image
unknown | problem
stringlengths 14
525
| answer
stringlengths 0
124
⌀ | id
int64 0
70k
| choices
null | ground_truth
stringlengths 0
124
⌀ |
---|---|---|---|---|---|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAABQCAYAAAAp4IYTAAASYElEQVR4nO2dd1BUVxvGn11YXFgWdimKaAJYsCAqqFiIomDH0UEN6sSooyPWCVETSyLRaGIfbFETxRB7T4w1xkaxgR2NKAqKiigRxCBLWXaf7w8nG/kAheXuAsJvxgHPPed9n4WHc+85595zRSSJGhAeHg43Nzd4eXkZNW9WVhbOnDmDtLQ0qNVqeHh4QCKRoHHjxvD09MS2bdvg6elpVE0lIa5oAZWBzMxMLFq0CFKp1Kh5IyIiMHLkSOTm5sLf3x9ubm4YPHgw4uLi8ODBA6SmpsLBwcGomt6GaUULqAysXbsWCQkJqFWrltFy3rlzB0OHDsVvv/2Gjh07AgDs7Owwfvx4tG/fHqmpqRg+fDgcHR2NpuldVPueJTExEffv34ebmxvs7e2NklOj0WDixIkYOXKkzij/0qdPH9jZ2eHkyZMYNGiQUfSUlmrds2g0Gty6dQu+vr5IT0+HjY2NUfJGRkbi/Pnz2L9/f5FjLVu21H1t166dUfSUlmrds1y9ehXOzs6wtLSESqUyWt5Dhw6hU6dOkMvlJdYZNGgQLC0tjaapNFRbs2RlZeHevXtwd3dHYmIiRCKR0XIfOnQIDRs2NFo+oai2p6HDhw8jLi4OL1++RGRkJCQSidFym5ubw8zMzGj5hKJamiUtLQ0mJiaYPn06CgoKcPToUaOOOnJzcyEWV71OvVqa5Y8//oCfnx8UCoWuzNzc3Gj5W7RogaSkpCLlL168QEFBgdFGZWWl6tm7nGzatAkRERGoV68eAECtVuPx48fIyMgwmob58+fjypUrSEhI0JWpVCpERUUZTYM+VKueJScnB9nZ2Wjfvj3y8/NhZmaGlJQUDBkyBHXr1kVmZmah3sZQNG/eHBs2bMDUqVMxdOhQNG7cGPHx8ejQoUOl7VUAQFSd1oZI6kY9/37/ZpmxefbsGS5fvgw7Ozt4enrC1LRy/+1WK7OUBElERUWBJDQajUFzaTQaODg46CbfqhSsgRMnTiQAAqCFhYXue0P9MzEx4e3btyv6Y5eZat2z5OfnY+zYsdi8eTOUSiVevHiBoKAgBAUFITs7G4b40YhEImzevBmPHj3CsWPHBI9vSKqtWdLS0tC7d2/I5XLY2trCz88PtWvXRmBgIDZu3IjRo0cbLHdeXh6USiVWr16NMWPGGCyP4FRov1ZBpKamskmTJmzdujVVKhU7dOjAyMhIkmR4eDhlMhmXLFliUA3Lly+nvb09CwoKDJpHSKqdWZ49e8ZGjRqxTZs2zM7O5u3bt9msWTPm5eXp6kRGRlIqlXLGjBkG01FQUEBPT0/OnTvXYDmEplqZ5cGDB/zggw8YGBjI3NxckuSSJUvo5+dXpO7Vq1epVCoZEBBgMD0XLlygubl5lbnYrTYzuFeuXIGXlxe8vb2xa9cu3V1x586dg4+PT5H6rVu3RnR0NG7evInevXsjKytLcE3t27dHQEAApkyZInhsg1DRbjUGp06dokKh4NixYwuVq1QqNmrUiBcuXCixbUZGBl1cXOjm5saMjAzBtaWmptLGxoYnTpwQPLbQvPdmiYyMJADOnz+/yLFz586xadOmha5XiuP58+fs27cvXV1dmZ6eLrjGFStW0MXFhWq1WvDYQvJem2XDhg0EUOLIZsGCBezZs2ep4/Xr1++dPZG+eHp68ttvvxU8rpC8t2YJCwsjAC5evLjEOl26dCnzLyg4OJgABD9txMTEUCaT8c6dO4LGFZL30izr1q2jSCTipk2bSqyTkZHBJk2a8NatW2WOHxISQgsLCx48eLA8MosQEBDAXr16CRpTSN47syxcuJAAeOjQobfWO3z4MJs3b64bQpeV9evXEwDDwsL0al8c6enptLe35549ewSLKSTvlVmmT59Oa2trHj169J11P/vsMw4fPrxc+Xbs2EELCwsuXbq0XHHeJDQ0lI6OjpXyYve9MItareaECROoUCh45cqVUrXp3Lkzd+7cWe7cERERNDc357Rp08odiyQ1Gg3btm3LOXPmCBJPSKq8WfLy8jh48GAqFArevXu3VG0ePXpER0dHxsfHC6Lh0qVLlEgkgs32xsbGUiKRCKZPKKq0WdRqNb29vWlnZ8d79+6Vut3u3bvZvHlzQbv6a9eu0dXVlX369BEkXp8+fdi9e3dBYglFlZ3uz8vLQ/fu3ZGVlYULFy6U6aGtEydOwMvLS9DbGFu1aoUrV64gOTkZXbp0wZMnT8oVb+3atYiJiUF0dLRACstPlTRLSkoKunTpgoyMDMTExJTJKBqNRrfeIzQymQznz5+HRCKBp6cnHj58qHcsZ2dnzJ49GyNHjoRarRZQZTmo6K6trKSkpNDFxYUdO3akSqUqc/snT56wQYMGTE5ONoC612i1WgYGBtLR0ZHXr1/XO05BQQHr16/PZcuWCahOf6qUWR4/fkwHBwcOHjyY//zzj14xwsPD6e7uLrCy4hk/fjzNzMx49uxZvWMcP36cUqm0UszsVhmzREVFsU6dOhw1alS54kycOJETJ04USNW7+eqrr2hpacndu3frHaNnz54cMGCAcKL0pEqYJSoqiiKRqNxGIUkvLy/u2rVLAFWlZ8eOHbSysuK6dev0an/v3j0qlUqeO3dOYGVlo9Kb5fTp0wTAqVOnljvWgwcP6OrqyufPnwugrGzs3r2bAPjNN9/o1X7p0qV0c3PTe3lCCCq1WY4dO0YLC4ti70XRh3Xr1rFnz57UarWCxCsrBw4coJWVFT///PMyt9VoNGzevPlbV9ENTaU1S1hYGCUSCVetWiVYzEGDBnHmzJmCxdOHuLg4WlpacuzYsWWeFIyIiKBSqTToSO5tVEqzrF27lgC4bds2wWJmZWXR1dWVZ86cESymvsTHx7NBgwb09vYu86Mg/fr1M+hN5G+j0pll4cKFNDU15f79+wWNGxsbywYNGvDFixeCxtWXzMxMtm7dmp07d+bjx49L3e7hw4e0srJidHS0AdUVT6Uyy+TJkymRSHjq1CnBY69cubLSrbVkZ2fTw8ODdevWLZNhQkND2bhx43feOyw0lcYso0ePpomJCU+ePGmQ+AEBAQZ/ylAfsrKyOGjQIDo4ODAqKqpUbfLy8qhUKgW78C8tFW4WrVbLUaNG0dTUlDdv3hQ8fnp6OufOnUszMzNeunRJ8PhC8cUXX1Aikegeo30XBw8epKWlpVFndivULBqNhv369WODBg0EN0pycjLHjRtHc3Nz2tvbF3s325MnTxgWFsaffvqJy5cv5/79+w1i2NIyb968Ml3Y9+jRg3379jWwqv+oMLO8evWKPj4+bNasGR89eiRY3Pj4eI4bN44ymYxNmzblqlWril1HOnHiBAcMGMDff/+dqampjImJYaNGjRgaGiqYFn1YsWIFLSwsSjXbm5CQQLlcXurTV3mpELOkpqbS29ubrVu35suXLwWJefbsWfbu3ZtSqZRNmzbl+vXrSxyW3r17lw0bNuT58+cLlS9btsxg10xlYdeuXQTARYsWvbPuggUL2LBhQ6PM7BrdLKmpqaxTpw67du3KV69elTve4cOH6e/vT1NTU/bo0YPh4eHUaDRvbdOnTx9Onjy5SPnevXvLNCoxJAcOHKCtrS2DgoLeWu/Vq1e0s7PjypUrDa7JqGZJSEignZ0du3btypycHL3jFBQUcOPGjWzXrh2lUil9fX0ZERFRqrbHjh2jTCbj33//XeSYWq1+p9GMyZ07d2hnZ8dx48a9dZi8Y8cO1q5dW7BeuiSMZpZ/jeLv78/8/Hy9Ymi1Wm7dupWNGjWiXC7nsGHDynxBOmvWLLq5uemVvyJISkqiUqlkp06d3nqq6dmzZ5EH/4XGKGa5cOECbW1tOWnSJL3aP3/+nCEhIaxXrx7NzMw4adIkpqSk6BXLx8eH06dP16ttRZGUlMQWLVqwc+fOTEpKKrZOYmIiZTIZY2NjDabD4GY5efIkATAkJKTMbdPT0zl//nxaW1uzbt26DA4OZkJCQrn0mJub8/vvvy9XjIogJyeH3bp1o1wu54MHD4qtExISwrZt2xpMg0HNsm/fPtaqVavMD0zFx8dz9OjRtLGxYZ06dbhs2TK9b6P8fxo2bMgFCxYIEsvYqFQqDhkyhDY2NsVO3uXm5tLR0ZE//PCDQfIbzCw///wzJRIJ165dW+o2f/31Fz/99FOamZnR3d2dixcvZmZmpqC6goOD6e/vX6Q8KytL71ObsRk/fjxNTEyK3clh9+7dBrvYNYhZQkNDCYDh4eGlqn/9+nUGBgbSzMyM7dq1444dOwwhiyR58eJFKpVKXrx4UVeWnZ3NLVu2VNh9Ivowa9YsAuC+ffuKHOvXrx9HjBgheE7BzfLdd98RQKl+4UeOHKGXlxcB0NPTU/DbEkpiz549bNOmDXfu3Mno6GiuXr2aiYmJRsktJPPmzaO1tXWR3jsxMZFyubxcTxUUh6BmmT17NuVy+VuNotFouH37drZp04ZisZjDhg2rkP3Unj17xv379zM6Orpccz4VzZEjRwigyBMLixcvpru7u6CP6ApiFq1WyylTplAmk/Hq1avF1snLy+OqVatYv359SqVSDhw4sNQ7HtTwdo4fP06JRFJonkWlUtHW1pYrVqwQLI8gZgkMDKRCoWBcXFyRY+np6Vy9ejVdXFxobW3NqVOnluspvRqK59y5c1QoFBw+fLhu8m7r1q20sbERbJfNcpvF19eXzs7OvHHjRqHy5ORkTpkyhTY2NrS1teW0adP45MmT8qar4S3cvXuXtWvXZseOHXXLA927dxdsZldvs7x8+ZI9evSgi4sLU1NTdeXJyckMDg6mTCZj48aNuXDhwmLXYWowDHfv3qWHhwc7dOjA5ORkJiUlEUCh0Z++6GWWjIwMuru708XFRdflXbx4kf3796epqSldXFy4ceNGvdeAaigfarWavr6+VCgUTE9PZ3BwML29vcsVMyMjo+xmyczMZMuWLenv78/c3FxevnyZffv2JQD6+Pjwl19+qZT7oVU3CgoKOGDAANrb2/Py5ct0c3Pj3r17S6yflpbGixcv8syZM4yIiCi0BvX06VM6OTmVzSwPHz6ku7s7P/74Y27cuJFdunShqakpu3btytOnT+v9wWowDBqNhp988gmdnJw4ZswYOjk5lbhNSVpaGp2cnDhnzhweOnSIfn5+3L59O0ly+/bttLW1Lb1Zrl27Rjc3N0qlUrZt25a2trYMCAioEnvOV3cWLVqke+VeSet0aWlpdHZ21s1ir1ixgk2aNCH5epuSBQsWlM4s165dY926dQmAjo6ONSObKsjWrVupUCgoFot57dq1Isd//fVXOjs76yYot2zZQrFYTPL10kJcXBzfualaTEwMOnXqBK1WC+D1O/4SExMRFBSE3Nxcg7xHsAZhEYlEkMlkyM/Ph1arxbRp0/Dnn39CLP5vl7jY2Fh069YNUqkUeXl5WLJkCb7++msAgIeHB5o1a/bfOxLv3LmD2NhYmJqaQiQSQalUolevXrh58ybWrFkDuVwOrVaL/Px8qFQqnUlIQiwWQ6vV6r6++e5kQx9706xvHnvzXc0ikajC9FXUz+P/P7NYLIalpSXEYjFkMhnmzJlTaAPGHj16IC8vDxMmTEB4eDhatWqFpUuXFjKdrraNjQ3CwsLg6uqKoKAgzJgxA/v27cP69euxbt260lm4hiqJWq1GVlYWRowYAScnJyQnJ2PYsGFFK7553vLz8+OPP/5I8vXKpUgkEmQyp4bKzY0bN2hlZaW7A+/06dO0sLDgs2fPCtXTnbRevXqFpKQkeHh4AADkcjlI4uXLl0ZzeA0VQ2JiItzd3eHk5AQA+PDDD2FiYoLnz58Xqqczy5kzZ6DRaODl5QUAmDlzJrp16wZfX18jyq6hIjhy5AgUCoXu/0+fPoVGoylUBrxxzXL//n3k5OTg4MGD2LNnD7Kzs7Fly5ZCF4o1vJ8kJSVh4MCBAF6fYaZOnYr+/fvD0dGxUD2dWWJiYtC9e3fY2NhALpdDJpOhXr16xlVdg1FRqVQ4evQozp49Cy8vL2zevBmnT59Gq1atEBoaWqS+bujs6uqKL7/8EmPHjgUAWFtbY/ny5Rg9erRxP0ENRiMnJwe3b9+Gubk58vPzkZOTAycnJzg4OBRb3xR4vRd+bm4uPvroI90BMzMzpKSkGEd1DRWCubm5bkBTGsQAEBcXB5lMBhcXF90BtVpd5JxVQ/VGDABXr15FmzZtIJVKAQAhISGws7MrfmKmhmqL6YkTJ7BmzRpYWVkhJCQE9+7dAwBER0fDwsKiguXVUJn4H/EWQIl60R5HAAAAAElFTkSuQmCC"
|
<image>如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()
Choices:
(A) 55°
(B) 65°
(C) 85°
(D) 75°
|
75°
| 69,600 | null |
75°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAABACAYAAADVuGMvAAAO/ElEQVR4nO1db2hb1d//3l8mqVgNwvUhuJS0XetCozRSO6umvRX7ItAUIxYy5nSpG1QtQoSl5PlRn76wsrJVyIMdy0NfLMUKlZWlUJWKyPKnL7JNacVqJmZJoRVbI5LazmVd1s/zwif3yc3fmz9d/2wfCL3n3O8593vP55zv+Z5z7jllAID+D62treR2uykZCSKCOIZhUuLvo/SIl3Vimedb/v9KDLhcLuI4joLBIAEgAGSxWASZx3Gf5LuHeFknlnm+5f+vdJFVVVX89enTp4njOOrt7eVr1X3sXGTiR0C01+ulQ4cOpQgdOnSIrly5QkT3W/J2I25pMyETPwKip6amqKOjI0VIrVYXqd59lAoMwxTU2JhEZyyTaY7306dPny5Oy/soCsU4wPviF8FgkCwWS4pAKBSioaEh8ng8hWt4HyVBJpLFVADedHu9XlKr1SktuquriziOo+bm5hKoeh+lwOjoKG/CW1tbiWEY6u3tzZqGJ9pkMlFLSwtfM0KhEH/tcrlKrqwY7z2X47EVz9zJWFhYIIZh6Mcff+TL5vz588QwTG4/yu12g4jS/txuN+LY3NxEvsiVppA870ZeOxVEhJMnT6bEWywWeDyerGn3tbS0iKrp+TgB8fxypSnlUG2vD/scDgcREZ05cyblnlqtJoVCQUSZ+2uB172bIbZy7VYwDEMOh4OOHTtWUPp9iYHvv/+enE4nH37uueeorKyMD1dWVpJSqSxQ1f9HplpXDLLltxXPu5sIhUJERFRdXV1wHgKi6+vraXl5mY4fP04rKytUUVFB+/fvJ4lEQkRE169fp6WlJV5eKpVSU1OTIMPGxkZ66KGHiOifAq6oqKDa2lr+fllZGT377LMFK1wIdjPJ6VBIxU1rutfX16mvr4/OnTtHGxsb1NbWRq+++ip1dHTQ/v37BXLfffedIO3ly5fp77//5sOBQICWlpZ4xdbW1lLSaDQakslkfFgul5NKpeLDDzzwAGm1WkEatVpNLMvm9bK7GZlMdygUoqWlpZzD36x99NzcHL355pt069YtqqysJI/HQwcPHqTXX3+d9Ho9HThwoCQvcfnyZYpGo3xN/eWXXwSW48aNG3T16lVBGp/PR7du3eLDLMumDDFaW1v5awBUV1dHcrmcj3vssceorq6uJO+w1RgdHSWTyUQej4cn1ev10vvvvy9q+CvKGfvoo49ocHCQ3nnnHdJoNDQ1NUVTU1PEsix1dnbS4cOHt2Q+PB8TldytrK+vp1SOy5cv082bNwVpfv31V8GoQ6vV8l0VEdETTzxBjz/+OB9+9NFHSaPRCPJtamoiqVQqSs9i4PV6qaWlhQ9bLBbR09Kive6VlRU6fvw4Xb9+nex2O3EcR263myYmJmhycpIkEgm1t7fTa6+9Rs8//3xhb7LNSNcV+Xy+lMqxuLiYNY1SqaSqqiq+opaXl1NDQ4NAprGxkcrLy/lwqRzdTMh7eDU5OUlvv/026fV6Ghoa4vvWubk5+uyzz2hycpIikQjp9Xpqb28ng8GwFXrvaMS7ojgydUWJi0jJXVE6R/fpp5+m9fV1MplM9MILL+SnVCEzNGtrazCbzWBZFmNjYyn3/X4/hoaGoNFoUF5ejqNHj2J8fBzRaDRFdqfPaN0t/ZKfEwgE4HK5+F9fXx/kcjkeeeQRdHV15Z2/KKITldjc3OTDPp8PGo0GbW1tWFhYSJt2cXERw8PD4DgOEokEBoMBDocD4XA4b2XvNnZCJZyenkZDQwPq6+vhdDrhcrnQ0NCQdz4FtehkDA4OgmVZDAwMIBaLZZQLh8NwOBwwGAyQSCRoa2vDxx9/jMXFxVKoseuR2Iimp6fR1NQElUqF8fFxXmZtbQ1SqTStdcyGkhANAAsLC9DpdFCr1fD5fFllNzc3sba2hvHxcRw9ehTl5eXQaDQYGhqC3+8vlUq7Ei6XCxzHoba2VkBwIlQqVc4yTkbJiI5jYmICcrkc3d3diEQiKfczmUOn04kTJ05ALpdDpVLBarVidna2aH220/wmPzubLj6fDxzHQalUwuFwZE1nMpkwPDycly4lJxoAIpEIuru7IZfLMTExkVEu04vPzMygp6cHSqUSSqUSPT09cLlcgnTFEljqClBofj6fDzqdDgqFAiMjI6LS2O12mEymvPTYEqLj8Pl8UKvV0Ol0GZ21XJidnUVfXx9UKhVYlsWJEyfgdDpx+/btFNmd1HpzYXZ2Fnq9HgqFAna7HXfu3BGdp8/ng0qlSpHJ1gC2lGgAiMViGBgYAMuyGBwcLCqvQCCAoaEhNDQ0oLy8HEajEePj41hbWyuRtsUjF+Gzs7MwGAyQy+Ww2WxZnddMiEajkEqleb13yYjO9YKhUAhtbW3QaDR5OxLpsLi4CLvdjra2NhARDAYDRkZGduywze/3w2g0gmVZ2Gw2RKPRvL7ASZZtaGgQdGeZ5OIomuh8TdbY2BhYlsV7771XdEuMPzsSicDhcKCzsxMSiQQcx2F4eBihUKio/PPRIRMCgQBP8ODgYNZ3zqcsu7u787KQW2660yESifAe9sWLF0uadzQa5YdtMpkMGo0Gg4ODd3XYtrm5iYWFBZhMJshkMgwMDJS8exkZGYHRaBRdOUpOdD610uVyQaVSob29HcvLy0Xnlw6ff/45X6lqampw8uTJkgzbMmFxcRHd3d2QyWTo7+9PO8TMhHzedX5+HjU1NaLlt6VFJyIWi6G/vx8sy2JoaCijXCk8ap/PB7PZjMrKSigUCnR3d+Prr78uOl9ASLDVat0yguOIxWIoLy8X7ZNsO9Fx/PTTT+A4Dg0NDXm1uGwOSzbMz8+jv78farUaLMvCZDLB6XSm9YKThy2J18vLy/wCj9VqzcsZLLbyarVaTE9Pi5LddqKTX9bhcIBlWZw8efKuDZsCgQBsNhueeeYZSKVSGI1GjI2N4a+//spIRjgchtlshkwmg9lsztj1bCXMZjMGBgZEyW470ekQDodx9OhRKBSKtDU2n5mxfFvN8vIy7HY7dDodiAh6vR4jIyM8keFwGFarFTKZDD09PVhZWRGdd6kndMbHx2EwGETJCoiO3ozxv+1EvEBcLhdqa2thMBjw22+/3XU9IpEIPvnkE3R2dkIqlaKiogIPPvggjhw5wq+4FUNescT7/X7I5XJRsoL90dIyieDvdiH+nRjHcfTDDz/Qk08+SU899RSdPXs2r3xQ5N4EmUxGHR0dpFarqaysjGpqakiv19OXX35JOp2OPvzwQ/r5558Lfk6+n+wmPgcAHTx4kG7evEkrKyuiEguw3a05E/x+P7RaLZqamnhnrdAWkW5VKTlubW2NX2c3mUwpc/XT09P8wk1NTQ3MZjOuXr1akD7FQKfTwel05pTLSnSyKU9n2jOZ+mzdgNguIp2c3W7Hfzz2OHot/8Zq5EZa3ZN1zgfRaBSnTp0Cy7I4fPiwqImWq1evwmw2o6amhh+2ifWGi4XVaoXVas0pl7NFZwuLuRZ7L7lFpUuzubmJ6M0YwuEwjEYjlEolPp+a5mWSCb759+20z0yHaDQKm80GuVyOzs5O+P3+gizG/Pw8PvjgA6jVashkMphMJkxMTOT9RYhYOJ1O6HS6nHJ5EZ3uXqZWnk8e6SCmAkxPT6OqshZGoxHhcFh0xUtELBbD8PAw5HI5DAZDSWfNFhYWYLPZoNVqIZVK0dnZibGxsbwmU3JhcXERLMvmlBPVR2cyg7lIShcuNI9M8auRG7BarWBZFmeH/0fUM4F/CLbb7VAoFNDpdLhy5Ura55UKy8vLGBkZgV6v54dtdru9JONvuVyOQCCQVYYnOlufJoborWrRYtPPzs7iuaZmaLVa+P3+rGkcDgdPcKYl00xmO5s5F7vsGIlEMDY2BqPRCKlUiqamJthsNgQCgYK6C71ez39flnOZMpdzlI2QUjlj6cLxfjZX+nj4v21nwbIs/v2f/8U7a/F7Y2NjUCqV4DgOly5d2hGf88ZiMUxMTMBkMoFlWajVavT392N+fl50HgMDA2lPQkiE6J0at6J3tn18LRYrKyv01ltv0fz8PB05coT8fj/NzMwQy7J04sQJqq+vJ6LCd2RiC/dbf/PNN3ThwgX64osvSCKR0CuvvEKHDx/mtxqne/ZXX31Fp06dyrrZThTRu4nkRIyPj9O7775LZWVlVFlZSfv27RNMOszNzdHq6iofZhiG6uvrSSaTCQo0ec83wzDU3NxM+/YJtpcTx3Fp9ci3YsTl5+bm6NNPP6XJyUlaX1+nl19+mTo6Oqi9vV0g/8cff1BVVRVFIhHBBsFEZCX6VvQOf70biSb6Zx9UPhvvv/32W7px44YgbmZmhm7fvi2IS249d+7coZmZGUGcRCJJ2df98MMPp2y4i+/QTKwQyduAr127RhcvXqQLFy5QKBSijo4OMhgMpNfrSSqVUm1tLU1NTQn2lSdi151hklgYma53AgDQxsYG+Xw+QXy67byrq6s0NzcnsDYrKyt07do1gZxCoaADBw5QNBqlP//8k37//XdaXV2luro62tjYoL6+voxnnOw6ovOF1+slhUIhOLF4t2JpaYmuX78uiJufnye32011dXXU3NxML730Utq0e55ohmEoGAzuaqJLYa3Snte9V9Db20scx+1qkolKc9jOniV6dHSUOjo60v7riN2MZAP84osv8ueCxn9erzcl3Z4kOn4uV0VFRcYhz25CIrnJrfvSpUvEcRx5PB4CQB6Ph1paWvgyiGNPEn3u3Dk6duwYAaDGxsbtVqdo5DLdbrebP6koflRkMvYc0aOjo3TmzBliGIaqq6t31JBrK+D1egXnrHd1dZHFYknxS/YlJ9zNiB89HTd1Xq+XgsHgNmu1tQgGg3TmzBn+MNhgMEiVlZUpcnumRYdCIerq6qI33niDj9vrJBMRnT9/nkKhEAEgh8NB1dXVtLCwkCooeolkB8NisfBnjAeDQQAAx3F8nMVi2WYNtwbBYBAcxwniiCjlxAQgj9Wr3QZkmGTIFL8bMTo6SkTET3uGQiGqrq4mj8dDWq1W+A/R9irRmbCXiG5tbaXz58/zjld8HL25uZkiu2f6aLHYCyR7vV5iGIbcbjc/smAYhjiOS0sy0T3You9V3HMt+l7FfaLvEfwvCLodzyNOn3cAAAAASUVORK5CYII="
|
<image>如图,已知四边形ABCD中,AB∥CD,AB=AC=AD=4,BC=2,则BD为()
Choices:
(A) √{62}
(B) 2√{15}
(C) 2√{10}
(D) 2√{5}
|
2√{15}
| 69,601 | null |
2√{15}
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABnCAYAAADG+vbbAAAc5ElEQVR4nO1deVRUR9b/vQeYRRLipBl6klYioDaLCRoTHcP5FGmXjHIUNKIJcRsUEOeTJLh9ZnDmxEwSQOWbcWFGPKMRjR4BNTouERRPNEE0B5WWRUFFmLDoTPSDSRT6vfv90f0erzfo5dGg8XcOh371arlVt27VrVtV9zFERHhIQERgGEZ85nkeLMsaxbl37x5KS0tRVVWF77//HqdPnxbfVVdX45///KdRfJVKBX9/fwCAh4cHRo8ejf79+2PQoEEYPnw4nnnmGZvps0SPIxBYwjCM0W85wTxMjBcg7QB1dXU4efIkCgoKUFRUhIaGBoSFhaF///7w8/PD66+/Dk9PTzAMg/79+2PgwIFGedXW1uLmzZsAgNbWVpSUlOD69euoq6vDmTNnoFKpEB4eDo1GA41GA29vb7Asa8Rk0w7ZFc2muLxuHF5JOaV/iEjD5QI/bEkENm+ZblNbAA50DOqF4DiOOI4jIiKe583eV1RUUEpKCgUEBJBSqaSYmBjKysqiiooKMY6ldI5Aq9XSxo0bacaMGaRQKEitVtPq1aupurra6by5ss9oHANCQq5Z2Lj0ix1hhraQE72S8ZZw+/ZtysrKouHDh5NKpaKUlBQjRncFOTtCcnIyKZVKCgsLo61bt9Ldu3ftLJ8jjs+nBBgznYiIJ6J9CaBFeZ0z29n69HrGNzY2UnJyMnl6elJsbCwdPnzYLI60ERyRDmmaztKbNnZubi7NnDmTvLy8aOXKldTc3Nx1Hoa/SxnhBCRSHpnHvZQeT2ll8nRUa+i1jK+rq6P4+Hjy8vKilJQUampqEt/xPN9lj5dLwm1BXV0dJSUl0XPPPUfJyclGtOrBmTzlUiIDGpd22fBsG63SOjlbP+dVUBnA8zx4ngegV7BWrlyJV155BT4+Prh27RrS09Pxy1/+UozPMEyXyoycWjB1of+qVCps3LgRlZWVePLJJxEcHIw//OEPePDgAQAegEkza2tQBSDAP1hPq43qtbROwm/SC6+NNelAr2A8y7JgWRb79+/HoEGDcPfuXVRWVmLNmjXw9vY2iy90EldB2sjS/6bw8fHBJ598Aq1Wi5qaGgwZMgTHj5+wOf+uYMpkMqwUHOrkTo0XNsCWIamuro40Gg2FhoZScXFxd5PkMhQVFZFaraYpU6ZQc3MzcaSfojjKpQR0DPVScGWfUVpe909TPTLHSztDSUkJKZVKWrt2rRjWHcuX7oS1pSfHcaTT6eh/PlxFvr6+pNVq9eHEG5Q7UEKuUFeOuLxFhIg0usx3f/17VLnbvn07KRQKOnLkiBjmSqXMlcjLyyNvb2/Ky8vTB/CkZzTQ8SdZ2nV3O/QI43U6HSUlJVFAQIAoBY8yBK29pKSYVKoBtHLlSvFdT3VzlzP+7t27NGnSJAoLC7PJ8PEwwtpUxRNRQ0MDvTpsOEVGRtL//V8rlR1IM47johHPpYzXarXk7+9P8fHxpNPpHplh3Vo9jNfdOvF32RUtubm5Ud9nPC2Yfl2j37iM8ceOHSMvLy/atGmTq4p0Obqy2BHp9xmef/55euqpp0ihUJCXlxcVFRW5hkAJXML4srIy8vLyomPHjhHRw6e1y4GSkhKaM2cOubu706hRoyg5OZlSU1MpLy+PFIpfyrLpYw+cNuCQiUHBFLdv30ZUVBQ+/vhjTJw4EQBk2bOWC5ZodgZS4xLHcdixYwdeffVVzJkzB9XV1ZgyZQq+/fZbeHl5AQCio6ORnPzfmDp1KlpbWzulT05aneaAJTOigPb2dsyePRsTJkxAUlKSs0V1C2yxetna4EQElmVRX1+PVatWQalU4ujRo1i/fj1++9vfguM4fPHFF2Z5rl69GsOGDcO7774rhgkdqLP2dQbdKnorVqwAwzD485//3J3FdDtsOWRBRDh58iRmzpyJ1157De7u7igtLcWePXvQ0tKCDRs24MCBA3jyySct5pGdnY2GhgasWbMGgAtGxe6aQ7Zv304BAQFWtyofFY2+paWFtmzZQgEBATRy5EjatWsX6XQdGnxpaSn5+PhQWVmZUbrU1FRKTU0loo62uHXrFqlUKsrPz+92uruF8cXFxaRQKKiiouKhU+RspbempoaSkpJIqVTSvHnzqLS01CxOQ0MDvfDCC3To0CGzd6mpqfT73//eLPzcuXOkUChsMmw5IzyyMp7jOKqrqyOVSiVq8I8a8vPz6c0336QBAwbQunXrxBHNFD/99BMNHz6c0tPTzd5xHGck8abIzc2lAQMGWM1bDrjLOW2wLIt58+YhKSlJ1OAfBdy5cwc7duzAX/7yFwQGBmLhwoWIjo7uNE1sbCyGDRuGlJQUu8ubPn06Ll68iMTEROTm5jpKdqeQRYMQNNA9e/bghx9+wLJlyyy+f9hw8eJFzJ8/H0OHDsWNGzdQWFiIo0ePdsn0NWvW4M6dO9iyZYvF97Yobh9++CGuXLmC48ePW41Dzizv5Bo6WlpaSKVSUUlJiZFy05OwZb42nSd1Oh3l5OTQqFGjSK1W09atW6mlpcVqWtMydu7cSf7+/vTvf/+703I7G+oFFBQUkFqtpgcPHnRZD3thE+NtUSKWLVtG8fHxRmE9odg5qvDU1dXRhx9+SEqlkmbMmEEFBQVEZF8dvv32W/Lx8aFr1651GVfK+M7KiImJMTqrIBdslnjpWXdTVFdX0/PPP99rd9s66wxFRUUUExNDCoWCVq5cSXV1dQ7ld/36dfLx8aETJ07YRJMtEk+kP2WsUCiosbHRpnxthc1zvHAuzhLWrl2LpKQk0QwJ9My8TlbmPFMDTGtrK7KzsxEYGIj3338fb775JhobG/Hxxx9DpVKJ8azVgWEYo3etra2IjIzE2rVrodFoZKmHUBcfHx/Exsbi008/dTpf00I6RVdDZ1NTEykUClHae6NhRqDp+vXrlJSURAqFgubNm0clJSUO5ymMfg8ePKDJkyfT0qVL7Upvq8QTdUi96YjqTFt3KfGCtFjr/Z988gni4uJEaZde9OstOHLkCCIjIzFmzBioVCqUl5cjOzsbr732mt15SY+CA8Dy5csBAJmZmXKRawYfHx9Mnz4d69evNwp3ynbvcJchoubmZvLy8jKbf3qD1N+9e5cyMzPJ19eXNBoN5eZK7qfJpHRu2bKFgoODqaWlRayzrXW3ReKldFZXV5O3t7fVFYa9cGodv3v3bkRFRcHHx0e+nugEOI5DeXk5Fi5ciICAAFRWVuLkyZM4ceIEpk/X3zwlww6aPbA02hUUFOCjjz7CoUOHxNu4gMw7aBI6/f39MXr0aOTl5VmlyS4402tCQ0NlOT0ixwiRk5NDYWFh5O/vT1lZWXZLhj00VFdXk4+PD33zzTf2kinCnjleQH5+Po0ZM8bhMqVwmPGlpaXk6+srCxGOgOd5amxspNTUVLO1tyN52Yrm5mby9/enL774wqGyBDjCeJ1ORwqFgmpra50qm8jGoZ4sKGs7duzA3LlznRtuLMCWIezs2bOYM2cOQkJC0NrainPnzmHfvn2IiIiwuzyywamBgPb2drz11lt45513MGvWLLvLchZubm6IjY3Ftm3bnM/M0R6jUqnM7qfLpdRZug17//592rp1KwUHB1NoaCht376dfvrpJ1nKsxVz5syh6dOny5KXIxJPpN/yVqvVTpdv1+4cGSS/qqoKOp0OarXa6L2cio2QV21tLTIzM5GTk4NJkyZh27ZteP31142Wma44w5eRkYGqqioUFRV1e1mdYcSIEaivr0dzc7PRDWJ7YVeLCTczi4qKMGbMmG5brzMMg+PHjyMyMhJhYWFQKBTQarXYuXOnyHRhSnAF0w8fPtzl0SlXwc3NDWFhYTh16pRT+dgl8YJ0nT59GuHh4bIv2+7du4ecnBxkZmbixRdfRGJiIg4dOmRWPuC6k7oXL15EXFwcCgoKoFQqXVJmVxg7dixOnTqFmJgYh/Owq/WExhYkXi5UVVVh4cKFUKvVuHjxIg4dOoSioiLMnDnTYvldQa6RqLGxEZMnT0Z2djZCQkJkydNZEBHGjh1r5MbNEbD6zDgQcVYj8TwPoSlra2uh0+kwZMggkRCpGdOSVm5NU9+7dy/Gjh2LyMhIhIaGorKyElu3bhV1B0dHFEfSmXaW+/fvY/LkyXjvvfcwZcoUh+joDjAMg5EjR+LGjRu4d++ew/m46zNz6zSSVNKqq6sRFDxUTGPqkcGSVErDmpqasG3bNmzZsgUjRozAqlWresUxLdPO4szRKVcgMDAQV69eFfcbiDiRJ9LfgP4Otqko2D1RVlZWYnDAS7B3MD137hzeffddhISE4IcffsCZM2ewf//+XsF0U2nv6uhUT0IYPQMCAnD16lUxnBiJs0UYC7Kl8a9T5U7sKTwBLAOAR01NDdSBwQBxANws52ogsL29HXv27EFmZiba29uRnJyM7OxsPPHEE5bLs8OYIiekZebk5GDXrl04f/48PDw8XE6LNQhtI4yearXaiPEsGL13BQZgwIOoc984JhJvPBeLycTlE4vyyisIDAwEw7iBtyL2tbW1WLFiBVQqFQoKCrBx40ZotVrExcVZZTrP8z22uSOguLgYH3zwAY4dO4Z+/fr1KC2mEJawgsSr1WpUVFQYx4G+AwBsl23JdvooyVHoac2Nt/HCCy/oY5tEP378OKZNm4ZRo0bh6aefFtfeb7zxhlUCXLke7ww3btzAtGnTsGvXLgQEBPQoLaYQpiLpKSiVSoXm5majeDwuIU3DiHqX8Befb65cuwO2Wb+EYb+lpcXIo3NLSwt2796NjIwMKJVKJCQk4MCBAzYP2z3NcED+o1Nyw1I7PvXUU2hpaTEKY+kVpJy4DIx/GTWLOfw1GqD9i8FGaxBQVohlIRIlHOhofILxeS9ufzrStTC8IwA8Wltb4enpiZqaGiQkJGDgwIG4cOECDhw4gK+//hrvvPOOVWJtQXdZA62hvb0ds2bNgkajQVxcnF1pXU2rFM8++yx+/PFH40AGAHMVNYWLMDEaAFjQID9oYH4qipWq5wx4MNAPDzzysDj6KAAyaIr6uePevXuYPXs2NOMiEBgYiJqaGmzduhXBwcFGGTvaKI7P8wY7gpX1hhBaWFiIoKAgDBs2DGfPnhWXa44cneqKVqn9QpyfHWgWoS2l/z09PS3ep0f+V/hb/CREEQOeypCRvAIFCYuxfKjxyGrir77D/WZuQjg21wzBkhObES2Z+1mWxZzYufAdOMD+GnQTbJ1WiAhZWVm4fec2QICXlxf69OmDuLg49OnTx6hhhfnR9g4stB0PMB4AcWJ6Yszdlp4+fQoA67AFtK2tDRs2bMD9+/eNwo183yMcaSZDvACLyt2ljHAUTEjCoALGIOmS3gaCr39/sbLSBu+Zoa+DBjKzUhjCJdUk4gxSx6K1tRWzZ8+Gh4eHEe2mLky7Bguw+qkQYA1LXclHBKSjKnWkITvNKF0d7+KpDMePsEgr40FEuJQBLB86HulagTYJTPdpubLPaFH6JeLKPqOIiHQzL4vP9H1WcqyJM/Lm1GMwOQZg0Ru0Ieirr76iwMBACg0NpYMHDzpftHhugDO4K+3aszZxvMP78ULewq1koo7qm/JM7zqVseg61d20x6zbBCzZHAJGewT8ID8MZYx75dOeT+E///kP+vbtC4ZhAXT07p5ahxP0OgiR/hdrQodAG4HH+PHjUV5eLhu9+nwBBiwYRgcG7gBjvFIi4vTWNKE4lgGBBcNa3x8xpd30t6BkAx3Zao8fA038XwxlWP1oc+UaqkAY5B9slq8RV7Xrl2J51gq8zLqBfXkVTlkwyz3zTF+0trbqCaAOO39PG18EGljGfIjWfrnO8M4NDMtA87t1ndJLJspUl+WKvzrkiGVZgAzKJqNnOkmGWwY8GBtOvlnzgdPS0oKnn35afOb4yzh+FJj0pn4XkZh8JA1dhVOIx5vRFvZPhB+6K2nYxKajjX+ANv4B+Px4jPNTi1qo0Ah9+z7TsX7seV4DkDQIGUsFz/NIT4zAy9OO4ApxICLoeC34TSnQLNnQZX4O7fIZ/idNYMC6MXBzY8EaFEWWcQMz4XeGGDyI0dmdv4Aff/wRzz77rD6n/Hi4u7+C5YWnsPxlvdXOjZmBLE0aLvObMc1CehYAeG0aJi1lsSR5GADAg+mDsutXoddQ9RGFRvjVr36F+vp6hwnuFgidkzFm1volE7D8+mAQnUSQoY+7IRj/uz8NhZsOodxU4ZEBjIGeTV8REjVA/iUOHOmVrcsH0hAx5CXDkpMFeMclp76+HgqFAmUH08FG/xXE65fd4n8i0Ill4lRtOnaxeQkM3IauQGHhMRy7woCnK0jTMAhNOYWTy18Gk5hnlGBIoBo1NTeg1xJ7icMDRvLPUMPLB9KwfEsh8tdt6vbipY1KRAADcLiCCixGVAhAKEdGRj6Cpv4Gk3ylnz9z3Gp59epVBAUFYejUZV1Hhvng7B69hQdldQS38UFYXkBYDh7tpB+K2qkNHkwftFMb/AcNRFnZZQhr1nZqA6AfJaQQwu19Z0s803AyrJV1ugfo4/4k2qkNf8tejYjfrcOUYB2APnrmGPapq69f1zeGpY1qByDNQhhxyg8eQeDE8SCw+HLDRjCDlsANwUhJMVe0HEFFRQWmTp0qbm7ZOy2xpgk6nlmxsaX/1Wo1qq7otwPbSQcPpo/YKQQIHcXed1JI41kLF9IzDAOO2kEMj3a6DzfmOqpOMpg0PqIjDvSKKAEoPJKFiCWTEch03z5B9fXr2JwSBZZhEP1+Fgb6SU4ky2DuuHbtGgYPHuxwesPRK8E4Y4AVwtrpPgb7DcGVK1cAGPbcqc0q8+RCZ6OC3jRB8GDcwbLu8GCeBFtejtMg+A0c2hHPUEftwQxsKgCS4t+TjT5LzVVwNAv5ZXqFMmm8BuqhwpIMTo8yPM+joqICgwcPBst2vQVrCSwgXYsaIMnHjfGQMJaF7wBfeHh4oLKyEizLGklfT4CBYA3rkF4uaAjCAVTXdOxX6xunAu9PW4aIJRmICpFH2i3ysTwfmylRLGPgpMkIAmsYlqURHTs8ev78eQwcONDIEYW96FjOUZtZ1yUiw8a+BAzwX2PHmJ3y7E6p7ypv0x7vhmCMXzgWyzdv7AgszwfDBIGWZODEn5Mhl2JqSdb2HzmJxRPHi88fvJ8MAPjdfyeLYUSMzTSY1k+OU85GXa4dbXCTGPP0BfLiPClI9bix4Th16pQYLn0HwCjcnnemSps96R9w943yWJr5Dyzpkw2GYdC3b1/0GRGD/DIOBX/5wDDXyze/63fhOphY8NUmaCZNNYqTNIEBBo4TnxmGDPZ9+1FUVITw8HCH0oowWHk7sQ5zRMRRG9/hcquiooKUSmUX6VyPzj4JwnGSfQVe3m/BCPlePpAm+bgQa/yhIQaUX8aJBTtqq9fpdOTp6UmNjY1yuELprPezovYuQK1Ww93dHZWVVztJ53pYO83DGN6JR44ZeY2OQr5Dpy7rMJ4YLIXiH0/6Od/Jgi9cuACVSgUfHx+nzOSdjnedaewzZswQfa8/huuwd+9esxtGjqBTxnemsc+dOxc7duxwmoDHsB0cx2Hnzp1YsGCB03k5rOGEhoaiX79+Tt/hegzbQET48ssvERwcDF9fX6fzs5nxlu7GzZs3z6LUUy9zd/YogGEYfP7551iwYIEs7Wsz4wVFQlCgeJ7H22+/jfz8fDQ1NZnFJcNlyseQBzU1NThz5gyioqJkOftgN+M5Tn9qhGVZeHt7Y/78+RZPqEqv+zyG80hPT8fixYvRt29fAM67O7P7QwVubsYX8t5//30MHz4cK1eudMqE+BjW0dTUhD179uDmzZuyOYZwWiT79++P3/zmN9iwQX+ixdTl52PYhs7m7U8//RTz58/Hc889J1t5snyaJDU1FSNHjsR77733WOodhLV5u6mpCTk5OdBqtWbvyIkDo7JMwv7+/pg/fz5WrFghR3Y/SwijpKnkL126FMnJyRY9XHWb5c4erFmzBgcPHkRJSYlcWf5sID2KLWVmYWEhLly4gJSUFLFDyDWNysZ4T09PbNiwAYmJiaLm/xi2wZKi1tbWhiVLlmDz5s144oknZPf2Jet6a9asWfjFL36BjIwMObP9WUHY1Pnoo48QEhKCCRMmdEs5sn53DgD+/ve/Y9SoUQgNDe0V/m0eNhARDhw4gJ07d+L8+fPdVo5sEi/MQS+++CLy8vIQGxuLyspKubL/2eC7775DYmIi/vGPf8Db29vqMs9Zs63spjXBD1tGRgYiIyNx+/ZtuYt4JGBJI6+vr0d0dDSysrJEfwPWNHdnzbayS7yAuXPnYsqUKXj77bcfK3smEOZxoENLf/DgAd566y0sWLAAUVFR3U6DbIy3pG0KSt7SpUvlKuaRgCWHkHFxcVAqlfjjH//oEstnt+6iuLm5Yffu3Th+/Dg2b94M4OH9zqycMLW4/elPf0JpaSk+//xzAK5xCCWrVm/Je5a3tzcOHjyI0aNHw9/f30jTd8bk+Khg//792LBhA4qLi428iXU3ZO1a1npqUFAQ9u7di5iYGGza1HGJ8efEdKkOJJxX+OabbzB//nzk5ubCz8/PpfTIvo63hokTJ+Ls2bOYNm0aKisrkZmZabbF+yhD6tWira0Nt27dQkNDA7777jv4+/u7nJ5unUxMNf3g4GBcuHAB1dXV0Gg0Trndflhx584d/PrXv0ZrayuKi4t7hOlANzPe0lDu5eWFw4cPIygoCCNGjEB5ebnFtNaUwJ4+z2evciq9iHr+/HkMHzEMkyZMxL59+ww+bMx35VxSQ4evYjgA05su27dvJ6VSSceOHXMlGS6B8S0XjnJzc0mpVFJ+bh5x/GX6LALGN20AAuIpz0W3k1zKeCl0Ov21o5KSElIqlbR27dou08j1TdjuhpTpOp2OVv/+Q/L17U9lZWViOMdfprSIcEor08fliKfcRNcxv8cYL0VdXR1pNBoKDQ2l4uJim9L0hg8XS2GpU54+fZrU6sE0ZcoUam5uNvK/x1EuxUd8Jvqky1+f0DESxO+T93KfBfQKxgtMzM/PJx8fH4qPj6fm5mYisi7lPS39ljqeENbQ0ECxsbHk6+srTmP6dxKacxcREnLN8tiXAEJEmpljSbnRY+efyYIL0aioKFRXV6Nfv34ICgrCmjVr8K9//cssPtDz7s4tKa7Nzc1YtWoVQkJC4Ofnh6qqKtFgJTifEJBb8DcsGm9ukx8cIFx/7ub6dWu3sgHWhuxbt25RfHw8eXl5UUpKiviN+p6WdEuoq6ujpKQk8vLyouTkZJFWKUxUPUrAIvO5nDdIvIWRQG70OOMFWOsAjY2NlJycTJ6enhQbG+vyFUBnukR+fj7FxMSQl5cXrVq1SpyezPIwfdamUXjCPrN4XNlnNI4BLcrjLCeUEb2G8V2hubmZsrKyaPjw4aRSqWjlypVmHzW2BcKIITDUXiVRq9VScnIyKZVKCgsLo+zsbLp7926nZZjiUka46FhYiCMqdhFpdOnnotXbi4qKCkpJSaGAgABSKpUUExNDWVlZDnUEoo6lpSVotVrauHEjzZgxgxQKBanValq9ejVVV1fblLcp8znKpUXoWMYRdUg6ItLoMrnGG7jJhwoePtTX16OwsBAFBQUoKipCQ0MD3njjDQwYMAB+fn4YOXKkeN/spZdewoABA8RNEoZhUFtbi5s3b4JhGLS0tKCkpAQ3btxAXV0dvv76a6hUKoSHh0Oj0UCj0cDHx8dhWvn8eLhN/5v+gYGRiW5RHoe/WnA23F3o9YynLrZuTd/fu3cPFy9eRGVlJb7//nuj+/s1NTVmfnhVKpVoL/fw8MDo0aPRv39/DBo0CK+++qroGtwWmG5LW6JdJmeaTqPXM/4xugeP7zH/TPGY8T9T/D+f0cwdE2IbKQAAAABJRU5ErkJggg=="
|
<image>如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()
Choices:
(A) 2
(B) 1
(C) √{2}
(D) 4
|
√{2}
| 69,602 | null |
√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAABxCAYAAADPoKEvAAAY9klEQVR4nO2df2wT5/nAHydQkEjrThzKVbnKdHEnp0GaW4fhCm8uq0ONmmzpmimt8FRXZDWV+cOaYmqkrEFaNrEKaYxlmpOsqllBy1SzMMpWkA0YEW2hRksmDPEUe3XlFAyONEcOxemMn+8fcPf1r/PP852d5CMh4vvxvs/dPfe8P57n3keEiAhVzMLCAkxPT4PX64Vbt26By+Vi9vn9fvjiiy8g+RIoioLm5mYAAFi7di1s374dKIqCp59+GhQKBTQ0NPB9CaukIao2pZubm4MLFy6Aw+EAl8sFt27dApVKBU8++SQ0NzfD1q1bGcXZvHkzSCSSlPM///xzCAQCAACwuLgIbrcb/H4/BINBmJiYAIqiYMeOHaDRaECj0UBjYyPfl7jiqQql83q98P7778Nf/vIXiEajoFarYceOHaBWq0Emk3Fa1/Xr1+HSpUtw8eJFcLlcQBAEdHd3g16vZyzkKhUGC6CzsxNFIhECAPPP4XAUcior4XAYrVYrKhQKpCgK+/r6cGZmpqwyS8Hj8aDJZEKSJFGlUuHo6ChGIhFMJBKs5+Tat0p+ClI6RMSOjg5G0RwOBwIA+v3+oisMhUJoMpmwoaEBdTodnjlzpugyuCCb4tjtduzp6cHHH38cLRYLhsNh1mNXKZ2ClS7ZKPp8PgQA9Pl8BVcUDAbRYDCgWCzGvr4+vHXrVnGSckChyhMMBtFoNOJjjz2GJpMJQ6FQhSVbWRSkdA6HA81mM/O7s7Mz5XcuotEoWiwWJAgCBwYGGOtRLOkKw4f1CYVCKbLHYrFVq8cBBSnd8PBwSn+uUAs3Pj6OJEmiwWAoWtkKebh8KUAoFEKdTocSiQTPnj3LS53LmYIHErSi0QqYS/GCwSBqNBqUy+U4OTnJelytWQ2Xy4UtLS3Y0dFR0EtUa9fHF3VZRrMpv/1+PwAAM53w1ltvAQDA+fPns46Gr169Clu3boUXXngBpqamYNu2bawjZ5FIVMxAW3DUajVcu3YN5HI5tLW1wfXr13MeX2vXxxv5tHJ4eBiHh4eZ3/QgIn3KJJFIoM1mQ4IgsjZBy+2t/+ijj5AgCLTb7UKLUnPkVbrkphURmX4dTSKRwHg8jkajEaVSKXo8nspIWoW43W6kKAotFovQotQUrErncDgyJoQBADs7O5ljotEoRiIR1Gq1qFKpMBKJsFZEW7rlZvFCoRAqFArs7u7GaDS67K6vEmT06Wg0Gg0kEgnAB4oJiAiJRAJOnz7NHPP666/DM888AxKJBC5evAhisZi1Gaf7N8utn9PY2AgTExOwfv16UCqV8J///EdokaoeVqWjwaSBRbLCnDt3Di5cuAA3b96ENWvWwN27dysjYZWAOVzU69evhw8//BB+9KMfgUKhgEuXLvEoWQ1Sinn0eDwoFovxr3/9KxIEgR0dHUiS5IoYQGQj+RpPnTqFBEEU5a1ZaRSkdMk3NRwOo1QqxaGhIUREtFgsODg4iC6XCyUSCer1+pK9DsuFwcFBbG1txWg0KrQoVUlRShePx1Gj0aDRaGT2+f1+lEgkGI/HMRqNoslkWp1KQESdToddXV2s+1dCC8BGUc2ryWRCjUaD8Xg8ZbtGo0lpWq9cuYIymQy7u7tXrNWLxWKoVCpxYGBAaFGqjoKVzmazoVQqzapEY2Nj2NHRkbJtaWkJLRYLisVitNlsGeckEoll/7YHg0GkKArHx8dTti/3685HhtJluyGTk5NIEARrkGU8HkeKojAYDGbsm5qaQrlcjlqtdkWGCLndbty4ceOKmjTPR15LNzc3h01NTXmjKywWC2tTEo/HcWBgAAmCYAYgKwm73Y4SiWTFdjXSyat0Go0GDx06lLegQCCAFEWl9PfSrebMzAwqlUpUq9UYCARKELd26e/vx+7ubqHFqApyKt0f//hHVCgUGQMHNrRabUHh54cOHUKCIApS5lohXz8tFouhTCbDTz75hCeJqhdWpYtGo0hRFLrd7ox9bFG8drs9Y0DBht/vR7VajUqlUpAPcoTA6XSiTCbDWCwmtCiCwqp0fX19aDAYiiosHo+jRCJJaTrzWYChoSEkCAIHBwcLtqi1TE9PDw4ODrLuXwkj26xK5/P5kCCInFEjbPz0pz/F/v7+os4JBAKo1WpRLpfj1NRU0XXWEqFQCAmCyDqSXwkKh5imdPRF6/X6kic1A4EA46EohuQg0IGBAVxaWiqp/lrAZDKhyWQSWgzByLB0oVAIN27cyGrlsr2N6du0Wm3GhGihhEIh7OrqQplMlvP7ilqGtnbF3OPlBCCmXqTJZEqJhC3lBoyPj6NWqy1LMLvdjgRBoMViYXWc1/LDMRgMK9ZFlmLpwuEwisXisj0H2QYUyRSqLOFwGHt6elAikaDL5SpLpmqD7jevxEiUlCDOEydOwCuvvFL2Skb19fWg1+vBarVm3V9o9DBBEDA2NgbDw8Pw+uuvw759+2BxcbEs2aqF5uZmUKlUcPLkSaFF4R/E/7c8crk8xaKU03zRzu54PM5JM7iwsIB6vZ41WDSZWml2x8fHUa1WCy0G7zDN69TUFEokkpSd5T68jo4OTuLqkuVIDhYtZUonvTwhicfjSBAEBgKBqpGJD5jm9dixY6DX61m/iSiFvXv3wu9///uyykiXQ61Wg8fjgQ0bNoBMJiupeRKJRDm/eeCL+vp60Ol08MEHHyy7D5ZyQmsfRVGcu6PokKdKfS8wMTFRVLCoENYk3zp3k5OTKJPJeJRIeOoAHqyEGY/HOV/1sr6+HgwGAyfWLhvbt2+H6elpaG5uhpaWFjhx4kTO44WwcLksmEgkgra2Npibm4Pbt2/zKJXAICJarVbs6enhTJOT3+5gMIgkSVbcr+p2u5lg0du3b1e0rnLIZvm0Wi2OjY0JII0w1AEAXLhwAb773e9ypsjJbzdFUaBUKsFut3NWfjba2trA7XbDtm3boLW1FYaHhytaX6lks3xqtRouXrwogDQCgYhIkmRFw4vOnj2LGo2G+V3pvtXU1FRNBYuutH4dBAIBJAiiopXQHgq+P0Cmg0WPHDlS8DnJLwSfA49169aVPAVUa9T5fD5obW2tpCWF+vp6+PGPf8x4KJCnzvw777wDly9fBrvdDs8//zx4vd685yQ3f3xOY7S0tMDs7Cxv9QlJndfrhaeffjrrTi6Ug35wvb29cPz4cVhaWuL1YcpkMrh8+TLodDr49re/De+9917W4/h6EdjqlUql8O9//1sQGfimzufzMVMl6TeeS+VobGwElUoFp06d4qzMbLApj9FohKtXr4LD4YBnn30WpqenU/Znu1Y+FJGuVyaTrSxLRytdpS1Qb28vaxAAV7BdAyKCRCIBh8MBJpMJ2tvb4eDBg3D//v2iy6oEMpksYzlZoaxvpakLhULQ1NTES2UvvfQSfPbZZwX1rYqhkIeTrEBvvPEGeDwe+PTTT2HLli1w5coVTuUpBYqiIBwOp2xbrq6xusXFRXj00Ud5q/Dtt9+G999/n9MyS/E0NDY2wt/+9jcYHByEjo4OOHDgACwtLXEqVzFs2LBh2YRt5aNucXGR13SUe/bsAZvNxvkDLsYqJCvoq6++CjMzM+Dz+WDLli2CLWjY0NCQsrDkcm1aAR4q3YYNG3irkCAIePHFFyvuochFuoISBAEfffQRHDlyBF577bWig0VpBSlHURoaGlLqXK5NK4AAlg7gQS4Kq9VaNW8zLcfLL78MXq8X7t69C62trXDu3LmCzudiPeVHH30UotFoyefXGnxPSGMikUCpVJrieqvE7H85ZZ47dy5nsCjX8kYiERSLxRUpu9qoS+9L8IFIJILe3l7GKY+IFWlOyilz586dKcGi6fOLXMsbjUaZAd1ybloBAIAkSUHWjZufn0eSJDlb14POQQsAKRl+yoG2OC6Xq6SVRYuxWDMzMyvG6V+X3oHli40bN4JarYaxsTFOymtvb2f+NhgMTE6zcqCnYtRqNUxPT4NUKoWWlhb405/+VPD5hcL3gE5I6hoaGnjrwGLaKO/tt9+uuIeiXGjFWbduHfziF7+AM2fOwM9+9jPYtWsX3LlzJ+e5WMRA6e7du7wP6ISijiRJ+OKLL7LuLOamFUL6KE+tVsPCwkKK+6fUOh0OB/P38PAwk7WRS0QiEWzbtg3+9a9/McGix44dy3l8oczNzcGmTZu4ELPqqZPJZODz+bLu5KNDu2fPHvjd735Xdp0ajYZJJ0WnB60U9fX1cPDgQXA4HPDrX/8aXnjhBfj888/LKnN2draiIWbVRJ1UKgWPxyOYAG+88QacPHkSFhcXy7Ksuc51Op0gEomYf/v37y+5nmTkcjn885//hF27dkFbWxv89re/Lbms69evs4aYLTucTqfgX5nrdDocHR0tqwy2kaLZbE5JFYr4IH2o2Wwuq7506PWUVSpVSaH/crk8Y9XT5DT2dPZJruUWgpRw9aV7XzH/+JygnJiYwOeff57zcs1mc0qqUBp6eqUSDA0N4aZNm7Kup5xrmbXkcHU6kXOygtHbuJoOEpKMD3OW7n0liCAymYzTVThpxZqdnWXdVykCgQCq1WpUKBQFXVP6hzlslthsNmdkFK9F6vDhPJTQ6SL37t3L6fTJ0aNHwWw2g1QqzdhX6ZysEokEXC4X7N27F9rb22FgYCBrsCg+7Ie6XC5Qq9UAADAyMgIAkDWsXiqVwlNPPZVybk2CmPqxdbKlS25us/1O3pZOtmNz7YtEIkiSZMp6bWxl5NpO/7+mbi06HI6s9Xd2dhbcN8rXzci3PxQKMesps60smvyxNSyTJjQXgIh448YNJEkSEVOVLpFIsD7YQv8uZp9Op0Or1VpS2cmK6PP5cE3dWpy57s04h25ai/kcstRU8MnHHz9+HAmCwAMHDqS4/uLxODY0NGAoFGL6bcuhCc1FHcCDz9/WrFmTEUaePmf2Vex/8Mj6tRnbvor9jwuLC/v27YPR0dGMfel1ZoM+5pH1a5mJ4bmbwYzj2tvbwWw2w9e//vWCZSs1dCn5+N27d8PMzAzMzs6CXC6Hv//97wAAcPXqVWhqaip7Icpaglkq7Ic//GFWP+gj69fmVKpH1q9l/pUDPdsfi8Xg6tWrZZUFAGAymeDo0aMA8ECh/X4/iEQiMJvN8N577wkSyUEHiw4ODsKrr74K+/btgw8//BBee+01AADmZcnW5/T7/eB0OnmVt2IgPmgG3Feu4ubNm1n7YMn/p2/P9Xcx+xAfTDkYDIayy1669xV2dnYiAOCaurXMSJbvWDW2+iKRCP7gBz9AkUiEJ06cYLbTc3PJTazD4cg69VOrAH1Tlu59hc/JFawLSrNNpXA1kKC3RyIRZgHoYs5nG/QgIsa+XBJsKigb8Xgc+/v7cePGjfjMM88gRVEpwaLJYVqQNH3Clh6r1kiZrDpy5Ajq9fqsB/L50PR6PTOg4JJqeEiBQACVSiV2dXXhyy+/jDabDaPRKBqNRtb1lKtBbi7JWNL/8ccfzwjq5NtKTE5Oolwu57VOPhgfH0eSJNFqtWZd0p9eT3m5p6HPmJank5fQ0yVsTVylyTWvVWssLS2hwWBI8bqwJS+JxWJosViQIAhOFgmvRjKULhgMlpyMjkusViv29vYWdGw1Nz8ejwdbW1uxt7eXsWqhUAjFYnHOe0y7xjo6OpZdGnpG6ZIfXCEJ6bh80NnKoj0UQit/IbDdi9HRUSRJMmNp11wJ6ZLLisVi+O677yJBEGiz2bgTWGA4T73JJb29vRUZUFSaSCSCPT09qFAoMjwfuVJv0qQr8dTUFMrlctRoNDWxsmg+OE0yzDVutxtbW1sFlaFY3G43SiQS7Ovry7q4d09PD/785z/PW0666y0ejzMriw4NDXErNM/kTKdOkmTWdOp8olAoamZAcfjw4ZxppJxOJ0ql0ozPLtma50QikbGPDhZVq9U1m4Y+Z1DZ2NgYKhQK5o0VosNutVpZ5w6rhXA4jBqNBtVqNWuzee/ePZTJZHnzmqXDds8PHz6MBEHgoUOHqnoglY28kYwajabgKNhKEI1Gq6J/mUx6rrLGxsa8TWZ/fz92d3dzKgcdLKpUKtHj8XBadiXJqnTpyUcoiir6DeUSg8FQdf0Y2pVFURROTEzkPNZut6NEIsH5+fm85ZbyMg8NDTFp6O/fv1/0+XxTUMz25OQkEgSR0Yfgy9pVy4CCvt5kV1a+xXXcbjcSBFFxS5QcLCp0PzwfBX8oYLPZUCqVCuaeUSqVePny5ZRtQvRlkl1Z+aBbifHx8coL9hCbzYaPPfYYWiyWlAFLMfeq0ve1qK9TTCYTajSaiuf5ysbIyAjqdDre66WJxWIZrixE9gd07949VCqVeSfZuYSWJRwOY3d3N8pksqoc+ReldPF4HDUaDRqNxkrJw8ri4qJgHopsrqx86HQ67OrqqrBkmSRPs9jtdiQIAo1GY8Fy89F6FP0d3vz8PEqlUkE69gaDoaiUS6WQnqaJzZWVi8HBQWxtbS34QVeS//73v/jmm2+iRCJhjZXkm5I+/vR4PCgWi3kf0U5NTfG2hlsuVxZNNqswPj6OBEHwngctH2fPnkWSJLG3t1fw6aeSvzg+e/YsisVi3i2eUqms+Bubz5XFxqFDh1AsFrPKJ/QkbiQSQaPRiE888YSgU2Blfebu8XhQKpWi0WjEeDzOy0212WycJkROJ58rKxuxWAz1ej22trZWnYXLBh0sqtPpMmYjqrJPl87CwgJqtVpUq9UYiUQqLnQsFkOSJDmfuqFdWd/5zncYV1Yh37uGw2FUKBTY3d1dFX24QolGo9jX1ydIsCgnC3rE43E0Go0olUrx2rVrGftzPbRS8qsajUY8fPhw8YKy4HK5kCRJHBwcLOo8t9uNTU1NaLFYOJOFb+hg0a6uLla/MdeGhNNVZD744AOmaSpE0FIvxuPxcDKgKMaVlY7dbkeSJNFutwveVyuXWCyG/f39BQWLcnGtnC9d5Ha7S7Ia+Ui/WKVSiU6ns+Qy8rmy2M67f/8+9vf3o0QiqSkneyHQwaJarRaDwSAilr6kRi4qsl5WMBhEjUaDzz77LOuMeLkXcfz48ZIHFMmurGLkoJf27+joYPqUtW7l0onH4zgwMIAEQeBvfvObitRR0XQ5f/7zn5EkSTQYDCV1/HM90FgshgRBFFxuIpHAe/fuZXVlsdVFbwuFQrh7926USCSCTjXwSXKwKNch8nW5lpwol1deeQVmZ2fha1/7GrS0tMDBgwdhfn6+4PNzrTeybt060Ol0edN44sN13G7cuAFtbW1w//59+PTTT0Eul+et686dO3DgwAHYsmULk+78pZdeKlj+WkYmk8E//vEP2LVrF3zzm9+EX/7yl9wVzqkK5yAYDKLBYECxWIx9fX2cfFZ348YNlEqleY8rxJWVHkNoNBpRLBajyWTibVRXrSQHi3IRIs97NrpQKIQmkwkbGhpw9+7dOZurXE0ejUqlyhhQ0McU4spKZnx8HHt6elAsFqPFYsE7d+4UckkFyb0cGBoaQrFYjAMDA2VFGvGfAvEh4XAYh4eHUaFQIEVRaLFYSnqLxsbGsoaB064ss9mc8wZ5PB40mUz4xBNPoEqlwtHRUcF9k9VMMBhkgkVLXSNaMKVLZmZmBvv6+lAqlSJJktjT04NWq7UgJaQ9FMlNYC5XlsfjwaGhIezu7kaCIFAmk2F/f39NuK+qCZvNhps2bcJ33nkHl5aWijpXhFhdKybPzc3B+fPnwel0wqVLl+DmzZugUqngySefhObmZti6dSuTQ2vz5s0gkUjAbDYDQRCwZ88e+P73vw9ffvklvPvuu/DII4+A2+0Gv98PwWAQJiYmgKIo2LFjB7S3t8OLL764olbA5Jrbt2/Dvn374Nq1a/CHP/wBvvWtb+U9BxFBEKXDIvK7LiwswPT0NHi9XgiFQnDx4kXmfJ/Pl5HXTCwWMyPTtWvXwvbt26GpqQm+8Y1vwHPPPcfkVOVCtpUG2705efIk7N27F/R6PQwMDORNrFd1lq4UEBF27NgBTU1NKyfVUZUxPz8PVqsVKIqCY8eOMSkKslGzSpf+1l25cgU++eSTrPtW4Z8333wTJBJJ1n01q3T5yKZ4uZRxVVGLp9R7VlGPRD7K0ffkc51OZ0Ym62w3I9cNWlW44sl1z773ve+lZJ5Mzj5Z05aOftPoQUVzc/Oqxaoi9u/fDzt37mRy8dbV1cHw8LCwlq5c6Lens7OTycGwqnDVg9frZRSOzuHh8/lqW+lGRkZg586d8PHHHwstyioPoRtOv9/PZBqnDYHX6wWpVAprhBSwGNKbTboP99RTT0FnZ6dQYq2SBv2Mzp8/D52dnczv/fv3w8cffwynT5+uHUuX3myOjIzAW2+9BQAPwnBWqR4QEc6cOQMGg4Hpc3u9XsYK1ozSJTMyMsLk98qWz3UVYaFzm9HNKyLC6dOnmf0107zS0M0q/dY4nc6KJw1epTg+++yznK1PTSmd3++Hn/zkJ3Dq1Clm26rCVR9Hjx6FX/3qV+wHFBnRIhh9fX1MgjY6DInOcggsOe9X4ZfZ2dmURHps4WL/B/Nma4v/2mUWAAAAAElFTkSuQmCC"
|
<image>如图,经过⊙O上的点A的切线和弦BC的延长线相交于点P,若∠CAP=40°,∠ACP=100°,则∠BAC所对的弧的度数为()
Choices:
(A) 40°
(B) 100°
(C) 120°
(D) 30°
|
120°
| 69,603 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAABxCAYAAADIzr1/AAAPEUlEQVR4nO2df0xcZbrHv4dp5Viq7YHQChqJg8E7iLaFgZCggmZB7qi3FRqDu+zAOi0F9851MZso//BPY9aa4PZyq2grbtKGiwbG3Lkaa6i0A7pBS7fYZTokVqiboQHJMgMdXWbMMs/+MT3DnPnF/DpzZmA+CWHmvOe87zPne97f531ehogIKRKSNKkNSBGYLVIbEC5fffUVxsfHcf36dej1evfxmZkZv+fL5XIAwNatW6FSqVBQUIC9e/eivLw8LvZGA5PIxZrD4UBfXx8++OADnDt3DoDrZufn56OoqAg1NTXYuXMnAKCoqAjbt28XXG+z2TA1NQWn04mlpSUMDQ3BaDTi+vXr+O677wAATz/9NJ577jk0NjaCYZi4/r51oQRjbm6ONBoNyWQyAkCVlZXU3d1Nc3NzMU/LbDZTV1cXVVRUEABiWZa0Wi1ZLJaYpxUJCSNOd3c3ZWdnEwDSaDSiiLEeZrOZ1Go1AaC8vDzq6emJuw2eSCqO0+l034zq6mo6e/aslOYI0Ol0VFlZSQCotbVVEhskaa05HA4cPHgQaWlp2Lp1K5xOJ4aGhlBbWyuFOX6pq6uDwWCA3W7H0tISGIZBU1MTKI5VdNzFaWtrA8uyuPfee0FEeO+99xKvIvYgPT0d/f39WF1dxbZt25CWloaXX345PonHK4vq9XoCQPX19fFKUhScTidVV1cTABoeHhY1LdHFcTgcpFAoiOM4mpycFDu5uDE2NkYsy9K+fftES0PUYm1qagrp6ek4cOAALBYLioqKxEwurpSXl2NlZQWPPPIIGIbB7Oxs7BMRS/Xe3t64ZP1EQKfTEQDS6XQxjVcUcRoaGigtLY3MZrMY0SckJpMp5s3umA/fPPTQQ7DZbPj+++9jGW1SQETYvXs3CgoK8OWXX0YdX8zqnNnZWWzZsgUPPPDAphQGABiGwcLCArZt24bt27fDarVGF2Esst/w8DABoK6urlhEtyHo7OwkADQ2NhZxHFGLMzs7u2kq/nDh+3aRDqRGLY5MJkvlmCB0dHRQRkZGRNdG1SAoLCzEnj170N/fH13ZusGpqanB8vIyvv7667Cui7hB0NTUBAApYUJgaGgIs7Oz4Y/JRZLdent7SSaTRZRVNyt2u50AkF6vD/masMW5cuUKAZBkMizZ4TuqoXbOwxKHV//zzz+PyLgURIODgxRqgRWWOAqFgjo7OyMyKsUaWq2WKioq1j0vZHH6+/spOzs7KqNSrMGy7Lp9w5Cb0gzDwGQyQaFQhNlWSeGPL774AjU1NVhZWQl4TkjiHDp0CEtLSxgcHIypgZudqqoqVFRU4LXXXvMbvq44VqsVmZmZcX2xYbNAREhLS4PT6fT7HsW6ndDGxka0t7eLYtxmh2EYqNVqNDc3+w8PlnN4ZVO5RjyC3eOgOae5uRmtra2iGZbClXvq6+v9Du0EzTkMwwQsD1PEDovFgqysLJ/cEzDnHDt2DCqVKiVMHMjMzERZWRnef/99YUCgDhDHcVHN4qUID71eT3K5XHDMb7E2MzOD/Pz8VEMgzjAMA5vN5l5n5FecpqYmZGVl4c0334y7gZsZ7/vuVxyGYfDDDz9g165dcTdwM2M0GlFaWuoe0vERZ35+Hjk5OakiTSI8W8g+rbWBgQFUVVVJYFYKwLW29cMPPwTgpymt0+lQV1cXd6NSuKirq1sbYPZu0iHBp6D/bugiAO4/ZcsJqU2KKZOTk8SyLBF5TbbZbLaQp1CloPtwCQEltOg+skjKDSgQr4GgWJuYmMD9998f33wcIsdbivFfE0oQXUKm+2gmPh05jksn/wSLhLbFGo7jMDU1JfTgMT4+jgcffFAqmwJiGflvtJ+agMFy2SdMtgEblYWFhbh06ZKwQfDNN99AqVRKZVNAXv3976BsOYFKzjds8upk/A0SmeLiYkxMTMCnWEs8cRYxcQlQ/+p5v6F9f+qFsuU3HkVd8lNaWoqLFy8Ka3+O42hmZkaSSjAglgsEgEasvkGLhuMEgAx+wpKZsbExksvlwgbBzZs33Y5+EgbuYSgBXPmrd5VvwZNVt4q7nRLYJSI7duzA8vKyMOcAIKfTKdUDE5DjLSWE0pa1A5YLG7KPwzM3N0csy5KPOInKYSUEnU+Dn/VIo6OjxLIscRxHly9fjr+RMYJ/7Vkw8MkwTFIPeN5+++2w2+0AgNzcXNy4cUNiiyLH78BnMsMLs1FIOjeSgTh27BgA1xO3c+dOfPLJJxJbFDkOhwOAH3GIKOle6mhqasLHH3+8Yd4UslqtYFlWKI5MJsPS0hI4zk9XPEGpqqrCwsICLJaNM7pmtVpxxx13COucO++8M3rHBnEkPz8ft912G0wmk9SmxJTl5WVfce6++258++23UtkUMg6HA9u3b0NNTQ2GhoakNifmXLt2DTk5OUJxiouLceXKFalsCokbN26AZVn84Q/H0NPTI7U5ojAxMYHS0lKhOHsLizD+5zGsrjiksisoExMTuOeee6DX66HVaqU2RzQuXryIkpIS4ZDA6Ogo/Zv8fik6xevCuypJ5p5/qHAc51p57XnQZrNROpN4/gW6u7vDWiKe7OBWnhE0pfnXQOfn53HXXXcJijfZ7ek+3wG4j/HfefydG0qY93kvvfQS+vv7YbfbkZ4uTNP7+tUVh8BO/nOwNBINo9EIlmUB+Hk16tFHH8XAwACAtR8e6D//w72F8zweTpgnqysO/Pv+Z3B2+BwWFhYEwvi73vO/t32JWof6Y2BgAE899RQAP+Ls378fOp3O74X+nsLVFYcoP76kpAQ///wzpqenQ3ryvR8c78/JwkcffYSDBw+6vniXdzeu/81n6uCf/7AL/nsf9ybYeevF4XQ6ieM4+s2vfh1V3MHSTGTgMafmzjn80797924ArnonHGKRe+bn55GWloZXXnkFp06dimncyQBf37jHB3nF/vkPu/sJU6vV1N7eLlA0WC7xF8YfDzVscnKS0hkZ9ff3RxS397FAnxMZ7/vud+pzeno6YNEmBp999lnU/jA3AgDIZrOtfQ90oueyQzGF6enpIQA0PT0tWhrJgL9lhwHFef311+k/alWiFgnt7e3EsqzgadmslJWVUW9vr+CYZEvdDxw4gPHx8aSe548VgVzYBH2HQK1W48UXX4y5McXFxZibm0sJc4uWlpbwnUQ4HA6wLBvTN3J27dqFxx57LOWB6hYUqXuV9PR0qFSqmOy0ZLVasWXLFrS1taWE8aC5uRlqtdp/4HoVlcViifplw6tXrxIAOn36dFTxbDScTmfQt2xDuusajSbi7bxGR0cJAI2OjkZ0/UamsrKSOjo6AoaHnCUAkMlkCivxM2fORHTdZmB0dHRd39yiOWDt7OwkmUyWMLvVJhqhOGAVxXVxfX09ZWVlhRP1piLmrouJ1t5+D6Z4WVmZqDsAJjv8/m6hEHYzbHJyMqCvgtzcXHr22WfDjXLTEBN3+Ue81sIAoO6RtdX/ro0mGPd3m81GLMv6TDOkWGNto4mPQ74mYM45rFwTxL320qNuV6vVVFhYSNeuXSMAku+Anujk5t4T9sMbYPjGAiXzC5yjy+AAwGoAk/k4RiyExzzecd+xYwdu3ryJJ554Anv27Am5V+yZ5EZYFbAep0+fRk5ODiYnfZflj7ytQdVvb7mPVB4Gjb+OlpYzOHnyJf/rcywjZ8C0aMDr0FLzOPYdOSEQBnC9cM0wDM6fP4/z589j//79kMvlPvF5r5hL9BV0vH0U5nIYhmHw7rvv4qeffgIAKBQKcBwHu93uK4zFACbrcShbToCo13XMagDDZOHwiQuu7/6y04UTL6y7/pLHbDYTAKqtrSUAQXu8GxWTyUT19fUEgFiWpaNHj5Ldbg+yoR7vs+ctn7iOHy51VycBGwQXbtX/hhMt6wrEb0XZ0dFBZWVlBIDOnj0b0Q9NFmw2G3V0dJBMJiMA1NDQIGiFBduK0vCWxsvBkjCMv9e+4lguEJSHPQ4sUilAh09cCGqs2WwmmUxGDQ0NZDAYiGVZKioq2nAjBD09PZSXl0cAqLq6mj799FOfc1QqFWVkZAT47a5cs979JPIjjuEtjfBCy+c+TelgFBUVuefCjx49SgBIq9WGdG2iotPpqLKykgCQQqHwmU72JDs7O3jv33Ih5PvpI46mxLMIc6kcKAsGoqGhgWQyGZnNZnI6nVRdXS3KrudiEqgeCXY+Qtk43BKBOHxfxudPUMSFTm9vr2Co5/Lly8RxHMnl8oRdLbBePRIIfkgmtIcvSLFmNQhEE9VlB/80ebbgurpcbiA1Go2YSYeFZz2iUqnCmnvSarVhL09xNQiEuWfRcNwnI4juT8Vut5NCoSCO48hoNLqP80VGsPJbTDzrkX379oU9Szs2NkYsy1JJSUlE6S+MCEsqf3584ubshm/ze86omkwmys3Npdzc3LhMyHnWIxkZGdTV1RW2IybPOlTszdLj7omotbWVAAjGmfj6KdKp8GB41yMajSYi779Op9Ov7WIiiZsou93ufoJfeOEF99Or0bjK4ljsEh9NPeJt6/PPP08ASK1Wx9XlmaQ+vJxOJ6nVaneHbnh4mMxmM8nl8ojcckVbj3ii1+vdca3bPBaJhHGw1t3dTdnZ2e6b8cYbb7hFW11dDXhdLOoRHrPZ7H5Y8vLyJJ8GSRhxeObm5kij0bjriIyMDAJAR44ccZ+zVo8wUdUjZrOZurq6qKKiwt3Z1Gq1tLgYTpdbPELeYVcKHA4H+vr68M4772B8fFwQxnEc2tra8MwzzwBwbdDArwbn+fHHH2E0GgEAS0tLGBoagtFoxPT0NGZmZgAAKpUKDQ0NaGxsTLi5pYQWx5vBwUGMjIzgvvvuww3zLP7v//W3QmSYmbnm9xp+fik9PR21tbUoKCjA3r17UV5eHierIyepxNlsJJ0bScvIWxhJHq9jUZFk4ljwZNV/Sm1E3Egqcf7nyKugkhI8lDyOFKMiacQZefsQ8MtfAn9xSm1K3EgOcSzn0UeN0D4M/EWp3FCbSgQjKcRpefUDnPxtFYBVKItDfz8u2Ul4cUbePoRTp06BYRgwmb+Q2py4ktjiWA3oo0b3C36LhuPY93Di7YwlFonrkd1qAPPk/4IunnQfmrz6VwCbp1hLuIFPIqI/tpS4p2/5TY08dwHZqFuzePMvIpTFiik/o6kAAAAASUVORK5CYII="
|
<image>如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为()
Choices:
(A) 84°
(B) 96°
(C) 116°
(D) 132°
|
132°
| 69,604 | null |
132°
|
"iVBORw0KGgoAAAANSUhEUgAAAHAAAABiCAYAAACI/lfbAAAPGklEQVR4nO1dbUxbV5p+r61dtBUaT7aO6ijWeKaY1F2TWc+4nUFTUkhMWlgZFRpaWi0/qNbETD2aUJVsVclp8wNp+HAUosDGW6IRUqlKGj7Swk7JhFSuRCQkuiIFp1St6aDyx62jjSNnWiPZ99kf5trXn/jj+gt4JAvfe75eznPe95z33HteE3YT2Ni3P7ccBREFPro+LGMc7R1X4+YvJIhoN4EJv2TtfaQTMfSvDhMBILAg/wCoU9RMjrLHovIXJPI9gvICFvBjHB1EoI7xqOSrHYSTE/48CJY6dpcGcmCI7OeGyEonaeJSU+AeQsnlj56kssdAAGKXLyAwKAYpBQZLE2RimumrvmW6efpwvsXJCLtEA9nwS/safcUQlSnV+RFHQOwSAkUxzaGY45VbgxYhdgeBIGKYwJKSJRBVlNEhEH31zZ1AOkPBFSdr76P+yeJhc8cTCICICSkYQwyJ6ASZ+o/SJ//5SzJOhswrO2kkcSdDdU3FQ+CuXMRwYCeNJD5xmYhYYogIHePEXjpRFO4fh51PIChphxzwE8OIsyqO0NjxJjQWefwRe/36dfr0008DWYuMPKLdoIFBsBQ5Xh3frNETv9bSwYMHaXl5mcTi4iNw52vgFkAi4vuDbreb6p+to6GhIdq/fz9dvnw5f8Jlgjxt4eUY4fuaPp8P1dXVePvttwEAt2/fhkwmw/379/MgW2bYRSY0hPb2drp//z598MEHvHv/Qfsk/0y9/X1Bn7EokO8RlCuwbODh3sDAALRaLbxeb1i60+mEVCrF6upqzHKFih1HYKIOn52dhUKhwMbGRsz0c+fOoaGhIaM2co0dR2AkuM622+2QyWRYXFyMm9fr9UKpVGJ2djbpevONHU8gALhcLigUCkxNTW2bd3JyEmq1Gj6fL/uCCYAd70Zsbm5SU1MTtbe3U2Nj47b5m5qa6MCBA2S1WrMvnADY8avQtrY28vv99O677yZd5s6dO1RTU0MOh4MkEkkWpcscO5rA3t5eunbtGtlsNiopKUmpbEdHB4nFYhoaGsqSdAIhvxZcWPAXFlNTU1AoFPj++++Tyh8Jl8sFqVSKL774Iq3yuULBE7hdJ8VKX1pagkwmg91uz6hti8WCurq6lOTJNQqewFThdDohl8sxMzOTcV0+nw8qlUqQurKFHUWg1+tFZWUlLBaLYHXOzMxApVIVrFuxoxYxzc3NtG/fPhoeHiYAgu1p1tfXU11dHZ06dSrsvpBtpI38jp/MwJ+Pzp49i+rq6qxoit1uh1QqhcvlErzuTFHUBHIYHx+HUqmEy+XK2iLDZDLBaDRmpe5MUPQELi4uxnyKkC7iDQC32w2pVJrxylZoFB2B/A7+9ttvIZfLMTc3FzdPJvVH3rt48SJ0Ol3adWcDRUcgB4/HA41Gg8HBwZy1ybkV09PTOWtzOxQVgXztaGxshMlkynm7s7OzUCqV2NzczEnb26FonkaAt2Q/c+YMPXjwgC5cuJCTtvmuwrPPPksqlYouXryYk7a3Rb5HUKoYGRmBUqmE2+3Omwyrq6uQSqVwOp1531orKkf+1q1b9NJLL5HNZqOysrK8yvLaa6/RgwcPBN80SBl5HT4pYH19HTKZDDabLd+iAAi4FTKZDEtLS3mVoygI9Hg8UKvVGB4eTqlcts2b1WpFdXV1VtvYDgW/iPH7/fTyyy/T8ePHyWAwJF0OOTBrBoOB7t69SxMTE1ltJyEyHwPhbz3HHvP+tLWhs7MTer0efn9hRo2Ym5uDQqEIe880lwsbATQwVAWAOCe5RDG1AQnWTwDo8uXLdOPGDXr//fdJJCpMY6HT6ejw4cM0MDAQvJfTBU1WhsW2AzCxNrEsC5vNBplMhvX1dcHEyhYcDkfQrcg18uNGgAgUf45aW1ujmpoaGhsbo6eeeirHwqWH06dPk9vtpuHh4dw2LMw4yHx+4uYNt9sNpVKJkZGRjOvMJTi3gnvzO1fzYMYE8sX0s8vo1VEocByz9SEjJpIg2efzoba2FmfOnMlUrJyCI8tqteLIkSM5bTtzAiNGmp9dRp/uKPpWQveudsQmkSvJ1WEymdDY2JjU6GVZNu/bWJHw+XzQaDQYGxvLWZuCLmJYBILIGXW9+NwferXBzy6j5xiBjOPhmXkYHByERqOBx+MRUqScw2azRbkV2YRAa/PA0WWGiGjyr/Tf5WX0S5E4GExAxBymR8uJ6Os1WgEbVfr69evU09ND09PTVFpaKoxIeUJ1dTU9+eSTZLFYwu4jW2tFoUfEld+HQjXylexzy9FAMFU23Ix++eWXkEqlCY99FRvW1tYgkUii3Aq+yRfK/AtKoB/jOEknMRGx88KybGAeDMbmDJDocrmgVCoxPh4ds7PY8cYbb6C1tTXr7QhL4EovjnZcDV1v6aB/5U84xoQHUfX5fKipqcFbb71VcIsRIeDxeGIeKBX6fw0jkPX+PfhJGizAbmnU55ajONa3HJYcdC10fVjmyd7W1obm5ub0JS8CDA8Po7KyMqttRGlgSuTxEDCfR9G3EmLJv9KLYwxFzX0WiwWVlZUF815JNqHRaDA6Opq1+gUh0D9hCDnvEZ+TE/6ghgJAV1cXDhw4AKcz+tjXTjSl8/PzkMvlWXMrovZCsfkDMSUPBb9zYEoeirrm5+GuuZBW2PwhFGfuH/+JGAa0uPi/dOTIEfoH+KjyN7+lEy80U/1zz5NCoYi9Qo7R3nb3+XJy3/l58oEXXniB1Go1nT17VvjKIxmN1MBE18l8566dTicUCgU+vDoGr9eL8fFxtLa24pF9P4FarYbZbMbt27fTqpv7y5+/I7/nE+vr65BIJHHDm2SClAiMlRZr4ROZ78f7/4fKykr09PTErGNubg4mkwkKhQJyuRwmkwmfzP5PTIGFGFD5gNlsRktLS3ZXoUDsfzbeSI7XMZH3X/n3l9DW1pZUHXa7HWazGb+ueBwSiQStra0YGxuDx+MJ7H+mQaD/xwcx5cwlOLdiYWFB0HqDBCYyN8kQGO97d3c3ap9+KjiJR3ZmokGwvr6OwcFB/Ftt4KdxGhsb8WfrUNgOR7FoIBB4p1Wr1QpaZxiBif7RRB0dj/QPr47hsV/8LHiujjMfYaaXv2MT63qrbrfbjZGRETQ3N+OnD5Xgd0/8CgN9fwqeSoo05f4fH8ScD/MNrVYrqFuR9E5Mqh3AHfvKxnEsn8+HqakpGAwGyGQyKJVKdHV1ZX3XQwgsLCxAJpMJ9tQlKQJTIY9lWWxsbEChUCQVc0wILCwsoLOzE0qlEo888ggMBgOuXbtWsOfaW1paYDabBakrIYHpbK15vV5otVoMDAxkLFw6WF1dhcVigVarRWlpKVpaWjA6Opq3sxSxrMDGxgYkEokgL2wJ/jipubkZ7e3tQlebNCIPgFqtVuj1ehARamtrMTg4mFbHCW2OzWYzXnzxxZh1B9cKSbQpKIFmsxlPP/10wZkulmXh8Xhw5coVtLa2QiKRQKPRoLu7O+4cnQ5hqZTxer2Qy+WYn59PuR0+0iYwUtj33nsPSqUS9+7dy0igXIBlWczMzMBoNEIul0OhUMBkMkUd1c42RkdHodFoMqpDEA3kVlYOh0OI6gRDshqxtLQEs9kMtVoNqVSKtrY2TExMpLwBHc8UJkJlZWXKh3b4yJjAjY0NyOVy3Lx5M9OqCgIOhwMDAwOoqqqCWCxGY2MjhoeHY8aIEWJezNStyIhA7thXLgMNpINkOzoyn8vlCm4eiMViVFVV4fz584JbmtbWVrz55ptplU3ekY/RCQ0NDTh16lRBOsxCg3uC0tbWhv3790OlUqGrqyvtA578PnM6nZBIJGkNjLQ1sKurC/X19XlfcQo9eBK9Oca/np+fR2dnZ/AJitFojIpquJ07wL/f3d2d1ismaRE4MjIClUpV9C/hCgW73Y7u7m5oNJqwzYNU+odzK1I9Qp4ygTabDXK5vOBWnIWCjY0NWK1W1NXVgYig1+thtVqTepg7NjYGjUaTklVLiUCHw5HWKNmtcLvdGB0dRUtLC0pLS6HRaNDT05MwrltVVRWsVmvSbSRNoMfjgUqlKrpjX4WE6enpsCconZ2dUTsxi4uLkMlkSe/dJnXA0+/3k16vp4qKCurv7xf+xZwdCiQItPDZZ5/RlStXaGZmhu7evUt6vZ6ee+45amhoIIPBQFKpNLm+ToZlLtAAUJjP2Iod3OaBVqtFSUkJ9Ho9Hn744aTWGdtq4NDQEF26dIkWFhaK/uRQtoE0QptElvnuu+/IZrPR+vo63bp1iz766KOE5RMSODc3R3V1dfTKK6/QwYMHUxJstyMWmakQvLm5ST09PTQ3N0c6nS5uvpgEcg1duHCB7t27F12IYbJ33m0XAwwRE9Gtjz/+OLW0tIR+jTviV7njamAKv969B8Gx9YPNWyTwNTeSF1GoQDgiyePzvKd92cYWLVsk8M1uJC9FFW5ydyH6Z9NjIZgjnMWARvqn+qnfvsdvPgCEdC0RA0ECuewBhRQRaJJeff7jbVpJX8A9hBBpBFmsUP/xQHw5hmFItPXXOBk91Yk4EtitL5y9nfz9IH1de4jKKhIEpNtjUBBEuhYi5jB13VimXh2RcZIlAOSfMNA7J2qjLKKII0HEI2P53DG6cfxVKp9LTFDefzdoByKkjQ5au3mSnmnauj5UTseIIUR0uShEQsCa+u700SB7nv7r0De0piuncoQqDtEZrcrRkuylp5POMEwgaWqW3ul4hp4nEYHsZOl8gz7peJVO/0t4fhFRiHUWK3R+kOgPr1cErst/TocZEYHYgLYFR4co2m6TP0IS2ktPKp2NIpMhIvvfviayNgfmQNEfiRlgCZdORFs9blOUxVYwHv4Z944Y8Vv29rIFRczuDMabCzzYDfBSExZAgkPIjbD30RAGAqaSBfknTtKxRw9RFKI8fO5PHLO6l54wnd+d4CzhnY9pFvVUpw6kVrxuog6y0cd/WYkqLyIKzHvPdIqCppMYIvs3a7EFCpeLJ0i008k3G3vpidOJQotC+/VZovpn6DATKMOs/I2+YojKlRUUtf4IhIIk0FaMl6iYnx3xIwwmbxP20rdPD4Ri8bPLsBwLxdvxYxzGBDFX4zyNIArOlXu72lkHtjar2cl2Ep+4HJ1B10fLN14PaiQfe3uhRY7CjOW/h6SxR2CR4/8Bmt6+yvaJPTsAAAAASUVORK5CYII="
|
<image>如图,△ABC∽△BDC,BC=√{6},AC=3,则CD的长为()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,605 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAHMAAAB+CAYAAAAX3S44AAAb7klEQVR4nO1dfVCU17n/vbvkkklxtjY07owbMbIYItxbiCQxhQkQWcVI6ybqiCOOMNqCwG1A6S12mEhabe0NCo4S1xEjRHOLFcJa7QR0va4WpzrsrXa6y0dgExnpBSqZyLDOlWR3n/vHu/uyH+8u+/EuH+JvxnHf93w9nOc853nO857zHIaICLMABCsYiCaeiVC8WoQPLzvnq1LrsXtdHIgIDMNMMZXTC9HkWWYACBwj7SOPYRjUXiIUKlgGEhH06iqUKf8NasPcYyQwG5hJABz44sgiKxnQc3kl1qxbBsCKuJhoANappW8GYeYz06OAWdH1x0tgitZgGRgAIvx7ydvIKPpPKOMYzBLtISiY2aIznWEFIELLwUK88/Nj3Nx7Xm/Fj+Pm3vRqx8yXTGBCUXK/WbKvtB5Di94MIkLLwUKsixdBbSDM1al2djCT4fndqUYtsxPKl8QAgHW7ipAB4HLredAs+bOExsz/qwm8+k/92RUUrl7FMZfp/BwaAEvkMZ7V7GOOadWZjmtB+29f14dFqxgoqq2ssYNOrGbicBkrYaDLNoPI97anCkQWMBDbBiCr94XErDOADOcPIl75H3DTi4qdoEsfTgtNgUNYhs54ZjpJL+yzKtsJLkvQGY9QzwYzXmfap17AkXE2smf2OATgbIg7M1J4iztM8Bp9gLcR6qo7R0dHcefOX9Hd/TkGB4eh1f43l9doNGJg4H8Bxsr1mkwmQ3Q06wl66qlwJCcn4/nnn4dcLsfy5csRERExBX/hBDzLocjNuxV0WzNtmh0YGMCVK1eg0Wig1WoxODiI5ORkLFq0CEuWLMGrr77KMWTx4iWIinoelZWVAIDKykr099/D3btfAABMJhM6OjpgNBpx7949tLe3QyaTIT09HRkZGcjIyMCCBQum608VHDOCmd3d3Th58iTOnz+PsbExpKamIj09HampqYiNjfUsyTbK9/6qEgyBY6o3yTcYDNBqtdy/yMhIbNiwAbm5uTaJnsWgacL9+/fp+PHjtHz5cpLJZFRWVkZdXV1cutVq9VjWNe29yr20d+9ev9q316HX66mkpISkUimlpKTQiRMn6MGDB37V5bUdImo5WEBghx4hYydZyUCFhVWCtWHHlBtAw8PD2LVrF1544QVcv34dv/rVr3Dv3j188MEHiI2N5fJ5s/pc05gA5hZ7HXFxcaiursbg4CBKSkqg0WgQFRWFPXv2YGRkxM9arU4ODmuXGiKGQe0XchAR++/wKoiYOGCJ8LNA0MwkH2fpgYEBFBQU4MUXX4RYLEZfXx/OnDmDt956K1gSBMP69evR2NgIvV4Pk8kEuVyO0tJSDA8PT1LSbpmKOOON0InVy95GRlEVLh/dDYDtK1qmRFWhAkvkMYLTHzQzJ1s3mUwm7NmzB4mJiZBKpejr68MHH3wwow0PmUyGI0eOoKenB+Hh4YiPj0dlZSXGx8d5cltB5LzkYBgG5w/VQoOVqD66i31NbF8xAKKjYxAtXyY84YJP3A5oaWkhqVRK+fn5dP/+/ZC1s3ev/zrTHwwPD1NOTg5FRUVRa2vrpPmtZKAMMFRY1RIymvgQ9DqTeCzHgYEB5OXlYWRkBGq1Gq+99ppP5by9DxXIYV0L8M80zz33HD7++GNcv34dBQUFkMvlOHXqFCIjI3nrZJ3+hEy+qTSEbivBp1mdTodXXnkF6enpuH37Ni8j+cpN9j5UsLfHMIyT058vX2pqKvR6PRISEpCUlASDweDs4rGDJso41RVi/6Og1mxDQwPWrFmD+vp6/PKXv5w0P1+nzQR4G1BisRi//vWvcfDgQaSlpaH502andCILKG4pMgAYez93qRhApxqH1AbhiWYbDx5ms5mKiopILpeTXq93S/e2ZhQCodCZvtDc0dFBMpmMysvL3cq1HCwkAFSl1hORhYiI/t7yAUGxU1A6HRG0ZI6OjiIrKwt/+9vfoNPpEBcX55ZnNm579IXmpKQk6HQ6XL58GRs3boTJZOLKKXfV2rZ+xoNhxGAYBqUaJqSf6YJipsFgQFJSEqKionDt2jVIJBKndJqh06iQWLBgAW7cuIGnn34aK1asgNFo5NLi1u2G1WrlHAaXj+7mVbFCIWBmtrW1ITk5GSUlJVCpVBCJ3KuajRIZCMLDw3H69GnEx8cjMTERWq2WS3PzVoWQjoCYaTAYsGnTJpw9exZFRUVC0zQrQQCGhoawaNFibNy4EX19fex7r7OTsN80/WbmV199BaVSif3792P16tWCEjOb0dPdjf4v7+JfwsRYt24dlEolTCYTb147g509R8HDL2ZaLBZkZ2dj9erVTySSAytdH9WdREHhTuz6jzJ89dVXSExMxNatW/36YBAs/GJmWVkZAODw4cNe880Fw8cOIgbj4/+H+o8bsH37dmzelA29Xo+f/exnGBoa4r6xOiJUtoTP7ryGhgZcvHgRf/nLXyAWi73mnSuGDwCAYdDU9CnefDONc+9VVFTgN7/5Dc6dO4fXX38dCQkJUCqVXBECgFC4LX1ZHN+8eZMiIyOdPh4Thd4Z4CtC7WifDCtWrCCNRsM9m81mksvldPv2bero6KDIyEheZ4rQEDmODuIU88Q0OTAwgA0bNuDMmTNOH4/ZQTmHJNABjv2j1+vx4MEDrFy5knsnFotRUlKCAwcOICkpCcePH8fatWsD+NjtH5x0pqPT2U50Xl4eiouL3SxXmkN60RWOg1ilUmHHjh1ueXbs2IEbN27AaDTinXfewdatW7Fz586Q0uXRACIi/OEPf8DXX3/NGT6ODJyrUukIk8mE5uZmXmaGh4ejrKwM+/btA8DqUb1ej9bW1pDRIwL4pezhw4coKyuDSqXiDJ4nDHRGY2MjFAqFmxvTjoKCAmg0GhiNRoSHh+Po0aMoLS31sGMheIgAfia9//77WLt2LZKSkkLS8OMAlUqF/Px8j+nh4eEoLi7mpPPNN9/ED37wA1RVVYWGID6rqLe3lyIjIwXdchhKTIc129HRQfHx8ZPme/DgAUmlUhoaGiIidgtKZGQk9ywkeHXm/v37UVRU5HH6sA2C0IyuWYK6ujoUFBRMmk8ikSA/Px+//e1vAbBbUHJycnDgwAHhiXLl7tDQ0KySSqKpl0y7tPnaR67SGao+dpPMAwcOYMeOHV6lcq6jsbERWVlZPveRRCJBbm4uJ40LFizA+vXrcejQIWEJc+Ts/fv3SSKRhGQ+DyWmWjLj4uLo5s2bfpVxlUa7XTI2NiYYXU5Lk08++QRvv/32jN6gPN24efMmnn76aY+7Dj1hwYIFyMnJQU1NDQBALpcjJSUFzc3N3gv6AaelSX19PXJzcwWr/HHE8ePH8ZOf/CSgsuXl5VCpVBgdHQUAbNu2DadOnRKMNk5n3rlzB19//TVSU1MFq/xxw+joKFpbW7Fly5aAytt1ZXV1NQDgRz/6EQwGA/r7+wWhj2NmQ0MDtm3bJkiljyvq6+uxbt26oE5fl5aWora2FiaTCWKxGDk5OYJJJ8fMpqYmbN682SmR5vha0hUqlcqntaU3REdHIysrCydPngQAZGdn4+zZs0KQxzKzu7sbZrN5Tn7i8nXAXrt2Dd/97neRkJAQdFsVFRWoqqrCN998g6SkJAwMDPhwbNC5Dj6I7ITOVV3p64AVQirtbUVHRyM1NRXHjh2DWCxGSkqK0/ZMX+pg4by7TwQAV69eRXp6elCEPs4YGRmBVqtFdnY29y5YFbR7924cOHAA4+PjSEtLw9WrV30s6chAZ5/PnJdMX3Dy5ElkZ2cjPDycexesCkpMTMSKFStw+vRppKWl4dq1awB8GSQieNpvG9bf38+rL59gAnV1dbhw4YLg9e7duxcbN25Ed3c3vvzyS4yOjvrmIiQRwLifEBT19fVh2bIQHMl+TNDW1gapVBqSwZ6QkID4+Hhuf1Vvb69bnmIFw50d5f6JMtAJcjvqIOru7sbSpUsFJ/RxQV1dHYqLi0NWf0lJCfbt2we5XI6enh639KOX2UsFWvQTB5AOFokQxyjQ6XIMSdTX1/dkivWA4eFhtLe3O+15FRqpqalYuHAhLBYLPv/8c7d0Qid6UIR1cQx3InvX0UsoVFzBu8XOX11E3d3dHpk5lU4DtiWry1jzdrAm9KG76+rqkJub62T4hALvv/8+bv/PX9HZ2emW1nn+MzBLXwADgBx6Z0lMBjQ9Rqe8YUNDQ1i4cCFvI1PpNGBbEjnrARKxQQ55NxE6vxN64FksFpw4cQIajcatHX/7ZbIyqW+kYv6z30NXV5ebUdN6qRWZq2oAAAxjSyUgOnop0OsyzZpMJsybN88v4qYMjBWG89VOyl9RfJA/q2swiCDR2tqKmJgYyOVyt3b8xaRlGGDr1q0wfvkFK4H2zejQ47MPCWt+bD+NLuLyG42fQ/GiM20ik8k05WE7XeGJBVWFqxCv/AwGsoKsBCsZgNoyrwwVCkJ4fPzBW2+9BbJYoVarbRIIMJ197L0tjEsfGf6Isg81WJ3hcqQyIiKCTCaTYF+7A4bV+f+qwgyCYufEeRbbf3p1FQEryUBWshKRRqOhyMhIkkql1N7eLggp9+7dI5lMRmazWZD6fMGZ//qEAEwEjbJYqeVgIRVWnXfLW6gAb6ALYPoCW3oEyzBQi979YJJefYiAlfR3G3djY2O5iJGvv/66323xHX6qqKigiooK/wkPEK2trSSRSOiZZ56ZoIv+ThmufWBoYf9WGyNdKZ+RzCxUgDKKqsgecoWD1R6SZSUZbGmOzFyxYkXQbZvNZoqKiqK7d+8GXZcv0Gg0JJFIqOnTZpJIJEQ0MZgBEYHBRHhTLhQNPzBv3jxBNxUFCysZSOGF6AlGsxB6mm1qaqLMzMyg6/EF7e3tFBn5PWpru8xN7UT22cLivTAP4Lifc9pgdZju9C28U6zVamWDIvGkCbk7LzMzky5evChIXd7Or7a3t5NEIqHm5mYiIurq6qLY2Nig2hNFRER4DKQwZWCsAMOabFyosj6XBTTThdK3fw5F8UHbxTTCo7+/H3q9HpmZmX6XJQ/x9vhw48YNbrfBO++8A4A9Ufad73zH73YdIYqIiMDY2JiNIjPI8i2s5m9Alm+n5KYJcozXygAMliGzMANltUcmMnWqIWL+FSiqwqUju+xZBYdKpcL27dsnPebvCvLDkXDnzh0olUrU1dVh/fr13PuHDx8iIiIiqLVymFQqxT/+8Q92OwQTBkZkAawEiMIwNQ4gkVs7u2svo281A4Y5zr1r0bNXRdnB+kKEu7HHYrHg1KlT0Ol0fpf1h5FpaWk4fvy4EyMB9oT697///aDWymGxsbFcACJX+DPiAoWn2o+1EY65vbVy3/JYCBeUs6mpCT/84Q8hk8kEq9MRdkYePnwYmzZtckvv7e3ljTvoD0RyuRx6vZ4niQArO+2S1WJ7ZXaefsnCPlu+dYmr6vDeYnbWb97SHJ3njvls7bNXKVpgtXwLMn/jVF4sIvaZyKEcudTjeQqrq6vDT3/6Ux+6zH/09PRAoVDg8OHDHrez6vV6xMQEF7ddZP8o6j5XM2BEIgAMILLpEEbMTsUMABCIAEb8FBhxGGC12JhMbKeJngIjfoq92oDrRL40syM57vmYMLBx0AHG9p7hqdtiZcvBagHET7G0k3mCRpGIZSxPJ3R3d6O3tzcgw2cydHd3Iy0tDVVVVRwj+fSi0WjEiy++GFRbIrlcDoPB4DSdco0xYjAiTDCDLOAUHFkAsnISxnkPbXns2RjGoRN503h8s2Rh22bArptFT7G/Hcqzjne27gnKGVbXOz4zLsYMDzdPnjzJBY/w1wDxlr+rqwvp6ekoLy93kkg+1dXV1RW0ZIZFRUUhLCwMjt81GYaZ0EuM2CZ1YoAYlrkcVWFgRC6EEQAizxGsvaU5wQpADDe96HN53zA+Po76+npO1fhrI3jK39/fj1WrVqG8vBzvvvuu1zpu3bqFF154IehjlCIAeOONN/DnP2sndIrtygbbg006zc6jnBFz0xgLdtpl8xAcFCsrZZgkzQkMK/U+1u1dlrynNjU1YeXKlYKefOvv70dqairKysomZSTAbnUVYnekCGADJ1zValnmWMl9amLEsC0CHV+yUmm1GzMWW7pN19qNJ2IcpNdbGk0YV4zY77rF7OFENg0Eslph16HOz85Gl0qlCvhUFx/sjNy5c6dPjATYra6C7Fu2u5KkUqk3x9SMCa3Gh0DdeXq93i8XmmsfuD4PDQ3R4sWLfabFarWS2WymiIgIQVyqIgCIjY3l9CY/xy0IbQzj6cGxY8d4AzJ5gltUZ4fn4eFhpKWlYdu2bbyRLD3Vp9PpIJPJBJnmOetiw4YNaGxsdLLOyD7NQTxF3qCpgz26lr+Hi4nHerUzctOmTT4z0o7GxkZeJ0Ig4Ji5bds21NfXO48+Joxdoz1unARw9uxZZGRk4Nlnn/WrnGtfjIyMIC0tDZmZmaisrPR5aUNEsFgsOHPmDPLy8gTZv8QxMyEhAfPnz+fOPDzu8CWOj2sHuz6Pjo5CoVAgMzOTOw3t68BnGAYXLlxAXFwcoqKiBBEYkSOBubm5aGhocGrwcYROp8PY2BiSk5O95vOmI0dHR5Geno60tDSOkf6ioaEBeXl5AZXlg1O82S1btuDTTz/1+eDnbEVdXR0KCwt50yaTRoBlZFpaGl599VVUV1cHNEX29fWhvb3d7etJMHByr0RGRiIvLw81NTW8gYQfB4yOjqK5udljkAlv0khEMJlMWLt2LRISEqBSqXjLOMJT/1VVVaGoqEjQba5uMdp3796NxMRElJeXQyKRuBFKU3wlotBobGyEUqkMyHX28OFDrFmzBjExMR6DSrj2D19fDQ8Po7Gx0WOUkUD72O2DoEwmQ1ZWlkc9MJsZCfBHbvYkPY7vTSYT1qxZw92d6Sm/L/3zu9/9Dnl5eR4HVKB9zHt7QkVFBVasWIHS0tLHKoberVu3IBaL3aJrTXaX5/j4ODZu3AipVIq6ujqP9btOyXzPw8PDOH36NO835GBnPd5P9dHR0cjNzcUvfvGLgCueifAUT90VjhI5Pj4OpVKJiIgINDY2cvuDvNkSfEyxP7/77rsoKSnh9fgEfV7Gk59vbGyMpFIpdXR08PoUZxJ88c0+ePDAp8CDjn/bo0ePaM2aNbRhwwZBjipoNBqSy+X06NGjoOvig8dNNBEREaiurkZBQQEsFgvvKJtNqK+vx/r1671aj+QgUfarssRisU8S6em9HePj4yguLsaRI0dCdt7T646o7OxszJ8/P3QxxacQvpzqsjPSarUiOzsbjx49wrlz55y2XgZ6V/a+ffsQHx8fkq0pdkx6fVR9fT1ee+01JCQkzNpb+W7cuOFTdC0i4hhpMpmgVqsFkaLm5macPn06oG2c/sBNMl2ni4ULF6K5uRk5OTmeP5HNcBw5csSns5YMw2DLli0+M5JsASO8QafTIT8/H3/605+4u8JCBl+Va319Pcnlcrp//35IlHcwqKys9GgA/fOf/ySpVOpkdHgy4HJzcyklJYXXSArE6LMfBmppaQm6Ll/g8y7ibdu2ISsrC5s3b3YziKYb5EU6PvroI6xfv37S6Fp5eXno6+vDZ599xmsk+Wv02dem27dvd4tWEioD0idm2jvLbgj5urdlJsCXOD4FBQVeGeltsHjCjh07IJVKPX6sDqTOyeDX/n6xWIzf//73aGtrQ21treDECA2NRjNpdK3S0lLodDqPjAT8l6T9+/fj9u3bOH36tMc8oZBOny5DdWw4MjISarUaycnJkMvlk1q4NBXnVTx4To4fP+4mlfZ8DMOgtLQUWq0WWq3W5/Un37Mj1Go1ampqcPPmzakP/BGosrWfwz969KgAqjs4OHqA7MbF0NCQm+HjiLKyMkpISKAHDx4IYpBYrVY6cOAASSQS0mq1QdcXCHy+ptgVq1evxo0bN6BUKtHV1YXDhw/7fa4xFLBLTF1dHbZu3cq7vKisrIRGo4FWq3X6kECTzCKO6Y6/x8fHUVBQgI6ODuh0OrfYQVOFoM7ExcXFQafTwWg0YuXKldwVD95AU/Cx2x5di+8GvcrKSpw9exatra1+MRJwVjf23yMjI0hOTobJZMLNmzenjZGAAAccJRIJLl68iPj4eCQlJcFgMHjNPxV+XY1Gg5iYGERHRzu9tzNSq9W6fbVwlDhfodPpkJiYCIVCgXPnzk17cCxB4sbYdU59fT1JpVJqa2vzmCcUC2bXryZZWVnU1NTklKempoZiY2MFC8bR1NREUqmUmpqaZsxXJMGDAOl0OpJKpbRv3z6hq/aIvXv30nvvvUdE/NG1ampqaNGiRYIw0mw2U0VFBUVFRU3JDe/+QLhz5Da8/PLL6OjogFarRWJiIm7duuVtVgi6PXJYagDsciQnJ4czxg4fPozq6mpcv3494CMA9jauXbuG+Ph43LlzBzqdLuhj64IjlCOlpaWFpFIp5efne/XpBjpN2cvZfbOu0bVOnDghSLStoaEhysnJoaioqInYdjMQgkumI5RKJXp7ezF//ny89NJLqKysxMjIiFs+X4wP1zRyWSYAwIULF/DSSy8hKioKDQ0N2LdvH65du4ZFixYFNAsMDw9jz549iI+PR3R0NHp6erBq1Sq/65kyTNWouXfvHuXn55NEIqGysjIaHBwUrG67AWSPrmU3xLq6ugKmtaioiCQSCZWUlEx/BDMfEVLJdIRMJoNKpUJPTw/MZjNiYmKwdetWtLW1CVL/6Ogo9Ho9TCYTysvLcfXqVb9izxMRWlpasHnzZsTFxWHevHno6+tDdXU1nnvuOUFoDDmmaxTdv3+fVCoVLV++nGQyGZWXlwcsSXv37qWUlBRKSEggmUzmVz16vZ5KSkpIKpVSSkoKnThxYtK7oGfKUsQVMyI+aVdXF5WVlZFcLiepVEqbNm0ilUpF3d3dPpV/77336JlnniGJRDIpI/V6PR09epQ2bNhAkZGRFBsbSxUVFdTX18flmanMmgwM0fQeJiEXN9rAwACuXLnC+U4HBweRkpKC559/HtHR0XjllVc4T8vixYsRFRWFs2fPIj8/H1qtFvPnz8fdu3cBAGNjY5y78d69e2hvb4dMJkN6ejoyMjKQkZHxWF3JPO3MnAyjo6O4c+cOuru7MTg46HSbndFoxMDAgFP+hQsXQi6Xg2EYhIWFISUlBQsXLsTSpUvx8ssv++xycx1kswEznpnusAU/tAUDMhqNGBsbc9p5NxsZIQRmITMBw/mD6JXvcopy+QRChoUMKSYCJBI6UaIs4801C8eloJjxzGRj7k2QWV1cC0ahwFIet+hcnFodMQuYSVwIIvWhIpAiA9bLVoDmNuP4MOOZyd0O1qnGJSiwO4bBlVVLscwHXs61aXfGM9OO4g81+HCXEgCgWOrb1oy5Nu3OCmaqDxWhtraWjTEb9/ackzhfMfOZ2anGZVJwh3T06iosfSF68nJzEAFvtRQKE4GAeW5CMPwRTOkl0KWjbF4i9Bq/ANGSqSVytmDKvcE+oqowg2CLK22/Yahg1cSdWI5XSD0Bi1npAXoCfsx8nfkEPuMJMx8j/D/B9QhNl34qpgAAAABJRU5ErkJggg=="
|
<image>如图,AB是⊙O的直径,点C、D在⊙O上,若∠BAC=20°,则∠ADC的大小是()
Choices:
(A) 130°
(B) 120°
(C) 110°
(D) 100°
|
110°
| 69,606 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAKkAAABNCAYAAADdAES7AAAR4ElEQVR4nO2db0xb537Hv8dcNdKEyq2KVEdy6rQYSmJ6x8IbqrgiujGZs9HG3LI494pKVKJza0caujCJSky8WKZxFadFmiFMvEmUSGVrbjApUmjganSla1aqpGoN6DZOm9aVwuoXRfW2Oos5370w5+BjH//Ff6k/EsJ+nsfPec5zvuf3/Pmd5zkCSaJMcR4TMD4PCIIAkhAAEEexwhs4SA0oAEKxC1khIUT89VEL0xSmOPlh7AbhaAeufr4JkhBJuBwCjMIxrAqsCLTEUbs+amFlJlJR8Y3w4o9wwmrcPrX+sXk42v+Avzn9ZqELVyEpYuokCSgfkRKILe7qzHsQGp6KS/p0vRkLX9wtTLkqpIkGEaEmFuv0OQcEQYj8HXOAWIXz9NkyEqlKOzB34z1Y2i1b38QtIQN1dYaCFatCJmgARiRHEvJwaNUDQRAw/lWdHM7RY9AIzwJP1ZeRSGMgVnF9XMTxEwe3QiIDJQC4e9cHc0Nd0cpWIQlb10iymJtYQbuxE0cdZzHv7t9Od9AKl+OXqKtvwM+KU9IMUBvuARBWv4DgPI6DUUN4AQBWrmFgfAEuz2jhylghbUhCELYumEi8OzqOBRzFylh/XNq6ugag7gCEspmCihYrAc9bTsyzHWP9VkUy5zEB43gdvDFe6BJWUCHWxsgiFQlq1nBMMKLh3O8x9ttfJcygfJp7+UxFUFjFWP842i0ntuOlfg1fqwi0lIixgbIV1QgQVr/AAoCn655J/HuhnES6xcq1N6ERjFgA0Nmkkfs2mqZfweXxgvPni13EnySJGmRBEKCI4fZ/UWr1VfJgVNryEGnUWRpfHNgeAcp/mxA3RfSfMEaSJ6iw6N9UyC2yhVSLi/pM6WIKAA40wAzgnu9OXB7Cqgfnrq0AQBkMnIC4gZOi8w0A0ODD//gQV65cwc8frZFH+WpIAk1WqRV2huSmlnjw4AG+/PJLHDhwAACwd+9e2O12aHAQTtdpdA504um6FfRbIzM1KzPn0DR2F7xhBVAGIlWMl+LEKQLQIPBf36GzsxP/+9//g44XT6CxsQEUAI2IOMHGVmCFzIi/BttIdSvV7507d+D1erGysga9fh9IAdeuXcP77/+b/Btr/z/Ba9iPJqsRA1thZqdLOa5giSOKqdNYLBaOjIzQ6/VSp9NxdHQ0/wWroMra2hoHBgao1WppMBj49/9whvfu3WMgEGB9fT2vXLmSIodN+ZN06UtepOR2YdXCf/ePI7RYLHLY+vo6m5ub6XQ6C1K2CmQgEODExASNRiNramrY29vLmzdvyvGhUIgmk4nDw3+XVf5lINJNiirmVBRFfvDhErVaLQOBgCIuGAzyhb/sYGfnSwwGg4Uq6E+Ot99+m11dXQTAjo4OTk1NMRwOx6Xr7u5md3f31rfNuHiS25ZIVH4ly0Kk6gQCAep0Ol6/fl01PhwO0263s6Wlhd99912BS1d6SDe62g2fCcvLy7Tb7aytrWVjYyPdbjfX19cTph8eHqbJZGIoFMr6mGUr0q6uLg4ODqZMd/bsWT755JNcW1srQKl2J36/ny6Xi42NjdRqtXQ6nfR6vSl/NzU1RYPBoGjpsrlJylKk58+fp8lk4uZmgqYjhqmpKT7xxBNcWlrasSX5qRAKhXjp0iV2dHSwqqqKNptNHvSkU4cfffQRtVptToxD2Yn09u3b1Ol09Pv9Gf1uaSnSf52amspTyXYHS0tL7O3tZXV1NVtaWjgxMRHX50/FvXv3qNVqubCwkJMylZVIg8EgDQZD1kJbW1ujwWDgyMiIHFaxrBFRDQ8PU6/XU6fTcWBggD6fL6u8gsEgn3nmGU5OTuasfGUjUlEU2dPTQ7vdvqN8AoEAW1pa2NvbqzoS/akQDAY5OTlJk8nEPXv2sLu7W9XyZXITh8NhWiwWDgwM5LKo5SPSqakpNjc372iUKBEKhWi1WmmxWJJOUe1GKzs7O8vu7m7u2bOHbW1tvHjxYkbTdMnqxOl0sqOjI2W6TCkLkfp8Pmq1Wt65cycubieV0dfXx+bm5oz7t+WEKIpcXV1lf38/dTodDQYDz5yJeIFyeYzR0VE2NzfnZV665EUaCoXY3NzMCxcuKMJzdae63W7qdDrFlErSvJNErcy8RUQeNyAAmp0uqk5eF8BAS16g5uZm2Qu0tLSU8+OIosjZ2Vnq9fq83ewlJ9JYgdjtdtpstrwec3p6OsPR6GaczlyOdgJHuSLFbHr5S0ESagLh50GsV65coc1mk71Aly9fzmvf2+v1UqvVcnl5OW/HKDmRRjM3N0eDwVAQ1+by8jK1Wm2cxSZTa8nlMBPHXo8L/3zm7LZwU2SSTcsg/cbr9fK1116TvUAulyupFyhXrK+vU6fTcXp6Oq/HKVmR+v1+6nQ63r59u2DH9Pl8bGxs5PDw8HagqPqRoihSFEV6PS4C4LQ3OjbSxEfiJOuanuMhXdbX12UvUG1tLe12e1peoFwRCoXY0tJCl8uV92OVpEjD4TBNJhPdbrciPB+j7dg8NzY2+Pzzz7O7uzstj5ajPapJj4mbPudQdgFijpvp2Tx48ED2AgFQeIHSJVd12NnZyd7e3pzklYqiizS60qTPb7zxhuLxu0Tp81WOUChEm83GtrY2fv/99/Fp5f8rNAM8N7OimqckYGWJM7eokheopqYmoReokNNlg4ODNJvNBZtnLrpIY1lcXKROp1N1xUlNbK5JlOfg4CCNRmPi6ZqVaZWmPoLX4yIEZVwmJf/666955swZhRcoEz94vkR74cIFGgwGbmxs5CV/NUpKpIFAgHq9Pi9TJdkyOfnP1Ol0vHXrVlycZEldHq9q+DFHev01SVDBYJAXLlxgW1ub7AWam5vb+UnkiMXFRWq12qxdptlSMiIVRZHHjx9X+NVLAWkeUKvVcnZ2Ni7e5TAT7Vsje5GydU1HoJI4FxYWZC+QyWTi5ORkyT2sLTlU3n///YIfu2REOjIyQpPJVOxiJER6+mpiYiIuztEOIrK8nIIgqDb/sfh8PtkLpNfrOTw8rOhWlJJLdmNjgwaDQZ6eK3TZii5SURTlZw+/+eabYhcnKX6/n0ajUeUBivjBkNpllLxAhw4dYnV1dd68QNmiNoh9+PAh29raODQ0VKxiFUakye486fG7Uup7JWNjY4Nms5knT56UH3ZJZVckL1BVVZXsBQqFQiVlLRPR09PDrq6uuPBClr1ollQ6SZvNltYykGITfVHC4TB7enrY2tqacJT7+YqXTqdT4QVK5dsuNdGOjIzwueeey8mTZzuhqM39xMQEW1tbGQ6HS+4CpcPw8DANhgbevRMZ7a6vr9Ptdiu8QJl4zPI1xZYNV69epU6nK4h7NRVFE+nt27dZW1tb8OmMbEgmnIsXL/LRn9fQZDIRALu6una8RKXQQo093vLyMmtrawvqZk1GUUQaCoVoNBrLer3RzZs3ZS+QXr+Pjz76KC9dulTsYu0Y6ZkJtem2YlEUkdrt9h0vAykGX331Fc+cOUODwUCtVqvwAnm9Xu7bty+tLX6K3aQnOn4wGKTRaCy5bYoUIn24Kcp/+UJaBvLjjz/m7Ri5RPICmc1m7tmzhy+//HJCKyNt8XP69OkClzJzYoUaDofZ0dFBh8NRpBIlJs6S5lOgPp+PtbW1BX38jszOci0sLLCnp0fhBUrHXx0MBtnR0UGr1arwGhXTeqZz7L6+PloslpJcnFgwkYbDYTY3N6t6bEoFn8/HwcFB2Qs0NDSk+nBJqosevcVPpmvWi4Hb7WZTUxODwWDRuyJqJBVpbPOv1h2I/S57KmLSDg4O8tSpUwnzUSNRumThsWVKdYyNjQ1OTk6ypaWF1dXVfOWVV/jBBx8k/U0siS6sy+WiXq8v6S1+5ubmqNPpcrowL9ektKTJvqfzmSSvv3dDXgaSKv9M8050A6US6vT0tOwFMpvNshcoXdK1OFNTU9RqtSXl/pTwer2sra1VbNNYimQk0mQWTS2dKIr0+/3cp98vL9TKRqTZlE/ts9cb8QJJG7zmwwuklr4Ut/iRHosspTIlIq0+aSKLlExIoijKy0B+d9aV8Df5Fun9+/fpHj9Po9Eoe4FSrWzMR79sbW2N9fX1JfEoYigUYmtrq3ItVwyl1DeVRZqsaUxHpGqfR0YiuzCn01wnOmayz4niwuEw3/6Xf6XVao2sBfr1bxJu8FpICrHFTzriOnXqVNSmtqWPQqTJBhnJxKQW9+9LH7KuvoHr38WPblMNfKK//184/jG4RF2M/1z+hH/92uusqanhn/7ZIbrHzzMQCKgeq1iWInqLnx9++CFhunTLF5su1e+Gh4d5+PDhsnkKi8zA45TJ1FQuloGkW4F+v58jIyOyF6ivr6+kR9MSxdji59KlS3Gb2pYDaYk007lTi8XCwcHBHd2pyX4bCoVkL5C0wWusF6hUrESycqht8ZMvpMFbOdzAsSQVaTZu0tHRUZpMJj58+DAnI+NoJC9QdXU1W1tb0/YCpZN3sch8i5/MkdYn5fMY+SSnD5hkuwtzMnw+H4eGhqjX62Uv0E4f7ys1wS4vL3Pv3r152ZRtY2ODjY2NJe3pS0VORCqKYk6XgUheoNbWVlZXV7OnpydjK5DsAhdDpKmOqbrFzw4Jh8M0m83s6+vLWZ7FIGeW1Gazxb3gK1MxzM7OKrxAFy9ezGrpQqlZSjK9Mm1sbNBkMrG7uzvtKapk+fb29vKFF14oyfrIhJyIVNoHMxtBra2tsa+vj3v37pX3s/f7/WVfsdkSCoV48uRJHjlyJG6Ln0xaB5fLlXJT23Kp4x2LVOqUZ9JPDAQCdLvdPHjwIGtqavjqq6/KXqByqbh8k3KLnyRMT0/nfGxQTNIWqZp4pF2Y0/H/hsNhTk1Nya/5s1qtCi9QRZzxTE5OJtz+MlF93bp1K++b2haarCyptKrRbren3P7v448/ll/zZzQaU77mr4KSd999N+EWP7FI65NSbWpbbgYh6+ZeeiWfWp9Hes2f5AVK9zV/0ZRbReaTZFv8SASDwbQ3tS23us1KpH6/n1qtVtEMhUIhXr58WeEF8ng8GeVbbpVXSBJv8RPBarWyp6dHEabm1y+ltf3pkrFIw+EwDx8+LN/Vi4uLshfo0KFDGXmBKqSHJCppix+bzaaYSRkYGGBbW1vRn/LKFz9DhgwNDeGxxx7Dt99+i/3792NzcxM9PT349NNPUVdXl2l2FZJAEoIgQBAEAEBNTQ3m5ubQ29uLI0eOYG5uDu+88w48Hg8++eQTVFVVJcyjnBFIUv5GgIIIARrpK6JP7+rVq3jppZdQVVWFZ599Fr/4RROeeqoizGKwuLiIzz77DFVVVbh586ZsIHaDKGNRWlIBskABACQoCLJQ79+/j5f+qgsNhno88sgjhSvlT5hEojty5Agef/xxLC4uorr6T+Tw3SZQQLKksSYTkcrB1gknOu3deNeWG/e++Rr7n9RHhYhAtKHZBUTORkVngiBgdeYcZlaoCCc3FWkqFJezvfvlfmvkrwrnZlYAbBmaXYCGkRF+XASxij7r34JUCrEizOKQSHBjNwhHO3BuZgUk8fn0WQxYm+BZ2T2tnCZ69AhsV8Zbp8cgtJvxTJOoCN9tTUm5kEhwxCr+OH8UlhcPgCSaGgwFLln+0ZCMDOO3EAQBnjedYLsZ4jywye1w7I7WY1exOnMdgvM4DiBibJx9nTA7XbAaBUDcHRdMIwiM9Eml81n1YJ7t6K8X8Id2A54Voixn1M28W/o75c6duz4sjA1As9Uitr8lYt7dH4nU7JLmPrb5Pj2+gLF+KwDA3BA7Bxpp+sFK37RgEJDrXYX5uQlMe0VsUsT0OQc6mzTwrOwuA7KtUAHwvOnE2NhYZJRo7AQQYzGpkdNWKBACED8O2BLtqgfjeB1WowANBJz47eswA5ifmylsGfPMtmtpq5mXRvufT59Fw1N1SosZO5dauHJWUBC5bJ65eTj+/JhsSIRVHxYAPG2oB7B7umQRj9OaB0LfDYjvjckRvi+/AhAZKarM9QMJwioUCJGYnxtH+1tuCIIAYhXHjJ0AjuIvThgB7KIumcvRTkR0KL9u0NEucGssL7/LPZpye9Rrt+H1uORXRErXDgDRHnkPQTk+jpeM/wd18cDdaKSwgQAAAABJRU5ErkJggg=="
|
<image>如图,在▱ABCD中,对角线AC、BD相交于点O,AC=10,BD=6,AD=4,则▱ABCD的面积是()
Choices:
(A) 12
(B) 12√{3}
(C) 24
(D) 30
|
24
| 69,607 | null |
24
|
"iVBORw0KGgoAAAANSUhEUgAAAL4AAAAXCAYAAAC1Z/W7AAAHCklEQVR4nO2aXVMcxxWGn+4FWbZyrVtXjEDBIPk2l4HlQ0klJePoKj9AIKGq2InQb4gAqcopSyKVy1y5JBakVBmhD5M7XyVVYUFSKUKu/AZpESx0v7mYndmZ2VlYIn/Asm/VwsycPqdnzrzdfc6ZNt57GWPIQvHuNKdHJkAAfazqER9iA6EX2Gy9Flr4oSC2MLQjCUms/v0aH318JaBshbPdMtRwXCl47yVJy/OTIqB87NenVTlJkpOXfFq7uZD0QfXZD4r9w4bivauZnF3xLuJ1CBs1CQZBNDIWFxdTY8sCSyzcfYpHWAw06YQvieLdKU5/fCV2dYkeM8AT/L63f7jg8d7jEQtfpTkLsMT9e08h5de2OHnjy4EJ/6jaAcCDL7/g1T+PoyYlfYhv7v8t4+oSn/1unJ93Ht/39g8PPFTC72/+9d/MFsGEnktcs1mNAIaGh2OkD/E+nT87DrZG0EILPwqsbQPACDo7PogJwpm5j1+f/bCWy+nYpwq3awxaX/dgw3u/a46zn+0fOnjJOZfh13xdf0bJrffbVTveZ+atURvn5eSblvghWsnt/odzVZ/FOZxsVMtTIylaBBRLbqMENrk+kBEdtdDC/kOl3O59kJtam+St9Yngx0f/LYbi3SnmVqrZsGSIjZNDCclVDjJSoMz2u7eKbNYIGr+vFgKMDxmMNZicxRhDLpfj+r0nNe1sfFavZr4Wxyp/SJTbgqpPvY9dzYjla/1YY7DGYPKTFJnj4oU5ALxRQ9Xc6grqkMSdCybyY/izdpCplQyWHx5XvxXinrvxQFwcgOn5FSSxPD/FxMgp5laSOtH8v52aXj6/dAMzOMjJ3lgHctHSASSODzRSnHPFq+St4aMX4zjv8RLuc/jUfsLzjpMAGWFgHdNyILDkMMZw7pa4PQbnZ130tXH5muHKqXwG+ZvEv98jVPkTctGxyrOH/fzybDcAvSc6Ki1TvowH/Ns+SBQK18c0PV9QH31aVjzpTSUPzZLbxp7D6Y7GQIzdqRHfHkPnZ12mXkPdeC/nl3U1P6pZn6yKfXkBkZ/Usm8luHtFnJfL85PKX5qOzi8Oor7YeYhEjJ8zFp4UeOiG+KxLLA12cYpq4d+YXDSyJIc3TRCEikRIsTJ9ixlGKdwcqRF3dYxyoiv+xa8B+15RDG+MwTy5zwNO0OWVCBt7On4Bj9f4Tyu82TOMgsBFcqx9+y2Pv7gchZED1x1f//mPNToWnyTvpZtfc/PyCFaQP9lZq2BtNWHzTfCWTDXS8cxya+Ix/ZPjjJjAmeHYlsTpyzNM9MafuYFQxJpq7iQo3l9AZwbpzSV91/3Trrd7jkMMmSDUMSbHw69uMV90OOcoXB/jk1M5CiuO9Luy8TJP4U8X+OuNGd4xbZie3+JIVhu895UOgpdpTJ1qxAFDmH6yssZzAyc6eoDKgKjwMzupb6y0Gw4sZ4osLsCZM6dr2hRfPod8Byf2duuHHuFqam0QrdxklLO9Fmssv/l0nAHg8eI90u/KSpW63NM5HrUNUSqV2FSZ5flJut/vTJTjrLVYa6NwJ73/4WDDkp4VdlrPGg7yVLVjeM4aZzjTk9T2zDIz8Q/6h3/F6dZ3kj0jnJTmFh8yNjxcuQhtT5/zCPigs3Y1tTLAsznM7xe5eXkkqjS8ePkyYTTMBbz30ceApqnqhOjtpEvwYm21htl+ZZKpgoLPrGqslAk+OXoKD/hLZwenjK3KgcKFc8wwyvhE987mmiCl+q5hTK4yOXseLcwwNHwWAM8z8j3ngL6owpPA9MWB6LN5oei0VdrQ+EBwfoR2DY1Nqvz6jSRp89W6tkobKpc2oky6/PqNtkobQXYtyaksSdoqbWiz9CrSjcu3ShuRPF7ZiOtLivTT9uvpl0sbCblTObP/EPHjEP+e7hMkqzdu9rzIT6pYKePU29JRz6akSjUnZtdLXrNBBYlR3f4/tyvs5D+nctPLpXDrh63w2MoYExwPjgbtXK1vE3t1vMraLL1JNAhJlzivbAraer2R2S5TpwFZIzr19EOyp8936qMefGE0uXksVtrcGdnkdcWr6qu8lPDlYALb/ZPL9e9jt71QzVJOfgtsxZxQ9dfuJefqXp1K3W57fRN7tD0KZ8qv39B+7CjGGLZK67Qfey9aLbbXNxOrR9t77wCwVdqg/djRRLtQtr2+Se7dI1EIFZeFkIR7U665vpt+eJzWT/chKTNZTVwXYOrvTapnIyFLlUr3gixVj8OS29XuTvfWrHLJRTlnep9ZlrvaoqOYJF7pOfKTdyPiZCWzWeTcbVvDfpUnrhvYqWqzUx+R7C2qvdk1pFxDdverf79PeZyb6a/qO9bj0rP3XvG2+j+W7RYOJ6JQJyRX1gweyuuFHll6cbI2Kkv3sRfb6Wtx3d2erYXDh/8Bn+g1PgHoi18AAAAASUVORK5CYII="
|
<image>如图,已知点C把线段AB从左至右依次分成1:2两部分,点D是AB的中点,若DC=2,则线段AB的长是()
Choices:
(A) 10
(B) 11
(C) 12
(D) 13
|
12
| 69,608 | null |
12
|
"iVBORw0KGgoAAAANSUhEUgAAAMkAAABICAYAAABcKtF4AAAyUklEQVR4nO2deZgU1dX/P1XV2yw9MzDMMIOiAhISF+JGFFBIBHcNRgMYgrs/FTWIyauCikbRoHnFxIgRAcEEMYpoosa84q5EjIqKiArIpmyzb713Lef3R/etqW6GxQVFM+d5+umt6tatW/ece873LFcTEQEBNNrfYdvfvP/hOQbP/3RwzFdNHfWxo/7s6Jz8Y7z3SN7/HY1D/v/ec9r/F3FIJpMEg0E0TScej1FQUICuG4iAptmAAxhs2rSFf/z9acaO/SXBUBHBgI4AhiGA6bmGDvhAstfS8q/9+cZ/+0/NyR7gtP9k26RTCfzBEJrhy/wtGqLpRKMxiooKEBFaW6OUlJTg8+nYtoOmaUSjEYqLi9A0nXTaIhDwYVkOfp+Opm1vfDsa2y87vwQREBFEBMPQd9h+MplE77hD2zac++6lHZ0rO2l3R8dKB6+Ojs0fyI4GUfVRPMfkn78jJvcOXv41vN9zmVHTNEKhAqLRGCIOhYWFiGjYtk06nUYEQKe5uYGrrrqK9es3YNkaoZCBpml5k6ej62lsez/ePm9vDDv6vn2y0mnsdBp0nUBhIZph4Jhp7LQJmkYqnaawsACAmpp6iooKMM006bSFbdtomhAOh7Esx2UQTdMwDCN7jx2Nc0fCqCPBtL17yfwm29xa/vPNH892BlKkd3ywtzEt79XRBXf0/65y/vYmX37b2/v9i7TfUXt0cNyuXKPjPooIgUAA0DBNCxEHwzDw+32Z1SURZc7cObz00kt061ZOSXEQxwbTJPugdibAdnR/uzKG+ffrJcFOpzF8Pgy/H1fpsG10w8AI+AENXTOIxeKARlVVJbpuEAhkjvf5fJimjW1nhIbf73PHJYc/dtq/jp7dju5le8IjlxzH2eaVzyS+HbbQSV+KRIREIkFhYSEAuq7j8/mwbZtUKoXf72P16tUYhkH//gdTUlKCpmnouqDrEInGKC4Ooeu7yihf9Q2AI4KuZ2RpKh7HMHT8wSBomYlu2RbBgJ9gIIxlCz5DBwPiiSQFBSEADMOXXRl1bNvGcQTHcdB1nYDfl8csXy85Trs66V3VvJ91Omm3kaZpFBRk1JBIJIKu6ziOQyqVorCwkLa2Vp544gn2339/4vEEVVVVGD4fiYSFZTkUFxdmJ+g3wCCZG8AfCIAIOA7+QKCdQWybVCKBP7vC1NXXs2HDp6xdt4FUOk0gECAeT+I4DvF4nLq6Oiwro375fDrBoB+fT/9GGQRyVSvZVjcDOleS3U6KMRSl02kKCgpoaWnhtttu47SfnkIg4CeVSrPffr1AE0Ihg6amCF3LS77BnmdIgFQiQTAYzKhcjo1YFrrfT6ioiMbGRp577gWmTp2KbhiY6TSXX3451T16kE6nGTp0KNOnTycSiXDVVVdRUVGBrguGoRGPJykqDLkr1Z5C7fZghjqZZDdTRr1wKC4uzhryIeLxOPPnz+exhY/z1FP/JJVK4fP58Pt9NDa00bVrCV3Lw1kp+w2tIvmk6yBCMhYjFAqBprP+k0+4etINfLxyNffccw8HHvADTMtk6tQ7uPW227j//hkUFAR57rnnOProoykpCVNQEAQ0NA0KCwuyquSeQYo5OpnkaybDMLJGqubaJytXrkTXdf69+DWKi4p5/O8LmPPAPCorKynvVopja+hALBansDDwzdkkZCaO3+fLmMC2jT8QQAsE2LRhPZMnT2bzli3c9Ye7OPYnQ91zrrvuOlasWEF1dQ82bdpMRUUF48ZdSpeyUkzLwTAysK/jCLpGHsL19ZO6fkcMAp02yW4nZYNARtV66aWX+N3vfscxxxzDvvv2IhjyUVtTSzKZZMuWLZ7zBL/fj+M42I6F7dg44iDkIi/5OrUXofGS+m97evf2SETQ/X4s08zYE8EgtmWx6NlFvPzKa1w2bhzHHzccANNyiMWTdOtWzqhRo+jZsyeOI9xwww2UlJTgCPh9BrquIZJRRb8OBlFj5B2rDECiu31Q/cg/DkCTzztqnbTLJCIkk0kCgQCO45BIJDjmmGPYsmUL9933Z04++SSuuGIczz77AqZp0ad3Px577AmqqyuJRuOES4IYBggmmgttGmSciVn0LJnEMHQCgQBaFnGCzCSwbXvn+r6Sotv2HsQhGYtmVpNAAM0w0IAtmzYy8dpriSdS3D97DuXdumWRYQdNg1QqDYDP53f7oGlk4V+w7QzDGoaBsZvF9M6mt7IXO0K2NE0jmUx2MsnuJsdxsCyLtrY2unTpQkNDA5ZlUVZWht9vEIm0kE6nSSRMQqFCCkIllJYWIiLE4jGKiwvQdYd2dcvAcXTE0TPS2Mj4GxRT2LadOcow0PUM5KrUPfXyMs7OPO5iZRyGmq7j2Da6z0dbSzM/PuYYDjzoIP7wpz9T3q0Cy7ZpamqivLwcXdeJxWIUFhZi6Fq7e08UUKZUri/vP98Z7QqTbI9BIONx77RJdiOJCJZl4fP5KCsrwzAMunfv7qpg6nfLMgkGwwDEYxa6ruE4GsXFxYiYWHbmN03LrCe6roOmJpygGZkHqhgD2h+yYRhuf/JVG8nExuz4JnSdVDxOMBRC9/kAoa6mhoaGJqqqqgmHw6TTJj6/QbduGQZJpdKujyRt2tlmlHrDHoVm7YhBFO05vf0OUsbD7Ccej9Pc3IxlWTQ3N+M4DqFQKBua4cPw+WhrayPSFsHnE2xbsjq7hmEE8BkhdC2Ihp+MugVooOlg+PRtHrT3+/a8yOrYnZFry2gajmkCGsFgkN699uOVV16hsamJYNCPoesYuk5NTR3z5j1Ea2sE07QwDB2fz3BXjty2v+jIfvW0PQaBTptkt5PjOKTTafx+v2szOI6D3+/HstL4fDoffrSCU04eQUEwzC/HnsOPfvQjRGCvvbtTWdkFTbMzDOMz8BlBDCOIrmUMYE03MIxtEZldIe9K0pG6JSKYyUTGoahpNNbX07VbOSAsePhv/Pa3NzN02PFMnHQ9xcWFbK2p5a67/sCgQYMYO3YsBaFAzkqVYX7B59Oz14fdjQB/nund0Rh22iS7mUQE0zTx+XyuEW8YBoFAAF3XaWtrZek7/+FXv/oVa9d8RnFRKX5/AQceeCCGYWBaCbZs2QiaSVlZCd27d6e6am8qK3vQpayCoqJiqntUEi4ppmuXLpSVlWXsAMNwoWefz+eqYT6f73OqOoI4FhqCoJGIxQgG/Oiahg188P5yLrl8PA0NDRi+AD6fj6lTpzJw0EAKQiGKijIBnQrNsiwLkGzcmrZHMcn2hEwnk3wNJCLZiF/JOOGAeDzOBx98wP3338e69Wtoa2vjnj/dR0W37kyadAMvvfwyZ/zsZ4y77GIqK7uBZtLU1ERtbS1bNtfS2NhMc1MkE+5RX0NzcyP19fW0tbXh8/koLy9n7733plu3blRUVFBYWEhZWRmVlZVUVlbStWtXN04sEAyiZ1UlXdddBtN10DSd9iBBzyRyzIxzEdi6tQ7HEUzLxu83MqE1uo5lO5imlYnPCqiw+szpaj5alo3P2L0wcCeT7GGUkZTg8ymo08ayLBeeTafTfPrppyxcuJDXXnuN008/nTfeeJ0BAwZw8cWX4vf7iUZjvPnmW9xwww3E41EuueQSfvaz06mu7gFAQ0M9BQWFbvu2bZNKJiHbfjQaZdOmTS6itn79eiKRCG1tbTQ2ZpippaWF1tZWAA444ABKSkooKSmhvLycyspKunXrRklJCcXFxey///7oukYwEETTM9cMFxcTCAazd92+MqlVM5M/EiUUKnAdhx3RruAG3zR1MslXQJZl5RjLSp1RK0gwGEREaGho4JFHHuHpp5/myCOP5MILL+Ttt99m8eLFTJ48mbKyMuLxOKWlpQDU1dUxd+5c5s2bR3V1Needdx4jRoyguLjYvbZpmvj9/m36lEwmXVRNGe6KoVSQoXotX76ctrY2YrEYTU1NNDY20tTURCSSWanWrFmDZVn06tWLVCrFli2bufDCi/jNb37j+n8yyWSZYMxIJOL2MZlMUhAKoe1BaNbnpU4m+Qqoo+FTYeCaprFlyxY+/PBDpk+fTu/evZkwYQKVlZV88MEH3H777UyaNIkBAwYQj8cJZlUf0zQJBAKYpsknn3zC3XffzZIlS+jVqxd33nkn++67L8GsJFcwcz7ku6sqjPKjKH+Ol4EUVC0irF+/nk2bNrFgwQIcx+EPf/gDffr0IRKJ4Pf7SSQSrgqnxuTr8qjvTkomkyCd9IXJcRxJJpNi27ak02lpa2uTRCIhIiKxWEw++ugjGTdunJx66qny/vvvS2Njo/vfRRddJH//+9/FNE1pbm4W0zTd9izLkqamJvc60WhUli1bJoMHD5Y+ffrIlVdeKVu3bpVUKiXpdNrti2makkgkxHEcERGJRCJiWdY2/bZtW0zTlHQ6LZZlieM47jn5lEql3M91dXXS0NAgTz75pEyaNElWrlwpjuPI5s2bJZlMSiQSEdu2RUTc+/m2UyKRkM6V5EuSZVluDBBk4rNWr17N448/zpIlS7jooosYOnQoJSUlhEIhotEof/nLX1i9ejUTJ06ka9euWJaVTe3NVdEsy3K95YFAgObmZl588UWmTJmCz+fjggsuYPTo0XTr1g3IrCqZfI2MmpVMJvH7/W7fOkK2OnQwesi2bVpbWyktLXXv0zRN5s2bx7Jlyxg/fjx9+vQhnU67KJ5azdLZvJJv82rSqW59BSRZJ53jOGzcuJGnn36a119/nYMPPpizzz6b7t27uxNV0zRee+01pk+fzu9//3v22WefbeKtlNqj1CnHcYjFYvj9fhcd27hxIwsWLGDWrFkUFxfz+9//nqOOOoqCggI3PKW1tZVwOOwa0t70VHUtTdNckEGRUr/Uy7ZtDMNg69athMNhysrKXGZ+6qmneO+99xg/fjxdu3bNYYhUKuVC3d9m6mSSr4ASiQSWZbFs2TLmzZuH4zhccMEF9O/fH8MwKCgocJlo06ZN3HjjjZxzzjkMGzaMeDyOz+dzJ2o8HkfXdUKh3EQkNWFN03SZJx6PU19fz9SpU3nmmWc46qijmDZtGlVVVQQCAUSEtrY2iouLXcm+vUetVivIXVm8x2cKOuTmW7S1tfHII4+wfPlyJk2aRHV1tdtXlWy2bbGHbxd1MomHvNJcfVdSfnsPOZVKsXr1ambOnMmnn37KmDFjOPHEEykrKyMSiVBQUIBt2wSDQWKxGFOmTKGqqorzzjuPsrKyHKmuJK/6rNJivaqckurePsXjcRYvXsydd95JTU0NJ598MuPHj6dHjx7uCtJRjoRaVXY2iVVIi2EYHbaVSCSYN28ea9eu5corr6RHjx4u6tYeAZzLePljvCdTJ5PQLqWVwy9TI0vDNE10XXf9HErXVxNv69atzJ8/n2effZaf//znjBgxgvLyckKhUE7uhgpBWbBgAYsWLeK2226juroa0zRzAhI7mjy7OomUT+SZZ57hd7/7HYFAgGuuuYZTTjmFsrKynHtVE1cxZTKZzNYC010mUMiWut+d9SEej/PnP/+ZRCLBRRdd5K4o6prqHpUqqWDrb4PN0oluSQa9iMfjYtu22LYtsVhMbNsWy7Jk69atYpqmJJNJcRxHWlpapKGhQRYuXChDhw6ViRMnyoYNGyQej7vtRSIRicfjOYjRypUr5ec//7m8/vrrLtr0VSE/lmWJbduSSqXEtm3ZuHGjXHPNNdK3b185/vjj5cUXX5SWlhb32EgkIolEwu2HbdsuIuY4jkSjUXcsmpqaOkTHFDmO4957a2ur3HzzzfKnP/1JGhsbpbm52UXORDJol23bLgrnRcL2ZOpEtyBHhVDONqXuBAIBDMPAtm2i0SgrV67k7rvvRkS46aab2GuvvbKh4mlXOnqlMUAsFuOKK67ghBNOYNSoUdkaXO2OwC8rRUWESCRCYWEhPp+Puro6wuEwmzdv5uqrr2bDhg3079+fiRMnsv/++7v9bGlpIRwOo+u6u+Ip28U0TUzTJBQK5YTab+/6kl0tmpubmT17NpFIhPHjx9OtWzc36UyNsbqWd6Xak+m/Xt2SrJoVCARch5xSOxzHyZbFiROJRJg+fTorVqxg9OjRDB8+nPLycncyKVQpkUi4nyGjhsyePZs1a9Zw880306VLF+LxOH6/34VpdzYJd4XS6TTpdBrDMLIFJTKM0NraypIlS7j33nv56KOPGDt2LFdccQWVlZVAhhlisRjhcNhVMRUTJ5NJN5x/V66vYOyNGzfy4IMPUlpayi9+8QsqKipyoqATiYTbbjQapbCwcI9GwDrVLcmoG/F43FUNIpGIpFIpsSxLPvvsM5k+fboce+yxcsstt8iGDRvENE0RyagXStVRKkRbW5vrEBQReeONN+Sss86S1atXi+M47rGq/a/6PrxtKvVLJOMEnDt3rvTt21f69OkjTz/9tESjUffYlpYWiUaj4jjONve0I7VQqVtKPWttbXXHZtq0aXLzzTe7DtR0Ou22q879Njgc/+vVLfGEsnsN6Gg0yr/+9S8ef/xxvv/973PmmWfSt29ftxKjctJJ1uGXSqUIhzOZhUrybtq0idtuu42f/OQnjBgxgmAw6EpnEXEl6pddSSRrjCuAAHJTUm3bdgtK1NbW8sc//pGFCxfy/e9/n4kTJ3LkkUe6q4eaCmqFk50AByJCKpVywQ6lrgaDQVpaWvjDH/5AaWkpY8aMoaqqKicAMpGt5bUnryLQqW4B7UiSSo569913eeihh0gkEvziF79g4MCBLgOItJfnVJMi37+QSCRwHIc5c+awceNGrr/+ekpLS0mlUhiG4aJlQA6y9EUplUq5GZAKPlbh7ioaIJFI5AQdvvfee0yfPp13332X4cOHc8UVV2SrSGZUQa8jc2fxV2r8VNyXcpzatk1LSwt//vOf6dOnD8OGDaN79+6uDbOjTMA9ib4zTLIzibejcyRrl3z66afMnTuX1atXc9JJJzFixAg33ENF1ALb2BGmabph8Cq05NVXX2XatGncc8899OjRw111mpubKS0tdSewFwL+Mveu+uWFaxXEq35XsK/y2jc2NvLWW28xadIkfD4fI0eO5Pzzz6eystINavQa3NsbPzUGanzyYezGxkamTZtGeXk5F198MeFw2F1FvLC69172JMZJJpNojuPskEn2pA53RCLtZXuUBANcw9j7AJQzTk0Yv99PQ0MDs2bN4u233+boo49m5MiRVFdXu9K+o5Iz+dePx+OuAfrRRx9x++23M2rUKE499dScyaQkszpvdycb5ftaOrpmbW0tc+bM4eGHH0bTNP73f/+XwYMHU1xcTDKZdJPFlCDwqksqMsB7X97rQ2bcPvvsM+bMmUN1dTVjxowhHA67Uc/QXsCvra2NYDDoqm8dtft103eCSRQqpZhA6eXqoSpplQ9pRiIRnnvuOebPn88hhxzCSSedxEEHHeQWuPaqVjsiNRmUnXHrrbey7777MnbsWFdN29MpkUjQ1NTEnXfeyRNPPEG/fv2YNWsW3bt3JxQKucJG2SAqlKaj4EglpLyRApBZuaZMmcIPf/hDRo0aRVFRkRsnpmB2tWpFIhHC4bCLtn2TczCZTIJyIm3vtadTvjMsEolIc3Ozi7go1MdxHGlsbJREIiEffvihXHLJJXL66afLM888I1u3bnXbU6HvOxsX9VKIUjqdltmzZ8u4ceOkrq7umxqOL0XxeFxWrlwpw4YNk549e8pvfvMbqa2tzXH6eR2EHSF0Ch1TpEL5RUQ+/fRTufzyy+XBBx90UwpEMkhXQ0ODiw560bVvmhKJhHzrmcTryRURd5Bt25aWlhbXc55IJKSurk5uvPFGOfbYY2XGjBlSU1OzDUOoXItoNCqpVGqnTKIe5NKlS2XUqFHy/vvvu9f/NpBpmm6UgaKmpiZ58MEHZeDAgfKDH/xAZsyY4XrtW1tb3WOTyaSk0+ntzhPHcaStrS2HmTZv3iwTJkyQv/zlLy6jqGeo8nLU+54w/xKJhHzr1S1lM5hmZl9BlYuhPNqWZdHS0sLChQt59tlnGTBgAKeffjp9+/Z1jUelgqVSKdfxpWySnd2/pmk0NTVx1VVXccYZZ3DiiScSCARobW2lpKTkG9epd0biQZtaWlrw+XyEw2Ecx2H9+vU88sgjzJ07l4qKCu644w5++MMfuinG6lxlC6qx9OaTGIZBPB7PCfbcsGEDd911F4MHD2bEiBGuExQyz8C2bVft/abH7zthk0g2LKOoqAhN09wHYhgGjY2NLFmyhFmzZtGzZ09GjRrFEUccQVFRkZv3rXRr9cCh/Z5Vu8qwzCdNy9SKvfPOO0kmk1x77bUUFxfnBC/u6eMH7ZMZ2iOSRYTCwkLS6TRbtmzh+uuvZ/HixQwZMoSbb76ZffbZZ5v8egVHKwGjmMZxHJqbmykpKXEFV21tLbNnz6ZXr16MHDnSZTLFoLquu9EQ3ySjfCdskvyUVcuyJJlMyvLly2XChAkyatQoeeGFF1zPr4i46oU6J5lMSjweF9M03bRWr268o3F5/vnn5YILLpDVq1e7bX1bVC0Rce8nnU676mVH6mJra6ssXbpUhgwZIvvvv79cf/31UlNTs41tkX+eUrVM05SWlpYce2PZsmVy4YUXylNPPZUz5rZtu+ruN017jE3yRa+jdF416LFYTOrq6mTKlCly/PHHy4wZM2TLli05xmMikXAfpAoh8TKDl3nUMfk2i/q/oaFBzj77bHn00Ufd39X7Vx12sjvJe/+pVMoNFzFN0zXEY7GYiIjU19fLrFmz5NBDD5X+/fvLE088IRs3buywXdWmEkCWZUkikXDbdxxHPv74Y/nFL34h//rXv8SyLKmvr3eP3dG8+LrmZk5YiuSpG96wBq/zzMnmSXSkSoh8fmeQZP0cKkQhP1FHfReP/qvUI+XkU1G6Tz75JH/961859NBDufTSS+nZs6dro3hpe0lAHZG3Srvqa0FBAfF4nClTptCnTx+GDx/Ofvvtt814KYfht0HlUuR9ht7PSh1SDsoVK1bw7LPPMnPmTKqrq7nrrrs44IADKCoq6rAdBec6nmQvpe6uWrWKadOm8dOf/pTjjjsOx3EIBoM5TkpvpqNkQ4dUtcrdSTkBjt6lzsul+RxtWZaLRqjvHUlfL/S6s5UqX1VS7avKIV5ERUTc/AnF6YsWLZIzzjhDzj//fFm6dKkbaKeOzVebPg9ZluWqIeo9Ho/L/Pnz5dxzz5VVq1bltOkNLPw2qV0dkVpp1f3l309zc7OsWbNGRo8eLb169ZKRI0fKunXrxLIsicfjLlKl2nIcRxKJhJuz4lWnXn31VTn77LNl0aJF0tbW5l6vpaUlB2UUETdAdHesJvnzZJdWEhX/4zVuRdr3u1D/eyWmZJ1KSlLsiBxPYJ7X4HWyWWzKc65inpS3PJFIsGrVKhYsWEBNTQ2//OUvGTBgAH6/382t8BreXtpVye44Dm1tbYTDYddpGQgE+Oyzz7jkkku49dZbOfTQQ13DMj9+6btAKnjSu9+JukcVXp9IJHj//feZPHky69evZ/z48Zx77rmUl5fnxLQB7rPO3xJCRFi3bh133HEHo0eP5rDDDqO4uNh1SsbjcRdMSCaT+Hw+FyD4MiQeLUN9Vu+GYeTGbu2ISfLVE3UMtMcMdcQk4knd3F4Hk8mki0zl/67ijFTUbSQScTfmfOSRR3juuecYPnw4J598slss2u/3uzFK3ja393ln5Di51UUikQiXXXYZJ5xwAmPGjHFRmPwx+LzX2ZPJsixXmKlIBsnGdnmfcUNDA48++iizZs0iGo1yxx13cOKJJ7oqmAprUYJOMVlhYaGLqn3yySf8/ve/5+KLL2bQoEHEYjF8Pp/r+VchQJL11H+RmL3tfc9nEp/PRyKR2DmTKJ08nznUb9urxLErnRePrqoGW0SIxWKYpklZWVnOatTamtn3/KGHHuKQQw7hrLPOom/fvm5RBVVNxDRNGhoaqKysdNv8opNXPFl7tm3z4IMP8t5773HLLbdQVFSUEwbjHTPV7+/CiuIdA+9vXohXJFPBPp1Os379embPns2iRYvYd999+Z//+R8GDhyYU3ZV1ehSofbptNpCzseKFSuYM2cOZ5xxBkOGDAFwx7OpqcndEAk+/7PMf/faXvn/qcqUO7VJFFLjRTq8nmlFygbJD0vYFZtE6adKz1QIi6JUKiVLly6V8847T8aMGSOvvPKKNDc3i4i416yvr3eh3dbW1m0gxS9qkyiIWURk8eLFcvzxx8uaNWvcfnfUnqqM+F0gr+fba5+JiPusbNuWSCQikUjEPa+mpkaWLl0qp512muy9995ywQUXyObNm3NsiWg06ubde+1X27Zl0aJFcuWVV8q///1vsW1bampqcmxVVUfg85DXVvba1t7f1O9q/sXj8Z3bJNBefkapFF7p4qX8kOddoXxO9iJbDQ0NNDQ0MH/+fJYtW8aIESM47bTTcvISvDqzt02lBnVU8eOLqEEqBXfs2LEcccQRhMPhbXRiJVF3N+LydZLjCfK0LMtFnLy2pheBjEQiBAIBN0GtpaWFDz74gMmTJ7NhwwbGjx/P2LFj3RRiyKjTyvZIp9MUFBTgOA5vvvkmDzzwAKNHj2bYsGGu5FfX+ryrtJoz3rmerwl53111y3GZBJBc/dvbuGISb8dUJppiHm/pGG+E5/ZIMYjSLdUk0zSNTZs28cILL7BgwQKGDRvGqFGjqK6uzil9o0ipQurcdDqNrutuKLa6Vkef1TkdkWmapNNpli5dytSpUzn88MOZPHkygUDA3ZO9ra3NbSMUChEMBl0wQzHvt902Uc/TyxgKFs7PYFSCU9kd6hls2rSJJ554gpkzZxIOh5k0aRLDhw93mUkJNMgwjbI7li9fzq233sp1113HIYcc4latz8wdJ7vHfT51zDyS3WMylxFyiwB6313D3fKIcbVlS3Zo2lvOuVI2HyKvbzvymSiJn6/TelcexWCRSIR//vOfPPXUU/To0YMLLriAfffd182sU3uA5PtuvCEmXh1ZSY183D8f+4fMwzFNk2g0yscff8y7777Le++9x2uvvYau6zz66KMMGDAAwzBIJBIsWrSIyZMnu5l/5557LoceeiiNjY0MGjSIqqqqbz2DKNqRMNnROarOlpoDW7du5c477+Qf//gHBx54IHfddZdbdcZr43jzVJYsWcL999/Pr371Kw477DBAPUNBxEYQdM0rPDNzKZUy3dwUyKwBjtM+pUUENAdNy93b3XufyWQSzczOHNX0NkziZAx3tCzH5THJrgycWo6d7F7mCs2IRqNuzkU0GuXDDz9k5syZNDc3c+WVV9K/f3+6dOni3lC+apZOp91NOr3XUtJbrQQquE4Z2UrSW5ZFMpkkkUiwcuVK3nrrLd544w22bNlC9+7dOfjggzn22GOprs7sMltaWko4HGbt2rXceOONvPnmm9x333307t2bVCrFzJkzeeKJJ7j77rs55ZRT3GzF74Lx/kXJydYyLioqcvcv0XWdVatWcccdd7B8+XLOOOMMLr30Uvbaay93rLxVLC3L4j//+Q8vvvgixx13HMcccwwAtm2STMUpCIUy22gDiWQmQLKwoCh73XBGoGa3x/a+ANAcoD2rM1+LyllJ1GPc2UoieUvZzpjEazeom1aTXeHumzZtYs6cOXz00UecddZZDBo0iFAoRJcuXXK81pJFQ0QkR5XySp2OJJ5SAaLRaHYHphCrVq3itdde4+WXX6auro7S0lKGDBnC4MGDqa6upqysjNLSUkKhUE6hhIaGBsaNG8fGjRuZPn06AwYMcOHqdevWce655zJ9+nR69uxJUVFRTj//G0lEaGxspEuXLtukEH/22WcsXryYe+65h2QyyeWXX87IkSMpKysjkUjkJHc5jsOTTz7Js88+yw033EDPnj2xbRM0B13TaGhszOzAFQiRTKUIBTPX0PWsitgBg4iwzUrSIZM4kssFXyWTOI5DNBp1pUi+lI9GoyxcuJDHHnuME044gZEjR1JQUEBFRUXOiqHsDaU+qesq/4T35TXEUqkUqVQKy7J46623WLNmDcuXL2fJkiVUV1czePBghg0bRlVVFUVFRYTDYbev+c5UVXztgQceYObMmfz617/m0ksvJR6Pu9lzjY2NzJs3jwsuuIBwOPydsEe+LKkIY01rr0tm2zbJZJJwOIyIsHXrVu6//34efvhh9t57b2666SaOPPJIN1xeCaFUKsUbb7zB3LlzueKKKxgwYADRaAuhUBBN07NCst02MgxP8b985lDvmuQwifddXXunhSB2hlTtbBLYtk0sFnNzl9WF33jjDe69917Ky8sZO3YsBxxwAF27dnVtCGU0qXNUKq6maW5xNzUY3r1BLMsiHo+zevVqli9fzttvv82SJUuoqqrimGOOYcCAAfzgBz+gsLDQTSHt2rWr25bXtlEMohAb27a57LLLaGho4IEHHqC6ujrHeHWyO0Mp9TIYDO404uC7TipqQkRyitF5n7NlWViWRU1NDRMnTmTJkiUMGjSIq6++mn79+rn2qNpV6/XXX+exxx7jmmv+h/169UbTbGzLQdcNV3Px+wOkUtuG2ouT10ENoH2O58/nLJPYHi7YVnf+skziVX8sy2LVqlXMmDGDuro6zjnnHAYOHJgzSb3VANUkVYOcj0qpCdnS0sLatWv54IMPePPNN1m7di3FxcX069ePww8/nKOOOopwOExBQYHrlfcicWoVUtdW20ir+1OTfu3atRx33HH85Cc/4d5773WhSsDd3EateO6I/hfbI4A7Jl5VW+XJqxVGoaTBYJDW1lbeeecdpk+fzscff8w555zDmDFj3L1cICN4Z8+ezYoVK7jwwvM55JBDqK2twecL0KVLWXbFKtpGdQK8/NDR5vXbUIZJHNPDRjqKUdSP+TyikfvDrhrutbW1/O1vf+OVV17hxz/+MaNHj6aqqgqfz+faCa2trQSDQXdJVhPVi8+bpklzczMrV67ko48+cpnC7/dz9NFHM3DgQKqqqigvL6dLly4UFhZmDLks1KgkmDe0QsWMeZlRPTilevn9fj744ANOOeUUTj75ZO6++26CwWDOStbW1oZt225G4hfB8r9rpAxwtcqqMrBOdicupUYpFEqN14YNG1i2bBm33347tbW1TJo0iTFjxuTUD3vmmWd48cXnufrqq9lnn/0wzRSBQMYW+aqKSGSZJCk5ZnuWURwyjKJ28BZAV/twkxvkuCNqbW3loYce4v/+7//c3Z969erlxlapsBe1LBuGkWNrpNNpkskk69at49VXX+XVV1+loaGB7t2706dPHw4//HAOPvhgunTp4mYkqvRSyMXtvcZ9PinYGLaFl1Vf6urqGD58OBUVFTz66KN069bNvf+tW7fyyiuvcPLJJ5NOp+nSpUuHkOJ/G4m0p1IrldTrF/M6fZX96h3/zZs3M3v2bB555BEqKir44x//yEEHHeTWb1606FmeeuopLr/8Cvr37+9mQCoU9csKqQyTWDFB0wADx7LRA0Ec0YgnUwRDwcxG2y4iBdgOug5trW2UlITdTqgibQpmTSaTLF682M0zOPXUUznssMNyJjDk5l/EYjG3rU8++YQlS5bwyiuv0NLSQiAQoF+/fgwdOpRDDjnEHcyysrIOt2n2PqRdnaReUMD7m5e55s+fz7Rp0+jfvz9Tp05161Ndd9119OrVi1//+teIiFuT6r+ZQRTl+8S2NybeVdl7rmmabNmyhUmTJvHuu+8yaNAgpkyZwt577w3AvHnzWLz439x00405DmcgT63W0TSwbStrv4Cut6vTKl0YcityapJsEfw+wIfYguYP4IhOPGUiuo7PpxNPJCkpDGURijQBQ8fQNeLxmHszqjK5ZVmsWLGCuXPnsnHjxpwq7F6UCtpL/Dc3N7N161Y+/vhjXnrpJZYtW0ZFRQWDBg3i8MMPp7Kyku7du1NWVrbd4gr5zsuvghRGr9Q85U1//PHHufvuu6mtrXURtVtuuYWTTjqJQCDgSrkdMW8nbUvbe3ZqwjY1NbF27VrGjRtHQ0MDEyZM4Nxzz6eoqIBHHlnAm2/+hwkTrqJv3z5Ae2VJpa1k7MY0fr/PZQgRzU3DUNdW8LOqaaxJrEEIBMAWLNHxhYrdzlmADaTSgt+nYWiCJkI8GidcXAhIljs1N8fjoYce4vnnn+eEE07g1FNPZZ999nHbS6fTmKaJbdt88sknvPTSS6xcuZK1a9diWRYDBgxgyJAh9O7d23XcBQKBnCJvSpdV6NHultReR6h3Z9zGxkai0Si2bfPpp58yaNAgCgsLqa+vp2vXri4jd64kX45EMlHhSnWKxWJEo1GWLl3KjTfeSCplccvNUxgwYABL3nid1atXcfHFF9G9e/ecnKR4PEphYQGaZqBp4DgWaDoaGS3GcRwikQiAu2+LmmuamK2CmSaRSGH7gli2BroP0XRMR6esrAgbwBGi0ThdwoXgCIl4LMdb/vjjj7NgwQK+973vcdFFF9GnTx9CoRCRSATHcVi9ejX//ve/Wbp0KStXriQcDjN48GAOOOAA+vbtS3V1NQUFBQQCAUpKSrYZrFQq5Tok1QT0ljXdXaRQK2VcqpyK/DCb1tZWV/ooACAej+dEA3TS5yelnnmlvUrCqqmp474/z2Dhwsc59NBDmTBhAuvWZ3xh1157DSUlYY/x7rhRFrqR0YL8/gA+w+/6VpTt6fXp1dfXozl2q6TbWvndlKk8+a/naIwmKSgMY1sO3z/kMKbfey/VVV1xHNDEwUAnkJ0bZjrJ20vfZd68eRiGwYgRIzjwwAMpKSnhnXfeYdWqVbzzzjusWLGCgoICDj/8cA488ED69etHdXU1RUVFFBcX53ilFTN40ab8kj7e5XN3okdKH/YWg1YGp7q+gozVb0otU8ftCrjRSdsnZaeoes9qbqhVPR6Ls3nzFi6+eBzr1q1n2LBj2b9vbyzL5P/9v8z+jZl2rOzE13DEwWf4AIOOcGBvzksqlUKLbvpICiu7s3lzLf/7uzv4ZMNGpt55N7Fkmp+NPIsfHTWIuQ/cS5fiTHZZImXjQ9i06VPmzJ7Fe8veZ+TIkfTo0YP6+npee+01li1bRs+ePenduzcHH3wwBx10UA5T5EeO5tsqXvLukvRNUr4hCO1SLt+hqYw/7+dO+mLU1taWo1lEo1EXBgZIJtKECgI0NTWx5PW3uOP226mtq6W0rJTTTz+Nyy+/PBtRbGPbJsFQCF3L1EuLxqIEAwVYluMiq0VFRS70r9RqzY5vFVJpotEk19xwIwMGDuHCSy4jYducf9FlRGIp/vTHafTsUY6ZTJJMpZn/13n8/YmFhIIBHIHPNm5k3332Yf/99+ewww7jiCOOoKCggJKSEoqLi91C1cpr7q2sWFxcnOMPUQavwtYBd7lVk1HdgOL23c1A3rRTtbooqaZCLZTuq9Qzr/Osk744Kamu/GbegnUi4NgOyaRJaWkRyaRFQ0MNzz//MjfedAOxWITBgwfTp08vfj7yDI780ZH4/SFsO8W1E6/lxRdfIp2ySKUyW/rttdde3HbbbRx22GFEo1FmzJjB6tWr0SRVLxh+Nq1ey09/Ppp77n+A7x34Qx7622M8MPevXDvxWkaOOIlYKsHpp/2MTz7+kGDAR11tDT864jAqu1fRtVslgUAAv99PaWmpC8sqw9Y7kZUBrGma61iKx+NuGRm/349pmi6DKN3Qi60DOd7arwrN6ojURFdMLiIUFxfjOA4NDQ0uFO0theRVEXdn3/6bSAlPwzDceLzi4hIcB2wr4/jNrAImqVSS2rpaXn75Repqaxg79pcsX76MGTNm0LtPPxwnQW1tPTPuu49/v/4fbrzpt/TosRennXYa/b7fjwceeIDCwkKGDBnC0KFD8UnKQUIaz778Khs21nD2OeehG0GOHnY8j/ztQXrvuw9+n066zSHg96NrwugzT8fQBL/Phx4qIhDMBKKpaN+mpqacCe0NHPNOHMuy3BVBffce01EOSL4v4+uchOpaKtRCyy7bnfT1kCoeoeZLa2szjuhogCOQMpOI42AYGj2qunPySSey8NFHCRcW0Fxfj8rP0h2HqsoKtmzaxKk/PY2hQ4YCcMSRR9Ha2kI8mWZLTR379d6fs889H59WVEKktYVFz73IDTdO5rTTz2TVmvVc9qsJ9Ordh9/8+nIcoGtpEQ/9ZS7xaCtVFV3RNQdH0xF8OLLtZjGw/Ym8K8cphvgmmGF71FG/94R+/TfQ9gSkkCuA9WzAYia7xGHgjwbw4YoP+PWEq+hWWgpOGsc0Wbd2LW+/+RZnnvVL2qJR5j38MG+++R8mXXcdlZUV+IMBzhw5ku7VVSCSkteef0YO7tdHPt2wTkRE4mlTTvjpmdJtrz7y3sp1knREoqn2wgzpeJuIpETMmHRSJ+3JZFspaWtpFDMVE8eKSzLSKHY6Ivffc6eUl5XIvr32kz7f6yuXXXmlLP/4Y0mkUlLf2ioJ05T6lhZpjEZEx7F56623OPbYYykrLQMgkYgTi8XpVllBKFSIT8vmkTsgTgbyxHGw0mmQ3eun6KRO2hFJ3qudnMzcdBzCpWVoAmgGgcIwqXiC119/nV/96jL++fTT/Gn6dJ5/4QX+8te/krZtwlkEtltpKT7Dh69+aw3vvvse/X5wAMlUEqu5mWuvv5GPly/n2uuvp3tFOSkbrLRJIOTPeNh1HTQNI1SYCQz8BgankzoJ2pMANXITRTScbEiiQUtzI8XFYTRNRyyTNWvWsWr1Gq6dNJkDDjyIAw48iKHHDGHuA3MYeebP+dHhhxFLprANAxzBd9zw4WypaeSV199kwRP/IJkyiaUsZs6exZCf/ITCAh864A+2xyGJpmMnUxjBELphsL3qFJ3USbub3FR18qvyZGLXzVSacEkpuuMgtk06lebd95dRUdGdiu6ZskaJZIpNmza5qRWRWByf30/AZ2BaFr4nn/4nmu5DM3w4gO1AIFSQMViy5AfQNEzLRnAwfH58Bb5sRzr9AJ30zdH2Z19GcAeCwcxnI5P0kXYSvPn2Uo48aiD+QIh4MsGk625gxYoVnHPOOezfpzcFgQB1jU0UlnfNOLLFTgmaRipl4vP7AR+OOKRtGxEH29Hw6WTC5RFwBNvOVrKwLHR/YJu8907qpK+LFJN0EDvs/mNZaXy+AKaZYtixw/nwow8pKS7BHwwgAtFEkt/e/FtGjRpFWUmYaDSGL+AnFAgQSyT5/wPDhoMRwQizAAAAAElFTkSuQmCC"
|
<image>如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()
Choices:
(A) 45°
(B) 60°
(C) 70°
(D) 90°
|
90°
| 69,609 | null |
90°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAACOCAYAAADJuBGaAAAcuElEQVR4nO2dXWwb19nn/0Mpjtz0rWTARegCG9oXG1GUHNFFAY+7aIdub+Rg+4rqK4pKuxtRwSJ0bgrKwALyRUk6uVCQReW2F0u7i0a2sQhJSZbU90IyCqxJZS+oFthQjkhRLhaS3GJNBlhQTrEoKduaZy/IGZHU8Hv4Kf4Aw+LMmZkzZ/7znOc852NALWTigHieF39tzFppuBcEgIAeMsxuEO8eoeHZgxrmsXYo0EImFGAYAiEAWx+D8/ZNjLg3QETgaRb/smmAwriBXk2t81kbGCKiWmeiWSAEYDt/Hh/xv8RG8Ab6wIj7eMzCyMzDQG6MpGw/LrTXOgPNAhEh8KERHwW6Yd+wp4kMABhooLGNwHAMRQa0LJpsEAKw953HhxoXaNZYwBE8gOPjuRyfO60whC1sBgF1X2++hEkUKX83Py2hyQQT3EAAgCKLeAiJ6hUMDgV2jGrRltBkgnp70QdgMxiU3D8/NweGYRIiO0YCE2h6oVXLBVVgBLOzw8DcKPpGXAgkzRZtzsI2MgwyDCcSJkVG4CXP06wuc9MILdsDYpjqmQ/GMIeNWSt6gu/gPKMAwzDos2+izzaXEtJICIzJUvTVzG81abU6ZaW4liQRNa2wMmmqOFqxDy4z/draGnZ3dxEKhcRtq6urWY8/deoU3nrrLQgCY1kW586dg1qtFn2xQ5fsqAiPi8iAY2rRIpEIvF4vHj16BJ/Ph93dXTx58gQsy0KlUqG7u1tMe/ny5azn2dvbw/r6uvj7z3/+M3ae7OJxaAuvvvoqeno1+Od//xOwLIvLly+jo6OjkrdV1zS90IgIX331FbxeL7xeL1ZXV/Hs2TNwHAetViuK69y5c5LHFmp1BMu1uLiITz75BO+//z7+2+3fIfxVBGfOnMEXX3yBCxcuQKfT4Yc//OGxE17TCm1vbw9utxu3b99GJBIBx3HQ6XTQ6XSJqq0C3Lx5E59//jmcTqcoIo9nFdeuWXDx4kX85Cc/QeDLDXg//5/weP4Hrly5AqPRiNHRUcnzNZUPV72BItXB6XSS0Wikzs5OMpvN5Pf7SzpP6pCf3BxQLBYjk8lEFotFcj8RkcPhIJXqHFmtVorFYkREtLCwkJZXn89XUl4bgZoLrfAHmv34aDRKVquVOjs7yWg0ktPplCl3+YlGozQwMEAzMzN508ZiMbJaraRSqdLyGI1GyeFwEMuypFaraWZmJme5lFtmtaDmQiuHaDRKNpuNVCoVWa1WikajVbs2z/MUCoWIZVnyeDxFHRsOh8loNBLLskesWCgUIpPJRCqVqiDxCnmpdxpSaOFwmCwWCymVyqoLjCjxYD0eD7EsS6FQKG/abPh8PmJZloxGI4XD4bR929vbZDKZ6MyZM/SrX/1KrG4blZoLrdi3cXp6mnp6emh6erpmhe9wOGhgYCBN4OVYFafTKVrlzHsSXiqtVkvLy8sNYb2kqLnQCsXn85FWqyWLxVJ1C5aKxWIhs9mcV+TFCiKb/yYQCoVoYGCA9Hr9EetX6jWrSV0Ljed5CofDZDKZiGXZkluQchCNRkmv19PNmzcl90s9ZJ7ns27PRi7/jYjo/v37pFKpaGpqqqGq07oWmsfjIa1WW7BTnIlcb/j29jZxHEf379+X5XyFkMt/i8ViNDk5SRzH0fb2dtXyVA51KzSr1Uocx2WtJqqF3++vmjWVejFS/bd4PJ62z+fzUX9/Py0sLFQ8b+VSd0ILh8PEcRxZrVZZzleqVeN5npxOJ7EsW3Ox5/LfhCrdYrGU5TfyPE9UYFGVUqJ1JTShqiw2LlUJpqamyGg01pUflOq/ZZbR9PR0yTWA2yBMdE7516uhXoObNnLKqvDJ0FUVWuoblfl2LSws0MDAQF1YD6PRSJOTk5L766Fl5/P5iOM40uv1aT6a4NeFQqGi8+k2gNBrFYXFB92JmfbJbcVYPCnqwqLNzMyQXq+vufWIRqPEcVxVu7DKYWFhgdRqNU1OToohn+3t7aJ9Sp42yNYH0tiDh9t4nviAlXoA0tg3xG2lUnOhWa1WMplMaduqZTWE6wjdSVqtltbW1qpybbmIxWI0NTVFarWaHA4HESVeGJZlaXl5uYAzHBAfsJIGarJvpFeFPG2QtRcEg6vsfNZUaCaTSTanvxyWl5eJZdmGCRVIEQ6HyWw2k1arpYcPH1IsFjvS2Z8trvelXZNWbYrppYRWog2omdBMJlPJ8TE5kepOyket/bRc1/f7/Wn+W75yFsQkVI+pHJCbhnF0H19EI0CgqrOgKDnG0maz4Y033oDJZKrm5dPyAAAffPAB1tfXsbKyglOnThV8jloPRsx2fSKCVquF1+vFu+++i7fffhunT5/G/Pw8VlZWpE8WnMNcUAPD8NFljpi5Ocyj+8g+BoripwUWLc0SEd7C6enpLAME5b9WNoQxZIJP0+hku1/Bf3vzzTfpzTfflOzS4meH01ubwvZgwpr1jBw2jMqx4xUTmtTNz8zMHHH8q43QnVSYo9wY5Aob8ZTw38bHx+kb3/gGTUxMiDukqs1AIEBzdkNaa1MOqmbRPB4PDQwMVCWEke0NF0aA1LJzvliOCKdI/zAcDtP09DSp1WpSKpX0yiuviLFKZAZpk6tTagw2cgfk9UPLFlohNx4Oh0mr1dY0GOt0OonjuJoOMaoWsViMZmZmaGBggJRKJVksFnGApkajoe9+97t5zyGGfiS2lYKsFi1bRjiOI4/HU7PW2uTkZN11J8kNz/O0vLxMJpOJOjs7yWQyJd2D9Baiw+Gg733ve4mwEp9+fOL/yuSv4lWn1WqtWaxM6E6ampqqyfWrQSgUosnJSVKpVGLcLNcLFXkaJpVKRT/4wQ8SLz9Rhpd/IGnNyqWiQvN4PMRx3JHt2QKHciCcNxwOE8uyad1JtY5/yUU4HCaHw0FarZa6u7tpamoqa7BZ6o71ej3NzPye+i9Uz52pmNBq6ZdVcwxZtYjFYuR0Okmv15NSqSxrzqow9zWbIRDUme/FPCjC5lVMaNWI/EsVxMLCQkONPM2Hx+Mhk8lESqWSjEajOMixHOsci8VIqVRSNBqtWg9NRYQmDFepNtPT06TX6xu2ZSmIZ3t7W/S7OI6jmZkZ2WZcCZjNZnI4HBQOh0mtVle8zGRvdcZisYpXW5kFHYvFyGw2k8ViaVg/LHW2ujD5pJJWOdUY3Lp1i8xmc9kxu1zIbtGmpqayDhoslVw3XM/dSbki9gKZa4VIdhNV6OVRqVSimLPNupILWQO24XCi6VyteJUwyK8ehn4Xw9raGpnN5qLWCqmE2FJDT36/n7RarezXEJDVolksFpqenpbzlGmkFrYwv2Bzc7Ni15ODVL9LmGDCsiw5HA5Jv6iYeaDliI/nedre3iaVSiVu0+v1FZtRJZvQBGv2j3/8Q65TZkXoXql3pz8ajdLMzAxxHCdOmauX1rAg0tQqs5JWTTahVdqapV7HZDLVdXeSsO6ZUqkkk8mUs2qvdePF4XCQ2WwWf1fKqskitFgsRiqVqqLB2VgsRnq9Pk3MhTykaj1Iv99PZrOZlEol6fV6cjqddf0yCESjUVIqlWJeK2XVZBGanIMZpYQhOP0LCws1sQCpk1gy8yVMDLlw4QI5HA56+vRp1fNXLoIVE+5vaGhIdqsmi9Bef/110ZrJKQSe59O6k2pdzRAdDsER/K7Jycm8a6TVO4uLi6TX68Xfy8vLNDAwIOs1yhKaMDQlM1NyCWJhYSFtSYJaCi1zCE6jhVRyIeX6KJVKWV2hsi1apdaMnZqayjqpuNxmfaGEQiFxZUmpITj1YGHlgOd5sUtKwGKxHFmiqyoDH6Uusre3l+ZIyoGwwrXcvQuFkjr0Wa1W0/T0NIXD4aZbvDiTzP5puRsFZQlN6COTC2FJgszRBMUuZlcsuYY+HyfUanXafcs5v6KsqlMI9snx0IUlCaq51r7X66Xx8XFSKpU0Pj7eVDOjSiFzNLSc/dYlCy2z+6IcPB5PwUsSlDo6Vzgmdegzx3H06aef1n0PQ7XIfKZyPuOSv263urqa84NchXLr1i243W4sLy8XNFs81yxxSs6eTk1DyW9BLS0t4fbt24jH4xgbG4PH45H8/tNx5ty5czh79iy8Xi90Op1YPjs7O2V/K6ssoXEcV+rhAICJiQnEYjF4PJ6ij5W6ydTf8XgcS0tLcLvdWFtbw+DgIGZmZqDVasvKc7MzOjoKl8sFnU4HIPF1v9XVVUmhFbU0RD6Tl62aSh3LVCzCGLJsK1yXg8/nkxz6LEUztBblJrNLSq7VBYr20aSGlxSD1JIE+R54vv2ZQ3Ayhz63KA6j0UguV2KpKrn8tJIaA6WqPNeSBMVal8yhz4UMwSkmFnacrV1mb085tZdASUIrZUiQXEsSOJ1OGh0dLfrTg8dZOMWS2SUlx9ChktZH29raKurjqjabDUtLS3jw4EFR65AJrK2t4erVq+jq6sLS0hIGBwfx7Nkz3Lp1CyzLHklPEmt31XpNs0aio6MDQ0NDcDqdAAC1Wo3Hjx+npZEq41yUJLT19fWCWm/xeFz8uq7L5Srq0867u7v4+OOPcfbsWUxMTECr1WJnZwculwtGozHnsS1RlY/RaMTs7CwAoL+/P+3b8UAJZVysCYxGo9TZ2ZkzjfANJ47j6LPPPsubNvXcmUNw6mXoc7OSy6UQuqT8fj/19/fnTZ+LooQmjA/TarV511EtZvpW6tDn8fFxcQhOy6+qLUIXVCHGJR9FWzSXy0VGozHr/uXlZXFJgnxizBz6nPmtoxbVJfN5hcNhUiqVRJQ+uDVb+lwU3TOwubmJ7u5uyX03b97EH//4RywuLko6/ZFIBHfu3MHdu3fR0dEBs9kMu90OpVKZq2pv+VxVQihnocyVSiW6u7vh9XqhVquxtbWV9qyKeS5FC+358+fo7Ow8sv3q1as4efKkuPqzkNl4PA6XywW324319XWYTCYsLi4W3GptiayySL3Iqb9NJhPu3r2LkydPIhaLlXydoludkUgkTdV7e3vQ6XTQarW4efOmuP3BgwcYHx+HUqnE6uoqfvGLX+Dp06eYmpoSRUZFNJGLSduicPK9yKOjo1hcXMS3v/1tfPXVVyVfp+ROdSDRq/+zn/0MU1NT0Ol02Nrawu3bt+FyuaDVajE6OgqHw5E1rFGotWpVn9VBqpw7OjowMDCAv/71r2WdW7RoPEi8GAAcYBb2G4EjB0QiEbz++uvwer346U9/ik8++QR+vx89PT0YGhrCG2+8Ab/fj5WVFYyNjRUVO8tGvYjM7ZzF2tqa5L40i0sAwFclT3KSrZzHxv4j/va3vyESiRzdmbztvDWOVAsi12dbOI6ja9euUX9/P/34xz8+FkOfeZ6n3t5e+ta3vkWdnZ303nvvZUmZ+ema4j9lU5fwRN/85jfp2rVrR7YL3/pkGCa5fLyCNAYbBTNWg2SIBCnyIHqJFwCCUz/Dz//wr9D85zjmh9PduNdeew2xWAynT5/Gd77zHXR1dRXz0jQk0Wd72Axs4OAgUVRtbW249O++jzYmtWx4MKQApRgFhpD2u5Hx+/8XNJo++Hy+I1Wse0SDUdhAs0bQ5ixGeo2YN7hAs4c9OIc+Gs+AUZzAK8FfYkn9Uww77yMkYQ3PnTuHn//857h06VJFb6yeiESe4r33/pPY6nr11Vfx0Y0PQUxCTAKpD4BhmCZpwPAAFPj973+P06dPH9lLCGBzM4RhmwEAwGhGYDAYMZ+R7lBoCgYHmMXofC/+u5XHfxjVoPfod6hw+vRpXLp0CTqd7lg56Ts7T/Dxxx/jtddeg9PpFEcXC2VAiR8AAAYMwCQeULMgjIImHPpyPAhMcA7zwWHYDAwIAczeGMHoXA9sAUPa8WklsWgPwmYbBjaDCKIH3ZoXeE7P8ZxeJipieo5OZSf+77M9AADDHOAFPcdzeo4XaW/vS3H7c3qZ4Rbn2pc9HeU8nsfL5LaDlL+fE5+RvnQH/fr16/j666/x9P88TRvCLlqwxI/E7yYTGQD8/e9/R1dXF1LNigIMAvPz2MQ8RhVtaGfewkewY4MCsPem37/4a+NGLww3PsT5E6/gn378X/C/AbQxbWCgQDvTDgYAw7Tj1D+dwv979jUSDxdoZ07gBNMOBi9wACS381AwJ3CCOYH25G/k3ZdKarpX0AY+z7kVaGcUYAAciPsVYPASz8U8KsCAL7kteBCahd3YC0aREBPDaDAyl94qP3wIzSUyAHj27NmR3h5CAPNzmxiePQDP83gZ+CV4uxHGG5tHjlcAAAVtWNAEQESg5y/w9//6z0B3LzRoOyIUOoD4Nw8+aS0SloXE7QqxqBVpDzjXvlR48GhHGwCAQRtzIlnH5z++jWlPe8xtyZdEzH+WgsxF4IYBb2luIGBwY4N48ET4claDwMh5GOYaL4xRHIn7Y0gihLE5i/ngMAyGpFXvvQG7Adi8cQOzGSWtCMzZYJjvhc0gPA4e9xc38SKZjmHaweAlDkA4IODsv1FhZ2cnmbYdJ5LW5YQohgS5HmhhDzu7KKrpYn9p1+C8PQhDYAPzw33oS3hgOG+Yh90AzN+4gUDWHDWDCBUgANu7R6fcBebuY9MwjBEwIPAAgghuAtBokOneK86PfIj7djtsmzHs0wbs51/F+IMQEPwQ5xkD5ohBO4ADegEebfhGx0m8ePECgAIKvMRL8VSCZVFAAR4HKeon0Qrl2pcOI1aXhZ5bfihow+iNEDT22SM+ByD6/ke3i381RxXKANjf3z8MvvN0WG0aBKd/E7PGEXwYBIZtNvQho5F4+DmWfdpP/nuZDMYRHYj/v+Bf0AElxo4drqX1QjxmP7lf2P48ZXt66C7bvgN6we/Ti5R0hZ87cexh2ny/04OOEn8S0UEyGPkv5D7yUXuiA/7LxIftk1/vPfrxruYaT9fZ2UnRaFS8J2R855MBCJphss8FJY8/dGCYEziRKWMoRA+XQRsUAHp6erC1tZVM1I4TktGNdrySNeqRbZ8C7cyJtHSFnzvzWECR57cII/kneMxjbg6AwQADZaQjgELzmAsCGrvh8O3NyFezhH6+Ckdw8uTJlMYAn+avCcVDKeEuAg8mxaKLbhWDlCY5AYSUg4gHmERStVqN7e1txONxWfox6xUmGEQQgKa39zBOBiGMAczbP0SIGYbb1osMHTYdX6z7D+eIEICUHpHEvSe0k9BL8m9kCW+k/ckk3kY+GX96ibZkCzCBRtOXYtWag8ymB/X2ojflN4NDMW3MjcA4Bwy73RhJNg5S33DwzdAjcMjW1l/Q3ZMcP5hptQEAikPHNMvEuhzeKg8m2Zp8JaMK6O7+t00nNEVKCRIABUZgtWuwaR+BPcgntwfgHtHgrZEADLMbmDMkio/Sekh4QNFc9u3x4xDUb0qMqk59n5iM/zNQiOmPvISKrNWBVqvFo0ePCs5oo8EgURx9Njfc9l7M9rWBYRgomBF8BDu+DAQwO9x3mD7tRWyOlmYqjx49woV+beKHlLgKIGX0RuF4vV7Y7XZ4vd5j1d/ZrAjPUOpZxuNxKJVKRCKRsnzykl4/lmWxvr6OWCzWElkTkDriRECwP2tra9BqtWU3/EoSWkdHB7RaLf70pz+VdfEW9YsgOo/HU/Y6eEAZDgXHcXj48GHZGWhR38i1smfJQrt8+TI+//zznGlKcP9a1JjUZxaPx7G+vi65kE6x5BVaNrEIflo8Hs+avuW/NR6pz0wu/wwoQGjZxCJMw1paWioofYvGw+VyiatBlUtJ4Q2BlZUV/Pa3vxVnp7doHuLxOM6dO4fNzc2S1rTLpKzo4pUrV7C+vi49369FQ7OysgKWZWURGSBDGNtkMuHOnTsyZKVFPXHv3j28++67sp2vrKoTSCwzOjQ0hFAoJG5r9RY0NpFIBCzLYmtrS7YROmVbNLVaja6urrSlAloia2ycTieGhoZkHQZWtkUDgMXFRdy7dw+Li4ty5KlFDYnH41Cr1VhbW8u5bl2xyDLUYGhoCLu7u+KCuq1AbePicDgwNDQkq8gAmSwa0LJqjYzgU1fKmgEyDp7KtGotGgfBp66UNQNktGhAIpK8uLgIt9st1ylbyEiuaICUNZMzeiDrcFCj0Yi//OUvLatWp2SKJtXGSFkzOaMHslo0IPFVlfHxcfj9fjlP26KCRCIRXLx4EY8fP67YzDbZB7hrtVrodLq0hZNb1DcffPABfv3rX1d0+mRFZlJYrVb87ne/O9IH2gp7VJ98Zb6ysoL9/X0MDQ0VfWwxyF51AokMut1uLC0tweVyyX36FkWQrwFw4cIFLC8vV/z78hWxaAzDYHR0FPv7+1njai3rVh1yOfTXr1/H+++/X3GRARWyaAJ7e3u4fPkyFhcXq3IzLQqn6gH28teZyY3P5yOO48SPwWfSTCvu1Ipiy3B7e5u0Wm1Vvztf8WnVFy9exODgIK5fvy65P1dsp0V+qMigajwex/j4OBwOh2yDGguh4kJjGAYTExPY3d0tyEy3hhgVR7Hldf36dQwODsoys6kYqrZQxKefforf/OY3BfcatCxb4RRaVnfu3MGzZ88wMTFR4RwdpaKNAQHBvO/t7eFHP/oRFhYWWo2DKrO4uIi7d+8embVWLapi0QTzfurUKSwsLGB8fFxccLlluSrPysoK7t27V9uYZtWaHSl88cUXxHFcVVs9xxW/318XZV0VoaV9OS/598OHD4llWbEApJrordBHeaSKrNZlWROLJuD3+4llWdre3q5lNpqS5eXlvJasmuKrqdCIiEKhEHEc19Tf+5SLQoXhdDpJr9fXvLpMpeZCI0pEqlmWJb/fX+usNDQ8z9PMzAwZjcasPTG1oirhjULY29vD22+/jbGxMZjN5oICkdSaqCwSj8dhsViwv7+PmZmZWmfnCHWzsu+pU6fg8Xiwvr6Od955B3t7e2n7pd6H4yKyfLZga2sLly9fhlarFUWW75iq25caWtOsfPbZZ62qtECcTmdDlFXFq04qonoT0hIRHj9+jPHxcYyMjEh2mRRz3kYm233u7e3h2rVriMViWTvIpY6tVblVpVNd0HI+TaeuDq1Wq+HxePDkyRNcunQpbW2P1LTNjtR9ulwufP/73wfHcXC5XFlHYUh9171m5VYbQ1o4PM+Tz+cjlmXJbDbnDPA2O0IoyGg0UjgcrnV2iqLuhZaKw+EglUpFDocjbTvP8w0nvGLyG41GaXJyktRqNXk8nsplqoLUTauzEK5evQq/34/19XWcPXsWd+7cQTweT37jPHeVQPURxREppAqLRCKw2Wy4cOECOjs7EQqFoNPpKp+5CtBQQgMSYZBbt27B4/FgdXUVarUaN2/ePLI6eCaN5NNFIhFMTEyIgxP9fj8mJydrnKsyqbVJzUe+KiYcDpPFYiGVSkVWq7Wh+019Ph+ZzWZSqVQ0PT1dd9H9cqibnoFyiUQicDgcuHv3Ls6ePQuTyYTBwcGqjovPB0mEFnZ2duB2u3H37l10dXVhbGwMY2NjOHnyZI1yWRmaRmipeL1e3Lt3DysrKxgYGMDAwAA4jqvIckylsLW1Ba/Xiz/84Q8IhUJ45513MDY2BrVaXeusVYymFJpAPB6Hy+XCgwcPsLq6is7OTuh0OvFftYQXCoWwuroKr9eL1dVVdHV1geM4DA4O4sqVKzmPlbKCjUhTCy0TwZII/zo6OnD27FlcunQJKpUKarUa/f39JVe3Ozs7ePLkCdbW1rC7u4utrS2sr6/jzJkz4Diu6gKvJ46V0DLJFMbjx4/h9/vx9ddfo7Oz8/CD9XlYXV0FAKhUKlmF20wcK6FJVUPZqqa9vb2CP+fdqLGtanKshNaidjRcwLZFY9ISWouq8P8B59EcH8SNQzQAAAAASUVORK5CYII="
|
<image>如图,AB为⊙O直径,若∠DAB=20°,则∠ACD的度数为()
Choices:
(A) 110°
(B) 120°
(C) 130°
(D) 140°
|
110°
| 69,610 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAIkAAAByCAYAAABncfITAAARyElEQVR4nO2df2wTR5vHvxtQf0DooldGNRXIR+MGvxhaV/nj8opUoZcEHLVHTGVdkOAPU0ApMXcNpS2pVImqoirSayCnS7hIQAkSfyA1aZwCjQM5KaipGgmuoT0nhhJQEFVlRKW6DT2cntnn/kjW9q5312t71zZkP5KV7O7M7Nj73WeeZ3ZnhiEigkFRMdZ3CDes78BlZwpdFQBASaErYCCEMI4W17uFroYAQyRFxpHdHWDq6lBuL3RNEhgiKRo4+A97gfV14C5yha6MAEMkxcL4l7hIdXjHCvxXXTlWoTj8EcAQSXHAEXYfvYCOvS4AQG15WWHrI8IQSRHgb9uNjo7/BMMwYOybQEQopqDTEEmB4UJ+XKS6uDCCfh/Ky8rBMMXT3MwvdAXmGkSUEMC4H/NaLoAuHI0f//HmLTBUBgKKxyshg4JwqLmWABAA6g1yRETUXIfZfSVUt/tQgWuYgCEqosbPIEERmRLDJykg4vvz/PnzuHTp0sxGkQgEMERSUJKd056eHjQ0NKC9vX12Dzf7KTxGc1ME9PT0YPv27ViwYAH+/PNPhEIhLFmypNDVimOIpMD09PRgx44d2LJlC27fvg2r1Qqz2Yz3338fYJjiaHUK6DTPebq7u4llWTp//jyZTCYKhUIUCoXIai0vdNUEGD5JjlCWhphvYs6fP48vv/wSjY2NsNlssNlsMJn+knBgi4FCq3Qu0tXVRSzL0vDwMAWDQTKZTBSJRATHN2/eXMAaCjFEojMcxwm2T506RSzL0ujoKBEROZ1OamtrE6SZmpois9lMv/32m+py9cQQSR7hLcjVq1eJiCgQCJDVaqVYLJaStqmpKUU8hcIQSZ7gBcJbkFgsRna7nXp7eyXTX758mex2e3w7n5ZDjCGSPCAWCBFRZ2cnVVdXK+ZzOBw0MjIS3y6UUAyR6MyxY8do8eLF9N1338X3RSIRMpvNAtGI4TiOOjs7aceOHZLH8okhEh1pa2uTFMPevXslL76YSCRCJpOJpqamdKqhOgyR6AQvkFAoJNg/MTFBJpOJwuGwqnI8Hg91dnbqUUXVGCLRATmBEBG53W46cOCA6rKGh4epoqJCy+pljCGSDEnnDxw5ckRWIF9//TUtW7aMotFoRue02WyK/oveGCLREN6CXLt2jYhSBVVRUUGnT5+Ob6t1QH0+HzU1NWWUR0sMkagk3cU5cOCArAUhmgmDKysrVZUl5t69e2QymTK2QFphiEQD9u/fTxaLhSYnJ4koIQL+bzQaJbPZLOjzyJTGxkbq6uoS7MuXVTFEkiNigcilaWxszOk8g4ODVFVVlVMZ2WKIJAfUCCQcDhPLsopp1GKxWGSbMz2Z8++TUJbvg3z00Ufo6urC0NAQLBaLbLrW1lbs2rVLMY3a+u3atQsnTpzIqpycyLssHwPUWBCimYd0ZrNZ8K5ILty5c4fMZrPkU2M9MUSSIXv27CGr1SopELEjWVVVRceOHVNMkykul4vOnDmjSVlqMUSSAS0tLWSz2VR1qXd3d5PD4VC867O5yOfOnSOn05lxvlwwRKJA8kVUKxCO4ygajZLVaqXBwUHN7/ZYLEbLli3TxBFWy5x3XJXgB0/t2bMH/f39GBoawrPPPps2T0dHB2w2G2pqasAwjKZTScybNw8ejwednZ2alKeKvMnxESWTJoYo0TuqZ6g6OTlJy5Yty5sDa1gSESQKOQOBgCoLwvPhhx/Gh0doWafkelksFqxZswZnz57V7BzpKmAggcfjoZdeeonu3buXckzc7c7/LzU8Qi/OnDlDr7/+uu7nIZrDjquSQ+nxeMjhcCgOaZAqR2p4hF7EYjFaunQp3blzR/dzzdnmRm66qW3btuHq1asYGhrCM888o7qcgYEBTExMYPfu3fFjpOEwa3FZJSUl2LJlC06dOqXZOZRObjALb0Hkmgtx88JvpxseoRfXrl0ji8WSsl/rsHvOWhIxb775ZtyCsCwrmSbZ+jAME98+fvw4TCYTXC5XPqoaZ+XKlVi+fDkGBgYE+zWflE9TyT2CxGIxcrvdVFFRIWlB0t2VcsMj8tVl3tXVJfsaglZ1mBPzk1DyjIdJPHz4EJs3b0Y4HEZ/fz9KS0szLue9995DJBLBsWPHNK2zWqLRKJYvX45QKASTyaTLOeaESKRIFkggEMDChQsl0yULQyySmzdvorKyEsFgMKUfRU6YevDWW29hxYoV2Ldvnz510MQe6UgmJvMhzfZfpCmLb2KqqqoUBz6lO3dieMRD+URKRWjUIo2OjpLNZtOmMAmKXiTJP2RintPEfKcACHW7VBenViAp1RAJZnh4OKvhEXpRUVFBQ0NDupRd/NFNkrXsuEBorgN6gxyICBw9xLjfh9ryFan5JBrR6elpuN1uhMNhfPXVV2l9EEE1ksw2EeHtt9/Gp59+iieffFI+Ux4b8p07d+L48eP6FK6L9DSGi/8do5o6b/x/n+8L4miM/v73nrRlRKNRcjqd5HQ601qQdM1M8vCIYoEfN6zHI4HityRIGJPxvn6s3FALAOg73AFYywH6K9599w3F/NPT0/E+DL/fj9LS0qx7Q6PRKFpbW9HW1hbf513PxPtNEp/1GM+jKWFZFi6XC6dPn9a+cM1lpyP+w16BT9ITFDqMwvt/5hhvQTZs2BD3H+QsBd+LKnWc3yc3PKK5DvTFWCKfr7mWgBoa42sl/KOVzyqo28jICL388ssaljzDIyWS5rrEZP3eutrEBRDDzVyE5CYmFweTvwhywyOSm0FxfWu9PsUytcZut+c0CEyKR6K5AQEY9+ModsFlZ0AAnnfWYxXJ9AEwwJ+iJkbOwSQVzQ7vtO7bt09yeMR4Xz8YCef5+RdqMXjjlmKZWrNz506cPHlS20I1lZyO9B5qJu/hL4hIaKp37/63lCZiamqKqqurUyxILnfv5cuXaenSpZKOoa+5lnz+YEr5vYeaZ8Nz6X4UPayJHhPfPBqWBMDFwFHUrncBSDiy3vUMuH94NelhG4f79++jvr4eS5Yswblz5+IWhHLsfdyzZw8+/vhjsOwiQWhLGEf/UUL9RjsYRmiVbt78cXY9vZJ4HZLRw5qwLIuamhqcOXNGszKLvlt+rO8QVs8upswgteuhL8hh4+xK3Pfv38ca+2osKH0abve/pHSn8y8lZ8rt27dx9uxZhMNhzJ9fAsHiHuN+1B29gYvt7wkzjfvB2DfB5w9ib4M9vn4Nv4yNnsvZXLp0Ca2trfj22281Ka/oLYm9YW/8HU9u9m/yJ1kg9fX1WFC6EG63GyUlibtXSiCZiGXx4r/gjz/+QEtLC6an/09wzB+4iPIVLwjLJGDXnk1A3a4ZgQBxRfDCYADodXtWV1fjl19+wdWrV1OOZfUbJLc9D/73QfxT9CQ151NTU/TKK6+Q2+3W/g3y2fOEw2Gqra0lm81Gly//9+yh/6G6pOXRiIhorFf0qEDhuY4W1ZPxaw4ePEheb2rElQ0pjmuxCyT5J+E4jn77NUJVVVUpAtHKKRQX09bWRqWlpeTdWif9HAkgnz8oU1b+ZikKh8OaTXzzyIkkWSWRSIQcDgdt3bpVlQXJ9iJxHCc4bygUIofDQZWVlTQ5OUkcby0kis+XLKS+m8vlEky/lS2KIhE3P1LNkVzzpNR0qW3WUtM9jO+/G75Ljpcc5PF4UuourrNWJF+GWCxGH+xrpYWLSlNmIJLNlMkxDQgEApKzTmd6s6S1JErbav7P5Jja8/AWxOPxyApYL6GIGR4eJovFQi6XS3KMTqHgOC4+bjjX0YQZRTfRB1E89fRTKfuiD6KZFJMxyef8/fffsW7dOjgcDkHPIp8mOa24rnqwdu1afP/991i8eDHWrFmT8lJyoWAYBiUlJdi+fXvuwy7EqpFrHqSOqbEC4u1syyCa9UFmmxjeZGZj2fTi888/J5Zlyev1Fs3LSJOTkykT32Ta3MQtSa7WQEtrQqL4Pfogirt372Lt2rV48cUXcfLkyby9P5oJbrcb169fx/Xr1+FwOHDlypW810H821ksFjgcDvj9/vi+jH87Xi3pHEmlO14rxzV5m+O4eJpwOEw2m41aWlpk86fzSfIdtfGhciZThOtFd3c31dfXZ51f9QO+fPzIUmZQLJB06YsJcahcKGKxGJlMJrp9+3ZW+VU5rlIOq15Qkrm8e/cuqqur4XQ6ceTIkZS0xdjkJGOz2XDlyhW8+uqrWL16dX7G7Uowb9487NixI/uxQUoKKmQ3vZIFKWbkrFuhQ+VQKJT1xDeKluSpp5+Kf/LJTz/9hHXr1slakGJGzrqtXbsWP/zwQ8ahMmX5UFKMzWZDWVkZAoFA5pk1l2yGiO+8yclJslgs1NraWqAa6Q+/sni+Q+XTp0+Ty+XKOF/BRZIML5D9+/cXuiqaIfdStfCp8uW81CUajZLJZMp44puiEcnjKBA15DtUbmlpoYMHD2aUp+Ai4ThOUiDFHt6qRel78MeyDZWz+Y2CwaDkxDdKFFwkc9WCEAkvciwWo9bWVlq0aJHyU2UNqKyspMHBQdXpCyqSUCg0ZwUiRz5C5ePHj1NjY6NqS1QwkYRCITKbzeTzSQ9emstEIhHyeDxkNpspEAjIpsu2SZ6amiKTyaRahHkXCcdxcYHkazrLRxU9Q+WmpibVN2heRWIIJHP0CpVHRkZo5cqVqtLmVSSGQJRRaj4yDZXVNEUOh4OGh4fTpsubSMQCeVxC3HwiFypn+1u2t7cL3hEWw5ebF5GMjo4Sy7LU3t6eUgGDVJR+Gz5ULi1N8wK2ijIjkQixLEu//vqrYl7dRcILJPkLGQLJnUxCZaXfe+vWrdTZ2amYX1eRSAnEIHOkVsUgmrEE27ZtSxsqKzE0NEQOh0MxjaYiSf4ShkC0RckaZBIqS5UjFznp6pMYAsk/akNlKZEcPHiQmpqaZPNoLpKRkRFDIAWED5U/+eST+L50PiC/JJx44htdLMnw8DCxLBtft9agMKh5qiwWjtvtTlnDmCetSNRGIrxAuru7VaU30B6pp8pqQmWO4ygQCMjOTavakiiJxRBI8aI2VI7FYmSxWCgYTJ02Q/VYYLkXfL/55hu89tprOHHiBN54Q3nSXYP8Ix6rzL8ITRLLtXk8Humpx3NVqZIFMTrNiot0ofKdO3ckJ77JWiSBQMAQSJGhNNM1T7pQ2el0pgQeEiKRn7WHJxC4QCzL0kB/dr18BoVH7qlyb29vysQ3CZGovPEHBgaIZVkKBC7kWk+DAiMVKsdiMTKbzTQxMRFPl2pJFMQy0D/TxPQPBIzm5DEhFovRBx98IAiVW1tbBYPjVPskgUCAnlk8IxCDx4/kUHl0dFQw8Y3ijND8rMUDAwPYuHEj/va3f8S6df8EhgC5uf8NihOp2bBpdiJk/u/09DQCgQAmJibwxBNP4LPPPkNDQ0P6acOnp6fR1taGBw8e6PolDPKD0tTp/LGff/4Zzz33HBwOB1wuV/HPLW+QO7ylyJaSZI1ILRN2qG9Mi3oaFJBcJ/sp4ZcAARKrZfr8QRARgn4f3nWthn+Mcpobw6BwqLtuM9fff9gbn9qTWd8Mwji83kO8JZld0QFBXL9Yg/qGVQAA+wtl8WKk1cjl+BUM9EZ83SRFEzoLhmHQcev5mdVAOA707xtQwtjBlFkxP7mQ8b4BMN4NWDW74Ia3ZRNqvT647NLLsD8CK6EYiBCsbwwAGMf6VS7Uen24+B97Ewn/2gBfcy1QZsX85MV5bty8hcGOo2A63gdQgt4gh47ZNe+YmTPk55sY5AUGQN+RoxhEDcba30k5XlZWDlhXCZ8CJ6+W2XuomSBay8XoY33UES+RO0a1ADX7evkdkpQA3IzZGeNXy5wxQg3v/CtqweBioE+gPN4P4fK5xrqBRgjdA2b8RwwCeN76AgBOdr23EqAEDAD/wACaNzjjBTHj1zAIwvNW3nnlRBmNpufxQt6/jB+5GOhEnfOfAcysUFln3wSgBvUNq4VJH50FQA0A0cqWwhudVpWjFsCtiRup2a714ZB/fGYj6PcRZh7FCJcLU1jP1uDxode3O2VJuKDfl7SGYBZvpj2kWGI5MeP4Y3GcNxT8p9YrnNzm/wGjCLYVgMl/WAAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()
Choices:
(A) 1
(B) \frac{4}{3}
(C) \frac{3}{2}
(D) 2
|
\frac{4}{3}
| 69,611 | null |
