer() # if obj==self.root: return qtcore.QModelIndex() # return self.sourceModel().createIndex(proxyIndex.row()-1, # proxyIndex.column(), # obj)
chiara-paci/djvueditor
lib/python/djvuedlib/widgets.py
widgets.py
py
9,581
python
en
code
0
github-code
6
[ { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 13, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 13, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QHBoxLayout", "line_number": 14, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 14, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget.__init__", "line_number": 17, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 17, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 17, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QPushButton", "line_number": 20, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 20, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QVBoxLayout", "line_number": 26, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 26, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 29, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 29, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget.__init__", "line_number": 32, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 32, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QLineEdit", "line_number": 33, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 33, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QPushButton", "line_number": 34, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 34, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QHBoxLayout", "line_number": 35, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 35, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 51, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 51, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 52, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 52, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 53, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 53, "usage_type": "name" }, { "api_name": "os.path.path.dirname", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 58, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 66, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 66, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 67, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 67, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 68, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 68, "usage_type": "name" }, { "api_name": "os.path.path.dirname", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 73, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 82, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 82, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 83, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 83, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 84, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 84, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QFileDialog", "line_number": 85, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 85, "usage_type": "name" }, { "api_name": "os.path.path.dirname", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 90, "usage_type": "name" }, { "api_name": "PySide2.QtNetwork.QAbstractSocket", "line_number": 96, "usage_type": "attribute" }, { "api_name": "PySide2.QtNetwork", "line_number": 96, "usage_type": "name" }, { "api_name": "PySide2.QtNetwork.QAbstractSocket", "line_number": 99, "usage_type": "attribute" }, { "api_name": "PySide2.QtNetwork", "line_number": 99, "usage_type": "name" }, { "api_name": "socket.socketpair", "line_number": 102, "usage_type": "call" }, { "api_name": "socket.SOCK_DGRAM", "line_number": 102, "usage_type": "attribute" }, { "api_name": "signal.set_wakeup_fd", "line_number": 107, "usage_type": "call" }, { "api_name": "signal.set_wakeup_fd", "line_number": 116, "usage_type": "attribute" }, { "api_name": "signal.set_wakeup_fd", "line_number": 117, "usage_type": "call" }, { "api_name": "PySide2.QtCore.Signal", "line_number": 127, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 127, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QDialog", "line_number": 129, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 129, "usage_type": "name" }, { "api_name": "PySide2.QtGui.QFontDatabase", "line_number": 131, "usage_type": "call" }, { "api_name": "PySide2.QtGui", "line_number": 131, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QDialogButtonBox", "line_number": 139, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 139, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QDialogButtonBox", "line_number": 141, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 141, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 145, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 145, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 148, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 148, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QWidget", "line_number": 151, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 151, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QVBoxLayout", "line_number": 154, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets", "line_number": 154, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QToolBar", "line_number": 166, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 166, "usage_type": "name" }, { "api_name": "PySide2.QtGui.QFontDatabase", "line_number": 168, "usage_type": "call" }, { "api_name": "PySide2.QtGui", "line_number": 168, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QToolBar.__init__", "line_number": 174, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets.QToolBar", "line_number": 174, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 174, "usage_type": "name" }, { "api_name": "PySide2.QtWidgets.QToolBar.addAction", "line_number": 177, "usage_type": "call" }, { "api_name": "PySide2.QtWidgets.QToolBar", "line_number": 177, "usage_type": "attribute" }, { "api_name": "PySide2.QtWidgets", "line_number": 177, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 182, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 182, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.data", "line_number": 188, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 188, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 188, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 191, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 191, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.data", "line_number": 192, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 192, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 192, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.data", "line_number": 197, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 197, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 197, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 202, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 202, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 203, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 203, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.rowCount", "line_number": 208, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 208, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 208, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.rowCount", "line_number": 210, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 210, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 210, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.rowCount", "line_number": 211, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 211, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 211, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QModelIndex", "line_number": 213, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 213, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.index", "line_number": 215, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 215, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 215, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.index", "line_number": 219, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 219, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 219, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QModelIndex", "line_number": 223, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 223, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QModelIndex", "line_number": 225, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 225, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.parent", "line_number": 226, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 226, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 226, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.mapToSource", "line_number": 229, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 229, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 229, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QModelIndex", "line_number": 231, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 231, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel.mapFromSource", "line_number": 235, "usage_type": "call" }, { "api_name": "PySide2.QtCore.QIdentityProxyModel", "line_number": 235, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 235, "usage_type": "name" } ]
36484764773
import cv2 import glob from matplotlib import pyplot as plt faceDet = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") faceDet_two = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml") faceDet_three = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml") faceDet_four = cv2.CascadeClassifier("haarcascade_frontalface_alt_tree.xml") fishface = cv2.face.FisherFaceRecognizer_create() fishface.read('fish.xml') emotions = ["neutral", "anger", "contempt", "disgust", "fear", "happy", "sadness", "surprise"] for files in glob.glob("C:\\Users\\HP\\Desktop\\classify\\*"): gray = cv2.imread(files) gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY) face = faceDet.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_SCALE_IMAGE) face_two = faceDet_two.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_SCALE_IMAGE) face_three = faceDet_three.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_SCALE_IMAGE) face_four = faceDet_four.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5), flags=cv2.CASCADE_SCALE_IMAGE) if len(face) == 1: facefeatures = face elif len(face_two) == 1: facefeatures = face_two elif len(face_three) == 1: facefeatures = face_three elif len(face_four) == 1: facefeatures = face_four else: facefeatures = "" for (x, y, w, h) in facefeatures: gray = gray[y:y+h, x:x+w] try: gray = cv2.resize(gray, (350, 350)) except: pass plt.subplot(132) plt.title('img') plt.imshow(gray, 'gray') plt.xticks([]) plt.yticks([]) plt.show() Class, abc = fishface.predict(gray) print(emotions[Class])
dishavarshney9/uhack
classi.py
classi.py
py
1,880
python
en
code
0
github-code
6
[ { "api_name": "cv2.CascadeClassifier", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.CascadeClassifier", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.CascadeClassifier", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.CascadeClassifier", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.face.FisherFaceRecognizer_create", "line_number": 9, "usage_type": "call" }, { "api_name": "cv2.face", "line_number": 9, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 16, "usage_type": "attribute" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 18, "usage_type": "attribute" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 19, "usage_type": "attribute" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 20, "usage_type": "attribute" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 21, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" } ]
20841031996
from sklearn.model_selection import train_test_split from sklearn import svm def svm_classification(X, y, C_in, gamma_in, kernel_in): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=y, random_state=42) classifierSVM = svm.SVC(C=C_in, degree=2, gamma=gamma_in, kernel=kernel_in) # training classifierSVM.fit(X_train, y_train) # prediksi data test y_pred_SVM = classifierSVM.predict(X_test) # return X_train, X_test, y_train, y_test, classifierSVM, y_pred_SVM return classifierSVM, y_pred_SVM, y_test
mfaisalafandi/identification_teks_ulasan_svm
Klasifikasi.py
Klasifikasi.py
py
566
python
en
code
0
github-code
6
[ { "api_name": "sklearn.model_selection.train_test_split", "line_number": 5, "usage_type": "call" }, { "api_name": "sklearn.svm.SVC", "line_number": 7, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 7, "usage_type": "name" } ]
71474372027
# Rotating or flipping an image from PIL import Image def main(): image = Image.open('../lenna.png') image.show('Original') # Rotate 60 degrees counter clockwise rotated_image = image.rotate(60) rotated_image.show('Rotate 60') # Rotate using Image.transpose # Transpose supports these values: # - Image.FLIP_LEFT_RIGHT # - Image.FLIP_TOP_BOTTOM # - Image.ROTATE_90 # - Image.ROTATE_180 # - Image.ROTATE_270 rotated_image = image.transpose(Image.ROTATE_90) rotated_image.show('Rotate 90') # Flip horizontal flipped_image = image.transpose(Image.FLIP_LEFT_RIGHT) flipped_image.show('Flip horizontal') # Flip vertical flipped_image = image.transpose(Image.FLIP_TOP_BOTTOM) flipped_image.show('Flip vertical') if __name__ == '__main__': main()
gkostadinov/py-pil-imageprocessing
1-transformations/2.rotate.py
2.rotate.py
py
837
python
en
code
5
github-code
6
[ { "api_name": "PIL.Image.open", "line_number": 6, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 6, "usage_type": "name" }, { "api_name": "PIL.Image.ROTATE_90", "line_number": 20, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 20, "usage_type": "name" }, { "api_name": "PIL.Image.FLIP_LEFT_RIGHT", "line_number": 24, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 24, "usage_type": "name" }, { "api_name": "PIL.Image.FLIP_TOP_BOTTOM", "line_number": 28, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 28, "usage_type": "name" } ]
43536088674
import re import math import scipy.stats as stats from statsmodels.stats.multitest import multipletests import numpy as np import pandas as pd from tqdm import tqdm # import functools import pprint from mutagene.dna import ( nucleotides, complementary_nucleotide, bases_dict, # comp_dict, extended_nucleotides, complementary_extended_nucleotide) from mutagene.io.motifs import get_known_motifs import logging logger = logging.getLogger(__name__) def identify_motifs(samples_mutations, custom_motif=None, strand=None, threshold=None, dump_matches=None, stat_type=None): """ :param samples_mutations: list of mutations from input file :param custom_motif: specified motif to search for :param strand: strand(s) to search on (T: transcribed, N: non-transcribed, A: any, or a combination theirof: 'TNA') :param dump_matches: pass through to process_mutations, stores all motif matches :param stat_type: pass through to process_mutations, choose statistical test :return: command-line output """ motif_matches = [] sig_motif_matches = [] pvals = [] if strand is None: strand = 'A' else: strand = set(strand) # in case TNA codes repeat if threshold is None: threshold = 0.05 if custom_motif: search_motifs = scanf_motif(custom_motif) else: motifs = get_known_motifs() search_motifs = motifs.copy() # search_motifs.extend(scanf_motif(custom_motif)) _strand_map = { 'T': 'transcribed', 'N': 'non-transcribed', 'A': 'any strand' } disable_progress_bar = logger.getEffectiveLevel() == logging.DEBUG for sample, mutations in tqdm(samples_mutations.items(), leave=False, disable=disable_progress_bar): if mutations is not None and len(mutations) > 0: first_mut_seq_with_coords = mutations[0][-1] window_size = (len(first_mut_seq_with_coords) - 1) // 2 for m in tqdm(search_motifs, leave=False, disable=disable_progress_bar): for s in strand: result, saved_data = process_mutations( mutations, m['motif'], m['position'], m['ref'], m['alt'], window_size, s, stat_type=stat_type) if dump_matches: for chrom, pos in saved_data['mutation_motif']: dump_matches.write( "chr{}\t{}\t{}\t{}\t{}\t{}\n".format( chrom, pos, int(pos) + 1, sample, m['logo'], _strand_map[s])) debug_data = { 'sample': sample, 'motif': m['logo'], 'strand': s} debug_data.update(result) debug_string = pprint.pformat(debug_data, indent=4) logger.debug(debug_string) motif_matches.append({ 'sample': sample, 'mutagen': m['name'], 'motif': m['logo'], 'strand': _strand_map[s], 'enrichment': result['enrichment'], 'mut_min': result['mutation_load'], 'mut_max': result['bases_mutated_in_motif'], 'odds_ratio': result['odds_ratio'], 'pvalue': result['pvalue'] }) pvals.append(result['pvalue']) qvalues = get_corrected_pvalues(pvals) for i, motif_dict in enumerate(motif_matches): motif_matches[i]['qvalue'] = qvalues[i] if motif_dict['mut_min'] == 0: continue if motif_dict['qvalue'] >= threshold: continue sig_motif_matches.append(motif_dict) return sig_motif_matches def scanf_motif(custom_motif): """ recognize motif syntax like A[C>T]G and create a motif entry """ m = re.search( r'([' + extended_nucleotides + ']*)\\[([' + nucleotides + '])>([' + extended_nucleotides + '])\\]([' + extended_nucleotides + ']*)', custom_motif.upper()) if m: g = m.groups('') # print("GROUPS", m.group(1), m.group(2), m.group(3), m.group(4)) entry = {} entry['logo'] = m.group(0) entry['motif'] = g[0] + g[1] + g[3] entry['position'] = len(g[0]) entry['ref'] = g[1] entry['alt'] = g[2] if entry['ref'] == entry['alt']: return [] entry['name'] = 'Custom motif' entry['references'] = '' return [entry, ] return [] def calculate_RR(ct): """ Mutation is treatment No mutation is placebo :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: enrichment or risk ratio """ try: RR = ((ct.loc['mutation', 'motif'] / (ct.loc['mutation', 'motif'] + ct.loc['mutation', 'no motif'])) / (ct.loc['no mutation', 'motif'] / (ct.loc['no mutation', 'motif'] + ct.loc['no mutation', 'no motif']))) except ZeroDivisionError: RR = 0.0 return RR def calculate_RR_for_motif(ct): """ Motif is treatment No motif is placebo :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: enrichment or risk ratio """ try: RR = ((ct.loc['mutation', 'motif'] / (ct.loc['mutation', 'motif'] + ct.loc['no mutation', 'motif'])) / (ct.loc['mutation', 'no motif'] / (ct.loc['mutation', 'no motif'] + ct.loc['no mutation', 'no motif']))) except ZeroDivisionError: RR = 0.0 return RR def calculate_OR(ct): """ :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: odds ratio """ try: OR = ( (ct.loc['mutation', 'motif'] / ct.loc['mutation', 'no motif']) / (ct.loc['no mutation', 'motif'] / ct.loc['no mutation', 'no motif'])) except ZeroDivisionError: OR = 0.0 return OR def Haldane_correction(ct, pseudocount=0.5): """ :param ct: mutually exclusive counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :return: contigency table after Haldane correction is applied """ """ apply Haldane correction (+ 0.5) if any of the values in the contingency table is zero """ return ct + pseudocount if np.any(np.isclose(ct.to_numpy(), 0.0)) else ct def calculate_mutation_load(N_mutations, enrichment): """ Mutation load (minimum estimate) calculation following Gordenin et al protocol However, at this point motif matches are not filtered for p-value significance That's done in the end after multiple testing correction """ mutation_load = 0.0 if enrichment > 1.0: mutation_load = N_mutations * (enrichment - 1) / enrichment # elif p_value < p_value_threshold: tests for enrichment depletion return mutation_load def get_stats(ct, stat_type='fisher'): """ Calculate Fisher and Chi2 test pvalues, :param ct: counts of mutated matching motifs, matching mutations, matching motifs, and matching bases :param stat_type: Type of pvalue (Fisher's ('fisher') or Chi-Square ('chi2')) :return: pvalue of the corresponding statistical test """ p_val = 1.0 if stat_type is None: stat_type = 'fisher' stat_type = stat_type.lower() acceptable_tests = ('fisher', 'chi2') if stat_type not in acceptable_tests: logger.warning('get_stats() can only calculate p-values for ' + str(acceptable_tests)) if stat_type == 'fisher': try: p_val = stats.fisher_exact(ct, alternative="greater")[1] # if p_val > 0.05: # p_val = stats.fisher_exact(ct, alternative="less")[1] #calculates if motif is underrepresented except ValueError: p_val = 1.0 elif stat_type == 'chi2': try: p_val = stats.chi2_contingency(ct)[1] except ValueError: p_val = 1.0 return p_val def get_corrected_pvalues(p_values): qvalues = [] if len(p_values): qvalues = multipletests(pvals=p_values, method='fdr_bh')[1] return qvalues # @functools.lru_cache(maxsize=None) def get_rev_comp_seq(sequence): """ :param sequence: forward DNA sequence :return: reverse complimentary DNA sequence """ # rev_comp_seq = "".join([complementary_nucleotide[i] for i in reversed(sequence)]) cn = complementary_nucleotide return [(i[0], i[1], cn[i[2]], '-') for i in reversed(sequence)] def mutated_base(mutation, ref, alt): """ :param mutation: [(record.CHROM, record.POS, record.REF, record.ALT)] :param ref: list the nucleotide base pre-mutation :param alt: list the nucleotide base post-mutation :return: True if mutation matches the specified ref and alt """ # makes sure single base substitution _, _, mut_ref, mut_alt = mutation if mut_alt and mut_ref and len(mut_ref) == 1 and len(mut_alt) == 1 and mut_ref != mut_alt: # mutation matches the substitution if mutation[2] in bases_dict[ref] and mutation[3] in bases_dict[alt]: return True def find_matching_motifs(seq, motif, motif_position): """ :param seq: DNA sequence :param motif: specified motif :param motif_position: position of mutated base in motif, 0-base numbering :return: generator of matching positions TODO: SLOW algorithm O(n * m). Need to create a suffix tree with regexp """ # print("Looking for motif {} in {}, {}".format(motif, sequence, len(sequence) - len(motif))) for i in range(len(seq) - len(motif) + 1): # s = seq[i: i + len(motif)] # print(s) for j, c in enumerate(motif): if seq[i + j][2] not in bases_dict[c]: break else: yield seq[i + motif_position] def find_matching_bases(seq, ref, motif, motif_position): """ :param seq: :param ref: :param motif: :param motif_position: :return: bases that match mutations """ for i in range(motif_position, len(seq) - (len(motif) - motif_position) + 1): # range excludes border of sequence that may be motifs that don't fit window size if seq[i][2] in bases_dict[ref]: yield seq[i] def make_contingency_table( array=None, motif_mutation=None, no_motif_mutation=None, motif_no_mutation=None, no_motif_no_mutation=None): """ Make a 2x2 contingency table out of a numpy array or four integers""" if array is not None: assert isinstance(array, np.ndarray) assert array.shape == (2, 2) else: array = np.array([ [motif_mutation, no_motif_mutation], [motif_no_mutation, no_motif_no_mutation] ]) contingency_table = pd.DataFrame(array) contingency_table.columns = ["motif", "no motif"] contingency_table.index = ["mutation", "no mutation"] return contingency_table def process_mutations(mutations, motif, motif_position, ref, alt, range_size, strand, stat_type=None): """ :param mutations: mutations to be analyzed :param motif: specified motif to search for :param motif_position: location of mutation in motif, 0-base numbering from left of motif :param ref: base pre-mutation :param alt: base post-mutation :param range_size: how far in the motif to search for :param strand: strand motif should be searched on :param stat_type: type of pvalue: Fisher's (default) or Chi-Square :param dump_matches: an optional file handle to save all mutations matching the motif regardless of their significance :return: (results summary disctionary, data_dump with stored_data or None if dump_matches is None) """ assert range_size >= 0 assert len(ref) == 1 assert len(alt) == 1 assert 0 <= motif_position < len(motif) assert len(set(strand) - set("ATN")) == 0, "[process_mutations] only A, T, N allowed in strand parameter" matching_bases = set() matching_motifs = set() matching_mutated_motifs = set() matching_mutated_bases = set() # extra loop for sample in sample list for chrom, pos, transcript_strand, x, y, seq in mutations: # extract the longest sequence we would ever need (motif + range_size); range size = # bases outside mutation mutation = chrom, pos, x, y rev_seq = get_rev_comp_seq(seq) # assuming that all mutations are reported in '+' reference strand if strand == 'A' or (strand == 'T' and transcript_strand == '+') or (strand == 'N' and transcript_strand == '-'): # not mutated: for ref_match in find_matching_bases(seq, ref, motif, motif_position): matching_bases.add(ref_match[0:2]) for motif_match in find_matching_motifs(seq, motif, motif_position): matching_motifs.add(motif_match[0:2]) # mutated: if mutated_base(mutation, ref, alt): # m = (mutation[0], mutation[1], mutation[2], "+") matching_mutated_bases.add(mutation[0:2]) context_of_mutation = seq[range_size - motif_position: range_size - motif_position + len(motif)] for motif_match in find_matching_motifs(context_of_mutation, motif, motif_position): matching_mutated_motifs.add(motif_match[0:2]) if strand == 'A' or (strand == 'T' and transcript_strand == '-') or (strand == 'N' and transcript_strand == '+'): # rev compl: not mutated: for ref_match in find_matching_bases(rev_seq, ref, motif, motif_position): matching_bases.add(ref_match[0:2]) for motif_match in find_matching_motifs(rev_seq, motif, motif_position): matching_motifs.add(motif_match[0:2]) # rev compl: mutated: if mutated_base(mutation, complementary_extended_nucleotide[ref], complementary_extended_nucleotide[alt]): # m = (mutation[0], mutation[1], mutation[2], "-") matching_mutated_bases.add(mutation[0:2]) # rev comp: context_of_mutation = rev_seq[range_size - motif_position: range_size - motif_position + len(motif)] for motif_match in find_matching_motifs(context_of_mutation, motif, motif_position): matching_mutated_motifs.add(motif_match[0:2]) motif_mutation_count = len(matching_mutated_motifs) # bases mutated in motif stat_mutation_count = len(matching_mutated_bases - matching_mutated_motifs) # bases mutated not in motif stat_motif_count = len(matching_motifs - matching_mutated_motifs) # bases not mutated in motif stat_ref_count = len(matching_bases - (matching_motifs | matching_mutated_bases)) # bases not mutated not in motif # number of A[T>G]T occurrences motif_mutation_count # / number of [T>G] occurrences stat_mutation_count + motif_mutation_count # ---------- # number of ATT occurrences in DNA context stat_motif_count # / number of T occurrences in DNA context stat_ref_count + stat_motif_count contingency_table = make_contingency_table( motif_mutation=motif_mutation_count, no_motif_mutation=stat_mutation_count, motif_no_mutation=stat_motif_count, no_motif_no_mutation=stat_ref_count) # data={ # "'{}>{}' mutation".format(ref, alt): [stat_mutation_count, motif_mutation_count], # "no '{}>{}' mutation".format(ref, alt): [stat_ref_count, stat_motif_count]}, # index=("no '{}' motif".format(motif), "'{}' motif".format(motif))) logger.debug("\n" + contingency_table.to_string() + "\n") logger.debug("({} / ({} + {}) ) / ({} / ({} + {}))".format( contingency_table.loc['mutation', 'motif'], contingency_table.loc['mutation', 'motif'], contingency_table.loc['mutation', 'no motif'], contingency_table.loc['no mutation', 'motif'], contingency_table.loc['no mutation', 'motif'], contingency_table.loc['no mutation', 'no motif'])) contingency_table = Haldane_correction(contingency_table) enrichment = risk_ratio = calculate_RR(contingency_table) # enrichment = risk ratio odds_ratio = calculate_OR(contingency_table) p_val = get_stats(contingency_table, stat_type) mut_load = calculate_mutation_load(motif_mutation_count, enrichment) result = { 'enrichment': enrichment, # AKA risk ratio 'odds_ratio': odds_ratio, 'mutation_load': math.ceil(mut_load), 'pvalue': p_val, 'bases_mutated_in_motif': motif_mutation_count, 'bases_mutated_not_in_motif': stat_mutation_count, 'bases_not_mutated_in_motif': stat_motif_count, 'bases_not_mutated_not_in_motif': stat_ref_count, 'total_mutations': len(mutations) } saved_matches = { 'mutation_motif': matching_mutated_motifs } return result, saved_matches
neksa/mutagene
mutagene/motifs/__init__.py
__init__.py
py
17,419
python
en
code
3
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 21, "usage_type": "call" }, { "api_name": "mutagene.io.motifs.get_known_motifs", "line_number": 48, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 60, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 65, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 88, "usage_type": "call" }, { "api_name": "re.search", "line_number": 118, "usage_type": "call" }, { "api_name": "mutagene.dna.extended_nucleotides", "line_number": 119, "usage_type": "name" }, { "api_name": "mutagene.dna.nucleotides", "line_number": 119, "usage_type": "name" }, { "api_name": "numpy.any", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 191, "usage_type": "call" }, { "api_name": "scipy.stats.fisher_exact", "line_number": 227, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 227, "usage_type": "name" }, { "api_name": "scipy.stats.chi2_contingency", "line_number": 234, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 234, "usage_type": "name" }, { "api_name": "statsmodels.stats.multitest.multipletests", "line_number": 243, "usage_type": "call" }, { "api_name": "mutagene.dna.complementary_nucleotide", "line_number": 254, "usage_type": "name" }, { "api_name": "mutagene.dna.bases_dict", "line_number": 269, "usage_type": "name" }, { "api_name": "mutagene.dna.bases_dict", "line_number": 287, "usage_type": "name" }, { "api_name": "mutagene.dna.bases_dict", "line_number": 303, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 316, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 319, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 323, "usage_type": "call" }, { "api_name": "mutagene.dna.complementary_extended_nucleotide", "line_number": 385, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 437, "usage_type": "call" } ]
8502338250
import torch import torch.nn as nn from Descriptor import Descriptor from Recovery_Submodule import R_t, Pyramid_maxout class TR(nn.Module): # translucency recovery(TR) module def __init__(self, input_channel=3, beta=4, gamma=4): super(TR, self).__init__() self.D_t = Descriptor(input_channel, gamma) self.R_t = R_t(385, beta) def forward(self, x, **kwargs): f_t = self.D_t(x) y_, f_c, z_hat, a = self.R_t(x, f_t, **kwargs) return y_, f_c, z_hat, a class TR_new(nn.Module): # A new translucency recovery(TR) module with two descriptors def __init__(self, input_channel=3, beta=4, gamma=4): super(TR_new, self).__init__() self.D_t_1 = Descriptor(input_channel, gamma) self.D_t_2 = Descriptor(input_channel, gamma) self.SE = Pyramid_maxout(385, 1, beta) self.AE = Pyramid_maxout(385, 3, beta) def forward(self, x, **kwargs): f_t_1 = self.D_t_1(x) z_hat = self.SE(f_t_1) z_hat[z_hat >= 1] = 1 z_hat[z_hat <= 0] = 0 z_hat_ = z_hat.detach() f_t_2 = self.D_t_2(x) a = self.AE(f_t_2) # yield estimated snow-free image y' y_ = (z_hat_ < 1) * (x - a * z_hat_) / (1 - z_hat_ + 1e-8) + (z_hat_ == 1) * x y_[y_ >= 1] = 1 y_[y_ <= 0] = 0 # yield feature map f_c f_c = torch.cat([y_, z_hat_, a], dim=1) return y_, f_c, z_hat, a class TR_za(nn.Module): # A translucency recovery(TR) module predict z\times a def __init__(self, input_channel=3, beta=4, gamma=4): super(TR_za, self).__init__() self.D_t = Descriptor(input_channel, gamma) self.SE = Pyramid_maxout(385, 1, beta) self.SAE = Pyramid_maxout(385, 3, beta) def forward(self, x, **kwargs): f_t = self.D_t(x) z_hat = self.SE(f_t) za = self.SAE(f_t) z_hat[z_hat >= 1] = 1 z_hat[z_hat <= 0] = 0 za[za >= 1] = 1 za[za <= 0] = 0 # yield estimated snow-free image y' y_ = (z_hat < 1) * (x - za) / (1 - z_hat + 1e-8) + (z_hat == 1) * x y_[y_ >= 1] = 1 y_[y_ <= 0] = 0 # yield feature map f_c f_c = torch.cat([y_, z_hat, za], dim=1) return y_, f_c, z_hat, za class RG(nn.Module): # the residual generation (RG) module def __init__(self, input_channel=7, beta=4, gamma=4): super(RG, self).__init__() self.D_r = Descriptor(input_channel, gamma) block = [] for i in range(beta): block.append(nn.Conv2d(385, 3, 2 * i + 1, 1, padding=i)) self.conv_module = nn.ModuleList(block) self.activation = nn.Tanh() def forward(self, f_c): f_r = self.D_r(f_c) for i, module in enumerate(self.conv_module): if i == 0: r = module(f_r) else: r += r + module(f_r) r = self.activation(r) return r class DesnowNet(nn.Module): # the DesnowNet def __init__(self, input_channel=3, beta=4, gamma=4, mode='original'): super(DesnowNet, self).__init__() if mode == 'original': self.TR = TR(input_channel, beta, gamma) elif mode == 'new_descriptor': self.TR = TR_new(input_channel, beta, gamma) elif mode == 'za': self.TR = TR_za(input_channel, beta, gamma) else: raise ValueError("Invalid architectural mode") self.RG = RG(beta=beta, gamma=gamma) def forward(self, x, **kwargs): y_, f_c, z_hat, a = self.TR(x, **kwargs) r = self.RG(f_c) y_hat = r + y_ return y_hat, y_, z_hat, a if __name__ == '__main__': device = 'cuda' net = DesnowNet().to(device) mask = torch.zeros([2, 1, 64, 64]).to(device) img = torch.zeros([2, 3, 64, 64]).to(device) y_hat, y_, z_hat, a = net(img, mask=mask) y_hat.mean().backward() print("finished")
linYDTHU/DesnowNet_Context-Aware_Deep_Network_for_Snow_Removal
network/DesnowNet.py
DesnowNet.py
py
3,956
python
en
code
15
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 7, "usage_type": "name" }, { "api_name": "Descriptor.Descriptor", "line_number": 11, "usage_type": "call" }, { "api_name": "Recovery_Submodule.R_t", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 20, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 20, "usage_type": "name" }, { "api_name": "Descriptor.Descriptor", "line_number": 24, "usage_type": "call" }, { "api_name": "Descriptor.Descriptor", "line_number": 25, "usage_type": "call" }, { "api_name": "Recovery_Submodule.Pyramid_maxout", "line_number": 26, "usage_type": "call" }, { "api_name": "Recovery_Submodule.Pyramid_maxout", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "name" }, { "api_name": "Descriptor.Descriptor", "line_number": 49, "usage_type": "call" }, { "api_name": "Recovery_Submodule.Pyramid_maxout", "line_number": 50, "usage_type": "call" }, { "api_name": "Recovery_Submodule.Pyramid_maxout", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 69, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 69, "usage_type": "name" }, { "api_name": "Descriptor.Descriptor", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.nn.Tanh", "line_number": 78, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 78, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 91, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 91, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 116, "usage_type": "call" } ]
35226084140
from __future__ import division # Our Backend for the App! # Built with Flask # Import Flask import flask import requests import os from flask import send_file import re import sys # Create the application app = flask.Flask(__name__) # serving home.html @app.route('/', methods=['GET']) def serve_page(): return flask.render_template('home.html') # process query @app.route('/process_query', methods=['POST']) def process_query(): data = flask.request.form # is a dictionary input = data['user_input'] input_in_list = input.split(' ') return flask.render_template('home.html', same=processInput(input_in_list), og=input) def processInput(input_in_list): for s, i in enumerate(input_in_list): if "bye" in i.lower(): input_in_list[s] = "static/bye.jpg" if "hello" in i.lower(): input_in_list[s] = "static/hello.png" if "yes" in i.lower(): input_in_list[s] = "static/yes.png" if "no" in i.lower(): input_in_list[s] = "static/no.png" if "please" in i.lower(): input_in_list[s] = "static/please.png" if "thanks" in i.lower(): input_in_list[s] = "static/thanks.png" if "who" in i.lower(): input_in_list[s] = "static/who.png" if "what" in i.lower(): input_in_list[s] = "static/what.png" if "when" in i.lower(): input_in_list[s] = "static/when.png" if "where" in i.lower(): input_in_list[s] = "static/where.png" if "why" in i.lower(): input_in_list[s] = "static/why.png" if "which" in i.lower(): input_in_list[s] = "static/which.png" if "how" in i.lower(): input_in_list[s] = "static/how.png" return input_in_list def listen_print_loop(responses): """Iterates through server responses and prints them. The responses passed is a generator that will block until a response is provided by the server. Each response may contain multiple results, and each result may contain multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we print only the transcription for the top alternative of the top result. In this case, responses are provided for interim results as well. If the response is an interim one, print a line feed at the end of it, to allow the next result to overwrite it, until the response is a final one. For the final one, print a newline to preserve the finalized transcription. """ num_chars_printed = 0 for response in responses: if not response.results: continue # The `results` list is consecutive. For streaming, we only care about # the first result being considered, since once it's `is_final`, it # moves on to considering the next utterance. result = response.results[0] if not result.alternatives: continue # Display the transcription of the top alternative. transcript = result.alternatives[0].transcript # Display interim results, but with a carriage return at the end of the # line, so subsequent lines will overwrite them. # # If the previous result was longer than this one, we need to print # some extra spaces to overwrite the previous result overwrite_chars = ' ' * (num_chars_printed - len(transcript)) if not result.is_final: sys.stdout.write(transcript + overwrite_chars + '\r') sys.stdout.flush() num_chars_printed = len(transcript) else: return flask.render_template('home.html', same=processInput("".join(transcript).split(" ")), og="".join(transcript)) # Exit recognition if any of the transcribed phrases could be # one of our keywords. if re.search(r'\b(exit|quit)\b', transcript, re.I): print('Exiting..') break num_chars_printed = 0 @app.route('/speech', methods=['GET']) def main(): # See http://g.co/cloud/speech/docs/languages # for a list of supported languages. language_code = 'en-US' # a BCP-47 language tag if __name__ == '__main__': app.run(debug=True)
