full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
|
case h.e'_3.h.e_a
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X Y : C
f : X ⟶ Y
F : SheafOfTypes (J.over Y)
Z : Over X
T : Presieve Z
x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T
hx : x.Compatible
Y₁ Y₂ : Over X
W : Over Y
f₁ : W ⟶ (Over.map f).obj Y₁
f₂ : W ⟶ (Over.map f).obj Y₂
g₁ : Y₁ ⟶ Z
g₂ : Y₂ ⟶ Z
hg₁ : T g₁
hg₂ : T g₂
h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂
W' : Over X := Over.mk (f₁.left ≫ Y₁.hom)
g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯
g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯
e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯
⊢ f₂.op = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).op
|
congr 1
|
case h.e'_3.h.e_a.e_f
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X Y : C
f : X ⟶ Y
F : SheafOfTypes (J.over Y)
Z : Over X
T : Presieve Z
x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T
hx : x.Compatible
Y₁ Y₂ : Over X
W : Over Y
f₁ : W ⟶ (Over.map f).obj Y₁
f₂ : W ⟶ (Over.map f).obj Y₂
g₁ : Y₁ ⟶ Z
g₂ : Y₂ ⟶ Z
hg₁ : T g₁
hg₂ : T g₂
h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂
W' : Over X := Over.mk (f₁.left ≫ Y₁.hom)
g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯
g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯
e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯
⊢ f₂ = (Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Sites/Over.lean
|
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
|
case h.e'_3.h.e_a.e_f
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X Y : C
f : X ⟶ Y
F : SheafOfTypes (J.over Y)
Z : Over X
T : Presieve Z
x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T
hx : x.Compatible
Y₁ Y₂ : Over X
W : Over Y
f₁ : W ⟶ (Over.map f).obj Y₁
f₂ : W ⟶ (Over.map f).obj Y₂
g₁ : Y₁ ⟶ Z
g₂ : Y₂ ⟶ Z
hg₁ : T g₁
hg₂ : T g₂
h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂
W' : Over X := Over.mk (f₁.left ≫ Y₁.hom)
g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯
g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯
e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯
⊢ f₂ = (Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)
|
ext
|
case h.e'_3.h.e_a.e_f.h
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X Y : C
f : X ⟶ Y
F : SheafOfTypes (J.over Y)
Z : Over X
T : Presieve Z
x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T
hx : x.Compatible
Y₁ Y₂ : Over X
W : Over Y
f₁ : W ⟶ (Over.map f).obj Y₁
f₂ : W ⟶ (Over.map f).obj Y₂
g₁ : Y₁ ⟶ Z
g₂ : Y₂ ⟶ Z
hg₁ : T g₁
hg₂ : T g₂
h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂
W' : Over X := Over.mk (f₁.left ≫ Y₁.hom)
g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯
g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯
e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯
⊢ f₂.left = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).left
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Sites/Over.lean
|
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
|
case h.e'_3.h.e_a.e_f.h
C : Type u
inst✝ : Category.{v, u} C
J : GrothendieckTopology C
X Y : C
f : X ⟶ Y
F : SheafOfTypes (J.over Y)
Z : Over X
T : Presieve Z
x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T
hx : x.Compatible
Y₁ Y₂ : Over X
W : Over Y
f₁ : W ⟶ (Over.map f).obj Y₁
f₂ : W ⟶ (Over.map f).obj Y₂
g₁ : Y₁ ⟶ Z
g₂ : Y₂ ⟶ Z
hg₁ : T g₁
hg₂ : T g₂
h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂
W' : Over X := Over.mk (f₁.left ≫ Y₁.hom)
g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯
g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯
e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯
⊢ f₂.left = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).left
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Sites/Over.lean
|
inv_mul_eq_iff_eq_mul
|
α : Type u_1
β : Type u_2
G : Type u_3
M : Type u_4
inst✝ : Group G
a b c d : G
n : ℤ
h : a⁻¹ * b = c
⊢ b = a * c
|
rw [← h, <a>mul_inv_cancel_left</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Group/Basic.lean
|
inv_mul_eq_iff_eq_mul
|
α : Type u_1
β : Type u_2
G : Type u_3
M : Type u_4
inst✝ : Group G
a b c d : G
n : ℤ
h : b = a * c
⊢ a⁻¹ * b = c
|
rw [h, <a>inv_mul_cancel_left</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Group/Basic.lean
|
ciSup_eq_ite
|
α : Type u_1
β : Type u_2
γ : Type u_3
ι : Sort u_4
inst✝¹ : ConditionallyCompleteLattice α
s t : Set α
a b : α
p : Prop
inst✝ : Decidable p
f : p → α
⊢ ⨆ (h : p), f h = if h : p then f h else sSup ∅
|
by_cases H : p <;> simp [<a>ciSup_neg</a>, H]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