\frac{4}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAJcAAAB/CAYAAADiiFCWAAAhFElEQVR4nO2debRdVZXuf7s73U1LMILSFHmCllCINJpAGgloKAj1CM0gQQqeKFBioMhzUFrPKku0LBpDV3SFkdQwiEgrkBTpIEonMMRSLAwCCUmIGAhpbm5zzu7W+t4fJ/vcc28i5OJtziXnG2OPe0+/ztnfnmvOb801pyNJNNFEP8Ad7AE08f5Fk1xN9Bua5Gqi39AkV8OhAhaIoUyCsSEVqrettg7y2HqHJrkaDoY2uw3rQZ4A75Gr+cHrQBCDGT3Yg+sVmuRqMJTxGWFH4ngpnvkvPn/yYqJOS+gYrD/Yo+sdhthw3/8ohQWUh62In1/8b2yb8GE+/lGXQlokdQSeM9hD3GU0LVeDQQVLK5bOmyax6OTL+NAvxyEbIj/F19AhFjTJ1XCIcBn96k1cxQLmj1vH7z+xH4f7Bd5MykA62MPrFZrkajAUwt/zw6t8vjz7IEK/k+jT4xhJyJhgBLhDy4txmss/jYWXb53Ax2Y/i2/HkLqbCb64lPjWzxF5EfkkD8Fgj3DX0bRcA41OiOggIYQUQqBMZ1XbWnkjV6b/iUw7SbIJs/ALfPSQ/UDgsg28wR587zC07Oz7ASXIx0XSXMxmB8aUt0IpIHn1W5x4kcf1P/8YtBsYvoU/vLGBkjMCUjB+Cc+AO5TMgZoYYIQyNpKNJSVSolh3nt+iQm604NOa/4Ik/U43H4nI55UHjTx3kawkRZ2DOvLeoulzDTBCAwWvDTSCsC2ikGujXPwApTLEperM5ykCa4m9Ijkg6kjwh8W00sKYwf4CvUCTXAOOViJGkTdAAqYAIqKNMnt0jkYt4GCJcMkb2CYYSYU4qWCLoygMITe5Sa6BRgKJY0n8TnIUiG1A3gEci6cyqQJ++JMf0PqGw5cv+yKlJF81Z7YN+SMYSjJqk1wDDQEGUt8S00op3gOjMh4lwnzKb594is9/9f8yyt3KL59YQ0duC74ZSSH1SAohAYXB/ga7jKFjY98nkGOR34mPSyneA4IEzy2hvGXda2/y1a9dzZP3P8irL26h1XQwTCUc36MjJwLiwR5+r9Ak1wDDGuHQUr2RA+FjPUuaGM6ZdRo3/ccV7LXffpx65mncf9fdpNYnDwxzHaThgzr23qJJrgGG53kkSYIxBgBJuK7Leeedx6WXXsrBBx9MmqZMmjSJZ599Ft/vkiIdZyh5XE1yDTiMMQRBgOd5NWJdfvnl7Lvvvpx++un4vo/v+0yZMoVly5bVXlculwdx1O8NTYV+gOF51TWcMAwpFAosXLiQ3/72t9x///1A1ZIZYxg3bhylUomXXnqJAw88kFKphKQhZb2almsQkKYphUKBlStX8q1vfYu77rqLJEmA6tTnbl/jOfHEE1m6dCm+7w85YkGTXAMOSfi+T1tbG2eddRb33nsvAEHQle6Qkeuoo47iF7/4xZAkFjR1rkGBtZaJEydy3XXXcdRRR9XIZK3FcRwcx6FcLuM4DuPGjWP16tWUSiXSNO3m4Dc6mpZrgJGmKf/8z//MmWeeyeGHH14jVpqmuK6L4zgkSUKpVKJQKPCxj32Mp59+Gujy14YKmuTqY2QTQZIk1E8KaVpNUZ4/fz6bNm1i9uzZBEFQkyR838cYgySCIKhNhRMnTuT555/HGDPkpsYmufoYjuNgrSUIghoZsunsmWee4a677uKGG26oPeZ5HtZa4jjG8zwcx6mRDGDq1Kk8/PDDeJ5XI+hQQdPn6ickSUIQBMRxjOu6bNiwgTPOOIOFCxfygQ98oNtzgJqlyv4aY2rT5OjRo3n99dcplUpDampsWq4+RhRFQFf0l8vlcByHGTNmMG/ePIYP71rCCYIAay1RFOE4Dmma1ixWRixjDJ/97GdZuHDhkCIWNMnV58jn8wA1XyoMQz7/+c/zj//4jxx44IEUCgUk1UgUxzH5fB5rLb7v7+BXeZ7H+PHjef755xlqk0xzWuxjWGuBquWx1jJ37lw2btzI3Llzgapl8zwP3/e7TYvQNTXWSw6VSoWtW7fy6U9/mvXr1w/8F/ozMHREkyGCjFQdHR088cQTPPvss9x3331Al5UCalFh5shn0yBQI1aSJBSLRYrFIvl8nldeeYWDDjpocL7Ye0BzWuxjZELo22+/zeWXX868efNwXZc0TcnlcrWIL/uby+W66VvZe0CXTwYwceJEnn322UH4Ru8dTXK9B/T0JDICZL5UW1sbp5xyCvfeey+jR1fLHmViaWaV6qfDzGJl+lb2ftnrkiThpJNOYuHChQDdJInMt8v+NhKa5PozkaXNJEmCtRbP8zj11FO54YYb+PCHP9xtaWdXdKpMJ8tIlmlmxx13HE899RSVSgXf97v5dtnrGg1Ncr0HZCSpV82zHK3Zs2dzwgknMGXKlJrwmS1W78q6YJIkNfnCdV1c1yWKIvbYYw9GjRrFa6+9BnRZy0wbcxtwt2zjjajBkaZpbUrLTmg2JV1//fVI4rLLLusW9fXGqtSr+hmB8vk8xhimT5/OihUrhswCdpNcvUT9Sa1PVX7uued45JFHuOKKK3b6umyq25X3l1TLVM0+w/M8TjrpJH7yk5/UxtDTejUamjpXL1GfWyWJNE3ZvHkzM2bM4J577mHfffcFupZ2epuLlZ2O+tdkWauVSoW99tqLrVurhXfrp8JGtGZNy9VLxHF1e1d9BsMpp5zC3Llz2XfffWv+WDZ1Zg46UJMa3glZPpcxppvVMsZQLBY57LDDePLJJ7tZqiyQaDQ0ydVL5PP5msruui4zZszg0ksv5ZhjjqlZj3oyWWtrOle9/PBOyMhS/7ps6ps+fTqLFy+uTZvZ85vR4hBBvTOdWao4jmtyQj6fJ01TvvOd7/DRj36UmTNnAl3+WDZdBUGwg761K6iXF+rf03EcPve5z7FkyRLSNO02PTcimj7Xu8AYU9OaoHoi4zhm0aJF3HPPPdx9990YY2p5Wf0tCUhizJgxrF27lhEjRnRLjW40NC3XTlCvuLuuWyNWlte+bt06rrnmGm699VagK2ocCK3JcRw+85nPsHjxYqBqUTNi1Sv7jYAmuXogE0Z7Rm2SKJVKbNmyhTPOOIN77rmH4cOHY4whl8vV/Kv+hrWWU089lWXLlhHHMYVCoTbuRhNSG2s0DYBsiql3ksMwxHEcwjBk1qxZXHfddeyzzz61heVMgR8oy3XMMcewYsUKcrkcUPURm9HiEEBGkMyHAigUCnR2dvLNb36T448/nqlTpwJdWlZGyF2RGvoCBxxwAGmasn79eowxDadvZWiSayfoucBsreWBBx7grbfe4rLLLqvdFwQBaZqSpukOiX/9hWxZ6eyzz2bBggU1i5VFtY2EJrl2gkyryqzYc889x+23385tt91WS6vJNKhsQXog/R3HcTjqqKN48cUXsdbWFrsbLfDfLaWIzE+q91MyOSH7P/OjVq9ezTnnnMN9993H3nvvPVhD7gZrLWEYMnbsWNra2mrEbrRt/7ud5coWg7MllWw6yYiVOcfZJtXzzz+fK6+8kr333rshEvIyq1ksFjnyyCN57rnnalpcIxELdkNyOY5TI1I2nUDVZ0mSpJtzfOaZZ3LBBRcwadIkoDG209dHslOnTmXJkiW1paJGm4R2O3LV+0vZZomMZEEQEIYhAFdffTUHHXQQM2fObDhxMiPRlClTWLFixQ73NwoaM4btR2RXfrZ1Po7jmrWKoohCocDy5ctZtmwZjz76KNBYAmX94viECRN49dVXaW1tpaWlZUCi1d6gMX6xAUZ2hWfqepZKnM/nefHFF/na177GI488QqVSqaXVwI4SxWAg8wWzhezx48ezYsWKWu5YI2G3I1dPq5Xdl8/n2bhxI2effTaLFi0iCAKKxWLN0nV2djaMWOl5HuVymSAIOPbYY2v5XU2HfpBRf3UXi8Vu93/hC1/gqquuYuzYsd2S/CTR0tLSENEiVC1uViP1+OOPZ/HixQ2Z6jzkyBUSQwwkESkJ1RrHFoxFeoNrJzn4jsNwv/rXcQo43ldYYmJSwMWpdrFQ9SQZwLouF1/895x8wnSmTZu2Q15WFiU2QrSYSSWZpTr44IMJw7Brq7+FTkC0QecfuOZkB8fJ4fgOrjOaouMwyinhTL6Kt8IELIhO4hAMrX061iFHLh8XHMB1gAAZQZoALtYZyZwn3+SWyccw53ci1WYShTz4pTv4G/+LLKGM9VyMFahKFhe4884fsXXrZv7uogtrCnyjHr7vE0VRTduSxHHHHcfSpUur06K7hbxAZgRoH75670vceMx0vvdyjK28yTYlvLXwbPjkpxgbBIRuiGNayLngMqpPz9WQJJe1Am/7fkFLtfGSAwnDSHmB35RncO5HDYkZga92TrztORZMeYCTL3yWTsB6TvWbC5579lluvvFG7rzzDvC6siIa9YBqCYAsYnQch0mTJnVVwamMxjcQeqAWIPdH/tsfz2kHWGzhGa66+VXi6cfyowP+gi1eQsGEyEuJAxDtfXuyNNRgJWMSJYoVW8kkklSWtVKHUtlFFyt/wRIpeVsbJakiySa65wzkHf9veltGHdW30Wsvr9YRnzxcra1bJBnFcShrbUMfURRJktI0rf0kb775psaMGSNjjBTGMqkkbdIf9Ja2/dff6zPXv6xQ0gs3HqK/XySlUZtUltQhRXGnIpWlWErU3qenauiRy0hWiSIlqkSSjJUUyySS0WY9/CV0waJUMpJSaYsk2bL+eM0EMWmB/hCWVZFUrkSacvRk/fpX/60oqsjatPrmQwTGVMeake3jH/+4XnjhBSWq8iY0G6RYWn3LROGiUU5OI/msrns5lVIjWWmTJMWS4lhWSfVC7EM0Rmzda7i4GAIfcA2p8atqsF3Nk7efx3HzPDptQkuSMhof4yX8z7pfw8HDGJUvsm3rVj5z9ESO+OTh3PfA/XgLfXzXwaQpanBPwVqLMYZCodBtl9CIESP4/ve/zzU3zaVoArB7EWstj/4o5ebfJ5x7wBZunXQFBx3kkkRvk6R5ci0OMAKCGMe0QK5vx9qNXEncFcoGucbSTGoQgItnUxwHDAbj+fgJxK88wvILZvItCyVroRCALOkf7+Rf/z3kwkdmUAD+be617P3BvfiLcfvj5wLkOKSpwcfDug36vbcjl8vV0myyZSxjDB/60Id4+umnycU5TM4lcaHw6zu4beSZLDvAx/H34MhZe7AnlsAfS+AmwFbiNMUJ8gRA7FbIUXy3Iew6epqyOLJ9axv7GjY7EsnEitSmTklqD/Xr/zxCJ35vTfW22tVhJKVrdMWUQMUJ12hVYrTkkcWafsJfK4liSdL2CaEKo0H3qd7tMMYoTdMdpkVJamlpkZI31R5LiTr02vWf1ZHXrqq6Dolk1KlO/Vrzv/B9/U+b1CZJKkuRlNj2rt+hjzD0yNUutWu1pOqPsU1vVu+Plut8PqHrX45krWRjKXztKk10ERMXaJXZqBd/t0ETJ07Uhg0bam9nbfX7GmNq/zc6MqJJUhzHtfsnTZqkZ5Yvl9Qu2TX63qRP6sZXpVTbFIeJpLX612PRx659vUooJar68IkiSR19PM53JFcc2dqxs9v19+3sfd7LY+/2vMS0qRxZhWWr1shK26Qtj16osQxTMGwP4XsKckV90C8qzzCd8uBbUhJKnW067JC/0qpVq6rvvf2kJElfX6/9jzRNa+SqvyD+5V/+RXP+6dtqf/rrwhmhHMghEAwXo/fUSNDeHKV5q6QofUsVbZLsJhl1Vh17G/bpON/Vcr3T7V35vzeP7cprtkRWqSRV3pI6UsUVK5kOdUSd2lLpUBxVVJEUbylrU2QVSYo2RDr29CO17MFfSupOqCiKatPNUEG9DFF/329+8xtN+MSBUhIrNVJFiRRJshvVmlRlhrZYStUuW35bkSQl2y1WpD4PlnsVGiWxdnD0k1jdAoH+QP1nDksgig0U9oCcR+q2s8VtweRShkUlgqBAQUCLT5CLyG1J+Yerv8Pxk6bx2elHditllDXWbMR1uXdCfZ0I6NoMe+ihh/L66rVs2BrguZYIHxOl4FgKvsUAQbAZLyrguHvihGB8iyEl9Nv6fJzvSq4g57wjeYKcUzsGBEEnpcAjSnyMbyHx2IMORtgRpEUghdSJiNKIEYjb/usJTPkNvnbxN7G2XNtBXZ8aPJSI1RPZ2LNMj8NPOIEXH7+TMi4tgDc8xPBBPDMCz4KxI6i4Pp1AUOjAEjEiDSm4eejjlKIauf5c69Of1qv+vUNawFTI+yBC/KAE8TBIqp0rYk/E5HHSAi8+99/c+4OL+fp3/4PQcXDdUq2giOd5tRyobDG40TJOd4aeF4LqSlYaYzjlf5/OHQ89Ro4EP03YIgcM+A5YRbTYmCRIKeQjsHlIiuAFJCaPvD6WPbP58d0c7HfyjfrKod/Z7R1eHxnFYapNUagoimXLUqpQcYdVuTOshuaJtHLNG5o64US9snmDylGkuGO7r7YdmSPc0/8aCsh8rp4RbpqmWrdus/babx9lDlW4fWmnQ6mkzVJZCk1FSqxkypKk9uSPCtXnAv2uL/80ikRRkSRjFGvb9ghH6pCRFFd1GiOl5bKmTJmmR59/XKpUJCOZipTKdJMeMlhrFYZ9Gyn1J3YW6XZJEm9r/3F/qdVr35DUoSRU9aLqkCIZJZKsjGSksjZJFdV+t+2LZX2GXXLod+bIDxYKAK6La1qwngUHCkZAgA8YGb5w4YWcd95ZHHfEZCgUsFjcArjqyiyoz4l3HKe2WWMoIEu7rs+M7SrxNIa/Oel4Fi/6KVIJP19NGjEFQw4XH3BwwYUiY6CwfZnGBRjdp+N8R3INRCT4XpD5TNB9I6i1luuuu46xY8dyzjnnDIla7f2BY489lscee6z2fZMkGZRExyG349puL/yfXbUZudI05fHHH+fqq69m6dKltefHcVzbm1i/q/r9jDfffJNDDz2UjRs3UqlUauncA12Ut7FTAHYC13VrO2CywmfGGF5++WW+/vWv88ADDwBdhTlyuVy3CHF3wF577cX+++/P008/PWjEgiFILugq0JY1aiqXy5x11lk8/PDDQNWaZdYK6NZLeneAJE455RQeffTRbinSA40hR65s72C2O8f3fU499VSuuOIKxowZQ0tLSzdfI5s2G2Vb2EAgTVOmTJnC8uXLa+nRWbmngcSQ87mgu+904YUXcvDBB3PJJZcgqVYnKyuKlgmkGRkbZed0fyH7bbZt28ZHPvIRNmzY0K0+xkBiyP3Sme+Upil33HEHURRxySWXdJsq6+uY1lus9zuxgFpBkpEjRzJ58mQefPDBbqWhBnQsA/ppu4D6fjo9/9bLDr/61a+YP38+N998M7DjYm59Q6fdRYLI4DgOURRx3HHH8fOf/3zQxtFw5MqusvoF5YxU2bFu3TouueQSFixYQEtLS0PUcGg05HI5xo8fzzPPPANQa3c8kGg4cgG1Rpb1taiyrhaVSoWzzz6bW265hX322QfoUqp3Nwu1M2QXpOM4HHrooXR0dPDaa68NSgWchiRXtvmg3r/KWsWdf/75XHTRRRxxxBHdfIisrtbujvoSlr7vc+SRR/Lkk092q30xYGMZ0E/bBWQaVRbZRVFUs0zf+9732GeffZg1a1a3KoBZXa3dSct6J9R3sJ02bRrLly8HBj6gaUgpIpsW69cPFy9ezE033cRDDz1Uc9azrNKsZW+9w7+7ol5ukcT69euZPHkya9euHfCxNJzlyrpxZTWo0jRlzZo1fPe73+XHP/5xLS05DENc1+3WOm53JxawQxC03377MXz4cH73u981pYiswIa299qpVCqcfPLJ3HXXXYwaNQroqggI1SgoE0wb0AgPOLKM2vpMkayN3m4VLWY7hzNk3VEzZx7gtNNOY+7cuey3337d8sUz05/L5brJF03Q7fdzXZdJkybx+OOP1x6v/82z//vD2R8Un6tnK5MkSXa6/jd79mwOOuggLrnkEoDdYvnmz0X9b5TJN7lcjpEjR/LWW2/Vupxlz+uZD9eXv++gnKmeWQpZR9Vsodlay4IFC2hvb+fiiy8GuppqNvHOcF23Jsv4vl9r23LUUUfx5JNPdlsBqY8q+2Us/fbOfwJZsl/msENX7lXmrP/yl79k/vz5zJs3r/bls64WTbw78vl8twsxy5L4xS9+0a3kZX3XEOh7qWLAyeW6bu1LZEVjs/uiKGLt2rXMmTOHe++9t1s/wSRJmjrWLiCLmutzuIIgYPLkybW6+vUOP3Qtdvc1BsXnyhT3nukwkpg2bRrf/va3OfroozHGEEURpVIJaPpcu4qeOmFWY3/kyJGsXbuW0aNH76AJ9sdvOyhnqn56y64y13WZNWsWX/rSlzj66KOB6lRYKpUIw7BJrF4gE5WBbm1ojjnmGB577DFgx821/bHzfFDOVvYlMuvlOA5XXHEF48aNY+bMmTuk3eTz+YZsnNTIqN9Cl/lfM2bMqJELutKYMse+r537Pp8We+6w2dmSTCZFZB+9fPlyrrnmGpYsWdLUqv5M1Fv4+nNRqVRobW3lU5/6VFfN+n5Gn4dfPYlVz92MaJnG5TgOL730EpdffjmLFi1qEqsP8Kdch2KxWHMz1qxZw/777w9Uz0l/Kff9Mi3WZ41mDZCyIzPR5XKZ1tZWzjnnHH74wx8yenTf7vZtgm6/N3QlEP7sZz+rReg9M377En1Orj+1jamebEmSUCqVOP3007nyyis54IADas9pou+QESjTFiVx2mmn8dOf/rT2nCy4ql8S6isMiBSRXT2Z9ZLEnDlzGDduHF/5yld2m82qA4H6WaPezcju27RpE4cccgjr16/vts+gPzbN9mu0mF0x2RWUfZHbb7+dzZs3M3v27B2amDfx5+FPRX3ZRb3nnnsyduxYVq5cCXSP3Psa/UquTL/KEMcxzzzzDHfffTfz5s2rPZYkyaBsIHi/on6GyKbDendlxowZLFy4cAci9vXabZ+T608NsFKpsHnzZubMmcOPfvSjWgeIrC5p/fb7Jt476q1/z6ZU2cU8derUbsVa6jd19CV6TS4riICYiGqzwk4wkFbLttae11PvchyHs846ixtvvLGW9Fdv2Zrbw/oGPa1/T8KIhPHjx/PSylXEkUgSs93KAXJIsdW6sgBxe/VvAhgB7dWOjGkEWFqJtj8GbbTR06npNblCp5N8G1gArwJOC20e+JGHR/XqqCdWllN07rnncuGFF3LYYYfVVu3rBdbm0s7AwCHA8wIOO+wTPP7ECoLAwSrGcVIcFxRXwAe/YujIDcezUAnaMI4DGs4oAzgJKS7DyQMxOFCiiNuDXb0+oyXy4KYUcDEYOqkQCMh34pTz3Vbc0zTFdV2uvfZa9t9/f2bOnFkTUHtuwGjmag0QBL7nMv3kE1i6bCGpiZAsIESC67fQwdtQbGVYBLgRropsdYEyEEPqeXRWwEsBP0Uu+ApwiHt8Vq/xkq6ZiGAPefgKGKEcri56SIq0VVL3IvxLly7VtGnTZIyRMeZdO1YMdm+d9/1hJGul37zwvD5x2MdVrYha190gkdQhbTNGK286Qj4FeeTFZ/5Jf0wf0ucvvlcbK1uq/ZdSKU3bFFtT7Uxo4m7nsvfkCqX2dLXmTkR/t7hNqaRo6T8pz+G69fXOrqeFoV566SWNHz9eW7du3YE4GQnre9fsrDNEE32Lap1hoyju0F5776mtW7fJpFJYqfZgLFfekNbM18dHovzMJ6sk0jaVX71WEwpo6tw3FEpS0qaOKJVVLCtV7zPdz1/vHZ38Flq8V1i18svMmBCwmTZyH96PQ1os28JSLVrZtm0bs2bNqu3ayaoA1juYWS34+tvqh77QzaPrcBwBllyQ4/jjPsfDDy0GQT7vgpNSLKzkywecx8pzHyZcMJHEpsAwin8xh/93ZsBef/mhqi8VhXg5AR5pOQZS5PaQknbO73dALKWLzhMXZKx+UTcc5mnURUukSqU2/U2fPl1Lly6VVLVYmVVKkmSHqTFN06bVGkCkaawwatePf/xjzTzzb7efx7Jiu16/vm2C4GI9KimKJSXtUiq1qk1vX3WJfvhSVH16atSpssJ4e1MqJWpLupdb77UsGwcVXn/lj3jfn0Th+y6R82muXxXy9jjA+kiGb3zjG7z++us89dRTPP744xQKhZrUkCnBWRSZbRNrOvQDA5M6tAzL09HZyqa3W/nVr57HKMJxWrHOFm698Bn+5pa7mFgJCYoOyCVyUkYyHP3DDcwkwqbgyCXngRd4UAGShFype7n1HadFC2myvSErEKmTlBQsxArJ0cHD97zFD35raJVh5b8P49KP/DXzX3ExbjWlds8992T69Om14ri+7xOGIZ7n1fYm1m8QaBJrAOFYcl4McY4Pfmh/Lvjq/yFN8rjJKFi3mFW0MGbffckXHZw4D0mJiGh795tOcuTxfHAD8CnikIciUCqS70mnHUymCSWFkq02Kc+igooq1fYVL39bkydcpVWSlK5Tqgd1GUUdcdPL0nbnvFLpavSRtTwZSi3n3s+wqkZ41Ub0UqhOWSupXNa2NTfrGNCsFWXJSKGq3UfU1lntstHL7jU7WC7P9QBLKEsusaQGyiaikHRCHlY9dj9bzv5b/lcnxN5+uOt+zyOFCp86cH9QQBzHFAqFWvpstqxTXxyjeQzeYQG2e0OOBR+PJAGCIiM+fBh/hc+6VzaCuwWpAKlly/AYu3oeVy9p7Z2V7Mm21EZSKtkOUw0vtVEKNyqyktKnddWEqbpllZSoLHU+pq+CyH1Di9JIaV2X5PpeOkmSNB32BkFopO0NrxWXK0rsdstlJGm93rhhgnB9XfBIuzq0vS/Qor+Te+SNWtvLz9qBXElYJVi16VWibVskq1grn/iOfBwNA+G68kEeY8Qx12u1KlIotan8rr2iB11E3M2P6uVvtpOp2pDLqqp/WYVSIoXL5iigRSNAeRAX/EQ2lTp62WJ9h2RBUQEVMJUKplQirwgiERcK5JIt4O9BGncQ50ukqcsIvwJxEQKqUYDblXhmrSVN09rUKDXrZzUSqhtlHJJEuF4ALngJmKBCVAnwiwkOOTzKpAwnFwG96L+1g89lUlMV2ko5clGCcVzSQoFcGRSMoiKo5PP4uJT81yEp0p6DTqcdTHXAWfTnum6tSmB/1yVoYtdg40rV/wJwHcAlCMBzLS5ggw4cLKWCT44iJvFIyZMThL2U3HdMc7bVtBrXg5QUVz6OY0mokFMLRBAVEvJlQ+wWyBUsyMUS4Toe2YaiTHKoz9PaXRo7NTRsAvikrkOVWuBQBjxk8yQuBFRwOoqQhzSwpLgUYohzFXIUd/mjGrJsZRPvDzSTqJroNzTJ1US/4f8Du6JddJ1NoygAAAAASUVORK5CYII="
|
<image>如图,在△ABC中,点D、E分别是AB、AC的中点,若DE=1.5,则BC的长是()
Choices:
(A) 3
(B) 4
(C) 2
(D) 1
|
1
| 69,612 | null |
1
|
"iVBORw0KGgoAAAANSUhEUgAAAPMAAACtCAYAAABlckm4AAAwp0lEQVR4nO2df1xUVf7/Xxf8FRaGmOhG6zZkYRgirUDfDzJsUaarnyhMN3dDaC0K2oxdSTdM3LVQk6xVjJYo6GNL9MF147EulmIK5kZYoqEoJuPnI35CSYpCEaGZ9/eP8RzunbkzzAwDMwPn+XjwYOb+OOd979z3fb/POe/zPhIRETycyspK3HTTTdBoNK4WRSBwGV6uFqA35O8aS++d2NjYXo8RCAY7bq/MkiSpfmZkZGQgJiaGW2W1YwSCoYDkyW52UVERNBoNtFqtsMiCIY/bW2ZL6HQ6SJKEwMBAzJw509XiCAQuxyOVmYjwxhtvYPHixZAkCZGRka4WSSBwOR6pzO+88w42bNgASZJED7ZAcJVhrhbAXk6fPg2gp9d6//79aGxsdKVIAoFb4FHKrNPpkJycjMrKShARJEkSiiwQXMVjlDkjIwM5OTkAjErNerGrqqoAAMeOHcOGDRtcKaJA4FI8bmjq8OHDCAsL45ZZIBAY8ShlPnfuHCZOnAgAaG9vx7XXXutiiQQC98GjerMnTJjAPwcEBODRRx91oTQCgXvhUco8c+ZMBAYGwsfHB9u2bUNFRQWuv/56XLx40dWiCQQux2Pc7F//+te45ZZbcOrUKRQXF6O1tRWSJGHs2LEAgH//+9+46667+PGiTS0Yari9ZWbvmuLiYnzwwQcoLi4GAIwdOxb79u0DAMyfPx/z5s3DihUrcOXKFQBiwoVg6OGWyixJEiRJwtmzZ7lSFhcX4/e//z0AoLq6GidPnsRDDz2EpqYm3HjjjTh+/DhOnTqF0NBQVFdXu1J8gcAluKUyMyIiIrBnzx784x//wCOPPIKEhAQAwLhx43Dbbbehq6sLzc3N+PHHH3HDDTdg27ZteOmllzB37lysWLECnZ2dLr4CgWDgcEtljo6OBhEhMzMT9fX1WL16NYgIp06dAgB8/fXXICIMHz4csbGx2LJlC/bs2QPA6HIzKx0WFiastGDI4JbKvH//fkyfPh3Nzc244447cOTIEUiShLa2NgDAT37yE37spUuXcM899yAuLg533nknAOCGG25AaWkpXnzxRWGlBUMGt+3NjoiIwD333IN169YpEg/MnDkTGo0GP/zwAwDgH//4B9/3/vvvY+HChYpyvvnmGzz11FOoq6vDO++8g6ioKAA9vd2sbNFhJvB4yMUYDAar+9vb2ykiIoJ/HzlyJAEgvV5Pzc3NFB8fTykpKb3WU1paSv7+/rR8+XK6fPlyn+UWCNwNlyuzNeLj44mISKfTUW5uLgHgf4mJiZSVlUVERJcvXyYA5OfnR2rvJ/bCaGlpoQceeICmTZtGtbW1in2mnwUCT8PlbjZZCe6Qu8FeXl4gImzduhX+/v6YPXs2AGMwSXt7O0JCQrB27Vq89dZbWLJkiVlWT3kdRUVFWLZsGdLS0rBy5UoMGzaM1yXcbYGn4vIOMDXlYYooV8jU1FTU1tbC19dX0ZnV1tYGjUaDtWvXAgB++9vfoqamhperpqBJSUk4evQoPvvsM8yYMQNHjhzhslh7t7n4vScQWMXlltkS9957L3bv3m2mjO+//z46OzsRHR2N9957DytXrlQ9f/Pmzbh8+TKee+45q/WYWunhw4cr9gtrLfAU3FaZp02bxi2mnHfffRdlZWUoLS21er4kSQgJCcHRo0d7revcuXNISkrC+fPnUVhYiLCwMNXjhGIL3BmXu9lqSJIEPz8/pKWlYezYsZg2bRpXouHDh+Oee+5RdXlXr17NQ0HDwsJsUmTAOLXyww8/xNKlSxEXF4esrCx0dXWpyiUQuCtuocxyxfz2228BAHq9Hnv27MEzzzyDI0eOwNvbGzt37sT27dsREhKCs2fPmpXz0UcfITc3F0SE2tpau+VISkrCsWPH8NlnnyEiIgKHDx92+JoEggFnAHvObaKjo4NGjhxJvr6+imGmcePGERERAMrPz6ewsDDFeSNGjFAdlnKUwsJC8vf3pzVr1qjuF8NYAnfD5ZaZucWSJCE0NBQXL17ElStX8P3333OL/dhjjyEkJAREhKVLl+KJJ57A4cOHFdY5MDDQqXIlJSWhrq4OFRUViIyMxIkTJ8zkFgjcCZcrMwBs3LgRHR0d6O7uxvjx4832l5eX491334UkSbjrrruQnZ2NjRs3KhT4xRdfREdHh9NkIiJMnDgR+/btw6OPPoro6GisW7fOaeULBM7G5cqs1+sxbNgwXHPNNTh+/DjKy8sVbeiTJ0/i/PnzXHG7u7sRFhaG9PR0RTlZWVm45pprLNZDdnbayy3v008/jYMHD+Kjjz5CVFSUmZUWCNwBlyuzl5cXDhw4wL+zyC7GbbfdZnZOd3e32bavvvoKkiTxmVNy9uzZ0ye3mIhw8803Y+/evfjNb34jrLTALXG5MgPAa6+9ZjEp3+OPP47ExETFNjUrS0SoqanBoUOHcPLkScW+uLg4jBkzxmH51Kz0hx9+qLDS9lp+gcDZuFyZiQjHjh3Df/zHf5gpBBEhPz8f77zzjmL7sGHqC3HMmDEDRIRbb70Vo0aNgiRJOHr0KC5dusSnTDqDm2++Gfv27VNY6d5CQQWC/sblyixJElauXMkTEJjuM0Wv10Ov16uWxZRpwoQJuHLlClatWoWpU6fCx8eHl3fw4EGnyW5qpRsaGpxWtkBgLy5XZsCYoE+SJJ6wzxoajQYPPPCA6j6m/KtXrwYA1NfX831knO6Jjz/+uO8Cy5Bb6djYWOTm5jq1fIHAZgZ8ZNsCmzZt4oEh1khOTiYA1NXVpdhuaxBHXFyc3cEltpZ94sQJioyMJK1WSzqdzq46BIK+4nJllitKfX296nY5ACgvL69PddbV1am+EHqTz1bWrl1L/v7+tHnzZkfEEwgcwuVutrxdzDqtfvWrX/Htu3fv5vvLy8sRGhpq1iFmCbLQITV16lQ0NTVhxIgRvZ5j75AWEWHFihX45JNPsHXrVsTGxvIF4gWC/sTlysz4/vvveSpdeZv4vvvuA2Bcf3nTpk1YvXo1pk2bZnf5pkoaGBiIVatW4be//a1ie1/DNNn5wcHB+Oyzz3D//fdjxowZqm1pU5ksvXwEAptwpVvAOHToEAGgXbt28bxfDADk4+NDmZmZim1Hjx51uL7a2lqeS2wgqK+vp4iICEVb2hb3XUzmENiDS5W5o6ODEhISuDJPnTrVrC2bkZGhOKe9vZ0AUGZmJmk0Gpo4caJZudaUgCnxjBkznHchKqjJsHbtWho3bpxoSwv6BZcqs06n48o1adIkIiLSarUEgLZv305ExqmNcoUtLi4mAFRWVkY6nY4mTpxICQkJVutpbm4mANTa2kpxcXEWjxsIS3j8+HHe493U1NTv9QmGDi5R5qamJtJqtZSamkpERMHBwdTc3Mz35+fn09y5cyk4OJhycnKopaWF71u1ahUB4Mc//vjjtGvXLot16fV6AkBNTU1WXWsAqla+v1izZg35+/tTYWHhgNUpGNwMiDLLLR4AkiSJAFB6ejrf/uc//5kqKiqos7PT7HydTkcFBQX03nvvkcFgoODgYCIi2rVrF+Xm5lqtOy8vjwBQWFgYr3fjxo1UWlqqOI4ds2TJkgFrS9fW1tK0adNo1qxZipeZQOAIA2aZjxw5wju51Ni6dStVVVUREVFBQYHCBW1tbaWtW7fy76GhoUTU054uKCiguro6vt/UXQZA2dnZBIDq6+u5Kz9+/HgCQCEhIQSAduzYQb6+vpSenk47duxw+Frtcde7urooKytLYaVFx5fAEQZMmZmFtCiIiQvMlMlgMNCoUaMoPz+fiHo6wJYuXap4MTz55JO0cOFCRZmmSnH33XcTEVFOTg5lZWWRn5+fat1paWmOXGKfYFb6vvvuE1Za4BAD2mZeuXIlXyfKlJCQEEpMTFR1s5uamigzM5MWLFhABoOBANADDzxgdlxFRQUf2lKzbpmZmZSQkKBQ3IaGBgJAHR0dfNvkyZMdubw+09XVRatWrRJtaYFDDHgHWHx8PHdp5XR1dVFDQwMVFBTwbabJ9Ly9vSknJ4cvHufj40OHDh2ivLw8qqmp4cfJXXIGs+Kmif8AUElJiWLb5MmTqa2trW8X2gcOHz4s2tICu+l3ZbZnAoSpmyxn06ZNimAPtZ5p1s5OS0tTtLnXr19vpsCMFStW8LLWrFmj6KAbaOT3Slhpgb24dJx53rx5XGkA0E9/+lOzY1gbec6cOURktLq9KZq8R/rUqVOK45ubm0mSJHr99df5hAsA1NnZyT9v2rTJWZdoE9ZeeKwt/cADD/AhOoPBIDrJBGa4JDa7o6MDkiTh888/R05ODiRJgq+vL7q7u3HTTTfh1Vdf5ceyeO158+Zh9+7d8Pf3x+TJk83KPHv2LHbu3AlJklBQUMDjnMeNGwegJ+75Jz/5CYgIU6dORWVlJUJDQ1FQUICRI0fysn73u9/127WrYS0ePCwsDAcPHkRwcDCmTJmCbdu28dTEAoECV7xB9Ho9bw8zF3jv3r08OqupqYmHdBYXF1NJSQm1tLRw93f27NlUXV1Nra2tREYtpaioKKqurqYdO3bwiDAfHx+FO87iotn3FStWEFGP9YcF991d+PTTT+nWW2+lhIQERSCNQEDkQjebKc2kSZMoOjrabJ7yjh07+PgvAJo8eTL/HB4eThs3bqSRI0fS1q1baenSpWZle3t708mTJwkAT3rAVslgQ1QsZJSdY/rZHV3Zy5cv0/Lly8nf398s8EUwtHFZB9gdd9xh1QKmpqYSAKqoqODK2NbWxhWaBYmUlpbS3r17FfWxY5YsWaIo88yZMzRixAj+nVluFkTCWLRoEe8Mc+TaBgJnWGl3fFkJHGcALbP52LK1CRJMkeRDTmzChFzJ2IwrNZg1T0lJISLiw02mD7F8euWhQ4dIo9FwD4DI2AnljthrpYXyDm76dX1mIsLLr6WCyBv3370EnZ2diIqK4vufe+45vPzyy6rnbtmyBd7e3vjlL3+JG2+8EadPn4YkSfiv//ovvPHGGzh37hw/9vDhw2ZrKpNsLWX239ZLlSQJVVVVuHDhAlavXo26ujoYDAZ7Ln1Aqa6uxuLFi3HHHXcgLy8PN9xwA9/H7oP8fggGKf39toCsU0mesC8lJYVHdFli1qxZVFBQQBUVFUTU01lmKnZ/WZyUlBTF+LM7I7fS8r4AImGRhwr9/oRqox8gIqLM57N4fDURmS3JKoc9fOXl5VyJmDttOm7cFzZu3Khar9p31nnmLkptSUE//fRTCgoKosTERN7bb28ZAs9kQCwzEVFd3RGuDAEBAVRSUqI4ztKDtX79elq+fDlFR0fzNqy1F4EcU8WX17Fr1y5KTU21+4Fm86ldjTW529vbKS0tjQICAqi8vHwApRK4Eqc/lfKH7IUXXuAPPov2WrBgAc2bN4/UOsTkZcjLiYqKIgDU3t5ORMTnM/dGQ0MDLVq0yEwuIqPVl6f2lQOARo4cabHcTZs2UVRUlNtbtr1799KkSZMoMTGRvv32W1eLI+hn+t3EsIkVAKit7Qfu2lZUVFzd1tarUtTX1/MeaSLblVmj0dCLL75IFRUVVFRURAaDgcdiswkMYWFhFBoayrOeEBmVOTExkU6dOqVaLgD65ptvbJLB1QgrPXTod2VmK0iwv9GjRxsrvmppmeusKpwFd7Y3ZS4rK6OUlBRqaGig+Ph4Kisr44kJxo0bR4mJiaoJDOQddU1NTVRWVqY4ZtGiRTzRgachrPTgx2nK/Mc//lHxfeHChYpoq6+++ooHaYSEhFBBQQHpdDoKDAy0WOaaNWt4ogB5T7h8vrElq85c6JKSEmpra6MlS5ZQXV0dVVRU0KpVq4jIGFbKgk6YIjN5iUgxtzosLIwAUHd3t033wx0RVnpw4zRlnjNnDiUmJvYUfFU5Dhw4QNnZ2Vy5QkND+ayk3taXSk9Pp6ysLAJAGo2Gx2tbssxyxWZDX8xV/uCDD/i+hQsXUlZWFp9TvWbNGtJqtWblsVju3NxcqqmpoVmzZvV6HzwBYaUHJ05R5oyMDNq4cSMZDAaeOICFSLI/FsnFFKmtrY20Wi2FhYVRVFSU2TARESnCNu3JBJKWlqaIiIqPj1dEcS1atIhbZzaWLB+bNRgMpNfreaed/M9VWUiczcWLF7mVlofDCjyXPiuzwWCg8vJymjRpEs+cydq6TAFGjBjBs3+kpaVRamoqZWZmcoVbsWKFImaaIUmSahqh0NBQm3uSCwoKKDo6WpFMPzo6moiIqqurzcaOd+7cSePGjaPW1lYCwNvNUVFR5OPjQ2lpaappjzyVXbt2UUBAAKWlpfHRAoFn0uf5zJIkYdiwYYiMjIQkSbj++usBAL///e8xb948tLW1oaWlha+VfPr0aWzZsgUvvvgi5s+fj3Xr1uGHH37AlStXFOWOGTMGBoMBn376KSIiIjBs2DA8+OCDAIAvv/wSP/74Y6+y7dmzBx9//DEuXLiAd999l8ubmpqKf/3rX3j11VcxceJESJKEN954A6+88gree+89XLhwARs2bAAA/Od//ifeeust3Hnnnbh06RJWrFiBt956a9CsC3Xvvffi+PHjaG9v53O8BR6KM98MgYGBPNcWYMxPLU+BS0Q0ceJEWrBgAR/HVRNBq9VSSkoKzZ8/X7EdAPn5+REASkhIoMTERD6zSs1Ss9RBXV1dBBiXpGHNgPz8fMV8ZwBm858BYwohttoGm7Xl6+vbtxvlppSXlwsr7cE4RZlZJ0pgYKBiOt7GjRu5gphVDFBRUZHqPkmSKD4+nreT2Quhra2NOjo6uJtMRDRlyhT65JNPepVRviwNW2eKZeZknWTyiLH333+fKzbrvGMx2mpNgsHCt99+S4mJiTRp0iTRlvYwnKLM8uEceUZNb29vSkxM5Enr1bDUm93Q0ECzZs0iHx8fqqiooGeffZYA4zIzLPqqo6PDJgui1lMth02N3L59O88SSkRUVVXFlburq+tq5JrtQSuejLDSnofNymytw0k+5xhQz4vNOHDggF11BAcHU1ZWFmVnZ/OhpKioKGpvb6esrCwbJLcOaw4QGYfK5G73ggUL+HFxcXG8M2yw9Gj3hiNW2t1DXAczNimzLT+QtUgueVofe5rpLNsIALp8+TIREX322We0cOFCysnJoddff71XGePj4ykoKIhWrlzJt8ljsln5LS0tlJKSQn5+fjyQRb4Wlhz2YKvVOZgeZvnsNUtWejBdr6djt5ut9uOFhYXRnDlzCADPfR0SEsL333bbbdwiA6CgoCDbhAMoMDBQMQacm5vLXwjW8mybMmPGDMVYdlFREdXW1tJ///d/K3KNERlfIsy7MI2UKi4uVgyXDXaFZnz33XeUmJhIt956K1VXV/Ptg/FaPZU+tZnZ+lGHDh2ihoYGeuaZZ+jMmTMUHh5uthIDC86QK01vrFmzRtU6AlBk57QV0+PZQnVyuQwGg2JMOiQkhLZs2UJRUVE8bZEz3HtPpbS0lPz9/Wn58uXcWxK4B31S5vXr1xOR0VqyUEsio3KcPHlScWxoaChXYnnYJ1HP213tLV9aWmo2f9nHx4eIjAn6TIe+rFFcXKz4zjq+mCJLkkS+vr5m1pjlBAOMq1g+++yzvJNsKNLS0kIJCQl066230qeffmrxOGG1BxaH3Ww2JdFUMRlsZtGFCxdowYIFZtZYvqZUb7S3tyuS8eFqzHdBQYHF+i1habUKtgqGmtfAJnvodDqe/C8uLk41BNXTsaSAll60wkq7D3YrM/vRpk+fTr6+vhYXO8/Ly6OMjAyeaD47O1uhSPI2dW+YdrowpUtPT+djvrYu2aLRaHiHXFFRkWLfpEmTuKst58yZM4ptLL/3qlWr6MSJE4pjPdUaOSK3wWCglpYWeuihh2jy5MlWrbSg/7FLmVlQBQBatGgR6XQ6Ki8vp4yMDIVF0+l0imQCvLKrx6jts0Z2drbFhPW2YDAY6K9//SsfH66oqKCGhgYqKiqi3NxcysnJobvvvlvRdmaKnpOToyiHwfKZsSVkhzq2WmlPfdl5AnZpRVVVFW3atImHR8qRD/fMmzePDyvJGTlyJOXn5xMAmj59uiLBnylqisMwDQKx5QExzdHNemTlCszGyFl+sgkTJpjlEMvPz6fi4mJ+vLX0QkMNW9vSgv6hTx1gciWQh0ua9lonJCTQrFmzaPv27Txyi+X1OnPmjNU6CgoKuCdARBZDQO1l0qRJiqVedTqdIskgcyHZGDRRz/Kv8tUjxRIx5jAr/fzzzys6RgX9i91aoZYE75lnniFJkojIGGihZvVMFzknMvaCW+qNBkDBwcFceVk7l80xtpSfyx6YbDU1NYq2sunLiHV0sSmTpmUIzGlpaaG5c+fStGnT3HZFkMGG3U8im6RgCgu8kAcUZGZmEgA+YYLNPmJKk5OTY9aDzGZFyf9mzpzJFZptM030roYt7ndTUxMBoIkTJyq2szF0ImPgyKuvvkpEpJgxtWbNGj5MJlCnsLCQ/P396YUXXhBWup9xSJlNXcuSkhLFOKyiAitBItnZ2Wb7TVePAIwrOj788MN8+qJ8PxuycjZsemVISAglJyfzOlnYqlyOTZs28UkYQw1bXpjNzc00a9YsYaX7GbuUubq6WtE2JiJV1/TQoUOKYwoKCrhVJlLOsgJAc+bMMStHPlkDAD377LNm9bDvtibFl8tsbfUKlozQtD65bKzji7Wjh7q7bYtSCyvdv9j1BLK4aPlwDRHRk08+SQAoMzOTdu/erVCEwMBA3mYmIp72li33EhgYSHv37qUDBw5QfX09V4yysjKezE8+lMUWRmcLr/eHIpWVlfExcfaQdnZ28nY/+0tISCAAVFtbS+Hh4cLq2ICw0v2H3VrA2sbsh5CHQhIZH/7Q0FCe0I8pA3vwt27dShqNhgwGg2Lus1wp5UNR8jY4Q+5uszBRU2+gP2AdZQBUl5dNTU3l8g6l8VRHrpVZ6VWrVtGVK1cGrN7BjIkyXyGDobPnT34gzNPqLF68mE868PHx4R1d8sASeZuWWVMWEllfX88ffpa7msFCKNVYuHAh+fj48OgyVmd/Eh4eTgBo7969ipdQS0uLIu/2UHe37cGalRaKaj8qT143GQzmb8r09HTKzMykGTNmEGBc1cE0j7RpJBjrRCIyRkqp9fyatkdLS0v58BOR+o9qqjTffvutYjzY2bAXGZGxqfHBBx8QYFwAz1R+e6ZlCoy8/fbb5O/vT2vXrnW1KB6Nzcrs5+fXc5LJA0zUMwYbFhbG11MODw/n1poFfYSHhys6wOQwl3nKlClW38ymyjxixAiLi8A5A5ZjWx7VlpaWRjU1NTR58mSFPG+88caQjQozGAwOpxjS6XSk1WopMjKSjh8/bnN9gh6sKLNe5nJ304Px8cTc8L+9u9Vonde+ROMDQAEBoLcL/tqj4KNAfyt+m59LZExiD4CSH0ui8QFQ7CNStkd75Og0O46om2K0d1JAAOjzz/9NRESjR4+msQGgiIgQpdykV5ZjZeVJ1ZtztakQFRVFNTU15OXlZTYEtWPHDkU7mp03VN3tvirY5s2brVppeflCmZX0Ypm7yWDopqnBwVcn9uvJQHravn371c6tbnrlauBHa+s5GjMKtH37NhobABozij3QPUr0yis5NO/B++iPy5+7Wn7PPqBnudeSkmKZDAaiq+33xMRHFWW/+7e3+fkZzy2j8QGgnTuNeboMhm6TF0E3NTQc41eZkpKimLllqoAAaNu2bQSAJ/Y3VVC9Xk/Z2dnU3t7OOwDZqpem4+1DFUcUzhErLbDJzb5CAWOND/JPfjqRsl4wRnWFTAvhFi8iwvh57GgQUTcdPXqYRvGHv1uhUAHjQaMU1rfH6sbHx1+N7OpWtaIYDQqffiuNAq6+XHrOT1z8KBkMVygv73VZ2fLr6KbxAcZ6WbCKt7c35eTkUH5+PuXl5VFgYCAdOHCASktLeTK/+vp6qwEh8fHxVFpaqmh2sM6coWA5rE097W8rLVBiQZnlbq2eDIYrVPDmX2nMWKMipqenE0aDDKSnX/7ylyYWy3j+aFWF7aaMjN/RaICioqLM6mLjyuYy9JQdEACzsmtrayk6JpoMhisyj8CozCw3NkaBJgdPpKCfBl6t++oNkI2byxWSZRuxxV3WaDREpOzwG0rYq7S2Hm8wGKixsZG0Wi1FRUUJK90LsidP3sY0VaQrZDBc5lk+iIgyMpZRxF2hFBHOcmLrafRokCSBxgaAxo/B1bd2l8KVZvuMub2MFpi1p5csWXK1rG4+NGb84Y3nJyY+SgE3jabxY2TKTHr66quvKHfLJoUyG93sK7ze1LSnaLzC/e/JWmKqgAAoPj6eDh06RAAUnX+90V/hpUMdYaV7R/YUszFmtQF8vaqlnDN3Nj300GzeNr18+bLRhR0F+vDDMr6dvYmN48JGRa2s3KUoc86cOTQ2APTXq1k8iLopOHgi/b//F0oGQzcdP36cOjs7KeeVl8060GpqqunxJxeTwdBJn3/+b3oq5QneBFi79k80GqCDn39CAQEgjWYs3X91AXgi43S93vKIsTzZgHGJm+bmZvL396empiaqra3lL4Sh4Fa7Ep1OR7GxsRQZGemUWXN9wdbMNgOJjT6hngwG23uC5daJzVv+8ssvFcekpKSYZekwzcQpH7uVh3CatmH1ej13deWTPoiMY981NTVm86BZkj5bYJM/APChKBamChhjy9WGZNztx/ZUTO8js9KbN292kUTuiY3KrLTK1rJpEhkDK5gST5w4kc6dO2emOE1NTRQQEEBEPRMv4uLiSKfTKY718/OjuLg4HpMtD+BgMsjdf0ZGRgbP5U1kXLpUnnwAgMXxbtNrk0+HLCsro+rqaqGoLub48eMUGRlJWq2WdDqdq8VxC3pRZjY+a9+DyyK4WKAIEakutmYwGKi2tpZHTTHL6+PjQ6mpqYrjGPLF3eTIQywZABQphlgYKZHledlqdQpcj6XfIzs72+lWOiYmRtEZyp7LmJgYp9XRH/R716s1paioqCBAPXUQc5vVMFVmg8Gguqyr/Htzc7NCmUXY5eChL1ba0vMZExNDjY2N/HtlZSUtW7asT3L2Ny4fR3Ek97Qjwz8snxf7M52XbQ/9Na4q6Bvr1q1zmpWWW+HCwkLFf3fF5cpsD5s3b+5TQj+2AodGo7GadsgdeyoFtiG30qdPn3aojMrKSoUCV1ZWKva767PhUcq8evVq0mq1fJVGgcCSYq1du9ZhK80MBvuTu9vuqshERBIRETwAIsLZs2cxfPhwPPzww9i/f7+rRRK4OSdOnEBSUhJGjRqFkpISTJgwwabztFotCgsLodFooNVqUVlZ2c+SOgcvVwtgK5Ik4aabbsKECROwdOlS7Nmzx9UiCdwES/YoODgY1dXV0Gq1mDp1KoqKinotS6fTAQA0Gg0AIDk52Wly9jceo8wAcPDgQQDAuHHjUF9f72JpBO6CJEkALCv1n/70J1RUVOC1117D/fffj3Pnzlksq6qqCsnJybyspKQkEBEyMjKcL7iT8Shlfv755wEA3d3dGDVqlIulEbgbTKnVCAsLw8GDBxEZGWnVShcWFiImJkZRVmxsLEJCQvh3d22ZekybGQBGjx6NS5cuYffu3fif//kfPP74464WSeCBHD58GElJSZgwYQKKioowYcIEVFVVQavVAjC+FEzVorGxkbveDCKy+gIZaDzGMhsMBowcORKA9TewQNAbalY6JiYGZBzdgcFg4J/Zn6kiA+73HHqMMn/00UeYNGkSAPd1cwSew/Dhw3lb+i9/+QskSbLYlvaU581jlPmLL77A9OnTXS2GYJARFhaGmpoaAMDUqVNRWFhodoy7WWBLeIwy//DDD5g/fz7/7uXlMaIL3Jxhw4YhOjoaFRUVeOWVV5CQkIBvvvlGcYwnWGeP0Yjbb78dv/jFLwAAFy9exPnz510skWCwIEkSzp8/j7CwMHz++eeYPHkypkyZgtLSUgDu19FlCY9R5p///Oe45pprAAAjRozAl19+6WKJBIORUaNGYd26dfjXv/6FlStXYv78+bhw4YLZce5oqT1GmadOnco/nzhxAg8++KALpREMdiIjI3HkyBHccsstmDJlCrZt26bY746W2mOUWc7//d//oa6uztViCAYZbBiKwaz0jh07kJmZifnz55u1pd0Jj1TmsWPH4u9//7urxRAMMiRJUrW4UVFRVq20u+CRyqzT6fD111+7ZbtFMDhRs9ItLS2uFkuBRyrzpUuXEBER4ZbtFsHgRm6lb7/9duzYscPVInE8UpnPnz+PJUuWuFoMwRBFbqWffvppLF68GN99912/1WerB+qRynzjjTfib3/7m6vFEAwh1BQqKioKR48exXXXXYcpU6Zg586d/VK3rR6o2yuz2k308/PD//7v/7pAGsFQxZJCXXvttcjNzUVJSQmeeuqpfrfS1nB7ZVa7iVOnTsWvf/1rF0gjEKgTGxuLurq6frfSgGW32+2VmfH999/zz3V1dfjhhx9cKI1AYESuWNddd52ZlW5ra+tT+Vqtlg+ZsT82L8FUqT1GmceMGcM/jxs3Dv7+/i6URjDYcHRkRO282NhY3pYODg62aKVt6diqrKyEVqtFY2MjD2pZtmyZ6pi4xyiznPvuuw9VVVWuFkMwSCAieHl59TluQX6+LW1pW18gpskRNmzYgJiYGLO8ZG6vzGo3uKOjA+fOnUN3d7cLJBIMNiRJgl6v73PcQm9WeurUqdi3b5/F89We9aqqKkRERJhtj4iI4POwGW6pzBkZGYr2gU6nU7yFLl++jPDwcAwfPtyFUgoGE1999RUkSUJ4eDjuvPNOpwYkMStdUFCAX/3qV3j66adx6dIls+PU6vznP/+JefPmmW2XJxhkuJUy63Q6RdpU9pecnKxIsiZJEm6//XZXiioYhGRmZuLQoUP44osv+Nx5ZzJ79mwcP34cFy9eREhICPbu3dvrOTk5OYiJiTHbfuzYMTOL7VbKHBQUhMLCQrz88suK7YWFhbj99tu5ont5eakmWBMI+oK8U3X8+PH9Uoefnx+Kiorw+uuv45FHHsHTTz+N9vZ21WN1Oh2WLVumuj0nJ8fMYrtNqt2MjAzU1NTYtBTInj17kJSUhLffflsxZAUA3t7eOHLkCCZMmIBx48b1l7iCQcbDDz8MADy7yMMPP4zk5GTMmTOnX+oLCAjA999/zxVy7NixaG1tVRzDcnsnJSUptrPhKtP2t9sosyRJKCwsNBNcjbNnz+Kmm24CABQXF5vtLygowKRJk3Dvvfc6W0zBICU5OVmRzO/666/HpUuX+rWT1cvLCz/72c9QUVGBlStXor29Hddeey3fL0kSGhsbcfPNN0OSJOh0OgQFBSEmJkbd6Dl9KToHaGxsJEmSzJbOLCwsVF2Nr7y8nABQWVmZannuvFKfQKDGjBkz+OfKykrFcy//M9UROcP67bVjJyRzEOhqArWkpCRoNBq88MILijfR+vXrAQBff/21alliaqTA0+jo6OCfWUJ+e3GLDjDWmXX69GkASmXU6XRmK/H1VztGMPRQC5dkQ6IDGZik1+v7XIZbKDNgDFtLTk42awuwhbzkpKamAjCONwsEfWFfZSViYmJ6wiUNhA76EUSkOiTkzriNMsfExODUqVOIjY1VvCEBKIahiAjXXnst/Pz8zHr/BAJ7YT4ge8aK3inCNfBGxh/Mh4TcHZcrs7xtoNFozBbsMrXUTMHPnz8PX1/fAZVVMPhg6zEDxibdsWPHAAAv52xwpVgO4XJldrSz6tChQ06WRDAUYX0ykiQhKCgIISEhcIuxWgdwuTL3BWd0GgiGNoWFhdCdMraXCwsLodFojK63B2q0xyqzWDhO0Fd0Oh0A4OYgY3tZo9EgMDDQuNMDRzddPs7MxpTtRR4pIxDYCskm68jbywB6eq8JHqnMLjdvjraZz58/jxEjRjhZGsFgRN7JKn/e1IY9jQcNhFTOx+XK7CjXXHMNurq6XC2GwAMwNRj79++HJEnYv38/goKCuLvt6XisMos2s8Ae5NaZhUsaDAazlDzuBhGhqKiIx11otVoAMEsZBHiYMpvGq4pxZoGtyK0zi2Fwd3Q6Hby8vHDs2DEuc2FhIby8vFQzjbi8A8we5D/I2LFj8cUXX7hQGoGn4ikTcYKCgrBs2TJs2NATwKLRaPCHP/xB1ZvwKMsM9FhnvV6vmH8qEAwmWGICuSIzQkJCeobQZHiUZQZ63qqi80vgbBwdJu2P+k2TJcixlMDD4ywzw9vb29UiCAYZpoo80O1qVj/rXVdzpa3J5OUsgU2TC/R2TH/h7h0b7iyfmmyOymvtPGc/c46UZ4t89ljpgfpd5dlrTfFyllshL8dSmc50YSwFjFi72P7A3nrcufNFTba+LNti6d4485lz1DV2tnzO/F1Nk3XI0el0qKqqUq2vX9xsWx/wvhxnKT0pw1kuU28eh6Uf0R7vxF7ZBtq6O2oBB+LF1Zc63PnFWlRUhKSkJJ7thIh4+KmlpAle7MD+wlrZalZUbQxQ7aZfuXIFb775ps1yOGNhMHvKcLZ3YikkcSCwZsV6YyDc7cHI4sWL+aJxLI3RP//5T6upqIcBfXvAenPNbCnb9HhbfuSuri588803NkrqHPqrt9Pee9RfyK9P7Vqd7X7aUp6re5hdSUxMDAwGg83X79WbG2mN/rrJtpTb2dnJ12i+ePFiv8hhymB/qKy9hF117YP9njOuv/56s22mL9fecCgJvivelrbUl5eXh9/85jdOnx7pyPU2NjYiKCjIqXIIBi99aco0NjYiICAAUmZmJgHAsGHD8NJLL+HHH39EZmYmP9CaK+3l5YU333wTzc3NinMsCcr++/r6Yvny5QCApUuXWlU+vV4Pb29vBAYG4sSJE+ju7sbrr78OAEhPT4e/vz8CAwMxYsQINDY28tX12Di0/CZ99913yMvLw0MPPYTg4GCbb1ZHRwdeffVVREZGIi4uTnltBJDs9hhAgIEwfPhw7PrwI1TXfIalS5fiuuuuU80Nbo3vvvsOJ06cwF133aW639ID0NbWhi1btmDOnDmYPn16r9e3Z88eVFdXIzMz06aHiogwbNgw/P3vf8exY8cUv73p+abXye5lWlqaqjUyRa/XY926dUhLS8OYMWN6ddvldb/00ksAYFU+NUaPHo3nn38e4eHhmD17dq8ympZbVVWF/fv3W9UJOS0tLXjzzTexaNEi6PV63HLLLTadd/r0aRQXFyM1NRXh4eHKFS3i4+NV8uSbI18x4rHHHlPdbu0cIqL09HSb6iLSm23JeO5ZG881Jzc316HzUlNTez3GwGU1/v9z9nqH6mI4Iiu7z+vXm9dt6fcpLy+nlpYWm8tmZGVl2S0fEVF+fn6fj7dl1ZK7777brnosPdf2UlpaSmfOnLHrnI0bN1JbWxsdOHDA5nNaW1upuLiYf+fKnJ2dTTqdzqZC2EUXFBTQxx9/bHPljOjoaLvPUWKu4LYwa9Yss4dA7aEw3abVau2u68QXR2hu+nK7z5Njy8Mol5V9joqKsque0NBQ+wS7ypw5c+w+JywsTFVmSyxZsoRaW1sV22z5zYiIEhMT7ZaPiKi5uZmWLl3q0LlERHPnznXovOTkZLuOLykpoe3bt/PvXJkd+UFnzZpl9zklJSVUUlJi93l9JT09nS5fvmz3efn5+VRdXd3rccpHSU+Bmp/RGQdfOkSOP4itra12PYjZ2dlUX19v8/FMaRYtWmSvaKTT6eiFF16w6xx7X0yMgoICxYNuD3FxcQ6dx3BUZl9fX7uODwkJIaKe3wRERJmZmdTW1mbxJLW3XkREhF0VExFVVVU55DrGxMSoLKC11+bzDxw4QKtWrbK7XiKihISEXo8xGAyKe/ThJ/to1aa/OFQfEVFZWRkVFBQ4dK67WWX5fQkLC7OrjpSUFGpoaLDrHIZGo7H7HCarmgdnK6tWrbLbxWY88cQTZrJYY/LkyYrvqK2tpYyMDJsrNBgMpNPpLLoE1oT4+c9/bnM9psycOZOvgMdWyWOrQvbG/PnzVbf3dsPmzZtnh4Q9Vtjeh9aUkJAQhx6mpqYmSktLs/n4NWvW2GWVGY5YroaGBtV2vDWqqqrsrofhiOdARFRTU2NT/4glZs2aRZ2dnURk32qkOTk5tGPHDpuP37t3L7311luKbbDFnTNt49jSSDe9kBkzZvRpqVXI+uoaGxttVuYlS5aQXm+/u7tp0ybV6+ztGhoavjL1ue0iLy9P0alhD7a65uwamJtmL3v37rX7nF/84hcO1WUvfV3Ot7a2tk9lOHJviMjmppG8v8p0SeMBW5+5vLzc4XMrKytp2bJl/LtWq7XLmzCF3RBLP1prays98sgjtpclK8b40fG28nvvvefwufbS1NQ0YHWZMpjW0HbGtYwcOdKu4ydPnmxWL5wlTH9SWFhIkiQRAJIkiRobT/epPEeudyDukSt/B1fVbcvowkBjrwzOkHnjxo12lZ+dnW22zaEIsIGAZMEGWq2WLx1SVFSE5ORkNDY2unVWRYFgoHHbTCNMkU+fPg1JkrjispQp+/fvd5VoAoFb4rbKzKiqqlLkPGITttnyrwKBwIjL3WxWvaWY29jYWBQWFuLmm29WHCcUWSBQ4nLLzDL1m8KWEKmsrDQusynL6C8UWSAw5/8DqBmYP0sUEjgAAAAASUVORK5CYII="
|
<image>如图,小明用自制的直角三角形纸板DEF测量树AB的高度,测量时,使直角边DF保持水平状态,其延长线交AB于点G;使斜边DE所在的直线经过点A.测得边DF离地面的高度为1m,点D到AB的距离等于7.5m.已知DF=1.5m,EF=0.6m,那么树AB的高度等于()
Choices:
(A) 4m
(B) 4.5m
(C) 4.6m
(D) 4.8m
|
4m
| 69,613 | null |
4m
|
"iVBORw0KGgoAAAANSUhEUgAAAIYAAABwCAYAAADbsgiVAAAOoUlEQVR4nO2dXUyUVxrH/2dmKE20elF2ma5YEDHrCk3aKkiLMLOLm6YNJhgv6gVdmEYTuuLWiw5LUy7aO6K7WV0HFyItM7ZNmjjeiAbsYgIDk2IhLakl0iwMFCdGUy6cSA0DM++zFzPvMN8f8L7zwZxfQur7dc7T9/znOc/5eM9hRETIErRaLYaHhwEAjDGI/+sajQZDQ0MptCz9UKTagGQyNDQEjUYDm80GQRBARLBYLKioqEi1aWlHVggj2Cnu2rULAGAymVBdXY3S0tJUmJXWsM1elRARGGMAgJGREdhsNjQ2NsJkMqG4uBjV1dUptjA92fQeQxQFANhsNjQ1NYExhqamJhQUFKTQsvRm0wvDn97eXl98UVNT46tSwkFEIVVQNpE1wpibmwOwFl+8++67Ue9njAV4m2wja4RhsVig0+kAeAq9sbERANDa2uq7J5s9RDBZI4ze3l7U1NQEnNNqtdi3b5/vOJs9RDCbvlUyMjISIgh/bDZb1FgjW9lUwvBvmoZjaWkJW7duTaJFmcumqkpiVQVarRZWqzVJ1mQ2m0oY0Whvb8fk5CRKSkpSbUpGoEq1AVIQrQpxOp1obm7GzZs38cknnyA/Pz/J1mUmm8JjRBKF3W5HVVUVVlZWoFAo0NLSkmTLMpdN4THCMTExgaNHj6KtrQ3Ly8vYtm0btm/fnmqzMgfahBiNRlKr1TQwMEBERCUlJfTjjz+G3CcIQrJNyxg2lcdwu914//33MTQ0hNHRUezevRu3bt2CWq0OO7TOO7Qis2mE4XA4UFdXB7VajTt37mDLli0AAIPBgDNnzqTWuAxkUwSfU1NTKC8vR21tLa5eveoTxcLCAu7evYv6+vrUGpiBZJzHoKCm6bVr19DS0gKDwYBjx44F3Hvx4kWcPHkSSqUy2WZmPqkOctaDGDS2tbVFDCyXl5cpLy+PHj58GDUNTngyzmMAwK+//op33nkHy8vLmJiYwPbt20M8yeeff47a2tqIHVo88IxOxsUYs7OzqKysxI4dO3Djxg1f30RwQXd1deH06dOpMHFzkGqXFYlwrn5gYIBeeOEFMhqNUZ8dGxuj/fv3y2VaVpC2wgimo6ODCgoKaHx8POa9DQ0NdPny5SRYtXlJ+XwMijGHQhwEm56eRl9fH/Ly8qKm9+jRI5SVlcFutyM3N1dqc7OGlMcY0UQhDoIBnq/IYokCAHp6etDU1ITc3Fw+h3MjpNZhhSLGFqOjo6RWq8lgMMT9rMvlooKCApqZmQlIi5M4aSmMnp4eUqvVNDo6mtCzZrOZ6urqZLIsu0irfgz/QbCxsTEUFhYm9HxXVxc++OADmazLLtJGGIuLizh69CjUajXGxsYSnrQ7PT2N+fl5vPHGGzJZmF2kPPgEPJNqXnnlFdTV1eHq1avrmsl9/vx5NDc3y2BdlpLqusxsNgdMqlkPjx8/pry8PHr8+LGElmU3Ka1KPvzwQ5jNZgwODgZMpKEYfRvBfPHFF6ivr/d1jyf6PCeUlAjD4XDg+PHjAOAbBPMn0UI1GAwwm83rfp4TStJjjHv37uHAgQN4+eWX0d/fv+EJurdv30ZeXh5fFUdqkllvDQwMUH5+Pn311VeSpVlfXy9pehwPSRNGIoNg8TI/P08FBQXkcrl4L6fEyB5jLC0tQafT4eHDh/j+++/jGu+Il66uLuh0Oj51TwYkH10lvxaB3W7HkSNHUFVVhQsXLkCpVPoGtjYaIDqdThQVFWFycpJ/digDcQef8epHLHCr1Yry8nKcOHECBoMBCoXCdz1RUQTnTUQwm83QaDRcFHIRT32TaP1tMBgCBsGCn5ciHqisrEx4kI0TP3HFGP6/cArqPPI/drvdOHnyJH744QeMj4/7lksM9hAbrUbu3LmDJ0+e4PXXX99QOpzIJNSPESwKYK2QFxcXodVq8fTpU1itVtnW0CQiGAwGnD59mndkyYkUbmd8fJx27txJHR0dUiQXlV9++YXUajU9efJE9ryymXU3V8nrPUwmE9ra2mA0GkOGvEmGMYtPP/0UDQ0NMUdg5cg7q9iIqs6cOUOlpaU0MzOTlA4ml8tFhYWFvql7seCdXutH5RVHQr8uh8OBt99+G4yxqJNqEk03Fn19fdi3bx92794d1/3cY8RHuHJSJFp44pflr776Kvr7+6O6dKkLprOzE6dOnZI0TU6EckrEvYiTasxmsxzeKyKCINC9e/eosLCQXC5XUvPOVqIGn+TnTc6ePYtLly6FTKqJ9ZwUMMZ8TVQ+LpIcfMIIV5iMsYBBsImJCUkHweJlaWkJ165dw/T0dNLzzlaiDqLNzs7itddeQ1FREd58882YXsA/Kak8BhHhu+++w4MHD3DkyBFJ0uSE4r95IBCl5/Pnn3/GoUOHUFVVhbfeeiuugmaMQaFQSLrXh9jy2b9/vyTpccIT7B8iegwiwsLCQsyPfqSOJ4K5ffs22tvb8c0338iWByeUqGMlCwsLsNlsEa/LLQrAMxmnpaUl5rB/rOucxIgqjJqamqgFL7co7HY7xsbGcPz4cV9eWq3WV1X5/ykUCoyMjMhqT6Yjvjv/6j7cOyOiyP0Yer2eNBqNfA1lL9G6rT/66CNqb28PuVej0ZDNZgu4F6n/dioj0Gg0ZLFYSBAEslgsBCDkXRIRwb9gBEGg5VWBeoxXaHB4hPBs6l728vIyFRQU0P3790Ou+QtWXHZJr9cTER8fiYX/D8hms0UUhsK/OmCM4cH9eTAAhTt3QHNQkxQXR2HiA7PZjMrKypB5HSMjI75N7+bm5jA1NQXA0wEH8PGRaIyMjECv1/uOdTodWltbw2/9FawUvf7v5Fx10/9sNt+vMBxy/zIrKytpcHAw5LzRaCQAvj+TySSrHZuJ4HcXzlOIBASfJpMJ585fQm7eb7Dn9y9BUKjgdBGcboLXB8HpIqyS95dJhBWX59wKBajNd97pIgiI85qXiYkJOJ48RbXmTwH5A0Cv8XP8NDOL5VUBPcYrKNy1CwBh1Zuei9b+7RQoMD8hu1su4obERASj0Yji4mLffrTB+IQh3kBOB5yLixi63Y+X/rAXDECOkoEBYAxQKIAcBgCEVQHIUTHkqgDmJrjIe94NKJQMuSqGHAWw6iuQaNfW6O6+jFMtf4VCCeSqGJQAXOSxkVQKFBcXI1fFULJrF9S/KwDAkKMEGAC3G1CqGHKVABMAp2ij9zicELOB4A2JGxsbwRiDxWIJe78KAObn56HT6TA0NAR463ubzQYFgBwlsCIQchXM44DEOpwAgYAVV1A3KgECA57x3qZgAHMDggJQRLvmTcPhcOBG/9fo+Oc/oPLmpVJ6/muxjOIvDQ3wHkJTXYUVt6ewxeeVShbQBlcqPKIWEciTb7bhvyEx4P2REUXeWlSv1wfWOYJANYcP+87p9a20sirQqkC06hZIjCwEt5uW3WHiDG/Lxu137BSPo13z0tHRQada/kbLrrW8RLR//DNNz9gipu302knxHGcZwU18sXwj4bvidgueghYEcgYVitiMXQl4qQKtBJwTyKMTz3mnX4GsCSjaNc/UvRdffJGmp6fJuSqQ03tteHiY8CwI2ELY/lv6adYW+jwXRljEvorgv1h9VL6xEiJPkAcAKqUCKrHGIAJjwKrLU3cHRKtEcLrXDnPE60RYcXssAAOeUfq584jXCNdv9uPfF/6Fwa//m2DahFXXWvyQowLcUY9Zeqwxlcb45mMwxvCsaq3yJe84iKdfgMCUYV4m8wSeITCGZyJNAYp4jeE/hoto+eupdaTNkBN0ThHjOBuhBMa2mCAIFO1LM/GcGwwqGYO22dlZ1NbWYmZmBioVL0WpSUQURARfzyeF+QpdELz9FjKLgrxfl7333ntcFBITrlz9z4eDMSb9MgjrYWlpCXv27MHdu3cTmjqYyK+AkxhpEYN9+eWXqK2tTXg+KReFfKSFxygrK8Nnn32GioqKVJvC8ZJUjxFOg1arFc899xwXRZqRVGGEc/0XL15ES0tLMs3gxEFKqxK73Y7y8nLMz8/z3YjSjJQGn93d3Xw3ojQlZR7D7XajqKgIo6OjCe9LwpGflHkMs9mMAwcOcFGkKSkThsFg4EFnGpMSYUxOTmJxcRG1tbWpyJ4TB0kXBhGhs7OTe4s0J2nBpziu4XA4UFJSgpmZmQ1vScGRj6R4DP/Brp6eHhw7doyLIs1JisfwF8aePXvQ19eHvXv3yp0tZwPI7jH8RXHr1i0UFRVxUWQAsgvDf3yEb4GZOWy4Kol3sszs7Cy0Wi3m5+f5AmsZwIY9RvDaTZHo6upCc3NzgCj4+Ej6kpTgk+9GlHkkpbl65coVHD58mIsig0jKlOzu7m50dnYmIyuORMjuMaxWKwDg4MGDPKbIIGQXhsFg8DVR+azuzEHW4PPRo0coKyuD3W7nU/cyDFk9Rk9PD06cOMFFkYHI5jHcbjeef/556HQ6PmCWBCJ9c8wYw8cffxzxnkjI5jEGBweRn5+Pbdu2yZUFx0ukAt/ItqayxhhLS0vYunUr/8Y0jYi3LNLiE0VO+iF5VWIymXwLrmi1WgBAa2trwD1ci9Iix/uUTBhzc3NgjGFqagrkWdsLvb29YIyhrKws4F5erUiL+CMMt/j+uol/ma/oAAi7krBeryeLxRJwjq/3LQ/BK/OJKzISJf7OJfEYJpMJwNp63v6UlpZix44dAefiHarnJI7/up1nz56FRqOBXq9P2HtIMojW1NQEo9EY9lpjY2PY87w6iR+K0ZIgIlit1rBLSVRUVODbb79NOM8NewwxtiguLt5oUpwIxPKwjDFcv349ZDNBIgq7FWo83lqSqoRXC/ITy8OeO3cO1dXVIc9MTU2FeJJ4vPWGhSHWaeH2Tpubm+PbUSWBubm5gH1I/M+fO3dufduSShENi/tg+Lc+hoeHoy5LzFsm6yf43RmNRt9OT/5oNJp1b1+2YWGIRgavWR1tExyOtCBoUxpxS6uN7GnHu8QzGIvFAo0m/PZkFosFhw4dWnfr7/8yYpz9oZJ29QAAAABJRU5ErkJggg=="
|
<image>若AB∥CD,∠C=60°,则∠A+∠E等于()
Choices:
(A) 20°
(B) 30°
(C) 40°
(D) 60°
|
60°
| 69,614 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAGYAAACCCAYAAAC0Cr32AAAZUUlEQVR4nO1dfWwb53l/jq7nfqihMZyrU0SViUWnTLUVbJggwqJUSsKkXCPJGqKBDSDANJaEiZUudCvZyqZFSesiXqqt6ipPsl3MdBCgHiJXrvMlS3LNIPpDgIDIaJnIrqhYNlWIAQNUGuVFqMj77Q/yjnfk8fuOlNL9ANq6u/fe97339z7P+/W8z8sAAG0xgIgO79XRT84nZ72F5nGOTKQrR7ZUxRb5Al52xRDRK+d46m4lGveDABB40FC3jvYwbeRPCr8lgS0IHkAE82hu7U551t1KaD08VPpMqYzNLzGI/yRgiOjaxCTp7tydEny3uYXOz31EyVK21bD5iWHiPylANDn5Nn3HZksJXmv6Wvyvzf9pmbDFch+TAjB+evsnoIdsqRKz4L9KLV+rLXXGVMcWIEaqkuLZXfiImO6WeO8r8RwL4/TMK2/Qdx55KH6jZJlUHZueGCChx4RynvzNBH2tVpCWxCcc/v63ifZ209M2U+xGsgrcSih37yMX8LK/59FKhPGFaOKe/0Ksi6DQSxPD8HzaZ5sRW4IYAfPjQ0IfLeU3PDFf7uypCgbYeiP/nADa0qps07cx+SBWx+KdgS1MCtEWIyabcDPEEGUZM0vj2MzKYsupsoSG4iljvfp/VVZaJMpaPobJEHBL4nPlzkA2rK6u0uXLl+nKlSu0vLxMXq+XwBAxIFpYWKClpSVZeIPBQLt37yaGYegvPred/qbhPjIYDLRnzx6yWq1UUVFBAIhhNjdzm06VLS0t0cWLF2lycpIuXbpEwWCQGhoaqKamhmpra+nuu++mL3/5y0REdNttt9HTTz9Nzc3N9Itf/ILef/99unHjBi0uLhIR0draGs3MzNDCwgIFAgGampqi6upqevDBB+mhhx6ihx9+mCorK8v4tRmgdX88l4Hd3Nwcurq6YDKZwHEcHA4HhoeHMTc3l/G9QCAAo9GISCQCi8WC0dHRrGn5fD4MDg6ivb0dLMvCbDajt7cXfr+/oLxrhbINMEOhEIaHh2G1WmEwGNDV1YUPP/wwrzj6+vrQ09MDADh37hwsFkve+fD5fHC73eA4Dg0NDTh58iRWVlayvqc1aSUnJhgM4uDBg6ioqEBHRwfefPPNguMyGo2iVPE8j29+85s5SY0U0gI+e/YsHA4H9Ho9enp6EAqFMobXEqoRky3DgUAALpcLer0eXV1dCAaDRX3kpUuXUF9fL7uXj9RkSjsQCKCzsxN6vR5utxvBYLDgfBYKzSUmHA6jp6cHLMvixRdfxCeffKJKvE6nE0NDqUvIhUhNOgSDQTHvfX19WF9fVyXeXKApMaOjo+A4Di6XS1W1EA6HwXEcwuGwYppSqVFKI990g8EgOjo6YDQaMTY2ln+GC4AmxAQCAdhsNlgsFkxPTxcVl1IhejweOJ3OtO/k2kPLF16vF2azGc3NzYoVTU0UTEy6WjczMwOO43DkyJGCM5UtvaamJni93rRhkqVGTUQiEfT29sJoNOKDDz7QJA1AZYnxeDxgWVZVcU+uAHNzczAajVnfSyc1avWqRkZGwLIsRkZGVIkvGaoQE4lE0NnZCZPJBJ/Pp0aUadHT04O+vr6MYXiez0lqiiVpZmYGBoNBHEup2ZUumpiVlRXY7XY0NDTkNDDLF9KPjUQiMBgMWFxczOk9Ldqa5MIPBoOwWq1ob29X7IwUiqKI8fl8MJlMcLlciEQiauUpLcbGxtDY2JhzeEFqtB4Urq+vo6OjA3V1dYpTO4WgYGLGxsag1+sxODioSkZygcPhwJkzZ2T3shW6IDWlGLEfPXoUer1esWOSL7ISo/RBPp8Per2+ZH16IKYyOY7LOMhTyquWPTQljI6OgmXZoiUnb4kJhUIwmUyKkqJFrRTiHB4ehsvlKigtaVtTCsk5cuQI6urqimpz8iImEonAZrOhs7Oz4AQLhdVqLXiwmstsgNro6OhAW1tbwe+nEJMp0263GzabrSQNvRSzs7O48847i4pDq9mAdPj0009RX1+ftWufDjlLjMfjgclk0nwqQglutxtHjx4tKo5StTXSih0IBGAwGAqqEDkRMz09DZZls64oaoFIJAKO4xAIBIqOq9RSA8QGoSzLigPvXNVoVmKWlpZgMBhK2gMD5PNezc3NqsRZ6h6agNdffx1GozEvbZOVGJvNVrQaKQZtbW04d+6cavGVQ2oAoLe3F+3t7eJ1NsnJSMyZM2dgtVpL3tgLCIVC4DhO1fRLKTU8z4sErK+vw2w256x50hITDodhMBgwMzOjTi4LQH9/P9xutypxSWtoKaVGSs7k5CTMZnNOK6Fpienq6pIN6MoBs9mM2dlZ1eIrxXpNNjgcjpzWqkhJ1/n9frAsq8lsca6Ynp7WtPC0Xq9Jh2AwCJZlsxp4KEqM0+kseGCkBnieh8vlwsDAgGbxl2K9Jh3cbndWFZ1CjMBoOaRF2lByHKfpYFar9Zp0aUmRSxmnWPsfPXqUnnjiCdLr9SU31xUMvc+dO0eNjY3EsqymafX19dFLL72k+T6ZZAP2yspKeuyxx+inP/1p+pekLIVCIej1+rIYuElht9tVG9BupvUaKYR2fG1tTfG5jJiBgQE4nc6yGlMvLS2JhuJKkOYt33yWY70mUx7b2tpw+vRpxWcyVXb69GlyOp1aSHPOOHnyJD3++OO0bdu2jOFQwB4XpfBtbW1EFFOfQrxqgmEYxTgB0L59++jUqVPKLwqMzs7O5mQWpDUEQ3HpwExrlGO9hud5RCIRsCyraFyiE2pRsrQgpuZUrT3Z8O6771JVVRWZzWZiGKZku76SpaYU6TIMQzqdjjo6OmRSI5a5wFBNTU1ZpvWlcDqdGB4eLkva5ZoNmJ6eVlwEJCBm3chxXMkzJUUmQ/FSoRTjmmQ1GYlEUFFRkbItRUcUUyGNjY0yUUOJ1djZs2fJbrdTRUVFSdOVQhjXaIlkNblt2zZqaGggr9cre6YjIrp06RI98MADGSPQGqdOnRLbuFJXCgHJbU2p0NTURJcuXRKvAcTaGI7jytq+5GooXgqUo62Znp6G2WyW3dNdv36dIpEImc3mktYSKV599dWyj58Ql9JySM29995L165do9XV1cTNycnJvOyB1YaSoXipxhExRFOexaTmLs3zIIXFYpEtSuquXLlCe/bsKVntSMbk5CTV1taS0WgU76nbvqW6NfFPDJNOp4uNJZhttPfwCdnzmNTwilIDjdo/k8lEV69eFa91fr+/rGrs1KlT9Mwzz2ifULw8hw+30p5H3qZ5RAkAbWCe6BWXnBzEemgvvvhiSjTSSqMGSUIcZrOZ5ufnEw/sdjvefPPNskxcrq6uZjUUVxPDh1sV3TPOjx8HUQvmk9RaKW0DXnvtNZkVjS4YDFJ1dXVZnN788pe/pL1799KOHTs0T8s/MUxP/+t5Gv/3VyhZvfGMcC2//8KLpVmvIYo5JwqFQuK1bm1tTXSaUyoIH3ry5Enav3+/xmlFiYjoxOAz1HroOD28myjZpdb1awvxv+Trhn+3t42IiH79619rTs6XvvQlWltbE691N2/eLPlom2EYunz5Mt28eZPuvfdejdPaRqCP6Op5ou88/KDEj1mChIm3+qn1UDPVIrX9EGYDtNYoFRUVdPPmTfFaFw6H6Ytf/KKmiSrB4/GUbuyy4KfzRLT7dpPsNgDyTwxT/3mGnn3qKSKGEX07C0RovV4joKKiQiYx8bRKCzUNxQX856EWEOnQeug4FhcX5SudmEczk+oCWPDh3HroeMa4S7Fes7q6Cr1eL16XhZhCDMWFwlBaWhYdYsd/O3dx8Hg8sveHDrXIemTCO62HjoNH7rYBWmFlZQU7d+4Ur6mioqLkU+1tbW2qfSTP83j7v46AYRiRGM9vfo+6ujocOHAA0Y2E7UB3K4FIJ4Ybl26TlPGSbjZAuzm0QCCA6upq8Zo4jsPy8rIskNqiKo1PbUPxyclJ6PV6/KOjHkSE5sMnAABr/3MT7e3taGhoUM0+TUupmZubk01kUm1tLRYWFmJX/AYQkfw0GHOqaSg+NTUFvV6PN954I22Yo0ePorq6ShXjeC2lZmZmBlarVbwmi8UiN9zmo5qRAiQMxYuVyvfeew96vR4jIyMZs8rzPMbGxlBVVZXS7siRqr6UoJW3Da/XK5tMFqdkEqG0I0YtQ/HZ2VmRlBiikp8y/H4/6ur+Gp2dnYhE/lRw2lpJTcqUjNlsJr/fr9CzBlE0Evvx8VEy4tdCVx58Ioy0fy+9H42Kt8VVSoVnqcnzqekT0eXL71Oz/WE69h8D9Fh8jEHEEEX52A8giv4p/h7EeG6rMdC//evL9PHHH1NT04PytY+0kBwapPF6zfz8PNXV1SVuDA4O4sknn0xQJ5UYPgrIGmkeiPKSv6OJv0Up4+USF90AojzW19fBsl9BKBhMeZaKpPiisb/n5j5ETU0l/uqOPTAYDHjppT4s3bghz7eQ3/j19WvX8HxPD7iqajT/7SP44x//iBdeeCHFU1Q+dmxaSE17eztee+018VpcKBMzlazKeEnh8RHJ/Yi8oyCSGZEQBpHc/z5zBo7HH5c94/lIEvGSuJMIm5ubA1ddjWM/i23N+N3vfocnnnwS1VUsqtivoLGpCfv3deCHfX3o6OhAY1MTdn+1ClV/qYfL5YLf/3vZd73++uvgOA5nz56VJ50jOWrvr0leKKPFxUWwLCuJWUFKIhsAzycVeGrhifel7/NR8BsbeNRux9jY2ynPlIjh+Q1ZWouLi+A4DgM/G1B8f3HxBrzeS3jt9Cn8sK8PHo8HXu8lXL+2IKlIsQonLTjBe5TgbywfqLm/hud57NixA6urq+K1aIxx5UNfrKD5qJwAINGNlqWTpLLAJ6myhJT94caNuKH4RsozZXITUru4uIivfvU2/PjHR8CL9xXeT5H0LNdxCP7W7Ha74n6VTIWrRg+N53llYwwA1NjYSO++9x4RorGGlknaNsNsIyIm6YQJhkjHEPFCQ87HnzNEOh0RH413ChjyvPpq3FD8cynPSCdEikTHgtER6Rj6w9IiNdsfItc/7KPnn/8nxbjFgTzPEz66SLeyFTS5AILQYeCjBPCJDgQv73Do9Xp65513yGKx0N13300ffPCB/NMzzCqrsb+GYRjyer0pdn0EAENDQ3A4HJl4TdTSAiD1KJ6t9ggIBoMwm81Z1YzwTmwVMjbVMrFQWD5HRkZQWVmZk59LIV019tfY7fYUP2y5mchKG/084fV6UzyKZ4NAijBDkO2jxclM4cS/IlyF5dvuFNtDk5rISiFOLRsMhtRaHU1qEwqA1FA8l1q1srICi8WSn+stoZkpghhp3lZWVmCz2WR+LpVmtwUU4w9N2r5I3xWJOXjwIF544YW8Is2GcDiMqqqqnDfarq6uwmKxZHR2nQxe9vc89kqJKWL2QvCMm4ufy2Kkxu12K+4QF4kpdONSphqSzaO4FOFwGPX19di/f3/eeRAQiUtMrI3Jbe4rWw33eDzgOE7cE5ouvFIPLXnQqmTpv2vXLsWNS7JVMovFooqjTQGNjY0p8Sl9WDgcRkNDA9rb24taDlCjjVHCzMwMampqMjo7+tWvfpW31IyOjqa1glXcHKsG/H5/ThK4vr6Ob33rW0WTAgBR/F5GjJrrSqFQSKw86RYW8x3XtLW1pZ3x1mw7eS4exdfX18XBXVGkpG38c1NnQG4kZmt38jm/RthOno7klAV/t9td0BRFvh7FI5GISIoalpjR+TEQIz17+WrRcaZDcrsjRa5S43K5MlbcFGICgUDRLkvSeRQXyItEImhvb0djY2MKKZm6pdlQSiNfwa//z3/+c9n9XKQmGAxCr9dnLGNNnPw4HA7ZFDaQSsr999+vshFItChm0lWIbEdmWa1W7Nu3T6xgmXzUCHHl5eRHmoFi3GJlMxR3Op2or68v6yZYNbG+vg6n0wmr1SrayWWyQ1v+OOEWKxPpBTuSSxfp8ePH077ndDphsVjK6gdNKwwODoLjOExNTQFQaGvixZWzIzkg/diC47i8rUvq6+sVPYp3dnZ+JkmRlt3U1BQ4jsPg4KDibMDFiUmYTCaZNhk/0RXvsOhArd3gMY/u7iF1nZXOzs6mrCsAMZ1qNpvFbng5nQhpDaHdcTqd+MY3viFKzfr6/8qclSYsQU+I70bnx0BE6D5+QV33vkoexXt6emSk/DlAaHdMJhPq6uoAAP/8L7147O9jVjCZbKaHDrVgeOKqsk9MKQQ36Nn8hyUbivM8j76+PhiNRkXj8c+y1AgYHBzEtm3b8Pzzz8scYsfUVwuuIprUkYxi/EQXxv0qupAfHR2F3W4Xr48cOQKj0Zhief/nhjNnzkCv1ydcyMelpfv4BVk42Sy5sOafCzIdusDzvMxQfGBgABzH5XSW2GcZp0+fxvbt23H77beLnR7efwEMw6RsCUm2fchrD4ZwTMnGxkYskbgkSA3FBVIEn2MCivHMpyXyyUuuYcfGxnDPPffgC1/4QsqSvdDoH59UmgJPzO3lRczGRlRysE9ipD0wMAC32w2Px4Ndu3aV3b1WOSC1PzabzWhoaMDevXtTZxIwj5YkVSYa8vgviJKUlZhkiyXhKKxjx46Jt81mM370ox9Br9er6ll8syGdxExPT8Nms8FoNOL06dMZj8LieV4cu0jV2fz4UHwcE0POEiPNks/nw85bYofHTU9Po7KyUkZKMRORWwmzs7Ow2+0wGAyiXYNweNz8vLQNkS8/8IgTIdkFl9x1Lnifn3Dc4h133AGGYXDrrbdicHAw4xzYViMqXX59Ph/a2trEUb4wAE973CKf9L/C/eSOc1EbMEdGRkBEaGlpwW9/+1s88cQTYFkWnZ2dqh3UuZkwNzcHh8MBlmUxMDAgTq0IA8riDiiNSZVAT4qn8nzw+c9/nh599FHa2Nig733ve9Tf309zc3N0++23U1NTE7W0tNBbb71VTBKbAtevX6f9+/fT/fffT3fddRddu3aNnnvuOdqxYwd98skndN9999Ha2hpNT09TbW1txriQYrUpbPWIUcEQxZVbjmzOjw8lGTnEGA6Hw4hEIjhw4EDK1oaRkRE0NjaK52ZK1dxmVWvSfN24cQMulwt6vR59fX0pE7D5HoKdMEzM8Cz+P6ULKHtJupaeIXC6JVefz1eQmislecnmuQcOHIBer0dPT4/ijPjIyAg4jivBsfFyyzkZhg91o6VF7p0opR2Lf9jMzAw4jlNccwiFQujv74fBYEBzc7N8i+EmQCgUgtvtxi233ILu7m7FWY5IJILe3l4YjUaZdlAbElUWjTsikE/xT5zsxvGJcbTqUt1GpUMgEIDNZoPFYklZmxEIzKTmlKCl9IRCIfT09ECv18PtdqedCfd6vTCbzWhpaUm7RV2tfGZsY3j/BfzgxAVE/RfkXiX42F6YbFkYHR0Fx3FwuVxpPySTmtOKDCHelZUV9PX1gWVZPPXUU2ldqCwvL6OjowNGo7Fkx05mJKa7O07G/AXZACifAguHw+jp6QHLsujr6xMJSo5DLTWXS97W1tbEMYfT6Uw72RoMBmV5z/dk9GKQhpioZMlTeWSabzYCgYDYw+nq6sq4cJaLmiukINbX19Hf3w+WZeFwOOD3+xXjCQQC6OzsVFRtpeqQUMp0Ac+D91/AoRPj4r2rE0PoPvEOlKYW8kUwGITb7UZFRQU6OjoyqoZkNSef5sgOqcmUMOvd1taWdpJ1dHQUDodD7I2V41xpAXGJico9GcXbE6Hgx090xWdDU1fcCkUoFMLw8DCsVqs4FkhXYIWoOeEYkOHhYfE9pQlWn8+H5557DhzHoaGhASdPnkxrMFLK7rtMlQ0daknxTPQDiceimDpL32UuFHNzc+jq6oLJZALHcXA4HBgeHlYkKtfenMfjgdFohN1ul/UMfT4fBgcH0d7eDpZlYTab0dvbm7c0ag0GAGIbUguZrOAp2Y9ksVhaWqKLFy/S5OQkeb1eWl5epoaGBqqpqaHa2lq65557qKKighYXF+mdd96hixcvksPhoIMHD1JtbS0dO3aMXn75Zdq1axd997vfpU8//ZQWFhYoEAjQ1NQUGQwGeuCBB8hms5HNZqPKykpV868WYsRIUDBHKgFJR1ytrq7S5cuX6cqVK7S8vExer1d8trCwQEtLS7L3t2/fTl//+tdp586dtH37drrvvvvIYDDQnj17yGq1lvW0jXyQIKYARpILsdwYHBykZ599VpW4yv1taYlRyljsHohIV5KMC2lkSyvd81zyWG4C0kEkptwqbLOh3ISJLXchWSjH8TtIWc/QBuWWIh1R0scqfbeGZZFvQQsFVgqCSlUJlKAjSqodShUlTeVRo04VWjOT3+tuZeJHNG4Tj2o8PqnkIE/7vKmCEo2XSoAoulsFk6CoaIWSvLV8s66cJkPd0WEZAfqI5s4/Sg/ZdhORjmp371YMV+62I1dseWKEVmBhYpJ0h/aSiY8V/OHvfzt2+kVm24jNi3KLbLHg4/8IyxSCx3K1vWOUGlteYgTfdRNv9tO4H8TzPI2f6KJHTAxNLGR7e/NiyxNDRISFcfoJdYtqy/aki1qJaOLieFnzVQw+E8SM/2aCuh+1JW4sfETnidJ2ALYEyq1LC4X0HMvuVoljn7gNnNJhcFsJW44Y6ShkfnwIDLMttrgn+JFhSPHkvs2O5PHV/wFS7nVhhDGGHwAAAABJRU5ErkJggg=="
|
<image>如图,圆内接四边形ABCD中,圆心角∠1=100°,则圆周角∠ABC等于()
Choices:
(A) 100°
(B) 120°
(C) 130°
(D) 150°
|
130°
| 69,615 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAOYAAAAUCAYAAACZMEGpAAAFi0lEQVR4nO2be3IaRxCHf71g+RwShlSEfQcnPITzAlI5RMy6yiqjA+gAyIkdG8WXMItTFfFKSoeAdSwZ+RSOYtidzh+zu5pdHlIqWGBpviqK1fRszzA7PdPTvSJmZsyAmUFEs8QajeZcBAADYAAzTGl3dzf0DXnHGVEbXTWj3N3dDXVeczH0uC2T+UYZhSHtMGSYqiHqh6nRLADPKOc4poHd+fZLRGHD1Gg0C8bb6+Z5n8wM4rNNlYHVN8x5K808mUaziqgz1p+/RASmMyEBiM9Tcnh4uJLu7Cr2aZU5PDwEoMdtGRARmAkyCHReZQT+7FzD1FwN7t69u+wuXFvkrvgfPDvf9VXTJTo9otF8RCLRWTNPqHfltb9Z1qw+qsU0DNWWicKWPWjuwRqs5jlOHy//H3r4lgAp487A8w7jflYao2BG36php3Qb1oBhqJEgNRbEsLFd2rnUfp+1LRcFIgJtmWGhbYEMgmEQKF9ZSv+uAgRo61wCpFwwbBz1MrhX3AQApJOJoN7MqOxPD/ZBuRxS6XC5GgldWFQ0ooYApItVCB4g26mHd+3NErjfQNasgTv1xbT/iaMOX7Cg5StBsjqKX8d8bF1WFzVTsJsHQKWAz71HZG6XkTVrKKVl4jNACMHMzI29Ctesl5xBhvtqBXZ50YippS4zuyx4wBmAK7VGqI99q8aN/vQ7rx2COfpc+laNgQwPpo2uGPCXBK5Z/UmZ5tIQwmGrVvEjQwwgNKcjZ0wCbAtdzqGaJPyRSyG8YRpgduUlAxcKAZ/DtFCTfCHJgN08gDno483OM7xWcj7tIclVReMNYNjxOR4CuZxyLPF3TQbMrTT+zN5HtRhxhTQfDY54LcxyHnfadTT6AsyMxl4F39+JBd6hoUZRXGeEh7/28PThVwCAbCqBKEQx70J4+ZnF42ttDwnlzTTuVQi/N1/LHwUbzOtejf+/MFwdzsaid/IOSXRxZMsyP9Le/PkBKGWispVfSg+vK0QUOm8QAbBfoc4mSmkpKD4ykWFGt9UEGDDU9MhvT6p48eIF4jdugtJlRCc+MyvWb3zU1IpqgIV8Aa3eAQDPL7+VCvqg8ZFjIXiA9fUMNpJZDI//OhPbFjoii3V+g41bSehF7ZKJmIrV6qJSyMN/bmQfoQfIZ0NCmdm2hS4yeP/+PdgL3abWkxFLJ+9NhsWH86IayT4KDDBdrCJ1tANrALS7J0EUS0cVJ3n9qoVkoYREIoWTt8d+KbLbPTyrpnBQZ2/89KK2THrtOnKFbwHITSiXLgOQEVqGAQMQMgWx3cHzaim48Xh4ghi5cN0RXGcEQLq6rjOCcMfwNAZlUfzyi8qie6/Veov817eCerlCBZ22BWwk8JkzhuuM4DgfJvSq+tWy60J7SPhuMzyajx88w5P2U9jNA5B5D5sX/R8kzUJhZhkRNwjPO0D5tvQ6DUqjl/0RzD1sgkAMGI/NLem2dveDg6eZJ5SrdfxS/QHfPHqKWHwNACa+XXeEWHwNsfhayABcR5ZTPDZT5stnGc47AHfiNxGLy7cGS1tb2K+WwYkvgvuNG2sTBujrB4CxczrRvoqAO3cgPwm54jUE7j8BycQGjt4N0dirgHMVpMlAq9NCIVe4sKOxEr/vCsmJCOliFSzc4FgYfLr7AHuBIkI4XcLM7Iw/TPwt5sic8Qcej095NP47KB+PT0N5kPH4lF12FH1uII/qbOzJEPLNtXgoTcLMbOay3B//M6V/LrvsBLoEu+yMzvSq7ftytX/+/Z+q3Kdv1fjlwBMMGgwl1SRTTxnuC1fRsxr9v+ryi+CnKj0FfK5hqmXqZJflp1MbmWbAM2WjyfZm9WOiXMzWPa/Nq4YQgiu5cD7MtRucNWvM7AaLnfzI/KbOAq8IYvJaCMH/Ahp/rzCrYDgqAAAAAElFTkSuQmCC"
|
<image>如图,已知点M是线段AB的中点,N是线段AM上的点,且满足AN:MN=1:2,若AN=2cm,则线段AB=()
Choices:
(A) 6cm
(B) 8cm
(C) 10cm
(D) 12cm
|
12cm
| 69,616 | null |
12cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABMCAIAAAAAxtn8AAALX0lEQVR4nO1dYUxb1xU+9wWp1CZqYYKSxFGi0TZrJgJp5SyYOoqyidC0lbaRqIFo2EQ1IUtBixT+rE202RSpUGlVNYkfKE3SIWwnc6YSKYRUSiIRWwIptU0LIZgtoI2lkK6QWAtM4t2zH/f5+fnZJk0gNveR74/fOz5+7z5/7557zrnnvUsQEZ6CZwjpbsBTLBZPKeQe2qcw4Uhx69atGJ2o8kN+uLRIeAJ2XoRgKSGEEKfbRYgpiEl/k/FIp2xsbHzUVi4rIAGCcPPmYE/PlxaLJTs7W5bP/veBTpcFQGW1VLQHkRCiEra2tkLQJRRXdn4lercK1tdJaY2jSNZSq6+AXqj8jwhCMBjsufxlRUVFdvaPZPl/7n538uRn3303JaulhsJ4/hisRyrtLn/lVgEACl40Ffz4RdkkUBApiDHauJLw6aef6vX6/v5+pXByctJgMLS1tSGdV8opffINipyCRk5GEf0uu8lql1UspdD5lYiIiGLCY6wgCpubm3Nycvr6fGyX/Wuzs7NGo/Hw4cNMkgLWHgq7xeRw+tm202GB0mrEKNnx0L4hZXj//fc//vjja9euGY3bAQAQCCG9vb2vvPKKwWD4c90OQog7GD/QpAdIAIC6mqyVx89Ydr8BkGAIVGivABw9ejQ/P390dFSWzM7O1tfX6/X6jo4Ov8vO/gqnfzl0QvS77Iwvi91pt5gAoPqPnQvoa59Cm822cePGUCiEiIii1+u1VltycnLMO8wTExNMh2LAtGwojMfCBv7RggruUFVVdfHixaqqqqampqGhoTt37mRkZOzdu/fatWuFhT9N5pAjIiEIlICwLCxrMseVQbMUiqJYWVkZCASqq6ufeeaZt956KyMjY80aQ2HhZkD10CI57IQCrAKghAgAhJeAS5sUiqL49ttvT0xM9PX1yfF7FAQAgAIKgAACAJUIlZw7TqiLQIMUzs3N7dmzZ2Zm5vr166tXr06mJgCJdEbOOFNBaxSGw+E333wTAHw+X2ZmZgKNOCsKEMnFSIaUM/B9A6oQDod37tyZmZl5+fLlxPwBYKLcMhIgRDakACnJcS8VtEPh9PT09u3bX3jhhe7u7mT8QYx3R6XPoEsgxV6Ayq2Cwx2IU1vuIBzdbgtgampqx44dW7ZsOXv2rCzE+HkAhRWN+RYByXJJzTwqtNAL70z8e/u2nxmNRsZfwO0ghBBCXj8opV2iN6mCpRh2ueUPgNsEm5ywGB29bTAYbDab9EXAabY6EJH6OwiAxe5MVwtTBl4pZBgeHs7Pz294rx5RyuU7nTJnosseSfM/LEfFNTg2pF9//bXJZDKbzTdvDQNIRnL//v2R74VNLxfI9pEj9+RRwSuF/f39ZrP52LFjfznzeX9///j4OJMrfbPh0N8tZW+kpXkpRbrNwA+F0hJev35dr9e3tbWxXZvNduLEH1A1LUoDJaXWVLYwXeCGQhlXrlzR6XTt7e3SPsWBgQGDwaBSc1gtwVQ3LT3gjMIvvvhCp9N1dHSo5Js2bfL7/fKu02Gxu/yxKokLTzQAnsbCrq6uqqoqp9N54MABJsFIXiIvL296epptB9yObig//k4xAATcH0YSLkLiqk3+wUeaGxEJIeFweMOGDUeOHBkZGTl06NDq1atlPzMrK+v7778HAJfjYOWJUwDw+fFKAAAoCeDv2c95jt4XAh+9kFF14MCBwcFBt9vt8/nWrFlTU1MzMjICAAj0+eefZ71w//HPJPsi+Ta+IiAajiiAFwqVMJlM58+fHxkZWbt2bUlJya5dvzjv+VtWVtbdu3dj9LTMWizSMwQvDsoAo729fcuWLQbD2paWlvv376s0xUhnpJQuUIrJNbikMB79/f379u3T6Z+1Wq3Dw8NqsjRKHgMfhhSTzYhFxGya4vY/xtatW2c2m3++a5fH44mqadqo8jdfiIp5PmQ1E7EMNTY2Dg0Nffvtt1NTUw0NDXV1dQtU0GgAfPRCACp3OMYfmxQUCCk96IjqAABAXl7ehg0bbty4ceHCBb/fv379+pqaGp/Pl/pGpwa8UCgouxpC8JNuQESKATh9Ihq8AwBAdnb2zMwMIhYXF3d2do6MjBgMBrPZvG3btrm5OekIvNmeBcBHaK8CCdCjpz8AoASKyi2maBUMAABkZ2eHw2HZ2Obl5U1OTlZUVFitVrmmRkuRIh8UIiJRFkcUby0CACCuJms37Pa986pSOScnZ3JyUh4yfT6fx+MZHBzMz8+POaBmWEybL/xYoIg0krC2lAIQKKmxY2zUMD8/n5OTMzY2xrY3b94sT0tJB9HWDD5nFCpBETHghEQFMvX19ceOHUPE5uZmo9EY/UkceRqgkxcKpZ7H/nGqeKLa6bAoH2tmGBgYyM3NvX379nPPPTcwMJCyVqYFfHikiNK4xQYwQqJl85tfKoiqRTYKCwvXr19fUVFhs9kKCwtjD6UdX1RCuu+hxcJSSiIPpiMiIpV66smTJzdu3Dg7O6sBU7kwuKFQVLyBwumwMO+UEJLw0dz79+/n5ub29PSksoXpAjcJNlTl1dRbMaitrZ2ZmVEW52sYfMSFoHoDkPRJE2aXvF6vx+O5efNmahqWdvDhziSBoH7eGlEUxdra2qampry8PKU81U1LIbikMBkhBEhLS4terz98+HBKG5RWcDMWAgB7BwUkHQFhfHy8qKiot7eXBRKopSxacvBE4UNRVlZWVFTU2toKK4Y/4MidSQgKKABhfo3L5QqFQl1dXRD3+Cfrs1olVQO9kAII4XC4oKCgo6OjrKxMEsdaW63yB/xTSBEJIaS2tnb63sw594oIBFXg25ACCISAz+c7/1fP0PDDAsFkXhDn4DKoUEIURduh2qbmD2MCQQAAKr2lGVEqvdEif6ABCltaWnSZz9bV1cWKg6VklSvApjVIfBJAS+DbkI6Pj3/00Ue9vb0qeZP1tz6A9xABiIb7HwPfvfDdd9+tqqpSzQgG3A544z2TvK9p/oBrCl0u1zfffHPu3LmpqamIjFIIftINH7zzE1Bkxrn2uaMhQ5LL4JXCe/fuNTQ0nDlzxmq1/vLXvxJF9t5/obnmT0dPf6C6Lp77ISXyegskcb6eVwobGxt37txZVlbW2tr6v9m59vZ2BAiebcLy3xUloYzPvijIHGHErqh5TP0s8+Lh9XrlYlFE7OnpMRgM8/PUUhq9Lna1dpef58eaftD7AfigkNLoGhIxpaGSTDQajadOnaKygEZel04192SaGF2UhIEbQyr7JmxGUAoEJZlw8OBBj8dDAAiKIK3zAJICYTaUqo+4jKG0lMjsJkVpIa5VgiuAMYFSmu6lx8TY2JiyNFTumpOTk3q9fn5eqi+VFy3QQvkaRZSvNOAE028UYkSOeiGDzWZTloYqn30pKCjo6+uT5FDkRdxfjITwnscHuVYPAFwXLlnK9yjEAIv1SBHUq3g9SfnVq1dDoZDdbgcEjDOM69at++f4v2LlArCLT207Fy9XrKeIkW8AAEKjoRfJKCGEEFNQXpphkTdpilc0fPDggU6nA4D47nXp0qXc3NzXXnstle150mCXKdUhQPB1UgxWu/fUcUdNCZS3sdcjLTZHiimcSiWEJOSP7ZaXl6emGakEoshW0gAQgu4uxh8AvFTwUkih9FijK4qoeiyIIiKKOJ9Qf6nkND5UisjVnktK2vME5YjRAAIRER0Wk1y6bjVBZ0DafvRemPz11g/Vf6JytTFId3sWKwdAFBQFQMGLoy/7igkAoN99mlSfiqwN+5iGNNmCRkKSpTqWSp7sRfbpas8TlTP+WAg4cPbCy7t3AxsRX93v9Ee9tiXwueXyThUoiAlbtlTyhOdFRCCYlvYsrRwjOQkCFEBAAGsp+dwHACUB9CrzwPyHTSsenIX2TxGP/wNUh3dFnazEPAAAAABJRU5ErkJggg=="
|
<image>如图所示,a∥b,∠1=158°,∠2=42°,∠4=50°.那么∠3=()
Choices:
(A) 50°
(B) 60°
(C) 70°
(D) 80°
|
70°
| 69,617 | null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAABsCAYAAAB3hqw6AAAXSklEQVR4nO1df2xT173/OKGFFa9Gqt+LEaZOa2d1CKMBh5KuaS8ZThsE0swwSzWlqqcxBeLqzX3kPfIHfaZVJmVq6KALJRVlCXqZhh4pDhMToaTlpg0jXbIlFU4IxaFhdhtnRmoymzYZjr/vD3Mv17/im8R2HNqPZNk+59xzzznf8/1+z4/v+R4JERHSGOPj4+jr68Pg4CBGRkbAsiwfNzQ0hM8//xzCKiiVSqjVagDAfffdh6eeegpKpRI5OTnQ6XSQSqWprsKsIUk34rhcLnzwwQc4f/48WJbFyMgIioqKsHLlSqjVaqxfv55v4OzsbKhUqpDnb9y4geHhYQCAz+dDd3c3hoaG4HQ60dnZCaVSieLiYuj1euj1emRlZaW6iqKRFsQZHBzEsWPHcPr0aXi9XjAMg+LiYjAMA61Wm9B39ff3o6OjAxcuXADLspDL5TAajTCZTDzHpQ1onuDxeKihoYF0Oh0plUqqqqqiK1eupLwcdrudLBYLKRQKKioqoqNHj9LY2BgFAoGYz0wXl0iknDhut5ssFgtJpVIqLy+nM2fOpLoIRBS9gVtaWqisrIyWLVtG1dXV5PF4YqZNBVJGHKfTSRUVFSSTyaiqqopGRkZS9WoeYhvZ6XSS2WymBx98kCwWC7nd7iSXLDqSThyv10vV1dUkl8vJarXyvXGmCG/YVPRmt9sdUvaJiYmUclFSiWOz2UihUFBFRcWMiSKmEVLVUG63m8rLy0mlUlFbW1tK3kmUJOL8/e9/J71eT2vXrqWurq6Y6eZLls8WLMtSbm4ubd26VVRnm2v9MhI9+uvp6cETTzyBjRs34m9/+xs2bNgQM61EIkn065MKhmFw+fJl5Ofno6CgAP39/dOmn3P95kTaMDQ1NZFcLo/K+guNS+Lh5MmTJJfLqaWlJWnvSAhx/H4/mc1m0mg0ZLfbE5HlgkB3dzcplUqqrq5OSv5zXiEYHx/H888/D5/PhzNnzkAmk8XiUEgkEv77XsHo6Ci2bNmCRx55BI2NjVi6dGnC6jcnndPf34+CggKoVCqwLBuTMMBd+XsvEQYAsrKy0NnZiSVLlqCwsBDXr19PXOazZbm2tjaSyWRUX1+fKC5Oa4jRmbW1tSSTyYhl2YS8c1bEsdvtJJPJRI3577WBQDQI69ja2kpyuZwcDsec8xVFHOHLPR4PaTSabwzHzAY1NTWUl5dHXq93TvmIGhDQHSU+NTWF0tJSPPbYY6ivr0+cbL0H8cILL8Dn88Fms0WNJxEDI1EDAi6TqqoqAMChQ4dmUs5vJN555x243W7s378/aryogZFYFmtqaiKNRjPrhctvIpxOJymVSrLZbCHhYvVwBHGiPdjV1UVyuXxeNsMWOrq7u+mhhx6a1eQ8Lue4XC5asWJFSldj7zW0tLSQSqWasdSJOyAoKSmBXq/H3r17ZyN6v8UdvPLKKxgcHMTJkyfFPzQd5f7whz+QTqcjv98/h37zzUA8PTIxMUFarZbOnj0rOs+YxPF6vaRUKqm7u3vGBfkW0dHe3k5arZYmJiZEpY85lH711VexZcsWFBQURMTda+tjqcKmTZvw+OOPo66uLmYaEmqZaBRzOBwkl8tpbGwskR3nW1Bwy1sul0c1GgmXSBnRqFZTUwOz2TztKvO3mB2ysrJQXl6O2traiLhwiRQxWhsdHUVeXh6GhoaiEofusf2Y+cDo6ChWr14Nh8MxbRtncH841NbW4he/+AX/UBjtviVMApCVlYXt27fjN7/5TdR4fu9LyDk3b96ERqPB1atX09rA+17A0NAQCgsL8dlnn8U8+RCic37/+99j27Zt3xImBVCr1SgqKsKpU6dipgkRa01NTTCZTHxkuEibTwRLEhCZbmHgxRdfxO9+97vYCbhhW29vL6lUqmmHdumHqfkuwJzg9/tJLpfT8PBw1Lbmxdrx48dhMplCuCW9lH8o1wRLGTqHpjTidDHIzMxEeXk5Ghsbo7c1RyWlUpmWWwKBQIAo3Rl4GsQ759PV1UVarTZqfAYQPFnm9/sTfoosEZBIJMCdTiWeL+LrplRhOukjkUhQUFAAl8uF0dHRiPgMAOjo6ADDMMkrYYIwnZClEJGWcBPwhIHCRG9mZiaKiopCDiJzyACADz74AD/84Q9TUrhkIbyHpqv2icZJDMPgwoULEeEZAPDhhx/imWeeSX7JEoT+0wcgkUiCSxwZGSh56UBIPBFNy2XphuLiYnR0dERGDA8Pk1wuT4oyTAbqKvUEbKL+O6OEAPWTHiC9uS74P+2H/9GxePHiiF2ADIfDgby8vNR3lxmCiHDAXIKqazkgaseqO7whwSocbK1D++GzGMBdY/mFhtzcXFy7di0kLGNwcBA5OTlRH0iPSgYABDDwxzfwX0feh+3gb+M+kV7zs+nBtTG3pilEhsPh4IfQ4cRIj0pmAMjAW4ersKnydRhWZQIIVfifDiXQsj/F4NpYq9VG5xyOOOlBjEgQBvDpeeDZklI+TFjS9ra3oDdv5kXdQoRWq404xpjhdruxYsWKeSqSOEgGPkU7AE3Oqoi4/tMH8NZ5wLz7PwWh6TMJFQulUgmPxxMSluHz+fDd7353nooUH0QEWvU96AE4rg3wYUCQoyyGKmx6qQ4/CqFb+k5CY2Hp0qXw+XwhYRk+ny+t3VxJJBKAclFaqcd/Hz58N2ygFRmSPMBch/Y396StSBYLqVSKW7du8f+JCJBKpXM+R5JMCGctlSUgiURCCI4H6FR/gLcFU6vVEWeGAoHAgpn3cEbvQtwh0sKFVqvlibVo0SIym80RnW0hEGhsbIxkMllI2IIRzhRjzvXPf/6T//3444/j1q1byMnJwblz5/jwhSby+LpKpVLy+Xzz0Vlmgbs7n4GAn5qamuiBBx6ghx9+mPLz86mzs5OIgmavKpWKTCbTgjGMjCrWFArFvLmsEotoQul4YxPJZDLq7e2N+ozX6yWz2UwKhWJGxuPzhStXrkRsukGj0STk5G8qUV9fH0GYWHqFZVlSqVRUVlaW1qfyuru7SafThYRlSKVSeL3e+RWycXF3Unno0CHU1NSgq6sL+fn5fHgsvcIwDOx2O1auXInc3Fy8++67yS7srHDr1q3IKU1paWlMV45pNcoJBJ0wLFf8O2/rMNPScfv1RqMx7bioubmZjEZjSFiGVquFw+GISs10GuW8+tqrOHLkCD7q/PPdtcAZ5vHEE0+gr68PGo0GWq0Wx48fn1VZKMGr9USEa9euRW7d1NfX086dO4mIyP+vW/wnVRDDnfv27SOVSkXDw8MzfjYWOC4qLS1NiwGR0Wik5ubmkLAM4VJ15n0PhHynAvG48+WXX0ZLSws6OjoiHHzPhbM3bNiA/v5+bNiwAatXr541FyUKDocDjz32WGhg+DY1xzWp1jfR3mexWEir1Sa9Z/f29tLatWtJr9dHcGcsJHJpKBAIRN2mBhGRQqHglaxQpIWLuWhiL5YYnE5ExooTVtZkMlH+mlz6wvVZRLpYz4eXM7w+08Hv95PVap0XT1ixDAsRCASorKyMGhoagoWMUeFo/8X8nkkcB5PJROt1a/iedHvSF5GeI2SsjhONQGJ6ut1up8LCQmIYRjQXzRW1tbW0a9euiPAMiUSC4uLiqHZT4Zi6/VWEPpq6/RWmbn+VELk7NTWF559/Hn19fTh37hx/gGvR/Usj0obrm2j6MrysYow/8vLycOnSJWzevBkFBQX49a9/zceFPxsvL7FgWRYbN26MzJeIaGBggBQKBRGF9uRovVOIWCJjNpzj9/vJaDRSUVEReb3euHmHl03sbzHg8r5y5QoVFhZSYWFh0uzI/X4/SaVScrvd0Q/s5ubm4oElmRgcHAyh6ExGQ3PhnsnJSRiNRrjdbpw9ezZiphwt72TOwYRGF5cuXYLBYMDTTz8d9ZDtXNHT0wOlUomsrKyIOvFbBj/+8Y/xfyf+N+owOvO+B6KKNC48PE4Y7v/XrZhxU7e/gj+QCYPBgImJCZz547s8YcTkLYzjCCgkZKzfM8XevXvR09ODtrY2FBQU4JNPPpl1XhwoOBjDiRMnUFZWFjMRBQIB6u3tpezs7Njsl4SJqdfrpdLSUiotLRXt1WK+wS26Wq1Wun37dtQ0YofYwsNT0QBhRvn5+VGdhyaSMNz7vF4vFRUVkcFgWDCE4TA8PEwMw1B+fv60K+PxiGSz2YhhmJjpQ/aoDx48SCaTif+frOUcr9dLTz31FBmNxgXp9IhrRM4D/d69e/kOFosgXLgw3mAwUFNTU8z3hBDH4/HQsmXLEjojDy/sl19+Sfn5+VRWVrYgCRMOt9tNpaWlpNVqp71UIxycCxvhLvS0nEMUXDKprq5OyvLN2NgY5efnh3DnQsJ0bdLUFNyZra6uFiWmKyoqyGq1TptvBHGcTmdSnBK53W5atWrVgiWMGLjdbjIYDKTVaoll2ZiN7na7SSaTxW1jnjjh61ocVWMhHmcJ40dGRkir1ZLFYpn2mYWCeIueLS0tJJfLeTOt8LQWi0VUWyTdpdfw8PA9RRix8Hg8ZDQaSaVShYyAOZdeo6OjgtTR/SnEtCisqqqiioqKGRdK2KuGh4dJpVLRvn37ZpxPopAI3TmXPFpaWvir0cbGxqisrIxqamru5h3xjruEmtaNpEKhiOpGcjpwL3E4HKRSqeKKx7lC2HDpZH7LlcNut9Of/vQnKi4upu985zu0fPly+vrrr/l0nImx0My4rjXo5nhRrOUFqVSKgwcPYteuXfj444+RmZkpyteaRCLB4OAgiouLYbFYku5VN8KBXIzyxSo7Fy6mbkLcvHmTP0/T2dmJ27dv48aNG/jss88wOTmJrq4uAMETaytWrMDNmzfx9ddfo6amBkuWLOHzOfweAc9K8KjZjj0/ykP/6QNYbVgNtT0Q//rjWK6LY1WGI0x1dTV++ctfiq5sIjDTBo6FixcvYmpqCp9++ilcLhcmJydx6dIlAEBfXx/Gx8chlUqh0+kAAOvXr8fSpUuxfPly3viE8+swMTGByspKtLW1Yd26dThz5kxomTGAEsl/4E06Hzz8NdAKSd422GIRR1hJl8uFJ598Eu+88w6ee+65aSvV19eHjRs34le/+hXMZvMcm0gcZkKQoaEhuFwu+Hw+/OUvf4FEIsEnn3yCL7/8EqOjo/yqPHf7+8MPP4xHH30UQPA4OhBcqRbr8szlcsFgMODBBx/E9evX0dPTA7lcHpKm//QBWM4D79XvgQSA+VkJrua8jvbDVeIuDv/444+xdetWfPTRRyEuWIQNwxHm0KFDePHFF6Pmk6ieHQ6fz4e//vWvAIJL8F6vFyMjI7h69SokEgk6OjpARFAqlVCr1bj//vvxgx/8AEBwu0ShUEAmk4UYKc4VFy9ehNFoxAsvvIDGxkawLBv11HrrG7uxbU8D/99mD8CQx/mTEYnG402kztHQzZs3BVov+NXZ2UkymSzqOtFcFXR3dzexLEvNzc20f/9+slqtxDAMMQxDCoWCAFBmZiYxDEPPPPMMVVZWktVqpYMHDxLLssSybMoXVuvr60mhUNCpU6do5Qol2Wzv8nHh7VFZArLZg2G2A5UE3P0v7v4cBA34Xn75ZdjtdrS1tQUHCAD+fPEitmzZgmPHjmH79u2ie5bL5cLQ0BCmpqbw4YcfQiKRYGBgAKOjoxgbG+P3TPLy8iCXyyGXy7F69WoAwJNPPoklS5YgOzs7wlwqGSCRHD85OYldu3bh8uXLOHnyJH7605/iuec2Y//+/wnLIwAgI6hfLO+B3nsr+B4M4FlJHnJeP4W3qn4UX6wJMw293OhNvP/+BWzfvj2EMFNTU7h48SKICHa7HR6PB+Pj4+jt7QUAdHV1YXJyEnK5nGfzp59+GosWLUJ2djays7OxZMmSaS9/TUdw+uX73/8+GhoasHPnzojLjcKJ3PqGGeepBIf3GIIBdwYDda3BkduMj7Vx14JVVFTQ4sWLad26dcQwDKlUKn6cXlRURBs3bqSdO3eS1Wql2tpaXsQk+7xMPP9mYtLNFJ2dnaRQKHiTKlHXggVCRRrRZdIDBImeBu6UTTRx7K11fEZvv/02AaA1a9ZQa2srsSw7KwOI+Z4wJuL9nH7p7OykQCBANpst7oV69tY6Au6eb+UnoCW7Q8ok7kI9ukJ6gaJqaGigkpISPtPCwkIym83U1NQU8xKfdLAgTWS+ExMT9LOf/Yx0Oh05nU4iEncVZWSppmJGxiVOIBCgA+ZK0uv1Ak9NQdjtdlKr1WQwGOi1117jF/q40VN1dTW1tLQsuMNZ8eB0OqmgoIBMJhNNTEzQxMQEmUwmysvLi1rX+N1kKmpniksc24FKqms9RZtQQpejrJ6OjY3R5s2biWEYXp94PB5qa2sjq9VKpaWlJJfLSSaTkV6vJ6vVSm1tbTQyMhK3yOkCYcOF6xePx0M6nY527NgRU8eI5uGAIPFUIEicmA/bT5O5zkbUbyOU7I75RuHF4ZcvXw5NJlihbmlpoX379hHDMLR48WJSKpVkMBiopqaGWJZNa38IRKH6hSg4B1uxYkXSLg4P45wpEspAs9kc/NFv453NCRHOio2NjaRQKKitrS2qQUM47HY7NTc3k8VioaKiIgJAWq2WysvLqa6ubk7XCIvROWL1Eie2hPqF2wpoaWlJmn4LIY7wFdxslftEI040dHd3k0KhCNmzmAm6urroyJEj9POf/5zy8/MJAOl0OqqoqKCGhoaILYy5NIyYZ51OJ+l0Ol6/+P1+euWVV0ilUs3qBsOZABEyLUBE/TaqrLPxQfbWupD/8eB0Okmv19PatWvjWqTEm5f4/X5iWZbq6uqorKyMNBoNASCGYaiqqoqam5sTasc8nX5hWZa0Wi1t3bqVP1OazFFo5IAgQr9Mke1A5YyIw+HUqVP8LqDwgKzYiWIsjI2NEcuyZLVaaevWraRQKEgqlRLDMLRv3z6y2Wy8+JkthPrF7XZTeXk5ZWdnp/RKTgh1TNC5KUjCz2mmqLJk5qJNCK/XS3v37iW5XE5Wq5X+8Y9/zLqw0xHO6XTSmTNn+IVRqVRKCoWCSktLyWq1Unt7u6jVCaF+6e3tperqar7sqV5Anb1Xohlys9PppIqKCpLJZFRVVTUjw8XZig6Hw0EnTpygqqoqYhiGAJBGoyGj0cgvKQkNGzn98pOf/IR2795NMpmMLBbLvA375+QyajZN5na7yWKxkFQqpfLy8pTf3Nvb20tHjx6liooK0ul0BIDy8vLIZDLRsmXLaN26dbxxoFhRHI5E6aF58+fl8Xjo7bffJp1OR0qlkqqrq1N60YXQAGPHjh0klUppzZo1dPToURofHxckpPi/kwRR+znJxuDgII4dO4bW1lb4fD4wDIPi4mIwDJPwyy/6+/vBsiz/eejf5Nix3QiTyQS1Wh35QICADAn4PZgUIi2II4TL5cL777+P9vZ2dHR04IsvvkBRURFWrlwJtVqN9evX8wesom223bhxA8PDwwAAr9eLnp4eDA0Nwel0orOzE0qlEsXFxdDr9dDr9RH2AK1vmLFtT3DzCyW7EXjvJbxkPovDh/ckve7hmBfi0AxsCcbHx9HX14fBwUG43W5cuHCBf97hcODzzz8PSc/ZCQDgbQVWrlwJjUbDG25EQ+BKKzJXbUPJSwdw7rdBT7uSgVOQ5G1HZZ0N9XsMIe5cuN3hpCL5kjP5mKsC5u5D2FT5elh4cHrBGfmletsjplFhuoME3Md90yyte06/cRjt2IT+MNElAaB+RA1oVoW8hy8Dkss9aadzkoVYhOOMKr5XZ7u7lz9dPkiBOLuDeXXAOpd+IXxWTD4Rvf7OM0Fv7xl4VBP9so2IfGZQxrliXokzFwND4bOzySf0maAnRCKKuLIqhPAU8pV0LBjXxckC54r/uuNayOV9AICBVhw4Lbj8gYtLlSZI6fAjTcHtXXGjMqI7FjLhu7+U3IWBuAd2v6m4fLouyubi/N7g+/8SzwjoVvILygAAAABJRU5ErkJggg=="
|
<image>如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()
Choices:
(A) 100°
(B) 130°
(C) 150°
(D) 160°
|
130°
| 69,618 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAABqCAYAAACmsVN3AAAhQElEQVR4nO19f3CTZb7v523BluoQUFziXNdQgTaF1QadkRRY0ro7moJCunon6owQZmkDxx0pXl2r91iPu+cQdce0cL0U2XusjLuUPbO2xdOmOHpI69ml7a5rut4jSSkEcH+k7r2mzj0zpELzfu4fyfv2fZO0TdO0pIXPTKfJm/fH8z7v5/3+er7P9xFIEtcBkhAEYcrnGRwchM/ng8fjwZ///GdcvHgRq1evBgAcPnwYhYWFWLNmDTo7O7FlyxYAQElJCXJzcwEAer0eWq12yu3IZMy72g2YKUxEqlQI19nZCbfbjc8++wx/+tOf8Ic//AE33ngjCgsLsXHjRgSDQXzyyScy6QYHB9HU1IRPP/0UfX19MulsNhtWrlyJ7Oxs9PX1AQDKyspQWFgIs9mM4uJiLF68ePI3naEQrgVJly4pJpGsq6sLXV1d2LBhA+6//37Mnz8fH374Ibq6uvDCCy9g0aJFeP755+Hz+VBRUQGv1wsgQmypu5Wfb7vtNng8Hmi1WlRUVGDr1q3QaDSoqqpCQUEBPv/8c+Tl5aGoqAiVlZWwWCyyZJzJ+08beB3joq2tjXa7nYsWLeLq1atpNpvZ2dnJ6upqOp1OkmQgEKBWqyVJHjt2jFarVd6+dOlS+VzK7h7rs16vp9frZSgUYk5Ojrz90Ucfpd1up9VqZU5ODh9++GG2tLRM2H5RFFO78WnENU865UORPgcCATqdTur1et58883ctm0bg8EgPR4PDQYDSdLlctFsNsvHajSauH3IiYmmJKySaLHn0el09Pv9DIVC1Gg0PHLkCC0WC2+66SZu2bKFLpdrUvd6NZF1NaVsJkCpdi5cuIAdO3ZAr9fjww8/REtLC37xi1/gb3/7GxYvXgyDwYDBwUEMDg6irKwM3d3dGB4eBgAUFRWhv78fer1eVqcAoNVqMTg4KKvSWAwODsqOg8/nQ1FREQDA6/WisLAQAHD+/HkAQH5+Pnp6emAwGLBt2za0tLTAZDJBp9PhwIED+Na3voXDhw8nvA4zSMVe86QDgL6+PjzyyCNYu3YtTCYTfD4fTp8+jWXLlqGsrAx9fX0YGhoCAJjNZpw4cQK5ubkwGAzo6ekBABQXF8Pj8SA3Nxf5+fky8TQaDb7++uuED5wkvv76a2g0GgBAT08P1q5dCwD47LPPYDAYAABdXV0oKysDSbjdbphMJrndf/nLX3DgwAE0NjZi3rx5aGtrwz333IOnn35adS3l9cd6AWYKc55043Ww1+vF97//fezYsQNbtmxBXl4ezGazbNA3NDQgNzcXZrMZx48fBwCYTCZ0dXUBiBDwgw8+AAAsW7YMX3zxBYBI2MPn8wEYlXSxEAQBgiDgwoULyM/PBwD09/fL0s3n88mfu7q6YDKZIAgCurq6cP/99wMADh06BLvdDgBoaGhAZWUl3n//fTz55JP49a9/jTVr1qC1tTWuP666xLuKqn3GEGvLhEIh1tbW0mAw0GQyyfaQ0+lkdXU1SbVN1dzczIqKCpKk3++nTqdLuI/FYiFJ1tTU0OFwkCStViubmppIUj5OFEUuW7aMJOlwOPj888+TJM1ms9wWrVbLwcFB+TilPXfp0iUGAgHqdDqGQiGGQiHqdDoGAgGSpMViYXNzMz0eDx944AGuXLmS3d3d6erOKWPOSzpArVo6Ozuh1+tx9uxZdHd3o76+Hi+++CIAYPfu3WhsbMTw8DAMBgPy8/PR0tKC8vJynDx5EsPDw8jPz8eCBQvg8/lUNl5RUZEs3e677z58+eWXACLhkJycHAARm1Fqj2SnhUIh2Y4bHByE0WjE0NAQQqEQli5dmtCeW7BgARoaGrB9+3bk5uaio6MDBoMBWq0WfX19uHjxIioqKmAwGJCXl4fdu3fjmWeewXPPPSfboMmA06WGrzbrpxuSlAuFQrTZbDSZTPz444+p1+s5NDREclQykFSFQpSSTCmxlPs4nU76/X55ezoQDAb58ssvkyQbGxtps9lIkrW1taytrZUlmyQJTSYTOzs7SZJ2u50NDQ0k4z3s4uJirlixYkKpN91e7pwnHUl6vV6uXr2aZWVlJCOdOpYqVaotkjQajezp6WFTU5Mcf/P7/TLRphvKa9lsNno8HjY0NNBut4/b9lAoRIPBQK/XS1EUZQJ6vV4ajUY+++yz8j3ONOY86Z5//nm585VSgCQNBgM9Hg9JtT0lSTVRFGVbLRQKsaamZtJSYDqkhtPp5Pnz50mqpa4kCUmyrq6Oe/bsIUkVAckIke+44w7V/c8k5izpJHVaUFDAAwcOyNuUnT+WIxAbmHW73ZO+/kwEYqX7UToTg4ODcdLa4XCwpqZGdYzX66XX6+W9997Lp556atrbqsScJF1vby83btzIxsbGOKKdOnWKRqNR3lcp/YqLi+U3v7a2lsFgMO1tS5WMEx3n9/tliWe1Wnn06FGS5ODgoIqASts0GAzyrrvuoslkkrfNxMsyJ0in7Ci/38+CggJu3LhR3tbd3a0imlINBQIBGgwGBgIBejyeGbPVJotkyCCKIr1er8p5UDpJSjuWHDUpQqEQN23aJEv66cacIJ2EY8eOccOGDfR6vapYGakmWigUoslkkr24pqamjIpjpQtK79XtdtNsNssSL/bFMxqNfOKJJ2Q1LGFisodJMfo/FmMcOmdI53a7ee+993LNmjVyxyrf8liinT59msXFxVfNg5sJeDweBoNBlTQnR+1XURR56dIlGo1G2axwOBxyiCZ5hMckWNx+nCOk83g8NJlMDAaDqrc7GAzSaDTK9pzX66XBYOClS5dIRiRcMtkZswmJJJPT6ZRJ5ff7aTAYZHtV6bWTkZdz7dq1KhWdip033jGznnTnzp1jfn4+P/roI3mb0naJ7eSGhoY4FXKtINapig0hBYNBms1mNjU1yep3ao5FRLLFnmNWkk66iWAwSIPBwN7eXppMJlXMqbq6mm+88QbJiG3z4IMPyr8l45VmSu5ZOqGU7FIYRbrP8+fP02QyyeGhUCjEO++8M6UXdKK+m5WkIyOdUlBQwCNHjpCMEEkinnTTStXhdDplw/laR3Nzs8pu83q9qpdWknhHjhyh2WxWxSnT8TLOStKJokiLxcLGxkZVloiSeOSofaLszLkowSYLacyZHA0nSaEiv9+vkniDg4O85ZZb5Jd7PCQb1pmVpFOOPQaDQVosFlXAU0k8v9+f9IjCtUZIt9stO2BkROKVlpbKfffVV1/RYrHwwIEDKrt4IrRXgUDMn1DJdoqzk3Rer5darVY1dBMKhWi1WuWIfCzxrmUkepGUNvHw8DDJeIkn9WFHRwfJiF1cVlY2RvA8PkY3sH8dUVLPAZIiB1i3HsQ6Jwc4y9Sr0vtyOp00Go1y7ImMOA+S1xoMBnny5Mmr1dRZhZMnT7K0tFSWZJLHr3xpGxsbqdFo+Morr4x7LpFkmGdYtx7c2RGmRMj2qllKukcffZRvvvmm/L27u5sGg0GlPp1OZwrBzWsTSoknBcmlZAelxLPZbLTZbLxw4QL1er3qRScTxIUH6liCSnZEfxBdOwmAVa4rJGcR6VwuF++66y7q9Xp5lIGMDOGUlpaqhryam5unZbB+LkKpfmNtPJfLxaKiIjY2Nsr7/PKXv6Rerx/jbBHJJpFM/qtqV+01K0inVKuBQIAWi4Xl5eUq+6KmpkbOe7sONZJ1kILBIIPBIC9dusSamhqazWaVVGtubqZer+f999/PY8eOjXme9irQWH+GJBlmG6sAonKUeLOCdJs3b+YTTzyh2uZyuajX6+lwOGSiuVwunjt37mo0cc5AGqdVag5JxVosloRjuUqE2cYqoYR1A9JoxAjP1JcQiHivZDjzSef3+3nnnXfygQceiPNIQ6EQX3jhBRoMBnkg/1oLe0wGyfaNUoNI+YdKFRsKhbh+/XpV2QsyYtuJrp0USiIOg4RICEUi3SyQdMpMEbfbTYPBQKvVquoYKZXpOiaHiUhYU1OjSpggyZdeeok5OTm8++67qZ7XFWaYPtatl1RrRNK12SN2naRuyQwnXW9vL/Py8vj222+rbLWmpibq9XpWV1dfdxjSCCUJq6urVSr26NGj1Gg0vPXWW9neHrHPlKQLxzoPwuhnyWuVkNGks1gsfOutt2iz2ajT6ehwOGSShUIhOp1O6nS6OZeelEno7e2lTqfjggUL5OC7hIlmsI4lSTOWdL29vVy1apX8PRAIsKamhjqdjtXV1ao4UiKD9jqmjmeeeYY33HADt23bljAqMBbpZm2WyebNm7lkyRLabDaV/RYMBmUJZ7fb5c5IVPLrOiKYbH9IQ2JWq3XcFzop0iX4mBGki+0UaQpdMBhkY2Mjly1bRovFEjes1dTUFPcGXidcYiTTL4FAgDabjUajMalogMqmi1JqdP8Ecyak45Jo74zDarXGxeWam5tpMploNBrljJLrSA9CoRAdDgf1er0qNDIRkq1KMisyh3U6HdevX881a9bEEaynp4dWq5Umk+nqNG6OoaWlhXq9njU1NZOOBEy2FI5EvowhndQg5RxVj8dDq9VKnU7Hd9555/oQVxohTWayWCwpz/Udm3Rq1RqroKdEuumwnx5++GEWFxer7DW/3y+HTZxO56wlX7K9NZ1WaTAYZHV1dVx2TipItejXlOrTpbui4/DwMD755BM899xzaG1tRX5+Pnbs2IGLFy+isbERPT09+OKLL+B2u9N63emFKH8Sxiz3NroPCQgx29KFuro6rFmzBnfccQc8Hg9KS0vTfo2kMCWqpxnKIjYkZe/VZDJRp9OxpqYmY8s+TISU5o6m6dpSckS6R3BSpU9Gke7RRx8ds4KQ3++nw+GQM4Nna2hETvVR/P3QNSL/ns678vv9NJvNcl06MtJv6eq7tJHuakb38/Pzee+99xIATSYTa2pq6HK55LdzNhJN2eYz9espALR3jG6LJDyOpgLFHpMKgsEga2pqqNfrp3WIMG2kczgc1Gg0tNlsbGpqkkswTDeCwSA1Go383e120+Fw0Gw2U6PR0GAwsKamZtY6EZGcMiP3D6gJJc0niM2uTRUNDQ1xeYbThbSq12AwyHfeeYdWq5UajYZWq5WNjY3TmtHx2muvUafTsbGxMaHdJpU9VXbkrJF8A3VcB9DenjhK314VId1U7kZK+6qqqpoxbZV2m05ZILqpqYk2m40ajYZms5kNDQ1pv7GnnnqKjz/+uBwa0el0tNlsY5JwNkE5E0qGGOnjMF3RdO62lM4dCATkYPlkplymZab+lEg3zvXFmM8ul4t2u51arZYGg4FOp1OV5JcqYqsH+f1+ubK4RMJTp05N+TozDYlUyiRGZfB0dKZUvBQcixiiKMprYeh0unHnK0wnpizppFnZWRAoyJ5VxMAVmZiXHo+H1dXV1Ov18lBKKhOcRVGkRqPhe++9N6YKlxbvmHWIqtYIqaLzBqI/yfZcAiko7ZEITU1N1Ol0cnn/q4W0SLqBuhJVB6gnVKgR+xaePn2aDoeDBoNBznmbKOKtnHeZnZ1Nk8lEjUZDjUZDk8lEu91Oh8NBt9s9a3PmRLbHSbowIyESybmoGwhTFEfGOoWMZFOOZgpTlnTq/PbIFvGMkyVYyzfOTs6dl4oum0wmarVa2mw21VzVWMRWMw8Gg3S73XItOSl8MlsR0SJGVVgksi0mVBJznHIpULvdrko5ygRMkXTh6KzsmE5or4rrrMkiEAiwsbGRFouFOTk5cnVvpRpVLgxCziKvdBKIKypT1c7xcs7IiBP36quvUq/Xq4oXZgpSJZ28nDo7KpH1j6sw8Nu9WAEAZ+uxfuVeiHVn0V29PC2r5w0PD6O1tRWtra04ceIEysrK8OCDD2JgYABvvvkmBEGA0WiU9zcajcjJyYEgCCgtLY0bK0xHm2YCqnYS0uAqAEAkkCXE79fS0oIXX3wRFosFP/7xj7F48eL4c413nRmAckn4SR1HkYQAuOwCNsesT1vlCuOt8mhOAAEi5qZiOnCykMj37rvvQqvVYvfu3bj99tvlRXd7enoQCoUARBZks9lsqV9sVkCEz3cGu3btwuLFi+F0OuVlOYHMe8lSJx1JEe3YJfwjVg38FtUrRhNPSAKCMBVeJYWKigosWLAAV65cQW9vL2655RZs2bIFjz/+OPR6/TRfffqRzLs5NDSEn/zkJzhx4gQaGv4nSkvvn/x1ZomkAxmNFa1zcmDkCsPfXJb/xNRNORmSLSMo7BlBEAiAa+v6SZL33HMP9Xo9S0tLqdVq5f3y8vKYk5PD5cuX88MPP5x6YyaJmbItpYlGsVP8Mh1I1ZEI8wzrN4D37Y96rWKY4jdXmGx/Rx7MeOwMR0ID6+JLDUjDQrGBYQlut5tNTU380Y9+xLVr11Kr1dJut4/rCSeLmSDURNeYrpSjmULKpIvMxM4ikEVjvU9Fusk8FpGJ0mbCFMUzrF83GnE/U18XKQPqcspesbLGbcJzR88bCATY0NBAi8WiSkqYLUHj5uZmVldXs6+vjxaLRZVyRI6SdLZ47ymTLm6LTDqRoqRqL0clWVT9ympXDI/uc0WqgKfefuWb47QLO9nOyDhjZYmTA7IKH6FIUqPRxNeoRS5vnn8jl8y/kQ+YSmPad5lfDf6NR/7X23zCaqVGczMf3fIDNh7+ZwaDX6nblKiNaUYyJGlubuZNN91EQRB4ww03pEVaX22kjXSiUtKJYYpRYkR/pSg/OJHi5fDoZ1kliyr1LLZVcsn8+VEizaemsm30tyuXOXI5nEDSxZzvskR0keHhK6rjw1ci45DN773Hndt38Ns3L2GZycSGgwd5rv/M6AsTcy/j1eJNFeMd//jjj8u27MKFC6d0nUxBqqQbZ46ECECAkE1wJOqhiOJoUEkUQYYhXr4C8fIIGImpRLYLWVGBBXS8/y5WOf4IkYTYZsOaopWIOFgihOxsZJG4ZfFiDA0NKS4tglnZ0f0ECPPnQ8iSrp8FyUETsrMhiCJycnNRUWHB4cOHcfH//h/U/sM/oO+Pf8TmB80wrr0Xr776Kny+fkBqIxLP75iq5xd7PEn09PRgzZo1yM3NxapVq7BgwQLs27dvwnMxFa9wtiCOhomkm6RurygchvBIQnUlhkc4Ej1+RPxXVmIdD3x+OaJ1297g/tOXR88dvdZ/UXisiKrWJfNzOT/6XZ7jGh6RVXJcW2MdoOh3z6eeaBZtEdfoV/PFFJMSJgsp5choNPLTTz9N6RyZbtslok9Sx0X+hSOq6rJIilcUajOKWFuOZISMlymGFSo2rNg+IkZDMW9w4PIV1THhtp0RxyJKXOWS4JHdwtFzc8xzR5qtIP4YpFN+9372H3xt32hSgt1uZ2dnZ0odNxaUKUdzvRJBqqSLqtesiGrgCMQrAObFaN3sbAjIAlSbBQjzssARScWKQFZUJc/PRnjkDP7HPzVhyapCrJg/Tz4GH/0dbq3IguV7YYgjArLmCVi4cCG+/vpr8PIVhC4No7PrY3T95t/x8b/9G362z4Gf7XsNw5eH5XMjPBK5ZjhyPEDwShic4H9BYQGe/W/P4VOPBydPnoTBYMDLL7+MRYsWYceOHWhpacHw8HDKWuPYsWNyMNvn8+Gxxx6L1Sopn3suQR57HR8Ew4CQPYbNEzNExo5KZG16G6o5n8rodWU7eHiT/Nt9992H3//+9wCAnJwc1fhrSUkJNBoNqqurkZubO7m7SxJDQ0M4fvw4jh8/jpMnT6K8vBxmsxlbt26VxzzHQ19fH3bv3g2dTof6+np5GG+uY0ojEhNiZCTpYHEqkDKEMwGx6fkWi4UHDx5MmL8WCARYVVWlqnk8HjLdRpsskqVPLMaVdBy5AoqAkD1vbCmXKhQDkh0dHThw4AA6Ojrknzs7O3HhwgWcP38eXV1dKCkpgcPhSG8bkkBLSws++OADHD9+HDqdDlarFeXl5WhtbcWRI0ewZ88e7Nq1a8bblQmY0oB/WluSQubJl19+CZ1OB6PRiAsXLuDixYvYuHEjli9fjm9/+9soKyuDXq+fktriBIPhE/0ORLJe9u3bhxMnTmDhwoXYuXMnHnvsMRQXFwNIf5mNTEeqpJs38S7JQeaagBjiiYjxQOJ4uXDhQuTl5WHXrl1Yu3atKp0HiBDiyy+/xPDwcMp23USEmOh3n8+HV155Bbm5uejv78c333yDpqYm7NixA0NDQ6ioqMDWrVthMpmuOfJNFmmRdFNMqwMAPPbYY7BYLCgtLYXP50NPTw8uXLgAn8+H3t5eLFq0CG+//TbKy8sj15yhNB5lypHT6YTZbI677vnz59Ha2orjx4+jv78fW7duxYMPPoiKioppb9/VxPQ6EuNBHPdrFOpZUIkM6qeeeooAqNVq5TkRhw4dotvtZigUuipGeDIpR4lK1x46dEhOSpDS8xMlJcx2xyJV+mRMAR1pMbSxcP78+RnLKHG73XEpR2ON1U60nqo0/yMnJ0dejTsTZnKlA7OedENDQ6paJtJk6+3bt6tm/Kead5bsLDaLxUKTyZSWCeSx129ubqbNZpOludPpnNXVC1IlXfq91ylAp9PhnnvugcfjAQCUlZXBZDLBZDIldC7SZdMNDQ3h9ddfR2trK/bt26eyxaZynfGO7ezsxPHjx9HS0oJFixZh69atcnp+Ou9tOpE5IZNJQtnBjzzyCLKysvD666/Hkayzs1OuwPnKK6+k7fqHDh3C/v37sX379mkd9RgPfX19aGlpwa9+9SsIggCz2Yzt27fDYDAkfY6rQdSr50ikEcoi1263m7W1tTSZTHKmSW1tbdrUkXQtu93Ov/71r5M+Pl2LpcQeKy0VbzAYuHTpUu7atUtO5c80xyNV+mQU6UKhEPPy8lQkUyZ3hkIhvvHGG1Mq0KxMOcqk2fJkYk+4oaFBrtFns9l49OjRGasZOBHmBOlIctu2barV98jRdcG0Wm3Kk1hCoRBfeumlKaccjSdtJpJEU5FUUv1lqWag5Al/9dVXab9WspgzpFOqWK/XK3t7yhUQJ4ujR4+OW+VoKkQaD9P14IeHh2VPeDprBk6EOUM6knJIIdGyQV6vl3a7XVWFfSxIC3QkU+Uo0+ylWIzXvlRrBk71nucM6URR5A9+8APu2LFD3hYKhdjY2Eij0SgXkxlP6klVjhIt0JHp5Joq+vr65JqBhYWF49YMnIo5IIri3CEdOVo6zO/3y2u82mw2leEfCATipJdyYbWDBw/K21MlWqYTdKL2+Xw+Vc1Au90+phOWyr3OKdKR5O23385bb72VDodDRS6/30+73U6dTicv601GVIxUgT1WCmY6eWYCfr+fDQ0NcukOm83GlpaWhPsm219zjnTNzc2qQonKxekOHjwoOwTt7e1xC3Rcx/hIpmagEmMuiz7XSEeSFotFDhAbDAYePXpU/u13v/sdb7vtNi5cuDDpBTpiU+In+p7stlT22b59+7RcJ3abKIrjnicUCsnOlhSKaWhoUBWpHOs6c5J0TzzxBBcuXBgXIP7e977H+fPns7q6elKqM7aTJvqe7LZU9knHORJtUxr48vqqgKqfxjtvc3Mz7XZ7pKrW2rVyUkKyfZMMMpp0ZETaSXU/fvrTn/KGG27gunXrUorZJXoYiX6f7LZMIl06r93d3c09e/ZQp9MRAGtra+n1esfsv2Qxo6RLViZFKkBFyNH3qYeFK/VcunQplyxZwo8++ihm7+SL6F0Lkm46r11bW0u9Xs877riDe/fuTYp0cc9czCBJF68mw/L/m266iUCksKJUhEb+E2KrPV3/m46/uH4HmJ2dHXl2iV58l131jOwdkYoPVa4rU1tkeNKg8ot6Ed34IrNZ0d2z8P/+8z9BMlKERxTByMsS+RNHt43+FgZFqve7/jelv7h+JzEyMgJAjFR/iFKM7Ef9BgHCJhHtFOVn9HBrFrI2nUbRynmYWdIpa2QzpsKREMNJxe4TZYlJeWSR0hij50s3yNgWZtY1ZqJ98YhSSABEYQD7v6vHXjoxwMPYpHhy5YfaUCmsQsEKzjDpOPo/LuGwoxJZdtf4h5MQoydpt5eg/myCJccFAMgak6jKBzPZhySXzZjkcZJkmGgf5TVSQbLtS6Y94x07Fs7t3469vy1B3ZE9kWUhVChAUd0jESLGK+Ppw4jYT2d9bEwtPFpoW9oUXU8LUNRCjsJlV9gVS9VrbqULmT6CkYntU65bq25e/LOZUdJJ65qqMFBH47o69YJsyv1hV61NJooiz9SXsMoVZphtrJziij7XkR5Iy8SrV3tkwpDFDKlXEaJrJzYfBoxFhapf2l/fi7v//uk4cSyiHa2sRBXewvEOhUoUzqL99H/Fs2YBWdiMt1zfwd6fnZiBe4hefxrtpnScezrbl/h6YZBE1tkB/EeiHYTY/dNk00n6TjppHM4ewHffvwt164G7C/Plg0S04/1/rsTW8gSlWDtaIVQcwrP1JTjcOkqqrLPtOL36IayMOg3CytUwHm6FK84NAWI95HRgOie/pOPcMz85JxuCIEBcsRLfAdB7+mzcPiTRsb8eZ6PtSwPpRAhQeJoxNy1iAPU/I945tDmmtRFiHTYWoUD1OkSIcvbMamwtJ1Y+ZEXJ4X+SnYb+ts+xatNy+Rziis2wrv85Wl0Kgsn8m1k/6VpGFjbjkGsneHgTSvYPyNtFDGD/d7PQWjCqzdLwVMY/RYd9G/DcHixHP7ynSlC0cvS3s2c+jzZMGS7JgogBtKEQ5ciGuHwTrBtO4Vft5yDyHDq8q/DQiqy4+Mr/HvADiErazJ8yOichlP8cHKhD9t4CCIIAQRCQLWwH3omsMceo1zytooAdlXj4573YuzIb87IexuExzI0sqHmSdbYdwsoHIADIwko8/eJO9PxLG86d+1ecXv0QVhCJiZUoFHMd04o4c2rF0/iNKjB/KrrenCgTMa2ko/L/2Xqsa7XIkexw+w8BfAcFK0ZJsaJgdcLzDLi84MrRm2L5VlSdegbbt3sjqjWWVxRwd0GC7dcx7VC/5OqycGo6ZiX4NEWQHLXrBuqxbhvw7lujdtzZM59DKFHabyJYbkHlqX9BmyLIK2IA7Z/r8fDK7Mi5BAFZeAhbq4BuQR9RrfINiiD7cbr7hypn5GrE5a9tSM9PQScCgvJBSCNFZHqDw2H6WL9BcmYjq2TLQcPowG/sEuIdlWBle3RNLNfO0cDveifPKmM8Z+q4s76fscFG0bUzPvbHya1rdh1Tw0R9HVsibvpqmYxld6l2ESGc2Y+SQi9eYgM2IXv0N05cm0PEAPaXPAnh3R7sWa6o7s4wBCF73GOvYxqQxDMHMqCADgigoxLCvlUY+M3eBGN2o7sJGCWjiAEc2FAA739XrL59HbMCV/9pCQA2/Rx8R8CT9vaEuxBR+0DhnZ6wF+Dzv48h3HVjblbg/wMw/RYWkNR/rgAAAABJRU5ErkJggg=="
|
<image>如图,量角器的直径与含30°角的直角三角形ABC的斜边AB重合(A点的刻度为0),射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,当第30秒时,点E在量角器上对应的读数是()
Choices:
(A) 120°
(B) 150°
(C) 75°
(D) 60°
|
120°
| 69,619 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAK0AAABrCAIAAACKfJW9AAATPUlEQVR4nO2daUBTx97GJxsRIshSUVZRVECheJVqUWpBoSggIhotGJHSV7HU7b22t7S0FxVEwYqGRaKAiAlgasSyiNXKoggqKqIU2REIS0DZlyxkeT/krVVkyX5CzO8TnMz5z5PkyZw5M/+ZA+PxeEDJBw8cagFK5AKlD5QAoPSBEj5KHygBQOkDJXyUPpBTbiRHLVps7rDZr6KDIYPqkDKoQ4mwpB8Lut5t+aKi6sH9YubQIADTpF2j0gdyx3DH48KKjhMXjwEAPrVdKZtKldcFuaOhospws+9MFZlWqvSB3NHf38scHAIAND14dCOlSDaVwpTjyvIGo7v8gOe+dg2NOSYu/zmwxcj0IxlUqvSB1GEx6QwGV2MGRvBTBtuobYN0ndnzdDRk1IFTXhekziV8sJ39tuKGHsFPma5vtHDhQpmZACjvF2QAbqtr27T5Rh/NgFrIRCh9IEUyk0+DOcu4zyrnzzIx0hC66W1paampqVmzZo00tI1CeV2QCryepuOhQXVdA80vim6WUo3nWogQ5Pz583fv3pW4tjFR+kAqUC4E9k0z/fe///vVF7bqJrxZC42FjZCfn19XV/fdd99JQ977KH0gebqq7z3j2oR85wcAKL6dpzmibaIFEyrC8PBwSkqKl5fX9OnTpaNxNEofSJ5H9/P+ZbcZBUBPbfG5R02zHV1QQkZITU1VV1ffsGGDVPSNhbKfKHmmY9RKy4oKmPVlty8PD/DUVYT7sTU3N2dnZ58+fVpK8sZE2R5IHju3L5uf3LyckWuP++kLc8zLynKhhupOnTrl5uY2d+5caekbC+V4onyRk5NDJpMTEhJQKGEvJmKhbA/kiIGBgUuXLn399dcyNgFQ+kAG3L5929fXt6GhYdKSMTExCxcuXL16tQxUjULZT5QiNBrtVGRkW2vrDh+fSa/3paWllZWVwcHBstE2CqUPpAKLxbp8+XJGRsbnDvb//eUXdXX1SU+5ePGivb29qampDOS9j9IHkuf+/fspKSlsNjssLMzMzEyQUygUCp1O9/b2lra28VD6QJJQqVQSifT06VMsFovFYgU8q729/dq1a3v37p02Ter5qOOh9IHEIBKJOTk5FhYWsbGxM2fOFOrEefPm2draSk/bpCh9IAFKS0vPnTsHh8N3797t4OAg7LklJSWJiYlS0iYgSh+IBZPJjI6Ofvz4sbOzs5eXlwgNe2xs7JdffjljBsRZKkofiM7t27fj4+PNzMxOnjxpZGQkQoTU1NRp06Zt2bJF4tqERekDUaivrz9//nx7e/u+ffvs7OxEC0Kj0SgUSmhoqGS1iYbSB8LR09OTnp7+xx9/rF69+vjx43C46AOyeDzewcFh0aJFEpQnMkofCEFeXl5KSoqqqurx48fnz58vTqjc3NzW1tbAwEBJaRMTpQ8Eor29/fz58y0tLVu3bnV2dhYzGpPJJJPJPj4+kuoeslpfRMSlOrh7dDTDVrhYG6gJ/bUKdAKdTr979y4SOVVNA4fDeTyeIDPsMNg/E/FwOByJRNLp9EePHj18+JDFYm3atElHR6egoIDNZvMLjxkEgUBwudy3q3sTFgaDIRCIzMxMGo3GYDDy8vJEmPdnsVgrVqzQ1tbm//vy8a3I8xQza+u/Cs79Voj42OmssAGBgD7o7e29e/cuhKNd4sDj8WAw2Ntf8ATwi8FgMBQKxWazGxoaSkpK0Gj00qVLzc3NBwYGbty4wY8JxvEBj8djMpmqqqpjVodGoxsbG+/cubN27dqqqio6nS7COxoeGp5rYsL3AZfeQSFHWnuE/4+LdVlmeBMMPm+GKF0WQfNQGAzGePaXczo7OyMjI52cnBwdHQV5sygUisvlNjU1xcXFVVRU+Pv729vba2hocDgcLpf7dykYGs1fkMxjMVlvB21tbQ0KCtq/f/+KFStGRkZGBR8aGgoODjY2Nt6/f7/I74jL5aqqqvL/fppH/qMR9qPfVgDA7/EHhvXXebuuFyGmoE39FG0MAABGRkY6Ojo1NTUuLi4CnnLr1q3U1NRFixaRyWQNDQ3+wVG3BsO9r1pe9RvMNcWg0W8fnzdvnqur66VLl2xsbNDvvgQAuHfvXn9//8GDByWUaTLy4q9n9puOAQDqiq4SypDH3US8iZ2ql3yh8PDwOHPmTFNT05w5cyYuWV5enpycTKPRvv322wkG/Pvbq8JOxVXVvOibNj8+6uT82e9kl+NwOP7Sg+Dg4DdXcQBAf38/kUj09fWVXLoRSgXOvZV5mbFAnXyB0NaK6KJ1A73J57jfRzHzkR4U5jW9/ufSa2lpaWJiQiKRJjilt7cXj8cfPXp07ty5JBJpwlmfoccvmnccCv8989bSGa9/IqS+X+Lw4cMGBgb79u0rLi5+czA5OVlXV1fYCYiJsVvj3v48P/9Zy56gk19/sbi2tkbEQDxFYzg1Nnimjkbin9VvH+3v79+6deuVK1fGPCc7O9vHx+f777+vrq4es8DbcDg8FmuE/zf1SdaSvaH0cUoSiUQsFnv48OGamprq6urt27fTaDSh3ozMULzrAkpv/uI1JnN0EO/0atXV1X/44YcjR45oamo6Ojq+Od7c3Hz69Gk6nb5t2zYBOxBwOIDD//9zY9KH15gvGK/rhMPhbG1tr127dvLkyWfPnpmZmc2aNUu0dyV1oDaiVMBj16XnlL9/vLCw0N3dPS0tjf9vYmIiFouNjo7u7u4WqZ6RWDyhobFz0nLBwcHOzs4kEkmkWmSB4rUHAAAefYQNxrrLtbOzMzAwCA0NzcjI0NbWhsPhISEhAqaOvc+jm38scVw7d84kKSd9fX2NjY1Hjx5dvny5aBXJAIX0wUSoq6vr6Og0NDTgcDhXV1eR43RUF/fNMHZcNB8AwJ7wc8Tj8QsWLJBnE4APygcjIyNXr17NysqytLS8fv26mpqayKHK/rwUfaVowZJVA+317TWNH2/zszMZe6agsLCwrq4uLCxM5Lpkg0L6AKaGQk5Xf+eLefjwYUpKCp1O37t3r9iZgMzalm41NLql4kHjc66Gziq/cUzAZrNTU1OdnJwMDQ3Fq1H6QN1BkTzppJhPDGa6bPItb+7n8XgDAwPHjh3bvn37hQsXZKyESCQGBARwOBwZ1ysCCtgeGJks+pGQhOCytaajr169mp6ebmFhceTIERkvEWlpacnKygoMDBQnV0VmKOx65+7u7hNhod29/Tgczt7eXvYCQkJCEAjETz/9JPuqRUAB2wM6nU4kErOysjZs2ODj4wPJDFlxcfHz588nHsmWKxTNBwUFBUlJSVpaWjExMZPOKkkJLpdLIBC++uqr9+cb5RbF8UFtbS2JRKqtrfXy8pLlzkLvEx8fP3PmTMGnueUBRfABl8tNTk7Oy8tbvHhxQkKCOAMD4tPS0nLz5s2IiAgINYjAlPdBcXFxUlISBoM5ePDgsmXLoJYDfv311/Xr14uZzSx7prAPent7T5061dTU5OrqisVi5eH2LCcnp6+vb9u2bVALEZqp6gMKhZKWlmZjYxMeHq6npwe1HAAA6O7uJpPJ3t7eb1LZphBTzweVlZUEAqGnpycwMPCTTz6BWs4/JCUl6evri7+6ARKmkg+6urrS0tLy8/Pd3d137twJtZx3ePr0aWlp6eHDh6EWIiJTxgfZ2dnp6em6urpRUVEGBgZQyxkNkUi0s7NbsGAB1EJEZAr4oKryRWLSxa7Xrzdv3ixOxoD0yMrK6u7u3r17N9RCREfefRAbHfXw4f1ln9geDg7GYIR4xJHM6O3tJZFIhw4dQiAQUGsRHfn1wb3CgjhCvIGB/g+BgYstraGWMy6JiYnm5uZynm40KfLog05aS0zsucaXdV7btrpu8JDn9XRlZWVFRUWQ724kPqKPvdwn//qzf6Ao6zTHh8lkUihX9gTsU1VTi4kluLlvkmcTAACio6NxOJyWlhbUQsRF1PaA3kaiZNBglhIcw3vy5EliYiKLxQoNPSYnu4RMzMWLFzEYzMaNG6EWIgFE8wHn4eNnyz9zqb9PHQFA/LnVjo6O5OTksrKydevW+fj4iB1PFrx69er69euBgYFTunv4BlF8UPP4LtzAasUwtaqoWXwFZDL5xo0bhoaGERERUyCf82/OnDnz6aefysPMlkQQ2gfsVw11XWouNoa1DQgEHC7OU8mrqqpiYmKYTOaOHTvWrl0rRiRZk5ubS6VSDx06BLUQiSG0D25SwiIorQlx03o7mmi0AeRZ0s8BOGGjsNnsqKio4uJiFxcXLBYryHbk8sPg4CCFQnF3d397TftUR2gfrMGFmK3pY7I5Zbcu3bpRv2mzi7Ah8vPzExMTDQ0Nw8PDodpmXhzIZDISiZSHzS8liNA+UFXXm2+mBwCANRo9ye80nyXEb6KxsTEpKam6utrf31+y2wDIjPr6+lu3bk3d+aTxEH0cCaM71+pTnoD3jcPDwxQKJTMz087Ojkgkyv75Q5IiISHB1tbWwkKU5/TKM7JYv5CXl5eWloZGo/39/a2srKRdnfQoKCggEAhT2sfjIclx5aGhIRgM9naaaHt7e1xc3MuXL52dnXE4nATrkj0sFotAIHzzzTeKZwIgvg+eP3+empra1taGwWBQKBSPxxscHNTV1TU3Nx8cHCwpKTE3Nw8PD9fX15eIXAiJi4szMTH5/PPPoRLAHWwK3X902tJV3+31k3gqpug+yMzMzMjIQKFQn332maOjo5qamqamJgKB6Ozs/PPPP8PCwlauXHngwAEbGxsJyoWK6urqoqKikydPQqgBPl0HY6iV38b4jxSCi+KDrq6u8PBwBoPh6+u7dOnSUWkBJSUlbW1tkZGRbm5ucj5LJDhnz57duHEjVAuk/kbVevliLZUl3d192toSfm7HuD4YHBwclQkOg8G4XG51dfWJEyfmzZsXFBTE31qGyWQikcj+/v7S0tLY2FhNTc1Dhw6ZmppyOJyRkZGpvo4WDodfuXKlr69v5cqVDAbjrS1VAQAAiURyudxRByULj8fj/9J4w11ND+7VIFs2h+RvO3BszxZJPs9p7PuF+/fvp6enT5/+zvaQcDicxWLl5+fr6elZW1vD4XA2m62ioqKiosLfh3hgYGDZsmULFy5EoVAK4AAAABqN7u3tzc7OXrJkiZWVFYPBePMSDAZDIpE0Gk1FRYWfqC7x9wsDMB7gMBisffv26+vrvarO278H73823oL9LKPsNXa7l5bkugljtwcmJiZOTk4qKu/MHvD3oHZwcOD3BwEAGAymsbGRSCQODAy4ubktX75cQ0ODzWZL9fchYxISEpYvX47D4fg//TfHYTDY4OBgbm4uFovlDydIxQc8LpvD1tLWBgBUVrxwOxZtb6Hb9vg1RoWNkmhfcWwf6OnpCbI4pLCw8M6dO4sXL/by8rK0tJSkLvmgvLwcDodHRER89NFH779KJBJXr169Z88emWjpfVpL3+1pDAC4Xt44jDGfPukZwiDi/QKNRjtz5gyNRvPw8PDw8JCoJHmBxWLFx8c7ODiMaYKSkpLs7GyZPV2po/YZR99GFYCGe5ernjB3nZB08osIe+kQicQtW7ZERUV1dk6+heTU5bffftu1a9eYL1VUVHh6emZkZMhOzdCriB83uLm5HTiI76R2SDy8cD54+vTprl27AgICKioqJC5Frujs7PT09CwrK3v/pcLCQm9vbzKZLGNJzIG2ly9f9g1JJbig8wttbW0kEunBgwdeXl6CP7l46hISEqKurn7w4MG3D1KpVEr673U1Vd/477b8WH5T6UVAoP5Beno6mUw2NTW9cOGCpqamlCVBT0FBQVlZ2dmzZwEAPB6vra2tvr7++fPyF38959FfmVqtbBvgLFKsZxZM0h6UlpZevHhxaGjIx8cHwqF1WcLlcp2cnBAIhL29PYfH5Yyw6cN0JpOpb6jnsm5VU1nd7dJnTTXVju7+Af6KkKnMZ9z2gMFg4PH4yspKW1tbPz8/hZxkG5O4uDgzMzNnZ2cej8fhcNBotLGxsZWVFQwGAyM9dDXz0zt8W++kxP3+oIO3cZaCjJuP44ObN2+SSCRjY+OgoKCpu4ZXBOrq6goLC3/++eexh0NQWp+YAsDquds8YOO5TWFMAN73AZVKxePxHR0dfn5+UzR1TBwIBMKqVasmGhNjdAR/i/2tEnM6TnEuCgC8O35ApVI9PT3j4uKGhqRzdyLfXL9+fefOna9fv564WF8X9fQv336x43/bFehDGj1+0NLSAokOyOnp6fH19c3JyRGo9OvKwOCjhZWSH8+BitH3PnK41YhsuHz5sqam5vr1gj0Ek9OnrYHU1pbsGD+UyOO6d9lTVVWVl5cXGRk5cTHqi6JLV3M5PADn9a5137RIF8oNOyWL0gcAAJCQkLBmzZpJV1cikCrqGuocLrCwcbP911LZaJMNCrvvvuDk5OSkpaURiUSohUCJIo2NisLw8PCFCxcCAgKgFgIxH7oP8Hi8tbW12E9smvJ80D4oKyvjz6RDLQR6Plwf8Hg8AoGwadOm2bNnQ60Fej5cHyQnJyMQCAVbvi4yH6gPmpubc3Nzvb29P5x51In5QH1w5coVMzOzVatWQS1EXvg/JfGw/hfUi6sAAAAASUVORK5CYII="
|
<image>已知直线a∥b,∠1和∠2互余,∠3=121°,那么∠4等于()
Choices:
(A) 159°
(B) 149°
(C) 139°
(D) 21°
|
149°
| 69,620 | null |
149°
|
"iVBORw0KGgoAAAANSUhEUgAAANgAAAARCAYAAAC/x2KRAAAOnklEQVR4nO2be5CUVXrGf+d8t+6e7p7pHge5r0AowQvKwoi10ayucYElrqmMUcoIpqL7l+hqBSGuRlZKFkE3pUupaxQtEDYYV7BKcSFuLGArVYmIbPzH2+IORGCYGzPTl+9+Tv7o6c9grTPqyDqp4qmaqr7M+b5zznfe8z7v85wWSimtlEJKSRRFSCkxDINKpcI777xDU1MTkyZNIpvNAhAEAVJKTNPkDEYKhY5iEJrA97FTKZTSCCGIYo1t28l/xkqDEPhhhGUZSCFQGkwB4mscwXAIwxDTNPF9H601QRDgeR5aaxzHwbIsLMvCcRy01nR0dNDS0oJhGAgx9Mi01pTLZTKZDFKC67qkUg5S1tsZgKD3ZCfFwhjCMMb3QrK5FGiIYzBq//IloYAIgCD0sa0sIKhUyjQ0ZPG9AFGpVHQ6nT6l01JKjhw5wnXXXceTTz7JRRddlARUGIYYhoGU8sv26gwSKLTSBL6LZVmIwaAxTAsQuK7LwMAAAE4qRWNjIxXPI+U4CCHQwGjf5oIgQGtNqVTimWeeYePGjfi+z7hx4+ju7kYIwYsvvsjs2bPxfT+Zh66uLorF4rAbuVKKIAiI45BUKo1hQBiFCCHo6zsJWhLHEa4bYtsOhmFgWzbpdB7QOCk5bCAPcXcgpG+glyhQaC1QCkBiWSks08FMpVJorYnjOMlcQgi2bt3KtGnTaG5uPiWYpJRnguurhFKYloXvusRxTCaXBwQdHR3s3buXNWvWUK1WueKK7/D3y5fz2u5/429vXkJzUyN+HGNIgy+9Pv4IsG0bpRTFYpHrr7+ePXv2cNttt9Ha2kqlUmHTpk0sXryY1157jSlTphDHMVLKwaw0/DoTQgxmehMhBGEUYJk23T2dbNiwgc2btmI7FmgDrSEMYiZMmMhLL/2SMWefNcK5k8RxzMPrH2bLlhdRcW28Atiw4XFaWy/F9DwPpdQpA9q7dy9jx45lx44dmKaZfK6UOiXatdYjiP4zqHMTt1whlUnjGAbVapWjR49x3V9fz+WXX86OHTtIp9O8++773HDDDSz+m5tAGCitMQ1jVNNDIKGFqVSKpqYmpk+fzrx58xgzZgwAy5Yt4+jRo6xdu5ZHHnmEfD6P53lkMpnPdX3f9wmCgHTawbLMWrJQEcXCWSxdupQPPzzE0qVLOP+8WUSR4r/+8wBvvXUAreVXsDEpEIIf3nEX7777OxYsWMj8787n7QO/5Uf33su6dY+cmsGklPT19dHV1cW8efPYtWsXqVTqlEueCaivEhohJemGDAP9/RTOasH3fZYtu42rr76aFStW0NzcjGVZFIvNtLW1cfHFF2OZJhUvwLEtDGN0s4kwDJP66r333mPMmDHEcUy1WiWTydDS0sKUKVPYt28fvu9TrVZxBimw53k4jjNkJrNtu5Y1hEZrBulomabGJsaNHceYMS3MndtKoXAWu3e9zpVXfptstoGUY3/mNb8IDGmTy+WoVit8b+FCJk48B88L6e/vIwx8pOu6Cfft7Ozk0Ucf5ZJLLqGnp4fp06fjOA7wSbY6E2BfITTEYYg0DBoLBeLA54033uCDD37H0qVLKRaLtVpLa0zL5IILLqAhk8G2DdKOjef7qBrpH7Wor5lKpcLrr7/O1KlTKRQKpNNptNZorZP3dSbleR6+7w8bXHWRA8B1PcrlEpZpkc/liVXE/v37GTduLH0n+3j1lVeI45imphzfnf8dcvkG0CMeHaA5+Nv/5pxzpnD06HE6OzvZvPl5Fi26hosumlWrkdPpNL7vs337dl555RX27NlDX18fbW1tpxSZ9eDSWp/y/gy+JAQYlgVCI4DO7m7WrVvHrbf+Heeddx6WZeEPBpFpmixa9D20AD8I0ZYknRp6AY4GWJZFEASUy2X279/PjTfemGS0IAgwDINSqcSkSZNIpVJEUZSUK8OtLyEE2WwWIQSWZeI4NrGKQIMfeHR2dvLsc5t56ufP4rpVNm3aguM4VCoewh5UEEeEWv8OHz7MgQNvsetXv0ZKg5/9bAPf/vafITAxGxoaCIKADz/8kObmZnbu3IlSivb2do4ePZoM8tO116c/O4MvCV3j8TqOKZVK9PT0MH78+KTerTMIzw9Ip2qvTdMCIAgDDNtGjvLnYFkWruty4YUX0tzcjBA1hTSTyfD++++zceNGVqxYQTqdTlTEIAiS10Ohbi9ZpoVGUyl75LI5XK/K679+nX/66cPMOHcGP/nJOqZN+xPiGNJpG4GoyfRfUIb9tO7gei779v2G++69nznfbOXVnb9i5cqV/PNTT9PaOgezv7+fjz76iAcffJDHHnuMiRMnUi6XefPNNymXy7iuO8hxRaI0SilPUR5HguEoznA79Ejbx3E85PenFxpihUAQDfpFlmUhpUSpWr/qtknKcejs6qFQLKCFREpwbButIObrHMPQMAwD3/d56623mDZtGrlcDoBMJkN3dzfr169n6tSpXHHFFTiOk9hAQRBgmmZCI4e6vmEYKB2jtaYhk0GpmOPHj1MqlZgzZw5jz57INdd8n2KxQKlUIZtNYZqgI4hjTU1u/8OoU1whRGIJ2LadPKNjx47R29vL3LmtTJgwiZtvXsJTT/2cf3/jDS64YCbm448/zrZt2+js7OTEiRO0tLRwzz33sH37dgzDwPM8Fi9ezOTJk5PJsizrk4GNsAYYboca7vojzaJfL8WqmcduuUQ610hjYyNaa3p7e7FtJ+lfuVymq7uXvr4+GnJZDNNCCkEUK2xpIMTopYm+73PixAkeeOAB7rrrLkqlEkLUbIibbrqJTCbD1q1bk43dNE0qlQq5XI4gCBLB47NQN7LjOCaOY8LIJ5vN8s4773DZZZfR1NhIEFa59trvU6m4PL/5FyxYsIApUyeBYNCUHnr+XNfFNM1EUKmLL4Zh8MH7h2idO498Pg9Ab28fPT29nPONc2qJqaenR5dKJQzDIJPJkM/nOXz4cBJAdXlVSkkYhkk2g6+GIkZRNOT3wxmNw7Uf3TRWYSBQKIQ0IAr5l399kTVr1vLA6tXMmzePTCbDwYMH+eVL27nvvvswbJtioQnTNBkYKJFNZzCkQI+8Yv9KUZ/3gwcPcsstt3Do0CGmT59OtVpNFOvbb7+dhQsXMm3aNAYGBpLaSymVbO7D0cQ6sxICDEPi+wH9/b3cedcPWbJkCbNnfxPHSeN7IatWPcCMc8/jBz+4hVy+Aa00sdII8dlzV2drQgiiKKoJTqZJFEV0dXWxcuXdtLW1ceWVV1GpuPzltX9Fe/vvefvtA5x99jiE/lT+jaII0zSpH5+qo1qtJlGslEoy2UgzwOc5DjOS9qMbMaEXYNkWlUqZbC5HrDS7d+3i7hX/kJioV/35Vdx22zKam1uwHAtpWERRjGkILDl6x1+X2g8dOkRTUxOGYRBFEaVSCcdxmDRpEpZl0d7ezvjx47FtOzkqJaXE9/1TNvTPuofv+0gJhmnw8ssvs379Q3z00e9pbi6Qy+UZGKgQ+CGlUoXNm7YwZ84cms9qxHND0pmhr1+tVkmn00ndWH+9e/duVq9ezQcfvEehUKSpqZne3l6mTZ3O+ofXM+PcGSgVIpRSup5mT548idaaYrGYRG5fXx+FQuF0zP8fBSOt0U4vNGhdE6NUDFICBp5b4djxE8mZvUKhwPjx4wHwIoVlSqpuQCZtM2Ih7DTj/4oCURShlMK2bcIwTBTG+tlWrTWVSiU59/rFoKhUKygV09/Xj1Ixh4+0k8k00NRUwPdC8vlGxp49FtcNyeXSX+oMYl188ryaShkEAUEQ0NFxgmKxmW9MnkyxuYDW4Hsewvd9DbBt2zYeeughANatW8f8+fNRSqG1xjCMGr8Nw8R4rme6OI6HzTJDwbKsIb8Pw3BE7Uc3FEJplFZUSgM4joPp1Iz/fb/5D+68807iOObVV1/l7LHjcRyLUIPv+YnJPJoDrC7F27bNzp07Wb58eTKeqVOnJvS/7pNBzTIyBk+0DOeD1e9Ra1/LirU2gh0vb2fVqvvRGp544gkuv+xKXNfDNEy0VnhejOOYyM8xgeVymSiKyOVyie5QZ28vvPACq1evxrYdtmz5BeefPwM0VCoeUupaBnv77bdZtGgRJ06cAKCtrY1Zs2bR2NiI7/s1GdSyyOfzCCE4fvw4WmsmTJhAtVodUYANF0CmaQ5b5A6FkYoopxc1kSIMa17XxIkTqXgehw8f4dnnNtHR0QHA/AULuPTSb1EsFok0ya8efN/FhFF9FjGTyfDxxx/z3HPP0dnZSUNDA62trcydO5eWlpbB+kmQy+US1TqXyyX1zudRkWubrMIPfEDjeS5PP/0sHcdr6/lbfzqPtrbrcasBDZksvh8QBBHptI3SEUOpiFEUYds2DQ0NSYatr6nu7h6ef34Lx459jGk43Hrrraxbv5ZMOoc0ar+QMIUQZDKZRCxwnBRdXV2Uy2VSqTRCSEyz5mPU+WjNdY8ZGOgnCMIRBdhw+P8dQMNBo2SMimKkkLQf+R9cz8M0LKrVKlIaGIakp7s7qV0s26F/YIBiUwEVRoSor7kOrT978Qc/O3nyJFEUJXaO7weEoaKhIVdjx0IQhiEdHR3k83ksy6Krq4vGxsZEWBsKUspEOMlmMwSBT29PH45jJ/K6IU3a29sZN3bCoJZgoXWM53kIObRMb5pm8hObel9yuRxS1g76BkEACJTWWJaNZdrUbEqB1gLT9z2amvKsWnU/y5ffTbFY5Mc/foCZM2egNRiGiRAM0sXaw6xvKjWPYmQP93SLHKNdJKkpZhIUuL6HbVtEkQJpsmHDBgzDYM2atVx88SxKA2Vy+SxKa9BiUGIeXephDZ/0SWtFuVxh5syZ3HHHnQgMfnTPfbReMpso1INGr06UQ+AUf3W456eURkqBUhql4sTUHjduPI8++hhxHHPvvf/IhbNm4bm1Q8SGNIgihTTEYPb/7HvUj6rV/2rrXybq5eTJk1m58h4sy+Taa/8ChKZadRFIXM/lfwGIwTIco8cPdQAAAABJRU5ErkJggg=="
|
<image>如图,已知线段AB=20cm,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3cm,则CD等于()
Choices:
(A) 10cm
(B) 6cm
(C) 4cm
(D) 2cm
|
4cm
| 69,621 | null |
4cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHAAAAB0CAYAAABdcbZdAAAetUlEQVR4nO19fVQU193/Z3YximLW41kEk1UILBWFVCn01B41RAVrgiAnakoaPdCmig020ceC0aRHc9SoMVXaasS3SJ7E07zgg7H52QioUDXRgkrTJeLDLoEiT1DUYBFF3J3v74/lDndmZ5fdBWRp8zlnYGfm3jv3zvd+X+/LCERE+A4+DUYiQRAc7vk96Mp8B88giqJEQI1G40BEnyIgEan2MnfvA8CtW7dQWVmJ6upqfPPNNygtLZXuWSwWXLlyRZbeYDAgPDwcADBo0CBMmTIFBoMBERERiI2NRUBAgPcN8hK8UFT7zb8DYaCL0CtXruD48eMoKSlBaWkpmpqaMGXKFIwZMwbh4eH44Q9/KBEhNDQUISEhsvz19fWoq6sDANy+fRvl5eWwWCxoaGjA6dOnYTAYMH36dCQkJCAhIQFBQUFudSR30rjKK4oiADuxeMJpNBpZ2gFJwOrqauzfvx+HDx9GW1sbnnjiCUyfPh3x8fGIjIzsUdnsxbP/VVVVKCsrw8mTJ1FaWgq9Xo/58+cjIyND4tzeABE55TZlRxiQHHj9+nUcOnQIe/fuRWhoKGbMmIEZM2b0mGCeoqqqCvv27cMHH3wAo9GI9PR0LFiwADqdzusyeY4D5FzHOI4R2EEPko+jqamJli9fTsOGDaONGzfSmTNnyGq1ktVqJVEUPSpLLb2nZfAoKCign/70p6TT6eiVV16h5uZmj+tjtVrJZrNJbWLnrF6iKEr31erqswRsaGigJUuWkE6no7fffptu3Ljh0FBviNhXdc3KyiKdTkfLly+npqambvMw4vFE44nH/rPDGXyOgK2trfTKK6+QXq+nAwcOUEtLi6yxfENtNpuUrz8IyXMJkV1asLqvXbuW2tvbHerFcxdry/3792UEc8VxSshNmn7G4cOHERERgcDAQNTU1GDRokUYPny4TLkDcn+IXDi5fQXlM9n/oKAgbNq0CSaTCRaLBePGjUNxcbGUx2azSfqOb5NWq5XpOkDd51ODTxgxDQ0N+MUvfoHr16/j4MGDiIyMlDWQtwpZo0RRlM4fJPE8QVlZGfbv34/Ro0dj9erVGD58uOw+cwt4l4H9J3fdkF6QJD1CeXk5BQcH03vvvecgHtWUulJX+CqYKOzo6KA9e/bQggULqLa2VhKN7ODb6A0eOAH5l56fn08pKSn0t7/9zUGp80TyRKn3N3jC8J3wxIkTlJycTCdPnpTa0hsdsV840Gq1UlZWFv3sZz8ji8Ui9T4l1xF19WRf5zgiucmvlCSiKNKlS5fomWeeoV27dqm2x1n7XLX7gevAW7du4Y033sCdO3ewceNGDBs2DIAiutCp13jd4Kt6DuhysomL4jDw9SYitLS0YPXq1Rg9ejSys7N7HGt9oFZoXV0dfvWrX0Gv12P79u0YOnSo7D4jFHVaar5opLC6MUuSHayzEWdsKS1LQRAwcuRI/PGPf0RtbS0mT54Mi8XS4wo9EJw7d46efvppKigocPDplP5PT5R6X4IZJR0dHQ46mflzrD1Kg0xNDG7evJl0Oh2VlpZ6Xac+J6AoilRbW0uzZ8+mc+fOOdUR7LcvEo4RqKOjg+7du0cdHR2q1jEfRXHXGS8sLKTAwECyWCxe1a1HBHRVNdaQb7/9ltLS0iTOUzbUlzmOgdWzo6ND4jJndVdKFXewYcMGioqKotbWVo/r1mtGDHGOJ3XqBJvNhlWrVmHs2LF46aWXHBQ6AJ/Uc2ogTi8TN/Sj1WqlNHz7PW3PokWLcPv2bRQWFnqUzzMjRrRX2lych+JO3UsqISLWuLy8PADAr3/9axmRWAM1Go3bIaP+Bh8B4vs8cYaMMq0n2LdvH5qamrBu3TrPMnrKsjaqphSAyhvlekEZYTh69CilpaXRzZs3HQK0vu7POQMffGYBaCLqlTaJokgNDQ1kMBiosLDQ7XweEzAvJ5tWr15N9ffb6d69e5JS542Qs2fPUkpKCtXX17tljfk6+I7Z1+0oLy8nvV5PJpPJrfQeidDivdlAQgLwBUGjsUfQ7ZH0LlHS3NyMrVu34sUXX8TYsWMBYMCJSzXQAxr1iIuLQ15eHpKSktDc3NxtercJSJYiFIkJWBIGbHrYhkcFLafXNBIB33zzTTzzzDOYNWuW/QGdhHNZdv8PiLgE64BKPd5XmDdvHhYtWoQXX3yx27RuE/CVvBK8ucROlJRIo6pSLy0tRWtrK5599lm3G0g9mL3VHyDOAOtLvPbaazCZTCgqKuq2Qk7BxHzRnt+QABA6j5Sc3UQkDz7fvn2b5s+fT+Xl5d2OGgxEPdgfKCkpocjISGpvb3eahutGopKwEAS76CymRIidIrKmaBeemhpr94nQ6cNBwLp160BEiIuL69a3G0gc15+YOXMmJk6ciLfeekv1PhHxIlQDXugJggCyFEHzX12ikwB8XWcBBFtnInu6b5q+QXV1NS5evIjExERUVVX1TYv+w0BE+P3vf4/c3FxcvXrV4b4gCM5F6K6cZAI0BICO1dhFXnaKoxgVRZHeeOMNWrx4Mf3hD3+g3Nxc0uv1lJmZ6dbsrO/QPZYvX04vv/yy6j2nBHTQUk7U1s2bNyklJYWSkpLo8OHDRETU0tJCv/nNb+jhhx+mDRs2OJXh3+lC99DU1ER6vZ5aWloc7jk1pRy0lBO1tX79ekyYMAFNTU0IDg4GAOh0OmzduhVVVVWorKxEaGgo3n33XXUR8B26RVBQEObNm4ft27c73pSR0wlDqF0Wiai5uZl0Oh01NTVRcHAwNTQ0qOY/ffo0TZ06lWJjY6mkpERezgAOrT1ImM1m0uv1DiMWXg0nsdedm5tLGRkZZLVaSavVktVqdZmvoKCADAYDzZkzh8xmszeP/reFO504NTWV8vPzZdc8IqDyIZMmTaLS0lJqaGig4OBgt8qwWq301ltvkU6no6ysLI/XEzwo+KJUKCwspPj4eNk1j8IJvM6qrKzEt99+i/j4eDQ2NuKxxx5TimbV31qtFitXroTZbMagQYMwfvx4bNmyBffu3XO7HtRnYSz5CiFfQ3JyMqqqqlBfXy9d8zoelJ+fj4yMDAD2RZajRo2S3e/uBbCJTWfPnsWpU6dgNBpx6NAhAI4EUp733cvVQBnQUHt+f0Gr1WLhwoU4cOBA10Vv2dlgMNClS5eIyK4Lly5d6m1RRGQ3dGJjYyk2NpZOnz7do7J6BrWpHb4z3ePs2bM0btw46dwrDqyurobVapUWVzY1NSE0NNSjMkjRq6dMmYKKigqsWLECaWlpWLBgQc+n3HkFeUSKXfMVxMXFobGxEdeuXQPgZc3KysoQHx8PwE6IK1euSD6gu3A2LPP888/DbDZj0qRJiI2NRU5ODlpaWrypptfwPe3XBa1Wi2nTpuHkyZMAvCRgaWkppk+fDsBOiIaGBhgMBq8qpKbPBg8ejFdffRVmsxl37txBaGgofve738Fms3n1DHdhLs6TBeLnrtrTp8/zFvHx8RIBvdKBwcHBkv4jIoqMjKSvvvqqh9LdOUwmE82ZM4eMRiMVFBT0yTPssd9kqunUdyJZKAWgudm7++R5PcHZs2cpMjKSiLxw5Ovq6kiv18uuDR482CFO19t+lCiKVFJSQlFRUTR16lQqLy/vUVk8duUkE1KyHdLVFO0iIEkiqi+BvXOPCVhSUiJzJltaWiggIKA369Yt8vPzKTg4mObPn08NDQ096iw1RbsJABWZHQlrJ2Ay/a/oOsLUH5g0aRKVl5d7boVWV1cjIiJCOv/mm28c9B/1kd/Eyk1PT0dNTQ2ioqIQExODNWvW4NatWy7r4KxGe3ZkIiVnNxLD5dt7AJ1jn/BNp95oNOLy5cueGzFms1m2N0t9fb0DAfuqwXy5AQEBWLduHUwmE5qammA0GrFz505ZWp4YjjUSQTDj8hHg6cQZjs8goPjTt5CSMwdGH3IjWJsiIyNRU1Pjec2qq6sxfvx46ZwNIzn0+D7gQlLMgAbsQy0HDhxAaWmptEnC0aNHAXTXkTSApRZHAIQ9ZlTcE2EuycPWI8CyJUt6tQ09BeuYkZGRMJlMnhOwqakJjzzyiHTOXAhX20H1FMStyWPnSkRFRaG4uBi5ubnIyclBYmIiKioqXBccHoZkALVfm+XPQy1WzvoV5q7ag8RwQC281p8QBAEGgwE3btzwnIC3b9+W7bZw5coVr33A7sA4jp+62B1nJyUlwWQyITU1FU899RR+/vOfO84n6SxCgBFP5yRj6Y7dXeVbiqARIoCc3Ti8eXFnBt8QoXzbhw0bhtbWVu8IyC8LvnbtGh599NHeqSEHnuvUVjV1h6ysLHz99dcwGAwYN24cfvvb3+L27dv2m5xwyNz8CbLpLWnirsb4ExSZCZ9s7hSdvhHHBuBoA7S1tXlHQLauHQD++c9/YvTo0b1TQzhu/MaueTo9n4gQEBCA9evX4x//+Afq6uoQERGBFStWYPz48YiJicGZM2cAAG9+0rXCiIjsYpM9wvcMUAB2At6+fdvzSAwUWVxNpfAEags+1Xas6Mn+aOXl5eTv7y/NrJs8eXKP6/2gwdp+69YtSkpK6tlWWzabDc3NzT3iQFLZeopd59ckqIlTTxEXF+ew4etAAz8IQPKJve5BYl3YnfjAwEDZKlVPQCQXXTzURKW3K5yIM4B27NiByMhIBAcHY8KECV7Vu79BRGhtbcWXX37ZMwI2NjZ6PA7IKsA4THmdX83EOJPnRG/A55s5cyYuXbqEzMxMafnbQAJ7d1arFU8++aTnm54z6weAV+OAaruw8+d8JXt7PaFah1HrSL4OIsKdO3cwZMgQ7wjY2toKwE7AoKAgt/KpOeFMp6kt1XpQi0EHGvEA+7vp6OiAv7+/5yJ09OjRaGxsBGCPyihnoylBnZsg8OIQcNydgjdSeqLn/h3gyjZg76yqqgojRoxwRkBR5r+S9AcYN24czGZ76EkSoSrvTmld8gRhHMdvq8WWa3uLgchJrsC2aXHWMe/du4eQkBBnBNTI/FcBouTQRkREwGQygYi6plLIN1F32HKEJxhL01sGykCHktvU3Cm1+2wUyE0R2pWMcaAgCLh69aossN2dT8dXiF9z/p9KPEBdcvC7NCoNLfb/yJEjCA0NlRsxNrRLv7UYIi+VAAj2gUTGgQaDAWPGjJEIptyxj/1njjh7+H8yxynBOr3adbXtpdm9wMBARw7U0hAAIrQ0RK4DOY4aO3YspkyZgq+++goajUYWF1VCo9HI2F4QBGi12u+I1wk1kQlAVTrxIvTSpUsYNWoUhg4dqhChAgBo7EunZZftF5hF+fjjj+OLL76AXq+XEUfJ5nzlvuO6LvCRISX38X6xUoKxtBcuXMDEiRPtxp+rB9nQbj+EdhAR7ot3YKW7iImLRmVlJYKCgmClu7gv3pEsSUYoK92FKNwDaToc9JxULieyXT5fkc7Vdf4+f81XoDTgnAUX2G8Gnin+/ve/IyYmxnksdFWqvWA/wR/Dhg3DIMEfn174PzykHQaNRoPYiT9CrdmCkYHDoaHB8IM/bGiXHmhDOwZphkKLIfAT/CEKXSuPbGiHFkOkw9kL5tM5u87n5/+zPOx3fxKREYwd/MaArixwnvN4iKIIk8mEH/zgBwBkQ81dCbccJqxKAfKKa9DW1ob/LdqFlDgDimvb4Sf4wzBmDGxkn0HNOJRn/d62Lh0MKhdp+LTu5OtNqOkzpUulNjitJkqduRTV1dUIDAzEiBEj7EzWdbuLlgQzvjqSgl9+EgYtNAgNH6OsFpKSnsKwhx+Cn+APjaBRddj/E+HKhWLgrUvGgVqt1mG4TC1adeLECcyYMUO6LlGNFzOW4hIIOUkwdg4XvvZKClJydmP6YwRBIAiCBtHR0Thx4kRXQFrTIVmdvQ1f02POoAxUOHMP+N9Kn5iH2j5zx48fx+zZs6Xnye4ynfF1nQVH3syEoLUXOnOTDf+zZSE0NBggDVpaWvDHHTvQ2tKOvxQdkekdQRAkvcMOpVhzdk/ph3qSX81ocfa7L8CLSCWR1MKIzspQ/uaNnT//+c8IDQ1FYGCgdE8qTYshnX6gfULrsRoRJBKK9qzELKOAE7WdylYARo4ciff++79hMBjw+21vo+RYmUNleEPD3Xtq5+7mV15z9rsvwHMcP6bZnR2gjLSo7YjI53/33Xfx1FNPyfIq/EARZCnCVmRjltGeMWHxUjwzVIPikr9Ke6MREYYNG4ZNmzbj888/x+LFi7Fo0SJcv369t9+NT0NJOCUXOhtCAxw/CMJzGtOJTCVZrVY0Njbi9OnTeOKJJ2R1UPCzBsePFyM7KQFApz9Vexn/D0B4WBio85nsITrdw/jlL3+JZ+cvQHBwMMaPHy+tc/93hDKozBOPvRNn0RVXRh5zL9h9loYNwwmCgIMHD2Lr1q0YOnSo5F5oOnfatUO07/+SnWJfqWO/VEMpAAHJZFZs98POGhoapG2g2Lq11NRUn98nbe3atbR27VqP8ig/WKX8eKPyq6JqHwTh99xm1/l8bHYen6e5uZlmz55N//rXv2TlWq3Wrllp5pI8aAQBW48As4ydJqoQgSNzs0F0BOGKCZLszGAwYM6cOdi2bRt+9KMfobKyEtHR0YiOjlbdXstV7/Y1KOtEiiEdJurU0jDwRgsp9J3y4ENmrFxRFHHw4EE8/fTT8Pf3l/JLMeXe6M1ms5kCAwNlizwvXrxIkyZNotmzZ1N9fX1vPKZX4S4H8pvX8j2f/wAIz0nK3eyJSJaGv8+D/2QPS9vR0UE3btygOXPm0LVr16TrPHpl0n9YWBjS09OxatUq6drEiRNx/vx5TJs2DbGxsdi5c6dPcpkzkIqO4+vPB+55/1dNDyqtSuXkLfYM3rEH7Nybm5uLefPmYeTIkQ6jO4CzVRvdvGe1Cq5duxaffPKJtCKIVXTNmjU4deoU3n//fUyfPh3V1dVuv8D+gpJ4fHuV9WJWpdK/4+OfjHA88XjDheVnz2G/L1y4gJqaGjz33HNdazcUsVPpqfy8F6bgOodpHRqo5t8EBAQgNzcXS5culSrGGhsZGYkvvvgCycnJmDZtGrZs2dLtS+yvkJwzy1I5g44nLEvLgye6Us+pdQhWhtVqlZ63fft2rFixAg899BAAyJ7PIJ0J0p8uCPIk3eLZZ5/FiBEjpD2elWJn5cqVqKiowF/+8hf8+Mc/RmVlpaqh0NtwVmZoaKiqW8DqzsC/dCUHqLkPzhx5NhLBE4K/xtdz/fr1CAsLk+1BrgYFdUSF+PRsYaMgCMjPz8eOHTtw7NgxhxcBACEhISgtLUVGRgYSExPx+uuvw2q1ysrobTgrs66uDkCXv6WWVk238dfU0jECMUuRn11ms9kkCaW0UFmesrIy1NTUIDs7W7XuqjqQiADSSCPvittuw2AwoKCgAAsXLnSp7zIzM2EymXDu3DnExcXh3LlzTtP2hCuVoo4viy0LUBNrSoLwUHKhWlqeo5l7oAyXKWOkGo0GFy5cwLZt27B582bodDpZeQyy+qgbzz1Hfn4+GY1Gam5u7nY52Pvvv096vZ5WrVrl8hsJ7kLpMPPfdWJO94EDB+jAgQOqroHyt9LZZs9Qc+b5HYhFUXT43uD9+/dlX+Xml9B58/GrPls7nJ6ejjlz5uC5555THVbh8fzzz+PSpUuwWCyYNGkSysocg+POQJz+stlssFqtsFqtUo9nDnF3oplUDBFn4MWtkqvUloMrOZwPmzHOs1qtWLBgAV544QWkpqa63f4+XfzNjJmXX37Z4R4pxKJer8fHH3+MTZs2IS0tDcuWLetaEq0CIpL0idVqlfQYI5yfn58sSsIIxBsLdXV1Mn3FQ010AZAZOqxMZvaz66Iowmq1yiImvDXLAtXsOYIg4IUXXkBwcLDH3w/sdQLyDdZqtfjTn/6EY8eOyfZwAZxzRGpqKqqrq9HW1obo6GjJGOLBXpDa1HNevyjv8fdJoVOI1J1vtbbxTjyrD/tPJF8ix4fH/Pz8VAe9N27ciIsXL+K9995TfScu0RNd0x2YLjCZTKTT6eizzz6TXe8On332GYWEhFBGRoYUpmMhpu4OPuisdhw4cEAWSlOGxJQBa7XyWFvUQmt8WldLxAsLC0mv13u9CXyfilDWQ6OiovDhhx8iLS0NO3fudKlriOOEWbNmwWQyISAgAJGRkfjrX//arT5lcDbFnxScxteViTs+HSmCzywtz8VEJHPw2X+luyALQgPYsmULMjIyUFBQgPDwcIe6ugWvyO4lTCYTGY1GysrK6vYTBTxEUaTz589TWloarVmzhpqbm7vlQDWuUVqhPAcqA8+89aq0Knmu4y1K/mvXrr7K3d7eThkZGRQVFdXjzy880B1soqKiUFFRAYvFgpkzZzpsUKcG6uzJ0dHR2L9/Px599FGkp6ejpKTEaR7ex1JGV9g5c+L5PHxeZeyST8MMFH5glRThNnISO71+/TqmTJmCtrY2nD17VuI8ZTp38cC3INLpdPj0008RFRWFuLg4p186I+paC85ezKBBg7B48WJs3rwZH374IVatWuWwHbPaWBt7uey+KIou1/YrN1NgeWw2m4MTzotqpXXJ/weAiooKxMTEIDExER999JFswySvI1A94t8egu37yYwbHjabTWaQWK1W6YPL9+7do/b2dtqzZw8lJSXRoUOHJLHJizOls8071Hv37qV33nnHad14Q4WIZCKTF5PKdCyvEh9//DEFBwf3+o7D/UpAIvvmO8HBwbRhwwbpmtKSY9cYAfnj0qVLtGTJEsrKyqLGxkYHa1ItKiOKIu3du5f27NnTrS7mCcSXwYjZXR6r1UqvvfYahYSEuP1lak/Q77u4xcXFoby8HKWlpYiJicG5c+cka83VugEm5r73ve/h7bffxuTJk5GZmYmPPvpIFpkhFauTtwb5cTllOpaWWZz8mJxGo3G6BJrVuaysDNHR9oVAFRUViIqK6o1XJkevd4keoLCwkIKDg2np0qUO31RSxhWV1qHVaqXa2lpatmwZLVmyhCwWi2zyED+JiMg+pWL//v3dWoyuoCY+iezf+1u4cCGFhITQsWPHvCrbXfQ7B/JITU1FTU0NRowYgfHjx2PdunXSXFPlYCofmgLshseYMWOwfft2zJo1Cy+99BIOHjzo0m/UaDRSdISBnPiJalCOKFy9ehWrV69GdHQ0wsLCcPnyZelz7H0FnyAg/8ICAgKwadMmXLx4UdpKOTs7W/pSCZ+HX6rFY+7cudizZw++/PJLZGZmSl+AURKGxUIZ+NF4T3DlyhUsW7YM48aNQ3t7O0wmE15//XUMHjzYaTvVzr2BTxBQTc8ZDAbk5eXh8uXLuH//PsLDw/HGG2+gvLwcgPpuGDxGjRqFLVu2YP78+Vi5ciXeeecd3L9/3+E5LC+f312T/vDhw0hLS0N0dDSGDx8Os9mM7du3O938SFlubwxeC9Qb3eAB4Pr16/j8889x5MgRtLS0IDExEbNmzcKYMWOcBq4B+0u6efMmtm3bhvr6erz66quYMGEC8vPzAdiHvdTyOHu5VVVV2LdvHz744AMYjUakp6djwYIF0Ol0vdZWTzBgCAh0jXI3NDTg6NGjOHXqFO7evYuJEyciJiYGEydOxJgxXWsZlaMMp06dQm5uLmbPng0/Pz/4+flJn9DjwZx/QbDviFRaWioder0e8+fPR0ZGhkP8sj8wIAlI1DX17vr16zh//jzOnz+PyspK3LhxA48//jiCgoIwevRojBs3Dv7+/gCARx55BEOHDsXOnTtx5swZzJ07F8nJyWhqagIA3L17F5cvX8aJEyfQ0NCA06dPw2AwYPr06UhISEBCQoJMPDIi9ycGHAH5Q+3ltbW1wWw2o76+Hjdu3JBmvmk0Ghw+fBhXrlyR0sbHx0Ov10ubFfn5+eH73/8+AgMDERAQgNjYWFm4yxcxoAiojGeqEVHN0utuo1hezLrSf87Qn5zo8XaTvgAWSXE2j5MHH2B2VZ7ab0/q018YMATkOYvnGLXdoJRDQ+6iu4Hm/tZ3ahgwItQZAdV8K35Cki++9N6ETzjyrsBbngz8VD6WRjq4vPz94r3ZXWN5c3NAMGNVTl5nSt/6tI4n8EkCMmIpiaccTFXObBYEAVCMhJOlCBqNBjvMEV3Rm20J0AgRIGMYy/2AWtb78FkdqOYu8EFs9lttGqH0H2akGn+ClJw9+GTLYqlsIXwWduUkQwgLc3zwAINPEpARQ2mEqBFOmU8UbSCy3zu+Lw+3nlyDfVteANvvlMEYEQl6zOhwfaDB540YNh9GbTKuEvaBWftOUkAjXp2xCLafrcGbSzqHdCRiiRjIYpOHz7dCOQboyqq068HOJv1fE86IIqb+gPs6i5TV55vtNgZES9wZhhEVQ0IkEASNADhZ4/DvggFBQKB7J5sU44LCI49gKgScPl8FkGIxpqUIu0vMzoobUBgwBHQX0oRcwYAnn/8htmb+BLuPdxHLXJwHzX+VIDNB+d3cAQr3ps74LpTT5pWwfwse0pGSs7sfatl7UE6i+v84ZxJ0Jx0awQAAAABJRU5ErkJggg=="
|
<image>如图,A、B、C三点在⊙O上,连接ABCO,若∠AOC=140°,则∠B的度数为()
Choices:
(A) 140°
(B) 120°
(C) 110°
(D) 130°
|
110°
| 69,622 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABwCAYAAAAUsP4TAAAXTklEQVR4nO1dfUxb57l/nLSXVHPmbD1VnPUwN7HTOCHbmEwGVdggF5N6ElpcFZX+gSYiTeLD7NZZmMQUJrpbKrHNbPkDWqqsU6JVuuQOxWRL1WQFxahMceJKsFsTkxvSG2a6GDnSiKDDVcz53T/sczjH9rGPAX9A8pPA9vtxzvu+z/s+78fz8aoAgDY6QEQqIttRFb31YYL46mbCX95aSQ6QSqUSPjcatuS6AOuCaLv3/QXUUk3k9HIEgACQd8hB1fsM0uRRQm1EghFtFqJFAbpJt8hG1iIVgW5ST4+TDhz7Pr343O7IaNwk2FREu3nxA9r3opmIiC7+po+W9XtJRQfo5MmXhNEoxkal44Ynmrjhb9/5lN5qe4lUKhW91PYWPb+3KBrDJcy7MZnjJiCauOE/vPyWMJ/ZzGZ6nqdZtJqbYc1FtAmIJhBicojeQjNZiyJk3GP5Ph2IHUsbdOERiw1PNJVKRQSioSsfUovlqBD+k5/8hABQa2vrStpYNrlBB96GIFpKtqaKsMZqy7FoQIQ4P7ZsIeirRQm3xOXbiFBt9M315MUeOmhtk413ejmBZW4WbBiird/pBUfCwoSSD7Zk78zlacqGYI9EaZxegOj69euRr9H+KOmXWKlyqicme2cuT1OeyNmb14gHDx7QxMQETU1N0b1798jlchERUTgcpuvX3BTmliXpWZYlvV5PRBwVPLmNXjhcTiz7Ndq7dy+ZTCZSq9XZr8QqsWHY4+zsLI2MjNDw8DC5XC66d+8elZeXU2FhIen1eir5ziHa/qVIw+t0Orpx4wadOnWK2K89S7944z9Jp9PRzMwMAaDFxUW6ceMGffrpNPn9n9HY2BixLEuVlZVUXV1NZrOZdu7cmeMaJwHyGD6fD21tbTAYDNBqtairq0N/fz98Pp/iZ5w9exY6nQ5msxlut1s2ndfrRW9vL2pra8EwDIxGI06dOoXp6em4tBzHrao+64W8I1owGMQ777wDk8mEwsJCtLW1JSRSug3X398PlmVhsVjg8XiAJNk5joPX68WJEyeg1WpRXl6OM2fOYH5+Pt3qZAQ5JxrHceA4DoFAAHa7HWq1GvX19bh06dK6vyscDqO3txdarRZWqxXj4+OK8g0ODqKurg4ajQbt7e0IBoMp86x1NCbLn3Oi+f1+NDU1QaPRoK2tDYFAIOPvDIVCOH36tMByk7FbceP5/X7YbDbs2LEDdrsd9+7dW6cSLScmEsd/LANYFtLmjGgLCwtob28HwzDo7OxU1HszUYbu7m4wDIO6ujrcvXtXUb65uTlJ2UOh0JrKISVKauSEaE6nE1qtFo2NjTkhViwWFhbQ2dkJjUaDhoYG+P1+SbwcqwoEAqivr4dOp8Ply5fj4tNikVzSaVaCdSdasoL6/X6YzWYUFxfj2rVr6/1qRWVKVr75+XmBeI2NjXHEk3uuy+WC0WhETU1N2p1wpTQrI02+jJE0WRtpHo8HWq0WXV1d2XolgOREShTHcRyCwSDa29uh0Whgt9sVzbPhcBgdHR3Q6XTwer1rKnPiwq58zSjR+EY5e/YsGIZJyEJyBb5syYjKr2j5RZKSUTQ4OAiGYTA4OLjqsrVUE4gIpIp+EoGoCpNRymWMaBzHIRwOw2azwWAwwOv1pr0MzuQmNp1nBwIB2Gw2RUt+juPg8XjAsiza29tXXb6WaoLTy5dxGY4Ws0C4xETjZL7HFE4OHMdhfn4eFosFhw8fjtuU5vpEYbXw+/1obGyERqNBZ2dn0s12IBCAyWRCbW0tFhYWEqaRawcOk6iqtsWFt1QTzDYHEp/yq0RCXZVw3CVNElX2TASfz0clJSWk0+lodHSUNBpNXN6NCJZlqb+/n/72t7/RzMwM6XQ6+uUvf0mLi4txaXfu3El//etfadu2bVRWVkZ37tyJSyPXDjcvfkCq53dHf61I2/fsNdPw/97hzx6V7RE4LhzTO+LzXb58GRqNBr29vXG9aaOOMDlMT0+jrq4ODMOgu7sbX3zxhRAnrmt3dzc0Gg1cLleSp620paPFjF87P4lL4expAR1tkbLH2EZN1MQSIsTEeb1eaDSavFpwZAM+nw9WqxVarRanT59OuNl2Op1gGCbuADq+zSdRRVW4maCDO2z/DrPNESGaLG8Vh6cYJMFgEAaDAX19fckTbmKMj4/j2LFjYFkW/f39CIfDkviuri4UFRVhcXFRmlHczL4LMNscQOwpyaQTRATHkDf56vGTi46VFUwS+oXDYZjNZths8ZPnZoJS9n7t2jVYLBawLIvf/e53krj6+npYrVbZvBcczWhxOOPCW6oJVN0MAKC4ggg/b8JM4mWnPOx2O6qqquJ61qOOsbExVFRUQKfT4Q9/+AOAyGF1WVkZOjs7o6lEJyGYXGlzvtmjI4zMKwNCdqT12JpRXV0tbOjisQxwkY2zwWDIizPEfIXL5UJ5eTmMRiPOnz8Pv98PlmXhdDqFNN4hh2gjLf1zDP2P5HkJiXahpxWOoQuoFu3CgXj24HbfAMMwgmhjs60O14rY9rh8+TLKyspQVFSEnp4eMAyzqiOvOKJx3gsRnjrpjPBQGTrwveWDDz5I+6WPOpxOJ4qLi7Fr1y58/etfT5tLxW2uf/z2CPWdtBIRR+bn9bIbzePHj1Nr63+QxWJJGI+oUd9mx2rqaDab6Vvf+hb961//otraWmpubk77pSs9oKdJwksjS89YLGNg4L9hMpkQDsduth8jFvFTihsGg0EQ44RCIRiNxrT2tisnIpNOyVLTO+SIW3pyHIeFhc/BsmxEOeYx0gIvq+vv75eEDw8Pw2g0KpaAR5RVb/6JVPa/SIzJb9/5lIik7FGlUtEvftFJhw4dopKSkrTZwqOKmZkZevXVV+nhw4fkdrvJaDRK4quqqqi4uJgcDgedOnUq9QMdLWaoVCqQaE8myHN4Fhkd4dPT0/jqV7+KPXv2wGw2K9ZmepRx9uxZqNVqdHR04OHDh0lVFxiGUSRwjV89RlXaEqGhoQGdnZ2CKhrDMAl1Kh4jorpQW1sLlmUxNjamKI/dbofdbk+ZTrEQlO8JYhnS/Pw8Ojo6oNFo0NHRkTfKnLkEx3FwuVyCel46ssREbZwIiolmt9tlJbF+vx8NDQ1gGAZ9fX2P7HHWF198gZ/+9KfQaDR47733VvWMpqYm0RFXYigiWjAYhEajSclvx8fHUVVVBYPBgKGhIcUF3Qzw+XwoLi5GeXm5rP6kku3R9PQ0GIaRlXYDCol2+vRpNDQ0KEkKIHJcU1RUhPLy8qRGD5sFvb29UKvV66ZpZrVacfbsWdl4RUQrLi6Ok7oq6TVnzpyBVqvFyy+/rFh7dyMhGAzixRdfhNFolN23xgk5FbSb0+lERUWFbHxKoo2Pj0On06V8kRjigi0sLKCrqystNbSNgD//+c9gGAaNjY1JWdlqEA6HwTCMbEdPSTS73Z5yYlQCsRpaT0/PmvXfc4WFhQU0NjaCYRjBsicTR3nJ2j0l0ViWVWTEp7TgPp8PNTU1KCwsxMDAgKI8+QKPxwOj0Qiz2ZxyUbZWQrrdbuzfvz9hXFKi+Xw+aLXaNb1cDqOjozCZTDCZTCm0lLKHZA3d1dUFtVqN06dPZ6Us4XAYarU6YedIqtjT39+Purq6jBZuYGAALMuipqZGdkTnUpLg9/tRXl6O4uLizOjoJ4HFYknIjbYQyStNXr16lSorK9d2WpoCr7zyCk1PT1NlZSWVlZVRa2srzc3NSdKIy4csyujOnz9PBw8epLKyMnK73VRUVJQ60yqRqF5Hjhyhq1evJkwsC61Wm5ZRerqIHUHBYBBtbW3QaDTo6upKuirL5Oibn59HfX09tFptTlm32+2G0WiMC5cl2t27d/HMM89ktFDJ3l1bWwutVoszZ85k9d1jY2PQ6XSora3Ni7PUgoKCuHLIEm14eDjpBi8bcLvdKC8vx4EDBzKutRwOh3Hq1Cmo1WqcO3dOEpfLObW4uBgej0dSBlk3S1NTU7R3796kc0iyuPVAaWkpffTRR/Tmm29Sa2srVVdX08TExLq/Z2pqikpLS2lkZIQmJibohz/8oSQ+V3MqEZHBYKBbt25JyiBLtOnpaTIajWu2cFmPSlqtVpqamiKr1UpHjx6l48eP0+zs7JqfS0T0zjvv0KFDh6impobGxsairpjiwdcj2xY/RqORbt++HVeYhLBYLBnx5bFWiGV4P//5z/HgwQPFecUsJhgMoqamBjqdLq8Ptd977z3U1tZKwmRHWiAQoGeffTbTHUkRIBqtGo2G3njjDfJ6veT3+0mv11NfXx8tLy8neUIE/CgZGRmhb3zjG8QwDHm9XiotLc1Y2dcKlmUpGAxKA+UobDAYEvqFyjeMj4/DbDbDYDBI1KwTIRQK4bXXXoNGo8Hg4OCGUP/zeDwwmUySMAnRlpaWhL9du3ZlxXvOeiGVDG98fBxFRUWoqKhIWq98I6TP5xP2anzZ4kba0tISAECtVq+7yCEb4GV43/ve96DX61FcXCxIFxyORMq3+Q1e/V7cmeL8PS4tLdFTTz2V1KY6F0AarmkXFxdp9+7ddP/+fSIiKigoILfbTcXFxbL5iSgvLw168OAB6XQ6mp+fF8oW51lVXOBQKCR837ZtW9xvcRr+t1xepXFK0sWG82UOhUK0bds2euKJJ6igoICIiLZs2ULhcJhGRkZo//79QrhcnfOJYLHgyya7elSr1RQOh4lopcFiP/lGiiWoODydODHE6eTCxfn5z/v371NzczMtLi5SYWEhffOb36Tf//73NDo6SgaDgc6fP59GM+UeCwsLtH37dmlgLA/l5zStVou5uTnhtzhO/Fv8lyydkrjVhIt/f/TRR4Jxw+zsbDR0WUgzOjqKkpKSvJLhpYLP58O+ffskYXHyNL6C4iU/H7baBs8G0To7O7Fjxw7BuCHZO8//V2oZXixytaqMXfJzHLciT4tlU2q1mhYWFhQPYzk2tx4IhUKyi6K///3v9MILL9ClS5fo6qiLGhsbUz7vlVfrUsrweCBHx1c8Pv/8c4knc5VKJZ3T+PmCiEir1dJnn31GRCuLkNj5hQ+PjROHpxOXaOHDp+EbTRz+7rvvkslkIrPZTKOjo2R8fh+ND/6KVCoVfUn9Jdq6dStVt/bEPZuIqODfCujkyZM0PT1NTz31FO3bt4/efPPNOO87uV5Fz87O0jPPPCMNTDQkOY6D3W6X6EPIsatsQcye5IwbxE6/Ium9MEuMI+U9E+VShpcMnZ2dcVpZCVePKpWKDAYDeb1eIqKEoyzb4Efa6OgoGY1G2rp1K3m9Xjp8+DARiHps1dR2ey8Bw6IruIro9JCDhvuu0E0QJbvwQ6fT0R//+EcaGhqic+fO0cGDB+nKlSsZr1cqTE5OksEgvdM03o9IFLwQNHZlmCssLS0Jqgixxg3eod9I7OvEIyri6qEKn8R4aUi2rOA4Dk6nEwaDAVVVVRI7vGwvSHghqBgJ7dOACLtgGCY7JUuBVMYNEZd6v4r84CDxyHChp0Xi4FJJk/NtsLy8jL6+Plk7vGwQMC11AyBzij2pKiuOT2TcIHWqFvFy4xiKUW+LJuF9JCaez1J73+N9V+bCDi9txR4AwjUhuUAwGITFYklq3ABAcEPk9HJRV+miqIs9MWxzbRDb4fX29q7KDi+dDtvd3Y3Gxsa4NEmJ9vbbb8sqq2aSNVy6dEmxcYMw0pyTMeGfxKwcRXEK/BcnQzoyvLVATlk142rh6TQMb9zw9NNP4/3331ec79fNVYKHNgDApBMqlUrGD8rqkKgembTDS6kWngxKDTDWinSMGxKh6ShBJXJck5IlLss7BEgXvAyvtrZWWCjJuY9XiuvXryecz4AsmjoB8oXu6urC9u3b8dvf/lZxnhUsy3wX542GZ3Cxt152eHyZk5o6pfL6vRqjQqVQYtyQkbkzjStCxOVQ4o9ZbIfncDhWZYfHGxXOzMwkjE9KNB6JzHfXioGBAaFXZtTAMEn1VtsdlCxkeDs8lmXTtsNbs/kuEDGUP378eFovlkO+GDdkCy6XK6EdXsI5L/pptVpx7tw52U6Rkmj83StKXFLIFYZHvhk3ZBNK7PCAZRmXFMtRiqZ5QZCc8xcl7PXhw4fo6OiAWq1O6mphsyMUCsHhcODLX/4ybDabdBBwkbYUO3+Rc6evmGh+v1+RC6BY+Hw+mEwmlJaWbgjl12wgoR0eB9ybC0Cj0ayfmyVgxaGZGMlGWn9/P9RqteAE7TGkiJXhnThxUtahGSf8S5NoPL/95z//ufKwBETbKMYN+QK3242S7xzC1q1bcfv27ZTp5aWCCaDX66mhoYHa29uFsFjdiY1k3JAvKC0tJf3uPfSjH/2IDAYD2Y6qSKWS/vVcnFzJkG6vWFhYgFarxccffyyEcRyHUCgkXBC3lgvfHkUMDw/DYDBI9qvN5hVxE++znz+akxWCJgIfNzAwIDieBqTGDXNzc+tXm00OvrMbjUZcuXIF/JKevyRIuBNBJH6KXpm8LHs0kGwxX1VVhe7ubjgcjg1r3JAP6OjoiDMa9A45cLTlV8LvpqMEc8tvAEQILYy02BHm7GlZcfde3QwOk2hpcQjpxsfHUVBQAJZlH/syXiUGBweh0+0WDpf5tnU6WiWu9mMlFsJCRFhQ3LxAKpWK+u4YhAsRcPoobdlSRCq9gVQqFc3M/B9VVlbSD37wA1paWsq5ptZGAwD6+OOPqampid7/4BIxDENEURqA6MMrveT0cgSAnD0t9NLBLTQ0CckDBPBS4ETCQ0eLWaKHwasAPL4gSBnEnCzRBUFC7KQTVN0khC9HaSK+IyHmBowVzaXY+czZ0yIrWLTb7TCbzXj48OFq6vNIgb+K6/XXXwcQL/Jx9rSsEIgDMPkn4bI7HitzGiZRHUNRpXeFPiqX3q0H6uvrcezYsYRxHMeJrkpeFjgfxdyuJbq2JJ6ickg03oLBIPR6vXCB62PEg79eMlZZiUOS+9PEui8Aokv+KCadUCW4YE14cBKdB/7zUbzIVYmUg9dYfvrpp9fl0Jx40Xti9hgdVZNOmRGY/MrkfPMUkCsouzJZOST3XPN7MzGBvEOOlSGqkAZerxcGgwE2m032dP9RIGgoFEJDQwMOHDiwrmKpuGOsT5y/Tn2HmoL2np+fh8ViQWVl5SMnpQYic7zJZEJtbe26u/aQOTBWqnKWfHUZDodhs9lgMBiy7ko2l7hx4wZYlkV7e3tGOEpap/yruRgAiGzAtVrtI7FAGRwchFarzaikgyTNntRoa20v8ng80Gq163a1R75heXkZHR0d0Ol0GecqWyQizIS24FxkdluFnThEtsolJSXk8Xjo6tWr9O1vf5uuX7+e/gPzFKOjo1RUVEQTExPk8Xgy6qCaiNIXgq4HnE4ntFotGhsb8+LMcrXzTiAQQH19PXQ6XVavjk5L3WC9YLVa6fbt2/SVr3yF9u/fT6+//jrdv38/Z9cs8xIOpe+em5ujn/3sZ3Tw4EHS6/V069Yt2aujM4KsdQ8Z+P1+NDU1CSri+eyu0O/3w2azYceOHXjttdfiyprsas71RM6JxiMQCMBut2P79u2or68XVpqrbYRE+varXf06nU7U1dVBo9Ggvb0dwWAwp4cDWSFaOhUMBoPo7++HyWQS9jrZsI+LxeTkJE6cOIFdu3ahvLwcZ86ckRwS5JJocf4e8wlTU1P07rvv0tDQEC0uLlJFRQUdOXKEKioq4u6KXismJyfJ5XIJfwzD0Msvv0zHjx+X9SAuBrLoJzInRBNXUGllZ2dnaWRkhIaHh8nlctE//vEP+u53v0uFhYWk1+vp0KFDgg+p5557jnQ6nST/zMwM3b17l4giTjw9Hg/duXOH/H4/jY2NEcuydOTIETKbzWQ2m2nnzp1rqlc6dUsXeT3SkuHBgwc0MTFBPp+PAoEAuVwuIe7OnTtxfvsLCwtpz549RET05JNP0uHDh4llWdq7dy+ZTCaJ07B8x/8DHoGNwDrQ4zgAAAAASUVORK5CYII="
|
<image>如图,AB和CD是⊙O的两条直径,弦DE∥AB,弧DE为50°的弧,那么∠BOC为()
Choices:
(A) 115°
(B) 100°
(C) 80°
(D) 50°
|
115°
| 69,623 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAL0AAABfCAYAAAC9W8a5AAALC0lEQVR4nO2dMUzb2hrH/3m677VDpbK1I7oCVCGGDJWKzJDw3gJlaFiQkCpBFqdMoUMHJIYMV2qlO+AMFYUl6VQ1S9IhMVtgaFDVPqWVEAhsCboUOsFQKfTeJ503BFPHsZM4ie1z7POTrAYnMV/O/5/Pnw/u+UKEEAIOJ0D8w+sAOBy34abnBA5uek7g4KZvg5wIIRQy2RKy16E1oqYxcRXbRFpteKrhM9AWtx3kRIMGCbm+z/ZHIpy2lEQQCBJRfu0hIoz76KAkggAiKRn2K5JARONOZlCIJDR/rvpnFYhkUwSe6dui4mgPEOZmMHS9bxobigShsowFQ1b1FhkFiBCxiUJD9lNR3J/Ds2mv4uoFFemJYSxDgkI2oP8I0xsliBjDyJDlm03hpm+HWkSuImBuxjCyQzOYE4DKvuJNXGbIBSC2gWeSgE2969Ui9kf1X1p2UNMLWK4IkF4nTeIfxqgUg93vMjd9G9RiDhVhDkbP04h6NIrYNDA0Mwdh8w9oJyG1uI9RFj5AEyqKuQogriJpGv4Qkkn7py9u+pbUB72xtNFQsF8BhNFhD+IyQ0URI/WsNzSDOaGCXFGt798fZeJL24wzY8xN3wqr0gYA5AI2YfGcF6hFYETLekNIroqo5IpQGS5toB5hz4HDctO3Qtm3KG1kJB5utjjtuo9a3Af0CXE6BrGyjIUFVksbAEMjGIP1dZOcTqOraYS+ziz5ivo0mWCYD1MkgQDN+71FIZLYPH3aPNXKICXRZLzr2nQ7BctNbwEA8402E12ZwjQ2RSIiVV/OLlEkIjToYH9uXk+IEH6XJSdY8JrehIuLC1xcXHgdBseCXvX5rX+h+IOLiwvMzs7ix48f+PTpk9fhcCy4f/8+Pn782N2b+1V2+YHz83MSjUZJtVr1OpS+4SeJ+6WPf0akR/xoeEL8Y/p+6uOPEemR4+NjXxqeEH+Yvt/6sD8iPeJnwxPCvumd0IftEekRbUCPj4+9DsUxWDa9U/qwOyI9EgTDE8Ku6Z3Uh80R6ZFqtRoIwxPCpumd1oe9EemRIBmeEPZM74Y+bI1Ij2gDen5+7nUorsGS6d3Sh50R6ZEgGp4Qdkzvpj5sjEiPlMvlQBqeEDZM77Y+vr/3ZmtrC+l0Gvl8HgMDA16HwzHghT6+Nv3W1hY2NjaQz+dx8+ZNr8PhGPBKH9/eWqwN6Js3b7jhKcRLfXyZ6bPZLN69e8cNTyle6+O7TJ/NZrGzs8MNTyk06OOrTK8NaCaT8ToUjgm06OObTE/LgHLMoUkfX2T6Fy9e4PDwkIoB5TRDmz7Mmz6VSuHnz5/UDCinERr1Ybq8SaVSAIDnz597GwjHFFr1Ydb02oBq/3LogmZ9mDT90tISADoHlEO/PszV9PF4HA8ePMCTJ0+8DoVjAgv6MGX6eDyOSCSCxcVFr0PhmMCKPsyUN6wMaFAx6vOro2ECVs3/1PREY6dAt3DlBuYeqNVqJBaLkUwm43UoTOK0xLVajczMzJCXL182P1kSrVcY1lYi9mAVaKoz/eXlJebn57GwsMAzPIVo+nz79g2///674VkV6T82Ld4pI7GQAwCIq2YN1JyFWtNrA5pIJBCLxbwOh2NA0+fOnTuIRCKYmppqfIFaxP6cBBEVGBuJyIkCYqtjqEBEzIM2n1SaXm/4psHkeI6mTyQSweHhoekfn+odDWcwKgB7R7omOXIChdgGUNgERPvtMPsBdaa/uLjA5OQkNzylaPo8fvwYr1+/RiaTMblF2KKjoZrGRCGGjWn5yvMedXN2+RqiJX5dOdhL+imxXp9YLEby+bz5CxWJSFf9oEoiCMQSaeiLVRKbWt67CTWZXmuGsLa2hnA47HU4HAN6fba3tzE4OGh5raXv7jlcr2+QTiwAz+oXrbKHpQ2AxjTw8++/rjc34RneOdCHTK/XZ3d3l0SjUVKr1SxeXSKifhryqhHcdSfAq6lKL7szNo2I24Y/Pj4m4XCYG94hejW9Xp/z83MSDodbLrmH6w6AV+WLrsNhSTR0auy2J2aPeGr6oKwc7CW9mN6oT8s6niFa3nvz1//+vn78r9/+2fSz/jXaz1bvNT739etXJBIJZDIZDA4OdvT7O9mvj1N7bPz9nPacnJwgHo9f65PNZjEwMOCPv5kYvwXGTN/q504emz2nzyBWZxa7xzZejxgfBxUTidtizPAHBwckHA63qOPZwpbpzZ4zu/htdYyP//3UUBd2Yvpu4msVT5Cwa/pqtdqgT61WI+FwmBwcHDgQnTd0VNNbZUy7xqxWq2TyP/9uWKiTm95Z7JjebOXgxcVF393sdz1Pr6+Tu6Hd+z9//oynT5/i7du3thfq7DU2Tns0ffQLqWazWQDw381+mvvbzc+3yrxWZwdtM2YQq78HWJVPrY5ttc/qcdBAB5neLMP7rY7X0/G5r1vTyLJMxsfHA7k2PA20M72ZPn6s4/V09N8Fu53201amLZfLfF1JCrHSZ2lpCclkEvfu3fMwOufoeJ7eLnypbLqx0se3dbweJ04f+XyexGIxX9aDrGEmsZU+2i0Hfi9F+276TCbDDU8RRtNb6VOr1Ug0GiW7u7tuhucJfV0CRFuZNp/P9/OwnD7RSp+VlRU8evQI4+PjHkTmLn27n56mpZg5zbTSp1Ao4OTkBMvLy+4H5gEhQgjp9SCvXr3Chw8fuOEpJBQKYX193VKfk5MTzM7OolwuB6b7Ys/lTSqVwvfv37nhKebLly+m+lxeXiIej2N9fT0whgd6LG+0BTrX19f7EQunz7TTJ0h1vJ6uTU/zUsyc9roErY7X01VNv7Kyghs3bnDDU4pen1AoBKPEZ2dnmJycxO7ubqDKGg3bmT4ej+P27dvc8JTSiT7z8/OBq+P12LqQ5SsH000n+qRSKUQiEUSjUdfioo2OTc8NTzed6LO9vY2dnR2Uy2X3AqOQtjX95eUllpaWuOEppZ0+Wk1/dnaG6elpyLKMu3fvuh8oRbSs6fULdXLD04cdfebn57G2thZ4wwMtyhu+cjDd2NGH1/EGzO5C07p/yLLs1o1vHBvY0QcAiUajLkTFDk2mPz8/J1NTU9zwlGJHn9PTUwKAnJ6euhAZOzSZXlv3BADfKN1u3brleQwsbcYzXV/usuRwWIKa9ek5HEBFesL5Fptdml5GOq22fxmnY371XdVtE2nYGWXTY4QmwI5UQ0i+VyAJDjdgs38ZoBBJ8HZRfb+iSIJuzfYSEQHba7iXRDT0ZjX+TD2KRASH1623nenV9AKWK8DYiNvdP/2OimKuoms+No2YaP8YR3uAMDdz3Zt1OiYClRyKjGR7tZgDRocd/R32TK+m8SdWIQkORRNk1CJylV+ndTU9gYebAqRnNs7zahG5ioA5XVs/9WgPwBjYyFEqijk0xO8InZ8UtF5CJSJatT7ndI0iCQ3TbN2Uj4okNJYyV/2emClFFYkILpRiHWd6OVFA7H0SQ+oR9pjJHKxwVdqUCAghIIoELA9jwtYVaP0YqCxjWLuIfbgHSSF4n2RELGUflbEROB5tZ19AwTDh710PUF+iSEQwjGm9KZmNcVYkIjB+Bi6Jui6EDtI+06tp/InX9QxECEhJBIRROHupESzUYg6Vhr6q9QtSO+OsFnOoCHPNXbqZQUZh0+Gpyitam15NY2IBeJY0Xhhx+odx1gaQE8NYrgDiarLDU339GPpZG+aQC9gUYxhOJ5z/u0Kr0wAAgutTZn1+HrzE6R9XF5rNm40yxXAMZi5aDWgltBvx83tvOIGD33vDCRzc9JzA8X9ki0EMHquwWAAAAABJRU5ErkJggg=="
