image
unknown | problem
stringlengths 14
525
| answer
stringlengths 0
124
⌀ | id
int64 0
70k
| choices
null | ground_truth
stringlengths 0
124
⌀ |
---|---|---|---|---|---|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAAB9CAYAAACS0pD7AAAZkUlEQVR4nO2de1Bb153Hv1fi4TR45UxoUaYK8kPYF4PXok5j3NLaDg/jCVOTdWbtTpKJvc00jvG2uCETe+utcEOneCPHnhQIbdzJZLYPZkojJSEbbCtraGDtBlrykHjUOMYDWaPAbCAiHYyl+9s/pHu5eqLH1QPQZ4Y493Xu0bnf+zu/8zvnngNK4gXHcdFJw8cuw+nDBMD5V/oUcWShw4f1Ps+NNzIsU4jI7zGGYSJO32carl0EAP1GMAyDxo/XgohARODOlELG5EG2TgOKPAuSkxLvDMQLKQQRCCJyuwcBYMABkIHQj7K8h1BSpceFX/xoPk95D+F0VSlonQYJqJXlKxbA+4FKdS7gLUbnlgwg4I0zjTChGJaGH4HxkMXatTmAZmPQ94klDAWyx0kixtvC9KOMycN6vQGNT1cucLXTEiUKiZOTMFlI6/6OS/2O8H6HJ14Wpv9vMAFYq8nxk5Ck2ZKURV8NLVQ1iI9bLBZMTk7i0qVLGB8fx+DgoHDMarW6bQMAy7LIysoStvPz83HPPfegqKgIWVlZYFk26HwECzEQVUyJ9S4v2WrIarXCZDKho6MDly9fhsViQXZ2NtasWYNt27ZBqVRCq9WCYRgQkdfDB+bFxdPb24vx8XH09PTg2rVrGBsbg1arxdatW7Fz504UFxcjMzPTR244gGQAAxAGUcbkeldDBGDgNZy+ugFP78mLSplETMwb6wsQSYyjra2NqqqqiGVZUigUVFlZSWfPnqUrV65ImEN3urq6SK/XU0VFBWVkZFBeXh5VV1dTe3u78wTO+ze95oqt6I1m4RyzUU8ofUo4JwHDLJRwYgkVs9lMR44cIaVSSUVFRXT27Fnq6+uLW356enpIr9fTli1bSKVSUU1NDQ0MDHg9fbNRTwCIYRgCQCVVeueBRFSJi0UhFo7j3N7Oqakp0uv1xLIsqdVqeu6552hkZESSyKuUDA8P04kTJ0ilUlFeXh41NDSQzWbzPjGxsu2XRSEWnk8//ZROnDhBCoWCDhw4QN3d3RGlFwtx8XcwmUxUVFRECsVKqquro+npz4K+NlFILHfbD1arFUePHsXGjRsxMTEBs9mMV155Bd/4xjfinbUFYQAYjUbU1NRgcnISK1Z8Ce9/2AfN2hwcP37czYH2bDYnWhQ3ocVy69Yt1NbWYtOmTVixYgXMZjOam5uhUqkkST/aIX+j0YiCggL89Kc/hU6nw/79+/H1r38dA5ZBdF/+H8zOziL/Hzfh1KlTsHMOV2spgYm3afPHm2++SWq1mvbv30/j4+Pxzk5IGAwG0mq1pNVqyWAwCPt1Oh395Cc/oerqaqqoqCC73U6jo6NUUfEdYlmWTCYTEcWmegyHhBPLyMgIVVRUkEajEQrPk0QtTH8i4dHpdKTT6YiIqKKigqqrq4nIQRzHUVtbG6lUKnr44X+m0dHRmOY7WGIqloUecktLCykUCtLpdDQ7OxujXDmJRIALiYRHLBabzSa0kHhsNhsdO3aMFAoFtbW1hZ2faJEQlmV2dpaqqqpIrVZTT09PvLMTNLxINm/eTAaDwafgxPt0Oh3V1tYK26Ojo6RSqbwsaFdXFymVSjp27BjZ7fbo/YAQiYlYPAtRvD0yMkJbtmyhyspKmpqaikV2IsaXJQnGMvGWRXxuT08PZWZmOgN3LjiOo4mJCSopKaGioiKfPls8quK4Whb+DRKb4ngQbMEHW934Q1wNie/d2tpKarWaJiYmvK6pr68npVIZ16g0T9x8FoPBQEqlMqr9NlIRjkh8WVNfYuGpq6ujoqIin76ayWQipVLp1+GPFXGxLOfOnSO1Wk1mszket18Q/kFHakk80wwkFiKiAwcO0KOPPurz2vfee49UKhW1tLRElI9IiLlY6uvriWVZGhkZifWtg4LjODIYDLR582ZJRCJmIbHMzs5SUVGRmxMsZmBggNRqNTU3N0uWp1CIqVjq6upIq9UmrCMrlSXx5wMtJBYiZ/+XRqOh1tZWn2mNj48Ty7Jx8fNiJpaXX36ZWJb16cRJQSziJJESjFiInBYkkD83OjpKarVaEJQ/pG4xxUQsBoOB1Gp1wlU9wcRJpCRYsRA5nVqVSuW3zAYGBnzGaKJJ1MXS0dFBSqXSLY5AFN+QfbhxkkhZSCyeeWhubqaNGzf6HgNDzhiNUqmMWSBTUrF4/tjh4WFSKpXU1dW14LlS3tcfsapu/BGKZeERdzr6or29nbKysmLSnxQ1yzI7O0tarTZunrsYKeIkUhCOWIjEnY6+qa+vp29961tR7xqImli+//3v0759+6KVfECiESeRgnDF8vnnn3t1Onqya9cuOnbsWAS5WxhJxOL5Fra0tJBGo6GZmZmQrpMqL9GKk0RKuGIh8t/pyDMxMUEqlYrOnz8fQQ4DI7llGRkZoczMzLj0ZUQ7ThIpkYiFyOnQfvnLX/ZqLPDwfW3RGiwmuVjKy8vDKpDFECeJlEjFQkRunY6+yqympiZq1b+kYjEYDMSybMwGLsU6ThIpUoiFiOhnP/uZ305Hm81GKpWKOjo6Ir6PJ5KJZXZ2lrKzs2MSJIpXnCRSpBILkf9ORyKn9cnLy5O8dSTZ6P66ujps27YNxcXF4QwaD+o8frT8yZMnodPp0NfXh8rKSgDRH6mfKPBl1dzcjOvXr+PkyZNe5+zduxf33nsvzp49K/nNI2Z8fDyqjlWixEkiRQrLwv8ufjTdunXrfPYR8Q0NKTttJbEs9fX1ePLJJ92mp4gEcr09gSzJQiw1S8OXCf+7GIbB3Xffjba2Nhw5cgR//vOf3c5Xq9V49NFHcebMGUkzERFWq5UUCoVkViWR4ySRIqXPIobvdLx+/brb/uHhYUmtS8SW5fnnn8fBgwclsSpGoxFf+9rXcPLkSdTW1oZkScTQ0pxyRsDz9xUXF+PEiROoqKjAzMyMsH/dunWoqKhAQ0NDUOksSCQ1+2fTU5SZmRlxJ9ZiiZNEitiyRMOn4jsdHQ6HsI8fGxNOOMMzjzLPmp0L5mtb1ymNv2hARUVF2N8e8z5JbW0tdDod/vrXv4ZlSRYj0fCpzpw5AyLC008/LexjWRaFhYU4d+6cz2sIADjfz9wrj35VJfxHjMNtS6NZH9bo/MUaJ4mUaPksYnx96dje3k5btmwJOS3PJ+IhFseCD40/euXKFWJZNqSbL5fqxh+xEAuRd6ej3W4nlUrlt0/J0wj4w2O2ShkEy+OcEpq3PsJEfbxpeuWVV3DgwL8EZR6NRqMQPNLpdEFVNeJ7LSU6OjpQW1vrc/+OHTt8HlsIz7JSqVQwGAzYvXs33n33XbAsi8ceewyvvvoqfv7zn3tdX1UmR9NFwDkDCwcA0BvNXhMh+m8NiZ6TkBGXYBwOB/74xz/ikUe+G/BHJOMksYF/kcXcd999aG5uRnl5OSYnJ/HII4/g97//PQDvVlDjBcLhUkBv/BBEBLNRj5rKfBgtHr4Mb2Lcqh/X/370up5e+2jeRIkHFW3fvt2vufLs4EviJFA1VFtbK2kVxT8r8ZeOWq3WZwejgzNTMYrJwj94i4EAkMHs0RpyKsbjTWac04Yf3VPjtp////b2dnz3u+5WhYi8Wjfvv/9+Mk4SJFL/Zv5Z/fjHP0ZOTg6eeOIJ7N+/H+3t7V7nDrzRDqZqNzaCAcChqvohFB/RozLP3bo7fRYfFv/MkUYwpaVY7zV/L4fOzk4cPXpU2BOOTxKIpVkFcV7VhcgthHgnMRwYyCTz21566SWUlJQIU615cvXaxzA1NoFprAEAGMwcGvO87+vm4PKZN57+V1BpCajpb14XWK0TmJqawoYNGwKKRKofuugRFCEDB3ITh8/SYQDG5UpKVX7p6ekwGAzYunUrrFYrvrDN4M6VGcLxi+1NMJg5VOYxML5QhYfyZXjtIwcq82Xu+SVP+9dvRNXbQONugKluB51vdvtVr776nzh37lew2Wz44IMPoNVqsWfPHkl+1FLnUmcHGAJ27NjhdayjowOA+zFfjmtYyBiAIwwODuIPf/gD6uvr8cwzzwDgAMsbYI5eAF1oAuC5asl3IG4DeS30cKTJhMaGBnADr6EkZ4OX/M+d+xXuUqxCcXExKisrl6V/ERocGAAEGWSQg+AAMC8EhpyLO/gSkGRlyzlAjAwsy+KBBx5AW1ubSywyGM9fxOFdZcKp/Kol5b5WLRF7u4bTh+bX6xNPES4ie/X8VBlLP+YqDcIYFGGPZxAsuKCYFHR1dZFWqxW2D5eCjBbn/3NkoWKAIG4ZiZgXi/l1Oqw3zG8a9c5t0TWzs7OUnp6aUPOcLQYOl87P0T//5/uBRJvp6WnKyMgQ1g7w+hMtNuGJjIicizsebXdb0uTqtY9ddmneCg0MDODee9WQyeXSmMdlQuMFwlMlBIOZExax0h9mkMeUot+z4zbKtfrKlSuxYsUKZGgfBufKC3Gif12+i0/0h0ucimJcQRjO+SbAR1XU2tpKlZWVUdb+UsNBHFnogbIqLztyuJTxWdVHOz/bt2+nixcvBj7Nh9GTPd14UVBVZZ5zGa3GCyS8ARcb5ru7BwcHkZPjZ7m2JH6Qof/185DlrPFqKq9bXwLT1Y8DXMtFJT85OTkYGhoKfJqPVntQI+XI5ZUPDw9j/fr1IWdvsUASt+z49Nov/BfKS8u9jq9dmwNwgWIp0VlagWVZDA8Ph3xdULnhm3nXr1/HmjVrQr7JYiGiIJgPnTFgQOjH202E3Xucy+/yFhsArn08iJINawIlERVWr16NkZGRkK8LWroMw2BmZgYKhSLkmywLRMM5hOqDccYtcLjc2e9CTgExDAP0G/FM439jV8kuzyQQnepnnlWrVrmN1Q2WkOzcF198gYyMjIVPXMY4rdN8sRrbL2L9Oo3rIARFVFU/BCp9CjWV+T5S4a+PjmgyMjKiL5aZmZmkWLzg5puOglVxPmRCP5pqmlC2a4+wz9FvAMMwaMJTbs1UtypI2IiOz5KRkYHPP/885OtCys3U1BRWrVolbEvtEMYbk8mE3NxcFBQUoLu7O8irXJ1tQlnIAMhgef0MZEweLhLwUL4MDCMHwzBIyfsn/IfRPC8U12Vu3pKwER3LsmrVKthstpCvC2ldZ4ZhwHHcku1Nzs3NFRYCLywsxOXLlyVLe344Agf3d9RzO/pMT09DrVZjamoqpOtCzuWSEIqv18PH5xBSWk7/q8An9MqDbrjllOy3MXdrTvize1jBcB2jREF49AxgNurBMIzwV/qDF9DQ0ACWZVGwWYvnn39+abwYPpiZmcHKlStDvs5tiAKTkoo0uQO35zjI0lIh9xjdn5GRgampqUXl5IpHozFw/pYXjpShpolgIQ4bXbGQMiYP9dBjYGDAdXZ0m6/xJNxnGHRQDgi/fR5PPG3DC0fKUHM1B0Qm15hTgMFGnDXqYWp8W9Sxt3iqh1CZmZnBXXfdFfJ1XoOf5uFgv2V3vl+MHKlpcnzpji/hs//7DHYOSJEBIAduzzmcb688FakpvCma3w/IkJKeMl/0gY6JEZ/nuj/j93o+rwzkaXLQnCvfshSkpZBwfv9bL+KZJhMM5gshF9RSYmZmBnfeeWfI1wV4fWRISZODEf4FVv7DSthsM06hgIP9NpCSnoa09BQwDjsc5No/x0GWloa09DSkyDjYb/MmPdAxMeLzUiGHAw4u0PV8HgmOOQ6y9DSkpcnBcHbMufKYmirDr5r+DcVVrlHrIt+VIBqSIcrDUsCXkx6daoiRI0VOwgNds3o1Pvnf/3Ue4zhw5MDtW3OYu2UHB3KGGjgOHCMD/8W9LEUOhuOcRR/omBiOAyeTu3wmBvK0NKdAF7yegTxNbKkYyFP5D+QGcfUdYFdJubMA3b98wcX2JpS4PodwFvDSqIZ8OemffPIJVq9eHXJafkqEET5jZVLkkHEOOIiwbq0G/f2iTwlkKUhLTxP+UvjUiPx3igU6Fsx5wV4/n0kwBDD9V9EJYJ1mo1cBWt7Qo+kiUPXUjwCICnhpxRwFPvroI2g0mpCvE8TC3Z7DHF8lMIxbXEAuBxxzt7EhN3e+a1smg4yzi5rXHDjOtR8cHHZXSROBZDLnjQIdE8MwYIiveoJMOwDEALQxB9sBXBvudz+Gfvyg8hmUVLl/VMWBvL3jJcLVq1exYcOGkK8TyplhGICzY26OgyxV7v69SIocMsiwLmedEOEEZEhJlTlFdmsOc7c4V2pO/wEOV8zGziA1VTZ/jd9jHOx8bIeRIzWktDnY5xwgEBxzdnAe2wQOjrn1KDu0A//e0DAff+s3QsbkQXZYjwuiQV5EBNlSVQqAoaGhsAaxBRnu5+CwM7A75qBQKPDFF19AvkjH4VaVMWi6OD9Gh/+4arkwPT0NlUoVVt9QcCPl7BwgZ5Ceng6lUimyLosBvgfYCT9klOOcg6e9hEJYsr4KAJjN5rD8FWABsfDVgB1yIZpbWFiIrq6uRdTj7PoU1M9R8myLMRA+BFsqiJ/Vu+++i61bt4aVTkCxyFKdrRwh2AZg9+7duHTp0iLqNwkcL2HcisB5LsMszirWH+Jn1dnZid27d4eXTihDFADAarVCq9Xi5s2bYd0w1hA4D0EsXxwOB+6++26MjY1Fr2+Ih4iQlZWFVatWLRq/hRfKQu8Eefy7FOnt7UVubm7YHcEhiYU3Z9u3b0dnZ2dYN4wXC1WbjMe/SxF+3rpwCcs+l5eXC/OTJUlsxBa1paUF5eXe3y8FS8g+CwBwHIesrCz09fXhq1/9qs+3lh8DkyQxsFgsePDBB8P6XognLMsik8mwd+9e/Pa3v/UriKRQEovf/OY3XvMAhkpYlgUA3nvvPTz++OOikWVJEhWHwwG1Wg2TyQSWZcNOJ+TWEM/9998Pu93uts7N4gnULS9MJhOUSmVEQgHCbA3xPP7442hubvZ7PEli0NzcjIMHD0acTtjVEODslNJoNOjr6wt7ZZAk0WVwcBA7d+7EyMgI0tPTAYTf+IgotKlQKHDgwAGcPn06kmSSRJFTp07hyJEjglCA+RogVDsRkWUBgE8//RTr16/H0NCQZGskJpGGa9euobCwEMPDw5LMfhFxp8lXvvIVHDx4EC+99FLEmUkiLQ0NDaiqqpJsmpSILQsw37n4/vvvJ61LgnDjxg3cd999klkVQKIh7FlZWXjiiSfwwx/+UIrkkkjAoUOHcPz4cWknXwpuhsOFmZ2dpezsbGH1rCTxo7W1lfLy8iSfr1gysRA51xliWTaslT6TSIPNZiOVSkWdnZ2Spy3pqKDKykqsXr3a59JqSWLDyZMn8c1vfhPf/va3pU9cavWNjIxQZmYm9fX1SZ10kgXo6uoipVJJ4+PjUUlfErF4rtja0tJCGo2GZmZmpEg+SRBMTEyQSqWi8+fPR+0ekjSdffHkk09ienoaLS0t0Uh+WUFBhOfLy8tRUFAQVRcgaiOZX3zxRQwNDeGXv/xltG6xbFhIKKdOncLf//531NXVRTcjUpopz+poeHiYlEoldXV1SXmbJCLa29spKyuLRkdHo34vyR1cTzo6OkipVAZYrTxJuPT09JBSqaSenp6Y3C/qYiFyxl/UajWNjIzE4nbLgoGBAVKpVDENgsZELEREzc3NxLIsTUxMEJF3lZUkeEZHRyk7O5taWloCnid1GcdMLETO1csLCgros88+i+VtlxTj4+PEsiw1NDTE/N4xFQuRUzAsywpVUtLCBM/AwACp1WpBKLEuu5iLhYjo5ZdfJpVKJazimmRheGd2oaonmsRFLEROp1epVNKVK1eIKGlhAmEymUipVArObLzKKm5iIZpvVsej/l0s1NfXx7R5HIiohfuD5caNG9i7dy9Wr16NX//618mV0lxMTk7isccew8zMDFpbWxNiBGLcJy5Rq9Xo7u5GVlYWNm/ejN7e3nhnKe50d3dj06ZN0Gq16Ojo8CmUuLzjcbZsbrS0tJBCoSCdTrcsB1DZbDY6duwYKRQKamtri3d2vIi7ZRGzb98+fPDBB/jLX/6C/Px8vPPOO/HOUtQhl4V46623kOuaZ9hsNuPBBx+Mc858EG+1+uPNN98ktVpN+/bt8xrMs5RaTqOjo1RRUUEsyyb8+OWEsixiKioqMDQ0hNzcXOTn5+P48eOwWq0AlsY31WNjY6iursb999+PoqIimM1mFBcXxztbAUlYsQBAeno6dDodzGYzZmdnsWnTJhw6dAhjY2OSpE8SOonBpnXjxg0cPHgQBQUFuOOOO/Dhhx/i2WefXRyTUMfbtIXCxMQEPfvss6RQKOjAgQMRj5OJVXXGcRyZTCbat28fZWZmkk6no6mpqZjcW0oWlVh4pqamSK/XE8uypFar6bnnnqORkZG4+zK+Bn+dOHGCVCoV5eXlUUNDA9lstjjlLnLiHpSLFIvFgubmZrS2tkKj0eDhhx/G9u3bodVq45Kf3t5e/OlPf8Lvfvc7WK1W7N+/H9/73veCnkiHfxyJ6JclnFhogcHJgY6/9dZbePvtt/HOO+/g5s2b2LlzJ3bs2IHCwsKwpyBfiO7ubly5cgWXLl1CZ2cn1Go1ysrKUFZWFtHMkIlIwolFKqxWK0wmEzo6OnD58mVYLBZkZ2djzZo12LZtG5RKJbRarbA6SFZWltfbb7FYMDk5KWz39vZifHwcPT09uHbtGsbGxqDVarF161bs3LkTxcXFyMzMjPVPjRlLViy+4B/+pUuXcPPmTQwNDQnHrFar16zhLMu6hdrz8/Nxzz33oKioyKe4ljrLSixJIiOh4yxJEoukWJIEzf8DuoXxeHUlq8oAAAAASUVORK5CYII="
|
<image>如图,⊙O的半径为5,△ABC是⊙O的内接三角形,过点C作CD垂直AB于点D.若CD=3,AC=6,则BC长为()
Choices:
(A) 3
(B) 5
(C) 3√{2}
(D) 6
|
5
| 69,800 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAIgAAAB+CAYAAAD/cVlWAAAgzElEQVR4nO19f1Bc5d3v54BXtKasvlma7bgR+4bYhSUNUONd21XiGMelpbeZZmF9W7zdtmTw17TpvHSCoy6kTUdyTW9xiiMWva41fQVCSN+WjthBk0ZiIt6GvIFlo0UlIdcSwtQ1G5slZc/n/rGc5ezZs7+XHwl8ZjJhn/P8fj7n+32e7/N9zgMuAYgkRVGUhfjDIgx2OGg1ggAIfJEVHYPk3gpaO8LjLiVkYAlAACAIlIXMNpsYQv06Aevqh1HZPgiSENmJLcOVECqGUGgUwjNbQhBIMna0KwwEIATI0VC4Dj8VHBgcrEehjDgiOmATOlHBdlQGWSEilFxXPl+uWugKzDnURnHm92BDJX7qykf9UCg5AlEKUNBgRWUIJ5RxrnwsTQkCEcRwQHoUtIEdNgASl0KlhCqWguiYwZKYgxBA6GuQAWIYwy6gwGgMhgamKcouEUPzIpcMOYAlQpDAJFUR5nLBpYhH1YFXqBV5RktA9i4JgsghjSmNRhgBDLtmaSLnx969e2NntgQkyZIjiDSmGahEW4cV2HsfCis7MDRDHdHVjvpKK1hhDUsbbbp2pU7lrgiCJDs4mRV7caL9CXzRbcM6IQOCIGDdT10w1u+VLW1nISj1VJzPLmcs0VUMIIoiMjIygn8jQ0AGBPgpIlPICP4vgWREEkhdKAhC1HiXI5YcQdQGUB6W7ADPFzHmm4BXhIqJCdkroNa5gTffDwA4dOhQ5GyivEvzNWjzLZ2uKEtqpLfrzP87g5GR93D8+AlMTk6ir68vqA7Onz+PgYEBWewMXHttFr6w5l/xuX/RggJQWlqKnJwcrFu3DgaDAatWrZq/Rs1AFMUQKSepR+k3EEqedEmaK07FkMShQ4fQ29uLAwcO4K3Dh7FKp8Mtt9yC2267DTfffDOMRmOw84qKiqDJ1mBf1z5893t2XJt1DX7yk5+gtbUVFIDv27+H6667DqOjoxgYGIDL5cLk5CTMZjMsFgs2btyI22+/PWTA5qudcsLEQ5pkC7rscfr0aTY1NXHTpk3MzMykyWRiXV0de3p6ODU1FXOL3ul0UqPRsK+vj93dv6der+fJkye5f18Xi4qKWFRUxK6urmB8n8/H7u5u1tbWsqSkhFdffTXLysrY3NzM8fHxOWunKIoKt4W5x2VHEL8/4J/h8Xj461//mqWlpczJyeEDDzzAnp4e+ny+qOmVHex0Opmdnc2BgYFgWGdnJ3Nzczk6OkqS7OpSJ4oEr9fL7u5uVldXU6PR0GKx0Ol00uv1ptjaxCCKYtz+KvHSbFERRBp86X81DAwM0GazMTMzk1arlW1tbZyeno47bzmampq4cuVKDgwMhDwXRZGtra3My8sLkQixiEIGpMuePXtYXl7OrKwsVlVV0e12x6xfvJAIHlmSqDg4iVGex8CiIUg0UpDk0aNHuXnzZn7+859nY2MjJyYmUsr3ySefpE6nizp4TU1NNBqN/Pjjj0PC1YiiNmDj4+N0OBzMycmhzWYLkVKpQl6eKMZ+QQIRyQSEDMlFRJBIeOedd2ixWKjX69nc3BxThcgR6S1zOBzMzc3lyMhIzDQOh4MlJSWq6qKrq4vFxcVcv359iEQJHTyRXq+Xu3fvpk6n4+bNm8MkVjJtiB3Pr/hfJU0c+S5agkxMTLCmpoY6nY5OpzNt+dbW1vKmm24Kzi/UoBy82tpams3miOSUiBJN9ZDk9PQ0W1paqNVqWVtbS4/Hk3D941YtSeURjkVJEHknqr25ag2Mp9Hbtm2jwWBIaqVRXV1Ni8USdb4TzxxFFEV6PJ4g+ffs2ZNQPZRzkHarMONoLftnLKCxYi8HY8iIePpswQkif1tHRkZoMplYUlLC/v7+tC7p7HY7jUZjkByxJ3vhsNlstFqtwTpHWnZGI4o8fl9fH41GI81mM8fGxlTLjGfi3lEJotARJMT0cHvAQ984G5asN/6CE4QMNL6zs5M5OTlsbGyMa9DiHdjp6WlWVVWxqKgoKZEuxz//+U9u3ryZdrudfr8/Zh3ikSjT09N0OBzUarXs6elJuE4iB+kwggUNg6HhQw7mAzTsmA1X1nfRzEGidaTP5+PDDz/MNWvWsL+/P63lTk9P02q10mw2q5IjnuWxBKkNPp+Pd999Nx966KGIcZTo6uri+vXroxKlr6+PN954I7dv3x6xXmq5i0MOFqCA9UNyCeOnyEE+UQCioi1q+lhYUAkyOjrK4uJi2my2tBuVLl68yPLycprNZp4/fz7kWaqqy+v18o477uBjjz0WM65clXV1dbGkpCQiUTweD7/+9a/TbDaHzJPCVrGS1hBFDtbnE0YHT4j+kGeckSywvhK1XrGwYARxu93U6/VsaWkJe5bqAPp8PlosFloslpCVRzrnNB6Ph0VFRWxsbFR9Hq0s5apHPr/w+/1sbGxkXl4eP/jgg6h1EDnIx5XqZabYabbTinDVkygWhCD9/f3U6XTct28fyfAJWKyBjPbc6/XSbDazvLw8IZtJovD7/ZyYmKDBYGBzc3NcaaR6S+2NNkdxOp3U6/UcGhqKnJ9Cvcj7xd++hUA+G1xRjpzGgXknSG9vL3U6HXt7e0PCE327lfH9fj89Hg9NJhOtVmtkPZ6iFFGmHxsbY25ubsLLVXleElGKi4tDiNLV1UWdTsejR4+qp++wEoX1YctZ0RWQHoXWdkWChKs4vwT54x//SJ1Ol7TJOdpSTxL5drs9oclnOjA6Okq9Xs/Ozs6YcWOpHqVE6evro1arZV9fH0n/7BJbZfUyNDTEV3ZYmQ8wv/7ETIHywslQKRJboswbQd5++23qdLqkVyqR1JAoihwfH6fRaKTdbg95pvx7LuF2u7l69Wq++uqrqvWNBVEUVVVPZ9c+Hjx4kDqdTqZu/IQAAhkKI1k+Cyrq2T4ka39IIcpCY9drXgjidrtV1UoyUHb82NgYDQYDt23bFgybb58JCQMDA1y5cuXM2x6OROu1f/9+FhUVcf369dy+fTv1en1wiyAuW5Fq6CLbzZXEb0dHx5zknZuby7q6urTnHQ3RpENfX1/cajTWIB87dow1NTXUaDS0Wq1saWnh2rVrOT4+HmLNjTe/ZDCnBPH5fCwuLg6b5ScjfpVwu93Mzc2lw+GImC7RcuItO1bePT09Ya4E8dZlfHycTU1NNBgMNBqNbG5u5tmzZ4P1aGxspNls5qVLl2LWMR2YU4LU1NTQZrOpPktl8IaHh6nT6bh79+6o8dLdcUqnomjYv38/9Xq9qkuBEqIosq2tjVarlTk5OaypqaHL5YoYv6ysjNu3bw+mTWZfKV7MGUHa2tqYl5fH8+fPJ2zniIaBgQFqtVo+/fTTqVYxLkTr/Fjt2LNnD3NzcyNuxA0NDbGmpoZarTboHRdPfSYmJqjX66Pu3aSLLHNCkJGRkaArXyQkKkH8fj/7+/up0WjS6h+SKtQGQt62lpaWEBeDiYkJNjc302g00mAw8Fe/+lXc7gfyfA8dOkSdTsfTp08H67GoJYhUuenpaZaUlARN0OmYB5CByZ9Go0nKILVQkPpk9+7/xdzcL/Cb3/wGtdrPsaZmKwcG/iskTiL5Sairq2NpaWnYs3T1OTkHBGlpaaHJZEpXtiQD1leNRhPVELVQS1sl5PVwu9186KGHqNPpeMstt3Dt2rVhG4epYHp6mkajMS7VlCzSQhCpUyYmJqjVaqOqlkQH8tVXX6VGo2F3d3cqVZwXSPszLS0tQRWye/fuoArZtm0bN23aRJ/PlzZCS8tqr9c7J2omJkESKbC6ujrEYBUPouXf2dlJjUbD1157La1iMxqSnVB37f9PVlbex+zsbNbU1IRZjKV87HY7v17+P9K6HWC321lbW5u2/ORIm4o5evQo9Xp92vw62tragqfd5gPxEFAZx+12c9u2bdTpdCwvL+eePXtYc496l8qJZrVaabVaU6uwDBMTEwpTfPqQMEEizdpLS0vpdDrTIuKko5CRdjEj1WMuIT/R19LSwqKiIubl5XH37v/NsbEx+ikyqhlbVt3p6WneW2ZhdXV12urX1NTEzZs3py0/CUlJEOXgHDx4kHl5eWkRm88++yw1Gk1aDxnFi2ik6+7ups1mo1arZXV1Nd9+++1QR5+YO19+ygnk8/lYWlqqqpKTIf/U1FTQxJ/OlydlFSOKIsvLy1U9wxJFU1PTnInKROH3+/n++++ztraWOp2OFouFe/bsieqE5Jc5kHdYZ3ZYBYQdS7B2BOjk9XppMpmibhfEA7kZ/jvf+U5KeSkRN0Ei6eiBgQHqdLqQjktmQulwOKjX69N6jjVafSLN+D0eD1tbW1lSUsK8vDw2NjZGtIRG9RIXyfYKhdOwq531xvwQB+O///3vNBqNYdsGyfShx+OhVqvl+++/n3DaSEhZglitVjY1NQV/q+0yxsLjjz8ecppewlzuMSjz7enpYVVVFTUaDaurq6NOjmMfH/AHHXqk2yLaGwJnVIYb6tkm+kPSjY+P02AwsLW1NcTgmAwcDkda5zYpEWRiYoIrVqwIHilIhvU//OEPaTAYIpIjXVCr28jICOvq6qjX67lp06aIKkRtQyxYvwjVDPiLWtkx87exYtb9T1T8T866LkhGr0T6Ut5XY2Nj1Gg0aVtNpqRiWlpagru1kRoUraE1NTVJH4VMBPLTaZIKMZlMzM3N5c6dO6Oe05UQJjXkfhghhQV+nWgomPX4EkDjjqFZl78IpBoZGaFer496vjee+pWVlaXNupqSBDGbzdy/f39YeDxvv91uZ1FRUdyfcUgVvb29rKqqolarpd1uD1MhcsmQ6u6z0l/0RENByMVEfn9kkgwNDaXsfed0OvmNb3xjtj4pSOOECCLvuNHRUWq12oR1pXTarbi4WPW0WzpVy8jICJ944gnq9XqWlpbyxRdfjCl6Y4n2eES/8jiCv8OhOPmmiK9oc39/P1etWsVDhw7FLEsNXq+XGo0mLS9f0hJk586d/NGPfhQSpjz3oYTP5wsehUxERyaij71eL51OJ++4446gx1kkFZLMJDieuCcaCkIPTktpO6zhV5ypwO/3x+26qOZy6Pf7abfbQxYPySJpgphMpoQOG/t8PpaVlfGee+6h1+tN+95Kb28v7XY7NRoN7XZ7WhyklYjPUXiQjnWSepk9otDWkE9gC19huAqLBDXXxXjR1tbGsrIykqlt/ydFEK/Xy6ysrLilgNfr5d133x12FDJeRBqY0dHR4NeCzGYznU4nz58/n/IhrETiKCerYd/qkB9NmLGJRCpNrQzlB/UkxBr08fFxrlixImXrdlK7uT09PTSZTHF17IULF2g2m2m1Wnnx4sXkainD+fPn6XQ6WVpaSr1ez8ceeyzYefO14xsZygPU0RHTOD/Tnpdeeok33XRTyGovWlulT1MYDIao+1nxICkJUldXx7q6upgDIp12u+++++JmciTS9fX10W63U6vVsqqqir29vSkZ0uLxMU3Hd0qS8WVVQ3NzMw0GA8+dOxd3+pqaGtXD5YmUnxRB5POPSCSZmJgIHoVMFqOjo/z5z3/O3Nxcmkwmtra2xqXW/H5/8N+VhJ07d7KoqChu1S6fhySLhAkyPT3NzMzMqJWUTMc1NTVhz2IZ1Hw+H51OJzdt2kS9Xs+6urq4jg5cqVCuUrZv3x73KnB8fJwajSal8kMIEiJ6/OpiaGRkhLm5uREzHB0dZV5eXkzPMuUZk76+Pv7gBz+gRqNhVVVVxBVSpI23pYSHH36Y9957b1wT/lTtIbMECetj9Te9u7ub5eXlYeGiKAb3EyJtX6t9OmHnzp3My8tjSUkJW1tbwz5aq4YrTXUkg6qqKm7evDnmZy7MZnNKXnlRrigIfSSKgetBR0ZGYDAYwmK/++67MJlM2Lp1K3bs2KGaoyAImJqawm9/+1uUlZVhw4YN8Hg86OnpwV/+8hdUV1fj+uuvj3bxQKBmM7caSL+vdEh9L4fT6cRVV12F733ve6r9IN3yYDAYMDIyknRfzbIgxq0RGRkZEEURbrcb69atC3k2NDSEu+66C48++igeffTRkMpIjXv77bexdetW6PV6/OEPf8AjjzyCv/3tb3jqqaewZs2amBUVFfelAOm7XEcUxWCe8r8XCwGVV42IoojMzEy8/PLLOHfuHB588MGQ5/J6FxYWwu12J99X8YoaSaxbLJaQtfXAwACzs7NVPcrGxsb4i1/8IqhCnn322ZQ/RSnHUpt7SJC32+fz0Ww2R/Rq7+npSclBGsouFkWRFEk/27mjfjAYJlXKZDIFvzUunXZ78cUXg+mnp6eDtx3odDpu27ZtTrzEIuFKJk2kuZfX62VRURF37twZFu/gwYO0WCxJl4mwDhXDt6vlMBqNHB0dDZJDOu3W398fPIhcWVmZkE/DfA1qXDuxad64S+QwUyrxPB4PDQYDm5qaQtp5/NgAzWZz0mVfFaabBMC1Ywc6ARQUFISppE8++QT9/f3YunUrdu/ejQ8//BD5+fnIzMzEww8/jJ/97GfIyckJSyfKriFVIhH9GC2fSODM9V2R0knPpbrIf0cqP1ocOZRx5PVX5qF255xaOWq3dmo0Ghw8eBBmsxnXX389vvvd7wIAVmR/Fh9//LFUOiLdYzmbZ2ickEsNp6Z8oHsn9t6yGVZ0YlhRCUEQ4PF4UFVVhZUrV+LHP/4xDAYDqqqqYDabAQDDw/JUs+m0Wi2MRqNq5RJBpM6NhliD/cYbb+CRRx7BNddcg2eeeQZf+cpXYpaflgsD47ioOV4SiqKIVatWobe3F2azGStWrMCWLVuQlXUtLly4ANIPQcgMpumoFGBT3D5fUFGP9o56FMrzJqUpOyAKHbA5/on2n/433CfsQMHQIBqMGSGsFwQB27Ztw9mzZ7F27VoAwEcffYS//vWvURsxOTkJl8sV0igqVglZWVm4/fbbVVcPckLccccdyMzMDIar4bbbbsN1110XfNvlkMqWbrDMz8/HyZMnAQAmkwlHjhy5rC5IVkrVkydP4p577sHzzz8Pk8mE3NzV8HjOz5KEAASgw2aEjQ6w3Qa6O2Az2rC3og3ssAXzCrn1smNHPdbW1aH4vSdh/JIb9eyAVQy9TVHqXDVRKS1pY6mASGpiamoKR44ciTkwfX19uHTpUkgYZ259lJpz7NgxeL3eiHmQxHvvvYfx8fGoZen1+pjL8JycHBQUFISRXk6yz3zmMzCZTABC1ZiSvHfeeWfM603jUbPHjx9HWVkZXnjhBXz729+G52MPRAJSMmII9evWwe3wY29FILCjUoANYQTxE8jA4A4jvtQwjMzMDPj9IoAt+K3vZWyZMZBkZV2DqSkfVq1ahdOnTyM7WwMgoJYA4Oqrs0IaIoVLaeWI9iyeeD7fxWBZ8vCpKV+wnvI6Z2VdE1X3v/7660EV09zcjK9+9avBZ2NjY/jggw9U00m/JycnceLEiYjtAIBLly7hyJEjqs/k+R46dCim/aWkpATZ2dkh8ZRkMxgM8Pv9eOW3/wEh8yr8+7//GA0NDbNluupRWDiMenagAi60N1Tg33YIqB8aQoMxZA6SAbrq0VUwBFIIdOgf/ieEhnx8KesaYGoqOAhZWdfg+uuvx9RU4O2VOj/a34k8k0OZRh5+zTXXBjtVSQr5b/nf8jKU17DffffdcLvdqoOxevVqrF69OiS+GrZs2aIaPhd455138I9//CPic0EQ4Ha78dFHH+HfvvNt/O73/xlGusF9nRjGMGxCBmwACuvbMcgKFCotpoMdDlrrZ89s+HwX2VYxc4MARfp8F0OeGQwGnjp1in6/nz7fxZB/8nhyxPssmfCLF/8Rs5xIeV0JiLU0HhgY4O3/3URxetaZyS+e4BMFs4e6/INPMD/Ch/+BmS/0NgwG7B+PF2bMnicVrGyfIYnIQEebTKbg2dl4B3EuCRIPKaIRRHS1s76yIORrxRUdqd2QMJ+IRZA333yT95ZZKL8ZUzrU1S77IkF7BQhsmQmbRQZJkMOoW+uDgEI8/n8/BcXAVd8U96JyRuRIgueGG26A99MLYWJNrgbSjfTmPbvxNbSjAoXGHRi2tmOQgT2YEx0FGKpch8q94Rtk8wG1jbloiDWhv3DhPD573QoIQiZEBNTMUGcnhiusM2ObAWIIw24ABUYUQDH/kZgiVxNKTvplqqampob/58WXZA4+F1XfUDXVE+uZ2u940yvDIv0tIXDyrTBwXkXR4PYKEMbHY14KuBggbfdHshI3NTXx0e2zX6JWnhkWORiYUgDc0h7uOhA0lGVlXQ3Jghbg5KxFLQOzS9j8/HwMu1zBFUGkVUi01Um8aRLJO1pa+d8EAFc9bA3DKGgYDJmxhyIxa+1cIdaSVrIHqe34AoGddrPZHGg3/cjImNmJr8yEICDQIQVW1HfsRUNFpmQiCSJAEAIQZAUofk9N+XDttZ8BAOTl5aG3tzfhhi4kKDelA+jY8VO4sQXt9WqW3SG4hgUoJe18IZmtBDVIeZw8eRJ2ux0CAAqZstVMuNmdKqs0uciYxcxvaakoh8FgwODgYMoNmE/IbQQiOrB3L4CKiuD8Sg669qLDRRRUVqCQ829JVZIjVbIMDg7illtuASDTDAQAdQuzErK9GBmjZuSMmij/15u/gDNnzuDChQtYsWJFSpWfTwQbP+yCC0B+wex0TN4text+hpPYgjZHQUwnqsWOs2fPAgBWrlwZDCMFSF0hxNHADNU/Jd2kAiEzAxs2bMBbb72VaH0XCLJVAQEUGJEvzBCGDOmiwb1W2DoJa0cnbMLCzEGUb3Uq8Q8ePIjbb78dgmKrZPaHMkX4CipyL8gSKyuxceNGHDhwIGLSSOkWBhkINlwAMlCJhvoCDDdUYsewtE85hPbKAnypchgVHYPYW7FwtU10gzBa/AMHDmDjxo1g3EtnFToks7SSjl6Sl6EH14xDVHtD4G43zBjHjBXt/K8on2i4HJGOo5chu7nxgCQ+/fRTaLVaTE5OhsxDeBlskYsgMsJka2D+NVv/yI41lwvOnj2LvLw8eDye4FI4GSTcC4IgYMWKFSguLsbhw4fDni1ezLgiQEC4rg11AuLM6mUxKMhkIXmXpUIOIIXXpLy8HD09PWHhCQqk+cHMsm6WGBFcDxFuM7ncIIoiRFHEn/70J1gslpTzS0jFyDvv1KlTuPXWWzE+Ph7C0sWuZpSWwvRFXhyQpgCrV6/Ge++9p+ofnAiSliC5ubkwGAz4/e9/HxKu5iW1kJBqItVJUPxW/h2Cy4wcQKD/9+3bB7PZnDI5gAQJopQM999/P9rb22PGW0hINYnmGa70Ervc0dbWhqqqqpCwZNuV1CpG6tBz587h5ptvxkcffQSNRpNUBZaRXpw5cwaFhYU4c+ZMWizdCUkQ+flYIOCs+7WvfQ1Op/OKePOuBDz//POoqKgIkoOBLzgknV9KEgQIeE9bLBacPn0aV199dUjcdO1MLiM+nD9/HmvWrMHRo0fjOhAfD5KygwCzOq2oqAi33norfvOb34RnvkyOeUVrayssFkvayAEgOVO7EmoXCi1/5GV+IG11+Hw+1Q/vqn1oNxGk5RUvLS3FjTfeiD179gTDlqXH/ECS6C0tLTCZTCgqKgp7zlS+p5IMW9WQ7ksNlxE/5JcaKr/9lioSnqRGw9atW7FixQr88pe/TFeWy4gBkvj+978PrVaLp556KhiWNltUyhSTIZ6LlZeRGpRzu8OHD1On0wVv9E733C+tBCHn5mr2ZagPfLSr2dPlp5P2mWR1dTUuXbqEXbt2RZJY6S5ySUA56SeJxx9/HFqtFjabLSz+olQxEkZGRpZVzRxDuk8m0o2c6ULKBIl0iVBbWxvXrl07J3fDLHVMTExQr9cndF9PskjrKkYhmfDggw/C4/Ggra0tGCZ9aGbZTpI8LBYLiouL8eSTT855WXM2SoIg4Omnn8a7776LZ555JhgGLBvRUsGuXbvw6aefYufOnfNTYDrFkZoqGR0dpV6vD34ucxmJQd6nra2tzMvLC7tYaC5PFszJJFUOv99Pt9sdctXnZXdUYhGgq6uLer2eH3744byWO+cEkXDkyBHqdDr29/fPV5GXJdRengMHDgRN6fONeSMISb722mtxXfW5jFkcOnSIWq027EqPuVYtEuaVIGTg+tJYN0svq6AAurq6qNPpwk7HzafZYN4J4vf72d/fT51OtzxxnYHaC+F0OqnX6xdErcgxbwRROq643W7eeOONqteISFiqBrZdu3YxLy9v3iekapgzQ1k8OHXqFL71rW8hLy8PL7zwwmX1vZG5wCeffIL7778f586dw+9+9zusWrUq5DkX4FDavFus5HzMzc3FW2+9hRtuuAHFxcV455135rs6KUP5fklHH+U3V8WDw4cPo7CwEF/84hfR19cXJIf8q4cLct5oIcWXHK+88go1Gg137dql+lypbhab+om0JxUL09PTdDgczM7OZnd391xULSUsGoKQgV1gk8nEL3/5y0F7yeW2okmEIH19fTQajTSbzXO+K5ssFgVBlJ3a0tLCnJwc1tbWxu3jejkRyePxsKamhjqdji+//PJCVycqFsWumXLzrqamBi6XC16vF2vXrsVLL70UM4/FdB44Evx+P5577jmsWbMGn/3sZ3Hy5MmwM7TAInOqWmiGqkEuUfr7+2mxWKjX6/ncc8/Fddu0hPmUKtFUi9frZVNTE3U6Hb/5zW8GLcnR6rdYJOKiJIgE+YWAR48e5ebNm7lq1So2NjamdN14uhFpMMfHx+lwOKjVammz2SJuMSy2Cbcci5YgkTr92LFjtNlszMzMpNVqZVtbW8TryRcCPp8veC1sVlYWq6qqYl4Lq9bWZQmSIjweD1tbW1laWsqcnBw+8MAD7OnpSUgFpQter5fd3d2srq6mRqOhxWKh0+m8Ig6RLaglNV04c+YM9u3bh+7ubhw4cAAbNmxAaWkp7rrrLmzcuBFZWVlpLW9qagqvv/46Dhw4gDfeeAMulwt33XUXysvLYbVawyyglzOuCIJI4Iwp+s9//jN6e3tx8ODBoFXSYDBgw4YNuPnmm1FYWBiMX1xcjOzs7BBf2U8++QTHjx8Pnms9fvw4Tp06hWPHjsHlcmFychJmsxkWiwUbN24MuePucgNjmO+vKIJEwpkzZ/D+++/j+PHjmJycxJtvvhnsGIkMEgRBwPr164NfTBIEAXfeeSc+97nPobCwMHiVqhISuaSP7FwOy+54sCQIsozksSgMZctYvFgmyDKi4v8DAmj0yxTUBu0AAAAASUVORK5CYII="
|
<image>如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交弦BC于点E,CD=4,DE=2,则AE的长为()
Choices:
(A) 2
(B) 4
(C) 6
(D) 8
|
6
| 69,801 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABlCAIAAADIyfpsAAARNklEQVR4nO1de1ATVxe/mwQykYLyDI+QoDGgtoJadaxadXzMaKtYHzPa2s7IFFGpVEU7fOpUq62MRYv4yjhgLVVr6Ugf1pHRotVq7RS1WFupoFIIScwLFfJcyG7u98dttjHZEEg2JHH6G4bZPXv2Pn4595x77969i0EIwX/wGaxAF+AZwX88MoM+8Njd3X3lypXm5ubeuwJoh1dlCxioArseuAOnTxnodLqkpCSPalarVaPREATR3d2NJGFhYbGxsVFRUX3KLuDQaDQ4jpMkSZIkh8MRiURsNpteFfYat27dyszMbGxs9KjZ1taWnZ0dExMjFouHDRuWkZEhFAp37drV+7yCAQRBFBUVJSQkJCcnp6eni8XiTz/9FMdxWmUPPNpsNpvNBiHUaDRFRUULFiywWCxI3vONN27cWL58+cOHD81ms0wm++yzz6RSqVfVCSRMJtPChQu//vprs9lcU1PD5/N//fVXWk0P/hHDMAzDTCZTbW3t8OHDm5ubSZJE8h7ughBiGDZ06NCkpCS1Wn3//v3Zs2enp6d727wChq6uLrVaPW3aNB6Px+FwIiIiwsPDaTV75R8fPHjA5/Pj4uJefvllFstzaDKZTHfv3o2IiLh48eLNmzfnzJmTmJiYmJjYt0oEAerr659//vm//vorIiKitrY2Pz9/+PDhtJpP8YjsCP2nhHK5vLy8/PXXX79//35ycrJbR+uA7u7u+vr6mpoaHMcFAkF+fr6P9QkU7t2798svv/z8889Go3Hv3r3Z2dlhYWG0mk/xiOhzJJEgiNOnT1+9evXy5ctWqzUnJ4fD8WzCMplMr9ffuHGjqampuro6MjLSp9oECGaz+caNG59//vmoUaOqqqreeeedmJiYadOm0fo0D4305s2bQqHwt99+a2hoOHDggEQi8diuSZKUyWTx8fGRkZFCoXD27Nk2m629vd37CgUIf//9N5fLFQqFbDb7tddeY7PZ9fX1NpuNVpneuCCEcrn80qVLJ0+ePH78eFhY2J07dy5cuMDlcseNGycSiXrI3mg0trS0zJs3DwCQkJCQkJBw8eLFe/furV692ve69SeuX78+ffr0+Ph4AMC5c+c6OzuHDRvmzq3R82iz2b777ruKigoej2cymXAcr6io+PHHH8PDw1NSUlauXElrlRBCtVr9ww8/nDt3TiwWX7t2DQDQ2Nh48uTJrVu3MldBv0Ov1//5559VVVULFiy4du2axWLJy8uTSCSTJ092dwsGezFoc4o8TqcUSJI8depUcXExClZUyqNGjTp8+HBERETfaxQY1NfXr1+/vqOjAwCAGvKMGTM+/vhjLpfr7pZe8fgfPMKtf9RoNCRJ9tzfdroFddpZLBYaWfN4PGSYwP6rhgowOxyNDA3h2Gw2n893pYWex66urvLy8idPnrjrLvUANpvd2dl5586dxMTEjIyMrq6uvqYQJHDiEQBAEERUVNSWLVtcaaHnkcViDR48OD4+3qm36M4zOoLNZqNoI5PJhEJhZmZmiFLpWlmSJAcMGEDLAI1/7A1ZPaOhoSE/Pz8tLQ3HcalUGhsb60tqIQGa7ouPJAIA1Go1AGDHjh0xMTFbt241mUw+Jhj88MtzBZ1Ox+VyRSLRunXrlEqlVCoNrTjjBRjgkZqDQ6c4jre3t0skEgBARkbGxo0bz58/X11d7XtGwQxm7BH1EtCxwWDQarVDhgxBp5MnT3777bcPHjx4/fp1RvIKTjDfro1Go0ajGTx4MCVZuHDhvHnztm3bJpPJGM8uSMAAj05xSa/Xq1QqsViMTiGEXC43JydHIpFs27btyZMnvucYhGDeHg0Gw6NHj9LS0tApYjkuLq6goADH8dLSUuoh4rMEn3ikHZs/fvyYzWYPHDjQSUcikRQWFtbV1R07dsyXTIMTPvHo2tMkCEKn01GN2kln/PjxBQUFJ06cuHDhgi/5BiH6tg7AIwwGg0qloho1cBkdzZ07t62traSkJDU1NSMjw51ayIFh/2gwGDQajWOQcWIHw7Bly5aNHTt2+/btaNhDyZktST+DYR6NRqNarXYKMk4YNGjQqlWruFxuSUmJ0Wh0VQjFKVGGeTSZTGq12umRP3RZbSQUCt99992mpqaKigrXRELRNhnmsaOjo7u7OyEhwVFI8eJI0OjRo9esWXP27NnTp08zW4aAwKc44+T+SJLUaDQCgaCXt8+ZM+fhw4eHDh1KSUkZO3asLyUJOJjs95jNZseRDOiFp1u6dOnEiRN37tzZ2trqS0kCDibbtclk0mq17jqPtIiIiFi1alVCQsKuXbtCesjIJI8Gg0GtVlMzPb1EYmLi2rVrNRrNoUOH0GK2UATD9qhSqfrKIwBgxIgRBQUFV65c+fLLL5HEcUIzJMDAeIaKNh0dHY8fP05NTfUikenTp6tUqqNHj6ampk6dOjXkuj4M8IjqDCHU6XTx8fHuVlp6xJIlS+Ry+e7du9EDW98L1p9grF3jOK7RaHxZdMvhcFasWDFkyJDi4mLHIWNIgDEeTSaT0zS4F4iNjS0oKLBYLPv27bNYLEyVrR/AGI9Go1GlUvnII7BPU/7++++VlZVMlKufwKQ9OnXCvcaECRNyc3NPnTp19uxZ31PrHzA2/2g0GrVare/2iLBo0SK5XH7w4MHU1NTMzExG0vQrGLPHR48e8Xg8RpaCo55jbm5uZmZmcXFxW1ub72n6G8zwaLVa1Wr10KFDGUkNAAAhfO655/Lz8zkczt69e/V6PVMp+wnM8GgymZRKpePjBF9ArSoQiUSFhYVNTU3l5eVBPrxhjEeNRuPFiNAjxowZg6Ypg3xlCzNxBgVrpoKME1555RWlUnnkyBGBQPDSSy/5IwvfwWS79t8bhMuXL58wYcKePXsePHjgpyx8BDM8dnR0kCQZFxfHSGquCAsLy8/Pj46OLi0tdX2lKRhcJwM8kiSpVCpFIpFfJ2n4fH5hYaFCoZBKpY4LpYOBROCORwhJCEkICQA8l9L1cYKfMGLEiMLCwp9++unkyZOO8mCYZHMXZyCEJIb1ylrNZrNare6fma5p06YpFIrKykqRSDR9+nQQHCQCd/aIYWwAMAzjAOC5lMge/RSsXfHmm2/OmDGjrKysoaGhf3LsDTxbHIQEhASEJADQfkxQlwAAZrNZqVSidu2g7JAAjfDfa/arNgeJFUIrJQHABoANQpvNZkV+ZvXq1QKBYPfuEqVS6XXNmUVvWi5EJNpPCAAwxA6SPHnyqLOzUyAQAODIBel44JCOY7o2AEjaAwAA4g7RZ7NZEZs2mxVCYtCgQRs2bNDrjVKplHZlS//DM4+oddvbOIZhYRjGBgAgB2qzdWu1qqSkpPDwcABsGMbBMA6GsewsQwj/EQLAcjAxBAgAxDAOixVmLwmShGEYemEK6WMAYACwMQx5czaEhFgs3rTpf3V1dV988QVDVPiEXkUSDGPb2zWJSLQDdnV1q1Ta9PR0l8jeJ/ePPZ2s4wWW/Q8DANoPAADkuHHjVq9e/dVXX9XU1PQlL7+AJl67RGoM2R2GhT9NFgYAG8et9mlHJ+L60K2D0AYAdEclnT6EELBYYNGiRW1tbQcPHkxKSho9ejStZv8EdNrX0QkICRSy7TIMwzgQkvaWBSgLMho7FAqFPVizqKCBNNELsPbQZLM7BBtylBjGAgCD0Eo5VkoCoRWdImUISeQT7AcYAP9IVq1aNWzYsN27dwd2ZQvte3Ec14aGmrajEB2bzRa5/KF9podlv0Td/m86iFPnrP7pYLGe1keOmIUSxDA2ukodsFhsKlkej7dhwwYI4YEDB1xXtvRb75KWR7aD3f0DCAlXIQDAaMTb23UOC0dRnHH8DTB7nKEIZTkooAjGotNn2ZX/iV32S44HAACQkpKyadOmO3fuVFZWEgTRRwaYQW/6j6g3R9L6r0eP2qOiogK+s0xmZuZ77733/ffff/PNNwEpQG/mH9GmPjSaVqtVqVRSjxMCslaeynTmzJmtra0VFRXJyck9bMjhJ3jmkZZBBLPZrFAomHqc4DtycnJkMllpaSmfz0cvivYbfJo3s1gsDx8+7HlVvb/hmCmbzV67du3AgQNLS0t1Ol1/FsMnHtHI2h+PZbxGXFzcpk2b5HL5kSNHeljZwvisJQM89nML8oj09PTNmzfX1taeOnUKSfphrtcnHh8/fszhcGJiYpgqDVOYOHFiXl5eZWXlpUuXgMPKQkqBcRfk/fNCkiTlcnlaWlqQzKSCpzsMS5culclke/bs4fP5I0aMAH52397bI47jaBWz668dKDgxlZ+fn5qaWlJSolKp/J219zyiYD148GDXXSODBJGRkVu2bNHr9YcPHzYYDH7Nq888UnZnNpsRj0wXiUmkpqZu27bt2rVrVVVVfn0Zos88UnaH43hbWxuDa6P8hKysrPXr1x8/fvz8+fM9qPnol7yPMwaDwWw292Zb9oDj1VdfbW1tLSsrS0lJycrKotVx3Ri4T/DSP0IIlUqlQCDwYiO5gCA3N3fkyJG7du1y3bOFskRfXLyXPOI4rlAoqGAd/OByuUVFRQCAffv2OU1Tuu6r5wW85NFisaBp8FDhEQCQkJCwY8eOhoaGY8eOOW0B6HstvLdH9Mw6hHgEAEgkks2bN1dXVzP+aMxLHru6uhwey/yLYOiN94ypU6euWLHiwIEDdXV1DCbrJY8Gg0Gn07m+ShgS5rls2bKpU6cWFxc3Nzczlaa79Wb0ZkXJtVptdHT0gAEDmCpHf4LNZq9bty4uLq6kpISpDeLdrZOiNyskt1qtbW1tYrG4N9+sCE4MHDhw+/btCoWivLyckRfwvCECjayHDh1K8Rj8btEVAoFgx44dNTU13377re+pecMjjuNyudxxAW5IuEVXvPjii4WFhVKp9PLly728xZ3FuOWxpqZmypQpEyZM+OCDDywWS3V1NdXnQjyGUCe8ByxcuHDx4sXFxcWNjY290XdXZZrxtVqtzsvLQ1sVsdlsvV4/f/78WbNmUZ9osFgsSqUyyGd6KHgcNa9cubKlpWXnzp2ffPKJ485DNptt586dFy5c6O7uRvv7RkdHnzlzhnYo7GyPVqt1+fLlRqMxLy9v8eLFCxYsmD9/fmxsbHp6OuUN29vbeTxedHS0r1XsF3hsNDwe7/3337dYLPv373dcTYlh2KxZsyCE2dnZmzdvLioqstls2dnZ9PNvTt/rOnPmDI/Hq6uroyQWi+Xo0aN//PEH2hifIIiqqqo33ngDPlu4d+/ezJkzjxw5YrVaHeVr1qzR6XTouKmpacqUKWVlZa63O7frjz76KCcnZ8yYMZQkPDx83rx5kZGR6Ift7u5ubm7WarXl5eUcDgeGYKSmBZfLjYmJ+fDDD5OTk+fMmYOEt27dioyMpByaRCKZOHFibW3t2rVrnW5/ike5XN7a2rpmzRrHzwGwWCzHF4xYLJZIJEpPT29qagrd/iMtRCIRh8NpbGycMmVKREQEQRBXr1594YUXqOEGSZJpaWm3b992vfcpHk0mU3h4eM9fMkPmOWPGjECt7PIfWCwWh8Ox2WzoOzNWq/X48eNHjx6lPjsDIezs7BQKha73PsWjSCSCEKpUKugQ4xQKhVarzcrKQvxiGBYVFRVyXxj1Au3t7ePHj3f8XGBLS8uJEyc2btzoqvxUw+TxeLm5uVKptLa2FkmuXr1aVlbG5/NRE35mvCEtnGp369atUaNGUZ9xIghi//79sbGxc+fOpb/ZEXq9fv/+/RKJZOTIkVlZWVu2bGloaKANcB4/TRrSIAhi0qRJ586dQ6ctLS2TJk2aOXPm3bt3afVpptQJgrh9+zaO4xiGCYVC1/0cYYjvCewR6PtcV65cEYvFyB4JgnjrrbeWLFnibvTx3/e5mMEz1XEJIP4P/m5UGKIBQwwAAAAASUVORK5CYII="
