seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
17669758792
"""2020_02_18 Revision ID: 000001 Revises: Create Date: 2020-02-18 03:57:38.958091 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "000001" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "users", sa.Column("added_on", sa.DateTime(), nullable=False), sa.Column("modified_on", sa.DateTime(), nullable=False), sa.Column("id", sa.BigInteger(), autoincrement=True, nullable=False), sa.Column("enabled", sa.Boolean(), nullable=False), sa.Column("last_auth_time", sa.DateTime(), nullable=True), sa.Column("username", sa.String(length=32), nullable=False), sa.Column("password_hash", sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_users")), ) op.create_index(op.f("ix_users_username"), "users", ["username"], unique=True) op.create_table( "user_accesses", sa.Column("added_on", sa.DateTime(), nullable=False), sa.Column("modified_on", sa.DateTime(), nullable=False), sa.Column("id", sa.BigInteger(), autoincrement=True, nullable=False), sa.Column("enabled", sa.Boolean(), nullable=False), sa.Column("ip_address", sa.String(length=15), nullable=False), sa.Column("external_app_id", sa.String(length=15), nullable=False), sa.Column("users_id", sa.BigInteger(), nullable=False), sa.ForeignKeyConstraint( ["users_id"], ["users.id"], name=op.f("fk_user_accesses_users_id_users"), onupdate="CASCADE", ondelete="CASCADE", ), sa.PrimaryKeyConstraint("id", name=op.f("pk_user_accesses")), sa.UniqueConstraint( "users_id", "ip_address", "external_app_id", name=op.f("uq_user_accesses_users_id"), ), ) op.create_index( op.f("ix_user_accesses_external_app_id"), "user_accesses", ["external_app_id"], unique=True, ) op.create_index( op.f("ix_user_accesses_ip_address"), "user_accesses", ["ip_address"], unique=False, ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_user_accesses_ip_address"), table_name="user_accesses") op.drop_index(op.f("ix_user_accesses_external_app_id"), table_name="user_accesses") op.drop_table("user_accesses") op.drop_index(op.f("ix_users_username"), table_name="users") op.drop_table("users") # ### end Alembic commands ###
ichux/elog
migrations/versions/000001_2020_02_18.py
000001_2020_02_18.py
py
2,743
python
en
code
2
github-code
6
[ { "api_name": "alembic.op.create_table", "line_number": 20, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 20, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.BigInteger", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 29, "usage_type": "call" }, { "api_name": "alembic.op.f", "line_number": 29, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 29, "usage_type": "name" }, { "api_name": "alembic.op.create_index", "line_number": 31, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 31, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 31, "usage_type": "call" }, { "api_name": "alembic.op.create_table", "line_number": 32, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 32, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.BigInteger", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 38, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 38, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 40, "usage_type": "call" }, { "api_name": "sqlalchemy.BigInteger", "line_number": 40, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 41, "usage_type": "call" }, { "api_name": "alembic.op.f", "line_number": 44, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 44, "usage_type": "name" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 48, "usage_type": "call" }, { "api_name": "alembic.op.f", "line_number": 48, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 48, "usage_type": "name" }, { "api_name": "sqlalchemy.UniqueConstraint", "line_number": 49, "usage_type": "call" }, { "api_name": "alembic.op.f", "line_number": 53, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 53, "usage_type": "name" }, { "api_name": "alembic.op.create_index", "line_number": 56, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 56, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 57, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 57, "usage_type": "name" }, { "api_name": "alembic.op.create_index", "line_number": 62, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 62, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 63, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 63, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 73, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 73, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 73, "usage_type": "call" }, { "api_name": "alembic.op.drop_index", "line_number": 74, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 74, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 74, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 75, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 75, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 76, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 76, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 76, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 77, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 77, "usage_type": "name" } ]
43266096059
import discord import os from keep_alive import keep_alive from discord.ext import commands from better_profanity import profanity os.system('python3 -m commands') profanity.load_censor_words_from_file('./profanity.txt') client = commands.Bot(command_prefix = '$') money_registry = [] list1 = ['myself', 'me', 'i'] @client.event async def on_ready(): print('Bot is ready!') await client.change_presence(activity=discord.Game('$help')) @client.command() async def displayembed(ctx, *, Title): embed = discord.Embed(title= Title, description= Title, color = 6400 ) #,color=Hex code await ctx.send(embed=embed) @client.command() async def ping(ctx): await ctx.send(f'Pong! {round (client.latency * 1000)}ms') @client.command() async def kill(ctx, *, WhoToKill): embed = discord.Embed(description=f'{WhoToKill} eats some mushrooms from the wild. Too bad they were poisonous...', color= 6400) #,color=Hex code await ctx.send(embed=embed) @client.event async def on_message(message): mention = f'<@!{client.user.id}>' if mention in message.content: embed = discord.Embed(description=f"_{message.author.mention} :bell: You ping me, I ping you._", color= 6400 ) await message.channel.send(embed=embed) if str(message.channel) == "pictures" and message.content != '': if message.author != client.user: await message.channel.purge(limit=1) embed = discord.Embed(description= f"Sorry{message.author.mention}! Only Pictures!", color = 6400) await message.channel.send(embed=embed) else: pass if '' in message.content: embed = discord.Embed(title= "Self Roles", description = "React to this message to get these roles! ") if not message.author.bot: if profanity.contains_profanity(message.content): await message.delete() embed = discord.Embed(description= f"{message.author.mention} :octagonal_sign: Mind your language!", color = 6400) await message.channel.send(embed=embed) await client.process_commands(message) @client.event async def on_member_join(member): print(f'{member} has joined the server! Welcome!') @client.event async def on_member_remove(member): print(f'{member} has left! Goodbai! GLHF') keep_alive() client.run(os.getenv('TOKEN'))
LittlRayRay/Censorbot
main.py
main.py
py
2,297
python
en
code
0
github-code
6
[ { "api_name": "os.system", "line_number": 7, "usage_type": "call" }, { "api_name": "better_profanity.profanity.load_censor_words_from_file", "line_number": 9, "usage_type": "call" }, { "api_name": "better_profanity.profanity", "line_number": 9, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 11, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 11, "usage_type": "name" }, { "api_name": "discord.Game", "line_number": 18, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 22, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 31, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 39, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 45, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 51, "usage_type": "call" }, { "api_name": "better_profanity.profanity.contains_profanity", "line_number": 54, "usage_type": "call" }, { "api_name": "better_profanity.profanity", "line_number": 54, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 56, "usage_type": "call" }, { "api_name": "keep_alive.keep_alive", "line_number": 70, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 71, "usage_type": "call" } ]
34879700956
import re from requests import get from sys import argv as cla from readabilipy import simple_json_from_html_string from ebooklib import epub def valid_url(url): regex = re.compile( r'^(?:http)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'localhost|' #localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return re.match(regex, str(url)) is not None def slugify(s): s = s.lower().strip() s = ''.join(char for char in s if ord(char) < 128) #remove non-ascii characters s = re.sub(r'[^\w\s-]', '', s) s = re.sub(r'[\s_-]+', '-', s) s = re.sub(r'^-+|-+$', '', s) return s def main(): if not cla[1]: raise Exception("Invalid argument..") if len(cla) != 2: raise Exception("This script expects just one parameter.. Did you comma separate the URL's") links = str(cla[1]).split(',') for l in links: if not valid_url(l): raise Exception(str("This is not a valid url: "+l)) book = epub.EpubBook() book.set_language('en') chapters = ['nav'] epub_title = "" epub_author = "" toc = [] if len(links) > 1: print("You're trying to download {0} links. Please provide title and author.".format(len(links))) epub_title = input("ePub title: ") epub_author = input("ePub author: ") for idx, link in enumerate(links): try: request = get(link) if bool(request.text) == False: if input('Do you want to skip this URL and continue? [y/n]') == 'y': continue else: print('Script stopped') sys.exit(0) else: print('Extracting content from page..') page_content = simple_json_from_html_string(request.text, use_readability=False) chapter_content = page_content['plain_content'] if not epub_title: epub_title = page_content['title'] if not epub_author: epub_author = page_content['byline'] if page_content['byline'] else "Various authors" print('Adding content to ePub..') chapter = epub.EpubHtml(title=page_content['title'], file_name=str('chapter{}.xhtml'.format(idx+1)), lang='en') chapter.content = u'{}'.format(chapter_content) book.add_item(chapter) chapters.append(chapter) pass except Exception as e: raise e print("Finishing epub..") slug = slugify(epub_title) book.set_identifier(slug) book.set_title(epub_title) book.add_item(epub.EpubNcx()) book.add_item(epub.EpubNav()) book.spine = chapters if epub_author: book.add_author(epub_author) else: book.add_author("Unknown Author") try: epub.write_epub('{}.epub'.format(slug), book, {}) print("Done! Saved to {}.epub".format(slug)) except Exception as e: raise e if __name__ == "__main__": main()
eklop/web2epub
web2epub.py
web2epub.py
py
2,797
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 8, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 14, "usage_type": "attribute" }, { "api_name": "re.match", "line_number": 15, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 20, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 21, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 22, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 26, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 28, "usage_type": "argument" }, { "api_name": "sys.argv", "line_number": 31, "usage_type": "name" }, { "api_name": "ebooklib.epub.EpubBook", "line_number": 37, "usage_type": "call" }, { "api_name": "ebooklib.epub", "line_number": 37, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 50, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 56, "usage_type": "call" }, { "api_name": "readabilipy.simple_json_from_html_string", "line_number": 59, "usage_type": "call" }, { "api_name": "ebooklib.epub.EpubHtml", "line_number": 70, "usage_type": "call" }, { "api_name": "ebooklib.epub", "line_number": 70, "usage_type": "name" }, { "api_name": "ebooklib.epub.EpubNcx", "line_number": 84, "usage_type": "call" }, { "api_name": "ebooklib.epub", "line_number": 84, "usage_type": "name" }, { "api_name": "ebooklib.epub.EpubNav", "line_number": 85, "usage_type": "call" }, { "api_name": "ebooklib.epub", "line_number": 85, "usage_type": "name" }, { "api_name": "ebooklib.epub.write_epub", "line_number": 95, "usage_type": "call" }, { "api_name": "ebooklib.epub", "line_number": 95, "usage_type": "name" } ]
225940000
from sqlalchemy import Column, Integer, String, ForeignKey from app.routers.db import Base class Task(Base): __tablename__ = 'tasks' id = Column(Integer, primary_key=True, index=True) title = Column(String) body = Column(String)
gitdarsh/todo
todo/app/models/model.py
model.py
py
248
python
en
code
0
github-code
6
[ { "api_name": "app.routers.db.Base", "line_number": 5, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 8, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 8, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 9, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 9, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 10, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 10, "usage_type": "argument" } ]
30410142101
import CryptoCurrency import sqlite3 as sql import requests from datetime import datetime import time def get_crypto(): """Récupères la liste des cryptomonnaies tradable sur le marché futures de Bybit (!! 120 requests per second for 5 consecutive seconds maximum) Returns: list:liste des cryptomonnaies """ url = "https://api-testnet.bybit.com/v5/market/instruments-info?category=linear" payload = {} headers = {} response = requests.request( "GET", url, headers=headers, data=payload).json() baseCoins = [] for crypto in response['result']['list']: if crypto['baseCoin'][:5] == '10000' and crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins: # baseCoins += [crypto['baseCoin'][5:]] # non traité pour le moment pass elif crypto['baseCoin'][:4] == '1000' and crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins: # baseCoins += [crypto['baseCoin'][4:]] # non traité pour le moment pass elif crypto['quoteCoin'] == 'USDT' and crypto['baseCoin'] not in baseCoins and crypto['baseCoin'] != 'LUNA2' and crypto['baseCoin'] != 'PEOPLE': # exception LUNA2 et PEOPLE à traiter baseCoins += [crypto['baseCoin']] return baseCoins def get_price_history(interval, crypto): """renvoie un dicitonnaire qui permet de connaître le prix de la cryptomonnaie depuis l'apparition de son contrat futures sur l'échange de cryptomonnaie. Args: interval (string): interval de temps entre deux données (Kline interval. 1,3,5,15,30,60,120,240,360,720,D,M,W) crypto (CryptoCurrency): la crypto dont on veut le prix """ listeDictionnaires = [] listeDictionnaires.append(crypto.get_price(interval, 1500000000000, int(datetime.now().timestamp())*1000)) lastTimestamps = list(listeDictionnaires[0].keys()) lastTimestamps.sort() if len(lastTimestamps) < 200: return listeDictionnaires # intervalInTimestamp = int(lastTimestamps[2])-int(lastTimestamps[1]) # jusqu'ici on a récupéré les 200 derniers timestamps compteur = 1 while len(lastTimestamps) == 200: listeDictionnaires.append(crypto.get_price( interval, 1500000000000, int(lastTimestamps[0]))) # il ne faut pas dépasser les 120 requetes par 5 secondes if compteur % 119 == 0: time.sleep(5) lastTimestamps = (list(listeDictionnaires[compteur].keys())) lastTimestamps.sort() compteur += 1 print(listeDictionnaires) return listeDictionnaires if __name__ == "__main__": # fonctionnement normal # print(get_crypto()) cryptos = get_crypto() conn = sql.connect("cryptoDatabase.db") curs = conn.cursor() curs.execute("DROP TABLE IF EXISTS Crypto") curs.execute( "CREATE TABLE Crypto (nom VARCHAR, symbol VARCHAR PRIMARY KEY, whitepaperlink VARCHAR)") curs.execute("DROP TABLE IF EXISTS Prix") curs.execute( "CREATE TABLE Prix (symbol VARCHAR, date VARCHAR, open FLOAT, high FLOAT, low FLOAT, close FLOAT,PRIMARY KEY (symbol, date),FOREIGN KEY (symbol) REFERENCES Crypto(symbol))") cryptoCurrencies = [] for crypto in cryptos: cryptoCurrencies += [CryptoCurrency.Cryptocurrency(crypto)] for crypto in cryptoCurrencies: infos = crypto.get_name_and_whitepaperlink() # l'interval choisi ici est hebdomadaire si on veut plus de précision, on peut prendre un plus petit interval price_history = get_price_history( "W", crypto) curs.execute("INSERT INTO Crypto(nom,symbol,whitepaperlink) VALUES (?,?,?)", (infos["name"], crypto.symbol, infos["whitepaperLink"])) conn.commit() for prices in price_history: timestamps = list(prices.keys()) for date in timestamps: curs.execute("INSERT INTO Prix(symbol,date,open,high,low,close) VALUES (?,?,?,?,?,?)", (crypto.symbol, datetime.fromtimestamp(int(date)/1000), prices[date]["open"], prices[date]["high"], prices[date]["low"], prices[date]["close"])) conn.commit() conn.commit() conn.close() # test # nft = CryptoCurrency.Cryptocurrency('EOS') # print(get_price_history("D", nft)) # bitcoin = CryptoCurrency.Cryptocurrency("BTC") # get_price_history("D", bitcoin) # infos = bitcoin.get_name_and_whitepaperlink() # conn = sql.connect("cryptoDatabase.db") # curs = conn.cursor() # curs.execute("DROP TABLE IF EXISTS Crypto") # curs.execute( # "CREATE TABLE Crypto (nom VARCHAR PRIMARY KEY, symbole VARCHAR, whitepaperlink VARCHAR)") # curs.execute( # "INSERT INTO Crypto(nom,symbole,whitepaperlink) VALUES (?,?,?)", (infos["name"], bitcoin.symbol, infos["whitepaperLink"])) # conn.commit() # conn.close()
ArthurOnWeb/l-historique-du-prix-d-une-cryptomonnaie
Main.py
Main.py
py
5,015
python
en
code
0
github-code
6
[ { "api_name": "requests.request", "line_number": 20, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 50, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 50, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 63, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 75, "usage_type": "call" }, { "api_name": "CryptoCurrency.Cryptocurrency", "line_number": 85, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 98, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 98, "usage_type": "name" } ]
70396769467
""" JAX functions to Calculate moving average. Author: Toshinori Kitamura Affiliation: NAIST & OSX """ from __future__ import annotations import jax from chex import Array from jax import lax @jax.jit def calc_ma(lr: float, idx1: Array, idx2: Array, tb: Array, tb_targ: Array) -> Array: """Calculate moving average. The semantics of calc_ma are given by: def calc_ma(lr, idx1, idx2, tb, tb_targ): for s, a, targ in zip(idx1, idx2, tb_targ): tb[s, a] = (1 - lr) * tb[s, a] + lr * targ return tb Args: lr (float): Learning rate idx1 (Array): (?, ) or (?, 1) array idx2 (Array): (?, ) or (?, 1) array tb (Array): (?, ?) initial array tb_targ (Array): (?, ) or (?, 1) target array Returns: tb (Array): (?, ) array """ assert len(tb.shape) == 2 # dSxdA idx1 = idx1.squeeze(axis=1) if len(idx1) == 2 else idx1 idx2 = idx2.squeeze(axis=1) if len(idx2) == 2 else idx2 tb_targ = tb_targ.squeeze(axis=1) if len(tb_targ) == 2 else tb_targ def body_fn(i, tb): i1, i2, t = idx1[i], idx2[i], tb_targ[i] targ = (1 - lr) * tb[i1, i2] + lr * t return tb.at[i1, i2].set(targ) tb = lax.fori_loop(0, len(idx1), body_fn, tb) return tb
omron-sinicx/ShinRL
shinrl/_calc/moving_average.py
moving_average.py
py
1,289
python
en
code
42
github-code
6
[ { "api_name": "chex.Array", "line_number": 13, "usage_type": "name" }, { "api_name": "jax.lax.fori_loop", "line_number": 40, "usage_type": "call" }, { "api_name": "jax.lax", "line_number": 40, "usage_type": "name" }, { "api_name": "jax.jit", "line_number": 12, "usage_type": "attribute" } ]
14572312600
############## THESE SPLINES ARE USING CATMULL SPLINES ############## # https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline # # FOLLOWING javidx9's SPLINE VIDEOS: # https://www.youtube.com/watch?v=9_aJGUTePYo&t=898s&ab_channel=javidx9 from typing import List import pygame, math from code_modules.spline.spline_point_2D import Spline_Point2D ### THE FONT IS USED TO SHOW fOffset AND fMarker ### ############### class Spline: def __init__(self): self.points = [] self.activePoint = 0 self.isLooped = False self.RIGHT = False self.LEFT = False self.UP = False self.DOWN = False self.totalLineLength = 0 ############# DEBUG FONT ############# ### THE FONT IS USED TO SHOW fOffset AND fMarker ### self.font = pygame.font.SysFont(None, 20) def update(self): if self.RIGHT: self.points[self.activePoint].x += 5 if self.LEFT: self.points[self.activePoint].x -= 5 if self.UP: self.points[self.activePoint].y -= 5 if self.DOWN: self.points[self.activePoint].y += 5 ### CALCULATE TOTAL LENGTH ### self.totalLineLength = self.__getTotalLength() def draw(self, canvas): ##### DRAW SPLINE POINTS ##### ### LOOPED ### if self.isLooped: for t in range(0, len(self.points)*100, 1): pos = self.getSplinePoint(t / 100) pygame.draw.circle(canvas, (255,255,255), (pos.x, pos.y), 2) ### NOT LOOPED ### else: for t in range(0, (len(self.points)*100) - 300 , 1): pos = self.getSplinePoint(t / 100) pygame.draw.circle(canvas, (255,255,255), (pos.x, pos.y), 2) ##### DRAW CONTROL POINTS + TEXT ##### for i in range(len(self.points)): ### DRAW DISTANCE ### tempImg = self.font.render(str(self.points[i].length), True, (200,200,200)) canvas.blit(tempImg, (self.points[i].x + 20, self.points[i].y)) ########################## ##### CONTROL POINTS ##### if i == self.activePoint: pygame.draw.circle(canvas, (255,255,0), (self.points[i].x, self.points[i].y), 5) else: pygame.draw.circle(canvas, (255,0,0), (self.points[i].x, self.points[i].y), 5) tempImg = self.font.render(str(i), True, (255,255,255)) canvas.blit(tempImg, (self.points[i].x, self.points[i].y)) def getSplinePoint(self, t): if not self.isLooped: p1 = int(t) + 1 p2 = p1 + 1 p3 = p2 + 1 p0 = p1 - 1 else: p1 = int(t) p2 = (p1 + 1) % len(self.points) p3 = (p2 + 1) % len(self.points) if p1 >= 1: p0 = p1 - 1 else: p0 = len(self.points) - 1 t = t - int(t) tSquare = t * t tCube = tSquare * t q1 = -tCube + 2 * tSquare - t q2 = 3 * tCube - 5 * tSquare + 2 q3 = -3 * tCube + 4 * tSquare + t q4 = tCube - tSquare tx = 0.5 * (self.points[p0].x * q1 + self.points[p1].x * q2 + self.points[p2].x * q3 + self.points[p3].x * q4) ty = 0.5 * (self.points[p0].y * q1 + self.points[p1].y * q2 + self.points[p2].y * q3 + self.points[p3].y * q4) return Spline_Point2D(tx, ty) def getSplineGradient(self, t): if not self.isLooped: p1 = int(t) + 1 p2 = p1 + 1 p3 = p2 + 1 p0 = p1 - 1 else: p1 = int(t) p2 = (p1 + 1) % len(self.points) p3 = (p2 + 1) % len(self.points) if p1 >= 1: p0 = p1 - 1 else: p0 = len(self.points) - 1 t = t - int(t) tSquare = t * t tCube = tSquare * t q1 = -3*tSquare + 4*t - 1 q2 = 9*tSquare - 10*t q3 = -9*tSquare + 8*t + 1 q4 = 3*tSquare - 2*t tx = 0.5 * (self.points[p0].x * q1 + self.points[p1].x * q2 + self.points[p2].x * q3 + self.points[p3].x * q4) ty = 0.5 * (self.points[p0].y * q1 + self.points[p1].y * q2 + self.points[p2].y * q3 + self.points[p3].y * q4) return Spline_Point2D(tx, ty) def __getTotalLength(self): ### CALCULATE TOTAL LENGTH ### total = 0 if self.isLooped: for i in range(len(self.points)): self.points[i].length = self.__calculateSegmentLength(i) total += self.points[i].length else: for i in range(len(self.points)-3): self.points[i].length = self.__calculateSegmentLength(i) total += self.points[i].length return total def __calculateSegmentLength(self, node): fLength = 0 fStepSize = 3 old_point = self.getSplinePoint(node) for t in range(0, 100, fStepSize): new_point = self.getSplinePoint(node + t/100) fLength += math.sqrt((new_point.x - old_point.x) * (new_point.x - old_point.x) + (new_point.y - old_point.y)*(new_point.y - old_point.y)) old_point = new_point ### You need to recalculate the segment lengths if the spline changes. # which means its very innefficient to use splines dynamically. Preferrably # you use them Statically. return fLength def getNormalizedOffset(self, p): # Which node is the base? i = 0 while p > self.points[i].length: p -= self.points[i].length i += 1 # The fractional is the offset return i + (p / self.points[i].length)
EliasFredriksson/Tower_Defence_Reworked
code_modules/spline/spline.py
spline.py
py
6,006
python
en
code
0
github-code
6
[ { "api_name": "pygame.font.SysFont", "line_number": 30, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 30, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 51, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 51, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 56, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 67, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 67, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 69, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 69, "usage_type": "attribute" }, { "api_name": "code_modules.spline.spline_point_2D.Spline_Point2D", "line_number": 107, "usage_type": "call" }, { "api_name": "code_modules.spline.spline_point_2D.Spline_Point2D", "line_number": 145, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 166, "usage_type": "call" } ]
46525020186
import pygame from robot import Robot from manual_robot import ManualRobot from automated_robot import AutomatedRobot from automated_robots.robots_concursantes import * from automated_robots.robots_zimatek import * from robot_hub import RobotHub from coin import Coin import numpy as np import os class Combat: """ A class to represent a robot combat environment. ... Attributes ---------- dims : list with and height of the screen, dims = [width, height] robots : pygame.sprite.Group a sprite group containing the robot objects robot_list : list a list containing the robot objects left_robot : Robot the Robot that starts in the left-hand side right_robot : Robot the Robot that starts in the right-hand side robot_hubs : pygame.sprite.Group a sprite group containing the RobotHub objects coin_per_second : float estimated coin per second Methods ------- fix_bugs: fixes bugs in the position of the robot sprites run: runs the robot combat """ def __init__(self, left_robot: Robot, right_robot: Robot, coin_per_second: float): self.dims = (1050, 750) self.robots = pygame.sprite.Group() self.robots.add(left_robot) self.robots.add(right_robot) self.robot_list = [left_robot, right_robot] self.left_robot = left_robot self.right_robot = right_robot self.robot_hubs = pygame.sprite.Group() self.left_robot_hub = RobotHub(self.left_robot, RobotHub.DownLeft) self.right_robot_hub = RobotHub(self.right_robot, RobotHub.DownRight) self.robot_hubs.add(self.left_robot_hub) self.robot_hubs.add(self.right_robot_hub) self.coin_per_second = coin_per_second self.font = None self.font2 = None def fix_bugs(self): """ fixes bugs in the position of the robot sprites :return: """ if self.right_robot.living and self.left_robot.living: collide = self.left_robot.rect.colliderect(self.right_robot.rect) if collide: if self.left_robot.rect.x <= self.right_robot.rect.x: self.left_robot.move(dx=-self.left_robot.rect.width, combat=self) self.right_robot.move(dx=self.right_robot.rect.width, combat=self) else: self.left_robot.move(dx=self.left_robot.rect.width, combat=self) self.right_robot.move(dx=-self.right_robot.rect.width, combat=self) def run(self): """ runs the robot combat :return: """ pygame.init() pygame.font.init() self.font = pygame.font.Font("Resources/Pokemon_Classic.ttf", 16) self.font2 = pygame.font.Font("Resources/Pokemon_Classic.ttf", 28) background_image = pygame.image.load("Resources/background_mountains.jpg") background_image = pygame.transform.rotozoom(background_image, 0, 2.5) os.environ['SDL_VIDEO_CENTERED'] = '0' screen = pygame.display.set_mode(self.dims) pygame.display.set_caption("Robot Combat: {:s} vs {:s}".format(str(type(self.left_robot)).split(".")[-1][:-2], str(type(self.right_robot)).split(".")[-1][:-2])) for robot in self.robots: robot.set_up() for hub in self.robot_hubs: hub.set_up() # PRE LOOP sprites_all = pygame.sprite.Group() projectiles = pygame.sprite.Group() coins = pygame.sprite.Group() stop = False pause = False winner = None sprites_all.add(self.robots) sprites_all.add(projectiles) sprites_all.add(coins) clock = pygame.time.Clock() time = 1 count_down = 60*3 totalcoins = 0 # -------- Principal Loop of the Program ----------- while not stop: for event in pygame.event.get(): if event.type == pygame.QUIT: stop = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: pause = not pause winner = None if event.key == pygame.K_1: pause = True winner = 1 if event.key == pygame.K_0: pause = True winner = 0 if isinstance(self.left_robot, ManualRobot) and self.left_robot.living: projectile = self.left_robot.decide(event, self.left_robot_hub) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) elif isinstance(self.right_robot, ManualRobot) and self.right_robot.living: projectile = self.right_robot.decide(event, self.right_robot_hub) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) # --- The Logic if not pause and (time > count_down): np.random.shuffle(self.robot_list) for robot in self.robot_list: if robot == self.left_robot: other = self.right_robot else: other = self.left_robot if isinstance(robot, AutomatedRobot) and robot.living: projectile = robot.decide(other_robot_properties=other.get_properties(), coins=coins, projectiles=projectiles) if projectile is not None: sprites_all.add(projectile) projectiles.add(projectile) for robot in self.robot_list: if robot.living: robot_damaged = pygame.sprite.spritecollide(robot, projectiles, True) coins_captured = pygame.sprite.spritecollide(robot, coins, True) for projectile_hit in robot_damaged: robot.suffer(projectile_hit.damage) for coin in coins_captured: robot.claim_coin(coin) robot.update(combat=self) for projectile in projectiles: projectile.draw(screen) projectile.update(combat=self) coins.update() self.fix_bugs() if np.random.random() < self.coin_per_second / 60: totalcoins += 2 pos1 = 50 + np.random.random(2) * (np.array(self.dims)-100) * np.array([0.5, 1]) pos2 = np.array(self.dims) * np.array([1, 0]) + pos1 * np.array([-1, 1]) coin_left = Coin(pos1) coin_right = Coin(pos2) coins.add(coin_left) coins.add(coin_right) sprites_all.add(coin_left) sprites_all.add(coin_right) # --- The image screen.fill((255, 255, 255)) screen.blit(background_image, (0, 0)) sprites_all.draw(screen) for projectile in projectiles: projectile.draw(screen) for hub in self.robot_hubs: hub.draw(screen) time_text = self.font.render("{:02d}:{:02d}".format(int((time / 60) // 60), int((time / 60) % 60)), False, (0, 0, 0)) screen.blit(time_text, (self.dims[0] - 5 - time_text.get_width(), 5)) coin_text = self.font.render("# {:d}/{:d}".format(len(coins), int(totalcoins)), False, (0, 0, 0)) screen.blit(coin_text, (self.dims[0] - 5 - coin_text.get_width(), 5 + coin_text.get_height())) # Only for zimabot if (isinstance(self.left_robot, Zimabot) or isinstance(self.right_robot, Zimabot)): if isinstance(self.left_robot, Zimabot): zimabot = self.left_robot other = self.right_robot else: zimabot = self.right_robot other = self.left_robot if time < count_down or (zimabot.living and not other.living): belt_image = pygame.image.load("Resources/cinturon.png").convert_alpha() belt_image = pygame.transform.scale(belt_image, (2*zimabot.width, 2*zimabot.height)) screen.blit(belt_image, zimabot.pos - np.array([zimabot.width//2, int(zimabot.height*1.5)])) # ---- if self.left_robot.living and not self.right_robot.living: winner = 1 pause = True if not self.left_robot.living and self.right_robot.living: winner = 0 pause = True if pause: if winner == 1: pause_text = self.font2.render("The winner is {:s}".format(str(type(self.left_robot)).split(".")[-1][:-2]), False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) elif winner == 0: pause_text = self.font2.render("The winner is {:s}".format(str(type(self.right_robot)).split(".")[-1][:-2]), False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) else: pause_text = self.font.render("Paused", False, (0, 0, 0)) center = (self.dims[0] // 2, self.dims[1] // 2) text_rect = pause_text.get_rect(center=center) screen.blit(pause_text, text_rect) else: time += 1 pygame.display.flip() clock.tick(60) pygame.quit() if __name__ == '__main__': attributes = { "health": 500, "armor": 90, "health_regen": 19, "damage": 65, "self_speed": 3, "projectile_initial_speed": 4, "projectile_per_second": 0.6, "g_health": 80, "g_armor": 8, "g_health_regen": 2, "g_damage": 12, "g_projectile_per_second": 0.05, "max_self_speed": 5, "max_projectile_initial_speed": 10, "experience_for_level_up": 7, "g_experience_for_level_up": 3 } cps = 2 bots = pygame.sprite.Group() bot1 = stalin_t_pose(x=150, y=325, **attributes) bot2 = Zimabot(x=1050-150-4*32, y=325, turn_left=True, projectile_color=(38, 162, 149), image_path="Resources/simple_robot_green.png", **attributes) mg = Combat(bot1, bot2, coin_per_second=cps) mg.run()
zimatek/RobotCombat
combat.py
combat.py
py
11,303
python
en
code
0
github-code
6
[ { "api_name": "robot.Robot", "line_number": 45, "usage_type": "name" }, { "api_name": "pygame.sprite.Group", "line_number": 48, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Group", "line_number": 55, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 55, "usage_type": "attribute" }, { "api_name": "robot_hub.RobotHub", "line_number": 56, "usage_type": "call" }, { "api_name": "robot_hub.RobotHub.DownLeft", "line_number": 56, "usage_type": "attribute" }, { "api_name": "robot_hub.RobotHub", "line_number": 57, "usage_type": "call" }, { "api_name": "robot_hub.RobotHub.DownRight", "line_number": 57, "usage_type": "attribute" }, { "api_name": "pygame.init", "line_number": 89, "usage_type": "call" }, { "api_name": "pygame.font.init", "line_number": 90, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 90, "usage_type": "attribute" }, { "api_name": "pygame.font.Font", "line_number": 91, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 91, "usage_type": "attribute" }, { "api_name": "pygame.font.Font", "line_number": 92, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 92, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 94, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 94, "usage_type": "attribute" }, { "api_name": "pygame.transform.rotozoom", "line_number": 95, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 95, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 96, "usage_type": "attribute" }, { "api_name": "pygame.display.set_mode", "line_number": 97, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 97, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 98, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 98, "usage_type": "attribute" }, { "api_name": "robot.set_up", "line_number": 102, "usage_type": "call" }, { "api_name": "pygame.sprite.Group", "line_number": 108, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 108, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Group", "line_number": 109, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 109, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Group", "line_number": 110, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 110, "usage_type": "attribute" }, { "api_name": "pygame.time.Clock", "line_number": 118, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 118, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 126, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 126, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 127, "usage_type": "attribute" }, { "api_name": "pygame.KEYDOWN", "line_number": 130, "usage_type": "attribute" }, { "api_name": "pygame.K_SPACE", "line_number": 131, "usage_type": "attribute" }, { "api_name": "pygame.K_1", "line_number": 134, "usage_type": "attribute" }, { "api_name": "pygame.K_0", "line_number": 137, "usage_type": "attribute" }, { "api_name": "manual_robot.ManualRobot", "line_number": 141, "usage_type": "argument" }, { "api_name": "manual_robot.ManualRobot", "line_number": 147, "usage_type": "argument" }, { "api_name": "numpy.random.shuffle", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 155, "usage_type": "attribute" }, { "api_name": "automated_robot.AutomatedRobot", "line_number": 161, "usage_type": "argument" }, { "api_name": "robot.living", "line_number": 161, "usage_type": "attribute" }, { "api_name": "robot.decide", "line_number": 162, "usage_type": "call" }, { "api_name": "robot.living", "line_number": 170, "usage_type": "attribute" }, { "api_name": "pygame.sprite.spritecollide", "line_number": 171, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 171, "usage_type": "attribute" }, { "api_name": "pygame.sprite.spritecollide", "line_number": 172, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 172, "usage_type": "attribute" }, { "api_name": "robot.suffer", "line_number": 175, "usage_type": "call" }, { "api_name": "robot.claim_coin", "line_number": 177, "usage_type": "call" }, { "api_name": "robot.update", "line_number": 178, "usage_type": "call" }, { "api_name": "numpy.random.random", "line_number": 188, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 188, "usage_type": "attribute" }, { "api_name": "numpy.random.random", "line_number": 190, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 190, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 190, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 191, "usage_type": "call" }, { "api_name": "coin.Coin", "line_number": 192, "usage_type": "call" }, { "api_name": "coin.Coin", "line_number": 193, "usage_type": "call" }, { "api_name": "pygame.image.load", "line_number": 228, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 228, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 229, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 229, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 230, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 259, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 259, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 262, "usage_type": "call" }, { "api_name": "pygame.sprite.Group", "line_number": 287, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 287, "usage_type": "attribute" } ]
17469039054
from bs4 import BeautifulSoup import requests import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() fx=open('WEB.txt','r',encoding="utf-8") ## FILENAME me file ka name dalna line=fx.readline() l=open('email_mailto.txt','a',encoding='utf-8') def web_imrove(url): print(url) try: source = requests.get(url) except Exception : l.write('\n') return 0 plain_text = source.text soup = BeautifulSoup(plain_text, 'html.parser') emails = [a["href"] for a in soup.select('a[href^=mailto:]')] popo = str(emails) toto = popo.replace('mailto:', '') hoho = toto.replace('[', '') gogo = hoho.replace(']', '') mm = gogo.replace("'", "") if len(mm) is not 0: l.write(mm) l.write('\n') print(mm) return 1 else: l.write('\n') return 0 #print(mm) while line: if line is '\n': l.write('\n') line=fx.readline() continue p = line.strip() if( web_imrove('http://'+p) ): print('first') elif( web_imrove('http://' + p+'/contact-us') ): print('second') else: web_imrove('http://' + p+'/contactus') line = fx.readline()
akkiei/Web_Scrapper
Mail_to.py
Mail_to.py
py
1,282
python
en
code
0
github-code
6
[ { "api_name": "requests.packages.urllib3.disable_warnings", "line_number": 5, "usage_type": "call" }, { "api_name": "requests.packages", "line_number": 5, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 15, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 21, "usage_type": "call" } ]
17086061072
from datetime import datetime #convert date from YYYY-MM-DD-T to Date, Month, Year (in words) #dfdsf #dsfds datetime def date_convert(date): date=str(date) data=date.split('-') #year/month/day+time all separated by dash daydate=data[-1].split() #data[-1] is day+time, separated by a space day=daydate[0] #discard time, keep day day=day if day[0]!=0 else day[1] #otherwise single-digit days retain leading zero year=str(data[0]) #data is list containing the year and the month month=str(data[1]) #map month numbers to their names months={'01':'January', '02':'February', '03':'March', '04':'April', '05':'May', '06':'June', '07':'July', '08':'August', '09':'September', '10':'October', '11':'November', '12':'December'} #adds appropriate suffix to day if day[-1]=='1' and int(day)%100!=11: #checks if date ends with 1 and isn't 11 suffix='st' elif day[-1]=='2' and int(day)%100!=12: #checks if date ends with 1 and isn't 11 suffix='nd' elif day[-1]=='3': suffix='rd' else: suffix='th' #including special cases 11 and 12 which were previously excluded return day+suffix+' '+months[month]+', '+year #returns string with date in appropriate format #test case #date=datetime.now() #print date_convert(date)
veliakiner/SmogonQDB
date_convert.py
date_convert.py
py
1,428
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime", "line_number": 6, "usage_type": "name" } ]
19980146036
from pytube import YouTube from PySimpleGUI import PySimpleGUI as sg sg.theme("reddit") layout = [ [sg.Text("URL"), sg.Input(key="url")], [sg.Button("Fazer o Download")] ], janela = sg.Window("Video Downloader", layout) while True: eventos, valores = janela.read() if eventos == sg.WINDOW_CLOSED: break if eventos == "Fazer o Download": link = valores["url"] yt = YouTube(link) stream = yt.streams.get_highest_resolution() stream.download()
jopsfernandes/video_downloader
youtube.py
youtube.py
py
525
python
en
code
0
github-code
6
[ { "api_name": "PySimpleGUI.PySimpleGUI.theme", "line_number": 4, "usage_type": "call" }, { "api_name": "PySimpleGUI.PySimpleGUI", "line_number": 4, "usage_type": "name" }, { "api_name": "PySimpleGUI.PySimpleGUI.Text", "line_number": 6, "usage_type": "call" }, { "api_name": "PySimpleGUI.PySimpleGUI", "line_number": 6, "usage_type": "name" }, { "api_name": "PySimpleGUI.PySimpleGUI.Input", "line_number": 6, "usage_type": "call" }, { "api_name": "PySimpleGUI.PySimpleGUI.Button", "line_number": 7, "usage_type": "call" }, { "api_name": "PySimpleGUI.PySimpleGUI", "line_number": 7, "usage_type": "name" }, { "api_name": "PySimpleGUI.PySimpleGUI.Window", "line_number": 10, "usage_type": "call" }, { "api_name": "PySimpleGUI.PySimpleGUI", "line_number": 10, "usage_type": "name" }, { "api_name": "PySimpleGUI.PySimpleGUI.WINDOW_CLOSED", "line_number": 14, "usage_type": "attribute" }, { "api_name": "PySimpleGUI.PySimpleGUI", "line_number": 14, "usage_type": "name" }, { "api_name": "pytube.YouTube", "line_number": 18, "usage_type": "call" } ]
11707381858
#!/usr/bin/python # coding: utf-8 from io import open import os import time import re import db from sqlalchemy import or_, and_, not_, asc, desc, func from datetime import datetime, timedelta from functools import wraps # We need this to make Flask understand decorated routes. import hashlib import subprocess from lxml.html.clean import Cleaner from lxml.etree import ParserError from werkzeug import secure_filename from flask import Flask, Blueprint, render_template, request, flash, redirect, session, abort, url_for, make_response, g from wtforms import Form, BooleanField, TextField, TextAreaField, PasswordField, RadioField, SelectField, SelectMultipleField, BooleanField, IntegerField, HiddenField, SubmitField, validators, ValidationError, widgets from wtforms.fields.html5 import DateTimeLocalField import requests def now(): if app.config['DB'].startswith('postgresql+psycopg2'): # https://stackoverflow.com/questions/796008/cant-subtract-offset-naive-and-offset-aware-datetimes/17752647#17752647 import psycopg2 return datetime.utcnow().replace( tzinfo=psycopg2.tz.FixedOffsetTimezone(offset=0, name=None)) else: return datetime.utcnow() dtnow = now class MultiCheckboxField(SelectMultipleField): """ A multiple-select, except displays a list of checkboxes. Iterating the field will produce subfields, allowing custom rendering of the enclosed checkbox fields. Shamelessly stolen from WTForms FAQ. """ widget = widgets.ListWidget(prefix_label=False) option_widget = widgets.CheckboxInput() app_dir = os.path.dirname(os.path.abspath(__file__)) app = Flask('rhforum', template_folder=app_dir+"/templates") app.config.from_pyfile(app_dir+"/config.py") # XXX BASE_URL = app.config.get("BASE_URL", "") rhforum = Blueprint('rhforum', __name__, template_folder='templates', static_folder='static') doku = None if app.config.get("DOKU_URL", ""): from dokuwiki import DokuWiki try: doku = DokuWiki(app.config['DOKU_URL'], app.config['DOKU_USER'], app.config['DOKU_PASS']) except Exception as ex: print("Failed to connect to DokuWiki: ", ex) class PostForm(Form): text = TextAreaField('Text', [validators.required()]) submit = SubmitField('Odeslat') class EditPostForm(Form): text = TextAreaField('Text', [validators.required()]) submit = SubmitField('Upravit') delete = SubmitField('Smazat') class EditThreadForm(Form): name = TextField('Nadpis', [validators.required()]) text = TextAreaField('Text', [validators.required()]) forum_id = SelectField('Fórum', coerce=int) wiki_article = TextField('Wiki článek') submit = SubmitField('Upravit') delete = SubmitField('Smazat') class ThreadForm(PostForm): name = TextField('Nadpis', [validators.required()]) class UserForm(Form): fullname = TextField('Nadpis', [validators.required()]) email = TextField('Email', [validators.required()]) new_password = PasswordField('Nové heslo') homepage = TextField('Homepage') avatar_url = TextField('URL avataru') profile = TextAreaField('Profil') submit = SubmitField('Upravit') class AdminUserForm(UserForm): group_ids = MultiCheckboxField('Skupiny', coerce=int) @rhforum.app_template_filter('datetime') def datetime_format(value, format='%d. %m. %Y %H:%M:%S'): if not value: return "-" if isinstance(value, str): return value return value.strftime(format) cleaner = Cleaner(comments=False, style=False, embedded=False, annoying_tags=False) @rhforum.app_template_filter('postfilter') def postfilter(text): return text @rhforum.app_template_filter('clean') def clean(value): try: return cleaner.clean_html(value) except ParserError: return "" @rhforum.app_template_filter('bbcode') def bbcode(text): text = re.sub("\[quote=([^\]@]*)@(\d)*\]", "<blockquote><div class='quoting' data-id='\\2'>\\1</div><p>", text) text = re.sub("\[quote=([^\]@]*)\]", "<blockquote><div class='quoting'>\\1</div><p>", text) text = re.sub("\[quote\]", "<blockquote><p>", text) text = re.sub("\[\/quote\]", "</blockquote>", text) return text @rhforum.before_request def before_request(): if not hasattr(g, 'telegram_messages'): g.telegram_messages = [] if not hasattr(g, 'irc_messages'): g.irc_messages = [] if not hasattr(g, 'discord_messages'): g.discord_messages = [] if 'user_id' in session: g.user = db.session.query(db.User).get(session['user_id']) if not g.user: # TODO pass g.user.laststamp = now() else: g.user = db.Guest() g.now = now() g.yesterday = g.now - timedelta(days=1) g.tomorrow = g.now + timedelta(days=1) g.production = app.config['PRODUCTION'] @rhforum.after_request def after_request(response): try: while g.telegram_messages: message = g.telegram_messages.pop(0) subprocess.Popen(["python", app_dir+"/report.py", "telegram", message.encode('utf-8')]) while g.irc_messages: message = g.irc_messages.pop(0) subprocess.Popen(["python", app_dir+"/report.py", "irc", message.encode('utf-8')]) while g.discord_messages: message = g.discord_messages.pop(0) subprocess.Popen(["python", app_dir+"/report.py", "discord", message.encode('utf-8')]) except Exception as ex: print(type(ex), ex) return response @rhforum.teardown_request def shutdown_session(exception=None): db.session.close() db.session.remove() def sort_tasks(tasks): return [] now = g.now def cmp_tasks(task0, task1): # sort order: # 0. unspecified announcements and tasks # 1. upcoming announcements and all unfinished tasks # 2. past announcements and tasks ("everything else") # 3. finished unspecified tasks def get_task_priority(task): if not task.due_time and not task.status: return 0 if not task.due_time and task.status == "todo": return 0 if not task.status and task.due_time and task.due_time > now: return 1 if task.status == "todo": return 1 if not task.due_time and task.status == "done": return 3 return 2 task0_pri = get_task_priority(task0) task1_pri = get_task_priority(task1) if task0_pri < task1_pri: return -1 if task0_pri > task1_pri: return 1 if not task0.due_time: return 1; if not task1.due_time: return 1; return 1 if abs(now - task0.due_time) > abs(now - task1.due_time) else -1 tasks.sort(cmp_tasks) class ForumForm(Form): name = TextField('Jméno', [validators.required()]) description = TextField('Popisek', [validators.required()]) category_id = SelectField('Kategorie', coerce=int) move_up = SubmitField('↑') move_down = SubmitField('↓') save = SubmitField('Uložit') new_forum_id = SelectField('Nové fórum', coerce=int, default=0) delete = SubmitField('Odstranit') class CategoryForm(Form): name = TextField('Jméno', [validators.required()]) group_id = SelectField('Nutná skupina', coerce=int) move_up = SubmitField('↑') move_down = SubmitField('↓') save = SubmitField('Uložit') delete = SubmitField('Odstranit') class ForumControlsForm(Form): mark_read = SubmitField('Označit fórum za přečtené') class TaskForm(Form): type = SelectField("Typ", [validators.optional()], choices=(('task', 'úkol'), ('announcement', 'oznámení'))) due_time = DateTimeLocalField('Čas', [validators.optional()], format="%Y-%m-%dT%H:%M") text = TextField('Text', [validators.required()]) user_id = SelectField('Uživatel', coerce=int) submit = SubmitField("Zadat") @rhforum.errorhandler(404) def page_not_found(e): if not request.path.startswith("/static"): return render_template('forum/errorpage.html', error=404), 404 else: return "404", 404 # we don't have templates @rhforum.errorhandler(403) def page_not_found(e): return render_template('forum/errorpage.html', error=403), 403 @rhforum.errorhandler(500) def page_not_found(e): return render_template('forum/errorpage.html', error=500), 500 @rhforum.errorhandler(400) def page_not_found(e): return render_template('forum/errorpage.html', error=400), 400 def get_active_threads(): threads = db.session.query(db.Thread).join(db.Forum).outerjoin(db.Category)\ .filter(or_(db.Forum.category_id==None, db.Category.group_id.in_([None, 0]), db.Category.group_id.in_(group.id for group in g.user.groups)))\ .filter(db.Forum.trash == False) \ .order_by(db.Thread.laststamp.desc()) return threads @rhforum.route("/", methods="GET POST".split()) def index(): form = None if g.user: form = ForumControlsForm(request.form) if request.method == "POST":# and form.validate(): if form.mark_read.data: g.user.read_all() categories = db.session.query(db.Category).order_by(db.Category.position).all() uncategorized_fora = db.session.query(db.Forum).filter(db.Forum.category == None, db.Forum.trash == False).order_by(db.Forum.position).all() trash = db.session.query(db.Forum).filter(db.Forum.trash == True).scalar() if uncategorized_fora: categories.append(None) latest_threads = get_active_threads()[0:10] tasks = db.session.query(db.Task).filter(db.Task.user_id.in_([g.user.id, None, 0])).all() sort_tasks(tasks) return render_template("forum/index.html", categories=categories, uncategorized_fora=uncategorized_fora, edit_forum = None, latest_threads=latest_threads, trash=trash, form=form, tasks=tasks) @rhforum.route("/active", methods="GET POST".split()) def active(): form = ForumControlsForm(request.form) active_threads = get_active_threads()[0:100] return render_template("forum/active.html", active_threads=active_threads, form=form) @rhforum.route("/edit-forum/<int:forum_id>", endpoint="edit_forum", methods="GET POST".split()) @rhforum.route("/edit-forum/new", endpoint="edit_forum", methods="GET POST".split()) @rhforum.route("/edit-category/<int:category_id>", endpoint="edit_category", methods="GET POST".split()) @rhforum.route("/edit-category/new", endpoint="edit_category", methods="GET POST".split()) def edit_forum_or_category(forum_id=None, category_id=None): if not g.user.admin: abort(403) # TODO minrights decorator categories = db.session.query(db.Category).order_by(db.Category.position).all() uncategorized_fora = db.session.query(db.Forum).filter(db.Forum.category == None, db.Forum.trash == False).order_by(db.Forum.position) trash = db.session.query(db.Forum).filter(db.Forum.trash == True).scalar() if request.endpoint == 'rhforum.edit_forum': if forum_id: forum = db.session.query(db.Forum).get(forum_id) #forum.last = forum.position == len(forum.category.fora) - 1 if forum.category else True if not forum.category: forum.position = 0 else: forum = db.Forum() uncategorized_fora = list(uncategorized_fora) + [forum] forum.position = 0 forum.last = True form = ForumForm(request.form, forum) form.category_id.choices = [(0, "-")] + [(c.id, c.name) for c in categories if c] fora = db.session.query(db.Forum).outerjoin(db.Category).order_by(db.Category.position, db.Forum.position).all() form.new_forum_id.choices = [(0, "-")] + [(f.id, f.name) for f in fora] editable = forum elif request.endpoint == 'rhforum.edit_category': if category_id: category = db.session.query(db.Category).get(category_id) #category.last = category.position == len(categories) - 1 else: category = db.Category() categories = list(categories) + [category] category.position = 0 category.last = True form = CategoryForm(request.form, category) form.group_id.choices = [(0, "-")] + [(group.id, group.name) for group in db.session.query(db.Group)] editable = category if request.method == "POST" and form.validate(): if request.endpoint == 'rhforum.edit_forum': forum.name = form.name.data forum.identifier = forum.name.lower().replace(' ', '-') forum.description = form.description.data forum.category_id = form.category_id.data or None forum.category = db.session.query(db.Category).get(form.category_id.data) elif request.endpoint == 'rhforum.edit_category': category.name = form.name.data category.group_id = form.group_id.data if form.save.data: if request.endpoint == 'rhforum.edit_forum': if not forum_id: if forum.category_id: forum.position = len(forum.category.fora) - 1 db.session.add(forum) flash("Fórum vytvořeno.") else: flash("Fórum upraveno.") elif request.endpoint == 'rhforum.edit_category': if not category_id: category.position = len(categories) - 1 db.session.add(category) flash("Kategorie vytvořena.") else: flash("Kategorie upravena.") db.session.commit() return redirect(url_for('.index')) elif form.delete.data: if request.endpoint == 'rhforum.edit_forum': if not form.new_forum_id.data and forum.threads: flash("Je nutno témata někam přesunout.") else: moved = False if form.new_forum_id.data: moved = True new_forum = db.session.query(db.Forum).get(form.new_forum_id.data) for thread in forum.threads: thread.forum = new_forum else: moved = False db.session.delete(forum) if moved: flash("Fórum odstraněno a témata přesunuty.") else: flash("Fórum odstraněno.") db.session.commit() return redirect(url_for('.index')) elif request.endpoint == 'rhforum.edit_category': db.session.delete(category) flash("Kategorie odstraněna.") db.session.commit() return redirect(url_for('.index')) else: # moving i = editable.position if request.endpoint == 'rhforum.edit_forum': items = list(forum.category.fora) elif request.endpoint == 'rhforum.edit_category': items = list(categories) items.remove(editable) if form.move_up and form.move_up.data: items.insert(i-1, editable) elif form.move_down and form.move_down.data: items.insert(i+1, editable) for i, x in enumerate(items): x.position = i db.session.add(x) db.session.commit() if request.endpoint == 'rhforum.edit_category': categories = items if editable.position == 0: del form.move_up if request.endpoint == 'rhforum.edit_forum': if not forum.category or forum.position == len(forum.category.fora) - 1: del form.move_down elif request.endpoint == 'rhforum.edit_category': if not category.id or category.position == len(categories) - 1: del form.move_down return render_template("forum/index.html", categories=categories+[None], uncategorized_fora=uncategorized_fora, editable=editable, form=form, new=not bool(forum_id), trash=trash) class LoginForm(Form): name = TextField('Jméno', [validators.required()]) password = PasswordField('Heslo', [validators.required()]) submit = SubmitField('Přihlásit se') @rhforum.route("/login", methods="GET POST".split()) def login(): form = LoginForm(request.form) failed = False if request.method == 'POST' and form.validate(): user = db.session.query(db.User).filter(db.User.login == form.name.data.lower()).first() if not user: failed = True else: try: password_matches = user.verify_password(form.password.data) except db.OldHashingMethodException: failed = True password_matches = False flash("Prosím, požádejte admina o změnu hesla.") if password_matches: g.user = user session['user_id'] = g.user.id session.permanent = True flash("Jste přihlášeni.") return redirect(url_for('.index')) else: failed = True return render_template("forum/login.html", form=form, failed=failed) class RegisterForm(Form): username = TextField('Nevyplňovat') bbq = TextField('Login', [validators.required()]) fullname = TextField('Jméno', [validators.required()]) password = PasswordField('Heslo', [ validators.Required(), validators.EqualTo('confirm_password', message='Hesla se musí schodovat') ]) confirm_password = PasswordField('Heslo znovu') email = TextField('Email', [validators.required()]) submit = SubmitField('Zaregistrovat se') @rhforum.route("/register", methods="GET POST".split()) def register(): if g.user: if g.user.admin: flash("Pro ruční registraci účtů ostatním použijte prosím DokuWiki.") return redirect(url_for(".index")) form = RegisterForm(request.form) if request.method == 'POST' and form.validate(): if form.username.data: return "OK" username = form.bbq.data.lower() if db.session.query(db.User).filter(db.User.login == username).first(): flash("Tento login je už zabraný, vyberte si prosím jiný.") else: user = db.User(login=username, fullname=form.fullname.data, email=form.email.data, timestamp=now(), laststamp=now()) user.set_password(form.password.data) user_group = db.session.query(db.Group).filter(db.Group.name=="user").scalar() if user_group: user.groups.append(user_group) db.session.add(user) db.session.commit() g.telegram_messages.append("Nová registrace: *{}* (login *{}*, email {}): {}".format( user.fullname, user.login, user.email, BASE_URL+user.url)) #g.irc_messages.append("Nová registrace: \x0302{}\x03 (login \x0208{}\x03, email {}): {}".format( # user.fullname, user.login, user.email, BASE_URL+user.url)) g.discord_messages.append("Nová registrace: **{}** (login **{}**, email {}): <{}>".format( user.fullname, user.login, user.email, BASE_URL+user.url)) g.user = user g.user.read_all() session['user_id'] = g.user.id session.permanent = True flash("Registrace proběhla úspěšně.") return redirect(url_for(".index")) return render_template("forum/register.html", form=form) @rhforum.route("/logout") def logout(): if 'user_id' in session: session.pop('user_id') flash("Odhlášení proběhlo úspěšně.") return redirect(url_for('.index')) @rhforum.route("/<int:forum_id>", methods="GET POST".split()) @rhforum.route("/<int:forum_id>-<forum_identifier>", methods="GET POST".split()) def forum(forum_id, forum_identifier=None): forum = db.session.query(db.Forum).get(forum_id) if not forum: abort(404) if forum.category and forum.category.group and forum.category.group not in g.user.groups: abort(403) if forum.trash and not g.user.admin: abort(403) threads = db.session.query(db.Thread).filter(db.Thread.forum == forum).order_by(db.Thread.archived.asc(), db.Thread.pinned.desc(), db.Thread.laststamp.desc()) form = None if not forum.trash: form = ThreadForm(request.form) if g.user and request.method == 'POST' and form.validate(): now = dtnow() thread = db.Thread(forum=forum, author=g.user, timestamp=now, laststamp=now, name=form.name.data) db.session.add(thread) post = db.Post(thread=thread, author=g.user, timestamp=now, text=form.text.data) db.session.add(post) db.session.commit() g.telegram_messages.append("Nové téma od *{}*: *{}*: {}".format( thread.author.name, thread.name, BASE_URL+thread.short_url)) if not thread.forum.category or not thread.forum.category.group or thread.forum.category.group.name == "extern": g.discord_messages.append("Nové téma od **{}**: **{}**: <{}>".format( thread.author.name, thread.name, BASE_URL+thread.short_url)) # g.irc_messages.append("Nové téma od \x0302{}\x03: \x0306{}\x03: {}".format( # thread.author.name, thread.name, BASE_URL+thread.short_url)) return redirect(thread.url) return render_template("forum/forum.html", forum=forum, threads=threads, form=form) @rhforum.route("/users/<int:user_id>/threads") @rhforum.route("/users/<int:user_id>-<name>/threads") def user_threads(user_id, name=None): user = db.session.query(db.User).get(user_id) if not user: abort(404) forum = db.Forum(name="Témata od {}".format(user.name)) threads = db.session.query(db.Thread).join(db.Forum)\ .filter(db.Forum.trash == False, db.Thread.author == user)\ .outerjoin(db.Category)\ .filter(or_(db.Forum.category_id==None, db.Category.group_id.in_([None, 0]), db.Category.group_id.in_(group.id for group in g.user.groups)))\ .filter(db.Forum.trash == False).order_by(db.Thread.laststamp.desc()).all() return render_template("forum/forum.html", forum=forum, threads=threads, user=user) # TODO <path:thread_identificator> @rhforum.route("/<int:forum_id>/<int:thread_id>", methods="GET POST".split()) @rhforum.route("/<int:forum_id>-<forum_identifier>/<int:thread_id>-<thread_identifier>", methods="GET POST".split()) def thread(forum_id, thread_id, forum_identifier=None, thread_identifier=None): thread = db.session.query(db.Thread).get(thread_id) if not thread: abort(404) if thread.forum.category and thread.forum.category.group and thread.forum.category.group not in g.user.groups: abort(403) if thread.forum.trash and not g.user.admin: abort(403) reply_post = None if "reply" in request.args: try: reply_post_id = int(request.args["reply"]) except ValueError: abort(400) reply_post = db.session.query(db.Post).get(reply_post_id) if reply_post_id and not reply_post: abort(404) if reply_post and reply_post.thread != thread: abort(400) if g.user.admin and "show_deleted" in request.args: posts = thread.posts.filter() else: posts = thread.posts.filter(db.Post.deleted==False) num_deleted = thread.posts.count() - thread.posts.filter(db.Post.deleted==False).count() form = None if not thread.forum.trash and not (thread.locked and not g.user.admin): text = "" if reply_post: text = "[quote={}@{}]{}[/quote]\n".format(reply_post.author.login, reply_post.id, reply_post.text) form = PostForm(request.form, text=text) if g.user and request.method == 'POST' and form.validate(): now = dtnow() post = db.Post(thread=thread, author=g.user, timestamp=now, text=form.text.data) db.session.add(post) thread.laststamp = now db.session.commit() g.telegram_messages.append("Nový příspěvek od *{}* do *{}*: {}".format( post.author.name, post.thread.name, BASE_URL+post.short_url)) if not thread.forum.category or not thread.forum.category.group or thread.forum.category.group.name == "extern": g.discord_messages.append("Nový příspěvek od **{}** do **{}**: <{}>".format( post.author.name, post.thread.name, BASE_URL+post.short_url)) # g.irc_messages.append("Nový příspěvek od \x0302{}\x03 do \x0306{}\x03: {}".format( # post.author.name, post.thread.name, BASE_URL+post.short_url)) return redirect(thread.url+"#post-latest") # TODO id if g.user: thread_read = db.session.query(db.ThreadRead).filter(db.ThreadRead.user==g.user, db.ThreadRead.thread==thread).first() if not thread_read: last_read_timestamp = None else: last_read_timestamp = thread_read.last_post.timestamp g.user.read(thread.last_post) else: last_read_timestamp = g.now article = None article_revisions = [] article_info = None doku_error = None if thread.wiki_article and doku: try: article = doku.pages.html(thread.wiki_article) #article_revisions = doku.send("wiki.getPageVersions", thread.wiki_article) article_info = doku.send("wiki.getPageInfo", thread.wiki_article) print(article_info, 'xxx') except Exception as ex: print(ex) doku_error = ex return render_template("forum/thread.html", thread=thread, forum=thread.forum, posts=posts, form=form, now=dtnow(), last_read_timestamp=last_read_timestamp, article=article, article_revisions=article_revisions, article_info=article_info, doku_error=doku_error, reply_post=reply_post, show_deleted="show_deleted" in request.args, num_deleted=num_deleted) @rhforum.route("/<int:forum_id>/<int:topic_id>/set", methods="POST".split()) @rhforum.route("/<int:forum_id>-<forum_identifier>/<int:thread_id>-<thread_identifier>/set", methods="POST".split()) def thread_set(forum_id, thread_id, forum_identifier=None, thread_identifier=None): if not g.user.admin: abort(403) thread = db.session.query(db.Thread).get(thread_id) if not thread: abort(404) if request.form.get("pin"): thread.pinned = True elif request.form.get("unpin"): thread.pinned = False elif request.form.get("lock"): thread.locked = True elif request.form.get("unlock"): thread.locked = False elif request.form.get("archive"): thread.archived = True elif request.form.get("unarchive"): thread.archived = False db.session.commit() return redirect(thread.url) @rhforum.route("/<int:forum_id>/<int:thread_id>/edit/<int:post_id>", methods="GET POST".split()) @rhforum.route("/<int:forum_id>-<forum_identifier>/<int:thread_id>-<thread_identifier>/edit/<int:post_id>", methods="GET POST".split()) def edit_post(forum_id, thread_id, post_id, forum_identifier=None, thread_identifier=None): post = db.session.query(db.Post).get(post_id) thread = db.session.query(db.Thread).get(thread_id) if not post: abort(404) if thread.forum.category and thread.forum.category.group and thread.forum.category.group not in g.user.groups: abort(403) if post.thread != thread: abort(400) if post.deleted: # The user probably hit edit multiple times. Let's just be helpful. return redirect(thread.url) if post.author != g.user and not g.user.admin: abort(403) if post.thread.forum.trash and not g.user.admin: abort(403) posts = thread.posts.filter(db.Post.deleted==False) if post == posts[0] and g.user.admin: edit_thread = True form = EditThreadForm(request.form, text=post.text, name=thread.name, forum_id=thread.forum_id, wiki_article=thread.wiki_article) forums = db.session.query(db.Forum).outerjoin(db.Category).order_by(db.Category.position, db.Forum.position).all() form.forum_id.choices = [(f.id, f.name) for f in forums] else: edit_thread = False form = EditPostForm(request.form, text=post.text) if not g.user.admin: del form.delete if request.method == 'POST' and form.validate(): if form.submit.data: now = dtnow() new_post = db.Post(thread=thread, author=post.author, timestamp=post.timestamp, editstamp=now, text=form.text.data, original=post.original if post.original else post, editor=g.user) db.session.add(new_post) post.deleted=True if edit_thread: thread.name = form.name.data thread.forum_id = form.forum_id.data thread.wiki_article = form.wiki_article.data #forum.fix_laststamp() # TODO db.session.commit() if edit_thread: return redirect(thread.url) else: return redirect(new_post.url) elif form.delete.data: post.deleted = True db.session.commit() return redirect(thread.url) return render_template("forum/thread.html", thread=thread, forum=thread.forum, posts=posts, form=form, now=dtnow(), edit_post=post, edit_thread=edit_thread, last_read_timestamp=g.now) @rhforum.route("/users/") def users(): if not g.user.admin: abort(403) users = db.session.query(db.User).order_by(db.User.fullname) return render_template("forum/users.html", users=users) @rhforum.route("/users/<int:user_id>") @rhforum.route("/users/<int:user_id>-<name>") def user(user_id, name=None): user = db.session.query(db.User).get(user_id) if not user: abort(404) return render_template("forum/user.html", user=user) @rhforum.route("/users/<int:user_id>/edit", methods="GET POST".split()) @rhforum.route("/users/<int:user_id>-<name>/edit", methods="GET POST".split()) def edit_user(user_id, name=None): user = db.session.query(db.User).get(user_id) if not user: abort(404) if user != g.user and not g.user.admin: abort(403) if g.user.admin: form = AdminUserForm(request.form, user) form.group_ids.choices = [] for group in db.session.query(db.Group): form.group_ids.choices.append((group.id, group.name)) if form.group_ids.data == None: form.group_ids.data = [group.id for group in user.groups] else: form = UserForm(request.form, user) if request.method == 'POST' and form.validate(): user.fullname = form.fullname.data user.email = form.email.data user.homepage = form.homepage.data user.avatar_url = form.avatar_url.data if form.new_password.data: user.set_password(form.new_password.data) flash("Heslo změněno.") if g.user.admin: user.groups = [] for group_id in form.group_ids.data: user.groups.append(db.session.query(db.Group).get(group_id)) db.session.commit() flash("Uživatel upraven.") return redirect(user.url) return render_template("forum/user.html", user=user, edit=True, form=form) class GroupForm(Form): name = TextField('Jméno', [validators.required()]) symbol = TextField('Symbol') title = TextField('Titul') rank = IntegerField('Rank') display = BooleanField('Zobrazovat') submit = SubmitField('Uložit') @rhforum.route("/groups/", methods=["GET"]) @rhforum.route("/groups/<int:edit_group_id>/edit", methods=["GET", "POST"]) def groups(edit_group_id=None): if not g.user.admin: abort(403) groups = db.session.query(db.Group).all() edit_group = None form = None if edit_group_id == 0 and request.method == 'POST': group = db.Group(name="") db.session.add(group) db.session.commit() return redirect(url_for('.groups', edit_group_id=group.id)) if edit_group_id: edit_group = db.session.query(db.Group).get(edit_group_id) form = GroupForm(request.form, edit_group) if request.method == 'POST' and form.validate(): edit_group.name = form.name.data edit_group.symbol = form.symbol.data edit_group.title = form.title.data edit_group.rank = form.rank.data edit_group.display = form.display.data db.session.commit() flash("Skupina {} upravena.".format(edit_group.name)) return redirect(url_for('.groups')) return render_template("forum/groups.html", groups=groups, edit_group=edit_group, form=form) @rhforum.route("/tasks", methods="GET POST".split()) @rhforum.route("/tasks/<int:task_id>", methods=["GET", "POST"]) def tasks(task_id=None): if not g.user.in_group("retroherna"): error(403) task = None if task_id: task = db.session.query(db.Task).get(task_id) if not task: error(404) form = TaskForm(request.form, task) form.user_id.choices = [(0, '-')] for user in db.session.query(db.User): form.user_id.choices.append((user.id, user.name)) if request.method == 'POST' and form.validate(): if not form.due_time.data and (form.type.data == "announcement" or (task and not task.status)): flash("Nelze vytvořit oznámení bez konečného času.") else: if not task_id: task = db.Task() task.created_time = now() task.author = g.user task.text = form.text.data task.due_time = form.due_time.data if form.type.data == "task": task.status = "todo" task.user_id = form.user_id.data if not task_id: db.session.add(task) db.session.commit() if not task_id: flash("Úkol přidán.") else: flash("Úkol upraven.") return redirect(url_for('.tasks')) tasks = db.session.query(db.Task).all()#.order_by(func.abs(func.now() - db.Task.due_time)) sort_tasks(tasks) return render_template("forum/tasks.html", tasks=tasks, form=form, task_id=task_id) @rhforum.route("/tasks/<int:task_id>/status", methods=["POST"]) def change_task_status(task_id): if not g.user.in_group("retroherna"): error(403) task = db.session.query(db.Task).get(task_id) if not task: error(404) if request.form["status"] == "todo": task.status = "todo" elif request.form["status"] == "done": task.status = "done" db.session.commit() return redirect(url_for(".tasks")) class IRCSendForm(Form): text = TextField('Text', [validators.required()]) submit = SubmitField('Odeslat') @rhforum.route("/irc-send/", methods=["GET", "POST"]) def irc_send(): if not g.user.admin: error(403) text = None form = IRCSendForm(request.form) if request.method == 'POST' and form.validate(): text = form.text.data g.irc_messages.append(text) form = IRCSendForm() return render_template("forum/irc_send.html", form=form, text=text) app.register_blueprint(rhforum, url_prefix='') if not app.debug: import logging from logging import FileHandler file_handler = FileHandler(app_dir+'/flask.log') file_handler.setLevel(logging.WARNING) formatter = logging.Formatter('%(asctime)s - %(message)s') file_handler.setFormatter(formatter) app.logger.addHandler(file_handler) if __name__ == "__main__": app.config['TEMPLATES_AUTO_RELOAD'] = True app.run(host="", port=8080, debug=True, threaded=True)