|
<image>如图,点A、B在直线l上两点,以AB为边作菱形ABCD,M、N分别是BC和CD的中点,NP⊥AB于点P,连接MP,若∠D=140°,则∠MPB的度数为()
Choices:
(A) 100°
(B) 110°
(C) 120°
(D) 130°
|
110°
| 69,624 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAGAAAABjCAYAAABkDAWWAAAUsElEQVR4nO1df1BT157/XH6UvjVtsC9TYpspWuISG11FpKVj20iLFRdEfdIFRxxhq2I3vhm7C6ivOuiMreVVp8wUnii2tbtY6YoFWzoi0jFToYPIijOC6HBREBzpwD5jk25Vwv3uH+SG3OQm5IYkoO1nhmFyfn7v93t+fM853/M9DBER/AwiAsMwIjEc2PpS3Jjxb1gc5W8qJieCAlGJPfPtpU24jtzFevFMnN/bxaRAQARgDwYAZxXDoa2HwC1bhhlRHAChcBAk1mMePQRGAA6NOQgMTpflAYmJQI19JBcQciYTAiMABgIhUFcdvqfF2Pg88O2yWVBbyWAC3yEnHIH7YrsRZevBehRufBMAkKpRB4yEyYjACYAAIuBMWR4++ugjBDEMgtRLRNP9lhAgAXAAw4Gu1+EMLQbRMIgInXUHEB01XZjUYbh61BESqIqoqx7B/14POvnXkd9EuH6DBfC8c2I/K0Cu1yXu46SBg2P7Jjh/GhOIhdjB/FRs+uhbAEAdS1gcBeSlMtj/7QhRqfkHUV240Yk4e2a0t7ejv78f586dw61bt9DZ2QkAGBwcRHt7uyCfVquFQqEAAGg0GiiVSiQkJCAiIgIajUYS7WMLxJnRTnFinLciIAJwT6Q4fefPn4fBYIDBYMDZs2cRExOD8PBwvPjii3jmmWeg0WjAMAzkcjnmzp0ryHvp0iXcvXsXDMPgypUruH37Npqbm2E0GtHW1gadToeEhATodDosWLDA518r5TtBAQbHcS7jWltbKScnh+RyOc2aNYv0+j9TVVUVmUwmn5RPRGQ0GqmyspJycnJIrVaTQqEgvV5PHR0dHpXjuvxhwa+85aARngcRwzAEgErPdDrlCbAAhp1CTCYTFRUVkUajIbVaTQUFBcSyLBERuWelb9DR0UHbtm2jyMhI0mq1VFpaSvfu3fM4/6hAnL8tL3WU6Z11BwgA1bF2eQMmABFODgwMUEFBAT311FM0f/58+uSTEjIYDHTz5s2AMF4MTU1NlJWVRdOmTaMPP/yQjEYjEY3dq8TAUSctY1Ko0yoYjj3lJAAiosDMATQMMMEAALPZjMLCQhw8UIp/yUhHc3MzoqOj0d/fj6GhIVy5cgUDAwNQKBTQarUIDQ3FwoULAQBxcXGQyWRQq9V49tlnx0eSm8m1u7sb77//Pqqrq6HX67F9+3aEhYVJKp89U4r/qA+yKRf5yxlc0xzEycKNsJ8T/S4A+4nnxIkT2Lx5M5YvX47du3djaGgIarUag4ODkMlkNvWfAdDX14eurhswm3/GhQsXAACNjY0YGhpCe3s7BgcHoVAoMHv2bISEhDgJKSoqCiqVShqtVqHw//v6+rB9+3acO3cOJSUlSE5OHvsjrag7lIslOftHf1u1v1FwIAT5XgBiLaurqwubNm3CnTt3UFpaatM89u/fj6amJhw/ftyr8nt7e3H9+nWYzWY0NzcjKCgIDQ0NTkJy1ZMcheSqV/z444/YuHEjZsyYgQMHDngk2LwVDN7cP8L0M2V5eHPjPgchjPQCv/eA77//HpmZmdixYwf0euHe/4IFC7B9+3asWrVKNK+7YcJTjPSkLpjNZrc9yRMhFRYWoqioCNXV1XjppZcciIWtF1BXHYL4RScBxLBYwcxE9MHT+OvGN0eTEvyrhhYXF5NSqaSmpianOJZlSSaTudU4vJn8vMHNmzfJYDBQTU0NFRQUUEFBASUmJpJOpyOFQkEASKFQ0GuvvUbz588nmUxGb731lkv1uO5QLuUfPD0a0FVnVUOv2YL4b/OLAIaHh0mv19O8efOot7fXqVIiooKCAsrMzBxXPYESEBFRb28vGQwGyszMpKlTp9L06dNp27ZtVkJI8D8vFXSGHSaiYeKoi5YDBCyzaUT28LkAjEYj6XQ6SktLc7uA0mq1VFNT4zJeKnOlLpzswz2tKzc3l7RaLXV3d5PRaKSkpCRKSUmxfuewTdd3+lueay3BzwLo6OggtVpNO3bscJuutbWV5HI5WSwWX1YvgFe6u4s8JpOJVqxYQUuWLLGtDXjo9X+2CUW8PGem22PcAuCJ7ujoIKVSSZWVlWPm2bFjB61fv95lWYGAp3X19vZSbGwsbdq0yWWDOXLkCEVGRlJ393WJdfhoJTwwMEBqtdqJ+a4IiIyMpPr6eo/KDqRQHNHa2koqlYqKi4tdpuGpKysro9mzZ7sddh2/heO48QvAYrGQTqejgoICj5h14cIFUiqVZLFYJpS5Y6GqqooiIiLou+++8zjPli1bKCUlRVI9HgnAHaNycnIoLS1tzPR82JYtW0iv10uh0SeQIuyioiJSqVTU1tYmqQ6LxUJJSUmj2pEHGFcPKC4upnnz5knaLlapVNTQ0DCeav0Gi8VC69evp9jYWOrv7/eqDKPRSGq1msrLyz1K77UA6uvrSaVSCfR8Mdi3PIPBQJGRkd5W6VfcuXOHEhMTKS0tje7du+dxjxFTZ1mWdbkAdcwjSQCeVuAKer2ecnNzx04YYLAsSxqNxqOhQ2wiFYOnDdSrHqDT6UQ1A3etxmKxkEKhoNbWVm+qHBfc0dXQ0EBKpZKOHDni83r37t1LK1ascJtGsgAqKiooPj5eMjH19fWkVqsl5/MnysvLSalUUmNjo1/Kt1gspNVqqba21hbm2BgkaUEmk4lUKhVduHBBMjFZWVlUUFAgOZ+/sHPnTpo5c6bt+JOHr1Vjg8FAM2fOdDmvSOoBeXl5lJOTI5kIi8VCcrlcslonBRzHecS8e/fuUXp6Oul0OqdtBX8hPT2d9uzZIxrnsQAGBgZILpc7qWeefHRVVRXFxMR4WpXfMDAwQLGxsZSdnR3QhSDLsqRQKETVdY9NE4uLi5GdnY2IiAhBuCcHJhUVFbZDFwqEGZII2tvbsWDBAqxevRqfffYZgoODfWQBNzaioqKQkpKCTz/91DnSEwkajUZSKpVeLU5MJhPJZDLq6emRnNdXqK2tddooDPQ2CMuypFKpnA6gxhQAx3H04Ycfer19UFFRQbGxsV7l9RTumFlcXOy14uBrZGVlUWlpqSDMox6g0Wg81t8dmbFixQoqKiryjEIfw/5UbjJs/BkMBicVfkwBNDU10QsvvOBVhUajkcLCwsZcDY4HYow1mUyUlJREycnJThPfRAtCpVIJzCDHnIQ///xzrF692qvJp7q6GvHx8ZLtc6TAcSLt6+tDfHw8oqKiUFNTA5lM5jZ9oJGRkYEvvvhiNICXhFjL4PV3seM2d/l4JCUluT3M8DVaWlpIqVQ6jbOTCa2traRUKm2/3Q5BTU1NpNVqvapoYGCAwsLCaGBgwKv8UsBxHFVWVpJSqRQs+ycr7IchtzdkDAYDli1b5lVXO3HiBBISEmwXJfyJDz74AGVlZaivr4dWq/V7feNFcnIyDAYDNBqN+ztiBoMBixYt8qqSY8eOISMjw6u8rkDWRRz///79+8jOzkZNTQ1aWlomJfNJZOGZkJAAg8FgSyAKfvw3mUySNYfe3l6SyWQu91rGq4lwHEdGo5FeeeUVSk9Pl2TPPxnQ399vmwdc9oDLly9DrVZjypQpkjWHEydOIDExEXK5XDTeW02ERuYsXLt2DQsWLMAbb7yBiooKyabjE42nn34a4eHh6OnpcT0EsSwLtVptM9eWgoqKCo+GHynlktVQ94cffkBCQgJ27dqFXbt2SaJrsoBhGMyYMQMsy7oWQHt7u+iNwrGY1tPTg7a2Nte29A6EeAqGYXD48GFkZGSguroaa9as8TjvZER0dDTa2tpc3xNmWRaJiYkAhIwai2nHjh1DcnKy0wJovMjLy8OpU6fQ0NCAqCgx50Kjt05oDLP2UUty97c3/Ynp06ejs7PTuXa+hbMsK/lOLQB89dVXPtV+zGYzVq5ciUuXLqGxsdEF8wF7Rjoy36nP2nrxxDkH0Wg0uHbtmjMFPPFGo1FyK25vb8eNGzewdOlSnxDZ19eHRYsWISIiArW1tU6TuuhwKBI0GT0PyWQymM1m103AbDa71GJc4fjx41i5cqXXWok9Qy9duoSXX34Za9euRWlpKYKDg53Siw4zHnCbmQQiCQ8Ph8lkEq4DHjwY/XOnx7uCWq32yVZAVVUVKZVKt/cH7FFfX08ajYbmzfsnJ6s76ReuA4Pu7m5SqVTktBn34MHIb0i8vXTx4kVSKBTjtvn/+OOPSaVS0cWLFz3Oo9FobJchbPvtE7/97xZGo5HkcvnoQkysO5MEPf3LL7/EqlWrRIcKTzA8PIwNGzagvLwcLS0tiImJGRc9xIzc1WUYxva3fOshWzyH4Qlzi0PWBSX/Q4AHD0Z6g0wmo7//3WQbkvg4+9982P37HEVGRpLBYBCEO6Z1FWc0Gm12mfYHKGJlcBxH9+9zgnB+CIqNe5kaGhrowQOiv+WnEZhU6ngwPGKyQp2UClBq/kHvmuw44Tjk9fb2CocgHvxH8XaNjgx0ZD7RiHnf9OkzbaYenuThcfVqF2k0GiebUVd5XJXNN4QHD4gO5KZQ6Iq/COKIeH8N/GU591eHfAmx+aatrY20Wi2FkItFy5QpU/DLL78IwoaGgNBQOIWdOPENVq5cKXn4aWxsREbGWuza9R7efvttl+kc63SV5sEQgx5DKd7ZV4Paq98iNJQfthi70YasvhmD3Lnx8SnE+Gs2m/HEE08gROBUlUZJmjp1KoxGI0JDxRnPIyhoGMeO/Seqq6slEXX06FHk5ubi6NH/xuuvvypYvdrTIQUMAYeK30Fq/kG8bnXExZfJALjR3QUwQTbdO5DKqGND59dZtkl4aEgoKbVaDZZlxyy4oaEBYWFhmD//pTHT8ti5cyd27dqFs2fP4tVXXwXgfrtjaMhNYdamzYFATBeufQP88+LXR6KIBMnO1OxDal6yzU1mIOH4TSzLIjo6WrgXZN/So6KibG7BXPWC0FCgvPwrrF37r4I4Pr39b2DkAGXdunXo7/9fNDX9D5588klBPvs67MtwW/ZjI/+Hhxjg+nWcCv0HbJ6hBhHBMsTY4q+dPoyPvgFOf7zRPacCACKy7TbbmkJoqPBD58yZg66uLrcFDQ8Po7r6OP70J+djS748vszBwUEsXLgQjz/+OGprv8Uf//ikqEDFyhirbFtYdCSWDv0frt9g8dhjI8wnIoSEXsfWpA1I3XoAbz6PCfXKyA9FLMtizpw5rq0iWltbbRZtjpoHn7ampsbtoT1vsdzW1kaRkZEuLYSlaA9j4W95KYTUvNEy2NMEgFLzD1lDhid8FUw0snjs7u4WqqH2hFksFnrqqQjbWkAMY9n8cxxHtbW1pFAoxrzA7Uum5Fv9tfG+2oReqgKnfhKJf5f9kSTcffiSJUtc7u3cu3ePZDKZ0wUHe/DeUpqbmyWS/WijoqKC0tPTiYgoyN3BheD03gGnTp3CzJkzRffniQibN29GaWkpLly4gLi4OJ+Mn48Kzp49O2pt4k5S7gyz0tLSaN++fU7hZrOZkpKSKCkpSdL94Ucd9iONvWGWWwG4Mk00mUwUFhbmZPPf29tLWq1WYMo+GSa8yYTW1laaNm2a7bfbFUlwcDAyMjJQXl4uCD958iTi4uLw3HPP2cJaWloQFxeHd955B8XFxbbwiTaGnQwguwXh0aNHsW7dutHwsSQmNgylpKQIbP4rKytJoVA8FHaZEw1H83SPTl1mzZplu6DB2/z/9NNPRES0Z88eioyM9OsNyEcFYhc0gsS6iSPWrVuHw4cPAxg5942Pj4dcLkd2dja+/vrrSWuXOdlw5MgRZGVlCQM9kZz9Jb3ExETav/9jUbvM3ydcZ9j711CpVPTrr78K4ke3IojIfpXoyMqCggLasGEDBQcHk1w+lXbs+ItoRb9DHFlZWaJ35cRXwo5BHNHt27fpD3+YQmFhYfRfR4W+cH5nvnvrC/6itpiViSTPuZp/jMYs7Quoqqqyjl8AQfxEjXz2FMjDj4yMDMyZMwfvvfeec6S7YcceFouFLl++PGnu3D4s4J1UOd5hcOk5lyP3Q0p5eblX7mp+i+Dd1bgzMBOshM+U5Y287xUUBGZ5Pggs8vNLBT1mzZo1CAkJQUlJCRyfHqQJ8gMxWbFv3z7MmDHDvak+kd2hxdYDNslw7GkCA8qzd0Jthbcuyx5FeOOyjM/DcRzBncHSgfxlIg/PjKCu/oxHPtEednij4UlpoKg7lEvAMrpGQ06RZ8rynN48sUdJSQnNmzfvobsk5y9wHEcmk0ma28rljsMMZ9WGPBA8x3E2x62/rwW8c9wadJKAqOefHzUUYKwGS65U+FGbUgBASUkJBgYGsHv3bkE4PSITsrvvIHsjWwC5ubkICQnB3r17pdXBv+wgsgAeAyNrCFfOu39LKCsrI61WK/kUEKkQ13Q49rT4BOxCKlLc1z9K4DjOzn29a6cmrmCdhIMEzO6sO0BYJt3DracPODxK0Ov1Tg84SJkPQUQOT28EWY2YnO1nhKvkYUFn4MPtnzD5+eefpX7PQwOj0UhLly61e8LEO/jsCRN7v50Wi0X0ER9PyphMcEWPFF/TY8EvryjxhLt7xso+3cOE+vp6n/qa9mkPEPvNE/zJJ5/4qqoJQ2Fhoc+3YALymirLsqTT6Sg2NtblVranrocnAg0NDaTVaikpKcnnWy8BfU+4oqKClEol5eTkCJzATlbG9/b2UmZmJqlUKo/vLEtFQK+KpKeno7OzE1OnTsXs2bPx7rvvoq+vb9KdnPX09GDTpk2IiYlBVFQUWJb1yPuLV/CLWD0A/6BzREQErV+/3mZ3NJG9gX/QWalUCh509icmTABEo7uHjk+ad3V1BYyG8T5pPl5MqAAc0draSjk5OSSXy0mj0ZBer6eqqiqfWlkbjUaqrKyknJwcUqvVpFAoSK/XC8wFeQSiNwbmSXMvcP78eRgMBhgMBpw9exYxMTGQy+WIj4/HtGnTbL6MwsPDMXfuXEHeS5cu4e7duwCAq1ev4vbt22hubsadO3fQ1taGRYsWYdGiRdDpdLbHpScKk04APDmO95evXLmC/v5+nDt3Drdu3bLd4BwcHER7e7ugDK1Wa/NXqtFooFQqkZCQgIiICK+cUPkT/w/PXBJsfHRz3QAAAABJRU5ErkJggg=="
|
<image>如图.△ABC为⊙O的内接三角形,AB=2,∠C=30°,则⊙O的半径为()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,625 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAM0AAABjCAYAAAA4qoT3AAANwklEQVR4nO2dPWwiZxrH/ySRQ7dIKYKlREsi2+F81oXiTnLGkZZ02FuEItqlA6eYYStwEckrrbKytBKK9k6eqRDWnTDS3Zl1AynMUAVS2N4qdmGtV56RwMWduQqkFLC6nN4rbLwYBhhgYD78/qSRmGE+HpvnP8/78cwzNkIIAYVCUc07ehtAoZgNKhoKZUCoaCiUAaGioYwFkbPBZlNeOFFv60bDQqIRIQiy3kZQrlhOEORYgM0RENJcJPAMg/lZva0bDcuIRuRWsKu3EZQWZJydsPAvX66JggAZM7j/4AHmZvS1bFTe09sALZAFDlkwWDD7r2El5D3sLvixDwCygGev5i4/RyIw+69k/kgjC9ibS8CPA70tobQg7+3iYGvlsh8zG4Xp22QtmFw0IoTnc4gsyzg7MX9b2TrI2NsFeOmyLyPx1moFmFo0IneGucSy3mZQOpDw6mChpe/y4LpvYwVspk2jETnYVrZaNrDIkQQs9NuYF5GDLesHabuhyQKHvfsJREwedMwZaWQB3Nl3b4cyJR4MMw/aOjMCMoRnW2BvhBYZssBhdnce900uGMCEo2eyKOB5dg6JRMt/X3qFA8zrZxTlmiXb7OWQzIoNW23fMbxk+pEzwITNM5vNBoABL+0jMnM58/y2lUabaJTxYzrRUCh6Y84+TQ/y+Ty++uorbG9v623KrcZIv4PWtlgu0rhcLpyfn+ttBsWA2O121Ov1kc9juUjjdrsBAOFwuCVRkC6TXmKxmG6/Q7VaRTKZhNfrhcvlwqeffgoACIVCCh4jQ1jqzMRe4gSI3fJ/iYUolUrE7XaTer2utym3nmq1ShwOx0SvmclkSCAQIE6nk4RCIVIoFFT6RI6wDEN46WpVkgjPggAsySnsbSnR+Hw+Ioqi3mZQyOUNzOVyjf06p6enJBqNEqfTSfx+P9nZ2bkhEHU+kSMswxOpfRtAGF7q2Nt08zTdSKfTcDgc8Pl8eptCAVCr1eBwOMZy7kqlgnQ6jUQiAQDgOA5HR0dwOp039lPtE2IWWwt+JG5sXIafBbZeSUDb7JIlRFOr1bCxsYFCoaC3KZQrtBZNo9FAOp3GixcvcHx8jEAggEwmc92HVbq+Wp8Qs1tg/QnlL0/OIGP5hmwsIZqNjQ1wHNdxp6Hoh1aiKRaLSKVSyGaz8Pv9iEQiqloT6n1CRHaLRadmZJydAFiY68hiML1ojo+PUSwWcXR0pLcplBZGEc3r16+RSqWQTqfhcrkQDAYRj8dht9tVHT+QT8hnOGHbm2a4fIjuAGCfdOaXmF40q6urSCaTeptBaWNQ0VQqFWSzWSQSCTQaDQSDQRQKBbhcroGvPYhPyHu7wHyqfSuEYBQHDI+UQk6WqUXD8zy8Xi88Ho/eplDaqNVquHPnTt/9mv2Uly9fwu/3I5lMjvR7DuYTIp5HgQdSswEmQxb38PxZFFvgIe13eTRbi2E/Pbi4uCAul4vOyRiUaDRKNjc3Fb87PDwk4XCYOBwOEggESCaT0eSag/oEgI6FYRjC5jqHmVsxbaR59OgRNjc3VbdzKZOlVqvh888/v14vl8vY3t5GKpWC0+lEMBhELBbTdIRtUJ8gQ2aQmVI0+XwejUYDfr9fb1MoCpTLZfz000+YmppCo9FAKpVCpVIZqZ/Sj4n6hAZRcaLU63XidrtJqVTS2xRKF7788svr5k4gECCHh4djvd6kfcJ0CZsbGxsIBoNjuVtRhuf4+BiPHj3C9PQ0fv31VwDA9PQ0kskkFhcXx3rtifvERKSpEUdHR2RxcZF2/g1CqVQisViMuN1u4vF4SDweJxcXF4QQQj766KOJ3Pn18AlTiWZxcXHsoZ7Sm3q9TpLJJPH5fMTlcpH19XVyenrasZ/dbp+II+vhE6Zpnm1vb8Ptdo891FOUyefzWF1dxfT0NH7++WdEIhGUSiXEYjHF/K9Go9F1FKvXGwVsA7xSQDefmKhEh+Ti4oJ4PJ7r0E+ZDK1p9z6fjySTSVXR4+Ligjidzp775FgQtu1hFYlnFFPxu11DL58wxZDz48ePEYlEaELmBGhPZ+mWdt+LXlHmkqs3CjQTvkQBAiKIzC1gQWWRJz19wvCiKRaLKJfLNL9sjDQaDWSzWc3SWSqVSm9nbn2jAGQIz15hbh8AEp2Jkwro7hMTj20DUK/XicfjUexoUkanUCiQUChEnE6npukshUKBeL3ert9LPHMzfaXjqcnuGMEnDB1peJ6Hz+fr+qARZXBa01maafebm5uaprP0jjRv3ygQmQEgC1h63vnMSjeM4BOGFU25XEYqlaLPyWhArVZDOp2eSDoL0K9Pc/lGAX9TJTNzeKDyHSmG8QndYlwfaJGM0dnZ2SGBQIA4HA4SDocnNp8Ri8XI+vq68pc5lqB92EwlRvEJQ0YaWiRjeI6Pj5FIJJBOp+Hz+fD1119jZ2dnojY0Gg28//77Ct9cvVHgiZru/k0M5RN6q7adarVK3G43nZMZAKV0lmq1qps94XCYxOPxju3Mdee/pcaYCozmE4aLNLRIhjpqtRqy2SxSqRTK5XLf6iyTpFufZn/I51eM5hOGEg0tktGffD6PVCqFYrEIn8+Hp0+fwuv16m3WDfrO0wyAEX3CUKKhRTKUef369XU/xePxIBgMIplMGvap1f4ZAeoxok8YRjS0SMZN1FaRNCJaRRqj+oQhRFOpVCAIAk5PT/U2RVcGrSJpVLSINIb2Cb1HIgghxO/3a5bCYUZa01lCoZAh5iJGQQu3MrJP6B5pbmuRDKUqklqns5gVw/uEnoq9bUUyqtUqicfjxOPxELfbTWKxmOX+9lFfsWEGn7gZaX7739vP7707dsHeliIZ6XQaP/74I/L5PAKBwMhVJK2MGXzipmjee/dSOBMQTHP83aqvx3j58uV180uvdBY9KJfLQzu8WXxCtz6NFStkTqKKpJUxi0/0Fk17c02p+dbc1h6dejT1/r6dwh/mf4/FP/6pt3XdztFre6udE4ic7eks4067NzrDRhozFU7pLZp2p2tfV/O5bf0///o3/iLwEEWxt1O3n09pe+t6c5/W9dbPGgun+XiwkdNZzEJzTkYU1Vei0ZPBmmdKztfq0Cr4/vvvBy+IoMbhlcShsVCaaffZbBaLi4t4+PChodNZ9KBcLuPu3bsDHWO2win9RdPvTj2AYxaLRZyfnyPxt7+qPkZvWtNZ7HY7OI7D06dPTfMDGx3di2QMwVvRjNqE6XN8o9HA2toaXvzjn5qfW2usks6iB+fn57h3756qfZs+YbZRxc55GiXn7BZt2jvdStuv1vk/P4fP58Pc/O/6d+QHPPf1se3n6NXPUiCfz+PFixcDvxSVMhxGKJIxFKqnQf/729AzqKVSibjdbkMWLj89PSXr6+sDV5GkKOP1ekmhUOi7n5F9oh/qBgJGbB4Zbfxd6aWoZkm7twpG84lBUD9PMyRGKYigdRVJijJq5mmM4hNDM84wZoSCCIeHh2OpIklRxul09vy9jeATo2IjZMhqBypYW1vD3bt3EY1Gx3UJRdrTWTiOg9/vp+ksE8Bms/V8AaxePqElY8s9m3RBhElXkaR00u+JTSMWyRiKcYUwj8dDjo6OxnX6azKZjC5VJCmd9HuWZlI+MW7GEmnGXRBBKZ3FbBNkVqRXpDFqkYxh0Fw04yqIUC6Xr5tfNJ3FmHSrQmPoIhlDoLlotBx/b6azGLGKJKWTbpHGzHMySmgqGq0KIrSns9C0e3OgFGkMXyRjCDQTTTP5bthnItqrSD58+BDxeNwyd6fbQHukGdUnjIpmohmmIIKZq0hSOqlUKvjwww+v181QJGMYNBHNIAUR2tNZaD/FOrx58wZ37twBYJ4iGcOgiWjUdPSKxSJSqRTy+Ty8Xi+CwSAymYwWl6cYhEqlgs8++wyA9Tr/rYwsml4FEWgVydtFs09jpiIZwzCSaJQKIrSms9RqNZrOcouoVCqYmprCDz/8YLnOfysjJWyurq7i3r17CIVCHVUkg8GgZe80FGW++OILfPDBB/jmm28QCoX0NmdsDBVp8vk8Hj9+jGq1CrvdjrW1tVtVRZLSST6fxy+//IKPP/7Y0oIBhow0n3zyCcrl8hjMoZidqakpvHnzRm8zxso7wxzEcRwAIBwOgxBCF7ogFosBAL799lvtvNOgjPUhNArFigwVaSiU2wwVDYUyIFQ0FO2RRQjcEmw2G2y2JXCCDIgcOItM3XQRjQxhyXb1R79dljgR8mTto5gNWcDS7Ap28QQSISBkH98hCNvKCeZn9TZOI0gPciwIm7takXKEBQjDS70OodxmJJ4wij6SIyzDkpziQeajR/NMxtkJ8/buMLMMPwscvJImImaK+RCfR3HA8EhFZtq+mcX8wjysEmi6DznLApaCQGo/ghnIEIUgVqILyJEElidsJMUMiOBsKzjhJex3iMZadE2jkfd2cXBwgFlbFADA8DlIZBnW/ndQhkY+wwmAhTnre0jXgYC9XYCXrmZ8JR6IriAo0GEASi8Y63T2e9BFNBJe4QHuN28aMxE8YYGD3T06ekZRZmYOCzjA7l6nh8iitUZdlUUjZnHy4D5tilEG4GqgKBqEIDYlIkMUBOzNWqxZ3zmgJhGeYcj1qKEkkRzLEKBl+JlCUUQiOZ4lDEAAEDAsseIMRcfo2ZLNhoN2ZTEs+CffIbJsqfsFhTIUNMuZQhkQmntGoQwIFQ2FMiD/BykAx4lSU2IyAAAAAElFTkSuQmCC"
|
<image>如图,在▱ABCD中,点E在边AD上,CE交BD于点F,若EF=\frac{1}{3}FC,则\frac{AE}{ED}=()
Choices:
(A) \frac{3}{2}
(B) 2
(C) \frac{5}{3}
(D) 3
|
\frac{5}{3}
| 69,626 | null |
\frac{5}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAJkAAAAZCAYAAAAi7IxiAAAFwklEQVR4nO1aQW8bRRT+3qaqqv4GDhC3QSSFn4CiZjdNLyThwm/Ibg+lgZ57Qwg7IKQYhT+AOFCvxaGhTiA/oKfU3tKg0v+A2NiOknkcZnc9M7tbO21sr6k/ydqZeW/eezPz5s28kYmZGRl48OCB9i0CimgTkG1XPK1ENAaLRodB1sQyG3J8borXwP/dwUzk+Y5lMr1tEzMsvI3zmDdmaxCmKaZ4E1DenWxxcVH7FgEHBwcAimUTUFy7RoF47PE3C5fyCEWcsCLaBBTXrlFgkLHnRrIiIeuuOL0/Tg4mwsmmmGzoTxgMMIRalV/ND0VOeYhQ1DNzYZ5ZsqwohmVDQubghE7j9FOG7mQEkNrEDIaedQqQQh7RcaWqISrMMZllRaotNelCWasRbdKLgjY4AW+ZQDQDIgJZcl3K9WZqfaRHZXgoMwMZi2kpmsax2ONzr9d0CBKpeerVUm/hEwQL248ZrgOU/SaYGU2/jPuffgS/lRXJMlaOiBDUK6i3TA8UIz2uYl09nePa/VakO19/reLKXU0EWnbBCOB538rYxaacyT5aGQAjwPPGEm6vzgMAFq6XMn3DyrvjMALcXfsSWR44ygh255YFIoJlWdECzoDoFoKxLJEFcBT81XkLfBARqi9LSTt/twyLPgRmS7BAYM3e3L1dcPSOegIQ1B+BvNuYj0bi3V2H7ZWxumCMjA0IIZiZueK57DgOt/jMZBk5XAdca4qkXnZtBpb4KYtX9BoNTrnJNsBL7jcpWtm1uew3M/uN3/LBoNt5pn1rFVcGNJKBTV0jFRYza3GbiOBveWDHhmjoF/1xBA9GgOfwsKbsjs3tBlxnH5/f2Rq9PWrUF4xft6rYwxK+395M8ZZKcyhdm4866rRJiWJZV/j429itotY6BQvGw4qL9RuWvI8ZY7WIWEpioHNyjM7hz/hNfIzN64R95xpuqGrGMDNB/RFo7r1U++x1G3tHL4auP3dfCQZbz7C9WYVbcZMjQ8Xave3e5qDJ/YdLYrdqfuCjig2szc8AANbuebAB7D32U35iJd5JwJXLV3Hvxz/wwxefAQDsudJgRmRchgXOBqa/QjB2H+9ixVlJkUqluQvT/yo6RXbEIIoqFoGCI+wTYbb0vtbTdKZYvv4UdDH2DZuuvZUqzuPvNuDeWk7qFBxhDzDmQiLJoZkZ/paHnZ0decFeWE8xm4gnkzJScQszPQP60HPlU4BHVU6yFxUv/v4z2QRvqr+vferOZEtzImYylsgCwXyyGK59w6THIzGTvcZuFc7KKgB5pXEW1gHcxMonH6Rlcfzg+qyOBjsIwzB587j27jvyCD05BoCkHNeJSKurMHkHpanoHj4FPBuzJ229/+FPuL/zO5ybiym5qny17WIg5IN1NOE8PwcbAi//OtLZCEDgo1JvXaDucaLnYK16RWbSDWD9RpT50wL2nA0w72deG2R22aoxbI+ZmdvdkIUQXKu47JZr3O6GWkYh62qZe+UouQi7/8jMJMpUEz4hy2d8mtBVGSranTCx4TiyKZblOmA4G5rsdjfkdidM5Le7IR93/k3plyPp6dfQj56BOMNSs8imX2Y4G+kM8k31j5uewhmz+vogjG8EyOeAXgqaLGLUtuR9lfQzHaLdDZPFTDmcgnix+9E02e0nbAP88KkyiFaNZy71HCyWl3Jmo5ynI8YgzpTJL+Sv6ZeT+QLAtlc+l/yi0yXTACw5cvR3MpF2AmY9Wqj6zAiR8HdCTWG7k454WY4R74qmX2brErSFi39f//JENVeLoKo9mmN3jDEJY0LMuTHpbPKf8iAQqcJr6h83PYctv1FH8qfFzskxrly+es4Tuteg9Sfjomh2IKQuxxLyArqwuokw3EjkqbLVOxalCor88+gfwD5dXv+kpa9959E/bnoOW36jwcIsU6V48fIcLc8J8/qpzjAozdRxHtlmm9q339imGC4G/tPieSLdFFOo+A9USS9WTbyWxwAAAABJRU5ErkJggg=="
|
<image>如图,C、D是线段AB上两点,若BC=6cm,BD=10cm,且D是AC的中点,则AC的长为()
Choices:
(A) 2cm
(B) 4cm
(C) 8cm
(D) 13cm
|
8cm
| 69,627 | null |
8cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJ4AAAB1CAYAAAC/Blg6AAAUZklEQVR4nO2dT2wTZ5/Hv49h39B9tYWeCGpLYA+7yTgUoz1skFBDbqHVSlBsJ91TcintYQnsKalebCeXwAUULimVFkddifhPmtADCacm6YEUaVekxH9yeEVaaduYS0Kllrgv8fz2MJ7x/PXfcTxj5iNZtmeeeeaPv36+z++ZZ56HERHBwaEIRATGmMFaHoBLSAeAAaC4D/v8MxCF5Y3lEEMf/Igi7hPSuup8zA5NgLHoALmEGBIIdjK4/IQI8SAiEBH8M/vg8qfh5vS2cnCoALVREp4i2HkCYwhgjeLwoyDWi9EovODAuQvL9u/ZkTrYFrXVar4DWBv1YyzZgWAiiE4oS0iGTnAhwE9M8GLwYE4dz6F2kgh2dmKMi4CifYCuMxfqgoBjtQ4mwCOJVBLg3G4D0QFqqTnCc6gJIoAlk0jqrZO/k6xeSI7wHKpgamoKb7/9NgCAMYB3c+hkQCpZkJ/YtAIAsdEgEkxWL2SO8BwqIJvNYnBwEMvLy/jll1+kEmwf+hCNeoF4P9yjKQD59jwkEOx0YYYrBBzCNjxADg4qeJ7XLEun0+TxeCgcDhMREXSkwycC1CEUdvlXBwUTOVUi4c2Jah1KMjU1hYmJCUxPT6O9vR2A0KhcXDrKKFaN047nYEg2m8Vnn30GAFhZWcGBAwdKbMGDiAGMgYm30fJtfqRq+3PqeA4KxFJsfX0dp0+fRnd3N8LhcHHRSQWfS8xEWiWKTX3bzSnxHBQwxnSt1RB5+ApRYHx+ocpuCSAQGCNHeK87cgus3FohiY4AMJ5ALsFmBT26NGkZmN4ah9cNUXQVWatePgDgYlLhxwCpd4oeTon3miAKQK+LU0XWWgHFulM5wntN0BNBVdZqEo7VNjHF2tnW19fR09NTtbXWilPiNSFiwGBkdZFIBBMTE5icnITH49nbg8vjCK/JUDfUyslms7hy5QpevHiB+fl5vPXWW3t8dAUcq20yjEQnWuvJkycRiUQUomvEXVOnxHsNKGWtxR/mqQ+O8JoEPYuVW+vCwgIOHTrUmIPTwbHaJkEtOtFaPR4PIpGIpUQHOCVeU2KFqLUUjvCaANFmrRS1lsKx2iaAMaaxViuLDnBKPFsjlnSRSAS3b9+u2FqLtfnVG0d4NuaPP/7A0NAQfv31Vzx48EATQJQSVqNEBzhWa1tEaz116pRh1NpIYZXCKfFsiF7UWvrhG4FG2qscR3g2olTUWo6grCA6wLFa22C3qLUUTolnA+zQIFwpjvAsTDabxdWrV7G9vY35+fmKo1Yr41htgzF6IKZYNyYRu4oOcEq8hqMnHiNrtbPQ1DjCsxB2utdaK47VWgAiwsbGBs6ePds0UWspnBLPAty/fx9jY2MIh8P2i1qlISz0R4cyCoAc4TWQbDaLkZER/Pjjj/j222/tWcoxUXAu6InPqF7qWG0dESNWvah1Y2MDvb29OHr0KGZnZ+0pOgBKCZWQEwGCOJ0RQeuC3oiacmZnZ8nj8dDKyoqUttQ2VgMK6eSIJ6Lc2jVpRFAutKZIH/UJyxlA8EXIEZ7JFBPQzs4OXblyhc6fP0/b29t7d1B1oCC8nGadIDIvTefHnRWvyNMQR96Y8NmxWpMxqtPIrXVubs5yD99Uj1JCPGL4mnzwYgazM8IycSDurxM+BH35qkfd/xoOCmuVYzd7lQONdHLE8zzxMS/5Yjn6IdhB8EUKa5MBuiizXyeqNQkyeK61WNTaTHciiISxWpIpDt4gwwnOB65zDKGkDyG3C+l4Cp1eYfpGghPVVgXpRKlqEYnW+u6772Jubs7GUauWpaUlzTLGGAgJROEWZm50++B1pxCfSYGQQDzhhjc/eyMDHKutB7Ozs3Ty5EmNtTaKSiJnozQ7OzsUDoepvb2d3n//fQKgTMsT0VqARuOyRTEvwR2gp4mQzGaFYMQRnonIo9atra1GH05NiKJ69uwZDQ8PU2trKw0MDFA6nSYibXMKEdFayKuaUCVKXoA63OrlTlRbM5S3XXXUandrXV5eRn9/P3p6enDw4EGkUimEw2GDoWpdABKYkdmpgB8+H5AGB69bnIogv6qOf5qmRm4zRlFrqe2shminHo+Huru7aXp62jCtQjpRb2EaKfdfaI0K58gnlNGsiDOlVIWQanj+zz//HBsbG7h7966mlCOb9BDOZDLS4Ns9PT0YGhoq2VlB/lSbaqoLDXrrHautEFFI5UStVhfd48eP0d/fj1OnTuHgwYN4/PhxVT1kjM+SV4mOL6wyq5h+nZibmyvbWq2IaKddXV2SnVZaBRClo91OCCJK5dYEDchiV5ziswUqEKahKT99nsq6MRnnTw2w4Ewmg8nJSXz55Zfo7e3VlGzVHo92O+GcS+XWBFbrUr0XI1/UMzE9XyStEtFa29raFNYqC9JkDcvFRV1v0ZGs2v79999jcHBQEtmTJ0+s0eG0ovLVZiiL+5y2/C/TXcSo9dGjRyX2IVuusCBtD456Ew6Hqauri7q6uqTJjc2kVuk0rfD0BFFpPabWBmE+JmtmAAjuAK1RhLyym+dmsrm5SYFAQGrsrWcdtFbhNYHVyilYp2hmJAv5pe+kTEslegiX6sak3p6QQLCTweUnRImXbJgPpnCC9SPldps6xP/q6ioGBwfR1dUFoGCn4nf1MZq576qRq/Dl7ivpZRciXihLFYMesETyUrC49S0sLFR9rzXHP6WAWyzdtCVsxNdB15I50rX+Cpmenqauri7yeDx09+5d2tnZqS3DCoDZVmsn0REREU8U84PgixUWJQJCF2z/vYqzGx4ept7e3qrvtT4NcQR0aO5NiiRCAYrRblV5Ewl2Oj4+Tq2trdTX19ewJh1HeLRGAbe2hBPrV95YQQDF6niZTIa6urpofHy86iPhaY2ucVB0gCxQW4CRTqdpYGCA2traaHh4mDY3N2vKr1bqKjy19epZsZE1F7Ptci3dKN3vr/4mLecTAeLAUTCRUxznb7sRoWfE2A/KTHmtAOfn56m9vb3m0kMsaTlVFyDxT8AUQYbsfmaRP8T09DR1d3dTe3s7hcNh2tnZscQDQrUKr2gD8hv79mMnt4s39u3X/V7O50rWyVFvI1/+9/v/Tvr+P7P3kXJ78W/tOQBM2u73HMC3/AmMd2Fndxdv7N8vtBtL05MLjIyMYHV1FY8ePTKlR4mQv3h/Mt+Y6osjRzH4WR+So2tIBzpV2yjb9ba3t3Hnzh188cUX6OrqQigUwtmzZ3X2Ze1bcsWoKKrVE8lOblchDPPhZftUNvgSEpibXYfb78e/7BPEKKZl6TTSf/wNHMdJSpD/TJlMBqdPn8bBgwexsLBQk+hIjBLdPvg4IJlMalruWTyOr9GBvotcIcRWsb6+jsHBQXAchxcvXmBxcRGRSERXdGSFyLQW1EWgkTXqrTOyymLpqs1DbzmfCFBHy3sUXBMCxN/FdTzR/469RwwXKcJr8zLLWqXjkFmeaKu6z5UaRLqzs7PU29ursFO9vK2EjnQq2178YCSuYuuMBGWu8HLK7V8VPj8NccQ8QenHFNPxiQC1t/xJ+vHl2xei1hcKCZj5A+fyPW+heomBDs/v0tbWFt28eZOOHj1K58+fp/n5edP2vxeYKrxilf1iAjEruND7/nL3FfGqiPDl7iv6ffcHGjmlFNfL3Vf03x//iZAPKuR/mI2f/083ajWtoi4LWnRzyi9Mrafp0qVL1NraSleuXKZnz55pk/K8ZUs6EdOEVwqrNLPwpHMrSnNbqryotS4/La+f94OFeclOJycn97Sxtx7UKryyeiAbRZ57DREJYaPYrYgAAglRKpP1dJX1Pvzzn/8BL1/+1rBjfvPNN3Ho0CFwHIf/GLqMD3rPFVaW6rprYcqdV8OIomqqb7RaOVLzgfSubBphsg+ZTAYXLlzAy5e/7XkEuLGxgRs3buDhw4f46aefsLq6iuPHj2sT2lR0ZlC0OeWNffull1UoJiJx3cLCAnp6enDr1q267k/NwsICzp07J81H8eTJEwDQF91rjnUUVSZiqScKQt6IyhirQ4Nw8WIpm81iamoK169fR0dHBy5fvoxz584V3cbBxj2QGWMKUZjZIFwOGxsbuHr1Ko4fP47V1VUsLi5KJZ5DGdQW21gDddQqb4ow+xTn5+fp/Pnz1NbWRjdv3qStra2iTR96+7d6U0k51HpdbWe1avSs1ex7mKKdTkxM4NixY/jkk08wNzenm5bKeJDHzvdYzcK2VrsX1rqxsYGRkRHJTufm5rCwsIALFy4YbuOIqkzMKXj3lkrutVZziouLi+T3+6mtrY3Gx8c1nUIrsUqbXuKS1HpetrFayltYqaiVdKxOb5maP3aymI5GcOPGDRw+fBiXPvsE0WhUN61TqtWObaz2+fPnZVmrnijUTTByMpkMRkZGcOwfj2N5eRlzc3NYWlzCx33/bu4JOCgxodStO4uLi1V3Y1KeYqGzwcrKCvX19dGRw60qOzX3GVibXOKKqfW8LGO1lLdDUtliMBjE8vIyVlZWap6vNZvdRSRyD7dv30ZLSwuGhoYQiUQK+YGXeg071BfLXGVRQOL78+fPpZ63S0tLus+1ykVHOjZKRPn7tr9gZGQEHf/8T1heXsZ/he9iZWUF/f39+ZTCbDOMd+pue0btha75LC4uksfjocXFxZryWVlZIQDU2irY6c9L/6k/84wsSM1RlHwMplmkRS9xzdR6XpazWtFaFxYW0NraWlVeU1NTuHPnjvR9c/NnAC4QgAT9K/pYH9LyDaSCjseMvw9x6kAwkbDNwIp2xDJWq7bWSkWXyWQQDAZx5MgRLC8v49atW1hZWcmvLQydxWZScPk6kEwmNXmsjZ7AWMoN+IIIuV2O6OqIJYS3tLSE3t5ejI6OYnR0tKJtxWG4Tp06BUA7bohCOgTEkzl85AaQSiEBcRwVgJJBjFEQXiTBud1Seof60HCrFa314cOHFZVykUgEExMTAIBLly4hHA7rJ5RFyjyLIZ7sRMy3jn5pvTD/Vn8fw7XYOvpHO+CNcdI6h/rQsBIvk8lUbK2ZTAbXr1/HkSNHcP/+fclOBwYGDLeR19MoHgd8fQDHgUumkIYgyhl/DN5EECweRZrzws9Zwgiam9rjm8rgeV6KWpeWlsra5smTJ1WPGyI/xUQoQFHiiU+EpGEvhKksc8TrjcFiQu+lBlziPaHW89pzqw2FQmVHraKdZrNZDA0NYXJyEgcOHKhqv4QE4qwTITDA3QEOKSRnxpBAFDM+F4AU0kkOvmjeZsEDzCn56oZJf4CSbG5uUnd3NwUCAcM0PM/T1tYWjY+PU1tbW9XDcOl2BE0GKRgVRyRf04xh9zTEGT7pXwt7eIn3lFrPa0+uSjkNwuIwXK2trTQ8PKz7oHO5yB+IZoAgsnzDsS9vqyG3N2+7AeIUz+ZepAhv3v1aR3gG25t0HIYEAgHq7u42rJfpDcNVKZV2PS8v0+o2M23/FqfW8ypZiam2KWtzcxPd3d0AhKj18OHD0rrt7W3cunULx44dwzfffINgMIh0Oo2BgQFFHY7KfLSwLg29TlOKhnJ/j7JEU+yPLY5Zop6XtFRhYGSt6bR83JArNdlpuaDBJU6j9282ohaqPy9hCnnIMyvkXv2B6VmrfBiuvR43pNE/fKP3byaGT+9p9JJTvaszInIJo2SquhcxsbSUD4RYfBYcdYNwS0uLZKdfffUVLl++jHQ6jU8//VS3SYTsPtBgE3PkyBEwxuByuTTPM+vjygtIrybH5wfKrFT1Op/l1vrs2bOy7HSvni2t4hSbav9moHcOFZ2XjqFCWm4wvFYpgsEgdXd3071796i3t5fa2tosNQxXo3/4Ru/fDMoVXtSnHDKO5ZunojqqKmytozie1igQjOsezObmJp05c4Y+/PBDamtro97eXnrw4EEFp7M3NPqHb/T+zaCSEk/eEK/XUC++FUxYx7ZjvhMYS+U0y6enp3HixAn89a/P8M4770jjhnzwwQeatFSi7lZqvYM10avnERKY+ToFb+gaOsEAdMLNqTfMvxsNm7prMIj0d999R4wx4xE5bfRiZuXFii136e/b5tewpaVFK5tEgDh4JWvNRS8SkB/7WSW0/XrxCaWCeC/uRsA9gxRXkCwBOHPmDHiet2y3cIJyVNDix1n5ZMnaLAhwSX9jiF3srXdl6gsBQCqFFGbQx1zoAwBfBEQzuuk1V52QwGiIIRK7qEnMoH0arNGQ6nvcz+BiDMzFZE0A+8AYg3s0oUptQu8Tl/w6aGen5jVHWMB4jf1gAOLxGXChtfxslVF44/1gfVGd6hQPRQ2R53mK+DootJYTnrYCR6Gk/YbU+mFU29Mk6lPOa1YvYgazSQovn26EZ2UUc3gYNIHxPC/pRT55oDCh4EWK6kwaWGhOIZ3R1BlnOAuhVeHpBwq6Qd64MEp9YvSa0AslHtQ5l9rPTe+n0Otixce8BpPr2RuFdmTnzFOOpn0gwEtRUgmYqHDLjE8EyO2LqkSo3wZjZYTJTYSSJUdR8nNBShBpGzHr1IDN0xoFOwvC5xMBCsWE949G19SJmwChm9m1znwgmj8nsU1PCE61f3BBeIkAce6A8APlUf9rpWtk8YulKbXzpcxeHLZoOV5W+MNGfMLctXpCt/ilLItic47oRbMiKHSSzF8gsdEPyuV2gOd5ivoKTUB87CPiQmb3KTbYd/59N+ZX/QCFOo72OOxxXUsj9uwuH+RKzBZt9fXKtMoKbi4WoKB2hnjT9y+/4HLh5yhOPnewaHf6Rl+/eq9XTwcm4nJhX9G43urr5bB4HHG3F1630Kzh8o0i1AnwMS98cVnvGik/3pT9F1rxYpiJc/B5ufzydnT4uHwrfnX52309k3qqqCgqV1uRryKoIkc+5iUwL03vgeEKkd1fFPclm6EeVw+aQnjyCi6T374SP/sidVeA4rncUvvSmZ7+daOsSfTsDKlumam/m7KPuA8u/yykzrL+e6Dox7L7d+oNDJa/Rvw/OfBRfoZqlnMAAAAASUVORK5CYII="
|
<image>如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()
Choices:
(A) \frac{4}{3}
(B) \frac{3}{2}
(C) \frac{8}{5}
(D) \frac{12}{7}
|
\frac{12}{7}
| 69,628 | null |
\frac{12}{7}
|
"iVBORw0KGgoAAAANSUhEUgAAAKwAAABtCAYAAAA8hYrJAAAJu0lEQVR4nO2dPWwaaxaGX24iLeno4pIitqzIUqYc48K4ipwtgnUbU9lotSBXJkWkRIkWsoqURCkYKidpbFcoaSDFhXSOi5h0jrTWJTJIGG3hpLLTXCiSPVvYH+ZnGIM9wzfDnEdCMgMMx/Lj43cO8409RERgGIfwm+wCGGYQWFjGUbCwjKNgYXtRSCNdkV0E0wkLq0sBsTvvZBfB6MDC6lCIPcVeYAoTN2RXwnTCwnZQSc8gF3qMqR3ZlTB6sLCtVNJ4iU28Ht/HXuAmxmXXw3TBwjapIP0SuL96mgOmJsCJwH54+JOuEyrpGYzHW3JANA96PS+vIEYX7rBAMwoQ0cktH0XgJgcCO3JVdgHSqaQxswRsfjoLAJX9PYkFMYaQi8lHQQAICJBWJiIqkxYQ20CI5mWXyHTAGZZxFJxhDTg4OJBdAtMBC9uDjY0NTE9PI5fLyS6FaYEPunTY2NjA9vY2SqUS5ubmoCgK/H6/7LIYcIftQsi6vr4On8+HtbU1RCIRNBoN2aUxYGHbaJVVoKoq7t69i4cPH0qsjBGwsKfoySqIx+M4ODjgPGsDeKwFY1kFx8fHmJubQzab5TwrEdd32H5kBQCfz4dUKoVIJDKkyhg9XC1sv7IKgsEgZmdnkUwmrS2M6YlrhR1UVkEymcT29jY+fvxoTWGMIa7MsBeVVfDt2zfMz8+jUChgbGzM5OoYI1zXYS8rKwCMjY0hlUohHA6bWBnTD64S1gxZBZxn5eAaYc2UVfDgwQNsb2/j8+fPpu2TMcYVGdYKWQUHBwdYWFjA1tYWfD6f6ftn2hn5DmulrADg9/uRSCR4PjskRlpYq2UVhEIh+P1+aJpm6fswIyzssGQVPHv2DO/fv+c8azEjmWGHLauA86z1jFyHlSUrcJJnV1dXce/evaG/t1sYKWFlyipYXl5u1sKYz8hEAjvIKmg0GpienkYmk8Hk5KTsckaKkeiwdpIVALxeLzKZDMLhMC+tMRnHC2s3WQWTk5NYXV3FysqK7FJGCkcLa1dZBZxnzcexGdbusgp4aY25OLLDOkVWALxU3GQcJ6yTZBXwUnHzcJSwTpRVwEvFzcExGdbJsgo4z14eR3TYUZAV4DxrBrYXdlRkFaiqitnZWTx//lx2KY7E1sKOmqwCXip+cWybYUdVVgEvFb8Ytuywoy4rwEvFL4rthHWDrAJeKj44thLWTbIKOM8Ohm0yrBtlFfDSmv6xhbDJZBK1Ws2VsgpyuRw2NzeRzWZll2JrpEcCkd/cLCvAS8X7RaqwQlY+6DiBl4qfj7RIwLLqw3nWmDZh67/qzQeuXblm2ZuyrMZwnu1NWyQQkrKscgmFQvD5fLy0RoeuSFD/VbdMWJa1f3ipuD6GwnZGBL3IILZ1St753FZZ+40evZ5ntL21TvG1lX8xrOTr168Ih8MoFovwer2yy7EF53ZYo/v9fA0Aj//9GFf/d7Upq9H+B3mf1vu9frmcLq2bP1DRY6Cxlt4Pvv6r3iZLJ2bEgH5k08vfTpW0FV4q3s65/837vA5lJIWQ9NGjRxerjgEArK2tYXp6Gqqquj7PNjusUZfsh87Xm3mAddnanI7X68Xa2hpWVlZcv7SmmWF7HTwJjLJm5+uSySR+/vaz2VnPOyDr9R79HtDpbevMsEbfm1PQNA21Wg2pVEp2KdJodthrV65d6Afa+TrRUZ/+62nPfYrtnY/p3e/39Z3ben3tZEZvqXgF6RkPPJ7OWwyFXi+hnpRJC4AAkOdvHgJOvo7me78ikUhQIpHo/QTm0hwdHZGiKFStVmWXYhJl0gIB0spnW/JREBAlPdUMhCX66+d/6OWsh/6R/0vsiYD2nQtY1uFRLBYpGAxSvV6XXYoJ5Cka0KhdqdNmqdMdDcda1678F+Xtf+L3+dM/p+M3EdB5Hn+CNVxG6tJHhRzeTE3gRtvGG5iYArC3j0rn843lj7ZYrm89d1Z5BINB2trakl3GpchH9WNmWQsQujovkeHphZX0DMbjO6f3AtDKn7Da8quQTCaxubmJpaUlU37ZmMH4/v07crkcYrGY7FL6JhQKQVGU03sFxDw5hOg15jueV4h5cAd50Ov2RwwiQQV/vAO0MoGIUNaA+PgM0qc9utFowOv1sqwSuX79OpaXl/HixQvZpZzLjx8/8OTJE3z58uVsY2Ufe9FQl6yopPH0DRANdT1iEAnKGgXaWnKeogAF9I64GKnYPZbt7u6Soihd8aWsBXR8Oo2eOnGAyGBK0LWzskaBc8ZajDzsmmez2SypqqozhstTtHPidOpYL1mJegrbORs76a69ZmPMkMhHm/NwoP0A+PDwkBRFocPDQ4kFtpNIJCgUCnWP3zq/j5bbeQ2xW9heOzOwnrGe7mH6aRNp+Qlns1kKhUIyymvj6OiIQqGQJTHFeKzF2IJ8tEfDyEe7/urF43FKpVLDK66DarVKwWCQstmsJftnYe2OwaeLesLW63UKBoNULBaHVWGTra0tUhSFdnd3LXsPFtbW9P6Ikuh0uK5zXFGtVklRFDo6OrK8QkEqlaJgMGj5e0q/8gtjRBl/7vSYR6KCP97tADpzTL/fj0QigUgkYnmFjUYDKysrqNVqQ7mWAgtrZyr72EMAN8d1Hiu8RHwnAO2+nszDufSRuCjzrVu3hneOrqX9m7kkJ5OA7kTQPSHQo16vk6IoVCqVTK9MfBgw7KzMwtqcrgmBGK73+QlOqVQiRVFMPRUxk8mQqqpSZr4srO05O5H+5NZjYmDA+vo6LS8vm1JNPB6nxcVFaefi2uL6sIz1RCIRzM7ONpeND8rx8THC4TBu376NeDxuam0DIeXXhBk6l8mzpVKJVFWlQqFgQWWDwcK6iIvkWXHyihUHbheBI4HLGGSpuKZpzcsk2eVatTyHdRn9LBVvNBoIh8Oo1WrIZrO2kRUAZ1g3YrRUvFqtkqqqlMlkhl9YH7CwLkVvqXixWCRVVS09eeWycIZ1Ma159tWrV3j79i0ymYyt//ctC+tyFhYW0Gg04Pf7kUqlbH/hZBbW5RwfH+PDhw9YXFyUXUpfsLCMo+CxlsuppGfOrho4k0YFBcRiPa8dKB0W1q1U0pjxeDD+52PQybQItAksee5gT/cEXHvAkcCVFBDz3MGbaPelgAoxD3Ihwmv988Klwx3WhVTST/EGUeR1rBy/GdVf4WATuMO6jpPuuqeV8Wn1xvlPtxncYd1GZR97AKYmnCcrwMIyDoOFdRs3JnByceuua1sDlTTS9p1oAWBhXcg87msB7MTH0TZuLcTgWQL+btPpgIAPutxKIQbPnTdn93VGXHaEhWUcBUcCxlGwsIyj+D+y1/m927grQgAAAABJRU5ErkJggg=="
|
<image>如图,△ABO∽△CDO,若AB=12,CD=4,AO=9,则CO的长是()
Choices:
(A) \frac{9}{4}
(B) 3
(C) 4.5
(D) 6
|
6
| 69,629 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAFsAAABXCAYAAABr9DniAAAJsklEQVR4nO1dz28bxxl9w7iwK/VmF3UBG5ZFMi4KH3y1czBQyArQipSQm2ELsNQ0bqAehIRL+1+o48Y+WKEk99T61gZEYjGNlnTsg92/wIcGJJ1efAiktpJtVEIt7tfDcndnh7M/KWqHph4giDszuzv7ZubtN7Pft8uIiKAyCABr/yQCY8zOalSX8V36fVwYTTnF7TIGgBRUglq1kcEiGnARTWjg4/GrAJmXYPUZp4x6l6ZejTzAuN8EYPnaMiiXw8m0Yea3SVZ5mPYN2TxqdzVgbAxYMVzpItGqEd8HZAuENnVU6QI+GAXu536ODHcJDO4RwKAW+oBsdxWvLdVw44NxAED+Z5kkKhQbfUC2g+pdDTdvfgLGGFKZd6Fe3/VH/5DdMOXDMAhEhLpewqn0iaRrFQkHkq5AGFBTR+rjGuiLG3bad/9sAhjtLCvY4kqBFEepmCMAxBio2jTTtDyIMUZAivLFpWQrGAGMqD9mkEQA85hJeqWpBvU1u82flEeum3SQ37saxYb6PfsNgvo9G/Jeurq6iidPngiphqSkOuiTnu1ewdvc3MTp06dx6NAhPH36FAcPHgTQqdvcgqES6BOy2yAARJj59Sx+NDSMjRebOHz4MG7fvi0vrtpNMxkjKD5WVlboxIkT9PLlS1pbW6OjR4/S48ePk65WKPQV2RsbG3Ts2DF69OiRnVYulymTydD29naCNQuHvpKR2dlZDA0N4c6dO6706elpHDlyBLdu3UqoZiGRdGvzMAzDc5uXDxH9IidKke0FUT7ERiHqDzlRTkZINN+IMDs7i+Hh4Q75EKG8nCTb1sHwkw8RqsuJUmSL8iCzPoKgspwoJyM8eOuDIkxQlJWThBvbE5Z8vHjxgojkN0UvqConSpIdRz5ElMtlSqfTSsmJkjIyMzODoaEhLCwsdHUc5eQk6dYWUalUfK2PIDnh89fX15WSE6XI3g35ECFaJ1G0f7ehhIxQ29KYmZkJNXkhzjKhEFaKMnKSWDML4Ccvu937VLFOIpLdcm8aRCItFlFR6OqFfIiIP9lpmddpdQCjnSZAfr3ucl3LiPvRkwEi1rG2ETTMRfkIs08cxJET+aM1uaM9wQCz0mU7RmxmrgU7W9dON8LfiKKsfXQLUU78lnTDIKrY9USzw1ZiL+RDhExO/Eluta+nJVyYREoCGiuUjFDAsA7K94LM+oh7rCiIIiey+njVMfBpfpje4IVubIa9lA8RcawTLc+ozaf7L6+FPkYg2e6hYQ4pLS85KXJUbw8tZx+5richHyJCWyfc5Wt5kN5wtht6SeLY6XUv68L0409skOVtyhFO3hp25coVmpub60jf69nd5cuXaX5+PlQdDKrTRLsXG1Snz5Z0MqhOi4t6qP2JYt4g+RPz0PIIdOG9f/9+YvIhYm1tjX7y0zBy0qK6XiJtaZWIiPTlApWq9cjni0V2nR8+LaclS8WcS8PENlZBPkSUy5+7105Ifi/6erlAQMr0FQfo64akUAAiO1YStVCrfYVfXvgFAANIOfffdOaUy7dXvDPPz89jcnIS58+fj3ranmFy6j2cPXsW169fB+COOCPu/4OVm9AbLRARCrkc0mnDDnQNjdDNYs9W65RjE7Y28/mlYs5TRizr49WrV9G7RI8RaJ00dNeIXVqKF+0QXUbqq1JCjcYqAaDFat1ZH2n/V1E+3GhRuVymbFpunejLBVuveWhaeLOPKAbZHSdu93gtD8JkUSjdIsMwPK0PFWAYzmqazDoh6jT5iIiKkyBt+W+RzuWaQe5st2x5OXDoLU5szIWXFhp4j2XxuwbhQrotQ03djEnMa65oLguVSgVzc3O4ePGi7UetIogIW1tb+NO9P+Pzv/wV586dQ7O2hOz4h2CMSfVZ53gIg47p+s52SyDaRKO6iLfHPzRvGgyucIDFah1Xx9zRtgTgRdtp/d69e3j48GH4Wu0ivIjyyjtz5gw0TXM52XfA2iXiqkJosuMgrt9H0ujZkx1RV15v7bh+W3+ybT5NxP3yCmVGsvSftQ0ics+sZMeRwaucX7pYp6BzyNCrJzu+ZAdte/3+1/f/dlkfXuVk21HOw297dQy/c/ihF34nkSY1MonZ2W65bqwAoGka8vn8rk1ewsiaVYYv240cTk1NuSY7uwKRfVkv8OohsrKVSoUyI1nX2gdf7n//fR14jCjpYUZAlJ7dS78Tm2y/IReG7NdbO/bk5Rv9oW85r7ww+/SabBG76XdiWyOWFHgNPS8rZWfbXC/4wQ8PuJ68eNvswOutHdsy4fPEc3jVSXZsMY3f1+/aaC/9TsK2SlDv6KXfR9LYLeskFNlBRKu/9tE9dsPJ3veBryURjDHfO/te+X0kja7lpNsWT/LB7V6jW7+TrsgeBPkQEd3vxEFX7mdJ+X0kjdhyEreFB0k+RMS1TmKRPYjyISKOdRJLRryc1mkAJISHTE58OQjTImLA/sjIyEDKh4iochLJ/WxfPjoRRU4iyQgvHzRgkuGH0NYJz3zc930MOsLKSSjN3tzcpOPHj+/Lhw/CyEmHjJBEHsKGzA06AuUkqMX25SM8guTEV7P3rY/o8JMTU0YIIATJhxWOpt73X1TD9PQ0Dv/4CG5/6pYTTrOt95imAAIqX1UwMTGBQqGA4eFh6UH9vI0GE2ZnXF9fx8LCAh4//jveeeesHdjkaWffvXsXz58/ByPT+3sf/iCJYZHNZnHp0iV7WyC7UyLEcDNne19OHPhx4eR59mwXyfbGPsGRIDhgupgrTppx54wxpNr/l2oNjvWUkm9cTxad7+zWlwsmfykGNlUEoYFicbEdkdPu3De+IGh50wWYiPAP/TP8djyLB832UUit91GrAe6LfU0djDEsNN+GYZrVMD4dQ4plgeyIOalxXlvhxMsY5IRuiF73JryDKwcRBtUpD3doojVrKRVztFit0wHA+jiDgWa1hlQhZ3+vq/jRu8gXlzjvel6z97Wbx4M/LuNL5FD//ft2mqUC6cwp4GTGma4bZMbLACkCAwEp0hv+8enSvKAHzW9gvtWrZUFO/C4p/oZZXfmDGetnEPTljzCeYag1xTY0OlrOlctaXMnWAOQbQPMZvgSQHu38IhTg8GSHjFJTxyco2JIx9puryAOoPqjZOxERguQjhbekv9/YfMOx4Ajw+ECOARdztW+q0H41ZmezRru1Tjqt5Tc9l/WCgchPMdDoSeSI8OzZs47gLmrqWKzW2wdpWyJaHqQ3Wy4NAnL0Lb2Wa1CEVxMNAvSloh10a+HbaokwWbC3UddL9jtDzI+jWS8tuZZEnfsSVqdzuDSnLxPXSq5y/weOY+kifOufVgAAAABJRU5ErkJggg=="
|
<image>如图,DE是△ABC的中位线,已知△ABC的面积为8cm^{2},则△ADE的面积为()cm^{2}.
Choices:
(A) 2
(B) 4
(C) 6
(D) 8
|
6
| 69,630 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAHIAAABoCAYAAAAtkKSAAAARe0lEQVR4nO2dbUwbV5fH/4NJ+WIl1coRrmrFSXAUU9oHuhTlzVI/QApVMEVNtK5UPkQqEZEIXUfYiCpUIUqiTVOrpS1RTYJaKkUVVYMatVQlselGW7Q1gTRRlRTUmBAplWIUVQpLuothPGc/wAxje/w+47c+Pwlh37n3zvGce889994zMwwREf4muN1ubNmyBSUlJSAiMAyTaZFkoyDTAqSTvXv3Cp/zSYlAHiuSiCA2Nh0dHTCbzSgpKRGO5xPM38G0nj9/Hlu3bsXevXvzToE8edsjeWZmZkBE2LJlC8xmc6bFUYycVyTfwyL1tL6+PrS0tAAAjEZj2uRKNzmvSN5pkXJezp8/j/fffx8FBQUwGAzpFi2tFGZaAKWYmZkBsNZT3W437t27l0mRFCXvFElEuHfvHo4ePYpvv/1WSM9nJQIAKM+w2+0EgADQ3bt3iYjIbDYLaXa7PcMSKsPfYvohhvJsRYcn552dWFDIwkA+KhHIc0UODQ3hxx9/lFRevhmivDWtfr8fzz//PIqKivDrr7+ioCCv22z+9sienh4YjUY888wz+PTTT/OuB4aS84qUUtDc3BwcDgcAYPfu3Thx4gT+/PPPiPnzgbw0rYcOHcLTTz+Ny5cv4+uvv0Z/fz9YloXT6cy0aMqRkUmPAnAcR0REN2/eJK1WS/fu3SO1Wk0sy9Ljx49Jq9XSzZs3MyukguS8aeXhPVO73Y6uri78/vvvKCsrg0qlwvr169Hd3Y0jR45kWErlyBtFAsDly5fx8OFDHD58GJOTk9i1axeAFSU3Nzfjr7/+wldffZVhKRUi0yZBLhYXF8lgMNDIyAgREdXX19Pg4KBgcomIxsbGSKfT0eLiYqbEVIyc75G06qv19vbCaDTilVdeAQBMTk6ivLw8aDFgz5492LNnD06dOpURWRUl0y1JDh49ekQajYZ+++03IiJ68OABbdiwQTIvf+zBgwdplFB5cr5HAkBXVxcsFgtKS0sBAOPj48L4GIpOp0NbWxtsNls6RVScnN+PvHPnDoaGhuD1eoW0yclJVFRURCzT1dUFg8GAsbExmEymNEipPDnfI61WK7q7u7FhwwZhvJycnMSOHTsilikqKoLD4UBbWxsCgUC6RFWWTNv2VBgeHqbS0lJiWTYoXa1Wk8/ni1neZDKR0+mUPCb2dnOBnFUky7JB0w2eqakp0mq1kmVClcOvAj1+/DhqvlwgZ01rb28vDAYDamtrg9Jv3LiBnTt3SpYJ3ZesqKjAa6+9hmPHjglplKsRBJluScnATzdu375NRME9qLW1lc6cOZN0XblKTvbI7u5uWCwWlJWVAQjuab/88kuQx0qizR2S2OjRaDTo7u6G1WrN7S2uDDekhLl9+zZpNBp69OhR2FjGsiwVFRUlPOaxLEtlZWV06dIl2eVNFzmnyLq6Ovroo48kj01MTND27duTqtftdpNer8/ZddicMq1XrlyB1+uNuB1148aNqAsB0aiurkZVVZUQWZBzZLolxQPHccSyLBmNRhoeHo6Yr6WlhRwOR9LnuX//fs6uw+ZEj2QYBk6nEzqdDvv27RPSKcQ5GR8fjzj1iAe9Xo+2tja0t7cL9YeeI/R71pDZdhQf8/PzMacICwsLVFRURAsLCwnVHeoILS4ukk6no7GxsaRkzRQ50SOPHz+O/fv3C9MNKe7cuYOSkhKo1eqE6g6d/PPrsEeOHAlbh6Vs7Y3IgUXz6elpXLx4ESdOnIiaz+PxYPfu3bKc02KxQK1Wo7+/Pyg9q1d8Mm0SYlFfXx+XA2OxWMIWwFNZM821ddisVuTIyAht27Ytrrmd0WikiYkJIkr9YvPlW1paqLW1NaW60kXWKpJfbfnmm29i5n38+DEVFRWFbWelSi6tw2btGNnf3w+NRoPGxsaYeT0eD1588UWoVCpZZdBoNOjq6oLdbpe1XiXISkXOz8+ju7sbPT09YcdIwnO8desWXnrpJUVkOXLkCGZnZ/H9998rUr9cZKUiT506hfr6epSXlwtpvAKlPEePx5PSQkAo4saiUqnQ09MDq9UKv98v2zlkJ8OmnYiCnROv10sbN26MK1SDL6vVamlqaipinfGeO1I5juNo3759Ce1zppusUKSYxsbGhC6Yz+cjtVqtoEQreL1e0mg0cTewdJNVpnV0dBS3bt2C1WqNu8zPP/8sq1mNRElJCZqbm7M2HjZrFBkIBGCz2eBwOFBUVBR3ufHx8TBHhxRaSjt27BjcbjfGx8cVPU8ypE2RsX50f38/1Go1Xn/99YTKS3msSi2lqdVqOBwOtLa2xjxP2pWcUcO+Cn8j6q1btxIum4n9w127dlF/f3/E45lYxssKRdpsNmpubk64nNfrjRjDKhdSSpmYmJBch80kGVdkot4gx3HCxR0cHKS6urqI+ZSkubmZbDZbxOPp7pUZd3Y6OzthtVpRXFwcV36GYYSxKdo9HkpvOZ0+fRoDAwOYnp4GED4mpn3LK63NJoRr167R5s2bk45cM5lMYbcMpBOHwxHRIqSbIEVybID8flb4Ww7IdyLe1PD/A4EAVVRU0ODgYFL1sSxLarWaHj58KJuMsZCKo40VEJYuwnskx9GSP0CsTCY+0lhx4cIFMplMSdd5+/Zt0uv1KUgmDyMjI2QwGMjv92dUDsXHSKmx4smTJ3j33XfxwQcfxFUHSYw/ci+UJ0ttbS2MRiM+/PDDiHlC5VeCKIoksEsBLC0FsLRMK0+tDXBYWgqA5QQJsbyaZzkgElaUvrTEgQuqlnDy5H+guroO5eWVwcdC8gl1sytPzRWnj1//Bf/4x7+uludl5RAgkdwsBcvCKnNBe3p64HA4MDc3J3k8LY5PWB8Vm9bVz2tDJUfLy9za5yWOOP6zYI7Fn4kCyyz5l/kpA0cz3ln6lw0byOfzCcfCCa6PXeLH67X0yspK+tH9n2vlOY6W/Cz5eXn577yMYb9FXjo7O6mpqUmh2mMTc4zk2MDaxQoE1hygQLBjJDhHgcDaxRPVF1gts3//v9HJkyfDj4kJBKQVvFr3/y0ursSw/s/8WvnQsT3Wd5lZWFggrVZLHo8nqfLi+XEyRFRkUC/0B4jlOGKXRQqKdrHF5UX1jf3XT7RpUwn9Lz/diKZIcWMIqfu/PR4yGo3B5TOsSCKiixcvUmVlZUaW6IQxkmNFYwjDYM2qM1CpgMAyByoQpRcwKOC4tfESBI5bTQchwI+ZRKACBgUA/v1oO06fOonCwqfCjgXBMGCIQyBC3RPXJ1ccnUjlM8Sbb74JAPjyyy/Tfm7hGjAMA3AclpYJBYViRQKMikEBGAQ/hJhBYSGz0gCWAlhaotXaGBSuKwBWHaOlAIN1hQwGBgawbl0BmpreCDu2woqTwnIAmJX0SHVfH59EVdUuUXkCu8yBQAgsc+BifleOc+fOwWaz4cmTJzHzNjQ0CCtV4r+kiK/jcsSmYJNSHT9CKS0tla0uJWhqaqLOzs648prNZvJ6vcL3jo4OilstIuIqwbGJjS2hY0RXV1eQR5fIGBKad2FhgVQqlewxrKkiltPn89HGjRuDFBSah8dsNkumJfp+kqhPvuLYFVPHqAqwLoEeLzYPf/zxBz755BPcuXNH8ngidQErEQFVVVWyx7CmCi8nEaG4uBjt7e2wWq347rvvwvLwuN3uoBev0eoTRbZv3y4sxsdLVD+hoFCFp55SYZ0q+QmtzWZDW1sbnn322aTr4CEi4amP2QqvLKvViunpaVy5ciViXpfLJTzNUlx227ZtiZ84of6bIB6Ph7Raraz35R84cIAGBgZkqy9Vog0Tw8PDZDQaIw4DkS6/3W5P2LTKpkipH1RZWUkXL16MmS8RdDpdWAxrNlNXVyfcTRYavyulLK/XSwDI5XIldB7FeiQ/ORaTrBL5cnwMa7Y5OtH4/PPPJSMg+vr6qK+vLyy/2WyWdIBioYgilbp9e2RkRNj6ytb7FIlWgskcDgfp9Xp69dVX6ejRo2ExSQCCvFq+JyajRCKFFHn8+HGyWCyy1CVW2PHjx6PGych5rmSYmpqi5uZm0mg01NLSIiiKjxKcmJggl8slvAKR/2MYJilzKkZ2RfKPmr5//77cVVNdXV3SEQVKcunSJaqpqSG9Xk+9vb2S0XUXLlygnTt3KiaDLIoUt+Smpibq6uoKS5fjHFqtNmySzdPX10cAqL6+PixNyjvk06N5h9HkF5vP2trauMI9pJw/uZC1R/Lxnok+IiUe7t+/TxqNRvKYlIPgcrmENPFnohUF8w3C5XIlZNIimc948Hg8VFxcrMj1kXXjoK2tDSdPnkz4ESnx4PF4JG9m7ejogNFoDHqfMgBcvXoVb7/9NgCgpqYGQPLvWSYiDA0NYe/evaitrUVFRQW8Xi+cTidKSkok80uxY8cO1NTU4PTp00nJEUtIWRgcHKSKigq5qgujs7NTMNk8vKd3/vz5MBMKkVfIcRzZ7fagnoc4TKvYfNbV1ckSLefz+Uij0STUk+NBlh7p9/vR3t6O3t5evnHIUW0QUrfPjY6Owm63C48aM5vN6OjoCCvLL33xPZLPT0Q4e/ZsUF4iwvT0NA4dOgSDwYC7d+9idHQUP/zwg/D4NPHv4+uJl+LiYthsNuHWwdC6kkaO1nDq1Ck6cOCAHFVJwsewzs3NBaX39fVRR0eH8N3lchHDMEQUPk8L7ZFSxON9yoH49U9yOYQpK9Ln8yk23eCZmpoinU4Xlh7qxHi9XuF7qOIaGhokzVky3qccxFqHTZSUFXnw4MG4N1GTZWBggKqqqiR7CEQTabvdLix7RfNaiVLzPuWirq6Oenp6ZKkrJUXGur1MLrPx1ltv0XPPPSfME8VLf3fv3o3ouNjt9jAnaGhoKC3mMx7Ej/VOlaQVyXEcmUwmunDhQspCxDrPzp07ye1208LCAg0MDJBer6fGxkbBnMdqMLz53Lx5s2zep1y0trbS4cOHU64nIUWKLxg/3VB6J4JlWSosLAyaRLMsS729vaTT6aLejRVqPmdmZuI+b6pxpvEyPz8vy2uDYypS6scsLi6SXq+na9eupXTyePB4PFRaWip5bGJignQ6HfX29galp8v7lAun00kmk0nmAOU4OHPmDDU2NgrflWy5Tqczaii+z+cjvV5Pn332meTkPZu3u3hYlqXy8vKUNgQS7pFzc3OKrExE4uDBg2E9TszU1BQ1NjYSwzBksVgy4n1GI96GJPXa4EQaYURFRqok1r3zclNWViYZw3rp0iWqrq4mvV5P586dy6nwj0hYLJawZUgppHQTpEiz2Ry26SmeVEd6qrBcSMWwih84z3ufmzZtyjrvMxX43/3gwQNav359zMWVmIokWlEmrzx+N5s3Vy+//HLE9y0qwdjYGFVUVGTF5D1dxFruFO+xilexGKLglVqGYYTF25mZGRgMBni9Xty8eRNvvPEG3nnnHcWCgynklX8//fQTrl+/DpVKBZPJhBdeeCHi483EcucivOx+vx/vvfce3G43qqurheO8Lux2u7DQz6f19fUhSJFutxtXr14VMjY0NMBoNOLs2bP44osvMDs7C0CZi8YwDDiOC4vGnp2dxZYtW4LOmetKi4fS0lJYLBbhO8MwQUrk6ejoWAlyjtRtEbJ7kO3E89zVXITjOEEvUvDRDhD/4Pr6emH1gy8cSZlKXKiGhoYwZyvRiOtcJNa1BCBsBkTKK6hZvAXEFxBXkC6kdvKTlSEfemW8kedChMDo6Cjq6+sF28vvpm/dulWBESAy09PTQowNANjtdni93qTqyuo358iMoMjh4eEgL8lgMABA0EVVmpmZmbC06elpQZa/I3xwl1Tg2MzMDNxu98oXqchnpBC6ngqh90Pw+4l/d5xOJzEME2ReXS5XUAxvVl2l0JWlTDSmbCW0w4U6gVHvWE4nvFmlPJ8fJktNTU3Ua5MtTzbB7Oxs0G3Y/yQxMq5IvpV9/PHHaGlpybA0uUvYWmu64dcLebxer2QY/j+Jzv8DKs0U9ld224gAAAAASUVORK5CYII="
|
<image>如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为()
Choices:
(A) 2
(B) \frac{4}{3}
(C) \frac{2}{3}
(D) 1
|
\frac{4}{3}
| 69,631 | null |
\frac{4}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAALUAAABkCAYAAADAMXEjAAALOUlEQVR4nO3da1BTdxoG8CcBIiAhjDe6KFUEAauMHdkPnaGWruu2dkudZXen4oVmF9FOgdEis9qhjIXpdKFQ3BUX2irgsGQFKUZApI5V3KotRRSVUaFcMxTWiiKQQAgBcvaDJUO4yDX555D3N+OHnBOHh/jM6/+ck5wIOI7jMI7c/DMI+nPgeLuJif39o78hK+srzBMB/f2AhgOWrFiH8v8Wso5mVoTj7dghDUFzc7Mps5AJRMclISE+Bhs3bkB1kwJNCgW6e5Tw/0Mo62hmZcxSf3U6H99du4a1a9eaOg+ZwJVrV/Hb323SPw4NDYWDgz3DRObHeuSGR48eoqOjAwFvvYW+vj4Wmcg4+pRtuFFxE/9IzQKgwdmiEhz59FNcvVPFOppZGTWpQ0JCsCd0N+rr67F69WoWmcg4vvuhDA/buuG5YgV+7bMGzc3NUDRWwVXMOpl5MZjU70dG4OzZcwCAmnv34O3hxiQUGVvOyVM4kfkF/DZuBvq64Oa1Do96hIg9uJd1NLOin9SncrNRWFgMD4+VcF/lwTITGcOgphtNTU1PCw0A8yTYuzcCebk56NSyzWZuhACg6XkCtVqNpkYF6usbkZOTg3Xr17PORoYpK/sBixc7G2y7fv06lixaACcRo1Bmyrq3ux1RUVH4Z8q/9Bu1Wi0ePHjAMBYZKe3zz/F+5H7944+iD6KiogLy4gsYBGDFLprZEaxbu4pTqbSovF0BidNiBAT8Hnfv3YfTQmd0trdD0VTPOqNFq6utwRtvvAFu8Ok1MkexA5SqbjgvWoT8gkK4LFvKOKH5ETzriiIhfDTuFUViRnQ0d6aCSs0HQgHrBLwy6orit99exr9l/4GVjR0ePnwIsYMjAECIp9NCyOl+eayDDgDHceDoNZ8WTgDoRmwbOWVE1vOgVqvR16uBu7s7kpITTRWPt0aV2t//N3BwlGCx81LY2tqip1sNABAMlXlYqTmBgEo9A5wA0Al04AAIOMM6Dz1Sd/dCIpEgMjISQdu3mTwjH9GBIg9IpX/FJ598gmXLXFhH4YVRk5qYl/DwcCQlfYolS5awjsIbdKBoxvbu3YuoqCgq9BTRpDZTr732GvLz8+Ho6Mg6Cu9Qqc3QO++8g5KSElhb0z/PdNCrZmZ27tyJtLQ0KvQM0CtnRqRSKdLT02Fra8s6Cq9Rqc1EQEAA8vLyqNCzgM5+MMZxHKRSKU6dOgV7e/oA7WygUjOkVqsRFhaGtLQ0zJ8/n3WcOYOWH4w8fvwY8fHxiI2NpULPMrpMzsDg4CC2bduGkydP0lkOI6Dlh4n19PQgLCyMCm1ENKlNiOM4BAYGQi6XQyikeWIs9MqaSG9vL8LDw1FQUACBgN6ra0z0/58JdHR0YNeuXcjKygIAKrWRUamNrK2tDYcOHUJeXh6toU2EXmUjam5uxuHDh5GSkkKFNiFaUxtJe3s7UlJSEBcXB5GIbqFkSnT2wwg6OzsREhICuVzOOopFokk9y1QqFQ4cOECFZogm9SwLCgpCbm4u6xgWjSb1LHn8+DH27NlDhTYDdEg+Czo7OxEREYHs7GzWUQio1DNWV1eHxMREmtBmhEo9A+Xl5Th//jyOHz/OOgoZhtbU01RVVYWLFy/i4MGDrKOQEWhST0NtbS2Sk5P17+Ug5oVKPUWVlZUoKCigQpsxKvUUNDQ0QCaT4fDhw6yjkGegUk9SXV0dsrOzqdA8QKWehLt37yIlJQXHjh1jHYVMApV6At988w2+/vprKjSP0Hs/nuH8+fNobGxEWFgY6yhkCug89TjKyspw584dKjQP0fJjDKWlpbhw4QISEhJYRyHTQJN6hIqKClRWVlKheYwm9TDXrl1DUVEREhPpa934jA4Uf3H58mXcunUL+/fvR39/P2xsbFhHItNEpQZQVFSEq1evIikpiXUUMgssfvmRlZWFR48eUaHnEIue1Lm5uejr64NUKmUdhcwiiz37IZfLoVQqqdBzkEUuPzIzM6FSqbBv3z7WUYgRzIlJ/f3338PT0xMeHh7w8vJCXl4eysvLce/evVHPzcnJoULPcbwv9Z8C/4gPPvgAtbW1qK+vx48//oiWlhZs3bp11N1FZTIZ2traqNBzHK+XH/vCI6DRaHDlyhWD7REREbh58yZeeOEF/bb8/Hyo1WoqtAXgbanPnSlE8blifHvl6qh9IpEIL730kv5xdnY2GhoaEBsba8KEhBXentL7y85g2Nra4ov0Z9+eQCqVIjg4GJs2bTJRMsIab9fUrQ8ewGXZsgmfJxKJ0NnZafxAxGzwstRPnjxBy/9a8aulLhM+9/jx49BqtfTpbwvCy1JLJBJ4eXnh9OnTY+4vLi42eLx9+3YIhUJkZmaaIh5hjJeltrKyQnR0NNRqNZKTkw32BQQEjHnn/uDgYPT399PEtgC8PVAEgMbGRmzevBlisRjt7e0Ant7fztnZedy/c/bsWVy/fh0ff/yxqWISE+N1qafr3LlzqKmpQVRUFOsoxAh4ufyYqTfffBM+Pj44dOgQ6yjECCxyUg8pLS1FTU0NfWJ8jrHIST1k48aNcHV1RUxMDOsoZBZZ9KQeUllZibS0NKSnp7OOQmYBlfoXTU1NSE1NxWeffcY6Cpkhi15+DOfm5obw8HBERESwjkJmiEo9jJubGyIjIxEaGso6CpkBWn6MobW1FdHR0cjIyIC1NW/fnWuxaFKPYenSpUhISMCBAwfQ1dXFOg6ZIprUz9Da2oqkpCQkJiaO+X4SYp6o1BNoa2tDTEwMjh49innz5rGOQyaBSj0JXV1d2LVrF7KysjB//nzWccgEaE09CRKJBBkZGYiMjAQADAwMME5EnoUm9RS9/fbbyMvLYx2DPANN6imSyWR47733aFqbMZrU09DT04OgoCDIZDJIJBLWccgIVOpp6urqQkJCAuLj41lHMUtdXV3o6Ogw+s9RqVQQi8Xo7e2Fs7MzFixYQKWeCZ1Ohy1btsDe3h4ODg6wsbGBTqfD4OAgOI6DQCDA4ODgjH6GSCSCVquFTqeDSCSCtbU1VCoVWlpa8PPPP0Or1c7SbzM91tbW+t93yKJFi+Di4oKFCxdCp9MZ9eeLRCLY2NhAqVRiw4YNePfdd6nUs6G6uhocx8He3h5qtRp2dnaws7ODUqmc8bntoa/qEAqF0Gq1GBgYgFgshovLxLeHsFRU6klKTk7G0aNHAcCgvK+88gq+/PJLxunIcFTqKUhNTUVZWRlkMpl+2/r16+Ht7Y1jx47BwcGBYTrLkZqaiqSkJAgEAoNlj5OTEzIyMuiU3lRcunQJPj4+BttKS0tx48YNFBQUsAllgcLDw7Fjxw74+/tDoVDo/3h7e0MsFlOpJ6u7uxvV1dUIDAw02O7k5ITXX38dJSUljJJZJoVCof/A9IkTJwAAoaGh8PT0pFJP1qVLl/Diiy/C09Nz1D6lUknfu2hCGo0G9+/fh6+vLzQaDZqamgBAf2dbKvUkFRYWYs2aNWPuq6iowKuvvmraQBbs4sWLUKvV8PT0hK+vLxwdHQ32U6knQafToaysbMxv8qqqqoKtrS1WrVrFIJllksvlkEqlaGhowIcffghfX1+D/VTqSairq8Py5cvh6uo6at+WLVuwe/duvPzyywySWR6O43D79m39sY2fnx/c3d0NnkOlnoS4uDj4+/sbbCsoKMCKFSuQmJiIrVu3Mkpmec6cOYOVK1di9erVAIDly5fj+eefR319PW7dugWAx9/5YioeHh4YGBhATU2N/iKLRCLBc889B4VCwTacBZLL5fDz8zPYlpKSAplMpr8vOV18IbwxNGCApxP6p59+gk6ng5WVFQICAnDkyBEAwP8BnGApdU2bHhUAAAAASUVORK5CYII="
|
<image>如图:AB∥DE,∠B=30°,∠C=110°,∠D的度数为()
Choices:
(A) 115°
(B) 120°
(C) 100°
(D) 80°
|
100°
| 69,632 | null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAIkAAABZCAYAAAAKGgfmAAASeElEQVR4nO1df0xT57t/Dt00S+owSxc7PVtl6zfW1eR2qRh2BQ/buogJJr0TV83ILEm9uGEW/wDDH0T8AxM3WcYiN5JgZjddLstwXTKWsatLoMVJRCMmmJrYAVtngoFdijVbubTnc/8o59gfpz9poQU+CQnnvD/O855+3ud53ud9z/syAEDLCOXl5dTf3x91f5k1c1FRsNQCZBp9fX3EcRyNjo4SAAJADQ0NxDDMUouWt1h2JBFQVFQk/v/xxx8Tx3F0/PhxIlrVKqli2ZHE4XDQjh07wu4xDEM7duygGzduiNerSB7LjiQ//PAD7d27N+q+VqtdAmmWB5jl5rgyDCNpTgRT88knnyy2SHmPp5ZagExibGyMGhoaJO+fOXOG7Hb7EkiV/1hWmuSrr74iAHTo0KGw++Xl5UQUHPmsInXknU8SyulIfh86dIh27dolXo+Pj4tOaiKCLKO+knEsC03icDjCyBEKu91OZWVlkmkAFnWks9jPyxSWBUkika8/Rq5iWTmuAkIJcu3aNXK5XLRv3z6Sy+Vh+QKBAA0MDIik8vv95HA4wvK88cYbYfXG0ljLGTmvSRaiFX777TcqLy+n5557jpxOJ23dupUA0B9//EEzMzNERMRxXFgZwcklCpLI4XCIMgikIiJSKBSk0+lo586dpNPpSKfT0ebNm9OSM9eR8yRJB99//z39+uuvdO7cOfrnn3/o+eefpy1btpBMJiOn00mzs7O0f/9+slgstH379pj1xCPon3/+SXfu3KGhoSG6du0aDQ8Pk8/nI71eT2VlZVRaWkq7d+/OVhMXFcuGJD/++CN1d3eTzWajoqIi4nmeNm7cSFarlTZs2BCW9+7du3Tu3Dm6fPkyyeVyMpvNVF1dTSqVKu3nA6AHDx7QnTt3aHBwkGw2Gz18+JCMRiMdOHCA3nrrraj8eeM3IcfB83zMtN7eXlgsFigUCuh0Onz22WcYHx9He3s79Ho9fD5fwvp7enpQXV2NtWvXorS0FJ2dnZicnMyI7C6XC6dPn4ZWq4VSqURtbS36+voyUvdiIudJEgmPx4OTJ0+KxGhra8P4+LiYfu3aNSiVSrjd7pTq9Xq9sFqtqKioAMMwqKqqQldXF/x+f1i+eKSNh0jCnD59Gl6vNyN1Zxt5QxKPx4Pm5mYUFhbCbDbD5XJF5XG73WBZdsG9dWJiAu3t7dBqtSgsLITFYsHAwEDK9YT+6KH/O51OmEwmKBQKSbKkWne2kfMkiSRHqNYIhc/nQ2lpKU6fPp3R5zudTtTX14NlWahUKjQ2NsLpdIrpUj9Wsj9gJsiyGMhZkiRLDgG1tbUwmUxpP4/n+YQ/7tWrV2GxWFBYWAitVov29nZMTEyk/UwBkWTxeDwLrjOTyAmSRP44vb29UCqVSZEDAKxWK7RabUZ7YjzC+P1+dHV1oaqqCkSEvXv34tKlS0k5yvGeJ5BFpVLllIObEyQBgi9penoaZrMZW7duxeDgYFLlhoeHoVAoJH2UxcDk5CQ6Ojqg1+shl8tRXV2Nnp6elOsJJWVfXx9UKhXq6upywgTlDEkE7dHY2JiwRwovdHJyEizLore3N26+VBGrXKL6XC4XTp06BbVaDaVSibq6OoyMjKQll9frRV1dXU5olSUnicfjgdlshkajSVp7AEGVbzAY0NzcnD3hIpAK6YaGhlBbWwuFQgGNRoPW1taUh+VAbmiVJSXJ4OBgmPZI9kfgeR6NjY2oqKjIsoSZQXd3N0wmE2QyGcrKytDZ2Ynp6emofLHaH6pVbt++nXH5Er33JSNJV1cXWJZNSXuEllWr1Tlhr1OBELAzGAyQyWQwmUzo7u5OuvzVq1fBsmxaPo8Aq9UKIgIRYdeuXQCAhoaGuGWWhCStra1Qq9VpOZtOpxNKpTIrPSobiDW0drvdaG1txZYtW6BQKFBbWxvWYWL17rt370KlUqGjoyMlOUZHR0FEYYQQ7lmt1rhlF5UkgUAAtbW10Ol0MeML8VSf1+vFK6+8gq6urmyJuCQYGRnB0aNHxYBdU1NT3A40Pj4OjUaD+vr6pJ8RSRABDQ0NsNvtAGK/+4yTJJ5drayshMFgSNtMVFZWpvRichHJBOxqamogl8uh1+vR0dEhOeHo8XhQUlICk8kUNhqUql8wMVKyWK1WjI6OxpVxUTTJxMQEXnvtNVRXV0dNmCWLlpYWcByXdvmlRKzQfTzC+Hw+XLp0CZWVlSAiVFVVRQXsfD4fjEYjXn/99bgz18mYlHjIKkl4nsejR4+g1Wpx7NixsPupoLe3FyzLZmwKP98gTDgKATuz2YyrV6+K6RaLBSUlJZLxJcHvEExKOsgaSXieF2MZqcypRBLI5XJBqVRiaGgo0yLmFYT34nK50NTUBJVKBZZlUV9fD6fTCaPRCKPRGJU/p0kCAGazGRzHpT2n4fV6odPp0NnZmWHJlgccDoc44fjqq69CpVLh8OHDUflimZvR0VH09/cnfE7WSNLc3AyNRrOgGU2TyYQjR45IpuXqAp2lgN/vR3d3N4xGI4gILMviu+++E9MvXLgQpU3sdrsYJ0mErJCkq6sLSqUyqRncWGhra4tpZ1cqkukYJ06cABGhpKQk7H5/f78YRIs1HI6FjJOkr68PCoUibR+C53kMDAyktQRxpePYsWPQarXo7OwEEWVsYjCjJJmamoJSqVxQ2NjtdkOpVKa1XHClwuv1wmg0Ys+ePWIMSqvVQqFQxI1JJWuyM0qS6urqsKFuMggV1OfzoaSkBG1tbZkUa1nD7XZDp9Ohrq4uLIbU2dmJjRs3oq6uDkBqPlzWgmk2mw1qtXpBPkS8JYiRgq86rsHlCCzLor29PSptamoKa9euxQsvvLBgs5MRkkxOTi7YRHR0dECn0606qgkgdA6bzQalUhlzwRUQnMb46KOP8NJLLy1oxjwjJBHMTLq9e2hoCEqlEi6Xa1VDJIHW1lawLCu56i0UFy5cAMdxMJvN+PDDD9N+3oJJslAzk2gJ4kpErLkev98Pi8UCvV6f1BSFx+OBXC7H/fv3F/Q90oJI4vF40jYzQqM5jkNLS8tCxFgR8Hg84DgOVVVVcTtkJMGMRiPa2trQ09MDlUqF2dnZlJ+9IJKcOHECNTU1aZevr69HZWXlQkRYVohlal0uFzQaDZqamlKus6urC6WlpQCCbkE6I8ekSRLZAI/Hs6BPGfJ1CeJiIPRdC4HFdKf6Hz16BLlcjvHxcbhcLrAsm7JrkLYmaW5uhtlslkxL5Hzevn0bSqUy7HPJlYp478pqtYaZ83Sd+qqqKnz66acAgpOun3/+eUrl0yLJQrSI1+uFWq0WFwCvjmak0djYCI1Gk/AdJ/P+bDYb9Ho9AKSlTcJJEpgDP/d/T/54aSHiaZFE2L17NxobG9MquxIwOzuLqqoqGAyGjH0T7PP5IJfLRcKZzeaUfBOJhY8B8HNzQAyCJqtFpCKkzc3NePvtt/NyCWK6SEVTTkxMQK/Xw2KxZPwdmc1mcRQZT5tIyZs0SYTC6WqRlb4EMRFZRkZGwLJs1uatenp6oNVqxetUtEkckvBPzI4/EEwLzEH7r5fhuu8KyTufJ8BH1CGYLT9cLhcUCkXwW5mItJgIzSc8X6Lu+Zvz1xFyB/jYMuYQenp6oFQqYbPZslK/EJMqLCwUo7QjIyNhpIlH4viahA+E/ZADAw68xQmrmfiQH48HPzc3/yA+TBN5Z/4XO/5t2/wQLjwNgVg/XGg+HvAH/aO45UUy+MOvBRkj2pIraG9vB8uykh+bZdqpt1gsYbGWbdu2JQztA0D8veWZAmIKQOCDGzR2X75Mxv94Z35HPp4IfoJ/juD3zy94YoL3mQKi+Y0FLf9ZRzv+fWfwUICINGJkRDwvsdsfT1Qgm8/HEMmeJoahJMozxMhk4dcFoU1EUMwlAkI2ugwEAnTkyBG6cOECXb9+nXQ6XVT+TO/OeODAAerq6hKv9+3bR99++23iglG0iepxwd7rn5vDSy9uerJajPdLawHeL5ZvbW1F6a5dmBNCwbw/qAliPiukjlATI1F3VPlIXyrR9RLC4/GgoqICRqNxUYOJfr8/7BPZkZERqNXqhOWedDN+TtQYFMZghpgComsOO215RU0sywbJRQwR76cnnWO+lzIFRMSTva+Pzp49S/996SLJnnp6vqoCInqimYhAVCClzBgiBGLWnbh87sLlctHOnTtp27ZtZLPZorYyzyZkMhm988479PXXXxNR8DQxuVxOw8PDRBTnpA6RLmKMRKq38aj7oBb/FbK4hef5+Z4d7YS6//gdr2x+Edfs/dEaIZZDKjifYs+Xrlu6PB+RN9H10mBwcBAbNmxY0Nd0C0V/fz9UKpV43dLSkjBulVTE1e+fw0ubXkhqEzmfzwe9Xi+5Wmol49KlS1AqlYu+a5GU87tp0yYx1O9yucJII4WkSHL1yv/AUM4lJZTFYkF1dXVSeVcChCCiWq3G/fv3l1ocAMFV9aFrkXU6XdyvG+IbdH6O4J+jAbudyg1vJ7R5HR0ddPPmTTp//nxKtnI5ABL2fHZ2lg4ePEi//PIL3bp1i9Rq9RJIFo333nuPuru7KRAIEBGRwWCQPJVdQHySFDxNzFNP0+DQzbinORAFz5U5deoU2Ww2Wrt2beqS5zkih6tTU1NUXl5OzzzzDPX19dGzzz67RJJFY/v27SSTycRjWYqLi8UzkyWRjHpSKpVx/ZHJyUmoVKrVJYjzGBkZwebNmzO+O3Um0djYiNraWgDB3aM0Gk3MvAlJIuzXHgt+vz8r23XnK4StRnN9KcTt27ehUCjEiUS5XB4zZpOQJDabLe4Sw2PHjmH//v1R93P15WQTHR0dYFkWN27cWGpRkoJGoxG1f2lpacyRV8JI1K1bt0iv10umffPNN9TT00NffPFFVFreHPiTIRw9epTOnj1L169fp+Li4qUWJymYTCYxTK/X6+nmzZuS+cJIgggPHQDdvHlTstHDw8N09OhR+vnnnxc1aphLAECPHz+mPXv20O+//06Dg4NiRDof8O6775LNZqNAIEDFxcU0NDQknTGRSpL6un9ychJqtVpyanslmRm32x211Ve+QafTwWazxXVe45LE7/dDJpNF3a+oqFjxSxCFrw5D91PNxw7S0tKC6upqeL1erFu3TjJPTJLwPI+JiQkoFIqw+01NTdi9e7eYZyWiu7sbGzZswJUrV5ZalAVjfHxcHNnIZDLJJY1RJIk8Bmzr1q3idU9PD9RqddQSxHRPdchHtLS0QK1Why3Wyfd26vV6XL58OWY8LOqE8dBRyczMDBUWFhJR8CBms9lMV65cIYVCEbNMMvfzEbOzs3TkyBG6d+8eXb9+Pewd5Hs7Dx48SBcvXqT169fT9PR01BG5cYfAU1NTtH79enr8+DFVVlZSe3u75Aqq5Y6ZmRkyGAzk9/upr68vqpMQBUc6yNMjlk0mE/3000+0bt06+uuvv6LS45LE4/GQQqGgmpoaMhgMZDKZEj4wX19ULNy7d4+2b99Ob775Jl28eJHWrFkjmY9hmLzVKCzLUnFxMfE8T9PT01HpUeYmFB6Ph1wuFz148IBqamro5MmT2ZIz5wCAHj16ROfPn6eKigpiGCbv2w+JU80ZhiEAVFZWRm63m2ZmZqLKxSXJ3bt3yel00uHDh/O2lySLyBfIMAytX7+eLBYLFRYW5tex8SEIlVtKfkHzr1mzhhQKBU1NTUXlYZDAPjx8+DDKkVmJyFeSJINEbYvrkzgcDvr7778zLlQuIVkfarkShChx2+KSZNeuXRkVJhcR7wU5HA7RIWUYho4fP76IkmUf5eXlYe1jGIYcDkd0xtCgSWhQqKGhARzHZT5ykydoaGiIOkiIUtxuOx/AcZy457zdbgcRRR2SJBmWt1qtYoGViFgdZDm+k9D2CMeeRJIkanQzNjZGRMGxM8dx2dN1OQSEOG4Oh4POnDlDo6OjSZfJVzgcDqqvrxeva2pqqKGhgYqKisIzRjJLUKejo6N5f95dOuA4LqZJiXWWXT4h1KUIPf6VYZgoDSIgrMWhhWgZ2t9kwDBMzFOmIgmU7xN7HMeJxPjyyy8lTQ0QsnxxbGxMjL4BIIfDQVqtNvs6L4cwNjZGAOjFF1+MSrPb7dTf308ffPCBeC+fzY3gVgim5f333yeiYDsjUSAUqKmpETMSBWd9VxqKioqIYRhyu91RaRzHSdvrPIXdbqeamhrxWiDNyy+/HJ1ZGOpRiKrhOC6hycl3VRsLkSMbqZO5lwNCTQ0QNLMUw9/Kby8sSwjtJBTDTucrhGF85F+8mFjCuZtVrCK/doBZxZJglSSrSIj/B3D6T6CyYoyvAAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是⁀{AC}上的点,若∠BOC=40°,则∠D的度数为()
Choices:
(A) 100°
(B) 110°
(C) 120°
(D) 130°
|
110°
| 69,633 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABnCAYAAADG+vbbAAAZdUlEQVR4nO2dfUxb573Hv+fYQKfQurn1La7myEkwi7lmEhWJmrakhBsnpA2kdEWl0uhG1DS0l2khGxCqRkqnoZW2acddo8aEViUtlajKRknJLW8ZzhWT6GCCaSZAbSekpsUZkUKuycaLfX73D/scbPyC3zFdPpITznme8zy/c37P6+95A0UMu/AXx3GRC9YHocQRC7kCwU4cdZ+tJAAEBoSDVcSRgaqqzrj5i6a8LCIGCyICEYFhmMgF64NQ4oiFXK4Qkec9UzdEDIvTxjTH9+II3NsasEwakLbZzW805RWHGwAHAguHgLH+sLEmmETN+yUA/BMcDHhKmYf84w1orzsi+GVS9+FMdQGYLcrIC+2DsBXPYvlDEAGx0j2fm1Yq4tatWxgZGcH4+Dimp6eh0+kE/1euXMHU1JSbf7lcjtTUVABAQkICHnnkEWzatAlpaWnIyspCcnKy4DeYhM37dX3iYuNZnEcBDHWH4ZYiAKQqtwFblHDNStEsPRnyVh6FQayKej6ub775BhcvXkRvby90Oh2+/fZb7Nq1C5s2bUJqaip27NghKG/z5s1QKBRuYVy7dg3Xrl0DEWFubg6Dg4MwmUwwm83o7++HXC5Hbm4uNBoNNBoNUlJSQpLVjiv4EZOKbQ1deOPIPo/3iHVpGXHFx4Lx8XG8//77aG9vh9VqRU5ODnJzc5GTkwOVShXRuEZHR6HT6YSfVCpFUVERSktLhZIiEMjUDVaZB22PAWWa2BXpvgVaJ9y4cYO0Wi1lZWWRXC6nyspKGhsbi1n8fAtbr9dTRUUFyWQyys7OpsbGRpqdnXXz4/V5YxcBIG3PhPOOsxfk9oh91XAiRdiKrzoIAlhH1wSs85dPBpfuXThYLBaqqKig5ORkKikpoY6OjoiEGwk+/fRTKi4upnvuuYdqampoZmbGp187fUVPMqDqxk4PN87YRWd6DO73Ii6tOwEpnltFkKqDoG4jf2WnM9UFBBSQgZZCFsxsNlNZWRlJJBKqrKwki8UScljRhOM4MpvNVF5eThKJhCoqKnzK2tNQ6cz1y0o2dJ8hFFT6CD0ymccbYed4jgyUf7DK437VQdDB6oagw7NarXT8+HGSSqV08uRJv7ko1vBFsK+i2GKxUE1NjSD7/Py8hx9D9xln6ej4hfKNIkFgine+58oX5jiODN1nvAp/prqA4CVB+IyC46itrY1SUlKorKzMTeGr1XnxYpHjsVgsVFJSQgqFgr744ouAn+M8/ogeAef4ZVnci58z1QVuRRdP99lKv4rnOE5QmNlsJo1GQ5mZmTQwMODmx9/z0SJSYet0OlKpVJSfnx9XJRdRECbb5V7m8iMEI744BezRbAXIUXbxmIwTOKjy3W3h+61DQ0PYsWMHcnNzMTw8jIceesjDj7/nw4F89GTDCXtoaAiXLl3CpUuXAADFxcWYnZ3F9u3bob886ow45OAjxqqWO/IwLnAQlG+6AqaqAEqwALOcOMjUjZfe+Bzanrf9hv3hhx+isrISzc3NyMvLCyDu4NxX8+ftnt1uR39/v3B98+ZNjIyMOMyvToORwWAQ3CcmJmCxWIRrtVoNqVQqXH//+9+HwWTEO//9O+Tm7IZWq8WPnn4aa23cXlXxnh9nOcf3/rEHaVs0Hh+2+pd5wMEqn4YKjuPw85//HF1dXdDpdFCr1QHGHZj7jRs3MDo6KihrcnISV69eBeBIBJcvX8bMzIzgf2BgAAsLC8J1dnY2RCIRGIbBXXfdhYceekgoHTIzM1FSUiL49WYNXMmuXbtw69YtfPHFF3jqqScxNDSE1157DW6ZyAuBJuxQCNlyZ4cRP2LS8DMjYW+qs9i80gNW6VA6tb/h8czc3BympqZw7NgxWK1WXLhwARKJxGv4JpMJU1NTwsuPjIzg5s2bgvuf/vQnLC0tAQAWFhYwMDAguCUnJyMrK0u4lslkSE9PF5SXlpYGuVwuuGdmZrrJsfKDh6uAoaEhFBQ8CYNhArdv38aBAwewZcsWfPDBB0jekOxu0F8lMUSKkBRv7NEiLe8lgBwy8wEwAM64miSdAxH8h1Or1bh8+TJUKhWeeOIJ/OUvfxHCvH79OsbHx4Vr18ETAEhPT3ezk7va4IkIu3fv9pAzmjkmWJ577jls3rwZv/71r7G4uIjnn38ew8PDaG9vD8r0GzFi1YpsaGgghmHo8OHDlJSURGVlZaTT6YTf8PBwrERZE8xmM0kkEjKbzcK9uro6kkgkpNPpYi5PCN254NHr9ZSYmEgvvPACERG1tLSQRCJZVdnx1j8PlxMnTlBxcbHbvba2NpJKpWQ0Gn08FR1CUrxfdaxwnJmZoa1bt9KGDRuEwQwioqampoCU/11ifn6eZDKZm62CiKi2tpbUajXNzc3FTJbwinpvKcDlnt1upz179tBjjz1Ghw8f9vDa2NhIMpkspqNsawnHcXTu3DnauXOnh1tJSQkVFhbGTJao1vEVFRWk0WjoBz/4AQ0ODnr1U19fH5TyvwvFf2ZmJrW0tLjdm5+fp507d9LJkydjIkNQtnrhUvj4vkePmpqaSKlU0h/+8AevKdyV+vp6ksvldO3atYDEWa/w302n05FCofAYxDGbzSSXy6mtrS3qsgSR452TBMhpZycvuc85fjswMEBSqZTGxsaoqKiImpubVw395MmTpFAoaHJyMiK52nUsIB4pLCykuro6j/uDg4MklUrpb3/7W1Tjj3hR//XXX5NcLqfOzk4ym80kk8m8Dk96g1d+IGPv8azUQDAajSSVSr2+a2trKykUiqgO7ERc8RqNhl577TUicnRfampqgnq+srKSVCpV3E68iCRHjx6lsrIyr24nTpygoqIiIopOIo+o4ltaWigrK4tsNhvZbDaSy+U0OTkZdDgVFRWkUqn8pvj1nuOJiGZnZ0kqlZJer/dw++c//0kqlYo6Oz2nakWCiCnearWSXC4XWu8tLS2Un58fcnhlZWWUmZnp1vf/LlJfX0/79+/36tbb20sqlSrgqjIYIqb4yspKt2IrOzs77NRaWlrqofzvQk53xWazkUqlcptE6vqOxcXFVFtbG/F4I6J4vqHCK0iv15NSqQxaSd78l5SUUHZ2Nlmt1oD8xzuuMvN/d3R0kEqlIpvN5uHfYrH4bASGQ0TG/2pra1FeXi4Mbb7zzjt48cUXgx4Z48fPXWlqaoJMJsPjjz8Oq9Xq4X+9wL+Xq8z83wcOHIBcLodWq/V4LiUlBSUlJairq4u4QGHBp0g+t/MNllu3boUVrmvOsNlsVFRURBqNJir1XTwwPDxMDzzwgNc2Df+Nw/2mroSV44kIdXV1OHz4sJDbm5ubUVhYiHvuuSesBOmaM0QiEZqbmyESiVBYWOg2W4aXw9/1eiAzMxMHDhxAbW2th9v999+Pp59+Gm+/7X8qW1CEklr43DgzM0MSicSt/lGpVELLPtJ18Pz8PO3fv5/y8/O91ofRiDMW8DJbLBa67777vA7R8u2oSI3ghZTj+dz48ccf46mnnhJmxly8eBH33nsvtm/f7uYvUiQlJeGzzz7D7Owsnn32Wdjtdp+yrSd4mVNSUnDs2DHU1NR4+ElNTUV2djZaW1sjE2k4qSYzM9Nt9khRURF9/PHHUc91VquVsrOzBcuWL9Zj7p+fn6dNmzZRf3+/h1tbWxvl5OREJJ6QFT88PEwKhUK4DtYuHy5Wq5WysrKotLQ0JvHFkubmZsrKyhKu+QGnpaUlkkqlIVlDVxJy4+7cuXMoLS0VrhsaGlBaWoqkpKRIFESrkpycjIsXL2JkZASHDh2KSZyx4sc//jEAR1UKOKoChmEgFotRUlKCDz74IPxIQk0xcrlcmDwRjl0+HDiOo9nZWVKr1VRRURHTuKPNwMCA1xJ0YGCAVCpV2OGHpPjx8XGSyWTC9SeffBKWXT5cLBYLqVQqqqioWJf1ui+Ki4s9ZuTYbDZKTk4O25IXgOI9Z9mcaXjXOVvU4bZr166ojSIFCq/8EydOuN1fzwlhcnLSo7tMRJSXl+cxdStYWMB1DR/npTJg+SpB8KP74yXk5uYCYHH58mVMT08La99ojYwnKSkp6OzsxEcffYRXX31VuL8eu3c8CoUCL730kkf3Ljc3F319feEFvnraWJHjOSKZTEaXL18m4oiOHDlCp06dCiv1RZLJyUlSKBRu05rWc66fnZ0lmUzmNg09EvU8/H4UL06Tk5N0379LBaFc7fTxgtFoJJlMRvX19V6VHq8JwZdcWq3Wo/+elJQUlu2eZfwt2PXiZDQakfEfjtWtH3/ksMv7Wvi4VqSmpqKvrw91dXV49913PaqfeC3+vY1OAsDhw4dx48YNfPbZZ8K99PR0fPXVV6FH5m+KtKH7DPWY3O+dPn1aWBzhapePR8bGxkgikVBTU9Nai+KXQEqgrq4uUiqVwhhFoLOXfeFiwOFcEgOBYMQv972ElQnQZDIhPT3dwy4fj6hUKuh0Ohw9ehTnzp1ba3F84iunu7Jv3z4olUqcPn0agOPdXDdoCJqVG+zxqU9bXUUFBQVk5NxLhMcff5w6OjrCTnGxZHh4mCQSCbW2tq61KGGh1+tJKpXSzMwMNTc3rzpW4Q+XPYg5gFgwDIOuxipAowE6CLSiOrR8O43ExET09/ejqOiZ0FNcDMnMzMSFCxfw/PPP4/e///1aixMyarUaxcXFePXVVyGXyzEzMyPsm+a6rw45S4/qJxnB3Mv/GnqNgic3OGMXVWo7HVtweuxaZSelUknl5eVBz5ePB/r7+0kikQjGJk74Z+0ItIfhOgdCKpVSa2ur20COJ46SurpgeRtVfo+9bqMXy11VlUPZnKHH6/51KSkp9MADDziWOgUkcnzAy9rZ2elUfre7g6tfXhnR21gyLN566y167LHH/PTl+eVuBipg8slIzkkrxm5B8QxxRHxx39NYhX1HTjkLDBYHq8/gs9ePuPXqxGIWW7akOkeQWHi39i2Tnp4OmUwmXLs2ZAJp1ATCzp07gxoVPPrsw/jdJwPY/fxJ9L33atjxx5qFhQVs27YN//jHP/D3v//d55Yvxh4tftHD4PwbZQAcRf+EqgHtrx9x7IFDAGDqRtUfgTdf2AfG+VDjZCpef2GvW2AMw+Dll19GojgBYFfvD4+Pj7ttB+ZLyHBYuWtVpElKSsLDDz8cVXO0TCYLasv12dlZnDt3Djdv3lx55oFA99lfIq/MMU+PYRh0GTjsdW63IyZ+t6pf9LrtVGWaNIFoq9dIf/Ob3wQs4Fqz8qPw+8bzdDt37RI8w+UB58Mrd9WKBhaLBWNjYwH7/973vrdqQuy98Lbwfj2NVchLY53K5wDHTtOOxmH3xCItzS9Qdf5dJMFdtMHLJrvJycleFzesJ7THDxIAevL4Wa/7xceSUM3H/Fp6IZyV4QqN8+X6/kmAqhq6iMjbsCxnI9v8Ii3vfeAe5AMpMpqeng5J2LUmkA0dAnt+7RkbGyOVSuWzgd19tpIqtctD5csHJTj2HV596tWKenzD3cm4fft2wEVSPMG3LYgYj+1khf4wlvvBFMc2/tu3b2PDhg0+R1q6L5zCPo1zqBxGFCrzABRgj2YrCH63NOXALdgcbXZGBFGiCLAt4d823IP/u+VcykR22BftjqpQlACRmPG4D7AQJYmXBfTn5oqrP2f8jM/neVkZiBJFoEWn3KwYYrEd9kVy+GfFECew7gokgBj3doDDnQPDRH+HyVCZm5vD3Xff7XHf2KNF2r6XAACn2l3e6mAVuPY3hPf082Ys2EQRGLDCR2fEIkhT7se3098A4MAtAWxSIsRJYjB2m9Ouz4Fb5MAmJkKclAgRy8G+xHf5/Lm54uovASLYQZy/53lZCfZFDkxSIsSJIjCcDbYl1uE/UQSG41bkdM5t82UeR06PX6UDwNTUlNtmyTzKvS8KBz9yzv+JCOSidGC1t2NEYEW0rByOw7Z0FYxGI8Bx4MgO+8IibAs2cCCH4jkOHMMKX5MRu3xwf26ucBw4VuQ8w44Bk5gIlg3keQaiRNcShIEogQ8HAAjGbi0YhgHLsmBZMZ48fnZ5IMr5f6TsC9HEYDD43PwZcHabXf5eiQ/FM+4f124DxxHIziA1TQm9Xu98WgxxUqLwY/nQ/H20QD8okfdt3YNUiKvvxleexoN5/wMD2WHnONi5r4A3ylBYc9bhgQF4gxR/SmS8Mjo6irS0NAAA0coVRZzXVbmuCIqnpUXY+JzNuBcKrJgBt7QEEomWhwNZFixnAyeU1JyjOGZZsODA2ZyfjQjEOseC/Lm5wjBgiC/eAwzbB7yb9vhTqJ7YBit3HkrnSY4MlHir+wzOv9EBIzih3cDnkPhpynliMBgEgw/DiFa4rsjPXlLwcuOOYQC7DbZFBqLEBPfGjlgE1s6BYQGlUonR0VEALNgEFralRWceYSFKYsHXt/bFJdjscDbMeEH8uTkaaEhIBMuKIEqgIMLmwDkbfPZFG0RJLMjl+ur/NqLyzR60jbU63b03KPl78dR698X4+DiUSh/nAbic9wvApSRbThCC4hlxAsR+2viMyNHAUygUEIvFGB8fh0qlgtibiZwRQZS0MhWu5saCTUp0uRQHEbbjWdd0zrhcN57+L+ypbsBeVaKHJe/qpMm7nHHMl19+iS1btvic8uZQ+sp975dnSzMME1jTlWwcIFr+XDk5OcKZK/EOwYiJ88ATe/8TgGfx3dNxCger8x3Hq6wTdDodcnJyVvHl/X340szv29LSImwLi7BD5Fbt8/O6473lCwAwXcF5AFu3KD3k/apXizfPAz87csT7s3GKTqdzrmsIg1DNha5LqLwRL+ZNjgx00Gmq5CVybMnquH+w+uyayhcskVpCFXT5RkSOut1Zz/sifhpISjxeXYAX3zkrnMlOVy6CZdKA6ga0v/7CWgsYFENDQ5DL5SEfZ84TtOJ5hRYVFaGlpSXui3sGwIt151FJbwqGG5FyL7qNhPbXnUV8fL+CGy0tLSguLg47nJBPoRoZGUFhYSEmJyfDFiJWeJuwQD4mhvi6v5bY7XbIZDIMDQ2teuTZaoTclM3MzMTGjRvdWvfrIfcDcDsVk4F382y8KR0APv/8c6jVakHp4XzvsPowpaWlaGpqEq7j8WN5xXVghlkejfPE/3zCWPPhhx/i0KFDXjdLDJaQi3rAcaKjUqnExMQEUlJS4rJ4/K5gMpmwc+dOXL16VThvLxzCyvFSqRSHDh1CfX09gHWU49chb775JsrLyyOidCDMHA84xoUffPBBGI3GuFs1u15ZWXJev34d27Ztw9dffx32jqE8Ydsp5XI58vPz8dvf/jYS8twBniVnXV0dDh06FDGlAxHI8cBy/XMn10ee69evIyMjA3q9PmyjjSsRUTwAVFVVwWq1et16+w6B4a1x/Oyzz+KHP/whXnnllYhHFhGsVivJZLKobWD8r0hvby8plcr4PpqEyLHfHX8Y0R3Fh8f8/HxUDyOK6CD0M888g40bN+LUqVN3unYhQC61bm1tLTIyMoRt5KIRWUThl/Z4S6l3SoHAWJcHDhK5HzF6h+Dgjxj1dhZdJInaadL8ocKuqfZOjvdPLA8Vjlh3zhvHjh2DXq9HZ2cnRCIfky/vAMCxFHv37t3Iy8tz25I1WkRV8Xa7Hfv378e2bduEbbrozkCOB0SEn/zkJ5ibm0NbW1vMIo0qMzMzpFQq6fTp03eKeh/U1taSWq0mq9Uas28UMcXzAnsTXK/X07333rvmW5vHI21tbSSVSr2ePBVNop7jefjdpk6fPk1Edxp6RER1dXUkkUior68v5nFHXfGuCubPnC0vL/d5btx6I5QEvLCwQKWlpaRWq2Oe03liunxErVZjaGgIJpMJe/bswa1bt2IZfVRY3mWDApoDd+PGDTzyyCOYm5vDwMAAUlNThedjSdQVv7IFL5FI0NHRgYyMDGzfvn15yfV3AF+zdXmGhobw4IMPYu/evfj000/dZtPEvKezJuWMk6amJpLJZP8Sjb7W1laSyWRxs5FyTBTvrx4cHBwkmUxGtbW138kGn81moxMnTpBCoYi6GTYYYlLHu9aDK9m+fTsGBwfR19eHrKwsfPnll7EQKSZcunQJGRkZGBkZwdDQkN+tS2LOWqc8V9ra2kgmk1FZWVlUR6aijcVioZKSElIoFHFbjcXVovDCwkIYDAZs3LgR6enp+NWvfoWZmZm1Fitgrl+/jpdffhkZGRlITU3FxMRE9MbTw2WtU54vzGYzlZWVkUQiocrKyrCXBUej/cCHaTabqby8nCQSCR09ejRsWWNBXOV4V+RyObRaLSYmJmC326FUKvHcc8+hq6srqvFSEP3p9vZ2FBcXIyMjA8nJyTAajaivr4/obNiosdYpL1BmZmZIq9VSVlYWyeVyqqmpWZOJHnq9nioqKkgmk9Gjjz5K7733XtyduxcIUR2WjRbj4+N4//330dbWhtu3byMnJwe5ubnIyckJas/3QBgdHYVOp8OlS5fQ19cHqVSKoqIi/PSnP/W561Q8QiuGw9el4l2ZmprCxYsX0dvbC51Oh+npaWRnZ2PTpk1ITU3Fjh07cPfdd4OIsHnzZo915deuXRPW+M/NzeHPf/4zrly5ArPZjP7+fsjlcuTm5kKj0UCj0QjF+MoPuV7g5V73il/J7Ows/vrXv2J8fBzT09PQ6XSCm8lkwtTUlJt/uVwu2MsTEhLw6KOPQi6XIy0tDVlZWRFbpBhv/D+ZRWwEU+LQ3wAAAABJRU5ErkJggg=="
|
<image>如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是()
Choices:
(A) 75°
(B) 95°
(C) 105°
(D) 115°
|
105°
| 69,634 | null |
105°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAAB6CAYAAABwWUfkAAAZ70lEQVR4nO2dfUyb173Hvw9urpNbJ840d3ZXp26CCU+uE9VpNtUopJBdUpyWUKdzBVPYym5RQsWm0oW8bCPKXtBmcrM799Y3CU2vmt30D6YkomtoSygIshKJiEQgzWlIMcUMqkJBipGhMQ327/5h/OD3Nx4bQ/hIJPZzznPOz+d3Xn/nDbSIcblcvPqbN2GjcVLzW1UEwP1XeISc9BkdPnQ6eFA8y5yGRQzDMNxnIgIRReUvcQIFPiIiUH8zGEYAkyUDRASXywXXf/0AAmYjSLnBy7fLT2ZXQHjx8hBvISUQIvJRVjAiucfqL145AiPsh06Zj8LDdfhb7X6PEGDSn8Xpw3vAbJhTNBEDMN75hb9yuCgUPR/leIhLSTHL4YK/clrO1uF97MGd2jLODzPrJ125Ecx6ZQzhxw9DCa3L4icWxdy4cQOjo6Po6urC4OAgBgYGOLcvvvgCFovFxz/LspBKpdz3jIwMPPbYY8jKyoJUKoVarY5NVgSttUGwQMdkILPuCk7sfzamdwEXiBjelJ+yig5Fb28vrl69ira2NnR2dmJwcBAqlQoSiQS5ubn47ne/i40bN3IJJJVKwbJsQBijo6Pcd7PZjJGREXzyyScYHR1Fb28vlEolNBoNcnJysHPnTqSnpwfIEikzUn8z0pT5OPNxH/bnKUMoNDmkvKInJiZw4cIFtLa2or29HQCwa9cuPPPMM8jKyoJKpUpIvD09Pbh+/Tra2trQ2tqKlStXIjc3Fzk5OSguLoZIJIoYhqu/GYJZRR/IU0b0P/vW7P8895N57cPzSGNjIxUVFZFAIKCCggIymUx0+/btBZPHbDaT0WgkrVZLQqGQfvzjH1NTU1PYIZWL+qgQoEN1V7wfuv+zXKEzH/eFfpfn4VXcinbN/hOrQMH8u1wucrlcZLVaqbKykmQyGalUKjKZTDQyMhKviAljaGiITp48SSzLklwup6qqKhoaGgrq1zN29lZqX/NpQuGhZIlLRDEo2sX94xa02cKfELdv36bS0lISi8VUVVVFvb29/AUegnhLjP97ZrOZKioqSCwWU1lZGVmt1oB3+ppPzxlKACo8XDcbWFwixEX0ina5yOWaq474UHR3dzfp9XqSSCRUU1NDNptt/oEuEGNjY1RdXU1isZhKSkqCNzOuoB+TQsxV95nDh2jPnj3UR864Ix0dHSW9Xk8ymYyMRiPZ7fa4w1ooPM2N93ciIpvNRgaDgSQSCZWUlNBX42Ohw0i4lHPE1LX7+OwhIC8PaKSoeoXk16F3Op2ora2FSqWCSqWC1WrFa6+9BpFIlFjTZBBZ5gvD+I5xPZ/FYjGOHDmCgYEByOVy/Bu7CW+88QY8vWlvKZI63Io2R7gsV+hQ3RVyWq7MdiRiK9EtLS3EsiwVFBQEbccWikRMeNhsNmpvb6f29nZ68803acOGDaRUKqmjo8MdJxGR00WxpuF8iNoEeqSuBSdOnAD1N6OQVSLacd709DQOHjyIxsZGmEwmFBQUxJsnE0K0lqdr165hZmYGANDW1gbAXUN98sknAIDJyUncvHkTAPDtb38bmzdvBgA8/vjjePHFF3Hq1Cns3bsXr7zyCmpqaiAQMOB9rByGqAwmzW9VIf/An7jvPgZ6P8jLWjQ0NIS9e/dCqVTi7bffjsrIQDGYPmPx64+3daynpwd3794FANy8eRN2ux0A0NnZienpaQBATk4OAOChhx5CdnY2AGDNmjXYtm0b93nr1q0h47t06RLK/uMVPLlVDafTiYaGBkgkkrhkj4eIJdrV34wWPAuikwAAy8dn8NbAE0H9eueZK1euoLS0FNXV1aioqIhaoFgU5+3XY7oEgOHhYfT19QGAj+27v78fw8PDAMCZTQFg69atEIvFYBgG5eXlXIbMzs6GQCCIWp5w/PCHP8Tk5CSqqqrwk5/8BFu2bMHFixexfft2XsKPhI+i/UsI9TdD8IsW0N9OcM8GrP1gmEC7LzCX8MeOHcP58+dx+fJlLseHI1jJdDqd6OjoAADcu3cPnZ2dAICpqSl0dXUBAMbHx3Hr1i0AgEQi4cyh69at42zTubm5KC0tBRFBqVRCLpdHlCdRvPzyy7DZbDAYDDCZTNDr9aiqqsLBgwcTHndA1U0AQIS6oy/g1ROXAQDNFsKudODwCwz+8323v8LDdXivdr9Pz9HpdKK0tBQDAwP44IMPIBaLfSLr6enBxMQEAHe16HA4QES4du0avvnmGzAMg7///e9czZCbmwsiwooVK7icv3r1anzve98DwzBYs2ZNxJmm+VTviaK2thanT5/Ge++9h5/+9KfQaDQ4ffp0QuOMqo32nkoLlXB3797F008/DYFAgC1btuCrr74CANy6dQvj4+MAgleXAPD973+fG2Lt2LGDt+oyXpKROY4dO4aLFy/iww8/xP79+yESiXD+/Pmo+jFxwUcXf2hoiFQqFT333HMkFArp6NGj3PAilA14GaLKykpSqVT01VdfUVFREW3bto3GxkIbWOYD/M0zkUaVbncn529oaIgUCgUdPXqUiIgaGhpILpfHPFae73g21GRJIuKaL97xl5WV0bZt28hut9OBAweIZVkaGxtL8OyVeyQf9ct2u51UKhX9+te/9nl+7tw5UiqVMc888f3jFlqhofCXq6ioiLKzs8lut1NFRQVpNBpyOBy8xhn3NKXD4aC8vDwqKysLmqBGo5FUKhXZbLakJniqKjcc9+/fJ71eT1qtlhwOB7300kuk0+loZmaGtzjiVnRRUZGPMMESuLq6mjQazaKctEgmLpeLHA4HabVa0ul09PXXX1NeXh4dOHAgipejex6XoqurqyknJyeq6qWiooLLqZwMi7DUJQOHw0HZ2dlUVFREdrudtm3bRidPngz7TuS0dDfFMSna5XJRU1MTKZVKmpiYiPq9oqIi0uv1sUT1wGK320mj0VBZWRmNjY2RQqHgJkNCMqvrI4XwWeAAr5UtMSnaarWSXC6n7u7umISfmZmhgoICKisri+m9BxWbzUZqtZoqKyupo6ODFApF1B3bQ4WgMx/fISKivo//h4A0arbEoGiHw0FqtZrOnDkT1l+oqsRTLVVVVUUb5QPNyMgIsSxL1dXVZDAYKDs7O2TnzJPmLuqjPUzB7KIQp3tKeXY1UNTzZK+99hoyMzNx4MCBsP5CWZSEQiE+/PBDtLa2ora2NuELDRYTFGTfmFQqRXt7O86fPw8AEIlEqK6uDvLybJoT0P9xC5hDe6BEGoA0HP2FFoWH67ArHdEtPGhqaiKFQsFL73lsbIxYlo1YMyzjxtNc1tbWkkwmo87OzpB+m9+qIoZhCAAxfuv6Iira4XAQy7LuNcx+xNt7tlqtpFAo6OLFi3G9v9SIlI69vb0kk8movLyctm3bRvfv3/fz4e5ZHyr0KHdui65H2REVbTAYSKfTxSF+eD799FOSyWRBM9AygZjNZhKLxaRSqXxqQ9eskmf6mgiFh7jhs4v66AVmbvMAp+hguWpoaIjEYjENDAzwIqx/HD09PSSTySIPHx4AIpVql8tFXV1dJBKJaM2aNT6THy5yV9veO0Jcsx2x082fEVGEEq3X66mmpmYe4kemo6ODZDIZdXd3LxtSwuBJm46ODlq1ahXl5+f7uB96wV1Nu2hu7T0wtyw7pKK7u7tJJpORw+FIuAIaGxtJLpeTxeK7K2BZ8cFpaGggAFRfXx+wC4T7e+GwzzshFa3T6choNCZcaA/19fWkUCge6PlrbjwcJoO3tLSQRqMhmUxGu3btChuON0EVHW1p5rvEmUwmyszMXNRbcxJFV1cX5eXlkUKhoL/+9a80MTFBEonEpxb014f3t6CKLikpCWlMT2R16nK5qKamhpuIX8a9AdGzfcnf9lBdXU0VFRXkv4bAFWRNAfz3EFksFpJIJHT37t1EyO0rUIhMU1lZGfXs2FJlaGiIysrKSCwWk8FgCJoWIyMjJBaLo7KDp/nvITKZTCgvLw9YwZkIQplL//znP2P9+vUoLi6G0+lMuByJguIw846Pj+Pw4cPYunUrZDIZBgcHceTIEQiFwoAwpVIpSkpKcOrUqaiE4ZiZmaFHHnkkoPe7EMzMzJBOp6N9+/aF9JNKvfJo+zKh/Nntdjp+/DitXbuWKioqaGRkJKrf19XVRQqFIqI/H4NJQ0MDaTSaiC8lC89ypcrKyoUWJSzzOcFwZmaGjEYjt8023KLKUPFs2rSJ2tvbw8btU6J1Ol3KTTbY7XZ66qmnEm64WQjOnj1LcrmcCgoKyGw2xx2OwWCg0tLSsH44RY+NjZFQKEzYuuL5YLPZiGVZMplMCy0KLzQ0NBDLspSTkxNg/g0YIkX4TuSeJBKJRAEjFW+/nKLPnDnjM3mxkO1fsLhHRkZIoVDQu+++uwAS8YPH2KFWq3mfzMnJyaH6+noiCmMwcblcVFRUlHLVtj8Wi4XWrVtHjY2NCy1KTHiMHUqlklMGET+FyTM8NhgMYVeNciVaJpMt6Dle0f7oW7dukUwmi9j5SBbh5P70009DGjv4prOzk1iWDekOIrf1RSaTJVQQPvGe8UoG0digvfEYOyQSSVBjRyKaRafTSSKRKKTxJA0Arl69Cq1WG/PgPhlQEKPD9u3bce7cOezevZvb/B7O/3zxGHYi7bAcHx/HoUOHOGOHxWLxMXb4h8cnaWlpyMvL447RDHAH3GdypKqiQyVKfn4+TCYTtFotBgcHI/pPJJOTk/jNb34DpVKJe/fuwWw24/e//z3EYnFSF0FqtdqQigYRxbX7MVU4e/YssSwbtMpK9MjB39gRaoo1WSOY7u7ukO00bDYbCYVCcjr9ZkBSyLwYCYPBQGq1OqkzXnwZO/jAoyu73U4CgSDI4kEidHV10ZNPPplk0fjnl7/8JWVnZ/M+4+Wf4b2NHeGW3iYbj5wKhYL6+gJPDU67c+cOMjIyvKvy5DQoPPOHP/wBLMtCr9fzOuPlafNbW1uRlZWF3/72tzAajWhvb8fTTz/N+fNPt2Sno0fOjIwM3LlzJ8A9ra+vz+eE+qTdKJMAzp49i5UrV2Lfvn28hdnV1YVdu3ahvLwcVVVV6O7uRn5+fkDa+HcCg3UKk5GemZmZAVdLAECa51qBYKTaaT7R8O6772JiYgLl5eVR+Q+V+L29vXjppZdQWFgIvV6Pvr4+vPjii5x7PGmTjPTMyMjA7du3A56njYyM4Iknnki4AMlCKBTiwoULuHXrFo4dOxbRv3/iDw8PY//+/dixYwc0Gg2sViu338zjN1VrOiKCQqHwuS/EQ9rU1BQefvjhBRArcYhEIjQ2NqKhoQEnT56M6h1vY4dUKoXFYsHBgwcDjB2AW+GpqGyGYbB69WpMTk4GuKXZbDafs61S8QfEg1gsRmtrK+rq6vCXv/wlpD9vY8fMzAxn7FizZk0SpZ0/Hr2JRCLuXFNvHpqcnPRR9GJsl0MhlUrR2tqK7du3QywWQ6fTcW5OpxMmkwk1NTXQarUwm80+x0eGSgeaPWwuVdNJJBJhamoqqMOSX1r7zjvvkEAgoPT0dOro6OCMHTqdjsxmc0xnlKU6Q0NDtG7duoDngN8W6cX6A8PBsiy3VUUoFMZs7FgMaeJ91YNYLA5wDzjGOVWrJL5Yv3492tra4j4uerGSJhKJuF7aven73F+qEamL+FnLW1zbyTAMXjjyFudmMp0Cy7JQq9U4+79vLwnFeUNeh9Ta7fagB8c+5Gm8RSIRVglX4N70fawSrki2rGFw3+AaSjUEoO5IIV49AfSRE0qkgfAZdEwm9jDA5T/uxw9+kBvUiLAUmZycxOrVqwOepwXrjlNKDbHCn6dTd6QQr/ayIHp/9pAWFxhsxJ+aT6OxthEWxuVr1sXc70ulXzkfvA05ExMTQe0iD4nF4oABtscg4PhmhnvmKe3e3wFwz/xrgWB+o3Hz90dEYMBg1coVPs8BoL/tLbx64jKaLe9zzz1yOmbcP94xfR/wMnow7h8493kJwTAMJicn8a1vfSvA7aGHH3446LiLYZiAqtz/ezSfY3Hzxv+dYM//7/TPUFB1BrvS5zKFx31w0AJGkIaVQiG+dnyDf135LzEk2eIlVBud9uijj8Jqtfo8DFV1B1NKojtvRM7ZOF2Yu3LXfQn3nfeBZ//dfXvNKuEKLnMCQOtHb2DPweegxNLoNUfL4OCgzyXoHtJYlg2Y1vJOGP8q259VwhXcXyJgGM+1C2nwaa/7P8f7ADYoAi9ysbScgvED4Gf7g1/ZtJTp6+vDpk2bAp6nbdy4Eb29vfMulYks1cHCpvT1KAQwMNjv+xwWHNxVgedff9N9Yp6v45Lnzp07QW+vR1dXF6nVapq6N01fO74JsLR48Hbzfx7MzfM8Frdg36e8ZSL3bn7Pu/9d9QJ3D/PXjm9o6tOPiBGsoMLDdT7hh5JjKaJQKIJue+YWB87MzIQ19aVqQh0qBAFpnImTz3utFxuexYHBDstPE4vFeOSRRzA8PByy07LQRhTy6Ry6fNxO/I1A5OQOTvWursnP71LHYrEgIyODu07KW59pgHvng+emOG9SxRzqmwHdRhHArUgKY/xgknjJZypw/fp17g5Nf9IAYOfOnWhqagpwTHSPOn7SuP+ZsMaPB6tENzU1YefOnUHdGCKi3t5e7Ny5E19++WWSRYseCnO7XLCb9sL5X4o4nU6sXbsWFosl+DgaALfc13/DWioRbhkyg7mqe25D3AMwlvLi5s2bkMvlQZUMeFkgcnJycPXq1RSb0AjR9nqM+N7PAnzNteUPAm1tbSHbZ8BL0Z52OtWqu3DSRJZ06XbG/AvkRx99FLJ9Brxumx0fH4dcLsfw8HBSbypfZn4QEf75z39i8+bN+PLLL0PeVstleYlEgt27d+PSpUtJE3KZ+cMwDOrr66HX68NeSexTt7388ss4d+5comVbhmfOnTuH0tLSsH58FL1nzx5YLBZ8/vnniZRrmRiI1Dm+ceMG7t27h2eeeSasPx9FCwQC7Nu3D++88878JVyGFyJ1jj2lOZI/rjPmob+/HxqNBv39/YtuW8qDxujoKDIzM3Hnzh185zvfCavsgPFHeno6tFotzp49m1Ahl5k/JpMJJSUlkEqlsZdoAOjp6cHu3bthtVqD7iZcZuGZmJiAUqnE9evXsWHDhoj+g1oU1Go1NBoNzpw5E/SlVLOePUh40t5oNOL5558PUHIo3QQt0cByqU5lJicnsX79enR2dgZfNhSEtFA5QK1WIzs7O+qN5Mskj9/97nd4/vnno1YygPC3zXquLFysh80tRcxmM0kkEt8rC0MsAfNZSuSl8IBMIJfL8atf/QqVlZV8ZMRl5gkRoaKiAjU1NT7zEaF63D7PI+Wge/fuUWZmps9B4othv/BSpL6+np566qmQN8OHI+qLwh9//PElfzJCKjM2NhbxonCi0IUwZK/bn/LycthsNtTX18+v/lkmAAq3TGrWbffu3VCr1fjjH/8YdyRR4XA4SK1Wp/x1DEsRg8FA2dnZcVXZHqJWNJH7Nha5XO5z8v1ye51YOjo6SKFQ0Ojo6LzCiUnRRO72WqlULt8ImwTGxsZIoVAEXJkUDzEvqsrPz0dxcTF0Oh2mp6cD2pNl+GFychL5+fn4+c9/ju3bt887vKg7Y/4UFxdjenoaFy9e5LaALMMP09PTKCgoQHp6esj5hliJWtHk1zOcnp5Gfn4+WJb1Ecbf3zLR4Z1uxcXFmJqawnvvvcdbIYq66vZXnlAoRGNjIzo6OqI6RXeZ8HjSt6KiAlarlf+acr6N/NDQECkUCqqurp5vUA88FRUVxLJsQu4HjbuN9mZ4eBharRZZWVnLK1P8oCiaMqfTiX379sFisaCpqSkh6+p52cogl8vR0dGBvr4+7N27N6A3Hgwe8teiIJKSJycnodVqMTU1hfb2dk7JfKcPb3tW1q5di9bWVohEIuTn52NiYoKvoJcs4+PjyM3NRXp6Oi5fvpzQ47R53ZwkEAhw/vx57NixA08++SRu3LgR0u+D3jO/du0atmzZgh/96Ee8DaHCwnurP0tTUxPJZLIlc7k3nxgMBpJKpREtXnyal3npjM1mmKAXkeh0OiiVSrz99tth9wY9CExMTKCkpAQ2mw0NDQ1J3czIW9UdrCqWy+W4du0aJBIJNm/ejA8++ICv6BYdly5dwubNm7FlyxafTlfS4K1uiEBLSwtt2rSJCgoKUnoNGl/VpSec27dvU15eHqnVal4mJ+IlaYomct/OajAYSCKR0PHjx33ukYwmgZM5JTrfuOx2Ox09epQkEgkZjUaepIqfpCraw8jICOn1epLJZGQ0GhfdEqVwmcBms3GZuaSkJCFWrnhYEEV76O7uJr1eTxKJhAwGA9lstkWzkMFbTpfLRWNjY3T8+HESi8VUUlJCt2/fXkDpAllQRXvo7e2l0tJSEovFVFVVFTKRUjETmM1mqqioILFYTGVlZSnb/0gJRXuwWq30+uuvk0wmI5VKRSaTKehN7wvN8PAwnTx5kliWJblcTlVVVTQ0NJSSGdFD0hQdayI0NjZSUVERCQQCKigoIJPJtKDVodlsJqPRSFqtloRCIZWUlPisdY+HZGYM3gwmiWJiYgIXLlxAS0sLrl69CgDIy8tDTk4OsrKyoFKpEhJvT08Prl+/jra2NrS2tmLlypXIzc1FTk4OiouLA+7zjMak6/EXrX8+SXlF+9Pb24urV6+ira0NnZ2dGBwchEqlgkQiQW5uLh599FGfi8+lUqnPd08Y3lfv/uMf/8Do6Cg6OjowMjICz53aGo0GOTk52LlzZ8CGtoVQ1nxYNIoOl7A3btzA6Ogourq6MDg4iIGBAc7tiy++CLhKgmVZn6MUMzIy8NhjjyErKwtSqRRqtTohv2GhICL8P5CcDS9h+qUlAAAAAElFTkSuQmCC"
|
<image>如图.已知A、B、C三点在⊙O上,点C在劣弧AB上,且∠AOB=130°,则∠ACB的度数为()
Choices:
(A) 130°
(B) 125°
(C) 120°
(D) 115°
|
115°
| 69,635 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAACDCAYAAABcDT+GAAAQpUlEQVR4nO2dTWgb57rH/765CYJTitqNJ7Q0U0iO1VDohLZ4olyuZ3G5VpKFlc2JXQpWupBkOGC55ZQEUpRAQSlnIbkbxdkoXinJRs7lVnI2lbxo5LQLKxAqOzJoAoVxbnuR0o3Uj/Q5i1SKPkbSzGhm9BH9QCDN56v3/77PPO/HvM8YERFGDA3/1usEjNCXkaBDxkjQIePFEHQ3gWXPCYyNjWFs7AQ8y7tAwgNPotcJ05/hF3R3GSeOnMItXESOCETf4B+Yx9ipBzh6pNeJMwAaZnIhsgNkD+UadsTJbXdTvCeJMpZ/73WBMpLEP324aw8ht3i4Yc8RHH37KIaxgo4RDWs7NAHP2Ck8COXwTZOgw8vwPkN3H+IBgLf/+uKICQyzoAAA+3A6Pm0YXkEP/xVv4y5ufbXbtGs3kUDz1uFgeAXFSTjdwF3fPJYTFfl2kVhexldHTmJoDXGv3WxjyVE85CY7QAAIdjc1tWCGjCH2cl9MhtjkvpiMBB0yRoIOGS+EoKIoYmFhAWtra71OiuEMlVO0ubkJURSxvb1dt/3atWuQJAljY2P4+OOP8dJLL1X3sSwLlmUhCILJqTWGgRU0lUohlUrh3r17VRF5ngfLspiYmKg7NpvN4tatWzhw4AAOHDiAw4cP491338Xrr7+OR48eQRRFpFKpqrhTU1PgeR6CIMBisfToH2pDZ0ETWF4+gkUDOsMzmQzW1tawsbGBVCoFQRCqGc+yLGw2W9vzX3vtNXz99dcYHx/H2toaVlZWUCwWsbi4CKfTCYZhIIpiVdx79+4hlUqB4zgIgoDp6enBqMV6NmrjbrmxR+3k83ny+/3EsixxHEd+v5+SyaSma7EsS/l8vm5bNpslr9dLDMPQ7OwsJRKJpvPS6TQFAgESBIEYhiGfz0fZbFZTGsxAN0FzITe53XZy6zBqHIlESBAEYlmW/H5/kxBakBO0lmg0Sg6HgxiGofPnz8seK0kSBYNBstlsZLPZKBgMUqFQ6Dpt9eQoZP+zZ6vmY3fHSUlV0UfQXIhC8Wc1VKugpVKJgsEgsSxLLpdLc01sRSdBK0iSRIFAgFiWJUEQKBKJUKlUajoum82Sz+erFjq9ha3Ly1yc3LIzL5rRQdA4hdxxelay7Kr7SmuF9Pl8utRGOZQKWksymSSXy0UMw5DX66V0Ot10TKFQIL/fXzXHkiTpkNrmvIy7QVBQW7oWNO4O/Tk3R72gsVisKqQ+GdEaLYJWKBQKFA6Hied5stlsFA6Hm2pkpWBWTHFX5EJkt4f+NLE5iofsBCibA9WdoHF3g61XdtN8Pk8Oh4OcTqfhQlboRtBaKo6U1WqVdaQKhQL5fD7iOE62RishF7LXPz9Dyp6fRN0ImguRu7Y61pWq1gQCAbLZbLIepZHoJWgtFUeKZdkmR2pra4t4nieXyyX7DG5Ng6VrOXNRHk2C5uIhcjfa87ib0EZQSZJIEAQ6f/68yj+oD0YIWiGfz1cdKYfDUedIRSIR4jhORVMnTu6GfIy70TZva9Ek6DNT8LwUxd3tzW46nSaO43T3XNVgpKC1JBKJOkcqm81SNpsljuMoEol0vkDc3VQbDRdUDcFgkHieN+1Z2QqzBK1QcaQqbdYvv/ySPvjgA/J6vW0sVKO5zVHc/ex5qrQ5aIigsViMOI4jjuPI5/MZcQvVmC1oLbU9Uu+99x699dZbdPr06SZv2I7mDgXY3RSKK286GNI5Pzk5iW+//Vbvy3bFvn378P777/e0s/2PP/7ATz/9hIcPH+L3338HABQKBVitVt3uofurEMViET/++CP279+PV199FZlMBgzD6H0b1bzxxhtYXFzsi7R8+umn+O677/Dyyy9DFEVwHKffxfU0LYVCgTiOo62tLSJ65roLgmBAf6d6emlyawkEAnT+/HmSJIny+TwJglDNLz3QTdBSqUQ8zzclLpFIkNPp7ElTpZZ+EDQSiZDL5arbVhFVr7TpJqjD4WjZWRCNRml2dlavW2mi14K2K9jZbJZ4ntfFkukiqMvl6tjGCgaDPfV4eylopdeonZVKJpPkcDi6tmRdTxK7cuUKGIaBy+Vqe5zP54PFYsGVK1e6veVAIYoizp07h0Qi0dbDFgQBHo8Hc3Nz3d2wm9KQTCZJEARV58zOzlI0Gu3mtproRQ3V8nz0+XxdjdZoFlSSJOI4TnUPUKlUIqfTORSd8+0oFAqaPNhSqUSCIGgeqdEsqCAImvtmtf7ZbjBT0FKpRA6HQ3P+5PN54jhOk5OkSVC/309+v1/LqVUkSSKe503LZDMFdTqdFIvFurpGLBYjp9Op+jzVglZGDvRoV3ZTEtVilqBer5fC4bAu19JSMFQL2q69qQUlLr0emCGoHparFkmSiGVZVXmjqtly48YNWK1WOByO7lzrGjiOg9/vx9zcHMrlsm7XNZurV6/i8ePHuHTpkm7XZBgGHo8Hly9fVn6SUuVLpRKxLGvYuKZct5ieGFlDtT7vlFAqlVTNeFBcQ69evVp9ZcAIXC4XJiYmcOHCBUOubxSpVAorKyuIRqOGXN9iscDv9yvPF6WlxMjaWYueTkUtRtRQM0eTakex2qFIULP7YfVw+xvRW1C9R0k6odSsdxTUzNpZe89uGuZy6ClooVAgnudNfWlJqQ4dBe3VKInevUl6Cdpq3NcMlGjRUVCe5zX3K3aLnmZND0F71Q9de3+r1dq2XdrWy93e3kaxWATP83o4bKphWRbhcBhzc3MoFos9SUMtCwsLmJmZ0bUdrgaLxQKHw9F2rYi2gq6urmJ+fl7vdKnCZrMhGAzizJkzPe14uHDhAiYmJjqO+xrN/Pw8VldXWx/QroozDNPzCdIVEokEORwOzed3Y3J7PduikXa6tKyh6+vr4DiuL6Y9AoDD4cDMzAwWFhZMve/169dx//59BINBU+/bDpfLhevXr8vuaynonTt3MD09bVSaNOH1ejE+Pq5rf2k71tfXcfv2bYTDYVPup5Tp6WncuXNHfmeraq20Z6IXKJmU1ohak2vWKJAW2nm7soIWCgWyWq2GJ6wb1A7jqRHUzHFarbSaMSJrcivrAPUzsVgMX3zxBTY3N3W97t7eHubm5hCLxXR950RvpqamkEqlmrbLCrqxsYGpqSmj09QVFosFsVgMS0tLTUvBaaVYLGJubg7hcBgsy+pyTaMQBAEbGxvNO+Sqs96zEoxEaW9SJ5NrRP+xkbR6LMoK2k/tTyUoGcbqJKgRIzxGI6dTk8ktFosol8t90/5UQrfTWBYWFjA9PQ2n06l/4gyE4zhkMpm6bU2Cbm9vd1wIsR8RBAHz8/M4d+6cqvMuXbqE8fFxeL1eg1JmHDabrcl/aBI0k8no+wKqiczOzmJychJLS0uKjr9+/ToePXpkWkeF3kxMTGBnZ6duW52gT/Eb/u//93Dw9XFTE6YnSl+KWltbw+3btxGJRExKmf6wLAtRFOu21Qm6D/vx888/4+W/WE1Mlv4EAgHs7Oy07O80emKXWVgsliafQdYp6ucGtVLC4TBu376N9fX1uu2ZTAaXL19GNBoduNWqldB20Yyn+K36fR/2N/2uPabyu9W5SvcpOa7d9ko691v2IRqN4r9P/lfVY//hhx/w2WefIRKJDEWhlTO5TYI+fvy4mgGVzKlkWuNvJd/V7Kul8ZxWx9eK2Ph7v2Uf/if2vzj+H5OQJAkffvgh1tfX+74XqBuaTG65XG5piuQy/yl+q8twI2hXixuPqT12H/bDarXi119/xS+//AJJkgaySaaGjjPnG02t3P7Kp1/xeDwAgI8++qjHKTGeqqAV0Q4dOtRkl5VgZC3t9tqffPIJiKjvBqqNoO4Z+hS/4emvzSvFNT47G7dXvsttV7NP7nmt9PzGZ2i778PC3t5eUxdttYZWzKZc26YdrcxtO1Pcap/cb6XnN26r/Z5P/B3/eeIAxsbGMDZ2AieWE4r/Xz8j5+80PUPHx8ext7dXt21wS/culk+M4cjnwMVVAhGBchfxtu8UTiwPZ9DmJkGtViuePHkCwBwP1kgSniPwIYTcNys4WQn2dPgk/hGy4+6trwY+Drcoik1NsCZBa3vwB8GDbUnCg1PX7AitLsrH2777PXJmp0lndnZ2muK8NQkqN8Y2eOxi+fNrgPsi5MKw5b6/C9iP4oj5CdMVuaHOJkEZhkG5XO6Ld0k0s/sVbt0F3M6Tcjvx8AFg/9tp+Zo7QCgSFJAfOB087DgqVwUT/4Tvrh1/Oz3YcpbLZYiiqEzQ4TC7d/F940NyNwHPqWuwh1ZlTfEg0Wpmiaygk5OTuHfvnuGJMozDi7joBq59vozEn67sbmIZJ46cwgN3HN8MuppoM3dabjZZPp8nlmVNmLdmJDkKue2aoyv0O61mKbaMCvHmm28imUwO9VDTIPPKK68gn883jeu2HG0RBEF2qv2I3pPJZMCyrOwgfUtBp6am5Kfaj+g56+vrLZcFaGlyy+UyDh48CEmShnLuzSBz7NgxRCIR2em2LWuoxWKB0+nEjRs3jEzbCJVUmpOt5k63nbFw9uxZ3Lx5U+80jeiCmzdv4uzZsy33d4x9dvDgQWxtbQ3Uuy7DTCc9Os4pardAwwhzUbSQSacGrJZVlUcYg5JXHjvWUIZh4HQ6cfXqVT0L2wiVZDIZiKLY8ZVHRfFD9/b2cOzYMUiSpFf6RqjkzJkzmJ+f7yioohWtGYYBz/Nt15gbYRxKaycA5WvO6xneY4Q61CwXoHjNeZvNBofDgVAopL2ojVDN+vo6yuWy8uUC1JSUXqxu/SKjNiIEkcq4LRaLBcFg0PQFFF9Urly5gpmZGXUvWGkpOYO0jtGgks/nyWazqfZZNAmqNdTkCGV0E3JSU4RfhmEQDAa7j0Y7QpYLFy5gZmZG09LwmkM2C4KAqampgV0Spl9ZW1uDKIrw+XzaLtCteegmMOyIevRY1rVrQXsRrXcYKRQKxHFc16FIuhaUyPywUcNGt3G3a9FFUCJzA7sNG3o2A3UTlIgomUySw+EYiaoCLevnt0NXQYmexVcRBGHURu1AJeyWnmISGSAo0fOICmZG7xskKo6kEQsuGyIo0TNHqZeB8PoVo/PFMEGJnsfZDAQCRt5mYIjFYqpHT9SiuadICVarFel0Gk+ePMGZM2cG+63wLiiXy1haWsLq6iqSyaSxy9MZVlQaqJTOF80EV9rowWDQlPuZJijR8+eHz+cb+qZNqVSiQCBANpvN1EJsqMlthGVZpNNpHDp0CMePHx/aCdypVArHjx/HkydPsLW1ZW5AXdOKTgOSJJHL5SKe54emcz+fz9Ps7CwJgtCzJlvPBK2QTqdJEISBHrXZ2tqi2dlZYlmWotFoT9PSc0ErJJNJEgSBOI7reaYoJZ1Ok9Pp7Ks0942gFSqlnWEY8nq9fTcsl8/nye/3E8uyxPN834XXUvQqRC/Y29vD2toaVlZWUC6X4fF4IAhCT4IEbW9vI5VKYXV1FXt7e5ifn4fL5erLBUX6VtBatre3sbKyglQqBVEUq9NfjBK4IuDGxgZSqRSsVms1FJepHqsGBkLQWorFYl1mV0J7sSyLd955BxzHVVcHsVqtsoJnMplqr1W5XMbm5iZ2dnYgiiI2Nzdhs9nqCs0gvew8cILKUXmZJ5PJ4P79+1WxisWi7BJ3taJbLBZMTk7CZrOBZdm+r4GdGApBRzzH1J6iEcYzEnTI+BetsrMLhg74bQAAAABJRU5ErkJggg=="
|
<image>如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()
Choices:
(A) 40°
(B) 45°
(C) 50°
(D) 55°
|
50°
| 69,636 | null |
50°
|
"iVBORw0KGgoAAAANSUhEUgAAALwAAAAYCAYAAABAxJdTAAAEnklEQVR4nO2bvW7rNhTH//TH7QX6AF2yRKOzu11iOVsXZy5QoIj9Co0ydMqcrB06FIn0DJ46FHDoZ8hW00uArh0TS+LpYJGmbIl2jFj29eUPMGJ+iKSoP4/OOXAYERFKuL29zf11fCzHtL/7vpdN569tM7jljDgcB81WgndsxyaGwhmT3ZIT/KabzRjbyWKOnU32ze3tbskJfpPNdhbIYWPf+lg3P1sXtI5GI3S73XlnxvZ+Qw6HjY2DViVkm6CX25z4HTYOUR9WC+9wHBs5C++07yjimHShBc8YcxmCPVHkTh6SyD5KF4dwT9Y8POcc0+m0qrUcJWUP2axXgjKF9SUYH845GGM6qaHuaTqdagN6cXGh++/ynrrdrp5Tfcbj8WpHsgCAhBC2Lo53wDknAOT7vq6TUhb2CcOw4tVth5SSGGMrOhFCUBAEla7F933inBPRYh+X14XlDVdcX1/nHozjY1APogwA+qEdEmU6IaLCA8o5r9xYmvsqhCgUfK0otx5FES4vL/H09LSzV9DXihACvu8XtnW7Xfi+j/Pz84pXtZ4yd2Q8HkMIgaurq1y9EAKnp6cVrGyxjiAIdLnf7yMIgpU11ID8zSif/eTkpPTBOLbn+fkZAFZioyiK0G63MRgM9rGsrVHCDoKg2GeuACKCEAL39/faf398fMTd3d1K36Xf0szwx5+/4+dffkKKGb7/oV06gWM7Wq0W2u02Xl5edJ0SP2NMW6QvbY97vR6GwyGAeTDreV5lcyuBCyFARAjDEJ7nFSdcTP8mDENCE/Ttd6DPTVQedBw74/GYhBAUhmHO51WxEuw5hINCSklCiFy80el09hKsCiFW4k2UBP7awqvTQLMY//37hr/+5mi1WhWd0eOGMms9mUxWfMqbmxuMRqMVH/RQUffCGAPnPBdvDAYDcM5xdnZW6Zo45+j3+7qstFz0lmmoDv1+H6PRCEACABDTf4CGREJvAOqoswZAM6QgMPYN6gCABAml2VCf0NCxgFlfQ501sYgSbG0mZr/5/Kz0eomUYhAYaqwBohjzx9JEg0mjfxMNVv2/ACwHfJ7nYTgcIooi9Ho9AMBwONTfDxlbLr3T6cDzPHDOP3ROIrLOG4YhHh4edFkJvTD4D4KAABgpnJgufuzQ5yYITdDNb7/SIiGVUiJTIiKSMqFExllbSol8o3TlO5GUrxTL1Li+rM3E7Ccpla+UrL0+pli+Uixn2ZpUOTbKMypPru0WzjlNJhMiWqTMzFcuDHfGlgI8BKIo0ppZdhuqTGWrFO/yx7aGgjx8THFOVG+GqGaZ8Obf54JafBJdHxvCMoVmazOZlRwE2/X5da8vV4fv+zmjYvq5YRjmHtYhsukBVP2qPLDvnavg15IJEiLD1ZBIKQFjTYBSMO1axEioXuAixEgIxvXmeLa25TGY4cZsMnaChCRq7FOWelpXdnyNGL+WfENCMiuxXJcaAEkzUE6AdTDESHVZZn5zPfOp1TmirG5dmwkDkELq8iZjOxzr0RaesoAUYAVWUCKlFLVCS6xkWVuyvEUBp61tHnhCB8TvGVsFrapvHdJaLguUHcfO/4NxzTHSyD1fAAAAAElFTkSuQmCC"
|
<image>如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()
Choices:
(A) 5cm
(B) 4cm
(C) 3cm
(D) 2cm
|
3cm
| 69,637 | null |
3cm
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAACSCAYAAAB8K5nWAAAgPElEQVR4nO2de1AUV/bHv93IQ8MG+amrSbSiCGogZrEqm5ioAYSRweAMo2h8kKjxDSZqYF2XzS9gSq1kF9EYUCoOCisqruA8JM6MjIJCUmbjltbKwxdqat2sVkzQqD95OH1/fwzdzKOHGWDe8Kkahum+3X26+/S5596+51wQL4BhGJMF+mXynFQCQP8RrCEMqSepqTmuEdILoeEFUBTV8R+j/2qUg6Zp7L4RAkKI/rNzBmgqAggZ6zI5vY0BrhbAvtAgaMCMCAni0nKgyUvvXBWehJzUOFBh41wnnpfhZcoDKHLzoaViUJ/3kdm6sWPHAWNf0v8gACizIv10A4oQQlwthL0gaMAMKgLjcmTIT0/iKcGAgO7XGTvhFT4PC9VwFVoAIaFhAADz56JfceyJVykPC2NhudeYWDfBq5SHhI9DHIBb168BMGyFAWiQI1dR7xrBvBXrrXmd8TdjsaBbINuu79vJkddxy+rkOQSCNS6UyjvhVZ46eQ7XsWa8QkEog043d+WS7K+dnYMAiUvj6Rh084fAE7DY2iJoQDwdgdRLDJIijM2/YHcTKg37UNyB/qa30+nS5yEEqNTIjDzN+mtNSFvzUcd693FBCWW7PPpyltzqfmzFovJcVqiQWl+HK+m70UB13hRNE2VsiVyOXgkomDjIgMXmFUUReFlbwSUYXUHDa61qoiAJj8DMVAoqRYP+aSWXwTCjuTJmN8sl0MYWx/AkKP7FBHR/s90O0CCd5p691gQNIGQMAAbxM4TQaDWgKAp1igpQYeNdJqwljJTY1PgYnNvly5eRlJSE/3v8GFS/9vQaGpS5BaEargKh4wDQiBCnI+xKBmQNBCe1N5AgDofb+wsGisGeW11dA6Kjo1FdXY033ngDLa0tbuWzeSK0iT0HAMjVTUgQh3MXVyBcA61KAYSEIhwU3N5fMLE+Fy9exNSpb2LVqlUYPHgwXnvtNSQlJaG1tZUr069I3YcmRo+p/usGKISDAkVRIIQgSSjAngwJyNh4o4094XKfO3cO0dHRyM3NxePHj7F69WpIpVL89re/RXJyMtrb2wG4i//mYXT2IHf2zgIgqTkyQkhnX1qaII7UG/SsmY3ec0POnj1LBg0aRA4cOECePHlChg8fTv773/8SQgjR6XTknXfeIXPmzCFtbW0ultQzMe9hZky+CSGGCkYIIVlZWSQrK8tRMtmFEydOkEGDBpGjR48SnU5HDhw4QN555x2zcmKxmCxcuNAFEno+5s4LZfINwNQ1cndUKhUkEglKS0uRnJwMmqaxZ88eLF++3KzssWPH0NzcjMWLF7tAUs+mQ3mst54oeIaPU1ZWhjlz5kAmk+Htt98GADQ2NuLu3buIi4szK08IgUKhwH/+8x+sX7/eydJ6NrTRlxUMjRFxw9ZJaWkpli1bhoqKCiQkJICm9eeVn5+P1atX827j4+MDX19fKBQK/POf/0R6upu9s3NjzLXGgk7oF7MWina71klRURFSU1NRUVGB6OhoMAwDhmHQ0tKCsrIyq9XSwIEDoVQq8c033yArK8tJUns2ln0e3sVscffqJCwoKEBmZibUajWmTJkCAKBpGjRNo7S0FNHR0Rg2bFiX1pKmaQQHB0OhUOD48eP47LPPzMq4o7V1JR4fPbFjxw588cUXUKlUmDhxotn6goICThH4rCUhxGj5sGHDIJPJMHPmTPj7+2PDhg3cOneztq7Go5Vny5Yt+Nvf/ga1Wo2wMP2gd9bPAfQ9y83NzYiOjra4D1OFoGkaL774IhQKBYRCIX7zm9/wttL68WDlycrKQnl5OdRqNUaPHs1bpqCgwKKjbI2QkBAolUoIhUIMGDAAS5Ys6bmwXopHKs/69etx9uxZqNVqPP/88wCMLQ4APHr0CHK5HI2NjT06BkVRCA8Ph1KpxNtvv43AwEAkJyf3WnZvwuOUZ+3atTh//jzUajWGDh1qsVxJSQliY2MxePDgHh2Hrc5eeeUVyGQyJCYmwsfHBxKJhCtj6i/1NTxCedibtHjxYty6dQsqlQpBQUEghMDHx4d3m7179yI/P7/XN5emabz22msoLy+HRCJBQEAAEhISAPQ70G4+tkLP06dPsWjRIty5cwcajQZBQUEALN+877//Hq2trZg8eXK3j2WpOT5lyhT8/e9/x7x586DVarss21dwG+WxdCPa2tqwYMECPHjwACqVCn5+fgA6+3H4ti0sLMSqVat6JIclhaRpGtOnT8eRI0cgFotRU1PTb3lcLQAL341oaWnB7NmzodPpUFFRwSmMqXNsuG1zczPkcjlSUlIcIqdQKERJSQmEQiG+//57hxzDU3Ab5TGlpaUFSUlJCAwMRHl5Ofe6gcWSpTpy5AgSExN77Chbg6ZpSCQS7Nu3DwKBABcvXrQoj7dXa27pMD969Ajx8fEICQnBgQMHeMtYqjIKCgpQUFBgtyrFUotq3rx5aG9vR1xcHGprazFhwgSbZfQW3E55mpubkZiYiAkTJkAqlXLWxrSqMoS9wefOnYOPj0+PHGVLWFIAiqKQkpKC1tZWbmA9q0CsxelXHifS3NyMmJgYTJ06FXl5eQBsuwFsmT179mDFihUOldHUEi1duhTt7e0QCoWoqqrCmDFjvF5pWNxGee7cuQOhUIjp06cjJyfHJotjSHNzM77++mvk5+c7Ukzed2GrV6/GkydPEBMTg9raWowcOdKhMrgLbqE8d+7cwVtvvYXZs2fzDoWwhYMHDyI5ORmBgYHcMmf2AK9btw7t7e2IjY3FmTNnMGLECKcc15W4XHlu3rwJgUCAhQsXYvPmzdDpdKAoyiaLY6gceXl5Rs61s18d0DSNjRs3oq2tDVFRUTh37hwGDx7s1VWYS5Xn5s2bmD59OpYtW4aPP/4YgP4m2HrB2XI1NTUYPHgwfv/735utczaZmZloa2tDTEwMqqqqvFqBXNbPc/nyZbzxxhtYs2YNMjMzuX6cnlzogoICozE3ruxfoWkan376KYRCIRISEvD48WOXyeJoHK48fDfy0qVLiIqKQmZmJjZu3GjUc2xY3hYl+Omnn3Dq1CnMnz+fW+YOT/q2bdvw5ptvIj4+Ho8ePXK1OA7B4cpjeiMvXryIadOmYfPmzVi7dq1Zz7FheVuUoLi4mNdRdjU0TSM3NxeTJk3C3Llz0dLS4mqR7I5Tqi32ZrJx49u3b8fq1astvqvqDnv37jUbLegOlodl165deOGFF5CUlMTFxXsLTlEeiqJQU1OD2NhY5OXlYenSpSCEgGGYXlmJqqoqBAcH4+WXX7ajtPaFpmkuscKCBQu8SoGcojxarRbx8fHYt28fUlJSuBaVLS2rrpTrq6++wtq1a+0trkMoKirCgAED8O6777paFLthRXn44rOYbmXVUqlUSExMxMGDBzF37lwzH8calpTrp59+QmVlJe+4YnfweUxhY8haW1u9Ji6eBvTTeXSx2iSKlAaxkLrN9HdZWRnmzZuHY8eOQSKR2MXHYSksLERKSgoCAgLM1rmTz2NKeXk5fv75Z4sW0x0V3xK0/o/+YqfN0Cd0oigKdEe1sl1R30V+445MpKZp6SgKZWVlWL58ORf/pNPpumVxrCGVSnnDajzh4iuVSly9etUooNATMTIB+ScJUgVAjrwODCG4JPsrMpJehqzBimUyYf/+/Vi5ciWOHz/OBdz5+PjYxeIA+qpw5MiRZmNoPCGagbW8crkc58+fN4uLd3f5DeHuJiH6LKhXKmM7klYCEWFjOUukL2P9qd67dy/+9Kc/GcWNm9Jb61BYWGhmddxVcSyda0BAAJRKJTQaDbZu3Wq1vDvCvduiANQrVECqsCNpJZC2XoLY1BwkdUyOZ3hz+PyenTt3YseOHVCr1fjd737H3VC+aq2n3LlzB7W1tSgpKeGOy3cMd6GrAfXBwcE4fvw44uPjMWjQIGzYsMFtz4OPAdwTSwHXmm7g1O7doHb/AQAgq2OQb5TtnQFrrGgT9+Xzzz+HVCqFWq3GhAkTrI6ms3W0nalFkUqlWLRoEecoe9LF5mPIkCFcWPPAgQN7HB7tEvTZ5fQ5B9fEgcjqnxJCOpNbyuvNc9FlZWWRT7KzCCH6xJaffPIJiYiIINeuXSM6nY7odDrzjexAW1sbefHFF8m1a9ccsn9X0tTURMLCwsj+/ftdLYrNcJnBmEY59lBrkBSuj8AUf5SGOAAnVXJepWP7ejIyMlBRUQGVSoWQkBCHKrpWq0VoaChCQ0MdehxXMHr0aCiVSmRnZ6OsrMxsPbHQHeJKBhAwoEBDqapEavwMbgU7X6ewY75OwHBWIhoAg/XrP8Lp01potVoMGTJEv8ZOLSo+8vPzvTbdCU3TmDBhAhQKBWbOnAkARh2gfH4jcXEjgaY6fJhK9W4IhGIA+laXIGI2gM6WF2DY3aMfdxMZ+QoePHiAX375xeEncfv2bVy4cAFz5sxx6HFcgaEVmThxIuRyOT788EOoVKout3O5v2c6Kx73sTCTH8MwJCvrf7k8zHv37iVhYWGkqamJMAzjMJ/nk08+IX/84x/tvl935ezZs2TIkCGksrLS1aJYBISYZ3O3lN1d15HZm03izZbKzc0lERER5N///rdDlKetrY08//zzpKmpya77dWd0Oh05deoUCQ4OJjU1Na4Whxca6DB/PDPFmGI6Kzn7a8OGDUhJSYFYLMbPP/8MAN1+AdoVGo0GEydONHLIiRs4jI6ETaxw8OBBxMfHu2VcPL93aymdbsf0imxLy/AGbtq0CYmJiRCJRHj48CEA+9XJX375pVnWC5fX93bC2kMQHx+Pw4cPG8XFuwudymN4LwxnyDM4Of0N63yrTsH4tcXmzZvx5ptvQiwWo62tjRvw1ZtBXzdv3sSVK1eQmJhotNxbLI+1h4CmaYhEIkilUsTFxeHy5ctOksw6VtvVXZ4cZV5m+/btiIyMhEgksn0/XcAOvfD19bXL/jyV2bNn44svvkB0dHSP8yzaG7t2yrDWYOfOnXjuuecgEoksjt8xtRx8lqS9vR379+/3rC57B0HTNBYtWoStW7ciISEBN2/etFjWWVbZrspjaA2Ki4sRFBQEiUTCVV2WoiT4fgOAQqHApEmTMHLkSK+ppnrL0qVLsWnTJsTExOD27dsAzJXFWVa518rT1U0tKiqCj48PUlJSjEKIbVUEwwFffa2asgSbWCE9PR2xsbG4c+eOy66NQwfA+/r64vDhw/j111+xZMmSbjnP169fx6VLlxAfH2+1bF8kLS0NK1asQFRUFH755ReXyNBr5bGm9b6+vjh69Cju3r2LVatWdZmI0hDW6vj6+nY7irQvQNM0MjIysHjxYkyfPh3Nzc3cOo/0eSwxcOBAyOVy1NfXc1GiRN+7zVu+vb0dRUVFWLp0KYDuR5H2JTZt2gSRSISEhAQurNljfB5bCQgIwMmTJ3HhwgVkZGRYTKNCCEF5eTkmT57cZ5IkdQfTB45NrBAdHe30uHinZskIDAxERUUFTp8+jU2bNllshRUUFPQ4j7K3Y8mqbNu2Da+//jqSk5OdFhfv9BQrwcHBqKqqQkVFBbKzs836gS5fvoxbt25xKfr7sQ02sUJoaCgkEolTwppdkp8nODgYlZWVOHLkCLZu3WpkgfgSF/RjO7t27cLIkSMxf/58hyuQy5I7Pffcczh79iykUilyc3NB0zTa2tpw8ODB/rmtegFN09i7dy8CAwPN4uLt3QozSivHPG3tFGKAv10PxMfw4cNx6tQpTJ8+Hf7+/ggODkZ0dHSfSAbpSAgh2L9/P1JSUrB48WIUFxcDsH8rzMjysArjDMVhCQkJgVarxdatW5Gdne21Y5SdCduSPXToEH799VeHZRJxi7knQkNDsW/fPty6dQs//PADbyusH+vwVUvl5eW4desW1q9fb/fjdak8zNNW7mP424dizMpY29bSOvaET5w4gQ8//BDp6ek4dOiQvgXGtPPuw9K+TeU0XNYXsFQtKZVKNDQ0GMXF28P/6VJ5TKsx9lvXEe7FPG0FPcAf9AB/o5tkuNzaOqJrQ2trK8rLy5GZmYnq6mqsXLkS5UdLAdoXoH2NLJClfRt+s3Ky//clBTKF7QpRKpU4c+YMtmzZAqAL/6cjBILwLDOlW3mYDW+M4TJbsaTtpaWliIqKwtChQzF06FBoNBokid6Gr/8g/Zggv4FW980qiaF8zvTd3B0/Pz8u3c0zzzxjMb0LQUcsGCEAxQ0Z5cWqz2PtyTW0AtboapqjNWvWcL+nTZuGY8eOYd68eVCpVP0+kB2gaRpBQUFQKpUoKSlBQUEBf8GOe2RLy4xTnt6a9p5u/69//Qv3799HVFQUt4wQgmnTpkEmk2HevHk4U6W1+W18P10zZMgQKBQK5OXloaioiFvOXtPuNOaNLA9ftQTwVwmGy/mqC0Onlh7gzwlnuq7gq85cO6wCUhQFeoA/4gXTcaB4HyRz5qGmpgY6nQ6gfaFrbzE7Lp+DbOn/vgxN03jhhRegVCqxbds2Li6etTRpM2guZU3nJw6NfA+srQFeuvYW7n826K+7MAxjFFD48OFDMmLECHL//v0utzt69CgZNmwY+e6777p9zH74YRiGNDY2kjFjxpCjR49yywghJFUAIqvrvE85qXEEiCWXiHEwqE39PJYsUncxTcJ08OBBCAQCbqprSyQnJ+Mvf/kLRCIRLl68CIZh7J7jsK9AOiwIIQRDhgzBM888w8WDURQFgkZcQRqSDPIypedVIlVwCuvTthvtq8vWlqNN/d69e5Gfn29TtoclS5bg6dOnSEpKgkqlwvjx4x0qm7fCXucff/wRIpEIs2fPxubNm7n1DYoToMaNMdkICAmLw+5rN4wWd6k8jmzqnj9/Hi0tLXj99ddtKk8IwfLly/Hw4UOIxWKo1WqMHj262zMC9nUYhsGNGzcgkUjw/vvvdzTZOzO+qU+qIZyx02y7sWPHAddMBqI5Xlw9xMThkkqlRs1za7BPzIYNG/D+++9DJBLhxx9/NFrXDz+G1/7y5csQCoVYtWqVQV9PRysWDVDtJh1pdYxdgqamq4gbN9Zsx92mpw4zy/37921ylK3JMGnSJHL37l0uM4ej0tl5GoaNEvZ/nU5HLly4QEaNGkWKior4N6yXkdjUvxKzHCl1MgKA5MiMcww63dYTQlBaWorExEQ8++yzPd5PdnY2YmJiIBKJ8ODBAztK6PnwBQycP38eM2fOxLZt2yxOXyBXV2J8SKhZX0/aBgkgWIP0pHDjFT3R7N5ansjISHLu3Lkeb2/IunXryNSpU8njx4/7LRAPDMOQs2fPkmHDhnFNcv6C9SQOlFETndTLukz05XTL891338HHx8dmR9kaO3fuREhICJKSkuyyP2+BdPg5VVVVkEgk2LdvH5fjkJj4n/WK7aDoCGhBIHnZoJMwQqKfDUCjn27ctJvQ6cpTUFCAFStW2GVf7EUoLi7GsGHDIBaL7TYxiqdDCIFKpYJYLMaBAweMUtSYNjAixOlcHJ3pJ10c0dH/Y/7qwqkz/T148AAVFRVYtGiRXfbLZgQF9HHx/v7+FhMr9DUUCgWSk5Nx4sQJu0SiUHCR5WE1vaSkBHPmzDGaD9Re+2bj4tvb27Fw4cI+Z4HYh4hhGBw5cgRLly6FWq3GtGnT7HYMl1geQH9yeXl5DhmjzF44X19flJWV4f79+3jvvff6lAViH6JDhw5h1apVqK6utqvi8OE05fn2228xePBgvPrqq3bft2EdHhAQALlcjqamJqxcudKrLZCh48swDAoLC5GRkYHq6mpERkY6/PhOu6oFBQVYtmyZQ4/BOnkBAQHQaDRobGw0mn7b2yyQ4UPz1Vdf4c9//jOnOKYtKkfgFOW5d+8etFot5s+f79DjGL61Z+Pia2trkZGR4bUWiGEY7Nq1C5999hlqa2u5Ceyc8crGKVezuLjY7o6yLbBx8SdPnrSYWMHTycnJQW5uLqqqqpw+oUu3BsD3FKlUyo1YI06ebCM4OBharRZRUVHw8/PDp59+6hXDWBmGwbZt23DgwAGcO3fOJVG2Dlee6upqBAUFISIiAoBzzKmpgo4YMQJnzpzB5MmT4efnh8zMTM4/8vHxcbg8jiA7OxvHjh3D2bNnMXz4cJfI4HDlKSgowAcffODowxjBp6AjRoxAVVUVYmJi4Ofnh40bNzpVJnvBMAwyMzOhVqtRU1OD4OBgl8niUOW5d+8eTp06xQXau5oxY8ZAq9Vi6tSp8PX1xbp167h1ps60s6tXW8nIyMC3336LqqoqlyoO4GDlYbO3+/ubj0h01c0JDQ1FdXU1oqKiPGpOT4Zh8MEHH+DixYvQarVOb3zw4VDlkUqlOH78OABzZXGW4vAp6YQJE6DRaBAdHQ1fX18ucSbQaYGcqdi2PEgrV67E7du3odFo3EJxAAcqj0ajwciRI53a78CHpeNGRkaiuroaU6ZMgb+/P1JSUpwsWSddXRuGYbB06VLcvXsXcrmcm9XZHXCY8hhmb2dhm8ju4ktERkZCrVZDKBTC19cXc+fOBWAeIuRKFi5ciKdPn+L48eNcTmp3kc0hnYR3795FbW2t2QAtd7opLNOmTcPXX3+NxYsXQ6FQgKZpt5CRYRhIJBIA+kQQ7Kw/7iAbi0OURyqVco6yqzvkbDl+dHQ0ZDIZFixYgBMnTnC90DqdzgkSGsMeWyQS4dlnn0VpaSkGDHBKX263sbvy6HQ6o4ymrn5SbD1+QkICDh8+jOTkZFRVVYGmad4OxN4+DIbb8+2rra0NQqEQI0eOdJsuDkvYXXm0Wi3CwsKM5gP1FCQSCfcerqamxqapnrqLpRYnwzBobm6GUChEeHi45RQoboTd7SE74MvVFqenzJ07F48fP+aiUl999VXuXBzprN67dw8ikQhxcXFc9i53co75sKvy3L59GxcvXoRcLrfnbp0OGxcvEomgVqvxyiuvOKSlyL5fY+PGZ82aZRQ37s6KA9hZeVhH2RNfNpo+5WxcPKtAbH8VX9meQlEUbt68CZFIhGXLlllM9eau2E15dDodCgsLUVtba69dOhU+ZdiwYQNaW1s5BQoJCeH8n94qD8MwuHr1KkQiEdatW4e0tLRe7c8V2E15NBoNXn75Zbz44ov22qVbsGnTJjx58gQikQgqlQqjRo2yy34vXboEsViM7Oxsi+G/7o7dWltffvml105ztHnzZiQkJEAikeDevXsA0OMRiQzD4B//+AdmzZqFLVu2YMmSJW7v21jCLsrzww8/oLGxEbNmzbLH7tyS7du346233up1YoVvvvkGs2bNQm5urt2CH12FXZRHKpXi3Xff9UhHuTvs3LkT48ePh1gs5iZEs9UCMQyD06dPQyKRoLCwEMnJyR5rcVh6rTw6nQ5FRUVeW2WZUlxcjFGjRkEsFuPp06c2b6fRaHjjxj2ZXiuPXC5HZGRkn5oPtKioCEFBQUhKSrIa0sMwDJRKpV3jxt2FXikPIYR36IW3w8bF0zRtNbGCTCbDe++9ZxQ3znY4uvqlcW/plfLcuHEDdXV1EAqF9pLHIyCEcHHxT5484U2swDAMSkpKsGzZMqO4ccMOxj7t80ilUqxatcrrHWVT2JvOxsXfuXPHKLGCTqfDvn37eOPGPV1hDOmx8hBCUFRU1OfnA/X390dFRQWXWAHQx41//PHHqKqq4k044OnVFQtt6UTqlTlG8w8I1hpn/77WdB2TJ0/uU44yHxRFITAwEBqNBufPn0dUVAw+//xz1NbW4qWXXrK4jSvojtLaUpYiJqUIgNy0GcjYDdQTDcJBAaQBAjoCSMtBZV66/s0vQ9Da3gY/P79un4Q3QQgFitJfwpaWFshkMiQkxGPw4P9xsWR6KAIQSv/ZnJVtoZTe0denjrO9MjIrmZsmQMb1MBByEuGEnawrHDvlOdDmq9DQkVyMUIC/b99WHACc4gBAQMAgLFiwwG0UB+i0cqyYphalYy4iAHS3FAcABhgmKqxXbEfGbi1kdSc7jtyZVp6FAYzmquzHAgwBaPdzjk2rTPYXX8JKa0NPjE5vd34G4tJyDGY8YRWHwbWmG9wSb3H47INp307Hb7dRnK5fnbB3kk9aQ6vKB2dWCBpwtRIQCoQ8ykGjUr0bcWkJeIlY32lfgphYZgIa9YrtkNebzvLqGuoVO/SNnhmreeWh0JGHmaKQmiPrXGGL7ExHlnBdgz7bt1EG8A7q5DlG6wznNujHGIbUkzgL19FV6O9fLKk3nFWC0X9YeXPkdSZbWc+iT1MAKFCgXhqHOABN1xuMtI+gAeuTMjAjtbM686aOLnvBPqg71uaDEggwLsKl4hhxrYlAIOBxhilg7YwIaOPSkC7Wdyt0GhzrzjMNMAAFUAhHwtpYZOTnd65tlIOm9E10TX56r0/CK+m42hQAeW4aiCAOTKUT09Z1Ub0Q6P1T7Y1bGI9KXK03WEkBiu1poMalIVUYB1ZZOj0S6+cwwFDDPtqlRVM8BYrawy2T1TFGUwb2RUhXrQ52cYMclUSA/DAgQzBO3z/mDNkoyzMSUwAI1YgxY2IBckVfq3RkaGMaj+EkFYsQsgcIXWO8kY0Y2yYKyD9pPPeAXnEYd/D9XIZecTqeRGL0xbE2rxL56UlgKJhPauZI2Syu0cvboFBhrDAJY8eOw43r1wDoXZEZ604j76Nwg8nZTFvRNlVb5gck3B+DYn2+ed5xqSijLwB68797z25QNAWfcEnnCpdeMr28miZKbwAYVhgGO9bmY9fJL3FZUQEqLYGzkl35soTn/tN8Pynuj/3CbL2WBjkqqRlgCAFhCOrkORgf0pHS1mmXjN8/IWgAIfrJZsPCxuLKjeuQ5X4AIkhFOCicOKnRd83wbWuiLHz3v0vbZNqHwQnah4yQkRUmJivqlaDWn0TeR2Ju8bWmGy7oROW/jWyVBQARYWNxavcfoCUCpIsjjOYT7W7PsmHBfnqAfqJ6EIpiZ8fTkVSBvoEDgMSl5ThHEIbvX2NZZHUMIfUyTibZ9lRuHRBL6hidwT50xJY+HkIIMXur3k8/tuJ9kzH04zT6laefHvP/LIRZ5gdy8uEAAAAASUVORK5CYII="
|
<image>如图,∠MON=90°,动点A、B分别位于射线OM、ON上,矩形ABCD的边AB=6,BC=4,则线段OC长的最大值是()
Choices:
(A) 10
(B) 8
(C) 6
(D) 5
|
8
| 69,638 | null |
8
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAAB8CAYAAAB+IMK2AAAVXklEQVR4nO2df1RM+f/Hn0mM2Ay7mLU+6lBMRBRHyjLCkcFXsmtt2kNyys+T1ensrtqznNg/KKtV69hF2W06FCmtZpxSQ1tqd2JKTDRL7TrTEGuKxjCY7x80+jV1Z+bemTu5j3PmpDv3vt7vw8Pr/X7fe9/vN8DAYCHsAECn0+msXRGG3k9fa1egN6BSqSCVSlFXV4e6ujoUFxdDo9Hov6+oqMCzZ8/aXePr69vu9wULFoDD4YDL5YLL5YLD4Vik7paEyWxGotFoIBaLIRaLUVxcjNLSUrz33nsYM2YM3n//fbDZbLi6uqJfv376a1xdXeHg4NAujkwma/f7jRs30NLSAqVSibt37+Lhw4fw8vKCn58ffH19wePxbF5ARjYCiEQiiMVi5Ofn4/r165g0aRLGjh0LNzc3uLu7U1auXC6HXC5HfX09rl+/jgEDBoDH42HevHkIDAwEm82mrGwqYGQzQFlZGY4ePYqcnBw4Oztj7NixmDBhAlxdXa1Wp8bGRshkMtTW1qKqqgpz5szBJ598gsDAQLBYLKvViyiMbG2oq6vD/v37cebMGTg5OcHHxwfe3t60zCBarRYSiQRVVVW4ceMGAgICEBYWBh6PZ+2qGYTmsgmRmOiGyMi32UQYYQc+8qA7vIi0UqRSKRISEnDhwgXMnz8f3t7eGDZsGGnxqUatVkMikaCsrAwDBw5EdHQ0AgMDrV2tTtBYNjkS/dyQsbIWJXrZhIiw4wN5OpDhmlgsRlxcHP755x/MmzcPs2fPNj+olZHJZLhw4QLu37+P2NhYrF271tpV0kNb2eSJfnDbVorwtmLJE+G3BjheEglzek5SqRSbN29GS0sLFi5cCE9PTzKqTCsUCgWEQiFu3bqFgwcP0iLT0VM2eSIizo3DhAw+bsS2ly2xNhKRJmY1lUqF6OhoiMVirFq1itKRJF1obGzEyZMnMWDAACQnJ4PL5VqtLjSUTYgIv1uILhmHfXa7MaG2BJEkDAD379+PhIQELFq0CP7+/uYHtDEqKytx8uRJfPrpp4iJibHKoKePxUvsAWFENgJLIuEqv4VqeGCcmaLV1NTAw8MDRUVF2LVr1zspGgB4enri+++/R0NDA7y8vCASiSxeB1plttZ+2lvCkac7DFPHAklJSfjxxx8RGhoKZ2dnMqrYK1CpVEhJSQGPx0NcXJzF7tHRJ7PJE7EPx6HT6V5/8sIB3wlwMyGUSqXC4sWLkZeXh5iYGEa0DrDZbHz55ZdoaGiAv78/6urqLFIuPWR7M8qMbtM5k9+qNilUWVkZvLy84O7ujpCQkE7PJBnewufzERAQgICAAGRlZVFeHi2aUTs7OwC+OFBbgkjX1/fX3ramxJvSI0eO4IcffsDmzZtpedefrqjVan2zumfPHsrKoYVsZBAXF4fi4mJa3cS0NXJzc9GnTx8IBAJK4vcK2bZs2QKlUomgoCBrV8XmKS0txZ07d3D69GnSBw706LOZiEajwerVq9HS0sKIRhK+vr5wd3eHv78/VCoVqbFtVrZ79+6Bw+FgyJAhWLBggbWr06vw8vLSDxzIFM4mm1GNRoPly5fD3t4earUa69evt3aVeiX19fXIycmBSCQiZcBlk7KtWLECo0aNwowZM/DHH3+gpqaGEY4iqqurcfXqVZw5c8bsPpzNyRYWFgZ7e/t2LwkywlHLlStXIJPJcO7cObPi2FSfLSYmBmq1utPbqLNmzQKXy8WRI0esU7FejpeXFz766COEhYWZFcdmZEtKSsLVq1exdOnSLr9nhKMWHo+HpqYmxMXFmRzDJmRLT0/HqVOnEBIS0u15jHDUEhQUhNOnT0MsFpt0Pe1ly8vLw6FDhxAaGkrofEY4agkNDcXGjRtNuiVC6wGCVCpFSEgIoqOjjX6gzgwaqMPUAQNtM5tUKkVYWBi2bdtm0psbs2bNgru7O44ePUpB7d5tvLy88OrVK/z0009GXUfLzKZSqTBz5kxs2LDB7Cl1JSUlqKmpMXskxdAerVaLPXv24OzZs4TnNdBStsWLF8Pd3R1eXl6kxGOEo4bKykpIJBJcuHCB0Pm0a0YTEhJgb29PmmgA4OfnBy6XyzSpJOPp6YmnT58iOzub0Pm0kq2srAxpaWlYsWIF6bEZ4aghJCQEW7ZsabdEmCFoI5tKpUJoaCjWrl1L2avcjHDkw2azMWvWLOzevbvHc2nTZyO7n9YdTB+OXLRaLXbs2IGKiopu15CjRWajop/WHUyGIxcHBwfMnz+/x/kLVpeNyn5ad/j5+WHixImMcCTh7++PrKwsKJVKg+dYtRkl836aqZSVleH69etMk0oC58+fh5OTEw4ePNjl91aVzZL9tO5ghCMHrVaLrVu34v79+12+aGm1ZjQ9PR0tLS1WFw0AfHx8mCaVBBwcHDBnzhyDj7Gsktk0Gg1cXV2xY8cOWk0mZjKc+ahUKuzcuRP379/v9J1VMlt0dDTmzZtHK9EAJsORAZvNxsiRI7t8583iskmlUhQVFdF26SpGOPPx8fHp8u/P4rKFhYVh5cqVtF7whRHOPKZNmwaRSNTpEZZFZTt27BiGDBli1b0EiOLj44PJkyczwpmAo6Mj3NzcOi04aDHZVCoVdu/ebVPLJEyfPp0RzkS8vb2RlpbW7pjFRqNbt25Fc3MzFi5cSHVRhKmvr4darcaNGzcAvP4P8fDhw07nqVQqPH78GP/73/8AAIMHD8YHH3wA4PW+VAMHDrSJbG1J1Go1tm/fjubmZv0xi+zKJ5VKIRKJsGvXLksU1yVyuRyVlZX4+++/oVKpUF9fj4kTJ2Lw4MH6tUJcXFzg4uLS5fUikQiVlZX46quvoFQqUVNTAwAoLi5GU1MTKioq8OGHH2L48OFwcXHB+PHje+WS90RxdHTEiBEjIJVKMWXKFAAWymze3t5YtmyZRf/319fXQyaTQSaToaqqCpMmTcKSJUv0u9uZskR7amoqLl68iJSUlC6/b90CsqysDPn5+SgsLISnpye4XK7V972yBunp6Zg/fz62bdsGwAKynThxAocOHUJERARVRehRKBQoKSlBeXk5hg4dCn9/f/D5fPB4PNLWGutJuI6IxWKIRCIUFBSgrq4O06ZNw5w5c96JdX4lEglu3bqF33//HYAFZPPw8MDq1asp+8tVqVSoqKjApUuXoNPpsG7dOgQHBxtsDsnAWOFaUSqVyM7ORlJSEp48eQJfX1/MmDHDpvbJMoaO/TZKR6PZ2dlwcnKiRLTGxkYcPXoUO3fuhL29PTIzMyGXy7Fjxw5KRQOAtWvXYs6cOYQnTrfC4XCwYcMGVFdXQyQSYdSoUYiPj0dSUhLq6+spqq31aNtvAyjObFRktfr6eohEIty+fRtxcXFWXUPX1AzXkezsbMTGxmLAgAEICAjoVdsc/frrrwgMDMSGDRuoG42SndXkcjlEIhGam5sRGxuLVatWkRLXHFpFDw0NNUu4wMBABAYGQiQSIS4uDrm5uVi6dGmvkI7NZuv3WaAss5GV1dRqNXJyctDQ0IDY2Fha7C7XEbIyXCtisRgxMTHo27cvPvvsM9q9sGAMbQcJlPTZpFIpnj17ZrZoly9fxp49ezB37lxIJBJaigaY3oczBI/HQ0lJCTZu3Ij4+HicP3+elLjWYOTIkfp7kpTIFhsba3AdNSIoFArs3bsXDQ0NuHz5MrZv305i7aiBbOEAYNWqVbhy5QqcnJzw3XffQS6XkxbbUgwbNgx3794FQIFsUqkUN2/exLRp00y6vry8HAKBAAcOHMCpU6e6nRpGN6gQjs1m4+DBg8jMzIRIJEJ+fj5psS2Bg4MDhg4dirq6OvJlMzWrabVapKWl4e7duygqKuq0lKmtQIVwADBlyhQUFhZi4MCBSE5OhlqtJjU+lQwfPpx82UzNagqFAvv27QOfz8fp06dtukMMUCcci8VCUlISoqKiEB8fb3PNKqmyJSQkYN68eUZdU11dDYFAgLS0NGzZsoXM6lgVqoQDXi83KhKJIBKJUFpa2vMFVmbw4MFQKpXkyabRaJCTk4OZM2cSvqa0tBTl5eUoKirSvxnQm6BSOBcXFxQWFuLRo0fIzc0lPT6Z9O3bFxqNhjzZsrOzMXXqVMKve+fm5uLRo0e4cOGCzTeb3UGlcCwWCwKBAGPGjEFqairp8cnCwcGBXNl++eUX+Pj4EDo3LS0NY8aMoWyrQbpBpXAAsGfPHqxcuRLJycnQarWUlGEOAwcO7NyMPnuh0X+MQalUorKysseXBbVaLZKTk8Hn8yndRJWOrF27Fs7Ozti5cycl8devX4+oqCgcOXKElsIBHQYI/fuy2v0kSnp6OqG+mkAgQGhoaK8aCBhDq2hUCRcUFIRvvvmGdsKpVCq4uLiQ04wKBAJMnz6923OysrIwe/bsd36peKqF4/P52LhxI2nPacmkW9k6NqtdNbPXblThUfN/nV55fokX+k9+fj44HA5iY2MNxiFSPpHjbb9ve4xOUC1ccHAwli5dihMnTlAS31iePn0KNpvdvWwdm9WOP5+90OC31DT4TJ+Jl3ihv+4lXsAefWGPvpCUV6C5pQlJSUn6a/r3Zek/hmRoe56h422vb/uzbf26K8OaUC1cVFQUxo0bB6FQSEl8Y1Cr1T3L1pG2/5CtnDx1AtNmeHd5vlwux19//YVjx46ZXlMQ60N21d80tu9paagWLj4+Hv/99x+uXLlCSXyiaLVasFisnmXrLjMUFxdjiNNQcIZ9CPsO72Gq1Wqkp6cjPT2d9I3texNUCycQCHDu3Dk0NjZSEp8I9+7daz9AMKWpSU1N1d9ba9uMAkBKSgq+//57UuYD0LEZJBMqhWOz2UhJSUFqaqpVRqhqtRrPnz8Hh8PpfJ+tq6anNbt1/O7smVxMnTZF30drpTC/CFO8PbH4//idrmuN1fpp+11bqdqeR+T6rgYEhv5MR6gUzsfHByEhITh9+jTpsXuisbERo0ePBtBmNNpVZ7w7pFIpRowYgfccndqJJpfLcfPmTSTs3W8wZtsOfsfjXZ1H5PqOxwz9mc5QKVxUVBRevnxp8f6bQqHQTwgnNEDoKquJxWKMHz++3TGtVovDhw8jKyuL6aeZCJXCCQQCZGVlmbRXqKkoFAp4eHgAIHifrSsKCgowbty4dsdycnKwadMmm3q7lo5QJRybzcbu3buRkZFBatzuePDgAbHMZqi5A4BLly5hwoQJ+t8VCgVu3ryJqKgokqv7bkKVcMHBwdBqtZDJZKTGNURtba1+EGnS46rW/pqjo6P+WFpaGpKTk5nmk0SoEu7o0aM4efIk5aPTxsZG2Nvb6+9ImCRbx/5aeXk5xo4da7PzBugMFcJxuVwsW7aM8skzMpmsnRMmyZaZmYmpU6cCeD0oOHXqFJKTk0mpIENnqBAuLi4OYrGY0sFCbW1tu2kCRsum0Whw7do1/YP3wsJCBAUFMYMCiiFbOBaLhe3bt1P67NTszFZWVoYxY8bAwcEBWq0WBQUFiImJIbOODAYgW7hNmzbh6tWrlGS3jv01wATZioqK4ObmBuD1HuFTp05lspoFIVM4FouF5cuXo7y83OxYHamqqkJAQEC7Y0bLVlBQoL9vkpubS2gHXQZyIVO4mJgYFBQUkD4yLSsr67Qtk9GyXbt2Dc7OzpBIJBg/fnyvnIJnC5AlHIfDQVBQEAoLC82v1BsaGxvR3NzcaQKUUbIplUr069cPjo6OKC4ufmfnEtAFsoTbvHkzLl68aH6F3lBeXo7PP/+803GjZKupqcGoUaOgUqnQ0NDA3FejAWQIx+VyMWjQINKWWi0tLcW6des6HTdaNg6Hg/Lycixfvpx5WkATyBBu3bp1pCzlUF9fj0GDBnW59L9RstXV1YHNZkMikWD16tVmV4yBPMwVLjg4GJcvXza7Ht0NGo2Srbq6GiwWC8+ePSM8+53BcpgjHIfDgaenJyorK00uX6VSQS6XG1wh1OhmVKlUMlmNxpgj3BdffAGJRGJy2UKhEF9//bXB742S7e7du2hoaMDcuXNNrhAD9ZgqHI/HM/nVI5VKhatXr2LTpk0GzyEsW01NDYYPH447d+4wo1AbwBThXFxcMHToUJNGpUKhENu3b+920EhYtrq6OvTv3x+zZ882uiIM1sEU4fz9/Y3ObkSyGmBkZuvTpw/mz59vVEUYrIuxwvn7+xu9fGpGRgb27t3b460wwrLdvn0bLS0tTBNqgxgjHI/HQ3V1NeHYcrkcjx8/RnBwcI/nEpatsrISTU1NzLNQG4WocGw2G6NHjybcb/vtt98Ib2tOWLZHjx69c5uz9jaICsflcqFQKHqMd/78eQQEBBBOQIRla25ubjebisE2ISKch4dHj7I1Njbizz//RFxcHOGyCcvW1NSESZMmEQ7MQF96Eo7L5eLBgwfdxkhJScGhQ4eMWnybsGz9+vUzaV91BnrSnXA9NaNnz57FkiVLjB4sEpbt+fPnlO9QzGBZDAnn4uKCe/fudXmNTCbDv//+a9Ib2oRle/LkCZPZeiFdCcdms8FisTpNhFGr1cjMzDR5SwFCsmk0Grx48YJ5f62X0pVw/fv3bzcvQavV4vjx49i/f7/JLRwh2SQSCYYNG2ZSAQy2QUfhRo8e3W6QIBAIsGbNGvD5fJPLIHWjNAbbxlAfLisrCx9//LHZ2woQku3OnTtwcnIyqyAG26BVtAcPHqClpQVCoRAuLi749ttvzY5NSLaHDx/26s3MGNqzc+dODBgwALm5uXj16hXi4+NJidu351Ne39BVKBSws7MjpVAG+jN58mRwuVxSN7OzAwCdTqcjLSIDgwGYAQKDxWBkY7AYjGwMnRBG2MHOrsPHLxHGvb/bGQKyCZGYaG4xDLbEosM61B7wBcLzoNPpoNPlIbx0G9wizFs4sAfZ5Ej048NyC5kz0AM5zmWUIjxw0ZvfFyEwnKTQOgPUHvDVAdCF5xk6g6FXUntA54twXZ7+V18d4Ks7UGteWMOZTZ6IfYjFAV+SjGawGeTnMlCKn8F/019bg+PQ6UoQaeasAAOyCRGxBoiOBG6U+mKCm3mFMNgSb5rQPN3r/lrtAWCbG/xI6Ld3KZswIhuBJZFwld9CNTwwjpnn8u4gP4eM0nDou2uukYgNB0q37YO564p3kk2e6Af+z29SqNs2mL9iF4MtIT+XgdLwQCx6ewS3qgH4ToC5DVx72eSJ2Ifjb4a7OujywkkphMFW6DgKBYQRbthWCoTHRsLcBq7NRqGJ8FsDHC95G1J+qxoAM33vXcHO7k1a4dvhZ/1RXxyoNX9woEen0+kAtBne1uoO+OLNMejQZhjMwGAq/w94ckYONWDr8gAAAABJRU5ErkJggg=="
|
<image>如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()
Choices:
(A) π
(B) 2π
(C) \frac{π}{2}
(D) 4π
|
2π
| 69,639 | null |
2π
|
"iVBORw0KGgoAAAANSUhEUgAAAKkAAABjCAIAAABvxLeqAAAL/ElEQVR4nO2dX4gb1R7Hs94FQcYO0iOOOHQejDCYvXZKEAIdTMFUh8vCncLCiCwSIZq9SYspXSTFhQhamt6b1S2st5E+mMIWUizNXtyHCHvpisk1pbIpNLIrjTRr+hCbBbOOYNTpzn04JcZsNpnMn0yaOZ+3nZyc88t+z8yZc37fMzMiy7INYUkeMjsAhGkg7a0L0t66IO2tC9LeuiDtrQvS3rog7a0L0t66IO2tC9LeuiDt27C4uJjNZs2OwnBGzQ5ggJBl+aeffgqFQul0enR0tFAo4DhudlAGgs77P/jyyy+fe+65Wq128+bNyclJv99vdkQGIyNkWZKkcDiMYVgikWgcOXjwYDweNzcwQ0Hay4VCgWEYlmVLpVLz8VKpBADI5/Pb29tmxWYoVtd+dnYWw7DTp0+3/TSZTNrt9nq93ueo+sOIbFXfzp07dyYnJ3/44YdkMrl///7dik1NTdlstng83sfQ+oRF7/UuXbo0NjZ24MCBGzdudBDeZrOdPXv22rVrly5d6lts/cPsC0+/qdVqgiAQBLGysqJwIC8UCgCAYrFodGx9xlrn/RdfXKVp2mazra+vu93ukZERJd9yOBynTp2amJj49ddfDQ6wv5jd+fpEvV5/6623cBxfWFhQV4MgCOFwWN+ozMUS2q/eyDscDrfbXS6XVU/YRFG02+3pdFrf2Exk+LU/czqKYXtisZj2qnK5HEEQ5XJZe1WDwDBrf3ujxLIswzCFQkGW7+lSZzQaZVlWkiRdajOX4bzXk2X5woULf3WMsSyby+X+fXxsZOQvIy8FbLZtjTW//fbbGIbFYjFd4jQZszuf/lSr1YmJCYqiVlZWZFlOxY6mCtuyLAcO2wKxlC7179u3L5PJaK/KXIZN+3Q6TRCE1+ut1WotHxUWY0q0/+yzz5aXl7u2QpJktVpVHecgMDzai6IYDAYfeeSRw4cPty2Qmg3EFgsdaigUCh6Ph6IoJbqGw2GO49SHOwAMyXj/9ddfP//8899++202m11fX29b5r+3Hzrxd0fbjzY3N48ePXro0CGe50ul0qFDh954443OLb733ns///zzRx99pDV0EzG78+lAJBLBMGx+fh7+SdN0odB6fqdmA6lvJHnH3F6SpFgsBgCYnp5uDBOiKFIUdf78+c7tlstlkiTz+bz2n2AKD7b2xWLR5XI5nc61tbXGQZ7nr1y50lwsNRsIxP4jy3Jq9oNvmvRfWlqy2+3j4+M71+ozmQyO413X8GGSVxRFrb/EDB5g7ePxOIZhMzMzkiQ1r9Z5vd6G/UaW5VjA07jIvRT4JzwIh3aHw9Hhtu6dd95xuVy///575zCmpqYEQdD2U8xBTf5eYQpkkBkZGWjjQn9iU3mvZ2JvXVpaAgD4fL7mK23XVfrtpqH9xIkTP/74o5K2isUijuNdp/LFYpEgCL2SvPoKrLOKZmkviqLP5wMALC0t9frdDkN7Z+LxuJIRPR6PMwyji7urb//eB0b7XC5HURTHcb2uqCgZ2jvD87zX6+1aTBCEN998U10TzSDt/0CSJDiL69UxXa1Wg8EgAABO/1Rnb6vV6pNPPnn58uXONcAkbyqVUtdKA6T9fdbW1pxOp8vl6ula3TxrVzi0dyadTgMAumZvV1dXSZLUmORF2suyLM/Pz2MYFolEevqW6qG9M4FAwOPxdC6zvb195swZjUleq2tfqVQ8Hg9N01999VWv300mkzRNMwyj/fLbTL1edzgcc3NzXUtyHKfF3WVp7VOpFAAgGAxqWS9LJpMMw9A0nUwm9Qosn8/jON51EbdarZIkCTPIKrC69gcOHHC5XNpP3FQq5XQ67XZ780qfFqLRqJK5XCaTUZ3ktbT2kHQ67XK5GIbRfuLCqiiKSiQSkiRp9G+53e5QKNS1mOokL9L+PisrK263m6bpixcvaqzq6tWrbrebJMl4PK7lXqxcLgMAuq4WSJLEsmw0Gu21fqT9n8jlchzHNZ246slkMhzHEQQxNzdXr9fVTfmTyaSSS3q5XCYIIpfL9VQ50r4N+Xye5/mnnnoqHo//8ssvWqrK5XLj4+MEQcRiMXV3lJOTkxMTE12LwQlnT00g7XdlbW0Nbqibm5tT/j9tuyQHOxMAIBqN7vT3dQb6O5TcQvr9/p6SvEj7XYEqlkolr9erXLaWtbbmrrC+vi4IAo7jkUhkZ1WNkjt7T8Pf0Xmtt16vMwyjfEEa5pf7wPDk73tIyY/YbAoL7qjT6MR/Q3jjmmigJn/fn17ZQodzq1wuh0KhvXv3hsPhSqXS8mk6nd67dy/Mwd+vZFu+1+Tcmg14oKNLluVSqeTz+XAcn56erlQqOxttOSJJktPpVLLqvLCw0HZhoKVC+KfuMg+QkEZQqVTC4TAAIBQKwSs8dG0DADqYLxY/CNpsrXs2yuWy3+/HMCwUCu3sTC3cunULx/FcLtc1TygIgt/vV/p7jGd4tIdUq9VIJAIAeO211x5//HGv17u5udlZlcUPgv/415WdxyuVSigUwjDM7/d3Ts0p9HfAJK+Oa8waGRJ/fgMAwLvvvlssFp999tnffvvNZrPVarUONyjwv9C2wBNPPPHhhx/eunXrscceGxsbe/311zc2NtpW4vf7x8bGjh8/3jk2DMM+/fTTY8eOfffdd738JsMwt+sZiiiKZ8+eJQhCEISdjn3ItiwvxgJd92pVq9WZmZk9e/Z4vd62qeFqtUoQhJIExPz8/IDs5B1m7SH1ej0ej5MkyfP89evXWz7dvu/eTympqlarwQFFEITmHQEQhf4OWZY5jjt58qSy8A1k+LWHSJKUSCT27dvHcVwu97/G8W1ZTs1O9bQ/VxTFaDQKAOB5viWfGwwGleRv7t69S5Kk6Y/wsIr2DS5evEjTtNvtvvrF/fz6FXje3+ttaV8Uxbm5OYIgeJ6/du0aPAj9HY3dYR3IZDIEQdy5c6fX+HXEctpDLl++zDCMy+Wa8f8N3veo25pfr9fn5+dJkuQ4Ds4kob9jt9uLZiKRSFcTmKFYVHvI0tIStAhoNIlIkvTxxx9TFOV2u1dWVqLR6P79+7v6OxpJXrOe12tp7SHLy8svvPCCLu6uRCJBURTLso8++uj09HTX8jDJm81mNbarDqT9fTKZzMsvv6wwNdcZaBa12WxKLHsmPsIDaf8nrl+/zvO8dm+PLMvJZHJ8fFyJqKFQSIkVQHeQ9m24efNmwyKgcYudkvwyTPKeO3dOS0MqQNrvSrFYbFgEjH66QrFYhO9pMLSVFpD2XSiVSn6/HwDQ1tmhI/1/hMew5XJ0h6Koc+fO5fP5ra0tu91+8uTJzc1NIxoSBIFl2WPHjhlReXv61suGgGaLQNe8vgr6nORF2vdMwyLQyOvruDizurrat/c0IO1VUqvVotEofIZnywu2NKLjIzw6g7TXRCOjMzk5ub6+rle1R44cUbLtSyNIex1oWAQmJiZ0mafBnbxGJ3mR9roBLQIURY2Pj/e6D2sn2WwWvqfBuEwP0l5/FhYWaJr2eDyqt+BDotHowYMHjXN3Ie2NAloEWJbVculmWXZmZkbHqJpB2hsLtAg4nU51FgFDk7xI+36wvLzsdrsdDoeKdZvPP/+cJMm7d+/qPvAj7ftHNpvlOE7FA2AMek8D0r7fQIsARVHKLQKSJDEMo8tr3ppB2ptDoVB45ZVXSJJUaBEwIsmLtDcTaBEgCEKJRUD3JC/K4ZrJ008//cknn+Ryudu3bz/zzDOnTp3a2trarbAgCC+++KLP59Oteb06EUIj5XI5GAwSBDEzM7Oby69er9vt9l6fKb0bSPvBolKpTE9PEwSx28Mf8vm8XklepP0gArf9EgQRDAZ3bu7UK8mLtB9carXa+++/TxCEz+fb2NiQm0wiujzCA2k/6IiiGIvFoEmkYRHY2toiSVKjuwtp/2DQ2PQpCAKc5cOdvN9//73qOtEc78Hg4YcfDgaDpVLJ4/HwPH/kyJHR0dFQKPTqq6/eu3dPZaW69UxEH0kkEjRNcxwHAFD9ngak/QMMfD+EzWZTZxEY6NdDIpSwuLh44cKF8+fPAwB6+iLSfkjY2trCcbynryDtrQu6z7cuSHvrgrS3Lkh76/J/HuCAoZ1Uz1EAAAAASUVORK5CYII="
|
<image>一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()
Choices:
(A) 25°
(B) 35°
(C) 45°
(D) 65°
|
35°
| 69,640 | null |
35°
|