|
<image>如图,已知AB∥CD,E是AB上一点,ED平分∠BEC交CD于点D,∠BEC=100°,则∠D的度数是()
Choices:
(A) 50°
(B) 100°
(C) 80°
(D) 60°
|
60°
| 69,802 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAGoAAABpCAYAAADStbY5AAAW9UlEQVR4nO1dfWxTV5b/3RdKyozUlEqjuCvtmBQoRtUQM//gfzZOmEIMDCQZVQ0z1RZHFQ2dXalJYSBIS9KOtoSqm2S0CySwCykzI6UdqaUfuE1CGycddQMaDaGM1CQEHNhVY2e1JFN1ifP17tk/7Pf8/Pye7ff8nAToT4rA792vd8+955x77rnnMiIiWAwiAmPMcD7OOQRBiMt/6dIlBINBXL16FQBw7do1TE5OatblcDiQn5+PFStWwOVywWazweFwZP5BSwDMCkKZIYxEFCVCoRA6OzvR19eHzs5OhEIhucM3bNgAAHA6nVi5cqVmmUNDQwgGg5iZmcGlS5cwPj6OoaEhFBYWoqSkBFu2bMHmzZvx8MMPG26/VnsXEpYQKhMMDQ3h3LlzeP/99/HXv/4VHo8HbrcbHo8HNpsNgPkZKmFgYAC9vb3o7u6G3+9HSUkJysrKUFlZqUt0CZnWbRnIInDONZ+LopjwLBgMUmtrKzmdTnI4HNTY2EiDg4OG69EqOx18/PHHVF1dTXl5eVRZWUkdHR2G6l0MWEaoVJ3GOaebN2/Siy++SHa7naqrq2lgYMCq6nXrTIWOjg6qrKwkm81GLS0tND09Hffe7GCwGpYRSg3lBwYCAfJ6vWS326m1tZXC4XBCGithZvQHg0Gqqakhu91O9fX1NDExkYWWmYelhFJ3UDgcprq6OrLb7dTe3m5lVWnDyGDgnFMwGKT6+npyOBxpscSFQlZmlCiK5PP5yG63U2NjY9K02eb9WoTSk3Occ/l3MBikyspK8ng8acvPbMJyQoXDYfkDg8Gg1cUvOHw+HxUWFlJra6up/CLNx/9WDAyROJFinHKKDBatoWspoUZHR8nlci0plmEFwuEw7du3j6qrq+VnRjgB5/OpE6WAZYTq7+8nl8tFV65csarIJYfW1lZyu910584d+VmmrDuSX8metWVqSkKl05D29nZyu90UDAaXjDqbDXDOye/3k9PpNLW0UPelSDyRNRInzucT0mY0o0RRpJqaGvJ6vbLK/SAgEAiQ2+2m9957L2XaZANXVEkjUZwjIu3JYZpQk5OT5Ha7qampyVDj7hdMTExQeXl5Sq3WLNSkMkWou3fvksvlIr/fn3mL7nHU1dVRfX19RmV0n95PACJ/ZQdIpOt04MDJuDSmzMHPPfccDh48iOLiYj37oXnj4xIH5zzud2NjI4aHh/H2229rpuEQFf8ncMT6hm52gjGG4zeeBEUmDcSmLchhTwJrnoiv2Cj1jx07RnV1dRmNoPsN4XCYiouLqb+/P+GdUg5JMkikeZqjIdoF0E8Pn44ljiY9eWgHtX46HFeOIUK99957VF5ebiTLA4NgMEhOp1Nzka+lN0fY3Q4a0VDHu069Ql0jSbQ+SQnQUgYGBgbI5XI9UNqdUfT395Pb7U7ZR5xGaBdAB9o6E9/xec3+T2tGTUxMkNPppEAgkGaTHywo1Wlp2yT2LtEqId78hADEsTe1qq5GSmVienoav/jFL9DS0oKCgoL7WlEwC+UO8O7du/H444+jpaUl+i4nLq1e7wlgIIooHhyUkC6OUGqNBgBee+01uN1uWcNbEtvSSxwtLS344IMP0NvbKz+TtD0GAE+sxi4AgZv/FdfnxATwQCdOdwcAEuPKTMr6lHLpQVjEWokrV67Qj3/8Y5qavhs1Cym0P+LUdeoVmf1JbO9693FC2Sua7DKBUEqCbNq0ifr7+78jkgmEw2HKy8uj7du3k5a5VCRO17tOEhgIEAgA7Tp4SltFJCJdL6S2tjZcvXoVbW1tlrKFBwHT09P4+c9/ji+++AK5ubn405/+JHtUmYbeaLDb7ffFxt9CY2pqisrLy6m9vZ3sdrtla09Nra+1tRUVFRWZj4L7EJRE65U05L179wIASkpKUFFRgYGBAYyOjmZcccKI+G426UPpV6HE9PQ0lZWVkc/nIyIir9crO/Q0NzfTyy+/nJGsTyBUc3Mz1dTUmC7wfgXnXP5TIxwOU3l5OV24cEF+ZrfbZQOBJEq+/vpr0/XHEYpzTg6HY0l43SxFSDNCTSyPxyPPJCKiwcFBcjgc8m/OOR09ejQjY3acjLp8+TIeffTR++YEhNWQDgkoF/1VVVWorKzE9u3b5WeffPIJPB6P/Jsxht27d6Ojo0N+xjk3ZOWJI9Q777yDZ5991vgXPKDwer1wu93wer1xzz///HMUFRXFPSsoKMCqVavirBWGrDzS1Lo3VHJR9W8iJLZkhYuWsjw1vF4vnT17VjNdXl5enKeShPb2dvJ6vabaIRPK5/ORx+MxVchCI5WlWXpvFbHUqKqqiiOSEgMDA+R0OjXf3blzh2w2m6mtIpn1Xbx4EVu3bpVnmpaBdrGgbgsjLm9da0EAA4EnWK7TgV6ZUhuqqqpQVFSEqqoqzXR+vx/FxcWa/ffYY49h3bp1uHTpkuF2CVIjent7UVJSEnuxiKfr1BAEIc7sz1gOrn96EoIggDEGxhjKDp2Oz0Qszj/BCLQ6WRAE7NmzR1MmKSHJJ73+c7vd8Pv9kSYa2TIiimwM5uXlGZ6OCwOVrzYRnTy4k4AddD0qF0S6TrsA2vmrtvicBk9y6K2TiCLsLp0TKXl5eUmP7PT09JDb7U67XRJAFBNyi32qTguychD9ffLQDsKu2ui7mAy63n1c1wchXeitk5RWhmTtHBgYoI0bNyZNQ5SamFoQAODLL7/Ehg0bluSmoNwmEjFy8QR++cYn6Gpqir7LiW3IRdORaF626q2TioqKkrI7Kc/58+exc+fOpGmAyIHxL7/80ljbgMiB53Xr1hnKuHCIdDxDDk4d/0eUHWrDljUx/zhGkY8fHQ0AILAcwTJ3Ab11khaICH19fXFyXg8OhwNDQ0OG2iIAwK1bt/DEEzGHP6s+1BoIEImDsxGMfAh4trjBFOt0afB3XWjCrkM7sQYCGBhEykxrraqqQnFxMbxeb1qhDWZmZnD16lW4XK6UZa9btw7Dw8PGGjQ1NUW5ubm6/HSpQPLc6b6pkEE8IldGLp4gANQ1ErFsy7ImRZl6lvB0ZJIafr8/TkmIO7Cmkn1m9qiE27dvo6CgIIGAS05eSQ4ht27GnjEAwk3s3/IP+OmhU9i6hkEQhJis0ShGqXozxhLU6NraWmzYsCEtdqeE3++H2+2WfyvLVcu+9evXG2d9oVAI+fn5hjItBgSshefQDuz719h6iQc6I37aB0/ho2MvAoDscqW3hEq2PmxoaMAjjzyC2tpaw+1Tr0OVIJUoyc3NRTgcNlaBesouRShP5e3fhdjJB4A6b1hjJmpoaDB9KkNyZNEyDSlZMVFsvQaDbv/CrVu3NFnfUoMYHZT/8gHJWwREhNLV+maidM1gDQ0NICK89tprAIwrU5cvX4bT6UyIsQQgjhUDkC0pRiGXsJRse0oQiWCMIYfF1G55zaToUC1zUTpmsIaGBgCQiaQsP110dnbG7T/F2q5PcJvNhlAolHYd8pcsJdueEhHDanQtxWL2u/LycrzwwgtyOkGhOnBQUqOthFdffRVAPJHMQI9QjDHdNhiVU0uTOglQaFBgGBoawujoKP785z/L2pOyQwQwXRYjcY6GhgZwzjMm0uTkJEZHR+F0OjXfa7WBiDAzM4MVK1akXc+yZC8XO0adHg4fPoxXX30Vubm52L9/P3w+X9rsShAE1NfXAwB+/etfG66bFGHhiCiptqcHxhhCoZAhdzzBbrfr+pwtRSKdP38eAFBRUYHt27dj+fLl8rN0lICGhgYwxkwRCYifIYwxzW33rOBeUM8lhMNhcjqdspeUKIoUDAbphz/8YVq7pkeOHMn4YLQaZmJOBAIBstvthvIINpsN4+Pj2R8RFuA3v/kNPB6P7CUlCAJsNhteeumllLJG0u4kVdwKSPKpsLDQUD6j8glAZNUF6wJhZg3BYJDsdrs8c5S2SOVM07JR1tfX05EjR+TfVtkxzfqVm7L1Afpm96W0tqqpqcGxY8fkRaVSVixfvhyvv/46amtrE5QKaSYpZZJVdszOzk6UlpYaznfr1i3Y7XZDeQQAWLVqFQKBAIhzzM7F/jhbGsrEpUuXcPv2bezevVvzvSAI2L59Ox5++GFZsQAiJ/++/fbbjFVwJZSDt6urK84hCFAtwnUG+vDwsHEnVyKi2tpaam5ujswxzmlmVqS5Rd7lUG5BpCuwlewxHR+6TFigGYVAQnFxseGoN8sAYMOGDejr60sYOZwtrIpOChOR9NfW1oZNmzbFLSj11nc2mw379u3DM888gx/84Ac4c+ZM0voyYYHp7uaqMT09LcdiNwQilReSPKM4zc2KNDMr0sxcJCojF8X42RZNOzMr0oyoDOWoeD7L491Nkr2Tk3Aizmn8f/6XHE9tpNv/PRbbBNTMH2tr2+l/p8fy/5au/eUrmpnj8ekzYBNmHF608Nlnn5laDgkAsHLlShQUFMjXKkTAsGwZk/9lAJjAIDCGZQwACPMi8NBDApY/xCCIhHmKPp8nCMsELH9IwDIW+R0dFkneKWpmwPw84ejRf8aLL/w9/saWH7Wex+fPYTyaP9LG3/3+d/jP/kv47dk2HPzVAXBRxKzUxmUMIMlqaHgwJ8w+9UZhuujr6zO1QJb5R3FxMXp6euLfMoaHchSdSQBymPx/ToS5OY7ZOYp1AAGcMTmZkKPooGTvlCDgyrVr6OvtRW1tLZYtEyKDQ5U/J0eQ87917rf44x//iDNn/gM7oorFRx9dgJDDFOZaAjexhFITSbLkmNke6u3txebNm403Qppasu855yqWFGErc5zT3ByPZ0FarESdX/k72TtSsBfOqajkJ9SjFrg6+c+2t9Pzz3vj2HLg5k1yPFVI/zcVVqSNvTcWEzY+rVln/4mJCfO+5xQV4J6tHgz85S+RPRKm9DdgyMkB+DwBytHJAIEkdgfIo5UBAgjzyqHLolM3yTvOuTxyz7//Ph599DH8nbs4Zdm/+/05fN7Xh3NvnY0bgAUFBXjmZxV441hjZKMRMfYLGFMk1Gl7e3tNsb0//OEPKCsr09xgTAl51IgiHTz8T/T60TdojqvdgTnNaQl+PcVAJcC5Xp64d5GZ++1U9PjP12NJy56anqMzZ89RVVUVKZWJmVlOc+I8zc2K9M23d8nx1Aa6EbhJc9E8UlmZnKc14+lKFIvbYQZxtiP9IyOc5sREVpENl7L6+vq0DKfpsh+rQ9clO1aTDJmsu4hUR0MLCwtBRCrtDyCOmKejAlaZYqQVfCgUwrlz53D48OGk6dvb29HX14f29vaUZVdUVMjuxlagp6dHN/JnMrz11lvYs2eP+YrVlFOGMRPnNNZIWYA0M8vKyhIiH1shyAOBADkcDktiDZaXl6cVnVkJK05zxmRUtENSFZoNdifd5ZHqxGMmRyvTZampkJeXR5OTk4byWBESQnN/Q6/gbAWvCofD5HK5ktrzMj26Gg6HyeFwmA4OKR2rUcunVANXFEWy2WxxA9/MYF8SsZDUA0P9IT6fj8rLyzNmXZkqFsp26nW2+rlVykwCoaSKFupwWzAYJIfDoXmKnMg6IkkwI2OM5k0lRsxwpqRbu0VFRdTb25tVYlVXV+te+WMVkZQdMzo6akqxCIfDZLPZDK2fampqYttHCphifWrqKgv56quvyOl0UjgcNk0sURR18yZbk/h8PiorK9P15zYLURQTnFzSYWNGnYDMrrf0kNJZ4vDhw/L9E8nCbZuB3oag3kyyamZPT08bViz0PJj0glht2rTJ0iua0vJqUQdlsgJnzpxJULUlNT0ZuzM6SPSIm66Ql/Kn2pVV1pOMnZuFJqHUH3fnzh1yuVwJUcfMziy1kJXqk4ikvmI1k/qS5dEbgFqXamodq9EaBK2trXE3t1mFtP3EAoEAOZ1OS6491RKyVs+kdDA4OEhOp5Omp6eTstV05ZPf7yePx5OV62thpECzi05l+VLnKAmSjEjZjhBdV1dHR48eTZomHatGIBCgjRs3Zu3+XnlGJdPOiGLTPJ1FXzKo1yLJtDsroUfwdBb3brc7qXxSu1pnA6ZcZCXHjnRGuzKNUoArFYepqSnN9AsBzjm9++67crv05NPdu3c13xPpL4QtZ31GEQ6H07rjT9lQpa2Nc76o7E4JqeO3bdumqVik0g737NmTtevzlDDtdC4FvE3WSOXoa2xslGOqLsUrjtSyU2q7nnVhYmKC3G63phqejYGW8emAuro6evbZZ2XrhdLDVfpYpQfrwMAAud1uXaG7mNdLSIt7ZRu0FuWDg4NxdzxK35nNtpsmlLJRHR0d5HK5dAVyZWUldXR0yESSDLCxsKLZ/9B0oFYsJMdUZbv8fr/mmjLbsOy8zcDAABUWFiaMPunG66U8k5RQyiS1fGpqakr6DdmEJYSSZsTY2FjCXfFOp5Pefvtt3Q9cKgRSorS0lHw+nyyfwuEwVVdXL2rgft3bbtRI9+D19PQ0vF4vvvnmG8zOziIUCuHu3bvYvXs3li9fntQhhjRchxcDd+7cwbvvvgsiwpEjR3D8+HG8/PLL2Ldv36K1KW1CGQHnHO+88w6ef/55fO9738PevXvx/e9/P/1GJYnPsFDo6enBF198gdLSUpw4cSIuTN6iwIppqV4CisRlDa++vp4cDofMQtRIZRFJqCvLO85jY2NUU1NDa9euTTAbxd+pu7As21IZpfYqk34GAgGqqamhVatW6RIsm0jWqdJACQaDVFNTQ3a7PaGNnM/L8Wulb1zoeIYWECqxE/QCyAeDQaqtrSW73U7V1dUpTxFqBSecn0+MJpaOJ5AeJD9Gm82WdBCpg93fkzMqgvQbHgwGqbW1lZxOJ61fv54aGxsXdF3i8/mourqaHnnkEXmNR6RP8P27EL2LEMSi4edOXhxasPYSWcX6KDaLblxsS7g+OxkGBweprq6OHA4H2Ww22eAbCoXi61BZPYzgypUr1NzcTKWlpZSbm0sej4fa2toMrYf274pdcDzS3SqHRl0oWKb1RaJ+XcfPBAd+eZ1j6xoWDeGW3rULRITx8XF0dnair68PnZ2dCIVCcLlcePzxx/GjH/0IQCQU9cqVKzU1w+HhYYyNjWF2dhb9/f0YHx/H0NAQnE4nSkpK8PTTT2Pz5s2Gj71wjGCnUINm/iGeJAE02oWc1dvQfYOwZbWhokwjY0JFQoNGrl44deggfINDaP7wfaxJErhMvSYj1fpJ+fvy5csYGxuTDy5cu3YNk5OTmuU6HA7k5+djxYoVcLlcyM/Px/r161PWr/VO2YaRiydw4NOH8MEbkXCovypnGFp/Ah8efWnh1n1WTc3u0/uptftj2sl20PWo4FVfoZCOppSpK5hZJGtb9+n98l25jDGZ5WkfFc8OUpsaKHUEFx7oRDffghdXM3y0az3WKtidOhpXKmQSLsFMXs7nwRGZPcrvlAI4cojoutCErpF5EBE622pRulZA9w2KqBYLhJRfxinGJiKxXEVEjjfHrn6ra+vBm9WRUDO71q2V8y4Fc1AqCMIyOXpmXAhsMAAcCFxEEzuArWsiabbs3YddAD7tubig35eSUOr43RHlQJCzdp8+gDfffDMS93X1tmy1c5Eg4LPPPkXtjqflJzR6Ex8CeGL1qqzUyDnXvhbJQBGxmOLRgAM02oWLtAUkRmbXyMXjWHcPRHxWgkMEMK9711SnrwnbNke4BeEGKlZvA7ADT/8kO7Y/dVRn+bmBIsBYTpTdCZHg8K98FmF5gnSRySiIRdjivQIBOQCWganuHRjpbgVjDC0fAFvXMDCWA4GtxYc794PoAlZnUT5p6gRmNJB/O/jTSIB4Flv0yYHjWeKFW/cSIna95NopV/27EMjKNsd3sB5LIyDfd0iJ7wh1j+D/AdpgbpuzGXkUAAAAAElFTkSuQmCC"
|
<image>如图,A、B、C是半径为1的⊙O上的三点,已知∠C=30°,则弦AB的长为()
Choices:
(A) 1
(B) 2
(C) 1.5
(D) 0.5
|
1.5
| 69,803 | null |
1.5
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAAB6CAYAAAClZ1HsAAAaWUlEQVR4nO2de1BU5/nHv+8ihSRgqoH6M16QMCCyKsRLwIRKEZNREUsRZDJGZuwkdQyZ5CcdO0k0LFqtjWm1qcZgbKLUWHGz0omDdDKio5loIOqYQRBFAhhCf4JI21ACInue3x/LOezl7O7Z3XPOXuQzo+ye9/acd5/3fnkYERH8hAULFuD48eN4/PHHvS2KDUQExpi3xfALNN4WwBnmZWLz5s2YNGkSNBoNLly4IDmcGvAKZ5Eq5zflWVV8XunMa4/MzEwQEerr65GVlQXGGD7++GOn4axRUiFNqXKmL5rRmk8Mn1c6MRISEnD37l309/fjT3/6Exhj+O1vfys5vFLN4IgyG6DbUq9IGoGA3ymdeS0VGhqKS5cugYhw9epVMMbwy1/+UnJ4uWGMgVAP3cx8GBRLxf/xO6WzV0vp9XoQESIjI8EYw89+9jOXwnvMsC7Xb8nH1gZgxowZyqQTAPid0jmCiPD222+DiPD888+DMYaoqCjcunVL+cQZQA06bKUSFGsVVO4AIKCUzvyH/tWvfgUiwoEDBzBt2jQwxnDu3DnF0uagR34+g66EQ2NDAmaOVnR2CSil4zGfM3vuuedARGhqakJeXh4YYzh48KDDsFLTMMewSo+ceh20DddwjWmRMDMgs1YeKIDhOM7m2eDgICUnJxMA2rx5sxuxGm2e1JUkEKAhDRgBIGAlHSPbtEcxEdDFUaxfFRwcjJqaGhARbt68CcYY1qxZ40KslllGDTpswTEQGWEkDpw+F9BqkeCh7IFMQCudM8rLy0FEmDJlChhjeOaZZ+z6Jb45JbPP9TrMXgWU6LSCv2vXRufnnOLdita3OHDgAM2dO5fWrl1LfX19pocirSTHccRx3HBTOoN09Ubi6CoVazH8bLSJdQQj8p8Ff0f885//xNmzZ3Hx4kVcunQJN2/eRGdnp13/EyZMQGxsLObNm4f58+cLUyxEhJaWFrz88svgOA6lpaWIiYmxCMtnmeNpEQ4PeENiF79Vug8++AAHDx5ETU0NACAiIgIZGRl46qmnkJSUhLi4OEyaNMlGMWh4ZMtxHG7duoWbN2+ioaEBly5dwhdffIHw8HAsW7YMWVlZCA8Px5//vBd1dV9j165dWLhwoTdeNeDwG6W7c+cOfv3rX+Pw4cMAgDVr1uDFF19URBFaW1tRWVmJ8vJy9PX14bnnnkNn5x18+eV55Obm4ne/2wZAY2pI7VZ2ozWdXbzWsEvkrbfeIgAUEhJCe/fuVSQNsakVc6qrqykoKIgACH/z8/MVkeVBwCeL4sDAAFJSUsAYQ29vL4gIAwMDKCwsdCs+clKZ83056zD8s4yMDAwNDeH48eMwGo0AgGPHjkGj0SAlJQX379+XlM4ow3hD0+3VLP39/TR58mQCQJ9++qnKUtmntrZWGJWeOHGCANC7775rNlIFRUZG0o0bNyTF56xmDXR8pnnlVwk+//xzb4siUFlZKTTtdXV1RERUVlZGTz/9tOCnurpa8MMrYFVVlbdE9gu8rnTbt28nAHTo0CFviyJw6NAhAkCTJ0+mjo4OCzcA1NPTYxNm//79BICysrKE2nrfvn1qiexXKK50jpoSALR06VKXwijJrl27CAAlJibS/fv3bdy/++47ctYjSU9PJ8YYnTt3jtLS0ggAbdy4USmR/RLFBxJi82S7d+8GYwwtLS2oqqqyG4ZU6pi/+eabYIzh5MmTICJ8/fXXGDNmjI2/5cuXw2Cw3BNsLeOZM2dw/fp1pKWlIScnB0SE7u5uMMaQm5ur6Hv4DWpreXx8PM2ePVuSX3s1nrs1oXW40tJSiomJcTr9wYdzNbvi4uJIq9UK37du3UoAaM6cOdTf3+9SXIGEx0rnigIAoD/84Q+eJulyutb+c3JyKCYmxqV+ZFFREa1fv96lNIlG+qzmHD58mADQuHHjqKGhweU4/R1Varquri4C4PUM5vtYb731lsthPWkULl++LDoAOX/+PDFm2oNXWVnpdvz+huJK19jY6NEP5gxnNV5fXx9ptVphbs0dKisrKT4+3q2wPEajkQBQU1OTjVtHRwfFxMQQANqzZ49o+ECa25NNG8Qy5cqVK3YVTulMbG9vpwkTJhAA+tvf/uZRXIwxUWVxN64rV67YdV+8eDEBoA0bNoi6B4LyKVYF3bhxw0bhPMkw67D24rpy5YqwPvrZZ585jccZAwMDstfUAKilpcWhn5deeokAUHZ2tqxp+wKKKF1fX59qNRwfH78yAIC++uor2eLPyMig/fv3yxYfDwAaHBx06IfjONqxY4cwd/j999/LLoc3UETppGSoXBw9elRY+2xtbZU9fqX6o44Kphjl5eUEgMLCwhw2z/6A7DkKgGpra+WO1oa9e/cSAIqPj6fe3l6XwvLbzZ2xfft2RbYw8Wl//vnnLit1bW0tBQcHEwCqqKiQXTY1cFnpHPWtnnrqKXrjjTfcjkuKP51OR4wxSk1NlZyOu6gxd/7qq6/SwoULXQ7X1dVFcXFxBIB27dqlgGTKIVuulpeX04QJE5z6c7dPV1hYqEjHmpfHWq6amhqKiIiQNS17PProox5t5Vq6dCkBoMLCQhmlUg7ZlE6pWiE/P58A0IsvvqhI/PaIiIigmpoa1dKTI//Wr19PACgzM1PU3VemW2RZ8A8PD0d1dTW/lmu9tutWnM8++ywYY5g6dapwJ4madHd3Izk5WbX0qqqqEBkZKcmvvTzdt28fiAgLFy4EYwxarRb/+te/BHexzRdewVOtPXLkCCUkJHgaDRERDQ0N0Zw5cwgA7dy5U5Y43WHVqlW0fft21dONjo4mg8Hg0I8rtZXBYBA2mF6+fNmpf7VqQo+VzpneSnmRzs5Omjp1KgGgjz76yO145EKGsuhTaV++fJkefvhhAkAGg8HrzaxHb1hQUODSaNWahoYGITNOnDjhiSiyUVpaShkZGaqlZ60AGzZsoHXr1imiGD09PcI6tDdbEo+Uzt1See7cOWH14MKFC56IIDsAvL7XTUq+eqqUWVlZBMCt7VqeYhpIuNCfpOHO54oVK/Duu++61H+sqKgAYwwrVqzAjRs3QERYsGCBS3EoSXNzMxhjCA0N9aocO3fuxKpVqxz68fSmzxMnToCIEBwcDMYYli5d6lF8LiFFM8XKlFhQe6WPP7QSHR1Nd+/elV4kVMBc5ri4ODp58qSom9o4+2nklo0/HxIXF0ednZ3ypG0U92fxZpw+1+IsZ67eSJw+l3I+sbwIsOh/N0g6bMIvVs+fP1+akF5GYhlUhQ0bpOWx3Hz66acEgIKDgz2epxxRTkv9ARGZXXNleb3VsbyRq7AsAgE2EZlTVFRk96SXr7J+/XoqKirythgWtYi3CgHHcVRXV0dhYWEEgI4ePWrfr80TEb3gLN0hKJy2mBqsojDSMcpF3ogickRnz56lWbNmiQpQUFBAAGjNmjXO3svrw3ZrzH9gX5EtLi7O6wOt3t5emj17NgFwOnfJ59qxPAjb8MH4lpO/x48IpvtybWszUyRXqbjkmMWz6Ohom601mZmZDne7+joGg4ESExO9LYYNtbW1NtvklSwQYnGbP9u5cydFR0dTaWmp43houJXUFlP98LNjeSAkFNNV4gjFWhBWldtN1PR85DMAwV9KSgoBoG3btnn0Yt4GALW3t3tbDFHUbmKl/D5lZWUUGxtLxcXFI+HM4xhuPRNKrgoOpvGCqXJDHoYdHfTReCoqKmjatGkUGxtLgIbe3+9Y4+3hS4p39+5dnxpAWJOammoxopYbT36L06dPi24x4+qLaSYSqKR+JH5Ti5pDx4gjzBCUzrkg/IklZ+uD/sQzC56mv/71r3ZcnRdEpTl16pQqewfd5eOPP7Z5VleSQNCamlIiIuOxlQQzPUMuQMgrH/Zumcmf6EYCEhEBGhoaUmcbulqYdxds8JEK2aGMXqSgoICKizdbdL84aiDdTPMLv21nQGAszzPTQqMQsFgLyvuEE57xp6IA0Nq1a30yE1xl06ZNpndx4s/8XTlSv3vgzebf3rtmZ2eLzlLwTavFwJSz/Aje4wwxzTTz/Je//IVWrzYlsm/fPoqNjaXTp097/lZeRPzH9H6Tak1+fr5PXaWWnp5uMYgQ4GybVjGEXOc4jjgHGb5kyTKbayFefqWQ5s2bR7dv33ZDdO/Al9zTp0/T1KlTicgo0oyO5IMv1OcVFRWUlZVl81zNGtf8EqEDBw6I+6Gr9FaC7RjBGstlMAcelyxZYtdt6dKlfnfx88MPPyzcrjkCr2z1VoZIQNot9dZRqMbQ0BAxxryWPg8Aqq6utu/ORvLL0YyI5AX/8ePHmz7bKV2NjY2UmJio6l40d+Gt3YhhGtqb1p0t55iGn3kJb/brbt++LXoBEsdxdmqq4XyyU4tJUzrOtCTj2I8pBZ1OR/Dx2yezsrJEj+05Wp3hZ9gd9VWUxFtKx99HI3blrdPmnRP9KH0TZ05OjksJ8psE9Xq91CQUQUxOsaaKH0yJ90eMw0q32WtKFxISItgrU6svx98kLzeSToN1dXUhKirK4pmzTYT8JsHXXnsNjDG0trZKSUp2rOXcvXs3li9fbmskuGQrGrESOp3WwoYECCBcQ8M1wFsWcIgIMTExuHnzJgB1rsd97733sGLFCmXSkKKZBoPBoxs06+vrCQDFxMQQkXsn++XC+pU5jhveTQNCrvgWHtFaUOUKLzMzU7VrJPitaUohqehGRETgm2++MVdUlxRbqzXVHps2bQJjDM8//7ykuDzdkm3N119/jUceecQmDdbQgAYAM7QjdlvNt/B/ssVUC5boZo48Z5Z+lGbChAm4ffu2STQFa7j8/Hy899574DhOsTQkKV1/fz8eeugh4bu7yrB27VoQESIiIsAYwzvvvCO7Yjni5z//OU6cOGHznLRaaGFlrmlYLE6fi/xPgFy9Hnlmz8nssxqMHTsWP/zwg0k0hfIsJSUFFy9exMDAgCLx80hSupqaGgul85S9e/eCiGAwGMAYw5kzZ2z8yFWazeP59ttvsWjRIhs/GqxCcUkCrpWswpZrI/4/yWMIyj+OXL0Rn+RZZpVa+sbL/9BDDwlKpwRRUVEICgpCS0sLAOUUGwBsjSWIEBoaip6eHlE3Grafav1ZCrW1tfjvf/+L8ePHQ6PR4M6dOwgPD3c5Hkfw8TQ1NUFr3nxaMau4AXXQYvbMIGzhH+aVg7h8gAFERjAWBMD19/QEPp179+7hxz/+sSJphIaGIjs7G+Xl5YrEb42kmi4sLExSKXPnhwgLC8Pg4CBOnjyJsWPHYsGCBYr8oHFxceju7rZz1I4DGDBL1yCMXIkIpM8HmKlv4w2FM6e3t9emPyoHjDFs2LBBNYUDrJRukLsv/DMnIiIC3d3dohHI9QNkZGSAiJCTkwPGGF555RVZ4jXn9u3baGxsxE9/+lMrF0dlz6pZ9YLCASYjy2IX7HjSDWGMobS0FDt27PBENJexyNEfaYIt/vJERUWhra1NFYE2btwIIsKdO3fAGENZWZms8be1taGnpwdz58516E/JEaI7tLW1ITo6GoClbK4WAj4sb5Zq3bp18gnpghAW3DPabtLs7OwU1l7Vht+tXF8v74L73LlzPbYNoSZhYWGiS1HOsJ7r5Lfn2252UA9GZFmkB7n7Qk1n3syGBP0IA0P3hJJl7ce6djQP64qbmL9bt24h7olYTJw4ER0dHbhPQ6LhednNZTJ/H2vS0tLQ1taGW7du2ZXBVxCzvm0NWQ3q+HA8DQ0NmDlzJrq6uiTfhacI1lpoXdPx33mv/HeO4yz82vvsipuzMHq9nsaEBlvsLePd7hkHhX/m363jsi75S5YsocjISFEZfAnzn8qdlZqqqiqfOYDk0mKiea3BlyCxgYcbiu/QnU8zLy8PfX19iI+PB2MMJSUlNn74v0QkWsNZ94H+8Y9/YOHChQgPD/fkFVTF1X7cBx98gGXLlvlOP9VaC8VqnnvGQXr66afp9LkzTv2KPXdU0w0M3ZMUh5j/RYsW0ZjQYMGYm9Sa1xy+1igoKKDg4GCb577AqVOnJN3ALibzG2+8Ib6rxsn7Kfn+wuSwo74PAOTk5KCiogKLFqaLujsLbw97E8tkVirFalgAOH36NPru/YBJEx7Hf/7zH7T/33eY/D+T3Eq/rKwM4eHhQt/JW1MjYuj1eqxcudLlcKtXr4ZerxddR3X2foq+P6995n0gMTrvdlFISIhNKbAXzrqPJcVN7LvU8F/UnKcxocGUODfJJqyzdzNn48aNPtP34QkKChL20kklNTWVJk2apJBEniE5d+8ZB33uxxCDt6Szdu1aUXcp1rK3bdum2oU6UgztuZrv0dHRlJKS4pFcSiJpIME3b1OmTMH169eVq3bdgKw6x4WFhRbTBe+//76Fu71mw/z5pk2bsGvXLuGZkk2NddzW369cuYLp06dLju+RRx7Bk08+iS+//FIW+RTBkUZaN2P79++nF154QYWyIB+zZs0ixphb9soOHDigeO3urBbNy8uze+bV2toP/OTmLJdzVOkfwV0cNVP8aaZHH32UhoaG7IYRg7eyqBTOrueSmjZg3yq2r+FyboaEhFBXV5cSsriFK/2tyspKAuDyMUnrAypqTae0t7fTuHHjnPoD4JFtMbVxWenKysrs2p7yF9w5JskbMVaTZ599lsrL7d8d+O9//5sASLKG40s4zUUx26i+2sS6iqvHJGtqalR9d0dpNTY2EgDq6OhQTR65cCsHs7OznV8B6kMz+s6YOHEiAaCWlhanfuvq6ghQ3sDJnj17aOXKlaL5yNe6RqPvXfYjBbeLLRzcmeZPCsfDH5N84oknnPptbm4mALLaxJDamnz00Ud+39K4LX1CQgJVVVXJKYtPcPDgQQJg90IgXjk6Ojpkv6uY78pUVFRQUlKSjTvfF/V3vGIbzB/gLWk7MtzW09NDAKipqcntdKSuQBQUFAgL9/7YkpjjkdYkJydTWVmZXLL4JMnJyQTA7gWQ/f39lJCQQN3d3bKkt3//fpsdJenp6TRx4kRZ4vcFbHYOu4qUHa3+Tm9vLx577DGLY5I8NLwjZcaMGTh16hQmT57sUVrW+Tl9+nSEhYXh8uXLNn7Jx3bDSMXjG2Fef/11pxb7/J3w8HAMDg6iqqoKY8eOxZtvvim48T96Y2MjlixZ4tFFQStWrIBOp7NId/r06aIKZ5623yFHdQmZR3K+zsmTJyk2NpY+/PBDG7dZs2ZRY2Ojy3HyAxMeAFRYWOiRnL6KLErHd6hdxd87xH/84x8pLi7OxlpgUlKSjSkrZwCg3t5e4fM777wjl5g+h8dKxytOUVGRhdVDf1coV3jppZcoNTXV4oggY8zuhdDWpKen0+uvvy5cSxtIxmHEkHXOIycnx+Ze2geFgYEBWrx4scUoE4DoNbPmGAwG4UwrAI9trPoDsk+02TPL+aDUfHq9ngDQ8uXLhZpr69aton77+/uFG8sB0LfffquytN5BkdndOXPmBKSSufJO/FkLfpJZbEcLr5AAaHAwsMxfOUIRpWtra6P09HRRt0BURiL775Weni7YVli3bp3wHABlZ2cH9KqOPRR747Nnz4paeXkQGRwcpJCQEAJA8fHxFn8fRGS7LpzMZtGJCGlpaUhNTUVISIhcSfg8ZGdlJjg4GAMDAzhy5IhwsOn69esBv5JjD0k3cUrBfHac//yb3/wGoaGhD8RSmRRWr14Nxhgee+wx3Llzx44vDt4yHaAWir/dq6++CoPBAI3GtaT8RUnN5XS0LMW7zZw500bh9KsYGGPQMAbGgkw3vs/SoV7N69vVRK12vKWlhRhjLs/U+zu1tbXCQMLR5HldSYJg7FmwayEYfw4sVO/JAqCioiK1k/UK/HQJrEau1nB0lXQzLQ3e6VeNKp3HmJfsxYsXC/eiBCoAaP78+QSAduzY4dAvV19MCVhFx4bN8DgyjBcIeG3Mfu7cOb86ICyVnTt3EgDat28fAaCjR8VNP5nDm/sENMSszUEFIF6fKOJ35vrSAW53aG9vJwCUlpZGTU1NBIDOnz/vNBxHV0mnHWlaHVtjDAy80rxaP2trayMAlJiYqJY4spKQkCAc0mltbSUA1NraKimsqWnNFZpW4oZty2LlyLMAQ7UJIbHpBP5ZVFQUiAg6nQ6MMaSkpMBoNKolmlvcu3cP8+bNg0ajwe9//3sQEdrb2xEdHY3+/n5MmzZNUjz1BgOu5eUib9jwE7F6k5lPrRYJyonvXbyt9WIcP36cAFBYWJhDm/FKreM6uozns88+o7CwMJv7Q8rLy0WXtexKyJma1mKt5ajVVMt513S70vik0vE0NzfTnDlzCABlZWXRN99845KiyaWUzc3NlJmZSQBo7ty5NjcBvP32226tozLGhCkVQDP8N3BHrTw+rXTmHD58mMaPH08A6MknnxQulpEDMeU8cuQIJSUlEQCKjIy0Owpdv369rAv3nPBf4OITSudqjXT+/HlhWxAAioiIoBdeeIHKyspcPhTT2NhIhw4dojVr1tC4ceOEOHNycujChQsO5cvMzJRwlZeDWouz8znA8fjcqy/Q2dmJyspKnDlzBhcvXkRzc7NwJtTZ68XGxiI5ORmLFi1CZmYmIiMj7a6h8nECQFJSEu7fv4+Ghganfi0doKpxYl/EJ5TO3g8k9tzuj6kiP/nJT5CYmIhTp0459WtfxzgQNCJuHECagFZMn9hDI+XyaWd+zeHLkRLliTGGrKwsSQoHONIdMYUzPQ9khQN8ROnkRqlb0TUaDbZu3YoPP/xQ1ngfNGTbxBkIOGq6eduzBQUFKksVeIwqnRli/UeO4zBmzBicPXsWaWlpXpIssAjI5tUdxPp/HR0dGDNmDJqamkYVTkZGlW4Y61ruq6++wpQpU/D9998jNjZWeO4Dg32/Z1TpRPj73/+O5ORkEJGNHVhvT9cEAqNKZ8Xu3buRk5MzWqMpyOhAwozXXnsNe/bsGVU4hRlVumF+8YtfoLq6WtQg7yjywE9JjTavw3R1daG3t9fbYgQ0fH/4/wEbYK8oNxfRcAAAAABJRU5ErkJggg=="
|
<image>如图,AP、BP分别切⊙O于点A、B,∠P=60°,点C是圆上一动点,则∠C的度数为()
Choices:
(A) 60
(B) 40
(C) 72°
(D) 60°或120°
|
60°或120°
| 69,804 | null |
60°或120°
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAAB+CAYAAADSr7SpAAAdv0lEQVR4nO19fVRVx9X3b+Zg0JZIE0ExgaJwEQy8iTHG6JIVIYLNq5X4/ZGCwdZHFE0RK2pXfOFJl01AjTFPNUK0EaMrfoJgTSqKFapNK7pi1IuQ8KF5UINiGqlkaZRz9vvHuefcc+49Fy5wgWv0t5Zyz3ydmdkze+/ZM7MPIyKCG0OSJHDOAQBEIhgTIOEeOHqoac4XrkFV0BJMDCdw7iHnA4HEZghCD8Ny3RW8uyvgLCSpGYwJAKAjRjOZsWTiMoAzcO4BZXxxYvcdMYD7giCSZZZYRz4gEwgA3lu0ESw2FoPDmSVckrOxrq+pK+D2BOHcQ2VZAMAtPc25BwrWLwDGxqC5+AeQhRCCIKhpVeLcR3B7ggDyrBBFUX0mEkHle3GYxmCJScKx2DA8xQV9Ho3suZ9wX9RYFs7WDiciLHq/BO+nTgUARIeaAAASrES7H4kB3AcEkSRJFs5kYUEEFL67CO+//z4YY+AR08EkiyCHAEBmU0RiC6W6L9yeICKXhTqBwDkHXdiLInpZZltEOLs/C6HBA6zpSSaIopHdb/Do7gq0xut7wEMdNtL5QghLi0FFOSAiECPUXKwFSSFqWQwcBAIRdZhtdYscIjeBKIotxq+e/xIBIACUd66ZiIiSY2EJ4xS1KIskSVciSYYlWd8nSS2l6B4wIvdeqSuQQOBgXTZqu0tLc2sZol1HcDAQERgjXbw2TXvGlu1aRSmju7S0bieIUScqncQ518UTA7RV5pyDM30TlJW8s7DteMZsVvxdDLdhWfLoZ+pfBY2Njfjiiy9QWVmJq1evorS0VCYMcdTWVOHy5cuwEknCE0/4ISQkFESEHj16YNSoUQgICMCgQYMwdOhQeHl5dUfznIbbEETBlStXUFxcjOLiYpSUlOCbb75BZGQk/P39ERwcjBdeeAE/8eoFRhwDBgxAYGAgMjIyQOD47zfTUff1/+LSpUsAgKamJpSVlaG2thZ1dXU4ceIE/P39ER0djdjYWIwZMwb9+vUDAN1AsB0UXQm3IEhlZSX+/Oc/o6CgAE1NTRg9ejSio6MxevRohIWFAbAKWSNhm5GRAQB488031c6UQIBkr/qazWaUlpaipKQEJSUl8PHxwbRp05CQkICQkJCuaXALcOk6pLWRpe3MhoYG5Ofn44MPPsD169cxbdo0/OUvf7EjgALld2vCVnk/BwO4fV0iIiIQERGBhQsXAgDKy8uxZcsWvPjiizCZTJg9ezamT58Ob2/vNrTchXClDm27lhBF0S6svr6eUlNTycvLi+Lj4+ngwYN25SjrA2fXCenp6ZSent7OWluxb98+mjFjBnl7e9Py5cvp+vXrHS6zrXCplmU7ejnnatjly5cxf/58hIaGQhAEVFdXY/v27Rg/frxdOcoo72o+PmXKFOzatQtmsxlNTU0ICQnBkiVLcO3aNcP01AncvsMEsVUPbZ+bmprw+9//Hs8++yz69u2LqqoqZGVlwdfX1zC9O8Df3x8bNmzAl19+CU9PT0RERCAjIwM//PCDLp2WIK5qh0tnCFnsR0rl9u/fj5CQEHz33Xe4cOEC/vCHP8DX1xecc1XFNZIJSv7uJla/fv3w9ttv4/z586itrUVoaCiKiorUeCMZ11F0WKhrK6KwmKtXr2LOnDm4ceMGCgoK8Pzzz6vpFGHdEjtSBbOb7Gn07dsX27Ztw/HjxzF//nyYTCZ8+OGH6iwHrApNR00uLm9xWVkZnn/+eURFReHMmTN44YUXWh1JtjOhu9YAQMtyYfTo0TCbzRgyZAiGDRuG8vJyNc5lg8iVGkJubi75+PjQoUOH2py3NWtvS3CVlkXkvGa3b98+8vHxob1797rkvQpcsg4RRREpKSkoKipCSUkJwsPD21yGu7An29lJDljRlClTEBAQgClTpuDzzz/HW2+91ab3iKIo73jaaqbtr7qMxsZGTJgwAWfPnsXp06fbRQx3RkusaPjw4Th9+jSKioowbdo0NDU1OVREbMMFQTBkj04TxOhF5eXlGDZsGH7+85+jpKQEvXv3bjXPjw39+vXDZ599hp49e2LEiBG4ePGiYTqt9qlAe3BDTefsi21HSFFREUaNGoXFixcjOzsbgiDYTXd3YUOdDU9PT2zfvh0JCQl47rnnUFpaqsbp9nQMiGKLdsmQ8vJyTJ8+HXv27MEvfvGL9hRx34Go9X365cuXIzQ0FFOnTsXJkycRFBRkOEhbUo3bTJCGhgZMmjQJb7311gNDDAW2nWvUsRMnTkR5eTni4uLwr3/9y3D/pSWitImniKKIV199FWPHjlWtpUb4McoOxphDlmwrnN944w08++yziI+Pd1ieoxnSJoIsXboUAPDee++1mO5BkR0KIbSEUgbjli1bcO3aNXWvRknvMhmybds2HDx4EJ999lm3rqTdCdr9d9tB6OnpiT179mDkyJEYMmQIJk2aZDfLyGD/yI4gRoWfPHkSS5cuxfHjx3X2m4eQ4cg0FBAQgPz8fIwfPx6DBg3SrdGcliHaRJIk4fLly5g6dSp27Nih7uY9hPMYNmwYcnJyMH78eDQ0NKjhtidq1HBHBSkU/PWvf41FixY9cBqVK6D04eTJkzF79mwkJyfr4o1Yv0oQW2pxzrFr1y58++23qjB/iLZBy23eeOMNmM1m3X6KYR7lhy21mpqasGzZMmzatMnQ4PZjVG07E56entiwYQNSU1PVnUejPnTIst58802MGzcOw4cPd3i67yFkGMkCwL7DX3rpJTz99NN45513ABgvDwy1rNraWuTm5qK6ulp9odGiyCj8QUNLZhCjgbx+/XpERETgN7/5jXpIT5fHNoCI8Mc//hHJycnq2SRHnf6gEwNofRFsO0v8/PyQkJCAzMxM4/JsM9y4cQMHDx5EamrqQznhAih2Ky1bW7FiBXbs2IHGxkaj9HoKZ2ZmYu7cufjZz372wJhAOhNGhzr69euHKVOmqLJEC12PNzQ0YOvWrVi8ePHD2eEiONoDSUtLw6ZNm9DU1KRPr33YuXMnJk2ahH79+j2cHS6ErfUDAAYOHIjIyEjk5eXp02oftm7ditdee60LqvjgQntofPbs2di6dSsAqHKGKw9ffPEFvvvuO0RFRXVbZR80xMXF4cKFC/j6669VOcMBmVrbtm17ODu6GIIg4Fe/+hU+/PBDALDOEADYt28fZs2a1W2Ve1Axc+ZM7Nq1C4CGIJWVlWhubn5oXu8GDBs2DFevXsW1a9fk6xsAcOzYMYwePbq769ZmOLIh3U8QBAGRkZEoKSkBYFmpl5aWIjo6untr1kb8GIihICoqCseOHQNgWamXlpYazhB3bvSPyY4WHR2tHq7jX3/9tUP54e6Ndvf6OYvhw4fj4sWLaGxsBK+pqUF4ePhDU0k3Y/Dgwfjyyy/BKyoqEBIS4vDQ10N0PiRJgslkQlVVlTxDQkND1cj7jQ0QHM9szZXMrqhKu8E5R2hoKL766it5hgwePLi769RusBYOXzIAy15hYExQD6kxbvn7yrKuq6QTGDx4MC5cuABeX1+PJ5980i7Bj0WmrC4kpMUBh6vl0+skiag6vAlxYaburpoOAQEBuHHjBnhTUxMeffRRuwTuaH63lW/aZ7K5My77aQQI1ahAGmKD5d85OUdhio3BuKCBcCdW1rNnT1nLampqcnuXRQqclW9aDxI1R4oxeHwMAKB4cw4QHAjAhKSkWLiBuzDV7N67d298//33gJeXF926dculN0m7EsXFxfT444+Tr68vHT9+nIj0PlYOf7BU9dUIgIpqiIjaf+O3s1BXV0f9+/cnwOZmdHc5hmzve8PCwtTOHjJkiF18WhzocLXl94QJVCU2d6SanYabN2+St7e3vfMZ5QqwO4BIcbwv6VyNK2GA1U8vAHj26qlz8CdVF2EN0hATLD+bfvlLmHQuybu/nbY+I7mXl5f9Rns3CHQj+aC9kuzo9tJTYYPxyCM94efnh3fWrNV9FKH4b0eQNj5GDZv3X/MAAMuWySovucEiWDlweOvWLfTu3RseXl5e+P777+Hl5SU7Ija4uuUOMBoku3fvRnl5OX73u1TVv6IWxZ+8g9h1a60BTF6X0LjD8qObeL9mjEHRdnUzhDFAIgmiJEKUREjdP4AAGK+JamtrsXjxYhQUFKBHD/2HW6qPZIMxhjUHgLEmy0LQsjhccwAYGxPbVVV3Gv/5z3/Qq1cveYbcunULAMAYhwCCSATOONxlotjOjqamJsTFxWH9+vWGniOCY+dDFOe55VrKEW7fvi3PED8/P1y5cqW769MiyOb6w9y5cxEZGYkZM2ZYQiQdm2VwUg66CQcAZI97vr6+8AgLC1NPuetB6moX4OCcASRBIgJjguxfksiq5TAOQekUbThkBytqd7UUp3u9Np11oZeT8wEu1f0v/rZ1K0T15LkAcCY/MwYiS72Z/AELbR05Y9b3uQkHAICvvvoKTz31FLjJZILZbAZgq3Uwi9doBs7lRsi8mFucfRIkAjgXIHAORgQ5O0EiAmcCBC6AM/lZRktxWmjTcXBIIAJOnTqF1evXYu/uPfhJr17gjNDcLIIYQRIlSz4RjAsQGAdIgqjUkXHADbQqR7hw4QIGDRoEHhYWhqqqKgAGrokge1pVO40I6rAiAkGCJIkQLd/3IDWcqckYuCWslTjdiwnEmEWGMTAu4NsbDZg8fRbef28D/P391fwMBG6pKBHAmQe0zEuZEepb3JQmVVVVCAkJgYfJZFI9oxGRbjork5tJSnOYXtBr2ZQCUv5zxA9aitMnE0mCYGFVCQkJiJ81AzExMbpkzBLPqGVbl0KW7gS1cMGpsrISoaGh4IGBgRAEARUVFZp1q67XVXWYoOW/DIwkjWpsYVmMgUHPpqDw7ZbioFVvGWRBLXd2VtZqcIHh7bdWGeZ300FvB0fEOHnyJAYOHAhvb2/5SltUVBRKS0sxKHQQRIvsYDYFySNQVzw4YxBJhEiWZ86gyB7Rwr9VhUDN4yhONklJBHDGIEAu+9DhYvw59wOc+Ps/W8gvbzzJ+a2CHYCDZweKRDehpKREPfXDAfkYSklJCQRFQDNjx5R2jWDckseSz5pYE26TzybOKmgZOBes3sEZxzdXv8GcxERs3bINfRUPEpr8DAqLJZAoaerBLMqGo+eug1ZR0v7W9m9JSYl6Lo4DsrdNrdMtQK/HEznJ99sBI8ctgNXz0MqVK+1MIkZ1dFfo1keMqUZSpe6iKOLEiRN6goSFhcHDwwOVlZW6wogsJhRbYd5J0HZwSkoKnnjiCSxcuFB1HvZjgK1bv9OnTyMgIAB9+/YFoNkymzp1Knbu3KkmFEURRBb20InUMLJT7d69G0VFRdiyZQsAva8qd/F63R4YuWXftWsXpk2bZg1UdtbOnDlDgYGBRNR9m1RERFVVVeTn50fnz59Xw5T6OPLt60q/vV0FURSpubmZ+vTpQ5cuXVLD1Vu4Q4YMwWOPPYbS0tIuN7+ThR01NTVh0qRJePfddxEREaHGO+M12nZjTWFw9h8Os+bRj1hJl5Hg+lWLrUPMAwcOICIiAoGBgZa6kX6XPzExEbm5uQaVdT205SsdPnfuXIwaNQozZ85sU1lEDESi5vSlaFFBrB8Xs75Lb6y01oNb1qyWL4UC6heoOwplwNkOqI8++ghz5szR1M3mlNmrr76K/fv3q5dHXAVDJys25efk5KCqqqpV94FGkD+lZ3X2z5gAAiBJ2vfoBwDTnEyxRgDaMUouUiSMOE51dTVOnDiBKVOm6MJ1NfL19cWcOXOwfv16l1XGma8FlJWVYdWqVSgsLISnp2fbyrcwFlLcuIJBkpp1Jni5LZbflnzMYPbI4VYYOTp2FdauXYvk5GT1CBZZ7YV61NXVUZ8+fejmzZtdINqIrl+/Tv7+/u1y4E8kC/z09HTKSF+phjVLNsJfsqZ1utx21cY51NfXk7e3t9rHWmXFbuj6+/tjwoQJWLduXaeNDi0Lmz17NhISEtrtsY4xBnACaRwblReu1X1gsro4G5wx8InLjWojp7Fs+y7LKYIEcvkyWNvmzMxMJCYmwtvb2945sxEFq6urycfHx6WzxGh0ZmVl0csvv9zhsv9f+n8bqr0S3VV/Vx3eRMArVGVwSE6iKooDaNPhr0gUqVOnR319Pfn4+FB9fT0R2avynAxkRXBwMBITE7F8udGIah9sF3aHDx/Gn/70J3z00UcO8zir6THb81WkbCX0UB5x6SLDhAmSLo2C5a+E4EBcGubHBoPLe3Iuh9KW3/72t0hJSVF9Zdl9rsLRmiMjIwOFhYUoKytzacU457h8+TJee+017Nq1q0W3s85oenZEI9mia7vHXlRTgzD2F1ys4ZZvsct5j2xOA0LTsGx8DLSfcO3oITrbgc45x9GjR/H5558jLS3N4WBz2GIvLy+8++67WLBggd2pwY5AFEXMmjWrRaNhW8BsiEZM64JVbjRRFYIHxiAobAJqL36lWq7ZxWIUIRZBrBJBQUGaUjjachDbiMvYLlR/+OEHLFq0CBs2bICnp2f7XI1Pnz4djz/+uKFfp/YiJSUFTz75ZIu+49sOCUpTLNv98gyx6CxVR48ieGwMgk2hqKm9BECChCrELSnGmv8KwqdrCGNigtq9MnfEZbSdvmrVKkREROiUF6NZ4qFE2FJMCdu6dStGjhyJZ555pkO+e4kIe/bsQVFREc6cOdPucmwhH74Q1A0oNVDz99hFjqQYjiNHrUk2L9+MdwszUVX8AVjaBJggr/DRCacZ8/LysH37dpw6dQqiKKpf13Hot9fWyZaWQE888QT27duH+Ph4O/O8s5AkCTU1NVi8eDH279/v0vsotu7zRPGeLp5QDUgDAQADBwTjy5pLOLJ5OdjYJJjA8bcjn2Jc7EsAuHq0lIgsQr/jppOysjLMnz8fn3zyCXx9fdXFpsMju86qa7m5uWQymdr1fdhbt25ReHg47d69u815nYEja68kSVR1eJN6HYGqiggALc35VI6nKorjE+xV4XaovcqdFEWNFUVRvfORn59vl9YRdARpbSWbkpJCMTEx1NzctjsWM2bMoLlz57Ypj/MQ9QTRNCEtTjbaMsbocDWRVF1EcctyiIhoc84SzUUeA6J0EHfu3KERI0boBoq23xwRpU3fMWxubqaYmBhauHCh03mys7Np6NChdPv27RYr0hE4sx9iO9hE8Z7L66FFfHw8TZw40S68tfY7pdtJkgQJ9yAIAj7++GMcOvxXbNy40RonKeqlcn5LAuEeTp06qRoNe/bsCcC5D2N1Buzvl7T+6RRywsCqpNHuv6xatQpnzp7G9u3bdWkV2azkkYz0uvZQ32w2k7e3N3366ac6qmunpK3RUJKkTpkdinExPT29XTudoii2uiPpKNzofXn786mP7+NUU1WtphEtfFTSlOWoru3a9AgPD8fHH3+MWbNmYePGjVYzt2AtLuG1eMTHy9+rAoy1ClfMFNtTHW2F9naWsy7Dte8jkhfNkiQhMzMTc+YkIG9vPoJMwXL7mHzgFdCfyndU1zZ8pc26+JIgYty4cThx4gQmTZqEiooKvPfee+CMAZwhKysLHALefjvLrgHONPR+AmMC7ty9jQVJyTh16iQ+P30WwcHB1ng4Wuc1G7JNRtT2nSgJpFK9sbERM2fOxO3bt1FYWIjly5dj586dSEpKQq+fPgJIVr1b+ypyoSN/5UyZrc8vV77DFowx1NTUoH///jh69CiCggZg69btWD75p3j/iG3qKJTTUYSBwElo0XjZriGqPfv36KOP4pNP/oqIiAgMGzYMgiBg3rx56NnrpyoxgM6/YGlbfnuJ0Vo9GxoacPDgQaxZswb/+Mc/sHHjRowdOxZ79+bhJz/piY2HCQtigDzzPXUXc3WygHA2BpVgkJQjrXBgH2xd7BlDuwBShNa2bdvIz8+PDh065FCt7IwjRh05BuSMonH9+nXKzs6m8PBwCgsLow0bNtCWLVvIz8+P8vLydGnvkpmif6FdFsjlJ41lFP36akuI4z5wTu3FPYjULP+WJBSsWwDBQ75EKfzfBRBxAcnJ6zB79mwUHjiIxMREvP12lm4UaFXjzga14QtARm7AFezfvx8zZ85ESEgIzpw5gx07duDcuXO4du0aVq1aheLiYkyePFm1hhMRKgo+AUIGat8AIhGm4Jdw7MtqS4jjmesUQTh6QGAeQMVeCIKA/7kUBJIIRCKkdTF4hEVAGhAISZLw/LChOHXqFIpLSvHcs8Nw8uRJXcM74ijN9pK9UbxytdtWiDp6n3YdxTlHbW0t0tLS0L9/f2zevBkTJkzAt99+i+zsbDQ2NuLpp5/GmTNnUFZWprlwajk6xBiKioowPuZl3QYYYwKCQ0xqPZSBajhonJ3ad8lMMQCNWbjOLm71/JdodYHZbiLu27eH/Pz8aN68eYY2MFt2oX12lrWJomjHstqSVxRFunnzJm3evJlGjBhBJpOJMjMzqa6uTk1XX19P8fHxFBgYSEVFRYZ1JyISpQsUjSgqJ9GOZWclRdOYRas1775nyLicJkj+uiSC5WW2yFudTPnnRcvi756uQ27dukUrVqwgHx8fysjIoIaGBocNcgZGRGyvDCkuLqb4+Hjq06cPJSYm0t///ndd3evr69W6p6en0507dwzLUfI0n9tFUYuyqFnSE0My7yGA0+oCc6vtbpUgEllnR1LWPl2cSM0kSY4NjdrG1dXVUVJSEnl7e9OyZcuovr6+xVWrtuK2jbBN3xaCXLp0idLT0ykgIIAiIyMpNzdX9YakzJi6ujpauHAheXt7U0pKinogwVEblfrlr0ui+av1Ql4kiZJjQYhNcqp+Ts0QmcKgtfln7SksNavTs6VOVHDt2jVKTU0lLy8vio+PV80vhu+VJF3nOyKMliBG771z5w7l5uZSbGwsBQQE0MqVK3UHnBXk5+fTjBkzyNvbm1asWNGmrYZ70nl6CYz2n7MOUMm8h8A0xJCsdXbEVp0kyD6ZIAVmIpKpLpE8QwzTS5bYFsz0169fp5ycHBo6dCgFBATQihUrqKKiwkFZjtESy/rnP/9Jc+fOpd69e1N8fLzK/7Uwm82UmppKfn5+NHLkSNq8eXObjz99kZ9JkO8C2/17p7DcsM6O0CpBRPEe3ZPOUixAC9bkk53zr/K9KqGMXuqMrKioqKAlS5aQyWQiPz8/mjFjBm3atIkqKioMZYZtmJYg9fX1tHbtWjKZTDR06FDKzs7WdbDZbKYNGzbQtGnTyMfHh8LCwmjlypVUXV1NzqD19rRioJTkAe2oHKdNJwXrF2BSajbWFpjxu1dkx8vmA2vxzKYaUFGORfkTwSFYbz638SYcEeHKlSs4evQoiouLUVJSgm+++QaRkZEICAhAUFAQhg8frm4BDxgwAIGBgcjIyMDdu3dRXl6OkydP4sUXX8Qrr7yCxx57DGVlZaitrUVdXR1OnDgBf39/REVFITY2FrGxserNJWfOICt1NLIAEImWvX1R3QqWIFouy9rv0zt6n9MEkaRmmA+swzOTfg9F746ZvxZHNv3Omeztxr///W+cP38elZWVuHr1qu4uZE1NDS5fvqxL7+/vj+DgYBA4ejzCMGqkTMyQkBA899xzqhsqdzVsOk0Q5bSEFo5GS1dCgghI1oWg1vB5P8KJOSr/Mbot293EACCzSN2zdY8CcLznQm56kbR1glj6XDvF3WG66zvTYiezPGkHitF5MyXNfUkQoyqrhkKx+27CKp1OJOL1l3vI9ivLriTnHninsFyXXul8dxhMLcI5Ve9ep+yHuxLJsdZ10rmC1QQGyjt/12H67rxp3BKcs/babDW60x1xSWqGiHJUHInCy78MgwQREcGDAOLgLTTPHeSfEZw+BsQ5t9y7sN527WrC2JrflQue5QWfAK+Pw1NgIKkZi5ZMRNTrmYj7P473OtwW3T1F2wL7w25Wox4spgoGUN459/Re7QzcXMLJUNRY5diNdbTLf4v/moO8c80gIuStS8KUpz2Qf16EhHsOSnRf3B8EYdZTfowJek9F5Xl4n83D5AgBEkT8MvV1xAA4cqgQ3e1Brj1we4IQUYvqdcHhI0gaMxZg8iKxx4UKFAMwDQoFpDYcO3MXdDfPbA8kqVmVJ8mxoAPnZZlxly5QNIPDnc37Ae5PEMn+2Iwo3qOz+7NUIQ5A3ggCCGPnWbO66VrDCEpd/z8QxlJQ/WftfgAAAABJRU5ErkJggg=="