retroherna/rhweb2
rhforum.py
rhforum.py
py
36,199
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.utcnow", "line_number": 33, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 33, "usage_type": "name" }, { "api_name": "psycopg2.tz.FixedOffsetTimezone", "line_number": 34, "usage_type": "call" }, { "api_name": "psycopg2.tz", "line_number": 34, "usage_type": "attribute" }, { "api_name": "datetime.datetime.utcnow", "line_number": 36, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 36, "usage_type": "name" }, { "api_name": "wtforms.SelectMultipleField", "line_number": 40, "usage_type": "name" }, { "api_name": "wtforms.widgets.ListWidget", "line_number": 47, "usage_type": "call" }, { "api_name": "wtforms.widgets", "line_number": 47, "usage_type": "name" }, { "api_name": "wtforms.widgets.CheckboxInput", "line_number": 48, "usage_type": "call" }, { "api_name": "wtforms.widgets", "line_number": 48, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 50, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.Blueprint", "line_number": 55, "usage_type": "call" }, { "api_name": "dokuwiki.DokuWiki", "line_number": 63, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 68, "usage_type": "name" }, { "api_name": "wtforms.TextAreaField", "line_number": 69, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 69, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 69, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 70, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 72, "usage_type": "name" }, { "api_name": "wtforms.TextAreaField", "line_number": 73, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 73, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 73, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 74, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 75, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 77, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 78, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 78, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 78, "usage_type": "name" }, { "api_name": "wtforms.TextAreaField", "line_number": 79, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 79, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 79, "usage_type": "name" }, { "api_name": "wtforms.SelectField", "line_number": 80, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 81, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 82, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 83, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 86, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 86, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 86, "usage_type": "name" }, { "api_name": "wtforms.Form", "line_number": 88, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 89, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 89, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 89, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 90, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 90, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 90, "usage_type": "name" }, { "api_name": "wtforms.PasswordField", "line_number": 91, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 92, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 93, "usage_type": "call" }, { "api_name": "wtforms.TextAreaField", "line_number": 94, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 95, "usage_type": "call" }, { "api_name": "lxml.html.clean.Cleaner", "line_number": 106, "usage_type": "call" }, { "api_name": "lxml.etree.ParserError", "line_number": 116, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 122, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 123, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 124, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 125, "usage_type": "call" }, { "api_name": "flask.g", "line_number": 130, "usage_type": "argument" }, { "api_name": "flask.g.telegram_messages", "line_number": 131, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 131, "usage_type": "name" }, { "api_name": "flask.g", "line_number": 132, "usage_type": "argument" }, { "api_name": "flask.g.irc_messages", "line_number": 133, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 133, "usage_type": "name" }, { "api_name": "flask.g", "line_number": 134, "usage_type": "argument" }, { "api_name": "flask.g.discord_messages", "line_number": 135, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 135, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 136, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 137, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 137, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 137, "usage_type": "call" }, { "api_name": "db.session", "line_number": 137, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 137, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 137, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 138, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 138, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 141, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 141, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 143, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 143, "usage_type": "name" }, { "api_name": "db.Guest", "line_number": 143, "usage_type": "call" }, { "api_name": "flask.g.now", "line_number": 144, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 144, "usage_type": "name" }, { "api_name": "flask.g.yesterday", "line_number": 145, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 145, "usage_type": "name" }, { "api_name": "flask.g.now", "line_number": 145, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 145, "usage_type": "call" }, { "api_name": "flask.g.tomorrow", "line_number": 146, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 146, "usage_type": "name" }, { "api_name": "flask.g.now", "line_number": 146, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 146, "usage_type": "call" }, { "api_name": "flask.g.production", "line_number": 147, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 147, "usage_type": "name" }, { "api_name": "flask.g.telegram_messages", "line_number": 154, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 154, "usage_type": "name" }, { "api_name": "flask.g.telegram_messages.pop", "line_number": 155, "usage_type": "call" }, { "api_name": "flask.g.telegram_messages", "line_number": 155, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 155, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 156, "usage_type": "call" }, { "api_name": "flask.g.irc_messages", "line_number": 158, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 158, "usage_type": "name" }, { "api_name": "flask.g.irc_messages.pop", "line_number": 159, "usage_type": "call" }, { "api_name": "flask.g.irc_messages", "line_number": 159, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 159, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 160, "usage_type": "call" }, { "api_name": "flask.g.discord_messages", "line_number": 162, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 162, "usage_type": "name" }, { "api_name": "flask.g.discord_messages.pop", "line_number": 163, "usage_type": "call" }, { "api_name": "flask.g.discord_messages", "line_number": 163, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 163, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 164, "usage_type": "call" }, { "api_name": "db.session.close", "line_number": 173, "usage_type": "call" }, { "api_name": "db.session", "line_number": 173, "usage_type": "attribute" }, { "api_name": "db.session.remove", "line_number": 174, "usage_type": "call" }, { "api_name": "db.session", "line_number": 174, "usage_type": "attribute" }, { "api_name": "flask.g.now", "line_number": 178, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 178, "usage_type": "name" }, { "api_name": "wtforms.Form", "line_number": 203, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 204, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 204, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 204, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 205, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 205, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 205, "usage_type": "name" }, { "api_name": "wtforms.SelectField", "line_number": 206, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 207, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 208, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 209, "usage_type": "call" }, { "api_name": "wtforms.SelectField", "line_number": 210, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 211, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 213, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 214, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 214, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 214, "usage_type": "name" }, { "api_name": "wtforms.SelectField", "line_number": 215, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 216, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 217, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 218, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 219, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 221, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 222, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 224, "usage_type": "name" }, { "api_name": "wtforms.SelectField", "line_number": 225, "usage_type": "call" }, { "api_name": "wtforms.validators.optional", "line_number": 225, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 225, "usage_type": "name" }, { "api_name": "wtforms.fields.html5.DateTimeLocalField", "line_number": 226, "usage_type": "call" }, { "api_name": "wtforms.validators.optional", "line_number": 226, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 226, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 227, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 227, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 227, "usage_type": "name" }, { "api_name": "wtforms.SelectField", "line_number": 228, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 229, "usage_type": "call" }, { "api_name": "flask.request.path.startswith", "line_number": 233, "usage_type": "call" }, { "api_name": "flask.request.path", "line_number": 233, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 233, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 234, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 240, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 244, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 248, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 251, "usage_type": "call" }, { "api_name": "db.session", "line_number": 251, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 251, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 251, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 251, "usage_type": "attribute" }, { "api_name": "sqlalchemy.or_", "line_number": 252, "usage_type": "call" }, { "api_name": "db.Forum", "line_number": 252, "usage_type": "attribute" }, { "api_name": "db.Category.group_id.in_", "line_number": 252, "usage_type": "call" }, { "api_name": "db.Category", "line_number": 252, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 252, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 252, "usage_type": "name" }, { "api_name": "db.Forum", "line_number": 253, "usage_type": "attribute" }, { "api_name": "db.Thread.laststamp.desc", "line_number": 254, "usage_type": "call" }, { "api_name": "db.Thread", "line_number": 254, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 261, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 261, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 262, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 262, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 263, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 263, "usage_type": "name" }, { "api_name": "flask.g.user.read_all", "line_number": 265, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 265, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 265, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 267, "usage_type": "call" }, { "api_name": "db.session", "line_number": 267, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 267, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 268, "usage_type": "call" }, { "api_name": "db.session", "line_number": 268, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 268, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 269, "usage_type": "call" }, { "api_name": "db.session", "line_number": 269, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 269, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 274, "usage_type": "call" }, { "api_name": "db.session", "line_number": 274, "usage_type": "attribute" }, { "api_name": "db.Task", "line_number": 274, "usage_type": "attribute" }, { "api_name": "db.Task.user_id.in_", "line_number": 274, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 274, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 274, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 277, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 281, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 281, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 283, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 290, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 290, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 290, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 291, "usage_type": "call" }, { "api_name": "db.session", "line_number": 291, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 291, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 292, "usage_type": "call" }, { "api_name": "db.session", "line_number": 292, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 292, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 293, "usage_type": "call" }, { "api_name": "db.session", "line_number": 293, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 293, "usage_type": "attribute" }, { "api_name": "flask.request.endpoint", "line_number": 294, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 294, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 296, "usage_type": "call" }, { "api_name": "db.session", "line_number": 296, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 296, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 300, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 304, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 304, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 306, "usage_type": "call" }, { "api_name": "db.session", "line_number": 306, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 306, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 306, "usage_type": "attribute" }, { "api_name": "flask.request.endpoint", "line_number": 309, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 309, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 311, "usage_type": "call" }, { "api_name": "db.session", "line_number": 311, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 311, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 314, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 318, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 318, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 319, "usage_type": "call" }, { "api_name": "db.session", "line_number": 319, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 319, "usage_type": "attribute" }, { "api_name": "flask.request.method", "line_number": 321, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 321, "usage_type": "name" }, { "api_name": "flask.request.endpoint", "line_number": 322, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 322, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 327, "usage_type": "call" }, { "api_name": "db.session", "line_number": 327, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 327, "usage_type": "attribute" }, { "api_name": "flask.request.endpoint", "line_number": 328, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 328, "usage_type": "name" }, { "api_name": "flask.request.endpoint", "line_number": 332, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 332, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 336, "usage_type": "call" }, { "api_name": "db.session", "line_number": 336, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 337, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 339, "usage_type": "call" }, { "api_name": "flask.request.endpoint", "line_number": 340, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 340, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 343, "usage_type": "call" }, { "api_name": "db.session", "line_number": 343, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 344, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 346, "usage_type": "call" }, { "api_name": "db.session.commit", "line_number": 347, "usage_type": "call" }, { "api_name": "db.session", "line_number": 347, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 348, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 348, "usage_type": "call" }, { "api_name": "flask.request.endpoint", "line_number": 350, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 350, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 352, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 357, "usage_type": "call" }, { "api_name": "db.session", "line_number": 357, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 357, "usage_type": "attribute" }, { "api_name": "db.session.delete", "line_number": 362, "usage_type": "call" }, { "api_name": "db.session", "line_number": 362, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 364, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 366, "usage_type": "call" }, { "api_name": "db.session.commit", "line_number": 367, "usage_type": "call" }, { "api_name": "db.session", "line_number": 367, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 368, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 368, "usage_type": "call" }, { "api_name": "flask.request.endpoint", "line_number": 369, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 369, "usage_type": "name" }, { "api_name": "db.session.delete", "line_number": 370, "usage_type": "call" }, { "api_name": "db.session", "line_number": 370, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 371, "usage_type": "call" }, { "api_name": "db.session.commit", "line_number": 372, "usage_type": "call" }, { "api_name": "db.session", "line_number": 372, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 373, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 373, "usage_type": "call" }, { "api_name": "flask.request.endpoint", "line_number": 377, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 377, "usage_type": "name" }, { "api_name": "flask.request.endpoint", "line_number": 379, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 379, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 388, "usage_type": "call" }, { "api_name": "db.session", "line_number": 388, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 389, "usage_type": "call" }, { "api_name": "db.session", "line_number": 389, "usage_type": "attribute" }, { "api_name": "flask.request.endpoint", "line_number": 390, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 390, "usage_type": "name" }, { "api_name": "flask.request.endpoint", "line_number": 394, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 394, "usage_type": "name" }, { "api_name": "flask.request.endpoint", "line_number": 397, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 397, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 400, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 402, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 403, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 403, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 403, "usage_type": "name" }, { "api_name": "wtforms.PasswordField", "line_number": 404, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 404, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 404, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 405, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 409, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 409, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 411, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 411, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 412, "usage_type": "call" }, { "api_name": "db.session", "line_number": 412, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 412, "usage_type": "attribute" }, { "api_name": "db.OldHashingMethodException", "line_number": 417, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 420, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 422, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 422, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 423, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 423, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 423, "usage_type": "name" }, { "api_name": "flask.session.permanent", "line_number": 424, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 424, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 425, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 426, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 426, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 430, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 432, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 433, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 434, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 434, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 434, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 435, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 435, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 435, "usage_type": "name" }, { "api_name": "wtforms.PasswordField", "line_number": 436, "usage_type": "call" }, { "api_name": "wtforms.validators.Required", "line_number": 437, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 437, "usage_type": "name" }, { "api_name": "wtforms.validators.EqualTo", "line_number": 438, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 438, "usage_type": "name" }, { "api_name": "wtforms.PasswordField", "line_number": 440, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 441, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 441, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 441, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 442, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 446, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 446, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 447, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 447, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 448, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 449, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 449, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 450, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 450, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 451, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 451, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 455, "usage_type": "call" }, { "api_name": "db.session", "line_number": 455, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 455, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 456, "usage_type": "call" }, { "api_name": "db.User", "line_number": 458, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 460, "usage_type": "call" }, { "api_name": "db.session", "line_number": 460, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 460, "usage_type": "attribute" }, { "api_name": "db.session.add", "line_number": 463, "usage_type": "call" }, { "api_name": "db.session", "line_number": 463, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 464, "usage_type": "call" }, { "api_name": "db.session", "line_number": 464, "usage_type": "attribute" }, { "api_name": "flask.g.telegram_messages.append", "line_number": 466, "usage_type": "call" }, { "api_name": "flask.g.telegram_messages", "line_number": 466, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 466, "usage_type": "name" }, { "api_name": "flask.g.discord_messages.append", "line_number": 470, "usage_type": "call" }, { "api_name": "flask.g.discord_messages", "line_number": 470, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 470, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 473, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 473, "usage_type": "name" }, { "api_name": "flask.g.user.read_all", "line_number": 474, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 474, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 474, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 475, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 475, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 475, "usage_type": "name" }, { "api_name": "flask.session.permanent", "line_number": 476, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 476, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 478, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 479, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 479, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 481, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 485, "usage_type": "name" }, { "api_name": "flask.session.pop", "line_number": 486, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 486, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 487, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 488, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 488, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 493, "usage_type": "call" }, { "api_name": "db.session", "line_number": 493, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 493, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 494, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 495, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 495, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 495, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 496, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 496, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 496, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 497, "usage_type": "call" }, { "api_name": "db.session", "line_number": 497, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 497, "usage_type": "attribute" }, { "api_name": "db.Thread.archived.asc", "line_number": 497, "usage_type": "call" }, { "api_name": "db.Thread.pinned.desc", "line_number": 497, "usage_type": "call" }, { "api_name": "db.Thread.laststamp.desc", "line_number": 497, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 500, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 500, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 501, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 501, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 501, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 501, "usage_type": "name" }, { "api_name": "db.Thread", "line_number": 503, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 503, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 503, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 505, "usage_type": "call" }, { "api_name": "db.session", "line_number": 505, "usage_type": "attribute" }, { "api_name": "db.Post", "line_number": 506, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 506, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 506, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 508, "usage_type": "call" }, { "api_name": "db.session", "line_number": 508, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 509, "usage_type": "call" }, { "api_name": "db.session", "line_number": 509, "usage_type": "attribute" }, { "api_name": "flask.g.telegram_messages.append", "line_number": 510, "usage_type": "call" }, { "api_name": "flask.g.telegram_messages", "line_number": 510, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 510, "usage_type": "name" }, { "api_name": "flask.g.discord_messages.append", "line_number": 513, "usage_type": "call" }, { "api_name": "flask.g.discord_messages", "line_number": 513, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 513, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 517, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 518, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 523, "usage_type": "call" }, { "api_name": "db.session", "line_number": 523, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 523, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 524, "usage_type": "call" }, { "api_name": "db.Forum", "line_number": 526, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 528, "usage_type": "call" }, { "api_name": "db.session", "line_number": 528, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 528, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 528, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 529, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 529, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 530, "usage_type": "attribute" }, { "api_name": "sqlalchemy.or_", "line_number": 531, "usage_type": "call" }, { "api_name": "db.Forum", "line_number": 531, "usage_type": "attribute" }, { "api_name": "db.Category.group_id.in_", "line_number": 531, "usage_type": "call" }, { "api_name": "db.Category", "line_number": 531, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 531, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 531, "usage_type": "name" }, { "api_name": "db.Forum", "line_number": 532, "usage_type": "attribute" }, { "api_name": "db.Thread.laststamp.desc", "line_number": 532, "usage_type": "call" }, { "api_name": "db.Thread", "line_number": 532, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 534, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 541, "usage_type": "call" }, { "api_name": "db.session", "line_number": 541, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 541, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 542, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 543, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 543, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 543, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 544, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 544, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 544, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 546, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 546, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 548, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 548, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 550, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 551, "usage_type": "call" }, { "api_name": "db.session", "line_number": 551, "usage_type": "attribute" }, { "api_name": "db.Post", "line_number": 551, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 553, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 555, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 557, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 557, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 557, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 557, "usage_type": "name" }, { "api_name": "db.Post", "line_number": 560, "usage_type": "attribute" }, { "api_name": "db.Post", "line_number": 562, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 565, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 565, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 569, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 569, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 570, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 570, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 570, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 570, "usage_type": "name" }, { "api_name": "db.Post", "line_number": 572, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 572, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 572, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 574, "usage_type": "call" }, { "api_name": "db.session", "line_number": 574, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 576, "usage_type": "call" }, { "api_name": "db.session", "line_number": 576, "usage_type": "attribute" }, { "api_name": "flask.g.telegram_messages.append", "line_number": 577, "usage_type": "call" }, { "api_name": "flask.g.telegram_messages", "line_number": 577, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 577, "usage_type": "name" }, { "api_name": "flask.g.discord_messages.append", "line_number": 580, "usage_type": "call" }, { "api_name": "flask.g.discord_messages", "line_number": 580, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 580, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 584, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 586, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 586, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 587, "usage_type": "call" }, { "api_name": "db.session", "line_number": 587, "usage_type": "attribute" }, { "api_name": "db.ThreadRead", "line_number": 587, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 587, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 587, "usage_type": "name" }, { "api_name": "flask.g.user.read", "line_number": 592, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 592, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 592, "usage_type": "name" }, { "api_name": "flask.g.now", "line_number": 594, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 594, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 610, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 610, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 610, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 615, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 615, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 615, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 616, "usage_type": "call" }, { "api_name": "db.session", "line_number": 616, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 616, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 617, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 619, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 619, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 619, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 621, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 621, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 621, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 624, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 624, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 624, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 626, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 626, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 626, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 629, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 629, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 629, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 631, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 631, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 631, "usage_type": "name" }, { "api_name": "db.session.commit", "line_number": 633, "usage_type": "call" }, { "api_name": "db.session", "line_number": 633, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 635, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 640, "usage_type": "call" }, { "api_name": "db.session", "line_number": 640, "usage_type": "attribute" }, { "api_name": "db.Post", "line_number": 640, "usage_type": "attribute" }, { "api_name": "db.session.query", "line_number": 641, "usage_type": "call" }, { "api_name": "db.session", "line_number": 641, "usage_type": "attribute" }, { "api_name": "db.Thread", "line_number": 641, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 642, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 643, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 643, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 643, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 644, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 647, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 648, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 648, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 648, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 649, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 649, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 649, "usage_type": "call" }, { "api_name": "db.Post", "line_number": 650, "usage_type": "attribute" }, { "api_name": "flask.g.user", "line_number": 652, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 652, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 654, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 654, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 655, "usage_type": "call" }, { "api_name": "db.session", "line_number": 655, "usage_type": "attribute" }, { "api_name": "db.Forum", "line_number": 655, "usage_type": "attribute" }, { "api_name": "db.Category", "line_number": 655, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 659, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 659, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 661, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 661, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 663, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 663, "usage_type": "name" }, { "api_name": "db.Post", "line_number": 666, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 667, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 667, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 668, "usage_type": "call" }, { "api_name": "db.session", "line_number": 668, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 675, "usage_type": "call" }, { "api_name": "db.session", "line_number": 675, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 677, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 679, "usage_type": "call" }, { "api_name": "db.session.commit", "line_number": 682, "usage_type": "call" }, { "api_name": "db.session", "line_number": 682, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 683, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 685, "usage_type": "call" }, { "api_name": "flask.g.now", "line_number": 685, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 685, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 689, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 689, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 689, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 690, "usage_type": "call" }, { "api_name": "db.session", "line_number": 690, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 690, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 691, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 696, "usage_type": "call" }, { "api_name": "db.session", "line_number": 696, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 696, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 697, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 698, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 703, "usage_type": "call" }, { "api_name": "db.session", "line_number": 703, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 703, "usage_type": "attribute" }, { "api_name": "flask.abort", "line_number": 704, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 705, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 705, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 705, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 707, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 707, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 708, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 708, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 710, "usage_type": "call" }, { "api_name": "db.session", "line_number": 710, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 710, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 715, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 715, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 718, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 718, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 725, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 726, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 726, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 729, "usage_type": "call" }, { "api_name": "db.session", "line_number": 729, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 729, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 730, "usage_type": "call" }, { "api_name": "db.session", "line_number": 730, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 731, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 732, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 734, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 736, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 737, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 737, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 737, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 738, "usage_type": "call" }, { "api_name": "wtforms.TextField", "line_number": 739, "usage_type": "call" }, { "api_name": "wtforms.IntegerField", "line_number": 740, "usage_type": "call" }, { "api_name": "wtforms.BooleanField", "line_number": 741, "usage_type": "call" }, { "api_name": "wtforms.SubmitField", "line_number": 742, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 748, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 748, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 748, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 749, "usage_type": "call" }, { "api_name": "db.session", "line_number": 749, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 749, "usage_type": "attribute" }, { "api_name": "flask.request.method", "line_number": 752, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 752, "usage_type": "name" }, { "api_name": "db.Group", "line_number": 753, "usage_type": "call" }, { "api_name": "db.session.add", "line_number": 754, "usage_type": "call" }, { "api_name": "db.session", "line_number": 754, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 755, "usage_type": "call" }, { "api_name": "db.session", "line_number": 755, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 756, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 756, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 758, "usage_type": "call" }, { "api_name": "db.session", "line_number": 758, "usage_type": "attribute" }, { "api_name": "db.Group", "line_number": 758, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 759, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 759, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 760, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 760, "usage_type": "name" }, { "api_name": "db.session.commit", "line_number": 766, "usage_type": "call" }, { "api_name": "db.session", "line_number": 766, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 767, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 768, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 768, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 770, "usage_type": "call" }, { "api_name": "flask.g.user.in_group", "line_number": 775, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 775, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 775, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 778, "usage_type": "call" }, { "api_name": "db.session", "line_number": 778, "usage_type": "attribute" }, { "api_name": "db.Task", "line_number": 778, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 781, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 781, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 783, "usage_type": "call" }, { "api_name": "db.session", "line_number": 783, "usage_type": "attribute" }, { "api_name": "db.User", "line_number": 783, "usage_type": "attribute" }, { "api_name": "flask.request.method", "line_number": 786, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 786, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 788, "usage_type": "call" }, { "api_name": "db.Task", "line_number": 791, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 793, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 793, "usage_type": "name" }, { "api_name": "db.session.add", "line_number": 801, "usage_type": "call" }, { "api_name": "db.session", "line_number": 801, "usage_type": "attribute" }, { "api_name": "db.session.commit", "line_number": 802, "usage_type": "call" }, { "api_name": "db.session", "line_number": 802, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 804, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 806, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 807, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 807, "usage_type": "call" }, { "api_name": "db.session.query", "line_number": 809, "usage_type": "call" }, { "api_name": "db.session", "line_number": 809, "usage_type": "attribute" }, { "api_name": "db.Task", "line_number": 809, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 812, "usage_type": "call" }, { "api_name": "flask.g.user.in_group", "line_number": 816, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 816, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 816, "usage_type": "name" }, { "api_name": "db.session.query", "line_number": 817, "usage_type": "call" }, { "api_name": "db.session", "line_number": 817, "usage_type": "attribute" }, { "api_name": "db.Task", "line_number": 817, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 819, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 819, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 821, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 821, "usage_type": "name" }, { "api_name": "db.session.commit", "line_number": 823, "usage_type": "call" }, { "api_name": "db.session", "line_number": 823, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 824, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 824, "usage_type": "call" }, { "api_name": "wtforms.Form", "line_number": 827, "usage_type": "name" }, { "api_name": "wtforms.TextField", "line_number": 828, "usage_type": "call" }, { "api_name": "wtforms.validators.required", "line_number": 828, "usage_type": "call" }, { "api_name": "wtforms.validators", "line_number": 828, "usage_type": "name" }, { "api_name": "wtforms.SubmitField", "line_number": 829, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 833, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 833, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 836, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 836, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 837, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 837, "usage_type": "name" }, { "api_name": "flask.g.irc_messages.append", "line_number": 839, "usage_type": "call" }, { "api_name": "flask.g.irc_messages", "line_number": 839, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 839, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 843, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 850, "usage_type": "call" }, { "api_name": "logging.WARNING", "line_number": 851, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 852, "usage_type": "call" } ]
35445440233
from dexy.common import OrderedDict import dexy.database import dexy.doc import dexy.parser import dexy.reporter import inspect import json import logging import logging.handlers import os import shutil class Wrapper(object): """ Class that assists in interacting with Dexy, including running Dexy. """ DEFAULT_ARTIFACTS_DIR = 'artifacts' DEFAULT_CONFIG_FILE = 'dexy.conf' # Specification of dexy-wide config options. DEFAULT_DANGER = False DEFAULT_DB_ALIAS = 'sqlite3' DEFAULT_DB_FILE = 'dexy.sqlite3' DEFAULT_DISABLE_TESTS = False DEFAULT_DONT_USE_CACHE = False DEFAULT_DRYRUN = False DEFAULT_EXCLUDE = '' DEFAULT_GLOBALS = '' DEFAULT_HASHFUNCTION = 'md5' DEFAULT_IGNORE_NONZERO_EXIT = False DEFAULT_LOG_DIR = 'logs' DEFAULT_LOG_FILE = 'dexy.log' DEFAULT_LOG_FORMAT = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" DEFAULT_LOG_LEVEL = 'DEBUG' DEFAULT_RECURSE = True DEFAULT_REPORTS = 'output' DEFAULT_SILENT = False LOG_LEVELS = { 'DEBUG' : logging.DEBUG, 'INFO' : logging.INFO, 'WARN' : logging.WARN } RENAME_PARAMS = { 'artifactsdir' : 'artifacts_dir', 'conf' : 'config_file', 'dbalias' : 'db_alias', 'dbfile' : 'db_file', 'disabletests' : 'disable_tests', 'dryrun' : 'dry_run', 'ignore' : 'ignore_nonzero_exit', 'logfile' : 'log_file', 'logformat' : 'log_format', 'loglevel' : 'log_level', 'logsdir' : 'log_dir', 'nocache' : 'dont_use_cache' } SKIP_KEYS = ['h', 'help', 'version'] def __init__(self, *args, **kwargs): self.initialize_attribute_defaults() self.check_config_file_location(kwargs) self.load_config_file() self.update_attributes_from_config(kwargs) self.args = args self.docs_to_run = [] self.tasks = OrderedDict() self.pre_attrs = {} self.state = None def initialize_attribute_defaults(self): self.artifacts_dir = self.DEFAULT_ARTIFACTS_DIR self.config_file = self.DEFAULT_CONFIG_FILE self.danger = self.DEFAULT_DANGER self.db_alias = self.DEFAULT_DB_ALIAS self.db_file = self.DEFAULT_DB_FILE self.disable_tests = self.DEFAULT_DISABLE_TESTS self.dont_use_cache = self.DEFAULT_DONT_USE_CACHE self.dry_run = self.DEFAULT_DRYRUN self.exclude = self.DEFAULT_EXCLUDE self.globals = self.DEFAULT_GLOBALS self.hashfunction = self.DEFAULT_HASHFUNCTION self.ignore_nonzero_exit = self.DEFAULT_IGNORE_NONZERO_EXIT self.log_dir = self.DEFAULT_LOG_DIR self.log_file = self.DEFAULT_LOG_FILE self.log_format = self.DEFAULT_LOG_FORMAT self.log_level = self.DEFAULT_LOG_LEVEL self.recurse = self.DEFAULT_RECURSE self.reports = self.DEFAULT_REPORTS self.silent = self.DEFAULT_SILENT def check_config_file_location(self, kwargs): self.update_attributes_from_config(kwargs) def update_attributes_from_config(self, config): for key, value in config.iteritems(): if not key in self.SKIP_KEYS: corrected_key = self.RENAME_PARAMS.get(key, key) if not hasattr(self, corrected_key): raise Exception("no default for %s" % corrected_key) setattr(self, corrected_key, value) def load_config_file(self): """ Look for a config file in current working dir and loads it. """ if os.path.exists(self.config_file): with open(self.config_file) as f: try: conf = json.load(f) except ValueError as e: msg = inspect.cleandoc("""Was unable to parse the json in your config file '%s'. Here is information from the json parser:""" % self.config_file) msg += "\n" msg += str(e) raise dexy.exceptions.UserFeedback(msg) self.update_attributes_from_config(conf) @classmethod def default_config(klass): conf = klass().__dict__.copy() # Remove any attributes that aren't config options del conf['args'] del conf['docs_to_run'] del conf['tasks'] for cl_key, internal_key in klass.RENAME_PARAMS.iteritems(): conf[cl_key] = conf[internal_key] del conf[internal_key] return conf def db_path(self): return os.path.join(self.artifacts_dir, self.db_file) def log_path(self): return os.path.join(self.log_dir, self.log_file) def run(self): self.setup_run() self.log.debug("batch id is %s" % self.batch_id) self.state = 'populating' for doc in self.docs_to_run: for task in doc: task() self.state = 'settingup' for doc in self.docs_to_run: for task in doc: task() self.state = 'running' for doc in self.docs_to_run: for task in doc: task() self.state = 'complete' self.save_db() self.setup_graph() def setup_run(self): self.check_dexy_dirs() self.setup_log() self.setup_db() self.batch_id = self.db.next_batch_id() if not self.docs_to_run: self.setup_docs() def setup_read(self, batch_id=None): self.check_dexy_dirs() self.setup_log() self.setup_db() if batch_id: self.batch_id = batch_id else: self.batch_id = self.db.max_batch_id() def check_dexy_dirs(self): if not (os.path.exists(self.artifacts_dir) and os.path.exists(self.log_dir)): raise dexy.exceptions.UserFeedback("You need to run 'dexy setup' in this directory first.") def setup_dexy_dirs(self): if not os.path.exists(self.artifacts_dir): os.mkdir(self.artifacts_dir) if not os.path.exists(self.log_dir): os.mkdir(self.log_dir) def remove_dexy_dirs(self): shutil.rmtree(self.artifacts_dir) shutil.rmtree(self.log_dir) # TODO remove reports dirs def setup_log(self): try: loglevel = self.LOG_LEVELS[self.log_level.upper()] except KeyError: msg = "'%s' is not a valid log level, check python logging module docs." raise dexy.exceptions.UserFeedback(msg % self.log_level) self.log = logging.getLogger('dexy') self.log.setLevel(loglevel) handler = logging.handlers.RotatingFileHandler( self.log_path(), encoding="utf-8") formatter = logging.Formatter(self.log_format) handler.setFormatter(formatter) self.log.addHandler(handler) def setup_db(self): db_class = dexy.database.Database.aliases[self.db_alias] self.db = db_class(self) def setup_docs(self): for arg in self.args: self.log.debug("Processing arg %s" % arg) doc = self.create_doc_from_arg(arg) if not doc: raise Exception("no doc created for %s" % arg) doc.wrapper = self self.docs_to_run.append(doc) def create_doc_from_arg(self, arg, *children, **kwargs): if isinstance(arg, dexy.task.Task): return arg elif isinstance(arg, list): if not isinstance(arg[0], basestring): msg = "First arg in %s should be a string" % arg raise dexy.exceptions.UserFeedback(msg) if not isinstance(arg[1], dict): msg = "Second arg in %s should be a dict" % arg raise dexy.exceptions.UserFeedback(msg) if kwargs: raise Exception("Shouldn't have kwargs if arg is a list") if children: raise Exception("Shouldn't have children if arg is a list") alias, pattern = dexy.parser.AbstractSyntaxTree.qualify_key(arg[0]) return dexy.task.Task.create(alias, pattern, **arg[1]) elif isinstance(arg, basestring): alias, pattern = dexy.parser.AbstractSyntaxTree.qualify_key(arg[0]) return dexy.task.Task.create(alias, pattern, *children, **kwargs) else: raise Exception("unknown arg type %s for arg %s" % (arg.__class__.__name__, arg)) def save_db(self): self.db.save() ## DOCUMENTED above here.. def run_docs(self, *docs): """ Convenience method for testing to add docs and then run them. """ self.setup_dexy_dirs() self.docs_to_run = docs self.run() def register(self, task): """ Register a task with the wrapper """ self.tasks[task.key_with_class()] = task def registered_docs(self): return [d for d in self.tasks.values() if isinstance(d, dexy.doc.Doc)] def registered_doc_names(self): return [d.name for d in self.registered_docs()] def reports_dirs(self): return [c.REPORTS_DIR for c in dexy.reporter.Reporter.plugins] def report(self, *reporters): """ Runs reporters. Either runs reporters which have been passed in or, if none, then runs all available reporters which have ALLREPORTS set to true. """ if not reporters: reporters = [c() for c in dexy.reporter.Reporter.plugins if c.ALLREPORTS] for reporter in reporters: self.log.debug("Running reporter %s" % reporter.ALIASES[0]) reporter.run(self) def get_child_hashes_in_previous_batch(self, parent_hashstring): return self.db.get_child_hashes_in_previous_batch(self.batch_id, parent_hashstring) def load_doc_config(self): """ Look for document config files in current working dir and load them. """ parser_aliases = dexy.parser.Parser.aliases for k in parser_aliases.keys(): if os.path.exists(k): self.log.debug("found doc config file '%s'" % k) parser = parser_aliases[k](self) with open(k, "r") as f: self.doc_config = f.read() parser.parse(self.doc_config) break def setup_config(self): self.setup_dexy_dirs() self.setup_log() self.load_doc_config() def cleanup_partial_run(self): if hasattr(self, 'db'): # TODO remove any entries which don't have self.db.save() def setup_graph(self): """ Creates a dot representation of the tree. """ graph = ["digraph G {"] for task in self.tasks.values(): if hasattr(task, 'artifacts'): task_label = task.key_with_class().replace("|", "\|") label = """ "%s" [shape=record, label="%s\\n\\n""" % (task.key_with_class(), task_label) for child in task.artifacts: label += "%s\l" % child.key_with_class().replace("|", "\|") label += "\"];" graph.append(label) for child in task.children: if not child in task.artifacts: graph.append(""" "%s" -> "%s";""" % (task.key_with_class(), child.key_with_class())) elif "Artifact" in task.__class__.__name__: pass else: graph.append(""" "%s" [shape=record];""" % task.key_with_class()) for child in task.children: graph.append(""" "%s" -> "%s";""" % (task.key_with_class(), child.key_with_class())) graph.append("}") self.graph = "\n".join(graph)
gotosprey/dexy
dexy/wrapper.py
wrapper.py
py
11,970
python
en
code
null
github-code
6
[ { "api_name": "logging.DEBUG", "line_number": 38, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 39, "usage_type": "attribute" }, { "api_name": "logging.WARN", "line_number": 40, "usage_type": "attribute" }, { "api_name": "dexy.common.OrderedDict", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path", "line_number": 108, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 111, "usage_type": "call" }, { "api_name": "inspect.cleandoc", "line_number": 113, "usage_type": "call" }, { "api_name": "dexy.common.exceptions.UserFeedback", "line_number": 117, "usage_type": "call" }, { "api_name": "dexy.common.exceptions", "line_number": 117, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 117, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 137, "usage_type": "call" }, { "api_name": "os.path", "line_number": 137, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 140, "usage_type": "call" }, { "api_name": "os.path", "line_number": 140, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 190, "usage_type": "call" }, { "api_name": "os.path", "line_number": 190, "usage_type": "attribute" }, { "api_name": "dexy.common.exceptions.UserFeedback", "line_number": 191, "usage_type": "call" }, { "api_name": "dexy.common.exceptions", "line_number": 191, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 191, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 194, "usage_type": "call" }, { "api_name": "os.path", "line_number": 194, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 195, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 196, "usage_type": "call" }, { "api_name": "os.path", "line_number": 196, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 197, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 200, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 201, "usage_type": "call" }, { "api_name": "dexy.common.exceptions.UserFeedback", "line_number": 209, "usage_type": "call" }, { "api_name": "dexy.common.exceptions", "line_number": 209, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 209, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 211, "usage_type": "call" }, { "api_name": "logging.handlers.RotatingFileHandler", "line_number": 214, "usage_type": "call" }, { "api_name": "logging.handlers", "line_number": 214, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 218, "usage_type": "call" }, { "api_name": "dexy.common.database", "line_number": 224, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 224, "usage_type": "name" }, { "api_name": "dexy.common.task", "line_number": 237, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 237, "usage_type": "name" }, { "api_name": "dexy.common.exceptions.UserFeedback", "line_number": 243, "usage_type": "call" }, { "api_name": "dexy.common.exceptions", "line_number": 243, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 243, "usage_type": "name" }, { "api_name": "dexy.common.exceptions.UserFeedback", "line_number": 247, "usage_type": "call" }, { "api_name": "dexy.common.exceptions", "line_number": 247, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 247, "usage_type": "name" }, { "api_name": "dexy.common.parser.AbstractSyntaxTree.qualify_key", "line_number": 255, "usage_type": "call" }, { "api_name": "dexy.common.parser", "line_number": 255, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 255, "usage_type": "name" }, { "api_name": "dexy.common.task.Task.create", "line_number": 256, "usage_type": "call" }, { "api_name": "dexy.common.task", "line_number": 256, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 256, "usage_type": "name" }, { "api_name": "dexy.common.parser.AbstractSyntaxTree.qualify_key", "line_number": 259, "usage_type": "call" }, { "api_name": "dexy.common.parser", "line_number": 259, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 259, "usage_type": "name" }, { "api_name": "dexy.common.task.Task.create", "line_number": 260, "usage_type": "call" }, { "api_name": "dexy.common.task", "line_number": 260, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 260, "usage_type": "name" }, { "api_name": "dexy.common.doc", "line_number": 285, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 285, "usage_type": "name" }, { "api_name": "dexy.common.reporter", "line_number": 291, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 291, "usage_type": "name" }, { "api_name": "dexy.common.reporter", "line_number": 300, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 300, "usage_type": "name" }, { "api_name": "dexy.common.parser", "line_number": 313, "usage_type": "attribute" }, { "api_name": "dexy.common", "line_number": 313, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 315, "usage_type": "call" }, { "api_name": "os.path", "line_number": 315, "usage_type": "attribute" } ]
38791493575
from flask import Flask from flask_restful import Resource, Api import __init__ app=Flask(__name__) api=Api(app) class Quote(Resource): @app.route('/wifi/<int:id>') def get(id): x=main.main_(id) if x==-1: return 'Not found', 404 else: return x, 200 @app.route('/trace') def trace(): x=main.output() return x, 200 if __name__ == '__main__': app.run(host="0.0.0.0", port="8080",debug=True)
Kaedone/WI-FI_checker
api.py
api.py
py
510
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 7, "usage_type": "call" }, { "api_name": "flask_restful.Api", "line_number": 8, "usage_type": "call" }, { "api_name": "flask_restful.Resource", "line_number": 11, "usage_type": "name" } ]
73027941309
from google.cloud import storage import os input_folder = "../Crop_Reports/Bengal Gazettes Chunks/" bucket_name = "calcutta-gazette" def explicit(bucket_name, source_name, path): # Explicitly use service account credentials by specifying the private key # file. storage_client = storage.Client.from_service_account_json('../API_Keys/Famine Research OCR-cdf9018b001d.json') destination_name = source_name source_name2 = os.path.join(path, source_name) # Make an authenticated API request # buckets = list(storage_client.list_buckets()) bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(destination_name) if not blob.exists(): blob.upload_from_filename(source_name2) if __name__ == '__main__': folder_list = os.listdir(input_folder) for folder in folder_list: path = os.path.join(input_folder, folder) file_list = os.listdir(path) for file in file_list: print(file) explicit(bucket_name, file, path)
jgoman99/British-Bengal-Weekly-Crop-Reports
Python Code/splits_to_cloud.py
splits_to_cloud.py
py
1,067
python
en
code
0
github-code
6
[ { "api_name": "google.cloud.storage.Client.from_service_account_json", "line_number": 13, "usage_type": "call" }, { "api_name": "google.cloud.storage.Client", "line_number": 13, "usage_type": "attribute" }, { "api_name": "google.cloud.storage", "line_number": 13, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 33, "usage_type": "call" } ]
40132948104
import argparse from math import sqrt import Image import ImageDraw def color_map(v): assert 0 <= v <= 255 if v == 0: return (0, 0, 0) if v == 255: return (255, 255, 255) if v < 4 * 8: # 0 .. 31 return (0, 255 - (31 * 4) + v * 4, 0) if v < 16 * 8: # 32 .. 127 # 0 .. 95 return (128 + (v - 32) * 127 / 95, 0, 0) return (0, v, v) def convert(): if args.test: data = map(chr, range(256)) else: data = file(args.in_file).read() size = len(data) w = 1 while size / w > w * 8: w *= 2 h = size / w if size % w != 0: h += 1 image = Image.new('RGB', (w, h)) d = ImageDraw.Draw(image) for i, c in enumerate(data): d.point((i % w, i / w), color_map(ord(c))) image.save(args.out_file, 'PNG') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Show binary in color pattern') parser.add_argument('--test', action='store_true') parser.add_argument('in_file', action='store') parser.add_argument('--out_file', action='store', default='out.png') args = parser.parse_args() convert()
nishio/binary_color
binary_color.py
binary_color.py
py
1,161
python
en
code
1
github-code
6
[ { "api_name": "Image.new", "line_number": 35, "usage_type": "call" }, { "api_name": "ImageDraw.Draw", "line_number": 36, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 43, "usage_type": "call" } ]
39784068604