"iVBORw0KGgoAAAANSUhEUgAAAKYAAACLCAYAAADruuKfAAAWNUlEQVR4nO2df1CTV77GnzeggZFbcEpHu8UCAjYU3EtvdcQFL/QSlC444krv4rUWO9ZCQXuhOgWvdvBed+5KAYWV2FDtkg44pVUrXkJBgRVmZAtKC70aQAEXr2yrKx3A1ZEI5Nw/QkJ+5014Ewg5n5kMyfuec96jefL9Puec9wcIhWJjFAqFzgbltqqCdAJA+Yp9jyiIjKSnFxBCCOGBQrExDMNMvVMo/3RXgcfj4cTt5SCEKF9F68FjVgLLAwAArrPTVYpzwgNBF9aHbIYwowAXS/aq95DgTShI/xeQgEAAVJgUO3PhqAgNzGuQlXygtZ1hGAQErACCQkAAMIQQMjtdpDgbBF1Yz4RgRcF5iPYmmiipAPWYFLvBdN1CA4DlgUEAAN2YqPpMwKPCpNgfhcZ7TWmqBkkMQIVJsR/k5RUQAhjo6wWgFKJqvI6uKhReuK4uS4VJsRsMXkZGYTpO7NuMwgsy9XbZhUIwmZewd9PK6bJ08EOxN7ILhQhN3Kf+LMwoQL3G1BFAhUmxFwSYztvmoamcYheIBaIEqDApNkc5BjeoSxO5mgqTYmO0JfafuYeQkpKi/GBIrVNipUuSFJtDCMHjx4/x+eef41hxEZ599lnI5XLw+fzpMpjS6ZRYacSk2JTBwR/x4Ycfwt/fH+3t7di2bRveenO7ligB/eBJhUnRwtgyoaX12tvbsX37drzyyj/Czc0NN27cQFlZGZ577jlWAyGayilaTJ87qQ8hxOh+1XapVIq8vDzcu3cP2dnZOHXqlF50ZAMVJsUkmkI0Jkq5XI7y8nLk5eXBz88P2dnZSEhImNFxqTAprNGNmPfv30dJSQlOnTqFuLg4VFVVISQkhJNjUY9JYY1KlDKZDG+//TbCwsIAAJ2dnSgrKzMqSmM+1ZR/pRGTwpqamhoUFRVhYGAA2dnZEIvFWLhwoUlfChi3AKbqUWE6OaYGNIC+f8zMzER8fLzN+0WF6eQYE6Ut/SMbqMd0Qkx5O0v9o62gEZMCQNs/5uTkQCwWWzX/yBVUmE6IKn1r+selS5ciJyfHLv6RDVSY8xBzAxqVfxSLxYiLi8MXX3yBVatW2bGH5qEecx5iTJQq/xgaGgq5XI6Ojg6Ul5fPOVECVJjzDkMDm5qaGsTGxiI+Ph6rVq3CX/7yF3z88cfw8fGZhR6yg6byeYYx/5iZmYktW7aoy5lL97MNFeY8g61/5EKUthQ3TeUOjGba1vSPY2NjdvGPtoy4VJizzEyunmYYBo2NjVi/fr2Wf8zPz5/T/pENNJXPMtZEncnJSVRUVCA/Px+LFy/W84/zASrMWUYVMdkIdGhoCKWlpSgpKYFQKIREIpmTUz1cQFP5LMMwjFlR9vf3Y9euXVi5ciVGRkZw9epVo/5R0xo48k1WqDDnCIZE1NjYiI0bNyImJgZhYWHo7e3Fxx9/jGXLlhkVHZtLIRwBmsrnCCoRsfWPjiw6NlBhzjKqucChoSGIxWKIRCI9/zjXJ8NtAU3lNoKtv7t9+7baP46OjuLatWt6/tHZRAlQYXKCIRGqxGRMoIb843yYf+QKmso5gGEYo+lWc5vKPxYUFIDP52P//v3zbv6RK6gwOcJUuv35558hFotRUlKCyMhIiMVi/OpXv3LKFM0Wmso5RDdtq+Yfg4OD8dNPP6G1tRVnzpxBRESEWVE68hwkF1Bhcogqpav8Y3R0NAQCAXp7e1FSUgJfX1+L2nJmaCrnCM35R3d3d2RmZqK6unq2u+WwUGHOEM3168jISJSWliIiImK2u+Xw0FRuJX19fUb9o6XMl/VtLqERE5atrFy5cgV5eXno7OxEZmYm+vr64OnpOePzKg29d2aoMMFODKdPn8bRo0fBMAyysrL0/ONcv1TB0aDC1EFTHKOjozh16hSKioqwdu1a/OEPf1CnajYislRoVJTTOIUwLREIwzC4c+cO8vPzce7cOWzZsgVXrlyxaKpHsy1b9NEZcAphsv3CW1paUFRUhNbWVmRmZqKnpweenp5aZVQC0lwLN/TeVn10FpxCmOY4ffo0jh07BgDIysrCmTNn9MqMjIzghx9+QF9fH+7evYu2tjY8efJEq0xzc7PWZxcXF0RGRmptc3d3x5o1a+Dv7w8/Pz+8+uqr8PDw4Phf5Pg4rTBHRkbwxz/+EceOHUN4eDiKi4vV/lEmk6GhoQHffvst7t27hytXrsDV1RXh4eFYtmwZAgICkJaWBi8vL602IyMj4eLiov4sl8vR2tqqVWZ4eBidnZ2ora3FTz/9hJaWFri6umLt2rXw8fFBeHg4YmJiIBAIbP5/MJeZ98LUTa+G/OPExAQuX76M48ePo7GxEV5eXoiOjoZQKERQUBDCwsKMpnRT8Pl8REVF6W1PTEzU+jw0NASZTIbu7m60tbUhPz8fcrkcQqEQQqEQ0dHRRj3ufPWm8+qx0Ka+pCtXrqC4uFjtH6OioiCRSCCVSjExMYHXXnvNrAjsSX9/Py5fvozGxkY0Nzdj0aJFSExMRFpaGgICAli1ofr/mEviPXTokNZfY8wrYRpC5R/HxsawZ88eTExM4JNPPsHTp0+RkpKC5ORk1l+0PTAmop6eHpw+fRrl5eXw9vbGrl27kJycrJ7ct1R4syVWtsKcF0uSur+t0dFRFBYW4sUXX0RlZSXi4+MRHByM7OxsdHZ24rPPPsOtW7dw4MABBAQEWLxqY8vfsjGxCAQCHD58GAMDAygsLERrayt8fX2RnJyMb775hrPjzBXmhTBV/8l37tzB7t27ERAQgJ6eHuzZswc3b97E1atXkZSUhJ9//hknT57EmjVrDNa39Hi2xtgPICoqCmVlZbh//z42btyI/Px8hIaG4ssvv7RLv+zBvBBmS0sL3njjDYSHh8Pb2xsffvgh6urq8Oc//xnl5eWora3Fb3/7W60RsyPAZnC1bds2NDU1QSQSQSKRwNfXFydPnsTk5KTReo7g3hxamKdPn8aqVauQmpqKDRs24P3334dIJML333+P6upqfP3113rR0RFhI6SoqCjU1tbiq6++wjfffAMfHx8UFxcbFOhcT+MAAOJgjIyMkIKCAuLj40MSEhJIQ0MDkUqlxMfHhyQlJZHu7m69OgqFYhZ6Ort0dHSQhIQEEhgYSBoaGma7O2pyc3NJbm6u2XIG5jEVAHgAgf7TzaEzmjNSxhao5h+//PJLJCYmoqmpCXw+H++99x76+vogkUgQExNjsK5DRAiOCQsLQ3V1NWpqarBz5071IsKSJUtmu2usmE7lRGeTke9S60tm8X0TK/yMZp329na1f3z++efR3d0NsViMs2fPYvXq1QgPD8eNGzeMitLZiY+Px82bN9ULBcXFxbPdJXboxVCdrKeVBhUGi9iEs2fPksjISBISEkIkEgmZmJgghChTlEAgIAkJCeTu3bv6faQYpa+vjwiFQvLKK68YtDz2gG0qZ+UxVV+8gmiLkmtB/P3vfyclJSXE19eXxMfH63kjsVhMli5dSiorKzk9rjOhUCiIRCIhS5cuJRUVFXY//gw8pkY0hTJbq9I3o+M/uVptGBwcRHFxMSoqKpCQkIDGxkat1ZjR0VHs3LkTAwMD6onlmRzPmWEYBikpKVizZg2SkpLQ0NCA48ePz7kznExOF+l/pab9pzl0RdLe3o7t27dj9erV8PLywvXr13Hy5EktUba3tyMsLAz+/v5oa2uj12ZzhEAgwHfffQc+n4/Vq1dDJpPNdpe0sTQUc5G+jflHXVSpWyqVzviYFONUVlaSpUuXkvLyckKIbT07a4+p2Yn0WBBA+5V//rpeJWs6rukfVfOPpsjJySECgUA9wGGDZr/ogMgy+vr6iK+vLzly5IhNj8PaYyrTndI7Fv/PU/A2LoJ/ajs+SPolZBcKEZq4EoE3FNj0sobXtOBUKnP+UZfJyUmkpaWho6MDra2teudBmoJeBms5qu8xICAAbW1tiImJwb1799Rn9M8WPEIIVN7Rxe0mbv0pGnFJKwEAIUHTAtL9oqcFbZj29na89dZbJv2jLnK5HImJiRgYGEBTU5NFoqRYh+b3umTJErS0tKC1tRXJyckGlzOJndbZeZod67pwEUxqLF6eGt1kZG6GMKMAiSHGoo/+2OncuXNYt24dtm7dipiYGAwODuLAgQPw9vY22ILqHzo6Ooro6Gi4ublBKpXOuVHifEZTbJ6enqivr8fo6Cji4uLw6NEjrbL2ykQ8Tf339t/G5dIDU1cBukCYJ0dtwfsYHxsHAIyPjWNi6qViYmwcI0PDEIlE8PPzg1gsRk5ODrr+V4Z/+9etIOP6UXVCox2GYfDo0SP1ndHOnDkDPp+vV85Yfd3tmvs1t1EMY8iSeXh4QCqVwsvLC6+//jrkcrm6rL3gaXapvu4EKtsfgRCC84Vp+M0/8VHdTbDAbQEAwFXn753+/8P+j/4DQcEr8P3V71BTU4P6+npsiFmPBe4LscB9IVzdFugJ2dVtgfr1ePQRNm/ejNDQUJSVlRksp4lufV0BqvZrvqfiNI6xCOji4oLKykp4e3ur07o9fTsPUCiXyWVVOIH3sDFY+avY9MEeCMHgT/VSdeHJsXG4urko5x9T3sLatWvgvsANP3zXidLSUoSEhGg1zuYX9u6778LNzU1LlLp1dcVpCN0fDdt6FOOoxDk8PIyMjAy7HpsH8MAAqLp4Eekb4qDyjUxXDxpA4PdSECbGxkHIJB4+fIjIyEhs3boVUev+Gb29vfiv/z6MX7z4gkERmPuF7d69Gz/++CPOnDkDV1ftRSg6qp49NIMCn8+HVCpFW1sbPvroI/U+W6d19eilsfYzxMZtVB4UXYgN2QwgBq9vCgUAMIwLnnnmGQQuD8K2bdvwzjvvqL0goO3l2HQ6Ly8PLS0tOH/+PNzc3EyWpanYvhjynPX19Th79iw+/fRTg2W4xlU5V7kPC3kL8Okv+XiqmBKBMAOkvkT5fsqnubotgN9y/+nKGv5NM2IucF+oJSbd9FpZ8QU+/0yChoYGeHkvVu/T9IfG2tb1jJp+UrcNY+8plvPss8+irq4OkZGR8PPzw4YNG4yWZTvHbQrXkE17Qche6xsw8mUb297f3489We+jvr4ev3jxBZN1LGnbVF0qyJnDMAx8fX1RWVmJpKQkXLt2zegzibiIplOp3PhEOcBdtJmcnMSOHTvwu9/9DmFhYTNuj2J/IiIikJmZiV27dhncz5X35Gn+UTWpatvQXOFMOHjwIF544QWkpqY6xJV6FMNkZ2cDUI4TdOHKe2oPhQkBGAaqtrlKgYQQXLp0CWfPnkVHRwcAOup2dFTPu4yIiNC7ox0XaK0pMja6suyvf/0rduzYAYlEQpca5wne3t4oLS3F1q1bMTQ0xHn72ovdNgpiWVlZ2L17N33MiIOja782bNiA5ORk7N+/32xZS7H5DQ8uXryI69evY+9e60f+lLmBIfuVm5uLuro6tLW1mS1rCTYVplwuR2pqKkQikdlJdIpj4uHhgaKiIrzzzjvq0+S4GNjaVJi///3v1XfIpcxftmzZAh8fHxw/fhwANwNbm91RuKenR30fIcr859ixY1i3bh2SkpKMTrxbwowjprGwnZWVhZycHCxbtmymh6A4AAKBAGlpadi3bx8n7c04YhoK283Nzejr60NNTc1Mm6c4EAcPHoSfnx86OztnvLJnE49ZVFSEgwcPgsdz6LscUiyEz+cjJyeHk/sjce4xOzs70drainPnzpksx8UZKJS5x86dO+Hv74/+/v4Z3due85B25MgR5OTkmI2WVJTzEw8PD2RkZCA/P39G7XAmTEIIbt++jZaWFqSlpXHVLMUBycrKQlVVFe7fv291G5wJk2EYHD58GPv27dM6s53ifHh6eiItLQ1HjhzR28c2U3ImzNHRUUilUuzcuZOrJikOTFZWFioqKtSX/qpguyrEmTArKyuRkJBAzx6iAFBGzcjISFRVVVlVnzNhSiQS7Nixg6vmKPOAlJQUSCQSrW12jZg9PT0YHBw0+EBPyvzGlNA2btyI9vZ2DA4OWtwuJ8KsrKzEm2++yUVTFAfD1GDGxcUFW7Zs0ZrTtuvgp6ysDCkpKVw0RZlnqK5cUGG3VN7c3IznnntO/eB3epEZRZPw8HCMjY2hs7MTwPS9Vc0xY2HW1dXhjTfeUH+mKzoUTQghSExMxMWLF9Xb2GjEImEaUnpTUxOio6MtaYbiRDAMg+joaDQ1NVlUzyJh6ir90aNH6O7uxqpVqyw6KMW5iIiIwLfffmvyicC6zCiVNzc3Y+3atQ73uGWKffHw8EBwcDBaW1tZ17FKmKrIWV1dbTKN04EQBVDqIDo6GlKp1HzhKawSpkpwzc3NRoVJz7ekqLDGZ1qdyoeGhnD37l2j/pKKkqJJREQEOjo6WPtMq4Upk8mwcuVK6i8prPDw8IC/vz8ePHjA3XSRIa/Y29urnlSnUNggEAgwPDzM6nbZrIRpSOE3b95EYGCglV2kOCOBgYFaN+AyFTnNClNX1arPfX19NGJSLOKll17C8PAwq7JmhWn4UX3KU91mchUcxfkICgrCgwcPWJW1erqot7cXwcHB1lSnOCkCgQAPHjyw3UkcDx8+hI+PD73ojGIRS5YsAQA8efIEAAeDH10eP36MxYsXmy9Ioejg5uamvkBtRoMfTVQKHx8fh5eXl/W9ozgt7u7ueldOGoKFMKcftaJS+JMnT+jVkBSLUAW1hQsXciVMndu0E2XEXLRokVUdpDgnqqDGmTC17akChAGePn2KxZ5e1vWQ4tTw+XyMj5t/dpT5eUwDxZ8+fQqPZ/7Byq5RnBk+n88qYlp1G0L5+FNcu3YNhw4dsqY6xUlhGAZ/+9vf8PDhQ/NliZVn8+bm5tJT2yhWYy6omRWm7EIhegM/QGKIrggVsMNjgijzBEtPHOcBiukZeB2JEnQhM3GfkRl6KkoKe4yKUkta01OTPIA3XUmn7rHdIjCxsXgp1ECjRLshCsUSMtYz4PF4YHgMGEb1Wg8ZUWqKpxslVZ+rjmaAxAqhqJ8Wn1bkZJTVKRRrEF0iSI0lOH9DAQUhIISgIJ1BKG89ukA0R+VTnpEB0FWFehILURCwL3YFXp4KpXSwQ+EKgi70kgx8ojF22Suqx+1eBv+++yh4hp64u/tEA0R7EwECxAQtn2pIt2EKhQUEBn1k14VaMCv89YovDxKi4Va/Ri4myrdVRzMgEonAMAx4K38DBsqLzXT1S2MnhRUMtMUypbO6S3WIi41TbtKwiAEBKwDC0xCmRgonUzn/+vl8rFjur6V4GikpM4JRpvHaEwS/3hSinEbSUG5//y0IX/KfFqaiuwpM5iWI9iaqxdfbfxuEAQiIehuNlBRrIIA64DFdt8BkvI5gAAxDpkXVVYV9JxqUkZQQQgrShSonQM7fUBBCCEmPVbsDIswoIIRMEuWeaRQK3S1KJsmEwe10v/PtVxB9nZwvTCfpBef1tqfHgiD2PUIIIYxCoSAMw0ABoj0SIphSsmq6iKcxe29m1Uddl+6n+wFNvRB0YT0TgowbCiS+zKgtJBOyGYhNBbkoBhiDS5IGRGfoQIRH8zrFImQXChGaqPHYaAbqQUtB1Q3s3RQCTG36f5Y4HeX6jscoAAAAAElFTkSuQmCC"
|
<image>如图,AB,BC,CD都与半圆相切,A、D是切点.其中AB=4,CD=9,BC=13,则半圆的半径是()
Choices:
(A) 12
(B) 10
(C) 8
(D) 6
|
6
| 69,641 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAHcAAABxCAYAAADvYDyXAAATrklEQVR4nO1dbUxU17p+9mDsh9M7Nper03QSKoznwOGmF4s/aCRRW2y5EUa9tdFW2mpLDza0J6Rl0B8kkpQfniNpyb145KOJtNJoosZWseIwvZe22JLSG9pUC3VmPFC8qQaTgmCDkdnP/THsPXv27BlmYD426JPAzKy99lrvXs9a73rX17sFkkQIkIQgCKEu31VQlkXjHhuEDe+hrMAKAtBrCRkkbsNwfA9EQCW/MnAG6SusAEIRKyZErJlgkITWaqH3Wu00FMVAuDFwpggrMtQEioo4hsTINQNkKRr32NDkdCdTlvkBzxWcKc6Cdbro/BpPH4QqYQAAIlDV3IMf6u7K+d+dsG8skH8LguArQAUEICgsGZiubgpVowOh9ITArkmEx92PjPR0VSTVTTqxsnwGlVLV6EAo3UGu8AZc+fks0lf4rOSQRqhOytAgCIJC1ejDytMdpski3Pj50yI8lu6FAMDjbIIgCBCEzXBPl52eFJ8BADzun6dVjdIoiDXRgenpaegVqSyeTidQVYyVQgoAoPm/PoNb9MLlKERzsxOAbhotAIncfr8xxcBLsc7Kj3k1zBJBEv8Y9OCPGY/JoX87fRoZggH/GPRgw9PPBMTXBUS6WCwU0UUvSVIk6XIcImx2xgOiKAZ8zgcMD/+f9gWRtNtAe9N5X8HRSz091SKP0wHBXiyP2xqrivFZP2D7U3HMKhAVU3fhJk30iOvXr2PVqn/D/3zRhX/9U3bAtarNAja8R2zIAHyt1SCrZeph6tbRXOmreQq4HE1s7HTFsA55A37prdWGk6eoqIhlZWVB4S7HIcLXi8laTl9PRUIr0NFcSYc7RjmIpBhArjdkVL3hgw8+oNWazvHx8YBwvZEYCppWk+P0ANLTY2QUCIAAAy47G9HpAfyGlairYYMaQ0NDqKioQGvrRzAaH4TSSBLCGkyi/1NM7hMGkUu4MWDIQoYQO2uZuAL7hjeCstZzr/vKK69g9+7dWLNmDQADSKW00/PKmnca/J+GJD9hqCY9ODgYnQ4QQ/ddTXY7i4uLeVmcii7NKPOnwuL3I7gbmKnPr6+vZ3Z2NicnJ2MlXVKg2TyHhoaQl5eHkydPShVg5loi+C1g+vpyAEBnix3cUAC0K6xHkQBjPJsjAIABILBnkzA9cyRAEFKmP21wY8oXNYwVOzAwgOrqarS2tuK+++6LpYSJRyjWL168yLS0NNbV1c1cRUI0BNF9nvam8/S6zxObqhRXvKrP2MNug2wUiiQP7bERKJbH81rwer184oknuG/fvrjJlUiEJJckR0ZGmJuby9LSUk5NTUU8ASFdr6qcHiK4z9NW1aQRMxbkaqhdulikMQljtyGEHD7U1tYyNzeXU1Nx7D4SiLBWU2pqKi5cuIDR0VEUFhbi5s2bALTVmlLFCoKAzhY7/lZ3AIIgwGB9ViO+b9A/dxiCug1PpxOGP2QExUz/4yacHtDekPD9999j//79aGtrQ0pKSgzkSj5Clq5UYPfddx+OHz+OnJwcrFmzBkNDQ5rxlTMzoscBJ56R+16X45A8JyulK8Rw7lpd2ZzOz/Dvzzw1/cs/bMlYuVLz/tu3b6OkpAQ1NTXIzMyMmVzJRsgSVhfYgQMHUFFRgby8PHz33XehU7zSiZS3nfjr6xvkoMGhKwASMyVHuPHZAaLANycIKlq2x+VCUVYwwdXV1Xj44Yfxzjvv+NPR0arVrBGtHnc6nTSbzTxx4oQvwOvvfw9VFctTcpIxY7dBDrPtOTSXLiQiiK5O2qqagmw80X2eAFTTql52d3fTZDJFP/SbB4iaXNJvSR84cCDW8swZWnPlIkn7JgStdI3fmqDVamVLS0tgfJ3Nfc8WsyKXDLakkwmJDC8v06bQGqRXbrFaS5hlZa+zsLAwcYImGLMmlyQnJye5detWFhQUcGxsLFYyRQVRFCmKorxKIwAUBMG/YgOwyRm8CuJ0Opmamsrh4eEkSJ0YzIpctdqqrKxkdna2LvotkcFzKurfo6OjtFgsPHr0aIKkSg7m1HKVaGlpocViYW9vb8g48e/LIpsUKSkp4datW+MsS/Ih7Nu3b042PxXDG4/Hg08++QQbN25EVlaWfD15MADyZIlvvDswMICzZ8/ijTfewIMPPphE2WaHmpqaiOPOeSZBOW7NyMjAyy+/jHPnzqGnpydgASERYNAQ2r+2SgH4/fffcebMGdhstnlJbLQQGIfSv379OjZu3IjVq1fj4MGDMBgMcZ+8EEEIqtN48qMJhABg8388h3/551S0tLTo5VBAXBGX00vLly9HV1cXrl+/jqKiIty6dSse2QTAACGoAsnLfjDgww+P4H97v8P777/vuxZ3iXSAeHfqFRUVzM7ODhhyJHKSQBRFDg8P02QysaurK2H56gFxJ5ckGxsbZ7Sk44mCggJWVFQkJe9kIiHkkmRHRwfNZjNPnTqVqCxJkg0NDczMzNTcMrNQphlDIWHkkr45aYvFwvr6ejksXgUsiiLdbjeNRiN7enrikofeERNrmVEs5akt6XgtjHu9Xqxbtw7r1q3Du+++G5c89I6YWMuREksyyJKemJgIG3+2qKurw8TERFSD/gWHWKsCLTUbSvVWVFQwJycn5pP3fX19XLp0KS9evBiUv7TQcDcgoX2uFhoaGmixWNjX1zer+9VETU1NMScnh/v374+BdPMbSSeXJNvb22k2m9ne3h42XiQtrrq6mvn5+UlfY9YDdEEu6VOlFouFDQ0Ns06jp6eHRqORbnesTrHNb+iGXJIcHh5mTk4Oy8vLo753cnKSGRkZc6ocCw1xWTiYCyYmJvDCCy8AAI4ePQqj0Qgg/HCLJN5++21cvHgRnZ2dCZNV90hu3QqN8vJy5uTk8JdffpkxbldXF00m04LeMjMb6JZcMjJLenx8nBaLha2trYkTbJ5A1+SSoS1pyXLeuXMnN2/enAzRdI+kkytqHuTykvJfaEu6vb2dqampHBkZiauMso8aMTBU7/4T4k5uqLFptOWitqRHRkZissoUIJ+o+gyKTM4nnx66sJY1t7xoBEqW9KJFi0ASDz30EI4cORI63UgWNAgQUjzFyUP69mRp3j1P9ugkltwYFIrX68Wzzz6LL7/8Ej/99BOs1li4EfaRqqwM6ooRUUXRGRLmAZrwOeXyuzNQ/G2qAukNuwokXfv111/xww8/4PXXX8f69etx6dKlGEjnI3bPFoMsk7Spr6nTd0JRSbpaJt0iYR3AdD+mdGdA0eesq9jeGHEyhYWFfPPNN0mSp06dotlsZkdHR8zErNrkPwno7mymEHD2aH4hoeQq3RmIdLGx0UHSPf05s5HV0tJCq9Ua4PTr22+/pcViYWOjv4LMdklPpIs2QzHdos9SF93nKQhCSHJ1biwnwFpWfHc5mmhv6iTpO2rZ2OmKuIAGBwdpMpnY3d3tS1dB4PDwMLOzs1lRUTGntVqX45DsM0PktA8N6UyxV+9UBiOh41xHc6XvJN70KbzzrlAFFjzcyM/P5549e0KmPT4+zsLCQm7ZsiXInZ8aoSqAJJ/053Brt875QnNiyNXob+3FIdwGaTgrq6uri8jp19TUFMvKypibm8tr166FF0mDYL98XjqaK+d1f0smglxpcsd9PuAAdFNTaJdBpL/w+/v7uWTJkqh2atTX19NiscjbbCISUyWfSBdtAO3N5+QwtTdlvW/XCSB3SpyS/2INR3Mlq5odQeF2u+rEu6K8pqZE5ubmsra2Nur8orWkHc2VrGrs9IvhPk8B4CHH5ajz1guCWm48iCV9Kq/T4/8t+amQ/FdotYKamhrm5eVFvGVGnUZvb2+QJR1OPr/HORc3CSCg9Fep8hkt/9Mv4k5ugNNpjT91nyaVV29vL5csWcKBgYGgNKNxpS9Z0pWVlUH3B8tnkF0vwGYPT57WEX6dIWj60UsvUqbfvuGlVw5PEVKCfivjSL+V6UgwCCmKWUcRXkWW6vsAn9Ov3Nxc/Hn3n1FeXh4UT0sOpexKmbz0YuLmBLZu3YqlS5eira0tpMNOzsMpxnAIO/0oFVyoT6kw1cQrw1OEFIgB1xhwTXmfhOrqajzy6CP4y5t/0aw00r0GGOT7lZ+G6ceS4hr/yYiOjg4sXboUa9aswY0bNzSfV1BPfOt8dnFGqJvyHe+dgN9KNa1W2UoDLFQ8URRnTEOJ7u5uGo1GDg0PaaqacPeH+q58prq6OqalpUVlSc9XRNTnSmEzERMqXFm44dIYHx9nWloaW1paIk47EnLV95w4cYJms5mdnZ0MB70PdWaCTG4oAsNdi7QwI71WVlbGoqKimKQd7h7SNydtNpvZ0tIy70kMBdmgUhohWoenDIsMEKeCX9xgWOTr39TXpPBIrgmCALfbjbPnzuK1Xa/BaDSCZFRpq8OU9yq/C4IgL9WNjY3h448/xsqVK7Fhg98RKZNsWMXq8JpcIpKREi3EKVGTdClcfU0QhKBrt27dwunTp/HUuqewZMkSufCjSVsdpvzuveP1h4v+e0wmE1577TVcu3YNx48fh9frlWVcCIhoJ4ZyeBQPvPTSS7hz5w6OHTsmhyWy9Xi9XuzevRt9fX3o6OhAampqQvKNO8Lp7HhOR0o4ceIELRZL3HcwRoKFZkkHkZtI4+LatWtMTU3VPN2XLCPn5MmTNJvNdDqdSck/lkjqvuWioiKWlpbKv/Vitfb29tJsNs/7UwxJ27fc2trKtLS0GRfWkwW3283MzExWV1cnW5RZIyn7lq9evYqsrCx0dHRMv04twAZIirWqle/Y2Bg2bdoEs9mMDz/8cN69RCphW1slkERJSQlKS0uDiE0mtCqUyWTC559/jgceeADr168POSetWyRaVdTX14d0+qU3KLuU2tpaWq1W9vf3J1Gi6JAwcpVOv5LlJnCuOHbsGM1mM7/44otkixIREkau1+tlXl7evH9PXk9PDx955JF5YUknjNza2lquWrWKd+7cmTlyghHNEEzSQFlZWbq3pBNCbl9fH00m04KZ+SF9L8FYu3Ytt2/frlv7Ie7W8u3bt7Fr1y5UV1cjOzs73tklDJIlff/992PdunVRWdJM0OgzbuRKD1BTUwOj0YjKysp4ZZU0pKSk4PDhwygqKsKTTz6JgYGBZIsUiHiqhZ6eHppMprvC6ZdkSevJG3vcyJ2cnKTVauWhQ/F/OaNe0NPTQ7PZzLa2tmSLQjLG5CqtzvLy8gX9njw1pGd3u920Wq26GPLFpeU6nc4F4/RrNitVo6OjzM/PZ0lJSVIt6TkbVFRZfhMTE9i5cycOHjwIi8Uy1+STjtksYkiWNAAUFBRgbGws1mJFhJi+EYwk3nrrLeTl5WHHjh1zTXpeY/HixThy5AiefvpprF69GleuXEm8EJE070hVk3SyTg9bZvSEtrY2ms1mfvXVVwnNN2Z97sjICFNTU3nq1Cnd7KjQE7q7uxNuSc95sZ7Ti9zPP/88jEYjDh8+HCulsmAglZHH40FhYSF27NiRmBdrxKKGtLW10WKx6HbLjJ6gZUnHS9MFtdxoa9TNmzfx97//Hdu2bcOKFStiWe8WLLxeL06fPo3R0VG8+OKLWLx4cVy2Fs3ZWv7000/x+OOP3yM2BJRtR/qekpKCLVu2YMWKFWhubsbo6Gh8FhPm0uwbGxuZkZGh2yUvPSGU6pUs6Xi8ki4KcgN9QrjdbppMJpVQ88ddbUwh86bhOzpcfzp9qauri2azmceOHYupWBGQ6xdYEnNqaor5+fms2hva6dfdgkhNoQAHZjY7Rbpot/sWVURRZH9/P61WK2tra2NmYM3Y51LRLUtdfn19PSYmJnDn4l/9Xk5VnlgbHZ7Y9yF6xAx9JT0OCIKABvdK0NeYIL5XAIOwErCmA/DN8mVmZuKbb75Be3s7Xn31VfnEIefSF0dTE0RR5KUfL9JkMslOvwK8sNLn5qdYKNL2DrdQITlSUx2YE8XLtAE+f5Ki5KTMVy6N9mLZO6wSt2/f5rZt27h27Vr+9ttvcxIrKnKl9+RJTr9Eumgr9qtmyStckOOwuwiyShUlVVzMnzUquqO5MqzrwerqamZmZmpudIhUbc9MriKd6urqAKdflx0Nfidhrk7Z4+ndDR+RsnvBpvOB/izlVj4zQa2trUGWdDT9ccQtt7e3l0seMtLj8asStZfTqmmi72HalySgqXqjwVws6YjInZycZGZmJhsa/jMgvLLY399K/pNJ6t6zWiwR8kUmQeTO3gZRWtLRIKS1TIWVtnfvXixbtgzl5W8FWIF1gh0bfAYf0ldYkZHue5kEBRG+l0IsfEgjCKqt2ox02AB45HVchUMWjwONna6I85As6TNnzmDXrl2yJT0jZmJfcvql3jLjaK6kvfncveW9MHA0VxJCoGp2OQ4FuP6NBpOTk7IlPTo6OmP8sORKTr9aW1uD1I96CBSIu28YJP8UxQCnn2rHptEanVqNZ+/evczOzubg4GDY+0KSK4oiS0tLg96TpxZWdmMrC3EXEatAIAnxKQNlHi0tLVy+fHlYj/AhF+vPnj2LnTt34tKlS1i2bJlfjUPx3ietl0BNh3GBeUANiSifd8byiwKDg4N47LHHQl7XJPfGjRtYtWoV6uvr8dxzz0VN1F1DbNRQvE4uCsy2PDXJ3b59OxYvXoyPPvoo6gTvIQSS8P6/ReqACxcu4Ouvv8aPP/4oh2lqXwJSZfJdn12tXBhQPbtIwCAEXtMkNr5lptlyr169ikcfffSeap3n+H+4e0jVkWSiPgAAAABJRU5ErkJggg=="
|
<image>如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()
Choices:
(A) \frac{4}{3}
(B) 3
(C) 5
(D) \frac{27}{4}
|
\frac{27}{4}
| 69,642 | null |
\frac{27}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAGYAAABgCAYAAADvhgd/AAAU1klEQVR4nO1df3BTZbp+Tuoi3MaNMwQJbjTuNmVTAhq25cpoZhBStuVSsJVqmaFcy721KaJjHcvSueLgjN1rW8oOjpUt4Iz1TlHUtMUhXLpapXNveumdqtA2FdR0xQmsdotzCw1jYJPz3j/Sc5pzcpKc/OoPlmcmTXPO973nO9/zve/7/f4YIiLMerAAFPwvf8de/CGzGjuXMtOXpAShiB5k5oOImfgmsLBh+6aT05yixHFTEMOBYRh0bD8Al2UxMpbObkMw64khBAgBWAzsW4OP1z6NzC7CbLfQs54Yzouwzka8Qa/hwOI/Y9iSicWYvf4FuAmIAQCWBrHvDeCZF4yB35n3YRkzy1+NbgL077UQAlYt8NneNt1JShizvFgBrLMBb+APIAr4FV97Bdb8MnO6k5UwbpvuBBDRhPOWGwEAE4hHQ3vx2yoF/vDxEv720J+/CSs/5mdNJ6ZTXYmIWJYVfIfcD/Pjg0rOdK2mhkGW/KyT6lYHmbNKW+oSPQVgiGZfvXJCaRKXM4M1aFb4GHHZ4bNSqkjFUMxmKinADCEmmtJKZqBIbT755BN89tlnyVGlGYBpd/6AMOM588J9X758GUNDQ+jt7YXb7YbT6QQRob+/H1euXOHjc+RmZmbi7rvvxvLly6HVarFixQo88MADUKlU0/Ju8WJG+RiOjOHhYdjtdthsNvT19WHlypVYvnw5fvGLX2DFihUAAKPRCLVaDb/fj9/85je4cOECjh8/jmeeeQYLFszHI4+swcjICJxOJxwOB1avXo3CwkIUFBRAp9NN85vKwPTUOULR19dH1dXVZDAYSKPR0FNPPUUdHR3k9/8tJCzLsnwFraamhvLz86mkpIRKSkrI5/NRdXU1ZWVlkdPpJCIir9dLNpuNysrKSK1Wk9FopN27d9PZs2en8A1jQ1KJCVfljYTDhw+TVqslg8FA1dXV1NfXJ1teZ2cn6XQ6Gh0dpdHRUdJqtWSzBarJNpuNtFotvfXWWyHxHA4HVVVVkV6vJ61WS0ePHo2aznjeLRFMm8bY7XZasmQJmc1m6u3tjTm+2+0mrVZLZ86c4a+dPHmS1Go1/fDDD0RE5HK5yGQyUXl5OXm9XkF8LqO7u7spJyeHsrOzqaurK/4XSjKmnJje3l4ym82UkZFBdrudiGIvjT6fj8xmMzU3N/PXOBlWq5U2bNjAX/d6vVReXk7Z2dnkcrnCPo/TsNzcXAHZYvlThSkjxuVyUWFhIWk0GmpqaopLBpc5NTU1VFJSIhlmfHyc9Ho9HT58WHD9rbfeIo1GQx0dHWHl+3w+amxsJLVaTSUlJeR2u+NKZzIwJcR0dnaSSqWiPXv20Pj4eExxxSW1s7OT9Hp9RDkOh4NUKhVduHBBcN3pdJJer6fq6mry+Xxh44+NjVFNTQ2pVCrq6emRTFOqNSjlxNTV1ZFKpSKHw5GwLCm/Eg41NTVkNptDro+Pj1NxcTGZzWaBRkhlNFegXn/99YTSHQ9SQgzLsuT1eqm0tJSMRiNv28OFlQOv1xviV6KFN5lM1NjYKHm/qamJNBoNdXd3R0wDp2VWqzWiliUbKSHG7XZTdnY2FRQUxGy6wsFqtYb1K+Fw5swZUiqVfHtGjN7eXtJqtfT73/8+opyxsTFatWoVmc1mGh0d5a+n0pwljRgukWfOnCGNRkO7du2KOW44HD16NMSvyM2U2tpaMplMYUv75cuXKT8/n9atWyfIdDF8Ph/t2LGDdDodnTt3TtazJcESEfknfvjDBkuqxrjdbtJoNLLNjRy4XC5Sq9Wy/IoUfD4frVy5knbv3h0xXG1tLWm12qhtqrq6Or5RKwVxgZFTgKTCJI0Yr9dL2dnZVFNTkyyRvJ9IlGiXy0VKpTJqpnd1dQmq8+Ey1Wq10qpVq6L6HNmmTqBFAcRETKRqYklJCRUUFMQiLiqsVis98cQTSZHV1NREmZmZIT0AYrjdbjKbzVRcXBzWP/p8Plq1ahVZrVZZz/azA9SQGxhZZYInjcBKH4QxZ7KIicQ8y7JUW1tLRqMxaY6eSNqvJIrc3FzasWNHyHXx+3EdoXq9PmzFYXR0lPR6vezGsp8doAbLamoYnNSywPC4ldokyEnYlNntdlKr1SGNuUTA+ZUvvvgiaTJZliW3200qlYq6u7tlxbHZbLRo0SJqaWmRvH/u3DkZ8gKZzlIbWS31NMBOkuBnnVRvmZifICr7CRHjcrlietFI4Eot51fee++9hGVKobW1lbRarWxN5DpCy8rKBGaQS6/dbqf58+dHLZj+tgrJCSIfVIJgaaBBETMxmTKxyhcWFlJtba0cEbJhtVp5252qdkJxcTGVlZXJDs91hJpMJsnGcnV1dVR5H1SCKtpCTVZ/42qCpYH6/cKKRNwa43A4SKPRSJaieHH06FEymUxRHXSiGB0djdqhKYWWlhbSaDT8mA/3vlf+b4zmLwhfpfeTjSpQIelLPqiUnmoVNzFms1nQgxt2XphMslwuF2k0mojdN8kE5xsjNSqlwHXRVFVVCarLjY2NVFBQIHYVROQn/2A9ra78gP/N3xl8ldYw0poUFzEdHR1kNBr5hCWqKZxfCR5JTIUZE1f3y8vLqbCwMGocMaQ6Qr1eL+l0Ojp16lRI+P7G1bSmYUDg4H3+/oDjtzQIKgQcYibG7/eTwWCIOsgVS8YG+5VUQpym8fFx0ul0YWtd0dDU1ESLFi2irq6PiIiotfU/KCcnJ+iBATNmZR6hvc6ga4P1tIYBwdJITpartQkRMzGHDx+mVatWxfEa0mhubp4SvxIO3d3dpFQq4x4U+9/TgY7QPXv2EBGRyWTifZC/rVKwCoEBiGEYAqTNVzBiIsbn85FWqxVMmEgEZ86cIbVaPWV+JRyqqqoiFrbI2u+n0dFRWrduHeXm5lK7rY0MBoOs50aSKpsYlmXJ4XCQ0WiMGEYuuCFgOTNUUg2v10sGg4H279+fkJza2lq65557aMGCBUE9BpE1Ixw7MWlMdXV11F5aOWBZlkpKSqbEr8hFX18fKZXKOLv0JzO/urqaVqxYId2+YwMfOcU3prnLdrsdjz76aMKTDA8fPoyvvvoKr732WsKykoWcnBy88MILKC0thd/vjzH2ZDamp6cjKysLdrs9NBgT+MiZXi2bmPPnz+PKlSvIycmRG0USZ8+exYsvvgibzYbbb789IVnJxu7duwEAdXV1AKJPducgDnfffffB6XRiZGQk7rTIJubDDz/Exo0bY35AcKI9Hg8ef/xxNDU1ISMjI2ZZqcZtt92G1tZW1NXV4ezZs2GXaYiJEIdjGAbr16/HsWPH4k6LbGKOHTuGoqKimB8QnOjy8nIUFhaipKQkZjlTBYPBgFdeeQWlpaW4fv26ZJhI62q4e0VFRaknZmRkBOfOnUNubm7cDzp48CAuXbrEm4mZjKqqKqjVat60xYP169fD4XBgfHw8rviyiDl9+jRWrFiBtLS0uHacOHv2LGpra/Huu+8iLS0NgHz7PVUITg8RobW1Fc3Nzejp6YlLjlKpxNKlS/HFF1/ElR5ZxAwPD2PZsmUAYl8ex/mVN998E1qtNvYUThGC34thGGi1WjQ1NWHLli3weDxxyTQYDPjmm2+iB5SALGKcTieWLFkSPaAEysvLUVxcjLy8vLjipxpiTQnGk08+ieXLl+P555+PS/bSpUsxNDQUV1xZxLhcLmRlZQGIzQQdPHgQf/nLX1BbWxtyL0TzRGLZdisUCgUYhgl8trcJg8tJh4wgYk0Ro7m5GceOHcOJEydCxUdJg8FggMvlip4ICcgixu1282ZIrinr6elBbW0t3nnnHd6vhAcLChLb9jSDtE2AjfWBiOAnGyqbiwXkUEflJGlMJdrBhopNwkLZhQsXorm5GeXl5bh8+bJQfJS8uPvuu3Hx4sWw9yMSK6fDIdYBJW5118mTJ2XH4cCNgQ+wfkHXhb+tgp9R4muvEO4dg/CzTZKF0tJSKi4uDrku7h/cs2cP39M8PDxMer1eMlw0CDTGSzf4j+C614u5c+dGLB3B2Lp1K7Zu3Yr8/PyI4UhUYth2Kx5vXo2G/dVYxijCFviOjw6FXGOYQ/hTu+wkxoympib09vbiyJEjoueG15o5c+bwbaFYK00CYuYycwTfHDweD5RKpSyB9fX18Hg8eOWVV6KGDU4sS4NoPHAIqNyBamNoWOe3gdoNR+ZUL+dXqVRoaWnBjh07cPHiRVk+7o477sDVq1fjel5SN2Do6enB/v37Be0VQKajZr7Gt58AFWuLAEakSTSIzpOngEoLNjFpeGxtBTDhXyafUYG8x5L2KkFyJ3cLtFgsKC0txbZt21K+q0ZEYjiz9vMFd8Lj8UiaOu735cuXsXnzZrS0tECr1fLXf2Kvh7yEpMl0DuNrrIF+MQNmIll8uA+bsOuT1WjYUQyAxY2i1+Fp/1cw8zjyrWijA/gn8gnicf8nAkZUAPbt24cLFy7g4MGDIWFJtDfN1atXZVsaKWEC/MReD/kd7PyD7wf/n7dxHT+hnLvOOTxxnGBHyN3zUTtVBg25ctf9ZKOKebcRKt8Pmz7um/sE/5aKkyh6e3tJpVKFjLyyLCtw/i6XizIzM+N6hixTlp6ejmvXrsFLN3j/QxPq7aUb+Pd9dfD5fCHtlXDqLtWGSUMRLJXAoQP7MEiBqi/rbMRaRTEO/fP7oD8+LggvhpR/FPvKZOHBBx/Es88+i7KyMsHYjfi9xsfHkZ6eHtczJIgRtgfmMnNwj14XUh/nEvH5//Th0OvNOPq2nPZKGEy8z2MHBlCP3+EBRRrS09ORtuwE8gdYUPOjkuGnA1yBfPnll+HxeNDY2Bi29+DSpUtxd0PxxEza4lCufvWrX+HcuXMh13/88Uds2bIFra2tUM7/ueQLxJQYZhl2fsyCJcK1a9dAdAo7lzL4ieW63yUakVMMrkCmpaWhtbUVr776Kvr7+0PuExHOnz8PvV4f13MCLEzkoZSpAoD7f70Ug18PhZiG8q3/gopnK5Hz8D+GmJDr+BvvhMX3gp1/8D0v3eBf7Hb8LFB5oBuYp5jHJzcQ34uf2OuC+FLOPtz/yYLRaMRLL72Ebdu2hYzdMAwDp9MJo1Gi7i8DCgAgEOYycwSkBNvLjIyMkM64+vp6AMC/vVAjacs5eXLucWUgOCzDMJjLzME8Zo7ApxAR5jJzMY+5PYTwYJnh/k82qqqqoFQq8fLLLwvSDgSG4zMz49w4VVgX8PO1i2B890NgXQk3JdbhcJBOp6O//vWvIbWJ+Ka2+oNmj4TpVpESO7W7iIQFtxzF4XDwtbLx8XFSKpUhyz3k5o/IoSgEjHPm5q677kJWVha6urpw6dIlbNmyBUeOHMGCBQs4ckNKS2xQBM0eUYhqXQG/wnVyCm7NkN38MjIyUF9fj7KyMty4ETCZJ06cgNlsDmnHyM0fBQD42QE0rJ3oqVUwfKPquY7bcDt+hrnMHBQWFqKjowObN2/G9u3b8fDDD4c8jOIZlZSKwgTfDhDFhN6aUbBardDr9fjoo48AAB0dHSgsLIwYJ2J+carjZweo3jLZwPPZnuK3ziUKLGtTKpWUn5+fFPW/GeF2u2le+j/Q9u3bSaVS8dtzEREN7Htksifc0kAD9D5Z+aUZoZjcE5P5GsOfVCCva+Lnr/VYg2H+9nfffQePx4M7VD8PcnTCA3VuAXhg2f3weDzIysrCwoULwTobsPb+XfjUagPLfgqGYQLXFE8A9QNh5UzmavtHOGRdiyIowKIfjVW78Gnl09i5NLARqMvlwkMPPYSR738IUsFbpAATHZ1MwA/m5eVhfHwcBQUFILRjx7Jd+NT6PuiPm3iTr1j6O2y3AvoMo0CGWCgRTawFBAhQ8CZMXIP4757/IpPp/qArqRuYmk0Q55NOp6PBoYGJPLVSu8TCpP691oCbiDSpfHINOjsRySLwLxySvQzjZkRXVxcZDAbyk40qAbLsHRQGkFnFDxAzuJcslr2BJWcTq6C2A4HlaSIke+HSzQZu4RLrbKBc0QIllv8TnR8FADj/9J+gvLzAYTgMAOcwzjNCG8hh27YnMTIyIjlr5O8dR44cgUKhwGObNgUOshPV7Rn+j7DaT1J9gGIzxqlgpMkN4sWxt8Atjv0lvxkFl49SVsc/WE8NbSyxbPj8CxAm/lgaJVfSBkO8nPzvHdxy8mD077UQwzACc+Zvqwi7UjkYiLdmxW3AcP16ckcHZzLC9XONjY1J7qnGsuzEtKvYz7VJaG//oqIi5OTk4MUXX4xXxE2BnTt3YnR0FC0tLWFCxNEQlyoJcjttk7nJz2xFtN2nZHeAi3dfYslPiTQUT5w4kfRtsWYLxNtiRSOBJSKWlQgoERGJ7AzCaVoqNpKb6YhtI7nYC37Szo/ZvHkzrl27huPHjydD3IyG3++HxWKBwWBAc/MBxNNnGO2cNYUUL0QU01lfAPD222/j+++/x0svvRRbxFmI5557DgDwxhtvAKTA5CQR+ZNFGCByHsesYxGQiu19U41Yh8Kjbe+bLCR9p3JuQ+yampopP9ojlfD5fPT0008nviG2TKTkjLKLFy+isLAQixYtwrvvvhv//N0ZgqtXr2Ljxo1gWRbt7e1Qq9Upf2ZKRrq0Wi16enpw5513YuXKlRgeHo4eaYZiaGgI2dnZMBgMOHXq1JSQAiD1h8fV1dWRWq0OOaZkNpi5zs5Omj9/ftwHESWClBLDZX4iB/tMB4IP9knGuTfxIKmmjIIW+QCT05ry8vLw+eefY2BgAIsXLw5UM2cg/H4/9u3bB71ej2+//RZOp1MwTWtKMdUlgTs8zmAw0PHjx6f68WFhs9lIp9PR2rVr+V7i6TS303rcotFoJLPZTKdPn56uZFB3dzdlZ2cLjlucCf5v2k+OjXRAaarQ09NDzz//fEwHlE41ZsxZy5999hnee+892O12jI2NoaCgAOvXr8eGDRviXxA1gevXr8Nut/OfhQsXoqioCJs2bYLJZAobj0SrHqYS00pMuBcfHh7G8ePH0dbWJjgEW6vV8jsMcodgB2NkZATnz58HAMFp5sGHYG/YsAH33ntvXOmaSsxIYoIxOjqKL7/8UpDRQGCrLe7YeA5qtZpfKBRMpMlkunVs/C0kB7cmH89Q3CJmhuL/ATtuRYJ7vK5gAAAAAElFTkSuQmCC"
|
<image>如图,△ABC中,AB=AC,∠BAC=70°,⊙O是△ABC的外接圆,点D在劣弧⁀{AC}上,则∠D的度数是()
Choices:
(A) 55°
(B) 110°
(C) 125°
(D) 140°
|
125°
| 69,643 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAIkAAABKCAYAAACPWHfTAAAmgElEQVR4nO2deXxU5bnHv2eyTGbIRogsAQKEgCBLVBZLKUKRRdHEXWuvosVqofq51gWsthburchHXEAWiSy2lGs1QuWSUBESA1e8yC6RIJhtSEL2ZJbMZNbMnPvH4byZkwQImMS2l9/nA5lz5sw57/J7n+d5n+d53yPJsizTlZAB6fxHWUaSJPFVUfZ6TEN/ycwkXcvl4poAoOMquh6L7pR4I7P12VQK5f8mGV039IJKENAQRKaI52f9CmSlCCpXW665SpDuwvIdMgvTILtYRpZlArKfdYtgmHQXBQQI7a6CSEGfZWD9i+uRU1MZMlSRGCo55FbXXkXXQ6aI0yxkeZJyLKFj/uuZlJyRWPjb9T/McM3ZsBBmzICdAc351nqva/XgVagozs5FNyK5zfmkEbeTebqkO0jSigjFe8iWZ/JkEmSlXkdyUBEktFLkqkTpHmTn7GTOzOnIsqwZmEOTRwLdovi1j3jxvRyWPzkLgLR22HsV3Y0idr0hc8uMJI3NCFBc9B1pI5K7V91kb1jIm2++gSRJ6JJnc1VW/PAIFJcgLUwVEl3i/CSiaA8Llmdx+4zp3UiSIkXNBAKKBV24Zx3XDh3UbY+/ivbxeW421w4drDknSRK/fX42pC3kyZlJ3UMSuXgP0vM5vP7ETHHOdLb4+9/3/LS5q109/zKQtZ9lilj15JvMvGVWy+niPUiSxOssRN6xHNCB3MVYtyhVPl88eU+Rcm5hGufP6eS0Re91dRFkWZblQCDQLc/pSgTXIRAItDlu91px2q/5vnDPOlkCGel8X6h/QU7PLmz5XUCWJVnuPo/rpeDxeNDr9V1aHGjr+f3/DLmVhzu4u9Tvup4kFy0hFyRQ668u1LH/3zr8+9RXlv3nf6u1MkRbt2p09VndOrsJ5qPT6STn8xxMJhN1dXXivM1mA9pyR20Yt9vd7vlAIMD/B7RHkI7UPRAIIEkh4tjn89Fkdyj35Hy7SxAINLd5Vre45VWCBlcwPT2d4uJiYmJicLlcWK1WIvRhREXHUl1dTVRUFDU1NSQlJeF2u6mtrWXIkCHU1dXhcrkwGo3o9XpqamoICQkhPj4eWZaprKwkOjqa8PBwevToQX5+PomJiRiNRtxuN5IkYTAY8Hq93VH1y4IkSWIghYSEEBISgtVqJTo6GrvdTmRkJGfPnuWaa67BaDRSU1ND3759kSSJ0NBQ3G43oaGh6PV6/H4/Op0Os9lMXFyc+H1DQwNer5e4uFhBmvLycoYMGYLf76e5uZn09HSNUOlykvh8PsLCQggWcWfOnGHfvn0sXbqULVu2YLfbWbJkCceOHePs2bP87nevsHVrBkePH2Pu3LmUl5ezdu1a7r77bvR6Pa+99hoPPPAAycnJvP/++/j9fhYsWIDNZuPtt99m6tSpTJkyhcbGRpYuXcpjjz1GfHw8YWFhAPj9fkJCQv4hVNWFyhBMktjYWJxOJ263m40bNzJnzhz69+/PqlWruPPOO0lMTATgo48+Yvr06QwcOJDm5mbOnDlDQUERc26djdvrITY2loyMDLxeL4888gg6nY7du3ej1+t54YUXMNc3sDt7DxBAUTKKndLlJFE7RmkR5c+mTZu49+57GDNmDImJiUydOpXExET27t1LdHQ0MTFR9O/fn8bGRkaPHk18fDxxcXFMnDgRgPDwcCZNmkRkZCTx8fHo9XoGDBjAwIED6dGjB9deey1DhgyhqqoKn8/HzTff3NXV7DIMGqT1JcmyzLhx4+jbty8Wi4VJkyYRFRUFQF1dHRMnTiQiIgKAkydPEhqqY+So68Tvw8L0JCcnM2TwEJCUATN27FgSEhJISEjg1VdfpWVA64L+7y5IYDpr4uOPP6Z33z4AFBUV0a9fPyRJori4mB49egBQUlJCdHQ0ACaTifj4eEDRrV6vl8jISEAZcYmJiWI0GgwG4uLikCSJ48eP079//y6pyg9l7/t8PqxWKx6Ph5CQEEGQ2tpanE6nIAhAaWkpvXr10vy+pqaKlJQUoUsqKiq4/vrrAcjNzSUqJrpN3bo9Crx161Z8Ph/9+vUjEAhQXV3NwIEDAbBYLIwYMQIAs9lMUpISu66srGTIkCEA2O120TBer1foYVCMWofDIcj15Zdfcvvtt3dJPS6kprqaPCNHjiQvL4/Tp08zYMAAcT4/P58+ffpori0rK2P06NHi2GQy0dDQwODBg8W5qqoqBg8eTCAQYM2aNSxYsKBN3bqVJOXl5WRlZZGSkkJycjLV1dUYDAauueYaHA4Hzc3N3HDDDfj9fux2OwaDAVDIo0Kv1wujMzw8HLfbjcfjASAiIoKGhgbi4uIAOHHiBBMmTGi3LFfSmR35TVfbOCNGjODkyZNUVVUJWwQUVaMOKhX19fUkJ7cEUZ1OJ2FhYcIE8Hg8uN1uYmNjOXjwIFFRUdx4441tntmtJHnrrbcYP348I0aMIDIykkOHDgnJoYpRUFRIWVmZEIM1NTXiuvz8fBISEsQ9HQ4HiYmJyLLMuXPnhLV//Phx+vTp00bcquhIZ6rka/0bn893WfXuTNx4442cOXOGM2fO0Lt3b3G+oqICo9EojlW3gqqWAfLy8jSDprq6ml69ehEIBHj//fd59NFH231mt5Hk9OnT1NXVMWrUKPr16wcona9+rq6u5pprrgGUOXtsbKxQIx6PR1S2qalJ0xh2ux2j0YgkSRiNRsrKyggLC+Pvf/87U6ZMQae7dBWDyRDsh1G9v3a7XXN9sDHu9/vb3K8rVY5eryc6Opo9e/YQExMDKHZafX29xsgNtuNUtFZR33zzDaNHj+bLL78kNDSUqVOntvvMbiNJeno6U6dOpbGxkZtuugmAc+fOcd11iuVdVFQkKmAymejZs6foDLvdTs+ePQFF9ag2iXqsNlZDQwMJCQn4fD4OHjzIrbfeetEyOZ1OAE0oINjwA8U2Cn6eWh4V6lQ6GF2pcmJiYhg5ciRVVVVCuup0OoqKihg6dKi4rrCwUKOOQLFR1PYGxRUxYMAANm/eTGpqKiEhIbSHbnGmlZeXc+7cOZYsWcL8+fNZsGABoEiSa6+9FlCIoY4Ek8kkOh6UTlHtjMbGRtFpqo9BvbaoqIgf//jH/OlPf2L48OGaUdMegiUSwP79+zly5AhWq5XS0lJCQ0OV2IUk4XQ6mTRpElOmTFFmB+cRCAQ00qorfS+yLKPT6Zg6dSqZmZmCBE6nE1mWNWq4tLSU8ePHi+O6ujrCw8PFJAEUKXjgwAGampouauB3uSSRZZkVK1bw0EMP4ff78Xq9GAwGampqkGVZM4VTDa/6+npiY2MBRfX4fD6hbqxWq4YkISEhQhI4HA4qKirIycnhoYceEmW4lNt6586d/OxnP2PlypXo9Xo++eQT0tLS+M1vfsNbb71FU1MTY8aMweVy8Z//+Z/MmzePL774AlBGsaqiuss5N3HiRIYMGcLhw4cBxUAfPnw40KI6KyoqxDlQ7JHWkqWyspJdu3bx5JNPinOt7TDoBElyqYY5deoUpaWlvP7662RmZgp2nzp1SmN4Wa1WMc212WyMHKnkV9bX12MwGMSoN5vNjBo1ClAkjNfrFWUIBAJ88MEHTJ8+XTjeQOlI9Zrg8lZWVvLqq69is9l48MEHmTFjBlarlYKCAu69915A8dcYjUZ++9vfAgoRH3zwQZ599llGjBjB/PnzmTJlCtCiZroqmh3czvfffz9r1qxhypQp1NbWCmmq1+sJBAJYrVaNj+jgwYMa0gDs27ePMWPGMH36dHFOr9e36dPvLUkuNXI++OAD7rvvPsLCwjh06BA333wzsizz7bffCv3odruxWCzCcK2trRVqqKamRqgaUEiiGrsNDQ3o9XpRhpqaGpxOJw888MAFy6n+zc3N5ZFHHmHz5s0sXLiQu+++m6ioKDIyMjQE27BhA9OmTRPHRqORvn37cuzYMQYNGsT69es5cOCA5llqQ3cGLnSf1NRUZFnmyJEjNDQ0aOymo0ePamw6UGyUYPVjsVhwOp288MILbe7dZX6S9ipTUlJCcXExd911FwBnz54lJSUFSZKorKwUhpbdbhdGpGqpq7pTjV2osNlsYlrr9Xo1Fnx5eTmzZ89m0qRJ4lzr6WogEODw4cOsWLGCCRMm8Mwzz4ipttls5n//93+57777AEVqmEwm7rzzTvH7f//3f+e2224D4LXXXmPgwIE8/PDDfPrpp5rndJbaudh9HnvsMf74xz/y9ddfi0EFivQdMGCA6BOHw4HL5Wpj2N50003ccMMNlyxDp5GkvcosXbqU6dOnYzAYyMvLIykpSTjIqqqqhCQpKSkR6sVsNhMeHi7uYTKZhCSRZZmePXsKK9xsNgvxWldXx5EjR1i6dKmmDJrYEVBcXMxLL73Ef/zHfwCQlpYmvvvggw+4/fbbharYtm0bN954o2aUlpaWkpqaCiCi06tWrWLJkiWYTKbLbbbvhTlz5nDdddexb98+jT/o5MmTxMbGij45evSoGAgqXnvtNaFCL4VOIUl7UqSiooKTJ0/yox/9CFCY26NHD8LCwqisrBQhbVDUhKpT6+vrRRoAKJ2i6laXy0VpaakwRC0WC5GRkeh0OubPn89vfvMbYmJiLirq3333XebOnUtsbCy1tbWCnA6Hg6NHjzJzZkse7hdffCFsE4D169czffp0Ubbi4mL8fj/Tpk3j5ZdfZvny5VfWgN8DixcvJiYmhsbGRnHOZrPxk5/8RByfOnVKqEBZlsnJySExMVHjnr8YOoUk7UmRTZs24XQ6BYPz8/MZM2YMoDh1YmNjhU+iuLhYEKGkpKSNl1Sd2Xg8Hnr16iUM3tDQUHQ6Hc899xzjxo0Tau1CInr//v2YTCYeffRRcnNzGTNmjCDn1q1b6d27t5iG7927l/DwcI2I/uSTTzSqJyMjgwceeIDIyEjuuusuGhsb2b59O9A9AcBAIIDBYGD16tW88sorVFZWAsrAClbRDQ0NTJ48WRikGzduZNasWW38PxdCl0yBS0tL2bJli4bNFRUVzJgxA1CcOsHTsdLSUpKTk5FlGZPJpAlU2Ww2EbDT6XT4fD7hck5MTGTVqlXU1NTw8ssvX7JcGzdu5PHHHwdg165dPPLII+K77OxsHn74YXG8detWHnvsMXF8+PBh+vfvL6bpFouFb775RtgnoATf0tPTga6P4YBib8myzI033sgf/vAH7r//fjZu3EhsbKzwEbndboqKihg3bhw6nU5Mm2fPnn3J+6tE7xKSbN26FbvdLkR3ZWUlsiwLiVBeXi7EPChMHzp0KJIkUVVVJUazy+XC6/UKQtXW1tKrVy8xC9qwYQM33XQTK1euvGSZTp48SXV1NampqXz00UekpKQIo/fAgQMMHjxYOMmKi4tpamriRz/6kVBt77//Pj//+c/F/Xbt2qXJU5FlmdOnT+N0Ojl06NAVtdvlIniaPX36dNLT01m5ciUOh0OcN5vNNDQ0CNvsvffeY968eeI42Id0IenX6SQxmUwcOnSICRMmCMP0+PHjGu9neXk5w4YNAxRPoCRJouMbGxvFzMblctGjRw/hknc6ncTHx+N0Olm6dClOp5OPP/5Y/PZiyM3NFQbn9u3bmTdvnvguIyODO+64Qxz/9a9/Fcc6nY76+nrKyso0pMj6u+KAU3H6uzPoQkP4+c9/zueff34ZLXZlUDs0OHY0ZswY/vznP1NVVcVf/vIXfD4fJ06cEPXevXs34eHhzJrVss4m2FvcWvp1WY7rp59+SnJyMh6PR3T2oUOHhK/B4/Hg9/vFd/X19UKd+Hw+XC6XIFR9fT3NzS2JuTU1NRw5coRnnnkGWZbZsGGD5tlqWqKKYKdQXl4eixcv5vPPPychIUE84+uvv8bpdDJu3DhAUW+nTp3i+eefF6mXGRkZ3HXXXYSeH31ff/01kcYeihtcBlmCnZlZPHj/A4wdO5YlS5bwfTbhUZ4bhs1m49tvv6WsrAyHw4HT6cThcNDU1CSSs/r16ydsp6ioKK699lq2bt3KE088gSzLfPXVV/zbv/0bgUCArKwsjTTsKDqVJPX19Rw+fJh58+axY8cOoV6Ki4t58cUXAUWqqDMSaIniqp+bm5vF74ITiCorK8nIyMBut3P33Xczd+7cNs8PCQkRsZRgggQCAeGsW7t2rbCNALZs2cKcOXOE6P70009JSkoSZfL5fGT+9w527f5MrJPdu3cvc+bMAQIg6ZCAY8eUfFyDwXA+4//KCGIymThw4AB79+6lsrKSpqYmEhMTSUlJITo6mvLycvLz83n88ceFQ2zbtm14PB4SExOF72jq1Km88847uFwu+vfvj9VqxWg0Cu+w2i4diZJ3Kkk++ugj0tLSOHLkCD/96U8BxY4ICQkRHX/8+PE2MQVV9dTX1wunGigSyOfzsXDhQs6ePcu4ceN4++23NcG/1lArrXEr63QYjUYKCgqoq6sTwSyLxcK5c+c0xufOnTt55ZVX8Hg85OTk8N1337E7e48Q78U57/H888+L69MWvceO158kIyMDAjLoJCIiIqirqxMZ/GqZ3G63JsrsdrvF1DQ7O5usrCzy8/NJTk7moYce4oYbbuDZZ59lxYoVwld08uRJMjMzNVNzm83G+PHjmTlzJrW1tezfv5+VK1cybtw4vv32WzZt2oTVaiUnJ6fdtroUOo0kFouFdevWERERQd++fTEYDBQUFJCdna1hr5q8q6KsrOz8qFRySpKSkjhy5Ah79+7l8OHDhIaGMm3aNObOnSum0B0dASpsNhtGo5HVq1cLbyoo0/TZs2eLjtu/fz9Go5Hhw4fz2Wef8eCDDzJwUCLPPfcckiSR/mIaC5ZDoexnKDqgiLt1w7gT2PH6k6BTVsL5/X7Cw8PxywFCdYr683q94jn19fXEx8cTERGByWTiD3/4AxEREej1ekaMGMG6devwer3o9XqxNERFdXW1yLNR0djYKOyy3r17k5SUREpKCmvWrMFms/Huu++Sn5/P+PHjL7vtoBNJ8uc//5nZs2djt9vZvXs3o0aNYtmyZZw7d46IiAjcbjd2u52DBw9is9lobGykqamJ3Nxckdqv+iZMJhNjx47lmWeeYdy4cW1C+h2tpDpyjUYj5eXluN1uIUVcLhcHDx4UU1Zo8bjqdDqmTZvGzJkzxSwg/cU0FpwZgSwHO8ySeXP3OobN2knR679kKDqaHE78fj9Go5FQXYgI9oWHh2Oz2YiJiRGzqk8//ZS1a9cyefJkXn75ZXJzc8nOzkaSJPR6PU1NTULaqKisrNTEskAZeMHB0sbGRqGmY2JiqKmp4ZlnngEU9Xm5wcdOIYnD4eDEiRNs3rwZi8VCXl4excXFbN68GbvdTmFhIQUFBcTGxhIeHk5oaCjHjh0jNDSUtLQ0Bg0aRFNTE8uXL2f06NGakdMeVMOuI+WKiIggLCyMpqYmzWxkx44dmmlwZWUl1dXVwiFnNBq5+eabiYyMpCg7nQVvZLGnsM0WhRpIKB0UHh4uyhfcIaqa9Hq9LF68mM2bN4t1NKBk3QU778rLy9vMOMxms8ZTquYGqySRZZlvvvlGqPT9+/djNpuZOHEisix3qN1ao1NIsmbNGuGcMRqNjB07lgEDBvD444+TkZFBv379RPQ3WEerkGUZh8PRYQ9gcEUvlqoQHPybNGmSSEUAJS6jrDFpOVYNWofDQV1dHV999RU33HAD63e+TNrC95g5tO0a5dZbaJw4ceKiyzg8Hg9PP/00kZGR3HPPPZoc1LKyMk2ZGxsb22TAWywWkdkHis3Xo0cPoYIkSaKurk4E/Hbt2iUciGoC1eVC01sud7P4dymohlx9fT0FBQXCcVZaWkpkZCRLlixh+PDhmjC7JEntqgpJkjpMkPZ+2xFMmjSJTz75BIC//e1v9OvXT6T/eTwevvzySx5++GHh9MvKymLWrFkkDo7gu0yUPcVou0Y5e+ebpC26Q+wUtH37dsaOHQu0rGtWYTabefLJJxkxYgQrVqzA4/EIOwuUNg32e7RWI6AQWE2VAIVYqh8p+JqBAwdy4sQJzp07d8Hc1Y5C02OGiFDN3wshePRu2bKFadOmiXhLc3Oz+O6Pf/wjP/nJT3jqqacumGEe7PEL9hR2NlJSUigrK6OiooL9+/eL0QWKh/i6664TkdNAIEBOTg6//OUvmXPdYDKBpCHJbQhSlJ3OG5nw1BNPAMoAqaurY8qUKciyTHR0tKiTz+dj2bJl9OrVi+eff55AIECvXr00g+bcuXMi1qVm/7e2H4JTOUGJpgdLG5/Ph8ViYfDgwXz22WeaKHcgELiimNIVTebVDK9AIMDu3buZNGmSqGxFRQV9+/YV186cOZPt27fz5ptvtl+AoEZSbZGuWLKQlJTE1KlTeemll4iMjCQlJUV04M6dOzVOpszMTLH0IDZlDGlAialIcz9ls+IFpC1az6xkhT5ZWVmMHTv2fFhBEe2qOlmxYgXV1dW8/fbbgOI9Pnv2rGY6HxERoUmOar0yABSSBDsMbTabRkU1Nzfjcrk4cuQI33zzjWY2p9Ppvr+6aY3W6if4WJIk3nnnHcrKqzjw1RHxG6/XS0hICE6XD5e7GYvVwa9//WuOHTum+BLauS8oIl+tgGpzXEj9Xex88PfqZ3X0PPTQQ5hMJp544gnRgfv376dfv37C0AsEAvz1r38VI1AimdsWpTJ/9XrxHLl4DzppGCxaz47XnxDnt23bJnJrg/viwIEDZGRkaKRmeXk5iYmJmnOnTp3S2E3Nzc0aI76uro6oqCiNHVNeXq4ZaHl5eQwePJiNGzfy7LPPcjF0VKpclCSt1U/w39raWs58V8xtt86gV1y06JTGxkb0EZEYDWEYIkKxWesJ1/dg27ZtpKens//LgxgiQgkNkTFEhNLkVFbjtRarLnczhojQNqov+LwhIlRDhuDvgz+7PYqeT0pKYu7cubzyyivCXsjKytKE/3Nzc0lISNBkxM9/PZOFvCEMP13ybPYUyS0EOd/Wt99+uwhcBrf/smXLuPfeezVBTZvNRnh4uKaDVVWtdl5wFh4oWXpq0pYKu90ubCtQJNTRo0cZNGjQJfNFOipVLkvdBHdAZmYmgwYNInnYSEJCW7yINTU1mlwGSZJEnOT3v/89q1evBtBsA3EpXMpGCr4m+Fr1c/CImTt3LgMGDGDDhg0cO3aMsrIyjXG9e/dujQcWYP78+dzx7D5hWMqyjPdMFsuWLQPg1aWv8uijj7Jw4UJAUZdq+y9evJiRI0cydepUTafU1dVpJILb7Uan02lydhsaGjQzperqas1v1FiOuoIRFLsmLy+PadOmdSjw2RFckiTBoxVaDKq9e/fyi1/8gvKyEmKijaJDGhoa2iS8GAwGAoEAt9xyCxMnThRTT4/Hc0Xz9stF8C5Jer2exYsXk5eXx+9+9ztuueUWcZ3D4SA/P1+Ta2E2m4mIiODmaVOVrQDPj/xvvz3D6NGjeeLxX3Ls2DE2b94MKE46tU5ms5nt27ezfPlyXC6XZrlCcDYeKBK49cIwi8WiMUqrq6s1RqskSfh8Po0tU1JSwvXXXy8y4Dsj+UmQpCPTXrVgW7duZdSoUcTGxlJeXk58fLz4vcfj0ZBEnaKpCUPXX389q1at4vjx4xoV097aGLWCHS3bpaB2gl6vZ8uWLfz0pz/lk08+YdeuXYCSnvjYY49pZlkffvghQ4cOVTTKeUFgs9nI+PAjVq9dQ69r4vnoo49Qt0cPVgerV60Ua1pKSko0MSur1aoZ6Wazuc2yTFmWNUSqra0V8SC1HJIkaQZabW0tL730kiBNcBT9SqGR48HqJBiqNDFEhFJXV0d+fj5vvPGGYluEGYiJjRe/a25upm+fXsJgDMghxMYoxldYWBhlpcUMv3YUa9a+x9q1a8XvdDqd5vnBEqy1CgkmTbD90boOF/qs4qmnnuLHP/4xq1at4t1336W5uZkVK1YIkR4IBDh48CAbNmxAQpES27dv57PPPsPnb+btN98iKSlJkD3YE1xdXc3efV/w8ccf4/f7cTgcGtvBZrNppERdXZ3G/rDZbMJbrMJqtTJo0CBBgMLCQo2PZP/+/UiSpFlH0xmSWrRaR/Q+KJFen89HXFwc9fX1xEQbiYpsEZNer5fw8HAi9CFIkkSILqARs1FRUdw+ZxZlZWUcP3aIyZMni+9al+FCZboQkVsfqyPuQveJjIxkypQpTJkyhW3btrFp0yZ+//vfM2DAAKFW8vLyWLduHUePHsXtdhMVFUVqaip/+ctfxH2qq6vp27cvYWFhIlbz4YcfCvUWEhJCfX29RnI6HA769OkjfE61tbUah2Jtba2Iv6iw2WwaUphMJs3WEllZWRqCdBY6xAx1FHo8HjZt2iRGRExMDHa7XTOf93g8mvl4a+u7srKSYcOGMWbMGDZu3KghSWcukwy+V0dW1N17773cd999FBQUYDabKSgowO/3M3nyZMxmM/PmzRNbTbUenX379hVSRH1OVlYWbrdbqIvgXYdkWcblchEZGalpJ3UpiSzLWCyWNjaK1+vVTInr6+uFCqutraW0tLRLMvYvSpLWtsCWLVvo37+/SEtUcyeDdau61hcU1dN69hISEoLP5+O+++7jT3/6E/n5+WI3ns5MHg6+l9pxFyOhel5tdHUpSHto7z7BxNm3bx8Oh0OTCK7X64WtJssyDQ0NbWwS1UciSRIWi0U4FVWJGByTAW1Ed+XKlZoAZmfikn4S4Y9wufif//kf7rjjDsFwl8ulWUilGp/BWV2yLGs6SQ2jA0yYMIGvvvqq82vVDq5USrU3O7jUfY4fP05ycrLwPCt7qLZ4X1VVEkwsl8ulUS9ut1tIDdV3okbQVRQUFDBu3DhqamqoqKjQ5Ol2JjrsJ/nggw9ISkoiLi5OZK/bbDaNGLdarYSEhAgSqPumqqSSJAmXyyVE8K233ipW53cV1E6+0G7SXYGvv/6aYcOGieUXTU1N6HQ60Q7l5eVtckLMZnMbwzX4uKGhQSxuU1FWVkZcXBzr169n2rRpXeZO6BBJ3G43e/fu5emnn+bEiROi8mazWaMjg/UqtJU0oPgDVJJcf/31WCwWiou//xsrLoSLjXrx3r+LkOVypU9eXh6gSFPViWi1WjWDqbUjDbQb9YBCiuDZT0VFhcawra+vZ9iwYZw+fZr8/Hx+8YtfXFY5LwcdIsnq1asZP34811xzjVj7AojkWhUul0vTGI2NjRiNRk0nBG9CA5CcnMyJEyc0z+vu7S870xbKzc0lJSUFi8Ui/B4NDQ0aUtjt9jaJVW63W0MSs9lM3759RVtUVlbSs2dPcWy1Whk8eDAbNmzgnnvu6bTyt4dLksRut3P06FFREKPRKCRB60Sh1iSx2Wz06NFD0wlNTU2aBpswYQIFBQWaZ/7QuzQH43IJq25eV19fL1RKVVWVxlFmt9vbdZkHO+IaGxsVm0bdVqOuVuxPq97zyy+/wGaztSJJoNXf749LkuS//uu/mDZtGoMGDcLhcOB2u0WFvV6vhv0Oh6NNGLt1QKp1ZHPw4MFtknP+WeHz+fB6vSQkJOD3+0U7VVdXa1SH2WzWbEvldDo1KY/qufj4eJHDYrc1np8dBUBW7JHDh4+KvV9ayKy+Z7nzBtpFSaLu5aFazWoys4rm5maNJPF6vaKisizT1NTUJrM7EAho7JTWuvmHfLNKe7gcqaYal+oWXWrdLRaLxlB1OByajDOPx6PxkYDSTi1tE8Dn851X7TpkZBobG+nduze33Xpbu+XsTGl8UT/JmjVriIqKYuDAgdhsNgoKCujduzdutxu3243X66WqqgpQRlFeXh49e/bE5/Ph8/moqakRwT2fz0d1dTXNzc04nU70ej0ejweHw4HD4RBeWfU8/OO9yya4PMEb7qnqV81N+e677wgJCaGyspKEhASsVqvYsNjlcnHq1CmN76OoqIj4+HgsFgs9e/akvLwcs9lMc3Oz8JWcOnWKyZMn02R3oDdEUFRUxOLFi5Gl9l8Z1Jkv4b7oS5HWrFnDmTNnRGTzxIkTREVF0atXL+EVDA8Pp0+fPvh8PioqKtDpdCQkJNDc3ExTUxNWq5XevXsTGhpKbGwsn3/+uWZbJp/PR2FhIZMmTcLhcBAaGir2Tf9HhEqUpqYm4uLicDqdYtVhTU2NCO83NTURHR1NdHQ0ZWVlQnLodDpKSkro168fBoMBWZZxOp0UFBSIFEp190d14byhhxFT8Vni4+Po2bOnsvFgXE9WrXzninODLweXfHOW1WoVq/5V+Hw+sQBJje4GAgGhalT26/V6sa13REQEfr9f+Ap8Ph8ejweDwUBYWJhY4mkwGJAkqUN5Jj8kfD4fUVFROJ1OnE4nUVFRbewv1daKiorC7/djtVoJDw8nJiZGbPsVHx8v6qpKJXW7DTXcYbFZiYvtKd7zo8aKVHS1xL3s16tdyQowFa2XObbGP5p66Uz4fD6xL+yVoDv3i22Ni/Z2MH/UpJkrJQi03W25NTri3PpnhLoo6ko7VZZlJE27B8jZuEjYRdKdi5ApYdGidNSpb2e2oKbHf3un1PJgKQSdTsd7OUqWuMFgOO8D6fp33f2rSZPOqI/E+fexFu9BkkJYXZgsFrsF3p6BThpKYFgSynt8O/nd7bIsB707Vnlnb3p2oRwIBOTCPes07/O9ih8WAblQTgPtu5QDyr91i1KV9/l2AUJlFKeeIp6KOJN1B7/aoaxnHNrq/SmtyPUvN+L/0ZGzfgOZpFL4ess236rIGJp8LQxREpCUV7t24uww+L3UhXvWaVi6ME2S73hRPVbeUP2v8Kbuf0YE5EL5TpAXvre75dwF+qKz+0iHLAsjx3S2mMzlvxJ2ycy3A2QuUxcftd0c5iq6D1JRCZmSpJHuUosK0Bj7nd1HOkmShJHz+c432V2orBfd894iZidL5JS0/0D5X2wG8s+Adttc7Z4uHLxidiMX7+F1Fop1rTOefII0IPvzPV328KvoGGRZRk5OIg0oLikJ+ub8dLd4D+tzitr9XWdAkCQnN5uFt7dsOEdxETtoZbwGPfOq2ukeyCipj5KczNPrX+CNX80WbgnQUZSdju65HH41IznoVwp5Oq2PVOPkhdSWqa461YJUuUjMj/2dagxdRcfQ2gQt2P2uzHmXCSCnLkxXruvCCYVUuGedPHz2r5GRtW66tIXIO7p/Q/2r+MfD/wGQWj7OfKkSVAAAAABJRU5ErkJggg=="
|
<image>北京市一居民小区为了迎接2008年奥运会,计划将小区内的一块平行四边形ABCD场地进行绿化,如图阴影部分为绿化地,以A,B,C,D为圆心且半径均为3m的四个扇形的半径等于图中⊙O的直径,已测得AB=6m,则绿化地的面积为()m².
Choices:
(A) 18π
(B) 36π
(C) \frac{45}{4}π
(D) \frac{9}{2}π
|
\frac{45}{4}π
| 69,644 | null |
\frac{45}{4}π
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAABJCAYAAAD12S63AAAK5ElEQVR4nO2dX0gU7xrHn41fxQFLoYkWFBZTaD1nwREjpT/sRZaek+uJErzpwgupyBsDR4QDxxsvjIKMFFrtosBAqCiiSF2FFbrQ8ofC2Vir2doIasvOjz1HOmrofM+FzTCzzs6OOjszq35gcXf+vY/v+33/zPs+84wDAMgkhoeHKT8/nwoKCggAORwOs5LeIgnbzEzsxIkT0vfNUvhq9aumpoYcDofiMzw8bIF1RIQ0IQgCBEGQfnMcB5/Pp9i/mfH5fAgEAhAEAYFAAEQEnudNt8MBpL8L6Onpof3799OJEydUa8RmxOFwSHkRiUSosLCQeJ6ngoIC6RiY0E2mvQuIRCIEgPLz88nn86U7uYxgeHiYOI6Tfjc1NRHHcYrCJzKpm1xvEyI25cmadI7jAAA8z0vfNzt+vx9EJH2saPpF1t0CiCpVU2tPTw9dvXqVtm3bRoWFhetNasPw9OlT4nmeAJDf76fCwkKKRCJEpD5oTCdp6wLk/5AgCBQIBLZEQMv54nA4pOb+/PnzREQ0MjJCRMqKZIYYfkvHRSORCF2+fJmePHkibXv//n06ksoY8GtANzIyQqdOnZK2ixVl//79K87JiDFAIhzHrejbampqpG2bfRzg8/kUfb6YL4mYdZtsym3gZga/an4gEKCTJ0+u2O/z+RQtpdlsCcACYKNpcFOngrdYxi6FT0TkaGtrS0sLYCeV2wn5DKAdMLQFkBe4/B8V/37+/Fnxe7MRi8UU/7stKogpQ00A0WgU2dnZaGxsxPz8vFnJ2oKZmRmcO3cOLpcL8Xh8xf5Us6npxLQxgMvlojdv3lAoFCKWZWlqasqspA0Da2i5Hj58SEVFRZSXl0ehUIiys7NXHKM1m5p2TJccgM7OTmRlZaGjo0N1f6YvFQuCgFgshqqqKrjdboyNjVltUlIsEQAAhEIhlJSUwOv1IhqNWmXGqkklTkEQ0NvbC4Zh0NbWhsXFRZMsWxuWCUAQBMzNzaG5uRnZ2dno6+uzyhTDiEaj8Hq9KC0txeTkpNXm6MIyAcgJBoNwOp2oq6tTHSTZBa3af+3aNTAMk7Rbsyu2EAAAxONx1NbWIjc3F8Fg0GpzFGgVfDgcRnl5Obxer6Xr+mvFUgGoZWxfXx+ys7PR2tpq6/5zcXERbW1t2LNnD7q6uqw2Z83YpgWQE41GcfToUbAsi9evX1ttzgpevnwJlmVRVVWFWCy2Yn8m3cXYUgAi7e3tyMrKQmdnp9WmAADm5+fR2tqKvXv34s6dO1abYwi2FgAATExMwO124/jx46q1zSyCwSCKiopQW1uLb9++WWaH0dheAAAwOzuLxsZGMAyDR48emZ72pUuX4HQ6TU/bDDJCACIDAwNgGAYNDQ2YnZ2Vtq+nz9U6d2BgALm5uaivr0c8Hs+ovl0vGSUAYHlhpbq6Gi6XK21TrPF4HPX19XC5XLa7JTWajBOAyK1bt5CVlZV0unWttfX+/ftgGAZNTU2KVmajkrECAJYnYUpLS1FeXr7uSZhYLIbTp0/bfvHGaDLaJcztdtP4+DhVVlYSy7J0+/btNV3n7t275PF4yOPx0NTUFJWVlRlsqY2xWoFGMTY2BpfLhdOnT2NmZkbzWLF7iEajqKioQHFxccYs3hhNRrcAcsrKyigUClFOTg4VFRXR4OBgUgcOh8NB3d3ddPDgQaqoqKDff/+dWJY112C7YLUC08GDBw8k97OFhQXFPnHx5ujRowiHwxZZaB82pACA5UGd1+uF2+3G5OQkFhcX0dHRAYZhcPPmTavNsw1peTbQDuzbt4+CwSDduHGDDh8+TDk5OVRcXEwTExPkcrmsNs82bJgxgBoLCwv05csX2rFjB23fvp3m5uasNsl2bFgBjI+PE8uyFIlEaHp6mt6+fUuHDh2i4uJiunfvntXm2Qd5f7Dwv5/SJ1NInPGTLxw9ePBgxTGZ4n5mFooWYMeftiv+ZgKiLz0AGhkZIY/HQz9+/CCe5+nMmTMrHlHzer00PT1NS0tL5PF4aHR01CrT7UGiIjKp9gPLtVtcvMnLy8PAwIC0b2hoSBGLJzE2Qaa4n6UTTQEkdglqXUSyLkOrO9Hb1SQ7Tr790aNHcDqdaGxsxL+//SHtb768HKhCfq4oAnmXIHc/C4VCinS0HtnaKEvDKVsArd96vq9mX6pzBEGQvs/MzODs2bP484G/4MWLFwpRcByHmlN/VwgXgBSQUY329nbs2rXLNu5nZrEqAWjVxHQKIHH7nTt3wDAMWltb8Z8//qvYJxZyODSt2C6PyCmSWItfvXoFt9uNiooKS93PzETXGCCxJmkdm+q49Qjg06dP+OvJv4FlWWnxJvHaPp8PHMdJhS4/pqenJ2kLIGKl+5kVSLmRrJC19pnZBXR1dYFhGPzzH0oHkMTjiAiBQEA1TVEcenj+/Lmq+9lGQyEArUGZVkEZNQhU+/2vqRC8Xi/Ky8ulxZv5HwuK88WxQTg0jd8c28HzvHSMeJ2BZ4OaUTnVBnVmuJ9Zje7FICtuD8XFm2vXruk+R2wBEgtU7TZQL6ncz9JNOu84dAnA7MKfnJxEaWnpmh4dTwxLz/O8ovDXmpmJ7mdW3gYambamAMyeGhaft0v15E2qDPD5fCmDMa8lE0X7srKycPv27VWfb0dM8QfQk9ljY2Nwu92orq5e8y2YWbVyNe5ndsdyh5DZ2Vk0NzcrFm/sRDJRzc7Oor6+HgzDKKafzbTBCMFbKoBgMAiXy4Vz586l9Xm7dEbhkrufZWL0M90CkL/kQBxktbS06E5InvnxeBwNDQ1wOp1prz1m8OXLF4X7WSaR0iFEjG8vvuAAAF2/fp0cDodqiPNkiEuyg4OD5Ha7aefOnRQOh6myslL3NZAiTFuq/enC6XRSMBikixcv0rFjx+jKlSuGXVvtDWPyJfB1k0ohlOT+meM4BAIB3UqbmZlBbW0tCgsLN/TzdqFQCCzLGhr9TB5iXhAENDc3p5zS1kvSqwiCIDX78m0ifr8f796905VIf3+/tHiTif3kapmfn9cV/UzvmEQ+ryHfZsS7FzRlRETw+/1J96f6B8RgiSzLbtipVC30up9p5WMgEFAt6JaWFlVhrJakYwCtV5mIaIU27e7uJo/HQ2VlZTQxMbG5nrf7RSr3M/zqw5PlIwAaGhpSHSclvmJuzSRThjiFmqyfT6ZaMVhieXn5Cg+bzUCyfJG7ny0tLem+XrIi4jjOui6A53lVYXR0dGD37t2awRLlGbRR3Kr08uHDh6TuZ2oke9diqsq5GnQNAuUJBQKBFX1PKBRCWVkZvF4vPn78uG6jMp1UwtYb/czv96tWQJ/Ph5qamnXZKJLyXkJ0oxI/ckWKiyMMw2gOFjcDq23N5O5nX79+VT2GEhayxJpvxOBPSmOtJ46NjWkGS9xiGS1hyN3PHj9+LG1PrHTyjxHNvpxVC0AMlsgwDPr7+w01ZrOSGP3MzLFRyqlgyKYbR0dH6cCBA8TzPIXDYaqrqzPmVmSTU1lZSeFwmGKxGHk8HhofHzcvcT0qicfjUrDEjbB4YwV6a7Wa+1k6W4SULUAsFiO3200/f/6k6elp1bdfbmEcFy5coFevXtGzZ8/oyJEjxPO85kTRutGjkkxb4rQjgiBIHz3I3c96e3vTZtfWq2Ntzvj4ONXV1VFJSQn19vYSwzCGXt/QABGilrY0pQ89+ZQY/ez79++G2rDVAmQQExMTdPDgQSIy7tW8/weAk0F2KHKSrQAAAABJRU5ErkJggg=="
|
<image>如图是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()
Choices:
(A) 40√{2}
(B) 40
(C) 40√{3}
(D) 30
|
40
| 69,645 | null |
40
|
"iVBORw0KGgoAAAANSUhEUgAAAH8AAABsCAYAAABD/20mAAAYOklEQVR4nO1dfWxTR7b/3QS29NVbr9qL4uo5hGIHuzjSWgq0qUhrojjACrQEJbToKSuCipQS87ShRNrsqoitlD+yuwmFtw7bClrCU2mzItRhFy1JEx7efaBNCTSsauejiWlSZx+OwlOTxjwl1L7n/WFf5/oz/rj+SMtPisAzc+eeO2fmzJkzM+cwRET4DmJ2dhZ37tzB0NAQHA4HzGazL89ms2FyctKvfG5uLtatWwcAWLlyJTZv3gy5XI78/HwUFhZCIpGkkvyUgMlE5hMRGIaJqczk5CSuXr2K3t5emM1m3Lt3D8XFxcjNzYVCocCmTZt8DFy7di3y8vL86puYmMD4+DgAwOl0or+/HzabDXa7HdevX4dcLkdJSQn0ej30ej1ycnIS/q5ovjOZyEjmR4KwwYaHh/Hee++hs7MTTqcTOp0OJSUl0Ol0UKvVor7XarXCbDb7/liWRUVFBfbv3w+FQhFEW+DvdDM6JCgDwHFc1GWnp6fpnXfeocLCQpLL5VRfX09DQ0NJpC40rFYrHT58mGQyGRUXF9Pp06fp66+/TjkdiSAjmB8NHA4H1dXVkUQioaqqKrp8+XJC9fEdTtjxAjthtJ2yo6ODXnnlFZJKpdTQ0EDT09MJ0ZYqZDzzJycnqaamhqRSKdXX15PD4Ug3SWFht9vJYDCQVCqlurq6IFo5jotJyiUbWemedsLB6XTil7/8JbRaLWQyGcbGxvC73/0urKJFSVZdyDNQIpaRy+UwGo0YGRnBqlWrUFBQgF//+tdYWFgAADAMk1nzfpo7X0iYTCaSyWRUU1OTESI00miNlOdwOKiqqory8vLoypUrySAtIWQU8+12O+n1etJqtdTX15duckQBx3FkNptJrVbTzp07I3bmVE8JGSP2b926heeffx5btmzBwMAAXnjhhXSTJAoYhoFOp4PFYoFWq8XGjRthtVrDlk0pkt27olFy2traiGVZ6urqSjY5aUdHRwexLEsdHR2+tHQpgWkV+y6XiwwGAymVSrJYLESUvoZIJfr7+0kul1NDQ0Na6UibhW92dhZ79+7FgwcPcPnyZTz55JPpICNtmJqawo4dO/Dss8/i7NmzfnsHlCJrYFrmfKvVio0bNyIvLw/Xrl373jEeAHJycnDjxg08/vjjKCoqwt27d315KZv7Uy1qurq6SCqVktFo9NMHvg/iPhyamppIKpWS2WxO6XtTynyLxUJSqTQqxe671hmW+h6TyUQsy9LY2FiKKEoh86enp0mpVJLRaCSi7x5zxUBjYyNpNBqam5sLyktGe6VE4XO73di+fTtUKhWMRmOyX7es8bOf/QxOpxMmkynp7xJF4Vuq/xw5cgQAcPLkSTFe953GmTNn4HA48NZbbyX/ZaLLEvIXUW1tbaRQKDLCRp/JELaZ3W4nuVxOJpMpqe8Ujfmh9sX7+vqIZdm0HLZYzuA4jvr7+4llWZ/xKxlImsLH997vg8k2Wejo6KC8vLykSU1RFT4SWKbKysqg1+vxi1/8Qqzqv5c4evQohoeHceHCBfErT0aPam9vp8LCQnK5XCHzHy3zogPHcTQ/P09qtTopElR05s/NzZFcLqf+/n6xq/7eore3l9RqNc3Pz4tar+i2/bfeegs7duzAxo0bk3606vuC0tJS/PjHP0Zzc7Oo9Yo659tsNrz44osYHR2FVCoVq9pHgGcXsKCgABaLxXeOkRLc/RN15Dc2NqK2tvYR45OAnJwcVFVVoampyZeW6O6faCOf75ljY2OPmJ8kiN3Goo38pqYmHDhw4BHjkwQiQk5ODioqKvD222+LUqcoI//+/ftQKpUYGRkRbT56hNCw2WwoKirCl19+mfDNYVFG/ocffojdu3cjJyfHp+E/YnxyoFAoUFxcjIsXLyZc15LMj0YwnD17FtXV1QCWAdMjfc4yWZnu27cPZ8+eTbieJcV+JPFNRPjHP/6B8vJy3932jAQBCNsnOaTpKGPccLvdkMlkuH37NtasWRN3PUt+daSRzDAMzp075xv1mQgCIjAe8DXBMhn1RITs7GxUVVXh/fffT7iyhCCXyzN7y9ZvG8Edpojbl++3NZ00ohLHp59+Smq1OqE6EpJ3w8PDcLlconvBEBUMPKOagHCCjhGkCyVdJmsvhYWFmJycxNTUlC+NYly4JcR8s9kMnU4XMi9WQpIKBgJOchj80wkwWYzvyrT+31s8WZlzdXFJZGdno7i42M/RVKzKdsLMLykpCZmXkVo/AS2GbdDsugwrx3nv3A8jq7UeZYda/IZ6RnVeAYR0bdmyBdeuXUuosrghk8kye74PQHOtnqA3BKVbL7UQUErWTJ7kQ6Cvr49UKlXc5yNW+HcENxgm2/sDi/NliEE8MTGR+fO9AEOXWlB/qhcmyyfgl3dEBIYReNxgIq4JMw4vvPACJiYm8M0330Qwq4daynIgYvxTecYTEcD4L5MCheDY2Bg0Gk2C5KcOxtZ6lB1sQbmGAd8YnqkpC1/YFu/JZaawDw+VSoXR0dEIdHu+le/g5E1jGBIynwORGwDAeDnOgIPgCT8MDQ0hPz8/UdpTAsIgvugByrZt86Zwfvm9XaegN/wEG3xfvnyQn6/AyMiIH91E5MezzuMGZGVlgWEYZG2tBWEQhkMtQuZnLYp8viZe+2WCheHYXduyEfnM4BfoBZCv3OAdAYufbb3UglM9gOHgG2mjLxGo1RswOjrql8YwHoZxQ51gGAatd9f5HErRia3IYjTAs/mLrUAhtFuKIExGhoaxXq0S8TOSB9qwHnoAd0cH/VYhblhRV14PvaHZOx0sP6jValitnwelEwaxbcNu6A3N6DEeWczYUI7mWj3WKfORxds/GIaBYevi2jcrK8srKkoxKOwE3v86HA7k/qs8qR8mFhjagO21ehw51bqYONiJFUwBENg4yNxlXijI5XJMT/8vAqeyS8db0YtSnDQeDpq2FYr1UCg3BC/1astAJgtHvCm0uVbvWQb5GTvdlJ+vSOl14kTAL4Vqyzy2Po8um+X9zsUy8XrgTCf6+/upsLCQiAReRclKeoBqWy5GfNZP7BMGMQKDn0Z8pLUHtWVX8fNDxwV9JwtO5/9BIvmX5HRnkcGL+tZPPPMeRwSOe7ikqM9IQ1UAJBIJHjx4AECgqHt1nHUKwbTMBUszH/MZhsHgpStg1j8bVGhdvh69X9j80ubmHuCJJ34oBv0pBXlF+l/+0gWVSgWtVosbN25knnfMKEBEkEgkmHvg9CQw/qKf8fGbA7L8vYEDgJ+Rp+uTLmzfeiLoJQrFemCU/Ow9Tuc3op8jTyUaGxvhdnuWtnv37sVrr72Wcf7wo8HCwgIezM55f3nX9F4F12azAdCAkLW4WhvsxPHRfBzZpRFo+xjEX/5A+Mmu5zy/BUqPzfYFylRKIEARosxul7B48OCBj/FCBDI60xkPeE70Em+J9YLBBhhaavGH+l1ouWT1Md7S2Qzm5904sstrnPPN/lYT6Q3NfgoBx3FEVhMBoOZO/6vCEokkpPuQTAfHcWQ0GqmoqIiefvppWr16NV2/fj3dZMWMmZkZqqqqotWrV9MzzzzjSxcqqZbOZs9ijvEouoH89THf1FJLtc2moAMMr28Foexg0MtlMhlN3ctc9+fhwHEc6XQ6amtro8nJSZLJZKLfgUs2ent7SSaTUWVlJd281U8b1M+FLBd5seL2MJ8jK5UBfksfsl709JogxruJyE1KpXLZLPWEcDgc9Nhjj9HMzAwREVVWVtIHH3yQZqqig9PppNraWpJKpdTe3k5E/ks9HpzgxBLHcWFPJMEnGkL8LYr64ONPWq2WBgZui/FNKYXRaKSdO3f6fvf29lJRUVEaKYoOfX19pFQqafv27X5BHMzmv5FOp4vJJsGXzdLsOrJo9/X9uUFEi4pBiDMfz+TI8M9/3hNfg0kyLly4gMrKSgAepba0tBQzMzO4deuWrwxlkIXP7Xbj6NGj0Ov1qKurw5UrV/wCTkxOfgWWZWNSTvmyK0JnBzObvMse/l/Vc2qMjY1FfAll2FJpamoKfX19uHTpEoDFRjh06BDeffddbNy40S89lQhsXwC4c+cO9u/fj1WrVsFisQSFgwOA0dFRFBQUxPVOPy4TgIdEvj+XII8niP9XqVTCYrFk1ChZCh0dHSgrK/Pz9UtEqKqqQmdnJ2ZnZ9NGW2D7/uY3v8GWLVuwd+9e/P3vfw/JeMDjxzjerXX/wxwAfsAwYMAgm2HCiQUAnt2k0dHRJc/1ZxJ4ke93QpdhIJVKUVFRgTNnzqSROg8mJibw4osvor29HWazOaxPI37Q2Ww2qFRx7q6GUggeckShveksYnx8nFiWjVrJSBd45SZQyw+E1WolpVKZStKIyH9dbjQaSSKRUENDQ1h/RoGI9E1LISLzv+U4WuA4WuA8Fxg4IlrgOPrWW072zFr6fHiEFjiOHgbVsfhs4FohUl64clyYdP75b72//egWlP+Pd9+lHbt/GrExXnrppbS4jnM4HLR9+3ZSKpUxxRbq6+tL6OJGxKPbK7xTwApm8eh7lmA6eLmsGP997b88UwUBvMHURZ5yP2AYrGD8dYdIeQhTLhu0ZN0eWgluQT5DhIfkybv40QVUVOwJ2PX2h8FgSLlv4IsXL0KlUkGhUGBgYADPP/981M8K701QFKHfghCqRwjFPkdEC7Qonr4VlDt15j16Zd8+7yhclAjBI3VxhEbKE2IhRNpSzwdOV/xvh8NBj/2QpemZmYjTmcvlIrlcTuPj4xFKJQa+HWdmZqiyspJkMhn19vbGVde2bdvoj3/8Y9y0hB35jODfLAI4hoEbQLagTHHxZvytuxs/4EeisFNF6nBR9crw5WJdX3R0dKBsy0uQPhnZa0h2djaqq6vxzjvveN6ThJUMwzDo7u6GWq3GqlWrMDw8jNLS0pjrcbvduHHjRsgbU1HTzfcCNwnnSP/RFTjX8/iW42jNusWLmsL5V6gDLAQ8Ey5PiIcB74um7nAjX6fTUdu5/4xKkbXb7XHZ+6OxsM3NzdHrr78eFF0rHiQ63xMJRj4DBvDOkVkBp3U953qYINPPCoZBeeW/4cOPP8ZD8k+Hz14ArER0eS6BbWElw4ATlFvqeRcRyDvnc4Lf/zM1hU/77mDnrp/65YcbKXK5HMXFxejo6AjKi4SllrU3btxAQUEBxsfHYbFYUFFREVW94dDe3o5XX301oTqivq4VbsR89tlntHbt2oR6YDJhNBppx44dMT0Tzt4fz5m++fl5amhooCeeeIJOnz4d8/Oh4HK5iGXZhHWTqJjPUWRxqdVqUx4cKFrw27exgOM4UqvVCbuQHRgYIK1WSzqdjsbHx0U7EGoymUin0yVcT0Tmu4kLuYYPxIkTJ6i6ujooPd2nX5cy7ESC0WikAwcOxP3uxsZGkkgk1NTUFLZMvO1TXl4ec4cOBVEcL09PT5NUKs2Y2PZ8owZu38aCr7/+mp5++umYO87Q0BAVFRWRVqv1KcJiDoKxsTFiWVaUU1SieCNgWRb79+8XzTlgrKAAAwevfAm3b2PFj370I1RWVgbZ+ymCAtja2opNmzZh27ZtuH37tu86m5h7HL/97W9hMBgS9sEHQDx/+3a7nViWjdvOHC/CjapERD4Pi8USlb3f4XCQTqcjtVqd1NDvDoeDpFKpaG0smh8SuVyOnTt3Ljn6SWTDSbhRxW/fJuIOVqPRQCaTobu7O2yZ8+fPQ6VSoaCgAHfu3Elq6Pempibs379fPBe3onQhL8bGxmj16tVBPTMdil88Wn4otLe3h9QbpqenqbKykuRyeUpWOg6Hg1iWFVWvEj3SRn19PdXU1Ihd7ZIQdjAxRD6PUPb+rq4uYlmWqqurUzbNvfrqq9TY2ChqnaIz3+l0kkwmS2uYlVi1/KUk05tvvkkNDQ00NzdH1dXVxLIsffzxx4mSGZEeIU09PT2kVCpFP2IuOvM5jlsywFKyIYbIDwxy+NRTT9GaNWto586dSQl1Fq4DRgqwlOh0mrS4enq9PqKBI1kQU+QTeRq/vr6eVq5c6TedLdXwYuk5b775Ju3Zs0eUugLxnQuqmIhhRwiO42hgYIBUKhXpdDo6f/68n70/GuYm2gGSHVQxqSHU0xFOVafT0blz5xKqw+Vy0bFjx0gikdDJkyd96WLY+6PFsg6nyuPs2bOkVCpTEkhZDJHPm2eLioqCOm2i9v5oYbfbKTc3d/kEUo6Ew4cPk16vj1kBjFVs8iI/XnF74sQJkkgkdOzYsZC0zszMxGzFjJWW+fl5KioqomPHjsX0XDxICfNdLhfp9XoyGIJdn4qJeLX88fFxn3l2KbFeU1NDzc3NEcskgqqqKiovL09a/UKkhPlEHouYUqkko9Eoar3RnssPh7a2NpJKpVRfXx/VOjpae388aGxsJI1GkzK/ByljPpGn4aRSaVJWAK2trTGd2Ll//z6Vl5dTXl5ezObZzZs3U3d3d6wkRoTJZCKWZWlsbCxl5vCUMp/IYxqVSqWiS4BYRD7f0NXV1XGNsnD2/njAcRw1NTWRVCpN+WmolDOfaFF0GgwGUayA0Yr8mZkZn3n28uXLRBTfWtzlclFubm5cZ+iE75ufn6fq6mrSaDRpcXSRltASGo0Gt27dgs1mQ2lpacK3Y6PZvv3rX/+KgoICOJ1ODA0NYceOHQCWPmhBIW7CZGdnY9++fb7z/bGAf9/9+/exefNmOJ1O9PX1QaFQpP7Gc8q7mxccx5HL5SKDwUD5+fkJGTMiifyFhQWqq6sjqVQqyhYvD+H5/lilx82bN0kul1NDQ4No9MSDtDGfaFEEtrW1kUwmi2vzIpLI5y826HQ63z64mMrUnj176IMPPoipzo6ODpLJZAlf2hADaWW+EDdv3iSZTBZyzzpS4/7+978PUr5482wkxTKeThD4TCz+fFwuFx09epTy8vLo888/j/ndyUDKmR+p0b/66ivS6/Wk1WqjPgsXKPKHhoZIq9WGNM8mA7xhKNJ3mc1mUqvVSdsOjhcZMfIDG85kMpFMJqOampqIjRUo8puamnzm2WjflSjNRqORXnvttbD0VVVVUV5eXlru/S+FjGB+KMzNzVFDQwOxLEvHjh0L2Ql4W/74+Di9/PLLpNFoaGBgICn0hOs0oez9DofDj/ZMdfKYscznYbfbqaamxmeCFSpuOp2ODhw44HNlko5G5jjOZ++32+1kMBhIKpVSXV3dkoct032jacko2pmCqakpNDU14cyZMygvL8fs7Cz+/Oc/+5wp5ebmRnye4nQLF81zN2/exNWrV/H444+jtrYWb7zxBliWjfldqUbamU/gAArt657zdxYOwGMcOX36NH71q18BAIqKilBYWBhzY0fbGXjfeIG/p6en8dlnn8FiseCpp56C0+nERx99hK1lW0HILP+D4ZB+5scwIq2XWjCqfAPlGga3bt3CihUrcP78eXR2dsLpdEKn06GkpAQ6nQ4qlUpUBlitVpjNZt8fy7KorKxEdXU1FArFsoo8wiPtzI8WhEFsYzSotXAhw6NMTk7i6tWr6O3thdlsxr1791BcXIw1a9Zg3bp12LRpk+9+29q1a4OcGk5MTGB8fBwA4HQ60d/fD5vNBrvdjuvXr0Mul6OkpAR6vR56vd7nAtWwlcGpHn9amjstXte1oaJZZg4ymvnCyB7HDxnQPTqGt7u7sIFCBPrjn/FKktnZWdy5cwfDw8O4d+8ezGazL89ms2FyctLvOblcDqVSCSLCypUrsXnzZsjlcuTn56OwsDDixUjDVgbrDB6GWy+1oKC8HqYwnTSTEMnJZsag87gBVKaHu3XEkxChTXlRL5VKodPpwoZ4FwuEQYz0lOJQ9wYAgEapSOr7xETmyiR4eWz9E3qoDEfyGVwtW48NaQx4GkpIDl66AsbwEzzn7XQH39i9bII0ZjTzAeDQHz5B65FyAIB+vXdUhZioUjF7hVIgR21j6G2t90Xn2nacCwrSmKlIO/M5ASf5KA88TC21aD3V6onwqdm9mBFiUCVjaRVNh+rpegcmCwciQmdzLXYXZKHTmrFqlB/SzvyguNV8gw92oofZCuI8hyk+72xG/tp1qaXNr0OFiCg+2IlTOIhdXhG/68gh6AH0dF1aFqHY067wBfr7A8MA1k4wh7tAnyyelBm7+yUYJp0h2xcjivPo7OrBwe1bBTHrRtALYLsyf3mEYk+dJTkSFr3vNtfqiWEYYgQBn/gYuEAW6Q3NPu+g6Y50uxh3mI9fy4SIO5w5CNxLyKB1fnQGEUpT6BahzYFfy3uQBd+UUHYQXHcrwARNZhmJ/wfAN9F3IbiJ1QAAAABJRU5ErkJggg=="
|
<image>如图,在⊙O中,CD是直径,点A,点B在⊙O上,连接OA、OB、AC、AB,若∠AOB=40°,CD∥AB,则∠BAC的大小为()
Choices:
(A) 30°
(B) 35°
(C) 40°
(D) 70°
|
35°
| 69,646 | null |
35°
|
"iVBORw0KGgoAAAANSUhEUgAAAIYAAACdCAYAAABxaADJAAAbmElEQVR4nO2df2wTZ5rHv0PaBrop2W29hxFGaYkDLkbC4JSExqyDCMRoQc2qaQMlS1NdUJYYQbimwhVB9HSwS6+hm55CG8ofgJRVTZs22RVV0wJLIhxhNqHJ3To/aMxtu+HUQJAaCLtJKtvP/WHGGdvj3zPOOPFHSos9M++8nnnmme887/s8wxARIYkkMW5i8P4FgGEYEBEYAIQN6KWvsJzmgBiAEWnfc0RqN4kAnPiKULkR+OyvThARXESorWSgZjahjyHRjAJIGobEcHl9IthwA0YUqadM4PUTF1C58RL27XlX1J4kDUMqEOB7Ovr++CWYpc/4rbokqwAXv7kpaneShiEVeO4LrV99CcNGw8NProfGA2RmKkXvTtIwJAqhD1+878LmF5Y//MYtNgHg5k07CpZmirr/pGFMNwGeCZm+b8AYN2M5TbkSBgB6/4Tq9y9yPIk4JA1jumHPO9dACGhpvYClz2T63WKM+18ANu7G6y+oxe1WMo4hNVwgDGATo4bR5pp6IulrAaP+FbBxN+ir90XvRdIwJEbvn2qx4oU3eJfVtthE9xQsScOQAoQQIUwXrnd+De1z2XHqUFJjTDtEFNQoent7sWTJUmwyFOL+/fsBxarQJA1jumH4reL27dvYtetfsW7dOtwZ/h6LFi3C/Cfme+yCPP8Rh6RhTDO+ZjE5OYmjR49i2bJlmD//p1i2bBkOvGlCf38/nC6nx44Yvo0FJGkYEoC98D/99FNkZmbi6tWruH79Oh5NfQw/S/8pDh06BKVSia6urrj16ZG47SlJAFy43vU19u/fjx9++AFnz57Fhg0b8OWXX6KxsRE9X3cDALRaLXp6epCTk+PeLKRgjY2kxxCRYA98RITbt2/jtdf+FVu3bkVpaSlsNhs2bNiAW7duoaysDOc+MuOpp54CADz33HPeHkPMMXckDUNUmADCcnJyEr/97W+xYsUKLFq0CIODg6ioqAAAOJ1ObN++HVVVVcjLy/O0kZubi6tXrwIIbnCCQUniSlNTEykUCiouLqahoSGvZS6Xi0wmExkMBr/txsbGKDU1lcbGxuLSz6RhCIjL5Qq4zGKxkFarJa1WSxaLhXed1tZWUiqVAU++Wq0mq9UqSF9DkTQMkRkaGqLi4mJasGABnT59Ouh6CoWCenp6/JaxBldeXk51dXViddWLpMYQiQcPHuDQoUNYsWIFVCoVBgcHUVZWxrsuqytqamqwcuVKv+WszsjOzo7fI2tczG+WcebMGZLL5bw6gg+TyUQlJSUh17NaraRSqYToYkiShiEgrI7Q6XRha4FQuoKLw+GglJQUz7rBNE2sJA1DAFgdoVAoqKmpKaLtFAoFdXd3h72NVqultrY2IhLXMJIaIwbu3buHQ4cOYdWqVdBoNLDb7XjxxRfD2tbpdGLbtm2oqamBRqPxWkZB4hTZ2dmeeIaYJA0jAtgTRkQ4ceIElEolbt26BZvNhoMHDyI1NTXstmpqaqBQKDyBLS6BAmOA2zB6enpCrhczovmiBITrmgO56YsXL5JarSadTkednZ1R7YfVFQ8ePAjaBz66u7tJqVRGtd9ISBpGmNjtdtqyZQspFAr65JNPgq7rcrkCnuChoSFavHhxRLqCi8PhoLS0NBoZGYlq+3BJ3kpCcO/ePbzxxhvQarXIzc2F3W5HcXFx0G0YhuF182y84uDBg366IlxSUlKwYsUKXL9+Partw2XWGwYFEXqsjhgfH4fdbo9YR/hSU1ODRYsW8eqKSGCH4MVk1s/H4LuyL126hH379mHhwoVob2/H8uXLebZ0G1W4ArClpQVNTU3o7u6Oqp/cfa1duxZNTU1RtRPJDpM8xGaz0datW0mpVNL58+djaourMex2O8lksqh1hS/9/f2kUCgEaSsQScMgopGRETIajZSenk61tbXkcDgEa3tiYoI0Gg01NDQI1iYrQIeHhwVr05dZrTGcTieOHz8OpdKdPW632/H6668jJSVFsH3s27cPy5Yti1lXEEcLpaSkQKvVijqgNiM1BoVx7//8889RVVWFp59+Gh0dHVCrhc/wOnfuHC5duhS1ruDi+3vWrFmDzs5O/PKXv4y5bV5E80USxWazUUFBAalUqph1hC9i6gpfzGYzGQwG0cZLZpRhBDtIrI6QyWR04sSJqNsJh4mJCVq1alVQXRHrPux2O8nl8pjaCMaM0hiBgkrHjx/Hs88+i3nz5sFut6OyslLUfuzduxdLly710hXkEy+JdZxjyZIlGB8fx61bt2JqJxAzUmOwfPrppzCZTFCpVLBarcjMDK8KTSwnjdUVvgEooQe8GIbB2rVrce3aNSgUCkHbBjAzNUZnZyfpdDpSq9V04cKFuO1XbF3hi8lkIpPJ5PkspN5IWMNgDwL3YAwPD1NZWRnJZDKqr6+PWx+IxIlXhKKpqYk31SDYIF64JKxhcJmYmKAjR45Qeno6VVdX0+joaNz7UFFREda8TSEZGhqi9PR0UdpOeMNgE3iKiorIbrdPSx/MZnPY8zaFRi6XB/zdsXiNhDUMVkcES+ARG5fLFXdd4cvmzZvJbDb79StWEu5x1Z0I/Bq2bt2K8vJydHV1IS8vb1r68uOPP6K4uBh1dXURzduMBd9216xZ4xcaF+IJKGEMg5vAo1AoMDg4iFdffXVa+7Rv3z7k5ORgx44dfstEnY/5ECLCc889h87OTlEalzyRJvAIDZ9rNpvNpNFoaGJiIu794TI8PExpaWmCjggTSVxjsAk82dnZ06YjfGF1RTDRF28UCgX19/d7fTcjH1f//ve/U3FxMcnlcjpz5gwRiZtcEwkTExO0cuVKP8E3nRQVFVFjY6OgbYquMSgCEcbqiNWrV0OtVnvpCN97diTtCgmrK0pKSqZl/3xwi6oIhqBmFgOnT58muVxOZWVlos5MigWp6ApfWltbKScnZ2aFxLmJwNEm8MQDqekKLiMjI4IL0LgYBp8lcxN4+BKBpaIpiKbGQaSkK3xRKpWCBtniEsfg6oPR0VG/BB6+ROB4xAHCZe/evV66giRYfn316tWCxjPiGuA6ceIEsrKycPfuXdy4cSNoAg/34E/niTh37hw6Ozvx3nvveb6TktGyrF69WtjsNG+H7fT6ZGuppWZbeC49mOsXIhF4OpCyrvClra2NtFqtYO0F1Bgu6qUCIGzD4IPVEUqlkpqbm6NuZzoYGxsjjUZD586dm+6uhMXY2BilpKQIJkA9txJfZ/37PSfAbNyIpV6z6l0IBzYRODc3F/n5+RgYGEBRUZFnOUnwHu1LeXk5cnJy8PLLLwOQfp/T0tKQlZUlWK6JxzAYTP34lneNoI0FcF1weUwhnAPjdDq9EoH7+/t5E3ikeI/mcvLkSdy4cQN1dXWe76TeZ8C7qErM+N0oepupsraZqLeZsHE3j5NxuvWEy/1vlvPnz5NSqaSCggKy2WyCuLPpoLu7m2QyWULoChZ2Kl9dXR2Vl5cL0iZ8RaPRaHT/o7eZCoy1QTZ1GwWbwMMmAksp/hApY2NjpFQqJR2vCIbVaiW1Wi1IW17is7l2D8EtNwgAFRj/M+CG7gSe3V6JwIlsFEREL7/8MlVUVPh9nyi/S8h641NxjL4WXMAGkNtYYGupxdJnsvxUqcvl4iQCz/FKBE6E+3AgTp48iW+++cYrXsGSKL8rLS0NSqUSfX19MbflTjjqawFT1Qr6qgGA2xYGb9oBZHm9F+P27dvQ6XRQqVS4fv162Ak8Uqenpwc1NTWwWq0xVcyRAmvXrsXVq1exZs2a2BqqrSzw3DqabW5RWblx6naycc9xLxdTVVVFFRUVAePy4VS+kxKsrjh37lxC9DcUDQ0NVFpaGnM7vAEuvmQeFqvVSkqlkuRyOZWXl3vlcAiR6BJvSkpKeHVFoiJUvXG3YbBPnywPH0X5TjJbzWVw8CYZjUaSy+WClxMQmkDG2tDQIMn5FbHA1hu/f/9+TO2AyMcowsBgMJDZbCYXuWP0KpWKiouLPbUnE8FrsPGKwcHB6e6KoLhcLq9649EyB+B/7xr5RDrdn91x0Pz8fFy+fBkMAL1ej56eHiiVSiiVSpw9e1byKv4f//gHXnrpJdTX13vKLLH4/u5EgNtnhmGQnZ2Na9euxdioz8XtIv8r3vf6D3Qf6+7uJo1GQ5s3b6Zvv/02JosVk5mmK3w5depUzHm0fpHPcHA4HJSamsqbPOxwOOjYsWMkk8ni9pqmYPj+voaGBsrNzZ1RusIXIeqNhz21z/cA5+bmUmtra8D1+/v7SafTUW5url/Ow3TR3d1NCoViWpKWxMT33AhRbzzsGVy+umH9+vVoa2vz3OPI596sUqlw5coVlJaWYt26dXjrrbfgdDq9b2Mh7uehlkfCgwcP8NJLL+HUqVPiVKCREL71xqM5jlFP7cvPz/cYRqCi6gBgNBphs9lw7do1aLVaL1EUSqQKIWLZg1JeXo7i4mIYDIaY25QaDMP4nXxuvfGojmO0riaaAZvGxkaSyWRkMploYmIi4GNttI+7weIVOp1O8PxOKdPY2EhFRUVRbx9T+kAoncHHyMgIlZSUUEZGRszP2lwCGcVM1RWh4Ks3HskFF5Nh+BYHi4TW1lbesHq08P1odhwkUuNNZNjj4HA46Iknnog6qy+m9IGcnJyI5hgS5z5YWFiI/v5+pKamQqVS4fPPP4+lK7z3UVZXFBYWxtR2IsAeW/Y4pKSkYPXq1dHPAY3FOoWqzcAXVo8W9or54IMPKC8vb1bpCl+qq6vprbfeimrbmDzGggULoFAoYp6ZzBdW5xhuRG0xDIOenh4cPXoUZrNZ0DcJJBrZ2dmwWq3Rbcy1kn+OT3r+wqWiooKOHTsWlVXy0d3dTStXriSDwRBVWH026opADA4ORl1v3MtjzJv7mNf/w4Eb6BICjUaD69evIz8/H9nZ2bxT7YIxm3RFKNg0jqjqjftaSiTegkg4ncH3VMENq/f19YVsg41XOJ3OkOvOFgwGQ1TVBIJqjPGJHz1/fJ8BYH76z6BYnOGnM8YnfsQ/xye91g3ULsD/VJHx9BJ8deESSra9gl/84heesDrf9h0dHXjr3/8DH330ESZ/dHj1eTazatUqdHV1Rfz2g6CG4Xtr8f3/+MSPmDf3MWRrV6Gz62vPduz3j89Lxby5j3mdHHYZ+xfoxHHXq6iomAqrZ6/B//x3t9f2d+/exbbtO/Dhhx/iKdm/+PVvNhoHawhsaDzSsHhETyXsgfb9Lif3ebS3t/t1SijmzX0MCxYswBdffIGqqips2bIFb775JiYnJwEAO3fuROmO7SgoKMC8uY959h+JVpppsIaQk5MTVX2ukIYR6oqbN/cxFGxYD8uVdr8gixBwjYyIUFJSgv7+fvztb3/DsmXLsGfPHoyNjeHo0aOe9aQ+gyyeKBQKPP7447h582ZE23kMIxZ3q1KpACYFN27cENxbMAzj6Rt7wmUyGcxmM/bu3YszZ85g8eLFGBsbC9mW0H1LFFauXBlxrMnLY/DdKoApr+G7jP1+fOJH6H+hQ3t7OxiG8fred7tgy7jGyV2Pb/tb//c9fl/3X/jkYzOefPJJqJ5Vo7W11U/PsPxzfHLWepKcnJzIyzCF+9gT6jH2gw8+iOv7OgwGA5lMJs9jV6iweiLMXBeL8+fPk16vj2ibsAwjnNhGPF4rzXLs2DHe+RUTExNkMpkoPT3dU1E4SXSxpqCGEUmIPB6vlSYi6ujoILlcHnR+BTtbPdqw+kyEr954MELGMdi/UKSkpECn0wkaHvdlZGQEJSUlOHPmTNB5m8HC6jRLBahWq/Wq6hfqOAhazjE/Px9//vOfhWzSi507d6K0tDSscZA5c+bgwIEDuHLlCj755BOsXbsWAwMDs1KAEpEnC54l5HEQ0l0JlVDLRyBd4UsgkVlfX08ymYwOHz48K+dotLa2Um5ubtjrC2oYDoeDfvKTnwiiM7gn+MqVKyF1RTgMDw+TwWAgjUZDVqs1oj7wfU4kIq03LngtcTbhOVICHfSRkRHKyMgQdH6F72z12QJbbzwcAxe8ZLROp4tq1lCge96vf/1r7N69W7D5FUSEHTt2eIXVueM8MxmtVouurq6wdJYghkEchRvTdDIf3n77bQDAgQMHBGkPmErOYcPqH374IbZt24Zdu3bh/v37gu1HirBD8GEhtLsSqnKcxWKhjIwMunPnjkA9C8y9e/fIaDTSwoULgxaBSbQyUlxcLpdXvfFQ/RflfSXRJCJxuXPnDj399NN05cqVmPsSyQkUcra6FImk3rgor6VgC6tEy86dO/Gb3/wGOp1OwF5NQQGCO8Fmq88EIqk3LpphRBsBFVpX8AmtYOIrNTUVv/vd79DW1ob33nsPmzdvxnfffSdIX6RA2PXGxXJZwXRGIPfO6gopuHGXyyW5IjBCEG69cdHeiabRaEK+RJdrIGy8wmKxSEbYsf0ItwiMVPrNxbdPVquVVqxYEXI70V59lZOTA4vFEnQdrktn4xV5eXmSGc9g+xFOERju+lLCt0/s+2wfPHgQdDvRDCOSRCQx4hXRQkFGHYMVgZEy3N/E1hvv7e0NuZEorivcySGsrrh7967QXRGVRAyrs+emvLw8pGYS3GOwrmvBggVYvHix59GIeK7Eu3fvYseOHfjDH/6Ap556imusQndLcF555ZWEC6uz54YNjQdFTAsNlvDsdDpJr9cLmhAdb9grUOgiMGITzvQIwT0Gca72YDrj4MGDmDdvniR0RbSwV2BhYSEGBgYEKwIjNtnZ2aEFqJiWefPmTd40/NbWVlIoFHEZB4k3iRJW59Yb5xsDEtRjkI82WLJkCQBgYGDA892tW7dQVlYGs9mMn//850LuXhKwYfXMzExJh9W5o+DcR1r234IaBt9zvF6v9wgzp9OJ7du3o6qqCnl5eULuWlKkpqbi2LFjaGtrQ11dXciwOvEU0BULdj/Z2dno7u4OuJ7o73Zfv369Z0CtpqYGaWlpCa0rIkGj0aCrqytoERgi8iugK6aRsPvJzs4O+C54IopdY4Qq4trf30/z58+n5uZmUigUIe+7UgwrByPY26C4SK22eqh646KKTyL3gNrcuXNJJpPRk08+SUVFRVRXV0ednZ1i71qSxHu2ejCDzcnJCThvRvRbSVpaGl544QUcOXIEf/nLX1BUVISenh5s374dTzzxBDZv3oyjR4+io6ND7K5IAm5YXZAXzoQg2PhN0CH4eFknH0NDQ2Q2m8loNJJarSYApNfrqaamhi5evJgwoeZoiVdYPdB5CVZvXBDDYHfLfS0n+1fbEv573kdHR+n8+fNUXV1Nubm5BIByc3Opurqampub6YcffhCiu/79n8a3P4pVWz0cgiWiC+Qx3FXyXC4XVW5k6Hiz2xj+2vyO+32uvQ6/dcNhYmKCLl68SIcPHya9Xk8ASK1Wk9FoJLPZPKMKx3PD6vfu3fNbLobhBksQE/ZWQr20ARvor6wP6W0mANTSyy73JfKyixaLhY4cOUIGg4HS0tJIqVTSq6++SqdOnSK73R5L96ed0dHRuL+yVK/Xe/bFNT5BDcPWUkubKms9nys3ggqMtZw1fA1h6nO0V0RXVxfV1dVRcXExyWQyksvlVFJSQvX19QHfJi11wgmrC+VBqqur6fDhw37fxx7H4Py7pbbSS1+wniLqtqP48f39/Z7XWGdkZFB6ejpt2bKFamtr6dq1a7F1KI6Mj4/TgQMHBC8C43tMzWYzGQwGv/UE9RjGTW5jcBFR8/FKz/vi2a5Mh7z79ttvqbGxkcrLy0mlUlFKSgoVFBTQ4cOHqa2tjRwOhySDamyfuru7adWqVVRYWOhVBCaSPgdb12638w50CmcYvc2EjbunOkO9VABQZW1z0M1C/cBwI4vhtnnnzh1qamqi/fv30+rVqwkA6XQ6MplM9MUXX8ScQRcLgfot9mz19PR0PyEvmGE0H698aAQPdYOtOeLHVTEJdNDHxsaotbWVTCYT6XQ6AkAajYaqqqqoqakpbkPn4Rj+wMBAxGH1cNr1rTfucrkE0BgPd7y7gPv04fYWwAbq9buBSL8AfFtbGx0+fJgKCgooJSWFVCoVlZeXU2NjoyRqesUSVuczFL5XmMVsGLaWWr+gFgCv20qiY7Vaqba2lrZs2ULp6emkUCiotLSUTp48yXvlCq1Z+NrjKwIT7X6bmpr8BKgwt5KH/XG5HFFpgkTDZrNRfX09lZSUkFwuJ5lMNm2Dg7GG1V0uFw0NDVF6errnMxERQyTi4D8B4BvDcREwh/HMRUh0bt68CYvFgra2NlgsFgwPD0On00Gn02H9+vV4/vnnRdkve/zu3r2LPXv2wGq14uzZs9Dr9RG3tXDhQlgsFmRmZnoaF4BgusF72cz1I1NM1+Ag32x1Ps/N951viSyBht2DNcNZ5iJeByIVSCDnqVAoUFJSgvr6ethsNoyOjqK6uhoTExOoqanB3LlzsXbtWrzxxhtoaWnBvXv3BNkvO1t97ty5ntnq4Wb7s69K9RwDUUw3SVDiMTjIhtVffPHFsB65feuNx24YHq8UxWOoc/pvLGKJ5EjbZQcHCwsLPYODZWVldOrUKRocHIyqD5HUVv/++++9UkrFFZ9JoqarqwsdHR0eUfvII49Ar9dj3bp1yMvLg0ajCbo9cYR9T08PXnvtNcjlcjQ0NCAjI4N3m8WLF+PChQvu989EZYpJ4o7v4OD8+fM9g4PcYraBCsiFCqu7XC4qKiqixsZGIkp6DElAUTy2f/fdd16PyIODg8jPz/c8Iut0OsyZM8dTvpJtf2BgALt27YLD4cDp06fd3uEhb7/9NoaGhlBfX5/0GFInXK0yMjJCTU1NVFVVRVqt1mtwsLW11W9wkC+szq03nvQYEoBECPQ9ePAAHR0dHo9isVig0Wg8XkWv18PpdKKsrAzDw8NoaGhAZmYmnnnmGYyOjiJpGBIlGmNhT2Wg7drb23H58mV0dHTg8uXLyMrKgk6nw6OPPgqz2YyKigp8/PHH+Oyzz5KGISXE8BzBuHbtmkentLe3w+FwYHJyEu+8807SMGY6kRhbb28vmpubUVNTkzSMJPyInqKYZLpxBSyzEMwjJD1GEg4usL4i6TFmOjyXPesLWt7d7anNwWyqhItuwGg8DiBpGDMfL93pcn/V/0cwDIMT/6v03GaobhMeSVkOLHFP1Hkk/j1NMl0Q5gDowyb1r1BgrMWF+v1TC5cX4Z3dBYAyC0DSMGY+nOmVDAEtvz+Bi9iA3vp/m1rwcJ3MzKVgstQP102Kz1kBEQFMPzYyaiyrbcaJ14s83zMM45YinJhHUmPMEhgwYPq+wSUAS5RZHlHKGgID71D6HHooSAKRXJ7Yyz24z7z7nzyz9wnec17nMMGcBgHJ5Ym93Ovjs1koAGC3f+O3KtPXgnf/1MdZOcnMhzOlg61CwM0ptrXU+mUOJg1jFuKbVlpgrPXL9/l/9X0tdzAqjtoAAAAASUVORK5CYII="
|
<image>如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是()
Choices:
(A) 5
(B) 7
(C) 8
(D) 9
|
5
| 69,647 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAPUAAAAYCAYAAAAia7s5AAALX0lEQVR4nO2cW28cx5XHf1XdPd1DjkaSL/BDHrwmKTlOnuLss4GsJGdl2ZT3xe8LrByvN3mIScmIv0CysRQssPJV+xkS2LDXFCUFG8iBv8EaFi+wDdiwYFmRyOHcuqtOHqq7p3uGQ0mWZXJI/gGSM3OqqqtOnXvVUImIADSbTbTWVCoV4jgmDEOiaIx2u0mj0aBWqzEqEBGUUnfUvtPpUPEDYpMQxx3CsMoLL7zAE088wXPPPUe1Wr2HM976aLfbnDlzhm63yyuvvEKSJFQqFYxYlEAYhps9xZHE7cqqMQbf90mSBM/zsNaitQbc3kRRlLf1s4GjKEJrTRzHtNttwjCk02mVHi4i+UBbGXei0Fn7KIowxhCGIUEQoLXOGb7TFRogDAOMMXieRxiGuRIHhTYDAmoF9J3txU7DxrJqAadvnufln3bbHbpJnDvaSqVS6uWnI9NcW6NWqxEEAXv37i01qtVqWGuBgnKjEOXebwdorWk0GtTr9dy4tVotms0mQL7+7YphHiMz5CKKVqsFVnLljuMYgCAIsNailMKxKZUVBcpuD/n4vqGUQgSUWESRy6HneXieh3Rcu0ajQRiGJWfrAyjItb7T6aC1zoX4//5ymcDXJEmSdulZD1GgtsGeOYH2aLebjI2NARDHMWtra3zxxRd89NFHdLvdgX5KHA9GG739zOAEym1spuy+73Pt2jWUUnz44Yf4vk+73SYIglSZLZKOo1Kl3h782TwU96HT6VCtVmk2m0RRRBzH+L7zyYEflPtlOXWn41Q/Cz0bjQY/fuxHPP6PP2VhYYH9+/cPffid5rD3Gnc6H6UUSZJQq9Xodrs0m03q9TqfffYZ9Xqdffv25UqdjV1k+KhjY35pwBIEAVevXiUMQ+6//0FWV28SRRHVapVWq4MxzmvvKvK3QcFRDtmLsbExLl++zF8vf8hPfvp4nlPfvHmTIAhyZwS5UrtBW60W3W6XKIqoVCosLy8zOTk5dCpbTZnvBlkxcG21gRf4BGEFTzlGZwwsFidge63/VojjmCBwHsFam3uK/qJNEbfkj+DCxB2PwWipRE35e/XqVR566CHAyavva5LEMlYbRxcYqawVUYCxLk8SMXSTDomJqUZVkq4lSRKiaKz/UXnYOgwjI/Q6Ya3dYjyqcvPmCnv31ml32gR6nEZjJa0x2LzoIyIo2foFw7uHTX8rrLIgzvD7GsarNYwxtOMG1coeekKZht5KI2owZRl8hH9vpj5iEDFYz/FOG53rVaZDrbUm1T0h169fpxqOEY2FaAWChxFFoHrymIffFoNGsBZWVr+hNl5Fa5/r39zgvgfvAwK+/OoaDz70AACrq2vcVx8HSUgSg+9V0NrPCyauwAIbWaDvjiGClS6i0tAYReYCDC5E1oVIuWhmrNGgYuL4b3hxjFfbhxgPEaF5s0ltv1tvljdqrRFl0crxzNUUFAoP0H1GbGMLvFVgbYLSNo1W9iDWo9FoUgki/FBxM06ohpV8bwMRPKVY+epL9tX3YjpdqO/FEwvdLtb30RqMdgVVtCuqqozzIhgFNtsbNB4emrKD2CmO3NoE0YaVlRWi8X1o7dNdazHmR2gNErdJxuHa6ir3je0h1AproN1tEYzV+PrGCj/Y90A+nrLiPHXLGCpeQru5RhRF2NYquhKAF/HN324QBnWC+jgiik7cpeZ7dNsNxseqLrcUD62/f6vrBE1cYS+1dEbEeQoRKCiZQqPFpl5Wo0iwRiN00UGCwnLj+jXq+x4AIhQViIWVZos99arrk1UGtUHoVcR1ZkjEH43oJIVFUCiMtN1dBalQrY7T7bZpNttUwirhWIDRHokIvlJc//pr6lHEeC1Et9MTED/AaDeiUgpUgjIGPEr74GgeknJPUGi3MwNKvRMgIlgMSJd2Y5VmJWA82o/uCPGNVSLt49Uj4jBGRFjt3GB/NE7zqwaV8SqM72FNJ9xP75w699T9cLXM0RHOu4EAYpPcKK3nIUSME0jRoLYjfzZOp4qplCVGE3yrSz797V2EqBBROW1k0rbvEEZsXsOBu5OvtOTm3vSOMVxYuXDhNeYWbanKO0oV39udqwK09l1eY21+JGMRRIxro1x4nfF5OxzllaE3rI8UlUwTkHvkIViP9+u11zKYtuwkhc74VFRoYEChRcwAT4fJt4beEYQSZzFEFKIWmX3yl25wpQrCrZyw50Ns3UsZtyMcRcYo5bkqrmjm357BUxqtfdSzJ7EsMDv7ep4Huvxw6679djHsUk3Gl9l/UfkRXu/naRYLtYKMg8WxHO9vgz9Zml0YZyehX0bXU9TZ4wqtfbTW+R68eenKUPl2Sp1thlZ4aLTWnHv5beSZ40xMCfSFZbpX8mAUCkEbIVtJJlR2eQ6lPV5bejS9PWcwfziEpw+iDkz2LKiCUV87MPTabyYwr/7RMjMN5xesu2AiwmsnFQfU0yzmJm7YWLfPn15pc2ejmIJkOP2OcHIa3rj4CSKGhQtn+ffDjzK/mJvT0hiuPl3cDGW5cG4WefJn2PeT0oPWwyiF42WkjFDpEQwgLHB88ijTp97gT7/9t7SdRj3yc14/dYypiQObMtPNhKhFPmaGQ5O9PPfF37/DzLPvM/Py/+wq43eIwUgn/ZwF/v+9Yxw+NAVoJib67470h+79Ay/PM2+P8PwjmvefeYypwk2X9UK1243z7xVcrmG+Rc9sXSpf16Vzb/Eexzj9u38duGQyOfEoExMTIKNsyO4cSxfm8R+b6sv5NJOPHuPdTz7JP9kojL8dfu0kng7DMOe5OH8ePfNMrounfn2U6VNvc2TSsl6Ko52Q9pTi5Tcu8eovjgBw/IcHCw8sfkOrcJTTF3J939cnlfIGCjzDlFzyv2WLqLXGssDZ588w++avOKCCdJz0HFVrnnz+DEcmwapiFXi9ddqcMgpi2l8EzdMQBItw8dIHHD3yT6U+1iZMTR50JwHZCV8qBu5tmb89Yc2+FDS4P0WB3okKnp+u5Ojx8PNPP+W9V1/MeXn4v4R3/vMEzjENpji6mBteODfL6dOnUcrDmzzax9z0yuQQUbX0Nmq9vKBI7y3k3tCLt3GK9IxlqhB95Fhe4l1gcuqR0jr6BTDLqS1SqoD3nq97rTZp/XdCd8d07r27uJOeBqBQLPG/pxWHDx0s9VNaWFj8mOkfHshj714BEViHv+756Rc+huxPPv4my8/3Sc8M6eDJQ09Z594/w9xCgogw//YMRycU84sy1IFqSCvay3Oc55/zB12ZP8vBiYcHOmCF4qZZ4nSgwqQKQrLV6QPhizVOQKWopOuFOL0z2628vluvn1JSbKQX0snyYhr2lWGXLvIfv5/jqcOHN33+o05HqVJNoj/NNUsfcIYZnpxyrQ6dOME0MH/xfG+MPrg7QMtzeC9d4vSJwznh888/Qymv7JelHG4rpdJLCMNz2q1Ozw3UxBTTwNLy56nCeqn3sdjF87x56UppnCxc2uz53/36HQQnUC53djy5ePEiByceHvAGv3npKZg+yYkjj2z6/EedXgq402u4mY6JCH/+8yVmn3LpsEWQpWXeBaYO/AOSGowBvP7yMcEdVcvcFSMiIjPTeWol06feEmsTyWFlKKy1JbKR7panG+mtbe7cjADyxsWPRYwVI1auzJ8Vjs+KWBFrkzIv+rAV13crerYeR+u1N3ZRngY5v9DrES99ICgcP9bBVlzfaNGTAs29nplG5peMWBGxsiBPKwSOyRXb62vFlMbBbKSl6USK08hfGZONOEArtd/idGPi0idX5s/mBi03auv0zMfb4uu7Jb0P1iYDPMj+yY0zeJ/0ddjk+Y84vahfRQdzZf6/RbkvGpT2gWdPbuhYRUSG3v3exS52MZoY/StRu9jFLkrYVepd7GKb4e+bUy6n9pNW5wAAAABJRU5ErkJggg=="
|
<image>如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()
Choices:
(A) 4cm
(B) 5cm
(C) 6cm
(D) 7cm
|
4cm
| 69,648 | null |
4cm
|
"iVBORw0KGgoAAAANSUhEUgAAAGoAAABhCAYAAAA+5jRUAAAM3UlEQVR4nO2dX2wbRR7Hv+uUSx96Z1VEOBKgQOKoPTUSQVCpUisFtU4DonaCeIBK1YlK0KTElVouTqprUKIDHiDhT6WWOGlO4gEkJJK2FEpbO1FSKc+knAKkxA6VGh2Rqrs4dyAS4p3fPax3s7vetdfxrr1r8pEsr2dndsf7m9/8+c38ZjkiIjgcIgLHcZrnYmMf4sdHX0VjTYEzZTKuYmfADORCkpc6Qgwdje3aiZizymdJCEoOB4ClxDXUNQTm9+PRGgZAKUS4tDXQrpSGoFTK4QKHGxdCgM8HfCk/yQqaLTMpDUFxUAiL4hGMUyOOVQNf+P8Mr/Q3XWlCdQqlIShAEFaKrsExvH3sIAAgsNOrjOKsGk/C8YKSOq0EEAHRCyH09fXBxXFweZsATlXdbWpUcRB6fEwQyHwEUWoEEQ8iwlxkADuqq1UJ4EhhbSl2BsyAiID5cbheGwN9/o4U/uOdOIDq9PgggKA79rIl5HAYYxQO+YnjOAJAkZgQHgqAOEF3KNA5SKy42cwbjsj5lgmh261fixMc24eQcHwbJSD8Db0ypyckJ5XQEhGUgFD7lSalIShJPsb+jhjdSdVhaQhKPVYCcHFkFOPj49rRrc6PBTi+M6HVUVhdXcWOHTuwfft2TE9PK+IKB/rTInbF8Rql9bj7+/uxe/duAMDly5elTgYnfhwmJKAENApY7+1xHIeFhQXU1dXhm2++wezsLILBIGZnZ1FWVpaWxkkCc7xGiQ9cfOgdHR04ceIEqqqq0NTUhAcffBAff/xxWjonCQmA8y0TIowxmpqaooceeohWVlakcK0wJ+J4jRIhIgSDQfT396O8vFwK37t3L5588kmEw+Ei5s4Eil1SzCIcDtO+ffs0z3399ddUWVlJiUSiwLkyj5LoTCwvL2Pnzp24du0a6uvrNeMcPXoUVVVV6OnpcV77hBLp9QWDQSSTyYzVWzwex549e/D999+joqKigLkzB8cL6ttvv8VTTz1lSADBYBD33Xcf3n///QLlzkSKWe/mC2OMfD4fnTt3zlD8xcVFcrvdtLi4aHHOzMfRvb6LFy/ip59+Qltbm6H4Ho8HbW1t6O7utjhnFlDskrJRVlZWqKqqisbGxgynYYxRIpGgiooKisViFubOfGyvUaTRhBKRZM87cOCA4WtxHAe3242TJ0/izJkzhu5lG4pcUDbE3bt3ye120507d6QwxoyvilhZWaHKykqanp62IHfWYHuN0kJuz1NDBrSivLwcp0+fxuuvv25F9qyh2CUlV7LZ7oxqVjKZJK/XS5OTk2ZmzzIcJahkMkn19fX06aefGk6TSXAfffQRNTQ05JyuGNiu6qMMVdfw8DC2bduGF154wfD1MpmLjhw5guXlZVy+fDmndEWh2CXFKIlEwpIOwKVLl6i+vt7Ua1qB7TRKjzNnzqC5uVnX6LpRWlpasHXrVnzyySemXtd0il1SiPTbAzF8ZmaGKioq6N69e5bcf3JykmpraymZTFpyfTOwhUbptQdi+MmTJ9Hb25tmdCWTBqgNDQ2oqqrC8PCwKdezhGKXFC3kGjYyMkK7du0inuc1z5vF9PQ0VVZWSt1+u/X6bCco+QPaiD0vn/s999xz1N/fb9m98sHW81FvvfUWbt26hc8++6wg9xMnF2OxGNxud0HuaRTbCkq+Pk/LVGQV4pR9b2+vrdb+2VZQL774Impra/HGG28U9L5iAbl9+zY8Hk9B750JWwiKZCtdAWBqagqHDx9GLBZTLP0qFKdOnQIAacreFppVpLZRl43Y88xmcXGRKisrM04uMsYK2jO0xThKTjZ7HhWgAnjggQfQ2tqKN998U/fe8mXUBaFgRSILjDFaWloij8djiwm9RCJBHo+HZmZmip0VIrJZ91y+Po9S7QKp2gf1bys5e/YsJicncenSpYLcLyNFLSYyrLbnGUU94LbLlL1tBJXL+jyrkQsr0+RiIbGFoER7np2s16Kw7DJlrxDU6lpS+hSKX3/91XJ7XjayTbOMjIzQE088UcgspaHonv9hS5ni24L2MO343XffzXl9ntlkm2Z5/vnnwfO85pR9wVBLrpDapLU+z65cv36d6urqilY9Zxzw/pbkpY/Wb3mYXtrVtaTuuVDXad31eXr3yxauzpNW3jJBOqOVpqYm3H///Zr+wAVBLTm1RmX6beRY75y4Pu+/P/+iWYJyvba6fVUfm8HU1BR5vd6iTC4aMiGJZWx1LZnWfqWXbO0NdklWUnme1/S31cNIm6nVvprd1u7duxd1dXWSw5xW20YaGtkV4CSTk+LT3Gn85mrJpZc+Xgpb0SrNvKpUsewaJfe31SvtRsM3ouH5oJ6yV6OnZaFAai/B1POaiwxQoHPQ8H0lQWWqJuTnQgFhs0IAtKW8PHXsp+/WfkuLr/X73r//oxjtGxFIrtVqtjT58tJLL1FPT4/h+Izm6FAgRMSE4w8HI8QoTuFwxPA1FILK9IdW15IkbiMplY6Utp3rbCHAT3O0vgBlRWdM1t7eTm2vtmue0/qtV3DU57K1UWYKKxaLUUVFRZqXvZ42zUUGKDR4g4iIIkMdFI7OCfFzuKdhy4T4R3n6QSodckIBpFSZT0+cwi72PDNob2+njo6OtHAtYUWGOghwSTVRJJZ7R8SQoEQhMcZ069ZwqJkQCGW8jp3sefmSiz/weg1E1BkIKGoeoxgaR4lwHIexsa/wTOP+tLjVtbXpHRXZ8ejoaE7+tnbH4/Hg+PHj6OnpyRiP4tfRh5D0tp2aZ58V3mxAOU6CGpEmk77nyM8dSpUIZakY6PTToS7lbsjisbg+b3x8POeSZEfEasuIP3BkqENqn+R0dnbm1EhlHUcpNi6Mz4ML+VPvupAljUVw/J0vcMi3X7F/nngs+tvu35+uiU5EHD+53W6cOnUKvb29unGjV/vReOCgonbpbOFANQdy2oozpxne6IUQotSIt19pVAz2Ops59CGk2BxegGFh4V+oq6vD0aNH4Xa77bGix0R4nsfw8DC+un4Njz9WL4XHomHUHjyumy4SI/hqjMvKsKAIMbRwtQjGSKpvWewGymqfBvwdoCt9munE9XnqjQ1Lie3bt69P2cuqIFMLpZH68Xb0vNS1VH/CkbhuuqmpKXr44Ycdv1deNpSTizxpNtTq4xzJbYZXNBdp3lDZuUgmk/T4Y8Vdn1dINjJln4vcDBhl2XpX0iW+WUallQDUu54ODw9j25/+qLk+j+yz8Mk0jhz5CxKJBK5evQpA9a7FHN9woEkukjc6ml5a1ve3LfQKU6sR/glPjKz1BzY0zSFKPlPDSEI1CgDo/pu+v61o4qcS0SrhdVQucACam5uxdetWjI6OKuKY8l/zlbRaO0rJnrcRJicnyev1mj5ln/fac7WW6fnbliqk0paGhgY88sgj5k/Zmyl1O67PKwbZJheJLLKeG2F1dbXo6/PsREtLC33wwQemXc80J4FC+9vanXg8jn379mF2dtYUf2BTBFUsf1u7I/cHzhdTBHX48GF4vd6C+9vaAcpgz1tYWMDu3btx69atvP2B8xZUsf1t7Y7aH3jDKJssPt2GqF4OJo+9Vnx/W7sj+gPfvXuXiJS9vVx6fqpxlEs18cdS9j1tLvwj9/3zfm94PB60trZK26LKq8nMFhr1q9M3iOjjKtrzSsl+ZzbiXoO5buEtf6LZ2yidtw2fOHECa2trCn/bTfQ5e/YsJiYmdF130t5kqn7u66LjUys5ZRJlTHPSZGbmn79re95G2Kg/sFhTZa76dGozn89H58+fz3rxTdL9gX0+X1q4EbZkfI+6xonR0VFMTExgz5496O39O+SNHm1WgRnheR4TExO4efMmGhoaNOPcuBDC08feA8CAQAjs8zZ0dUaUfbquFqVbiIvjMDgWW49AwC//+xnd3d0oKysDR8qeyaaQMlNWVobu7m4sLS2lnaN4BBzH4fycF0Q8iAj8ez64uBpw3ur0Xl9XANIi9rnIgLRWehPrYDRHAUC2VHx9/clAp58GIj/QFoVUEcN3VwJ4+fNqAEBNdbVK7gxEBd4D6HfA2IVBXIEfc2+/nApZH97WeHcA1bVKjZIcAGTuNf5QOE3KUknY7DTkDaM5auagXPbMBBuR/PkqBCW4h4DAQVbl8VJi2dcmJsFiN4T1kanmRgpPCUl83oKOpUZb0S/7cWOOgRghMvRXHPRyiMZTasgpvjYxEWGBjCos1bxwEE4KUuAYKB5BH0I46BUi+F5pQwBAdDySfpVNTIPVVMMPYH5+Hmr7HsUjQq+bk1otF8bHowg961uPFZ/HFQgdCtJTo00B5k0ZvAgOdaCv9RkMjs1L4bFoGK7XxtDq8woB6X65691FtV+uvM7cxBzE5ykOhcSP2qsT6gjSJ4ObJ0+ZVxltnjf//P8BWgxN/D1+rjYAAAAASUVORK5CYII="
|
<image>如图,在△ABC中,点D、E分别在AB,AC边上,DE∥BC.若AE:EC=3:1,AD=6,则BD等于()
Choices:
(A) 2
(B) 4
(C) 6
(D) 8
|
6
| 69,649 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAHcAAAB+CAYAAAAeNo5CAAARW0lEQVR4nO2dTUwbZ5jH/+9AUypVpXQrhVyScGmCbYK3lVITqTJkpRYqVUkaDGTVzYIUqeESwilwWGyzKyU9FNJIbVVVKgRpN9gmCZcGeimOdpuPwxYoHsfpISjJIVUPcTiFTfA8e5gPz4xnjHH8ge35SQn2zDszr9//PO/7zDPvB8gi5wi0Ql47CADZfCtERJSgAHlgI28koUqXXzhYZM3S0pLhdgYHfBHCHz4bojwPAODQhRGfDYzU6fKLJW6WxONxXL58OXWHSjybzQHwPCLSxihsOO7g1EnyiiXuJhAZS7G8vIzFxcXUHSpz5Gz7YWPiBuK9uGfzwYH8W6xMdYGuU7IwZizF4uJislomgJhWNIIgfuCj4BFByAt4ZgBAQKFsyrLcLLl79y7W1tZw/14MYEKKNTJV0d7zj4L5vXCAgZTtQt7zaFlulshWu7i8hH2N+3V7Reskux02jCKEFfB2UdTkTZB/u7IsNwvi8Tju378PQLTgJKI1EjEQEQiAJ5gA73WgYF6UCkvcLFheXlY+Ly7+r6SbIP0fRHeTH5Hov+MAC4F1SrbKJOesgCJb4maB2kteWvpDqmo5ABwYzyPC+3GgizAtBOBROWSMscK5yrDEzQq5KmaMYW1tDbFYTNnH7H5EiUC8F01MW7xmj1X5whI3C5aXl1FfX499+/bh9ddfN41UAUlBicj0sSpfWOJmiCzSs2fPsLq6ioGBAezcuRP9/f1Jp0o2TEr+YVI9XGhhAUvcjJHFWVpaQn9/P+rr6wEA586dS1bLsn6yD0UoaBurxxJ3i8RiMZw7d075Xl9fj4MHDxonLqKwgCXulnE6nYrVylV1f38/VldXi5ktQ9JEqAQQuGLffNsOl8ulfJaralns7UYay00VtghBFotXYEvVMoW88PH5D3hb5IaMxRUQRE/XDIDCP4xbZEequPIzGpFGxFCXDxG7DTY7K8ozm8XWSRVXfkZjSRFXRhsx4xmFndeLalXR2xlOL5CmyhXEGKmfQgjaVhC1N6JRf7jFtoUjM4EEAnE8fH4Gn9cOAGA2O5rAEA6HxR4IluVuazgG2VpFoZT2lGOI+LsxGvKjiXHgHKPgpQb57bffQs8/n8Dk5FRxcm2RERwAMEYg0ranxHsxyoIgIgiCACHYCZtdtODm5n/E7du3cfPmTfT19SEejxc+5xabwsl/kh6wAOK9cHQD3hEbANGaI9GochBjDDU1NZiYmIDb7UZHRwfu3LlT4KxbbAqRaniDIFDAIw6DABrp3/gECcTTiB3EIG33TKcMW7h37x653W4aGxszHdogCILh51JlYmKC3G53sbORFk7t8TLG0BUk6Rk3ilEbBwYb/BFCQnrupWB3yg2yf/9+zM/P49GjR+jo6Ni0mraekwuDoatMBl6wpsO1QYSqpqYG4+PjOHPmDA4dOoRwOKw93hK04OjElTxm1WZZSLWc6YTq6OjAwsICfD4fhoeHc5ZRi60jqkjJr3qrlIXcit3V19cjHA6jtrYWLS0tePLkiRWPLgL6bvA5rT6HhoYwPj6Ow4cPY3Z2NmfntciMvMcPXS4Xbt26hampKZw+fRrr6+v5vqSFREGCw3V1dbh+/TqcTifa2to0/XyNsKrw3JB3cdVCnT59Gt9//z1OnDiByclJ02Mszzo35F1cvVBOp1MJXfb09CjPxJa15p6ivLOrqanBTz/9hKNHj+Lw4cO4c+eOZa15oGgvZBlj6OnpwbVr1zA0NIQLFy4UKytlS0HEJdV4GT0NDQ2Yn5/H2toaOjo68NdffxUiSxVBQcRVAiEmVW9NTQ3Onz+PM2fOoKOjA3Nzc8q+WCxmPT5lybbqJ9PR0YH5+Xl8+eWX6O3tBQDs3bsXfr9fSWM5XpmzrcQlIuzcuRODg4OYnp7Gnj178OTJE+zbtw99fX0ArMekrbCtxJWFGxwcRDgcxsuXL3HgwAGsr69jaWkJXq+3yDksLbaVuGpcLhd4nsfHH3+MgYEBvHjxAqOjo5ZXvQW21VRFJI0+j8ViuHLlCgDg1KlTeO+99/D1118DAIaHh1FfX6+0yRZpKEb3j0z5+eefye12E2NM6vqT/HflypWi5q1EutkUHzLxgD/99FOEw2H8/vvvKZb6xRdf4OrVqwXIXemyLcTdzAN2Op2YmJjAgwcPcPbsWdTW1iKRSMDj8eDbb781Pc7spqkUtoW4mdLQ0IDx8XGsrq5ibGwM7777LgYGBjAwMGCYvtIfm0pKXJm6ujoMDg7i77//xo8//ojZ2Vm0tLRYoUsdJSmumr6+Pjx8+BD9/f1oa2vThC7NqJTquuTFlTl58iRu3bqFS5cuYXh4OG08ulKq67IRFxCr67m5OdTW1qK9vR2xWKxirNSIshJXZmhoCOfPn0dfXx8CgUCxs1M0SkbcrVpgS0sLbty4gdnZWfT19VXka8OSETebdrKurg7T09Nwu91oaWlJOwFnzpBjaGkRkmnzSMmI+yr09vbiypUr6O/vx9jYWO4voBlrg5ThGaQa3K5ZwCLPfl1FiAuIIxEXFhbw+PFjHDt2LLcDxk1FksdeMQCcdBMUrsgrRlwgORLx5MmTOHToUN4HjCuzFTAoy9MUkooSV+bYsWNYWFjA4OCgYQeAXD0+afyEws6AD6BCxQXEkYi3b98GYwytra2a0GW+gxzWcm8FwufzwefzZRy6NCMTa5dTyLdOvgMsFS8uALS2tuK3337DpUuXMDg4mJNn4hW/XZmFjzm8iCCAHk8Aaj3zXUNY4kq88847mJubw+7duzMaiSgjW58sFPFe2BjDAX5EnOaJCBRk6GI9iDjsKGhYu0g9QLY1i4uL5HK5aGJiwjSNUTebBAWo02TGn4AH5AkmUrbnE63lCi9AG6p/FRRzJ9WPdTqduHHjxqaTqOmrVd7vxwyOIxDsSklrs3fCZtNeL+/FmyK38JKEl/9HZTBVVE6YmJggl8tFt2/fJqLkHFp6y5Wt1u5bUZYrNyvCQhWt1eZuQm9vLyYmJpT5PczGPTGeRwRAo82mX4EmdRKZ/GZZIY24QrJ6TmxIm3TVNW0k0wiqH6DevrGhPW26fWbpEhubHK/KK6k+C4Iuj8azzOoLX4/RJGpGx6TORq11trQXTXvJnJB+AYsqafHBKqnvOlcNcNWSxyeABIBV7wCrrgaEl5LoAighAFU7xH2coCrUdPvUqNO9Jn5Pe245rwASgrivigOEjWQeqzjARNxMHkn0k6g9evRIIzCz22EHEFXNkSkvAUK8F/6Qro0tgPmmr5ZZtVYAEgB58UESAMVK1JYlplHKi6kKNd0+NSSobiIGVrVD/JzJ8VW6QRSc+rtg6iRuZr0y8iRqjDE8f/5cOS/QhRGfDVFfEzwhAcpauqHj4LqB457Chx9NhpOoCpCrBjY2QOw1gJLayvsYp7s/NnufmWl1RCZru+epOktnvfF4HA8fPoTT6QQgruc3OTmJN998U0oh5rPJy2PD5kF1VxU4Ji6QjK4AKJLqPReCZOkJqjaJaZMwDkDiJcBU9wKTqj2lsAVpZUIOYpWtUkG+AdLt00PC1s6dJ9bX1zE8PKwIe/36dfT19eHUqVOoq6tLSV/lCSlzVBMRKFAcYQG9aQgbYpvGGVVtnC66IrVzCdm5EaSbQtouvJScGKisO90+IemsseotnltqiwEgsZHB9ySbVce9vb345JNPAIiD0KampnDjxg3s2rUr7XFGCEq1U5jlA5IqcjvA0hkBV5W6jVVrjHnT7Wn3cWDVO7I8t+5YYNPvyvY01fHw8DDu37+P1tZWtLa2or29HdeuXcsqJqxZPI84gAkgyu8yPpkN4RQEmKtVnvzwww+4cOECxsbGcPjwYVy8eBFutxtABs6XwdKqmsXz5Foozx5WesWEF5Jf81phA95FZm5uDqdPnwYAfPXVV/juu+8Qi8UwOzuLt956C21tbbojdM6fYVkZOIgCSUuI5IkCRcJKhqWlJaqtrdWMBWaMkdvtpoWFBSWd4fjcTeOK+hcH+X2RUFl17Sasrq7is88+w9ramrLt6NGjOHfunGZpVVOUeCMMrVdsYyFZLCHfb1wtcSXi8Tja29vx+PFjAKKoPp8Pzc3NWz+ZSU2rXrOpECENS1yJjz76CH/++Sfa29tx/vx5OJ3Okh9nVFHikjShipr19XV88MEHeP78Oe7evatZf347jAY0ynOm+yvqlZ++EB48eICDBw/i888/Vz5vN/R51tcm6YSvKMtVEw6HMTg4iKmpKSW0WApsxYorUtyLFy9idnYWv/76q2F8uFRh0ssKWeCKEjcej6O/vx+7du1KWdRKZrM2rtDEYjGEw2E0Njbiww8/RE1NTdr0FWm5sVgMvb29OHv2LHp6ekzTbSdhAbEXyM6dO3Hx4kUcOXIEu3btQnNzM5xOJ1wuF1wuV4rg8g3KiIjUd7HatEvhUYAYwCj514jf/vt/8J9X/gtDQ0PYvXt3Tq47Pz+PX375BePj49IWef3hKmkAmMGSearBYNnUEPF4HN988w1u3ryp2sph//730NzcjObmZrS0tCiCswcPHpA83W1pIr7ySyKAEQcBycJbWVnB0/hTgxf9+mONyfxG3+R8HBOjU1u9PlRZ13xJTbRnzx68//776OrqqbzYsjb8m31sN5u5H7NbWjah6U67p2GvEvPeu3sPHT16lEZGRmhhYYGePn2quVbaNpe2mXORFimeS4S0b7CSu0y68Wz1skQAI83ilqbXZsws7JwGDpcvT2JychJ1dXX41385iba2f0Jzc1NaT58xZu5QlYqwcmGRPP6VReB1NGGU16brDCYQ8mg6gOXk+mIZZV5OWy3R1dVVHDnymeEUxKQbp6S/YU1/YSkICwByR6tkR3AHfJEVjNhFQYkIQrATM91N8PH5795CIU9ydB9jYF3qqZLEvmDJPoSb56ehoQFv1/2DZps8gtAxyoMxhpXRRjBmg4/XRrAUcakEPGMjjG5CQhRR3gOPR+o33NgIG5l7069GUqBgFwPXRQhIq4QnKIDOUI9KYE4ZYf8qptPk5SFERoBQCAG/Dd1CEERR+OyctjyyaOG3PUKwUxlpJ9AKeR36kXev/pJc71AFPCDYR2hF47IliAKdBBynQI5GCAmCIP6jFRpxgGz+ZdN0Jf/iQG+MBCASjQKhHjDGwLEuYDoBCnarDsjtz6aQB92hRoxMj8AhjzKAeB2jSU4ymqrKBKW6hwOdnTaAOOMnI5aJi7fNSS27P3A1RPCtiO3tHz4Gv8ORbG9z7EoQIvD5ZwCPF36H2EOUiJTLRO5FVGmTWdhyNnQKCgjiaogQ5fnU5kb6XvLipty2/FWE4MFxh1h8dq8Xn7N7CM1EUw/NgZ8htu9Ap8ejbEu2exHMBGOAxwOPNBtV1jCt8zXTHYAt4kVn6CoCbBnTwRVVWvFP6YurCucBQGRmBtTZqVSPLBpBDIBNGvmsFjQnTwTRCKKwwW5L3UUhL0b5Rni9nhxUGKJUomfMEOoMwQM7bPYQetgJxOx2gwyUEQlaIa+9kbyRhPQ9QJ0MOXVoZGSHSh503RnU7t+gafIABE/Q+ARZOHVbiXAJgkBlI64Q7ExZngYw8mCzDQNqSXrLCa2nLBAJkRFqNJkbI5mHjYyuI2SUX6MbJVEmXVsJYJ4ATCcKIEhtlrg/twEaDl3BCHiHA03sP6Rt++CNvITPrh0+Kg4jgZQHg+E5BjCCSTxVHY0y+t1cmbzPlYZnaNHPjppP98IOf4TgV22hFGdNFHbLsWXTxGl+r0mKMqK4P82sdshfUDf195axuBaWuGWMJW4ZY4lbxljiljGWuGWMJW4ZY4lbxljiljGWuGWMJW4ZY4lbxljiljGWuGWMJW4ZY4lbxljiljGWuGUGGQ0EsygP1N17LHFfgTfeeKPYWTBEtl5Gqd30LNJA0qD09fV1PHv2DPX19cXOkin/D3XCNGp2N95lAAAAAElFTkSuQmCC"
|
<image>如图,一束光线从点A(-3,3)出发,经过y轴上的点C反射后经过点B(-1,0),则光线从点A到点B经过的路线长是()
Choices:
(A) 3
(B) \frac{7}{2}
(C) 5
(D) 6
|
5
| 69,650 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAHsAAACBCAYAAADgzsUAAAAcvklEQVR4nO1dW2wb15n+KLu23O5aMYpAdJqYcXcbUaISj5o0Gu82GjmXRk4XMRWTor3dxEzaXbl5aJkny4uGlL1AFBcwkzysJRSLpTcFQl1sxU4a2shDKeUhUnc3pmxd3d1ScoE11QKmiyLwKIk1/z5QM5oZzpAz5JC6OB9Am5rLmcP5z/nPf/6rjYgIdyoIgC3zH6EXx4/VozNUv3wOmfPrBRUr3YEVhUTICRyrP4gB9bl1RGjgDiI2ES3PVhUmjvlwfBJwuVzKe8rQr3LijiG2zWZTzFSJkBMhHKcQgq6lASG/p2y9Kw/uDGLLaCgS1AZAQD/aDtgQ6iRMT9bBVZdN8PWEO4PY6im6RM8zbf3wTHTCNTmFSdShzmXLcAAAgFDOHpYFG1e6A+WGSMzxYy74BqYAmw0+AMB+EFFGQLfZsB7nwfr7RXqQcWdhKoRj6MsQlwhCvwdwuVBvq5DN7PWHO2dmL9GQJkN40Af0TSxL3hNTUwDqQOLGe72C7jAAIKCWOscXSaBxCrqWdCoAweahPhJy3i8IQs6/VzNsROtY/AR05qoA9Qq2fF32ufWCdU9sfYjStj5h1xtTX5NrNhHlFKRmZ2dx7do1jI6OYm5uDjO/vQoImTE998kwrn2auW7Dhg3YQIv4XADwFw488ogDT7J/A4djJ2pqHwDz0C5s27bNsn6tNNbFzB4aGkI8HseHH36I0dFROBwO3H///di9ezccDgecTqfiepZl8fLLL+NXv/oVPvvsM2yq3IxHvv0wDh48iOvXr2cGyMwMxsbGAADNzc3gOA579uwBwzCafVjthAawNgW0VCpF3d3dxHEcASCO4ygYDNLIyIjm9YsyoSudThPHcfTGW2+S3W6nkZERYlmWIpEIOZ1OcrvdlEgkFNcPDg5SIBAghmGoqqqK3G43RaNR4nm+1D/VUqwZYvM8T9FolNxuN9ntdmpvb6d4PG6qjUQiQQ0NDfTxxx9Td3c3tbe3ExFRR8c/U1dXFxERDQ4OEsMw5Ha7aexSIqsNkfgHDhwgu91Ofr9fsx+rUUovO7H1XoLe8XQ6TcFgkOx2O/l8PhocHCzouYODg8SyLCWTSSIi4jhOIhLP88QwDE1PTyuuF4ku5xjyfqbTaYpEItTU1EQOh4MikYih32QKGk0U2uqKzuxcLyOVSlEgECCHw0HBYJDS6XRB7RARdXV1kdvtltjujRs3qKqqSnHNyMgIcRyXxZrFQcJxHA0NDek+I5lMkt/vJ4fDQeFwWJPFl2S2aza5qHnpqmPjPM/TkSNHpJd248YN022IL5XnefL5fNTR0aE4H4lE6NChQ1n3BYNBCgaDmm3G43HiOE7iCHqESyaTFAgE6P7778+a6eVFNsFXFbEHBwfJ4XDQa6+9VpDwIydAKpUijuMoGo1mXdfS0kIXLlzIOs7zPLEsqxDQ1BCJ3tzcnFNmSKVS5Pf7iWVZxfJQCKziB6uC2MlkklpaWsjtdlMqlSq6vUuXLhHLspprLc/zVFVVpTuYEokEsSxLCwsLmrNXPBaPx6mpqYkYhskpR4yMjBDDMNTR0VGU9B71ytS66o8rSOMGhsSKEzsajRLDMBSLxSxrTy6IaZ33+Xw52+jq6spi/XoYGxsjt9stEV1rgPA8T11dXdTQ0FDwLBcEgfq8IHh7Fccvh2qprnNc83o1Vkwa53me2tvbyefz5RS+zCAYDJLP58s5g3w+nyZrV0PNGUTordWJREJBdC1MT08TwzAFreUCjVOwHuTpz6zFQr8n872vbflYnjZWZGYnk0niOI66u7sNXS8IQk5JVhTE9IQr+XW5WLgcImHMsl6R6FpbMbEPfr+f/H6/obbF3y1MBKkOHuoVMta6TpeH+ug2EREtCsbW9bITO5FIEMMwNDIyUtBWRE34VCpFLMsamq2xWIxaWloMP+vkyZMUCARy9kXvmHwrpkX0SCRCjY2NElfL9y6udNYVtE7LYSmx83U4FosRy7KWsW1x4OSSnuXw+/2mWahc+VIIRKJrbcXE/uvJFyJEu7u4NgsTQXJ5+0xPlrLN7EgkolBsFKtgEAUxM9J7VVWV6YGWTCbJ6XTSrVu3zHYxqx210kUQBEomk8SyLF26dEn33sXxV6kWdRSaWCRBEGiR+iikIZTlQ1mI/cYbb5Df7y/6hYno6OjIK4ipB5O4Py4Ep06dkvTohULO3kXNoEh0USegRXBBEEjo9xBcnctsu8B5UnJiRyIR8vv9lrTF8zy53W7JaGEG7e3teQXCXNympaXFsu0hUUbWeOWVVySiz8/PE8dxWUtSFgsv4pklJXYsFlOw7kIgnxEsy+Y1hOgRzG63F6WwSaVS5HQ6FcuAFbpuuQ0gEAjQd7/7XcUaLhfKtPbTZlAyYicSCWpsbLTE5ivanPUEsXwvXby/WOhxKauIHgwG6Z577qF7772X5ubmsq5ZLFJxWhJiJ5NJYhjGEqk7Go1SU1OT5qw0+pI7OjoKYv1acLvddPbsWUva0sKNGzfoySefpK9//es5Joq2VSsfLCc2z/PEcZyu14getAgXCATyCmJG2nI4HJRMJi2bgQzD6C4JVjxjenqa7r777px7/EJguc/s0aNHsW/fPrAsa+o+uf/Wn/70J7S2tmLHjh3o7e1FZWWl4XZI5Qs2MzODLVu2YOfOnZb4iFVXV+PIkSMIBAKa5wt9BslcAZ1OJ/785z8jmUzi3XffNXSP0YdYhsHBQXK73dLf+dScWhBVqYV6pMghCEJOG3UxKERBYwYMw9BHH31EDMPQ7373O0vatIzYWtKqWYjmQKMaMSNwOp2SpclKT5F0Ok1Op9MSk6y8X+J30WDz8ccfWyJcEllIbPlIz6Uz1kMkEiGO4wzrio0gmUySw+Eouh09mNW1G4UgCAq9vBYXKeT9WELsYrc2gUDAsBXIDMzYpQtFqdi5fCClUimqra0tendjCbELZb3pdJrcbjeFw+Gsc1bMbD2btNn2c8kePM+T0+nMa8wwi1QqRXa7Xfo7HA4XLZ0XTWyjnVC/LKMasUKhflmlRDF691xQG26KlWdME1tOtFu3bpHD4TAtpMTj8Sw/bashDwIoB9rb2+nUqVOGrzfCWdTmVfVuxyyKmtmFsJbu7m5qaWmxzKath2Lt0EYhd7MyO4DzbU0DgUDWElfM7C6Y2DzPm57VgUCA2tvbSx4jlU6ns4IAyoFCBNVcwf1a3KmY2V2wBq27uxutra2w2+1ZWh1SaXZu3ryJZ555Bjt27EBPTw8qKytLmoLq/PnzaG1tLVn7emBZFs3NzXj99dfzXiv+fpvNpngXcg0cwzC4fPmy4j63241r165JEaamUNAQIaKamhpDLGt6eppYlqUPPvig0EeZhtW2ZzMohJ3rQY9DiTO+LG5JRtlVPB5XRESUOrJREARTHqSlghhoYEUf5BpAEel0mux2u+n2C2Ljp0+fxqFDh3Je09PTg1AohFgsJgXDlzpY3Waz4dy5c2hpaTFlPLEaDMPge9/7Hrq6uopuy+l0Ynp6WnFs27Zt4DgO586dM9WWIWKTbE1ZWFjAxYsXsW/fPt3rDx8+jLGxMQwPD2Pbtm1lTRF5/vx5uN3usj0P0JZTjh49ig8//LCwtVUGp9OJq1evZh33+Xzo7e0111jeua/ivGffzUiDWgxZzGpg1PnfavA8T1u3bi0rC8+1NE1NTRUUaCBHNBqltra2rOOF7IYqVITX/C7H++ffw759+7KyCM3MzOCZZ55BZ2cnDh8+bG7EWYR4PI7du3eXlYXnWppqa2vh8/nQ2dlZcPsMw+DKlStZxysrK7Fnzx5cvHgx65we7aDn1qQ3XkWvDzlisRg1NjaWVCOmB/nMKrWNuVDk0tEbwebNmzW5g16cuQg115HYeL9H9GKsWPZorA/ROC1reWZnZ1Umw0UKh8Nl0YgZQSFBAOVAoXFjInbt2qWpNRNNuEZ3OUtsXIB3gDB+7EGg7R0QERapD56JY3iwrV9iVcPDw9izZw+AjKB2+PDL+P3vf48LFy6YyhdWCgwNDYFhmBXvhxacTifa29uzXJnIoODqdDoxMzOTdXznzp0AgLm5OUPtVIj/ESYw0D+B/fs9AAAb2uD1KNejoaEhNDVzuHnzJlpbW8EwDN54442sRo3+CCvR19eHAwcOrMizjTzz8OHDmJmZwdDQkHTM6Fa0sbERv/nNbzTP7dmzB8PDw4bakdi4MBEkpyxR65VjTgJqKTSx7LbKMN+WsgipjQwrmQpKEAQpCGCl+mHkuclkkmpra2lhYcFU27FYjJ5++mnN55kxRknEVoeE1nVmB4R+ZfNG+s53viMT0ArzX7YaVgUBWA2tAVBIOJTaNi9vV+7Rkm/AIRNnkIknEiP4aTxItapwk1gsRhs2bFiVAtCRI0cMBQFoOfblu64UUOvujTxPT/g046QBImVUv4g+LwjYL7H1wcFB2r59eyZviKGmywNBEDS3g7mut/K6QlBI3Fgu+7x8IORqpwIAJs72Y8rrQZstI68RpjA5BaC+HnWwgQD8duYqHnvsMfziF/+2qtIyy4MA1CANwcmoUKQ2PVoJu92OUCiEH//4x4b71dDQgEQioXmurq5OUqnmaqeCMIGz/TPweL0SEQfaXDg+CXiCQdRDgA3AzG+vYu/e7+MPf0gVre+1Er29vfB6vZrnijW8lNJwc+DAAQAwrN+uqanR1JEDwI4dOwxtvyoqbA/i2CRwpm0DbLZMqSPfQC1CE4sY8FZAaSsR8I/t/4Senh5DHSw1iAjvvfcennvuuZXuSkF48803ceLECczPz+e9dteuXVmODCK2bNmChYWFvG1UkFgBZ+n/zGcKnS6lQYzneVRWVsLv9+PixYuYn59f8fKFc3NzuHnzpm4O8NUOu92OYDCoYOciSGVJ0zJ1iti8ebMxYotftOtoLOOP83+A3X4PtmyuxMGDB3H69L+v+Nrd39+PgwcPmr5vdHQUr7/+OmZnZ0vQK23orf+tra246667cPr06axz8mVk27Zt2L59exbBiQjV1dVIpVJ5+1Ch3YXsoiiLJEAcAD/5yU/Q0/MLQ6OplDh37lxOu7oWLly4gKeeego/+9nP8PDDDxtioVYg1/ofDofx85//XNEXreu11KZm5IoK7UuzfRrkjW7fvh0sy5r2lLAC4gyZn5/H3Nyc6dDg999/H59++ikEQYAgCBgZGSlFN01h27ZtOHnyJF588cWc1+k5MhhFwd6lHR0dOHHiRMEPLhTioDMzq+Xcy+v14qtf/So2bdqELVu2oLm5Of9NZcDevXvhcDhyCr+7du0qaieUl9h6a82uXbsAYMW2Yb29vdL2JR9sMvljz549+OSTT9DV1YVE4rK+29QKCCRvvvkm3nrrLV1ZQsu1GIC0i8oLuYbls9tfSB81tBwDtILvywFT3pWrSd1nAPnixrQcGQ4dOmTIaUMxszdt2Kj4Px/27t2LRCIhCRblKnV0/vx54x6kNpE7mSiRvIJ7yubmZjQ0NGiajoGMq1OhQprhNVtrL1dZWYmf/vSnOHHihCH/NavQ19eHtrY2w9fLSyRn9Y0A9UCgMrNwdZ+6urrw9ttva+6ra2pqJGKL9y0sLEgDP9e7z0nszxdvS5+amhpc/d//kf4W4fG14b0PMsXQRNhsNsW9udo1+nwRCwsL+M9P/ht/2/RY1v3i3/J7Pr+9fA0RAbZJdNZn1riKigrYKmxwHZtRTOZyL9fqmVlZWYlTp07hpZdeyrr20UcflRwZxPtmZmYM+ebnJLacrTudTsxMToGIpOOfL97Gffd8A89+/+/wrz3d0n2fL97Gpg0b8ZWKDdi0YaOCKOI58aNHcPl1cpw99y6eevwJbP3aX+ArFRsUBJbfJ33fuPyMieP1qLA9iMnQYkZrKAgQ+j2Y6nShbWB5dpeaM6mh9bzdu3ejubk5K9BAi41PT09nVSXUe5ACauFM/DuZTNI3v/XXWec+u/0F/delT+jb33kkbxv5zhk5fuAHf6/ILa7Xtvp7xjlD6Xkjos9bWP5uK6FXbkKe2VEQBIX9WsxqLDqB5iv3nJfY8mNf2/qXCklQfq0881+piM3zPH1jx30KO7ARYi+Mh7KcMYiWBXWR2BOaPVlZaMWNye3XZpL4SGw83/oJKIUDNX7wwvP45S9/KecY+dmKQYh9i8fjeOihh0x7kA6+1oVpPIdQyKUMj0XGdj8xDWScLrWEt/JB651pxY3J99vy9TofFGu2fL2TQ1xbH3LVS0oUWlq7P7v9BT5fvA1P63OYmZnBzMwMNm3YiC+ERUlQkrcptqV1Tj7g5NeJ1/T396Ntv0d6pnp9Vrfx+eJtCOjHu4PAxoNetEGtfBCAyT6cmQDqvPtRvySaSS+9zJKansPE0aNHMTw8jNHRUQBKR4aPPvoIjz32mLEHGGUnn93+Iq+znNrT0WolSyFBAMKE0p9O3SOl+9XiqlDCaL03eaBBT0+PlJHBzDsxRGy5kJYrAoHnebLb7SVxShwaGiooI9Ei9ZFHJ1e30O8hQOZoSaurOq66L2JeN3lKboZhDLeXk9ha6lOHw5Ezl6ZW0pdiIP5gI5UA9LAsiS//jr6lCnhyQq8FcBxH77//PlVVVVE4HKZXXnnF8L2mMy/kC567fv06VVdXm202J8x6kGY3oPSLtyG78t1agVigpqamhp544gndPHIFVexT32RE1He73ZYms1utQQDlgBbRuru7yeFwGF6vxTYKyqmSr96G1cSxshLAWoDRoIF7771XIVBGvaAlz2/ZJxOV6x0QCsup4vf7NX2maGnbwLIsFhYWctq6ycQ+PBqNwufzme3mmoDWe8hnxert7QUR4fnnn5e2h0TAgX5CnweAtxeCICw5kl5GsM6JuloqLDXW9PQ0OZ3OnNcYqWarBfWoNvKs9YR8szoQCJDb7aa777576YhsJyEL4xKIqK8zSFeERZroDFIfFTiznU4n7rrrLmmTrwW3243R0VHTDn3qUR2NRk2ZM9c69Gb1zZs30dzcjPvuuw+NjY344Q9/uHRGRsLJAZyZ9MDrtQFTQRyfdOFBWwVcoWNoWzLsFzTaBgcHqbW1NedoLKZkg9imPFfnatoDlxNihYV4PJ4zcY6047Ap64AJS5+iEtXmS5qaSqXI4XAUnF4il0VH79h6Q3d3N3EcJ2079eKxBRqnV+tAtaErRJQhvFqHUBSxjazLxZSTeO2116ijo+OOIKoIdTF5dWJfvZ2QMBEkF1ySCXexPyh9F4RMnW3DxNazt+bLxZVLpZePiMVmGVqrEAuxqjWGuTISX+msI7iCdEWl3Bf6PdIML7qSgJFMAmZyf4sDoJyVAFYT4vE4OZ3OrEGeKwGuQOMUrM/W/2fW8OUYe1PE1mPD+WZgITmy1bm21yorN9PvcDhMTU1NmlqxXMVtICpQbEpFCkS1sJDpR1FlI0QkEglqaGjQPU+knSwv1zPKVQlgNYDnefL5fJLgpX6HZgXd5bstEND06mbmsnaZyepTaIrltQjRTi33q1Mjn61BkP7JAaHINVtO9HQ6TQzDaM5es3nArSywvpoxODhILMvS1NRU1jmxfsjZs2cti7qxtBbnyMgIcRynS9BAIEAnT57M285KVgIoF4LBILnd7pxWK6OlqY0OAEuILX+YnF2rU1EZ0XPLOcBaFcpyIZ1OU0tLS17N4q1btywrTU1kgQZND/I1Rv3wfOtPoQaUtQBR52CEa1nt8UNUImIr1+8liXCJ5vmcH8TqsusF4mCPRqPEsqyhHUmxxdr0UBJiEy2XX5yfn88ckE1wUaeuZjildFgsJXItNzzPUyAQIJ/PZ0g4jcfj1NLSUpKdSMmITZRhW2KZZPnrkLvCyqFOyLoW1uxcfbx+/TpxHGeYHcvfVylQUmITZQjodj+rGKmiTv36vFKnvlorARQC0SxpVMBKJpOSdatUg7zkxCaBKBL5D3K73XRrgSdxDdfyK1utlQDMQBAEySxppFiLGJwnN2OKx61G6Ym9hKM9/0D3fKtRIub8/B8VKsBSlSUuB+RmSZ/PJ5kljRBMlNCtrr+thZITW/1zdzcuS6Q+n1eSvIsJAlhpiLOTZVlTO4lYLFbSNVqNss1sEWJtzlgsprB1FxMEkC8uudQQ64GbKXUcDofzatCs/h3GMuUUCcJyQKTT6cS5wXfhf+lFKefo22+/je3bty+lkZZlVxQIZMvvWluuxD1aCIVCGB4exq9//WtDocQ3b97ESy+9hJ07d6K3txebN2/Wvdbq31Vw0jszELssekhXb7fjwoUL2Lp1K27duoXOzs6lBHaqNJoVBvN7qZ9XBuKLRXGATKEcI4QeHR3F448/jhdeeAHhcDgnoUsCS/lEARgeHiYAtPOvvkldXV1rwg1penqadu/ebTjEKZ1OUyAQMKxBKxVWjNjy9Wh+fp7a2jxUXV1NLlctVW7aTC0tLQrim12/SrVui2pPuXtQrmdFo1FyOp2m9dxrdusldluMhxY/nv5FEvo95B3I/Dgxf8iPfvQjeuedd+jIkSPEsixt2rSJnn766RWf+aLa04hQdenSJeI4jnw+n2K/LZ5fCe1gmYidCUuRO78RiTHStdQ5rnSfEaMUA4EAJZNJ4nmeYrEYdXR0EMuytHnz8swfHR0tef/F6sHy2alHrJGREXK73YraZ7pmxzL7wpdhn71EaCn11JJfcyYaiTzwUlQ2AARaJKJF4nmewuEwORwO8vv9CrapRXyO4ygYDFrutzYyMkK7du3K2664Z2ZZVrGW5yNeOWd48cTO6qvomC6QQJQz/5hAlynY2ac8Jv/xS18jkQg5nU5iGIa6u7uz2CjP8xSPx+nVV18ljuMIgHHi671rQRmNkd2vRZqdnaWOjg5yOBzU0tKy6h0krZ/ZsneyKM5qMcuBoH2d4nbFSFcOkEQiQe3t7VRVVUU+n48ikYhuyo94PE7BYFAifnNzs+GZv3BLOxqDaJESiQSFw2FiWZYcjvuoq6tLV8JebVa7krJxefIaBZ0FoeisRNFolPx+PzkcDonVRyIRXS2Wmvh6Mz+V+j9qamqSVLfxeHxJ2/Us3bW1ihiGoUAgkBEUVxct88JGVGx2uux6ItIefioIl+tfYOscx2So3uDGH0otjAH9yOzsLIaHhzE8PIxEIoHLly+DYRjY7XY8+uijADI5P6urqyWFSyKRwNjYGK5cuYKxsTE88MAD2Lp1K2ZnZ+FwOHDjxk1cuzYLjuPQ0NCApqYmNDc351WeENGKavRywQJi60NAL3wVB3HG0wuhLxNjLX8R/cdCqAsdQ/Yw0B9ARjE2NoZUKiXFkF+9ehXz8/O6ieW2bt2Kubk5PPvss3jyySfhcDgUVQDFcUdEsMEGwiJstg26z1+VRLeEP+RgZ+Le2iWLQxLDSz39Jh6xCtY/vUiLtQJLZzbpjGaaDMFVfxzLqdJrEZqYyCoU9yVKi6KJbXBZLUnjeoMr3zmt871tNhwcEP+qgFRdwNsL6l8fyXuKnlolXZXyNJ6LmGbNogf6CX1eAK4gximTfH6R+uAZOABbfQgTK5yx2Ap8yUdJ/G8CE5NAndcnCYwVaMPAZAjOyePwHZtU3rfKZC8j+JLYItGm+nF2qg5ejzJ3N9V50OayYWpSu+jpWsKXxAYACJgYOIsplwdeTaExUyrKQll2RfAlsZGpJnBmYAp1Xi9cGuemJoE6l2v17ZtN4ktiA0vJ4urg2V+bdco2MIAzqMV+r7o0g4micKsEZXE4XPWYmsKU6zl465VjX8AZ+NrOAN5eHK/bCEmzRwBsa3CerJQ2Z7VAtLdrZxoC1XVOLh1Zm1ozOUqqG18L0FqHbQDIFcT4RKdUJGY94P8BYp1gqYnnUaIAAAAASUVORK5CYII="
|
<image>如图,在⊙O的内接六边形ABCDEF中,∠CAE=80°,则∠B+∠F的度数为()
Choices:
(A) 220°
(B) 240°
(C) 260°
(D) 280°
|
260°
| 69,651 | null |
260°
|
"iVBORw0KGgoAAAANSUhEUgAAAFwAAABTCAYAAAASuWCNAAAOmUlEQVR4nO2df0wbZ5rHv4NzF9rQkEpW60iWrFzMnRubrVO3kns4BxS6TYWjmsIeuVX+4I8Us0dURddky6lUqS5ICYToeifa4zZZNZVSNS1mnQpHJQpZocrWUZGEIzgFbaDkzvSaiObk1OTWdGfmuT/MGNszY49/Akk+EsIz8/6a533eZ5555/3BEBEhzxARGIaRPRa4e/cu/H4/RkdHEQgE4Pf7QUSYmJjAvXv34sKq1WoYjUYAwM6dO6HVavH888/DbDajtLQ0vzeUBUyuBS4nTDlmZ2fh8XjgcrkwNjYGq9UaJ0AAMBqNUKvVcfHu3LmD6elpAIhW0OTkJHw+H6qrq+FwOGC326HT6XJ3czkg5wJXwpUrV/D5559jcHAQwWAQdrsddXV12LNnD1QqlWQcpRW5tLQEj8cT/Xv66adRX1+PhoYGmM1mCLcrlVa6ypIRVEBOnTpFWq2WDAYDHTp0iMbGxiTD8TyfNJ1U12Pxer108OBB0uv1pNVq6dy5c2mVOdcUROCDg4NkNBrJZrPR6OhoIbKUZGRkhCwWC1ksFhoeHl6VMuRV4F9//TXZbDbS6/Xk8XjymRURSWu+1DmXy0VarZZqa2tpfHw87+WKJS8Cn5mZIYfDQRqNhnp7e/ORhSxKzQ3LstTT00NqtZqampooEAjkuWQRci7woaEhKi0tpSNHjlAoFMoqrXRsdabpB4NBam9vp9LSUvJ6vXnNjyiZwDO41+PHjxes4LlmaGiItmzZknmLVCivGIFz4quubuqeXEkpqnEJiYfDYdq3bx8ZjUaamZlJs6RrB7/fT2VlZeR0OollWSJS0MpkLsvJqmjFQVz5SQB4csPZ+GXUPwUACD4qs3Jufn4eFRUVCAaDGB0dxfbt2/Prx+YRo9GIsbExTE9Po6qqCj/88IPIL6fE1xYG4GkS3bUMGIZBUVERmKLI/5YBDkh06+UqztVaTdW1TupPUpnj4+Ok0Wiovb1dunbXKSzLUltbG+l0OpqamkoROmIZOP46ddWAWgaWLYWrhYDqOAtBJJgUnuKkOdFTTc6BfmpBCw3wEgLkiQKB/yKNRkN9fX1Z3Nrapquri3Q6HS0sLMSdl1Iojlz0Bt4gFx8xRdxkF72El2QEHhtxsotaTkwQN9lFNTUn6QbxlGjfw+EwWSwW+se322ULsJ5IVn6n00mVlZVRmy4HN9BCaHVFfi9ru3AcC2Iz43g/dbd20XWeI26yi6pb+0URiIiamprIbrcruZd1D8uyVFlZSU6nM3ouvoIiyjjRU02IPP4kTYlAnIZPnKghMFiJKFFDnZ2dZDQas/ax1xMLCwuk1+tlXUaOv07dNctC5peFz0SOeT6+ZUQFzk120Rvd/7mSyEALvdR9nWLNicfjIbVaTbdu3UpZyPVuZgSE+5iamqLS0lIaGRkRhYmY3xN0nV9+gJKLWoFl+cWzAQB4fzd+frAI/3ypPOq9+OduLv+KuIuzs7P45S/34vXXG/HRRx/lzBVbT9TV1eHVV19FW1sbOjo6oh86/BeHQK/8C8qZZdfaP4c/MIB+u1GUxgbXrxj8og8AqvHlN2/BuGMSPS//DG9fBoCfgfnWBfq3Bhw6dAi//nU7bH+zC3v/9u/AsmEcaGsDxfjviVAh+pezRCgfyX4W4CEo3VdffYUNRSpMTU1Fhc3TJC5+Cex+3wQQwDMDaCs/jN/DibbXJZJL3qAiTcTr9ZJGo6FwOExEEZtmt9tp165dBev0ySdJzR9PFAwGyW63U2VlJX377bekVqvp2rVrxA20Rp93DGKefTXdUfOS+PKiqC/FZrPR6dOnRZfef/990mg05Ha7Hxibncj4+Djp9X8R93LX09MT8dJ4IskuEZKvxJS9hefdA2Qy7YjzQ1cS42h8fJwMBgM5nc5oC3hQOHPmDGk0GlFffjgcJp1OF/cA5UmZo5BU4CzL0l89Y4jPUKJCFxcXaf/+/WQ0Gsnv96fMdK0TDodp//79ZDabRZ1xgkjPnj1Lzz33XNxJJW18WeDSzeL0b05RZWVlkujx8c6dO7fuX/fn5ubIYrFQc3PzSovliTgJcZrNZnK5Et9VVmQiVQGyGs6yLGm1WskPvcmazq1bt8hqtZLD4aBgMCgbbi0yNDREGo2GTp06pSj8pUuXyGAwpJWHrMC9Xi8Zjca0EhNgWZY6OjpIq9Vm/DEi1w9hufSE8x0dHaTT6WRHEsih1WrTMqOyAj98+DB1dHSklXkiIyMjpNFo6MiRI1mlk08WFhZo9+7dtHv3blGLVFLpbW1t1NnZqTg/WYEbDIa0a1uKhYUFqqurI5vNtqo+u5TwxsbGSKvVSgpMaQsbHh4mq9WquBySAp+amiKNRiMZIdOmHuuzrwV6e3tJq9XS0NBQVuaLZVnatGkT3b59W1F4SYEfO3Ys2h2ZS1u6Fnz2UChEzc3NZLFYctbimpqaFHtmkh0hX3zxBerr6+P6GnKB2WzG2NgYOI6DxWLBjRs3cpa2HBTTRzI7Owur1YrHH38cPp8PWq02J3nU19fj/PnzigsUx+3bt2nz5s0pv3DEkkkrkPPZ89VFIIy2OnPmTE7T5XmeQqEQlZSUKPpGIBK42+2m2tranBZKjnz77DzPE8uy1N7eTnq9Pq9vwVarVbKvPBGRSZmdnYXJZMpJU0uFTqeDz+eDyWSCyWSCz+fLafp3795FVVUVZmZmcOXKlegA/nxgMBhw8+bNlOFEAvf7/XktWCIMw+Do0aM4e/YsGhsb8d577+UkXZ/Ph507d2LPnj3o7+/P+6wIk8mk7JmUaDN37dqVt6FqqexzbD/7/Px8WnFjEVzQVPeRi+eFkIbH41H0YV1kw3U6naJvlpmi5CbT9dmFNBcXF6mxsZFsNlvULy5UP/34+DiZzeaU4UQCV6vVooEv2ZLOTQthr127pthn53me/H4/GQwGOnjwYFoeVq6YmZkhvV6fMpxI4Erdm3wRWzmhUEhRP7vgYoq7SgtHIBAgrVabMpxI4CjstB9FyPnsLMvSgQMHyGg0KhgDmF+CwSCVlpamDLcuBE4k9tkDgQBZrVZqbGxcE4OSlApc5BaWlJRgcXEx935Tluh0Oni9XphMJpSXl+OFF17Avn370N/fj5KSkpWABZ8EGSEUCuGJJ55IGW5D4oni4mKEw+H4m1h1ImNDVCoV/unoUdTW1uLPVBvw17YKcdCYrh+CeHh2vlhaWkJxcXHKcCIN37RpE+7fv5+XQqWGBwAQcXFniRjwv3OCYRioGAZVVVWo+OR2yrSYAmp7KBRSpKRFFNObxtEStpfpEPhuLp9liyNOJssWjmHiZyMP/H0RVA0MBogDzxM4cqG1rxHMrwaSpFxUEPUW5Pfdd98p6n0siu1+VTEbsW3bNkx/M5O3AiYSyZ2PORC0PHIjA60MfnGzG9f5D/E6ikAgFKEBHwy0AH2X4Ca+YGWVQpDf9PQ09Hp9yvAiG240GgvSTx1PUYzBFbQ8YkYa/70a3ZOHUM4wIOKi2h+pkLUzbtHv96OiQuKZkoDIhm/btg1+vx9AxMQIf1LHsecSkQordS1qUhJkx9MkTp7+LTa+2YJ/MP4UCbIsbJaW4J+fwcbHCMTEpxtfJl4y/3wwPT2NsrKy1AET/cT/uf3fVFpaGn09Zvn41+rYYyW/07kWy0/8OWpFZJJSYnyO90endAjXWD4c/Ys9TpZHrkjnA4RIw5966ik888wzGB4eFlUOR0tQMRtF5/KiRd/M4Q94CdvLIMoT7n/F25er0R0zHlgIExtWFC9PXLhwATabLX0vRcDhcMDtdkcC4M+TClTFbIz+ZQLJ/MaObfhL/B6zCX36PM6jreE3QGsbDptW6S0nAbfbDYfDoSywoOqxzW9qaiquIyb2WmznUk5MChc5TuxRZPkw9bcKY63/j4giUzt+/riK4PxdWmXIp0lhWZY2b94sGiaRcrhyrM3jeV40EEiu0LHxpM6nuiZXgUQc/cRdpROvqkSzw/7E/ZH+xP1RJNRkNjxfQhcGAintgpZdgunw4cMoLi7G0aNHAUjb71zAg1BEzFry8NLiwIED2Lp1K9555x1lEeRqwuv1Rr9g5PspT0SSY3tlF5xZQ5MtdDpdWqMBZGdEvfjii/hx8X8xdvU/pCopY41IqQAxv6UGITHM2mkNw8PDeOyxx9L76C5VC4JmnTqVakD+w430gPzkSGq4oFnNzc24c+cOLly4EFtBkr8fNj755BOoVCo0NDSkFzFVjbjdbjIajavyYXatIjWpSiCVtyI/q3UZh8OBJ5988qGdfSxFb28vysvLUVlZKbqWcvCrkpoRJsYuLS1loRcPBsFgkNRqtWj5PaV+eFTDk9VMRUUFrFYrTpw4kblaPCB0dnbCbrfDbDbHnVc8rFtpLc3MzMiupvCwkM5qGnKkNSYiFxmuV5It35EOaQ9C6ezspB07dtCPP/6YVcbriVQL1KRDRstZ7927F/fv38fg4KBglhQtyL4e4TgONTU1MBgM6Ovryzq9lG6hFB9//DG+//57vPvuuwDED4wHRdgA8OabbwIAPvjgA9G1DHQ183FtgUBg3c+rTwbP83T8+HHJZfSyISOBC96M3EKR6530FopMj6y3JJifn4fD4cDWrVvx6aefrrEhculz7949vPbaa+A4Dm63G2q1OqfPpIxseCxarRY+nw9btmyB1WrF7OxsLsq1Kty4cQMWiwUGgwEjIyPRjT5y+kzKpFnIvSAdO3aM1Gr1ulzO+uLFi6RWq/O+wHzeF2zPZo5NIebnFHrB9qxNSiKvvPIKrl69iomJCZSVleHDDz/MuN88k6asNC+O43Dy5Eno9XrMzc0pHqqWNfmsTWHTDYPBsGqbbkjhcrlIp9PRyy+//GBsupGIx+NZtW1lYishdluZy5cvF7QcAqu2cdJbb731UG6ctGpbg3322WfweDwF2xqssbERzz77bNK4SvPIhlXb/E4I92jzu1Xk0faOj8g5OffDH5GcRwIvMP8P+zBaUgAXSgYAAAAASUVORK5CYII="
|
<image>如图,在⊙O中∠A=30°,则∠AOB为()
Choices:
(A) 60°
(B) 90°
(C) 120°
(D) 150°
|
120°
| 69,652 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAALcAAAByCAYAAAARS0CYAAAbt0lEQVR4nO2dX2wb173nv0PJEN19kNxbVFSLmlJ3AY9JuRmlaDsp0FBC20TKi8lEIuUtkNB9cVxcIJRfKvneJSn1biR3UTG5WIBpH0qjD5H1p1QvsJGNogjpPIRMFwWViBLpXaziuBemDFyINW5vydjS/PaBnBFJ8b+G//kBCGk4Z2YOZ77nd37nnN+cwxARoQUhIjAMU7nzr05AYVoDknd3fOUQKzDBiGWsTigqdt02RzTFXS6nfFZK2AKCsA8yUBgJy4IAIgIRYWKlEwrjNrSao7QtaleqRlOIu5BQKy8iAYAAgbYwO3gBs7Bii1ZhxFG+xldvYRyD0GhJNOYVrTnaAJ21zkA1KEdEpbktCRsRnDVhbvs8bEEbtEg/lgELjX0cRnSUnJc25cG0qs8tN4RPYB98BnOaW6CVCRRXKQpFpmtTDi15ZytRnglh7GwDGq0WhW4rQUj+15K3v2o0pVsSDoext7cHj8eDR48eIRwOS/seP36Mzc1NAADHceju7pb2sSyL3t5ejIyMQKVSgWXZot0TZnsbO8lkx44hIN1LaYu6GjSFW+L3+3H79m38/ve/h9/vl0Sq0+nQ19cHlmWltD09PeA4DgCwubmJaDQqCTEcDiMSieDu3btSoeB5Hi+88ALGxsbA8zyAdPGKuhWwAhNjwprxXdDypfQMErAyZ4PGZscg2o3IqkF1hiAIebeJiGKxGL377ruk1+upq6uLeJ4nq9VKPp8v73Hl4PP5yGq1Es/z1NXVRXq9npaWlrLne3WCAJDGvpW8/iEJtEVWLejl1UNZ8tOmeOpO3Pnw+Xx05coVUqlUZDKZyO12UywWq9r1Y7EYud1uMplM1N3dTVeuXKFAIECUUo6EoJXOJwx68nOebMGnRNQWd7VpCLdkfX0dc3NzUCqVeO211zA5OYmenp6KjzLmIxqNYnl5Gb/85S8BKGC1/iOeffZZqNXqmuSnTRZqXLjSEAQhzZ1wuVzEsizp9fqEhaxTAoEA6fV6AkBf+cpX0q15qlUXhLTtNpWlLi233+/H5cuXwfM8fvrTn6Y1CKsNFVs7EPDl3i/j888/x5MnT/Ctb30L//zP/xMc940svSVtqkFdiXt/fx8/+9nP4Pf74XK5ShJ10SKsFAT0D/Tj+9//Pnp7e/Hb3/4W0WgUP/zhD/FP//QmBgba7krVqWW1kYrH4yGWZWlxcbHWWSkb9UA/hUL3SK1WUyQSocXFRVKpVNTb20tm86sUiURqncWWoi7Evbi4SDqdruEfvlqtpk//3y653W7S6/VERBSJRGj4eR3918lL1N/fTxaLpeF/Z6NQ06GyeDyO119/HQ8ePIDX64VKpapldmSBGMBgMCAej+P27dtQqVTw3PXiy6pe/OAHP8BXv/pV8DwPm82GaDRa6+w2NTUTdzQahcFgAMdxcDgctcqGrFCy+UJEcDgcuH79OuLxOADA4XDgm9/8Jv7whz/go48+AgAMDQ3BZrNJaYo5d5sSqEV1EQ6Hied58ng8x/bJNbJYC9RqNe3u7hJR4ndMT0/T/Px82m/yeDzE8zyFQiHa398nq9VKarWaFhcXqzog1QpUXdypDzcfjSjyVHETJUY0z58/n/YdEVEoFEor3A8fPiSLxUJnz54ll8tVxRw3N1UVt9PppOHhYdrf36/mZatGpriJKK1xmcr+/j7pdLo0MUciETKbzaRWq7PGr7Qpjar53Ddv3oTX64XH48GZM2eqddmaYzAYACRCCFI5c+YMvF4vbt++jVu3bgEAVCoVXC4XPB4Pfve732FoaOjYcW1KoBolyOfzkU6na1qfUnShslluIqLd3V1iWTbr74/FYqTT6dIiGkUCgQBdvHgxZ/ukTX4qLu6HDx8Sx3Et0bebS9xERAsLCzQ9PZ11XyQSOXaPUtsconHIVQjaZEcWcedq/OWzSs1IPnHHYjHiOC5nQ7qY2s3j8dB3vvOdogPJ8jXKG7HBXioVtdwmk4nefffdSl6irsgnbkEQ6L333qMXX3wx5/FLS0tkMpkKXsftdhPHcTQ5OUmffvppSwi1HCrWoHQ4HOjr68OlS5cKJ25yKBnU9dJLL6Gnp0dqQGYyOTmJvr6+goNaBoMBgUAAFy9exPDwMH784x9jb2+vEllvbCpRYt577z0aHR0tmK7ZLE4+yy3y8OFD6u/vz+t+jI6O0sbGhrRd6D65XC5Sq9VksVjo4cOHWdNkxsq3ArKLOxKJEMuyTduXnY9CbonI4uIiWSyWnOfZ398nlmVLaoTHYjFaXFwktVpN09PTOe9/KwlcNnGLN02v15Pb7ZbrtA1FMZabKCFEnufzNgpzDf4Uc+75+XlSq9VktVpb0siIyOZzMwyD27dvIx6PQ6/Xy3XapkSpVMLhcODq1as50+j1eimysNRzT09PIxAIAAC++93vwuFwFBWc1XTIVUpSrVErVX2pFGu5Rcxmc95YkkAgQDzPn2jwKxKJkMViIbVaTU6ns6WejWyW2+l0gud5acKbNoWZn5/HjRs3csZ1cxwHnufhdDrLvoZKpYLD4YDf78fm5ia+/vWvw+VylX2+hqKUkpDZ4hb/j8Vi0qtVrUyplpuI6Be/+EXexmUkEiG1Wi1b6MLu7i6ZzWbiOC5v26gZLHxJlpthmLSXcMX/nU4nDAZDU7xJU22uXbsGr9crzV+YSW9vLwwGw4msdyoDAwP49a9/DZfLhd/85jcYGhqC1+s9lq4p5g4vpP5CJTgejx+z2s1Q6suhHMtNlPCtOY7LuV9u6515bTFupdmCswpa7kIleGNjA0NDQ2lWuylKfRXhOA7f/va38c4772Tdr1KpMDQ0hDt37lTk2l6vF3a7HXa7HQaDIWct0nCctHTwPJ8zMKrVLHg2y13sPcgWGZiKz+cjnufLypfYViomL2Lcil6vL6sWqidOJO5QKEQsy8qVl4Ynl1tSrMBdLheZzeacx7IsW/D1PLlwu92kVqvJbDY3rMiLalBSjjevl5aWYDQaZa1JmhGGYYp6e91sNiMcDsPv96cdK2I0GrG0tFSRPGZiMBhw//596HQ6vPTSS5iamkIkEqnKtWXjJCWj3AZUsyLH/cjXuNzd3SW1Wl3UeeR0CVPjViwWS8MM6Zc9iOP1etHf34+BgQE5y1rLw3EchoeHs4a9DgwMoL+/H3fv3s1zhsR6O6kWn4gACGXPfaJUKjE1NYVwOIyzZ89K863U+6RCZYvb4/FAp9PJmZc2SRYWFvD2229njdHW6XR4//33sx6XkG7ikaYKOSF0xYl6sYgISqUSFotFilsZGhrCW2+9dSxupdxCJDdli/vu3bsYGRmRMy8tjyiKrq4uLCwswGKxHEszMjKCDz74IOvxWaWbpjMhW4qiEAsGwzDo6enB7OwsAoEAPvvsM7Asm1bT1E1XcDm+TCwWo+7u7mODCq3W9ZeJ3G2QbAMrue79ynjqUiXJj9ZKW2mz3cu7dIn4vCORCE1NTZFarZYCwbKFaVSbskYoPR4P6XS6SuSnoZFT3IIgUCgUIo7jjgk5TfQpizV8YtcQjMtERHRIyzQOECZupZ9XltxlR4xbYVm2LmL6yxqh9Hg8GB4elrsSaYMj14RhGLAsi9HRUbz99ttpaXQ6HTweT2KDSbgjhCDWVncwPj4OAFBgHBPjhdyD8t2UbAwMDMDlcmF9fV2KW8mMR6dq+uPllAiTydSe7isLlegaFSMu9/b2pO+yvSUvBK2kZSZoOWmbP7FrCDhP9q10V0ROy13I9QgEAjQ6OlqzuJWyxM1xHG1ubjb12kXl+ImV6vd3u9108eJFaTutLzyZzY9nB9P8be1sMPvJavDQRDd2dHRU3oW7hJQ/WX5XafHcyb9dXV1NOzVaKqUKvJKDWnq9ntbX/4WIEta8q6tL2ifQFtkGQeMrCSstroWpsW8dP1ENLdLGxoYUt1JKGEG5Wc4r7kNaJlvyBqW2jFUqVZmXa24qJ+5Dab7B+N8SRkWlUh0FWW1ZSYNxySUhIlqaAAGv0FKGNASqfa+W2+0mlmUrELeS7oIpcjUqCEHMDpqwmtxONCwFhMPhlFXG5G2Q1BNUJwMRCRToHxiA0WjEmwvzICKcO3cO4fD/AQB8sraKnYlxGCGuRx9EaAeARoPBjDMxqH0/tMFgQCgUgk6nw8jICCwWSxGTCmVoLevjUWRuKbI+yOCsCXPbgEajSUsei8XQ1dWVPH9Nl9Q5MfkEXGsBZMIAmJmZwcrKCu7fv4/Tp08jFvsPEIL47VoILxsnpLTLxguY2wbG7XYMZh3aqQ+jZDabcf/+fajVajz33HOYmprKIXIBonBXjIm3wRgFI70ZxjAa2LeFY3pXABkPkgBhx4Y5ssGqPX6ZR48eoa+vD0BjrRuaTcj1JuDcJMSoVCqxuLiIn/zkJ1CpVIj8r/8GBZMQsnuiAwzTAYZhcGn1PGzBQ6xOHDc+lHOjdkxNTSEUCuHs2bMYGRnJErdy9DsmVgjLEwC0VmxRIl5meSKEWdPPsJ3xg479eoFZw6SRgc1OCG1roDkvHlAfpb1cGkfIGRCQ+pjGxsagVCrx4MEDKL7196BEuwmCIIDoMLm9A7s2e62auAvJ+JN6UTeOgrM+/PBDAIm4lYWFhWNxKwyC2N4BNBMTUq00MTEO7KxgbTtD3EebCfGuGW9hPGiDdnsH29BAOyjepMTfvb099Pap6qbUl8vw8DCGh4fr/5Uq5rhRcTqd+NOf/oR//dcHKelKL7zVLvDFtGPOnDmD2dlZbG5u4vHjx1Lciihy2l7F2rYGxokjtyK4swOQFhptxu8hIqmvJdHxnxqf8Aotk5DW3jaZTCn7FcfjGersowBDDMMQEktEHk/D5D42a/pcaZPXqOQn8xrVuGa9fMR+/U/smrSYGWFlnIDs3Z5SV6AQtNIrKQmElXHCYGbgDdH8/HxihYAGH8HR6XT0/LAux6BCeQFG1Xx5Y2Zmhubn56tyrWqR2kW5u7tLJpMpbX6VQ+ETsmozjZOGbFm684mSsSW0bcOFSQZ2W6apR/IcR6hUqkSLthFdWBL/BKH7t7v4wHsXQ0NDYBgG2tlgSkLRFavfdkYkEmm4eWKogFvCMAz29vZw5coVDA8PQ6/XIxAIJBfNEsDsrGFtWwNb8BCCcJBoXwjbsGf2dyZR2C4wUAzOYTsoOuTbsA0y+IZ9B9iewwXGiBXkz1TdI2afAbZmtVAwF7BjOzxqjK2MY8d+AROrmYc1dldnvZHPx49Go5iamgLP8xgaGsJnn32GycnJlBQKBNfWsDM4gXEtA4bpkPaIj/dY4UnUB8lq4VCgJ0+OPgcCUWYVvbGxIU0sX+uRrmIR85loU2jJFjzudixPgKD9x2NuWClU0y3JnKC+UUldRdnhcOQI6zgkgbbJqgWdt31StEvcmShSyZKlYHCKIRwcAIpOBgomUWLE0sEA+MIXvoBYLJY8rDF8E4ZhQNs2TM7uQDP7cc5ushO8mAQg3XJQcqmQShGLxXD69OmKnb/SxONxOJ1O/OpXv4LJZEIgEMi5PimtmqAwriU2dr4BLbOFoFVb8P52Hj2Eo1GgbIinOXfuHO7du5dIzzROtb06O4cdegXL1m9I34m/nZJ9pycl2zyKleLevXspYRCNxc2bN6XZrTweT8G2AzOxinKiITqPHkKmUAmHT5NNKkZAZ2cHIBD+7u968R//HkU8/gTKri4cHCStegeDTvEURNL3ANB5KsXG59uXdvmUdAzQ2ZlMl/X4o7x2dAJ0kMy3AjilAJ4crGFt48v4T0YjUmdZkX779ipWtwGNfSLHcHV9EY/HEY1GG65BeevWLUxPT2NkZAR+v7/i+e/MvYtBRyeBDoCOzg6IHoqCgK//FxbhcBgXBp9BhyQugsAwUDCEwxS3hg4JB4eEUx2J90Vy70slPZ1wQBAI6MhzbjGvhwcJwXckC8FTAjr+bxBbT2L4z+c1yQ6gdJdhbW4OIbyCZbG3SPTB6pRwOIzz58/XOhtFs76+jrm5OZw7dw4ej6dq04HkETcAhkFHR4oACYAi8fpTOHQPWu0zEJ4e1ReJfkVAYIBOyY8HmAOAOgAm377U6xIgKIBTyS8V4gFFHN/RmV4TdHQwII0WgwDCAIgAhTgDFMMAKyYYV4DxlRUYKfnOVh0LG0iI+9y5czW5diltCXGCzTNnzsDlclV9YYKc4mZSBKR4mhAbBEDRAbAsi1D4XqLaz7S6Yvd6Lor1nSiHAS3D9+qAEdZ/+O947n+8hrnx/w37YGIOjxUjA9MqML6SPcioXgmFQjUTdzHC3tzcxMzMDGKxGOx2e+3etxW7TYQDgZ4cCESCQE+fpg+5i12EB8kvvV4v6XQjdJDyHZFAQvJ9n4MnAj0Ve9uE5Hmp0L7UCwr0tNRzJ485FCjndsD2LClPJYeugWNvhotvkosB/fX0Jk4qw8PD9P7771f8OoXIvD+7u7uk1+uJ47i66KY8EndKH/fhsWeaEJX4tTR3xt/+ltYvfqTFhLCePBHoSUZByb1PSC8sglDCuRPHHqUttH0kYjnDCKoh7lgsRj09PXX1ml8kEiGz2UxqtboupnQQkepiRsHg1KnER5Gl5mE6jnxZpVIJjuPg8/ulY06l9nowDDrF7zN84Nz7GHScYiB5OQxTwrkTxx6lzbdNklvNAEd+D5Xl8VQcyugD8/v9eOaZZ6BUKmuUowREhL29PWlUUafT4f79+8mh8vqguCmMBRxzfnU6Xda1VBqHjLgRpj7bkZk+bj3M0RiNRmGz2TAyMoKzZ88iHA7DbDbnPSazkGZuV4K84qZDwtOnhEMct+Y8z+OPf/xjJfMmG+k3UpHxt7Go5RyN8XgcDocDHMeBYRh8+OGHmJqaKqsWqUYsed4nzHQkqvLOLKnGxsawublZxIudtadh38LJYG9vD/fu3ZO996EYK/rOO++AZVk8ePAAm5ubmJ2dzTlcno1aPIMTmS+z2dw6C3bWAS6Xq2D1Xw75hHfz5k309/djc3MTfr8fDoejJFHXlFJan5ldP+KaOI0SHVhpKt1bUu01cTiOa+g1cfKPUGaQWcJZlkVPTw8++ugj8Dwva6Frk47f70dPT0/Fg6W8Xi9mZmagUqmOjSpShSMdZeekpcPtdpNeryeixonvrhSVnk5N7EOuxH1OXWw119KLjcaJxd1e9/2ISol7b28vbQVhOcUdCoWkUcWWW0E4ad1z7lMqlXjjjTdw48YN2WqTNuksLCzgjTfekLrc5HANPv30U1y+fBl6vR6vvvoqAoFA8825LkcJaVvvBJWw3HKv+/7w4UOyWCzEsqy0xEcm9bDkhxzIMpIhWu+f//zncpyuTQo3btyQrDYla1DKUpPm2wccjSo+99xzOHv2LAKBQM5uxWq+UVRJZBumu3r1Knw+X/3P4FRn5BIjAKlv+erVqwDSVxTLJHVf6jnj8TgWFhYwNDQEIBELXu6oYqMhm7iVSiWsVitmZmbkOmVLkM8yzszMwGq1HhNivgKRek6HwwGWZfH48WMEAgHMzs62hKhFZA2wECdpXF9fl/O0Lcn6+jpOnz6NsbGxko8VRxUfPHgAv9+P+fn5xhlVlBO5nfhIJEIsy1I0Gj22r5EbJ8UgV4Nyf3+fWJYtuYHudrvp3Llz9NprrzXsqKKcyC5uovSJe1oJucT94osvlvQmi8fjKWmtmWY3MiIlDb8Xy9jYGMLhMCwWC956661KXKJpmZqawujoaFHuiN/vx/T0NAAU9QIuJYfPG7kHpCTkLCmZFqHV1qs8qeXOtr5kNgKBAOn1euJ5vulGFeVENnFnq+pisRg9//zzTROrUIiTiNvn85FOp8s7WLO7u0uXL1+WpvVtFfeiXCric6cSiUSI47iWGL0sV9z57pEgCBSJRGhqaorUarU0qtgWdmFk7QqkLP2vKpUKTqcTk5OTiMfjdbYEXuUp9Hvj8TguXboEp9N5bHqxaDSK69evg+d5fO1rX8P9+/elUcWW8ZtPgKzizhwdE+F5HmazGWazueUeSq7fK94ns9mMK1eupMXDx+Nx2Gw2DA0Nobu7WxpVbFMasr8lm0vgZrMZw8PDGBsby1iG7YhWsup/+ctfMDY2htHRUWmSdfEFXPGFhEAggOnp6ZYaVZSVSvo82fzCjY0N4nm+KQcZivW5d3d3ief5tL5sl8tFLMuSxWJpifZJNah4gzIboVCIOI5rul6UYsTt8/mI4zhpsMXtdpNarabLly8XPLbdiCyNmoibKDHErNPpmqofvJC4l5aWSKfT0f7+Pm1sbEijiru7u2XNTdgmPxUZoczh/qQ1rs6cOYM7d+7AbDZjc3MTCwsL1cpKyWTmPRcKMGByNBump6fx2af3cf36dRgMBiiVyppM69tKVG3apWziUCqVuHXrFnp6ejA5OVmXE/wUEnaqlgUQKGMplUgkgsnJScRiMcSffI4333wTdrsdd+7caQu7wlR1TjHK0RsyPT0NvV6PkZER3Lx5U5ZzykWhrrzEehFAtjWFbt68ie9973v485//jA8++ACvvvoqvN73oWu2dxXrFIYqrY4M8lnCaDSKa9euIRwOw+VylTRHR7GuQyUQr93f3w+Px4PPP/8cP/rRj/DXv/4V8XgcN27ckLr7BBAUdTnlZhNSC0e/UMPJ5/MRy7JkNptLmmGpGg2yfNe4cOECvfzyy/TFL36R+vr6yOl0ZqQ4pHKX3m5TOjXrLSEqLEax71ev1+dYo70+EKP0vtr3FfrSl75Er3IghmHS1ijPupJDm4pSU3EXizhvHc/z5HQ6aX9/v6b5EQSBotEoOZ1O4jiOOO5Zcrvd5PV6pbwlViS2SisSH9IyjSP9u7YVrywNIW4Rn89Hr7/+OqlUKpqcnCS32501RLRS7kksFiO3200mk4l6enroypUrWWuUQ9o6Wso5NV9BK50DSGPfqkj+2qTTUOIWicVitLS0RHq9nrq6uojnebJardKIp5zi9vl8ZLVaied56urqIoPBUHDgSQha6TzOH1tjXkiKHsbl5HabSlK1QRw5USqVmJyclHog/H4/bt++jWvXrsHn84FlWfT29kKn06Gvr0/qdWEYBt3d3eA4DkSEjz/+GI8fP5a69cLhMCKRCO7evYtHjx4hHA6D53m88MILcDgcRc1kS0QIrq0hpJ2AUZujVySlG7FN5ah6V2A1CIfD2Nvbg8fjkUQq8vjxY2niII7j0N3dLe0TC8XIyAhUKlVZ0wUTgrBfuIC18W1s2zSJ75LruQq4BRNzCTv2LWzbBk/2I9sUpO7FTVXsvy71WmL6o8VgBdD2LLSDazAGt2DXpg/q0OoEFMZt2ILBY/vanIxsz64h3ZJKUWohkqYwk75RADs7CGnH8UqGSyJgBSbjGjBxSxJ2nS8x31Bke3Z1bz7q5c2dYio4QhD22TVoJiZwIUW2W7NadDAmhGaDoBWTmLgt7ApT925JNSnXLQFEl2Mte0KtFVtBOwbbcq4qbXG3aVrq3i1p06Zc2uJu07T8f4JV20gb1OUFAAAAAElFTkSuQmCC"
|
<image>如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()
Choices:
(A) 64°
(B) 62°
(C) 58°
(D) 52°
|
52°
| 69,653 | null |
52°
|
"iVBORw0KGgoAAAANSUhEUgAAAF8AAABaCAMAAADpX3p0AAAChVBMVEUAAAAWFhYXFxcTExMVFRUHBwcJCQkMDAwNDQ0REREDAwMYGBgKCgoLCwsODg4dHR0bGxsFBQUBAQEfHx8aGhoUFBQQEBASEhIPDw8eHh4ICAg8PDwqKiorKysiIiI2NjY5OTk6OjopKSkzMzM3NzcuLi4yMjI7OzslJSU0NDQkJCQvLy8mJiYsLCwjIyMtLS0xMTEwMDAnJyc/Pz81NTVOTk5CQkJeXl5HR0dERERAQEBZWVlaWlpKSkpbW1tcXFxLS0tSUlJTU1NFRUVGRkZYWFhUVFRVVVVWVlZDQ0NXV1dRUVFMTExvb299fX1sbGx3d3dycnJxcXFkZGRpaWl8fHxjY2N0dHR1dXV+fn5iYmJ5eXl4eHhoaGhnZ2dhYWFgYGBqampra2tubm56enp2dnZwcHBtbW1lZWWFhYWQkJCPj4+NjY2Tk5OLi4uKioqBgYGRkZGVlZWcnJyJiYmZmZmdnZ2ampqYmJiXl5eEhISWlpaIiIiAgICbm5uUlJSMjIyHh4eOjo6Dg4O0tLSnp6e+vr6mpqa2tratra2wsLC4uLipqamkpKS5ubmrq6uhoaG3t7elpaWgoKCvr6+6urqoqKi/v7+jo6OxsbGsrKy7u7uzs7Oqqqq9vb3BwcHY2NjHx8fKysrU1NTf39/CwsLZ2dnLy8vd3d3T09PQ0NDc3Nza2trMzMzFxcXR0dHX19fJycnGxsbb29vS0tLDw8PW1tbExMT///7g4OD6+vr7+/v4+Pj5+fnk5OTm5ub29vbz8/P8/Pzv7+/+/v7u7u7t7e309PTi4uLy8vLo6Ojr6+vj4+P19fXp6ens7Oz9/f3l5eXx8fHh4eH39/fq6ur///91kIncAAADeUlEQVR4nLXZ91MTQRQH8JUiVUDFTq+GLkoJVVEUG1UFBQQUG6CCHbuI0hFRsKEgiHTELlWaNJHu/j1ewh2jM5DbXfO+P2Tfzbx8JrOX7O1d0DchmCit6uVkjXwQVTfGFevo+mn9U0aw/t5gUL/NOAnUb1+UCeq/NukA9ZNVOkH9lBC6flrfNBTWN6sE9atU34D698wpTy+l7+ZGyVP67h6gfpdatVCR/syo/LeoRj5+D7PohvDvm7XJx57wxb0QfoSw+J/WaIfw9+3ni2RNCL/DMgvU79PKBvVztDUP1AL6Z3RyrXTr4HzPSIyjltRz1VkE8f3US+VepNb9GKd6VZC8oZvKb7eRLf5dSH6SST5/btrBMAo/T/uHbDhkQbhGR2fic4jCz7eVDwP6g0TtMdyPsSAW2dqQZr2WRDaYIiORRskQxzfYDmPsXYiSfAjjoeMrH/0O+4t0+o9wfrg1xg80fpLPT4ddI/lccr5qU3ORxSi5X4/e0fg9cV6VDfEt5P55m180Ph9y382Sgafw/WNA/QGdh6D+qP0wqF/swMKT+zE2oH7/5guwvuZFUH/IcQTUv4TIVmVW/5E95Y0jpb8lgYkn9iWPQf0xJ6INA7NfYtcH6l8OYOMV+J1/b3G2blO2n+ZsEFglHPR6FinZL93+/spSF+GK2LrsiZL9XO58RqIP/NFHx3El+7IcURPWhPwNjLxC3++oUMX6APg17kI14ZaufL8j7tNcqVKifD9zcq4sdyW9XSH2O69eq/yc1TJ7kKRNertF7DdLfaXSjfwMJezoV7YvpOG6sYElusHKi/iTCcu9oxObLXMY5Jvpon6JbpBsCWrUYrm2myeK+XkqT+XjM0OGxX/K94uI34f4LU94ED2Pq83xuGI/dCdfmEUw+FHetyTBivxBw2m+ktTR891O8ZXVqAmj2wslEN2ZLY6h4ws2zZsU7oNNuY7hAfQcI72FssJk5WyB1Fct2DRvVmdj/MJlAk8a1mLUKxo/I/Gef8PNj0c4xhkniPYPJ3fRT/+EQ9lM9e5pEr/buYDe7y/Mqi0W+X7yGdNvoPfnIu5/Zb72kvmpOrB+CO1fIpS+1l1Qv23NS1A/dy3bjRepX6rK9FyA2I9i3rqR+S4ZoP7MJqqnYtR+s2orqF+25794Ud/PCtYPYN+6kfi/VV6B+tOIeec/mz+7AWlKgb9/3QAAAABJRU5ErkJggg=="
|
<image>如图,已知直线a∥b,∠1=70°,则∠2的度数是().