|
<image>如图,CD是⊙E的弦,直径AB过CD的中点M,若∠BEC=40°,则∠ABD=()
Choices:
(A) 40°
(B) 60°
(C) 70°
(D) 80°
|
70°
| 69,805 | null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAHUAAAB1CAYAAABwBK68AAAaFElEQVR4nO1dXWwb15X+6DSWkvWWMtBAVFuEEpCFKCldD9KFS6VZDRW0Nf2QhHYkMcYusHQfyualodoFqgBrygmwoYHd0i9BmAao6c0LLTmW0gKlmoctKWVtqS22lGNZlLEuZQfZkikQWi5a03KsOftA3dFwODOcIWcoKd0PIEjO/Z177rnn3nvOPddGRITPOAqFAlZWVsT/qVSqKk5PTw8cDgcAoLW1FW63W1feRASbzWZORU2C7bNG1HQ6jVQqhWvXriGfz2Nubg4OhwPd3d1iHJ7nq4ixsrKCjz/+GACwvr6OhYUFdHZ2wul0or+/H06nEx6PB93d3TuOiHLsKqIqccXCwgLS6TR+8YtfYHZ2FjzPg+d5kfM8Hk/d5a2uruLDDz/E/Pw8bty4gdnZWZRKJQwODuLQoUPweDwid5v1PlVxANgIgK38h7ABm+0BlbgCbNizu4jKsLq6irfeeguJRAIdHR3weDxiIzej7NnZWbETud1u+P1++Hw+tLa2WliyAGCPvqi0S1AqlSgej5Pb7San00mRSIRyuZxqfEEQmlKvqakp8vv95HA4KBgMUiaTMbcAhdeo9WY7nqilUomi0Sg5nU4KBAI0Pz8vhhklnFWEFgSBisUixWIx4jiOfD4fpVIpxXKb0dl2LFGLxSKFw2FyOp0UCoUon89vd5V0Y3p6mnieJ57nK4hbD5Q6wX06R+Mnr6im2ZFEjcfj1N3dTeFweMcSUw/HpVIp4nmevF6vOe8hEBFdoXAfqG+3EDWbzRLP8xQIBHYsMetBMpkkp9NJp06d0hF7Q/Ep60SXx3sIAA1NyuJJ+pjlRFXr0XI58/LLLxPHcQ0PVzsN7D1LpZL4jplMZuv9dYpYgYiEpTANjU9QuG+TqEJ1+g26v/2cms/nye1202uvvUalUmm7q2M5MpkMud1uikajVWFbHX2TCyUE26AJGu4bpyt0jobRS+NLG5Kw+xX5bCtRk8kkuVyuihntXwJKpRKFQiHy+XxULBZ1pZkYfp4mSKCNKyeoF0M0QYLqKLhtRB0bGyOv16v7pT6LuHDhAnEcR7/97W81431wspdQ3lza/DxPkxoTNZ1bFOaANjevjh8/DrvdjpmZGezfv78i7C8JR48exfT0NEZHRzEzM6MYh66O41XbJKjMgLg/OQT09aFHY3fxcxbVVxHr6+s4cuQI/H4/AoFARdhO3ySvF1Rjf7ezsxPT09P49re/jbt37+KI70h5nxcAlsbx+AvAxFKvGH95eRlAr2Je0kKbgmKxSDzPUzKZbFaRuwqlUol8Ph/F4/8hPgNAQA+9siSQsLk+BfaIQ/AEVe9UWTL7VRLejKC7bUJkxpaekTwymQz19vbSE088oZIZ+6G8lmWwnFNLpRJ5vd5dsf6sh4iNED6bzVIsFiO/3092u506Ojpo37599Mgjj1AikdgsQJpCm5gMlsvUY8eO4Tvf+U6FWox2oLUAoCzX1erKnsvDtN5tZWUF6XQa6XQas7OzaGtrA8/zOHjwIK5fv45vfvOb+OijjzAwMICJiQnY7XYcPnxYksMOUL0Fg0GKxWJWFmEKrNKc5HI5isfjFAgEyOl0ksvlomAwSIlEQtwGjUQixHGcKJqcTiflcjkqFos0MDBQocqrrqcy51rGqadPn8ZDDz2E7373u1YVYRrMGjUKhYKoPGd2UIODg+B5HuFwGF1dXSInr6ys4OjRo+B5HvPz82hpacHq6ioAoKurCwAwMTGBJ/+2A7k/kFjPCksINc41s2eynjQ/P088z1dt+zVLcW0WatU3n89TIpGgYDBILpeLHA4HBQIBisfjVQp8aV5y7mRgXC2NzzQ9RmD68FssFonjuB1hlWAmmCJcTkS/30+xWIyy2WzNPNi+79jYGN25c6cqnHUIOcLhMJ04Ma67rqYT9ciRIzQ1NWV2tpZBqYOxZ8Vikaampmh0dJQ4jqO2tjZDRGQolUo0NjamyJ1SMHlaUZfNb8+AfoW7qUSNxWIUDAbNzNJ0aI0SpVKJkskkvfTSS8RxHNntdvL5fBSNRsUJi9FRZn5+njiOo9dee00zXi6XI6fTqRqez+fJ5XLp2is3jahGCjUTjQzljIhjY2PU399PLS0t5PV6K4hYbxmMO91utyZXs7yl8lStzNOnT1MoFKpZn7qJKs9YTR6YBa0XMdLoqVSKwuEwud1ukYiRSITm5+dNk/WMOyORiGJdlcrR234cx9Hi4qJmnIY4VTrbdbvdjWRlGRgReZ4nAMTzPIXDYUu2LEulEv3whz+syZ1KcLlcutLoaWvDRFXqZcxEwwrU4h55+Pz8PEUiEfJ6vdTa2ioSkU0yGuVGtfTz8/N04MABRe6slUexWCS73a67DrW4ui5OlVZqamqKfD5fPdmYgkwmQ5FIhA4dOkQtLS3ikiGZTDZsHqOnA+iVnVow2ob5fJ4cDodquG6iqr2gnjHeTGQyGYpGo+Tz+chutxPHcapEtNqIWkt26oUgCBQKhRRtlrTg8/lUl46GOFXeMM3g0mw2S2+88UYFEUOhEE1NTVk2065lAXnnzh1F7qy349QjvjKZDHEcpxgmEnViGDI7mM3P8DnVjL1eb0NKb6VGkKqj2tvbxU3w6elpS5dLegliBndKYVSeSsG4VV73Ck6dGAahL0xXiGnRJ2gIW8+kibV6ihEwTQY7ZKSkybASeonJ7HYbkZ1KYKNdPVwu3xdmeYhEFWiJwn2gXpk5v7AUph5UPx8bG9PdW6VrM0bE48ePk9PpFA8+NYuI9cBs7iTaIkA98lQKpa1FsAKEpTD1opdOXGU6uvK3aBsjG4YdDocuIuTzeTp37hwFg0FyOp3U2dmpqMnYiZv8xWKRgsGg6dwphVSe1tMGY2NjVcc5RE5dOtlbMfQyCHSFxh/fU0HUZDJJXq9XsRApEeWaDC3NjRL0HNmwCszQ/M033zQlPzXbrXrlKUM2myWXy1Xx7HMAQFjC5Pll9A4P43FsKYzLM6VlXF0S0DvUJz6fnJyE3+8HEWFtbQ3pdBpzc3NIp9MoFArgeR4ejwehUAgul6tupbOa8tpKU5hbt27h+9//PgqFAlKpVEPH/6VQqnM6ncbg4GBd+dGmst3lcqG1tRWLi4vgOE4MJGEpTI/LzmeIPWxyiICeirDW1lZ68cUXFTUZO3EY1QNBEGhmZoZcLlfFbo2V7xMOhykcDpueD0jYJFxfmD4QJEQVyrPfo7YteSoIAv34xz8mAPTXf7WPnnnmGUokErv+6ESxWKRAIGDeOVKdMONQMlH1LBhsIiSf3V5+pXx+Q/78pZdeIrvdToVCQVyKtLW1iSqrRicUzeZ0Jjvj8Z80tdxSqUR2u11xK7OeNrDb7SJzAUobDoDipImI6KmnnqJ9+/ZVPU8mkxQKhcjlcpHT6aRgMEhTU1NUKpWa4pvBaBq93GlWF2P1a8T2SAvSbcOKzQdB8q3USHfulnsXatir5XI5isVi5PP5RJ2l2ux3O5xxbHFnXEfsLZGkcMa3bqjJ03rfLxqNUigUIiIiyG1H1bIUaEuX17q3hUqlP+uuRDKZFNepLpeLQqGQ4e1FM4hpVHYKsm8zoSRPG3lHqZ51a0dJR4bMBklpF0MvstksRaNR8nq91NLSQj6fj2KxmCkTFK13YNx55swZ9fTSb4FoQzyUtPXpPXllsxx9RyCUoCRPG+200jWvAS3Nhrg1KBK1wS58584dmpqaomAwSA6HQ1SjXbp0qbGMJZByZ6FQUI0nb1R20HdocmOL2JNDyk40NKBErHQ6TTzPq5q21Au2yychqkR2CPcVkhD5fM/S1NQUud3uTXOQ+nurEpjC2+12k91uJ7/fT2fOnDHMxayhkskkdXd3a8pOpUb94GQvwaa8bq9QetRJjxMnTpiyPpWDDemG9KnMjqZsg/qflh71Y4bTgUBA5OJIJKJL79jIupMpMFyvXFYMZ0StWNMbhFnrUznY2SVDRGWzXi2tu1XIZDKiQTQ73nDu3LmqjY94PE5Op7Nuy8ayXrnyQC/DhlDWZKkt9/SipaXFVE80jDHYDFjXASkiwvr6Ovbu3QsAaGtrw+3bt+vas6wXHMeB4zhEIhHxINK7776LYDCInp4eDA4O4v3338djjz2GTCYj+pLQCyIC2c7j/HkAw36MoHqv1rY8ifNXgd6TlXvkevO32WzIZDLo6ekx1eMo21fev38/Ll++rO/Ao81mQz6fR0dHB4gILS0tuHv3rmmVMgqHw4FAIIBEIoG1tTV84xvfwFtvvYWbN28ilUrh5ZdfxvT0dM06ksR5iM1mg+3qVVwF0NvXAyW3IudfeRVZPI/x8T7FcC2whk+n05a6sLXZbHpPsVYmam9vRz6ft6JOhlAoFHD48GF89NFHuH79Oj788EOkUilwHIe3334bbW1tOHz4ME6fPl3hbp3BZrNBSh2hrxePbzKgnA/p/DD854GhyUmMkM0gn25hbm4OAwMDdabWRnt7OwqFgv6jjFLzFbO0C40gHo+Ty+WquYnx85//vGL7km18vP766/T5z3+e3O6D9MmtLblcXspItVIbdG6o7EBDvpSpR6pK92jNRiqVIo/Ho3+iJN2rlJ/7aCby+Tx5vV4KBAKqjaM2o87lchSNRulb3/qWuJnwwAMPiNtrDOUljT7jOyNgjGGV0oLRSPfwSzvAedXZs2cxODiI733ve4jH46qTITUleldXF0ZHR/Hee+9VKL+/9KUvVcT7yvhVkECiQyqa9ENUfTSAVCoFj8cj1s/MNpXmpZuoHR0d4m0Qdrsda2trplWoFpjsnJ2dxaVLl2TOLYyBvfzMzAyefPJJfPGLX8QPfvDPGgnKX1tH8ivzMQK5PDXTgkOal26itrS0oFQqAShPnW/duqW7wEZ65NmzZ/H000/X5E69YC/PcRwuXryITz/9FB9/XNBIIPuW5WMEjFOtwq1bt7B//37js1+gfBnP+vq67vj1NICUOy9evChyp9li4LnnnsNPf/pTU/NUwuLiIrq6uhrulFq4ffs22tra9BO1q6sLN2/eBADLlzRastNso7MXXngBiUTC1DyVYDWXSmHI5Y7Vmw6FQgHHjx9He3s7Ll26ZGmvZvB4PFhcXBSHLqvwq1/9Cj6fz7L8gXL7ORwOYy53pIbHMNmvViwW07XuNBuCIFh+Cp5I2ZLebPj9fkokEpVLmnvCp+JHCd3d3Yo7M7VAGnJwZWUF/f39WFxcrJjZaqUxEzabDSMjI5iYmLCsDLnTK6tw8+ZNdHZ2VsrUvXserPiWo7u7G9lsFkB5/7VQ0Jg1SqAmB0+dOoVjx47h9OnTePPNNy2VnVoYHBxEJpMxNKM3gkaMto1gZWUF3d3dxma/PT09uHbtGoDKJU49hff39+P27duYn5/Xfa0lg9lc3NraCo/Hg/fee8/UfBnm5ubA87wleTMUCgW0trbWXtLIh+PHXH+D/1m9jnvCp3jooYewvr6uOlyrDeWnTp3CP/zTP+LfTv87XvnXVzVVUGp5fEr3FZ+z/9IwNVEih8/nw7vvvqsrrlE0Y+abyWTEYxeaRJUPx3/HfRU3btzAn2//CQ6HA//78e+xd8+D2LvnwYrGuyd8Kj5nYYw71/50Gxdn/wtPub9elU4KaR5qz6Xppd8sDfuth7A+nw8zMzOGZ/e1Rg0mTzs7Ow3laxQLCws4ePAgAAM7SkC5kQae/Huk02nxZbQmVgzRaFSUna++qs2dSlCT8UpxpHH1pGNobW3F008/rXpBgRpqyf7Z2dmmyFNpOTWJKu/pAwMDmJubQ2dnJ27evFnBNXKI3Lm2ViU7mzW71QNWl2effRY/+9nPTM2XXdRrJdbX17G4uLjVvmyNs75xr+JbCmkY86EXCAToJ/9xpioO+y11fyoPU8pbrUyt33rjqZUhR7FYJIfD0ZD9kFytJl2fWqVyu3DhQoVDlap1qhLHMW7du+dBca318MMP4w+//1gcflm6lZUV8F8fwNqfbmP24hyeOPjVqiGRpVnfuFcRJh0RpPHU0svlpzwPtd9q2L9/PziOU7yIXi+kw3GhUMC9e/fENrNqmfb+++9XaH/EbUIj8ufYsWP4zW9+gy984QsV6U6dOoWJiQm88cYb6O/vV02vVpb8ud54tdIaeTe2wd+Ieo9hfn4eX/va1xrOpxbOnTuHTCYj/tc1UZJzy8jICLLZLP74xz8CqF53MoLSDpKbtUCbCnEztTZW2iMxpFIpdHd3V55415IL6xv3xE8ZWzY6jz76KD3zzDOKrsN362lyBqPG1lre4Kzw2SgtT75vLQjCpo2SQp3YuRH2GZ7cIGFyiI6eLxOW53l68MEHKRQKfeauyJQeC5S7wtPbYW/dutWwkw41SO9kdTgcVbZalZwqSFzsyKzUy5brW1Z2ly9fpn379um+M3w3cW8tL9lqaLYjzkQiQSMjI1Xlyw4dX1E9VlD2fjZcQehAIECvv/46RaNRcZljtXrJarCG2ToEVjuuEhp1eqWnTDUfTBVEFW1eFe4wF+gKhU9OSP4TZTL/LdoCl0ol8RyL3++3zP9vsxCJRGhsbKzu9Fb6QCbSHglEom7QVUXPZrWgdFgqkUgQx3GWne5qBpaXl6ucTmlByilmOL2qhQMHDqh2GtGNHXMuybyxbFVR5ciecJ8EQdB0PMmMizmO27HXmmgNoXpdoMuhV57W67CklrPPPcDm4aDlJVzdWuagphWp7QHYbDZwHCde7CqHx+NBOp1GPB7H22+/jc7OTpw9e3ZbD1fJobXLMzIyomqURhprcK31KUtHdV5iaLPZ8OKLLyIWi6lHYtQV3cBKHGGVf5S/zo2fUD2Tmc/nyel01nSvk8vlxMvsotFoXWdKmjmLlnKEkXLdbrepLg6k0HPkpXL2u7k23XJWwWbENvFwkNpazcjEIp/PUygUIqfTSeFwWPdpb7kvomZAbjBWq2wtp1eNolgsksvlqtleZZkqfXKlfDwe4qdH0feBHKVSiTiOo5WVFUOVDIfDojOtnbgcUvJrrOWb32ynV1LoXSZV+lESiIg2lHujDuao94VKpRLFYjFxras0q9uuzQv5PTC16mHFMU9BEAzd/aPTeFef0wpBEBp+qXg8ThzHkc/n2zHLIT02u4zYVizj9Nx0KQXkbtqk2JKrcmgTmed5SqfTuiqghqmpKfJ4POR2u7d9OaT3xmaz5Kl8NDDqOEVcpzZSqDwsn88Tx3FVAl060ZFPerRuZvL5fAZ8CRqDnndXEitK6ayQp+zSPmm5teqsPvxqpFMLkhaWSqXI6/WaNgvMZrMVyyErXNZoNVatOwMEQaDx8XFT5anajdG1YNlF84IgiLdamIlcLkehUIg6OjooHA43zYG0VG+pRnw98lTvqJjNZsntdmu+n1peDRO11lCstn41w8Hi+Pg4ORwOXaq/RqF1GQSRuevTXC5HPM/XvcSzjFOlGB0dtUQNRVR2WhmNRkUvaGyv1uwlkJpCmsEseVosFonn+YY0PJZxqvx5IBCwjLAMzA2Pz+ez5H5UNgQrvbN8QlMPPvnkk4YJStQkTmUIhUIN6SiJ9HEg83TK8zwlk0nTuDaRSJDf71esU6P+GnO5nCEdrNY7NZWoROU9YqUNaSt2jNgMnOM4VQ4zAi252YjTq0wm05AMlaPpRCUqD5OHDh2yZOaqRLhMJiMuh2KxWEOTGXZaW56/kn5T76iiRlCl9HryNJ2oejUpyWSSenp6LJF9anXK5XKiu/hIJGKoU7E8lFRfP/rRj2h0dFQ1jRJKpRKFQiHy+Xz0ySefVKVpRCO1LZzKkM/nye12m3rboRZYA+XzeRobGxMtIeVu2LUaUum8zZEjRwzJ02w2SzzPWzZx3FaiMoyNjZHX69VlOmKm7C0WixWWkKurq7rSyS8DNiJPo9GoLkvFRrAjiEpUHo45jqNwOGxI5plBZCVLSK18z549Kw7Bei8HzmQy5Ha7KRQKiR3AKnXijiCq1OI8HA4Tx3FNv7eGpddjCZnP58nhcBBRpTW/EorFougmvhnzB6IdQlQ5stkseb1e4nnekKxqRNukdm3XgQMHFOvA8zz98pe/pOeee44uXLhQFS616mjWnIHBcqI2wkGpVIp8Pt+2mphmMhny+XziZQtMNLCLl+TaG7n91XbcWNkUTm10aJQ2bCQSod/97ndNr5PcEnJxcZG+/OUvi2dukskk+f3+hiwlzULTht96CStNl8vlxKWI1+ut4BwzytIDKSfa7XZyOp3kcDjI6/VSIpFoen2UsCNlqh4kk0kKBALU0tJCbrebwuGw5TZN+Xyezpw5Q4FAgB555BF6+OGH6fnnn2/qRbp6YCPaRce9VbCwsICZmRnMzs6K3lBcLhfa29sxODgIh8NRdTc6aVjI3717FwsLC7hx4wZWV1fx61//Gjdu3MDa2hq8Xi94nofX6zXtvnKz8ZkgqhzpdBorKyvI5/OYnZ1FoVAQ3e8BUHSBc+3aNdHXYktLC9xuN7q6uvDoo4+Kv+UdoxoCDLqmsgS7nqhKHMeeScOkv9PpdFX8np6eujhvcsQG/3nZw75/wZWlVw3fMmUatmfUNwdWTED05imN98HJXsLwORJo80ySDYSRCfXEFmP7x4oGYPTUGOkYlPTmKY4AWMI755cxNDwMANiDEQwPlUO2C4bcre921NMJ1NKIYVfP452rQxgfLl8VduWVPvjP92B8adiEGteHXUdUrYY2Mw2g3QlY2NI772AZy/Db9sAPoO/kFRA9brgsM7Hrhl+zidMIxKF3cgNEBOHqCQgnv4K+V5YsKU9/xf4fdUNYClMvhihBgnhqQetS3WZh13HqtoFk39gcekeG8QLK8pSwhKvLAHr70LsNVRSxbd1pl0AQ7is83RB9Tg2f31LZTQ6VD2oPTW7oOs9rFXb95sN2oVJO70F5N6kH41eWcXJzniS7869p+D/DEyxKwXecxwAAAABJRU5ErkJggg=="
|
<image>已知,如图,圆O的弦AB=AD,∠BOD=124°,点C在劣弧⁀{AB}上,则∠DCA的度数为()
Choices:
(A) 59°
(B) 62°
(C) 56°
(D) 42°
|
59°
| 69,806 | null |
59°
|
"iVBORw0KGgoAAAANSUhEUgAAAPsAAACJCAYAAADqmE5sAAAcEElEQVR4nO2de1CTV/7GH9rO6qhEVi3ISFWUIBF0wSFoLbRhELAQFHZBsQijLK66il2tbGVn3ZmKt1nc6Uq9LOsNmAXBC6IBlnIp2CoGURAQDWNsBbGVFBVQULoL5/eHm/xMk0DAJCdvOJ8Z/sj7nvOeR5PnPffvsSKkn8CgWBn2cQzGa3Lo0CEcPHgQ1dXVGDNmDG051HiLmZNhycTGxuLhw4eoqanBqFGjaMuhyhu0BTAYxkChUODdd9+FnZ0dCgsLR7zRAWZ2hgVSWVkJb29vJCQkYM+ePbTlmA1v0RbAYBiSQ4cO4cCBA5BIJJg1axZtOWYFMzvDIujv70dcXBwePnyI2tpa1mzXAmvGMzhPS0sLPD09MX36dNY/HwBWszM4TXFxMTZu3IgDBw4gICCAthyzhpmdwVl27dqFs2fPorS0FFOnTqUtx+xhZmdwjv7+fkRGRgIArl27hjfeYL1RfWD/SwxOoeyfu7u749SpU8zoQ4DV7AzOwPrnrwczO4MTJCYmoqysjPXPXwNmdoZZ09vbi7CwMEyePBlXr16lLYfTsA4Pw2xpamqCh4cHxGIxjh8/TlsO52E1O8Msyc3NxbZt25CWloaFCxfSlmMRMLMzzI7ExERUVFTg0qVLsLW1pS3HYmBmZ5gNr/bPr1y5QluOxcH67AyzoL6+HnPmzGH9cyPCanYGdTIyMrBz506cOXMGc+fOpS3HYmFmZ1Bl06ZNaGhoQHV1NcaPH09bjkXDmvEMKnR2dsLX1xcAUF5ezoxuApjZGSanvr4eQqEQsbGxSElJoS1nxMCa8QyTwvrn9GBmZ+hFVVUVHB0dX2vee82aNZDL5ax/TgkrQoiBD4lgWCI8Hg9yuXxYZlcoFFi6dClEItGg0V5ramrQ2tqKO3fu4Pr163j69CkA4N69e2hublZLO23aNEyfPh1WVlawtrbGvHnzwOfz4eDggHnz5g1Zp6XDzM4YlKSkJMhkMmRmZg45b2VlJVatWoW9e/fi17/+tdq9np4eVFRUoLy8HBcvXoRMJoO3tzcmT54MV1dXuLu7Y8KECSCEYNq0aZg4caJafoVCgdbWVgBAe3s7GhoaUFdXh4cPH0IqlcLV1RUikQi+vr744IMPWGw6wmAMQFZWFpFKpcTa2nrIeQ8ePEgEAgGRyWSqa0+ePCH//Oc/iVAoJDY2NiQiIoKkpqaqpTEUjY2N5NChQyQsLIxYW1uTBQsWkGPHjpHu7m6Dl8UFmNkZOmlrayNZWVmkra2NfPTRR0PKu2rVKvLhhx+S58+fE0IIOX/+PFmxYgVxcHAg8fHx5PLly8aQPCClpaVk/fr1xN7enqxatYoUFBSYXANN2NQbQyepqalYsWIFAMDFxUWvPMpjlyZPnozCwkJkZGTA2dkZEokEK1euxP3795GSkkJlJ5ufnx8OHTqE77//HmFhYcjOzoarqysyMjJMroUGzOwMrZw8eRLJycng8Xjg8/l65SkrK4O3tzc2btyIt99+GzNmzMDNmzchlUpx5MgRBAUFGVm1/ixZsgQZGRkoLi7GN998A2dnZxw+fJi2LKPCzM7QQKFQAAC6urrQ1dWF4uLiQQ2/e/duJCQkIC4uDtu3b8e9e/dw/fp1pKSkYMKECaaQPSymTJmCI0eO4KuvvkJNTQ2cnZ1x4cIF2rKMAhuNZ6ihUCiwefNmtZH3rKwsWFlZqZr0r6IM69zV1YWffvoJo0ePxhdffIGZM2eaUrbBuHXrFjZs2IBx48bhH//4B6ZMmUJbkuGgPWjAMB927NhBrK2tibW1NWlrayOEEBIVFaW6tmPHDrX0zc3NxMPDgwQGBhJHR0dy9uxZGrKNQnp6OnF0dCT79++nLcVgsJqdMSyKi4uxYcMG2Nvbw87ODjk5ORYXw/3VYBqWsMfesr4dhknYvXs3PvnkE1hbW0MkEuH06dMWZ3QAGDVqFAoLC2FjYwNfX190dnbSlvRasJqdoTe9vb2Ijo7GlStXQAhBSkqKxqo4SyUjIwN79+7FuXPnOHvuu+W9jhlGQRnW2crKCp2dnThz5syIMToAxMTE4OjRowgJCeHsaD2r2RmDkpubi08//RReXl6or6+Hvb09iouLacuigkKhgFgsRmhoKP70pz/RljMkmNkZA6IM6zxx4kTY2tpi9OjRcHd3x+9+9zva0qihnG4cPXo0p1bfMbMztKIcibazs8OkSZPw6NEjHD9+HM7OzigvL7es+edhsmzZMnh6euKPf/wjbSl6wfrsDA1ePXbJ19cXVVVVOH78OG7dugUbGxtm9P9x6tQpZGdnc6YPzyLVMNTIycnB9u3bkZaWhrfeegurVq1SHdiQl5cHsVhMWaF5UVRUBG9vbzg5OWH27Nm05QwIMztDhTKs86VLlwAAIpEI2dnZqhBSeXl5OHr0KE2JZoetrS3S0tKwfPlyXLp0yazDbbFmPMc5efIkeDweeDweoqKiALyMLDMUfh7W2dbWFmKxGDt37lQFhVQoFGhvb2dBIrWwcOFCbN68GaGhobSlDAgzO0dRKBSquHDK3Wmff/45eDwenJyc9H5OXV0dhEIhVq9erQrrvGzZMgQHB6vNoxcUFGDx4sUG/3dYCrGxsfDw8EBsbCxtKbqhtCaf8Zpo25hCyMvNLFKpVK9npKenEz6fT+rq6lTXdu7cSSIiIjTShoWFjbjILsPhww8/NNvNM8zsHCQrK0tnTDhlGKnBiI+PJyKRiHR0dKiuyWQyIhAISF9fn0b6SZMmDV/wCKK7u5vw+XzS2tpKW4oGrBnPQdatW4fU1FSt91asWDFguOeBjl1av3499uzZo7GppbCwED4+PgZQbvmMGTMGf/7znxEfH09bigbM7BxDoVCAEIIZM2YMOW9lZaVG/1xJVlYWRo8ejaVLl2rky8/PZ1NuQyAmJgbt7e0oLCykLUUd2k0LxtBoa2sj1tbWevfLlWgL66ykr6+PODo6kubmZq15HRwcyKNHj4ald6TS2NhI+Hw+bRlqsJqdYyib6N9++63GPYVCgaqqKo3rsbGxyM/PR21trdbtmZ9//jnEYjGmTp2qca+mpgYODg5mHUfOHJk9eza8vb3NK+gF7bcNY+goB+herd2lUqlGbPe2tjayYMECsm3bNp3PUtbqugb1PvvsM7Jr1y7DCB9hyOVys6rdmdk5ilQqJTweT2d8uMuXLxM+nz9oXLiDBw+S+Ph4nfeFQiFpbGw0iOaRSExMDMnMzKQtgxDCzG6RKPvnTU1Ng6YVCAQ6a/XW1lazqpm4iFwuJ+7u7rRlEEIIYWvjLYj+/n6sXLkSHR0dqK2tHfQgw9zcXLz33ns6p+rYqrnXZ+bMmeDz+SgrK4Ofnx9VLWyAzkJoaWmBp6cn3NzcUFhYqNeJpSdOnEBkZKTO+3l5eVqn4hhDIzIyEunp6bRlsOAVlkBxcTE2btyIAwcOoL29HeXl5Thy5MiAeR4/fgxPT0+to/rAy+AVjo6O+P77740hecTxzjvvQC6XUz02mtXsHGf37t3Ytm0bSktLERAQgMWLF6OoqGjQfCdOnMBvfvMbnfe//PJLeHt7G1LqiGbx4sXDOt/ekDCzc5T+/n4sW7YMN27cQHV1tWqOfMKECXBwcEBNTc2A+XNycrQe56REIpGY/ZZNLhEZGYmcnByqGpjZOYiyf+7u7o5Tp07hzTffVLsfEhKC/Px8nfl7enrQ2tqKefPm6UxTUFCA4OBgg2ke6fj5+Q36AjY2zOwcIzc3F4sWLcLevXt1hjIODQ1FQUGBzmdUVFQM2ES/evUqnJyczDrqChfx8PBAZWUltfLZ1BuHSExMxMWLF3Hp0qUBd7bNnj0bHR0dePDggdbgkOXl5Vi0aJHO/BKJhG18MQKLFi1CRUUFFi5cSKV8VrNzgN7eXgQFBeHhw4eorKwc0OhKAgMDddbuFy9eHLCJzqbcjINYLEZFRQW18pnZzRxlWOfg4GCcOHFC73xisRgSiUTjem9vL3744Qed4aBbWlrQ29vL2fPMzJnZs2ejurqaWvnM7GbM2bNnERISgqNHj2LDhg1DyhsQEACpVKpxvbGxES4uLjrz5efns1rdiPD5fNy9e5dK2czsZkpiYiL27duHS5cuDbuP5+PjoxFA4c6dOxAIBDrz5OXlISQkZFjlMQbHxcWFmZ3xko6ODgQFBaGtrQ1XrlzRq3+uC7FYrDEF19TUpLNm7+npwe3bt/H+++8Pu0zGwLi4uEAmk1Epm5ndjKivr4eXlxfCw8MNEvRALBZrrKaTyWQ6++NFRUUs1pyRYWZnICMjA+Hh4Th9+rTBYo/b2tpi0qRJaGhoUF178OABpk+frjX9uXPnWH/dyEyfPh3379+nUjYzuxmwadMmnDhxAtXV1fjVr35l0GeHhoaqjco/ffoU1tbWWtOWlZVZRH+9qqpKdUoOj8cb8gk5xmTs2LF49uwZlbKZ2SnS0dGhM6yzoRCLxcjLy1N9fvbsGcaNG6eRrrKyEm5ubhgzZozBNZiSpKQk+Pv7q07J6erqQnJystkYfty4ceju7qZSNjM7JZT9c21hnQ3J3Llz0d7eDoVCAeCl2bUZ+ty5c2Zfq1+9ehVCoRDvv/++WtdESVJSEmQyGbq6utSul5SUIDk52VQyB2TcuHHUanYWlooCx44d0zh2yZjExcWR9PR0QgjReZKMQCAgd+/eNYme4SIUClUx9/z9/dXuSaVSYm1trTXElvKeOdDX10ccHByolM1qdhMTGxuLM2fOoLq62mQnooaFhQ24C04ulwPAsA6eMBdSUlKQkJCgdapSV4COkQYzu4loa2vDu+++Czs7OxQWFpp0R9nixYtRXl4OAFr764WFhZzYznrgwAG4uLjA3d0d+/btU7snkUgQEBCgNV9+fj4SEhJMIXFQBhogNTpU2hMjDH3DOhsTsVhMvvzyS8Ln80l3d7faPZFIRC5fvkxJ2eujPCVHoVBo3BuoeU+D1tZWIhQKqZTNtrgamcOHD+OLL76ARCKhurlEGdDC2tpabZCup6cHTU1N1LZdGgJl0/27777D22+/rXbP399fZ/OeBs+ePcPYsWOplM2a8UYkNjYWEokENTU11HeRBQcHo6ioCGPGjMHTp09V1/Py8iwiXHRCQgL279+v+qxQKMDj8bB161Zs376dojJ1uru7tXalTAEzuxF48OCBWv989OjRtCVhypQpsLGxwdixY3Hv3j3VdUs5oVVpaB6Ph/Hjx8PJyQlyuRx/+ctfKCtT5969e1rP1DMFzOwGpri4GL6+vkhMTMSePXtoy1FDLBajt7dXbdfVN998YxE1OwBkZmaiq6sLnZ2d6OrqMpum+6vI5XJqsx7M7Abk1bDOS5YsoS1Hg8WLF0OhUODmzZsAgK+//hoCgYDzq+a4xM2bNzFnzhwqZbMBOgPQ19enCst87do1vPGGeb5Dvby80N7ejvr6egAv++ssXLRpkclkmDlzJpWyzfNXySFaWlogFApVYZ3N1ehKAgMDcfv2bQAsKg0N7ty5w8zORYqLiwcN62xuhIeHw8rKCkVFRRg3bpzOWHQMw9PY2AihUEitfGb2YfLzY5doExUVpbatU/kXFRWlli4wMBC9vb04fPiwRYzCc4mCggKIRCJq5TOzDxFlWOebN2/i2rVr1KZRfk5mZiZCQkIgl8tVWztLSko0QlCNGjUKM2bMgFQqZWY3MaWlpczsXEEZ1lksFiMrK8ss++fK6aaTJ09i/vz5cHJy0kgTFBSE58+fw8vLy9TyRjS1tbVUVyqa36/VTFHu9z5y5Ah+//vf05ajQVVVlaqmPnnypGouV9vhjRMmTAAA6mePjSTKysrg4eFBVwSVFfkcY9u2bWTBggVms5lCG1lZWaq93oNt/Lh58yaxtrYm8+fPN6HCkU1cXBw5duwYVQ2sZh8AZf/cEGGdjU1+fr6qv75kyZIBtbq6umL58uW4ffs2QkJC0NPTY0KlI5OioiKNwVJTw8yug1f754YI62xMlCGnlAbXZ2/66tWrMXbsWMyYMQPu7u64evWqUTWOZHJzc+Hr64tRo0bRFUK1XWGmpKenEz6fz5k93llZWSQrK0vj+o4dOwbMN3HiRBIdHU1kMhlxc3Mjn332mbEkjmgiIiJIaWkpbRmsGf9zPv74Y1VYZ67s8c7Pz4efn5/ataioKK0j8a8iFotRXl6OX/7yl6irq8P9+/fh6+uraikwXp+7d+9CLpdrfD9UoP22MReePHlCRCIRiY+Ppy1Fb5RRWH7+x+Px9IrOcvbsWeLp6an2b87JySEuLi6koKDA2PJHBNHR0VpbXTRgZieE1NXVET6fr4rAOlLo7u4mDg4OxNHRUe3F0NzcTBYsWEA2b95MUR33kcvlxNnZmbYMFSO+GZ+eno7w8HCcOXMGMTExtOWYlDFjxkAgECAgIAC7du1SXZ86dSquXLmCN998E15eXmhpaaGokrvs2rULn376KW0Z/w/ttw1N4uPjiUgkIh0dHbSlUOPgwYPk448/Jo6OjqS5uVnjfmlpKeHz+SQzM5OCOu7S2NhI+Hw+bRlqjMiaXaFQqI4lNtaxS1whMDAQxcXF2LlzJ9atW6dx38/PD1KpFGlpaYiJiUF/fz8Fldxj3bp1+Pvf/05bhhojzuyVlZXw9vbGH/7wB6Meu8QVlHur58+fj+fPn+PChQsaaSZMmIDi4mK4ubnBzc0Nt27dMrVMTpGRkYFJkyYhKCiIthR1aDctTMnBgweJQCAgMpmMthSzYuvWrWT//v1EJpMRgUBA+vr6dKa9fv064fP5ZP/+/SZUyB26u7sJn88nra2ttKVoMGJq9tjYWOTn56O2tpZ6WGdzIywsDAUFBZg1axZWrlyJyMhInWnnzZuHhoYGVFRUICQkhNqJpOZKeHg4Nm7caJZBQSze7AqFQi2sM/Uli2bIwoULUV9fj56eHlXEnR07duhMP2rUKOTm5iIkJAQeHh5sqe3/2LJlCyZPnoxNmzbRlqId2k0LY2IOxy5xhejoaJKdna36LBQK9fp/Y0ttX3Ls2DEiEoloyxgQizX7vn37WP98CGRnZ5Po6GjV57a2NiIQCEhjY+Ogefv6+khcXBwRiURmvQ3YWFRVVRE3Nzezn8K1OLP/97//JRERESQiIoK8ePGCthzO0N3dTezt7dWuVVVVEYFAoPePODs7mwgEghG11FahUBA+n6/XS5E2FmX25uZm4uHhQXbv3k1bCifRdppreno68fHx0fsZI22prYeHB7lw4QJtGXphMQN0r4Z1TkxMpC2Hk4jFYkgkErVrMTExeO+997B69Wq9njGSltouW7YMkZGRCAkJoS1FP2i/bQzBrl27iIeHh9blngz9kclkZM6cOVrvhYeHk9WrVw/peZa61Lavr49ERESojXFwAU7X7P39/Vi2bBlu3LhhVmGducqsWbPw4sULrbXx6dOnYWdnBx8fH3R0dOj1PEtcaqtQKLBgwQK4u7sjIyODtpwhwVmz3717F56enpw5dokrLF26FPn5+Vrv7dmzB2vWrIGXl5feS2ZfXWo7Z84cTi+1vXr1Kry9vbFt2zbOnACkBu2mxXA4e/Ys4fP5ZhHqx9L4+uuvib+//4BplEtmh7p+gctLbZWhym7fvk1byrCxIoQQ2i+coZCYmIiKigqcP3/erKO9cpl33nkHTU1NAx7l3NbWhtDQUPj7+w+42u7n9Pb2YsWKFfjPf/6DnJwcThwXvWXLFtTW1iIvL4/TOyQ50/blUlhnruPj44OioqIB09jZ2eHy5cuQyWSIiIjQuz+uXGorFovNPqrtixcvEBQUhI6ODovYCs0Js3MprLMlIBaL8e9//3vQdG+88QZOnToFoVAIJycn5Obm6l3G2rVrIZFI8Nvf/nZILQNTkZGRgdmzZyMwMNByfnO0+xGDoeyfcyWssyXw5MkTjdV0gyGXy4m/vz8JCgoicrlc73zmttS2sbGRiEQiEhwcbJbbVF8HszY7F45dslR8fHxIVVXVkPNlZmYSR0dHEh8fTx49eqR3PtpLbVtbW0lcXBxxdnYm58+fp6LB2JhlM76zsxO+vr7o7Oxk/XNKiMVinVNwA/HRRx9BLpdj2rRp8PT0xKZNm/D48eNB8y1fvhxFRUVISkrCli1bhiN5WDx48ABr1qyBr68vPDw80NTUhCVLlpisfJNC+23zc0ZqWGdzo7GxkXh4eLz2c1JTUwmfzydxcXF619pbt24lQqHQqCsiz58/T6Kjo4lAIBgxvzWzMrtyLrOuro62FAYhBg2vdP78eRIREUEcHBxIfHz8oGMwxlhqW1paStavX0/s7e1JTEzMiNqdR4gZzbNv2rQJDQ0NnJ/LtCS2bNkCJycng55H39nZiczMTKSlpeHOnTvw9/fHokWL8MEHH2iEC3v8+DEiIyMxefJkpKWlDXmV5K1bt3Dx4kWUlJSgtLQUrq6uWLNmDSIjIzkxv29ojGb2qKgojR1UCQkJ2L59u9q1zs5OhIaGYs6cOSzaq5lRVlaGv/3tbygsLDTK83t6elBRUYHy8nJcvHgRMpkM3t7emDJlClxcXODu7g4ej4cTJ06gtLQUN27cUDOpQqFAa2srAKC9vR0NDQ1obGxEa2srpFIpXF1dIRKJ4Ovriw8++GDEhyQzas2elJSEgIAAzJ8/HwDA4/GQmpqKFStWAABqamoQHh4OGxsb6mdXMzT56aef8Ne//hUJCQkmMQohBC0tLejq6sKjR4/www8/oLe3FwDw6NEjPHv2TC39+PHjYWNjA+DlYh17e3tMnDgRPB4PU6dOhZWVFQghsLKyMrp2Q/PJJ58Y/JlvGfyJryCTydRq8oSEBMjlcgAvV8SVl5djw4YNOvNbWVmhv7+fk1+WJfCLX/wCjo6OaGpqwty5c/XKM9zvTGnKadOmab0+XKysrNRMbya9VioYzewKhULjS5LJZBCLxQBevomN8fZiGBb2HVkORptn/+qrrxAcHKz6nJSUBIlEomrCMxgM02I0s0skEqxduxY8Hg88Hg8ymQxdXV3GKo5hoURFRal+Q8o/qVRKWxYnMYrZFQoFAKCrq0v1l5mZaYyiGEZCm8l4PJ7JdWRmZiIkJAQlJSXo6upCSUkJAgICVL8xhv4YxezfffcdXFxcjPFoholQmkwul6te2AkJCVQML5FIVDM6jo6OJi/fUjCK2VNSUrB27VpjPJphYl7dl7B9+3aIxWIkJSWZrPyqqiokJCSoPm/evBkJCQlsv8QwMOhovEKhAJ/PByEEEokEcrmcfSkcpaqqSmvrTCAQQCaTmUzHt99+i+TkZCQnJwMA+029Bgat2W1tbdHZ2alq9rEvhbsUFxcjICBA47qTk5NJdeTn56u6EqmpqXBycmL99WFilltcGfRJTk5W9ZNfRS6Xm2w8RmlqZaWhnLYtKyszSfmWhlFX0DG4yY8//qjWT1aiUCiQnJyMkpISk+goKytTLcJSlg8AM2bMMEn5lgar2RkalJaWam2ub968GSEhIVprfGOQn58PPz8/1WelJlOVb2mYzRZXhvnA4/HUBsJ+/PFHzJw5E0uWLMG//vUvo5dfVVUFf39/jbXspirfUmFmZ6hQmkwbJSUlrEblOP8H0dCe3ysN1CUAAAAASUVORK5CYII="
|
<image>如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=40°,则∠PAE+∠PBE的度数为()
Choices:
(A) 50°
(B) 62°
(C) 66°
(D) 70°
|
70°
| 69,807 | null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAAAUCAYAAACah0+BAAADw0lEQVR4nO2Zu0vzYBSHf29iK0W0tildBKGjIAqCYy0KVq0giI4O6lJcugouBVELKg5u4m1zLILWyyCidRKX+k8IItjWwd6S8w3SaExbO9i8+TAPBMl5j+Rp+eXkUkZEhP+MhYUFKIqCnZ0d3ioAgHA4DACm8TErTfU0zc/PAwAODg4aKlMvjDGIoshbQ8VMLryYm5sDABweHlbtqStsLS0tpvpCHQ4HbwUNNpsN/+EF4ldpbW1FsVis2VNX2HZ3d2G32yGKIt7f3yHL8q8I1gMRqUFnjMFut2Nvbw+CIECWZeTzeSiK0tDjM8YAfEyw8mcvezU1NaG5uRkAEIlEUCqVQEQNdTITgiDA4XBgf38fs7OzNXvrCpssyygUCj8m9zcRBEH9KwgCRFFUp0c4HIYsy4b4iKKoBudr0BhjUBRFDXzZtxzI8v5fCF2xWESxWEShUKjZx2o9IBwfHyMQCMDlcv26oMXfQ6i1ODk5qZ6hvGhvbwdjTLeZiZWVFdVLkiQAwPT0NGcr81E1STMzM3A6nXA6nUb66Ein0/B4PJBlGUQEIkIoFDJF4PL5PBhjuL29Vd2enp7AGENXVxdvPcOoNBBubm70jVSBxcVFOj09pSrLhtPZ2amreb1eCgaDHGw+AUChUEhXHxoaorOzMw5G/PB6vZRKpYiI6PHxkQDQ29ubpkc32V5fX2Gz2TA2NmaKe7XLy0v4fD5dvb+/Hw8PDxyMPojFYgCARCKhW+vt7UVfX5/RSlx5fn5GT08PAKC7uxsA9Fef7wkdHR0lIiJFUbhPDiKiQCBA5+fnunosFiOXy8XB6AMAtLGxwe34ZuL6+pomJibUfUmSaHh4WNenCdvS0hIBULeRkZHGm/5AhfOBiIjGx8e5nQy5XI4A0P39PZfjm421tTVNbqqhvmfLZDLlSQcASKVSODk5aeDg/ZlsNovBwUFdvVQqIZFIVL4JNRDeT+pmYXNzE6VSCaIoYnt7G4wx5HI59WV3GQEACoUCfD4fVldX1YWrqyvY7XZjrb+xtbUFv9+vq3d0dMDtdmNgYICDFdQvMZlM6tYymQyOjo6MVuJGNpvV/MoTiUQAAOvr6/rmYDCojr90Ok1ERE6nU635/X5jZnEF8G0k5/N5AkBut5uT0SfLy8u6S+nFxQW1tbVxtDKeaDRK0WhUUwNAd3d3ul5zvNv4Rjwe19wDfN0qfQheJJNJjVsgEOCtZDgej0ezjxr3bTV/rrKwqEY8HsfU1JSuLkkSXl5eKv6PFTYLw7AepywMwwqbhWH8A2O+Y+WvmJIlAAAAAElFTkSuQmCC"
|
<image>如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()
Choices:
(A) 9cm
(B) 10cm
(C) 12cm
(D) 14cm
|
10cm
| 69,808 | null |
10cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAABTCAIAAADFpGTDAAAVeElEQVR4nO1de4xU1f0/9zl3XvtiYR9slwI+EHetYlEpWqKuYteIWYXaZHETlG3rBhURrGhjrUYaiBqCVoPRJtAKIrKKipQ1RCtK4hshyyMuK4+Ffc3MnXvv3Pfj+/vj+9ubjWUoO9xZRtvPH5u7M3fOnPs93/M93/cQyI7BwUG8SKfTAOA4zv79+x3HcV33e3d6nneacX6sME3Ttm286OvrAwBRFPGtVCqFbwEATbJAluVIJOJ5nq7rxcXFiqJomjZ37txs9/+3wTRNjuNc1x0cHGRZtqKiIpVKvfTSSxUVFTU1NU1NTddee+2qVasIISTbEiGrKoriv7J69erFixe7rvvvPPvfycWpVErTNLwWRdEwDMuyHnrooQMHDgDArl27pk6dqmlaVi4WRVHX9Wg0isuwbdu2KVOmfPDBBxRFjRqnFDI8z+N5PhwOe55HCIlEIqFQiOO4zZs319TUaJo2bdo0Xde7urqyknjMmDGCILiuSwjRNO3EiROzZ8+eNm0aRVH/ozIhxLKsSCRCCJFl2TRNnudd1929e/eqVatisVgkElm+fHlLS0t9fX1WQaGqak9PDwDouv6nP/3JMIxEIvH0009/7zZvCPnajQUM0zQNw/A8z3XddDptWdaHH344duzYiRMn/vznP//4449N0wSArCTGw1HTtNWrV1922WV1dXXjx4+/9957h9/jDUOeH6fg4DgOAOi67r+i6/pvf/tbWZYB4L333rv88svT6bQoilkFRUlJiSzLnudVVVV98cUX//rXv3bt2nXrrbf6NwDAaGzIQoVlWYQQX2batu15Xm9vbzweV1W1oaGB47ivvvrKcZysJCaEDA4OLlmypKmpiabpsrKykydP7tu3z7Is1OQAgKIo27Zt26Yo6hwxU96BpAAAdwi4ZcPhsKIoDMMoioI3bN26deHChYQQ1BG6urpUVS0vL88qKNra2iZMmHDxxRd/9913mUxm4cKFVVVVdXV1L7/8cjKZBADP82zbdhzHsiwUOj9K4GNaloU2l+M4+NSqqhqGAQCWZQFAMplcunRpIpGwLEuSpBkzZsyYMQNHoCD7fjcMQxAE0zRDoZBt27gvkslkRUXFwMDAuHHjXNfFZXRdt6SkJJANWGhACcAwDMuyhBA0F/CaEILE6enp+c1vfnPixAn8l+f5SZMmbdmyhRBC03RWEnueZ5pmOBy2LMswjGg0qqpqUVERIcSyrO3bt9M0fezYMUEQHMeprq4eHBwcraceVTiOQ9M0x3EMw6AKwTBMOByOxWKu6x4/fnzy5MmzZ89mGAYAQqEQHv6u63Ich4bF6WRxOBzWdZ3neZqmGYZBezqRSLiuO3bs2LVr1wqCoKpqaWlpJpMZtWceZbAsy/M8wzC2bRuGgRuX5/m+vr4NGzZ89tln4XA4HA4jlQghiUSCZVmkdTQalWU5qyw2TdNxHFQqPM9Lp9P4HfiuYRjXXHMNDGktvb29+ZSH5xIoGXBP+54d13VfffXVu+66q7u7G19JJBKKouANrusmEokTJ06gEM9K4kwmgxco6fFa13VFURRFMQzjqaee2rRp03Anxo8SeLgZhuEf6YcPH37zzTfnzJlz+PBhPPn7+vpQzcBlQMekZVmqqsJpjrv/XwFCotGoZVkcxymKUlRUhDsF/9bX1+/bt0+W5Vgs9mO1qvG5TNOkKIrn+XQ6vWXLlk2bNnV0dCARCCGu69I0nU6nS0tLCSGyLKPvIhQKKYrCZhua4ziO4/Ca53lCCJ51DMP09fVVVlY6jjN9+vRvv/12/PjxKIZ+0EB56DgOnmy45Xme9zyPoqhQKEQISaVSDz/8cGlpaUdHByEE6etfIH3JEKEQ8Xg8q6A4DXDLOI6zY8eORYsWwZA1+YOG67r+c+EGB4CTJ0/atu37Eq6//vqXX34ZTYEzH3nEJMblRfEPADNmzEin0z8O00NVVf9B/GsUsn19fTfccMPHH39sGIZt28NdE/8ROW5wNHUIIbfeeuvrr7+OkuQHDUVRIpEIRVFoEEcikUwmI0kSRVFdXV3z5s1buXLlFVdcEQqFWJb1TY8zwkiXGvVqVVU9z1NVNZFIzJkzZ6SDFCB8xtQ0TdM0Pz7Z3t7e2NjY29uLzhlfTzhzjJiLKYpC/sWLMWPGRKPRzs7OkY5TaBAEASkbCoUoiqJpWtf1zZs3b9y4sb29vbKykuM4AOA4Dhn8zEfORVCgOoLT8jzvjjvu2Lx5cw7jFBR0XY9EImhtCYJg23Z7e/tzzz330ksvocKQyWTQG0MIEQRhBEPnsKcwJijLMnqeAOCKK67IYZyCAppakiQBgGEYf/jDH+666y488TRNw0PP8zzDMFRVHZEGdTpP2ymBJgm6RCVJKi4uliTprbfesiyrtbXVNE1CCE3Ttm1HIhEAKDSTBCnFMIyu6xzHsSybyWQEQWBZFj2Lvb29zz//PMdx999/v6/qng1GLCg4jqNpGtcHD9Z4PH7ppZe++eabhBDLsnie5zguHA4TQtAFWlAQRZGmacdxwuEwAAwODkYiEZZl+/r6BEHIZDLPPvusZVmLFy8uLS3F6PJZIhdZzDDMcJuHpumLL744Fot9+eWX8XjcsiyMg7iuOzLlZlRQVlYmSRJqBRzHFRcX67ruOE5lZWVnZ+eSJUvq6upWrFiBj6bregBfOVKZhRqxHw/1xXFHR8c999wDALIsY1y2ME0+13V96ymZTKK0FUXx7bffnjt37qZNm3yH4ohMuNNgxCT2/ZlIQYzjmaapadp1112HCS4wdDL8e/bbOQfOHz2NACDLcjKZ/PTTT5uamr755hvXdXH+eOT43suzwYgFBWowOAnXdSmKQm9ROByeM2dOR0cH3oDvFqB7iOO4ZDJZXV1tGAb6CHfu3Pm3v/1txYoVl1xyCU3TgiAAAMMwFEVpmhbAV+awLCgELMtCgweGOLq3t3fhwoXI1KZpBrXRgoVlWcinmUzG87wXX3xx5syZhw4dwrds25YkSdd1z/OCcoXnchxZlsWyLMdxaEz7rFpSUnLo0CGMdKGuhmpQAIwQHFBRs22b5/knn3zyyJEj//znP2OxGADggxQVFeFxHYvF0G17tl8ZyEIhXNfdtm3bgw8+CABoCwU4+EiB/gQ8zQzDQM71HRG6rj/00ENtbW2pVAqGokd5QmCyEp+nsbHx888/l2U5Go0ahhHU4DmAoqhEIuEHhmmaVlUV+VTTtLa2tlgstmbNGjQuVFXN30yCPI7Q3PjZz362e/duAMB/zxVEUayqqmIYRlVVRVF4no9Go2jLzZo167zzznvwwQfxZD569Gg8Hs/jVILaDrjXEonE4cOH77jjjuEvnitgCjsMncaKouzevXvBggU7d+5EAfK9jJ48ITAupijKNM2SkpJJkyb19vZKkkSGcuvOFWRZLi8vR3Ehy/LAwMCaNWuamppmzpyJMYRIJIKajx+lzAuCWiv00AOAqqobNmxYvXo1DEX5zgkw3OmH3Xbu3Dlr1qwjR44g20qSNDAwgHfquo5h+TwhSBJblpXJZHC6N910UzqdPod5x7jelmWlUqm33nrrtttu6+/vx7fQATA823FEsbiRIjBBgTpyNBrFTTd27NgjR44E4qnKDeiBYll248aN69evf+yxxzDPEW1iRVHQZdjX10eGshjyhQCXa7hY6OzsxPi/nx0DAGg1Bc4ymLCDR6ufogoAiqI88MADy5cvR5mAeavBfvWZIDAuxiQPAEDO/clPfqIoSk9Pj6ZpxcXFfsBG1/VgPZwAwLIsZoURQhiG0TSNYZhMJjN//vyf/vSnDz/8cCwWI4Toun5O4gOBkRiNTkIIRrfi8fhFF130xhtvYGoMshUhhGGYYH1DFEVJkhQOh03TTKVShBBBEFKp1LJly2655ZaWlpaioiKGYVBt8PN3RhVBbQdULf2cGgDo7u5uaGgAgHQ6jbsYg37ohAvqe3HY4UmO6XS6sbHxueee0zTNV3gxKOcX0I4mAmMolmUBAKMhKPImTpx4/vnnv/POO4IgIOcigwcL27bD4XAoFMKw4fHjx+fOndvS0rJo0SI83PC2SCSiKMq5MTgDXC5kYdu2UWESRfHAgQNz585FDQkAMIsUArX6fGeTqqrbt2+/+uqr0TOJxVkAkEwmcfdgJfjoI0ix6HkePQRCiK7rU6ZMEQThq6++IoRYlpUPDz1KYULIjh072tvbt27dOm7cOADgOA7t47KyMsy0rKiokGU58An8RwR5uGNZMCEE0/DHjRunqmpjY2NHR8fll1/uuq5lWRh2DBA0TfM8/8QTT3R2dv7lL38pKysjhLiui0UoeA/P8+hux9yEUcaI8yhywKRJk7q7u/Ea3fm5sbOu6yhMMQWCEILq2qJFiyoqKh577DGO40RRxOB84cS08j4PAGhubt66dStq/sjmPn+dOfBYGxgYQBWNoijMymlqaqqrq1uwYAESvaSkBL0TwT9Jzsi3sLcs6+DBg/Pnz4dhOlMOBp7vrPHLLhRFWbBgwd///nfU2PxGJhhUDO4JzhZ552KKoiZPnqzruiRJWLpGCMlhF2NOVDqdxjrLb7/9trW1debMmfPnz0cJW1paats2Khj5dU6OEKNBYoZhGhoaNm7ciCXYhJDcSAAAJSUlAJDJZO67774777zzzjvvNE1zcHAQ9V8M0fM8jwtZKMj3NkHT+fjx47/61a9gmLo6UuAHDcPYs2fPzTffvH//fhjWMEfTNMwUBQDMMA9k8oEg7yT2rYxly5Zt374di0Ry8COjo2f79u3XXXfd3r17DcPAxRNFEUdDL7AkSRhULhzkncR+RlZXV9fdd98NADm76v/4xz82NzdjrxcAwJgQmpS4kFjxCgVWQTUaspgQwvP85MmTv/zyS9M0MSU52/0orFGYOo6DzjNFUe6+++6ioqJHHnlk/PjxjuOIokiGMnH9+mMsVibDKuIKAXk3PTA7i2VZ13Vfe+21/v7+pUuXnv4jjuMwDJNKpYqKijiOO3r06PPPP3/hhRc2NjZWVlZKkhSLxTAX6QfRCyrvXOx5Hsdxtm2bptnc3Pz+++//x7wQjGKUlpZyHHfy5MnVq1dXV1c3NTVVVFTQNF1aWoryATOx8z3/s8doWHcURTmOgy7NSy+9dM+ePachDQBgIz+apkVRvOeee2pqah544IExY8akUinMMOI4LpPJFGaK+CmQb2GPwTQ0wERR/Prrr++///7T3I+OR8Mwjh07dvPNN7/zzjtoqmHSiWma6FyHPIeNA8RoKG2maSI5MGX2xhtvPL3eqmna7t27Z8+evWfPHvQvJ5NJ3y+M3TvxuqA0h2zIO4kxjITdb/CVp59++h//+Ee2+z3P27Jly0033YQ0xT4a+FlsNwcAkiThtvhB1F7nncRIBdu2M5mMnzt9/fXXZ7t/7dq1bW1tR48ehaGSdgRe67qOO8B1XZ+XCxx5P+5omkbvLRZhEUI0Tbvqqqv27t2LNCKEoJps2/af//znQ4cOLV26tLa2VpZl3AFYNoQnmyAI2KkSB8z35ANB3knsO+D9gFNZWdkvf/nLtWvXRiIR5O5IJCJJ0iOPPJJOp5ctWzZx4kTUFsLhMMMwBWVH5IBRCg2ggcCyLFZu/uIXv+ju7u7p6WEYJhaLOY7z6KOPEkIef/xxTPw3TRPZ1jAMjNWPzjzzgax6ZVABecMwMNKBTR9t28Z+ZNdee+3BgwfLy8slSbrttttaWlrmzZsXj8exLwRKA9u2WZYtLi7GhLlA5hMURrC38i3sfU+bf4GFj7IsNzQ0HDp0aPbs2e3t7XiaaZrmJ7IYhuEnoPxQTrZTIisXB1W+zLIs2nLIzjzPO46Dxb01NTWtra0vvPBCbW0tvojlRJgOEAqFGIbBZn9YYxTIfILCmUcVsrqB1q9fH8hUBEHANBzc6SzLYpvDgYGB/v5+nufLysow1SGTybAsK0kSx3GCIHAcZ1mWpmk0TUcikcKJKCNaWlrO8M68czEAyLKM5f1Yx4vFePF4vKyszHEcbK2qKArLsqIoxuNx7LiRyWQYhsG4HOb9BTKfcwA/Lff111+vr6+vrq5ubm72PG/NmjVonqJldTYFzdl+/8J3paMKDMMKrAsKfpEshlqWLFlywQUXXHjhhZMmTZo6dWp9fT1GCURRPKVBTwCgq6tr+vTpv//979H6Onbs2DXXXPPaa6/h85/lw+PhZhjGwMAADphMJleuXFlTU1NbWztlypTKysoJEyZgFgD2RywomKaJ9qTfnq2np2fZsmVdXV3JZFLX9S1btsyaNQsP5FNmfhJJkq688spnnnkGj2/P8zRNW7Fixaeffup3a4Eht1ZujHzK37/43e9+5/uGjh49+uSTT/r1LYUGv32N4zh43dbWhm+5riuK4vLly1euXJktZkivX7/+ggsuaGtrwyMIAMLh8JVXXjlx4kTUZNFqwL85ZNlk+/0LSZJ4nk8mk2vWrKmtrS0uLsZC5MAl4dnDt5uwre6BAweqq6v7+/sJIZ7nYQr+Rx99VFpaeuomzg0NDa+88oqqqsihg4ODsixjlTsMay2LeySHWgms74Ah/gUAx3E++eSTXbt2AcC7776L4XrM9ClAQeHnDvix12eeeaazsxOGpaavW7fu9ttvz+ahZQcGBtDcAgBJksrLy7+3BgCA6Sa55eIJgoDLU1xcjF+Bronm5uZIJMJx3I4dO5BHsNf3yJksvwiHw+jJwsfXNO2LL75obW1NJpNFRUWoCFmWNX369FAohFHK741AG4YxYcIEnwqSJPmci3eg4UDTdG4tPFzX5Xke14mm6eLiYtd1N2zY0N3dvX///nnz5o0bN66/vx+JG3hq7NkD/Soo7liWNU3zvPPOi0ajY8aM8Q2lv/71r7W1tZjF/O8j0DzPi6LoJylhO6LOzk6U635vQZKTICbZf/8C25ZMmDABk6uxwVRhKr+e56F5qWnavn37pkyZQgjBjrDRaHTFihU1NTXz5s3D1vun+Pyrr75aX1///vvvo8Tcs2dPa2trgPVpfudUP39y3bp12F8ZhtTtF198Udf1c1IUdybAUCwA6Lo+c+ZMP2aIaeq//vWvYSi0eEpfCgGAzz///JJLLikpKZk2bdqSJUuCbdVhmubBgwdhSPVRVfWpp57au3cvErS/v//xxx9ft24dSio8RgoKOE9Jkj744INbbrmlqqpq6tSptbW1dXV1VVVV27Ztc10XW+n7panfAwUA6XS6pKRE13V0viiKEnh/hkQigd1LFy9efOTIEbSeT5w4UVFRcfLkyc8++6y8vLygMlZ9oB42duxYQsi+ffvq6+ux3R9KCcMw4vE4RVGe52UymeH9t338H5hcLKCItE8IAAAAAElFTkSuQmCC"
|
<image>如图,AB∥CD,点E在直线CD上,EA平分∠CEB,若∠BED=40°,则∠A大小为()
Choices:
(A) 80°
(B) 70°
(C) 50°
(D) 40°
|
70°
| 69,809 | null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABNCAYAAABgzdCLAAASE0lEQVR4nO1df0xTZ7//HHAvWezEzMOosQhI9TIPf5DAH87hZXeUyTvYfWuC0UXc8IZNpC5plN3MTISrGLN35cr1gmGrb9BY7/iDrTVq5JWadBlGF9zF3LfA3ruy4UoCrnrDhkuKtOd7/+gP2p7+Ak5rAT9J057n+Z7nPH2+z/f7fL/f8/xgiIgQZxARGIbB/fv30dPTg/Hxcfz+++/o7+8HANy7dw+//vorWJYFx3EAgFdeeQUpKSlYu3YtysvLIZPJIpYf6voZAEYMxs+lYe/du4cvv/wSer0eDx48QFlZGXJycvDcc8+hqKgIAMBxHFiWhc1mw9DQEACgr68PMzMzGBkZwZUrV5CVlYWdO3dix44d2Lx580L/wvIDxQE2m43UajXJZDKSy+WkVqupr69vQWXevHmTVCoVZWZmUmZmJtXX19Pk5KRINV76EI3xPM8L0qampqi5uZlSU1NJrVaTxWIR63F+GB4epv3791NqaippNBqy2+1R1W85I2YS397eTlKplCorK2PG8ECYzWaqqKggmUxG58+fj8szFytEZ7zFYiGO46ioqGjB6tyDSNIamG80GqmgoIAKCgro559/FqUOSw2iMr6vr49YlqW2tjYxi50TfDtBc3MzyWQyunv37lOrT6JCNMZ3dnYSy7LU09MTli7WY21g+d3d3ZSWlkbd3d1xr0siw8t4vzaI0B487/D5zZNaraa8vLy4jeVzhdlsJrlcTo2NjRFpl0tnSPK4dQzj8sfBExDMJScA4AHwYJhkb/KhQ4fw/fff4/bt28jJyYm5+zkfcByHu3fvwmQyoampKSztsgn0eHoAz/P0VUsdwcViQukB4mmQ6uo0bgLyfnt+arVaysvLo6mpqbj21vnCZrORXC4XqP3lIuW+cDF+UE8AqPRgizvZ6U2r0+iD3mgymUgqlSaseg8Fs9lMLMtSf3//067KUwWIhkgBxofps2hRlZLGYPZP5F0um1Qqpd7e3jhVU1zo9XqSyWRktVqXpbQTEUGvOUhACQ0Gsei+aqkjvdk/3eFwEMdx1NraGtEITGQ0NjbSli1bnnY1nhqgcKvzWR46iciHp7wrzSMZbW1tVFxcHM86igpfCc/PzyedThcV7VIDAJDG8D9hSJzeX1NTU5S+9qUlMz4ajUaSy+VBY/tLHW53LimEzc/75Wk0Grz2j/+EwsLCGPoZbrdSUI9gvxeGkpISyOVydHR0iFbmooHCx3L3U22Dej/DbmJigliWjbsVbzZoZl1MgBSqAPdygRgYGCCpVLrsXulC7/bd/+xmMk/uxlYc8CNUq9WkVqtDFjTf8TDcXZ8eKCGg1G14OomnQSpJAilUf57Xs0Khurqajh49KmqZiQ4QhZEqN5xOJ0mlUmppEbp8oiAI9zV1CkLpAUG6q66vB/VC5ouBgQGSy+WilbcYAF/jLRTu3LlDmZmZlJKSQmlpaaRSqWh4eFj0yni0hqcjBrqSRERDBo2PFhAPMpmMhoeHl7Ql74uk0IbdLAwGA95++20olUoUFxcjOzsbO3bsQF5eHj777DM8fPhwAVbGrLHGMAxAwNn2eihUGig5V9zc19T7+8iPENPA86C8vByXL19efrF6X/ABP3Jzc+nOnTtks9lIKpV6Y939/f20f/9+YlmWdu3aRXq9fp79z+l9Fk+DVAoII4bu6hxQCIciMdDT07OsAjrB38f7aDtPeNaDa9euEcuyNDEx4SLleXI4HKTT6aiiooKkUimp1er5q033O4Jgal4wBIiolR0OB6WmptL4+Lh4hSYwIk7E0Gq1VF1d7cfEmpoaUiqVQemtVitpNBqSy+WUn59PHR0dIV2lYB2Dp7+RAoxA4nkaJAVAJXWfuq/Fh1KppK6urhiUnHiIOMCPjIwgMzPTb+w7ffo0BgYGcOHCBQG9TCbD4cOH8cMPP0Cr1eLu3buQy+XYvXs3rl275kcbbDxlkIeyuhLUnz07mzhkQBLDASoNjO31bjrxkZWVhdHR0RiUnICI1DOqq6tJq9UK0k0mE0kkErJarYK8QEm22+2k0+morKyMpFIpffjhh/5eQRDxrSuFn4sZTPWLDY1GEzZWsZQQUeInJiaQkZEhSC8uLkZNTQ327dsnyAuU5JSUFOzZswfXr19Hf38/1qxZg7feeguFhYX4i/YcJn/9Pz96Hk603yDwPA8iAk/ktfDdnTW6Xj1HyGQyjI+Px6TshEOknsFxHA0MDATNs9vtlJubG3RWbTSGXV9fH9XU/AulpqZSVVUVXbty1XVvCPpYyLxvPU0mExUVFcXgKYmHiIxnWZZsNlvI/P7+fpJIJGSxWOYd/LDbn5BOpyOFQkEymYx27txJGzZsoPz8fMHcfNczIged5gOLxbJsIngRGc8wTMRCjh49Slu2bCGHwxGRNhKsViu9xKZ5x/YNGzYE9QpiEWGbnJyk1NRU0ctNREQc49esWRMxMtfU1AS73Q6NRrOAMcf1kclkeJFd402empqCXC7H3r3voufGX73psYiwPXz4EGlpaaKXm4iIyPj09HQ8ePAgZD4RITk5GTqdDqdOncK9e/fmVxMGXh+tra0NLMsiPT0der0eY2NjUCheR8unGmRkZKChoQEjIyPze04QkNtYnJiYgFQqFa3cREZExmdkZGBsbAxAcGvaI3kcx+HIkSPYt28fpqenQ9JHg5KSEhw8eBC1tbV49dVXkZKSgnfffRe9vb3o6+tDcnIySkpKsG3bNpw7dw6PHz+e13MC/8PY2BjWrVu3oLIWCyIyXiqVwmq1AoisXuvr6yGRSHDy5EkB/Vw7QSj6zMxMNDU1YXR0FM3Nzbh16xays7Oxd+9e3Lx5c0Gu3tjYGNauXTvv+xcTolL1Y2NjUTVocnIyzp8/jzNnzuDbb7/1yxNzTPbUpbi4GJ2dnfjpp59QWlqKEydOIDs7Gw0NDbh///6cyx0bG3um6j3IycnB/fv3o2ZcTk4OTp48ib1793pVfigEdqZopTWwLitXrsQ777wDk8mEr7/+GoCrU2zbtg0XLlyIeigYHR1FVlbWnOqyaBHJ7A98OxcJHjdLoVAEDX9G64Y1NjZGtcgxHIxGI1VXV9Pq1aupurqaTCZTSFrP2znPW8eljqgkfvXq1QLVHQoeaezs7ERnZ6dXAgPz51KWL2gOklhSUoLOzk5YrVZs3boVR48eRVZWFpqamgRDgdFoxMsvv4z09PSoy1/MiDz9BoBSqYTBYJhTwTKZDO3t7aiqqhKo2kDmhWLmXJgcDhKJBO+99x6++eYb3Lx5E06nE0VFRXjttde8Q4Fer4dSqRTleYsBUTP+ypUrgvRIjNmzZw8KCwvxwQcf+NEHSvJCtUAk+NYzJycHx48fh9VqRUNDA4xGI7Kzs3Hx4kWsX78+qjKCXUdzTyLBj/HkIMxMz34c7qltBQUFePTokUA9RsMErVaLq1ev4tq1awL6eDVMqI5WUlKCixcvwmAwYOXKlThz5gyysrJw8uTJiP81Glc1kefv+TGeWcHguT+4AmhJf2Cwwp27YsUK7N69G62trV7aaJnGsiy0Wi1qampgs9n88uLZMOHqe+7cObz//vu4ffs2jEYjHj9+jKKiIpSWluLSpUsC7ySwrERmcEgIzD2epxk7T44A4/vBgweUlpY275U0VVVVVFlZGTW9GFZ9NAi3kqanp4eqqqooNTWVampqRNvFKxEQhvGu7yd2np5M88QTUWPDcXp7516acfrTPrHzNDMjLOOJ+8OT682XTCajS7r/EuQFQ+Oxf6NjH5/we36osolm0/zq/YQn3ul/HYiysjLXku8wmJycJK1WSwUFBSSXy6m5uVkw82ixzccPL/Hu356/NDX1G61LX+deLcvTzLR/w7u0hL/G4J/MNrjRaKR0dj3d/9kqyAuoBB37+Dg1HmskIiLHNO/ubKHL9u0QvO/1tP+179OMRiNt3LhxTqtlLRYL1dfXk0wmo7KyMrp06dKiXG0bUdXzM87ZxnXy9J9n3OvjnbNS5/nMOF00wSSUd9+vOvABlZWVCfN84eTpWEOTUNWHKztwiIp0TbPr44PO9o1Cgq9evUq7du0ilmWppqaG7ty5E/GeREFIdy7Jba8wKxgwPOAkwOkEautq8fDhQ/zHmTYgCXguhfF+PMYgwth9J06cxIjFgnPnzkUwPkIYTAt1BNyGWVNTE55//nns2bMn+GzfEAYb+Rh25eXl6OrqgsViQWFhIVQqFTZu3IhPPvnE+0YzYeHpAV61yfuqcHfejI9EkyeMu45uXDfSjNMjHTzxPurYO+Y7eZqent0ya8bO09df91FqaiqN/jgaXNXzPB37+AQdazjmvS9U2YGqPhqJ/+qrr7x74IiN4eFhUqvVlJ6eThUVFaTT6cjpdIpiA4hpR8wyfmZWZQda9J4G9002mUyUnp5F3w9ZhIaaz3g7HdCJPHkf/WsDFb/6mk+em6nuztV47PiscRei7CfTQuPORRv6+t5/m+kllo3LNqd6vd5vKEiknUSi3NKUJ8dMQArPk1arJY7j5rXPnd1uJ47jSKMJvg4uFu5cqH3uFgKe5/0kMZhU2mw26ujooPz8fJLL5aTRaJ76y6CoGM/PBNMCLqjVaiorK5sX8wcGBkgikQRdci024ycnJ6m4uDgusYFwGB4eJpVKRVKplCoqKqirq4uczuhnDYul7sPG6mnGFbp1gkFyCFvr9OnTyMnJwZYtW6KaB0c+xlF+fj4++ugjVFVVwel0zs04mQMGBwdRWFiIbdu2RdzSdK6gCBHMwPzc3Fy0tbVhfHwc1dXV0Ov1ePHFF1FbWxvVfEXRooSidB8i+vzzz6PavToQDoeDCgoKBJIolsR3d3cTy7KCxZCJEnDhed47FHAcR7m5udTa2uo3FMSirqLvV79q1ao571c/PDxMEonEz/gRg/HNzc0klUoTyqiKBLPZTCqViliW9a7eFWO9QiAiMj7a3uah8z2hYi4BjdbWVuI4zhsFWwjjTSaT94SKxRxa7e7upsrKSmJZlvbv309ms3CziPkiZmfStLW1zflMmuLiYqqvryei+TF+qZ5JY7PZqK2tjXJzc71rFf28Am9fdu9KGkXnjunxY3M9hWp0dJQkEgn19fXNifHRnEK1WBHIRLPZ7N1+prKyMvhGDj63hOoECXfunFarJblcTkeOHAnLeKPRSCqVitavX79sz53r6uoipVJJLMuSSqWiwb+FHgoC2S/KSZMhvIWgrkekkyaJCKdOncKjR4/w+uuvo7y8HESEW7du+Z00mZ2djcrKSiiVSnAct6yOEQ38r7/88gu++OILdHR0IDk5GbW1tdi9ezdYlp29B/67iMSM8dEg1NmyAwMD+O2335CSkuJd4JCRkYHk5GS88MIL2LRpE1atWhV0JsxT/DtxQSDTiQEY919mGAbj4+P47rvvMDQ0hDfffBM6nQ4pKSmCcp4q44HQmuHQoUNYtWpVSFoiQlJSEsg1XPmlLxfJDwciwtatW7F9+3bvtW+7PHXGxwLPmB8EAbo+qunVC36mT9+KRz/zlf7lBtUbDBjG/9NiGBJsExYXxnu2Ko0kiQRg8HILDIPiMGx5Sb1rLnz7DUJdKaAxmEFEGLzcgvodnKBN48J4j5oJywgCgCGolfVxqdLSg4uVhCH8r1GBsn9+GQCwWb4hDHUsEehHhAIDnD7YDqa0FJu4WFdq6WLo8nXgwJvgGBdrVeodfhtCexBzxlOISXKB4+/l0wdBpQrwvbE5hmS54IeRH2E8ewgMkwyGYbD9tAO9bYcFdDFnvGDZFADXMaUMvIwdMuAGr8DhjQxuKjZis0dFRF7M+wwBctXbcxZ6Mw8iJ/QtdfhT3goYBoWCFveWZfwOOHKro/ZetB9WAgAU/yD3JX6GSPBtoyEDzuIAlJwrkKU8dBClAHp7DAIBjCvjXb3O/5GGfz+As2fPulwPbkc8q7PkcPmvRtRtfwOAW9MO/R29ADbINwpo48p4P/UOAEMG9NJ2b/TNbNBgU3Zinkid6CAAN663440/Kt3XQyjldgAowR//tFkwJCTxCD/XbaH5QtPO3deGDGDUN7wqHnAZJmI/f6nnA67YRxLD4GwvoORcQZukJA7G0gMgMrpspsBhM+R7u0jv9aLND3XCVMB25L7blAc9eiRW9Vsq+QKEn7m7JGP1zxAZz/ylZYpnjF+m+H9ragGC3ewIWAAAAABJRU5ErkJggg=="
|
<image>如图,AB为⊙O的切线,A为切点,BO的延长线交⊙O于点C,∠OAC=35°,则∠B的度数是()
Choices:
(A) 15°
(B) 20°
(C) 25°
(D) 35°
|
20°
| 69,810 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAABnCAYAAABPTqP3AAARCElEQVR4nO2dX2wTZ7rGnzFRITdNLKgI56IpJQSHqmB0KmGnVe0gASFhSYjUBiodSHoKgUpnidldKdFKUKgqVUdHcXK0woRWcdqjxXS3JUlLYlOp+dNTEvdmSVvYpHFI0t5gLkigF9j9k3n3wp7J2J5xbDL2jO35qSn2zHjm8/jxO8/3fu98ZoiIoKFiWAA6ybXkPgZd1fv882P9v6GTOYET6ETnPunXZRO58S4zGh1CQo6EhQ/tLzHQVTHoJxZEBCJCbV8edFW3saUUQI6EJ03EGQH3MbHh//vwvy+VwkZt8NElVIEBd0Gt7LyGY8xzMGxiQIxCzU0zeUo3QCMZQmK+03EUthtm2H2nUBJewzCcYktRZq9DFTEgEMBkv5IZzRNnFnwUfu4zUOd+8Y0IQPZrl0ezExkG0feYuAGYtm4RWN4oz5xDAgY0EWcEoYtlqPO26s40boWXM+D6buKdv1xBE7HKIXB+VweGYcCWbMbzALz/9AEQBt3QR+lpb8d0+pupKJqIVQ7DRVgKRWQdquEYeAN4rxrmDh+3ik+59Wz5faizR0CuRGetY6d6OCHqIjts0+14cbMNo/x2Zth9X+HUJkaQqcgNNBGrnehMg0jmYWlRaHSPiEJCzpEshSbibCBHxCqF5okzEoHXFYvMORaXNBFnJDq88847oYdMZOdtKZuRO2giVjkkyE4AgN/vxwsvvIDz589jeHgQ0R9hbsk3hOaJMwDuIxr+cgSnm23Ytm0bnnrqKXzxxRcY8LixYX3R0rYICzmHfLIWiVUOl2k4d+4czp19C263Gz/88AP2798Pu92Ow/WHIrZnYh5kP5qIVc69e/dgtVpBRBgeHsbq1asxPj4Oq9UKq9UKi8WCs2fPKt1MZSENxWFZVnT5Z599RkajkYaGhvhlTqeTGhoaIrazWCwR2+QamohVypkzZ2jdunX0ySefRCyvr68nl8sVsezu3btkNBrp7t276WyiatDshMrw+/2wWq0AgG+//RZvv/02/H4/v97j8WDv3r38cyJCUVER7HY7Dh06FL273EDpb5FGCJZlaWhoKMY+DA4OksViISKioaEh/rEYZ86coTNnzqS2oSpES7GphLNnz2JkZARXrlxBUVFRzDoA+OWXX1BQUICWlpal+ogw3PPS0lI0NzfjzTffTGv7lUSzEwrj9/tRUVEBABgeHo4RMACcO3cOIyMj+Pjjj1FZWQkgdlSOsyF1dXV47733MDs7m/rGqwVlLwTZhVSWQWqdmH2Q4uuvv6YnnnhCtPM2MDAQsZ+xsTGyWCwUCAQSbnsmo9kJBSAivPXWW5L2gdtGGG0vXryIgYEB/PTTTxgeHuaXt7a2Ynx8HE6nM2I/drsdP/74I+x2e0rfixrQ7ESaScQ+ALF24fr162hsbOQHN2ZnZ2E2m1FYWAi32x2zH5vNhrm5OfT29qbkfagKZS8EuUX0ZT9RgsEgFRQU0KNHj4iIyGg00ubNm2lsbIyIpG3M/fv3yWg00szMzIrarXY0EaeJlpYWqqysjPC00eKTEuPAwADt27ePfz43N0d+vz+h4+aCP9bshAxQnG6F3++H2WxGQUFBzGU/2jJI1QF//vnn2L17N/+8uLgY69evT6htJpMJNTU1aG1tTWj7jETpb1E2MzAwQAaDgbxe74r2U1xcHNcSxMuKcNTW1tLVq1dX1A61os3FJgMUlUkAlrIGo6Oj0Ov1j72vyclJ5OfnY+PGjZKvSeROjq6uLuzatQvbt2/Hs88+m3B7MgHNTsiAUETR9iEZAUfvCwDcbjc/wLES9Ho9Lly4gNdffx3BYHDF+1MVSl8KMhWxS7jb7SaDwcBnDeQ4htxllm1tbWSz2WTbnxrQBjtkgrMPly9fTjr6SrGwsICtW7didnYWa9asWfH+KGxVDh48iCNHjuDgwYMytFJ5NDuxQjj78OSTTz6WfZCCwndymEwmWQQMLFmVrq4unD9/PnvqK5S9EGQmnJXgsg9y2YdoGhoayOl0pmTfXq83a/LHmp14TFpaWvDNN9/Iah+i2bBhA27evCk5NL1SsqW+QrMTScLZB65mIVUC9nq9eOaZZ2IELFfMISK+vqKnpyclx0gXWp44CdxuN06fPg2n0wmTyZTSY3k8HuzZsydmuVyz+3D7cTqdqKiogNFo5HPRGTeDkKJmJkMIBAJ87cP8/DwRJTZKthJMJlPKvHY0XH0FV2CUaWh2QgIKX1Ln5uawd+/emOxDKqOV3+/H3NxcyqM9h8lkwoEDBzK3vkLpb5GauXr1KhmNRsmImKpoLDa3RDrI1PoKzROLEAwG0drairm5OQwODkp23lIVjT0eD2pra1Oy73hw9RVCf5wJaHYiitnZWVRWVuLpp59GT09PhIApDb32YDCIkZGRiLkl0oVer4fD4UBjY2NG1VdoIhbQ09ODuro6vPvuu7DZbDHr09Fr93q92LJlS8pSd8uRifXHmogRin42mw0ffvghBgcH09ahEuP69euyVK2tBKn8sWpR2pQrzczMDFksFmpra4tYnuoUmhQGg4EmJibSftzo97uwsJAx9+dltYiXE2J09kEp4XLMzMxQcXGxom0QInZ/ntLnSIystRMkcrcFh5R9UHqkSg1WQoiYP1b6HImRtSKWOtnxsg9K09fXh5qaGqWbEZGFyQh/rPSlIJ1w9mF0dFTppsQQCASooKBAlaWR8/PzqvbHOTHYkejgBRDfhqSSoaEhmM1m2Qrg5USYP/Z4PKprY9baCY5k7YNSnq+3t1cVVkIKVeePhWH5t0e/8X/ZgMvlkqx9UFsve7m5JZREeK7UWF8RYSdW5a/CYmARq/JXKfWdkoVgMIjm5mY8ePAAQ0NDKCwsjNkmXsSlNFuK8fFx6PV61dYrCM+FGusrss5OTE5O8kXeV65cERXwcqTbUng8HlWl1uKh1+vhcrlQV1ennvqK6NAstBLR9kLMbkjZj3jWJFHbIrWd1HLXBy4ymUz0D+8/ItqsdjLlJ7xYluX/lCoXFSPmRtFoOxHveSKPk1kn1Y7lXv8r8yv+8F9/wMOHD9HR0YG1G9ZiMbAIQP0WaWFhARs3bsSDBw9i1pFCmZJ4CNvU0NAAq9WKhoYGRduUlJ0QE8NiYJEXTKrgjkkipZBTU1OoqKjA8//+PD744AOs3bA25nVqhHsvahulWw7hl6qzsxMdHR2YnJxU9ObSZUXMRbJ467m/VBMdla5cuYKmpiY4HA6cOHEi5ceXE+69xBOxGqOwkNWrV8PlcuHw4cP4+eefFWoVwNsJLspKRVuxdUrZiV+ZX/nsw1/a/oJ1/7aOX6dbowPDMHGPqQRS1qCwsBCzs7OqGv5Olu7uboyMjMDpdCpy/IhILPVhS4mbWx69Trg8mXXCiC+176m5Keyx7sGO53bgr86/RggYANggK7q/VFue5RATsNfrRVlZWUYLGADvibu7u5VpQKI9QDX08l2uUPbh5s2bouvVNoCxHPF+ATTT3ksgECCj0ahILXRCIlZawIFAgJqamqi+vp6f9yEb2L59u+QXMhOZmJggo9GY9iKmuB27dGQeoqGozsPExETE4IVer8+4aZbE8Pv9uHfvHoxGo9JNkQ2DwYBTp07h5MmTaT1uXBGnM/PAIfSOH330ERobG2OyD2rrtScLEWXUKF0yKOGPVVmKydU+PHz4MKWT9ikFwzDo6+vDkSNHlG5KSnA4HDCbzTCZTDAYDBHrKBUDOGk1LwkwMTFBO3bsIIfDoXRTUkYgEKCioqKs8vdCWJbl/XEwGEz58VQlYqfTqVgPN50MDQ3Ryy+/rHQzUo7T6aSjR4/yz1OVcVFFFVswGERjYyNGRkYwNjYWcwnKBkjQGe3r65Ocpkq4HWV4B7ahoQEMw6C7u5t/Lyl5Tyn5aiQBd9mJN61/puVM48GybNy5Jbj3mi3vOR35Y0VFnCv2QYja5pZIB6nOH6fdThARbx++/PLLrLUPUvT29mbNT28lSrL5Y0rScsgq4kQO/v3338NsNsNisaCrq0t1d86mGrXMLZFukskfMwyTnJDlCumJeLhctA9C1Dy3RDp49OhRSj5/2QY74iWwg8EgfykZGxvLqehLguS+2+3Grl27cur9C8nPz+frj+XUQco98eTkJG8fnE5nzn2Awi/3p59+igMHDijYGuVJSX2FXCFdzE6s1D5kS5qJQ81zS6QbOX8tdcV2gsKXS2HEScQ+UAJj6Jle6CNE7XNLpBuuvmLnzp0oKysT3SYRjQAidiJen5BEeozCgxARbx+sVmtc+5BNAk2Enp6enLQSYpoBgDVr1uDy5ct47bXXJOeviK+RpTt4ZB3syPXsQzwyZW6JdJPo/BUhY7m49FxgNRmWZSkimgJINkYuLCzg5MmTyM/Ph8PhyLnO23KIzS1BKpxTQikaGxthsVgSn7+CJUDHnTs2FImju0/JdKdu3rxJJpOJXC5X1nXE5EJNs+WokeXqK1giYum78LPFSJ2xwtoJNvI+ukW6Rm3tU0urRQR64cIFMplMNDExoQk4DnL2xLMVrr5C6velrx0DAZF/jLmNpliWICa9RZoiezlDJoGIhczPz9OhQ4eoqakpZ0efkqGgoCBrC+ATIdEAt9wVa6rdTDjeT0ShIHscIBy7RryzEKYl7nQchW2UsK10U4wdGR8fR1VVFWpqanDx4kVJ/0sZXgsrF8PDwzAajVl3i1UyJFoLIV1fwYKFD/1/H8Px2tB9iTpUo+Y4AIaJzE6wLEvks9Mb7f3UXg46PhDZG3Q4HLx90EiMeHNLaMQi6Y+n/kQm/Cf1h3tsvo5yAsxk9y1GzorJoh8nyqfxx9ES/I/ubWydGkVziQ4LCwuoqKhAXl4eKisrkZeXF+pdE0BaBzsuly5dQk1NDdavXx9ewqXmWamX5Dz379/H1atXcfv2bej1erAg3GndhNJ3Z/ltTO1TGDu1GQB/RlkQAM/xXtSM/h6ld6bxHW1DaUlI37du3YLBYEB1dTXydKtAxGgCDsN9maOXcZh3mgQCBkLiZQWPc5toq8EwDNauXYvdu3fj1q1b4aXT6P//WRwfWAQRgXx2rGouhbnDF1pNFLIKU+3mUI8PIEBHwDE+dHP/LEYl37R8RHxYluXPETc5tcZj4LOTSahHIuo/Dl6jOgBg7nTgvxG6mW+RZcEOvA6Ul6GUG/ZgAICFLmoYRAvEYQSGTBhdGYbhozTDaIMbj4uv/2/wHq9FVVhxLHyYug1eo3mYbkf5EeDD0VIAoRPvm/oODPNc5MWOdJpqpWBChkwHXeyQJ/9YFTeWZxx8VuLPleDOsqepFLYbwBvuUygJb8f38hZpitpfEiSUmcgQriHNtabYZDwAPq+pIU08myV6TsN65Yj5zY6wqkWDbvTyx6mzyGYGmhhU32qD74YNJQhle04y+3HpxTb4vrLxUYODtPqJpCEiMGAihJfUNY5zJAj/q51+8H6Y82mmV/ejBKGTrUM1OqfbUX7jNP6D60kL0AScPAzDgEAI/wdAQsTxT60u6t8cJ3yydNP9+PsNM+qrQ0XvnEAXn92HV14EvP+MFbHG48EwoUjM6VRTogwQEaav/Q2j5a9gf0nkKRWPtlp+WE40EcsAMdP49OMxmF7dj00xI0BTmLgB7CyLdsQacqGJWAZCVsKE+upNYMKJYUK4E+LuxSWYcfh3m4Wv4LfRWDmqnGQ70yDfbXjLX8X/lejAWQUGAMv042TV+8Cxazi1iQmvW4obWrdOHrRIvEJY+NDxzvvY+Up1OIUWOqW+jnKsYn6Hb9unQJeqAQBEnJC1UlU5Ec0TayQON11BxGlkAJS3YforG2IrspfQ8sTy8C8+722ggqvgmAAAAABJRU5ErkJggg=="
|
<image>如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为()
Choices:
(A) \frac{3}{5}
(B) \frac{4}{5}
(C) \frac{4}{3}
(D) \frac{3}{4}
|
\frac{3}{4}
| 69,811 | null |
\frac{3}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAABjCAYAAACsYO9AAAALtklEQVR4nO2dT2zb1h3Hv3Q8VFiwRR2CRcUONQbZI7Kg5baiUCQUUQ9DlfQQnVLfLKMAZa8HO4cAKVDAORQwiqC1NAwQ4sMUn1LnYhVIRBTophRootxsYEbsWOyUFtuUm5ReFFsWfztQlCmR1D9Sf80PQAR+1Ht8+X3f771H8sf3GCIi2Aw1Y/2ugI15dEQUEfUxYJj6Iwyh9/WzqSBGfUda+KIQISAclhXREdGNhYcZRLxeRDIEIvlI8qu4ZAvZe8QofAyDySefVLWgNWCGuYTts5Pyb0iXJPHeCGVq0jIU8YLAJ/Wz2HSBJPHQt3mSBynJ+mOikMDquSm4axLdmDoHYHsPYpcbn42MGP0Uq+CRvHVRc27yLA/FEXU9Ua2ymkzES9B4qAzHcQTAPjo4OI4z9EJvRM/atYxr9ReQWOURvKU9k3nyCDj3SZ2HymxtbYHsu5WOYBhGmyjuYRvAuSk9a9ei7U7FPWzzQWgcWIzi01WAD2pd26a/aEQU79/FUWdbTUV0ZhGPvBFcszXsDe4pyFMQnRmIGEVUfZug7Ye9VNMNZyLkBQzHQgVNUTYtY2S7TMRLQN38JMlrtEDNSYOBt5W7ClvEzmlou3pddMRgKoWYhmEYe2LTIWZtZz87HQFsEUcAW8QRwBZxBLBFHAFsEUcAW8QRwBZxBLBFHAFsEUcAW8QRwBZxBLBFHAFsEUcAW8SBxyiYWz7CAmC/TxwAmttORNQ3A6w9xEI1bkpAmEkgSLdsTxwOMniCK3i/IqAQjULEJM7yZzEJuzsdDoQEtq+8L4eKilF8+mQKbrixcGsBbtgiDgXi3jYeLU7K4+DkoiYa0Raxjzx48ADz8/NNfiXi/l1UP27KRLyagGKdCHCbbpJIJPD1118jkUiAZVk4nc7GGcT7uIsrWKvo5p66ogkLtj2xByQSCczOzuLVV1/F2toa3nzzTWxubmJ5eRmFQqFhXvH+XUAZDwHg4oJqhlqhJ7GTx5CNjQ0KhULkdDopGAxSPB6nfD5fPV8sFonjONrZ2WlguwxFvHXB3DrYIlpEsVhsKpyaUChE8XiciAxsVxM03FhIW0QTFItFunPnDk1PT7cknIKSR8Gs7WwR26ReuOnpabpz5w4Vi8WW8mezWeI4rkZoW8QekM/nTQmnxuPxUDqdrkkzazv72akBhUIBiUQCX331FR48eIBAIIDLly8jGAzC4XB0VOaNGzdq/lUwbTtTTUCFhUX1jXw+T/F4nILBIDmdTgqFQrSxsWFJ2alUivx+v+45s7Y79iLmcrmuCaeQz+eJ4zjKZrO6520ROyCXy1EsFiO/308ul6srwqlRxlAjzNru2Dx2e/78ORKJBNbX17G7u4tgMIilpSX4/f6uXvf27dtwOByYnp7u3kVMNQEVFhZlGdlstsbj5ubmKJVK9ez6Ozs7xHFc01msWduNnIjZbJZWVlaI4ziamJjouXAKxWKR/H6/5nZCD7O2G4nu9NmzZ0gkElhbW0OhUEAwGEQ8HgfHcX2r08cff4zLly/D4/F0/2KmmoAKC4tqiXqPW1xcpM3NzZ7WwYhGtxN6mLXdUIm4s7NDS0tLxLLswAmnkMvliOM4yuVyLecxa7uB7053d3fx5ZdfYn19HQDwwQcfYGNjAyzL9rlm+szOzmJ5eRkul6tn1xxIEYdNOIVIJAKWZREIBHp63RoRiQ5wqHqGxzCvYFxn7bhusLW1hbW1NSQSCTgcjqERTmFrawvr6+tIpVK9v7i2hy1RqbxPh232y7pFNWFzc5MWFxdpYmKCOI6jlZUVw0dTg4z6LX0ndGI7NT3vTtUe53Q6MTMzg1QqhYmJiV5XxTKuXr2KcDjcv15Dq6viiWW69xHo5GnQyV8pIQL7dO+jD+mepP7tSzoovyTHL1BXhpx+UD6gf6ZSNDc3Ry6Xi7g//oG+iN6kzL+f0kH5gCRtBbRlSCXV72rLltPLlTS53kf5ynXllE21eD02NjYoGAyaKkNXhnbya5NKVNr7nHw/AyF8j0pVQ8lrgDvm71V+V6ZS1bhlcpxGpQsuU6m8T/+oCPfaxBl6989+isVilMv9t6arliQjw5ZVv5PoUHpJJak+vT6/IpZS38rf1TqWVP8Xa8jlcsSybNNwjGZ0QcR7xJ8G+SqROZK0f2SozBfERysRO9JBxRvk4+Rp0DepFM39haff/PYM+f2KcP85Mp50oONVOoaVDvTFbZi/fixv9rd5/H6/JY/0LBcxGQY53v2CnlZTlNYv0aHagHWGBkBvv/02xWJ/ox//96O+oaWDui60kYgl/XTD/L0VcWlpiZaWliwpy6yI40dj4z4O8Q0Sfwf+9PklHAUZj+EEAxxKB2CYV1C942BOgJFKOMTRbchh+QCFwk947cyvUSbCOMMARCDmhJyPOQGGSvrn1DAMGKmMMsYrZUsgGgPTav4u8/jxY3z77bcQhMHYJUQVAc4A4lM8OQX83v27GsN8/9d38cszDvx8jAHD+BAV5azjzBiI9lGS9nHyNPDdd2m8ePET3nnnAp4+/RdK0j5KYDDOjFUvNz52AqADnXMSDqV9HBIAjNeUXZLKkCtklF/CoVQGgSBJJVDTvzunUChgfn4e8Xi841gby6nxy8pS0drFbct0KGiXLTbqEtLpNHEcR8vLy6a6iUFEHfRrFfUytEvttxgGi4cTlfH902141d8ENMDj8SCdTuPFixc4f/48dnd3rWpzfeX27dsAgFAo1Nd6aNDIWgkf55OVKXz5JZWkvabfBOgVRTQ6XpnNZoll2Y5iTZthZLuW8+umKivwqw8Tq/EXi0W6fv06+f3+tl7RDArtvKXvhO6I2ElBLVQklUoRy7KWjyndxsrbCT2GSkQiOQYzFApRIBAYCq9s9y19JwydiAqCIAy8V+bzeWJZtuuNbWhFJBp8rwwGg10NKlYYahEVBtErY7EYzc3N9eRaIyEi0WB5ZatBv1YxMiIqKF7Z6NuFbmL2LX0nmLXdQH6fqDyfdDgcWFlZab5MiIVcvXoVr7/+OhYXF3t2zZH+PjEejxPLsiQIguVl6yEIAgUCgZ5cS41Z2w20iETy2/NAIEChUMj0G/Rm12k36NcqRl5EhW57pVVv6TvBrO0Gckw04vnz55idnYXL5bJ0rIxEIvjhhx+wsrJiSXntMtJjohFWemU6nSa/39+z2wk9zNpuKEUksmas7MfthB5mbTe0C/S5XC4IgoALFy7g/PnzePz4cdtlzM/PY2FhYWg+FTDEosbU1y+Fc7kceTweun79esvdYv3SXP3ErO2G1hPVuFwupNNpnDp1qiWvfPbsGT777DPEYrEe1bDLtCV5MmIYotFuUd1iZ2enqVfqLc3VT/RtJ0fcoy7CQmeH9nY8UUD40t1utCNLYVm2oVfeuHED7733Xm++pTeFGwsPM4h4AT4pLx1NSR6rl5SQURWttpYk7yWvlyedhtCgNfWXeq9Mp9Pk8Xj6XS0NxrZLEg+VzTMR8uqsfdqS5TMRL/HJugJbrkj/WV5eprfeeoveeOONgfz+0dB2SZ5Q7T8r3atOf9rc8pkI8ZGM3AoaRLw5nU5N/20frR1Op9PA9F7V74xDRpt8ZCoiehO4dssNiADOTRkGD+fz+cZF2bTJ0VYKC25AjPowOekDMg/bW8i9tiXou7JNl9D0fEniAfLquKPx7FSM4ibW5FlRZWbkrd+QYWhosPOZL4r6yd4goNlKQdzDNqDZ2AQw2hdDjMI3A1xT+a24t219TXuGMl33Vnd6URpmoyGif8hd6RVlhy8ICE8u4hF4BC/q/LzeNZN8/UBad9M5tF1qkvhq95SkSCSj+neAqNlKobXPKCx7nzjwCGH49q7h4YIbYtSHm1MPcUuvVQ8hI/HstBXUO5/pbHw21BwTEdU7n2UQ8Z6DzvxgaDkeIlZ2PpPnCW5MXTmLEXLE4yFi/XT94sIC3BARDQ/m7UW7HAMR66frclrUN4m7Z1v7fH3QGe3ZqRAGc2nV4KQXEb1HWEPI/wFhOBmTSHj8LwAAAABJRU5ErkJggg=="
|