import filecmp, os, sys sys.path.append('c:\\dev\\pytWinc\\superpy') sys.path.append('c:\\dev\\pytWinc\\superpy\\utils_superpy') from utils.utils import calculate_inventory, get_path_to_directory_of_file directory_of_testcase = "fn_calculate_inventory" path_to_directory_of_testcase = get_path_to_directory_of_file(directory_of_testcase) # input test files: path_to_input_file_sold_test_01 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_sold_for_testcase_01.csv') path_to_input_file_cost_test_01 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_cost_for_testcase_01.csv') path_to_input_file_sold_test_02 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_sold_for_testcase_02.csv') path_to_input_file_cost_test_02 = os.path.join(path_to_directory_of_testcase, "test_input", 'input_file_cost_for_testcase_02.csv') ''' about the data structure of expected testresult: list of lists is a common and convenient (but not the only) way to create tables in Python. This also applies to Rich. So expected test results take the shape of a list with lists. This has worked while testing fn calculate_expired_products_on_day. ''' def test_01_calculate_inventory_happy_flow(): filecmp.clear_cache() date_on_which_to_calculate_inventory = '2024-05-21' expected_test_result = [['b_3', 'candle', '3.1', '2024-01-11', 'does not expire'], ['b_6', 'book', '0.5', '2024-01-15', 'does not expire'], ['b_39', 'skeelers', '1.1', '2024-04-20', 'does not expire'], ['b_45', 'shoes', '1.4', '2024-04-30', 'does not expire'], ['b_48', 'fish', '2.5', '2024-05-08', '2024-05-23'], ['b_51', 'kiwi', '0.5', '2024-05-15', '2024-05-30'], ['b_54', 'onion', '1.1', '2024-05-21', '2024-06-05']] actual_result = calculate_inventory(date_on_which_to_calculate_inventory, path_to_input_file_sold_test_01, path_to_input_file_cost_test_01) assert actual_result == expected_test_result def test_02_calculate_inventory_happy_flow(): filecmp.clear_cache() date_on_which_to_calculate_inventory = '2023-11-15' expected_test_result = [['b_6', 'garbage_bag', '5.2', '2023-10-17', 'does not expire'], ['b_26', 'tomato', '2.5', '2023-10-31', '2023-11-15'], ['b_28', 'lettuce', '0.5', '2023-11-01', '2023-11-16'], ['b_30', 'lettuce', '4.0', '2023-11-02', '2023-11-17'], ['b_32', 'tomato', '5.2', '2023-11-03', '2023-11-18'], ['b_34', 'lightbulb', '4.0', '2023-11-06', 'does not expire'], ['b_36', 'tomato', '4.0', '2023-11-07', '2023-11-22'], ['b_38', 'rice', '0.5', '2023-11-08', '2023-11-23'], ['b_40', 'cheese', '1.4', '2023-11-09', '2023-11-24'], ['b_42', 'book', '5.2', '2023-11-11', 'does not expire'], ['b_44', 'oats', '0.5', '2023-11-14', '2023-11-29']] actual_result = calculate_inventory(date_on_which_to_calculate_inventory, path_to_input_file_sold_test_02, path_to_input_file_cost_test_02) assert actual_result == expected_test_result
davidjfk/David_Sneek_Superpy
test_utils/fn_calculate_inventory/test_calculate_inventory.py
test_calculate_inventory.py
py
2,936
python
en
code
0
github-code
6
[ { "api_name": "sys.path.append", "line_number": 2, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 2, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "utils.utils.get_path_to_directory_of_file", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "filecmp.clear_cache", "line_number": 29, "usage_type": "call" }, { "api_name": "utils.utils.calculate_inventory", "line_number": 32, "usage_type": "call" }, { "api_name": "filecmp.clear_cache", "line_number": 38, "usage_type": "call" }, { "api_name": "utils.utils.calculate_inventory", "line_number": 42, "usage_type": "call" } ]
43626494196
# VIIRS packge from __future__ import division, print_function import datetime import numpy as np from osgeo import gdal from scipy import ndimage import core import env bumper = env.environment() class viirs(core.raster): def __init__(self): core.raster.__init__(self,'viirs') return def read(self,infile): out = self._copy() tree = '//HDFEOS/GRIDS/VNP_Grid_{}_2D/Data_Fields/' field = 'SurfReflect_{0}{1}_1' base = 'HDF5:"{0}":{1}{2}' m = [i for i in range(12) if i not in [0,6,9]] i = [i for i in range(1,4)] bands = [m,i] res = ['1km','500m'] mode = ['M','I'] band = gdal.Open(base.format(infile,tree.format('1km'),field.format('QF',1))) out.metadata = band.GetMetadata() cloudQA = self._extractBits(band.ReadAsArray(),2,3) hiresCloudQA = ndimage.zoom(cloudQA,2,order=0) band = None band = gdal.Open(base.format(infile,tree.format('1km'),field.format('QF',2))) shadowQA = self._extractBits(band.ReadAsArray(),3,3) hiresShadowQA = ndimage.zoom(shadowQA,2,order=0) # qa = (cloudQA>0)&(shadowQA<1) mask = ~(hiresCloudQA>0)&(hiresShadowQA<1) east,west = float(out.metadata['EastBoundingCoord']), float(out.metadata['WestBoundingCoord']) north,south = float(out.metadata['NorthBoundingCoord']), float(out.metadata['SouthBoundingCoord']) out.extent = [west,south,east,north] databands = {'mask':mask} bandNames = ['mask'] for i in range(2): for j in range(len(bands[i])): subdataset = base.format(infile,tree.format(res[i]),field.format(mode[i],bands[i][j])) band = gdal.Open(subdataset) if i == 0: data = ndimage.zoom(band.ReadAsArray(),2,order=0) else: data = band.ReadAsArray() data = np.ma.masked_where(data<0,data) data = np.ma.masked_where(data>10000,data) bName = '{0}{1}'.format(mode[i],bands[i][j]) databands[bName] = data.astype(np.int16) bandNames.append(bName) band = None data = None out.bands = databands out.bandNames = bandNames out.updateMask() coords = {} out.nativeCRS = {'init':'epsg:6974'} out.proj = '+proj=sinu +R=6371007.181 +nadgrids=@null +wktext' coords['lon'],coords['lat'] = self._geoGrid(out.extent,out.bands['I1'].shape,out.proj,wgsBounds=False) out.coords = coords out.gt = None date = '{0}{1}{2}'.format(out.metadata['RangeBeginningDate'],out.metadata['RangeBeginningTime'],' UTC') out.coords['date'] = datetime.datetime.strptime(date, '%Y-%m-%d %H:%M:%S.%f %Z') return out
Servir-Mekong/bump
bump/viirs.py
viirs.py
py
2,977
python
en
code
0
github-code
6
[ { "api_name": "env.environment", "line_number": 14, "usage_type": "call" }, { "api_name": "core.raster", "line_number": 17, "usage_type": "attribute" }, { "api_name": "core.raster.__init__", "line_number": 20, "usage_type": "call" }, { "api_name": "core.raster", "line_number": 20, "usage_type": "attribute" }, { "api_name": "osgeo.gdal.Open", "line_number": 40, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 40, "usage_type": "name" }, { "api_name": "scipy.ndimage.zoom", "line_number": 43, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 43, "usage_type": "name" }, { "api_name": "osgeo.gdal.Open", "line_number": 46, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 46, "usage_type": "name" }, { "api_name": "scipy.ndimage.zoom", "line_number": 48, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 48, "usage_type": "name" }, { "api_name": "osgeo.gdal.Open", "line_number": 67, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 67, "usage_type": "name" }, { "api_name": "scipy.ndimage.zoom", "line_number": 69, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 69, "usage_type": "name" }, { "api_name": "numpy.ma.masked_where", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.ma", "line_number": 73, "usage_type": "attribute" }, { "api_name": "numpy.ma.masked_where", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.ma", "line_number": 74, "usage_type": "attribute" }, { "api_name": "numpy.int16", "line_number": 77, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 102, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 102, "usage_type": "attribute" } ]
72579615228
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 17 11:47:02 2019 @author: hwan - Took out relevant code from dolfin's plotting.py _plot_matplotlib code - To enter dolfin's own plotting code, use dl.plot(some_dolfin_object) wheresome_dolfin_object is a 3D object and an error will be thrown up """ import matplotlib.pyplot as plt import dolfin.cpp as cpp import pdb #Equivalent of keyboard in MATLAB, just add "pdb.set_trace()" def plot_3D(obj, title, angle_1, angle_2): # Importing this toolkit has side effects enabling 3d support from mpl_toolkits.mplot3d import Axes3D # noqa # Enabling the 3d toolbox requires some additional arguments plt.title(title) ax = plt.gca(projection='3d') ax.set_aspect('auto') ax.view_init(angle_1, angle_2) # For dolfin.function.Function, extract cpp_object if hasattr(obj, "cpp_object"): obj = obj.cpp_object() if isinstance(obj, cpp.function.Function): return my_mplot_function(ax, obj,) elif isinstance(obj, cpp.mesh.Mesh): return my_mplot_mesh(ax, obj) def my_mplot_mesh(ax, mesh): tdim = mesh.topology().dim() gdim = mesh.geometry().dim() if gdim == 3 and tdim == 3: bmesh = cpp.mesh.BoundaryMesh(mesh, "exterior", order=False) my_mplot_mesh(ax, bmesh) elif gdim == 3 and tdim == 2: xy = mesh.coordinates() return ax.plot_trisurf(*[xy[:, i] for i in range(gdim)], triangles=mesh.cells()) def my_mplot_function(ax, f): mesh = f.function_space().mesh() gdim = mesh.geometry().dim() C = f.compute_vertex_values(mesh) X = [mesh.coordinates()[:, i] for i in range(gdim)] return ax.scatter(*X, c=C)
cotran2/Thermal_Fin_Heat_Simulator
Utilities/plot_3D.py
plot_3D.py
py
1,852
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.title", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "dolfin.cpp.function", "line_number": 27, "usage_type": "attribute" }, { "api_name": "dolfin.cpp", "line_number": 27, "usage_type": "name" }, { "api_name": "dolfin.cpp.mesh", "line_number": 29, "usage_type": "attribute" }, { "api_name": "dolfin.cpp", "line_number": 29, "usage_type": "name" }, { "api_name": "dolfin.cpp.mesh.BoundaryMesh", "line_number": 36, "usage_type": "call" }, { "api_name": "dolfin.cpp.mesh", "line_number": 36, "usage_type": "attribute" }, { "api_name": "dolfin.cpp", "line_number": 36, "usage_type": "name" } ]
38365303311
from datetime import datetime, timedelta import logging import os import json import pandas as pd import requests try: from .exceptions import ApexApiException except: from exceptions import ApexApiException class Apex_API: def __init__(self, api_key: str): self.api_key = api_key logging.basicConfig( level=logging.INFO, format="[%(levelname)s] %(asctime)s %(message)s", datefmt="%Y-%m-%d %I:%M:%S %p", # this defines the date format for the (asctime) part above handlers=[logging.StreamHandler()], # this means store logs to a example.log file as well as print them to the terminal ) logging.getLogger("requests").setLevel( logging.WARNING ) # get rid of https debug gahbage def ___iter__(self): logging.info("what") def __str__(self): return "Apex API Client Object" def __repr__(self): return "Apex API" def get_apex_player_stats(self, player: str) -> pd.DataFrame: try: data = requests.get( f"https://api.mozambiquehe.re/bridge?version=5&platform=PC&player={player}&auth={self.api_key}" ) logging.info( f"Grabbing data for Player {player}, Status Code was {data.status_code}" ) df = data.json() return df except BaseException as e: logging.error(e) raise ApexApiException def get_apex_map_rotation(self) -> pd.DataFrame: try: data = requests.get( f"https://api.mozambiquehe.re/maprotation?version=2&auth={self.api_key}" ) logging.info( f"Grabbing data for current Map Rotation, Status Code was {data.status_code}" ) df = data.json() df_current = pd.DataFrame([df["battle_royale"]["current"]]) df_current["type"] = "current" df_next = pd.DataFrame([df["battle_royale"]["next"]]) df_next["remainingSecs"] = 0 df_next["remainingMins"] = 0 df_next["remainingTimer"] = "00:00:00" df_next["type"] = "next" df_combo = pd.concat([df_current, df_next]) logging.info(f"Grabbing {len(df_combo)} Records for Apex Map Rotation") return df_combo except BaseException as e: logging.error(e) raise ApexApiException
jyablonski/apex_api_scraper
src/utils.py
utils.py
py
2,484
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 19, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 20, "usage_type": "attribute" }, { "api_name": "logging.StreamHandler", "line_number": 23, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 26, "usage_type": "call" }, { "api_name": "logging.WARNING", "line_number": 27, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 31, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 44, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 50, "usage_type": "call" }, { "api_name": "exceptions.ApexApiException", "line_number": 51, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 39, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 55, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 58, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 63, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 66, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 72, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 73, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 77, "usage_type": "call" }, { "api_name": "exceptions.ApexApiException", "line_number": 78, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 53, "usage_type": "attribute" } ]
40695061264
"""empty message Revision ID: 41124ac6e47e Revises: 57296b50c499 Create Date: 2014-11-30 17:08:44.396000 """ # revision identifiers, used by Alembic. revision = '41124ac6e47e' down_revision = '57296b50c499' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('provider', sa.Column('address', sa.String(length=250), nullable=True)) op.add_column('provider', sa.Column('emails', sa.String(length=250), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('provider', 'emails') op.drop_column('provider', 'address') ### end Alembic commands ###
StasEvseev/adminbuy
migrations/versions/41124ac6e47e_.py
41124ac6e47e_.py
py
800
python
en
code
0
github-code
6
[ { "api_name": "alembic.op.add_column", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 36, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op.add_column", "line_number": 37, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 37, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 37, "usage_type": "call" }, { "api_name": "alembic.op.drop_column", "line_number": 47, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 47, "usage_type": "name" }, { "api_name": "alembic.op.drop_column", "line_number": 48, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 48, "usage_type": "name" } ]
73785815229
"""empty message Revision ID: 391b24b33343 Revises: e4338c095afb Create Date: 2021-06-24 16:47:10.434392 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '391b24b33343' down_revision = 'e4338c095afb' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('post_id', sa.Integer(), nullable=False), sa.Column('body', sa.String(length=1000), nullable=False), sa.ForeignKeyConstraint(['post_id'], ['posts.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('post_reactions', sa.Column('reaction', sa.Boolean(), nullable=True)) op.drop_constraint('post_reactions_post_id_fkey', 'post_reactions', type_='foreignkey') op.create_foreign_key(None, 'post_reactions', 'posts', ['post_id'], ['id'], ondelete='CASCADE') op.drop_column('post_reactions', '_reaction') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('post_reactions', sa.Column('_reaction', sa.BOOLEAN(), autoincrement=False, nullable=True)) op.drop_constraint(None, 'post_reactions', type_='foreignkey') op.create_foreign_key('post_reactions_post_id_fkey', 'post_reactions', 'posts', ['post_id'], ['id']) op.drop_column('post_reactions', 'reaction') op.drop_table('comments') # ### end Alembic commands ###
composerben/flask-group-project
migrations/versions/20210624_164710_fix_migration.py
20210624_164710_fix_migration.py
py
1,640
python
en
code
13
github-code
6
[ { "api_name": "alembic.op.create_table", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 28, "usage_type": "call" }, { "api_name": "alembic.op.add_column", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op.drop_constraint", "line_number": 31, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 31, "usage_type": "name" }, { "api_name": "alembic.op.create_foreign_key", "line_number": 32, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 32, "usage_type": "name" }, { "api_name": "alembic.op.drop_column", "line_number": 33, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 33, "usage_type": "name" }, { "api_name": "alembic.op.add_column", "line_number": 39, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 39, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlalchemy.BOOLEAN", "line_number": 39, "usage_type": "call" }, { "api_name": "alembic.op.drop_constraint", "line_number": 40, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 40, "usage_type": "name" }, { "api_name": "alembic.op.create_foreign_key", "line_number": 41, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 41, "usage_type": "name" }, { "api_name": "alembic.op.drop_column", "line_number": 42, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 42, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 43, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 43, "usage_type": "name" } ]
33983748034
from django.shortcuts import render, redirect from django.views.generic import ListView, \ CreateView, DetailView, UpdateView, DeleteView from .models import Post, Review from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from accounts.models import UserFollows from .forms import PostForm, ReviewForm from django.template.defaulttags import register from django.contrib import messages @register.filter # helps us loop over the review's rating and # add stars for the range of the int variable; rating def get_range(value): return range(value) def flow(request): following = UserFollows.objects.filter(following=request.user) follower = UserFollows.objects.filter(follower=request.user) posts = [] reviews = [] for post in Post.objects.all().order_by('-date_posted'): posts.append(post) for review in Review.objects.all().order_by('-date_posted'): reviews.append(review) posts_reviews = [] for post in posts: if post.author == request.user: posts_reviews.append(post) print(post) for contact in follower: if post.author == contact.following: posts_reviews.append(post) for review in reviews: if review.author == request.user: posts_reviews.append(review) for contact in follower: if review.author == contact.following: posts_reviews.append(review) if review.ticket.author == request.user: posts_reviews.append(review) posts_reviews = list(set(posts_reviews)) posts_reviews.sort(key=lambda x: x.date_posted, reverse=True) for p in posts_reviews: print(p.type) context = { 'follower': follower, 'following': following, 'post_review': posts_reviews } return render(request, 'flow.html', context) class ReviewCreateView(LoginRequiredMixin, CreateView): model = Review fields = ['ticket', 'headline', 'rating', 'content', ] def form_valid(self, form): form.instance.author = self.request.user try: return super().form_valid(form) except ValueError: messages.add_message(self.request, messages.INFO, 'Hello world.') class ReviewDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = Review success_url = '/' def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostCreateView(LoginRequiredMixin, CreateView): model = Post fields = ['title', 'content', 'header_image'] def form_valid(self, form): form.instance.author = self.request.user return super().form_valid(form) class PostUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = Post fields = ['title', 'content', 'header_image'] def form_valid(self, form): form.instance.author = self.request.user self.object = form.save() return super().form_valid(form) def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = Post success_url = '/' def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False class PostListView(ListView): model = Post context_object_name = 'posts' ordering = ['-date_posted'] class ReviewListView(ListView): model = Review context_object_name = 'reviews' ordering = ['-date_posted'] class PostDetailView(DetailView): model = Post class ReviewDetailView(DetailView): model = Review class ReviewUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = Review fields = ['headline', 'body', 'rating'] def form_valid(self, form): form.instance.author = self.request.user self.object = form.save() return super().form_valid(form) def test_func(self): post = self.get_object() if self.request.user == post.author: return True else: return False def review_create_view(request): form2 = PostForm(request.POST, request.FILES or None) form = ReviewForm(request.POST or None) context = { "form2": form2, "form": form, } if all([form2.is_valid(), form.is_valid()]): current_user = request.user parent = form2.save(commit=False) parent.author_id = current_user.id parent.reviewed = 'true' parent.save() child = form.save(commit=False) child.author_id = current_user.id child.ticket = parent child.save() print("form", form.cleaned_data) print("form2", form2.cleaned_data) context['message'] = 'data saved' return redirect('flow') # return render(request, 'reviews/review_create.html', context) else: return render(request, 'reviews/review_create.html', context) def review_of_ticket(request, pk): instance = Post.objects.get(id=pk) form = ReviewForm(request.POST or None) review_form_ticket = instance context = { "form": form, "ticket": review_form_ticket, } if form.is_valid(): current_user = request.user child = form.save(commit=False) child.author_id = current_user.id child.ticket = instance instance.reviewed = 'true' child.save() instance.save() form.save() return redirect('flow') else: return render(request, "website/review_form.html", context,) def view_tickets_reviews(request): object1 = Post.objects.filter(author=request.user).order_by('-date_posted') object2 = Review.objects.filter( author=request.user).order_by('-date_posted') context = { 'object1': object1, 'object2': object2, } return render(request, "website/review_post_detail.html", context)
maximesoydas/maxweb
website/views.py
views.py
py
6,223
python
en
code
0
github-code
6
[ { "api_name": "django.template.defaulttags.register.filter", "line_number": 13, "usage_type": "attribute" }, { "api_name": "django.template.defaulttags.register", "line_number": 13, "usage_type": "name" }, { "api_name": "accounts.models.UserFollows.objects.filter", "line_number": 21, "usage_type": "call" }, { "api_name": "accounts.models.UserFollows.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "accounts.models.UserFollows", "line_number": 21, "usage_type": "name" }, { "api_name": "accounts.models.UserFollows.objects.filter", "line_number": 22, "usage_type": "call" }, { "api_name": "accounts.models.UserFollows.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "accounts.models.UserFollows", "line_number": 22, "usage_type": "name" }, { "api_name": "models.Post.objects.all", "line_number": 25, "usage_type": "call" }, { "api_name": "models.Post.objects", "line_number": 25, "usage_type": "attribute" }, { "api_name": "models.Post", "line_number": 25, "usage_type": "name" }, { "api_name": "models.Review.objects.all", "line_number": 27, "usage_type": "call" }, { "api_name": "models.Review.objects", "line_number": 27, "usage_type": "attribute" }, { "api_name": "models.Review", "line_number": 27, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 59, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 62, "usage_type": "name" }, { "api_name": "django.views.generic.CreateView", "line_number": 62, "usage_type": "name" }, { "api_name": "models.Review", "line_number": 63, "usage_type": "name" }, { "api_name": "django.contrib.messages.add_message", "line_number": 71, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 71, "usage_type": "name" }, { "api_name": "django.contrib.messages.INFO", "line_number": 71, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 74, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.UserPassesTestMixin", "line_number": 74, "usage_type": "name" }, { "api_name": "django.views.generic.DeleteView", "line_number": 74, "usage_type": "name" }, { "api_name": "models.Review", "line_number": 75, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 86, "usage_type": "name" }, { "api_name": "django.views.generic.CreateView", "line_number": 86, "usage_type": "name" }, { "api_name": "models.Post", "line_number": 87, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 95, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.UserPassesTestMixin", "line_number": 95, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 95, "usage_type": "name" }, { "api_name": "models.Post", "line_number": 96, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 112, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.UserPassesTestMixin", "line_number": 112, "usage_type": "name" }, { "api_name": "django.views.generic.DeleteView", "line_number": 112, "usage_type": "name" }, { "api_name": "models.Post", "line_number": 113, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 124, "usage_type": "name" }, { "api_name": "models.Post", "line_number": 125, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 130, "usage_type": "name" }, { "api_name": "models.Review", "line_number": 131, "usage_type": "name" }, { "api_name": "django.views.generic.DetailView", "line_number": 136, "usage_type": "name" }, { "api_name": "models.Post", "line_number": 137, "usage_type": "name" }, { "api_name": "django.views.generic.DetailView", "line_number": 140, "usage_type": "name" }, { "api_name": "models.Review", "line_number": 141, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 144, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.UserPassesTestMixin", "line_number": 144, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 144, "usage_type": "name" }, { "api_name": "models.Review", "line_number": 145, "usage_type": "name" }, { "api_name": "forms.PostForm", "line_number": 162, "usage_type": "call" }, { "api_name": "forms.ReviewForm", "line_number": 163, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 184, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 187, "usage_type": "call" }, { "api_name": "models.Post.objects.get", "line_number": 192, "usage_type": "call" }, { "api_name": "models.Post.objects", "line_number": 192, "usage_type": "attribute" }, { "api_name": "models.Post", "line_number": 192, "usage_type": "name" }, { "api_name": "forms.ReviewForm", "line_number": 193, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 208, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 211, "usage_type": "call" }, { "api_name": "models.Post.objects.filter", "line_number": 215, "usage_type": "call" }, { "api_name": "models.Post.objects", "line_number": 215, "usage_type": "attribute" }, { "api_name": "models.Post", "line_number": 215, "usage_type": "name" }, { "api_name": "models.Review.objects.filter", "line_number": 216, "usage_type": "call" }, { "api_name": "models.Review.objects", "line_number": 216, "usage_type": "attribute" }, { "api_name": "models.Review", "line_number": 216, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 224, "usage_type": "call" } ]
25497427443
import numpy as np from PIL import Image import matplotlib.pyplot as plt import matplotlib.image as mpimg class TinyImageNet: def __init__(self, root, train=True, transform=None, target_transform=None, test_transform=None, target_test_transform=None): self.transform = transform self.target_transform = target_transform self.target_test_transform = target_test_transform self.test_transform = test_transform self.TrainData = [] self.TrainLabels = [] self.TestData = [] self.TestLabels = [] if train: path = root + '/TinyImageNet/train/' else: path = root + '/TinyImageNet/val/' self.data = np.load(path + 'data.npy') self.targets = np.load(path + 'targets.npy') def concatenate(self, datas, labels): con_data = datas[0] con_label = labels[0] for i in range(1, len(datas)): con_data = np.concatenate((con_data, datas[i]), axis=0) con_label = np.concatenate((con_label, labels[i]), axis=0) con_label = np.array(con_label, dtype=np.int64) return con_data, con_label def getTestData(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) datas, labels = self.concatenate(datas, labels) self.TestData = datas if self.TestData == [] else np.concatenate((self.TestData, datas), axis=0) self.TestLabels = labels if self.TestLabels == [] else np.concatenate((self.TestLabels, labels), axis=0) print("the size of test set is %s" % (str(self.TestData.shape))) print("the size of test label is %s" % str(self.TestLabels.shape)) def getTestData_up2now(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) datas, labels = self.concatenate(datas, labels) self.TestData = datas self.TestLabels = labels print("the size of test set is %s" % (str(datas.shape))) print("the size of test label is %s" % str(labels.shape)) def getTrainData(self, classes): datas, labels = [], [] for label in range(classes[0], classes[1]): data = self.data[np.array(self.targets) == label] datas.append(data) labels.append(np.full((data.shape[0]), label)) self.TrainData, self.TrainLabels = self.concatenate(datas, labels) print("the size of train set is %s" % (str(self.TrainData.shape))) print("the size of train label is %s" % str(self.TrainLabels.shape)) def getTrainItem(self, index): img, target = Image.fromarray(self.TrainData[index]), self.TrainLabels[index] if self.transform: img = self.transform(img) if self.target_transform: target = self.target_transform(target) return index, img, target def getTestItem(self, index): img, target = Image.fromarray(self.TestData[index]), self.TestLabels[index] if self.test_transform: img = self.test_transform(img) if self.target_test_transform: target = self.target_test_transform(target) return index, img, target def __getitem__(self, index): if self.TrainData != []: return self.getTrainItem(index) elif self.TestData != []: return self.getTestItem(index) def __len__(self): if self.TrainData != []: return len(self.TrainData) elif self.TestData != []: return len(self.TestData) def get_image_class(self, label): return self.data[np.array(self.targets) == label]
ruixiang-wang/Incremental-Learning-Research
PRE-master/TinyImageNet.py
TinyImageNet.py
py
4,064
python
en
code
4
github-code
6
[ { "api_name": "numpy.load", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.int64", "line_number": 30, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 62, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 68, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 68, "usage_type": "name" }, { "api_name": "PIL.Image.fromarray", "line_number": 76, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 76, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 96, "usage_type": "call" } ]
1478963521
import numpy, math, itertools from hashlib import sha1 from mbfit.exceptions import XYZFormatError, InvalidValueError, InconsistentValueError from .fragment import Fragment class Molecule(object): """ Stores the fragments of a Molecule """ def __init__(self, fragments): """ Creates a new Molecule Args: None Returns: A new Molecule """ # list of fragments in this molecule self.fragments = [] for fragment in fragments: self.add_fragment(fragment) # list of energies for this molecule, filled in by get_nmer_energies self.energies = {} # list of nmer_energies for this molecule, filled by get_nmer_energies self.nmer_energies = [] self.mb_energies = [] def get_name(self): """ Gets the name of this molecule, consists of the names of the fragments in standard order connected by a dash '-' Args: None Returns: The name of this molecule """ return "-".join([fragment.get_name() for fragment in self.get_fragments()]) def get_symmetry(self): """ Gets the symmetry of this molecule Args: None Returns: The symmetry of this molecule in A1B2_C1D1E1 form """ # used to assemble the symmetry string try: symmetry = self.get_fragments()[0].get_symmetry() except IndexError: # if there are no fragments, symmetry is empty string return "" # add each fragment's symmetry to the string for fragment in self.get_fragments()[1:]: symmetry += "_" + fragment.get_symmetry() return symmetry def add_fragment(self, fragment): """ Adds a fragment to this molecule Args: fragment - the fragment to add Returns: None """ # make sure the symmetry class of the atoms in this fragment doesn't violate the 1 symmetry class -> 1 atom type rule for existing_fragment in self.get_fragments(): if fragment.get_name() == existing_fragment.get_name(): for atom_new, atom_old in zip(fragment.get_atoms(), existing_fragment.get_atoms()): if atom_new.get_name() != atom_old.get_name(): raise InconsistentValueError("name of atom {} from one {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "name of atom {} from another {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_name(), atom_new.get_name(), "atoms in fragments with the same name must have the same names in the same order.") if atom_new.get_symmetry_class() != atom_old.get_symmetry_class(): raise InconsistentValueError("symmetry class of atom {} from one {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "symmetry class of atom {} from another {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_symmetry_class(), atom_new.get_symmetry_class(), "atoms in fragments with the same name must have the same symmetry classes in the same order.") else: for atom_new in fragment.get_atoms(): for atom_old in existing_fragment.get_atoms(): if atom_new.get_symmetry_class() == atom_old.get_symmetry_class(): raise InconsistentValueError("symmetry class of atom {} from {} fragment".format(atom_old.get_name(), existing_fragment.get_name()), "symmetry class of atom {} from {} fragment".format(atom_new.get_name(), fragment.get_name()), atom_old.get_symmetry_class(), atom_new.get_symmetry_class(), "atoms in fragments with different names cannot be equivelent and should not have the same symmetry class.") self.fragments.append(fragment) return def get_fragments(self): """ Gets a list of the fragments in this molecule in standard order Args: None Returns: List of fragments in this molecule in standard order """ return self.fragments def get_atoms(self): """ Gets a list of the atoms in this molecule in standard order fragments are first sorted into standard order, and then atoms within those fragments are put in their standard order. Args: None Returns: List of atoms in this molecule in standard order """ atoms = [] for fragment in self.get_fragments(): atoms += fragment.get_atoms() return atoms def get_charge(self, fragments = None): """ Gets the charge of this molecule by summing the charges of its fragments Args: fragments - list of fragment indicies; if specified, only get the charge of these fragments, default is to include all fragments Returns: Sum charge of all or some of the fragments of this molecule """ if fragments == None: fragments = range(len(self.get_fragments())) charge = 0 for index in fragments: charge += self.get_fragments()[index].get_charge() return charge def get_spin_multiplicity(self, fragments = None): """ Gets the spin multiplicity of this molecule by summing the spin multiplicities of its fragments Args: fragments - list of fragment indicies; if specified, only get the spin multiplicity of these fragments, default is to include all fragments Returns: Sum spin multiplicity of all or some of the fragments of this molecule """ if fragments == None: fragments = range(len(self.get_fragments())) spin_multiplicity = 1 for index in fragments: spin_multiplicity += self.get_fragments()[index].get_spin_multiplicity() - 1 return spin_multiplicity def get_num_fragments(self): """ Gets the number of fragments in this molecule Args: None Returns: Number of fragments in this molecule """ return len(self.get_fragments()) def get_num_atoms(self): """ Gets the number of atoms in this molecule Args: None Returns: Number of atoms in this molecule """ atoms = 0 for fragment in self.get_fragments(): atoms += fragment.get_num_atoms() return atoms def translate(self, x, y, z): """ Translates all the atoms in this molecule by the given coordinates Args: x - amount to translate along x axis y - amount to translate along y axis z - amount to translate along z axis Returns: None """ for fragment in self.get_fragments(): fragment.translate(x, y, z) def rotate(self, quaternion, origin_x = 0, origin_y = 0, origin_z = 0): """ Rotates this Molecule using the rotation defined by the given Quaternion Args: quaternion - the Quaternion to rotate by origin_x - x position of the point to rotate around, default is 0 origin_y - y position of the point to rotate around, default is 0 origin_z - z position of the point to rotate around, default is 0 Returns: None """ for fragment in self.get_fragments(): fragment.rotate(quaternion, origin_x, origin_y, origin_z) def move_to_center_of_mass(self): """ Moves the molecule it its center of mass Args: None Returns: None """ # keep track of the total weighted mass along each axis total_x = 0 total_y = 0 total_z = 0 # keeps track of the total mass total_mass = 0 # loop thru every atom in the molecule, adding its contribution to each coordinate mass for atom in self.get_atoms(): total_x += atom.get_x() * atom.get_mass() total_y += atom.get_y() * atom.get_mass() total_z += atom.get_z() * atom.get_mass() total_mass += atom.get_mass() # calculate the center of mass my dividing the total weighted mass by the total mass center_x = total_x / total_mass center_y = total_y / total_mass center_z = total_z / total_mass # translate this molecule to the center of mass self.translate(-center_x, -center_y, -center_z) def rotate_on_principal_axes(self): """ Rotates a molecule on to its principal axis Args: None Returns: None """ # first we calculate the moment of inertia tensor # [ Ixx Ixy Ixz ] # [ Iyx Iyy Iyz ] # [ Izx Izy Izz ] I = [[0, 0, 0] for i in range(3)] # loop over every atom and add their contributions to the moment of inertia tensor for atom in self.get_atoms(): # Ixx I[0][0] += (atom.get_y() ** 2 + atom.get_z() ** 2) * atom.get_mass() # Ixy I[1][0] += - (atom.get_x() * atom.get_y()) * atom.get_mass() # Ixz I[2][0] += - (atom.get_x() * atom.get_z()) * atom.get_mass() # Iyx I[0][1] += - (atom.get_y() * atom.get_x()) * atom.get_mass() # Iyy I[1][1] += (atom.get_x() ** 2 + atom.get_z() ** 2) * atom.get_mass() # Iyz I[2][1] += - (atom.get_y() * atom.get_z()) * atom.get_mass() # Izx I[0][2] += - (atom.get_z() * atom.get_x()) * atom.get_mass() # Izy I[1][2] += - (atom.get_z() * atom.get_y()) * atom.get_mass() # Izz I[2][2] += (atom.get_x() ** 2 + atom.get_y() ** 2) * atom.get_mass() inertia_tensor = numpy.matrix(I) # print("Inertia Tensor:", inertia_tensor) # get numpy matrix from the matrix of principal moments # get the moments and principal axis as eigen values and eigen vectors (moments, principal_axes) = numpy.linalg.eigh(inertia_tensor) idx = numpy.argsort(moments)[::-1] moments = moments[idx] principal_axes = principal_axes[:,idx] fifthmoment = numpy.zeros(3) # only works for molecules with no symmetry for atom in self.get_atoms(): fifthmoment += (numpy.matrix([atom.get_x(), atom.get_y(), atom.get_z()]) * principal_axes).getA1() ** 5 * atom.get_mass() if fifthmoment[0] < 1e-6: principal_axes[:, 0] *= -1 if fifthmoment[1] < 1e-6: principal_axes[:, 1] *= -1 if numpy.linalg.det(principal_axes) < 0: principal_axes[:, 2] *= -1 # update the position of each atom for atom in self.get_atoms(): x, y, z = (numpy.matrix([atom.get_x(), atom.get_y(), atom.get_z()]) * principal_axes).getA1() atom.set_xyz(float(x), float(y), float(z)) def rmsd(self, other): """ Computes the RMSD between the positions of the atoms in two molecules molecules must have the same fragments and atoms or an InconsistentValueError will be raised. generally, you should make sure that both molecules have been moved to their center of mass and rotated on their principal axes. Args: other - the molecule to compare this one to Returns: The square-root of the mean squared distance between the atoms in this molecule and the other """ # fist make sure these molecules have the same number of atoms if self.get_num_atoms() != other.get_num_atoms(): raise InconsistentValueError("number of atoms in self", "number of atoms in other", self.get_num_atoms(), other.get_num_atoms(), "number of atoms in each molecule must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") squared_distance = 0 # loop thru every pair of atoms in the two molecules for this_atom, other_atom in zip(self.get_atoms(), other.get_atoms()): # check to make sure that these atoms are the same type if this_atom.get_name() != other_atom.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # add this atom pair's contribution to the squared distance squared_distance += this_atom.distance(other_atom) ** 2 # compute rmsd as sqrt of mean squared distance return math.sqrt(squared_distance / self.get_num_atoms()) def rmsd2(self, other): self_atoms = self.get_atoms() other_atoms = other.get_atoms() rmsds = [] for order in itertools.permutations(other_atoms): squared_distance = 0 # loop thru every pair of atoms in the two molecules for this_atom, other_atom in zip(self.get_atoms(), order): # add this atom pair's contribution to the squared distance squared_distance += this_atom.distance(other_atom) ** 2 rmsds.append(math.sqrt(squared_distance / self.get_num_atoms())) return min(rmsds) def distancermsd(self, other_molecule): """ Computes the RMSD of intramolecular interatomic distances in the two molecules molecules must have the same fragments and atoms or an InconsistentValueError will be raised. generally, you should make sure that both molecules have been moved to their center of mass and rotated on their principal axes. Note: this function is distinct from rmsd() because this function takes the rmsd of the differneces between the distances between pairs of atoms within each molecule while rmsd() takes the rmsd of the distance between the positions of the same atoms in each molecule. Args: other_molecule - the molecule to ompare this one to Returns: the square-root of the mean squared difference in the distance between each pair of atoms in this molecule and the other """ # fist make sure these molecules have the same number of atoms if self.get_num_atoms() != other_molecule.get_num_atoms(): raise InconsistentValueError("number of atoms in self", "number of atoms in other", self.get_num_atoms(), other_molecule.get_num_atoms(), "number of atoms in each molecule must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") squared_distance_difference = 0 # loop over each pair of atoms for atom_index, this_atom1, other_atom1 in zip(range(self.get_num_atoms()), self.get_atoms(), other_molecule.get_atoms()): for this_atom2, other_atom2 in zip(self.get_atoms()[atom_index + 1:], other_molecule.get_atoms()[atom_index + 1:]): # check to make sure that the atom1s have the same type if this_atom1.get_name() != other_atom1.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # check to make sure that the atom2s have the same type if this_atom2.get_name() != other_atom2.get_name(): raise InconsistentValueError("self atom symbol", "other atom symbol", this_atom.get_name(), other_atom.get_name(), "symbols must be the same, make sure you are computing the rmsd of two molecules with the same atoms and fragments") # add these atom pairs' contribution to the squared distance difference squared_distance_difference += (this_atom1.distance(this_atom2) - other_atom1.distance(other_atom2)) ** 2 # compute the rmsd of the sqrt of mean squared distance difference return math.sqrt(squared_distance_difference / self.get_num_atoms()) def compare(self, other, cutoff_rmsd = 0.1): """ Compares two molecules to see if they are similar to eachother bellow a cutoff rmsd Args: other - the molecule to compare this one to cutoff_rmsd - the rmsd level at which False will be returned, defailt is 0.1 Returns: True if the rmsd between this molecule and the other is less than cutoff_rmsd, otherwise False Always returns False if the two molecules do not have the same fragments and atoms """ try: return self.rmsd(other) < cutoff_rmsd except InconsistentValueError: return False def get_excluded_pairs(self, max_exclusion = 3): """ Gets the excluded pairs of this molecule Args: None Returns: a tuple in the format (excluded_12, excluded_13, excluded_14, ..., excluded_1x) where each ecluded_1x is a list of lists of each fragment's excluded 1x pairs """ excluded_pairs = [[] for i in range(max_exclusion)] for index, fragment in enumerate(self.get_fragments()): frag_excluded_pairs = fragment.get_excluded_pairs(max_exclusion) for exclusion_index in range(max_exclusion): excluded_pairs[exclusion_index].append(frag_excluded_pairs[exclusion_index]) return excluded_pairs def to_xyz(self, fragments=None, cp=False, num_digits=14): """ Gets a string representation of the fragments in this molecule in the xyz file format Args: fragments - list of fragment indicies to include in the string; optional, default is to include all fragments. cp - if True then fragments not specified in the fragments list will be included as ghost fragments. num_digits - The number of digits after the decimal point to include when writing atom coordinates. Default: 14 Maximum: 14 Returns: String representation of the fragments in this molecule in the xyz format """ # by default, use all fragments if fragments == None: fragments = range(self.get_num_fragments()) string = "" for index in range(len(self.get_fragments())): if index in fragments: string += self.get_fragments()[index].to_xyz(num_digits=num_digits) elif cp: string += self.get_fragments()[index].to_ghost_xyz(num_digits=num_digits) return string[:-1] # removes last character of string (extra newline) def to_standard_xyz(self, fragments=None, cp=False, num_digits=14): """ Gets a string representation of the fragments in this molecule in the xyz file format. The order of the fragments and atoms is in standard order. Args: fragments - list of fragment indicies to include in the string; optional, default is to include all fragments. cp - if True then fragments not specified in the fragments list will be included as ghost fragments. num_digits - The number of digits after the decimal point to include when writing atom coordinates. Default: 14 Maximum: 14 Returns: String representation of the fragments in this molecule in the xyz format in standard order. """ # by default, use all fragments if fragments == None: fragments = range(self.get_num_fragments()) string = "" for index in range(len(self.get_standard_order())): if index in fragments: string += self.get_standard_order()[index].to_standard_xyz(num_digits=num_digits) elif cp: string += self.get_standard_order()[index].to_standard_ghost_xyz(num_digits=num_digits) return string[:-1] # removes last character of string (extra newline) ''' Returns a string containing indicies and energies of nbody fragment combinations in the format of the log file ''' def log_frag_energy(self): string = "" # for each item in energies, add its combination indicies and energy # to the output string for combination in self.energies.keys(): string += "E{}: {}\n".format(combination, "%.8f"%self.energies[combination]) return string ''' Returns a string containing the many body interaction energies, in the format of the log file ''' def log_mb_energy(self, limit): string = "" for index in range(limit): string += "V_{}B: {}\n".format(index + 1, "%.8f"%self.mb_energies[index]) return string ''' Clears the energies, nmer_energies, and mb_energies fields to make way for new calculations ''' def clear(self): self.energies = {} self.nmer_energies = [] self.mb_energies = [] def get_SHA1(self): """ Generates the SHA1 hash of this molecule. Uses atoms, spin multiplicity and charge. Can be used to uniquely identify this molecule. Sorts fragments and atoms into standard order first, so the same molecule specified differently will have the same hash Args: None Returns: SHA1 hash of this molecule """ hash_string = self.get_name() + "\n" + self.to_xyz(num_digits=5) + "\n" + str(self.get_charge()) + "\n" + str(self.get_spin_multiplicity()) return sha1(hash_string.encode()).hexdigest() def get_symbols(self): """ Gets the atomic symbols of the atoms in this molecule as a list Args: None Returns: list of the atomic symbols of the atoms in this molecule """ return [atom.get_name() for atom in self.get_atoms()] def get_coordinates(self): """ Gets the positions of the atoms in this molecule as a list of 3-tuples Args: None Returns: list of the positions of the atoms in this moleule """ return [(atom.get_x(), atom.get_y(), atom.get_z()) for atom in self.get_atoms()] @staticmethod def read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz string and creates a new Molecule. Args: string - The xyz format string. Including the atom count line and comment line. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ # Error checking to make sure all lists passed in are the same length if not len(atoms_per_fragment) == len(symmetry_per_fragment): raise InconsistentValueError("atoms per fragment", "symmetry per fragment", atoms_per_fragment, symmetry_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(charge_per_fragment): raise InconsistentValueError("atoms per fragment", "charges per fragment", atoms_per_fragment, charge_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(spin_multiplicity_per_fragment): raise InconsistentValueError("atoms per fragment", "spin multiplicities per fragment", atoms_per_fragment, spin_multiplicity_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(name_per_fragment): raise InconsistentValueError("atoms per fragment", "fragment names", atoms_per_fragment, name_per_fragment, "lists must be same length") if not len(atoms_per_fragment) == len(SMILE_per_fragment): raise InconsistentValueError("atoms per fragment", "fragment SMILES", atoms_per_fragment, SMILE_per_fragment, "lists must be same length") # break the input string apart along \n characters lines = string.splitlines() # read the total number of atoms from the first line of the xyz try: atom_total = int(lines[0]) except ValueError: raise XYZFormatError("{}".format(lines[0]), "line should contain a single integer") # make sure that the total number of atoms indicated by the xyz file matches the number of atoms indicated per fragment if atom_total != sum(atoms_per_fragment): raise InconsistentValueError("total atoms in xyz string", "fragments", atom_total, atoms_per_fragment, "fragments list must sum to total atoms from input xyz string") # remove the atom total and comment lines from the lines list lines = lines[2:] # make sure that there are a number of lines equal to the total number of atoms if len(lines) != atom_total: raise InconsistentValueError("total atoms in xyz string", "atom lines in xyz string", atom_total, len(lines), "number of total atoms indicated in xyz string should match number of atom lines") fragments = [] # loop over each item in the lists, each iteration containing the information to assemble one fragment for num_atoms, name, charge, spin, symmetry, SMILE in zip(atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): # fragments.append(Fragment.read_xyz("\n".join(lines[:num_atoms]), name, charge, spin, SMILE, symmetry)) # remove a number of lines from the lines list equal to the number used in the Fragment that was just read lines = lines[num_atoms:] return Molecule(fragments) @staticmethod def read_xyz_file(file, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz file and creates a new Molecule. Will attempt to read lines from the given file handle, raising a StopIteration exception if called on an empty file. Args: file - The file to read from. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ # build the xyz string string = "" # read blank lines until a non-blank line is found. while(True): line = file.readline() # If line is EOF, then raise StopIteration to say that there are no more molecules in this file. if line == "": raise StopIteration # If line is not a blank line, stop reading blank lines. if line is not "\n": break # add the atom count line to the string. string += line # read the comment line. string += file.readline() for i in range(sum(atoms_per_fragment)): line = file.readline() # if the line is EOF, we have reached EOF mid-parse! if line == "": raise XYZFormatError("ran out of lines to read from xyz file {} in the middle of a molecule".format(file.name), "make sure atoms_per_fragment, the atom count line in your xyz file, and the number of atom lines in your xyz file all agree.") string += line return Molecule.read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) @staticmethod def read_xyz_path(path, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment): """ Reads fragments from an xyz file indicated by a filepath and constructs a new Molecule. Will attempt to read lines from the file at the given file path, raising an exception if it runs out of lines mid-parse. Args: path - The path to the file to read from. atoms_per_fragment - List containing the number of atoms in each fragment. name_per_fragment - List containing the names of each fragment. charge_per_fragment - List containing the charges of each fragment. spin_multiplicity_per_fragment - List containing the spin multiplicities of each fragment. symmetry_per_fragment - List containing the symmetries of each fragment, in format A1B2. SMILE_per_fragment - List containing the SMILE strings of each fragment. Returns: The new Molecule. """ with open(path, "r") as file: try: return Molecule.read_xyz_file(file, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) # if the call to read_xyz_file() raises a StopIteration, it means the file was empty except StopIteration: raise XYZFormatError("xyz file {} file is empty".format(file.name), "make sure the xyz file has at least 1 molecule in it") @staticmethod def read_xyz_direct(string, settings = None): """ Reads fragments from a string and constructs a new Molecule. Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: string - The string to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ # if settings is None, then infer default values for molecule attributes if settings is None: name_per_fragment = ["noname"] charge_per_fragment = [0] spin_multiplicity_per_fragment = [1] total_atoms = int(string.splitlines()[0]) atoms_per_fragment = [total_atoms] symmetry = "" symmetry_class = 65 # loop over each atom assigning it a unique symmetry class for atom_index in range(total_atoms): symmetry += "{}1".format(chr(symmetry_class)) symmetry_class += 1 symmetry_per_fragment = [symmetry] SMILE = "" for line in string.splitlines()[2:]: SMILE += "[" + line.split()[0] + "]" SMILE_per_fragment = [SMILE] # if settings is defined, read values from xyz file else: atoms_per_fragment = [int(count) for count in settings.get("molecule", "fragments").split(",")] name_per_fragment = settings.get("molecule", "names").split(",") charge_per_fragment = [int(charge) for charge in settings.get("molecule", "charges").split(",")] spin_multiplicity_per_fragment = [int(spin) for spin in settings.get("molecule", "spins").split(",")] symmetry_per_fragment = settings.get("molecule", "symmetry").split(",") SMILE_per_fragment = settings.get("molecule", "SMILES").split(",") return Molecule.read_xyz(string, atoms_per_fragment, name_per_fragment, charge_per_fragment, spin_multiplicity_per_fragment, symmetry_per_fragment, SMILE_per_fragment) @staticmethod def read_xyz_file_direct(file, settings = None): """ Reads fragments from a file into a new Molecule. Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: file - The file to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ if settings is None: position = file.tell() atoms_per_fragment = [int(file.readline())] file.seek(position) else: atoms_per_fragment = [int(count) for count in settings.get("molecule", "fragments").split(",")] # build the xyz string string = "" # read lines from the file equal to the number needed for one molecule for line_count in range(2 + sum(atoms_per_fragment)): line = file.readline() # if the line is an empty string, then we have reached end of file mid parse if line == "": if line_count == 0: raise StopIteration # if the first line is empty, raise StopIteration to indicate that this file is out of molecules to parse raise XYZFormatError("ran out of lines to read from xyz file {} in the middle of a molecule".format(file.name), "make sure the last molecule in the file has a comment line and a number of atoms equal to the amount indicated in the atom count line.") string += line return Molecule.read_xyz_direct(string, settings) @staticmethod def read_xyz_path_direct(path, settings = None): """ Reads fragments from an xyz_file indicated by a path into this Molecule Will infer a single fragment with charge 0, spin 1, no symmetry, and a SMILE with atoms connected in the order they appear in the string if settings is None. Args: path - The path to read from. settings - Settings object containing information about the molecule. Returns: The new Molecule. """ with open(path, "r") as file: try: return Molecule.read_xyz_file_direct(file, settings) # if the call to read_xyz_file() raises a StopIteration, it means the file was empty except StopIteration: raise XYZFormatError("xyz file {} file is empty".format(file.name), "make sure the xyz file has at least 1 molecule in it") @staticmethod def read_psi4_string(string): """ Reads the string outputted by a call to psi4.molecule.save_string_xyz() into a new Molecule. Molecules created this way will not have name or symmetry saved correctly, because this information is not available from the output of psi4.molecule.save_string_xyz(). As a result certain operations will not work on this molecule, for example do not add this molecule to a database or attempt to generate its polynomial input format in style A1B2. Args: string - String output of psi4.molecule.save_string_xyz(). Returns: The new Molecule. """ # divide the string along \n characters lines = string.splitlines() # read charge and spin from first line of input string, casting each to an int try: charge, spin_multiplicity = [int(value) for value in lines[0].split()] except ValueError: raise XYZFormatError(lines[0], "line format should be 'charge spin_multiplicity', make sure you are passing in the output of psi4.molecule.save_string_xyz()") # calculate total atoms in this molecule total_atoms = len(lines) - 1 # these fields do not matter name = "unnamed" # used to build the symmetry string for the fragment symmetry = "" # keeps track of which symmetry_class to use for the next atom symmetry_class = 65 # loop over each atom assigning it a unique symmetry class for atom_index in range(total_atoms): symmetry += "{}1".format(chr(symmetry_class)) symmetry_class += 1 SMILE = "" for line in string.splitlines()[1:]: SMILE += line.split()[0] return Molecule([Fragment.read_xyz("\n".join(lines[1:]), name, charge, spin_multiplicity, SMILE, symmetry)]) def get_standard_order(self): return sorted(self.fragments, key = lambda x: x.get_name()) def get_config_molecule_section(self): # TODO: update SMILE fragments_list = self.get_standard_order() names = "{}\n".format(",".join(fragment.get_name() for fragment in fragments_list)) fragments = "{}\n".format(",".join(str(fragment.get_num_atoms()) for fragment in fragments_list)) charges = "{}\n".format(",".join(str(fragment.get_charge()) for fragment in fragments_list)) spins = "{}\n".format(",".join(str(fragment.get_spin_multiplicity()) for fragment in fragments_list)) symmetry = "{}\n".format(",".join(fragment.get_standard_symmetry() for fragment in fragments_list)) SMILES = "{}\n".format(",".join(fragment.get_standard_SMILE() for fragment in fragments_list)) next_letter = "A" for i in range(len(symmetry)): if symmetry[i].isupper(): symmetry = symmetry[:i] + next_letter + symmetry[i + 1:] next_letter = chr(ord(next_letter) + 1) return names, fragments, charges, spins, symmetry, SMILES def confirm_standard_order(self): """ Checks if this fragment is in standard order. Args: None. Returns: True if this fragment's atoms are in standard order. False otherwise. """ if not self.get_standard_order() == self.get_fragments(): return False for fragment in self.get_fragments(): if not fragment.confirm_standard_order(): return False return True def get_standard_copy(self): """ Gets a copy of this molecule, with fragments and atoms in standard order. Args: None. Returns: A copy of this molecule in standard order. """ order, frag_orders = self.get_standard_order_order() return self.get_reordered_copy(order, frag_orders, [frag.get_standard_SMILE() for frag in self.get_standard_order()]) def get_reorder_copy(self, names, SMILES): """ Gets a copy of this molecule, with fragments in the order specified by the names list and atoms in the order specified in the SMILE strings. Args: names - names of the fragments in the new order. SMILE - list of SMILE strings corresponding to the new order of fragments. Order the atoms of each fragment to match the order in these SMILE strings. Returns: A copy of this molecule in the order specified by names and SMILES. """ order, frag_orders = self.get_reorder_order(names, SMILES) return self.get_reordered_copy(order, frag_orders, SMILES) def get_copy(self): """ Gets a copy of this molecule. Args: None. Returns: An exact copy of this molecule. """ return self.get_reorder_copy([fragment.get_name() for fragment in self.get_fragments()], [fragment.get_SMILE() for fragment in self.get_fragments()]) def get_standard_order_order(self): """ Gets the order the fragments and atoms in this molecule must be in to be in standard order. Args: None. Returns: (order, frag_orders) order - A list of indices, where indices[i] = index of fragment that should be in index i to put the molecule in standard order. frag_orders - A list of lists, where each list corresponds to one fragment. where frag_orders[j][i] = index of atom that should be in index i to put the fragment j of the new order in standard order. """ order = [self.get_fragments().index(frag) for frag in self.get_standard_order()] frag_orders = [frag.get_standard_order_order() for frag in [self.get_fragments()[index] for index in order]] return order, frag_orders def get_reorder_order(self, names, SMILES): """ Gets the order the fragments and atoms in this molecule must be in to match the SMILE string. Args: names - order the fragments to match the order in this list. SMILE - order the atoms of each fragment to match the orders in these SMILE strings. Returns: (order, frag_orders) order - A list of indices, where indices[i] = index of fragment that should be in index i to put the fragments in the order specified. frag_orders - A list of lists, where each list corresponds to one fragment. where frag_orders[j][i] = index of atom that should be in index i to put the fragment j of the new order in the order specified. """ order = [] for name in names: for index, fragment in enumerate(self.get_fragments()): if fragment.get_name() == name and index not in order: order.append(index) frag_orders = [frag.get_reorder_order(SMILE) for frag, SMILE in zip([self.get_fragments()[index] for index in order], SMILES)] return order, frag_orders def get_reordered_copy(self, order, frag_orders, SMILES): """ Gets a copy of this molecule, the fragments and atoms are reordered according to the input. Args: order - New order of the fragments. frag_orders - New order of the atoms within each fragment. SMILES - new SMILE strings for each of the fragments. Returns: A copy of this molecule, reordered to match the input. """ fragments = [] prev_frag_name = None next_symmetry = 'A' symmetry_dict = {} for fragment, frag_order, SMILE in zip([self.get_fragments()[index] for index in order], frag_orders, SMILES): prev_frag_name = fragment.get_name() fragments.append(fragment.get_reordered_copy(frag_order, SMILE)) for atom in fragments[-1].get_atoms(): try: symmetry = symmetry_dict[atom.get_symmetry_class()] except: symmetry = next_symmetry symmetry_dict[atom.get_symmetry_class()] = symmetry next_symmetry = chr(ord(next_symmetry) + 1) atom.set_symmetry_class(symmetry) return Molecule(fragments) def __eq__(self, other): if not self.get_name() == other.get_name(): return False for self_frag, other_frag in zip(self.get_fragments(), other.get_fragments()): if self_frag != other_frag: return False return True def __ne__(self, other): return not self == other
paesanilab/MB-Fit
mbfit/molecule/molecule.py
molecule.py
py
44,981
python
en
code
14
github-code
6
[ { "api_name": "fragment.get_name", "line_number": 46, "usage_type": "call" }, { "api_name": "fragment.get_symmetry", "line_number": 70, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 87, "usage_type": "call" }, { "api_name": "fragment.get_atoms", "line_number": 89, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 91, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 92, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 98, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 99, "usage_type": "call" }, { "api_name": "fragment.get_atoms", "line_number": 105, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 108, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 109, "usage_type": "call" }, { "api_name": "fragment.get_atoms", "line_number": 145, "usage_type": "call" }, { "api_name": "fragment.get_num_atoms", "line_number": 210, "usage_type": "call" }, { "api_name": "fragment.translate", "line_number": 227, "usage_type": "call" }, { "api_name": "fragment.rotate", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 322, "usage_type": "call" }, { "api_name": "numpy.linalg.eigh", "line_number": 329, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 329, "usage_type": "attribute" }, { "api_name": "numpy.argsort", "line_number": 331, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 336, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 340, "usage_type": "call" }, { "api_name": "numpy.linalg.det", "line_number": 348, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 348, "usage_type": "attribute" }, { "api_name": "numpy.matrix", "line_number": 353, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 373, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 382, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 388, "usage_type": "call" }, { "api_name": "itertools.permutations", "line_number": 396, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 404, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 429, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 439, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 443, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 449, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 466, "usage_type": "name" }, { "api_name": "fragment.get_excluded_pairs", "line_number": 483, "usage_type": "call" }, { "api_name": "hashlib.sha1", "line_number": 594, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 642, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 644, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 646, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 648, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 650, "usage_type": "call" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 659, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 663, "usage_type": "call" }, { "api_name": "mbfit.exceptions.InconsistentValueError", "line_number": 670, "usage_type": "call" }, { "api_name": "fragment.Fragment.read_xyz", "line_number": 678, "usage_type": "call" }, { "api_name": "fragment.Fragment", "line_number": 678, "usage_type": "name" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 732, "usage_type": "call" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 764, "usage_type": "call" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 856, "usage_type": "call" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 885, "usage_type": "call" }, { "api_name": "mbfit.exceptions.XYZFormatError", "line_number": 910, "usage_type": "call" }, { "api_name": "fragment.Fragment.read_xyz", "line_number": 936, "usage_type": "call" }, { "api_name": "fragment.Fragment", "line_number": 936, "usage_type": "name" }, { "api_name": "fragment.get_name", "line_number": 947, "usage_type": "call" }, { "api_name": "fragment.get_num_atoms", "line_number": 948, "usage_type": "call" }, { "api_name": "fragment.get_charge", "line_number": 949, "usage_type": "call" }, { "api_name": "fragment.get_spin_multiplicity", "line_number": 950, "usage_type": "call" }, { "api_name": "fragment.get_standard_symmetry", "line_number": 951, "usage_type": "call" }, { "api_name": "fragment.get_standard_SMILE", "line_number": 952, "usage_type": "call" }, { "api_name": "fragment.confirm_standard_order", "line_number": 977, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 1023, "usage_type": "call" }, { "api_name": "fragment.get_SMILE", "line_number": 1024, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 1061, "usage_type": "call" }, { "api_name": "fragment.get_name", "line_number": 1089, "usage_type": "call" }, { "api_name": "fragment.get_reordered_copy", "line_number": 1091, "usage_type": "call" } ]
73750770109
from operator import index from meal import Meal import json import sqlite3 class Meal_Data: """Data layer to be used in conjunction with the Meal class""" def __init__(self, filename = "foodinfo.json"): """Initializes Meal_Data""" self.filename = filename def meal_add(self, meal:Meal): """Stores an instance of the Meal class inside foodinfo.json""" dupe_check = self.meal_find(meal.name) if dupe_check == None: meals = self.meal_get() meals.append(meal) self.meal_save(meals) else: error_message = f"A meal by the name '{meal.name.title()}' already exists." print(error_message) return def meal_save(self, meals:list) -> None: """Saves a list of meals to the JSON""" jsonmeals = [] # -- Following for loop converts objects in meal list (jsonmeals) into dictionaries -- for mealobj in meals: jsonmeal = mealobj.as_dict() jsonmeals.append(jsonmeal) # -- Following two lines converts the list of dictionaries made above into JSON format and saves to foodinfo.json -- # TODO: Handle Missing File f = open(self.filename, 'w') f.flush() json.dump(jsonmeals, f, indent=2) f.close() # -- Next two lines print out to string the list of Meals in JSON format -- # jsondump = json.dumps(jsonmeals, indent=2) # print(jsondump) return # -- TODO : make a function to delete a Meal object that is stored inside foodinfo.json -- def meal_del(self, name:str): """Removes an instance of the Meal class inside foodinfo.json""" meals = self.meal_get() # Loop over all meals and remove for meal in meals: if meal.name == name: index = meals.index(meal) del meals[index] else: pass # END FOR self.meal_save(meals) def meal_get(self) -> list[Meal]: """Returns a list of meals""" try: f = open(self.filename) # TODO : If the foodinfo.json is not found it should make a .json file by that name -- except FileNotFoundError: error_message = f"\nFile {self.filename} was not found.\n" print(error_message) return [] # Explicit flush to ensure we have the latest version of the file on disk f.flush() try: jsondata = json.load(f) # -- When the following error occurs, the list of meals is simply left as an empty list -- except json.JSONDecodeError: # crete empty JSONData for following loop jsondata = [] # Close file handle f.close() # -- The folowing for loop takes the JSON objects found in foodinfo.json and turns them into Python objects -- # -- and then appends those objects into the meals list meals = [] for item in jsondata: meal = Meal(item['name'],item['protein'],item['cost'],item['difficulty']) meals.append(meal) return meals def meal_find(self, name:str) -> Meal: """Returns a specific meal object when searching for a meal by name""" meals = self.meal_get() # -- The following for loop cycles through the meals list looking for a matching meal name # -- If the meal name inquired is not found - the loop will return None for obj in meals: if obj.name == name: return obj return None
