full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3.h.e_a C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.op = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).op
congr 1
case h.e'_3.h.e_a.e_f C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂ = (Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3.h.e_a.e_f C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂ = (Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)
ext
case h.e'_3.h.e_a.e_f.h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.left = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).left
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3.h.e_a.e_f.h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.left = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).left
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
inv_mul_eq_iff_eq_mul
α : Type u_1 β : Type u_2 G : Type u_3 M : Type u_4 inst✝ : Group G a b c d : G n : ℤ h : a⁻¹ * b = c ⊢ b = a * c
rw [← h, <a>mul_inv_cancel_left</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Group/Basic.lean
inv_mul_eq_iff_eq_mul
α : Type u_1 β : Type u_2 G : Type u_3 M : Type u_4 inst✝ : Group G a b c d : G n : ℤ h : b = a * c ⊢ a⁻¹ * b = c
rw [h, <a>inv_mul_cancel_left</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Group/Basic.lean
ciSup_eq_ite
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 inst✝¹ : ConditionallyCompleteLattice α s t : Set α a b : α p : Prop inst✝ : Decidable p f : p → α ⊢ ⨆ (h : p), f h = if h : p then f h else sSup ∅
by_cases H : p <;> simp [<a>ciSup_neg</a>, H]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
Relation.iff_comp
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ζ : Type u_6 r✝ : α → β → Prop p : β → γ → Prop q : γ → δ → Prop r : Prop → α → Prop this : (fun x x_1 => x ↔ x_1) = fun x x_1 => x = x_1 ⊢ (fun x x_1 => x ↔ x_1) ∘r r = r
rw [this, <a>Relation.eq_comp</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Logic/Relation.lean
Relation.iff_comp
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ζ : Type u_6 r✝ : α → β → Prop p : β → γ → Prop q : γ → δ → Prop r : Prop → α → Prop ⊢ (fun x x_1 => x ↔ x_1) = fun x x_1 => x = x_1
funext a b
case h.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ζ : Type u_6 r✝ : α → β → Prop p : β → γ → Prop q : γ → δ → Prop r : Prop → α → Prop a b : Prop ⊢ (a ↔ b) = (a = b)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Logic/Relation.lean
Relation.iff_comp
case h.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ζ : Type u_6 r✝ : α → β → Prop p : β → γ → Prop q : γ → δ → Prop r : Prop → α → Prop a b : Prop ⊢ (a ↔ b) = (a = b)
exact <a>iff_eq_eq</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Logic/Relation.lean
Part.bind_map
α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → β x : Part α g : β → Part γ ⊢ (map f x).bind g = x.bind fun y => g (f y)
rw [← <a>Part.bind_some_eq_map</a>, <a>Part.bind_assoc</a>]
α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → β x : Part α g : β → Part γ ⊢ (x.bind fun x => ((some ∘ f) x).bind g) = x.bind fun y => g (f y)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Part.lean
Part.bind_map
α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → β x : Part α g : β → Part γ ⊢ (x.bind fun x => ((some ∘ f) x).bind g) = x.bind fun y => g (f y)
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Part.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ eval (1 / 4) (bernoulli 3) = 3 / 64
simp_rw [<a>Polynomial.bernoulli</a>, <a>Finset.sum_range_succ</a>, <a>Polynomial.eval_add</a>, <a>Polynomial.eval_monomial</a>]
⊢ eval (1 / 4) (∑ i ∈ Finset.range 0, (monomial (3 - i)) (_root_.bernoulli i * ↑(Nat.choose 3 i))) + _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + _root_.bernoulli 1 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + _root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + _root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ eval (1 / 4) (∑ i ∈ Finset.range 0, (monomial (3 - i)) (_root_.bernoulli i * ↑(Nat.choose 3 i))) + _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + _root_.bernoulli 1 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + _root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + _root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