manichandra95151/TTSL
main.py
main.py
py
4,265
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 15, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 25, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 28, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 98, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 98, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 99, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 99, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 104, "usage_type": "call" }, { "api_name": "re.search", "line_number": 108, "usage_type": "call" }, { "api_name": "re.I", "line_number": 108, "usage_type": "attribute" } ]
24312665302
from langdetect import detect def to_sentences(text): text = text.replace("\n", " ") sentences = [s + '.' for s in text.split(".") if s != ""] return sentences def divide(text, input_size=5000): """ Divide text into chunks of input_size Args: text (str): Text to be divided input_size (int): Size of each chunk """ # short input_size if asian lang = detect(text) if lang in ['ko', 'ja', 'zh-cn', 'zh-tw', 'zh-hk']: input_size = min(input_size, 1300) # divide text by words text = to_sentences(text) result = [] temp = "" for word in text: if len(temp + word) >= input_size: result.append(temp) temp = "" temp += word result.append(temp) return result
hyunooss/SSUmmary
django-server/ssummary_site/modules/utils.py
utils.py
py
788
python
en
code
0
github-code
6
[ { "api_name": "langdetect.detect", "line_number": 18, "usage_type": "call" } ]
22807898242
# coding: utf8 """锁Lock 用于避免进程间对shared memory的争夺""" import multiprocessing import time def job(val, num, lo): lo.acquire() # 取得锁 for _ in range(10): time.sleep(0.1) val.value += num print(val.value) lo.release() # 释放锁 def multicore(): lo = multiprocessing.Lock() # 创建锁对象 share_memory = multiprocessing.Value("i", 0) # 初始化为0的一个共享int块变量 res1 = multiprocessing.Process(target=job, args=(share_memory, 1, lo)) res2 = multiprocessing.Process(target=job, args=(share_memory, 9, lo)) res1.start() res2.start() res1.join() res2.join() if __name__ == "__main__": multicore()
sola1121/practice_code
python3/对于异步的例子/multiprocessing/6 multiprocessing lock锁.py
6 multiprocessing lock锁.py
py
752
python
en
code
0
github-code
6
[ { "api_name": "time.sleep", "line_number": 11, "usage_type": "call" }, { "api_name": "multiprocessing.Lock", "line_number": 17, "usage_type": "call" }, { "api_name": "multiprocessing.Value", "line_number": 19, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 21, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 22, "usage_type": "call" } ]
29074159051
from RepSys import Error, config from RepSys.util import execcmd from RepSys.VCS import * from os.path import basename, dirname from os import chdir, getcwd import sys import re import time from xml.etree import cElementTree as ElementTree import subprocess class GITLogEntry(VCSLogEntry): def __init__(self, revision, author, date): VCSLogEntry.__init__(self, revision, author, data) class GIT(VCS): def __init__(self): VCS.__init__(self) self.vcs_name = "git" self.vcs_command = config.get("global", "git-command", "git") self.vcs_supports['clone'] = True self.env_defaults = {"GIT_SSH": self.vcs_wrapper} def clone(self, url, targetpath, **kwargs): if url.split(':')[0].find("svn") < 0: return VCS.clone(self, url, targetpath, **kwargs) else: # To speed things up on huge repositories, we'll just grab all the # revision numbers for this specific directory and grab these only # in stead of having to go through each and every revision... retval, result = execcmd("svn log --stop-on-copy --xml %s" % url) if retval: return retval parser = ElementTree.XMLTreeBuilder() result = "".join(result.split("\n")) parser.feed(result) log = parser.close() logentries = log.getiterator("logentry") revisions = [] topurl = dirname(url) trunk = basename(url) tags = "releases" execcmd("git svn init %s --trunk=%s --tags=%s %s" % (topurl, trunk, tags, targetpath), show=True) chdir(targetpath) for entry in logentries: revisions.append(entry.attrib["revision"]) while revisions: execcmd("git svn fetch -r%d" % int(revisions.pop()), show=True) cmd = ["svn", "rebase"] return self._execVcs_success(*cmd, **kwargs) class SVNLook(VCSLook): def __init__(self, repospath, txn=None, rev=None): VCSLook.__init__(self, repospath, txn, rev) # vim:et:ts=4:sw=4
mdkcauldron/proyvinds-repsys
RepSys/git.py
git.py
py
2,133
python
en
code
0
github-code
6
[ { "api_name": "RepSys.config.get", "line_number": 20, "usage_type": "call" }, { "api_name": "RepSys.config", "line_number": 20, "usage_type": "name" }, { "api_name": "RepSys.util.execcmd", "line_number": 31, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree.XMLTreeBuilder", "line_number": 34, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 34, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 41, "usage_type": "call" }, { "api_name": "RepSys.util.execcmd", "line_number": 43, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 44, "usage_type": "call" }, { "api_name": "RepSys.util.execcmd", "line_number": 48, "usage_type": "call" } ]
7422093495
from operator import add from itertools import chain, combinations from functools import reduce import math import numpy as np from scipy import ndimage from tkinter import * class GF2(object): def __init__(self, a=0): self.value = int(a) & 1 def __add__(self, rhs): return GF2(self.value + GF2(rhs).value) def __mul__(self, rhs): return GF2(self.value * GF2(rhs).value) def __sub__(self, rhs): return GF2(self.value - GF2(rhs).value) def __truediv__(self, rhs): return GF2(self.value / GF2(rhs).value) def __repr__(self): return str(self.value) def __eq__(self, rhs): if isinstance(rhs, GF2): return self.value == rhs.value return self.value == rhs def __le__(self, rhs): if isinstance(rhs, GF2): return self.value <= rhs.value return self.value <= rhs def __lt__(self, rhs): if isinstance(rhs, GF2): return self.value < rhs.value return self.value < rhs def __int__(self): return self.value def __long__(self): return self.value GF2array = np.vectorize(GF2) def gjel(A): nulldim = 0 for i, row1 in enumerate(A): pivot = A[i:, i].argmax() + i if A[pivot, i] == 0: nulldim = len(A) - i break new_row = A[pivot] / A[pivot, i] A[pivot] = A[i] row1[:] = new_row for j, row2 in enumerate(A): if j == i: continue row2[:] -= new_row*A[j, i] return A, nulldim def GF2inv(A): n = len(A) assert n == A.shape[1], "Matrix must be square" A = np.hstack([A, np.eye(n)]) B, nulldim = gjel(GF2array(A)) inverse = np.int_(B[-n:, -n:]) E = B[:n, :n] null_vectors = [] if nulldim > 0: null_vectors = E[:, -nulldim:] null_vectors[-nulldim:, :] = GF2array(np.eye(nulldim)) null_vectors = np.int_(null_vectors.T) return inverse, null_vectors def lightsoutbase(n): a = np.eye(n*n) a = np.reshape(a, (n*n, n, n)) a = np.array(list(map(ndimage.binary_dilation, a))) return np.reshape(a, (n*n, n*n)) def powerset(iterable): s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) class LightsOut(object): def __init__(self, size=5): self.n = size self.base = lightsoutbase(self.n) self.invbase, self.null_vectors = GF2inv(self.base) def solve(self, b): b = np.asarray(b) assert b.shape[0] == b.shape[1] == self.n, "incompatible shape" if not self.issolvable(b): raise ValueError("The given setup is not solvable") first = np.dot(self.invbase, b.ravel()) & 1 solutions = [(first + reduce(add, nvs, 0)) & 1 for nvs in powerset(self.null_vectors)] final = min(solutions, key=lambda x: x.sum()) return np.reshape(final, (self.n, self.n)) def issolvable(self, b): b = np.asarray(b) assert b.shape[0] == b.shape[1] == self.n, "incompatible shape" b = b.ravel() p = [np.dot(x, b) & 1 for x in self.null_vectors] return not any(p) def text_to_mat(gridtxt, invert=True): gridlist = [int(s) for s in list(gridtxt)] shape = np.sqrt(len(gridlist)) if shape%1 != 0: print("input matrix is not square.") return 1 shape = int(shape) matlist = [gridlist[i: i+shape] for i in range(0, len(gridlist), shape)] mat = np.array(matlist) if invert: mat = 1-mat return mat def mat_to_text(mat, invert=False): s = "" for i in mat: for j in i: if invert: s += str(1-j) else: s += str(j) return s def text_solver(gridtxt): mat_inv = text_to_mat(gridtxt, True) if type(mat_inv) == int: return 1 lo = LightsOut(3) try: bsol = lo.solve(mat_inv) except: print("Error in determining solution") return 1 return bsol master = Tk() master_gridtxt = StringVar(value="000000000") master.title("DVa's Puzzle Solver") master.geometry("400x115") master.resizable(width=False, height=False) check_size = 25 check_on = PhotoImage(width=check_size, height=check_size) check_off = PhotoImage(width=check_size, height=check_size) check_on.put(("green"), to=(0,0,check_size,check_size)) check_off.put(("red"), to=(0,0,check_size,check_size)) label_text = StringVar() def update_gridtxt(): b_solve['state'] = NORMAL master_gridtxt.set("") for i in range(9): s = str(globals()[f"b_state{i}"].get()) master_gridtxt.set(master_gridtxt.get() + s) def reset_boxes(): for i in range(9): globals()[f"b_state{i}"].set(0) label_text.set("") b_solve['state'] = NORMAL def final_wrapper(gridtxt): mat = text_solver(gridtxt) gridtxt_final = mat_to_text(mat) reset_boxes() for idx, i in enumerate(gridtxt_final): if i == "1": globals()[f"b{idx}"].select() b_solve['state'] = DISABLED label_text.set("Solved. Shoot the lamps marked with green boxes.") for i in range(9): j = i+1 col = i%3 row = math.ceil(j/3) globals()[f"b_state{i}"] = IntVar() globals()[f"b{i}"] = Checkbutton(master, variable=globals()[f"b_state{i}"], image=check_off, selectimage=check_on, indicatoron=False, onvalue=1, offvalue=0, command=update_gridtxt) globals()[f"b{i}"].grid(row=row, column=col, padx=1, pady=1) b_solve = Button(master, text="Solve", command=lambda:final_wrapper(master_gridtxt.get()), anchor="w") b_solve.grid(row=1, column=4, padx=1, pady=1, sticky="w") b_reset = Button(master, text="Reset", command=reset_boxes, anchor="w") b_reset.grid(row=2, column=4, padx=1, pady=1, sticky="w") lbl = Label(master, textvariable=label_text, anchor="w") lbl.grid(row=3, column=4, padx=1, pady=1) master.mainloop()
ThaumielSparrow/switch-solver
lights_on.py
lights_on.py
py
6,138
python
en
code
0
github-code
6
[ { "api_name": "numpy.vectorize", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.int_", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.int_", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 94, "usage_type": "call" }, { "api_name": "scipy.ndimage.binary_dilation", "line_number": 94, "usage_type": "attribute" }, { "api_name": "scipy.ndimage", "line_number": 94, "usage_type": "name" }, { "api_name": "numpy.reshape", "line_number": 95, "usage_type": "call" }, { "api_name": "itertools.chain.from_iterable", "line_number": 100, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 100, "usage_type": "name" }, { "api_name": "itertools.combinations", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 116, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 118, "usage_type": "call" }, { "api_name": "operator.add", "line_number": 118, "usage_type": "argument" }, { "api_name": "numpy.reshape", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 141, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 216, "usage_type": "call" } ]
45375013026
""" include packages """ from settings import * import sqlite3 import discord from discord import app_commands import sys import signal import deepl from typing import Optional from lib import vote as vt from lib import deepl as dl """ Global variables """ connection : sqlite3.Connection = sqlite3.connect(DATABASE) intents : discord.Intents = discord.Intents.all() client : discord.Client = discord.Client(intents=intents) tree : app_commands.CommandTree = app_commands.CommandTree(client=client) """ Setup """ vt.init(connection) with open(DEEPL_API_KEY) as f: dl_translator = dl.LoggingTranslator(f.read(), connection=connection) """ Commands """ @tree.command( name='test', description='This is a test' ) @app_commands.describe( message='Your message', hello='Hello message' ) @app_commands.rename( message='text' ) @app_commands.choices( hello=[ app_commands.Choice(name='Good Morning', value='Good Morning'), app_commands.Choice(name='Good Afternoon', value='Good Afternoon'), app_commands.Choice(name='Good Evening', value='Good Evening'), app_commands.Choice(name='Good Night', value='Good Night') ] ) @app_commands.guild_only async def test(ctx: discord.Interaction, message: str, hello: str): await ctx.response.send_message('This is a test message.\nYour message is ...\n'+message+'\n'+hello) @tree.command( name='vote', description='投票を行う' ) @app_commands.describe( title='投票のお題', visible='投票結果を表示する際に投票先を表示する', ) @app_commands.choices( visible=[ app_commands.Choice(name='表示する', value='Yes'), app_commands.Choice(name='表示しない', value='No') ] ) @app_commands.guild_only async def vote_with_any_choices(ctx: discord.Interaction, title: str, visible: str='Yes'): try: await ctx.response.send_modal(vt.VoteModal(title=title, visible=visible)) except Exception as e: print(e.with_traceback(sys.exc_info()[2])) @tree.command( name='deepl', description='DeepL翻訳を使用してテキストを翻訳する(default: Auto→JP)' ) @app_commands.describe( text='翻訳するテキスト', source_language='翻訳前の言語(default: 自動検出)', target_language='翻訳後の言語(default: 日本語)' ) @app_commands.choices( source_language=dl.DcLanguageList.SOURCE, target_language=dl.DcLanguageList.TARGET ) async def deepl_translate(ctx: discord.Interaction, text: str, source_language: Optional[str] = None, target_language: str = deepl.Language.JAPANESE): try: if source_language == "": source_language = None translated_text = dl_translator.translate_text( ctx=ctx, text=text, source_lang=source_language, target_lang=target_language ) t = "> " + text.replace("\n", "\n> ") + "\n" await ctx.response.send_message(t + translated_text.text) except Exception as e: print(e.with_traceback(sys.exc_info()[2])) """ Events """ @client.event async def on_ready(): print('Bot is ready') await tree.sync() """ Cleanups """ def cleanup(): global connection connection.close() def signal_handler(signum, frame): cleanup() sys.exit(1) if __name__ == '__main__': signal.signal(signal.SIGTERM, signal_handler) try: with open(TOKEN) as f: client.run(f.read()) finally: signal.signal(signal.SIGTERM, signal.SIG_DFL) cleanup()
GrapeJuicer/GrapeBot
app/main.py
main.py
py
3,637
python
en
code
0
github-code
6
[ { "api_name": "sqlite3.Connection", "line_number": 23, "usage_type": "attribute" }, { "api_name": "sqlite3.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "discord.Intents", "line_number": 24, "usage_type": "attribute" }, { "api_name": "discord.Intents.all", "line_number": 24, "usage_type": "call" }, { "api_name": "discord.Client", "line_number": 25, "usage_type": "attribute" }, { "api_name": "discord.app_commands.CommandTree", "line_number": 26, "usage_type": "attribute" }, { "api_name": "discord.app_commands", "line_number": 26, "usage_type": "name" }, { "api_name": "lib.vote.init", "line_number": 34, "usage_type": "call" }, { "api_name": "lib.vote", "line_number": 34, "usage_type": "name" }, { "api_name": "lib.deepl.LoggingTranslator", "line_number": 36, "usage_type": "call" }, { "api_name": "lib.deepl", "line_number": 36, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 64, "usage_type": "attribute" }, { "api_name": "discord.app_commands.describe", "line_number": 48, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 48, "usage_type": "name" }, { "api_name": "discord.app_commands.rename", "line_number": 52, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 52, "usage_type": "name" }, { "api_name": "discord.app_commands.choices", "line_number": 55, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 55, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 57, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 57, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 58, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 58, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 59, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 59, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 60, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 60, "usage_type": "name" }, { "api_name": "discord.app_commands.guild_only", "line_number": 63, "usage_type": "attribute" }, { "api_name": "discord.app_commands", "line_number": 63, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 84, "usage_type": "attribute" }, { "api_name": "lib.vote.VoteModal", "line_number": 86, "usage_type": "call" }, { "api_name": "lib.vote", "line_number": 86, "usage_type": "name" }, { "api_name": "sys.exc_info", "line_number": 88, "usage_type": "call" }, { "api_name": "discord.app_commands.describe", "line_number": 73, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 73, "usage_type": "name" }, { "api_name": "discord.app_commands.choices", "line_number": 77, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 77, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 79, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 79, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 80, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 80, "usage_type": "name" }, { "api_name": "discord.app_commands.guild_only", "line_number": 83, "usage_type": "attribute" }, { "api_name": "discord.app_commands", "line_number": 83, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 105, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 105, "usage_type": "name" }, { "api_name": "deepl.Language", "line_number": 105, "usage_type": "attribute" }, { "api_name": "sys.exc_info", "line_number": 122, "usage_type": "call" }, { "api_name": "discord.app_commands.describe", "line_number": 96, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 96, "usage_type": "name" }, { "api_name": "discord.app_commands.choices", "line_number": 101, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 101, "usage_type": "name" }, { "api_name": "lib.deepl.DcLanguageList", "line_number": 102, "usage_type": "attribute" }, { "api_name": "lib.deepl", "line_number": 102, "usage_type": "name" }, { "api_name": "lib.deepl.DcLanguageList", "line_number": 103, "usage_type": "attribute" }, { "api_name": "lib.deepl", "line_number": 103, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 148, "usage_type": "call" }, { "api_name": "signal.signal", "line_number": 152, "usage_type": "call" }, { "api_name": "signal.SIGTERM", "line_number": 152, "usage_type": "attribute" }, { "api_name": "signal.signal", "line_number": 157, "usage_type": "call" }, { "api_name": "signal.SIGTERM", "line_number": 157, "usage_type": "attribute" }, { "api_name": "signal.SIG_DFL", "line_number": 157, "usage_type": "attribute" } ]
18801853357
import pytest from base.client_base import TestcaseBase from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel from utils.util_log import test_log as log # customer rg rg_name_0 = "RG_0" rg_name_1 = "RG_1" # coll name coll_name_1 = "ResourceGroup_111" coll_name_2 = "ResourceGroup_222" # resource group info of 4 qns resource_group_info = [ {"name": rg_name_0, "available_node": 1, "capacity": 1, "loaded_replica": {coll_name_1: 1}}, {"name": rg_name_1, "available_node": 1, "capacity": 1, "loaded_replica": {coll_name_1: 1}}, {"name": ct.default_resource_group_name, "available_node": 2, "capacity": ct.default_resource_group_capacity, "loaded_replica": {coll_name_2: 2}} ] class TestChaosRG(TestcaseBase): """ Test case of end to end""" def teardown_method(self, method): log.info(("*" * 35) + " teardown " + ("*" * 35)) log.info("[teardown_method] Start teardown test case %s..." % method.__name__) log.info("skip drop collection") @pytest.mark.tags(CaseLabel.L3) def test_milvus_resource_group(self): nb = 10000 # collection rg map collection_rg_map = { coll_name_1: {"resource_groups": [rg_name_0, rg_name_1], "replica_number": 2}, coll_name_2: {"resource_groups": [ct.default_resource_group_name], "replica_number": 2} } self._connect() # create RG_0, RG_1, transfer 1 node to RG_0, 1 node to RG_1 for rg_info in resource_group_info: rg_name = rg_info["name"] if rg_name != ct.default_resource_group_name: _, create_rg_res = self.utility_wrap.create_resource_group(rg_name) assert create_rg_res log.info(f"[ResourceGroup] Create rg {rg_name} done") self.utility_wrap.transfer_node(source=ct.default_resource_group_name, target=rg_name, num_node=rg_info["available_node"]) log.info( f'[ResourceGroup] Transfer {rg_info["available_node"]} nodes from {ct.default_resource_group_name} to {rg_name} done') # verify RGs resource_groups, _ = self.utility_wrap.list_resource_groups() assert len(resource_groups) == len(resource_group_info) assert all([rg_info["name"] in resource_groups for rg_info in resource_group_info]) for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": {}, "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info}') # prepare collection C1, C2 # create data = cf.gen_default_dataframe_data(nb=nb) index_params = {"index_type": "HNSW", "metric_type": "L2", "params": {"M": 48, "efConstruction": 500}} for coll_name in coll_name_1, coll_name_2: # create collection_w = self.init_collection_wrap(name=coll_name, active_trace=True) log.info(f"create collection {collection_w.name} done") entities = collection_w.num_entities # insert _, res = collection_w.insert(data) assert res log.info(f"insert {nb} entities done") # flush _, check_result = collection_w.flush(timeout=180) assert check_result assert collection_w.num_entities == nb + entities entities = collection_w.num_entities log.info(f"flush done with entities: {entities}") # index index, _ = collection_w.create_index(field_name=ct.default_float_vec_field_name, index_params=index_params, index_name=cf.gen_unique_str()) index, _ = collection_w.create_index(field_name=ct.default_string_field_name, index_params={}, index_name=cf.gen_unique_str()) index_infos = [index.to_dict() for index in collection_w.indexes] log.info(f"index info: {index_infos}") # load coll_rg_a, 2 replicas -> RG_0, RG_1 # load coll_rg_b, 2 replicas -> default_RG collection_w.load(replica_number=collection_rg_map[coll_name]["replica_number"], _resource_groups=collection_rg_map[coll_name]["resource_groups"]) # show query segment info segment_info, _ = self.utility_wrap.get_query_segment_info(collection_w.name) log.info(f"{collection_w.name} segment info: {segment_info}") # show replicas info replicas, _ = collection_w.get_replicas() log.info(f"{collection_w.name} replica info: {replicas}") # search search_vectors = cf.gen_vectors(ct.default_nq, ct.default_dim) search_params = {"metric_type": "L2", "params": {"ef": 64}} search_res, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=ct.default_limit, expr="int64 >= 0") assert len(search_res) == ct.default_nq assert len(search_res[0]) == ct.default_limit # query and delete term_expr = f'{ct.default_int64_field_name} < 100' query_res, _ = collection_w.query(term_expr) assert len(query_res) == 100 delete_expr = f'{ct.default_int64_field_name} in {[i for i in range(100)]}' collection_w.delete(delete_expr) collection_w.query(term_expr, check_task=ct.CheckTasks.check_query_empty) # verify rg replica info for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": rg_info["loaded_replica"], "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info_2, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info_2}') @pytest.mark.tags(CaseLabel.L3) def test_verify_milvus_resource_group(self): self._connect() # verify collection exist all_collections, _ = self.utility_wrap.list_collections() assert all(coll_name in all_collections for coll_name in [coll_name_1, coll_name_2]) # verify resource groups for rg_info in resource_group_info: rg_info = {"name": rg_info["name"], "capacity": rg_info["capacity"], "num_available_node": rg_info["available_node"], "num_loaded_replica": rg_info["loaded_replica"], "num_outgoing_node": {}, "num_incoming_node": {} } desc_rg_info, _ = self.utility_wrap.describe_resource_group(name=rg_info["name"], check_task=ct.CheckTasks.check_rg_property, check_items=rg_info) log.info(f'[ResourceGroup] Rg of {rg_info["name"]} info is: {desc_rg_info}') # search for coll_name in coll_name_2, coll_name_1: # get query segment info segment, _ = self.utility_wrap.get_query_segment_info(coll_name) log.info(f"{coll_name} query segment info: {segment}") # get replicas collection_w = self.init_collection_wrap(name=coll_name, active_trace=True) replicas, _ = collection_w.get_replicas(check_task=ct.CheckTasks.check_nothing) log.info(f"{coll_name} replicas: {replicas}") # search for i in range(100): search_vectors = cf.gen_vectors(ct.default_nq, ct.default_dim) search_params = {"metric_type": "L2", "params": {"ef": 64}} search_res, _ = collection_w.search(data=search_vectors, anns_field=ct.default_float_vec_field_name, param=search_params, limit=ct.default_limit, expr="int64 >= 0") assert len(search_res) == ct.default_nq assert len(search_res[0]) == ct.default_limit # show query segment info finally segment_2, _ = self.utility_wrap.get_query_segment_info(coll_name) log.info(f"{coll_name} query segment info: {segment_2}") # show replicas finally replicas_2, _ = collection_w.get_replicas() log.info(f"{coll_name} replicas: {replicas_2}")
milvus-io/milvus
tests/python_client/chaos/testcases/test_chaos_resource_group.py
test_chaos_resource_group.py
py
9,886
python
en
code
24,190
github-code
6
[ { "api_name": "common.common_type.default_resource_group_name", "line_number": 21, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 21, "usage_type": "name" }, { "api_name": "common.common_type.default_resource_group_capacity", "line_number": 22, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 22, "usage_type": "name" }, { "api_name": "base.client_base.TestcaseBase", "line_number": 26, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 30, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 30, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 31, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 31, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 33, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 33, "usage_type": "name" }, { "api_name": "common.common_type.default_resource_group_name", "line_number": 41, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 41, "usage_type": "name" }, { "api_name": "common.common_type.default_resource_group_name", "line_number": 49, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 49, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 52, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 52, "usage_type": "name" }, { "api_name": "common.common_type.default_resource_group_name", "line_number": 53, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 53, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 55, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 55, "usage_type": "name" }, { "api_name": "common.common_type.default_resource_group_name", "line_number": 56, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 56, "usage_type": "name" }, { "api_name": "common.common_type.CheckTasks", "line_number": 71, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 71, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 73, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 73, "usage_type": "name" }, { "api_name": "common.common_func.gen_default_dataframe_data", "line_number": 77, "usage_type": "call" }, { "api_name": "common.common_func", "line_number": 77, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 83, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 83, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 89, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 89, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 96, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 96, "usage_type": "name" }, { "api_name": "common.common_type.default_float_vec_field_name", "line_number": 99, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 99, "usage_type": "name" }, { "api_name": "common.common_func.gen_unique_str", "line_number": 101, "usage_type": "call" }, { "api_name": "common.common_func", "line_number": 101, "usage_type": "name" }, { "api_name": "common.common_type.default_string_field_name", "line_number": 102, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 102, "usage_type": "name" }, { "api_name": "common.common_func.gen_unique_str", "line_number": 104, "usage_type": "call" }, { "api_name": "common.common_func", "line_number": 104, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 106, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 106, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 115, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 115, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 119, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 119, "usage_type": "name" }, { "api_name": "common.common_func.gen_vectors", "line_number": 122, "usage_type": "call" }, { "api_name": "common.common_func", "line_number": 122, "usage_type": "name" }, { "api_name": "common.common_type.default_nq", "line_number": 122, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 122, "usage_type": "name" }, { "api_name": "common.common_type.default_dim", "line_number": 122, "usage_type": "attribute" }, { "api_name": "common.common_type.default_float_vec_field_name", "line_number": 125, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 125, "usage_type": "name" }, { "api_name": "common.common_type.default_limit", "line_number": 126, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 126, "usage_type": "name" }, { "api_name": "common.common_type.default_nq", "line_number": 127, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 127, "usage_type": "name" }, { "api_name": "common.common_type.default_limit", "line_number": 128, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 128, "usage_type": "name" }, { "api_name": "common.common_type.default_int64_field_name", "line_number": 131, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 131, "usage_type": "name" }, { "api_name": "common.common_type.default_int64_field_name", "line_number": 135, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 135, "usage_type": "name" }, { "api_name": "common.common_type.CheckTasks", "line_number": 137, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 137, "usage_type": "name" }, { "api_name": "common.common_type.CheckTasks", "line_number": 149, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 149, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 151, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 151, "usage_type": "name" }, { "api_name": "pytest.mark.tags", "line_number": 35, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 35, "usage_type": "attribute" }, { "api_name": "common.common_type.CaseLabel.L3", "line_number": 35, "usage_type": "attribute" }, { "api_name": "common.common_type.CaseLabel", "line_number": 35, "usage_type": "name" }, { "api_name": "common.common_type.CheckTasks", "line_number": 171, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 171, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 173, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 173, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 179, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 179, "usage_type": "name" }, { "api_name": "common.common_type.CheckTasks", "line_number": 183, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 183, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 184, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 184, "usage_type": "name" }, { "api_name": "common.common_func.gen_vectors", "line_number": 188, "usage_type": "call" }, { "api_name": "common.common_func", "line_number": 188, "usage_type": "name" }, { "api_name": "common.common_type.default_nq", "line_number": 188, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 188, "usage_type": "name" }, { "api_name": "common.common_type.default_dim", "line_number": 188, "usage_type": "attribute" }, { "api_name": "common.common_type.default_float_vec_field_name", "line_number": 191, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 191, "usage_type": "name" }, { "api_name": "common.common_type.default_limit", "line_number": 192, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 192, "usage_type": "name" }, { "api_name": "common.common_type.default_nq", "line_number": 193, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 193, "usage_type": "name" }, { "api_name": "common.common_type.default_limit", "line_number": 194, "usage_type": "attribute" }, { "api_name": "common.common_type", "line_number": 194, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 198, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 198, "usage_type": "name" }, { "api_name": "utils.util_log.test_log.info", "line_number": 202, "usage_type": "call" }, { "api_name": "utils.util_log.test_log", "line_number": 202, "usage_type": "name" }, { "api_name": "pytest.mark.tags", "line_number": 153, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 153, "usage_type": "attribute" }, { "api_name": "common.common_type.CaseLabel.L3", "line_number": 153, "usage_type": "attribute" }, { "api_name": "common.common_type.CaseLabel", "line_number": 153, "usage_type": "name" } ]
24091654897
from Film import Film from Forgalmazo import Forgalmazo import datetime def fajl_beolvas(): filmek = [] fp = open('nyitohetvege.txt', 'r', encoding='utf-8') lines = fp.readlines() fp.close() for line in lines[1:]: n_line = line.rstrip() (eredetiCim, magyarCim,bemutato,forgalmazo, bevel,latogato) = n_line.split(';') film = Film(eredetiCim, magyarCim,bemutato,forgalmazo, bevel,latogato) filmek.append(film) return filmek def feladat3(filmek): print('3. feladat: Filmek száma az állományban: ', end='') filmek_szama = len(filmek) print(filmek_szama, 'db') def feladat4(filmek): print('4. feladat: UIP Duna Film forgalmazó 1. ', end='') print('hetes bevételeinek összege: ', end='') osszeg=0 for film in filmek: if film.forgalmazo == 'UIP': osszeg+=int(film.bevel) print("{:,}".format(osszeg), 'Ft') def feladat5(filmek): print('5. feladat: Legtöbb látogató az első héten:') max_film = filmek[0] for film in filmek: if int(film.latogato) > int(max_film.latogato): max_film = film print('\tEredeti cím:', max_film.eredetiCim) print('\tMagyar cím:', max_film.magyarCim) print('\tForgalmazó:', max_film.forgalmazo) print('\tBevétel az első héten:', max_film.bevel, 'Ft') print('\tLátogatók száma:', max_film.latogato, 'fő') def tartalmazTeszt(eredetiCim, magyarCim): eredetiTartalmaz=False if 'W' in eredetiCim: eredetiTartalmaz=True if 'w' in eredetiCim: eredetiTartalmaz=True magyarTartalmazza=False if 'W' in magyarCim: magyarTartalmazza=True if 'w' in magyarCim: magyarTartalmazza=True if eredetiTartalmaz and magyarTartalmazza: return True else: return False def feladat6(filmek): print('6. feladat: ', end='') n=len(filmek) i=0 while (i<n and not tartalmazTeszt(filmek[i].eredetiCim, filmek[i].magyarCim)): i+=1 if i<n: print("Ilyen film volt!") else: print("Ilyen film nem volt!") def forgalmazoTeszt(forgalmazok, forgalmazo): n=len(forgalmazok) i=0 while i<n and forgalmazok[i].nev != forgalmazo: i+=1 if i<n: return True else: return False def feladat7(filmek): mezonevek = 'forgalmazo;filmekSzama\n' forgalmazok = [] for film in filmek: if not forgalmazoTeszt(forgalmazok, film.forgalmazo): forgalmazo = Forgalmazo(film.forgalmazo) forgalmazok.append(forgalmazo) else: n=len(forgalmazok) for i in range(0, n): if forgalmazok[i].nev == film.forgalmazo: forgalmazok[i].filmek += 1 fp = open('stat.csv', 'w', encoding='utf-8') fp.write(mezonevek) for forgalmazo in forgalmazok: if forgalmazo.filmek>1: fp.write(forgalmazo.nev + ';' + str(forgalmazo.filmek) + '\n') fp.close() def feladat8(filmek): print('8. feladat: A leghosszabb időszak két ', end='') print('InterCom-os bemutató között: ', end='') elsoBemutato = None max_kul = 0 for film in filmek: if film.forgalmazo == 'InterCom': isoDatum = film.bemutato.replace('.', '-') if elsoBemutato == None: elsoBemutato=datetime.date.fromisoformat(isoDatum) else: kovBemutato = datetime.date.fromisoformat(isoDatum) kul = kovBemutato - elsoBemutato if kul.total_seconds() > max_kul: max_kul=kul.total_seconds() elsoBemutato = kovBemutato nap = max_kul // (24 * 3600) print(int(nap), 'nap') filmek = fajl_beolvas() # ~ feladat3(filmek) # ~ feladat4(filmek) # ~ feladat5(filmek) # ~ feladat6(filmek) # ~ feladat7(filmek) feladat8(filmek)
janos01/esti2020Python
gyakorlo/Nyito/src/OpeningWeekend.py
OpeningWeekend.py
py
3,940
python
hu
code
0
github-code
6
[ { "api_name": "Film.Film", "line_number": 15, "usage_type": "call" }, { "api_name": "Forgalmazo.Forgalmazo", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.date.fromisoformat", "line_number": 116, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 116, "usage_type": "attribute" }, { "api_name": "datetime.date.fromisoformat", "line_number": 118, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 118, "usage_type": "attribute" } ]
71119888509
import matplotlib.pyplot as plt import numpy as np # ~~~ DEFINE DATA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ np.random.seed(1337) n = 1000000 x = np.random.standard_normal(n) y = x + .5 * np.random.standard_normal(n) hist, xedges, yedges = np.histogram2d(x, y, bins=100, density=True) hist[hist == 0] = None t = np.linspace(0, 3 * np.pi, 1000) style = 'mpl' # ~~~ PLOT LINEAR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fig, ax = plt.subplots() plt.plot(t, np.sin(t), t, np.cos(t), t, 2 * np.cos(t)) plt.tight_layout() plt.savefig(f'gallery/{style}_plot.png') plt.close() # legend fig, ax = plt.subplots() plt.plot(t, np.sin(t), label='sin') plt.plot(t, np.cos(t), label='cos') plt.plot(t, 2 * np.cos(t), label='2cos') plt.legend(title='function:') plt.tight_layout() plt.savefig(f'gallery/{style}_plot_legend.png') plt.close() # mulitple subgallery fig, axs = plt.subplots(3, 1, sharex=True, gridspec_kw={'hspace': 0.000}) axs[0].plot(t, np.sin(t)) axs[1].plot(t[::20], np.cos(t[::20]), 'o-') axs[2].plot(t, 2 * np.cos(t), t, np.sin(t)) plt.tight_layout() plt.savefig(f'gallery/{style}_plot_multiple.png') plt.close() # ~~~ PLOT IMSHOW ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fig, ax = plt.subplots() plt.imshow(hist) plt.tight_layout() plt.savefig(f'gallery/{style}_imshow.png') plt.close() # cbar fig, ax = plt.subplots() im = plt.imshow(hist) plt.colorbar(im) plt.tight_layout() plt.savefig(f'gallery/{style}_imshow_cbar.png') plt.close()