zaepho/DinnerDecider
mealdata.py
mealdata.py
py
3,719
python
en
code
0
github-code
6
[ { "api_name": "meal.Meal", "line_number": 14, "usage_type": "name" }, { "api_name": "meal.name", "line_number": 17, "usage_type": "attribute" }, { "api_name": "meal.name.title", "line_number": 23, "usage_type": "call" }, { "api_name": "meal.name", "line_number": 23, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 41, "usage_type": "call" }, { "api_name": "meal.name", "line_number": 56, "usage_type": "attribute" }, { "api_name": "operator.index", "line_number": 57, "usage_type": "name" }, { "api_name": "operator.index", "line_number": 58, "usage_type": "name" }, { "api_name": "json.load", "line_number": 80, "usage_type": "call" }, { "api_name": "json.JSONDecodeError", "line_number": 82, "usage_type": "attribute" }, { "api_name": "meal.Meal", "line_number": 93, "usage_type": "call" }, { "api_name": "meal.Meal", "line_number": 66, "usage_type": "name" }, { "api_name": "meal.Meal", "line_number": 99, "usage_type": "name" } ]
29827630738
#This file will only be needed to run import pandas as pd import numpy as numpy from datetime import date import datetime import os class box: def __init__(self): self.task_done = "" self.no_of_day = (datetime.date.today() - date(1997, 8, 21)).days self.dest = "" self.wake_up = "" #should change in future self.sleep = "" self.social_media_time = 0 self.self_time = "" self.breakfast = False self.food_type = False self.GRE_quant = False self.GRE_quant_count = 0 self.GRE_verbal = False self.GRE_verbal_count = 0 self.ML = False self.articles_read = 0 self.words_learned = 0 self.anger = False self.exercise = False self.sad_day = False self.happy_day = False self.got_love = False self.pain = False def log(self): print("Enter your daily achievement: ") self.task_done = str(input()) print("Did you go anywhere? (Leave blank if nowhere) :") self.dest = str(input()) print("What time did you wake up? : ") self.wake_up = str(input()) print("What time did you go to sleep? : ") self.sleep = str(input()) print("How many hours on social media did you spend?") self.social_media_time = float(input()) print("How many hours for self time did you take out?") self.self_time = float(input()) #Health print("Did you have breakfast? :") self.breakfast = self._conv_bool(input()) print("Did I eat sufficiently? :") self.food_type = self._conv_bool(input()) #Studies print("Did you study Machine Learning? :") self.ML = self._conv_bool(input()) #GREStudies print("Did you study GRE_quant today? :") self.GRE_quant = self._conv_bool(input()) self.GRE_quant_count = self._get_GRE(self.GRE_quant) print("Did you study GRE verbal today? :") self.GRE_verbal = self._conv_bool(input()) self.GRE_verbal_count = self._get_GRE(self.GRE_verbal) print("How many articles did you read today? :") self.articles_read = int(input()) print("How many words did you learn today? :") self.words_learned = int(input()) #Day Review print("Did you feel anger today? :") self.anger = self._conv_bool(input()) print("Did you feel sad today? :") self.sad_day = self._conv_bool(input()) print("Were you happy today? :") self.happy_day = self._conv_bool(input()) print("Did someone love you today? :") self.got_love = self._conv_bool(input()) print("Did you exercise today? :") self.exercise = self._conv_bool(input()) print("Was your body in pain? :") self.pain = self._conv_bool(input()) def _get_GRE(self, ip): if self._conv_bool(ip): print("How many questions did you solve?") return int(input()) else: return 0 def _conv_bool(self, x): if x == 'Y' or x == 'y': return True else : return False if __name__ == '__main__': import os if not os.path.exists('./logs.csv'): df = pd.DataFrame(data = None, columns = ['no_of_day', 'task_done', 'destination', 'wake_up_time', 'sleep_time', 'social_media_time', 'self_time', 'breakfast', 'food_type', 'GRE_quant', 'GRE_quant_count', 'GRE_verbal', 'GRE_verbal_count', 'Machine_Learning', 'articles_read', 'words_learned', 'anger', 'exercise', 'sad_day', 'happy_day', 'got_love', 'pain']) print('File doesnt exist') print(df.head()) else: df = pd.read_csv('./logs.csv') print('File exists') print(df.head) b = box() b.log() df_2 = pd.DataFrame(data = [[b.no_of_day, b.task_done, b.dest, b.wake_up, b.sleep, b.social_media_time, b.self_time, b.breakfast, b.food_type, b.GRE_quant , b.GRE_quant_count, b.GRE_verbal, b.GRE_verbal_count, b.ML, b.articles_read, b.words_learned, b.anger, b.exercise, b.sad_day, b.happy_day, b.got_love, b.pain]], columns = [ 'no_of_day', 'task_done', 'destination', 'wake_up_time', 'sleep_time', 'social_media_time', 'self_time', 'breakfast', 'food_type', 'GRE_quant', 'GRE_quant_count', 'GRE_verbal', 'GRE_verbal_count', 'Machine_Learning', 'articles_read', 'words_learned', 'anger', 'exercise', 'sad_day', 'happy_day', 'got_love', 'pain']) result = df.append(df_2) result.to_csv('./logs.csv', index = False) result.head() print(os.getcwd())
Geeks-Sid/habit_organizer
main.py
main.py
py
4,237
python
en
code
0
github-code
6
[ { "api_name": "datetime.date.today", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 101, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 113, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 118, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 138, "usage_type": "call" } ]
40129830394
""" Get Distances of Shortest Path (Dijkstra) edges: dict<from:int, dict<to:int, cost:number>> """ from heapq import heappush, heappop def one_to_one( start, goal, num_vertexes, edges, INF=9223372036854775807, UNREACHABLE=-1): distances = [INF] * num_vertexes distances[start] = 0 queue = [(0, start)] while queue: d, frm = heappop(queue) if distances[frm] < d: # already know shorter path continue if frm == goal: return d for to in edges[frm]: new_cost = distances[frm] + edges[frm][to] if distances[to] > new_cost: # found shorter path distances[to] = new_cost heappush(queue, (distances[to], to)) return UNREACHABLE def one_to_all( start, num_vertexes, edges, INF=9223372036854775807): distances = [INF] * num_vertexes distances[start] = 0 queue = [(0, start)] while queue: d, frm = heappop(queue) if distances[frm] < d: # already know shorter path continue for to in edges[frm]: new_cost = distances[frm] + edges[frm][to] if distances[to] > new_cost: # found shorter path distances[to] = new_cost heappush(queue, (distances[to], to)) return distances def one_to_all_bfs(start, num_vertexes, edges, INF=9223372036854775807): """ when all cost is 1, BFS is faster (ABC170E) """ distances = [INF] * num_vertexes distances[start] = 0 to_visit = [start] while to_visit: next_visit = [] for frm in to_visit: for to in edges[frm]: new_cost = distances[frm] + 1 if new_cost < distances[to]: distances[to] = new_cost next_visit.append(to) to_visit = next_visit return distances # --- end of library --- def debug(*x, msg=""): import sys print(msg, *x, file=sys.stderr) def solve(N, M, edges): INF = 9223372036854775807 ret = INF for start in range(N): distances = one_to_all(start, N, edges) debug(distances, msg=":distances") ret = min(ret, max(distances)) return ret def main(): # verified https://atcoder.jp/contests/abc012/tasks/abc012_4 N, M = map(int, input().split()) from collections import defaultdict edges = defaultdict(dict) for _i in range(M): A, B, T = map(int, input().split()) edges[A - 1][B - 1] = T edges[B - 1][A - 1] = T print(solve(N, M, edges)) # tests T1 = """ 3 2 1 2 10 2 3 10 """ TEST_T1 = """ >>> as_input(T1) >>> main() 10 """ T2 = """ 5 5 1 2 12 2 3 14 3 4 7 4 5 9 5 1 18 """ TEST_T2 = """ >>> as_input(T2) >>> main() 26 """ T3 = """ 4 6 1 2 1 2 3 1 3 4 1 4 1 1 1 3 1 4 2 1 """ TEST_T3 = """ >>> as_input(T3) >>> main() 1 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): print(k) doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") if __name__ == "__main__": import sys input = sys.stdin.buffer.readline read = sys.stdin.buffer.read sys.setrecursionlimit(10 ** 6) if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main() # end of snippets/main.py
nishio/atcoder
libs/dijkstra.py
dijkstra.py
py
3,668
python
en
code
1
github-code
6
[ { "api_name": "heapq.heappop", "line_number": 18, "usage_type": "call" }, { "api_name": "heapq.heappush", "line_number": 29, "usage_type": "call" }, { "api_name": "heapq.heappop", "line_number": 42, "usage_type": "call" }, { "api_name": "heapq.heappush", "line_number": 52, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 79, "usage_type": "attribute" }, { "api_name": "collections.defaultdict", "line_number": 97, "usage_type": "call" }, { "api_name": "doctest.testmod", "line_number": 149, "usage_type": "call" }, { "api_name": "doctest.run_docstring_examples", "line_number": 154, "usage_type": "call" }, { "api_name": "io.StringIO", "line_number": 160, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 168, "usage_type": "attribute" }, { "api_name": "sys.stdin", "line_number": 169, "usage_type": "attribute" }, { "api_name": "sys.setrecursionlimit", "line_number": 170, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 171, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 174, "usage_type": "call" } ]
27330667755
import requests import time from bs4 import BeautifulSoup import urllib.request import re import json start_time = time.time() link_3 = [] link_4 = [] link_5 = [] link_6 = [] links = [] g = "" b = "" d = "" y = "" ya = "" ask = "" domain = "" emails = [] new_emails = [] mails = [] def crawl(request_url): try: response = requests.get(request_url) new_emails = re.findall(r"[a-z0-9\.\-+_]+@" + domain, response.text) if new_emails: emails.append(new_emails) except: pass return emails def get_links(url): link_result = [] request = urllib.request.Request(url) response = urllib.request.urlopen(request) html_page = response.read() soup = BeautifulSoup(html_page, "lxml") for link in soup.findAll('a'): d = link.get('href') link_result.append(d) return link_result if __name__ == '__main__': domain = input("enter the domain:") url_d = 'https://duckduckgo.com/?q=email+"%40"+++'+domain+'+++""&ia=web&count=50&first=51' link_3 = get_links(url_d) url_y = 'https://in.search.yahoo.com/search?p=%5B%40"%20+%20'+domain+'%20+%20"%5D&pz=100' link_4 = get_links(url_y) url_ya = 'https://yandex.com/search/?text="%40"%20%20%20'+domain+'%20%20%20""&lr=20983' link_5 = get_links(url_ya) url_ask = "https://www.ask.com/web?q=email+"+domain+"&o=0&qo=homepageSearchBox" link_6 = get_links(url_ask) links = link_3 + link_4 + link_5 + link_6 nodup_link = list(set(links)) filtered_links = [i for i in nodup_link if re.search("http", i)] final_links = list(set(filtered_links)) mails = [crawl(f) for f in final_links] final_emails = [] for flat_lists in mails: for flat_list in flat_lists: item_list = list(set(flat_list)) for item in item_list: if item not in final_emails: final_emails.append(item) print(final_emails) data = {} data.update({ 'domain': domain, 'mails': final_emails }) print(data) with open('data.json', 'w') as outfile: json.dump(data, outfile) # print("--- %s seconds ---" % (time.time() - start_time))
realchief/EmailScraping-BeautifulSoup
filter_crwl_dft_srchegn_updated.py
filter_crwl_dft_srchegn_updated.py
py
2,298
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 7, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 28, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 29, "usage_type": "call" }, { "api_name": "urllib.request.request.Request", "line_number": 39, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 39, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 39, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 40, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 40, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 40, "usage_type": "name" }, { "api_name": "bs4.BeautifulSoup", "line_number": 42, "usage_type": "call" }, { "api_name": "re.search", "line_number": 67, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 86, "usage_type": "call" } ]
36282438996
import datetime import requests from bs4 import BeautifulSoup as bs4 from flask import Flask from flask_restful import Resource, Api OYK_URL = "https://oulunkylanyhteiskoulu.fi/" def get_food() -> list: with requests.Session() as s: g = s.get(OYK_URL) bs = bs4(g.text, 'html.parser') today = datetime.date.today().weekday() day = bs.select(".food__list")[today] foods = day.find_all("p")[1].text.split("\n",) clean_food = list(filter(None, foods)) return clean_food app = Flask(__name__) api = Api(app) class Food(Resource): def get(self): try: foods = get_food() alfred = {"items": [{"title": food} for food in foods]} return alfred, 200 except: return {}, 500 api.add_resource(Food, '/food') if __name__ == "__main__": app.run(debug=True, port=5000)
drstuggels/oyk-food
main.py
main.py
py
908
python
en
code
0
github-code
6
[ { "api_name": "requests.Session", "line_number": 14, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 19, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 19, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 27, "usage_type": "call" }, { "api_name": "flask_restful.Api", "line_number": 28, "usage_type": "call" }, { "api_name": "flask_restful.Resource", "line_number": 31, "usage_type": "name" } ]
12056898935
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Code for this script is originally at: https://github.com/dfm/george/blob/master/docs/_code/model.py """ from __future__ import division, print_function import emcee import triangle import numpy as np import cPickle import matplotlib.pyplot as pl import george from george import kernels def model(params, t): amp, loc, sig2 = params return amp * np.exp(-0.5 * (t - loc) ** 2 / sig2) def lnprior_base(p): """ notice how the p are inferred in the original scale """ amp, loc, sig2 = p if not -10 < amp < 10: return -np.inf if not -5 < loc < 5: return -np.inf if not 0 < sig2 < 3.0: return -np.inf return 0.0 def fit_ind(initial, data, nwalkers=32): ndim = len(initial) p0 = [np.array(initial) + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_ind, args=data) print("Running burn-in") p0, _, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running production") p0, _, _ = sampler.run_mcmc(p0, 1000) return sampler def lnlike_gp(p, t, y, yerr): """ notice how a and tau needs to be exponentiated meaning that a and tau are supplied in the log scale """ a, tau = np.exp(p[:2]) gp = george.GP(a * kernels.Matern32Kernel(tau)) gp.compute(t, yerr) return gp.lnlikelihood(y - model(p[2:], t)) def lnprior_gp(p): """more obvious that p is initiated in the log scale """ lna, lntau = p[:2] if not -5 < lna < 5: return -np.inf if not -5 < lntau < 5: return -np.inf return lnprior_base(p[2:]) def lnprob_gp(p, t, y, yerr): lp = lnprior_gp(p) if not np.isfinite(lp): return -np.inf return lp + lnlike_gp(p, t, y, yerr) def fit_gp(initial, data, nwalkers=32): ndim = len(initial) # start chains at slightly different places in parameter space p0 = [np.array(initial) + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_gp, args=data) print("Running burn-in") p0, lnp, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running second burn-in") p = p0[np.argmax(lnp)] p0 = [p + 1e-8 * np.random.randn(ndim) for i in xrange(nwalkers)] p0, _, _ = sampler.run_mcmc(p0, 500) sampler.reset() print("Running production") p0, _, _ = sampler.run_mcmc(p0, 1000) return sampler def generate_data(params, N, rng=(-5, 5)): gp = george.GP(params[0] * kernels.ExpSquaredKernel(params[1])) # initialize t for drawing the data points t = rng[0] + np.diff(rng) * np.sort(np.random.rand(N)) ## modify the following y = gp.sample(t) y += model(params[2:], t) yerr = 0.05 + 0.05 * np.random.rand(N) y += yerr * np.random.randn(N) # y = model(params[2:], t) # yerr = gp.sample(t) # 0.05 + 0.05 * np.random.rand(N) #y += yerr * np.random.randn(N) return t, y, yerr if __name__ == "__main__": np.random.seed(1234) #truth = [0.1, 1.0, 0, 0.1, 0.4] truth = [0.1, 3.3, -1.0, 0.1, 0.4] t, y, yerr = generate_data(truth, 50) pl.errorbar(t, y, yerr=yerr, fmt=".k", capsize=0) pl.ylabel(r"$y$") pl.xlabel(r"$t$") pl.xlim(-5, 5) pl.title("simulated data") pl.savefig("data.png", dpi=150) ## Fit assuming independent. # print("Fitting independent") # data = (t, y, 1.0 / yerr ** 2) # truth_ind = [0.0, 0.0] + truth # sampler = fit_ind(truth_ind, data) ## Plot the samples in data space. # print("Making plots") # samples = sampler.flatchain # x = np.linspace(-5, 5, 500) # for s in samples[np.random.randint(len(samples), size=24)]: # pl.plot(x, model(s[2:], x)+s[0]*x+s[1], color="#4682b4", alpha=0.3) # pl.title("results assuming uncorrelated noise") # pl.savefig("ind-results.png", dpi=150) ## Make the corner plot. # fig = triangle.corner(samples[:, 2:], truths=truth, labels=labels) # fig = triangle.corner(samples[:, :], truths=truth, labels=labels) # fig.savefig("ind-corner.png", dpi=150) # Fit assuming GP. print("Fitting GP") data = (t, y, yerr) # truth is originally set to be [0.0, 0.0] by dfm, in log scale truth_gp = truth + 1e-8 * np.random.randn(len(truth)) # [0.0, 0.0] + truth[2:] sampler = fit_gp(truth_gp, data) # Plot the samples in data space. print("Making plots") samples = sampler.flatchain x = np.linspace(-5, 5, 500) pl.figure() pl.errorbar(t, y, yerr=yerr, fmt=".k", capsize=0) for s in samples[np.random.randint(len(samples), size=24)]: # sampled parameters have to be exponentiated gp = george.GP(np.exp(s[0]) * kernels.Matern32Kernel(np.exp(s[1]))) gp.compute(t, yerrtruth) m = gp.sample_conditional(y - model(s[2:], t), x) + model(s[2:], x) pl.plot(x, m, color="#4682b4", alpha=0.3) pl.ylabel(r"$y$") pl.xlabel(r"$t$") pl.xlim(-5, 5) pl.title("results with Gaussian process noise model") pl.savefig("gp-results.png", dpi=150) # Make the corner plot. labels = [r"$\ln a^2$", r"$\ln \tau$", r"$\alpha$", r"$\ell$", r"$\sigma^2$"] #fig = triangle.corner(samples[:, 2:], truths=truth, labels=labels) # follow the original script to plot the hp in log space truth[0] = np.log(truth[0]) truth[1] = np.log(truth[1]) cPickle.dump(truth, open("truth.pkl", "w")) cPickle.dump(samples, open("samples.pkl", "w")) # only plot the hyperparameters fig = triangle.corner(samples, truths=truth, labels=labels, size=30) fig.savefig("gp-corner.png", dpi=150)
karenyyng/shear_gp
george_examples/model.py
model.py
py
5,729
python
en
code
1
github-code
6
[ { "api_name": "numpy.exp", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 30, "usage_type": "attribute" }, { "api_name": "numpy.inf", "line_number": 32, "usage_type": "attribute" }, { "api_name": "numpy.inf", "line_number": 34, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 40, "usage_type": "attribute" }, { "api_name": "emcee.EnsembleSampler", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 58, "usage_type": "call" }, { "api_name": "george.GP", "line_number": 59, "usage_type": "call" }, { "api_name": "george.kernels.Matern32Kernel", "line_number": 59, "usage_type": "call" }, { "api_name": "george.kernels", "line_number": 59, "usage_type": "name" }, { "api_name": "numpy.inf", "line_number": 68, "usage_type": "attribute" }, { "api_name": "numpy.inf", "line_number": 70, "usage_type": "attribute" }, { "api_name": "numpy.isfinite", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 77, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 85, "usage_type": "attribute" }, { "api_name": "emcee.EnsembleSampler", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 95, "usage_type": "attribute" }, { "api_name": "george.GP", "line_number": 106, "usage_type": "call" }, { "api_name": "george.kernels.ExpSquaredKernel", "line_number": 106, "usage_type": "call" }, { "api_name": "george.kernels", "line_number": 106, "usage_type": "name" }, { "api_name": "numpy.diff", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.sort", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 109, "usage_type": "attribute" }, { "api_name": "numpy.random.rand", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 114, "usage_type": "attribute" }, { "api_name": "numpy.random.randn", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 115, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 126, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 131, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 132, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 132, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 133, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 133, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 134, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 135, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 135, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 136, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 136, "usage_type": "name" }, { "api_name": "numpy.random.randn", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 162, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 169, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 170, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 170, "usage_type": "name" }, { "api_name": "numpy.random.randint", "line_number": 171, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 171, "usage_type": "attribute" }, { "api_name": "george.GP", "line_number": 173, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 173, "usage_type": "call" }, { "api_name": "george.kernels.Matern32Kernel", "line_number": 173, "usage_type": "call" }, { "api_name": "george.kernels", "line_number": 173, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 176, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 176, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 177, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 177, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 178, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 178, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 179, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 179, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 180, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 180, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 181, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 181, "usage_type": "name" }, { "api_name": "numpy.log", "line_number": 188, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 189, "usage_type": "call" }, { "api_name": "cPickle.dump", "line_number": 191, "usage_type": "call" }, { "api_name": "cPickle.dump", "line_number": 192, "usage_type": "call" }, { "api_name": "triangle.corner", "line_number": 195, "usage_type": "call" } ]
39269323605
from sqlalchemy import create_engine from tests.util import RPCTest class PDNSTest(RPCTest): def cleanup_pdns_db(self, db_uri): with create_engine(db_uri).begin() as conn: conn.execute('delete from domains') conn.execute('delete from domainmetadata') conn.execute('delete from records') def create_output_for_zone(self, zone, output, zone_group, db_uri): self.r.output_create(output, plugin='pdns-db', db_uri=db_uri) self.r.zone_group_create(zone_group) self.r.zone_group_add_zone(zone_group, zone) self.r.output_add_group(output, zone_group)
1and1/dim
dim-testsuite/tests/pdns_test.py
pdns_test.py
py
631
python
en
code
39
github-code
6
[ { "api_name": "tests.util.RPCTest", "line_number": 6, "usage_type": "name" }, { "api_name": "sqlalchemy.create_engine", "line_number": 8, "usage_type": "call" } ]
74472078906
import os import pickle import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from openpyxl import Workbook def save_pickle(data, filename): with open(filename, 'wb') as file: pickle.dump(data, file) def load_pickle(filename): with open(filename, 'rb') as file: data = pickle.load(file) return data def save_parquet(data, filename): df = pd.DataFrame(data) table = pa.Table.from_pandas(df) pq.write_table(table, filename) def load_parquet(filename): table = pq.read_table(filename) df = table.to_pandas() data = df.to_dict(orient='records') return data def save_xlsx(data, filename): wb = Workbook() ws = wb.active for i, item in enumerate(data, start=1): for j, value in enumerate(item.values(), start=1): ws.cell(row=i, column=j, value=value) wb.save(filename) def load_xlsx(filename): wb = pd.read_excel(filename) data = wb.to_dict(orient='records') return data # Przykładowa kolekcja danych collection = [{'id': i, 'value': i*2} for i in range(1, 101)] # Zapisywanie i odczytywanie kolekcji za pomocą modułu pickle save_pickle(collection, 'collection.pickle') loaded_pickle = load_pickle('collection.pickle') # Zapisywanie i odczytywanie kolekcji za pomocą Parquet save_parquet(collection, 'collection.parquet') loaded_parquet = load_parquet('collection.parquet') # Zapisywanie i odczytywanie kolekcji za pomocą XLSX save_xlsx(collection, 'collection.xlsx') loaded_xlsx = load_xlsx('collection.xlsx') print(f"Liczba elementów w kolekcji: {len(collection)}") print("Moduł pickle:") print(f" Zapis: {len(pickle.dumps(collection))} bajtów") print(f" Odczyt: {len(pickle.dumps(loaded_pickle))} bajtów") print("Parquet:") print(f" Zapis: {os.path.getsize('collection.parquet')} bajtów") print(f" Odczyt: {os.path.getsize('collection.parquet')} bajtów") print("XLSX:") print(f" Zapis: {os.path.getsize('collection.xlsx')} bajtów") print(f" Odczyt: {os.path.getsize('collection.xlsx')} bajtów")
Lisiozmur/Njpo
Ćwiczenie5/Zadanie1.py
Zadanie1.py
py
2,117
python
en
code
0
github-code
6
[ { "api_name": "pickle.dump", "line_number": 10, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 18, "usage_type": "call" }, { "api_name": "pyarrow.Table.from_pandas", "line_number": 19, "usage_type": "call" }, { "api_name": "pyarrow.Table", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pyarrow.parquet.write_table", "line_number": 20, "usage_type": "call" }, { "api_name": "pyarrow.parquet", "line_number": 20, "usage_type": "name" }, { "api_name": "pyarrow.parquet.read_table", "line_number": 23, "usage_type": "call" }, { "api_name": "pyarrow.parquet", "line_number": 23, "usage_type": "name" }, { "api_name": "openpyxl.Workbook", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 39, "usage_type": "call" }, { "api_name": "pickle.dumps", "line_number": 60, "usage_type": "call" }, { "api_name": "pickle.dumps", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path.getsize", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path", "line_number": 63, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path", "line_number": 64, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 66, "usage_type": "call" }, { "api_name": "os.path", "line_number": 66, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path", "line_number": 67, "usage_type": "attribute" } ]
6727912141
""" Module for parsing arguments. """ import sys import argparse import os from pathlib import Path from typing import Any __author__ = "Stijn Arends" __version__ = "v0.1" __data__ = "21-8-2022" class ArgumentParser: """ Class to parse the input arguments. """ def __init__(self) -> None: self.parser = self._create_argument_parser() # Print help if no arguments are supplied and stop the program if len(sys.argv) == 1: self.parser.print_help(sys.stderr) sys.exit(1) self.arguments = self.parser.parse_args() @staticmethod def _create_argument_parser(): """ Create an argument parser. :returns -------- parser - ArgumentParser """ parser = argparse.ArgumentParser(prog=f"python {os.path.basename(__file__)}", description="Python script to parse NetWas results.", epilog="Contact: [email protected]") # Set version parser.version = __version__ parser.add_argument('-f', '--file', dest="file", help='Input NetWas file - tab seperated txt or csv file', required=True) parser.add_argument('-t', '--threshold', dest="threshold", help='NetWas score threshold to select \'good\' reprioritized genes., default = None', default=None, type=float) parser.add_argument('-o', '--output', dest="output", help='Location and name of the ouput file.', required=True) parser.add_argument('--gene_list', dest="gene_list", help='Specify if only gene symbols are written out."\ "Default is NetWas file with filtered genes', action="store_true") parser.add_argument('-v', '--version', help='Displays the version number of the script and exitst', action='version') return parser def get_argument(self, argument_key: str) -> Any: """ Method to get an input argument. :parameters ----------- argument_key - str Full command line argument (so --config for the configuration file argument). :returns -------- value - List or boolean """ if self.arguments is not None and argument_key in self.arguments: value = getattr(self.arguments, argument_key) else: value = None return value def get_parser(self) -> argparse.ArgumentParser: """ Get the argument parser :returns -------- parser - argparse.ArgumentParser Argument parser """ return self.parser class CLIArgValidator: """ Class to check if arguments are valid. """ def validate_input_file(self, input_path: str) -> None: """ Validate the input files by checking if they actually exists and the which extention they have. :parameters ----------- input_path - str Path to a file """ input_path = Path(input_path) self._validate_input_exists(input_path) self._validate_input_extension(input_path) @staticmethod def _validate_input_exists(input_path: Path) -> None: """ Check if a file exists. :parameters ----------- input_path - str Path to a file """ if not input_path.is_file(): raise FileNotFoundError('Input file does not exist!') @staticmethod def _validate_input_extension(input_path: Path) -> None: """ Check if a file has the right extension. :parameters ----------- input_path - str Path to a file """ if not input_path.suffix in [".txt", ".csv"]: raise FileNotFoundError('Input file should be either a .txt or .csv')
molgenis/benchmark-gwas-prio
prioritization_methods/NetWAS/arg_parser.py
arg_parser.py
py
3,976
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 23, "usage_type": "attribute" }, { "api_name": "sys.stderr", "line_number": 24, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 25, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "typing.Any", "line_number": 71, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 89, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 115, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 120, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 133, "usage_type": "name" } ]
11458247441
# 首先要导入一个Select类 from selenium.webdriver.support.select import Select from selenium import webdriver import time # 打开浏览器,进入携程旅行官网 driver = webdriver.Chrome() driver.get('https://www.ctrip.com/?sid=155952&allianceid=4897&ouid=index') driver.maximize_window() # 最大化窗口 # 休眠5秒钟 time.sleep(5) # 通过Select类选择下拉框选项,只能是控件类型(tag_name)为select的控件 # 下拉框的选项都是属于下拉选择框,所以先要定位下拉选择框,然后再进行选择 # 如果下拉框的控件类型是dt(是一个表格),那么先要定位点击下拉选择框,然后再定位选项,点击选项 # 选择select标签类型下拉框的选项的方法: # ① 通过选择项可见文本进行选择:Select(下拉框控件定位).select_by_visible_text(option标签的文本) s = driver.find_element_by_id('J_roomCountList') Select(s).select_by_visible_text('6间') # 选择6间 time.sleep(5) # ② 通过option标签的value属性值进行选择:Select(下拉框控件定位).select_by_value(option标签的value属性值) Select(s).select_by_value("5") time.sleep(5) # ③ 通过选项下标(所有选项当成一个列表,从0开始)进行选择,Select(下拉框控件定位).select_by_index(选项下标) Select(s).select_by_index(7) time.sleep(5) driver.quit()
Ailian482/WebSelenium
Auto_Test/20_下拉框选择处理.py
20_下拉框选择处理.py
py
1,363
python
zh
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 6, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 6, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 10, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 18, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 20, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 22, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 24, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 26, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 27, "usage_type": "call" } ]
37985935295
#! /usr/bin/env python3 import audioInterface import os import yaml import sys from datetime import datetime from gpiozero import Button from signal import pause from pydub import AudioSegment from pydub.playback import play try: with open("config.yaml") as f: config = yaml.load(f, Loader=yaml.FullLoader) except FileNotFoundError as e: print( f"Could not find the config.yaml file. FileNotFoundError: {e}. Check config location and retry." ) sys.exit(1) hook = Button(config["hook_gpio"]) def off_hook() -> None: print("Phone off hook, ready to begin!") audio_interface = audioInterface.AudioInterface(config, hook) # playback voice message through speaker print("Playing voicemail message...") play( AudioSegment.from_wav( os.path.dirname(os.path.abspath(config["source_file"])) + "/sounds/voicemail.wav" ) - config["playback_reduction"] ) # start recording beep print("Playing beep...") play( AudioSegment.from_wav( os.path.dirname(os.path.abspath(config["source_file"])) + "/sounds/beep.wav" ) - config["beep_reduction"] ) # now, while phone is off the hook, record audio from the microphone print("recording") audio_interface.record() audio_interface.stop() output_file = ( os.path.dirname(os.path.abspath(config["source_file"])) + "/recordings/" + f"{datetime.now().isoformat()}" ) audio_interface.close(output_file + ".wav") print("Finished recording!") def on_hook() -> None: print("Phone on hook.\nSleeping...") def main(): hook.when_pressed = off_hook hook.when_released = on_hook pause() if __name__ == "__main__": main()
nickpourazima/rotary-phone-audio-guestbook
audioGuestBook.py
audioGuestBook.py
py
1,781
python
en
code
13
github-code
6
[ { "api_name": "yaml.load", "line_number": 16, "usage_type": "call" }, { "api_name": "yaml.FullLoader", "line_number": 16, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 21, "usage_type": "call" }, { "api_name": "gpiozero.Button", "line_number": 23, "usage_type": "call" }, { "api_name": "audioInterface.AudioInterface", "line_number": 28, "usage_type": "call" }, { "api_name": "pydub.playback.play", "line_number": 32, "usage_type": "call" }, { "api_name": "pydub.AudioSegment.from_wav", "line_number": 33, "usage_type": "call" }, { "api_name": "pydub.AudioSegment", "line_number": 33, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 34, "usage_type": "call" }, { "api_name": "pydub.playback.play", "line_number": 42, "usage_type": "call" }, { "api_name": "pydub.AudioSegment.from_wav", "line_number": 43, "usage_type": "call" }, { "api_name": "pydub.AudioSegment", "line_number": 43, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 56, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 56, "usage_type": "name" }, { "api_name": "signal.pause", "line_number": 69, "usage_type": "call" } ]
39792208434
from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import utils from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.ciphers.aead import AESGCM from cryptography.hazmat.primitives import hashes, cmac from cryptography.exceptions import InvalidSignature from cryptography.exceptions import InvalidTag import os class Security: def __init__(self,path,BackupPath): """ Initialize the security module loading,using the path passed as argument,if present the private and public key, otherwise generating and saving it :type path: String :param path: The path of the pem file in which the private key must be written :type backupPath: String :param backupPath: The path of the pem file in which the private key must be written """ try: with open(path,"rb") as pem: try: self.privateKey = serialization.load_pem_private_key(pem.read(),password=b'ServerMPSprivatekey',backend=default_backend()) self.publicKey = self.privateKey.public_key() except ValueError: try: with open(BackupPath,"rb") as backup: backup_key = serialization.load_pem_private_key(backup.read(),password=b'ServerMPSprivatekey',backend=default_backend()) with open(path,"wb") as pem_write: self.privateKey = backup_key self.publicKey = self.privateKey.public_key() serializedPrivateKey = backup_key.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.PKCS8,encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) pem_write.write(serializedPrivateKey) except FileNotFoundError: self.generate_key(path,BackupPath) except FileNotFoundError: try: with open(BackupPath,"rb") as backup,open (path,"wb") as pem: try: backup_key = serialization.load_pem_private_key(backup.read(),password=b'ServerMPSprivatekey',backend=default_backend()) SerializedPrivateKey = backup_key.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.PKCS8,encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) self.privateKey = backup_key self.publicKey = self.privateKey.public_key() pem.write(SerializedPrivateKey) except ValueError: self.generate_key(path,BackupPath) except FileNotFoundError: with open(path,"wb") as pem, open(BackupPath,"wb") as backup: self.generate_key(path,BackupPath) def generate_key(self,path,backupPath): """ Generate and write the private key :type path: String :param path: The path of the pem file in which the private key must be written :type backupPath: String :param backupPath: The path of the pem file in which the private key must be written """ with open(path,"wb") as pem, open(backupPath,"wb") as backup: self.privateKey = rsa.generate_private_key(public_exponent=65537,\ key_size=8196,\ backend=default_backend()) self.publicKey = self.privateKey.public_key() serializedPrivateKey = self.privateKey.private_bytes(encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.BestAvailableEncryption(b'ServerMPSprivatekey')) pem.write(serializedPrivateKey) backup.write(serializedPrivateKey) def RSAEncryptText(self,text): """ Encrypt the text using RSA with the public key of the handled client :type text: Bytes :param text: The plain text that must be encrypted :rtype: Bytes :return: The cipher text relative to the plain text passed as argument """ cipherText = self.ClientPublicKey.encrypt(text, padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) return cipherText def RSADecryptText(self,cipherText): """ Decrypt the message using your own private key :type cipherText: Bytes :param cipherText: The cipher text that must be decrypted :rtype: Bytes :return plaintext: the plain text obtained by decriptying the plain text passed as argument """ plaintext = self.privateKey.decrypt(cipherText, padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None ) ) return plaintext def splitMessage(self,data,len): """ Split the message in two part, usefull when you need to compare a message with a digest or a signature :type data: Bytes :param data: The Data that must be divided in two parts :type len: Int :param len: The point in which the list must be divided :rtype: <Bytes,Bytes> :return: The touple of lists obtained by dividing in two part the original data : """ return [data[0:len*(-1)],data[len*(-1):]] def generateDigest(self,data): """ Generate the digest of the message (in bytes) using SHA-256 :type data: Bytes :param data: The data of which we want generate the digest :rtype: Bytes :return: The digest of the data passed as argument """ digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) digest.update(data) return digest.finalize() def getSignature(self,data): """ Generate a signature by the private key :type data: Bytes :param data: The data we want to sign :rtype: Bytes :return:The signature of the data passed as argument """ signature = self.privateKey.sign(data, padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH ), hashes.SHA256() ) return signature def VerifySignature(self,data,signature): """ Verify if the signature,generated by the private key of the client,is associated to the data :type data: Bytes :param data: The data we want to verify :type signature: Bytes :param signature: The signature used to check :rtype: Boolean :return: If the signature is correct or not """ try: self.ClientPublicKey.verify(signature,data,padding.PSS(mgf=padding.MGF1(hashes.SHA256()),salt_length=padding.PSS.MAX_LENGTH),hashes.SHA256()) return True except InvalidSignature: return False def AddClientKey(self,key): """ Add the public key of the client, in order to use them when it is necessary to encrypt using RSA, pass the key encoded by 'utf-8' :type key: Bytes :param key: The public key of the client we want to add """ self.ClientPublicKey = serialization.load_pem_public_key(key,backend=default_backend()) def getSerializedPublicKey(self): """ Get the server public key serializable (it must be decoded) in order to get it printable and sendable :rtype: Bytes :return: The public key of the client """ return self.publicKey.public_bytes(encoding=serialization.Encoding.PEM,format=serialization.PublicFormat.SubjectPublicKeyInfo) def getSerializedClientPublicKey(self): """ Get the server public key serializable (it must be decoded) in order to get it printable and sendable :rtype: Bytes :return: The public key of the client """ return self.ClientPublicKey.public_bytes(encoding=serialization.Encoding.PEM,format=serialization.PublicFormat.SubjectPublicKeyInfo) def generateSymmetricKey(self,len,nonce): """ Generate a symmetric key used in AESGCM with a lenght (suggested 192/256 bit ) and pass a nonce used with the key to cipher a text (each operation has its own couple of <key,nonce> in order to guarantee security) :type len: Int :param len: The lenght of the symmetric key (in bit) :type nonce: Int :param nonce: The nonce used to encrypt/decrypt :rtype: Int :return: The operations are done correctly """ self.nonce = nonce self.len = len self.SymmetricKey = AESGCM.generate_key(bit_length=self.len); return 0 def getSymmetricKey(self): """ Get the symmetric key as bytes, if you want to serialize it you have to transform it (suggested in integer with a number of intger nessary = bit_length of key / 8, becaues each integer reppresent a byte) :rtype: Bytes :return: The symmetric key used to encrypt/decrypt """ return self.SymmetricKey def AddPacketNonce(self,nonce): """ Add the nonce used in the AES when is necessary to encapsulate some information about the starter of the conversation between two user :type nonce: Int :param nonce: The nonce used to encrypt the packets necessary to exchange key from two clients """ self.packetNonce = nonce def AESDecryptText(self,ct): """ Cipher text with AES and GCM in order to guarantee autenthicity and integrity of the message, the handling of the nonce is provided by the function itself (each encyption/decryption must increment the nonce in order to maintain it always synchronized on the two side ) :type ct: Bytes :param ct: The cipher text to decrypt :rtype: Bytes or None :return: The plain text obtained by decrypting the cipher text passed as parameter """ try: aescgm = AESGCM(self.SymmetricKey) self.nonce = self.nonce+1 pt = aescgm.decrypt(self.nonce.to_bytes(16,byteorder='big'),ct,None) return pt except: return None def AESEncryptText(self,pt): """ Cipher text with AES and GCM in order to guarantee autenthicity and integrity of the message, the handling of the nonce is provided by the function itself (each encyption/decryption must increment the nonce in order to maintain it always synchronized on the two side ) :type pt: Bytes :param pt: The plain text to encrypt :type ct: Bytes or None :param ct: The cipher text obtained by encrypting the plain text passed as argument """ try: aesgcm = AESGCM(self.SymmetricKey) self.nonce = self.nonce + 1 return aesgcm.encrypt(self.nonce.to_bytes(16,byteorder='big'), pt, None) except: return None def PacketAESEncryptText(self,pt): """ Cipher text with AES and a special nonce (sended by the client during the login procedure) in order to encapsulate some information useful for the exchange of key between two online user :type pt: Bytes :param pt: The plain text to encrypt :rtype: Bytes or None :return: The cipher text obtained by encrypting the plain text passed as argument """ try: aesgcm = AESGCM(self.SymmetricKey) self.packetNonce = self.packetNonce + 1 return aesgcm.encrypt(self.packetNonce.to_bytes(16,byteorder='big'), pt, None) except: return None def addDHparameters(self,p,g): """ Add the DH parameter, in orde to retrieve efficiently when necessary :type p: Int :param p: the Diffie Hellman P parameter :type g: Int :param g: The Diffie Hellman G parameter """ self.p = p self.g = g def getDHparameters(self): """ Get the DH parameters as a list [p,g] :rtype: [Int,Int] :return: The tuple composed by the two DH parameters """ return [self.p,self.g] def generateNonce(self,size): """ Generate a nonce of a dimension chosed (in bytes) a get it as an Integer encoded in Big Endian :type size: Int :param size: The size (in Bytes) of the nonce :rtype: Int :return: A nonce generated using the system call specific for cryptography purpose of the dimensione passed as argument """ return int.from_bytes(os.urandom(size),byteorder='big')
SieniAlessandro/E2E-Secure-Chat
Server/Security/Security.py
Security.py
py
14,411
python
en
code
1
github-code
6
[ { "api_name": "cryptography.hazmat.primitives.serialization.load_pem_private_key", "line_number": 27, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 27, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 27, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.load_pem_private_key", "line_number": 32, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 32, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 32, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.Encoding", "line_number": 36, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 36, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.PrivateFormat", "line_number": 36, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization.BestAvailableEncryption", "line_number": 36, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.load_pem_private_key", "line_number": 44, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 44, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 44, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.Encoding", "line_number": 45, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 45, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.PrivateFormat", "line_number": 45, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization.BestAvailableEncryption", "line_number": 45, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.rsa.generate_private_key", "line_number": 65, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.rsa", "line_number": 65, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 67, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.Encoding", "line_number": 69, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 69, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.PrivateFormat", "line_number": 70, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 70, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.BestAvailableEncryption", "line_number": 71, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 71, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.OAEP", "line_number": 86, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding", "line_number": 86, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.MGF1", "line_number": 86, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 86, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 86, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 87, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 87, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.OAEP", "line_number": 104, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding", "line_number": 104, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.MGF1", "line_number": 104, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 104, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 104, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 105, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 105, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.hashes.Hash", "line_number": 133, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 133, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 133, "usage_type": "call" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 133, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.PSS", "line_number": 147, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding", "line_number": 147, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.MGF1", "line_number": 147, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 147, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 147, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.PSS", "line_number": 148, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding", "line_number": 148, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 150, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 150, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.PSS", "line_number": 166, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding", "line_number": 166, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.asymmetric.padding.MGF1", "line_number": 166, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes.SHA256", "line_number": 166, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.hashes", "line_number": 166, "usage_type": "name" }, { "api_name": "cryptography.exceptions.InvalidSignature", "line_number": 168, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.load_pem_public_key", "line_number": 178, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 178, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 178, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.serialization.Encoding", "line_number": 187, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 187, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.PublicFormat", "line_number": 187, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization.Encoding", "line_number": 196, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.serialization", "line_number": 196, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.serialization.PublicFormat", "line_number": 196, "usage_type": "attribute" }, { "api_name": "cryptography.hazmat.primitives.ciphers.aead.AESGCM.generate_key", "line_number": 213, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.aead.AESGCM", "line_number": 213, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.ciphers.aead.AESGCM", "line_number": 248, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.aead.AESGCM", "line_number": 267, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.aead.AESGCM", "line_number": 284, "usage_type": "call" }, { "api_name": "os.urandom", "line_number": 319, "usage_type": "call" } ]
26135102637
import cv2 as cv import numpy as np img = cv.imread('/home/ai3/Desktop/common/ML/Day13/girl.jpg',0) kernel = np.ones((2,2),np.uint8) open1 = cv.morphologyEx(img,cv.MORPH_OPEN,kernel) open2 = cv.morphologyEx(img,cv.MORPH_CLOSE,kernel) open3 = cv.morphologyEx(open1,cv.MORPH_CLOSE,kernel) img=np.hstack((open1,open2,open3)) img = cv.imshow('dst',img) cv.waitKey(0)
94akshayraj/AI-program
ML ans/day13/3.py
3.py
py
365
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 4, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 5, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.MORPH_OPEN", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 9, "usage_type": "call" }, { "api_name": "cv2.MORPH_CLOSE", "line_number": 9, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.MORPH_CLOSE", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.hstack", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 13, "usage_type": "call" } ]
74637154747
import time import redis cache = redis.StrictRedis(host='redis', decode_responses=True, db=0, port=6379) def update_and_get_hit_count(): """""" print('In utils/update_and_get_hit_count') retries = 5 while True: try: return cache.incr('hits') except redis.exceptions.ConnectionError as err: if retries == 0: raise err retries -= 1 time.sleep(0.5) def clear_hit_count(): """""" print('in utils/clear_hit_count') retries = 5 while True: try: return cache.set('hits', 0) except redis.exceptions.ConnectionError as err: if retries == 0: raise err retries -= 1 time.sleep(0.5)
ShukujiNeel13/composetest
utils.py
utils.py
py
770
python
en
code
1
github-code
6
[ { "api_name": "redis.StrictRedis", "line_number": 5, "usage_type": "call" }, { "api_name": "redis.exceptions", "line_number": 15, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 19, "usage_type": "call" }, { "api_name": "redis.exceptions", "line_number": 30, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 34, "usage_type": "call" } ]
12688443618
# https://leetcode.com/problems/reverse-linked-list/ from typing import Optional class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def reverseList_(self, head: Optional[ListNode]) -> ListNode: # input as list # empty head if len(head) <= 1: return head # first element in head first_node = ListNode(val = head[0], next=None) prev_node = first_node list_val = [first_node.val] # len(head) > 1 if len(head) > 1: for i in range(1, len(head)): curr_node = ListNode(val = head[i], next=None) list_val.append(curr_node.val) prev_node.next = curr_node prev_node = curr_node # # traverse forward # next_node = first_node.next # while next_node != None: # # print("Next: ", next_node.val) # next_node = next_node.next # traverse reverse return list_val[::-1] def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]: # input as Listnode; only works on leetcode prev = None curr = head while curr: nxt = curr.next curr.next = prev prev = curr curr = nxt return prev solved = Solution() # print(solved.reverseList_(head = [1,2,3,4,5])) # print(solved.reverseList_(head = [1,2])) # print(solved.reverseList_(head = [-1])) # print(solved.reverseList_(head = []))
zvovov/competitive_coding
leetcode/neetcode_150/reverse_linked_list.py
reverse_linked_list.py
py
1,637
python
en
code
0
github-code
6
[ { "api_name": "typing.Optional", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 40, "usage_type": "name" } ]
21368489956
import numpy as np import matplotlib.pyplot as plt import glob import os import ruamel.yaml import matplotlib.colors as colors import matplotlib.cm as cmx from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) plt.rc('text', usetex=True) plt.rc('font', family='serif') def _get_measurement_range_for_output(output_key, output, method): # method = output['method'] # config = output[method] # return np.arange(config['start'], config['stop'], config['step']) method_keys = method.split('.') # e.g. ['freq_mod', 'span'] config = output # find the method configuration inside the output-config for key in method_keys: config = config[key] return np.arange(config['start'], config['stop'], config['step']) def color_generator(N, colormap='gnuplot'): """ Color generator for a given matplotlib colormap. Usage: ------------------------------------------ import matplotlib.pylab as plt import matplotlib.cm as cmx import matplotlib.colors as colors N = 20 color_gen = color_generator(N) for i in N: color = next(color_gen) # do something with the color ... """ cm_map = plt.get_cmap(colormap) c_norm = colors.Normalize(vmin=0, vmax=N) scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm_map) for i in xrange(N): yield scalar_map.to_rgba(i) cell='4' measno='3' filename='N:/data/emily/magnetometer_test/cell{1:s}/remote/meas{0:s}'.format(str(measno), str(cell)) files=glob.glob(filename+"/*.csv") files=sorted(files) start=100 steps=100 a=np.loadtxt(files[0], delimiter=',') a_fft=np.abs(np.fft.rfft(a, axis=0)) b=np.sum(a_fft[start::steps,:], axis=1) color_gen = color_generator(len(b)) config_name = glob.glob(filename+'/config*.yaml') with open(config_name[0], 'r') as ymlfile: cfg = ruamel.yaml.load(ymlfile) stack = cfg['stack'] meas_ranges = [None] * len(stack) keys = [None] * len(stack) outputs = [None] * len(stack) methods = [None] * len(stack) for i, stack_entry in enumerate(stack): keys[i], method_index = stack_entry.split('.') # e.g. key='B1', method_index = '0' method_index = int(method_index) # index gives the position of the method in the methods array outputs[i] = cfg['outputs'][keys[i]] methods[i] = outputs[i]['methods'][method_index] meas_ranges[i] = _get_measurement_range_for_output(keys[i], outputs[i], methods[i]) b0_amp = cfg['outputs']['B0']['amp']['start'] b1_freq_center = cfg['outputs']['B1']['freq_mod']['center'] b1_freq_span = cfg['outputs']['B1']['freq_mod']['span']['start'] downsampling_factor = cfg['devices']['nidaq']['downsampling_factor'] measurement_time = cfg['devices']['nidaq']['measurement_time_s'] sample_rate = cfg['devices']['nidaq']['sample_rate'] x_axis_label = cfg['outputs'][keys[0]][methods[0]]['label'] data_points = sample_rate*measurement_time/downsampling_factor datanew=np.zeros([len(b), len(files)]) plt.clf() # for j in range(len(b)-1): # #if j!=9: continue # color = next(color_gen) # plt.plot(a_fft[:,j], label=str(meas_ranges[1][j]), color=color) # plt.title("$B_1$ frequency (Hz)", fontsize=16) # plt.ylabel("FFT signal (a.u).", fontsize=16) # plt.xlabel("Frequency (Hz)", fontsize=16) # plt.ylim((0,8)) # plt.legend(ncol=3, prop={'size':10}) # plt.show() # plt.savefig(filename+"/fft_0mV_{}.png".format(measno), dpi=300) # plt.savefig(filename+"/fft_0mV_{}.pdf".format(measno)) # plt.clf() # plt.plot(b) # plt.ylabel("FFT signal a.u.", fontsize=16) # plt.xlabel("Frequency (Hz)", fontsize=16) # plt.ylim((0,9)) # plt.savefig(filename+"/fft_sum_0mV_{}.png".format(measno), dpi=300) # plt.savefig(filename+"/fft_sum_0mV_{}.pdf".format(measno)) # plt.clf() # raise for i in range(len(files)): data=np.loadtxt(files[i], delimiter=',') data_fft=np.abs(np.fft.rfft(data, axis=0)) datanew[:,i]=np.sum(data_fft[start::steps,:], axis=1) plt.imshow(datanew[-1::-1], aspect='auto', interpolation='nearest', extent=[meas_ranges[0][0]*1000, meas_ranges[0][-1]*1000, start/1000, data_fft.shape[0]/1000], cmap='gnuplot') plt.xlabel('R$_4$ offset (mV)', fontsize=20) plt.ylabel('Frequency (kHz)', fontsize=20) plt.tick_params(axis='both', which='major', labelsize=20) plt.colorbar() plt.show() plt.savefig(filename+"/all_together{0:s}_steps{1:s}.png".format(measno, str(steps)), dpi=300) plt.savefig(filename+"/all_together{0:s}_steps{1:s}.pdf".format(measno, str(steps)))
physikier/magnetometer
src/analysis.py
analysis.py
py
4,786
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.rc", "line_number": 11, "usage_type": "call" }, { "api_name": "matplotlib.rc", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rc", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rc", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.get_cmap", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "matplotlib.colors.Normalize", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.colors", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.cm.ScalarMappable", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.cm", "line_number": 52, "usage_type": "name" }, { "api_name": "glob.glob", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.fft.rfft", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 68, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 69, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 74, "usage_type": "call" }, { "api_name": "ruamel.yaml.yaml.load", "line_number": 76, "usage_type": "call" }, { "api_name": "ruamel.yaml.yaml", "line_number": 76, "usage_type": "attribute" }, { "api_name": "ruamel.yaml", "line_number": 76, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.fft.rfft", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 135, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 136, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 139, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 139, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 141, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 141, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 142, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 142, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 143, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 143, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 144, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 144, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 145, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 145, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 146, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 147, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 147, "usage_type": "name" } ]
70435413308
import re import emoji def preprocess_string(text): """ 입력받은 text 를 전처리 하는 함수. :param text: str :return : str """ # 이모티콘부터 제거 no_emoticon = '' for char in text: if char not in emoji.UNICODE_EMOJI: no_emoticon += char # 특수문자 기준 split no_punctuation = re.split(r'([!,?]+)|([.]+)|([,]+)|(["])|([\'])|([&]+)|([(]+)|([)]+)|([~]+)|([♡]+)|([☆,★]+)', no_emoticon.strip()) no_punctuation_text = [] for string in no_punctuation: if (string == '') or (string is None): continue no_punctuation_text.append(string) no_punctuation_text = ' '.join(no_punctuation_text) # 단독으로 쓰인 자모음 분리 split_char = re.split(r'([ㄱ-ㅣ0-9]+)', no_punctuation_text.strip()) split_char = ' '.join(split_char) # 한국어에서 단독으로 자주 쓰이는 자모음 뭉치 분리 split_char = re.split(r'([ㅎ]{2,})|([ㅜ,ㅠ]{2,})|([ㅗ]+)|([ㅋ,ㄱ,ㄲ]{2,})|\s+', split_char.strip()) final_text = [] for string in split_char: if (string == '') or (string is None): continue final_text.append(string) return ' '.join(final_text)
teammatmul/project-purifier
purifier/preprocess.py
preprocess.py
py
1,254
python
ko
code
78
github-code
6
[ { "api_name": "emoji.UNICODE_EMOJI", "line_number": 16, "usage_type": "attribute" }, { "api_name": "re.split", "line_number": 20, "usage_type": "call" }, { "api_name": "re.split", "line_number": 31, "usage_type": "call" }, { "api_name": "re.split", "line_number": 35, "usage_type": "call" } ]
2501424452
from os import listdir from PIL import Image #list src pic DIR = 'pic' #print listing of images img_list = listdir("pic") #enter and calculate ratio sh_ent = int(input("Shakal ratio (compress ratio):")) sh = 100 - sh_ent #work with image for filename in img_list: outname = "out/" + filename filename = "pic/" + filename print(filename) img = Image.open(filename) #save with compress img.save(outname, "JPEG", quality=sh)
vakarianplay/Pic_tools
shakal (compress)/shak.py
shak.py
py
505
python
en
code
0
github-code
6
[ { "api_name": "os.listdir", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 19, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 19, "usage_type": "name" } ]
29457010542
#!/usr/bin/env python import sys import commands import string import datetime import logging import logging.handlers from optparse import OptionParser from random import choice def print_error(ret, do_exit=False, msg=""): """ ret is the tuple returned by commands.getstatusoutput. If ret[0] is not 0, then msg (if passed) or ret[1] is printed as an error. If do_exit is True, the program also exits """ if ret[0] != 0: if not msg: msg = ret[1] logging.error("Check the following information:") logging.error(msg) if do_exit: sys.exit(ret[0]) def check_lcg_ce(ce): """Do the tests for a lcg-CE""" # I will not waste much effort on this, since lcg-CE are condemned # to disappear. rets = [] ce, queue = ce.split("/", 1) logging.info("\t\tchecking globus-job-run to ce") cmd = "globus-job-run %s /bin/hostname" % ce logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking globus-job-run to fork") cmd = "globus-job-run %s/jobmanager-fork /bin/pwd" % ce logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking globus-job-run to queue") queue = queue.split("-") cmd = "globus-job-run %s/%s-%s -queue %s /bin/pwd" % tuple([ce] + queue) logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) return rets def check_cream_ce(ce): """Do the tests for a CREAM CE""" rets = [] ce_hostport, dummy = ce.split("/", 1) logging.info("\t\tchecking glite-ce-allowed-submission") cmd = "glite-ce-allowed-submission -n %s" % ce_hostport logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) logging.info("\t\tchecking glite-ce-job-submit") cmd = "glite-ce-job-submit -n -a -r %s test_submission.jdl" % ce # XXX logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if ret[0] == 0: url = ret[1].splitlines()[-1] else: return # XXX logging.info("\t\t\tJob ID: %s", url) while True: cmd = "glite-ce-job-status -n %s" % url logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if "[DONE-OK]" in ret[1]: logging.info("\t\tsubmission ok, check the following job " + \ "id for further details %s", url) break elif "[DONE-FAILED]" in ret[1]: ret = (1, ret[1]) print_error(ret) break print_error(ret) rets.append(ret) return rets def check_gridftp(host): """Check gridftp on host""" cmd = "uberftp %s ls" % host logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if ret[0] != 0: print_error(ret) else: logging.info("\t\tGridFTP OK") def check_ces(bdii, vo): """Query the bdii for the available CE for VO vo, then check them""" logging.info("Checking Computing Elements") logging.info("\tQuerying the BDII for the CEs") cmd = "lcg-info --list-ce --bdii %(bdii)s --sed --vo %(vo)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret, do_exit=True) ces = ret[-1].splitlines() logging.info("\t\tFound: " + ",\n\t\t\t".join(ces)) checked = [] for ce in ces: if ce in checked: continue rets = [] checked.append(ce) ce_host = ce.split(":")[0] logging.info("\tChecking %s", ce_host) # Check the GridFTP check_gridftp(ce_host) if "8443" in ce: rets.extend(check_cream_ce(ce)) else: # lcf-CE rets.extend(check_lcg_ce(ce)) if not any([i[0] for i in rets]): logging.info("\t\tJob submission seems OK") else: logging.critical("\t\tJob submission has problems, check errors") def filter_and_join_ldap(data, query): """Filter results to only those of query and join line breaks from ldapsearch.""" got = False aux = [] for i in data.splitlines(): if i.startswith(query): got = True aux.append([i.split(":", 1)[-1].strip()]) elif i.startswith(" ") and got: aux[-1].append(i.strip()) elif got: got = False return ["".join(i) for i in aux] def check_ses(bdii, vo): """Query the bdii for the available SE for VO, then check them""" logging.info("Checking Storage Elements") logging.info("\tQuerying the BDII for the SEs") cmd = "lcg-info --list-se --bdii %(bdii)s --sed --vo VO:%(vo)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret, do_exit=True) ses = ret[-1].splitlines() logging.info("\t\tFound: " + ",\n\t\t\t".join(ses)) checked = ["gridce05.ifca.es"] for se in ses: if se in checked: continue rets = [] checked.append(se) logging.info("\tChecking %s", se) cmd = "uberftp %s ls" % se logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) if ret[0] != 0: print_error(ret) else: logging.info("\t\tGridFTP is up") rets.append(ret) cmd = "ldapsearch -x -LLL -H ldap://%(bdii)s -b o=grid \ '(&(objectClass=GlueSATop) \ (GlueVOInfoAccessControlBaseRule=VO:%(vo)s) \ (GlueChunkKey=GlueSEUniqueID=%(se)s))' \ GlueVOInfoPath" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) se_paths = filter_and_join_ldap(ret[1], "GlueVOInfoPath") cmd = "ldapsearch -x -LLL -H ldap://%(bdii)s -b o=grid \ '(&(objectClass=GlueSEControlProtocol) \ (GlueChunkKey=GlueSEUniqueID=%(se)s) \ (GlueSEControlProtocolType=SRM) \ (GlueSEControlProtocolVersion=2.2.0))' \ GlueSEControlProtocolEndpoint" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) endpt = [i.replace("httpg", "srm") for i in filter_and_join_ldap( ret[1], "GlueSEControlProtocolEndpoint")] for endpoint in endpt: for se_path in se_paths: logging.info("\t\tUploading to %(endpoint)s/%(se_path)s", locals()) randfile = ''.join([choice(string.letters + string.digits) \ for i in range(15)]) cmd = "lcg-cp -v -b --vo %(vo)s -D srmv2 file:/etc/issue \ %(endpoint)s/\?SFN=%(se_path)s/%(randfile)s" % locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if ret[0] == 0: logging.info("\t\tRemoving uploaded file") cmd = "lcg-del -l -v -b --vo %(vo)s -D srmv2 \ %(endpoint)s/\?SFN=%(se_path)s/%(randfile)s" % \ locals() logging.debug("Executing '%s'", cmd) ret = commands.getstatusoutput(cmd) print_error(ret) rets.append(ret) if not any([i[0] for i in rets]): logging.info("\t\tData management seems OK") else: logging.critical("\t\tData management has problems, check errors") def check_bdii(bdii): """Check bdii for correctness""" logging.info("Checking BDII '%s' information (TBD)", bdii) def get_proxy(): """Check for proxy validity and return VO""" ret = commands.getstatusoutput("voms-proxy-info -exists") print_error(ret, do_exit=True, msg="VOMS: No valid proxy found!") ret = commands.getstatusoutput("voms-proxy-info -vo") print_error(ret, do_exit=True) vo = ret[1] return vo def set_logging(level=logging.INFO): """Set up logging""" outfile = "%s.log" % datetime.datetime.now().strftime("%Y%m%d_%H%M%S.%f") logging.basicConfig(level=logging.DEBUG, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%m-%d %H:%M", filename=outfile, filemode="w") console = logging.StreamHandler() console.setLevel(level) formatter = logging.Formatter('%(levelname)-8s %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) logging.info("Detailed output for this run will be on '%s'", outfile) def main(): """Main program""" usage = """%prog [options] <siteBDII host>:<port>""" parser = OptionParser(usage=usage) # parser.add_option("-v", "--verbose", dest="verbose", action="store_true", # default="False", help="Print verbose results") parser.add_option("-c", "--ces", dest="onlyce", action="store_true", default=False, help="Check only Computing Elements") parser.add_option("-s", "--ses", dest="onlyse", action="store_true", default=False, help="Check only Storage Elements") (opts, args) = parser.parse_args() if opts.onlyse and opts.onlyce: parser.error("-s and -c options are mutually exclusive") elif opts.onlyse or opts.onlyse: all_ = False else: all_ = True if len(args) != 1: parser.error("Error, you have to specify one (and only one) siteBDII") set_logging() vo = get_proxy() logging.info("Checking with VO '%s'", vo) bdii = args[-1] check_bdii(bdii) if all_ or opts.onlyce: check_ces(bdii, vo) if all_ or opts.onlyse: check_ses(bdii, vo) if __name__ == "__main__": main() sys.exit(0)