rw [<a>Finset.sum_range_zero</a>, <a>Polynomial.eval_zero</a>, <a>zero_add</a>, <a>bernoulli_one</a>]
⊢ _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + _root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + _root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ _root_.bernoulli 0 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + _root_.bernoulli 2 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + _root_.bernoulli 3 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
rw [<a>bernoulli_eq_bernoulli'_of_ne_one</a> <a>zero_ne_one</a>, <a>bernoulli'_zero</a>, <a>bernoulli_eq_bernoulli'_of_ne_one</a> (by decide : 2 ≠ 1), <a>bernoulli'_two</a>, <a>bernoulli_eq_bernoulli'_of_ne_one</a> (by decide : 3 ≠ 1), <a>bernoulli'_three</a>]
⊢ 1 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + 1 / 6 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + 0 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ 1 * ↑(Nat.choose 3 0) * (1 / 4) ^ (3 - 0) + -1 / 2 * ↑(Nat.choose 3 1) * (1 / 4) ^ (3 - 1) + 1 / 6 * ↑(Nat.choose 3 2) * (1 / 4) ^ (3 - 2) + 0 * ↑(Nat.choose 3 3) * (1 / 4) ^ (3 - 3) = 3 / 64
norm_num
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ 2 ≠ 1
decide
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Polynomial.bernoulli_three_eval_one_quarter
⊢ 3 ≠ 1
decide
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/ZetaValues.lean
Nat.factors_count_eq
a b m n✝ p✝ n p : ℕ ⊢ count p n.factors = n.factorization p
rcases n.eq_zero_or_pos with (rfl | hn0)
case inl a b m n p✝ p : ℕ ⊢ count p (factors 0) = (factorization 0) p case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 ⊢ count p n.factors = n.factorization p
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 ⊢ count p n.factors = n.factorization p
if pp : p.Prime then ?_ else rw [<a>List.count_eq_zero_of_not_mem</a> (<a>mt</a> <a>Nat.prime_of_mem_factors</a> pp)] simp [<a>Nat.factorization</a>, pp]
case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors = n.factorization p
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors = n.factorization p
simp only [<a>Nat.factorization_def</a> _ pp]
case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors = padicValNat p n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors = padicValNat p n
apply <a>le_antisymm</a>
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors ≤ padicValNat p n case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ padicValNat p n ≤ count p n.factors
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inl a b m n p✝ p : ℕ ⊢ count p (factors 0) = (factorization 0) p
simp [<a>Nat.factorization</a>, <a>List.count</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : ¬Prime p ⊢ count p n.factors = n.factorization p
rw [<a>List.count_eq_zero_of_not_mem</a> (<a>mt</a> <a>Nat.prime_of_mem_factors</a> pp)]
a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : ¬Prime p ⊢ 0 = n.factorization p
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : ¬Prime p ⊢ 0 = n.factorization p
simp [<a>Nat.factorization</a>, pp]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ count p n.factors ≤ padicValNat p n
rw [<a>le_padicValNat_iff_replicate_subperm_factors</a> pp hn0.ne']
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ replicate (count p n.factors) p <+~ n.factors
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ replicate (count p n.factors) p <+~ n.factors
exact List.le_count_iff_replicate_sublist.mp <a>le_rfl</a> |>.<a>List.Sublist.subperm</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ padicValNat p n ≤ count p n.factors
rw [← <a>Nat.lt_add_one_iff</a>, <a>lt_iff_not_ge</a>, <a>ge_iff_le</a>, <a>le_padicValNat_iff_replicate_subperm_factors</a> pp hn0.ne']
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ ¬replicate (count p n.factors + 1) p <+~ n.factors
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p ⊢ ¬replicate (count p n.factors + 1) p <+~ n.factors
intro h