|
Relation.iff_comp
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ζ : Type u_6
r✝ : α → β → Prop
p : β → γ → Prop
q : γ → δ → Prop
r : Prop → α → Prop
this : (fun x x_1 => x ↔ x_1) = fun x x_1 => x = x_1
⊢ (fun x x_1 => x ↔ x_1) ∘r r = r
|
rw [this, <a>Relation.eq_comp</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Logic/Relation.lean
|
Relation.iff_comp
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ζ : Type u_6
r✝ : α → β → Prop
p : β → γ → Prop
q : γ → δ → Prop
r : Prop → α → Prop
⊢ (fun x x_1 => x ↔ x_1) = fun x x_1 => x = x_1
|
funext a b
|
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ζ : Type u_6
r✝ : α → β → Prop
p : β → γ → Prop
q : γ → δ → Prop
r : Prop → α → Prop
a b : Prop
⊢ (a ↔ b) = (a = b)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Logic/Relation.lean
|
Relation.iff_comp
|
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ζ : Type u_6
r✝ : α → β → Prop
p : β → γ → Prop
q : γ → δ → Prop
r : Prop → α → Prop
a b : Prop
⊢ (a ↔ b) = (a = b)
|
exact <a>iff_eq_eq</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Logic/Relation.lean
|
Part.bind_map
|
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → β
x : Part α
g : β → Part γ
⊢ (map f x).bind g = x.bind fun y => g (f y)
|
rw [← <a>Part.bind_some_eq_map</a>, <a>Part.bind_assoc</a>]
|
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → β
x : Part α
g : β → Part γ
⊢ (x.bind fun x => ((some ∘ f) x).bind g) = x.bind fun y => g (f y)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Part.lean
|
Part.bind_map
|
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → β
x : Part α
g : β → Part γ
⊢ (x.bind fun x => ((some ∘ f) x).bind g) = x.bind fun y => g (f y)
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Part.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ eval (1 / 4) (bernoulli 3) = 3 / 64
|
simp_rw [<a>Polynomial.bernoulli</a>, <a>Finset.sum_range_succ</a>, <a>Polynomial.eval_add</a>, <a>Polynomial.eval_monomial</a>]
|
⊢ eval (1 / 4) (∑ i ∈ Finset.range 0, (monomial (3 - i)) (_root_.bernoulli i * ↑(Nat.choose 3 i))) +
_root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) +
_root_.bernoulli 1 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
_root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
_root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ eval (1 / 4) (∑ i ∈ Finset.range 0, (monomial (3 - i)) (_root_.bernoulli i * ↑(Nat.choose 3 i))) +
_root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) +
_root_.bernoulli 1 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
_root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
_root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
rw [<a>Finset.sum_range_zero</a>, <a>Polynomial.eval_zero</a>, <a>zero_add</a>, <a>bernoulli_one</a>]
|
⊢ _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
_root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
_root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
_root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
_root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
rw [<a>bernoulli_eq_bernoulli'_of_ne_one</a> <a>zero_ne_one</a>, <a>bernoulli'_zero</a>, <a>bernoulli_eq_bernoulli'_of_ne_one</a> (by decide : 2 ≠ 1), <a>bernoulli'_two</a>, <a>bernoulli_eq_bernoulli'_of_ne_one</a> (by decide : 3 ≠ 1), <a>bernoulli'_three</a>]
|
⊢ 1 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
1 / 6 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
0 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ 1 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) +
1 / 6 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) +
0 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) =
3 / 64
|
norm_num
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ 2 ≠ 1
|
decide
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Polynomial.bernoulli_three_eval_one_quarter
|
⊢ 3 ≠ 1
|
decide
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/ZetaValues.lean
|
Nat.factors_count_eq
|
a b m n✝ p✝ n p : ℕ
⊢ count p n.factors = n.factorization p
|
rcases n.eq_zero_or_pos with (rfl | hn0)
|
case inl
a b m n p✝ p : ℕ
⊢ count p (factors 0) = (factorization 0) p
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
⊢ count p n.factors = n.factorization p
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
⊢ count p n.factors = n.factorization p
|
if pp : p.Prime then ?_ else rw [<a>List.count_eq_zero_of_not_mem</a> (<a>mt</a> <a>Nat.prime_of_mem_factors</a> pp)] simp [<a>Nat.factorization</a>, pp]
|
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors = n.factorization p