Choices:
(A) 100°
(B) 110°
(C) 120°
(D) 150°.
|
110°
| 69,654 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAACuCAYAAAB5qeyLAAAab0lEQVR4nO2dXWgb6bnH//JX1PZwqm0vdnyVMSQbJV3IGBY6cTjH8kW7cvbC4wONZQrHMpy1FXph56KQQxfk0oDTdkHy4SxycqP4otgJB6RcxFLPjeQDG3lpQQpsV9rau5IX9mhKKVI4u9WsP/SeC1myJEuyPmY0Gvn9gSEazccT+z/P/Of9eF4dIYSAQtEwPWoHQKG0ChUxRfNQEVM0DxVxgV2s3NRBpyv7ubmCXbVDo9SEirjAJSx8SLA5B8xtEhBCQMgm5l4sYmaFyriToSIuYRd//ngE1y7nP49DmANefLKjZlCUM+hTO4COYvc5nuI21i4df1y5iVuP5rBJxtWNi1ITKuIidp8/xYsXL3BZtwgAGHHugJBL6gZFORNqJwrs4vlTwLlz7Id3nMDiZdykfrjjoSIusINPcBvv5BPvpQW8Nwe8ePqctk50OFTEeXxefHz7HVDzoD2oJwYA7GLl/se4vXYiYd+8DrceAXObC00JO5FIIJFIlGzb3t6GJEkV9zeZTCWfGYaB0Whs4srnDx0dAATc1Onw4tTWETh3PsRCDQVLkoTt7W2IoohYLIaXL19CFEVsb2+DZVmwLFuyP8/zuHDhQsVzbW1tlXzOn5PjODAMgx/+8IeFc3IcB4PB0Oh/s2uhIm6ARCKBYDCIra0tBINBiKIInufBMAyuXLlSEBzP87JdMxKJFG6Mvb09JBIJRCIR6PV6mEwmjI6OwmQyneusTUVcA1EUS0QrSVKJcMozrZqxpdNpmM3mjoit3VARl5FOp+H1evGLX/wCR0dHGBsb00S2E0URfr+/IGq9Xo/5+XlYLBYwDKN2eIpCRXyM1+vFkydPEAwGYTab8cUXX+Ddd9+FxWJRO7SmiMViePjwITY2NsBxHKampmCxWKDX69UOTX7IOSYcDhObzUYYhiGCIJD19XWSyWQIIYSsr68Ti8WicoTy4PP5iNVqJQaDgVitVhIIBNQOSVbOZSaORCL45S9/iUQigfn5eQiCcOqRK0kSBgcHkUwmuyZ7SZKEjY0NrK2tAQAWFhYgCIK6QcmB2ndROwkEAsRsNhOO44jH4zlzf7PZTHw+n/KBqUAgECCCINT9u+hkzoWIA4EAMZlMxGQyNSRKt9tNrFargpGpTzgcJoIgEJZlidvtVjucpuhqEUejUWI2m4nJZGrKB6ZSKWIwGOQPrAOJx+PEarUSjuNIKBRSO5yG6EoRZzIZYrfbCcdxLduBZm8ArRIOhwnP88RqtZJkMql2OHXRdQOA/H4/hoeHAQChUAhms7ml801NTeHJkydyhKYJOI5DKBTC6OgoxsbGsLq6qnZIZ6P2XSQX8XicmM1mYjabSTwel+28yWSSMAwj2/m0RCqVIjabjfA839EWoytE7PF4ZLEO1ej0P6LShEIhwvM8WV5eVjuUimjaTkiShLt372JtbQ2BQKBl61CNiYkJPHv2TJFzawGe5xEKhfDq1SuMj48jnU6rHVIpat9FzRKPx4nJZCIOh6Mt12JZVvHraAGfz0eMRmNHPZk0KeK8fWjnL9JoNJJoNNq263UyyWSyo+yF5uxEsX2Qc9zuWUxNTWFjY6Nt1+tkGIYp2IvJycmqs1Xahtp3Ub1kMhlitVrbYh8qEY1GidFoVOXanYzH4yE8z5NUKtXwsZtzIEDln7nN+s+jCRFnMhkiCILq3aIsy8rafNct5DtImvndbM6VC3aHOEdGiHOn/nO0wU6UFuq7ubIL+OYx76vv6HQ6jbGxMczPz8NqtSoa6VlYLBZqKSrAcRzcbjdmZ2cRiUQaOHIXf/54DsJxgSXfygp2cQnv3L6NNxqZndvwrdMIO04yApCRottqxzlCgPrutHg8TnieJ+FwWLkYGyDfXkqpTL7FqO4X7h0nGcmn4eJ/N4hyIq4g4BybZA5z5Kxww+EwMZlMHdciwDCMZsYUqEEqlap7tGAuoZ344NNaqQ/FRLw5B4IRJzkd1g5xzlXafkL+ju5E/2mz2YjL5VI7jI4mk8kQs9l8xsCpUu+74xxp6GWuGIVEvEnmmryzUqkU4TiuIwVMyMnYZEpt8hm5uhUsfSLvOJ1nPp2roYyIj61Eo3dWJpPpKA9cDYPB0FST0nmj5hN1c46ggkB2nHMNtUwQomjrRHGx6rORJAnT09Ow2+3gOE6xqORAEAR4vV61w+h4WJaF2+3G5ORk2XiLXazcf4Q5oazus28el59eOynqWC/N3WNnUd1OVHtsWCwWsr6+rkw4MuPz+YjZbFY7DM0QDofJW2+9VXh6jVTp4ECTFlTZF7uyprQd50jFIBcXF1XriWuGTCZDDAZDYXo/pTr50gff+c53FGueVMxOjD8kyNWpPunomMEaPiyr0Ge32/HZZ59hcXFRqVBkR6/Xw2w2U0tRhe3tbdy5cwevvfYanj17homJCXz11Vd4++23sbS0JP8FFbk16iQWi5He3l4iiqKaYTRFNxVXkYNoNEru3btHWJYlPM8Tl8tV8eVXiTmLqok4k8mQa9eukR/96EdqhdAS1FLkhmS6XC7CcRwxGo1keXn5zKbRZDJJOI6TtcNINREvLi4So9Go6eIk3VxcpRqZTIasr68TQRAIwzDEZrM13CQqd1u7KuOJvV4vdnZ2kE6nT1VI1xLnaSZ0MBjE7OwshoaG8OzZM8zMzCCZTMLlcjXcJJovjyubP5btdqiTaDRKeJ4nH3zwgear63R7cZVin2symYjb7Za1k0cuf9x2Eecfwd1SlKRb/h95kskkcTgcxGg01u1zmyUejxOj0djye0Vb7YTX64VerwfHcYjFYpq2Enm6wVJIkoTHjx9jfHwcw8PD2Nvbg8fjQTQaxb179xSrOs+yLKampvDgwYPWTiTTTXUmmUyGsCxbeKO12WzturSiaLm4SnndYjVeUjOZDOE4rqUht20T8b179wqzY7vtEayl4irRaJQsLi4ShmGI2Wwmbrdb9WbCVrvx2yLi/BysTCbTlTUclpeXyb1799QOoyrxeLzE5zocjo4b2C8IQtN1ktsi4uLM2+l/8GboxBszlUoRt9tNTCYTYVmWLC4udtwsmWKSySRhWbapp4LiIvZ4PEQQhMJnLT16G6FTiqt4PB5isVgIwzCaW5+j2YFgiouY47hCj043126w2+3Ebrercu1aC+hoiWazsaJNbF6vt7CMKwBsbGxgampKyUuqhsViaWtTWyKRwIMHD3D16lXMzs7i+vXrCIfD8Hg8ml3qi2EYCILQeE1khW4qQsjpVohOeeQqhdLFVVKpFHG5XAWfe+/eva77fTaTjRXLxJFIpGRsRH494k5elbNVlCqusrGxgenpaQwNDeHly5ew2+2Ix+NYXl7uut9nU9lYqTuqvMmkuJ24W5GzuEooFCI2m40YDAZNTd2Sg0azsSIiDofDhOO4km3dXMcsk8kQt9tNzGYzGRgYaLoNNh6PE7vdfubA8vNAIy0ViojYarWWFP/r1vJPlbptGy2ukve5PM8TlmWJ3W7v2pu9ESolwmrILuJMJkMYhinJIN1YNcdms5Ef/OAHp7pt6xnwXTyw3GAwEJvN1pVt561Sb0OA7CKuNPesG+uX1Xq6VCuuEggEiNVqJQzDEIvFovnlaJWm3t5d2UVcPmWnm8s+Vbs5i+2U0gPLu5l6u/NlbWITRfHUOOEnT550bQdHtUpAP/7xj/H+++9jeHgYk5OT+O53v4tAIIBAIACr1QqDwdD2WLUIy7JgWRbBYLD2jnLeOQ6HgywuLhY+V/LH3UTxU6bY577++uvkwoUL5KOPPlI5Qu1TzyLxsmbi8qwbDAbBcVzXZh6e5/Hy5Uv89Kc/LZlAKYoiJicn8fnnn6sdouYRBAF+v7/m4jayiTiRSEAUxZIVjbrVSsRiMdy9exdDQ0NgWRY3b95ENBrF+vo6BEEAQBdwlAuDwQCe5+H3+6vvpFTa77biIuUTKM8aWN5t/381Kbep5ciWibe2tjA6Olr47PV6YTabNTmaKk+tCZSLi4tgGKbqsXq9HjzPn/1SQjkTk8lU+/co191S3q2s5f5+uSZQ1vNSQqmPWoXNZRFxeRdhKpUiDMNo6lFaPLBcrgmU3V5cpZ2UD2UoRhY7EQwGS9qGtWIlqg0s9/l8sFqtLcdvMBjAcRy1FDIwOjqKra2tit/JIuJyP9zJrRLpdBqPHz/G2NgYxsbG8OrVK3g8HoTDYdhstpo+txm6obhKJ1DTF8uR6ov9SqdaCbUmUGq5uEqnUW04b8uZWBRF6PX6QofGxsYGBEHoCCsRiURw584dDA4OYm1tDRMTE4jH43C73W0rocUwDFiWxfb2dluu181wHFdx2d2WRRyJREpKe6ptJRKJBJaWljA0NNQxEyhpx4c8sCyLRCJxanvLIk4kEoWCc5UGALWDdDqN1dVV3LhxA2NjYwCAQCCgmM9tFLqwuTxcuXIFn3766antLYv4008/xZUrVwDkrITFYmn1lHVTPoHS4XAgHo9jaWlJsUqOzcCyLPR6PWKxmNqhaBrF7EQsFivMuG2Hlai0Mk8qlYLL5SoZt9FpTE1N0WzcItXsRMutE/k3RiXrkUWjUc1PoOzm6kftpFLPXUuZWJIkiKIIlmVltxKiKGJ1dbUwsBzI+dxQKASbzaa54Z1GoxGSJFXOJJS6MRqNp2xZSyIuthJra2uYmZlp5XSQJAkbGxuYnJzE8PAwXr58CbfbjWg02nE+txnoC17rVLIULYk4nU7DYDAU7oxmq9HIuTJPJ0Ob2lrHYDCULXYO9LVyQkmSoNfrmyoUGIvFsLa2ho2NDbAsi5mZGTgcDs3ZhEbgeb4weUDtZj+t8vrrr0MUxZJtLYk4/8d48uQJPB5PXftvbGxgbW0NkiRhZmYGgUBA8zahEfKTS202m9qhdA0N2AkfVlZ2T23961//CoPBUNVKVBpYnve5Sq7M06nQAUGtwbIs9vb2SrbVLWLf/C08LdsmiiL+9re/YWJi4tT+fr8fs7OzGBwcxNbWFhYWFpBMJuFwOLrK5zaKyWQqVAylyENdIt5duYn7H4/gzTculWyXJAmxWKzQtJafQDk4OIiVlRWMjo4imUzC7XbDbDbLH71GefPNN3H9+nXcv3+/5ixeymkYhqnticnhIQ6ypPC5p68ffZ+v4LdYw3tvXoa37IR/+tOf8Nprr8Hr9eLhw4cAgPn5eYTDYfriUoX3338ff/zjHyFJEn71q1/hiy++wKNHj9QOSzPo9frTN/6pLpHsEdn/5oAcZgkhZJPMjTjJDtkhzpER4twp3fX73/8+AUB/Wvjp6+tTrHerG6lUFq2mnfDNeyF8uIBLVb7/yU9+ApfLBZKbq0d/6vh599130dd38gB86623av0JKHVQvYnNN48J9+/Q6/4dgCNIB/+K5+wh9vdJzmb05Nrs/vfLJPb3D6Dr6UN/ny53LMni4OAIOWOiQ99A34n5rvVdMSX79aJ/oAe6qscTHO4fIgsdevt7QQ4OkQWAnj4M9JKT/Xv6MJCPUSV+85vf4Msvv8Tm5iaMRiPW19dVjacbqCziz/4T//xMwP43LhwcZNH7xQf4pxngjb5e9BwCfT0AQECyQE+vDgMDfTjcP8IR6UOvjuDwIIue/n706oDs4QEOD8mxeGp9V0zxfgRH+4c4yvagr6f68X39vTg4OMLRwRH6BvrRR7I4ODjEfrYX/QP90B2LP4sqN02bMBgMeP78uYoRaJvi8et5Tv89d/8Dpn8D3KvjgK4HfT3AYewTvACA7BHQcyy47BEuXryIRHwP+/uHyIKAkNz2LHoKu/X09kKXPcplxlrfFZM9QranF706ANChdyCX+c8+Xofe/mKR6tDbf5zBjyEElC7jlIh1b/w7/vCH/8LmZ7nP/p99G//wL79D/4uf45r+Z/jv4iN0gK4HGBjox0BeaACALKprpdZ3xbuRKvvVeTylK6nUZX8iu8MD7B8SkOzX+Pqr/8HC8dvc+MN9fPP3NL765mv8XXqIW4Uje2H4x+8WNdoTZLO57T0gODo8lhrJgvT05i5U67tidD3Q4QhHhRRbx7m1hG8eOp3u5Gfep3ZEmkGSJFy4cKFkW+Hvr4MOyB5i/yCLnrJHsK6vFz3QoadELTp873sGpFP/h/39A+zvHx2fLedPkT3MbT/sOXnhq/kdweH+AQ6zAHS57dnDgzrPTXB4cAQCgqODnLWp/VktdrFyUwfd/WvYKbRYbGLu0S3crNClTznNq1evTg0SOxFxX9+xLeg79qKl6CpkPP23vw3pm68Lx52crAf9xxZjYKD0hqj+nS73QpY/SU9fwaacfe7csSf7nvVZHXzzl7EIJ3ZKmi3H8XPnCF48fQ4q47PJD/8tpq6/Jzk8QiVlVxplT6mCbx63Ho3AuVal3f3FJ9hpd0wapL7WiSLyj/ND9FbMzgaDAXq9/lRfNqWcXazcfwTMvVd41yhm55MXwMg1XG5/YJqjeDZRnpoi7unLPYL7a3QQVJ2BSjlh9zmevgDmhPFKX+LPHwMjt9+p2jNKyZFOpyFJUvXWiWapVguAUs4IrlVKtb7fYvHFCG6/QyV8FpWsBNDizA6gelUWSjkv8MkOUJpufZi/9Qgjzp2KNoNSSiUrAciQiamdqINLC3hvDnh0f+WkBWJ3BTd1t/BobhMfUgXXxcuXL3H9+vVT21sWMW2hqI/xhztwYhGX8x0cl5/i9g4BeVjJJ1MqUc1O6AhpfTTBt771LaRSqY4o50rpXoaHh+F2u09Nb5Ol3Z/neVp/l6Io6XQaiUSi4vxMWUQ8OjpK16WgKEr5ujDFyCJik8lUdVEQCkUOyteFKUY2OxGJROjMXYpiKJ6J6eqZFCURRRGiKFatVyLbgK63334bv//97+U6HYVSwO/316xbIpuIz1x/l0Jpklp+GJCpnTjP4OAgLZxCkZ2zdCXr+HCr1YrHjx/LeUrKOcfv94PjuJqJUVYR04qPFLmpZzEjWe0EUL1rkEJpFEmSMDg4iGQyWXNIg+zTzWg2psiF1+uF2Ww+c0yO7JlYFEUMDw8jmUzKeVrKOWR8fBwLCwtnlgWWPRMzDAOO4+D3++U+NeUcIYoiIpFIXXWtFZm9Pj8/X6hXTKE0QyPrIspuJ/LQFzxKs0iShKtXryIUCtXV56BYHZGZmRmsra0pdXpKF7O6ugpBEOruNFMsEzd6N1EoQHO6USwT6/V6LCws4Ne//rVSl6B0IY1mYUDBTAzQbExpnKGhoYYX6FS0th7NxpRG8Hq94Diu4QU6Fc3EAM3GlPqQJAk3btzA+vp6wwvdK17lVK/Xw+Fw4M6dO0pfiqJhnE4nzGZzwwIG2iBiILcotyRJtBePUpFEIoG1tTXY7famjlfcTuSJxWKYnp5GKBSiRVYoJUxOTmJmZgaCIDR1fNuKphuNRkxMTODBgwftuiRFA3i9XgBoWsBAGzMxkDPvw8PD8Pl8Db+BUroPufTQ1uUr6EsepZgHDx5gamqq5YTW9jVY8m+gTqez3ZemdBDBYBBbW1tYWlpq+VxttRN5JEnC+Pg4lpeXwfN8uy9PURlRFDE+Pg6fzydL34EqIgZyzSqTk5MIBAKnlnSidDdjY2Ow2+1Vy1I1imqLcbIsC7vdjtnZWbVCoKjA0tISRkdHZRMwoKKIgVyzCsuy1B+fE+T0wcWoZifyUH98PpDbBxej+treer0eHo8Hd+7coQvYdCnpdBrT09Nwu92KDAJTXcRAbmVSj8eD6elpujpplyFJEqanp2G32xWbb9kRIgZyL3oulwvT09NIp9Nqh0ORienpaczPz8v6IldOx4gYyK1OarfbMT09TavOdwGzs7OYmJhoaVxEPbS8oqjcmEymgofyeDxqh0NpkqWlJVy8eBFWq1Xxa3VUJs4jCAImJiZoRtYo+SY0uZvSqtGRIgZytY7zQqYeWTvkO6/aJWCgA+1EMRaLBQaDAZOTk/B4PLR7uoPJt0JMTEy0xUKUQDRAOBwmHMeReDyudiiUCqRSKWI2m4nH41Hl+poQMSGExONxwvM8CYfDaodCKSKZTBKTyUQCgYBqMWhGxITkfmE8zxO32612KBRCSCgUIhzHqZ5YVB870SiSJBVmhrhcLjrpVCUePHiAZ8+ewePxqF5PpGNbJ6qh1+vhdrsxOjqKGzduIBaLqR3SuSKdTmN8fByvXr3qnII4qj4HWiQajRKO46i9aBOhUIgYjUbi8/nUDqUEzdmJcorthcPhoM1wCiBJEpxOZ8fYh3I0ZyfKKbYXw8PDdDFImfH7/bhx40Zn2YcyNJ+Ji0mn07h79y5isRhcLhddaqEFRFHEnTt3IEkSHA5HUzXS2oa6bkYZ8k0/i4uLJJVKqR2O5lheXiZGo1G1zotG0bydqATP8wiHw7h48SJu3LiB1dVVOpCoDrxeL65evVqwDkoPoZQNte8ipUkmk8RmsxGWZYnD4SCZTEbtkDoOt9tNjEYjEQSBRKNRtcNpmK7MxMUwDAOXy4VQKIS9vT0MDQ1haWnp3I+MkyQJjx8/xtDQELa2tuDxeODxeDrb+1ah60Wch2EYOBwORKNRALl19paWls7d5NR0Og2n04mrV69ia2sLgUAAbrdbk+LNc25EnMdgMGBpaQnhcBhArhrN2NgYHj9+3NXZeWNjA9PT0xgaGsLe3h5CoRDcbnd3VCdV2890AoFAgFitVsIwDLFYLJp5Kz+LUChEbDYbMRgMxGKxkPX1dbVDUoSuaiduFUmS4PV68eTJE2xvb0MQhELJpU5s5C8nnU4Xqux4vV4wDIOZmZnC5IJuhYq4CqIowuv1YmtrC8FgEAaDAWazuSDqThCFJEkF0QaDQcRiMZhMJoyOjhZKhJ0HqIjrJBaLwe/3FwTDsiw4jsPFixfB8zwYhlG0hzAWi0EURQSDQfzlL39BJBJBJBIpiNZkMp3bMmBUxE2SF1EikcBHH30EURQRiUTAsixYlgXP87hw4UJh/3qKh2xvb5d0ymxtbUEURcRiMRiNRjAMg9HR0cINc15FWw4VscwkEgkkEomKgjyLSsJnGEbTzV/tgIqYonnOXTsxpfugIqZonv8HijIEft/cXQ4AAAAASUVORK5CYII="
|
<image>如图,在⊙O中,弦AC=7,弦AE垂直于半径OB,AE=24,且∠CAO=∠BOA,则⊙O的半径为()
Choices:
(A) 12
(B) 12.5
(C) 13
(D) 14
|
12.5
| 69,655 | null |
12.5
|
"iVBORw0KGgoAAAANSUhEUgAAAI0AAACFCAYAAABmDXvIAAAY5ElEQVR4nO2df0xb57nHv8egUqVkdKq1ggRlDQ51cLMSJVXJko6ssamzJQ29ZYLd5ipZy0Rrsxva0ntTDSl3G1PZjZ2kGhDW9Q+qIS1VybVpqOKUREWru0WXbckWA8kWVjKQZkp0mxQWQWrOc//wr3MO59jH9rF9DP5IFpwf73uec85znvd9n+f9wRARQeVYaxh0D4kcML0I+qA75fLEBgtAAyICwzBRzgMATQpkSgz1SwgWXR8QXqgBBjw+EBGICB6nDcbysnQLJwP/I2YYBixEvk/inpcBrwMZIaUGhDFMkBVPGXJAGIPd7kDF3l0wP7gu3cLFhAZcSxOwLIFdfHVioWYyQGmAsYGz0JlrAAADR7sAXTlAG/DKK0+nWTJ5WGsYMAwDjUYDhmECvxqMcVQlqE7+2kLgtai14kAqh2VZctiaCRqG4H+M5PCwgYPplS0WLCa/3EGRbRYjATtpNJNuIoDqlYYo/MCJiKwmY+hBs2xmPHCWRmmnybpsv8UEMlptnPOIiJZSJle8qL94GnOiGy+i1uA34OvMu1ARMOaRWyPqYWzgDJjyByFsp65bb8S5q5+EtjPjbjKgTuN0DcHyZE1o++WXX4bdbofBYIDaK4xBXB+4YDaZIdTxsrJygBHegyZQr0Hor9pQhdIQLUnW+YZc3TDt2hOqFBIRftvfius3/g8qER9AUDwWQkUmXMGZbsKupwycvf5zJib+Iuo2CFpQ1VrSNBePknicNn/Fl0GoAhz+aeie/Htpbm4u3WJGZ9QRrrew/P1gQDanh39+BlTTGCIV2kBC5hTwPPzeXy4Dx5pxdmknul95mndP1hoG3WQFDXXK8BarCxUqzfIHr25YEDGiL50whhrGgH8fJeypCOwcc4IxPJ0hIRAJ0mrnZLEUMtn+Jna4SXrx4kXemelpgguayAERPE4bMcuKVf8vWCSxnPOJuPIvCf6qC1VYGpIwz8FSin/cb4l8Ph+0Wi2mp6eRn5+fQmkFMgpkl7oXfiJkaPHrRx3lgMRDZgKtDAbcl+L/PzdXg61bt+Ljjz9OvnwRECqIrLpJ6BQxl4H63QiqUJqgNVmOXzzixmhCL0WDhoZ/xdTUVNLlk8fylz07O4u+vj78/ve/F00hes+kEY+Gq4ikF0+yzHWGEbwnAgtG8N1dunQJZ8+ehdPphMfjQWVlJT777DP86U9/Qk5OTpokVpakWxqGSc1XI9R9iuJVTeRbCRaXDDSYn5/HqVOn8L3vfQ9FRUX47ne/C6/Xi46ODszNzeGjjz5CUVERenp64r6e2khJRZhnbRSuBI6OjiInJwd6vT5pVs0vcrgH3tWrV/H+++/j9OnTcLvd2LNnD8xmM8xmM0pLS0Vl3LFjB8bHx6HVahWXL9Ukv3gCV0c4PhiFlOe1114DALz++uuJZybB4uIizpw5A5fLBZfLBWbxNia9s2g7MYj/+r5ZVrHT3NwMn8+3IixO8osnqcspZBC2bNmCS5cuiR6TKrLknDsxMYGuri7s2bMH99xzD3re/AU2bDCg6z/qMemdBQBsfvxbsuspP/3pTzEwMCApa0aRKocQFyVdcF6vl9ra2hLKI+hUc7lcZLVaSafTUXFxMTU2NlJ/f/+yGBdLo2TkdgaTSU9PD23fvj0hWdVABniElSeoJFNTU9TT00O1tbWUl5dHVVVV1NHRsczTvCx9nErj8/mosrKSTp48Ga/oqiDpSuNx2iQebnpc5MPDw9Ta2koGg4G0Wi3t27ePdu7cSUePHpWdR7xKQ0TkdruppKSEFhYWYk6rFhSo07Dh+oCgykAYQ0tta0THnRJcv34db731luixmZkZvP3222hoaMDatWvR0tKC3Nxc9Pb2YnZ2Fr/61a+wdu1aVFRUiKaPjYCDL0LTYtu2bfj617+O9vZ2Ba6XJpKpkXarhUwmk3jnaZZIKWvj9XopPz+ffD4f9fT0UG9vL7W1tVFlZSXl5+dTXV0d9fb2ktfrFU3/yCOP0Pj4uOzrSVqawOaS4H5ZluUFU6empqigoIAmJydlX1NN5CaudeC3hALbzqNWkMkItusqV0HDfhQGUMra3H333Vi7di127dqF3/zmNyAi3LlzBxUVFdi/fz8effRRfO1rX8P999+/zJczMzODmZkZPPTQQzFfd5lPKLCpQeR4VHFxMV599VW0trbi3XffzTivuYJNbs7grzEnhsiEV9YzOG8qV6wjOHGKuUuXLuFnP/sZtm7divvuuw/FxcX4xje+gatXr2JxcRELCwvo7u5GUVERnE4namtrkZubi29+85t47bXX8M4772BiYgJutxt79+6VJxun2GEZGV7lCIdbW1sxMjKC8+fPZ5TCAFCyeAoXNVZrYLiGx0E7LUeIaHkzO1IVUqxfzNzcHPX391NjYyMVFRVRaWkpWa1WGhwcJJ/PJ0vC2dlZcrlcdPjwYTKbzaTVaqmgoIC2b99Ohw8fpsHBQckiLCTRqEO0b4ycexDy7rvvksFgkC2/WlBOaQLPyGG3hB4owzBktERulUR6uOPj43Ts2DGqrq4mAGQ2m+mNN96Iqf4RjcnJSXI4HNTW1kbV1dWUl5dH999/P+3evZsOHz5Mw8PD9Nmtm4pdT4jRaKTOzk4iypxxXMpWhEcdZLE5Qpsep82/ze2dFiG5z+cjh8NBTU1NVFpaGtHBJobVaqVr166JHovlhYyPj1NfXx+99NJLVF39OAEgnU5H9fX11NHRQcPDwyHrMDs7KztfMTweD2m12oTzSSWKKc3SmINgepGIworhsFvoRbvD33qQSHft2jXq7Oyk3bt3U05OjmwHmxj19fXU09MTl/zRGBkZoRMnfkFNTU20efNmAkDr16+n/Px8un37NhH57zseW2G1WqmpqSm0rXaLo4jS+Mcl88dZW0wI9ZHlDj0l8rvrW1paSKfThRxsfX19dPNmYsVAT08PNTQ0JPzQl6dfEtWG4eFhqqqqopaWloSud/PmTSosLIzrQ0kHKQsjXLhwIeSur6yspP987RCNjIwQkXJf1s2bN0N5xoPQvyJETM7Z2VkqLCyk3/3ud7LOlyKT4lJJUxphT3uz2UxtbW2SrZP0EdnByHvxwlERge3+/n7S6/Wh0EA8H0EmxaVS0glrfn4eRUVF+OSTTwKdkML9akgNji2egzK+cVff+c538NWvfhVHjhyJW4yPP/4YDQ0NmJiYwF133RV3PkknaerI+SodDkfKTK/L5aJDhw4plt+ygGvATyMMIQSLqUSKRyJ/ZT7Rrh7JRlGl4ZvlsNlvamqijo4OJS8licfjIb1eH3O6oOwsG3a0icWYHLZmgulF0dpPX18fGQwGWlxcjPn6QTIhLqVozz1+MRPOemBgALt371byUpLo9XpMT0/j008/jSldeKaGcE+8Y81dYEwmPCQIgNusVsF0Z36effZZlJeX4yc/+UlcsgP8uJRqSbZWjoyM0AMPPBDajlZFVKIlFYujTOpqDruFjjhO0U7BFGd2uz3iPXi9XtJqtTE3n7mR8IWFBSotLaVz587FlEeqSLrStLe38xxXqkNMA4Ke7dGwwzJaEi69vb30yCOP0NJS/F0/+vv7JeNS6Xb+Jb1j+eDgIGpra5N9mfgRabg1d59D1yu1ACA+6VCULPfv34+SkhL8+Mc/jngeRej4/swzz0iOl0p/azOJBDtHiXVtTObXsrCwQHl5eTFMehS2CNyAK0S82XL5+9//Tlqtljwe8Si4ELHnoda4VFItzenTp2E0GpGXl7fsq0rm15KXl4dNmzbFMDlA4DGMOXGOTLxZ0csfFJ8VPTxdmjglJSV4/fXXsX//fvh8vqgSiD2PiooK1NfXo62tTbTvjti+VJBUpTl79izMZjOA1JvUHTt24OrVq9FPDECjDjAtH6AzUCwBwF8n/iZ+LgCG/DNYRHpxzz//PL785S/DbrfLloMLwzCh8VJ//vOfRY+nhWSZMJ/PR/n5+WkJG8Ra9EkFXAHN8iIqxlJ1cnKStFptQn2A1BaXSprSuFwu2rx5c7KyV5yorgDeVmytos7OTqqqqoq7h57a4lJJK55cLhd27dqVrOxDUITiYXp6Gjdu3IicPvBXzFnHRXx4sbwJiKxWK/Ly8tDZ2Rm+bgxzBefk5KCzsxOtra24c+eOrGsmlWRpY1lZGV24cCFZ2cvi0KFDKQtfROPatWv0pS99iSYmJuLOQy1xqaQozfj4OBUWFiYja9mwLEtnzpwhs9mcdmdYkOPHjydUN1FLXCopxVMqY01iUKC7xfbt25GbmwuWVcc8dgcPHoTP50NXV1dc6YVxKRJxDnL3CY8rRjI0sbq6mk6dOpWMrDOe8fFx0mq1cVsLqbhUKq2p4kpz8+bNGL2xqw+bzUbV1dVxp48Ul0oFihdPLpcLO3bsSOvcvlxu3bqF999/P91i8GhpacH8/LzkpAXRiBSXSglKaV/QPO7bt4+OHz+uVLYJ4/V6ae3ataobxRiMK01NTSWUXhiXSkUxpWjx5PP5SKvVJtSsVBqWZUmn0yk6KlMp2tvbE2rdWSyWULeTjK3TuN3uuLpaJpvjx4/LjjanCpZlQ57e3t5e2Wm4pGu8lKLF06FDhxTt1J0s1OK3YVmWLl68mFAxlY64lGIVYYZhcPr06VBUW41QwG+R9k5MARiGQWVlJaxWK37wgx/ISkMC30tjYyPm5+fxzjvvJENESSEUYXJykgoKClRX4QzS09ND09PT6RZD1MotLCyQwWCgvr6+uPJ0u91UXFy8rLNbsiyqYpbG5XLBbA5PxEzpXxGIx4cffojBwcF0iyFq5fLy8tDb24vW1lbMzMxIphU+Uwp4gKXm8UuWRVVMaZxOJ/bs2aNUdorzxBNP4MMPP0y3GJJs2bIFBw4cQHNzs+Q5YssEBffZ7Xb8/Oc/x/Xr15MqJwBliqf5+XnKz89XXV9WLlNTU9Tf359uMSKysLBAer0+bjnb29uprq5OYamWo4jSpHLY7UrnwoULVFhYSDdu3Ig5barGSylSPLlcrrRGtTMd4tRVHnvsMTQ0NKClpSXmfPLy8mC323Hw4EEsLS3JvmbMKKF5hYWFqnOeCWFZloaHh1XTKSsSCwsLpNPpyOFwxJyWZVnePH5ixxMlIaVhWZZGRkaotLQ0YUFSwYULF1TpsRZ7kW63mwoLC+OaHSzZ46USKp4YhuENU1E7W7ZswfT0dMRmbToQaxpv27YNzzzzTEzFFAWKHIPBEBovlRQS1bqqqipyuVwK6G9qGBkZSXhuv2TCtTpzc3NUWlpKg4ODMaUjko5LKV48fbH4z9BPDpGG3WZRhuHhYSouLo7YqU1KEZIVl+IVT7l3reH9jcZ7770Ho9Go7qm+VA5FacVUV1fDbDbjpZdekjxHyvObtLiUUIvkWhkiorq6uqTN25tMqqqqMqY7Ksuy9Pnnn1NJSUlc/pePPvqIiouLE5qdS0jEirDvzu3QT7i9tLQEl8uFPd9+MnQ8Ulq5x+ScF2k/9zh3H5d77703hskB0gvDMMjPz8dbb72Fxue+j/l58WdGEhZr+/bt2LZta0Kzc4ldjIfQ0khtu1wueuzRTaLnRcojWv7R0kilF9bHhP9zaWtrU0W/H/mVUv8w4AMHDtBzzz0nOjyXO5OWMF+p8VLxVopjWu/pi8V/huo7LpcLNTU1Ua2FEsipY+XetQa+O7d550qlO3jwoCrWx5YXhWYxMfEJBgcHcfnyZfzhD3/A9PQ06urqkJOTEx5WHMiL/Bu8HITrS8V2fRGEWiT25X+x+E9iWZZ3TKfT0W/dw6KaqLSliSfvSNfMBEZGRujVV18lvV5P9913Hx04cID6+/vp00/9s3BYTP5VbiC1jJBg6lrxuFR807uFlEbKlIsdCw67jbUIiXZMTpqVrDSDg4PU1NREJSUlpNPpqKWlhdxuN/8kToliMYUVxeO0EQByjvqPOeyWwHyB/sn7WZZVbLwUT2kiPVzusY6ODmpsbIyYLpLPR+qY2Lbc9NHqNMJ8rFZr2uNQc3Nz1NfXR/X19ZSfn0+VlZXU3t4uGcdjOX+XaJQ/86jAsjhszaILmBmNT4TXl4pTbtke4WARReQfdqv2vilcxCp8J0+eJLPZnHJZgmuB7969O7TwWU9Pj2jH8kgVVY/TxptsyWLiT75kt9uXJ2KViUvJUhruVxrLsFu19PoPwpXH6/WmLNA6Pj5OHR0dodV76+vrE1qqiGWJnDb+hJLL1wiXrq80W6wJTdMbUWnEioF0faGZhtvtDq1pVVhYSI2NjZwYkv+F+qdog+hcxdGwmDhFUWBGUrmKE4xL/fGPf4z5ukRxdI1Q27BbNRAc+OZwOOj5558nrVZLer2eWltbJRfYcNgt5AhUOSwm8JZxDGcssUswKXZwDQfRPCRIJC4lW2mCD0ar1YbWiVRb8SNFJDkTGZ04OztLvb29VFdXR3l5ebRp0yay2WyS62hK4V/rc0DkiLilcNgtZOUqSKAS/N8SK/eKITWPn5x3GpOlUeuw23jxer1UVFQUU5rJyUnq7Owko9FIOTk5VFtbS7/85S/J6/VSWVlZ1PiQ2Ctx2C1kHxjl7Yu0yt0LNdyiaIyMAEGwhoMcH4zUeKloyFKaoPZlyrBbLtG+HL1eH3VyAI/HQ21tbWQwGKigoID27dtHJ0+e5DUGHA4HVVZWiggQXcbQOuYhecVf+OUBW2hdUN5PZp1I7FnEM49fTJbGYDDQ8LC4FzhT6ejoEO3kdO7cObJarfTAAw9QcXExWa1WSSvi8/lo8+bNcbkh/HWb2CxEdJZIbs2BG5eSW92QrTRqH3abKAsLC9Tf30/79u2jgoICMhgM1NbWJtnC4D7gQ4cORW5RLnsXfsVw2F8IVV4ddhuveAk58tjl+7hKoUStMtbxUrLXsHzzzTdx5MgRPPvss8GYlWoG0scCw/Cnpv/iiy/gcDhw5coVlJSU4OGHH0Z5eTkKCgpk5eP1evHrX/8aTU1NWLMmemCVGP8U+b8904eh/50I7V/3qBH/9q1tvHPE4a//GZRF6v5C143wvhYXF9HR0YGhoSEYjcao9xBVaYJrgp46dQqXL1+OmmEmcv78eWzcuBFf+cpXePvlfhi3b9/GmjVrJF+YmvHLvARAgw0bNqC+vj56Iq7ZeaFmeSXL5vQoYwNVTH19fUb2QFQMqfcrsZ/Xc+/EWYLFBNgHRsESweM8itbah+EcE3496piXVwmICI8//jguXryYcVZCGVgQOPfNfQQSRpajNCwIY7hybifMT20AA8CgKxOetDxZhsMwDLZt24aNGzdmZB0tcTS8+3Yes4Zmo2BqLCCMwWq1C1Jw/h0bOAON5UlUBFSsuWUvjFYbnjKs7IcZnI2KCwlm/17xjDnBMAy6/rYudO90vAYaxgCsEyyUFmkpPoeHzZhQQZb4CcauxJZetFmMZHfwwxMarrEZcnXDMeoDEcFha8bTD2swMJZKdU8fly5dwqlTp2JORyvAGg3YT+AcduKNzpd5+4kIZWXlWLdesDB5qIYsiJwu8SKnS7xeYysRtU4OkGyEEXKWZaO+ZE2whux0DcHyZE1ImTRjf8E5AOt06wGETgOzglpOXNQ6OUCyYXjvOeAoZPiNKCGhsmnI1Q2TeS+CrSiT4WkAO7Frb4VUkhVFcPW2u+++O92ipA1+azuCcQj2Yl/2M74gMEpKBNKyqI4lj3QHrlGHaOd08YBlpDJtBVZqVnMLkWXZUH9jbicuj9Mm2eXCrzShZybPmqzkh1xXV0eff/55usVILWx43FTwx29+8/UiYsAyGKyUJhxxXSls3boVP/rRj1BTUxP95BUGBQO0UV58+I2LqI5kutC5K0thAGDHjh2qnqQ6mcgNo8juTwPIsTyZz8zMDG7cuAGDwZBuUVRLTEqzmqAM7WSWClZe+aIQWYWRJqs0Irz99tuw2+3RT1ylZJVGhMLCQrjd7nSLoVqydRoRbty4gY0bN+If//hHukVRJVmlkeDWrVtRRySsVrJKkyVmsnWaLDGTVRoJJiYmUFRUlG4xVElWaSQoK/N3pr5y5UqaJVEfWaWBdD/f6urqrNKIkK0IZ4mZrKXJEjNZpYnCxMQE5ufn0y2GqsgqTRR++MMfYmBgIN1iqIpsnSYK2S4Sy8laGg7WGv/Ad03gxzAMcnJywDAM7AOj4M2WsYo/tazSAADr14CuD/xTrfyPhwVLBJYIS+wYdmIndj1lAKAJNM9Z0Co2PlmlAQBNcK0kD67CitrALBnHjh4FAz30Vj02gDtVmX/E6Wo1Nlml4TD+3gd46MnAnHOj7+HM3/xq0dnZKVqvWa3GJqs0HK7+9Rq6W58Go2HAPLwX5Q+WiZ+4Wk1MgKzScDh39gQcHhbEEhx2i39QPHcIWZDVamICxLSG5YpmfADdeBFdgfqMTrcOKKtY9QoiRtZPE8B51IohMqHrldrQvkg+mtXsv1n1xVPwiwlOtcIrhSIoxWpVGCCrNBgbsINhGJwYAv5lYw4GRrOGV4iwMMoWT1liZtVbmiyxk1WaLDHz/5tBo1KId1lhAAAAAElFTkSuQmCC"
|
<image>如图,四边形ABCD沿直线EF折叠,已知∠A=110°,∠B=80°,则∠1+∠2=()
Choices:
(A) 20°
(B) 30°
(C) 40°
(D) 50°
|
20°
| 69,656 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAATMAAACPCAYAAACWJzzkAAAp1ElEQVR4nO2db3AT6Z3nv49IBU8dtYbaqsF+E5nB2AYmY7EvdiQzGZsXt2tjNpjUBUMqi80FW6QqGeRcZkMqG8PM5sLc7QTJ1GaxTWYss3dnw+5hM0ESyRubXMDeJDU21AyWJWN7JpW1eDGYqUpFnmTUv3vR6lZ3qyVLsv50S/2pMkL991H3t3/P73me3/NrRkQELUAAWPJNPkUQl1xBfMtxMC9FMjAAkkuTQxB9fQvoOdOS3o5ZgojAmHASDiAT/1/GATAp1hc3pkIXQIQBAJd0k5/ba/Df5vJSGgMDkWSm4La9Bt96GPUHRLeAW3/HLMEYQ8wfMfHnZNH/R9engppHoxU/J1W0Y8wAxIoTb9TI14XWQcC6Z1d+i2RgkIA4TYp2g9dx3owBYwCtf75ka5nKNnrz6LRlzMQbYhK/AwAWXNg/vhfO/cALNTvFVbSOJ2dgsFFI8SkSp0kubqd8GQMW/Ud6Pmm5SbqdYr0MSmEbDaMtY6a4IWB8n4TrHwnDA4cgrXh4bzrPNaBBycEUn0C0n+xHHIYHDoGJ0jPF75QHpBW69DmQlpvxGyY+BhFv9MRyc7Jj6IXPFLoAiRA6Ln32r4L93TR2wou5e1YIHr20b1Vv7rCBjlDpxPfZvwp6dQo74cN7U1bs3aW+fT463xlM4jmTnivZqrj9tOXjpIomSq1WaTDGQL4uHBr8FRzVJmxih3AFDHqtNQx0ikJo5PsaDg3+Cj27NmETO4SfEJO3DKQNi3xVsqmeRr2Y6pvqsLWjCWOmemEXXNh/8wjvAhOB854C8DxqqtVvw+joaC6LaGAALLjQMP4luSbZ51G7S/0xGhsby2/5pB1kj/qwnzEwxmDrm4/zMAkABw/s0W2Y3Ss7lB5bO5owZnEsXELDCcDdH4snC86/B9jqUItNAOTe3FtvvYVXX30VlZWV6Onpgd/vX/cUqdQ8eqydDHLEggu2vyX8r/7W2LhU4H3AVocaRXVMFMGPf/xjfOMb30BlZSW++93vYmlpSfWwqWosJb1Kn4qd38T/o1voBiCGbEhgAH7efQiDsMEZjIAG4mM3dad/0gSR6L8Bcu4X6hcbOYMRxTIQWAM5gxHZ3m1tbXTjxg1aWVmhixcvUm1tLVksFrp8+TI9efKkED/IoEiIcAvraxI2ci1wsv0aGxtpYmKCVlZW6MKFC2Q2m8lqtdLQ0BB99NFHGZWF47j1NxI3JuK8F+lUl43Q7YlbHXDZqKGhQb4ujcNrEY0YM+mN4g2V6nXlZB/EcRytrKyQ2WymcDgs23RmZobsdjtVVFRQe3s7eb3ejMqUloAMipKIRI2c7Fv8lkRES48WyWw2x4l4amqKOjs7qaKigjo6OjLSZDp4XU665bISGt6koKR8FHRSV5+XnPtBVlcgbj+9Sl4zzUzGWNRJjkYuq24k+wBjDCMjIzhy5AjKyspkm1osFvT392N5eRltbW24dOnSui6/WpmEvgPSm8ttkDVMEjUy4ZuqHHjtDg270dHRESdiq9WKoaEhLC0toampCZcuXUJVVRXOnTsn02R6WlOPteTgwdjDWhyseR6x3iQT30/WAbx6cB7X7lrx5UM74vaNxuDqj0Jb041isVhoZmYmpW2VLv/bb7+dVjPU8NIMkhKVR1XVc7S4uMgvWkczi4uL1NvbS2azmRobG2loaCiulZFRUTzd1O2NEAWdZMXXyEMcEUfk6TpFHuIo4LIRGi5SQLV8EV1qXVPGTNp8lBNRbkpERO+++y5ZLJaMziV1+Ts7O2liYiKj4xiUEuo6lDIxMUGNjY0ZHX1iYkKmyampqZT3VT4xAZeTN2BBJ1lhJWcwQgGXjbq9EeK4QMImpp7RTDMT4JIEwUYj/aPbCVy9ehUnTpzI6GxSl7+xsRHnz59XdfkNDGIoptmpMDw8hM7OzoTrKUkTsqmpCW+//TYePnyIxsZG9PT0wGw244033kiiyWjcpeSwhAX8lNXiIBi46lp8HtOY81zC/4QbAy0mAAE8vGtFe+vO+PKpHFs3FNqaJiOZqxsOh8lsNtPKykrWzid1+ZubmxO6/Hp0wQ02wvoeGVGEwuEwbf2z8qw0EwUWFxfp7NmzoiZHRkbWP37ASU7Pp9FSRUdeGy5GBwGIgn0Nsu8yhEE2HWpc08YsGTdu3KC2tracHd/r9You/8mTJ9Nz+XUohOIl3hCp3R3lPcvkHg4NDVFnZ+eG7n+yfb1eL7W3t1NlZSXZ7XZRk9I9pCEj3d5oGEnDKfIQEQWd1ABpSEkX3xQtEhiRPofpjhw5ghMnTuDIkSM5Pc/q6ipu3ryJgYEBPH36FB0dHejs7ERFRUVOz2uQLfgkhVJylTOxqakJ58+fR1NTUw6OHuPJkye4fv06hoeHsbq6CrvdjuPHj8dpkogfmcyYPCSXzCa6NGahUAhWqxV+vz8uJCOX+P1+uN1uDA8Pw2KxoKOjA21tbaploBLK8KlpOAJMLO57+vcn3ihKWVpawoEDB7C8vKy6Xnq+bGpjfn4e/f39GB0dhdVqRXt7O44dOxZ/fkiyZ6idWmeGSw1dGjOn04kPP/wQTqezYGXw+XwYHh7GnTt3cPjwYZw+fRoWiyVuu1yJ2CAzZPeA+LQ3KT/byvmNkmOdP38eRITXXnsts7JsgFAoBL/fj9HRUfzyl7+E3+9HeXk57t69i7q6OsmWUYNMAMdIjJ8TykH8l5heoS/7pnljpnbD9+3bh6GhIVXjketzK3n69ClGR0cxMDCAtbU1dHd3q7r8BhqAAPysG2zsi6CBQynv5rHbEHz1LhzViT2zqqoqTExMYMeO+CBU8fTr6Gm99YLRmp6eRnNzs6j/6elp2Gw2NDYewI4dZnz00Uf4zW9+g/LycgDAmTNn0NbWJtNkQkMlrNCbJQO0PZqpxszMDNXX1xe6GKrMzc2Rw+EQp1CNjIwk3d4YKMgjHBHnPcWP4nGxa+/pBjGxQ9wkdo7zMVjRqXVcgC42gOw+TjUWciOxZWqsrKzIRulXVlZo8+bNBIAqKirEeZ+JcP7oIjU3NxNxvCZPnz5Nldt5Td64cSNr5dQaujNmDoeDLl68WOhirMvIyAi1t7dTRUUF2e12mpubK3SRSptgH9lszrhwBI54gyZMuOY4jijgpAYwQpdP3CZCt6gLVroY+FRcJtDZ2UlDQ0MZF+3Jkydkt9upsbFRNFoXLlyQbTMxMUF/+MMfVPdXVooOh4M6OzvjthsZGaG2tjaqqKggh8OhrknJofRW2erKmIXDYaqqqspqbJkStRu4kZu6srJCly9fprq6OiOTRwHxdPOhCkqEOCyryy9bznlPieENsmWKDBThcJi2bt26buzXjRs3qLe3l9ra2shisZDD4ZCt7+3tJbfbnfJMFKkmlepsb2+n3t5elb343yJkl+E1+RfU/8+8JpVT6PVlynRmzHIdW5ZrhEwe5eXldPTo0axnTUiW5cPTLY0vgqI5pRJnldWSFZYIeamLnVKPqQo6yRZN7SPf5xZ1Qz7lhwtcJKsiNksaWzY1NUUjIyPU29sb13pobm6mtrY26u3tpaGhoax76tJ7PzMzI84NXY933303K9ll0kXevI/9/WVf9HpnIEBdGTMhb1kxMDo6Ss3NzbR9+3b6zne+k5a40xcP/6B67ZB7FkEn7WeSJlaaR9ULYl+ZyjohGn5esTxCP40zZoIXJ3hrHMeJ/Vd1dXV85WC1Unt7u6zZqYfmWjgcppGREWpubqaKigo6e/ZsygYxdSQVRoSjW11KPfbxzXuV/GupoBtjlihvmZ5QE7WQyaOurk5M3pfVZijH/8WaU3JPLKLSnCo2hAwRivyJxFGQXC8lmHAdfbDE66JyDRcXo3nLiHLa9ZFv1BJKZrtrRHotOZI25f9rxnrU0ETz5CTKW6Yn1IbdKyoqcPbsWczNzeHixYu4c+cO9uzZg5MnT8Ln8yU9HqUSVRN915hp4ae4frdBnFzMhKRVLW3oBvAg8Cj9H6QzSHH52cItXPulDe2tO8VrKXwGPaO4h1M43KJIoifCwe2O5i0DUg7FSemebYC1tTVMTk5u6DyCJpeXl+F0OpNqUnqedM5pWvDg+l3+2jNJMDK1fClzPWbFzOaBdPKW6Z1wOExDQ0PU3NxMZrM5LZc/UZNG8E6CJDQnhVTl0b4h5wL/XTqalflP0BR8M/PNuGamcE3mSZJ+iiLiHEalxyZtZnJEZDabaWlpKbMy5ajpOTc3R9l4rJXlU2ry3LlzG2qGyvQoOZe0rzLdK6QLz2x2dhYAch4kmw9IUXspvwNAWVkZOjs74fP5MDExgfLychw4cAAHDhyA2+3G2tpawuOreX8cgvD86xSsRw+hGoKTwd9600IQ7wF4vo4P9pTO/NFbzGQiqKUNXff+DbcWpC/MjV2TGsR+q8++CWxXDzhXAFNndimOFMDDe1/D4RaGf5+eRmVlJaqqquTnStE7ydVMkFAoBLPZnPH+QvmV5VNqkohw4MABNDU1ratJ/sDR9EIEED2KXvuDvB4l5xL0+ELNzvT1l7FpzSN6iS3LNULyvvLy8pST93EcJxuxk9aBRNEaMjpCJ9SQHMcVjVfGE5GFZnDeU8QYiwuUBZA4NQ7JQzNOd9vp8uXLeSp/6gwNDZHVak15+416iBMTE3Ty5Mn0EkoGnfQi4l9MxBFR0GkjIMHI8zpo3pgp85bpYWRISbbLLLj8VquVzGYzXbhwIanL7++TuvSSFQmaU0VJwEk21p30IUl2lyIUIKeNz9gaDodp+/btaXeK50O7vb29fPR/hmRaxidPntDbb7+dXJPRQ0ubmLLVgTc3pEfNGzO9x5blmvWS9ylH4ASEuLPEwolQakkJNY60DzBJiEbSQ3DykIyRkRE6duyYJivWxcXFgs424ThOocm/opGREXH2wqfcvGqQsqebraPH9dG8MVPGlhmvf0uMx+elo0eP0pYtW2h2dlYMu1D9s7lSeKiLwJhJ4dsxZO2+ldY+ytkDf93STD5Pbl8TVyx4fHxCyS1bttDsP305oR7Z/h/F9Jjh463prBmFylumJ0iWaYFP8XL69GnU19fj9Ne/rtqJyoFkr08Tj4Xi6fTPHvI8ZqFQCPv27cPKf6xo4mJJ7z9lKaVQLhBSZNlPn1ZPuaRIzZTJtdX0aKYQW7Z58+ZCF0WzSMVL0UCqqqoq/Pa3v02oB2keK3FfAEx4gYVmq7dsk/4LO4aG3fwLSzRiM6T3nzGG6elprK6uFrBEcgQpmc1mfPDBBwm3kxnhDN/bqWljdvXqVXR0dGi2ttEawnWqqanB3Nycyhac6vaAPFxDKw9qtlBrfBCRaPyTI39ErrqHxUBZLTZqmpqa8Pjx44KcW+16CFe4rq4Ofr9f/hYpoljIRtx+6Vc0mjVmxRRblm/27NkDv98f/SYVhUn8ntKDqL1nNSPUKkPp2+rXQ7gM09PT2Lp1q5i9VWuVbCgUwieffILt27cX5PzJrsfu3bsxP+cXrRsJ2zP5a/JipG+aNGfMhIdseHg443dilhbxNVhVVZXkPYuSW0yS77J+tgRo61ndOIqHJlXPSrgM0ulLWiQUCqG8vBzbtm0rdFHiqKqqwuJy7N2fwjUlAGDZeT+n5owZYwxra2sYGxvD8ePHC10czaPWVCorK8OOHTsk3ll024TR/QoxUYLlRQDfvFSPck/G2toa3nnnHbS3fzlXRdswS0tLqKysLHQxVJFqUlqJSLs3NtoQKLgxU6sdfT4f9u3bZ+TRT4FED2RdXV1cvxmD2vU2IU4GTLquiGDpNS+ljI+P4+WXX8a2bX+eg4JlB5vNhpGRkUIXIyGCJhNd/402BD6zwf03jNoPu3r1qtHE3CDypmYMrfXz6IWrV6/im9/8ZqGLkZTt27dr2gEwm80JX8WXDTRV9RIRVldXMT09jZaWlkIXR9fU1tYiEAgUuhi6RvBiQ6EQZmdnNa9JrVdUwohmrtCUMWOM4dq1azh8+LARJLtBLBaLOCJskB7KPjWtd/wLzM7OIhQKFboYCbFYLHjw4EHOjl9wY6bswxkeHuaDEg3SQhYAS4SqqqqkQYoG6qhF0Q8PD2vamAn3/vjx47h9+3bccq1QVVVV3M1MqXD8fj+ePn0Kq9VawBLpE2UkeEVFBcLhsGo0uNZEriWUhkwZW6ZFhDKvrKyI+dW0OLUpmSazQcGNmRSt14B6Y/fu3Zifn49brjWRaxm9NDEB4OOPPxaNmVbvcSJNZgNNGTO32200MbNIrkePigk1b3VtbQ03b95Ee3t7AUqUHsLItZZHM4HcalIzxszn88FisWj+ZmgZ5QNpsVhw//79ApVGX6h5MuPj42hsbNRkRL2SyspKTExMaH7gLJcDU5oxZkYTc+MoH8ja2toEE84NEiFUCESEa9eu6cIrA/gI+6ampkIXY11qa2uLu5m5urqKO3fuoK2trdBFKSp27NiR0KU3BgHUESqEx48fY2ZmRvOxZYC+7mUyTW4UTRgzI7YsN6gFKWYyL7EU0VMuPcYYxsbGVGd8aA21aXbZQhPGzIgtyw1lZWWoqKjA4uKiuMwwYqkhTKnTy/W6du0a3G53oYuxLmVlZaisrMyJ4S24MVOLLdOT26x16urqctZHUWwIuhM6qPft21fA0qRHKBTCjh38u0+1/vzkalpTwY2ZWt4yvdSGWkM5CwDg43pyOR+umBB0p9Sk1o0DwPfxCUkZtfb8KK9froxZwbNmuN1uzMzMFLoYRYFyFgDAC8e4vqkTDocxNjaG6elpcZnWjIMaKysrYi4zrUX/q42y5yI8o6CemRFblns+97nPyeZo6sHLKCS3b9/WZS698fFxzabzVrLey00ypWCeGREZsWV5YN++fbJaUOtCLzR6zaWnhxgzAaUms0XB3pu5urqKPXv2YGlpSRaSoTUXuRgoKyvD06dPjdCXdTDe05o/cqHJvDQzpXnXBRLFlsnfA2k0ibKBMQiQGkJsmd4M2ezsrKyPTw/kQpN5MWZqeddTiS0zPLTsUFtbaxizFBDe06q3SvT27dtwuVyFLkZa5EKTBRkAMPKW5RdjjmZilLFlFotFd5Xo8vIytm7dqisjXDTGzHgnZn4xAmcTkyi2TE88fvwYzz77rK6MsG6bmUrcbjdOnjwJwOgXywe5TIhXDOj9Pa1LS0t47rnnCl2MtMhFBZv30AxlbJmeahO9ksvJvcWA3t/T2t/fL2aY1SrKKIVcaDLvnpkRW5Z/ysrKsG3bNk2/uSeXrOf96zW2TMBqtWreECudlmSazLS1lldj9vTpUyNvWYGwWCx49913C12MgpDM+w+FQrrJW5YMrXbXJCuXxWJRnWqXaWstr8ZsdHTUyFtWIMxmMz788MNCF0NzJIot06pxULK0tISxsbFCFyMhyQxTtqc15dWYGXnLCocRa6bO1atXVTWpl75cv9+Pnp4eXQSbK8uV7RTaeTNmRmxZYRFGj7Qq9Hyg/O1+vx9ra2uor69PaXst8sEHH8R1/mvVECvLle1UQHkzZkbHf2ERRo+0KvR8kMosFKkB08O1WllZkXX+68EACyQb0czkd+R8orkwJFtZWYmZmRnNj7oUM8aEcznJNKmXhAcnT57E1q1b4XQ6C12UjBA0uXnz5g1f75x7ZowxI2+ZRjAmnMdYT5N6MGQAcObMGbzyyiuFLkbGCJrMxvXOSzPTaGJqg6qqKvFFEnpqjuSCYtAkEcFisWg+YDYZgial7yvNFJkx++MnEfEvWxjvxNQO0ikkevE8sg0RFY0mhXuovJd6qqgETSb6LekgM2af3bxJ9pkNjHdiagMiQn19vfE+ABSXJs+dO4fV1VXZMj1VVPX19bKss1nzzHLB6Ogojh07FrdcT7VHMcAYQ1VVVckHzjLGiqKJCfABs6+//jqeeeaZQhclY6qqqmSBsxsxxEknmkubm5/dvCnuu3QbpTf3x08iWF5exm8//I+4/ORqx0nl/Kksl5ZT+H82PU09I81rppfRumwjxDvabLZCF2XDPH78GBUVFaoepl7ub7Jce+n+hqSembLZqfwUDIXS0AnL//f/uYqv/u1x1XVq+0mRbpdouXR/6aeyfNnsA9Qz27ZtQ1lZGUKhkC6EnguKxSsD+KSMeh+N3bZtG5555hnVCefp/oa0UgCpeTnJDMXw8DAmJibSKpAaqXhWal6Y4ZHFs2PHjqQPQbFTTO9pDYVCuh7JFKiqqorTZCae5bp9Zut5NlIvScrk5CSqqqrEV8YbaANlh2spUWzxjg6HAxcuXCh0MTaMmiYz8SxFY5ZpU0zoyFfun81J5UYzMXtke3KvniiGJqZy4Ex48a+eqa2tRSAQ2PBx4uLM1JpmiTrSP7t5E/70Ry5uHUd/wjs3PfjSkS+rNv2k8WzJOvbVtkm0v7LvLNn/SxnBpS81ii22rJiQBnNvBNGYqTUVU0HYT1pjjI6O4ouHW/Fn5f8poXFUO5/a91T3Vy5L9P9Sp1SnNBVTbJmA0+ksioopW9kzUpponm54Q1NTE86fP6+rV8YXK2odqWVlZfj444+xefPmApUq/9hsNjidzqJKQVVWVobJyUnZb9JLSIaSbCRBSDoAkMnUpqWlJSwvLxuGTCOoCXvHjh1Zcev1gt/vx+rqapwh03Pg9urqKj755BNs374dQOy36NGQAbFR9o2wbpxZKk00qSjcbreRTVbjlNrbmhINRun1wQf4gFkAYrSAnn8LkB1NZuVVc9ILma3YMoPsIq25S+2lwMrYMr02xaSEQiGYzWYAxfF7sqHJrM7NNGLLtAtjTBS82WzWZMcxee1gdq9kCZd0e4/dhr5HSZqKpB5bpvcHH+D7pW/fvg2gOH5PNkbZs2rMjBeWaB8he8b9+/cLXRQZ5OuC6Qe1CA4clCw0iesEY8wYg93HgXxdGD8yDDqxCXaf1OhxEM0bA65fv4729vZ8/Yy8QURFEWMmkBVNUpYIh8NUXl5O4XA4W4c0yBFPnjyh8vLyQhcjRtBJNpuTgorFEQqQcz8I6CIPceJyTzcIsJEz+CeK0C06xazkDEbE9RzHb2toUj9kQ5NZ88xGR0dV3z9ooD22bdsGAHF5sArFz/6xB/XfP4NqQPSqOARx6aUa9NBFBGkQB8HEfr/mgVvoYntRU70JJrRi0PM8et68LR5PaHYViyZJMepKRHC73UUzLY2IsqLJrBkzt9sdN1VEeRMMtMPu3bs1MQjAwYP/e+UUvtgSzTQKXjcLrhPouWuDc5g3coC0b6gGu51fQgui++zaC+vAOLyQ621omNek3nWo7BNjjGFgYKBojJnw+5SaTPe+ZcWYJYotK4aOyWIl2+8szBTmG8cV2x7skiwjFoD336aB7r+HozoqUYmuGXah54xgygCuuhXt+6/gpi+20dLSB/hgqXjjHVdWVooiY4YUpSaznjUjFdS8MgNto5UJ5wuB92XfeXO0iLm7gHXPztgKFlsveG88fOc/Y8D9+dhkZbf7bVGTxVipfvDBB0WT/UNgo5rMijEzRjH1R21trSY8MyUMgGlhHu8BiJcnJ3pjMQMVHfEkgLFocDdHoib13sRUQ+hXEqL/9Yz0/mxUkxs2ZkZsmT5Zb8J5voxAdc3e6P848Zxc9S48D2D6YVBRHhMADr4+FxbENZwYwvH5Xc8BACZ/cUfUpNQrKxbDtm3bNlmnuZ6R3h9Bk5nepw0bM8Mr0yfrpV3JV9OMWg6j69513Frgz0lEMKEVlz1fAwZbYesLAsSv4xCE66VNGK95RRwUAJkA5sfc3VNoO2hC+JM1vPnmm0U3fakUEDSZ8X3aSFyHEcejfYSYKzXq6upobm4uj6VRx9MN6vbycWKy8gad1MB3k0X/bLJ4MqIIEUWI854i2D1ERDQzM0MAiAHU2NhIDoeDbty4kb8fkyeS3Vc9sxFNbsgzK5Y4nlKBFO670jtTrs8XB1914sHB0/BCMcew2oG7HIGIwBGB6B4c1dI9TSB6hL5/eA/ObzcDAGZnZ9HZ2Yl3Z+6js7MT4XAY8/Pzst/2xhtvYHR0NO3fXqjro2RychLj4+OFLkZO2EiixrSMmfJmut1unDhxIqMTG+QHqXFQuu8bHQrPCgSg2oF7XkLrfhfikicz5eYxyXIIou8LNZj7/l2c2clv6Ha70XmiAxbLC+js7ER/fz/Onj0r/ra1tTX4/X689tpreO6557B161b09/cn/e2C7tPtf8um8ZMea3h4GL/61a+ydmwtsZGQobSMmfRmCrFlBw4cABC72NKLrpWazIBHeT+0EJ5B4PPlsZYroGGGjm6ffL1gSKLfY2EZHG7bazD3vQgGWkxgjERNNh54OeH5ysrK4Ha7MTc3h3A4jJs3b+LFF18U1y8tLaGyshJHjhzBuXPnMDk5iadPn8YdJxXDn83KQXqsUCiEZ599NmvH1hJSTaZrPzJqZlJ0OoU0tky42MInFUFakmJjPc+sIDBJrrxqB6YGW+QBsioa4peZcHCAMNAiSNgk0WRqsi4rK0NjYyP27dsnLtu6dStGRkbwwgsv4Ne//jWOHz+OmzdvAuA1vbq6isnJyfR+Y5ZZXl5GZWVlQcuQK6Sj7Gnbj0w76sxmMy0uLhZtR2QpsLKyQhUVFYUuhgoRia5UBgYk8Mv5bczmHbS4uJjRGVPV8eTkJJWXlxMAslgsZLfbMz5nppSXl9PExERez5kvpJpM17YkTs4YDbUWIq6li+8YsWVFQUVFBcLhMFZXV2MxS8obnmgZOGQ1g5RMbyb4TjO0Dio36oKPBtAMJp6fr71ZNN7xcxlrMlUvoLGxEU+fPoXf78fs7Gxc2pqxsTH84he/QH19PaxWq2qaHtpgq0Wt2VssqGpSBTVJimr02hmYKZYzymRiYKwbPsUODMDw8L8YsWVFQtyEcxbLDSbmETPJ84h13eYNCWWzT5TJPnBwgBBw2YCGiwgSIUIBOPdfQcv+i9GAWbkhzXe8Y11dHY4dO4YLFy7IDOjmzZsRDofR39+P3bt3o6ysLC4TRDqGLKvXWCeoJkGIXgbydYGZGEyK3HanfZ/Km5kBl43QcJGCxOeScr0Egs1FQYrF9hixZcVFe3s7jYyMSJZEFHnEPiWOiDiS5hGLJDhahnCyj2gp+DII8WcknD+qT+m2udTkRrtRlM1Bh8NB5eXl1NjYSL29veT1erNyHj2j/O2JNOlqkOS2i+4S06QkzoxDEN7rU+j+ez7ligm7sGsPojV1rBaUxZaVXqVRdFgsfyFrKnF4JOYRW+AGcRB8Bz2DNI9Ylgd2FF4ZAJgWPLh2twuHo6mByNeF1kHA/n0HqhXb5jLecaODWMqsHRcuXMD4+Diam5vx4MEDvP7667LzjI2NYXJyUvTmSOGZzc7Owu12F5XHprzGFosFDx48EL8LmnQglttOEEDzwC10m55HTTVJPLMFF1nRRR7BWnpPEQA65YvIqsHGxkaxtinduqR4GBkZoaNHj4rfAy4bATb60YLc+4oQx9eOLm/2C8HFa0nQHxOi/7t8arsREVFTU5NuOsTX88DsdjtVVFQQAKqrqyOHwyFb73Q6qbm5OZdFLDgjIyPU3t4uXitBk7IWgXgZg6ImGRHxNt7XhU2tb4FAvHy6PSBpPnYA9+/fR2NjI86cOZM7M22QVx4/foyf//znWFxcxKcI4p9eqkHP815Qf0tezi/vyI21Arx2hn/YE8DUmV3g4MHX2SEMJtDkyy+/DIfDkZfyrgcleH+lMO80VX7/+9/jd7/7HdbW1lBfXy8uHxwcxJYtW/CVr3wlOwXWGIwxhEIhUZNixmEVTZI4kMLrxgTwYvKN/wQvOudBHCFCt2C/0gp2Wtr9z6G+vh6vvPJK3n6YQe7Zvn07fvjDHwIATAjwecR2y+YM5a83IdrrwcGD8cEGtLfujJarFd/qswGD8dlk6+vrc165ptPUlL4FS0oqhky6zZYtW1BbWysaMmHd3r178YUvfCHl8ugBUgTaSzWJqCZfrIvlthO2jsW08v77ZwBePO8MWnFsgRexCa34tqsBA2fG4O3/K7HfBIDYxjcoPkwLwWgeMTmJHmXViI00YSpfmG8cVxr+C4LVsb7aR+9PAXheNRhEq5qkHASO5+KYWiDR7zItPMJ7UEzLU2zDon1oJiKAed/BQMNRtO6MbTb/8J5wOMWnQTFB4j+SPGLvB1W39fW5EJTUotl4pGJH4wBw/HzL//4T2Nr/BjuJ7/Lw2vmYM6vr1WiMmXQf7ZILo1OMhgxI/Lto58643HZS5/z2pT4sCLv+KToE/pd9AbFvjR/uBFldsWWqRIwhgGIjEu14t7oCJMRkqIVJ5AKh01/4Ezr/GWOxc5ei5CSpkJTPpPCsAiB0exIcQN9wEk0KgwKCJu0+/jvHcWK9HPcXJ9xSFFGpILu3Ef49loo8Yn1BLvEuBnmBN1yxd4jGRvteVDyvua10CkJcbjtrXLwjI44o1faC2tSm4nR6Sw8qUF+M+IISqGtJtrwEBSjclwjdwtft74BduYKI91P8pIXvx+YQxCX7LRwa6EF1tqeYaYUUp9iZ4vJFyUZd5H0STDhI9LPIdVRSJDZkXE6HM2WpfYTzIT71D/9F0UdWAgIU7ovp9hjYkX5822XDW+M/E9ebHnnx/p5WCEN3RYnafY4JRiTu1zNGyVbL1WdQApjydq+ZcD5E47LUygLloEFpsBD4PA63MOxqPQrb4A/gWuB/e+DW+9jbWq26DxXx9SEg3jOjaKI7ySIkFUnxzKIwSETcPS7MQyEPpuWRty6K1BNRwCEID6vDQTBw1a04un8K1zyPQBSE9+FuHKpWGnkeVoTXR4wxU3wHAJOQ6E6O4jtHsR0l1tCwa/qHouEPMpTNOZI/LJT3eYExPZZig8C04AGq/zP/f+zCme+dwvS/3sLCo59KmpilcW3iY8x4CKlWbSaW9EAG+oUxpnIjFbJQTAQv1linQrFe5RDwPARqJO8faGnDqbvfQkfHPPa2PpfwmPmvdAqHmktmYGCQZ5JVDhyC8LxfJzYlAX6GzpFuYAp1+JtqZX5VThwBLbVKJ3GmWQMDg7yijDaIeE/hM61vAQC+9T5D8G4PdkYN1cFXnTjlOYh4v8wExop32lMyGJWSL2pgoFdKIKZuoxjNTAMDDZDIpxCWciwFn4NKM822gGHMDAwKCj9ynKhJKA66SG1Uov+z0h6cMYyZgUFBkT6C8pAYmZ0Sc3dFohYuuq1awFWJYvSZGRgUEUQRMOmLlUsIwzOLko5NT33b4p1OYpBdMvMpJPqK7l6qhgwwPLOMUZ3IX4LD4Qb5hQhgslk4XFFOW8oE4yosXISNxV5+HPdnkv7fDi/4yGpeT4qsIoYhM0iX9fQn++uGNy6TjfEICxhXAp8BszkRjE7/4LyngIY3scDx3yn6yXEBOG3KkSfj8hlslHX0F/2LUADOBoVbpoKQvbAUBwRK/mkkUyyLFgcPTh/8CXDv26iWvAKesW74ohqStsqDfVawbk8BSm1QLKSqv9v8xtFtg3C9JKxrENMBAXzXByvRANuSN2YsmhHEhEe49NIhDMIGZzACIsKnFIBzP9Dt7UezsH20Zgy4bKhx/Pu6NaWBQTJS1d9fEwGMAwOw0PcjwM1v4+meQk9HHxZkBy3ELyk8JW/MBG7ZqzH3vQgiNAx0bgJjDJtYB+COoL8l/jLVOKYQcNkKUFKDYiSZ/gZaTLL+2F1n/hmO6MTz5r9z4sV7DzFPxsi5YcyiHBogXG55BNdLNei5a4Mz6EE3ptCz6yX0LRhCMcgtyfQnbUbyg08msUvMRIDJthe1zFTSU5kAw5jxsHn8j/18TWhyR8Bxd+GoPogBIrGm3GTn+8akF6zUxWOQJZLpj/sXmf4ED0300xYeAkf5BI1M0b4sNXUaxgwAqBbfuUsguoczQTtMJpM4HL6pOwDHLwmRgVYA0mAMjhcWJbuEhkdnkALJ9Hd6Xqa/2D4AkQfdr+/GVccufpmir6zUus5KPp8ZpxRAyxUQXUlhz6gRU6aYBiQRtUZdYZCclPWnqDSJAb7ucRy+OwD115mUDkKwesk/bSaJL+61K4IU7V5xnZC1wIT107WUXJVokDGp6k9ZaS70NeDmkQG0MhMQdKGrL5CnEmsL6aybkjdmUsPUMhALkiUiBPb8AIwx2H0cKGqgOERfg+brQk3PFDDYCtbNi05tepOBQTJS1Z8Ur52hxjGFwYP8qCeruR73ujkiKok+M+korzE3c8GF/bt6cE+ySOX9olG6cIvr52tDA4NskJb+TsFDV3Awbjn/JvNSnxtsPJUASDKdhIjAkXwqCT+dxA9nQ7xYEuXJMzBIldT0F4CzAVBXWezFyTFKb/Dp/wNgGNIdKykfQwAAAABJRU5ErkJggg=="
|
<image>图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为()度.
Choices:
(A) 90
(B) 95
(C) 100
(D) 105
|
95
| 69,657 | null |
95
|
"iVBORw0KGgoAAAANSUhEUgAAAKUAAABkCAYAAADnn/DLAAATq0lEQVR4nO2df0xT57/H36cw3RY3XNZob4IT4TDbC5t4S4QEFne/q0xmQZawS7a4zGRKy/Cb6ATdMpf4h27T4TJzNSvqH7qrCX+4gRP3g9Zv3MREAwljtwxZ2+GG3suuJJdeSBRoz+f+0Z7T098t9BfteSVoe57nnPP09N3P53mez/ODISKCREZjMxrAVjUFTDMYLdBp2ISWR5bQu0mkJAWb9LD0fIHafe0gIuGvtRbIXxNYkMEsGW/jFmLrJFFKAABG79hQXfUiAMB0qh1WAFVbDFhTwAXIzYFBYOExDAMA+Omnn7Br1655lUUSZaZDLnEZL49A8xILghXHr9jAAtA06sAGkQgRCQLk3wPAxMQE3nzzTbz++uvQaDTzKpIkykyHAcDYMHL5MgqZLMiYQsiUYpcdyFLKvAQJuCzkyZMnoVKpsHLlSvz222+oq6ubV5Gy53WWRFphM5qAfe2gI42wGg04NZonSpW5KpBMkJMB9PX1oampCY899hiuXbuGoqKiBZVHspQSMJm+xSub/gYAKMjPR0F+PrwsZBBB/p/9f7Fnzx688sor0Ov1uH79+oIFCUiizHgIVnz7KeFfNfkAAKagCjoNC6vxFNpNVlcevkUtOu/ChQtQqorw4MEDDA8P4+233/Zcc4G9jJL7znBsRhOY1ho8K7JPVqMBhVXfwkKNAFz1Rb5hc/v2bej1etjtdnR2dqKsrMzvmr71zaghiTTHKbziOI6I86Ts2woC/P8YgGr3tbvyu3n48CEdOHCAli9fTm1tbXEtMUMkRXQyAfLpwgl2zFWX9K7VXblyBXq9HhUVFTh+/DhWrlwZ17JK7jtD8IjPI7rAbtYjyLt370Kv12NkZARnz57FSy+9FPdyepdAIkMI3hnOt2ScTicOHz6M9evXo7S0FGazOWGCBCRLmfa4uhh9XDLf7yjqf+St5rVr16B/pwn5eWvQ19eHvLy8hJYXkESZIXgESQAEr814xDoxMYE9e/bAZOrBF1+0zzsaEwsk953m+NYaGa9mrevrP378OFQqFRQKBSwjVrcgA4UXPcSzfSxZyjQjcIs6cFp/fz90Oh0ef/zxAOHB0PZqwX2RIZAsZZoRSix8mt1ux+7du1FdXY2mpqaYhQdjhSTKNCISl3rhwgWwLIuHDx/i119/xY4dOyI+N1FI7juNCNU5PjIyAp1OB7vdjitXrmDDhg0pJUQxkqVMYxiGwfT0NN5//32UlZWhpqYGAwMD2LBhg5AuzpsqSJYyjRGHB0dGRsKGB0M1khKJJMo05O7du2hqasLt27fDhgfFQkwFQQKS+04r+PBgcXEx1Gp1ROFBflhaKiFZykgg13iu1LAjgfnxxx+h1+uRl5eHX375Bc8880zEYksVC8kjiTISgggykXWwYPf666+/0NLSAqPRCIPBkNTwYKyQ3PcCSIQgeWsX6F7Hjx9HcXExFAoFbDabnyBTzQJGimQpo4UAMBwIsri6c94yBhJWf38/mpqa8Oijj8Zk9mCqIVnKeRFfQQLeVo63lna7HTqdDtXV1dDpdCkXHowVkiijJQkekWEYITzIMAyGh4eF8GA6IrnvcISZiB9vhoaG0NzcDLvdju7u7oCzB9MNyVKGQyRIcRcL2XqEedHxgA8PVlRUCOHBTBAkIIkyKsSTr97b+3Lc7nPlyhWoVCqMjo5iZGQEe/fujdu9UhHJfc8D4+n9GOZqoAmydmMwwvVr/vHHH9i1a1dE4cF0RrKU4SCn11ur0QAjbYJKdjnqSwUTJB8eXLdundfswVQL/yUKyVKGJUt4RbDitBE4cjQfW/Va7Ozyn7gfLVevXsWuXbuQl5eHwcFBrF69WkhbrJ3fCyau62+kGYZ9LWQhJ3FkIW1t64KuNT4+Tg0NDaRQKKizszM2BUwTJPcdIVajAfqjbcLCot0LuBYfHly1ahUsFktaxKtjieS+I8AJK04ZRUvi2XpQd+pO1Ne5desWmpubY7K4KKXIgNx4IIkyDAQrXmX24jPqBL8Oj2X0d0RTl7Tb7di/fz+++uorfPzxxzGJxoiX50s7klx9SDGcwkp5HMdRz6kWYtzL4xl6bEQc0Rf7ajzL5rnrleIl83w5f/48yeVy0ul0dP/+/QR8hsVPxi8FSFFM3o+GoaEh6PV6TE9Pw2Aw+EVjFnLtdEdq6ISdvO9ZviSSX684PFhXVxc0PCgJMjgZL0oKITVXiucRhZNRZ2dnRocHY0XGu28AUYwECtxZ/ueff6K8vBwymQznzp3L2PBgrMh4SwlwEQmSiADyXlLPwbnCg88//zyeeuop3Lt3D19//TUmJibiV9wMQBIlZBDqjQF8hpcjYTx5/nH1KlRrlbh+/ToGBwfxxhtvQKfTYcmSJWBZFidPnox3wdOXpLX7Uw6n+1+OOPLv5uHfBQsPdnd308svv0xERGazmTZu3EhFRUV048YNzzVCdB1JeJBEGQWff/45yeVyamlpoampKa+0sbExUigUXscuXrxIq1atovr6ehofH4/oHpJwM0iUC/myb968SSUlJVRZWUlmszloPrlc7ie+qakpOnDgAMnlcjp06BA5HA5JeGHICFHOVwSTk5Ok0+no6aefptOnT4fNr9Fo6Pvvvw+YNjo6SlqtlliWpe7u7nmVJ1PIiIZOoOmq4Thz5gxY1jWy/Pbt2xHFq0tLS/Hzzz8HTMvLy8Ply5dx4sQJ7N69GzU1NbDZbBGVJeNI9q8ikURiMc1mM1VUVFBJSQndvHkzqut3dHRQfX192HwOh4M++eQTysnJoQMHDvjVTzMdL1FyjhmamfH8zTmDnZZ+TE1N0XvvvUc5OTnz3ntweHiYWJYlosA/AN9j4+PjtG3bNlIoFNTR0TGve6Yj/paSm6PZmRlyZFBdvLOzkxQKBTU0NETcSg6Ew+GgZcuWRW35ent7Sa1WU2VlJQ0MDMz7/ulCRovyzp07tHnzZmJZlkwmU0yuWV5eTr29vcL7aBpZJ0+eJLlcTs3NzTQ5ORmT8ixGQjR0ODhmZzE7O4vZOYdrAKHT9d7BD5whB+bceeacogaE6PjsrMN7m6BQacHyue8f/HxPWZ3Ev57BrIPzzu8u+MzMDD766COsW7cOZWVlMd17cN26dV6NnWhGA73zzjsYHh4GgKijQpROQxj8ZCq2lNwczc7MiXaMdtKcUNF00tzsnDvS4aQ5wbqKXxM552ZoRnxO0DQx4nwcOWb5+m2I893lnnGXlxO954T0OeoxmYhlWdq8eTPduXNnHr/j0BgMBtqxY8eCrzMwMECVlZWkVqu9LG8mENZ9cw7RF++c8zR+nHNejSKhYeScoxlBrOQt7FBpYpxzgcUa6nzOVR6h2uHzOcb/+x41NPwb/dPK+M4evHnzJqnValcRYtBJ3tHRQQqFgrZt27ag+u5iIoj7lgljX5msbMg4B5xEcHJAlvgMWTaWLFki/GXzaRRiQGyoNK98XOB8Qc73HX0mznPs2DGsVf4zcnNzMRzn2YNFRUUwm81wOp0xGcjb0NAAi8WCvLw8rF27FkeOHIHT6Qx/4mKGV6fgCrk5mhVbI/J0FXkbL5cr9RxzklPkYmc9PtbPfQdOE9/QZeWiurZvA42bo97eXvqX9e7w4H/+ElEDjuO4BVs4pVIZl1a01WolrVZLBQUFMWuYpSKCKMV9lP5fnJPmgrlZwX2L0oX63Iy3uw2Z5iPyqK7tOpfP+9f9cWps3EkrV64gg8FATp/0eHe/btu2jc6ePRvVOdH8ELq7u4llWdJqtXGpFycbwRkzWR43nBXA6zBZWf6DL73cd7YnncnGI/zxR7K9x9AGTZMhW1wFiOrarnMfeeQRfPnlWRSpisEwMpjNQ9DpdGCIQXaga8WJkpKSoOHGYIRy9eTTst6yZQvMZjPKy8tRWlqKDz/8ENPT0/MpamoSiXI5x1zK91uazWaqrKycV3iQKLZDxkwmE23cuDFm1wvF+Pg41dfXU25uLl28eNErbbGORgopSuecy+XNprAip6amqKWlZUHhwVhz//59ysnJSeg9e3t7qaioiDZu3BhyeN1iYFEPyIhVeDAe5ObmJqW+d+LECcrJyaHdu3cv2qhQ0oeuUYSRCHE+m82G6upqtLa24vz58+jo6Ai7GWai4MtZUlKC/v7+hN2Pp7m5GVarFQ8ePADLsjhz5kxU56cCSRdlqNUpfPPNzMzg4MGDUKvVMQ8Pxgr+8/iGG+N9Px4iglwuh8FgwHfffYdz586htLQUt27diuh8/hpJJXlG2kMkFXKj0UiFhYVUXV29KLpBLl68SFqt1n8CWhIaH2fPniWFQkHbt29PuWpOIFJClMHgOE5oXaby4qKBhGa1Wik3NzcJpQkM3yCUy+XU1tZGTmfqDpZNaVG2tbVRTk4Otba20vT0dNj8ye4C8b3/k08+6bXSWrLLR+T6sWg0GlIqlSkbFUpJUUY6ezDVefHFFxP+xYuFH+pH0N3dTatXr6ZXX32VxsbGElG0iJH5jW4I915M0MGQ82NiYgI7d+6EVqtFc3Pzot97MFEtcDHihkuoRsyWLVswMjICtVqN4uJiHDx4EDMzM375fM8NdDzW+O98yb8nn/eBz44ZZ86cgUqlQlZW1qLaezDUl1RSUoKBgYEEliY8/ArAALB06VJ88MEHMJvNGBoaAsuy6OrqEvIFOjchSxgGM6HxrP2I3Qo/mHW+4cFkE8pFDgwMkFKpTGBpIidQua9evUpFRUWk0WiSWm0CBRgzwxeYE/6JPXxrcNmyZSkTHowV/PNzOBy0dOlSr4lkyWjsBLtnsONtbW3C8jSTk5MJL7PM2wdzgpkOvGRjbCqRXV1dKCwsxNjYGCwWS9otLsq7uKysLKhUKgwNDQFI3pLSwe4Z7PjevXsxPDyMyclJsCyLL7/8Mp7F8yeRvwC+OyKWswdTne3bt5PBYEh2MYISzgr29fWRWq2m8vJy6uvrS0iZvJoq3lX22DWtxeHBioqKlAwPxgMiSrnGDgUI34aitLQU/f390Ov1qK6uxs6dO+O+KKwgSoIVde7WlesvC4yMgVG83A2/WYf4fRiuXr2K4uJi3Lp1C4ODgzh48CCWLFkSsw+QyjAMg9LSUgwODgIQbQ6VxNjyfKoPRIS33noLVqsVy5cvh0qlwrFjx+JQOs8NXXBEHFmoFqAfbK5DPadaCKghS4QTCMSuYHx8nOrq6kihUFBXV1dKRDOSwdTUFC1dupQcDkeyixIzzGYzaTQaKioqiqoaFqkCvEVp/UHYsIiIyGo0EFBDVop8MhXHcXTs2DEhPCgt3kTEsuyijkwFo7Ozk3Jzc6m+vj7CqFB448aRuE7JAKZ/GNG6ReOyoLDi3U16tLbvQgECd5r6OqEbN27gueeeQ2dnJ3p7e3HkyBEsW7YsfmZ+kSCes0PJHhYWQ+rq6mCz2aBUKrF+/XocPnwYDx8+9Moj/rxEIg1xgSNGjPuFgGuLN5m75ih226EVfv/+fdqxYwfJ5fKIFhfNNA4dOkQtLS3JLkZMCOYxx8bGSKvV0urVq4MuChvM13qtMc+Jp9iShWoYrSBEl0B965P+4jx9+rS092AYuru7SaPRJLsYCyZcFY7jODKZTKRUKkmj0ZDVavXJQAGU6a8pQZSWni9oa2u7J5pj/cG1UabRErAAAwMDVFZWJoQHM7UhEwljY2Mkl8tjstDBYsDhcNCnn35Kcrnc3a6wR3W+UKc0mbpRXfU3YT9C2++/AwDy17AAOKECOT09jdbWVrzwwgt47bXXhL0Hpb0Gg5ObmwsAuHfvXkY8p6ysLLS0tMBsNuN/Ju7j2WeVOHfuPwAAhv21nm5HmacLUtz1yBAREazYKtuDz7hLYCEDZ+tBFvsyUNsKunRUyNzV1YWmpmaMj/8XVCoVVqxYsaDCi0espCvkDi3abDasWLECTzzxRLKLFDOCfX/kE07Nz8+HWr0ezc1/B+AW5qbPoNO41pT//vReVDd+hh4rYVMBwPScaqGqxja/C9fua8elI43Ce7vdnpCJUIsRIgJkDBjx5mSiTeKD/fB8v7x0RS6Xu8fFuva23Fdbi8ZvusCKxl0Y9tei6bYSdOlo9BuGZsqDjA2BNxjNJHz1QrYeyN41eXlgADCebkVV4wgs1BXgiYWRqCTIcIj3B/c83n1bPfWnfad6YDUa0G6yJqOACYXx0ZO4L1zMmrwC4bW/KCXNLRDv/cGNp1vBMFko+LsFxLmmE2xijCisanI3ItMcGS8o14/V2N2GTS9VAeA71jkQEUZHR4FapculE1FEfUcS0WM1GgiMq1tNvOShb59wOuO1zilZSCsKY3Oi47UAtbb/QERE2QC85uUQAzCiXzu5q5yS2w6C12ho7zpk+7/rUdvaLrQyXcjAgIWyRYWCDKhvilVjM5ogU7J+ae3738U30MLSqHHVHv2sYhR9u5nQERwpvk/CYjxJAKjHGjA7ZaI3at3q7TV4C+kbOZTBd40rkbQpTMNcsp4efJ/E6OgogBqsKQg2WDr9rSQP2Xogk8nw6SVAv6kQMneDT8YUYm37DyD6xtM9REB2qIaNJLoFENGCdpnRZcQUVIHjIpzJwGTCE0kCRIQ1a9YAuIxRm+8j5mA61Q5rhghyPgR9KhRmjo6ULuqP5Ks57v8YhgG7SY/WWqCK1boF6KL9va3owRqvaEa8y7fY0rODJTBhHpqULuqPdFdzXD0XPByOXiLk769FIZMlHDUYLTiqCd8/mUqfL9Hp/w/Aw4anBh+ixAAAAABJRU5ErkJggg=="
|
<image>如图,AD是∠CAE的平分线,∠B=29°,∠ACD=99°,那么∠DAE等于()
Choices:
(A) 55°
(B) 59°
(C) 45°
(D) 49°
|
55°
| 69,658 | null |
55°
|
"iVBORw0KGgoAAAANSUhEUgAAALQAAABOCAYAAACJxDxNAAAW70lEQVR4nO1dX2zb1nr/lKYB0RQxH/KHS7uGHdqaXdKG93Zo6A1oGPRPWOB25n2qUqCFfBujMlCgitMHAUOhpntQirZRsKETChkVUKCQc4dBcbtcuTYGJRg2xSt65QA2pLxMykul2rtXLrCBShz724N8aJKiJFIiJdnXP0CARIpH5zvnd77z+75zKHoQEWEHO9gm2NXrCuxgB05id68r4DauX78OxWIRisUizM3NQbVaVT+3AsdxwDAMUBQFJ06cAIZhgOM44HkeaJp2ve47sA/PdpIc+Xwerl+/Djdu3IDr169DuVwGURSBZVk4cuQICIIAFEUBy7LAsqzuWo/HA8amyOfzUC6XoVqtws2bN+Gnn36CfD4P8/PzAAAgiiKcPHkSRFEEnue7Y+QOmmJLE3plZQUmJydVAtM0rSMZwzCWyzIjdKvfNhs8p0+fBlmWHfDgyzB7/iC8cslwOLYAePZoh2VvY+AWRDKZRK/XizRNo9/vx0QigaVSqaMyO22KUqmEiUQCfT4fMgyDXq8Xk8lkR2UiIi7EAGML6ieMAeD4zFLH5W5XbBlCFwoF9Pv9yDAMyrKMiUTC0fKdHNuKomAikUBZlpFhGPT7/VgoFNooaQlnxmO4oDmyEAOE2ELDK/7U0fdZjvn5eThz5gycOnUKjh8/DtlsFpLJJHi9Xkd/JxQKOVYWRVHg9XohmUxCNpuF48ePw6lTp+DMmTOq/raE5XmYhiNwcPMA/JgDGD9ysMlFf+Lo9YhqhHQ6jbIsI8/zjnvjXiGRSCDP8yjLMqbT6ZbfX5oZ18mLhRgggN5j70CPviN0LpdDSZJQFEVHNGg/IplMoiiKKElSEymyhDPjgACa1/gM7qjn5ugbQiuKgsFgEHmex1Qq1fXfD4VCXf/NVCqFHMdhKBRCRVH0J5dmcHyHwLbRF2m7q1evwrlz5+Cdd96BQCAAFEV1vQ5203ZOoVqtwsWLF2FqagrC4TBIklQ7sTgBnsyQ7RQdyZmTHPqNGzcsLyRRFAWCIADDMDA4OKguIImiaN+wHqGnhF5ZWYGRkREAAIhGo7byxk6jV4QmyOfzcO7cOWAYBqLRv4d//7sIQPAzePlA8+uM+fB8Pg+CIADHcXDo0CF1YcnKQhIZDOVyGfL5PNy6dUstn+TYRVEEQRActt5B9GpqyGQyyPN83+jkHjaFDvF/eB8PqLp5HM1SzqVSCSORCPI8jzRNoyzLGIlEMJvNWv4du/am02kMBoMoCAJSFIU+n68n0rAVetKL0WgURVFsMzfrDvqF0Ii1wJjneYzH4+qxSqWC8XgcJUlChmEwEAjYIrARndirKIpaF5ZlMRgM9k1fdlVyVKtVGBkZAZqmIRKJ9EQrN0KvJYcR1WoVxsbG4N69e/D444/D119/DaIowuuvv76pszuAU/YWi0WYnJyEL774Anieh1Ao1Nt9Ld0aOZVKBUVR7NucchebwhIqlQqGQiHcv38/7tu3Dz/99FNHy3fD3mQyiTzPoyiKlvLsbqArvVgoFFAURcxkMt34ubbQT4QOh8PIsiyGQiGsVCr47bffIsMweOrUKczlco78hpv2ptNpNc/uVH2twvVezOVyKIpiR3qvG+hFHtqIdDqNHMdhMBjESqWiO5fNZpHjOOQ4DsPhcMe/1Q17U6kU8jxvnmd3Ca4SOpvNoiAIfRMw9CsqlQp6vV4URbGpRysUCvj888/jyMgI8jzf1zMegaIoGAqFkOO4rsgQ1widy+VQEIQ6T7MDPTKZDHIcZzm2qFQqyPM8Xrt2DQVBwGAw2DXv1wmI7AwGg67+jiuEJpXfSp65F5IjHA6jIAi293Jr25fobbs54V5JLGKzW9xwnNCVSgUFQeh6MNApuhkUVioVlCSpI2+VzWZRFEWsVCpYKpVQkiT0+XyWB0cvg2CyqObGwoyjVimK0pfZDEVRMJVKYSgUUrUqADR90TSNoihiIBDAcDjsmE0kfelEZ2YyGRRFUZUc8XgcOY7TLcg0Qq+zOmRQW6mrHThqlSzLfbOUXSqVMBqNoizLSFEUSpKEoVAIE4mEaXBi7OBKpYLpdBojkYi65MswDPp8Pkwmk23p1kKhgDzPO5rxSSaTKMuyrt4+n69lyqzXhCbw+XwYiUQcK88xqyKRCAYCAaeKawu5XA7D4TDyPK/e+mR1gFnp4FKphPF4HGVZVvdQxONxS9O8mxmfQCBQRwqSMmuU4usXQiPW6u+UpnfEKuPU121ks1mUJEnN4Zp5wEKhgPF4HEOhkPpdM6khCAKKooherxdDoRCGQiFMp9N12RpFUTCZTKLP50OWZTEQCDTM6BC92+mNvI3QSOpp95gbz/UToRFRbetO0bFVJI3Ui4xGoVBAr9fbMMDIZrMYDAaR4zhkWRZ9Ph+GQiFMpVJ10zHp4Ewmg+l0GhOJhNrIoigiTdMoSRJGIpE6WxVFwUgkoq7uaQd2tzI+RM6YDSoyO2hTfP1GaETEYDDY8aJRx1b1QjdXKhUMBAKm+dtUKqX+lQCZcq1kXKx0cCqVwkAggCzLqrOBtmyy/4JlWYxGo10f7GTJuRHC4TByHIepVKovCY1Y09SdBIodWZVIJNDr9XZShG2QvGskEtF5wnQ6jTzPq5Gz3end7nRH9DrHcej1enWkLZVKODIyghRFYSwWs1Vup9ASgmR2gsEgiqKIoijigQMHWsqsaDTqmjyyAkmS2s4CtU3oSqWCHMd1zXBFUdDr9dbtc8jlcijLck/3iyQSCeQ4TqejZVnGL774AkVRdDSKbwZFUTAajeLAwAAODAyomZ1wOIzpdBrT6bTaX/F4HFmWxXg8XiezyP+fkBmu2+2qKAryPN/WWkbbhPb7/RiNRtu93BZKpRIKgqCTF6VSCf1+P3Ic1xepQq2OPn36NL777rvquUAggH6/37WgmaTuKIpCr9eLZ86cwbGxsZbXaVN8ZrKIxCA8z6uBb7ccGLnJwW6btUXoTCaDgiC0c2lbv2XM3SaTSVWnOgWn0kazs7PIsiwODg7q6kzu0nGSEERmmcUxZL8HyaMTycEwTJ3k4DgOH3roITx+/DiGQiFTB1EoFHSBbzf26MTjcfT5fLausU1oRVFQEISuTEOJRKKOBKFQCGVZdtzbOREkaYNAkt3QkoM4gk7bjqQBzWQW8aosy+KePXvUlU6j5NDam8lk8LvvvsPh4WF89NFH8YUXXlC9fSKR0JFXu3uuG1LKbpBouxeNK1NugSxTE+JWKhWUZdm1TTVOENoow8zqXCgUUBCEtoIeUh7P87rVTkIyY2anWQaqkb1k0L3//vv41VdfqX+K6fV6dYOnVCqpGR83t4XajdVs96LTS7dmiEaj6Pf71c9m3s5pdErobDaLPM+bnjPOKu1s4CKa0tgGWhlg7PRmdWplrzbFh7j5N2bGDVCkb9yMp+xID1u92A3vbFx1JDrR7UHUKaFb1TGZTOr2hzdbCDEilUrVLZuTOKJVoNbIS1uxt1AoqLv4SD1JdsSYbfL7/a4GvlbvU7TVi24Ti0zHpIO6eZNAJ4Q2ziiNQFbstINVkqSmJIhEIihJktoGRHbIsmxpwaaRl7ZjrzbFh1iTOMSDa5fUSeDrRn8Z264RLFvldmbDGGy6ta+aLIgEAgE1sKJpGgEAGYZRj5EFhlakURQFWZa1rPGMs1yzweD3+3UbvtqVXmYLFXYHsFmKr1Qq1ckNkpXq1iYsIyxb5fYSN4moCTpZLTLCbMk6EomokX+lUkEAwFKppB4jCwwsy6o3eprNTu3sMgyHw7rN/WYdRbITBJ1IL7MV3XZnJPIHk6RuiqLUyQ3jTOsUSqUSsizb1EtbsspKQZ3A2MFObFJB3NxC2WhTkRbNsifZbBZDoZD6nxOEVHa9sxbGAazViEYCdjqVK4qCDMPoru8kW0R28WlnVGMd3dqBaWw3IywR2s29zsbB4sT+EJKnlSTJcc2vXcz44IMP2m4X45ZPonWNRIhGo7YXF8zgxsoukRdkFx/ZHOVkXxrRLHODaCD0+uoq3r97T32trdWOuxkMahvaqvBvBrJU6/Yt87/97W9x9+7d+PHHH7ddhnEwv/baa/jkk0+qHt9JL+dmDERuqkilUnUpNqdmWy2a5tfrjqzfx/t3V3F9vfax1YjoBMayO9HpiqKgLMttN57dKTiVSqEkSR2nq8iea0VR8LnnnsPDhw+joiiu6FCO49Qg2+kFKvLkBZ/Ph2NjY7qYwOn4i7S9GVoS2o0RRqA1tBMPQjq/k0azGyRptVw0GtWl1uyA6PDR0VFV2n3yySeObi8oFAoYjUbxqaeewsceewxZllX3cZCsjt/vdyQIJzfqPvPMM2p5bsRgDMOYDvYmhF7Htbv38MQvnsMf/usHXMdNSUKkSO27GxJldd1QBpEuq7heV/49/N03/4q/euVV9VydrNGVcX+zDEPZ/10oIM//En8/972u3mqdGtXR2BA2CK0oCtI0Xbcfu93A7aOPPsJ9+/ahoiioKAo+/PDDePnyZdvlGOtI/kOaZVn0+/34+eef4xNPPIGFQkG1l2R1yKCkaRp9Pl9Hg6lUKuEbb7yBe/fuxVu3biGi83FYI0fb1ENX/vgHPDSwX0PIdVxTSbGOayrR1nFN9era94jrq1oibZ7jeR5///33eH913WQFUl/eujqI9GX/cXkZXxj669o0qhJ3YwCpn+9rPhsGl7YhbC40mAVqVhZKzDA6OoqPP/44ZrNZTKfT+MQTT3TU+dr92UZi0jStpinNQP6Hmixzd5JPDgaDuHfvXgyHwx1lhMyQy+WQ47i6400JnUwm8dd/++tNQq6tbnrnNX0AqXrutVUTj7pBpI1zqgZav4//9/P/4lGO0zfc2qq5NzWULUmv4u++uaYnrDp2Wnw2NoQNQjdbhrW6akhA4ggyqHmex7m5ubo0mxWQ//ww3kGjBZF5Vuy18z8fjfDss8/iyMgICoKAFy5ccCRjQ2CWrGhMaCQJ/0sbXnEd11c1RG1KutUmhF7FEbIlcP0+Rv/xn3DMSADjoDApOxAIYOTSJYNHdp/QZnLDCDspMm0c8cgjj+CLL76IiPa3TZKB0Sq7Q6Z+O/b6fL62ZwwixUiK79ChQzg3N9dWWUaYLUipVqnSYP2+SiYyAuq0c+0KXNMdW8f1tc3jWq+ulxz38LFDh2pTz9oqvnzSxNttyIVGZSf/ZUOiaMvuEqFb3YiKWCMBZ5x1TGAMhBmGwXfeeQcR7W0EM9u81AiE+HaDYLKnpJ3ATjto33zzTRwYGHAkADVrIw2hiYTY0M+VCtI0Tc7WvLSxRJ3sMHplk4AOETP/+R/4wom/wft37+H/LP0B/4xhNhrJMECalP38L57DH+a+15StCQTvruJ6y8/1sNrBVv8/wgohtZ48EongW2+9pepCKzMBYnu3KpG9K3ZhV04RaNOziqLg/v378cUXX9Tt4msHeo7WoD7r27N7Nzyw50F4YM9u8HhqjxnjOE59dIVn1wPgMT7PYhe5ZuM69csPaI7rr5v65lt4Vf4VPLDnQZj9txk4KYobz1rxwK49D8KuXc3Lnrzyz/AXg0/CL5//K03ZtWs3v9vqcz2sPuv7xo0blp7bJ8syFIvFps/2np6eVp+XcuXKFRgbGwOAWttTFAWSJMHVq1cbXr+ysgJnzpyBZDJp63k1HMfB22+/bfn7BH6/HyiKgsuXL9u6jud5oCgKbt68CRRFwUsvvQRnz56FkydPwtDQEExOTtquCwAATdPAsqy+jRuxXzsa11cbT9V2oU3u29WJTkfK7YCiKMvesNmilFZulEolZBgGEfUzQKuN7e0+y6ST/75o9xY87X4d7ZJ4qVRCr9eLkiS11a/GeGVXI/bfuXMHjvz5Y7B2bxXW4QHwmLk1mygWi1CtVoHjOKhWqzA9PQ2yLFu+fnJyEkRR7NkDOvP5PLAsa9kbkiexXr9+ve7c9PQ0nD59Wn1PPLUkSfDdd98BQM3LT09PQ7Varbv+6tWrbT/ldXBwEG7fvm37OoDa02aj0aj6wFSr8Hq9qifW2sUwDCQSCXjvvffg1KlTcPHiRVvlGm1pSOh8Pg/cXz5dm6Z3O8BmqHUCIfDNmzeB4zigadry9VNTUzA8POxIXYz48MMPW36nWCzWPZG1FYaHh2Fqaqru+JUrV8Dr9arvX3/9dQAAEAQByuUyFItFoGkaOI6Dmzdv1l1/4cIFyzLJCI7jmkqZVuB5HliWtVUGy7JA0zTMz8+rj2DWDnRJkiCTycDPP/8MQ0NDkM/nLZXLcZz+u41cuVYaOAXtcrHdJXWrQVK7aNIUKtpZ7SoUCsiybMNjZnZpp1GzFGC7wRlBLpdz9R7KRrAqp8hjOqw8bsPYvs09tCYodAJaD2e3/OnpaRDVALI3uH37NgwODtq6hmVZYBhG52Xn5+fVh1Oa2XXkyBG4c+cOAJjLA61HbwdO9Cupf7Og1witnGJZForFoun3BEGAXC4HAwMDMDQ0ZCrZCFiWhXK5rMoyU0JXq1VXiKMlsV1Cuyk3rKLdQX769GmYnp5WP5fLZTUO0L4n0E6jxo5fWVlRH1DfawwPD9uSHQzDQLlcBoDmhCYIBoOQSCTgwoULMDIyAisrKy3LNSW0WSN3inK5DBRFAU3TUK1WoVgs2iJHO/rVabQ70DmO03nZcrkMhw4dqnuv/T4htFEjOjlTtSJUK8iybBofNIKWxFYIDVCzP51ON03xactqKDmchpYM7QyYfiB0uwNd60EAahkkYov2PQFN06o3oihKl+WYm5uDEydO2K6DG+B53pbkANC3hbFdmsHn80E6nYapqSl49dVXG17XNQ/dKSHdqFO3YPRGrSRHs053sh2skqkZrHpagnYJTb5vluJrKTnc0tAEdjtlZWUFKIrqaUAI4JyH1g7uVgPd6KGdJLRZftsu2iFlu4QmMKb47t69u2mLWSoknU6b/kvlzmvn1Y8viqLw2rVriIjoQUSEHexgm6BrQeEOdtAN7BB6B9sK1gi9OAuzyy7XpFdYnACPx7P5mljsdY3cxZa3dxlmz3v0Nng8QMywQOhFmDg23fprWxCLEx7wHANYqN3oAIgLEBs9tgU72Rq2h70H4OXPlmBmHCC2sGHHQgxGj52H2WULhF6c+BJy40/D4QPdqGz3sDjhgWO5GVjCs3BUPXoUzi7EAEYzsJW62Aq2l71LcOdSDIaIIQePwPjG293NLluePQ+Zod/A06MZgM/crWJXsTgBx0bHYWbpZdhm49Qc283exQyMxoaglp5bhtmLr8Cl2AJ8dqCZh16ehSkIwtmDP0Ju/Agc7FZlXccyzH45ChD7Dbxs0rvLP+a6XyVXsf3sXf4xBzB6bEM/XwQIIuDZmrtuQOhlmJ0CGCYt8PTh7TGyAaA2XQHEho6anFuG+elLALEhOEqCjy2lL81g0d7lWTjv8YDHc77PEwDLMD8NMLNU089LMwCvHNTU2WylcGlmXL8aE1tousl6S2FpBsdhHGeWTM4txBB05xYwttVtt2jvwswMLpFj/Wzz0gyOj2/UFRERFzAGgOMbBtZ76A2pgbgZQY4f2T6CAw4chqfhEtxZMp5YhIljjafmLQuL9h59eUNfHx2CWPdraRnL89MAEr+pGJZ/hBwAPL2RtdATenkWzl/USA3YmhqrOY7CUAxg9MtZUGfW5Vk47zkGo7EFVYttH9i0d/lHgL51YDW5IfGEn4swcfAVuASajIfquGNEYpDpaQlnxrep7DDa1mhK3g6SAxGt26uRHv2GhZj55qRxfX13Nic1xSJMTACc3XZe2xzLs+dh6vBnsJXN3dnL0RDLMHv+GIyOHoPz/R32O4LFCQ8cfOUSjB7zgMczscUWWjbx/7qSLZ49n9SJAAAAAElFTkSuQmCC"
|
<image>如图,大小两个量角器的零度线都在直线AB上,而且小量角器的中心在大量角器的外边缘上.如果它们外边缘上的公共点P在大量角器上对应的度数为50°,那么∠PBA为的度数()
Choices:
(A) 30°
(B) 32.5°
(C) 35°
(D) 37.5°
|
32.5°
| 69,659 | null |
32.5°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ4AAAB/CAYAAAAenXtcAAAgH0lEQVR4nO2de1gU1/nHP7Nr1Kh5fJKaB2sxqQiKiok2MY3GCghIvAVQUjT1Hn/1RitaDLmKl9pIEJVWiTEaJSYVYxFMowJeABuTeMlTEllEA6ZGkkqMaY1oxThzfn8sM8wuu7Dcd2W/z8OjO+fMmTMz33nf97znnPeVhBACN5waCgIDEgtGSaQctCxbk1nIH8IGtE7HGgFDa3fAjbohCQWAv2TJzA8xk00IwWcZr7Ek3I/Moh+1ukLIrdXNesFNPBeAJBkBUKQiig+OZFSYLwAP9emFAIzcZS5HIElGVCXmzCR0E8+FcOb9LIzzRjMQMxEXxDxN8II1jO9vloiqZJQkqdX66Cgkt43n3FDtO4CMpLlMiH0DDBIogoxChfABliQTQrgE8dwSz8mhkg7gcM4bZBQq/CjL7Fk7lwg/AxmFCgpm2WFWtc5POnATz3VQtIeNzCV8gEQ7JJ5aFE0wcDBrr0ZOPUmdHW7iOTlUSygj+yDzQ0YhhEAABtM5DgG9ffq0av8aCreN5yJYMEoieK1MhJ8BhSJCpQEcIhCTOER/nfwQQtZGwc4MN/FaAIqiYDA0TLmc3pvIQ+HP1SwImYOclQKAuWnXUl5u4rUgGjriNJ8nqv61Lc1cZTSrwrU+ExeHSgxFUSyOq7/tyQBJEoAB9KQTlvUlSUL95QqyxC3xnBzm16NYSjoBSLbL9H4/Z4Zb4jk5JEnSiKVJCAlAQcJcppeY9SGdteRtSbglnpPg6tWrFBQUUFxczDfffMPRo0c1lVlaWkpZWZlZnVYd6/kzT7y8ewMG7rrLyNChQ+n5wM/p49ObRx55hC5durTi3dQNN/FaCWVlZRw+fJhDhw6Rl5fHv//9b4YPH07Pnj3x8vLiscceo0uXLggh6NWrFw884ElOziE++2cBzz0fx4ULFzh//jwGg4GKigpOnDjBl19+yVdlF/nw6D/w9PQkICCAkJAQgoOD8fDwaO1btoCbeE0ER1wmxcXFbN26lczMTCoqKvD39ycwMJARI0aQlpZW67nDhg0jLCyMuLg4li9fXmd/TCYTeXl55Ofnk5ubS7du3YiMjGTGjBn07t3b4T5D84yY3cRrAsiyjNFo6eYQwuz+uHLlCnv27GHz5s18++23TJo0iWeffZadO3fabc/6RY8YMYKJEycyaNAg/P39NeLVhxAmk4ktW7aQlpaGt7c306dPJzIykq5duyJJkkMkbIw/0hpu4tUD9h68+gj1JCgvL2f16tVs2bKFiIgIoqKiOHHiRL2vOWrUKMaOHcu7776rne+IxKsNe/bs4b333iMrK4t58+bxhz/8gW7dutW7ncYQ0T2qrQcMBoNukaWlD001/C9evMjcuXPx9fWlXbt2lJSU0KtXrwaRbsyYMYwdO5YtW7YwduxYizJreSGEQFEUiz97mDBhAmlpaRQWFnLt2jW8vb1ZtGgR5eXl9RrpNkb6uYlXT6hSTVVPKioqKnjppZf4xS9+gYeHB+fOnaNTp06kpKRYnO+ogomIiCA0NJRNmzYRGRlptx/63yoRDAaDQ6Tw9PRkw4YNnD17lo4dO+Ln58eyZcuorKzU6jSXy8VNvDpQG1HUl5uRkYGPjw/ff/89RUVFSJLEhg0bbJ7jiE0WFRVFQEAAycnJTJo0yWYdWba9rN0RwlmTycPDg1dffZXTp0/z5Zdf4uvrS3Z2ttZec5DPTbw6YIsoKhnLysoICQlhxYoVZGZm4uHhwYYNG7Ty+Pj4erc7efJkgoODSUhIYPr06XbPtx7M1AfW5FSJ1b17d1JTU9m+fTsxMTGMHz+ey5cvN9mAwqIPTd5iG4AkSZw4cYIhQ4YQEBDAU089xb59+2rUq20QYIuc06dPJzAwkLi4OObMmdPg/jmizvVSTE8sg8HAiBEjKCwsZNCgQQwZMgSTydTgvtiDm3h1wJaaSU1NZezYsWzfvp1bt24BDd9go5Jz1qxZBAUFERMTw8KFCxveYQf7UpsUkyQJo9HIypUrSUpKIiAggPT0dJt19YMtPeHrIn+7Ont4h8OeL0w9ri+TZZmFCxeSk5NDXl4e7733XpP0YdasWfj7+zN9+nTi4uKapM2mwoQJE3jggQeYMGECp06d4tVXX7Vwo9h6TlA3+du8xLP3gPSjVzDPpY4fP57PPvuMkydP1ot0tdl68+fPJzQ0lKlTp2rSrzUn760hSRJDhgzh1KlT5OTk8PTTT3Pjxg2t3O3HaySsX7ZeVZhMJh599FE8PT3Jy8tj7dq19Wrbnq03f/58AgICGD16NCtXrtSON4cx31h4eHjw0Ucf0bFjRx5//HFKS0sb1Z7z3WErwfplq5IuOzubJ554gpiYGHr06MGKFSsafA21TSEEixcvJjQ0lKCgINatW9fwjrcgOnTowI4dO5gyZQqPPPII+fn5DZbObd7Gqw0mk4moqCh27drFRx991Oj2hBDEx8dz7do1AgICGDx4sF1/nzPBemrs+eefp2/fvkRGRvLxxx/j5eVVbyntJp4dXL58mfDwcFatWlWDdA1drbFs2TKuX7/OuHHj8PPzY9u2bU3V3WaF6kTWkysiIoKioiIiIiL4+OOP6dy5c72eiVvV2oAsyzzzzDOEhoby7bff1ihvqOvk+vXrjB49mu7du7N9+3anGkTUBVsS7cUXX2TQoEFMnTq1/u01RafuNCxZsgSA5OTkep1nz48VHx/Piy++SGRkJN26dSMtLQ2j0eiUg4j6QJIktmzZwqVLl1i2bJlFWV0flVvVWiE1NZW///3vfPTRR/UeSOhXr+il4q1bt4iIiECSJI10dwo6dOjA7t27GTp0KA8//DATJkww7/2o46NyE0+H48ePExsbyz/+8Y96Gf2qzWfLW7906VJtdUlmZiYdOnRosv46AxRFwdPTkz179jBmzBj69u3LgAF1Ryh1bVnfhCgrKyMyMpJ333231tXB1qjNa7906VImTZrEd999x+7duy1I50r2XW1QJduQIUPYtGkTY8aM4fLly3Wf19wdcxXMmjWL6Ohojh07VmPWojbYknLqsRkzZvDNN99w4MCBGru+XN2+00P9iCZOnMi0adOYN29enefcOXffCOzatYsrV64QGxsLYHOVcX3x1Vdfcfr0afbv3+/0Ww0bC/1H9PLLL2MymThw4EDt5zR3p5wdFRUVxMbGsmnTpkbNSuhx5coVCgoKyM/Pp2vXroDtpep3Ijp06MDGjRtZvHixxUpma7R54i1fvpyxY8fywQcf1ChriL/uhx9+4PDhwxw4cEAjna22XCnATn0xcuRIHn74YdasWWO3TpsmXmlpKdu3bychIaGGHwpq+uLqgqIoZGVlkZeXR/fu3Zuyqy6H5ORk1q9fT3l5uc3yNkE8PYH0o8lVq1Yxf/58kpKSalV9kiSxfPnyOsm3Y8cOsrKynG7XfnPD1rPz8PBgypQprF692uY5bWpfrX7jdXl5OX5+fpSUlNS5zKmuudlOnTrx+uuvk5+fz4MPPthssepU4jd2X21zwNY965+x3uxQFKVtSDwV+hmDhIQEZs+e7dDautpIdN9997F+/XqOHDnCgw8+WGf9OxW27tnDw4OIiIgaz9hgMLQt4qm4fPkyb731FjExMTbLJUlyyKbr0aMHCQkJ5Obm4uXl1cS9vDMQFxdHSkoKFRUVQLWp0yaJ9+677xIREUFKSopdB7CqzlQCWn/RXl5exMXFcfDgQXx9fZu/0y4GlWC9e/dm+PDh2mYhbdN5q/WsFZGamsqMGTOAumcQ1NGunqD9+/dn4cKF5OXlOTQv2Rahf67Tpk1j27Zt2jNsczYeQEFBAf/5z384cuQIYHtEpl+ibi3pHnroIebMmUN2djaDBg1CUZQ71hncVHjqqacwmUx89dVXQBuz8dR9n6mpqRY79Guba7Um3WOPPcazzz7Lvn37+OUvf6kt/2mLg4n6wGg0MmXKFN566y3tWJshnrqK5G9/+xuTJ0+2OO4Ihg0bxm9+8xvS09N54okn6nWuGzBp0iSLLaFthnhgjsgpy7K27MlR4vzqV78iKiqKnTt3EhQUdMcsaWpJPProo1y8eFGbybjjiacnSX5+PiNGjLAoq81tEh8fz6hRo7R1eqNHjwburCVNLQWj0ciIESPIy8sD2gDx9CTJzc0lMDBQk3TLli2rdRbg1KlTjB07lq1bt9YIjAh37gqT5oK/vz+5ublAGyCeHnl5efj7+2uE0S8MsFa7amDEN954g4kTJ9psz23jOQ4hBP7+/uTn5wNtYM+F6hK5cOGChX0HlsTRS6+oqCiGDRtGcnIyUVFRNmP9ulrusNaGJEk8/vjjfPnll1y9evXOJ55KjtLSUoecvZMnTyYwMJCEhASmTZsG2Lbp3KRrGPr168e5c+dcV9WqydCh9o0zatmZM2fw8fGpdTAxbdo0AgMDef7555kzZ44TkUvR0kmpyfIs7EtFaPmmah9xt/5o3Nvb28WIZ2XHLwgx5/FSgwiaHbkjKaJ6WgaqpVVJSQm+vr52BxNqYMSFCxc2OjBiU0KbGRGy5gQXWKl5g4Sawqz2j6X1X3f//v1djHhWzzPloGDOKNhzWkYIGUVRSJxnYIA0kjPC0iZTFIXi4uIak/mqnTZz5kwCAgKYPn06zz//fEvcjcMwf1BGJKkq8oBkxICkk4EKQsic3puoRX6XJImgaMtl50IIFMx/1h9xS6JPnz4UFRW5CvEUVDWhqhgZE+fEfCL8DAhh3kwdm3KIecF5xERbhv0yGAxcunSJn/3sZzXyU8ydO5fRo0czZcoUli9f7tQuElXyAbosjQaSFoTyUPgBTFVS8bYohI3PEfL76nVwkiRhQMKgUJVy1HbU+OaGp6enOaB3q1y9HjCrFwkwmD9U6TYApsx9GPrq18CZienVN5icL76waENRFK5fv84999xjoYrmzZtHYGAgTz75pBYY0XnsOtvQki1XfR9rokNYUuKNEEfoX/U6jQxgfWYChzbso8jarjOoe4aNLfaR6e3Ozp07c+3aNecf1WorRTBrWyHagQQ5OTmMDjUH1TFP1ptXF/fu7Q3nhIULxGAwcO3aNYv9rYsXLyYgIMAlAiOqyY/1YTIMEpzem8iSjYfYc9qck0II2Sp1fFVAbEnBln3XUh+Z3uzp0qULN27ccH6Jp0oyM+nMNpmMiezXBaPD+ln52BRKv/iCkL59arhAfvjhBzp37gxUk27QoEEuERhREgqHDx9m48aNbN68mWPHjoGATRufI/B3r1WZGwJJVN9zyfnzIFRymY87wxxz586dzauRhYtAFoqQZVnIsiyEKV0ERa8RQgihKEpV+W0hTOkCEIkZp7Xz1HKqbvXatWti+PDhYsqUKS18Bw3HbUUWvr6+ArPgF48//ri4LQpFMIjEjM90NWWhKLeFEEIsGIX2jPTllr+U5u24/lqy+dr//e9/RdeuXYXTSzy9FWIwmMV2ZtZBfH7uBShV6kfGgJEFMRMheC6x4X5oklKnTioqKggNDdUCI7oCZKFglKpfk6pujUVnOQT09vbT6oF5BHx6byIbc2DBnEVWrRmsfrWcPVvDCd9ilG8CKEKI26JQBEqS2HO6+uuVizLM0iBkjpDlH7WvSztPUcTdd98tQkJCRHh4uLh9+3YL97zxOHTokPjJT34iunfvLo4dOyZui0IxUkKsySwUiqJo0kuVhEHzE0ULCjSHcfHiReHp6SksiHf95k3tzxnxeeZrZoJVOe+1v6oXUANVD/7mzZuiffv2IjAwUNx00ntzBEuXvSKWLl2q/U6MDhCEzBFCCCErQjM1aqrY1oVq7gghxJkzZ4Svr6+wGNV26tCBG5WVdHKi4IHqiA5gYNgShFiilYA5KLRenSqY1S6AQKDIClFRUbRr146NGzdaxKgTrjbRr1j2NfYvuXw5SkKS3tCOZRQqhA+QnOre9P24du0anTp1cn53igF7D7HaVQKqQ9SI3o5RFIVJkyZx5coVvL29tehFanvO9HIcgkHUIN/GHMFfhOae0+As92fdhxs3bnDPPffU7k65UVmp/dn6rT9W17mOltmq979bt6qmiBTL829W6jbmGLmu6+f1ykpzYMTycg4cOECPHj34+uuvq+qaH4QrrSQWoibptOPCzmIJJ/iorIlfVlbG/fffX7vEs1a91r8d+X99yvRQjwsh879bt83qVkjcuPU/OnZojwEjQshUVN7kno53c6OyEgm4WXmLTh06MHXGDD43mTiam8ufEhLw9fWlpKSkvs/NeWCDRAoCgy4UrnU+itanXU2cO3eOfv361c+BbIskjkiuxkCSjNo1lSqXgWbDCUlzNah17m7fnujoaD7//HPyc/O1uB3e3t4UFhY2Wz+bC5pEB6yXNUk2ZrycXYoXFRXRt2/fuomnSrnaytW/5ob1Q9WnrlSxePFijhw5wt69e1m3tnqFRr9+/fjCag7XFWCpqmznW3MllJSU0KdPn+o7aazUak6pp29b2JjYVl/AihUryMrKIjc3l82bN1ss+uzdu3ezZJp2o344c+YMffr0sbTx7Nlb9twsemmoL7OWko6W2bInret07tjR5vkvvvIKO3fuJDs7m5SUFABejo/nriqp+MaWLbRr187mujw3mh9CCI4fP06vXr3o2rVrtcRrqLq0d15tKthema3fmn2nG7FZn//aa6/x1x07OJqby8533gHgj8uXa6S7y2DgLoPBYpeTdZtuNC8kSSI/Px9/f3/AwbXQzuBUtmc0Jycns3btWg4fPmwRm0OFXt0GBgZq+zpra9ON5kF+fj6BgYFAHcRr7hFrY/HGG2+wevVq8vLyePvtty3K1L0V+j0W/v7+HD16tEX76IYZsixz9OhRAgICgDqI15IjVkegV42pqanExcVx6NAhmymgbA1Cdu7cidFopLi4uFn76UZNnDp1ip49e2qByV1K16jZEXft2qUFRtRHINLDnqshMjKyXrnK3GgapKWl8etf/1r77dTEk2W5Rg7Y9PR0LTBiRkZGvdqTJInp06eTmppq0aY1bB1zo+GQZZl33nmHWbNmacecmnjWQQ/379/P7Nmz2bdvH/v37693e0IIMjIyuPfee7XRrS3J6IqOWWfG+++/z4ABA7So+ODExLNe7pSTk8MzzzxDeno6Q4cObVTbM2bMcJkVyK4KvT3+9ttvazGnVbhEgpX8/HzCwsLYtWuXRVrPhiA+Pp4rV67g4+PD2bNn7WbhsRWop7XhzAlW7KG0tFQL1qPf5ef0xDt27Bhjx45l27ZtFBQUNLo9dX3YDz/8QMeOHXn11Vcb38kWgisSb+7cuXTv3r1Grjin+aRtzSIcP36cMWPGsGXLlhqki4+Pd2gQsHTpUovfqrRctGgRW7Zs4erVqw3vtBsabL2L8vJy0tLSWLSoetOR0yVYsVZrBQUFhIaGsnnzZk6fPm3zHEdUrr0ctFu3bmXcuHHasin39FnDYW+l8+rVq5k5c6ZFHjOnTrBiMpkICAggOTmZoqIiizK9unHU1rNX7+WXXyYlJcUt9RoJW8+3vLycd955x24QJKcjXnFxMcHBwSQkJDB16tQa5Xr7xlHz1F49dbQVFxfndAMJV4YQgoULFxITE2N38NZqT9sWGUpLS7XAiN98802LGNHx8fHs3buXEydOAG6V2xQ4cuQIn376KbGxsXbrtBrxrMXzhQsXCAoKIiYmhu+//77F+pGYmMj69euZN28eP/74o1vyNRDqB1tZWUl0dDQbNmyw2EpqDad4ymVlZfj7+zN9+nRu3LjR4tcvKirivvvucyh3rRu2oX6wf/zjHxk4cCChoaG11m/1fbXl5eWEhIRYpHlqDWzbto2hQ4cyaNAgQkNDnWJPqqshPT2dHTt2cPLkyTrrtqrEKy8vJyAggCeffJL27dsDOJSguDnw5ptvkp6ezpQpUyguLnaTrp44efIkc+fOZf/+/dx///111m814l29epXQ0FCCg4NJSkrSjtvzu7UE9u3bx5o1axg/fjyXL19utX64GsrKypgwYQKbN2+mf//+Dp3TKsS7evUqAQEBDB48mPvuu6+Gi6Q1Z/HOnz/PuHHjmDx5MrLcOnGCXQmVlZU8/fTTzJo1i4iICO14Xe+wSYnnCGGuXbvGuHHj8PPz44EHHrBZp7XVXFJSEpIk8fvf/97ieFt2tdi799mzZ9uci63rHTYp8eq6WEVFBWPGjHH6wIjLly/nr3/9Kzk5OWzcuFE73pZdLbbufdWqVRQUFLBjx456t9dio1pVJHfr1o20tLRWteUcwYYNG8jIyGD48OF4e3vX6R5oa8jIyGDdunV88skndOrUqd5aqsk+4drUUGVlJeHh4YB5w42zk07F7t27SUtLIyoqykLytWUIIUhISGDmzJmkp6fj5eXVIE3QZMSzd3FZlpkyZQq3b98mMzPTade/xcfH2/xqP/74Y44dO8b69euJjo5u0wOOyspKZs2axY4dO/j000/x9/dvsPnRrEaLLMtMmjSJS5cukZGRwapVq5rzco1CbfPC7733HqdOnaK0tJSgoKA2uZrlu+++Y9iwYVRUVPDJJ5/g5eVV90m1oFmJN2PGDC5dusSBAwdITEy0mx/WWVDbbMXatWv54IMP8PPzY8iQIW0qANDJkycZPHgwo0aNYvfu3XTp0qU6w1ADR/pNSjxFUbSOzJw5k8LCQj744AMSExNr1G1tl4k91PZBrFixgj//+c+89NJLBAUFkZ2d3YI9ax2kp6cTFhbG+vXrbZpJWuYlK/9rXYKlSUe1qr6Pjo6moKCAvLy8O27iXVXJ77//PmFhYURHR/PSSy/VqNfYuV5ZljEajXVXtIHGXlsIc0quZcuWsWPHDg4ePGg3ybR6HevrNdqPV19RunjxYg4fPkxWVtYdRzo99u3bx8mTJ8nLy2Pw4MEcP37colySpEYNRBrjM6zrpVtLI/07VhSFo0eP4ufnR0FBASdPnmTAgAFNbhrVKfHUsBGOfEGvvPIKBw4cIC8vT4tRdydCjaj+5ptvMnToUAYPHkx4eDhhYWGsXLlSmyS3llj12TLZXKaIrXep9unSpUssWbKEDz/8kE2bNln4Lpu6Pw49BUcuGh8fz9tvv01WVtYdTTqolhiqC6agoIAvvviCe++9l/79+xMfH29zkUFLzHzY0lD6Y/b2R7zwwgsMHDiQXr16UVxcrJGuuaYJG/wk9B1KSkoiNTWVo0eP2oxRd6dC74JJTEykffv2/POf/+TSpUv4+PgQGxtLeXm5VsfeS7RWdQ2BapepbejbsUf4ixcvEh0dTd++fbl58yaFhYUsW7bMYuWwrTjTTYEGE0/tUHJyMmvWrCErK+uOJJ1eQjiyVvDNN9+ke/funD17FlmW8fb2ZurUqWRnZzsk8RoqFdW08Po/e8jIyGDSpEkMHDiQe+65h5KSEtatW4eHh4fd82xJysZIw0bJ/s2bN7N69Wpyc3Nthv5yVpdJfaD/0u05mW0RMiUlhaSkJM6fP8/w4cN58cUX6dmzJy+88EKN+HwtoYJNJhOLFi3ipz/9KWvXriU4OJgLFy7wpz/9iW7dujlEIus6jel3g90pqampPPfccxw7dow+ffrUKFf9Oq5OPn1WbHtYvnw58fHxNYip/62u8du6dSvjx4+noqICf39/AgMD8ff3b/KA4CaTiby8PO3v/vvvZ+LEiRw7dszmrENzSmNb0Iinpl4HzAnvteRYCkJUZY+pqpSW9lcWLlxIbm5uvQMjuhoctW0c2YrZp08fOnXqxOTJk/ntb3/L4cOHOXToECtXruTSpUsMHz6cnj174uXlxWOPPWYOcqMIfu7Vi549e1q0deHCBf71r38hJLh+rYITJ05QUlLC119/zYcffoinpycjR44kPDycDRs22N3f2lqwCNqjxbXQMVtzASgCISmkp6cze/Zvyc7OblCMurYKveSMj4+vIT2uXr1KQUEBZ8+e5euvv7aITl9a+gVlZd9UNQQI6NGjBz4+PgghaN++PUOfGMYDnj3x8fHhkUceoXPnu5GkhjmgWwIa8WRZZm/yAiJjNyOEBCH/x+2c3/G7+QdISYlFCMG+ffsICwsjJDSYXw55vLX77jJQSWfP9NCT0lYdSYCQ0ML1L1u2VCNVbb5BIeRaydeaodjMVy3aQ7t27Xj9X32qhuK3UNaF0E7yA6/eANy6dQuTycTLL7/sJl09UZ1h0rb5oVfntqae1MyV/v7+jBw5spp0CJs2qLl+3WjNFdWSIkwiWPLD8Ls1HPzzYqD6q1sTHYIUsp7FT/U336BcFaXTOjmqG/VC00gac0JBIQRIktk+F6BIAhTh9Mv0DZlrUjhCAMl/jtEOql+dl1dvvHr3q14Cg2VGXmdc2uQKaCgpzDa4+mduw7Q3ib2mqvcgmRNLOzvpAKSREqLva3vYEBuOAdUOMZrFOBIIs5i3ZVPcCe6SlkBtEq4u6acoYDCoMaGFhc0mY2KUwY/oz2Ui/Gq24czvx3BEQG8fb3MiYgzajRmQtBypFgaqwb494oZt1EasuqRTVTpeJElCkowW1ltydArG4BB8/Wxn7nbm92NQ/7GlNW2NitQkxW60DFTqaOveqn5nrJuHCAlGPigj62YUhJCdnnQAhmCgpOQckgRC1k2JFO1h7fvu1EutDUWBGoPUoj0clEex2Ps2R0J88DMYNR+shLEqc7dzbz43zEuaw6bYCbyWWYhkNKAgc3pvItLCbP7wlO1Vp260HCRJ6KaUzFiwMZeU2AiEMBLU1wfQqWyJqgGg8wwwbA5ChRDi88zXBObvSgAi+HdJwg3nxJ61c7X3JIEIil5TVSJrdRRFEbIw/zkr2gkhMzBsCUIssZyvdcNpoL2XKhUrxOsIIVP4/lpe/8JLs8WFzlGtDgyd5Y1aj97b6QcP1Z11HjHthvm9KGf2YIzJQeRs0ohWUvovwFsbAFoPKMyLO1q8uzahkk4jYE0hKGsiWlGcV1S3JSTOC9LU657T5rczL7TaNKpWt3rITvf+9P35fx50cfvBpUDYAAAAAElFTkSuQmCC"
|
<image>如图,一块三角板与圆片重合,直角边AB=AC=2,使AB与圆片直径重合,则阴影部分的面积为()
Choices:
(A) 1+\frac{π}{4}
(B) 2-\frac{π}{4}
(C) 2
(D) 1
|
1
| 69,660 | null |
1
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAACnCAYAAAAbi9KEAAAf90lEQVR4nO19e1QUV9bvr6pBvC6ynLVGr+jo4CdomODcOEYTHVBQHrav+JqMJjIRZ/TjvYIRJRGMTMQYQiPiKxiZPBQj4wj4TPCNURB1VsYrIBiNn4wmAzpxghKvCF37/tFd1VXVVU3TNHSD/VvLJV3nUVXnV3ufXefsvQvkgsOhJ46IiGLDQID0n25/FXGctD4LFxwOhjgAwOYSPWLDAN3+KhAR/m/xB0iaPRIHalok9V2kOQEYRgMA4JirqD0+GeGz/AAA/2fEfwEAiNNI6rtIcyLUHCyBJmYqfg0DSXGJryA8Voc5I2U0db0Gd0EMfj4jIirSRRnmMpYhAFRcxSm2cUmag8GCEf4+eWw7iqs4tOj1KNoQjTkjWRRXtwLgZG1ccA5cLcJWRGO2PwM3MHh5WTxCAZwoOQw5TS7SHAwiAgAUHz2O2LBwEBEIAFv9DU4AGOY73KwNQ3wrFxyKuHAGoRv0mPWcwYqcyv4aJzAJ1XQCfmAkatRliDgYV/Z/YPZCDYAQFqXaxiVpTgPe2JDPWJzZMdec5hQwEENiOoif78wpcpHmBOCVnTBrEUAgMAzD/5TARZoTgGE0qKurQ8XFC8YDAMOQkTyITRAALtKcArt378bzzz+Pwr/tMx0k1kAeTJLIw61rL88FOdasWYP8/Hz06dMbffr0EUSLQGCMMsarSR4uSXMQ9Ho9li5dimPHjmHu3Lm4e/ffhgIjP5aMepekdSKITMYEx3FgWYOMNDU1Yc6cOfjZz36GnTt3YuzYsVi8eLGkLV9XCS5J60SI1RpPwp07dzBhwgSMHDkSf/vb37By5UqsWLECgwYNsrpfF2l2BsdxqmXV1dUYP348lixZgg0bNuDo0aOoqqpCUlKS2bwFqKtIl3q0M9TU2qlTpxAREYGtW7dizpw5aG5uRmJiIrKzs+Hh4SFRpTyUiARcpHUJdu7cieTkZBw6dAhjxowBAGRnZ8PX1xczZswQ6oklS4lEHi7SOhlr1qzB3r17cfbsWQwbNgyAYV7LyspCRUWFWX3eYFEjDHCR1mnQ6/VYsmQJrl27hoqKCvTt21coS0pKQnR0NHx8fMzaWbIaebhIswG8saE2wI2Njfjd736Hn//85zh9+jQ8PDyEsrKyMpSVleGzzz6z+fwu69EGsCyrSth3332HgIAAjBo1CgUFBRLCOI5DVFQUdDodPDw8LFqaFs9vU6unGGpmOMdxuHz5Ml566SUkJCQgMzPTrM6HH36IgQMHYv78+QCsU4VKcKnHdkK8wgGYBv706dOIiIhAXl4epk+fbtauoaEBaWlpKC0t7fA1uCTNRjAMIxCWl5eHP/zhDzh48KAiYQCQmpqKxYsXw9/fv8PndkmajeAlbvXq1di3bx/Onz8Pb29vyRojjwsXLuDQoUO4du2aXc7tIq2d4EnR6/WIjIzE7du3JSa90jwVGxuLrKwsoY4Sse2BSz22EyzLorGxESEhIWhpacHRo0cl72By5OXlwd3dHQsXLpT00aFr6FBrZwTpDf/JloQkVp/xT05mCMotQyWT/M6dOwgICMD48ePNTHo5GhsbsXr1amzevNniedqLnkMaz4AxbEi8DMQwjHRZyPgnK1spMtshZlkJcZcvX8b48eORkJCA9evXS+oSkRnJKSkpmDVrFsaOHSvUEZ/HVvJ6zJxGIn8K8eBbnD+UvGYUwHEcvvjiCyxduhR5eXmYNm2aWR35g3H58mUUFhbiypUrkjryNragx0gawzAAKUsLDzN1x1je/+Lbf/zxx4iJicEXX3yB6dOnm51DqY+EhASkpaWhf//+qnVsRY+RNABmUiMXJIYhM8lryyhYtWoVDh48iHPnzsHb21uxDq9G+b52796NR48eYcmSJVafpz3oWaTJIOGQDP6FYiGxtGfV3NyMJUuW4Pbt2ygrK7NoIYrR1NSEpKQk7N+/HxqNxqy8o+Y+0IPUY5tox/TR2NiIKVOmAABKSkqsIownYt26dQgNDRWMD7V6HUG3J430prkiLpwRDAL+X2hCllkbfn6RGywAUFdXh3HjxmHixInYtWsXevfubbWVV1tbi7y8POh0OjPL057o9qQxGtMtbD1GyIwJgW7/FbQQh1aqArYkIVZXLGnDsiw4mYc8y7K4dOkSAgMDsXz5crz77rumc1hp5S1btgxvv/02BgwYIPTZGej2pPHgKbh1g4H25eegIQ4a+EMbE4Jv6m6KpIUzzCsyfXnkyBHMnDkTeXl5EgPCWhQWFuL27dt44403OnYjVqAHkGYggTjOGLfsA39GI0jH/9w4iRHDvEXSYr6BuX37dsTExKCkpESYy9qDx48fY/ny5cjJyVE0PuyNHmA9smBZw5xUVHIMMeGGQSewyIoNxbbjk1B9bK6i1cZxHJKTk/Hll1+ivLwcgwcPtuqMcqvzvffew7hx4xASEmK/27KAHkCaASzL4mTJduSe+AgfrjCqwrAoEOUaK/A1DQF8zc3NWLRoEX744QdVk17tlUB8rK6uDps3b0ZlZaV9b8gCeoB6NOJqEbYhChzHQU+cYZH4WK6kip5aARhW6UNDQ+Hu7m5m0ostRWsMkMTERCQlJVktpfZAjyCNA6Hy+reYPMLXkM4BJpcAPXGC6a1h3FBXV4cXXxqPyZMnY9euXcIcJF/MVTyPzIQXu3V3Jbq/eiSAZRjkbl2JhGxOahOyDDR8ZB6AixcvYtasWVi7di2WLFkiUX/WSJV4Tnz8+DESExOxceNGyfaMpVUWe6H7S1pNERhGg23HYUhLdFWk3kQUFhcX4+WXX0Z+fr5NJr0YHMchJycHvr6+Zj4hnU0Y0BMk7bm5IOPGpxj8E89xHPLy8pCeno6TJ09KHGtsHeDvv/8eOp1O0a27K9DtJU1tiYknZPny5di0aRPi4uKwdu1au5zTklt3V6DbSxq/jyaezDgQWpqf4PXXI3D//o+oqKjAnTt3sHHjRkN5B1ba7eHW3VF0e0kDAFnaKDxsfIDg4GD06eOJkpISeHp6ws/PDx4eHvj73/9uM2Fyt25HoduTxnGcREXevHkTY8aMQdiUcHzyySeSZSWtVouTJ09K2rYHcrduR6HbkyaWGn6Vfs2aNXg37c9mdcPDw/Hll18qtm0Ld+/eRVpamkTFOgrdnjTAMK/xJv2u/M8REREBwNyNLjw8HBUVFWhqamr3OVJSUhAZGSlYn5217WINuq0hwhsTRIRt27YhIyMDJ06cUDXpGYaBp6cnfvOb3+DMmTOqPvdKuHDhAg4fPoza2lq73oOt6LaSxj/pb775JvLy8lBeXm5VcMPs2bNx6NAh4bc1u9IxMTHQ6XRW+4l0NrqVpIlN9ebmZixYsACPHz/G2bNn4enpabE+j+DgYHz88cfCb/kLNu+NLI6I8fDwwGuvvWbv27EZ3UrS+IH897//jeDgYPTr1w8HDx5UJExcX4wxY8bgwYMHqqpOHMLEu3Xn5OR0yfKUtehWpAHAt99+i/Hjx2PmzJnYsWMH3N3d29Veo9EgKCgIZ86cabMu79b94osvmpW5rEcrceHCBQQGBiItLQ2rVq2yuZ+pU6fi8OHDFuvwbt1r164V5j2xv74jrUenJ40fsMLCQsyePRsFBQWSsCFLUJMGrVaL0tJS6PXmC808xG7d4r02R5LFw/FX0AYYhsHGjRuxfPlynDhxAkFBQVa3VRvgAQMGwNvbG+fOnRMIERMsd+tW68dRKtKprEcl1RMfH4+ysjJcuHBB8Ce0B2bOnImSkhLhIRCn9bPk1i2Go6TOqSRNnJ+jubkZc+bMwa1bt3D27Fm7EgYYTP9jx44BkL6r8W7dL730kl3PZ084FWk87t27h4CAAPTv3x8HDhxQNek7ElEZGhqKb775Bg0NDYI5X1NTI7h1OzOcjrTa2lr89re/xSuvvIKPPvrIoorqyLsTy7IIDAxEaWmpoJbffPNNJCcn212q7Q2nIu3ChQuYNGkS1q1bh+TkZEmZvSd9hmEwY8YMFBUVgWVZwa07MTHRrufpDDgNaX/9618Fk/73v/+9WXlnTPohISH46quv0NzcLLh1u7m5OfTF2Ro4hfWYk5OD7OxsnD59Gn5+hu9hytcA7QG5exu/mx0XFydx6+bP2RXucLbA4aRFR0fj0qVLZia9WUYCdDyKUomAgIAA5Ofn48aNG1bVdwZISSMAjPErQoqR/+ZfGLIVTU1NePXVVwEApaWleOaZZwxnsECM8nFj6BKr8vxxBDCMYiQoEeH69esYNGiQYrZuZ5U06SgwABEj/A0ARHqRaW2qruRraC3u3buHoKAg/OIXv8ChQ4cEwoD2z10cB1XCOI4zJAtRGfdjx47hhx9+wPfff49Hjx6ZlTsjYQDAyt91zC9Umk+Xr00MCw7tJ662thZjx47Fa6+9htzc3LYbtAGeZCXjwXDdykYF79a9adMmYTe7u4BlGEYSyiqVLCmISPLQsmhfAF1ZWRmCg4ORkZGB5cuX23K9qlAiz0Cach6RTZs2wdd3GKZPn262m+304DjlbymLwXGtor854iRlbbcnIiooKCAvLy86d+6cah29Xm9VX3JEhyh8nhEhVE2G/uRXePv2berXrx/duHGDiIjOnz9Pfn5+Np3bXnjnnXfonXfesaouy/u7A7LsAKzpb3ZKnEAywzCyhCpt6/2MjAykpqbi9OnTCAgIUK1nq2X44QlCbBhQVM0JrwofRBP8mVBcBSekXyIicCAkJSUhKua/BbfusWPH4j//+Q9qamqEPvn6zgjDKBkze209RogKB4oq9SDOcNFX9n+AkGfNP9trjSGi1+sRHR2NvXv3ory8XHgHszf0qEYNYjHnOdMDtOLDk4gJPY034rMBmF4hzpeVo/xcGVanvCPU1Wg0CA4OxldffSUcU3rlcBawAMAYIyf1qMY3FIs5I1noUQ2drgi/enkqtN7/JWlEpAfDaBT3onjwXy5qaGjAmTNnhBxRpj7s9xRfPfAFNCOGmfo2Gh/DhofgxDfXhW9Hk97g1p2ZZe7WPXXqVBw5csRu19SZMOojQzaAmgNf4NkpoSAiHMzaDGb4s3BjRiIpaa6kESNLzydXa/X19QgKCsKgQYNQXFysuEpv7VOsJNFKEZnaMK2okaFvn+HDhT4YANtyDW7dr7zyilmfWq0Wp0+fluxmO+1yFm9IcFwrFWZFSSbzoko9mcqtMziqqqrI29ubNm7caP0sbAXExpAYrVRFkzGZqjg96fUtkrLMmBAKjdMREVF9fT3169ePqqqqVM/h7+9PpaWl9rvodqDdhghgkJ4TX243zGdEiAsLxbMjTRLBMIzCUy99Es+cOYPQ0FBkZWV1QhIUBSOFAM3Va0DcFPgzrPQlu6YYKz48KUhgSkoKXn/9dfzK/znjlZurZ3432+nB6VsMT3F1ISEsRmAzKyuL9MS1KWm8mZ6fn09eXl50/vx5q6WyPeA4TlHairOiKSazyFhuutaocNNX2SsqKmjgAC/6T+OPFs9RUlJCo0eP7pTrbwvtkTTwfxRmRVFMZpGkkOM4iouLa7OT999/n4YPHy6893QG9MQRkfQ9rpWqKMyoxoV3vOpCg3o3PoAc10qjR4+m/PzPJb0pobW1lTw9Pam+vr4T7sAy2qUe+Qns2NHtCNPOkqjA+CksuKHSLDQkshhbW59g6dKl2Lt3L8rKyjo1nNWQZsK0ZVJzIAvuzEgcBzD31xpoNO4GM91/HnT7q0DHtgEA/vKXT9CrVy+89toCmNQ5r2ql6l2j0Qi72U6NygOZBBi4c+/di9z/Vy9y791LMEb2V5omd/GKxcOHD0mr1dLs2bPp8ePHQpm9VYvebD3DcFT6q5X0+hazc//44480YOD/posXL1rZL9GWLVto/vz5Nl+vrWiXpD338nJhvbH5p5/Q9LAJj3/6f8KKwMv+5h8jra//HhMnBsPPzw9FRUXw8PAQyuz9QsrC5N0rPsqDA4GFBizrZnbulJQUzJo5WzFhpjwLHQ9+N9uZwYovnjHeuPi9i38n41FdXY2xY1/CokV/QHZ2dhesGlh+GNQG//Lly9i7dy/S09Mt9k6i5SqO4+Dn54devXrh4sWLZuXOAos71y1cq6kio8HNuv/BhOCJ0Gq1uH//PtasWQNojIOml92YRjSY7Smzpp6l43oCNAwOHjyIJ0+eoLWN5TalzxrzL9ovvvii6ldxHbnEZXGF1p01OLm4GyXQZ+gwREZGYvgwX0MFfpCMAyVAfLw9ZWKI66kdF7cX/V95+Qrc3d0xY9ZMxEbFSB4+MdQkKCwsTBKbLYfhndWB0ief5J7IVhXEv5XKxP9s7UMJ1h6X9/3w4UMaOHAglVWU08OHD8nb25s++ssOxb54yA2Yhw8fkoeHBz18+NBiO3uiXYZIW6S6s26qTypfzv9zBrz33nsICQnB2LFj4enpid27d+Ptt9/Gt99+q9pG/hkRcWw2D3KieU0gzRIx8oVT/rf4Riy17yis7fvatWvYsWOH5NOOAQEBWLp0KSIiIiyGNgHS+U2+m+1wlSiCRNJauFZFifFw64UWrhVuRkuSn7B7adzRwrWateOls71lYnLE9axp38K1Ijk5GW+lvA0vLy9Jf2vWrIEenJAB3JrBDw4ONvMbUYrPdgQE0qxRcUoWk1o7S2pTrUzpt7XtDxYfQN3NW0hMeMOsbW93D+zJ/xw5OTk4e/asVYk4x4wZgx9//FGym+0ssGp/X00CnQWWsnXz0uDj44OMjAz88Y9/lCR/kUsL/xEEPjZb6UWbb+Mos98iabwKckaI51l5tm4xEeKBjYqKgp+fH5YtW6ZYzoNX/3xstnxOd7gbQqfYr12IW7duUd++femf//ynVfXv3r1LXl5etG/fvjbr/utf/yJPT09qbVXegLUn7GryOyNIJEmJiYlYsWIFhgwZIhyz5CbQv39/fPrpp4iOjsadO3csnsfLywve3t4oKyvr+EXbEd2SNF49qWXrbssVb8qUKZg3bx6WLl0qHFMjeubMmcLqiLiOK4+IDWhublbM1g2YckBaGticnBzcunULmzZtshj0ERwcjKNHjwKQPgyuPCI2YOPGjYrZugHDgFrK+UFE8PDwwJ49e5CSkiL5bqccoaGhuH79OhoaGux27R1FtyTtzp070Ol0yMnJsViPVF5+efU6atQopKamYvHixWhublas64y72d2SND5b99ChQy3Ws8Y0T05OhqenJ1JTU1XrzJgxA8XFxarlYshVMhld0e0JpydNLi18tu7U1FS7zSt79uxBbm6uan7jkJAQsyUtcbklF3mGYVQ3am2F05Mmlha9Xt8p2boHDx6MvLw8REZG4t69ewCkhgYfm33p0iXhmBCXDenuvrUpmdRUtzVwetLEyM3N7bRs3fPnz0dAQADi4+MVy7VaLU6dOmV2nI/IEUNJ8uRkdigHis0tuxgNDQ2SbN2dge3bt6O8vFzxQwmWdrNJMv4cmJoDgvUq/5ishGDONmnrNqTxVp41eYrbA/Eg9u3bFwUFBYiPj0ddXZ2k3pQpUxQzjXMcB4ZMqk8XGw5m5BZUk97gG0pVYLYkCcRJJIy1Tdq6BWl8tu6UlBS79y1XU7yKjIiIkMxDSrvZhvYkzGm62FCsuOEL4k7hV8ah1cAfG/Z/gJNbjuAquA4lGODRLUiLjY3t1GzdciMhPT0dTU1NWL9+veS4Ymy2kbDKA5lYkXsSRRsMns1qMmSI6zOe14ZEA4ATk8YPZF5eHlpaWrBw4cJO2ymWGwkajQZ79uzB+++/L/g/Aiq72cb/t29ZicmxGZgzUtoXEeHGzZvGuowxINN43nYmGhCu16ZWXQCWNXy7c9WqVbhy5YqZr2FnEcjDz88POp0OCxcuxIMHDwCo7WZz0KMa104A08KkS2ocx4FhGJz4MhehCTPwLDFmzr+2wCGkWTvgKSkpmDvXEIUqn3u6YiMyKioKvr6+WLlyJQAo72YTC6quxgkAw3x+JWnPsiwqD2Ri23EgLmoZGBjDiDvotdxlpHGc6YOq1gy4OFu3I/Hpp5+iqKhIiMeeNm2akGmc4ziAAdwYNwAsbn5bIxwnInBUjTdnr0RIvA6z/Rkwxg9eGjJEdOChs+v2azthKcImMDCQcnNzu/Bq1HH48GHq168f1dfXU319veJudmZ8MCH0v0mI6KkuJgA0OS5DqCO+X/md2xRU6AgokcZxHO3atYtGjx5NT548ccBVKSMqKoq0Wi0RGWKzz5w5Q0TSe4gNkyagySiulHbCEanlt3EqdwNLG5FKhsVPP/2EFStWYNu2be3+ukVHQRbmGZ1Oh+vXr2Pr1q2S3WxxLPrWjYUoqtSjxZjiY8Us00IABwIYgGUNf1s6V1vodNKsWYknkWXoyGzdluZaT09P7NmzB2+99RZ8fHyETOM8qg/qwPjPw9xfa6BN2CDpLz48DLWi7RkWHUws0y4dYQeIo0nlubBqamqEucNZkZ6eTs8//zz16dOH6uvrieNaiavaK8xdRZlxBMaoIhkQwzBUXGUM4CfTPcvTZ3SbOU0OrVZLOp3O0ZdhEa2trRQYGEjDhg2j/Px8q8OV5ZkZWjnpA+tUc5q1EGfrJicJdFCCRqPB7t27cffuXQwdOlQ16FAO/qWaL9MwLGzd0HYK0sTZujUajeM9eNvAkCFDsGXLFixYsACNjY0gtKh6NcshKbPxNh1qPfJIT0/HuHHjMGnSpHa3dQQYhsGiRYsQEBCAqKgoMHAHw1gnNt1ilb8t67Gurg6bN2+GTqcTPsxqbVtHgX+YNm/ejLNnz6Jg719BZMpQqxbPB3Ddd+1RDN6te/DgwQCcILjBCvAPU//+/fH5559j6Z+W4LvvvgMvbGauBcJv+wy3Q9Xj0aNHUVlZaebW3Z0QFBSEqKgovPrqq+oPnEgl2sOdzmHqkXfrzsnJUfWscmYrkgfHcVi3bh2ampqQkZEBQJqKCuA3Pg3HeHe6jtybw9SjJbduHs6mKpW0Bsuy8PDwQH5+PtLT0/GPf/xDMXmpPUN/HRLeybt1V1RUOOL0NkNMAhmX3vjgDX9/f6SnpyMiIgJff/11m36ZHTGyHCJpvFt3Z2at6yzwEiKoO9H3AN544w388pe/lCQo7QwV3+WklZWVoby8XNV33lnfzXjIyeLB/96xYwcKCwuF8KjOUPFdShqf8j0zM1NVfTjruxmPtq5v8ODByM3NRUREBKqrqzvnGjqlVxXk5ubCy8urU9y6OxNyFaem8ngtMW/ePEyYMAEvvPCCmXOrPdBlpKm5dXcHs95apyKxFO7cuRO9e/dGcHCwpI491L9dSJNPzkpITU1FZGSk4NbdHief7ghPT08cOHAAX3/9teCc1NGP9vHosMkvvhA1AioqKnD48GHU1tYKx5x97rIHgoKCEB8fj3fffRfTpk3DCy+8YJd+OzxylgafjMHqne3W7czIzs7G0KFDodVq8fjxY+F4R9SkXdWjHAzD4JNPPoGHhwcWLlxoj1M5PeRjodFoUFJSggcPHmDBggXCcYe/XKupxcbGRqSmpmLTpk0ATJLXk6E0Fj4+PmhsbMSNGzdQUFDQYePL7hOL+IJWrVqFWbNmCdm6LaWJ6Ono3bs38vPzER8fbzFhqDWw+9oj/6RdvnwZRUVFFnN0PG0YNWoU0tPTsWjRIpSWltrs19lpj31CQgLS0tIk3017GtRjW4iOjsaQIUOwevVqm/uwG2liMnbv3o1Hjx7hT3/6k6TO06wexcjLy8OuXbssZiS3BLuNIE9GU1MTkpKSsG3bNri5OW9iT0fC09MTBQUFWLx4Merr69sd+mT3x96Rbt3dCRMmTEBiYiIiIyPb/f1Rhuy4+FdbW4uJEyeisrISAwYMsFe3PRparRaBgYFobW0FEeHPf/6zUMZvtMphV0lbtmwZkpOTXYS1gSNHjmDgwIGIj4/H/fv3sX79ety/f9+snpr02U3S9u3bhwULFuCtt94Skj+rPSlPK8S5/Z88eYKSkhLcvHkTLS0tGDlyJKZNm4a0tLS2+7EXaZ999hluGqP4XVCH/EFuaGhAnz598Mwzz2Dy5MkICgoCYHlHwC6k2WvL4WlGe8awnSOt/GLMR/EXV3FCHXv4rPcEWJvtkRETJs6ZpdC4TdKkG5zK1fUwRPFLu3RJHgAwsnFQo5CBKAMEK42ska8itTmy/OQp/vKR4EFrvICc+K1gwsIwwt9U5jJADOBAJkJAgoexnDy9Xo/9G2Ph5uYGhtGACY+GHtWIick09/xq66R6vd4soF34YDkBxdkxoLAwtB43qEOGUY8eeRrBk8SwLBgyjQkLxjQ+V4vg5uaGD2+NMErbE3DZYXBjRoIdbu4b2iZpGo1G8lRIWK8+iOP6cCwbQTgd7gt//qtPZO4W/bSDT/oiTxNPuIoQ/98hNCELxze9yZeA8Z+HzLhQDPN51qyvNkdVLNI8dfwTkpB7HNuS5oAlIGTECEMZPREiHG3MQdnjYMko26/bhlMIRs6mROEYr8mGDfPBcN/nzNcl24zK5gzfkZYc4jgqyoolAMQYI/lD4nWk9qX2px18ML3829qtVEWTGVBMZpGxTC8E1OuJM9WWxeK3rb8YU4o7Pj8hU1OM41woiAh6PYcr+z/ACG9fuCxGc3AQ2wAcxELDVl/FKQJ8hvsatRkrRIqyxuxZHPQgWV5IN8N7lTGIAC1gYdpNJchiuTkCaovALDsKOrrdcCEMY8xn6Kt62Zb779nlLMTWNwtiSJT3kQ/lVX/YGTBgGFk5L3Jy0VUS8czYSULep6JKgyoU54OaHJtFaiqyrf57ejnHcWY5R1qpikIBitUVm/dQXUi6/VWKfSnOaZzKwKtdFkfKicfUbkSt/55eLs9QRES0b0M0ARAI4ojoyv4PCGFRqv1DrzLgoitQPix+avRKlYzphNrov6eXy8dGnrmHyEiSKHudwahTh103QV3oGrjMvW4IF2ndEP8fvp+kjeLfZqAAAAAASUVORK5CYII="
|
<image>在Rt△ABC中,∠ACB=90°,AB=13,AC=5,点D是AB上一动点,作DE∥AC,且DE=2,连结BE、CD,P、Q分别是BE、DC的中点,连结PQ,则PQ长为()
Choices:
(A) 6
(B) 2√{5}2
(C) √{37}
(D) 6.5
|
√{37}
| 69,661 | null |
√{37}
|
"iVBORw0KGgoAAAANSUhEUgAAAKcAAAAWCAYAAAClgIw8AAAEuUlEQVR4nO1a3U7bSBT+juGiZZ8C8lOJ8AorkBKz9KrhLUiM1KrQ+1wvSVdI67BXu/e72sb0BghUyjNsE6MC5S0oe4Hn7MXYju1x0tBunAT8SVY0M2fsM+f/DBAzM2JQq9VCv9OIWeAxhcS36EobDyspggj6f61WS51pRMyUcQ4I8vemSRpENGkWZhIzZZyjKDk1hIeDmTLOFLOP+2Q2GtQQra2thX5T/D/odDogIqyurk6alUTR6XQASHsateaeHx87KeLwGJ09WGrdp+waGDlTpJg0tLBlitCod9iA1ZsS2x2FjalgVSgz0v/V+ccKY12DRgSiORARiAiNw55Cp4WDbL8/Yth4Vd4dO6Mjw2WUmWGsywPNkXdIAlEJNgWscwKGyuxA6THZS2UarLcGNG1e8ru+BQEbhtFw906FZyUCsy2wVQLq1j9gZnStOt6UV5RA6EsyKppftk2QriNfCM6KkBAnIVAigtlmVHXg764DR0ie9ipAgYqwvZMkdKMUlADRnEpAAOx3ku/rJTjiDswMZ38D89oKsJRx9z6eKzCGjYuzIp6/WAYAFLK5+FjCAQghmJm51ahy3XrHRRT5I4sAhcPTAME9LuqGMr+1Di4Z9QlwNBiCe1wCuFjdU9b2KkVutLoeoYvpkPF4IM/Wteq+ngQzV3VwyfiZo2efZ/SDDBEBtoVT1mHmgF09j5VQCNLA7MgIwQBIIJmr0vB37MMjUH5RocpmS/jt4jMg2C1YkuJvMN43TJyhiJ654895Ms9mnwE5GT36Yn6gV88MgOTZLj9f48xsgkxZNra6AmZBzRwaIql5u3kGc6cMACjlM8oGP3WRAHNSqSissOP2MTb0DYUqk8m75OTm28kqmmHj190mqvVtLLvWx8y+HZZfmyh7SnngJadvKgy0j5podWU51mpUsbmi4X1M460Fa52/9ndw8PsfmFv4AVTYRLTDZOZAnamBKDmJsv/YOGqyX68EcXX1qe9QCZZwHDdggM8v8AHAUjbnLw+sLQl4FB39uYUDqqBcIDAzyq+3oQM4OT5USAO50kLn7kfc3NzA+XKDrlVHfjEXkrzX9gcNNCmQ95xfgoznfiTyYVt4c/AhElGTUTbFDUje0ynuG+PPnjg5ksVk9/8w4InFOj5F9ad1AAIgAuxPOAWQyeSUPdK6bAv0su2nc0DWBSChRKCoAMeN6Nesozbyi2q5YbzaBPQKdl4UAnsmXL8tP0MJwPXVZX/Olac4t/y7PS+YRrv92O5/xnFy0oS+8QJSNzb0wiaAIjbKaiZEvVryM2arK/hWyO4JAGtPF1h/uc+3bid5K/qPh+DY4bvwvBOm9db990Qa0+B+5v5++Q7H73z/7Ek+vwhm7rUk/3pF0kV4jPu+DxEefu96HKy3BgPgvdZHf65r1RmlLYV23PxNcr1r1Vl2Alq/QoPG0Cs8CIhO3IroOGBBAUNhdo0juC/GIEJjMWQtcpiQAziuQgGee7rQPxxJB2q0uorjxBro14zpG9a967dhtFHFDLzuGgN/U7U+FOoVmvK39X8ZeELx47i1IIbRjbI2jI/78jfsmylmA1/9r6QnNFy5qdJTjAt+xxCNgvfF9+6f1LtTTC/+A46rzOFCh77LAAAAAElFTkSuQmCC"
|
<image>如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是()
Choices:
(A) 3cm
(B) 4cm
(C) 6cm
(D) 7cm
|
4cm
| 69,662 | null |
4cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABJCAYAAADfad8YAAAttUlEQVR4nO29e3hU1bk//tlzyWQmkyu5oYEAgQgqHKVGeSLWolyscrFysfKc02MPVkqtP5WKyDl6tNVKAevz1fKI4BUFPUcQBRG56akoWESBEgExJARCIJOQyWT2XPbMvnx+fwxrsSeg0hJbvLzPk2cme2bWWnvtd72Xz/u+aykkie/pe/oCMgwLgAXBJiShKAoURYGddRwOF+AgFDpAmnD9k8b7PX1DyDR1ACmGckABFQAWYSmpz8X/Ji0oBuBwOEAqcPzTRvw9fSNIOS6UFEUBFQtAipkUnnhVFEV+L/Vdfi+xvqcvJ8XpgAILgCOl7gCpBl2d1KGipMSYQnwvsb6nLyen0wmn0w2n04lZ411wuVxwOp3y9el36+F0OuFwOuFwOFLSy+n4nrG+py8nklIq/WGFiRljgac21IIkatcvxLSR/bF+P2GZJiwrZeRblvU9Y31PX06WddyuIkFlPz57czSGX90HgIWKPr0AWACUNDUI4Hsb63v6cnI6nfJ9/cZ3ocwYgwrFAQKYOX0Uxt6zECP7pmwwQQoA5UxxLMuykEwm4XK5oCgKDMOQ+jeZTCIjI+NMmgcARCIReL1e6LoORVHg8XiQSCTg8XjOuO1vOwmJA6SkjmEYsCwLLpcLbrcbLS0tyM3Nhcfjga7rSCaTyMrKgqZpsCwLTqcTbrcbJPHOM7Mw6pfzZHtra3WM6usCkWImW69dowpJwuykY8XfmZKqqvB6vXA6ncjMzJTM5Ha7EY/Hz7j9bztpmgZdT2FRTqcTHo8HXq8XbrcbAFBcXAyn0wlVVaHrOrKysgCk5tfr9cLj8cDhcEDXdbzz9jys2ZcASax58k5c08+NDXWdmQoAusB4dzgc8s/pdEJRFPm/0LtnQtnZ2TAMAx0dHdB1HZqmIRgMQtd1eL3eM27/204+n08uRl3XkUgkkEgkoGka4vE4IpEISCIrKwuZmZnQdR2BQADBYBCKoiCRSAAAzP0bMNe6G6P6pqynH/38FxgLYMO7a0/Zb5fYWEL1ASlOdzhS/Cpez4RM05Si2O12y5XmdrtT3kcX9PFtJtM0U3DA8cVunzPLsuTnwiJyu93QNA27du3Ctm3bMHnyZFRUVOC99/4PM0ZfI9t1NBzEKgBP9e57Up+WZQHsAjJN85Tvk8nkGbetaZpsS1VVxmIx+Zmqqmfc/redYrGYfCamaVLXdRqGQU3T5PyZpknDMFhTU8NZs2ZRURQCIAAuW7aMWizO34wFN9SReiJJi3UcCxDKWNbSTOvPNE1ahskuYSw7A5mmKW8kHo93RfNUVZWapjEej1PTNJqmyXA43CVtf1dILEyxUMW1ZDLJXbt2cebMmfT5fMzNzeW1117LO++8kwD4n9MmSiYTf4qiEGNnMKGfLDhM02QikeDXBjcIQ74r2kkmk/D7/UgkEtB1HR6PB5qmITs7uwtG+u0n4Ui53W54PB5YloXGxkbU1dVhzpw52LFjB/Lz83HLLbfg1ltvRXl5OQ4fPowVK1agx6Dh0PWXpSliJ9M0T9mfoihdY2PZjXS7zdMVxnssFkNeXh4A4IknnkAkEsGvf/3r75nqNEnXdbhcLmnAB4NBbN68Gc8++yxWrlyJH/zgB5g1axamTZsGp9MJy7Lg8XiQk5ODpqYm5OT44XQ6EY1G4XY7AZyw05wO5xfauV9p+QpPQtM0JBIJCSHUbVyIdXUpiSSMQgE52I3CMyXh7mqaBpJ46KGHkEgkpAfzbSfDMOR7O3xjmiYikQhisRiA1AJsb2+Xn0ciESmlotEoDhw4gCVLlmDcuHEYN24cWltbsXjxYnz44Ye44447UlLG5Uoz7D0eD5LJJBRFgc/ng2AX8byhnOygORwOuN3u05dYAkZQHA4Q+/GbEb/Er2pvTevILqG6CscCUpOWmZkJp9OJ4uJiCeB1BeOe7eRyuWBZlgQ24/E4DMNAVlYW/H6/vObz+eB2uxEIBJCTkwO/349IJIJQKIQlS5bg0UcfRVtbG6qrq7Fy5UpcffXVUi0K6goNI8d9Ol+y41IKgIUzF8EaMwa9KywATvkdQWKwXcFYTqcTsVgMPp8Puq6jf//+8Pv9iMVi8Pv9Z9z+2U66rqckgMsFXdeRm5srF3JHRwdyc3MRj8dhmib8fj9KSkpgWRY+/vhjrFq1Co8++iji8TiGDh2KWbNm4dprr0UymUQkEjkuhbqWoQSdNmMpigLF4cD6RXcDw0dCmbs3FXD8gjF1lfHucDiQmZkJIAWWXnrppXC73cjMzPxOYFgCxxP3Go1Gpc2Um5uLY8eOobCwEABw+PBh1NXVYdWqVVixYgUaGxsxadIk/PSnP8WoUaPgdrsRiUTg9/tRUFAAVVWRlZX1z2Eskd/scDhg7X8bGzESc3sDvxw7ACsdJ6sikmlgXFeQ2+2Gruu4/PLLUVVVJa99HRNytpHD4UBHRwcAnBTTc7vdyMnJQWtrK95++2289NJL2LJlC2KxGIYPH465c+di4sSJACCN7IyMDEQiEbhcLmRnZ8tnJBjXLgzORDB8JWPZrf57F72HuXP/ANatx9j+JyOuwAmxKjyMriBhpF900UUAUqvYNM0uCXCf7UQSubm5AID29nYYhoGCggK52FavXo2nnnoKGzduRF5eHkaPHo1///d/x6hRo+B0OtHc3AyPxwOPxyOFhM/nk/G/zhCCfbGeycL9Sl0iDOQNT8/AvHlzUtKr76i07whvMK3h495BV5HD4YCqqjKGxeOB7287Ce+vvb0dbrcbRUVFSCaTePbZZ3HVVVdh/PjxCAaDWLBgAXbs2IFFixalMVV+fj7y8/Ph8/lkRoOiKLAsC5qmfW3jPj2vsH4DNnAETHMOSKL+nUV4+kC5/FhwdmdMoytsIAGI6rqOLVu2IBKJYPz48TJ15tvuGfp8Pjmvhw8fxiOPPILHH38csVgMgwcPxgsvvIBrrrkGJSUl0HVdmiDJZBKlpaUATjhRIr6aTCbhcDiQnZ0ty7m62l6VjCU66ExW3XpkzHgPgaenw6E4AAfwcc1uILtC5uFomiYnQIhXYSSeDiUSCWmgCv0vcCq32y0/37p1Kx544AGEQiEAkCribCch0UUwWMyTaZpIJBLyPsT9CjVlWRYyMjLw+eef48UXX8SiRYsQCoUwfvx4TJkyBRdddBGKi4tlP0JDiBwqQZ0Xuz2PzS4UxCLtEhPGssV5LJKWLai44J4xMj60fj+Z0JO867oT8aJrfvMn+d1oNJoWgyLJUCj0lTGsaDTKWCx2yjhWLBZjOByW1x977DF2796dqqrSNE0Gg8GvbP+fTYZhMJlMUtM0+SrinXZSVTXtftra2rh7927OnDmTZWVlBMCf/exn/OijjxgKheQcdBWJZ5ZMJmmaJhsbG+nz+fj888+T5El9fVXfLruMSr0/wd1T56zCTf+Z8kja2uqR4eqDB5aG8Nvj8IMA6Oy5V5ZlSQkTjUa/UqqIVJhYLIZwOJyWYyXaTyaTSCQSiEajsCwL7e3t8Pv9Eoc5m8kwDCkhBEouxt3e3g6v1ytznvLz8xGPx7Fq1SosXLgQf/7zn3H++edjypQp+OlPf4rKykoAKe1ytpsAp7SxKMqokVI37e3t6N2nj/zcMAzk5+cjqkaQ6fPi8OHDKCsrA5DK+MzMzERHR4eM8Z0O+Xw+qU6F1yfSj0kiMzMTJSUlKC4uliq2K52Dr4vcbjdaW1uhKIrEm4LBIACgoKAApmkiMzMTlmXhww8/xJNPPonXXnsNvXv3xuzZs3HrrbciPz8fQCpMA5ywu1RVPWvNgVNabHZbq7W1Ffn5+VBDKcn1/vvv4V//9V/x0UcfIZlMpulzu54GcFoSxel04tixY2kZoiINORqNSoMUSD2QtrY2icZ/E8g0TRQVFaGwsFDaLgUFBcjNzUVHRwecTieWLFmCCy+8EFdccQUikQhWr16Nbdu2YebMmam5V1Vps/r9fpimKcNcZyt9gVeYqrogLHTr1g3Hjh1DQUEBAGDPns+wZs0a7NjxV7z88hIMHjwYJSUlEsX1+Xzo6OhATk4OVFX9yiwEh8OB3NxcyZyGYSCZTCIzM1MCeB6PB/F4HMeOHYPf75fq5ZuAvDudTpimCVVVoaoq8vLykJWVhdraWnz44YeYM2cOkskkLrnkEjz99NO4/PLLJazi8/lAEtnZ2dB1XQKlPp/vrA9nuU4dlXHI17a2NhQVFaK1tRUFBQWwLAt+vx+lpcUYP/4nuP32O/Bv//ZvMkblcqWqZQ3DSIvMfxGJlRiJRKDrOvLz86UdlZOTI9VhZmYmxowZg8svvxx5eXlwOByIx+Nnfd67QM69Xi/y8vJw4MAB/Pd//zdeeeUVBAIBTJkyBZMnT0Z1dTVIIhaLITs7G9nZ2dA0TXrYYgECKS9cVVUoiiLV5NlGLgWdoYYTNWIKgG7d8qHrupQebW1t6NGjB9asWY0FCxbit7/9Lfx+P6ZPnw5VVZGRkYHs7GyoqnpaN+12u1FXV4eFCxfiyJEjuPnmm3HeeechGo1KA13TNGiahoEDByI/Px+tra0oKiqCy3X2l0VqmoacnBzs27cPjz/+OF555RV069YNt99+O8aPH4/evXtL4940TVnAoOu6RMgFQ6mqCsMw4PP55CI/a+l03VHhXs6YMYNlZWUyNXjx4sXMyMjgRRddxD179pAkW1paZD51IpGQLndLS4ts79ChQyTJpqYmlpeXc8yYMbz55pvZv39//su//Avnzp1L8uScdzEW4bZ/3WTPF4/FYozH4/KaYRjyewIesV8Lh8Ncvnw5J06cyG7duvGSSy7hn/70JzY0NKSlcJ8N1NVww1cylki0FxN63333saKiguFwmIZhMBwOc/fu3ayurqbf7+c777wjfysKHxobG+W1pqYmiXk1NzfzrrvuYo8ePdjS0sJoNMpzzjmHhYWFsnBCYD+GYXD37t1cv359WoHA1012fK4zMwSDQR46dEgyk8jJDwaD/N///V9ef/31BMCBAwfyd7/7Hffu3UuStCwrbaGcDfQPZyzRmZAOs2fP5qBBg+TDJlMTXFtby8GDBzMvL09KG7HKk8mkBPVUVWU4HGY8HmcoFCIAPvDAA9Q0jVu2bGFpaSn37dsnb9RelXP//fezZ8+ebG1tJUkePXr0dIZ/xiQAXDHp4h7EnLS1tUkA9IUXXmBlZSULCwt5/fXX85NPPmFzc7NsS1VVtrS0pN3X2UBdzVin5VZ9ERinKAra29uRkZGBvn374qOPPsIvfvEL3HPPPbj33nuRTCbTAEC/3w+Px4Ps7GxkZmbi448/htfrxaBBg9DR0YHq6mqMHDkSvXv3lr/xer04cuQILMvCueeei3A4jMzMTMTjcXTr1q1LzIEvI9M04XK5ZIYmAGRmZspCUJJoamrCfffdh759+2LatGmoqKjAs88+K/Go3NxcmKYp457dunWDw+FISyX+ttFppc3YKRKJQFVVaJoGl8uFnJwcWJaFcDiMnJwczJ07F6WlpXjggQeQSCQwZcoUXHjhhQBShqxhGPIBeb1eZGRk4JFHHpFMuHr1aixbtgw/+clPJK6VSCRkpXUsFpP42T/CI9Q0DVlZWbAsC8FgEBkZGfD7/dA0DbW1tZg/fz5WrlyJw4cPY+LEiZgxY4bMGbNnfAJAMpkEAFkt801wPv5eOu0MUsEMyWQybcMIARccPHgQLpcL0WgUd9xxB/r27YsHH3wQmzdvxvz583HppZcikUhITCaRSKC6uhpvv/02du7ciZ49e+KSSy7B6tWrUVxcjP3796OlpQWWZWHAgAEAgIaGBpmgJvZu+LqZy+v1IhKJwO12o6CgAJFIBCtXrsQrr7yCLVu2oK2tDRMmTMCtt96KIUOGAIBM7fH7/TISIdJVDMNAIpH4VjMVgL+9EnrWrFns0aMH29vb5bW2tjb5vqmpiWTKlti7dy+rqqr4wx/+kEuXLpX6W7xGo1EahiH19bZt2/jYY4/xxz/+MT0eDz0eDwGwvLycVVVV9Pv9LCkpYWNj4z+sYFXYkclkkhs2bOBVV11FAKysrOTcuXO5devWtPtXVfW0C3W7olK8q6jLg9BpTBZLyveKL5Wdqeu6rO2321o8nminKAoKCgoQj8dBEvn5+YjFYvB4POjfvz/+8pe/YMiQIfj5z3+OAwcO4K677oLP58ORI0dwzjnnAEjlat99993YuHEjBg8ejOzsbLz55pvIzMyEy+VCOBzGa6+9hk8//RQVFRUoKSmRewx83WGNI0eOYN26dVi8eDFqamowaNAgPPfccxg1ahRKS0tPKiIRlS/JZFLOmWma8r09YP9NiHX+3RSPx5lMJmlYKQ60ogmuX3T3iZLqsTNosZbTp89nNBrlf/3Xf/GCCy5gOBw+Lc9GVVWGQiGOHz+eOTk5nDFjhnS7k8kkN27cyJ49e7J79+589dVXqes6Ozo6SKa8Pnu5/rp16zh//nwmk0lalsVoNHrKlSNgASEdDcOgYRi0LCvturz341IpFovJVJ9Dhw7xj3/8IwsLCwmAVVVVXLlypcTQWltbzyoc6u8l+1yJ/0mytraW+fn5fz/cINxk0zTJuvX0wsWx9yyUX7D2ryMA3vXU22xpaeH999/PXj3LGY6op+0yi/afeeYZ+ZCampr47rvv0ufzcfLkyWxubpZ7MohNK8RDtKsM4eILlXOqG+78J+/vOMViMdmOpmmMRqOSoVRV5WOPPcaePXsSACdOnMg333xTArJ2FfyPgju+brLPlZjvXbt20ePx/P2qUHhbcNRhXMVIXHfXArz6h18AAIyoBqXkh1h4xziwoi/0cAxeuGDGEnA5UmJdqE+hOgWJ65qmIelMFQRMmTIFR48exUuLnsP4a8dCURSUlZXh4YcfloFskT7rcrlgRjRkuFzQtSQizoR08aPHQtCTSWTl5YGwea5xHfC6wVgq9VbxZYCxJJyZLmiaJgswvF6vLPQUxv/mzZvx9NNP4/XXX0c4HMa4cePwxhtv4OKLL067L4fDIauDRervN506V1R1xcZ5DqH333l6EVZhDGY/fLNMtnd4M+BwOND7gn7o07svMvNTm6BpSipfyqUTii9DPkBBjCXldW9BDhwJEy0tLQCA6dNux9NLXsAPhg7Bhzs/xpjh16B3795oaWmBoijIzMxM5WQnTLhzfEg6U5tR+P1+HD16FO+vfxdZhXnwF+WDmS4omiH7JJliJH+mvBaHgWRHFJmZmcjKykqLywHAmjVrcOmll2Lo0KGoqanB7bffjnXr1uH555+XTGXfsEzkip3Vcbq/gQQDibx3UbModv77u4kkLdZyLMB7Fq2nGU2kiUcrmvJwDMtkPBjmvffey3POOYetra3UI3Fa0YT8E2R/r6qq/F9VVbYdTqHQmqZx3rx5zHF7+cgjj0jPSqia1kNHpLjVNI1tbW186KGH2Kd7DzY1NUlVadnGa6gnvDEzosnrVjQh7SzTNNnQ0MA//vGPrK6uZm5uLi+44AI++uijEtEXtpiqqjx06JBUxUJFC7KHe76ppOv6KeOWdXV17Nat2xl6hXX1WAXg2t69Uyk0PH4mCgDFlwkrloTusOB0u+RmH5ZhwjIIV+6X1/bF43FkZjrB46hzVn4GdF1HPB7H7bffDrcB3DlrBtauXYs33ngDXq8Xzc3NyM3KgmEYcDqdMp2mqKgIwWAQRUVFAFKSJMOW9GP30EjKggU9EkO2rwCJRAJPPfUUHnroIbS1tWHo0KFYuHAhhg0bhsLCQplsKAo4SKJHjx6IxWLo6OiA3++X2Z4CRf+mU+ecNpFqfrppT1/YLgAocMIrsVLreIKWbbMIpFxjU0/lYpGE25MBpy2Ry64K7VRUVJS284wAG/Py8qBpGqZOnYoPP/wQoVAIF198MT777DPpxiuKkjoFQSeSySTa29uRSCRklY54sKKc315nKFKbRSbq3Llzcc455+DOO+/E4MGDsWHDBrz//vu48cYbUVxcLDMy3W43Ojo6EAqFkJ2djZaWFng8HhQWFkpAWGS1fhs21+1cmcXj1c8iRfzvJQcAsKIc1wE4+FktFF+m/EgBYNWvxZOb6uFImDDclBmhXq8HzhxvyrY5blPJwR63uRhLItBwGK5sr2SUrMI8JDui6Gg+hhy3F+4cHy6++GK89tpr6ObLwW233YYtW7ZANTS4dEJtCcKTl8qWdLlcOLdvLyCuQ9EMmBENzEwtCDOipQpZY0m5O4sejuHee+9FdXU1Hpz5Xxg9ejR27dqFN998E0OHDpXjFYl4Xq9X5pSVlpZCVVWZUizwPBEzFHbfN53YqYzeXsl+RgUblmUxHA5zw8IUdvXUhn0S46ldv4AYOyP1fzAFA/zhkdl0Op0kyWDwmIQcQqGQtD9CoZDMTRKpIaJN4bKLdBxN02hZqSI0VVV52223MSMjgzNnzmQwGJQ4k6ZpvPfee5mfny/7EX3U1dVJOygej/Ott97itGnT2L17dyqKwkmTJsl0HpHWYh+zsL/C4bC08UzTlHCCPatBkL1UKxQKpdmDYix2eMIwDGmTGYYhc9PsUIho07IsNjQ0kEzZQHaII5lMMhqNyowTu61jGIZMKRKpOeK9sBsFiXGKTBNxTXxHVVX6/X4uWbJEPmP7uO3jFWMSuKBpdtqDtHb9grS9Jsfes5DRaFQayLFYjI888ghzc3PTmEWkw4gBiQ7FgMLhMAOBgBy0ZVnUNI2xWEx+t7m5Wb6/7bbbCICzZ89mc3OznNi7776bPXr04M6dO+XDb2lpkYDp5s2bOXbsWBlymTRpEv/yl78wHA7L/C7LsqjrOkmeEmCNRqPs6OhIw87s9YCNjY2Mx+Nphry4n46ODpleY081EkxpZzixsMT8CGpqapLzIMJjhmGwo6NDptuIhSjaFg9VjDUYDKYtEE3TGIlEZOqS/V7FeCKRSNr4jh49SgB8/vnnZQ2jSH8KBoPS0bHfl5gLksRJ8SrrRKfxYFh6fGIQjz/+OHNzc9ne3i4bFzdAplavuKlYLCYLUgWdqlhT5CsJL4wkX375ZQLgpEmTJAK/ZMkSVlVVyUmMx+OMx+Ncu3Ytr7jiCgLg+eefz9mzZ7OmpoaapsmVbycRoxQPwr5prmmajMfjjEQiadJVzJNdUtmR+s4UDoeZTCZlTFUwmqqqsm/BOKZpsrm5OeVB2zxSu3QVbYjvC2lrl5RC+ggJbB+nff4DgQBDoZBkFNM0GQgEpITWNI11dXXMz8/nM888c1L/JNne3p4WXxQ5akKLIDWZlA82NRltcsC6rstV0NHRwenTp7OoqChtosVEiEF2RswFx4fDYQkrCNUjdkO2T6oY6KZNm1hSUsKSkhK+8MILJFMB72AwyMbGRr700kusqqpiRkYG+/bty3nz5nH37t2S8URf4qYF2cW9uMfOCL+YMPFg7cFlexhIjFkwp67raf0J6WWHLIQEFfNkR/Db29vTIgOdd6S2Z9SSJ9SwyPIVJKIJwhw5fPgwA4FAGnOKV7sUa2xslBooKyuLy5cvl+otGAzKPuwQRee5i8fjKeQ9HFGR5fXJ5H2vN0uisbFIFP6cbOTnp4oqotEoKioq4HY7oWkacnNzQRI+nw+maUr31e12yz2cRKlWdnY2TNOEYRhQFEUWaNhdXk3T5HkuV1xxBbZs2YJRo0Zh+vTpSCQSuOWWWzBv3jy8+uqr+Otf/4pzzz0XL774Ii6//HL4fD54vV4YhiGrXUKhUFo+lTBKHQ6HrA6KRqOydC0YDCKZTMLj8cAwDGRkZKC9vV1WHlmWhUgkIjcqycjIkLu28LghLCCJI0eOwOVyyf0VamtrkZubi+LiYgkY67qO0tJSxONxqKoqwUmSOHDggKw/9Pv9yMnJgaZpcDgcME0ToVAIxcXFaceaxGIxxGIx6XnX1dWhsrISfr8fR44ckWV69rpMh8OBQCAAh8OBsrIy6LqOt956C8lkEoZhoKGhAd27d5eFsq2trXJDERGFUBQFsVhMgsdKMqnRshzQtBh0XceyZctw8OBBmbx34YUX4uDBg/I4k5dffhmBQADTp08HABQWFuLgwYPyDJZgMIj8/HzJNIcPH0bPnj2lm+71euV2OtFoFBkZGThy5AhycnJgGAb69euHjo4OvPHGGzIP669//St27NgBj8eD0tJSNDc3I5FIhXjKy8txww034P3338fBgwdx7rnnQlVVhMNh9O/fH6qqoqKiAm1tbdi+fTsURUE0GkU8HkdVVRUmTJiA1atX49ChQzAMAwcPHpT4lcDP6uvrkZOTI48I6datGwoKCqAoCo4dOyaZMBwOS29R5F7F43Gcf/75yMjIQG1trTxkShTennvuubjkkkuwYsUKAEB5eTn279+PgoICWWOZkZEBn88nt3gUWR/Hjh2T20hmZWXB6XRKiMU0TbS2tqJbt27yfCMgVbcpioLz8vKg6zqKi4sRj8exf/9+ZGdnIyMjA21tbfB6vUgmkygvL0c8HsfRo0cllpeXl4eOjg4Eg0G5cMRv+vfvD+W49Q+S2LZtG2655RbU1dWhV6+eaG/vkFW4Ho8H+fn5SB1a4JC7yqmqipycHMkYPp8PgUAAkUgEBQUFyM7ORo8ePbBz584UQJqVhUOHDslDgMRuvZdeeil27tyJ5uZmud/msGHD0NTUhAMHDuCyyy7D9u3bEYvFcPHFF+P666/Hs88+C0VR4Ha7sX//frjdbvTs2RMTJ07EgAEDsHXrVmRnZ+O5555Da2srKisrcemll6KoqAiJRAIFBQWYN28eEokELrvsMowZM0YeZNTQ0IBnnnkGsVgMV199Naqrq5Gfn49QKATTNDFv3jzouo6ysjJceeWVqKysRGFhIVRVxdKlS1FTU4MrrrgCP/7xjxEMBuFyuTBw4ECsXbsWL774IoYMGYLrrrsOhmHIlJp9+/bh5ZdfRn5+Pm677TZ4PB643anTTTdu3IiNGzeiT58+GDFiBLp37y5hgaVLl+Kzzz5DcXExKioqMHjwYPTq1QsdHR3Ys2cPli1bBgAYNWoUysrKUFCQAos3b96MvXv3IhaLYfLkyTj33HOh6zp69eqFjRs3YvXq1RgyZAh+9KMfISsrC4lEAnl5eVi+fDm2bdsGy7IwevRo9OrVCwUFBXA6ncjKykJJSUkqpHP06FFptAuPIhqN8q677qLTqfCJJ55gW1tbmot88803MyMjgw899BDb2trY0dHB2tpakuT8+fPp8Xg4evRo1tfXkzxhqK5YsYJZWVkcP368hCWCwSB1XefLL7/Mfv36cejQoVy3bh1N05Rtvvbaa+zZsydzc3O5du1aaVdEo1F++OGH7NGjB4cOHcrt27eTpHQsampqCIADBgzgnj17pG0Qi8W4Y8cO+nw+VlVVcf369SQpDdDly5cTAIcNG8aWlhb5G2E4FxUVccSIEbLkTdDOnTs5ePBgDhw4UMIC5AloZOrUqczPz+eaNWukbSJswalTp7KiooLr169PcybC4TBvueUW+nw+/u53v0uzo0zT5JVXXsmysjKuWLFC2j/CsRk2bBgHDBjA5557jiQZiURoWRY/+ugjlpSUEADnzJlDkvL5BgIB/vCHP+SAAQP4+eefpzkvqqryoosuosfj4RNPPHGSjSXGi87ekDCcBXMsXLhQMpPwIn7/+98TAJcvX55m+AUCAW7ZsoXnnXcer776aum5COPvrbfeYklJCW+88UZp9BtWatDLly+n3+/nlF/cwmg0Ko1b6zgz+nw+ejweFhcXS0OSJFeuXEkAvO666+Q4hMFaU1PD8vJy/uAHP2BNTU1aCs2CBQuoKApHjx7NLVu2pDHj9u3bCYA33XSTXBCiv927d7O0tJQFBQUMBAKSAZLJJPfs2cOioiIOGDBAloVpmsZQKMSmpiZOmDCBI0aM4AcffJBm7AYCAU6cOJFDhw6V7nw0GqVlWfzss884cuRI+v1+rly5Unp4wtseMWIEy8vLuWXLljRMrLW1lUOGDKHP5+PWrVtlXyKX7Pzzz2fPnj05Z86cNHioJXCUVVVV7N27N+vr6xmNRlNetGWyvr6eQ4YMocfj4b33/qdkpFPFGkGSBw4cYDAYlK7xww8/TABctGgRSfLIkSPSy5k8eTIB8K233jopp0lM+g033JBWXEqSy5YtY1lZGa+55hrZVjgcZmNjI9etW8fu3bvzxhtvlO6yoBUrVtDjcbOqqoqDBg1ibm4uP/30U5Lk84tfoNvtZnV1Nf/85z9Lt9kwDC5btixNUtnxtfvvv1/W+7W0tKRJ4+eff56VlZWcPHkyA4GAXFSGYXD58uUsKytjv379uHr1atmeYRjcsWMHHQ4Hr7rqKm7fvj1twW3atIn9+/fnlVdeKfsR0i8ej/POO+9knz59uG7dOtmnAGgnTZpEAPzkk0/k9Wg0ykAgwOHDh7O8vJybNm2SYxGMc9lll7F3797cu3cvE4kE9+7dK1OOBw4cyMsuu4zbtm07zoRtpEXW19eze/fu7N69OxsaGtKC7G1tbczJyWF5eTkXLVxAklKanZKxRN2foBtvvJEA+Nxzz51UbTxt2jQC4OLFiyVMICZp165dzM3N5fDhwyXDiJtdvHgx/X4/b7jhBonlNDc307IsfvLJJ8zJyeG1114rJ0ZgS6+//joVgBMmTGAgEODDDz/Mfv36MRaL8ZVXXiEA9uzZU6ojsZofe+wxFhUV8eKLL2Z9fb18yMFgkAsWLGBubi7Ly8v5+eefpzH/559/zv79+7OiokJGBMTkrl+/XjJqfX29vPdAIMBPPvmE/fr145AhQ9jW1paGQNfW1srFdujQoTQ0PhQKsXv37pw0aRKDwWDaYozFYrz++uvZrVs3rl27lolEgk1NTRI3GzNmDPPz87lu3TopEKLRKOvq6lhdXc3zzz+f7733HslUNbqIsFRXV7O4uJibNm2ScxKNRllTU8PKykpWVlZKXFGMc+3atRw8eDCvvPJKNjY2pvHEFzKWwGpCoRAnTZrEnJwcPv3002nA3qFDh3jHHXcQAJ988kn5YzER77zzDgHwxhtvlDaVGNiaNWvo9/t50003yYpoMQj770zTZFNTk2zz3XffZY8ePThx4o1yAiZMmMDy8nI+9dRT9Pv9HDduHD/99FO5ACzL4n333UdFUXjZZZexpqaGgUBAgpxLly5laWkpKysr06SRpml85ZVX2K9fP/7sZz+T4KaYwF27drGyspIjR46Uky0WzieffMKKigoOGTJEqlJxn5s2bZJquq2tTapVwRyjR4/muHHjeODAAcnALS0tbGlp4bBhw1hSUsKNGzemtdnS0sJBgwbJBSX6DAQCrK2t5ZgxY1hWVsZNmzbJEE8wGGR9fT0HDhzI8vJyNjU1yTkhU6p/8ODBLCws5OzZsyVWSJJ1dQc4aNAgApAp5a2tbWlRhVMylrihu+++m1VVVXzrrbdIpkAu0fh9991HAFyzZk0aYiuYo7y8nNddd51kitbWVra0tHDNmjVUFIUjR46UEyBsKyEBpk6dmjbZqfdhAuDtt99OTdNk2vLixYupHA83/frXv05jcMGYubm5HDp0KD/99FP5sEKhED/44AO63W7edNNNsi/BXKqqsrS0lFOnTk07E9E0TW7bto0XXHABhw4dKqXK7t27SZJ79+7lgAEDWFVVxXA4zJaWFgl2CgaYMGECNU2TKlAYt8OGDeMNN9wgDXdh2yaTSf7Hf/wHCwoK+MEHH7C1tZWhUIjxeJzhcJgPPvggAXDlypVSaoqFMGPGDALgjh070qqvSfJXv/oVKyoquG/fPvmchJN2/fXXs6ioiBs2bEj7zaHDjSknzeXmS0uXSGBXOHp2+/yUNlYwGOSmTZu4Z8+eNFRZPJQ//OEPXLFihTTgTdNkW1sbVVVlQ0MDn3/+eSaTSba2tlJVVclEu3bt4m9/+1vZllixLS0tfO+99zhjxgzpZYkAsDBKBdJuN9QbGxu5YsUbfOmll3j06FEahiH7EnbH/PnzpaFuGAYbGxtpGAYbGhpkmyLmJyZm27Zt0p4UTCBQ8aamJq5atSrNKyLJhoYGhkIh/s///I/8vnjQDQ0NjMfj3LBhg1xk4v7FIli6dKlsSyDtos/Nmzdz2bJlaQ9KLIINGzbwvffeS4seiAW0detW1tTUyHEcPHiQZErFb926lTt27JDPVPQZjUa5du1a1tTslv2I59HQ0MAHHniAv/nNb7h95w6+/vrrrK+vZyDQKhfQFzKWMAYFCTeVPBFcJVNSKJlMSuYQK008CPHw7SpGxK6EGI/FYnIlCfUViURIkocONXDm2PQDF+Xf2BlpAVt7eMSyrLQAtrhZu/FsN5jFwmlpaaFlWfJ7bW1tcjNdQXaGtmdEiHs/1ea6O3bsYCKRCtrX19fLCbdLEHswXsyFIPu4RbzQfk3Yb6Id+0NNJBInFY6I3wrbtfM8kalFaQ8rid+IBSM8VPtvyNRC+VKJRaawLDFgEX+yp8HYmU/gJ/b4mVATdsYU10UbYmBCbaRmNzUhYmB3XZvaoVlMYO36BRw3cxFjWjxthauqKuOYYtz2oLjdY7VPlv3YWjFWUcplf2DHjh2jZVlpDopdRXaeyFAoJPsXKkM4IfYHGQwGpaToTGJRinQh+wIRqlD01fnYXftc28lutthf7Qwnrv9y5KkW9hjujsdOal+M/ysZ62wgi7UcPXaGfP/UU+tpWPv4/x5/g2SqUnrp0qUk03d4Ebnsnf++iIRHa1f531WKJzSpPRKJBO8aDa75LHVutGGZx7dkH8N9PMV8WjxJQoq5/6dv4klbBmPdho0YcN1wAMDGpxcCFb0Rj5bijv9vHEzTxKuvvopZs2Zh//79yMzMPO2cc3spk3m8KlkETr/r5FSOl//BAlGPfZiO4X2Ozw+BX85ZhZlj38SMmc+c/OMvmb5/OmMpigILKeY60FCHeVNHQXEoGHnro6jo0xdO54nTFkpKSuT2RRkut9yc5ItKsdgp7db+XX5HzuI5HSIJh8OFg//3LpwDKmVKssg66dV/DFZ9tv9vOg3sn85YgMiuBzasfhTr9xOWRcwYMwa9+ljwer0wmSoudTgciEajqWPrXM6TJE7noz3E5+KYO/FnT535rpN9Xt59dy2uHXHV8f/FNyxU9D0PUP6208DOmpll3XrMw0yMqEhJ2L6jR6MvUmfrOJUTZ+mltkpS5ZkwnaVV55s/VYXvqT77TpNDgeKsx5p5xPARFeKifK3bvw9jz+uHv+X0wrOEsSxsfHcDZhy3rwDg1ltvBQg8cP+D0HU9tR33uLH4/e9/j3POSZ2CIWr/Op9rbJdEpq1qWby3v35PSJ2Uu78eyowx6Iv0AzFZtx7T5r6Ja0cMg4LjruJpqMSzhLEc2LD6UYy4+gRjEcCMnyhwDhgJXdcRCoXQp1dv3HzzzQBSTJXhPr3ypM6FrEKq/S02w7eVTKbywTa+8384r+LEsTZijmZOHwWMnYGpw1MHnyo4TZX49TqzX032yiAllUWY9vfa9hMhD4GvhUIhWWkjQMQvghc6b5ktIAp7LPC7TMlkkrrxOccCXFdrOwuudp0Ep09Npvz9qeAGhTz7ly1TeFvaNTtcIE6xsBdYGobx7d+OsQto//oF6DfqV/LUWjstWLcfvxxZ8QW/TFHnM6UF/f9+YSOXwYqjaQAAAABJRU5ErkJggg=="
|
<image>如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()
Choices:
(A) \frac{1}{3}
(B) \frac{3}{11}
(C) \frac{9}{11}
(D) \frac{11}{9}
|
\frac{11}{9}
| 69,663 | null |
\frac{11}{9}
|
"iVBORw0KGgoAAAANSUhEUgAAAGsAAACKCAYAAACtp7QrAAAZiUlEQVR4nO1dfVAUZ5r/9QwGTc3GQzSQDXFUDDEBT+KZQBEjGiYHKlEMuAwwSkQUPE1irKDuZSOVTf6IyqWSjSkgQDEqyhjBqHHNZDEXkXUlYG1QSCDhe7VK1FuFkyoFmX7uD+yme76Yjx5mhsuvamqmu9+PZ97f+zzv8342Q0SEcYaamho8/vjjmDVrlrtFkRQydwvgCixatAgMw7hbDMkx7sjavn07oqOjMXPmTHeLIjmY8WAGiQgMw2D//v2YNWsWFi1ahHHwt0wwLjSLYRh0dnYCAIKCghAdHe1miVyDcUEWAOTn5yM9PR0A8Pzzz7tZGtdgXJC1f/9+7N27FwzDjDsPUAgfdwvgLDjzx7VRNTU16OjocKdILoNXk9XZ2Yl169bh7Nmz/L329vZx6bYDAMhLkZOTQwAIAHV0dBARUXR0NH8vJyfHzRJKD6903emBqz7aM5ZlIZONi2YZwDjpZ/1/gVdVO5ZlLT4zGAzo7+8XXY83eBVZ1hyHo0eP4sSJE/y1XC4fC5HGFOPGDC5evBi/+c1v8NVXX7lbFJfBa1x3a05FS0sL6uvrMTAwgJs3b2LatGljLN3YwOPNIKf45oji2qWSkhJERUVBqVSKTOF4g9ebwYGBAcyYMQMajQatra3o7e0VdZLHEzxes4RgWdbEI/zyyy+xcOFCPPzww3j66adRW1uL69evu0lC18KryJLJZCad3IKCAmRmZgIAHnroISxduhQ6nc4d4rkcXkUWB067Wlpa0NXVhdjYWADD7VtSUtKvZHkSOO0qLCzEpk2b+PsMw2DlypVoampCd3e3u8RzGbySLGDYsTh48CAyMjJE9xUKBZYvXz4utctryaqsrIRKpcK0adNMnI7k5ORfyfIk5OfnY8OGDQBM+2DLli1DV1cXWlpa3CGay+BVZLEsCyJCS0sLenp6EBMTA8CULF9fXyQkJKC8vNwkvjfDq8iSyWRgGAaFhYW8u24JGo0Ghw8fNokvhLeNB3gFWUKNGBgYgE6nM3EsjLF48WL09vaioaEBgJgYb9UwryBLqBHl5eWIjo4edbBWLpcjOTkZhw4dAiA2ld46e+x1Uhv3rQDLmpKSkoKjR49aTMvbFtZ4BVkcGT/++CN6e3tNVtxa0pSoqCgYDAacP3/e69onc/AKsjgy8vPzR3UshGAYBmq1GocPH/Y6LTIHryALGHYsjh07hrVr19oVLy0tDceOHePnvrzVuQC8iCydTodFixbZPQscHh4OhUIxLua4vIasgoICvP766w7FTU1N5YefvNUTBLyErIaGBvT29uKFF15wKP7vfvc7VFRUwGAw/GoGXY2CggJkZ2c7HD80NBQzZ87EyZMnIZPJvNYz9Hiy+vv7ceLECbz22mtOpZOcnIxjx44B8L7+FQePX4qm0+nw8ssvY/LkyU6lo1arERYWhv7+figUComkG1t4vGaVlJQgKyvL6XSUSiXCwsLwzTffSCCVe+BRZBm3JfX19ejr63PYsTCGWq1GWVmZJGm5Ax5F1sWLF0XXJSUl2Lx5s9mwjjgJarUaZ86cQV9fHwDg66+/djrNsYTbyeImFHt6epCSkoL4+Hi0tbWhv78fFRUV0Gg0AKTZFRIQEIDQ0FCkpaUhMDAQhYWFuHfvHv+cczw8lTS3OxhcJzUwMBDNzc345JNPEBkZiWeffRaxsbF45JFHAJjuCrHXo7t9+zZSUlLQ0tKCadOmob6+Hk888YTZsJ7qLbpds4SYMGEC3n77bTQ3N+PSpUv485//jM8++0yStP38/PDGG2+gu7sbV65cwcSJEwF4rhaZg0eRxaGrqwuPPvoo/vrXv+L48eMICwvD7du3nU532bJlmDx5Ml5++WVUVlYC8FwtMgePJKukpASbNm1CWFgYzpw5g9LSUvj5+fHPnR0yUqvVJkvVvEHD3E6WcSH19fWhsrKSdywA4LnnnhOFd3YwduXKlaitrcXVq1f5e96gYW4ny7iQdDodEhISLI5YSFGoCoUCr7zyCm8KvQVuJ8sYwl0hrkRqaioOHDjg8nykhEeR9f333wMAIiIiXJ7XsmXL8Msvv3jVBgaPIquoqMipqRB74Ovri6SkJK8afvIYsvr6+nDq1Cmo1eoxy1OtVpsssfZkeAxZ5eXliI+Pd3oqxB6oVCr09PTgxx9/BBF5vPvuMWTt27dPkqkQeyCXy5GUlITy8nIwDOPx7rtHkPX999/D19dX1J8aK6SkpODIkSP8NaddRORx6zU8gqyCggJs3LjRLXlHR0fj3r17qK+vBzDSj2MYxuNWQtksjbE9N2ffR7P55p5zjkVaWhoA9yzCTEpK4rcHCTXL02AzWcb23Jx9H83mm3teVlaGxMREs+sixoq4tLQ0VFRUABBrlqdhTPXcXG3Nz8/H+vXrRwQSmJ6xMkMLFiyAXC5HdXX1mOTnKGwqDVtNQm5uLnJzcy0+N66t7nQsjLFmzRp88cUX7hbDKmwiy7iQjdcuAOYJra2ttZgmy7LYt2+fyV4rdyElJQVffPGFRx8qabeduX37Nj755BPMmDEDH374IXp6egCICf3yyy8RHh6O7Oxs3Lp1yyQNIsKdO3dQVVU1piMW1vDMM88gICAAZ86ccbcoFmE3WX5+ftDr9Thz5gx6enoQFhaGtLQ01NTUoKWlBZ9//jnee+895ObmoqGhAVOmTDFJg2EYaLVarFixwqMWXKakpHj2+Rm2HFHNsiwRa+6Jge7evUtvvPEGTZo0ieRyOS2Y/2/U398/appPPfUU/fDDD7ZkbxN27dpFu3btciqNrq4umjx5Mt27d08iqaSF7W2WGU+2p+cGIiMjUV1djUOHDiEzMxMGYqFUKpGZmYmmpiaz6Z0/fx5+fn4IDw+3VIFsrmxSgOsiKJVKBAcH4/Tp02Oav62w2wxyBUkYXj728ccfo6GhAatWrULgowFYsWIFWltbER4ejoSEBERGRkKr1eL+/ft8GgUFBSJ33Rhj3ccRdhHWrl0rGn7yJNhGlqCi853GB9eLFy8WByWCn58ftmzZgra2Nnz44YfQ6/V47LHHsG3bNjQ2NuKbb76BWq32yNGCxMRE6PV69Pf3e5RcgK1kMaMV6LAZISOFIAyTqdPp0NTUhClTpiAyMhL9/f2oqqryyNGCoKAghIeH48SJEx4lFwAn3kVi4DwOw7ADYgYsGUZ+PwgTEhJCU6ZMoUWLFtHjjz9OH3zwAV27ds1qVvn5+ZScnGw1jBQOBoeCggJKSEiQJC0p4fh4joyrdZaTYATPGIZBdXU1/P398dZbb2HBggWoqanBzZs3MXfuXKSlpVncpB0bGwu9Xi9q91wFIsKrr76Kr7/+mt/A4DEYlU52RCu4bwPbRLtjwL9RZ+STRZUCbTJGcnIyabVaunbtGvn7+9Pdu3eJiGhwcJBKS0spIiKCgoODKT8/n27duiWKGxoaSt999x1/3dHRIdJoZzTLYDCVOS4ujrRarUPpuQoisth7Bv4jum8mooFtoj0xS2hv08i9o9kjhBnHuXHjBgUGBvJ9mNTUVCoqKjJJt7GxkdavX0/+/v60fv16vi+2Y8cO2rZtGxERlZaWUkBAgMh8OkqWOaKIiLRaLalUKrvTcyVMNMuYKDEMgl8VlK3aQ5eE99jLwxq3qdIkZl5eHm3evJm/vnDhAs2bN89iTrdu3aL8/Hx68sknKSIigt59910KCQmhd955h0JCQqi1tVUU3l6yLLWzHO7cuUMKhYJ6enpsTtPVsJOsERgqN5ol5cgmEGL20GVWnM7s2bOpqalJdG/+/Pl07ty5UfP67rvvKDk5mQDQtGnT6O9//7tJGCkdDA4JCQm0b98+Xvu4b745sKCVroJVB4MGWP4DEl8fq/ocG1UJI8+H2z/MCV4CAGAGWNC94WfffvstAgMDERoaKkp363+8aXVLDxcu9Mln0NXVBaVSiQULFiBpRSJWxL2CL8rEnVe5QSaKx/22B8IJT41GA51Ox3eauW/OpR/raX+ruTG+spFvBsCDa/L9ElUFG7FsGQvGVwbGVwYaYMEwDH5p+w6TZgcjbKIPmInDz/YXafnFmzQwEicpdTW+r6nlR+6F4ML93PkLlixZgvj4eOTl5cFwdwjtVzqwLisDB3QHMStoJnJzczHYPwCGYfh4wjSEhNEoHV0hAfHx8WhoaPCcVbvGqmbiXAiuud+Gxt20JPvosDNyd8QpMTTuppcY0OYj9/k4N27coKBHH+cdC/becL+MMyXv5PwnvfPOOyYqz94zUEdHBwUEBJBOpyMiov7+fvqXhyeLPMWOlnbasWMHTZo0ieaHPUt/+ctfRPmY+0/WYGzaNBoN5eXl2RzflbCpzWLvPrDV94ZJuJS3hF7ac1kUlnfnY/ZQ490Rsnbv3k05b75tkj5XkB0t7fTb3/6W7t8fiSMMx718k8MrsfFUVlZmEm7Xrl2kfjWZd/8/2fsxT6o9ZBnj1KlTFB4ebnJ/rNsrIgFZfCGacduFzwxUQRuxhPY0svz9+027Kc5nIu9YCNOYPXs2tVxuHknPiCz2noESExOpvLxcnK8ZjeZ+Cz05IVl//MN7RETU3NxM2RlZ5O/vT2vXrqWGuh+sFoI1z3BoaIimTp1K7e3tNoV3JURkWauBhrtDZKjMJsaoIzxJPpEmySfSxkph3OG0/lv/LcW8+JJJWsb9uaqqKoqIiDBrgs1quiA+V3B//MN79Mc/vCeqWP/7P31UVFRE/zpnLj0f/hyVlpbyHXFrMCYjMzNTck/TEdg8NmifKRkOu3r1apHJsoaQkBCqq6tzuNaO5rpfuHCBUlNTyd/fnzZv3mzST7OGs2fP0pw5cxySS0rYtrpJ4GHZBhmuX7+OmpoaJCUl2RRj27ZtKCwsdHike7R4kZGROHToEJqbmxEUFASVSgWVSmVxGp8EXuPChQvR19eHS5cuOSSbVLCpnzV8IX7Gim6Y9mW0Wi00Gg0eeughmwRJS0vDqVOncPPmTZvCm8hq42rgadOmYefOnejq6sLWrVuh0+kQGBiI3Nxci3uMuWPH3b0+Y9R+Ft+PMmJLJprnNz3DL/+z4dlgWzVFoVAgKSkJJSUltkluJ8zJER8fj+PHj+PixYsYGBgY7nAnJZldame8l4vcsXHBGRtqqXXR6/UUHR1td3qtra2kVCppcHDQ7rZr165d9O6779qdpxD379+ngwcPUnR0NCmVSvroo4/oxo0b/HOlUkm1tbVO5eEMHBgvGalNDJm/X1xczC/eJCONs1YbZ8+ejTlz5uDUqVMOtV3Ozuz6+PhAo9Hg7Nmz0Ov1+PnnnzF37lykp6ejtrbW/UvVRufTMPJttbIPh+vp6aGAxx59MGJh5IoLRi4s4auvvqKYmJjRxTKCOW/Q2f4Qy7J0584dKioqotDQUAoJCaFHHnmEent7nUrXUdigWbKRb6sVdzhccXEx1qVnwNfXF8ZNoi27C2NjYyV795WzmsYwDBQKBb+sbv/+/ZDJZFAqlcjOzkZbW5vTi2rsiS/psLHBYEBxcTEyMzMdbnwnTJiA7Oxs7Nu3T0rRnAbLsoiMjMSbb76J5cuX46mnnoJKpcKSJUuc2vFvrkJZJFBKNdXr9ZLMrt66dYv8/f3pn//8p8UwVVVVomtjM1hXV+e0HObQ1tZGU6dOpaGhISIiOn36NCUmJlJAQADt2LGDrly5Ikk+5ky4pJol1ekwfn5+SEhIMHlZGYfbt28jNzcXs2fPRnFxseiAx/r6ekRFRWHdunWSnKTGgbMUwcHBmD59OvR6PQBg6dKlqKiowMWLF+Hj44MFCxYgISHBrPtvD8yacEmqARH94x//oMDAQL7G2QNztaipqYlCQkKshq+rq6PU1FSaMmUKRURE0Jw5cyggIIDy8/PtlsEe2fLy8kij0ViMU15ezrv/e/fuFbn/zkAysj744APauXOn3fGseWxRUVF0+vRpq/Fv3bpFmzdvJrlcTjKZjFJTU6mxsdFuOezB1atXSaFQWNzAwP2n1tZW2rJlC/n7+1NqaipduHDBqXwlIWtoaIimT59ObW1tUiTHo7y8nJYvX2722eDgIH366afk7+9P6enplJOTQ7///e/pT3/6EymVSoqJibFphN1RLFy4kCoqKmwKe/fuXSoqKqJ58+ZRWFgYFRUV0Z07d+zOUxKyTp06RXFxcU6nI5qnYlkaHBykGTNmmExAXrt2jWbNmkUxMTG8Fhk7GFVVVS6dd9q3bx8lJSXZFFYoR11dHaWnp5O/vz9lZWXRTz/9ZFM8IgfJMk5k+fLlVFlZafaZs3j//ff59YJCGJsUV6xu4mBuVvjGjRukUCgc0hCiYfP90UcfUXBwMEVFRdHBgwdHbe/tIst4KRYR0ZUrVygoKIgGBwcdEHl0GK/etQRXksXBuCKqVCq7V+2aq8ynT5+m5ORkmjp1Ku3cuZO6urrMxrXZdWdZ1mQpFhGhqKgIGo0GEyZMcMpVtYTAwEDExsZ6xFFzxu60RqPhz8/gQKOMSJhzyZcuXQqdTocffvgBEydOxMKFC7Fq1SoMDAyIA9pVLUhsEoaGhigoKIi6urpcuoDkwoULZhetCOFKzbJk2nt7e0mhUNjkmtvaPHDh9Hq9yTO7O8XCdXV6vR5hYWFQKpUuXfAYGRkJmUyGmpoal+VhDZbGGCdPngyVSoUTJ04AsK5Vto5TcuFiY2NNnjlVwtZGLKSemHv99dc9brwQEL+MxtWb7xwmq7u7G42NjUhISBDd52qX1JqmVqtRXV2N69evS5quM2BZFsuXL0dDQwOuXr3qcAW1ppFCOFyixcXFWLNmjQkprqpdEydOxGuvvYZPP/3UJenbCq5gOYdLeOy4oxXU1jIbNXVzrBsMBhw8eBCZmZljuu82KysLpaWl/A5IW2uklDC3KWHVqlX8DDLLsi5bmzEqWUI3nSuckydP4umnn4ZSqXSJUJYwc+ZMREVFedx7RFauXInm5mZ0d3dDJpO57CWgNukty7KiWd7PP//cbSdvZmVl4eOPP3ZL3pYgl8uxevVq6HQ6XqtcUZFsIktYU7q7u9Hc3IwVK1ZILowtUKlUuH37Nn9MqrvBlQv3MhpXdmHsPsmzoKAAa9asMXn52FjirbfeQmFhodvyF4Irl8WLF6Onp0d0BJLUpnBUsoSNpcFgQFlZGbKystx6+opGo3Fq9a4rIJfLkZiYiKNHj/JlI7UpHJUsoVofP34c8+bNQ1BQkFsbd0urd91ZgYDhI/AOHz7ssrKxy8AKF2+6G1u3bkVBQQHvxrur8ggtzwsvvID79++joaHBJXnZTFZ3dzeampoQFxfnEkEswZK2CFfvcuHcQZixQ7F69WocOnTINXnZGrCgoAAZGRmQy+VjuiDfGgFbtmyR7AWeUiEtLc1lS6xtIstgMODAgQPYsGHDcCQPeZNAXFycyepdd7db4eHhUCgUOH/+vORpWyx14Z+uqKjA/PnzERQUJLkAzsDHxwebNm3ixwvdZQqNkZycbLI9SAqYkGXO7SwqKsKWLVsAiBtUT3ixSkZGBo4cOYLBwUF3i8JDrVbj2LFj/LHjUr1Z3IQs45rZ3t6OtrY2qFSq4QiC0Qx3mEPjP8yt3r18+bLbtMpYpjlz5iAgIMDkSD5n5ROVtnGmLMuiuLgYGzZsEI1YuNPUGOdNRNi6dSvq6urcJJH58tBoNCgrKzOxPk5pl6W1AAaDgYaGhigwMJCuXLli094qd2L69OmUkZHhbjF4cMeODw0NSbY+xUfIuLCGyGQyHDlyBD4+PigqKnK8NowRpk+fjvb2dqvvQhnenSkDMcO7NhmGkazxN9cuTZgwASdPnsSqVaukyYPMSMsRd+TIEfz0009mBZPqT0oBY3kYRg6wBhAz8l+MK+NYISoqSrT4Rbikz16YJcsa3PWnbQZhlB2aQgxrmmRZ21A2HFmOkGZClrVEPJ4oq3hgAonAwPwbIMYa9panCSvGRAm9GYZhPKJvZQpbZBKsJn5QPlKZcnPpCO/t37+fn2nnXlqwfft2uyu+iJnFixdDJpPxCTMMg7/97W/iCB4y1CSGDCw1Yo9qRG5GJvit2otGYmFMqlRWwtIrFTs7O8EwjOg9yKWlpWAYBs8884z9GRm7h9HR0fy5tefOnSMAJltuPBXcidh7Gh8cj0cPzvLNtm0flZRgWZYAUE5OjonrnpOTY9PZwMaQkZEKV1dX48UXXwSAUccCjeO6Dw80hmlBO+IQF0pgUYm9/9UEevXfsTf4qTGX6MCBAwCAPXv2mFij0NBQPPHEE/YnKmTu3LlztH37dv46OjqacnJyHKpZ7oChciO9tOcyEQ2fNrqxcpRzVlwIAJIf4i8iS6vVig5+9Bbzx+FS3hLB4ZUj5lAES+9tkxDt7e0EwCFTZw0i/SwtLUVHRweICFqtFrNmzUJnZ6cjVmDMwVIjqk4DuxtZGNjL2PNSCILDzLxskwEYm7xHx2Hp7UXOjhPyZHGkzJw5EwCQnp4OhmFw7tw5+6V1A6jpNL5mliEulCBj5iJ4aTCetLijybUeLVeG7e3t4lxlMnR2dvJbl+z2RjkV02q1pNVqec+lo6PDJarsKlzKW0KqPZeJjF63sSd7t8nbG0bsoOs2AHJNirD8ampqHDrajwNPVnR0NN9GGQwGvt3irj0ZBvayyGXn76nAOxzm4OpZBK7rw32EzpsjgHGC3MeZGjCWMFRuJDAP5GaM/wdH4GjH70kHV1YAuwdyf4X74IljR7/CAn4ly4vwf2hUmsZFE9JWAAAAAElFTkSuQmCC"
|
<image>在△ABC中,AB=AC=6,由作图痕迹可得DE的长为()
Choices:
(A) 2
(B) 3
(C) 4
(D) 6
|
6
| 69,664 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAACeCAYAAAAv3BQoAAATOklEQVR4nO2de2zUVr7Hv2eSFKlklauKErS3Eo8ENiRdAeJZtQJKMhD62ECrNkgpKpVaQTKhDJ1JSZV0E0oQofGEQElaiSAVqVyJP6JMuqp4hJWoepM+EXRvZsq2lz7UVLRS9y6RqoqQxL/7h8eO7fF4XrbHmZmPhAD72D5zvv79zvHP5/jHiIiQJXEIANPfFHy/E/8s3o/tS5lyB0+AQ3WwDIeB1cwSQt7chCD2VXngAAsTUU8YICtO8jA+wg5h+7H6bjCnE4tL43dQWXGSJlITOjBwrB7krAA/yIMl0HlkxTEKdeMH/bjEV8CzmOHvziVYypQuLJauPiuOARBRWH/i6h5Et2cbAKBiSZFQTrafMf3+BsiKkzREJDW0aA3+Thd6enrAGAMr2y6VjS6Hkqw4ycKYZBKMMSDoxyA5QUQgIoz4OSxZtFAqHs+TS67Rdc00GAAKjZL5r/zIcV8CXeqR9n9z81uABLcGAphoPxrPR2FQFkPg6ioo1OTUP8ITEdG21ZC2Vbi4uM/JiLIRAjPo6+vHP/5xHa2tBxFD369Jts8xgfHxcXg8+wEgijCRHmAFsuKYAMdxGB0d1RwuK92UfvNnxTGY0dFRdHR0YOfOnSCZNmLvweTWEqVDyY7WDIAQCrE5AE+DF3v37kVOTo6i8aetSGYPUfqirOUYgDCcJgwPD2P4v4fQ3PxXQ86bFccgeJ6Hy+UCx3GYNSvPkHNmxTGI3t5e5Ofno7q6Oq4ogB7ZPidGSBZDUzM2NobW1lacP38eQGxBzVjIWk4UpFGWToM3NTWhqqoKy5cvN8xqgKzlRCWaFQQCAZw7dw5fffVVTOXjIWs5caBlFW63G62trZgzZ47h18uKEwdqq+jr68OtW7ewZ88eAPG9DoiFrFtLECF+5sHp06eFB06Ei5esWFnLiROxwTmOw5o1a1BeXh6xbLL9T9Zy4oQxJsXPvvzyS1OvlbWcBPB6vaivr8f8+fNNvU7WcuJkaGgIQ0NDOHPmjOnXylpOHExNTaG+vj4UP5tl+vWy4sSBPH5mBVm3FiPq+JkVZC0nRuTxM6vIQMsJvbLUgIiEeWUMinll6viZVaS/5YQ9pEf+yYzJ1tBMT+Q0NX6mR/qLI8O1mQnzlxmDw+GAw+EQ/r+5TqM0D4bw+JmVpL84sghK9yVCnRPoH+ExxfPgeR4jAx3SKgA5BAfGx8fh9Xpx4sQJKX5mJekvTggiAiGIf8KFbWUMQBA+Xz9K//IYKhcuCivPIMTPVq5ciU2bNlleXyADBgRiv84YQ2DgIkq2bAIBGOjsBorrwFAKj6c0VG56sKCOn6lfU+u9tjaKtLccsfmICN/c/F90e5+GgzFs9/SgqLhUNtkPkDeH1yvMP4sUPzNbGGVt0hzGCIMXetA/woOI4HJWYEkZwhY+AdPxs+bmZmmfFWKoyQBxeMG3Bd9HD2qxrVRo5EWVW1EqGy2Ija+Mn+Up9llNBogjLG7yXxhE3ZZKyc+98sorAADXXuUwure3F3+YLcbPUts8GSCOAwzA4IUeOCufVOxxbWbAgs0Ql2KI8bPjb52wvpoapP1oLTDgw4PbvACAnj87wiIG/ceqIJqTGD9bsWKFxbXUJu3FKavygCePYtSm7EN4AEyKn30y/DH04m9WkvoaWIAkDLQ6d6EJ3G43ampq8Mwzz2BqasrK6kUkI8QR4CMuhxHjZz7fMcz+Qz7ee++/ABg/Dy1eMkgc2U+VtfndO+PweBpw/Phx5OQwcByHxsZGjI+Pp2wILZJB4siQtXmHj8Pq1StRXl4OIsLatWuxYcMGHDlyJOLhVllU2g8I9FDHz0RLOXr0KJYtW4ba2loUFhaGHWeVRWWm5YSIFD+bP38+amtr0djYqNhudR+UsZYTbf5ZY2MjSkpKcP36dWnegNV9UEZajtb8M7VVFBQUoLm5GQ0NDamoIoAMFefUqVNh88+0rGLPnj0YHR3FBx98ELbPCheXceKMjY3h4MGDeOutt6KWzcnJgc/ng9frDXswzb7PMYF455899thjKCwsRG9vr7kV0yCjBgSJzj/r6upCZWUlduzYgYKCApNqF05aWE6s/j/R+WfLly/H1q1b0d7enkj1EiYtxInF/yc7/6y9vR1vv/02fvjhh4SOT4S0ECca4vrNZOafFRYWwu12S/MKrCAjxOE4DqtXr056/llDQwMuX76ML774wqCa6ZP2A4KffvrJsPWbs2fPxqFDh7B//3589NFHBtROn7S3HI/HY+j6zRdeeAG//fYb+vr6DDmfHmktjhg/e/311xXbk3m6z8nJkd75mP3G1JbiEPhQA+pn2NBjcnIS9fX16OjoCFu/mezT/aZNm1BcXIyTJ08mdZ5o2E4cYc6yI9SAkTNsROP06dPIz8/Hjh07jKweAEFcjuPQ1taGsbExw88vYgtxFAkY4iyvhTj/LJb4WaKUlZXh6aefRmtrq2nXsIU4CkF0Wl7YFXmihkik+JnRkeSDBw/ivffew82bNw09r4gtxFFDRIpVaNJqNFaBYBRpxPhZW1tb2D6jI8nig6n6jalR2EQcftpimNCI8lVoFMqowdUxlDEngjrmtW/fPsvWbxIRvF4vPvnkEwwNDRl+fnuIQw6NjIHCKrSqsukdnu5BuDb/HfvqO0NbhFGb6K76+vrw888/W7Z+kzGGWbNmob29Hfv27TP8/PYQh4V3NcGB82BLFgqrzmV9xcLiClz+5tvQAUL1GWNS/EyYf2bO+k2tPouIUFNTAwA4e/asodezhzjhWbVw4dIFVFZslc1tFqykqGgJoJGGS4yf6X3/LFm0+izGGIgInZ2daGpqwvj4uO45tPpS4U8OfAMBRVl7iMOA6QdLHoQgzvcQtm5bGvaZ+Zs3vw5b/SzOP+M4zqoaK2CMYf369VixYgW6urp0y6r7Up4IPAVQjkextapUUdYW4gjuQqyKAyz4NZhreuWZ5E6+GoC35zIqnZWK46Ot37QKjuPAcRx++eWXiGUIQdygOmmF3bHOTjCUYonrT4qVdoBNxFGsUoawCm3JwmnrYBBcR617G+CshaeqTNqnXr+ZSoqKivDcc8/pPpgGBy6ipNIpeIugH+e/FW687pPd4YXjzlVlGlNERMRTgCpkqbWIiCjQL6TXctYqjpicnKRly5bRqVOniOd5sgO3b9+mOXPmkMvlopaWFmm7WDt/p0tKFQaAXL73I57LFpYj4EBgwAcHK8NlANsflH3+5MHt4Pwj4MVEdSEv19vbC57n0d3dnbI1NaQxGfHAgQMYHBxUbBd9w6Xz3VJ/0++rw8KiRYgYyDXzLooH9X3P87xs41RY+du3b9O8efPo2rVr9Mgjj9A777wTfnwK4Hme7ty5Q/fddx/t3r1b8bumgv0EZ61UtxE/p/QQKlIuTqKN6HK5aPfu3UREdO3aNZo3bx7dvn3byKolRUNDg8KtEU/U76ujOq4/5nOk3K3FE++ikAtRx8+WL1+OJ554QjOeliruvfde5QYGXLzYg4qtVcrtMq/IQ+maUy5OPIhCquefERHa2trw7rvvmhYhThwegQEfGGN45xLwVJkD/oA8X9i0KA4oIxsKcSYnJqQ/dkVr/hljzPQIceI4UFblkYK3RBT6apW8hHa4SSFObl6e4m+7ES1+5vV68fnnn+PDDz9MQe1igyj2UeWMcmvR4mezZs3C0aNH4Xa7ra1YHDAWuqlCno10XgDqiqN2c1puL5Ib1HORsbrPyYkJTNy9i8mJCfz4449S/CzS8ZMTE6iurkb+7NnoPXVK2mY3SBa4ZYyFDQREdMVRuzn135MTE8jNy0NuXl6YYOL2ePbJEcvl3XMPiAgNDQ3Yu3cv/vOPf9Q8Xv73sa4uvPHGG7j973/rXiNVqEeoMfU50RAbTL3N7B//2eefR42fifXKyc3FqlWr8Oijj+Lom2+aWi+ziSpOtDtPfhcbgdoHi+s3fT5fTPkDxLvyyJEjlq8KMBpJnGTvfqOsR23yvb29+I+CAjz77LNxnWfu3Llwu904cOCAIfVKBYqJ7FpuC5i2HvU+uVXJ96mtLdZ98mvk5Obi//71Lxxua8P7f/tb1OPlfY647dWGBvyppAQff/wxHnroIWk7peizkPEiiZOoW4p0nN75YjmGMYa/trTgsccfD5t/FukGUv8/Ny8P7e3tcO/fj6tXryrOPROIaUAQyaKMINI4X2/+WTzU1NTgnnvusSQZkdHE9JxjJpHu4mTyB6gF7+rqkr4ENZOI+pxj5EgsVrTiZ/IGl8eptFALLn4Jyk5R61iwXfjm7t27iviZKIC8weVTimKF4zicOHECo6OjhtfZLGwnTkdHhyJ+ZkTnTUR44IEH8PLLL8Pr9SZ9Pquw1ZpQs/JvigI3NzdjwYIF+PTTT7F27VpDr2EGtrIcj8ejmH+mF7FNBHFec7SotdHXTRTbiDM0NITh4WFF/MyM55Hnn38eExMTOHv2bMwDilRhC3Gszr95/PhxNDY24u7du7rlUm1BthBHnn/TjAZRn/Phhx/GunXros6tTrUFpXxAoM6/aUaDaJ2T4zgsW7YML774ouZHVu1Ayi3HqvybausRP7Jq56F1SixHjApbkX9TvJaW9TQ1NWHx4sW4evUqVq5cGfHYVJFSy7Ei/6Ze4+bn5+PQoUMRh9ap7nMsFUceikll/k054rdszp07l9J6aGGpOOKdaMX6TTWRRoE5OTno6urCgQMHbBe1Tolbs2L9Zjxs2LABq1evTtmyxUhYPiAQ558ZHT+LBa0It0h7ezvWrVtnq6G15ZYjzj+bP3++7jsZo4n2mqGoqAi7du2yxfJFEUstR50/INWjIfVQubm5GUuXLlXkL0glllmO1fGzWFDfHAUFBWhpacHevXsjHmNlvM0yccyOnxnFSy+9pPuZSCut3TBx9Bpc/f2zVLuzSBARHA6HIjVYKklaHL0RkIg8fmZnqxF/Q3l5OUpKSqJ+jcNskh4QRLMCdfzMrlajpqurC+vWrcOuXbtSNrQ2tM/Rsgor4mdGQ0QoKipCTU0NWlpaFNutxFBx1Fahjp/Z2aXJEX/HwYMHMTAwgOvXryu2A7DkGc200ZpW/Ewtnt3FipYazGwXbbg4YoNzHIc1a9boxs9mQv+ze/du3Lp1C36/X7HdirobHiFgjJk2/ywV5Obmwufzob6+Hk8++aRlUXTAJLfm9XoNzR+QarZs2YLi4mLLh9aGixMpf8BM59ixY2hvb8evv/5q2TUNFceO8TOjKCkpQXV19cxNbiSPn6Ujhw8fRl9fHwKBQPTCBmCYOFbkD0g14tDaqulUholj1fyzVFNfX4/vv/9eM+uu0SQ1lLZy/pkdICIpuZHX60VlZaWpQ+ukLCfS98/SFfH3Pv7441iwYIEiuZEZ0Y6k3Zpd5p9ZCRGB4zgcPnxYSm5kRsQgIXHEu+TOnTvwer1J5d+caYiuvKysDE899RSamppMu1ZC4oh3ic/nw8qVK5POvzlTaWtrM7WvTditifEzn88HINzn2j3iHC9ab3znzJmDxsZGvPrqq5plkyXh0Vq0/AEzIeIcD/Lf09raiitXrmDjxo2YmprC8PAwdu7ciaKiorCyyZCQ5ajzB6R6qUQqycnJgdPpxMWLFyWLSZnlaMXPMlGYjRs3KhJKOJ1OzJ07Fy6XCwAMyYIYt+WI+TfTNX6WKB0dHYbnDY1LnLGxMbS0tEjxs3Tr9KOh93vN+Cp8XOKo42eZ5s6i/V75V+GNaJuY+hwiQjAYxLlz5xAMBpO+6EwinsFOYWEhvF4v3G43Vq1alfS1Y7IcxpgUP7v//vuTvuhMIlZhRJfndrtx48YN3Lp1K/lrUwwdR19fH6qrq/Haa69Jn9nKNJcm58qVKwCEEZsWv//+Oz777LOwEV28xCTOmTNn8N133yV8kXRCTD0ZC5s2bcL69esTv1i0BDvy1EN2yYtmX8IzZIn0++qmc7U5a4mnANXVccSLx2g0raLPqd0Snly0cyAgJUXIZFemi2RIDuV/ASDoF3Jtf7sIvPj5y67NcLA/A4sWg4ndvlbTqtWqc4J8AwHiiWjE30lQZx6McodkOgpPE8rcuLmuU1VqijpcFeQb+B/dc8mG0jwIN3Djcjlcl5aCASgrLpLdD3JS/skc20CYvunl/waAgc5uXEY5At1u1VEOFC9aAhSVQRe5UiN+jipcb0r/d1WAKlxcsjdTRsJTgJzMoUigp9ln63TjDnmOym9ufovL3a9K/U1FF4/Bkx4tQeO/xTIMFvwag8RjUfFiqQ9SZxIWNkY+h0PuogYv9KA/MCkkGOXqsf1BZfI30njhlCU6Wq3FEBJI5z53SDuDfvSgFttKhbkAf/HUogLApfN+CP2RmCUpazVyIjkRvnQJKgDc/OZrWdlQ4aAfvoGAIJrefS76t35fHbl8/mmHF8oHzflHYnGPsjL6I7n03T+laqApGvDVhrXhiJ8TcmzH0JiSOHVO+ZA5SBUAAeUUkM6iqhSv8e9IF0zr/fpijvg5RaJwccDFy47lVX+LYMTPEWNMcQJoZFCX6ikfcagqO0WTuhVN2/0mBU5iiq1lSQ3Zp0kbkxXHxvw/Tgkvqp7YNHMAAAAASUVORK5CYII="