<image>如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 69,812 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAABwCAYAAADWrHjSAAAVJklEQVR4nO2df0xT19/H3xcU3OzWEW9ijdenmxQpKyYoLnGTBdnK8JuxrIskmA2Xku+zsdEl62bNNLJoFv4gESfJEF2MGSYm40nYU3xk36HWWTN9ginLSJ4CZRSClm+oqWY66sRZ+nn+gF77i9Iftz+QvhJCe+6555ze8z6f8+Oeez8MERHSJAYCCASGYTBw9ghGZJ9DpWCSWqSMpOa+1GAABgwIg9CqdMkuDYC0ABKCj5FlgKOfHANTXo4NiuSVyUNaAHHHDYZh4JFA19caULkSboMrqaXykBZA3Jm9xAwADHbhAsqxJ4/BJeUGvIjk9v9AWgAJRXPsIto+V8HNAMoNeckuDoC0ABJG19catLW1gWEYZL74TrKLw5MWQCIY7MJFKoebCEQzMHc1Y8MLuUiFCfiyZBdgIYhm582pm64b87UjIgIzdBaM9gLoQttcaAZ+t44CyEUcflbEMKm4EBRr5dy7dw/9/f2wWCyYnJyE0Wjk0x0bG8PExIRPfI7jkJubCwBYvnw5tm3bBo7jkJeXh+LiYohEovnLCvBDOc+F9Hw/oimHrs0AANCb3VApGGjeYNB2MQMM3Hhd04yLrXui/p1CkJICiJSJiQn8/PPPMBgMuHz5MiYnJ1FSUoJ169YhNzcXL730El+Jzz//PKRSqc/5N27cwPj4OBiGwdTUFEwmE0ZHR2Gz2XD16lVwHIeysjIolUoolUqsXr06rHJ5xOEGISMFRvzBWFQC8BSVYRhYLBacOnUKXV1dcDqdKC0tRVlZGUpLSyGXywXNd2BgAEajkf9jWRZVVVWora3F+vXrFyg0kKJ1PwstIhwOB504cYKKi4tp3bp1pNPpaGhoKOHlMJvNpNVqSSKRUElJCZ08eZLu3r0b1rlut3vuAxHRTNzKGC4pKwD+QhHR5OQkabVaEolEtHv3buru7p43bqRpx0pnZydVV1eTWCym/fv3k8Nx53E+Qc9IfqV7k7ICICKy2WxUV1dHYrGYdDod2e32Bc8RsnLDSdNzxGa7QRqNhsRiMWm1WrLb7YECmHFTqgkgJdcBnE4n9u/fj82bN2PNmjWwWq04fPhwWIOveEwZQ6XpOcJx/4HW1lYMDw8jOzsbGzZswH/+8594+PDh48gZDFJt6SVlSkNzA7yuri7k5eXhjz/+wODgIA4ePAiWZZNcuvC5ffs2fv31V4jFYnR2diI/Px/nz5/3vSMYgnDjCUaSLRCPzWYjpVJJRUVF1Nvbm+ziRMzdu3dJp9ORWCym5uZmcrlcVFFRQR988AHJ5XKqrKwkh8Ph053Eo7uKlJQQgMlkIolEQo2NjckuSlQcO3aMWJYljUZDDoeDD7darcSyLN28eZMaGhpIKpWS2WyeN51kCCLpAmhvbyeWZamnpyfZRYmYq1evUlFREZWUlJDJZAoa59ChQ1RVVUVEszMGlmWps7MzkcUMSUIF4K1wl8tFGo2GZDJZyFaRithsNqqqqiKO4wIq078VT09Pk1QqpfPnzxPRrLXjOI727ds3b/qJtARJsQB3796lHTt2UElJic8CSir0ifPhdrtpenqaDh48SGKxmBoaGmh6ejqsc7u7u0kul9ODBw+IiMhut1NxcTFVVVXR1NRUPIu9IAkXgNlsJplMRnV1deRyufjwVK18T7k6OzuJ4ziqqqoim80WNE6o81Uqlc8YZ3p6mmpqakihUJDVao1DycMjoQLo6emhZ599llpbW+eNk2pCMJvNVFJSQoWFhXT16tWo0xkfHyexWEzj4+M+4U1NTSQWi8loNMZa1KhImAAGBgZILBanxGBvPpF5hzscDvrkk0+IZVlesLFO4ZqamkilUgWE6/V6Ylk2KZYgIQJwOBwkk8lCtvxUorm5mV/SDXWTJ1IRTE9Pk1wuD7iXQUTU2NhICoViwTGB0BYyLgLwH+0rlUrSaDTxyCoq3G530AtpMBhIoVCQUqmM28ykp6eHpFJp0AFkTU1NUAsRT+JuAbRaLSmVSp8BXzII1XKsVitVVlaSVCql7u7usLqIWPLftWsXHTx4MCDO9PQ0bd26NeixeBFXAbS3t5NMJvNZHUvWIC9YvlNTU9TQ0EAsy1JjYyM9fPgwZHyhsNls8/b5NpuNOI4jvV4ft/y9iZsAent7iWVZGhwcjFcWMdHe3k6rV6+mmpqasG4zC01TUxPt2LEj6DGTyUQsyyZkgSwuAvCoOBVG/P6YTCYqKSmh4uLimKZ1seJyuUihUAS0dO91B6lUylvPYBZJCCsluADcbjcplUpqamoSOumYsNvtpFarSSKRUHt7e7KLQ0RERqOROI6bt+tpaGjg7yPEC8EF0NHRQcXFxXEd9PkrP1RLcLlc/LROp9OFvXcvUVRXV897X8AzbQxmSYUaowgqgD///JM4jqO+vj4hk42a7u5ukslk9NZbbyV1uTUUdrudJBLJvJtbDQYDyeXysO87RErMAvBWok6no7q6uliTjJnR0VHasWMHyWQy+umnn5JdnAVpaWkhpVI5b6uurq4OulcipcYAns0PyTSx9+7doz179hDLsvyunMWAy+WioqIi+v7774Met9vtxLJsXGYrgglArVYndAHDn5MnTxLLsqRWq33WHRYLvb29xHHcvEvBn376KWm1WsHzFUQAHoUmo/VfvXqViouLQ+7KSXU8plytVpNOpwsaJ17XWBABaLXakDtc4oHdbqeqqiqSSCTU0dER1jmpdqvZH4fDQatWrZp3Aaiuro63sikzC3A4HCQWixOymubZldPY2Egsy1JDQ0PSd9QIhadCT5w4QaWlpUGPe8ZZQv7mmAXQ0tJCarVaiLIsiF6vJ47jqLKyMmBXzpOCy+WizZs305kzZ3zCvXcWCbmQFZEAgpmdoqIin90snjjRmqhg55nNZlIqlaRQKMhgMESV7mLCZDLR6tWrg/b3er0+qIWIlpgswG+//UZSqVSgogTicDj45+1aW1tTvg8Xkrq6uqCjfpfLRSzLBmwti5aYHg07ffo01Gp1NE8jLRjn2LFjKCgoAABYrVZoNBr+Gb1wzl/sNDY2oqOjA/39/T7hmZmZqKmpwXfffSdMRrGoh+M4wZ/PD7UrZylZAKLZtY2tW7cGhPf29pJcLhckj6gFMDQ0RBKJJKJzQlVgsIctFrrpsxQEsXXr1oBBn8vlIpFIJMjMK+ouwGg0Yvv27RGdE+wxa6fTiS+//BJFRUUoKiqC1WrFzp07g8Zf6PuTyPHjx7Fv3z7cu3ePD8vMzERJSQn/8qtYSKgA/Pnhhx+Ql5cHi8WC/v5+HDhwANnZ2TGl+aRRVFSEnTt34osvvvAJ3759Oy5fvhx7BtGaDolEQoODg1GZ4b6+vpTYlbNYuHv3Lq1Zs8ZnqVuocUBUAhgfHyeWZfnv4YrA4XBQXV0drVq1ik6cOBFN1kuWM2fOUHFxsU9YdnZ2zPcGouoCrFYrFIrHL7tfqC+emZnBkSNHUFBQgGeeeQajo6Ooq6uLJusly3vvvYenn34a3377LR9WUFCAkZER/jvNTY8pgmlyVAKwWCzIywvvbdeXLl2CXC5HT08PfvnlFxw+fBhisTiabJc8x48fR0NDAxwOBwBAJpPBYrEExItkcByxAIgIVqt1wZcxjo2NobKyEh999BFaWlpw8eJFwV/guBTwbs0KhQJqtRr79+8HAMjlclitVv54NLOiqC3AfJXpdDqxd+9ebN68Ga+++iosFgvefPPNaLJJg8BKPXjwIH788Udcv34dcrkcAwMD/LFITL+HiAXAMAzsdjvWrl0bcOz06dPIy8vDnTt3MDw8jC+++AKZmZlRFTCaH7MUEIlEOHr0KD766COsWbMGt2/f5o9FYwGiel280+nEM888w3+/fv06NBoNAODcuXPYsmVL0PP8C0gh3gq+FBZ5omXXrl04deoUenp6MDU1FVtiRI/fdllfDgJ8/5q7zAHTPIlEQna73edhi9OnT8c0HUkTGUNDQ5STk0MymSzw4Fx1dTXXz9VjBqH8YyL3ANXXN/tEzQAABm4AQOt5N+rLGRzRm0FE+D/9Yex9ZyPODrm9JOPGn3/+iba2NuTn54PjOIyMjOD999+PTYlpIkIul+Pdd9/F5OSkV+hcPQ11gWEYtI2tB815KaGWN8BkKID1uT7pzHUBc0MBZgjDF1/DxxdeBAAUbpDNmmnM9uME4F8//oS//voLX331FWpq3kVmZiaam5tnXaOl++2EkpWVhfv37+PatWvYtm0bgAwQBvGG4h0oNc047+2M4kUVmj9+HZD5Tt99xgC/6f8FRrMDuY8eAcuzoNHOJvT2rB7wv9d+gclkAjA7GuUVh/SgLRlkZ2cjOzvbxwPK2a+PwcCUYaD184D4ubJ8QPaib6B3797VXE/M8mV8/981ELz/EYlEQTcmLoXbs6mE5ylsD24aICVA9c36x2EL1EmG91j74oU2/Nev9+Emgv5IPVQKBl0DxPvC8fwXiUS4f/9+gMLSI/f4Q16W1ul0+vgzYgZ/hwHAei8z7+21NBiP1wEGu3CMPkalfPYV6G9/rsFry5ehp+e/Mf3obwDA9KO/8eDR3xA9J4bT6QQAPJgL88cTHumxcOKFCvcv00J5LDa8G5nT6cTKlSsD4rj9vodqlrwAunouor7iDf50ZuB3/PzIhRfWy/DU8iwA4P+LVjyFqan7ePDobzy1PAtPLc/yudDe4ZEc88Y73nzh3ud7//ec4/n8pInAw/379309mr2YDyWAcetIYOTBLhw5OxAQnOExKRd+asMb/1DBM5IsL3wHwOt4o/Lxku/sBV0GiUSCf//bxofF+wL7iyBUHO+44Zy3GPHU2cTEhJ8vhQJojtSjTfeOT2UPnD0CRnsBe94OdFeeMfg/X4NhGBw3ACoFg5UrVyKDUcBQ/jGIDNi0PNuvgjN8bkJ4t8Y0icHTDYyMjKCwsNDnmOrzYzB3NUOnKgTDMGAYBtqLAF1om10T8EtrmeLtPSD3Hjxw/Y0VyzLx4JELT2dlh5zWyWSygO3K3qZXaOKZdqpDIZbLBwYGoFKp5iKC7+wVb+8BkdcawFxVBkvHy7c5MO2awdNZ2Y8jz53o6Uc9lVCQL8fIyCgf7l9B3uGRHPO2NJGmHWzQN9/nxUSomZXVakV+fj4AgEKN9B5XZeAhIqJQ/m8BN4gYTLse4anlWSAAN2/cwJYtW/iNCWmSw4oVK3Dr1iSeffY5AEHEEobTygyff0HwVP6KZcsBmk1PKpVi2bJlQXejpEkM169fxwsvvACxOIfv6wH4NvUwlmVC7gd48OhvTLsezablt6BQWlqKK1euRFjsNEJhNBpRWloaeCBEpQfrBjIeh/ovHwSO8L0tTFlZGYw/C7AvPU1UGI1GlJWVBT/oX9OeQWCQqFE7j7ZYLCgrK/O7HRm76/c0vgS7njMzM3juuecwMjICiUQSU/pRPxkkl8t9xgEeHaUrX1iCXc++vj5wHBdz5QMxeg6tqqpCR0cHAKT3AySQjo4OVFdXC5JW1F0AAPT390OlUmF8fFyQwqQJxL8LmJmZgUQiQV9fH6RSaczpR/VcgIeioiLk5OSkZwNxxL8LOHfuHBQKhSCVD0S5LdwbtVqN9vb2oHHTXYLwnD59GrW1tYKlF1MXAAB37txBbm4uhoeHw3LvniZ6RkdH8fLLL2NsbAwrV64UZMAds/v4VatWoba2Fi0tLTEXJk1oDh8+jPr6eohEIsFmWzFbAGD2vvSmTZtgtVrTD37GiVu3biE/Px83btwQ9BrHbAEAgOM4VFZW4ujRo0IklyYITU1NqK2tFbyBxWwBPNOU0dFRbN26NW0F4sCtW7dQWFgIs9ks+DhLkC7Aw969e+F0OnH8+HGhkkyD2WcBN27ciAMHDgifeCz70v2ZmpoiiUSyaF/bnkp49vMbDAaSyWSp6zLGn0Q4jXqS8bi19bwZ3dtpVDwevIl5EEh+PUh1dTVycnLQ3Nwca9JLEs/mDoZh0NjYiMLCQlRUVPDHBEdwSVFqO45cLPg7jowXcXcdK/S7hJcCi8517Hx9UzDn0UuNSPvtRDuPFnQaGIzPPvsMZrMZPT09Pu8LSvMYmltLefjwIbZv346KigocOnQoIXkLIgAKsQ1sZmYGFRUVKCgowDfffBNrVk8ENM/uqd27d8PpdEKv1ye0MHHH4XCQTCaj1tbWRGSXsoTqDhobG0mhUCTcCVZCBEA06/dHLBanZwZB0Ov1xLJsUvwbx0UA8ym9p6dnSfr/CUVTUxOJxWIfx1uJJGEWwIPZbKa8vDzSaDQ0MzOT6OxTAs8qn1qtJoVC4dPyvRtGIhqJILeDwxhn8J8VCgVMJhNGR0fx2muv+XjCWIxQFGPoO3fuYNu2bZiamkJvby9ycx+/ui3R2+oTIgD/HyUWi9Hd3Y3CwkJs2bIFZrM54jSjufDxINIK6+vrw6ZNm1BeXo7Ozk7fN3zEmHZUxN3GBMHbtLW3t5NEIonrDY9UobOzk1avXs07xUoFkiIAf0wmE0kkEmpsbJw3zmIWhsvlooaGBpJKpWEt7ybytyakCwhhfQAAW7ZsgclkgtFoxKZNm3D9+vWAuIv1kbMrV66gsLAQ/f396Ovr8/G0khIkTGphotfrSSKRUF1dnc89hGCtIpWtwuTkJNXU1JBUKg177cN7L0CiSKoFCIZKpcLIyAhycnJQUFCAQ4cO4fbt20EtQCpahVu3bmHfvn3YuHEjZDIZhoeH+fv5C+G9FyBhJExqEeJ2u2liYoI+/PBDEovFpNPpBPGUGS8mJiZ4R9darZYmJyfDOi/ZVizlLIAHhmGwdu1afPvttxgeHobL5YJMJsPu3btx/vx5n7gU5pQw3HiRcPbsWezatQsKhQIikQgjIyM4evRo2I9uJ92KJVV+EeJwOOjEiRNUXFxMHMfRvn374rLhZKFWaTabSavVkkQioZKSEjp58iTvvy/ZLTpS4r4fIF5YLBacOnUKXV1dcDqdKC0tRVlZGUpLSwX3TjYwMACj0cj/sSyLqqoq1NbWYv369YLmlWgWjQAoxJ6DiYkJXLp0CQaDAZcvX4bdbserr76KtWvXQiaT4aWXXuJX3J5//vmAR6tv3LiB8fFxMAyDqakpfqn65s2buHbtGjiOQ1lZGZRKJZRK5bwPZ4QqY6qyaAQQCffu3UN/fz8sFgsmJyd9vGyPjY3BZrP5xOc4jl+Pz8rKwiuvvAKO47BhwwZs3ryZF89irOCFeCIFkCZ8UnYWkCYxpAWwxPl/k+juCG7lyVQAAAAASUVORK5CYII="
|
<image>如图,△ABC内接于圆,∠B=30°,∠C=60°,AC=3,则此圆的半径是()
Choices:
(A) 3
(B) 6
(C) √{3}
(D) 3√{3}
|
3√{3}
| 69,813 | null |
3√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAKIAAACMCAYAAAD/VHJdAABP60lEQVR4nO19d3yUVdb/d3ombTJJJoU0kkAoEQgsJYAQpUhfASkCKkUUXVFxDcJaXt+XXd11cVfXBr8FBVdERYrsAkpZIaGGFnpPISEhhdTp9f7+COdyZzJpEBSU8/nkk5lnnufe+9x77unnXAljjOEetBjsdjtcLhekUimcTickEgnkcjlkMtnPPbS7EuQ/9wDuNnC5XAAAh8MBuVwOhUIBhUIBALBYLPcQ8SZBco8itgzMZjOkUinkcjkcDgcqKipgMBiQlJTE72GMQSKR/IyjvPtA+nMP4G4Cu90OuVwOlUoFl8uFJUuWICUlBW+99RZyc3P5ffeQsOVwjzW3AKRSKUeyo0eP4uOPP4ZSqcTEiRPh6+v7M4/u7oZ7FLEJIJkQAGQyGex2OwBgy5YtuHTpEkaOHIk+ffogIiLi5xriLwLuyYjNBLvdDoVCAavViv3792Pq1KkICAjAF198gZ49e0IqvbenbwXuzV4TQBSRtGG73Y6lS5fi6tWrePnll9GlSxdYrVY3ynkPWg73ELEJkEqlMJlMnOLt27cPP/zwA1JTUzF69GhIJBKo1ep7FPEW4Vc/e82hZCqVCgBw8uRJ/O1vf4Pdbsdzzz2HgIAA+Pj43O4h/irgV4+IRMkYY2hIXJbJZKiqqsK//vUvbN++HSNGjEBaWto9TbkV4VePiAQSiaRB+5/dbkd+fj42btwIPz8/TJs2DUFBQZDJZDAYDD/xSH+ZcA8Rr0NVVRWsVisAwOl0wul08t9cLhc+/fRTXLx4ES+++CJGjRoFpVIJl8t1jzW3EtxDRNS57bRaLfcZW61Wbi90Op347rvvsG7dOiQkJGDQoEGQy+VgjHFX3z24dbiHiLghJxIl9PHx4ZSuoKAAX331FUpKSjBlyhQMGjQIjDH4+PjA6XRyhL0Htwb3EBFwo4QSiYQjpt1ux969e/Hf//4XqampmDZtGgDAZrMBwL1Im1aEe4iIOkrocrng7+8PiUTCv587dw6rVq2CwWDAY489hnbt2sFgMLgpNYTEre2g8mzvl+4AkwJ1wjhjDC6X61fpISAfssvlgs1m49937NiBrVu3YtCgQRg5ciQUCgVn3YwxmEwmPl8ict7KHNI6eGrwLYnouRuRllNEcfCixvhrAGLFVquVs92srCysX78e0dHReOWVVxAXFwcA8Pf3B1CHbDKZzKtHpbleFm8II4oGNwuEtHcTUfH6xr+2eDqr1Qq5XA61Wg0fHx/Y7XasX78ee/bswaxZszBs2DDYbDa+sCaTCTKZDCqV6qaVldsRPEvjo/93k9tRCtQJ5U6n0827cDftplsFhUIBmUyGyspKKBQK7Ny5EytXrkRKSgrGjRvHqZ9EIoFMJoOvry+sViuP1hbnynPezGaz23eXywW73e5GDcl+2RRLtdvtXIQQgZ6XSqX1NgbJu97W807ifHLAfefQLr0b5YybBavVCrVaDY1Gg/LycnzxxReoqanB+PHjkZKSwu8jtq1Sqbj/WWyDzDr0XSqVQq1Ww2Qywel0wmKxwGazwWazgTEGi8UCo9GIgIAAuFwubr+Uy+UICgpCQEAAlEolrFYrfH19uUuRnqWELXEsMpkMFosFLpcLKpWKh64BNwJ76e9O0vrrISLBr4k9E4tVKBTYuHEj1q9fj9TUVIwbNw5AHVIpFAp+HyEZZfHRby6XC2azGTabDXq9HleuXEFhYSEqKipQVFSEM2fO4Pz586isrAQAnvdiMpmgVCohl8uhVCqhVqvh6+sLHx8fSKVSaDQaBAYGon379khJSUFKSgratGkDhULhplxJpVJOsV0uF7eLyuVyLnvSdXH8dwJIGGOM0iFFuFMG+FMAYwwOhwPFxcWYPHkyTp8+jZUrV2LUqFGQSCSc4jgcDr6wRF2I2lgsFuTl5WH37t3YvXs3Ll68iNLSUphMJgCAr68vtFotwsPDERcXh9jYWAQHB3NklEqlcDgcMBqNqKysRHl5OUpLS1FdXY28vDwwxmA2m2G1WhEYGIju3btj2LBh6NmzJ1JTU92onJjSQLKo53reaXKk3JupAMAdtVtuN1gsFsjlcnzxxRc4fPgwpk2bhiFDhkCpVEIqlaKqqgr+/v5QKBTcpedwOGCxWGC327Fx40Zs3rwZu3btgl6vh1wuR2BgIHr27In+/fsjJSUFOp0OERERCAoK4uYfs9kMs9kMnU7Hx2K32znCO51O2Gw2mEwmlJaW4sSJE9i9ezcOHDiAvXv3IiMjA2q1GklJSRg9ejQmTJiAjh07cluoTCbj1FKU/RUKxR23thLGGBMF2TttgD8VnD9/HgMGDIBarcZXX32F3/zmN1CpVLDZbFAqlRwp1Go1zGYzDh48iO+++w4ZGRnIycmB3W5H+/btMXbsWAwbNgxxcXHw9/eHRqOB1WqFSqXiifgkBtBc06YntgncMJTTNYvFwimn0WjEsWPHsHXrVuzfvx8VFRWorq6GUqlEv3798Nhjj2H48OFcPhXD1UiZofYJYX92YL8icLlcXq/r9XqWnp7OALCFCxcym83GLBYL/038nJGRwZ577jnWrl07FhkZybp168YWLVrEtm7dysrKypjFYmG1tbXMarUyxhiz2Wxu/TocDmY2m5nZbGYWi4X/OZ1Oxhjj/+kz9S1ep3aNRiOrra1le/bsYW+//Ta7//77mUajYYGBgWzw4MFs1apVzGw2M71e7zYHDofDbTwtmavbBb9KRPSc5E2bNjG1Ws169OjBjh07xiwWC3M4HG6Lv379ejZmzBgWEhLCfH192f3338+WLVvGamtrmdFoZDabjTmdTrdnXC4Xs1gszGaz1WuPwBPxbDYbv5+esdlszG638+ve3kGv17P8/Hy2detW9tRTT7GIiAgWGRnJRowYwfbt28euXLnC22sI+X5O+FUgokjhTCaT229lZWVs8uTJTKlUskWLFvH7iFJlZ2ezCRMmsIiICKZUKtmYMWPY+vXrWWFhIb9XBE9kux2UxbNNm83m9r2yspJt3ryZTZkyhfn6+rLg4GA2evRolpWVxRirQ1qikjabze2zOD9Go7HVx94Q/OIRkRaN2J/T6XSb4DVr1jAALDU1lV24cIExVrdQBQUF7Msvv2SRkZHM19eXPfbYY2z79u2ssrLSjbp5o3K3Olbxc3PaF8cifi4qKmL79+9nDz/8MIuLi2NJSUls6dKl/LnKysp670Eb0BO5bzc0iog/tZxwO4GootPpZLW1tYwxxs6ePcsGDx7MfH192VdffcUpQ3Z2Nps8eTJTq9UsOTmZrVmzhuXn5zPGWD32W11dfdPI2JLnGlsLEZnMZrMb6yWEXLVqFRs8eDALDAxkQ4cOZTt37uRs3+FwsNraWjd51GQyMbvdflPvdTOA1tzRdyqI7Jaxuomurq5m8+bNYwDY5MmTWWVlJSsvL2eLFy9msbGxLCIigs2bN4+dOnXKrS2z2cyqq6uZyWSqJw96gtPpbNXN3Jiy5SlrEpKJrDY3N5e99tprTKvVsri4OPbJJ58ws9nMGKubG4PBwJHY4XB4FT1uF/ziWTNjNzRDkd2sXr2a+fr6suTkZJadnc0uXbrE5syZw0JDQ1lcXBxbtmyZm7ZcW1tbj9LQ4v/cnIPGISo4BKQwiYrK9u3bWZ8+fVhoaCh79tlnWWFhIb+fRA9qrzn9tgbcNYjoTX5q6HdvYDKZOCIWFRWxCRMmMADsgw8+YPn5+eyJJ55gANiYMWNYbm4uY6xOkaFnaEGJgojtesLPwWWIApJZyJumbjAY+OY6f/48e/bZZ5lMJmNpaWls+/btXtv7qTbZXYOIjUFTC08yEH3+/PPPWZs2bVhCQgL7y1/+wiZNmsTCw8PZ888/z6mDSD1FZHM4HEyv13OEvBNEm4YUDFEBqa6u5tdp7GVlZeydd95hOp2ODR8+nK1fv54/YzKZOCX9KeAXgYgEGRkZLCcnp951h8PBDcylpaWc+vXq1YvFxsay6Oho9sYbb3DWRotKVIGxusUzGo1ubLChhfq5WDWJC6I9UtS+SZkhqkj3rF+/nsXGxrKuXbuynTt3csSme34KuCsQ0ZuHwZNFlpaWMgDs2LFj/BopFOLELl26lAUHBzOVSsUAsK5du7Kvv/6alZaW8vbNZrMbwtH1n1sWbC40JcYQiBQzOzub9enTh+l0OrZlyxbGGONUlLRnQnCR+raWQnPHI6Kne4y8DIQsRLlefvllNnDgQDd7ociOGGNs7969rFevXhwJ+/Xrx9avX88qKyv5Pd6oyi8ZCBlLS0vZ3r17WVpaGouIiGD//ve/mdPprGfsFhFP5BC3Cnc8IjLG6tm3CAhJV6xYwTIyMhi5zgl5RLNGWVkZe/3115lMJmMAWPfu3dm2bdvc2jYajZzSepovmkMNPW2MP5X82NTYmkvJbTYb27VrF4uLi2PJycns7NmzzG6310NI+uxpNrqZPgnuilAbikgRKyuw63F2VLs6OjoaAwcOBHAj1o4CWS0WC06fPo2tW7fC6XQiISEBf/jDHzB06FAeVWO3292ilj1D65sTKCyVSt2il36qSKaGxsauh341NnbGGK/fYzAYkJaWhk8//RQlJSV45ZVXUF5e7paCoFAoeMqCv79/gzk7LQ6sbhHa/kzQGGV5+eWXmcvlYjk5OSw9Pb3eM06nk1NDAEyr1bIPPviAMcbcFBFvfYqy0J2gHd8uEEUQsi689957zN/fn82bN4+ZzWZms9lYRUWFm4xOyh3BrfjZ7wpEbAhWrFjBAPA/ERFF+XDfvn1Mo9EwAOx3v/sdZy2EgKRRE+sXkfin9C78XECI6HQ63fzP8+fPZzKZjC1evJjfV1ZWxhirU2BaMyjijmfNDWUTEktm1zMPMzIykJyczH+nwM8rV67gs88+Q01NDSZPnoyXXnqJ53T4+Pjw/BOgLjmKxAAqOkDt/JJBPEFLq9Xya/Pnz0ffvn2xZMkSHDx40O1go9Y+ZeuOR0SgPjLm5uZi5syZmDFjhts18X5K+czIyMDy5cvRpUsXjBs3Du3atUNNTQ1HPoqcBsATj2hRKCKagP1CMxtJlibEojyb4OBgLF68GEajEe+//z4uXrwInU7HMxVJVmwVaDXaehtBNKFQJDUAbrweOHCgG3smllFaWsp69OjBALDFixez6upq5nK53Oxh98A7iPLd66+/zlQqFVu8eDEzGo1usnNrmbfueEQkxGkp6PV69sILLzCVSsVGjx7N9u/fX+8eCtu/B41DSUkJ69WrF4uJiWF79+7l11vTxnrHs2ZKhWQtZIvnzp3Dtm3b0K5dO8yaNQudOnUCqwt744nsDoeDsxnP9hur3tDSsdztoNPp8Pvf/x4GgwHLly/H5cuXW72POx4RCZqyS4nIceDAAXzzzTcoKCiAUqlEWloaNBoNT4CnCgiUFO/ZvmcqrZht15yx3K3QkGJoMpkwadIkzJ49m9cEAupkarFsya1s2LsCEellPevIiCAix5EjR7BhwwaYTCaUlJTg448/RnZ2NmQyGfz9/WG1WjlVpAR5ERoyRP/SU20bej+VSgWpVIopU6YgODgY69evx5UrV3hRgIael0gkza+h1GpM/jYCKR+eMok3g2lpaSmbMmUKA8DUajVTKBRMpVLx9Eoy2HpGLzcX7pbAh9YE0Wb4hz/8gQFgX3zxBWPsV6SsMMa4Abo5Wu7atWtZSEgIi42NZZMmTWJarZap1WoGgMXGxrL/+Z//YdnZ2a0WT9iQb/mX5IkRA2yPHj3KdDodGzZsGCsqKmowTVaE5mzeuwIRGXOnYKLphVxMer2eVVZWsrS0NAaA/c///A/T6/Vs/vz5DACLjIxk0dHRTCaTsZiYGPbWW2+xwsLCW97RvwYKSXNEuToLFy5kANh//vOfVuvjrkBEMUiTdp+IQBSg+v/+3/9j/v7+LDIykmVnZzOTycT279/P4uPjWVJSEps/fz7r168f8/X15SmkW7duZRUVFW79MHYj9o6AKiaI8Yl3U4zirYDo8nQ4HOzs2bNMrVazxx57zM3NR7+LOULeig54g7tC+qa6MFScyLPwpFKpxL59+7B8+XIYDAZ06dIFHTp0gFqtRqdOnTBhwgRcuHABpaWlmDp1Kp577jmMGTMGly9fxtixY7FgwQLs37+f18jW6/Ww2WzcpWUwGODj4wN/f3/IZDLuVqTIHQL2CzXr0Ds6r9fJCQkJwUMPPYQTJ07g8OHD9e4XrQyec9KQxeGuQEQqtSaTyepVsmKM4dq1a/jyyy9x6NAhhIeHY9KkSVAqlQCAgIAADB8+HPHx8Thw4AAKCgp4yNj48eMRFhaGL774AlOmTMFTTz2Fs2fP8sMeqTor1c02m828gDuFjFE/wC/XrOMZGqfT6TB9+nRcuXIFO3bsgMVicbufkI/80c2xNtwViEgvRovOGHMrD7dnzx788MMPAIDExERMnjwZZrOZ+0EHDRqEuXPn4tKlS8jOzoZCocC5c+dgMpkwatQoTJs2DREREVizZg1mzZqFDz74AIWFhRzpzWYzLBYLL6BJpd5E08UvGcQjPAgZhw4disTEROzfv58XHiUgDtaSjXlXnN8lvhS7XlSTJqe6uhq7du3i1v527drBz8+P17222+0oLCzExIkTsW7dOmzfvh1JSUkYO3Ys9Ho9jEYj/P390b17d6xbtw67du3C8ePHcejQITz77LNITk5GQECA28kDADiSUom5XwNQUKxcLoe/vz9GjBiBzz77DDk5OYiIiODzQfUZxXlpqt7mXUERPWsJsuvn4Nntdpw8eRLffvstACAsLAyDBw+GzWbjdQhlMhni4uIQFRWFmTNnQqvVYufOnTAYDLBYLPDx8UF5eTkYY+jVqxdmz56NHj16YNWqVXjsscfwf//3f8jNzeUI6FlplSJVCLwZcD2r/d8M/JzyJ727TCaDXC7n7zFkyBDY7XYcPHgQer3e7ZmWnnBwxyMiLQC9kCiXXbhwAV999RWuXr0KuVyOjh07YsCAAbxyP7FmvV4PxhgmTpyI0aNH48yZM9i1axcsFguOHj0KqVSKiIgIxMTEoHPnzhg5ciRSUlKQl5eHDz74AFOnTsV7772Hy5cvQ61WQ6VSwWKxwGw21zudtNFdfwuemabSARr7fKtArJY4Eyl1HTt2RIcOHbBnzx7Onj3f0dnMkwvueNZMlI3qQosHOJ44cQJr1qxBSkoKSktLER4ejqCgIKjVav683W6Hn58fpFIplEolZs2ahS1btmDLli3o0KEDAgMDUVlZCZVKheLiYgB1cmb//v1hs9lgMBhw6NAhnDp1Cvv27cMzzzyDQYMG8UMhSZBnjZyb0lIEFNmYJ0trjMWJ/bem4kSIZ7fbeT1x0p5TUlLwww8/oKamxq1f+k9zdNdTRKCONchkMjfyf/LkSfzlL39BREQEHnnkERiNRgwZMoT7kkWgHa1SqdCzZ0888cQTKCwsRE5ODtq0aYPw8HD4+vpCoVCgqKgItbW1CAsLw5AhQ/DQQw9h5MiR6N27N/bv34/p06cjPT0d2dnZnEo7hWL4dM1b0Cj5t+mPqAVpnYyxeueoSKVSWK1WLpKQ+Qqo0+J/CpYtnjMjkUjcfP6xsbEoLCxEXl6eW+llUiapDjm105B4csdTRKDu2DFCJKDOrrd06VKcOHEC//jHP1BRUYGQkBDEx8fz3SuCGG3t6+uLESNGYMeOHdi+fTsXqM1mM4xGIwoLC6FSqRASEoKIiAiEhoZyk05KSgrWrFnDgygefvhhjB07FklJSTCbzVCr1W47n844oWviaQRA3cIYDAb4+/tDr9fDx8fHTcAnKkvvzRjj1IXmQ6RStwto/IT0FLUklUrRrVs3hIWFoaCgAFarlSMeiUdiOkFj4Xx3BUV0Xj8Vi8L6t23bhq+//hp9+vTBmDFjUFxcjNDQUCQlJQFwt3vJZDI4HA63xRw8eDDGjRuHCxcu4Mcff8S5c+ewZ88eOJ1O9OvXD3FxccjPz8fRo0dRUVGBgIAA5Obmwt/fH+PHj0daWhoKCwuxYMECTJo0CR9//DGXkaqqqvi5LDQW0vLps5geSzbKgIAA/kxGRgYXQyQSCebPnw8AXBsFbhwo9FNp7KJxmlIpAKBbt26IiorCkSNHcO3aNX4/WTc8oSGR4a6giCaTCQEBAQCA0tJS/Otf/4JUKsVbb70FhUKBo0ePQqPRIDw8HIB7MpBCoeATSPFzCoUCjzzyCDZs2IATJ07AbDajR48eSE1N5Wfs0dEQCoUCpaWlCA4OhlqtRklJCUwmE4KDgyGVSlFcXIz58+djzZo1WLhwIUaMGAEAnNKRzZPGJJ6E6g2J0tPT8be//c2NctDiLV68mI9fKpXWOzHgdoKnDEybS6fTISYmBllZWSgqKkJYWBifu5a0d0dSRE85go4Iq6qqws6dO7Fz50489NBDGDx4MIqKinDhwgWe1CPuQjEpiuQXOiLsvvvuw5w5c6BQKFBcXIygoCD+XFBQEAIDAxEUFASXywU/Pz/ExMTwI3LpuLRx48ZhxowZsNlsyMrKwpNPPokXX3wROTk5UKlUMBqNHNlMJhMsFgukUilHdE+YP38+Dh06VI99ZWRk4N133+XvQhS+MZmrNYE4i0Kh4Mer0eZyuVxISEjA5cuXcfXqVX4/QXO0feAOQ0SR9IvX6MUqKiqwbNkyAMDs2bPhdDqRm5sLu93OU0nJD0xAlEc8uoz6GDNmDIYNGwaj0YjMzEwcOXIERqMRFosFOTk5OHToEE6cOIGQkBDU1NQgLy8PSUlJmDJlCvr06YO2bdsiIiIC06ZNQ2JiIsrKyvDBBx9g2LBhWLp0KUc+hULBKZen/Epj3b17N959912sWLGi0TlSKBRcWfD19W29LLpGQOQo9J04DWOMi0S08egdRSXOEzy16DuKNXsbNEX52u12fP/99zh58iSmTp2KQYMGgTGGsrIyaLVapKSk8J3rGdJP8g1NJPmRo6OjMWvWLBw9ehTl5eUwGo3YtWsXdDodUlNT4XQ6ceHCBZSXlyMwMBBOpxPbt2/nR5lZLBYUFxfjypUriImJQUREBKqqqpCbm4sXXngBmzdvxvz589G1a1cEBgZyim2xWOodVfb6668jPT0dCQkJ9eYgJyfH7TvZUW8ml+dmQFwX0p7pulQq5ce5EcWnzdeSvGd5Y/avOwVkMhmysrLw2WefISYmBi+++KIbZdNqtYiNjYXD4YBSqeRuKKpFY7VaueGZZDfS6IYOHYphw4ZhxYoVkMlksNlsKCsr46w6MjISBw8eRFBQEKqqqpCXl4fy8nKUlJTg2rVrqKioQGhoKGpqaqDRaJCYmIiQkBAcP34cmZmZOH78OH73u99h1KhR6NGjBz97z3ORMjMz8cc//tHr+69cuRLp6ekAwE+xov90nJq46W5HSgP1RxRPVF4CAgK4DA+41yoSobFx3hGsmZKa6DPllNB3u92ODRs24NixY3j22WeRmJgIl8uFmpoaXLt2DTU1NdDr9ZxSkDJAioFo3iAtlRLp/f39MXr0aAQGBuLIkSNITU3F+PHjkZWVhW3btuHSpUtQKpVQqVTo0aMHOnToAJ1Oh6ioKO5zJQ9DWFgYNBoN2rZtizfeeAPTpk1DRUUF3nrrLQwfPhx///vfUVlZyU8dJSCKFx0dXW9uMjMzkZmZiWeffRYAOBLS856subWRkBBGnEOihBQSR2LP/v37UVxczJHSc2xuysmdyJrJ6yFW8SJEJHa4atUqjB8/HmPGjOHs12azIT8/H76+vvXOLG7JgowePRqTJ0/Gd999h4KCAvTr1w95eXk4cuQIYmNjERcXB6AuLs/X1xdyuRxlZWWoqqqCn58f2rVrB5PJBJVKhbi4OEgkEiQmJsLf3x9VVVUoKCjA6dOn8e6772L79u0YO3YsJk6ciODgYAB1nhygrjyKJ2tOS0urx7JFMUNk77cDvM2j5/nebdu2hb+/P/Ly8lBdXY02bdoAQIOmJW9c+I5gzZ6uMuCG5lVeXo5vvvkGJSUleO6559CmTRs3Q6lMJkNAQAACAwN5Wy0tDSeRSPD4449j27ZtWLNmDdq2bYuoqCgEBASgoKAADocDLpcLQUFB6NatG2QyGXbu3AmtVou+ffvysRgMBly+fBkymQwRERGIiIhAr169MHDgQBQXFyM7OxuHDx9GTk4Ojh8/jtGjR2PkyJE4duwY0tPT8cYbbyAjIwNAHZVs164d0tPT8de//pWPlQ4Mp6CP5rgYbxcQtYyIiIBGo8HVq1e5ckklBMXoJLrubZx3BEUEbgySDKHkItq6dSu+//57TJw4EWlpaTAYDDy90el0uplaAHCnvGe7jYHVakXv3r0xadIkvPvuu9iwYQPeeustjBo1Cjt27EBCQgKuXbuGixcvori4GL6+vsjNzYVarYZEIoFSqYRer0dhYSEqKyshl8uh1+sRHR2Na9eu8ZqMAQEBUKvVOHPmDP75z39iw4YNmDRpEl566SUsXrwYaWlpbouUk5NTj0Iyxri8K9oiCRFvJ0ISkaD2xXkNDAzkSp24STw9Kw3BHYGIMpmMJ74D4O6rvLw8fPzxx7DZbHj++ef5feTyo9PfKYxfhJbY1/z9/WE2m/HUU0+hoKAA33zzDU6fPo1u3bqhU6dOcDgcCAgIAGMM+fn5SEpKwsiRIxEREQG1Wg21Wo3S0lIEBATA398fcrkcFRUVqK2t5f5xm80Gi8WCqKgodO3aFSdPnkRGRgY++OADXLhwAQ8//DDatm2LjIyMRpFJLAqgUqnqHQzu+VxDARQ3o9Q0NCYKShHjRsWY0eaAOyK6hGAB6e31X3oDUizIR/vdd9/hyJEjmDdvHvr37w+LxcIpn8ViQUBAAHf8iyH74o70ZNUNQUVFBRITEzFhwgR888032Lp1K3Q6HeRyORQKBfz8/DBhwgQ374her4fZbEZpaSlyc3MREhKCzp07Q6PR4PTp0ygtLYXdbkd8fDzCw8O5QkXxkUFBQdi6dSt++OEHXLhwATExMQAaj5yRSCTcPEIJ7t4WnBC0IQWhNZUahULBxZfa2lo3JG9u4LA7IkpVdcj4MyChWq12Y7uHDx/Gl19+iR49euB3v/sdly3EQAIK9zKZTNzeKMqYzd2RVqsVoaGhkEql6NevHyZPnowDBw7gzJkz8PPzQ05ODhwOB/r374/g4GAUFxcjNzcXJSUlCAkJAQC0b98eHTp0gFarRUBAAORyOaxWK0wmE44cOYLg4GBER0dDJpPh6tWrqK2thUqlQkBAAK5evQqVSoUrV640OVbyudM7kuImBiZ4IuCtQHMoJwWVaLVa2Gy2eiWcPcfvbWzSn1tRAcDZlxiOn5WVhSNHjmDSpElITEzkdiy6T6VS8VwSk8kEp9Pp5rXw5qVpDHx8fFBTU4M2bdrgiSeeQHl5ObKysuB0OnH+/Hnk5OSgoqICV65cQW1tLRISEhAUFIT8/HzOclUqFXbs2IH169fj0qVL3CapVCpx8eJFnDp1ClVVVXzjhIaGIiwsDIGBgXj++efx+eefY8CAAQgKCkLnzp3x5ptvumUJms1mvgklEgn0en29Rfdcz9u5viQiUJR6ZGQk/Pz83H7zBDHlQ4TGV8llvfHn7bt4ralnG/mN7E7k8SDf6tjfjsCMJ6ZACjv3c9rtdsBlhc2ih4TZoNPpYDAYcOLECShk122HVgMkrG4BreZa3m1DXgiFQgGTyQSNRgMA6NmzJ+bMmYN9+/Zhx44d6NSpE3r37o3q6mpUVVXxINDi4mLExsaiY8eO0Gg0OHPmDC/2WVxcjL179/KoHq1WC5VKhZKSEkgkEkRERCApKYlzgbi4OPTv3x9r167F4sWLoVAosHjxYvTt2xdbtmyBwWDgHIBcZ6IR2bOOD32/Vc+LZ1Cut7QHMvAHBwcjNDQUQP3in57guUGaCJtVNf6f2DixdD5i4XozfiPDp1QqRXl5OZYtWwbmtOCBQcMQHhnLf1MqlXXIpvCFSh0I/8AQtE+MrfOemOtkE5fDDIXKn/elUPnz/hvze5Iv2OVyITQ0FA888AA6d+6MY8eOISoqCpGRkSgtLcXly5eh0Wig0+kQHx8Ps9mM4uJiHD9+HEajEYGBgUhMTETnzp3h5+fHFRqpVIqEhAR07twZPj4+KCwsxNmzZ1FaWsoDCJxOJ8LDw/HUU09h5cqVmDVrFqqrqzF79mzMmzcPWVlZUKvV3AMkFpKSy+V88SmQtjXlQG+5J/TZYDDwJDSSzwm8+cK9UcuWsWZv8mNDVK8FQG44p9OJLVu2YO3atXjooYcwduzYui6g4BoZLRh9DwsLg8vlwrXK69Hb0hvsG1JVixaDwuGlUinS0tIwYcIE2O127N+/H4wxREREwGg04uLFi9i3bx/sdjsYY8jOzsbOnTtRWVkJjUYDlUoFuVyO++67D2+//TamTJkCPz8/lJSUoKCgAJWVlTwRKTIykgftkhIEAN27d8cf//hHrFy5EsnJyVi1ahUef/xxfPTRRyguLoZcLodareaKSz0Kc7291mDNIqHwnC9SUEwmE4KCgrgCRb97mtIa2iBNm2+aUmBaQbEhgbu0tBQrVqyAr68vnn/+eURHR3OzDhm9nU4nIJVzbdjPzw9Wq5UHZVJECC1qS0wIIhvRaDQYP348Dh8+jC1btsBms6FTp06orq6GXq+Hn58fOnTogOrqavj5+SE/Px9AXQSK1WpFUVERbDYb5HI5OnTogPLycoSGhiIuLg6RkZHQ6XSoqKhAQUEBrl27BrPZzBfWZDJBLpdDq9ViwIABWLNmDVavXo0vvvgCr7/+OtauXYsXXngBY8eORUBAACwWC198SnkAbrhLxaDgm0FMT08ViQbUVkVFBffhO53OehYM8XNDsqMgANwaVbvV52UyGTZt2oQjR45g6tSp3IMhkUgghZ0L5RQXR1RAq9VCKpXyen3k+qP7WxqvR/GKdrsd9913Hx5//HGoVCqcPXsW/v7+SEhI4PJdYmIiYmNjYbPZ0LZtW/j5+aG2thZXr16Fw+FAREQEysrKsGfPHshkMnTv3h3JyckICgqCxWJBVVUVamtrUVNTg6qqKh5nSGKC1WqFwWCAVqvFc889h6+++grp6em4evUqJk2ahPHjx2P37t3cjurr6wuj0ciVt6YUmZsBkUXT36VLl+B0OhEYGAiVSsUR3xtbbohD1bcjeqNwDVFFUf4Tf/OUC5vx24kTJ7D0k38gOjoaL7zwAiBVweUwQyZxAlJ/2K+HTjmZHFLXDRkoRNcGERERKCqsO1VACjvsTgAKWV0/suuliZ0WSGTuqZ+AdypBwadqtRp9+/bFqFGjsHPnTk4VlUolQkJCUF5ejnPnzsHhcMDf3x8ajQYdOnRASUkJTpw4AafTydknseDjx4/j6tWrsNlsYIyhpKQEdrudKzO0kShtVqVSoby8HEFBQYiPj8frr7+OwYMH44033sDGjRtx+vRpTJ06FSNHjkSvXr0QEBDgZj0QqfzNyo2iLVZ0x9L3w4cPIyQkBG3btnUzLbUE8QW6qbo5NtvQc6JC0sRvNTU1+Pjjj3H67CU8+eST6NKlSx07kKvhwo2wI6DuBZ1Mzp8PDQ1FYmIizp7PRWl5NSQyHy4fOlwy/tkbEgL1SxYDNxL6SS6cOnUq/Pz8sH79ely9ehXt27dHcHAwysvLceXKFZSVleHAgQO4cuUKfH19kZSUhLi4OBQXF+Pw4cMwmUwwmUzIzs7GhQsXoFarodPpEBYWBrVajaioKK5t2u32OqXsejBvVVUVdDodFAoF9Ho9ysvL0bdvX+zYsQOrVq2CTqfDokWLkJ6ejiVLliAvL4+71ihyiU97Kykv1I7D4UBNTQ0uXbqErl27okuXLm7z6ufnx+XoJttsVs+3wcgtDu7YsWP49NNP0a1bNzz55JNuOScUVu8p9NKuDwwMRExMDEpLS7mcSDu2sfrO3sAzA488PSNGjMCAAQNQXV2N4uJiFBUVYd++fSgrK0OnTp2g1WoRFRWF8PBwHDp0CFu2bEFNTQ2XVamt3Nxc1NbWIiIigtvczGYzKioqYDQa3dgeyYxarZazaD8/P+h0Oq4tT5kyBevXr8c///lPmEwmzJ07F/Pnz0dmZiY3MYk5O41BY/MjzotIDY1GI6qqqmAwGNC5c2fExcVxrd3hcHAHBPnAPaPn3fpofHS3rhEDcLNvVVVVAbiRw1teXo5XX30VSqUSc+fOhU6n43m/nogBgLsA6buPjw+6deuGwsJCHDlypF7qI3/RFlIDMhdRH3PmzEFSUhL27duHDRs2YP/+/TAYDDCZTIiOjoaPjw/OnTuHqqoqXLt2DUVFRUhMTERUVBRiY2O5HBUcHIyioiLo9Xrk5+cjNzfXzVAvvif1r1KpuGlEnAOKfHn88cfx5ZdfYsGCBfjxxx/x29/+Fm+99RZyc3PdorgJSTzzqQG4OQScTidMJpNbqRGgzkxD5hmLxQKNRoOsrCyUlpaic+fOfGxUBcyz5nljHp+m7Yg3y7IFEPMYtFotlzlcLhd27NiBY8eOYfjw4ejXrx8fqEKhcKN8jYG/vz+0Wi2OHTvmFiFCbdwqSKVS9O7dG4MHD0ZZWRkKCgrQtm1bJCQkoEOHDggODoZCoYDRaMSZM2e46y8kJAQBAQEwmUxo3749EhMT3Uq1Wa3WBhenJfKVQqFAfHw8FixYgA0bNmDYsGFYsmQJpk+fjhUrVqC8vJzfR9SZkFAsKkXmFZlMBrVazd2povlGTI0F6k5w0Gg0PAaRgpK9BdMCDTsVfpIIbdpFZGgll1BeXh4++ugjqNVqTJ8+nQeIEngLqReBXio2NhYdOnTA999/j4KCAgAt8zU3BeTVoCSpc+fO8YUsKSnhtV86d+6M7t27Iy4uDjKZjMuPRUVF8PHxgc1mQ3Z2NrKysrjL0GKxeF2clnhECLG1Wi3S0tLw0Ucf4bXXXoPJZMLzzz+Pp556CqtXr+buQQol8/Hx4UHIVHmCEr4oood8/9QPjcvhcMBsNuPAgQOIjY3lCVSeMqm3Uxu8wW1HRJILlEolT5SneLp///vf2LdvH2bNmoVBgwbxXSPavQjEgAYCuj86Ohp9+vTBuXPnsH37dm5vFKlhUwvbGOUkm2TPnj0xc+ZMOJ1OHDhwAMXFxTh37hwPgrh27RqqqqpQVlaGy5cvIz8/n7PX06dP48yZM6ioqMD58+exf/9+XLp0ibOvliCetzRSSloyGAzQ6XRYuHAh/vGPf2DKlCk4ePAg5s2bh2effRbHjh2DWq0GY4z76onVi1VxuTtVeH+KRKLxZmdno6SkBN27d0dsbCxfEzGBzVMk+kkqxnpOjhgJIpVK4ePjw4X3gwcPYvXq1UhOTsasWbOg0Wjcatu4XHWnhzaWI0uLp9FoMGDAAADAjh07uL2RWERzTAmiLOUJPj4+MJlMkEqleOSRRzBw4EDk5ubi4sWL0Gg0uP/++9GpUycEBQUhPDwc/fv3x8iRI9GnTx+0a9cOUVFRKC4uhtPpRKdOnRASEsKN7RQkQAJ9c8DTPki1gciGR0g0cOBALF26FB9++CF69OiBL7/8EtOmTcOf/vQn5OfnQ61Wc/++KBMS6xURXjTb2O12+Pr6Ys+ePTAajejTpw9P9aCkNZvNxtm8CA2JWq2KiGLQJeAuF4gJP6WlpVi2bBlycnJ4MhRww8MiCtQNuZc8oUuXLkhNTeURLiJiNVdRaQhZKQrbarUiPj4eTz/9NDQaDfbs2QODwYCoqCi0b9+eR2qTthsZGckjzePj45GcnMzZVc+ePTFs2DCet+Kt/+Yiplwuh8Vi4bZJosKEoBMnTsSSJUvw5ptvwmKx4O2338aCBQuwbds2lJeXu8mOpK2LZaJFhCLxCgAOHToEjUaDHj16AHCPPaSCUZ5z35CodVtYs2fnjDEezuRyubB582Zs2rQJ999/Px5++GH+sr6+vm7xdk0thEhFIiIi8NBDD6GsrAz//e9/AcCNRYhjaSmQGYfea8iQIXj44YdhNptx8OBBbNq0CdXV1YiMjETPnj3Rvn17OJ1O1NbWorCwEBaLBZ07d0ZCQgKnPEFBQQgNDW2VkiFk/Kbi8iS/0iYA6uTo3//+99i8eTNefPFF7N69G08++SQWLlyIS5cu8flXq9XcXUgmNJEaSiQSyOVy7Nq1CydPnsTgwYMRFxdXz1iuVCpblNfcKojY1OJSdAtjDJWVldi7dy/Ky8sxadIkHixKwjJNAnkYaDIb6oOoiI+PD+677z4YDAb8+OOPDUZm34ybi7RHohoajQYPP/wwoqOjUVBQwFMCamtreZ1th8OByMhI9O7dG2FhYbzSV/v27REfH4/8/HxkZWXVqyd4M2MlrqFWq7mrT2SjwA0Zu2PHjvjzn/+M9evXo2fPnvj6668xYcIEfPbZZ26ikchRiMqRnCiTybBhwwYUFhZi5MiR8PX15QEOxNFIgWpuJYpWQUQqpimCOAHl5eXcrpSRkYF169Zh2rRpGD9+PGfBZLgmNxcd2ijuxMaAZKKOHTtiz549PGCVJlSsR3gzQKfbk+w6YMAADB8+HCaTCXa7HUFBQcjNzcXhw4eRlZWFrKwsGAwGbjelrL6goCBERESgsLAQ58+fR2FhIZ8nT2iuSOFZ7o6eJfZK80nFBwCgb9++eP/99/Htt99CoVBg4cKFGD9+PLZs2cJNMBKJBA6Hg4s61dXVkEqlKCwsxJ49e9CxY0fOlsXgZlpDT4WxMWgVRCTqQ2FUVFIDqKNkOp0OTqcTxcXF+Pbbb6HT6TBt2jRoNBrvYeONhJp7fYnrhmDGGMaMGYOCggJ8//33XDunCaXxEUI2V6t2Op3QaDR8ozidToSEhGDcuHFITk5GdXU1qqurodPpeJtRUVGcpZ84cQIOhwNhYWFo27YtunTpgsTERK8usJsRHZrapKJtVXznuLg4pKam4uuvv8acOXNw9uxZzJgxAy+99BLOnz8PoI5AaLVa2O126HQ6AMCSJUtw8uRJpKen85xvyiUyGAycTXvaEhuDVqOIDaUOEqutra3F1q1bsXnzZgwdOhQPPfQQgPpa1M0YoEm70+l0ePzxx9GmTRssW7YMly9f5vISD6wVjOtk8qB3aAgJxANvgLrQeMYYBg0ahJEjR6K2thYHDhxASUkJSkpKUFNTg5CQEG7bCw8Px7p163DgwAEEBwejsLAQmZmZsNlsaN++fb25bG3wlNVE7hUcHIzExES89tpr+PDDDzFw4ECsW7cOo0ePxqJFi7j8SMlR5Ffv0qULBg0ahJqaGlitVu6i9PX15dzDYrE0mwu1mrIiBgyQ4AzciEGrqKjA6tWrERkZidmzZwPwrsrfjGOeMQa9Xg+ZTIaEhARMmzYNJ06cwLp167jYIO5Mxhgvr9acutPE0ugdlUol16SpYuzly5dx7NgxHrBqtVphs9lQVVXFw9ny8/OxceNGZGRk8NIk5PW4VWiuL53kPYvFwg3ZVLfnkUcewZIlS7BgwQJIpVIsWbIE8+bNw48//shtj//85z+xc+dOPP744wgPD+eBwHQEiGimo2jy5kCrISItLHBDSyYB1ul0YsOGDbh48SLmzJmDHj168PM4WiMihKgxiQXjx49HfHw8PvvsMzdbosFg4CYGxpjbwjSnfZK3SIOuqalBamoqZs6cCbVajatXryIhIQGJiYnclldSUgJ/f39MnjwZGo0Gx48fR58+fTB79mzExMS02qFBjc0jReHQXJDxmhQPX19fuFwuWCwW6HQ6LFiwAGvWrMGkSZNw5swZPPHEE3juuefw73//G99//z26d++Ofv36ufWxcuVKbjMeOHAgAPBKt80a/829tkcj1wVjkcLJ5XJOYXJycrBs2TJ07twZkydPBnBDE7sVBQK4If9Q0j1Qd+jPo48+itOnT2PNmjVcgyPhWSqV8jyR5shkogZuMBj4M4TMEydOxAMPPACTyYTy8nJuuggODkZUVBS0Wi3MZjNqa2t5jemioiJcu3YNkZGRt/T+zQExltCTcpL8TJSMZLzu3btj0aJFWLlyJSIiIvDJJ5/gmWeewb59+3D06FH07t0bAJCbmwuJRILTp0/zciOElFSzslljbK2XJTcRsTuihMXFxVi6dCmqqqrwzDPPIDo62u2QnFuViSjhnIBC5SdMmIAePXrgvffew969ewHUeWA8Q9ebQ5E8czBozJRF16ZNG4wfPx6hoaHYdf0ULIlEwksuX716lSdJGY1G7Nu3D6dPn4bJZOIpBrcbyFtCChsFXJD3i9ZEPJVBqVQiJiYG7du359HmgwYNcms3MTER6enpWLx4MYC69UhISGiw1mND0CqIKAq/olfEYDAgOzsbn3zyCXr37o1HH30UALgRt7WODxN91KQV9+jRA6+88gqOHz+OlStXcjMKsWnRnUXQkPZKG4xODiA2r1AouCIzcuRIdO/eHXl5eaiqqoLFYsGhQ4dw8uRJaDQadOnSBZ07d0ZKSgp++9vfol+/fny8txtE7xR5S0i8EGU6ArVajfLycqxatQqjR4/Gli1bUFJSAqCuchrBypUrAcCtSBRBcnKy1zJ7DUGrICIZeilKhcrrGo1G/PWvf0VgYCBeffVVt7qHFPTamgtBiE0UbNCgQZgxYwa+++477Ny5E8ANBz4pL6JoIGrOnjY5StQioM9KpRKMMbRp0wbPPPMMtFotNm/ejHPnzvGzXEJDQ5GTkwO73Y7+/ftDpVIhMDCQFxYlliaKCq0VTS2+M7FlmUzmRjCAG7ndTqcTmzZtwiOPPILXXnuNRzMBwKRJk9xEiZkzZ2LFihVeudqMGTN+eooI1CGBeJysWq3Gzp07cfToUUybNg1JSUlu0cLipNwqkPeFbHJE9UJCQjB06FBUVVVh6dKlOHfuHAD3NEfP/puqOwOAG489a0s/+OCDGDp0KCoqKnDhwgWeDHXmzBmcOXMGNTU1uHz5Mj+ul+TH2w1U8xqoS4avqqrizoKqqiq+AS5cuIA33ngDs2bNwu7du3kFXLvdjvbt22P69OlISEgAYwy5uXU5Qt6Q7WZsoa2CiGLsH7mBrly5gk8//RQBAQGYMWMGdDqdW2ZdawSsEoiRImTTJAVjyJAheOmll5CRkYHVq1e7adHkm23q3RoCQkwqBKXVajF9+nS0b98eJSUlCA8PR1hYGAoLC1FdXY2ysjKeXpCamorU1FR06NCBa5u3qx42yYAOhwM6nY4bqK1WK7RaLc6cOYNFixbhySefxLvvvova2lr06tULWq0WV65cgdVqxYgRIzB48GBuuiLwNuabkftbzbNC7JgiNZYtW4ZDhw7h+eef52Hk4hkhxHpagzVTG7QZxDTSsLAwzJkzB8nJyfjkk0+wefNmHqQqkUjqHeroCZ4RRZ5AiE32yv79+2Ps2LGoqKjAuXPncOLECRw/fhzV1dU4e/Ys8vLykJKSgpiYGNTW1vJxAO6F0lsbKX19fSGRSNxk4+rqavz4449YsGAB3n//fRw9epSfzNWjRw9UV1ejoqKCV5pQqVRISUkBcIMS5uXl1esrNzcXmZmZLRrfTddHFNMwRQqjVqtx9OhRfPLJJ+jSpQtmzZrFo4DFoFigfsrhzSaAE4KTrCra/IA6P+///u//4oUXXsAbb7yBmJgYpKSk8MoMnuzZW9ql53dPNxZFnms0Gjz22GP48ccfsX//fqSkpKBfv37Q6XTQ6/VwOByw2+04