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors = n.factorization p
|
simp only [<a>Nat.factorization_def</a> _ pp]
|
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors = padicValNat p n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors = padicValNat p n
|
apply <a>le_antisymm</a>
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors ≤ padicValNat p n
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ padicValNat p n ≤ count p n.factors
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inl
a b m n p✝ p : ℕ
⊢ count p (factors 0) = (factorization 0) p
|
simp [<a>Nat.factorization</a>, <a>List.count</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : ¬Prime p
⊢ count p n.factors = n.factorization p
|
rw [<a>List.count_eq_zero_of_not_mem</a> (<a>mt</a> <a>Nat.prime_of_mem_factors</a> pp)]
|
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : ¬Prime p
⊢ 0 = n.factorization p
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : ¬Prime p
⊢ 0 = n.factorization p
|
simp [<a>Nat.factorization</a>, pp]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ count p n.factors ≤ padicValNat p n
|
rw [<a>le_padicValNat_iff_replicate_subperm_factors</a> pp hn0.ne']
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ replicate (count p n.factors) p <+~ n.factors
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ replicate (count p n.factors) p <+~ n.factors
|
exact List.le_count_iff_replicate_sublist.mp <a>le_rfl</a> |>.<a>List.Sublist.subperm</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ padicValNat p n ≤ count p n.factors
|
rw [← <a>Nat.lt_add_one_iff</a>, <a>lt_iff_not_ge</a>, <a>ge_iff_le</a>, <a>le_padicValNat_iff_replicate_subperm_factors</a> pp hn0.ne']
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ ¬replicate (count p n.factors + 1) p <+~ n.factors
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
⊢ ¬replicate (count p n.factors + 1) p <+~ n.factors
|
intro h
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
h : replicate (count p n.factors + 1) p <+~ n.factors
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
h : replicate (count p n.factors + 1) p <+~ n.factors
⊢ False
|
have := h.count_le p
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
h : replicate (count p n.factors + 1) p <+~ n.factors
this : count p (replicate (count p n.factors + 1) p) ≤ count p n.factors
⊢ False
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
Nat.factors_count_eq
|
case inr.a
a b m n✝ p✝ n p : ℕ
hn0 : n > 0
pp : Prime p
h : replicate (count p n.factors + 1) p <+~ n.factors
this : count p (replicate (count p n.factors + 1) p) ≤ count p n.factors
⊢ False
|
simp at this
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Factorization/Basic.lean
|
finSuccEquiv'_last_apply_castSucc
|
m n : ℕ
i : Fin n
⊢ (finSuccEquiv' (Fin.last n)) i.castSucc = some i
|
rw [← <a>Fin.succAbove_last</a>, <a>finSuccEquiv'_succAbove</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Logic/Equiv/Fin.lean
|
RatFunc.liftMonoidWithZeroHom_apply_div
|
K : Type u
inst✝² : CommRing K
inst✝¹ : IsDomain K
L : Type u_1
inst✝ : CommGroupWithZero L
φ : K[X] →*₀ L
hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰
p q : K[X]
⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
|
rcases <a>eq_or_ne</a> q 0 with (rfl | hq)
|
case inl
K : Type u
inst✝² : CommRing K
inst✝¹ : IsDomain K
L : Type u_1
inst✝ : CommGroupWithZero L
φ : K[X] →*₀ L
hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰
p : K[X]
⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) 0) = φ p / φ 0
case inr
K : Type u
inst✝² : CommRing K
inst✝¹ : IsDomain K
L : Type u_1
inst✝ : CommGroupWithZero L
φ : K[X] →*₀ L
hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰
p q : K[X]
hq : q ≠ 0
⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/FieldTheory/RatFunc/Basic.lean
|
RatFunc.liftMonoidWithZeroHom_apply_div
|
case inr
K : Type u
inst✝² : CommRing K
inst✝¹ : IsDomain K
L : Type u_1
inst✝ : CommGroupWithZero L
φ : K[X] →*₀ L
hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰
p q : K[X]
hq : q ≠ 0
⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
|
simp only [← <a>RatFunc.mk_eq_div</a>, <a>RatFunc.mk_eq_localization_mk</a> _ hq, <a>RatFunc.liftMonoidWithZeroHom_apply_ofFractionRing_mk</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/FieldTheory/RatFunc/Basic.lean
|
RatFunc.liftMonoidWithZeroHom_apply_div
|
case inl
K : Type u
inst✝² : CommRing K
inst✝¹ : IsDomain K
L : Type u_1
inst✝ : CommGroupWithZero L
φ : K[X] →*₀ L
hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰
p : K[X]
⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) 0) = φ p / φ 0
|
simp only [<a>div_zero</a>, <a>map_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/FieldTheory/RatFunc/Basic.lean
|
mul_self_inj_of_nonneg
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a0 : 0 ≤ a
b0 : 0 ≤ b
h : a = -b
⊢ a = b
|
subst a
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
⊢ -b = b
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Field/Basic.lean
|
mul_self_inj_of_nonneg
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
⊢ -b = b
|
have : b = 0 := <a>le_antisymm</a> (<a>neg_nonneg</a>.1 a0) b0
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
this : b = 0
⊢ -b = b
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Field/Basic.lean
|
mul_self_inj_of_nonneg
|
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
this : b = 0
⊢ -b = b
|
rw [this, <a>neg_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/Field/Basic.lean
|
Finsupp.range_total
|
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
⊢ LinearMap.range (Finsupp.total α M R v) = span R (Set.range v)
|
ext x
|
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v)
|
constructor
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v)
case h.mpr
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v)
|
intro hx
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : x ∈ LinearMap.range (Finsupp.total α M R v)
⊢ x ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : x ∈ LinearMap.range (Finsupp.total α M R v)
⊢ x ∈ span R (Set.range v)
|
rw [<a>LinearMap.mem_range</a>] at hx
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : ∃ y, (Finsupp.total α M R v) y = x
⊢ x ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
hx : ∃ y, (Finsupp.total α M R v) y = x
⊢ x ∈ span R (Set.range v)
|
rcases hx with ⟨l, hl⟩
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ x ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ x ∈ span R (Set.range v)
|
rw [← hl]
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ (Finsupp.total α M R v) l ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ (Finsupp.total α M R v) l ∈ span R (Set.range v)
|
rw [<a>Finsupp.total_apply</a>]
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ (l.sum fun i a => a • v i) ∈ span R (Set.range v)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mp.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
l : α →₀ R
hl : (Finsupp.total α M R v) l = x
⊢ (l.sum fun i a => a • v i) ∈ span R (Set.range v)
|
exact <a>sum_mem</a> fun i _ => <a>Submodule.smul_mem</a> _ _ (<a>Submodule.subset_span</a> (<a>Set.mem_range_self</a> i))
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mpr
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v)
|
apply <a>Submodule.span_le</a>.2
|
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x : M
⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v))
|
intro x hx
|
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
hx : x ∈ Set.range v
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mpr.a
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
hx : x ∈ Set.range v
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
|
rcases hx with ⟨i, hi⟩
|
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
|
rw [<a>SetLike.mem_coe</a>, <a>LinearMap.mem_range</a>]
|
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ ∃ y, (Finsupp.total α M R v) y = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h.mpr.a.intro
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ ∃ y, (Finsupp.total α M R v) y = x
|
use <a>Finsupp.single</a> i 1
|
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ (Finsupp.total α M R v) (single i 1) = x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Finsupp.range_total
|
case h
α : Type u_1
M : Type u_2
N : Type u_3
P : Type u_4
R : Type u_5
S : Type u_6
inst✝⁹ : Semiring R
inst✝⁸ : Semiring S
inst✝⁷ : AddCommMonoid M
inst✝⁶ : Module R M
inst✝⁵ : AddCommMonoid N
inst✝⁴ : Module R N
inst✝³ : AddCommMonoid P
inst✝² : Module R P
α' : Type u_7
M' : Type u_8
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
v : α → M
v' : α' → M'
x✝ x : M
i : α
hi : v i = x
⊢ (Finsupp.total α M R v) (single i 1) = x
|
simp [hi]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Finsupp.lean
|
Filter.Tendsto.prod_atBot
|
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf γ
f g : α → γ
hf : Tendsto f atBot atBot
hg : Tendsto g atBot atBot
⊢ Tendsto (Prod.map f g) atBot atBot
|
rw [← <a>Filter.prod_atBot_atBot_eq</a>]
|
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf γ
