full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
rcases hlim (1 + ε) ((<a>lt_add_iff_pos_right</a> _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have L : ∀ᶠ n in <a>Filter.atTop</a>, u (c n) - c n * l ≤ ε * c n := by rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos' have cnpos : 0 < c n := cnpos' calc u (c n) - c n * l = (u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps] _ ≤ ε * c n := by gcongr refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_ simpa using hn
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ u (c b) - c b * l ≤ ε * c b := <a>Filter.eventually_atTop</a>.1 (cgrowth.and L)
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
let M := ((<a>Finset.range</a> (a + 1)).<a>Finset.image</a> fun i => c i).<a>Finset.max'</a> (by simp)
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
filter_upwards [<a>Filter.Ici_mem_atTop</a> M] with n hn
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have exN : ∃ N, n < c N := by rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩ exact ⟨N, by linarith only [hN]⟩
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
let N := <a>Nat.find</a> exN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have ncN : n < c N := <a>Nat.find_spec</a> exN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have aN : a + 1 ≤ N := by by_contra! h have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have Npos : 0 < N := <a>lt_of_lt_of_le</a> <a>Nat.succ_pos'</a> aN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have cNn : c (N - 1) ≤ n := by have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne' simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
have IcN : (c N : ℝ) ≤ (1 + ε) * c (N - 1) := by have A : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos have := (ha _ A).1 rwa [B] at this
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos'
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
have cnpos : 0 < c n := cnpos'
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
|
calc u (c n) - c n * l = (u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps] _ ≤ ε * c n := by gcongr refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_ simpa using hn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) - ↑(c n) * l = (u (c n) / ↑(c n) - l) * ↑(c n)
|
simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ (u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
|
gcongr
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) / ↑(c n) - l ≤ ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ u (c n) / ↑(c n) - l ≤ ε
|
refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ |u (c n) / ↑(c n) - l| ≤ ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ |u (c n) / ↑(c n) - l| ≤ ε
|
simpa using hn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
⊢ (image (fun i => c i) (range (a + 1))).Nonempty
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ ∃ N, n < c N
|
rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩
|
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
|
exact ⟨N, by linarith only [hN]⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ n < c N
|
linarith only [hN]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ a + 1 ≤ N
|
by_contra! h
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ False
|
have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
cNM : c N ≤ M
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
cNM : c N ≤ M
⊢ False
|
exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ≤ M
|
apply <a>Finset.le_max'</a>
|
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
|
apply <a>Finset.mem_image_of_mem</a>
|
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ N ∈ range (a + 1)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ N ∈ range (a + 1)
|
exact <a>Finset.mem_range</a>.2 h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ c (N - 1) ≤ n
|
have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne'
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
this : N - 1 < N
⊢ c (N - 1) ≤ n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
this : N - 1 < N
⊢ c (N - 1) ≤ n
|
simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
have A : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
have := (ha _ A).1
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
A : a ≤ N - 1
B : N - 1 + 1 = N
this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
rwa [B] at this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a ≤ N - 1
|
apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1)
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N - 1 + 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N - 1 + 1
|
rw [<a>Nat.sub_add_cancel</a> Npos]
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
⊢ a + 1 ≤ N
|
exact aN
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n - ↑n * l ≤ u (c N) - ↑(c (N - 1)) * l
|
gcongr
|
case hab
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n ≤ u (c N)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case hab
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u n ≤ u (c N)
|
exact hmono ncN.le
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c (N - 1)) * l = u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l
|
ring
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l ≤ ε * ↑(c N) + ε * ↑(c (N - 1)) * l
|
gcongr
|
case h₁
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c N) * l ≤ ε * ↑(c N)
case h₂.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) - ↑(c (N - 1)) ≤ ε * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h₁
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ u (c N) - ↑(c N) * l ≤ ε * ↑(c N)
|
exact (ha N (a.le_succ.trans aN)).2
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h₂.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ↑(c N) - ↑(c (N - 1)) ≤ ε * ↑(c (N - 1))
|
linarith only [IcN]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ε * ↑(c N) + ε * ↑(c (N - 1)) * l ≤ ε * ((1 + ε) * ↑(c (N - 1))) + ε * ↑(c (N - 1)) * l
|
gcongr
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ε * ((1 + ε) * ↑(c (N - 1))) + ε * ↑(c (N - 1)) * l = ε * (1 + ε + l) * ↑(c (N - 1))
|
ring
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
cNn : c (N - 1) ≤ n
IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
⊢ ε * (1 + ε + l) * ↑(c (N - 1)) ≤ ε * (1 + ε + l) * ↑n
|
gcongr
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
intro ε εpos
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
rcases hlim (1 + ε) ((<a>lt_add_iff_pos_right</a> _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have L : ∀ᶠ n : ℕ in <a>Filter.atTop</a>, (c n : ℝ) * l - u (c n) ≤ ε * c n := by rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos' have cnpos : 0 < c n := cnpos' calc (c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps] _ ≤ ε * c n := by gcongr refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_ simpa using hn
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ (c b : ℝ) * l - u (c b) ≤ ε * c b := <a>Filter.eventually_atTop</a>.1 (cgrowth.and L)
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
let M := ((<a>Finset.range</a> (a + 1)).<a>Finset.image</a> fun i => c i).<a>Finset.max'</a> (by simp)
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro.intro.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
filter_upwards [<a>Filter.Ici_mem_atTop</a> M] with n hn
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have exN : ∃ N, n < c N := by rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩ exact ⟨N, by linarith only [hN]⟩
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