|
<image>如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为()
Choices:
(A) 2
(B) 1
(C) \frac{3}{2}
(D) 2√{3}
|
\frac{3}{2}
| 69,665 | null |
\frac{3}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAANIAAACDCAYAAAD4S0UQAAAgmklEQVR4nO2dfUxb59nGL4ekvGudOtWc4qnuTIPTuCNdDoEOurhxWiC4rb2ShcZMJWqiRqVTKo3qxQnRMjmd6EJLqrIuVQxVlUSlClFJoYWuTu0KsyYKEVkhKwxHMi0ENpHBNDzoZjeG+/0jr13b2OCP40/OT4qCzzl+zn2On+u57+cbxBE35ufnFz3f2NhIAAgAqdVqIiLSarWxMI0jRFaAIySIiLW0eDye3zStVit4PB6sViuICESEN954AzweD1KplLX7c7DHshBSNDI/m/imuX79emi1Wrz22mvuY1lZWdBqtVi3bh3r9+eInGUhpMUyP5siY4OmpiYA8BKRC6lUivvuuy/WJnEEAY8SLSdFASKKiieJxr15PB4aGxvx/PPPR9EqDrZZNh4pWuXFUumGIqLh4WEA4MK3JGRlvA2IFf4ytMViwY0bN9DV1YWpqSkMDAy4z83NzeHChQsLvqNQKLw+5+TkQCgUQi6XQywWIysri33j/RBPL8uxkGUjpNHRURiNRphMJgwMDGBwcBASiQSZmZl4+OGHIZVK8fTTT7uvX7lyJbZs2bIgne7ubq/PV65cwcTEBHQ6HYaHhzE+Pg6GYbBx40YUFRXhsccew7333gtg6czvEuFXX3214Nzw8DBGRkZQWFgIIDqNHhzhk7J1JJvNBoPBAJPJBKPRCIfDAYVCgUcffRQMwyA/P5+V+/gTx8WLF9Hf3w+z2Qyz2Yy77roLjz32GIqLi7F9+3asXr06YDpNTU2orKyE0WhEUVERAMBkMuHNN9/ERx99xIrNHFEg1h1XS+Gvk3Kxjkvfc21tbaTRaEggEJBGoyG9Xk9DQ0Os2xkKAwMDdPz4cSorKyOBQEAVFRVkMBiIiKi3t5d6enq8rjcaje6OWABcJ2wSkBIeaXBwECdOnMC5c+eQl5eH8vJylJWVIT09PWY2UJB1ltnZWZw7dw4nT55Eb28viAgZGRmQSCR49dVXkZ+fv2Rawd6LI3Ykdavd+fPnsW3bNpSVlSEzMxO9vb3o6OjAM888E1MRAcHXWfh8PjIzMzEyMgK5XI6qqiqsXLkSU1NTePLJJ7Fjxw5cu3aNlXtxxJB4ukMXgUK3QMfb2tooNzeXGIahtra2Ra9dKq1oEOheTqeTampqiM/n06lTp7zOtbS00P33308SiYRuv/12qqyspImJiaDS5Yg/CSEkf/jLNK2trSSTyaigoIA6OjrCTi8eGXJgYIAYhiG5XE4jIyMBbWptbaUHH3yQ1q5dS7fffjsdOnSIpqen/drNCStxSEgh+WYQq9VKhYWFlJ2d7a6kL/WdYNOONvPz83Ts2DHi8/lUV1cXtA1tbW0kkUhIIpHQnXfeSXV1dWS326NtLkeYJJyQPDOZ3W6nw4cPk0gkomPHjrGadjRx3WdsbIwUCgXJZDLq6+sLOR2n00m1tbUkFArpgQceIJFIRHq9nmVrOdgg4YTkwmAwkEQiIY1GQxMTE0kXxrS0tJBAIKCqqqqIPcnY2BipVCqSSCTEMAzJZDL64IMPwnonyfYek4WEE5LT6aTq6moSi8VkNpvjbU7I2Gw20mg0JBKJ/NofSUY2GAwkFAqpoqKCGIahgoIC6urqisBaDraIWfM3BdFdNTo6ivz8fFgsFgwMDCwY15bodHd3Y8OGDSAiWCwWv/ZH0nRdUlKCoaEhjI2Ngc/nY+/evdi9ezeeeOIJ9Pf3R2A5R8TEW8kuWltbSSgULqgLuUrweIYkS93bbrdTVVUVCQQCam5ujji9YNDpdCQUCunjjz+mhoYGEgqFpNFoaGxsLOK0OUInIYTkCuV8h8okA319fZSdnU0KhcJvJo5mAWA2m0koFFJtbS39+9//Jp1O566XTU5ORu2+HAuJq5CcTidVVFRQbm4u2Wy2BecTvWJ89OhR4vP5rLQohsvExARlZ2dTZWUlERFNTk66vaNOp6OZmRkiSvx3mezEXEiuH9Rut5NKpSKVSuX+sZOFkZERksvlxDAMDQ4ORvVewQhgenqaFAoFaTQacjqdRHSrpW/Xrl0kFAqpoaHBfTzYNDlCI+Zj7Xg8Hmw2G4qKiiAUCtHe3g4+nx9rM8Lm9OnT2LhxI+RyOXp6evCjH/0oqvcLpnFCIBDg/PnzmJubg0qlwuzsLMRiMc6ePQuj0QiDwYDMzEycPXs2qrYua2Kp2vn5eZqeniaGYaimpiaWt16UYKZpTE5OUllZGUkkkoRulq+srCS5XL7Ay5vNZiooKCCGYQKODuEIn5gKyeFwkFwup4MHD8bkfmyFMAaDgUQiEe3du9c97i2RqaysJKVS6RXOuWhrayOZTEZbt26lS5cuhZQuFxIGJmZCcjqdpFKpaM+ePaylqVarvSbAuf6xxczMDO3fv58EAgG1traylm40cWX20tJS0mg0Xsc80ev1JBKJqLS0NO4TH1MBVnJdMCVVRUUFqVQqv6VkJPdSq9VktVrdn7VaLSti6u3tJZlMRkVFRQumMyQDdrudFAoF7d+/P+A1//3vf+no0aMkEAj8TtvgCJ6YeKTq6moqKCiIuHXOn2Bda2L7HotkerZOpyM+n0/Hjx8PO4144npP09PTlJ2dTbW1tYtePz09TTU1NSQQCKimpiYpwtdEgzUhBZrvc+bMGRKLxV4dhGzF2kajkaqrqxcc12q1fgW2FFarlQoKCigvLy9lwp2JiQkSi8VBNTBMTExQZWUlCQQCbtpGiETVI1mtVhIIBHThwgXW0vQUoVarJaPRuOBcY2NjyELS6/XE5/Pp8OHDQfW5JErFe35+fklbLly4QCKRiMbHx/1+35ehoSEqLS3lpm2EQNSEZLfbiWEY92Q2X9jIiIHqQlqtNujQbnJy0j1FIdAQpUQRTSTU1dWRXC6nmzdvLjgX6Pl6enpIoVDQhg0b6IMPPoi2iUlN1IR06NAhUiqV0UqerFarX7FYrVYC4OWpAtHZ2UlCoZD27duXdKMrwqGkpCRgwebCn6gMBoN72kYi96HFk6gIyWAwkFgspn/84x/RSJ6IboVijY2NC46r1eolw7qZmRnat28fCYVC6uzsJKL4r+kQCyYnJ0kikQQMtZd67paWFhKLxaRUKr1m/Kbq+wqFiIXk+xLtdntUev997wPAq9nb5YmWElFPTw9JJBJSKpXLcoR0Z2cnZWdnB90N4TuNZW5ujpu24QfWPVJNTQ1VVFSwmqaniHxXIfX8t1g453Q63c3ay70CrVKplgzxlmJmZiaoaRuhrJKbzLAqpKGhIRKJRO6OvWi8qFDXr5ufn6ehoSHKzc2lgoICLy+2XBkZGSGhUOi3Fc+Xpd63a9rGnXfe6TVtI9J0kw1WhaRQKLw6MRNhUcbjx48Tn88nnU7HSnqpQm1tLZWWlrKW3tjYGGk0Gve0DX+tg6kMa0JqaWkhhmEiHgIUKS4BTExMUFFREWVkZFBTU1NcbYo3/goFu91OUqk04pHgvmn39fWRUqkksVhMLS0tEaWdTLAiJKfTSVKpNGGaRl3rP1RWVpJGo6Hs7GwCQJs3b6Z9+/bR8ePH/bZcpboX8qWtrY0YhvE6FupuIIFYbtM2lhRSsKuCKhQKNuyJiOnpadqzZw+JRCKvH29+fp6cTieZzWY6duwYVVRUuMWVm5tLlZWVpNfrWV0zIllEyTBMVAtA17QNhUKRlGtyBAsrHolhGDKZTGwkFTS+GbW7u5skEgmVlpYG3aztElddXR1pNBqSyWQEgAoKCqiyspJOnDiR0j8+0S3vHYtCMNhpG8lSAPkSsZA6OzsXhAexZLEdHkLB9QM6HI4F4uLxeJSfn0/79++nt99+m3p7e8NKO9TvxCJTucJyNsdDBsJut1NdXV3AaRuJPq5xMSIO7RQKhXtrlVjjb4eHaGC328lsNlNtbS2VlZWRVColACSXy73ElUhbywTL/Pw8nTp1itUWvKWw2WwpN20jIo/U09ND2dnZbNkSEuHs8MAmMzMzfsWlUCioqqqKTp06FdTC+Ykgrrm5OZJIJFGfOuL7rKFO20iEdxWIiLa+fPHFF7F+/Xr86le/8l1QJWq7yo2Pj6OiogI3btzAmTNnwDBMxGn62hvIfs/j/q6x2Wzo7+9HV1cXrl69ir6+PoyOjkKhUCAnJwcMw2DTpk0LbI7m+wqWl19+GU6nE7/97W8BsLsr4FLPZ7FYcOjQIfT09ODIkSOorKxk7d4xI1wFOp1OEolEMR2v1tLSQnfeeSdVVVWRw+GIOL1whq+EWipOT0+T2WwmnU5HpaWlJJFIKC0tjRQKBVVXV1NzczMNDAyElGY0GBkZIYlEEpW0/Q0I9vceXdM2ZDJZ3KoL4RK2kNra2kilUi16DVuueHp6etEdHsIhFmFCoHtMTk6SyWQinU5HKpWKxGIxrVy5krZu3eoWVyxn6LrslMvlUW0KD/adJ+O0jaCE5O8FlJaWxqTn2mw2k0gkIo1GkxKV0kD4ikskElF6ejopFAqqqamhM2fOkMViIaLoFQJ6vZ7VVZ4ixbVMweOPP079/f0hfTfW9amwPNLk5CQJhcKozOn3XNK4qqqK1qxZE9QOD6nIxMQEGQwGOnLkCCmVygXiamlpCXsQrr+M9q9//YuEQmFCTXJ0Op3U0NBA3//+9xN62kZIHsn1f0tLi3vNtFC+Hyy+OzwkcmtNrHGJS6fTkVKpJKFQSHw+nxQKBR0+fJhaW1sjGuGuVCrp/PnzLFrMDjMzM3TkyJGgdtuIR34JyyNVVFREbU5PXV0drV69Oq47PCQbY2Nj1NnZSTqdjoqKimjt2rVe4mpra/PqZ1sso9XV1S26Fl60WUoEU1NTfnfbiDdhCUkkErFeGR4ZGaEtW7YQwzB+W7GWm1eKtHPXU1wKhYIEAgEJBAJSKBSk0+kWiMtFT08PyWSyiGxnk0DPef36dSovL0+Y3TZCFtLQ0BBlZGSwasSpU6eIz+dTTU1NUnfKxYpw38HIyAi1tbUFFFdnZyddv36d+Hx+0qy6mijTNkLukG1sbERXVxdaWloi7sOamprCL3/5S/T29uL06dNJt2csW1CQHcLhprcYo6Oj+OKLL/DFF1/gwoULuHLlChwOBzZs2ICdO3fiJz/5CX784x9DLBaHbU8s6O7uRk1NDex2O+rq6lBSUhJbA0JR3fz8PGk0GlbqR64dHvbs2ZPSzdrJiFarpcLCQjp8+DBt3bqV7rjjDhIKhaRUKkmn05HBYEhYjxWvaRshD1qVSCQR9cTb7Xbav38/rVmzJml2eFhu9PT0LBjRb7VaqaWlhWpqakihUFB6ejqJRCIqKSmJi7iWCm/1ej394Ac/oKeeesrd/8ZGuoEIKbRzOBwQCAT45ptvkJaWFrL3u3LlCnbv3g2xWIzm5mZkZGSEnAZH9LHZbBCLxZiZmVn0OovFgqtXr6K/vx+XLl1CT08P7rrrLuTl5WHz5s3YunUrNm3aBKFQGLYt9P9hqiub+oastEgY63A40NDQgKNHj6K8vBwvv/xy9PJcKKobGBggqVQaloKTfYeH5YZQKKTr16+H/L2hoSFqbm6m6upqUigUlJaWRmKxmFQqFel0OjKZTH77gNhqRPI3ri/U3TbCsSUkIbW1tdGOHTtCuoFrhweGYVJmh4dUxpWJFArFgnFu4a5GOzAwsEBcEomEnnrqKdLpdGQ2myOqJwdrSzR321hyM2byiPyuXbuGrKysoL3dO++8A4ZhUFhYiCtXrkAmk4XnNjlihitMWr9+PSwWi99znn/TEjUDIkJ2djaeeeYZ1NfXw2w2w+l0or29HT//+c9hs9mg0+mwZs0aZGZmYseOHThy5Ai6u7ths9lCsnkpMjIyoNfr0dPTg56eHmRmZqKxsXFR24MlpDrS3r17sWXLFuzbt2/R66amprB37158+eWXOHv2LPLz84M2iCMxeP311zE+Po433nhjwTnyUy/xdyxU+vv73XWuvr4+dHd3QyqVgmEYMAwDuVyO3Nxc8Pn8iO7j4vLlyzh48CBu3LiBo0ePorS0NPzElnJZnm6zqKiIPvvss0Wv7+zspLVr1/rd4YHrTE1sPH+f1tZWVqefh/vb9/b20ttvv0379+8nuVxOPB6PpFIplZWVUW1tLZnN5kVDtGDuy8a0jZDqSAUFBQHb5j13eEi2SVkcCzEYDKxsyxONwtNTXAUFBQSAZDIZaTQaqqurW1JcgTh79qx7t40vvvgipO+uDMV7zczM+HWrly9fRkVFBaRSKYaGhiJq7uRIDO644w7Mzs5GnE40ptDn5eUhLy/P69jly5fdIWF7ezt6enogk8mwadMm5OTkoKCgAHK5fNFum127dmHnzp146623sH37dhQWFuLYsWPBjeoIRXUSicRroOPc3BzpdDpavXp1yu/w4G9x/lSmr68vrsussUFPTw/p9XqqrKyk3NxcAkDZ2dlUUVFBx44dI7PZ7HeJ7fn5+aB323ARUmPDmjVrMDo6CoFAgGvXruGZZ57BqlWr8N5772HdunXBJsOR4BARrl+/DoVCgZGRkXibwyoXL15Ef3+/23v9+c9/RnZ2NhiGwUMPPQSGYbzGfE5NTeGVV17ByZMnUVVVherqav+NHaEoPC0tjZxOp9cOD/FeND/amEwmkslklJOTE5NFFBMF1yzoRIeNyODChQt0/Phx2rNnD23atIkAEMMwtGfPHmpoaCCz2bxgtw3ffO/2SEQE581v3QJbdVv6AtHxeDwolUp8/fXXOH369LJo1n7ggQfc/SkFBQW4dOlSnC2KDTabDRKJBNPT0/E2JS50d3e7l1RzeTCGYXDvvffi22+/xV//+lfU19dDo9EA8NOPdPNbh18RjY6OIjMzEw899BCKiopw2223xeaJ4sxbb72FqakpAIBYLMZzzz0HIDHWomMLz7FsLv7zn//grbfeglarjZNV4eHvWQIRym/I4/EwMjKCf/7zn9i8eTNGR0dhsVhgt9thNpux6MgGk8mE4eFhAMAPf/hD8Pl8FBYWLiqiYB8iWXjiiScgFAohEomwffv2eJsTFcjPgNCbN29i1apV8TIpJHznci2Fv+cN5jsSiQSbN28GAEgkEly6dAl6vR4CgWBxj5R+2yr85S9/wX333Yfb0v8H0qx1+PTTT3Hvvfe6r7n5rQPAwlDQdTzUc8Fct9jxVbele9kUyMNyBIaIcPXqVezduxd9fX3xNidhWMyDBfRIBw4cQInycaxbtw63pf8PAOB7t9/qW/AU0arb0r0yr+/xUM554nldoOOe3/f839e+QPfwR6p51HDg8Xj45ptvvFqnnnrqKfB4PK9/JpMpjlbGHn/v4MCBAwACCKmpqQnbt29HR0eH13HBnavxX7t3prz5rSOkjBoOwXgU1zWe14bjiQKVOMtBYJ7PODs76yWkDz/8EGq1Gp9++imICEajEcXFxe7Q3/f7qchHH30ErVYLo9EIujUqCPX19WhqaloopK+++goAcN9990GtVnuV6P56uz29QzKzWCYwmUxYsWIFeDweVqxY4S6FUg3PQmR2dhbf+973vM53dHSguLgYwK38sdwgIlgsFhQVFbmPabVaWK3W74TkEss777yD559/HgAWTHu455578PXXX/u9STS9UrQ9HhDYEx04cADFxcXuEmh+fh719fUpKyYXIyMjkEgk7s8mkwlardZd4Lz00kvQarVe02pSpRUzEC4n44nFYoFUKvX2SI36E6g/9jp4PB6kUqn7uMsrZUnX49q1a+6X6TruW6H3PB7KOd9GhFC+71tXWuzvYDlw4AAsFov7eV3/G41G1NfXh5xeMjE0NIT169e7P3/11Veor6/HihUrsGLFCrzxxht47bXX4mhh7Pnss8+gUqncnw8cOICOjg48//zz3wnp+tg4eCvS3CWv0WjE+vXr3Z+BWx7KarV6lTyBwrrFQr5A5/x9Dvb7vscC/R0MRASTyYT6+nqv+TipXuJ6YrVasWHDBvfnjo4OWK1WEBH0ej2kUqlX/Wg50NnZicrKSndDg2chu4KIMDw8jJdeeskd0gG3SiBXc5/z5rdYdVs6srKyMDAwEK/niBk8Hg9vvvnmgtDFhT8Xnwp41hMHBwfdUcnw8DB4PJ77XbjyyWeffRZ7I+OEq9BwORYiwocffvjdBVqtlgAQAPfi62q1mng8Hq1amUba6v+lbx235nbY7Xb3eDui1B4BDYCMRqPfc2q1mrRabYwtih6+v+P09DSlp6e7P+v1empqanJ/tlqti76fVMRoNPr9zV3vLuQliyNd1y4ZsFqtxOPx/O7qYDQavQqdVMKVKXzXtVOr1V7P6yp4lxO+78CXJRc/8aWgoACff/555L4ywSCPsCYrKwtE5LeFsri4OGDIl+y46oBmsxl5eXkwmUzg8Xjo6Oi41TL1/10AarUa8/PzcbY2NrjCWtc7CFgvDFWZer2edu3aFYG2kwOtVktqtdr92RXOpFJIFwilUul3QfpUDuUjJeRF9C0WCx577DH8/e9/Z0HviQEFGEP1s5/9DJ2dnW5vZbVaU9ITAd+9g7m5OaxZswZWqxV33333smqpjISQQzuZTObu4U0VAmWWjz76CPPz8+5WmlQVEfDdO7hy5QrEYjEyMjKCXrtuOeL7TkIWEgAoFAp0d3ezYhBHYmE2m5ft9jqh4Fv4hrTSqosdO3agq6uLPasSiOVe+prNZuzYscPrGBfeLc2SdSR/9YepqSk88MADGB8fR3p6cg9WDYdAdapkx2azQSqV4uuvv2ZtNdPlQlihnVAohFwuR3t7+4Jzy6FET0URAUBLSwuefPJJTkRhsKSQAmWaZ599Fs3NzQuEk6qZLJVx/YbNzc3Yu3dvnK1JTkJu/vZsJhWLxfjyyy+5lVVTgNHR0ZRcxy5WBBXaeWrN5XHS0tKwc+dONDc3R8cyjphy8uRJ7N69G8DyCM/ZJmSP5Mnly5fx3HPPLYsR4anM3NwcsrKyYDAYvCZzpmqjSjQI2SN5kp+fD6FQ6LfRgSN5aG5uRk5OzoIZ0ZyIgicijwQAf/zjH/HrX//avWwTV4olF3Nzc5DJZDh16hS2bNkSb3OSlrCavz154oknAMA90oETUXLR0dGBe+65hxNRhETskQCgvb0dDQ0NMJvN7mOcZ0oOcnJy8Pvf/x5bt26NtylJTcQeCQDUajX+9re/eY2/40SU+LjqtpyIIocVIaWlpaG2thZVVVWYm5tjI0mOKONwOKDValFXVxdvU1ICVoQEABqNBgKBAHq9nq0kOaLIsWPHsHHjRpSUlMTblJSAlToScKtOdO3aNTzyyCMYGBhARkYGG8lyRIHR0VFs2rQJAwMDwe2PyrEkrAnJxaFDhzA+Po53332XzWQ5WEStVkMul+PgwYNex7kGovBhXUgOhwMbNmzA6dOnuQliCcjHH3+MgwcP4urVq353+ObEFB6s1ZFcpKeno7GxERUVFe6d7jgSg6mpKezfvx96vd4tIm70Pjuw7pFcHDp0CP39/fjkk0/cx7jSLr48/vjj2LZt24KQjiNyWPVILk0SEY4cOYKJiQm8+uqr7vOciOLHq6++itnZWVRXV8fblJQkah4JuLW4Xm5uLj7++GNuCEoccEUAFy9eRFlZGXp7e3HPPfdwBVoUYL2O5ElWVhaamppQXl7O1ZeixGLlII/Hw40bN1BeXo6TJ09CLBZzIooSURUSAOzatQvl5eVQq9VwOKK/Ydhyw58wXOKanZ1FYWEhXnjhBSiVylibtqyIamjnye7duzE9PY329na/za4c7OJwOFBSUoKNGzfiD3/4A+eJokzUheS5xkNpaSlEIhHefvvtaN6SA8DTTz+NtLQ0nDlzhhNRDIhKq50nnms8tLa2wmKx4De/+Q2bt+Xw4cUXX8TMzAzee+89TkQxYiWbiS31o6Wnp6OzsxPbtm3D3Nwcfve733md5/qZIueFF17A4OAgPvnkEy6EjiExqyN5YrPZoFKpIJPJvHrZOcLH4XDg2Wefhc1mw/vvv88t8hhjot5q5w+BQACTyYSJiQmUlpZidnbW67xnxy7H0thsNvd0iM7OTk5EcSAuQgJuhXnt7e1Ys2YNiouLYbPZ3Odc4R0X5i3NjRs3sG3bNshkMrS0tCAtLY0rgOJA3IQE3GqAePfdd/HII49g48aN6O3tjac5SYGnt7548SIYhsHTTz/tnlDJ1TPjRET7/bFIa2srCYVCamho4LZYDILa2loSCoVkMBjibQoHhbH1ZTQZHR3Fzp07IRaLcfr0aQgEgniblHBMTU3hF7/4Bex2O1pbWwPORCbOM8WUuIZ2vhqWSCS4fPky1q9fj02bNuFPf/pTnCxLTM6fP48HH3wQW7Zsweeff77odH5ORDEmvg4xMJ988glJJBLSaDQ0MTHBevrJFD6OjY2RSqUimUxGZrM53uZw+CGuHmkxlEolrl27hvvvvx8PPvggXn/9dVbTT5QSmwJE1kSEubk5vPLKK8jJycHDDz+MgYEBbvp+ohJvJQfjGaxWKxUVFVF2djYZDIak8ibh8sEHH5BUKiWVSkVjY2PxNodjCeIupFBobW0lmUxGBQUFKdta1dbWRgzDEMMw1NnZGW9zOIIkqYTkoq2tjXJzc4lhGGpra3MfD+SpPI8nqjdraWkhmUxGcrl8QSGRqDZzfEdCNX8HggI05Z4/fx5Hjx7FjRs3sG/fPlRUVPhtyQr0/VgR6P7j4+M4ffo0Tp06BalUipqaGq4OlKQkjJD8ZbZgBTA4OIgTJ07g3LlzyMvLQ3l5OcrKypCenh4tc8NmdnYW586dQ3NzMywWC8rLy/Hcc8/53SlvqeePdwHB8R0JIyS2OHfuHN5//30YDAYolUo8+uijUCgUC3ajiyWDg4Mwm80wm80wGo1Qq9UoLy/Hk08+GTebONgl5YTkwmazwWAwwGQywWg0wuFwQKFQ4NFHHwXDMMjPz4/avS9evIj+/n6YzWZ0dXXhrrvuQmFhIYqLi1FSUsKNzk4xiCh1heTL8PAwurq6YDKZMDg4iIGBAUgkEmRmZuKnP/0p7r77buTk5LivX7lypd8lxDz3gAKAK1euYGJiAr29vRgeHsb4+DgYhsHGjRtRVFSEbdu2QSKRRP35OOLLshGSPwYHBzE5OQmz2YypqSmv3dnn5+dx4cKFBR2mvo0BOTk5WLt2LbZs2YKMjIy4hpAc8eP/ALQDbYa+QpLxAAAAAElFTkSuQmCC"
|
<image>已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D.若∠CPD=20°,则∠CAP等于()
Choices:
(A) 30°
(B) 20°
(C) 45°
(D) 25°
|
25°
| 69,666 | null |
25°
|
"iVBORw0KGgoAAAANSUhEUgAAAIUAAABICAIAAABXzqEBAAAcaUlEQVR4nM19eXhU1fnwmZk7SyaTmSRkJZBAQhICYSsiFURMQZDyEcGfWkSfmmJ4ZGll84F+bNbHiI9iSaEWFMpiBdkEA5ZiP1lMeFJE2SItCYshhCxDttnvnTt3eb8/3s55LgOEyeTyk/cPuHPuuWd73/Pu50QjCALDMCzLms1mQgghRJZlSZL0ej0hBABEUSSE4M+HEERRZBhGkiSdTieKIs/z0dHRdrs9JSVFEASn06nX6y0WCyFEq9XSeakCACDLsk6nCwQCBoPB4XDExcXhK0mStFqtRqPBgYXfppZhGKfTichoaWnBcev1egAghGg0Gr1eT1vEwocKeJ4nwYFpNJro6Gi/39/Q0JCbmzty5MjTp09/9dVXhYWF77zzDs5LrX4lSdJoNEgEWq2WEBIXF8eyrNfrJYTodDpJkvCBZVlBEMJsliGEGAyGjo6O+Pj4pKQkQRD0ej3HcQAQFRWl0WhwngCg0Wjw50MF0dHRJIgP/BcJs7Gx8emnnx43blxUVFTv3r2dTichpKvU2gngisuyjDj2+XxmsxnJ+tatWz169GAYhud5o9FIGU84wBBCaEOUay1dunT58uX4Cus9hJigIIoiXWVZlg0Gw+XLl30+34IFC/R6/X/+85/Ro0fLskwIUQsZJIhabNDn8+3bt2/btm19+/bNy8sjhBQWFuIDVkNyD6dZbSAQwKeWlhaz2cyybFFR0e7du5Ws6WFGhizLfr8fOQaSJM/zGzduTEhIqK2tnTlz5uHDh5GlhM80wgGPx0MIEUVREITo6OisrKxLly45HI65c+deuXJlxIgRn332mdFodDgchJAwkUEIIQAQCARcLpckSQDw97//nRCSlpbmdrtFUYSHHmRZFgQBAFiWxZKGhgatVvvEE08AQGVl5dmzZ+kr1cHr9bpcLlmW16xZYzQat27dCgBVVVUWi+WXv/ylKIqIsPAb1BJCJEmyWq1arfbAgQOEkBdffJHjOKPReOfuhodPnms0GoZhSFDbIYSUlZUxDLNkyRJCSE5OzrBhw6KiokiQotUCSZJEUYyOjrZarYSQvXv3JiQkFBYWEkIEQfB6vXa7HRlal/al1u/3G41GQsjOnTsrKyvj4uK+//77xMRE7BInSdHwcDIuVLHMZrNGo6mtrV23bp0gCFlZWW1tbQkJCRqNBnWemJgY1N1VAY1Gg0xSFMXa2tozZ84MGjSoR48ehJAbN27YbLY+ffpgv1gtTGCQ51ZVVQmC8PLLL/v9fo1GY7FYRFE0GAyEEADweDxWq9Xn85lMJkQ4KhWo++OK/FQGCgAYjUa/328wGLRabUNDw+zZs2NjYzmOQ64NAGh/4GxxD3UftFotz/MMwzAMs3v3bp1ON3/+fL/fbzKZ3nzzTYPBsHz5covF4nK5bDYbx3G4R+8LGgA4evTov/71r1WrVgFAc3NzTk6O1WptbGxkWfa7776rqamxWq1XrlyJj4/neV6r1Xq9XqPRGBMTw3Gcx+PR6/Vms1lF0usSSJJkMpna29uNRqPVajUYDBkZGa2trdevX7darTzPYwWtVovcHAmo+xAIBGbNmpWSklJfXz9x4sSamhq73R4VFTV//vzq6upFixa98MILWNPn80VFRYW5SxiWZQ8dOpSamtre3t6jR49Dhw5NnDiRYZgrV65kZmYuW7bshx9+YFl25MiRycnJTU1N0dHRWq3W7/eLoojd4Jy7tCtVBIPB4Ha7U1NTkWULglBfX5+dnZ2enu7z+WRZRm1Yr9fj1ldL5fV4PFu3bj1y5EhbW9vgwYMHDhx44sSJxsbGRx99dMmSJajs+v1+ErSQwgUA4Hkehbvb7cZnVLdcLtfUqVMJIUOGDHnnnXfQj9Lc3IyV6VcoYH4q4DgO1SdBEIqKinr37p2YmPjXv/4VAAKBANZBRZEOWBXgeT4mJqasrMzhcLhcLgDweDyBQMDtduOoUK3CxfF4PGE2S3AXt7e3A4DX6+V5HhvCf//85z+npqYeP358+PDhOTk5586dw89kWfZ4PKhj4LTlnwhwldvb21esWMEwzLVr1+bNmzd69Gie53EtsBrFior9TpgwYeLEicrVRL9GQ0MDmu5YSKk8LHxQIrp16xYtdblciA9UFb755pubN28uWrQoOjp6/fr11dXVIa38tJZKa2vr9u3bExISduzYAQCHDx+22WwNDQ34FtcIQcVx8jxfVlZmMpncbrfD4fD7/fQVXVKfz6fsPRwg+J/H42FZNhAICILg8/kAQBRF3IYDBw5cuXIly7I+nw+nOmPGjPLycsQ/z/P4lVp011UAgEuXLjEMs2rVKmQL7e3tDMNs3rwZZ4HTwTXCTaNWv/X19QkJCfv370dkOJ1OAMBFczgcuLDIvsI3CQn6qLEDNDiwRQpr1qyJi4ujU+ro6Jg8eXJKSsq6detwG/7kmyMqKuo3v/kN/sQpFBYWTps2TUmbdIHUApz1mDFjioqKEB+4GjgAAEA6AICOjo7wmyWddxkIBOx2OyGksrISgntfFMUtW7YkJSU99dRTdXV1ABAIBJQcE4dFR6YWSJIkCAKOwev1Yr/Dhw8fPHgwz/O4KDiGHTt2WK1Wr9eLq4aD6ZLfIkxYt25damoqUqooit2fcmf4CAQCsizzPD9kyJDf/e53WEi52a1btwoLC00m0+eff678yul0UnVCRZVGyRMQXC7XzJkz+/Tpc+XKFQjSit/v53m+o6PDZDIdPHgQFNxcXf0Kx3P16lWtVltRUUF76SbcZ3/gw6pVq1JTU2k5LgrP8z6f78MPPzQYDM8884zX61VuTPxWXZKk/Mfr9brd7h07dhBC0BXd2tpKq8my7Pf7hw0b9vLLL4NC11QXHxQBmZmZCxYsUKvZe+JDifBz586ZTKYLFy4IgoCMWBAESZKQRux2e//+/RMSEr788kv8EBkdZaCqAKKW8p/y8nJCyIYNG0DBqbFrrPnBBx/06tWL4zjEYghzVwVwMKtXr87NzRUEQRUv8j3xgbPCaciyPGDAgGXLlilf0d2D26KkpCQ+Pv75559Hzo5r1FVtrxPApnw+n9vtbmxstFgsc+fOxVfYl8vlwjq4LtevXzcYDBUVFTh+rKPuFhFF0e1237x502AwnDp1ShVm0Bm/AsUE5s2bN2DAAFqOPAGfWZbF56qqqjFjxvTu3fvYsWOgIFsVQRAEURQTExMLCgqUI8QxUPJHxOTk5CxevJh+CKriQ6mR5uTkUPnaTQhLfgiCUFlZGR0dXVVVxfM8LZckiXJnWZYlSWpra1u8eLHZbF6wYAFa76qMEgF1+WeffTYzM5Nl2ba2NvoKF9rr9eLuRFi6dOmAAQPwK9VBuRtWrFjRr18/pUkYMdwTH1R/FQQBLRKbzbZ27Vp8K8syy7Jy0CTEQo/Hgwg4fPhwRkbG0KFDqX+l+4DybPHixXq9/vz583cdcIh4KC8v12g0P/74I5aH70QKH3Ajfvvtt0ajsaampvsN3odfKaX6woULBw0ahM+UFyFRUOShNwwA0L9CCHn//fdRH6OqKjUUJEmi7QuCgOVId16vl5JbR0cHNr5t2zaLxXLw4EEqOTvnPzzPJycnYxzhQRgfaKjjODMyMt58800IMhWfz4cP6LwIv8374AMB6Wv//v2JiYk3btyA4EIol4MuH13itra248ePJyQkTJgw4fLly6CgUL/fT41H1JvxGRe6o6MDe6TqHAAcO3ZMr9eXlpai65PjuM6RgcN47bXXxowZIwjCg5AfyoWeM2fO448/7vP5QgyRrsbP74kP6qWBoHbrdruTkpI+/vhjCEoz5GN07bByIBCgrEyW5aampmeffZZhmPfff59uI47jQniLy+Wi5otSbgGA2+1uaGhIT0+fPn06ltNvO5kqNlJRUYGcBGuqZbWF9M6y7KlTp4xG48WLF0VRpOuGY+iSEO1sf9D+qINr2rRpY8aMoRVQeNKpyrcHQqiLwuv1bt++vU+fPtOmTaurq6PVJEliWdblcnWuubvd7ieeeOKxxx6jSTDIze5L7JgtmJiYiGaKusgAReAHuVNaWtq6desgyCroplSNX1E00JmXlZURQpCHKLUsfBAEoZM5V1dXjxo1ymw279ixA5ulmg8VJG63m07S6/Viy7/+9a8zMjJqa2u76iBCcvnVr341fvx4eDAihNKcJEmzZ89+7LHHAABdtEqGEX6D99kfSg+ux+PhOM5sNh88eBDtgLt2hozV7/fjjgkxCdeuXWuxWAoLCxsbGwGA4zh8AAVZUSMcANavX08IKS8vBwVZUFml1G5DgPKNv/3tb3FxcXa7HVS1z3HilAM7nc5//vOfBoOhvr5e2XtX/arh2oMQ1Kmee+65559/HkPToDDglSJaCYgPSZJ8Ph+STGVl5YQJE5KTk/ft26esST+nzqgTJ04QQtBfiR1RJc3tdnfO5SihXL16NS0t7dNPPwVVQ8shuw3dd5RlQRD3OP3w+70PPmivNAS9adMmm81G1wV7VbIsjuMogSMKKRVTuuY4bvXq1YSQF154AUuQd6EChp9funSJEDJ//ny4XWXAfED8qnNWQO2nsWPHzpw580H4CxDovKZMmTJp0iSl8onzUg0fd0J7e7vFYtm7dy/2QYPnXW3H5/NdvHgxPz8/IyPj6NGjcHtahSRJgwYNGjVqFNJXxDY20s2mTZsMBgNaPJR0Qn52Faj4pMNubm4+ceKExWJpampSkqn69ocSZFkeNWpUUVERTQ+ASPV61Atef/11QkhJSYlS0owdOzY3NxdLWlpaImgcAcnlwoULNpvt5MmTIUEzipLuyBUlC7Hb7UlJSVu2bKFvu4qSLuMDANauXRsXF0e1T+hGyFaSJK/XW15ebrVa8/LyKioqvF7vihUrCCHXrl3DkD7cnmsRJsiyrNTHhg0bNnv2bAgK2JBQZndUL6XBAQCTJ0/GpBNcE6W3PxyIBB91dXUMw5SXl6NEjZiZuN1utCj9fr/D4Xj99dfT0tKKi4uTkpJOnTolyzKKk5B4fviAKEGMLl++PC0tjRZ2P7aKhrfSlsIGP/nkk5SUFFRJqAQNn167jA9suqCgoKioCEuUMdTwga4y9Ze43e63336bEGKxWEJ8c53oteGAJEk//PADIeTSpUtYgpyqm+pWyOeI4/r6+tTU1L1799LCLrUZifwQRXHz5s3R0dHUJo94YizLUu22o6NjyJAhb7zxxhtvvGE2mzds2CCKotPpjIyZKFkECqr09HR0+VFAGu+m8Aj5nOO4p59++qWXXqLDVtP+uCtwHFdXV6fX648dOxaBSwCBekABwOl0BgKBn/3sZ/3798emPv74Y41GM3XqVHRfRrA/lAFa3H8LFy4cOHAgy7JKzwKGeLvaOAVsQTl9URQ3bNjQp0+f2tpa6DqlRoIPhPz8/MWLF3fHY4rLhG7E4uLi+Ph4TIjGt3a7ffz48TExMeh9igyUrr3y8nKDwdDc3KwMhChlQJfgriSITVVXV9NQMQrXByg/IKhEfvDBB8nJyeHkCVBFVsncsBBn9e677xqNxm+//RaCW4E6GUtKSuLi4p555hn0Q4DC+KJ6BAqDkE6VIRk6jNTU1NLSUmU7qufBYKcjR46cOXMmlnRpc3cZH3ToZ8+eJYRcuHChc2QoCRB9+CE89+jRoyaT6aOPPkLUKhM18MPTp0+PHz8+PT19y5YtVH1UWuY0CAa3x3+wF+UOnj59+i9+8QtQ5FarnneCI3z77bezs7PpRnyA9ody66WkpJSUlECnXJJOlXqL6U8AuHLlSlRU1Jw5c5Sf0BiUx+PBmbS3t69evdpms82aNQvjUZIkYU6/EjG0fZpHCYpzngCwf/9+rVbb3t5Ojygoz+SpArjtampqCCGnT59WFoYDkfArv9+Py7R48eLBgwdDp/SFU8U7CkDBWzAC369fv9GjR9OaNOhG07pBwVLOnz+fl5eXnZ2N+Sug8ECHjEEZDVTio62tzWq1fvLJJxBM1lIOUi3AfrOysjBD6oHrVwCAEcBz584RQv797393XhMUu4plWWo6PfXUU7m5uSjPadaEkt7pTJSpJLNnzyaE/OEPf1AKBsoZvF5vSHSdhuvx59SpU5Fl0U9UzwfHYa9cuTIzM5NmDYYJXcaH0nnJsmxaWhomDNwLlA5Hmg0tSRKeR0a7Dy1KukBU/ns8HhrEpXIeAM6cOWOz2VJTU7/77jsl/qjPX6mFU2cz4mnz5s1ms5mWi6KoYtIeKMQVyteLFy/eVd24F3QZHyH8etGiRfn5+fclAWRxlAVt27YtLi7uiy++wJ/K3YN1lPl2EESGrDj75XK5lixZYjab//jHP1Krm37i8/lCHHlU5tfV1Vmt1iNHjtDpqMuslPIyNzd35cqV0BWWFQm/QiLFf48fP67T6agyeifgbJWxh8rKSoPBUFJSQoPhITOhDIeyeEr1IRrzoUOHrFbr9OnTT5w4gZ/QI0lKEaJMLAKAvLy8OXPmhGQbRbAO9wLqQCouLh46dKhq+Qx3BZpwRQ+hxMfHr1mzhs4txKGNDzTu29zcHBsbS3Xz7oPH45k0aZLVai0tLQ0JxtCMAhw2HfDGjRvxPC5tRN1UBxqlPnfunFarvXr1KtweuKXd3dlvl/ER0qjX650xY8akSZNAEVKG24UkDYyzLPvkk08OGjRIxVAddrR582aDwTBp0iTMXxEEAaP9OB5qOSJZnDx5skePHpWVlXcOVa3xYEd2u71fv35r1qwJqYMnxO/6eST8Spnk4Ha7v/rqKzyRj9PGniiroWtht9tnzZqVnJx88+bNCDq9F1ATpLW1ddy4cSaTCS91UVagzzgkr9ebl5f3+9//HgvVvW0GF4fqCMXFxcOHD8dn6jJAn+xd5VYk+FCqsDzPe73eqKioTz/9VBmkpMnUNKdty5YtNFNEXX6Np4FRo/3oo4/69u1bUFBw/fp1HElI4iSuwm9/+9uBAwdiubpxdcQHzff44osvYmJibt68iXSjdBbcVZWI0B4ExYoDwNSpUydMmEArhHQjy/I//vEPrVa7a9cu5NoqsgjqQaH66+nTp8eOHZuamrpr1y6sQ5kDzXH55ptvCCGYxdp52lhXARU52qDdbs/IyPjLX/6CP5Wenru6YiPxl9BNR7WXvXv3xsbGNjQ0hLjncCGqq6stFsuCBQvoLlZX5Q85O4u9v/XWW4mJiS+99BIyzJAgJsdxycnJ7733Hv5UUeVVauq49C+++OKoUaNoBeVprjs/j9B/RY0sdHLgfZ5bt24NyXIXBKG9vb1///4FBQV0zurya1QuZVnGgAp1TAHAsWPHRowYkZmZiYleIWm1c+fOHTZs2IO4qiyko927d1ut1mvXrmEhxdZdjbZI4oOg2GsU2yNGjHj11VdpNZxnIBCYMmVKQkICzbDuZCgRg8/nu3Pvo0QJBAKrVq1iGGbevHmguA9AkqQjR44QQtCKUtckhNvdzE1NTbGxsQcPHgwJbFMZo4TI4x+gcDrxPL9161aDwYCZopRfL1261GKxnD17FoKbSQoejZEfPECQQk+ePJmXl5eVlVVZWSnLMsqwW7duxcTE7NmzR5ZlFe+XwMaVDgWWZadMmVJYWKg0VOGOPCasHIn/CgUg3Rk0bZAQgn4IZNZ79uwhhBw4cEBZTd2d0fk4QXGw4erVq/PmzUtMTHzvvfcojyouLu7Xr5+KwQ8Iikzsgra8efNmk8mE2kSIJMPNTWtGHq+lnjhJklC9KSgoKC4uxt1z/PhxQsj69euxcsghcPl/8Yomn8+HpMOy7N69e9PT09PT0/G2tdLS0oyMDPn2kzWqAFVBcaGbm5ttNtuePXvwrcPhUGb3ImAieYT4oEaGLMv0RPr69ettNhsAdHR0WK3WV155hfoQKX+n5oj04EHppadqSGNj4/Tp081m85/+9CeO4/R6/ZdffompOqqALMtKw0IOqluYOuPxeJSsDBQJvpIkORyOCPWr5ubmhoaGmpqaa9eu1dTU4KbDPLmvv/765z//OZ6EgNtNDZZl1T0Bfl8IBAJ4YZkUdI3gALZv356UlDRlypSRI0e++uqrqodAQLHiiA+8u1WZXu12u6urq+vr62tra2lYocuXCep0OgAghGzcuLG0tHThwoUxMTFvvfXWZ599NnXq1BEjRkyZMiU+Pv7777/HJE+bzebz+QghBoMBRb3JZNLr9YKqtxPfCW1tbSkpKTqdzufz4V2byBD0en1ra+srr7zy6KOPzp079/Tp0y0tLS6XS62rU/FudUS82Ww2Go0syzIMk5ubSwipqKiYPHkyy7L79u3De1yHDh168uRJhmHmz5/fs2fPSC531Gg0KSkpTqeTZdkFCxb4/f5169a9++67w4cPX7Zs2bRp0wCgV69effr0wQsEWZbV6XT0blK81Rwe8FW+ZrMZL2bT6XQMw+Cl7gBgMpk4jiOE2Gy2xsZGo9F4/fr1nJwcte65BACNRiOKoiYI+OcXZFnu2bMnXk372muv7dy588yZM8OHDyeExMXFNTU14V2xXR6EKIo6nc7tdp8/fz4rK8toNH744YeCIJSUlPTu3Ts1NbW2tratrQ0HIQiCTqczGAx4CS7DMLhL1Jp8J2A0GvFohMViwUu7LRYLx3GSGDAYDCaTqcPhiouLw7/e0NLWamCMoJE1oCWkWxfCisErTLE7j8djs9kCgYBWq2UYJj8/f/Xq1Z9//vmmTZuys7PxEzySqdPpbt26pYmATj0ez6VLlwoKCmbMmJGenl5WVrZ9+/b8/Hx6xShq4lqt9qe6dPTeIMsBXqvXy4KgNRj37du/a9cuW2z8pP8z2aAzbNqyacX/XfHIIz8TBcFsNqneNwB0dHQMGjQoEAhUVVWlpaURQnDr6HS6/65VV8UUqmjLli0jhFRVVQHAI488kpWV5Xa7OY6Tg4fm7uVP/qlBAlngvU6QBQDhcnUN0ZD/eW66CODy+T/Zuft4RaUIIAPIcoR54p0Ax3EdHR2xsbF9+/aFOy52RI0jEn1XkqSsrKzs7GyUkNnZ2Xq93uFwKFNypW5njz8YkHzONpADIAvVl35YV/qnqGhzxclTIsDlH+tEgDanRwQQRFlSe+y4Mg6HIzY21mq1NjU1AQDHcWfOnKGnW2RZ7jI/4Thu586dP/7445NPPnnjxo2ioqKGhgZM2kCJjdVQeMLDd/++2WolRCaS1D8v7+DBgxzL2u3212bPQ29CrM1C/iuTCSEENUNVAIVubGzsoUOHevbsOW7cuJKSkvXr17e2tqJ+QQgRBKHL8kOW5bKyMkEQhg0bdubMGb1eP3nyZIfDgdwQATHxUP49HRkCfgBJa4hqaLiZnp457bn/+cuHH3/19f97/PHHe/XqpWc0gghGRsPzgsmo5o30KOedTmdsbKzf7z9w4IDX683Pzx88eDD+JQC8DT6S/F2Xy4UhFzF4JywFOXj66KFkVgAggRzwOVtAFkrXvq/XMX//x2HOL/p40c3yLR0uEcDrF2QAt+cuztduAvWb3bx5884LYFCERJgPBwpxhLhBi//hRgYASDLvA9nfWPdjQg9bfGxczZXLMsCZCxfnzV9UXvktL8F/5XnwbKOKfbe0tNzpnnC73UrvWST6LnqnjUYjKrVEoXQrAYJ/Dk6dDa8OyETgCaMt+/yLr08cT++dGZfYo0d88r9Of2uz2ZYuXcroiCBKIEomk4EAqMhv8U9OoFRH94Rer8c/lCfLMjIrvV7//wGeTHSyjhxhrwAAAABJRU5ErkJggg=="
|
<image>如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,连接EF,若BF=12,AB=10,则AE的长为()
Choices:
(A) 16
(B) 15
(C) 14
(D) 13
|
16
| 69,667 | null |
16
|
"iVBORw0KGgoAAAANSUhEUgAAAP0AAAAZCAYAAAD64ChoAAAH20lEQVR4nO2c63JUxxHHfz1nIZWveQCnLCEwF/sZEksrkSoHc8m3PACshG0uLuxXCEgubJeAVJ4hYsFVoYQweYYYSSQUKfsxjM6Z7nyYcz+7iwhYWonzr9raPds9l56Z7p7pmTPiTc0hmHlEIsowAPO4qIOp0aLFdiAimO3d8bLf6+8yhQfXTAwgUar9LVq02CtQ1aE0V3j4wKQlDVfVoPiDs31jFWzRosWbhXNNJ57Tsim9SISZ4UpqPihhYUGGZ9qiRYudxassR8RSbqWq8BUmGe7vW7RoMX5Q1aF628l+BIVX6h5cVTEzzCsSOVR15NShRYsW4w038pFiii9R+i2lNT/+l6tZixYt/i+MCuIBOCsxhih+gfV7N7i7XmRgRr6tZ4C0Uf0WLcYOL5uJu/Ksv7wGSGydy6evVf4rLxEEMGmn+W8fml4kcxZ72QeoKguzgkj9M8PmPtupyrU2WAeXd+DXF5eRbpfDxxnam2L7qzFaDEexlBtwnkMExWph4L0xNrKh7Zxj+aEx34WVJz7EsdS40YPjrst6Lk9za3tccGEuNVSuMFrXv3vS4HMQLHXWqSIRK19dIJ6dIVnziBn1oH4mcP0EX4v9h2xcOIplHYTgbrZ2vLs0T8dFYaDNXsCzQe+TxbFUjDqEYqbi2eAp83x8Ij3RJnB1eZUL3cdcmr+ZpnD51va4yXdn1ZjvCkv9DbwpP/Rv8MWpDypLdCh7+rRT2ezzSGb4ckr4Z3eKowOm8MO29lrsP+TjIoWk/4oI9qyPiLD801Sxy3Nzlo47gbz73p4ZJ5nz2rz3AHdkAofky1qRiMnJab5//gyoboWNk3xmPhittd9z8lRo+/enJgbyOqh67Iu3HnHr8p8AmD58pMJctWx7Y/rW4vVRBHiLPvf2lLmj55juLfHo26sF87GzLPZmmHh3cmcr+QawurbK7PRc46DL5NQUEA7AZEGyetB7tyEibN77B7Iwx7HUly98eo7pi4ucOVF13K6syCtfnWd5eRkRwR0/B1KfFkjlqcXbgcIpZH2u3L/5Dd/Lh3y7fCn/L8PEoUNMTh3dwRq+HlQVzwYPbsd8dPpYJXht5nn+7BnTR6ZqQe1xW9o6nv/3Jx4vf5Gv52dueh5+/VmTM1fkzRUe6UlMDTPjX/3rHP7tBFj1iN+4WbgWOwjLFOQpt67cobfU46i4dHwUTuDM5dvBu4zXknconHOw8RzpfRy8ZKne8vQ7rt15zB9mTub/mfmxFO3h6i3uritqxsqNBc6+H3Fvc8Dy3MxgcwW59JDlq38kJiG2hH//+CMIGD5EZ1VDhHbsLFyLnYCZhYMaQLT5Hx4JTE4Eb555wMw55IdDxmfJOwKhrvdWH3DonXeAMOYhyLNw6QzMXuDKqfdIiYhE6fnV3Vd9s+Ck2Vzhjp3n9HFBgFOf95gBHj7oNxy1W1roIsfPwdrf6G84Dojjs1O/4c/XbnPn87N0P70ZGJ3Lp/d5JlZ8KXGapeaVySu2x+n7HduW30lx8MOqh7OCQ0gDXLXDIbvdf6PpDs8Gt6/+lbmPzgY5zMFmH+cct+hhq7cLZ1cyZLk+7GL9s6n83dU1erNzKc0HwwwcOnyk6agthWY/zFussSVWQKsMgct7GwZfSb3/6HsSpf57Vfm9JaaqZhb6PLF1+1Cw3o2VRkpb/7st9tdDkTq4nN3uvzL9h/51S/XKEIrfYIv99bzZfKkBVbWhD7tV/+yf+S628qTony4Y/M42rKmnlB80zSAovVqssb3QLXuhW6ZmphrblsYWlwqLNbafk9hiLbdCbHHKu6WJxZVyvcX6IqepmTXth8/z3tLYfk58zSjV02vOG+qd0cNAfZHEpecs/1JpA8sv00vPtc7WNM/se9zo28HL5B+ElaX5XDFC+WZP+teNbq9RhZe37+7StwNVHfj7TZT/OvT1+4sVQ5V/uudL3NX65q/WFlASU5AOHZTEjEgiTBXnhMSgIwJYSnOYJqiQpjES84h0iACzhC2FX0UdDMPXaAkRUboVYvnsqZyHEfsYiQ4SjUwPsSkgdCRCUjkMhzOIHMRmKa0mcfrmYFF+YzZURG6HMWV8yNjSFV/dd09l2Y78Js196Sf3/8IHp7/Ml3kznyyx9s2VojxNcK7z0vx3m16VtXxtXPOt00EYh/pXxii1PqslrCi9954oErZ8QhQdzBUrBg5KB8PjidJh40nSa7YMw0iI5Nd08MQmdCQbIkpsiojRwTVoiRkOB5LgOJDVhNgcB0oBIpMENzL9FmpRbhAy4yXSwZlhDXq1waxS/oBGRZEssjug5XOFGlN6eVAMHiDD5Vc8Ym70vQovMYaj8t9NelnJszslsu+GSGq1t1V2v/6DEOISGuQa0C9DPH3w7lWvG0F6/DB0vmfLhIONE3ue2Ch51HJ+o2j1PMrKvZ28CyWvK/3g5xbbxVB9rilB+SIWS6PKe+XuhUEXw2ZQ1RDErN05MS53S1TbPcgRLrW1gYY6r7FZQpzrf+XdOyJAzWNStvYOh5LkfJbO8oKN9HleVqrSKFoZglTe1t9O3i1+KQxt35rXK/eEiIyFQmwXo7aiyztX5en+uMhXbff0+juG33iVe/qwPk4zaXhDIzEd4pELQ1H1wJoratVjD6OFGUWIC7xq3iGt5bwOP/K5ua5v0eJtwYDp/SAY3iBq78pr0WLP438fufIWpkXqIwAAAABJRU5ErkJggg=="
|
<image>如图,C是线段AB上的一点,点D是线段BC的中点,若AB=10,AC=6,则AD等于()
Choices:
(A) 4
(B) 6
(C) 7.5
(D) 8
|
8
| 69,668 | null |
8
|
"iVBORw0KGgoAAAANSUhEUgAAAIwAAAAWCAYAAAASPXQbAAAElUlEQVR4nO1a3W4aRxT+zmIpfQ0bG1WmfQck77rOTe30KeIlrRLHD8B1CrEiGZqHqLqLexE7IJV3CGxbJ/ZbOMaVma8XsMvu7ILBf4DNJyF2ds7MmTnzzZlzBoQkoaFQKES+53h8IAkRib03JjCWqUahUHiUG0WfdxJZgATCJDicOW4BD4WIMcKIyEB2zTHHQtJLkmg0Gg9iR4yLRqMB4Pbjt0ajEcQF0+7FB8UvAGD4gw9PolAoIJfL3cfYJg598XK53J3NfRbIAgyOXwBA9CxpGLvmuD6mPfMcdd1jhJmji/nGSYYRZYuKlFrVEtzWw+VTfr0b4BuG0f0WgYgJDwoCwTgzVwnS+l6cxN4cTWd33d23+b491m0QHvL5UkTSiO6hftJEeHi5tXvjAU8zyh8J2wL++NQBSSgSRVuQlXV4QozjX4yetE/CMBFL1RaA4bHBXUHXmUigv/+EiKB8utS1g1Lgux9gSBaSXobeAUlSMYpS3qZlWWxFajpUql8OP88GOpGS4ieuWfmYlG2BZr54jb47Qfui2yRJNt0iAdBpXcZaTNp+iqRiiyZ689WGU7TNYB4+ApciIfa5b/OgZULVlHZIRRk7U2c8Af3ayaseQTKLMdGlFRP145MxFRg9NR7+ra3h6eYqAODblaWe/vil+qTtJwAO9iqoYw3v9negu9R0OoP08mrk3QLRlxMRwHNRo4XyCrBrZfBdpBcDZAciqe4CiMLM/LqQsDaHH4+wsb7XK6nuogqQTi8Dn8dXQRjwqh8g+adYpQAC/PLyJ5j5Iray07C5outFeNjfKcMuOliF9Na0L721U471YEA7015U6ii/3gIAmJl0rIFIqvegQE6DEa4HwsOHigo8AWDAn87JyZfEuV8FgcLnk1PUy7sQoxvHWHsKtf1XtzfwGyG6ucU7Rh3A0vIKAJW4qWI9hN3i729e4P1v77GQWoBkn0HPmkiGgiYDIjOQQQ0YonjHfU/gvwOA1gF2K3VsWBvXUGagdliB01QgCadk49n3BtzWLGys0U6KvpTn4q+UibOzM1x2LtF0i8gsrkQM7kf/YdJMPfy1ChOHgHtYQ2YxHdtV+VebgLWN15vZ8XV5LirMB8fP5s7PMAnUjw4SxXkfaXZEheYAVjMwAZx+iZ+//KeKkusl9EeSLYewtkmS7fM2SdIp2bSLzoD4utMPswdKxLOCSdQnZSJ+ZuA0Q3UthwACO1yFsH6/F6f0PLCZCvUZzjRGzYvuyz5OyaaIRMbYdIsD7YCibbEX7tBpKrbP27StbjllpGhuvwlI1D5vBx+SpGKs7A8mJhuq/3p+Fq/T2g/SN6x9+2s7Uu/3EYaf5iZ99BQyBm18ZJSQttUnoU9KYC24mriSLAn930e9bpNhVwoIOlIkOyq+CEG5ewcTrh/leZy6UdoMaq+TS38eihtehzSrvyaT0BzNW00bIl5Zs0337w39vHrIYWjgv4sLPPnmSeTtRftiSJvbga5zkMxFOzq+UdoBGCk7GIbsj7sgH86teOR+SLNN4v9hwkhaCL1+jseDIM25qae4S09zH15sjtHwP0cJf7WsZkP1AAAAAElFTkSuQmCC"
|
<image>如图,BC=\frac{1}{2}AB,D为AC的中点,若DC=3,则AB的长是()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
4
| 69,669 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAIUAAACJCAYAAAACGPtHAAAlRElEQVR4nO19f1BU5/X35+7yij9IVpu1rnEVlSWuIZ2sWVKZSF2MGHe+IpKiwVRMyJRoMuRtyRtQ25BgJjijJmnIaEYM7bhM6YRUUkwlEQHrpZEWqymbCVby7m6EAUcI+LIUTCHZ3fP+sdxlf9z9fVlW088Mw957n/s85957nvOc5zznOQf0XxARkY3vnM1Gje8VEQD7X2Yx2chAe4qPTZSwRpLEiEGE/wIAwLgdk6kRIpEIR42JICIQEWy/SYeISQQplk+UujNfX8x0ExANILgyBcGILMVGZO55Dx8detZxnkl4DMf2bAazfLlHHXcS/ssU4BjCBq7nN1dW4M9MJgyHfu7BMYpEJWiZwpOT7iAwRETTTcR0g4jAMAQ7UxixWZSIlRVncXjXYxMFMMEAk4xzJ+POf8IAwDAMHK/CdA31BCQ4DxEOifD9eF3fj6f0AQ8xycBlWPg+CtLvPVN4zDqWL0MmAaavvgIIE8OKHTZTI443GyNL4HRgOufDUQWb3S5BRA7bREWTwXHZ0HiMkFk8XdRFFFPGFDaafMnRgGBpMTQemzRaAZS55/gUURZ9CH/24W1qRgAxt/esjYgmlFD+4zsV4esUXt4RgaKKIYLmfYIHA3wfGAIQUNHcs4UBw9j/RCIRRCJRVCll3AflYw7y+GHzK+K4ceVOhEBMYcPhjwjFmcCxJgNsNhsMjcfw3IZENJmEaSFYeJMMvL2dK8twhxMM5KN+hm7vodEXwmYK+8sXgciAztMZSE9fDsCG5cuW2a8zfOWnHsGIeo+yE8c+a7hTOQICrH1wL9TUfA5M8WYoJvhs30taZO45jseW85efCrS2tqKvrw9ffPEFrly5goGBAce1rq4udHd3u5SPj4/H0qVLHccymQxKpRIqlQoLFy7E6tWrnUrbQMR8L/SKgGcf/jTvpspiPLbrTXulAM4aCRsSBKGRF3q9HufOnQPLsmhvb8f169eRlJSExYsXY/Xq1UhMTIRcLneUX7p0KeLj413qMJlM6O3tdRx3dXXh2rVraG1tRW9vLzo7OxEfH49Vq1YhLS0N6enpSEpKmrqHihIExhQ+VgS5S3u2MNjwGzsjNFUWY+Put3DWYBOMMbq7u1FfXw+WZdHU1IT58+cjLS0NaWlpUKlUjo8l5LRxcHAQH330Ec6cOQOr1YqOjg6YzWasX78e69atw6ZNm1wYT+j2pwsBMIXryiBX2MX/wNQI0f9pBn10eKKMEVuYRCiPO600Bgkiwr///W+cPHkSVVVVMBqNyMjIQFpaGjQajcfHcL83mA8zOjqKzz77DB0dHTAajWhvb4der4fVaoVarcZnn32GWbNm4V//+hfGxsbQ0tIClmVx6tQpqFQq5ObmIjs7G3FxcQHTE9XMI4QFrPG9Iio+ftZxbDOe9TATB2NRrK+vp9zcXJJIJLRz5046ffq0EGSSxWIhlmWpsrKS9u3bRxqNhmQyGYnFYtJoNJSfn08HDx4klmWpr6+PiIh0Oh1pNBrat28fabVajzpra2spJyeHJBIJ5eXlUXNzsyC0Tif8MkUgn7I4E9Ro5MobKBMgYDMZnHwYA2GK6upqUiqVlJ6eTtXV1TQyMhJA6/y4cOECVVdXU2lpKWk0GoqPjycAtGbNGsrNzaXS0lJiWZa6urq81mGxWEihUBDLsmSxWCg1NZUOHjzIW9ZsNpNOp6PU1FRSqVRUW1sbMu3TjaAlhfOndV8fAEQOB9dAYbFYqLKykpYsWUJarZba2tqCoufSpUtUW1tLpaWlpNVqacWKFQSAkpOTaevWrVRaWkoNDQ109epV78/kxrDcMSclOPT09JBMJqMLFy74pIllWdJoNKRUKkmn0wX1PNGAoCWF8/vz2fcDEDE6nY7kcjllZWVRe3u7z7IdHR1UX19PpaWllJWVRQ8++CABoKSkJMrIyKDS0lKqq6vzW0+gGBsbI7lc7sEADQ0NJJfLaWBgwG8dFy9eJK1WS/Hx8VRTUyMIXZFAgFPSCWWTdxYSnIsaEUGv1+MXv/gFAODIkSNQqVSO6yaTCV1dXfj000/R2dmJ7u5utLW1QaFQYOnSpVizZg1WrlyJpUuXutkRhAFNKIDvvPMOWJZFXV2dx/Vf//rX0Ov1OHPmjNf7nXHx4kUUFBRg3rx5OHLkCJRKpeB0C4qp4jY+HcJsNlNRURFJpVI6cuQIsSxLZWVllJeXRxqNhgCQXC4njUZDJSUlpNPpiGXZqSLRK8bGxkgmk5Fer+e97k+/4OD+DioqKkgqlVJJSUlY+tJUI2JONq+++irNmjWLFi1aRLGxsSSVSkmj0VBRURFVVFQQy7I0NjYWKXJ8ory8nLKysnyWcdYvnD++P4V6YGCA8vLySC6XR+1MZcqZwmKxUGFhId199920YcMGOn/+PJnN5qluNmSYzWZauHBhQLqJN/0ikJnW+fPnSS6XU0lJSaikThnCdrIhH0aY7u5uZGdnY9myZfjuu++wbds27NixY0raEgr79+9Hd3c3Tpw4EVD5X/3qV171C18gIgwODuKpp57C6OgoamtrsWDBglBIFh5CcZd776irqyOZTEYVFRVERKTRaKihoUGo5qYEZrOZpFIpGY3GgO8JVL/whTfffJNkMlnUDCdhMwXfeHrw4EFSKBQuIjgpKSloG0SkUVpaSnl5eUHfF6j9whfa2tpILpc7OtF0QlCmICIqKioilUrlMc7K5XKPHhhNjr2clDAYDP4L84BPvwj2+Xp7e0mpVFJZWVlINAgFwYYPi8VCubm5pNFoeKdbsbGxPg0+080ghYWFtGvXrrDq2Lt3L+/6CFHgz2c2m0mtVtPu3bvDoiUcCMIUY2NjlJGRQVu3buWdVo6NjZFYLBaiqSlBX18fSSQSxyJYqBBCvyAiGhkZIa1WSzk5OdMyTQ+bKaxWK2VkZPgci3t6ekgqlYbb1JShsLCQCgsLBalLCP2CyM5gW7dupZycHEHoCgZhM0Vubi5t3brVZ5n29nZSKpXhNjUlcJcSQgxjwayP+GrPYrGQVqulgoKCsGkKBmE57hYXF6Ovrw/V1dXOU1yPcjdv3sTcuXPDaUpwcHSWlJTg2WefddgIhLCDbNy4Ebm5uXjqqad423SGr/bEYjFOnjyJy5cv48CBA17rEByhctPBgwdJrVbTyMiI395VW1tLGRkZoTY1ZTAajSSVSgW3sNpsNrJarX71i2CUT6VSGbHpavD+FDYb1dTUkEKhCFgxq6ioCGn+P9XIy8uj0tLSKas/GP3CH4Ncu3aN5HJ5RAyAQTMF17v41ga8PdiBAweouDi6dmwHIiUirV/4w4ULF0gmk1FPT0/YdflCUDrF+Pg4tm7dirKyMhcfCA7exsehoSFIJJKQhrepwv79+/HCCy/4pCtY/YJ4xntOv9i5c2dA5X1hzZo1KCwsxJNPPgmLxRLUvUEhGA7avXs3PfHEE0FzXl5eHlVUVEy7gYpDe3s7yWSyiPk0CGW/4KDVamnfvn2C1MWHgJmitraWFApFSC8yIyMjqhxZs7KyqLy8PKJtcvpFa2tr2HUNDAx41S+E6HgIpCKz2UxyuZwuXboUUiMpKSlRswLISYnx8fGIt33mzBlB9AubzUYsy9KSJUt8WjxDZRAR4H/sfPnll7FlyxYkJye7Dz0BDVFmsxn33HNPiAOcsHjttdewb98+zJgxI+Jta7Var/qFL7i/Z4ZhoNFosHbtWpSVlXm9L2Sbiz+uuXTpEsnlcjKbzSFznlQqnXKNORCwLEvx8fHT6vYXiP0iUPT19ZFMJvO5fSEU+GWKlJQUqq6uDquRmJgYlw8xXQqnRqMhnU4X0fb52hJqfcRms9HRo0cdK7PB+Ir6gk+mqKysdNkMEwoGBgYoNjaW91okPw7LsqRQKMhisUzrLIhrWyj7hcViIbVaLagi75UpODf3cDfXGI1GksvlYdUhBDgpEU3wtj81WFy4cMHB8ELAq/Hqt7/9LVJSUniNVMFgcHAQUqk0rDrCxdmzZ3H9+nXk5uZOKx3OICKUlZVhdHQUhw4d8rgWDNasWYN7770XNTU1wiyY8XEKt7HW22aYYNDQ0EDp6emO4+kQ3SqViurq6iLerj/YbDbq6emhhQsXhq1fsCxLDz74oCB08UqK6upqJCUl4cEHHwyb6QYHB12WzYV20Se3nuF+fOrUKQBAVlaWoO0KAYZhIJfLceLECeTk5GBwcDDkujQaDebOnet43rDgziWclBBqo255efm0+htGm5TwJilD1S+c62NZllQqVci0cfCQFKdPn0ZiYmLYugSHwcFBzJ8/X5C6gsWHH34IILqkhDdJ6U2/CLQ+IoJGo0FcXBxaWlrColFEE+KW+19VVYWnn346rEqdMTQ0NOVeV8SjXFmtVuzbtw9vvvnmlLYtFMRiMd5//32Ul5ejtbUVQHAKJ8ccubm50Ol04RHjLDa4vQ9CWvxycnIiNhV0FqXuAUduF3D2i6+//jqg8u7DkdlspnvuuSestR2X4aOmpgYZGRmIjY0Nj9OcMDw8HLEpKddbrFYrysrK8Nprr/GWoyhO7OLNv9Mb3APKSyQSrF271iOuRjBwYQqdToe8vLyQK+PDwMBAxO0U1dXVWLRoETQaDe/1qI1KN4FA9Qt35mYYBkSEnTt3hjeEcCLDYDCQXC4XzCpGZBdt8fHxgi/Y+IK3sES3G0KNf0FkfwfcImQodiGHpPjwww+xadMmiMXi0DnMDQzD4ObNmxGVFBUVFUhOTsaaNWsi1uZUQC6XQ6fTYfv27bh586bjPCcNfCE2Nhbr16/Hxx9/HJpU5LhDq9UKHqzLYrEQAEGljy8ItV4TTQjVflFRURHy7jIQ2T9eXFxc2Hsp3dHX18e7XXCqTN2BhCW63RCqf+fVq1dJJpOF1CaI7LERpmJbX0dHBykUCpdzU8UQZrP5jpMSHEL1v3B3wAn03YsAgGVZr5p6OOBzw5sqzf/tt9+GVqsVzBIbTXDWL5zXR8iPbqHRaFysm4G+ewdTrFu3LhR6fWJgYADz5s0TvF53DA8P491330VJSUlU2yDCwcaNG7Fjxw4X/05/H3ndunU4f/580G2JAHvujJSUlKBv9gch1z18fey3334bGRkZSEhIiHobRDg4cOBAUOsjq1evxueff+5x3l/HiRkeHsbQ0BBvqgQKIxodEeHmzZuCeXF7o4OTEm1tbYK0E83g1kcefvhhpKamep12c99NoVDAYDDAarW6mBr8fVNRZ2cn7r//fl77RLi9zmw2T7mNYv/+/cjOzkZCwhSmIYoieNMvnMF9t7i4OMjlchgMhqDaEHV2duK+++4Lm1g+wgYHB6d0D2l/fz9OnDjhdY3jTkUw6yMrV65EZ2dnUPWLjEYjlErllChoZrPZRacQuo2DBw/imWeeiZ6gpBECEeHAgQMYGRnxq18olUqYTMHlAY3p6OjA9u3bp0RB6+vrc9Ep3Ff03M8FA05KfPnll+EReRuCSwr8/vvv48c//jF+8pOf4JFHHuEtm5SUhAsXLgRVv2hoaEiwnuYuCfw52ITDiO5hiXzRcaciEP9OqVSK4eHhoOqNGR4edny4/1gnYx7MEgefspRbrOE+9s2bN71OScNhCJPJhFOnTsFo5E+bfadOS/lmg87xL/jig8+bNw9DQ0NBtSMaHR3FXXfdBWCSEUJhCA7ORA8NDfmckobaow8cOICCggJBlFhyOwiGpkjLo1D8O+fMmYPR0VH7gRPBHrQ7nYgZHR31mjoxHHCE+Ko7mB7N9RKTyYTTp097lRLBgnE7YDDpCMsw9pTdAd07jXC2X7jrF3Fxcbh165b9wJHLnezP6fwATr9Fo6OjmDNnDm9j/7FaHH98x87n3HF94GvMW/BD3mt89fhrn2Og/fv3Y/f/fgEz4uZ43O9Op/M5ADh37hxWrlyJVatWOZxjvcHeXtip4CMGb/pFXFwcRm6NupRlGMYjB7097ddkAZcVsm8s3wV87Pz71nffupy/dOkSJSUl8d7jvFrnXr+vdtrb20m2ZLFLNB3u2jeW7xx/zsfOZZRKpSMzYkpKiqMO19VDK93OcPe/MJvNJJFIXMoUZzpniOT+JlOGBtUV/mO1eOgb7j2Zg5AOu1yb+/fvx0svvcQ7JPHpQ6HpRiIQkRd9wcZ7NprguT7iSfPhjwjFmUCjkezPSoRje4BE5qcwwgbExcXx9jxnuPc4X2W58zU1NY7wzFw5m81Gt777NmhJQTQZlmjo1qjXcv5+Nzc3k1KpJJVK5cM34faSFP7iX/T09Ljt+reSjQyU4Zw7dqKK4kxQ5p7jJOIUEX/juz+43282mz1sFJzRJdgp43+sFkdYonC2H6xfvx5Xr15Fe3s772KSsakCDCN20Lhl73shtxUp8OVQd14fuX79ukOy2qWfCKamZoiUCqdK7BeXKzfhz51GiOLi4hwzBb7hAbCLYb5r3Hn3a7PEMej7fzcx94fz8Y3lO49rzgqk8zV3OwlX5h8XWtHe3o7nnnvO6/18iqW333yo2JuJxMc+gYGsICLYyAAc3o3MPcd93hdt4JiEs18UFhZizpw5EzMOO5qbP8Gm9EcBOE3BGWB5ghIgsjPFyMgIZoljQhqDZ4rEvPeZvx6A7Af3YHbM//K4xrXF3ccRxsd0s8QxKC0txWuvveaQErPEMR7tutfp7TefrlCxNxPPdypB9GcoJmYcDBR4q/EYTr/xMYywud0XfboF8dhXysrK8M033+D69euTe05hxCdvEB7dsByAq6T5yvR/sVmpgEgikfg1g3qTIO6VOiOYFVJfw0lLSwtvwJHgrZb2D+lyF9mHjOcPn0bjbw573OH8oifvsyHM5AdTAvf30d/fj9dffx09PT3o7+8Hy7L2C6avwBRvRoLLdNsGMjXi+cMfY9Nj6yGaN28e+vr6eBsKxJbgDeH6UnAfpLS0FCUlJeHvRyGRp5hggPeOPo/MPcexwcUdwwYiQlf3V/C8SeTEIdEnMc6dO4ft27fjgQcewPj4OPbt24eFCxdifHwcAND8lyasUCxxM7yJsO+ljUDmS9idrgBKSkqmJJJ9SkpK2Lu0GhoaPGI5CekNbiMDZTCgiib+ZHKcNh7tMJvNdPToUVIoFI5ohtw7y8/Pp7k/mGcPAEcGygSo0Sm/n814lhiGIWyZnI1Ap9N5bBoJ9cU736dQKILaLsjXphABR3w9i814ljDxktxLGZreJQB01kQUrdNUvV5PeXl5JJVKKT8/3+N922w2UigUlJ2dTYbGYwSAGIaxMwFAgIgArlNMPiPa2tp4o58Eyhje9jlKpdKQNhdxddTV1fmMyiKExOB6jruk4M5n7jnuyS3TjLGxMdLpdKRWqx2JYXzFSxeLGfrkk0/4L/I+m5VgNpu9xrkMBwhzu6CwYYm89XQrHduz2UV0ctJjc/H0J411htFopMLCQpJKpZSbm0ssy/q9p6mpicC4fwf/Ug9E9p1EXV1dRCRMDxwYGKC4uLiQ76+trRUs0hsf3J+waIvrOkAjX1braZIYNTU1pNVqSS6X08GDB+nGjRsBf6PNmzfTggULnM64MwQ/g4BImM3FzoRevXrVY7tgoLBYLJSYmEjnzp0Li57bDc7vr6+vj1599VVatGgRabVarxLTF3OMjIzQ7NmzKTs7O+iOLgKAtLS0kHYSOcN5njw8PByyA0x1dTXuvfdePProo2HRc7uBYRjHdDIpKQnffPMNWltbcebMGa+B3HzZaj788EPMnz8fGzZsCN6mQyT8BuP6+vqQts9bLBZKSEgIaLy8U+A+ndTpdIKEbtBoNDRv3ryQAsbEAEBycjJ6e3vR398viBOv2WwOSVJUV1dDLpdPyWbnaMPnn3+O8vJy1NfXIysrC6dOnUJSUlLY9RIRvvzySxgMBsycORNKpTLoOmIAuztXamoqWJZFTk5OSIQ4i6gbN24Ebc0cHx9HSUkJampqgm7/dsHY2Bg++OADHDlyBMPDwygqKkJ5ebmgG6YYhkFVVRUeeughD4869+/kDQ4DeDh6hft+jlAcbO6UsETkFpeUiGAymfDiiy9CJpOhubkZb731FgwGA3bv3i34Djqr1Yrq6mowDOMRSSBg3YIbR4QMhPbcc8/Ru+++G3D5OzEsEZHrdLKsrEzwSEF8aGhooLVr15JUKqXe3t6Q6nAsfSoUCsjlcly4cCHsMT3YPKQVFRWCpJGIBvT39+PYsWP43e9+hwceeAD5+fnIzs52KUNh7Ob3hxMnTkClUmH27NlYtGhRaJU4c4gQ6adtNhulp6cHlH7ZZrPdMWGJmpubKScnh6RSKb344osOY2AkwUVMzsjICMvu5BGGWSKRhB2GWaVSBZyusrS0NCrzoPPB3Qg0PDxMR48epcTERFKr1aTT6aY1aV1FRQX97Gc/C/sbeuQlzcrKCtu6KZfLyWh0tRXzWdW4ONLuZaMd7e3tlJeXRxKJhPLz86NGyqnVanrxxRfD7mQe+T7q6urCzms1Z86cgDId+5MSkc4i5N6e8/HY2BhVVVWRWq0mhUJBR48eJbPZHFH6+MDR2N7eTgqFglJTU6mlpSWsOgVPAjM2NkZisdhvOW78M5lMHteiJSc60eTqpEQioZycnKi1thYWFtKzzz4rSBIY3hxiOp0u5CClXAJVd7h/6MLCQtq1a1dIbUwF3Olznk6WlpYGNZ2MNFNbLBaSyWSUkpLiWDwTPC9pONKio6PD7zpKX18fSSQS6u/vD7r+qURfXx+VlpaSXC4PaeV4uiRcXV0dPfzww4JICSIvbslisRiFhYXYv39/0FPcQFJOcmGJfvjDHwZdv9AgIsfq5IoVKzA8PAyWZXHmzBnk5OSElJ0n0qiqqsKtW7dQVFQkTIXeuCVUK2Ntba3PoefGjRskkUgiYt3zBW46qVAoSKVSeUwno0mv8YWBgQGSSCSUkJBA31mdrNHW0Ol35BBzR2xsLF5//XUUFhYGxWRDQ0M+JcUrr7ziNSyR0OB7Nr1ej2eeeQZLlizB5cuXcfLkSbS3t+Ppp5922ZI4ndFwvH0TPpw4cQIzZszAoUOHECMST+5IEHHBKHw15J0An+BcxgPFwYMHqaioiPea0WgkqVQa8amcs7OrQqGg8vLyqJhOusOn57mXawsWLHCEVfAaUsHpdCAS0C9TXLp0ieRyOZnN5oAqLCoq8pqGIC8vT7A9JoHQ4jydfOKJJ6i5uTnkuqIRn3zyCYnFYh+ONJOMEcwT+mUKIqKCggIqKCjwOM/3MvPz86mystLjvMlkipiU4KaTMpmMSktLqaenZ8rbFArBMOh9991Hjz76aEh1+brmYebmg9lsJrlcHtB6RlZWFtXW1nqcz83N9ZASQvbQ/v5+x3QyPT1d8CxH0YampiZiGIa6u7tdzvNHqQHBOR4FEfly9Q9IUhDZZxUKhcKv+To1NdXD6scFHBkZGRFcVDc1NVFOTg5JJBIqKCi47dZRgkFXVxexLEu///3vafbs2ZMhmpxfqc3OGM7bFAyNx1y2P/r7BgHHHsjOzkZTUxN+/vOf44MPPvBajs9OwQUccQ5LRGH4FAwPD6O6uhrl5eWIi4tDQUEBqqqqBMunGg5toaKzsxP9/f0YHBzEF198AavVik8//RQMw0Cv18NsNkMmk2HFihW4cuUKHnroIbz99tv2m502PBPzFa6iCIcT7GEH3nvPhF270vE/X11ztOXv2YIKSPHOO+8gJSUFx48fx+7du12ucS/Sfbe5Xq9HW1ubh+9lKC9dr9fjnXfewZ/+9Cf89Kc/xfvvv4/k5GQPGnwhkDLhMoR7G1euXMHg4CB6e3thMBgwPj6Ov//97wCAtrY2jI+PIz4+HkuXLsVdd90FtVoNsViMV155BTExMUhKSnK800OHDsFqtYJlWd6d+IbmZij/Jx0A0FxZASx/DsBy7N6tCJjZGaLgIpyaTCakpKSgqamJ11MqJiYGt27dcvTaxx9/HGlpafjlL3/pKOONOL7z4+PjqKmpcTi7vvDCC9ixY4dfqylXV6AvIlTpcPnyZdy6dQtdXV24du0azGYz9Ho9ADhSNa1YsQIymQzz58/H/fffjxkzZiA1NRUAoFKpvHqpudPU2tqKrVu34h//+AcWL17sWhZ2gdFUWYzHdk3md280kluYBf8ImimICH/84x9RUlKCCxcuuBihRkdHsXDhQoyMjACwv5Snn34aX375ZdCi3WQy4ejRozhx4gQ2bNiA/Px8bNy4Mag6fD1DIAxw8eJFjI2NobOzEzdu3EBfXx86OzthtVodQdAfeOAB3HPPPVi8eDESEhIwc+ZMPPLIIyAirF69GjNnzhSEvu7ubqSmpqKyshJardbrvXu2iLDhNzZsSAD2ZGZi159PQTER8S9Qpg86nhHDMMjJyUFXVxc2bdoElmUdukJ/f79L8DP3sESBoKamBlVVVdDr9cjPz0dHR4dL1iIhxnuGYdDS0gKGYdDe3o6hoSFcv34dBoMBo6Oj+OyzzwAAarUacXFxWLZsGeLj47Fy5Uo8+eSTADCle1P4wk9qtVqUlJR4ZwgC6KtGvDGhTwA2KDIyJsM1BfHOQg7CvXfvXgwODuLxxx9HfX09YmNj4ZwR4K9//StvWCI+ODu7JiQk4Pnnn/e6/8Tfw42PjztSR12+fBkjIyMwmUzo6enB8PCwQ7SnpqZCLBZDqVRCJpMhOTkZO3fuRExMjNc0Cc6IlDI6OjoKrVaL3NxcDz3OBYw9Sk1xxvqJEyLs2rULRIS9e4tx+PCbjiHGAY8TdoQemR3AG2+8gZ07dyI3NxcnT57E4OCgI7vgq6++6jcs0blz51BZWYmGhgZs374dLMsiISHBq+3fuRe3trbi22+/RWdnJ/r6+tDf3+/IgMP1YpVKhblz52Lt2rW47777MGfOHBfFNBxEgiGsViu2bdsGtVqNl19+mbeMgzkJaPr4TWx46w2X63uzRMCms3aauZM2sq+NeHmEoHUKPsKzsrIglUqh1WpRV1eHZ555Bi+88AI6Ozs9mIJvOrl9+3aMjY3hypUrAODYlPT5559jaGgIXV1d6O7uRmxsrCMr4iOPPIIZM2YgMTERcrkcUqlUkG13kYI/ZdtqtWL79u0Qi8V+d80ZmyqQ+NjzAPhzobsqmzbY94Bx/z0RNlMQEb799ltkZ2fj+vXrSE5OxuXLl1FaWurYLd3f34/6+np88MEHaGlpwf3334+ZM2ciNjYWJpMJvb29kEgkWLVqFYgIa9euhUgkwo9+9CNIpVIsWLAgpD2R0YJgZ0Cjo6PYtm0bJBJJ4PYXt6EgnOGNsZGVGCeOca7MBoLITcYYmypwbflzHtMcq9UKtVoNg8EAkUgEtVqNjo4O3Lx5E2KxGDExMYiPj0dmZibmzJkDlUqFefPmYenSpYiPjw+J+NsJgX6k4eFhbNy4ESqVChUVFRGgjAf+jatWh/mUL7qaMxoaGmj27Nn0gx/8gDZv3kx33303ZWVlUUNDw227Ehkp2Gw26unpIaVSSWVlZY5z04GA1z6IiCr2FNPmzZMpANxRV1dHACguLo7mzp1LTU1NghD5fUBbWxvJ5XKqqJj+WFs+Q8falQ17ANGmymLQhnSg3rsK0tLSgurqaoyMjODEiRPYuXMnjh+fjG1NE2kE/EiuQIXcHYO33noLWVlZ0Ol0vqedkYLPNXfuv/EsFR8/S1ZDw+QSbACSrauri9RqNW3bto2Ghob8lv8+DTE2m42+/vpr0mq1lJqaOu0+q84Q+VJ+uCt7jzfj8K7HwDAMNq9IAMHGO8clt14eHx+PixcvYtGiRXj44Ydx8eJFnwzKl7f0TkVLSwseeughJCcn49NPP40Kz3YH/HFN43tFLs4ajoCjQXbquro6kslkVFBQQMPDwyFx8J2AgYEBysvLI7lc7tU9cLohcu6P3JfnYDOeRTNtcOgChsZjWJGwFMQA7gmVyE/P3rJlC65evYpZs2ZBoVDgD3/4gzBcfRvh+PHjWLlyJeRyOa5evYr169f7v2k64I1bbMazHi5cje8VUfHxsxMFQuNCm81G//znPyk1NZVSU1MF2bEdii4iSBjnAOtoa2sjtVpN6enpIUWrizR4maJib6ZjuGia2P/r8P1jhItsr9PpaPHixZSVlUV6vV6QOoVEuIzT1tZGWq2W4uPjqaam5rZRpHmZIpKkWywWqqyspPj4eNq4cSO1tbVFsPXQ4esDsyxLGo2GlEol6XS6CFIlDIIyXtlhDYlpvL1E5/PV1dWkVCopPT2dqqurA4pxES0wm82k0+koNTWVVCoVr0f77YIQmCI0BCM66+vrKTc3l+Li4mjHjh1UX18fdB2hth1sHbW1tZSTk0NxcXGUl5cXtTOKYMC7SurF92KqFV5ej6OTJ0+iqqoKRqMRGRkZSEtLg0ajcfHGCqXuUGnr7e1FS0sLWJbFqVOnoFKpsGPHDmzdutVrXne+9sOlaSoxyRQ2LlEMQBR87tBAEM6L6O7uRn19Pc6fP4/m5mbMnz8f69atg0ajgUqlmjJfCr1ejytXroBlWbAsC7PZjPXr12PdunXYtGlTUMx5u2CCKbw7XHBiI9o4u729HX/5y1/Asiz0ej16e3uhUqkgk8mwevVqh/MNh2XLlmHJkiUudZhMJly/ft1hY+nq6sJXX32Fv/3tb7hx4wauXLmC+Ph4rFq1CmlpaUhPT0dSUpKjfDS9DyERtpNNNKG1tRV9fX344osvcOXKFQwMDDiucd5bzuD2WgB2pl+4cCGUSiVUKhUWLlyI1atXR5L8qMH/B4OKnAx7uNS0AAAAAElFTkSuQmCC"
|
<image>如图,在⊙O的内接五边形ABCDE中,∠CAD=42°,则∠B+∠E的度数是()
Choices:
(A) 220°
(B) 222°
(C) 225°
(D) 228°
|
222°
| 69,670 | null |
222°
|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAABcCAYAAABeIkZoAAAMCElEQVR4nO3de1BU5R8G8GeJy3JzkpVJAeUiIA42QYKxDKMzlQjlFKNRaRqlMI4D5mhMtE1YmiaZ6HiJ4SJ0lwXRQsyoQQmJqDbRKAIFLQ1nW1gQFljXlt3v7w9+7kggHHB3zwHfz59n9z37LDyc83p2z6uIiAhjpNFo8NBDD2HBggXIzs7G1KlTx7oLZgKyGc8gsViMqqoq6PV6hIaGYvPmzWhvbzd3NkZgxlUWe3t7zJo1C8eOHcORI0fQ1NSE4OBg5Obmor+/39wZGYEQjec0NJyioiLs3r0bWq0WmzZtQmJiojl2ywgJmVlhYSH5+vpSZGQkVVRUmHv3DI/MdmS5nVarRWZmJj7++GPMnDkTBw4cwLx588z9MoyVjWvOMhonJyekp6ejrq4OAQEBiI6ORmJiIi5dumSJl2OsxCJluWXKlCnIzc1FRUUF+vv7ERISgg0bNkCr1VryZRkLschp6E6+/fZbbNu2DW1tbUhMTMQrr7wCsVhsrZdn7pJVy3LL119/jbfeegsajQY7duzA8uXLrR2BGQdeygIARITs7Gzs27cPbm5ueO211xAXF8dHFIYji85ZRiISibB+/Xr8+uuviImJQUJCApYtW4bz58/zFYkZBW9lucXBwQFbtmxBY2MjPDw8EBcXh/j4eLS1tfEdjfkP3styi4eHBw4ePIjvv/8efX19CAsLg0wmg1qt5jsa83+CKcstXl5eOHnyJORyOerr6xEUFITdu3eDp6kVcxveJrhclZaWIj09HUajEampqXjppZfMuv+WlhY0NDRg6tSpmDFjBmbPng0bG8H9DQmCoH8qarUaarUaCxYsQFpaGjIyMhAVFYWqqqq73rdKpUJ8fDzKy8shFouhVCqxePFiXL582QzJJyl+PpLiRqlU0oEDB0gqlRIRUU9PD23ZsoW8vb3piSeeoPr6+nHtV61WU2BgIH344YeDtmdmZtLVq1fvNvakJeiyEBF99dVXFBUVNWhbR0cHJSUlkYeHB6WlpY35F7x27VoKDg4esv3GjRt3lXWyE3xZSktLh5TllgsXLpCnpyfZ29tTSkoKp1+2RqMhGxsbKi4uNnfUSU/Qc5bRtLa2QqfTITc3F+fPn0doaCgyMzPx77//3nHM77//DqPRCFdXVysmnRwmbFn6+vqwatUq5OXlISEhAdXV1di1axfkcjnmzp2LEydODDvO09MTAGBnZzdou8FgwM2bNy2ee0Lj+9A2mtLSUgoPDx+yfe/evaaJ73/t2bOH5syZQ1KplE6cODHoMb1eTytWrKBFixZRZ2cn6fV6qq6upmPHjlF3d7dF3oOQaTQaampqomvXrtH169dHfK6gjyz//PMP6urqMGvWLDQ3Nw95LDIycthxmzZtQlNTExISErBx40asWrUKFy9eBADY2tri8OHDiI2NRU5ODrKystDe3o7Y2FhMmTLF4u9JSIqKinD48GGo1WpERUXhwoULIz5f9N133wn2opxWq4XRaIRYLIZWqx30y9y/fz96e3vxxhtvDDvWzs4Orq6uaGhowLZt29DY2IiVK1ciOTkZrq6uEIvFaG1tRX9/PyQSCXQ6HfR6vbXeGi88PDwQEBAAAFAoFEhNTcXJkycBAAsXLkRVVRVcXFzuOF4UHh4u2LLY2NiYrqYSEQwGg+mx++67DwAGbRuOWCyGo6Mjrl+/ju7ubtMRJiAgALNnz4ZGo5n0Jbll+fLlSEtLAwA888wziIiIQGpqKoqKinDkyBGUlJSMvAOrnBgFpKamhp599lny9PSkvXv38h2HN/7+/nT58mXq6OigmJgY2rlzJ3V1dY04RtBzFkuIjIxEUVER3n33XeTl5SE8PByff/4537Gsbs6cOfjggw9QUVEBe3t7KBQK6HS6kQdZqciCZDQa6dChQxQYGEhSqZRqamr4jmQ1N2/epJaWFiIi0mq1pFarRx0j+E+draG3txcZGRn45JNPEBoaCplMhoiICL5jCc49dxoajouLC7Zv3w6FQoEZM2bg0UcfRXJyMq5du8Z3NEFhZbnNAw88gOzsbPz4449QqVSIjIzExo0bR/z44F7CTkMjOHfuHJKSktDb24vk5GSsW7cO9vb2fMfiDSsLB0ePHsV7770HtVqNrVu3YvXq1XxH4gUryxjs2rULOTk58PT0xJtvvono6Gi+I1kVK8sY9fX1Yf/+/cjKykJYWBh27tyJoKAgvmNZBZvgjpGzszNkMhlqa2vh7u6Oxx9/HGvXrr0n/uXEyjJOXl5eyM3NRWVlJdra2iCVSrF9+3Z0d3fzHc1i2GnITCoqKpCRkYGWlhasW7cOMplsTONrampw5swZBAYGwmAwwGAwYOnSpcL6Rp8lLiXfy8rLy8nPz4/Cw8Pp6NGjnMfl5+eTSCQipVJJra2t9Prrr1NISAjpdDoLph0bVhYL0Ov1lJubS+7u7hQZGUkKhWLUMS+//DI99thjg7YFBwdTZmampWKOGZuzWICtrS2SkpIgkUhgZ2eHlStXIi4uDmfPnr3jmB9++GHI9RsfH5/Rv2NiRawsFqJUKtHV1YWSkhLU1tbCz88Pixcvxvr166FUKgc9t7GxESqVCgsXLjRtMxgMqKysxJIlS6wd/Y5YWSzk9ttNJBIJ9uzZgzNnzkCpVEIqlUImk0GlUgEYWD7NxcUFvr6+pvHV1dXQarV48cUXeck/LL7Pg5OFXq+ngoICSk9Pp7/++ot0Oh05OzsPubuAiEihUJC3tzfFxcUREVF0dDS9+uqrpsc7OjrI39+fUlJSrJafC1u+yzoZEBHef/99NDc3o6enB2FhYfj555+xaNGiYS/WhYWFYceOHZDL5Whubsbp06cRERGBs2fPoqmpCT/99BNkMhnWrFnDw7u5M3adxQza29vxyy+/IDY2FsDAN+UfeeQR+Pn5QS6XD7vqw0cffYSSkhIcPHgQnZ2dMBgMsLGxgbOzM/z9/WFrK7y/Y+ElmoAkEompKAAwffp03H///Vi9ejU2b96MwsJCrFixYtAYIkJ/fz98fHzg4+Nj5cTjw8piBrcv/tPd3Q2dTocXXngBLi4uKC0txdNPPw29Xj9osjoRvxfDTkNmlpeXh7lz5yIqKsq07dSpU3juuecQFBSEpUuXYubMmbhy5Qpqa2tRVlbGY9qxYWUxo4sXL8LNzQ3Tpk0DMHCqEYlEAAZWsSosLMTp06dRW1sLYGBuU1xczFvesWJlMQOj0Yjs7GxUVlZi3rx50Ov1mD59OtasWQMnJ6chz9fr9Th06BDKyspMt49OBOyinBn09fVBqVTC3d0dra2tUKlUsLOzG7YowMB92M7OzhNuBU42wTUDV1dXvPPOO2MaM9o92kLEjiwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLAxnrCwMZ6wsDGesLMywenp68MUXX+DPP/80bWNlYYbl5OSElJQUXL161bSNlYUnIpHIdNO8EKlUKvj6+g5aFJHdvsoT+s9/PSw0tbW18Pb2xjfffIO6ujo8+eSTsH344Yf5znVP6ujoQFdXF4Ty83dzc8Px48dNN/NXV1eju7sb06ZNQ2dnJ95++23Y5uTk8Bzz3mRnZwdbW1vcuHGD7ygABhZ6dnBwADBw1KupqcGGDRsQFhaGK1eu4NKlS2x9FmaoP/74A/Hx8WhoaAAAxMTEIDExkc1ZrI2IUFxcjC+//BJPPfUUHB0d0dTUBIlEgqSkJL7jAQCOHz8Ob29vEBE+++wzODk5YdmyZaws1iYSifD333+jvLwc+fn5cHJyQktLC06dOsV3NBOpVAoiQllZGdzd3VFSUgIbGxt2GuLDkiVL4OnpiYKCArS3t8PV1RVisZjvWKNi11mszGg04rfffkN4eDjy8/ORlZU1YZYLY2WxMoVCAa1Wi5CQEDg4OMDLywuOjo58x+KEzVmsTC6XY/78+ZBKpZg/fz40Gg2AgSPO7YsvC5Gw001C1dXVeP755wEMrLLt5uaGTz/9FHq9nudko2NlsaKCggLU19fj3LlzKCgowNatW/Hggw+it7fXdEFMyP4H55K8gYMwSREAAAAASUVORK5CYII="
|
<image>如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()
Choices:
(A) 115°
(B) 125°
(C) 155°
(D) 165°
|
115°
| 69,671 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABRCAYAAAD/7qloAAAf2ElEQVR4nO1de3xP9f9/nnM+t202YZvLMJctCSPXRCkLfd3yrS2pvtEQlWgWX5eKktL0RQh9vyWXnxC6iJHKFxspRtlFxoYt1xmz2+dzrq/fH5+9385nNrnNNl/Px+Pz2D7ncy7v836f1/1yBMMwfgDQCHcAIoIgCAAAwzAgiqLHbwD471UYJBiGkSUIQv2KHkllRmJiIrKysjBgwICKHspNgQjAWdGDqAxQFAWKogBwU7mu61BVFfn5+ViwYAGysrIAAJqmQdM0GIbBqb+ygYjKHBsRkVjqL/+DEEURkiRBURToug5BEEBE2Lp1Ky5evIi77roLAKDrOlwuFwRBqLKs/s6il4AgCJAkCaIoIi0tDbVr10aXLl1gs9kAADabDXa7HbIsV1pK/ytYKnoAlQWSJIGIoGkarFYrcnJy8OGHH6Jp06b4888/0aZNGwBu1s+UvKpK6XcWvRhsAb28vGAYBuLj49GsWTNYrVYAQFBQEAC3TK/quMPei8FY9blz5zBr1ixkZmZi4sSJGDRoEBwOBzIzM6HrOiwWC+x2O+cMVRF3Fr0YgiBA0zSsX78eW7ZsQa1ataBpGv7973/j4MGD2LFjB5xOJ0RRhNPprNIULxiGkSYIQmhFD6SyQJZl2O12AG4zzmq1ctYvyzIEQYBhGAAAu91eKeX6lRxJd0w2E1RVhaZpEEURqqoCAF9cADh27BhWrFgBwK3BV8bFvlrcWfRiWCwWSJIEi8UCwzCgqiqn8oSEBAwcOBCKooCIIIriFR0glR13Fr0YzBRjyhqz19evX4/x48fD5XKhV69esNvt0DQNeXl5HpygKqFCTTZd16HrOqcos53scrk49d1MVmq+BltoRt3MyyZJEnRdx6JFi/Dbb7+hffv2qF27NjfbVFVFrVq1IEnSTRvXrcQtp3Qigq7rlwZQHMmSZRmqqkIQBKiqCkmSuJ+7PMbA/OzsISAi/pA5nU5MmzYN+/btQ3R0NAIDA9GiRQvYbDYQEWw2m0cErqrhlo/cTEmapnF7VxRFTm0smMEm1/yQ3ChY+JSNobCwkHMZAMjOzsbEiRPhdDoxe/ZsFBUV4eTJk+jevTuIiLP0OzL9GsGol7F1FuBwOBzQNI2zW6ZQ3czJNXMOSZJ4IMVutyMpKQnR0dEICAjAW2+9BR8fHyQlJSE4OBh+fn7c/cqovKpq8BUi0y0Wz8tarVboug5ZlmG1WlFYWAgfHx/Ockvuf6PXZuydRdWqVauGHTt2YOHChejRoweioqKg6zpOnTqF7du3IyYmBgCqrAwviVu+6ESE06dPQ5ZlTs0hISH8/8zMTNSpU4ebRZqmwel0wsvL66ZdnylyTEv/5ptvsGTJEgwbNgx9+/aFruuQJAlJSUnw8fHBvffey49lf6sqlQMADMNIo3KCYRhkGIbHd1mWaezYsRQaGkq9evWi8PBw+vjjj0lRFNq3bx/17NmTzp49S4ZhkKqql53jaqHrusd3TdP4X03TSFEUIiJatGgR9e7dm3799dfLzjFixAjatGkTH7uqqqTrOj9XZcWV5swwDKNcZbqmaR5KGBUrZxEREXjooYewadMmxMTE4LPPPoNhGDh06BDatm2LgIAArtxdT7ICEUFVVaiqypMeqFjxIiIeL58+fTri4+Mxc+ZMdOjQAbquc2pOT0+H0+lE27ZtAbjlt8Vi4ckWVRnlxt7ZYkuSxL1bjGWfOHECoaGh0HUdqampCA8PhyRJqF69OqKiogC4beHrleWCIMBqtUJRFK54aZrGFy4nJwfvv/8+DMPArFmzEBgYyMfrdDrh7e2N1atXo1u3blzRu51QbpTOKJRRKZk08KSkJKxfvx69evVCTk4O/vnPf0IURbRt2xaNGzeGy+Xi5tr12umiKMJisXCzkH3+/PNPxMTEwM/PDwMGDMCJEye4X0CSJHh7e6OgoAA5OTlo3rw5z5i5nVBui84mnWnJzPY+e/YscnJysHr1akyaNAnbtm1DWloaAHC2bt7/ehQmKnYAKYrCHTxWqxUHDhzA6NGj0aZNG0yaNAmnTp3C9OnTERMTg2+++QbJyclwOp34/vvv0aRJE3Tu3Pmm+ggqC8qNvTPKZs4MJp+TkpIQEBCA+vXrIygoCFOmTMHRo0fRuXNnvr/FYoHT6eQa9vWABUd8fHwAAJs3b8Ynn3yCIUOG4PHHHwcADBw4EF26dMHKlSuxbds2bNu2Db6+vvjuu+/w7LPP8nHfbihXk80wDB6GNAwDBQUF+OGHH9ChQwdkZ2djzpw5yMrKwv333w8AXPYTERwOh0e0qzSqZw9Wye2CIEAURTgcDui6jsWLF2PDhg2Ijo7Gww8/jLy8POTl5UGSJAQGBmLcuHG4ePEiUlNTsXfvXvj5+SEiIqI8p6ZCUa6Ubqb2wsJCzJkzB1u3bsX+/fuxePFiaJqG5cuXo0mTJiAirFmzBk6nE48++iiCg4O5lmxORtR1nWvQjHVLksQfDPaQ2O12FBQUYMyYMYiPj0fz5s3xwAMP4MKFCxg/fjwyMzNRUFCAqVOnolu3bvj888+xY8cONGjQAI8//jgaN27MPYVV2iYvDeVlpzNb0el0ktPpJCKivLw8KigoIJfLRbIs8+0ul4t0XaedO3dSs2bN6KmnnqK5c+fSiRMn+PnY/kVFRfzczHYuKCggWZb5eYmITpw4QS+99BINGzaMDh8+TCNHjqRZs2bRhQsX6PTp06SqKi1dupQOHjxIe/fupTVr1hAR0RNPPEF79uypEvZ4WagwO51Rh8PhgMPhgCzLcDgc8PHxgc1mg8Vi4dRps9lgGAZatGiBbt26oVevXjhx4gTGjBmDTz/9FLm5ubBarXA4HDyeDYBTvbe3Nw/c2Gw2ZGZm4o033kD16tUxe/ZshISEoHXr1jhy5Ajuuusu1K5dG4Dbj+Dl5YWgoCAcO3YMQ4cOhSzLCAsL45ZDVY2ZXwnlqqXoun5Z+Q+LobNwpsvlcg9EFOHr64v27dvD5XJhxowZiImJwR9//IGoqCisWrUKFy5cgCiKPN5OxVEv5qp1OBxISUnBW2+9hdatW+Ott95CtWrVYBgGgoOD0aNHD54WlZ6ejjp16sDhcKBOnTqIjIxEWloannnmGe5bsFgst6X2Xq7sXZZl7rpk7MbpdJKu6/zjdDo9XJxJSUk0ZMgQys7OJiI3W9+zZw+NGDGC/v73v9Pq1aspLy+PX4ddg4hox44dNGDAAFqyZIkHa05NTaV169Z5jO/HH3+ktWvXclZ4+vRpeuWVVygjI4MMw6CCggIyDOMyd25VQIW6Yc0OFiqmSlY8QCali8WzdV1HaGgoAgICsHnzZn6O9u3bY9GiRRg2bBh++uknjBkzBqtWrYKiKFxUrFy5ErNnz8bo0aMxePBgPobTp09j9+7dePTRR3HmzBlkZ2eDiOB0OuHv788VtW+//Ra1a9dGrVq1ALiLHti4bzeUm/bOZLooityrZZaPzP/NwB4GAOjatSt+/vlnFBYWwtvbm4uJ3r1749FHH0VcXBx+/PFHbN68GYMGDUJGRga2b9+O9957D/fccw8/f3p6OsaOHYvMzEz89NNPaNSoEcaPH4/Tp0/j/Pnz6N69OwAgLy8Phw4dwmOPPQY/Pz+utbN8udsO5Rllu1YwlnTx4kUaPnw47d27lxRFIU3TSFVV0jSNs1tZlmnJkiXUvn17uueee2jp0qUe59F1nc6fP0/79++nXbt2UVxcHB0+fJiIiM6cOUM5OTlcLGzbto1GjhxJubm5XNSwaFxVxF+x90r1GDM27+fnhyZNmiA+Ph6tWrXiNrksyzyunpubi8TERPTp0wdt27bF119/jT179qBPnz7o2bMnVwxZ4SFDfn4+/Pz84HA4uFJ34MABhISEoHr16pcFeqiqx85LQ2WidCLi9nFaWho999xzdPHiRSLyfHpTUlLo6aefptjYWL5NlmVavHgxRUZG0tChQ+n7778nIuJxc1mWqbCwkFwuF2maxn0EWVlZFBUVRVlZWR62ObseO74qoUIVuWsFC38KgoDQ0FAEBgYiISEBwKWoXUJCAqZOnYrw8HDExMTwwIrNZsMLL7yABQsW4KGHHsLKlSvxyiuvYO/evTxqxzx1Zj0jMTER1apVQ/369XmwhwVqWALlbYfKROmapnk8pZs3b6bXXnuN/75hwwbq06cPrV+/nst35oljsp8hOzubVq1aRf369aPJkydTQkICp1q2n6qqNGLECNq2bRsRETctZVkmTdNIluXrytqpaFw3pVMFpPiykCrzuLVs2RKqquLo0aOYO3culi9fjilTpqBfv35c/rNInGEYkCQJLpcLqqrC398fAwcOxIoVKxAcHIyPPvoIkydPRnx8PKfeP/74A4qiICwsDAA88t9ZwsftiDKrVpl5VR4BhytNpsvl4sqaYRhYtmwZFi5ciE6dOmHs2LFo1KgRD76UbPtV2nXY2C9cuIBly5bh119/Rc2aNfH6669j/fr18PHxQVRUFC9eBMBNNeZNrGpmG5URfSz+jcpk78xjVh7szRwwMX+I3IoXC5qcO3eOnn32WQoLC6MjR47wcblcLu4xK+v8zBxjXj+G48eP08cff0zPP/881atXjzZs2MB/y8/P9zDX2BxUNVQpk41MSYvp6emYNGkS7rvvPjRp0gRHjhxB06ZNudnGSoz+igsJgsDrzXVdR8OGDfHyyy+DiJCeno41a9Zg3759GDBgAFq1agUAPLeOjed2w1Vr72TKJr3RT1lgUbPt27djwoQJ6NWrFyZMmIAGDRpg9+7dKCgo4IkRiqKUueAsAZJMARlWJwe4Rci5c+cQHR2NGTNmQBAExMbGIjY2Fqmpqdx9fKWxVmlcLXtnXq6b8SmLtRMRrVmzhvr06UPffvstEblj7dnZ2fTMM89QWloa33YlzZrZ1+aYu6IonFXv3buXXnrpJe4DICJKTk6md999lyIjI2nKlCmUlZVVBvOs/Khw9s60bLoCK2Z+7mXLlmHTpk2YMGECunbtyr1j/v7+aNiwIRITExESEsLj8GX5xs32NaN6FiIlIuzevRuNGjWCn58fH1uLFi3QokULHDx4EGvXrsVrr72G+++/HxEREWjUqBE/lorz8dl3dg2G0rZVOpSk9LKUrOulahYyZdUqqqp6bCNyZ9RMnTqVBg8eTMnJyUREnDKZbb1r1y4aNmwYuVwuj3OVNV7DMLgypigKFRQUkK7rdPbsWYqKiqJDhw553HNJhe3333+nqVOn0hNPPEEfffQRHT9+nO/LKmTMYWOmfFYGn32FUjoVy1RzaTAzAanYFDp16hQ++OADWCwWxMbGIjAwEE6nk9vKzGZv06YNRFHE/v370bFjR4+GQKWBJUcKggCXywUfHx8YhoHk5GTY7XY0aNCAj5HtTyZKDgsLQ1hYGFJSUvD5559j0qRJ6Ny5MyIiIlC7dm2eqcOaD7H4AHB5gWZlw1Urcubihb/6sARGTdNgs9l4eZPZppYkCceOHcO4ceNQp04dTJs2DTVq1OAuVdbwh4oLDh0OBx588EHExcVxG52uoGix3wzDgN1uh6qqEEURX3/9Nf72t79xXwBT8MwLTsWiQ9d1tGjRAh9++CFefvllHD9+HDExMVi+fDnOnz/Py6vNDqKqkF511Y/ktcooJlOp2GvG0qAZ1e3ZswczZszA448/jueeew7AJe2ddaOw2Wy8G7PFYkGnTp0QHx+Po0ePonHjxlcsfTJzGVbalJaWhpycHLRr145fj+1b0sljrpoVRREPPPAA2rVrh8TERKxcuRJxcXEIDw9HZGQkqlevfplDpzLL9HLjQ4w1s+yYoqIieHt7w8fHB+vWrcPatWsxePBg9O/fn1MZqz8DwDkEAN6sIDg4GDVr1kRCQgIaN25cpg3NGgEqigIfHx/OPdavX48uXbogICAAqqpelpdPxXa5uTMF284+nTp14g/f2rVr8csvv6Br167o378/atSoUSVy6so9ysYohk3uwoULsWrVKowePZovOJP1bBHMLbsY1TBR0bFjR6SmpiI/P79MFzFbPKa1S5KEixcv4vjx4wgLC+M2vJkDsWsBnnn25vGwIkxBEPDwww9j/vz56N27NxITExEdHY3Vq1fze6nUuNEomzmpkWm27C/bTuROiHzvvffo+eef5xks7PiS/5fUPmVZ5nZ3Xl4eRUVFUUJCAhFd0pbNcXWmPZu1/82bN1N0dDQVFhaWeV3zd7M2b/6f7Wt20TqdTtqyZQsNHz6c/vGPf9B3333Hr1PyfpjWz65RmuVwoyh37Z0pPIqiwMvLi9d4y7IMb29vCIKA8+fPIzY2Frm5uXj//fdRr149fryZKtj/JSmFafIA4Ovri3vuuQeHDh1Cu3btYLfbuexlNjljz0yWu1wuJCYmolWrVvD29i7zuubv5m1meW/O/SNTsmePHj3QoUMHJCQk4KuvvsKGDRvQt29f9OzZk7uM2dwwzlWysvdW4YbZO1sQc6dFptQIgoD09HRMmDAB1apVQ2xsLOrWrXvNGq5ZuwaAvn37Ij4+HgUFBR4PClMES+bbnz17Funp6ejRo8eN3q4H2APPGh/4+vqib9++WLBgAcLDw/Hll1/i1VdfxXfffcfNOpvNxs1XZoXcao3/hhedLTBT3Hx8fPjN7dq1C5MnT0bz5s0xefJk+Pr6XtFnXhbY4gFuedu8eXMIgoDU1FT+u7nFJ6NwNpm//PILr5S9mRPM5Lt5IVlcPzIyEvPmzUPnzp2xZs0aDB8+HBs3buSUzjJ3qBTLodxxozKdedby8/OJiHgY8/vvv6eIiAhatWoV39fs/75WmD1hRESbNm2ikSNHeugBqqpyzxjbJssyvfDCC7Rt27ab7ilj52c6B9GluADzNhK5s3hWrlxJQ4YMobFjx9L27dupqKjI4zw3e1xXkuk3JV2KBTjYpC5cuJAiIiLov//9L98nPz//hpIMSyqLZ86coUGDBl3mti25sImJiTR8+HDKy8vj1TU3C0yBZEpdYWGhRyCo5HguXrxIixYtosjISIqJiaEdO3bctLGY8VeLfk393pkiwkwhcxM9wzCQm5uLJUuWYN++fZgwYQJatmzpceyNxKbJ5PCgYgVq0aJFUBQF0dHR3A8AXIqHWywWTJo0Ca1atcKgQYN4V4ybESMn8uwxa+5rYz5/afedl5eHL774Alu3bkVwcDCefPJJXqNf8hhm95vLtv9KHNBfZM5ctTAx29Ksy4P5PWb5+fmYMWMGUlJSMGvWLL7gO3fuxNdff8216FGjRuHFF1/EhQsXAAAHDx5EZGQk3nnnHTidpb8izrzg7LskSWjbti0OHz6MnJwcriGz30RRxLFjx3Du3Dl07NiRT9zNSopgzYyAS9o96y1rhvm7LMtQFAV+fn4YOXIkZs6cieDgYMybNw+vv/46Dh06xHUCwN30iC2goiiQZZlvZz3prwfX5Hs3iltjsxtk21nzHm9vbyxYsACBgYHIy8tDUVERli1bhn379kHXdXz55Zdo3rw5HnzwQaxduxaKomD79u2YNm0aWrVqhePHj5d5fTIpc2ySw8LCYLVasWvXLm4tMA4kiiK2bNmC0NBQ7rKt6MQI5gxiCZjBwcEYNWoUZs6cidDQUEyePBlvvvkmkpKSAIDHB8yNF5iJeCMP7zVlzpgb+LpcLt5PdeLEiWjUqBEGDhyIgoICXqXy66+/4q677kKdOnVw4sQJHDp0CH369MGAAQPw559/IiMjA4GBgYiLi0NmZmaZXSEZOzcvGBHxbo4HDhy4rIdsUVER0tPTERoaylk9ULFxbkY4DMzNXK9ePYwYMQILFy5EnTp1MHnyZEyfPh3Jycn8RUHmB7ZkHeC14qqPND9pdrsdDocDCQkJmDJlCvr374833ngDX3zxBdatWwdBEHDy5Em4XC506dKFd5miYvPE5XLxkOQjjzyCCxcuwN/f38Np4zHIYsotzaHSv39/pKen49ixYx7OjuTkZOTm5qJbt24AKk/XZmZaAm6WraoqXC4XdF1HjRo18Oqrr2LRokWQZRnTp0/HtGnTkJGRwXUFFn28kZboV+2Ro2Ivm5eXF8gwsHr1anyxciViYmL4xAYHB+PkyZNQVRWJiYmw2Ww4c+YMFEVBfn4+l7esI0V+fj6aNWuGadOm/eX1S6NQwzBQt25dBAYG4ueff+ZUDQC7d+9Gs2bNUKNGDY9m/iX1g1sJ9tAzh07J8YiiCFmWUbt2bbzzzjtISUnBxo0b8frrryMsLAzDhw9HUFBQsf5y/eMoZdENkFE8EEEECIAAGAbB29sbqqphzpw5+O333/Duu+/yQgEiQkhICJKTk3H27FnEx8cjJSUFeXl5UFUVoaGh8PPzQ25uLlRVRWFhoYd3ji3K1U6e2X3Zv39/LF26FE899RTsdjvOnDmD3377DRMnTuTHsMmuyMZBbNHZw886Xpi3mV22LIXr0KE0LF++DKNGjUJ4eHf8rXdvNG3SlJ+TnZdfxyAIYtn3ePkskwLSdUC0giBCFCWQIUASRRQUFGHq1GnIL8rD+x98gPpB9WCAIMI9kUwmi6KI2NhYAMBXX32Fw4cP47HHHoPNZsP8+fOhqioeeeQRBAUF8QyYa5FRJX30bdu2xYoVK/D777+jU6dOSExMRI0aNRAaeskSNRczVBSY8mVWwsx1+UDpxSXNmt2Nt99+G8nJyVi7dhXefvsNtGvXDv37P4HGjZpcMmWL1QVN1yChbEvFY9GJCIauQyqmOGehC3a7A5LVgoyMY5g1ey78/Hzxr3dmopq3N1yqCpvFAgJxE6ZWrVoeMeU2bdqgTZs20HUd3bt3x8mTJ6FpGp555hkul1i8+3rBsmo2btyITp06Yd26dbz5H7NrzUGbKgUCDMN9H61bt0br1q2xf38ivvl2Hd58cxK6PPAQnn56ULEYA4jc1gsLgJUGT+cMETQlH6IkQbQ4YBgEARLOnMnG6NHRSElNweAhQ2D3skE3VIiCCKezCL7ePtB1HXl5eTh16hSaNm3KnRVeXl5QFAUOhwOFhYXw9/eHYRjIyclB9erVkZ+fz+U7i5hdLcwUn5mZibi4OISGhuL06dN48skneQycKaCM2it9vLsYgiCADHfunWQhAARNU+BX3Q+y7ELCzgTsjN+F5s1bYtSoV/FoeE94+9ihaSp03Sh10YmIPBadiKDKeQBE2OwOQHCznvTDx/DfbdtgtdlQVFQIySZBVmVUq1YNuTk5qObtwxeYvaXB6XTyNzFZrVaei+Z0OmG322GxWFBYWMiDNObI3DVNSrF8DwwMREZGBjIyMlCvXj0EBARwL525U1RFyvRrBRFBVQx4eXvDMFQoigxJEqAbbsdM9erVcTG3AJqmo1Ytf9zXph2ahjSGzWa90jnpMvau6zq8fLyxcf0G7N23H4qqgwwgMvJp3Ne21TUNurCwkNeFlwTrvMxY7tW4F8tCTk4O5s6dC1EU8dJLL8HX1xeBgYGlXrfKgQCDAM+p0QAIANwyOycnB7quI8A/EBCA/1vxf2h2dzN06NCh1FN6nEoUBFitNqiKC8HBDfHjDz+gqKgIAQEBiHl9HA4cSAEAqDpBByDrOgiXSnz5OMndOYpRNHOusAxZpm2yPLWSLwO4Fnz22WcYOnQo6tati6CgIMyfPx8zZszg/enYeUumRFUJEKCqBtyMiTmo3HOoGzqI3BT/ySefYNOmzRBE4GDqQSxevPjKbtqSUTZdLyJVLaKCizk09rXR7siMRtSxQxfatPlHIiJyqRq5NI3yXU4y6PJXZ1wpFenSda6tIpZF14iIhy23bt1K9957L23cuJHv95///Ifeffddvs/NDlvechhEhn5pvgxDJcNQSDdkMgydfv55F/Xr14/i4tyvHfnhh6306WefksvlKv10l6VLEUFxuSBKNqSmpiI9PQMLPv4Yuga8+OKL6NixAwwqNitEAXabHQYRpBJs+UqpSAzXwsrJZJez7Nrc3FzMmzcPERER6N27N8/Yuf/++z1euVFV5HdZ0HU3azcMgiBQMddUIUoSjh87gqSkJNjtdlSrVg0AcHdoKEJDm1zRGvKU6QAsVissVh+kJifDP8Af6ekZOHgwDVOmvI2aNfxgGG4tEgS3A4CKvTflDKaEscXMysrCkSNHMH78eADgFSYtW7aEoige0aqqDEEgEAAilk9PsNqsyM8vxL79iQgPD4fTKfOwclD9IEjSldfjMnKzWKwwNBd+P3AAY0aPwb9m/Qv1GzTARx/NQVGRAkEUoKpuWQ4AonBrbF9z4QJw6V3mNWvW5I17vby8eHj2dlhwABBFAaIgQBBEELnvS4AVP/+cgHnz5mPcuHHYuXMn6tatA+ASZ7tSWpgHpbsPsOOPg3sR3KgRWrUOg6IoOH8+G7Vq1oaXlxUCAKvFAkkUoWoqDAiw3YLaLbOtbbVaERAQAFEUsXPnTtx9990A3G9YSkpKQteuXeHv71/uYyp3EKBpgGS59MIEADh6LA3Z2dn4ZNEncDplxMVtclM6AYauAxCuKD4vW619e3/B2++8DdWlQCcJOxN2IuPoMby5ZApUVQcEQJDES46OW6QMk8nHbBgG6tevj+joaCxduhQZGRnw9fXFmTNn0LdvX9SqVavSlxZdFQQAMKCqBmTZBaezCFu2xGHatGmYNGkSQkJCMHPmv7Bp0yY0aNAQzz37D0DAX/bjKa24G92794IoupWmR8K7Y3a//mgY3BCyokHAJZlgEaVbIM09nTDshiRJwvPPP4+QkBDs3LkToihi6NChuPfee2+PBS+GKAGG5s73LygogNXqwPDhL6NVqzaQZQWBgYF4+umn4e/vD1EEBPGvxdo15cjdQdUH0TXkyN3B7QMRzJd3B/8TEARBsABQiajyV9Lfwc0C/T9rZvVLdfdFHAAAAABJRU5ErkJggg=="
|
<image>如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′是()
Choices:
(A) 46°
(B) 45°
(C) 44°
(D) 43°
|
46°
| 69,672 | null |
46°
|
"iVBORw0KGgoAAAANSUhEUgAAAMAAAABlCAYAAAAbDexaAAAVfUlEQVR4nO2df2wU17XHv3eMFYLagBM33iZI/PAabOywG5ImREqyUK8DNImwAxSkIgFPeeKHDRiMH06LBJRHa8CxTQrGVfkDIlCSNnjtNsL8cMDWUyWaNGIT1jbEP0BKpJiowraSKAZ27nl/zM7s7O7YrO3dndnd+UiWd+benTkze879ce6PA4pjNhWAgOC/hdROInFOJBLXW8SI42mskp6zYKPm03FVnk1VrhhLF3s492qcFX2/vaiki6Ko+o7/zSHK8kWdTQWghmv+h6vamK8YQaIiKfhCatcwAU7t5ASoqtGjg2T6IIoikeh/F6EFn0gN1Rv8hWTBevLSF7Rhw0ESEEcQiaoDgNM1dGITivIEXzqhrK4FmwouY8vmGp2kjD5dPUBBwQQA0jOr2bQoFy0FG1G2NFcP0XSBMQYITDkWwMBBkr50NICxFBzttYJzL0TiEA8vxgRmB6wzET8GQABjKf5jBrT//TyE2TNV56SXMMOaj49vdMVYwNjR0nsTWbiIL9t9Pz4AENBYXYyUrGJsWuwMMYxEhjEW8rwCGDi7joLcZcgvqULLn8rAWAoYcSBnKQ6VvAyrdVYcGQALPXX+/DkscS4GwKUX4HsJmZmZsZUtilDAfw5CB2bMyMfMLCd6ujv8GTsbcZEKMINuYGbmbDCtF5bAKAWBir/XHEELFuKdP21TDISYAAEMmTOzMXNWdhwZgAoOgoh2NB8jLFmaA0CQSgEmKUpPTw/yZ2fpLWZEUH5WIgACOpqakbm4EFbrbPR2S7UcoQPO0hYcKZuFc8eAJUvnaBYYyYSIdtRtr8fGQ5sxBwKIASARgu/FFG07hqKcVOMbAIkcgKT0cmkoEENKRxdYya+kh/MlCGCApwnl9R/7aobE43wPQ2FuYJVfU3IU75w/go6mZmDTYsxJMu0P6Bv6EK5/iRYA061SQSiAAaomNJGkT4Y3AJYiicjIX6gRCK7z5zFrmtT+V9d+JdsLAef6hOsEMsZA6ADRDABAVuZMfHmzB43VxeDOjZgD4NzFs1hcIBl+8vQAfH3DoAdmXDoxAUzTQACfPsXGUTV+ZMcW517i1E75CHR/UvsZxcXlJ7FcoZ7GKnJ5fG+i3RXg6+fUTr9k+Zqu0YRH9ciyC9RLHnICtOHgGeKcB/j+qf2M4iaOGwOQudZ0SGPwS/oL8X0nkC6oB/1cHk7U0UjO4ioiInK9vUn1HpLUCDRo8L0XtV580XiQULCeRJIGyBiR8f1lRKTZy/eni2AkBPiCkwVCcvd3OecQBAEcpPj/BdUbudZ0CHML/0c5dm5+Gxff2S4dEBAXBjAaZGORX0xSIFtB0loDRzjdWSJRGUsiAMS58TvB3Ne7EYmHpCm2y/3/5ZqCCULyDAaxoP9JhtbvzLlaX6TPivITgUHSkQkxkG9cMF+plsICbZXgH/xQqj2B4Z///D9cuNASe0GjCCNIfuyQkk4AwFXpyQgHY6mQB0PlUWHGGGw2G4qKlvqOfe5SlhLQnDZ8DcCY1K4LcXPBNzZABEEQQADu3r2LtWv/C4ODg3qIGjW0lV8+B9zz3gdTSjnpxyWiJDEKAUSi9CcrOYDKyko8lvYopEFSqeRnLMXvSieSRpZi1SMfK9rTXaUprcGz/iorK+m1115T0hMN/zP53bsXL54nh8MxQt7ERmvKe0NDg+Y70cLwBhAufX19lJ6eTt3d3SSKYtIoABFRbm4uffLJJ0SUPIo/Eg6Hg86dOxdWXsM3gYDgDo12p2f37t1YvXo1MjMzIQiC4glKBnbs2IH9+/cD0J4Ulky0tbVhcHAQixYtCu8L0bXFyKBezUPkL+Xk8x6Ph9LT06m/vz/WohmCe/fuUWZmJl29elVvUXTH4XBQQ0ND2PnjogYI9ufLPX35fGlpKfbs2YMpU6boIJ3+pKamoqKiAocOHdJbFF2RS/+ioqLwvxQ9W4wN//jHPyg7O5u8Xu3OcrLw448/0pNPPkldXV16i6IbTqczoPQPbjloERc1gExwm14URZSXl6OqqgopKSnDfCs5mDhxIsrKyrBv3z69RdEFt9uNW7du4fXXX1f0JJyZAHE3FUI9xaGmpgYXLlxAc3PzA+cLJQNDQ0OYPn06/v3vf2Pq1Kl6ixMziAhvvPEGCgsLsWbNmlF9N24MIFjBBwcHYbVa0draitxc/9z/pJoDpMHu3bsxMDCAw4cP6y1KzHC73VixYgWuX78+6pZA3BhAMCUlJfB6vaivr9dbFEPR39+PnJwcuN1uWCyWkPREqyk551i2bNmYSn8gTg3g+vXreOmll9DR0YGf/exneotjCNSKvWvXLni9XlRWVoaVP17Qkrm3txcOhwO3bt0aUz8wLgwguFnz+uuvY8GCBdi+fXvc/YiRRksp+vr6YLfb0dnZibS0NJ0kiw3r1q2DzWbDli1bxtT0jQsDAPyjv5cuXcKGDRvg8Xjw0EMP6SyVcdm2bRseeeQR7N27V29RIkawsff09MDhcKC7uxsTJ04c0zXjxgAAye1ps9mwd+9eLFu2TG9xDE1fXx/y8vLw9ddfj1k5jM66detgt9uxdetWzfRwmnlx5S45fvw40tPTTeUPA4vFgldffRXHjh3TW5RxMVz53NPTg5aWFmzYsGHY74bTPI6bGmBgYAA5OTlobm7G3Llzk9rVGS7d3d14+eWX0dvbm3C1wEhNPGWdcBgu8bgxgPLycgwMDOAvf/mL3qIYFq0qf+3atZg/f/6IJWW8ID/f7du3Ybfbcf36dUyePHlc19TdAIJ/NC2r7enpwfz58+HxeJCRkZH0g12jwe12Y/ny5ejs7ERqaqre4kSESHbwdTeAcFixYgVsNht++9vfAkDY1ZuJxNKlS1FUVIS1a9fqLcq4iWTpD8SBAbS1tWHNmjW4ceOG4vaMx0EcPXG73Vi5ciVu3LgBIL7f31tvvQUA+OMf/xiZC45h1mlUkKeuBi92sdvt9P777+smV6Iw2oUiRmRgYIAsFgv19fWFNdU5HAzXhpBLJkEQcPLkSUycOBErV67UWar4Z8+ePSFtZjJ25R9CdXU1Vq1ahYyMjMg1fyNiRlHgu+++I4vFQleuXCEic7F3JHA4HHT27Fm9xRgTAwMD9POf/5z6+voiel3D1QDkK5UOHDgAp9OJ559/HoC52DsSbN26FQcOHNBbjFFDRKiursbKlSvx+OOPAwhdHDWeixuOr776ih555BH66quviCi0X2ASPsFbg9tsNrp06ZKOEo2eoaEhslgsUVnuabgaAJC2+diyZYuyqkndLzAZHYyxgNpz9+7dyhYqRoEe0Bf585//jMWLF8NqtUbl5obiypUrZLFYaGhoSG9REhKtLVSM0L8aToahoSGaOnUqdXd3h5V/tBiuSC0tLUVlZaU51TlKpKamYteuXdizZ49yTu/+FY0wLlFfXw+n0xkS+TNiMkfEjCLEqVOn6JlnntFbjIRHrgWuXbs2Yj69awav10sZGRnU2dkZkpZw4wB3795FRUUFDh8+nDRbGupFamoqiouLH7iRll41A/n6BKdOncILL7yA7OzsEJ0QIhT/wTBTIfbv3w+3242//e1vyjmK4yF7oxH8LoeGhpCZmYm2trbodC5HSfDcLs45Zs2ahQ8//BB2uz1q9zWEAXz77bfIzc3FlStXEirKu9GpqalBe3s7jh8/rpsMw83df/fdd+FyueByuQLyqYlEAWkIA1i3bh0sFkvkJjiZBDCcoty5cwdz5szB559/joyMjLC/F21EUUR2djbee+89PPvss1G9l+59gKtXr+LcuXOoqKjQW5SEZTglfvTRR7F+/fphCx69mp8ffvghnnzyyagrPwD9vUAvvvgi1dfX6y1G0nLnzh3KyMigb7/9Vm9RiEjy7tjtdmptbY3J/WJeA6h782fOnMH333+PN998M9ZimPhIS0vDb37zGxw5ckQ3GUjVCm9qasLkyZPhcDhidnNdGBoaIqvVSi0tLQHnzfk+seebb76hjIwMunPnjt6ikN1up8uXL8fsfrr1AWpra5GdnY38/HzlnJYrzCT6WCwWrFq1CkePHo35vUlV+rtcLgiCgAULFsRUAAXOveQV/X+RHAgURVEp3dUB7YLRe/QxWent7aUnnniCfvzxx5jeV/17OxwOcrlcmmnRIqAGYCwFKYIABkAQUhBJJ4AcuA4IDGgXjDnwFVvIVwLPmDEDTqczYCMtioGHXL6HHN6osLBQSYuJLoTaBCdR9GpEXx07akv2eDz02GOP0cDAABHRsKGNzJog9nR1ddETTzxB9+7di/m99VqzPEIfgEBchMhFiEQgSFG4RS7CXzAQuC8PDygt/OdFzqGuSkq3bcfv//f3+MlPfwKRcwjDbGnNGPzX8N1f69oUJCsFyR2QX/8xP8NCRLBarXjhhRdw+vTpmN67ra0N//nPf0YX3C5ShNqEugbgUtBpVZq/ZJY+y/m46jtcVYNw7iWv7zsfffQRzZ03l+77Sn11WrAMAdfjcn9k+GvLcnsVeX3HKhkDn8VEi6tXr1JmZmZMawGn00knTpyI2f3UPMALxMAY+Ut3IgBM+cyJ+0pXDg7AV02AM/9lGRMAzuEVRezYWYE/7PuDEsiAMQEsoHSH/9pM8N2JgTFff0Tj2sHfFwT5e75jxlTHZg3wIOx2O/Ly8vDBBx9o9gG0zo0HObjd6tWrI3rdcBnGAPwqw5gAgbjUtABDgHYxASlCivKntHSCXhJjDHVHjmD6tGlYvHhJ2MJpvmqzGRN1ysrKUFVVpdkJHW3HVHZlD+fS3rt3L3bt2qVflE+5KvA3JziJSrNBlRbiFvU1R7jqWNVMEeUELtKd/n5KT08nj+daSNpwTSAxzGsHN4F48DWGPTYZiWh1StVOj6tXr5LVatU1xrMyG5RIBPcVroKQgkA7JxAnIKh5AeKqjiVTNT8IXO6gMgGlmzfjvhLQzp9GYIrbVboHB5TmTnjXlpo40ne5kpcBIx4HPYdJCK2trSgtLYXb7Y7I9eRBTlLNMC0qKoLT6URxcXFE7jEmwrMTPma3ZGdnJ6WnpxtmspVJ+MybNy9i0xKC9aerq0tz84NYu7/DmgpBRBjrqFh5eTkqKipCojmS2ZY3PMGL58dDcN9h//79eOutt0I2P5Dzcc5joyMjWYfc9hcfYJXqCWzqzy0tLWS1Ws0tTuIYm82mWQsEb7g1Gnp6emjq1KmG0IsRawBpakQKhBFK/+AJbPJnURSxdetWc4uTOKe8vBy1tbUh54M33BoN+/btQ2lpqTH0IlqWdezYMXI4HAHnOOfD1hYmxiTSG2ndvHmT0tPTlakwehOVNcGDg4PIzs5Gc3NzVFf0m8SGEydOoLGxES6XC4yxca0VNlr84qgYwEgB7cbz8kz04f79+5g+ffqYtlBRN5EjHd4oEkTcAIID2pkkBjU1NXC73Th58uSYr2G00h+IggGsWLECdrsdv/vd7yJ5WROdGe9GWrdv38bs2bPR3d2N9PT0KEg4NiKyJFKe59HW1oZPP/0UZWVlmukjfTYxNhMnTkRJScmYFs8TEWpra7Fu3TpDKT+AyHiBZK+AzWaj9957LxKXNDEg8hYq33zzzbB5tIKZ9Pf3K8HtjEZEagDGGE6ePImHH34Yq1atisQlTQwCqVrIaWlpWL9+PSorK4fNrxXMpKamRgluZzTG3QcgIvzwww/IyspCY2OjEtPLJDHp7+9HTk4OOjs7kZaWpplH7fkZHByE1WpVnCJGC3A+bkkYYyEB7UwSlylTpmDVqlWora0ddq6OWsGrq6vx2muvKaW/kZQfGEMNEGzBX3/9NfLy8uDxeJSYXiaJTV9fH+x2+4i1ACDFfMjKysLly5cNu+v3uM1xx44d2Lx5c4Dyj7NVZWJwLBYLCgsLceLEiWHzEBHq6uqQn59vWOUHRlkDUNAo7r/+9S8UFhbi1q1bIRObgvOaJBY9PT146aWXcPPmTc1JbXfv3oXVakVra6uhDWBUNUCwQo8U0M5U/sQmMzMTBQUFqKur00yvr6/H/PnzMXPmzBhLNko0naNi4Gy/gNl/vo+nT5+mefPmRdAjaxJvdHR00LRp00K2UPF6vWSxWAJmkBoV7RpACCy91aU5Z4ShoSHs3LkT77zzTlSN08TY5OTkwG63h2ykJQe3i4eZwEyyAxGMhW5LQSHteA5A0AxoZ5JcyLrhdruxfPlydHZ2IjU1VQlv9Ne//hVPP/203mI+EAGQVn4RiYFzcwggRfe5kv327duora1FZWUluLnRVNIiF4w2mw1WqxVNTU0ApNJ/9uzZcaH8gK8GGG50Tuu8GdDOJBh5C5XPPvsM2dnZOH78eOwivIyTEd2gnr+/ja6Z27B0jmTxn3/+OZYsWYLOGx2Y/NMppqfHRBnzWbhwIZ577jl88sknaG1t1Veo0SDP2pM3ulU2XaN2cgJ05gsvEUl5QgPamWt6k4UHrQM+e/YsTZo0KWbB7SLFBKWJwxig6vTWlBwBKyhA9lMMgIAzZ87g008/xYIFC7B7927IHWITE0Ba8AIAkyZNAqDdfDYiioQMAIO04NlVXQy88gpw0atk/P7777Fz504IKalSfpYCaHiOTBIMJu/krdXcldSHEZCRkYHm5mb84hfPKB6ieHCRhPYBOhqw6SxD3a8IrPQC+PljIQ9PRCCiuLBwkwhDIjgx/2/v2zGf4nTqS4gGl9RdQt2OIhCJyJ+dpZxXWwlj0guIBws3GT8BvzNLUTa5lY7lhNDlraIoRlmy8RNgAK6ajTh69Kik4Hm/BgD/PjC+PET+h4o/ezcZLRykxGRQj/sQAzYsknaHExiDIEwAYwxvN7UreXTb838UCICk1NR+BhfFV5TmzReNBzFrmjSRSV21aY0YmyQu0kbyXPksl/wCGOrOc2xYDBxo9EAkji8aD2JHYR5cnvjZ7GACALDOJrBtF0EX6pWE7t5eAKPf/sIk8VAXegGFIdrx5blfYnNzDgQwPJVl3GnPw3JoY74UqwKghmuSb7TYCeVcfkmV32lqhlcxUfFF40FauPmgclz8il9fpMDo9/USLWxUEWKkXrw8H+hBu/9SnPb6TcYG5zxEJ1w1G/HGdn+roeGaiMJciqtmsn8cQLWdhTqq+3CYyp8ckNzmV+mE3Bm+cK4eDddEEBHOHPpvvPFUChrbVXoRB25C05FvMiKkMVVMAAM6GlBP61E0R1L4wrKtcAK4eE6aFcpBceEmNA3AZESGG+x0nb+AjYsKlMVTQucNtADIzJolHceD9iNK26ObJB7+Ph8HEUNJgQBnrYiiPEDkHixKseFjLEA7fYw5EMBBcWEEpgGYPBgCCNKqwWtNVZhbWO5PY1I6CtaDnz8aVx1gAPh/WyWTmHeLaCUAAAAASUVORK5CYII="
|
<image>如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,673 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABQCAIAAABQ51aZAAAJq0lEQVR4nO2db0hTXxjHn5tWipKgkmFraeYfUoeJimJhaTkrQViC6AtBI8lASkhUpvgm6E1UNrAIM/8GlvYHNS2HiopW0jR1/hdc2yxTwbQ0FL2/F7dua5vz7t5ztzv7fV6de3ae73n23HPOPffc3TPAUSAUCuFvwsPDkShvY3YACpqamiIiIkhRhUJx9OhRJMrbGDShB4CvX78Sifv37/P5/LCwMCpWUql0ZWUFlQ8WBpK+09vb++bNGxzHy8vLZ2ZmKFr5+/sj9MHiQNPqh4eHo6OjMQxLTk7evXv3luWfPHmCYVhSUhKO49evX/f29kbihoWx2TlpbGykfgJjYmKIxPHjx7csHBgY6OzsrFKpyByRSJSTk0O9uu3BpqEHAIVCQVHF3d2dSJSUlBgoduPGDQCQSCS6H1lbW0ulUorVWRa5ubl6m7v+0Ofn5wcEBFCUrq+vLysr08xJT0/XKqNQKNzd3X19fefm5jbTAYClpSWKlVoWQqGQTOfl5RHR1xN6iUQyOTlpYCzSQuskBQcHv3z5UjMnOTnZ1ta2qKjIsM779++pV2pZaM68cRyPiYlJS0vTvsz+/PnTwcHB1dU1PDx8y+vE+Pg4hmF9fX2YBj09PeRlc3h4GMOwPXv2KJXK9PR0w2rBwcGFhYUCgYDCFcqSmJ6ePnTokGaOp6dnd3e3diu7evUqkbhw4QLDU52QkAAAXV1dRlkJhcLU1FSGVXOKxMREzTkFjuMdHR1hYWF/hV4ikZBnJiMjg3ZlHR0dAJCYmEjP3MHBoa6ujnbtXAN0RtG4uLjs7Ow/uRsbG6WlpUR6amqqsrJSy54eYrE4Pz+f1Cn4jYEc2nVxBM24TU1NpaWl6Z6M3t5ea9IgJCSkp6eHSDc2Njo7O+sqUq8ewzAcx/Pz862srLQ+2tjYWF1dJQ/X19e1yhQUFJw8efLUqVNra2vUa+QIGIZpHqpUqqCgIM0cFxeXqKiogIAAwHE8KSmJyCXOSWhoKHGYlZVloNcYJjQ0tLi42CgTLTIzMwUCARMFs6AVKABYWFgg0kSDi42N/fURPcUtuXfvnoeHh1EmugiFwmvXrjEUMTFkoPr7+3X7xOjoKFkSw6kNI8QAYmzXM9ZEr8jY2JinpydDHZNB/VsjWzTWJSoq6s6dOwxF5HK5l5cXCne4h7H9iDo9PT12dnbGWulSWVnJ5/OZ65gG6oFiccChbaVLQkKClZXV48ePmUuxjRFfGfnJ1EQkEonFYhqGuvB4vNraWiRSrEI9UOy2+vHxcS8vLxqGuqytre3atUutVru6ujJXYw9OXGYBgJiZjI2NMZfauXPnyMjI/v37mUtxBHZDDwApKSklJSVIpLy9vQsLCw8fPoxEzeywO+AAgFqtdnNzQ7gkEBkZ6ePjU1RUhEoQLdQDxXroCdvJyUmtNWsmYBjW0NBw9uxZVIII4VboMzIypqena2tr6Zkj94dVuBV65ua6DAwMEItrCDWRwJUZDomNjY3e5STa+Pv7Z2Vl+fn5IdQ0NcjvFPTy4MEDb29vJgp6CQsLS0lJQS7LBOqBMtGAg0RBL05OThUVFdy55HJuwAEAPp//7Nkz5LIymezcuXPIZU0B8n60GR0dHfb29gxF9NLS0sLcPVRQ98R0Aw4qEb2kpqZOTEy0t7ezIW4UXBxwAEAgEDB/eKKXkpKSoaGh27dvsyHOFsj7kQGam5uRPDzZjB07dtTX17OnTwXqgTLpgEPoLC8v29raMpfSBeEaNW04OuAAQGxsbHZ2Nkvinp6eVVVVlvKihKlbvVwuDw0NXVpaYi61GZcvX56fn6+urmavCgNw5QHhZlKfP39GpaYXR0dHo96KQQj1QJm61QNATk7O7Ozsw4cPkahtBoZhZnmayOlWTzwvRKWml+bmZgB49+4dq7XoxYiQIlekqDY0NIRQUJO6ujoAkMlkLOkbhuuhF4vFcXFxCAVJJiYmAKC1tZUNcSpQD5QZxnqWBAFArVbzeDylUsnj8dAqU4e783oSe3t74r01VEilUh6PJ5PJzBh340DejygikUgQ7h7S2dkJAIODg6gEaUM9UGYbcBBqyuVyPz+/rq4uintisIoFDDgAwOfzm5qaGIr09fX5+fl1d3dzIe7GgbwfUaeqqsrX15eJwuDgIAC0tLSgcok5RoQUuaJRMJEl5u8dHR0I/WGOxYQ+KCiIfGPUKIj23tnZidwlhlhM6Nva2hwdHY21+v79O5j1vskAFhN6GsrEq+jk+M6eY/SwpNBHRETcunWLYuGGhgb4PX9XqVTETGF9fZ0l32hgSaHv7u6mKK53PfL/Vs8IAPj+/bvhMl1dXbpxx/9+HZsLWFjoU1JSLl26ZKBAa2vrZvNIAFhdXWXNNaOhHihzLiSQzMzM7Nu3bzP92tra+Ph4DMM2NjZM7BgNLGMhgcTFxcXa2pq8bGry6dOn+Pj4zs5OJyent2/f6jWfn59n2UFW4ESrB4CsrKzZ2dnS0lLNTJVKdeDAAYVCwefzf/z4Qfxk08SOGQudZ7MxMTGa+VpbHwLLEwmlUqlVBbEOrHnfJBQK7969q2UIAPPz86z6ZhTUA/VXuWPHjimVSvz3k+vFxUUairTZu3cvGWipVAoA/f39mgXUavWRI0fIw7m5uc0aihmhGXpNMy0JE4Q+Ly/v9OnTOI4TWz3q3a/OBG4wRNdDcke54OBgHMcvXrz4qyRZor29PTc3l0iHh4dnZmYaVkTOwsICABCbgE1NTektY2dnZ2CTUi6g22Q1580AQN66/ylXXFysewHQtPkfimgGTWsXK7FYTG5X/KdcSEgIMbgT54D2aWdCdXW11paQBqipqWHVGYaUlZXphlFzP7hfn83NzYlEoj+5AOXl5SbwbxsDADdv3jRQ4Nct1dOnT7X+4iIyMtLE/XQ78e3bNwA4c+aMgTK/9rl8/fr18+fPiTSxU+N22v7E9BD/n+Dg4GCgzA5iS+gXL16Q+0HHx8fjpr2u+vj4YDqgfbvcxNjY2ABAW1ubVr5MJvtzYKqhbwu0fg7FHcdoU1NTAwByuZw4HBwcDAwM1CzAieUzAFheXiYSFRUVAFBQUGBWdxBw/vz50dHRsbExohN/+fKlvLz8r5U+czQIbT5+/FhYWIjj+OLiosVt57olDQ0NOI7r3iRyotV/+PDhypUrxJ8MeHh4mNsdxBD7Nxw8eFArnxMrrj4+PiMjIwDw6NGj6Ojof2RyZf5Wv7Ky4ubmRqRPnDjxj8QduBD6V69eiUQiIu3u7m5eZ0yJ+QccgUBg0VN42piz1ctkMgzDBgYGtP7p4B/hP7iehH7PkRErAAAAAElFTkSuQmCC"
|
<image>把矩形ABCD沿EF对折后使两部分叠合,如图所示,若∠AEF=115°,则∠1=()
Choices:
(A) 50°
(B) 55°
(C) 60°
(D) 65°
|
50°
| 69,674 | null |
50°
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAAB4CAYAAAAwj5aoAAARWUlEQVR4nO2dX2gb157Hv2MnZWC3oL1ciNhmybC3vp4tLZ2XkqnC1oJ9qBIKEUvbKLAQ+cVWeguWL5S4cMFJWXDCwlraf4q7D3Ke3ORFDiVW8lIrXGKrT1Kgt3YiFyvtgyd7H+RluYxuauu3D9LII0Uz+jNnZuQ/HzBYM3OOjuZ3fuf8zr/fjyMiwhGHhgG3C3CEsxwJ/JBxJPBDxpHAHSA9zoHjmv7OxLHhQlmOBO4AZ+cIhZgPGFsCEYFoCWMrUQyNpx0vy5HAHWED9+6sYCx4tvb5LIJj7pTkmDtfe8jYuIc7K2P4XU3eG/EzOPelD7HCWfN0NnAkcAfYuHcHK1jBOe5LAIAvVgDR666U5ahJt51ac75E1f67EAOiQzgTd8NkA0BH2EshRj6M0ZLu0tIYCE3XnOJIw21m494drIwFsddbb+DpdwB8b2DIjQK5UMkOEQWK+UBjOlWuanfjNSfhiI4WT+yC47gWV32IFR5hwh2b7XBZ6evr61AUBdlsFs+fP0c+nwcA5PN5bG9vG6aTZRk8z8Pr9WJ4eBiSJMHj8cDv95t+Xz/q0oHW8PX1dWQyGTx48ACZTAZerxderxeyLOPEiROQJAkA6gI0IpvNolwuQ1EUrK+v4/Hjx9je3kYmk4Esy/D7/Xj//ffbVoB+4MAJPJ/PY25uDouLi3Ut1IRhJtReyWazDZUqGAziwoULCAaD4Hme+fdZxh3TgS1bW1uUSCRIFEWSJIkSiQRtbW25UpZUKkWhUIi8Xi9FIhHK5XKulMOIfS3wzc1NikajJAgCRSIRWltbc7tIdUqlEn366ac0ODhIb731FqXTabeLRET71EovFou4du0aMpkMJiYmEIlE+qr53N7exuTkJBRFwdDQEMrlMn766ScoioLp6WkEg0H3Cud2jeuGUqlEkUiEBEGgZDLpdnFakk6nSRTFevkWFhYoFAoREVEul6NgMEiSJNHq6qor5ds3Ak8mkyQIAiUSCbeL0pJSqUThcJgCgUCD/bC6ukqyLDc8m8vlSJZlCofDjtsafS/wtbW1+ssplUpuF6clzVqtp1QqkcfjaZkumUySKIqOVuK+FngymXS1+WuHkVY34/V6De9r3VQwGHSkQvelwFVVpXA4TOFwmFRVdbs4LTHT6mZkWW5baVOpFMmybPswru8Evrm5SZIk9a1R1qlW64lEIh0121r3Zedv76vl0Xw+j4sXL2JhYQHhcNjt4rzE/fv38e6772JkZATpdBper7ejdKdOncKzZ8/aPieKIpaXl/Hw4UNcvXrVYmkNsK0qdcny8jL5/X7XZsjM6EWr9aRSKQoGg12lmZ6epkgk0vV3taMvBJ5KpSgQCPSlFd5NX23E2toaiaLYdbpEIkHBYJCpHeO6wNPpNAUCgb4zzqxqdTO9NqaaMrDCVYGvrq6S3+/vO2Gz0OpmRFHsea4/mUxSOBxmUg7XBK5ZpP3UjLPWaj3BYJBSqVTP6aenp2l6etpyOVyx0ovFIi5fvoyFhQVb1qh7oVcLvFMEQUCxWOw5/dWrV/H8+XPcvHnTWkEsV5ke8Pv9tLy87MZXv4SdWq0nkUhYtrpVVSW/329p5tFxgbNqmlhgR19thDbstIo2MdVrV+iowFn9aKs4pdV6tra2yOv1Msmrl3G9hmMC39raIkmSXJ9YcVKrm/F4PMyM1Gg0SrOzs12nc0zgVq1Uq7ih1c1IksRscURVVRJFkTY3N7tK54iVfv/+fZTLZde29thtgXeKKIpYX19nkhfP85iZmcHk5GR3CZlUNxNUVSVJklzZYNgPWq1nZmaGpqammObZbctpu4bHYjEEAgGIomj3VzXQL1qtx+pYvBWJRAKTk5Mol8udJWBa3ZrY2toiQRAcnTrtN63Wk8vlSJIk5vl2Y8DZKnCnx9xuWuCdoKoq8TzPPN9uFMs2gauqSoIgOKJl/azVzZjtb7NCp1pum8BnZ2cpGo3alX2dftfqZgKBgC2nUDrVctuOC9+4cQO5XM6u7BtOdywvL/eFUdYJdhhuAOqnYhcXFxEKhQyfs8VKv3//PiRJsk0I/WiBd8rw8DCePHliS96XLl3CrVu3zB9i3rYQUSgUooWFBeb57qe+2ghth49dtLMRmGu4dlCe9azaftZqPXY16RrhcBjz8/PGD7CuYSzWffUcBK1uhud52+Ym2m2YZK7ht2/fxoULF5jkdVC0uhmWc+qt8uZ5vu6/phmmVnq5XEY+n4csy5by2a8WeKdozbrmY4Y1fr8fmUymZf5MNTybzUKSJEuH8w+qVuuxU8MBYGRkBA8fPmx5j6mGZzIZjIyM9JT2oGu1nuHhYUOBsMDv92N0dLTlPaYa/vDhw55cVx0GrdZjt4Z7PB4IgtCyH2eq4dlstqv++zBptR67BQ5UnQlqXaweZhquKAo8Hk/H/fdh02o92l58M++PVjGa0WOm4fl8viOr87BqdTOallsd0RghCEJLO4GZhheLRQiCYPrMYdbqZuxu1o3yZ6bhT548wfDwcMt7R1r9MnYuogDGAmem4dvb2y3PiR1pdWucMNxazdt3oeFpxONDmDBw9K0oSoMwj7TaHCcE3ooONXwD8TPncMfkiXK5XLfQj7S6PXavmgHV0UDzSKBR4PQzqPJi76/mhXUjfgnRFeDNXxu78S+Xy9jZ2cHo6Cji8TiWl5f70jGPNTYQP6MPKTmOXmML8jwPQRBsn4BpFnhjk84dB4ddEFWq/3MANuL4F/wOMd85fG+S+dOnT/Hxxx/jvffew+nTp62fY3aJnZ0dnD9/Hu+8807jjfQ4uHNfVsNJPjpbu8Th3Jk3UHg0gV4iWmha7uSe/TZNehrjl4DPJoDvV3x4wyQMz4sXL/Dhhx/atgLkFHfv3sXXX3/deHEjjjOasOf24hOdDY4BK3dwr8cQZG704yZGWwUPfpPCP/7+P/Crwn/hD3gTwV/9DKoQwL1S1X7aBdEuAOCtvxvCJ598UhW47jowAG5A9zVm9/Q0PDcIbmDQJH0FVNkBwAHcIEA71dvcMXCgvee5Y+A44zp+/fp1fPDBB/jiiy90VzcQvxTFCsawNNcYOnLj6XeGeXXC8PAwHj9+bCmPbjH89T/8298j8N/z+KcTf4lXfz2JR0D1ZXLHqsJGBUQAN/AKuIFjePWvPPjf7e3a9Uq1Ugy8Ao6rfQba3NOjf+44gN2aPWGUfgAcNwiAAKrU7lUFXy8jNwi0/K4qi4uL+PbbbzEzM9N4Y+Me7qwAvthnaI4UWvh+BcCbMDFtTLHbcNMb0hqtBf7Df+JfcQv04gX++D9/wv8tjVUDq9VeLoDay9utGXg7GNTS1gWgXdC9aLN7eqgCcIO157iawDpJzwHcsabPg7rPhFbhAPL5PG7cuIGFhYWXbxa+xwpaGKwbcfzzlwAagtB1hyRJhjtTWNA8VAZaCfyHf8c/jAG/1cbb3CB+2PgDXtVevj4UF3espuGv4MRfn8JmvbaaBVnoMACDYaAGtgEcFEWpOxgyXvhptl+0Zt6H2Ge9Rwj2er3Y3t7u/CAgC+q72yp/pkpll3D8OP3yFz6KF4i0yHrH/4KnE7/k6Re8Pl7mLlV2/0yVSvXTngNZ7XrtRuVnqlR2m9K0uqejstOQN9EuUaVN+soOVXZf7KVp95k6dZKzRGMAQRdKsBpd0EexgkmyDmHpJKCZVpslde0fB9AOKuU/7Q3J8DomHhEmUAFVKk0G1gA4bgBE1fH6G+IQCk+eQOtPiX6uKekguIEBXRqjezXDi6v2t1VjS5sLGKg9Z5S+smeY0Q7ADbT5XP0do6OjGB8fb7NidRZzhRi+GzqHWjToqrVObGJ/a5Y669GN0XL1ngTrQjagoS/Urh2rp/mbU3+LbzK/rz/LtXre9N4AuIFXWubdPn1TWqDt5+vXr0MQBNNjOXVen8Ajmmj/XA8MDw/bMjQzWq7ubGqVKgDMaoN7c8O9YGiRu4AoirasmhktV5sLnGpTrBg0137sH4GbWuQuYNd7M1quNhd4fbzbRto17B5mWKVYLGJycrKNRe4sdo3FrTXpHaJtgO9HyuUyLl68iNnZ2bY7c5xEM6wURWGWp9mBEKYCN9sA7zYXL17ElStX+nKun3WzbnYg5FBo+Oeff47Tp0+7GwLSBNYCNzsQwlTgZhvg3eKrr75CsVjE1NSU20UxhPX+NrMDIcxPj54/fx6Li4uss+2JbDaLubk5JJNJt4tiCkvDTVEUFItF48kk1tN5m5ubJAgC62x7Kocsy/viTHmvQXBa0c6Zki0uP9x2gK+qqiNR/ljCyklAu7l5W5z6dORcxkb62SI3gkWzrtlOZr/bFoGHQiEsLi46u+xXo98tciNYWOq3bt3CpUuXTJ+xReA8zyMcDju+kXF+fh6KovS1RW6EVYErioLFxUVEIhHT52zzpnzlyhXE43HHtDyTyeD27dtIJBKOfB9rOo1PasT8/DxCoVD7KWPLVoIJvYZp6BargV/6gdXVVZJluae03fi13ffus0ulEsmy7IoDfpZYCYLTjV9b2yMi2K3ldjmrdYNeguB067XadoHbGc3IqS7DKWRZ7joIXbfvwPYQGF6vF+Pj47h27RrTfG/evIlyuYxoNMo0Xzfp1lLP5/PIZrNtLfMGuqyEPcNyd+by8nJfhqC2SrdBcHqZ0XRM4LlcjmRZtiykg2CRG9FNxMFeQ0w7GorSapSEg2KRG9FpEJy1tTWSJKkn5XE82KyVCIUHySJvRSdBcKzGgXNc4KVSiSRJ6jqE4t7JloONIAim7yYcDluK7+J4wHiPx4NkMonR0dGOHdPFYjHwPN+dNbpPMbPUb968WV+n6Jmeq4pF0uk0BYPBtv2Q3SEj+g2jcbWVENJ6HNdwjUAggPPnz+Py5cuGz6yvr+PatWt9c2jACVotomQyGczNzbF5D5arjEWMxp699vX7neYWLZfLkd/vZzYMdV3gRNWQlfo4KaqqUiAQcHWblFvoF1FWV1eZCpuoTwROVA2Oo00kHBaL3Aie5+nu3bvMhU1kY2TCbolEIuB5HidPnsRrr72GEydO4OrVq24XyxV4nsf169fxzTffMD8DZ5vRlh7XO7DT/Y0bu7ILh8P46KOP8OOPPzI9a7Vf2NnZwb1793Dy5EmsrKzYc+CRaXvRxNIYCL4Y7XnGqLnPaLj2MmtrayTL8oFa+myHNl1q2JUtjRGqDm4IAI0tVa/pPJF0hI0Cr/qH8TU7QinEyIcW15tQVZWi0SgFg8F9cZjACslk0mS6tPoeAb1/nd79zNgn8EKMfC0LVPsBHVbNVCpFoigeSCNOa8nC4bDBBFTtXbVsEZdorKkSdIJtAi/EfAYF7U7gRNUxeSQSOTArZaqq0tTUFImiaLrDpRDzmWhxgWKxbsVtm8ANmnMi0vrxdk16K1ZXV0kURQqHw/tyQkZVVZqdnSVBEGhmZqbN090rRifYI3DD5pxqxoc1H2fJZJIEQaBwOLwvzo+VSiWamZkhQRAoGo12aJP0rhhm2CPwpTGTfoddrdWMnWAwaEu8cqusra1RNBolQRBoamqqO+OzQ+O2W2wQeOvmvNofsf8BRFXDLhQKkcfjoUgk0vXOT5ZsbW3R7OwsiaJIoijS7Oxsj7Nl5sqxFDMf2hrBXOD6sWLDX5uxNwtKpRIlEgmSZZm8Xi+FQiFKJpO29veqqlIqlaJoNEqSJJHX66VoNMrGuKyNvRuVpKpQvTaSHJGhF9t9jaIoyGQyePDgQd3vjCRJePvttyFJErxeb9dB4orFIorFIrLZLJ49e4Z8Po98Po9AIICRkRH4/X72R5Q34jgzFMVK/YIPscIjGMQaasuBFXgzxWKxLqDHjx9DURRks1kA1YrQKgSXRjabRblchiAIEAQBsizj1KlTkCTJtsiCdnFoBG5GPp833W4ly3LfOPKzypHADxmubXE6wh2OBH7I+H+dkByRsbUORgAAAABJRU5ErkJggg=="
|
<image>如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为()
Choices:
(A) 50°
(B) 55°
(C) 60°
(D) 65°
|
65°
| 69,675 | null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABvCAYAAAANB/VeAAAWR0lEQVR4nO1df0yb17l+PljKpFrx1usKR3HitLiJW7iZW8KCFjqHGyfhqrm35BaJTqUKkdKx4EyjLdP4YxOLxCR2R5pMFzqarAuVEgndsZpWuSsJWWL6Q2UiGtFqwGlgITMpJlS6ZHZ0obG/5/5hbPzZn3+BbUzCI5F83/n1vT7ved/znnPec45AklgGkIQgCHHHB7/fuXMHV69ehd1ux+TkJKxWayDd2NgYJiYmJGVpNBrk5eUBANasWYMdO3ZAo9Fg8+bNeOaZZ6BQKJZMb7ohLBfjEsHExAQuXbqE3t5eWK1WTE5OoqSkBBs2bEBeXh6KiooClb9p0yZotVpJ/ps3b+LmzZsgCbfbjYGBAYyNjcHhcODjjz+GRqPBzp07sXv3bphMJuTm5sZNmxxD08HktDEu0R9jt9vx9ttvo7u7G263G0ajEaWlpTAajdDr9UmlbXh4GJcvX4bVaoXVasWjjz6KF154AdXV1QFJzTgwTRBFMWaa6elptre3s7CwkBqNhvX19RwZGUkDdVLYbDbW1dVRrVazpKSEJ0+e5MzMjCRNPL8nlUgb46LB6XSyrq6OCoWCVVVVPHfuXFz5QisvFZXZ1dXFyspKKpVKNjQ0cHp6OunfWAyWlXEOh4M1NTVcu3Yt6+vr6XQ6w9IkwoxUSoHD4aDZbObatWtZV1cnS2s66VkWxrlcLjY0NFClUrGxsTGhVrzcKsrpdEpon52dXRY60s44i8VCtVrNmpoa3r59m2R6mLHYb0TK53Q6WVVVRa1Wyw8++GAppC0KaWOcw+GgyWSiwWBgf39/uj6bclitVur1eu7bt4/T09Np0whZ6bBcr1y5gqKiIuzcuRODg4PYvn17Oj6bFhiNRthsNhgMBhQWFmJ4eDg9H052SwhtcR0dHVSpVOzp6ZGNv5/Q1dVFlUrFrq4u2fhk/vakMS6UKK/XS7PZTJ1OR5vNlqzPZCSCf/vAwAA1Gg0bGhpS+s2UzJzcuXMHL774ItxuN86dOwelUpnsT2Q0pqam8Nxzz+Gxxx7D6dOn45oLTRRL7uNC+T40NISioiJotVpYrdYHjmkAkJubi08++QRf//rXUVxcjLGxseR/JJni29PTQ6VSydbWVtn4+7l/i4Tm5mYqlUpardaklps0xtlsNiqVyoAR8iAjtIFaLBaqVCqOjo4m7RtJYdz09DR1Ol1ESVsF2dTUxPz8fLpcrqSUt2TjxOv1oqysDFu2bEFra2uyNPh9iZdffhlutxsWi2XJZcVtnETib319PQDg17/+9ZKJud/x29/+Fk6nE0ePHo2YJm45Woq4dnR0UKfTZcxSx0qAw+Hg+vXrabFYllROQozzd7qiKLK/v58qlYrDw8Mx069CioGBAapUqiVNTCxK4hwOBzUazaoFuQR0dXVRq9XKaqt4GnzCxglJ7NmzByaTCT/5yU8SybqKEPzsZz+D3W7H73//+8QzJ9pSOjs7+cwzz9Dj8SSadRUhmJ2d5ZYtWxY1AZ8Q41wuFzUaDQcGBhKjcBURcfHiRer1+rCV9FhMTGiu8ujRo3juueewbdu2xEV7FbLYtWsXvvWtb6GlpUUSHsuVMWYfx3l/yLGxMRQXF2N0dPSBnDhOJaamppCfn4+hoaG4nXFjSpyf801NTTCbzatMSwFyc3Px8ssvo7m5Oe48cVmVU1NTKCgoWJW2FIEkbt++nVAdx9XHNTc345VXXlllWoogCAJyc3Pxwgsv4Pjx4wBiT33FlLgvv/wSOp0O165dS2gzxCoSh9+OuHHjRsxV85gSd/bsWezfv1+WaXFo2VUkgLy8PJSUlOAPf/hDzLQxGdfR0YHq6mrZuHTsF1toGmKUuOB4cSFiBbarAwcO4PTp0zHTRVWVV69eRXl5OcbHx5NJ26LAKNu0IsURIoSlu9WkFKG0e71erFu3DgMDA2H7/IIh+VWhPHznnXck0rY8qlGMubdOEARZ4cp0pgHhWis7OxsvvfRSbKkLnV4JftZoNMuyPy0aJLSSJL0MCVjx6O/vp16vj5omK5Tr/me73Q6Px5P03Z9LAWUlzydVBIDM2aK9JGzbtg0TExOYmpqKmCaiquzr64PRaAwLX06EMs3/Nvz+G8gSBAjzf7uPHEs/cUlEdnY2SkpKJIcShELCuOCKuXTpEkpLS8PCMwX+xnTshybkP/9HDNHXF4ocAtrqsfvIsZVoVAawc+dOXL58OXKCSDpUrVbTbrcnU3UvCmLIc/B7S62J2H04LI+tu4XALg6t4E4vVj/3NRlG4u9//zs8Hg+2bNmSykYVFxZkfcG0J4Dh946h/s2LsNgu+MLC+r/MtyijYfv27bhx4wZmZmbwjW98Iyw+7NcJgoDR0VEUFBRkSN/mH1gvME0A8GZbPUzmFpTnCwABQWBANV4f+5svHzNPxSeCJ598EqOjo7Jxss3SbrdDp9NlSN+WJZkBEQAQNlzvBcp2ly0EIisgnb09b8Jk/lc8lQnkLwH+OWI5BBgXLF2jo6MZNQwINfOF4VH0AsjTPSWNIGB7/xje7AVqa19LG3mpgl6vjy1xwdJlt9szi3Eh4FObsVsAxkal23Yp2PHq8z4Vun+lixt8jLPZbLJxsqrS6XRCo9GklKj4ET65LPAp7D1sQn1b20LgcDeyhCcBcwt6/+v1NNKXOmg0GkxPT8vGhVmVAOB2u1Oyi3Jx8LUtEVzoxQTg9bZe/G2PAEH4TSClxSb6jJUViHCrGHj44Yfhdrtl039NLkNmMc6HrJCOjiTaLhBtwIKpuYIhZwgqFArcvXtXNn2WXAa3242HH3446cQtBaFDEz/dJMOY1tTUBK1Wi6effhqffPJJukhMOhQKRUSJC1sdIElBEFIyG5BqzMzMsLKyktnZ2YRPDllUVLTcZMVEpNWZmZkZKpVK2TxhqwPzzMyQwXf8OH/+PPR6PTweDx5//PFA+F//+lf09fUlXF46f7/c6kxMWuS4qVAokrblNdVwuVysqamRHAzT29tLvV5Pg8HAY8eOUa1W02w2x/WblntrWPD3/bui5CDLOLVazampqdRQliSIokir1UqtVsuysjLJMYShlT8zM8Pq6mpqtdqkn36QSoyMjEScaJZlnE6nS+oJAcnG3NwcGxoaqFAo2NHREXe+np6eMOkTRXHZpSwYoacUFRYWyqaTHYArFAq4XK7kKfEkgSSuXLmCrVu34tNPP4XNZsOBAwfizr93715cu3YNd+/eRUFBAfr6+gKLr5mCYFqiDctkGadWq3Hr1q3UULZIeL1eHD16FKWlpTh8+DCsVmtULyg5kMTatWtx+vRpvPXWW6isrMSRI0cim9zLjFu3bkGlUsnGyTIu2uRmOsAQK8put2Pbtm04f/48BgYG8KMf/WjJ3wiVvlA3gVAaQt/TgevXr6OgoEA2TpZxOp0u4uRmOhCsLn75y1+iqKgIzz//PD799NMlTX6HqkSlUhmQvu9973sS6Qvzbwke8KcJQ0NDeOKJJ2TjpM5CHsI7R2x+XI/xzycghs/vpg03b97Es88+i87OTnz00Uf4+c9/npRy5Sp+7969sNvtkr4vUr509oejo6ORvRBkzBre+Hyc61T/lFKLKVpYa2srFQoFGxoaUn5Ydej3/ZZnbW3tso9lc3Jywu478EOWcZ5ZkRty1Wlxhg2uOKfTybKyMup0urjObU7UjI/3noJMGPfFchaK6FHz7M5/gfXih/DOEd6vfP4cflUaUKH0vXvnCK9HIsYL4XOUusmFxGFe9Zw9exZbtmxBXl6e79zmb397Id1XQWUE5Re/8ns1EKL/W1x49nooTe+V/sZIai+473vxxRfTYnkyRIVbrdaAX2ukDFLMS1z7b9pZWfkSPbMig52+vffEhec5f5xI76xIXwMOfibFeyI9wXlC4pxfTLOiooJqtTqodYekmxPp9cYoe57uAL3+9znpe6iMyQ3AQyd6Dx48yI0bN6ZV+srKytjZ2RlRK0Rk3PDwCHNzc6WV4/VXoO/ZX1H+P693PnwuqIKCKywk7n/O/ZEbVBt4sLpaqsu9wcymJPxepLL9z2JIXKT3BNHT08Pc3NywWZdkIbgsj8dDhUIR9TaRiIwTubDpw9/KxXtBlRalciUtO5RxsyL/d74PUanW0/Lf3eFuq6HMj6fsFDOOTF/fF/emD2C+//LM69l51V9RUYHOzk4I2YD4FcEsYWHNMgsQvAgaMhAU58MBiJ5AMJAd8KDDRx99iG3/vBVutxsjtkH82/5/D1+89vng+cqLt+w0IN6+j0sc63V2dqKysjJ6Ij8HxXtBfcR8qxwcHKRWq2Wgbwlle4i6lEjC/3klfYzL5aLZbKZSmct33j4j7X98meidjayKQ6VMmt+XdyFtrPelQRRFifT19fVFTBetDDl4PB6qVCqOj49HpSHmkVAGg4FWq5XivVgpI8Mv+iaTKa5boFYKRFHk+fPnk7reZ7FYaDQaY5Yj67oQjBMnTvDggUOL6hs8Hk9g+eV+O6851PJMVt9XXl4e11JVVIkT74l0TtzmOuUjCUvK4OAgDQYDi4uLY4r9SkWkWZfFrveNjo5SpVLR5XLFzBPX6Xl1dXUJXTnS1NREhULB5ubmuPPcL/BL32LGfd///vfZ2NgYV1rE0xocDgdVKlXEeTM/RkZGWFxcTIPBcF/fpxNPnclJXzQ4nU4qlcqYdexHwK+SUcxYjUaDffv2BY4rkkNbWxuKioqwd+9eXLlyBfn5+Yu1hjMe8awQxLPi4AfhO3br4MGDEY/dCuNNOC999rhkJ6goBvRvaIsYHx+n0WikXq+/ry70SyZiSZ/T6aRKpQrYEfH0iz6rMiggOIOtu4UW28J7fX09a2peCbx3dPyOSqWS9fX1y3ZXaCYgHtUZbHlevnx5IS/JyspKNjU1JfTNBYkL+bbIIZoAvvuZN0CYy+WiWq3mn/70J5aVlUnM30zylMpUiKIokb5//OMfvHjxInU6XZSG75UNFURRZPCyvP/5jSNmfHD9Oo6fP4+CoEmlH//4xzh+/DgOHjyIRx99FA899JBE94uimFFeU+mAIAgJTXPNzc3h/fffx61bt6BUKnHy5Ens3bsXvi1lWUH/+xH6HrLpw//c/YYZ3j0m8ILUd4EkduzYgaysLHzxxRcSpoWW8SAhXqbdvXsXf/nLX9DV1QW73Y41a9YgNzcXO3funF9YzIJ5jwBByA64DQqCgGPvjch+NEiWSQ5ZWNtiIYcsgaMopGrQyz//+c9cs2YNi4uL4zZfH1RMTk6yvb2dRqOROTk5rKio4JkzZ3j27Flu2rQp6MKIBZVYuxts6fYNp4beO0YAEluDlAzAfRnNZjNJUrS9S5O5RYYUX7oPP/yQOTk53Lhx4+px9iFwOBxsbW1lcXExc3JyWFlZyc7OzkA/Fu2KFpFDNAmmhTNahrsJIQLj/EGWY7WB7UmCINBk/s+oBHZ0dDA3N5ePPPII29vbl/hz04NUGVHj4+M8ceIEDQYDFQoFq6qq2NXVxXv3pLPzDoeDGzZsiHApkpe27pYFgRF90icnQAsS51eR8wV89l5L0Htk1NXV8Tvf+Q7z8/NZVVW17J5RyYCcK4Mcw0dHR9nc3EyDwUClUsnq6uqot1TNzs6yuLhYMq0VWqrl2A8CwiMnaX74GDdkIUw/kBBtaTkSF+M8Hg937drFw4cP89ChQ9Tr9ff1dNfIyAibmppYUFBAlUrFQ4cO8dy5c3HlraqqYnl5uSQstEHU7vYxS6SPB3L9G0mipdYU4LBlyBPI7A+T7+ekCL5qs6Ojg2q1OqFdNJkOm83GxsZG6vV6qtVq1tTUJHyT1y9+8YvYV20OWYg9tYFX/1i6tsUSJplxrQ7E0ysEX25rs9mo1+t56NAhycByJQ3SBwcH2dDQQJ1OR41Gw5qaGsmMRyKI93LbMC03ZCGwYGEGY55x3vl/Q09fjQ6RUmYEXyftdrtZVVXFp59+OqP32gVjcHCQr776KrVaLTdu3Eiz2bzk+df4rpP21b9fTVJckLZIpwBGl7gwJ8TYhNpsNup0OprNZno8Hr711ltUq9WBbb6ZJnX9/f00m83UaDTUarWsq6vj4ODgksudnZ1ldXU18/PzozZcURTnj2lE+J/MkY5+wJuQ68z8IDFGlpmZGZaVldFoNPLOnTscHByUMHO5YbVaWVNTQ41GQ51Ox4aGhqQZVKIocnp6moWFhayoqEiZlZ20C9xD4fF4aDabqdPpaLPZODMzw4qKChYWFtLhcJCMbxNIsiS0p6eHNTU1VKvV1Ov1bGxsTLr1K4oiBwYGqNFoEvIYWAxSxjg//Fam3wo7ceIEVSpVWu5XtVgsPHToEFUqFfPz89nU1BTYyJIKld3V1SXpFlKJlDOOJK9cuUK1Wh1Yc0pVq/R4PLRYLKyurqZSqaTBYGBLS8uSjKN4GOzxePjTn/6UWq1WIsWp7M/TwjjSN9VjMploMBjY39/PmZkZ7tu3jyUlJbIeZPGqTK/Xy66uLlZVVVGhULCwsJAnTpxIm2eZ1WqlXq/nvn37+OWXX6blm2QSGRdv67JYLIFB7O3bt9nc3BzYqRNvGbOzs+zs7GRlZSVzcnK4fft2tra2BvrOZEOOLqfTyaqqKm7cuHFZrtVOm8QFw+VysaGhgSqVio2NjTx37pxElZLhleVyuXjmzBlWVFTwoYceotFoZHt7e9o9o51Op4T25XLZWBbG+eFwOFhTU0OlUkmz2czvfve7LCsrC6xRzczMsKOjg+Xl5czOzmZZWRlPnjwZlVmRpHap/Y3D4Zjf+6BkXV3dsrvSJ11VxrvPOxhOp5N1dXVUKBTcunUrVSoVy8vLCYDl5eU8depU2A316RrIv/vuu6ysrKRSqWRDQ4OEjuWcTFg2iZP86PnH6elptre3c/PmzfzmN7/J1157bVH70JdaoTabjXV1dVy3bh1LSkp46tSpwEp/psz8xHW5bTLBGFeK+RIB9muf4+23T6G7uxtutxtGoxGlpaUwGo0RzzqJq2wZDA0NwWq1Bv5UKhUqKipQXV2NvLy8hMtLB9LPOCxsRLS8YcZ/vP6m78X0A3gvHMEPj/SgrU16GPbExAQuXbqECxcuoK+vD5OTkygpKcGGDRuQl5eHoqKiwJlXmzZtCjsq6ubNmxgfH4cgCHC5XBgYGMDY2BgcDgc+/vhjaDQalJaWwmQywWQyRbxWNJMcodLDuNAzk4e7IRTsh6m2Bb2try+E5e9HbYsFba+X+7JFqKw7d+7g6tWrsNvtmJyclBznNDY2hlu3bkkOlNFoNHjssccgCALWrFmDHTt2YP369di8eTMKCwsz7vzpuJAOfSy9rM+3XGEyt/jCg7qMllqT7NrTKsIhe3x9srEgNSLee6MNF7ELQ62vQQjZvZ2Xtxl4Qg85B9DFghmm4pKFtKjKQOVxGHuy8vFEkDoEop8+H0/F36/MiYa03NXlYxqAkc/RC+Bx3RNRL+ULjouHIQ8a04B0XrIWerERAP/1KwKjJl2FDNLCOL82Fp/aDBOAv41eD/jKA/Bxargbx977LB3k3B9Imxk0bz36vaWDrcfPLL/y+Vf4jh9KG0krGcsy5fWZ5VfzDjFZFPy+m5kxk7RikPaZk1UkByv7BtgHGKuMW6H4fyYLmrhi3vThAAAAAElFTkSuQmCC"
|
<image>如图,A,B,C为⊙O上三点,∠AOB=110°,则∠ACB等于()
Choices:
(A) 55°
(B) 110°
(C) 125°
(D) 140°
|
125°
| 69,676 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAGYAAABqCAYAAABOHSQZAAAc0UlEQVR4nO19f1RU17X/ZwZ/dCXo1Dp8GXToRBh0lHwrYhJZhgYNg9rX9Bv6QkK+q+QbstQiYCtp6VtklehKoq0vkDzT8r5iMJUmtrKqIkl8r+YFG5LYBSG2+nQAFfERh+iIpkEhyRjn3s/7Y7h37p25M8wgIKTvsxY6c+455+45+5x99tlnn310JIkgIABdiGcEoQ+awwdRFKHX68N6ThI6XWCdV69exfHjx3Hq1ClcuHAB7777rvysq6sLPT09qvxmsxmJiYkAgMmTJ2Pp0qWIj49HUlISFi9ejOjo6CHpvpXQiaKHOl3UkBklJkmNSAoIp9xw0dPTg8OHD6OxsRFNTU24ePEi0tPTER8fj4SEBNxzzz1y495xxx2wWCyq8h999BG6u7sBAAMDA2htbcW5c+fgdDpx5MgRzJ49G/fffz/sdjvsdjtiY2OH7EDA0J1spKAjSVGj55MEdDo51b8nkwTJESXy1KlTeOWVV9DQ0IDPPvsM9913H5YvX46MjAzMmzdPcySFC4l+qWHb2trQ1NQk/xmNRuTk5CA/P18eabcUAkXeEDwURZECRUoQRLJgxaDEUv1lsl0UOFK4fPkyq6urmZqaSrPZzNLSUnZ0dATkE0VRo/TIQBRFOhwOlpSU0GQyMT09nTU1Nezr6wtZZjSBUC8SKLIoC6w/6WNERWEmgWVsY3jMCfYDXC4XS0pKeNtttzEvL48HDx4Mm2j/OgUhkBatNGV5qQ4t+vbt28fc3FwaDAaWlZWxt7d31BnhDwQm+X6Qhw4uW1EUkF6UBS7/0fMcDqlOp5Nr166lwWBgaWkpXS6XZr5QDTtWcDqdLC4upsFgYElJSVBaRwN6QPQTbr45o/31f4c+aU5A+hxrJt451QWK/mWDY2BgAGVlZVi0aBHi4uLQ2dmJiooKxMbGynmoUBCVWtpYQxz8XbNmzUJVVRVOnz6Nr33ta7jzzjuxadMmXL9+Xc4zWtArGxwASEH+/NZbb+Efsr6jfg7AmpQA6HRhT/wHDhzA3Llz0dfXh/b2djzzzDOIiYkJyKc1ud/MhC8hXOZK+aTfJf0fGxuLX/7yl3A4HDh37hzmzZuHxsbGm6ZrKGL84BUhHp7g/bifJ6XvHo+co6JoOTPXVw45HJ1OJ7OyspiSksLm5uabH9/jBE1NTbTZbHzggQfY29sbUVmtuUqUn/naGKLoUWljMtr2c0WRRuO37ScAVjY4VBUpIQgCW1tbaTKZuHnz5ogInygQBIHl5eW0WCx0OBxD5g+lPGjNp1BmV34+8C+FLKyoH6zUM6jJeFiUBSKrIOSLfvvb39JoNPLQoUNDEjzRsXfvXhqNRu7du3fYdUgDQ6BixGhl9NBBO9RqsjRSkFUQ9AUej4fFxcW0Wq1h9aKvClpbW2k2m1lWVqb5PJiGKaWLosfLGtHDEw3Ps/6kEMiYk69XUKfTaSwsveKL9HFYKcr6+vq4atUq3nvvvSEXZhLGel0w2nC5XExNTWVOTg77+/vDLqecRpQDQsWYUHNGqGZ0OBycM2cOCwoKVErC3xvcbjfz8vKYnJzMs2fPyulDdULp+QvFhczKymIbBUK5CpYhiJS0s2DMknDo0CFGRUUxOjqabrc75IvJ8bFwjBSR0rx161YaDAY2NTWFlV8UPax/cR0r6w/Qrr+fJ+jxjhhvw4X/cmmScjgcnD59OtPT07lkyRJNGTsRGXGzEEWR9fX1jImJYVdX19AF2vazsKKeYkcDkVVAgaL25B8Oent7abVaWVVVxfT0dL755ps0Go08duzYcKuc8PDvhJs3b2ZycjL7+/tlzZZkwPKkuLiYJCk69jGz+EVSDKKVDQWPx0O73S5XaLVa2dHRwdraWqampv7dzjNa0iEvL4//J/vBQSkj0ONnma9/oUilbC1b/88kyWFtppSWlgIAXnrpJQCAy+VCXFwcHn/8cUybNg3btm0D4LU5MYg5JFj6RIaWiWrnzp1wuS7gmU3PAtAjSqf3sgAA2uvxH7TL7XSi4XnMtyR52yaSHiGKImtra2m1WmVTRH9/P6dMmSLn6e7upsFgYHd3dyRVT1iE0rikZz09PZw9O5719YMLdtK7LswqUKxlRNa/uI6FFfUU+GVkoqy5uZlGo5GnTp2S086ePUuLxaLKV1FRwYyMjCEJ/yoimLLT2nqUM2bMoMPhGNzT8oouaRFflOVbLy7/0fPhM8bpdNJsNgeYWVpaWpiWlqZKu3HjBlNTU1lbW6si9O+NSRJueESWlpYyJiaG8fHxQQ2fgnBDVgvCnmOeeOIJrF+/HitXrlSl9/T0wGQyqdImTZqEV155BaWlpbh8+bKcPhIm/ImGrq4uLLnnLpzv+QidnZ3Iz89HYfG6waei3x7UJJ/nRTgcr6urC6ptVVdXs6BA235WVlbG3Nzcwd4gfCXXNMF+kyiK/N3vfkeTycSamho53e1202azqSSPIAj0N60MyZhr167RbDbzww8/1HxeXl7O8vJyTQLdbjetVqs86UkEf9XR39/PvLw8pqSkqOZjCY2NjbTZbEEtJWQQUabcNn3uuefw3e9+F3fddZfmUL18+TLMZrOmqjh58mTs3LkTP/7xjzEwMADAJ844QdTlSOk8evQoFi1aBKPRiJaWFsybNy8gT2ZmJhYuXIjKykrNOkRRDC7KRFFkZ2cnZ86cGdJanJ2dzX379mmWl/5fu3ZtUHH3VYEgCKysrKTJZArL48flcnHmzJlBHTxCirL8/Hxu3Lgx5AvS0tLY0tKi+UxiTl9fH2NjY3nkyJGv5DzT29tLu93OjIwMulyusMX1k08+yQ0bNmg+C8oYl8tFo9GoGi1ajWqxWFQm7mCor6+nzWbjF198EQbJ4w/KxlZ+PnjwIOPi4oa1ha7VxhKCMmbDhg1Bd+SUmDp1atgbQ9nZ2fz5z39OcuJbnd1uNzds2ECr1crW1tYh8wcbRQUFBZpSSZMxvb29NBgMvHTpUsiX9fX1MTo6OmyCpB5y8uTJkGXGK6TO1NHRwZSUFP7gBz+IaLdSC2fPnqXRaAyoR5Mx27ZtY35+/pCVdnR00Gq1qtKGkq81NTUTygLtP7JrampoMpm4e/fuYY96/zbKzs5mbW2tKk2TMSkpKZq7b/4Vvv/++0xPTw/5ci3i77vvPm7bti0o4UrDHqlYew0xpwoUFR4n4U3A4TSuIAjs6+tjbm4uU1NTw5pTI8H+/ftl26KEAMYcO3aMFoslLILr6uqYk5MTMSFnz56lwWDguXPnwi6jucUtiH55bm7x6t8hJLS0tNBisbC0tHRURrrH46HRaFRZ5PWqRQ2AV199FY8//rjmgpF+i61PPvkE3/jGNyJagAFAQkICnnrqKRQVFYVdRnlISqZDr16sqs/vwLfvEQLU8JdW1rNlyxZkZ2dj586dqKioQFTUyB/WioqKQl5eHnbt2qUiTAWz2ax5PkULZWVlKjVR07EjRC9JSUlhbW1tWGW0rdSB7ruCcCOs9w8Fp9PJjIwM2u129vb2jroW2dLSwrlz58rfVYzp6OigyWQiGZ5YWLNmDaurq8N+ub+okNxo/X+45nkXvznjxOtbqRvcv9ABvL+4Qn52s9a4+vp6mkwmeR4cC/uex+NhdHS0rAmrGFNdXS1bg/2hRdwDDzwQ0YEjrfpKS0uZm5sbwIxgB6nIwcNTuuV0iB4KgiA7yikd3YfTmG63mwUFBbTZbPzrX/867HqGi+985zusq6sj6WfEfOedd7B8+XJNOai1l3LhwgUYjcawZSkV8lyqb8uWLWhubsYf//jHgPcpjanSOdHKIjt+1pUIin9Csi4Ker0eUUzGiw3P43DVv6F98LyPTqcDxPANkG1tbbjrrrsgCAJaW1uRkpIS9HePFjIyMvDOO+94vyg5ZjKZwp5fSO985HQ6b7qnNDU10Ww2ay7WlD3W8XqFajvWm8H734mG5wl4R1GkqK6upslkknurP8ZqF7alpYU2m42kQpR1d3dz5syZYVciCAKjoqJUtq/hTJDSD83Pz2dRUVHIvIV271wiDoowJeorCwgsZ9sQKxjlPPfpp58yOzubaWlpsqp6q/eLpk6dyr6+Ph9jGhsbAxY5oSCZbSTcrNby6aef0mQyaVqqRfocriXHdjUEFmV555hwF5ZHjhyh2WxmeXn5uLJCpKSksLW11ceYqqoqrlmzhmR4jdzR0SEPu5FSJfft2xd8Z6/tgFeMtQU2vFeMgftPeBvY/2i8Eh6Phxs3bqTJZFJZN8aLUTUnJ4e7d+/2Tf6dnZ2w2WxhR374+OOPA6JJUDG5C4IQrGhQPPTQQ7DZbPjFL34R8ExYkAQ7gHOn20ASHngDQIhsw4/+8Z+Qub4S//i/fYs/rVAq3d3dSE9Px4kTJ3DixAlkZGT48uv1t3RXVVJ0bDYbzpw545v8V61apan6ButJdXV1EanW4cLpdNJoNMoHn5Q1VRRmElmFJAXvOwYPU2Wur1QvbkXS30m+rq6OJpMponXXWEMQBO7evZsPPfQQJ0kcc7lcmD17dgAnlaNHOTqcTqemqswgQXrChdlsxubNm7FmzRo0Nzer4teU/v9G/NcKHfS67bK1pf6kgO/f6aORALyv96YNDAzgySefRHNzMxobG5GcnDxs2kYber0eZrMZV65c8Z0lHxgYwLRp0wAEd0BQiqxPPvkE8fHxqueCINy03i+KIgoKCjBp0iSvbzR9YoYU8K//QQw6w4Mkvn+nXv4MqKNFHT9+HHfffTeioqLwl7/8ZdwyRbleu+2229Df3+8TZSaTKaLID3l5eXz55ZdHdCgr0dHRwZiYGDqdzoDzO1r2MJX4FMl/2fYrmkwmn7/wBHCbEkVRVqpkUTYwMIDbb789bC5fuXIF3/zmN0e26yhgs9mwYcMGrF27dtAq4BsLev2kgPx/+tOfsH79ekRFRcFgMECv1+PDDz+E2WwGMDG8QHU6HaKjo72uXhK3AAypMion2IULF4a1130z8Hg8TE5O5u7du1Xp/nQKgsD58+fLTtlms3lU6RoNSL+pr6+PBoOBemrsR0jwj5ei0+lkG9alS5cQFxc3qj0oKioKu3btUvlAUyNGmkSPBLPZPGEcCiUofxNJ6KUhLg+hIJmVIInLly+PKGO0GpIk7r77bjz66KP4yU9+AiBQJHV1dWHJkiVYuHAhrFYrpkyZgtLS0gkhurTQ39+P6dOnD2/yl7xdxgput5sWiyXgCMju3bsDnLY3b94su12Nl9V8JJAmf5kxVqs1LCcDQRDY1tbGBQsWjCqByveRXlue2WzmwMCAymnb3xoudZpQDtvjGa2trUxNTfWZZKKjo7368yDoJ1qk73q9Hk6nE7NmzRqToS2J08zMTNjtdqxduxaLFi3CzJkz0dLSApvNpsofGxuLzMxMvPbaa2NC30jj888/x7Rp03wLzLi4OHz88cdyBn8Zrfx+5coVmEymMZ9gExISsGfPHqxbtw7btm3D1KlTNfOVlJRg+/btY0rbSKGnpwcxMTE+xsybNw//dfoMeP1L8PqXQxaOjY0dlQlWK3Le5cuXkZWVhcOHD6O6uhq7du0KaSRNS0sDAPz5z39WdZ6x7kjDwZkzZ7BgwQIfY5KSkvCfHe0AAN3UKSELX7lyRTNC30jAXxM8ePAgvvWtb2HZsmVoampCQUEBEhIS8OyzzwaUVTZ8YWEhfv3rX6vO40wETa29vR1z5871aWXSRpnwxdCT5mOPPRaw6BtJCIJAt9vNkpISJiYmBixkJQt0qG1wt9tNo9EY0bGI8QBpo0w1YhwOh9ppblCsSaJN+vzJRZdsWQ4m+vzLhvsM8A7ntLQ0XLvyCY590Iq7vrUQgE/MzY75X3ju6Y0oXL1Gla6kcwp0WL16NWpfrhnXI4V+4rWjo0M9YkjvWubUCa8nvuw37L6udkZwX2dycjIdDgdF93VVutbncJ9J76ipqWFcXBz3/PZVFQ1a5dPS0rj9pV/J6Z7Pv5Cfi+7r7D7TydmzZ/PGZ58P3VXHAZTOGCqBnpGRgffffx+AWguT5L7ovg7d1Cm4dOnSkCMmUvT39+PRRx/F9u3b8d577yE3N9e7QymK4ORAoyUA7Nq1C1u2bEFPTw90U6d4twcUeS1JVixatAgHDhy4afrGAk1NTVi2bBmAwd0kDg6n5cuX47333lNl1k2dIje8TqeDIAj49NNPZcbopk6R/4aLlpYWLFy4EPHx8WhpaYHVapU3x6Q/CbLYImGz2fDDH/4QhYWFcpq/8lBSUoIdO3YMm7axhJIxvhDy7utsb2/nHbNmq4aXKIoq8eByuRgbGyt/V5bX+jzUs18+8yxNJhMbGxvDKuNf/suBz5icnMy6urqg+RbOXzDuY3RKLrKSWQxKOS66r9NsNqvOpvvL+dbWVi5cuJDkYEjGwXIBpvgv3PIzZT1SXc6uc1yxbLnstK18h5RfWV4JKV161tLSwjtmzWZvz8eqTiR93v7Sr1i4es1w2uumEa5GqJxfSMUcI4mjnJwc/P73v5eHl79G87e//U22Kuv1ermcPA8Nihr916aqRJxUjyiKaPj3f8Pd9y7FP2Q/iLffflteEynFoU6nCyoi/cXnkiVLkP3Iw/in8p+Dkyd5t5onT5Kf/9/H/x/2vt6Avr6+UQ/9HkCrThfWwraurg6PPPKIL8Gfs9LBJRXXFb22pqaGeXl5w+oxSqftUJEAh7Pu6O/v56xZswJEojSSi4uLWVk5dHT1WwHNg0v0O/STkpKCGTNmoKmpSVPj0nLCAHwjRWtzDfA6bS9evBiCIODo0aOy0/Zg5wgoE2nPjo6Oxm9+8xusXr0a169fl9Olkbx+/XpUV1cPy99tNEESb7zxBpKTk+Vbo0RR9G2UKRsiPz8fu3bt0tS4nE4nZs6cKVcqwf+iAiV27NgBu92Op59+Gjt27AjwLdCiYTg3Oa1cuRLf/va3UVZWFvDMZrNhzpw5OHToUMT1jiZ0Oh1effVVPPHEE3KaXq9XLzClYS/5JfubMwRB4COPPBLUK55Ui6G+vr4Ap+3RRm9vL00mk2zGUdKzf/9+rlq1akzoCBfScfJr166p0oMGYCgpKdEMwJCRkREgx7Vwq5y2BUHga6+9xuTk5ID3ejweWiwWdnZ2jhk9Q6GgoICbNm0KSEewiVYyFPqH07DZbCHXBB6Ph5s2bVI5bQ91viSc02ShoJV/1apVmmFEtm7dypKSkojqHy24XC4aDIaANhbFIeIuK4P8SI1nMBiChg7s7u5mWloas7OzI75XZSSgZLCWBVoQBFnU9ff3a7pBjSVKSkqCdpKQjOns7KTRaOTVq1dJetXdqKgozbzj0Wl727ZtqgARUsPn5+cPSedIM8l/VLtcLsbExPDixYua+UMyRhAElpaWyrHGpIClSvT393Pt2rWyxflWIdgtfWlpaQFM+PDDD8NyJhmpfRwtJufm5sqiVus9AVqZfyX9/f2yltPc3MzU1FT52bFjxzh//nwWFBSMK68U6TcIgkCHw0Gj0cjz58+r8qSlpWmGZRltcSaKIhsbG2m1WkO2WUTBSt944w1+73vfI+kVE0qn7VuFcBpy48aNzM7OVqXt3r1bFW5lrOYXt9vNefPm8dChQyHfqSPD81DIyspCdHQ0br/9dly9ehV9fX3Ys2eP7LR9q0G/K3uVuH79OlJSUvDcc88hJydHTktMTERLS8uY/oann34aHR0d+MMf/hB6ER0up51OJ6Ojozl16lRNvXu8o6WlhSaTiVevXpVluhQBd6ywb98+WiyWEAGxfSNItY4ZKk59c3MzZ8yYEVEsgFsFrd9SXFysisN2/vx5xsbGyrJ+NJ02WltbOXPmzAAFKZg4A+kLBaKMLy/9VRw4qdJ4du3apbp0QQvj1WdYiiGtnPQffvjhoB4/I/U7zp8/T7PZHNF8PHjjkkcmpChr8I5LkicbnqcO4P42n9lfEG6wpKSEWVlZflGPxicz/PHmm2/SYrHIo6SpqSngboKRgNQebrebaWlp3LhxY0QjUjXHeOjg/fDekUUK8qnghsEQIXL0PEGg3W5nUdE6TWLGG/zpys3N5c9+9jP5e3JyMltbW4ctykKFx8/LywvQCMOBijEnGl7giqJKmcBCO2gvrqTW/WW9vb1MTJzDqqqqiF96q9Hb28vY2Fh+8MEHJL2xZCLZ/AsXyquwIgVu0Hd8zxuPxTe/HHCE7kHS5XET8YZY5bVd165dk+OmjRTq6+tpNBqHHT8TyiFYvMLLDIHe238wGOkoVADQQ4cO0WAwTIiR4y9u7HY7t27dStJrUJQ+3wxEUQx53WK44t4nygavZpIOwEpBdaT7lkPB4XDQarWyuLh4XAXMIUOrwNK1XWfPnpVvjroZ+t1uN/Pz8wMuKB0OBpeeIg689TYKV6wEIHo9VByn0QggMWnukF4eycnJOHr0KLq6upCZmYmrV69Ki9ebWiWPBEL5LVssFjzzzDNYvXo1EhMTMX/+fDQ0NAzrPZcvX8bSpUvx2Wef4YMPPkBiYiIA7WMlYUEaWoV2X4A2gW20A4Pxv/xD6Gr3KFEU6fF4WFRUFPIS7KFiX441PB4PU1NTWVNTw4MHDzIzMzNo3mCjb6hLsIcDSCGlAv5WKlThMLRIJdG1tbU0mUwTRimQLNAul0u+01PCUCr03r17aTKZQl7VMhzIV/p6ry6/IctY0XNzvVmKELtlyxZV+ng9q1JeXs7s7GxWVlbKF6/6Q7le8Xg8LC8vp8ViGZV9KJ/Dnx8BFAM3n0Tlc++nkJU7nU7a7XampKQEvWNmvEC6O2zPnj1Brw4RRZGCILCpqYk2m40PPPCAz713hDucbJIJrFj7dvIvxchHkhTHeN26dbfEFyBcHDlyhCaTiY899pim+u9yuZiXl0eLxcK33nprVGnRA97w7MG0F2XodlEUMVmnhxhObHYFsrOzcebMGXz961/HggULsGnTJtU1jOMF9957Lx588EF8/vnnqKqqktMvXbqEp556CnfeeScSEhJw+vRprFixIqA8R1IL1eKWKP/jlx5ktAYbxlqXGDidThYUFNBgMLC0tDSiUFxjgYGBAZrNZqamprK+vp7FxcU0GAwsKSkJSutoeNv4jmGEEa/YP06Y8nukMvbSpUvcsGEDo6OjmZeXN640uNdee405OTmcPn06y8rKbon4Hda18SOJ3t5eVldXMzU1VV4LhLMRF26vDHWBqBInHe0sKSlhXFwc09Pv48s7awYVAIEHlFe7ZxVSZBuLikb35MAtZ4wSHR0dLC0tZVJSEk0mE3Nzc1ldXR3RusIf/hcMSf87HA5WVVXx4YdyaDQaabPZWF5ezs4uhSml7QAB/aCFXZkGFlUeIIcRFT1chO2MMdbo6enB4cOH0djYiKamJly8eBHp6emIj49HQkIC7rnnHkRHRwMA7rjjDvkIg4SPPvoI3d3dALzRC1tbW3Hu3Dk4nU4cOXIEZrMZy5cvh91uh91uR2xsrFxWFD3Q6c9gpT4ZLKrE21U/9VVM4IX1WUDWS/hp9oJR+/3jljH+uHr1Ko4fP45Tp07hwoULePfdd2XPmK6uLvT09Kjym81m2V41efJkLF26FPHx8UhKSsLixYtx2223hfRSaXixGN//6Wm08W0sGAz7SHgDQB54sRi6lVXITiaAyI+LhINxxRipoW81iHas0CVjbuUBVP00WyO09uhjdNgdAagMzTsOmAIAuvYzaASQYE0KZMoYdeNbzhgpzqYS4Q7i4Q72UOWUT7yKmB90gflGA7ecMVoId+QMd4SFKqcDwAVW7z0CZ7sA+DGhvQEvvN42+uJt1PS9CY76ykLqdODzDQ5KdkNHQ+Xg3QKjj/9hTBCIFNjeUEnofHtUqvXMSL/Pb33230QPxeLOrkXvAAAAAElFTkSuQmCC"
|
<image>如图,在⊙O中,AB是⊙O是直径,∠D=40°,则∠AOC的度数为()
Choices:
(A) 105°
(B) 100°
(C) 99°
(D) 95°
|
100°
| 69,677 | null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAG8AAABkCAYAAACIAm6jAAAWNUlEQVR4nO1de1BUZ5b/3QZibdmZLstO0am00zN0IxjYKZ3GSqog1TLTJpkVkF1NkUyYEldnSUKSIgkgKc3iVJgdE81jKrJgElcsJxVSoriaTFRwaVetYEENztg8u3vUaVO2A5WNglM40PfsH8293Nv33n7QT6O/Kh73e997vnO+853vcRgiIiQARASGYeYdDwA3btxAf38/RkZGcO3aNdhsNj7O5XLh6tWrovR6vR5GoxEAkJaWhvz8fOj1emRmZsJsNkOtVs//hRIAJlHEmw++/vprdHV1oaurCzabDdeuXUNBQQGWLFkCo9GIlStXQq1Wg2EYGAwGGAwGUf4rV67gypUrICJMTk6it7cXLpcLbrcbZ8+ehV6vR2FhIaxWK6xWK9LT0xP0pqEh4cQLxmHDw8PYu3cvjhw5gsnJSVgsFhQWFsJisSA7OzuqbRkcHER3dzdsNhtsNhu0Wi3Wr1+PiooKGI3GkKRBXEFJiLGxMWppaSGz2Ux6vZ5qampoaGhIMT3LshHVJ5efZVmy2+1UXV1N6enpVFBQQB999BF9++23EdUVTSQV8TweD1VXV5Naraby8nL6/PPPE90kHgcPHqSysjLSaDRUX19PY2NjkjSRdqJwERfiBXspt9tNlZWVpNFoqKamhjweT9hlRNqeUMPcbjdVVVWRRqOh6upq2bbGCwnlvImJCaqvryetVksNDQ18bw71Q84H0SrH4/FQfX09PfDAA9TQ0EBTU1NRKTccJIR4LMtSR0cH6XQ6qqysTAoRFA6EbfN4PFReXk4Gg4GOHz8e13aAyCtu2OyPKEAJ3gBxCnC73bR69Wpavnw59fT0hF+AEljhH69yu9nArzRf2Gw2ysrKoqKiIhobGwu7882ns6oAlUD1BBj4fngE0oxVAeJ8mqzoua+vDytXroTFYkF/fz8eeeSRMHXjAGCEf1S+f+QmQUzgV5ovLBYLBgYGsHz5cuTl5WFwcDCM3Cw/BVGatwm/JQkCI0KoPaa1tZW0Wm3URYs3AB+x/C//wNiivb2dtFottbe3i6tm2agOBz7iBSovwrpmZmaoqqqKTCYT2e32yApThE9+15aAZjum4KeYRtmZGNWrjN7eXtLr9VRfXx+z8RuSjikIkPbc0Ac5lmXp22+/pSeffJIKCgriMLn1ta1mLeika66dzbVrCSgmh6hx4jyxgsfjIbPZTOvXr6eJiYnwMkuUD3EUkQzxogW73U4mk4kqKytpZiY+PZ8lBxWV1ErCa0tAJXV74tIGf0xNTVF5eTnl5OSQ0+kMmp5nGAFhTn5YMydJSrYQSw6qrWsiVSwG7xMnTiA/Px/V1dVobm5GSkpKDGqR4s9dp6DKNknCM7KLcXT4z3FpAyBWLhYsWIADBw7gF7/4BcxmM06fPq2QiwUwq0wxLMAA5DoJhmGw25kJ8g1xYN/9CVRMJmA0SRUWISc6TjbTSadfJKuQeBZ2u500Gk1AxSRWY0BzXTG1dDokdZz8sIYg5MgYVB/KO3V0dJBWq1XkQGEZLDmoBPISo7mumPacdBDmtDWvH118mU8qcbpMW8fGxshkMtHu3buDvkg0wbKsT2RiDTkkczwvNdcVJ0xsCsGyLDU2NlJOTk7QMdAnKot97yMTd9KpYGFhWZZa6mqpuFg+M/Ha21zczMwMWa1WqqqqCv1togSWiFjnCSqp2yOdGThPEACeI5MBzz77LJWWls4FSBjBQcUA1e45IZufS+6bZvvNDLs+rgOsVuBzhSkjw41hc7P0mpoaAMBvf/tbyeQ81mAAnOruQpbp+/wEnGvBlteeANbWoNI6OxayiV973rt3LzweD7Zv3+77VrONJm5cc7pwDIAxI8MX7pef11N8NJzjINZ5gmr3nPD12JJanzkpiDxvbW0lk8kkslHG0zbJ0ggV+4l4juMgo33O5YtD2xS+g9vtJr1eTx0dHdI8vLQYoUBmCJBXHFVb+xpfQEndh9KCRf97qaenh7RabcDF0ljCcbJZZmKOpBOVcujt7SWtVkt2u11EZC+NUglAr30oFZus8wT/XqIxTzSfkNN0/LqA232F9Hp93K3p3yW0t7eTwWCQrKxwtBB2wNET/ymSJDzxOHHJwXGyWfQsx7pWq5V27NgRjXeIAEpWkuDWk3iI9lDq2Lbt32n9+vUkGr7ISyOdzQSoCIyPmdZu+VAQP0s8fnwToHNPjaK2Q0TU1tZGZrOZt54k6/pbsrZLiKmpKcrOzg5bgjHNdcX0/NtfAGDR6SL8NAPYspbBzqM+raa4bg/++61/4zWdvr4+HD58GE1NTSgrK8ODDz4Y1o4qhmHiro3eCbh8+TK6u7sxOjqKBQsWhJRHsvWPZre3UYBtbuvWrUNXVxdu3ryJzZs346GHHgqroYHKjja4jbirVq0KKTxRsNlsGB8fxzPPPIOtW7eGlilcFnc6naTVaumbb76hxsZG0mq1tG3btoB7OKK9jhUOGhoaqKGhIeTwRKGhoYFqampIq9WSx+MJ6XsFWQv3Xw1n0djYiBdffBGLFi3C1q1bYbfb4XA4YDKZcOjQIVmRyDBMcm1WTVIsXLgQ5eXleOutt0L6Xjzx/L859ygs5Pr1MRw7dgzV1dV8WHp6Otra2tDW1obGxkY8/vjjGBgYiOgl7mbU19fjwIEDuHnzZtC0PPH8CS1H9x07duCXv/wlNBqNJC4/Px9/+MMfUFpailWrVqG2thY3btwIu/F3O9LT07Fu3Tq8++67QdPKiE1WNuH4+Dj27dsn4jp/MAyDqqoqDA0NYWpqCiaTCR9//HGo7b6HWdTV1aGpqQmTk5MB06UCPhE5x2mqOZEpSPjJJ5+gtLQU6enpIPJxKkGeQ7VaLT744ANs2rQJL730ElpaWtDU1BTd3WJhwGazYfv27ZKwZNE0/ZGRkYGCggIcOnQIGzZsUEynAqQEEG7/4xSQ1tZWbNy40Rcv2manjOXLl+PMmTOora3F2rVrsXHjRly/fj3MV7k7sWHDBuzbty9wolDU2P7+fjIYDBGpwhMTE7Rt2zbSarW0a9euuO1raWhooO3bt8elrkjgP3Xxer2k1Wrp8uXLitOGoFMFANi/fz8qKir8iR5WT1Kr1XjzzTfR09MDm82G3NxcnDp1KlCnCqv8QIhmWfGCSqVCeXk59u3bpzhtCIl47e3tePrpp0Vh8523ZWRk4NixY9i1axeee+45FBcXS44fC8v3//B3IiFCgdx7Pf300/jss88U8wQl3vDwMGZmZqJ2CpUjypo1azA8PIxHH30UK1aswBtvvIGpqSnF9ErP4SJZiS9n883Ly8PVq1cV9YSgxDt9+jQsFkt0WuiHlJQUbN26FRcvXoTD4cDSpUtx6NAhPj5aXCfMl8yWHv+2paSkoKCgQHRRghBBidfd3Y3CwsKoNE4JOp0ObW1t+PTTT9HY2IjVq1djYGAgalyXzATjoNTGVatWobu7W7bjJpTz/JGfn4/+/n7eSlNXVyex0kRL7CWb+GRZeePIqlWrcPr0aVkdICDxrly5EtXxLlRwVpq//e1vEitNKFwUCmGSjRuV2vPII4/g0qVLfCcWpgtIPIfDgZycHMX4WPbexYsXY/fu3ejs7MT+/fuRl5eH8+fPx6y+ZMayZcvgcDgk4QGJNzo6iszMTP45nqKG62FCK01paWlIVppk46pIYTKZMDIyIgkPynnLli3jn6OttocCrsOUlZXB4XBAp9MhNzcX77zzDrxeb8zrTwZkZ2eHz3nDw8PIysrin+PFeTS7c5j8tkuo1Wr85je/wVdffYWurq6gVprvAogIWVlZsmukAYnn8XhE+1PiJY64lXel+kwmE7788sugVprvAhiGwZIlSzA+Pi6JC0i8yclJ3H///TFrWKRYs2YN7Ha7yEpz+/btRDcr6li4cCEmJiYk4UGJl+zXGC5YsIDfSzM8PMzvpfkuQa1W49atW5Lw1ECZJiYmsHDhwpg1KiwIV35lVoHT09Nx8OBBnDt3BpWVz6OlpQVlZWVoampCamoqrFYrCgoK5ItOttv8/KBWq/lVdU7vYBgmMOfdunUraTiPhN9W8p1ZfsdUfv5jsNvt+Oe1paisrMT4+Dg8Hg9qa2sVy05mwgHA/fffz4tNoS4Q0pJQMiDw5529NEew/+aFF6v4W20B4K9//WuMWhYfCDV97v+AxBOya8LAnVniHgNNV/zWlpub9yA7OxtLly6FWq0O20qTLPbPiYkJfO973+OfQ+K8hQsXigbKhL2MgO3mRNwclzk7W3ziROUTKSV1ewAAP/1pIYaGhjAyMoI//vGPePXVV0O20ojrSiyUFEcR8bzT0/wP4JO1Cec8RqnT+JresqUEmY//Hg7ygojgpVEwO5/D2i0fSnL8/Oc/l1hphNb8ZOE0f9y6dUtWcRQRLyUtjf9LRFCr1aL5RaJO+PhzAM3+atlSgueHs0F0FMbZLYsqZOKdk804+vbncMrsQeWsND09Pejq6kJOTg5vpZHUkyTEVJpvi4jnv+Ks0+nw9ddfizIkgyhhwGL0VAuef/sYTr779mxYeLf5GY3GoFaaZHhXALh69Sq0Wq0kPOCYl7NsGVwOBy9G/cWqMMwfcmlDiQuUjutc3mkv/qvpZfxL3R6sNorTA8ClSy4sSFOJwpQgtNL8+Mc/DttKEw/uVFqaExHPv6f90GjE4OCgSJwK/3qnp5GSloaUtDQJQbnwcOKEEKYTts87PQ1V2hUMHZnG46t/IupY3N/OL3bhyVeexA+nvQHr4MBZaS5evBjQSiNHqHhw58DAgGhpjkNAzsvOzobL5eKfuQ8qRCgcFCn864TrzzgK4Ic/8LEdEfFpLtn2YudRoOpfNyEl1S9fEHBWmra2NjQ0NPB7aTgkasx3Op1YunSpJDwg8UwmEy786U8BiSPkorjBmIESAJcu+zrW3C2xLrz2+PMorm3BTzIAUrw3NjDy8/Nht9tRWlqK/Px80YmnUDktmkQeHByUJ97cOCIlkMFgQGpqKkZHR4NWEEvuE5VNAAMTflZXjOc+mJsOkLML6oU/Aur24OjblQAiF2lVVVVwOp2ye2lCQTQIeP78eWRkZIiO1fEWFuELeqenoUpNFVVqsVjwv2fPyopMbjzxjxOGhxMnJBKXbsY//32+8M2Nh7BF9T5S77sPDMPgHx7+Jxy7eAuHGzeCs3X6j7XzgVarRVNTE7788suw9tJE6zSwzWaT7N6TWFhS0tKgSk2VVFpYWIju7m7FwpVEZiBxqhQn95yqlD81FTs6/s6vuE/d/jtWZ3FlqpBy31z50RDreXl5OHPmDF555ZWwrDSRgIhgs9kU982q/Od2/rBYLPjq3Ln4jmkSsPA/9Clu6+zlorNpYqlUPPvss3A4HFi8eHFM99IQEViWxdmzZxXPEaoCsbZ3ehqZRiNSU1MxNDQkW0F8oEJg3coXx61wxVp9V6vV2LVrF86fP4/jx4/HZC8NwzDo6+uDXq+XuIILaVWBEzclpaWyp1WSxQIRL/h31oyMDHR2dmLnzp3YtGlTRHtp5L7lZ599hrKyMsW0Ia3nbdiwAa2trfNq1HcJSp21qKgIIyMjEe2l4ToGr/17vThw4AB/GlkOIRFv+fLlWLRoUYDLre+Bs9L09/fzVprDhw+HnF946xQR4dixY8jJyYHBYFAcnkIiHhGhoqLiruQ+pQ+nFK7X63Hw4EH87ne/wxtvvCGx0gSqh+NshmGwf/9+wR0AEZyMBXxaVkdHx113IYDShws23nO+hYqLiyVWmmBwuVw4d+4c1q1bJ4kL+ZSQsKFarRYbN27E+++/H1ID7mYIP/DLL78Mp9OJiYkJZGZmhmSl2blzJ1544QXZ1XNRpwnhogIebrebtFptUvlNjScivfyut7eXCgoKyGw2S9zPcbdBeDwe0mg0IX3jsHaP6fV6FBUV4b333pP0NEqSVedYItKpEWeleemllwRWmjFRmh07dmDjxo2yV4RJ2kMhfHUSDKYulwuPPvoonE5nSBXcgzwmJyfxq1/9Cq2trXh9Sz3+78Y3mJr6O1pbW2G3DyI9/QHlK6Y4zIf9a2pqqLKycj5Z78EPTqeTrFYrAaCcnBx6s/E/ZF3JNcvcVD8v4t28eZN0Oh319vZG3Ph78OHXv/41paen0+3bt4nI53mMu9mdcz/A+Y3wjb3e+Tv89b8g/B7CB0eEqakpysrKouPHf+8LJwcVM0XkZH23vXNOMninH7N+b8NSWEgwPJaVlWHRokXYtWtXuOL+Hmbh0yNUaGxsRO6P/hFPPPEzgABXZxeY2mJkgAERsOXVJ1Ei3GzF+b2NpOdwLlX8r5TnVOo74Vr8RKO9vZ1+8H2xUwx/5yRzbnbEviLCIp4cMfzd0STyMvBkhtw34dzRXBwQ+9KtLZkjGEdIf1d4LDsTHSf3co6g7iEw3G43PfTQQxJHUF4/ByUzs34M5RyURHzEi4iwYcMGFBUV4ZlnnrlrbmiYL4gIt2/fxlNPPYXNmzejtLRUFH/qfzpRu8bKP6tmtzkaMzL401JEc/9EBYl0fninoby8XOz8UICaYp+I9Hl49XEdmBJZJ5RRIx5R4tyO3kmQuh31EcXflZwKjMD/n5z30CgTjyg0h793GzhlJZjDXx9C990eVeJxjTx+/DhpNBoJB97NWuiOHTtIo9GQzWYLntjPYbESos55HDgn91VVVTQ9PR2rapIeU1NTVFFREdTJPev3lyh4Z4/ZhQI5OTno6+uDy+WC1Wq9K72bjI+PIz8/H5OTk+jp6YHRaFRcOvMtHrCiRQSle7YBzB4kjSE0Gg2++OIL5ObmIi8vD4ODg7GsLqnQ19eHFStWYPXq1Th48CC/Kh54TVCeHHJ5IjaPhYPW1lbS6XQhKzJ34vjItbm9vZ10Oh21t7fHtL64EY/IZw7S6XTU2NgYz2qjDqWONTMzQ9u2bSODwUB2u102TTQR80t0SCCvzWYzent7YbPZsGLFCv60Dd1hWyjkxNjp06eRm5uLCxcuoK+vT/GG4Ki+a8y7hwI6OjrowQcfpMrKyqS2iQYztHs8HiovLyeDwRB0SPAvJ9KhIWHXV5WWlmJ0dBSLFi3Cww8/jO3bt8veKZloKJ2zu379Ol5//XXk5ubCaDRiZGQETzzxBB9PIZxfj/isR0Sknwfkep/b7abKykrSaDRUU1NDHo8n3s0KGW63m6qqqkij0VB1dXVC25owsSkHj8dD1dXVpFarqby8PKlMbIcPH6aysjLSaDRUX18/b1EfTS06KYjn/0JjY2PU0tJCZrOZ9Ho91dfX84u9gfJFG3a7naqrq0mn09Fjjz1GH330UVJtOA5p32YiMTw8jL179+LIkSOYnJyExWJBYWEhLBaLxFkHRXjp6cDAAGw2G/+zePFiPPXUU6ioqBBd/xiNuqKBpCeeEFevXsWpU6fQ1dUFm82Ga9euoaCgAEuWLIHRaMTKlSuhVqvBMAwMBgMMBoMo/1/+8hdcunQJgG/Ta19fH5xOJ9xuN86ePQu9Xo/CwkJYrVZYrVbJidREw7/D3FHE88eNGzdw4cIFDA8P49q1ayJvVy6XS3JKVa/X8xyUlpaG/Px86PV6ZGZmwmw2Q61WJwVHhYr/B+nv7u+b4ZPSAAAAAElFTkSuQmCC"
|
<image>如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD等于()cm.