f g : α → γ
hf : Tendsto f atBot atBot
hg : Tendsto g atBot atBot
⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Filter/AtTopBot.lean
|
Filter.Tendsto.prod_atBot
|
ι : Type u_1
ι' : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝¹ : SemilatticeInf α
inst✝ : SemilatticeInf γ
f g : α → γ
hf : Tendsto f atBot atBot
hg : Tendsto g atBot atBot
⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot
|
exact hf.prod_map_prod_atBot hg
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Order/Filter/AtTopBot.lean
|
Polynomial.divX_C_mul
|
R : Type u
S : Type v
T : Type w
A : Type z
a b : R
n : ℕ
inst✝ : Semiring R
p q : R[X]
⊢ (C a * p).divX = C a * p.divX
|
ext
|
case a
R : Type u
S : Type v
T : Type w
A : Type z
a b : R
n : ℕ
inst✝ : Semiring R
p q : R[X]
n✝ : ℕ
⊢ (C a * p).divX.coeff n✝ = (C a * p.divX).coeff n✝
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Inductions.lean
|
Polynomial.divX_C_mul
|
case a
R : Type u
S : Type v
T : Type w
A : Type z
a b : R
n : ℕ
inst✝ : Semiring R
p q : R[X]
n✝ : ℕ
⊢ (C a * p).divX.coeff n✝ = (C a * p.divX).coeff n✝
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/Inductions.lean
|
contDiffOn_univ
|
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
⊢ ContDiffOn 𝕜 n f univ ↔ ContDiff 𝕜 n f
|
constructor
|
case mp
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
⊢ ContDiffOn 𝕜 n f univ → ContDiff 𝕜 n f
case mpr
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
⊢ ContDiff 𝕜 n f → ContDiffOn 𝕜 n f univ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case mp
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
⊢ ContDiffOn 𝕜 n f univ → ContDiff 𝕜 n f
|
intro H
|
case mp
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ ContDiff 𝕜 n f
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case mp
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ ContDiff 𝕜 n f
|
use <a>ftaylorSeriesWithin</a> 𝕜 f <a>Set.univ</a>
|
case h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ HasFTaylorSeriesUpTo n f (ftaylorSeriesWithin 𝕜 f univ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ HasFTaylorSeriesUpTo n f (ftaylorSeriesWithin 𝕜 f univ)
|
rw [← <a>hasFTaylorSeriesUpToOn_univ_iff</a>]
|
case h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ HasFTaylorSeriesUpToOn n f (ftaylorSeriesWithin 𝕜 f univ) univ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case h
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
H : ContDiffOn 𝕜 n f univ
⊢ HasFTaylorSeriesUpToOn n f (ftaylorSeriesWithin 𝕜 f univ) univ
|
exact H.ftaylorSeriesWithin <a>uniqueDiffOn_univ</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case mpr
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x x₀ : E
c : F
m n : ℕ∞
p : E → FormalMultilinearSeries 𝕜 E F
⊢ ContDiff 𝕜 n f → ContDiffOn 𝕜 n f univ
|
rintro ⟨p, hp⟩ x _ m hm
|
case mpr.intro
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x✝ x₀ : E
c : F
m✝ n : ℕ∞
p✝ : E → FormalMultilinearSeries 𝕜 E F
p : E → FormalMultilinearSeries 𝕜 E F
hp : HasFTaylorSeriesUpTo n f p
x : E
a✝ : x ∈ univ
m : ℕ
hm : ↑m ≤ n
⊢ ∃ u ∈ 𝓝[insert x univ] x, ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
contDiffOn_univ
|
case mpr.intro
𝕜 : Type u
inst✝⁸ : NontriviallyNormedField 𝕜
E : Type uE
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace 𝕜 E
F : Type uF
inst✝⁵ : NormedAddCommGroup F
inst✝⁴ : NormedSpace 𝕜 F
G : Type uG
inst✝³ : NormedAddCommGroup G
inst✝² : NormedSpace 𝕜 G
X : Type uX
inst✝¹ : NormedAddCommGroup X
inst✝ : NormedSpace 𝕜 X
s s₁ t u : Set E
f f₁ : E → F
g : F → G
x✝ x₀ : E
c : F
m✝ n : ℕ∞
p✝ : E → FormalMultilinearSeries 𝕜 E F
p : E → FormalMultilinearSeries 𝕜 E F
hp : HasFTaylorSeriesUpTo n f p
x : E
a✝ : x ∈ univ
m : ℕ
hm : ↑m ≤ n
⊢ ∃ u ∈ 𝓝[insert x univ] x, ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u
|
exact ⟨<a>Set.univ</a>, <a>Filter.univ_sets</a> _, p, (hp.hasFTaylorSeriesUpToOn <a>Set.univ</a>).<a>HasFTaylorSeriesUpToOn.of_le</a> hm⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
|
NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis
|
K : Type u_1
inst✝¹ : Field K
inst✝ : NumberField K
⊢ volume (fundamentalDomain (stdBasis K)) = 1
|
rw [<a>NumberField.mixedEmbedding.fundamentalDomain_stdBasis</a>, <a>MeasureTheory.Measure.volume_eq_prod</a>, <a>MeasureTheory.Measure.prod_prod</a>, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, Complex.volume_preserving_equiv_pi.measure_preimage ?_, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, <a>Real.volume_Ico</a>, <a>sub_zero</a>, <a>ENNReal.ofReal_one</a>, <a>Finset.prod_const_one</a>, <a>Finset.prod_const_one</a>, <a>Finset.prod_const_one</a>, <a>one_mul</a>]