braniii/prettypyplot
gallery/comparison_mpl.py
comparison_mpl.py
py
1,505
python
en
code
4
github-code
6
[ { "api_name": "numpy.random.seed", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 5, "usage_type": "attribute" }, { "api_name": "numpy.random.standard_normal", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.random.standard_normal", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.histogram2d", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 13, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "numpy.sin", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "numpy.sin", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "numpy.cos", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "numpy.cos", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "numpy.sin", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" } ]
19788096058
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple from uuid import uuid4 import pygame from .clock import Clock, clock from .keyboard import Keyboard from .screen import Screen from .utils.event_dispatcher import EventDispatcher if TYPE_CHECKING: from .application import Application class Scene(EventDispatcher): """ The idea and the original code was taken from [EzPyGame](https://github.com/Mahi/EzPyGame) An isolated scene which can be ran by an application. Create your own scene by subclassing and overriding any methods. Example: ``` class Menu(Scene): def __init__(self): self.font = pygame.font.Font(...) def on_enter(self, previous_scene): self.title = 'Main Menu' self.resolution = (640, 480) self.update_rate = 30 def draw(self, screen): pygame.draw.rect(...) text = self.font.render(...) screen.blit(text, ...) def handle_event(self, event): if event.type == pygame.MOUSEBUTTONUP: if event.button == 1: game_size = self._get_game_size(event.pos) self.change_scene(Game(game_size)) def _get_game_size(self, mouse_pos_upon_click): ... class Game(pgz.Scene): title = 'The Game!' resolution = (1280, 720) update_rate = 60 def __init__(self, size): super().__init__() self.size = size self.player = ... ... def on_enter(self, previous_scene): super().on_enter(previous_scene) self.previous_scene = previous_scene def draw(self, screen): self.player.draw(screen) for enemy in self.enemies: ... def update(self, dt): self.player.move(dt) ... if self.player.is_dead(): self.change_scene(self.previous_scene) elif self.player_won(): self.change_scene(...) def handle_event(self, event): ... # Player movement etc. ``` The above two classes use different approaches for changing the application's settings when the scene is entered: 1. Manually set them in `on_enter`, as seen in `Menu` 2. Use class variables, as I did with `Game` When using class variables (2), you can leave out any setting (defaults to `None`) to not override that particular setting. If you override `on_enter` in the subclass, you must call `super().on_enter(previous_scene)` to use the class variables. These settings can further be overridden in individual instances: ``` my_scene0 = MyScene() my_scene0.resolution = (1280, 720) my_scene1 = MyScene(title='My Second Awesome Scene') ``` Example: Shortcuts foe event gandling while `Scene` subclassing. ``` def on_mouse_up(self, pos, button): # Override this for easier events handling. pass def on_mouse_down(self, pos, button): # Override this for easier events handling. pass def on_mouse_move(self, pos): # Override this for easier events handling. pass def on_key_down(self, key): # Override this for easier events handling. pass def on_key_up(self, key): # Override this for easier events handling. pass ``` """ _title: Optional[str] = None _resolution: Optional[Tuple[int, int]] = None _update_rate: Optional[int] = None def __init__(self, title: Optional[str] = None, resolution=None, update_rate: Optional[int] = None) -> None: self._application: Optional["Application"] = None if title is not None: self._title = title if resolution is not None: self._resolution = resolution if update_rate is not None: self._update_rate = update_rate self._keyboard = Keyboard() # Client data is the data was provided by the client during the handshake: it's usually stuff like player name, avatar, etc self._client_data: Dict[str, Any] = {} # The scene UUID is used for communication self._scene_uuid = str(uuid4()) @property def scene_uuid(self) -> str: """ Get scene UUID. """ return self._scene_uuid def set_client_data(self, client_data: Dict[str, Any]) -> None: self._client_data = client_data @property def client_data(self) -> Dict[str, Any]: """ Get data provided by client side. """ return self._client_data def change_scene(self, new_scene: Optional["Scene"]) -> None: if not self._application: raise Exception("Application was not configured properly.") self._application.change_scene(new_scene) @property def title(self) -> str: """Get application title Returns: str: application title """ if not self._application: raise Exception("Application was not configured properly.") return self._application.title @title.setter def title(self, value: str) -> None: """Change application title Args: value (str): application title to set """ if not self._application: print("Warning: application was not configured - 'title' setting was ignored") return self._application.title = value @property def resolution(self) -> Tuple[int, int]: """Get application screen resolution Returns: Tuple[int, int]: application screen resolution """ if not self._application: raise Exception("Application was not configured properly.") return self._application.resolution @resolution.setter def resolution(self, value: Tuple[int, int]) -> None: """Change application screen resolution Args: value (Tuple[int, int]): application screen resolution to use """ if not self._application: print("Warning: application was not configured - 'resolution' setting was ignored") return self._application.resolution = value @property def update_rate(self) -> int: """Get application update rate Returns: int: application update rate """ if not self._application: raise Exception("Application was not configured properly.") return self._application.update_rate @update_rate.setter def update_rate(self, value: int) -> None: """Change application update rate Args: value (int): application update rate to set """ if not self._application: print("Warning: application was not configured - 'update_rate' setting was ignored") return self._application.update_rate = value @property def clock(self) -> Clock: """ Get `Clock` object. Actually returns the global clock object. Returns: Clock: clock object """ return clock @property def keyboard(self) -> Keyboard: """ Get `Keyboard` object. Returns: Keyboard: keyboard object """ return self._keyboard def draw(self, screen: Screen) -> None: """ Override this with the scene drawing. Args: screen (Screen): screen to draw the scene on """ def update(self, dt: float) -> None: """ Override this with the scene update tick. Args: dt (float): time in milliseconds since the last update """ def handle_event(self, event: pygame.event.Event) -> None: """ Override this to handle an event in the scene. All of `pygame`'s events are sent here, so filtering should be applied manually in the subclass. Args: event (pygame.event.Event): event to handle """ if event.type == pygame.KEYDOWN: self._keyboard._press(event.key) elif event.type == pygame.KEYUP: self._keyboard._release(event.key) def on_enter(self, previous_scene: Optional["Scene"]) -> None: """ Override this to initialize upon scene entering. If you override this method and want to use class variables to change the application's settings, you must call ``super().on_enter(previous_scene)`` in the subclass. Args: previous_scene (Optional[Scene]): previous scene was running """ for attr in ("_title", "_resolution", "_update_rate"): value = getattr(self, attr) if value is not None: if self._application is None: print(f"Warning: application was not configured - '{attr}' setting was ignored") continue setattr(self._application, attr.lower(), value) # Set event dispatcher self.load_handlers() def on_exit(self, next_scene: Optional["Scene"]) -> None: """ Override this to deinitialize upon scene exiting. Args: next_scene (Optional[Scene]): next scene to run """
kdeyev/pgz
pgz/scene.py
scene.py
py
9,429
python
en
code
4
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 11, "usage_type": "name" }, { "api_name": "utils.event_dispatcher.EventDispatcher", "line_number": 15, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 126, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 127, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 127, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 128, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 130, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 131, "usage_type": "name" }, { "api_name": "keyboard.Keyboard", "line_number": 139, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 142, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 142, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 145, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 154, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 154, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 158, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 158, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 164, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 193, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 204, "usage_type": "name" }, { "api_name": "clock.clock", "line_number": 248, "usage_type": "name" }, { "api_name": "clock.Clock", "line_number": 239, "usage_type": "name" }, { "api_name": "keyboard.Keyboard", "line_number": 251, "usage_type": "name" }, { "api_name": "screen.Screen", "line_number": 260, "usage_type": "name" }, { "api_name": "pygame.event", "line_number": 276, "usage_type": "attribute" }, { "api_name": "pygame.KEYDOWN", "line_number": 287, "usage_type": "attribute" }, { "api_name": "pygame.KEYUP", "line_number": 289, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 292, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 314, "usage_type": "name" } ]
20519832620
"""! @brief CCORE Wrapper for X-Means algorithm. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ from ctypes import c_double, c_longlong, c_size_t, c_uint, POINTER from pyclustering.core.wrapper import ccore_library from pyclustering.core.pyclustering_package import pyclustering_package, package_extractor, package_builder def xmeans(sample, centers, kmax, tolerance, criterion, alpha, beta, repeat, random_state, metric_pointer): random_state = random_state or -1 pointer_data = package_builder(sample, c_double).create() pointer_centers = package_builder(centers, c_double).create() ccore = ccore_library.get() ccore.xmeans_algorithm.restype = POINTER(pyclustering_package) package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion), c_double(alpha), c_double(beta), c_size_t(repeat), c_longlong(random_state), metric_pointer) result = package_extractor(package).extract() ccore.free_pyclustering_package(package) return result
annoviko/pyclustering
pyclustering/core/xmeans_wrapper.py
xmeans_wrapper.py
py
1,207
python
en
code
1,113
github-code
6
[ { "api_name": "pyclustering.core.pyclustering_package.package_builder", "line_number": 20, "usage_type": "call" }, { "api_name": "ctypes.c_double", "line_number": 20, "usage_type": "argument" }, { "api_name": "pyclustering.core.pyclustering_package.package_builder", "line_number": 21, "usage_type": "call" }, { "api_name": "ctypes.c_double", "line_number": 21, "usage_type": "argument" }, { "api_name": "pyclustering.core.wrapper.ccore_library.get", "line_number": 23, "usage_type": "call" }, { "api_name": "pyclustering.core.wrapper.ccore_library", "line_number": 23, "usage_type": "name" }, { "api_name": "ctypes.POINTER", "line_number": 25, "usage_type": "call" }, { "api_name": "pyclustering.core.pyclustering_package.pyclustering_package", "line_number": 25, "usage_type": "argument" }, { "api_name": "ctypes.c_size_t", "line_number": 26, "usage_type": "call" }, { "api_name": "ctypes.c_double", "line_number": 26, "usage_type": "call" }, { "api_name": "ctypes.c_uint", "line_number": 27, "usage_type": "call" }, { "api_name": "ctypes.c_double", "line_number": 27, "usage_type": "call" }, { "api_name": "ctypes.c_size_t", "line_number": 27, "usage_type": "call" }, { "api_name": "ctypes.c_longlong", "line_number": 28, "usage_type": "call" }, { "api_name": "pyclustering.core.pyclustering_package.package_extractor", "line_number": 30, "usage_type": "call" } ]
7176111759
#!/usr/bin/env python3 import os import sys import re from pathlib import Path def _find_files(project_root): path_exclude_pattern = r"\.git($|\/)|venv|_build|\.tox" file_exclude_pattern = r"fill_template_vars\.py|\.swp$" filepaths = [] for dir_path, _dir_names, file_names in os.walk(project_root): if not re.search(path_exclude_pattern, dir_path): for file in file_names: if not re.search(file_exclude_pattern, file): filepaths.append(str(Path(dir_path, file))) return filepaths def _replace(pattern, replacement, project_root): print(f"Replacing values: {pattern}") for file in _find_files(project_root): try: with open(file) as f: content = f.read() content = re.sub(pattern, replacement, content) with open(file, "w") as f: f.write(content) except UnicodeDecodeError: pass def main(): project_root = Path(os.path.realpath(sys.argv[0])).parent.parent module_name = input("What is your python module name (ex: What would you import (no dashes)? ") pypi_input = input(f"What is your pypi package name? (default: {module_name}) ") pypi_name = pypi_input or module_name repo_input = input(f"What is your github project name? (default: {pypi_name}) ") repo_name = repo_input or pypi_name rtd_input = input( f"What is your readthedocs.org project name? (default: {pypi_name}) " ) rtd_name = rtd_input or pypi_name project_input = input( f"What is your project name (ex: at the top of the README)? (default: {repo_name}) " ) project_name = project_input or repo_name short_description = input("What is a one-liner describing the project? ") _replace("<MODULE_NAME>", module_name, project_root) _replace("<PYPI_NAME>", pypi_name, project_root) _replace("<REPO_NAME>", repo_name, project_root) _replace("<RTD_NAME>", rtd_name, project_root) _replace("<PROJECT_NAME>", project_name, project_root) _replace("<SHORT_DESCRIPTION>", short_description, project_root) os.makedirs(project_root / module_name, exist_ok=True) Path(project_root / module_name / "__init__.py").touch() Path(project_root / module_name / "py.typed").touch() if __name__ == "__main__": main()
ethereum/py-evm
.project-template/fill_template_vars.py
fill_template_vars.py
py
2,362
python
en
code
2,109
github-code
6
[ { "api_name": "os.walk", "line_number": 13, "usage_type": "call" }, { "api_name": "re.search", "line_number": 14, "usage_type": "call" }, { "api_name": "re.search", "line_number": 16, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 17, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 28, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 65, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 66, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 67, "usage_type": "call" } ]
44083632675
import gzip import inspect import os from io import StringIO from typing import Optional, List import numpy as np import pandas as pd def time_map(time_a: float, time_b: float, packet_a: int, packet_b: int, time_c: int, window_tolerance: int = 0) -> \ Optional[float]: """ Map an API time into a packet number. This function was done in order to have a nice visualisation. The window tolereance is used to capture nearby calls ========= | ta tb tc=>pc pa pb Args: time_a (float): time of the begining of the flow (in seconds since epoch, time.time()) time_b (float): time of the ending of the flow packet_a (int): packet number of the begining of the flow packet_b (int): packet number of the ending of the flow time_c (float): time of the api call window_tolerance (int): time shift in second in which api calls are still considered to belong to the flow Returns: int: packet number, return None if the mapping fails """ window_tolerance *= 1000000 # Check if inside flow if time_a <= time_c <= time_b: # Chain comparaison return packet_a + (time_c - time_a) * (packet_b - packet_a) / (time_b - time_a) # Check if in the window border (simple) if time_a - window_tolerance <= time_c <= time_b: return packet_a """if time_a <= time_c <= time_b + window_tolerance: return packet_b""" # Outside return None def pure_time_map(time_a: float, time_b: float, time_c: float, window_tolerance: int = 0) -> Optional[float]: """ Map an API time into a packet number. This function was done in order to have a nice visualisation. The window tolereance is used to capture nearby calls ========= | ta tb tc=>pc Args: time_a (float): time of the begining of the flow (in seconds since epoch, time.time()) time_b (float): time of the ending of the flow time_c (float): time of the api call window_tolerance (int): time shift in second in which api calls are still considered to belong to the flow Returns: int: time, return None if the mapping fails """ window_tolerance *= 1000000 # Check if inside flow if time_a <= time_c <= time_b: # Chain comparaison return time_c # Check if in the window border (simple) if time_a - window_tolerance <= time_c <= time_b: return time_a """if time_a <= time_c <= time_b + window_tolerance: return time_b""" # Outside return None def get_child_pids(current_pid: int, diff: pd.DataFrame) -> List: """ Get the child process pid of one process given its pid Args: current_pid (int): parent pid diff (pd dataframe): df recorded Returns: list: list of pids """ childs = diff[diff["parent_pid"] == current_pid] if childs.shape[0] == 0: return [current_pid] return [current_pid] + [v for index, row in childs.iterrows() for v in get_child_pids(row["process_id"], diff)] def get_malware_pids(malware_name: str = "2020-09-30-Trickbot-EXE.exe", path: str = "./") -> List: """ Get the pids of all the malware generated processes Args: malware_name (str, optional): name of the malware. Defaults to "2020-09-08-Trickbot-EXE-gtag-ono72.exe". Returns: list: list of pids path: path of the malware """ first = pd.read_csv(path + "process_pre.csv") post = pd.read_csv(path + "process_post.csv") first.drop(first.columns[0], axis=1, inplace=True) post.drop(post.columns[0], axis=1, inplace=True) diff = first.merge(post, indicator=True, how='right').loc[lambda x: x['_merge'] != 'both'] try: malware_pid = int(diff.loc[diff['process_name'] == malware_name]["process_id"].astype(float)) except TypeError: raise RuntimeError('Malware PID not found, check malware name') return get_child_pids(malware_pid, diff) def gzip_to_string(file_path: str) -> str: """ Open a gzip file and load the content in a string This function exists because the gzip may not be proprerly closed. In this case, the end is corrupted but the rest can be read. Args: file_path (string): path of the gzip file Returns: str: content of the gzip file """ gzip_file = gzip.open(file_path, "rt") string = "" while True: try: line = gzip_file.readline() string += line except EOFError: break return string def get_malware_traces(path: str = "./") -> List: """ Get a list of dataframe representing the frida trace Its current format is [time, api_name, category] Returns: list: list of dataframe """ pids = list(set(get_malware_pids(path=path))) traces = [] for pid in pids: if not os.path.isfile(f"{path}frida_{pid}.txt.gz"): print("Trace for {pid} does not exist") header = ["time", "api", "category"] frida_str = StringIO(gzip_to_string(f"{path}frida_{pid}.txt.gz")) dataframe = pd.read_csv(frida_str, names=header) dataframe.drop( dataframe.loc[dataframe['api'] == 'error'].index, inplace=True) dataframe.drop_duplicates( subset=['time', 'api'], keep='first', inplace=True) dataframe.reset_index(drop=True, inplace=True) traces.append(dataframe) dataframe["time_int"] = (dataframe["time"] * 1000000).astype(int) return traces class Singleton(type): # Singleton modified to handle arguments (singleton for each argument set) _instances = {} _init = {} def __init__(cls, name, bases, dct): cls._init[cls] = dct.get('__init__', None) def __call__(cls, *args, **kwargs): init = cls._init[cls] if init is not None: key = (cls, frozenset(inspect.getcallargs(init, None, *args, **kwargs).items())) else: key = cls if key not in cls._instances: cls._instances[key] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[key] class MalwareTraceExtractor(metaclass=Singleton): def __init__(self, malware_name: str, path: str): self.malware_name = malware_name self.path = path self.trace_array = None self._get_trace() def _get_trace(self) -> None: pids = list(set(get_malware_pids(self.malware_name, path=self.path))) return_array = np.empty((0, 4)) for pid in pids: if not os.path.isfile(f"{self.path}frida_{pid}.txt.gz"): # print(f"Trace for {pid} does not exist") continue header = ["time", "api", "category"] frida_str = StringIO(gzip_to_string(f"{self.path}frida_{pid}.txt.gz")) dataframe = pd.read_csv(frida_str, names=header) dataframe.drop( dataframe.loc[dataframe['api'] == 'error'].index, inplace=True) dataframe.drop_duplicates( subset=['time', 'api'], keep='first', inplace=True) dataframe.reset_index(drop=True, inplace=True) dataframe["time_int"] = (dataframe["time"] * 1000000).astype(np.int64) # To numpy np_array_df = dataframe.to_numpy() # Stack to the final array return_array = np.vstack((return_array, np_array_df)) self.trace_array = return_array print(len(self.trace_array)) def get_merge_trace(self) -> np.ndarray: return self.trace_array def get_segmented_flow_syscalls(segmented_flow: np.ndarray, malware_process_name: str, path: str = "./", time_delay_allowed: int = 0) -> np.ndarray: """ Get a list of API calls corresponding to the segmented flow :param segmented_flow: :param malware_process_name: :param path: :param time_delay_allowed: :return: """ min_time, max_time = segmented_flow[0][2] for group in segmented_flow[1:]: # ['HANDSHAKE', [0, 2], [1612708961378936, 1612708961422139]] timea, timeb = group[2] min_time = min(timea, min_time) max_time = max(timeb, max_time) # print(min_time, max_time, max_time - min_time) trace_extractor = MalwareTraceExtractor(malware_name=malware_process_name, path=path) calls = trace_extractor.get_merge_trace() # calls = get_malware_traces_merged(malware_process_name, path=path) returned_calls = np.empty((0, 4)) for call in calls: mapping = pure_time_map(min_time, max_time, call[3], time_delay_allowed) if mapping is not None: returned_calls = np.vstack((returned_calls, call)) return returned_calls if __name__ == "__main__": PATH = "trickbot1_1/"
llmhyy/malware-traffic
Experiments/exp16_visualisation/api_extraction.py
api_extraction.py
py
7,970
python
en
code
7
github-code
6
[ { "api_name": "typing.Optional", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 46, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 77, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 77, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 107, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 108, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 95, "usage_type": "name" }, { "api_name": "gzip.open", "line_number": 134, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 157, "usage_type": "call" }, { "api_name": "os.path", "line_number": 157, "usage_type": "attribute" }, { "api_name": "io.StringIO", "line_number": 160, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 161, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 145, "usage_type": "name" }, { "api_name": "inspect.getcallargs", "line_number": 183, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 201, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 203, "usage_type": "call" }, { "api_name": "os.path", "line_number": 203, "usage_type": "attribute" }, { "api_name": "io.StringIO", "line_number": 207, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 208, "usage_type": "call" }, { "api_name": "numpy.int64", "line_number": 214, "usage_type": "attribute" }, { "api_name": "numpy.vstack", "line_number": 218, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 222, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 226, "usage_type": "attribute" }, { "api_name": "numpy.empty", "line_number": 246, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 250, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 227, "usage_type": "attribute" } ]
39626332335
import numpy as np from flask import Flask, request, render_template import pickle app = Flask(__name__) model = pickle.load(open('model.pkl', 'rb')) @app.route('/') def home(): return render_template("index.html") @app.route('/predict',methods=['POST']) def predict(): label = "" sepallength = request.form["sepallength"] sepalwidth = request.form["sepalwidth"] petallength = request.form["petallength"] petalwidth =request.form["petallength"] int_features = [sepallength,sepalwidth , petallength ,petalwidth] final_features = [np.array(int_features)] prediction = model.predict(final_features)[0] if prediction == 0 : label = "Iris-virginica" elif prediction == 1: label = "Iris-versicolor" else: label = "Iris-setosa" return render_template('index.html', prediction_text='Predicted Flower should be $ {}'.format(label)) if __name__ == "__main__": app.run(debug=True)
Karthicksaga/IRIS
app.py
app.py
py
938
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 6, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 15, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 15, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 16, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 17, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 17, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 18, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 18, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 21, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 30, "usage_type": "call" } ]
10422721293
from __future__ import annotations from enum import Enum from typing import TYPE_CHECKING, Any, TypeVar if TYPE_CHECKING: from collections.abc import Iterator T = TypeVar("T", bound=Enum) def iterate_enum(enum_class: type[T]) -> Iterator[T]: assert issubclass(enum_class, Enum) yield from enum_class def add_long_name(enum_class: type[T], names: dict[T, str]) -> None: add_per_enum_field(enum_class, "long_name", names) def add_per_enum_field(enum_class: type[T], field_name: str, names: dict[T, Any]) -> None: if set(enum_class) != set(names.keys()): raise ValueError(f"{field_name} for {enum_class} are not synchronized") for key, value in names.items(): setattr(key, field_name, value)
randovania/randovania
randovania/lib/enum_lib.py
enum_lib.py
py
739
python
en
code
165
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 6, "usage_type": "name" }, { "api_name": "typing.TypeVar", "line_number": 9, "usage_type": "call" }, { "api_name": "enum.Enum", "line_number": 9, "usage_type": "name" }, { "api_name": "enum.Enum", "line_number": 13, "usage_type": "argument" }, { "api_name": "collections.abc.Iterator", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 21, "usage_type": "name" } ]
32043413373
import getpass import datetime import urllib, urllib.request import os, sys from random import randint from shutil import copyfileobj from html.parser import HTMLParser #Time, Right Now. now = datetime.datetime.now() #Get local username UserName = getpass.getuser() #Define End-Of-Script Quit-Action def quitting_time(): print() print() print("Your Precious Cargo Is On Your Desktop, Inside The Folder 'ThisAmericanLife'.") print("I Now Retire To My Humble Abode.") print("Thank You, User, For This Opportunity.") input("Press ENTER To End Program.") sys.exit(0) #Change download directory to "ThisAmericanLife" on User's Desktop if not os.access('/home/' + UserName + '/Desktop/ThisAmericanLife/', os.F_OK): os.mkdir('/home/' + UserName + '/Desktop/ThisAmericanLife/') os.chdir('/home/'+ UserName +'/Desktop/ThisAmericanLife/') #Required for parsing and stripping HTML data class MLStripper(HTMLParser): #Supports the stripping of tags from "straight html" def __init__(self): super().__init__() self.reset() self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) #This strips html tags from html; input must be "straight html" def strip_tags(html): s = MLStripper() s.feed(html) return s.get_data() #Define asking User what s/he wants to do def what_to_do (retries=4, complaint='Answer With A Number Between 1 and 5, Please'): Option_01 = set(['1', '01', 'one']) Option_02 = set(['2','02','two']) Option_03 = set(['3','03','three']) Option_04 = set(['4','04','four']) Option_05 = set(['5','05','five']) while True: we_are_doing = input("Answer With Numbers 1 thru 5 >> ").lower() if we_are_doing in Option_01: print("We'll now download one episode of your choice.") print() One_OneEpisode() if we_are_doing in Option_02: print("We'll now download your choice of a block of episodes.") print() Two_EpisodeBlock() if we_are_doing in Option_03: print("We'll now download episodes from your choice to the current episode.") print() Three_ScatteredEpisodes() if we_are_doing in Option_04: print("We'll now download a smattering of episodes of your choice.") print() Four_EpiChoiceToCurrent() if we_are_doing in Option_05: print("We'll now download five random episodes for you.") print() Five_5RandomEpis() retries = retries - 1 if retries < 0: print("You Are Incapable Of Following Instructions.") print("I'm Done Trying To Help You.") input("Press ENTER To Quit, As I Have.") sys.exit(0) print(complaint) ####### Subroutine: Get Latest Episode Number ####### def get_latest_episode_number(): #Note: this subroutine creates and deletes a temporary txt file, "TAL_Archive_HTML.txt" ###Global Variables### #this is required because we need to know what the latest episode number is Everywhere global LatestEpisodeNumber ###Global Variables### #Get the HTML source code from T.A.L.'s Archive URL website = urllib.request.urlopen("http://www.thisamericanlife.org/radio-archives").read() #Save Website to risk_reward.txt [file will be removed when the data is retrieved] strip_write = open('/home/' + UserName + '/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt', 'w') strip_write.write(strip_tags(website.decode('utf-8'))) strip_write.close() #Search through HTML-stripped source data for the latest episode, keying off the first instance of "Share" with open('/home/' + UserName + '/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt', 'r+') as TAL_Archive_HTML: for line in TAL_Archive_HTML: if "Share" in line: #Assign the latest episode's information [number, title, date] without leading spaces to variable CurrentEpisodeLineInfo CurrentEpisodeLineInfo = TAL_Archive_HTML.__next__().lstrip() #Assign the last 10 characters of space-stripped CurrentEpisodeLineInfo to LatestEpisodeDate [DD.MM.YYYY] LatestEpisodeDate = CurrentEpisodeLineInfo[-11:-1] #Check if the latest queue'd episode is available today, keying off date information if now.strftime("%m.%d.%Y") < LatestEpisodeDate: LatestEpisodeNumber = int(CurrentEpisodeLineInfo[0:3]) - 1 elif now.strftime("%m.%d.%Y") == LatestEpisodeDate: #We need to find out when today's episode is released for download... today, or tomorrow. #GetTheTodayActionStarted LatestEpisodeNumber = int(CurrentEpisodeLineInfo[0:3]) - 1 pass elif now.strftime("%m.%d.%Y") > LatestEpisodeDate: LatestEpisodeNumber = CurrentEpisodeLineInfo[0:3] else: print() print() print("Call The Doctor.") print("I Now Hide Behind Cpt. Jack Harkness For Safety.") input("Press ENTER To Escape Your Doom.") sys.exit(0) break print("The latest episode in the queue is " + CurrentEpisodeLineInfo) print() print("The latest available episode is Episode #" + str(LatestEpisodeNumber)) print() #Remove the temporary txt file TAL_Archive_HTML.txt os.remove("/home/" + UserName + "/Desktop/ThisAmericanLife/TAL_Archive_HTML.txt") ####### Subroutine: Get Episode Number From User ####### def get_episode_number_from_user(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber #This is required in case User enters "0" for the episode number global nakednumber ###Global Variables### number = input("Give Me An Episode Number >> ") print() nakednumber = number.lstrip("0") if nakednumber == "": print("You told me to download 'Episode 0', which does not exist.") get_episode_number_from_user() else: pass EpisodeNumber = int(nakednumber) if(EpisodeNumber >= 1): pass else: print("You didn't give me a positive whole number.") get_episode_number_from_user() ####### Subroutine: Generate Random Episode Number ####### def generate_random_episode_number(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### RandomEpisodeNumber = randint(0,int(LatestEpisodeNumber)) EpisodeNumber = RandomEpisodeNumber ####### Subroutine: Check Number Is Valid ####### def check_epi_number_validity(): if EpisodeNumber >= int(LatestEpisodeNumber): while (EpisodeNumber >= int(LatestEpisodeNumber)): print("The episode number you have chosen is in the Future.") print() get_episode_number_from_user() else: pass ####### Subroutine: Download The Episode ####### def download_the_episode(): ###Global Variables### #this is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### mp3 = str(EpisodeNumber) + ".mp3" with urllib.request.urlopen(("http://audio.thisamericanlife.org/" + str(EpisodeNumber) + "/" + str(EpisodeNumber) + ".mp3")) as in_stream, open(mp3, 'wb') as out_file: copyfileobj(in_stream, out_file) print() print("I have finished downloading episode #" + str(EpisodeNumber) + " of This American Life.") print() ################################################## ##########Executing The User's Options############ ################################################## ####### Download One Episode ####### def One_OneEpisode(): get_latest_episode_number() get_episode_number_from_user() check_epi_number_validity() download_the_episode() quitting_time() ####### Download A Choice Block Of Episodes ####### def Two_EpisodeBlock(): #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() #Get the first boarder episode number from User print("What episode number is at the beginning of this block of episodes?") get_episode_number_from_user() check_epi_number_validity() FirstNumber = EpisodeNumber #Get the second boarder episode number from User print("What episode number is at the end of this block of episodes?") get_episode_number_from_user() check_epi_number_validity() SecondNumber = EpisodeNumber #A list of the boarder episode numbers boarder_episodes = [FirstNumber,SecondNumber] #Find and establish which episode number inputted has the larger value HigherEpisodeNumber = max(boarder_episodes) #Find and establish which episode number inputted has the smaller value LowerEpisodeNumber = min(boarder_episodes) #Asshole Condition [block of 1 episode] #We are going to use EpisodeNumber to download, and admonish the User if FirstNumber == SecondNumber: print() print("You should have chosen Option #1: 'Download One Episode of your choice'.") print("I don't want to out of principle, but to be nice I shall help you anyway.") print() download_the_episode() quitting_time() else: pass #Calculate how many episodes to download DownloadCycles = int(HigherEpisodeNumber) - int(LowerEpisodeNumber) + 1 #Prime the EpisodeNumber variable for looping EpisodeNumber = int(LowerEpisodeNumber) #Download those episodes! for n in range(0,DownloadCycles): download_the_episode() EpisodeNumber = EpisodeNumber + 1 quitting_time() ####### Download Scattered Episodes ####### def Three_ScatteredEpisodes(): get_latest_episode_number() HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") if(int(HowManyEpisodes) >= 1): pass else: while (int(HowManyEpisodes) < 1): print() print("You didn't give me a counting number.") HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") print() if int(HowManyEpisodes) > (int(LatestEpisodeNumber) + 1): while (int(HowManyEpisodes) > (int(LatestEpisodeNumber) + 1)): print() print("There are not that many episodes to download at this time.") print() print("There are " + str(LatestEpisodeNumber) + " available to download at this time.") print() HowManyEpisodes = input("How Many Episodes Would You Like To Download? >> ") print() for n in range(0,int(HowManyEpisodes)): get_episode_number_from_user() check_epi_number_validity() download_the_episode() quitting_time() ####### Download Choice To Latest Available ####### def Four_EpiChoiceToCurrent(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() print("I need to know what episode you want to start with.") get_episode_number_from_user() check_epi_number_validity() #Calculate how many episodes to download DownloadCycles = int(LatestEpisodeNumber) - EpisodeNumber + 1 #Download those episodes! for n in range(0,DownloadCycles): download_the_episode() EpisodeNumber = EpisodeNumber +1 quitting_time() ####### Download Five Random Episodes ####### def Five_5RandomEpis(): ###Global Variables### #This is required because we need to know the episode number Everywhere global EpisodeNumber ###Global Variables### get_latest_episode_number() for n in range(0,5): EpisodeNumber = randint(1,int(LatestEpisodeNumber)) download_the_episode() quitting_time() ################################################## ############### Kick Off The Script ############## ################################################## #Print-to-Screen Introduction print('========== =========== ==========') print("Hello " + UserName + "!") print("The time is", now.strftime("%Y-%m-%d %H:%M")) #Print to Terminal time, time right now; print("Let's Download Some Episodes of 'This American Life'.") print('========== =========== ==========') #Prompt User On What To Do print("What Type Of Downloading Would We Like To Do? ") print() print("Option 1: One [1] episode of your choice.") print("Option 2: A continuous block of episodes, your choice.") print("Option 3: A discontinuous block of episodes, your choice.") print("Option 4: All episodes between your choice and the current episode [inclusive].") print("Option 5: Five [5] random episodes.") print() what_to_do() #EndFile.