Choices:
(A) 2
(B) 3
(C) 4
(D) 5
|
5
| 69,678 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAHAAAABoCAYAAAApZXS9AAAXt0lEQVR4nO1df0xc15U+zz/Tivglu+N6Ij934mXqjAPRTkIsszIu2B4S0njjiYKKpRJp3LSFDFllsks3uELB0VoKqqG21jiarRUZS/mD1LQDXdrgmDWD6lY0eIPlDgYXaLCHLENAayikHsLwvv1j5j3em3kz82Z4MwzVfpLl4d1f591zz7nn3nfuuQwA0P9DG4AIBGIYhgbaG2nY+M9kzWFS2uS6lNauAdSMr4wZgwwRQwyBbpHDWp2WJledgUqdL33GMPFHcKw86WCurA2G6PRr54gpLqZdOSlvevUZqNT5api2kvq1BU8Mw5DAwrafVBGKLcR3BVLcbhAb0tKKxpidnaUbN27Q0NAQTUxMkNvtFtNGR0fps88+E6WCYRjiOI527txJDMPQxo0bad++fbR9+3batWsX5eXlUVZW1gqoCcoAQ0R0q40+omJ69xtE1ZZd9DilevAQMWvBiBkfH6erV6/SRx99RD09PTQxMUEFBQW0Y8cOys7Opj179ohMePTRR8lgMMjK37lzh8bGxohhGJqbm6O+vj4aHR0lr9dL165dI47j6MCBA2SxWMhisdC2bdsiaAAQV5qrqqro3LlzxA+20bPnRulK079o1wnRgAzF4OAgqqurYTQaodfrUVZWBqfTicHBwahleJ5Pqi2Px4OmpiaUlpZCp9PBZDKhtrYWIyMjqutwNdpBROI/S1VDUrQkioxi4PT0NJxOJ/Ly8sBxHKqrq2MyLBqSZaQAj8cDh8OBRx55BAUFBTh//jxmZmai1z3ggr3BhWDKEjxtDcG/V0aGKmjGwGidpqYzfT4fHA4HsrKyUF5ejo6ODq3IWjFaW3+GsrIysCyLmpoaTE1NyTMMuEDFr8oeuRrtsDe40kJf2iRQiZFerxcVFRXYsmULqqur4fP50kWOaghUe71e2F+rwpaHWDgcDvh8PjTYLWAYBkQElyeY015MYJj1YNKkRldFhc7NzaGmpgY6nQ51dXWRozqD4fP5cPz4ceh0Orx1og5+vx9p0JRRkXIVGg6XywW9Xo+KigqRcULZlc5d6YTP58ORI0fw6NcN6OzsXDU60iaBXq8XFosFZrMZvb29innWCgN5nkdraytYlsVPf/pTmEwmHD58GFNTU8vvwAPAUsppSQsD+/r6oNfrcfLkyXQ0pyl4no8YWM3NzWBZFlf+qwscx+HmzZuora2FwWCAx3MzrfSlnIHNzc3YunUrOjs7IzoinsRlgkQuUxCUJqfTCZZl0d/fj9ffcMBms4k5fn6pFTrd36C1tTVt9KWMgYFAAFVVVTAajfB4PACUGZIJTFKLhoYG6PV6eDwe9Pb2Qq/XRxhgfX194DgONTU1aaEpYQaqMThmZmZQUlKCgoICcQEcXn6toa6uDgaDAYODgwgEAsjJyUFLS4ti3omJCeTl5aG0tBRzc3MAUvfemkugx+OB0WhERUUFAoGA1tWvCqqrq2EwGDA2NgYAqK+vR0lJScwyfr8f5eXlyM3NTWhLLlFoysDOzk6wLIumpibF9LUofRUVFTCZTOImw9jYGFiWFZkZD/X19WBZFj09PSl5f80Y6PF4wLLsqq6JtIbNZoPZbJbNc88++yzq6+sTqsflckGn06VEEuMyUM2omZqagtFoVJS8RC3PTMDi4iJKS0uRl5cnm8NbWlqQk5OT1NRw8uRJ5OTkiHOiVlixBAYCAVgsFlRVVWlBz6rD7/fj8OHDKCgokHX21NQU9Hp91E0INSgvL4fVatWCTBErlkCHwwGLxfJXYbDMzc2hpKQEJSUl8Pv9sjSbzQaHw6FYTq1WWVhYQH5+Purq6lZKqogVSWBzczOMRuOa2oyOhrm5ORQUFMBqtWJhYUGW5na7wXGcJurP6/WC4zi4XK4V1wWsgIG9vb3Q6XS4detW1DxrYb4DgutWs9mMsrKyCE2ysLAAk8mkWYcDwcW+TqcTNzjCkUi/JaVChVH012Bx+nw+mM1m2ZaYFHV1dZrNW9K+bG1thcFgWLH2SkoCLRZLwqZ0JiB8MHq9XphMpqgGmMfjgU6ng9frTQk9tbW1eOmll1ZUR8IMbGlpQV5eHpaWUv+pJBUQmDg2NgaDwRBzzzI/Px9OpzNltPj9fphMphVpsoQYODc3B47j0NfXt2bmNyUMDg6C47iY1qDT6UR+fn7Kaenq6oLJZIqwetUiIQb+8Ic/REVFhaq8mcrg/v5+6PV6nD59Omoen88X08hYKcL7pqysLOlvpaoZODIyAp1OF/F1QQmZzDyWZXH+/PmY+crKylL2OUhpZ0oYMD6fL+G+U81Am82mqHIylVnhuHbtGliWRXNzs2K68B4dHR0wGAxJq7Rk4XA4om4UxAKp9dtUK32ZBOHdLl++DJZl0draGvOjsjDHu93utNIJJN/HqtaBDocjbV+YtUZHR4fqryQOhyPqejAdqKioSHibLS4Dp6amwLJsRjrdxoPgOdbV1RU3r+B4tZrbgoKdkciWHQGx57HTp0+v6qhMFoLn2LVr1+LmDQQCyMvLk82PqzW3W63WqPO0EuJKoNlsXpU5IVFIO9zpdGLLli3o7+9XTA/HmTNnUFhYqCpvquFyuWS0xENMBvb398NgMKyQpNQivLOlnmNqyoyNjUGn0yV1CioVWFxchE6nU+2yEfOI9cWLF8lmswnnCFN9VDEpSA9dnjhxgs6ePUvd3d2UkxP9gLq0TGVlJVVXV5PJZEopnWqxYcMGKi8vpwsXLqgrEIu7HMdlzMiMh3DPMTVYiYtEKtHb2wuTyaQqb1QGDg4OQq/Xa0ZUKvGDH/xA5jkWC4L6nJmZiesisVpzYSAQQFZWlqr3WReSwgjJ7OnpocLCQk3Vg9YAQMeOHaOPP/6YfvOb3yiebQ/PL+DNN9+kI0eO0N69e6PmT32EC2WsX7+eCgoKyO12R/Am/O8NRMqEdnd304EDB1JI5sqwtLRER48epU8//ZTcbjexLBu3jPCev/3tb6m9vZ2GhobENKgIYpBOFBUVUXd3N5WVlcmeR9AoFUepytDr9Rkz/4WrsmieY2ogfIPT0kUiFVA7DyruhQqmdSYi3HMs0XkqmotEJhwyDW978+bNcfdG14WLJAAaGRmJaYavFubn5+m5556jBx54gNra2mjz5s0Jqb2hoSE6d+4cnT17NiJNqGc11Wh427t376bh4eGYS7iIdSDDMDQ0NERGo1F7CleA2dlZ2r9/P23fvp1aW1tp8+bNivmEl0XQwpalVVZWUm1tLXEcl3J61SIWc4xGI92+fTvmoFJcyI+MjNDu3btXTp1GmJycpKKiIjKbzdTS0kLr16+PmlcqSQzDiB108eJFmp+fp9dee02WP1YHpgOxmGMymWh4eDhmeUUGDg0NZczOxPj4OBUVFdG+ffsUdif46AVDfGEYhiYnJ6mmpoacTmcE8zPJ8gyHyWSigYGBmHkUGejz+Wj79u0pISoR3LlzhwoKCshqtVJTU5MsDSACYnS+JOn1118nm81GX3zxRYooTQ22b99O09PTsTMpWTZGozGlhxLVQPAce+utt8RnPM+Lh9Y9bQ2qYpN1dnbCYDDg7t27MJvNMJvNcLlcmJ+fT8drJAypJdrX14e8vLyY+RUZqNfrMTk5qS1lKsHzvOg5dubMGcUgOo12C4gOYQA8gCXwGICFCIfspwAsAXywHr/fD4NBHsfF5XLBbDYjKysLFy9eTNdrJYXBwcG4a0FFBmZlZWl+jk0t4nmONdgtwdhkYZwNSmSQqYKv5datW3Ho0KGIOiYmJrBp06aM9/Hxer3YsWOH+LfSGlWRgUS0KgtawXPswoUL8oQQKQO/bJDFJZPiD+3LDDSZTKJqfeqppyLyNjU14fDhwyl4A20xMzMDlmVj8iLqZna6rbPLly/T888/T++99574DVKAQN25s9VkqWoIiwQftERHRv60/IRftk43bdoU0dalS5eotLRUK9JXDGn/J8wLKTf5JR7+RR4P6nZg+n//jMU0CaEazzFhnmto88i0pzA67cUES9WPAQCvVtnxla98BZs2bUJOTo6sXp/Pp2qLKhMgnAKLhUgVyvPYtuPv8NmENl5o8VSxas+xgZ9HVZ+CRery8Lh79y7+duuyi0RLSwuMRiMKCwvhdrvR3NwcV32qnT60nGaU6krOiOF5ZJtyMfTHYc2Ik1e/TOjFixdVe47x+AMOhSQw/HmxZBnx4hEr6urqIqzX5uZmGAwGkZFrAeHLiKhGjCyB5/H3e/4B1z/px+JiUKX6F3nwWFaxomrleSyE0hekp80kz/2LvDxmXyjt39/9D7BfewT/LfEcg0I+afsNdgvo0D8tP7/ZFloDNmJxkcfPftEOkykHc1/8Bfe/XII/wMvrCfBwOp3gOA4lJSXo6+tLolvTB7fbHddDTZTA5TCJPJ751j/ilx0d4ssvM4DHYoBf/h3qWOF3kLHS38BSINhx0jI/DnmO/eGmR5ImhbwOad2VJTrQxtAC/oGv4Wc3g5nuzd7Dth3fwNWea0F6JYzjJX8vIeiy4HQ6odfrYbVaZe6HiSDVKvT9999HaWlpzHziVprU0jHteoxGR0aIGIY2riNaXApZRiCidYz4e4mIvgyAFgLB39Ln60PZ1q0jYhCyFUH09sl/o6aQ51hu7uPLaTLLimiJIdoQqmPDBib4G0Rn/vNz4r8EgQfhL/9DR3YHy9f863F64flnaP/+fbL9wfXrGdntDTyCLgsVFRU0NjZGRUVF9Nxzz9G3v/1t2Rf6dEPof0is0OHhYcrNzY1dUGEo4MzZd/HK974nPBAlYDHAL88tPK8sPXyY2pSM/OrqN/H17F34k+A5FiHh8joiao9S9+96e6F/5OuYmrqHRWG3LZQWru6VLGu/34/6+nrodDqUlZVhdHQ0MpOMjPSY56WlpXj//fdj5hEZKKo6nkfnR11yT+XwuS/4VKbmAB5LEhUqzokhRldUVOCxx3bDOz4RkRYBWWcvyer+MqzuLxYWQpEDPxDLBPdM1TNQwNzcHE6ePAmWZWGz2RJyUUwFzGZz3Hl6eQ5cWjYYRj8Nd6kIMiWapEQYK2EGyLFjx5ZjjikYJ9I2pB2upu536utRUvItLH4pzcvLDLDIv2NjZmYGdXV12LJlCyorK1MW5CD4OrzibyDoUnHv3r2o6UAMv1C9Xo+hoSGhKBaTiGkQCAQUY45phdHR0YQiByaKqakp1NTUgGVZ2O12TExMpKQdJah1aorqWv/Nb35TvFQKPFGi9zgtLCyQ1WoVL6dS4/aXKL773e/S22+/HXFXklbQ6XT0zjvv0MjICH31q18lk8lEb7zxBk1OTqakPSncbrcqv1wZAyGxgA4ePEhXe35HCwHQIpYtwngAQPPz82S1WikQCFBXV5fi7WBYoStDulwkAJBOp6NTp07R7du3iYjoiSeeoOPHj0f92KoFDW63mw4ePKiKQEUk61ovjTl2//59TSy28DqEyIHCBJ/uLyfCjTMsy6K2tlbz6SER1/qInRjp70QPt8SKOaYlYkUOlCLVjPV6vbDZbHjooYdQV1eXdASP8GdJH24Jr8jhcMjObMfqkHgxx5JFeJvd3d2aRQ7UCmNjY3j55Zeh0+lQX1+/YtrC+z0WNDngGS/mmFYQXCR+9atfpbSdZDE4OIijR49Cp9PhzJkzqkKVhA/QQCCArVu3qrasV3zEWhpzLNUqq6amBmVlZXHzpWNOjNWGx+OB1WoV/Xqk00k82jQ9Yg0AZ878RFSLS7Jlt7qYY1pBiBy4lqJl9Pf34/Dhw+A4Dk6nE4uLi3HLSIMcRJsveZ6HsB0RZGCUQcHzPKanpyPCjIR7jqUD0siBayU6lIDe3l6UlJSA47iYEShihxlR3klRFWpLGuiHh7LnmFadqlSP0+nE3r17Nal/NSF83zMYDIqb1JWVlaq0mbSHlBko68MleL13oNPpMHvvzyHPsYdx8ULsmCpaMdTr9aY0cuBqwO12Iz8/HyaTSby+x+fzgWXZOEuRoBRK+zZ4DTmIiOEpiqc9EREdO3aMPvnkE7p9+zYdOXIk7uEX6cGSleCDDz6gbdu2UVFRkab1agWBlmS8+EZHR8ntdlMgEKA9e/ZQdnY2nT59OixXiC8gcTsTktPEklvs11HbT6rEUz3MM3YC3aKqqkYiIvrOd75DN2/ejMk8xHGPSxR3796l6elp2r9/v6b1agmhv5JBdnY2vfLKK5Sfn0+//vWv6cqVKzQzMxP2juuIiJftRcvaAxC8iVl0DAqJqecXICLYG38uiuv3v/991QFf1SKeqv1ruNIgHoSAr729vcr9EaOLiMcADjLKh0NOVVnQ2D4g1jE3N4dtj+hx/ePMdgZaS+jq6oLRaIy56LcXLx/iISIQQ/hxyDuPftFoB9FBKN3+4GqsjPDDFIKeBxenGgY+V2PzrK3VQ1z4/X489thjouOxojEY+t9eTGhoC17vKvWDJQsR7A3tCTS7JF47kIr+5HleHHHriAEjjjzhNJKQMQWNpxm1tbURXmdKWOI9OESHMCAIzIALDLMeroEAiBScZeMhHRd/2IuDI0wYladePQSiA3ImrmHEuvgjXBI9bQ2yKc5eTDj0WgN4AESMkrdzfKTy6h0eAzhUHLkxXvlM9IOcawnxrt4Jh6vRLpsDpdPaOguI/jQiP0jPEBHdaqPGduF8duRZ9L1791JDQwO98MILUb9Mqzev5fXfav+QmF07I3IZjRbq+uNo0LkzCl2ZjvHxcXrxxRfp/PnzqkO5XOl8l1wengCQq9FOL+auo7aBUB8I3G1o8yDku4dbbQ3BQ5QqkIrr5xrsFkW17mq0L9O1BjWp3+9Hfn4+Tpw4ETVPhNbyuEDPLPNCWDXYG1wAQltpas6bR7uJU6sLIHnx30Bowo7k0KlXD61pFZrMBZCuRrvILADimr2hzQOeD0i/RkRbEizFHeyxrmBNGLfalJkkIVxK21pBslewCsYcsHxGUmqRa34J8ocffig+U39/7jIjIkZcCK8+S6rVeqYhmUuQw7Wi+E+mTtN8DXksCOrTEn6IMyR5AvPW2rdA4RryVJ1J1JSBQFASjUYjqqqqVLsSLIHHQHtjxHaR8L+oNsM+c2Uy/H4/bDYbcnJyVElesgMz+DlJY8zOztLRo0fp/v371N7eTizLxgyoKvlSEheJ5F0tTE9PU0lJCe3cuZMuXLig6NgsRbS+UfOuMaPWJwLpOGBZljo6OuiJJ56gp59+mgYGBmKuCVUzDyAmw9d+169fpyeffJKKi4vp0qVLcZlHFFovS8VIiPMW+pOXJEZIW1Jym4D4Nzc3Q6/XR912i39WSEDoM5e8cEahtbUVer0ely5dUkyP1k88H1B+FeGoXJQ+0tyIiQbhXqLolxzKCYy1K59pTAOApaUl1NbWwmAwaOD6kdjcrpkKjYWnn36a+vr6yO1205NPPkm///3vw3Ksk6lguboNqkzxSYZNgD09PZSTk0M3btyg69evJxXpWK4WpSwJvrvYN0rWygqHS8JwuVzQ6/WoqKjA559/nrZ2tQ5I4PP5UF5eDoPBIFv7phtpkUAprFYrDQ8P08MPP0yPP/44nThxgqanp1X7uqjNFw6tQodNTk7Sj370I8rNzaXs7Gy6ffs2lZSUaFJ3Uli1oQP5Ma3q6mpFr+tEJCeVi3yv14uqqiqwLAuHw5HQLTGpRNolUAqO48jpdNLQ0BAFAgEyGo308ssv0+XLl8U8sSQHafBQa2tro6NHj1Jubi49+OCDNDIyQqdPn457SwxRmgIGpnyIhKBmNE5NTcHpdCIvLw8cx6GmpmZVLh/xeDxwOBzQ6/UoKCjA+fPnMzY4Xkp2YqIMlITveHjvvfeora2N5ufnqbCwkA4cOECFhYWaB2S/desWdXd3k9vtJrfbTVu3bqWXXnqJbDYbZWdna9qW1kgbA9UgGpPHx8fp6tWrdOXKFXK73TQxMUEFBQW0Y8cOys7Opj179og7Ho8++mhE0IM7d+7QnTt3xPP7fX19NDo6Sl6vl65du0Ycx1FRUREVFxeTxWJRpR5j0ZzoYF0JVo2Bib6kNP/s7CzduHGDhoaGxCgYAkZHR2l8fFxWluM4UZI2btxI+/btI47jaNeuXfTUU0+p2u7KVPwf088GBSVXjMAAAAAASUVORK5CYII="
|
<image>如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()
Choices:
(A) 65°
(B) 45°
(C) 25°
(D) 20°
|
20°
| 69,679 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAAKEAAACVCAYAAAAwupoNAAAYJ0lEQVR4nO2df0wc55nHv7NEl0Si5Y/QM1W3IYb1GcuWwlnJmbZEcA0Y3AC2FFuGlqpYcgycozaJWXCvvto9uwpgx4YK17uQqlhJZKw6sWM7LuyuU3rCDQ2poA05cNnFtKCqEb4rklcXXLPz3B+zMzszO/t72Jld5iPB7s47877vvPvd533f533nfRniAMMwCIaF22XDnfX/hvJ8hWADg6hgAZgAACT6zCvOBEAiQBJdSphFS/nBEPGS8nEDgyBMwjsGAAMTQKQQKjqJ9Uuxt60XbHU11uezAKQChUnJchoYBNO6kwHD+P9MDEwMA5NpJzzE6UpsIwVMYDDUZwXKyoDr4kA2Sdk2SCc63yVYawCHm0AsgSXCuVbAYqqBGyweAsCZP/K/AiCPAzepHB15QFP1Jlz1a5UJNpwGBmEhACzcmIIVHf5+BRGhqeMqZqcZHGp7XVZZ+2mzu9BxYDsAoKbAksQsG6QbDIA7ThcyNm0QJMb3QfIKqnF12i0SIXFtRWefFSdPnuTqbUtFcKxGf8QgFghwuW6g8tlS/4FAky7fshGA0DFhAYYFzTrgpHIQ+UBEmHGcw8b8J6SR8lW3gUE0MB7cOEkoE3x8Abvncd9GTYHF3yYEQB4XMl5xgd7tFE66M+cBkBccr9EzNvAjt0lEJHQviAiY9YCxVsNCpkCfAwA8DjR3XoPNeRogIrJZq8kfRg4357221oAY/7GaVjuxFICL38AgwOLiIgEgt/uPxLIssSynGGeflay9v5SezHL6Qo2ViIj8avKFTYCVfQZMauTbII2orKxUME4zVCMybERErHuIM3h+ARIR+avj8K6X4MrX8BcaBOhs78Bnn30mOeZ22rBhezMA4KpFqiCbcwaNZRbBLcgQicZPRGN84WAYRlL3G6xdfv/736OyshJjY2P48pe/DCIfotGQWDuyEZMondGM5MVgjeL1evH883vQ398Ps9kMTj/RaYgBOLcgBEuoYAEJICjPruEtocHapra2FtnZ/4ienp8ACKULZW2JLdhD3GcF9TIAI7N1huwMeC5evIjbt2/j/Pk3uAMhxeGvbMXTBWV2TdYmjA7DEq5diAizs7MoLi7GyMgI8vMDE03j1YUxI8EgJv7+979j9+7dOHbsmESAiWBYQoOwkGzW/fe//33cuXMHAwMDQWHx6uKhyKcYrGXEIhsaGsKFCxcwOTkZFJYIhggNouLTTz9FQ0MDLl26hMzMTFXjNqpjg6jYsWMHSktL0dbWFlQN8xgdE4NVo6OjAysrK2EFmAiGJTQIy0cffYTq6mqMjY35R0VCY1hCg7gIJxqv14u6ujrRsFx018WKYQkNQlJbW4svfvGLOHPmTFTnGy4aA1U5f/68f1ju/KqnZVhCgyA8Ho/isFwkjDahgSrcv38fu3fvxvHjxxUFuBrGx7CEBhKsVivm5+dx4cKFmF0xRpvQIGGGhoZw5coVjI+Pq+4LDIchQgMAwMLCAvbt24df/OIXEYfl1HZYG9XxGiGScMTDcvFidEwMwhJOgO3t7QCQkAATwaiO1zi/+c1v0N3djbGxMc3yYFjCNYzX68V3vvMdxWG5ZGK0CdcwtbW1MJvNOHXqlCrxGS4ag5h4/fXXkzYsFwnDEq5B4h2Wi4TROzaICn5Yrr29XVUBJoJhCdcYL7/8Mv7yl7/g4sWLqsdttAkNIjI0NITr169jfHxc66xIMES4RlhYWEBDQwOuXLmi+tNyiWK0CdOMUNVhfX09Xn75ZWzbti3JOYqMIcI0Q2l4rqOjA48++ihaW1s1yFFkjOo4zbl16xa6urowMTGhdVZCYljCNMbr9eKb3/wm+vv7sW7dOq2zExLDRZPG1NXV4YknnsCrr76alPRS1lnN710hXmSRvxHx7pA723oBcAtyCztGMgycHqXIRJ/XGHzZ2e12TE9P49ixY0FhuiPS1gBKxHlZjHDbWlhrQDbnjCRkxnFOsgXBWoffM4R/nZmZoZycHHK73UHnrCbx6kJzS6gMt84xwY3pa1X4+rPrJaE3nTdgfa5Mm6zpEL5HzDAM7t+/jz179uDUqVPCsBytwvoxaqILEVJQNcFly+N0gbFWYwMyJKGe29dQ/ux2/8XiEGN/le9973vYuHEjvvWtbwEILcDgMteQZJrdUISqKIbsrwjbnfF/DEDY2Rr54jXI4OAgWSwWunfvnibpx6sLXfsJXe+dhsNNKBdN9nD2WeGkZwGwIJig41omqfDDcteuXdPdsFwkdFEdK+1eSx4HTsKK8vxA1UFE8Lhvw7LeAsBkbOYjoq6uDi+99BKeeuqpkOeQnqpgEZqLkC8WuaBc7zvR8o1nuTBh/wtu79x/LcsNjkCJNdJE7OjoQGZmZsSn5fTaOdG8Og5VLI73TmH7ayeFz0QE1+t2rqPCiDoq4cpV85+YupBCJ4Mflvv44481ypUKJLMBGg0zjnOSjoh4/2XARADIah9atfRTiXv37pHZbKbBwUGts0JE8etC18N2xi6i4amtrcX69euTNiwXibSbWU1BVU902+CmM+IysdvtuH37Nt566y2Nc5U4urCERD4w4naeSHDcuLJMkKF6M2uE6elpPPPMMxgdHdXNw0pACk9gACATICDOFgPu5t533cStW7dEB5OVO31x//591NXVoaenR1cCTARdWEI5fje08Pl/Fu+icOs/44FvBU0HXsCxY/8JYG22GZuamrC0tISBgQGtsxJESltCOZwAA06+xuYmPPfcc/jk40n87nfjeOaZZ7CwsKBdBjXixo0buHnzJn72s59pnRV1SWZXPBrkU47efPNNslgstLy8LBw7c+YM5eTk0OXLl1ctH3pjfn6ecnJyaHx8XOushCReXWguwnDz3Obn5+mxxx6jDz74IChsfHycNm3aRI2NjXT//n3V8qM1SuWxsrJCxcXF1N7erkGOoideXWheHYebZlRfX4/m5mYUFRUFnVNYWIgPP/wQPp8PW7duxSeffLLqeU0GSuXR3t4e1bBcypJMxcdCV1cXFRYW0srKSsRZwQMDA5STk0M2my1ivMmYYawmIyMj9KUvfYkWFxe1zkpE4tWFLkU4NTVFWVlZNDk5KTkeTkBzc3NUVFREu3btoqWlpVXNX7JYXFzU1bBcJOLVhebVsRyfz4f6+nr86Ec/wubNmyVh4WaB5Obm4tatW9iyZQu2bNkS8CnqHOIMgWLYiy++iPr6elRUVIS8Ni1IpuKj4ciRI1RSUpJQHMPDw5STk0NHjx5VJU/JQmzpbTYbbd26lVZWVjTMUWzEqwtdiXB0dJSysrJofn4+5DnRtukWFxepqqqKvva1r4WNT49MTk5Sdna25Gk5Iv23Z3UrwmgLbnl5mSwWC50/fz6m6yLR1dWVUj7F5eVlKiwspIGBAa2zEjPxilA3w3ZNTU349NNPcfnyZVXjBYCJiQnU1dWhpKQE3d3dePjhh1VPQy2am5vh9XrxxhtvaJ2VmIlbF8lQfCSrNjg4SOvWrVsVNwSf9r1792j//v20efPmoF63lojL5tKlS5o+LZcoccopOW3CcCLk3RDXr1+P6vxEicWnmEzm5+fJbDbTxMSE1lmJm3hFqHl1XFtbi8997nPo6+tTJb5o+NOf/oTa2lrk5OSgv78fWVlZSUtbCZ/Ph9LSUuzatQuHDh3SNC+JoMosGpZWhL9k8NZbb2F0dBRnzpwJClNL5Erk5uZiZGRENz7F48ePIzMzM6UFmBBy0+hjH6ya2RXz5z//mbKysmhkZCThuBJBa5/iyMgI5ebmKraH9e6SkROvLjQTYVlZGR0+fDjheNSA9ykWFxcn1aeYasNykVgVEfrYB8Kf+PMjj/5D0DlK8YQK++m5HvqXbU/R/33mDZu5UHGEOy7PUzQ/Kp5k+xR3796tmx+iGqyaJVT6zCcmF2w0cUxNf0JZWVnC5MxQIok17lA/mHBpKDE+Pk4FBQWSeYqrUS3abDbatm1bSg3LRSIpIuTfi0WoZJVCxfHgwQP6yle3SSZnRiPCWPMX7n00RPIpJirK8fFxxWG5VGdV24Ryi6JkCcPFwX/+4Q9/SF9/tlTy69ejCHkuXLgg8SmqYRGXl5dp8+bNwrBcqnU+wpGwCMNVXdGIMJIl5CcnzLhvK8YdKs1o4o71mlhQe55iY2Mj7du3L+F49IgqIgz3ZYnDxIlF0zHhJyf09fUFhYVKI9q4Qx0L9T4U4SzSysoKHTlyhMxmc0IupYGBgbDDcqluFVWrjkMRSoTRcPDgQaqqqorpGj2SiE+RH5YTPy2X6qKTs6oilFuRWBJzuVyUnZ1Nf/3rX4PC9PQlhMuLOOzu3bsx+xT5p+W6uroSzqeeWRURhqo2o0mMZVnBGXvp0qWgsFRHyacY6r7+/cgPqLKyUjGMv4Rl2ZRffnvVq+N4Etu7dy/V19fHk4QukYtM7FMUP5wvZmTkv+jxxx9PiaflEkV3IhwYGCCz2Zyyc+OiJZxPka8JXK73iUgq4nSoDeToSoTz8/OUnZ1Nw8PDwjF5oafbl6A0T7G6ulo2LOeLOr5ULB1dibCsrIxeeumluDKUaoh/TGKf4unTp6m4uJhWVgLh51qruWWQmcBSyLZWK83EIE49E68IVX/u+OzZs1hYWEB7e7vaUese/tnnxx57DIcOHcKpU6eQkcGAPA4wDINfogpEBNbHgohw8xUGN2CBRTytM00eJY4JNRU/MzNDmZmZNDY2FtcvIh1YXl6mgoIC6u7uJiIilmaoRmGxd5ZlyeceCrkIPEupVyXHKSf1pvf7fD4UFxejoqJCsr3pWoKI0NzcDJ/PJzyuYGurQfN0Adh3O/0LeoZee5t0vhFiJFR42i5SuyQQLr6MbxMdPXqUioqK0mpqkhz5lq7ch8Bb+bAcSzNUxcS35UUqdtyQSMckuhtWFiER0djYGGVmZgpTk1KxAMMRzf0oLWLpcw8RELxfs6O3JXivFp9M2ClYhAmJUIlwBS9OjG8D9fT0pJ34lAi3iGVPT4/0XPcQASayOWekPkIicjttgY3D06TY4hVhyN5x5D1yuTWlW1paYDabcfDgwZRuz0SL0j3+4D+OIDMzEwcPHpQG5OehBiw8s7OS6xgAs3fcgY3D07/YwiP/FVprGG5fYYbhtvFi/H4t/lcrUrzL5VJcwGgtWESekZERMpvN/mE5X9C9c9ukmYKqZGtNYMu0dAFqVsfyAppxnKOqNrsksaWl/yWz+XEaGBhYU6ITww/LiUeGlGD9bUPJ384W0QnyK7j2d6qVa7wi9G8rJt5ByY0pWNGZz73vtd/BgcYyVM3eEawnA+DFF7+LrxZ/BXv37g1tZVPc5SBG6V6+/e1vo76+HiUlJWGvZfK3x+i6MAGk361h1eYhrnADTUOP04VN/raKq88O5DeCgQWNjRbhHAIwPDyM8fHxoAjFX1Y6FCJ/P/J7sdvt8Hq9+PGPfyw6GfG175SuSf2iix7O9AfcL0HuAw8fxrV35ubmCADV1dUFzZCJdmJoqsM/LTc3N6d1VnQF4u8dm0AU+Nk5r5+Cw82to2ytrkZuHh9iAsMwyM3ldl3/29/+hi1btuDXv/61cG04y5cOVhHg9pbbs2cPenp6hLIwSBCWZQNWyuOQ+K7sdruicuFXfH9/P2VlZVFLS4swqTPdrWFjYyM1NjZqnQ1dAjV6x86+FtEQU6CH1tJqlV4kSmx+fp5KSkqooKCARkdHo0pUIvwUgM9rpKfl1jqqiFDJd2WtkY19skQMwwRF1NPTQ5mZmXT06FF68ED58cpUEp6cubk5ys7O1vXeclqTkAg9TluwH0s2timWT6jEpqamqKioiAoLC1N6xVE5/LCc3lZ31RuqWMKgmTQ+ZcsVKbH29nb6/Oc/r/sNAaPl8OHDVFFRoXU2dE/CImTlr+EmMDCRExsfH6fCwkIqKiqiqampuDKnB4aHh0XDcgbhiFeEgpeakb+Gc6lE4fx/8skn8dFHH6GiogJPP/00zp49y12aQlth3b17F/X19RgYGEB2drYkLJXuQ++s6sLp/DkffvghGhoasG7dOrz55pswm82x51QDduzYgcLCQrz66qtpNQS5WqiycLra8MNd27Ztw8TEBJ5++mls2bIF58+fX81kVeHs2bPwer04ceIEgPRxtusStev+SG6YX/3qV5Sbm0uVlZW0uLioS7cNPyyXanviaU2cclL/kU+5xSC/eeZfS0tLMTk5CbPZjE2bNuGdd95ROwsJ4fV6hWE5s9lstP2SQFI20yF/e4pk7aqhoSE0NDSgpKQEdrtd801tAOCFF15ARkYGbDab1llJOXTZJuQJNbWroqIC09PTAICCggIMDQ0lIzshuXjxIoaHh9Hd3R3V+YaVVIlk1v1EoduMly5douzsbNq/f78mY7Nut1syLKfHtqreiVcXSbGEYkL1Mp9//nlMTU1hYWEhaIpYPJDISlEEi7WysoKGhgacOHECTz75ZNh8GqwCyVR8tChNEYuHaJdiO3z4cFosZ6w18epCFyJUEsjCwoJkiph4+peaVaXL5QoaljOq4vhIaRGGQzxFTO0lRhYXFyk3N1fzTR7ThXh1ofl+x+Egv0tnenoa+/btw/LyMn7+85+jsLBQlfjFw3IGiaNrF02syG+koKAAH3zwAWpra1FaWoqOjo6E03jttdfg9Xpx/PjxhOMySAzdWEISObKJlCcLEBH+8Ic/oKGhAQ8//DD6+/tRUFAQc1oTExPYsWMHxsbGUmYyRSqQ8pZQslZLCPcIwzDCFLHKykrJFLFo4Yfluru7IwowGU0OgygtofBMt/8Np3gfQCZNH9L+7W9/G/MUsX379uGRRx7BuXPnkpDDtUUoSygcYxgwfg2JazuT5CKSvfKRSyL0+d9pK0AAilPEwv2mLl68iNHRUXR1dSUvkwbClD4GEDQjqe2IFfvFRM+YsKGXzTMh+Gm7ZBDOTyifIibHGJZbfeB30SiVbbjSNnHVKz/dKqBOAoU0dKxGS8yHG0qTTxF7++23hTCfz4f6+nqcOHFCcO8Yw3Krh1K1LP3IQhZIgnqtO4Mf97Q5PCEVr1cGBwcpJyeH9u7dS0tLS3T48GHauXOn1tlKe5R0EVR7iU2i/33QVa07A2ssu529xAA0NCM1pnoXIRHR0tIS7d27l3JyckI+LWdUyerAl2O8unhIYhXhxvS1ahy4nAeARd76XK5DrFB1MUwGwLAps/nLF77wBa2zYBACiZ/Q43QBLVXIZ0wgmND2SgVq2s6hPB+BChpc95rIB2LJ/16bP5ZlNU3f+Av+k+PqbQn0jne2guBGa6t01rpEhHfmPLja2QiGYWBiGJSfJlxpb+ICGWjukpETfefC3xAW3Euy4waqIJYgeQbBMAx+4t4QMBqny5Bh+ifAkie5TiLCwNqEPjh6W1BhYeDyJCP7ahAQVPAv0n+bTIbycQNVIbixy7IDVW12XO1sFI4z+dvxU2sV8vPyxCcHvgXyOHASVq7qhQllLzSiGoDz/UHhfLlrRsn8akdAUGILqexO4gSrp9ynA3ypu/rsuIpqnGnfHwj0F7YlfyPy1geWnmYZX+Cbc73vROs3tgcu8sziGoC8J/KFQyZZfaw3X1tbjb/tYWKEJkUGY4LJZILd5Q6cSKa4l5c2CA+LGfQcOAWr/UXp7qUMF1p24KTf0HGYkBHoU4vXJmRphnYyIKCa/sjyE0mlK3axwj9tkbtZ+PsQ/FM0Q9VMVdrsKax3WNlWatLvR7o+Oh9mcjttYBgGJ68C2y0ZYBgGGcwGvFttBbFXsUFoR0nbT4xOTInYGhPc+G9qQXk+d7y3txcMLCho2ST9VRokDWltaYJSs8lkKW8SuTxWuFci0Lud4UWmAwEC0napx+lCQXU5d9zjwHv+TlVnZ2fQuQbqIpRsfh6qAXhmZwGS95gd0maRH4l5YOTKSoHvTPxLuzPnwekDFVx70LIDG/OfABAQn3BuCtxXqhFYWtCC79pbcLKxAvabbuG422mD6RUXGsssQdfK6tgQMesdv6hc752Cw8NZdUfvK4IrIKgDlSr3lRIE+1rLDpzEjOMcmrZvEBzVh1wm0LudUKqMgia1EpHUYsiNox7DCaBZB0yHboKucM+fuJ023MlrkvTEdJv/NAqXnBsimIi4Ca7+z3E9Y6I3CICrzwonlaPzAO9mCuzXZ6Bvgr4lFvKhLf2HM+Cq4vKyMtFRZQHqMf+pHk6iUMnxCPaND+UsocK8/6CzdRrucdlhKW8SPjvcFFQF6zn/aREeOIV77z9PqTpWiuP/AS7kY7USLcLEAAAAAElFTkSuQmCC"
|
<image>如图,已知:在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E,F,G分别在AB,BC,FD上,若BF=3,则BE长为()
Choices:
(A) √{12}
(B) \frac{15}{4}
(C) 5
(D) \frac{9}{4}
|
\frac{9}{4}
| 69,680 | null |
\frac{9}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAIUAAABtCAYAAACPzaLTAAAH90lEQVR4nO2dP2gTbRjAn3wo/kMQcbKK1EzpcFMEg2DFTC4HIsot/mmEDl6hXU4saDIUvdKlFTpEhyZiIU6pi6lLitgUSiho4pDFVIhLlsuQwGW4wPMNflf6NTbNXS/33p/nB6VL23vu7pf3fe59nnsbQEQEgtjFP6wDIJwHSUF0QVIQXZAURBckBdEFSUF0QVIQXZAURBckBdEFScGAQCDAOoSekBREFyQFI5w8WpAUNhMIBMDpNUiSguiCpGCAPnU4dQohKRiAiI6eQkgKG/nbyODE0SJAnVfEXmiksIhOpwOrq6usw7AEksIC2u023LlzB4aGhliHYglHWAfgdhqNBoiiCIuLi3Dx4kXW4VgCjRSHQBdibm7OM0IA0Ehhmt+/f8PExASkUik4e/Ys63AshUYKE2xvb8PTp09heXnZc0IA0EhhmHK5DLIsw9LSEpw4cYJ1OAOBpDDA2toaZLNZeP/+PRw54t1L590zs5jV1VXY3NyEhYUFTwsBQCuafZFOp6Fer8OzZ89Yh2ILlGgewOzsLACAb4QAoOljXzqdDszMzMDVq1fh1q1brMOxFRop/kKn04GpqSkYHR31nRAAJEUX7XYb7t+/D+Pj43Dz5k3W4TCBpo9dtFotGB8fh5cvX8Lly5dZh8MMkuI/Go0GjI2NeaqwZRaaPuBPHWNsbAxSqZTvhQAgKTxfxzCDr6cPP9QxzOBbKTY2NiCTyXi+jmEGX16NtbU1+Pz5sy/qGGbw3RVJp9Pw69cvmJubYx2KY/FVQWxhYQHOnDkDjx49Yh2Ko/HN00cikYBLly6REH3geSk6nQ48fvwYRkdH4fbt26zDcQWezina7TZMTEzA5OQkcBzHOhzX4NmRot1uQywWA0mSSAiDeHKkaDQacO/ePc8tW5fLZVheXoaRkZHB5kboMWq1GgqCgIqisA7FElRVxWw2ixzHYSwWw0KhMPBjekoKLwlRq9UwHo9jMBjE+fl5W8/JM1KUSiXkeR5VVWUdimk0TcN8Po88z2M0GsV8Po+aptkehyekKBQKKIoikwtoBYqiYDKZxGAwiPF4HKvVKtN4XJ9ourmOUS6X4fXr17C1tQXT09Pw48cPR1Rr3XUV9+DGOkar1YJPnz6BLMsQDocduYbi2trHmzdv4NixY65Ztt7e3oZ3797Bx48f4cmTJ3D37l3HNvW4UopEIgGhUAgEQWAdSk86nQ58/foVXr16BadOnYLJyUm4fv2686c5phmNQTRNQ1EUMZ/Psw6lJ4qioCzLO4ljrVZjHZIhXCOFqqooiiIWi0XWoexLoVDAWCyGHMdhLpdz7eOxK6RQVRUFQcBSqcQ6lC6azSZmMhnkOA4lSXJkjEZxvBSKoiDP844bgqvVKkqShMFgEJPJpCdWUXUcLUW9XkdBELBer7MOBRH/5DS5XA4jkQjyPG9LHYIFjpWiVqshz/OO+ATW6/WdxFGWZcdIOigcKUWpVEJBEJgnaoVCAQVBwEgk4urE0SiOk6JYLKIoisxuQLPZxOfPn2MwGERJkrBSqTCJgyWOWkXRNxpjUcfQG1jS6TSEw2H49u0bnD592tYYnIJjpPjw4QNUKhVYXFy07Zjtdhu+fPkCMzMzEAqF4MaNGxCNRumtMdZDFSJiMpnEZDJp2/Hq9fpOA4ueODabTYxGo9hsNm2Lw6kwlyIej2Mmk7HlWHoDSyQS+V8Di6ZpKAgC8z4Gp8BMCrvqGP00sMiyjLlcbqBxuAkmE6e+0djDhw/hypUrAzlGuVyGt2/fwvr6OkxPT++bOK6srMDx48d9ueHZvthtoaqqyPP8QGoEezufDyqeVSoVjMVirm3jGxS2SqEoCgqCYHkdo1qtGu581msqlFh2Y5sUVguxu/OZ53lDnc/9JpYA8L8vv2DLmdZqNYxGo5bUMazofI7H430nuLtl8IsYAz/LSqViSR2jWCzuNLBkMhnTfy+bzeL8/HzfP09SWEypVMJYLGb6Bu5uYBFF8dDJqZnEkqSwkHw+bzqz1xNHjuMsa2Axm1iSFBaRzWYxHo8b+h09cdQbWKx8Ze4wK5YkhQWkUilDc/bezudBNLBIkmS6S8qPUli6oplIJGB4eBimpqYO/NmNjQ1YWlqCra0tmJ2dHdgrcysrK3D+/Hm4du2a4d/V/zm9/h3d94qMOawwS9M0lCTpwMc8PXHUG1gG3fmsP/kQxji0FHphq9fwvLfz2Y5VREVRMBqN+qaFzkoOJUWvOoaqqsw6nzVNc+RrAW7BtBT7LVvrnc8cxzHrfD5MYkmYlOJvQhQKhZ0GFpadz0ZXLIluDEux+32MZrO5U4eQJIl55xIlltZgSIpqtYqCIOD6+vpO4pjJZBxRfqbE0jr6lmJzcxPD4TCGQiHbtu7rF0osraWvTUtevHgBsizD8PAwjIyMwMmTJ+1YQumb79+/w7lz5+DChQusQ7GFBw8eDLR9sC8pWq0W/Pz50xGbdP0NTdPg6NGjrMOwjaGhoYG+qOTK7Y2IweLZDdsJ8/QsiOmFIB0aVNzDYe5dz5FC/0P45yml60CEMwkEAjv3zMwHmaYPH2BUjL76KXzXT+Bz+hopaPrwFzR9EF2QFD7A6Ajfc/GKHkndy+57Z/S++WJF82+fFB+ctml8MX3sXW8heuMLKXajL+wQ++MrKeiRuj98JQWNEP3hKykASIx+8J0UADSNHIQvtpXd+04o0RtfSEFThjF8OX0QvfkX2bt+IZ7GMS0AAAAASUVORK5CYII="
|
<image>如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为()
Choices:
(A) 25°
(B) 130°
(C) 50°或130°
(D) 25°或130°
|
50°或130°
| 69,681 | null |
50°或130°
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAABeCAYAAADyrTB3AAANhUlEQVR4nO2dW2xTRxrH/+NUSh/cug8ReIUQm9hs/BiUSn0gUuxNAgFiQxeqVMpDa3UXdtUHQhcHpLZqHorUQretRJcQECJ0t1UfiHpbSOyTlKTAEqmXZK+hjR3CU+NtpWKRl+7G59sH+xyPz8V27HN8CecnObFn5ozH8z/zfWfGZz4zIiJYGAYBYNJzIjDGEBXO4k7Tb9HlAgARgM209zev5gcIgghpVDCIcjpjDIQofr/jdyCilNqwASYOIUtQA2CwyaOS71ICcO7YOZDfjyY3ZYYuA8AJbySWoAag57UmzoeAzk7gL1r55nS9JagBMJYZn5I5pVgEAnXhYBPwacADd5m62hLUaNLaHj83iZMHd4AoiUDzVp3CxptdS1ADkQyrcD6EkydPgjGGuq27NUpKQhrf/ZagBsKQMbVEBCLCQmQIv2jaIpdJ+Vvzuv0h02p+EFkUYHthAvTxSTnpzlIMQKM8J+X9LT9nNQyyKAkx/X9owE+MMQJA4YVUWigASutGgYFhIkpqHmskjMhaKVpPWD60zJg9fixBDUHMWs0Lh8MYHR3VFE/yoWYJawlqCJmlv3A4jL1790IQBEC+AMqeb1L6AsmcllgYRjgcRm9vL44fP47p6WnN9V0ApokJwLrKNYobN26Qw+GgsfA4ra7+l+x2Oy0vL6sLmnFpy2GN0CIghf+7efMm9uzZgwsXLqB7x07YbA+hra0NU1NT6oP5ZV8T/KglaIHwnc+bzLm5OVnM/fv3y/lerxfXrl3LWacpptdcA7C+mZ2dJYfDQRcvXiRRzLalMzMz5PF4yt4mS9AimZ+fJ4fDQSMjI5r5q6ursh9Vim0mlsktEOJM7u3bt+Hz+XDixAk888wzmuXr6upkP6qce5KJiwuWoAUiiRKLxeDz+XD8+HE8//zzOY/x+Xy4fv26qg4zpy2WoGvg7t276OjoQH9/Pw4fPpy3fGtrK7766qsytIyjbMa9xllaWqItW7bQK6+8QkSU1y+Kokj379+n+vp6un//fhlamMIaoRqQwsfF43F0dnbi2WefxeDgIID8ZpMxBrvdjm3btuHmzZtmNVWFJagGvFjxeBxerxc9PT2ymEDhFzZer1deYCj0mFKwBM1BIpGA1+tFd3c33nzzzay8Qi9sfD6fLKipa7hprC+4dZDEfPzxx3H+/Pmi61lZWUFDQwN++OEH2O12A1uojTVCNVhZWYHX60VLS0tJYgIoux+1BFWwsrKCXbt2obm5GRcvXjSkTt6Pmo0lKMfKygq6u7vhdDrx3nvvGVav1+vFrVu3DKsvF5YPTfPTTz9h3759ePjhh3H58mXU1dXlPYYKvPMgkUhg8+bN+PHHHwuqtxRqYITm3i5A8ja94pHEBIAPPvig4E4v9KrV4XBg06ZN+PLLLwtrUKGfR6NcDQiabqKi8fJ+TMbUdyuvQeBkMokDBw6AMYaPPvoI9fX1xTY0J+3t7Vl+NKdhzHue6J/kNSBoGsU3/cf2MvlO9MwjgChEVYfodV4ymcTTTz+Ne/fu4cMPP8wS02hP5PP5MD09nfk4jBX8HiT/kUjLpiV82RYZTSAUAEWimddDA34C/BQVk/oHcRw4cIDa2trKsta6vLxMdrudVldXdcuEAiDGmHwHvvwIhAp+nxoQNC2OYi1cpAXy7x1IPecWykMBadtB7vuxgsEgtba2qsQ088toj8dDMzMzuvmiKKpO0oXIEAWODaXz879HDZhcW8o0KUzuojAB1uwCkH1x0uTx45Pb0VS6To3BYBCzs7OYnJxUrd6YuTwn+VHSM7UshnmE0OUCCFEMDwtwd3Vhd6P0OfnC2n60BgQFmEIaBgZh4ip2d3lVZV3uZkDqMI1+O3LkCL744gtMTU3B4XCY0NpsePGkdV29kyYmTMCzuwNEhInzZwFXIwAXDh3qUterJ10JFqRiiLRAe1gPLZDaVw4N+FMmV1Sb3P7+fvJ4PJr3y5bjvp/l5WVqaGhQvHHmaeTc0ZTPZCnfyZteRVFdalPQaFj2k8p0AHRWWFDlvfTSSyoxy3nzloTb7ab5+XlFaurEDAVAQiyVEvL7NU/YfNTkht+JzwQ0uxRmiIBjL+wEAiEc6nRnZQ0ODuL06dMIBoM4c+ZMWb7GklBOT+rr6zE9PQ2Px8OVsoFiEZxiA3i9KWWm3T09kD4FrWEvTE34UB5CFO8cfAOdnTsyabEImI3hFAtl7Z4GASdOnMDIyAiCwSAcDkdZxQTUYjQ2NmregD3xmYDQ7g4wpE6CgwcPArBhYGBgbW0uwXqUnYXIEAE2eX4mz9cY6KzwjVxOTD/efvttcjqdtLS0VLE2K5mfnyen00lEvMlP0tG9ap8Z2gsKDQvya1EUs6YuSQ2vWlOC5ifjcyQxeX9VCZ+pBd+uBeGP2YsI0iN9YRSO6dej9WlqUtDUB8k+P/nnIyMj1NDQoHHxUR309vbS2bNn9QuUcN7VnA8FAJYOgsh7Fun5pUuXcPjwYQiCoLjwqB58Pl/ujUyluPniz4XyoXfC8j6IiOjy5cvkcDhobm4ud30VNr28HzWamhA0H6IoymJev3690s3Jgj95+OdOp1N7Q3CJ1IzJJcX6J//66tWreO6553DlyhW0tbWVu2k54acc/HPl96NGkSVoEiQ/qgnSmFhLr8fHx9HX14fR0VFs3769Es0rim3btuXdEFwUyiG7anYQAAMZHx+nRx99lMbGxirdFF20/LUoivKGYKP9ec0KKgWpGB8fr/hFTjGsrq7SI488Yvjack4fqjTBWiZZz0TnMt+Fmna9cjdu/RW/euoALoxcxM6dO2Xzq2wnn1Zt1NXVYfv27Vl+1IhlyZyC1qUnRHr/kyDUgaEOTCWylL6WPB6+HM/s3/+Gnl27ceb0O9i/70mVcNJx/PNqFbWQwBprRmUKFCaXf62Vxz+KrUMLrfTZ2Vna8DNnVlyD/3H3D0nHiGLu9lQLMzMz1NzcbKjLKMiHSmnFimGEoFKQikt//lNBdVe7oKIoyoE1vv/+e8PqlU1uqWbJTLM2/+03cpCKvr4+096nnDDGYLPZ0NbWZui2fdU8VOmzAMh+SJknpSvz+PS15PEnhVRuYTGGX7Z75SAVesdrXQTpPa8WpABVhm4ILnQoV8JsSXENXnvtNd35XK2hbPPExAQ98cQThtVfkKCVEPPu3btZQSrWK0YH1ihoHlpu4vE4Ojo6soJUrFeM3hCcdx6qNRc0E70gFUpoHe2CNHJDcFV925JIJNDe3o7u7m689dZbOcuW+2YvsyAiQwWtmg2/yiAVZGIY72rDyMAaVTFCtYJUPChiAhk/asR8tOKCmhGkohbxer2YmZkpuZ6KCiqJ6XQ68f7771eyKRXHKD9adh8q+cZiglSsZxKJBDZt2oREIlFSX5R9hPJiAmsLUrGecTgc2Lx5c+GBNXQou6BSkAoApgapqEWMuHGsrILyQSosMVOQxobgUiirD33qqaewvLyMsbGxsgQyrDXi8ThcLldJfrRsIzQYDGJxcdESUwNpTG3YsKFkP1oWQYPBIObm5jSDVFhk/7hAe3t7dQvKB6l47LHHsvKqZNWxqvB6vVm/JLFWTPWhR44cwdjYGKanp7Fx40az3mZdEY/H0dLSgu+++66o400boS+//DLGxsYwNTVlibkGNm7cCLvdjtu3bxd1vCmCDg4O4t1330U4HIbT6dQsY5lbfVpbW7PiAq4FwwWVglR8/vnn2LJli265B+nblLWSd0NwLvj7UUq96aoag1TUElL/KzcES+lSKAJ9ksqbxJJ5RNWvTCtIhUXxFNuXCpNrQypSjB7aFnpkZASvvvoqrl27Jsc1IMtHFg0Rob29PeVHSdmXiqCNim628QVCAQbG6rKCCg9PRDMHkrqeS5cuob+/XxWkwvKRa4MXjTEGn8+Hr7/+GmB5+pIpBeYQiehYIBMrLxXoSREQibPIUlyD2dnZVFYN3vhcrczPz6d+ITjdpcq+jZw7SiwrQHKUQqEhsmWP2Cj+/WkPOjqbAACupib1DZzphNHRUTmuQUtLi3xmWRiDx+PBvXv3EP9PHADXt4sCbDYb3oluhZi6UR7iH3aAMTfgbsJDGQlExIQJ2I764aJUYP5jL+xEIDSMLle6CAFgwNW/XEFvby+6urogCAIEQSjvp12nkOJOR7vdjqmpKfT29gIARCzgSdcO+AeG8fHrB+VyzN2JoQE/WKMbXDROG+4sxfDxqTdgO3UIABCJEk66MiXAUj+J8Y9//RMvvvgiYGMl/8SGRQb+p50ZY+jr60NDQ4OcP3n+HD6BHwuv/1pOk8q63M1AUxPAT0X4eOdSMN5I1PKN1YBICxQAKDQc1sqUsUlTEYpFcCod7xwAOn9zCAEAwmREjvmqNRhFJNWJZOUblS/BFu/gEwCuRre6OHfpIk8sJycFhPZ0ZnJii6kKmlIXSIwpI79LFai/WSfuUtrKLy1fRkz3PhNVejNkzgFZ0MiVN9DVkQoqTIgisHUnAL98xZv9juqk7DfIvURs5a8lPyUuuX+OAIDY4qL6h6Ri4zgnrRdIc03VQ+fHXyxvWjnG09c1fEz9b8NnCP6j8mtuYSFZmFpZZTTWdvPVYeWXlL8QGSLGRfXuOSb9mEJKi/8DHszePphjoqMAAAAASUVORK5CYII="
|
<image>如图,已知△ADE∽△ABC,若AD:AB=1:3,△ABC的面积为9,则△ADE的面积为()
Choices:
(A) 1
(B) 3
(C) 27
(D) 81
|
81
| 69,682 | null |
81
|
"iVBORw0KGgoAAAANSUhEUgAAAGUAAABvCAYAAAD15w6pAAATbUlEQVR4nO1df0xTZ7//nKqZxrpzk5VLvdbUSZ0d+GZEWIQrSWHWd74OGMsw7A+cmLl198U3Y69V+gcLW0IyNlnmNu4VZYss08QEljolV355rVGjW82cWRmQlitbu1CHW2DtFO/wfO8fpYdz2tPSYmkL+En4cc7zPOd8z/N5vt/vc87zPN+HISJCkmNsbAzfffcd+vv7MTw8DIvFwqcNDg7C5XKJ8qtUKqSlpQEAFi9ejLy8PKhUKqxbtw4bN27EihUropaBiMAwzAM9R6RgkpEUl8uFc+fOoaenBxaLBcPDw8jLy8Pq1auRlpaGp59+GnK5HACwZs0aqNVqUfmhoSH89NNPICJ4vV5YrVaevIsXL0KlUuGZZ57Bli1boNfrkZqaGiRDPEkIRMJICXzo/v5+fPbZZzh16hS8Xi90Oh0KCgqg0+mg1Wpjeu/e3l5YLBb+R6FQoLS0FBUVFbyGJRQUJ3AcF3RuZGSEmpqaKCsri1QqFRmNRurr64v6Og8Km81GVVVVpFQqKS8vj5qbm2l0dDTm94kUcSNFCLfbTVVVVSSXy6m8vJza29vjdu/pSG1ra6OysjJiWZZMJhP98ssvcZJsCnElxel0ksFgIJZlyWg0ktvtjuftwyKQLKfTSZWVlcSyLFVVVcVV1riQ4vF4yGQyUUpKCtXW1tLIyEjEZcO17NkwZYEYHh4mk8lECoWCamtraXx8fNbvOeukmM1mUiqVZDAYoiIj2eB2u6m8vJzUajV1dHTM6r1mjRSXy0V6vZ4yMzPp6tWrorR4tPBYIVBWi8VCWq2WCgsLZ62RyWajR3ft2jVkZ2cjPz8f169fx6ZNm0Tpier/zwSBsup0Onz//ffIzMxEdnY2ent7Y3/TWLPc0tJCKSkps67iyYC2tjZSKBTU1tYW0+vGjJSJiQmqrKyktLQ0stlssbps0sNqtZJKpSKTyUQcx8XENMfkjX5sbAwvvfQSvF4v2tvbwbKsUBMlzVWo83MRt27dwnPPPYfHH38cx44d4z8BzRQP5FOICL29vcjOzoZarYbFYhERAkzZ5EDu5wshAJCamorLly9j6dKlyMnJweDg4INdMBJ18qtkoGp2dHQQy7LU2Nj4wCqbrJjuPSkwvb6+nliWJYvFMuN7ztin9Pb2EsuyD+TQ51LX2I/pZOY4jsxmMykUCnI4HDO6x4xIGRkZIY1GM681JBpIEVVXV0cZGRnk8Xii7gBE7ejv37+Pbdu2Yf369WhsbHww2znPsXPnTni9XpjN5qjKRe3ojUYjAOCjjz6KtuiCw6effgq324233347uoLRqGlLSwtpNJo5/Q0r3nA6naRSqchsNkdcJmJSrly5QgqFYtpBqIWKcD7DarWSQqEgm80WkW+JiBQ/22fPno1cyocQobW1ldRqdURWJiJHv3XrVuj1elRXV8/Quj4EALz11lvo7+9Ha2tr+IzTsXby5EnKysqiiYmJGLSXhY3x8XHSarXTvtuFJIXjOPJ4PLR69WqyWq0xF3Choqenh7RabdgRzJBdYoZh8M4772D79u3Izs6OtSYvWGzZsgVPPfUUPvjgg9CZhAwJewYOh4MUCkXIqTZz8RNJIiBVT263mxQKhWgyhjCfSFOEX27r6upQWVkZ9NVXKu9DhIZUPaWmpqK8vBz19fXSZYiCe1+3bt3Chg0b4HA4QpLyEA+GcHUs6VPq6+uxZ8+eh4TECBLtHqmpqXjxxRfx4YcfBqUFacrt27eh0WgwMDAgOfH5IWIHh8OB3Nxc3Lx5UzRaGaQpJ06cwAsvvMATIsXyQ8QGGo0GeXl5+PLLL0Xng0hpaWlBRUUFf5y0Dp2A+dBcdu3ahWPHjolPCrtq169fJ7VaPRs9w4cIgYmJCVIoFDQ0NMSfE2nK559/LtKSh5h9LFq0COXl5WJtEbKmUqmov78/7q1lRphH765Xr14lrVbLH/Oa0t/fj4mJCaxfvz4RDSY8Jp0HzdNOR3Z2NlwuF27dugVA4OgvXLiA/Pz8RMkVHpN9Db7TQVPn5gMWLVqEvLw8foEtT8r58+eTlpRA/aB5RIgf+fn5OH/+PIAATdHpdAkTKhwYAPbu/wTDMGCYRZAxDJ6vPpposWKK/Px8XLhwwXdARDQ0NEQKhSJRfi4IHMeJ/HjT/iICishO933pZKdigIoPHAkoeT9uMs4Gli5dSqOjoz5H73A4sGHDhsQ0Ed42cfwhwzBgJo8PHyjC6wPpIDoNzaRiM9DgYPdhnH6/HY7JfD7MynKbuEGr1cJut2Mx4Ot5aTSaxEjCcPBVpixgJr4Mju4m/P1gO7ocZ4KKyXgyxUTM5T6A/5ujDADsdnvMAwhEDhmvLYGfdI42/h3FB45ga5pAoSb/uTnkn9nOicoIrzDXOtB+TZEBwMDAQAJJgWTT5mDHwGnC9q3PiLNM/tPd3oDiA4UQ6jf55hzMpqSzCq1Wi97eXh8pbrcbKpUq0TKJwAzexGkAaWuDzaqjuwkHT8uw17AHQvPl651NrofB3DNjKpUKIyMjvifyer0PvPoo5khbi2IAg//rgNBEERzY99f/QPGBw9i6VoZA8+XHXCMEAJYvXw6Px5O8pDDQ4G8HivB6YzP82kCDXZAx64ADR/BV/WuTOYMd/VyFXC7HnTt3fO8pcrmcfv/994T20UNhfzEImPrpEq7DmXyZ8c+lyszMpEuXLiVEzljAPz2YISJiGAYcx4nWJybb4FawTP6uNPDkk0+iv78fAJCTk4MrV67EX8AYYGxsDGq1ekr3hQ+cbIQAUjLJeFM1NjYWb3FiBpLoLS4GfLYsGf2KDxxAMknPzRDw0ccfgeM4rF27Fo8++igaGhoAJKe2S0Eoo8fjwYoVK6ZI+eOPP5KUFB8hoi7u5MGb/3wTFosFN27cCJp5MxcICYRfMUSaksxTioRVfO//7mHXrl349ddfcfHixSRtTNHD6/Vi+fLlPp8il8vh8XhEGaRsXSLhl2dsbAzPPvsslixZgs6zHfOGEAC8tZIBgFKpxM8//ywiInnU3/dyyDAMXC4XNm/ORW5uLr744gvIFi9KsGyxhcvlQkpKio8UrVYLh8ORREQI4esg/vDDD8jNzcU//vEG3n333QTLNDuw2+1IT0/3PbFGo4HNZks6k+XH5cuXsWXLFnzyyScwGAyJFmfW0Nvbi/Xr109pit1ux/g9wt1xDnfHpb8nJQKnTp1CaWkp2traUFJSkmhxZhUOhwNPPPFE8HDwnbv3QwbIiTeamppIpVIFxQ9LtFyxhPBZHnnkERodHZ1a86hUKqmvr4/u3I3/OLdUJZtMJsrIyCCn0xl3eRIB4YQ8/jOLTqebmk0xCb8p85uzwGPhuUBI5Q2VJuxgTExMYOfOnbhy5QrO/c8lPKb4t6BrhLp2oJzCc8kOi8XCzybiSSkoKODnHfmxbKks7N+74xyWLZVh2VJZEFH+89Gkeb1ebN++HX/++SdOfXUWqf/6L/y9pisv/Bso31wgxmKxoKCgwHfgV5++vj5KTU2lP+6I18sLzVmgabtz977oJ1y+cGkcx5Hb7abMzEyqqqqSzBfttcPdM9kwMTFBcrmcX5jKN0OtVoslS5bAbreLGJyupQlb7UwxMDCATZs2oaKiQnK52XzHtWvXoFKp+M9cfE3eHedQWlqK1tbWGb2vzNREWK1WFBQU4L333sMbb7wR02vPFZw8eRJlZWVTJ/wqdOfufbr6dehFQ+HMiVSalFkLTDOf+m9auXIlH28xlHmM5NqB50L9n2yQWjQUFAYkMzNTMihlrB+qubmZVCoVXb9+fV69d0QLs9lMOp1OdI4nxR/n8NChQ1RRUSHKFGtCamtrSavVilrHQkVJSQm1tLQQ0dT7WpCmjIyMEMuy5Ha7w5qgmWBiYoL27NlDOTk5Cd3JJ1ngD7Xi8XhE52UC3wIAUCgU2L17Nw4dOhSTnpUfXq8XJSUluH37tmRQ6YWIhoYG7N27N3hMSIpBp9MZNlhOtBgZGaGsrCwyGAxBaQvVn7jdbmJZVrKOJVVg1apVKCwsjMk7w+DgIHJzc7Fjxw40NTXN6/Dq0aC+vh67d++WthihmJwutFQk+Oabb0ipVNLx48dnfI35CKnQUkKEDVdoNBolTU4k6OnpIaVSST09PSHzLFTTVVZWRnV1dSHTw5Li8XhIqVRGHa7wxIkTMyq3ENDT00MajSZsuMKYB/asr68njUYz4+D78xkPHNhTCL1eT/X19dPmMxgMtHHjxocRvkOgpqaGSktL+eNQ5jssKf5C/tngoRgeHx+nkpISKiwsFL0ILVSfIYW2traIg0VHHFb96tWrlJKSEhRWfXR0lHJycujVV199GLs4BIRh1SOBiJRq0VoQGQGgpm47n+7bgGAtz/bQ0BBptVqqra3l8wRqx0LXlqkNCL6KuIyPFEG97S/2EcFxHNm7Dgct1KmqqqKtW7fSt99+S6tWraLm5uZYyT9nEGlDu3fvHuXk/Luo0YbG1PdFhiMiBv5laQ48L3sTH3KnkQbGt5xN8yy6HQT95DbtExMTyMrKQl9fH0pLS33zlCIEJeW02NnDmTNnkJKSgo6OjqC07mYj/vraZMDo4v3gvnoN1Qd68P77r/tm3QO+We2O7h4w+4uQNjnHvfqf21BYfWSSEN/KqcWLF+PcuXNIT09HZ2cnTp48iVdeeQWrVq0KujHDMEFEUJLOwgSm5KMo17YwDIPW1lZ+d1S9Xg+WZTE+Ph682YCjC8y6Z1F84AhfF/61nPuPdPryCOOgdB7ZF3p9oUBtOY4jm81GLMvSyy+/TCzLUl1dXcQ7UM8XP2O1WslgMJBCoSCtVksNDQ3kdDolN0rjSBhT5mhQELnD+5/n/XeQo++0+3J3HTkgSYwQ/i0F6+rqqKSkhNRqNbW3t8fmiROASBrL0NAQ1dXVkUajIaVSSZWVlaJeVeCWgsJrdh01igL/CNF11MjX9dTIo6OTULx/SkCy0/MA7T/SGVZIm81GGo2GKisrqauri7RaLW3btm1evdGPjo5Sc3Mz5eXl0SOPPELl5eV05swZUZ7x8XGqqKigjIwMyWf3a0mo+hSSx5PSddQoKsA5zgZ1iUPFbRwdHaVt27aRTqej3377jRoaGohlWaqpqQkaVZtLaGtro7KyMpLJZKTX66mlpUVyabt/vKi0tDTk83KOzuD6lMT9KVKMRVOmys+qWNWmVE5Kzf0bOms0GrLZbOR2u6m8vJyUSqVoF+pITEQ0+yLOxD9Nt3+WlJ8Il9+/obPU9bnJY87RSWACSZEeZoe96zAxDEOQMSInLzRl0aClpYWUSiX/SebSpUuUmZlJOp0uaXffns5PEEkT2dbWFtToQiGs+RrsEpEl/szCif5MIvpJE1arlZRKpWjMoLGxkViWJaPROOuTJiLRHqGfWLFiBVVUVEiO/YSyCjU1NaRWqyNuaBzHTTp6sbbYuw4HKUDQt6/wjxM5QU6nk/R6PWVmZtLXX39NRD7b6zcN/mk18YbfTyxatIgKCwvp+PHjEXfliYgsFgtptVoqKiqa0dfwge7DIosUHHKRCD4Wgit72o2L+V/hYTabSalUksFg4B/CarVSTk4O5eTkxGUgTOgn0tPTqbGxMeRQbCj4faRarX6gTayJSFRvonqe5ELSfPlI8v1E60il8ns8HjKZTKRQKKi2tpYnp6WlhRQKhYiwmUCqYyD0EyqVioxGY9AX7kieze12k8lkoscee4xqa2uDtCoWL8KBVxDNkAyGhAaFunAEPSan00kGg4FYlqV9+/aR2+2m0dFRMhqNMdnXXugn5HJ5SD8RCZxOJ+3du5dYlqWqqqqoNYsHJ1G3UtUkOIfw6xslfEgMvpC43W6qqqoiuVxO5eXl1NHRQTabjXQ63YzCQ0XqJyJp1WazmcrKyohlWTKZTLM2ihosy1Rdz2g/+lhhZGSEmpqaKCsri+/rf/zxx6RUKqm8vJyGh4cpsGH4H0XoJzIyMmbkJ/yw2WxUVVVFSqWS8vLyqLm5OaHTahNKihB9fX1kNBpJo9FQamoqpaen07Jly6i6upof0ZzyE2tD+olIYLPZqLGxkUpLS/mXxJqaGrLbp3vbjg8i2js43nC5XDh37hzMZjM6Ojpw7949sCwLr/d3/OUvT2HHjh3YvHkzAGDNmjVQq9Wi8j/++COGhoYA+OYwW61WDA4Owul04tKlS1CpVCgoKIBer4der0+6QEEJJ4UiGLtobW3FjRs3sHLlStz+ZQTnL1gmU2QYHLTD5XKJ8qtUKqSl+UbllixZgs2bN0OlUmHdunXIyspK+iA7CSdlOiQqlG0kjWW2kPTB4f3V4ug+iu5BwZDyLDelRA5XJz0pgD8WsS9QDsPvcBNBuQAjEM4oJJPBmBOkHK0+CioqwuNpXEgy/JVKYSZnhJsjkEwTOZKelO7m/YBeD7QHV6YUAdNVbjJVvhSIKBlICbFGngDO0Ylu2orX1gJnip7k90+ZTE76Cp4JGIZJBlJCiMAApqPn8P5rfwXAoVirCUyet0gCUiZB4n+7m/fj4MGDvpaj+VvCxEoEkoOUwJeRwS5001Z+Ypy96zDWp62RLDYfsXj6LHGAgBAa7IJsXw/o1Pv8uZtDDgBrwxWbX4jzt7aw+K8DRfwwafeg7xy/KwQjPXQ6H/H/+gzFuh5sWoAAAAAASUVORK5CYII="
|
<image>如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()
Choices:
(A) 80°
(B) 100°
(C) 110°
(D) 130°
|
130°
| 69,683 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAAB5CAYAAADcfcTlAAAZb0lEQVR4nOVdfVBb15X/PWEHby2vkkYsylhEcSwnspkdNIu7po0d7FokzpQZkzU1yUQZk1kcMGRbuSYTdkqHeJdt2C2OnQ9naXEavCUdPKURbj1TGpNFNJ4JiYhxYwlIjR0S4VoOzlYEMoPX0jv7x9OT3tPnk/T0Ye9vhkHvfp73zj3nfp17LkNEhFsAzpOHcEH/A1QVM/4QFoAimySlBbn/RhKaE2EClqrmkNDcf7VkkPtvxYQ8U/jPw88cBVNRgfuLGUkMvpmR8wwL1dgk4AhDwMCLTaAKE9jTLFhiAQHPbhFtL0LOM4xhGJHQMIxA5CZ+g9NUgQPrGLxTcR+KGe51mEhpbxHkPMMIEbSiX3Ke+c+3cfRAFQDAdN9afywrynurIecZxjGLDQljMPBiE44ePQqGYcAUPyqIVYTkvbWQ8wzjwJFJPOMmB3CaKkBEIJbgGOjEfWvWxsh/62BZtglIBAwUYCcHkGd5G/T2a3wgLly8BKJ7o+YjolunP6NcBxv82dloInBdE7113kdERA0PIRC2/ZnO+MWxbNw0oen431LzphMM0c0z9qUYksJ6fVAsywsNxU2j9SXi5lKJ/iG+kGXz8/N4+eWX8dlnn2H16tWw2WyBuEuXLsHlconK0Gq1WLuW6++WL1+OBx54AEVFRdDr9SgtLYVSqUz/i6SAm0rCAGB2dhbvvPMOhoaGMDxig/vPV3DbbbfhjjvuwNN1e7Hx7zdBqfwaAOCee+6BTqcT5f/ss8/wySefAAAWFxdht9tx8eJFzM7O4t1334VWq8W2bdtgMplgMplQWFiY8XeMhZuCYVNTU3j99dcxMDCAxcVFlJeXY9u2bXjwwQfxvv0DvPryK3A4HJidnYVarU6pLqfTCZvNFvhTq9X47ne/iz179gQkM6vIYv8ZE3Nzc9TV1UUb/66UilZrqbm5maampojIF0jj9XpJr7+PbDYbPfLwDvrpT38qOx0Oh4MsFgtpNBravHkzdXd3k8fjkb0eqcg5hl25coUsFgsplUoym8106tSpsDT8aK2n5+dUXl7u/91DWx7YLIqPlCcV9Pf3U01NDalUKnruuedobm4u5TITRcYZFu3DuVwuamhoIJVKRc3NzeR2u2N+5KWlJdJqtXTmzBkiIvryyy8pPz+fZmZm0kJ3KK1NTU2kUqnIYrGQ2+2WlE+ORpN1CVtYWKCWlhZSq9XU1tYWt9XyL33kyBGqqqoSfYTq6mrq6OhIK71CuN1uEe1LS0tR08o1h8sqw9566y3SaDRUX1+fkHpZWlqiu+66i8bHx0XhVquVjEajzFQGEe2jX716lcxmM+l0OhocHExb/URZYpjL5SKTyURGo5FGR0cl5RF+LF66QuH1ekmlUpHD4ZCNVr7uaMwShttsNjIYDFRZWUlzc3MRV0tSRcYZZrfbSaPRUHt7e1L5PR4PaTQaGh8fj/gR6urqqLW1NVUyJSOUBp/PR62traTT6cIazk3Xh/X09JBarU5JbbS1tVFtbW3U+JGREdLpdEmXLxf6+/tJrVZTf39/1DTJMDAjDPN6vdTY2Eh6vZ6cTmfS5Xg8HlKr1TQ9PR2zLq1WS++//37S9cgFu91OWq2WWlpaZCsz7Suj8/PzqKysxEcffYSxsTFs2LAhqXKICIcPH0ZlZWXMFYe8vDxUV1fjl7/8ZbIky4aNGzdibGwMp0+fxu7du7G4uJh6obKx3g+hmDscDtLr9VRfX09erzelcqNJVyS1YrfbSa1Wp1ynXFhaWqInnniCiouLRfTHUonR4tKmEgcHB+n222+nV199NSYBUmGxWKi+vl5yeoPBkPYhdqLo6OgglUpFNpstEJbod0kLwxwOB6lUKvrd734nS3lut5tUKpXkFQUibnCyZ88eWepPBaEMsVqtcfvhWJCVYSzL0tzcHOn1+oBkyYH9+/eTxWJJiI7p6WlSKpUxVx8ygUgS1N7eTsXFxbSwsJBwebIyzOv1kslkoqampqTyR5qgxpOuWAu9paWlMYfV2YTZbI44+Y8HWUeJzc2cfftLL72UVH6GYUQmAESE1tZW7N27N+pGYiSTAT7sySefRG9vb1K0pAMk2Ho8duwY3G43nn/++YQLkQU9PT2k1+vDlmRSwfT0NKnV6oT3n/j6XS4XKZXKrO5fxYLL5SKtVktWq1VynpQZxrIsjY6OklqtpsnJyVSLE6G2tpba2trC6ksE5eXl1NPTIyNV8oKfgkhd/0yZYXwrSXYIHY0B0aQrUYZ1d3eTyWRKirZMob+/n3Q6nSTtJIlhsQoxmUxp2YMym81h0pUMPB4PKZXKhKYE2cAPf/hDqq6ujpsuJQnr6+uj0tJS0YqCHP3X+Pg4aTSasGFvsmVXVVXRkSNHUqYrnVhaWpI02U+aYQsLC6TVaslut0eMT4Vxcn/g/v5+Ki0tla08ucF/q6GhITIYDDHnjgkxTGiy3NzcnNBSkVTw0nX9+nVRnaE0JIKlpSVauXJl0qsLmURNTU3MvcKkJCzZ4bYUpEt9RRpx5iLcbjep1eqofW5SDEvXyw8PD5NOpwtIl5wYHBwkg8Ege7npgMViiboUlzDD+BaQDuni50xynxJhWZa8Xi+p1eoww51cRKxvnPDSVEdHB+rq6qBSqRLNGhMjIyO4fPkynnjiCdnPcjEMg7y8PNTU1ODNN9+Utex0oLCwELt27cLhw4fDI6VwnG/x165dS3ibI1Z5QmRiRWJ0dJS0Wm1a65AL/DghdGojScL4Ft/b24tHH3005RMdDMOIFkJ///vf4/LlyzCbzSmVGw+bNm2CQqHAyMhIWutJFBThPMratWuxefNm/PrXvw5LLBlGo1G0WyoFUvojo9GY0AJoKvjRj34UmI7kwonKWLBarYGzAzytkhk2Pj6eFvOxdFvrhoLfDc8Vew+iyMdziSgwUPrkk08CYZIHHcePH0dtbW2q0h+GgwcPoq2tTfZyo6G4uBhr1qzBb3/724zVGQ/CQZbwd15eHsxmM44fPx5MLLUVaLXasO2TVFXKr371q4xKF48XXniBdu/enfF6k8Ho6Kho/iiJYZOTk6TRaGQlhDuMp6ehoaGwuHT0LcIyZ2ZmaNWqVUnZVGQaPp9PtNsgSSWOjIygvLxcPh0AbsS5evVqbN++PSwuHT41hGXqdDqUlJTg5MmTstcjNxQKBTZv3hw4bC+JYcPDw9i2bZtsRPh8PrS3t+PgwYOylZkozGYz+vr6slZ/Iti6dSuGh4e5ByliqdFoZN3+7+npCQxXM4FIKnZubo7y8/Pp888/j5omVyDsx+IybGZmhtRqdcS4RF6STxt61DWbqKyspK6urmyTIQkrVqwgj8cTvw+bnp5GcXFxxLhk+pquri5s3LgRDzzwQMJ55cZjjz2WE4cmpMBgMODChQvx+7CpqSno9fqUK2QYBtevX0dHR0fitnhpws6dO3H27FnMzs5GjKcccmGi1+vx8ccfx2fY9PQ01q9fn3RFwpfu6upCWVkZSkpKki5PTiiVSnznO9+JamyaSx7gEpIwg8GQdEX8S8/Pz6OjoyOjqxpS8Pjjj+PEiRPZJiMuDAYDnE5nfIa53W6sXr065QoPHz6MHTt2oKSkJHVVEyl7SFisOoRxlZWVmJ2dhdPpTI2mNEOr1WJubi4+wxYXF7Fq1aqkKuE/zPz8PI4ePYrW1laR/XyijAukZgDHQGegLIZhUPFPh0QJY6mz0PW6Xbt25fycbOXKlVhcXJTGsGRd0vEfJtpRVyl9hMijNjgmH2qqwN8+OggnsSAisOQEjjaj4plDwYQhfoKjlk+Exx9/HL/4xS8kpc8WlEolvvrqq/gT55UrV6a05ubxeOjOO++MaGKWzGS1s9FEqNgXFu4Y6CRgOzlJXCZv62c0GmPO/bRarWSfIdkAbxIfl2GQsBgS68NbLBZqaGhIjLoocAx0EgOQ1RFuqxiNYQaDIeBitqysLGrZzc3NCR0azDT+8pe/kEqlkodh0ZDMUddoYFmWGitApia/X18BX1gish5qDGEY56YvFsOEDY03YOU3NnNtqcrj8UhjmFKpjKgSpbxQLPs66fARS0QsOckEUOeAI2LdQmYK46WqRCKi9evXR9zuyQVEVonsDWK9/xv8Y7mFX15CEml10aQrqZbLEpHTSmDC1SERkePkTwh+VSkqP8Gq4nnZySYmJiY4bREWw3qJ9d4g/r31en1SNul1dXXU3NycKp0cSSSWMHGck77NCFSlH75EuUXcQvfKlSuzfpA9Eux2O5WWlsZnmNFoTNhadnp6mu68807ZrYMPNVVwI0SeF04rARyzhOxJpf8pKyuj/v7+nOrDWJYlm81GW7dupRhu0Ank8+Ju7V348+VZGI1GgLwglgDFcjAMAPKB9fm4+ZRiWWBe1f5v7fj+95rw18qvgXxeIG9Z0HU5+UAsP0dixHGi6gXpGAUYRR5+8OrbuPjwbbhT/V9+/+0+DDhY7CwGyHcDBAZQ5AGsl5u/McvAMKygnGVgFLHnfo899hh6e3uxa9eumOkyCYZhAg6ow71qk8/PlGVg4MOzzzajqOgefO/73wdAIBb+lybuQzAKMAxAPh+gWIZLly5g27e34KM/fozbb1eB2BsAlgXz+NMxDELiREQI0nGMI2Y5FEyM/DyDiW8EviB9irzge0VrIH5cvXoVer0es7OzspujpwJ+hyP2SgeTh3vuvRdTEw5uGYl8QGBZyQcQy7Vmnxf8msTzB/8FT/9jA26/nXtZhlFwHwsI5OcXOERxQpAPYPL86fLAKJZDwUTOT3RDeAUckLcMgC/4zITcFhFnzbGwsBBlZWUYGBiI+WkyDafTiXXr1sVgmP+jGO5fjwufTAMAiAQfCwAhD0ze8sDfH/94DkP/PQzL/h9Ev7uLSOK9XmzI/8j5GdErcGmZUCbFQKTlMbPZjN7e3pzaD5uensb9998fnBWzvv8l1sdygw5f0Cp2ZmaG/uauwsAwX9AVhoSx9A+PVtGRI4f94f4I9gZXrihPpDhh0d5A2Sz5uHxsnPwhg6W4zzHg8Xho1apVOXWQPT8/X2wiwDBMcFAhaKE6nQ4KUuDjP10IuUGN4foO9gbIdwPnzp7F+++NoqFhHxiFwq8qb3BSGeijmBhx5A8Dpw79ZcPn4/ot/60rkfMTWJblymC9IL5/BfkHIKHPsaFSqbB9+/acWcEfHR3FmjVroFKphNfZLfOrtmUI1RLl5Q/iD+++G95ZB/Isx8F/bcezLS3Iz8/nPjivKhUh6ilqHMOFMeFlczQxMfIzUPjDFHnLwPBl8XnDnqOD/Gpwz549WWcYT4vQLlSSXeK2b2/FH2zDUeNHRkYwPj6OhoYGGcjMLCikn+IbxiOPPILJyUl8+umn2SBLRMvIyEjQLjSW3mR93BLV5MRETFPtXHcPlCxCz3JnYzLt9XpFptopHYYg4ny16/X6nDq+Ixf4heNs4r333hPRIPm4UXV1dUSd3tbWhtbWVuTlSR9K5zJIoCK3bt0Kj8eDc+fOZY2eEydOoKamJhggldPj4+N09913i8IGBwcD0iWHA5RchMVikW0RO1HwB/qEFwCldGQ2k0dds4VYB9nT3SiFR2Z5JOT2oba2Fj09PQAQWLqpqqqSSfhzE5s2bUJeXl7Eg+zpNjQ9fvw4nnrqKXFgbB77RE+ff/45qVSr6OoV9/8L6eLR1tZG9fX1GVXz0dw+MERELAiKWNNJwdWu+/fvh8vlwqVLl3D27NmYLYRukQuvp6amsGXLFrjd7owNrhoaGqDRaMLPIQi511gRvMSaAYhhmLAdXpfLRSqVigoKCujUqd+kuZ3lDoxGY+B6x3RLGm9eEWkDOEwlNlYEt+E50zGQdYJEhNbW1tLevXtJo9FQd3d3GknPHXR2dpLZbM5IXZKcg3Er407aLjQV82/Bv+UUt6jp6WkqKCig8fFx0uv1N4Vbu1TBe+hO90F2t9tNBQUFEtzvsZxEbW/8SSBIZAcYggPPNgeuQiwtLaW6urqctemTC+Xl5dTb25vWOmI5uGRZliD8uJwxZrAfCzcpC44aF79cII1GQ3a7nRYWFqiyspIqKytvClcKyaKrq4sqKysDz3I3zKGhIdLr9VJcyHKM2GcCWZ2clPDMi2QWTcQZLgmdNHu9Xqqrq6PS0tKcdeyfKjweD+Xn56fl/uZoTppDG0VAJfomrKJDBrwdYGOnNWoBLMuGuUFva2sjg8EQ9T7lm11dVlVVpeUge2trqzQ36KxfuqyHGsXM8Q84hMN6lsI/eKSLBrq7u0mr1d4U3j8TRV9fH23dulXWMoUXDcRDQMIaK4Lqj5MuJuJpkEiIdJXHqVOnSK1WZ8w1UaawsLBASqWSXC6XLOUlfJXHeetPRAONwF+EM1hB+MJChJfl8OAZme6RVaZhNpupszPy6DkWommnhC/LibU1Ivwdaq8eKicWi4VMJpNoM3NycpJ0Ol1Gr5yXG6Hf59SpU1RSUpJSOUtLS1RWVpbwHFY0D0sV0S58c7vdVFJSQk8//fRNrQ558PtUUt05RXrnZC98i8ywmN/UJz5MFyKN0a5UXFhYIJPJRLt3787J0yGJor6+PqEb2YW3D4ZeqSi8cSMeUruOirfhDKmId9MaOqfwer305JNPUnl5+U0/Vztz5kxSLnWtVmvUM99SkJZbZlmWpcHBQVKpVBEvL21paaHi4mLZRlrpRKxWr9PpEjrIzl8LPDw8nDQ9ab3a3ul0kl6vp8bGxjCrqq6uLtJqtZKHs7kCIQNbWlrCVtUjqbelpSWqra0Nu3g7GaSVYUTccs6OHTsiqkGr1UoajSali6gzgWg0hR5kjwR+cby6ulqWdda0M4yI67uamppIr9eHSZTNZiONRkN9fX2ZIEUSEmk0xcXFUQ+yf/DBB7R69WpqaWmRi7T0MSzSS/f09JBGowkbjDgcDtJqtVlzNpmKVLe3t0c8yN7f308ajUb2e6QzImFC2O120mg0YXs+LpeLiouLZW2NmcDMzAypVKrAVMXr9VJrayvpdLq09M8ZlTAeLpeLTCYTGY1Geu+99wLhHo+HysvLyWw257zpt91uJ5vNRv39/aRSqchqtZLNZiODwUCVlZVp2YIh8ltNZcQMKAIGBgawb98+7Ny5E+3t7VCr1bh+/Tr27NmDL774AlarNWnHZMlibGwMX331Fa5du4bz58+DYRiMjY1hYWEB165dC7jpMxqNUKlUuOOOO6DX6/Hhhx/i4sWL+NnPfoaHH344rsVYvPhoyCrDAGBhYR4//vGPcezYz9HU1IRnnnkGarUa+/fvh81mw9uDp1FQqA7JxQJQACwBcbwC8BgbG8Pi4iK++OILnD9/HgDw4YcfYmFhAXNzc5iYmAAAlJaWQqlUoqCgABs2bADDMCgpKcHXv/51qFQqzpuCH1evXsWRI0dw7NgxNDU14Z+fa0H+X62Q4atER9YZBgAgYPbyLNrb29HX14e9e/fiwIEDOHHiBA4fPozBwcGoXlFDJQIIMoKXCIZhsGnTJuTn56OwsDDgEnfjxo1YtWoV1Gp1VEfUgFgaiAiXL1/GCy+8gDfffBNPPfUUWlpaIl/RJbDnjBGUEHKDYQK43W78R8e/o/v1Y6iqqkJRURHeeOMN1NfX+xkxj2vX/iegmrZs2QKFQoGioqKAP8ZvfvObWLFiBQoLC1NyfxuKgYEB9PX1YXBwEPv27cOBAwegVgelv+khBq+dDs21HU46jQ0iNvk1RDJIS8+YJFjB/7m5Oerq6qLS0lIqKCigLVu20BtvvEE2m42mp/+Uflr8gyaHw0EWi4U0Gg1t3ryZuru7w9dBBeOrxoqgXQyR378jKug8sYEd+1SmETnFsCDEG6STk5PU3NxMa9fpSaPRUE1NDXV1dSV9W0WsD+ZwOOiVV16h6upqUqvVtH79emptbZW0pMSSk7ZXNPEPAQTMBSXviERHTqhESmDENDs7i3feeQdDQ0Ow2Wy4cuUKtmzZAq1Wi7Vr1+Ib3/gGlEolGIaBTqeDTqcT5f/0008xMzMDgHOPa7fbcfHiRbhcLpw5cwZarRbbtm2DyWSCyWRK6PpI58lDsJwGTr96QBR+qKkCzRfWgd5+TXJZ0ZATDAOCTAtlXrxOen5+HufOncPU1BSuXLkSuAUIAC5evBh2iQDPWABYvnw5vvWtb6GoqAjr1q0LjBATpZnHoaYKoOIlHKjaIEo38GITHh0kWRiWfZUoUA2cLaQiYFPCkpMaGzuja4+QiHQtHEspN8zMPQAfdTaawiyok6U0yaGKPOA8rgGYGICCYXD00r0gvxMvOvIQ8phiMGv10SUsJCJdR5uklMtM/AlM0yPYQOIbdDHxGzS/NoQdFTvE6ZMlJklGS0ZoSwoz+PEbrEay4e9sNIUdd8o18G8TZtfpR2NFJAu0cKszqUi/Sowh+yzLCpwrh7+E9VCjyFScFdptsbLYDaUONtjoRGbtfkNcPBTLXDBxZJdhUczBpSP5lioXHAOdBCaCXWcEd7dyIIZHUpkgUtYhM3znxxhigEfWrgvLFhwdRlgVSHV9R0YU7zwAYg/ETwgWIEXKdGd10MF5kOPO54bFBX5FIJGJEZezSJ1Z/lIyAd5Jpbg62nAfTAAuTV8QJycAEwM4dNIZHi58zIUpJIX8j5ZMLlplV7IJgj+HJtT3joFOQsW+pFyZZxPR52vhfW2yb5Z1hhEFD7/zf6bGF7NNUs7i/wBG2gMebf9wVwAAAABJRU5ErkJggg=="
|
<image>如图,已知圆周角∠BAD=50°,那么圆周角∠BCD的度数为()
Choices:
(A) 130°
(B) 100°
(C) 50°
(D) 40°
|
130°
| 69,684 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAGgAAABWCAYAAAAjbNN8AAASc0lEQVR4nNVdfWwbVbb/OUUNlL5aT3VVo7oEaqdkmyIcAqorXLWoDoTNR/NHUBBqJSRY3FX69PqE3YZ9qVpE/uiXUCuyrZMgbSSCWlbRgy2B5yRGQqqzJLKiRKIhzXpC817KU2iClJK0OFt7zvtjPPbMeGzPjMdJ+EmJ7ft57j1z7zn3zj3nGoiIkAsIgCH+lQgGgyERxfS3Y8r2B7ieNMhkZAEUpORZSWilJZ9tKMi5BJ45gIhIAoN3XnKDjaWvOlvDcn12spUn/K2ZOUi2+9gBAwwGmb8DxzTT/JDmnBIIm0YA2o+3g2pqsM1GoljhL75h6TpHGhaLxRAMBnHz5k0wDINQKAQAGB0dxd27d0VpTSYTSktLAQC7d++G1WpFcXExnE4n1qxZk1K+5hFAMcDAlXfmbzHgwBpUfECosHLRTOAS3umX6WZxt6SFbgwSItDhBVwVwLnvU2iS/jYgc+cMDQ2hv78fvb29CIVCcDgcKCsrw5YtW/Dee+8BAHbs2IFNmzaJ8v3000+4efMmAGBwcBCjo6Po6urCwMAA9u3bB5fLhX379mHXrl1imiQPS7bfYtp/wDi8OGvlZpD29km8/fZL+P3krdSHUOnzQDkjJvrFMr3kbesllukl1Hq5MJZVVSLDMOTxeMhisZDdbqempiYKBoO5kxqnJRAIkMfjodLSUioqKqLm5maamprSXB7Fmxfuu0zetl4iIupr95CvP8ylif8T94K439JBBwaJ4fXGmcL0Uu2xNlV5g8EgOZ1OMpvN5PF4iGEY2XRChqf7rhTj4+N05MgRMplM5HK5KBQKpU2brfy+dg+BmxgIAPVJyFdPnc4M6mv3kMGQJLD2WLsoPl0DGYah6upqslgsdPXqVT1JylivFB0dHWQ2m6m+vp6mp6dV1+OtTTLlnZpqCsdHiXCUcVA2eoiIctfieDB96KcKsCyBiBDuu4ynrEWiJFJZ8/PPP8Pr9aK8vBwOhwOTk5NoaGjQjaR09abDm2++iXA4jJKSEuzcuRMnTpxIUT4onWY5+TXOwQtXXDnYXl0DW1xJTq1fRberfkxkIJQ3PPraPYn5WIpoNErnz58no/Ff6Y033qCZmRk9yNAV09PTVF9fTyaTiVpbW7Oml20vS+T1viOTWvkIyplBl7zViSmtf5IL89by01xBihyanv6RysrKaP/+/XTjxg1RnBYZkm+EQiFyOp3kcDhodnY2bTrh9Ma3wnMAIqbxU52aduY+glT06Y0bN8hisdDJkydzrjYfyNRxR48eJZvNlqK4hPsuixQD6Z9UUUhC2SgyEOm3XCepri9YjB05cgR/+ctfUFlZiaeffhqEAhQYCCzLysqIlLKWCXy9cvUPDw9jcHAQn3/+OV544QVxPnBNVbj+VAz9lATICMP4z7a2Nnz88ce4f/8+HnvssXgUq66sZQJfr1z95eXlaG1tRV1dHT755BNxPsknh8xtVARF4ywLMs1yHo8nMTU0HfdSZWWlHlUuO1iWpenpaTKbzfTVV1+RxWKhlpaWtI3XS5rqtA6Sn08bGxvJ4XDQ/Pw8EXHam8vlojNnzhFR5kastMIgXQBHo1Has2cPnT59moiIZmZmqLy8nJqbm/NKh747CSwlev2j9g6y2Wy0sLAgSjI7O0tFRUW6bd0sF5qamqiurk4UNjs7S1u2Wqi7uztv9eq+1UNENDg4SCaTKUWN5hEMBunxxx/PqLYuNzKNWL/fTzabjRYXF1PSDg4O0qZNm2TbqscsoDuDZmdnFW3ZnD59miorKykajepNgq6Ynp4mi8VCIyMjadP4fD4RA/WErgyKRqPkdDrp+PHjitJXVlZSU1OTniToCr49Pp8va1q3202vvPKK7jToo8XFh3JjYyO5XC7Fo+LOnTu0detW8vv9actcCfB1u91uamhoUJQnEomQw+HQXWnQbQT19PSQxWKhO3fuqMoXDAbJbDZr2j3OJ65evSqr5GQCr4brqQDpwqBYLEZ2u50+++yztGkyjYjTp0+T0+lcNfKIYRgymUwZ5U46dHZ20p49e3SjRRcGdXZ2kt1uz6mM6urqVSGPIpEI2e12RXJHDtFolGw2W8aHVQ1yZhBPUH9/v+q8LMsmRtbCwgLZbDZZebSccLvddPDgwZzK6O7uzvmB5aGKQdJpimVZ8vl8tHfvXl2IGRkZIYvFolge6a1IXL16lex2Oy0tLeVclt1u1+XtcE4jKBKJkNlspsHBwZwJ4eHz+cjpdFIkEkmJ08IQpXkYhiGz2Sx6naCmPj4t/+n3+6m4uDhnuaqIQekIvXDhQsr2hx5oaGggt9utmh614Mvh5Y6e5yFYlqW9e/dSZ2dn1vozQfMIikajZDabNWk6mcCybEIe5eMAiRwOHjyY8YHQim+++YaKiopyKkMzg4LBoG6CUA4jIyNkMpnSHr3SCz6fj+x2u+yUmitYlqWioqK0e5JKoOmFHRGhp6cHVVVVWdOpLZeH3W5HS0sL6uvrsbS0pIXMrBgdHUVzczO6u7tRWFioe/kGgwFVVVXo6enRXohWzpaUlNDQ0JDmJ0MpsskjrViuadTv95PD4dAsNzUxiNd4skEPYZ4PAU6UZHy+9/yi0SgZjUbNR8s0TXE9PT2oqanJmk6PcwWFhYXo7u7G0aNHMTk5mXN5AHdG4vbt27h06VLezz6sWbMGFRUV8Pv92grQwlWXy5XXt4hy4BeRSjcv042MkZER2rJly7Juzn700UdUX1+vKa9qBi0sLFBhYaGqXd5cwXf24cOHqaGhQfO0tFLbSTMzM7R+/XpNi1bVDAoEArpt7ahFrhuZdXV1K7Yha7fbNe24qJZBN27cQHFxsbb5NAcQUUIeNTc3Y3R0VFX+M2fOYG5uDi0tLfkhMAtsNlvCoIwHKViGqGZQOBzGzp071WbLGbwwt1qtaG1txauvvorFxUVFeQcGBnDhwgVcuXIlYf643NixYwcYhhGFKVFQVDNoYmICVqtVbTZd0dDQgP379+Ott97KmnZubg6vvfYaOjs7YbFYloE6eWzfvj1lBCmBagZNTU3BZrOprkhvXLx4ET/++CPa2toypjt06BAOHjyIl19+eZkok8dTTz2FW7duqc4nYBCL/g6vwHS8CSzCOH7MJ8oQiUSwfv36XOlVDPEsnTzrvLawEFeuXEFLS0uKPOKn9tNnzwCAarmjRDYoL4z7eOSRRxCJROLlJ6N50/2CggKB6X4tGL6tLMtyBlhAwpZHGCY2SoqR0WhMHOVVY4ikL+L1skS9vb1ks9no7t27ohTXg3+nJ554Ii+HI7Wo+VNTU4mdbWl+3raID798rIaAGgpTjMBSmGoFzCFKnpm+fKwmYanMAwasmsMdPJqamuj555+nkpISstvt9OWXX8aPF/99pUmLI0azs7NkNBqJZcV9x1KYqms9KTm8tRxPHgp0tOEaDmDiDC9wWRjiM5/Vth2GJyXyhrBimpCQBqGdR0tLCy5evIhff/0VAPD666/j3XffxQsv7JbPrsDDiZYtoLm5OYyNjYnCfpy+jX8wYSwtcbQZDIK+I2AyEEBBCbdsYUEoIANgAKy/q8W5cQYPtb59Ht62XmxPiKOkWKr4w/kU5xMAcOrUKdXEa0cBErKnIG5YJUPU2rVrEfn1VyDescePHwcg39nC38PDwynqejAYxIMHDxK/Y7EYrl+/LkqzuLiI4eFhUZjQuwmPrVu3xrVeQTvAu5ABAoGv8PuKD0AACmBIPHjbrNuBceChawB827altwwjSjQaADZs2IClpaW8vD+Rh6BRcebIdfqBAwdw7do1zM/Po6qqCocOHcL09LQozdjYGObm5kQWdM8++2yK0rNnzx7RLPHwww8nvJrwePTRR/Hcc89lpZ7v11v/M4UrVz5NhHPWeAy+Okc4f2Yb1/cCJkwy46gtqU26gjEAwP1osuR1XJS0IzZsWI/Gxj9iy5atq85L1djYGBwOBzZv3ozy8vKUdU9paSlMJpMoT77B13B/8R7Wr18njpz8AQZvLbZTQdwnDgAC6Ic+/PHsf8PXfwGolWpqiw84sRb2pygIRERWq5W+//57XUSnEkj1JanRrtSK/MMP/6xq11sRDWm0NjXaXCgUovLyclFYOlcF3loD4QBngADefUmCGfcecJ0g8XvAw+VyUU9Pj2LC9IRQ/STiNCCpBkrEHeLnTxuttKUej66uLtErB572QNx1gXBpI+x7EImfynVYm2zw4gOie/E/IqJ7D+g/3P9GrWcvJGsWxgtx74G2uDTpLh+rSRIuCA/3XSYYaukfbDRRXvSXCFW9+DJnaZCtjrwjRizL0smTJxOWD0y/L63Zvq8/LJo2xK8bWEo0KJFG0sDWsxfo8OHDqXHpvquJSxPOfNFGMMR9DkjSM19cJqCGmHtLIqb/8n8/09PW31FXVxexi/+Ur2M5EO/IhoaGDGfk0i/4C0Qaq8SdGUGy7XE/ipJnd2J8fFwUJlIu8oC2DjdqvW0JJ3lC/O/UDwAAWrc2/skpN/9i3ID/8n8Oj8eD4eFh3b03Kka8TycmJlBSUpIaLyErhU4pF9l0U1L8U/RGVcHTn/Jb5Qji52qhjGQFT9yfqgRTsqAsftR8/fXXVLzlyRW1P5J9o6pANLJEhIQQFTCBd0CXGHqCOCLBmYRlmOJYppfWYW3SpYogfbjvMq0zyMcJv/s+aNVds1MKljg3Z0rOJMjxrEC0FrgfBdY9xI1KA+eVFwC3JorHERGqq6u5Uyp8eDwuAWG4mjjpOux+FPTYE6jAP/HDLUYcfn8Cf3rp3+HyfogKK8vlJUkZ8e9utxsv7tqDQ4cOpZmH8gcDgN7eXlRXVytKm4KsLOQhFNoKz8XpAZZl6ZJQgyMS776npTlGQuHLO9HIt+MJKaLRKG3YsEHmXJyeLjFlpqGSkhJdzU6ywVOTVEULYEi4PlOD+fl5stls1NXVpT+BacCfLNWKzG9UM2hodXV1Gc8ck25aE7cXd+4a5xmLiBAjFq5t6ksyGo3w+/3weDwYGhrSib7M+OKLL1BXV6e9AK2cDQaDVFZWJhuX79V7rqUHAgGRJV8+6S0qKqLvvvtOc/5VZx+UHrEkY1jJpwa0trbSM888Q7/88ktKnF4MW1b7IDmi82Vhl5aGxD99INyzyweyWdgpwaqzUV1O5FOz4x0wLYuNaibIWXnnfQdZx+LzpdnJmcxoccKum5+EQCCQa1FZIF036HeiKBwO6zoTrJifhHTo7OxcMY1OL0g1O61YdZ5GiDiisvnq+S2gtVXbnp3wIezs7CSn06kbTbp7u8p0UJB3/bKaR5VUs5M6qMgE3tvVwMCAbvTo6tCvsbFRkRfF1cwgXrM7ceKEqnyRSIScTufq9RdHlPRQmM1IajUziEibZud2u/PicjpvPkuX24ZVb/A79kpcDXR0cB6OpbsSq9KpLFHS6+/4+Hg+is8bpB2qRLMLhUKyXn/1miXywiCi5FOVSSNa7VMdUXLPTq4dcrOF3m3KG4OIUj3P/1Yht2c3MzNDzz1bTif+87fkeV4GwrsbiFbfqFFCj3TPjr9mp6WlRZAqP7ZSeWcQEbdft3HjxlV5HYDSB2Z+fp6Ki4vJ6/WSyWSKa3iCO+ryhGVhEBG3u5tsWBJyjVtto4zH+++/TwCou/uvy1anbgxS0qn81HDq1Cm9qs0rhG3ib+ASbqgmr4KTHN2lVXc9DQel2yF2u51cLldOju6WC+I77H5KiffWJpnCn3FPfy2aeizbFCdE8hZI46q/BXLjxo305w9bSV4JCFONoZo7uE/J42C9Gk4cpUPeGZRpVM3OzpLH4yGj0UgtLS15cUupFgsLC9Tc3ExGo5Gam5tFS4SYZOKa6L+cPHbMJg1/9cSKjCAphDcRf/rpp4ryqNllVoqOjg7avHmz5CbiWFqBkulqaJZldZFDq4JBPAYGBhTd5a0VcswcHx+nxsZGRXd5J8FNd56aOFPYJLP0lD9Eq4xBPBiGIY/HQxaLhex2OzU1Nem6hgoEAuTxeKi0tJSKioqoubmZpqam0meQGQrS25d5KwxvW6+eRyb0vUc1HxgaGkIgEIDf70coFILD4UBZWRksFkvCylpoHMxjZmYGExMTAIBvv/0Wt2/fxtjYGK5fv44XX3wRLpcL+/btw65du7ITIWMCH2j3og8VOPv2SwnD3wLby/D1h+F28b4lBAYIGrHqGSRELBZDMBjEzZs3wTAMQqEQAM69svRS9I0bNybcpu3evRtWqxXFxcVwOp26OOI4dsCAig8IFVbOnL7OUIxrqAFDf4NVz6tudRyNv2koVTbSXg2dYnStz97c/wNGP50S75qqJgAAAABJRU5ErkJggg=="
|
<image>如图,已知AB、CD是⊙O的两条直径,且∠AOC=50°,过A作AE∥CD交⊙O于E,则∠AOE的度数为()
Choices:
(A) 65°
(B) 70°
(C) 75°
(D) 80°
|
80°
| 69,685 | null |
80°
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABoCAYAAAD7NX7lAAARHUlEQVR4nO2dfWwU1bvHP2e2pYAtL8YARkLsq6WLIaQkqAkRbrelllxaBA2JEMAE8+vLJWCBROFCUQwmbOH+UtrfTdQ0wT+Mf1y6VQO1RS8SiRo0Eukul1cDBKKgRCiJaXTn3D9mZ3dmd2bfulvKst9kM7Mz523O9zzPec7LzIOUUqpSQ1M1Esw/t2dQZjG2oAAIVAAOfq7SVC1o7xlESom3Zx9bGubg8fkJQSXdkFKajlmYoZgO4iznBv6NmoYKACrKSrTrGrdIY1hAJzDVlSuEMB2zMMPIAL7ez3E0vcAcqVVW86bluJrdNDgDlWiTSKorV0qZlbJoUA260uNuMvVnHu99UNhZxEQOUkJAUgb6u/B4JcsqoHd/Mw1OQc+gSr1TIAJM7m5rY/fu3QBMnjwZp9MZbADXrl1j2rRp5Ofns2zZMiorKykuLub9998Phmlra4v7XAjBrl27koqbyvOxhpygavN56JSNHNS6M+pfb8bV2kX/UQ8NzuWArh4VKioqcDqdDA0NsWDBgqAq++qrr7hz5w63bt3iyy+/5MMPP+TatWv8/vvvPP7440ycOBGAwsJCFixYELNwcgyoSJ28sUSikIGa8exvZkBW09m6DFDA60HMWY7bM0hrfUia2tra8Pl8rFjxEolYkj6fjzt37nD9+nV++eUXzp07h5SSqqoqXC4Xixcvpri4ONXPN2KMRdJypJQIIeg/2sWSf3YCIPFRM2c5UMUL9RVhUdSwY3yoqNDS0fMDuHHjBj6fj+7ubrZs2UJBQQGLFy/G5XJRV1fHY489NoJHy1yIQY9bzmnYEnmnuhHZ3xVxOSRpK1JaECkl165d48yZM5w/f57vvvuOlStXsmrVqoTyMjYK43kmQVOPEhCg4kdIBSGE7QOPlLR4K/LevXt8++23nDhxgtu3b/PSSy+xceNGysvLk8o31bifDSIHCA7AFBwgDAWSWA/OVAkoSOmPWXC9AYT/t2sY+vX8/HxcLhcul4ubN2/yzTffUF1dzcSJE9m4cSNr164lPz9/BI8+MtxPCQ4Mrs39U7BAIvKeFIAiADWugltZgNFmPKzCT5s2jfr6etxuN+vXr6e3t5eioiJ27drFb7/9FrMMI0FbW9uYMkJAlzTzxEgYDPdUiZAB4kYB4VIKUFRURGFhIbdv3+bTTz+lpKSEV199lW3btjFjxozRKdh9RjS2LEIHJCQNw6dwcqTNVJZ+7dFHH2Xt2rXs27ePK1euUFpayvr167ly5UrqCzfGIKQqZUgNxubQZIioMkikbQY2fVqqMTQ0xMDAAEeOHGHNmjXs3buXyZMnpzyfsQAlZGgkJnRalMT7tHTNchQUFPDiiy/S0dHBzz//TElJCR9//HHq8jQkYacFSNMEjjkrNRmmxjYmTJjAunXr2Lx5M9u3b2fRokVcvnzZNnzchIqQQdayRMHhcKAIgSIEQgiEcOEz9htxE6jGDGq215TMI01HcXExe/bsYdasWVRWVrJz506Gh4cjwsWygNva2ti9+22MmqizX9LokhweVFEDUrevEZyiGq8MkBunsSZRwkXJJlwIGUVauNQIIVi6dCn79u2jv7+fp556iu+//z6JdP3m//g4R3NwnRFgS9cx/lHzBZv+40BCaQtCDSdU+sgpQmMbyCjS7KRm0qRJbN68mVWrVuFyudi3b1+CKZsr0dd7FFFWGBGqpMTFsfOXbOPFgl765pqcgMoN/XQ13N7rzSzSdNiRN2/ePN59910OHTpEbW1tXANzbXD9lulaX38ftdW1EWGLi8tCfyTEJRNqpGo8+LmfpmroGVSDRo9feqkKTOA/8KTFO6uiY+rUqezYsYOCggKefvppTp48GTMPfXpW+/k42iWpMyxX6bh48RyussDykojTyLGywMVZLtAYVL/t7e0IKihvLqcC8eCTpldMrAoKv79y5Upee+01li5dyttvvx01HSG0lXsBCN95aKpldnigs71s/dcXJgkUCc9CaOrU13uU0iU12iWfh76ftdODBw8CseQ3Ik818FDp30aXKOKZuA5HRUUF7e3t9PT0UFdXx7179yLCaepxZ/C/p2+Ap4pKItJq3NQA1Y2mBeP4TYbArrZA+AuXLtO1dbnWWJzLKSsMSK+MkaoEg8mik6QEHkq5r7PcqUR+fj7btm0DYNGiRdy5c8ciVE5QNXa2dlFdWx+65fMghOC/pbb+mNxAXgHUYHUP9HXRc0ZFqpKe9iaKSkq1GyIUOggpJc01ZmtF+zkQ1U3BcOmairpfEEKwbt06CgsLeeaZZ/j1119N96VQ8fW2owgnx4DlcxSEEqibwJYM2d8F0ijR8WsjrS4DVPg8dOn9mYDS4hKKS8y7B3LCC9/ZL6FGofqAP9gRDnrcbD4WkizjelgmYeXKlUyaNIn58+czMDBAeXk5bW1twWVFKVujJ2BagoxUYnYLp8Zrnr4BGmtrgv+d9ZsJN3kiUtYGjk00OAUSH+3tPTgb6qgtLDKRlCmEhVdiTU0NK1asYOHChZw+fTpEQhyPK6UMbrGPJy8r9B/tomZJfdQwYaSp+HqPUlbrAqB3fyeUlCGooLV1ecb0Y0bojc+4r+TZZ59lw4YNuFwuvjrxv1pAEQpvzZ+2KCyNVZpAu/b2tiOE4F/H4MWnHXi8USKH717taTfvMu4ZVE33d+36z4g3azL5V1paGl9YkVz6bTt3hSo3WNX+6DuMQzpYw0BfFz2DKg1OQUtNNWURY0hFJ9uiCWQeFi1ahMPhYM2aNZSUaKa+uU+3W4dUiGWMrFq1KrgLINTf6enZr28GxuOBxI2WC1D4wgtUyJDaAAxbDcbeWC0duH79OgUFBbz11ltcuXLFwgizGzUlOO8Y7HqUsGMkFBkIoCLx9A3QtCQ0om/d/DoSSUtLS0BfG7YayAd+MiUuzJ49m7q6OjZt2sQ777zD0NCQ7SLoaPX5CmhSpCAY6OuiuvbfTQVqWaKgFmmGiWlWJvNsEkuMHz8eKSUbN26krq6ON954A7/feuug1dJQOqAIwPfJfoQQdA1oA0dFUYID664BQiaoeDhUohG5ubkIIZg+fTp79+5l1qxZbN26Na646er3FQBnfWtQ5K1+ocW+h0MlGpGTkxOsfIfDwdGjRxkeHqarK3LL/GjBfu5RNzyA0D6Gh0/Sxo0bhxACh8PB9OnTKSgooK+vj1OnTnHixAlTWF07pRu2pAV3AQeC2U3NZDocDofp/927d5k/fz7vvfce3d3dpnlK211aKUYy++aCZw/DWG3ChAnB89zcXKZMmQLAK6+8wurVq9mzZ49t3LT2aYkhpCIzcVorHOHPqChKcPmmo6OD3Nzc4OJkrLipwsOn7xJETo5pIYTc3Fzy8vIAyMvLo7e3l1OnTnHmzBnATNQYkrSHC+GkgdbP/fXXXwDMnz+fN998k46ODvx+f8QW+HQgS1oMKEpkFeXm5uL3h/ZCbt++nSeffJL9+/ePTplGJZcHGFaSBmar0uFwcPjwYc6ePYvP50t7mbKkxYBdv+RwOEzbzIuLi3G73bZGSSqRJS0GVNV6QkFRFHJzc03XGhsbeeKJJ0wfu0kHsqTFQLQtFlLKCFK7u7s5efIkf/zxR9rKlCUtBoykhFuD4bMlAJWVlSxdupT29va0lSlLWgwkM9Y6cOAAV69e5ezZs2koUZa0EUNRlAgVOXPmTLZu3coHH3wQET4VY7csaSmAlTTu2LGDu3fv8sMPP5iu2xk2iSBLWgpg7Nt0AvPy8ujo6KC7u9sUNitpYwi6BBlJWb16NQ6Hg9OnT6c0ryxpKYI+3WVc8VcUhe3bt/PRRx+lNi/jH+kfDv6y0JDIp6RUVTW9cguwYcMGbt68yY0bN1JWJhNpwpFnOmZh3V+FIxqx48ePp6WlhUOHDkVNIxFk1WMMGAmJJXVWKwIAra2tXLx4kT///DP9hki4upT+YXIUlQl5jogwseLGey+ecNGuh5dppKo+0Uq2MumnT59OXV0dvb29IyqLjqikhatL/fjnsLaWJP3DCEcewpFnqhzj9UTuGWEMZ3fdGN941OPo5yMhLlHS7KRt586dfP3110mXw5RHIoGlf5i/VSXiWroNl3j6WKv++H71zVbS5nQ6mTp1atRPPsWLmKTFaqnGVp+FBjtp27BhA5999tnI09dPRiot6ZS2sT4EsbIIra6tWLECr9c7YmMkYpxmJTG6tIXf06+H3zNeT+SekZxE07YyPOzOU41Y71HrKCoqYsqUKZw7d25E+QU3QCSr3uziRUsv3jiJpB0t7lhS3WvXruXIkSOUlZXFDmyDuAwROwnMInG8/PLLqZM0K4z1vuRBhNPpJD8/n6tXryadRlTSstKVHtTW1vLjjz8mHT87jZVmWFmRVVVV/PTTT0mnmSUtzbCyIufOnRvxKadEkCVtFBD+WcLy8nKGhoaSTi9L2ijAyk3LvHnzkk4vS9p9wnPPPZd03PjGaQ/BG5+jjYULFwbfc9MRbz3HRdrD8MbnaGPevHmoqprU+2wpUY/hHW0WkQivmxkzZvD3338nJRApIS3rAT42wusmLy+PnJwcS68csZAwaVlpSh0mTpzIrVu3Eo4XdRrLCvoCn533vsWLF/P8888nXJCHCfqX7B555BGuX7+ecPyESbP7+pqUkuPHjwNkSYsBXVXOmDFjdCRNh5WkjTXfmelA6GOaI8fcuXODDT0RZAfXCcL4reORYubMmUm9RZMlLQbCP1Kmk5UKaRNCUFpamnC8LGlxwGoAnIykWX3Es7KyMu7wOrKkxUAy+/ftYBXHbrtdtDyypN1njBs3LuE4WdIeQCRt8j8sOH78OE6nE6/XC6TOOZKUkgsXLliuYMcaVggZtQTmD/obx2FCGr/R/+BCqyD9LSCz+a0/o9WzpuL59TFaomO10LZwS+rstaeM133iGEfI60TgnWnDIwW9U1h8JT2lDTbRajT6MFEN/k4GPW6TTxRXszuq/5MHGqqUqqrGDmcIH3fQKOkmlKcBSoR/BAEHWmqY03AUr9QW6VTphc4tVLe0A2riLWOsQyRmwtv5dbJMOlrflOwAPZxFd5NLUt0Y0Zo0yauS3kSa2QMBzYNS5FPZXU8TTBlF9+qkdVoBX8veT9xs6TpGz4HOCLckmWB0WEOrAoEa1keP7mjI+0m7wWda4PMWNmEVKWXQt1PXwa24mt3Um1xQap3wxYsjf4NxbEOxnKLq3d8c+sxETROS/6O5+QBS+u0SShgSH5satgTOQ7CTEyVYUHxcGEDz02zStRrrA31duJqXUBHw7pZ5MHwiEBH0qtt5uSj0QZf/qkERs6GoMKVbK/Y3H4SAr7q4Ug0qSu//SIj0TChlyJLU72Var2aGX6rSK102FrO7ySXdnp+klPFbfxGhDBd62v8h3Z7DsioBeyE0Tqsopwq4dNH84WTJIK83bMHV7NYcBcmAJ9qUtbP7DxnWl/Xu7+QYVfzz4OthAaG4uIzikjlA/B7jTdITcA0ppQSfhwG5hNZSwRfVZVTE698svBVR1RS64O3J/DGaNEuCLmXN7p7ImylGc3OzduLzyJomQx3HyDPC5G+qNjsatVKXmQa/sZa8PVKAdHsGpdH0VmXy/Olxjeo03GFuIoIRYdd29gc6XVUipd/gOy1sKieD9KNiUEtqwMG4NsYJVY8geeeMItClBI2XgFqUUqJKyaDHTVlhcUQ8W5PfPqfw2wZvToH7MgPmHsMhZpfhAi5fOh9503eY9l5vwmmqxr7P50Fs6qezdZmWH3Dh0kVzhEBw20YSPvq2mxnIdBifW1ddmoqUUkq/ZkHXNFlHiBPuJldEt2PsjoIqMtE+zRaZ37WZMOhxS6E5J06PMabanMeB/wf0XSPEuUCsAQAAAABJRU5ErkJggg=="
|
<image>如图,扇形AOB的圆心角为直角,正方形OCDE内接于扇形,点C、E、D分别在OA、OB、AB上,过点A作AF⊥ED交ED的延长线于F,垂足为F.如果正方形的边长OC为1,那么阴影部分的面积为()
Choices:
(A) √{2}-1
(B) 2
(C) 3
(D) √{2}+1
|
√{2}-1
| 69,686 | null |
√{2}-1
|
"iVBORw0KGgoAAAANSUhEUgAAAIwAAABxCAYAAAAHzEv5AAAMdUlEQVR4nO2dPWwbRxqGXx4MWLgqQIqsuy0kgxBSyJUJCgFUGWSEQzaNQVVaNUsijegiCIEEkIsLWKTgsmLkZnVpKKiRGnKbAIaLE91JMQwpMAlTQICjmwPt4kJV+a6QViapXXJ/ZnaH0j4AYZs/y/Hq0fx8M/NNgogIMTEu+VvUBYiZLWJhRKBTxXIigUQigeVqZ+QlM3/xfCKRQCJvRlTAIShGGJoaCNCoOfZ8W0+TNv5kRMQ1jDCYOIAGDc9wMFKRdNA4eYxvs1GVa5RYGFEwDwBlG9/qaTwbNqbTwMniKuYjK9gosTCC0HmzCCULzK8+RvrZP2F1ZTqNEyyuiqJLLIwgdNDAfWQBYH4Vj9OH2Gt0Lp4/WYRAvsTCCEGnAdy3Oinz2PxBw+FeAx3BmiMgFkYIOo0TYGHoiawC7bCI9XWxmiMgFkYA7JqdLBQNOIRYzREA3Im6ALedROKiaim+Btr/3rxqfrLf6tAaYjVHAJAgiueSwuD8/Bz37t3DN998gx9//DHq4vgmbpJC4Pz8HF9//TXu3r2LP/74Azs7O1EXyTexMJw5Pz/H2toa5ubmUCqV8Msvv+DFixczK00sDEcsWTY2NnB8fIxcLgcAMAxjZqWJheHE+/fvkc1mkc/n8fbtWyiKAkmSrl6fWWminv28ifT7fVpZWaFWq0VERMlkkk5PT23fq6oqGYYRYumCEQvDGEuWo6MjIiLa398nRVEmfmaWpImFYci4LEREmUyGTNOc+tlZkSYWhhHdbveaLEdHR7S0tOT6GrMgTSwMA+xkIfIuwGAwIEVRXNVIURELExBLlm63O/J8r9cjWZZpMBh4up7o0sRzSQE4OzvDxsYGDMOALMsjr/38889YX1/H3Nycp2vOzc2hXq9jbW0NAJDJZFgVlw1RGzurONUsRBe1hCzL1Ov1fF9f1JomFsYHVmfWThYiolqtRoVCIfD3iChNLIxHjo6OaGVlhfr9vuN7lpaWrnWA/SKaNLEwHnAji2malMlkmH6vSNLEwrjEjSxERIqi0P7+PvPvF0WaWBgXmKbpShavgTqvDAYDSqVSzJo7P8TCTME0TVIUZaosRETFYpEqlQrX8thNP4RJLMwELFncBN/8Bur8EKU0sTAOeJGFiKhSqVCxWORcqo9EJU0sjA31et2TLCwCdX6IQppYmDEMw6BcLuepaanX65TL5TiWypmwpYmFGcIwDFJV1fPnWAbq/BCmNLEwl/iVpdVqUSqV4lAib4QlTSwM+ZeFiF+gzg/9fp9SqZTj+mEW3Hphtra2fMvS7XZJlmXGJQrGpFl0FtzqbSZPnz4FcLHlww/VahWbm5sMSxQcWZZhGAY2NjZwdnbG/Pq3dm+1JYv1p1esvdK9Xs/zIqkwmLS4Kwi3soYJKgtwsaJOVVUhZQE41jRcGjqBKRQKtLW1Ffg6kiSFHqjzA+s+za0SRlVVqtVqga/jZnOaSLCU5tYIw3LPTyqVutoGOyuwkuZWCMNSFt5rXnhiSfPbb7+5eHeTdL197dkbLcxgMKBcLsd0N6FIgTov9Ho9KpfL9Omnn9LCwsKUd7dJT4PSNsLc2FGSlZvlq6++gqqqTK757t07HB8fi7dXaAIvX77E2toaHjx4gA8fPuCzzz7D3t7exM90qusoHgKf37fJsMfH52jhtf41jBV1LOj3+1Sr1SiZTFIqlaJ6vU5ELpvTtk6a3iQ9DdsDMW6cMLxkiWrNixdOT09JVVWSJIkKhcK1OaXpzWmTtLRObWqShjTZtEg3S5h+v89tZX3YK+rcMhgMyDAMSqVSlEwmyTAM27U8bpaQNrXLo3faOqVtjuEhukHCWNP7vLZhTMoiFQXdbpcKhQJJkkSqqk4d5k9rTtt6mgAMPW6wMLzXgogUqKvX65TJZEiWZarVaq52MwwGA5Ikyfm9bZ204fanqRHSOtm0SLMvTBgLh9xmkeJFr9ejUqlEkiRRLpfzXJaJzWlbp/SYHG09fTOFCUOWKAN1pmlSLpcjSZKoXC777nDLsuwY4b1ofqwO7kX8ZVKzNLPCdLvdUHYBhp1GzAqwybJMmUzmakjsF9bN6UwKY4W4eXdCw9yc1mq1SFVVkmWZSqUSs9ll1vNeMycM7yWIw2xtbTFZCuHEeIDNaUjsFx7N6UwJE6YsPAN1p6enVCgUSJZl2wAbK3K5XOAmbZwRYf73119XD9Gw0m2EIQsRuyxSFuMBNrdDYr/wak6v1TCxLBew2pzW7XavhsRuAmys4DXvJbwwbhP5sIRFFqnhAFu5XA61/Dyb04nCjDdRdk2WUxM2qXlz2/S1jo/pi0eP6D9jN9vp8+PlHP//uMXvmhdrSOw3wMYKnvNeU2uYSf9283cvrw3z/OXLq5rFzeed5J70HXacnp5SMpl0/X6i0QBbqVSKfEab57yXJ2HsXnOqdbxcYxzTNOmLR49sq3EWAk/Cbdvf7/epUqkwC7Cxgve8l6s+jNNvqtMPIogwViKf//75Z6Br+xHGzcjCCrBJkkTFYjHUjrgbeM97XQkzqfp2IwyLGmY461PQa/sRxqntt4bEvAJsrAhj3mtEmEk3dlJtwqLTa5om/ePx45EfhJfPT+vDTJPGbmRhBdisIbFI62HsCGPey3Wkl+dw2zAMTynCeDDc9ocZYGNFWPNerk4z+ZMIf08kPK5Xd8fOzg5evHiBer0e6T7l77//Hg8fPsS9e/eQyWRQqVSQSqUiK49XqtUq8vk8/3s4ySbeUwVBEvmwYn9/n1KpFN29ezfQmpMoCXOB+sQahletAnysWfzmZgnCu3fvsLOzg+3tbSwtLSGRSGB3dxeKooReFhbs7Owgk8mMHHPMDe5K2lCpVCKpWcYDbN1ul3q9HkmSFHpZWBJmUsbQT2R7+vQpPnz4EFrN8v79e+zu7qJarUKWZayvr6Ner1+9/uTJE3z33XehlIUHBwcHkGUZS0tL4XxhKFpewntB0jDDATanNSeDwYA++eQTIWMqbgl7r3doNQyLrE/TOD8/x+7uLra3twEA+XwetVrNceQgehapaRwfH+Ps7CzcvlcYVpZKJa41y3iAze2ak0mr6WeBQqHAJEGSF7gLo6oqlctlLteu1+u0srLiK8Am0uY0P4S5QH0YrsLwCFUPr2DL5XL0/PlzX9eZxSxSw5TLZSqVSqF/LzdhWMtiTUxaK9iCBKlmOYsUUbSZJLgIw0qW8U1drEYDPFbTh0mUEXKmwli5WYLK0mq1rgXYWBFV28+SKE9PYSaMJYvfWsApaxJrZiWLlBM8jjn2AhNhgmR9mpY1iSWzkEVqGlEnZQwsjB9Z3GZNYo2oWaTc4meBOmsCCdPv9z2tIfWaNYk1UZ+cFhQRmlPfwli5WdzEQfxkTWJNHKhjgy9h3CTyCZo1iTVRZ5EKiijNqWdhpsnCKmsSS+JAHTs8CdPr9WxlYZ01iTVRTNKxJMpjjsdxLYxdijBeWZNYIkrbHwSROuuuhBlO5MM7axJrwly0xQNRjjm2mCqMJcuvv/4aStYklojU9vsl6kDdOBOF+f333ymZTNKDBw9malOXhQjbWIIg4jHHjsK8evVqLJV4/Aj7cefOHeGa01t7DHGMP27sAVsxfIiFifFELEyMJxyFMfMJJBJjj+UqOmGW7rZj5kfuf968eC5vRlckR2Gy24S2nga0JogIRE1oh0UsRFnaCXwUPA+nEnaqy6M3X1g6qC4nkPgSaF6MZEFEUA4SSHz5GosLERbNeQDVvnZQZFMDwe7kSFFoakNHuYzR1ikNOJ4DJA6XR9DYlrNJmsNJaWHhLMzYuX8XR7w5/DCEwDrrx66MTdLSaUrD/qRUkZh8n9uk69H+BxyFGT8D0O7Qa6Fo66TpOmk2UjQ1jZpNzfEcQ3G4lF5gqx36MB009g6hNS/bz7YOFBewXBW3y9tpnGBxdRWLaeD1m6FymnkcKNvAwTNAU5CNroguaOPkEEhH2kmZjL0wnQb2DjUo1t2d38QPGnBY/MmxQxktHTROFrE6fpB7p4rlAwXbWfPSF7F1QecNXkddhinYCtNp7OFw5LexgzevAaQXIaT7nQagbGIe87j/OXB40gbQQfUn4F/bWcA8wDMM/QKIyvx9fA6r/NcxqwKENa63Ug6jI4E7jG1dH+2cp3XStY8dR+FHd8M0NZs+4/WfSVRcEwa2M6cij46apA0PQS9vuPbRIErPQqd9GCsEIOD9n6kj/Oz4eFMvR0BDh3ZbNePVQ4Rf0RknXt4Q44l48jHGE7EwMZ74PygniLQnypnjAAAAAElFTkSuQmCC"
|
<image>M是△ABC的边BC的中点,AN是△ABC的外角平分线,BN⊥AN于点N,且AB=4,MN=2.8,则AC的长是()
Choices:
(A) 1.2
(B) 1.4
(C) 1.6
(D) 1.8
|
1.6
| 69,687 | null |
1.6
|
"iVBORw0KGgoAAAANSUhEUgAAANgAAACOCAYAAABT98YHAAAXPElEQVR4nO2db2gb5x3Hv27T1Fs3arI/VRhNVSaHazCbDAnISreohQ45oUSm1FFKaOQyJCWQWXqRzYWsdgirmoVWp7yY4kInBwZqA61daCS/6JDDkjjdXijrQhQigbwsIA9G5LJuEkm631445+rPSb6T7nQn6fmAiHV/nnsc66vfc7/7Pr+nh4gIDAZDFR7SugMMRifDBMZgqAgTGIOhIkxgXU8coVBG6050LExgXU7csxvntO5EB8ME1sVkQh7MwYqBrSatu9KxMIF1K5kQzm+dhgOXte5JR8ME1pXEETq1FePDGdy8ZsW2fq3707kwgXUhcc9NbJ0e1robXUEPc3J0GXEPena/W7LBjRhNg8lNHVgE6yYyIXhuHgURrb7SPKzWbWAjRPVgAusSMvEQPKe2Ynq8JGOYvs5SHCrDhohdQk9PDwAr+PQljJuAuKcHX48U2TBRLZjAGAwVYUNEBkNFmMAYDBVhAmMwVIQJjMFQESawLmN+fh7PPfccZmZmtO5KV8CyiF3Gli1b8I9//AOPPvooisWi1t3peFgE6yJWVlbw3//+FwDw7W9/W+PedAdMYF3CysoK9u7di0cffRSffvop/ve//7FhYgtgQ8QuYGVlBSMjI9i+fTvu37+PYDCIn/zkJ7h16xY+++wzGAwGrbvYsTCBdTiCuE6ePIl9+/ZhcXERBoMBc3NzePvtt7FhwwYkEgmtu9mxsCFiByOIKxgM4vLly3A4HGvRym634/bt2+jv7wfP89p2tINhEaxDKRWXwWDA0NAQUqkUent71455/fXX8dhjj+HDDz9ENBoFx3Ea9rhDIUbHkc/nyWazUTKZJCIin89HwWCw6rhcLkcGg4EWFxfJZrNRoVBobUe7ABbBOozSyGU2m7G8vCwavQRGRkZw8OBBXL16FQAwNTXV2g53OlornKEclZGLqHb0EojH42S324mIyGKx0OLiosq97C6YwDoEMXHlcjkyGo3rDv2MRiNls1lKpVJkNpvZUFFBWBaxA6gcFgr4/X4EAgHRoWEp4+PjCIVC4DgOHo8Hfr9f5R53EVornNEcYpGLiCiZTJLZbJbURmWks9vtFI/Hle5qV8IE1sZks1lRcRERORwOmp2dldyWy+WiSCRCRKuC4ziO8vm8Iv3sZpjA2pR64pITvWqdE41Gyel0NtvNrofdg7UhS0tLGBsbQyQSKbvnEjh+/DgmJydltSm0I6TrnU4nAOD9999vpqsMrRXOkIcQubLZrOj+xcVFslgsDbUdDofJ6/Wuvc/n88RxHOVyuYbaY7AhYluxnriIiMxms+iwUQqFQoEMBkPZvVcikSCbzdZQeww2RGwbSoeFRqNR9Ji5uTkYjUbRYaMUent74XQ6y+aJ2Ww2cByHM2fONNRm16O1whnrIyVyETUXvQRSqRRxHFe2rVAokNlsplQq1VTb3QiLYDpHSuQCmo9eAhzHwWAwYGFhYW1bb28vwuEwDh06xOp4yEVrhTNqIzVyESkTvQRmZ2fJ4XBUbZ+cnKTJyUlFrtEtMIHpFDniCgaD5PP5FLt2oVAgo9FYlT0sFApks9mYIVgGTGA6RI64aomhWWpFK2YIlgebD6YzpN5zCfA8j7///e8IBoOK9qPePLIzZ87gr3/9K8LhsKLX7Ei0Vjjja+RELiL1opdAPT+jzWajRCKhynU7CSYwnZBKpWSJi0j5e69KSidjVsIMwdJgAtMByWSSLBaLLHG16gPOcVzN51+RSIRcLpeq12932HMwjbl69Sr8fj/i8bikey6BkydPwuPxoK+vT7W+AYDH48H09LToPpfLhWKxyAzB9dBa4d1MMpkkm80mOwpJLQWgBPl8ngwGQ81rMUNwfVgE0wghcs3OzsqOQidPnsT4+Pi6pQCUoK+vD3a7vWaU6uvrQzAYxNjYmOp9aUu0Vng30mjkImpt9BKQMoHT6/VSOBxuUY/aByawFtOMuIi0+yCvZ8VihmBxmMBaSLPiaqQUgFJIyRg2M9mzU2ECEyHmBgHiL3essTabFReR/EI2SiI2GVMMZgguhwmsBjF3pZjSxFutxKflt6WEuLSMXgLrVQkmYobgSpjAREkTb3WToK8Yz1OaiNI8T3IDmBLiItI2egmITcasdRwzBK/CBCZGmierEL5Kf5aJUuLSQ/QSkFqUtHEbV5p4a/XQ3OrmKdbA6EFrmMBESPPW8j9uA+NCpcRFpOxkymapNRlTjMYNwTFylw7H02ni3SDALXsEoTVMYFWU32uleavsxIaS4pLzgW4VBoNBknOjcb9kjNzW1WF52bYGv+y0hDk5qkjj+uUBbDUJ70fhGJZ+9vz8fMMODTEaKSKqNh6PR1KVKYPBgF/96lfyF5OIz+Hdga0wlW0chsMNXL6elteW1mitcN0RcxNEQlaad6+bQYzH4+RwOBRzuOsxehHJd5M4nU6KRqOS26/O4H69HVWRTd8wgZWxeoNdmZ5P8+51/7CCuJTMnOnp3qsSOVnNXC5HZrNZoiE4Rm7Re60HyY9GH0RqBBNYCdYaD5dRZ+yfSqVUEdepU6folVdeUaw9JcnlcvTzn/+cnn76acnn1Ju8WUatrG2aJ2sTD/q1ggmsCbxeLwGgJ554QlFxFQoF2rRpE23evJl+/etf62bWcCKRoJdffpm+973v0YEDB2jLli2yvIdSfJRp3iryZfYgerXZ8JCICawpOI4jALRx40ZF61O88847tG/fPvrkk0/otddeox/+8If0zjvvaPLgNp/PUzgcpv7+ftq+fTu98cYbtLCwQAsLC3TkyBE6cuSI5LYKhQJxHFdn5naM3Ch1y6QpHePJ3abiImJVpRpmfn4ev/nNb7B582b86Ec/wh//+Ef09fVhcnKyqeq6xWIR/f39OH36NDZt2gQAuHPnDj744ANcunQJJ06cgMvlUuaXqMONGzfw5ptvYn5+Hs8++yxGRkawZcuWsmO+/PJLjI2N4datW5Lnpl25cgV+vx+Li4tV+3p6eqq2Wa1WDBw7i+lhU9W+doAJrAHm5+cxPT2NaDRa9sGam5vD8ePHYTQaEQwGZZUAEAgGg/jss89w6NChqn137tzBe++9h88//xynT5+Gw+Fo4rcQZ2FhAUePHsWdO3cwOjqK559/Hhs3bqx5fCgUws9+9jN4vV7J15iamir7t5NhApNJLXGVMjc3B7/fD5vNhkAgAIPBIKntlZUV7NixA7/97W/XopcYy8vLOHPmDP71r3/h1KlTsNvtDf0uYgQCAVy8eBG//OUvJR2fyWTA8zz+9re/Sb5GsVjEd7/7Xdy7dw9nz55dW+yvE2EPmmUgRVwA4HA4kM1msWvXLgwNDcHv92N5eXnd9t944w0MDw/XFRew+gB3amoKPp8PDodDUttSGRsbw+eff467d+9KOt5kMuHhhx/GlStXJB1fLBbx9ttv4z//+Q/u3r2LWCzWTHd1DxOYRKSKqxSXy4VUKoWnnnoKQ0NDmJqawsrKiuixy8vLmJ2dxYsvvii5T8vLy3jhhRckR0gpGAwGDA0N4eLFi5LPGR4exu9+97u6x9y4cQOHDh3C008/jdu3b+PVV18Fx3GShdyuMIFJoBFxCfT29sLn8yGVSgEABgcH8dZbb1UtA/Tmm29iZGSk7v1OJX/4wx9w4sQJWf2RwuHDh2VFlueffx6JREI0ks7MzGBoaAgjIyP48Y9/jFQqhXA4jLNnzyKVSuGf//xn2VJJnQYT2Do0I65Sent7MTU1hWQyiS+++ALPPPMMeJ5HsVjERx99hI8++khW9Lp48SJMJlPT64GJYbPZUCwWkclkJB2/ceNG7Ny5EydOnMDKygqWlpbw+uuvY/Pmzbhw4QKCwSBSqRS8Xm+VPzMSicDv99eM7O0OS3LU4f3338cHH3zQtLjEWF5exsmTJ/Hee+/h3//+N775zW9idHRU8vmffPIJXnrpJUWHh6VcuXIFt2/fxo4dOyQdv7CwgKWlJXzjG9/AE088AY/HA5fLJal/MzMzuHDhAiKRSLPd1h1lEez+V/fWXt3OzMwMPv74Y1XEBaze6wSDQTz55JMAVm/+b926JencW7duYdOmTaqJCwC2b9+OTCaDr776qu5xhUIB165dw+3btwEADz30EFKpFCYmJiT3z+VyYWVlBXNzc812W3dURbD7X93Dhocf0ao/uqCV36hLS0uYmZmB2WzG73//e6TTaXi93ppDv7t37+K1117DX/7yF1UFBgC/+MUvAAAvvfRS1b7r168jFovhz3/+M1wuF1588UV8+umnsNlssNlssq+1vLyM4eFhxONx1X+vVsIEVoHWw5WrV6/iyJEjKBaLOHDgQJXQPvzwQwDA6dOnW9KX/fv3r839+vLLL5FIJDA7O4vvfOc7OHz4sKKukvn5eYRCIcTjccXa1Jq6AisdKm54+JGq96XHVIpS7Fgp+6QcV297aT+Fn6V+YWgtrlIWFhZw7NgxPPLIIzhw4ABMJlNLo5fAjh07sHv3bly7dg1/+tOfMDIyAr/fD47jVLne2NgYdu3a1RI7WEuoNCfeu39X8nspP8vZJ/c6pe/v3b+79ip9X+8apeh1KZ7Z2VkaGBigF154gQ4ePCjLXNsMhUKBIpEIcRxH3//+9ykcDss3G8fcq9N9KuaYlNU8qdi3viG4vZAlMLF9lR/sRtoQQ+r2RgRfSdPiEj5I9RzfD+YzNeoKj0aj9K1vfYv27dun6kom2WyWJiYmyGg0ksvlar6+YZqvcMgLm63krlEmqpMqBK8rsNJtjYpDzwJTLHLF3GStWfVodT6TEgVbIpEIGY1G8vl8igotGo2S3W4no9FIgUBAubbTvGixmtg6NSYnJiYoEAgo0wcNWRNYveGUFIFpPUSUc46AosPCmJsg8k29ustac18jFAoFCgaDxHEcTU5ONjwhM5fLUSAQIKPRSE6nU1K9Q9nEeOLTPFnLIneMeL7+1ORCoUAWi0W3JROkUvUcTCwhUCtZIGyv3Fe6Xc4+saSK1POFc0vbqPUzoHxCI35zG3j3ZVQVPYp7MLdtFFbrKPYoNKVJsF8Jc6pq2a9qsbCwgP3792NwcBBffPEFEokEotGooq58gfhNYI9pD0ZxDucFY0jmJrC1fqmu3t5eRCIRjI2NSf699MiawDY8/EhD6fla5wnb5ewTey/1/MpttX4G1MgWxnETe7AVwLWbmbLtnjkHjuIcMLoHSk8Z7OvrE7VfibGysoIzZ87gmWeewfHjx7F3717kcjkEAoGG5q1JY/X/xQQT9owC5x4oLHN+XX0BADiOw759+3D8+HGV+tcCpIQ5KVm4dkGVbGGMJz5dWU8iTbx7dVhUqwyZ0uRyOfL5fGQ0GikSiRDRalEel8tFBoOBvF5va9fvevD/8uDNg2Ki6XWHh5U0XiFYe+oKTCxD2M6olYpfu2EvqamY5oWER60yZOpx48YNevbZZ+mxxx6jH/zgBxSJRDSp51GZyIi5rcTHeJKpL8pms2Q2m3VT/EcOdd309YZ57YZ6D5EzuImtGAaA/m2wXruJTNyDU1unV7fF5/Cu2wEZxYEbZmlpaW0mtclkQjgcxo4dOxAKhSRPiFSMTBxz2FP2ew87BuDbfR3ol9eU0WjE+Pi4/ArBekBrhbeCyclJ9R4il30jr1ZFcpcOE6sKmSpPaYo9GAxWfdMLtfJbuW4XROtJitWcl44elnCSS8cLTM0VF0uX2VkVUckHSHj43OTKmLUQUuwGg0Fyij2RSJDFYiGHw9GW6W95FYL1QUcLrBOXM43H4+R0OslgMNDExERDH7bZ2Vkym83kdDrbzpKk13r9tehYgXWSuITin0ajkex2u6yFFOoRjUbJaDSS1+ttq6jgcrnWsqR6pyMF1iniWlxcLEuxqxVtBPH6fL62yNS1kyG44wTW7uISXOwWi4UsFkvLUuyC/cpoNDZlv2oViUSCbDab1t1Yl44qetPOFWOXlpbWypoJhWIWFxfhcrlUKVlQiWC/SiaTAFbtV0JRHj1is9lgsVjw1ltvad2V+mitcKVo18hVmmIPh8O6iRz5fH7NFbLeiiha0Q6G4I4QWLuJK5fL0cTEhKwUu1bkcjnyer1l9is9kUwmyWKxaOJUkULbDxHbaVg4Pz+/5mJ//PHHkUwmVXOxK4XBYEA4HEYikcCFCxcwODioq+pPZrMZe/fu1a8hWGuFN0M7RK58Pr+WPFAyxa4VyWSSHA4HWSwWXRlw9WoIbluB6V1cpSl2n8/XFillOSwuLrbcflWPbDZLHMfpbqjYlgLTq7hKC8W0MsWuJXqyX+mxcFHbCczr9epOXKlUirxeLxkMBnK5XK2dc6UTBPuVy+XSNFrb7XZdJY3aSmAul0tXKeNoNEo2m404jtNVil1L1CrKIxW9GYLbRmB68Z8JZc2EFLseb6z1gJDY0cJ+pSdDcFuk6fVQ7VVIsT/33HNlKfZG6rB3A8KaaE899RQGBwfrLj6oNA6HA319fZiZmWnJ9eqitcLXQ8vIVVrWrBNS7FqRz+dpcnKSOI6jYDDYksRPPp8ns9msefZW1wLTSlxCit1oNNLExITmf6ROobQoTyvupfVgCNatwFotrkKhQOFwuKtS7FpRar9Se1SgdYVgXQqsleIqTbG3vKxZl5PNZsnpdJLZbFat1kahUCCz2azZ31V3AmuVuIQ5VyzFrj1q26+0NATrSmBqi6s0xa7IyiEMRSm1XyntCgkEAjQxMaFom1LQjcDUFFc8Hldn5RCGKiQSCTKbzeRwOBQd2lkslpZ/qepCYGqIqzLFrif7DEMas7OzxHGcYvYrLQzBmgtMaXGVuthZir0zUNJ+1WpDsGYCKxQKiolLKGtWmmJndB6C/WpiYqKppFQrRzSaCKxQKJDD4WhaCCzF3n0UCoW1oX+j1a9aaQhuucAEcTX6DVJa1kxIsbMHwt1Hs/araDRKTqdTpd59TUsF1oy4FF+cm9ERiK2JJpVWPHNtmcAaFZdqi3MzOopcLrfmH5Vqv2qFIbglApMrrpYszs3oSOTar9Q2BKsuMDniSiQSZSuHsBQ7o1EE+5WUalM+n4+CwaAq/VBVYFLEVZpit9lsbM4VQ1GECGW322var9Q0BKsmsPXEpeni3IyuIx6P17VfqWUIVkVgtcRVmWJnc64Yraae/UqNcoCKC0xMXNlslnw+H3OxM3SDUL+y0n6ltCFYUYFVimu9xbkZDC0pXRNNsF8pbQgWqSqVQWhnD3p6yl87PXFk6hTPKRaL2L9/P0ZHR3H16lVs3rwZH3/8McbHx5HNZuHz+dDX16dW7R4GQzbCmmipVAqPP/44BgcHMTMzg8OHD8Pv9ytzkVrKi7lB7tiDN+kYuQGy8umq4+LxOP30pz8lk8lEu3btampxbgZDSwT7ldFopCeffJIGBgaadnrUEFiaeKuVSvUUc4OwprivMRqNBIC92KsjX729vU0JTLzwaOY8zmEUe0wAkEE8tBO733UjNj1cdajH4wEAeL1ePBAse7FX278CgQAANF/slkRI89YyFVv5GFUPDhmMLiYdI94t6MRKbj5NFHNT5SBPNMlx/hzApx+oOc0Dvt04GKqX4mAwuohMCDv7d+McjiFNBKJLOIqD6Nl9Ddv6yw8VEVga19eGhwBM4zjmBi6fO183i8hgdAWZEHb2+wA+jUvTw/haJsfgtg5gq6n88A1VDcTncG30KExVOxgMRvyUD5etPNLjlQrpx7aBbeivPKFiYFmePUynKfZgnCmSQGQwuozaj6tqURbBdvb04zIA9PfAJ2y0usHHzmK8OoHIYHQXmZu4BmCgchxYhzKBXSJSuksMRodhrUpk1KMtFuBjMHSBaSsGcBnnzlen+zJxcSshExiDIZlhONzAZd9BhOKCnDKIh0I43z8smhhkAmMwZDA8nUaMH8C53f2rRvidp3BzzziqkooP6CFiN14MhlqwCMZgqAgTGIOhIv8HcjJYLulnX74AAAAASUVORK5CYII="
|
<image>如图,BD、CE是△ABC的两条角平分线,AN⊥BD于点N,AM⊥CE于点M,连接MN,若△ABC的周长为17,BC=7,则MN的长度为()
Choices:
(A) \frac{3}{2}
(B) 2
(C) \frac{5}{2}
(D) 3
|
\frac{3}{2}
| 69,688 | null |
\frac{3}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAAB1CAYAAACI5FVLAAAXzUlEQVR4nO1dfWwTV7b/TZyUqgS8eXIbS5h10zisq3Rf0xf6CML7kgh3N1JjhFq/9X6k29BFm67SVY2aRKmUClabFWmJ+NilghRY4C2rpt1U6TZdbUoc4TyFbSpTuVKNEoTNV8JiMH8Ekt0asOe8P5wZ/DHjz/En7ydZ8tw7d+65c+4999xz75zDEBHhAcCmTZswMjISkf6AND8CRdkmIFP45JNPYDAY4HQ6QUQgInR2doJhmGyTlhU8EIwPHtWVlZX8/3feeQcGgwFdXV3ZICureCAYzzAMLBYLtFptRJ5Wq8XMzEwWqMouHgjGA8DJkyfx/e9/n7/mpECwBHiQwDwoyh3DMIKKHCfm33nnnUyTlFUUZ5uATMDlcqGzs1MwfdeuXRgbG8sCVdnFAyHqx8fHodFoQtKICNu2bYPBYIBer88SZdnDA8H4trY2bNy4kb92uVyQyWQAAsu8WCjE2bCg53iLxYLnnntOMG9sbOyBHOkcCprx8YCIEjbiJFMm11Awoj7Z/psMA/Od6UABMV6MGUSEGzduZJia3EfBMF4IRIQLFy6gtrYWly9fzjY5OYWCneNv3bqFqakpbNmyBevWrcP8/DxYlgUAXLx4EbOzsyH3q1Qq3opXUlKCDRs2QKVSoaqqCrW1tVi+fHlBiHgOBcP4ubk5jI+Pw2KxYGJiAv/4xz9QVlYGr9eLhoYGvPrqqygtLQUAVFRU4Nvf/nZI+cuXL+PSpUsAgMXFRdhsNly4cAFXrlzB5OQkVCoVGhsbodfrodfrUV5enukmSoq8ZTwR4dy5c/jDH/6A4eFhLC4uor6+Ho2Njaivr8fg4CCsViump6cxMTEhuEGTCBwOByYmJmC1WmG1WqFQKGA0GrFlyxZUVFTknzSgHATLsqJ5Ho+HDh48SLW1taRSqeiNN96g6enpkHuGh4dJrVbT9PQ0lZaWxvXcROFwOMhsNpNSqSSdTkeHDh2i+fl5wXZIWa9UyEnGC8HtdpPZbKbS0lJqaWmhTz/9lIgiX6rD4SClUkl2u50GBwepqamJz0sXA4aGhshkMpFcLqfu7m7yeDxpqUdK5DzjZ2dnqa2tjeRyOXV2dtK1a9dE7/V4PKTRaGhoaIiIiDo6Omj79u0ZojRAa3t7O8nlcjKbzeR2u0Pyc2nk5yzjFxYWqLu7mxQKBW3fvp0fRWIvz+fzkV6vp56eHj6trq6ORkdHM0JvMNxuN0/7jh07yOv1ZpyGWMhJxg8PD5NSqaS2tra4xabZbKbm5mb+2ufzkUwmo4WFhXSRGRNut5taWlpIrVZnpQNGQ04xfnZ2lvR6PdXU1NDU1FTc5U6cOEFarTaEyVNTU6TVatNBZghYlo0pwq1WK2m1Wnr++edzZv7PCcazLEs2m42USiX19vYmNBdy5ZxOZ0h6f38/tbW1SU1q0vO0z+ejnp4eUqvV5HA4JKYqcaSd8fG8qKNHj5JCoUhYHLrdbnr88cdpdHQ0oh6TyUQHDx5M6HmZwNDQECkUCl4BFUO6FcGsjnifz0ft7e2k0WgER0E0Mer1emnDhg3U398vmK9UKiPW99kG1xabzUYqlYq6u7uzRkvWGD8/P09NTU2k0+kiDB/xYOvWrdTS0iKY53a7Qww3uQi32021tbVkNBqzooBmZXfu7NmzePbZZ6FWq2G1WiGXyxMq/+6778Jut+Pw4cOC+VarFd/73vekIDVtKC8vx+nTp/Hwww+jrq4OLpcrswRkuqeNjo6SXC6n/fv3J1XearXS6tWraXZ2VvSeTBtuUsXbb79NcrmcrFZrxurMKOMdDgetXLky6TXtpUuXSKlU0uTkZNT71q9fn3Pr5lgYHh4mhUJBLpcrI/VljPEej4cqKyuTHukLCwtUU1NDBw4ciHpfLhhukkVvby9VV1dnhPaMMJ4zp7a3tyf9DKPRGNe6PFOGGykgtGJpaWmhzZs3p73ujCh3HR0dAIB9+/aJ6RmC/zn89re/hdvtxrvvvhuzrsnJSTQ0NCRHaIYhtId/+PBhuN1u7NixI72VS9F7xNbaLMvSsWPHSKPRRDVVRjNWfPrpp6RSqejGjRuCZfLFcBMvWJal2dlZUqlUNDw8HJIu9D9ZpFXUT01N0aOPPpq0IWV6epoUCgXZ7faQ9GgNz0XDTTSItcVms5FCoeANW1Jb8tLGeK7XJqtdLywskEajocHBwbjL5IPhJhEMDQ2RWq1Oy8ZO2hi/ceNG6uvrS7p8U1MTdXd3x9XTuXvef//9kBM3+QyuTT09PWQ0GkPSpEBalLsPPvgA8/PzeOONN6LpFoL/AeDNN98EAOzcuTOuQ4zcPV9++SXWrVuXDMk5B65NPT09cDgc+Oyzz6Q90ClZF1rCwsICqVQqstlsovdEUwYHBwdJo9GErGVj9XQuP1snbtINi8VCWq2WvF6vZKNecsZ3dHRErLfjJdZut5NCoYjYW48G7tn5bLiJByaTiXp7eyV7nqSMd7lcpFAoktptu3nzJq1atSrpEZtPhptk4Ha7SaFQkNvtlmTUSzLH09Ic/Zvf/Abt7e0J77b5/X5s3rwZv/rVr/CDH/wgKRomJydRX1+fVNl8QHl5OVpaWtDX1yfNXJ96XwyA65HBoz3entnW1sZrrski3w038SD4Hac66iXT6vv6+vDzn/88ZLTH0zMHBgbwxRdf4OjRo1xHTKp+q9Va0COeiFBeXo4XX3wRe/bsSX3US9ETPR4PyeXyiA8IwhHeSycnJ0mpVNKlS5dSqr/QDDfR4HQ6SaFQpKzESjLi//SnP+GFF16I+QVpcC+dm5uD0WjE4OAg1Gp1SvVbrVbodLqUnpEvqKyshE6nw0cffZSSUyZJGH/s2DG8/PLLEekkYqS5c+cODAYD3nrrLUHxTEtOhuPFmTNnCsZwEw9+9rOf4ejRo6mJ+1RFj91uJ7VanVAZk8lEW7duFcxLRmkpVMONGHw+HykUipSmyJRH/PHjx9Ha2hr3/bt378bVq1exf/9+wfzwXkwxRr7f74fNZsOGDRvipiHfIZPJ0NLSwivESSHV3qdSqWh6ejrqfjF3PTo6Smq1OikjhNj9qRhucunr1VgIpzVVg1VKI35mZgY+nw9arTZkpIaPWoZh4HK50NraiqGhITz22GMJz09ikiAVw000T1m5hnBa165di7m5OVy/fj2p58VkfLSXMDExwb/0aPctLi6iubkZ/f39WLt2bVIOBcPBeaO22Wx45plnEqI7FvLBrYlMJoNOp4PVahXMj9X+mIwXc/cNAKdOnUJjYyN/nxh+/OMfo7m5GT/96U9jVSdKg1i6WOfLB+alivr6epw6dUowL2b7k54kKL5jTj09PdTU1EQ+ny+VqgQRy3AT7xx+8uRJAsD/Ojo6pCIxrfj888+TnueTZvzly5dJoVBEvWdoaIg0Gg1vv5damQr3cZMMOjs7Kbz/A6DOzs6UnpspLFu2LKnd0Kii3mKxiH7Tdf78eVRXV4uW/eqrr/Daa6/h448/5u33weKHEjTSCCFew41YPV1dXZiZmYnIHxsbw65du1KiLVN48skncf78+YTLFUV7+WIuv4GARl9VVQUg8sXevHkTmzdvxoEDB0Q7B8Mwcc3DYvQRESYnJ7F+/fqYZYTqsVgs2LVrF/bs2ROThlyGRqPBuXPn+Guu7bEGVZHYy+/q6oLBYBAN1uN0OnmngcHP8Pv9MBqNaG1txebNmxNpgyDE6GNZVtRwE0+H+t3vfofOzk7B9l24cCFxQrMErVYbMuK5tjMMg02bNvEDjPvxYVjCZT/LsjQwMEBjY2P83BdunGFZlpqamnhfc8Fob29P2ydAwXSEGzCE9IdoOgUAGhsbE8wzGAx5M8efOHEi5CxDeJsNBgPfTo6nTqeTIoIRcb29oqICBoMhpBcF/3e73Vi1alVI2cOHD8NqtWJqakqqDh2CYDrCDTdCo1xs5HN6S0VFRUSexWLByMhI3kwBq1evhsfj4a/D2zwyMsKHXwluL6/c0dKcMDAwgF/84hcAgO985zuiFS4uLmLFihX89enTp/HrX/8af/nLX1BaWiqZ9YtE5iwxw0084MT7xYsXI/Kee+450SkgF/HII49gcXFR8H1bLJaQ6Fvbtm2737ZgsfDegYNUjhX8r7tDXNwplUr+4MXs7Cyp1WqyWCxpsX8L7QOk+qlUZ2cnGQwG/trpdObVMo7DzMyM6Fp+YGAgxD4RfHqZZ7zL5aKBgQEi1k+s9x5ZTo4FrkVQWlpKt2/fJq/XS3V1dbR3714JmxMdUp24MRgMoi8mX8B9qiYEg8HAt4nrBNx1ERCY181mMy/iAeBiDM2WE/WvvvoqtFotXn/99VSlVtyQ6sTNJ598wtsTiChvxHswVqxYgYWFhYh0To/h2sTxdnx8HESE4q6uLt5Y4XK5UPlEBX744n/js7/+FSV4GJfPudC7cyeYh4oAnw/kB1AS0An37d2HS9NO/O3k30A+AlO8pFgQC7rLLpHAgFkmu09RtLxgBN/HFAXqX0r/6osvseE//hN0x79UnkB3/IH8h2TA3aX/RTJAxgL3iL9mSoQVvuvXr+d98IFgjI+Po7m5mb92Op0AgCeeeCKwtCMK0wq4F/5QMRiwoLsUxBwC3QNQDCxb9ggee6QUpldewkq5HEX3CCQDWAaQ+cD/L2IBGYB7S3yLlheMkPv8AFME+Jeeffx/jmB9fQOqKirvlyeg2A8wAPzFAMtdM4BPBhABMh+BShiwYXX961//woEDB/DKK6+grKzs/qvIgzBjt2/fxpEjR3Dr1q2Q9E2bNmH37t18hM2ioqIQa2n03TmmCIyMQNyIYVlAFjAELHu4FEbTD/Fvj6xE8T1CEQIvHQQUMQAtvS+WAYhdqihaXjAIKCoK5AMAKwswHQQwIFyZu4rVq1cLlvfLEMJYf1FgAgeWljoCi43h4WHU1dWFMJ2/P8dx9+5dLFu2jL+2WCxgGAYjIyOoqqriDTfNzc2hmn+ERsD6ifUGdtICGjRLrPdewHBz18/fpqlcQ86Z85Eahd/Hlw9/XtS88Gfc8QumT/3v3+kpTosNLr+klPILgLBr1u8j9pug/CX09fWRXq+PrIvy44SOzWaj2trahMvdN+Dc84EgA1OMgHzkwYCRAXTXD5QU8+KvdEUpFm7dArEBMQzQklwuAuC/P+fT0vAFoucFgwkMZWKL+GeTH2BkRfj8739Hw38t7b+zbGAejwMMw4CY0OF++vRp7N27FzabTbRMruOf//wnH2QpEdx/6wwA1h+Y30sCyXzDi2UAGDBF99OUysdw9YY70GHu+EB3AjKXCAFFzO8PpPuYIIWKiZJHgTQWgSmmhAl5NiNjADCYsn+Jp/+9BnTHB/iX7gPdVwTv+uO4DqxKWltbcezYMahUqoRfXK5gbm4Ojz76aMLl7jO+uBjMsqWfUEeXhY5MrVYLp8t5v8ySAsgwTIBxXPpDYSNaNI8JpHFJRbKIZwPAxMQp6DY2hJVnwu6NdQ1s3boVRqMx6Y80cwWxtsfFEN9hS19AqQPum041Gg0cDkfCFaaC69evY3FxMeVQYgMDAzh37hx6e3v5NJLIxJxpnD17lt8eD0e0NkVnPCdqUcRLAU7UJ3sAIBVIYbhxuVzo6enB0NAQH0MeyI/5XAhOp1N0TyVamyJ250JQUgyIrGUrKytx9uzZxKhMEWInbijKejs4786dOzAajfj973+fl1Y6IUxPT4uO+GiI65StENRqNYqLizEzM5NwpclC7MRNtJ4dnPf6669j7dq1+NGPfpS3oj0YU1NTqKioSNgRBRBrxMdAQ0ODJOE740Gqn0p99NFHGB8fh91uB5C/oj0YqfgESOlLmoaGBtFz3VLjzJkzqKqqSmrNOjc3B7PZjD//+c9Yvnx5GqjLDiYmJvjvGsIRS6KlxPj6+npMTEyk8oi4EXziJhEx7ff78ZOf/AQ9PT2oqakpiJEOBNoVzWFzrHamxHitVpuxeT74xE0izOvp6cHy5cvR1taWLtIygvDOfubMGahUqqR3FJNifDARRqMR77//flKVJ4Jk5rPTp0/jxIkT+OMf/5gmqjKH8M4+ODgIk8mU/ANT3SRIxjFConC73bRixYqY9wVvqng8HlKr1THDmOQjcsIxQk1NDcrKytI611ut1ri0+eBR8dJLL6G1tbUgHSaMjIyguro6Jd9BkvjA4TY70oVEfdzs27cPi4uLeOutt9JGUzZx/PhxbNmyJbWHSCF64nV3lizi9XHDsizZ7XZSqVRRw5PlM6RydyaZZ0uz2ZyWkJlizomFDklwwQ0K2RFSW1ubJDH1JGP87Oxs0g6MoyERXy8mkyktEaRzBW63m+RyuSTvWDKXpiqVCs3Nzdi9e7dUjwQQv4+bDz74AOfOnRONdBUOykNb/dtvv40tW7YkZZuPQOr98D64+UfKUW8ymWIGGXQ6nYIx5AsJwW7LOaRyJlBSxrMsm1KgAqH7gz+VEnqO1+ulmpoaOnToUNL15QNyOlABUUDBUiqVSYUmCUc8n0pt27aNTCZTQjTmGywWC2k0GvJ6vZI9My1RqAYHB6m2tjaqw6N4vmeP5uOGZVkaHR2NiF9TaPB6vaTVaiVfqUgahYqWFCaTyYSysjL09/eL3hvP9+xnzpxBXV2dYPmrV6+itbUVH374YVJbtbkO7l329vbiqaeekv5QqKTdKAhXrlyJK+BgNLEfzXCj0+lSimuXD4gWcDBVPUYyxgsRkkqIUSHDDVdHX19fwQUWDEd4iNFEysaDtIcRjyeosBDEDDeTk5NpC7uZCxALKiw1MhI/3mw2k16vT8i7ZX9/f8Sy0OPxkEqlCnFaxDljKhRwjiakMMtGQ0bix3NKnpjzBBJwdijk4+aXv/wlWlpaoNfr+bR4/eXlC7Zu3QqlUpkf8eOjgRuNHo+HNBoN7d+/P65y5eXlIbrBwYMHSafTpcUnbq6gt7eXqqureb0mnZIsI6Kew9dff03f+ta3Ymr64YYbLvRooW61EhENDw/z4VUzMXVllPFEgSgVcrk86sgPNtx4vV7BOPKFNK/39fXRypUr6dSpUxmrM+OMJyJyOByk0Wiovb1dUHR3dHTwyk1bW1vBbrV6vV5qbW2l6upqOn9ewMlEGpEVxhMRzc/PU1NTE9XX10e4NecMN4ODg/T000/zNupCGuUej4dqa2vJaDRmxeScNcYTBYw07e3tpNFoeEMFZ7j5+uuvSaFQkN1uzyaJkoNlWbLZbKRSqdJyYileZJXxHI4dO0ZKpZJGR0dpamqK1qxZQzqdrmCCBAdLqqGhIVIqlTQ0NJRFinKE8UQBE6VSqaSmpiZ65pln+K3WXBPvydLj8/mop6eH1Gp1VDNsppAzjCcKnNtbt24dlZSUkNVq5dNzjfmJwmq1klarpeeffz5nTM05xXgOnOhva2sTfVH50BmuXbtGLS0tpFarc+7kb0ZMtuF47733eFPrpk2bAAQiYnB4+eWXcf78eZSVleHJJ5/Ejh07cPPmzZBn5LKZ9saNG3jzzTfx3e9+lw8dkmtOljLKeJfLBYZh4HQ6efv8nj17wDAM73qTQ2lpKXbu3Am73Q63242qqip0dHTA7XZnkuSEMDc3h9deew1r1qzBN998A4fDge3bt/OeJymXTvZmUrwgyB98sKju7OwUDRPCwe12k9lsptLSUmppackp0Tk8PEwmk4nkcjl1d3eTx+PJ+akoY4zn/KWL5cU6Gh282XPw4EGqra3l18KpBCxIFg6Hg8xmMymVStLpdHTo0CHRY+W52AkivVenCQzD8GFPKMgTVfD/RDEzM4MjR47g448/xuLiIurr69HY2Ij6+nrJ/fI4HA5MTEzAarXCarVCoVDw0bby0YNWRhjvcrmg0WgwNjYWspcuJebm5jA+Pg6LxQKr1Ypr165Bp9Nh9erVqKysxLPPPssfynz88ccjPjG+fPkyLl26BCDg7tRms+HChQu4cuUKJicnoVKp0NjYCL1eD71en/e+7QuG8eG4ffs27HY7ZmZmcO3atZCoyy6XC3NzcyH3q1QqfuSWlJRgw4YNWLVqFdasWYPa2losX748p1cSiSIroj4YLpcLFy9ezFiH4KaWVKaYgkCmlAlOuQvW3sfGxkIiQf0/MoeMLue4SIfcr6urK5PVP7AQWlX8H5LL+vykBC3+AAAAAElFTkSuQmCC"
|
<image>如图,AB是⊙O的直径,∠ADC的度数是35°,则∠BOC的度数是()
Choices:
(A) 120°
(B) 110°
(C) 100°
(D) 70°
|
110°
| 69,689 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAABXCAMAAADmiUGwAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAHbklEQVR4nMVZC6HkKgwdC2NhLIyFWsACFrCABSzEAhawgIVY4J20fELb2e3s3r5l7mXa8DkkJCFhHuWflMeRxP8EFqic/n9YoBr3D2CZX8vdgj7AAjDQ+2bUM27JpTPR3wzLNtIz3yzlI6yPpbz8vagdtnOXTCr5dlV+TJit8K0+A3M/eEORPynytMG215/+32BLycEa24uxy8tYp0k/WQzlVchchcz1U0p8+cyDwFx+9tP3dhY8UVzCnVu7CXmvPQTrcfZG3NK45Vpxgy3BcCNwb9MkLn0j8JcbJ2eNrObnBrs9MHf0KLCclnH6gZ7HsgbA/un4dkrehFw4M2bNGVVCRQ4VAzeADqVf34ArL6igbkIt0rj2ly7bHIOet26VvvbInISeuAqZvTEusTOOk7O2hLcLHJxJ7rW4VITOi3UlucUzWRsKGROx/Taxt5azNZ6jqXTMhsm8sZkxLZyeDWhconSVxthg95tLvtESZucTMZ0L+MS1nUich5CVsghsGAuplsR6DO8B1GAu+/XxNEErZ3br1Mze5LGuc4U5Z0nR+dCkj4Lad9XkRuESl7jvcfq6azuuZ1qFcheT3arVODfsdjT8Ys/nRfU3bYDCbaJAYIsInKIiS5EzEc5dChn0t80poJHiTI9ZHCl2BcOZAuhB6BFvMUQhxZLRrSShJ+kfwzAg8h7OX6ocvC/09hE0jAnOZ1QxvG3wJboQSvTAIOdTQdfEqBgjSehBJoqN7rh4H0paGwMq2ujDgJQAVgMKk7Rkg7Ohg1y12ux8kBo5vkp/RvWYhhS9t9Pkzq5ulz+p7UnhX7SpWKrt/eaT98i00Jkmc10Ln9C1QHYK+ZiNqnqpnQC3V+fn5alGJetBP7MkfcxTgDoUVOAJGksG2pQ8NBZvedPTQMT5vYhSgh5FM0ejaCzokZOoM9VGXieDckcxlSh0aeyaLIqGnqiglMAOZlW+1lMaV3om90rQ9YhtEE0OUHMfoMmyYNgIFhxWuky20b3AEicZtMFi6jJ8shZE/BzRJBPK0eOfu10l9mOT9sn1qKeuUifeyFqNsdu+T37xWHp0MXoGbUDaBNdDwSNr2DlhnhbZY80yH1WdJPWjscl9SPJqWFGn2lYQdXSAabLpeS15vO1c0pwDceN2B7V152oWzk2ztcfdgB6d8WhqWccKG4wELwjZc0Y2AJ9s4YCNI8Q5NkpQkxiNJVmcRdFaKuYFU7IS1CCyYbYLwqHFUfEI+tfgBVsBujEWbtWGHB3Cno1uiZuQ8xpw1kAMBuxbIFazIInvZJFrhCZ0CNpLzNfoK0NbMDf6t5xH6LnOv0Z1SqW0IkavRHV4qi9r1FHmrTyq826vRpntdt0KmmC1wk7WLeFdo+cyF9aD1br7+2NMnOsKyc8xWVYDuMbpIkCzT/lZ8afNnVkxtr2cXI4oIc9C4sn9y2Goz56D5je4mdi5rWrdPIIY0MHkc2eEuwVC+doGc2dqHlZdQbPqQd0MSGJ4JNIwIOg8DChI9E8cFitZga0pg12Ejrge9NWwOL7eTmzNZYn+EWUucetfDUgGGbHGhVpWUNPqMhZfNm7Jq2V3+qxaXeaw8y49pTbcNXBW9ENaPZrHUfCpsEIiZIanCGMSHXkU7RwnS4m/hZ1KMk6BXhnH4wRSPLSgpux44D1LrXg7q/hRpw/vj2M38t8wKz1DOwyvjeMRwqlErgpZWYDaHUVQSpcWKqNRd9n1Viol91LGQu/Ndi/1fq1f7ZrKqqeTy6o67Pkyvfsvr7SUAfEw6iKBZL+T69/qIm1ftglg7akeRae9eu+8CkNn8yVbhJ0j47tW+iWNoYsqwbt7KX5Qfub47a0u4mMSnbJX7mV37kIo8QlC+haWF5/CS7TH21Rn/h3bAxZyd6/wjnKJ8IUBFV7vvGlV0vi+KOjp4HsGfkseex1TAIfHwTeOkivAitvCz1zMm78U8ttInRsaqbuOK7BQiSenF33L7ds1R7I5h3yasHyElZshyY6+3Vv3FGXU10gQ9Bfclrrk3x98O1zrfQsj6wxmH9N9hOV2gCMt/QJTSj7IlEy8CKvG/PWPQHCB1rM6O/4H2ArizMAtB+gPAeuXYt7Dyj8Ow8/u6gYht/N+s6ROuRdWRzbetBD8gpC/C2o+gksdl3j4keFXsH+DqMNltv6M2bsMaDw5l06EN8GyDuGU9v8JYC9kRnjXewwvtbmaLFGRs85eOUcuLqX+Glyn5wl2cBddSsn3WyL+phr8jA2VS6U8OGUVwvV+XLP56K/EJleLpP5TMjbBlra3XDOSP4CdHUT/rqk/OU8uzkImRyHWg+/v1XlehyRKkGR8MMuZrjU5PDgjlgqWIjlUkeT/Lz8oIUafo3uBS7NseYAWskFUFBGQee+Cd/j4ra7Vte/+3P7Wr4BQwEXmt/WrWmtuXwHnxuOn1OhM3AgSQ5pgkbaBUfbP+2Cxwa8aiyhuwwJjfrYs847CxnB2ckuuuH1auXTZnu8pCHWgNOKplErBpKj9MP7zwDw9PA70G/e2e8vDbwWfopCfxET5D0EmBfJ941ClAAAAAElFTkSuQmCC"
|
<image>如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24m,BD=12m,DE=40m,则河的宽度AB约为()
Choices:
(A) 20m
(B) 18m
(C) .28m
(D) 30m
|
18m
| 69,690 | null |
18m
|
"iVBORw0KGgoAAAANSUhEUgAAAIIAAACACAYAAADHy7H2AAAaPklEQVR4nO2dfWwU95nHv2MQ4WoSt4qJl9ipCZji4qA4SlAXr4kjhRe35wZfvLapyqlGQKE1sGuSSkjHW09UoTpjr5u93lJbhxGR8GG7pgUSv7WyJZNCqM4kmNhpXmpjXuyQu+wSWtbx7jz3x+zMzu7O7O7szuxb7iMBy8xvfr9nZp75vT2/5/mBUgp3wBHWYiJTr5uIjYM4CQRLPVRnAAEgMNy/DEBGC/dg0pDsEACw3E9ifE6xsKDK/GfuP55TRCRKT7GRMQFgsB7HhnpgKgaMjSyICG5LBTrMBpj7WCS/IgCA5zYYxlcRmqraccuwCLnrvMcYhkAy6VMdBu/j1lAlikyeD2BFDorAgCGkgCLIvMveumK8bTAi+6I3AVcDpMldkvJQ0xA6KlejDmkg9KLu5014u7IKjevTUkARJKA+M5pxEP9VMIHbxY+jwHNcXAMQueMjXIwhTzMIAH3jU0D7XjAMgzTmMHCIBZ0xAUiFGgEARDdL6EVdM2F741owBED3TawX36anVmSYObEVMU4wnnsn9OLCFYK5xw0iQo85DU3rDajr9Ty7+PVjtaHHbOB6xvyfygbuhN+ogWW/WsMIttdERcUm6iE3sSxLbmokI0BF5m4iSoVRgwi+SSAiEBFYSwUMOZ6GgR81AADYr1xHse/NPwPPfRfrkQaGYcD0jeM2gMcXrweQMk0DpwTF/wpsb1zrOcKib3wqoC/Avf6Uue2wYD3Nwqrv8cMnC6rWN+FtVHhHEHGtr1SAZVlqqOSbgtVk6nUTSz1kMkg0D18h+KaPtfyTb1PJ/zFwzQQPQ5Tssyos/L/wwcFBlJSU+CYjAAw3hOSbBfFv/v88ydp0+N+T9wR8mkf/FCmgCL44HA4YDAbcu3cPhtXFWP7tb4FhmLBnEfl0yaoIAIT7JSLcu3cfGRkPo7CwEOXl5YKieBWGGzUkvSIQABCBYbjJIgBYs2YNPv30U0xPT2PevHl4/vnn8dRTTwVcyxA34R6Qp9xXlUQQET744AO8+eabQBqDc7/7fWAtCUCoUWPTYmmMaCQ4MjJC+fn5dOjQz+nQoUM0NDREpaWllJeXR62trQHpU5XW1lbKycmh1tZWKiwslL1nvi+RGt1nRpgngsViwe7aXZ4aAigqKsJbb72F9vZ2nD17Fk888QSO/+Y4WJcbSV0VBqGpqQlHjhzB0NAQOjo6sG/fPtmpeKF5iKGSao7d/r+0cOFCstvtdOTIEdq/f39AmrH3R2nz5s2UtUhHFksDffHFF3GQVDv2799PBQUFNDU1RSMjI5SXl0culyswIev7OzVqBA8tLf+JqqoqZGRkYMGCBbh//35AmuXfzsepU6dw+U+XcPXqe1i2bBl++ctfwuFwAJA3Tcsd1xol5f7kJz9Bf38/Ll68iKysLNTX18NsNmPOHInpdMbvd2z0VFtYliWXy0VLly6l0dFRIiKyWCxkNptDXjs5OUm1tbWk0+lo//79dPfu3bDKUyONWrhcLqqurqbS0lKhhpucnCSdTkcPHjyQvU4sY0rUCAzDoLu7G08++STy8/MVXZuTkwOr1YqrV6/iwYMHWLlyJX72s59henpaSEN+X2U4IwqtRx28TDMzMygvL4fb7cb58+exYMECAEBDQwN27NiBhx56KCwZU0IRAMBqteKnP/2p8P+5c+didnY27Ov5qvTatWtIT09HYWEhdu7ciZs3b8pOOsUThmHgcDiwdu1a6HQ6tLe3C02Aw+HA6dOnUVdXF7ZCpoQifPzxxxgdHcVLL70kHFuwYAH+9re/SaYP9jIzMzNx+PBhjI2NYfHixVi1ahW2bNmCiYkJAIkz0TQ9PY0XXngBa9asQXNzs885q9WKTZs2ISMjI/wMNW28YkRtbS0dPXrU51hrayvV1NREnbfT6SSLxUI6nY6qq6tpbGws6jwjhW/TJyYmKD8/n+rr6wP6Ik6nk3Jycuijjz5SlHfSK8IXX3xBOp0uoJOnliLwuFwustlslJubS+Xl5XTlyhXV8g4H/oWPjo5STk4ONTc3S6Zrbm6mzZs3K84/6RXBZrPRtm3bAo63tbVRdXW1JmW2trZSXl4elZaW0tDQkCZlSHHlyhVatGgRdXR0CMfENYLL5aK8vDwaHh5WnHfSK0J+fr7k19nV1UXl5eWaln369Gl6+plCKikpoe7ubsXXKxlgDgwMkE6no76+Ptk0XV1dtHbtWm/+CoawSa0I/f39pNfrJc/FQhHEZen1elq9ejX99re/lUnljtjE0dXVRTqdji5duhQ0nV6vp4GBgYjKSGpFMBqN1NbWRkSB2h9LReDp7++nkpISKigoEOSSREIj5L5e3nh07dq1oGUPDAxwxqUISUpFYFmWxsfHKScnh1wul+RD7O/v96km1Sw7FJzF83u0JO9Jr8UzAiwWC+Xl5dH4+HjItGVlZXT69OmIy0p4RZB78Pv27ZM0KvEMDAxQSUmJRlJJ4A6Uc3h4mDZu3EjZT+SQzWaTNv7IwBuP7ty5EzJtUONSmCS8IkjhdDpJp9PR1NSUbJqYK4IHTh28awFZlqXRUc7iqdPpyGKxhLR47tixg/R6Pdnt9sD8JT6MmpoaslqtUcmdlDOLbW1tKCkpQVZWVrxFEdY0EHphLmaQxjBgmDncknGGQVraXKzYasM/nzqJS5cu4erVqwEWT4Cb7XS73di0aRMmJibQ19cnOTPoP7M5OTmJ7u5ubNu2TcgnshtJIviv4dlnn5Ucv4u/luHh4ag6T5HAUg/tMRSRuc8rh7vxZdEqaq6mkLJ4Op1OKisrI6PRqKiKN5vNdPDgwahlT6oagWEYXL58GW63GwaDQfJ8PGHwPm5hFb67lgBYYKrrQ5p5DfZkPwXxamve4vnu8FU4nU6sWLECS5YswSOPPOJjPBJDEl+6w+FAW1sb9u7dG4Z0bNCzSaUIAGdQqa2tjbcYklDTEO6s4ryJ+vZ24vbitQDMaGpcB/Gj5l/pY7osvPrqq3jsscewZMkS/PGPfxQsnuEQyrjkqzziVy2hFFHXKTFkenqaMjMzyel0hhzGxa5p8HYMff0uV1Ndb3AZx8fHBeMREZHdbqejR4+STqejmpqaoMNGwbj0lw8lZQo5zPU7nVSKcOTIEXr11VfDSjs+Pk65ubnaCiSCpR4yFRu8nlZFRmrwm00Uv5zR0Q9kjUcPHjzwsXjyq67ENDc3e2wpvbSnODAkDq+QRkt48ieNIrhcLsrNzQ1rcoUo9org7jNRkaGOej2vvtG8x+NSFhjX6cqVK6TTPUYdHWcCzvkbkaQsnv7GJZZ6aHcR5+7nzaeBjKikBpr1HhPOBcqfNIrQ1tZGZWVlYaePtSL0mA2ci7noIbPUR3uqzD4+hgMDA5SVlUX9/f2K8uctnhs2bKDXXnvNb9bUQi8X7RHKaTTvph7qIVPlHp+yA/GeSxpFKC4uDmnhE39Nk5OTlJOTo7VYXLmeYaPwRbIkOOLy8QeIAo1HkZih2tra6Gtf+xo9/fTT5HQ6ueIsFUI5bK+JiozHwhVcICkUgfdeEhOqM2S32ykjI0NDqTjcTRWS3sYMI/LOZlnBeDQyMhJVebxxSWxl9A8OUmTuJpaUmbmTQhG2bdumeAo1VorAE0wxLRYLLVu2LOz+TUDeot9lZWU+lk1vbcSl6jEbhNiJSkh4RbDb7ZSZmSk5704k/wJirQhyiD2PomVkZISWLvM1Lrn7vCFxiPgAo8oVYW5YMxdxpKWlBdXV1bKTJnKzifPnz4fT6dRStJDs3LkT7777Li5evOgjPyn0tubTH/u3euyu3YM5ad6Zx/4LfwaeO4D1lAYwAGOywBKJsFGrqcpIrcGTGkeHsy4AQFyCZs3OzlJVVZWP51G08J5LfAeRiMjNdtMeg57MPcFGBuGRcDWC+Evp7u7G4sWLJb2Xwv2iYm1/mJmZgdFoxPz583H+/Hlpv8MIOHbsGH784x8LnkvUZMQccyfntrihGNQ7BMu6wDCCYUcXjVqVNKS0tJS6urp8jilakBnj27Pb7VRcXCy5qjrafL1L9uW//sBnE35NkTBGJ/KzrvHeS9///vd9jiv5wh966CHMzMyoIl8oeM+j4uJiwfPI/57kjoWCNy5lZmZCyk7I58lwY1ZvbaDEpqhcP2ODlPeSUr7+9a/LjjaI1PNYFnseqY3Xc+kT6QSsOgFgElIR5LyXlJKRkUF2u13TDmMoz6No8RqXtCUhFUHOe0kpvCJoxZUrVygrK4s6OzuJSP2YCNF4LiklIRVBzntJCSzLUk5ODk1OTqoklS+855GU8UiJQgRL6++5FGkZ4ZBwihDMe0kpSszWSgjX8yha9Hq9YitlpCScIoi9l8JF7uvwVwT/dOF+VeJ04RiP1PhaBwcHg66wSukaQey9pAZq1whKPI+ipaysjN544w3Ny+FJmHkEALDZbNiyZYtqs3Hf+MY38Pnnn6uS18GDB9HS0oKhoSHk5uYGnCcVQ+pcv34dY2Nj2LRpk2p5hiJhpphnZmbQ2tqKq1evxluUAHjj0dDQUEjjF6kQvre+vh67du1S7YMIh4RRhETyXgK4F8qyLH74wx/C4XCgr69PiFgWjGiUgIhw69YtnD9/HjabLeJ8IiFhmobXX38du3fvVjXPOXPmwOVyRXTtl19+KRm2TksYhsGxY8dQW1sbNCyeFiREjRDMeyka5CKrhaq+HQ4HysrKkJ+fHxCxTEt4z6Vr167FrEyeuNYIfAfr9ddfR21treoxDOVedjAlkDIexQqr1YqXX37ZY1yKMTEbn8gwNTVFmZmZNDMzo3reL7zwAg0ODoad3t/zKJZEGhZPLeLeR2hpaUFNTQ3mzZunet5Koq+OjY2huLgYr7zyCl555RXVZQnFqVOnYDAYsHTp0piXDSC+NcLs7KzkpI9as2bl5eV09uzZkOk4zyMdtbe3q1KuUmJpXJIjbp1FIkJnZydWrlwZMEGj5vIyCtHvGBwcxKZNm3Dq1CmsXbs2aFqtOHfuHLKzs1FYWBiX8gHEp0bgv/hQ3kvR1gzl5eUBS93ExMp4RBT8XmJpXJIjLn0EhmFw/fp1fPbZZ9iwYUPQdNEQbKnayZMnsXv3bvT39+M73/lOVOWEg9y9DA4Owul04sUXX9RchmDErWmwWCzYtWuXpmXI+TY0NTXBarXK2g1iSX19vWznlGK425yvIpDbt01l5kILORwOB86ePYv6+vqg6aJ9EFLXHjhwAF1dXRgaGor7dDZvXPrBD34geT6WS/F9FYGZA4YhEMuCSdPG4EFEgvfSI488EjSt2g9CzvOIlyvWPhDxMC7JEfOmgWEY2Gw2nDt3TpMHL36h6enpuH//Ptxud0jjUayV4ObNm3ExLskRRBEIxHp2WvfEDRSaDqHJkEjjfy3SwKR5+6QXLlzA8uXLsPxbeZ6aR66/qiRv/hgDMIxwPn3+PDidM6iuqsQ/zJ+Hc+fOYe7cwFsWK4/cb7UJx7gUvz6CDwyYtDkgViQMw700QQkIYNLmcr9ZFmDmCL+54wDIBSLGkwfh+G/+A1u3bOVeLtwgFoIyeG9cnAd5FHCuqNkKzJuT1Q0QI1zn/HIWp07YsEr/PJpbmkGs9JyC+GHL/VYT3rj03nvvBU0Xy1oqxPCR4R4+34Ek8ZbjnhfEujxfIKcYHu0QZTHHcx3w8ccf4a9/GcVL5eXcTTK+baNw46I8uCI9NVCQvL3ypgFgMT09hfPnfocsXQ6aW1o85733Eo8tuviyrVYrKioqsHDhwjhIIY1MjSDSRCYNYFnPC2B8RxE+VbYHQRkCtdn67zZs2bpDUecoMH/pvDm4WmliYhKl3/1HrC8theN/fJeq8fkxHlFj2TNgGAYzMzOw2WwYGBiIYclhIEwtsbOe2S82cBaMdRHrnvWLxsX6HeN9r/jjnhMsFzqG817KprvTUwHnAlGWt/caF42JPI+cf/87ZT+W6fGY4s7Hm+bmZjIajfEWIwCRInhetuTDYol1S3jWsm7PNbN+51nvcc+Lstlsns22As/5XMMqz5s/9t/vXKb8Zd+kzo4zQpo6Uy39ymIJyCseG8a73e64G5fkCNPWwEoH51NAQUGBpjujyXkeDQ8P0/LlyzUrVwldXV1x2TogHMJTBDa6iBxqei9JEcp4VFhYGBPDUij0ej319PTEWwxJgisCK1WFK8doNGrmrNHa2krZ2dlBPY9sNhvt2LFDk/LDJdo9l7RGczM0H/hSLe8lMWLPI5b1dCgbjL4xD6vqhchsXDyj6OMNRUKsPZeUorkihNp7KRL/QyLpsHUNlSCgghqEl91IRoBQ2UDV1dVRbbQVDSMjI5Sbm6vJx6AWmioCv/fSjRs3As5F09z47HnkyaahEgSDKN4gn7ixgoAK2jUwQMXFxRGXGQ0/+tGPyGKxxCXCW7hErQjBbu6NN95QNdqHy+Wi6urqgLB1rKVCCHfrDxcit4KOkZtyc3MlQ/VpyY0bN4Q9JhKZqFcoBZsPb2xsVM17aWZmRtLziNCLuvZOoLISjesCb6f/r59ycgLYvn0rTp48KZyLxTRzQ0NDXDyXFKOVhl26dIkKCgoUXSNXuzgcDiFsXWCaBjICkvGHWXqLTAYIm2tNTk5S9hPadFyl4MPiqRF+V2s0W7NotVpRV1enyHtJqnaZnp5GSUmJ4Hnkn4b6JnAbRche4TEmictrakHTxdUwbTcB4DbVWlnwFM7//lwEd6Qc3rgU75VQYaGFdk1NTQWEi42EcDyP3J6RQeCWNZ4RQ1Wjz9GOjo6Y7Bkdb88lpWiiCEr2XpKC3z2VNx6JmwOp5oMfMfDb6LC9JioCRPstcriJJZfLRTqdjm7evBmxfOGQqMYlOVQfNfB7L0XzJfCeRx0dHeHJwPcFRDusSY0geMxmM7322msRyxeKRPBcUorqNUJHR4eivZf8CRa2Ti1GR0cpPz9f9XE9n18iG5fkUF0R1qxZE3LvJTl449Hly5eVXRjm+xS/eL1e77Mdjpro9fqIn0G8UEUR+AfMb18fyZcW3Z5Hbh85winduz5CXQYGBuiZZ55RPV+tUbVG2LFjR0Tb10cfts63PyC36aaYe/fukU6nUz1EL29cSuTpZClUU4RQey/JoeaeR0qpqakhm82mWn7JYFySI+oJJfJM4LS0tKCiokI2/JwUO3fuRH9/Py5evKj6pAvJTGSJj2/btg0nTpxQrcz6+nrU1dUlhOeSYtTSKLm9l6QQG4/u3bunlgi+8w0UnoUzPz8/qr0Y+TImJydFax6SD1WmmC9cuCC795I//sajhx9+WA0RAPg5pyA8B5Gamhq0CH4PvlAY0+N8GbznUizC8GmCGtq0YcOGsCZ/7HY7rVmzRvU9j6Lhzp07pNPpaHZ2NnRiGZLJuCRH2DUCyXwdn3zyCcbGxlBeXh70Oj5sncFgiHnYumDodDro9Xp0dnZGnIfVasXGjRuTw7gkR7SaZDabQ+69JGc8SpQhVldXF5WWlgr/VyJXshmX5IhIEfgHFc7eS1rveaQGLpeLFi9eHNFuL8lmXJIjqhrh+PHjQWfnlBqP4sm+ffvo4MGDiq7hjUtaOu7EiqgUIZj30sDAAC1atCjonkeJ0jQQcTVXbm6uomukjEuJdE9KiFgR/vCHP8h6L4k9j5LpwZSUlCiyeiajcUmOiBVBznuJNx5du3YtKsHiQWtrq8+q62BKnOieS0qJSBFu3Lgh6b0Uyz2PtIDv/DocjpBpy8vL4+YwowURzSz++te/Rk1Njc+c+oEDB9Dc3OwTu5BUDruvNenp6di4cSNOnToVNN3169cxPDyMzZs3x0iyGKBUc3jvJfFQy8fzKMm5dOlSyCq/pqaGLJaA1bJJjWJFEHsvyXoeJVEH0R+WZamgoEB2veHU1BQ9+uijSWtckkNx08B7L/kbj9LT07WosGIOwzDYvn27bPzDo0ePYteuXclrXJJDidbw3kt2u13wPEpF7t69K/grimu3zz//POmNS3IoqhGsViu2bt0atz2PYkVmZiZefPFFnD171seUffz48eQ3LskRTEvELf3U1BQtXLiQli3/Vlz2PIo13d3dPrOGvHHpww8/jJ9QGhIidA4J2mAy1VF6ejrneaS9XHGDbwlcLhdlP5EjzIkEGpfiE3lFK+C75Ff69zvvvENz0+b4rFBOZWXgOXzwEP3LAS7ai69xKbWUgEi0pxP5B4D2/JyYmMC6devwcMYjuHv3Lg4fPgg+ci/DMEk3aSSH+F4YAogB7A47Tpw4gc8+vYvs7Gw89+xzntRx3xxPdebyL1xufV9ubi5+8Ytf4O7du54H5H0IqaIEQBqIWABeJQCAjIwMPProo5idneE2GeFDRSM+IXy1hKGgb5OFV/tFv1kC0lLlEYjwvFkiNxhPwPD79+9jwYIF6K0rxgbLRS6dwYSeocVoriK0n6mLn7wq4nmzfTAXe8LdMwzSGP53FRrB+iYFggTFTnKE2tFrQ0n/034YGAYbblWAZVluF/lDaTiUVofb2SviJKgG8J0Flnpoj6HIx508MFydaPo4hXqLrPCX33G2QQjP509DpXS4nmRF+MwZvI9bWIXvrfMqiflMD0yGTuytahICTwm7m8RlxwNtYDx/+d9R395OdKACDWdMAecKHjci59up8wy8NYKlIiDMDBFRgxGEYi5+Yerovz9Sw0Eu9I7BlBorkEIh1AhNb3fCWGTy0xKgIMcgfCreXZVSDd/hIAGgvnHcBrDoyfWByVPvAfBPwIKLZypRZHIHJHj/9kUgOxfrRQ8rRbuKAQovl4YYNliKpCSNAKBvHLeNepj99wPtN6P9DGAsMvtdxvr9myKI59PWLcbjAG6P9/qlYUG9dTD/KsXunYiox2ygIrNvW8hSDxegShzf2GfBSepNs/rTYzYQ/IJ5spYK4Zkk8wIcf8B1igxk6vV2BtneOtJDJsg1JfcKJElY+Xvi4jyLIrZVNqTe/RORZ6aU2yJPmDcFYLSwaDelbG/g//Hj/wA5F82zfvmXpAAAAABJRU5ErkJggg=="