deoUzp8/73aqZ2Oxly0Fz3cQHQ52ux2nT5/G559/jrVr1+Lq1avo1q0bYmNjYTKZIJPJcPLkSRQVFaFr16549NFHERcXV299VqxYgZkzZyIhIYHbDnfv3o3XX3+dV75tLtw0IooDIlaoVquh1+uxcuVKXLt2DX/+858RHh7uNsHiAnrWNbyZyRflH9FlR2NSKBTw9/fHb3/7W+j1ejz99NOYN28e93nr9XpehJPG0JSi4G2Ra2pquIzcsWNHzJgxA/v37wdQZzYqLy+HwWCAUqnEtm3beEKUGErviYw3MxeexEGUZ2UyGa5du4aNGzdyjiWXy5GcnIzBgwcjNDQUJ0+exMmTJ3H8+HEeOtanTx+vZ/6RQpKWlsavpaencyQkj01D8yZCq1SMJduUQqHAf/7zH2zatAkPP/wwxowZ4xZdA4CHU5Em15Cy0lzqKMpXZL8kRBdf2mAw4NFHH8WRI0fw2WefYdWqVZg7dy63BbYoGdwLtSTTCFGU3r17IzU1FdnZ2RzhbDYb4uPjwRhDfHw8dDodIiIiOFWk9/YEb4gvigz02Vv9G6LUtbW1yMrKwqpVq7Bx40Y4nXXnLffq1QtKpRL+/v4oKipCUVERL5D/xBNPYPr06QAadjwMHDiwQTFCo9Hww9nFefOGkK2CiC6XC0qlEhUVFdi4cSOKi4vx17/+lSsontE4oubc0KS2hE1LpVKuqYt1X0hhoYJHMpkMCxcuRGlpKf785z/DZDLhxRdfrFf22Fvf3iaP7qPQeQB80lNSUvD6669j0qRJKCsrQ5cuXVBVVcVj92pqalBUVIRLly65bUZvG7MxMaGp+ZJKpbh48SKWLl2KVatWwWQy8ejxpKQkREVFISEhAXl5ediyZQs/zuOZZ57B888/D6BOBicLQEvMShQy19Q8As1EREIYuVwOs9nMXVhUjIcmb8OGDVi3bh2mT5+O4cOHc3+sSJ7FgXmSem8T3Fwgp7y4GKKxmkwVYWFh+Oijj/DYY49h0aJFMBgMePXVV3mpDlIYiGXT+4vtUgCvaCAWiz4R9bj//vsxe/ZsLF++HADQu3dv7mkho7vdbkd2dnY9wz6ZVEj5o/kgVi7Wl2GMca8NbSq73Y7i4mJ8/fXX+PTTT5Gbmwun04nk5GTEx8ejtrYW165dQ3FxMU6ePMkrNgDAa6+9hvT0dPj6+rod9NNSEMUD8Zo3aBYiiqS3oRDwwsJCfPvtt0hOTsaUKVP46U4iEt5uEE0gnmyZcp/p85tvvomgoCC89957CAoKwrPPPssN7D4+PjxWEADfhKJ2S3NAlBi4YVAn5NFoNHjggQewceNGHnF+5coVHpuo1+tRVVXFA3epL0/5WyqV8uQt2sg1NTU8YZ+A7KlUf/zTTz/F9u3boVQqERoaCo1Gg27dugEACgoKEBQUxCOXKP/kxRdfxOzZs7mYQe/WGDTGvZod3NucTgizPV1yJNhbLBasX78eO3bswGuvvYYhQ4bwCWlqJ92sptwQeGtLVIgIUXv37o2nn34aJSUlWLhwIT/HJSEhgY+bTFJE8QiZxBIotPg0P8ANz4VKpUJaWhruv/9+/PjjjzCbzdBqtVCr1bxMClEqon6e+SFAHQX28fGB0+nkxmja4DQmxhjUajWys7Px/vvvIyMjA2VlZQCAAQMGYODAgcjPz0dJSQlUKhV69+4NnU6Hffv2ITMzE/7+/pgxYwaeeeYZRERE8ET65srpNLcN3d+YogI0w45IyoBndC+ZYxhjOHfuHJYvX46kpCRMmDCBd+zt9MyGcpNvF5D8ajAYYLVa3dhtamoqli9fjpkzZ2L16tWYN28ezp8/zymj6KMVPUEi0lE+CwA3oZzeMzg4GC+//DLCwsJw6NAh5Ofnw2q1ory8HNXV1XA4HPW0XVHuoz4B8JqJJGeK/V64cAGLFi3C5MmTsXbtWpSUlPAMvoSEBBw+fBg7duzAtWvXEB4eDrVajStXrsBkMvEa3unp6YiMjITZbHar2eM5nw1BY2vZFGVsEhFFVifWUCHZ0Gg04vPPP8eZM2fwwgsvICUlhaeOEiVp7mBvB1ACDxl0RU1dpVIhPj4eS5YswdNPP40DBw5g6tSpPI9DoVDwrDbKTaFcGuBGgAcpReIZKKJ/t3v37pg4cSJqa2tx8eJFLiIQmyYrgmfeCX0Wo8gplEtk2Vu2bMGECRPw5ptv4urVqwgMDETXrl0xatQodOrUCfn5+SgvL0fbtm3hdDpx6NAh7Nq1C2vWrMGpU6fwt7/9DfPmzUN0dDScTqeb8dubJn4z0JA1gLfbVAOelJBILCVUHzhwAF9++SX69OmDRx55BMANJcFgMNzUoFsbqKCTeJK80+nkObxyuRwLFizghzbOmTMHixcv5sdNUGaeN6Hb85wTQj7Rtul0OjF9+nT069ePm2okEgnKyspgMBi81r8RF44UIwC8MoTdbsfevXvx6quvYty4cbh06RLi4+Px4IMP4qGHHkJcXBx8fX0RERHBFUwyHR09ehSnTp1C9+7dsXbtWkydOpWXgKZ4RAqvE1NSbwUa0uiB6zJ4cxqhHS8K6y6XC+fPn+cHXc+bNw9hYWFcNiLkbWwHtbZ82BD4+Phwuc/zjBKijmQ3S0xMxCuvvIK3334b+/fvxxNPPMGPnCBWRcqLSqXiSEKynVwud9N2gTpEio6Oxvjx47Fv3z6sW7cOnTt3Rnh4OEpKStzSaAlEwzrZIYnq5ufn4/PPP8fnn3+Oy5cvQ6FQICEhAaNHj0ZcXByOHDnCFZSNGzfC398fcXFxMJvNOH36NABg1qxZePTRR/Hggw/yvsnoTcnxTbk/bwVo7el/s803nmCz2XD+/HmsXbsWw4YNw6OPPupWr5micYgVerN3/VRsWnRBkrmDIqU9zz/u27cvVq1ahXfeeQefffYZzp49i6eeegpDhgxBSkqKmxsRAKeoBoOhXj4x1ZNWqVSw2WyYMWMGMjIy8M0336Bz5874zW9+g4sXL/J7RdunCBaLBUqlEjU1Ndi2bRuWLFnCvRcJCQmQyWQICgpCdXU1goKC+JnQVCjJ4XDgu+++Q2lpKTp27Ii5c+di4sSJCAsLA3DjCDrxKDniHLcaM9oQsfEUQZpNdyl+EAAvVr58+XLI5XLMnTuX293EoxaISogT+1PLiMCNs/2A+qV8ye5HZgqXy4X4+Hh8+OGHSEtLwz/+8Q+8+uqr+PTTTzFu3Dg88cQT6NixIwC4bTwKklWpVG7UjP7TSVQTJ05EZmYmzpw5gy5dukCn0/FTPUmuFk+4J1vt9u3bsWLFCqxfvx52ux2pqano27cvfHx8UFVVhSNHjuDUqVOQyWSIiopCZWUljh49irNnz/KyIiNHjsS8efMwePBg3g/VF6Jz/UTzEc1Vc92O3gz+TXE9Ev2ahYhiCRDyOa5duxabN2/G2LFj0alTJ7fDZzxf5HZCc7PXGgNyy9HCk6IyefJkdO/eHZs2bcKmTZvw4Ycf4ocffsDUqVMxYsQIXoqN5DkxREpk+7QhAwIC0LdvX4wcORLffPMNfvjhB07txE1Orkq73Y7CwkJ8/vnnWLVqFXJzcxEcHMzDx7p06cI1Ygo2OXPmDCorK1FYWIhTp05BqVTi/vvvx9ixYzF58mQeNU2l57zNT1OmFk8gzd+TmlP7JKOLZh4Saei6hDUj3ogWm0KWSkpKMHz4cNTU1GDr1q1ISkriE2k2m7k7rbHdcDvj71oKnh4As9nsFiJmsViQnZ2NLVu2YMuWLcjJyUFUVBQmTJiAUaNGoWfPnnxySX4kwzbFZ1IfMpkMW7Zswdy5c5GXl8cjnpctW4bhw4dzKm2327F69WosX74cZ86cQWRkJHr16oXk5GROvSkt9sKFC9BoNLh48SKOHj2KiooK2O12dOzYEWPHjsXjjz+OmJgY+Pj48KMwSPnyZusVq7g1Z41aJZqcNQMcDgez2WzMZrMxi8XC/vCHPzAAbPHixYwxxpxOJ3M6ncxmszGHw8Gv2Ww2Zrfbm9PFTwpOp7PeNYvF4va7xWJhFouFmUwmZrPZ+G9ZWVnspZdeYl27dmU6nY7pdDo2adIktmTJEpabm8ucTiefLwKHw8GcTifT6/XM5XIxk8nE5s2bx9RqNQPAEhIS2KZNmxhjjNlsNrZ582Y2aNAgplKpmK+vL4uNjWXvvvsuO3v2LNu6dSv7+9//zlauXMm+/PJLtmjRIpaQkMD8/f2ZQqFgarWaJSUlsYULF7LTp097fU9aFxonjc/zr6Hr3u6jP8/vdM3lcvH7aY7F3xuliOz6zhA14IyMDEyfPh2dO3fG0qVLodPpeEI5+V6BxoMEPD8TNMQSWsoqvD3fGJBQTiDKtWJOsOjePHnyJNauXYtt27bh7NmzkMvl0Gg06NSpE4YOHYrBgwejbdu2kMvlnLKKMZnHjh3Dxx9/jOXLl0Oj0WDdunVISEjAO++8g3/961/c4N6+fXt06tQJwcHBMBqNyMrKwtGjR/k7lZaWQq/XIzQ0FAMHDsTIkSMxYMAAxMfHA6hLDfDz83NzDwI3UkvFMnKtIb97m2tv5inxPqfT6c6aXS4XHnzwQezevduNJKenp+Ptt99GVVUV5s6di61bt2Lt2rW8yqtEIuGH7IieBtFU0pKXbS5LoPaayo1uColFWdZ5vXwvacCiQkJylRisQYpCfn4+Dhw4gMzMTOTm5kKr1aJ79+7o2LEjIiMjOUJptVoEBgZCLpdj1apVSE9Ph4+PDxITE1FdXc0LvYeEhOCBBx5A79698f3336O4uBhVVVXQ6/U89TMmJgaRkZF48skn0b9/f0RGRkKpVPJIIL1e7+brr6mpgc1m4wfzAOAE5FY2e2NadXOIAADvMuL8+fMxZswYHmsmlUqxbNky7o8MDg7GokWLoFarERERAQCorKx0i9AhzZl8s6JnxhOaQrrGnm3oZRuK0/O2GUhZ8fHxcdNaSRMWPURUqJJqEkokdeeJGI1GlJWV4fz58zh69ChOnz7Nj9ugKHA/Pz/YbDb4+fmha9eucDgcyMrKarDsiE6ng81m40dVkGbrdDrRvn17pKWloUuXLtBoNIiOjobRaER1dTUCAwNhNBphMBgQGRmJ6upqXvCKql1QEEdT5pnmEA9x/mmdxPUSo5rE0D+5XA65XI7Bgwd7R8S0tDS3UO/58+fzUKN33nkH4eHhsNlssNvtvCYfeQyosiodc1BZWenVMHorrMDzWU9NzfOVvCGq2AYdWg6AmzMI2UgjpMkT80rItEJzQ6y7pqaGl2kjdx4tuHh8BfmzKaCB7jEYDLwUCJ16T0letCECAwMREBDARYaamhq+uDabjQcsUIoviRc0fjJiN8ey4XkPzR39J8W0obn25Dh0TaFQQC6X4+uvv75hviHkoTRBEQ4ePIiZM2eioqICI0aMAGMMPXv2RHh4OIqKihAeHg6Hw8GPbhWrjIo2NXbdrkSDoe9SqRT+/v4IDAyERCKB2Wzmvl3RvyoWdiLNXC6Xw9fXF7W1tdz9pdVqefRzQEAALl++jOLiYthsNmg0GrhcdQdQSiQShIeH88Bao9HILQMNybKe3yUSCTQajVtxI6J+RFHNZjNqamoQFBSE4uJiBAUFwd/fnx+PRiXt1Go1SkpKuD3SarXyyv82m43nQfv5+UGtVnMvjkwmQ1hYGAwGA86dOwer1YqYmBgAdace0D1EkQipqXio1WqFRqPhx3TYbDae4wzUiQDFxcWcwmq1Wn4QZHBwMBc1GGOora1FRUUFP0LOz88Pcrkcfn5+vJgVte3n5wd/f3/Ex8fXUUQKwpTJZDx7f8aMGQDqqOG7777bJGv0rEwqIqA3WZE+u1wublilIFOqUkXteD4P3KitIwaMihExnkG3xFLFmD0S4KXSuuLjIhumHU/z0hiQ0M8Y43ZA0UAulUp5tTIx2LQxqKqq4vNBUUxEnT2VKbGtmpoauFwuXl6F6u2IxmkxoJkik8TgVzHqSHzOZrNxjxTd542ti25QkrPFWkeE4GLReMl1VZovalpaGjIzM/lCDBw4sFkZWZ4k2TPHgsCTrJMBWaQ0nsgsRiuLYWnUjxgHKPZLiycey+CZetrYuMWxiN897xE3hGf7IisiJaimpoZT/+aCOCfegMYoUnLxuwjimETvDbtuCwVuIKFUKuXBxMANhU1cM9Hi4Gk5EYsZ0Li8jUkO3IggIbYsCpzNnayG3DsN/e55ndiGKHd43tMYZSL2TbsQcD9pSWzL03TQUDqpt4n0NgaxPfF32jxWq5WXfnNerz5LG16EjIwMnpZptVp5+JdYQq4hE5hITDzfg35rCIgqid4gsQ3PnBrPDd8Qdad7KKjDcwNQ+3K5vA4RyfJ/5coV9OnThzd0K3YlQkSSARuLxqEFonvEknGkCHgDul+sdEXOfnIf0R+1J0abi8/T7zQOT/GB3qkxCkP3iO8P1EX2ULApLSoh3Z/+9CcMHDgQmZmZeOCBB3Dp0iUkJCRwtkwynNgunWFC8+mp1QM3kvW9ZUp6IiuNX4wNoOt0TVwj8s97hsCJ8yFuTm+ikidw1iyTyZCWloYVK1a0qHhOc9X71jBIi/Yut6BKL+xUHJ+Y6CXuxIbkP8/+mgvUnvi+9JlOeKLNALhr+Lm5uUhMTEROTg4SEhLczsrzzA2mvuh9RKpO1F/MsWkMxLGKlNPbnHrmNnuTdT2VSgoQFjeLiKiE+HKaBHLgJyYm8l3ZEopIO9EbG20OEnouuMjWvbXlKQuS89xTBhVZPu1gskuKTnnPNum55ozdkwLQNWrHaDTyvBkKDMjMzER6ejq/f+bMmXj55Zc5ESDzBi1kU/PpGW4nsmygYVsr4G6Qbog6EuUV34vaIO5BYyQRgr6LAQ/Up6gMOhyOG3ZEsmm1xgE03l7Ym5unoXsBd9nN0/xDL9mQm9BTaxfbakxEaGxMTVF+T++Et37E31euXImZM2fy34gS0ntKJPVTWr312RBQQhXQsAxHbZLTQUQ8kRA0NJci225oTN7uF/snGVxOHYrG1taGliy6N4pH4InM3hBDfK4xxYegOVSvOeMXF05kvwRkjiHtc8WKFRz5Vq5c6caWJRIJqqur3bIPWyraiM82BNQmGfEbcvU1pIx5EgpvIK6RJxISlQUAaXMpVXOgJfLUrYA3N5I3aM57NbXATfmxRTOJN5citaHVajkSetYWJJttZmYmby8oKMhrFqTYZ2sAtdUYAbgV+d7TPevZH7/P88HmIJOnaUbstLnQXGTyBrTQLdlATfVDbj3P+zzNMQ2NpTGgIIXLly8DqEM4kS1TQXRRLicXoVjVrKE+vfl6mwutRYSa20eD8amevubmsKqmTDG3soOa08at+KmbasvTsN5aHMPpdOLq1auIjo6uZ50Q7YJkngEalu08QWSrrTXepoznN9NHY3JzvdVuCAGIYnjeR/7dpp5vCTTVRmvuYs+2PIMpWqsvh8PBKV9mZiYSExM50ogVtchrISahNQUiW22t8TbWzs32IcqE4jWggTAwTxDDhjztSc3xm/7aQazZ2FyFkHzhnl6MXyo0CxHvwc0DsTHiKKKXqCEWR0jYXKP0LwF++VvtZwaJRMKP6zUajW5RQkQD6Fw8AnKjSSQSt+u/ZPj/7yImJro/jysAAAAASUVORK5CYII="
|
<image>如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为()
Choices:
(A) \frac{π}{2}
(B) \frac{√{3}π}{6}
(C) \frac{√{3}π}{3}
(D) π
|
\frac{π}{2}
| 69,814 | null |
\frac{π}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAALgAAABlCAYAAAD+kyk2AAAf8UlEQVR4nO19f1BU1/n359xd8Z286ThN1kprHFQgKvj9StLkjZnYLySiwYiI1ejb1mlJNEElnRpZAnYQ0KBBgZRO/AFqv3WmpqMVg0k0ImgDTTpSkxkwghp3l5j4TaKkk8ro20HYe573j7v37r27d5dd2J9xPzO47rnnnvvcc559znOe85znYUREiHBwEAQwEBEYYyAALNxEfYfwymKG6nd0LuSYQW9Xh5yeQEIINwG+gJHE5IxJbB1j7sBix9uEDYuBUxYOURRBRLjSshM505PDTdqoER0MzhgEirF1sMBhwWUqxLxEAIINu/a2IDEzCwumTA43aaNGVDA4ABAiXpOKWlhaWzBjQSYYYzizrwGGxMkQWCJeXDMv3KSNGlHB4JxzSfcmAsDBY8weUHxx9TPUrl0Ixhjmv1iLqQnJ4JxD+A4og1HB4IIgkWk9vQstVuE70fGRhFPHa3HKYgcRoWjRIkxNIqXPox1R8xYcFmx4+tdATHoHFNz6HmqZGfOTJOtU4sKFSIIAIgLnPNzkjRpRwOBSJ+8r3guWLUkX5cp3YADCjTPv/xXmBZkgEsEA5OfnAwQUFxcrVqtoRkQzuKRrC2jdZwbNzQQ/oWXokUyjUWD2DzC4y6cWLSdqMW/ufBBz9mXREgZKnBsRDK6Ml4dhK8xlYMz1LxtWeaVGEQouf1pPkrm+mfiV9wg5RVIZl66Kohgm6qILoiiSqPSohCstO8nBNtIfg+b7KQt3uydSUZjjoNfBD3tKsglYSBYiikgGlxhYGpSiIompRdtJWvDKLpc6zs8YPEHUfHrqr0juRc7tLt8l/iAiEukKPZNT6HZPYQ4o55UGiggVRaVVS+KDJNXkzL4iVFdXgzEGQ+ICjIFRqansavowjXrS1e8uHV4eag5w564CqVU2HnnqG5EIxgwgEpUyacylhbCttQXG6Q8CADhE5X2SUrLxzqeWyNDBZRaV5kfJRMV7m9HK54GkWQaW1l14MHGSVI9IsYV7Y1L5ZT3p6t8VU5h3aN+RMQMgMKXPNe4PglZYRMJ+A2MGxyfTMDk5yk6fOYkF8zPACRDAlPeZOkVieqNbi2EEc1i4eW8zDBvOgI5Jjj5EhM8+6wVHolSPOQdIZtK///3vaGhowOTJk3WlunOj6C4FMwAqBoFAAA//InJYOOickZqC/7t8hVRGAGMAwYoT1UBdVRIEAogY5KG32i4iZ9qSyJDgasarL86GIXEB8HYNTlkk6WxeLGD+i7V4PT8Li4v3qu6TBkwURfzyl79EW1sbdu3ahY8//hhDQ0Men3E3gRgHwAFmB6BS6TjTCIKvvvpK+X8kWE9kcLuIrVu3Yvz9JmehgzzqtUIoXIREYgADZLHHe5tRsKMFC+ZnRK4VhYhIJGllzGlQ97q8MDpw4AClp6dTWVkZrVu3jlavXk0mk4kKCgrIZrOFjuAIhWwN0S4wpUXa9evXaeHChZSUlEQ3b94MA3XeIY+tDKflTKSWvYVkrm92u6cwB4RFZiKKUCuKHjyZBAcGBuiHP/whnT17lsrKyqisrIyIiPr6+qimpoYeeOABys7OpuPHjwedlkiFJ8tJbW0tmUwmKisro4GBgRBTNTzsdjslJSVRW1ub2zWRrlAOQK29zh+vaD0lLeMWm5V6Ec/gwzFTXV0d5ebmEuecysrKaNOmTW51GhsbKT09nZKSkmjnzp1069atYJEbkXDtw46ODkpLS6PMzEyyWq0e64UbBw4coP/6rzlu5W42fNXfnlaL5gcd8QzuDTdv3qT4+Hjq7OwkIlIkuN5AiaJI3d3dGvVFPbh3A7799lvKz88nk8lEBw8eDDc5HiGKIg0MDFBCQgK1/fX9Yfc6vF2PiEWmN3DONaZA9f9ff/11ZGVlIS0tTXOP2vynrp+amop9+/bh4sWLmDJlCtLT07Fo0SKcOHEieC8QYpCHxfThw4eRkpICALDZbPjFL37hdxvBBqnMuvX19XjooYeQ/mSG10UvEYEx6T4CdzcbB/CHF3Sody/7+vrIZDJpFpFlZWVUXl6ukeDDTbtHjx51U1887ZJG2hTuC6xWK82dO5fS0tKoo6NDt044d4P1+nRgYIAmTJigzMz6N3qjWd7l5JEvwUklTWRbNmMM27Ztw4oVKzB16lS3+moJ7rqZ4/oL/+lPf4q2tjYcO3YMnZ2dmDJlCl566SXYbDY3yRGJG0OeNrru3LmD8vJyzJ49GwsWLEBnZycee+wx3brq96QQS2+9Pq2vr8fjjz/uNjM7wd02paRSmXbB8S+LLgku4/r16zRu3Di6fv26plxtRfFFKunVCab1JVR4//33KSkpibKzs+natWuj0mFDjYGBAc26yt9ZU6nveKWoZPC8vDwqKSlxK5cZ3JcB86Xj9NQXf+4PNfr6+mjlypX0wAMPaH6YI6U1HIxfVlZGK1ascCuX38GpPtrd6ihQkR1VDC6KIlmtVjKZTLqbEmoJHkiEyvqiZqjhmEvNtJxzqq+vJ5PJRCUlJVFrBv3222/JZDKRxWIJWJuRp1R6gSAIKCkpwfr16zFu3LiQPdfV+pKRkREU64vaX2a47XJZd+3q6sLjjz+OAwcOoL29Ha+99hruvffegNIVKtTV1SE7OxtJSUmBazRgP5UQoLOzk+Lj4z3uugVLguuhsbGRMjIyFPXl9u3bmuuuEjjQ0/2tW7eopKSExo0bR/X19bp1Ikm39gR5Jrp586abVSwQ9EeVBN+0aRNKSkowduzYcJOCpUuX4v3338exY8fQ1dWFKVOmoKCgADabDYC7BPbXb93V/q/GiRMnMGPGDHz55ZewWCzSOUodRJLTlCfIM1FNTQ2ys7M1VrGA0D/qn0iI0NbWRomJiV59JkIpwV0RCuvLtWvXaNGiRTR9+nRd/wyi6JDarpCtYl988UXA244aCV5eXo5NmzZppDdFkAvs/fffj8LCQly7dg15eXmorq5GcnIydu3ahdu3b7vV9+c0kSiK2L59Ox566CE8/PDD6OrqQnp6um5dxljUnVSqqqrCc889h0mTJgW+8YD/ZIKApqYmSk1NJbvd7tXkFU4JrgdX64u/1gHOucYxypf7I9F86Q03btzQ3dMIFCJeghMRtmzZgldffRUGg0HR2cIlpUhn1vBEi9r6MnXqVDz55JM+W1/+9a9/Ye3atcjNzUVJSQlaWlp8si5E4m6rN1RVVSEvLw8TJkwISvsR3xt//vOfwRjD4sWLNeXhGki9hc9wtIwfPx4bNmxQ1JcdO3Yo6sut2/92q3/wz3/Cgw8+CKPRiMuXL2PFihU+L7iiST2x2Wz405/+hI0bN2rK9YTIiBGUeSFA8ObwrodIU1E8gXOuqC/jx493qC82slqtlJ6eTmlp/0lnz54NN5kBg6eFb15enu54BXKhHDESXE/y7N+/HxMnTvS4oIpWMMYU9aWnpwcPTErAj3/8EGbMmIHk5GR0dp7H7Nmzw01mwOA6+3DOYbPZ8O6772LDhg1BfXbEMLjrNH/nzh1UVFSgrq4uPASFCOcvdGH/vgY89dRT2LVrFywWCxKTHvRofdGDWjiQanqPNHVFpkcQBFRWVqKgoEB3R1r+QVAgVJWAzQUBgjw9yUfR/EG0qChEku13xYoV9MCkBDrZ3KK55qq+fNdOHlksFo/+RIFGxEhwGYwx3Lx5E5WVlaisrAw3OUFBQ0MDZs6cialTp+LSxW5kPa3NpJCa4lRfgun7Ei6YzWaYzWY36U3B2NcI+k9oBCgrK6O8vLwR3RfJEryzs5Mee+wxmjNnDl24cMHtunNp5W7L9vXgdCTawdU0efInChbdEcfg169fJ5PJNKJpOVIZ/NatW1RUVEQmk4n27dunubbbnENS+CbpVHjzFZHqXzHTFa4fC8Z18yja4r7k5uZSXV1dyJ4XcSpKVVUVVq5cicTExHCTAsDdAcofEBGampqQnJyMr7/+GhcvdmP16ueltnqbwZgBzcJCEIngdhEicZwuMuA9JCOZGXSn7FAcnPb1PfXo0yuT0dXVhY6ODqxZs2bEtPmNkP2UfMDVq1dHtW0bSRJcdoyaNm2axo7PiUjkVsoBdKMyiTYpHrqneMZ6U3mo4754CssxXP2srKyQSm+iCFNRPBn+fUUkMLjdbqeqqioymUxUWVmpO/C7i7I10ZfUEEXR7XiWLwhW3Bd/dGNvddva2igpKSnkEbTCzuByp1y6dEkxHY10JyvcDP7hhx9SamoqZWZm0tWrV3XriHSFsgF6uf7kMK35xlhy/6mZS3bdnThxYkBdd12PyfmD9PR0OnDgQEDo8AdhZ3AZubm5VF1dPao2gsHgnmKsqAe4v7+fXnjhBYqPj6dDhw55OFvpYETbSQJA9a2fOstFTi17zZo0IqcsvjFQOOO+NDY2+lSvra2NkpOTyW73clA4SIgIBh/uKJqvCIcEf/PNN8lkMtH69euVjQsNo3Dtpxwgcs/pTzXtcLsoxdyTVZcRumN4YtLu7m5atWoVmUwmWrdu3ajVl/7+frrvvvvovvvuo4KCArp06ZLHuuGS3kQRYkUpKipCaWkpxo4dG3Hby55w+fJlZGRkoLa2Fu+99x5+97vfKRsXGrcDhxuGnTmCzycmIAdAr/UzAE6rAzMIuHrVBvOCTOW+kWx7qJ9NKotGamoq9u/fr7jujnbzqLe3Fz/4wQ8Ua86SJUuQmpqKhoYGfPPNN0q9EydO4MaNG/j5z3+uS1fQEZaflQpykJpATF+hkOADAwNUWlpK48aNo5qaGqXcVXJ601Hl6KiyFJdjfMjZwgKBQMV98dTO6tWraefOnZqyc+fOUX5+Po0bN45WrFhBAwMDlJaWRm+99dYo3mR0CCmD6zHB7NmzlelrtG6SwWbw06dPU0JCAuXm5vplyhRJm5JPJE5cjmWt/sspIpHswzJXoOGv9aWvr4/i4+M9miPtdjs1NzdTU1MTzZo1y6f30R17r/EHfUNYJfhbb71FaWlpRBQYH+BgMbjsGJWQkEDNze6268Bh5FaKQMDXg9NVVVW0fv165bunhbgsvTV5JVyYfEj9wxe1Eaw8ZfbwB2Fj8KGhIZo1a5bX6ctfCRYMBq+rqyOTyUSlpaUhseFGypl417gvsrS22+00adIkr1Kec06NjY2K8PIZLi8fiBksbFnW3nzzTXzve9/DkiVLPNYJ5rE0ckSp1QPnHJ988glWrVqFe+65B+3t7Ups7UCAcyk6qgD350dKJJOlS5di6dKl6O7uxu9//3tUVFRg+fLlePTRRzFr1ixdVwrOuZQCknOUlJRg165dXvvZDQwAuCNbGgMLwPiHxYoiimLY3GFJJzQaqVb1t2/fRnFxMebNm4e1a9figw8+0GVucuTvHA6++3VISUzVLUZCnsqZM2dqDk5v2rQJoigq1hf1+8kC6eDBg5g4cSLmz5+vBKeXMfwbCdrcnaOEhsFJHMTgoPPPHiSLnZzPMhxH0fSkicyosmPUzZs3cfHiRaxatUq3ntyOL5JJbxYSBMFNejNm0OT/BKAr4cOF8ePHK3FfVq1apcR92bNnD27duqXUk4VXRUWFo0SAeTEDExgEQYBBEJS+Y4yh/swV5V4O34SGX3DXg4Zo6M4dsgdJGXSN/6zGaHWu4XRwTzt3V69epaysLJo+fTp9+OGHw9Iz0gWg3n3OMMDhXWCOBD09PYr1Rd48ck37RyS9j2QCdb6vSFdooWERXSbP5mGvIZJ9RMhVlLq6OsyePVuJ3q83xcmgAP+a1RKXcw4iwvbt2zFr1iw88cQT6O7uxhNPPKE8W9YnvbUzHDjnSg51jVqkNGaQnkGCpKao2g+HguJPn6ekpGjUl5/85CdYu3YtSktLNe0Qs+IibcC8JGmmamjYAwHJmLEhBdNg8ExLACYwL4tMDvugHRwAmIAxY4yAOIghERCMcTAKAMgO+xAHByAYxsBokFPQOssBAcY4IwQA/f39qKmpwQd/+xsGBweVa/pvZ4cot+F4PvPYtkQrcREQBNgHB6XrghFxBu6sLxgRZ5R+RGfPnkV+fj4mTZqE8+fPIyEhQfN4mclGu9BV7ncZLKb6lBdTzGWww6GgjCTg5f3jTSgsLITRaMShQ4eQmZmpud57uhWp2ZlKmvaTNgPyAWyv2ua1XcEL8/sKL6MnwDhGgAABRgdzMYMRgmCUmBscdjtgiItDXJwREIcgkqN8iIONiUNcXByMAofdoczX1FQje+EzSJ4+w+2aFuo2xsAADpF7a1uAIPcFJwhxcYgbI0DgdgzKNI4RIHCOG998gxdeeAHLli3Dq6++ipMnT7oxdwy+gYjAQRCIY2DwDqqqqrBnzx63We+zz3pRk/8MGGMwJC5AcmKCYnEJNrw/gRlhMKiYkHNAJopzcOIYGhzEoEPSEznKmaDkCBIMEmN9feMG3nhjJ8ortrhdc2NxzsEFI6QJgcEwxjFjeGibQyUpBUHzUgajUZGE//3f+/GfKSm49957cfnyZa8myhiGB2OSqZMzAfV79iqqpyAImgXjqeO1OGWRVMKWvYWYmjg5ZJHJPOgHAuSZihmMEAbtEGkMwAGD+g7VlK+AAyBJf5QZi3OOHVVVeP65PMTH/1BzzSOIg/TsCC5tq8EY09VbL1++jPz8fPy/27fx7nsn8X8efcRjjEF5dR8qCRNNUPeP/F0QBAzdGcT2qm04efKkUlcAAxjALa2oZRtQkyTdMzkhETwhOWQ0KyPI7YMYlCU1UzOQAIMBEIeGQIJTGkKQVACnhsHBuaMcHFzSV8BFjt4vPsfBgwdRXPIKjAKUayCAu0hc+fkCyWqJ57Zd73dl2oE7gygv24Q5c+bgp0uWoOPsWfz4kUc8doY8ePICMwYtBEHQ6OhyH23btg1z5sxBWlqaYs+XcaatBeYF85XvyfPXYl5i6BbQijxmDIBoxyAHDGPiNBKSGYwQRA7tmAswGgUM2gcxKH+PEyDr7vahIQyKAJiA7a9tQ0FBASZM+JFjkei8NmaM3Ki0UIQxDkbBCKPR7lPbY8YI4NwOrlKjODia32vGr18qwMM/fhQXej7B+O+bJFVoyA4WZ4Sgs5hSNhiiIDNCuOA6s/X392P37t3o6OhwlAhQW/NPHa/B/NodkvrKAEahDZzqZHBDHOK8LFqZweAuaQUj4uL0KhthdJT39PTg+PHjsFqtbtdcGoNR3ZgPbStFghFCHMAEA/79739j6ZKl6OzsREPDXjz99NO67+NqtovBN7gy5+uvv47s7GxMSZRSj8h9amnZgwefXgcAqH1HwCkLx/wkjWoAD0poYOGLsZzbh0a88bNkyZKQnaTOysqie+65R3GMcj1i5umoloyRHPa9m+C68SUnjpIdr7z1m3JwTzMmwT/C5pXBxaE7dOfOHRryk7vllzh37pxPR9FGy1Dnzp2jhx9+mBISEmjdunW6dTYsguPMo0A55vqAPPduR2lp6YgikIUSXr0JBWMcdLUJ7zOCMo0VFRVhy5YtiNPVNZzwV1WQ9cD+/n5UVFTg4MGDqKmpQW9vr4YOxhhE4hBAqHlHRFJJDnqn/BrV+U+P6LkxONHX14c33ngD58+fj2h1L+Davvyi7e3t+PLLL/H888/rvrzeFjj5uE0sCAKampowffp03L59GxcvXsSvfvUrTUfLnwYmSI5MENB7SUB+/jy/nhWDPl577TU899xzSEhIcHOBiCSM2h/c1TYqM9n69euxdetWGAwGt/qCIOj6nfgiBT7//HOsWbMG165dQ2Njo+I7AmgzBbu2y3ubUcOmoRoCRFF0oysGfejtB9y4cQN//OMf8emnn7rVjzTz6qipcbWNMsbQ1NQEAFi+fLnW6cbFvkwu7qfeIIoitm7dikceeQQZGRk4f/68hrk9QW639a+nUZg1FwAU5o7J8OEhj5d6rOS0f8FKHBVIBPxEjyiK+O1vf4uamhoA3hnXk2+2a3l7ezvWrFmDyZMn4+OPP/bJd0RuR971bH23FvNrq53tkwjGYlLcV8hjYrPZFOkdybq3jIAz+MGDBzFhwgQsXLjQ7Zq3DpGnQvX1f/7zn9i4cSOOHz+O3bt3K74j6nY8tSmXyx5stcysbBcDUNxUI21KjXRs3boVv/nNb6JCegMBZvA7d+6gsrIS+/fv170u+1d7OuWixv79+7Fx40bk5eXBYrHg3nvvVa65qkSeniXDZrMhZ5q7/0OMuf2DnDhK2bSLAvjF4MNJvPr6ekyfPl1zFE2+R5ao8v8B9wMIgiCgp6cHa9euxdDQEFpbW5WDEaNBw86XUFCrXd1LPhMsxuQ+gnOObdu2Yd26dbqJoyIWgTKoux5F8zew48DAABUXF5PJZPJr51P9nLKyMiqr2KR8t7TuIiadevUroGUMTsj9a7VayWQy0bfffhtmivzDqFUUckjmbdu2IT09XZG4rqqDN0l56tQp5OfnY/bs2eju7vZLv5NNg8rzuPO5SZnrwPk6F4Kh+EP45LZ7l0Pu18LCQqxfvx7f//73w0yRfxiWwdVqiZqR1IvC/v5+7NmzB2fPnnW7F/DM3Ddu3MCaNWvQ3d2NP/zhD3jqqadGuCrnAAxgpD3HJzGwdOJHduwhEBgxF5fgGADPC/auri589NFHOHz4cBioGh2GVUDVzKnnCwwAlZWVWLx4sVswGNcNHVLZUmtrazFt2jTMnDkT3d3dmDt37ohNTsxhEXE9pOo4VQmCMwQDYzHO9gS9jTIA2Lx5M8xmM8aOHRsGqkaHUasofX192Ldvn2ZXy3Uxqpb2H330EV588UWMGzcOHR0dmD59+mhJAKDakFD9ZhWpzXlAoiTdDXAVMnLiqEOHDoWJotHBr1HX8zMoKytz29VyVUlkx6iXX34ZzzzzDMxmM9ra2gLC3ESi5jsTRCUilEZqxzAibNy4ESUlJVEpvQE/Jbgr4/b29uLo0aPD2kUPHz6Ml19+GTk5ObBarW5mJld/FnX5cGY8Yi4u89w95h9jzOF/whCmaHVRifb2dly6dAnHjh0LNykjhobBnQwlLcwA75aGyspKFBQUeLSLfv7551i9ejW+/vprHDlyxKPviCcm9sVG7euJED3nqthOphaui8zy8nJs3rw5aqU3oGZwAhgjt0FXsw+p/De6urrQ3NyMS5cuuTUqiiKqqqpQV1en5CX35DIbDAYrLy/XfJcXT5s3b1bKKHawWANX5m5ra8OXX36JlStXul13VQEjGRpOlgJAevaxY8ygeODJK2tX6d3e3o6ZM2eio6MDnZ2dKC4uhsFg8Gl7fjQgL56JRIT29naF8T2Zw+5GyOsqOVSGjIqKCpSWlipjpPQXRQdjK1Cfi3s52yWlhiaPjPM84wftf6OJkx7QHEXr6+ujlStXUnx8fMDyMvoLb8E3w51DM5pw/PhxVd4kkXzN2RmJENQuozXvchTlAPWtkivklZY3sDZzGlqsWolXWrYJW1+tVHSz/fv3Izk5GfHx8bBYLLqehKEE+ZlDPQYtSktLsWPHDse6RYCyHnOxWEUDjNqj+1ZcPL4QL76dBABITEzSVCYitLa24n/+5wusXLkSPT09WLNmDex2O9ra2vxyjAqG/u22bQ+V22xMJfEJTU1NICLk5uYC0Kpz0diDglqfsrW2wLBhEaY6dLFXXl6AHHO9FM8CAIGhuLgYlZWVKC0tRUZGBlauXImzZ8/67fUXjAWenpRW+43H4A5yyVSxZcsWlJeXu/Vb6z4zmGCUhEVuETgseKV4d1ho9geMVG93ar8ZWS/UgkFSwE9ZOOYlMiVOYVNTE372s59h7NixmDRpEhYszMI9/+t/e2ycHJaKUDFXe3s7ACAjI0N5piyB5GvhyCoR6ZBnvhs3buAf//gHOjs7lWvcehKGB59BTlED3t7+IgAO9LaCJWbBXN+sRCiIVBgBx9lEIrS+W6tEIGrZW4ink404ZbEjc6rEqIODgyguLsZXX32FH/3oR8M27sm3wT84bfLDPUsG6VhU1I5Y5AghJrUbWafAwwG5vyZMGI/6+nqlfIiuYFnyM8gubsCx16R0LpwDwtSnsfuVRcDUJN32IgryalO0nXTmSScpxUQOQOZ6KS+kfvqNEPhX+/MIP+rGgv5ooRfVq2VvIQELyaJOr6JcM0eFf70RADhEtJxp1UQBRa8N7zAD9iRNAaDvzxGShZvyCHdJLs08ooMOAeTqKOhlGza26NRC3v9wbuZYsPPFWpjrm5FIpPSj3GvzXqgOA5X+Q5D+MeDMu69jfqakT3FYsCRxAUBZeHKu5AIr54/hoLCktyNimjgPBODIcgZBMCoZypY32gEAf1ku51mUPpc2cgA8FifCC1wjDJD1Kt4BkJg0BURMGfNISG3oF6607HTPmQ6BsNjsEqxSm29cDHFOXk8qxYXNqYTUMrrgQs8nFSmOchWl3EWLifwZNmwQbScJANWfueJxrAORiTjYEJLnFSimIjnzGJEIOlatbN/KKgCHCAhOP4SQhunS2X4HOHou9CDl2WcxU6WLELrReOQSlpWXY6bKyk8grcYS01I8Y2oicgBYLVelHiSn9Oa2FtSfuRIVap6gnnL0CBYEQakhgAUk89VI4EoZYwwcjTjSmIJnl6U4zYIA0HMEjT0zkJrifk8MvkFAMl7aW4iaNfPR8FeLErz+SstOGApbsWbug2DRICE8ifbhY2gHP7az44n6xZyI/2WZjnrl+NNRW2LwHZxz4naRLisqrEAAKOeVhqhQTWRoNnoiFh6sIX95VsCW/7iA7rJUVdVulKf+B44uv4Ce8pmhozGGiER0OEQ7lWhFXeI4hMbGGVi2dIZ2M6nnCI5elNSWGGKIDgZ3QL1IZEeO4ghmICWVaXZMWc9FXExdhmWpUaAfxhB0BDz4ZjDhzOHejYrNjUipuIDlDv1FutaD8i2NSHn2Ama67frEcDciOnRwF6jdN+nZQ6C/rAAdeRbC8kalTmrFBXTHdPC7Hv8fOuqfZ+PATOoAAAAASUVORK5CYII="
|
<image>在▱ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()
Choices:
(A) 3
(B) 2√{3}
(C) 6
(D) 3√{3}
|
3√{3}
| 69,815 | null |
3√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAJQAAABWCAYAAAApHL9rAAAPM0lEQVR4nO2dbUwc5drH/wNPQj9gtkZO2SbURUDdZjFuYlsxILNok0KKSiIN/YCypD3n2NNWMeliE7XoJ4m0kUSeA0jNLikmmDQWExogKXFZIEH7gSZClqSyA6IRW43UJecsT5a9ng864+zs7LIL87K73V+yaeeee+65ZvjPdV9zvw1DRAQdmZycREFBAR555BE9zcigEFl6G1BZWam3CRkURFdBtba2gmXZjHdKIxi9qrz+/n4UFRWhsrISOte6GRREFw/FcRwAYN++fWBZVg8TMqiELoLq7u5GU1MTiAgHDx7Uw4QMKqG5oPr7+9HR0QGGYVBUVASGYbQ2IYOK/I+WJ+M4DgzDCDHT5OQkfD6fliZkUBnNBMVxHJqbm+F2u4W0jJjSENIAh8NBAAgA+Xw+IiJiWVZIczgcWpiRQQM0bzYgorC4SbqdIbXRvaU8Iyb14X2GFr5Dc0GJBXT9+nWMj49rbcJ9B3/PtXh4dfVQHR0dOHr0KMbGxvQ0IyUhIqyvr8vua21tBcMwwo/jOLS2tmpil26CWlhYwI8//ogvv/wSDQ0NEaLSOLRLORiGQU1NDaanp4U0vlkG+OP+8b/m5mbtDNPpZYBOnz5NFy9eJCKi0dFRMhgMNDo6qpc5Kcfs7CyZzeawNADkcrki8vp8Ptn0UCikuF26CMrv95PRaKS7d+8KaSMjI2QwGOjq1at6mJS0hEIh2T/8yZMnqaurS9h2OBzEsqzs8VqimaDEF9bX10eNjY0ReaamprYUldY3SGvkri8UCpHf7xe219bWyGg0hqVF805ao4uHeuqpp2hmZkZ23/T0dMZTSRgeHqZjx44J2+3t7XT69Glh2+fzEQDyeDxhx7lcLqHxGKJGZTXRXFAzMzNktVpjehreUw0ODsYsK929FU8gECCj0Uirq6sUDAbJZDLR7du3hf3RBBUKhcjj8chWhWqhaecwAPT09OC1116L2SZSXl6OsbExHDlyBIFAAE1NTQAiW9XTpVFUel3S9JycHDQ2NsLlcqGkpAT79+9HSUmJkI8f8erz+fDss88K6QzDwOfzpe9bnrTuF3sYOW8zOztLBoMhamxwv3goIiKv10smk4kOHz5Mw8PDYft4TwQZL8WyrCZVHY+mgrp48WJY3R8PW4kqHYn2oBw8eJD27t1Lbrebbty4Qe3t7WH7+apP/NOyuiPSWFDFxcU0Nzcn3LBobzRSeFGJX5PTFfH1BwIBeuedd4hlWaqoqBBEUlFRQSzL0ttvvx1XOVp6ckVjKIoxcmB8fBx79+6FxWIR0uTyyqVZrVZ8/fXXsNlsCAaDeP3119MmfpIivq6cnBxkZ2fj3XffxcbGBux2OwDg6tWryM/Pj7scLe+V6sNXeJEdO3YM9fX1aGho2HZZCwsLqKqqwvnz5/HGG28oaGXyc+nSJdy+fRsPPPAA8vLy8NZbb+ltkjxauMGVlRUyGo0UDAZ3XJbX6yWj0Sh029wPBINBKikpIa/XKwTnRMn5UrLjKo+2eOUFgMuXL6O5uRnZ2dk7HlBnNpvx1Vdf4ciRI/D7/Xjvvfe2XVayIb03/Pbo6CgKCwthNpsBACaTCdPT0ygvL9fL1OiorVi+IW5paUnRcpeWlshkMlFbW5ui5SYj1dXVdO3aNWHb7/cnpXci0qBhc2hoCE888QRMJpOi5ZpMJkxMTAgTRdPFU5HESy0sLMDr9eKFF14Q0nJzc/UwLS5Uf8vr7u7Gm2++qeRpBMSi2tjYwAcffKDKebREev+6urpw9uxZZGdn62RRgqjp/hYXF8lkMikSjMdidXWVzGYztbS0qHoetZFWY3zPwtramk4WJY6qVV53dzdOnTql+tOVn58Pt9sNm80GAPjoo49k81GSz7CR2jYwMIDa2loYDAadLNoGaik1EAhQXl6eMIhOiyBSzlMla/AaDyUlJTQ3NxeWluzXo/iYcvqznXRwcBDPP/88HnroIQDatNbu2bMHbrcbbrdb6GFPZo8ERB87PzY2BqPRGNazACT/9SjmoaRPTllZGU1NTSlVfELnX1tbI6vVSna7XbPzK01tba3sIMNk91CqVHk3b94ki8WiRtFxs7a2Rk8++WTKiEoslO+++44KCgpUf5lRA1WmUfX29uLUqVNqFB03BoMBExMTuHXrFl555RVsbm7qak8i9PT04MyZM8jK0n1id8Io3jl87949mM1meL1e7N69G4C+b1fr6+uoqamB0WjE4OBg0rfnrK+v49FHH8W3336LvLy8iP163st4UPwRGBgYwEsvvSSICdA3kMzNzcXIyAhWV1dx/PjxpPdUn332Gaqrq2XFBNxHQTmP2Wym2dlZpYvdMX6/n8rLy6m+vj6pY5PHH3+cbt68qbcZ20YxD0VEmJiYwO7du2G1WpUqVjFyc3MxOjqKtbU11NbWYmNjQzYf6TgFfnx8HA8++CAOHDigmw07RTFBMQyD7u5unDlzBkByrU3A25Kbm4vh4WEAQF1dnayo9KxSurq60NLSotv5lUCRoJyIcOfOHVitViwtLSEnJ0cJ21RjY2MDdXV1YBgG165dSwp7l5eXUVFRgaWlJUXGjemFIh6KYRhcvnwZjY2NSfHH2YqcnBwMDQ2BiFBbWxt1WRwt4ecr8m+hqSgmQCEPtbm5ieLiYoyPj6O4uFgJuzRhc3MTx48fx+rqKkZGRnQbZ7SxsYGCggLMzc0hPz8/Zb0TIPFQgdCG8EuE0dFR7N+/P6XEBADZ2dkYHBxEfn4+ampqdPNUV65cQXV1tTCTRbz0dsohfe3772Yg4VfF6upq+uKLL7b7pqk7wWCQ6uvrqaKigtbX1zU/v8Viibp4SKqx4xhqeXkZ8/PzePHFF6VC3WnRqiG1jfdUhYWFYFkW9+7dU9T+WGVNT09j165dePrppxU7n57EFJS0CpSrEv+37984+a+/R3RpbND/Ra0+461ao+WLlS7eL04TIxefZGdn48qVKygtLYXNZsPvv/8e07ZEkM5kEdPZ2anaEGldkLosaZUnt833jK/9556wzIw4X6wytip/q2OiHf/fzYDwE2/HOocU/rrsdjtZrVb67bffhH2rq6txlZEIKysrVFBQQIFA4mFGspJQlRcIbWBXVo7wxA0NDaG8qgKGv+1WQ+sCu7K2borg84jzxnOcGP66nE4nrFYrqqqq8Msvv2B5eRkHDhzA4uJiQuVtRW9vL+x2e0o0tcSNVGHSpzkUCkV90iuee5bGx8cjVKq0h9pO2bHOSRTfQLWWlhZ67LHHyGKxUE9Pz5b5E4FfRGxlZUXRcvVG8FDR4hlpvEF/xgDz8/P49ddf8dxzz8U8XgnUKLuqqipsLW/+x090AP6a7PDDDz+grq5O0fMPDg6CZVkUFBQoWq7eRLRDyVUTu7JyIqq7rq4u/LP5H0IALK1qxIFzvPvEwhHni+d4uSA82v8BwO12g2VZ+Hw+YT1vj8eDQ4cOCXkuXbqEPXv24NVXX4XNZsPPP/+s2Nvfxx9/jLNnz0akK1W+bsTrysTVht/vp7y8vJSaL0YUWc3ZbDbh//yCZvy/c3NzZDKZhCrp/PnzVFJSosiUen6d0XQkLkFJY5Cenh46efKkKgZphcfjEcTT398fsZQgEdFPP/0Utt3W1rajdRp4QTc0NFBfX9+2ykh2YgpK+irOY7FYUm4QmNQ7bXfJ5QsXLtDDDz9My8vLCZ87FArR6uoqGY3GtGoqEBNz5rBcPMW37KbaIDDpy4XT6QTHcSgsLITNZhNW0qUtOmbff/99AEBlZWXcneHir0F1d3enX1OBmHiVxz9ljY2N9Mknn6glcE3w+Xxhi5luZ0HYzs5Oys/PJ6/XG/cxwWCQCgoKFF/aKJlIaEz53bt308Jdu1yuCBGFQqGEP1Xb2dlJRqNxS1HxD+PAwADV19cnZmyKkZCg2tvb02KFE5vNFhEzsSxLTqcz4fKiiUqu4bSsrIxu3LiR8DlSiYQEZTKZEnLxyYbH4yGGYSLW8kaCgTkPL5qenh4yGo0xZ/skw2xqLYhbUKOjo3T48GE1bVENLdYDcLlcZDAYBFFJz9nY2Kh4900yEregoi3ecL8jFo5UVDxqxZ5tbW26rTEa7SGNaDYgmdfm77//Hrdu3VK8PysdEN8r/iNHNpsNbrdbmJ/Y29ubMhM44iVa00qEoOQy9vX1wW63J/26AHpDRGhqakJubi5sNhuuX7+OsrIy9PX1hX39nf7sr0vViQix2HJJxM3NTTidTszMzGhhT0rDC+Tll18GABw9ehQXLlxAaWlpWAPodoQkV3MokVdpO7acRvX555/j3LlzOHHihOLGpTuffvop7ty5g4aGBhQVFQHY+YwW8fFutxsAhCE3Ws2WibWEd9jwlWjGnDhxIq3dtFoUFxfjmWeeCRv2sp0/uFgosY4X59Hr75TQRE89DU1l1LpvvKdIpkX/wzyU3CjGyclJYX9GTNvjvrpv0nYElmWFsUH8Z0e1/MRouiAeHsN3RCfaV7hTlGrQZVlWtmdBjohZLxMTE8KHkPnxzpTqw1I1hOM4MAyD+fl5YWix0+kEwzARS0QrcV9tNhuysrJkx8dPTU3tuHzgr+HSi4uLwjU5HA55zytWl8fjCXuKWJbV/KlKdQDQuXPnItIdDofsqFAlkPtQNaJ4kJ2cQy5Nqo8wD8VxHDo6OgSFO51OfPjhh4qo/H7A5XKBYRh0dHRE7LNYLIrMcKEoXo0fINjf3w8AcDgcitUsk5OTwuQNcZmHDh3CN998E2GgrNL5GCATP8UPwzAxB+up0UktHhvv8/lkveNOieZdXS5XhOcSPBTHcWFK5/ulPB6PIipPdziOAxEJDZhy8DEHKRiT+nw+2O12MAyDoqIilJaWKlY2T0dHhxBXi5mfnw+bdgaImg08Ho/wfRTgL4HJ3SDaQSNduhJtQmysvErcP6fTKcwtdLlcgkNQCo7jZKtPPjwSfxgSEAnK6XSisrJS2MELSU6Z4kH3Gf6gsLAQwB8eAwi/NxzHhbXn8ez0/klrlaKiIuzbt29HZUrxeDywWCwRtjY3N4Nl2Uh98G1N0p9cVJ8hNnzcKY43PB6PavdSbmy80gCgxcVFYdvn88XUh+ofsU53pIG29AFVs9mFZVniOG5Lm7aDnKPhh0/Hav5Q/FsvGcIhFfrxPB4PWJYVOo19Pp/isdN2yQgqg6Kk3vezMiQ1GUFlUJT/Bw5pw2U3bGltAAAAAElFTkSuQmCC"
|
<image>如图,以△ABC的顶点C为圆心,小于CA长为半径作圆弧,分别交CA于点E,交BC延长线CD于点F;再分别以E、F为圆心,大于\frac{1}{2}EF长为半径作圆弧,两弧交于点G;作射线CG,若∠A=60°,∠B=70°,则∠ACG的大小为()
Choices:
(A) 75°
(B) 70°
(C) 65°
(D) 60°
|
65°