|
K : Type u_1
inst✝¹ : Field K
inst✝ : NumberField K
⊢ MeasurableSet (Set.univ.pi fun x => Set.Ico 0 1)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
|
NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis
|
K : Type u_1
inst✝¹ : Field K
inst✝ : NumberField K
⊢ MeasurableSet (Set.univ.pi fun x => Set.Ico 0 1)
|
exact <a>MeasurableSet.pi</a> <a>Set.countable_univ</a> (fun _ _ => <a>measurableSet_Ico</a>)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
|
toIocDiv_eq_sub
|
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b = toIocDiv hp 0 (b - a)
|
rw [<a>toIocDiv_sub_eq_toIocDiv_add</a>, <a>zero_add</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Order/ToIntervalMod.lean
|
Int.isUnit_eq_one_or
|
u v : ℤ
hu : IsUnit u
⊢ u = 1 ∨ u = -1
|
simpa only [<a>Int.natAbs_of_isUnit</a> hu] using <a>Int.natAbs_eq</a> u
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Group/Int.lean
|
Associates.factors_mk
|
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a : α
h : a ≠ 0
⊢ (Associates.mk a).factors = ↑(factors' a)
|
classical apply <a>dif_neg</a> apply <a>mt</a> <a>Associates.mk_eq_zero</a>.1 h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
Associates.factors_mk
|
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a : α
h : a ≠ 0
⊢ (Associates.mk a).factors = ↑(factors' a)
|
apply <a>dif_neg</a>
|
case hnc
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a : α
h : a ≠ 0
⊢ ¬Associates.mk a = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
Associates.factors_mk
|
case hnc
α : Type u_1
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : UniqueFactorizationMonoid α
a : α
h : a ≠ 0
⊢ ¬Associates.mk a = 0
|
apply <a>mt</a> <a>Associates.mk_eq_zero</a>.1 h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
⊢ comap f J ∈ (comap f I).minimalPrimes
|
have := h.1.1
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
⊢ comap f J ∈ (comap f I).minimalPrimes
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
⊢ comap f J ∈ (comap f I).minimalPrimes
|
refine ⟨⟨<a>inferInstance</a>, <a>Ideal.comap_mono</a> h.1.2⟩, ?_⟩
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
⊢ ∀ ⦃b : Ideal R⦄,
b ∈ {p | p.IsPrime ∧ comap f I ≤ p} → (fun x x_1 => x ≤ x_1) b (comap f J) → (fun x x_1 => x ≤ x_1) (comap f J) b
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
⊢ ∀ ⦃b : Ideal R⦄,
b ∈ {p | p.IsPrime ∧ comap f I ≤ p} → (fun x x_1 => x ≤ x_1) b (comap f J) → (fun x x_1 => x ≤ x_1) (comap f J) b
|
rintro K ⟨hK, e₁⟩ e₂
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
⊢ comap f J ≤ K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
⊢ comap f J ≤ K
|
have : <a>RingHom.ker</a> f ≤ K := (<a>Ideal.comap_mono</a> <a>bot_le</a>).<a>LE.le.trans</a> e₁
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ comap f J ≤ K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ comap f J ≤ K
|
rw [← sup_eq_left.mpr this, <a>RingHom.ker_eq_comap_bot</a>, ← <a>Ideal.comap_map_of_surjective</a> f hf]
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ comap f J ≤ comap f (map f K)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
case intro
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ comap f J ≤ comap f (map f K)
|
apply <a>Ideal.comap_mono</a> _
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ J ≤ map f K
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ J ≤ map f K
|
apply h.2 _ _
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ map f K ∈ {p | p.IsPrime ∧ I ≤ p}
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ map f K ≤ J
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ map f K ∈ {p | p.IsPrime ∧ I ≤ p}
|
exact ⟨<a>Ideal.map_isPrime_of_surjective</a> hf this, <a>Ideal.le_map_of_comap_le_of_surjective</a> f hf e₁⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
Ideal.minimal_primes_comap_of_surjective
|
R : Type u_1
S : Type u_2
inst✝¹ : CommRing R
inst✝ : CommRing S
I✝ J✝ : Ideal R
f : R →+* S
hf : Function.Surjective ⇑f
I J : Ideal S
h : J ∈ I.minimalPrimes
this✝ : J.IsPrime
K : Ideal R
hK : K.IsPrime
e₁ : comap f I ≤ K
e₂ : K ≤ comap f J
this : RingHom.ker f ≤ K
⊢ map f K ≤ J
|
exact <a>Ideal.map_le_of_le_comap</a> e₂
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/MinimalPrime.lean
|
CategoryTheory.Functor.conj_eqToHom_iff_heq
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
β : Sort u_1
D : Type u₂
inst✝ : Category.{v₂, u₂} D
W X Y Z : C
f : W ⟶ X
g : Y ⟶ Z
h : W = Y
h' : X = Z
⊢ f = eqToHom h ≫ g ≫ eqToHom ⋯ ↔ HEq f g
|
cases h
|
case refl
