full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
rcases hlim (1 + ε) ((<a>lt_add_iff_pos_right</a> _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have L : ∀ᶠ n in <a>Filter.atTop</a>, u (c n) - c n * l ≤ ε * c n := by rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos' have cnpos : 0 < c n := cnpos' calc u (c n) - c n * l = (u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps] _ ≤ ε * c n := by gcongr refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_ simpa using hn
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ u (c b) - c b * l ≤ ε * c b := <a>Filter.eventually_atTop</a>.1 (cgrowth.and L)
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
let M := ((<a>Finset.range</a> (a + 1)).<a>Finset.image</a> fun i => c i).<a>Finset.max'</a> (by simp)
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ ⊢ ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
filter_upwards [<a>Filter.Ici_mem_atTop</a> M] with n hn
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have exN : ∃ N, n < c N := by rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩ exact ⟨N, by linarith only [hN]⟩
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
let N := <a>Nat.find</a> exN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have ncN : n < c N := <a>Nat.find_spec</a> exN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have aN : a + 1 ≤ N := by by_contra! h have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have Npos : 0 < N := <a>lt_of_lt_of_le</a> <a>Nat.succ_pos'</a> aN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have cNn : c (N - 1) ≤ n := by have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne' simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
have IcN : (c N : ℝ) ≤ (1 + ε) * c (N - 1) := by have A : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos have := (ha _ A).1 rwa [B] at this
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ ⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ ⊢ ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos'
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 ⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 ⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
have cnpos : 0 < c n := cnpos'
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ u (c n) - ↑(c n) * l ≤ ε * ↑(c n)
calc u (c n) - c n * l = (u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps] _ ≤ ε * c n := by gcongr refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_ simpa using hn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ u (c n) - ↑(c n) * l = (u (c n) / ↑(c n) - l) * ↑(c n)
simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, field_simps]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ (u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
gcongr
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ u (c n) / ↑(c n) - l ≤ ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ u (c n) / ↑(c n) - l ≤ ε
refine (<a>le_abs_self</a> _).<a>LE.le.trans</a> ?_
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ |u (c n) / ↑(c n) - l| ≤ ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ |u (c n) / ↑(c n) - l| ≤ ε
simpa using hn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) ⊢ (image (fun i => c i) (range (a + 1))).Nonempty
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ ∃ N, n < c N
rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩
case intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ ∃ N, n < c N
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ ∃ N, n < c N
exact ⟨N, by linarith only [hN]⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ n < c N
linarith only [hN]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ a + 1 ≤ N
by_contra! h
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ False
have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 cNM : c N ≤ M ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 cNM : c N ≤ M ⊢ False
exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ≤ M
apply <a>Finset.le_max'</a>
case H2 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ∈ image (fun i => c i) (range (a + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case H2 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ∈ image (fun i => c i) (range (a + 1))
apply <a>Finset.mem_image_of_mem</a>
case H2.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ N ∈ range (a + 1)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case H2.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ N ∈ range (a + 1)
exact <a>Finset.mem_range</a>.2 h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ c (N - 1) ≤ n
have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne'
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N this : N - 1 < N ⊢ c (N - 1) ≤ n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N this : N - 1 < N ⊢ c (N - 1) ≤ n
simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
have A : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 B : N - 1 + 1 = N ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 B : N - 1 + 1 = N ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
have := (ha _ A).1
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 B : N - 1 + 1 = N this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n A : a ≤ N - 1 B : N - 1 + 1 = N this : ↑(c (N - 1 + 1)) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
rwa [B] at this
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ a ≤ N - 1
apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1)
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ a + 1 ≤ N - 1 + 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ a + 1 ≤ N - 1 + 1
rw [<a>Nat.sub_add_cancel</a> Npos]
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ a + 1 ≤ N
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n ⊢ a + 1 ≤ N
exact aN
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u n - ↑n * l ≤ u (c N) - ↑(c (N - 1)) * l
gcongr