| 69,816 | null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAFkAAABLCAIAAACUd7xoAAAW20lEQVR4nNU8a3BV1dX73nPvue97ueGGyEdK0BQNhpoETSqJVdqRhNFGZApSCAZ1xJbRwaGVAcQpihmpKDOlDCixpdRamCrVKTAdbEEcHjqtRb5UoNIaE8A8yH2f93t9P1ayORJyQ0IC/daPzLn77H323muv91o7DgAgowwcxwWDQafTaVmWJEnBYFAUxUAgQAgxTZMQwjCMpmksy+q67nK5HA4HADgcDsuydF1nGMblco32IgkhztGeIJvNhsNhTdMIIU6nMxgM8jzv8Xiy2SwhRNM0hmFSqZTD4SCEuN1uXdcRQdjf4/EwDKMoymivk1wDXITDYZ7nvV6vKIqGYRBCFEVxuVyRSIQQ4vP5OI7Ly8tDLEiS5HA4GIZxOByqqmJ/bBntdZJrgAtN00KhECGEZVmXy9Xc3FxdXb1v3z6kC0JIIBBIpVKEEMuy/H6/2+3GdoZhTNNEgqKNowqjjgtFUSzLsizL7Xbv3r17x44dO3bsaG1tnTlz5uuvv55OpxmGycvLS6VSHo8HaUdRFMMwXC6Xx+NxOp26rl8DoUYIITD6IIoiADQ3Nz/44IMoFDOZDMMwn332WSgUamxs5DhOFMVUKoX9LcvSNI0+m6Z5DRYJAA4YZZRrmmZZ1osvvtjT09Pc3KyqqsvlikajPM/Lsuzz+QoKCubNmycIQmNj43e+8x1JkkKhkNPpNAzDsiyXy+V0jjrxIoy6rnI4HGvWrEFJ4XQ6kS7wr67r+MwwjCzLN9100x133FFXV/fd7363pKTE5XLpuo6I0HX9WoiMEaQxy7IAQJIk/MnzPMdxCxYs+MUvfoFsgjSING+aJpoVsixjO8/zAHDu3LmCgoInnnji2LFjOASFiGmadmZRVRXlCAAYhkF5yjAMVVVVVR3G+kcMFzg98ryiKIIgCIIwb968rVu3dnd3h0IhACCEWJbldDp5nsdj8Hq92A4AkUhEEIRAIAAAbrf77bffLi0tbWpqQhzRWTKZDKIPAERRRAQZhiGKIsXI8GAk6UIQBHzgOK6trW3x4sUbN27UdV1RFAAghCiKgkvHzXMcR5/T6TTto6qqJEk+n09RlBtvvHHChAkvvfRSa2srpTg7mKZJCQQAeJ63425IMGK4kCQJccHzfDqdvvvuuzds2CAIAm6VYRgAuOGGG+LxOG4YW5BlXC4XALAsq2ma0+lEuxPf/uxnP0skEj/96U9vvvnmhoaGPXv2IGY5jqN6ByeNx+OUXoYHI6xTJUlqa2srLi5++eWX6XERQgzDwNVHo1FsVFUVhSLtk0wm6TMAXLhwYeLEiefPn0dy4Hn+N7/5zYwZM26//faNGzdio50i6AIEQTAMYxiLHzFcZDIZURQ//fTTysrKdevWAUAoFLIsi56wZVkoEQghsixjO+oRfGZZ1t5/69atK1euvGQWTdP+9a9/LVmyJBaLLViw4Msvv1RVVVEUXddVVUV+6Y+gK4SRpIu33nqrrq5u8eLFAKAoSk9PD26M53lFUaLRaCaTAQDLsliWhT4bDPvgK3wWRfHjjz+eOnWqoihI9qZpZrNZ+1yKomzbtq20tPTee+/94x//iI2CIKA8Qo02VBgxXDQ3N993331Tp05FFNhPGABYlkWmUBQlEAjgs10uAAD6Y4SQ9vb2G2+8saOjA/rUE1UQpmnatammaYcOHZo9e3ZxcfHatWt7enpwyAjzCM/z9Iv9DWFN09CgBABZll966aUnn3xSVdVTp07NnDkTfXDoOx9qxXAch8/YjiITf2J/wzBOnjwZiUQ6OjroCeu6nuOccZEdHR3Lli3Lz89/5JFHjh07ZucUqlaQ9LAzPmSzWfvWBqcLZEX0l0zTRNuZvuU47vHHH1+7di3+TKVS//jHPwoKCk6dOuV2u9HpBoBwOPzVV1+FQiEqKS6hC0VRfD7fjh07SkpKzp07hygGgO7u7txWg6ZpqI9N07Qsa+fOnaWlpeXl5du3b0c3DwAURUF+pGIVEYQCGG2TwXFhJ4dLDkdVVVEU58yZs23bNk3TkD4ty8pkMl1dXVOmTFm2bBnLsqlUCiceM2YMACQSCcMw/H4/fsQwDKSItra2O++8c9asWd3d3QDQ1dWlaRruBPpMuNzrRELQdf2uu+6qqalZu3at3+9/9tln29raUNnjWSLicIimaYZh0KPNhYvLOojUahYEobKy8p133qGvEomEffUbN26cNGlSLBbD8EQmk6FUoKqqw+HQNC0Wi/3yl790u92lpaWHDx++ZOdI1dR+vyxQ8sGf7e3tiGic64c//OGECRPmz5+/Z88eaqqZpilJEkUBz/NIeoPziGVZ1MhH0QUA586du/322z/55BNEgSRJFAvI3ngU3d3dK1asiMViY8eO/clPfvLCCy8QQg4fPvzmm2+++OKLPp8vGAw2NDTs3r0bvwkAHMdhgIsSsN3d6A+6riPdiaIoSdL27duXLFkiSRIGgXDDp0+fnjlzZnFx8auvvopWDH48k8lQWzkXLihR9NfYra2tVVVVp06dgj47GiGbzabT6cvKudbW1tdee+35559fvnx5RUXFo48+2tTUdPTo0QsXLgCAqqq4RErniHE0Ya/EXqB2WkNDA2ox6gEDgN/vFwRh/vz5P//5z/Pz8xcvXvyf//wHmRr63LkrwoXd5+N5/siRI1VVVZ2dnWCTzPb9Y/+2tjboE/JdXV34CkfZHVk6SpIk7Iz8LMtyNptFchAE4bKeiB10XUdJWV1dffToUUKIIAiog1iWbW9vx26EEE3TDh48OGXKlG9/+9u7d+9GhYhTD4gL3J5lWRQX8Xj8o48++t73vpdMJjVNs68PZTh+0bIsPG27kqdGAdKkrusoFNBzQ7z337CmabmFBc5iZ8+KigrccDQazWazfr/fsqxQKIQsY5om0ktRUdG5c+fmzp2bn5+/YsUKXEyvtjdNE+NIdG90JuoU19fX19TUIC0gH6qqynEcxcL1AlwMYi0cDp85cwYGjo9An1jF42lsbKyvr49EIp2dnQQDswBAHyjQwZZlvf/++4FAoKamhrIZVU4wmKgfbaCUK8vybbfdZrd6+8dHCCGiKGLLuHHjLMuKRqNIrcS+//7oAABRFN98800A0DTN7XbPnz8f+oxiSZIucROuC6CiwfOfNWvW3//+9xzxEToKDbwjR440NjZKkmRZ1sV3SOrIKYiRdDrN8/xvf/tbv99P7cVAILB+/Xqq5PBMri9G7EZNY2MjyoWB4iOEkHQ6jXG2adOmTZw48csvvwQA0zS/hgs7UWQymWQyeeTIEfyJiJBluaurq6ioCACy2SySFlUT1wWQ7SVJQlXS0tJSXV0NOeMjiJpkMtna2lpdXZ1KpXLpEcMwUH3aLUWGYZAP0QFBmYouHD2Z6wKogKj5xDAMjaf2j494vd6Ojo5YLKZpWn19/Z///GcAQDPyoteIYBhGMplsb29Hi9iyLI/HQ4UTfrSnp2fy5MlgM5avIy5QbFMbQVGUp556isZB6JppfAQppbOzc/PmzTfffLPdxnESQjDHjSBJUjweP3/+/N133w0ATqdTURSPx6PrusfjAQCHwxEMBhOJxPHjx6PRKMoRj8dzhSmIEQdajsAwjCiKHo/nBz/4wfTp0x0Oh9frpbmYSCTidDpVVQ0EAul0+rbbbstmswsXLqT5F0KICwscsAkA9u/ff9ddd02aNMk0TbfbTZ1Fh8NhJ7zHH3/8+PHj5eXlPp8PBc21KZHoD1jWgcfp8/kIIRUVFRUVFQ0NDYFAgIYFKLMIgoBRtcmTJx84cAA7GIbhdrsJagRUP01NTZ2dncQWa8qhn1evXo2Eh1bmdQSqUJHtAeDMmTOFhYWdnZ0+nw/6hKXP50smk9iyYcOGRYsWUZOy1x4DgHQ6ffLkyVWrVsmyjKoBMZdDPx8/fryoqIga3VcZjL9KQFMAvh4WPXbs2IwZM5D4aU+fz4c9y8rK0Mk2DIPqQYJn+6Mf/QhPG3OcWC4DA+hnbJ86dSoADOSYXjNQVdVuN2OwU5bl7u7ubdu2oR0RDocTiQTygt/v37dvX319Pcbo8Owv+qmiKB48ePDEiROyLOfn50NfiJUMnL9oa2srLCykLcNOVV090LBoJpOhq6XYaWpqqq+vV1UVmR3ba2tr33rrLeizni/6KbIs4ydWrlxJCJEkyS4vLpu/UFU1EolUVFTgt64yi3mVgC4y2PT6JaHzP/3pTyzLHjp0CHexefPmkpISfEUjRolEApAukNsfeOABOgEZWD9jh/3796OJgWPtEZ1rDLqu2z1Dy7KoyKACNR6P19XV3XvvvaWlpU8//fSWLVv+/e9/Yx/7QfZGwTRN27lzZ2FhoV0iXDZ/gTUUhJClS5fC18MH1wtwCxjspmyC1IHuFQqFd999d82aNRMmTEATMR6PY89sNoujnLRErqqq/JlnlgWDLADouq5pWjAYhD5/DuvsMOXjcDgWLVo0c+ZMlEbX0dBC8Hq9hBCPx+P3+6mZQzna4XAEAoFsNjtnzpxgMLho0SK/308IGTt2LABkMplQKNSLBLAJj8mTi6AvFUz6ZEcmk8HIMsMw6XSaEKKqal5eXmtrK1IEVrBeMyq4ckBvDcOF2FJVVXX06FEAMAwDacEehXIRQtC+JIQsX74cKYeaWJZljRkzBr+VTCYnTJgAAJs2bbrnnntuuukmnuexKBcNvv8qoG671+tlWTaTybS0tITD4erqakIILTwmpDeCwzAMAVui5fTp/92wYQMhRBTTLEsSiU6WZXk+ybJEkjL5+fmWZUUivsrKss8//5wm0zguoeuirotfPxOxf2OOt5dtoe3055UDjVrSkqhZs2bt3bsX31KrBGPOvT47BosBIJvNplLd06ZNg948QG8gDNdBeiNFiX379tXU1Oi6iAIpnb4Y5qXL7b+lSxAx0MMlKLhKdOAKs9ksz/OiKE6cOBFDzdQ4pJyCQOwKSdfFZ599FkkrEvEh41y4cD4QCOBzJtMzbtyYrq6zkpTBqg9dvyi6h4qLy7bkwNRQcWHPZixcuHDTpk3QZ0YiIqjrcJEu0KHgOE6SMh988MG7775LCFFVFQ+fZXupQ5bl8ePH/vWvfwWbyEkkOnNsY9Cd5+h/lbiwewY8zwcCAbpmmkZF2U9j/b21YorCAYAopgEALQin05lIdBYUFKRS3W63G+Nau3fvBABFUXRdtCyL4zhdF23piRHjkavHBSUKTdNefvnl1atXI8vYUzkIF3PLOEaSMqrKAwDHcQ0NDchXXq9XVXnTNP/2t7/FYrH33ntP07QrFJMDyUL72xz9B5IXV44O3CHu+Zvf/GZ7e/ugvkKv7ERZing5cODA3r17UdmwLFm9enV5eflnn30G19v1GBIg2eu6/vbbbz/88MM0TZdjSO8lHjTXZFlmWba0tHT69OmHDh1asmRxLPY/DMMcPnw4FApdo0LkEQKM1DEMs3379ieffDIcDg8+xp5Gp1w0ZUrxDTfk/epXW9GgtKd5R/MsRxI0TVNV9fTp03feeScuG7PNOYa4kCIURXE6nfTYV6xY88UXXyxYsNjn86mqikiNx+P5+fmjeJQjCgDAsuzmzZtnz55N77bZo9yXHwMAiqKgOlBVtaenJ5FIoBmOEI/HkS6GXTp5XYDjuKKiou7ublz2oPdQXFhGQ31NhmFisZjD4bj11lvb2tr8fv+4ceNisRghhOd5vC31/wW2bt1aV1dXUFCAl1awujrH1TUHAEiS5Pf7aYWCz+eTZXnz5s09PT2vvvoqIQQAMGqOVf7XbjdXB/n5+f/85z/Hjx9P+u4n5F6/ixCC/jzLsrTV5/Pdf//9CxcuRGEjCMKJEyecTideeikrK8vPz0ccoxliT5GgukGzH788VEACxFtHeG8Vr59hJAmpGN/i7IQQfIV3Wwkhmqa98847tbW1BQUFWPEUDAYH14MDMY+qqrFY7Fvf+pbf7w+Hw7W1tYSQmpqavLy8vLy88ePHL1269ODBg3ofmKaJ4hodHFRAw84VyLJst2XQCKJxlhMnTqxcufLWW2+dNm0aniXDMCUlJXPnzn3jjTdOnjypaVptbe3+/ftp6RtWMOaeNFcd38MPP/zJJ5/Y8YXJAY7j2tvbCSEPPPBAaWnp7373O+iz/zHSkU6nr/LCHGp3tP2o92ia5vr166PRaElJSVNT0+HDh3Ft9KJic3Pzj3/84ylTpqxataqiosIeDabueA4YEBepVOrIkSMFBQXQF+8kffEue8vZs2e9Xm9lZeXp06dxID09LN8fBiLOnz+P3xEEAUMkALB3796ioiKfz/fFF19gfhczYMgRkUiEpji/8Y1vLFq06PXXX6cfRGwOWjyUiy44jlu1ahWG8OgJYEAYy0UpUlpaWu65557f//73qqoKgoAsOrwiLhwlCAISBbrYjzzyyLx58wi5GGEghNCCZkII0iOKRgCYNGkSchmGqZA7aJHckHFhWdb58+fvu+8+APD5fPSGkP0vXowJBoOSJDEMU1dX99xzz1HKtBfAXjmoqoospihKR0dHOp2uqanZtWsXnReTWJijoStB5sXnpUuXrlixAr+mKApmM67ExBikvnPXrl3jxo2TZdle8Y/JZEIIVvfQdgCYPXv2xo0bBUHIZrOX3AS7cqAEJQhCbW3tBx98QPpuL9KUBQDgLXDoC08hswBAcXHxhQsXkGxpnQD+HCYucLyqquvWraP1kZfcColGo3YJYhiG1+utr6/ft28fYmEYdyNR4CMvlJWV7dmzxz6j0+m8JLPn9Xqz2SwmwwkhBw8efPDBB2nUEr9JJVduth281vXRRx/FTSKx5aibxBwKAIwdO/bzzz+H4fr4iIhNmzYtX74c3WhJkgat10SNfsstt5w5c2aE76divaKmaVu2bEHOtPPkZesy8D82JJPJcDj80EMPDc+4QDL+y1/+MmfOHKQ1mvEfaF787ximaT733HPl5eW5a+lzwIC4oJ9raWnZtWsXANBahkHrJi3LmjFjxvvvvz+MBeGRzp07FzcJAPSyxUDz4mWYaDT62GOPvfHGG3C5cuorgQFxgRPH4/FUKlVdXY3/3gT6Ku/J5eoyEFmCIDAM8/HHH0+aNGl4euTDDz9EDYVMF4lE7NTRf15BEILBYE9PT2FhYe4LWcPEhb0u/amnnkKng+f5geoykEFwHXh5pqysbHi10d///vf/8Ic/UPsF5dRA89L82GuvvfbCCy9gzxHmEQAQBAFl1fHjxw8cOGCvxehflxEIBFDC4xkiD2/ZsmWoCxIEIRwOBwIB/D9C9vtpl50XnysqKqLRKNaqDzvvPyAu7KXvqqpihQEZuC6D6nMqO379618/9thjQ13Q2bNnp06dmkqlwuGw/S78QPOifPnwww+feOIJAEgmk8N2hQa5Y0WrWZctW0bPZ6B7pbIsow3qcDiy2azL5br//vuHuqDnn39+1apV6PXTWZA6BprXMIxbbrmlpaXFfo11qPNCblygPYeqcdeuXV999RWa9PTkqaEFfRRx8a4nIZ9++mlFRYU1RHjooYdI3/0O6Keh8AFLE9FwMgxj6dKlVVVV9J4Lx3HDc4UGDPJgYbXL5cL6vvr6+sLCQo/Hs2HDBgDAeNe6des0TVu/fr1hGK+88oqu62vXrjUM4+mnnwaA995774477nAMEaZPn66q6kcffcQwTFNTEwA888wzlmXV1NQAAGq0yspKrArhOC4SiXR1deH/VMC6XZZlh/k/qHLgiVZhYWlXeXm5fSDO5/F4aEAsGAwSQtxuN8Mwbrf7KiuBcTgGYvHLLpcrLy/P3icajVZWVpaVlVF3wzTNYQeQ/g+/+XvE/bZ5JgAAAABJRU5ErkJggg=="
|
<image>某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()
Choices:
(A) 6πm²
(B) 5πm²
(C) 4πm²
(D) 3πm²
|
6πm²
| 69,817 | null |
6πm²
|
"iVBORw0KGgoAAAANSUhEUgAAAKgAAABUCAYAAAAWG3zWAAATAElEQVR4nO2df3AU1ZbHv7eD4K5orHKQeWHYARkMJiOQqFvzlpThLSCBjJpV0D+sgsgCQYK+1EIQ1xRaZVjyA957VQ80+HxlqIdb/oG4FpMfSJaAQm1MuYat/ECLQWIGNMAfTAxChOl79o9J93TP9Mx0kklmJulPVSrTfW/fPt19+p5z7z33NiMiQtLDAQiqPdWbV2D7e43+jQVPwXf2NTzjrEOd692xF89g2AjRsyQDAohEAAA1VoExhv/stoKIwDmHWL0Yk5gTZJkVXzENhsy4UFACwFgKRNRhwYodsOcXoa2+xp9GBGHZGyhaaccM26MYB+ZiQjEp3gLEAga/Iv6heB/aYUf90T/LaYIggIgwx5oG8dFlYPET02AYsKT3QTkBAgNHAxaylbAUVaK+Znv47JxDECTDEeq7GiQWyf90BAYiEayxHe0ALHPnA/DXqBI0uK1WTnUeg8RkfJh4lgKwFAABpWMsYMyZf4dqH+c+CMK4uPxxTfLXoPArpbh8HuxguOxuH9wnBtIbq7Cxug5EJCuwIEwC5764yGswBGgcwEkkHxep6pU8AkDrq+uJiEgkTnWV6wkLnpLzisT9x3AeF1kNhkbyN5Lgr0EZGMCA+qoNyH/9AznNnl+Edpe/y0nyQYlEMJbiP05h9pXbwf6qQXwYFwoajhMnToCIsGTJEnUCibLPapDYjFsF7evrQ0ZGBiZPngy73Y4//OmPmDvHFpLPqCkTm/GjoAQQ8/9nDFi3bh3+7u+n4s7tAfT29uKLL77AltdexRuv78A999wjH2YoaGIzLp4MEUnDSWAMcLlcOHHiBCoqKuDxeFBcXIxvvzuPHy9dhs1mw8GDf5OPNZQzwYlL0yymiPIvTkRer5dmzpxJzc3NxDmnefPmUXt7u5ynpaWFsrOzyeFwUGtrq7okUVGW0cpPCMaBgqopLCykLVu2kKRekydPpuvXr4fkq62tJbPZTIWFhdTb2yvvNxQzsUhK+8Y519xfX1+P5uZm7N69GwzAlStXcPfdd+P+++8POWbt2rU4f/48TCYT0tPTUVlZCc65qttJgpTDpsNw2ZXHBOTgxlCrHuL7fsQOr9dLM2bMoJMnT8r7WlpaaOHChSF5g2tJt9tNTz/9NNlsNnK5XKMqZ6QaOjjNqMuTtAbVoqSkBM888wxyc3Plfd3d3Zg1a1ZIXqmWpMEAkjlz5uCzzz5DTU0NSkpKsGzZMly4cCFGkqlrSlU8wGB0Kg1uKeUCYIQGIola8RTBHLpcLjQ3N6OqqkqV/9KlS5oKKsEYgyAIsmlfsmQJvv32W+Tl5cHhcKC0tBR9fX0jlFwIkX9Ftj9wJUUQwAQGgTEwloV6+GS5DPwkjYIG1y6SL9fX14dXXnkFBw8exNSpU1X5oymoFikpKdi6dSu6urrQ398Pm82GDz74IPqBUWRXKl3DN4S8LGB3wx2InIM44V9XcuSzx9AIX2D6iuGjJr8PWlhYSMXFxaouIiJ/l1FBQQEdOXIkJG0otLa2Uk5ODmVnZ9OZM2eGXY5SBh+5aP6Cp0Py5GWBMldu9G8YDigRESV1QGRdXR2am5vR0dER0uEuCAK6u7sxe/ZsXZ3xNBiKF5z38ccfx5dffolPPvkEzz//PHJycrBv3z5Mnz5dv6AkDQhwEDF8vuczcEuanCyNZlnS7Gj0XAQI4MQhsKQxcKNGUt0BZVdRX18fNm7cGGLagYBpvHjxImbPnq2rbC3lBAKuxXPPPYfz589j3rx5sNvt2LVrF3799Vd9MsvWXQBjDEdOtcCx+NmQvHNnzvCP0zJjhEsi4e9CuD7PkpISFBQUqFrtEowx9PX1QRRFpKam6jpPNIVgjGHq1Kl455130NbWhrNnz8Jms+HTTz8dUrki6vBVHfD8tqcAcLl2JSKc9/wIe1rghSLDB01OH9TlcpHVaqWff/45bJ62tjZKT08fVTmOHz9OmZmZtHTpUuro6AhJF0WROOfEOQ8ESjdUBvxMBbyhUhVsrRzCncgkvIIGd157vV6yWCyqDnktjhw5Qnl5eSM+v9S4idTQ2rdvH5lMJtq8eTNdvXqViDQ63TknHxepevMKWlFU6S9T0RLKWwhV5L+Bn4Q38cF9giUlJXj22WdDTDsFmcOenh5YrdYRn18y0cGmmgY7+QGguLgYbrcbjDFkZGRg//79IXIzxgDWgIPvNuLJf/k3f5kgeSWURnoKdPZYoHyNa5qQxPkFGRKSae/v74+at6SkhCoqKsZAKjWdnZ20dOlSyszMpKamJrmWrK/aQBjUu+C/DXsaiEhZo4pGN9MgSaOg169fJ4vFQqdOnSKi6FFHq1evpo8//ngsRNPkyJEjZLFY6PnVq8jj8RCRX+e05FYppoGKhDfxEpJpf/LJJwGEHw6UzO6lS5d0dzGNBgUFBXC73chasBBZWVlYt24dfrlxw9+NFIQANjgubywqEUK83xA9DMW0E/lrKbPZrIrzjDV640ZbW7+mJ554glJTU2natGl0+PDhwQKUZfmCd2luT0QSRkHDPXC9rXYlAwMDNGXKlFiJNiw8Hg+tWrWKzGYzvf/++0REdPr0acrOzqacnBz66quvQo4xIvpDibuCRhsnf/nll6m4uDhsuvQgRVGUy+rq6qKHH344dkKStsJo7fN6vbRt2zZKTU2l8vJy6u/vD7nG2tpaMplMVFRUJHdLDfXcE4W4+6CRFvOqq6uTJ79pQYqFFgRBkMvq6enBQw89FFM5g31e5bkBQBRF7N27F1arFTdv3sR3332HN998E1OnTg3polq7di3cbjfuu+8+ZGRkYO/evRBFMaR8yZ8O528H369xSVxfjwgMx7RL1NTU0Jo1a0ZBKm0OHz5MFouFnE6n5ohSMMoa0e12U35+PtlsNmpqahpNMZOShFVQKYxOQrN7Jox7sGPHDtq5c+eoySYh+ZTZ2dkhysU5V7kd0XC5XGSz2cjpdJLb7ValjSRcMNlJSAUNbrVHe0DByvviiy9SbW3tqMnndrupoKCALBYLHTp0KGbl+nw+2rNnD5lMJtqxY0fYXouJ5JMmnIIOx7QHPzCHwzEs1yAaV69epeLiYjKZTFRRUUEDAwNyWixrud7eXiosLCSz2RzyoinPMxFq1oRT0GDTTjT0GsNsNlN3d3fMZBoYGKBdu3aRyWSikpISzZZ3rGs1zjm1trbSokWLKDs7m1paWiaEQgYTFwUNd6P1hNFFw+fz0ZQpU8jn82mmD1WRamtraebMmVRQUBDiG44Vhw4dkheZuHLliu7jol1rMih8wtSgI2m1K+nu7iar1TpieZqammjhwoXkcDjo9OnTIelj7Qf29/dTWVkZmUwmKi8vp9u3b+s6Ltn91YRR0DVr1kTskNfLyZMnKTc3V1derYfX2dlJTqeTrFZrYFgygfB4POR0OsdkkYlEYMwUNNKbPNSx9kjU1tZSYWHhkI/r7e2loqIiMplMtGfPnrAughQlH2/z2NTURBkZGWGj+ccLYzaSFG5eu9frxaZNmzQnvw2H77//XlegsnT+Gzdu4K233oLdbse9994Lt9uNrVu3IiVFewVmQRDkBR/iyZIlS9DZ2Qmn04nFixdj+/btmotMUJKPNqnuMvEB+W+0UA5NAuEj5IdLT08P0tLSoj4YQRBw4MABzJ07F11dXWhra0N1dbXuSXZA+Al9Y4F0fa+++iq6urpw8+ZN2Gw27N+/X5Uv6VcpCa5SuXhrzKrvaKZ9OA5+bm4uHTt2LKpLkZGRQTk5OSFrhGqRiH2PWnJ0dHRQbm4uZWdnazbskpExVVDlTfV6vZSWlqbZah/KEGEwVquVzp07p5nW1tZGS5cuDdvASBTlC4de+aTYgFWrVlFPT4+8X/nSJkvrPqKCcvGW/Ke1rdynVQ4Xb5Hvzi/yPukGc/EWbVi/hn7/2qaIwmmdT9rvu/NLyP47t29QSkoK3brpVcns8XiosLCQTCYT7du3L+I5kxEtxR0YGKDy8nIym81UXl5OAwMD8hToZCJqDRppW89vrTRlh3y4GlurPM552LK5eIu6L35H1n8wy9ve61eorKyMpj94P5WVlcWklyDZkAKnLRZLSLdZMijrkBRUKy1crSr/DlIq7/Urqg55PQqqRz5RFOmrli/I4XCQz+ej9979E5lMJv8S3z/9EFpOEjycWCJFXuXm5mp2SyXq/YjaV8KEuyO26plwt/ynmR7UiiwtLY1pq11qSQuCgB9++AGTJk1Ceno6jh49iuPHj+PDDz/Egw8+GFWu8c6iRYvw9ddfY/Xq1Vi8eDG2bNmCa9euaX58N6GQNFVpKoMJlzZUE+9yuSj94VkqUzsUEx+p7NbWVkp/eBaZTCZqbGxU5RN9NzXPMZFQ1pDStJRk8MlVChqpBR9JkSI1kqQ05bx2Lt4i0XdTl78brWzJx5pl/Q399YN3/fsH3Yrgxp2BmnPnzqkXmUjAXgzdQ50jfcBr166NyVi7hNbkNIOhI4qiKprf4/EklD+qS0FHqpyxHGuXos5TU1OpuLh4RN84SsQaY6yR7pnP56OKigoymUxyj0e4eISxJKKChuuH1MwbYV57uA55vUhlR5qclpcVuuaRPb8oqByf/F8kLm9PdJTBL8pofr1LB2m96LF6+UcczRRNEK0I+aESaXLaoBRERLQ+307rq+v9Sx2Si+YLkJc61DpGNNbu0EQURWptbSWHw6EaDo6H6Y9puF3wBYzUtAdPTgt+GaTzSf/zF9ipge4Qkf8mr8+3kz2/SKWGhlkfGspPRupZZCLW9zemMWPKvrS+vr5hh9Fdu3YNW7ZsgcPhgMPhwIULF/DSSy+FhLgxxuSPYFFjFeqQhuXE4P8oFuHSjx2YaXlIXiLe/3mX+EUgJQPhPhlpsVjCLjKhJNJCHMMipuquYDimXc/kNIng2rrqlTxavqlSXnFrfb6dgPlyjRrpWAN9uN1uOZq/sbFxTM45Kgo6HNNeW1tLFotFnpym31T4fcmQRlKY5bQN5Rw5TU1NlJmZqbnIRKyJuYJGm/wWrCDKyWlnzpzRVMxwSiXtv3Nsd5BCRlNuww8Nh541+aX06upqmjZtGpWWlpLX6x0VeWKuoHpNe0dHh2pymhQDGqyMeoKF66s20IKVRVHzcZ+hmMMhkrJKi1koF5mQv2wSgwZTzBSUc051dXVRTbvW5DS9FxIunjEvC7S78Y6cR5nfYGxoa2ujnJwcysrKiuk0bX0jSToKj9Yh39/fTzt37iSTyaQyCeG6jiQiKm9DlcrvrDhmKGc8UN5raTClsLBQ1wrXWuv2K7eHXYMGFxppodmamhoym820alXggwL6zyON/nC6Q1xzv/JDWeHkMxg7BgYGVItMKNew0oXi0cXExCtb7coab6iT0/QolS7FM3Rz2MTyxZYizaxWa8gcMHn6D/m/cjK4TrY6D/GRK6hWq105Oe3o0aNRLzpSup4bJoqhfZ3GMGbicPr0afmTke3t7fJ+znnYpyQ9vxErqLLVPlqT05SNo4DCKj44ELMzGSiJtZskfTJy27ZturuloiqoniVrLl++TGVlZZSamhoyOS2WY7PBNaVmn2nID4NEQorjfeCBBzQrMU5EPi5SQ/VGqjjmI0Y0vAHTvr4+PPLII3jhhRfw0Ucfwel0oqKiAtOnTx/5+GsUOOdBY74iGAssVUO4A4a7Qj50YBA/3n77bdXYfFdXFw4fPozMzEwcOHAAv/3tIkiPVEQdFjInXmq8A4WCckT/fDwffOgpsNvtcLvdmDFjBpYtWwaz2Zz06wAZjD2nTp0CAGRmZsrL9mxyrsD/XP4Ju9u+xiQpIwfTVE91LSSAMf/nYTo7O7Fz505VPoOhwxib0PcueHZv9eYVwOLfgUoPQQACCiqAYeVjDA3fqAtYX12Pv2xbEdjBCT/99BOIE2BYT4MRonTXqLEKJ8TFqLcDwoLfII8mAcFtibws0Ma9/lCq+j3rCQgMIxqMLRNtsMHpdBIREW+olqfrTAoE8xI4q4en7VH8/pslICIsnx/6tTYOgmBUnWPCRGrgVW9eAZerUb5mu3MDiCjgdjLG8Hn1Z2D5/4TllALGGPJf/3csWFmEHcsHPQEerJzq6GuawL6UwfChxio089/5K0ki1FdtwMwZNjDGBn1QToDA0NF9ER11TRCEAwADdjeI2LFcCPgJAvOHZcg6GjoFw2B4kEaXWHB32niEN1Qi5Y0ToLPHAACMEzouekA0ZzADkdypLYWtcc6psiifAEHlf/qn6k4svygeTKR7jKBINP/MCIHA/NPGmUicBDD4Pq/CXa//N6jtmOyPZjEnLEWVqHuvFGAM/uloye2DkqKm0qqhjPQES2eDbuMf/+sU8v7xnwH4TTVr6EA7gBm2R/3bADj8s/k4ovuaUl7lieOZLiF/zAHa5tNIT6x0eSRpRTbDk/9xG2/k3QURdXiMOfF/mI8G+l/kYVLA9VT5oAYGowurr9pAK7f/JTRlwVODjqueIVBtKMz4lFSNxys9mnxGeuKk/z8Ucm22UiFHYQAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若BD=6,则CP的长为()
Choices:
(A) 3
(B) 3.5
(C) 4
(D) 4.5
|
4.5
| 69,818 | null |
4.5
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAAByCAYAAABk6j5+AAAV2ElEQVR4nO1dfUxbV5b/GUpQVTLeTl8WVzU1rU1i4hmVrJMp3bAybExKFFbrluyk0jJTsmJEBmdbMkQapGkURaK7zAaajIbsRNt0kqpVk1GdMR1FTdTCxt2hI6amk3SwgRlMQ2WyMSLSwNpRIdjv7B/GD3+952f8/EHCTzLY795333n33PNxv86VERFhDWJ+fh43btzA2NgYPB4PbDYblzY5OYnp6emI/CUlJXj66acBAAUFBdi5cyeUSiXKysqg1+tRVFSUSfIlhSwbTCQiyGSypPJMT09jYGAA/f39sNlsuH37NqqqqlBSUgK1Wo0dO3ZwjCgtLYVKpYoo76uvvsLU1BQAwOfzwW63Y3JyEm63G4ODg1AqlaipqYHRaITRaERxcXHK7yXmPaVAVpgohPAXHx8fx1tvvYW+vj74fD4YDAbU1NTAYDBAq9VK+lyn0wmbzcZ9GIZBQ0MDDhw4ALVaHUNb9O9MMSwuKANgWVZ03tnZWTpz5gzp9XpSKpV05MgRGhsbSyN18eF0Ounw4cOkUCioqqqK3nzzTfrLX/6ScTrEICNMFAOPx0NtbW1UVFREjY2NdPny5ZTKCzWc8AYU3ZjENi6LxULf/e53SS6XU0dHB83OzqZEm9TIOhOnp6eppaWF5HI5HTlyhDweT7ZJ4oXb7Saz2UxyuZza2tpiaGVZNimtIxWyxkSv10sdHR3EMAwdO3YsYetOd+UkwwCPxxNB+8LCQlppS4SsMNFqtZJCoaCWlpacUE1CzBNK83g81NjYSCqViq5cuZIO0kQho0x0u91kNBqpoqKChoaGMvnotIFlWbLZbKTVaqm+vl6wUaZLm+RlygseHh7Gd77zHVRXV+P69et49tlnM/XotEImk8FgMMDhcKCiogLbt2+H0+nkzZsWpNoKxNiS8+fPE8MwdPXq1VQfl/OwWCzEMAxZLBbuWrrteVrVqd/vJ7PZTBqNhhwOBxGl/4VyAXa7nZRKJXV0dGTkeWkbsZmfn8dLL72Eu3fv4vLly/jGN76RjsfkLGZmZrB371489dRTOHfuXMTYLEk8upMWm+h0OrF9+3aoVCpcu3btgWMgABQXF+PTTz/Fww8/jMrKSnz55ZdcmuS2UWrRvnr1Ksnlcurt7Y2wlw+CGuVDV1cXyeVystlsaSlfUiY6HA6Sy+WiHJj7jamJ3sdqtRLDMORyuSR/tmRMnJ2dJY1GQ729vUR0/zFJCnR2dpJOpyOv1xuTlkp9SeLYBAIB1NXVYcuWLejt7ZVCy9+3+N73vgefzwer1SpZmaIcm0R8bm9vBwD87Gc/S52i+xxnz56Fx+PB8ePHpSt0NeIbLvrnz58ntVqdE2OguYzwOnO73aRUKslqtUpStmgmxpuXGxoaIoZhsjJpu5bBsizZ7XZiGIYbBEkFq3ZsQq3pQRhKSxcsFgupVKqUtVhSjg2FjTTU1tbCaDTixz/+sXS6/QHE0aNHMT4+jvfff3/1hayG8xcvXiS9Xk9+vz9u+nr3QhxYlqWFhQXSarUpabSkmej1ekmpVJLdbl/1Q9cRif7+ftJqtateIZD02Onx48exd+9ebN++PWHXYx3isGvXLjzzzDPo7u5e1f1J2cTJyUk899xzmJiYgFwuX9UD1xEfMzMz+Na3vgWHw8EtXCaRsx1JSWJnZydaW1vXGZgGFBcXo7GxEV1dXdw1sbMdoiUx1FJcLtc6E9OE1daxaEns6upCc3PzOgPTBCJCcXExGhoacPLkyaTuFSWJd+7cgUajwZ/+9Kek9fU6ksPk5CQqKytx8+ZN0Tu1REnie++9hxdeeAHFxcWcR7rOwPRArVajqqoKly5dEn1PnhiTeO7cOTQ1NQHIPvNC1PLRvXKVzQA16cHLL7+Mc+fOic4vY1mW+BhDRPjiiy9gMpm4vX2ZBgFI1GxCqj08r5j7chWBQAAKhQKff/45nnzyyYT584QkSyaT4e233+akMBuQIfF8Zugdwt9krTKQiJCfn4/Gxkb88pe/FH2TIJRKZVanmtjlTxAB4byr3LqWi/j9739PWq1WVF5Bx2Z8fBx+v1/yXbnJQEbhUhVNbqTdi9Yq2bbfqUCv12N6ehozMzMJ8woy0WazwWAwxE2jTI2bCvGBpw3eD85Nfn4+qqqqIgJK8CEhE2tqauKmZaqVCzWVsd/0QCaTcZ/aQz1B2rgcGdsvJBnChaO6uhrXrl0TdRMvFApFji29WLGJ3a1GAnaRc9lisuQkI0BGc3e2iJMcQ0NDtGXLloS2nZeJU1NTxDCM5IRJgW7z3xNqfxju8RARkaOvO4Kx9wMKCwtpbm5OMA+vvnG5XNDpdJKoCCkx+ps3cOT0f8N68jSvvZTdR9Oc5eXlmJiYEMzDy8SxsTGUlZVJTlSqON3bDqO5GyadDBTUJMEEljAxGdy0Qhxz165jE0JozBrgdyZ5mTg5OZnVrkU8EEbx54+Buto6AOAcGgBAngwfX/0FjOY92Lpmu/qx0Gq1nCTyOZO8TBwfH885JspG/4x+AGrN1hiv1flBD/7zY4L5hz/KBmlpg1ar5d0+HgIvEz0eD5544gnJiUoFtHUzjAAmXaMRskYYRZvpCKdmV7D2uhjRUCqVmJ2dFczD+5Y+nw8bN26UnKhUIMNW1LUaceT06ZUO5Ggf8mQ6wPwf+Li3ffni2reFITzyyCPw+XyCeR7iS/D5fDkZPrL99Mf4crcMsrxfBC/IAKuDxT9uDc+19iUwhKKiIty9e1cwj6AkPvLII5ITJQVOf0ScZ0oswaSTRUQ7BICBgQGUl5dDrVZH7Nbi8/ByFUVFRQklkbezL5CUFSQ7I7F582ZCUOlSYWEhGY1GSTavZBpzc3Mkl8sF88RIIuVoS5XJZKJpGx4ejpjErqioQH19Paqrq3Hw4MGImYFcfd9kEMPEkFoSJcYZhphB95/+9KeoqalBc3MztFotKioq0NPTg1dffRUulwsbN27Eli1b8Prrr2NxcTHnp6u8Xm9iB5NPRB9//PGcCFuZTORDg8FAOp0uodp0u93U0NBACoWCzp8/LwWZacPY2FjCyWFex0aMa5sJiJGUvr4+bNmyBdu2bcPnn3+ecMz3iSeegMVigcViwdmzZ7F9+3YMDAxIRbKkEOVg8nG3oqKCrl+/LnXDkhRer5eam5tTjht36dIlUiqVVF9fn5YQJanAZrORwWAQzMMriQqFArdu3ZK6YUmG4eFh7NixA9PT0xgbG8Pzzz+/6rJefPFFTE1Nobq6Gnq9HocOHcKdO3ckpHb1mJ6exqZNmwTzcEykZS8t9F+r1cLlcgneTBJ6dsmUFXJeDh48iCtXroBhmJSfn5+fj/b2drhcLhQUFKC8vBxdXV1YXFxMuexUMDExkdA8cEzklv0t/9doNHA4HBlzwcWckzEzM4Pq6mq88847GBoawquvvio5HQzD4OTJkxgaGsLvfvc7aDSapFZjSw2n0wmNRiOciU/P9vf3J9TFmYTVauUCqGcy5vbg4CDp9XqqrKykwcHBjD03hIqKioS7snN+eYZUzkuqePfdd0mpVNK+fftoamoqY8/dsGFDwuUZEUxklxbJv7jAfZ4szu5CKbvdTlqtlurq6mh2djbri4EXFhaos7OTO/4hUeWmiqGhIVELiCO8U9lDG5BfkA9AhryCQjxXbRC17jEdCHdePvzwQzAMk7bRFUpg90PphYWF+MlPfgKXy4Wvv/4aGo0GPT09CAQCSZUnloZPPvmEW/dL4UtR4txMRGEjI+wS+RcXiWWJzpw5Q/v3709DG1tBtHR5PB6qrq4WNfKSbTgcDqqvryeNRiNZiK9w1NXV0cWLFxPmi7WJHBMDNPrHL6i0uJj8i0vBPRHL6jYQCM+7rH6X2KgyQmr5XuQCQoG0COfla19YvqWVfHHvD1BgcYGjO8DRFIiiUXgvx2rR399POp2OqqqqJAsN4/f7qaioKO7QZ3TDF2Bi8Lu6pIRGObsYoABXEQEKcJUboEDonojvROxSeOXFT4t1XsLzscRyDUegbI5Zy4zlfi+F/b4n+YrU6GCFCoWC9u/fT263O6VyxdpDokRxbGQP4R9eNOH99y4Ef7MBIC+P+04IgL23iMC9JRAIRKHredyaUFl+/vK1+Gl/sH+GyuiRFzYAynsIQRMog2xDYfCxQmUHryCvoCBs/Y0MeQUPhf0m4X0Bq0C4nX755ZcxMTEBrVaLbdu24ejRo5ifnxdVDkXZu4sXL2L//v3iiIhtWpEt9g9/GKay0tJgPO+lMLUWuBdfPQXuRbb4UHksG5PW9e//RsXyjXTq1KlIFRG4F6lCE5XNfV+R0oS/04yZmRlqamoihmG4aMzxEO9cEb/fTwzDiO7KrDg2S+E2JLIC/2bbM3Tt449WbCERhezQyrUAsYGV65yNDNyjpXv+iHtu3bpNBoOBtpZraeTGH+O82VKk7RUoO1KdZp+J0QwZGRkho9FIWq1W9HGCVqs1qYGWMCaG+oixL3rq1En6l+9/P0YyWP9iHCeDopyPpSjn5RI9/k05/eiVf6W7Xl/QYWJZimkUgXtJlB3mzCzeIzbh78zj8uXLpNPpqLa2NuHskMlkSmqeU9RCmtlZD/21XJ7SJHHIedm0adMDHSO1t7eXGIahpqYmun37dsyREy6XixiGiRvsnQ+i1vY99lffxD8fOJB0kJwQwqeNRkdHU5o2Wuswm824efMmlEolvv3tb+P48ePw+Xycg3TixAkcOnQoueWiQhxml1b6gG63mxiGSXqoqauri4qKiujUqVP8z1nDe+tTgdvtpsbGRm6ZiMfjIblcnvTZxVFMjPU2w6u3qamJjh07xps3HMmseXnQYbfbaeff/S099thj1NDQwF1vrQW37DL06e6LrcuENpFl/TH6en5+fjktvgSJnTZ6UCUwHHNzc9RzoptKSkpow4YNdO7tSIemtXaFccFNtCCrI86IDV9Vhl8PVXh7+2FqaWnhPMpw5Mq00VrA2NhY0NF7jKGWlhaqr6+nzs7OiDwsOWlX+M5np5UA0K9HIus9RhKDnXL+h3u9Xip+XBEzRjg8PBwxbSSEB0kCo9/VYrGQ0WgklUpFvb29NDc3R/39/aTRaKK0VoBGrD0RMQjMxvgxCSKZGLMH/o0Y0SUK0IULFyICuYtxXvhe6kHA3NwcdXd3k0qlorq6uohO/8LCvTiB3INSZO1pDdrCYMSzOLwIIlYSlwthaYyMAjcajUZ67bXX1p0XAYRUJsMEVWa85ZCvvfYa/VPDvpULgZX6NhtX6j/E0A8cbIyw8Upij7mVdu/eTSM8FvPs2bMEgEwmU9bPmc81xFOZ8U74ETzcxGkNRghZzh8K8dLabaVoexfXsbH2tFJ336+pFjW84URsNhuVlj5JhYWFMcetP6gq88SJE6RSqWjPnj2C46Thxww5R+JrMGv3oWWGLcNpJcjEdjGc1uDNzktcS+DD14sLZDKZKD8/n3p6ejgCHySIUZnRcLvdVFJSIrgaoLV2RZWyNE5GgIvRE13DMUw0m83BL06r6OhMBw4coEcffZSeffbZ+9o2hjfQeCpTDBYWFqiysjJs0CQSwb5gXkwnX0igltVppDckk8kIYSG2EsmW3+8no9FItbW1pFAoqKOjg7xer6BUrkWJFfIyxaKxsZFMJlPctOiQoGJrKA8AZMgDRvvwEWrBsgSWZeHo68bmp9QIpocGWuOPv+bn5+PChQu4efMm2tvbcefOHZSXl+Ojjz7iHbPNpX2BlGB12vj4OH7wgx9Ao9FgYmICAwMDuHLlCvbu3Su6DAB4/fXXcf36dbzzzjtx06MDC4quISIKGs3dLRHctfa0RhpWERgZGeEOhh4cHKStW7eSyWTKiX2Oq8FqVWY8hB8MHauFhMahl6WSuyc2L4LRCrHSByGig7tXdHGyUQuvXLnCHdHu9/ups7OTGIbhHJ9cR7jKNBqNSavMeNGPc+yI9tBSCOFcDoeDNBoNmc1m8vv9NDU1RXv27CG9Xp+zp72Fe5nNzc2S7FNcWFigpqYm0ul0vOUJ+gYijaLgALjoh8XB3NwcPf/882QwGDg19Ktf/YoUCgW1tbWlfQm8WISrzFOnTklG1+zsLOn1etq3bx83S78aZy565j8e0hbnhGVZ8vv9ZDabSaPRcF2Pubk5MpvNpFAoRK+ajvcCqXi3IZVZWlpKRqNR8tXbn332GSmVSuro6JC0XD6kNVhNqKJDi2qvXr0acah0RUUF7dmzJ2O7jJJRmattJBaLhRQKBVksltWSmTQyFnHIbreTQqGImTPr6uqiTZs2UVdXF+/xtiGkUrFSqEyh5/v9fjp69CipVCoaGRlZVfmrheRMFHpRt9tNRqORKioqIsZb3W431dXVkU6no9/+9reS0BHtZYZUppSDDKGybDYbabVaqq+vT/mk7tUgK7G/rFYrKRQKamlpiXjp0PXm5uaE0sLHjHR4mXzweDzU2NhIKpUqqysZMsrE8Ir3er3U0dFBDMPQsWPHOGZ6vV5qa2sjhmHo3XffFV12urzMePB4PBG0Z3sqLmtMDMHtdlNLSwu3+3ZmZoaIgjZUr9eTwWDg3a3MpzJToUcIbrebzGYztwgs0UhUpsaH087EZMJ6tbW1UVFRETU2NnLqqbu7O6bFS6Ey403S8sFqtdJLL71EcrmcOjo6smL3hJD1eJjRFTg7O0tnzvwX6fV6rq/16aefkslkIrVaHaUy/090ucnS5HA46PDhw6RQKKiqqorefPPNnBmgiEZSR7RnAhR2zO34+Djeeust9PX1wefzYfPmzdDpdHjllVckDzLvdDphs9m4D8MwaGhowIEDB6BWq3lpzAXkFhN5Tq4kALempzEwMID+/n78j+0T3Lr9v6iqqkJJSQnUajV27NjB7V8oLS2FSqWKKOOrr77iYqD6fD7Y7XZMTk7C7XZjcHAQSqUS1dXVqK2txa5du6BQKNL7rhIit5gI4VbOgpC3zOX5+XncuHED4+PjuH37Nmw2G3fv5OQkpqenI+5VKpXQaDQgIhQUFGDnzp1QKpUoKyuDXq/PyXjnYpFzTAQgfJbsWj5nNk3Ietj6eC2o76R5+fSZfMh2t4IwjkOH3sg8bQLtO5faftaZGCFUo32QyWQ4/eXTIAoEPyd3I09WDnrq6Tg3pJm2BOct5wp4z8XINAjj2K17AUZzN3dICRFBpjOhu9UIaMpWpUrDbWy0vc01L3O1yAEmsgDy8MEbP0c/dsHZu3LWU6iCn1ZvBsq2rkoKw5l0P505HI6ccGwIo9gt02FztxW97SZRvFr3b1aQdZsIhJ3GVrYZIAKB5Rwe4jn3aZ2BK8gBJoaYlMfZKBnXG2SDa2KjkAPKI6eQA0zMWz5Sj8WXruhjV4OLmns+WDk/kHD/2LJkINhwMzdMyw+WZbktBOG7fkasJwT3IKy9jQCpI97AftaZyHJ/VgILIGzhMt9sxFrcy5Eu5IR3uo7UkAM2cR2pYp2J9wH+H4EVdU2gUgpqAAAAAElFTkSuQmCC"
|
<image>如图,已知圆周角∠ACB=130°,则圆心角∠AOB=()
Choices:
(A) 130°
(B) 115°
(C) 100°
(D) 50°
|
100°
| 69,819 | null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABjCAYAAAC2XA/OAAAQI0lEQVR4nO2df0wUV7vHv4Pewh9NTJppXQOWQrfXtZpIU43ciMEE6GujS+n7ksp9Q+KkxS7UNqEtWP8wF29MWiLYbW9IZRebwhua8AcNpYspzWKzXrT1By00Qqlx11+YuEQbUex1ics89w+YYWZ3dnd23d0ZcD8J0Zk5Z+bZeZ7n/HjOOXMYIiKkWFKUlpbC4XAoXnM6nWBSSl+alJaWwmq14vnnnxfPMQwDIkKahnKlSABSHxYUbrfbAQD19fUAkFL6UoNhGAwMDGDnzp0AAI/Hg0uXLgEADh8+DCCl9CXJ5cuXYbFYwDAMjEYjXnjhBdn1lNKXIH19fXC73SAi2Gw25Obmyq6nlL7E8Hg8ABbq89zcXOTk5ABYqO9TrfclhtBoe/vtt0OmSXn6IiPQRwOP+/r6UFRUFPYeKU9fIgwMDKCkpEQ89ng8eOaZZ/Dkk08GpU15+hKhuLgYRCT+3bt3DyUlJTh79mxQ2pTSlxi3b99GRUUFXn31Vfz111/YvHmzeE0o1FNKX0REqok7Ojqwdu1a5OTkYNOmTfjwww9l1xmGmfs3Vacvfq5du4bq6mp4vV7Y7XY89dRTKCoqgsfjwbJly4LSpzx9kXPkyBFs3LgR27Ztw9DQEDZt2gSr1Yr33ntPUeFEhOUayJkiDoyNjaGqqgrp6ekYHBzEmjVrwDAM7t69i2+++QZ//PGHYj6GYVKerjXR1q6zs7M4ePAgtm3bhsrKSrhcLphMJrG+/vTTT1FRUYEVK1aEvEfK0zVGUFYkiAjnzp0Dx3EwGo0YHR3FypUrxWsMw2BmZgZfffUVBgcHI94shcbwPB/2+vT0NO3du5dYlqXu7u6Q6dra2mjXrl0Rn5dSus4INID+/n7KysoijuNoamoqbF6TyUTnz5+P+IxU8a4zhOL+9u3beP/99zE4OIjOzk4UFhaGzXf8+HGsXLkSGzdujPiMVENOh3z99dcwmUzIysrC2NhYRIUDQFNTkzgdKhIpT9cRN27cwJ49e+D1enH8+HFZCDUcIyMjmJycxI4dO1SlT3m6Tvj888/x0ksvoaCgAENDQxEVTpKu3pEjR4JCroFppKTCsAmC5rtRkbh48SI4jsPy5cvR1tYGk8kU1XOuX7+OgoICXLp0Cenp6arypDw9QQgKD+VTPM/j4MGD2Lx5MyorKzE4OKio8Eg+abVa8eabbwYpPFy+hNfpUotXa/1aIbyoeMqodK+zZ8/irbfewurVq3Hx4kUxyKI2PwBxzLyrqwsXLlxQnU/InHScTie53W4tHq0p9+7do9ra2ohBlkBCBW+am5vJYrFELYcmSgdAbrc7YiRKa8xmMwEI+jObzVHf6/vvv6fs7GziOI5u3boVdF3pXYR7Pw8fPqTs7OyYnCfpSq+vr4/ppWmF2WwWXyzP8+R0Oqm+vl51/lu3bhHHcZSdnU0DAwMR06t1hM7OTiorK1Mth5SkKt1ms5HT6SSNapWYkBpoa2srEc39DjV0dXURy7JUV1dH09PTqp+pRvF5eXl06tSpmO6RtOCMMAk/JycHZrM5WY+NGpI0NqVrwux2O3Jzc0FEYeeUA8Dk5CQ4jsPExAT6+vrEPjepbMhGSnPy5ElkZGRgy5Ytsd1DtfnFgNTahCLR7XZHVTxqBc/zZLPZZHV5uPpT+K0tLS3Esiw1NDSQ3++PqzwC27dvp+7ubuJ5XjwfTfsoKeVs4Mvbt29fMh4bE9KXaDabyePxEBFFbIeMj49TQUEB5efn0/j4eMLkGx0dJaPR+EgGlfDgjFCs0/x8bKfTKVsorzeEYvHy5csAIC7+E4r5QISZLFu3bkVFRQV+/vnnqKNq0dDc3Ix3331Xcf6bauJmgvNIixm32x3kITabjWw2m267a4Jcra2tig02adV05swZysvLo+3bt9PExETC5fJ6vWQwGGSNwljeY8KUXldXF1QXSvu9eq/XpV016TmbzUbT09NUV1dHLMtSV1dX0mQ6cOAAHThwIGK6SIaQ8Dpdrx4dCqFLGeqvo6ODsrOzqbKyUjHIIiWev93n85HBYCCv1/vI91o8HeYEIVVMOCXduXOHOI6jrKws6u/vT4ZoIjzPU0tLC3EcF5f7PfZKV0N3dzexLEu1tbVRBVnihd/vJ6PRSKOjoyFDw9GQ0PF0IsLZs2fR39+fqEckDIZhcP/+fXz77beYmppCWVkZMjMzNZHF4/FgbGwMv/76K4gIr732muxzYfv27UNTU5PqOfQJ7bIxDIOamhrcvXs36kn9iUKNHAzD4Ny5c/jiiy+QmZmJd955B5mZmQsLAOe/x5YsHA4HDh06JD6bYRhZt/fw4cMwm83Yt2+fqvslNAx74sQJZGRkwGq1Kl4nnY2vExEuXryI6upqzMzM4Jdffklon1sNp0+fRm9vrzj/zel0Ys2aNUHpTCYTxsfHxeNw7zahnn7o0CF89NFHoedq6Ujhs7Oz+Pjjj7F161a8/vrr+OmnnzRXODAXjKmrqxOPnU4nXnnllaB0RqNR/WSV+DU35LhcLsrLywubRi/dufPnz4tBlqtXrxKRPmRzu92UlZUlC7kKKguUr76+Xox9aNZPLysro87OTtmggN64d+8e7d+/n1iWpc7Ozqjzx+t3hbqPxWKhzz77TDwONVjldrsJADmdTlXPS4jSh4eHH3lQING4XC7Kzs6mXbt2RQyyaIEQcpUuZRJC2IGYzeaoJqYkJAxbXl5O7e3t8b51XJiamiKO48hgMCQ9yBINDQ0NVFdXJzuHgOFdwcOjnYkUd6UL9ZDP54v3rR+Z7u5uMhgMtHfvXk2CLGrgeZ4ePHggC7mGCw2rLdKlxF3pHMfJ6iGtkNaTXq+Xdu7cSWvXrqUzZ85oKFVk4h1yVSIuShcaaxMTE2QwGHTl5a2treJMFj3JFQoh5Do8PJywZ8QlOCNEqI4cOQKLxaJ6eU0icbvdqKqqwszMDFwuF9atW6e1SKpwOBwwGo3Iy8sTz1G8F4xILYDnefLPLvzNRtEjUWptaoHf76fGxkZiWZaam5s1lSUW8vPzVU2VJoq9yyjzdIZhsAwEnoQYr3rjaWlpAcdxYT9wk2h+++03cBwHlmUxNDSE7OzsoDSks9CvlNOnT8Pn80X8oK/wG2L+HQrmQ7OzPEVjRFNTU3Eb4I8Fn88nBlmi6SrqLWhUVlYWUf54yBy2Tud5ghA1T0tjAFooBdIYiMef/08L/vnP/1xYiDd/XppXtMlw1+TWqJwu4Pypwf/F7t1vIX/Lf2B0bBzPPM0uyC0pucRjycP05PEejwdDQ0Po7u4Om04qM8VaaimY0oKnC/+XXJbW87OzPD3w+SgrK5euXLkqlg7SkoLnefIH5Al1TYosnaR9IZyfmpqiPZZ3KPfZ1XNBlnlZ/YK8IY715dsLWCyWpLVBwo+yzdfrPIkWIrUWEIA2+zFs316M1c8+O+dNJHjZvCUCYIRzkmvCP+I1uSWCJG0KJm2hZCEAvb3fYu3atXji35ZjaOQCXvnb38SsaYy85Ag8Dn6Y9kxOTqK3txdVVVXJGacPMgMl7573Lp6XnOd5mnnop6ysLFloUOgB8Er3C3ctQAa/wnnvTS/9o7yc1plMc+u4Au4ta4tEOtYRSiHXRCIqXSxqFRQhKDKwC/evf3XSP/5eJkk39++sNK1C8R7qmvRGswHPazvWRiy7iv6r4b/p/x74gvMvUqULs1yvX7+etGfKlS7UgQEvhlcwBL/fT8Z/X0fDw78t5JtPK61Pgzw2zDW/P8AgZnm6cuUqlZSU0Jb8/LkoVYj8s7M8PfQvnAtME1IejQkXck1U70J1GDbw+V1dXbRz584QaeMj7CeffEJPP/00NTY26q57FQ+SEXJVQpXS52Lr8nN5eXnkcrniLhDP8zQ8PEwbNmygwsJCcSbLUqSnp4eKioqIKLkxg7BKV6rLeZ6nnp4eKiwsDClorD9AGmTp6OiIyz31TDQh13gS0yhbQUGBbAJCpDXSahTmcrnIaDRSeXm5LmeyxJtTp05FnEOYKKJWusvlog0bNojHapcFheLOnTtksVjIYDBQX19f1PkXK2pCrokiaqUXFhZST09PXB7e19dHBoOBqqurNR+dSyZKs1yTSRStd16c8PioeL1eKi8vJ5PJlJDGoN5JZshViag8PR5FUnt7O7EsS/v3718UM1nizc2bNzWfdxBx5gzNj+SMjY1hdHRUHAWiKEd4rl27ht27d+P+/ftwOp2ymSGPE62trRE31kk4aq1DOuEx2gabMJOlsbFRVfql2D3jeV4Mud64cUNTWVQpPdZpzcPDw/Tyyy+rDrIsRWVLaWlpocrKSq3FkCs93PKaaBoePp+PDhw4QCzLUltb26NJqHPUGqpWIVclgubIUUBdPTk5ie+++062DDYcJ0+eRHV1NdavXy/bO2ypovTOlHA4HHjuuefEtoyaPAlD0H6ohYa1tbV08ODBsGmI5may7N27lwwGQ9z68UuJ/Px86u/v10UVFrZOn5qaIpZlI3YvfvjhBzIYDFRVVfVYBVnUomXIVYmwXTar1YrKysqQ3Yvbt2+jpqYGIyMj6OrqUrWV1HzpoqtJiYmmubkZtbW1WouxQChrmJ6eplWrVoWc1tze3k4rVqwIG2SJ9OF6PRR1icbtdpPBYNDVsu2Qnv7ll19ix44dQQ2xa9euoaqqCn/++SdcLlfI5TeA8hTjSNeXGk1NTairq8OyZcvE9xP4npKOkiX4fL6gCY9Ec3uGCEGWR7Hcx8HDifSz1CsQRU9vb29HcXGx+NmqkZER1NTUID09HWfOnHnkrzg/Dh4OAEePHtU+5KpEoBVIgwg+n48aGhqIZVk6evSoFka5aBFCrnqc7rVconwwDIPOzk6sX78eMzMzyMvLg8lkwoULF2AwGLS0zUXHsWPHUFxcrLiIUnMCreDFF1+kN954gwwGQ1R7h6VYIFLIVes2jaxO7+jowO+//44nnngCHMdhdHRU3N0v2Z/GXKwwDIObN28iMzNTcfiYtG65I+AzoRkZGbBYLFi5cmWQklMKD4/0SxGrVq1CdXV12HRaovor0HqwUL0S+G70/q5SW2k/hoRcqpyyheix2+3iZ0FKS0sBQPY5br28U5nSS0tLRaHT0tLAMAwGBga0km3R4PF4wDAM3G63uBWZ1WoFwzAwGo1iusAiXzMjCGzOm81m8SuEwpcKH8dtr6MBIXafqq+vj+mLjokmqHh3OBwoLi4GMLcvaorw2O12AHO7KwBy7zUajfp8h1ILCNwm2mw2B1mw1oEFvQGA7Ha76vR6GFqWKT2aDWUfVwJ3mEQMH+XV2nHSSFIcORwOeDweEBFsNhuMRqO4V6pCCZGEcmhxEO270LoPnyYIILRAhQ1l9+zZAwD48ccfFTNqLbhWSH+3MMR85cqVoHQej0e3PR+xIXfixAnZzsHCrsKhGiIpT5/DZrPBYrHIFOx0OvHBBx+IDWLdIZTzgRvKIoad/R5XAj/CX19fr3m9HQ7G6XRSSUlJkDGUlpait7c3uRaYIin8P9CEQgSCyEuSAAAAAElFTkSuQmCC"