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
β : Sort u_1
D : Type u₂
inst✝ : Category.{v₂, u₂} D
W X Z : C
f : W ⟶ X
h' : X = Z
g : W ⟶ Z
⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/EqToHom.lean
|
CategoryTheory.Functor.conj_eqToHom_iff_heq
|
case refl
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
β : Sort u_1
D : Type u₂
inst✝ : Category.{v₂, u₂} D
W X Z : C
f : W ⟶ X
h' : X = Z
g : W ⟶ Z
⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
|
cases h'
|
case refl.refl
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
β : Sort u_1
D : Type u₂
inst✝ : Category.{v₂, u₂} D
W X : C
f g : W ⟶ X
⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/EqToHom.lean
|
CategoryTheory.Functor.conj_eqToHom_iff_heq
|
case refl.refl
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
β : Sort u_1
D : Type u₂
inst✝ : Category.{v₂, u₂} D
W X : C
f g : W ⟶ X
⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/EqToHom.lean
|
CategoryTheory.Subobject.isIso_arrow_iff_eq_top
|
C : Type u₁
inst✝¹ : Category.{v₁, u₁} C
X Y✝ Z : C
D : Type u₂
inst✝ : Category.{v₂, u₂} D
Y : C
P : Subobject Y
⊢ IsIso P.arrow ↔ P = ⊤
|
rw [<a>CategoryTheory.Subobject.isIso_iff_mk_eq_top</a>, <a>CategoryTheory.Subobject.mk_arrow</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/CategoryTheory/Subobject/Lattice.lean
|
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj
|
C : Type u_1
inst✝¹ : Category.{?u.28, u_1} C
inst✝ : Abelian C
T : Triangle (CochainComplex C ℤ)
n₀ n₁ : ℤ
h : n₀ + 1 = n₁
⊢ 1 + n₀ = n₁
|
omega
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Homology/HomotopyCategory/ShortExact.lean
|
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj
|
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Abelian C
T : Triangle (CochainComplex C ℤ)
n₀ n₁ : ℤ
h : n₀ + 1 = n₁
⊢ (homologyFunctor C (up ℤ) 0).homologySequenceδ ((quotient C (up ℤ)).mapTriangle.obj T) n₀ n₁ h =
(homologyFunctorFactors C (up ℤ) n₀).hom.app T.obj₃ ≫
(HomologicalComplex.homologyFunctor C (up ℤ) 0).shiftMap T.mor₃ n₀ n₁ ⋯ ≫
(homologyFunctorFactors C (up ℤ) n₁).inv.app T.obj₁
|
apply <a>HomotopyCategory.homologyFunctor_shiftMap</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Homology/HomotopyCategory/ShortExact.lean
|
Polynomial.prime_X
|
R : Type u
S : Type v
T : Type w
a b : R
n : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
p q : R[X]
⊢ Prime X
|
convert <a>Polynomial.prime_X_sub_C</a> (0 : R)
|
case h.e'_3
R : Type u
S : Type v
T : Type w
a b : R
n : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
p q : R[X]
⊢ X = X - C 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/RingDivision.lean
|
Polynomial.prime_X
|
case h.e'_3
R : Type u
S : Type v
T : Type w
a b : R
n : ℕ
inst✝¹ : CommRing R
inst✝ : IsDomain R
p q : R[X]
⊢ X = X - C 0
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Polynomial/RingDivision.lean
|
PhragmenLindelof.quadrant_II
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
z : ℂ
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
hz_re : z.re ≤ 0
hz_im : 0 ≤ z.im
⊢ ‖f z‖ ≤ C
|
obtain ⟨z, rfl⟩ : ∃ z', z' * <a>Complex.I</a> = z := ⟨z / <a>Complex.I</a>, <a>div_mul_cancel₀</a> _ <a>Complex.I_ne_zero</a>⟩
|
case intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : (z * I).re ≤ 0
hz_im : 0 ≤ (z * I).im
⊢ ‖f (z * I)‖ ≤ C
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
case intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : (z * I).re ≤ 0
hz_im : 0 ≤ (z * I).im
⊢ ‖f (z * I)‖ ≤ C
|
simp only [<a>Complex.mul_I_re</a>, <a>Complex.mul_I_im</a>, <a>neg_nonpos</a>] at hz_re hz_im
|
case intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
⊢ ‖f (z * I)‖ ≤ C
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
case intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
|
rcases hB with ⟨c, hc, B, hO⟩
|
case intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
case intro.intro.intro.intro
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
|
refine <a>PhragmenLindelof.quadrant_I</a> (hd.comp (differentiable_id.mul_const _).<a>Differentiable.diffContOnCl</a> H) ⟨c, hc, B, ?_⟩ him (fun x hx => ?_) hz_im hz_re
|
case intro.intro.intro.intro.refine_1
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
⊢ (f ∘ fun x => x * I) =O[cobounded ℂ ⊓ 𝓟 (Ioi 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
case intro.intro.intro.intro.refine_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
x : ℝ
hx : 0 ≤ x
⊢ ‖(f ∘ fun x => x * I) (↑x * I)‖ ≤ C
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
w : ℂ
hw : w ∈ Ioi 0 ×ℂ Ioi 0