milesnielsen/DownloadEpisodesTAL
TAL_Epi_Download.py
TAL_Epi_Download.py
py
13,624
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 10, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 10, "usage_type": "attribute" }, { "api_name": "getpass.getuser", "line_number": 13, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 23, "usage_type": "call" }, { "api_name": "os.access", "line_number": 27, "usage_type": "call" }, { "api_name": "os.F_OK", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 28, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 30, "usage_type": "call" }, { "api_name": "html.parser.HTMLParser", "line_number": 34, "usage_type": "name" }, { "api_name": "html.parser", "line_number": 47, "usage_type": "argument" }, { "api_name": "sys.exit", "line_number": 86, "usage_type": "call" }, { "api_name": "urllib.request.urlopen", "line_number": 101, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 101, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 135, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 147, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 188, "usage_type": "call" }, { "api_name": "urllib.request.urlopen", "line_number": 215, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 215, "usage_type": "attribute" }, { "api_name": "shutil.copyfileobj", "line_number": 216, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 380, "usage_type": "call" } ]
19209409927
import re import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Dictionary mapping word contractions to their full words contractions = { "ain't": "are not","'s":" is","aren't": "are not", "can't": "cannot","can't've": "cannot have", "'cause": "because","could've": "could have","couldn't": "could not", "couldn't've": "could not have", "didn't": "did not","doesn't": "does not", "don't": "do not","hadn't": "had not","hadn't've": "had not have", "hasn't": "has not","haven't": "have not","he'd": "he would", "he'd've": "he would have","he'll": "he will", "he'll've": "he will have", "how'd": "how did","how'd'y": "how do you","how'll": "how will", "I'd": "I would", "I'd've": "I would have","I'll": "I will", "I'll've": "I will have","I'm": "I am","I've": "I have", "isn't": "is not", "it'd": "it would","it'd've": "it would have","it'll": "it will", "it'll've": "it will have", "let's": "let us","ma'am": "madam", "mayn't": "may not","might've": "might have","mightn't": "might not", "mightn't've": "might not have","must've": "must have","mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock","oughtn't": "ought not", "oughtn't've": "ought not have","shan't": "shall not","sha'n't": "shall not", "shan't've": "shall not have","she'd": "she would","she'd've": "she would have", "she'll": "she will", "she'll've": "she will have","should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have","so've": "so have", "that'd": "that would","that'd've": "that would have", "there'd": "there would", "there'd've": "there would have", "they'd": "they would", "they'd've": "they would have","they'll": "they will", "they'll've": "they will have", "they're": "they are","they've": "they have", "to've": "to have","wasn't": "was not","we'd": "we would", "we'd've": "we would have","we'll": "we will","we'll've": "we will have", "we're": "we are","we've": "we have", "weren't": "were not","what'll": "what will", "what'll've": "what will have","what're": "what are", "what've": "what have", "when've": "when have","where'd": "where did", "where've": "where have", "who'll": "who will","who'll've": "who will have","who've": "who have", "why've": "why have","will've": "will have","won't": "will not", "won't've": "will not have", "would've": "would have","wouldn't": "would not", "wouldn't've": "would not have","y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have","y'all're": "you all are", "y'all've": "you all have", "you'd": "you would","you'd've": "you would have", "you'll": "you will","you'll've": "you will have", "you're": "you are", "you've": "you have" } STOPWORDS = stopwords.words('english') meaningless_words = ['hotel','stay','hilton','location','room','service','airport','staff','london','night','flight','overnight','rooms', 'experience','gatwick','ever','holiday','one', 'stayed','would','breakfast','bed','check','get','us','time','reception','terminal','bar','food','booked','walk','bathroom', 'really','early','could','also','restaurant','morning','even','floor','next','back','day','two', 'got','executive','south','shower','first','long','need','area', 'minutes','lounge','went','much','told','sleep', 'arrived','hotels','work','station','nights','beds', 'quite','bit','go','people','car'] for word in meaningless_words: STOPWORDS.append(word) # Remove punctutation marks, stopwords, emojis, urls, convert to lowercase, expand contractions, hashtags, retweet def preprocess_review(review): res_review = [] lemmatizer = WordNetLemmatizer() for word in review.split(): # Convert to lowercase word = word.lower() # Expand Contractions word = contractions.get(word, word) for w in word.split(" "): # Remove stopwords if w not in STOPWORDS: # w = splitter.split(w) # Remove punctuation w = re.sub(r'[^\w\s]', '', str(w)) # Remove numbers w = re.sub(r'\d+', '', w) # Lemmatize the word w = lemmatizer.lemmatize(w, pos='v') if w != '': res_review.append(w) return ' '.join([word for word in res_review])
kelvinchumbe/Hotel-Review-Mining-and-Web-App
Hotel Review Mining/Web App Deployment/api/preprocessing_utils.py
preprocessing_utils.py
py
4,650
python
en
code
0
github-code
6
[ { "api_name": "nltk.corpus.stopwords.words", "line_number": 49, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 49, "usage_type": "name" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 60, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 75, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 78, "usage_type": "call" } ]
71281284349
# mysql 테이블 생성 및 데이터 추가 import pandas as pd import pymysql xl_file = '/Users/JaehoByun/JB/_School/2021_2 데이터사이언스/과제및시험/score.xlsx' df = pd.read_excel(xl_file) conn = pymysql.connect(host='localhost', user='root', password='chunjay606', db='data_science') curs = conn.cursor(pymysql.cursors.DictCursor) # 테이블 생성 mk_table_sql = """create table if not exists score (sno int primary key, attendance float, homework float, discussion int, midterm float, final float, score float, grade varchar(3))""" curs.execute(mk_table_sql) # 데이터 넣기 insert_sql = """insert into score(sno, attendance, homework, discussion, midterm, final, score, grade) values (%s, %s, %s, %s, %s, %s, %s, %s)""" for idx in range(len(df)): curs.execute(insert_sql, tuple(df.values[idx])) conn.commit() # 데이터 삽입 확인 show_table_sql = 'select * from score' curs.execute(show_table_sql) row = curs.fetchone() while row: print(row) row = curs.fetchone() curs.close() conn.close()
bjho606/python_school-data-science
score_assignment2.py
score_assignment2.py
py
1,130
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_excel", "line_number": 6, "usage_type": "call" }, { "api_name": "pymysql.connect", "line_number": 8, "usage_type": "call" }, { "api_name": "pymysql.cursors", "line_number": 9, "usage_type": "attribute" } ]
17635143913
from collections import Counter import pandas as pd def transform(new_subjects): list_keys = list(Counter(new_subjects).keys()) list_values = list(Counter(new_subjects).values()) df_keys = pd.DataFrame(list_keys, columns=['subject']) df_values = pd.DataFrame(list_values, columns=['frequency']) df_arxiv = pd.concat([df_keys, df_values], axis=1) df_arxiv['frequency'] = pd.to_numeric(df_arxiv['frequency']) df_arxiv = df_arxiv.sort_values(by=['frequency'], ascending=False) return df_arxiv
ThomasKranz/arxiv_ETL
src/transformer.py
transformer.py
py
526
python
en
code
0
github-code
6
[ { "api_name": "collections.Counter", "line_number": 5, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 8, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 11, "usage_type": "call" }, { "api_name": "pandas.to_numeric", "line_number": 12, "usage_type": "call" } ]
17650565567
import nltk from newspaper import Article # nltk.download('punkt') is a Python command that is used to download the "punkt" dataset or resource from the Natural Language Toolkit (NLTK) library. # NLTK is a popular library in Python for working with human language data, including tasks like tokenization, parsing, and text classification. # The "punkt" dataset in NLTK contains pre-trained models and data necessary for tokenization, which is the process of breaking down a text into individual words or tokens. # These pre-trained models can be used to tokenize text in various languages, making it easier to work with natural language data in your Python projects. nltk.download('punkt') url='https://indianexpress.com/article/technology/tech-news-technology/apple-event-2-things-wowed-us-8938618/' article = Article(url) article.download() article.parse() article.nlp() print(f'Title: {article.title}') print(f'Authors: {article.authors}') print(f'Publish Date: {article.publish_date}') print(f'Summary: {article.summary}')
AnukulSri/summarize-news-article
news.py
news.py
py
1,033
python
en
code
0
github-code
6
[ { "api_name": "nltk.download", "line_number": 10, "usage_type": "call" }, { "api_name": "newspaper.Article", "line_number": 12, "usage_type": "call" } ]
32259974513
### SPDX-License-Identifier: GPL-2.0-or-later """Parse phc2sys log messages""" import re from collections import namedtuple from .parser import (Parser, parse_decimal) class TimeErrorParser(Parser): """Parse time error from a phc2sys log message""" id_ = 'phc2sys/time-error' elems = ('timestamp', 'terror', 'state', 'delay') y_name = 'terror' parsed = namedtuple('Parsed', elems) @staticmethod def build_regexp(): """Return a regular expression string for parsing phc2sys log file lines""" return r'\s'.join((r'^phc2sys' + r'\[([1-9][0-9]*\.[0-9]{3})\]:' # timestamp + r'(?:\s\[ptp4l\.\d\..*\])?', # configuration file name r'CLOCK_REALTIME phc offset\s*', r'(-?[0-9]+)', # time error r'(\S+)', # state r'freq\s*', r'([-+]?[0-9]+)', # frequency error r'delay\s*', r'(-?[0-9]+)' # delay + r'\s*.*$')) def __init__(self): super().__init__() self._regexp = re.compile(self.build_regexp()) def make_parsed(self, elems): if len(elems) < len(self.elems): raise ValueError(elems) timestamp = parse_decimal(elems[0]) terror = int(elems[1]) state = str(elems[2]) delay = int(elems[3]) return self.parsed(timestamp, terror, state, delay) def parse_line(self, line): matched = self._regexp.match(line) if matched: return self.make_parsed(( matched.group(1), matched.group(2), matched.group(3), matched.group(5), )) return None
redhat-partner-solutions/vse-sync-pp
src/vse_sync_pp/parsers/phc2sys.py
phc2sys.py
py
1,846
python
en
code
0
github-code
6
[ { "api_name": "parser.Parser", "line_number": 11, "usage_type": "name" }, { "api_name": "collections.namedtuple", "line_number": 16, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 35, "usage_type": "call" }, { "api_name": "parser.parse_decimal", "line_number": 40, "usage_type": "call" } ]
75275385466
from datetime import datetime from time import process_time # file = open(address, mood) # with open('oi.txt', 'r', encoding='utf-8') as file: # content = file.read() # print(content) with open('log.txt', 'w', encoding='utf-8') as file: file.write('Horários de log dos funcionários') # with open('log.txt', 'r', encoding='utf-8') as file: # content = file.read() # print(content) status = False tempo_trabalhado = 0 answer = input('Quer entrar no sistema? ').lower() if answer == 'sim': status = True t1 = process_time() name = input('Digite seu nome: ').upper() with open('log.txt', 'a', encoding='utf-8') as file: date_now = datetime.now() log = date_now.strftime('%d-%m-%Y %H:%M:%S') file.write(f'\n{name} entrou {log}') if status: answer = input('Quer sair do sistema? ').lower() if answer == 'sim': status = False t2 = process_time() tempo_trabalhado += (t2-t1) with open('log.txt', 'a', encoding='utf-8') as file: date_now = datetime.now() log = date_now.strftime('%d-%m-%Y %H:%M:%S') file.write(f'\n{name} saiu {log}') with open('log.txt', 'r', encoding='utf-8') as file: content = file.read() print(content) print(tempo_trabalhado)
ewertonpereira/python
test/testing.py
testing.py
py
1,302
python
en
code
2
github-code
6
[ { "api_name": "time.process_time", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 28, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 28, "usage_type": "name" }, { "api_name": "time.process_time", "line_number": 37, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 40, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 40, "usage_type": "name" } ]
38435402089
import json import pandas def read_json(filename: list) -> dict: try: with open(filename, "r") as f: data = json.loads(f.read()) except: raise Exception(f"Reading {filename} file encountered an error") return data def create_dataframe(data: str) -> pandas.DataFrame: # Declare an empty dataframe to append records dataframe = pandas.DataFrame() # Looping through each record for d in data['workers']: # Normalize the column levels name_details = pandas.json_normalize(d, record_path=['nameDetails']) contact_details = pandas.json_normalize(d, record_path=['phoneContactDetails']) email = pandas.json_normalize(d, record_path=['emailContactDetails'],meta=[['employmentSummary','createAccessDate'],['employmentSummary','createAccessTime'],['employmentSummary','mostRecentHireDate']]) record = pandas.json_normalize(d, record_path=['addressDetails']) job_details = pandas.json_normalize(d, record_path=['jobDetails'],meta=['workerIdentifier']) new = pandas.concat([name_details,contact_details,email,record,job_details],axis=1,join='inner') # Append it to the dataframe dataframe = dataframe.append(new, ignore_index=True) return dataframe def main(): # Read the JSON file as python dictionary data = read_json(filename="work.json") # Generate the dataframe for the array items in # details key dataframe = create_dataframe(data=data['workerDataResponse']) # Renaming columns of the dataframe dataframe.columns.to_list() dataframe.rename(columns={ "employmentSummary.createAccessDate": "accessDate", "employmentSummary.createAccessTime": "accessTime", "employmentSummary.mostRecentHireDate": "mostRecentHireDate", "employmentJobProfileDetails.jobProfileIdentifier": "jobProfileIdentifier", "jobGovernanceRoleDetails.functionalManagerWorkerIdentifier": "functionalManagerWorkerIdentifier", "organizationDetails.companyOrganizationIdentifier":"companyOrganizationIdentifier" }, inplace=True) dataframe.columns.to_list() # Convert dataframe to CSV dataframe.to_csv("emp_data.csv", index=False) if __name__ == '__main__': main()
PrasadWakle/jsontocsv
jsontocsv.py
jsontocsv.py
py
2,340
python
en
code
0
github-code
6
[ { "api_name": "json.loads", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 19, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 25, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 26, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 28, "usage_type": "call" }, { "api_name": "pandas.json_normalize", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 31, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 16, "usage_type": "attribute" } ]
11464353853
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 7 13:18:01 2022 @author: sampasmann """ import time import numpy as np from mpi4py import MPI from src.functions.save_data import SaveData from src.solvers.fixed_source.solvers import Picard from src.solvers.eigenvalue.maps import MatVec_data, MatVec from scipy.sparse.linalg import gmres, lgmres, bicgstab, LinearOperator import scipy.linalg as sp from src.solvers.eigenvalue.maps import SI_Map # ============================================================================= # Iteration and Residual Storage for Krylov Solvers # ============================================================================= class gmres_counter(object): def __init__(self, disp=True): self._disp = disp self.iter = 0 self.callbacks = [] def __call__(self, rk=None): self.callbacks.append(rk.copy()) self.iter += 1 if self._disp: if (self.iter>1): print(" Iteration:", self.iter-1, "change: ", np.linalg.norm((rk - self.callbacks[self.iter-2]))) # ============================================================================= # Power Iteration # ============================================================================= # TODO: Picard PI is not working def PowerIteration(qmc_data, solver="LGMRES", max_outter_itt=10, max_inner_itt=10, outter_tol=1e-5, inner_tol=1e-5, report_progress=True): comm = MPI.COMM_WORLD rank = comm.Get_rank() # nproc = comm.Get_size() itt = 0 k = qmc_data.keff dk = 1.0 phi_old = qmc_data.tallies.phi_f.copy() #res_hist = [] k_hist = [] if (rank==0): print("") print(" ██╗ ██████╗ ███╗ ███╗ ██████╗") print(" ║ ║██╔═══██╗████╗ ████║██╔════╝") print(" ██║██║ ██║██╔████╔██║██║ ") print(" ██║██║▄▄ ██║██║╚██╔╝██║██║ ") print(" ██║╚██████╔╝██║ ╚═╝ ██║╚██████╗") print(" ╚═╝ ╚══▀▀═╝ ╚═╝ ╚═╝ ╚═════╝") print("") print("--------- K-Effective Eigenvalue Problem ---------") print("Outter Solver: Power Iteration") print("Inner Sovler:", solver) print("Material: ", qmc_data.material_code) print("Random Number Generator: ", qmc_data.generator) print("Number of Particles per Iteration: ", qmc_data.N) print("Number of Spatial Cells: ", qmc_data.Nx) print("Initial K: ", qmc_data.keff) # iterate over k effective while (itt<=max_outter_itt) and (dk>=outter_tol): # iterate over scattering source phi_new = InnerIteration(qmc_data, solver=solver, maxit=max_inner_itt,tol=inner_tol, report_progress=report_progress) #phi_hist.append(phi_new) k_old = k k = UpdateK(phi_old, phi_new, qmc_data) k_hist.append(k) qmc_data.keff = k #res_hist.append(np.linalg.norm(phi_new-phi_old)) qmc_data.tallies.phi_f = phi_new.copy() phi_old = phi_new.copy() # /norm(phi_new) if (qmc_data.source_tilt): qmc_data.tallies.dphi_f = qmc_data.tallies.dphi_s dk = abs(k-k_old) itt += 1 if (rank==0) and (report_progress): print("**********************") print("Iteration:", itt) print("k: ", k) print("dk: ",dk) if (rank==0): if (itt>=max_outter_itt): print("Power Iteration convergence to tolerance not achieved: Maximum number of iterations.") elif (dk<=outter_tol): print("-------------------------------") print("Successful Power Iteration convergence.") return phi_new, k_hist, itt #, res_hist # ============================================================================= # Inner Source Iteration for Power Iteration # ============================================================================= # TODO: make exitCode an actual output from Picard def InnerIteration(qmc_data,solver="LGMRES",tol=1e-5,maxit=50,save_data=False, report_progress=True): """ Parameters ---------- qmc_data : TYPE DESCRIPTION. tol : TYPE, optional DESCRIPTION. The default is 1e-5. maxit : TYPE, optional DESCRIPTION. The default is 50. Returns ------- phi : TYPE DESCRIPTION. """ comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() Nx = qmc_data.Nx G = qmc_data.G Nv = Nx*G Nt = qmc_data.Nt start = time.time() matvec_data = MatVec_data(qmc_data) if (qmc_data.source_tilt): phi0 = np.append(qmc_data.tallies.phi_avg, qmc_data.tallies.dphi_s) else: phi0 = qmc_data.tallies.phi_avg phi0 = np.reshape(phi0,(Nt,1)) if (rank==0) and (report_progress): print(" Inner Iteration: ") if (solver=="Picard"): phi = Picard(qmc_data,tol=tol,maxit=maxit,save_data=False, report_progress=report_progress) exitCode = 0 else: A = LinearOperator((Nt,Nt), matvec=MatVec, rmatvec=MatVec, matmat= MatVec, rmatmat=MatVec, dtype=float) b = matvec_data[0] if (solver=="LGMRES"): counter = gmres_counter(disp=report_progress) gmres_out = lgmres(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) elif (solver=="GMRES"): counter = gmres_counter(disp=report_progress) gmres_out = gmres(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) elif (solver=="BICGSTAB"): counter = gmres_counter(disp=report_progress) gmres_out = bicgstab(A,b,x0=phi0,tol=tol,maxiter=maxit, callback=counter) else: print(" Not a valid solver ") Exception phi = gmres_out[0] exitCode = gmres_out[1] stop = time.time() run_time = stop - start if (qmc_data.source_tilt): phi = phi[:Nv] phi = np.reshape(phi, (Nx,G)) if (rank==0): if (save_data): sim_data = SimData(phi, run_time, tol, nproc) SaveData(qmc_data, sim_data) if (exitCode>0) and (report_progress): print(" Convergence to tolerance not achieved: Maximum number of iterations.") elif (exitCode<0) and (report_progress): print(" Illegal input or breakdown.") elif (exitCode==0) and (report_progress): print(" Successful convergence.") return phi def UpdateK(phi_f, phi_s, qmc_data): keff = qmc_data.keff material = qmc_data.material keff *= (np.sum(material.nu*material.sigf*phi_s) /np.sum(material.nu*material.sigf*phi_f)) return keff # ============================================================================= # Davidson's Algorithm # ============================================================================= # TODO: Correct normalization of scalar flux in Davidson's output # TODO: Enable Source Tilting with Davidson's def Davidson(qmc_data, k0=1.0, l=1, m=None, numSweeps=8, tol=1e-6, maxit=30, report_progress=True): """ Parameters ---------- qmc_data : qmc_data structure k0 : Float, optional DESCRIPTION. The default is 1.0. l : Int, optional DESCRIPTION. Number of eigenvalues and vectors to solver for The default is 1. m : Int, optional DESCRIPTION. Restart parameter. The default is 5. numSweeps : Int, optional DESCRIPTION. The default is 5. tol : Float, optional DESCRIPTION. The default is 1e-6. maxit : Int, optional DESCRIPTION. The default is 30. Returns ------- phi : TYPE DESCRIPTION. keff : TYPE DESCRIPTION. itt : TYPE DESCRIPTION. """ comm = MPI.COMM_WORLD rank = comm.Get_rank() # Davidson Parameters Nt = qmc_data.Nt if (qmc_data.source_tilt): phi0 = np.append(qmc_data.tallies.phi_avg, qmc_data.tallies.dphi_s) else: phi0 = qmc_data.tallies.phi_avg phi0 = np.reshape(phi0,(Nt)) # u = qmc_data.tallies.phi_f.reshape(Nt) V0 = np.array(phi0/np.linalg.norm(phi0).T) # orthonormalize initial guess V = np.zeros((Nt,maxit)) axv = np.zeros((Nt,maxit)) bxv = np.zeros((Nt,maxit)) Vsize = 1 V[:,0] = V0 k_old = 0.0 dk = 1.0 itt = 1 if (rank==0): print("") print(" ██╗ ██████╗ ███╗ ███╗ ██████╗") print(" ║ ║██╔═══██╗████╗ ████║██╔════╝") print(" ██║██║ ██║██╔████╔██║██║ ") print(" ██║██║▄▄ ██║██║╚██╔╝██║██║ ") print(" ██║╚██████╔╝██║ ╚═╝ ██║╚██████╗") print(" ╚═╝ ╚══▀▀═╝ ╚═╝ ╚═╝ ╚═════╝") print("") print("--------- K-Effective Eigenvalue Problem ---------") print("Outter Solver: Davidson's Method") print("Material: ", qmc_data.material_code) print("Random Number Generator: ", qmc_data.generator) print("Number of Particles per Iteration: ", qmc_data.N) print("Number of Spatial Cells: ", qmc_data.Nx) print("Initial K: ", qmc_data.keff) if (m is None): m = maxit+1 # unless specified there is no restart parameter V[:,:Vsize] = PreConditioner(V[:,:Vsize], qmc_data, numSweeps) # Davidson Routine while (itt <= maxit) and (dk>=tol): #print(V) if (report_progress): print("**********************") print(" Davidson Iteration: ", itt) axv[:,Vsize-1] = AxV(V[:,:Vsize], qmc_data)[:,0] bxv[:,Vsize-1] = BxV(V[:,:Vsize], qmc_data)[:,0] AV = np.dot(V[:,:Vsize].T, axv[:,:Vsize]) # Scattering linear operator BV = np.dot(V[:,:Vsize].T, bxv[:,:Vsize]) # Fission linear operator [Lambda, w] = sp.eig(AV, b=BV) # solve for eigenvalues and vectors idx = Lambda.argsort() # get indices of eigenvalues from smallest to largest Lambda = Lambda[idx] # sort eigenvalues from smalles to largest assert(Lambda.imag.all() == 0.0)# there can't be any imaginary eigenvalues Lambda = Lambda[:l].real # take the real component of the l largest eigenvalues k = 1/Lambda dk = abs(k - k_old) if (report_progress): print("K Effective: ", k) print("dk: ",dk) k_old = k w = w[:,idx] # sort corresponding eigenvector w = w[:,:l].real # take the l largest eigenvectors u = np.dot(V[:,:Vsize],w) # Ritz vectors res = AxV(u, qmc_data) - Lambda*BxV(u, qmc_data) # residual t = PreConditioner(res, qmc_data, numSweeps) if (Vsize <= m-l ): Vsize += 1 V[:,:Vsize] = Gram(V[:,:Vsize-1],t) # appends new orthogonalization to V else: Vsize = 2 V[:,:Vsize] = Gram(u,t) # "restarts" by appending to a new array if (itt==maxit): print(" Convergence to tolerance not achieved: Maximum number of iterations.") break else: print(" Successful convergence.") itt += 1 keff = 1/Lambda phi = V[:,0] phi = phi/np.linalg.norm(phi).T return phi, keff, itt # ============================================================================= # Functions for Davidson's Method # ============================================================================= def AxV(V, qmc_data): """ Linear operator for scattering term (I-L^(-1)S)*phi """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nt = qmc_data.Nt zed = np.zeros((Nx,G)) phi_in = np.reshape(v, (Nt,1)) axv = (phi_in - SI_Map(zed, phi_in, qmc_data)) return axv def BxV(V, qmc_data): """ Linear operator for fission term (L^(-1)F*phi) """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nv = int(Nx*G) Nt = qmc_data.Nt zed = np.zeros(Nt) phi_in = np.reshape(v, (Nt,1)) if (qmc_data.source_tilt): dphi = qmc_data.tallies.dphi_s qmc_data.tallies.dphi_s = zed bxv = SI_Map(phi_in, zed, qmc_data) if (qmc_data.source_tilt): qmc_data.tallies.dphi_s = dphi v[Nv:] = dphi.reshape(Nv) return bxv def PreConditioner(V, qmc_data, numSweeps=8): """ Linear operator approximation of L^(-1)S In this case the preconditioner is a specified number of purely scattering transport sweeps. """ v = V[:,-1] Nx = qmc_data.Nx G = qmc_data.G Nt = qmc_data.Nt Nv = Nx*G zed = np.zeros((Nx,G)) phi_in = np.reshape(v, (Nt,1)) for i in range(numSweeps): phi_in = SI_Map(zed, phi_in, qmc_data) return phi_in def Gram(V,u): """ Modified Gram Schmidt """ w1 = u - np.dot(V,np.dot(V.T,u)) v1 = w1 / np.linalg.norm(w1) w2 = v1 - np.dot(V,np.dot(V.T,v1)) v2 = w2 / np.linalg.norm(w2) V = np.append(V, v2, axis=1) return V # ============================================================================= # Misc Functions # ============================================================================= def SimData(phi, time, tol, nproc): data = { "phi": phi, "run_time": time, "tolerance": tol, "nproc": nproc } return data
spasmann/iQMC
src/solvers/eigenvalue/solvers.py
solvers.py
py
14,940
python
en
code
2
github-code
6
[ { "api_name": "numpy.linalg.norm", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 32, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 41, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 41, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 125, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 125, "usage_type": "name" }, { "api_name": "time.time", "line_number": 132, "usage_type": "call" }, { "api_name": "src.solvers.eigenvalue.maps.MatVec_data", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 138, "usage_type": "call" }, { "api_name": "src.solvers.fixed_source.solvers.Picard", "line_number": 143, "usage_type": "call" }, { "api_name": "scipy.sparse.linalg.LinearOperator", "line_number": 147, "usage_type": "call" }, { "api_name": "src.solvers.eigenvalue.maps.MatVec", "line_number": 148, "usage_type": "name" }, { "api_name": "src.solvers.eigenvalue.maps.MatVec", "line_number": 149, "usage_type": "name" }, { "api_name": "src.solvers.eigenvalue.maps.MatVec", "line_number": 150, "usage_type": "name" }, { "api_name": "src.solvers.eigenvalue.maps.MatVec", "line_number": 151, "usage_type": "name" }, { "api_name": "scipy.sparse.linalg.lgmres", "line_number": 156, "usage_type": "call" }, { "api_name": "scipy.sparse.linalg.gmres", "line_number": 159, "usage_type": "call" }, { "api_name": "scipy.sparse.linalg.bicgstab", "line_number": 162, "usage_type": "call" }, { "api_name": "time.time", "line_number": 168, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 172, "usage_type": "call" }, { "api_name": "src.functions.save_data.SaveData", "line_number": 177, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 192, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 229, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 229, "usage_type": "name" }, { "api_name": "numpy.append", "line_number": 235, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 238, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 242, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 242, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 242, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 243, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 245, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 281, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 282, "usage_type": "call" }, { "api_name": "scipy.linalg.eig", "line_number": 283, "usage_type": "call" }, { "api_name": "scipy.linalg", "line_number": 283, "usage_type": "name" }, { "api_name": "numpy.dot", "line_number": 296, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 314, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 314, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 330, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 331, "usage_type": "call" }, { "api_name": "src.solvers.eigenvalue.maps.SI_Map", "line_number": 332, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 346, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 347, "usage_type": "call" }, { "api_name": "src.solvers.eigenvalue.maps.SI_Map", "line_number": 352, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 373, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 374, "usage_type": "call" }, { "api_name": "src.solvers.eigenvalue.maps.SI_Map", "line_number": 376, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 386, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 387, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 387, "usage_type": "attribute" }, { "api_name": "numpy.dot", "line_number": 388, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 389, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 389, "usage_type": "attribute" }, { "api_name": "numpy.append", "line_number": 390, "usage_type": "call" } ]
27315049620
import facebook from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import random token='EAACEdEose0cBAHYBMbXyW9HwyJJIeCFBaWXEcLjsp3N0vB5HZApZCxqm7KQvVxb4fgF2ZA8nh625ZBJR3NzCMGc3ApU1MyZCYBwVF85LWxqdaEdt3cNVaS0y9CYsY4DDUjGcUeDZB0TMZBJwqdEBCZBClU00PeeMqnWmMpZCWCUFGmp12hZBZA3mLilYc450f4cWvkZD' graph=facebook.GraphAPI(token) profile=graph.get_object("me") posts = graph.get_connections(profile['id'], 'posts') messages=[] for post in posts['data']: try: messages.append(post['message']) except: continue wordlist=[] wordfr=[] s=" " for m in messages: words=m.split() for w in words: s=s+" "+w wordlist.append(w) print(w) for w in wordlist: wordfr.append(wordlist.count(w)) print("List\n" + str(wordlist) + "\n") print("Frequencies\n" + str(wordfr) + "\n") print("Pairs\n" + str(zip(wordlist, wordfr))) wordcloud = WordCloud(relative_scaling = 1.0,stopwords = 'to of').generate(s) plt.imshow(wordcloud) plt.axis("off") plt.show()
aparnamnn/ACM-Project
wordclouds.py
wordclouds.py
py
1,101
python
en
code
0
github-code
6
[ { "api_name": "facebook.GraphAPI", "line_number": 15, "usage_type": "call" }, { "api_name": "wordcloud.WordCloud", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" } ]
35510723799
# Experiment 24 - Tile Movement # # By Chris Herborth (https://github.com/Taffer) # MIT license, see LICENSE.md for details. import base64 import os import pygame import pygame.freetype import pygame.gfxdraw import struct import sys import time import zlib from xml.etree import ElementTree SCREEN_TITLE = 'Experiment 24 - Tile Movement' SCREEN_WIDTH = 1280 # 720p screen SCREEN_HEIGHT = 720 BLACK = pygame.Color('black') RED = pygame.Color('red') WHITE = pygame.Color('white') # Tiled map parser. class Map: def __init__(self, map_path: str) -> None: tree = ElementTree.parse(map_path) self.root = tree.getroot() layers = self.root.findall('layer') # Map size in tiles. self.map_width = int(self.root.attrib['width']) self.map_height = int(self.root.attrib['height']) # Tile size in pixels. self.tile_width = int(self.root.attrib['tilewidth']) self.tile_height = int(self.root.attrib['tileheight']) # Tileset and image atlas paths are relative to the map file. prefix = os.path.split(map_path)[0] tilesets = self.root.findall('tileset') self.tiles = [None] # Index 0 means "don't draw a tile" in Tiled. for tileset in tilesets: tileset_path = os.path.join(prefix, tileset.attrib['source']) tileset_prefix = os.path.split(tileset_path)[0] tileset_tree = ElementTree.parse(tileset_path) tileset_root = tileset_tree.getroot() image = tileset_root.find('image') image_path = os.path.join(tileset_prefix, image.attrib['source']) texture = pygame.image.load(image_path).convert_alpha() texture_rect = texture.get_rect() # Create subsurfaces for the tiles in the atlas. for y in range(texture_rect.height // self.tile_height): for x in range(texture_rect.width // self.tile_width): tile_rect = pygame.Rect(x * self.tile_width, y * self.tile_height, self.tile_width, self.tile_height) self.tiles.append(texture.subsurface(tile_rect)) self.layer_data = {} for layer in layers: # Decode the layer data. This map is using CSV, which is easy; for # help decoding other formats, check out my tileset crusher's code: # https://github.com/Taffer/crushtileset/ data = layer.find('data') data_contents = data.text this_data = [] if data.attrib['encoding'] == 'csv': lines = data_contents.split() for line in lines: for c in line.split(','): if c != '': this_data.append(int(c)) elif data.attrib['encoding'] == 'base64' and data.attrib.get('compression', 'none') == 'zlib': the_data = base64.b64decode(data_contents) # CSV data is organized into rows, so we make this one big row. this_data = [x[0] for x in struct.iter_unpack('<I', zlib.decompress(the_data))] else: raise RuntimeError('Unsupported encoding/compression.') self.layer_data[layer.attrib['name']] = this_data def render(self, layer: str, surface: pygame.Surface, viewport: pygame.Rect, offset_x: int, offset_y: int) -> None: # This use case seems to be faster than using blits(); the overhead of # creating a list of tuples is probably what kills it. max_x = min(viewport.width, self.map_width) max_y = min(viewport.height, self.map_height) for y in range(max_y): for x in range(max_x): tile = self.tiles[self.layer_data[layer][self.get_index(x + viewport.x, y + viewport.y)]] target = pygame.Rect(offset_x + x * self.tile_width, offset_y + y * self.tile_height, self.tile_width, self.tile_height) if tile is not None: surface.blit(tile, target) def get_index(self, x: int, y: int) -> int: return x + y * self.map_width def get_tile(self, layer: str, x: int, y: int) -> int: return self.layer_data[layer][self.get_index(x, y)] # LPC Sprite for animation. # # This sets up a set of sprites, quads, etc. using the standard Liberated # Pixel Cup sprite format: # # https://lpc.opengameart.org/static/lpc-style-guide/styleguide.html # # Specifically: # * Each row is a complete animation cycle. # * Rows are mostly in groups of four based on facing = away, left, forward, # right. # * Animation rows are: Spellcast, Thrust, Walk, Slash, Shoot, Hurt (only one # facing for Hurt). We fake an Idle animation by cloning the first frame of # Walk. # * Are 64x64 on the sprite sheet. # Note that this includes a non-standard animation, 'idle', made up of the # first 'walk' frame. LPC_ANIMATION = [ 'spellcast', 'thrust', 'walk', 'slash', 'shoot', 'hurt', 'idle' ] LPC_FACING = [ 'away', 'left', 'forward', 'right' ] FRAMES = { LPC_ANIMATION[0]: 7, # spellcast LPC_ANIMATION[1]: 8, # thrust LPC_ANIMATION[2]: 9, # walk LPC_ANIMATION[3]: 6, # slash LPC_ANIMATION[4]: 13, # shoot LPC_ANIMATION[5]: 6, # hurt LPC_ANIMATION[6]: 1, # idle } class LPCSprite: def __init__(self: 'LPCSprite', texture: pygame.Surface) -> None: self.width = 64 self.height = 64 self.feet_x = self.width // 2 # Where are the feet relative to 0,0? self.feet_y = self.height - 2 self.facing = LPC_FACING[2] # Default facing and animation. self.animation = LPC_ANIMATION[2] self.frame = 1 self.texture = texture # Generate subsurfaces. self.frames = {} y = 0 for av in LPC_ANIMATION[:-2]: # "hurt" and "idle" are special cases self.frames[av] = {} for fv in LPC_FACING: self.frames[av][fv] = [] for i in range(FRAMES[av]): x = i * self.width rect = pygame.Rect(x, y, self.width, self.height) self.frames[av][fv].append(texture.subsurface(rect)) y += self.height # "hurt" has to be special-cased because it only has one facing. self.frames['hurt'] = {} y = texture.get_height() - self.height for fv in LPC_FACING: # We'll use this animation for all four facings. self.frames['hurt'][fv] = [] for i in range(FRAMES['hurt']): x = i * self.width rect = pygame.Rect(x, y, self.width, self.height) for fv in LPC_FACING: self.frames['hurt'][fv].append(texture.subsurface(rect)) # "idle" is fake, just the first frame from "walk" self.frames['idle'] = {} for fv in LPC_FACING: self.frames['idle'][fv] = [self.frames['walk'][fv][0]] def check_frame(self: 'LPCSprite') -> None: if self.frame >= FRAMES[self.animation]: self.frame = 0 def next_frame(self: 'LPCSprite') -> None: self.frame += 1 self.check_frame() def set_facing(self: 'LPCSprite', facing: str) -> None: self.facing = facing self.check_frame() def set_animation(self: 'LPCSprite', animation: str) -> None: self.animation = animation self.check_frame() def get_texture(self: 'LPCSprite') -> pygame.Surface: return self.frames[self.animation][self.facing][self.frame] class StateMachine: def __init__(self: 'StateMachine', initial_state: 'StateBase'): self.current = initial_state self.current.enter() def change(self: 'StateMachine', new_state: 'StateBase'): self.current.exit() self.current = new_state self.current.enter() def update(self: 'StateMachine', dt: float): next_state = self.current.update(dt) if next_state != self.current: self.change(next_state) class StateBase: def __init__(self: 'StateBase', entity: 'Entity'): self.entity = entity self.ticks = 0 def enter(self: 'StateBase'): pass def exit(self: 'StateBase'): pass def update(self: 'StateBase', dt: float): pass class WaitState(StateBase): def __init__(self: 'WaitState', entity: 'Entity'): super().__init__(entity) def enter(self: 'WaitState'): self.entity.sprite.set_animation('idle') def exit(self: 'WaitState'): pass def update(self: 'WaitState', dt: float): walk = None self.ticks += dt if self.ticks > 0.1: self.ticks -= 0.1 keystate = pygame.key.get_pressed() if keystate[pygame.K_w] or keystate[pygame.K_UP]: walk = {'x': 0, 'y': -1} # go up elif keystate[pygame.K_s] or keystate[pygame.K_DOWN]: walk = {'x': 0, 'y': 1} # go down elif keystate[pygame.K_a] or keystate[pygame.K_LEFT]: walk = {'x': -1, 'y': 0} # go left elif keystate[pygame.K_d] or keystate[pygame.K_RIGHT]: walk = {'x': 1, 'y': 0} # go right if walk is not None: return WalkState(self.entity, walk) return self class WalkState(StateBase): def __init__(self: 'WalkState', entity: 'Entity', direction: dict): super().__init__(entity) self.direction = direction self.target_x = self.entity.x self.target_y = self.entity.y def enter(self: 'WalkState'): self.entity.sprite.set_animation('walk') if self.direction['y'] == -1: # go up self.entity.sprite.set_facing('away') self.target_y -= 1 elif self.direction['y'] == 1: # go down self.entity.sprite.set_facing('forward') self.target_y += 1 elif self.direction['x'] == -1: # go left self.entity.sprite.set_facing('left') self.target_x -= 1 elif self.direction['x'] == 1: # go right self.entity.sprite.set_facing('right') self.target_x += 1 # Clamp movement to the map. if self.target_x < 0: self.target_x = 0 elif self.target_x >= self.entity.map.map_width: self.target_x = self.entity.x if self.target_y < 0: self.target_y = 0 elif self.target_y >= self.entity.map.map_height: self.target_y = self.entity.y def exit(self: 'WalkState'): pass def update(self: 'WalkState', dt: float): if self.target_x == self.entity.x and self.target_y == self.entity.y: return WaitState(self.entity) # TODO: needs tweening self.ticks += dt if self.ticks > 0.1: if self.direction['y'] == -1: # go up self.entity.offset_y -= 1 elif self.direction['y'] == 1: # go down self.entity.offset_y += 1 elif self.direction['x'] == -1: # go left self.entity.offset_x -= 1 elif self.direction['x'] == 1: # go right self.entity.offset_x += 1 self.entity.sprite.next_frame() if abs(self.entity.offset_x) >= self.entity.map.tile_width or \ abs(self.entity.offset_y) >= self.entity.map.tile_height: # Done moving. self.entity.teleport(self.target_x, self.target_y) return WaitState(self.entity) return self class Entity: def __init__(self: 'Entity', sprite: LPCSprite, entity_map: Map): self.sprite = sprite self.map = entity_map self.x = 0 self.y = 0 self.offset_x = 0 # Drawing offsets for inter-tile animation. self.offset_y = 0 self.controller = StateMachine(WaitState(self)) def teleport(self: 'Entity', x: int, y: int): self.x = x self.y = y self.offset_x = 0 self.offset_y = 0 def draw(self: 'Entity', surface: pygame.Surface, x: int, y: int): # Draw sprite's feet at screen co-ords x, y. rect = pygame.Rect(x - self.sprite.width // 4, y - self.sprite.height // 2, self.sprite.width, self.sprite.height) rect.x += self.offset_x rect.y += self.offset_y surface.blit(self.sprite.get_texture(), rect) def draw_tile(self: 'Entity', surface: pygame.Surface, x: int, y: int, tile_width: int, tile_height: int): # Draw the tile the sprite thinks it's in. rect = pygame.Rect(x * tile_width, y * tile_height, tile_width, tile_height) pygame.gfxdraw.rectangle(surface, rect, RED) class Demo: def __init__(self: 'Demo', screen: pygame.Surface) -> None: self.screen = screen self.font = pygame.freetype.Font('resources/LiberationMono-Bold.ttf', 16) self.sara_texture = pygame.image.load('resources/LPC_Sara/SaraFullSheet.png').convert_alpha() self.map = Map('resources/grass-map.tmx') # Viewport rect is in *tile* co-ordinates. self.viewport = pygame.Rect(0, 0, 1280 // self.map.tile_width, 720 // self.map.tile_height) self.sara = Entity(LPCSprite(self.sara_texture), self.map) self.sara.teleport(10, 10) # Tile co-ordinates. self.ticks = 0 def draw(self: 'Demo') -> None: self.screen.fill(BLACK) self.map.render('Tile Layer 1', self.screen, self.viewport, 0, 0) self.font.render_to(self.screen, (10, 10), 'Use WASD or arrow keys to walk.', WHITE) # Draw a rectangle to show which tile has the sprite's feet. self.sara.draw_tile(self.screen, self.sara.x, self.sara.y, self.map.tile_width, self.map.tile_height) # Draw Sara - We want her feet to be in the tile. This would be easier # if the sprite were the same size as our map tiles... self.sara.draw(self.screen, self.sara.x * self.map.tile_width, self.sara.y * self.map.tile_height) def update(self: 'Demo', dt: float) -> None: self.sara.controller.update(dt) def main() -> None: pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) pygame.display.set_caption(SCREEN_TITLE) demo = Demo(screen) now = time.time() dt = 0 playing = True while playing: demo.draw() pygame.display.flip() dt = time.time() - now now = time.time() demo.update(dt) for event in pygame.event.get(): if event.type == pygame.QUIT: playing = False elif event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: playing = False pygame.quit() sys.exit() if __name__ == '__main__': main()
Taffer/pygame-experiments