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p h : replicate (count p n.factors + 1) p <+~ n.factors ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p h : replicate (count p n.factors + 1) p <+~ n.factors ⊢ False
have := h.count_le p
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p h : replicate (count p n.factors + 1) p <+~ n.factors this : count p (replicate (count p n.factors + 1) p) ≤ count p n.factors ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factors_count_eq
case inr.a a b m n✝ p✝ n p : ℕ hn0 : n > 0 pp : Prime p h : replicate (count p n.factors + 1) p <+~ n.factors this : count p (replicate (count p n.factors + 1) p) ≤ count p n.factors ⊢ False
simp at this
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Factorization/Basic.lean
finSuccEquiv'_last_apply_castSucc
m n : ℕ i : Fin n ⊢ (finSuccEquiv' (Fin.last n)) i.castSucc = some i
rw [← <a>Fin.succAbove_last</a>, <a>finSuccEquiv'_succAbove</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Logic/Equiv/Fin.lean
RatFunc.liftMonoidWithZeroHom_apply_div
K : Type u inst✝² : CommRing K inst✝¹ : IsDomain K L : Type u_1 inst✝ : CommGroupWithZero L φ : K[X] →*₀ L hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰ p q : K[X] ⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
rcases <a>eq_or_ne</a> q 0 with (rfl | hq)
case inl K : Type u inst✝² : CommRing K inst✝¹ : IsDomain K L : Type u_1 inst✝ : CommGroupWithZero L φ : K[X] →*₀ L hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰ p : K[X] ⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) 0) = φ p / φ 0 case inr K : Type u inst✝² : CommRing K inst✝¹ : IsDomain K L : Type u_1 inst✝ : CommGroupWithZero L φ : K[X] →*₀ L hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰ p q : K[X] hq : q ≠ 0 ⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/RatFunc/Basic.lean
RatFunc.liftMonoidWithZeroHom_apply_div
case inr K : Type u inst✝² : CommRing K inst✝¹ : IsDomain K L : Type u_1 inst✝ : CommGroupWithZero L φ : K[X] →*₀ L hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰ p q : K[X] hq : q ≠ 0 ⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) q) = φ p / φ q
simp only [← <a>RatFunc.mk_eq_div</a>, <a>RatFunc.mk_eq_localization_mk</a> _ hq, <a>RatFunc.liftMonoidWithZeroHom_apply_ofFractionRing_mk</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/RatFunc/Basic.lean
RatFunc.liftMonoidWithZeroHom_apply_div
case inl K : Type u inst✝² : CommRing K inst✝¹ : IsDomain K L : Type u_1 inst✝ : CommGroupWithZero L φ : K[X] →*₀ L hφ : K[X]⁰ ≤ Submonoid.comap φ L⁰ p : K[X] ⊢ (liftMonoidWithZeroHom φ hφ) ((algebraMap K[X] (RatFunc K)) p / (algebraMap K[X] (RatFunc K)) 0) = φ p / φ 0
simp only [<a>div_zero</a>, <a>map_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/RatFunc/Basic.lean
mul_self_inj_of_nonneg
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α a b c d : α n : ℤ a0 : 0 ≤ a b0 : 0 ≤ b h : a = -b ⊢ a = b
subst a
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b ⊢ -b = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/Field/Basic.lean
mul_self_inj_of_nonneg
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b ⊢ -b = b
have : b = 0 := <a>le_antisymm</a> (<a>neg_nonneg</a>.1 a0) b0
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b this : b = 0 ⊢ -b = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/Field/Basic.lean
mul_self_inj_of_nonneg
ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : LinearOrderedField α b c d : α n : ℤ b0 : 0 ≤ b a0 : 0 ≤ -b this : b = 0 ⊢ -b = b
rw [this, <a>neg_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/Field/Basic.lean
Finsupp.range_total
α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' ⊢ LinearMap.range (Finsupp.total α M R v) = span R (Set.range v)
ext x
case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) ↔ x ∈ span R (Set.range v)
constructor
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v) case h.mpr α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ LinearMap.range (Finsupp.total α M R v) → x ∈ span R (Set.range v)
intro hx
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : x ∈ LinearMap.range (Finsupp.total α M R v) ⊢ x ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : x ∈ LinearMap.range (Finsupp.total α M R v) ⊢ x ∈ span R (Set.range v)