case hab u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u n ≤ u (c N)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case hab u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u n ≤ u (c N)
exact hmono ncN.le
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u (c N) - ↑(c (N - 1)) * l = u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u (c N) - ↑(c N) * l + (↑(c N) - ↑(c (N - 1))) * l ≤ ε * ↑(c N) + ε * ↑(c (N - 1)) * l
gcongr
case h₁ u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u (c N) - ↑(c N) * l ≤ ε * ↑(c N) case h₂.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ↑(c N) - ↑(c (N - 1)) ≤ ε * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h₁ u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ u (c N) - ↑(c N) * l ≤ ε * ↑(c N)
exact (ha N (a.le_succ.trans aN)).2
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h₂.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ↑(c N) - ↑(c (N - 1)) ≤ ε * ↑(c (N - 1))
linarith only [IcN]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ε * ↑(c N) + ε * ↑(c (N - 1)) * l ≤ ε * ((1 + ε) * ↑(c (N - 1))) + ε * ↑(c (N - 1)) * l
gcongr
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ε * ((1 + ε) * ↑(c (N - 1))) + ε * ↑(c (N - 1)) * l = ε * (1 + ε + l) * ↑(c (N - 1))
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, u (c n) - ↑(c n) * l ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ u (c b) - ↑(c b) * l ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N cNn : c (N - 1) ≤ n IcN : ↑(c N) ≤ (1 + ε) * ↑(c (N - 1)) ⊢ ε * (1 + ε + l) * ↑(c (N - 1)) ≤ ε * (1 + ε + l) * ↑n
gcongr
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ⊢ ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
intro ε εpos
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
rcases hlim (1 + ε) ((<a>lt_add_iff_pos_right</a> _).2 εpos) with ⟨c, cgrowth, ctop, clim⟩
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
have L : ∀ᶠ n : ℕ in <a>Filter.atTop</a>, (c n : ℝ) * l - u (c n) ≤ ε * c n := by rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos' have cnpos : 0 < c n := cnpos' calc (c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps] _ ≤ ε * c n := by gcongr refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_ simpa using hn
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, a ≤ b → (c (b + 1) : ℝ) ≤ (1 + ε) * c b ∧ (c b : ℝ) * l - u (c b) ≤ ε * c b := <a>Filter.eventually_atTop</a>.1 (cgrowth.and L)
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
let M := ((<a>Finset.range</a> (a + 1)).<a>Finset.image</a> fun i => c i).<a>Finset.max'</a> (by simp)
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro.intro.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ ⊢ ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n
filter_upwards [<a>Filter.Ici_mem_atTop</a> M] with n hn
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have exN : ∃ N, n < c N := by rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩ exact ⟨N, by linarith only [hN]⟩
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
let N := <a>Nat.find</a> exN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have ncN : n < c N := <a>Nat.find_spec</a> exN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have aN : a + 1 ≤ N := by by_contra! h have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have Npos : 0 < N := <a>lt_of_lt_of_le</a> <a>Nat.succ_pos'</a> aN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have aN' : a ≤ N - 1 := by apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1) rw [<a>Nat.sub_add_cancel</a> Npos] exact aN
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
have cNn : c (N - 1) ≤ n := by have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne' simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑n * l - u n ≤ ε * (1 + l) * ↑n
calc (n : ℝ) * l - u n ≤ c N * l - u (c (N - 1)) := by gcongr exact hmono cNn _ ≤ (1 + ε) * c (N - 1) * l - u (c (N - 1)) := by gcongr have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos simpa [B] using (ha _ aN').1 _ = c (N - 1) * l - u (c (N - 1)) + ε * c (N - 1) * l := by ring _ ≤ ε * c (N - 1) + ε * c (N - 1) * l := <a>add_le_add</a> (ha _ aN').2 <a>le_rfl</a> _ = ε * (1 + l) * c (N - 1) := by ring _ ≤ ε * (1 + l) * n := by gcongr
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) ⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
rw [← <a>tendsto_sub_nhds_zero_iff</a>, ← <a>Asymptotics.isLittleO_one_iff</a> ℝ, <a>Asymptotics.isLittleO_iff</a>] at clim
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ ⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ ⊢ ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
filter_upwards [clim εpos, ctop (<a>Filter.Ioi_mem_atTop</a> 0)] with n hn cnpos'
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 ⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 ⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
have cnpos : 0 < c n := cnpos'
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ ↑(c n) * l - u (c n) ≤ ε * ↑(c n)
calc (c n : ℝ) * l - u (c n) = -(u (c n) / c n - l) * c n := by simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps] _ ≤ ε * c n := by gcongr refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_ simpa using hn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ ↑(c n) * l - u (c n) = -(u (c n) / ↑(c n) - l) * ↑(c n)
simp only [cnpos.ne', <a>Ne</a>, <a>Nat.cast_eq_zero</a>, <a>not_false_iff</a>, <a>neg_sub</a>, field_simps]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ -(u (c n) / ↑(c n) - l) * ↑(c n) ≤ ε * ↑(c n)
gcongr
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ -(u (c n) / ↑(c n) - l) ≤ ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ -(u (c n) / ↑(c n) - l) ≤ ε
refine <a>le_trans</a> (<a>neg_le_abs</a> _) ?_
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ |u (c n) / ↑(c n) - l| ≤ ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : ∀ ⦃c_1 : ℝ⦄, 0 < c_1 → ∀ᶠ (x : ℕ) in atTop, ‖u (c x) / ↑(c x) - l‖ ≤ c_1 * ‖1‖ n : ℕ hn : ‖u (c n) / ↑(c n) - l‖ ≤ ε * ‖1‖ cnpos' : n ∈ c ⁻¹' Set.Ioi 0 cnpos : 0 < c n ⊢ |u (c n) / ↑(c n) - l| ≤ ε