24-tile-movement/main.py
main.py
py
14,875
python
en
code
2
github-code
6
[ { "api_name": "pygame.Color", "line_number": 23, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 24, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 25, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 31, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 31, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 49, "usage_type": "call" }, { "api_name": "os.path", "line_number": 49, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 51, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 51, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 56, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 62, "usage_type": "call" }, { "api_name": "base64.b64decode", "line_number": 81, "usage_type": "call" }, { "api_name": "struct.iter_unpack", "line_number": 84, "usage_type": "call" }, { "api_name": "zlib.decompress", "line_number": 84, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 90, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 90, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 98, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 157, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 180, "usage_type": "call" }, { "api_name": "pygame.Rect", "line_number": 193, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 218, "usage_type": "attribute" }, { "api_name": "pygame.key.get_pressed", "line_number": 269, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 269, "usage_type": "attribute" }, { "api_name": "pygame.K_w", "line_number": 270, "usage_type": "attribute" }, { "api_name": "pygame.K_UP", "line_number": 270, "usage_type": "attribute" }, { "api_name": "pygame.K_s", "line_number": 272, "usage_type": "attribute" }, { "api_name": "pygame.K_DOWN", "line_number": 272, "usage_type": "attribute" }, { "api_name": "pygame.K_a", "line_number": 274, "usage_type": "attribute" }, { "api_name": "pygame.K_LEFT", "line_number": 274, "usage_type": "attribute" }, { "api_name": "pygame.K_d", "line_number": 276, "usage_type": "attribute" }, { "api_name": "pygame.K_RIGHT", "line_number": 276, "usage_type": "attribute" }, { "api_name": "pygame.Surface", "line_number": 367, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 369, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 374, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 376, "usage_type": "call" }, { "api_name": "pygame.gfxdraw.rectangle", "line_number": 377, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 377, "usage_type": "attribute" }, { "api_name": "pygame.Surface", "line_number": 381, "usage_type": "attribute" }, { "api_name": "pygame.freetype.Font", "line_number": 384, "usage_type": "call" }, { "api_name": "pygame.freetype", "line_number": 384, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 386, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 386, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 390, "usage_type": "call" }, { "api_name": "pygame.init", "line_number": 416, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 418, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 418, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 419, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 419, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 423, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 430, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 430, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 432, "usage_type": "call" }, { "api_name": "time.time", "line_number": 433, "usage_type": "call" }, { "api_name": "pygame.event.get", "line_number": 437, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 437, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 438, "usage_type": "attribute" }, { "api_name": "pygame.KEYUP", "line_number": 440, "usage_type": "attribute" }, { "api_name": "pygame.K_ESCAPE", "line_number": 441, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 444, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 445, "usage_type": "call" } ]
4159403258
import math import random import vector3 from rtweekend import random_double import multiprocessing from multiprocessing import Process, Array from ctypes import c_char_p from color import write_color from vector3 import vec3, random_in_hemisphere from ray import ray import rtweekend from hittable import hit_record from hittable_list import hit_ls from sphere import sphere from camera import camera from material import lambertian, metal, dielectric #image width def multi_render(return_string, id, fromI, toI, image_height, image_width ,samples_per_pixel, cam, world, max_depth): for j in range( toI , fromI -1,-1): for i in range(0,image_width): pixel_color = vec3(0,0,0) for _ in range(samples_per_pixel): u = (i + random.random()) / (image_width-1) v = (j + random.random()) / (image_height-1) r = cam.get_ray(u, v) pixel_color = pixel_color + ray_color(r, world, max_depth) return_string[id] += write_color(pixel_color, samples_per_pixel) def random_scene(): world = [] ground_material = lambertian(vec3(0.5, 0.5, 0.5)) world.append(sphere(vec3(0,-1000,0), 1000, ground_material)) for a in range(-11,11,1): for b in range(-11,11,1): choose_mat = random.random() center = vec3(a + 0.9*random.random(), 0.2, b + 0.9*random.random()) if((center - vec3(4, 0.2, 0)).length() > 0.9): if (choose_mat < 0.8): #diffuse albedo = vector3.random().mult( vector3.random()) sphere_material = lambertian(albedo) world.append(sphere(center, 0.2, sphere_material)) elif (choose_mat < 0.95): #metal albedo = vector3.random(0.5, 1) fuzz = random_double(0, 0.5) sphere_material = metal(albedo, fuzz) world.append(sphere(center, 0.2, sphere_material)) else: #glass sphere_material = dielectric(1.5) world.append(sphere(center, 0.2, sphere_material)) material1 = dielectric(1.5) world.append(sphere(vec3(0, 1, 0), 1.0, material1)) material2 = lambertian(vec3(0.4, 0.2, 0.1)) world.append(sphere(vec3(-4, 1, 0), 1.0, material2)) material3 = metal(vec3(0.7, 0.6, 0.5), 0.0) world.append(sphere(vec3(4, 1, 0), 1.0, material3)) return world def ray_color(r, world, depth): rec = hit_record(vec3(0,0,0), vec3(0,0,0), None, 0.0, False) if depth <= 0: return vec3(0,0,0) hit_anything, rec = hit_ls(world, r, 0.001, rtweekend.infinity, rec) if hit_anything: scat, scattered, attenuation = rec.mat_ptr.scatter(r,rec) if scat: return ray_color(scattered, world,depth-1).mult(attenuation) return vec3(0,0,0) unit_direction = r.get_direction().unit_vector() t = 0.5 * (unit_direction.y() + 1.0) return vec3(1,1,1)*(1-t) + vec3(0.5,0.7,1.0)*t if __name__ == '__main__': #Image aspect_ratio = 3.0 / 2.0 image_width = 384 # optimised size for an 8-core CPU image_height = int(image_width / aspect_ratio) samples_per_pixel = 50 max_depth = 50 #World world = random_scene() # camera lookfrom = vec3(13,2,3) lookat = vec3(0,0,0) vup = vec3(0,1,0) dist_to_focus = 10.0 aperture = 0.1 cam = camera(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus) # render result_string = "" result_string += "P3 \n" + str(image_width) + ' ' + str(image_height) + "\n255\n" number_of_cores = multiprocessing.cpu_count() process = [] manager = multiprocessing.Manager() return_str = manager.dict() for i in range(number_of_cores): return_str[i] = '' process.append(Process(target = multi_render, args=(return_str,i,int(i*image_height/number_of_cores), int((i+1)*image_height/number_of_cores), image_height, image_width,samples_per_pixel, cam, world, max_depth),)) process[i].start() for i in range(number_of_cores): process[i].join() for i in range(number_of_cores-1, -1, -1): result_string += return_str[i] with open('image.ppm', 'w') as f: f.write(result_string) f.close()
mk2510/ray_tracing_project
raytracing_in_a_weekend/main.py
main.py
py
4,391
python
en
code
0
github-code
6
[ { "api_name": "vector3.vec3", "line_number": 25, "usage_type": "call" }, { "api_name": "random.random", "line_number": 27, "usage_type": "call" }, { "api_name": "random.random", "line_number": 28, "usage_type": "call" }, { "api_name": "color.write_color", "line_number": 32, "usage_type": "call" }, { "api_name": "material.lambertian", "line_number": 37, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 37, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 38, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 38, "usage_type": "call" }, { "api_name": "random.random", "line_number": 42, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 43, "usage_type": "call" }, { "api_name": "random.random", "line_number": 43, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 45, "usage_type": "call" }, { "api_name": "vector3.random", "line_number": 48, "usage_type": "call" }, { "api_name": "material.lambertian", "line_number": 49, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 50, "usage_type": "call" }, { "api_name": "vector3.random", "line_number": 53, "usage_type": "call" }, { "api_name": "rtweekend.random_double", "line_number": 54, "usage_type": "call" }, { "api_name": "material.metal", "line_number": 55, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 56, "usage_type": "call" }, { "api_name": "material.dielectric", "line_number": 59, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 60, "usage_type": "call" }, { "api_name": "material.dielectric", "line_number": 62, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 63, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 63, "usage_type": "call" }, { "api_name": "material.lambertian", "line_number": 65, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 65, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 66, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 66, "usage_type": "call" }, { "api_name": "material.metal", "line_number": 68, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 68, "usage_type": "call" }, { "api_name": "sphere.sphere", "line_number": 69, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 69, "usage_type": "call" }, { "api_name": "hittable.hit_record", "line_number": 75, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 75, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 78, "usage_type": "call" }, { "api_name": "hittable_list.hit_ls", "line_number": 80, "usage_type": "call" }, { "api_name": "rtweekend.infinity", "line_number": 80, "usage_type": "attribute" }, { "api_name": "vector3.vec3", "line_number": 85, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 88, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 103, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 104, "usage_type": "call" }, { "api_name": "vector3.vec3", "line_number": 105, "usage_type": "call" }, { "api_name": "camera.camera", "line_number": 109, "usage_type": "call" }, { "api_name": "multiprocessing.cpu_count", "line_number": 117, "usage_type": "call" }, { "api_name": "multiprocessing.Manager", "line_number": 119, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 124, "usage_type": "call" } ]
39485957424
"""Модуль базы данных хранящей пользователей и их историю""" import datetime as dt from typing import Optional import enum from functools import cached_property import sqlalchemy as sa from sqlalchemy import create_engine, select, ForeignKey from sqlalchemy.orm import ( Session, DeclarativeBase, Mapped, mapped_column, sessionmaker, relationship ) from .. import settings from ..server.auth import AuthMixin engine = create_engine(settings.database_path) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) class Base(DeclarativeBase): pass class User(Base, AuthMixin): __tablename__ = 'user' id: Mapped[int] = mapped_column(primary_key=True) account_name: Mapped[str] password: Mapped[str] has_entered: Mapped[Optional[bool]] = mapped_column(default=False) histories: Mapped[list['History']] = relationship( back_populates='user', cascade='all, delete' ) contacts: Mapped[list['Contact']] = relationship( back_populates='user', foreign_keys='Contact.user_id' ) friends_with_us: Mapped[list['Contact']] = relationship( back_populates='user', foreign_keys='Contact.friend_id' ) @property def friends(self) -> list['User']: session = Session.object_session(self) subq = select(Contact).where(Contact.user_id == self.id).subquery() stmt = select(User).join(subq, User.id == subq.c.friend_id) select(User).join_from(User, User.contacts).where(Contact.user_id == 1) return session.scalars(stmt).all() @cached_property def user_service(self): from ..server.user_service import UserService session = Session.object_session(self) return UserService(session) def _get_last_event_time(self, event: 'History.Event'): session = Session.object_session(self) stm = ( select(History.time) .filter_by(user_id=self.id, event=event) .order_by(History.time.desc()) ) result = session.scalars(stm).first() return result @property def last_login(self): return self._get_last_event_time(event=History.Event.login) @property def last_logout(self): return self._get_last_event_time(event=History.Event.logout) @property def last_send_message(self): return self._get_last_event_time(event=History.Event.user_send_message_to_server) @property def last_get_message(self): return self._get_last_event_time(event=History.Event.user_get_message_from_server) def __repr__(self): return ( f'User(id={self.id}, account_name={self.account_name}),' ) def is_online(self): if not self.has_entered: return False return True def check_password(self, password: str): return self.password == password class History(Base): __tablename__ = 'history' class Event(str, enum.Enum): login = 'login' logout = 'logout' user_send_message_to_server = 'user_send_message_to_server' user_get_message_from_server = 'user_get_message_from_server' id: Mapped[int] = mapped_column(primary_key=True) user_id: Mapped[int | None] = mapped_column(ForeignKey('user.id')) user: Mapped[User | None] = relationship(back_populates='histories') event: Mapped[Event] = mapped_column(sa.Enum(Event)) time: Mapped[dt.datetime] adress: Mapped[str | None] class Contact(Base): __tablename__ = 'contact' id: Mapped[int] = mapped_column(primary_key=True) user_id: Mapped[int] = mapped_column( ForeignKey('user.id') ) user: Mapped[User] = relationship( back_populates='contacts', foreign_keys=[user_id] ) friend_id: Mapped[int] = mapped_column( ForeignKey('user.id') ) friend: Mapped[User] = relationship( back_populates='friends_with_us', foreign_keys=[friend_id] ) Base.metadata.create_all(bind=engine) def create_test_data(): from ..server import test_data with SessionLocal() as session: creator = test_data.TestData(session) creator.create_data_if_not_exist(session) create_test_data()
DemidovEvg/async_chat
src/nano_async_chat/async_chat/server/db.py
db.py
py
4,316
python
en
code
0
github-code
6
[ { "api_name": "sqlalchemy.create_engine", "line_number": 19, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.sessionmaker", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.DeclarativeBase", "line_number": 25, "usage_type": "name" }, { "api_name": "server.auth.AuthMixin", "line_number": 29, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 31, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 32, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 33, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 34, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 34, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 35, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 39, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 43, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session.object_session", "line_number": 50, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 50, "usage_type": "name" }, { "api_name": "sqlalchemy.select", "line_number": 51, "usage_type": "call" }, { "api_name": "sqlalchemy.select", "line_number": 52, "usage_type": "call" }, { "api_name": "sqlalchemy.select", "line_number": 53, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session.object_session", "line_number": 59, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 59, "usage_type": "name" }, { "api_name": "server.user_service.UserService", "line_number": 60, "usage_type": "call" }, { "api_name": "functools.cached_property", "line_number": 56, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session.object_session", "line_number": 63, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 63, "usage_type": "name" }, { "api_name": "sqlalchemy.select", "line_number": 65, "usage_type": "call" }, { "api_name": "enum.Enum", "line_number": 105, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 111, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 111, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 112, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 112, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 112, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 113, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 113, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 114, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 114, "usage_type": "call" }, { "api_name": "sqlalchemy.Enum", "line_number": 114, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 115, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 115, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 116, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 122, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 122, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 123, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 123, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 124, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 126, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 126, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 131, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.mapped_column", "line_number": 131, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 132, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Mapped", "line_number": 134, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 134, "usage_type": "call" }, { "api_name": "server.test_data.TestData", "line_number": 146, "usage_type": "call" }, { "api_name": "server.test_data", "line_number": 146, "usage_type": "name" } ]
8947958268
from django.db import models import ast class ListField(models.TextField): __metaclass__ = models.SubfieldBase description = "Stores a python list" def __init__(self, *args, **kwargs): super(ListField, self).__init__(*args, **kwargs) def to_python(self, value): if not value: value = [] if isinstance(value, list): return value return ast.literal_eval(value) def get_prep_value(self, value): if value is None: return value return unicode(value) def value_to_string(self, obj): value = self._get_val_from_obj(obj) return self.get_prep_value(value) class Student(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) netID = models.CharField(max_length=8, unique=True) # blocks = ListField('Busy blocks',blank=True) def blocks(self): blks = [] for course in self.course_set.all(): for blk in course.blocks: blks.append(blk) return blks def __unicode__(self): # Python 3: def __str__(self): return self.netID class Instructor(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) netID = models.CharField(max_length=8, unique=True) faculty = models.BooleanField(default=False) def __unicode__(self): # Python 3: def __str__(self): return self.netID def billable(self): if self.faculty: return 0 my_courses = self.course_set.all() hours = 0.0 for course in my_courses: hours += len(course.blocks)/2.0 return hours def full_name(self): return self.first_name+" "+self.last_name class Course(models.Model): courseID = models.CharField(max_length=20, unique=True) title = models.CharField(max_length=75,default='Title needed') description = models.TextField(max_length=1000) other_section = models.ManyToManyField('self', blank=True) min_enroll = models.IntegerField(default=0) max_enroll = models.IntegerField(default=200) cancelled = models.BooleanField(default=False) room = models.CharField(max_length=200,default='tbd') blocks = ListField('Course blocks') schedule = models.CharField(max_length=50) students = models.ManyToManyField(Student, through='Registration') instructors = models.ManyToManyField(Instructor) def __unicode__(self): # Python 3: def __str__(self): return self.courseID def current_enroll(self): return len(self.students.all()) def is_full(self): num_enroll = self.current_enroll() return num_enroll >= self.max_enroll def meets_min_requirements(self): num_enroll = self.current_enroll() return num_enroll >= self.min_enroll def get_instructors(self): return ", ".join([i.full_name() for i in self.instructors.all()]) is_full.boolean = True meets_min_requirements.boolean = True class Registration(models.Model): student = models.ForeignKey(Student) course = models.ForeignKey(Course) timestamp = models.DateTimeField('Registration timestamp',auto_now_add=True) attendance_M = models.BooleanField(default=False) attendance_Tu = models.BooleanField(default=False) attendance_W = models.BooleanField(default=False) attendance_Th = models.BooleanField(default=False) attendance_F = models.BooleanField(default=False) def __unicode__(self): # Python 3: def __str__(self): return self.student.netID+"-"+self.course.courseID
epkugelmass/USG-srv-dev
tigerapps/wintersession/models.py
models.py
py
3,678
python
en
code
null
github-code
6
[ { "api_name": "django.db.models.TextField", "line_number": 4, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 4, "usage_type": "name" }, { "api_name": "django.db.models.SubfieldBase", "line_number": 5, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 5, "usage_type": "name" }, { "api_name": "ast.literal_eval", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.models.Model", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 31, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 31, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 32, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 32, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 33, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 33, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 46, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 46, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 47, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 47, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 48, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 49, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 49, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 50, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 67, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 67, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 68, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 68, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 69, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 69, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 70, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 70, "usage_type": "name" }, { "api_name": "django.db.models.ManyToManyField", "line_number": 71, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 71, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 72, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 72, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 73, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 73, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 74, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 74, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 75, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 75, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 77, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 77, "usage_type": "name" }, { "api_name": "django.db.models.ManyToManyField", "line_number": 78, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 78, "usage_type": "name" }, { "api_name": "django.db.models.ManyToManyField", "line_number": 79, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 79, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 101, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 101, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 102, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 102, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 103, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 103, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 104, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 104, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 106, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 106, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 107, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 107, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 108, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 108, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 109, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 109, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 110, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 110, "usage_type": "name" } ]
70439517629
import pyautogui import cv2 as cv import numpy as np import keyboard import time from math import sqrt from PIL import ImageGrab import win32api, win32con # https://stackoverflow.com/questions/5906693/how-to-reduce-the-number-of-colors-in-an-image-with-opencv def kmeans_color_quantization(image, clusters=8, rounds=1): h, w = image.shape[:2] samples = np.zeros([h*w,3], dtype=np.float32) count = 0 for x in range(h): for y in range(w): samples[count] = image[x][y] count += 1 compactness, labels, centers = cv.kmeans(samples, clusters, None, (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10000, 0.0001), rounds, cv.KMEANS_RANDOM_CENTERS) centers = np.uint8(centers) res = centers[labels.flatten()] return res.reshape((image.shape)) class GarticBot: def __init__(self, DEBUG=False): self.debug = DEBUG BOARD_ORIGIN = (692, 170) BOARD_RESOLUTION = (962, 530) PENCIL = (-150, 25) PENCIL_SLIDER = (-147, 772) PENCIL_SLIDER_MIN_RANGE = (790, 665) PALLETE = (-100, 570) # DRAWING_RESOLUTION = (120, 66) # DRAWING_RESOLUTION = (150, 82) DRAWING_RESOLUTION = (200, 110) COLOR_VARIANCE = 128 WHITE_THRESHOLD = 55 CLICK_DELAY = 1e-10 CLICK_DELAY_INTERVAL = 5 pyautogui.PAUSE = CLICK_DELAY def _getRelativePos(self, pos): return (pos[0] + self.BOARD_ORIGIN[0], pos[1] + self.BOARD_ORIGIN[1]) def _downScale(self, image): f1 = self.DRAWING_RESOLUTION[0] / image.shape[1] f2 = self.DRAWING_RESOLUTION[1] / image.shape[0] dim = (int(image.shape[1] * min(f1, f2)), int(image.shape[0] * min(f1, f2))) resized = cv.resize(image, dim) downscaled = kmeans_color_quantization(resized, clusters=self.COLOR_VARIANCE, rounds=1) if self.debug: cv.imshow("IMAGE", cv.resize(image, (600, int(image.shape[0]*600/image.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.imshow("IMAGE", cv.resize(resized, (600, int(resized.shape[0]*600/resized.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.imshow("IMAGE", cv.resize(downscaled, (600, int(downscaled.shape[0]*600/downscaled.shape[1])), interpolation=cv.INTER_AREA)) cv.waitKey(600) cv.destroyAllWindows() return downscaled def _getColorClusters(self, image): image = cv.cvtColor(image, cv.COLOR_BGR2RGB) clusters = {} for j in range(len(image)): for i in range(len(image[0])): color = f"{image[j][i][0]},{image[j][i][1]},{image[j][i][2]}" if color in clusters: clusters[color].append((i, j)) else: clusters.update({color: [(i, j)]}) return clusters def _equipPencil(self): pyautogui.click(self._getRelativePos(self.PENCIL)) def _setColor(self, color): pyautogui.click(self._getRelativePos(self.PALLETE)) time.sleep(0.1) color = color.split(",") keyboard.send('tab') time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[0]) time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[1]) time.sleep(0.01) keyboard.send('tab') time.sleep(0.01) keyboard.write(color[2]) time.sleep(0.01) keyboard.send('enter') time.sleep(0.1) def _getClickPosition(self, pos): upscale_factor_x = self.BOARD_RESOLUTION[0] / self.DRAWING_RESOLUTION[0] upscale_factor_y = self.BOARD_RESOLUTION[1] / self.DRAWING_RESOLUTION[1] pos = (int(pos[0]*upscale_factor_x), int(pos[1]*upscale_factor_y)) return pos def _setPencilThickness(self, thickness): pyautogui.moveTo(self._getRelativePos(self.PENCIL_SLIDER)) def draw(self, image): print("DOWNSCALING") downscaled = self._downScale(image) clusters = self._getColorClusters(downscaled) while True: if keyboard.is_pressed('alt+s'): print("STOPPING") return if keyboard.is_pressed('alt+q'): quit() if keyboard.is_pressed('alt+d'): break time.sleep(0.2) print("DRAWING") self._equipPencil() for color in clusters: channels = color.split(",") dist = sqrt(pow(int(channels[0])-255, 2) + pow(int(channels[1])-255, 2) + pow(int(channels[2])-255, 2)) if dist < self.WHITE_THRESHOLD: continue print(f'Color: {color}') self._setColor(color) for i, pixel in enumerate(clusters[color]): pos = self._getClickPosition(pixel) pos = self._getRelativePos(pos) win32api.mouse_event(win32con.MOUSEEVENTF_MOVE | win32con.MOUSEEVENTF_ABSOLUTE, int(pos[0]/win32api.GetSystemMetrics(0)*65535), int(pos[1]/win32api.GetSystemMetrics(1)*65535) ,0 ,0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0) if i%self.CLICK_DELAY_INTERVAL==0: time.sleep(self.CLICK_DELAY) if keyboard.is_pressed('alt+s'): print("STOPED") return print("DONE") def run(self): while True: if keyboard.is_pressed('alt+q'): break if keyboard.is_pressed('alt+c'): image = np.array(ImageGrab.grabclipboard())[:,:,:3] image = cv.cvtColor(image, cv.COLOR_BGR2RGB) self.draw(image) bot = GarticBot(DEBUG=True) bot.run()
JirkaKlimes/gartic.io_bot
main.py
main.py
py
5,990
python
en
code
0
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 13, "usage_type": "attribute" }, { "api_name": "cv2.kmeans", "line_number": 21, "usage_type": "call" }, { "api_name": "cv2.TERM_CRITERIA_EPS", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.TERM_CRITERIA_MAX_ITER", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.KMEANS_RANDOM_CENTERS", "line_number": 26, "usage_type": "attribute" }, { "api_name": "numpy.uint8", "line_number": 28, "usage_type": "call" }, { "api_name": "pyautogui.PAUSE", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 62, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 67, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 67, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 67, "usage_type": "attribute" }, { "api_name": "cv2.waitKey", "line_number": 68, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 69, "usage_type": "attribute" }, { "api_name": "cv2.waitKey", "line_number": 70, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 71, "usage_type": "attribute" }, { "api_name": "cv2.waitKey", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 78, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 78, "usage_type": "attribute" }, { "api_name": "pyautogui.click", "line_number": 90, "usage_type": "call" }, { "api_name": "pyautogui.click", "line_number": 93, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 94, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 96, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 97, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 98, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 99, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 100, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 101, "usage_type": "call" }, { "api_name": "keyboard.write", "line_number": 102, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 103, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 104, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 105, "usage_type": "call" }, { "api_name": "keyboard.write", "line_number": 106, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 107, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 108, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 109, "usage_type": "call" }, { "api_name": "keyboard.write", "line_number": 110, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 111, "usage_type": "call" }, { "api_name": "keyboard.send", "line_number": 112, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 113, "usage_type": "call" }, { "api_name": "pyautogui.moveTo", "line_number": 122, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 129, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 132, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 134, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 136, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 143, "usage_type": "call" }, { "api_name": "win32api.mouse_event", "line_number": 152, "usage_type": "call" }, { "api_name": "win32con.MOUSEEVENTF_MOVE", "line_number": 152, "usage_type": "attribute" }, { "api_name": "win32con.MOUSEEVENTF_ABSOLUTE", "line_number": 152, "usage_type": "attribute" }, { "api_name": "win32api.GetSystemMetrics", "line_number": 152, "usage_type": "call" }, { "api_name": "win32api.mouse_event", "line_number": 153, "usage_type": "call" }, { "api_name": "win32con.MOUSEEVENTF_LEFTDOWN", "line_number": 153, "usage_type": "attribute" }, { "api_name": "win32api.mouse_event", "line_number": 154, "usage_type": "call" }, { "api_name": "win32con.MOUSEEVENTF_LEFTUP", "line_number": 154, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 155, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 157, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 163, "usage_type": "call" }, { "api_name": "keyboard.is_pressed", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 166, "usage_type": "call" }, { "api_name": "PIL.ImageGrab.grabclipboard", "line_number": 166, "usage_type": "call" }, { "api_name": "PIL.ImageGrab", "line_number": 166, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 167, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 167, "usage_type": "attribute" } ]
21253145382
from django.shortcuts import render from django.views.generic import View #导入View from django.http import HttpResponse from django.http import HttpResponseRedirect from wanwenyc.settings import DJANGO_SERVER_YUMING,MEDIA_ROOT from .models import RdmAutoStatic,RdmStatic,RdmConfig # Create your views here. #根据数据库内容自动合并生成任务名称和任务详情及问题详情 def RdmAutoStaticRequest(request, rdmautostatic_id, trackback=None): rdmautostatic = RdmAutoStatic.objects.get(id=int(rdmautostatic_id)) # 获取用例 people_name = rdmautostatic.people_name start_date = str(rdmautostatic.start_date) end_date = str(rdmautostatic.end_date) print(people_name) print(start_date) print(end_date) from django.db.models import Q # s使用Q来筛选不等于'<span style="margin-left: 19px;color: gray;">无</span>'的项 mubiao_data_list = RdmStatic.objects.filter(~Q(day_task_name='[]')).\ filter(~Q(week_task_deck='<span style="margin-left: 19px;color: gray;">无</span>')).\ filter(people_name=people_name).filter(is_week=False).order_by('-id') #筛选出有效的相应人员的日记录,按照id倒序排列 all_task_name_list = [] all_task_desc_list = [] all_task_quse_list = [] for mubiao_data_one in mubiao_data_list: day_date = mubiao_data_one.day_date new_day_date_list = [] for one_char in day_date: if one_char in "0123456789-": new_day_date_list.append(one_char) new_day_date = "".join(new_day_date_list) #获取到各项的日期 print("各项的日期为:%s"% new_day_date) if start_date <= new_day_date and new_day_date<=end_date: print("在时间范围内的日期:%s" % new_day_date) #统计在时间范围内的数据 #统计所有的任务名称 day_task_name = mubiao_data_one.day_task_name print(day_task_name) print(type(day_task_name)) day_task_name_list = eval(day_task_name) #eval()函数将列表样式的字符串自动转为列表 print("day_task_name_list:") print(day_task_name_list) print(type(day_task_name_list)) for day_task_name_one in day_task_name_list: if day_task_name_one not in all_task_name_list: all_task_name_list.append(day_task_name_one) #统计所有任务详情 day_task_desc = mubiao_data_one.day_task_desc if day_task_desc not in all_task_desc_list: all_task_desc_list.append(day_task_desc) #统计所有问题详情 day_task_quse = mubiao_data_one.day_task_quse if day_task_quse not in all_task_quse_list: all_task_quse_list.append(day_task_quse) print("所有任务名称:") print(all_task_name_list) print("所有任务详情:") print(all_task_desc_list) print("所有问题详情:") print(all_task_quse_list) rdmautostatic.all_task_name = all_task_name_list rdmautostatic.all_task_desc = all_task_desc_list rdmautostatic.all_task_quse = all_task_quse_list rdmautostatic.save() #保存入库 print("重定向返回'/reportdatas/rdmautostatic/'") return HttpResponseRedirect('/reportdatas/rdmautostatic/') #重定向到该页面 #根据数据库内容自动合并生成任务名称和任务详情及问题详情 def RdmConfigRequest(request, rdmconfig_id, trackback=None): rdmconfig = RdmConfig.objects.get(id=int(rdmconfig_id)) # 获取用例 rdm_url = rdmconfig.rdm_url rdm_account = rdmconfig.rdm_account rdm_password = rdmconfig.rdm_password recode_year = rdmconfig.recode_year print("RDM网址:%s" % rdm_url) print("RDM登录账号:%s" % rdm_account) print("RDM登录密码:%s" % rdm_password) print("RDM统计日志年限:%s" % recode_year) from .autoStaticRDMTask import WebRemoteUphild loginurl= rdm_url loginaccount= rdm_account loginpassword= rdm_password predate = recode_year print("开始执行异步函数") wc = WebRemoteUphild(loginurl=loginurl,loginaccount=loginaccount,loginpassword=loginpassword,predate=predate) wc.run() print("函数开始运行完成后") print("重定向返回'/reportdatas/rdmconfig/'") return HttpResponseRedirect('/reportdatas/rdmconfig/') #重定向到该页面
wawj901124/shangbaogongju
apps/reportdatas/views.py
views.py
py
4,480
python
en
code
0
github-code
6
[ { "api_name": "models.RdmAutoStatic.objects.get", "line_number": 12, "usage_type": "call" }, { "api_name": "models.RdmAutoStatic.objects", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.RdmAutoStatic", "line_number": 12, "usage_type": "name" }, { "api_name": "models.RdmStatic.objects.filter", "line_number": 21, "usage_type": "call" }, { "api_name": "models.RdmStatic.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "models.RdmStatic", "line_number": 21, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 21, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 22, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 76, "usage_type": "call" }, { "api_name": "models.RdmConfig.objects.get", "line_number": 82, "usage_type": "call" }, { "api_name": "models.RdmConfig.objects", "line_number": 82, "usage_type": "attribute" }, { "api_name": "models.RdmConfig", "line_number": 82, "usage_type": "name" }, { "api_name": "autoStaticRDMTask.WebRemoteUphild", "line_number": 98, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 104, "usage_type": "call" } ]
39795452637
# coding=utf-8 import requests import re import execjs import json from bs4 import BeautifulSoup import smtplib from email.mime.text import MIMEText from email.utils import formataddr sendAddress = '' emailPsw = '' receiveAddress = '' username = '' psw = '' def loadConfig(): with open('config.json', 'r', encoding='utf-8') as f: config = f.read() configJson = json.loads(config) print(configJson) global sendAddress, emailPsw, receiveAddress, username, psw sendAddress = configJson['sendAddress'] emailPsw = configJson['emailPsw'] receiveAddress = configJson['receiveAddress'] username = configJson['username'] psw = configJson['psw'] def sendEmail(msgJson): try: stuName = msgJson['data']['owner']['name'] info = stuName + '\n您已打卡成功' except: info = '打卡失败\n详细信息:' + str(msgJson) msg = MIMEText(info, 'plain', 'utf-8') # 填写邮件内容 msg['From'] = formataddr(["厦门大学健康打卡", sendAddress]) # 括号里的对应发件人邮箱昵称、发件人邮箱账号 msg['To'] = formataddr([receiveAddress, receiveAddress]) # 括号里的对应收件人邮箱昵称、收件人邮箱账号 msg['Subject'] = "厦门大学健康打卡" # 邮件的主题,也可以说是标题 server = smtplib.SMTP_SSL("smtp.qq.com", 465) # 发件人邮箱中的SMTP服务器 server.login(sendAddress, emailPsw) # 括号中对应的是发件人邮箱账号、邮箱授权码 server.sendmail(sendAddress, [receiveAddress, ], msg.as_string()) # 括号中对应的是发件人邮箱账号、收件人邮箱账号、发送邮件 server.quit() # 关闭连接 def encrypt(pwd, key): """ 调用js加密函数 :param pwd: :param key: :return: """ with open('encrypt.js', 'r', encoding='utf-8') as f: j = f.read() js = execjs.compile(j) return js.call('encryptAES', pwd, key) def getDataFrame(session, headers, businessId): """ 获得打卡的post json框架 :param session: :param headers: :param businessId: :return: 框架 """ authorityMap = {'readonly': {'hide': 'true', "readonly": 'false'}, 'hide': {"hide": 'true', "readonly": 'false'}, 'required': {'hide': 'true', "readonly": 'false'}, 'optional': {'hide': 'true', "readonly": 'false'}} list = [] dataFrameJson = session.get( 'https://xmuxg.xmu.edu.cn/api/formEngine/business/' + str(businessId) + '/formRenderData?playerId=owner', headers=headers).json()['data']['components'] for data in dataFrameJson: tempDict = {} tempDict.update({"name": data['name']}) tempDict.update({"title": data['title']}) tempDict.update({'value': {}}) tempDict.update(authorityMap[data['properties']['authority']]) list.append(tempDict) return {"formData": list, "playerId": "owner"} def injectPersonalData(formDataJson, personalDataList): """ 将个人信息注入到formData内 并修改为已打卡 :param formDataJson: :param personalDataList: :return: 注入值的框架 """ dataMap = {} # 建立title与value映射表 for personalData in personalDataList: valueData = {} # 地址字段 if (personalData['value']['dataType'] == "ADDRESS_VALUE"): valueData.update({'addressValue': personalData['value']['addressValue']}) # 普通字段 elif (personalData['value']['dataType'] == "STRING"): valueData.update({'stringValue': personalData['value']['stringValue']}) # 时间字段 elif (personalData['value']['dataType'] == "DATE"): valueData.update({'dateValue': personalData['value']['dateValue']}) dataMap.update({personalData['title']: valueData}) # 修改为已打卡 title1 = 'Can you hereby declare that all the information provided is all true and accurate and there is no concealment, false information or omission. 本人是否承诺所填报的全部内容均属实、准确,不存在任何隐瞒和不实的情况,更无遗漏之处。' dataMap[title1]['stringValue'] = "是 Yes" title2 = '学生本人是否填写' dataMap[title2]['stringValue'] = '是' # 将value注射进list list = formDataJson['formData'] for i in range(0, list.__len__()): # 如果有此字段的value则注入 if (dataMap.__contains__(list[i]['title'])): list[i]['value'] = dataMap[list[i]['title']] return {"formData": list, "playerId": "owner"} if __name__ == '__main__': # 加载配置 loadConfig() headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36', } s = requests.session() response = s.get('https://ids.xmu.edu.cn/authserver/login?service=https://xmuxg.xmu.edu.cn/login/cas/xmu') HTML = BeautifulSoup(response.text, 'html.parser') pwdDefaultEncryptSalt = HTML.find_all('input', attrs={'id': 'pwdDefaultEncryptSalt'})[0].attrs['value'] lt = HTML.find_all('input', attrs={'name': 'lt'})[0].attrs['value'] dllt = HTML.find_all('input', attrs={'name': 'dllt'})[0].attrs['value'] execution = HTML.find_all('input', attrs={'name': 'execution'})[0].attrs['value'] _eventId = HTML.find_all('input', attrs={'name': '_eventId'})[0].attrs['value'] rmShown = HTML.find_all('input', attrs={'name': 'rmShown'})[0].attrs['value'] encryptPsw = encrypt(psw, pwdDefaultEncryptSalt) body = {'username': username, 'password': encryptPsw, 'lt': lt, 'dllt': dllt, 'execution': execution, '_eventId': _eventId, 'rmShown': rmShown} s.post('https://ids.xmu.edu.cn/authserver/login?service=https://xmuxg.xmu.edu.cn/login/cas/xmu', data=body, headers=headers) r1 = s.get('https://xmuxg.xmu.edu.cn/api/app/214/business/now?getFirst=true', headers=headers) print(r1.text) businessId = r1.json()['data'][0]['business']['id'] businessId = businessId # 获得框架 formDataJson = getDataFrame(s, headers, businessId) # 获得个人信息 r2Json = s.get( 'https://xmuxg.xmu.edu.cn/api/formEngine/business/' + str(businessId) + '/myFormInstance').json() # 注入个人信息 formData = injectPersonalData(formDataJson, r2Json['data']['formData']) # 打卡post的url instanceId = r2Json['data']['id'] form_url = f'https://xmuxg.xmu.edu.cn/api/formEngine/formInstance/' + instanceId # 打卡 resp = s.post(form_url, json=formData, headers=headers) sendEmail(resp.json())
mawangdan/XMUDaliyReport
src/main.py
main.py
py
6,736
python
en
code
15
github-code
6
[ { "api_name": "json.loads", "line_number": 21, "usage_type": "call" }, { "api_name": "email.mime.text.MIMEText", "line_number": 37, "usage_type": "call" }, { "api_name": "email.utils.formataddr", "line_number": 38, "usage_type": "call" }, { "api_name": "email.utils.formataddr", "line_number": 39, "usage_type": "call" }, { "api_name": "smtplib.SMTP_SSL", "line_number": 42, "usage_type": "call" }, { "api_name": "execjs.compile", "line_number": 57, "usage_type": "call" }, { "api_name": "requests.session", "line_number": 132, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 134, "usage_type": "call" } ]
17977750270
import asyncio import pickle import unittest from typing import AbstractSet, Any, Mapping, Sequence, Union from testing.types import ( Digits, I32List, Integers, SetI32, StringBucket, StrStrMap, easy, hard, ) from thrift.py3.common import Protocol from thrift.py3.exceptions import Error from thrift.py3.serializer import ( Transform, deserialize, deserialize_from_header, deserialize_with_length, serialize, serialize_iobuf, serialize_with_header, serialize_with_header_iobuf, ) from thrift.py3.types import Struct class SerializerTests(unittest.TestCase): def test_with_header_bytes(self) -> None: control = easy(val=5, val_list=[4, 3, 2, 1]) buf = serialize_with_header(control, transform=Transform.ZSTD_TRANSFORM) decoded = deserialize_from_header(easy, buf) self.assertEqual(control, decoded) def test_with_header_iobuf(self) -> None: control = easy(val=5, val_list=[4, 3, 2, 1]) iobuf = serialize_with_header_iobuf(control, transform=Transform.ZSTD_TRANSFORM) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_with_header_iobuf_binary(self) -> None: control = easy(val=6, val_list=[5, 4, 3, 2, 1]) iobuf = serialize_with_header_iobuf( control, protocol=Protocol.BINARY, transform=Transform.ZLIB_TRANSFORM ) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_with_header_iobuf_json(self) -> None: control = easy(val=4, val_list=[3, 2, 1]) iobuf = serialize_with_header_iobuf(control, protocol=Protocol.JSON) decoded = deserialize_from_header(easy, iobuf) self.assertEqual(control, decoded) def test_None(self) -> None: with self.assertRaises(TypeError): serialize(None, Protocol.JSON) # type: ignore def test_sanity(self) -> None: with self.assertRaises(TypeError): serialize(1, Protocol.COMPACT) # type: ignore with self.assertRaises(TypeError): serialize(easy(), None) # type: ignore with self.assertRaises(TypeError): deserialize(Protocol, b"") # type: ignore with self.assertRaises(TypeError): deserialize(easy, Protocol) # type: ignore def test_from_thread_pool(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4]) loop = asyncio.get_event_loop() coro = loop.run_in_executor(None, serialize, control) encoded = loop.run_until_complete(coro) coro = loop.run_in_executor(None, deserialize, type(control), encoded) decoded = loop.run_until_complete(coro) self.assertEqual(control, decoded) def test_serialize_iobuf(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4, 5]) iobuf = serialize_iobuf(control) decoded = deserialize(type(control), iobuf) self.assertEqual(control, decoded) def test_bad_deserialize(self) -> None: with self.assertRaises(Error): deserialize(easy, b"", protocol=Protocol.JSON) with self.assertRaises(Error): deserialize(easy, b"\x05AAAAAAAA") with self.assertRaises(Error): deserialize(easy, b"\x02\xDE\xAD\xBE\xEF", protocol=Protocol.BINARY) def thrift_serialization_round_robin( self, control: Struct, fixtures: Mapping[Protocol, bytes] ) -> None: for proto in Protocol: encoded = serialize(control, protocol=proto) self.assertIsInstance(encoded, bytes) decoded = deserialize(type(control), encoded, protocol=proto) self.assertIsInstance(decoded, type(control)) self.assertEqual(control, decoded) self.assertEqual((proto, encoded), (proto, fixtures.get(proto))) def pickle_round_robin( self, # pyre-fixme[2]: Parameter annotation cannot contain `Any`. control: Union[Struct, Mapping[Any, Any], Sequence[Any], AbstractSet[Any]], ) -> None: encoded = pickle.dumps(control, protocol=pickle.HIGHEST_PROTOCOL) decoded = pickle.loads(encoded) self.assertIsInstance(decoded, type(control)) self.assertEqual(control, decoded) def test_serialize_easy_struct(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4]) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"\x15\n\x19E\x02\x04\x06\x08,\x00\x00", Protocol.BINARY: b"\x08\x00\x01\x00\x00\x00\x05\x0f\x00\x02\x08\x00\x00\x00" b"\x04\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00" b"\x00\x00\x04\x0c\x00\x04\x00\x00", Protocol.JSON: b'{"val":5,"val_list":[1,2,3,4],"an_int":{}}', Protocol.COMPACT_JSON: b'{"1":{"i32":5},"2":{"lst":["i32",4,1,2,3,4]},"4"' b':{"rec":{}}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_easy_struct(self) -> None: control = easy(val=0, val_list=[5, 6, 7]) self.pickle_round_robin(control) def test_serialize_hard_struct(self) -> None: control = hard( val=0, val_list=[1, 2, 3, 4], name="foo", an_int=Integers(tiny=1) ) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"\x15\x00\x19E\x02\x04\x06\x08\x18\x03foo\x1c\x13\x01" b"\x00\x18\x0csome default\x00", Protocol.BINARY: b"\x08\x00\x01\x00\x00\x00\x00\x0f\x00\x02\x08\x00\x00\x00" b"\x04\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00" b"\x00\x00\x04\x0b\x00\x03\x00\x00\x00\x03foo\x0c\x00\x04" b"\x03\x00\x01\x01\x00\x0b\x00\x05\x00\x00\x00\x0csome def" b"ault\x00", Protocol.JSON: b'{"val":0,"val_list":[1,2,3,4],"name":"foo","an_int":{"tiny' b'":1},"other":"some default"}', Protocol.COMPACT_JSON: b'{"1":{"i32":0},"2":{"lst":["i32",4,1,2,3,4]},"3":' b'{"str":"foo"},"4":{"rec":{"1":{"i8":1}}},"5":{"str":"some default"}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_hard_struct(self) -> None: control = hard( val=0, val_list=[1, 2, 3, 4], name="foo", an_int=Integers(tiny=1) ) self.pickle_round_robin(control) def test_serialize_Integers_union(self) -> None: control = Integers(medium=1337) fixtures: Mapping[Protocol, bytes] = { Protocol.COMPACT: b"5\xf2\x14\x00", Protocol.BINARY: b"\x08\x00\x03\x00\x00\x059\x00", Protocol.JSON: b'{"medium":1337}', Protocol.COMPACT_JSON: b'{"3":{"i32":1337}}', } self.thrift_serialization_round_robin(control, fixtures) def test_pickle_Integers_union(self) -> None: control = Integers(large=2 ** 32) self.pickle_round_robin(control) def test_pickle_sequence(self) -> None: control = I32List([1, 2, 3, 4]) self.pickle_round_robin(control) digits = Digits(data=[Integers(tiny=1), Integers(tiny=2), Integers(large=0)]) data = digits.data assert data self.pickle_round_robin(data) def test_pickle_set(self) -> None: control = SetI32({1, 2, 3, 4}) self.pickle_round_robin(control) def test_pickle_mapping(self) -> None: control = StrStrMap({"test": "test", "foo": "bar"}) self.pickle_round_robin(control) def test_deserialize_with_length(self) -> None: control = easy(val=5, val_list=[1, 2, 3, 4, 5]) for proto in Protocol: encoded = serialize(control, protocol=proto) decoded, length = deserialize_with_length( type(control), encoded, protocol=proto ) self.assertIsInstance(decoded, type(control)) self.assertEqual(decoded, control) self.assertEqual(length, len(encoded)) def test_string_with_non_utf8_data(self) -> None: encoded = b"\x0b\x00\x01\x00\x00\x00\x03foo\x00" sb = deserialize(StringBucket, encoded, protocol=Protocol.BINARY) self.assertEqual("foo", sb.one) encoded = b"\x0b\x00\x01\x00\x00\x00\x03\xfa\xf0\xef\x00" sb = deserialize(StringBucket, encoded, protocol=Protocol.BINARY) with self.assertRaises(UnicodeDecodeError): # Accessing the property is when the string is decoded as UTF-8. sb.one
WeilerWebServices/Facebook
fbthrift/thrift/lib/py3/test/serializer.py
serializer.py
py
8,534
python
en
code
3
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 31, "usage_type": "attribute" }, { "api_name": "testing.types.easy", "line_number": 33, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize_with_header", "line_number": 34, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.Transform.ZSTD_TRANSFORM", "line_number": 34, "usage_type": "attribute" }, { "api_name": "thrift.py3.serializer.Transform", "line_number": 34, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.deserialize_from_header", "line_number": 35, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 35, "usage_type": "argument" }, { "api_name": "testing.types.easy", "line_number": 39, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize_with_header_iobuf", "line_number": 40, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.Transform.ZSTD_TRANSFORM", "line_number": 40, "usage_type": "attribute" }, { "api_name": "thrift.py3.serializer.Transform", "line_number": 40, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.deserialize_from_header", "line_number": 41, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 41, "usage_type": "argument" }, { "api_name": "testing.types.easy", "line_number": 45, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize_with_header_iobuf", "line_number": 46, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 47, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 47, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.Transform.ZLIB_TRANSFORM", "line_number": 47, "usage_type": "attribute" }, { "api_name": "thrift.py3.serializer.Transform", "line_number": 47, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.deserialize_from_header", "line_number": 49, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 49, "usage_type": "argument" }, { "api_name": "testing.types.easy", "line_number": 53, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize_with_header_iobuf", "line_number": 54, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 54, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 54, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.deserialize_from_header", "line_number": 55, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 55, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 60, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 60, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 60, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 64, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol.COMPACT", "line_number": 64, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 64, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 67, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 67, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 70, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 70, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 73, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 73, "usage_type": "argument" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 73, "usage_type": "argument" }, { "api_name": "testing.types.easy", "line_number": 76, "usage_type": "call" }, { "api_name": "asyncio.get_event_loop", "line_number": 77, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 78, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 80, "usage_type": "argument" }, { "api_name": "testing.types.easy", "line_number": 85, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.serialize_iobuf", "line_number": 86, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 87, "usage_type": "call" }, { "api_name": "thrift.py3.exceptions.Error", "line_number": 91, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 92, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 92, "usage_type": "argument" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 92, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 92, "usage_type": "name" }, { "api_name": "thrift.py3.exceptions.Error", "line_number": 93, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 94, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 94, "usage_type": "argument" }, { "api_name": "thrift.py3.exceptions.Error", "line_number": 95, "usage_type": "argument" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 96, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 96, "usage_type": "argument" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 96, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 96, "usage_type": "name" }, { "api_name": "thrift.py3.types.Struct", "line_number": 99, "usage_type": "name" }, { "api_name": "typing.Mapping", "line_number": 99, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 99, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 101, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 102, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 104, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 112, "usage_type": "name" }, { "api_name": "thrift.py3.types.Struct", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.Mapping", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 112, "usage_type": "name" }, { "api_name": "typing.AbstractSet", "line_number": 112, "usage_type": "name" }, { "api_name": "pickle.dumps", "line_number": 114, "usage_type": "call" }, { "api_name": "pickle.HIGHEST_PROTOCOL", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pickle.loads", "line_number": 115, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 120, "usage_type": "call" }, { "api_name": "typing.Mapping", "line_number": 121, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 121, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT", "line_number": 122, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 122, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 123, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 123, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 126, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 126, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT_JSON", "line_number": 127, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 127, "usage_type": "name" }, { "api_name": "testing.types.easy", "line_number": 133, "usage_type": "call" }, { "api_name": "testing.types.hard", "line_number": 137, "usage_type": "call" }, { "api_name": "testing.types.Integers", "line_number": 138, "usage_type": "call" }, { "api_name": "typing.Mapping", "line_number": 140, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 140, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT", "line_number": 141, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 141, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 143, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 143, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 148, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 148, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT_JSON", "line_number": 150, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 150, "usage_type": "name" }, { "api_name": "testing.types.hard", "line_number": 156, "usage_type": "call" }, { "api_name": "testing.types.Integers", "line_number": 157, "usage_type": "call" }, { "api_name": "testing.types.Integers", "line_number": 162, "usage_type": "call" }, { "api_name": "typing.Mapping", "line_number": 163, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 163, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT", "line_number": 164, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 164, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 165, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 165, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.JSON", "line_number": 166, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 166, "usage_type": "name" }, { "api_name": "thrift.py3.common.Protocol.COMPACT_JSON", "line_number": 167, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 167, "usage_type": "name" }, { "api_name": "testing.types.Integers", "line_number": 173, "usage_type": "call" }, { "api_name": "testing.types.I32List", "line_number": 177, "usage_type": "call" }, { "api_name": "testing.types.Digits", "line_number": 180, "usage_type": "call" }, { "api_name": "testing.types.Integers", "line_number": 180, "usage_type": "call" }, { "api_name": "testing.types.SetI32", "line_number": 186, "usage_type": "call" }, { "api_name": "testing.types.StrStrMap", "line_number": 190, "usage_type": "call" }, { "api_name": "testing.types.easy", "line_number": 194, "usage_type": "call" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 195, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.serialize", "line_number": 196, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.deserialize_with_length", "line_number": 197, "usage_type": "call" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 206, "usage_type": "call" }, { "api_name": "testing.types.StringBucket", "line_number": 206, "usage_type": "argument" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 206, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 206, "usage_type": "name" }, { "api_name": "thrift.py3.serializer.deserialize", "line_number": 210, "usage_type": "call" }, { "api_name": "testing.types.StringBucket", "line_number": 210, "usage_type": "argument" }, { "api_name": "thrift.py3.common.Protocol.BINARY", "line_number": 210, "usage_type": "attribute" }, { "api_name": "thrift.py3.common.Protocol", "line_number": 210, "usage_type": "name" } ]
31132813401
from abc import ABC from collections import OrderedDict, defaultdict import torch import torch.nn.functional as F from torch import flatten from torch.nn import Module, Conv2d, Dropout, Linear, BatchNorm2d, ReLU, Sequential, MaxPool2d from torch.optim import Optimizer from torch.optim.lr_scheduler import LRScheduler from torch.utils.data import DataLoader from tqdm.auto import tqdm class AbstractModule(Module, ABC): # TODO check that it's abstract def __init__(self): super().__init__() self._optim = None self._criterion = None self._scheduler = None self._pruner = None def optimizer(self, optim: callable(Optimizer), **kwargs): self._optim = optim(self.parameters(), **kwargs) return self def scheduler(self, scheduler: callable(LRScheduler), **kwargs): self._scheduler = scheduler(self._optim, **kwargs) return self def criterion(self, criterion: Module): self._criterion = criterion return self def fit(self, dataloader: DataLoader, epochs: int, callbacks=None ) -> None: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = self.to(device).train() for epoch in range(1, epochs + 1): loader_bar = tqdm(dataloader, desc='train', leave=False) for inputs, targets in loader_bar: inputs = inputs.to(device) targets = targets.to(device) # Reset the gradients (from the last iteration) self._optim.zero_grad() outputs = model(inputs) loss = self._criterion(outputs, targets) loss.backward() self._optim.step() if callbacks is not None: for callback in callbacks: callback() loader_bar.set_description(f"Epoch [{epoch}/{epochs}]") if self._scheduler is not None: self._scheduler.step() @torch.inference_mode() def evaluate(self, dataloader: DataLoader, verbose=True, ) -> float: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = self.to(device).eval() num_samples = 0 num_correct = 0 for inputs, targets in tqdm(dataloader, desc="eval", leave=False, disable=not verbose): inputs = inputs.to(device) targets = targets.to(device) outputs = model(inputs) outputs = outputs.argmax(dim=1) # Update metrics num_samples += targets.size(0) num_correct += (outputs == targets).sum() return (num_correct / num_samples * 100).item() class BaseLineNet(AbstractModule): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 32, 3, 1) # 1 x 32 x 3 x 3 = 288 parameters self.conv2 = Conv2d(32, 64, 3, 1) # 32 x 64 x 3 x 3=18,432 parameters self.dropout1 = Dropout(0.25) self.dropout2 = Dropout(0.5) self.fc1 = Linear(9216, 128) # 9216 x 128 = 1,179,648 parameters self.fc2 = Linear(128, 10) # 128 x 10 = 1,280 parameters def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output class VGG(AbstractModule): ARCH = [64, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] def __init__(self) -> None: super().__init__() layers = [] counts = defaultdict(int) def add(name: str, layer: Module) -> None: layers.append((f"{name}{counts[name]}", layer)) counts[name] += 1 in_channels = 3 for x in self.ARCH: if x != 'M': # conv-bn-relu add("conv", Conv2d(in_channels, x, 3, padding=1, bias=False)) add("bn", BatchNorm2d(x)) add("relu", ReLU(True)) in_channels = x else: add("pool", MaxPool2d(2)) self.backbone = Sequential(OrderedDict(layers)) self.classifier = Linear(512, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: # backbone: [N, 3, 32, 32] => [N, 512, 2, 2] x = self.backbone(x) # avgpool: [N, 512, 2, 2] => [N, 512] x = x.mean([2, 3]) # classifier: [N, 512] => [N, 10] x = self.classifier(x) return x
bnwiran/tinyml-benchmark
models/models.py
models.py
py
4,749
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 14, "usage_type": "name" }, { "api_name": "abc.ABC", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.optim.Optimizer", "line_number": 23, "usage_type": "argument" }, { "api_name": "torch.optim.lr_scheduler.LRScheduler", "line_number": 27, "usage_type": "argument" }, { "api_name": "torch.nn.Module", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 37, "usage_type": "name" }, { "api_name": "torch.cuda.is_available", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 41, "usage_type": "attribute" }, { "api_name": "tqdm.auto.tqdm", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 70, "usage_type": "name" }, { "api_name": "torch.cuda.is_available", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 73, "usage_type": "attribute" }, { "api_name": "tqdm.auto.tqdm", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.inference_mode", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.nn.Dropout", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.nn.Dropout", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 101, "usage_type": "call" }, { "api_name": "torch.nn.functional.relu", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 105, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 107, "usage_type": "name" }, { "api_name": "torch.nn.functional.max_pool2d", "line_number": 108, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 108, "usage_type": "name" }, { "api_name": "torch.flatten", "line_number": 110, "usage_type": "call" }, { "api_name": "torch.nn.functional.relu", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 115, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 136, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 137, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 141, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 143, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 146, "usage_type": "attribute" } ]
16586269759
from flask import Blueprint, render_template from app.models import Post home = Blueprint('home', __name__) @home.route('/') def index(): posts = Post.query.filter_by(published=True).all() return render_template('home/index.html', posts=posts)
rg3915/flask-masterclass
app/blueprints/home_blueprint.py
home_blueprint.py
py
256
python
en
code
1
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 5, "usage_type": "call" }, { "api_name": "app.models.Post.query.filter_by", "line_number": 10, "usage_type": "call" }, { "api_name": "app.models.Post.query", "line_number": 10, "usage_type": "attribute" }, { "api_name": "app.models.Post", "line_number": 10, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 11, "usage_type": "call" } ]
9411671299
from django.urls import path from . import views as blog_views # import users.views as user_views from .views import ( PostListView, PostDetailView, PostCreateView, PostUpdateView, PostDeleteView, UserPostListView ) urlpatterns = [ path('', PostListView.as_view(), name='blog-home'), path('user/<str:username>', UserPostListView.as_view(), name='user-posts'), # using a variable in the route (for individual posts, which will be numbered) # the detail view is expecting the "pk" variable (we could change this in the class) path('post/<int:pk>/', PostDetailView.as_view(), name='post-detail'), path('post/<int:pk>/update', PostUpdateView.as_view(), name='post-update'), path('post/<int:pk>/delete', PostDeleteView.as_view(), name='post-delete'), path('post/new/', PostCreateView.as_view(), name='post-create'), path('about/', blog_views.about, name='blog-about'), ]
Coniferish/djangoTutorial
blog/urls.py
urls.py
py
935
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "views.PostListView.as_view", "line_number": 14, "usage_type": "call" }, { "api_name": "views.PostListView", "line_number": 14, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "views.UserPostListView.as_view", "line_number": 15, "usage_type": "call" }, { "api_name": "views.UserPostListView", "line_number": 15, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 18, "usage_type": "call" }, { "api_name": "views.PostDetailView.as_view", "line_number": 18, "usage_type": "call" }, { "api_name": "views.PostDetailView", "line_number": 18, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 19, "usage_type": "call" }, { "api_name": "views.PostUpdateView.as_view", "line_number": 19, "usage_type": "call" }, { "api_name": "views.PostUpdateView", "line_number": 19, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 20, "usage_type": "call" }, { "api_name": "views.PostDeleteView.as_view", "line_number": 20, "usage_type": "call" }, { "api_name": "views.PostDeleteView", "line_number": 20, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 21, "usage_type": "call" }, { "api_name": "views.PostCreateView.as_view", "line_number": 21, "usage_type": "call" }, { "api_name": "views.PostCreateView", "line_number": 21, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 22, "usage_type": "call" } ]
30085050335
from django.shortcuts import render from django.http import JsonResponse from category.models import Category # Create your views here. def jsons(data = None, errorCode = 0, cookies = ''): if data is None: data = [] return JsonResponse({'errorCode': errorCode, 'data': data, 'cookies': cookies}) def categoryGetAll(request): categories = Category.objects.all() return jsons([dict(category.body()) for category in categories])
jeremyytann/BUAA-SE-LetStudy
Code/backend/category/views.py
views.py
py
456
python
en
code
0
github-code
6
[ { "api_name": "django.http.JsonResponse", "line_number": 10, "usage_type": "call" }, { "api_name": "category.models.Category.objects.all", "line_number": 13, "usage_type": "call" }, { "api_name": "category.models.Category.objects", "line_number": 13, "usage_type": "attribute" }, { "api_name": "category.models.Category", "line_number": 13, "usage_type": "name" }, { "api_name": "category.models.body", "line_number": 14, "usage_type": "call" }, { "api_name": "category.models", "line_number": 14, "usage_type": "name" } ]
21424331672
''' 1. Парсер однопоточный. 2. Замер времени 3. Multiprocessing Pool 4. Замер времени 5. Экспорт в csv ''' import requests from bs4 import BeautifulSoup from datetime import datetime from multiprocessing import Pool import csv import time def get_html(url): r = requests.get(url) # Response return r.text # Возвращает HTML-код страницы(url) def get_all_links(html): counter = 0 soup = BeautifulSoup(html, 'lxml') tags_div = soup.find('div').find_all('div', class_="cmc-table__column-name sc-1kxikfi-0 eTVhdN") links = [] for td in tags_div: a = td.find('a').get('href') #string link = "https://coinmarketcap.com" + a links.append(link) return links def get_page_data(html): soup = BeautifulSoup(html, 'lxml') try: name = soup.find("h1").text.strip() except: name = "" try: price = soup.find("span", class_="cmc-details-panel-price__price").text.strip() except: price = "" data = {'name': name, 'price': price} return data def write_csv(data): with open('coinmarketcap.csv', 'a') as f: writer = csv.writer(f) writer.writerow((data['name'], data['price'])) print(data['name'], 'parsed') def make_all(url): html = get_html(url) data = get_page_data(html) write_csv(data) # time.sleep(5) def main(): start = time.time() url = "https://coinmarketcap.com/all/views/all/" all_links = get_all_links(get_html(url)) with Pool(40) as p: p.map(make_all, all_links) end = time.time() total = end - start print(str(total)) if __name__ == "__main__": main()