rw [<a>LinearMap.mem_range</a>] at hx
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : ∃ y, (Finsupp.total α M R v) y = x ⊢ x ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M hx : ∃ y, (Finsupp.total α M R v) y = x ⊢ x ∈ span R (Set.range v)
rcases hx with ⟨l, hl⟩
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ x ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ x ∈ span R (Set.range v)
rw [← hl]
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ (Finsupp.total α M R v) l ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ (Finsupp.total α M R v) l ∈ span R (Set.range v)
rw [<a>Finsupp.total_apply</a>]
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ (l.sum fun i a => a • v i) ∈ span R (Set.range v)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mp.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M l : α →₀ R hl : (Finsupp.total α M R v) l = x ⊢ (l.sum fun i a => a • v i) ∈ span R (Set.range v)
exact <a>sum_mem</a> fun i _ => <a>Submodule.smul_mem</a> _ _ (<a>Submodule.subset_span</a> (<a>Set.mem_range_self</a> i))
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mpr α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ x ∈ span R (Set.range v) → x ∈ LinearMap.range (Finsupp.total α M R v)
apply <a>Submodule.span_le</a>.2
case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x : M ⊢ Set.range v ⊆ ↑(LinearMap.range (Finsupp.total α M R v))
intro x hx
case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M hx : x ∈ Set.range v ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mpr.a α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M hx : x ∈ Set.range v ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
rcases hx with ⟨i, hi⟩
case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ x ∈ ↑(LinearMap.range (Finsupp.total α M R v))
rw [<a>SetLike.mem_coe</a>, <a>LinearMap.mem_range</a>]
case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ ∃ y, (Finsupp.total α M R v) y = x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h.mpr.a.intro α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ ∃ y, (Finsupp.total α M R v) y = x
use <a>Finsupp.single</a> i 1
case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ (Finsupp.total α M R v) (single i 1) = x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.range_total
case h α : Type u_1 M : Type u_2 N : Type u_3 P : Type u_4 R : Type u_5 S : Type u_6 inst✝⁹ : Semiring R inst✝⁸ : Semiring S inst✝⁷ : AddCommMonoid M inst✝⁶ : Module R M inst✝⁵ : AddCommMonoid N inst✝⁴ : Module R N inst✝³ : AddCommMonoid P inst✝² : Module R P α' : Type u_7 M' : Type u_8 inst✝¹ : AddCommMonoid M' inst✝ : Module R M' v : α → M v' : α' → M' x✝ x : M i : α hi : v i = x ⊢ (Finsupp.total α M R v) (single i 1) = x
simp [hi]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Finsupp.lean
Filter.Tendsto.prod_atBot
ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf γ f g : α → γ hf : Tendsto f atBot atBot hg : Tendsto g atBot atBot ⊢ Tendsto (Prod.map f g) atBot atBot
rw [← <a>Filter.prod_atBot_atBot_eq</a>]
ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf γ f g : α → γ hf : Tendsto f atBot atBot hg : Tendsto g atBot atBot ⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/AtTopBot.lean
Filter.Tendsto.prod_atBot
ι : Type u_1 ι' : Type u_2 α : Type u_3 β : Type u_4 γ : Type u_5 inst✝¹ : SemilatticeInf α inst✝ : SemilatticeInf γ f g : α → γ hf : Tendsto f atBot atBot hg : Tendsto g atBot atBot ⊢ Tendsto (Prod.map f g) (atBot ×ˢ atBot) atBot
exact hf.prod_map_prod_atBot hg
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/AtTopBot.lean
Polynomial.divX_C_mul
R : Type u S : Type v T : Type w A : Type z a b : R n : ℕ inst✝ : Semiring R p q : R[X] ⊢ (C a * p).divX = C a * p.divX
ext
case a R : Type u S : Type v T : Type w A : Type z a b : R n : ℕ inst✝ : Semiring R p q : R[X] n✝ : ℕ ⊢ (C a * p).divX.coeff n✝ = (C a * p.divX).coeff n✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Inductions.lean
Polynomial.divX_C_mul
case a R : Type u S : Type v T : Type w A : Type z a b : R n : ℕ inst✝ : Semiring R p q : R[X] n✝ : ℕ ⊢ (C a * p).divX.coeff n✝ = (C a * p.divX).coeff n✝
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/Inductions.lean
contDiffOn_univ
𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F ⊢ ContDiffOn 𝕜 n f univ ↔ ContDiff 𝕜 n f
constructor
case mp 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F ⊢ ContDiffOn 𝕜 n f univ → ContDiff 𝕜 n f case mpr 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F ⊢ ContDiff 𝕜 n f → ContDiffOn 𝕜 n f univ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case mp 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F ⊢ ContDiffOn 𝕜 n f univ → ContDiff 𝕜 n f
intro H
case mp 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ ContDiff 𝕜 n f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case mp 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ ContDiff 𝕜 n f
use <a>ftaylorSeriesWithin</a> 𝕜 f <a>Set.univ</a>
case h 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ HasFTaylorSeriesUpTo n f (ftaylorSeriesWithin 𝕜 f univ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case h 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ HasFTaylorSeriesUpTo n f (ftaylorSeriesWithin 𝕜 f univ)
rw [← <a>hasFTaylorSeriesUpToOn_univ_iff</a>]
case h 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ HasFTaylorSeriesUpToOn n f (ftaylorSeriesWithin 𝕜 f univ) univ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case h 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F H : ContDiffOn 𝕜 n f univ ⊢ HasFTaylorSeriesUpToOn n f (ftaylorSeriesWithin 𝕜 f univ) univ
exact H.ftaylorSeriesWithin <a>uniqueDiffOn_univ</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case mpr 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x x₀ : E c : F m n : ℕ∞ p : E → FormalMultilinearSeries 𝕜 E F ⊢ ContDiff 𝕜 n f → ContDiffOn 𝕜 n f univ
rintro ⟨p, hp⟩ x _ m hm
case mpr.intro 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x✝ x₀ : E c : F m✝ n : ℕ∞ p✝ : E → FormalMultilinearSeries 𝕜 E F p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpTo n f p x : E a✝ : x ∈ univ m : ℕ hm : ↑m ≤ n ⊢ ∃ u ∈ 𝓝[insert x univ] x, ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
contDiffOn_univ
case mpr.intro 𝕜 : Type u inst✝⁸ : NontriviallyNormedField 𝕜 E : Type uE inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace 𝕜 E F : Type uF inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace 𝕜 F G : Type uG inst✝³ : NormedAddCommGroup G inst✝² : NormedSpace 𝕜 G X : Type uX inst✝¹ : NormedAddCommGroup X inst✝ : NormedSpace 𝕜 X s s₁ t u : Set E f f₁ : E → F g : F → G x✝ x₀ : E c : F m✝ n : ℕ∞ p✝ : E → FormalMultilinearSeries 𝕜 E F p : E → FormalMultilinearSeries 𝕜 E F hp : HasFTaylorSeriesUpTo n f p x : E a✝ : x ∈ univ m : ℕ hm : ↑m ≤ n ⊢ ∃ u ∈ 𝓝[insert x univ] x, ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u
exact ⟨<a>Set.univ</a>, <a>Filter.univ_sets</a> _, p, (hp.hasFTaylorSeriesUpToOn <a>Set.univ</a>).<a>HasFTaylorSeriesUpToOn.of_le</a> hm⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/ContDiff/Defs.lean
NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K ⊢ volume (fundamentalDomain (stdBasis K)) = 1
rw [<a>NumberField.mixedEmbedding.fundamentalDomain_stdBasis</a>, <a>MeasureTheory.Measure.volume_eq_prod</a>, <a>MeasureTheory.Measure.prod_prod</a>, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, Complex.volume_preserving_equiv_pi.measure_preimage ?_, <a>MeasureTheory.volume_pi</a>, <a>MeasureTheory.Measure.pi_pi</a>, <a>Real.volume_Ico</a>, <a>sub_zero</a>, <a>ENNReal.ofReal_one</a>, <a>Finset.prod_const_one</a>, <a>Finset.prod_const_one</a>, <a>Finset.prod_const_one</a>, <a>one_mul</a>]
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K ⊢ MeasurableSet (Set.univ.pi fun x => Set.Ico 0 1)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis
K : Type u_1 inst✝¹ : Field K inst✝ : NumberField K ⊢ MeasurableSet (Set.univ.pi fun x => Set.Ico 0 1)
exact <a>MeasurableSet.pi</a> <a>Set.countable_univ</a> (fun _ _ => <a>measurableSet_Ico</a>)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/NumberField/CanonicalEmbedding/Basic.lean
toIocDiv_eq_sub
α : Type u_1 inst✝ : LinearOrderedAddCommGroup α hα : Archimedean α p : α hp : 0 < p a✝ b✝ c : α n : ℤ a b : α ⊢ toIocDiv hp a b = toIocDiv hp 0 (b - a)