alvarolopez/egi-certool
run_tests.py
run_tests.py
py
10,232
python
en
code
1
github-code
6
[ { "api_name": "logging.error", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 25, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 27, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 38, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 40, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 45, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 47, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 48, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 52, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 55, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 56, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 69, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 71, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 72, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 76, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 78, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 79, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 86, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 89, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 90, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 92, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 108, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 109, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 113, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 119, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 120, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 123, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 124, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 129, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 140, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 152, "usage_type": "call" }, { "api_name": "logging.critical", "line_number": 154, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 175, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 176, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 179, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 180, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 184, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 194, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 196, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 197, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 201, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 209, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 210, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 223, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 224, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 233, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 235, "usage_type": "call" }, { "api_name": "string.letters", "line_number": 235, "usage_type": "attribute" }, { "api_name": "string.digits", "line_number": 235, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 239, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 240, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 245, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 249, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 250, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 255, "usage_type": "call" }, { "api_name": "logging.critical", "line_number": 257, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 262, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 267, "usage_type": "call" }, { "api_name": "commands.getstatusoutput", "line_number": 270, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 277, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 280, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 280, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 282, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 282, "usage_type": "attribute" }, { "api_name": "logging.StreamHandler", "line_number": 288, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 290, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 292, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 294, "usage_type": "call" }, { "api_name": "optparse.OptionParser", "line_number": 300, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 324, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 336, "usage_type": "call" } ]
37601085068
from sqlwrapper import gensql, dbget, dbput import json import datetime def HOTEL_FD_POST_UPDATE_CheckinGuestArrivals(request): d = request.json res_id = d.get("Res_id") unique_id = d.get("Res_unique_id") pf_id = d.get("pf_id") a = {} RES_Log_Time = datetime.datetime.utcnow()+datetime.timedelta(hours=5, minutes=30) RES_Log_Time = RES_Log_Time.time().strftime("%H:%M:%S") print(RES_Log_Time) RES_Log_Date = datetime.datetime.utcnow().date() print(RES_Log_Date) RES_Log_Date = str(RES_Log_Date) arrival = dbget("select res_arrival, res_adults,res_room from reservation.res_reservation where res_id = '"+res_id+"' and pf_id = '"+pf_id+"' and res_unique_id = '"+unique_id+"'") arrival = json.loads(arrival) print(arrival) print(arrival[0]['res_arrival'],type(arrival[0]['res_arrival'])) today_arrival = (arrival[0]['res_arrival']) adult = arrival[0]['res_adults'] room = arrival[0]['res_room'] print(room,type(room)) print(today_arrival) if RES_Log_Date == today_arrival: p = {} p['res_id'] = res_id p['res_unique_id'] = unique_id sql_value = gensql('select','room_management.rm_queue_room','rm_queue',p) sql_value = json.loads(sql_value) if len(sql_value) != 0: psql = dbput("delete from room_management.rm_queue_room where res_id = '"+res_id+"' and res_unique_id = '"+unique_id+"'") print(psql) else: pass e = {} e['Res_id'] = res_id e['pf_id'] = pf_id e['res_unique_id'] = unique_id a['Res_guest_status'] = "checkin" sql_value = gensql('update','reservation.res_reservation',a,e) print(sql_value) res_id = e.get("Res_id") Emp_Id = '121' Emp_Firstname = "daisy" s = {} s['Emp_Id'] = Emp_Id s['Emp_Firstname'] = Emp_Firstname s['RES_Log_Date'] = RES_Log_Date s['RES_Log_Time'] = RES_Log_Time s['RES_Action_Type'] = "Checkin a guest" s['RES_Description'] = "Checked in a guest" s['Res_id'] = res_id sql_value = gensql('insert','reservation.res_activity_log',s) fo_status = "occupied" res_status = "checkin" sql_value = dbput("update room_management.rm_room_list set rm_fo_status = '"+fo_status+"',rm_reservation_status = '"+res_status+"',rm_fo_person = "+str(adult)+" where rm_room in ("+str(room)+")") print(sql_value) alertcount = json.loads(dbget("select count(*) from reservation.res_alert where res_id = '"+str(res_id)+"' \ and res_unique_id = '"+str(unique_id)+"'")) print(alertcount) if alertcount[0]['count'] !=0: alertvalue = json.loads(dbget("select * from reservation.res_alert where res_id = '"+str(res_id)+"' \ and res_unique_id = '"+str(unique_id)+"'")) return(json.dumps({'Status': 'Success', 'StatusCode': '200', 'alertvalue':alertvalue,'Return': 'Alert Got Successfully','ReturnCode':'AGS'}, sort_keys=True, indent=4)) else: return(json.dumps({'Status': 'Success', 'StatusCode': '200','Return': 'Record Updated Successfully','ReturnCode':'RUS'}, sort_keys=True, indent=4)) else: return(json.dumps({'Status': 'Success', 'StatusCode': '200','Return': 'Checkin a Today Guest arrivals only','ReturnCode':'CTG'}, sort_keys=True, indent=4))
infocuittesting/hotel360-second-version
HOTEL_FD_POST_UPDATE_CheckinGuestArrivals.py
HOTEL_FD_POST_UPDATE_CheckinGuestArrivals.py
py
3,531
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.utcnow", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 12, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "attribute" }, { "api_name": "sqlwrapper.dbget", "line_number": 18, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 20, "usage_type": "call" }, { "api_name": "sqlwrapper.gensql", "line_number": 33, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlwrapper.dbput", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlwrapper.gensql", "line_number": 47, "usage_type": "call" }, { "api_name": "sqlwrapper.gensql", "line_number": 61, "usage_type": "call" }, { "api_name": "sqlwrapper.dbput", "line_number": 64, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 67, "usage_type": "call" }, { "api_name": "sqlwrapper.dbget", "line_number": 67, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 71, "usage_type": "call" }, { "api_name": "sqlwrapper.dbget", "line_number": 71, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 73, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 76, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 80, "usage_type": "call" } ]
5285437188
from ...robot import Robot from stt_watson.SttWatsonLogListener import SttWatsonLogListener from recording.Record import Record from watson_client.Client import Client from utils.SignalHandler import SignalHandler import threading import signal import os class WatsonRobot(Robot): def __init__(self, config, speaker, actions): super(WatsonRobot, self).__init__(config, speaker, actions) config['audio-chunk'] = 8000 config['audio-rate'] = 44100 config['channels'] = 1 self.listeners = [] sttWatsonLogListener = SttWatsonLogListener() self.listeners.append(sttWatsonLogListener) self.stopper = threading.Event() self.record = Record(config, self.stopper) self.workers = [self.record] self.watsonClient = Client(config) self.handler = SignalHandler(self.stopper, self.workers) signal.signal(signal.SIGINT, self.handler) def name(self): return 'Watson' def listen(self): audioFd, writer = os.pipe() self.record.setWriter(writer) self.record.start() self.watsonClient.setListeners(self.listeners) self.watsonClient.startStt(audioFd)
lowdev/alfred
robot/stt/watson/watson.py
watson.py
py
1,199
python
en
code
0
github-code
6
[ { "api_name": "robot.Robot", "line_number": 12, "usage_type": "name" }, { "api_name": "stt_watson.SttWatsonLogListener.SttWatsonLogListener", "line_number": 20, "usage_type": "call" }, { "api_name": "threading.Event", "line_number": 22, "usage_type": "call" }, { "api_name": "recording.Record.Record", "line_number": 23, "usage_type": "call" }, { "api_name": "watson_client.Client.Client", "line_number": 25, "usage_type": "call" }, { "api_name": "utils.SignalHandler.SignalHandler", "line_number": 26, "usage_type": "call" }, { "api_name": "signal.signal", "line_number": 27, "usage_type": "call" }, { "api_name": "signal.SIGINT", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.pipe", "line_number": 33, "usage_type": "call" } ]
10623814818
from asyncio import sleep from discord import Forbidden from discord.ext import commands from Utils.domain_tester import get_domain_embed from Utils.file_tester import get_file_embed class DmCommands(commands.Cog, name="Dm Commands"): """ Cog including all Commands that are dm only """ def __init__(self, b): self.b = b print("Dm Commands succesfully added to the bot!") @commands.command(name="check", help="Takes given Input and runs a test over it. Only Dm Channels. Accepts URLs", brief="Checks Input", aliases=["test"]) async def check(self, ctx, *arg): if ctx.guild is not None: try: await ctx.message.delete() await ctx.author.send("Only DM Available") except Forbidden: await ctx.reply("Only DM Available! Warning! The Above message might be milicious. " "Dont click the file/url until you trust it! (for some reason i cant delete it)") return if arg is None and not ctx.message.attachments: await ctx.send("Missing an url") return if ctx.message.attachments: await ctx.reply("Starting testing of files. This takes some time") for i in ctx.message.attachments: msgn = await ctx.reply("Stand by...") await msgn.edit(content=None, embed=await get_file_embed(i, ctx)) await sleep(30) if len(arg) > 0: domain = arg[0] await ctx.reply(embed=get_domain_embed(domain, ctx))
veni-vidi-code/VirusTotalDiscordBot
Cogs/DmCommands.py
DmCommands.py
py
1,634
python
en
code
3
github-code
6
[ { "api_name": "discord.ext.commands.Cog", "line_number": 10, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 10, "usage_type": "name" }, { "api_name": "discord.Forbidden", "line_number": 27, "usage_type": "name" }, { "api_name": "Utils.file_tester.get_file_embed", "line_number": 38, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 39, "usage_type": "call" }, { "api_name": "Utils.domain_tester.get_domain_embed", "line_number": 42, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 19, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 19, "usage_type": "name" } ]
40071040492
from collections import Counter class Solution(object): def findAnagrams(self, s, p): """ :type s: str :type p: str :rtype: List[int] """ # anagram: str with same histgram res = [] lp = len(p) -1 ls = len(s) pCount = Counter(p) mCount = Counter(s[:lp]) # from 0 to lp - 2 for i in range(lp, ls): mCount[s[i]]+=1 if mCount == pCount: res.append(i-lp) mCount[s[i-lp]]-=1 if mCount[s[i-lp]] == 0: del mCount[s[i-lp]] return res
lucy9215/leetcode-python
438_findAllAnagramsInAString.py
438_findAllAnagramsInAString.py
py
619
python
en
code
0
github-code
6
[ { "api_name": "collections.Counter", "line_number": 16, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 17, "usage_type": "call" } ]
23932735079
import torch from torch import nn from torch.autograd import Variable import numpy as np from util import get_data from torch.utils.data import DataLoader from torch.nn import functional as F from torch.optim import Adam from variables import* from matplotlib import pyplot as plt class MnistRegression(object): def __init__(self, train_data, test_data): self.train_data = train_data self.test_data = test_data self.model = self.MnistModel() class MnistModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear( in_features=input_shape, out_features=output_shape ) def forward(self, x): x = x.reshape(-1, input_shape) x = self.linear(x) x = F.log_softmax(x, dim=1) return x def loss_fnc(self, Ypred, Y): return F.cross_entropy(Ypred, Y) def optimizer(self, learning_rate=0.1): return Adam(self.model.parameters(), lr=learning_rate) def evaluate(self, Y, Ypred): P = torch.argmax(Ypred, dim=1).numpy() Y = Y.numpy() return np.sum(Y == P) def train(self, num_epochs=100): opt = self.optimizer() total_train_loss = [] total_test_loss = [] for i in range(1,num_epochs+1): n_correct = 0 n_total = 0 for X, Y in self.train_data: Y = Y.to(dtype=torch.int64) Ypred = self.model(X) loss = self.loss_fnc(Ypred, Y) loss.backward() # calculate gradients total_train_loss.append(loss.item()) n_correct += self.evaluate(Y, Ypred) n_total += batch_size opt.step() # update parameters using claculated gradients opt.zero_grad() # use to avoid accumilating the gradients train_acc = round(n_correct/n_total, 3) with torch.no_grad(): n_correct = 0 n_total = 0 for X, Y in self.test_data: Y = Y.to(dtype=torch.int64) Ypred = self.model(X) loss = self.loss_fnc(Ypred, Y) total_test_loss.append(loss.item()) n_correct += self.evaluate(Y, Ypred) n_total += batch_size test_acc = round(n_correct/n_total, 3) print("Train Acc : {} Test Acc : {}".format(train_acc, test_acc)) plt.plot(total_train_loss, label='Train loss') plt.plot(total_test_loss , label='Test loss') plt.legend() plt.show() if __name__ == "__main__": train_data, test_data = get_data() model = MnistRegression(train_data, test_data) model.train()
1zuu/Pytroch-Examples
Mnist/mnist_regression.py
mnist_regression.py
py
2,842
python
en
code
2
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.argmax", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.int64", "line_number": 51, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.int64", "line_number": 69, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 82, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "util.get_data", "line_number": 87, "usage_type": "call" } ]
650532287
#! /bin/python import os import sys import json import luigi import numpy as np import nifty.tools as nt import nifty import nifty.graph.rag as nrag from vigra.analysis import relabelConsecutive from elf.segmentation.clustering import mala_clustering, agglomerative_clustering import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask # # Agglomerate Tasks # # TODO it would be nice to be able to change the block shape compared to ws task # so that we can agglomerate block boundaries. # However, I am not sure how this interacts with the id-offsets, so haven't # implemented this yet. class AgglomerateBase(luigi.Task): """ Agglomerate base class """ task_name = 'agglomerate' src_file = os.path.abspath(__file__) # input and output volumes input_path = luigi.Parameter() input_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() have_ignore_label = luigi.BoolParameter() dependency = luigi.TaskParameter() def requires(self): return self.dependency @staticmethod def default_task_config(): # parameter: # use_mala_agglomeration: whether to use thresholding based mala agglomeration # or element number based agglomerative clustering # threshold: threshold up to which to agglomerate (mala) or fraction of nodes # after agglomeration (agglomerative clustering) # size_regularizer: size regularizer in agglomerative clustering (wardness) # invert_inputs: do we need to invert the inputs? # offsets: offsets for affinities, set to None for boundaries config = LocalTask.default_task_config() config.update({'use_mala_agglomeration': True, 'threshold': .9, 'size_regularizer': .5, 'invert_inputs': False, 'offsets': None}) return config def clean_up_for_retry(self, block_list): super().clean_up_for_retry(block_list) # TODO remove any output of failed blocks because it might be corrupted def run_impl(self): # get the global config and init configs shebang, block_shape, roi_begin, roi_end = self.global_config_values() self.init(shebang) # get shape and make block config shape = vu.get_shape(self.input_path, self.input_key) if len(shape) == 4: shape = shape[1:] # load the agglomerate config config = self.get_task_config() # update the config with input and output paths and keys # as well as block shape config.update({'input_path': self.input_path, 'input_key': self.input_key, 'output_path': self.output_path, 'output_key': self.output_key, 'block_shape': block_shape, 'have_ignore_label': self.have_ignore_label}) if self.n_retries == 0: block_list = vu.blocks_in_volume(shape, block_shape, roi_begin, roi_end) else: block_list = self.block_list self.clean_up_for_retry(block_list) self._write_log('scheduling %i blocks to be processed' % len(block_list)) n_jobs = min(len(block_list), self.max_jobs) # prime and run the jobs self.prepare_jobs(n_jobs, block_list, config) self.submit_jobs(n_jobs) # wait till jobs finish and check for job success self.wait_for_jobs() self.check_jobs(n_jobs) class AgglomerateLocal(AgglomerateBase, LocalTask): """ Agglomerate on local machine """ pass class AgglomerateSlurm(AgglomerateBase, SlurmTask): """ Agglomerate on slurm cluster """ pass class AgglomerateLSF(AgglomerateBase, LSFTask): """ Agglomerate on lsf cluster """ pass # # Implementation # def _agglomerate_block(blocking, block_id, ds_in, ds_out, config): fu.log("start processing block %i" % block_id) have_ignore_label = config['have_ignore_label'] use_mala_agglomeration = config.get('use_mala_agglomeration', True) threshold = config.get('threshold', 0.9) size_regularizer = config.get('size_regularizer', .5) invert_inputs = config.get('invert_inputs', False) offsets = config.get('offsets', None) bb = vu.block_to_bb(blocking.getBlock(block_id)) # load the segmentation / output seg = ds_out[bb] # check if this block is empty if np.sum(seg) == 0: fu.log_block_success(block_id) return # load the input data ndim_in = ds_in.ndim if ndim_in == 4: assert offsets is not None assert len(offsets) <= ds_in.shape[0] bb_in = (slice(0, len(offsets)),) + bb input_ = vu.normalize(ds_in[bb_in]) else: assert offsets is None input_ = vu.normalize(ds_in[bb]) if invert_inputs: input_ = 1. - input_ id_offset = int(seg[seg != 0].min()) # relabel the segmentation _, max_id, _ = relabelConsecutive(seg, out=seg, keep_zeros=True, start_label=1) seg = seg.astype('uint32') # construct rag rag = nrag.gridRag(seg, numberOfLabels=max_id + 1, numberOfThreads=1) # extract edge features if offsets is None: edge_features = nrag.accumulateEdgeMeanAndLength(rag, input_, numberOfThreads=1) else: edge_features = nrag.accumulateAffinityStandartFeatures(rag, input_, offsets, numberOfThreads=1) edge_features, edge_sizes = edge_features[:, 0], edge_features[:, -1] uv_ids = rag.uvIds() # set edges to ignore label to be maximally repulsive if have_ignore_label: ignore_mask = (uv_ids == 0).any(axis=1) edge_features[ignore_mask] = 1 # build undirected graph n_nodes = rag.numberOfNodes graph = nifty.graph.undirectedGraph(n_nodes) graph.insertEdges(uv_ids) if use_mala_agglomeration: node_labels = mala_clustering(graph, edge_features, edge_sizes, threshold) else: node_ids, node_sizes = np.unique(seg, return_counts=True) if node_ids[0] != 0: node_sizes = np.concatenate([np.array([0]), node_sizes]) n_stop = int(threshold * n_nodes) node_labels = agglomerative_clustering(graph, edge_features, node_sizes, edge_sizes, n_stop, size_regularizer) # run clusteting node_labels, max_id, _ = relabelConsecutive(node_labels, start_label=1, keep_zeros=True) fu.log("reduced number of labels from %i to %i" % (n_nodes, max_id + 1)) # project node labels back to segmentation seg = nrag.projectScalarNodeDataToPixels(rag, node_labels, numberOfThreads=1) seg = seg.astype('uint64') # add offset back to segmentation seg[seg != 0] += id_offset ds_out[bb] = seg # log block success fu.log_block_success(block_id) def agglomerate(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) with open(config_path, 'r') as f: config = json.load(f) # read the input cofig input_path = config['input_path'] input_key = config['input_key'] shape = list(vu.get_shape(input_path, input_key)) if len(shape) == 4: shape = shape[1:] block_shape = list(config['block_shape']) block_list = config['block_list'] # read the output config output_path = config['output_path'] output_key = config['output_key'] # get the blocking blocking = nt.blocking([0, 0, 0], shape, block_shape) # submit blocks with vu.file_reader(input_path, 'r') as f_in, vu.file_reader(output_path) as f_out: ds_in = f_in[input_key] assert ds_in.ndim in (3, 4) ds_out = f_out[output_key] assert ds_out.ndim == 3 for block_id in block_list: _agglomerate_block(blocking, block_id, ds_in, ds_out, config) # log success fu.log_job_success(job_id) if __name__ == '__main__': path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split('.')[0].split('_')[-1]) agglomerate(job_id, path)
constantinpape/cluster_tools
cluster_tools/watershed/agglomerate.py
agglomerate.py
py
8,389
python
en
code
32
github-code
6
[ { "api_name": "luigi.Task", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "luigi.Parameter", "line_number": 37, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 38, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 39, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 40, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 41, "usage_type": "call" }, { "api_name": "luigi.TaskParameter", "line_number": 42, "usage_type": "call" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask.default_task_config", "line_number": 57, "usage_type": "call" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask", "line_number": 57, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.get_shape", "line_number": 73, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 73, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.blocks_in_volume", "line_number": 87, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 87, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask", "line_number": 104, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.SlurmTask", "line_number": 111, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LSFTask", "line_number": 118, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 130, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 130, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.block_to_bb", "line_number": 138, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 138, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 143, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils.log_block_success", "line_number": 144, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 144, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.normalize", "line_number": 153, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 153, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.normalize", "line_number": 156, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 156, "usage_type": "name" }, { "api_name": "vigra.analysis.relabelConsecutive", "line_number": 164, "usage_type": "call" }, { "api_name": "nifty.graph.rag.gridRag", "line_number": 168, "usage_type": "call" }, { "api_name": "nifty.graph.rag", "line_number": 168, "usage_type": "name" }, { "api_name": "nifty.graph.rag.accumulateEdgeMeanAndLength", "line_number": 173, "usage_type": "call" }, { "api_name": "nifty.graph.rag", "line_number": 173, "usage_type": "name" }, { "api_name": "nifty.graph.rag.accumulateAffinityStandartFeatures", "line_number": 175, "usage_type": "call" }, { "api_name": "nifty.graph.rag", "line_number": 175, "usage_type": "name" }, { "api_name": "nifty.graph.undirectedGraph", "line_number": 186, "usage_type": "call" }, { "api_name": "nifty.graph", "line_number": 186, "usage_type": "attribute" }, { "api_name": "elf.segmentation.clustering.mala_clustering", "line_number": 190, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 195, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 195, "usage_type": "call" }, { "api_name": "elf.segmentation.clustering.agglomerative_clustering", "line_number": 197, "usage_type": "call" }, { "api_name": "vigra.analysis.relabelConsecutive", "line_number": 202, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 204, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 204, "usage_type": "name" }, { "api_name": "nifty.graph.rag.projectScalarNodeDataToPixels", "line_number": 207, "usage_type": "call" }, { "api_name": "nifty.graph.rag", "line_number": 207, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log_block_success", "line_number": 214, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 214, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 218, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 218, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 219, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 219, "usage_type": "name" }, { "api_name": "json.load", "line_number": 221, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils.get_shape", "line_number": 226, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 226, "usage_type": "name" }, { "api_name": "nifty.tools.blocking", "line_number": 238, "usage_type": "call" }, { "api_name": "nifty.tools", "line_number": 238, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.file_reader", "line_number": 241, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 241, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log_job_success", "line_number": 250, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 250, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 254, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 255, "usage_type": "call" }, { "api_name": "os.path", "line_number": 255, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 256, "usage_type": "call" }, { "api_name": "os.path", "line_number": 256, "usage_type": "attribute" } ]
17424247870
from setuptools import setup import dorm with open("README.md", "r") as readme: long_description = readme.read() setup( name="dorm", version=dorm.version, description="A tiny SQLite ORM for Python.", long_description=long_description, long_description_content_type="text/markdown", author="Dan Watson", author_email="[email protected]", url="https://github.com/dcwatson/dorm", license="MIT", py_modules=["dorm"], entry_points={"console_scripts": ["dorm=dorm:main"]}, classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Database", ], )
dcwatson/dorm
setup.py
setup.py
py
804
python
en
code
1
github-code
6
[ { "api_name": "setuptools.setup", "line_number": 8, "usage_type": "call" }, { "api_name": "dorm.version", "line_number": 10, "usage_type": "attribute" } ]
12814211947
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0002_userinfo_grade'), ] operations = [ migrations.CreateModel( name='Events', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=80)), ('date', models.DateTimeField()), ('cost', models.DecimalField(max_digits=6, decimal_places=2)), ], ), migrations.AddField( model_name='userinfo', name='balance', field=models.DecimalField(default=0.0, max_digits=6, decimal_places=2), preserve_default=False, ), ]
asp3/StudentAccounts
student/migrations/0003_auto_20151025_1630.py
0003_auto_20151025_1630.py
py
906
python
en
code
3
github-code
6
[ { "api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 18, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 19, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 19, "usage_type": "name" }, { "api_name": "django.db.models.DecimalField", "line_number": 20, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 20, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.DecimalField", "line_number": 26, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 26, "usage_type": "name" } ]
42483900439
import pandas as pd import networkx as nx import json hierarchy_df = pd.read_csv('hierarchy_table.csv', index_col=0, dtype=str) graph_network = nx.from_pandas_edgelist( hierarchy_df, source='Parent', target='Child', ) json_graph = json.dumps(graph_network, default=nx.node_link_data) # Using a JSON string with open('json_graph.json', 'w') as outfile: outfile.write(json_graph)
diegopintossi/graph_network
graph_network.py
graph_network.py
py
398
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 5, "usage_type": "call" }, { "api_name": "networkx.from_pandas_edgelist", "line_number": 7, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 13, "usage_type": "call" }, { "api_name": "networkx.node_link_data", "line_number": 13, "usage_type": "attribute" } ]
35426908825
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import scipy.integrate a=0.7 b=0.6 X = np.arange(0,2.4,0.2) Y = np.arange(0,2.4,0.2) m,p = np.meshgrid(X,Y) mdot = np.divide(1,1+np.square(p))- np.multiply(b,m) pdot = np.subtract(m,np.multiply(a,p)) fig, ax = plt.subplots() q=ax.quiver(p,m,pdot,mdot) ax.quiverkey(q,X=0.3,Y=2.4, U=5, label='Quiver key, length = 5', labelpos='E') ax.plot(p,np.multiply(a,p)) ax.plot(p, np.divide( 1, np.multiply(b,(1+np.square(p))))) ax.set_xlabel('p') ax.set_ylabel('m') def dydt_autoinhib(t,y,a,b): y1,y2=y dy1 = 1/(1+y2**2)-b*y1 dy2 = y1-a*y2 return (dy1,dy2) # lambda trick so we can pass the right function into the solver dydt_params = lambda t,y: dydt_autoinhib(t,y,a,b) solution1 = scipy.integrate.solve_ivp(dydt_params, t_span=(0,20),y0=(2,2), method='RK45') t1_ode45 = solution1.t m1_ode45 = solution1.y[0] p1_ode45 = solution1.y[1] ax.plot(p1_ode45,m1_ode45) plt.show()
martinaoliver/GTA
ssb/m1a/numeric/Practical_full_solutions_jupyter/python_script_solutions/phase_portrait_autorinhib_20190926.py
phase_portrait_autorinhib_20190926.py
py
991
python
en
code
0
github-code
6
[ { "api_name": "numpy.arange", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.subtract", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "numpy.multiply", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 21, "usage_type": "call" }, { "api_name": "scipy.integrate.integrate.solve_ivp", "line_number": 34, "usage_type": "call" }, { "api_name": "scipy.integrate.integrate", "line_number": 34, "usage_type": "attribute" }, { "api_name": "scipy.integrate", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" } ]
34862433797
from django import template from django.urls import NoReverseMatch, reverse from utilities.utils import get_viewname, prepare_cloned_fields register = template.Library() # # Instance buttons # @register.inclusion_tag('buttons/clone.html') def clone_button(instance): url = reverse(get_viewname(instance, 'add')) # Populate cloned field values param_string = prepare_cloned_fields(instance).urlencode() if param_string: url = f'{url}?{param_string}' return { 'url': url, } @register.inclusion_tag('buttons/edit.html') def edit_button(instance): viewname = get_viewname(instance, 'edit') url = reverse(viewname, kwargs={'pk': instance.pk}) return { 'url': url, } @register.inclusion_tag('buttons/delete.html') def delete_button(instance): viewname = get_viewname(instance, 'delete') url = reverse(viewname, kwargs={'pk': instance.pk}) return { 'url': url, } # # List buttons # @register.inclusion_tag('buttons/add.html') def add_button(model, action='add'): try: url = reverse(get_viewname(model, action)) except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/import.html') def import_button(model, action='import'): try: url = reverse(get_viewname(model, action)) except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/bulk_edit.html') def bulk_edit_button(model, action='bulk_edit', query_params=None): try: url = reverse(get_viewname(model, action)) if query_params: url = f'{url}?{query_params.urlencode()}' except NoReverseMatch: url = None return { 'url': url, } @register.inclusion_tag('buttons/bulk_delete.html') def bulk_delete_button(model, action='bulk_delete', query_params=None): try: url = reverse(get_viewname(model, action)) if query_params: url = f'{url}?{query_params.urlencode()}' except NoReverseMatch: url = None return { 'url': url, }
Status-Page/Status-Page
statuspage/utilities/templatetags/buttons.py
buttons.py
py
2,140
python
en
code
45
github-code
6
[ { "api_name": "django.template.Library", "line_number": 6, "usage_type": "call" }, { "api_name": "django.template", "line_number": 6, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 15, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 15, "usage_type": "call" }, { "api_name": "utilities.utils.prepare_cloned_fields", "line_number": 18, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 29, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 30, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 39, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 40, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 54, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 54, "usage_type": "call" }, { "api_name": "django.urls.NoReverseMatch", "line_number": 55, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 66, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 66, "usage_type": "call" }, { "api_name": "django.urls.NoReverseMatch", "line_number": 67, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 78, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 78, "usage_type": "call" }, { "api_name": "django.urls.NoReverseMatch", "line_number": 81, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 92, "usage_type": "call" }, { "api_name": "utilities.utils.get_viewname", "line_number": 92, "usage_type": "call" }, { "api_name": "django.urls.NoReverseMatch", "line_number": 95, "usage_type": "name" } ]
34958652342
import torch import torch.nn as nn import torch.nn.functional as F def normalize_l2(x): """ Expects x.shape == [N, C, H, W] """ norm = torch.norm(x.view(x.size(0), -1), p=2, dim=1) norm = norm.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) return x / norm def pair_cos_dist(x, y): cos = nn.CosineSimilarity(dim=-1, eps=1e-6) c = torch.clamp(1 - cos(x, y), min=0) return c class Feature_Targets(nn.Module): def __init__(self, epsilon, num_steps, step_size, data_min = -1.0, data_max = 1.0, grad_sign=True, random_start = True): super().__init__() self.epsilon = epsilon self.num_steps = num_steps self.step_size = step_size self.grad_sign = grad_sign self.data_min = data_min self.data_max = data_max self.random_start = random_start def forward(self, model, bx, by, target_bx): """ :param model: the classifier's forward method :param bx: batch of images :param by: true labels :return: perturbed batch of images """ adv_bx = bx.detach().clone() target = target_bx.detach().clone() if self.random_start: adv_bx += torch.zeros_like(adv_bx).uniform_(-self.epsilon, self.epsilon) adv_bx = adv_bx.clamp(self.data_min, self.data_max) target_feature, target_logits = model(target) for i in range(self.num_steps): adv_bx.requires_grad_() with torch.enable_grad(): feature, logits = model(adv_bx) loss = pair_cos_dist(feature, target_feature).mean() grad = torch.autograd.grad(loss, adv_bx, only_inputs=True)[0] if self.grad_sign: adv_bx = adv_bx.detach() + self.step_size * torch.sign(grad.detach()) else: grad = normalize_l2(grad.detach()) adv_bx = adv_bx.detach() + self.step_size * grad adv_bx = torch.min(torch.max(adv_bx, bx - self.epsilon), bx + self.epsilon).clamp(self.data_min, self.data_max) return adv_bx
arthur-qiu/adv_vis
attack_methods/feature_targets.py
feature_targets.py
py
2,092
python
en
code
0
github-code
6
[ { "api_name": "torch.norm", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.nn.CosineSimilarity", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.clamp", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.enable_grad", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.autograd.grad", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 49, "usage_type": "attribute" }, { "api_name": "torch.sign", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 57, "usage_type": "call" } ]
7002507231
import json from .db_utils import conn as db_conn from enum import Enum class NotificationType(Enum): questionEndorse = 'question_endorsed' answerEndorse = 'answer_endorsed' answerUser = 'answer_user' answerSaved = 'answer_saved' NOTIFICATION_TEXT_BY_TYPE = { NotificationType.questionEndorse: "endorsed your question", NotificationType.answerEndorse: "endorsed your answer", NotificationType.answerUser: "answered your question", NotificationType.answerSaved: "answered a question you saved" } DATA_FIELDS_BY_TYPE = { NotificationType.questionEndorse: set(['question_id']), NotificationType.answerEndorse: set(['question_id', 'answer_id']), NotificationType.answerUser: set(['question_id', 'answer_id']), NotificationType.answerSaved: set(['question_id', 'answer_id']) } def push_notification(user_id, notif_type, data): cur = db_conn.cursor() if set(data.keys()) != DATA_FIELDS_BY_TYPE[notif_type]: raise ArgumentError("Invalid data fields for notification type {}; expected {}".format(data.keys(), DATA_FIELDS_BY_TYPE[notif_type])) cur.execute("INSERT INTO notifications (user_id, type, data) VALUES (%s, %s, %s)", (user_id, notif_type.value, json.dumps(data)))
minupalaniappan/gradfire
daviscoursesearch/flaskapp/utils/notif_utils.py
notif_utils.py
py
1,239
python
en
code
12
github-code
6
[ { "api_name": "enum.Enum", "line_number": 5, "usage_type": "name" }, { "api_name": "db_utils.conn.cursor", "line_number": 26, "usage_type": "call" }, { "api_name": "db_utils.conn", "line_number": 26, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 29, "usage_type": "call" } ]
24706158570
#!/usr/bin/python2.4 import base64 import hmac from google.appengine.api import urlfetch from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app import hashlib class PlacesHandler(webapp.RequestHandler): """Handles requests to /places.""" def post(self): """Handles posts.""" self.response.headers['Content-Type'] = 'application/json' action = self.request.get('action') CLIENT_ID = None PRIVATE_KEY = None # These are required to work if not CLIENT_ID and not PRIVATE_KEY: self.response.out.write('{}') return places_url = None if action == 'search': location = self.request.get('location') radius = self.request.get('radius') url_to_sign = ('/maps/api/place/search/json?location=%s&radius=%s&client=' '%s&sensor=true') % (location, radius, CLIENT_ID) decoded_key = base64.urlsafe_b64decode(PRIVATE_KEY) signature = hmac.new(decoded_key, url_to_sign, hashlib.sha1) encoded_signature = base64.urlsafe_b64encode(signature.digest()) places_url = ('http://maps.google.com/maps/api/place/search/json?' 'location=%s&radius=%s&client=%s&sensor=true&' 'signature=%s') % (location, radius, CLIENT_ID, encoded_signature) if places_url: self.response.out.write(urlfetch.fetch(places_url).content) if __name__ == '__main__': application = webapp.WSGIApplication([('/places[/]?', PlacesHandler)], debug=True) run_wsgi_app(application)
bilal-karim/gmaps-samples-v3
devfest-2010/whereiscoffee/places.py
places.py
py
1,627
python
en
code
6
github-code
6
[ { "api_name": "google.appengine.ext.webapp.RequestHandler", "line_number": 13, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.webapp", "line_number": 13, "usage_type": "name" }, { "api_name": "base64.urlsafe_b64decode", "line_number": 38, "usage_type": "call" }, { "api_name": "hmac.new", "line_number": 39, "usage_type": "call" }, { "api_name": "hashlib.sha1", "line_number": 39, "usage_type": "attribute" }, { "api_name": "base64.urlsafe_b64encode", "line_number": 40, "usage_type": "call" }, { "api_name": "google.appengine.api.urlfetch.fetch", "line_number": 48, "usage_type": "call" }, { "api_name": "google.appengine.api.urlfetch", "line_number": 48, "usage_type": "name" }, { "api_name": "google.appengine.ext.webapp.WSGIApplication", "line_number": 51, "usage_type": "call" }, { "api_name": "google.appengine.ext.webapp", "line_number": 51, "usage_type": "name" }, { "api_name": "google.appengine.ext.webapp.util.run_wsgi_app", "line_number": 53, "usage_type": "call" } ]
11552601944
import csv import getopt, sys from moviepy.editor import VideoFileClip, concatenate_videoclips folder = '/Videos/' # file name of the video and config file event = '20221002 PREECNLBVA' output_file = None # Create a file for each segment #output_file = 'check' # Compile the clips with a check flag output_file = 'highlight' # Compile the clips with a highligh flag #output_file = '20221002 EYF Segments.mp4' # compile all segments in the config file # --input mp4_file = folder + '/' + event + '.mp4' # --config config_file = folder + '/' + event + '.csv' # --output def return_filename(desc, prefix, suffix): return str(prefix or '') + str(desc or '') + str(suffix or '') + '.mp4' def main(): global folder global event global output_file global mp4_file global config_file argumentList = sys.argv[1:] options = "i:c:o:" long_options = ["input=","config=","output="] try: arguments, values = getopt.getopt(argumentList, options, long_options) for currentArgument, currentValue in arguments: if currentArgument in ("-i", "--input"): mp4_file = currentValue # print ("File: ", currentValue) if currentArgument in ("-o", "--output"): output_file = currentValue if currentArgument in ("-c", "--config"): config_file = currentValue # print ("Config: ", currentValue) except getopt.error as err: print (str(err)) if mp4_file is None: # If mp4 file is not provided, use config file name mp4_file = config_file.replace(".csv", ".mp4") # Read the config file rows = csv.DictReader(open(config_file)) first = True for row in rows: if row['source'] == 'video': min = int(row['min']) sec = int(row['sec']) if min > 0: start_seconds = min * 60 + sec else: start_seconds = sec length_in_sec = int(row['length_in_sec']) end_seconds = start_seconds + length_in_sec if start_seconds and end_seconds: if output_file is None: # MODE = Split the segments into separate files clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) file_name = return_filename(row['desc'], row['filename_prefix'], row['filename_suffix']) clip.write_videofile(file_name) else: # MODE = Concatenate the segments into a single file if (output_file == 'check' and row['filename_suffix'] == 'check') or \ (output_file == 'highlight' and row['filename_suffix'] == 'highlight') or \ (output_file != 'check' and output_file != 'highlight'): # Save only if check or highlight or if all clips if first: final_clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) first = False else: clip = VideoFileClip(mp4_file).subclip(start_seconds, end_seconds) final_clip = concatenate_videoclips([final_clip,clip]) else: print(f'Error with config settings for: {row}') if output_file: # Save the final clip if output_file == 'check': output_file = event + ' check.mp4' elif output_file == 'highlight': output_file = event + ' highlight.mp4' final_clip.write_videofile(output_file) if __name__ == "__main__": main()
jordiyeh/video-cut
create_highlight_videos.py
create_highlight_videos.py
py
3,744
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 32, "usage_type": "attribute" }, { "api_name": "getopt.getopt", "line_number": 39, "usage_type": "call" }, { "api_name": "getopt.error", "line_number": 49, "usage_type": "attribute" }, { "api_name": "csv.DictReader", "line_number": 57, "usage_type": "call" }, { "api_name": "moviepy.editor.VideoFileClip", "line_number": 74, "usage_type": "call" }, { "api_name": "moviepy.editor.VideoFileClip", "line_number": 84, "usage_type": "call" }, { "api_name": "moviepy.editor.VideoFileClip", "line_number": 87, "usage_type": "call" }, { "api_name": "moviepy.editor.concatenate_videoclips", "line_number": 88, "usage_type": "call" } ]
71270407548
""" This question is asked by Apple. Given two binary strings (strings containing only 1s and 0s) return their sum (also as a binary string). Note: neither binary string will contain leading 0s unless the string itself is 0 Ex: Given the following binary strings... "100" + "1", return "101" "11" + "1", return "100" "1" + "0", return "1" """ from collections import deque def addBinary(number1:str, number2: str) -> str: # Time: O(n) -> where "n" is the number of bits of the final sum # Space: O(n) or O(1) if we don't consider the output n1Pointer = len(number1)-1 n2Pointer = len(number2)-1 output = deque() carry = 0 while n1Pointer >= 0 or n2Pointer >= 0: n1Digit = 0 if n1Pointer < 0 else int(number1[n1Pointer]) n2Digit = 0 if n2Pointer < 0 else int(number2[n2Pointer]) currDigitSum = n1Digit + n2Digit + carry carry = 1 if currDigitSum >= 2 else 0 if currDigitSum == 2: currDigitSum = 0 elif currDigitSum == 3: currDigitSum = 1 output.appendleft(str(currDigitSum)) # O(1) n1Pointer -= 1 n2Pointer -= 1 if carry: output.appendleft(str(carry)) # O(1) return "".join(output) # O(n) assert addBinary("100", "1") == "101" assert addBinary("11", "1") == "100" assert addBinary("1", "0") == "1" print("Passed all testes!")
lucasbivar/coding-interviews
the-daily-byte/week_01/day_05_add_binary.py
day_05_add_binary.py
py
1,314
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 21, "usage_type": "call" } ]
4234376251
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.optimize import minimize from sklearn.metrics import mean_squared_error as mse def SIR(): def prediction(beta, gamma, population, i0, r0, d0, time_predict): def SIR_model(y, t, beta, gamma, population): s, i, r = y dSdt = -beta * s * i / population dIdt = beta * s * i / population - gamma * i dRdt = gamma * i return [dSdt, dIdt, dRdt] s0 = population - i0 - r0 - d0 y_0 = [s0, i0, r0] sol = odeint(SIR_model, y_0, time_predict, args=(beta, gamma, population)) sol = np.transpose(sol) return sol def error_model(point, cases, population, infected_0, recovered_0, dead_0): beta, gamma = point def SIR_model(y, t, beta, gamma, population): s, i, r = y dSdt = -beta * s * i / population dIdt = beta * s * i / population - gamma * i dRdt = gamma * i return [dSdt, dIdt, dRdt] suscepted_0 = population - infected_0 - recovered_0 - dead_0 y0 = [suscepted_0, infected_0, recovered_0] sol = odeint(SIR_model, y0, np.arange(1, len(cases) + 1), args=(beta, gamma, population)) sol = np.transpose(sol) error = mse(cases, sol[1]) return error def trainer(cases, population, infected_0, recovered_0, dead_0): optimal = minimize(error_model, np.array([0.001, 0.001]), args=(cases, population, infected_0, recovered_0, dead_0), method='L-BFGS-B', bounds=[(0.000001, 1.0), (0.000001, 1.0)]) beta, gamma = optimal.x return beta, gamma def plot(s, i, r, initials_state, city_name, period_predict, time_predict, population): plt.figure() plt.title('Projeção do total de habitantes sucetíveis, infectados e recuperados em ' + city_name + '/' + initials_state[0], fontsize=20) plt.xlabel('Meses', fontsize=15) plt.xticks(np.linspace(15, period_predict + 15, 7)[:-1], ('Abril', 'Maio', 'Junho', 'Julo', 'Agosto', 'Setembro')) plt.ylabel('Número de habitantes', fontsize=15) plt.yticks(np.arange(0, population, step=population * 0.03)) plt.plot(time_predict, s, label='Sucetíveis') plt.plot(time_predict, i, label='Infectados') plt.plot(time_predict, r, label='Recuperados') plt.legend(loc='center left', bbox_to_anchor=(1.002, 0.7), fontsize=14) plt.rcParams["figure.figsize"] = (20, 10) plt.show()
FBWeimer/Plague-Doctor
Plague Doctor/plaguedoctor/__init__.py
__init__.py
py
2,604
python
en
code
0
github-code
6
[ { "api_name": "scipy.integrate.odeint", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 21, "usage_type": "call" }, { "api_name": "scipy.integrate.odeint", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 38, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 39, "usage_type": "call" }, { "api_name": "scipy.optimize.minimize", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 62, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" } ]
32111228276
import numpy as np import matplotlib.pyplot as plt from scipy import fftpack, signal # 고주파 성분만 날리는 fft # def get_filtered_data(in_data, filter_value=0.004): def del_high_freq(in_data, filter_value=0.004): """ :param in_data: 대상 시계열 신호 :param filter_value: filter_value이상의 주파수를 가지는 신호를 날림 :return: fft 결과 """ sig_fft = fftpack.fft(in_data) sample_freq = fftpack.fftfreq(in_data.size) high_freq_fft = sig_fft.copy() high_freq_fft[np.abs(sample_freq) > filter_value] = 0 filtered_data = fftpack.ifft(high_freq_fft) return filtered_data # 고주파, 저주파 성분을 날리는 fft def del_high_and_low_freq(in_data, high_filter_value, low_filter_value): """ :param in_data: 대상 시계열 신호 :param high_filter_value: fft를 수행할 최대값, low_filter_value ~ high_filter_value값 사이의 신호를 fft :param low_filter_value: fft를 수행할 최소값 :return: fft 결과 """ sig_fft = fftpack.fft(in_data) sample_freq = fftpack.fftfreq(in_data.size) high_freq_fft = sig_fft.copy() low_value1 = np.max(high_freq_fft) high_freq_fft[np.abs(sample_freq) > high_filter_value] = 0 high_freq_fft[np.abs(sample_freq) < low_filter_value] = 0 low_value2 = np.max(high_freq_fft) filtered_data = fftpack.ifft(high_freq_fft) return filtered_data, low_value1, low_value2 def fft(pupil_list, minu=None, quar=None): global section_frames, time # 데이터에서 0, -1인 부분 제거 while 0 in pupil_list: pupil_list.remove(0) while -1 in pupil_list: pupil_list.remove(-1) if minu is not None: time = minu * 1800 section_frames = len(pupil_list) // time if quar is not None: time = len(pupil_list) // quar section_frames = quar y = np.array(pupil_list) # fft # filtered_sig = del_high_freq(y, filter_value=0.005) # 고주파 필터링 filtered_sig, _, _ = del_high_and_low_freq(y, 0.0048, 0.0035) # 저주파, 고주파 필터링 filtered_sig = filtered_sig.astype(np.float) # zero-crossing point zero_crossings = np.where(np.diff(np.sign(np.diff(filtered_sig))))[0] zero_crossings = np.insert(zero_crossings, 0, 0) zero_crossings = np.append(zero_crossings, len(filtered_sig) - 1) # 변화 속도 계산 change_rates_list = [[] for _ in range(section_frames)] for section in range(section_frames): # zero-crossing points 기준으로 원하는 위치(섹션) 가져오기 section_zero_crossing = zero_crossings[np.where(zero_crossings <= (section + 1) * time)] section_zero_crossing = section_zero_crossing[np.where(section * time < section_zero_crossing)] # 변화 속도 계산 for j in range(len(section_zero_crossing) - 1): change_rate = abs((filtered_sig[section_zero_crossing[j + 1]] - filtered_sig[section_zero_crossing[j]]) / ( section_zero_crossing[j + 1] - section_zero_crossing[j])) change_rates_list[section].append(change_rate) return filtered_sig, zero_crossings, section_frames, change_rates_list # fft를 수행한 결과 그래프 그리기 def draw_fft_graph(y, filtered_sig, zero_crossings, section_frames, savepath, minu=None, quar=None): global time x = np.arange(0, len(y)) if minu is not None: time = minu * 1800 section_frames = len(y) // time if quar is not None: time = len(y) // quar section_frames = quar fig = plt.figure(dpi=150) # plt.figure(figsize=(6, 5)) plt.rcParams["font.family"] = 'Malgun Gothic' plt.figure(figsize=(14, 6)) plt.plot(x, y, label='Original signal') plt.plot(x, filtered_sig, linewidth=2, label='Filtered signal') # plt.plot(zero_crossings, filtered_sig[zero_crossings], marker='o', color='red', linestyle='--') plt.legend(loc='upper right') # 섹션 나눠진거 표시 for section in range(section_frames): plt.axvline(x=section * time, ymin=0, ymax=1.0, color='r') plt.axvline(x=(section + 1) * time, ymin=0, ymax=1.0, color='r') # plt.xlim(0, 1800) plt.title('동공크기 변화율') plt.xlabel('Frame') plt.ylabel('Pupil size') plt.savefig(f'{savepath}') plt.show() # 2차식 추세선 그리기, 히스토그램 그래프 저장 def draw_trendline_fft(data, title, y_lim, y_label, savepath, quar = None, avg = False): results = {} # 추세선 x = np.arange(0, len(data)) y = [] for idx, value in enumerate(data): y.append(value) y = np.array(y) # 10개 구간에 해당하는 특징(깜빡임 횟수) fit = np.polyfit(x, y, 2) a = fit[0] b = fit[1] c = fit[2] fit_equation = a * np.square(x) + b * x + c results['coeffs'] = fit.tolist() # r-squared p = np.poly1d(fit) # fit values, and mean yhat = p(x) ybar = np.sum(y) / len(y) ssreg = np.sum((yhat - ybar) ** 2) sstot = np.sum((y - ybar) ** 2) results['r-squared'] = ssreg / sstot r_squared = str(round(results['r-squared'], 3)) # 출력하기 위해 문자열로 변환 a = str(round(results['coeffs'][0], 3)) b = str(round(results['coeffs'][1], 3)) c = str(round(results['coeffs'][2], 3)) # print("R 제곱값: ", round(results['r-squared'], 3)) # print("추세선: "+"Y="+a+"xX^2 + "+b+"xX + "+c) period = ['0~3분', '3~6분', '6~9분', '9~12분', '12~15분', '15~18분', '18~21분', '21~24분', '24~27분', '27~30분', '30~33분'] plt.rcParams["font.family"] = 'Malgun Gothic' fig = plt.figure(dpi=150) ax = fig.add_subplot(1, 1, 1) for idx2, value2 in enumerate(data): ax.bar(period[idx2], value2, color='b', alpha=0.5) ax.plot(x, fit_equation, color='r', alpha=0.5, label='Polynomial fit', linewidth=3.0) # ax.scatter(x, y, s = 5, color = 'b', label = 'Data points') # 추세선 예측에 사용한 좌표 그리기 # Plotting plt.xticks(rotation=20) plt.title(f'{title}') plt.ylim(0, y_lim) plt.xlabel('구간') plt.ylabel(f'{y_label}') # 동공 크기 변화율 출력할 때 위치 조정 if not avg: plt.text(3.2, 0.055, "추세선: " + r'$y = $' + a + r'$x^2 + ($' + b + r'$)x + $' + c, fontdict={'size': 12}) plt.text(7.5, 0.05, r'$R^2 =$' + r_squared, fontdict={'size': 12}) # 평균 동공크기 변화율 출력할 때 위치 조정 else: plt.text(3.2, 0.027, "추세선: " + r'$y = $' + a + r'$x^2 + ($' + b + r'$)x + $' + c, fontdict={'size': 12}) plt.text(7.5, 0.025, r'$R^2 =$' + r_squared, fontdict={'size': 12}) plt.tight_layout() fig.canvas.draw() img = np.array(fig.canvas.renderer._renderer) spl = title.split('.')[0] plt.savefig(f'{savepath}') plt.imshow(img) plt.show() # 그래프 잘 나오는지 띄우기
HanNayeoniee/visual-fatigue-analysis
analysis/fft.py
fft.py
py
6,952
python
en
code
1
github-code
6
[ { "api_name": "scipy.fftpack.fft", "line_number": 13, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 13, "usage_type": "name" }, { "api_name": "scipy.fftpack.fftfreq", "line_number": 14, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 14, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 17, "usage_type": "call" }, { "api_name": "scipy.fftpack.ifft", "line_number": 18, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 18, "usage_type": "name" }, { "api_name": "scipy.fftpack.fft", "line_number": 31, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 31, "usage_type": "name" }, { "api_name": "scipy.fftpack.fftfreq", "line_number": 32, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 32, "usage_type": "name" }, { "api_name": "numpy.max", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 39, "usage_type": "call" }, { "api_name": "scipy.fftpack.ifft", "line_number": 40, "usage_type": "call" }, { "api_name": "scipy.fftpack", "line_number": 40, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 67, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.diff", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.sign", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.insert", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 101, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 104, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axvline", "line_number": 113, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 113, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axvline", "line_number": 114, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 114, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 120, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 120, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 121, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.polyfit", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 139, "usage_type": "call" }, { "api_name": "numpy.poly1d", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 148, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 149, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 159, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 159, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 161, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 161, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 170, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 170, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 171, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 171, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 172, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 172, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 173, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 173, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 174, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 174, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 178, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 178, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 179, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 179, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 183, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 183, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 184, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 184, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 187, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 187, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 189, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 191, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 191, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 192, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 192, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 193, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 193, "usage_type": "name" } ]
5259664413
import re #import CMUTweetTagger #import cPickle from collections import defaultdict import pickle from nltk.corpus import wordnet as wn from itertools import product import spacy from spacy.symbols import * from nltk import Tree import nltk nlp=spacy.load('en') np_labels=set(['nsubj','dobj','pobj','iobj','conj','nsubjpass','appos','nmod','poss','parataxis','advmod','advcl']) subj_labels=set(['nsubj','nsubjpass']) need_verb_list=['need','require','want','lack'] send_verb_list=['send','give','donate','transfer','distribute','aid','help','procure'] common_resource=['food','water','medicine','tent','clothes','communication','transport','infrastructure','shelter','internet','sanitation','hospital','donations'] modifiers=['nummod','compound','amod','punct'] after_clause_modifier=['relcl','acl','ccomp','xcomp','acomp','punct']#,'nn','quantmod','nmod','hmod','infmod'] verb_count={} resource_array=[] modified_array=[] # nepal_stop_list=['nepal','earthquake','quake','nepalese'] nepal_stop_list=[] tel_no="([+]?[0]?[1-9][0-9\s]*[-]?[0-9\s]+)" email="([a-zA-Z0-9]?[a-zA-Z0-9_.]+[@][a-zA-Z]*[.](com|net|edu|in|org|en))" web_url="http:[a-zA-Z._0-9/]+[a-zA-Z0-9]" entity_type_list=['NORP','ORG','GPE','PERSON'] quant_no="([0-9]*[,.]?[0-9]+[k]?)" need_send_verb_list=['need','require','want','lack','send','give','donate','transfer','distribute','aid','help','support','procure'] # def quant_no(resource): # return [i for re.findall(quant_no,resource)] def modifier_word(word): modified_word=word.orth_ while word.n_lefts+word.n_rights==1 and word.dep_.lower() in modifiers: word=[child for child in word.children][0] modified_word=word.orth_+" "+modified_word return modified_word def tok_format(tok): return "_".join([tok.orth_, tok.dep_,tok.ent_type_]) def to_nltk_tree(node): if node.n_lefts + node.n_rights > 0: return Tree(tok_format(node), [to_nltk_tree(child) for child in node.children]) else: return tok_format(node) def get_children(word,resource_array,modified_array): #print(word,word.dep_) for child in word.children: if child.dep_.lower() in modifiers: get_word=modifier_word(child)+" "+word.orth_+"<_>"+word.dep_ modified_array.append(get_word) if child.dep_.lower()=='prep' or child.dep_.lower()=='punct': get_children(child,resource_array,modified_array) if child.dep_.lower() in after_clause_modifier: #print(child, child.dep_) get_children(child,resource_array,modified_array) if child.dep_.lower() in np_labels: get_children(child,resource_array,modified_array) resource_array.append(child.orth_+"<_>"+child.dep_) else: if get_verb_similarity_score(child.orth_,common_resource)>0.7 : get_children(child,resource_array,modified_array) def get_verb_similarity_score(word,given_list): max_verb_similarity=0 if word.lower() in given_list: max_verb_similarity=1 else: current_verb_list=wn.synsets(word.lower()) for verb in given_list: related_verbs=wn.synsets(verb) for a,b in product(related_verbs,current_verb_list): d=wn.wup_similarity(a,b) try: if d> max_verb_similarity: max_verb_similarity=d except: continue return max_verb_similarity def resource_in_list(resource): related_resources=wn.synsets(resource) max_similarity=0 chosen_word="" if resource.lower() in common_resource: return 1,resource for word in common_resource: related_words=wn.synsets(word) #print(word,related_words) for a,b in product(related_words,related_resources): d=wn.wup_similarity(a,b) try: if d> max_similarity: max_similarity=d chosen_word=word except: continue return max_similarity,chosen_word def get_resource(text): doc=nlp(text) # try: # [to_nltk_tree(sent.root).pretty_print() for sent in doc.sents] # except: # print("Exception here") org_list=[] prev_word="" prev_word_type="" for word in doc: if word.ent_type_ in entity_type_list: org_list.append(word.orth_+"<_>"+word.ent_type_) else: org_list.append("<_>") resource_array=[] modified_array=[] for word in doc: if get_verb_similarity_score(word.orth_,need_send_verb_list)>0.8 or word.dep_=='ROOT': get_children(word,resource_array,modified_array) if word.dep_=='cc' and word.n_lefts+word.n_rights==0: ancestor=word.head.orth_ #print(ancestor) if get_verb_similarity_score(ancestor,common_resource)>0.6: get_children(word.head,resource_array,modified_array) #print(resource_array) #print(modified_array) last_word=[] # for resource in modified_array: # print(resource) # print(resource, resource_in_list(resource.lower())) # for word in modified_array: # last_word.append(word.split(' ')[-1]) final_resource={} modified_array_2=[] resource_array_2=[] n_subj_list=[] for i in modified_array: modified_array_2.append(i[:(i.index("<_>"))]) for i in resource_array: resource_array_2.append(i[:(i.index("<_>"))]) for resources in modified_array_2: max_val_resource=0 val_type="" resource_list=resources.rstrip().split(" ") for resource in resource_list: pres_res_val,pres_res_type=resource_in_list(resource) if pres_res_val> max_val_resource: val_type=pres_res_type max_val_resource=pres_res_val if max_val_resource > 0.6: final_resource[resources]=val_type for resource in resource_array_2: #print(resource) pres_res_val,pres_res_type=resource_in_list(resource) if pres_res_val> 0.6: if resource not in final_resource: final_resource[resource]=pres_res_type final_resource_keys=list(final_resource.keys()) prev_word_type="" prev_word="" org_list_2=[] poss_places=[] for i in org_list: index=i.index("<_>") if i[index+3:]=='GPE' and i[:index] in final_resource_keys: #final_resource_keys.remove(i[:index]) poss_places.append(i[:index]) if i[index+3:]=="ORG" and prev_word_type=="ORG": prev_word=prev_word+" "+i[:index] elif i[index+3:]=="PERSON" and prev_word_type=="PERSON": prev_word=prev_word+" "+i[:index] else: if prev_word !='': org_list_2.append(prev_word+"<_>"+prev_word_type) prev_word_type=i[index+3:] prev_word=i[:index] quantity_dict={} for i in final_resource: for j in re.findall(quant_no,i): quantity_dict[i]=j source_list=[] org_person_list=[] for i in org_list_2: tag=i[i.index("<_>")+3:] j=i[:i.index("<_>")] if tag=="ORG" or tag=="PERSON": if j.lower() not in nepal_stop_list: org_person_list.append(j) elif j.lower() not in nepal_stop_list and j not in quantity_dict.keys(): source_list.append(j) else: continue for i in modified_array: pos_res=i[:i.index("<_>")] pos_tag=i[i.index("<_>")+3:] if pos_tag in subj_labels: if pos_res not in source_list and pos_res not in final_resource_keys and pos_res.lower() not in nepal_stop_list: #print(pos_tag,pos_res) source_list.append(pos_res) for i in resource_array: pos_res=i[:i.index("<_>")] pos_tag=i[i.index("<_>")+3:] if pos_tag in subj_labels: if pos_res not in source_list and pos_res not in final_resource_keys and pos_res.lower() not in nepal_stop_list: #print(pos_tag,pos_res) source_list.append(pos_res) return quantity_dict,final_resource_keys,source_list,poss_places,org_person_list def get_contact(text): numbers=re.findall(tel_no,text) print("Contact Information") for i in numbers: if len(i)>=7: print(i) #test_file.write(str(i)+",") #test_file.write('\nMail:') mails= re.findall(email,text) for i in mails: print("Mail: "+i) #test_file.write(str(i)+",")
varun-manjunath/disaster-mitigation
matching/common_nouns.py
common_nouns.py
py
7,549
python
en
code
2
github-code
6
[ { "api_name": "spacy.load", "line_number": 14, "usage_type": "call" }, { "api_name": "nltk.Tree", "line_number": 51, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet.synsets", "line_number": 78, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 78, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.synsets", "line_number": 80, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 80, "usage_type": "name" }, { "api_name": "itertools.product", "line_number": 81, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet.wup_similarity", "line_number": 82, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 82, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.synsets", "line_number": 91, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 91, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.synsets", "line_number": 97, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 97, "usage_type": "name" }, { "api_name": "itertools.product", "line_number": 99, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet.wup_similarity", "line_number": 100, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 100, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 207, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 249, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 257, "usage_type": "call" } ]
7545685477