simpa using hn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) ⊢ (image (fun i => c i) (range (a + 1))).Nonempty
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M ⊢ ∃ N, n < c N
rcases (<a>Filter.tendsto_atTop</a>.1 ctop (n + 1)).<a>Filter.Eventually.exists</a> with ⟨N, hN⟩
case intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ ∃ N, n < c N
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ ∃ N, n < c N
exact ⟨N, by linarith only [hN]⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M N : ℕ hN : n + 1 ≤ c N ⊢ n < c N
linarith only [hN]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N ⊢ a + 1 ≤ N
by_contra! h
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ False
have cNM : c N ≤ M := by apply <a>Finset.le_max'</a> apply <a>Finset.mem_image_of_mem</a> exact <a>Finset.mem_range</a>.2 h
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 cNM : c N ≤ M ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 cNM : c N ≤ M ⊢ False
exact <a>lt_irrefl</a> _ ((cNM.trans hn).<a>LE.le.trans_lt</a> ncN)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ≤ M
apply <a>Finset.le_max'</a>
case H2 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ∈ image (fun i => c i) (range (a + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case H2 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ c N ∈ image (fun i => c i) (range (a + 1))
apply <a>Finset.mem_image_of_mem</a>
case H2.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ N ∈ range (a + 1)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case H2.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N h : N < a + 1 ⊢ N ∈ range (a + 1)
exact <a>Finset.mem_range</a>.2 h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ a ≤ N - 1
apply @<a>Nat.le_of_add_le_add_right</a> a 1 (N - 1)
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ a + 1 ≤ N - 1 + 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ a + 1 ≤ N - 1 + 1
rw [<a>Nat.sub_add_cancel</a> Npos]
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ a + 1 ≤ N
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N ⊢ a + 1 ≤ N
exact aN
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 ⊢ c (N - 1) ≤ n
have : N - 1 < N := <a>Nat.pred_lt</a> Npos.ne'
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 this : N - 1 < N ⊢ c (N - 1) ≤ n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 this : N - 1 < N ⊢ c (N - 1) ≤ n
simpa only [<a>not_lt</a>] using <a>Nat.find_min</a> exN this
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑n * l - u n ≤ ↑(c N) * l - u (c (N - 1))
gcongr
case hcd u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ u (c (N - 1)) ≤ u n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case hcd u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ u (c (N - 1)) ≤ u n
exact hmono cNn
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑(c N) * l - u (c (N - 1)) ≤ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1))
gcongr
case h.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
have B : N - 1 + 1 = N := <a>Nat.succ_pred_eq_of_pos</a> Npos
case h.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n B : N - 1 + 1 = N ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h.h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n B : N - 1 + 1 = N ⊢ ↑(c N) ≤ (1 + ε) * ↑(c (N - 1))
simpa [B] using (ha _ aN').1
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ (1 + ε) * ↑(c (N - 1)) * l - u (c (N - 1)) = ↑(c (N - 1)) * l - u (c (N - 1)) + ε * ↑(c (N - 1)) * l
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ε * ↑(c (N - 1)) + ε * ↑(c (N - 1)) * l = ε * (1 + l) * ↑(c (N - 1))
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n ε : ℝ εpos : 0 < ε c : ℕ → ℕ cgrowth : ∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ (1 + ε) * ↑(c n) ctop : Tendsto c atTop atTop clim : Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) L : ∀ᶠ (n : ℕ) in atTop, ↑(c n) * l - u (c n) ≤ ε * ↑(c n) a : ℕ ha : ∀ (b : ℕ), a ≤ b → ↑(c (b + 1)) ≤ (1 + ε) * ↑(c b) ∧ ↑(c b) * l - u (c b) ≤ ε * ↑(c b) M : ℕ := (image (fun i => c i) (range (a + 1))).max' ⋯ n : ℕ hn : n ∈ Set.Ici M exN : ∃ N, n < c N N : ℕ := Nat.find exN ncN : n < c N aN : a + 1 ≤ N Npos : 0 < N aN' : a ≤ N - 1 cNn : c (N - 1) ≤ n ⊢ ε * (1 + l) * ↑(c (N - 1)) ≤ ε * (1 + l) * ↑n
gcongr
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case refine_1 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
obtain ⟨ε, hε, εpos⟩ : ∃ ε : ℝ, d + ε * (1 + l) < l ∧ 0 < ε := by have L : <a>Filter.Tendsto</a> (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul <a>tendsto_const_nhds</a>) simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L exact (((<a>tendsto_order</a>.1 L).2 l hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
case refine_1.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε ⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case refine_1.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε ⊢ ∀ᶠ (b : ℕ) in atTop, d < u b / ↑b
filter_upwards [B ε εpos, <a>Filter.Ioi_mem_atTop</a> 0] with n hn npos
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < u n / ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < u n / ↑n
simp_rw [<a>div_eq_inv_mul</a>]
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < (↑n)⁻¹ * u n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
have L : <a>Filter.Tendsto</a> (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul <a>tendsto_const_nhds</a>)
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) ⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l))) ⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 d) ⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l L : Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 d) ⊢ ∃ ε, d + ε * (1 + l) < l ∧ 0 < ε
exact (((<a>tendsto_order</a>.1 L).2 l hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝[>] 0) (𝓝 (d + 0 * (1 + l)))
apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a>
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝 0) (𝓝 (d + 0 * (1 + l)))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean