full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ⊢ Tendsto (fun ε => d + ε * (1 + l)) (𝓝 0) (𝓝 (d + 0 * (1 + l)))
exact tendsto_const_nhds.add (tendsto_id.mul <a>tendsto_const_nhds</a>)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < (↑n)⁻¹ * ↑n * (l - ε * (1 + l))
rw [<a>inv_mul_cancel</a>, <a>one_mul</a>]
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < l - ε * (1 + l) u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ ↑n ≠ 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ d < l - ε * (1 + l)
linarith only [hε]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ ↑n ≠ 0
exact <a>Nat.cast_ne_zero</a>.2 (<a>ne_of_gt</a> npos)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ (↑n)⁻¹ * ↑n * (l - ε * (1 + l)) = (↑n)⁻¹ * (↑n * l - ε * (1 + l) * ↑n)
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ (↑n)⁻¹ * (↑n * l - ε * (1 + l) * ↑n) ≤ (↑n)⁻¹ * u n
gcongr
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ ↑n * l - ε * (1 + l) * ↑n ≤ u n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d < l ε : ℝ hε : d + ε * (1 + l) < l εpos : 0 < ε n : ℕ hn : ↑n * l - u n ≤ ε * (1 + l) * ↑n npos : n ∈ Set.Ioi 0 ⊢ ↑n * l - ε * (1 + l) * ↑n ≤ u n
linarith only [hn]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case refine_2 u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < d
obtain ⟨ε, hε, εpos⟩ : ∃ ε : ℝ, l + ε * (1 + ε + l) < d ∧ 0 < ε := by have L : <a>Filter.Tendsto</a> (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add <a>Filter.tendsto_id</a>).<a>Filter.Tendsto.add</a> <a>tendsto_const_nhds</a>)) simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L exact (((<a>tendsto_order</a>.1 L).2 d hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
case refine_2.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε ⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < d
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case refine_2.intro.intro u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε ⊢ ∀ᶠ (b : ℕ) in atTop, u b / ↑b < d
filter_upwards [A ε εpos, <a>Filter.Ioi_mem_atTop</a> 0] with n hn (npos : 0 < n)
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ u n / ↑n < d
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case h u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ u n / ↑n < d
calc u n / n ≤ (n * l + ε * (1 + ε + l) * n) / n := by gcongr; linarith only [hn] _ = (l + ε * (1 + ε + l)) := by field_simp; ring _ < d := hε
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
have L : <a>Filter.Tendsto</a> (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) := by apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a> exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add <a>Filter.tendsto_id</a>).<a>Filter.Tendsto.add</a> <a>tendsto_const_nhds</a>))
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) ⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l))) ⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
simp only [<a>MulZeroClass.zero_mul</a>, <a>add_zero</a>] at L
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 l) ⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l L : Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 l) ⊢ ∃ ε, l + ε * (1 + ε + l) < d ∧ 0 < ε
exact (((<a>tendsto_order</a>.1 L).2 d hd).<a>Filter.Eventually.and</a> <a>self_mem_nhdsWithin</a>).<a>Filter.Eventually.exists</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ⊢ Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝[>] 0) (𝓝 (l + 0 * (1 + 0 + l)))
apply <a>Filter.Tendsto.mono_left</a> _ <a>nhdsWithin_le_nhds</a>
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ⊢ Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝 0) (𝓝 (l + 0 * (1 + 0 + l)))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ⊢ Tendsto (fun ε => l + ε * (1 + ε + l)) (𝓝 0) (𝓝 (l + 0 * (1 + 0 + l)))
exact tendsto_const_nhds.add (tendsto_id.mul ((tendsto_const_nhds.add <a>Filter.tendsto_id</a>).<a>Filter.Tendsto.add</a> <a>tendsto_const_nhds</a>))
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ u n / ↑n ≤ (↑n * l + ε * (1 + ε + l) * ↑n) / ↑n
gcongr
case hab u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ u n ≤ ↑n * l + ε * (1 + ε + l) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
case hab u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ u n ≤ ↑n * l + ε * (1 + ε + l) * ↑n
linarith only [hn]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ (↑n * l + ε * (1 + ε + l) * ↑n) / ↑n = l + ε * (1 + ε + l)
field_simp
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ ↑n * l + ε * (1 + ε + l) * ↑n = (l + ε * (1 + ε + l)) * ↑n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
u : ℕ → ℝ l : ℝ hmono : Monotone u hlim : ∀ (a : ℝ), 1 < a → ∃ c, (∀ᶠ (n : ℕ) in atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧ Tendsto c atTop atTop ∧ Tendsto (fun n => u (c n) / ↑(c n)) atTop (𝓝 l) lnonneg : 0 ≤ l A : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n B : ∀ (ε : ℝ), 0 < ε → ∀ᶠ (n : ℕ) in atTop, ↑n * l - u n ≤ ε * (1 + l) * ↑n d : ℝ hd : d > l ε : ℝ hε : l + ε * (1 + ε + l) < d εpos : 0 < ε n : ℕ hn : u n - ↑n * l ≤ ε * (1 + ε + l) * ↑n npos : 0 < n ⊢ ↑n * l + ε * (1 + ε + l) * ↑n = (l + ε * (1 + ε + l)) * ↑n
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecificLimits/FloorPow.lean
Monoid.minOrder_eq_top
α : Type u_1 inst✝ : Monoid α a : α ⊢ minOrder α = ⊤ ↔ IsTorsionFree α
simp [<a>Monoid.minOrder</a>, <a>Monoid.IsTorsionFree</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/GroupTheory/Order/Min.lean
ContDiffBump.zero_of_le_dist
E : Type u_1 X : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup X inst✝¹ : NormedSpace ℝ X inst✝ : HasContDiffBump E c : E f : ContDiffBump c x : E n : ℕ∞ hx : f.rOut ≤ dist x c ⊢ ↑f x = 0
rwa [← <a>Function.nmem_support</a>, <a>ContDiffBump.support_eq</a>, <a>Metric.mem_ball</a>, <a>not_lt</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Calculus/BumpFunction/Basic.lean
TypeVec.dropFun_of_subtype
n : ℕ α : TypeVec.{u_1} (n + 1) p : α ⟹ repeat (n + 1) Prop ⊢ dropFun (ofSubtype p) = ofSubtype (dropFun p)
ext i : 2
case a.h n : ℕ α : TypeVec.{u_1} (n + 1) p : α ⟹ repeat (n + 1) Prop i : Fin2 n x✝ : (Subtype_ p).drop i ⊢ dropFun (ofSubtype p) i x✝ = ofSubtype (dropFun p) i x✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/TypeVec.lean
TypeVec.dropFun_of_subtype
case a.h n : ℕ α : TypeVec.{u_1} (n + 1) p : α ⟹ repeat (n + 1) Prop i : Fin2 n x✝ : (Subtype_ p).drop i ⊢ dropFun (ofSubtype p) i x✝ = ofSubtype (dropFun p) i x✝
induction i <;> simp [<a>TypeVec.dropFun</a>, *] <;> rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/TypeVec.lean
measurableSet_region_between_co
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ s : Set α hf : Measurable f hg : Measurable g hs : MeasurableSet s ⊢ MeasurableSet {p | p.1 ∈ s ∧ p.2 ∈ Ico (f p.1) (g p.1)}
dsimp only [<a>regionBetween</a>, <a>Set.Ico</a>, <a>Set.mem_setOf_eq</a>, <a>Set.setOf_and</a>]
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ s : Set α hf : Measurable f hg : Measurable g hs : MeasurableSet s ⊢ MeasurableSet ({a | a.1 ∈ s} ∩ {a | a.2 ∈ {a_1 | f a.1 ≤ a_1} ∩ {a_1 | a_1 < g a.1}})
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
measurableSet_region_between_co
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ s : Set α hf : Measurable f hg : Measurable g hs : MeasurableSet s ⊢ MeasurableSet ({a | a.1 ∈ s} ∩ {a | a.2 ∈ {a_1 | f a.1 ≤ a_1} ∩ {a_1 | a_1 < g a.1}})
refine <a>MeasurableSet.inter</a> ?_ ((<a>measurableSet_le</a> (hf.comp <a>measurable_fst</a>) <a>measurable_snd</a>).<a>MeasurableSet.inter</a> (<a>measurableSet_lt</a> <a>measurable_snd</a> (hg.comp <a>measurable_fst</a>)))
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ s : Set α hf : Measurable f hg : Measurable g hs : MeasurableSet s ⊢ MeasurableSet {a | a.1 ∈ s}
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
measurableSet_region_between_co
α : Type u_1 inst✝ : MeasurableSpace α μ : Measure α f g : α → ℝ s : Set α hf : Measurable f hg : Measurable g hs : MeasurableSet s ⊢ MeasurableSet {a | a.1 ∈ s}
exact <a>measurable_fst</a> hs
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L ⊢ _root_.IsNilpotent ((toEnd R L M) x ∘ₗ (toEnd R L M) y)
obtain ⟨k, hM⟩ := <a>LieModule.exists_lowerCentralSeries_eq_bot_of_isNilpotent</a> R L M
case intro R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ _root_.IsNilpotent ((toEnd R L M) x ∘ₗ (toEnd R L M) y)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
case intro R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ _root_.IsNilpotent ((toEnd R L M) x ∘ₗ (toEnd R L M) y)
replace hM : <a>LieModule.lowerCentralSeries</a> R L M (2 * k) = ⊥ := by rw [<a>eq_bot_iff</a>, ← hM]; exact <a>LieModule.antitone_lowerCentralSeries</a> R L M (by omega)
case intro R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ _root_.IsNilpotent ((toEnd R L M) x ∘ₗ (toEnd R L M) y)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
case intro R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ _root_.IsNilpotent ((toEnd R L M) x ∘ₗ (toEnd R L M) y)
use k
case h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ ((toEnd R L M) x ∘ₗ (toEnd R L M) y) ^ k = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
case h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ ⊢ ((toEnd R L M) x ∘ₗ (toEnd R L M) y) ^ k = 0
ext m
case h.h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ (((toEnd R L M) x ∘ₗ (toEnd R L M) y) ^ k) m = 0 m
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
case h.h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ (((toEnd R L M) x ∘ₗ (toEnd R L M) y) ^ k) m = 0 m
rw [<a>LinearMap.pow_apply</a>, <a>LinearMap.zero_apply</a>, ← <a>LieSubmodule.mem_bot</a> (R := R) (L := L), ← hM]
case h.h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ (⇑((toEnd R L M) x ∘ₗ (toEnd R L M) y))^[k] m ∈ lowerCentralSeries R L M (2 * k)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
case h.h R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M (2 * k) = ⊥ m : M ⊢ (⇑((toEnd R L M) x ∘ₗ (toEnd R L M) y))^[k] m ∈ lowerCentralSeries R L M (2 * k)
exact <a>LieModule.iterate_toEnd_mem_lowerCentralSeries₂</a> R L M x y m k
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L M (2 * k) = ⊥
rw [<a>eq_bot_iff</a>, ← hM]
R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L M (2 * k) ≤ lowerCentralSeries R L M k
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ lowerCentralSeries R L M (2 * k) ≤ lowerCentralSeries R L M k
exact <a>LieModule.antitone_lowerCentralSeries</a> R L M (by omega)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_toEnd_of_isNilpotent₂
R : Type u L : Type v M : Type w inst✝¹¹ : CommRing R inst✝¹⁰ : LieRing L inst✝⁹ : LieAlgebra R L inst✝⁸ : AddCommGroup M inst✝⁷ : Module R M inst✝⁶ : LieRingModule L M inst✝⁵ : LieModule R L M k✝ : ℕ N : LieSubmodule R L M M₂ : Type w₁ inst✝⁴ : AddCommGroup M₂ inst✝³ : Module R M₂ inst✝² : LieRingModule L M₂ inst✝¹ : LieModule R L M₂ inst✝ : IsNilpotent R L M x y : L k : ℕ hM : lowerCentralSeries R L M k = ⊥ ⊢ k ≤ 2 * k
omega
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Lie/Nilpotent.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ IsPullback (if h : j = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)) (if h : j = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X j)) (c.inj i) (c.inj j)
refine (hc (<a>CategoryTheory.Limits.Cofan.mk</a> (X i) (f := fun k ↦ if k = i then X i else ⊥_ C) (fun k ↦ if h : k = i then (<a>CategoryTheory.eqToHom</a> <| <a>if_pos</a> h) else (<a>CategoryTheory.eqToHom</a> <| <a>if_neg</a> h) ≫ <a>CategoryTheory.Limits.initial.to</a> _)) (<a>CategoryTheory.Discrete.natTrans</a> (fun k ↦ if h : k.1 = i then (<a>CategoryTheory.eqToHom</a> <| (<a>if_pos</a> h).<a>Eq.trans</a> (<a>congr_arg</a> X h.symm)) else (<a>CategoryTheory.eqToHom</a> <| <a>if_neg</a> h) ≫ <a>CategoryTheory.Limits.initial.to</a> _)) (c.inj i) ?_ (<a>CategoryTheory.NatTrans.equifibered_of_discrete</a> _)).<a>Iff.mp</a> ⟨?_⟩ ⟨j⟩
case refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ (Discrete.natTrans fun k => if h : k.as = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to ((Discrete.functor X).obj k)) ≫ c.ι = (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).ι ≫ (Functor.const (Discrete ι)).map (c.inj i) case refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ IsColimit (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ (Discrete.natTrans fun k => if h : k.as = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to ((Discrete.functor X).obj k)) ≫ c.ι = (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).ι ≫ (Functor.const (Discrete ι)).map (c.inj i)
ext ⟨k⟩
case refine_1.w.h.mk J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι ⊢ ((Discrete.natTrans fun k => if h : k.as = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to ((Discrete.functor X).obj k)) ≫ c.ι).app { as := k } = ((Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).ι ≫ (Functor.const (Discrete ι)).map (c.inj i)).app { as := k }
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1.w.h.mk J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι ⊢ ((Discrete.natTrans fun k => if h : k.as = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to ((Discrete.functor X).obj k)) ≫ c.ι).app { as := k } = ((Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).ι ≫ (Functor.const (Discrete ι)).map (c.inj i)).app { as := k }
simp only [<a>CategoryTheory.Discrete.functor_obj</a>, <a>CategoryTheory.Functor.const_obj_obj</a>, <a>CategoryTheory.NatTrans.comp_app</a>, <a>CategoryTheory.Discrete.natTrans_app</a>, <a>CategoryTheory.Limits.Cofan.mk_pt</a>, <a>CategoryTheory.Limits.Cofan.mk_ι_app</a>, <a>CategoryTheory.Functor.const_map_app</a>]
case refine_1.w.h.mk J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι ⊢ (if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X k)) ≫ c.ι.app { as := k } = (if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)) ≫ c.inj i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1.w.h.mk J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι ⊢ (if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X k)) ≫ c.ι.app { as := k } = (if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)) ≫ c.inj i
split
case refine_1.w.h.mk.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι h✝ : k = i ⊢ eqToHom ⋯ ≫ c.ι.app { as := k } = eqToHom ⋯ ≫ c.inj i case refine_1.w.h.mk.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι h✝ : ¬k = i ⊢ (eqToHom ⋯ ≫ initial.to (X k)) ≫ c.ι.app { as := k } = (eqToHom ⋯ ≫ initial.to (X i)) ≫ c.inj i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1.w.h.mk.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι h✝ : k = i ⊢ eqToHom ⋯ ≫ c.ι.app { as := k } = eqToHom ⋯ ≫ c.inj i
subst ‹k = i›
case refine_1.w.h.mk.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c j : ι inst✝ : DecidableEq ι k : ι ⊢ eqToHom ⋯ ≫ c.ι.app { as := k } = eqToHom ⋯ ≫ c.inj k
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1.w.h.mk.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c j : ι inst✝ : DecidableEq ι k : ι ⊢ eqToHom ⋯ ≫ c.ι.app { as := k } = eqToHom ⋯ ≫ c.inj k
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_1.w.h.mk.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι k : ι h✝ : ¬k = i ⊢ (eqToHom ⋯ ≫ initial.to (X k)) ≫ c.ι.app { as := k } = (eqToHom ⋯ ≫ initial.to (X i)) ≫ c.inj i
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ IsColimit (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i))
refine <a>CategoryTheory.Limits.mkCofanColimit</a> _ (fun t ↦ (<a>CategoryTheory.eqToHom</a> (<a>if_pos</a> <a>rfl</a>).<a>Eq.symm</a>) ≫ t.inj i) ?_ ?_
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ ∀ (t : Cofan fun k => if k = i then X i else ⊥_ C) (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j case refine_2.refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ ∀ (t : Cofan fun k => if k = i then X i else ⊥_ C) (m : (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).pt ⟶ t.pt), (∀ (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ m = t.inj j) → m = (fun t => eqToHom ⋯ ≫ t.inj i) t
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ ∀ (t : Cofan fun k => if k = i then X i else ⊥_ C) (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j
intro t j
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι ⊢ (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι ⊢ (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ (fun t => eqToHom ⋯ ≫ t.inj i) t = t.inj j
simp only [<a>CategoryTheory.Limits.Cofan.mk_pt</a>, <a>CategoryTheory.Limits.cofan_mk_inj</a>]
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι ⊢ (if h : j = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)) ≫ eqToHom ⋯ ≫ t.inj i = t.inj j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι ⊢ (if h : j = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)) ≫ eqToHom ⋯ ≫ t.inj i = t.inj j
split
case refine_2.refine_1.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : j = i ⊢ eqToHom ⋯ ≫ eqToHom ⋯ ≫ t.inj i = t.inj j case refine_2.refine_1.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : ¬j = i ⊢ (eqToHom ⋯ ≫ initial.to (X i)) ≫ eqToHom ⋯ ≫ t.inj i = t.inj j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : j = i ⊢ eqToHom ⋯ ≫ eqToHom ⋯ ≫ t.inj i = t.inj j
subst ‹j = i›
case refine_2.refine_1.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c j✝ : ι inst✝ : DecidableEq ι j : ι t : Cofan fun k => if k = j then X j else ⊥_ C ⊢ eqToHom ⋯ ≫ eqToHom ⋯ ≫ t.inj j = t.inj j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1.isTrue J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c j✝ : ι inst✝ : DecidableEq ι j : ι t : Cofan fun k => if k = j then X j else ⊥_ C ⊢ eqToHom ⋯ ≫ eqToHom ⋯ ≫ t.inj j = t.inj j
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : ¬j = i ⊢ (eqToHom ⋯ ≫ initial.to (X i)) ≫ eqToHom ⋯ ≫ t.inj i = t.inj j
rw [<a>CategoryTheory.Category.assoc</a>, ← <a>CategoryTheory.IsIso.eq_inv_comp</a>]
case refine_2.refine_1.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : ¬j = i ⊢ initial.to (X i) ≫ eqToHom ⋯ ≫ t.inj i = inv (eqToHom ⋯) ≫ t.inj j
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_1.isFalse J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j✝ : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C j : ι h✝ : ¬j = i ⊢ initial.to (X i) ≫ eqToHom ⋯ ≫ t.inj i = inv (eqToHom ⋯) ≫ t.inj j
exact initialIsInitial.hom_ext _ _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι ⊢ ∀ (t : Cofan fun k => if k = i then X i else ⊥_ C) (m : (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).pt ⟶ t.pt), (∀ (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ m = t.inj j) → m = (fun t => eqToHom ⋯ ≫ t.inj i) t
intro t m hm
case refine_2.refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C m : (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).pt ⟶ t.pt hm : ∀ (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ m = t.inj j ⊢ m = (fun t => eqToHom ⋯ ≫ t.inj i) t
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
CategoryTheory.isPullback_of_cofan_isVanKampen
case refine_2.refine_2 J : Type v' inst✝⁵ : Category.{u', v'} J C : Type u inst✝⁴ : Category.{v, u} C K : Type u_1 inst✝³ : Category.{?u.324390, u_1} K D : Type u_2 inst✝² : Category.{?u.324397, u_2} D inst✝¹ : HasInitial C ι : Type u_3 X : ι → C c : Cofan X hc : IsVanKampenColimit c i j : ι inst✝ : DecidableEq ι t : Cofan fun k => if k = i then X i else ⊥_ C m : (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).pt ⟶ t.pt hm : ∀ (j : ι), (Cofan.mk (X i) fun k => if h : k = i then eqToHom ⋯ else eqToHom ⋯ ≫ initial.to (X i)).inj j ≫ m = t.inj j ⊢ m = (fun t => eqToHom ⋯ ≫ t.inj i) t
simp [← hm i]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Limits/VanKampen.lean
AddLECancellable.tsub_add_eq_add_tsub
α : Type u_1 inst✝⁵ : AddCommSemigroup α inst✝⁴ : PartialOrder α inst✝³ : ExistsAddOfLE α inst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub α inst✝ : OrderedSub α a b c d : α hb : AddLECancellable b h : b ≤ a ⊢ a - b + c = a + c - b
rw [<a>add_comm</a> a, hb.add_tsub_assoc_of_le h, <a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/Sub/Canonical.lean
Filter.eq_top_of_neBot
α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : l.NeBot ⊢ l = ⊤
refine <a>top_unique</a> fun s hs => ?_
α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : l.NeBot s : Set α hs : s ∈ l ⊢ s ∈ ⊤
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/Basic.lean
Filter.eq_top_of_neBot
α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s✝ t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : l.NeBot s : Set α hs : s ∈ l ⊢ s ∈ ⊤
obtain rfl : s = <a>Set.univ</a> := <a>Subsingleton.eq_univ_of_nonempty</a> (<a>Filter.nonempty_of_mem</a> hs)
α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : l.NeBot hs : univ ∈ l ⊢ univ ∈ ⊤
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/Basic.lean
Filter.eq_top_of_neBot
α : Type u β : Type v γ : Type w δ : Type u_1 ι : Sort x f g : Filter α s t : Set α inst✝¹ : Subsingleton α l : Filter α inst✝ : l.NeBot hs : univ ∈ l ⊢ univ ∈ ⊤
exact <a>Filter.univ_mem</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/Basic.lean
Pell.y_mul_dvd
a : ℕ a1 : 1 < a n k : ℕ ⊢ yn a1 n ∣ yn a1 (n * (k + 1))
rw [<a>Nat.mul_succ</a>, <a>Pell.yn_add</a>]
a : ℕ a1 : 1 < a n k : ℕ ⊢ yn a1 n ∣ xn a1 (n * k) * yn a1 n + yn a1 (n * k) * xn a1 n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.y_mul_dvd
a : ℕ a1 : 1 < a n k : ℕ ⊢ yn a1 n ∣ xn a1 (n * k) * yn a1 n + yn a1 (n * k) * xn a1 n
exact <a>dvd_add</a> (<a>dvd_mul_left</a> _ _) ((y_mul_dvd _ k).<a>Dvd.dvd.mul_right</a> _)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/PellMatiyasevic.lean
RatFunc.mk_zero
K : Type u inst✝¹ : CommRing K inst✝ : IsDomain K p : K[X] ⊢ RatFunc.mk p 0 = { toFractionRing := 0 }
rw [<a>RatFunc.mk_eq_div'</a>, <a>RingHom.map_zero</a>, <a>div_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/RatFunc/Defs.lean
LinearMap.iterate_surjective
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 S : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 M₃ : Type u_8 N : Type u_9 N₁ : Type u_10 N₂ : Type u_11 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommGroup N₁ inst✝⁴ : Module R M inst✝³ : Module R N₁ inst✝² : Monoid S inst✝¹ : DistribMulAction S M inst✝ : SMulCommClass R S M f' : M →ₗ[R] M h : Surjective ⇑f' n : ℕ ⊢ Surjective ⇑(f' ^ (n + 1))
rw [<a>LinearMap.iterate_succ</a>]
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 S : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 M₃ : Type u_8 N : Type u_9 N₁ : Type u_10 N₂ : Type u_11 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommGroup N₁ inst✝⁴ : Module R M inst✝³ : Module R N₁ inst✝² : Monoid S inst✝¹ : DistribMulAction S M inst✝ : SMulCommClass R S M f' : M →ₗ[R] M h : Surjective ⇑f' n : ℕ ⊢ Surjective ⇑((f' ^ n) ∘ₗ f')
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Module/LinearMap/End.lean
LinearMap.iterate_surjective
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 S : Type u_4 M : Type u_5 M₁ : Type u_6 M₂ : Type u_7 M₃ : Type u_8 N : Type u_9 N₁ : Type u_10 N₂ : Type u_11 inst✝⁷ : Semiring R inst✝⁶ : AddCommMonoid M inst✝⁵ : AddCommGroup N₁ inst✝⁴ : Module R M inst✝³ : Module R N₁ inst✝² : Monoid S inst✝¹ : DistribMulAction S M inst✝ : SMulCommClass R S M f' : M →ₗ[R] M h : Surjective ⇑f' n : ℕ ⊢ Surjective ⇑((f' ^ n) ∘ₗ f')
exact (iterate_surjective h n).<a>Function.Surjective.comp</a> h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Module/LinearMap/End.lean
GaloisConnection.upperBounds_l_image
α : Type u β : Type v γ : Type w ι : Sort x κ : ι → Sort u_1 a a₁ a₂ : α b✝ b₁ b₂ : β inst✝¹ : Preorder α inst✝ : Preorder β l : α → β u : β → α gc : GaloisConnection l u s : Set α b : β ⊢ b ∈ upperBounds (l '' s) ↔ b ∈ u ⁻¹' upperBounds s
simp [<a>upperBounds</a>, gc _ _]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/GaloisConnection.lean
MeasureTheory.hasFiniteIntegral_iff_ofNNReal
α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 m : MeasurableSpace α μ ν : Measure α inst✝² : MeasurableSpace δ inst✝¹ : NormedAddCommGroup β inst✝ : NormedAddCommGroup γ f : α → ℝ≥0 ⊢ HasFiniteIntegral (fun x => ↑(f x)) μ ↔ ∫⁻ (a : α), ↑(f a) ∂μ < ⊤
simp [<a>MeasureTheory.hasFiniteIntegral_iff_norm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Function/L1Space.lean
Complex.I_mul
z : ℂ ⊢ (I * z).re = { re := -z.im, im := z.re }.re ∧ (I * z).im = { re := -z.im, im := z.re }.im
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Complex/Basic.lean
MvPolynomial.weightedHomogeneousComponent_mem
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w✝ : σ → M n : M φ✝ ψ : MvPolynomial σ R w : σ → M φ : MvPolynomial σ R m : M ⊢ (weightedHomogeneousComponent w m) φ ∈ weightedHomogeneousSubmodule R w m
rw [<a>MvPolynomial.mem_weightedHomogeneousSubmodule</a>]
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w✝ : σ → M n : M φ✝ ψ : MvPolynomial σ R w : σ → M φ : MvPolynomial σ R m : M ⊢ IsWeightedHomogeneous w ((weightedHomogeneousComponent w m) φ) m
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
MvPolynomial.weightedHomogeneousComponent_mem
R : Type u_1 M : Type u_2 inst✝¹ : CommSemiring R σ : Type u_3 inst✝ : AddCommMonoid M w✝ : σ → M n : M φ✝ ψ : MvPolynomial σ R w : σ → M φ : MvPolynomial σ R m : M ⊢ IsWeightedHomogeneous w ((weightedHomogeneousComponent w m) φ) m
exact <a>MvPolynomial.weightedHomogeneousComponent_isWeightedHomogeneous</a> m φ
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
List.fst_lt_add_of_mem_enumFrom
α : Type u_1 β : Type u_2 x : ℕ × α n : ℕ l : List α h : x ∈ enumFrom n l ⊢ x.1 < n + l.length
rcases <a>List.mem_iff_get</a>.1 h with ⟨i, rfl⟩
case intro α : Type u_1 β : Type u_2 n : ℕ l : List α i : Fin (enumFrom n l).length h : (enumFrom n l).get i ∈ enumFrom n l ⊢ ((enumFrom n l).get i).1 < n + l.length
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/List/Enum.lean
List.fst_lt_add_of_mem_enumFrom
case intro α : Type u_1 β : Type u_2 n : ℕ l : List α i : Fin (enumFrom n l).length h : (enumFrom n l).get i ∈ enumFrom n l ⊢ ((enumFrom n l).get i).1 < n + l.length
simpa using i.is_lt
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/List/Enum.lean
CauSeq.Completion.ofRat_div
α : Type u_1 inst✝² : LinearOrderedField α β : Type u_2 inst✝¹ : DivisionRing β abv : β → α inst✝ : IsAbsoluteValue abv x y : β ⊢ ofRat (x / y) = ofRat x / ofRat y
simp only [<a>div_eq_mul_inv</a>, <a>CauSeq.Completion.ofRat_inv</a>, <a>CauSeq.Completion.ofRat_mul</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Order/CauSeq/Completion.lean
Filter.tendsto_nhds
ι : Sort u_1 α : Type u_2 β : Type u_3 X : Type u_4 Y : Type u_5 la : Filter α lb : Filter β f : α → Filter β ⊢ Tendsto f la (𝓝 lb) ↔ ∀ s ∈ lb, ∀ᶠ (a : α) in la, s ∈ f a
simp only [<a>Filter.nhds_eq'</a>, <a>Filter.tendsto_lift'</a>, <a>Set.mem_setOf_eq</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Filter.lean
Finpartition.card_parts_equitabilise
α : Type u_1 inst✝ : DecidableEq α s t : Finset α m n a b : ℕ P : Finpartition s h : a * m + b * (m + 1) = s.card hm : m ≠ 0 ⊢ (equitabilise h).parts.card = a + b
rw [← <a>Finset.filter_true_of_mem</a> fun x => <a>Finpartition.card_eq_of_mem_parts_equitabilise</a>, <a>Finset.filter_or</a>, <a>Finset.card_union_of_disjoint</a>, P.card_filter_equitabilise_small _ hm, P.card_filter_equitabilise_big]
α : Type u_1 inst✝ : DecidableEq α s t : Finset α m n a b : ℕ P : Finpartition s h : a * m + b * (m + 1) = s.card hm : m ≠ 0 ⊢ Disjoint (filter (fun x => x.card = m) (equitabilise h).parts) (filter (fun x => x.card = m + 1) (equitabilise h).parts)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean
Finpartition.card_parts_equitabilise
α : Type u_1 inst✝ : DecidableEq α s t : Finset α m n a b : ℕ P : Finpartition s h : a * m + b * (m + 1) = s.card hm : m ≠ 0 ⊢ Disjoint (filter (fun x => x.card = m) (equitabilise h).parts) (filter (fun x => x.card = m + 1) (equitabilise h).parts)
exact <a>Finset.disjoint_filter</a>.2 fun x _ h₀ h₁ => <a>Nat.succ_ne_self</a> m <| h₁.symm.trans h₀
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean
Nat.set_eq_univ
a b m n k : ℕ S : Set ℕ ⊢ S = Set.univ → 0 ∈ S ∧ ∀ k ∈ S, k + 1 ∈ S
rintro rfl
a b m n k : ℕ ⊢ 0 ∈ Set.univ ∧ ∀ k ∈ Set.univ, k + 1 ∈ Set.univ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Order/Lemmas.lean
Nat.set_eq_univ
a b m n k : ℕ ⊢ 0 ∈ Set.univ ∧ ∀ k ∈ Set.univ, k + 1 ∈ Set.univ
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Nat/Order/Lemmas.lean
ProbabilityTheory.measurable_condexpKernel
Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ((condexpKernel μ m) ω) s
simp_rw [<a>ProbabilityTheory.condexpKernel_apply_eq_condDistrib</a>]
Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ((condDistrib id id μ) (id ω)) s
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Kernel/Condexp.lean
ProbabilityTheory.measurable_condexpKernel
Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ((condDistrib id id μ) (id ω)) s
convert <a>ProbabilityTheory.measurable_condDistrib</a> (μ := μ) hs
case h.e'_3 Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ m ⊓ mΩ = MeasurableSpace.comap id (m ⊓ mΩ)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Kernel/Condexp.lean
ProbabilityTheory.measurable_condexpKernel
case h.e'_3 Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω inst✝³ : StandardBorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ m ⊓ mΩ = MeasurableSpace.comap id (m ⊓ mΩ)
rw [<a>MeasurableSpace.comap_id</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Kernel/Condexp.lean
CategoryTheory.SimplicialObject.δ_comp_δ_self
C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ X.δ i.castSucc ≫ X.δ i = X.δ i.succ ≫ X.δ i
dsimp [<a>CategoryTheory.SimplicialObject.δ</a>]
C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ X.map (SimplexCategory.δ i.castSucc).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ i.succ).op ≫ X.map (SimplexCategory.δ i).op
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/AlgebraicTopology/SimplicialObject.lean
CategoryTheory.SimplicialObject.δ_comp_δ_self
C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ X.map (SimplexCategory.δ i.castSucc).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ i.succ).op ≫ X.map (SimplexCategory.δ i).op
simp only [← X.map_comp, ← <a>CategoryTheory.op_comp</a>, <a>SimplexCategory.δ_comp_δ_self</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/AlgebraicTopology/SimplicialObject.lean
Ordinal.Cardinal.mk_iUnion_Ordinal_le_of_le
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ #↑(⋃ j, ⋃ (_ : j < o), A j) ≤ c
simp_rw [← <a>Set.mem_Iio</a>, <a>Set.biUnion_eq_iUnion</a>, <a>Set.iUnion</a>, <a>iSup</a>, ← o.enumIsoOut.symm.surjective.range_comp]
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ #↑(sSup (range ((fun x => A ↑x) ∘ ⇑o.enumIsoOut.symm))) ≤ c
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/Ordinal.lean
Ordinal.Cardinal.mk_iUnion_Ordinal_le_of_le
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ #↑(sSup (range ((fun x => A ↑x) ∘ ⇑o.enumIsoOut.symm))) ≤ c
apply ((<a>Cardinal.mk_iUnion_le</a> _).<a>LE.le.trans</a> _).<a>LE.le.trans_eq</a> (<a>Cardinal.mul_eq_self</a> hc)
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ #(Quotient.out o).α * ⨆ i, #↑(((fun x => A ↑x) ∘ ⇑o.enumIsoOut.symm) i) ≤ c * c
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/Ordinal.lean
Ordinal.Cardinal.mk_iUnion_Ordinal_le_of_le
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ #(Quotient.out o).α * ⨆ i, #↑(((fun x => A ↑x) ∘ ⇑o.enumIsoOut.symm) i) ≤ c * c
rw [<a>Cardinal.mk_ordinal_out</a>]
β : Type u_1 o : Ordinal.{u_1} c : Cardinal.{u_1} ho : o.card ≤ c hc : ℵ₀ ≤ c A : Ordinal.{u_1} → Set β hA : ∀ j < o, #↑(A j) ≤ c ⊢ o.card * ⨆ i, #↑(((fun x => A ↑x) ∘ ⇑o.enumIsoOut.symm) i) ≤ c * c
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Cardinal/Ordinal.lean
Function.mulSupport_disjoint_iff
α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 G : Type u_8 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M s : Set α ⊢ Disjoint (mulSupport f) s ↔ EqOn f 1 s
simp_rw [← <a>Set.subset_compl_iff_disjoint_right</a>, <a>Function.mulSupport_subset_iff'</a>, <a>Set.not_mem_compl_iff</a>, <a>Set.EqOn</a>, <a>Pi.one_apply</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Group/Support.lean
BooleanRing.sup_assoc
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : BooleanRing α inst✝¹ : BooleanRing β inst✝ : BooleanRing γ a b c : α ⊢ a + b + a * b + c + (a + b + a * b) * c = a + (b + c + b * c) + a * (b + c + b * c)
ring
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Ring/BooleanRing.lean
affinity_unitClosedBall
𝕜 : Type u_1 E : Type u_2 inst✝³ : NormedField 𝕜 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace ℝ E r : ℝ hr : 0 ≤ r x : E ⊢ x +ᵥ r • closedBall 0 1 = closedBall x r
rw [<a>smul_closedUnitBall</a>, <a>Real.norm_of_nonneg</a> hr, <a>vadd_closedBall_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/Pointwise.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
let W' : <a>CategoryTheory.Over</a> X := <a>CategoryTheory.Over.mk</a> (f₁.left ≫ Y₁.hom)
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
let g₁' : W' ⟶ Y₁ := <a>CategoryTheory.Over.homMk</a> f₁.left
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
let g₂' : W' ⟶ Y₂ := <a>CategoryTheory.Over.homMk</a> f₂.left (by simpa using (<a>CategoryTheory.Over.forget</a> _).<a>Prefunctor.congr_map</a> h.symm =≫ Z.hom)
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
let e : (<a>CategoryTheory.Over.map</a> f).<a>Prefunctor.obj</a> W' ≅ W := <a>CategoryTheory.Over.isoMk</a> (<a>CategoryTheory.Iso.refl</a> _) (by simpa [W'] using (<a>CategoryTheory.Over.w</a> f₁).<a>Eq.symm</a>)
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map f₂.op (x g₂ hg₂)
convert <a>congr_arg</a> (F.val.map e.inv.op) (hx g₁' g₂' hg₁ hg₂ (by ext; exact (<a>CategoryTheory.Over.forget</a> _).<a>Prefunctor.congr_map</a> h)) using 1
case h.e'_2 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map e.inv.op (((Over.map f).op ⋙ F.val).map g₁'.op (x g₁ hg₁)) case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map e.inv.op (((Over.map f).op ⋙ F.val).map g₂'.op (x g₂ hg₂))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_2 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₁.op (x g₁ hg₁) = F.val.map e.inv.op (((Over.map f).op ⋙ F.val).map g₁'.op (x g₁ hg₁)) case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map e.inv.op (((Over.map f).op ⋙ F.val).map g₂'.op (x g₂ hg₂))
all_goals dsimp [e, W', g₁', g₂'] rw [← <a>CategoryTheory.FunctorToTypes.map_comp_apply</a>] apply <a>congr_fun</a> congr 1 rw [← <a>CategoryTheory.op_comp</a>] congr 1 ext simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ ⊢ f₂.left ≫ Y₂.hom = W'.hom
simpa using (<a>CategoryTheory.Over.forget</a> _).<a>Prefunctor.congr_map</a> h.symm =≫ Z.hom
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ ⊢ (Iso.refl ((Over.map f).obj W').left).hom ≫ W.hom = ((Over.map f).obj W').hom
simpa [W'] using (<a>CategoryTheory.Over.w</a> f₁).<a>Eq.symm</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ g₁' ≫ g₁ = g₂' ≫ g₂
ext
case h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ (g₁' ≫ g₁).left = (g₂' ≫ g₂).left
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ (g₁' ≫ g₁).left = (g₂' ≫ g₂).left
exact (<a>CategoryTheory.Over.forget</a> _).<a>Prefunctor.congr_map</a> h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map e.inv.op (((Over.map f).op ⋙ F.val).map g₂'.op (x g₂ hg₂))
dsimp [e, W', g₁', g₂']
case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map (Over.isoMk (Iso.refl W.left) ⋯).inv.op (F.val.map ((Over.map f).map (Over.homMk f₂.left ⋯)).op (x g₂ hg₂))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map (Over.isoMk (Iso.refl W.left) ⋯).inv.op (F.val.map ((Over.map f).map (Over.homMk f₂.left ⋯)).op (x g₂ hg₂))
rw [← <a>CategoryTheory.FunctorToTypes.map_comp_apply</a>]
case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map (((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op) (x g₂ hg₂)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3 C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op (x g₂ hg₂) = F.val.map (((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op) (x g₂ hg₂)
apply <a>congr_fun</a>
case h.e'_3.h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op = F.val.map (((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3.h C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ F.val.map f₂.op = F.val.map (((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op)
congr 1
case h.e'_3.h.e_a C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.op = ((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean
CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving
case h.e'_3.h.e_a C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.op = ((Over.map f).map (Over.homMk f₂.left ⋯)).op ≫ (Over.isoMk (Iso.refl W.left) ⋯).inv.op
rw [← <a>CategoryTheory.op_comp</a>]
case h.e'_3.h.e_a C : Type u inst✝ : Category.{v, u} C J : GrothendieckTopology C X Y : C f : X ⟶ Y F : SheafOfTypes (J.over Y) Z : Over X T : Presieve Z x : Presieve.FamilyOfElements ((Over.map f).op ⋙ F.val) T hx : x.Compatible Y₁ Y₂ : Over X W : Over Y f₁ : W ⟶ (Over.map f).obj Y₁ f₂ : W ⟶ (Over.map f).obj Y₂ g₁ : Y₁ ⟶ Z g₂ : Y₂ ⟶ Z hg₁ : T g₁ hg₂ : T g₂ h : f₁ ≫ (Over.map f).map g₁ = f₂ ≫ (Over.map f).map g₂ W' : Over X := Over.mk (f₁.left ≫ Y₁.hom) g₁' : W' ⟶ Y₁ := Over.homMk f₁.left ⋯ g₂' : W' ⟶ Y₂ := Over.homMk f₂.left ⋯ e : (Over.map f).obj W' ≅ W := Over.isoMk (Iso.refl ((Over.map f).obj W').left) ⋯ ⊢ f₂.op = ((Over.isoMk (Iso.refl W.left) ⋯).inv ≫ (Over.map f).map (Over.homMk f₂.left ⋯)).op
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Sites/Over.lean