rw [<a>toIocDiv_sub_eq_toIocDiv_add</a>, <a>zero_add</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/ToIntervalMod.lean
Int.isUnit_eq_one_or
u v : ℤ hu : IsUnit u ⊢ u = 1 ∨ u = -1
simpa only [<a>Int.natAbs_of_isUnit</a> hu] using <a>Int.natAbs_eq</a> u
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Group/Int.lean
Associates.factors_mk
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : α h : a ≠ 0 ⊢ (Associates.mk a).factors = ↑(factors' a)
classical apply <a>dif_neg</a> apply <a>mt</a> <a>Associates.mk_eq_zero</a>.1 h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.factors_mk
α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : α h : a ≠ 0 ⊢ (Associates.mk a).factors = ↑(factors' a)
apply <a>dif_neg</a>
case hnc α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : α h : a ≠ 0 ⊢ ¬Associates.mk a = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.factors_mk
case hnc α : Type u_1 inst✝¹ : CancelCommMonoidWithZero α inst✝ : UniqueFactorizationMonoid α a : α h : a ≠ 0 ⊢ ¬Associates.mk a = 0
apply <a>mt</a> <a>Associates.mk_eq_zero</a>.1 h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes ⊢ comap f J ∈ (comap f I).minimalPrimes
have := h.1.1
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime ⊢ comap f J ∈ (comap f I).minimalPrimes
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime ⊢ comap f J ∈ (comap f I).minimalPrimes
refine ⟨⟨<a>inferInstance</a>, <a>Ideal.comap_mono</a> h.1.2⟩, ?_⟩
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime ⊢ ∀ ⦃b : Ideal R⦄, b ∈ {p | p.IsPrime ∧ comap f I ≤ p} → (fun x x_1 => x ≤ x_1) b (comap f J) → (fun x x_1 => x ≤ x_1) (comap f J) b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime ⊢ ∀ ⦃b : Ideal R⦄, b ∈ {p | p.IsPrime ∧ comap f I ≤ p} → (fun x x_1 => x ≤ x_1) b (comap f J) → (fun x x_1 => x ≤ x_1) (comap f J) b
rintro K ⟨hK, e₁⟩ e₂
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J ⊢ comap f J ≤ K
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J ⊢ comap f J ≤ K
have : <a>RingHom.ker</a> f ≤ K := (<a>Ideal.comap_mono</a> <a>bot_le</a>).<a>LE.le.trans</a> e₁
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ comap f J ≤ K
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ comap f J ≤ K
rw [← sup_eq_left.mpr this, <a>RingHom.ker_eq_comap_bot</a>, ← <a>Ideal.comap_map_of_surjective</a> f hf]
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ comap f J ≤ comap f (map f K)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ comap f J ≤ comap f (map f K)
apply <a>Ideal.comap_mono</a> _
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ J ≤ map f K
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ J ≤ map f K
apply h.2 _ _
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ map f K ∈ {p | p.IsPrime ∧ I ≤ p} R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ map f K ≤ J
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ map f K ∈ {p | p.IsPrime ∧ I ≤ p}
exact ⟨<a>Ideal.map_isPrime_of_surjective</a> hf this, <a>Ideal.le_map_of_comap_le_of_surjective</a> f hf e₁⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
Ideal.minimal_primes_comap_of_surjective
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S I✝ J✝ : Ideal R f : R →+* S hf : Function.Surjective ⇑f I J : Ideal S h : J ∈ I.minimalPrimes this✝ : J.IsPrime K : Ideal R hK : K.IsPrime e₁ : comap f I ≤ K e₂ : K ≤ comap f J this : RingHom.ker f ≤ K ⊢ map f K ≤ J
exact <a>Ideal.map_le_of_le_comap</a> e₂
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Ideal/MinimalPrime.lean
CategoryTheory.Functor.conj_eqToHom_iff_heq
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C β : Sort u_1 D : Type u₂ inst✝ : Category.{v₂, u₂} D W X Y Z : C f : W ⟶ X g : Y ⟶ Z h : W = Y h' : X = Z ⊢ f = eqToHom h ≫ g ≫ eqToHom ⋯ ↔ HEq f g
cases h
case refl C : Type u₁ inst✝¹ : Category.{v₁, u₁} C β : Sort u_1 D : Type u₂ inst✝ : Category.{v₂, u₂} D W X Z : C f : W ⟶ X h' : X = Z g : W ⟶ Z ⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.Functor.conj_eqToHom_iff_heq
case refl C : Type u₁ inst✝¹ : Category.{v₁, u₁} C β : Sort u_1 D : Type u₂ inst✝ : Category.{v₂, u₂} D W X Z : C f : W ⟶ X h' : X = Z g : W ⟶ Z ⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