|
<image>如图,▱ABCD中,∠ABD=50°,AF⊥BC于F,AF交BD于E,点O是DE的中点,连接OA,若DE=2AB,则∠ADB的大小是()
Choices:
(A) 25°
(B) 30°
(C) 20°
(D) 35°
|
25°
| 69,691 | null |
25°
|
"iVBORw0KGgoAAAANSUhEUgAAAJwAAABdCAYAAABQDA9cAAAVLUlEQVR4nO2dfUwbZ57Hv+Okpd01a9KdNu7ili04F0duxOwaFFdxl3QLge2CcXo05G75Ayndkm7utLQFUq2S60pbadOWu4t0tBCoVumFSt6tE2hItwk4J6qkLYRUdlW6zh4mL0ruSmPSQL0nQWLmd38MHvwyNjbY+AV/JAvm5XnmmWd+83t7npkBpQm81Dqep/7OJgIg/IzNxNMYtTS3z+8xt5JNzEBEMqQJTMAyjfdDJpOhzbkBRAQiAv9vpZAxG0Dq/Pm90ub0U4a1iW5ALCD4CxzBCZO6HMaWTrz/2i/F9UzBdrS3VIHJzw+qI8PKkBYCJwgbD6/GsnZ14ARjxNhru4OkUb1BA3pEHSylGVYEhogo0Y1YLkQEhiEIAudElWwDNnWcxuvPbZ/fAfPCtSCUGRJDWvQ+wzAQT2X8Mk4SUOBrNkVNlhanm9Kk/BUIUs8M/ExlGijwtCLlBS4oOs1/BEYCxi9dAgjzplaAH+/HYatzZRuYwY+UFziReblioMY/dTbhjYZydFjH4D1F50AH1rxoRUOpOnFtjDGpqL3TImiQYqy/HX9X/itx2dhyGO+/9hwAb5AReYjqcDhw48YNcfnWrVuw2+3i8rp168BxnLjMcRwUCkXE9Uu1J9o2pgppK3DRcvXqVYyOjmJkZATDw8NwOBy4evUqAECtViM3N1fcNzs7GzqdTlyenJzE6OiouDw0NITZ2VkAgFwuh06nw7Zt21BcXIyioiKsX79+ye1MdUFMX4ELyLP5Xqjp6Wn09vaKAvbpp5/ie9/7HrRaLbZt24bNmzdDq9VCo9Esuxlff/01Lly4gJGREXz88ccYGRlBdnY2iouLodPpYDAYoNfrkZWVtexjpQJpIXCibIXJt/35z3/GJ598gi+//BJ9fX2oNFahsLAQPzE8jkcffXRZWidarl69igsXLsBut+Ps2bOw2+0oKyuDyWSC0WiEXC5PaS0WlpUduo09PC81bC9wa3qK/vCHP5BarSYAdNddd9HTTz9Nbvf/SY/2L7MdgW0J1bbA9TMzM2Q2m6mmpobkcjnV1tbSH//4R5qbS7/JBSkvcFIc7+0hk8lEa9asoXXr1tGPf/xjun79OrlcLiotLSWDwUATExN+ZcIJbigWK7OUOqempujIkSNUUVFBcrmc6urqqLe3N+p6kpW0Ejiz2UwcxxHHcfT888/T97//fero6JjfuqAtDh48SEqlkk6ePJmYhkaIy+Wijo4O0ul0pNFoyGw2J7pJyyalBC6UyTpy5Aht3LiR9Ho9WSwWqqurI61WS1988UXIuoaGhigvL4+amppSwnSdOnWK9Hp9ygteyghcoLB5PB7q6uqihx9+mEpKSshqtdLIyAip1Wras2cPzczMLFrnrVu3qKamhnQ6HTmdzng1PaacOnWKtmzZkrKCl7QCF0qb8TxP3d3dpFKpqKKigs6dO0dERK2trcSyLPX09ER9rI6ODmJZNuQFjNT5X0mi0XiJbGcgSStwUkxMTFBFRQVxHEdDQ0NERH6BwLVr1yTLRdLho6OjtHHjRnr22WfJ7XaHLJ9MF49IEDyO46iioiIoEApHos4j6cdSaT5N+Oabb2Lz5s3YsmULLly4gC1btuDMmTPYtGkTtm7dirNnz0KlUknWEUlOS6vV4sKFCwAAvV6PL7/8UrJ8suXHysvLxf549NFH8c4770RULmHnkRAxj4IrV65QSUkJ6XQ6stlsRCT4b01NTaRSqUSTGkvMZjPdf//9PhGuP77mfSWINP1is9mI4ziqqakhl8uVdNqYKIlMqlTnHDx4kFiWpYMHD4rrnE4n6XQ6MplMNDU1FZPjSOE9Tm1t7ZKOkyg8Hg+9/PLLxLIsHTt2LNHNCSJpBM4Xl8tFer2e9Ho9ORwOcX13dzexLEvt7e1hSscOj8dDjY2NlJeXJ/qMqcLw8DBpNBqqr69PqhtmUYEL1gfLz1mF0zJOp5PUajU1NTWJ69xut5hbGx0dXfbxo6Wvr4+USiW1trZGtL/UMNdK4XvcmZkZampqIo1GQ1evXl1yPbFk6Rpuvj3NRiw8aAwQICOgisbCCGaokxkaGiKWZamrq0tc582tNTQ0RJRbixcTExNkMBiotLSUXC5XwtoRCYH929XVRSqVimw2W8L9usUFLoL2NRtB/T550/aWKgKq6K9RaMOenh5iWZZOnTolHJbnl5VbixevvPIKKZVKGhwcTHRTwhIoWF4tbbVaE9Qigag0HM/zPvInCBNPY1RV3RK0b7MRZGw5HFG9bW1t4h1IJPhwTz75ZNjcWiI5d+4cKZVK2r9/P3k8npD7JTqKDVzvtSBHjx5diWZJsmwNN9bfLilY7S1VhOrmRat/4YUXSKvVioJltVqJZVl65ZVXFi2bSFwuF1VWVibtTREKh8NBeXl5fpH/SrLsKLW9pYo6BsZ81giar7+ziWAML3DPPvsslZaWktvt9sutnT17drnNWjEOHTqUdGY/FF6NNzExQRzHUUNDQ5CGjrdWjljgeAl/jKcxqmIqJQOE9pYqMrYcljwBnudp3759VFJSQjMzM0G5tUQ7ttHiDWwaGxsTGtgQRS4wbrebDAYDNTY2rmh/L0vD8c7TkuaUd54mAKLmCzyhjo4O0mq1NDU1Rd3d3QHz1lIH3/Nyu920c+dO4jguZWaeTE1NkUajoUOHDq3YMZfsw/EkmM2Wzv6gXZuqQahqkizX09NDubm55HA4qLa2NmG5tXjR1dVFSqWSuru7iSj5BvsDcTqdQZNR49nm6DUcLwgWT2NkhH86xKvZQvlu3ujuT3/6E+Xl5S2aW0v2ixUKh8NBWq2W6urqgmaeJBs8z4vR68jISNyPtwSTOkdj/e0Bid6Fv6HMqMPhIKVSSbt3704ZJ3s5zMzMUENDA2k0GjHdk8yYzWZSqVRxj7jjM5YaoJiuXbtGDz74IGm1Wr80QjJObIw1FouFlEoltbW1rfgsk2h59dVXSavVxlUrL1vgIuk8nU5H3/nOdyLKrSXrxVgOV65cIb1ev+QZLiuBt9/r6+upsrIybseJQODmApZCCwRPwTFGV1cXKRQKv/HR1Yh32lBubm5c5vDFijt37hDHcXG7XlHk4aJBENLLly/TfffdR/fee6+kmk5HbSaF73larVZSKpX06quvJrBFoeF5nux2O7EsGxd/Lm6veiAiPPHEE/jBD34At9uNvr6+eBwmJZmcnERNTQ0AwGKxgGXZBLcomAMHDmB0dBQ9PT0xrTduzzS89dZbmJubg9vtFjs3gwDLshgcHERZWRk2b96MM2fOJLpJQezfvx9jY2N49913Y1txzHUmCclEhUJBX3zxBWVlZSWto5wMDA0NkUqlopdffjnszJNEMDQ0REqlMqbz/+JiUh9//HHU1NSAZVkcOXIEAwMDsT5EWjE9PY36+npMTEzAbDYjLy8v0U0SeeGFF/DVV1/BbDbH5t10sZJc39cu6PV6IiKqrq5e9dFpNLS1tZFSqSSLxSK5Pd5BllT9MzMzpFarY5aoj4nAeRvq8XhIrVbT4OAgud1uysnJoYmJiVUTjS6FwL6x2Wy0adOmhE+p98LzPFmtVlKr1TF5B0tMggavmu3u7kZubi5KSkpw+vRpFBYWYv369Un38HAyEdg3HMfh/PnzmJ2dhU6nw8WLF+PeBgrjVTEMgyeffBK5ubk4evRoTA62bHie99NuRES1tbXU1tYWi+pXLd3d3aRUKpPCLfnoo49Io9H4rVuK5YqZD3fo0CGqqKggIsHuZ2dnp9TU62TF6XQSx3G0c+fOhM884ThO9OWW6ibFROBmZmZIqVSKsyJ6enrIYDDEouoMJPRvY2MjqdXqRacQxdNf7unpIY7jllWHn8Dxd2bFXzQcOnSITCaTuFxfX0+tra2ZYCGG8DxPJ0+eJJZlF52hG89+LywsXFbEGqThohW2QO3m8XgoJyeHrly5suRGZQjNtWvXyGAwUGVlZUIeyF6ullt2lGqxWMBxHDiOAxHBarWioKAgqZKX6YRKpcLZs2fBcRx+9KMf4eOPP17R45tMJgBAb2/vksqHFTjy3AZ/ZxbkuS25DAAneo7hF7t2AhBCaIvFgh07doA8t8WfVL2htkWyX7j1vtt916U6FJC6+N3vfofu7m7U1NTgt7/97Yq2Ze/evUsfYw1UeYEm1XeZ53mau72QjJy66SK5XE5ut5v4O7Pk8XiIZVly/tURuo4w9UdSJlT5QP8z8P90IdA/c7lcVFFREfQpgHj6cS6XixQKxZKi5uhM6twdyO5a+ETP8ePHYfz5z/Dde+4GAJw7dw4PPPAA8vPzY/qlO2bt3RHv47tvJOVSjcBEMcuy+PDDD2EymcBxHD744APJ/WIJy7IoKirC6dOnoy67qMAxa+8WTNS8APkKksViwTO7/hHM2rvBrL0b7733Hp555hmhXGZ0ISZEeuO+9NJL6Ovrw969e9Hc3Iy5ubm4tmvXrl0wm83RF/SqunDmx7vO15xOTEyQ6sH14ngff2eWlEoljY6OhjfLcTKp0ZRJJwJN59TUFNXW1sb9UwBesxrteK+fhiPPbUkz5NVyvubUbDajtPxnuHsNA/LcxifDI5DL5dBqtQtacf4XaOZCbfN18H33i6S8VJAQ6v90gmEYPy2oUChgNpuxZ88e6PV6SS1EMXB3WJZFcXExPvzww+gKRiqZgVrCYDCI73IjIvr1r39N+/fvj0raM8SX0dFR0mq1kp8CiBapIKSzs5Pq6uqiqicigQsUtomJCWJZ1m+Gal5eHp0/fz5sAzOsHN7+n5mZod27d8fllRo3btyI2qwumoeTMkU2mw1FRUVYs2YNAIjfNyguLhb3yQQNicXb/1lZWXj77bdx4MABlJaW4vDhwzE7xv3334/i4mKcO3cu4jJhBc4bfQb6dUNDQ9iyZYu4fOzYMTE6zZCc1NbW4tNPP0VXVxd27dqF6enpmNRbVFQkKhxfKISfuKShreHhYTz22GNipRaLRRzyWOyAGRLHD3/4QwwPD+Ohhx5CYWEhhoeHoyovdU2Liopgs9mC1oe0cEux3b5P8tjtdlKpVEupJkMCOXXqVFSfAgiF0+kMmpgZDpnwfXgfAZz/+a3w4fr165DL5cLDuwT09PSguro6qjslQ+IpLy+H3W5HX18fysrKMDk5uaR6CgoKcPPmTfztb3+LaH+Zn1UlgIHwEwnQjMPDw9DpdOI2i8Ui+m+UMaMpxfr16zE4OIht27Zh8+bN+Oijj8Rt0VzLwsJCfP755xHt6+/DRRBYfvbZZ3jssccAABcvXsTNmzdhMBiE4pnINCX5zW9+A4vFgrq6Ohw4cABzc3NRXUuO42C32yPaVxC4cMIcsG1kZAR6vR6AEJ1WVlaK6ZGgohmNlxIwDIOtW7didHQUdrsd27Ztw/Xr1wFEdg2LiooiFzgC/DSbb/3Bh+LhcDhQUFAAQDCnu3btCll5RuOlFgqFAn19faipqUFxcTF6e3vDXkOvMBYWFkqmRiSJdjxALpcTkfCSPYVCkXTvw8gQG2w2m9+nABZ7W6lCoYioXlk0Omh2dhb33HMPAIgze0OZ0wypAYUwmRzHwWazYXJyEnq9HpcuXZLcz6sBI50OFZT49T28c6ADA+MLy5M3XFinyAEwH53+feY1XMlOKIHyEs5kyuVyHD16FI2Njdi6dWvYaeU5OTmRjV4svELV/2WqUq/Ft9lspNfr6dq1a5T9XXlSvPtiRcjMQ6C//OUvxHGc+CmAQBOr0WgielJPJhMjhoX/iAid+zpBVVV4pGAhMXzz5k3k5OTg+LH3UL3DhKysuxaX6HQgAr+D0jwi37RpE4aGhqBQKFBcXCzm3YgIIEHD3bp1a9F6JNMi1rdbgNJS4KT/hsnJSbAsi+M978+PncbtBZoph2Ca+EX3S1WICFlZWWhra8Pvf/97PPXUU3jzzTeF82YE8/vtt98GF+T9ZUiQGGaho2i8HwNUhufygb6qTVD7zGCanJxEVlYW7HY7ysvL43NmqQABzoFOMAwz/zPBCR7peAN6Nbevr2cymXD+/Hl0d3djx44dmJ6eRk5ODr755puAwgB8w1KesBY8AbKFjtp3uB+vv94KGu+HUbPBz5wcP34c1//3f5Cbm4vW1lYQw4OJzRu/UgaGYXDz0gj+4z8/8Fn5PjbINuKf/+UXWBeLt0SmCNu3b8fg4CAefvhhPPTQQ2LQ0FLN4I0T/vt2DIyhoVQNma8EDnQ14403/hUMw0CmLkegrS15/Cf4h9pdC09mpbfbIuJ7nkSEcaf/O9sYMAA5cenyNwCT3mki35uJYRg88cQTqK+vR3Z2NqampgAAr/XyaDYKQkZEGOtvx/NlGzBwifd5ast5mpoPnxajibH+dr/lVRuoSZz4W82VBIAYhvH55hjocP+YT5nlvy0yVQn8jq73o3/9zvkp5jTeD9mLVrz+3HZReq9c9knAwT9QozSPyHwhiQG+srKfC9vEfpABqMJPy/KFRUZYtyp6STzJhThgfMAKprkKBfM+7b4Xy2FsOYyyAgDtLVXilwAHxoWbs9ko3LEMQFXNqffh3Pjgr7H8v6hYJflV7NVKf2eTKD/wzeXyEq/Np3mnl1aR8xspfn0ipJ8EZZbpJhGiOewzrcX2fyeU5gtxwfbnWtHvJJQVSMTx3g7NCFswDEMLJoQBGEba5K5WCAAuncEb2IfSR4R1pb9sgBHAwJl+EFG0iaP0TWxGwn9bO8HIGDH/Vr2vS5A6KWj1+Lo+9yCs/zWAlyp/uqD1nVfQB6AgP19QYl67Gzj7ZNVGpSEQfF3BV/P9BHv1vk5xn0yfCf6/12fz9hFQRRfpNhEfry9CpxlvtVQRjM1B650DHQsBwyqXNv8gyucX0G9rgxVkeg7RLBXnQAd+9Xof+p0ngraRr8lc5S6vumwPeL4hhO/vdcVkgmQFDq8GPSoYgtXgoXS2Pb+QQwrg8hUhV0mrxFdbjNCBpgxeJSYDgm/OoEcFQx1gqS1LGcbx1xPAU2U/ldw6cLIVxpZKbEjz4axYsng6PN23hys6Po4TAPIfUQdtcw504I0TMuxteC64XPgnkaJrX5ptly2qptJ9ezgK8mEEcPmS0281wYmXtj8PY0s7tud71wp+CnmTw96UXaLPL0m2e2/CTHQQJrfIQI2Klio0tHWK+9J4P2TMBqDlMN5/zVe7ycRS3j/p73JEjjigQKve452PykkYNWDmJYUHQUbC/4Hzu/qdhNJ86aE/cbgrgyT/D4nFNT/xxFCoAAAAAElFTkSuQmCC"
|
<image>如图,AB是⊙O的直径,D为$⁀}$的中点,∠B=40°,则∠C的度数为()
Choices:
(A) 80°
(B) 100°
(C) 110°
(D) 140°
|
110°
| 69,692 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAP8AAABvCAIAAACsDIHeAAB7rklEQVR4nO29d5wcV5Uvfm6o2Ll7pifnHCSN0ijZVrAlOYNtjG2wDbuwwMKywGNZlvA2wfJ7C5ve7sKajEk2wQRnOduyJFs5WbJymhw7V1fVDb8/qmemR8FYBq/ttz7Spz7dPdXVVfeee+4J33MOklLC2/SWISHBARAIBAAAyOmDcBlWVTuX13QdsGrn848+9thf//VfHzl8ghDyV3/1V11dXceOHbv11lurqqo454SQN/Ax3iSE3+gbeJsulnDRfzT933W5nbU0zRBcJhOJP/7jD/zDP/zDl7/0lb6+vuPHj+u6/pnPfKa0tFRVVQBACL3RT/GmoLe5/61GkgAQCRTk1H/AAFgz/JxJKREC+jd/87fPPvf85/7qCytXrgaA0tLS2267raGhobq6OhAIJBIJy7Le6Md4UxB9o2/gbboowgASJAYQEgABmnoLdi6nqAYiyve//73v/+CHf//3f3/NNddRSh3HGRoaKi8vv+WWWzDGuq4jhDRNe6Mf5E1B6G29/61FQgIAeIoLkhKQAAkAwrYszfQL1/3Yn39885YXf/nLX/oDobKyuOCMUppKpTjnfr9fURTGWCKRKCkpeSMf481Bb8v+tybJqRVQIKyZfsmcbD7f399fW1sdDAbjZXHbsa1sLhAIBINBAJBSJpPJUCj0Nut79Lbe//8GCTuXyWTTgaB/27YXR8eGY7HI6NiwpmqhUGhycjKdTjPGEEKhUIhznslk3ugbflPQ29z/1iQkASQgASAABCCp+Qxf0CeE07u0N5lM7Nm3OxDwuczGGJeWlt5777379++XUmYyGUKIaZpv9AO8Keht7n+LERcORwwQB8QBCS5dl+cZzzNmYYw4dz/3uc8qCvmXf/3no8eOpFKJkZGhL37xi0ePHlVV1bN3GWOc8zf6Od4U9LbV+1YiCQJAMOAgBEKSIIwAAQgAYMzGmAqQqWTm6PFj3/jGXU8+/Yzf7/ep5i233Hb77bdXVFRMB7kmJiai0egb/TRvPL3N/W8l8rjflQyEABAUE1ywfaWUMpfLASI+M5DL5w8fPqwapmEYuWS2srJyWtXJZrNSylgs9sY9xJuI3ub+txJJEHmWxxhRjAEE8oAOQnDOEUKKoo+MjoLEpfHy0/0D1VWVMBUQtixLCGGaJkLobZjDNL2t97+1CAsBCBMAIgXmHIQAQBQTlVJzcHAsXloZDsX7zox+4fN/+5Wv/OvERNb7mmEYnPP+/v7JyUkAyOVyb+hTvFnobX//W4wIVjAoAOAwjqTUFBVjCgAggRKj78zohseeeOChR4PB8MsvHz986ERsaffY2KiqqqFQKBgMSikRQm/Lfo/e1nzeSiQBXCExRlICY4wiTCl2bZHN5rJZ64UtWx/d8ER399xFvcvb2tq++rV/aWyovummdfHSMACMjo4CQDAYJIS4rmsYxhv8MG8Ceg3cL6ZevLLWJM55MU34Fd9e6DoXoreQ8nbeZ3k19+99UUigeVcQjBECDIAxAMDEWGpoaOSb3/ymafiXX3JpV+fcxsYSLmF42P3Up/78Tz74nktWLDUMJZXOBIN+AEin04ZhUPr2tn/Rmo+YPYUzM+c4TFVpOp02DC2bzfr8BiUEQHDpIiQRIAnerotw4UcxADDOBQcAwBhTSgFwAb7lgdZR8c9NfzJDEghIfFHLF7/O2F4pJQCCs+4JAQAHJAAkgJgaNwQAsnAqBlm4M8+WzeeZYVDHZUIwXadWPpO3c5FQnEiKBAgBigJSwI4dex5++OGXXz74nve8Z+7cubW1lVICQkAQCJ56353v3r1zn88ILl8+z2f6sxnH51MpVV3XJWTq5xB6S0mQPyT9ngJgeiIBY5xKpYLBoBDM7/dL4JlsFmOEMAcQCBEAQAghhEAKACCEIEQoIUAQAAgpXGZzJnXV25GnFgDgqQWAAMDDM07Rm3PaBAAGdM4CAJhi/alzvGeZXo1ITi8AADAMKgRkMhlVpYzhXM6ORUtTqYyhha2cCAbx0FDy29/+9oGDe1euXHnrrbdEoqFQKCQBrHweIWQYWkV5zDQWPvrwhs7OrtOnx2trY1Ki8fFkMOR/FTvq/wi6WO4/l9sK44gxYIwBQEpECE0mc6FQmDFGKZ1aJLN0Icd1EOICCYwBIYQRwhQUqkg5xfYIAXjGWZGJdj6ZitBFzSV5PdeMAMQBOEgCiJyzANCM1JfYey4kYeqpRGFnQwAAecchRIlEw+l0VoJqGLFUSgQCYcGAUvzjH/96w4ZH2traPvOZzzQ1NYVCJiCQEoSQiqIghIQASiEWC65YsWL79u1lZfGSkqjfrxBiIm8Dfpt+P6tXFB2BC06wks1aqqpjRMbGJsrKormsVJRCIpGUIAEQAkoBYU9D8OZbIpAAQoIEwCCVWezu0bn3WFghANgFePVxe4yAvq7c72UeAlAvDWXq85mHnWL9GVWnSC/iRbolsV2OkSY4ERxrOmSS4Djy8KH9v73/14nE5DXXXLXm8lWBgColOK7rzSMhRFEIADAmmCsQwgrF//AP/1JWVnrtdVdXVsYAgHEhBFMUxfuhtzWfi6FptgMMwKZ3c4Kx4+azWct1pK75y+LRsRFHSuI6wudTfD5QFOAcXBc4A0wgkUhQBWmaoumEEAyAhOSCC0qLdomCnoOhsICKbmOac87G+k7f53lnFJ3/5D8YiZn/CBXdwzTre4Snb9rT/QEBSCkRA5ASBACMjo/GY9XZPBgaHh5ifk4PH07c/8CvMumBOXPaV69e1dAQt/IilbJ0XUMIUUoRklJKx3EAMMZY1ajggDG8853v/Nd//efOrnZN03RdMUzNdbmiKMXmx/9MumjuL2wVEgBJQHJKXIFl5cbHEzXVDSCBuXD0yNhH//QTzIWrr7qusrK6ubmxtq4yFAJVA0wAIYiXRgDA269BAgDHoGDqscgUlyA+y4JEZyn93n3g82nYFyL8xsm5aaXfW97n9bjjKS2RxGPVibStEL9lwalTow8/+PSv7nvoYx/9k+U3XtndXUkppNPM9FEAallWKOwDAG9MXNcFAFWl3vucxefMaezu7n7wwQdbWpp8Pj8AIESKLKv/ufR7Wr1TCiuAaZiW6bgut7ICpHLo5eO6Flxy6fIzp4f37jk0MnKPbedLSqNz5nQs7l3U3FIfCvmoQlQVFAWoAgBESpCAicpmazIY0PRbt+hzAQAIKIjzaUqvQK+vpMNTQ4pA0qIl6tHUnlbYFqZvxTuBTH2CQRKbgakrx49O/tv/vWtkKG072PRFNd0/d27l+HjO7zcDAZrJuqapGIZy+nRfZWU5IWQ6a1FKKQRwJiklQsItt978la98ec+ePatXr1YUmIp2/U9fAL+/07cwoxOTE7FoaTbD/H6NufDiCzvK4pU98xb5/SHbtrPZbCqVGB0dPXPm9Le++f3x8WG/319TW93TM7dn/tympsZQCBACLhBRFEDn3pUo8i9NaxdSAgBS0LRP6EJaEMC0evE6s79nt8DsLQsV3TYUjggA6NTeByCxRAgEKdjAEtw83PfLp370418E/GHDjI6ND334wx9+/PHfLlhQUVMTVVUABIahJBIpTKC2tlpMoX08zmaMCQGY4FzWCgaNqqqSK6+88ic/+UksFlu4cG6RSvY/V+2B12D1ymn/CpKAXADmTacQmGA1nXIDfmNiDD78oT/v6uxZednlpumTUnLOGWOO49i2bdt5zvno6GgymTx16tTRo0cTiUR5eXlvb++cuW0dcxqqqksBQNNAVSGfB4xB1cB1ARNIpZKhsE8INpkYi0RCFOuOLRSqAQAmYOVcQMIwtMnJyXA46LouJgAAjuMoClWoCgAAmHPpMYpHry3sn8vlTNM8ceJEMBj08qei0Wg2awmOKFX9PiWbFZzzYEgBgGRqUtWQoSu5fFbTNMdxDS2QyVqaajiOw7kMBoKODa4DigLZDDz62I6f/PgXyUSaUO2qq67a+9L+RYsWbdq0MRgg9XWBT37yw8EgERKGh8cqKkoy2ZzP57mJzw1EIsEhk8mGQr502vrf//t/t7W13XjjjWVlMc9WxhgrCvFYQAhu2/b/qMSX31/2FwYaIQKACaGOA1beSiQSLS0tmq6MTwwhhDDGGFNCiV/xBYMBAFRaGkeILF1yqW27ExMTfX0Dp0+f/tk9D5/+p2OGqdbX17e1tTU1NV1yyUKEIFYCBAF3IRIKCQ52HpdEq11XjKfTFBPi1yRwx+WEYowJAEQioXQmSSlRVQ1ACEW6LOuyLOcy4CshhBBCpJTeyveCcBf72IyxTCbzwAMP3Hvvvf39/YZhuK5LsLZ40fIvf/kr/oZ4LmeXlhqTE3mEeTgSAbBTmQlFoQSRyckRGSJ+X8CyXN0IAEAmW4jdbnz+zG9//diBl476fWGF4PVXXvnSS3trqir6B07qmuye27LtxSd27Ni2aPECRSEVFSUTk4loNJxKpQIB3/luUzLOVFVNpy0hxB133PGNb3yjt7c3Eom4ruvzaQBg264QQlVVQsj/NPjDa+V+BACiyIGNMcIAWNOwY8PIyAhV8OLeBQghRWOe7BccOJdSuHKqEpOUEiFsGEZ1dW1lRc3CBb2cS9th/YNDExMTzzz1/D0/eQJjbPqMQMC3YsWyJUsXzZlbRihQBTsEJOBIJIQRAALXBSufDwR9GMNEYlTTVZ/fcFgubeUwBkVRDF0BEAIw4w7BWiHu9lpZHwCCwWA6nX7nO9954sSJJ5988jOf+czy5csz6fydd3zgz/7s43/12c/3zJ8LAD6fPjQ8GI74HJf5fAHLykqA8rLqXM4eGBgLR0oAw/iYHQ5pg/3yP//9e0ePDiQm7I6OeY7F16zufPqZJ9ra68fH+oIR/cYb11fXloSD/Fe/+lVVdUVrax1AQYM/B7YwbV6DqtJs1tJ0lVLa1dW1ePHi++9/oLq6JhQKAQDn4Dpc1ainOHm1rv7n0MVz/1Q6RdF7AgDC02YREAL79u1pbq6vrfMxBpXVtYyBbTPLsqycY1m2YzPOZTZjEaIQohJCPL+PBCkR8iuRrs5Kx2F79xwJBSqffvrZmpqQY7nf+84vN23cMzwyoGlk9ZrLurrbmpubausN1QBMRDhIguEgliAAVCWICeIcMDE1pErMFURdYE7eFgIMVRNCIOStPTQVobvoNTAyMhKPxw3DGBkZ6e7uvuyyy8rLyzVN+9a377rl3bf98r6fzZ3Xlc1Sw4BwOCyltG0noPg5y/X3j1ZXNfhNAwlBMU4kwLKVH3/jN7/9zaPANIX4V6264uCBQ50dHSdPnqiqjsdK/cFI5YJFHYsXzo1EYf7c+j27dzz11FNVVe81TTUUCkxOTkYioQtpsAghAOG5gBzHufXWWz//+S9s2rTp2muvlRIsy0YIqSp1XZ7L5d7m/t9JRQ6ZGeMJcy44YwhRkPDCi88vXbKcCzB9BS+llJTzAHPBdYEx4EzYtjsxkRgdmczmHE3TdN1UEGEMW9kcYGpZuYH+oa6uOfPnLwz4w01NTT/96U8TE25FWfPAQN8vf/bYk49vQQgEWHPm1ZdVRlavuqyjq1WhoGjg92mYgmODqgMiwATkmWO7HIHhN/0YMAIshBBCeKwPAIx50Z+LIM+1snfv3gMHDtx88811dXWu69q2vWRpz2Wrlmza/FQy9fHa2opczg0GjVQ6pevG5GQqEIiGAvFUwpWCmgbOpOHpjbt/e/8j27ftXr5s5cCZ0YULe0+fPlFdUzY6dnpwqG/d2hUVVeHO7kvq6gPMBYzBZnDHHXf859f/vbq68tpr1wOAENOupLPiJAIAXJcZhsGYyGazAX/Att0bbrjhZz/7RXt7Z319ra5rnocUY4wxdl33YsfhLU0Xj3I7e4gLEROCCRCQEtLp3KlTJ//0Tz/iuK7pUxj3QBCgEFBUMAoGFrZtLRora2ou4xzyFk8mkxMTiWze9gXKJDCWyiLinOk7FolEn9+4mTG2bt2VL7zwQnf3XCnw0aNH53T1Do8MPfvsk4oS2LL5wE9+uKGkJBoM+uvqq5ctX1waDy9a1G36gHEgBCJRVaFq3gYpQUggGDDG0/LeU8wudtaDwWAikdi9e3dpaWl3dzcAKIqSTE4yns/mJriwbCcDCDSdCgmEEFXVCdEwQumUCAYUwWDjc6e+ftd39x860djUduutH3xh85Yrr776yJEjlpuZ39h+9Mjkre+95pGHfnVn1y01NQFPtUlnsq4D8+d3LV68eOfOna2tLa1tjdFoNJfLGub5y7N55atyubyqah6o5JJLLrv//gc3btwYCFxdUxNnDKVTls9v+P1+xthF8sNbm16D7J8ORYnCApAIptC2QsDgUL+UvLw8bpiUCyCk4P2TEqSUUiAhhJTSdvKmaaoqAoBAkARC0fLKICAqGExMwksvv+ALctedjJVWNrVUOm6a0JiioHQ6GY1GdV0fHByORiMtzd21Vd21NXTHjm3MUQULvrD51MEDY6qGHDfX0FBbXRNv72jpXbKgpIRICTIAeSsbDFJN0zzlBwBem9tncnIyEols3bq1srLy0ksvBYAzZ86UV5QoVPQPHF+8ZL6m42RqXKGaphk+n49zOTmRikVDAT/es2vsG//5vdOnRqKl1T3zaiIlJftfOtbU3JHOZEbHBq5cv2Zo4OQt77m6vCJy6nTtzp0bOzvKS8sirpPTVSXgV60c3Hzzzc8++7SXqDVtw1yAhOu6qqrqupbN2D6flsvxd73rXQ8++ODRo0fj8RIP7i+lJAT/T0v2eA3cPx0imSqjhwhIYAykBM6gv29Q13VCka6jfJ6pGgUQ0w4WhBElCABpuo9zmc1ZUkpN0wwfAUmFACGAA1i50ctWzW+obSLUnDe35Tvf+1Fra0VDc2zHjqeXX3Lpgvktu/ftj0a6Skojh14+smTZytJIleE3KsrKRkcyCvgbapseffh+ZpsnDo8+dP8mld6t6Ep9bfXCxZ3XX7ccpBaJAEKYcwAJGAP10HVwHvc3mnEjelRA7AWCxomTR3bsfPGGG27QdRVAlJWVOk7u4UcfyFiTjU01peVhXQkODo1VlPuHh5OxWAjj4Pg43P3DX/7sx7/RjPCK5atPnx5qa2k70Xe6uaHR9NFnnnns9jtubm+vX79+QVkZMA7vuvmaDY8+NDI+ECv1A2KKpjNHGiYiNHDtdVdpmmbbtuPk/X7/7LDVDMIik82oqqoqqqfd2bZACF16ydL7f/vgyZMna2urm5pqFdVwXVtIIYEDKK8uHP4q0zze1HTxGE+vduR03B55SAfqukxVFUWHBx546Nprr/d88I7j6sYFUWWEoClHNQAAIMAYmAOGBk8++dBHP/axtVcsGRm1g37t6ut7cxl7eGT0Tz7wEdOfLC+tOnzMGhh8qbGpc9++XY7T2dFZs+WFrbGw2btwwYtbts+bG1254qrDR4/Mmdfz8uGDgwN9LW0N+3eeOXJg6LGHNttuilLc2dm+cFHPZSuX6AZUVkEiAZEocAFUgdGxVCjsVxWcs3J+Q5WSW5alaRrG4DJbVXQuXIXSY8dfJlTceNN1hkEBXFVFE4nJf/33r5VXl16+dpVAkoEsK68YGM6Gg6FEBr77vfsffGCDPxBVzLIVl63u6xsor6kaH+83FDcSxs8+98Sdd9542aULSuPAGQgJmEB1TdkHPnSnFynTDEVIlyoYAKuqN3dcU6mm+gsDeJ4YFvb5TAAhgWNMMMIAIAVICZ/85P/6P//nK9XV1WVlcX9AVRSYSIxFwjGQDIAULyWJMExF74qEw/nTPN5a9BpkPwYJU+iDGeCKqioIgRDQ3z/wjne8wzRpPi9nMfervCEFwIWR0b7W1lqEIRxWfD4ALMsrzN17X165Zv6f//n7QsGSdVdeattuMmkTQg4f2Vdf3xgM0lR6VDcUQvnQ4BkEhLtscnJy/rwFqUS6vLQmHIi9dGBfONQwMjowPDjm2gMbn9v/b//6g4rKEgmsZ37n+ivXhMJ6ZVUsXhbMZEAJA0FmNsNMn+bYeUVROWNZi2thNZPJCp67+4c/rq9r9AdCqXSKCfe3v77/Bz/6bryy+vbbb1/Qs2JkIhkKKGOjqXhZcO/uib//+68ODyWamtsHB0aWrlg5Np6sqq71+bXtW3e/57YbAPE1qxefPHFg9er5BFPdX+A1BLwIV4jQuXkzHl0odjtd7G0GQQQIgZQQi0VXrFjx3HPPdXW3ImKoKomGIw6zVTKNSH8F+n8kPeAPlt5GCAgBw8Op0dHRhoYGQiCTtXVdv7irIOAcDh85oWk0FPZxIXx+DACGSW3HtZ3MZSuXNjWX5C1Y1FuVt2AyAW2tbZ/41BeXLps3r6e9v39Q18zBYX/fwIF58+aXp82hkSPBMNEMZtljJaUlQtqpVLqlqTuV2FFeVl9RXr/lhY0tTZWTibFf3PPkzm1HAfjo2GDP/HmNjfUrV146Z16EEIoQBP0hIMA5Uahm58FxfO+59V0HDh1AkvXMX9ZQV8MkQ1J86tN/sX7dNYFgdGwiWxKpHB+Vhw6NfOnvv7ll007TF37H9TeNjk7UVDYkEpOciVDQ//ymJ2+8ae2yFfMUCgAL/uErf/fUk4/e9K5rKXg5P4BmwD8FkuK8fCmmVP+ixTGTGecx/VQqAQIEYJqwfMXSbdu3PPfcc1deeQUhWKEqSDkFuxYAhUWF5DQQeprwBV6/xegPFusFACHg4MGD4XA4EokAACFECMAXaU9ywffu237pZUuzuUQorAOilmXpuq4TctU1a0ASIYFLV1EVxqGmFo4fBURyi5d2dHRoQ0NgGnDzretefvnwnt0vCRQ+cniMybF5Cxq2bH6hra3tqqtXbdv2kt/vr66uHhwY7unpaW3pGh/L1NQ0c1cd7BtZuHBhKgHbthw/fTz9i3ueMkzc1FweDGlrLl/V3NxYUREoKwfHgVhY/9a3fukyK5tLJJMTobBvZHTQ5zOWLVvKGQCGkM+/b2/i29+6+8CBQ81N7Zrqv+bqdxw9epwQUlMTHhhMNzbWB4PqF77w6c5OfzqbLyvXAcFlK3sffOj+to7axYvnnneEoRhp4lFxfmLhZXHehURTGGoAQEhKb/dAAAhKS2NXXrn+vl/9Yv78efX1tZms5ff55avFvb2FmX6aXjP3n20eSglSwK5duxYvXkwptR3w+5Vs1vb5L65RAiYyEDTXX3m5aaqqih3XIhQkMNuxY7FAJpPLOymf3w8YrLyVd7SDh3bWNcTCMazoEI4BY9DcDkQr/+Wvv3PTTTe/74/fkU7lGBOq7jiOi0judN8RQGLhgsX33793ZLRs3ry5Dz74UF1d3dw585944inO1ObGeVtf3B7y12IZPXnqSMDPTp4YfWHzt3RDDQTMQNDX0to4Z27b2rXz/T69vCzi8ze4DNra2jUNkpPg88HwEPzwBw/+8r5fYUyvvvrqnTt2X3PtOx3bdmyrubn+4MFd3d2dJ08dXrSgeckSv8MAMMrnXdd13nXTVVs2P3H/b37R1FgZi0QBpkX5hVntLNjejLwvziUABEgiAdLLuEQA4DJJFXTF2jXPPvf0I49suPPOOzVNA6AA7iy3HpyVKfH/AtNP0+8j+4t1TSwl2DY/dOjQu971LlxI3UJCMoCL436E5JIlCxl34vEYgLSsbCgYsF1L11XbySEswmE/AEgpg2HNdWDjpsfmzGsMhglgMHyQt7lqkIbmoCtGyiq1JUvLEUAyAZev/bP+PvnYhqff8c5V1dWNoVDk2Mma4dGjusnbO2tPnT7U1TU3GDKOHjuwpHdFvKxESrlw4ULLymmq2tTStn3rVr8/pil069Y9E2P2/v0n//mrd1XXV5ZEA62dTWtWLe9dXjo6DOEI/OiHe3927/3BYNBnxFetWsVdtqT3EkDi8LFDLS0N/QMn/+iPb1uyuO4LX/zHlw/vXGW1Y+wGg1oyMa4oCsbilltv2Lhx4+TkaCwanBnkojVwtm9zJklGns36BZe0h0YRhQUwdQVmO4ZhAKBbbrnlH//P15b0Lp8/fyFngEkxpPzCVBzrf8vSa+D+81s8UkIqlRoaGqqpqVFVqqjAhdS01xA4FPF43MpnueAEEymlZVuUYsadTDZjmqbL8pZlSwmUqKpqnjp9eN361aEgtnK2oiJKnFTKQgjdffe/cY6SyWRJLKTrQAmUxZFE6ep6/T23XcoY3PCu7pMnUkNDI+lU9iv/8I+WHWlsDhw8cDSTPVNWrh4/tjscwVSzxhITNY2VwXAYMApH49XVzRJUSkOUlhx8aaiqih89/sJ3vnVvtCTs2JaqmWOj+auuvP748ePvfOd7MpnUtu1bFi3sefnQS8uWLlqytMd1MpdcWuk68NnPfvyb3/r6nj07F8xvc2wbYzBMdWxieOmSJc1NjYFAABX0fs+x5slgr1MRlbNU/MJ0yOnTZggDKpQ+8c5EAHIqVI+wABCWZc2bN2fRosWbnn+xtKSqvqFCIm+pzNCUz/fs7GpZuMO3ML0m2Y9me7ukB1mDTCaTyWRVVVUUwBgmE6lIJHSx1yZESafTgUBgYLCvsqJC1/VkarKstMzlbiAQUKk6OjYeDIY1VRufmKCUajquriklBGwnqRk+U0Eud4L+YCqTDgUjEuj4+GQsGnFs0HR48YWnbnr3TRXVkM+DqkIsHgQZfPrpA83tkY9/6jaMtMcfezqVzDW1xsYmj2es0/MW1D3x1DOj46fjlcFjR0+Vlpa2t7fv23egoaGN4gDpP+P3RVSV9J2e3Lf7TCDgS6ZH47H65zbumRgdGRqcVFTc27vg2NG+FctXXn31AseF9rZgLgc+EyIR80/+5AOhsN/QVS7sUNBMZ9KRcDSby5WWlMoCp4spNKE37AAAEvELqB/oPK8lnkqIm84XLVwNIQkgMcZCwPvf/8ef+uRnWlu6mpsrhHzF5E85fRuvf67E60+vIbNR4qndV0gkpUSAMALXFTt37mxsbKypKQcEluVGIiHHyavqxbl9EEJ+f1BKqCivkVJomhkvNSSAQgpTXlpS5p0Yi8YA8Ne/8R+EEMadSCSMwAXgAb8hwAn4TQDuuG4o7AMEqgbjY+7oWH9Lc2UmkwmH/VKCEJBOWxhP9C5prKkx4nGzvv66ZMIyTeN977/mIx/5aNecRdRctG//4XhpVXmVL2uNSckNwxgeHm9uatu962BZvP740eNu3qirnhMI+F4+fKSstLlvYBCDeeLYCEIincwTwjdvemHHtsU33nSNlYlVVas+AyiB0ljUMMFlIKRGKBhmKJvJGYZfAmHcAckUSpnIc+5qigKAuHCklEKiIphGAWMrBVKoJgE45wjIVOgaTyfPAEynoU5NHXAJXNM023YB4FOf+tTX//Ouxqa6rrkNY4lkyB8AIQEJVVFz6bSmaUQlyWQiFIqOjIwZup8oFCOq6eA4jJC3amnE1yL7pSx4z4oJY7x//4H583tcFxQVCEWMOZjAq3Aen0WzPWsFb8V5L4IBgFKMsXc/nkNPev/J1F+lEIwJwfG27S+EI4HSeFQ3KOMsn88RQgIhtWdBW2lZMBRREqlMJOY3/QbBYNvY5ZOLlrS854/W7dl7siRadeL40OMbNulqLBgo2b3rUEksVRav3LVzr+u61dV1ieSE4ESjgcGBsZ7uxX39ZzTVXLR4/rHjhzLpCUDGL3/+0PHjJ2wrlUqPL+md39besGjxgta2hsoqJDgksiCljERMDJBKckKwYaqMMUJ1BMR2HYVgglVX2CqhNrMVqmCgAEiAsCybYEWhgABRokqJOBecS85dzrnPNM8nobGmagiIEELTFIUqUtTMmTPnqWeejsSD5eUl2UyaMcdvmFMzLr/xH//x05/+tH9wuLyyKpPOCQDb5Zdfvvrf/+2fL2Zy31z0WmQ/FCwnhJBXlgNLCZzJbdu2fe1rX2PMkVKllNpOWtNeE2JWFhtzntnnlXU4R68FoSkqAEyVA0EAGARBU6orBoULIARTDKnE5Pq163w+v0JVjEFRNABBMIlFY4FAQAg3HPb39Q1UVVUKDps2b4qVBHQDaQb0Lq3PZaC5paal+dYf/uDRxqZaXQs8/dRmzhDGuLGxMW9n+wZP91YtLCmJnu4fTyXS9bX1+/btra6o95v+TZuf6ezs5q5MToiOzvlbt255+KHNLx8cfPrJvcn0SLTEqK4p6+ho6+1d1NFRoyqACTFMcF3AQAkBjBXhYldySolj55GGUumcrplC2IQomqYxjkzDZ9l5L8Go4KRHRFGpdrbEmHkvpZQgHIfrOsUYYjF9+Yol3/vB9/v7e8PhMGcoEo4Jl1m5vOnzAUK33nLzkSNHJp984o/+6H0L5vfarvuf37iru7v7LIjRNHTqtcz7fzu9Fu5HCE17hRFCnrCdnJwcGxtraWkSQriu0HSMEEgpX4tqOJNCgM7eCs49d2pVSPBAWhQjCgBCCMaEqiLOmaIASGhta6ypqfMSQRACTdWEFIwzIZiUUlUVl9nxeFwIQAgmJ8crKstra2ukBEogm3OkUKtrYPfunceOjETDlTe/+8Ynn3hm1aobDh9++fSZEw315QODx+LximQymcuPz6lq7B/wjU8OxGIhQBxjKCurePnl/ZdfvnbN6vAzzz5RW9cJnL+4be+c7sY9E6eee3rn/b9+xoOQXLZyeU11+arVK4JBTdNBU0A3dEJBSjANHQACPlVTNS4455xilbssZzm65kfobI/QjNoDngTxaklIAOCcAwhVVW3bpUQhBDq7Wjs72zdvfiESi9bVVDIGCqXYwSAQUBSNx1PJyavWrX/3zTc9u3FLc1v7be+9lTluMcTuLQeSu2juL0AjvZKcXvM0KaVAR48er6ysUhRACOcsS9MNRVGEYARfrPifXdCh6JfPOXPajCvgRwEwKoBSCCYguIORCiAYE5lMpqWl2e/XBYAQwBigQkUWIIQQTKy8resmSCQlODa88MLW2poGQohkgCgE/eqRQxP/8k/fPnniBMXB1atWnjj+cltbXSxmKGq+sSm2fcehj338j1evXvqD792fz7sVcRXRxr37tgho7Oqumpg4XVlTeugof+a5J5ctW1ZeUWU7rLK8qq6uLRAoLSmL7dqxE6GIz+d7+dCBZ57eH/Ad+fnPHgsENUXBTY21l1+xqrWtQVHA1EFRgSoaCEhNAucQiYDPDFEK6VQeEw9KrXhwaMYZY0xXpz3Os0q/EA/NT6ltpxS/IgFMH7n6mnVf+so/tbZ1NNZXDg+OVZaXKIqStyxdU7Zv25pOp667/noA2LlrezASXrduLSUAXBYvudecK/eG0Gvl/iLyimfs2rVryZIltg0+X6FOG0KvYSCKCp55b2dCLWQ2XmW6rLEAEFMBegQSezVDAQBjFQBUVccYHMcJx4O27RaKJYJAuIB4EVIwIRwnb+jG4NBISUmZ67LxsYk77/gjnwkC4NSp7G9/s+GhB55ubZ7v940tnH+JEMzn11tbm3/xy7v/7OMf+s9vfO3dt627+rqlVdXw3jvW/OM/fu3jn7ipuhouX/PQkhXrehcv/exnP19V23jju9Zv2rQll59saKzduHEjgGhpaTly+ERT05xYdFwKVFPdkZwU4yNj4abq7dueqakqi5WEzpzc98D9z+karaurqWuovGT5oprayoqKuM9HfCYhCAiFbA5CQV1IYAxcl7kuxwQoxZqmgCw2mWbKqGAMrptXVckYwxiEYJaVb2ioXrJkyWNPPF1fW9fRVm3nWTadiMZizMokEomXX375Lz79ac1n9i5bXl5ZJiTLO8JQ6Mxm/T9B9gNAUYlZJAVwLnfv3n3rrbcJITjHXqaI4zi6dpE4H4Cp8ljTVdz41OCi2T676Ui+ABAIefoukYV2PiAEYITzOVc3FJAQ8JmCuxgLl1mEIkoogJTAuXAYY4yxYCCQSIxXVpTlLR7w0b/49KebGptSk/C9H/zs+ee3vnzwxIf+5OMP3f/M8t5Lqyrrd2zf09nVvnf3tjtuv7GqKhCJoPkL6pqagSqweKn/Y5+4rqYetu3YddnlLVdd3ROKKD+652ujo5lIxH///Q3PPbe5vq6psiYKNF9T3/DSS8dOnBguLa0bGhqemLCrKlszaWkYZe+57U/37d0phDCMyGSCUyMwMY6effqBzc/uNAw1b+fq62vaO5rb2hsvW7mkpBTGx6RuIMMElVDOCRe2BAZApurpTtcPnRplDl4xZ1VVAQQXrpAuANx8882f/+LfPfnkUx1td7oO46ygx2/durWlpenmm2/pHx62HBdjrFLqMOapADDF+v+Py36AWf5+KZGUQkp55syp2toaRcGOyxSVAAjHzb8m7sezrVvPvYynaifCOdr/DJZLSikl9orDIQQYQSadpTREFWT4zLHR4VhplDNECZYgHcfmwiaEaJpmaEY2Z4fC0bwthCRSQk110/HjE1/8wt8FgiVnTk2sWX3V0SOn29vb6+orN216ZsmSJQMDZ9q7Ko6d3LVmXbduiliJSRTI5Zii4tWXL8ISSku1q65eHgiKkhLI5aCiyk8wfOADKzc+//CyZW13vu+GE8dPEWxqKt76wp76hu7BodShQ8NLly7z++lA/4lwyJiYGGtrby0vjycnx6PR0vr62jOn+yORete1h4YmME4NDO68594HKyvjDss2t9R2dbcuX76kq7suFEaU6IyDZEAVOMc/BwAgQXhpCaqKhLQlOH6fyoQdDmpXrl33yMMPvvji/oU93f6APjk+5jP0p559duWqVbfefsfuPXvHJibLSstth18AcQqvCAJ9E2ElLjqzESHJObesvKH7pOQEY0LwgQMHS0qjuoF1A6w8d5y84/KgP2jlLUM/f7hXiqLqUjNHjBCdrjcop0cKgfCimV4IX05H/MWUt8e7t6nixLKwJqIlYSgUyBXRWEwKLIQASVOppJQ8FA7k87msm/ebQS5YzkIKwZoKW19M/PDun+3e/XJ314LDhw5es/7dgYBv564dS5f27t6zqapGr2vUrr/hek0nn/v8Xz78yD3hsNrUVOPkQdcoJQXfes/czqlHhZAfcjkwTEA6WJlT9dX63G6ltrrJ70OLF1Xyj63/+c8fJDSqqnpjQ8jKq/v2HrAdf1NzeHDwpWCQRaPq4OCRurpYc0v9+Hh68aLlGIdsO7+0d+mjjz68d/eZq65av/GpTft2Tf70hxtVVWlorInHS1paWtZftbStFfI2CAmGUQh8WXkGwHWDTiRHTFOlChoe7S8tjaUsyzSiwLUr11368v59jzz86Px53YBAIHXvwaM2V9q75wOi83oWcA7PPfd8OmutX3s5ntqTp2xuVMj9mCl5WTTpnifkIvYGjLyzz4msTceczv3Kq7/6Rcv+VDppGFrAHwDAjiOEANcVe/furaur8fl8gEDXVYSI49oA4DiOcSHpj857nFaoznmGmTGb8mB4oVBvWzirZm1xiT4EEgkA4aFcstlsWohYLOK6rpWzDTOYs/KjE7lYJJRKwuCY+09f/frWF/Zh8F1y2eWEKOvXNVn51LZt27rntO3Y9XxjU81N77q2siqoqKDpcOO71v7oRz/8xCc+YZqaroPLZgTtWRLX0AEh2Ljx+erKcCSqaAqEAoAJ1FTDRAJst2/l6s7u7p5YNLhu/bKDBw4zBpl07p//+V9yuUhDU9nw6IkDL29vbu4+fOjE0OhweWXlE0880dzaUVPXzCU1zJL2jkWDg4PlZaW2k9/43MGqqqoNj+748Q/vo2q6vq60ta1p2bIlCxd1aBpIoMEQzWYgEox7seR4rFEKBgJxlw72j9TVxm+44R3/8R//8ciGJ97xjisMM3j3D39SWlYWL6twXG5Z1qMbHv7Zz3523XXXpdKjulZWmA4PVoSmMdW8aGpnxmRqVPA5VtxF7Ql/mDjzRXO/VywSACzLkpKYBnUcuWPHjp6eHkVR7Dx33LyuU4QwANV1L1xyrrUK5yDRZ35h6iuACjsAQLHGOusrCKRSNBZFIzgjG7yKyl4yGo9ETAA0MNCn6kY0EstlOUZmLAzJSfjVr5569JGnBae1DY2lJeVC2qPDA5FQw4GXd7S0NA8OH7/tPTe2tNbXNyrHj0/U1UcRhtVrLtm85em+/uMdnU2ANNu2Nd85qD7pjRvYNn/88Q3NzY2hUAAAFAW5DIQEhFl9Q0VXd2t9Q1ChUFKCa+vaBwdgcHB0ybK5d9z+vng8/tvfVvX39/sDgc451eOJ49W181s7Ko8e37148ZLTfYdOnjoUj8f7+vMuy9fV1fT3n4rHS6LR8IH9e0pKAmMj9Omn7r/vF883NtZnc6m29qaOztZLLlnq8+sVFYgqOJvVEYZw2O8yqK41T5wZam6vunz9mu07di5cvPirX/3q1+/6pmEoR44fRtiNRINDw2e4sN//oXeEokiCi4TXNm9KRy3QBbgZAfLa2wA+53ghkoAQnEfL+n2TbC6a+32mz2W2y1zGmJe8kkhM7N+//8Mf/nA0GhAChFAppUIwCYBn0P3TpuoUCPFsbbS4vjE+34doZv3MDBQ+Tw1nD6I4k4E5C/IugSVSqXh5GcHK+Fhe03UrBw8/tPc/v/4tO8/b27oQIpppNDU1bdmyZenS3l3bN122anFPz5yHH7n/yLG9yy5psfIQK/U7LsMEmT7l3bfc9KMf/WjV6ku5kJjI2ZM0AwTz+szZdn7ZsqWBQAAAhAAJ3HaEYdKrrr6CECWTtQN+LZWSkTCqa4Ct2w+VxgPxcn91NbrltmtVFWMEp06n/9df/JU/xJauaN/w6JM2awpFlMGRox1d9Q1N5adOnqlvqKqrr3Zcq6OjI5tO6pq/rblzbMQJBAJIhF7ac/j0icyubad+/tMns9lUc0tjZWX58uXL582rpRKSaWDSqaktRxJWrVz71JMbN258/mMf+9gdd96m6XR0rD+bTQWCmm4oPr/W2tpCkfqq0J5n11A9/75fOHPWVMJUDu25e8UbIfsBwHVdXVd9Ph/GRHA4c+YMY8zvCzoOAAClCgIgRBFCTD1M8RqdRiZOP+i5Edxi8oK2QgIqJNHPGiKMptM1PEJcFpheTms7xZR3cwIBworjQjCoHzmcu+sbPzpw4Lhkgbrqqta2+du2b1na1blnz46m5uoTp/avuLTnpnddybm4Vlnzr//2tXkLGlasWGCAaruWpijpbKamtmz9lasNkzhuxjR8s9NPZp4FYaTpyvIVS+fM7QoEdACQUug6YVxiIqNRHxfSdYSqg+6CAMhlYffeTY1NzcEwMf1Q48O5HGgaYDXg9zvXXLusqbH61luvHh6aWLVy0dYXd5w8eTQU9OkaHx05FQnrO3fsDgW08vKysZHc0FCqsqI1l8vpesmCBavGxkaam9qee+4ZAFRRbjzz1IGnn3wpEAj4/b7SeHDVFT0VVcGOzrryCnTFFdc/8uhvWttbFyzsHhkb6exqYsKVUipEYYI5tiOJYlAiz49DQed5h85vgl+QJEgkpoonFB3/QHTR3C+kQAhhhAFhKaXj8LGxsUWLFkUiEQ+HxrhX30ECIEUtNnnP3afEK/4VinaMKfl9br7FtHGFit+IKbw7FHuKBCCqKGFFzefh0MG+H939q507DtfWtAV88Vg0XlVVtW3bjivWXvHkUw+3tNX29HQ1N1XV1ZU4rlVWYURK2j7wwdujsYAANjk57vOZABhhEY2F1q9fl81mMUYYeGGai+pJTf86pXjFimUlJXEPfCaBI8AATAKemJyMRUpBhUQyFQwGBQdVEwcO7lq2fEE4qmUtxhhTVVUibFkTK9f0BMNYM6Gz219e4ff74JJLW//u7/6jZ978a65bc+pkv6Jolj1pOeON9R39fSPHTxzu7e3ds2fP8LDb3Nx88uTxfD5/662333///ZoaaKzv3LZtG0E+itHPf3H/Swf2ALZK49F0ZryqOp7NZT/0gb8klP/7f/xrPBZ384qmAQLIZynGpvRyvC+Qazzzsqgj0+/S74utOzQzieceL6ps/QXotSAdPLAAY4xz6Tj84MGDXiEkzqmqAiHgOMCFlFJiTAiF2Q88zZHynE/gAkPjeXskeE6DYgMYAGYAuVIiMVVjolBkCACDRGK6W5GEdIpJgG98/Xu/+dUjCg22NM2trW4a1ifa29v379+34pIl27Zvjpb4/AElXh7qnlMCANm0xAh0FVZeuhQTMTzQX1VZbtlWNpukhBhUcTnHIDRFsV27CHc06wkY45TSSCSkqtS2bUKIF2OihHDpGhrFwBl3nXxG+gyVKi8dPmhbKb+pmDqamEz5fD5NBQEQiam33XZ9WbxM1yFvQVkZTEyAosLY2Il42SVrr2gfG2snBC67rCeRSKQzzp69O4Il4UCMB0vEyMiZyYwWKiGnBg6WVQeBWll7Yu7cniMn9wdj2tIlC1LWsOlHFZUNGzZsmDd3PsU1hw4MnjyVk8D/18e/vW79qobG6nk97bV11OfHVh68YJo8y8FfyKGRM1rulBSbSjZ4NUrLtLZ0Lk25+85mmIv2pV4093POKVUAgFKKMaSSueeff95x2De/+c3Gxsb58xdWVFToOlIU7DIgZMZoLeJvT37LKa9VsZg8n7fnfDTNXMTzI6Bp03aKpAf5mnpAWfjNp57c/a//8vWqylqfEW9p7pw3b+EjG564+uqrn3/++cbGOgm5ZSt6Fi7q/sZ//d/r3rHGdoBzOxI1R0fHVY2GgoGR0aGqyspkejIUCCUdh1KSTKeDgbCuSwSYuXwqn2fmsQEAUKGikeu6hiEcxzFNk1LKmEMwGh8fLykpyeQyGJHysnjOymMMhqG97/3vbWiscdxcKOQjGPcNnKqqrPL79FQa6TqZTCQFR7oRDIVhZCSbyY36AkA1qK2HbBYqq/227f/ed3+79sqFK1ev9fuD1+cuffGFrf39g+3dC+775a9PntHmLWjYvXtvIAzVtaGxsZGTZ/aXV0T6+wfndNfM614+MjRWWW7EwnXhQDVC6PSJgXt//Fhbe/P3v3NfJju5YOFcn1+/6cYrly6LFiZsRvnEU7NKYGYNCAAsYdrqnU1nK6jFb1/HvsKouJA3TIVyLxyuEy6zKSXeIhYCMun80NDw8PDwpk1bhoaG+s4MOI5TWVnZ09PT09NTU1sVjUYxBkLwdJlhzsFljq6rlmVJKQ1DQwg5jiOlVFVVSiSEoIS6bj45MV5SVubaFsaYqCpnTCJkWZZu+BKpTCQSBQACjDFHoQQAUukUQsTnDwBgwbFlOaZPcx1gDBDA/Q9sfuThp559asctt91pZbIDAwOLexcdOLC/tbV53/7d1TXlV1+9rqm5OhQGnx/uf+C53/zmV1/7p6/ES83C6pQCQGCEuXBd5mgF/MzZviY0y6SB6XPQOWcWBhRY8WnT658xNgUjFwAzTZukAEJILpc3Tb+VszVNJwTu/+2GBx98+HOf+1xlZTkhhdKRtg3//p93dXTO6+1dGgoihGB8HAiGVMr9849/csGC3isuX//tb393cGC4t3fpb397f2lJ2bw5S7duPU6Q2dbe8uSTG9ram7u7O395388opdFoNJVK98xbcOpU/+jIRHlZ9cDAUGmJSbWxmrpoXV3NnLldXV3tc+ZGbRu4gGAIrDxQCqoGY2PJkpIQF5I5eVNXUulkMBB0XEdKrihKJpMJBvwAkMllfKYhQbquoygKF66CdSExQnQqN19Ocym6oObzevr7CSEASAiQkmNMgyFTUapjsdiiRYsmJ5P9/f19fX19ZwZOnjy5ZcuWRCKharSurm7evHkdHR1VVRWhUMgwFF1TOQNDNwDAdaWQTFF0ALBtR9fVTCZn6oai6OFwFKT0WD85MREKhyUgvz/kChmKRB0pkOAuz9n5nGmaBCtSIk3TEChSwuhI2mcGRofB74MTJzJ3/dd3jx47derE0A03vs9vlL+8b/P6K9dtfuHZsvKwZY+tuWLx6jWXVNcYUgAiQAjMndO6b2/Ngw/89tZ336BpiqIQjLCQntlDKNGm9M5prvTcO/ICBswr0LSgmaX7YUQBiek8imlx5ApGiaqqqpSSKhhjGB4e3bnrxUWL5wSCKlEYQkhIjhHVdLF8eVddQ0OsxEMigD8Imgb7XtpX1xi7+tpLlywpr6j6X2fO9MVLy1vaKu+779eKbis0n0gmDbOlpa1mdKwvnY03t9SfOHEin88ZhpFMppf0Ln/i8ecC/uiS3tZdO7YQFUfD+k/u3tDadqy0dOPBl/d3dLYsW94bLwtfdtnSmlrIpcHUQvkc6DoimiEBgoGYbduEaBK447g+XzCVzmiaAhLbjquqVFN0AMkltl2bElNwCVAouI291nxC/kF6rl6Q+y+AWEIefliCEEJIySmlhqnoupJMZkKhQDw+d9Giua4LyWRqYmIilUr19/cPDw/v3bv34YcfdhynrKyspaWlurq6p6enpCQaCvkRQiCIV1FQ11TBQddMqmDBOWMMJKeUMCsfCoUBY+a4HDgTwIR0hAz4dStjhUN+xoTjsGAwCoAnxi3mokAgYOhw5HDiRz+898DBI4FAOBQoX7youaW+a9Omzddee/2Gx39TVRVpba1+fvPjCxc3VNcYmg5W1rEsG4RRWxNf0NO9YcOG665ai5FPVQwAQBJLbzUSevbwTHHpWeGdotfn1VAFOttBXvgKQQCFFt9Q5CkGlWoIMHM4UjAIiUBqKq2tqertXaTrCIGLQHLhOAI0RemZ34GpgQDSmTTGVFV1StDzzz9RX1deUxObnBANDUZzUwtCUFm56qmnHlx2SceH//T2bVt3Y6T6Q8nt28bTyZHqivJ0Ik2JdvLk6aAZtrIJQxeRCCIkUVYRABnuaFsy0GdbWRpqbJZ8cP/eYSu7N5NNfuuu+4IhH6XwrptvbG9v8/m06mpwXdB00HSNEHAcikDDGCjFhFBVlS6zuQCBpG3nvQKMIKlAWEoOgNDMgMjZ2v9rpNei93vVrr2WyIwxKZGU0uc3MCIYA0KgKBCLBWOxIAAsXjw3m3WGhoZGR0fHx8fHxsaGh4d37tz+m9/8Kp93wuHwggULent76+rqTNMkhBjGFEoZEd0MAHNAcKqo3HVdi+v+gGTcUBUOgJlwGSeKhoGCFFbOdhxbpYbPMJQADA7BP3/nZ08/tUmhellFTWNj8+DAUF1t09PPPN7S0rR5y9MtzTV//qlbbNdtbov+4Pv/1doab2qu03SsUMqYrRu+FcuXJCbHzlICESLnlo2adQKQIpD27zTvpmOiRazvhShm+cFnBUCy2TRjzDRNx3Hy+XwkErnmmmv8fhNhiTFghCQgxlzLsf2GX4AigSkEERVrBAmAPbu2v+vdt9RUhSaTDEksEWTTkMkldE3qOmtppZU1ixDAZavnjo2+8xc/uz9vSc1oGugfyVrmvpde8AVgybLObdu2VddUNrdW7d11fHIi1921YMeOHcNDqebGOUePHVZpDIM8fuxwV3f81PHTf/e//yMUCmAC83raF/U2lZT6exctipYSLAErkEuD7lOsLBh+5OQVohKVorzNmCsx4gGfRjAIQYUAhwkhmVcF+TWUCTyXLpr7HYdRShVF8RpVeIXwEQIpBSAsAUkJQnh+UYQJuIwrKtTWVTQ11wJALpcfG52YnJzM5XLpdGZkZOTUqVPf+MY3kslkSSxeX1+/qHdxwOdvbWkIhgKpidEHH7z/R3d/P5PJqIYupExmsumc1bvs0i/87d80tzSlktnSUHDPvj1VlQ2xaDSTBl2DdAZ+du+LP//ZbxCoNbUtCHBDQ8PQ0FBLS8v27dsrKmONzZFFS2qXL+0wTagIK4FA24rliznLaSrGCAGhChV2PldSEr5y/Vp/wFRVdRq0gjFIAUIAfqWd9yxl5tzXv5uK95biBchcGyQ3dBVAYCRd7oLQY5GoolE7n8NIAZAUY6qq+XxWAsKAJWBd1TAhCCCXyeWy6dJYdHhoPBQJSwnCBdOAYCj8yU98pKyiMpUWmoYVBUpKIRr1TSQPXLJi5SWXvJu58pGHn9z0/Av1dfUd7d17975w9MiBK69slSj/3ObH589fWF1fruiooqJ6eGw477gdnT22KzEJdHT27t+/PxKtAoD7fv7kC1u2Gz6M4XvxitKqyrLyyrJlSxfN7WmMhCFvgetSTAEAQsGgFMAY5CygGKgChADGGEA938jP8iy/erpo7lcUxSt47+VWc86llISQbDZLCKJU9VpCcM4920BREaWUYAzAOJeKgiqr4jW1FZxLkNi27WQylU6nx8cnT5w4cfLE6ccff3J4eHhybDjgM66/7ur29k6fGRgbG/vghz80f8Ei2+XPbHz+he07KVEJgD8QGBoZmTtnAWfgOqCr8PiGIz+4+2eHXz7VM2+xrvuHhkfnzOk4fOTllpamvv4zZRXhnp6m7jm1TQ3lCANgcFyIhM01l19WGo9ghHLZrOM44WDYyqQJoHhJFBEC2FvSM9hdzmc6X8yW7685EiOmvMDTWPmpy6NC8MSzARSFKioBiex8jjFmmn4AyGazYSWMEOFMCCEoxQhTVfFLDq5wvFtljDk2y1u5xYsX1lSXB4K6oRPLsrxeXdmsNbenxXUkFyiZSQeDAVWDkZHk8OjxWHxdJEb9Prjmuste3Prc/EXNhqa2tFe94/oba2uaWjqat2zeirHUfebePfs1Q9Y1lB85fEzViKqqx44eX7fuyqHB0VTSWrlyZTKRQZCvq67euWs7Au7mU49v2PrkYy9iIlUNV1aWrVu/pntORzhshiOgKKBrIDFQUhgQ5oLLGOdcCBYO+6YciedGjV7tGrhYvR8opYwJzoWXwuIlyCEkQ6FAMUhBSiIlAsRyuTQgIoFIgVyXSylVVUMIAwiqYKpolEZLSmJtbY3Lly90XXj6mc0lJSXpxORLe/dQoob8gYry8vXr13/wgx/evmM7xnju3J5QaYVmmC5A3hLl8biVA4XCgf1D3/3OT3duP6jp4Wikqqy8LpXMLFq45IUXN82Z28EFa2xp7Oqs/cEP/7mx+T3hWDkhkExYGOmTExNtrW2ABEhBAGOJAGNd0wgGRD1kFkJSIikwwp4gRgXX9Ww+Bc9zh84Z/QtMhpw2E6bmT85aAFAcwZsGuniGNUKOayGgCGOQyDAMxhjBmuu4CGEmMcZAqM65oxAPgY9ASqyBqvhvf++76+urdF1JTI7Ytm0Y5blcOpNJa1pMUTUKxCdwPpdSaXCg73QkGCkrKSMAwgWK8borVh18abdj89WrFixe3BQvh1hlx6VrOjQNBvozn/nMdj1gt7V2JjKDjkjE4sG+ATuZGS+vLNu6dfup06erqusH+gaDwfqGemnls4YeLS2VIyOjgYA5Np586aVto2M5l/1iMjHW1tZSW1vd2lJzwzsuQyAoxZoOqgqqSrmgrntevr1o6NtFy37GBGMMIUQIRghTSqXkCCHOuZBMcACA6WZYQjLTNCW4AIhQrFBFSHBdls2ldc3M53MYU01XOZfptAUAum6su2I5SHBd2dnewFnezllj45NzeubnLfe+Xz9wzXXXLrtkRXvK+tUvflNX39rW2mk2xNJp+N537nn2mc3l8fqq6mZCtWuveeejjz42b96cHTu3xstDnd0NHR2tmk4aGmDfvs6du7Z0z2kJBAL+gEYp0nU1k04jLAGEz+cvgKMxABaSuwIIwQrM7hAxK8VnBkT06kTO+aXK2d+dse0K/tLCCrHtvBDCMIxAICyFFJwz19V0nTNBKBaCUEqlBMexCaUIiBCuN0GeugwA7R0dqWRSNzRMIF5WAiBc1y0ri3MuclYmnc7F4xUpnsnn8+PjY6FQQFGIzwfZLNTU6rfetu5P//SzwWBwbk9LvBwwhepqSKTA7wdV89fU+q+8evHlaxauuGTuQP9wOBR/4omnD7x0uLKiprzCGB072tXZs33blmg03NzS+MILmx0n2N7e+dxzz7S3zaEK2rJlk+RGOpkbHbINNbF/z+lHkf3D7/zY76fV1ZVz5nYvWNDT2lYfjYKuEphCOYK3iRd8AzDbRjoXdTJrnL0UbzTd+8nzaQAAxphz7jV4m24JyBjDGHst0KQUU1IPSQkIEYIQOVspowAcIQISS+mh7rGiKIqiICk1VQUAyQUG8HtGjASeB4wglRgqrQw7OfTAg8/u2Lv7Q3/65wgpgXDg1jvvDIX8iPpKIpVPPPLiz374bN+ZMceV/Wf6Wlub65rmvHRg36JFCzY89WBTa/V44kR9Y2DNmpW9SxqRBEUFIeC977ntc5//zO6du9euXZXN2tSvuZyFQgGEPZ8l132qEA7VgElHSq/nKQIARApLWoJEBOS0cxPNimgWfDjywivhLO4nZCZoXyS5vK21OIfT+1zTfNNTiDAgwCoBACAKBgBFo95ldK+HMZ0pAV3sHg+GogAQDJZ4b0OhUgBBCDYNA4Gat+xQIGhZ1vZtL/b0dEbCPoRAVSVCiFL4yEfe//Wvf13wPEhwHVBV8KkgHXhp9+Z4FC2YWxMJwIql4XQqrCiwaP6Nt9/+kUULFtzwjjuPHD5GVd/CvsrjJ3fVNunhGCQzp2rqQ6Xx4KnTR7u755aVVQqm1VS2UxQxNV+4qnHrC8+H2psyCfeB7XvOnOSbNx4fnxgOBfw98+f19HQ3NNbU1SqqBlwCpkAollJiAowL284C4ooqKSVSSiEkAoUSlXMuJXJdlzERCPg8PpbFbXxeITntdyWtnXfK0UzA9bwewEK5yQKkeaB/qKqi1DSIcLMCOb998Ne9S5fe+b4PWXl2/4MPCglcgJ1n77rpqqMvJ5558lEEAYeB4S8NR8p/es8vhLD6+k9QIqIRsmfvzo999E9WrWm0LfD5AQEkEm4w6L/t1vd+77vfa21tr6srz6TzhCipVCYcDnr+BACJCaLYa2GCOeeykBorvB5BGGMAIaUo4nsoeiEA8KzgpZzlyoSibeMVN+pzME7epdDF4ltepRJcOM0wfJxz27Yxxlddtb60tDQSCTDOFJValmsYSmtbw8KFPRsee7i1rVlVseBAKWAMBw/uqK0tKS/3SwAhIBAESiGXy1dU6rX1geXL2js6K/O2vGL9ysNHTx8/diKdHTxx4hQTyZb2yu3bdg8Nh0tKIidOnI7H44FAoL9/cP26K0P+4JlTp2qq64OBkrnzOmtqyycmxkaG+zMp956f/mZkZMBxMvUNVYsWd82b397cUhMvC0xOOD6f6jMDgADAdVhOCIERRRi7rpCSEEIUSlVVwu/UfM7tCXWRWZtnl58vuhAGmIImzATJZVVNCVbASeSp0IeHh7dt3/qnH/7UNddc4TLYu39/eVmt5KCpype/9K1nn9m1evXqYLB0cHBo7tw5P//ZPZddtmR0bGBsdCheEh4ZHTx18ujnPvvpbVuvX3vF6qbmuqqqUr9foRRWr75k48ZNoyOTAX8oGjPyeY4QOI6nGGCMMWAkQAohheB4Sm0uGoppVEWxGC/GL812QqPzmmLTb887PmfBhP4QoZ1XR5lMxu/3e7pAT08PQiifz3ul2jjnnCuhkL58+fJvfes7W7ZsufzyFZiAlJDN5l54YctVV11lGDqAUFWcyeQDAT0c0a+9bn17R2MkCpFokAsABLGS2h3bNl5x+ZLq6pt9Zohz2VhfMTIyVlfbuH/fi6OjvtbWtqNHdu3e/UxHR9eLWw/FYri6Nt7RVdvd3Yaw7D/Tl7OyTS3Vtm05tpXJTh48ePiZZ58S0vb5fF3d82uq69o7GqtryvwBjSohlRQcdDlLqipiDrjMVVXCOafT1m0xW18I9fCaEpanZdUr4Jamf0DYLO3kckxwRTMPHTlRVV3Tu7RXIphIJj/4oT9hLvraV7+za/fhyYlcTU2t329s2/b82rVrX3zx2c7O+ktWLBoZHexdNDfgNyQ4yTtvvvuH3z1x/Mizz4lvffvlZHKysrJy6dIVTU1NH/nIn5aVBbNZzlzAiKgaMAYIF2SB4J7KiDEShEwzPRJCuK7rMptzHgwGiu5bzLyYxnhO5zoVeHd2YWQ0nfo0HTMW53gw3gByHAcAFEXJ5/OUUtu2GWOapgkh/QGducA5tLW3rFx56YYNj86d21UaDxMKeTsXDJkNjTVCOoqiIAyAOCBAWF6x9jKfz2e7IDhQBVwGgRAcOLitvjG+dm2dw8DNQ0vbDbYFR4+dOXZ8XjAUWXXZYiCpzRu3OG68pblsZOxkWaWhGW4i3Y8x0gyOCK5vaFMUzcnb4+OjE5P1mWwikRhPJFJ9pxL795z+yY9+JWS+rLykq7utu7u7urqytbWCu4jqQAkQolAFGL9I2X/x3F+EfvWKC5xV+ussuDcSrrBD0RAAGh4dfeKJ56KxsmA4JICVlITGxvME6QdfPp2cdMKh+LJlK1566aUFCzsZSxJiLVo4ryzunz9vRfecYC4DugGZdNnSpf82MjxoO1YiMXHw4EvRaMmJk/3f+uZ3RkZG6uvru7o7ysvL161bhxAEgz5FKXSYFAJzjgGAEOy6jleaxQvwaZrmFaaeytGbTsX0aEpdQeccZ1Gxfxqd/d3poTub/jt2gGg06rrcq/Dlui6llFKaTqd9vgAAIASpVCYS8V9zzTXbtu14/PHHr71ufTQWDAR8t912y/z586TkhFCXWYGAJgQbnxiJx8sxBsYExohzoSqECQgFgYukbYNEgBCUVwCz4b5fPzdvXk3v0uWtzZXLL/3A0UNXKYp28sSZu+66KxyjtQ3RbDaZyWZ8hokls91kNifzOZcxVlVZG43NwxhyWdtx1PGx5MDg6dGxoXR68tTxyZf2PpLP5wFkOBJsaWlYvKRncW8rpYARptNa/nTzWpiyBM7l9d+3WAU6d07P8pYj3WdKQLt2H/jCF/7msQ1PVNVWvbhte3V9fT4HsVjQtmHF8jUbHnlmzeq1O3fvcOxcdVfd7p3b7rj9ph/98AetrX80tyfIXXBcEQphRwOFQG1dBUJA1cbeRfPHJxNLl9AbbrjhyJEjnPOhoaGtW7du2LBhcnKira2tpqams7OzpaWlrKzUMDDGAAhUogIA59x1mRfc8BZDoSnTuUXDi8uxFEic86IY3e1tiWex/htJnHOMkWEY2Wx2uns759x1BUbUu/lgUL388tUPPPjb+Qu6wxG/YRirV6/GGKczSQAVIchk036f3/TpgJiVt1VFpyphloOw8dTjG3QT2lqrVB0IAS9Wo+nQ1VUTjcQWLKj0GsDNX1SZt6CqOvaL+3zNLVXzeirTmVg2l9FVLZnInDkzSLAeCgcI1jKZ3PFjJwjFoWCJnUfBYCga7ZHg5vP5dDqZTCYty+KCjY4OP79x28DAgK7Tjq4Gnx/9btn/+47lBS5QJPNF8atMzgkGIvN6Fn/603/30Y9+HjCrrI65jvT5/KkM5NJw7Oip+vrmo0ePu441f0Fn0I/+8i8/2txSevL4/AMvbZszp76y3BeJ4OHhZDweGuwfCoWCPr+ZHE+EouHSeMzbf8vKSicnE+3tbWvXXnH06FEAOHLkyOjo6K9//euJiQlFUSorK5uamsrL4+uvXEMoopRq2oy5OePil8U2qJdNdl7trjhFc3pQPMCveEUb4L9P4/conc76fD4hGADYtqVpCufc7zcZE5aVNU2/ruucQyaTv/TSS/e/tHfr1q3hSLC6ugpj6jh5QoiQAmNsWVm/zwwWcji57ViKomAiCGZDQ6cqKsLl5SHB847NKKWEENvmK1bMA8AIc0Uh+bzDBQ+Hjb6+oVgs1NJWq+oQpJo/iAXnLoPlK+YnE7lsyhWcqhrGWORy+UwmAWAirFOkKJQSYmiaEomUSiktyyovqzh58ng0WtLU1Oj3T2k+015OKPJ+vq5lic5lfQEAgCXgYKBkcDAVDgZXrVzsukAo2C6oGgAGl4HfD2VlFeNjieHhwXfdfH1ba42h8rr6ACC4/p3rv/SlLx063FZaukzToKw8lE7notGIlBywDMXCqclJfzBMCMpkXSllVXUYABwHqmsWuy709i5KpVJjY2Ojo6NjY2MjIyMDA30HD770jf/6z/LyeHt7e1dXV2tra0VFRTDowxjOFwz0lPjZuvvZOQznavazPUIzH/7hEvgukjCGbNYyTdNzdmezWU3TVJUKIVRVkRIcmyEkgyH1hhtu+OpX/09bW3tNdZVtuwDENPy5XA6QKC0p44KnUpO6bui6wTkHAE3VMtl0T8+cpUsXNzXVE0wYtwEhRSFUwS7jAb9p5bO2w/0+f85yBBi79+wwfWplZTlj4LhZn6khIJj4FSrj5aYTAisHCHyNjTHbhlTKSacdy8pns4msxTCmlKiYqCBRLBaJxULTW5llgarLs8sS/qFJAIDgrgBJCJFSMlcARgpVsjnLMH0SZDqdDgaCedeWEmGkUIysPHzx83cdO3qqurqyubWqs7v2wYfvu3Ltur17DqmkBCNj546911y79trrFwVCwGzQNQCAVMp68cUXH3jg/o98+MOdXW1SAMz0IJmKZgBGU479GSpClXkpN5xDLpefnExmMpn+vkHLsgYGBg4cOHD8+HEpZX19fUNDw6pVq2pqasrKggDgOIAQeEERhMF1JWMMYakoCiEIAIRgCM1ErKSc8RcVABRT6FEvzMKY0DTNi7d4hfE8UAkATMde/ltoZqFO8QmeZcsB/OD79x49evTDH/mT2toyISCRTESjYdu2vaDQuYSAn6MuXpCk1D720S/2Ll52/TvWGz6s6WA7OYV4IEsKUpmuWzB9S5kccA6OLfJ5J5uxs5m8ZbmuI1TFdF33Lz7ziY989I9uv/MqhEEzXs/EGY+sXNowTZAinU4hhAP+kATI5iyiaDkr7zgsFAqOjCWkRPHSUCoDd3//Ny9s2j88lKiqrHv54IlA0Hfg4C7dVB5+aINt895FNeFAaWXFmmPHD4yMNPkDEap48F2sG0ptXUW8LDo5OZpJV/r9/iJ9usDvCEl5lu+lECYELrx8PIIQEAqBoK6qSiQS6uxoSqX4yMjI4sVLcrlcMpkcGRmZmJi4665vjY2NYUy6urpWrFjR2dlZUhI1DLAsYRh4imXByjEhOMZY06ngyLMmMcYYe2VJgRLFcRzGXEVRMKYAQAjGWHIP4D0VYfTAVG+OIoFyqjoiAMCqVWu2bt3ed2bI7wuaPj0SDk+Mp6KxoGc/Tn2lOFtXXNCBe75Vkc9lOeeUUl33ZlMIOW1+cEBkdrUI8AdBSs9vobuO7thB1wHOUC7rHjlyrK6+oqm5TlEg7zANXn9Boqqq41gA4DNMRAhjTEiiKqYARAllmAFAaSycs+Gub/1808btg30W59ratVfu2rXruuveMTB4LJvKL5y/5OCBfctX9l57zTVIQC7nbtr0YP+Zo83NiwV3dV1VFIUx1tTUcO21V1eUl6savaCAOSfjtvBxoeaulLJg7Wg60XQCEkyT1NVVKEoFAHAOY2OZiYmJlStXJRKJ8fHx4eHhxzY88b3v/sBxHMPULrlseTxeUlfXUF4eDwQCuq4bJvWwQQgwSBVAIowwAc/XaeVcShXTUL3X6XSaEOIPmKqqKAqZLkru7QOe3+l1madXIi/iNl1OAwPM+K4bGuKrVq3+7W9/W1r6x/5AtZSAEOYMMC7y7xX7/V7Bq1swooqVEbRq1armlnbTRIyBkI4H+MOFJMmpEgcIpjr2ebndQDAiFKua4vMjwUEKcB3l2Y3Hmlqq2zuaCAVuuVKeU5D5D03CsXOqpgBgO28LiXTdxzikU/lMzg6FQz4f5B3Yu6f/5z//5bPPPFcWr3Ec7fI1Vx4/fqyurqa/72Q6O9a7aE4goPXM72xrqfH5AAFICY8/9lxVVVlNbSVRQNWoQpWJyYloJOq4DgZClQt2yztH9s8QAuQFdz0dA2NMiJJKWqqqK4oHXAUvtKkoMyDniQm7v39gYmIimUym06nTfafGx0dHR8cBRGVldUdHR1tbW1lZWTxegr1IWiG9vlD6hDNvz0EYIy9oWhg4AV6V6WlijAkhpjXX14vODkIX0DJypoQeFOs/zAXHgS984Qvd3Z133PleLyIuBNe0C2k+8pxISPGfZy0MCSSVFIRgnx9ylgPI0Q0iGEcIEaIAIDRTO0MCYgAi7+RRgTACBYBIroFECoXPfe4fI5HI//r0hzCGnJX3B/4bZL+mO7bNudRUQwLJZlwplWBA9/n08Qk4fSL77/9518DAcP/A0NVX33LyxJma6oZMJjkxMVDfEB0ZOb527eojh19ef+UVnW01ICGRyAmeN01z3bpLJAdEMWBhWRZIrmsmAGauyOdz0Wh0Bm0Ks/fGC6x2xphXZ2FawfBcnj6/PjW+QChgjIQQVl4wxj31RjdwV3cDxg0AkMm4Y+Pjk4nx0ZHxycR4MpE+derExo3PDg8PBwKB5ubmxYsXz507t6IiTilwANcFjLCmAQDkcpDLuqpKVRV5JU+ASwkcY+xF3Cil3rJ8c1BB/8EEEJLv/6Pbv/a1f+zqblu2bJHtuNpZxVuLiw144n/meBbNxnFI8PmxVxeKKoAQwYC5ZIwJgvWZQmZezR8QAFKd6VcAUkqQANgFqXIBg0OnGxqrEQIuQFERvK4J8wAAgEFK1+WCg6YSQsA0FNcFLiCVhu98+97f3v9odVXDxLhz0w3v2/ri9t7e3snE2ImTL1173eX9Ayc+89mPzp1b9/m/2jvU38ecbi5ZOKSnkkkpBHd1BCoSqpSgaRrG2IvGe6JRCEBoplpqsV10Tja0nLnVwlF4YCcpJUKCc1sCR0A8xxyABPBwaYr3QxgT15HpdI4QYpp6XaC8DsoBgDHIZrPj4+Ojo2OpVMq27f6+wccff/xb3/oWY6Kmpqanp6epqaW9pTMQCPl8SFNB1xWMgXOwbWn6EADinHLBvCoyCL35msN5GU7S6enp6Ozs+PVvfjl3XpeiEIQKsJHCScVO4JmI5zl60fkoZ2UVlVCkUApW3lKoTwgwdFPK4kDhdIocwuABtIT0auYCQgRAwkD/MCBWUVHGOBACCiVQhD97vWhocKS8ogIARoYSmOixqH76VPbJp59/4IENyYS9pHdV35nhy1dfl0nJQKCCYHNoaGD58oUlcd/Ky68vjwcRwEc/+qG//9u/7e3taWwsR5DXDaQZKnCZT+UmU6OqqQVCQUqxbbu26/h8PsP0T04mw+GQN6zFvWexPHeskXegVJmSRFhK4YF8AAShgDCAlJznbYcBAKUqpVRKmclkOeeBQEBRtZBqcM4BMZfJqY0XTFM3zar6+lqMIZ9nlpWfmJgYHh4e6B8aGBjo7z9z6NCRH43cY9tuJBJZtGjBsmXLGhqqDRN0HY2PZ3w+Q9cJJpRzxjnH2Au9v6ELYJa6IgHAcbk/oCWTyffefsvXvvaPzz775GUrL0FYo5ROGbienVBI2jxPAedXNGR0A2MCQtpScsfJG4YhhASgs6qYeb+CPFQiBfDygKc6oUgEIA4dOuT3m3X1NVJyTIiUkguOpDx3M33FCMu5dvwrkgQYGU5zBvHSgJWDp5/d88jDTx08eDyXda+44sqhkfG62qZUOjcxMbFw4eINj92/dl3v+z+wcmI8FwrrgQB2bCAIvvVfP+3vO/nZz31S111Vl8zOU6oR8ANWAMlcPsuYCAb9jsPyjh30B/KOrVLlPAMtMT43GFXwdYrZuCbPN8+4cBh3hBCEEIVqAMAYc10XY+p1J3Bcx3FcVVUJIZxzjCiXAknAlFBMJGApBBOcICoBCEKAAUnI5OyJsYnJRGp4cGxiMpVMTIxPTBw+dOhMX19FeVn33K5Llq+oqCqvrqpSdQABTAAGkAgomaXLvfLxwnRuPtQ00XP+VKT3A8wwNAAAuK7rJTkZhvGjH/1o/0t7P/rRj5aXlxfsk3OK2l50IzfkMm57pexs2zZ1fyqZQYgE/EHwTHEvEQIxQBwklqB4iebTjI0QAYl+8IMfHjp06FOf+mQkEtF06rp5IRmSwpoBZoF3wZlA/bn3igTYNnAuFBVPG2BCAsaQy+W8+P/4+GRpaYwxIQEDhkwWNA22bD7z0x/fd+L4QFm8+tTJ/ne/+7b+/v5sNhMI+PoHzrS0NNY31A4OHE2kTn/oI++tqw2PT+R8PlPXIZlgUsq//uLnr1i7avXqy0Ihn+1YQoCm6BgTAI5mokj4LA44z2C+2lGfvuaFNuYLXkkiLyHMK9iNL8idEksEedsFgt28O56YnBgdHxkbGxseG09M9p3qO3L8WDqRrmtoXLF02dz5PY119ZESDUmQeBYmjrvS4Q6WQDVVwUgACM5czikGSqlrO57B4DgOpVTXdSllzsoYhiGl111KIpAAUoLkQlBknC/0Vvx4M+E5iaTj5BVNtSzLNMxUOvWFL/zvRYsWvfvd7zZ0Y2BwIBwOmoZpO7amKhIk51wh6gWvXLj+uWN83vjgWVRYqIzblNBM1vL7whPjqWAwSCm4Lrz//e9fvnzZhz78QW9jJgRxLulMEH7Wpna+zGEEWIJAoBsAgB1HWHkXY0wpRggNDg4CgGlWOQ4rLY2NDE8QQsIloXQW8i589Z/u3vjcCxgZ3R3zM2n7slWrh4YGT58+seKSJc8+98Qff+COgE8pjUcBV/3TP/3tgQM7Ke3RddUzB1UNU4qvfcfVdfW1iCp5VwDSFI0CAi44mTVAolij/L1dg7NiBa+eZlpsFIAMcO5dIfBsNfCSZ1RFMwLxsrJYC2vO5528ZY+PT6bT2cmJ1MjIyKnTfc9veSGXzROKGhqrm5sb586dW11drWkaIcgwVEPRAEBIsBzXC9JjTAUI1+WaZjiO47pcVXVCiOMwjMFnBjjnhFAAzoRj2zkhmaqqGjWK/PHne/DZf0ISFEURQjDGALBh+K695voNGzbM6Z43b16Poftcl+cg58EfvBWomOcq27OZ7Txy69XAPQrOHy5cQqRh6IwxwzAJBjsPQoCmGaWlpRhjIRjGCufSa5SiFHxZCIoKCU49nvfI3uUlAJIuy2JFAQCkOIhzQilGCpc8FA0Ymrl9546FCxZmc25pPCoEDA6kf3Hfhp/9/NecoVAounzZ8r7Tg4zZpaVNm5/fuHxF7/DIgU988r1d3dWcyVgJsizl9vfcXFtXHQ0FTR9FCPJ5LjnTDO2KNasRkkIIIRlCCINAgMDru/hWa5ZWTB563otzqZQaKgmYBgBUV8a9wc/lYHhodGBgYHx8PGdlz5w5deTlI5ue25TNZkOhUFtby4IFCxqb6ktKShBCGBFCMC405CNCQC6X96S+oqgIwHWknXcx4YZhOI4jpaCK6jNUAGG7diKVDgdiU9N+XpFfeDP9CmMqGKNYkQJUoqxZdfnm57c8/eQztdX1paVhy3Lz+ZxpakgSggi+sLv5D0WeB59gkss7mmpKCdmsPTIy5Pf7GxoaPJEPIGzbMXQdSS5m68fnF3WF/Rq5DksBYgghggkBBQAzyV1HGpo/mcpqqp+5AJL4/fDrXz999w/v7R+abGhs9ZuB1ta2M2fO6LpeVVX11BOPX3bZ8qHh/suvuPSqKxdKgLzNMJGSu6pi2rZNMVF16uRZ3rF0TdN0dVpnEMC5K5hwCcKqqoLkbyAk5vcn7sEeOHApkMSAEUFYArayeUwpBoQwNTTk6VHpLBeMDw4P9Z0+MzYxnstkR8fHTp86MTA4mEmnO7u6LrtkZc+CeZUVFaqGCyyMAQCEAMtyECKGQaQEy2I+31S2KheM5T1cBi60H58iiWellZ2PpkvYuo5QVQwAe/ce/OY3v/nOd964Zs1lhEAqlVMURVEJpZhzTggq0mTOk2sLcNG2ZRExJiyKMYCWyeQ11S8F5PP8V7/65dFjhz/+8Y+Wlcccx1FVNZVK+X1BWtxGAp2jcs0UHPUqryOpUmxzR3BEsS6A2Q7nDBRqplL5UCDkpftt3nTgnnt+cezoSYfB1etucjm3Lev0idO2bamUjI8OfOCP37tw0ZwvffmvCclPTqYiUb+mskRyvDQaz+dzzGVEUTGiCgWEVYqxnc8RjCWAQinGgCnmjpBCcAaE/HejIP+wRLwGH0gqU8nCCAAQFirWDBUkWHk7neaKqqoKNXSCJGlprm1vqQUMrg0Tk6mR4eHJRGJyYmJ4ZGTrC9vuueeebCYTKynp6uysb2hY3LswHo8Hg5qiqHnLtSQ2TeQzqZenIiUQilXFZEykErm8nSuPx2dx33mZvmhJCCYIxQAgmBAY53LO3DkdC3oWPvfMxoqy8u45raZuMsa4K0B4SaHyd2syv4fOSjEFELZjK4riOExVaCBAtm/fXltXGQoHPIA6TMGl6NmOkZm3svg5ERQWgESIEhUTBQN1hZACaaqpUA0DSAEvbD7+nW/fffrUUFNju2Npl19+xcRoigleGo+eOd2/dNmCUNAXCpvXXb8IYbj9vTf/+Cffi8c/GI50KYSURqOOm9d1Q1UUTAiAIBQRwIxxx7aCwSBjzHVtRaEIE13TmOu6rkPIa2gL+SYix7Y95A+lFCHiFQvAGDLZlASuaRolEihgxBHCFONMxqJEQSrFAJRCaUmwLB70Zi2XFR46dWhwZHBwcHh4eOeOHU88+djo6Kiqqkt6l61bt661tdVxIJ8XwSD2YPQgASSoKqbU7xd+AJjNfcXK73nIc5EJ7mWEg6Io6ZT9znfe+OUvf3n79u3xeDxeFqaUcgG2bWua8t+QvyYAGGM+0+c6rqJAPg+JRKJnfjchxHVdb6/SdR1joMU5pxIBIIlkUSZ18VNLAATMJYoSBKCMc4yIqSt5CxLjNkjl3nt+89QTm4YGx6++6h1HDp9a0rvSysLgwNji3kWHDr105+3vKyuP6JpsaQ1ZWQgEobuzY273nIcffKS+ti4WiwAQJ5+n0pVS2nnLw3VRhVCE/aYBUlCMBCDJXc9CoQTJgufhdR3M15E8qxG4QAh5YQUkhdfWKhaLgpQghUKJolAAAMFcm/kDJjDJmMulxJgihIRAQgiQWCW4pjJeWxsHABCQmMwlM8kjxw6nUsnx8YmhoZGvf/3riUTC5wuUlpa2tra1tbXNmTMnHKa2DVbKVlXV9J2nujhAEWLnrGWABCbEsW2EiKpRxoSm4VQqVxqPXHbZJbt37z58+HBpaS/CQCg4acc0vUDs67hdCxBeKiZMVdY5fPiYz+errq6mlLguB/AKMBPOJZ1Z2wW9hxUcqAVsU5HC523JSANQGROWxXw+BSSMDCd27tj7wP2P1VQ3fuhDHx7oH9u+bY/P52tpbtu0eeOq1ZceO36otCy8c9cL77rpus4uM2dBIAh5C0pKfVdccfmXvvx3O7fvuvTSS3VDUxUTIYkp9m6GKIpgzGU2pTSTTpumiRUimXRsixBCFEVR1Leyzu95RZFXGQYBgJTCq42HEIBgjE1DG7zNQTEUls9iTKlKAJAUQkqJgFCKPKQ0QgAChAApZTBoBsJmZVWpolHBYWBg6MyZgYmJiWQinclkBgb6t23bOjg4qOv6nDlzli9f2t3dbZjBC9woAEwpAAXVZUp+I2Hls36/H2FgzMFYLy2LjA5Prl+/9vnnnzt+/Gj3nI5gMAAgbdsCFDj/9f9ghAUHzqSqF/yqQsDBgwdDoVBZWRlC3noQnHNKkes6XkhaMuYgJBVCvd7lEriu6qPjo6WxUgDsuk4ulwsGwowDoVoqk0eI+P1KLicfevCRLVu2Co7XrF57ySXLTANcBz7+Z//Q0tKxY/uuG296Z7wk2NRcL4Tz91/6mz/50PvmzuuKRTHjIKVUVDQ6PLZnzx7GWGdnZ21VtctsRUFTGd8zjwQA58OEeFHzc/D6bylCvPjui9Ni5Pk/L1CR+Cw0Syxy1EwJLIGEBC6RKAT1i0L7Rw6fTKVSo6OjY+MjY2NjQ0NDAwMDExMTjY2Nc+bMWbFiRXt7m6p6/ewBIXBdpmrUs6G9ZYkQohR7SVuUeBFWJARIgQCAUjh48Mhf/uVffvnLX25vb3eZ7feb0wUjHKcQQJzCj/yhSCSSo+FQWEpq5yVzkd9PPve5LweD/r/4zCcRFgACIYmJB3jBqK+vr6qqQkiWSEwahqZqlHNXpaoEmUylXdcNh6KUqpaV13WdM8RB8Ypabtmy5YEHHlBVvXfx0mg0Nnduj0JpIACpJOzZc/TuH/x49erLL7tshc/EJaWQSsEzzz4ZjYZXXLKQuQxjkbMyuq5hwI7DEEK6ZiKMJXOQcq5PoIjO4vSZd8Xxn7fQ0XuoWfNXgKkwNhMzK/or8hAEs0YGF7539qDhKfiXN1JT7mzPwT3VOocxyGSyIyPDAwMDk5OJkZGx4aHR4yeODg8Pa5rW0dGxdGlvR0dHfX29ENwrF0UpJcSrbcoJkY7rcM411ZASZbMWAmKahpQgJXzjG99IJCZvvvnm9vZWLrw6ljMlpADAK5PBGPP5fL+TtV8FCZflECK5rBsMBO08qCr82Z/95dy53R/44J1euT6EJMLSw/PSqqqKXDZt+sxoJDw6OqLkSTgccrmbzzvhYDjv8rzNkIN8ZhAA0rmcYdCjx4/df//9J0+eWLBgQc/8udVVtRXlpQDAOFgu1wPkklXNiczKVasuNQwgBDhIzcxfunLuseNHJbJydlLVqM+vCuEKDoRKhAgXeSQRIGB5VvQw50r1czGxaCpS8Wbg5os7IgkgztakPT+joigAAtBZNiJ27PzZIyAxzAA0igcNA4iiqhloCqSAQeKpXFYkpTBNo6Gxrqm5AQEan0xmM9bExMTExMTo6Gh/f/9TTz/781/+wrbtaDTa2Ng4Z053R0dHZWW5pikIk7xjUUoAEct2VEUPBP2OIweHxgKBACHkllvf89nPfnZ4ZLwknojFwpxL256Ox2EvNqFpmqeme+z7u2f8FUmhGheFxCCEYGIi7zhOLBbz8g2QZ9lOh7MSo0OYEFVTNF0FjDlnrmtLBIbmS6azqqpTomOKczkJEqUymV//+r4jRw8ZhrZ8+bKFCxfG4zEJIp1OI4QwBkXRMMYYU4IQF8C4rSqQszJBw5Qgx8bHwuEwIIEQsrI5wzAIopxzSlWvZn8ua5k+3+z5K5rj82EG3spqP8AM7vrs5+Ium4WYKBwFpfj8QKXzUDFSY1ovKoh/IWA6dcb7fSGklJJQLDhICRiDEJBK5YaHh8fHx3fv2WkYhm3bJ0+ePHr0KGOsubm5tbVl8eKFDc0NkWDIcriVyemm39SQAEgneCBMhAsPb3jmicc2fOSjH62pqvL7Z2BWxb9eRL8n9wuX5RWquC4IjqUgL7985O67777uumtWr1kGCFABCF24Mg1FSiW3ESGOZSXTqUAopBuBdCZjCebYEPSbfQPJYCgkOHrxxT333vvT6pqy5csuu/TSFfF4IG/LfJ7pOtV1U0o5MTFWWR5MpFJCCFXRU6lURUXcslMIUw40Z+VCkTjjnDFECPH5SjHCCISQTEiEEXJd12Gu4oqi+ZazXs9GyBQ+9wy9N1qKv+ajlAhAIIklmnWkhMIUiqv46LpcIjl7VUiJQPJzVwsGEIV84mloWmHhIIyRKPTVRBgjQNJL67HyhSJOlFKMUCBg6npdVVXVihWLEglrdHQ0mUxmMpnx8fH+/v4zpwd2731paGRYIbRn/sIli5dV19RFw7FAiGBKJMBkUi5YuOzZZ7YcOnyqorwmlwfu2gpFiqJQigCBECDEuVk7F1Z9fzchLoSiaGkrbxpk9+490Wi0srJy9jlTYRWeymGVgFfHAaO8YzMpTF+AYDIymomV+nM52L339L33/IIQbe3a1Y0NFW3tUQAYHbVNU8MEGBOBAAYAzsGLsTMGjgOEgKaBlWeGTh1bEIIJAYTAyoFhAJKQywkEwjQpQuAyjpAklMqzBNuUon8eT5zHE29lkxcumGwDM3kss08gF8Ckn38ckMTFO8PsSzkOOI7rtY7TtEJPmmm+kxKkKEwoAORynFKiKOBFCWwbbNt1GHtx29Z0OpPJZHLZ/MjIxED/oOty0/S3tbXV1TasW7fM74ddu4b+4Stf+tjHPrZmdScu6u0kJEzXRyqC1hbfBVxkCooAEDkrp2tB1xGaij/xiS+0trbceeftPj8FBAhxQNOYd0StbN5Hg//19bt+cs+PaxvqhUSDI8Pzehb+f1/5WiTs/+d/+sHp06O+QNQwYrW1jZ2dXQCw9YWBQMAfCgVODI4jLH0+4/jRJOfc7/dPTk6GQiEpkaIoCEgiOUEpNk0zlcqEghHLsk3TtC3bMIxMJk0VHA37KQFVAykIE+B1aRCz0ts8h8YFuYTAq8b7vimPvAhlVUwXys10nVkDM02zsvSm/oQlOk822NRIUgKKqSDsuTGAcyGEQARPZQYCIGAcOJNCCNMknINtA8agKGAYQIlCXOXK9SsBg+vC8LA1PpbMZHJDQyODA0ORSOTZjS/84If3VFVVlZaWZrLuoxueLisra6yPKZQrCvGSPOXr4LCjlOZyOdMwHQeGh4cvueQSv59y4bVXFwhLQOCtQeqLRVKjQwsW9OzcvWPbzh3vvf3OcKzkc1/4ay7o577w1w89/PC+fQfbO+bNmTNv64t9O3ZslNxGUtqOhRAyTd1xHM5dLxCbzWYjkdjk5GQ4HB4aGolGo15LWsuyMMaG4ctmLMdxAoGgEEIhWFFIzkoNDw9a+Yyuq5Ril+UxEQJxD0yKJRYIsETCs84AT31eOIJn7b3qChn/fXRWHc8LH6UU089YrBUBL35SPP2aIlp0pvddIRAgIQUSWGKBxNRfJQDggvKAZ25sirxEBcYdRSHhcDgeLw2Hw1RVvQx6zx0JEjuOY9s2xnQajVdoVwUYY5x3hABEKTUNn2H4ECL5fN7Ouy9s3jgwMGTb9q4dW8vKygDg7u9/7+EHfrl27bLqmvicru62jvbK8nLNoCAQE0IhnjXqYdTx78pPgHMshMJb23Y1zcxlU1JCIpGWUsRiUeEJVk93FoVugAAYsfEhoqmgm+9/7+1zFyz6049/Uje0m265I53K/vXf/b3fFxjs79cURQhh6jpjbJaUKnLGnV1rYKqD5+zsmZmhF4wz5jiO47h5xphXPAxACiHOZ+0VQBZnffImxre9evl/3icFJNGFx+FCx+l/M55SdHZrz8JbQojHxB7fMMYsy7JtW5zFVK9UPhoDQKF5BEDxyvUu6PMFqqqqjh07EY/Hh4eHx0Yn2jtaGbeGRodOHT8xNjmhUSVaWtLV3tE1t2vxgoWIgkoKa54DeNuiQkBIYK6Q4O0YGEC4rgtIeNErD7fDhcs5FxwbeqHhl5TygQceeuyxx/78z/+8ubnRq0swNRgFfyslQd2aSGx+8sm+/tP/+o3/ElL+8tf3b9v24qc/89nO7jZdVepq436fwd28iqlt24pqnndZXkj/vlANBUUpxDi8wCQAeNU65MXK8Teb3v8GrccLaYYXmhdPHHq+Ha80neNw13U9f+ir/12Mp1UuATANDBOuy3O5XHl5rL+vMxaLKQpKJKySuJHLQS5vDw0N9ff3Dw4O9vX1vXz46KEjx7721X9VVbW8vHzevHmLFy9ubm40DGAM8mnHMFRVxQCYCykEYIwVRXEcRwD3enpjjDFBiqIApdmsZegGpYAQOnHiWGNjfW1t9Uzhkil/kxfuoKnhUQ6SS7Fj154rr7wyHI33LFx09913l1VUBUzFdYBSSjAgSgmmJiGAL9LLeIE8VMZm2Nyr53FWrvNbld4i9y+9xudSAmDP+ehJVowv5gFmcYJnYBdWjs8Hmqbk825NbYmVA0WB0lLj6We2dXV1+YJma1tdc0udEJBMpkZGRnK53KlTp7zehydOnHjm2aey2WwkEikrK1u3+vLSeKyysjIU8lOKAMB1pMsc09SllJ6/SArJBJ8yVYhXGYBzuWnTphUrVvh8uue9BTjHWApGo6AoDz/86G233dazqHdsInXPz39RXlH5/oWLAYAxRwhuZQWAIAa2rTxR1ItrpnABpVxR6HnF0lvdh/OG0rma1QX/QilIQIIjhEHKQu0gjNHFwg7EeXsTI2nbghBsWZZlIQkolWb3/fLXm7Zs/su//EusgK6bCEldR7oeLCsLCgGLFs2VEjIZe2Cg7+TJ0yMjQ67LCSEPPfRQPp93Xdf06Y0NzfMXzOvo6CgpCSQTOU1TdV3x6my4jHv9001TBQBCgHMIh8O1tbXFutx0hLtwmxN9R/K2veaK9Xd9+3srL7/CdsS173jnkaPHnnz62ZKSEp+OYarGCgLI5XKmaV6k7D//x8U7tSeHvLZqlF4sUuA1uIRfVxJvYNzgfOPj0dnne2VVpURScoSIdwUp5cX2iTm7UVthukU2awUCPgDIpPM+n97XN3TttdcvXbbsS1/6UiweBADHKfx6Pu+4rh0Oh730SFXFhIDrwujo+MTERD5t5XL58fHxkZGhiYnExMTY2NjY5OTkddddV1FR0djYWFlV7veZhM7k8QgBiUTypZdeevTRR9797nfPnz+H82mNf7odICCEaKS86vvfvKtnwaK6ujorl3M50nVdVVXXthw3b2im4NJlrqIoCATGuKgA66sgdMGTZy1BBADImw+E5Gy2fuXjm5Ne/f3/YY/knCMUDdTZf51yspOi04piv6/KYi+i2WJOVallWblcLhaL7dq1Z9fOPZw7pqG6zHaZVChCGAgCQoiuGwAGAHhAbiEhn+cSRDweq66MORaoqsfQuZGRkZGRkUQilc1m9+3bt2/fS8lkkjEWjUa7uroWL17c0tLkMrukJODz+Q4cOBCNRsPhcDZrO44TChe6bxQTPXbw5R27dq9bt666uprqxjf/79cfe+yxP/nQh8rLy0xTxwjyjkNAMsZAcl3X5avwRZ1D51kBF7LShBAX4cH8b2xo9arpYu7/9adzqncVyANpelRUzRLPvPB69b3y0ZuvAhUFqpDQNJVznskwANi/f6+mK4sWLwgEfYGAn4BkjrTzOYwpxoAxVVWazztScgBMCNIUFWMiBDiOAAQIY4IhVmKGI/XNLfUe911zzVUTExNnzvSfOXNmcHDw9OnT+/btz+ctLuyGhrqGhvotWzYvW7asqqpK1bDOpwPJs9iO/tXnvvDwhkd/++Ajd//kHsblgQMHPvsXn37/Bz5o6DpGICWoKtUoEQJy2byu6xf07RT8j2fLh4IpcgGaMryme4R5aaKvmqfRWXP2hpPHAW+e+4ELDX5xRWhvAQghADgh02G2V7X34rNVn8LHOStDCCktLX300YdTqdQHPvCBn/70p729vV5gh3NpGAalRAjpuq7XX55S1TNPGWOMSUqpqmLBpeMI7xxV1VQVSwmuK3x+1ecvr6srx3ghAIyMpI8ePd7Xd5px59ixI4cPHz516tSyZctUFQsBruuet/4puu/enwgpHcfJu4wqWkVFRUtre01NzTnjVyzPLkovvyiaqr/1agnNIFjeFHSx9/960wUSc/+QNH39Yo+ntG3b0I1Dhw/fcccdgwPDra2tO3bs+u53v3vjTTdxwWEqoVmC9GpTX/ABZrnAZ9SzC3nGEYLJydTk5CRjzB8ww+GwYRgYz7TkmrlVAHr1NddhhSqKghDyqjugQqf1oivOciCIiwrlXCRrXixwB039f5PQmw149N8wONP4HC/oXph9QzesvHXvvffefPPNrS3tTz/99ORk0ktk8fheSOFBnaeXwfkuLmanOgmAKUQ3LjJUinkVQTAY9Ip2KSqhlHrRjGktA6a+gBCiui8wAwtBIKV0bNt1Xb/ff84TTr++KL32Yj1EFzlh5++T9UbRm201wlTJ/FdPry3ceHawhgv+xS9+saOj84Mf+CAAbmhoOHToCGMsm8kYhkEI8TBuhBIAEEJcsC8BKr4lL7osAAAV/2LRVzmXVEFUKeg5UoKXHTplnwgowiVQQOA4juM4Xha5oiiqqhZlG5xFbyJ77m16FfTfphYWa7wIQH7kIx/5yU9+8uUv/4PjOv/w5f/v8ccfP3Dg5ZGRkUWLFsVisUAgUKzt2LZd6IH5O8j7iVnay+x78Hi9YNJM9WEAr8QqAMwgvD2kg5CgqKqiqjBbZEnBAECePXbFut2ro9ddLr+9IF+BpqyvV488LXzrtf3WDG9cccXaK65Yu2D+IlXRV61aQ4hyxx1/9Joue9beNXWLnuI/i7sEAFYUOi3vCyAIPA1DOuvCAiVTGUqpqqoYI8GZh++TUhq6Cufl/ot1570ZnZL/cwhPYT1fHRXUjFc/xcUQNyheABjhwaHB0pKywcHByspqQkgikTJN06tC7gljry8BvLLmc4Gbmd1zaBpdh72QlBfTnepE6DX8m4WsAQCEJXKEnMEIS+4lKHpfmvmlYrv+tfhk3qY3ivC5mQO/g6ZCoRf1hVnayJReLkEiIFLKbNYCgIIlOY03E1NN0TEUf34WFeUlv/I9FE7z0uXP6vjEGNO0QutL7w69BfD/A/JEgyY4EgkeAAAAAElFTkSuQmCC"
|
<image>一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()
Choices:
(A) 40°
(B) 45°[来§X§X§K]
(C) 50°
(D) 20°
|
20°
| 69,693 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAAH8AAABtCAYAAACIo76DAAAZrklEQVR4nO1df1BU1/X/vF0qNq5ZnWx0v/WZhbDGRUiLBUcbmRLqYujoJCQhwU7JBKe2RNaMa6XfmtYZM1OnY75CJFOwzEharGmDzSaLHWaEgF+Xxkm1mGK/3QWMoJAlZQ3OFOImAd195/vH7r59+5P98RYW9TOTyN53373nvnPvueeee+65DBERxAQBYAL+dP0mAhjGJw1+zxkm+NNwz4SYnJzEpUuXMDAwgLGxMZhMJv7Z0NAQRkdHffKzLAu1Wg0iwoIFC/DYY4+BZVmsWrUKubm5kMlkM9YZDkK6I23DbIERnfkAAA6AJID5icDo6CjOnDmDM2fO4OzZsxgbG0N+fj5WrlyJjIwMrFu3DosXLwYRIS0tDSqVCoCXESMjIxgeHgYA2O129PT0YGhoCFarFefOnQPLsigsLIRWq4VWq8Xy5csDaEg2pkYK0Zgv/AC6zQyOdvrn2IR/USeyQ3SHaD7gwMAAfve73+G9997DF198gYKCAhQWFqKgoACrV68WlREWiwUmk4n/T6FQoLS0FBUVFcjIyIia9qQCJQhVRQwZzRz/u6ZKS8AmsnBhXgqD8fFxamxspNzcXGJZlqqrq6m/v18kaiOH2WwmvV5PSqWS8vPz6dixYzQxMTHrdIgBcZnPef6x0Pc26wIe6zaDtLqaqIq8fv066fV6kslkVF5eTm1tbWJQGhIcF3nvNBgMVFZWRnK5nPbt20fj4+MJqysRkIgqRtySr+/UaUhWpQsecACAdLUWXVeGPBInnDTC6OgoXnrpJTzyyCNISUnB0NAQ/vCHP2DLli0xkxeuTr4JUYjvZ599Fi0tLTCbzbh58ybUajX27NmD69evR/T+XE8VojDf/5u2v9+O4qLigGoyMh5xLQEQvOFEBLvdjl/84hdYu3YtlEolBgcHcfjwYSxbtizujxXP++E6DsuyqK+vx+XLl7Fw4UJkZ2fjwIEDmJ6ejrm+WYFYIsQjwjiy0CZsIgsFirSaKm1YsW80GkmpVFJlZWXUItSfjnjzxPOezWaj8vJyUqlU1N7eLjodYkEk5jtd/3BEZDEGZ3BfKwGgmlazTzLHcWS1Wkmr1VJOTg6dP39eHJKSACaTiTQaDW3dujXmzpxIiDTnu4thgNb2TqxKezggh253CVC0Ez99co1P+kcffYR169bh8ccfR29vL9avXy8OSUmAgoICmM1m5OTkIC8vDxaLZa5J8oVYvYgjIuIspIXvEo8sRmIYhrC5yjc/x1FzczMpFAo6ffq0WGQkLQwGAykUCjIYDHNNCg/RmG8+dZjgUudczHb/jQBR7ySHw0Hr16+npUuXktlsDlnmfES4ebynp4dYlqV9+/ZF9E6idYKEGXmIKEDl4ziOJiYmqLi4mFJTU+nx7xUmsvqkhM1mo29/+9tUWlpKN2/enFNaxF3nB8wpTp+f/ZY+5OXl4etf/zpWrlyJqS+/Ek4/CSUlWbB8+XJ8+OGHWLhwITZs2IChoaE5oyWhzGcYKcht4Ono6MBj+Ruh1+shlUqxc2clRq4NC/LOQ9t4jEhNTcWJEyfwwgsvIDc3F93d3XNDiPjCxLXs4/j/uezhcvlS6ujooMHBQVq5gqVbtxwklUppampKfBKSEKHmb6PRSAqFggYHB8PmSwQSOucTuTZk1Go11dfXExGRXq+nX/3qV0REpFKp5mRzJtlw8OBBysrKos8//zzgmbAziN0xEsp8h8NBWq2WdDrXJs/ExAQpFAqanJwkIqKCggJqb2+fc0tXMqC8vJxKSkpmtc6EzvnV1dUAgDfeeAMA0NTUhLKyMtx///0AgLS0NFit1rtqvg+FpqYm2Gw2vPrqq7NWZ0qiCj5+/Dja2tpw/vx5SKVSOJ1O/OY3v8GZM2f4PGlpaQFuVXcrUlNT8c477+A73/kOcnJyUFJSknAnkYSM/AsXLqC6uhptbW144IEHAAAtLS1Yu3Yt7/0CAOnp6RgZGUkECfMSLMvCaDTixz/+MSwWy4yMp3iXx2LPI1arlViWDdjNysnJIZPJ5JNmMpmooKBAbBLmPQwGA6WlpSV8M0h05mu1Wjp06JBPmslkotzc3IC8w8PDpFKpxCbhjsD+/fuptLQ0oXWIyvyWlhbKzc0lh8Phk15SUkItLS0B+R0O11rfP/89EE1NTZFGo0moP4BozLfb7cSyLF28eNEnfXBwkFQqVUgGK5VKGh4eFouMOwqdnZ2k0Wjoq6++Skj5oil8r776KrZs2YLc3Fyf9MOHD+Pll1+GRBK8qrS0tHtKXwhotVp861vfQm1tbWIqEKMHDQ4OkkKhCHBhvnHjBimVSpqYmCCO44KKqbKyMmpubhaDjDsSNpuNFAoF2Ww2Pk0so1hUI5/cSwvyW2IcPHgQOp0OcrncJ72xsRHbtm2DXC4HwzBBly7p6em4du1a0HLvAVi2bBnKy8tx6NAhPk20tX8kPSRcT/P0TP9RPzU1RSzL0vDwsNe5M0g5jY2NtGPHjoh7692IUN84XkQ08sP1tEOHDmHHjh0Bo/7kyZPYuHEjVCoV/36wcjwmXkFnjKjT3k1Yvnw5nn32WRw5ckTcguPpOePj4ySXy33mIw+ysrIi8sTt7++nzMzMeMi4K+DRq8T0/olL2//Tn/6Ep59+OuDkakdHB5YuXRqRJ256ejquXr0aDxl3BTIyMpCfn493331XvELj6Tlr164NMNkSERUXF5PRaIy4HKVSGVR6RAKvFuGMIHckeWLJOzswGo2imsNjZn5vby899NBDAelms5nUanVUVrsNGzbQ3/72t1hJoZkYFfXSKEndCxwOBykUCtGMYjGL/ePHj2P79u0B6bW1tbyfXqRQKpVxGHpcgSA8EKqL5FYevYomF1mRSepeIJFIUF5ejt///vfilBfriwaDAdu2bQPg/cjXr1/H6dOn8eKLL0ZVVlpaGh8dI3oImkC+fPNdXXBAgp2VEw2GYbBt2zacPHlSlPJiMvIMDAzA4XBAo9HwRAFAfX09Kioqoo5jk5aWhmvXrsW1zCMg7Ii1nDoCiVTCG5uKdoUwmSb5SjMvLw+jo6MRHwMPh4iY7y8+u7u7UVBQ4JNnamoKTU1N0Ov1UROhUqkwMjISl+Uq3Ju1uiJkl5yGmXOCOAJHFqChGkW7DgfkJQH3k7EfSKVS5Ofn+wSaihUxGXnOnj2LwsJCn7Tjx4+juLgYy5Yti5qI+MR+eNTqilB9ZRWIurAGDAgEBmtQ11qDroYO9PEsdukDwrYm6dSPgoICnD17Nv6CYtESlUplgMu1Wq2m3t7emLTO//znPySXy/nfsWxcBHvH3FpDAHwPjvo8Cx5HINlx/vx50mg0cZcjCS3bOATTjkdGRnzmewBobW3FihUrkJOT49+xIuqAS5YsAcMwmJycBBDjxkUQjf5oQzW0uhqUZDEBzbwyFMqwFOGKYA6xfv16XLt2jf9esUICxq+x5H0UTDseGhpCdna2T1pdXR1+9rOfBeSNhokepY8nI0rlz1uTi2aCGR93whUehgJFeGf7UWh138eagCfzY0WQmZmJK1euRJY5xKeU8B+LyH2mWpAzCO/6+/t9PHAvXbqE69evxxUoCQic96Me/TzZnIvZfYPoApChXhPQDsupWhztBHZV7Y2D4rmFWq3G5cuXI8vMBB9MEmGAJAbBPrpXMhARBgcHkZmZyafV1tZi7974P2LcHj082RKAAbjM1dACGBrs88t4GfoS13Tw1BoEBxfcbyGZoNFoIh/5ISARjgrdZoZfBzOMFAzD4PCpfv45wzAYGBjg5/vR0VF0dXWhvLw8LiIAl5VPTI1fwmSiuEqL6oYGLxMtrWCYNYDuf9BZ7+mwvtMeuV4GkJwnhz1t0Wg0MJvNEb8XLOKxzwTX8D6hqgioaTWDyIl/narBf5dko9XiHQE2mw0rVqwA4DqGVVlZiYULF8bUECFE8+UTDNa9DZ2owm8hkbiNO9lPw2h2CBgP+HwCjpJ2eeeBp0OyLIsbN25E/J7lL7U+fAQELScicOjDx11afN8tD7PV6fCH3W7H4sWLYbfb8dZbb2Hnzp0xNcIf/gpftOCbJeAeEaHhfXK1jeNARChZwyCkUidJdtZ7sWjRItjt9ghz90NfUh2Qyn8FhmHQf+o0JDuLeQ1Yp382YG602+2QyWR48803sXXrVn4vP975MV7mM/AGAfLqMV6aeBHuUX4oApq55J3zZTIZvvjii4jyvr6rHthchNVZfp2byGMgcZKxtooACR9IKZhxZPEiGX3++eekVqtFP1ufmpqa8CDGXV1dpNFo6Jvf/CZ98MEHCa0rkfAciyMKsgMtSDDWVlFN63tBA2OmAJ5RwaCz/SiMFgdK1khx6sguPJ0twXtmDiVZXgPKzS/sqKqqAuA6fCkmFi9ejF/+8pdQKBSilitEQ0MDP1c+88wzfFvmCxiGARFhenoa4+PjrjRhBvclB0QEpv8U3kcRGtSE6iJ1gE3DO/n1teIodqJkjWsf/sk9VdgEoLP9lE92Bi6XotLSUtEa48GSJUvitlr5g8KI9tTUVFHrShSE3yhce1yZAYADwzDYdbQLR39aAoZhsGmVOjCvUDxU1Ri9MsFi9Imhx3EcEUckk8mChg+JFUKbfGVlJTU2NopWtn8dHMdRV1cXyWQyeuihh+jcuXOi1zVbCCb2hd/SNYWDn8aDhcTlR35n+1EUFT/l6hDoQ1HW0wA28Zo/wzAA41I0vvzyy7h6sk9HFfTq9PT0hOzuCev4xje+gQceeABXr17Fxo0bRa9rtuBZdQFesc+3s68VnfSEy2pLTphba/BIekZAGRLzX2rBMAx+28XgmUddhh0Jk4Wuop38NijgXUrJZDLBEkPcTZB4Nf6ZwDAMXn/9dezZsycqN7O5BgUR9Xa7Hffddx8AgBMaN/pawejfR8PeJ/kkzyZWQClCseGPYNukOTk51Nv7UTwSK2Qd586dow0bNohWtj9sNhsplco5j3wZK4Tfqru7O8CT13WVje9KTaf1hsH1F/0SwLtG5juE+1/hOtkDpVKJTz8di6bjhoVQJLMsmzCnDsDlZrZjx464r0tLBlitVjz44IPuXy4JvLeh0y3qPcYsoL6T+DRfy6YgIJOP4yP/V6AlTKPRYHBwUKQm+IJlWYyPj2N6ejoqTZwiCFxkt9vR1NSES5cuxUnl7MPTPuH9fFeuXEFWVpY7RxCLZQTGSp+3iJy45fT+5wiyqlCr1VFtKEQDqVQKlmWjmvcjYTwAvPnmmyguLg56L16yw799DMPAYrFg1apVcZXrw3yGkWKBxLWWl0qkSAnyTcXYSgyHaDd4ImG80+nEkSNH8POf/zwe0pIKg4ODWL16dVxlRO22Ihz5JPZNrERIT0/3ObUb6XvhYDAYkJOT4+N6Np9BROjv7xd35PtVAYdnCuDcXj7kxH+xLBYs/BoGBgbAALjtznNbyAAiPv2Wk/NdEIZ5xjAMVCqVi/nCfJzAvyjI+wwDnlYnCegmAojw2pEjeHmP3vX7DsDf//53pKenBxyLjxZhmM8gRSIBAwYpEo+XjwQSiQTfzS9Ad3c3HASkSKVYIJWA4Tg43VtqDo6DRCLFAqkUKRKCg//o4Z65evTDDz+MTz6xCvJJIMVMZXtoBZwcQSJ1T18chzN//SsWANj03QIwHM0D98yZYTKZAs5NxILwYp9hfBnk/tCFhYU42/1XcMS5R6FrBJI7D8dI+K1xCSTejx7uGbwj/9rIJ+AkEkgZAGC8+scM7wOAVCLxaVTNa4cEzqUEb1PmrxQwmUwB5yZiQhBLAt1yOAXnXjm67XCQg+PottNJHBH19fWRcsVDNB3Mv55z0rTwfWF54Z65MTw8TKqHM2jayQXZqgxXNke3HA5yeA3d1POPf1DGqgzXiWH/5/MUDoeDZDJZzEfaheAHCUdO75zoc8c9A6kEcHIcwLhEa2ZmJlIYCa4MDAiWg+TyfWAYSEBwCkQ9SRjXaAz3zA2WZTH678/AOW67RX2EZQdB/dEG7N49v0y5M+HixYtgWVaUJavXkwcAOA63OA4Sxtfdj2EkkIDx8XIqLS3BO3/+MzjOo3x5nONd8y84zq10MfgavxwL98ylqJFEigeXLML1f/87srI973IuC7eT48CB8KltDO//7xm8uH07uIDn7hrnoehvaWnB888/L05hkQkIjhx+Ir63t1f0uLke2/WGDRuCRvyIBnv37qUDBw7cURc53L59e/aDM5DnQIdgpOTk5GDJkiUBlwNRHKPJY7BRqVRx2fgnJyfxxz/+Ebt27UpK9+tY0dbWhqysLKhUKlHKC8t8zm3udYBBSpAgitu3b0dzc7NPmsfNKB7EG6SpqakJTz31VELdweYCoaKhxIx4xEa4UGzxIJ7AjA6Hg1iW5W+rulPgCcVmt9tFKzOuU4kKhQLbt29HXV2dSF3RhXiuX3nrrbewbt06n/OE8x1EhMOHD0On02HRokWiFjwjwilNVqs17tCg/uX39/fHfP78TruGncjlhCKXywO+cbzKbNzhV1mWxZYtW+IKDepfvjAYczTo6OiAXC6/o65hB1whbrdv3x5gy49bmY2r67h7X6iQ6/EglsCMBQUFUQV/nA+w2Wz04IMPiq5XEYlw2QLDMMjIyEBFRYWo++XRxun55z//iU8//RQlJSWi0TCXILfr1e7du7F79+7EOKGI1Ytu3rxJSqWSenp6Ynrff/4KdS9PKJSVldGxY8diqjsZ4TljoFaraXp6OiF1iBaDRCaToa6uDi+99BKcTufML/h2wID5K5qRPzIygg8//BAvvPCCT5k0D823Hty6dQu7du1CfX09FixYkJA6RA1AU1ZWhqVLl6Kmpiaq94IpLiqVKmJDT11dHSorK32cPue7Ze/gwYPIzs7GE088ASBB+xBiixKr1UorVqwIeyVYJDAajVRcXDxjvomJCVIqlfzlzHcCDAYDqVSq+XepIpErTpxCoYj5CDfHcdTb2xvRWv/gwYOk1+tjqicZ0dPTQwqFgsxmc8LrEp35HsWtubmZ1Gp1zL13YmLCJzBjsDo89/jcKaZcz+HL2Vquxj3nk9+NW5659sUXX8TWrVvxgx/8YEYFkPz8+ADwBo1gR7Y9dZw4cQIbN27kTbk0jxW86elpPPfcc/jRj340e8vVeHtPOBOjw+EgrVZLOp0uprJd5wJ7Qz7XaDQxh3xNJnAcR+Xl5VRSUjKr9Ypi5AnSoQC4TuC8/fbb6OjoQENDQyQd0ed3uOVea2srli9fHhDydT7i17/+NXp7e3HixInZrVjs3hQ0ALLZTHK5nDo6OqIqS6/XU11dXdBnBQUF1NbWFjUtyQaj0UgKhYIGBwdnnV7RA80GkwRZWVk4efIknn/++YgkgAehAjNeuHABN27cmDHkazKs9SmMHvLaa6+hoqICBoMBGRkZojjCREvcrMFz+ZJOp4voAqa33347YB7kOI5KS0vn5f27wlVKRUUFZWVl+axU5t3Ipyh6alZWFi5evIihoSFs2rRpxuBLwcK0XL16FefPn8cPf/jDWMidE5BgJXTjxg1s3LgRdrsdFy5c8HE6mW1JlRCFLxzuv/9+tLW14dFHH0VeXh4sFkvIvMH29evq6qDX65GSkhLireQCCfYtLl68iLVr16KoqAjvvPOOuF45MRI3Z2hubialUknt7e0hRZ4nMCPHcTQ+Ps5fyT7fYDAYSKlUksFgmGtSeMwJ84WM7unpIaVSSQcPHgyaNzMzkzcTHzhwgDflzgdNnshl69i/fz+pVKpZMdlGg1ljfjhmffLJJ6TVaiknJ4cuXLjg86y4uJja29tpamqKlEolWa3WRJMqGkwmE2k0Gtq6dWvCN2liwZyKfX8YjUZSKpX0k5/8hP9YnsCMjY2NVFFRMccUBod/x7bZbFReXk4qlSpq28ZsIilGvhA3b96kV155hRQKBR04cIDGx8fJ4XDEdXvXbGFsbIz27dvH0z41NTXXJIVFUo18IaxWK1VWVpJcLqfnnnuOCgsL55qkkLBaraTT6Ugul5Ner4/I2TIZdJakZb4HNpuN9Ho93XfffVReXh63k4iYMBqNVFZWRnK5nPbt25eU83o4zDLzQ1917g0UDELRTuLIQlVV3oiRn332GTU2NlJubi6xLEuvvPIKvwqYjVHkqcNsNpNeryelUkn5+fl07Ngxn6VnMozoSDE7zOfC/HRH99bqarzpFiMBEqqqORW0uP7+fqquria1Wk1KpZLKysqosbGR+vv7fSJsx002x5HZbKb6+noqLS0lhUJBq1evpv37998RDiQM0ex6QLjvAnD/3YfNTBYkVa+jo2GPIBeHml1PQLL5CH76ZHaQUrwYHR3FmTNn0NXVBZPJhLGxMeTn52PlypXIyMjAunXrIJPJ+DBv/sebR0ZGMDIyAiKC3W5HT08PhoaGMDo6ig8++AAsy6KwsBBarRZarXZeBnEMhYQz35fZvlFBW1/X4em9l2GhzoBbIFpf1wFP1Atu+Ygs2ubk5CQuXbqEgYEBjI2Nobu7m7ete5gqBMuyvH19wYIFeOyxx8CyLNRqNfLy8u6IOL2hMOsj3wNCH56QPIpVh99Fw94SV1qEoVTvQRzM2cWxTN/H6CQOD6tXCaJ8C0Z5guunIH6DdxuS4tbgYGPdPwx8MMTDNGFHi0ba3EkdJeHMD/WtuDWPuO66vfKxIK87c18rak9ZZowanogpYibm3lHTUqKXE5zf38Lf79XsdF/i9H98mrm1hlC0M9Fk3QMlgYXP3FrjNe6EuAXqHhKDOdP272HukRQK3z3MDe4x/y7G/wNWsQyhxNmI0QAAAABJRU5ErkJggg=="
|
<image>如图所示,AB是⊙O的直径,C,D为圆上两点,若∠D=30°,则∠AOC等于()
Choices:
(A) 60°
(B) 90°
(C) 120°
(D) 150°
|
120°
| 69,694 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAMwAAAAWCAYAAACMh3O7AAAIBklEQVR4nOWbzXIbxxHHf7PQgdc4fgAJC1rSJZfkCSKQTCQDVN4gh4iwU0ml7HBBPUJEyK6kEosEdEoqD8APSRViIeeiqhx0VVm2sICdkx8gFQGRvNM57Af2CyBAASAg/6tQ2J2Znenu6Z7p7p1VIiIACKAYiTGazAUC7Gwa1I4kUVOiLQcUMGY2rkLDGfsXEZRaBAlOgIxJr24qakcZbcsWcrjr35xdTgsLAQPtK11yHgUcu4HdGRQpvEmfP3TsTgG7BxqrDE1HEBFEC3uWwaq6iZNoPy14IhquBCf3LZRS3m+ziuBQre4PnlfnIbs3RIZ97x4IVlkNZC9Cu7lH+Uoh0mqJjEUgqWOD8ggUGBhZk6gR5bC9UYkZSHyF1HM0nrjwBXCVw3Ms1ky/UMEHuwdY5WN+f7sxc4pEBAn+O02UUtxzVtHak4v+tIihVlGF/BA+dGo+lgWiHJ6zzZoJLg71uo25VuR6/lKi4fnQNzEUBHOjxdtBlVIoQ4ULYL3lgMAFMMJtd7D7GjR2Guj3S+QLgyVGKRVrMxfvIhB6ZCwFfG23MK7mU83zV0rUnneZlUvgLRqCUl7fojrcLGxQrtY5vLM1oNFcZ98qQT5NowdjIdzbs6Bjt7h6owjA5/friFlBUaBSKcTaiVoMF34SGAp2DwU2FeZv21SKeRy7wer6Kvm2+BqlAC0hc/Z9C4pFeCCAjq0UUQHMZQFRZLqLrdYjrheLqeZm4bJ/NSVj0VEutb/DDvpu3a9zRIlP7vwq9Wh+9TKX8oVU+XIh7ap88+8utcoGhsqxvnUX81KCxyFe/mJCZ1x3+PL4fYrX8oCBmb8Y8hTOvPjbhXZOsGWNrTwcl65SgAjn6VhivvDGF+XwqCZcK6ZX747zFaXLZqr8zDCiXCZdQ4e/bN3Fqv8mnmjwhbt2q8Z6wktJdLAESC88zeMaTUfQ4lItl8nnB3ohIstiKT58TyG4FnBsG2WVMH0vYufjn1Ou1imaEWkE7tXtxmN2t9YBvCBOjETnswmohyM6nk9Lp4uySr6SRiar0+TD3WOur1/zC6ZIRlZfnS5HgBm6XT4tUYVR0URJQnZLpVgetHNCjZ0wdixcvxEqFsLyZQHBozu4VvD1Nx2Odith/FL8RHN4Z4u4b4HnitVqNZRSGIWNsIN43/PNfogMCAjUrvW5zWUzUNIBPTsfb8CmxQdF30WY5tz5ij8q0RGlNfZoQonOJ9M4HTz+Z4vqjZ+G97cqXtxWrVaXcgEAL9aKwn5wN8wANhvb/GzVCLPFYY5Mt21sWYulCa8U0v5E0Pe8pjyqbIqBG7QeiV+CLFUNCznYHZTPgJaAHhHBNfNsKuh0uylapdOk3nqR6MFItVs22A/uUvRlHxh+dVNBwZ+PUOjz9kTOjuhseDuoxZq/HhdvVSgBzdaJVyAiIu0ToWxJAC0izca2WPUTicOV88SXzXuCNyWp377dnjuNWmtpNrYFkL3mi7C83dyLyfNtQLu5F5O3Ssjf7mpxRccf0tl9LSK01qHeVyN6r50TT7+aHRERYa9aEuW9UZOm4zWyygheBllK1v45kB/HWeWu9XxmrG1/FlOecrU+l3HPDSPF6sp5L6wTIcGLVUaaHdevaksZBErylbwWEREl4spyvJXNeq+SLpNlPH6y6BjzTFQg+0U5QjUJHHuf9zZ+HYkv/YRSeQc5/EPYTomMimJZPs6ZhdEMfwn6fTPQFL9LqiPDEPKXxdepW8sYhzHnjZR9ZxAxfQUeLqZYoL/E2a9xEewgQEqp3gb+vehEZ+u+0vEdpt/vh3UrKytzIG98aCR1mGTk4jaTle8tPIF7GrQkXt5OsKsuy+6TSWdirv02sdlfWVkBGfwvEgxUagXr2PuD08GqHD+l7OWgp07FWFgw2b0REsbStj8jl8uFMu8mmI3N0TIYC6TodOx9lMrF9UqBd0wskTF49vDPkYyPlx0YlhQ5LQvlyndvXK8jd1Ek05wBve0JsjTToE/ES7TE6QnomM/486ofJfOz5CMXjT+ROI9eJGPE5jO2ZDqtBj8q/c4zOqUwjIdczf2CL/ovAU2/3w9/4m/LwX0U4rd91X+dqgPo9V+G9VkQf6d41X/N//p9+r0+0dW93+/zj5OHGEb82I5hPORxq0u//yocN2v8oH+D3Mjxx6oX6NgNVtc/jLQ4HvldzlTHn2N9q/Uoo/Uxj1vdrPiYYS8vF40/ieyKHo9GxEHRBDwCXIh21GoNPqMTvI+yDOMRO5Xb/OTSOwC4rksulxv7epK6KE7r++m/nqO1xjAMtNbk/K8Ujv76R7598i6u+9oTSS43dIxp4an99wwX8JiPfvkRP774g5mNO288ffJFZvnR3/7Et09+GN4rlXaflwUej4lvlRThmUoDAgtLrAYJfpVSmYrnui6v3VeZgyt/EI175noRiY0ZfLRYMK/E6dAalIlpvuufDboQPvcm449TD6D8NVapnH8/WLlmPf48+AMwCxGZh1vKe5j5gbFIcOYusuWcN/1jzZ+fxIjxGEBKXFu76F8n/DfDMFI+6rPef0REpNfreQ6777D2er1M3zBZHr0fVTduuRZXtNYJekvyrPffscacNtrNvfBkBCAGauw4Znng8RKPY26Ko5efR534f3Fyz49d0vFoaDCBMSSD/ra4ocKFiqe/i98nr1+eYjA6uy7KwdC+TzPGDGNOjXFahHqG+omC/hmMP7N6LZKZRNESWzwnCvoXib+s6hHJrP8DZX8DEVIy9G4AAAAASUVORK5CYII="
|
<image>如图,点C是长为10cm的线段AB上一点,D、E分别是AC、CB中点,则DE的长为()
Choices:
(A) 5cm
(B) 5.5cm
(C) 6cm
(D) 6.5cm
|
5cm
| 69,695 | null |
5cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHIAAAAzCAYAAABL2Vy0AAAIwklEQVR4nO2cXyzV/x/HXw4ZjSLlwnaWcnIhOofjz2TMjhTx3fytrZZ/zaTNuKDa1Jpm3ZSSZFZLuhCpdGr+i6w2/1o4ppMkNt0g/zvFOc7x/F3Y8ftKIc45n8/p2+PO2/m8P4+zh9dxxvl8DACAWERZWRn19fWRh4cHTU5OUkZGBt25c4eEQiHTaqzGiGmBf3P58mWSy+WUkZGxuDY9PU27du1i0Eo/MGDLREqlUoqNjaWmpiYyNDRcXFcoFGRsbMygmX7AYVpATWFhIYlEoiURiehvxDXCmpADAwNkZWXFtIbewpqQfD6fPn/+vGRtbGyMZDIZQ0b6BWtCJiUl0cTEBD18+JAGBgZIIpGQRCIhDoc1iqyGNW92iBbe2Lx48YJMTEzIxsaG7O3t/4ZcI6wK+Zf1w6of966uLmppaWFaQy9hTciGhgby9/cnkUhEIpGI8vPzaXh4mGktvYEVL611dXUUERFB1dXVNDU1RYGBgXTgwAGanZ0lHo9HsbGx5OPjw7QmuwHD1NbWwtzcHPX19Ytr165dg0AgQGdnJ7KysuDp6QkfHx9kZ2djZGSEQVv2wmjIn0VUk5mZCTs7O8jlcgBAZWUlIiMj4eDggJiYGLx69UrXuqyGsZArRVRz6dIl2NvbL8YEgP7+fly8eBEuLi7Yv38/rl+/ji9fvuhCmdUwEnItEdVkZmbCx8cHs7OzS9ZVKhWePn2KkJAQODo6IiEhAS0tLdpSZj06D1lVVbXmiGrS0tIgFAqhUCh++v1Pnz7hwoULcHd3h0gkQl5eHiYnJzWlrBfoNGRFRQXs7OzQ1NT028dGR0fDzc3tlzEBQKlUQiwWIzw8HAKBAAkJCWhubt6Ist6gs5AVFRXYs2cPpFLpuveIjo6Gu7v7spfZn9HX17dkSvPz8//oKdVJyPLycvB4vA1FVHPixAn4+vqu+fEqlQpisRhBQUFwcnJCfHz8HzmlWg9ZXl6+4Un8kbi4OBw7duy3j+vp6UFaWhoEAgF8fX2Rn5+PiYkJjXkxiVZDPnr0CPb29nj//r3G9w4PD0d4ePi6jlUoFCgtLUVwcDD27t2L06dPo729XcOGukVrIfPy8mBtbY0PHz5oZX+lUglvb28cOXJkQ/tIpVKcOXMGrq6uOHjwIO7duweZTKYhS92hlZC3bt3Cjh078PHjR21sv4hKpdJITACQy+UoKSlBcHAwXFxckJSUpFdTqvGQuoqoRqVSwcvLCzExMRrbUyqV4uzZs3B1dcWhQ4f0Yko1GlIdsa+vT5PbropSqYSfnx/S09M1uq9cLkdxcTEOHz4MJycnJCUloaOjQ6Pn0BQaC6nrSfwRhUIBDw8PnDt3Tiv7d3Z2Ijk5GXw+H35+figoKGDVlGokJNMR1YyNjWH37t0an8x/8/37dxQWFsLf3x/79u1DUlIS3r17p7XzrZUNh2Tq5fRXjI6Oaj2mGolEgpSUFLi4uCAoKAhFRUWYmZnR+nl/xoZCsi2imtHRUdja2iIzM1Mn55PJZCgsLERgYCCEQiFSU1N1PqXrDsnWiGpGRkbg6OiIu3fv6vS8EokEycnJS6Z0LX8b3ijrCpmbm8vqiGqGhobA4/F0HhNYmNL79+8jICAAzs7OWp/S3w6Zk5OjFxHVSKVSWFpaorCwkDGHN2/e4NSpU3B0dERAQACKi4uXfOpBE/xWyJs3b8Le3l5vIqrp7u5mPCYATE5O4vbt2xCJRODz+UhNTUVPT49G9l5zyOzsbLi4uOjtfwu6u7thYWGB4uJiplUAAG1tbUhISIBAIEBISAjKysqgVCrXvd+aQmZnZ0MoFOptRDUSiQS2trZoaGhgWmUR9ZT6+fnB3d0d6enp6O3t/e19Vg35p0RU09nZCS6Xi8bGRqZVltHa2orExEQ4OzsjNDQUT548wdzc3JqOXTHk1atX/6iIampqamBubs7az8ZOTU0hPz8ffn5+cHV1RXp6+qrvS34ZMiUlBXw+H1+/ftW4KBuorq6GhYUFXr9+zbTKirS0tODkyZPg8/kICwuDWCyGSqVa9rhl136oVCpKS0ujyspKam5uJktLS1IqlUxd0aA1jIyM6Pnz5xQdHU1isZi8vLyYVlqGgYHB4j0VhoeHqbi4mEpKSkgul9PRo0cpMjKS7OzsFh77Y8i3b9+Sr68vubq6kpmZGc3Nzen+GegIMzMzam9vJw6HQzwej2mdFTE2NiYzMzP69u0btba20sTEBNnZ2VFNTQ1xudzlIefm5kgul5NCofijI6oxNTWl+fl5ksvlTKusCQ6HQyYmJsThcEihUNCWLVvI0NCQHZfV/WXj/PTOV+Pj42RgYECWlpa69tEpSqWSent7SSaTEYfDoc2bN5ODgwPTWqsyOjpKg4ODND8/TwDIzc1t+RXLcrmcEhMTaXp6mglHncLhcKigoIBu3LhBRkZG1NHRQefPn6eZmRmm1VbE1NSUoqKiaHBwkEZHRykuLm55yKKiIuru7iYbGxsmHHUKh8OhiYkJioiIIIFAQMePHycOh0M5OTlMq62ITCYjLpdLYWFhFBgYSGVlZUtDtrW1kaGhITk4ONCmTZuY8tQZMzMz1N/fT97e3otrjo6OVF1dzaDV6tTX15ORkRH19vZSTk4OxcfH//935MDAAI2PjxOPx/vP3P+ttbWVLC0tafv27YtrCoWCtm3bxqDV6jQ2NpJQKCSJREIPHjygqqqqhZCzs7P07Nkz4nK51NDQQFu3bmXaVSfU1dWRp6fnkrXq6mr6559/GDJanbm5Oerp6aHMzEyytrYmqVS68DueiOjly5cUGhpKO3fupKGhof/M/d+kUillZ2cvfl1WVkYWFhYUFRXFnNQqdHV1kbW1NVlbWxPRwnMICgoio6ysLGptbaXS0lIaHh6mx48fk5WVFclkMjIzM2NYWzuoVCoSi8XU1tZGtbW1NDs7SzMzM2Rra0u5ublM6/2SsbExunLlCikUCiooKKD29nYSCAQUFRVF/wN6dsUkImT1ZQAAAABJRU5ErkJggg=="
|
<image>如图所示,在△ABC中,AC=DC=DB,∠A=40°,则∠B等于()
Choices:
(A) 50°
(B) 40°
(C) 25°
(D) 20°
|
20°
| 69,696 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAABoCAYAAADsF+4sAAAX/0lEQVR4nOVdf2xT173/3ARIB1ldFU9xJHcei9N6mOp5C13cJVvCwwEjkMgEUniPSJi3tAkJb422QI0WlOo1fZhhWOgCDSLbPCl6SiWmhDUrpmV9iZRNyctTYcVO0iXZC4QOp+S9mQaKQ537fX/Y9+bavrav7WsH3vtIiPje8+N77vd8v+d8z/me7wGlEWw6Cw+vi2VF/04G9RUMMQABWQQGBIB+2utKlcSEgfhJFhMqMNUPkyzkrveACWQPMsTVaycgi3pcmW1bFuIiCyT2OPwhG3jAMMzSe9GM6QFfrwwgjOLPVzZj2871AAB9YUHgOWWwQQDiMocAIEiUkDRigANbGTBM8F92VvDvzRgjAhgE/i0zEvugLABg9OIlMA3bsD7YgIbG78PU8FN8f0Po50o7s1IVvfoKhIi7vd5EwCYaXSb1ljQE5PacrOfkngCufYmpdzmQEnNYctPmioaI5/UVIFODPbkyWXZZxi1W8McB01KH6zlxgBgg4+MNEdGKVKRu9OIlMM+ui3j+9UITzv55CkSU8FjAMAyGh4cxNzeHkZERTE1N4ebNm2AYBrOzsxgfHw9Jr9froVQqAQDr1q2DRqPBiy++iLVr12Ljxo0haSXRM9aLt5gDOKtnQETY2XQQmw+9hfedF1Gpr0yoLakiCeaw4IYq53tOmLe0RaQoKNACk4xkxgwMDOCDDz7AwMAABgYGoNfrkZ+fj5KSEpSXl0Or1QIAlEol9Hp9SF632425uTkAwPj4OG7fvo1jx45hdnYWExMT2LRpE8rLy1FeXo6SkpKoNHCU9jrfR/3WLYF2MllgRv+MKwC2FRSAkOFhNFmRY8lNm7GZPmIjdbG93kSbG07FVE9Op5Oqq6spJyeHjEYjWa1Wcjqd5PP5lupIUcXNz89TX18fNTU1UVFREeXm5pLFYqH+/v6oeYRjKEtuqmBAwGYaDU+YAS0nyc4RpcPdQ1vqRcYVdw8BSzaCEDMzM2S1WkmtVpPBYKCOjg7yer0JE50IhMy9c+cOtbe3k06nI41GQ83NzeTxeIiIs2WCkwBmaTKAigNppS8WJEtOeA/uPdVA9fae4K/FYE9apPqKyAZNT0+TxWIhhUJBjY2NNDY2lhrVCSCa5LlcLnr55ZfpqScVVFtbS9evXw+kp9hCwbJ++YmMAoYo8ck6YRRbGT3qXSwq9UEtPNoLRv99oOIA6L2zAICpqSm8/PLLGBoawgsvvIBvf/vbWLNmDVasWIHS0lJJda1ZsyZiYJcTs7Oz+NGPfoS3334b1f+4F63/+gbUanXa6ksE0pgjGAlHf3sK+p0/Fk1m73Xhxzv18D1cwBuvt6Kj4yyefVaHNWvW4Dvf+U5I2vHxcXg8nlBiGEbUsBsaGsLCwkJcMsUmDNGgVqv5iQYA/OIXv8Dq1avx17/+Fa8eseLIq4eRnb0SwgmQEJmYHEiUHI5AcUKFuHz5Mmpra/HCCy+gvb0dNpsNX/va11BWVgaDwSADydGxsLCAoaGhqO+FzPd4PBgbG+Pf3bhxAw6HA93d3ejq6sLk5F/Q3v4m/n7zZgETltpPSZgJCUOS8gtXwiG/F3m9brVaSavV0pUrV/i3jY2N9Prrr5NKpaKGhgaan58PFBFnFpZpQ7St7U366le/SlarlYiI+vr6SK1Wk81mizEOpXfVIOXlG6LAlHXXrl1kMpnI6/USKyC6sbGR2trayOv1ksViIY1Gw09l08WARMv1er2Ul6+ioaEheuqpp2h6eppYCszujEYj/ZNlf8gUP1OQsCodG7du3cJ3v/td5Ofnw+l0QqFQgBFRfQqFAr/61a9w7tw57NmzBy+99BI+++yzZKU95nup6oYr57XXXsM/VO1BcXExXnnlFRw+fBgMAmNYf38/WBDKy8t5YzdjSIajXM8cGRkhlUpF7e3tou+JiCwWCzkcjpD3Xq+XGhoaSKVSkdPplHWjLFFMTk6SSqXi7S2fz0cqVUCKhLDZbKRWq8ntdsctU642JK3Wurq6SKVSxbS2icSZw6G/v580Gg1ZLBbJxmiqDQ/Pv3v3bmprawt55nA4yGg0RuTt6+sjlUpFPT09KdEgFUkx59ixY6TT6WhycjJu2ljMIQqMV0IpyiQGBwdJq9WKjicGg4G6u7sjnrtcLtJoNNTR0ZF2+hJmTldXF+l0Osk9PR5zOCQjRanCaDTShQsXRN8NDg7SM888I8o4j8dDGo2G+vr6YpafqpQnxJyhoSFSq9WSJIaDVOYQhUpRvIaniu7ubiotLY2ZZteuXdTa2kpEkR/a5XKRSqUilyt9jh+SmTMzM0NqtTruGBOOysrKhHV0f38/6XQ62r17N925cyfkXTK9MTyPz+cjrVYbMeiHY2JigpRKJb84Go6+vj7SaDQ8jXJPbCQxZ35+nl9FTrTiZJhDFPiAVquVlEplVNWTLOx2O1VVVUlK29TURDU1NVHf22w2Ki0tjdjqkAMxmcNVUllZSQ0NkdvRUhCNOVIbMDQ0FFWKYiFa+Xfu3CGVSiVZNXu9XsrPz6erV69GTVNdXU0Wi0UybVKRJbB3Iow7hmFw9OhR3Lt3D6dPn5bVvpJqKBYXF+PatWvQarX4xje+gd/85jcplf/GG29g7969KCgokFSOQqFAc3MzDh06FDVNZ2cnxsfHcfLkSUllSkY0rrEsSz09PaTValOaPQklJ1VxT1SKwuubnJyktWvXJtwev99Per0+pgbweDxJjcmxEJU5Pp8vZB0sWZSVlaVchvAj+3w+OnLkCCkUCsmzQA6VlZURBqdUOJ1O0mq15PdH32zr6ekhvV4fM00iiMocq9XKD5qp9PhUmSNWN8uydPXqVTIYDGQ2m6POpoTo7+8nrVZLi4vJrySbzea4zDWbzWSz2Xg6U4Eoc8bGxmJOIbmKpVQuh+SI1U0UUDctLS2kVCrjSlFRUVHKyy4ul4uUSmWIWhRTnUqlkmZmZlKqiygKcyorK8lut4tWnijSwZxwxJOirq4uKi0tlWWKW1tbS42NjTHTNDc3yzJ7QzjB4+PjpFQqo+5fJOquxDEn3avN0aSIGztHRkZkqcfj8ZBSqYzppOL1ekmhUKQsPRGSY7FYqKWlJaVChTAYDDFtBDkgZLxQiqanp8lms0k2OKXCbrfTjh07YqZpbGyMK2HxEMIcTl/KufBoMBjo2rVrRJS5vRq/3082m42efvppys3Npenp6ZjpE6WLW/4RbseHw+PxkEKhkDRZiYaQLcvOzk7U1NTgySeflNuWAiDvGZpYyM7Oxquvvopt27bhy1/+Mvbt24cbN25ETR+NLhLZcSUi5OTk4Pjx42hqasLi4qJo3ry8PFRVVaGzszO5RgQrI6JAb1Or1bI7/GVCrYlhbGyM3+G02WykVCojdmyJUpPm0tJSOn/+fNQyOKM5WfDMcTqdort/qWK5mCM0OFmWpbGxMTIajVRWVhZXzUkFt03PeRSJQafTxV39jgaeOVVVVWnZ3dNoNLJ9DKngDE4xS52TomRXCsJRXV3Nu1OJwWazUW1tLRElLqUgCmwJ5ObmpmUHcjmYYzAYohqcnBSVlpaS0WhMSo0LPzI38Ie3UbjmplAoklrSAVH6VBpRJHPSPWNzOBxUVlYmKW17ezsplUp+uSVZtLS0xJyuh6s2qd8ARIF1tHDRlOsjxpIcuRnl8/lIrVYnZHBOT09TWVlZ0lLE1SvmTsWhtrY2qQ4AIqLi4uK0eb5kUq21trZSdXU1/zsR5qcqRdHcqYgC/gpmsznhMjE/P085OTl07969pIiKB4VCkRFvGo/HQyqVKqWOIJSi0dGIs2xxEc2dyuPxUG5ubsLjDkZGRshgMES8kEvlZIo5tbW1MWdNiYCTopaWFv6Dxvoe3LvBwUFSq9Wi65IajSYhryUioqyPP/6YP6dCAos4XdY8xfFzTia/2+3GxYsXYbVaUyqbQ0NDA1wuF4aHh7Fx40Zcu3Yt5vfg3pWUlMBoNMJut0fQWVhYGHESPB6yJiYm+ANHmVheSbUOsfxWqxXNzc1QKBQplS1EXl4e3n33XTQ2NqKiogKvvfaa6FJNOBNsNhva2trw6aefhjzfsGEDJicnE6Iha3x8HIWFhYlT/wiAiPD73/8ek5OTqKurk718hmGwb9++CCkKT8PRAgAFBQWwWCxobm4OSafVakMOa0lCUVERDQ8PJ6QLE0F2djb5/f6o283JgmVZ8vv9cQ3ORMqLB4fDETEWicHr9ZJKpQpZtrpy5QqZTCbJ9BARZd2/f1/2VWghFhcXkZ2dLaqOUlFxDMOgq6sLCoUClZWVkQkosfKlpOWkaGhoCBs3bsTw8LBoOs6dqqmpiX+Wm5uL+/fvh9AXDfwrtVoty353NCD12Eei4Ay/aIuq6V6J6OrqIqVSSVarVXR2tri4GOJO5XK5SK9/ful9nCgTLBEhNzc35qpqogj/KHIz58qVK6TT6UilUtGWLVtkLTsRsCxLn376Ke3evTvqynPAnepZ8vv9dOtmwNc8eoEUcfAU6erZggpkLU+n0/HRNb71rW9FTZfJ83EXLlwQlSKWZWnbVnPwTOxnpFAopBUYJD7lM6ER+lIwtbx37x5yc3PlroLHqlWrwipf+jOTAYR27dqFsbExTE5OwmAw8GMRwzA4cdKO1tZWfPaZNyIfBYPvRYAjXm61xvUYoiUvFDlx7tw5ysrKoueff54GBwdlLVsM4Wo63lgmJkW1tbVUU1MTVa1xwfeYYKwdltxU12CntE4I0sEcs9kcsSnIBUhFUN0lG4hPDMlMLO7cuUNVVVW8O/Pt25+QQqGgwsLC0ITBIE6mBvuSHg4+q7f3EHQ6Hb9U7nv4gP8nB8KZk+oMyul0kk6nC3GpDYSt3ExurnWsm0wyMyhZOJ1Oys9T0cH6BqqrPxD6LchNFUE6w7/LiQObyd7rIhQVFYXMNORiDJF8ksNSYGpqMBior++3/HN7vUk05Nb1i/ZQhi0j/va3/yaLxUJf+cpX6Etf+hI/9Q+oslAaWZYlYgPvelwsoaqqirq6uvgEcjKHO6ooFeKSFZCS8+fPh+xwcvHRxGJvui6eeGSYw+HIkSO8iy5LAeluONm7lECE1BU6nQ4TExOik4aFL3z83zkrn4j4LUzD/Rbm9T18gBWrsuOWy09Swqx0Lt29e/dw9OhRXLp0CQDg+8KHM28dhung8aWQYgAWHvqQs+oJjE1MIXslw5cRTtty4MGDB8HATCwfmtJcsBS1Smx6mVVYWAi32w0gcoWVa1S0/7mGhzOOe74yexVocekjE1FInvB8QgjTnT59Glu3mWEwGOB7+AA5K/+Cicsstpi28/mX/v8c/365A5tqK1DwxULMOjIJl8sV3Jrhom8FQCInCjlkPffcc/xStrDnimUQ64ULX/gkNz6ZtbTZ2Vm82fZztP7LG3wZXM8r1K7n0+WsfAJggIlLb+Hs+0DtS/+MVY+AxHC218TEBHS6AL20XgcTgP+anOCDpvMYu4iTF68H8s3Pz9OqVav4bWqxMYd7Fv4u2vjEPZ+eniaNRhOSLloZEcfRg8/3799Pzc3N/Hvfwwe8zrb3ukLLXrgamKnVn6IHC5/HpTNTCGxTr6YvFoMr2cFBn2EYsve6+Chbrl47wbR0MJp38Oh79x0iSp45Yn+73W5av369JOaI1Xn16lVSq9U09z93ItJzMzU+v7uHsldm8VPoWHVmEiwRdXf/m6iDR0jQV5HpP+8addh6KKQR0XpyOKLZRQ8WPqf/+M9h+mZRpH/Cg4XPRfOF/zZt2Uxn3hL6Ny8u1bnwgOq2LBme2Suz6MJHD0I6km9B8PcyMigR1yjhV5fsVJhM47izMqJExDFI+/r6+MOvy3Xti1xIyakwnjtuIowRVvzhhx9GZU4s+P1+2rBhA/X19T32jEnFHTcLCOzSbd++Hd3d3SETjURmYhyEQU6T3ens7OyESqXC9u3bM3amJ11wOBzYs2cPsrOzE/c84riUDn/pwcHBuJGZwjE/Px91h/NxlKJUjoDw+zkmkwm3bt1K2LcqFvx+P7KzI1cIYsFms8FsNouGOX7cpIgLo1xcXJxUfp452dnZqK6uxq9//euMX3/F4datW2hvb8fx48eXpX654XA4UF1dnXwBQjGS+8Buf38/fe9735Oc3mKx0NGjR/nfj6Ma4yD7gd2CggLs2LEDP/vZz1LtNDykqqI//elPcDqdOHz4cMJ5H0XYbDbs378feXl5yRcSzi3uoKscQa5/97vfxT2vz6GsrIw6OztTrvNRgNfrlSXESoSDh06ng9FoRHt7eyodBwDw8OFDrFy5MrwzRKTr7e3F3NwcLBZLynU+CrDb7dixY0fqt4mIcYyTnnB9maizQ09PD1VWVsZM4/f7SafTZTxscbowPT0tW2AiUdconU4Hi8WCpqammMdC5BgTOjo6oFarsXXr1pTLehRw8OBBNDU1Qa1Wpz7rjcY1LqAP536UzMxJKDli+b1eL6nV6mWJU5AOCNcD5UBUp8KcnBy0tbVh3759uHv3blKMv3//Pu9UKCZlx44dg8lkSvu9OpnA7Ows6urqcObMmYQN72iIeRVlZWUl/vCHP2D37t1wOp0JV7q4uIgVK8SruHHjBjo6OvDxxx8nVOajiIWFBezcuRN1dXUoKyuTrdyQ6LhiOHHiBJ544gm88sorcQsLL4P7LVZ2c3MzGhsbU7MDHhHU1NSgsLAQP/nJT+QtWIrum5+fJ71en3D4FYfDIRqxj4sZsxwXBskNm81GRqMxLW2RfARgenpa0pUsQkRjTllZGZ0/f15yOY8quKvDPB5PWpaaJJ8y0Gg0uHDhAqqrqzE1NSUpz/3797FmzZqQZ729vbh79y7279+fmIg/YnC73aipqcE777yDvLy8iLOhsiBRbjocDslXtLS1tYWEUvT7/aTVah9bg1MYbEij0aT9kqOEz+fs27cPe/fuhdFolCxBFOxN7e3t0Gq1j63ByTAM3G43iouLcejQIfGzqHIiWa46HI64Y5BQcrgTxh9++GGyVS47uGvB5L6VJBpSOhM4NDQkeqEeByFzDh06RD/4wQ9SqW5ZwV2ol8nVjJhGqEC6RC384uJijIyMwGw2Y2xsDKdPn+YNVSLijx3euHEDv/zlL3mf7McJCwsLqKurw0cffYSrV69CqVRmrG5JY06sBU61Wo2hoSF88sknMJvN/FIPwzB46P+Cj1R78ODBjBucFMNJXArm5uZQXl4Ov9+PP/7xjxllDAB5jzpz1x9z41BLSwtt27aNNzgDc530XhksF5xOJ3/98XJBRuYEPrrT+R5pNBqqqqqipqYmAiB6CYTcRhsXxj/VO91mZmZox44dpNPpYgb1Ds+XDsgchGCRiBZpYWGBmpubafXq1ZSfn093794NTcYG08rYNikfKlYar9fL34XQ2toq27J/KpA/QoSg/T/84Q9p06ZNfDCf0Nui5FVvyfZij8dDVquVFAoFWSyWtIaaSRRpDd/BjT3T09NksVjoyacU1NjYSGNj8e93TjeuX79OdXV1pFAoqLa2lm7duhU3D9cBMuWyJStzIohmA2dQetwBFTEzM0NWq5XUajV98+8M9Na5jozdpksUiA/Q3t5OOp2ONBoNNTc3S/IrWy7/uZSZE5VsdunUsNiJ58uXL1N1dTXl5OSQ0Wgkq9VKTqcz4fs2Y6WZn5+nvr4+ampqoqKiIsrNzSWLxSJpZf1RcGhkiOT3vSUEDgefOtiASxMTOH3ZifUxTKqBgQF88MEHGBgYwMDAAPR6PfLz81FSUoJnnnmGj0GqVCr5kJcc3G435ubmAADj4+O4ffs2+vv7MTs7i4mJCWzatAnl5eUoLy9HSUmJ3E1NK2RhDglWEIgWwTDZ6D3VgKkCEy5VnsGb9D7Wg+GZJpZPiOHhYczNzWFkZARTU1O4efMmGIbB7OxshKO9Xq/njcN169ZBo9HgxRdfxNq1a7Fx48aodD4OSIvkYLQXDZeAM9sApvE90HtnJWelFM/2/F+CvCG9gmw+ePYKzvy4EqAsmJ4tCHknkjwEEUe//x9DXuYwQO+pBpw5cybwkTfsXFrb4r83G1jzQmZioqVDMWQKMjBHENBttBfvUwW/4OjqteO5r2vD0mcFGJd6xZLwOEuhpC2D2Ajyd7QXTON7YC+f4d9MTP0FQJQLujMlOo8zUp2LsywbjHkGQRSnRaqvYEKCH7BpXo0W2iWPgo0iB/4XrDRmsQgm65gAAAAASUVORK5CYII="
|
<image>如图,D、C是⊙O上的两点,AB经过圆心O,若∠C=30°,AD=3,则⊙O的直径为()
Choices:
(A) √{3}
(B) 2√{3}
(C) 3
(D) 6
|
2√{3}
| 69,697 | null |
2√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAGYAAABxCAYAAAAnDNZBAAASZElEQVR4nO1df2wTd5b/jJPSKK0IvfUS985RgASSNmprQVCQ4IS2sUP2mi7pQZU/YFUQaSF2uIMl6CrB3nKCqvTWgXAQSJVUFdq0BZrDCZsuoUl6rQRHaNqmp9jJAQmlzVUNDbpLA6EOa8+7P8YznhmPYzsZe8ZlP9LIM9+fz/O+731/ve8bhogIf4HuYNCagL9AGTEwhg3eymXsAZS52upi1LZ5uAeC8A6CCojFbJRRDIwRJWWAWoctSNgDBP5l37j2EXJyn+QYwgQuAAwTuIFBdB87ZqzKblzv4ghDkKgHAQzDgDCA653FWFKAsP99tkokJsaQ8DuAqzxhYhX3Ewf//5mBa+i0LcGTMq5w8dz7mG1bjZoxRCRUxgxcQ7dA2AMyfhCJQGtHJ+xrSkKSMDIxSUgfI9aXYsIemNE2E5SC4eFrWJS7GEFtwQppxK+UZiE2M2ruw8PXA4TxOvfBQrB/5V+f8ms0zEKhzYgxN653YTHf8eOB6vtl/SvgaasFwzBgGCsGQKppkNgYw1KAsGeRWxAM9rTVgimxK2b5Kai627dvC/cDbefBOH7J9a8EnKjvgIdYeNr+DvW1bbMaIosRG2MMjIQwAjef2Vl/AdYlORKVdvfuXQBQjVCtMDU1hcLCQnz55ZcgIgzd+ApLFuYI8cc+vIAnweDa0DBspWsVy5hR46QowbLcr6vWTnanSxLnbnWSs9UtPLe3t1N5+d8TsUR+YonlMychDhw4QOvXr582jd2GkHdCs/zLUTNGXpH4Zbuc1eRys0K6P/t9ZDKZaGTk69lRpxH4/zYyMkIZGRl08+bNsGntNlCrJ5BPRRqiV2WMdDYrVlFdF/4bSwoCIssAqYYUbNq0CSdP/iF2EdYBGIYBEaGmpgbbt29Hdna2YrrBtlqc6ATKCxgwJXbRIEiFSffM+OkX3Q9Qsc0R0lyGhq6R2Wwmn883wzajLS5evEhms5m8Xm/EtGzYB4XnKDFDxkSH0tJS+uCDD+JZRdxgsVjo1KlT0fePLKmqy2a/njLNgKOyshInTpyYdRWJRlNTE9LS0lBRURH9qJJhuQldyPL/DKEej0Ph8/nIbDZP23nqDePj42Qymai3t1dTOuK6ApmSwg0CmpqaxA0hnlXOGgcOHEBZWRkKCwu1JURtTst18s2bNyk7O1u3gwAxvYODg2Q0GunWrVsaUsRBdYmR6+Ts7Gw88cQTaG1tVbsqVSCmd+fOnXj11Vcxf/58DSkKIBHcb29vp9LSUiKStlA9rQi0t7dTfn6+biQ7IYxRGgToiSler5dyc3Opo6NDEq4ljQnZfkxJScGWLVvQ0NCQiOpiRl1dHfLz87FmzRpJuKYLsIngPsuy9M0335DJZNKNquAxOjpKRqORhoaGtCZFgoRIDMMwyMrKwooVK9DSckbcKBJR/bSoqalBZWUlcnJyIidOJBLZCjo6OshmsyWyymnR09NDmZmZdOfOHa1JCUFCGePz+Sg7O5sGBwdJuhAafyiNBpctW0bNzc0JpSNaJNT2KCUlBVVVVXjrrbfAbZ4mziZN3JEzDIN33nkHALBhw4aE0RATEt0SRkdHyWQySZbTEz0svXPnDplMJurp6UlovbGAIZL2wPv27Yt7Y3j//feRl5eHp556SpMhaXd3NyYmJvDCCy8kvO5osG/fvsSZUYoZUFhYiM8//1wTpoyPj+OLL75ASUmoJaWukEjxdLc6qS1gG5Cbm6vJIKCsrIwOHjyY0DpngrgxRt5tsNRPVoBcbpZYIjp48CBV2x2qGjBEQkdHB+Xm5pLX66Uqq3CqRXQVkydAkdZLRnGXGP4P1jrsZFtTIvzx29+PBQYB9+NWpxg+n4/y8/Opvb1dCLPbELTuISKn3SpiTmIlWY649jFEBIZh0HrIAbJZwV7wc+EAfvZzI1av/gVOnXpX9XqV+q66ukNYsGABnnvuOYACpq5woLwgmHZXfSccJd34x+pD0PoUQ1xrZxgGGGhFJ9mwazEJRzf4V1FVtTUhC5u3bt3C66+/gcOHDwPgrPAH2s6DWRxYhhGNSxcufhZdV4cDT9qd/Yl7s6g+3oVju8oBGGBdIl2PWr16NcbHx/FffV8CUHftTFzWnj17sHnzZuTl5wvnfDo6/4Q1NhuXVsSZnEX5gpU8Ca9HAwbFU0+6au2SztXqcIakqauro5e3VsaNht7eXjKZTDQ+Ps4FsETEeqgYxdRPocs0TrtVkc5EI36M8bgk9rzuVifZa/89JBlvlTIxMaFq9fyLXrFiBTU2NobQVmz/PYV08B4XAZDYYWsFVVUZy6uEQReYHR+ifle5EDc0dAMQVxdImpGRAavVinffDT8IoBmoOIZhcPr0aXi9XlRWVkriWjs6kbcoF3JNXrXzBcBWhV1rC7Q/Iq8Wh7kG6ien3UoBM+fAUNRPdpuyOuNbdU9PDy1btkwtUoiI2y42m8108eLFYH1ExJKHrAC1uflTCH4ij4sYhiHYqlSlYTZI+CKmGOLZRkFBgapGdnv37qWKigrJnMbd6lSYVIIYufrSgTlCyCKmVqivr0d/f78qw+evv/4azzzzDPr7+5GVlSXMp6JBLGnjiQQzhkW4EfoPP/yAvLw8XL16FRkZGbOq5cUXX4TFYsGePXtiz8zbHjMsGA0nmarVTERRdJjhq5s7dy6ef/55nDp1SihvJm2mu7sbvb29qKmpiTmvAAaaMgWAmvMYP0WzvhRucZBlWerp6SGLxTJjCnw+HxUUFFBLS0uYymfSfWizZqZiszAgGgHkT2sphRcVFcFgMODKlSszoqChoQGPP/441q1bF6ZyALK6lWiRQiPJUYvDckmIZdVcnLShoYE2bdoUc/1jY2NkNBrJ7XYr0hMVHToYjfHQzaiMx927d7Fw4UIMDQ3FNAjYtm0bUh5KRf3RY3GkLr4g8YgwYU0ghta4detWOnbsWMR8vFT09fUF18N01OpjgVzCJRITb0MMIoLBYICfWKQQI3GCQ6LWcuvWLbS0tMDhcERV7ttvv42nn34aS5cuBZgUMD8BV10J7dn4jt8AJsQzESPyKZWZmYm0tDSMjIxEnPANDg7i/v37WLp0KQyG2bjV0RkiiVSiIK+3sfEt2vDrjYFI5Txer5eys7Opq6tLORlLyuFJgLB9TLwYxIqOXTtKQtetnK1uIpZ76SaTicbGwh+7i8adSLJC00VMIiKHNbiA6G49JFqVJnI4HFRbWytJH407kWSUEDk0YQwr/HI7iR5/YHYd2KjiGeN2uykvL0+xjIqKCtq7d68kTLy9ILl0tJwfLTSVGHfb7yX7M3Zb6PbzqlWrhD6Ex6VLl8K6ExE73SHilvqLq7XfKo4VEsZM0o/CFTeI9Iyr1k4Bt2ecpHjkp8381NzcTBUVFUKIz+cT3InI4WfdnF8b8hNLHnI6zwq/yYYQiYknU4I84VSX3QY628/d84YbZz1SAwmv10tG43waGxsjIm7JZtWqVaFlsyxnVxCwM3DV2ulfdbB3P1MklDESeFwB3e+XbPk6altDktbU1NDBgwcFw42+vj7FIqVWOQaJlWWyIVVxcsPeBwDcgxcwzAEApCONew4gHWnBNKJnHkppxXHnujrwSlkxBF+rA9fQBaA0JzekjA0v/xrlJb/CyMgI1q5diyWWfMV6z/9HA1xuFrYnvdj1q+expIArIw0PwYCUMDM5nULOKUFi/FPSZ3l8lPfiZ5ZlaZJ+JJZlBbvhSfqRWPLQs4zUqFte3vLly2nu3Ln0ze3/USx7cvAMoWxroDyi14+8QZPsj4r0JANiYozSC1caMEzHzM/++IZE3SDdwN1bq8LmIeKMNSwWS9iyW512euXImZBwh8ORlIyJuFaWjjTcYyc49RZQccI9ex/pSOMu1hCMF0OUFgCeKPsHYduY9U/i7p3/A/mnQJ3Hw9LQ8adzSDWwGP/f7/Htt98qlv3hheN41lYWDAew87mH8FDuLyRhSQOeQ4JKkEmMEOafkrY88fM09/Iyp4sTLwPx4d57E5Tz1GK6cOEC/XbPP9Hv3vgXSX5eAtPTUgnpBkpPS+Wuv5pDAOic20uT/h9C/pPeISz7h3Sm7H2h4weAe+wE0g1zQ+LuwStIjgDDHCEchjkhZYaLu2dgJeXcgxf/dqQW/9l9BefOncPw8DCKi4vRP+xBCuOX5L/HToAMc8AASGcNuGdgAbBIZ1MD91y4+D/pGmFZJmtdvNQoxYVtidOli6KM0dFRyvqbTBoeHhbCSktLucNH0ZY9XZ06Rmgfo6CL78EbMuQNCxV1eU1NDTZt2oRFixYJZVdWvhJiFKirvXGVELrnz79YXuUEEE7FKeVTDI8ljr2PK719KC8vx/Xr1/Fo+hwhjf/PPixYtBCXL1+G2fRzwMBI87P3IRgWGuZI6QpHow4RuzFGOMaojMLCQuzcuVPmuYIFCwa/++0/AwD279/PBfPfCfspISbFlyAd3djYSEVFRWHjOT+bWbpzsaUmomOMfyp4xRn8etinn34aEide+SotLSWXy8UTGDad1qePZ4rojDEMc4JXnMG7112+fDkAqaWkWFtVV1fjzTff5AmUlCHVakn6DTUtW4XcroB3rzs6OhoxbzI6244FmjYnuVkS7143MzNTkBQKMzaJ5GczXD69IoRebdtFELw7kVg69JGRkaT+4sZ00IUC9vv92LFjB+rq6pCSEv2+idlsRmFhIVpaWuJInTbQBWMOHz4suBOhGFXQtm3bAh4Dk099TQdhgpkIB3JKmJycxPHjx7F582YYjcZp0/ImtuIzNkSEI0eO4KWXXsJjjz2WCJITAk0khkTH+D766CNYLJaITBHnEUsGwzBYvnw5PvvsM8U8SQtNerYAQtyJUGxWlPxwW8nPZrJDVYlxlDCBr6hKLwPDoLbNE5J++/bt2L9/v+SAUkxLXoHh9vz587Fq1Sq4XC7FZJSMkqM2p+XO2Xgz2AHZZPKdPzRLvWEoikq0yyl+6urqUrQ3S1aoyhiWPAFLSA68QXh1dbUk3fTudeXMEBkEMkFbZJY8ZLdLTV+DfjZldOnpcGWUUFWVDbSdR94aK/+A8zc4FXL06BFJutdeew1WawmKiooUSjHwksypoIFzYBgG9TcWgFgCSwSqK4GBKQAWSf2fbdmyRbR+FoQePF3EDDW53OoMWkIyTIrELRbfaoeGrkVcDxOfBrCG8XPmtFtD3FeNjXF+NqemkmcLORxUlZjOjuNoc7MgIpx1bsWi3MVCHN9qd+z4DWpqapCZmSluHBB70ePbd9uhenShGEeO/UbUkrj0OTlLsGgx/+l6rk6j0YjVq1fjvffeU/NvaQPVWCzYInNwtzo5V75s0B1FV1eX4F43EnhpsTtd4YfQChEff/zxtJtsyYJZMEbaSfNfLQ/Xz0Z0JyJHRG974UdseXl55Ha7iWWT98voMakykswHglkJnBqzla6FyH+AJG9EdyLR0qBQvxxVVVU4evRocnb6PGbLWalztsDRB1kjvf291J0IkZKLE+nSvaIq44v2uKi2zUPhwG9P6/GDPdEiZsZEUg3yw0kscZ4uHA5HmBzhcTZw3kWsztytTklfJu7DxNi4cWOok9IkQkyMYVlfzCeCJe5Eoq4nWEt/m9RdYrSud+PhZzORiI0xYWPCd8QrV66kN080qFFJxLrkKCgoULS2SQbE1PkzgNQeVbhXLubMmTOYnJzElpcrFePDVUIhi44i3zAhJIf3GxP87FYSIl4cn5qaIrP5ryXudSOBlf3OFvwgIBY1qhfEbaNs//79WLnyb7Fy5cqo8zCy39kiIyMDZWVlOH36tEolJhDx4PZXX31FGRkZNDIyEo/iY8Lly5cFP5tKI0q9TkBVlxgiwu7du7F7926YzWa1i48ZRUVFSE1NRU9PjzDhJNnWtC6hNqcvXrxIWVlZutrmnamfTS2hKmPk7kT0oibu3LlDRqMxqQYBqqqypqYmPProo6ioqAAARdWhBR555BGsW7cOzc3NmtIRE9Ti8HTuRPQgOX19fZSfn09E+qAnElSTmD179mDt2rWwWCwhcXroYC0WC+bNm4dLly6FdcqtK6jBXbfbTUajUfCQpFc0NjbSxo0btSYjKsyIMXJVYLVag36SdYygn019NyCiGaoysWr65JNP8N1332Hbtm2qSXG88PDDD2PdunU4efKk1qREhCou5G/fvh3R9lgv8Hg8WL9+PQYHB7UmZVpELTHT8S9ZmAIABQUFmDdvHrq7u7UmZVpEzRg9jKzUQnV1NZqamrQmY1qo9jUM0sm3vaLB1NQUzGYzBgcHdSvt/w+H2FbNHfkH1AAAAABJRU5ErkJggg=="
|
<image>如图,AD∥BE∥CF,直线l_{1},l_{2}与这三条平行线分别交于点A,B,C和点D,E,F,=,DE=6,则DF的值为()
Choices:
(A) 4
(B) 9
(C) 10
(D) 15
|
15
| 69,698 | null |
15
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAABCCAYAAABuFYX5AAAIhklEQVR4nO2dT0wTTRjGn5ktcEADJlz0oqV7kEQTDhq4i/xJaOXiCTQmKph4qkn1S8TIGQ5A4kFqopJ44KIFAROzCDF6UQ/qwcQEVmPkoNEERC9qO+93aHfZbbfLUkpty/wSY/cvsztP533n2ZkuIyJCGqFQCNPT07Z1mqahpaUFRATGWPohkh0Id1r58OFDhEIhaJoGIoKmaTh+/Dh0XZfCkZgwIQQ5CYIxBqNR0nUdqqpiaWkJgUCg0GWUFCncSTiapiESiZjL4XAYkUgE9fX1hSybpMhhTjlPNBpFX19fcgfGsLi4iEAgIPMdiQ3HnGdmZgZLS0sgIty8eROqqsp8R5JBhnh0XQcAM7fp7e0FYwzz8/NwaKQkO5gM8Tx58gSdnZ3msq7rICL4/f6MlkeKaWeTkfOEQiGMjIyYybEhGCkUSTpmyzM3NwfGGKanpxEIBMAYA2MMwWBQCkfiiGNvSyLxgmNva3Z2FuPj4/jx40ehyyMpITLEQ0R49eoVrl+/jtraWnR0dGBsbAzLy8v/onySIiZDPEaCfObMGfz8+RM9PT1YWFhAQ0MDjhw5gtHRUbM7L9nZOIYtIw3atWsXuru7MTExgdXVVfT39+PNmzdobm7G4cOH0d/fj3fv3hW0wJLiwVE8Tk6yoijo6urCnTt38O3bN4yMjGB1dRXt7e04cOAALl26hBcvXpj7yzy8/HEUjxeOHTuGGzdu4PPnz5icnISiKOjp6cHevXtx/vx5PHr0yNw3FyFJ8RU/OYvHSmNjI4aGhrC4uIiFhQWoqor+/n7U1tbi9OnTePDgAX7//m3uny4MJ6HI52jFT17EY+XgwYO4cuUKXr9+jbdv36KpqQkjIyOorq7GyZMnMT4+jrW1NdsxUiilyZbF4xZe9u/fj4sXL+LZs2f48uUL2tvbMTk56dkCkKGruNmyeLy2GnV1dTh79ixisRh+/frlyQKQLVJxk/ew5YXq6uqsFsChQ4dw7do1RwtAtkTFxbaIZzOVnG4BjI6OYmVlxbQAwuGwaQHIlqi42BbxbGXcT7oF4PP5bBbA7OxsvosryZGChK1cWww3C+DUqVO4f/++zQLwggx9+eOf5Dy5kG4BNDc32yyAu3fvZh0FYBWMDH35o2TEYyXdAmhra8PU1FRWC8BNMLIlyp2SEo9TRdfV1eHcuXOIxWI5jQKQLVHulJR4Nqpot1EAbhaAJDdKSjybwc0C8Pv9CIfDePnypWvYkiHNnZIVj1PFulW21QKIxWKoqKhAd3c39u3bl9UCkCHNnZIVz0Y/zuBGY2MjBgcH82oB7ERKVjzZ2Gxrkc0CqKmpMUcBuE0E8DK8pFwpO/FsBasFsLy8jLa2toxRAF+/frUdky7WnRTqpHiyYLUA1tbWTAtAVVU5ESCFFI8D6aFn9+7drhbAwMCAJwug3EKaTTwk/kLE/0BhAgoTKLNr9Yxb6HGyAL5//26zAKwTAbyetxSxiYfxCnBFAQEQxFFm17otpFsA1lEAFy5cKOtRADJswVs48WoBWEcB+P3+srYAXMRDoPgfiPgfiHgChPWwZt5HSqS2/4EQlptrXR+Pw3bb3bZl3S+xvp/j8SJV1r8gEuvlTgj7/gnh+Ke8jD/KhwUwPDzs2QIoBVzEw8AUBQAH8ylgABhXwJgvFc4EKAEwXyW4zwcm4ilRCVBCgCmV4L5KMJZcTuK2zYp1vwowJADXc/NUWSm57KsEVxSA4hBGGRUFIJFdrNYrz3O8NiyA58+fY3l5OWMiQDQazbAAtkq+WlM33MMWU8A4rVcwCYBz8zMhkfqWx0FGtZAAgQOp+8+4pdLcttmuSoCYkhIpA/NVJj9veDwDU3xgtmXFskzwpJ5txDoRwLAA5ufnN7QANlPRXn54NB8/TppFPJbbzxUwSoCIQIJZNwHMB+6rNP+tl8XtQj3eBKIse5ZPF3AzFsBmKtrLvvloXU3xUMKSE9i+oBzgACX+AtzyLWYcjOKW7nyqa884GATIzIEotW6DbfZLA8xQ5fHcJY6bBZA+EaBYWG95GEvlCAKUVh2MK2CWcGEcyhSeFF38D0RcpLan8o9Uci0SDEzhlmOybUsmukmRKOCbOrcAJRJI5jxx0IbLxY/bRIBsFkChTUjHn5UbGBiw/Q8IkGBgvBy+46XN+/fvMTU1hYmJCXz8+BHBYBBdXV3o7OxEVVVVQcviyechISAdw62Tj5Zhq6MA8omreIywQVCkdvJAtiQ1V1E5jQKIxWKuowDyiat4DD+Fy3C1reSj52OMApicnLRNBFBVFUePHt2WUQDy8UQZYp0IsLKygqtXr+Y0CmAjpHjKEGsY9Pl86Orqwu3bt/NuAUjxlAHpOVO28d1ApgVQUVFhswAeP37sOQeT4ikDvDyKcCJ9IoDf78d///2HPXv2eBoF4DNOnl6AhYWFzV6DpEjwOovEiRMnTuDTp0+YmZnBvXv3UFVVZfOSampq1v+Ok0n49OlTKZ4SIZcHnE7HbHQeY3tHRweampoAyBeXSLZARs4TjUbN1yWFQiEAwOXLlwteMEnxomkadF1fF4/xDlHj3aJEhOHhYTDGoKrqvyyrpMhobW1NfhBCkEiOIaVIJELpRCIR0jSNhBAZ25zWScqbSCRCwWCQiIg4Ywy3bt0CAAwODmaoTFVV1NfXu3oHkp1BNBpFa2srpqenAaS66n19fRgbG3M8oLe3t3ClkxQtxnMxv9+PYDAIAODGSuOFtBKJE2NjY+Zr0hsaGgAAnGRPXbIB0WgUQ0ND4JwjEAiYBiQ3elIfPnzIOEjXdczNzRW0oJLiwohMRIREIgFN08zeNweSTVJfX59NKHNzcwiHw2hpafkHRZYUA7quIxwOm3kvY8zeyBhdME3TCMn5Clm77ZLyx7BfIpGIqYWlpSUiIgoGgzZ9/A8sNniL1ESHaAAAAABJRU5ErkJggg=="
|
<image>如图,已知在直角三角形ABC中,∠C=90°,BC=1,\sinA=\frac{1}{3},则AB=()
Choices:
(A) 3
(B) 2
(C) 2√{3}
(D) 2√{2}
|
2√{2}
| 69,699 | null |
2√{2}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.