import psycopg2 DBNAME = "news" def fetch_all(query, params): """ execute a query and fetch all result from it :param query: the query to execute :param params: parameters of the query :return: result of this query """ # it's kind time consuming every time we open and close a connection db = psycopg2.connect(database=DBNAME) c = db.cursor() c.execute(query, params) ret = c.fetchall() db.close() return ret def article_views(cnt=None): """ statistics about article views, article is consider a view if exists a http request for the article path with GET method and 200 status code :param cnt: int, optional max number of articles :return: list of (article name, view_cnt) pair ordered by views in desc order """ query = """ select title, view_cnt from articles, view_stat where concat('/article/', slug) = path order by view_cnt desc """ if cnt is not None: query += "limit (%s)" params = (cnt,) else: params = () return fetch_all(query, params) def author_views(cnt=None): """ statistics about author's all articles views :param cnt: int, optional max number of authors :return: list of (author name, view_cnt) pair ordered by views in desc order """ query = """ select name, sum(view_cnt) as view_cnt from articles, view_stat, authors where concat('/article/', slug) = path and articles.author = authors.id group by authors.id order by view_cnt desc """ if cnt is not None: query += "limit (%s)" params = (cnt,) else: params = () return fetch_all(query, params) def error_stat(threshold): """ error rate stat by day, error rate is defined as total number of failed requests(status is not 200) divided by the total number of requests a day. if a day don't have any requests it will be ignored :param threshold: double error rate bigger or equal threshold will be returned :return: list of (date, error rate) """ query = """ select date(time) as stat_date, sum(cast(status != '200 OK' as integer)) / cast(count(*) as real) as error_rate from log group by stat_date having sum(cast(status != '200 OK' as integer)) / cast(count(*) as real) >= (%s); """ return fetch_all(query, (threshold,))
akudet/fsnd-proj3
reporter_db.py
reporter_db.py
py
2,454
python
en
code
0
github-code
6
[ { "api_name": "psycopg2.connect", "line_number": 14, "usage_type": "call" } ]
29832128346
import cv2 #Reading Image img = cv2.imread('img46_gray_noise.png') #Aplying filter median = cv2.medianBlur(img,3) #Showing image cv2.imshow("Noised Image", img) cv2.imshow("median", median) cv2.waitKey() cv2.destroyAllWindows() #Save result cv2.imwrite("denoised_image.png", median)
Digu62/computer_vision_challenges
Questao1/main.py
main.py
py
286
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.medianBlur", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 16, "usage_type": "call" } ]
75118275066
import sqlite3 with open("C:\\Users\Asmaa Samir\Desktop\Project\data.txt", "w") as myFile: my_tuple1 = ('google.com ', '198.188.3.2 ', '255.255.255.0', '11:01 ') my_tuple2 = ('youtube.com', '199.588.35.22', '255.255.255.0', '1:01') my_tuple3 = ('google.com', '198.155.66.1', '255.255.255.0', '7:55') myFile.writelines(my_tuple1) myFile.writelines(my_tuple2) myFile.writelines(my_tuple3) db = sqlite3.connect("data.db") # create database and connect cr = db.cursor() # تفعيل # noinspection SqlNoDataSourceInspection cr.execute("CREATE TABLE Analysis (User Name text, IP , MAC ,URLs being visited ,TIME) ") cr.execute("insert into Analysis values(?, ?, ?, ?, ?)", my_tuple1) # insert data cr.execute("insert into skills values(?, ?, ?, ?, ?)", my_tuple2) cr.execute("insert into skills values(?, ?, ?, ? , ?)", my_tuple3) db.commit() # save db.close() # close
AsmaaGHSamir/GProject
DB.py
DB.py
py
926
python
en
code
1
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 12, "usage_type": "call" } ]
6814879797
import pika, json def upload(f, fs, channel, access): # put file into mongodb database try: # get file if success fid = fs.put(f) except Exception as err: return "internal server error", 500 # create message message = { "video_fid": str(fid), "mp3_fid": None, # who owns the file "username": access["username"], } # put message in queue try: channel.basic_publish( exchange="", routing_key="video", # convert python object to json string body=json.dumps(message), properties=pika.BasicProperties( # make messages persistent delivery_mode=pika.PERSISTENT_DELIVERY_MODE ), ) # if message unsuccesfully added to the queue except: # delete file, because it's not connected to any message fs.delete(fid) return "internal server error", 500
dawmro/testing_microservice_architectures
python/src/gateway/storage/util.py
util.py
py
807
python
en
code
0
github-code
6
[ { "api_name": "json.dumps", "line_number": 25, "usage_type": "call" }, { "api_name": "pika.BasicProperties", "line_number": 26, "usage_type": "call" }, { "api_name": "pika.PERSISTENT_DELIVERY_MODE", "line_number": 28, "usage_type": "attribute" } ]
10418352733
from __future__ import annotations import dataclasses import typing from randovania.game_description.db.resource_node import ResourceNode from randovania.game_description.requirements.requirement_and import RequirementAnd from randovania.game_description.requirements.resource_requirement import ResourceRequirement from randovania.game_description.resources.node_resource_info import NodeResourceInfo if typing.TYPE_CHECKING: from randovania.game_description.db.node import Node, NodeContext from randovania.game_description.requirements.base import Requirement from randovania.game_description.resources.resource_info import ResourceGain def _all_nodes_in_network(context: NodeContext, network_name: str) -> typing.Iterator[TeleporterNetworkNode]: for node in context.node_provider.iterate_nodes(): if isinstance(node, TeleporterNetworkNode) and node.network == network_name: yield node @dataclasses.dataclass(frozen=True, slots=True) class TeleporterNetworkNode(ResourceNode): """ Represents a node that belongs to a set, where you can freely move between if some conditions are satisfied. - can only teleport *to* if `is_unlocked` is satisfied - can only teleport *from* if the node has been activated A TeleporterNetworkNode being activated is implemented as being collected, with this class being a ResourceNode. There are three methods of activating a TeleporterNetworkNode: Method 1: - Be the starting node Method 2: - Collecting a TeleporterNetworkNode also collects all other nodes in the same network with satisfied `is_unlocked` Method 3: - Collect the node normally by reaching it, with `is_unlocked` satisfied and one of: - `requirement_to_activate` is satisfied - this node was already collected """ is_unlocked: Requirement network: str requirement_to_activate: Requirement def requirement_to_leave(self, context: NodeContext) -> Requirement: return RequirementAnd([self.is_unlocked, ResourceRequirement.simple(self.resource(context))]) def resource(self, context: NodeContext) -> NodeResourceInfo: return NodeResourceInfo.from_node(self, context) def can_collect(self, context: NodeContext) -> bool: resources = context.current_resources req = self.requirement_to_activate if resources.has_resource(self.resource(context)) or req.satisfied(resources, 0, context.database): return not self.is_collected(context) else: return False def is_collected(self, context: NodeContext) -> bool: current_resources = context.current_resources return all( context.has_resource(node.resource(context)) for node in _all_nodes_in_network(context, self.network) if node.is_unlocked.satisfied(current_resources, 0, context.database) ) def resource_gain_on_collect(self, context: NodeContext) -> ResourceGain: for node in _all_nodes_in_network(context, self.network): if node.is_unlocked.satisfied(context.current_resources, 0, context.database): yield node.resource(context), 1 def connections_from(self, context: NodeContext) -> typing.Iterator[tuple[Node, Requirement]]: for node in _all_nodes_in_network(context, self.network): if node != self: yield node, node.is_unlocked
randovania/randovania
randovania/game_description/db/teleporter_network_node.py
teleporter_network_node.py
py
3,434
python
en
code
165
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 11, "usage_type": "attribute" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 17, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 17, "usage_type": "attribute" }, { "api_name": "randovania.game_description.db.resource_node.ResourceNode", "line_number": 24, "usage_type": "name" }, { "api_name": "randovania.game_description.requirements.base.Requirement", "line_number": 45, "usage_type": "name" }, { "api_name": "randovania.game_description.requirements.base.Requirement", "line_number": 47, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 49, "usage_type": "name" }, { "api_name": "randovania.game_description.requirements.requirement_and.RequirementAnd", "line_number": 50, "usage_type": "call" }, { "api_name": "randovania.game_description.requirements.resource_requirement.ResourceRequirement.simple", "line_number": 50, "usage_type": "call" }, { "api_name": "randovania.game_description.requirements.resource_requirement.ResourceRequirement", "line_number": 50, "usage_type": "name" }, { "api_name": "randovania.game_description.requirements.base.Requirement", "line_number": 49, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 52, "usage_type": "name" }, { "api_name": "randovania.game_description.resources.node_resource_info.NodeResourceInfo.from_node", "line_number": 53, "usage_type": "call" }, { "api_name": "randovania.game_description.resources.node_resource_info.NodeResourceInfo", "line_number": 53, "usage_type": "name" }, { "api_name": "randovania.game_description.resources.node_resource_info.NodeResourceInfo", "line_number": 52, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 55, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 64, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 72, "usage_type": "name" }, { "api_name": "randovania.game_description.resources.resource_info.ResourceGain", "line_number": 72, "usage_type": "name" }, { "api_name": "randovania.game_description.db.node.NodeContext", "line_number": 77, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 77, "usage_type": "attribute" }, { "api_name": "randovania.game_description.db.node.Node", "line_number": 77, "usage_type": "name" }, { "api_name": "randovania.game_description.requirements.base.Requirement", "line_number": 77, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 23, "usage_type": "call" } ]
1112499487
""" VirtualMachineHandler provides remote access to VirtualMachineDB The following methods are available in the Service interface: - insertInstance - declareInstanceSubmitted - declareInstanceRunning - instanceIDHeartBeat - declareInstanceHalting - getInstancesByStatus - declareInstancesStopping - getUniqueID( instanceID ) return cloud manager uniqueID form VMDIRAC instanceID """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import os from subprocess import Popen, PIPE import six # DIRAC from DIRAC import gLogger, S_ERROR, S_OK from DIRAC.Core.DISET.RequestHandler import RequestHandler from DIRAC.Core.Utilities.ThreadScheduler import gThreadScheduler from DIRAC.ConfigurationSystem.Client.Helpers.Operations import Operations # VMDIRAC from VMDIRAC.WorkloadManagementSystem.DB.VirtualMachineDB import VirtualMachineDB from VMDIRAC.Security import VmProperties from VMDIRAC.Resources.Cloud.Utilities import STATE_MAP from VMDIRAC.Resources.Cloud.ConfigHelper import getVMTypeConfig, getVMTypes from VMDIRAC.Resources.Cloud.EndpointFactory import EndpointFactory from VMDIRAC.WorkloadManagementSystem.Utilities.Utils import getProxyFileForCE __RCSID__ = '$Id$' # This is a global instance of the VirtualMachineDB class gVirtualMachineDB = False def initializeVirtualMachineManagerHandler(_serviceInfo): global gVirtualMachineDB gVirtualMachineDB = VirtualMachineDB() haltStalledInstances() checkStalledInstances() if gVirtualMachineDB._connected: gThreadScheduler.addPeriodicTask(60 * 15, checkStalledInstances) return S_OK() return S_ERROR() def haltStalledInstances(): result = gVirtualMachineDB.getInstancesByStatus('Stalled') if not result['OK']: return result uList = [] for image in result['Value']: uList += result['Value'][image] stallingList = [] for uID in uList: result = gVirtualMachineDB.getInstanceID(uID) if not result['OK']: continue stallingList.append(result['Value']) return haltInstances(stallingList) def getCEInstances(siteList=None, ceList=None, vo=None): result = getVMTypes(siteList=siteList, ceList=ceList, vo=vo) if not result['OK']: return S_ERROR('Failed to get images from the CS') imageDict = result['Value'] ceList = [] for site in imageDict: for ce in imageDict[site]: result = EndpointFactory().getCE(site, ce) if not result['OK']: continue ceList.append((site, ce, result['Value'])) nodeDict = {} for site, ceName, ce in ceList: result = ce.getVMNodes() if not result['OK']: continue for node in result['Value']: if not node.name.startswith('DIRAC'): continue ip = (node.public_ips[0] if node.public_ips else 'None') nodeState = node.state.upper() if not isinstance(node.state, six.integer_types) else STATE_MAP[node.state] nodeDict[node.id] = {"Site": site, "CEName": ceName, "NodeName": node.name, "PublicIP": ip, "State": nodeState} return S_OK(nodeDict) def checkStalledInstances(): """ To avoid stalling instances consuming resources at cloud endpoint, attempts to halt the stalled list in the cloud endpoint """ result = gVirtualMachineDB.declareStalledInstances() if not result['OK']: return result stallingList = result['Value'] return haltInstances(stallingList) def stopInstance(site, endpoint, nodeID): result = getVMTypeConfig(site, endpoint) if not result['OK']: return result ceParams = result['Value'] ceFactory = EndpointFactory() result = ceFactory.getCEObject(parameters=ceParams) if not result['OK']: return result ce = result['Value'] result = ce.stopVM(nodeID) return result def createEndpoint(uniqueID): result = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not result['OK']: return result site, endpoint = result['Value'].split('::') result = getVMTypeConfig(site, endpoint) if not result['OK']: return result ceParams = result['Value'] ceFactory = EndpointFactory() result = ceFactory.getCEObject(parameters=ceParams) return result def haltInstances(vmList): """ Common haltInstances for Running(from class VirtualMachineManagerHandler) and Stalled(from checkStalledInstances periodic task) to Halt """ failed = {} successful = {} for instanceID in vmList: instanceID = int(instanceID) result = gVirtualMachineDB.getUniqueID(instanceID) if not result['OK']: gLogger.error('haltInstances: on getUniqueID call: %s' % result['Message']) continue uniqueID = result['Value'] result = createEndpoint(uniqueID) if not result['OK']: gLogger.error('haltInstances: on createEndpoint call: %s' % result['Message']) continue endpoint = result['Value'] # Get proxy to be used to connect to the cloud endpoint authType = endpoint.parameters.get('Auth') if authType and authType.lower() in ['x509', 'voms']: siteName = endpoint.parameters['Site'] ceName = endpoint.parameters['CEName'] gLogger.verbose("Getting cloud proxy for %s/%s" % (siteName, ceName)) result = getProxyFileForCE(endpoint) if not result['OK']: continue endpoint.setProxy(result['Value']) result = endpoint.stopVM(uniqueID) if result['OK']: gVirtualMachineDB.recordDBHalt(instanceID, 0) successful[instanceID] = True else: failed[instanceID] = result['Message'] return S_OK({"Successful": successful, "Failed": failed}) def getPilotOutput(pilotRef): if not pilotRef.startswith('vm://'): return S_ERROR('Invalid pilot reference %s' % pilotRef) # Get the VM public IP diracID, nPilot = os.path.basename(pilotRef).split(':') result = gVirtualMachineDB.getUniqueIDByName(diracID) if not result['OK']: return result uniqueID = result['Value'] result = gVirtualMachineDB.getInstanceID(uniqueID) if not result['OK']: return result instanceID = result['Value'] result = gVirtualMachineDB.getInstanceParameter("PublicIP", instanceID) if not result['OK']: return result publicIP = result['Value'] op = Operations() privateKeyFile = op.getValue('/Cloud/PrivateKey', '') diracUser = op.getValue('/Cloud/VMUser', '') ssh_str = '%s@%s' % (diracUser, publicIP) cmd = ['ssh', '-i', privateKeyFile, ssh_str, "cat /etc/joboutputs/vm-pilot.%s.log" % nPilot] inst = Popen(cmd, stdout=PIPE, stderr=PIPE, stdin=PIPE) output, stderr = inst.communicate() if inst.returncode: return S_ERROR('Failed to get pilot output: %s' % stderr) else: return S_OK(output) class VirtualMachineManagerHandler(RequestHandler): def initialize(self): credDict = self.getRemoteCredentials() self.rpcProperties = credDict['properties'] @staticmethod def __logResult(methodName, result): ''' Method that writes to log error messages ''' if not result['OK']: gLogger.error('%s: %s' % (methodName, result['Message'])) types_getCEInstances = [(list, type(None)), (list, type(None)), six.string_types] def export_getCEInstances(self, siteList, ceList, vo): if not siteList: siteList = None return getCEInstances(siteList=siteList, ceList=ceList, vo=vo) types_stopInstance = [six.string_types, six.string_types, six.string_types] def export_stopInstance(self, site, endpoint, nodeID): return stopInstance(site, endpoint, nodeID) types_getPilotOutput = [six.string_types] def export_getPilotOutput(self, pilotReference): return getPilotOutput(pilotReference) types_checkVmWebOperation = [six.string_types] def export_checkVmWebOperation(self, operation): """ return true if rpc has VM_WEB_OPERATION """ if VmProperties.VM_WEB_OPERATION in self.rpcProperties: return S_OK('Auth') return S_OK('Unauth') types_insertInstance = [six.string_types, six.string_types, six.string_types, six.string_types, six.string_types] def export_insertInstance(self, uniqueID, imageName, instanceName, endpoint, runningPodName): """ Check Status of a given image Will insert a new Instance in the DB """ res = gVirtualMachineDB.insertInstance(uniqueID, imageName, instanceName, endpoint, runningPodName) self.__logResult('insertInstance', res) return res types_getUniqueID = [six.string_types] def export_getUniqueID(self, instanceID): """ return cloud manager uniqueID from VMDIRAC instanceID """ res = gVirtualMachineDB.getUniqueID(instanceID) self.__logResult('getUniqueID', res) return res types_getUniqueIDByName = [six.string_types] def export_getUniqueIDByName(self, instanceName): """ return cloud manager uniqueID from VMDIRAC name """ result = gVirtualMachineDB.getUniqueIDByName(instanceName) self.__logResult('getUniqueIDByName', result) return result types_setInstanceUniqueID = [six.integer_types, six.string_types] def export_setInstanceUniqueID(self, instanceID, uniqueID): """ Check Status of a given image Will insert a new Instance in the DB """ res = gVirtualMachineDB.setInstanceUniqueID(instanceID, uniqueID) self.__logResult('setInstanceUniqueID', res) return res types_declareInstanceSubmitted = [six.string_types] def export_declareInstanceSubmitted(self, uniqueID): """ After submission of the instance the Director should declare the new Status """ res = gVirtualMachineDB.declareInstanceSubmitted(uniqueID) self.__logResult('declareInstanceSubmitted', res) return res types_declareInstanceRunning = [six.string_types, six.string_types] def export_declareInstanceRunning(self, uniqueID, privateIP): """ Declares an instance Running and sets its associated info (uniqueID, publicIP, privateIP) Returns S_ERROR if: - instanceName does not have a "Submitted" entry - uniqueID is not unique """ gLogger.info('Declare instance Running uniqueID: %s' % (uniqueID)) if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceRunning RPC") publicIP = self.getRemoteAddress()[0] gLogger.info('Declare instance Running publicIP: %s' % (publicIP)) res = gVirtualMachineDB.declareInstanceRunning(uniqueID, publicIP, privateIP) self.__logResult('declareInstanceRunning', res) return res types_instanceIDHeartBeat = [six.string_types, float, six.integer_types, six.integer_types, six.integer_types] def export_instanceIDHeartBeat(self, uniqueID, load, jobs, transferredFiles, transferredBytes, uptime=0): """ Insert the heart beat info from a running instance It checks the status of the instance and the corresponding image Declares "Running" the instance and the image It returns S_ERROR if the status is not OK """ if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceIDHeartBeat RPC") try: uptime = int(uptime) except ValueError: uptime = 0 res = gVirtualMachineDB.instanceIDHeartBeat(uniqueID, load, jobs, transferredFiles, transferredBytes, uptime) self.__logResult('instanceIDHeartBeat', res) return res types_declareInstancesStopping = [list] def export_declareInstancesStopping(self, instanceIdList): """ Declares "Stopping" the instance because the Delete button of Browse Instances The instanceID is the VMDIRAC VM id When next instanceID heat beat with stopping status on the DB the VM will stop the job agent and terminates properly It returns S_ERROR if the status is not OK """ if VmProperties.VM_WEB_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized VM Stopping") for instanceID in instanceIdList: gLogger.info('Stopping DIRAC instanceID: %s' % (instanceID)) result = gVirtualMachineDB.getInstanceStatus(instanceID) if not result['OK']: self.__logResult('declareInstancesStopping on getInstanceStatus call: ', result) return result state = result['Value'] gLogger.info('Stopping DIRAC instanceID: %s, current state %s' % (instanceID, state)) if state == 'Stalled': result = gVirtualMachineDB.getUniqueID(instanceID) if not result['OK']: self.__logResult('declareInstancesStopping on getUniqueID call: ', result) return result uniqueID = result['Value'] result = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not result['OK']: self.__logResult('declareInstancesStopping on getEndpointFromInstance call: ', result) return result endpoint = result['Value'] result = self.export_declareInstanceHalting(uniqueID, 0) elif state == 'New': result = gVirtualMachineDB.recordDBHalt(instanceID, 0) self.__logResult('declareInstanceHalted', result) else: # this is only aplied to allowed trasitions result = gVirtualMachineDB.declareInstanceStopping(instanceID) self.__logResult('declareInstancesStopping: on declareInstanceStopping call: ', result) return result types_declareInstanceHalting = [six.string_types, float] def export_declareInstanceHalting(self, uniqueID, load): """ Insert the heart beat info from a halting instance The VM has the uniqueID, which is the Cloud manager VM id Declares "Halted" the instance and the image It returns S_ERROR if the status is not OK """ if VmProperties.VM_RPC_OPERATION not in self.rpcProperties: return S_ERROR("Unauthorized declareInstanceHalting RPC") endpoint = gVirtualMachineDB.getEndpointFromInstance(uniqueID) if not endpoint['OK']: self.__logResult('declareInstanceHalting', endpoint) return endpoint endpoint = endpoint['Value'] result = gVirtualMachineDB.declareInstanceHalting(uniqueID, load) if not result['OK']: if "Halted ->" not in result["Message"]: self.__logResult('declareInstanceHalting on change status: ', result) return result else: gLogger.info("Bad transition from Halted to something, will assume Halted") haltingList = [] instanceID = gVirtualMachineDB.getInstanceID(uniqueID) if not instanceID['OK']: self.__logResult('declareInstanceHalting', instanceID) return instanceID instanceID = instanceID['Value'] haltingList.append(instanceID) return haltInstances(haltingList) types_getInstancesByStatus = [six.string_types] def export_getInstancesByStatus(self, status): """ Get dictionary of Image Names with InstanceIDs in given status """ res = gVirtualMachineDB.getInstancesByStatus(status) self.__logResult('getInstancesByStatus', res) return res types_getAllInfoForUniqueID = [six.string_types] def export_getAllInfoForUniqueID(self, uniqueID): """ Get all the info for a UniqueID """ res = gVirtualMachineDB.getAllInfoForUniqueID(uniqueID) self.__logResult('getAllInfoForUniqueID', res) return res types_getInstancesContent = [dict, (list, tuple), six.integer_types, six.integer_types] def export_getInstancesContent(self, selDict, sortDict, start, limit): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getInstancesContent(selDict, sortDict, start, limit) self.__logResult('getInstancesContent', res) return res types_getHistoryForInstanceID = [six.integer_types] def export_getHistoryForInstanceID(self, instanceId): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getHistoryForInstanceID(instanceId) self.__logResult('getHistoryForInstanceID', res) return res types_getInstanceCounters = [six.string_types, dict] def export_getInstanceCounters(self, groupField, selDict): """ Retrieve the contents of the DB """ res = gVirtualMachineDB.getInstanceCounters(groupField, selDict) self.__logResult('getInstanceCounters', res) return res types_getHistoryValues = [int, dict] def export_getHistoryValues(self, averageBucket, selDict, fields2Get=None, timespan=0): """ Retrieve the contents of the DB """ if not fields2Get: fields2Get = [] res = gVirtualMachineDB.getHistoryValues(averageBucket, selDict, fields2Get, timespan) self.__logResult('getHistoryValues', res) return res types_getRunningInstancesHistory = [int, int] def export_getRunningInstancesHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket """ res = gVirtualMachineDB.getRunningInstancesHistory(timespan, bucketSize) self.__logResult('getRunningInstancesHistory', res) return res types_getRunningInstancesBEPHistory = [int, int] def export_getRunningInstancesBEPHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by End-Point History """ res = gVirtualMachineDB.getRunningInstancesBEPHistory(timespan, bucketSize) self.__logResult('getRunningInstancesBEPHistory', res) return res types_getRunningInstancesByRunningPodHistory = [int, int] def export_getRunningInstancesByRunningPodHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by Running Pod History """ res = gVirtualMachineDB.getRunningInstancesByRunningPodHistory(timespan, bucketSize) self.__logResult('getRunningInstancesByRunningPodHistory', res) return res types_getRunningInstancesByImageHistory = [int, int] def export_getRunningInstancesByImageHistory(self, timespan, bucketSize): """ Retrieve number of running instances in each bucket by Running Pod History """ res = gVirtualMachineDB.getRunningInstancesByImageHistory(timespan, bucketSize) self.__logResult('getRunningInstancesByImageHistory', res) return res
DIRACGrid/VMDIRAC
VMDIRAC/WorkloadManagementSystem/Service/VirtualMachineManagerHandler.py
VirtualMachineManagerHandler.py
py
18,285
python
en
code
6
github-code
6
[ { "api_name": "VMDIRAC.WorkloadManagementSystem.DB.VirtualMachineDB.VirtualMachineDB", "line_number": 48, "usage_type": "call" }, { "api_name": "DIRAC.Core.Utilities.ThreadScheduler.gThreadScheduler.addPeriodicTask", "line_number": 53, "usage_type": "call" }, { "api_name": "DIRAC.Core.Utilities.ThreadScheduler.gThreadScheduler", "line_number": 53, "usage_type": "name" }, { "api_name": "DIRAC.S_OK", "line_number": 54, "usage_type": "call" }, { "api_name": "DIRAC.S_ERROR", "line_number": 56, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.ConfigHelper.getVMTypes", "line_number": 80, "usage_type": "call" }, { "api_name": "DIRAC.S_ERROR", "line_number": 82, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.EndpointFactory.EndpointFactory", "line_number": 87, "usage_type": "call" }, { "api_name": "six.integer_types", "line_number": 101, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Resources.Cloud.Utilities.STATE_MAP", "line_number": 101, "usage_type": "name" }, { "api_name": "DIRAC.S_OK", "line_number": 107, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.ConfigHelper.getVMTypeConfig", "line_number": 127, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.EndpointFactory.EndpointFactory", "line_number": 131, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.ConfigHelper.getVMTypeConfig", "line_number": 148, "usage_type": "call" }, { "api_name": "VMDIRAC.Resources.Cloud.EndpointFactory.EndpointFactory", "line_number": 152, "usage_type": "call" }, { "api_name": "DIRAC.gLogger.error", "line_number": 170, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 170, "usage_type": "name" }, { "api_name": "DIRAC.gLogger.error", "line_number": 176, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 176, "usage_type": "name" }, { "api_name": "DIRAC.gLogger.verbose", "line_number": 186, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 186, "usage_type": "name" }, { "api_name": "VMDIRAC.WorkloadManagementSystem.Utilities.Utils.getProxyFileForCE", "line_number": 187, "usage_type": "call" }, { "api_name": "DIRAC.S_OK", "line_number": 199, "usage_type": "call" }, { "api_name": "DIRAC.S_ERROR", "line_number": 205, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 208, "usage_type": "call" }, { "api_name": "os.path", "line_number": 208, "usage_type": "attribute" }, { "api_name": "DIRAC.ConfigurationSystem.Client.Helpers.Operations.Operations", "line_number": 222, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 229, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 229, "usage_type": "name" }, { "api_name": "DIRAC.S_ERROR", "line_number": 232, "usage_type": "call" }, { "api_name": "DIRAC.S_OK", "line_number": 234, "usage_type": "call" }, { "api_name": "DIRAC.Core.DISET.RequestHandler.RequestHandler", "line_number": 237, "usage_type": "name" }, { "api_name": "DIRAC.gLogger.error", "line_number": 250, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 250, "usage_type": "name" }, { "api_name": "six.string_types", "line_number": 252, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 260, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 266, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 272, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties.VM_WEB_OPERATION", "line_number": 278, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties", "line_number": 278, "usage_type": "name" }, { "api_name": "DIRAC.S_OK", "line_number": 279, "usage_type": "call" }, { "api_name": "DIRAC.S_OK", "line_number": 280, "usage_type": "call" }, { "api_name": "six.string_types", "line_number": 282, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 294, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 305, "usage_type": "attribute" }, { "api_name": "six.integer_types", "line_number": 316, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 316, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 328, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 339, "usage_type": "attribute" }, { "api_name": "DIRAC.gLogger.info", "line_number": 348, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 348, "usage_type": "name" }, { "api_name": "VMDIRAC.Security.VmProperties.VM_RPC_OPERATION", "line_number": 349, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties", "line_number": 349, "usage_type": "name" }, { "api_name": "DIRAC.S_ERROR", "line_number": 350, "usage_type": "call" }, { "api_name": "DIRAC.gLogger.info", "line_number": 353, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 353, "usage_type": "name" }, { "api_name": "six.string_types", "line_number": 360, "usage_type": "attribute" }, { "api_name": "six.integer_types", "line_number": 360, "usage_type": "attribute" }, { "api_name": "six.integer_types", "line_number": 361, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties.VM_RPC_OPERATION", "line_number": 371, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties", "line_number": 371, "usage_type": "name" }, { "api_name": "DIRAC.S_ERROR", "line_number": 372, "usage_type": "call" }, { "api_name": "VMDIRAC.Security.VmProperties.VM_WEB_OPERATION", "line_number": 394, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties", "line_number": 394, "usage_type": "name" }, { "api_name": "DIRAC.S_ERROR", "line_number": 395, "usage_type": "call" }, { "api_name": "DIRAC.gLogger.info", "line_number": 398, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 398, "usage_type": "name" }, { "api_name": "DIRAC.gLogger.info", "line_number": 404, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 404, "usage_type": "name" }, { "api_name": "six.string_types", "line_number": 429, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties.VM_RPC_OPERATION", "line_number": 438, "usage_type": "attribute" }, { "api_name": "VMDIRAC.Security.VmProperties", "line_number": 438, "usage_type": "name" }, { "api_name": "DIRAC.S_ERROR", "line_number": 439, "usage_type": "call" }, { "api_name": "DIRAC.gLogger.info", "line_number": 453, "usage_type": "call" }, { "api_name": "DIRAC.gLogger", "line_number": 453, "usage_type": "name" }, { "api_name": "six.string_types", "line_number": 465, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 476, "usage_type": "attribute" }, { "api_name": "six.integer_types", "line_number": 488, "usage_type": "attribute" }, { "api_name": "six.integer_types", "line_number": 499, "usage_type": "attribute" }, { "api_name": "six.string_types", "line_number": 510, "usage_type": "attribute" } ]
39261296650
import os import shutil import zipfile from base64 import b64decode from utils.config import config import requests root_path = os.getcwd() gat = ( "Z2l0aHViX3BhdF8xMUJBQkhHNkEwa1JRZEM1dFByczhVXzU0cERCS21URXRGYm" "FYRElUWE5KVUk4VkUxVTdjb0dHbElMSWdhVnI2Qkc3QzVCN0lCWlhWdDJMOUo2" ) def download_and_extract_zip(url, root_path): zip_file_path = os.path.join(root_path, "repository.zip") response = requests.get(url, stream=True) response.raise_for_status() total_size = int(response.headers.get("Content-Length", 0)) if total_size == 0: print("下载失败!") return 0 block_size = 1024 # 每次下载的块大小 progress = 0 with open(zip_file_path, "wb") as file: for data in response.iter_content(block_size): progress += len(data) file.write(data) # 计算下载进度并显示进度条 percent = (progress / total_size) * 100 progress_bar = "=" * int(percent // 5) + ">" print(f"下载进度: {percent:.2f}% [{progress_bar:<20}] ", end="\r") print("\n下载完成!") # 解压ZIP文件 with zipfile.ZipFile(zip_file_path, "r") as zip_ref: zip_ref.extractall(root_path) os.remove(zip_file_path) # 删除ZIP文件 return 1 def sync_github_repo(repo_url, root_path): # 构建API URL api_url = f"https://api.github.com/repos/{repo_url}/zipball/main" # 检查保存路径是否存在,如果不存在则创建 os.makedirs(root_path, exist_ok=True) # 下载并解压ZIP文件 return download_and_extract_zip(api_url, root_path) def get_latest_branch_sha(repo_url): url = f"https://api.github.com/repos/{repo_url}/branches" headers = { "Accept": "application/vnd.github.v3+json", "Authorization": b64decode(gat).decode("utf-8"), } try: response = requests.get(url, headers=headers, timeout=3) except: return None if response.status_code == 200: branches = response.json() if branches: latest_branch = branches[0] return latest_branch["commit"]["sha"] else: return None def copy_folder_contents(source_folder, destination_folder): # 检查目标文件夹是否存在,如果不存在则创建 if not os.path.exists(destination_folder): os.makedirs(destination_folder) # 遍历源文件夹中的所有文件和子文件夹 for item in os.listdir(source_folder): source = os.path.join(source_folder, item) destination = os.path.join(destination_folder, item) if os.path.isfile(source): # 如果源项是文件,则直接复制并覆盖同名文件 shutil.copy2(source, destination) elif os.path.isdir(source): # 如果源项是文件夹,则递归地调用复制函数 copy_folder_contents(source, destination) def update_map(force=False): repo_url = "CHNZYX/maps" # 获取远端sha remote_sha = get_latest_branch_sha(repo_url) if remote_sha is None: print("远端地图sha获取失败, 请检查网络连接") return "远端地图sha获取失败, 请检查网络连接", "red" print("远端地图sha: " + remote_sha) # 获取本地sha local_sha = config.map_sha print("本地地图sha: " + local_sha) # 判断是否需要更新 if remote_sha == local_sha: print("map无需更新") return "地图已是最新版本", "green" map_path = os.path.join(root_path, "imgs\\maps") print("Map path: " + map_path) # 下载map仓库并解压 status = sync_github_repo(repo_url, root_path) if status == 0: return "下载失败", "red" print("下载完成") # 找出下载的map文件夹 t = os.listdir(root_path) chn_folders = [item for item in t if item.startswith("CHNZYX")] downloaded_map_path = os.path.join(os.path.join(root_path, chn_folders[0]), "maps") print("download_map_path: " + downloaded_map_path) print("解压中...") # 删除原有map文件夹,复制新的map文件夹 if force: shutil.rmtree(map_path) shutil.copytree(downloaded_map_path, map_path) else: copy_folder_contents(downloaded_map_path, map_path) shutil.rmtree(os.path.dirname(downloaded_map_path)) # 更新sha config.map_sha = remote_sha config.save() print("更新完成") return "更新完成", "green"
CHNZYX/Auto_Simulated_Universe
utils/update_map.py
update_map.py
py
4,483
python
en
code
2,771
github-code
6
[ { "api_name": "os.getcwd", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 17, "usage_type": "call" }, { "api_name": "zipfile.ZipFile", "line_number": 37, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 40, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 49, "usage_type": "call" }, { "api_name": "base64.b64decode", "line_number": 59, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 77, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path", "line_number": 81, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 82, "usage_type": "call" }, { "api_name": "os.path", "line_number": 82, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" }, { "api_name": "shutil.copy2", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "attribute" }, { "api_name": "utils.config.config.map_sha", "line_number": 101, "usage_type": "attribute" }, { "api_name": "utils.config.config", "line_number": 101, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 107, "usage_type": "call" }, { "api_name": "os.path", "line_number": 107, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 122, "usage_type": "call" }, { "api_name": "shutil.copytree", "line_number": 123, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 126, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 126, "usage_type": "call" }, { "api_name": "os.path", "line_number": 126, "usage_type": "attribute" }, { "api_name": "utils.config.config.map_sha", "line_number": 128, "usage_type": "attribute" }, { "api_name": "utils.config.config", "line_number": 128, "usage_type": "name" }, { "api_name": "utils.config.config.save", "line_number": 129, "usage_type": "call" }, { "api_name": "utils.config.config", "line_number": 129, "usage_type": "name" } ]
27070905288
import datetime as dt import random import pytest from scheduler import Scheduler, SchedulerError from scheduler.base.definition import JobType from scheduler.threading.job import Job from ...helpers import DELETE_NOT_SCHEDULED_ERROR, foo @pytest.mark.parametrize( "n_jobs", [ 1, 2, 3, 10, ], ) def test_delete_job(n_jobs): sch = Scheduler() assert len(sch.jobs) == 0 jobs = [] for _ in range(n_jobs): jobs.append(sch.once(dt.datetime.now(), foo)) assert len(sch.jobs) == n_jobs job = random.choice(jobs) sch.delete_job(job) assert job not in sch.jobs assert len(sch.jobs) == n_jobs - 1 # test error if the job is not scheduled with pytest.raises(SchedulerError, match=DELETE_NOT_SCHEDULED_ERROR): sch.delete_job(job) @pytest.mark.parametrize( "empty_set", [ False, True, ], ) @pytest.mark.parametrize( "any_tag", [ None, False, True, ], ) @pytest.mark.parametrize( "n_jobs", [ 0, 1, 2, 3, 10, ], ) def test_delete_jobs(n_jobs, any_tag, empty_set): sch = Scheduler() assert len(sch.jobs) == 0 for _ in range(n_jobs): sch.once(dt.datetime.now(), foo) assert len(sch.jobs) == n_jobs if empty_set: if any_tag is None: num_del = sch.delete_jobs() else: num_del = sch.delete_jobs(any_tag=any_tag) else: if any_tag is None: num_del = sch.delete_jobs(tags={}) else: num_del = sch.delete_jobs(tags={}, any_tag=any_tag) assert len(sch.jobs) == 0 assert num_del == n_jobs @pytest.mark.parametrize( "job_tags, delete_tags, any_tag, n_deleted", [ [[{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, True, 3], [[{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, True, 2], [[{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"3"}, True, 1], [[{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, True, 2], [[{"a", "b"}, {"1", "2", "3"}, {"a", "1"}], {"a", "1"}, False, 1], [[{"a", "b"}, {"1", "2", "3"}, {"a", "2"}], {"b", "1"}, False, 0], [[{"a", "b"}, {"1", "2", "3"}, {"b", "1"}], {"1", "3"}, False, 1], [[{"a", "b"}, {"1", "2", "3"}, {"b", "2"}], {"2", "3"}, False, 1], ], ) def test_delete_tagged_jobs(job_tags, delete_tags, any_tag, n_deleted): sch = Scheduler() for tags in job_tags: sch.once(dt.timedelta(), lambda: None, tags=tags) assert sch.delete_jobs(tags=delete_tags, any_tag=any_tag) == n_deleted
DigonIO/scheduler
tests/threading/scheduler/test_sch_delete_jobs.py
test_sch_delete_jobs.py
py
2,653
python
en
code
51
github-code
6
[ { "api_name": "scheduler.Scheduler", "line_number": 23, "usage_type": "call" }, { "api_name": "helpers.foo", "line_number": 28, "usage_type": "argument" }, { "api_name": "datetime.datetime.now", "line_number": 28, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 28, "usage_type": "attribute" }, { "api_name": "random.choice", "line_number": 31, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 37, "usage_type": "call" }, { "api_name": "scheduler.SchedulerError", "line_number": 37, "usage_type": "argument" }, { "api_name": "helpers.DELETE_NOT_SCHEDULED_ERROR", "line_number": 37, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 13, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 13, "usage_type": "attribute" }, { "api_name": "scheduler.Scheduler", "line_number": 67, "usage_type": "call" }, { "api_name": "helpers.foo", "line_number": 71, "usage_type": "argument" }, { "api_name": "datetime.datetime.now", "line_number": 71, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 71, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 41, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 41, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 48, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 56, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 56, "usage_type": "attribute" }, { "api_name": "scheduler.Scheduler", "line_number": 103, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 106, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 89, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 89, "usage_type": "attribute" } ]
24510539081
import json import frappe from frappe.model.document import Document from frappe.utils.safe_exec import get_safe_globals, safe_exec from frappe.integrations.utils import make_post_request from frappe.desk.form.utils import get_pdf_link from frappe.utils.background_jobs import enqueue def validate(self, method): if self.channel == "WhatsApp": fields = frappe.get_doc("DocType", self.document_type).fields fields += frappe.get_all( "Custom Field", filters={"dt": self.document_type}, fields=["fieldname"] ) # if not any(field.fieldname == self.custom_receiver_mobile for field in fields): # noqa # frappe.throw(f"Field name {self.custom_receiver_mobile} does not exists") def on_trash(self, method): pass # if self.channel == "WhatsApp": # if self.notification_type == "Scheduler Event": # frappe.delete_doc("Scheduled Job Type", self.name) # frappe.cache().delete_value("whatsapp_notification_map") def after_insert(self, method): pass # if self.channel == "WhatsApp": # if self.notification_type == "Scheduler Event": # method = f"whatsapp_erpnext.utils.trigger_whatsapp_notifications_{self.event_frequency.lower().replace(' ', '_')}" # noqa # job = frappe.get_doc( # { # "doctype": "Scheduled Job Type", # "method": method, # "frequency": self.event_frequency # } # ) # job.insert() def format_number(self, number): if (number.startswith("+")): number = number[1:len(number)] return number def send_scheduled_message(self) -> dict: safe_exec( self.condition, get_safe_globals(), dict(doc=self) ) language_code = frappe.db.get_value( "WhatsApp Templates", self.template, fieldname='language_code' ) if language_code: for contact in self._contact_list: data = { "messaging_product": "whatsapp", "to": self.format_number(contact), "type": "template", "template": { "name": self.template, "language": { "code": language_code }, "components": [] } } self.notify(data) # return _globals.frappe.flags def send_template_message(self, doc: Document, contact_no = None): """Specific to Document Event triggered Server Scripts.""" if not self.enabled: return doc_data = doc.as_dict() if self.condition: # check if condition satisfies if not frappe.safe_eval( self.condition, get_safe_globals(), dict(doc=doc_data) ): return template = frappe.db.get_value( "WhatsApp Templates", self.custom_whatsapp_template, fieldname='*' ) if template: for row in self.recipients: if row.receiver_by_document_field != "owner": if not contact_no: contact_no = doc.get(row.receiver_by_document_field) if contact_no: data = { "messaging_product": "whatsapp", "to": contact_no, "type": "template", "template": { "name": self.custom_whatsapp_template, "language": { "code": template.language_code }, "components": [] } } # Pass parameter values if self.fields: parameters = [] for field in self.fields: parameters.append({ "type": "text", "text": doc.get_formatted(field.field_name) }) data['template']["components"] = [{ "type": "body", "parameters": parameters }] if self.attach_print: key = doc.get_document_share_key() frappe.db.commit() link = get_pdf_link( doc_data['doctype'], doc_data['name'], print_format=self.print_format or "Standard" ) filename = f'{doc_data["name"]}.pdf' url = f'{frappe.utils.get_url()}{link}&key={key}' data['template']['components'].append({ "type": "header", "parameters": [{ "type": "document", "document": { "link": url, "filename": filename } }] }) label = f"{doc_data['doctype']} - {doc_data['name']}" notify(self, data, label) def notify(self, data, label = None): """Notify.""" settings = frappe.get_doc( "WhatsApp Settings", "WhatsApp Settings", ) token = settings.get_password("token") headers = { "authorization": f"Bearer {token}", "content-type": "application/json" } try: response = make_post_request( f"{settings.url}/{settings.version}/{settings.phone_id}/messages", headers=headers, data=json.dumps(data) ) message_id = response['messages'][0]['id'] enqueue(save_whatsapp_log, data = data, message_id = message_id, label = label) frappe.msgprint("WhatsApp Message Triggered", indicator="green", alert=True) except Exception as e: response = frappe.flags.integration_request.json()['error'] error_message = response.get('Error', response.get("message")) frappe.msgprint( f"Failed to trigger whatsapp message: {error_message}", indicator="red", alert=True ) finally: status_response = frappe.flags.integration_request.json().get('error') frappe.get_doc({ "doctype": "Integration Request", "integration_request_service": self.custom_whatsapp_template, "output": str(frappe.flags.integration_request.json()), "status": "Failed" if status_response else "Completed" }).insert(ignore_permissions=True) def format_number(self, number): if (number.startswith("+")): number = number[1:len(number)] return number @frappe.whitelist() def send_notification(notification, ref_doctype, ref_docname, mobile_no = None): noti_doc = frappe.get_doc("Notification", notification) ref_doc = frappe.get_doc(ref_doctype, ref_docname) send_template_message(noti_doc, ref_doc, mobile_no) def save_whatsapp_log(data, message_id, label = None): frappe.get_doc({ "doctype": "WhatsApp Message", "type": "Outgoing", "message": str(data['template']), "to": data['to'], "message_type": "Template", "message_id": message_id, "content_type": "document", "label": label }).save(ignore_permissions=True)
finbyz/whatsapp_erpnext
whatsapp_erpnext/whatsapp_erpnext/doc_events/notification.py
notification.py
py
5,911
python
en
code
0
github-code
6
[ { "api_name": "frappe.get_doc", "line_number": 12, "usage_type": "call" }, { "api_name": "frappe.get_all", "line_number": 13, "usage_type": "call" }, { "api_name": "frappe.utils.safe_exec.safe_exec", "line_number": 51, "usage_type": "call" }, { "api_name": "frappe.utils.safe_exec.get_safe_globals", "line_number": 52, "usage_type": "call" }, { "api_name": "frappe.db.get_value", "line_number": 54, "usage_type": "call" }, { "api_name": "frappe.db", "line_number": 54, "usage_type": "attribute" }, { "api_name": "frappe.model.document.Document", "line_number": 76, "usage_type": "name" }, { "api_name": "frappe.safe_eval", "line_number": 84, "usage_type": "call" }, { "api_name": "frappe.utils.safe_exec.get_safe_globals", "line_number": 85, "usage_type": "call" }, { "api_name": "frappe.db.get_value", "line_number": 89, "usage_type": "call" }, { "api_name": "frappe.db", "line_number": 89, "usage_type": "attribute" }, { "api_name": "frappe.db.commit", "line_number": 130, "usage_type": "call" }, { "api_name": "frappe.db", "line_number": 130, "usage_type": "attribute" }, { "api_name": "frappe.desk.form.utils.get_pdf_link", "line_number": 132, "usage_type": "call" }, { "api_name": "frappe.utils.get_url", "line_number": 139, "usage_type": "call" }, { "api_name": "frappe.utils", "line_number": 139, "usage_type": "attribute" }, { "api_name": "frappe.get_doc", "line_number": 157, "usage_type": "call" }, { "api_name": "frappe.integrations.utils.make_post_request", "line_number": 167, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 169, "usage_type": "call" }, { "api_name": "frappe.utils.background_jobs.enqueue", "line_number": 173, "usage_type": "call" }, { "api_name": "frappe.msgprint", "line_number": 175, "usage_type": "call" }, { "api_name": "frappe.flags.integration_request.json", "line_number": 178, "usage_type": "call" }, { "api_name": "frappe.flags", "line_number": 178, "usage_type": "attribute" }, { "api_name": "frappe.msgprint", "line_number": 180, "usage_type": "call" }, { "api_name": "frappe.flags.integration_request.json", "line_number": 186, "usage_type": "call" }, { "api_name": "frappe.flags", "line_number": 186, "usage_type": "attribute" }, { "api_name": "frappe.get_doc", "line_number": 187, "usage_type": "call" }, { "api_name": "frappe.flags.integration_request.json", "line_number": 190, "usage_type": "call" }, { "api_name": "frappe.flags", "line_number": 190, "usage_type": "attribute" }, { "api_name": "frappe.get_doc", "line_number": 202, "usage_type": "call" }, { "api_name": "frappe.get_doc", "line_number": 204, "usage_type": "call" }, { "api_name": "frappe.whitelist", "line_number": 200, "usage_type": "call" }, { "api_name": "frappe.get_doc", "line_number": 209, "usage_type": "call" } ]
8097011811
import pathlib import PIL.Image import PIL.ImageChops import pyscreenshot from sigsolve import imageutil, geometry import numpy def rehydrate(array): # return PIL.Image.frombytes('RGB', array.shape[:2], array.astype(numpy.uint8).tobytes()) return PIL.Image.fromarray(array, 'RGB') class Vision: # How many light levels can a tile differ (in either direction) from the baseline before the tile is no longer # considered empty. This relies on integer rollover to avoid needing an in16 over a uint8. MAX_EMPTY_TOLERANCE = 2 @staticmethod def _getimage(what): if isinstance(what, (str, bytes, pathlib.Path)): what = PIL.Image.open(what) if what.mode != 'RGB': what = what.convert('RGB') return what def __init__(self, baseline=None, composites=None, extents=None): """ Handles image processing state functionality. :param baseline: Baseline image. If this is a string or Path object, it is assumed to be a filename and is loaded. :param composites: Optional dictionary of composite images (or image filenames), with IDs as keys. :param extents: Rectangle of the area we're interested in. Default is the whole image. """ self.baseline = self._getimage(baseline) if extents: self.baseline = self.baseline.crop(extents.coords) else: extents = geometry.Rect(geometry.Point.ORIGIN, self.baseline.size) self.baseline = imageutil.numpify(self.baseline) self.baseline.flags.writeable = True # Some processing. self.baseline += self.MAX_EMPTY_TOLERANCE self.baseline[self.baseline < self.MAX_EMPTY_TOLERANCE] = 255 # Cap off what just rolled over self.extents = extents self.offset = -self.extents.xy1 self.composites = {} if composites is not None: for key, image in composites.items(): self.add_composite(key, image) self.image = None def add_composite(self, key, image): self.composites[key] = imageutil.numpify(self._getimage(image)).astype(numpy.int16) def match(self, tile): """Finds the composite that most closely matches the source tile's image.""" coords = (tile.sample_rect + self.offset).coords base = self.baseline[coords[1]:coords[3], coords[0]:coords[2], 0:3] cropped = self.image.crop(coords) if numpy.all(base - imageutil.numpify(cropped) < 2*self.MAX_EMPTY_TOLERANCE): return None data = imageutil.numpify(imageutil.equalize(cropped)).astype(numpy.int16) buf = numpy.ndarray(data.shape, data.dtype) unsigned = buf.view(numpy.uint16) best = None bestscore = None for key, composite in self.composites.items(): numpy.subtract(data, composite, out=buf) # Initialize buf with a difference between the two arrays # We casually convert between signed and unsigned here, and the math just happens to work out due to # sign extension and truncation. unsigned **= 2 # Raise all values to power of 2. score = numpy.sum(unsigned) if bestscore is None or score < bestscore: bestscore = score best = key return best def screenshot(self): """Sets the image to a screenshot""" self.set_image( pyscreenshot.grab(self.extents.coords), cropped=True ) def set_image(self, image, cropped=False): """Sets the image""" image = self._getimage(image) if not cropped and (self.extents.xy1 != geometry.Point.ORIGIN or self.extents.xy2 != image.size): image = image.crop(self.extents.coords) self.image = image
dewiniaid/sigsolve
sigsolve/vision.py
vision.py
py
3,821
python
en
code
3
github-code
6
[ { "api_name": "PIL.Image.Image.fromarray", "line_number": 14, "usage_type": "call" }, { "api_name": "PIL.Image.Image", "line_number": 14, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 14, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "PIL.Image.Image.open", "line_number": 24, "usage_type": "call" }, { "api_name": "PIL.Image.Image", "line_number": 24, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 24, "usage_type": "name" }, { "api_name": "sigsolve.geometry.Rect", "line_number": 42, "usage_type": "call" }, { "api_name": "sigsolve.geometry", "line_number": 42, "usage_type": "name" }, { "api_name": "sigsolve.geometry.Point", "line_number": 42, "usage_type": "attribute" }, { "api_name": "sigsolve.imageutil.numpify", "line_number": 43, "usage_type": "call" }, { "api_name": "sigsolve.imageutil", "line_number": 43, "usage_type": "name" }, { "api_name": "sigsolve.imageutil.numpify", "line_number": 59, "usage_type": "call" }, { "api_name": "sigsolve.imageutil", "line_number": 59, "usage_type": "name" }, { "api_name": "numpy.int16", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.all", "line_number": 66, "usage_type": "call" }, { "api_name": "sigsolve.imageutil.numpify", "line_number": 66, "usage_type": "call" }, { "api_name": "sigsolve.imageutil", "line_number": 66, "usage_type": "name" }, { "api_name": "sigsolve.imageutil.numpify", "line_number": 69, "usage_type": "call" }, { "api_name": "sigsolve.imageutil", "line_number": 69, "usage_type": "name" }, { "api_name": "sigsolve.imageutil.equalize", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.int16", "line_number": 69, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.uint16", "line_number": 71, "usage_type": "attribute" }, { "api_name": "numpy.subtract", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 81, "usage_type": "call" }, { "api_name": "pyscreenshot.grab", "line_number": 90, "usage_type": "call" }, { "api_name": "sigsolve.geometry.Point", "line_number": 96, "usage_type": "attribute" }, { "api_name": "sigsolve.geometry", "line_number": 96, "usage_type": "name" } ]
26234013938
#!/usr/bin/python3 """Starts a basic flask web application""" from flask import Flask, render_template from markupsafe import escape from models import storage from models.state import State from models.city import City app = Flask(__name__) @app.teardown_appcontext def teardown(self): """procedure to run after request""" storage.close() @app.route("/states_list", strict_slashes=False) def states_list(): """Function to run when '/states_list' is accessed""" states = [state for state in storage.all(State).values()] states.sort(reverse=False, key=lambda state: state.name) return (render_template('7-states_list.html', states=states)) @app.route("/cities_by_states", strict_slashes=False) def cities_by_statesb(): """Function to run when '/cities_by_states' is accessed""" states = storage.all(State).values() return (render_template('8-cities_by_states.html', states=states)) if (__name__ == '__main__'): app.run(host='0.0.0.0', port=5000, debug=False)
AndyMSP/holbertonschool-AirBnB_clone_v2
web_flask/8-cities_by_states.py
8-cities_by_states.py
py
1,008
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 10, "usage_type": "call" }, { "api_name": "models.storage.close", "line_number": 16, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 16, "usage_type": "name" }, { "api_name": "models.storage.all", "line_number": 22, "usage_type": "call" }, { "api_name": "models.state.State", "line_number": 22, "usage_type": "argument" }, { "api_name": "models.storage", "line_number": 22, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 24, "usage_type": "call" }, { "api_name": "models.storage.all", "line_number": 30, "usage_type": "call" }, { "api_name": "models.state.State", "line_number": 30, "usage_type": "argument" }, { "api_name": "models.storage", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 31, "usage_type": "call" } ]
35515894022
import sys sys.path.append('..') from common.wrapped_input import wrapped_input from common.clean_screen import clean_screen __TERMINATE_MARKS__ = ['***', '****'] class Reader: def __init__(self, args): self.loop = True def run(self, parser): print(""" _ __ __, ( / ) o ( /--< _ __, , _ _ `. ,_ __ , /___// (_(_/(_(_/ / /_(___)_/|_)_/ (_/_ /| / Interactive shell (/ ' ========================================== """) last_input = '' while last_input not in __TERMINATE_MARKS__: last_input = wrapped_input() if last_input in __TERMINATE_MARKS__: print('[INFO] Querying, please wait...') return last_input parser.add(last_input)
ezPsycho/brainSpy-cli
src/readers/interactive.py
interactive.py
py
881
python
en
code
6
github-code
6
[ { "api_name": "sys.path.append", "line_number": 2, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 2, "usage_type": "attribute" }, { "api_name": "common.wrapped_input.wrapped_input", "line_number": 28, "usage_type": "call" } ]
39269318225
import logging import os import random import sys from functools import wraps from pprint import pformat from subprocess import Popen, PIPE from threading import Thread from dim import db from dim.models.dns import OutputUpdate from dim.rpc import TRPC from tests.pdns_test import PDNSTest from tests.pdns_util import compare_dim_pdns_zones, this_dir, test_pdns_output_process def delete_record(rpc, r): rpc.rr_delete(zone=r['zone'], name=r['record'], type=r['type'], **r['value']) def add_record(rpc, r): rpc.rr_create(zone=r['zone'], name=r['record'], type=r['type'], ttl=r['ttl'], **r['value']) def extract(l, selected_idx): '''split l into two lists: elements with indices in selected and the rest''' selected = [] rejected = [] selected_idx = set(selected_idx) for i, e in enumerate(l): if i in selected_idx: selected.append(e) else: rejected.append(e) return selected, rejected class TestRequestProxy(object): '''' Simulate the flask lifecycle of a request by creating a new TRPC instance and request context (which in turns creates a new db session) ''' def __init__(self, username, app): self.app = app self.username = username def __getattr__(self, name): if not name.startswith('_'): obj = TRPC(username=self.username) func = getattr(obj, name) if callable(func): @wraps(func) def wrapper(*args, **kwargs): with self.app.test_request_context(): return func(*args, **kwargs) return wrapper raise AttributeError done = False def run_test(app, zone, pdns_output, db_uri, pdns_ip): global done try: rpc = TestRequestProxy('test_user', app) def check_zone(): global done pdns_output.wait_updates(zone) if not compare_dim_pdns_zones(rpc, pdns_ip, {zone: None}): done = True if done: sys.exit() check_zone() rpc.zone_dnssec_enable(zone, nsec3_algorithm=1, nsec3_iterations=1, nsec3_salt='deadcafe') check_zone() records = rpc.rr_list(zone=zone, value_as_object=True) created = [r for r in records if r['type'] not in ('SOA', 'DNSKEY')] deleted = [] total = len(created) for _ in range(30): selected = random.sample(range(total), random.randint(1, 5)) midpoint = len(created) to_del, created = extract(created, [i for i in selected if i < midpoint]) to_add, deleted = extract(deleted, [i - midpoint for i in selected if i >= midpoint]) created.extend(to_add) deleted.extend(to_del) print('Adding', pformat(to_add)) print('Deleting', pformat(to_del)) for r in to_del: delete_record(rpc, r) for r in to_add: add_record(rpc, r) check_zone() rpc.zone_dnssec_disable(zone) check_zone() except: logging.exception('Exception in run_test') done = True def import_zone(zone): proc = Popen(['ndcli', 'import', 'zone', zone], stdin=PIPE, stdout=PIPE) zone_contents = open(this_dir(zone)).read() stdout, stderr = proc.communicate(zone_contents) if proc.returncode != 0: raise Exception('zone import failed') class PDNSOutputProcess(object): def __enter__(self): self.proc = test_pdns_output_process(True) return self def __exit__(self, *args): self.proc.kill() self.proc = None def wait_updates(self, zone): '''Wait for all updates to be processed''' with test.app.test_request_context(): while True: db.session.rollback() if OutputUpdate.query.filter(OutputUpdate.zone_name == zone).count() == 0: break else: os.read(self.proc.stdout.fileno(), 1024) if __name__ == '__main__': zones = {'web.de': {'db_uri': 'mysql://pdns:[email protected]:3307/pdns1', 'pdns_ip': '127.1.1.1'}, 'web2.de': {'db_uri': 'mysql://pdns:[email protected]:3307/pdns2', 'pdns_ip': '127.2.2.2'}} global test test = PDNSTest('__init__') test.setUp() for zone in list(zones.keys()): test.cleanup_pdns_db(zones[zone]['db_uri']) import_zone(zone) test.create_output_for_zone(zone, zone, zone, db_uri=zones[zone]['db_uri']) with PDNSOutputProcess() as pdns_output: threads = [] for zone, attr in zones.items(): t = Thread(target=run_test, args=(test.app, zone, pdns_output), kwargs=attr) t.start() threads.append(t) for t in threads: while t.isAlive(): t.join(0.1)
1and1/dim
dim-testsuite/tests/pdns_changes.py
pdns_changes.py
py
4,950
python
en
code
39
github-code
6
[ { "api_name": "dim.rpc.TRPC", "line_number": 49, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 52, "usage_type": "call" }, { "api_name": "tests.pdns_util.compare_dim_pdns_zones", "line_number": 71, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 74, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 84, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 84, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 90, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 91, "usage_type": "call" }, { "api_name": "logging.exception", "line_number": 100, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 105, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 105, "usage_type": "name" }, { "api_name": "tests.pdns_util.this_dir", "line_number": 106, "usage_type": "call" }, { "api_name": "tests.pdns_util.test_pdns_output_process", "line_number": 114, "usage_type": "call" }, { "api_name": "dim.db.session.rollback", "line_number": 125, "usage_type": "call" }, { "api_name": "dim.db.session", "line_number": 125, "usage_type": "attribute" }, { "api_name": "dim.db", "line_number": 125, "usage_type": "name" }, { "api_name": "dim.models.dns.OutputUpdate.query.filter", "line_number": 126, "usage_type": "call" }, { "api_name": "dim.models.dns.OutputUpdate.query", "line_number": 126, "usage_type": "attribute" }, { "api_name": "dim.models.dns.OutputUpdate", "line_number": 126, "usage_type": "name" }, { "api_name": "dim.models.dns.OutputUpdate.zone_name", "line_number": 126, "usage_type": "attribute" }, { "api_name": "os.read", "line_number": 129, "usage_type": "call" }, { "api_name": "tests.pdns_test.PDNSTest", "line_number": 139, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 149, "usage_type": "call" } ]
5119440044
from netaddr import IPNetwork, IPAddress import logging from pymongo import MongoClient logger = logging.getLogger( "ucn_logger" ) class VPNResolve(object): def __init__( self, cidr, dbcfg): self.logscollection = dbcfg['logscollection'] self.devicecollection = dbcfg['devicecollection'] self.db = dbcfg['db'] self.cidr = cidr self.mc = MongoClient(dbcfg['host'], dbcfg['port']) def clientip(self, request): if len(request.access_route) > 1: host = request.access_route[-1] else: host = request.access_route[0] logger.debug("seen a client ip %s" % host) if IPAddress(host) not in IPNetwork(self.cidr): logger.debug("is not local, looking up in openvpn status") return self.findlocal(host) else: return host def findlocal(self, host): db = self.mc[self.db] devices = db[self.logscollection].find({"untrusted_client_ip": host}).sort("ts", -1).limit(1) devicename = None protocol = None for device in devices: devicename = device['common_name'] protocol = device['proto'] #now lookup device name in the devices collection device = db[self.devicecollection].find_one({"login":devicename}) if device is not None: if protocol is not None: if protocol == "udp": if 'vpn_udp_ip' in device: logger.debug("retreived udp ip %s" % device['vpn_udp_ip']) return device['vpn_udp_ip'] elif protocol == "tcp": if 'vpn_tcp_ip' in device: logger.debug("retreived tcp ip %s" % device['vpn_tcp_ip']) return device['vpn_tcp_ip'] logger.debug("no corresponding ip for %s in db" % host) return None
ucn-eu/ucnviz
vpnresolve.py
vpnresolve.py
py
1,620
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 5, "usage_type": "call" }, { "api_name": "pymongo.MongoClient", "line_number": 14, "usage_type": "call" }, { "api_name": "netaddr.IPAddress", "line_number": 25, "usage_type": "call" }, { "api_name": "netaddr.IPNetwork", "line_number": 25, "usage_type": "call" } ]
11545903852
import modules.processing_turn as m_turn import modules.data_base as m_data def click_cell(x,y): # Умова першого рядка таблиці if y < 100 and y > 0: # Умова першої комірки по х if x > -100 and x < 0 and m_data.list_cells[0] == 0: m_turn.who_turn(-100, 100, 0) # Умова другої комірки по х elif x < 100 and x > 0 and m_data.list_cells[1] == 0: m_turn.who_turn(0, 100, 1) # Умова третьої комірки по х elif x > 100 and x < 200 and m_data.list_cells[2] == 0: m_turn.who_turn(100, 100, 2) # Умова другого рядка таблиці elif y < 0 and y > -100: # Умова четвертої комірки по х if x > -100 and x < 0 and m_data.list_cells[3] == 0: m_turn.who_turn(-100, 0, 3) # Умова п'ятої комірки по х elif x < 100 and x > 0 and m_data.list_cells[4] == 0: m_turn.who_turn(0, 0, 4) # Умова шостої комірки по х elif x > 100 and x < 200 and m_data.list_cells[5] == 0: m_turn.who_turn(100, 0, 5) # Умова третього рядка таблиці elif y < -100 and y > -200: if x > -100 and x < 0 and m_data.list_cells[6] == 0: m_turn.who_turn(-100,-100,6) elif x < 100 and x > 0 and m_data.list_cells[7] == 0: m_turn.who_turn(0, -100, 7) elif x > 100 and x < 200 and m_data.list_cells[8] == 0: m_turn.who_turn(100, -100, 8)
BoiarkinaOryna/cross_zero_game
modules/checking_square_coordinates.py
checking_square_coordinates.py
py
1,655
python
uk
code
0
github-code
6
[ { "api_name": "modules.data_base.list_cells", "line_number": 10, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 10, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 11, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 11, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 13, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 13, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 14, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 14, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 16, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 16, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 17, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 17, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 21, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 21, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 22, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 22, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 24, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 24, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 25, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 25, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 27, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 27, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 28, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 28, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 31, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 31, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 32, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 32, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 33, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 33, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 34, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 34, "usage_type": "name" }, { "api_name": "modules.data_base.list_cells", "line_number": 35, "usage_type": "attribute" }, { "api_name": "modules.data_base", "line_number": 35, "usage_type": "name" }, { "api_name": "modules.processing_turn.who_turn", "line_number": 36, "usage_type": "call" }, { "api_name": "modules.processing_turn", "line_number": 36, "usage_type": "name" } ]