cases h'
case refl.refl C : Type u₁ inst✝¹ : Category.{v₁, u₁} C β : Sort u_1 D : Type u₂ inst✝ : Category.{v₂, u₂} D W X : C f g : W ⟶ X ⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.Functor.conj_eqToHom_iff_heq
case refl.refl C : Type u₁ inst✝¹ : Category.{v₁, u₁} C β : Sort u_1 D : Type u₂ inst✝ : Category.{v₂, u₂} D W X : C f g : W ⟶ X ⊢ f = eqToHom ⋯ ≫ g ≫ eqToHom ⋯ ↔ HEq f g
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.Subobject.isIso_arrow_iff_eq_top
C : Type u₁ inst✝¹ : Category.{v₁, u₁} C X Y✝ Z : C D : Type u₂ inst✝ : Category.{v₂, u₂} D Y : C P : Subobject Y ⊢ IsIso P.arrow ↔ P = ⊤
rw [<a>CategoryTheory.Subobject.isIso_iff_mk_eq_top</a>, <a>CategoryTheory.Subobject.mk_arrow</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Subobject/Lattice.lean
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj
C : Type u_1 inst✝¹ : Category.{?u.28, u_1} C inst✝ : Abelian C T : Triangle (CochainComplex C ℤ) n₀ n₁ : ℤ h : n₀ + 1 = n₁ ⊢ 1 + n₀ = n₁
omega
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/HomotopyCategory/ShortExact.lean
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj
C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Abelian C T : Triangle (CochainComplex C ℤ) n₀ n₁ : ℤ h : n₀ + 1 = n₁ ⊢ (homologyFunctor C (up ℤ) 0).homologySequenceδ ((quotient C (up ℤ)).mapTriangle.obj T) n₀ n₁ h = (homologyFunctorFactors C (up ℤ) n₀).hom.app T.obj₃ ≫ (HomologicalComplex.homologyFunctor C (up ℤ) 0).shiftMap T.mor₃ n₀ n₁ ⋯ ≫ (homologyFunctorFactors C (up ℤ) n₁).inv.app T.obj₁
apply <a>HomotopyCategory.homologyFunctor_shiftMap</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Homology/HomotopyCategory/ShortExact.lean
Polynomial.prime_X
R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R p q : R[X] ⊢ Prime X
convert <a>Polynomial.prime_X_sub_C</a> (0 : R)
case h.e'_3 R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R p q : R[X] ⊢ X = X - C 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
Polynomial.prime_X
case h.e'_3 R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : CommRing R inst✝ : IsDomain R p q : R[X] ⊢ X = X - C 0
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
PhragmenLindelof.quadrant_II
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E z : ℂ hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C hz_re : z.re ≤ 0 hz_im : 0 ≤ z.im ⊢ ‖f z‖ ≤ C
obtain ⟨z, rfl⟩ : ∃ z', z' * <a>Complex.I</a> = z := ⟨z / <a>Complex.I</a>, <a>div_mul_cancel₀</a> _ <a>Complex.I_ne_zero</a>⟩
case intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : (z * I).re ≤ 0 hz_im : 0 ≤ (z * I).im ⊢ ‖f (z * I)‖ ≤ C
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
case intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : (z * I).re ≤ 0 hz_im : 0 ≤ (z * I).im ⊢ ‖f (z * I)‖ ≤ C
simp only [<a>Complex.mul_I_re</a>, <a>Complex.mul_I_im</a>, <a>neg_nonpos</a>] at hz_re hz_im
case intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re ⊢ ‖f (z * I)‖ ≤ C
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
case intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) ⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
rcases hB with ⟨c, hc, B, hO⟩
case intro.intro.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) ⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
case intro.intro.intro.intro E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) ⊢ ‖(f ∘ fun x => x * I) z‖ ≤ C
refine <a>PhragmenLindelof.quadrant_I</a> (hd.comp (differentiable_id.mul_const _).<a>Differentiable.diffContOnCl</a> H) ⟨c, hc, B, ?_⟩ him (fun x hx => ?_) hz_im hz_re
case intro.intro.intro.intro.refine_1 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) ⊢ (f ∘ fun x => x * I) =O[cobounded ℂ ⊓ 𝓟 (Ioi 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) case intro.intro.intro.intro.refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) x : ℝ hx : 0 ≤ x ⊢ ‖(f ∘ fun x => x * I) (↑x * I)‖ ≤ C
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hB : ∃ c < 2, ∃ B, f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re w : ℂ hw : w ∈ Ioi 0 ×ℂ Ioi 0 ⊢ (fun x => x * I) w ∈ Iio 0 ×ℂ Ioi 0