DexterAkaGrich/potential-couscous
first_meet.py
first_meet.py
py
1,849
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 17, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 23, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 37, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 54, "usage_type": "call" }, { "api_name": "time.time", "line_number": 70, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 75, "usage_type": "call" }, { "api_name": "time.time", "line_number": 79, "usage_type": "call" } ]
29579809040
# -*- coding: utf-8 -*- """ Created on Fri Dec 7 11:04:13 2018 @author: Akitaka """ # 1:ライブラリのインポート-------------------------------- import numpy as np #numpyという行列などを扱うライブラリを利用 import pandas as pd #pandasというデータ分析ライブラリを利用 import matplotlib.pyplot as plt #プロット用のライブラリを利用 from sklearn import linear_model, metrics, preprocessing, cross_validation #機械学習用のライブラリを利用 from mlxtend.plotting import plot_decision_regions #学習結果をプロットする外部ライブラリを利用 from sklearn.kernel_approximation import RBFSampler #カーネル近似用の関数 from matplotlib.colors import ListedColormap #plot用 # 2:XORのデータを作成する(x=正、y=正)=0,(x=正、y=負)=1, 的な-------------- np.random.seed(0) X_xor=np.random.randn(200,2) y_xor=np.logical_xor(X_xor[:,0]>0, X_xor[:,1]>0) y_xor=np.where(y_xor,1,0) pd.DataFrame(y_xor) #この行を実行するとデータが見れる # 3:プロットしてみる------------------------------------------------------ #%matplotlib inline plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1') plt.scatter(X_xor[y_xor==0, 0], X_xor[y_xor==0, 1], c='r', marker='s', label='0') plt.legend(loc='best') plt.show # 4:データの整形------------------------------------------------------- X_std=X_xor z=y_xor #解説 5:カーネル近似を適用する------------------------------------------ rbf_feature = RBFSampler(gamma=1, n_components=100, random_state=1) X_std = rbf_feature.fit_transform(X_std) print("X_stdの大きさ ",pd.DataFrame(X_std).shape) #pd.DataFrame(X_std).to_clipboard() #これでクリップボードに保持できるのでエクセルに貼れる # 6:機械学習で分類する--------------------------------------------------- clf_result=linear_model.SGDClassifier(loss="hinge") #loss="hinge", loss="log" # 7:K分割交差検証(cross validation)で性能を評価する--------------------- scores=cross_validation.cross_val_score(clf_result, X_std, z, cv=10) print("平均正解率 = ", scores.mean()) print("正解率の標準偏差 = ", scores.std()) # 8:トレーニングデータとテストデータに分けて実行してみる------------------ X_train, X_test, train_label, test_label=cross_validation.train_test_split(X_std,z, test_size=0.1, random_state=1) clf_result.fit(X_train, train_label) #正答率を求める pre=clf_result.predict(X_test) ac_score=metrics.accuracy_score(test_label,pre) print("正答率 = ",ac_score) # 解説 9:Plotする x1_min, x1_max, x2_min, x2_max=-3, 3, -3, 3 resolution=0.02 xx1, xx2=np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution)) X=(np.array([xx1.ravel(), xx2.ravel()]).T) plot_z=clf_result.predict(rbf_feature.fit_transform(X)) colors=('red','blue') cmap=ListedColormap(colors[:len(np.unique(plot_z))]) plot_z=plot_z.reshape(xx1.shape) plt.contourf(xx1,xx2, plot_z, alpha=0.4, cmap=cmap)
nakanishi-akitaka/python2018_backup
1207/ml2b.py
ml2b.py
py
3,157
python
ja
code
5
github-code
6
[ { "api_name": "numpy.random.seed", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 18, "usage_type": "attribute" }, { "api_name": "numpy.random.randn", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 19, "usage_type": "attribute" }, { "api_name": "numpy.logical_xor", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 21, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 30, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "sklearn.kernel_approximation.RBFSampler", "line_number": 38, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 41, "usage_type": "call" }, { "api_name": "sklearn.linear_model.SGDClassifier", "line_number": 45, "usage_type": "call" }, { "api_name": "sklearn.linear_model", "line_number": 45, "usage_type": "name" }, { "api_name": "sklearn.cross_validation.cross_val_score", "line_number": 48, "usage_type": "call" }, { "api_name": "sklearn.cross_validation", "line_number": 48, "usage_type": "name" }, { "api_name": "sklearn.cross_validation.train_test_split", "line_number": 53, "usage_type": "call" }, { "api_name": "sklearn.cross_validation", "line_number": 53, "usage_type": "name" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 57, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 57, "usage_type": "name" }, { "api_name": "numpy.meshgrid", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.colors.ListedColormap", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.contourf", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" } ]
8629709747
from flask import Flask,request app = Flask(__name__) @app.route('/') def home(): return "Bem-Vindo" @app.route('/calculo') def add(): a = 10 b = 10 return str(a+b) if __name__ == '__main__': app.run()
kaibernu/MLDeploy
API.py
API.py
py
231
python
en
code
2
github-code
6
[ { "api_name": "flask.Flask", "line_number": 3, "usage_type": "call" } ]
39290687517
#!/usr/bin/env python2 from __future__ import print_function from Bio import SeqIO import sys, vcf, getopt __author__ = 'Kumar' sample_number = int(0) vcf_file = '' a = int(0) x = int(0) n = int(0) position = int(0) fold = int() try: myopts, args = getopt.getopt(sys.argv[1:],"f:s:") for o, a in myopts: if o == '-f': vcf_file = str(a) elif o == '-s': sample_number = int(a) except getopt.GetoptError as e: print(str(e)) print("Usage:: %s -f <vcf_file> -s <sample index in case of multi-sample vcf file>" % sys.argv[0]) sys.exit(2) vcf_reader = vcf.Reader(open(vcf_file, 'r')) sf = open("outfile.sf", "w") for record in vcf_reader: #print(record.samples) position = record.POS ad = record.samples[sample_number]['AD'] #print(ad) if ad == None: continue else: a = ad[0] x = ad[1] #print("%s::::%s"% (a,x)) n = a + x if a > x: fold = 0 else: fold = 1 header = "location\tx\tn\tfolded\n" if sf.tell() == 0: sf.write(header) sf.write("%d\t%d\t%d\t%d\n"% (position, x, n, fold)) else: sf.write("%d\t%d\t%d\t%d\n"% (position, x, n, fold)) sf.close()
kumarsaurabh20/NGShelper
PopulationGenomics/vcf2sf.py
vcf2sf.py
py
1,109
python
en
code
0
github-code
6
[ { "api_name": "getopt.getopt", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 18, "usage_type": "attribute" }, { "api_name": "getopt.GetoptError", "line_number": 24, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 27, "usage_type": "call" }, { "api_name": "vcf.Reader", "line_number": 29, "usage_type": "call" } ]
71361812987
import sys import mysql.connector from awsglue.utils import getResolvedOptions params = [ 'db_host', 'db_port', 'db_user', 'db_password', 'db_database', 'ticket_id_to_be_updated' ] args = getResolvedOptions(sys.argv, params) cnx = mysql.connector.connect( host=args['db_host'], port=args['db_port'], user=args['db_user'], password=args['db_password'], database=args['db_database'] ) cur = cnx.cursor() def update_data(cursor, connection): ticket_id = args['ticket_id_to_be_updated'] print("Selecting one record from table {}".format("customer")) cursor.execute("SELECT customer_id FROM customer ORDER BY RAND() LIMIT 1") rows = cursor.fetchall() customer_id = "" for row in rows: customer_id = row[0] update_event = ("UPDATE ticket_activity SET purchased_by={}, updated_at=now() WHERE ticket_id={}".format(customer_id, ticket_id)) cursor.execute(update_event) connection.commit() def read_data(cursor): cursor.execute("SELECT * FROM ticket_activity") rows = cursor.fetchall() for row in rows: print(row) read_data(cur) update_data(cur, cnx) read_data(cur) cur.close() cnx.close()
bhavik161/studio
rds/rds_upsert_data.py
rds_upsert_data.py
py
1,200
python
en
code
0
github-code
6
[ { "api_name": "awsglue.utils.getResolvedOptions", "line_number": 14, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 14, "usage_type": "attribute" }, { "api_name": "mysql.connector.connector.connect", "line_number": 16, "usage_type": "call" }, { "api_name": "mysql.connector.connector", "line_number": 16, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 16, "usage_type": "name" } ]
22020962951
from pathlib import Path import matplotlib.pyplot as plt import pandas as pd import rich import seaborn as sns import typer from boiling_learning.app.configuration import configure from boiling_learning.app.datasets.bridged.boiling1d import DEFAULT_BOILING_OUTLIER_FILTER from boiling_learning.app.datasets.preprocessed.boiling1d import boiling_datasets from boiling_learning.app.paths import studies_path from boiling_learning.app.training.boiling1d import DEFAULT_BOILING_HEAT_FLUX_TARGET from boiling_learning.datasets.sliceable import targets from boiling_learning.image_datasets import ImageDatasetTriplet from boiling_learning.lazy import LazyDescribed from boiling_learning.utils.pathutils import resolve app = typer.Typer() console = rich.console.Console() @app.command() def boiling1d() -> None: configure( force_gpu_allow_growth=True, use_xla=True, require_gpu=True, ) datasets = boiling_datasets(direct_visualization=True) f, axes = plt.subplots(len(datasets), 1, figsize=(6, 4)) for index, (ax, dataset) in enumerate(zip(axes, datasets)): data = _sorted_boiling_datasets(dataset) sns.scatterplot( ax=ax, data=data, x='index', y='heat flux', hue='class', alpha=0.5, ) ax.set_title(f'Dataset {index}') f.savefig(str(_data_split_study_path() / 'boiling1d.pdf')) @app.command() def condensation( each: int = typer.Option(60), normalize: bool = typer.Option(...), ) -> None: raise NotImplementedError def _sorted_boiling_datasets(datasets: LazyDescribed[ImageDatasetTriplet]) -> pd.DataFrame: ds_train, ds_val, ds_test = datasets() df = pd.DataFrame( sorted( ( ( target['nominal_power'], target[DEFAULT_BOILING_HEAT_FLUX_TARGET], target['elapsed_time'], class_name, ) for class_name, ds in ( ('train', ds_train), ('val', ds_val), ('test', ds_test), ) for target in targets(ds).prefetch(1024) if DEFAULT_BOILING_OUTLIER_FILTER()(None, target) ), key=lambda power_hf_et_class: ( power_hf_et_class[0], power_hf_et_class[2], ), ), columns=['nominal power', 'heat flux', 'elapsed time', 'class'], ) df['index'] = range(len(df)) return df def _data_split_study_path() -> Path: return resolve(studies_path() / 'data-split', dir=True)
ruancomelli/boiling-learning
boiling_learning/app/studies/data_split.py
data_split.py
py
2,677
python
en
code
7
github-code
6
[ { "api_name": "typer.Typer", "line_number": 19, "usage_type": "call" }, { "api_name": "rich.console.Console", "line_number": 20, "usage_type": "call" }, { "api_name": "rich.console", "line_number": 20, "usage_type": "attribute" }, { "api_name": "boiling_learning.app.configuration.configure", "line_number": 25, "usage_type": "call" }, { "api_name": "boiling_learning.app.datasets.preprocessed.boiling1d.boiling_datasets", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "seaborn.scatterplot", "line_number": 36, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 51, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 52, "usage_type": "call" }, { "api_name": "boiling_learning.lazy.LazyDescribed", "line_number": 57, "usage_type": "name" }, { "api_name": "boiling_learning.image_datasets.ImageDatasetTriplet", "line_number": 57, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 60, "usage_type": "call" }, { "api_name": "boiling_learning.app.training.boiling1d.DEFAULT_BOILING_HEAT_FLUX_TARGET", "line_number": 65, "usage_type": "name" }, { "api_name": "boiling_learning.datasets.sliceable.targets", "line_number": 74, "usage_type": "call" }, { "api_name": "boiling_learning.app.datasets.bridged.boiling1d.DEFAULT_BOILING_OUTLIER_FILTER", "line_number": 75, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 57, "usage_type": "attribute" }, { "api_name": "boiling_learning.utils.pathutils.resolve", "line_number": 89, "usage_type": "call" }, { "api_name": "boiling_learning.app.paths.studies_path", "line_number": 89, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 88, "usage_type": "name" } ]
22400150737
from PyQt5.QtWidgets import * from PyQt5.QtCore import pyqtSignal, pyqtSlot, QModelIndex,QItemSelectionModel from diz import * import sys from BD import Orm from dialog import Dialog from dizain1_2 import TwoWindow from dialog2 import Dialog2 bd = Orm() class InputDialog(QtWidgets.QDialog): def __init__(self, root, **kwargs): super().__init__(root, **kwargs) self.win = root label = QtWidgets.QLabel('Введите название') self.edit = QtWidgets.QLineEdit() button = QtWidgets.QPushButton('Найти') button.clicked.connect(self.push) layout = QtWidgets.QVBoxLayout() layout.addWidget(label) layout.addWidget(self.edit) layout.addWidget(button) self.setLayout(layout) def push(self): if self.edit.text(): r = bd.search_mater(self.edit.text()) if r: self.win.now(r) self.close() self.win.hid() else: msg = QMessageBox() msg.setWindowTitle("Ошибка") msg.setText("Не найдено ") msg.addButton('Ок', QMessageBox.RejectRole) msg.exec() class MainWindow(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) # заголовки для столбцов. self.ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) self.ui.pushButton.clicked.connect(self.addfac) self.ui.pushButton_2.clicked.connect(self.addmat) self.ui.pushButton_4.clicked.connect(self.search) self.ui.pushButton_5.hide() self.ui.pushButton_5.clicked.connect(self.tomain) self.now(bd.allmat()) self.ui.pushButton_3.clicked.connect(self.delmat) self.id=False def now(self, data): if data: self.ui.tableWidget.setEnabled(True) self.ui.pushButton_3.setEnabled(True) self.ui.pushButton_4.setEnabled(True) # ряды и столбцы self.ui.tableWidget.setRowCount( len(data) ) self.ui.tableWidget.setColumnCount( len(data[0]) ) self.ui.tableWidget.setHorizontalHeaderLabels( ('Id', 'Название материала', 'Фирма', 'Магазин', 'Поставщик', 'Наличие счета', 'Наличие НДС', 'Количество', 'Цена') ) row = 0 for tup in data: col = 0 for item in tup: cellinfo = QTableWidgetItem(str(item)) cellinfo.setFlags( QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled ) self.ui.tableWidget.setItem(row, col, cellinfo) # self.ui.tableWidget.horizontalHeader().setSectionResizeMode(col , QHeaderView.Stretch) col += 1 row += 1 self.ui.tableWidget.resizeColumnsToContents() self.ui.tableWidget.horizontalHeader().setSectionResizeMode(col - 1, QHeaderView.Stretch) else: self.ui.tableWidget.clear() self.ui.tableWidget.setEnabled(False) self.ui.pushButton_3.setEnabled(False) self.ui.pushButton_4.setEnabled(False) def addmat(self): self.dualog = Dialog() self.dualog.exec() self.now(bd.allmat()) def addfac(self): if not self.id: self.now(bd.allmat()) msg = QMessageBox() msg.setWindowTitle("Ошибка") msg.setText("Вы не выбрали не один договор") msg.addButton('Ок', QMessageBox.RejectRole) msg.exec() else: print(self.id) self.now(bd.allmat()) self.dualog2 = Dialog2(self.id) self.dualog2.exec() self.now(bd.allmat()) def delmat(self): if not self.id: self.now(bd.allmat()) msg = QMessageBox() msg.setWindowTitle("Ошибка") msg.setText("Вы не выбрали не один договор") msg.addButton('Ок', QMessageBox.RejectRole) msg.exec() else: print(self.id) bd.delmat(self.id) self.now(bd.allmat()) @pyqtSlot(QModelIndex) def on_tableWidget_clicked(self, index: QModelIndex): # получение индекса строки при нажатие self.id = int(self.ui.tableWidget.item(index.row(), 0).text()) print(self.id) @pyqtSlot(QModelIndex) def on_tableWidget_doubleClicked(self, index: QModelIndex): # получение списка обьектов r = int(self.ui.tableWidget.item(index.row(), 0).text()) data = bd.allfac(r) if not data: msg = QMessageBox() msg.setWindowTitle("Ошибка") msg.setText("Нет записей объекта") msg.addButton('Ок', QMessageBox.RejectRole) msg.exec() else: self.twow = TwoWindow(r) self.twow.show() self.twow.now(data) def search(self): self.search = InputDialog(self) self.search.exec() def hid(self): self.ui.pushButton_5.show() self.ui.pushButton_4.hide() def tomain(self): self.now(bd.allmat()) self.ui.pushButton_5.hide() self.ui.pushButton_4.show() app = QtWidgets.QApplication([]) win = MainWindow() # win.now(data) win.show() sys.exit(app.exec())
Vorlogg/BD
dizain.py
dizain.py
py
5,829
python
ru
code
0
github-code
6
[ { "api_name": "BD.Orm", "line_number": 10, "usage_type": "call" }, { "api_name": "dialog.Dialog", "line_number": 103, "usage_type": "call" }, { "api_name": "dialog2.Dialog2", "line_number": 119, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QModelIndex", "line_number": 138, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 137, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QModelIndex", "line_number": 137, "usage_type": "argument" }, { "api_name": "PyQt5.QtCore.QModelIndex", "line_number": 143, "usage_type": "name" }, { "api_name": "dizain1_2.TwoWindow", "line_number": 154, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 142, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QModelIndex", "line_number": 142, "usage_type": "argument" }, { "api_name": "sys.exit", "line_number": 177, "usage_type": "call" } ]
71365190588
import torch from torchvision import transforms from torch.autograd import Variable from dataset import DatasetFromFolder from model import Generator import utils import argparse import os parser = argparse.ArgumentParser() parser.add_argument('--dataset', required=False, default='facades', help='input dataset') parser.add_argument('--direction', required=False, default='BtoA', help='input and target image order') parser.add_argument('--batch_size', type=int, default=1, help='test batch size') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--input_size', type=int, default=1024, help='input size') params = parser.parse_args() print(params) # Directories for loading data and saving results data_dir = '../Data/' + params.dataset + '/' save_dir = params.dataset + '_test_results/' model_dir = params.dataset + '_model/' if not os.path.exists(save_dir): os.mkdir(save_dir) if not os.path.exists(model_dir): os.mkdir(model_dir) # Data pre-processing test_transform = transforms.Compose([transforms.Scale(params.input_size), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) # Test data test_data = DatasetFromFolder(data_dir, subfolder='test', direction=params.direction, transform=test_transform) test_data_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=params.batch_size, shuffle=False) # Load model G = Generator(3, params.ngf, 3) G.cuda() G.load_state_dict(torch.load(model_dir + 'generator_param.pkl')) # Test for i, (input, target) in enumerate(test_data_loader): # input & target image data x_ = Variable(input.cuda()) y_ = Variable(target.cuda()) gen_image = G(x_) gen_image = gen_image.cpu().data # Show result for test data utils.plot_test_result(input, target, gen_image, i, training=False, save=True, save_dir=save_dir) print('%d images are generated.' % (i + 1))
togheppi/pix2pix
pix2pix_test.py
pix2pix_test.py
py
2,081
python
en
code
46
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 27, "usage_type": "call" }, { "api_name": "torchvision.transforms.Compose", "line_number": 30, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 30, "usage_type": "name" }, { "api_name": "torchvision.transforms.Scale", "line_number": 30, "usage_type": "call" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 31, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 31, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 32, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 32, "usage_type": "name" }, { "api_name": "dataset.DatasetFromFolder", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 36, "usage_type": "attribute" }, { "api_name": "model.Generator", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 49, "usage_type": "call" }, { "api_name": "utils.plot_test_result", "line_number": 55, "usage_type": "call" } ]
40319402697
from ansible.module_utils.basic import AnsibleModule from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api import \ Session from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls import GeneralModule class General(GeneralModule): CMDS = { 'set': 'set', 'search': 'get', } API_KEY_PATH = 'bgp' API_MOD = 'quagga' API_CONT = 'bgp' API_CONT_REL = 'service' API_CMD_REL = 'reconfigure' FIELDS_CHANGE = [ 'as_number', 'id', 'graceful', 'enabled', 'networks', 'redistribute', ] FIELDS_ALL = FIELDS_CHANGE FIELDS_TRANSLATE = { 'as_number': 'asnumber', 'id': 'routerid', } FIELDS_TYPING = { 'bool': ['enabled', 'graceful'], 'list': ['networks', 'redistribute'], } INT_VALIDATIONS = { 'as_number': {'min': 1, 'max': 4294967295}, } def __init__(self, module: AnsibleModule, result: dict, session: Session = None): GeneralModule.__init__(self=self, m=module, r=result, s=session)
ansibleguy/collection_opnsense
plugins/module_utils/main/frr_bgp_general.py
frr_bgp_general.py
py
1,066
python
en
code
158
github-code
6
[ { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule", "line_number": 8, "usage_type": "name" }, { "api_name": "ansible.module_utils.basic.AnsibleModule", "line_number": 35, "usage_type": "name" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api.Session", "line_number": 35, "usage_type": "name" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule.__init__", "line_number": 36, "usage_type": "call" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule", "line_number": 36, "usage_type": "name" } ]
20861131743
import requests import os import wget import subprocess def update_mindustry(): global response global be_wrapper global current_build download_url = "https://github.com/Anuken/MindustryBuilds/releases/download/" + str(current_build) download_url = download_url + "/Mindustry-BE-Desktop-" + str(current_build) + ".jar" os.system("rm -f " + os.path.join(be_wrapper, "Mindustry.jar")) wget.download(download_url, os.path.join(be_wrapper, "Mindustry.jar")) bfile = open(be_wrapper + "/last.txt", "w") bfile.write(str(current_build)) print() def run_mindustry(): global be_wrapper global current_build if not os.path.exists(os.path.join(be_wrapper, "Mindustry.jar")): print("The Mindustry jar file does not exist. Download it now?") if input("Update now? (Y/N):").lower() == "y": update_mindustry() else: print("Exiting") exit(0) os.system("java -jar " + be_wrapper + "/Mindustry.jar") try: subprocess.check_call("java -version", shell=True) except subprocess.CalledProcessError as x: if not x.returncode == 127: raise response = requests.get("https://api.github.com/repos/Anuken/MindustryBuilds/releases/latest").json() current_build = int(response['tag_name']) home = os.path.expanduser("~") be_wrapper = os.path.join(home, "BEWrapper") if not os.path.exists(be_wrapper): os.mkdir(be_wrapper) try: build_file = open(be_wrapper + "/last.txt", "r") saved_build = int(build_file.read()) build_file.close() except FileNotFoundError: saved_build = 0 except ValueError: saved_build = 0 if saved_build < current_build: print("Your Mindustry build seems to be out of date by " + str(current_build - saved_build) + " releases.") if input("Update now? (Y/N):").lower() == "y": update_mindustry() print("Mindustry appears to be up to date!") print("Running Mindustry") run_mindustry()
ILiekMelons/MindustryBELauncher
main.py
main.py
py
1,958
python
en
code
0
github-code
6
[ { "api_name": "os.system", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "wget.download", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.system", "line_number": 32, "usage_type": "call" }, { "api_name": "subprocess.check_call", "line_number": 36, "usage_type": "call" }, { "api_name": "subprocess.CalledProcessError", "line_number": 37, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 48, "usage_type": "call" } ]
20656199478
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Create a Milo input file from a frequency calculation. It must be a Gaussian 09 or 16 high-precision frequency calculation. You request this with '# freq=(hpmodes) ... '. """ import argparse import sys from milo_1_0_3 import atom from milo_1_0_3 import containers from milo_1_0_3 import enumerations as enums from milo_1_0_3 import exceptions from milo_1_0_3 import program_state as ps def main(): """Parse frequency file and print to new Milo input.""" parser = argparse.ArgumentParser(description="Make a Milo input file " "from a high-precision Gaussian frequency" " calculation.\n") parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Frequency calculation file. " "<stdin> by default.") parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'), default=sys.stdout, help="New Milo input file. " "<stdout> by default.") parser.add_argument('-v', '--verbose', action='count', default=0, help="Print other parameters in $job section. " "-v for common parameters, -vv for all parameters") args = parser.parse_args() program_state = ps.ProgramState() try: parse_gaussian_header(args.infile, program_state) parse_gaussian_charge_spin(args.infile, program_state) parse_gaussian_molecule_data(args.infile, program_state) parse_gaussian_frequency_data(args.infile, program_state) parse_gaussian_isotope_data(args.infile, program_state) print_job_section(args.outfile, program_state, args.verbose) print_output_comment(args.infile, args.outfile) print_molecule_section(args.outfile, program_state) print_frequency_data_section(args.outfile, program_state) except Exception as e: print("Oh no! It looks like there was an error!") print("Error message:", e) print("\nPython error details:") raise def parse_gaussian_header(input_iterable, program_state): """ Parse gaussian_header from frequency file. Looking for: ****************************************** ------------------------------ # opt freq=hpmodes m062x/3-21g ------------------------------ Result: gaussian_header = 'm062x/3-21g' """ past_warning = False lines = list() for line in input_iterable: if "*****" in line: past_warning = True if past_warning and "-----" in line: for next_line in input_iterable: if "-----" in next_line: break lines.append(next_line[1:].strip("\n")) clean_line = "".join(lines).strip() if "hpmodes" not in clean_line.casefold(): raise exceptions.InputError("Must be high-precision frequency " "calculation. Use 'freq=hpmodes'.") tokens = clean_line.split() tokens = [x for x in tokens if "#" not in x and "opt" not in x.casefold() and "freq" not in x.casefold()] program_state.gaussian_header = " ".join(tokens) return raise exceptions.InputError("Error parsing gaussian_header.") def parse_gaussian_charge_spin(input_iterable, program_state): """ Parse charge and spin multiplicity from frequency file. Looking for: --------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 O -0.19334 -0.19871 0. """ for line in input_iterable: if "Charge =" in line: program_state.charge = int(line.split()[2]) program_state.spin = int(line.split()[5]) return raise exceptions.InputError("Error parsing charge and spin multiplicity.") def parse_gaussian_molecule_data(input_iterable, program_state): """ Parse molecule data from frequency file. Will pull the last "Standard orientation:" in the log file, or the last "Input orientation:" if there is no "Standard orientation:" (for example, if the nosymm keyword is used). Looking for: Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- """ for line in input_iterable: if "Harmonic frequencies (cm**-1)" in line: return if "Input orientation:" in line or "Standard orientation:" in line: positions = containers.Positions() for coordinate_line in input_iterable: if ("Rotational constants" in coordinate_line or "Distance matrix" in coordinate_line): break coordinates = coordinate_line.split() if coordinates[0].isnumeric(): x = float(coordinates[3]) y = float(coordinates[4]) z = float(coordinates[5]) positions.append(x, y, z, enums.DistanceUnits.ANGSTROM) program_state.input_structure = positions raise exceptions.InputError("Error parsing molecule data.") def parse_gaussian_frequency_data(input_iterable, program_state): """ Parse frequency data from frequency file. Will pull the first time they are listed (with high-precision). Looking for: Frequencies --- 1682.1354 3524.4296 3668.7401 Reduced masses --- 1.0895 1.0389 1.0827 Force constants --- 1.8163 7.6032 8.5864 IR Intensities --- 52.8486 4.2243 0.3831 Coord Atom Element: 1 1 8 -0.00000 0.00000 -0.00000 2 1 8 0.00000 -0.00000 -0.07070 3 1 8 -0.07382 0.04553 -0.00000 1 2 1 0.00000 0.00000 0.00000 2 2 1 0.39258 0.60700 0.56106 3 2 1 0.58580 -0.36126 -0.42745 1 3 1 0.00000 -0.00000 0.00000 2 3 1 -0.39258 -0.60700 0.56106 3 3 1 0.58580 -0.36126 0.42745 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scatt activities (A**4/AMU), depolarization ratios for plane and unpolariz """ has_started = False for line in input_iterable: if "Frequencies ---" in line: has_started = True for frequency in line.split()[2:]: program_state.frequencies.append(float(frequency), enums.FrequencyUnits .RECIP_CM) elif "Reduced masses ---" in line: for reduced_mass in line.split()[3:]: program_state.reduced_masses\ .append(float(reduced_mass), enums.MassUnits.AMU) elif "Force constants ---" in line: for force_constant in line.split()[3:]: program_state.force_constants\ .append(float(force_constant), enums.ForceConstantUnits .MILLIDYNE_PER_ANGSTROM) elif "Coord Atom Element:" in line: data_in_columns = list() for coordinate_line in input_iterable: if ("Harmonic frequencies (cm**-1)" in coordinate_line or " " in coordinate_line): break data_in_columns.append(coordinate_line.split()[3:]) data_in_rows = list(zip(*data_in_columns)) for frequency in data_in_rows: program_state.mode_displacements.append(containers.Positions()) for x, y, z in zip(*[iter(frequency)] * 3): program_state.mode_displacements[-1].append(float(x), float(y), float(z), enums.DistanceUnits.ANGSTROM) elif has_started and "activities (A**4/AMU)" in line: return raise exceptions.InputError("Error parsing frequency data.") def parse_gaussian_isotope_data(input_iterable, program_state): """ Parse isotope and atomic number data from frequency file. Looking for: ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 8 and mass 15.99491 Atom 2 has atomic number 1 and mass 1.00783 Atom 3 has atomic number 1 and mass 1.00783 Molecular mass: 18.01056 amu. """ for line in input_iterable: if "Thermochemistry" in line: atoms = list() for mass_line in input_iterable: if "Molecular mass" in mass_line: break split_line = mass_line.split() if split_line[0] == "Atom": atomic_number = int(split_line[5]) atoms.append(atom.Atom.from_atomic_number(atomic_number)) atoms[-1].change_mass(split_line[8]) program_state.atoms = atoms return raise exceptions.InputError("Error parsing isotope data.") def print_section(output_iterable, section_name, inside): """Print a section to output_iterable.""" stdout = sys.stdout sys.stdout = output_iterable print(f"${section_name}") print(inside) print("$end") print() sys.stdout = stdout def print_job_section(output_iterable, program_state, verbose): """ Print the $job section with gaussian_header from program_state. verbose controls how other job parameters are printed. """ section = list() section.append(" gaussian_header " f"{program_state.gaussian_header}") if verbose >= 1: section.append(" # step_size 1.00 # in femtoseconds") section.append(" # max_steps 100 # or no_limit") section.append(" # temperature 298.15 # in kelvin") section.append(" # phase bring_together n m" " # or push_apart n m") section.append(" # memory 24 # in GB") section.append(" # processors 24") section.append(" # random_seed generate # or an " "integer") if verbose >= 2: section.append(" # oscillator_type quasiclassical") section.append(" # geometry_displacement off") section.append(" # rotational_energy off") section.append(" # energy_boost off") section.append(" # integration_algorithm verlet") section.append(" # program gaussian16") section.append(" # fixed_mode_direction n 1 # or n -1") print_section(output_iterable, "job", "\n".join(section)) def print_molecule_section(output_iterable, program_state): """Print $molecule section with data from program_state.""" section = list() section.append(f" {program_state.charge} {program_state.spin}") for _atom, (x, y, z) in zip(program_state.atoms, program_state.input_structure.as_angstrom()): section.append(f" {_atom.symbol} {x:12.6f} {y:12.6f} {z:12.6f}") print_section(output_iterable, "molecule", "\n".join(section)) section = list() for i, _atom in enumerate(program_state.atoms, 1): section.append(f" {i:< 3d} {_atom.mass:10.5f}") print_section(output_iterable, "isotope", "\n".join(section)) def print_frequency_data_section(output_iterable, program_state): """Print $frequencies section with data from program_state.""" section = list() for frequency, reduced_mass, force_constant, mode_displacement in zip( program_state.frequencies.as_recip_cm(), program_state.reduced_masses.as_amu(), program_state.force_constants.as_millidyne_per_angstrom(), program_state.mode_displacements): section.append(f" {frequency:10.4f} {reduced_mass:7.4f} " f"{force_constant:7.4f}") for x, y, z in mode_displacement.as_angstrom(): section.append(f" {x:8.5f} {y:8.5f} {z:8.5f}") section.append("\n") section.pop() print_section(output_iterable, "frequency_data", "".join(section)) def print_output_comment(input_iterable, output_iterable): """Print comment with frequency file name and date of parsing.""" from datetime import datetime import os comment = list() comment.append(" Frequency and molecule data parsed ") if input_iterable != sys.stdin: comment.append("from ") comment.append(os.path.basename(input_iterable.name)) comment.append(" ") else: try: name = os.readlink('/proc/self/fd/0').split('/')[-1].split('.')[0] comment.append("from ") comment.append(name) comment.append(" ") except FileNotFoundError: comment.append("from <stdin> ") comment.append(datetime.now().strftime("on %d-%b-%Y at %X")) print_section(output_iterable, "comment", "".join(comment)) if __name__ == "__main__": main()
DanielEss-lab/milo
milo_1_0_3/tools/parse_frequencies.py
parse_frequencies.py
py
13,885
python
en
code
3
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 22, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 25, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 26, "usage_type": "attribute" }, { "api_name": "argparse.FileType", "line_number": 28, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 29, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.program_state.ProgramState", "line_number": 35, "usage_type": "call" }, { "api_name": "milo_1_0_3.program_state", "line_number": 35, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 77, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 77, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 85, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 85, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 103, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 103, "usage_type": "name" }, { "api_name": "milo_1_0_3.containers.Positions", "line_number": 125, "usage_type": "call" }, { "api_name": "milo_1_0_3.containers", "line_number": 125, "usage_type": "name" }, { "api_name": "milo_1_0_3.enumerations.DistanceUnits", "line_number": 135, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.enumerations", "line_number": 135, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 137, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 137, "usage_type": "name" }, { "api_name": "milo_1_0_3.enumerations.FrequencyUnits", "line_number": 170, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.enumerations", "line_number": 170, "usage_type": "name" }, { "api_name": "milo_1_0_3.enumerations.MassUnits", "line_number": 175, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.enumerations", "line_number": 175, "usage_type": "name" }, { "api_name": "milo_1_0_3.enumerations.ForceConstantUnits", "line_number": 179, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.enumerations", "line_number": 179, "usage_type": "name" }, { "api_name": "milo_1_0_3.containers.Positions", "line_number": 190, "usage_type": "call" }, { "api_name": "milo_1_0_3.containers", "line_number": 190, "usage_type": "name" }, { "api_name": "milo_1_0_3.enumerations.DistanceUnits", "line_number": 193, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.enumerations", "line_number": 193, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 196, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 196, "usage_type": "name" }, { "api_name": "milo_1_0_3.atom.Atom.from_atomic_number", "line_number": 222, "usage_type": "call" }, { "api_name": "milo_1_0_3.atom.Atom", "line_number": 222, "usage_type": "attribute" }, { "api_name": "milo_1_0_3.atom", "line_number": 222, "usage_type": "name" }, { "api_name": "milo_1_0_3.exceptions.InputError", "line_number": 226, "usage_type": "call" }, { "api_name": "milo_1_0_3.exceptions", "line_number": 226, "usage_type": "name" }, { "api_name": "sys.stdout", "line_number": 231, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 232, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 239, "usage_type": "attribute" }, { "api_name": "sys.stdin", "line_number": 311, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 313, "usage_type": "call" }, { "api_name": "os.path", "line_number": 313, "usage_type": "attribute" }, { "api_name": "os.readlink", "line_number": 317, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 323, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 323, "usage_type": "name" } ]
19250997206