26807586503
from src.utils.all_utils import read_yaml, create_directory import argparse import os import shutil from tqdm import tqdm import logging log_string = "[%(asctime)s: %(levelname)s: %(module)s]: %(message)s" logs_dir = "Logs" os.makedirs(logs_dir,exist_ok=True) logging.basicConfig(filename=os.path.join(logs_dir,"Running_Logs.log"),level=logging.INFO,format=log_string,filemode='a') def copy_file(source_download_dir,local_data_dir): source_files = os.listdir(source_download_dir) N = len(source_files) for file in tqdm(source_files,total=N,desc= f"Copying File from {source_download_dir} to {local_data_dir}", colour="green"): src = os.path.join(source_download_dir,file) dst = os.path.join(local_data_dir,file) shutil.copy(src, dst) def get_data(config_path): config = read_yaml(config_path) source_download_dirs = config["source_download_dirs"] local_data_dirs = config["local_data_dirs"] for source_download_dir,local_data_dir in tqdm(zip(source_download_dirs,local_data_dirs),total=2,desc= "List of Folders", colour="cyan"): create_directory([local_data_dir]) copy_file(source_download_dir,local_data_dir) if __name__ == '__main__': args = argparse.ArgumentParser() args.add_argument("--config", "-c", default="config/config.yaml") parsed_args = args.parse_args() try: logging.info(">>>>>Stage-01 Started...") get_data(config_path=parsed_args.config) logging.info("Stage-01 Completed , Data saved into local Directory <<<<<<\n") except Exception as e: raise e
vicharapubhargav/dvc_tensorflow_demo
src/stage_01_load_save.py
stage_01_load_save.py
py
1,595
python
en
code
0
github-code
6
[ { "api_name": "os.makedirs", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 15, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 17, "usage_type": "call" }, { "api_name": "src.utils.all_utils", "line_number": 18, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 20, "usage_type": "call" }, { "api_name": "src.utils.all_utils", "line_number": 20, "usage_type": "argument" }, { "api_name": "src.utils.all_utils.read_yaml", "line_number": 23, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 28, "usage_type": "call" }, { "api_name": "src.utils.all_utils.create_directory", "line_number": 29, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 35, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 42, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 44, "usage_type": "call" } ]
6729300182
#!/usr/bin/env python #-*- coding: utf-8 -*- """ @file: oracle_cls.py @author: ImKe at 2022/2/23 @email: [email protected] @feature: #Enter features here """ import torch.nn as nn import torch import datetime, os, copy, math, time, collections, argparse, nltk, json, sys sys.path.append('../') import numpy as np from tqdm import tqdm from torch.utils.data import Dataset, DataLoader from tensorboardX import SummaryWriter from src.logger import Logger from src.data import ConditionalGenerationDataset from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config, AdamW, get_linear_schedule_with_warmup parser = argparse.ArgumentParser() # Default parameters are set based on single GPU training parser.add_argument('--lr', type=float, default=5e-5) parser.add_argument("--seed", type=int, default=42) parser.add_argument('--class_num', type=int, default=2) parser.add_argument('--batch_size', type=int, default=200) parser.add_argument('--max_length', type=int, default=30) parser.add_argument('--iterations', type=int, default=15000 * 3) parser.add_argument('--dataset', type=str, default='yelp_polarity', choices=['yelp_polarity', 'imdb_polarity'], help="Dataset to use for training") parser.add_argument('--out_dir', type=str, default='cls_train_out') parser.add_argument('--gpu', default=0, type=int) parser.add_argument('--no_gpu', action="store_true") parser.add_argument('--workers', default=2, type=int, metavar='N', help='number of data loading workers') def tokenize(texts, tokenizer, device, args): # tokenizer.pad_token = tokenizer.eos_token x_tokenized = tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=args.max_length) input_ids = x_tokenized['input_ids'][:, :-1].to(device) attention_mask = x_tokenized['attention_mask'][:, 1:].to(device) x_ids = x_tokenized['input_ids'][:, 1:].contiguous().to(device) ## target, input tokens, mask return x_ids, input_ids, attention_mask class Oracle_Classifier(nn.Module): def __init__(self, config, class_num, wte): super(Oracle_Classifier, self).__init__() self.class_num = class_num self.gpt_embeddings = nn.Embedding(config.vocab_size, config.n_embd) self.gpt_embeddings.weight.data = wte.weight.data self.conv1 = nn.Conv1d(config.hidden_size, config.hidden_size, 3) self.classifier = nn.Linear(config.hidden_size, 1 if self.class_num <= 2 else self.class_num) self.BCEWithLogitsLoss = nn.BCEWithLogitsLoss() def step(self, optimizer, loss): optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() def forward(self, sentences, cond_labels): ft = self.gpt_embeddings(sentences) ft = self.conv1(ft.transpose(1, 2)) ft = torch.mean(ft, dim=-1) ft = self.classifier(ft) prob_cls = ft.squeeze(1) loss_cls = self.BCEWithLogitsLoss(prob_cls, cond_labels.float()) pred_cls = (prob_cls >= 0).to(dtype=torch.long) acc_cls = (pred_cls == cond_labels).float() return loss_cls, acc_cls def train(args): # GPU if not torch.cuda.is_available(): args.no_gpu = True gpu = not args.no_gpu if gpu: print("There are ", torch.cuda.device_count(), " available GPUs!") # print('Setting GPUs {}'.format(args.device)) # print('Using GPU devices {}'.format(devices)) torch.cuda.set_device(args.gpu) print('Current single GPU: {}'.format(torch.cuda.current_device())) device = torch.device(args.gpu if gpu else "cpu") # randomness np.random.seed(args.seed) prng = np.random.RandomState() torch.random.manual_seed(args.seed) if gpu: torch.cuda.manual_seed(args.seed); torch.cuda.manual_seed_all(args.seed) save_folder = os.path.join(args.out_dir, "oracle_cls") os.makedirs(save_folder, exist_ok=True) t_writer = SummaryWriter(os.path.join(save_folder, 'train'), flush_secs=5) v_writer = SummaryWriter(os.path.join(save_folder, 'val'), flush_secs=5) logging_file = "oracle_cls.log" logging = Logger(os.path.join(args.out_dir, logging_file)) # t_writer = SummaryWriter(os.path.join(save_folder, 'train'), flush_secs=5) logging.info('\n*******************************************************************************\n') logging.info("the configuration:") logging.info(str(args).replace(',', '\n')) logging.info('Loading models...') config = GPT2Config() gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2', cache_dir='/home/tuhq/.cache/torch/transformers') tokenizer = GPT2Tokenizer.from_pretrained('gpt2', cache_dir='/home/tuhq/.cache/torch/transformers') tokenizer.pad_token = tokenizer.eos_token model = Oracle_Classifier(config, args.class_num, wte=gpt2_model.transformer.wte) optimizer = AdamW(model.parameters(), lr=args.lr, correct_bias=True) model = model.to(device) model.train() logging.info('Setup data...') train_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/train.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) test_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/test.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) val_loader = DataLoader( ConditionalGenerationDataset.from_file(f"../data/{args.dataset}/valid.txt"), batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=True, num_workers=args.workers) logging.info('Done.') def val_step(val_loader): model.eval() val_loss_list, val_acc_list = [], [] with tqdm(total=min(len(val_loader), max_val_batches), desc="Evaluating Model") as pbar: for i, val_data_dict in enumerate(val_loader): with torch.no_grad(): val_x_ids, val_input_ids, val_attention_mask = tokenize(val_data_dict['x'], tokenizer, device, args) val_labels = torch.tensor(val_data_dict['y']).to(device) val_loss_cls, val_acc_cls = model(val_input_ids, val_labels) val_loss_list.append(val_loss_cls.item()) val_acc_list.append(val_acc_cls.mean().item()) val_loss = np.mean(val_loss_list) val_acc = np.mean(val_acc_list) val_loss_std = np.std(val_loss_list) val_acc_std = np.std(val_acc_list) logging.info("val loss: %.4f + %.4f" % (val_loss, val_loss_std)) logging.info("val acc : %.4f + %.4f" % (val_acc, val_acc_std)) model.train() return val_acc best_acc = 0.0 logging.info("Begin training iterations") max_val_batches = 200 # max num. of val batches logging.info("Total iteration: %d" % args.iterations) e = 0 # number of epoch num_iters = 0 et = 0 while num_iters < args.iterations: # Run epoch # Training print('Training loop. Batches:', len(train_loader)) logging.info('\n----------------------------------------------------------------------') logging.info("Training loop. Batches: %d" % len(train_loader)) with tqdm(total=len(train_loader)) as pbar: for i, data_dict in enumerate(train_loader): x_ids, input_ids, attention_mask = tokenize(data_dict['x'], tokenizer, device, args) cond_labels = torch.tensor(data_dict['y']).to(device) loss_cls, acc_cls = model(input_ids, cond_labels) loss = model.step(optimizer, loss_cls) acc_cls = acc_cls.mean() t_writer.add_scalar('loss', loss, num_iters) t_writer.add_scalar('acc', acc_cls, num_iters) end = num_iters >= args.iterations if end: break num_iters += 1 pbar.update(1) if (num_iters + 1) % 2000 == 0: logging.info("Test dataset") _ = val_step(test_loader) logging.info("Valid dataset") val_acc = val_step(val_loader) if val_acc > best_acc: best_acc = val_acc save_orderdict = model.state_dict() torch.save(save_orderdict, os.path.join(save_folder, 'oracle_cls_best.pt')) else: et += 1 if et >= 5: logging.info("Early Stopping..") break if not end: e += 1 logging.info("Training loop. The ith epoch completed: %d" % e) save_orderdict = model.state_dict() torch.save(save_orderdict, os.path.join(save_folder, 'oracle_cls_latest.pt')) logging.info("Test dataset") val_step(test_loader) logging.info("Valid dataset") val_step(val_loader) logging.info("-" * 50) logging.info("best acc: {:.4f}".format(best_acc)) if __name__ == '__main__': args = parser.parse_args() train(args)
ImKeTT/AdaVAE
controlgen/oracle_cls.py
oracle_cls.py
py
9,368
python
en
code
32
github-code
6
[ { "api_name": "sys.path.append", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 54, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.nn.Embedding", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.nn.Conv1d", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.mean", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 79, "usage_type": "attribute" }, { "api_name": "torch.cuda.is_available", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 87, "usage_type": "attribute" }, { "api_name": "torch.cuda.device_count", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 90, "usage_type": "attribute" }, { "api_name": "torch.cuda.set_device", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 93, "usage_type": "attribute" }, { "api_name": "torch.cuda.current_device", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 94, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.random.RandomState", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 99, "usage_type": "attribute" }, { "api_name": "torch.random.manual_seed", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.random", "line_number": 100, "usage_type": "attribute" }, { "api_name": "torch.cuda.manual_seed", "line_number": 101, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 101, "usage_type": "attribute" }, { "api_name": "torch.cuda.manual_seed_all", "line_number": 101, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 104, "usage_type": "call" }, { "api_name": "tensorboardX.SummaryWriter", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path", "line_number": 105, "usage_type": "attribute" }, { "api_name": "tensorboardX.SummaryWriter", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path", "line_number": 106, "usage_type": "attribute" }, { "api_name": "src.logger.Logger", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path", "line_number": 108, "usage_type": "attribute" }, { "api_name": "transformers.GPT2Config", "line_number": 116, "usage_type": "call" }, { "api_name": "transformers.GPT2LMHeadModel.from_pretrained", "line_number": 117, "usage_type": "call" }, { "api_name": "transformers.GPT2LMHeadModel", "line_number": 117, "usage_type": "name" }, { "api_name": "transformers.GPT2Tokenizer.from_pretrained", "line_number": 118, "usage_type": "call" }, { "api_name": "transformers.GPT2Tokenizer", "line_number": 118, "usage_type": "name" }, { "api_name": "transformers.AdamW", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 127, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset.from_file", "line_number": 128, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 134, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset.from_file", "line_number": 135, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset", "line_number": 135, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 141, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset.from_file", "line_number": 142, "usage_type": "call" }, { "api_name": "src.data.ConditionalGenerationDataset", "line_number": 142, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 154, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 156, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 158, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 166, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 188, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 215, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 215, "usage_type": "call" }, { "api_name": "os.path", "line_number": 215, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 227, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 227, "usage_type": "call" }, { "api_name": "os.path", "line_number": 227, "usage_type": "attribute" } ]
39629119175
import numpy as np import glob import os import pandas as pd from tqdm import tqdm import nltk import string from nltk.tokenize import word_tokenize import random import pickle from nltk.corpus import stopwords from autocorrect import Speller import re from nltk.corpus import wordnet from nltk.stem.wordnet import WordNetLemmatizer from hyperopt import fmin, tpe, hp # load a document def load(filename): file = open(filename, encoding='utf-8') text = file.read() file.close() return text # split a document into news story and highlights def split(doc): # find first highlight index = doc.find('@highlight') # split into story and highlights story, highlights = doc[:index], doc[index:].split('@highlight') # strip extra white space around each highlight highlights = [h.strip() for h in highlights if len(h) > 0] return story, highlights # load all stories from a directory def load_stories(directory): stories = [] for name in os.listdir(directory): filename = directory + '/' + name # load document doc = load(filename) # split into story and highlights story, highlights = split(doc) # store stories.append({'story':story, 'highlights':highlights}) return stories directory = r'C:\Users\ymaha\Desktop\cnn\stories' stories = load_stories(directory) print('Loaded Stories %d' % len(stories)) def preprocesing(lines): # function to convert nltk tag to wordnet tag def nltk_tag_to_wordnet_tag(nltk_tag): if nltk_tag.startswith('J'): return wordnet.ADJ elif nltk_tag.startswith('V'): return wordnet.VERB elif nltk_tag.startswith('N'): return wordnet.NOUN elif nltk_tag.startswith('R'): return wordnet.ADV else: return None def lemmatize_sentence(sentence): #tokenize the sentence and find the POS tag for each token nltk_tagged = nltk.pos_tag(nltk.word_tokenize(sentence)) #tuple of (token, wordnet_tag) wordnet_tagged = map(lambda x: (x[0], nltk_tag_to_wordnet_tag(x[1])), nltk_tagged) # print(wordnet_tagged) lemmatized_sentence = [] for word, tag in wordnet_tagged: if tag is None: #if there is no available tag, append the token as is lemmatized_sentence.append(word) else: #else use the tag to lemmatize the token lemmatized_sentence.append(lemmatizer.lemmatize(word, tag)) # if tag is not None: # lemmatized_sentence.append(lemmatizer.lemmatize(word, tag)) return " ".join(lemmatized_sentence) temp = [] for line in lines: # strip source cnn index = line.find('(CNN)') if index > -1: line = line[index+len('(CNN)'):] # tokenize on white space line = line.split() # convert to lower case line = [word.lower() for word in line] # remove punctuation and special characters from each token line = [w.replace('[<>!#@$:.,%\?-_]+', ' ') for w in line] # remove non ascii characters line = [w.replace('[^\x00-\x7f]', ' ') for w in line] # remove tokens with numbers in them line = [word for word in line if word.isalpha()] # # removing stop words # line = [word for word in line if word not in stop_list] # removing words of length 1 line = [word for word in line if len(word) > 1] # # Lemmatizing the words and combing them into a line # temp.append(lemmatize_sentence(' '.join(line))) # Combining the words into a line temp.append(' '.join(line)) # remove empty strings temp = [c for c in temp if len(c) > 0] return temp stop_list = stopwords.words('english') lemmatizer = WordNetLemmatizer() stemmer = nltk.stem.PorterStemmer() for i in tqdm(range(len(stories))): # for example in stories: stories[i]['story'] = preprocesing(stories[i]['story'].split('\n')) stories[i]['highlights'] = preprocesing(stories[i]['highlights']) # save to file from pickle import dump dump(stories, open('processed_cnn_data.pkl', 'wb'))
kalyankumarp/Abstractive-Text-Summarization-using-Transformers
Models/preprocess.py
preprocess.py
py
4,310
python
en
code
3
github-code
6
[ { "api_name": "os.listdir", "line_number": 41, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet.ADJ", "line_number": 60, "usage_type": "attribute" }, { "api_name": "nltk.corpus.wordnet", "line_number": 60, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.VERB", "line_number": 62, "usage_type": "attribute" }, { "api_name": "nltk.corpus.wordnet", "line_number": 62, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.NOUN", "line_number": 64, "usage_type": "attribute" }, { "api_name": "nltk.corpus.wordnet", "line_number": 64, "usage_type": "name" }, { "api_name": "nltk.corpus.wordnet.ADV", "line_number": 66, "usage_type": "attribute" }, { "api_name": "nltk.corpus.wordnet", "line_number": 66, "usage_type": "name" }, { "api_name": "nltk.pos_tag", "line_number": 72, "usage_type": "call" }, { "api_name": "nltk.word_tokenize", "line_number": 72, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 119, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 119, "usage_type": "name" }, { "api_name": "nltk.stem.wordnet.WordNetLemmatizer", "line_number": 120, "usage_type": "call" }, { "api_name": "nltk.stem.PorterStemmer", "line_number": 121, "usage_type": "call" }, { "api_name": "nltk.stem", "line_number": 121, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 123, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 130, "usage_type": "call" } ]
6460552932
import sys import click import logging from pprint import pprint from ftmstore import get_dataset from servicelayer.cache import get_redis, get_fakeredis from servicelayer.logs import configure_logging from servicelayer.jobs import Job, Dataset from servicelayer import settings as sl_settings from servicelayer.archive.util import ensure_path from ingestors import settings from ingestors.manager import Manager from ingestors.directory import DirectoryIngestor from ingestors.analysis import Analyzer from ingestors.worker import IngestWorker, OP_ANALYZE, OP_INGEST log = logging.getLogger(__name__) STAGES = [OP_ANALYZE, OP_INGEST] @click.group() def cli(): configure_logging(level=logging.DEBUG) @cli.command() @click.option("-s", "--sync", is_flag=True, default=False, help="Run without threads") def process(sync): """Start the queue and process tasks as they come. Blocks while waiting""" num_threads = None if sync else sl_settings.WORKER_THREADS worker = IngestWorker(stages=STAGES, num_threads=num_threads) code = worker.run() sys.exit(code) @cli.command() @click.argument("dataset") def cancel(dataset): """Delete scheduled tasks for given dataset""" conn = get_redis() Dataset(conn, dataset).cancel() @cli.command() def killthekitten(): """Completely kill redis contents.""" conn = get_redis() conn.flushall() def _ingest_path(db, conn, dataset, path, languages=[]): context = {"languages": languages} job = Job.create(conn, dataset) stage = job.get_stage(OP_INGEST) manager = Manager(db, stage, context) path = ensure_path(path) if path is not None: if path.is_file(): entity = manager.make_entity("Document") checksum = manager.store(path) entity.set("contentHash", checksum) entity.make_id(checksum) entity.set("fileName", path.name) log.info("Queue: %r", entity.to_dict()) manager.queue_entity(entity) if path.is_dir(): DirectoryIngestor.crawl(manager, path) manager.close() @cli.command() @click.option("--languages", multiple=True, help="3-letter language code (ISO 639)") @click.option("--dataset", required=True, help="Name of the dataset") @click.argument("path", type=click.Path(exists=True)) def ingest(path, dataset, languages=None): """Queue a set of files for ingest.""" conn = get_redis() db = get_dataset(dataset, OP_INGEST) _ingest_path(db, conn, dataset, path, languages=languages) @cli.command() @click.option("--dataset", required=True, help="Name of the dataset") def analyze(dataset): db = get_dataset(dataset, OP_ANALYZE) analyzer = None for entity in db.partials(): if analyzer is None or analyzer.entity.id != entity.id: if analyzer is not None: analyzer.flush() # log.debug("Analyze: %r", entity) analyzer = Analyzer(db, entity, {}) analyzer.feed(entity) if analyzer is not None: analyzer.flush() @cli.command() @click.option("--languages", multiple=True, help="3-letter language code (ISO 639)") @click.argument("path", type=click.Path(exists=True)) def debug(path, languages=None): """Debug the ingest for the given path.""" conn = get_fakeredis() settings.fts.DATABASE_URI = "sqlite:////tmp/debug.sqlite3" db = get_dataset("debug", origin=OP_INGEST, database_uri=settings.fts.DATABASE_URI) db.delete() _ingest_path(db, conn, "debug", path, languages=languages) worker = IngestWorker(conn=conn, stages=STAGES) worker.sync() for entity in db.iterate(): pprint(entity.to_dict()) if __name__ == "__main__": cli()
alephdata/ingest-file
ingestors/cli.py
cli.py
py
3,714
python
en
code
45
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 18, "usage_type": "call" }, { "api_name": "ingestors.worker.OP_ANALYZE", "line_number": 19, "usage_type": "name" }, { "api_name": "ingestors.worker.OP_INGEST", "line_number": 19, "usage_type": "name" }, { "api_name": "servicelayer.logs.configure_logging", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 24, "usage_type": "attribute" }, { "api_name": "click.group", "line_number": 22, "usage_type": "call" }, { "api_name": "servicelayer.settings.WORKER_THREADS", "line_number": 31, "usage_type": "attribute" }, { "api_name": "servicelayer.settings", "line_number": 31, "usage_type": "name" }, { "api_name": "ingestors.worker.IngestWorker", "line_number": 32, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 34, "usage_type": "call" }, { "api_name": "click.option", "line_number": 28, "usage_type": "call" }, { "api_name": "servicelayer.cache.get_redis", "line_number": 41, "usage_type": "call" }, { "api_name": "servicelayer.jobs.Dataset", "line_number": 42, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 38, "usage_type": "call" }, { "api_name": "servicelayer.cache.get_redis", "line_number": 48, "usage_type": "call" }, { "api_name": "servicelayer.jobs.Job.create", "line_number": 54, "usage_type": "call" }, { "api_name": "servicelayer.jobs.Job", "line_number": 54, "usage_type": "name" }, { "api_name": "ingestors.worker.OP_INGEST", "line_number": 55, "usage_type": "argument" }, { "api_name": "ingestors.manager.Manager", "line_number": 56, "usage_type": "call" }, { "api_name": "servicelayer.archive.util.ensure_path", "line_number": 57, "usage_type": "call" }, { "api_name": "ingestors.directory.DirectoryIngestor.crawl", "line_number": 68, "usage_type": "call" }, { "api_name": "ingestors.directory.DirectoryIngestor", "line_number": 68, "usage_type": "name" }, { "api_name": "servicelayer.cache.get_redis", "line_number": 78, "usage_type": "call" }, { "api_name": "ftmstore.get_dataset", "line_number": 79, "usage_type": "call" }, { "api_name": "ingestors.worker.OP_INGEST", "line_number": 79, "usage_type": "argument" }, { "api_name": "click.option", "line_number": 73, "usage_type": "call" }, { "api_name": "click.option", "line_number": 74, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 75, "usage_type": "call" }, { "api_name": "click.Path", "line_number": 75, "usage_type": "call" }, { "api_name": "ftmstore.get_dataset", "line_number": 86, "usage_type": "call" }, { "api_name": "ingestors.worker.OP_ANALYZE", "line_number": 86, "usage_type": "argument" }, { "api_name": "ingestors.analysis.Analyzer", "line_number": 93, "usage_type": "call" }, { "api_name": "click.option", "line_number": 84, "usage_type": "call" }, { "api_name": "servicelayer.cache.get_fakeredis", "line_number": 104, "usage_type": "call" }, { "api_name": "ingestors.settings.fts", "line_number": 105, "usage_type": "attribute" }, { "api_name": "ingestors.settings", "line_number": 105, "usage_type": "name" }, { "api_name": "ftmstore.get_dataset", "line_number": 106, "usage_type": "call" }, { "api_name": "ingestors.worker.OP_INGEST", "line_number": 106, "usage_type": "name" }, { "api_name": "ingestors.settings.fts", "line_number": 106, "usage_type": "attribute" }, { "api_name": "ingestors.settings", "line_number": 106, "usage_type": "name" }, { "api_name": "ingestors.worker.IngestWorker", "line_number": 109, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 112, "usage_type": "call" }, { "api_name": "click.option", "line_number": 100, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 101, "usage_type": "call" }, { "api_name": "click.Path", "line_number": 101, "usage_type": "call" } ]
36151078302
import sqlite3 as lite import sys from bs4 import BeautifulSoup import requests import re def site_parsing(): max_page = 10 pages = [] id_n = 0 id_n_price = 0 for x in range(1, max_page + 1): pages.append(requests.get('https://moto.drom.ru/sale/+/Harley-Davidson+Softail/')) for n in pages: soup = BeautifulSoup(n.text, 'html.parser') moto_name = soup.find_all('a', class_="bulletinLink bull-item__self-link auto-shy") for rev in moto_name: id_n += 1 a = str(rev.text) moto = re.split(r',', a) moto_name_s = str(moto[0]) moto_year = re.sub(r'[ ]', '', moto[1]) moto_year_s = int(moto_year) cur.execute("INSERT INTO moto VALUES(?,?,?)", (id_n, moto_name_s, moto_year_s)) price = soup.find_all('span', class_='price-block__price') pattern = r'(\d{1}\s\d{3}\s\d{3})|(\d{3}\s\d{3})' for rev in price: id_n_price += 1 price_str = re.findall(pattern, rev.text) price_str = str(price_str) price_str = price_str.replace('\\xa0', '') price_str = re.sub(r"[\]['(),\s]", '', price_str) price_int = int(price_str) cur.execute("INSERT INTO moto_price VALUES(?,?)", (id_n_price, price_int)) connect = None try: connect = lite.connect('motos.db') cur = connect.cursor() cur.execute("CREATE TABLE moto(id INT, moto TEXT, year INT)") cur.execute("CREATE TABLE moto_price(id INT, price INT)") site_parsing() except lite.Error as e: print(f"Error {e.args[0]}:") sys.exit() with connect: cur = connect.cursor() rows_join = f'SELECT * FROM moto JOIN moto_price ON moto.id = moto_price.id' cur.execute(rows_join) rows = cur.fetchall() for row in rows: print(row) connect.close()
TatyanaKuleshova/lesson19-project-
db.py
db.py
py
1,878
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 16, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 19, "usage_type": "call" }, { "api_name": "re.split", "line_number": 26, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 28, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 36, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 47, "usage_type": "call" }, { "api_name": "sqlite3.Error", "line_number": 54, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 56, "usage_type": "call" } ]
23948038488
import torch.nn as nn import torch_geometric.nn as pyg_nn class iVGAE_Encoder(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv0 = pyg_nn.GCNConv(in_channels, hidden_channels) self.conv1 = pyg_nn.GCNConv(hidden_channels, hidden_channels) self.lin_mean = nn.Linear(hidden_channels, out_channels) self.lin_logstd = nn.Linear(hidden_channels, out_channels) def forward(self, x, edge_index): h = self.conv0(x, edge_index) h = nn.ReLU()(h) h = self.conv1(h, edge_index) h = nn.ReLU()(h) mean = self.lin_mean(h) logstd = self.lin_logstd(h) return mean, logstd class iVGAE_Decoder(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super().__init__() self.conv0 = pyg_nn.GCNConv(in_channels, hidden_channels) self.conv1 = pyg_nn.GCNConv(hidden_channels, hidden_channels) self.linear = nn.Linear(hidden_channels, out_channels) def forward(self, z, edge_index, sigmoid=True): h = self.conv0(z, edge_index) h = nn.ReLU()(h) h = self.conv1(h, edge_index) h = nn.ReLU()(h) out = self.linear(h) if sigmoid: out = nn.Sigmoid()(out) return out class iVGAE(pyg_nn.VGAE): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) def decode(self, z, pos_edge_index): x_gen = self.decoder(z, pos_edge_index) return x_gen def forward(self, x, pos_edge_index): z = self.encode(x, pos_edge_index) x_gen = self.decode(z, pos_edge_index) return x_gen, z
DavidCarlyn/iVGAE
models.py
models.py
py
1,705
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 4, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 4, "usage_type": "name" }, { "api_name": "torch_geometric.nn.GCNConv", "line_number": 7, "usage_type": "call" }, { "api_name": "torch_geometric.nn", "line_number": 7, "usage_type": "name" }, { "api_name": "torch_geometric.nn.GCNConv", "line_number": 8, "usage_type": "call" }, { "api_name": "torch_geometric.nn", "line_number": 8, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 9, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 10, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch_geometric.nn.GCNConv", "line_number": 24, "usage_type": "call" }, { "api_name": "torch_geometric.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch_geometric.nn.GCNConv", "line_number": 25, "usage_type": "call" }, { "api_name": "torch_geometric.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.nn.Sigmoid", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 35, "usage_type": "name" }, { "api_name": "torch_geometric.nn.VGAE", "line_number": 38, "usage_type": "attribute" }, { "api_name": "torch_geometric.nn", "line_number": 38, "usage_type": "name" } ]
17283528585
from solver import Solver from config import Config if __name__ == '__main__': cfg = Config() cfg.data_dir = "/data/face/parsing/dataset/ibugmask_release" cfg.model_args.backbone = "STDCNet1446" cfg.model_args.pretrain_model = "snapshot/STDCNet1446_76.47.tar" solver = Solver(cfg) solver.sample(sample_dir="/data/face/parsing/dataset/testset_210720_aligned", result_folder="result")
killf/U2Net4FaceParsing
test.py
test.py
py
409
python
en
code
0
github-code
6
[ { "api_name": "config.Config", "line_number": 5, "usage_type": "call" }, { "api_name": "solver.Solver", "line_number": 10, "usage_type": "call" }, { "api_name": "solver.sample", "line_number": 11, "usage_type": "call" } ]
14335019516
import numpy as np import matplotlib.pyplot as plt from mpi4py import MPI from process_coordination import width_height, bool_boundaries, number_of_blocks from streaming_functions import streaming, recalculate_functions from plotting_functions import plot_velocity, plot_velocity_slice # Initialize parallelization comm = MPI.COMM_WORLD size = comm.Get_size() # num of processes rank = comm.Get_rank() # rank id of this process n_timesteps = 20 n_plots = 3 # Initialize Grid: nx_total = 20 # num of rows ny_total = 16 # num of columns # Arrange <size> blocks (num processes) as a optimized grid of # <n_blocks[0]> rows times <n_blocks[1]> columns. n_blocks = number_of_blocks((nx_total, ny_total), size) # Initialize local grid parameters (local grid is the one of the block of this process): # local size nx, ny = width_height(rank, nx_total, ny_total, n_blocks) nx_opt = nx_total//n_blocks[0] ny_opt = ny_total//n_blocks[1] # Initialize weights and discrete direction vectors weights = np.array([4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]) c = np.array([[0, 0], [0, 1], [-1, 0], [0, -1], [1, 0], [-1, 1], [-1, -1], [1, -1], [1, 1]]) # Initialize grid (add goast points or dry notes to each edge) rho = np.ones((nx+2, ny+2)) # density values v = np.zeros((2, nx+2, ny+2)) # average viscosity values f = np.einsum("i,jk -> ijk", weights, np.ones((nx+2, ny+2))) # probability density function # Check on which side this block borders another block or the boundary borders = bool_boundaries(rank, n_blocks) # Ranks of the processes of the neighboring blocks (only correct and used when theres no boundary on this side) rank_right = rank + 1 rank_left = rank - 1 rank_up = rank - n_blocks[1] rank_down = rank + n_blocks[1] # Loop over timesteps for idx_time in range(n_timesteps): # Calculate the streaming step wrt (global) boundary conditions f, rho, v = streaming(f, rho, v, c, weights, borders) # Order of communcations is important in order that all the corner ghost points will get the diagonal adjacent values via two-step-communcation. if not borders[0]: comm.send(f[:, :, -2].copy(), rank_right) data = comm.recv(source=rank_right) f[:, :, -1] = data if not borders[2]: comm.send(f[:, :, 1].copy(), rank_left) data = comm.recv(source=rank_left) f[:, :, 0] = data if not borders[1]: comm.send(f[:, 1, :].copy(), rank_up) data = comm.recv(source=rank_up) f[:, 0, :] = data if not borders[3]: comm.send(f[:, -2, :].copy(), rank_down) data = comm.recv(source=rank_down) f[:, -1, :] = data rho, v = recalculate_functions(f, rho, v, c) # Update values # Plot average velocity vectors if idx_time % (n_timesteps // n_plots) == 0: # stack everything in rank 0 f_full = np.zeros((9, nx_total, ny_total)) rho_full = np.ones((nx_total, ny_total)) v_full = np.zeros((2, nx_total, ny_total)) f_list = comm.gather(f[:,1:-1,1:-1].copy(), root=0) if rank == 0: for rank_idx, f_block in enumerate(f_list): block_pos = (rank_idx // n_blocks[1], rank_idx % n_blocks[1]) f_full[:, (nx_opt * block_pos[0]):(nx_opt * block_pos[0] + f_block.shape[1]), (ny_opt * block_pos[1]):(ny_opt * block_pos[1] + f_block.shape[2])] = f_block rho_full, v_full = recalculate_functions(f_full, rho_full, v_full, c) plot_velocity(f_full, v_full, return_plot=True) plt.show()
Dunitrie/HPC
main.py
main.py
py
3,550
python
en
code
1
github-code
6
[ { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 9, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 9, "usage_type": "name" }, { "api_name": "process_coordination.number_of_blocks", "line_number": 22, "usage_type": "call" }, { "api_name": "process_coordination.width_height", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.einsum", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 38, "usage_type": "call" }, { "api_name": "process_coordination.bool_boundaries", "line_number": 41, "usage_type": "call" }, { "api_name": "streaming_functions.streaming", "line_number": 52, "usage_type": "call" }, { "api_name": "streaming_functions.recalculate_functions", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 79, "usage_type": "call" }, { "api_name": "streaming_functions.recalculate_functions", "line_number": 85, "usage_type": "call" }, { "api_name": "plotting_functions.plot_velocity", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 89, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 89, "usage_type": "name" } ]
33155203825
#!/usr/bin/env python2 # -*- coding: utf-8 -*-from telegram.ext import Updater, CommandHandler from telegram.ext import Updater, CommandHandler updater = Updater('TOKEN') def start_method(bot, update): bot.sendMessage(update.message.chat_id, "سلام") start_command = CommandHandler('start', start_method) updater.dispatcher.add_handler(start_command) updater.start_polling() # for exit updater.idle()
rasoolhp/free-telegram-bot
bot.py
bot.py
py
412
python
en
code
5
github-code
6
[ { "api_name": "telegram.ext.Updater", "line_number": 5, "usage_type": "call" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 9, "usage_type": "call" } ]
17913448581
"""Made email unique Revision ID: ff6f0a832e3a Revises: 876813ef988d Create Date: 2022-08-09 16:32:43.590993 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ff6f0a832e3a' down_revision = '876813ef988d' branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_unique_constraint(None, 'users', ['email']) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'users', type_='unique') # ### end Alembic commands ###
djangbahevans/wallet-clone
backend/alembic/versions/ff6f0a832e3a_made_email_unique.py
ff6f0a832e3a_made_email_unique.py
py
667
python
en
code
0
github-code
6
[ { "api_name": "alembic.op.create_unique_constraint", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "alembic.op.drop_constraint", "line_number": 27, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 27, "usage_type": "name" } ]
715415024
import pandas as pd import pickle def buildDataSet(): #Import Ingredients DF print('Loaded Products...') ewg_ing_df = pd.read_json('ingredients_products_keys_fixed/ewg_ingredients.json', orient = 'index') #Build mapping between Ingredient ID and ingredient Name ing_map = {} for i in range(len(ewg_ing_df)): ID = ewg_ing_df.iloc[i]['ingredient_id'] name = ewg_ing_df.iloc[i]['ingredient_name'] ing_map[ID] = name #Read in Product Data and Initialize Acne Score ewg_prd_df = pd.read_json('ingredients_products_keys_fixed/ewg_products.json', orient = 'index') ewg_prd_df['Acne_Score'] = 0 print('Loaded ingredients') #Build Lists of ingredients to modify original DataFrame and Initialize Dataset for Model from collections import Counter n = len(ewg_prd_df) ing_lists = [] ing_cnts = Counter() string_lists = [] for i in range(n): try: new_list = [] strings = '' ing_list = ewg_prd_df.iloc[i]['ingredient_list'] for ID in ing_list: new_list.append(ing_map[ID]) ing_cnts[ing_map[ID]] += 1 #strings = strings + ' ' + ing_map[ID] #print(new_list) ing_lists.append(new_list) string_lists.append(str(new_list)) except: ing_lists.append(['']) string_lists.append('') print('Failed on',i, 'no ingredient list.') print('Finished matching ingredients to keys.') ewg_prd_df['New_List'] = ing_lists #Build Synonym Dictionary synonym_dict = {} for i in range(ewg_ing_df.shape[0]): row = ewg_ing_df.iloc[i] syns = row['synonym_list'] if type(syns) == list: for syn in syns: synonym_dict[syn.strip()] = row['ingredient_name'] synonym_dict[row['ingredient_name']] = row['ingredient_name'] else: synonym_dict[row['ingredient_name']] = row['ingredient_name'] print('Build Synonyms') #Initialize Ingredient Score ewg_ing_df['Acne_Score'] = 0.0 #Extract Comodegenic Scores comodegenic = [] with open('comodegenic.csv','r') as f: for line in f: if line[0] != ',': words = line.strip().split(',') if words[1] != '': comodegenic.append(( words[0], words[1], words[2])) cd_df = pd.DataFrame(comodegenic) #Match Comodegeic Ingredients to EWG from fuzzywuzzy import fuzz from fuzzywuzzy import process matches = [] print('Matching Comodegenic to EWG...') for i in range(cd_df.shape[0]): cur_ingredient = cd_df.iloc[i][0].upper() matches.append(process.extract(cur_ingredient, synonym_dict.keys(),limit=1, scorer=fuzz.token_sort_ratio)) #Match Comodegenic Ingredients to EWG cd_ranks = [] stop for i in range(cd_df.shape[0]): match_score = int(matches[i][0][1]) match_name = matches[i][0][0] cd_name = cd_df.iloc[i][0].upper() cd_ranks.append(match_score) if match_score >= 90: ewg_name = synonym_dict[match_name] #print(temp_score, '\t', match_name, '\t', cd_name, '\t', synonym_dict[match_name]) #print(cd_df.iloc[i][1],cd_df.iloc[i][0]) row= ewg_ing_df[ewg_ing_df['ingredient_name']==ewg_name].index ewg_ing_df.loc[row,'Acne_Score'] = cd_df.iloc[i][1] #print(ewg_ing_df.loc[row]['ingredient_name'], ewg_ing_df.loc[row]['Acne_Score']) #print(ewg_ing_df[ewg_ing_df['ingredient_name']==ewg_name]) print('Updated EWG with Acne Scores') #Update Product Acne Score acne_score_list = [] for i in range(ewg_prd_df.shape[0]): row = ewg_prd_df.iloc[i] total_acne = 0 for ing in row['New_List']: try: acne_score = float(ewg_ing_df[ewg_ing_df['ingredient_name']==ing]['Acne_Score']) #print(ing, acne_score) total_acne += acne_score except: None acne_score_list.append(total_acne) #print(acne_score_list) ewg_prd_df['Acne_Score'] = acne_score_list #Save Final Acne Matrix pickle_out = open("ewg_prd_df.pickle","wb") pickle.dump(ewg_prd_df, pickle_out) pickle_out.close() print('Saved dataset to "ewg_prd_df.pickle"') try: pickle.load(open("ewg_prd_df.pickle","rb")) print('Loaded from Pickle') ewg_prd_df = pickle.load(open("ewg_prd_df.pickle","rb")) except: print("Building Dataset from Files...") buildDataSet() ewg_prd_df = pickle.load(open("ewg_prd_df.pickle","rb")) #try: # X = pickle.load(open("X.pickle","rb")) #except: #Need to change to a real function...code block simple print('Building Dataset...') #print(ewg_prd_df) from collections import Counter n = ewg_prd_df.shape[0] print(n) ing_lists = [] ing_cnts = Counter() string_lists = [] for i in range(n): ings = ewg_prd_df.iloc[i]['New_List'] str_list = '' if type(ings) == list: #print(type(ings), i) for ing in ings: if type(ing) == str: str_list = str_list + '|' + ing string_lists.append(str_list) else: print('Failed',i) string_lists.append('') #Build TD-IDF Matrix from sklearn.feature_extraction.text import TfidfVectorizer def ing_tokenizer(word): return word.split('|') #print(ewg_prd_df['New_List'].tolist()) vectorizer = TfidfVectorizer(tokenizer = ing_tokenizer, lowercase = False, stop_words = ['WATER','GLYCERIN','', 'TITANIUM DIOXIDE', 'IRON OXIDES','BEESWAX','METHYLPARABEN', 'PROPYLPARABEN', 'PROPYLENE GLYCOL', 'PANTHENOL', 'MICA'] ) X = vectorizer.fit_transform(string_lists) #print(vectorizer.vocabulary_) pickle_out = open("X.pickle","wb") pickle.dump(X, pickle_out) pickle_out.close() #print(X) print('Running Optimization...') from sklearn.metrics import confusion_matrix for thresh in [0]: for test_size in [.001,.05,.01,.1]: for alph in [.001]: best_alpha = 0 best_test_size = 0 best_thresh_hold = 0 best_test_score = 0 best_train_score = 0 best_model = None #Initialize Acne Score by Product Y = [] for i in ewg_prd_df['Acne_Score']: if i > 0 and i < 3: Y.append(1) elif i > 2: Y.append(2) else: Y.append(0) #Split Training and Test Data by 1/3 to 2/3 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=42) #Build NB Model from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB(alpha = alph) gnb_fit = gnb.fit(X_train,y_train) y_pred = gnb_fit.predict(X_test) #y_pred_tr = gnb_fit.predict(X_train) test_score = confusion_matrix(y_test, y_pred) #train_score = confusion_matrix(y_train, y_pred_tr) #if test_score: best_test_score = test_score best_alpha = alph best_test_size = test_size best_thresh_hold = thresh best_model = gnb_fit print('Best Test Score:',gnb_fit.score(X_test,y_test), '\n', test_score) #,'\t', train_score) print('Alpha:\t', best_alpha) print('Test_size:\t',test_size) print('Thresh:\t', thresh,'\n') #print('Thresh:',thresh, 'TestSize\t',test_size,'\n' ,'\tTraining Error:', ) #print('\tTesting Error', ) pickle_out = open("nb.pickle","wb") pickle.dump(gnb_fit, pickle_out) pickle_out.close() ingredient_weights = {} i = 0 print(len(gnb.coef_), best_model.coef_, type(best_model.coef_[0])) for i in range(gnb_fit.coef_[0].shape[0]): #print( gnb.coef_[0][i], vectorizer.get_feature_names()[i]) ingredient_weights[vectorizer.get_feature_names()[i]] =(gnb.coef_[0][i]) #print(, gnb.coef_[i]) import operator sorted_weights = sorted(ingredient_weights.items(), key=operator.itemgetter(1)) for i in range(1,20): print(sorted_weights[-i]) score = best_model.predict_proba(X_train) pred = best_model.predict(X_train) for i in range(100): print(ewg_prd_df.iloc[i]['Acne_Score'], score[i], pred[i]) import matplotlib.pyplot as plt import matplotlib.patches as mpatches #%matplotlib inline ewg_prd_df['Acne_Score'].hist(bins=40) plt.show() #for i in range(gnb_fit.coef_ #print(gnb_fit.coef_) #out = gnb_fit.predict_proba(X_test) #for i in range(len(out)): # print(out[i]) #print(gnb_fit.class_log_prior_) #print(gnb_fit.feature_count_) #print(gnb_fit.class_count_) #print(gnb_fit.get_params())
SombiriX/w210_capstone
buildModel.py
buildModel.py
py
8,443
python
en
code
1
github-code
6
[ { "api_name": "pandas.read_json", "line_number": 8, "usage_type": "call" }, { "api_name": "pandas.read_json", "line_number": 19, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 78, "usage_type": "call" }, { "api_name": "fuzzywuzzy.process.extract", "line_number": 88, "usage_type": "call" }, { "api_name": "fuzzywuzzy.process", "line_number": 88, "usage_type": "name" }, { "api_name": "fuzzywuzzy.fuzz.token_sort_ratio", "line_number": 88, "usage_type": "attribute" }, { "api_name": "fuzzywuzzy.fuzz", "line_number": 88, "usage_type": "name" }, { "api_name": "pickle.dump", "line_number": 128, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 135, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 137, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 141, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 154, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.TfidfVectorizer", "line_number": 178, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 183, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 219, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.MultinomialNB", "line_number": 224, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 229, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 250, "usage_type": "call" }, { "api_name": "operator.itemgetter", "line_number": 264, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 279, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 279, "usage_type": "name" } ]
6112251845
import sys #sys.path.append('/usr/local/Cellar/opencv3/3.2.0/lib/python2.7/site-packages') sys.path.append("/usr/local/Cellar/opencv3/3.2.0/lib/python3.5/site-packages") import cv2 import numpy as np import os import random def show_image(im): height, width = im.shape[:2] res = cv2.resize(im,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) cv2.imshow("Image", res) def show_imageOrig(im): height, width = im.shape[:2] res = cv2.resize(im,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) cv2.imshow("ImageOrig", res) #kernel = np.ones((3,3),np.uint8) #cap = cv2.VideoCapture("dogs.mp4") #ret, frame1 = cap.read() #prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) #hsv = np.zeros_like(frame1) #hsv[...,1] = 255 #fgbg = cv2.createBackgroundSubtractorMOG2(50, 16, False) #fgbg.setBackgroundRatio(0.8) # frames before object becomes foreground #fgbg.setVarInit(500) # speed of adaption of new components #i = 0 #while(1): # ret, frame2 = cap.read() # ret, frame2 = cap.read() # frame2 = cv2.GaussianBlur(frame2,(9,9),0) # fgmask = fgbg.apply(frame2) # fgmask = fgbg.apply(frame2,fgmask, 0) #fgmask = cv2.dilate(fgmask,kernel,iterations = 5) #fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_CLOSE, kernel) ''' ^^ Line above may or may not be good ''' #if (i > 10 and i % 2 == 0): #cv2.imwrite(str(i) + ".png",fgmask) # show_image(fgmask) # k = cv2.waitKey(30) & 0xff # if k == 27: # break #i += 1 #cap.release() #cv2.destroyAllWindows() #errorCount = 0 np.random.seed(133) numLabels = 101 image_size_x = 240 image_size_y = 320 dataRoot = "./UCF-101/" def processFolder(folder): #tick = 0 #global errorCount print(dataRoot + folder) try: videoFileNames = os.listdir(dataRoot + folder) except: print("Not a directory, moving along.") return None, None #i = 0 #data = np.zeros(shape=(len(videoFileNames)*1, image_size_x, image_size_y), dtype=np.float32) #labels = np.zeros(shape=(len(videoFileNames)*1, 101), dtype=np.float32) for videoName in videoFileNames: #if tick < 2: # tick = tick + 1 # continue #tick = 0 if random.random() < 0.98: continue try: print(videoName) cap = cv2.VideoCapture(dataRoot + folder + "/" + videoName) #ret, frame1 = cap.read() #prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) #hsv = np.zeros_like(frame1) #hsv[...,1] = 255 fgbg = cv2.createBackgroundSubtractorMOG2(50, 16, False) fgbg.setBackgroundRatio(0.8) # frames before object becomes foreground fgbg.setVarInit(500) # speed of adaption of new components i = 0 frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) while(cap.get(cv2.CAP_PROP_POS_FRAMES) < frames - 3): #ret, frame2 = cap.read() ret, frame2 = cap.read() if ret == False: continue show_imageOrig(frame2) frame2 = cv2.GaussianBlur(frame2,(9,9),0) fgmask = fgbg.apply(frame2) fgmask = fgbg.apply(frame2,fgmask, 0) show_image(fgmask) k = cv2.waitKey(30) & 0xff if k == 27: break except IOError as e: print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.') #return data, labels def iterData(folder): labelNames = os.listdir(folder) for i in range(len(labelNames)):#len(labelNames) processFolder(labelNames[i]) iterData(dataRoot)
ltecot/humanMotionClassification
img_processing.py
img_processing.py
py
3,562
python
en
code
4
github-code
6
[ { "api_name": "sys.path.append", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 11, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 16, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 69, "usage_type": "call" }, { "api_name": "random.random", "line_number": 82, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 87, "usage_type": "call" }, { "api_name": "cv2.createBackgroundSubtractorMOG2", "line_number": 93, "usage_type": "call" }, { "api_name": "cv2.CAP_PROP_FRAME_COUNT", "line_number": 99, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_POS_FRAMES", "line_number": 100, "usage_type": "attribute" }, { "api_name": "cv2.GaussianBlur", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 112, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 120, "usage_type": "call" } ]
36259278100
import requests from bs4 import BeautifulSoup import json import secrets from requests_oauthlib import OAuth1 from operator import itemgetter import sqlite3 import csv import base64 import itertools import plotly.plotly as py import plotly.graph_objs as go import webbrowser spotifybase = "https://accounts.spotify.com/api/token" spotifyplay = "https://api.spotify.com/v1/search" foodnet = "https://www.foodnetwork.com/profiles/talent" spotify_client = secrets.client_id spotify_secret = secrets.client_secret auth = (spotify_client, spotify_secret) grant_type = 'client_credentials' CACHE_FNAME = 'final_cache.json' DBNAME = 'food.db' CHEFS = 'chefs.json' DISHES = 'dishes.json' flavor_dict = {'Aaron McCargo Jr.': 'American', 'Aarti Sequeira': 'South Asian', 'Aarón Sánchez': 'Latin', 'Adam Gertler': 'BBQ', 'Aida Mollenkamp': 'Innovative', 'Alex Guarnaschelli': 'Traditional Home-Cooking', 'Amanda Freitag': 'Traditional Home-Cooking', 'Amy Thielen': 'Traditional Home-Cooking', 'Andrew Zimmern': 'Innovative', 'Anne Burrell': 'Rustic', 'Anne Thornton': 'Sweet Treats', 'Ayesha Curry': 'Home-Cooking', 'Bob Blumer': 'Innovative', 'Bobby Flay': 'American', 'Brian Boitano': 'Innovative', 'Buddy Valastro': 'Sweet Treats', 'Carla Hall': 'Southern Comfort', 'Cat Cora': 'Misc.', 'Chris Santos': 'Innovative', 'Claire Robinson': 'Home-Cooking', 'Curtis Stone': 'Home-Cooking', 'Daisy Martinez': 'Latin', 'Damaris Phillips': 'Southern Comfort', 'Danny Boome': 'Healthy', 'Daphne Brogdon': 'Home-Cooking', 'Dave Lieberman': 'Home-Cooking', 'Donatella Arpaia': 'Home-Cooking', 'Duff Goldman': 'Sweet Treats', 'Eddie Jackson': 'Healthy', 'Ellie Krieger': 'Healthy', 'Emeril Lagasse': 'Misc.', 'Food Network Kitchen': 'Misc.', 'Geoffrey Zakarian': 'Modern American', 'George Duran': 'Global Cuisine', 'Giada De Laurentiis': 'Italian', 'Graham Elliot': 'Misc.', 'Guy Fieri': 'American', 'Ina Garten': 'Home-Cooking', 'Ingrid Hoffmann': 'Misc.', 'Jamie Deen': 'BBQ', 'Jamie Oliver': 'Healthy', 'Janet Johnston': 'Home-Cooked', 'Jeff Corwin': 'Latin', 'Jeff Mauro': 'Misc.', 'Jet Tila': 'East Asian', 'Joey Fatone': 'American', 'Jose Garces': 'Latin', 'Judy Joo': 'Misc.', 'Katie Lee': 'Misc.', 'Keegan Gerhard': 'Sweet Treats', 'Kerry Vincent': 'Sweet Treats', 'Lorraine Pascale': 'Home-Cooking', 'Maneet Chauhan': 'South Asian', 'Marc Murphy': 'Modern American', 'Marcela Valladolid': 'Latin', 'Marcus Samuelsson': 'Misc.', 'Mario Batali': 'Italian', 'Mary Nolan': 'Everyday', 'Masaharu Morimoto': 'East Asian', "Melissa d'Arabian": 'Healthy', 'Michael Chiarello': 'Italian', 'Michael Symon': 'Misc.', 'Nancy Fuller': 'Southern Comfort', 'Nigella Lawson': 'Home-Cooking', 'Patricia Heaton': 'American', 'Paula Deen': 'Southern', 'Rachael Ray': 'Everyday', 'Ree Drummond': 'Southern Comfort', 'Robert Irvine': 'American', 'Robin Miller': 'Everyday', 'Roger Mooking': 'Global Cuisine', 'Ron Ben-Israel': 'Sweet Treats', 'Sandra Lee': 'American', 'Scott Conant': 'Italian', 'Sherry Yard': 'Sweet Treats', 'Sunny Anderson': 'Southern Comfort', 'Ted Allen': 'American', 'The Hearty Boys': 'Innovative', 'The Neelys': 'BBQ', 'Tia Mowry': 'Everyday', 'Tregaye Fraser': 'Innovative', 'Trisha Yearwood': 'Southern Comfort', 'Tyler Florence': 'Home-Cooking', 'Valerie Bertinelli': 'Misc.', 'Warren Brown': 'Sweet Treats'} try: cache_file = open(CACHE_FNAME, 'r') cache_contents = cache_file.read() CACHE_DICTION = json.loads(cache_contents) cache_file.close() except: CACHE_DICTION = {} try: cache_file = open(CHEFS, 'r') cache_contents = cache_file.read() CHEF_DICTION = json.loads(cache_contents) cache_file.close() except: CHEF_DICTION = {} try: cache_file = open(DISHES, 'r') cache_contents = cache_file.read() DISH_DICTION = json.loads(cache_contents) cache_file.close() except: DISH_DICTION = {} def get_spotify_token(url, auth): params = {'grant_type': grant_type} # if url in CACHE_DICTION: # access_token = CACHE_DICTION[url][17:100] # return access_token # else: resp = requests.post(url, data=params, auth=auth) resp_data = json.loads(resp.text) access_token = resp_data["access_token"] CACHE_DICTION[url] = resp.text dumped_json_cache = json.dumps(CACHE_DICTION) fw = open(CACHE_FNAME,"w") fw.write(dumped_json_cache) fw.close() return access_token def make_request_using_cache(url, headers=None): if url in CACHE_DICTION: return CACHE_DICTION[url] else: if headers is None: resp = requests.get(url) else: resp = requests.get(url, headers=headers) CACHE_DICTION[url] = resp.text dumped_json_cache = json.dumps(CACHE_DICTION) fw = open(CACHE_FNAME,"w") fw.write(dumped_json_cache) fw.close() return CACHE_DICTION[url] def get_spotify_playlist(search_term): end = ["party", "graph", "term"] params = {'q': search_term} url = "{}?type=playlist&limit=5&q=".format(spotifyplay) + search_term access_token = get_spotify_token(spotifybase, auth) authorization_header = {"Authorization":"Bearer {}".format(access_token)} response_string = make_request_using_cache(url, authorization_header) response = json.loads(response_string) num = 0 spotify_list = [] for r in response: for i in range(5): num += 1 spotify_list.append((response[r]["items"][i]["name"], str(response[r]["items"][i]["tracks"]["total"]))) print(str(num) + ". " + response[r]["items"][i]["name"] + " --- " + str(response[r]["items"][i]["tracks"]["total"])) print("Do you want to see a bar graph comparing these playlist's lengths," "look up another term, or" " do you want to go start throwing your awesome party?") response = input("Please enter 'party', 'term', or 'graph': ") while response not in end: response = input("Please enter 'party', 'term', or 'graph': ") if response == 'party': print("Bye! Have fun!") exit() elif response == 'graph': bar_graph_spotify(spotify_list) print("Alright! Time for you to go throw the best party out there! See you later!") exit() elif response == 'term': response = input("Please enter a new search term! ") get_spotify_playlist(response) return spotify_list def init_db(): conn = sqlite3.connect(DBNAME) cur = conn.cursor() statement = ''' DROP TABLE IF EXISTS 'Chefs'; ''' cur.execute(statement) statement = ''' DROP TABLE IF EXISTS 'Dishes'; ''' cur.execute(statement) conn.commit() statement = ''' CREATE TABLE 'Chefs' ( 'Id' INTEGER PRIMARY KEY AUTOINCREMENT, 'FirstName' TEXT NOT NULL, 'LastName' TEXT NOT NULL, 'ChefUrl' TEXT NOT NULL, 'PopularRecipe' TEXT, 'FlavorProfile' TEXT ); ''' cur.execute(statement) statement = ''' CREATE TABLE 'Dishes' ( 'Id' INTEGER PRIMARY KEY AUTOINCREMENT, 'DishName' TEXT NOT NULL, 'DishUrl' TEXT NOT NULL, 'ChefID' INTEGER, 'Type' TEXT NOT NULL, 'LevelDifficulty' TEXT NOT NULL, 'Rating' INTEGER ); ''' cur.execute(statement) conn.commit() conn.close() class Chef: def __init__(self, FirstName, LastName, ChefUrl=None): self.FirstName = FirstName self.LastName = LastName self.ChefUrl = ChefUrl self.full_name = FirstName + " " + LastName if ChefUrl is not None: unique_page_text = make_request_using_cache(ChefUrl) unique_page_soup = BeautifulSoup(unique_page_text, 'html.parser') if self.full_name in flavor_dict: try: most_popular_block = unique_page_soup.find(class_ = "m-MediaBlock o-Capsule__m-MediaBlock m-MediaBlock--recipe") most_popular = most_popular_block.find(class_="m-MediaBlock__a-HeadlineText").text self.FlavorProfile = flavor_dict[self.full_name] if self.full_name == "Bobby Flay" or self.full_name == "Duff Goldman" or self.full_name == "Melissa D'Arabian" or self.full_name == "Nigella Lawson": recipes_url = ChefUrl + "/recipes" recipes_text = make_request_using_cache(recipes_url) recipes_soup = BeautifulSoup(recipes_text, 'html.parser') recipes_list = recipes_soup.find(class_ = "l-List") most_popular = recipes_list.find(class_ = "m-MediaBlock__a-HeadlineText").text except: most_popular = "N/A" else: most_popular = "N/A" self.FlavorProfile = "N/A" self.PopularRecipe = most_popular else: self.PopularRecipe = "N/A" class Dish: def __init__(self, DishName, DishUrl, Rating, Chef): dish_types = ["Side Dish", "Main Dish", "Snack Dish", "Dessert"] self.DishName = DishName self.DishUrl = "http:" + DishUrl self.Rating = Rating self.Chef = Chef dish_type = "Unknown" dish_page_text = make_request_using_cache(self.DishUrl) dish_page_soup = BeautifulSoup(dish_page_text, 'html.parser') try: level_all = dish_page_soup.find(class_ = "o-RecipeInfo o-Level") level = level_all.find(class_ = "o-RecipeInfo__a-Description").text except: level = "Unknown" try: tags = dish_page_soup.find_all(class_ = "o-Capsule__a-Tag a-Tag") for t in tags: if t.text in dish_types: dish_type = t.text else: dish_type = "Unknown" except: dish_type = "Unknown" pass self.Type = dish_type self.LevelDifficulty = level pass def get_chef_info(): init_page_text = make_request_using_cache(foodnet) init_page_soup = BeautifulSoup(init_page_text, 'html.parser') name_list = init_page_soup.find_all(class_="m-PromoList__a-ListItem") chef_list = [] num = 0 for n in name_list: first_name = n.text.split(" ")[0] second_word = n.text.split(" ")[1] last_name = n.text.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = n.text.split(" ")[0] + " and " + n.text.split(" ")[2] last_name = n.text.split(" ")[3] chef_url = "https:" + n.find('a')['href'] n = Chef(first_name, last_name, chef_url) chef_list.append(n) chef = {"FirstName": n.FirstName, "LastName": n.LastName, "ChefUrl": n.ChefUrl, "PopularRecipe": n.PopularRecipe, "FlavorProfile": n.FlavorProfile} CHEF_DICTION[n.full_name] = chef chef_string = json.dumps(CHEF_DICTION, indent = 4) fw = open(CHEFS,"w") fw.write(chef_string) fw.close() return chef_list def get_dish_info(): chefs = get_chef_info() dishes_list = [] for c in chefs: chef_dishes = [] if c.full_name in flavor_dict: dishes_url = c.ChefUrl + "/recipes" init_page_text = make_request_using_cache(dishes_url) init_page_soup = BeautifulSoup(init_page_text, 'html.parser') try: next_button = init_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton") except: next_button = "No" big_list = init_page_soup.find(class_="l-List") ratings_list = [] try: dish_list = big_list.find_all(class_ = "m-MediaBlock__a-Headline") except: pass try: ratings = big_list.find_all(class_ = "gig-rating-stars")['title'] for r in ratings: print(r) ratings_list.append(ratings) except: ratings = "Unknown" ratings_list.append(ratings) try: for d in dish_list: dish_name = d.text dish_url = d.find('a')["href"] dish_rating = "5 out of 5" d = Dish(dish_name, dish_url, dish_rating, c.full_name) dishes_list.append(d) dish = {"DishName": d.DishName, "DishUrl": d.DishUrl, "DishRating": d.Rating, "Type": d.Type, "LevelDifficulty": d.LevelDifficulty} chef_dishes.append(dish) except: pass # num = 1 # while next_button != "No": # num += 1 # next_url = dishes_url + "/trending-/p/" + str(num) # next_page = make_request_using_cache(next_url) # next_page_soup = BeautifulSoup(next_page, 'html.parser') # try: # next_button = init_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton") # except: # next_button = "No" # big_list = next_page_soup.find(class_="l-List") # ratings_list = [] # try: # dish_list = big_list.find_all(class_ = "m-MediaBlock__a-Headline") # except: # dish_list = "no dishes" # try: # ratings = big_list.find_all(class_ = "gig-rating-stars")['title'] # for r in ratings: # print(r) # ratings_list.append(ratings) # except: # ratings = "Unknown" # ratings_list.append(ratings) # try: # for d in dish_list: # dish_name = d.text # dish_url = d.find('a')["href"] # dish_rating = "" # d = Dish(dish_name, dish_url, dish_rating, c.full_name) # dishes_list.append(d) # dish = {"DishName": d.DishName, # "DishUrl": d.DishUrl, # "DishRating": d.Rating, # "Type": d.Type, # "LevelDifficulty": d.LevelDifficulty} # chef_dishes.append(dish) # except: # pass # if num == 2: # break # try: # next_button = next_page_soup.find(class_ = "o-Pagination__a-Button o-Pagination__a-NextButton").text # except: # next_button = "No" DISH_DICTION[c.full_name] = chef_dishes dish_string = json.dumps(DISH_DICTION, indent = 4) fw = open(DISHES,"w") fw.write(dish_string) fw.close() #print(dishes_list[:30]) return dishes_list def insert_data(): try: conn = sqlite3.connect(DBNAME) cur = conn.cursor() except Error as e: print(e) # # #print('Inserting Data.') with open(CHEFS) as json_data: cjson = json.load(json_data) for c, d in cjson.items(): insertion = (None, d["FirstName"], d["LastName"], d["ChefUrl"], d["PopularRecipe"], d["FlavorProfile"]) statement = 'INSERT INTO "Chefs" ' statement += 'VALUES (?, ?, ?, ?, ?, ?)' cur.execute(statement, insertion) chef_dict = {} statement = '''SELECT Id, FirstName, LastName FROM Chefs''' cur.execute(statement) for chef_info in cur: full_name = chef_info[1] + " " + chef_info [2] chef_dict[full_name] = chef_info[0] with open(DISHES) as json_data: cjson = json.load(json_data) for c, d in cjson.items(): full_name = c for i in d: insertion = (None, i["DishName"].replace("\n", ""), i["DishUrl"], chef_dict[full_name], i["Type"], i["LevelDifficulty"].replace("\n", ""), i["DishRating"]) statement = 'INSERT INTO "Dishes" ' statement += 'VALUES (?, ?, ?, ?, ?, ?, ?)' cur.execute(statement, insertion) conn.commit() conn.close() def pie_chart(flavor_chef): conn = sqlite3.connect(DBNAME) cur = conn.cursor() labels = [] values = [] for f in flavor_chef: labels.append(f) first_name = f.split(" ")[0] second_word = f.split(" ")[1] last_name = f.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = f.split(" ")[0] + " and " + f.split(" ")[2] last_name = f.split(" ")[3] query = ''' SELECT COUNT(*) FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" GROUP BY c.ID '''.format(first_name, last_name) value = cur.execute(query) for v in value: values.append(v[0]) trace = go.Pie(labels=labels, values=values) py.plot([trace], filename='Flavors') def bar_graph_spotify(spotify): x = [] y = [] for w, z in spotify: x.append(w) y.append(z) data = [go.Bar( x = x, y = y )] py.plot(data, filename='bar-Spotify') def bar_graph_type(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() chef_types = {} first_name = command.split(" ")[0] second_word = command.split(" ")[1] last_name = command.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = command.split(" ")[0] + " and " + command.split(" ")[2] last_name = command.split(" ")[3] query = ''' SELECT COUNT(*), d.Type FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" GROUP BY d.Type '''.format(first_name, last_name) types = cur.execute(query) x = [] y = [] for t in types: print(t) x.append(t[1]) y.append(t[0]) data = [go.Bar( x = x, y = y )] py.plot(data, filename='bar-Type') def process_flavors(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() flavor_chef = [] query = ''' SELECT FirstName, LastName FROM Chefs WHERE FlavorProfile = "{}" '''.format(command) chefs = cur.execute(query) for c in chefs: full_name = c[0] + " " + c[1] flavor_chef.append(full_name) return flavor_chef conn.close() def process_chef(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() dishes_o_chefs = [] first_name = command.split(" ")[0] second_word = command.split(" ")[1] last_name = command.split(" ")[1:] if len(last_name) == 2: last_name = last_name[0] + " " + last_name [1] elif len(last_name) == 3: last_name = last_name[0] + " " + last_name [1] + " " + last_name [2] else: last_name = last_name[0] if second_word == "and": first_name = command.split(" ")[0] + " and " + command.split(" ")[2] last_name = command.split(" ")[3] query = ''' SELECT d.DishName, d.DishUrl, d.Rating, d.Type, d.LevelDifficulty FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE c.FirstName = "{}" AND c.LastName = "{}" '''.format(first_name, last_name) dishes = cur.execute(query) for d in dishes: dish = {} formatted = d[0] + "--- " + d[3] + ", " + d[2] + ", Level: " + d[4] dish[d[0]] = [d[1], d[2], d[3], d[4]] dishes_o_chefs.append(dish) conn.close() return dishes_o_chefs def process_dish(command): conn = sqlite3.connect(DBNAME) cur = conn.cursor() dish = [] query = ''' SELECT d.DishName, d.DishUrl, d.Rating, d.Type, d.LevelDifficulty FROM Chefs as c JOIN Dishes as d ON c.ID = d.ChefID WHERE d.Type = "{}" LIMIT 1 '''.format(command) dishes = cur.execute(query) for d in dishes: one_dish = {} formatted = d[0] + "--- " + d[3] + ", " + d[2] + ", Level: " + d[4] one_dish[d[0]] = [d[1], d[2], d[3], d[4]] dish.append(one_dish) conn.close() return dish def flavors(): flavors = ["American", "BBQ", "East Asian", "Everyday", "Global Cuisine", "Healthy", "Home-Cooking","Innovative","Italian","Latin","Misc.","Modern American", "Rustic","Southern Comfort","South Asian","Sweet Treats","Trad. Home-Cooking", "exit"] one_two = ["1", "2", "exit"] print("Here are the flavors we've put together for your absolutely amazing party: \n" "American BBQ East Asian\n" "Everyday Global Cuisine Healthy\n" "Home-Cooking Innovative Italian\n" "Latin Misc. Modern American\n" "Rustic Southern Comfort South Asian\n" "Sweet Treats Trad. Home-Cooking") response = input("Please enter a single flavor so we can pull up a list " "of chefs from FoodNetwork for you! ") while response not in flavors: response = input("Whoops! That doesn't look quite right, please try again! ") if response == "exit": print("Bye! Hope your party's a blast!") exit() flavor_chef = process_flavors(response) num_chef = 0 print("-"*40, "\n", "CHEFS WITH A ", response, " FLAVOR", "\n", "-"*40) for f in flavor_chef: num_chef +=1 print(str(num_chef) + ". " + f) print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" "a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" "each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) elif response == '2': pie_chart(flavor_chef) print("Alright now let's choose a chef/dish!") chef_dish(flavor_chef) elif response == 'exit': print("Bye! Hope your party's a blast!") exit() return flavor_chef def chef_dish(flavor_chef): chef_dish = ["chef", "dish", "exit"] kinds = ["Snack", "Side Dish", "Main Dish", "Dessert", "exit"] response = input("Enter 'chef' or 'dish': ") while response not in chef_dish: response = input("Please enter 'chef' or 'dish': ") if response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == 'chef': response = input("Nice! Type in the name of the chef you want to look at: ") while response not in flavor_chef: response = input("Oops! Did you type that in right? Try again: ") if response == "exit": print("Bye! Hope your party's a blast!") exit() chef(response) elif response == 'dish': print("Solid! Do you want a snack, side, main dish, or dessert?") response = input("Please enter 'Snack', 'Side Dish', 'Main Dish', or 'Dessert': ") while response not in kinds: response = input("Oops! Did you type that in right? Try again: ") if response == "exit": print("Bye! Hope your party's a blast!") exit() dish(response) return 0 def dish(kind): music_flavor = ["music", "flavor"] yes_no = ["yes", "no", "exit"] one_two = ["1", "2", "exit"] print("-"*15, "\n", "A ", kind, "DISH" "\n", "-"*15) dish = process_dish(kind) for d in dish: for i in d: formatted = i + " --- " + d[i][2] + ", " + d[i][1] + ", Level: " + d[i][3].replace(" ", "") print(formatted) print("\n Do you want to go to the url for this dish?") response = input("Enter 'yes' to go to the url or enter 'no' to go back to flavors: ") while response not in yes_no: response = input("Please enter 'yes' or 'no': ") if response == "yes": for d in dish: url = d[i][0] print("Launching " + url + " in browser!") webbrowser.open(url) print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") spotify = get_spotify_playlist(response) bar_graph_spotify(spotify) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you " " a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes " " each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) if response == '2': pie_chart(flavor_chef) elif response == "no": flavor_chef = flavors() chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() return 0 def chef(name): music_flavor = ["music", "flavor", "exit"] one_two = ["one", "two", "exit"] num_chef_dish = 0 print("-"*30, "\n", "DISHES BY ", name, "\n" + "-"*30) dishes_o_chefs = process_chef(name) dish_nums = [] for d in dishes_o_chefs: for i in d: num_chef_dish += 1 formatted = str(num_chef_dish) + ". " + i + " --- " + d[i][2] + ", " + ", Type: " + d[i][1] + ", Level: " + d[i][3].replace(" ", "") print(formatted) dish_nums.append((num_chef_dish - 1, d[i][0])) response = input("Enter a number to go to that dish's url, enter 'flavor' to go back to the flavors, or" "enter 'graph' to see a graph of this chef's number of main, side, snack, and dessert dishes! ") if response == "flavor": flavor_chef = flavors() chef_dish(flavor_chef) elif response.isdigit() == True: # try: url = dish_nums[(int(response)-1)][1] print(url) print("Launching " + url + " in browser!") webbrowser.open(url) # except: # print("URL Unknown") print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") get_spotify_playlist(response) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" " a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" " each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) elif response == '2': pie_chart(flavor_chef) print("Great! Let's go look at some chef/dishes from this flavor now!") chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == "exit": print("Bye! Hope your party's a blast!") exit() elif response == 'graph': bar_graph_type(name) print("Nice!") response = input("Enter a number to go to that dish's url, enter 'flavor' to go back to the flavors, or" "enter 'graph' to see a graph of this chef's number of main, side, snack, and dessert dishes! ") if response == "flavor": flavor_chef = flavors() chef_dish(flavor_chef) elif response.isdigit() == True: #try: url = dish_nums[(int(response)-1)][1] print(url) print("Launching " + url + " in browser!") webbrowser.open(url) # except: # print("URL Unknown") print("Are you satisfied with your recipe? Do you want to go look at music?") response = input("Enter 'music' for music or enter 'flavor' to go back to the flavors ") while response not in music_flavor: response = input("Please try again: ") if response == 'music': response = input("Enter a search term for Spotify: ") get_spotify_playlist(response) elif response == 'flavor': flavor_chef = flavors() print("Cool! So you've got a couple of options now! Path 1: You can choose a chef to look at or we can give you" "a dish from this flavor! Path 2: You can open a plotly pie chart showing the amount of recipes" "each of these chefs have! Which one do you want to do?") response = str(input("Enter '1' or '2' for either path: ")) while response not in one_two: response = input("Enter '1' or '2' for either path: ") if response == '1': chef_dish(flavor_chef) if response == '2': pie_chart(flavor_chef) print("Great! Let's go look at some chef/dishes from this flavor now!") chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() else: print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") while response != 'flavor': print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") flavor_chef = flavors() chef_dish(flavor_chef) elif response == "exit": print("Bye! Hope your party's a blast!") exit() else: print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") while response != 'flavor': print("Hmmm. That doesn't seem right!") response = input("Enter 'flavor' to go back to the flavors! ") flavor_chef = flavors() chef_dish(flavor_chef) def interactive_prompt(): one_two = ["1", "2", "exit"] print("-"*30, "\n", "PARTY PLANNING PROGRAM \n", "-"*30) print("Hey! So you wanna plan a party? Don't know where to start? Look no " "further! We'll help you with the two most important parts of any party: " "food and music! (You've gotta take care of the conversation on your own, " "though, sorry!)") response = input("Enter anything if this is the program you've been looking for " "your whole life (enter 'exit' if you want to leave!): ") if response == "exit": print("Bye! Hope your party's a blast!") exit() print("With P^3 you can get delicious recipes and great music for the " "best party you've ever thrown. Yes, even better than your neighbor Janet's " "Halloween party last year.") response = input("Cool right? ") if response == 'exit': print("Bye! Hope your party's a blast!") exit() print("Yea, we think so too. Let's get started.") flavor_chef = flavors() if __name__=="__main__": #get_dish_info() #init_db() #insert_data() interactive_prompt() #get_spotify_playlist("country")
jntoma/finalproj206
final_food.py
final_food.py
py
33,382
python
en
code
0
github-code
6
[ { "api_name": "secrets.client_id", "line_number": 19, "usage_type": "attribute" }, { "api_name": "secrets.client_secret", "line_number": 20, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 118, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 127, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 136, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 148, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 149, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 152, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 163, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 165, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 167, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 180, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 208, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 257, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 267, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 289, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 311, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 337, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 351, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 431, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 440, "usage_type": "call" }, { "api_name": "json.load", "line_number": 447, "usage_type": "call" }, { "api_name": "json.load", "line_number": 464, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 477, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Pie", "line_number": 506, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 506, "usage_type": "name" }, { "api_name": "plotly.plotly.plot", "line_number": 508, "usage_type": "call" }, { "api_name": "plotly.plotly", "line_number": 508, "usage_type": "name" }, { "api_name": "plotly.graph_objs.Bar", "line_number": 516, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 516, "usage_type": "name" }, { "api_name": "plotly.plotly.plot", "line_number": 520, "usage_type": "call" }, { "api_name": "plotly.plotly", "line_number": 520, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 523, "usage_type": "call" }, { "api_name": "plotly.graph_objs.Bar", "line_number": 553, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 553, "usage_type": "name" }, { "api_name": "plotly.plotly.plot", "line_number": 557, "usage_type": "call" }, { "api_name": "plotly.plotly", "line_number": 557, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 560, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 576, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 608, "usage_type": "call" }, { "api_name": "webbrowser.open", "line_number": 717, "usage_type": "call" }, { "api_name": "webbrowser.open", "line_number": 770, "usage_type": "call" }, { "api_name": "webbrowser.open", "line_number": 813, "usage_type": "call" } ]
73574084347
import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = "Deuces Poker Client", version = "1.0", author = "Daniel Fonseca Yarochewsky", description = ("A client to simulate a Texa Holdem Poker Table"), license = "Free", packages=['deuces-master', 'termcolor'], long_description=read('README') )
yarochewsky/poker-client
setup.py
setup.py
py
409
python
en
code
1
github-code
6
[ { "api_name": "os.path.join", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 5, "usage_type": "call" }, { "api_name": "setuptools.setup", "line_number": 7, "usage_type": "call" } ]
72699334907
import pandas as pd from sklearn.model_selection import train_test_split from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModelForMaskedLM from torch import nn import numpy as np from sklearn.model_selection import train_test_split, KFold, StratifiedKFold from torch.optim import Adam from tqdm import tqdm import torch import os import logging # **************读取数据和模型************ data = pd.read_csv("../dataset/train.csv") data_part = data.sample(n=60000, random_state=42, replace=True) data_shuffled = data_part.sample(frac=1, random_state=42) # 随机打乱数据 train_data, test_data = train_test_split( data_shuffled, test_size=0.3, random_state=42 ) # 分割成训练集和测试集 K_FOLDS = 6 # K折训练 # K折训练的模型 kf = StratifiedKFold(n_splits=K_FOLDS, shuffle=True, random_state=42) # ***************下载模型***************** if 1:# 下载模型 print("下载模型中...") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") tokenizer.save_pretrained("../model/Tokenizer") bert = AutoModelForMaskedLM.from_pretrained("bert-base-cased") bert.save_pretrained("../model/BERT_ROW") bert_basic = BertModel.from_pretrained("bert-base-cased") bert_basic.save_pretrained("../model/BERT_BASIC") print("!模型下载结束") if 0:# print("模型加载中...") tokenizer = AutoTokenizer.from_pretrained("../model/Tokenizer") bert = AutoModelForMaskedLM.from_pretrained("../model/BERT_ROW") bert_basic = BertModel.from_pretrained("../model/BERT_BASIC") print("模型加载完毕...") # ***************常量和定义的类与函数************ LABELS = { "Literature & Fiction": 0, "Animals": 1, "Growing Up & Facts of Life": 2, "Humor": 3, "Cars, Trains & Things That Go": 4, "Fairy Tales, Folk Tales & Myths": 5, "Activities, Crafts & Games": 6, "Science Fiction & Fantasy": 7, "Classics": 8, "Mysteries & Detectives": 9, "Action & Adventure": 10, "Geography & Cultures": 11, "Education & Reference": 12, "Arts, Music & Photography": 13, "Holidays & Celebrations": 14, "Science, Nature & How It Works": 15, "Early Learning": 16, "Biographies": 17, "History": 18, "Children's Cookbooks": 19, "Religions": 20, "Sports & Outdoors": 21, "Comics & Graphic Novels": 22, "Computers & Technology": 23, } # 日志文件输出目录 logging.basicConfig(filename="../log/train.log", level=logging.INFO) # *** 封装类 方便数据类型转换 *************** class Dataset(torch.utils.data.Dataset): def __init__(self, df): self.labels = [LABELS[label] for label in df["category"]] self.texts = [ tokenizer( text, padding="max_length", max_length=512, truncation=True, return_tensors="pt", ) for text in df["text"] ] def classes(self): return self.labels def __len__(self): return len(self.labels) def get_batch_labels(self, idx): # Fetch a batch of labels return np.array(self.labels[idx]) def get_batch_texts(self, idx): # Fetch a batch of inputs return self.texts[idx] def __getitem__(self, idx): batch_texts = self.get_batch_texts(idx) batch_y = self.get_batch_labels(idx) return batch_texts, batch_y class BertClassifier(nn.Module): def __init__(self, dropout=0.5): super(BertClassifier, self).__init__() self.bert = bert_basic self.dropout = nn.Dropout(dropout) self.linear = nn.Linear(768, 24) self.relu = nn.ReLU() def forward(self, input_id, mask): _, pooled_output = self.bert( input_ids=input_id, attention_mask=mask, return_dict=False ) dropout_output = self.dropout(pooled_output) linear_output = self.linear(dropout_output) final_layer = self.relu(linear_output) return final_layer def train(model, train_data, val_data, learning_rate, epochs): # 判断是否使用GPU use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # 通过Dataset类获取训练和验证集 train, val = Dataset(train_data), Dataset(val_data) # DataLoader根据batch_size获取数据,训练时选择打乱样本 train_dataloader = torch.utils.data.DataLoader(train, batch_size=8, shuffle=True) val_dataloader = torch.utils.data.DataLoader(val, batch_size=8) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=learning_rate) if use_cuda: print("使用gpu") model = model.to(device) criterion = criterion.to(device) # 开始进入训练循环 for epoch_num in range(epochs): # 定义两个变量,用于存储训练集的准确率和损失 total_acc_train = 0 total_loss_train = 0 for train_input, train_label in tqdm(train_dataloader): train_label = train_label.to(device) train_label = train_label.to(torch.long) mask = train_input["attention_mask"].to(device) input_id = train_input["input_ids"].squeeze(1).to(device) # 通过模型得到输出 output = model(input_id, mask) # 计算损失 batch_loss = criterion(output, train_label) total_loss_train += batch_loss.item() # 计算精度 acc = (output.argmax(dim=1) == train_label).sum().item() total_acc_train += acc # 模型更新 model.zero_grad() batch_loss.backward() optimizer.step() # ------ 验证模型 ----------- # 定义两个变量,用于存储验证集的准确率和损失 total_acc_val = 0 total_loss_val = 0 # 不需要计算梯度 with torch.no_grad(): # 循环获取数据集,并用训练好的模型进行验证 for val_input, val_label in val_dataloader: val_label = val_label.to(device) val_label = val_label.to(torch.long) mask = val_input["attention_mask"].to(device) input_id = val_input["input_ids"].squeeze(1).to(device) output = model(input_id, mask) batch_loss = criterion(output, val_label) total_loss_val += batch_loss.item() acc = (output.argmax(dim=1) == val_label).sum().item() total_acc_val += acc logging.info( "\n| Epochs: %d \n| Train Loss: %.3f \n| Train Accuracy: %.3f \n| Val Loss: %.3f \n| Val Accuracy: %.3f \n", epoch_num + 1, total_loss_train / len(train_data), total_acc_train / len(train_data), total_loss_val / len(val_data), total_acc_val / len(val_data), ) # ************** 运行部分 ******************** model = BertClassifier() model.load_state_dict(torch.load("../model/BERT-1")) learning_rate = 5e-6 # 设置学习率 epochs = 1 # 设置训练轮数 train(model, train_data, test_data, learning_rate, epochs) torch.save(model.state_dict(), "../model/BERT-1")
zzhaire/dig-dig-books
code/train.py
train.py
py
7,354
python
en
code
1
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 14, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 17, "usage_type": "call" }, { "api_name": "sklearn.model_selection.StratifiedKFold", "line_number": 23, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 28, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 28, "usage_type": "name" }, { "api_name": "transformers.AutoModelForMaskedLM.from_pretrained", "line_number": 30, "usage_type": "call" }, { "api_name": "transformers.AutoModelForMaskedLM", "line_number": 30, "usage_type": "name" }, { "api_name": "transformers.BertModel.from_pretrained", "line_number": 32, "usage_type": "call" }, { "api_name": "transformers.BertModel", "line_number": 32, "usage_type": "name" }, { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 37, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 37, "usage_type": "name" }, { "api_name": "transformers.AutoModelForMaskedLM.from_pretrained", "line_number": 38, "usage_type": "call" }, { "api_name": "transformers.AutoModelForMaskedLM", "line_number": 38, "usage_type": "name" }, { "api_name": "transformers.BertModel.from_pretrained", "line_number": 39, "usage_type": "call" }, { "api_name": "transformers.BertModel", "line_number": 39, "usage_type": "name" }, { "api_name": "logging.basicConfig", "line_number": 70, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 70, "usage_type": "attribute" }, { "api_name": "torch.utils", "line_number": 74, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 108, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 108, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 113, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 114, "usage_type": "name" }, { "api_name": "torch.cuda.is_available", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 128, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 134, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 135, "usage_type": "attribute" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 138, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 139, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 154, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 178, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 182, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 194, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 214, "usage_type": "call" } ]
3929047732
from .wav import write_sine_wave_wav_file def test_sine(): import io import time buffer_size = io.DEFAULT_BUFFER_SIZE filename = "test-5min-512hz-sr48khz-s24le-pcmdatagen.wav" frequency = 512 sample_rate = 48000 duration = 5 * 60 * sample_rate # 5 minutes bit_depth = 24 start_time = time.time() with open(filename, "wb") as fp: write_sine_wave_wav_file( fp=fp, frequency=frequency, buffer_size=buffer_size, sample_rate=sample_rate, num_samples=duration, bits_per_sample=bit_depth, ) end_time = time.time() print(f"Time taken: {end_time - start_time}") def main(): return test_sine() if __name__ == "__main__": main()
louie-github/morsel
morsel/test_sine.py
test_sine.py
py
772
python
en
code
0
github-code
6
[ { "api_name": "io.DEFAULT_BUFFER_SIZE", "line_number": 8, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 15, "usage_type": "call" }, { "api_name": "wav.write_sine_wave_wav_file", "line_number": 17, "usage_type": "call" }, { "api_name": "time.time", "line_number": 25, "usage_type": "call" } ]
29818611165
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : get_content_data.py # @Description: 获取去标签后的文本数据 # @Time : 2020-5-30 上午 11:09 # @Author : Hou import os import pandas as pd import pymysql.cursors def get_id_list(): original_data = pd.read_excel(os.path.join(os.path.abspath('../..'), 'data', 'raw', 'filtered_data.xlsx')) id_series = original_data['id'] id_list = id_series.to_numpy() return id_list def get_content_data(id_list): """获取去标签后的文本数据""" connection = pymysql.connect(host='58.59.18.101', port=3306, user='data', password='data12399123', database='bidding_data', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) content_df = pd.DataFrame(columns=('bulletin_id', 'content', 'partition_key')) try: with connection.cursor() as cursor: sql = "SELECT * FROM `bidding_bulletin_text` where bulletin_id= %s" # 获取2000条数据进行测试 for index in range(2001): cursor.execute(sql, (id_list[index],)) result = cursor.fetchone() # print(result) content_df.loc[index] = result finally: connection.close() return content_df if __name__ == '__main__': id_list = get_id_list() content_df = get_content_data(id_list) content_df.to_excel(os.path.join(os.path.abspath('../..'), 'data', 'processed', 'content_text_data.xlsx'))
Kidron-Hou/category_division
src/data/get_content_data.py
get_content_data.py
py
1,684
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_excel", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 15, "usage_type": "call" }, { "api_name": "pymysql.cursors.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "pymysql.cursors", "line_number": 23, "usage_type": "name" }, { "api_name": "pymysql.cursors.cursors", "line_number": 29, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 29, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 50, "usage_type": "call" } ]
23609310998
import selenium from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException from bs4 import BeautifulSoup import pymysql from db_setting import db # 페이지 로딩을 기다리는데 사용할 time 모듈 import import time # 브라우저 꺼짐 방지 옵션 chrome_options = Options() chrome_options.add_experimental_option("detach", True) # URL of the theater page CGV_URL = 'http://www.cgv.co.kr/movies/?lt=1&ft=1' driver = webdriver.Chrome(options=chrome_options) driver.delete_all_cookies() driver.get(url=CGV_URL) # 페이지가 완전히 로딩되도록 1초동안 기다림 time.sleep(0.3) # 더보기 버튼이 있는지 확인 btn_mores = driver.find_elements(By.CLASS_NAME, 'btn-more-fontbold') if btn_mores: for btn in btn_mores: btn.click() time.sleep(0.3) # 영화 클릭 box_elements = driver.find_elements(By.CLASS_NAME, 'box-image') href_list = [] for element in box_elements: href_list.append(element.find_element(By.TAG_NAME, 'a').get_attribute('href')) links = [] for href in href_list: driver.get(href) try: director_dt = driver.find_element(By.XPATH, "//dt[contains(., '감독')]") director_as = director_dt.find_elements(By.XPATH, "./following-sibling::dd[1]/a") for director_a in director_as: new_link = director_a.get_attribute("href") if new_link not in links: links.append(new_link) actor_dt = driver.find_element(By.XPATH, "//dt[contains(., '배우')]") actor_as = actor_dt.find_elements(By.XPATH, "./following-sibling::dd[1]/a") for actor_a in actor_as: new_link = actor_a.get_attribute("href") if new_link not in links: links.append(new_link) except NoSuchElementException: print("정보 없음") time.sleep(0.1) names = [] births = [] nations = [] for link in links: driver.get(link) html = driver.page_source soup = BeautifulSoup(html, 'html.parser') # 이름 name_tag = soup.find(class_='title').find('strong').get_text(strip=True) names.append(name_tag) # 출생, 국적 한번에 가져오기 tags = soup.find(class_='spec').find('dl') # 출생 birth_tag_sibling = tags.find('dt', text= lambda text: text and '출생' in text) if birth_tag_sibling: birth_tag = birth_tag_sibling.find_next_sibling().get_text(strip=True) else : birth_tag = "" births.append(birth_tag) # 국적 nation_tag_sibling = tags.find('dt', text= lambda text: text and '국적' in text) if nation_tag_sibling: nation_tag = nation_tag_sibling.find_next_sibling().get_text(strip=True) else : nation_tag = "" nations.append(nation_tag) print("name : ", name_tag) print("birth : ", birth_tag) print("nation : ", nation_tag) print("================================") conn = pymysql.connect(host=db['host'], port=db['port'], user=db['user'], password=db['password'], db=db['db'], charset=db['charset']) curs = conn.cursor(pymysql.cursors.DictCursor) for name, birth, nation in zip(names, births, nations): sql = "INSERT INTO person (name, birth, nation) VALUES (%s, %s, %s)" val = (name, birth, nation) curs.execute(sql, val) conn.commit() conn.close()
Ticket-Cinema/real-time-crawling
first_chart_crawling/actor_crawling.py
actor_crawling.py
py
3,333
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 16, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 22, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 22, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 28, "usage_type": "call" }, { "api_name": "selenium.webdriver.common.by.By.CLASS_NAME", "line_number": 31, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 31, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 36, "usage_type": "call" }, { "api_name": "selenium.webdriver.common.by.By.CLASS_NAME", "line_number": 39, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 39, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.TAG_NAME", "line_number": 44, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 44, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 54, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 54, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 55, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 55, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 63, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 63, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 64, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 64, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 72, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 75, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 86, "usage_type": "call" }, { "api_name": "pymysql.connect", "line_number": 116, "usage_type": "call" }, { "api_name": "db_setting.db", "line_number": 116, "usage_type": "name" }, { "api_name": "pymysql.cursors", "line_number": 117, "usage_type": "attribute" } ]
27535780328
import time from functools import wraps from typing import Dict import requests from constants import GITHUB_ROOT, RENDER_ROOT from logging_config import logger from render_api.utils import get_headers, get_github_status session = requests.Session() # Decorator for logging and error handling def log_and_handle_errors(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as exc: logger.error(f"Exception in {func.__name__}| {exc}") return None return wrapper @log_and_handle_errors def manage_deployment_status(data: Dict): pr = data["pull_request"] repo_data = data["repository"] state, merged = pr["state"], pr["merged"] user_repo, repo_url = repo_data["full_name"], repo_data["html_url"] owner, repo = repo_data["owner"]["login"], repo_data["name"] if not (merged and state == "closed"): return service_id = get_render_service_id(repo_url) if not service_id: logger.error("Render service ID is null") return deployment_status = get_render_deployment_status(service_id) if not deployment_status: return process_deployment_status(user_repo, repo, owner, deployment_status, service_id) @log_and_handle_errors def process_deployment_status(user_repo, repo, owner, deployment_status, service_id): github_status = get_github_status(deployment_status["status"]) deployment_id = deployment_status["id"] github_deployment_id = create_github_deployment(user_repo, repo, owner) if not github_deployment_id: logger.error("Failed to create GitHub deployment") return update_github_deployment_status( owner, repo, github_status, deployment_id, user_repo, github_deployment_id, service_id ) @log_and_handle_errors def update_github_deployment_status( owner, repo, status, deployment_id, user_repo, github_deployment_id, service_id ): create_github_deployment_status( owner, repo, status, deployment_id, user_repo, github_deployment_id ) new_status = "" while new_status not in ["failure", "success"]: new_render_deployment_status = get_render_deployment_status(service_id) new_status = get_github_status(new_render_deployment_status["status"]) time.sleep( 10 ) # You can remove it (but it's better to not spam the render API [400 GET request/minutes]) create_github_deployment_status( owner, repo, new_status, deployment_id, user_repo, github_deployment_id ) @log_and_handle_errors def get_render_deployment_status(service_id: str) -> Dict: url = f"{RENDER_ROOT}/services/{service_id}/deploys" response = session.get(url, headers=get_headers("render")) logger.info(f"GET: {url} executed with status_code: {response.status_code}") data = response.json()[0]["deploy"] return {"status": data["status"], "id": data["id"]} @log_and_handle_errors def get_render_service_id(repo: str) -> str: url = f"{RENDER_ROOT}/services" response = session.get(url, headers=get_headers("render")) logger.info(f"GET: {url} executed with status_code: {response.status_code}") for service in response.json(): if service["service"]["repo"] == repo: return service["service"]["id"] @log_and_handle_errors def create_github_deployment(user_repo: str, repo: str, owner: str) -> str: url = f"{GITHUB_ROOT}/repos/{user_repo}/deployments" data = { "owner": owner, "repo": repo, "ref": "main", "environment": "Production", "production_environment": True, "description": "Deployment status from Render", } response = session.post(url, headers=get_headers("github"), json=data) logger.info(f"POST: {url} executed with status_code: {response.status_code}") return response.json().get("id") @log_and_handle_errors def create_github_deployment_status( owner: str, repo: str, status: str, render_deployment_id: str, user_repo: str, github_deployment_id: str, ): url = f"{GITHUB_ROOT}/repos/{user_repo}/deployments/{github_deployment_id}/statuses" data = { "owner": owner, "repo": repo, "state": status, "deployment_id": render_deployment_id, "environment": "Production", "description": "Deployment status from Render", } response = session.post(url, headers=get_headers("github"), json=data) logger.info(f"POST: {url} executed with status_code: {response.status_code}")
Fyleek/render-api
render_api/services/deployment_status_service.py
deployment_status_service.py
py
4,593
python
en
code
0
github-code
6
[ { "api_name": "requests.Session", "line_number": 11, "usage_type": "call" }, { "api_name": "logging_config.logger.error", "line_number": 21, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 21, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 16, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 28, "usage_type": "name" }, { "api_name": "logging_config.logger.error", "line_number": 40, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 40, "usage_type": "name" }, { "api_name": "render_api.utils.get_github_status", "line_number": 52, "usage_type": "call" }, { "api_name": "logging_config.logger.error", "line_number": 57, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 57, "usage_type": "name" }, { "api_name": "render_api.utils.get_github_status", "line_number": 75, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 76, "usage_type": "call" }, { "api_name": "constants.RENDER_ROOT", "line_number": 86, "usage_type": "name" }, { "api_name": "render_api.utils.get_headers", "line_number": 87, "usage_type": "call" }, { "api_name": "logging_config.logger.info", "line_number": 88, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 88, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 85, "usage_type": "name" }, { "api_name": "constants.RENDER_ROOT", "line_number": 95, "usage_type": "name" }, { "api_name": "render_api.utils.get_headers", "line_number": 96, "usage_type": "call" }, { "api_name": "logging_config.logger.info", "line_number": 97, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 97, "usage_type": "name" }, { "api_name": "constants.GITHUB_ROOT", "line_number": 105, "usage_type": "name" }, { "api_name": "render_api.utils.get_headers", "line_number": 114, "usage_type": "call" }, { "api_name": "logging_config.logger.info", "line_number": 115, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 115, "usage_type": "name" }, { "api_name": "constants.GITHUB_ROOT", "line_number": 128, "usage_type": "name" }, { "api_name": "render_api.utils.get_headers", "line_number": 137, "usage_type": "call" }, { "api_name": "logging_config.logger.info", "line_number": 138, "usage_type": "call" }, { "api_name": "logging_config.logger", "line_number": 138, "usage_type": "name" } ]
35614869771
""" This will fetch database data from database """ from typing import List from copy import deepcopy from codegen.table.python_free_connex_table import PythonFreeConnexTable from codegen.database import DatabaseDriver from os import path class DataFetcher: def __init__(self, db_driver: DatabaseDriver): """ Construct a db fetcher instance. It requires to have a db driver input, in order to fetch different files :param db_driver: A db_driver, can be postgres_db_driver """ self.db_driver = db_driver def store_data(self, output_dir: str, tables: List[PythonFreeConnexTable], should_write=True) -> List[ PythonFreeConnexTable]: """ Perform a select on all tables and stored output data into the [output_dir]. Will also return a new list of tables which has the dat_path and data_size set. :type should_write: object :param output_dir: Output dir :param tables: List of tables :return: """ new_tables = deepcopy(tables) for i, table in enumerate(tables): if len(table.annotations) > 0: annotations = "" for index, annotation in enumerate(table.annotations): annotations += f"{annotation} as {table.get_annotation_name(index)}" if index < len(table.annotations) - 1: annotations += "," sql = f"select *, {annotations} from {table._table_name};" else: sql = f"select * from {table._table_name};" output_path = path.join(output_dir, table.variable_table_name) + '.tbl' size = 0 if should_write: size = self.db_driver.execute_save(sql=sql, output_filename=output_path) new_tables[i].data_paths = [output_path] new_tables[i].data_sizes = [size] return new_tables
secyan/secyan_gen
codegen/utils/DataFetcher.py
DataFetcher.py
py
1,945
python
en
code
2
github-code
6
[ { "api_name": "codegen.database.DatabaseDriver", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 21, "usage_type": "name" }, { "api_name": "codegen.table.python_free_connex_table.PythonFreeConnexTable", "line_number": 21, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "name" }, { "api_name": "codegen.table.python_free_connex_table.PythonFreeConnexTable", "line_number": 22, "usage_type": "name" } ]
45641177766
import streamlit as st import pandas as pd import numpy as np import umap import matplotlib.pyplot as plt from sklearn.cluster import KMeans from scipy.cluster.hierarchy import dendrogram, linkage, fcluster from sklearn.decomposition import PCA import webbrowser # Set width mode to wide to display plots better st.set_page_config(layout="wide") # Streamlit Configuration st.set_option('deprecation.showPyplotGlobalUse', False) # Sidebar st.sidebar.header("Schizophrenia Data Analysis") uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type="csv") # Sliders for UMAP and KMeans parameters st.sidebar.subheader("UMAP Parameters") n_neighbors = st.sidebar.slider("Number of Neighbors", 2, 50, 5) min_dist = st.sidebar.slider("Minimum Distance", 0.0, 1.0, 0.3, 0.1) st.sidebar.subheader("Clustering Parameters") n_clusters = st.sidebar.slider("Number of Clusters (KMeans)", 2, 20, 5) n_dendro_clusters = st.sidebar.slider("Number of Clusters (Dendrogram)", 2, 20, 5) # Add option to choose linkage method for dendrogram linkage_methods = ["ward", "single", "complete", "average"] selected_linkage_method = st.sidebar.selectbox("Linkage Method for Dendrogram", linkage_methods, 0) # Checkbox to toggle PCA and UMAP visualization show_pca = st.sidebar.checkbox("Show PCA Visualization", False) show_umap = st.sidebar.checkbox("Show UMAP Visualization", False) # Load the data def load_data(uploaded_file): data = pd.read_csv(uploaded_file) return data # Function to perform UMAP embedding and K-means clustering def umap_and_kmeans(band_data, n_neighbors=n_neighbors, min_dist=min_dist, n_clusters=n_clusters): embedding = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, random_state=42).fit_transform(band_data) kmeans_labels = KMeans(n_init=4, n_clusters=n_clusters, random_state=42).fit(embedding).labels_ return embedding, kmeans_labels # Function to plot UMAP embedding results def plot_umap_embedding(embedding, kmeans_labels, ax, title): ax.scatter(embedding[:, 0], embedding[:, 1], c=kmeans_labels, cmap='rainbow', s=20) # add a text with umap parameters and kmeans cluster number ax.text(0.99, 0.01, f"n_neighbors={n_neighbors}, min_dist={min_dist}, n_clusters={n_clusters}", transform=ax.transAxes, ha='right', va='bottom', size=10) ax.set_title(title) def plot_dendrogram_colored_ticks(band_data, ax, title, method='ward'): """ Plot the dendrogram with correctly colored tick numbers for the "All Subjects" group. """ # Hierarchical clustering Z = linkage(band_data, method=method) # Plot the dendrogram ddata = dendrogram(Z, ax=ax, leaf_rotation=90) ax.set_title(title + " Dendrogram (" + method + " linkage)") ax.set_xlabel("Sample Index") ax.set_ylabel("Distance") # Color the tick numbers based on control and schizophrenia subjects control_indices = data_control.index.to_list() schizophrenia_indices = data_schizophrenia.index.to_list() # Get the x-tick labels (leaf labels) from the dendrogram leaf_labels = ddata['leaves'] # Iterate through x-ticks and color them based on the group for idx, label in enumerate(ax.get_xticklabels()): label_idx = leaf_labels[idx] if label_idx in control_indices: label.set_color('black') elif label_idx in schizophrenia_indices: label.set_color('red') def plot_dendrogram_and_pca_with_correct_colored_ticks(band_data, ax_dendro, title, color_ticks=False, method='ward'): """ Plot the dendrogram with optionally colored tick numbers and PCA visualization on the given axes. """ # Hierarchical clustering Z = linkage(band_data, method=method) # Plot the dendrogram ddata = dendrogram(Z, ax=ax_dendro, leaf_rotation=90) ax.set_title(str(title) + " Dendrogram (" + str(method) + " linkage)") ax_dendro.set_xlabel("Sample Index") ax_dendro.set_ylabel("Distance") if color_ticks: # Color the tick numbers based on control and schizophrenia subjects control_indices = data_control.index.to_list() schizophrenia_indices = data_schizophrenia.index.to_list() # Get the x-tick labels (leaf labels) from the dendrogram leaf_labels = ddata['leaves'] # Iterate through x-ticks and color them based on the group for idx, label in enumerate(ax_dendro.get_xticklabels()): label_idx = leaf_labels[idx] if label_idx in control_indices: label.set_color('black') elif label_idx in schizophrenia_indices: label.set_color('red') return Z def plot_band_pca(band_data, Z, ax_pca, title): # Cut the dendrogram to obtain 3 clusters labels = fcluster(Z, t=n_dendro_clusters, criterion='maxclust') band_data['Cluster'] = labels # Use PCA to reduce the data to 2D pca = PCA(n_components=2) band_pca = pca.fit_transform(band_data.drop('Cluster', axis=1)) # return band_pca # Create a scatter plot for PCA reduced data ax_pca.scatter(band_pca[:, 0], band_pca[:, 1], c=band_data['Cluster'], cmap='rainbow') ax_pca.set_title(title + " 2D PCA") ax_pca.set_xlabel("Principal Component 1") ax_pca.set_ylabel("Principal Component 2") # If a CSV file is uploaded if uploaded_file: st.write("Dataset loaded successfully!") # Load the data data = load_data(uploaded_file) # Split data into control and schizophrenia groups data_control = data[data['Group'] == 0] data_schizophrenia = data[data['Group'] == 1] data_full = data # Combined dendrogram for "All Subjects" all_bands_data = pd.concat([ data.loc[:, data.columns.str.startswith('avpp_delta')], data.loc[:, data.columns.str.startswith('avpp_theta')], data.loc[:, data.columns.str.startswith('avpp_alpha')], data.loc[:, data.columns.str.startswith('avpp_beta')], data.loc[:, data.columns.str.startswith('avpp_gamma')] ], axis=1) fig, ax = plt.subplots(figsize=(16, 8)) plot_dendrogram_colored_ticks(all_bands_data, ax, "All Bands Combined", method=selected_linkage_method) plt.tight_layout() # Save the dendrogram plot to a PNG file dendrogram_filename = "Combined_Dendrogram_plot.png" fig.savefig(dendrogram_filename, dpi=300) # Provide a download button for the dendrogram PNG file with open(dendrogram_filename, "rb") as f: btn = st.download_button( label="Download Combined Dendrogram Plot", data=f, file_name=dendrogram_filename, mime="image/png" ) st.pyplot(fig) st.write("EDA - Exploratory Data Analysis") # Detect available bands from column names bands_list = ['delta', 'theta', 'alpha', 'beta', 'gamma'] available_bands = [band for band in bands_list if any(data.columns.str.startswith(f'avpp_{band}'))] # Note: Replace all `plt.show()` with `st.pyplot()` # Create the plots with dendrogram, PCA, and UMAP visualizations nrows = 3 if show_pca and show_umap else 2 if show_pca or show_umap else 1 # Number of rows in the plot hight = 15 if show_pca and show_umap else 10 if show_pca or show_umap else 5 # Height of the plot for data_group, title in zip([data_schizophrenia, data_control, data_full], ["Schizophrenia", "Control", "All Subjects"]): fig, axes = plt.subplots(nrows=nrows, ncols=len(available_bands), figsize=(36, hight)) fig.suptitle(title, fontsize=25) # Ensure axes is 2D if nrows == 1: axes = axes.reshape(1, -1) # Create band data based on detected bands for the current data group bands = [(band.capitalize(), data_group.loc[:, data_group.columns.str.startswith(f'avpp_{band}')]) for band in available_bands] # Configure the axes based on the selected visualizations axes_mapping = [0] # dendrogram axes index is always 0 if show_pca: axes_mapping.append(len(axes_mapping)) if show_umap: axes_mapping.append(len(axes_mapping)) # Plot dendrogram, PCA, and UMAP visualizations for each band for col, (band_name, band_data) in enumerate(bands): ax_dendro = axes[axes_mapping[0]][col] ax_dendro.set_title(band_name) color_ticks = True if title == "All Subjects" else False # Dendrogram plots using previous functions Z = plot_dendrogram_and_pca_with_correct_colored_ticks(band_data.copy(), ax_dendro, band_name, color_ticks, method=selected_linkage_method) if show_pca: ax_pca = axes[axes_mapping[1]][col] plot_band_pca(band_data.copy(), Z, ax_pca, title) if show_umap: ax_umap = axes[axes_mapping[-1]][col] embedding, kmeans_labels = umap_and_kmeans(band_data) plot_umap_embedding(embedding, kmeans_labels, ax_umap, band_name + " 2D UMAP") plt.tight_layout() plt.subplots_adjust(top=0.85) # Save the plot to a PNG file plot_filename = f"{title.replace(' ', '_')}_plot.png" fig.savefig(plot_filename, dpi=600) # plt.show() # st.pyplot() # st.image(plot_filename, use_column_width=True, clamp=True) st.pyplot(fig) plt.close(fig) # Provide a download button for the PNG file with open(plot_filename, "rb") as f: btn = st.download_button( label=f"Download {title} Plot", data=f, file_name=plot_filename, mime="image/png" )
furmanlukasz/clusteringSchizphrenia
app.py
app.py
py
9,731
python
en
code
0
github-code
6
[ { "api_name": "streamlit.set_page_config", "line_number": 13, "usage_type": "call" }, { "api_name": "streamlit.set_option", "line_number": 15, "usage_type": "call" }, { "api_name": "streamlit.sidebar.header", "line_number": 18, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 18, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.file_uploader", "line_number": 19, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 19, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.subheader", "line_number": 22, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 22, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.slider", "line_number": 23, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 23, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.slider", "line_number": 24, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 24, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.subheader", "line_number": 26, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 26, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.slider", "line_number": 27, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 27, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.slider", "line_number": 28, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 28, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 32, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 32, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.checkbox", "line_number": 35, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 35, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.checkbox", "line_number": 36, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 40, "usage_type": "call" }, { "api_name": "umap.UMAP", "line_number": 45, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 46, "usage_type": "call" }, { "api_name": "scipy.cluster.hierarchy.linkage", "line_number": 62, "usage_type": "call" }, { "api_name": "scipy.cluster.hierarchy.dendrogram", "line_number": 65, "usage_type": "call" }, { "api_name": "scipy.cluster.hierarchy.linkage", "line_number": 90, "usage_type": "call" }, { "api_name": "scipy.cluster.hierarchy.dendrogram", "line_number": 93, "usage_type": "call" }, { "api_name": "scipy.cluster.hierarchy.fcluster", "line_number": 119, "usage_type": "call" }, { "api_name": "sklearn.decomposition.PCA", "line_number": 123, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 135, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 154, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 156, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 156, "usage_type": "name" }, { "api_name": "streamlit.download_button", "line_number": 164, "usage_type": "call" }, { "api_name": "streamlit.pyplot", "line_number": 171, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 172, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 182, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 182, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 216, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 216, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 217, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 217, "usage_type": "name" }, { "api_name": "streamlit.pyplot", "line_number": 224, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.close", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 225, "usage_type": "name" }, { "api_name": "streamlit.download_button", "line_number": 229, "usage_type": "call" } ]
10701337998
import tensorflow as tf import re import time, datetime import os import data_helper TOWER_NAME = 'tower' class CNNClassify(object): """CNN图像分类 """ def __init__(self, batch_size, num_classes, num_train_examples, initial_lr=0.1, lr_decay_factor=0.1, moving_average_decay=0.9999, num_epochs_per_decay=300, log_frequency=10, max_steps=200000, checkpoint_every=5000, num_gpus=4, session_conf=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True, gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.3))): self.batch_size = batch_size self.num_classes = num_classes self.moving_average_decay = moving_average_decay # 用于移动平均的衰减 self.initial_lr = initial_lr # 最初的学习速率 self.lr_decay_factor = lr_decay_factor # 学习速率衰减因子 self.num_epochs_per_decay = num_epochs_per_decay # 多少轮衰减一次 self.num_train_examples = num_train_examples # 训练样本数量 self.log_frequency = log_frequency # 多少步控制台打印一次结果 self.max_steps = max_steps self.checkpoint_every = checkpoint_every # 多少步之后保存一次模型 self.num_checkpoints = 5 self.num_gpus = num_gpus self.session_conf = session_conf def _variable_on_cpu(self, name, shape, initializer): """帮助创建存储在CPU内存上的变量。""" with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return var def _variable_with_weight_decay(self, name, shape, stddev, wd): """初始化权重变量 Args: name: name of the variable shape: list of ints stddev: 高斯函数标准差 wd: 添加L2范数损失权重衰减系数。如果没有,该变量不添加重量衰减。 Returns:权重变量 """ dtype = tf.float32 var = self._variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype)) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def _activation_summary(self, x): """创建tensorboard摘要 好可视化查看 """ tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.summary.histogram(tensor_name + '/activations', x) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def average_gradients(self, tower_grads): """计算所有tower上所有变量的平均梯度 """ average_grads = [] for grad_and_vars in zip(*tower_grads): # 每个梯度和变量类似这样: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # 添加一个0维度来代表tower [grad0_gpuN] expanded_g = tf.expand_dims(g, 0) # [[grad0_gpu1],...,[grad0_gpuN]] grads.append(expanded_g) # 在tower上进行平均 (上面加维度那部分没理解 加了又合 不是白操作吗?,后续再研究一下) grad = tf.concat(axis=0, values=grads) # [grad0_gpu1,..., grad0_gpuN] grad = tf.reduce_mean(grad, 0) # 平均梯度 # 把变量拼接回去 v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def inference(self, images): """向前传播 """ # 第一层卷积 with tf.variable_scope('conv1') as scope: kernel = self._variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) # 权值矩阵 # 二维卷积 conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') # 周围补0 保持形状不变 biases = self._variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) # relu激活 self._activation_summary(conv1) # pool1 最大池化 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 增加一个LRN处理,可以增强模型的泛化能力 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # 第二层卷积 with tf.variable_scope('conv2') as scope: kernel = self._variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = self._variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) self._activation_summary(conv2) # 这次先进行LRN处理 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # 最大池化 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # 全连接隐层 映射到384维向量 with tf.variable_scope('local3') as scope: # 将前面的最大池化输出扁平化成一个单一矩阵 好做全连接 reshape = tf.reshape(pool2, [self.batch_size, -1]) dim = reshape.get_shape()[1].value weights = self._variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = self._variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) self._activation_summary(local3) # 再接一个全连接层 映射到192维向量 with tf.variable_scope('local4') as scope: weights = self._variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = self._variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) self._activation_summary(local4) # 线性输出层 这里不做softmax 因为在损失函数内部执行了,那样效率更高 with tf.variable_scope('softmax_linear') as scope: weights = self._variable_with_weight_decay('weights', [192, self.num_classes], stddev=1 / 192.0, wd=0.0) biases = self._variable_on_cpu('biases', [self.num_classes], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) self._activation_summary(softmax_linear) return softmax_linear def loss(self, logits, labels): """损失函数 """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def tower_loss(self, scope, logits, labels): _ = self.loss(logits, labels) # 把所有损失都集中到当前tower上 losses = tf.get_collection('losses', scope) total_loss = tf.add_n(losses, name='total_loss') for l in losses + [total_loss]: # 去掉变量名前缀 tower_[0-9],变成和单GPU的时候一样 loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss def evaluation(self, logits, labels, k=1): """评估函数 :param logits: 预测 :param labels: 标签 """ correct = tf.nn.in_top_k(logits, labels, k=k) # correct = tf.equal(self.predictions, tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) tf.add_to_collection('accuracy', accuracy) return tf.add_n(tf.get_collection('accuracy'), name='accuracy') def tower_evaluation(self, scope, logits, labels, k=1): """多gpu的评估函数 """ _ = self.evaluation(logits, labels, k) accuracy = tf.get_collection('accuracy', scope) total_accuracy = tf.reduce_mean(accuracy, axis=0, name='total_accuracy') return total_accuracy def _add_loss_summaries(self, total_loss): """增加损失摘要 """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train_operation(self, total_loss, global_step): """训练操作 """ num_batches_per_epoch = self.num_train_examples / self.batch_size # 每轮的批次数 decay_steps = int(num_batches_per_epoch * self.num_epochs_per_decay) # 多少步衰减 # 基于步数,以指数方式衰减学习率。 lr = tf.train.exponential_decay(self.initial_lr, global_step, decay_steps, self.lr_decay_factor, staircase=True) tf.summary.scalar('learning_rate', lr) # 损失移动平均 loss_averages_op = self._add_loss_summaries(total_loss) with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr) # 优化器 grads = opt.compute_gradients(total_loss) # 梯度 # 应用梯度 apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # 训练操作 # 为可训练的变量添加直方图 for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # 为梯度添加直方图 for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # 跟踪所有可训练变量的移动平均线 variable_averages = tf.train.ExponentialMovingAverage(self.moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op def train_step(self, sess, summary_writer): """单步训练 """ _, step, cur_loss, cur_acc = sess.run([self.train_op, self.global_step, self._loss, self.accuracy]) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, cur_loss, cur_acc)) # 存储摘要 if step % 100 == 0: summary_str = sess.run(self.summary) summary_writer.add_summary(summary_str, step) summary_writer.flush() def train(self, filename, out_dir): """训练 """ with tf.Graph().as_default(): sess = tf.Session(config=self.session_conf) with sess.as_default(): self.global_step = tf.contrib.framework.get_or_create_global_step() with tf.device('/cpu:0'): images, labels = data_helper.distorted_inputs(filename, self.batch_size) logits = self.inference(images) self._loss = self.loss(logits, labels) self.train_op = self.train_operation(self._loss, self.global_step) self.accuracy = self.evaluation(logits, labels) self.summary = tf.summary.merge_all() # 保存点设置 checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") # 模型存储前缀 if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.num_checkpoints) summary_writer = tf.summary.FileWriter(out_dir + "/summary", sess.graph) # 初始化所有变量 ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess=sess) for step in range(self.max_steps): self.train_step(sess, summary_writer) # 训练 cur_step = tf.train.global_step(sess, self.global_step) # checkpoint_every 次迭代之后 保存模型 if cur_step % self.checkpoint_every == 0 and cur_step != 0: path = saver.save(sess, checkpoint_prefix, global_step=cur_step) print("Saved model checkpoint to {}\n".format(path)) def multi_gpu_train(self, filename, out_dir): with tf.Graph().as_default(), tf.device('/cpu:0'): sess = tf.Session(config=self.session_conf) with sess.as_default(): # Create a variable to count the number of train() calls. This equals the # number of batches processed * FLAGS.num_gpus. self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) # 学习速率衰减设置 num_batches_per_epoch = self.num_train_examples / self.batch_size decay_steps = int(num_batches_per_epoch * self.num_epochs_per_decay) # 根据步数衰减学习速率 lr = tf.train.exponential_decay(self.initial_lr, self.global_step, decay_steps, self.lr_decay_factor, staircase=True) # 执行梯度下降的优化器 opt = tf.train.GradientDescentOptimizer(lr) images, labels = data_helper.distorted_inputs(filename, self.batch_size) # 取出数据 # 批次队列 这个函数不是很懂 batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue([images, labels], capacity=2 * self.num_gpus) tower_grads = [] summaries = None with tf.variable_scope(tf.get_variable_scope()): for i in range(self.num_gpus): with tf.device('/gpu:{}'.format(i)): with tf.name_scope('{}_{}'.format(TOWER_NAME, i)) as scope: # 为gpu列出一个批次 image_batch, label_batch = batch_queue.dequeue() # 计算一个tower的损失. 并且每个tower共享权重变量 logits = self.inference(image_batch) self._loss = self.tower_loss(scope, logits, label_batch) self.accuracy = self.tower_evaluation(scope, logits, label_batch) # 下一个tower复用变量 tf.get_variable_scope().reuse_variables() # 保存最终tower的摘要 summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) # 计算梯度 grads = opt.compute_gradients(self._loss) # 跟踪所有tower的梯度 tower_grads.append(grads) grads = self.average_gradients(tower_grads) # 平均梯度 # 添加学习速率的摘要 summaries.append(tf.summary.scalar('learning_rate', lr)) # 添加梯度直方图 for grad, var in grads: if grad is not None: summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad)) # 应用梯度来调整共享变量 apply_gradient_op = opt.apply_gradients(grads, global_step=self.global_step) # 所有可训练变量添加直方图 for var in tf.trainable_variables(): summaries.append(tf.summary.histogram(var.op.name, var)) # 跟踪所有可训练变量的移动平均线 variable_averages = tf.train.ExponentialMovingAverage(self.moving_average_decay, self.global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 将所有更新集中到一个训练操作 self.train_op = tf.group(apply_gradient_op, variables_averages_op) # 从最后的tower总结摘要 self.summary = tf.summary.merge(summaries) # 保存点设置 checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") # 模型存储前缀 if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=self.num_checkpoints) summary_writer = tf.summary.FileWriter(out_dir + "/summary", sess.graph) # 初始化所有变量 ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) # 启动队列 tf.train.start_queue_runners(sess=sess) for step in range(self.max_steps): self.train_step(sess, summary_writer) # 训练 cur_step = tf.train.global_step(sess, self.global_step) # checkpoint_every 次迭代之后 保存模型 if cur_step % self.checkpoint_every == 0 and cur_step != 0: path = saver.save(sess, checkpoint_prefix, global_step=cur_step) print("Saved model checkpoint to {}\n".format(path))
mikuh/tf_code
cnn/cnn_model.py
cnn_model.py
py
19,630
python
en
code
3
github-code
6
[ { "api_name": "tensorflow.ConfigProto", "line_number": 13, "usage_type": "call" }, { "api_name": "tensorflow.GPUOptions", "line_number": 14, "usage_type": "call" }, { "api_name": "tensorflow.device", "line_number": 32, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 33, "usage_type": "attribute" }, { "api_name": "tensorflow.get_variable", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 47, "usage_type": "attribute" }, { "api_name": "tensorflow.truncated_normal_initializer", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.multiply", "line_number": 50, "usage_type": "call" }, { "api_name": "tensorflow.nn.l2_loss", "line_number": 50, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 50, "usage_type": "attribute" }, { "api_name": "tensorflow.add_to_collection", "line_number": 51, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 57, "usage_type": "call" }, { "api_name": "tensorflow.summary.histogram", "line_number": 58, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 59, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 59, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.zero_fraction", "line_number": 59, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 59, "usage_type": "attribute" }, { "api_name": "tensorflow.expand_dims", "line_number": 71, "usage_type": "call" }, { "api_name": "tensorflow.concat", "line_number": 77, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 78, "usage_type": "call" }, { "api_name": "tensorflow.variable_scope", "line_number": 91, "usage_type": "call" }, { "api_name": "tensorflow.nn.conv2d", "line_number": 94, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 94, "usage_type": "attribute" }, { "api_name": "tensorflow.constant_initializer", "line_number": 95, "usage_type": "call" }, { "api_name": "tensorflow.nn.bias_add", "line_number": 96, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 96, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.relu", "line_number": 97, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 97, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.max_pool", "line_number": 102, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 102, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.lrn", "line_number": 104, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 104, "usage_type": "attribute" }, { "api_name": "tensorflow.variable_scope", "line_number": 107, "usage_type": "call" }, { "api_name": "tensorflow.nn.conv2d", "line_number": 109, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 109, "usage_type": "attribute" }, { "api_name": "tensorflow.constant_initializer", "line_number": 110, "usage_type": "call" }, { "api_name": "tensorflow.nn.bias_add", "line_number": 111, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 111, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.relu", "line_number": 112, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 112, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.lrn", "line_number": 117, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 117, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.max_pool", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 119, "usage_type": "attribute" }, { "api_name": "tensorflow.variable_scope", "line_number": 122, "usage_type": "call" }, { "api_name": "tensorflow.reshape", "line_number": 124, "usage_type": "call" }, { "api_name": "tensorflow.constant_initializer", "line_number": 127, "usage_type": "call" }, { "api_name": "tensorflow.nn.relu", "line_number": 128, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 128, "usage_type": "attribute" }, { "api_name": "tensorflow.matmul", "line_number": 128, "usage_type": "call" }, { "api_name": "tensorflow.variable_scope", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.constant_initializer", "line_number": 135, "usage_type": "call" }, { "api_name": "tensorflow.nn.relu", "line_number": 136, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 136, "usage_type": "attribute" }, { "api_name": "tensorflow.matmul", "line_number": 136, "usage_type": "call" }, { "api_name": "tensorflow.variable_scope", "line_number": 141, "usage_type": "call" }, { "api_name": "tensorflow.constant_initializer", "line_number": 143, "usage_type": "call" }, { "api_name": "tensorflow.add", "line_number": 144, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 144, "usage_type": "call" }, { "api_name": "tensorflow.cast", "line_number": 155, "usage_type": "call" }, { "api_name": "tensorflow.int64", "line_number": 155, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.sparse_softmax_cross_entropy_with_logits", "line_number": 156, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 156, "usage_type": "attribute" }, { "api_name": "tensorflow.reduce_mean", "line_number": 158, "usage_type": "call" }, { "api_name": "tensorflow.add_to_collection", "line_number": 159, "usage_type": "call" }, { "api_name": "tensorflow.add_n", "line_number": 163, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 163, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 168, "usage_type": "call" }, { "api_name": "tensorflow.add_n", "line_number": 169, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 172, "usage_type": "call" }, { "api_name": "tensorflow.summary.scalar", "line_number": 173, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 173, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.in_top_k", "line_number": 182, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 182, "usage_type": "attribute" }, { "api_name": "tensorflow.reduce_mean", "line_number": 184, "usage_type": "call" }, { "api_name": "tensorflow.cast", "line_number": 184, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 184, "usage_type": "attribute" }, { "api_name": "tensorflow.add_to_collection", "line_number": 185, "usage_type": "call" }, { "api_name": "tensorflow.add_n", "line_number": 186, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 186, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 192, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 193, "usage_type": "call" }, { "api_name": "tensorflow.train.ExponentialMovingAverage", "line_number": 202, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 202, "usage_type": "attribute" }, { "api_name": "tensorflow.get_collection", "line_number": 203, "usage_type": "call" }, { "api_name": "tensorflow.summary.scalar", "line_number": 211, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 211, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 212, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 212, "usage_type": "attribute" }, { "api_name": "tensorflow.train.exponential_decay", "line_number": 223, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 223, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 224, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 224, "usage_type": "attribute" }, { "api_name": "tensorflow.control_dependencies", "line_number": 228, "usage_type": "call" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 229, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 229, "usage_type": "attribute" }, { "api_name": "tensorflow.trainable_variables", "line_number": 236, "usage_type": "call" }, { "api_name": "tensorflow.summary.histogram", "line_number": 237, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 237, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.histogram", "line_number": 242, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 242, "usage_type": "attribute" }, { "api_name": "tensorflow.train.ExponentialMovingAverage", "line_number": 245, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 245, "usage_type": "attribute" }, { "api_name": "tensorflow.trainable_variables", "line_number": 246, "usage_type": "call" }, { "api_name": "tensorflow.control_dependencies", "line_number": 248, "usage_type": "call" }, { "api_name": "tensorflow.no_op", "line_number": 249, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 257, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 257, "usage_type": "attribute" }, { "api_name": "tensorflow.Graph", "line_number": 268, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 269, "usage_type": "call" }, { "api_name": "tensorflow.contrib.framework.get_or_create_global_step", "line_number": 272, "usage_type": "call" }, { "api_name": "tensorflow.contrib", "line_number": 272, "usage_type": "attribute" }, { "api_name": "tensorflow.device", "line_number": 274, "usage_type": "call" }, { "api_name": "data_helper.distorted_inputs", "line_number": 275, "usage_type": "call" }, { "api_name": "tensorflow.summary.merge_all", "line_number": 280, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 280, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 283, "usage_type": "call" }, { "api_name": "os.path", "line_number": 283, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 283, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 284, "usage_type": "call" }, { "api_name": "os.path", "line_number": 284, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 285, "usage_type": "call" }, { "api_name": "os.path", "line_number": 285, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 286, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 287, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 287, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables", "line_number": 287, "usage_type": "call" }, { "api_name": "tensorflow.summary.FileWriter", "line_number": 288, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 288, "usage_type": "attribute" }, { "api_name": "tensorflow.train.get_checkpoint_state", "line_number": 291, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 291, "usage_type": "attribute" }, { "api_name": "tensorflow.train.checkpoint_exists", "line_number": 292, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 292, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 295, "usage_type": "call" }, { "api_name": "tensorflow.train.start_queue_runners", "line_number": 297, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 297, "usage_type": "attribute" }, { "api_name": "tensorflow.train.global_step", "line_number": 301, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 301, "usage_type": "attribute" }, { "api_name": "tensorflow.Graph", "line_number": 309, "usage_type": "call" }, { "api_name": "tensorflow.device", "line_number": 309, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 310, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 314, "usage_type": "call" }, { "api_name": "tensorflow.constant_initializer", "line_number": 314, "usage_type": "call" }, { "api_name": "tensorflow.train.exponential_decay", "line_number": 322, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 322, "usage_type": "attribute" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 325, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 325, "usage_type": "attribute" }, { "api_name": "data_helper.distorted_inputs", "line_number": 327, "usage_type": "call" }, { "api_name": "tensorflow.contrib.slim.prefetch_queue.prefetch_queue", "line_number": 329, "usage_type": "call" }, { "api_name": "tensorflow.contrib", "line_number": 329, "usage_type": "attribute" }, { "api_name": "tensorflow.variable_scope", "line_number": 333, "usage_type": "call" }, { "api_name": "tensorflow.get_variable_scope", "line_number": 333, "usage_type": "call" }, { "api_name": "tensorflow.device", "line_number": 335, "usage_type": "call" }, { "api_name": "tensorflow.name_scope", "line_number": 336, "usage_type": "call" }, { "api_name": "tensorflow.get_variable_scope", "line_number": 344, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 347, "usage_type": "call" }, { "api_name": "tensorflow.GraphKeys", "line_number": 347, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 358, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 358, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.histogram", "line_number": 363, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 363, "usage_type": "attribute" }, { "api_name": "tensorflow.trainable_variables", "line_number": 369, "usage_type": "call" }, { "api_name": "tensorflow.summary.histogram", "line_number": 370, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 370, "usage_type": "attribute" }, { "api_name": "tensorflow.train.ExponentialMovingAverage", "line_number": 373, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 373, "usage_type": "attribute" }, { "api_name": "tensorflow.trainable_variables", "line_number": 374, "usage_type": "call" }, { "api_name": "tensorflow.group", "line_number": 378, "usage_type": "call" }, { "api_name": "tensorflow.summary.merge", "line_number": 382, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 382, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 386, "usage_type": "call" }, { "api_name": "os.path", "line_number": 386, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 386, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 387, "usage_type": "call" }, { "api_name": "os.path", "line_number": 387, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 388, "usage_type": "call" }, { "api_name": "os.path", "line_number": 388, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 389, "usage_type": "call" }, { "api_name": "tensorflow.train.Saver", "line_number": 390, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 390, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables", "line_number": 390, "usage_type": "call" }, { "api_name": "tensorflow.summary.FileWriter", "line_number": 391, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 391, "usage_type": "attribute" }, { "api_name": "tensorflow.train.get_checkpoint_state", "line_number": 394, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 394, "usage_type": "attribute" }, { "api_name": "tensorflow.train.checkpoint_exists", "line_number": 395, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 395, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 398, "usage_type": "call" }, { "api_name": "tensorflow.train.start_queue_runners", "line_number": 402, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 402, "usage_type": "attribute" }, { "api_name": "tensorflow.train.global_step", "line_number": 406, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 406, "usage_type": "attribute" } ]