⊢ (fun x => x * I) w ∈ Iio 0 ×ℂ Ioi 0
|
simpa only [<a>Complex.mem_reProdIm</a>, <a>Complex.mul_I_re</a>, <a>Complex.mul_I_im</a>, <a>neg_lt_zero</a>, <a>Set.mem_Iio</a>] using hw.symm
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
case intro.intro.intro.intro.refine_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
x : ℝ
hx : 0 ≤ x
⊢ ‖(f ∘ fun x => x * I) (↑x * I)‖ ≤ C
|
rw [<a>Function.comp_apply</a>, <a>mul_assoc</a>, <a>Complex.I_mul_I</a>, <a>mul_neg_one</a>, ← <a>Complex.ofReal_neg</a>]
|
case intro.intro.intro.intro.refine_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
x : ℝ
hx : 0 ≤ x
⊢ ‖f ↑(-x)‖ ≤ C
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
PhragmenLindelof.quadrant_II
|
case intro.intro.intro.intro.refine_2
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
a b C : ℝ
f g : ℂ → E
hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0)
hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C
him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C
z : ℂ
hz_re : 0 ≤ z.im
hz_im : 0 ≤ z.re
H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0)
c : ℝ
hc : c < 2
B : ℝ
hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c)
x : ℝ
hx : 0 ≤ x
⊢ ‖f ↑(-x)‖ ≤ C
|
exact hre _ (<a>neg_nonpos</a>.2 hx)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Complex/PhragmenLindelof.lean
|
groupCohomology.oneCoboundaries_eq_bot_of_isTrivial
|
k G : Type u
inst✝² : CommRing k
inst✝¹ : Group G
A✝ A : Rep k G
inst✝ : A.IsTrivial
⊢ oneCoboundaries A = ⊥
|
simp_rw [<a>groupCohomology.oneCoboundaries</a>, <a>groupCohomology.dZero_eq_zero</a>]
|
k G : Type u
inst✝² : CommRing k
inst✝¹ : Group G
A✝ A : Rep k G
inst✝ : A.IsTrivial
⊢ LinearMap.range (LinearMap.codRestrict (oneCocycles A) 0 ⋯) = ⊥
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
|
groupCohomology.oneCoboundaries_eq_bot_of_isTrivial
|
k G : Type u
inst✝² : CommRing k
inst✝¹ : Group G
A✝ A : Rep k G
inst✝ : A.IsTrivial
⊢ LinearMap.range (LinearMap.codRestrict (oneCocycles A) 0 ⋯) = ⊥
|
exact <a>LinearMap.range_eq_bot</a>.2 <a>rfl</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
|
PEquiv.mem_ofSet_self_iff
|
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
⊢ a ∈ (ofSet s) a ↔ a ∈ s
|
dsimp [<a>PEquiv.ofSet</a>]
|
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/PEquiv.lean
|
PEquiv.mem_ofSet_self_iff
|
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s
|
split_ifs <;> simp [*]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/PEquiv.lean
|
Cardinal.nat_lt_aleph0
|
α β : Type u
n : ℕ
⊢ succ ↑n ≤ ℵ₀
|
rw [← <a>Cardinal.nat_succ</a>, ← <a>Cardinal.lift_mk_fin</a>, <a>Cardinal.aleph0</a>, <a>Cardinal.lift_mk_le</a>.{u}]
|
α β : Type u
n : ℕ
⊢ Nonempty (Fin n.succ ↪ ℕ)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Cardinal/Basic.lean
|
Cardinal.nat_lt_aleph0
|
α β : Type u
n : ℕ
⊢ Nonempty (Fin n.succ ↪ ℕ)
|
exact ⟨⟨(↑), fun a b => <a>Fin.ext</a>⟩⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Cardinal/Basic.lean
|
Ideal.sum_ramification_inertia
|
R : Type u
inst✝¹⁷ : CommRing R
S : Type v
inst✝¹⁶ : CommRing S
f : R →+* S
p : Ideal R
P : Ideal S
inst✝¹⁵ : IsDedekindDomain S
inst✝¹⁴ : Algebra R S
K : Type u_1
L : Type u_2
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : IsDedekindDomain R
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra S L
inst✝⁷ : IsFractionRing S L
inst✝⁶ : Algebra K L
inst✝⁵ : Algebra R L
inst✝⁴ : IsScalarTower R S L
inst✝³ : IsScalarTower R K L
inst✝² : IsNoetherian R S
inst✝¹ : IsIntegralClosure S R L
inst✝ : p.IsMaximal
hp0 : p ≠ ⊥
⊢ ∑ P ∈ (factors (map (algebraMap R S) p)).toFinset,
ramificationIdx (algebraMap R S) p P * inertiaDeg (algebraMap R S) p P =
finrank K L
|
set e := <a>Ideal.ramificationIdx</a> (<a>algebraMap</a> R S) p
|
R : Type u
inst✝¹⁷ : CommRing R
S : Type v
inst✝¹⁶ : CommRing S
f : R →+* S
p : Ideal R
P : Ideal S
inst✝¹⁵ : IsDedekindDomain S
inst✝¹⁴ : Algebra R S
K : Type u_1
L : Type u_2
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : IsDedekindDomain R
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra S L
inst✝⁷ : IsFractionRing S L
inst✝⁶ : Algebra K L
inst✝⁵ : Algebra R L
inst✝⁴ : IsScalarTower R S L
inst✝³ : IsScalarTower R K L
inst✝² : IsNoetherian R S
inst✝¹ : IsIntegralClosure S R L
inst✝ : p.IsMaximal
hp0 : p ≠ ⊥
e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p
⊢ ∑ P ∈ (factors (map (algebraMap R S) p)).toFinset, e P * inertiaDeg (algebraMap R S) p P = finrank K L
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/NumberTheory/RamificationInertia.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.