import numpy as np import cv2 from matplotlib import pyplot as plt def SI(img, x, y, p): val = np.sum(img[y-p:y+p, x-p:x+p]) return min(max(val, 0), 255) #Read grayscale image and conversion to float64 img=np.float64(cv2.imread('../Image_Pairs/FlowerGarden2.png',0)) (h,w) = img.shape print("Image dimension:",h,"rows x",w,"columns") #Direct method t1 = cv2.getTickCount() direct_method = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE) for y in range(1,h): for x in range(1,w): val = img[y, x] - img[y-1, x] direct_method[y,x] = min(max(val,0),255) t2 = cv2.getTickCount() time = (t2 - t1)/ cv2.getTickFrequency() print("Direct method:",time,"s") plt.figure(figsize=(8, 6)) plt.imshow(direct_method, cmap='gray') plt.title('Y derivate convolution - Direct method') plt.axis('off') plt.savefig("conv_direct_y_derivate.png", bbox_inches='tight') plt.close() #Method filter2D t1 = cv2.getTickCount() kernel = np.array([-1, 1]) filter2d_method = cv2.filter2D(img,-1,kernel) t2 = cv2.getTickCount() time = (t2 - t1)/ cv2.getTickFrequency() print("Method filter2D :",time,"s") plt.figure(figsize=(8, 6)) plt.imshow(direct_method, cmap='gray') plt.title('Y derivate convolution - filter 2D') plt.axis('off') plt.savefig("conv_filter2D_y_derivate.png", bbox_inches='tight') plt.close() img_diff = filter2d_method - direct_method plt.figure(figsize=(8, 6)) plt.imshow(img_diff, cmap='gray', vmax=255, vmin=0) plt.title("Y derivate result difference between the direct and filter2D") plt.axis('off') plt.savefig("difference_y_derivate_direct-filter2D.png", bbox_inches='tight') plt.close() center_y = h // 2 center_x = x // 2 p = 1 q = 50 SI_image = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE) for i in range(-q//2, q//2 + 1, 1): for j in range(-q//2, q//2 + 1, 1): SI_image[center_y + i, center_x + j] = SI(img, center_y + i, center_x + j, p) plt.figure(figsize=(8, 6)) plt.imshow(img, cmap='gray') plt.title('Original Image') plt.axis('off') plt.savefig("original_image.png", bbox_inches='tight') plt.close() plt.figure(figsize=(8, 6)) plt.imshow(SI_image, cmap='gray') plt.title('SI Function with p=1 on a square of size 50 on the center') plt.axis('off') plt.savefig("SI_function.png", bbox_inches='tight') plt.close()
gpspelle/image-mining
TP1/TP_Features_OpenCV/modified_Convolutions.py
modified_Convolutions.py
py
2,273
python
en
code
0
github-code
6
[ { "api_name": "numpy.sum", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.getTickCount", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.copyMakeBorder", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.BORDER_REPLICATE", "line_number": 17, "usage_type": "attribute" }, { "api_name": "cv2.getTickCount", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.getTickFrequency", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "cv2.getTickCount", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.filter2D", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.getTickCount", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.getTickFrequency", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "cv2.copyMakeBorder", "line_number": 62, "usage_type": "call" }, { "api_name": "cv2.BORDER_REPLICATE", "line_number": 62, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" } ]
32544533358
import json import glob from flask import Flask , send_file import os from flask_cors import CORS app = Flask (__name__) cors = CORS(app) @app.route('/') def DownloadMergedJson() -> str: result = {} logs = {} node_ids =[] for f in glob.glob(os.path.join("..", "history_*.json")): print(str(f)) node_ids.append(str(f).split('.')[2].split('_')[1]) result["all_nodes"] = node_ids for f in glob.glob(os.path.join("..", "history_*.json")): node_id = str(f).split('.')[2].split('_')[1] with open(f, "rb") as infile: result[node_id] = json.load(infile) return result app.run()
SiyiGuo/COMP90020
pythonproxy/getNodeData.py
getNodeData.py
py
648
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 7, "usage_type": "call" }, { "api_name": "flask_cors.CORS", "line_number": 8, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 23, "usage_type": "call" } ]
33874326793
# 507/206 Homework 6 Part 2 import requests from bs4 import BeautifulSoup #### Part 2 #### print('\n*********** PART 2 ***********') print('Michigan Daily -- MOST READ\n') ### Your Part 2 solution goes here html = requests.get('https://www.michigandaily.com/').text soup = BeautifulSoup(html, 'html.parser') # searching_div = soup.find('div', attrs = {"class":"panel-pane pane-mostread"}) searching_div= soup.find('div', attrs = {'class': "view view-most-read view-id-most_read view-display-id-panel_pane_1 view-dom-id-99658157999dd0ac5aa62c2b284dd266"}) # print(searching_div) mr = searching_div.select("ol li") for li in mr: print(li.text) # print(mr) # for a in mr: # abstract = a.select("ol") # print(abstract) # for li in abstract: # print(li)
xckou/SI507-HW06-xckou
hw6_part2.py
hw6_part2.py
py
762
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 12, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 13, "usage_type": "call" } ]
25144954100
import requests import collections import csv from bs4 import BeautifulSoup from bs4.element import Tag class ParseAnimals: def __init__(self) -> None: self.animals_names = {} def parse(self) -> None: """ Make a while loop until calegory letter != Я Saves each animal data on the page in dict: key - letter, value - list of all animals on the page """ url = 'https://ru.wikipedia.org/wiki/Категория:Животные_по_алфавиту' letter = '' while letter != 'Я': data = self._get_page(url) self._parse_animal_on_page(data=data) url = self._check_end_page(data=data) letter = collections.deque(self.animals_names, maxlen=1)[0][0] print(letter) self._get_csv() def _get_page(self, url: str) -> Tag: """ Make a request on the page and gets all page data """ request = requests.get(url) soup = BeautifulSoup(request.text, 'lxml') return soup.find('div', id='mw-pages') def _parse_animal_on_page(self, data: Tag) -> None: """ Saves all animals on the page in a dict with key = category (letter) """ for el in data.find_all('div', class_='mw-category-group'): category = el.h3.text animal_names = [[i.text, f"https://ru.wikipedia.org{i.a['href']}"] for i in el.find_all('li')] if not self.animals_names.get(category): self.animals_names[category] = [] self.animals_names[category] = self.animals_names[category] + animal_names def _check_end_page(self, data: Tag) -> str: """ Return an url to the next page """ hrf = data.find_all('a')[-1] return f"https://ru.wikipedia.org{hrf['href']}" def _get_csv(self) -> None: """ Saves data (dict) into csv file """ with open('animals_names_count.csv', 'w') as f: writer = csv.writer(f) writer.writerows([[f'{k}, {len(v)}'] for k, v in self.animals_names.items()]) if __name__ == '__main__': parse = ParseAnimals() parse.parse()
enamsaraev/tetrika-test
task2/solution.py
solution.py
py
2,239
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 26, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 37, "usage_type": "call" }, { "api_name": "bs4.element.Tag", "line_number": 32, "usage_type": "name" }, { "api_name": "bs4.element.Tag", "line_number": 41, "usage_type": "name" }, { "api_name": "bs4.element.Tag", "line_number": 54, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 66, "usage_type": "call" } ]
33273926923
from PDBParseBase import PDBParserBase #get_site_header_seq_info import time, os,datetime,logging,gzip,pickle #get_site_header_seq_info def mkdir(path): #Created uncompress path folder isExists=os.path.exists(path) if not isExists: os.makedirs(path) print(path + " Created folder sucessful!") return True else: #print ("this path is exist") return False def get_site_header_seq_info(rootdir,savefilepath): """extract header\sequence\site\remark800 info in rootdir. and then, save them as a pickle content with list[1_site,2_header,3_sequence] rootdir = "/home/RaidDisk/pdbfiles/updb" savefilepath = "/home/zhaiyh884/20190614_new_data/0615_data" scan all pdb files need about 60 min. """ count = 0 counter_mem = 0 pdbbase = PDBParserBase() pdb_seq_info = pdbbase.get_sequence_fromATOM('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') print(pdb_seq_info) print(pdb_eq_info) """ #test cetern item pdb_header_info = pdbbase.get_header_info('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') pdb_site_info = pdbbase.get_site_info('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') pdb_seq_info = pdbbase.get_sequence_fromSEQ('/home/RaidDisk/pdbfiles/updb/pdb/a2/pdb2a2q.ent') print(pdb_header_info) print(pdb_site_info) print(pdb_seq_info) """ for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: data_3_items = [] #analyzedata pdb_site_info = pdbbase.get_site_info(os.path.join(parent,filename)) data_3_items.append(pdb_site_info) if not pdb_site_info : print("do not have site:" + filename) "in order to save some time" continue pdb_header_info = pdbbase.get_header_info(os.path.join(parent,filename)) data_3_items.append(pdb_header_info) #print(pdb_header_info) pdb_seq_from_SEQ__info = pdbbase.get_sequence_fromSEQ(os.path.join(parent,filename)) data_3_items.append(pdb_seq_from_SEQ__info) print("pdb_seq_from_SEQ__info") print(pdb_seq_from_SEQ__info) pdb_seq_from_ATOM_info = pdbbase.get_sequence_fromATOM(os.path.join(parent,filename)) data_3_items.append(pdb_seq_from_ATOM_info) print("pdb_seq_from_ATOM_info") print(pdb_seq_from_ATOM_info) #save data if not pdb_site_info : pass else: dirname = filename[4:6] new_Filepath = savefilepath +"/" + str(dirname)+"/" mkdir(new_Filepath) new_filename = filename[3:7] + ".pickle" with open(new_Filepath + new_filename,"wb") as dbFile: pickle.dump(data_3_items,dbFile) """with open(new_Filepath + new_filename,"rb") as dbFile: file = pickle.load(dbFile) """ pass pass def find_memberain_protein(rootdir,savefilepath): #find all protein that header have "mem"in it and save them into savefilepath count = 0 counter_mem = 0 pdbbase = PDBParserBase() pdb_header_info = {} for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: count = count + 1 dirname = filename[3:7] pdb_header_info = pdbbase.get_header_info(os.path.join(parent,filename)) if "MEM" in pdb_header_info["HEADER_classification"]: counter_mem = counter_mem + 1 cmd = 'cp ' + str(os.path.join(parent,filename)) + ' ' + str(os.path.join(savefilepath,filename)) os.system(cmd) pass def find_all_sites(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" # total_site = [] description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] item_dict = {} for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding name if "res" in descriptions[1]: sites.append(descriptions[2]) else: sites.append(descriptions[1]) except IndexError: description_null = description_null+1 item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null) with open("/home/zhaiyh884/20190614_new_data/total_site.pickle", "wb") as dbFile: pass pickle.dump(total_site, dbFile) pass def count_sites(file): #used to count sites and analyzedata. #file = "/home/zhaiyh884/20190614_new_data/total_site.pickle" #scan all the data and count every site's apperance with open(file, "rb") as dbFile: file = pickle.load(dbFile) site_dicts = {} total_site_num = 0 for item in file: for seq_id in item: #print(seq_id) for site_name in item[seq_id]: print(site_name) site_dicts[site_name] = site_dicts[site_name] + 1 if site_name in site_dicts else 1 total_site_num = total_site_num + 1 #if site_name in site_dicts.keys(): # site_dicts[site_name] = site_dicts[site_name] + 1 if site_name in site_dicts else 1 #print(site_name) with open("/home/zhaiyh884/20190614_new_data/site_numbers.pickle", "wb") as dbFile: pickle.dump(site_dicts, dbFile) print(site_dicts) print("total_site_num:") print(total_site_num) print("site_dicts items num:") print(len(site_dicts)) def sites_anylize(): with open("site_numbers.pickle","rb") as dbFile: file = pickle.load(dbFile) with open("hetlist.pickle","rb") as dbFile_drug: file_drug = pickle.load(dbFile_drug) sites_number = 0 number_counter = {} drug_site = {} for site_name in file: if site_name in file_drug: sites_number = sites_number + file[site_name] # used to count all numbers of drugs_binding object number_of_site = file[site_name] # number_of_site used to sign the numbers which apperence number_counter[number_of_site] = number_counter[number_of_site] + 1 if number_of_site in number_counter else 1 # the dict to store the number of times drug_site[site_name] = file[site_name] #form a new site of drug sites print(sites_number) print(number_counter) print(sorted(file.items(),key=lambda x:x[1])) print("#@!#!$!@#%!#%") print(sorted(drug_site.items(),key=lambda x:x[1])) pass def find_memberain_sites(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" # total_site = [] description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] #select membrane protein if "MEM" not in header["HEADER_classification"]: continue # use site info only item_dict = {} for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding name if "res" in descriptions[1]: sites.append(descriptions[2]) else: sites.append(descriptions[1]) except IndexError: description_null = description_null+1 item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null) with open("/home/zhaiyh884/20190614_new_data/membrane_total_site.pickle", "wb") as dbFile: pass pickle.dump(total_site, dbFile) pass def find_drug_releated_protein(rootdir): # use the pickles that contain header\sequence\site\remark800 info #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #find the difference between proteins class and drug-releated-proteins class with open("hetlist.pickle","rb") as dbFile_drug: file_drug = pickle.load(dbFile_drug) protein_classfication = [] drug_protein_classfication = [] protein_dict = {} drug_releated_protein_dict = {} description_null = 0 for parent, dirnames, filenames in os.walk(rootdir): for filename in filenames: # walk into one file pro_id = filename[0:4] file_path = os.path.join(parent, filename) with open(file_path, "rb") as dbFile: file = pickle.load(dbFile) # print(file) site = file[0] header = file[1] seq = file[2] classification = header["HEADER_classification"] protein_dict[classification] = protein_dict[classification] + 1 if classification in protein_dict else 1 #print(protein_dict) drug_releated_protein_flag = 0 for item in site: #{'1KMH_A': [{'position': {'51': 'G', '65': 'L', '131': 'E', '274': 'M', '297': 'R'}, 'site_description': 'RESIDUE TTX B 499'}], # '1KMH_B': [{'position': {'81': 'A', '82': 'T', '83': 'D'}, 'site_description': 'RESIDUE TTX B 499'}]} #in this loop item means protein_sequence name: 1KMH_A sites = [] for site_item in site[item]: #site_item means every record in one sequence description = site_item["site_description"] descriptions = description.split() try: #find the binding_object name if "res" in descriptions[1]: binding_object = descriptions[2] elif "RESIDUES" in description and "THROUGH" in description: binding_object = descriptions[2] else: binding_object = descriptions[1] except IndexError: description_null = description_null+1 #sites.append(binding_object) if binding_object in file_drug: drug_releated_protein_flag = 1 #print(drug_releated_protein_flag) if drug_releated_protein_flag ==1: drug_releated_protein_dict[classification] = drug_releated_protein_dict[classification] + 1 if classification in drug_releated_protein_dict else 1 """item_dict[item] = sites total_site.append(item_dict) # print(total_site) print("len(membrane_total_site):") print(len(total_site)) print("null_discription:") print(description_null)""" print(protein_dict) print("!@#$!@#################$!@%#!$^%$#@^$%&^#$%&") print(drug_releated_protein_dict) with open("/home/zhaiyh884/20190614_new_data/drug_and_nondrug_protein_classfication.pickle", "wb") as dbFile: pass pickle.dump(protein_dict, dbFile) pickle.dump(drug_releated_protein_dict, dbFile) pass if __name__ == "__main__": start = datetime.datetime.now() #1 extract all needed infomation from pdb rootdir = "/home/RaidDisk/pdbfiles/updb" savefilepath = "/home/zhaiyh884/20190614_new_data/0615_data" get_site_header_seq_info(rootdir,savefilepath) #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #2 find_all_site #find_all_sites(rootdir) #2 or find_memberain_sites #find_memberain_sites(rootdir) #3 count site numbers #file = "/home/zhaiyh884/20190614_new_data/membrane_total_site.pickle" #file = "/home/zhaiyh884/20190614_new_data/total_site.pickle" #count_sites(file) #4 #sites_anylize() #5 #rootdir = "/home/zhaiyh884/20190614_new_data/0615_data" #find_drug_releated_protein(rootdir) end = datetime.datetime.now() print("alltime = ") print (end-start)
Rio56/deeplearning
DTP_deeplearning/0618_新数据处理代码及文件/drug_target_data_0617.py
drug_target_data_0617.py
py
15,010
python
en
code
1
github-code
6
[ { "api_name": "os.path.exists", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 9, "usage_type": "call" }, { "api_name": "PDBParseBase.PDBParserBase", "line_number": 29, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 53, "usage_type": "call" }, { "api_name": "os.path", "line_number": 53, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path", "line_number": 57, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 79, "usage_type": "call" }, { "api_name": "PDBParseBase.PDBParserBase", "line_number": 89, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 92, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 97, "usage_type": "call" }, { "api_name": "os.path", "line_number": 97, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 101, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 116, "usage_type": "call" }, { "api_name": "os.path", "line_number": 116, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 118, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 152, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 161, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 178, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 191, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 194, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 227, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 232, "usage_type": "call" }, { "api_name": "os.path", "line_number": 232, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 234, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 276, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 286, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 295, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 300, "usage_type": "call" }, { "api_name": "os.path", "line_number": 300, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 302, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 353, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 354, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 361, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 361, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 393, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 393, "usage_type": "attribute" } ]
20677953442
from django.test import TestCase from django.urls import reverse from apps.shop.models import Product from apps.users.models import CustomUser from .models import Order test_order = {"name": "Django Django", "email": "[email protected]", "paid": True} test_product = { "name": "Test Product", "abbr": "TEPR", "slug": "tepr", "description": "Test Product description", "price": 2000, } normal_user = {"username": "normal", "email": "[email protected]", "password": "foo"} # Create your tests here. class TestOrderModelCreation(TestCase): """Test Product Model Creation""" def setUp(self): self.test_order = test_order self.test_product = test_product Order.objects.create( **self.test_order, product=Product.objects.create(**self.test_product) ) def test_order_model_created(self): obj = Order.objects.get(name=self.test_order["name"]) self.assertEqual(obj.name, self.test_order["name"]) self.assertEqual(obj.email, self.test_order["email"]) self.assertEqual(obj.paid, self.test_order["paid"]) self.assertEqual(obj.product.name, self.test_product["name"]) class TestOrderCreateView(TestCase): """Test Order Create View""" def setUp(self): self.test_order = test_order self.test_product = test_product self.test_user = normal_user CustomUser.objects.create_user(**self.test_user) Order.objects.create( **self.test_order, product=Product.objects.create(**self.test_product) ) def test_order_create_view(self): response = self.client.get(reverse("order_create")) self.assertTemplateUsed(response, "orders/order_form.html") self.assertEqual(response.status_code, 200) def test_main_author(self): main_author = CustomUser.objects.get(username=self.test_user["username"]) main_author.main_user = True main_author.save() response = self.client.get(reverse("order_create")) self.assertEqual(response.context["main_author"], main_author) class TestSuccessView(TestCase): """Test Success View""" def setUp(self): self.test_user = normal_user CustomUser.objects.create_user(**self.test_user) def test_order_success_view(self): response = self.client.get(reverse("success_created")) self.assertTemplateUsed(response, "orders/success_created.html") self.assertEqual(response.status_code, 200) def test_main_author(self): main_author = CustomUser.objects.get(username=self.test_user["username"]) main_author.main_user = True main_author.save() response = self.client.get(reverse("success_created")) self.assertEqual(response.context["main_author"], main_author)
akundev/akundotdev
apps/orders/tests.py
tests.py
py
2,822
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 23, "usage_type": "name" }, { "api_name": "models.Order.objects.create", "line_number": 29, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 29, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 29, "usage_type": "name" }, { "api_name": "apps.shop.models.Product.objects.create", "line_number": 30, "usage_type": "call" }, { "api_name": "apps.shop.models.Product.objects", "line_number": 30, "usage_type": "attribute" }, { "api_name": "apps.shop.models.Product", "line_number": 30, "usage_type": "name" }, { "api_name": "models.Order.objects.get", "line_number": 34, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 34, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 34, "usage_type": "name" }, { "api_name": "django.test.TestCase", "line_number": 42, "usage_type": "name" }, { "api_name": "apps.users.models.CustomUser.objects.create_user", "line_number": 49, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects", "line_number": 49, "usage_type": "attribute" }, { "api_name": "apps.users.models.CustomUser", "line_number": 49, "usage_type": "name" }, { "api_name": "models.Order.objects.create", "line_number": 50, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 50, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 50, "usage_type": "name" }, { "api_name": "apps.shop.models.Product.objects.create", "line_number": 51, "usage_type": "call" }, { "api_name": "apps.shop.models.Product.objects", "line_number": 51, "usage_type": "attribute" }, { "api_name": "apps.shop.models.Product", "line_number": 51, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 55, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects.get", "line_number": 61, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects", "line_number": 61, "usage_type": "attribute" }, { "api_name": "apps.users.models.CustomUser", "line_number": 61, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 64, "usage_type": "call" }, { "api_name": "django.test.TestCase", "line_number": 69, "usage_type": "name" }, { "api_name": "apps.users.models.CustomUser.objects.create_user", "line_number": 74, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects", "line_number": 74, "usage_type": "attribute" }, { "api_name": "apps.users.models.CustomUser", "line_number": 74, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 77, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects.get", "line_number": 83, "usage_type": "call" }, { "api_name": "apps.users.models.CustomUser.objects", "line_number": 83, "usage_type": "attribute" }, { "api_name": "apps.users.models.CustomUser", "line_number": 83, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 86, "usage_type": "call" } ]
24363848040
# This script should be executed inside a NetAddiction Odoo 9 shell. import json def remove_duplicate_attributes(product): seen_ids = set() duplicate_list = [] for attr in product.attribute_value_ids: if attr.attribute_id.id not in seen_ids: seen_ids.add(attr.attribute_id.id) else: duplicate_list.append(attr) if duplicate_list: product.write({"attribute_value_ids": [(3, attr.id) for attr in duplicate_list]}) return duplicate_list duplicates = [] products = self.env["product.product"].search([]) for count, product in enumerate(products): duplicate = remove_duplicate_attributes(product) if duplicate: print(duplicate) duplicates.append( { "product_id": product.id, "duplicates": [{"name": a.name, "type": a.attribute_id.display_name} for a in duplicate], } ) if not count % 100: self._cr.commit() self._cr.commit() if duplicates: with open("~/duplicates_found.json", "w") as fp: json.dump(duplicates, fp, sort_keys=True, indent=4, separators=(",", ": "))
suningwz/netaddiction_addons
scripts/remove_duplicates_attribute.py
remove_duplicates_attribute.py
py
1,150
python
en
code
0
github-code
6
[ { "api_name": "json.dump", "line_number": 37, "usage_type": "call" } ]
44938119316
import numpy as np import redis import struct import cv2 import time import curved_paths_coords as pc from threading import Thread r = redis.Redis(host='192.168.0.101', port=6379, db=0) log_sensing_running =\ log_navigation_running =\ log_batterymeter_running =\ log_driving_running =\ log_detect_cam =\ voltages1_and_2 =\ log_sensing_time=\ log_target_distance_angle=\ log_path=\ log_path_min_cost=\ log_current_speed=\ log_in_front_of_car=\ log_uptime =\ path_received =\ received_target_coords = None mapW = 400 mapH = 400 last_time=0 font = cv2.FONT_HERSHEY_SIMPLEX map_refresh = 0.1 # interval between map refresh map = np.full((mapW,mapH,3),100, np.uint8) def redis_to_map(redis,name): encoded = redis.get(name) if encoded is None: return np.full((mapW,mapH,3),100, np.uint8) else: h, w = struct.unpack('>II', encoded[:8]) array = np.frombuffer(encoded, dtype=np.uint8, offset=8).reshape(h, w, 1) array = cv2.cvtColor(array,cv2.COLOR_GRAY2RGB) return array def update_data(): log_sensing_time_received = r.get('log_sensing_time') if log_sensing_time_received is not None: log_sensing_time = round(float(log_sensing_time_received),2) else: log_sensing_time = 0 log_target_distance_received = r.get('log_target_distance') if log_target_distance_received is not None: log_target_distance = round(float(log_target_distance_received),2) else: log_target_distance = "None" log_target_angle_received = r.get('log_target_angle') if log_target_angle_received is not None: log_target_angle = round(float(log_target_angle_received),2) else: log_target_angle = "None" log_target_distance_angle = str(log_target_distance) + " " + str(log_target_angle) log_path_received = r.get('path') if log_path_received is not None: log_path = float(log_path_received) else: log_path = "None" log_path_min_cost_received = r.get('path_min_cost') if log_path_min_cost_received is not None: log_path_min_cost = round(float(log_path_min_cost_received),2) else: log_path_min_cost = "None" log_current_speed_received = r.get('current_speed') if log_current_speed_received is not None: log_current_speed = round(float(log_current_speed_received),2) else: log_current_speed = "None" log_in_front_of_car_received = r.get('log_in_front_of_car') if log_in_front_of_car_received is not None: log_in_front_of_car = float(log_in_front_of_car_received) else: log_in_front_of_car = "None" voltages_received = r.get('voltages') if voltages_received is not None: voltages = np.round(np.array(struct.unpack('%sf' %2, voltages_received)),2) else: voltages = [0,0] voltages1_and_2 = str(voltages[0]) + " " + str(voltages[1]) log_uptime_received = r.get('log_uptime') if log_uptime_received is not None: log_uptime = int(float(log_uptime_received)) else: log_uptime = "None" log_sensing_running_received = r.get('log_sensing_running') if log_sensing_running_received is not None: log_sensing_running = str(log_sensing_running_received.decode("utf-8") ) else: log_sensing_running = "off" log_navigation_running_received = r.get('log_navigation_running') if log_navigation_running_received is not None: log_navigation_running = str(log_navigation_running_received.decode("utf-8") ) else: log_navigation_running = "off" log_batterymeter_running_received = r.get('log_batterymeter_running') if log_batterymeter_running_received is not None: log_batterymeter_running = str(log_batterymeter_running_received.decode("utf-8") ) else: log_batterymeter_running = "off" log_driving_running_received = r.get('log_driving_running') if log_driving_running_received is not None: log_driving_running = str(log_driving_running_received.decode("utf-8") ) else: log_driving_running = "off" log_detect_cam_received = r.get('log_detect_cam') if log_detect_cam_received is not None: log_detect_cam = str(log_detect_cam_received.decode("utf-8") ) else: log_detect_cam = "None" map = redis_to_map(r, "map") path_received = r.get('path') received_target_coords = r.get('target_car_coords') def display_data(): cv2.rectangle(map,(187,242),(213,305),(0, 100, 255),-1) #draw car visible_cone = np.array([[213, 242], [187, 242], [0, 0], [400, 0]], np.int32) visible_cone = visible_cone.reshape((-1, 1, 2)) cv2.polylines(map, [visible_cone], True, (255,255,255), 1) color_path = (0,255,0) if path_received is None: pass elif int(path_received) == -1: pass else: path = int(path_received) if path > 5: path_lookup = path - 5 l = -1 else: path_lookup = path l = 1 for square in range(0, 4): #print(path,square) x0 = int(l * pc.paths[path_lookup]['coords'][square][0] / 10 + mapW / 2) y0 = mapH - int(pc.paths[path_lookup]['coords'][square][1] / 10 + 150) x1 = int(l * pc.paths[path_lookup]['coords'][square][2] / 10 + mapW / 2) y1 = mapH - int(pc.paths[path_lookup]['coords'][square][3] / 10 + 150) x2 = int(l * pc.paths[path_lookup]['coords'][square + 1][0] / 10 + mapW / 2) y2 = mapH - int(pc.paths[path_lookup]['coords'][square + 1][1] / 10 + 150) x3 = int(l * pc.paths[path_lookup]['coords'][square + 1][2] / 10 + mapW / 2) y3 = mapH - int(pc.paths[path_lookup]['coords'][square + 1][3] / 10 + 150) poly = np.array([[x0,y0],[x1,y1],[x3,y3],[x2,y2]]) poly = poly.reshape((-1, 1, 2)) cv2.polylines(map,[poly],True,(255,255,255),1) if received_target_coords is not None: target_car_coords = np.array(struct.unpack('%sf' %3, received_target_coords)) mx = int(target_car_coords[0] * 100 + mapW / 2) my = int(mapH - target_car_coords[2] * 100) cv2.line(map, (int(mapW/2), mapH - 150), (mx, my - 150), (0,0,255), thickness=3) topic_left=['sensing', \ 'navigation',\ 'batterymeter',\ 'driving',\ 'detect cam',\ ] logs_left=[log_sensing_running, \ log_navigation_running,\ log_batterymeter_running,\ log_driving_running,\ log_detect_cam\ ] topic_right=['battery voltages', \ 'sensing time',\ 'target dist, angle',\ 'current path',\ 'path min cost',\ 'current speed',\ 'obstacle height',\ 'uptime'\ ] logs_right=[voltages1_and_2, \ log_sensing_time,\ log_target_distance_angle,\ log_path,\ log_path_min_cost,\ log_current_speed,\ log_in_front_of_car,\ log_uptime\ ] count = 1 for text in topic_left: count +=1 cv2.putText(map, str(text), (20, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in logs_left: count +=1 cv2.putText(map, str(text), (140, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in topic_right: count +=1 cv2.putText(map, str(text), (187, 300 + 10 * count), font, 0.4, (255,255,255), 1) count = 1 for text in logs_right: count +=1 cv2.putText(map, str(text), (310, 300 + 10 * count), font, 0.4, (255,255,255), 1) def try_to_connect(): while True: try: cv2.namedWindow('map', cv2.WINDOW_NORMAL) display_data() cv2.imshow('map', map) key = cv2.waitKey(1) if key & 0xFF == ord('q') or key == 27: cv2.destroyAllWindows() break r.ping() except redis.exceptions.ConnectionError as e: print("retrying connection") cv2.putText(map, "No connection to car", (35, 150), font, 1, (0,0,255), 3) continue else: break print("connected") connected_to_redis = True connected_to_redis = False def display(): global connected_to_redis while True: try: update_data() print("here") cv2.namedWindow('map', cv2.WINDOW_NORMAL) display_data() cv2.imshow('map', map) if not connected_to_redis: try_to_connect() time.sleep(map_refresh) except redis.exceptions.ConnectionError as e: try_to_connect() x = Thread(target=display, args=())
julianx4/skippycar
test.py
test.py
py
8,784
python
en
code
3
github-code
6
[ { "api_name": "redis.Redis", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 31, "usage_type": "attribute" }, { "api_name": "numpy.full", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 35, "usage_type": "attribute" }, { "api_name": "redis.get", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 40, "usage_type": "attribute" }, { "api_name": "struct.unpack", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.frombuffer", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 43, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 44, "usage_type": "call" }, { "api_name": "cv2.COLOR_GRAY2RGB", "line_number": 44, "usage_type": "attribute" }, { "api_name": "numpy.round", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 95, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 145, "usage_type": "attribute" }, { "api_name": "cv2.polylines", "line_number": 147, "usage_type": "call" }, { "api_name": "curved_paths_coords.paths", "line_number": 165, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 166, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 167, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 168, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 170, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 171, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 172, "usage_type": "attribute" }, { "api_name": "curved_paths_coords.paths", "line_number": 173, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 174, "usage_type": "call" }, { "api_name": "cv2.polylines", "line_number": 176, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 180, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 180, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 183, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 220, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 225, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 230, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 235, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 240, "usage_type": "call" }, { "api_name": "cv2.WINDOW_NORMAL", "line_number": 240, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 242, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 243, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 245, "usage_type": "call" }, { "api_name": "redis.exceptions", "line_number": 248, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 250, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 264, "usage_type": "call" }, { "api_name": "cv2.WINDOW_NORMAL", "line_number": 264, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 266, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 269, "usage_type": "call" }, { "api_name": "redis.exceptions", "line_number": 270, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 273, "usage_type": "call" } ]
73264679548
from pyglet.text import Label from audio import explosion from fonts.fonts import press_start_2p from interfaces.interface import Interface from system import system import menus.menu import menus.game_over_menu class GameOverInterface(Interface): game_over_label: Label = None game_over_menu: menus.menu.Menu = None def __init__(self): self.game_over_label = Label('GAME OVER', font_name=press_start_2p, font_size=48) self.game_over_label.anchor_x = 'center' self.game_over_label.anchor_y = 'center' self.game_over_menu = menus.game_over_menu.GameOverMenu() self.resize() window = system.get_window() window.on_key_press = self.game_over_menu.on_key_press self.game_over_menu.focused = True explosion.play() def on_draw(self): self.game_over_label.draw() self.game_over_menu.draw() def resize(self): window = system.get_window() self.game_over_menu.move(window.width / 2, 100) self.game_over_label.x = window.width / 2 self.game_over_label.y = window.height / 2
KimPalao/Headshot
interfaces/game_over_interface.py
game_over_interface.py
py
1,110
python
en
code
0
github-code
6
[ { "api_name": "interfaces.interface.Interface", "line_number": 12, "usage_type": "name" }, { "api_name": "pyglet.text.Label", "line_number": 13, "usage_type": "name" }, { "api_name": "menus.menu.menu", "line_number": 14, "usage_type": "attribute" }, { "api_name": "menus.menu", "line_number": 14, "usage_type": "name" }, { "api_name": "pyglet.text.Label", "line_number": 17, "usage_type": "call" }, { "api_name": "fonts.fonts.press_start_2p", "line_number": 17, "usage_type": "name" }, { "api_name": "menus.menu.game_over_menu.GameOverMenu", "line_number": 20, "usage_type": "call" }, { "api_name": "menus.menu.game_over_menu", "line_number": 20, "usage_type": "attribute" }, { "api_name": "menus.menu", "line_number": 20, "usage_type": "name" }, { "api_name": "system.system.get_window", "line_number": 22, "usage_type": "call" }, { "api_name": "system.system", "line_number": 22, "usage_type": "name" }, { "api_name": "audio.explosion.play", "line_number": 25, "usage_type": "call" }, { "api_name": "audio.explosion", "line_number": 25, "usage_type": "name" }, { "api_name": "system.system.get_window", "line_number": 32, "usage_type": "call" }, { "api_name": "system.system", "line_number": 32, "usage_type": "name" } ]
2600836089
# Import thư viện from sklearn.linear_model import LinearRegression import numpy as np import csv from vnstock import* data=[] cp=listing_companies() check='ngân hàng thương mại cổ phần' nh=[] for n in range(len(cp)): if check in cp.loc[n][2].lower(): nh.append(cp.loc[n][0]) print(len(nh)) for ticket in nh: linkfile='./nganhang/'+ticket+'.csv' with open(linkfile) as file: fp=csv.reader(file) header=next(fp) for row in fp: data.append(row) # Tạo dữ liệu giả định K=[] h=[] for i in range(len(data)): K.append([float(data[i][1]),float(data[i][2])]) h.append(float(data[i][4])) # Tạo mô hình hồi quy tuyến tính model = LinearRegression() # Huấn luyện mô hình với dữ liệu model.fit(K, h) # In ra các hệ số của mô hình print('Coefficients:', model.coef_) # Dự đoán giá trị mới x_new = np.array([[48850.0,48222.0]]) y_new = model.predict(x_new) print('Predicted value:', y_new)
vanvy102/code
Code-test/linear.py
linear.py
py
1,070
python
vi
code
0
github-code
6
[ { "api_name": "csv.reader", "line_number": 17, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 37, "usage_type": "call" } ]