let N := <a>Nat.find</a> exN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have ncN : n < c N := <a>Nat.find_spec</a> exN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have aN : a + 1 ≤ N := by by_contra! h have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have Npos : 0 < N := <a>lt_of_lt_of_le</a> <a>Nat.succ_pos'</a> aN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have aN' : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
have cNn : c (N - 1) ≤ n := by have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne' simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
|
calc (n : ℝ) * l - u n ≤ c N * l - u (c (N - 1)) := by gcongr exact hmono cNn _ ≤ (1 + ε) * c (N - 1) * l - u (c (N - 1)) := by gcongr have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos simpa [B] using (ha _ aN').1 _ = c (N - 1) * l - u (c (N - 1)) + ε * c (N - 1) * l := by ring _ ≤ ε * c (N - 1) + ε * c (N - 1) * l := <a>add_le_add</a> (ha _ aN').2 <a>le_rfl</a> _ = ε * (1 + l) * c (N - 1) := by ring _ ≤ ε * (1 + l) * n := by gcongr
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos'
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
have cnpos : 0 < c n := cnpos'
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
|
calc (c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps] _ ≤ ε * c n := by gcongr refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_ simpa using hn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ ↑(c n) * l - u (c n) = -(u (c n) / ↑(c n) - l) * ↑(c n)
|
simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ -(u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
|
gcongr
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ -(u (c n) / ↑(c n) - l) ≤ ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ -(u (c n) / ↑(c n) - l) ≤ ε
|
refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ |u (c n) / ↑(c n) - l| ≤ ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖
n : ℕ
hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖
cnpos' : n ∈ c ⁻¹' Set.Ioi 0
cnpos : 0 < c n
⊢ |u (c n) / ↑(c n) - l| ≤ ε
|
simpa using hn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
⊢ (image (fun i => c i) (range (a + 1))).Nonempty
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
⊢ ∃ N, n < c N
|
rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩
|
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ ∃ N, n < c N
|
exact ⟨N, by linarith only [hN]⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
N : ℕ
hN : n + 1 ≤ c N
⊢ n < c N
|
linarith only [hN]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
⊢ a + 1 ≤ N
|
by_contra! h
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ False
|
have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
cNM : c N ≤ M
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
cNM : c N ≤ M
⊢ False
|
exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ≤ M
|
apply <a>Finset.le_max'</a>
|
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case H2
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ c N ∈ image (fun i => c i) (range (a + 1))
|
apply <a>Finset.mem_image_of_mem</a>
|
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ N ∈ range (a + 1)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case H2.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
h : N < a + 1
⊢ N ∈ range (a + 1)
|
exact <a>Finset.mem_range</a>.2 h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a ≤ N - 1
|
apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1)
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N - 1 + 1
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N - 1 + 1
|
rw [<a>Nat.sub_add_cancel</a> Npos]
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
⊢ a + 1 ≤ N
|
exact aN
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
⊢ c (N - 1) ≤ n
|
have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne'
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
this : N - 1 < N
⊢ c (N - 1) ≤ n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
this : N - 1 < N
⊢ c (N - 1) ≤ n
|
simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑n * l - u n ≤ ↑(c N) * l - u (c (N - 1))
|
gcongr
|
case hcd
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ u (c (N - 1)) ≤ u n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case hcd
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ u (c (N - 1)) ≤ u n
|
exact hmono cNn
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑(c N) * l - u (c (N - 1)) ≤ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1))
|
gcongr
|
case h.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos
|
case h.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h.h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
B : N - 1 + 1 = N
⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
|
simpa [B] using (ha _ aN').1
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1)) = ↑(c (N - 1)) * l - u (c (N - 1)) + ε * ↑(c (N - 1)) * l
|
ring
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ε * ↑(c (N - 1)) + ε * ↑(c (N - 1)) * l = ε * (1 + l) * ↑(c (N - 1))
|
ring
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
ε : ℝ
εpos : 0 < ε
c : ℕ → ℕ
cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n)
ctop : Tendsto c atTop atTop
clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
a : ℕ
ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b)
M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯
n : ℕ
hn : n ∈ Set.Ici M
exN : ∃ N, n < c N
N : ℕ := Nat.find exN
ncN : n < c N
aN : a + 1 ≤ N
Npos : 0 < N
aN' : a ≤ N - 1
cNn : c (N - 1) ≤ n
⊢ ε * (1 + l) * ↑(c (N - 1)) ≤ ε * (1 + l) * ↑n
|
gcongr
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case refine_1
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
|
obtain ⟨ε, hε, εpos⟩ : ∃ ε : ℝ, d + ε * (1 + l) < l ∧ 0 < ε := by have L : <a>Filter.Tendsto</a> (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul <a>tendsto_const_nhds</a>) simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L exact (((<a>tendsto_order</a>.1 L).2 l hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
|
case refine_1.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case refine_1.intro.intro
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
|
filter_upwards [B ε εpos, <a>Filter.Ioi_mem_atTop</a> 0] with n hn npos
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < u n / ↑n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < u n / ↑n
|
simp_rw [<a>div_eq_inv_mul</a>]
|
case h
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
ε : ℝ
hε : d + ε * (1 + l) < l
εpos : 0 < ε
n : ℕ
hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n
npos : n ∈ Set.Ioi 0
⊢ d < (↑n)⁻¹ * u n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
|
have L : <a>Filter.Tendsto</a> (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul <a>tendsto_const_nhds</a>)
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l)))
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l)))
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
|
simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 d)
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 d)
⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
|
exact (((<a>tendsto_order</a>.1 L).2 l hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l)))
|
apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a>
|
u : ℕ → ℝ
l : ℝ
hmono : Monotone u
hlim :
∀ (a : ℝ),
1 < a →
∃ c,
(∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧
Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l)
lnonneg : 0 ≤ l
A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
d : ℝ
hd : d < l
⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝 0) (𝓝 (d + 0 * (1 + l)))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/SpecificLimits/FloorPow.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.