simpa only [<a>Complex.mem_reProdIm</a>, <a>Complex.mul_I_re</a>, <a>Complex.mul_I_im</a>, <a>neg_lt_zero</a>, <a>Set.mem_Iio</a>] using hw.symm
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
case intro.intro.intro.intro.refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) x : ℝ hx : 0 ≤ x ⊢ ‖(f ∘ fun x => x * I) (↑x * I)‖ ≤ C
rw [<a>Function.comp_apply</a>, <a>mul_assoc</a>, <a>Complex.I_mul_I</a>, <a>mul_neg_one</a>, ← <a>Complex.ofReal_neg</a>]
case intro.intro.intro.intro.refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) x : ℝ hx : 0 ≤ x ⊢ ‖f ↑(-x)‖ ≤ C
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
PhragmenLindelof.quadrant_II
case intro.intro.intro.intro.refine_2 E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E a b C : ℝ f g : ℂ → E hd : DiffContOnCl ℂ f (Iio 0 ×ℂ Ioi 0) hre : ∀ x ≤ 0, ‖f ↑x‖ ≤ C him : ∀ (x : ℝ), 0 ≤ x → ‖f (↑x * I)‖ ≤ C z : ℂ hz_re : 0 ≤ z.im hz_im : 0 ≤ z.re H : MapsTo (fun x => x * I) (Ioi 0 ×ℂ Ioi 0) (Iio 0 ×ℂ Ioi 0) c : ℝ hc : c < 2 B : ℝ hO : f =O[cobounded ℂ ⊓ 𝓟 (Iio 0 ×ℂ Ioi 0)] fun z => expR (B * Complex.abs z ^ c) x : ℝ hx : 0 ≤ x ⊢ ‖f ↑(-x)‖ ≤ C
exact hre _ (<a>neg_nonpos</a>.2 hx)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Complex/PhragmenLindelof.lean
groupCohomology.oneCoboundaries_eq_bot_of_isTrivial
k G : Type u inst✝² : CommRing k inst✝¹ : Group G A✝ A : Rep k G inst✝ : A.IsTrivial ⊢ oneCoboundaries A = ⊥
simp_rw [<a>groupCohomology.oneCoboundaries</a>, <a>groupCohomology.dZero_eq_zero</a>]
k G : Type u inst✝² : CommRing k inst✝¹ : Group G A✝ A : Rep k G inst✝ : A.IsTrivial ⊢ LinearMap.range (LinearMap.codRestrict (oneCocycles A) 0 ⋯) = ⊥
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
groupCohomology.oneCoboundaries_eq_bot_of_isTrivial
k G : Type u inst✝² : CommRing k inst✝¹ : Group G A✝ A : Rep k G inst✝ : A.IsTrivial ⊢ LinearMap.range (LinearMap.codRestrict (oneCocycles A) 0 ⋯) = ⊥
exact <a>LinearMap.range_eq_bot</a>.2 <a>rfl</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RepresentationTheory/GroupCohomology/LowDegree.lean
PEquiv.mem_ofSet_self_iff
α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α ⊢ a ∈ (ofSet s) a ↔ a ∈ s
dsimp [<a>PEquiv.ofSet</a>]
α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α ⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/PEquiv.lean
PEquiv.mem_ofSet_self_iff
α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α ⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s
split_ifs <;> simp [*]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/PEquiv.lean
Cardinal.nat_lt_aleph0
α β : Type u n : ℕ ⊢ succ ↑n ≤ ℵ₀
rw [← <a>Cardinal.nat_succ</a>, ← <a>Cardinal.lift_mk_fin</a>, <a>Cardinal.aleph0</a>, <a>Cardinal.lift_mk_le</a>.{u}]
α β : Type u n : ℕ ⊢ Nonempty (Fin n.succ ↪ ℕ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.nat_lt_aleph0
α β : Type u n : ℕ ⊢ Nonempty (Fin n.succ ↪ ℕ)
exact ⟨⟨(↑), fun a b => <a>Fin.ext</a>⟩⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/Basic.lean
Ideal.sum_ramification_inertia
R : Type u inst✝¹⁷ : CommRing R S : Type v inst✝¹⁶ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹⁵ : IsDedekindDomain S inst✝¹⁴ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : p.IsMaximal hp0 : p ≠ ⊥ ⊢ ∑ P ∈ (factors (map (algebraMap R S) p)).toFinset, ramificationIdx (algebraMap R S) p P * inertiaDeg (algebraMap R S) p P = finrank K L
set e := <a>Ideal.ramificationIdx</a> (<a>algebraMap</a> R S) p
R : Type u inst✝¹⁷ : CommRing R S : Type v inst✝¹⁶ : CommRing S f : R →+* S p : Ideal R P : Ideal S inst✝¹⁵ : IsDedekindDomain S inst✝¹⁴ : Algebra R S K : Type u_1 L : Type u_2 inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : IsDedekindDomain R inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra S L inst✝⁷ : IsFractionRing S L inst✝⁶ : Algebra K L inst✝⁵ : Algebra R L inst✝⁴ : IsScalarTower R S L inst✝³ : IsScalarTower R K L inst✝² : IsNoetherian R S inst✝¹ : IsIntegralClosure S R L inst✝ : p.IsMaximal hp0 : p ≠ ⊥ e : Ideal S → ℕ := ramificationIdx (algebraMap R S) p ⊢ ∑ P ∈ (factors (map (algebraMap R S) p)).toFinset, e P * inertiaDeg (algebraMap R S) p P = finrank K L
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/RamificationInertia.lean