|
<image>如图,▱ABCD,AB=6,AD=9,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DF的长等于()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,820 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAABaCAYAAACv1SSdAAANRklEQVR4nO2db0gb9x/H39cW+mAMH+zGzpmRWq9Mlg5Gw6gMwULjEEym0EhhKIusnQ/yRJlxbgh9oAWtKbOQjUb3wG1uE6ZbaTMoy8kcjVSw+wMqFnapluyBorB0KSwdyX1+D/rLzZhEY3LJJeZeINT78/1+vL7v7nOf7+f7+YI0NP6P2+0mAASALBYLERE5HA7F2j8EjZLH7/eDYRiIoggiAhHh448/BsMw4HlesX40sWmA53k4HA5cuXJF3lZVVQWHw4Hjx48r1o8mthJndHQUAOKEFoPneVRWVirWF0NEpFhrGkUHwzAYHR3FxYsXc96X9mQrYfx+PwAo+vTaDU1sGsjXy00TWwlTVVUFAFhdXU3Y5/f7IQiCsh0qFkTRKEpisTWv1ytvEwRBjrMpifaBoAFBEFBfXy//3tPTg6GhIcX70cSmkTc0n00jb2hi08gbmtg0kvLw4UPF29TEphHH9PQ0LBYLIpGI4m0fUbxFjaLjyZMn+PLLLzE0NIRAIICff/5ZjsEpifZkK2G2trZw+fJl6HQ6TExMYHV1FZOTkzh9+nRO+tPEVoI8fPgQFy9exKuvvopgMIg7d+5ga2sL165dQ3Nzc+46VjxMrFGw+Hw+amlpIZ1OR06nk4LBIEUiETKZTNTb25vz/rWgbgkwPT0Np9OJUCiEjz76CG+//ba8r729Hf/88w8mJydzb0jO5ayhCuFwmFwuF+n1empoaCBBEBKO6e3tpbq6OgqHw3mxSfsaPWBsbGzA5XLhs88+Q0NDA3744QcYDIaE49xuN27cuIH5+XkcPXo0P8blRdIHGIvFIs9I2v6Tb/x+P124cIFYlqXu7m5aX19PeazH4yGdTkdra2skSVLebNTEpgAWi4VEUZT/4xwOBzEMk5e+fT4fmc1m0ul05HK5KBQK7Xr8wsICcRxHCwsLebFvO5rYskSSpKS5XxaLRdE5lzuZmJggo9FIRqORJiYm0jpnbW2NdDodeTyenNm1G5rPliUzMzOorq5O2F5dXY379+8r2tfjx4/x+eefw+l04uTJk7h69Srq6urSOvfRo0doaGhAX18fGhsbFbUrXbSgbpb8+OOPePPNNxO2nzhxQrE+NjY28OGHH+LYsWP4/fffIQgCbt26lbbQwuEwmpqaYLVa0dHRoZhd+0UTW5YMDw/DZDIlbP/jjz9QXV2d1WSS5eVltLe347XXXsORI0ewvLyMsbGxfY9btrW1obKyEv39/RnbogiqvLwPCH6/P6lfJooiMQwTl9e/HwRBILPZTHq9nlwuF/39998Z29jZ2Ukmk4kikUjGbSiFJrYscLvd5Ha7E7ZbLJaMJoxMTEyQwWAgo9FIU1NTWdkmSRKNjIyQwWDY8ws1X2hiywIAJIqi/LsoinEVgHYjFiYJhULkdDpJp9PRuXPnyOfzKWLbd999RzqdjgKBgCLtKYEmtgwQBCEugMswjPzvdF+dgUCAuru7ieM4evfdd+NEmy3z8/PEsiwtLS0p1qYSaGLLM4uLi2Sz2YhlWbp06RJtbm4q2r4oilReXp50LFRtNLHlidu3b5PJZCKe52lsbCwng9+bm5vE8zyNj48r3rYSaGLLAbGhoEgkQuPj42QwGKi2tjZrp383QqEQnT59mgYGBnLWR7Zo+WwKs7GxgTfeeAOHDx/GX3/9hTNnzqC7uztnqdYAEI1G0dzcjBdffBFutztn/WSLFtRVkD///BP9/f149OgRnn/+eUSjUTz33HM4duxYTvu12+0AgE8//TSn/WSLJjYFuHfvHtra2vD666+jvLwc9+/fx9zcHFZXV/Hss8/i5ZdfxuXLl/Hvv/8q3vfQ0BDu3buHb775BocPHwaQvxJY+0bl13hREouReTyeOKc/VZR+dXWVrFYrVVRUKOq8T05Okl6vj8tdS5Vfh32EZXKFJrZ9Eo1GaXx8nHiep7q6un2l6/h8PqqpqSGj0Uizs7NZ2fHTTz8Rx3G0srKSsC+WX7edQniuqG9BkbC5uUn9/f3EcRy1trZmlXw4NTVFOp2OzGZzXNJluqysrFB5eXlKwW4fwYgNp3V3d2dsr1JoYtuDtbU1stvtxHEc2e12xYZ/wuEwDQ4OEsuyZLfb0w7urq+vk16vp8nJyaT7vV6vLDBRFOVEgXymf6dCE1sSJEmihYUFOnfuHHEcR4ODgxQMBnPS19bWFtntdiorKyOn07lrdkYoFKKTJ0/S4OBgSvFsX6UFQNJEAbXQxLaDqakpqq2tJYPBQOPj4zlPzYmJRhRFamxspJdeeilp8Dc2mdhut+/a3nZ/ze12q/5RsB1NbPT0lTY2NkY8z5PJZFItR5/o6SC/0Wik2trauAwQm81Gzc3NKc+TJIlEUYzz17xer6ID/NlS0mLb3NykgYEBYlmWWltbaXl5WW2TZMbHx4njOGppaaGuri6qqanZczw1VX5doVCSQd2dhVV+++03fPHFF3jllVfUNk3mnXfegSiKkCQJIyMjMBqNCIfDu57j8Xhw9uzZPFm4f0pKbHNzc2hpaUFtba08+2l4eBg6nQ4Mw6htXgLz8/OYm5vD3bt38eTJE/A8j08++QTRaDTuOEEQcOjQIdy6dQs8z8srtxQcaj9a88HU1BTV1NSQwWBIe46l2iwtLRHLsnT37l152+LiojxioaZfmSkHUmySJKVVWKVQiU0m/v7775Puv337NhkMBqqrq1NlZnumHDixra+vU19fH3EcRzabjRYXF9U2aV8Eg0Gqrq6mkZGRPY91uVzEsizZbLaCmmuQigMjNlEU5cIqDodj18IqhUo4HKa6ujrq7OxM+5xQKER9fX1UVlZGfX19BTOTKhlFL7Y7d+6QxWJJu7BKIXP+/Hk6f/58RucGAgFqa2ujF154ga5fv66wZcpQtGLLpLBKIdPb20tnzpzJem7CwsKCPAJSSKMHREUmtlAoJDv9ZrM56zSdQuH69etUXV2t6Pirx+ORR0QKZUpfUYhtfX2dent7iWVZunDhQkENwWTL9sJ8ShOJRMjpdBLLstTR0aG6H1vQYltaWiKbzUYcx1FfX5/qF0tp8lWYLxgMUnd3N5WVldHAwEDeaujupKDEFsuA2FlYpZid/lSIokgcx+U1OLu2tkZWq5V0Op2cnl6yZU5jhVVOnTqV0zmWahObTKzWV+Pc3Jxi6en7QXWxbS+sYrVayefzFURWaa4Ih8NUU1OTl0Uu9uLbb7+liooKamxszIsfrJrYthdWOWhO/240NzdnHEvLBZmmp2dC3rM+YtUUT506hWeeeQaLi4sZVVMsRrq6uvD48WN8/fXXapsic/ToUXzwwQdYWVkBAPA8j6tXryZklihCzmS8DUmS5MIqer0+Z4VVCplCK8yXClEU5VL3U1NTiro0ORObJEl5LaxSyNy4caPgCvPtRar09GzIidiCwSA5nU45rXl+fj4X3RQFs7OzBVmYL11i6elWqzXrm0VRsQUCAers7JSdzdXVVSWbLzpWVlaIZdmiyqVLRigUooGBASorK6P3338/42E1RcS2sLBAra2txHEcDQwMyF80BzmEsRexycSFWpgvE9bX1+U0LpfLte9pjlmJLVlhlVIWWIxQKERGo5EuXbqktik5YWlpKaP09H2LLeb0Z1JYpRSIRCJkNpvJZrOpbUrO2W96elpikyRJnmOpRGGVg0xHRwc1NDQUxCIX+SLd9PQ9xbazsEouUmEOCkNDQ2Q0Ggs+lpYL0klPTyq2WGEVq9UaV1glU3+sFPy4iYmJhMJ8pUggEJA/FncmGiQUcJ6ensbIyAh8Ph/0ej3a2trk8pkaiczOziIajeLXX39Fe3s7WJZV26SC4JdffoHH44HBYMC1a9dw9uxZyGKLRqP46quv8ODBg5QNMAwj12slooKcRZ5vZmdnATxd8rGioiJuX6lco3T+zvr6emRVmr5ULmYmaNcmEW0dBI28sWuKkSAIhVukRKNgSfX82lVs9fX1hVtTX6PgeOutt8AwDA4dOgSGYcAwDARBkPenFFtPTw8sFgt4ns+LoRrFz82bN2GxWCAIAogIXq8X9fX18tsxqc82OjqK48ePa0+2faJ9FDyNWEiSBIZh4Pf7wfM8RFFEVVVV4pMtFvqorKyExWLJu7HFQOx1sfOnqalJbdNUg4ggCAIcDod8w3V1dcHhcPyX8r8zAhyrm7+9hr5GIjtXUfF6vSV/vXaWxd85iSnuyeZ2uzE8PAyGYTRfLQ1id+zo6ChMJlPJXzOPxwNRFEFEcLvdCSVXZbH5/X55hID+79yV+sVLhSAIMJvNAP7zbwHgvffeU9MsVYmJKnYDxq7FzMyMfMyR2IFdXV24efNm3Mml7uym4sGDB+jo6EBHRwcAQBRFlS1Sn5mZGfkGBP4TX+xGBAD09PQkvGO3LyNY6n5IMrb7a9sXuShldvqwMf1sJ2WKkUZydq6iUsiLXOQDr9ebdG3TZDehNja6T0ZHRwEk+mc9PT24cuWKGiYVDSW16IYSJFtFpampCSdOnFDJouJBe7KlARFhZmYG9fX1KY+JRck1UvM/t9Smcfjxwl0AAAAASUVORK5CYII="
|
<image>如图所示,∠A=28°,∠BFC=92°,∠B=∠C,则∠BDC的度数是()
Choices:
(A) 85°
(B) 75°
(C) 64°
(D) 60°
|
60°
| 69,821 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAEkAAABtCAYAAADtTkz8AAAJdklEQVR4nO1dT2gTTRT/TZp+8aSXHlNoggcxnksv6ebgwUvgu2i9NbWKFcUqmODBUm+WNj1KlYrZlB4KFjyoh4KHdFfBiqKFFnMxEbxY8YOCOTQ07XwXZ9ndzG72X7JJ6g9Cs7OZNzO/efNm3r7pLOgRgCAIFEDdRxAES/kDOAIoFAoQBAGlUgmUUlBKIUkSBgcHLeU/EiQxRCIRUEqRz+cRj8cRi8Us5Qs2uV6+g1KKt2/fIpVKAQCWlpYQjUYBAKOjo5aFdD1EUdTYolKpZCv/kRhuuVxOsUeCICASidjK3/UklctlAFCIGRsbsy2j60mSJElDDLNDmUzGsoyuJ0kURQwPD2vSEomE5ZkNQOcb7sPDQ266JEmUEMJdRMKm8SaUUupZt3Upun646eFEJ44cSYQQ23mOBEnb29uu8nc9SWtra3j27JkrGV1NUqVSwfj4uGs5XUWS3ihPTU3h169fmvQjb7jVRvnDhw9YXV3FtWvXNOl/DfcfHBwcIJVKIZvN4sSJE67ldSVJ2WwWAwMDGBkZ8URe1z10+/r1K7LZLD59+uSZzK7TpPHxcdy7dw/hcNgzmV1FUj6fR7VaxY0bNzyV2/HDjVIKQgh2dnZw9+5dvH79Gj09PbbyNoLvmuT2IQRr5K1bt5BKpew9J7II3zXJybpFj7W1NXz+/BmiKDrK30ijfCfJLSqVCi5fvozl5WWEQiFbeRkxjTrK9+HmBpRSTE1N4ezZsxAEwfR3btAxmsQbEh8/fsTq6iq2trZM8wYC9nRBX5YrTfLiya9V55MQornPXI/5+fmGrofdeuo7oyFJsiwrsatGwpyAEAJZlkEIQSAQ0PwlhCCRSHDLy2aziEQiuHDhAgD7RCQSCaUM9YeHhiTpwzHNQDwehyRJSKfToJTi8PAQlFKIosgNJjLXY2FhQUkzaqARebydJul0misnYCYok8lowsLNDKyUy2Ukk0nluyzLiEQiyuYGddl2XI9G2q4Oec/OzkIQhLrAZcBIUD6fRzKZxPr6uuUC3eDp06eIx+MAgIWFBYTDYQwPDyMej2sMqVeuhyzL3P1Jg4ODeP/+vSaNO7t9+/YNANDf3286tXqJ9fV1BAIBRWNmZ2eVe4ygnz9/2nY9jPDixQskk8m6mSwWi9WRVGeTKKVYWFjA6OgoKKWWd4O5gSzLSKfTii0y6pibN2965nrMzc0hHo/XjY7t7e26NteRtLS0hNnZWRBCEI1GPR9iPLvGepWBZ6zX1tawubmJ+/fvu65DuVxGOp3mps/NzWnqAuhIYlM9s/aSJOH06dOuK6UGj3TWqwz6HWjM9Xj06JFt14MHSZK42jg2NgZBEDR1AVQklctljI2NaSpYKpVcV6gR2FBjYJqm1ji96+F2lk2lUpqlTblcVjqvUCjUZ6CU0nQ6rezAYLstBEFQ0tLptOkODqdIJBLKLg9Whh7v3r2j4XCY7u7uOipjenqaTk9PU0oplWXZcJeJJEmGMky33nhNil3UajUai8XoysqKYxlqkpzCdMXdzHWRFWSzWUSjUSXqQX3aJdS2TwGKxWJd1MNJp+kdYycwJMlvLWJ16O/vV747bez09LSrepgON7a4a/VHFEUMDQ1hf39fSXNaFy9gOtz80KadnR3cuXMHhUJB43pQi5GNZkDRJL+Moh6Tk5O4cuVK3WLPz+GvaBIb835W5tWrV9jc3EQ+n/etDjxohlurCOJ1RqVSwcTEhKOoR7NhuEXZi6nTDm7fvo3d3V3kcjlP5TZ1CdBKbGxsWIp6+AajpbjJLdswc2+8cD3M4EU7WhKcNLN1+qhHW6KZPdAIX758oX19ffT79+9NKwOAa0fdlzA3/WNIJyYmPN9wxYPbWdsXkggh3KgHbZMFrR6+LAF2dnZw5swZFAqFpuwnUsOLdmhIqtZqyo1jvb1NI+nixYuIRCJ48OBBU+Sr4Uln643U3v6+YvCagZcvX9JTp07Rvb29psjXw4t2tJSkSqVCw+EwLRQKnss2ghftqLNJ1VoNoWAQhBDs7e8r6aFgUDMcQ8Gg8nv1tVoOwz89PSCEKK7Ho8XFOjk88MprlK6uZygYRDAUQq1aNSzDEvSs6TWJXevvW/3OrlnU4+d//xnKs1uO+npvf1/5qK8BGJZhFbaWAKyn9GnqnuXh4OAAly5dQjabxfHjx+32o6m26X+j/q2VfFbQkCT9MOPdZx8jzM/Pa6IeDLRN10V6KC3jaYkdGOUvFot4+PAhPmxs1N2zuhJ2Wze3UAy33gDr1xdGFa3WaqCU4lhvb106AJw7dw7/JpOYnJysu6cuj1eGlUlBP4GwNHZ9rLdXmYAcE21krPS3nBi/xcVFOjQ0RGu1mu28XsGkidZlWBHuhKAfP37Qvr4+urW1xb3fqhC6FySZ+m76dZIdjIyMIBqNtsT1MENT3BIveuD58+ctdT3M4KYdigyvhf/+/duy69GKIecFSZ4/KmlW1MMp2i5asrGxgZWVFRSLRS/F+g+v1LTZUQ+nsNsOHjx7fDszM8N1PboCXvRAK6IeTmGnHUbwRJNaFfXwC7ZJorr/T3vy5Ikm6kE7xLO3A1dLgFZGPZzC82iJFeFUtW1GHfVQp7cTfHVLeK6H3/u+eWjUDksynAjnuR7tSBClProleteDtulQA3xyS/SuhxFB7UycbdhR03Z1Pcxg0kTLsLVOmpmZ8fSEq46B1R4oFosNXY92NN4mTbQMy5p09epVTE1NmboeXWODdDAlif6ZFR4/foxqtYrr16+3pFJth0Zqyot6tOOwMoJJEy2j4Trp/PnzOHnypO9RD6dg7aAuliSm66Q3b95ga2sLy8vLjoS3E9zYS1NN6hYYNNEygkyInhS3grsJhge68HBUieMuAYzI6MQhmM/n6w6symQytjpcQxI7nUp9EpYsy55WulVgp0Zsb28rs1sulwMhBLFYzF6H69cEw8PDymkLkiTZfsdHuwAGp1ZkMhnT0yS4snjCGUqlUseQpF7gsrdw8SCKou32aCRJkqRhXxAEwzNE2hkAqCiK3slTX7h9D1o7gGm/3SFlBs2/vKvfg5bL5RCNRg2PT+wkUJdLF4Ukdo4bOy0vlUqBEAJJkrgFuS24WRgYGACgPfuJzWTlchmSJCl1t9wGZvBEUdSM42aobavAzIa67pIk1b3S1erTDMUmCYKgsUH4Y5c6FWz5wj5uJiCsr69zT6ay+iLdboGZVv19v5sFdPR53K3CX5Is4H8vdZ3kn2DwPQAAAABJRU5ErkJggg=="
|
<image>如图,已知E是正方形ABCD的边AD的延长线上一点,BE交AD于点F,若CD=6,FD=2,则ED的长是()
Choices:
(A) 2
(B) 3
(C) 4
(D) 5
|
5
| 69,822 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAF0AAABiCAYAAAAyXd+7AAAP2UlEQVR4nO1dbUxbZRu+jxg3t7qD0qQlKytKF4sdrku3iFJWtqHjdWWBWcMSSeQHCyr+IJEiZon7ISYQ+WEyTEhYQhfJK8QStqxz/GBvoEBW7ZQpYJtYClkhslC1rLB1Wnq/P+Zp+nHO4Zx+AtuVNBvP532u5zn3fT/PeT4IRER4jJTiiXQL8CjiMelpwGPS04An01k5IgJBEKxp3G43TE9Pw40bN2B+fh6mpqYAAODWrVuwvLwcllYoFIJCoQAAgAMHDoBEIoGDBw+CUqkEkiST8xAxgEiGIeVCJlu+mZkZMJlMYDQawWq1QmFhYRiJAAAKhQKEQmFY/jt37oDdbgcAAIvFAvPz8zA5OQljY2Nw5MgRqKioAK1WC1KpNP6HjANJIT0W3Lx5E/r6+sBkMoHH4wGtVgsnTpyA8vJyyMjIiKvsBw8egMlkCv5EIhFUVlbCW2+9BUqlMjEPwAeYZly4cAElEgnK5XJsbGxEq9XKK38gEOBd59jYGDY0NKBMJkOJRIK9vb28y4gHaSPdZDKhQqFAtVqNFotl3fSxkMsFw8PDqFKpUKVS4dDQEGs9iZIh5aRbLBZUq9Uok8nQZDIxpksWyUwwGo0okUiwtLQUJyYmaGXYdKQ7HA6sqKhAsViMHR0dqao2CmzE+f1+bG9vR6FQiFVVVehyuZIiQ1JJpx5wcHAQMzMz8dy5c+j1emMuJ1XweDzY3NyMJEni2NhYwsuPi3QmMkLDW1tbkyZ8sjE4OIgkSWJHR8e6Dc+nYyStp/t8PqyurkaFQoEOhyPlvTVRmJqaQplMhnV1dej3+xEx/jcvKdMA8/PzUFRUBB6PBywWC+Tl5cU0WNoIUCgUcPPmTbDb7VBSUgJ//PFH3M+SENLx3/EVIsKtW7fg0KFD8Prrr8OVK1dAIBAkooqUAWnGiiRJwvXr12H//v2gUqmCo162POtVkjC4XC4Ui8XY2dmZyGLTikhV0trailKpFJeWlmJWMwkj3efzoUqlwubmZsY0m1Gvh8pM/b+urg41Gg3+888/MZUZ09wL0kxonT59GlZXV+HKlSt8i9t0WFtbg2PHjoFcLofOzs5gOB0vtIi39RERW1paUKFQ0Prgm7F3c8HS0hLKZLKYBnpxqxeTyYRCoRDn5ubiLWrTwWazYWZmJg4PD/PKFxfpDocDSZLkXelWAtXpZmdnOeeJS6dXVlbCwYMH4ezZs3yL2FLQ6/Xgdruhu7s7GIYh+h0jdX2sLTw2NoZisRh9Pl+sRWxaRNopj8eDQqEwODu5HmImXa1WY1dXV6zZtxza29tRq9VySsub9EAggAMDA6hQKNDv929Z74QvfD4f5ubmcrJvvEn3+/0ol8vx6tWrMQm3ldHT04MqlWrddLznXrq7u0EkEsGbb74ZvwXaYnjnnXfA7/dDf38/e0I+Len3+1EikfD+ePwo4fr16yiXy1nVLq+ebrFYgCTJ4NqTkIbj3SsSAbp6Q8PSIdfRo0dhZWUFfv31V8Y0vEi/dOkSnDp1Km7BEgW6eY7QsHTN4Z88eRIuX77MGM+LdJPJBCdPnowK36wfKJKFU6dOsU78cR6R2u12OHLkCPz+++8JE24rAhEhEAhAZmYmOBwOEIlEUWk49/TLly/T9vKNgnTZlUgQBAEZGRlw4sQJuHTpEm0azqRvNH0OADA6OgoEQQBBEPDEE09AU1NTukUKorKykpF0VpeRcnsWFxeRJMmYv5QkA3q9HiPFBwDU6/W06VM5cg4EAuj1elEgENB+Y2Dt6ZSBvHHjBhw6dAiefDKty9mDaGpqgh9++CFKpZjNZvjiiy9o86TS2BMEAQKBAAoKCuDHH3+MiuekXmZmZmDfvn0JFy4WUMSGTqNuVMjlcvjtt9+iwjmRPjk5GdzhkG58+umnoNfr4fnnn4+KczqdaZCIGQqFAqanp6PCOff0/Pz8hAsVC0ZGRqC8vJw2rru7G/R6fYolYoZcLgeHwxEVzklJu1wukEgkCReKL2ZnZwEAaGUZHR2FkZGRDaV2du/eDfPz81HhnHr66uoq7Ny5M+FC8QWlUuge5PDhw4xqJ13YtWsXrK6uRkdwcYGYXJ90QK/Xo0ajCf7tdDpZXcV0wuVyoUQiiQrnRDrHtkkK6PxrjUaDABD8OZ1OXvlTBY/HgyRJRoVzmnshCGLDDLM3E5aXl0EqlYLH4wkL56TTBQIBrKysJEOuuDA+Pg7j4+PpFoMRXq8XnnnmmahwTqRv374dfD5fwoWKB1999RXodDrQ6XTQ1taWbnFo8ffff8PTTz8dFc6J9J07d9Jb4RQgUq2tra3BmTNnoLu7G6xWK0xOTsK1a9fgjTfeALfbzZo31bh79y6t18eJ9JycHFo3LRUItSdutxtKSkpgeXkZxsfHQSKRQFZWFgwPD4NGo4GCggIYGRkJy5tOLCws0I4pOJGel5cHNpst4UJxBUEQMD09DQcOHACtVgt9fX2wbdu2YBwAwNmzZ8FoNEJ1dTWcO3cumDedvd1ut4NMJosK50R6QUEB7RxCqtDf3w+lpaVw/vx5+Pjjjxl7cFFREUxMTMBPP/0ExcXFcOfOnbT29unpafo5Ky7+5sDAAJaWlibMf+WDlpYWlMlkODU1FQzj4nu3t7ejSCTCwcHBZIrHildffZV2xVcY6ffu3w/+QkF9xKC29KUCXq8XdTodqtVqdLvdMZVhsVhQKpVic3Mzrq2tJVhCdnD+iPH09u1h/1IQiUSQn58PQ0NDKdGR8/PzUFxcDCKRCIaHhyErKyumcl555RX4+eefwW63Q1FRESwsLCRY0mhQ/Hz33XegVqvpdxdGtkJoL4/c+VxXVxeWNhlDbGoJNt22knjq6+joQLFYjAMDA3FIxx1VVVWMuwxZSQ9VNzabDXP27IlSP6v37kWpo8i8XOMMBgOKxeLglnamdGzhofGRzzMxMYEymQwbGhqSuq7e7/cjSZK4uLhIG89KeuTfcrkcx8bHo+ICgUBUYzGVQRfn9/uxvr4+uKWdLc96RK9HvNfrxerqalSpVMG6Eo2hoSEsLCxkjOe1wqvsP/+BwWvXwvTXfZ8PfA8exKwD7969C1qtFhYWFuD777+HvLy8qDSRNoYOdPZo+7++fCgEAgF8/fXX8N5770FhYSH09fXFLDsTBgYGQKvVMieIbAUmdYCIeP1//0OlUsmali6cqadOTk6ibO9e2g2/8ZbN9nYgPnw7p6amUKFQYG1tLfp8voTZKKlUGubiRiJIeuSrGCrA6r17iIjoXVkJWyrNVwVQ/w8EAjg4OIhisRj/+803tIJF2g2uZVOyr0c6Ba/Xi2fOnEGFQoE2m40xHVcMDQ2hXC5nTRNGOptwVFxXV1fYlxu+xhIRseXzzzFnz54w+xBaRyxlr6fTmbwyCj09PSgWi9FgMNCm4foWKJVKNBqNrGloR6R0FVBCU9tf2M7fYsL9+/expqYGCwsLcWlpiXf+RILuGR0OByqVSqyuro7p8yTX7S+M0wChQkX2ttCNXlzyIz4c1apUKqypqUnrNsj1eqzP58P6+nqUy+WctyhS+aRSaXDYz1YP69wLm4rgs6XRarWiRCLBL7/8klP6dCGUqP7+fk7HqFB5mLY00pGf9M27lK5km3jaaNsiKXnm5uZQpVKhTqdDj8fDmP6vv/7CrKysxG7eZSKloqICW1paGPM1NzejTCZL2iAkFfD7/djY2Ii5ublhG9xCOfnoo4+wpqaGsYxI/pJyIIPX68WysjIsKyvD5eXleKpIOyjCTCYTisXiKBUZyykgvEgfGRmJWmMSWanD4UCFQoENDQ20wm9muFwuVKvVqNVq0ePxoM1mC+t0ketxAADNZnNUObxOwSAIApxOZ9TSNZ1OB7/88gucP38eqqqqYPfu3fD222/HNITmIkOkyMlcl0NXdkdHBzz11FNAEAR88skn8OGHHwbjSkpK4LPPPoPi4mIYHR2Fw4cPR3HGee6lqakJNBpNFOErKytAEATMzc1BeXk5yGQy2LdvHzyIcT6GjTx8+GbyyhMrGI8NAYD6+noAeLhA9PTp02FxIyMjUFxcDAD0C12pQlkRCATQYDCg2WxmXV7n8/kwPz8fjx49iqWlpQgAwYPUhoaGwsqLFXSHmKUaS0tLuHfvXty2bRv++eefYXFmszlsTaVGo6FdYxnFYuTDOJ1ONBgM6HQ6w4b/dAg9ItDv9+Pg4CA2Njbi/v37MSMjA48fP47t7e28Bh1cEQgEkt4Qvb29uGPHDiRJEm/fvh0VbzAYwvQ502lH6/Z0qqWcTienlbETExOYnZ0dNXO4tLSEvb29WFtbi7m5ucGTmy9cuMDrKCYmJJPwxcVFPH78OAqFQszOzka73c64sJVyNKgGoFvcykp6aMsRBIFNTU2chHS5XKhSqVCr1TLOYTgcDuzs7ESdTockSQbPszUajVEDkXR6Ph0dHUiSJEqlUnzttdcY54woTRAqKwAEJ9BCwUj67OxsWAaz2UxbABMiDzimQ6iAVqsVW1tbWe1BKmGz2VCj0eDLL7+Me/bsCTvgmA4GgyGMH2rdPJ3LSEs6nf6OLJQNoWS2tbWhUCjE0dFRTnkRkdYelJWVJc0eRNbd2tqKQqEQ6+rqUCgUcjp7MVS1IGJQQ9AhKpTaFBuqj0Kdfj6bYxN1aL3b7Q7aA6lUGrQHXV1dUSNBqs5YVNLExAQqlUrUaDT4/vvvczr3nfLqIn9sTsemvJ6BsgcVFRUoEAhY7QEX+Hw+bG5uxqysLKyqqorregYujZ22i0hi/RASiUAggBaLBVtaWlCtVvO2B8PDw/jiiy9iYWEh5uTkhF1Ekiys66cnC8m6csfn86HJZMKGhgZ86aWXGO2B1+vFDz74AJ977jmUyWTBK3cSgfXGDGm/XKqrq4v35VLUQ3FpiMXFRezp6cGamhqUSCQoFArx2LFjuGPHDty1axdmZ2c/OpdLRcJqtWJjYyPK5XIUiURYW1uLAwMDCVm06vP50Gg0Yk1NDT777LMoFouxuro6bjUSq1bgfdYucjgjnEsaNszMzMDVq1fh22+/jevCwNu3b8PU1BSMj4/zujAwXvnXA2fSky0IE6irMUNvXQRY/2pMpVIJOTk5MV+Nmczn3TC3NKYC6xGZqo71SNy8S/UritCLFy8Gj6EqKSkBgIffC1L1Jj8SpFNkzs7OBjeN4b8fRLq7u4EgiNSeZxOX+d6AYPWPAWhnSvV6Pe3EVLKw5Xo6k4q4ePEiAAC0tbVFfd5TKBQpPc/mkTGkBEGAwWCAd999NxiGEYYz8u9kYcv1dDpQJyK98MILYeGRBD82pHFiI7/AW5b00F5LLRtxOp1RjTE7Owujo6MplW3LeS9MoL73Ul5KIBBAs9m87gqHZOCRIR3x4bJACPm609jYmNT6mNzXR8Z72UjYsjp9I+Mx6WnA/wHUqKfTA7D84gAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是△ABC的外接圆,若∠AOB=130°,则∠ACB的度数是()
Choices:
(A) 115°
(B) 120°
(C) 125°
(D) 130°
|
115°
| 69,823 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAACDCAYAAAB1JgJEAAAbaElEQVR4nO2dfVBbVfrHvzfQ1lbWWCdd4hKEkts2DJ3duKzb7kqlWLB0bCndrUNnZH6CUqlLf9M4lpauuNgRp2847Y5UaFmndNad4vSFqszIm5qOnZFdmIJrECyhshKHIJ1ZEOov1ZDn90e44Sa5Ny+QkATymclAzj3nnpN7nvucc57z8jBERAgRurq6oFarA10MlxAAJtCFCEIkgS6ApwwPD2PLli3Iz8/H2NgYACAY35GwkAkTMoIWHR2Nmzdv4v777wfLsnj33XfBMOFqDRWYUGo6Of75z3/iueeeQ2xsLGpqaqBQKAJdJLs2M9x8OhMyGo3PunXr8PnnnyMlJQW//vWv8cYbbwS6SHbYhCzkXmH/EXIajYjsmsze3l7s2bMHP/74I956662gHywsVEJOozn2y1QqFbRaLZ599llkZGTg0KFDuHv3boBKF0aMkBM0MQoKCqDT6aDX67F27Vpcu3ZtTvK92VqN1lu8ABL5f6FDIYTFYnH5naOxsZGio6MpLy+PRkdH/VYOC/VRFkDNevdlXeiElEZzbDbFzBubN2+GXq+3M4V4A4l0W7lwLt+zB8+Ctm3DSqXFbVkXOiElaN4QFRWFkydPoqGhAa+99hq2bNmCb7/91qO0YkLCD2+pKQbS04EGq/CFW0nXzFtB4+CbQtRqtaApxJ0GA+w1Fulb0UIZeD4B+GBbIlgAoEknaRO770Jk3gsaAERERODll1/Gp59+ig8++AC/+93v0NXVZbvuXoPxHhMBB8824/juJwAAWSoWgAQME+EifZiQGgz4ipqaGpLJZFRSUkImk8mrtC01xQSr7iIAlHXgDBFN2sUJDwOcWRAazZGCggJ88cUXTqYQctOEUn8zmi1PgIhAROhrrsIa9iE4NgxhPeZMZKAL4I6xsTF0dXWht7cXQ0ND0Gq1YBgGRIT+/n4YDAbbdwBQKBRQKpUAgEWLFuHRRx+FQqHAqlWrkJycjKioKACAXC7HxYsX0dTUhF27dmHz5s3461//CqlU6lQGhmFA/c2QvNQCunrCFv71QD9ACdNzm+FJTlGCbgrKYDDgo48+QmtrK7RaLYaGhpCSkoLY2FgolUo88sgjNmGJj49HXFycXfqBgQH85z//AQBMTEygvb0d/f39GBwcxPXr1xETE4PHH38cmzZtQkZGBqKjozExMYFXXnkF77zzDiorK5GTkzN9QwKqS7LwwvEPAADNekKGEjiwncGJ961Rsg6cwdWju8N9Mhf4XdDIYW5SiN7eXrz99tu4evUqJiYmkJqairS0NKSmpmLNmjU+rcDu7m5otVrbRyaTYefOncjLy8Pt27ftVoXExMSEhcdXBKhvSCMjI1RdXU3JycmkUCho//799OWXX855OXQ6HWk0GpLL5ZSSkkJnz56l0tJSkslkVFFRYR+Z18t3ZfkPzwo4M+eCZjQa6cUXX6SoqCjKzc2lhoYGj9P6uwIvXbpEOTk5JJVKaffu3fT73/+e1q9fT52dnV7eadJ9lAWGzwTNnRAMDg5SYWEhSaVS2r9/PxmNxoC++a7yHhwcpKKiIpJKpZSenk7Lly+nffv2eW0KCTON3zXa+Pg4lZSUkEwmo1dffZVu377t7yzd4qmAG41GKikpoaioKFqyaDElJCSQVqv1MI/ZlHD+4VdBq6+vJ7lcToWFhTQyMuJ0fS40mlAe3uZrNBopJiaGli1bRsuXL6e8vP/xy6qQ+YxfRp0GgwH5+fm4ffs2qqursW7dOp/clzwYwfoazjRmMHyDtWt/ifvvfwASCTD6/RiqTr9lM4U4li1sUrNnxjMDYvLZ0dGBRx55BBs3bkRnZ6fPhAwIzNwhA+tvVSgewuHDhxEf/xCefvpp3LN4CUpLS7Flyxab0dgxHR+h5+WHdzxombGgCVX6+fPnsWXLFtTW1uLll1+eVcGCCe637t27FxMTE2BZFm+++Sb++9//Yvny5Xj44YfdbpARel4Lykbni/bXbDZTUVERsSxLOp3OF7cMKvh9uvb2dpLL5TQyMkIdHR0UGxtLBQUFlJqaSuvXr6euri6P77WQmPWk+tjYGLZu3YrPP/8cHR0dSEpK8oX8BxV8zfOb3/wGu3btQnFxMZKTk9He3o7Ozk6sWLECubm5SE9Px6FDh/Djjz+6vdeCYjZSqtPpiGVZKiwsJLPZ7CvhDzoctdD4+DgpFAqbqcNkMlFubi4lJSVRW1sb7dy5k1iW9dgUshCYsaA1NjaSVCqlyspKX5YnZKivryeVSmVnxD127BhJpVLSarXU2NhIcrncaYPMQm063Qqa0IPR6XQklUqpsbHRL4UKFbKzs6msrMwurL6+nmQyGen1ehofHyeNRkMymYzq6uoCU8ggwWuNNjIyQizLCmqyhfa2Dg4Okkwmo56eHrvw8vJySkpKovHxcSIiamtro6SkJMrMzKTBwcFAFDXgeCVoZrOZ0tPTqaioyF/lCTlOnTpFqampdmEWi4Vyc3MpOzvbFmY2m+n1118XXhWyAPBK0DQaDaWnp8/rjr+3mM1mSk5OptraWrtwk8lE69evp7KyMjtN39PTYzOFeL8qJHTxWNBqa2uJZVnBOcuFDt+2xmdwcJAUCgXV19c7pZnNBplQxCNBa2trE+yLhJlGo9FQXl6eU3h7ezvJZDJBQ7bRaFwwphC3gmYwGEihUCz4EaY7HG1rfC5dukRxcXGirYGYKWQ+4VbQMjIy6OjRo3NRlpDnypUrTrY1rn9WWlpKO3fuFE07Pj5O+/btszOFzKdRvEtBq6uro+Tk5HDn30MsFougbY3IOjhQqVRuW4b5agoRFTSuKWhvb5/L8oQ8YrY1IqLW1lYnjSeE2Wym8vLyeWUKERW0/fv3U2Fh4VyWZd4gZFvjyMnJofLyctG0/Obyyy+/tJlCbty4IRgnVIBQofV6PclksnnbMfUlQs9vcnJS0LZGZB1pymQyMhqNHucxH0whghotLy9PsJ8RxnPEbGtEVlOIRqPx6n7Dw8MhbQpxEjTujQtrs9njaFvjtJ+rZ+yuWQxVU4jTwsejR4+ioKBA8LCTMOKQw/p/IsJrr72G1tZW22lF3KLH6Oho/OEPf8DJkyed7uNuYeRsj00NGHypGxkZIalU6lX/IYxrhNatEU33g7kVHmK40nChZAqx02j/+Mc/sGPHDvz85z8PlNzPO7Kzs6FSqXDkyBG78ISEBKSkpODy5csu07vScPxjUz3ZIBNQ+FL38MMPk1arDcnhc6Dw5FmJ2dbq6+tFzSDeEuyrQmzmjc7OToqLiwtsaeYxQrY1s9lMMpmMBgYGvL6ftda4w2SmD5URMoUEg+KQcKr5/PnzyMvL42u6BbXB1d9we0LPnz9vC4uIiEBubi5qa2sF07h6/vYN6nQPqKDgWScPMvwTMfn3nNM65iQuNjY2vAzID4jtCeVoa2sjlUo1s3u7uT4bU4ivtaAEsJ64+NNPP0GlUs2NdC8gxPaE8sMMBgOMRqMHd7P6OyDOg4ub2Js3b0ZfX9+MTCE+339KRFRdXU05OTl+legwVoTWrWVmZnq+S8oi8r8b+KYQg8EwfQtePfuzziUA8MknnyAtLc2/Eh0GgNV10Jtvvok9e/bY3D1u3LgRn3zyiWc3YET+dwNnCtmwYYOdBxl+Pfu1zomI5HJ5uH82x/DXrc2mn0YW7x1o9PT00MaNG+fUFIKBgQGSyWRzktlCh980OdrWFi9e7LbDbqFJaj5zYNpzy/YDZKE+Ki6u4iJ4xVyuCpHo9frAHsziweiaiEA0OaO0wQS/aVIoFCgtLcWePXsAAElJSejr6xNNS/3NkDARqOxXgqz2T1je2ASJZBXAJljjePlAfO5M1zF73ndJb28vVq1aNbsMZoMH3QKGYXhOvXie5hzSUojZ/fi2NaVSiZs3bzrFISIQbiKb3YysA2fw3rHnAUw9E2U6qoq3gZ3yFGPXx/LwUURHR+PixYuorKzErl27kJ+fj7GxMVveXsHY50u84kj0en1QmDWEfpRjmPWb+ElboTaAiYiIQFVVFUpKSvDQQw8JChrDEFpravA+tuGNYwUOVyVQsmuwMl45HUTcH/JK43OmEKlUajOFzOh5TiUhIns9kJmZSQ0NDcFhzrDY/RG+PMPhfTDz4osvUkpKiuAuKQv10XYGVHymac7K42pViCs52b9t2uuf9SOhbcXVREQEtVodZJOw4i4JJ8kiaPcJipfEQ4TKPz4+TitWrCC1Wu0cX99EAKi6pc/DHHzjTOOnn37ycIPMVH5TP6vqwDaqbukjC037nC8+00SSiYkJ/OxnP/NeRfoBrmkkXpPZ3/oWJAwDhmEQwUiQXVJju8ap9lBqMoXsVkuXLsWSJUtw584dl2mJ/49As0hEgI88Y0ZGRrp0pjud6VR+Uz/rVg+wKT1hKojFlgPbcFM/AMmdO3ds3uICDVcFXAWcObAVqzI+xE2atI60qA84XojtB8+GXMffFefOncODDz4IiURASJQJyALQf+vWdJ+HsX6ovxlnWvW2qAzD+PzMeZVKBa1Wi+eeew4ZGRk4dOiQzdBsKwuHvhEnGBVYSGzBt3o/wGo2HoiKiqLvv//eJ+p2Njg2f9XFTxK2H3CK19dcRWCyqG9KZXN7JdVqNV2/fn1OyupLTCYTyeVyam5uJoVCIRin+ex+p+azr7mKkFXMi8VrMmfYk3DXBeHOComNjRW0+TWf3W/Xl6w6sI2A7dRHkwQEgbdrx5/X11xFAKhF7xz3q5YqArbZBE2lUtk6n+vXr/d/YWeImAeXiooKys7OptHRUZJKpaJpbjZX2jrYsLnY9l8Zhco7MjJCOTk59OCDD9oEjT9AK84CgeENBqZehEkyB4egOXIwC7S9mHuQ9p1b69sdeoImxOjoqO0YUiFB43Cs8kAMferq6myzCEL7HCb7Gh007FQ4WY/TiIyKisLExIRdP40C4ArHljf0+LIBePJ/H58Kse+3tDRUIOvAGbBT4ZWVldi7dy/uueceVFRUzHFpZ8fJkyexdetWKJVKGAwG0UGZY00wPvb/46q+h4eHkZeXB6PRiIaGBlFPOLe+/hpZKpZ3U2sZJZgytMvlchoaGrKTwoC6N9Q3kQQMNQs0m1yTKnQt1DAajSSVSm12qp6eHruJdbs6sIiH+QMun8rKSpJKpfSXv/xF9KAfLm5x1nS9CBUt8t5778UPP/wAAPjhJ5NNIJctuscXL4uHWGDTXMoEbAXh1td6QDn9hhD0eOmJF5B14AwyEjy7KwVQM7vj6NGjyM/PR0xMDACr//d7773Xdt2u3IxAmB/56quvbMuY2traXM8c3WoBw24GwzA48T5j8zlvBwFOBts7P/6fD9+NmVFdvI2QVTz9ZvQ3+60DHAi4PZ38Jd1ardZnO6JmitlspqNHj5JMJqNTp07N+n4W299JipTL5fj222+hVqv994p4SeHx99G/nYGEOWELs74pFvC1X6i6KiwvL0dRURFkMpktzGAwYMWKFQErU1dXF/Lz8yGTydDR0YG4uLhZ39NmF4UEkSqVCnq9XjCiY1Mq1LRyYY5Nratm2JMm+vh7hFft4gGcgIml/+Enk105uf/nthvgmq6uLjQ2NtotCSIi9PX12S3XInfNPllXR8z2Rbt79y5effVV/O1vf0NFRQWeeeYZ74zhTm87rxvEQ8KyLLq7uwXvwVWQ2F+uEh2FkB/uzTU+/Hhi4fz0/L+O5RPLIxAcPnwYJSUldqN8hmHQ3d1tt1zLbX/MB0J27do1qNVq6PV69PT04JlnnvEsb4dy2CM8BRapUqlw8eJFjzrOQtphLirRE40kpL2CSZMB1orV6XSCu5H0ej3WrFnjs7xc1eedO3dw8OBBXL58GVVVVcjOzvZZvmLYNJpYodxpBL52CeOasrIylJaWYvHixXbhRISenh6sXr3aZ3lx9UkOm4SbmprAsizu3r2L3t7eOREyAIiMi4tDZGQkurr/DXXSL2d8I3/2hYKtnzUTrl69irGxMTz99NN24USEf/3rX1i5ciXuu+++WeUhpMW477dv38bevXvx2Wefoa6uDqmpqbPKy1skRITU1FR8+umnohUq1qnmwoWaLC7cm2tCgw9P0zv21Vz9HwgOHz6MsrIyREZGOl3TarU+qXihVomI8O677yIxMRHx8fHo7u6ecyHjCkJVVVVOG4gdCQb7WqhSW1vrch7Wqw3EXmA0GikzM5PUajW1tbX5/P7eACLr9IdcLheNFBaymWM2m4llWbp27Zro9aioKJ8ffshNH5WVlXnkJ8LfO9YjAevitsjISPT29tpNNwS6uZkPVFdXg2VZPPbYY4LXOzo6oFAoEB0d7ZMps97eXtv00WeffYbExESP0vl7x7rN6PHUU0/hwoULdhfDI8rZcffuXZSXl9tOeySBY6Lq6uqQk5MDwPsK5t9rcnISx44dw4YNG7Bjxw6vhGxO4FRb+CA+31NeXu7y8Byz2UwrVqyggYGBWTVXnZ2dpFarKT09nb7++uug3Kxjt+pRrVaH5Bn2wQh/UaMY/KNFvREOLq7JZKKSkhKSyWSCzjOCCbv5gry8PNHTB8N4R3l5Of74xz9CqVQKnrYIWE/ZzM/PB+Bds8kwjOj0EYdjXgGHL3Xh4999w9DQkNvnONPj38fHx6moqIjkcrmgZ2NXaQOJnUaTyWTIz8/HqVOnAiT284NXXnkFu3fvRnR0tGicEydO4E9/+pPTVkdy0ET8qaSmpiasXr1adPpILG1Q4Ch53HFKoeT+JZjwxGEbt4zb02fM7T6Ki4vzqg8ddBqNeG+CQqHA1q1bBd3HhHFPSUkJNBqNSxdH3DJuT9wgcdNHK1euhE6n82r6KCg1Gl/6w24UZ0ZnZyfJ5XIymUyi2oTvRtGVxgmm6SNfYOuj8aVfqVQiLy8PBw8eDIjwBzPkYjRXXFyM0tJSLFmyxEmbcOn27dsHjUbjsv92+vRprFmzBuvWrUNHR4foFreQgki4LR8fHye5XB52de0hWq2WlEqly3nF1tZWYllW9BhPvpud+XamsMtt6nV1dZScnOzRpOxCZ926dfTOO++IXjeZTKRSqaixsdHpmq93HwUjbs9DSE9PpyNHjsxFWYIWsb4UF15fX0+/+tWvXN6jtLRU8KA9/vTRTHxChQqCPtX5DA4OkkKhEHwTw1i1UVJSEjU0NIjGuXTpEsXFxdnt4+RPH507d24OShpYPDrhpa2tTdAN4EKF/3LW1ta63Pjb3t5OMpmMdDqdLUyr1ZJKpaKnnnrKJnwzmesMJTw+Sqi2tpZYlhV0Rr+Q4FeyyWRyaUTlWgNuqog/fXTlypVZ5x9KeHVmlUajofT09PDgYIpTp07Rjh07BK+ZTCZav369zTsK52muoKBgQdonvRI0s9lM6enpVFRU5FH8UH37PGF0dJTkcjnduHFD8Hpubi5lZ2fPePpovuHVyboRERG4cOECmpqacPr0abfxg2oKxMecPHkSmZmZgmeWvP766+js7MSOHTtmPH0075iJdOp0OrrvvvsWzEjUUTMPDQ3ZLWrkX6+vr6cHHniAHnvssXkzfeQLZnyuaGNjI0mlUqqsrBSNM1+bTo1GQxqNxin86NGjtHTpUoqKirLtPpqvz8BbPBY0oQem0+mIZVkqKipaMAOEwcFBp0WNJpOJsrOzadmyZaRWq8NmIAFmfVLy6OgoZWZmUmpq6oIYTeXn59tGkkRE3333Hf3iF7+gxYsX0/HjxwNXsCDHJ0dyT05OUlFREbEsa2eYnG/09PTYLZ+6cOECLVq0iOLi4mzTR+6ayoXalPr07Pfa2lqSy+Xzb5AwJRvZ2dl08uRJW1MJwMnUY3H4G8aKzwSNe1Pb29tJLpdTeXm5z+4ZaCwWi+13NTU10QMP3E/Lli0T99TixkvfQoQh8v2+LIPBgPz8fNy+fRvV1dUuF+5REJ+czWfDhg2Y+OEOvvj831Cr1WhsbLQ7g9aJUD1g11/4U4rr6+tJLpdTYWFhSM+RlpaWEsMwdO/SZXT58mX7i2G15RF+988zPj5uWw5TVlYWUgLX09NDiYmJBIDS0tLo/+6KOLgXEbawDE7jG+eOLoiKisKRI0fQ2dkJo9EIlmVRXFyM4eFhf2c9YwwGAzIzM5GYmIjJyUkkJibi448/xj2LlwgnYITdcodbTh7+lmTHDr3RaCSNRkNRUVGUm5tLH374oWjcuebKlSuUnZ1NERERtGLFCmpqsroE5LRwcZbVuRnDMMQwjJeegRc2AXNt991331F1dTUlJydTTEwMlZSUBMSirtPpSKPRkFwup4SEBFq6dCmVlJSIznQUZ00L11ctp519U01a3XGHm017/DLq9Jbe3l68/fbbuHr1KiYmJpCamoq0tDSkpqa69kM0A7q7u6HVam0fmUyGtLQ03LhxAwzD4Ny5c/Z58tpAwk1sk7yEU5b3wEIC6m+GhN087f+Ie5LhNtOJoBA0PgaDAR999BFaW1uh1WoxNDSElJQUxMbGQqlU4re//a3NOVd8fLydKxkiwjfffIOBgQEAVkde7e3tuHXrFr755htcv34dCoUCaWlpSE9PR1paGv7+97+joqICpaWl2Ldvn+0+QiYXfUs1XmqV4L1jzwMADmxn8JXqjO17GHGCTtAcK3lsbAxdXV3o7e3F0NAQtFqt7Vp/fz8MBoNdeoVCAaXS6l5t0aJFePTRRxETE4PVq1cjOTnZdqgK3/dRTU0N4uPjXRQKAAO01BTjiec5n6ASNOsnkaHklTk8AhAnUG22N3g6SPAknqvD67j0YvcpzgI19VvNFi01xdb+Wf+0h+Rwv0wcv5s3ZgNNKVtPZw7cxXN3eB2XXvC8/v5mnEAxnkgAGFiwqeB5bAPQ0to6nV6k/GEAZ+8KQQS/wkmg3+QYJhQHAMbHx/HnP/8Zly5dmrHvo9aPW1D8ZMbUNwnQfwsfAHgyIQGABQSJVdB4zWcoTK3NFUGt0fh4UmlCcbjD60wmk6jvI080T0vDG8jY9IQ1PvTIZjcDTBY2pSfA7jGGZUuYQLbbRP4z0vpq9xHnx53/YRgQsoqnYkzaxQ+00TlYCbhG80RTkZd9HU8Pr/PkvmzGHpt/AO5jsRDoveNTMewfYbi5FCao+2gcnlbe8PAw8vLyYDQa0dDQ4PZcsbBQzB0B12i+Yl4eXjePCAmN5gq+76O2tjaoVCq3TSKFyGLL+UTIajSLxeLk+4ibowwLUfARkhqNP33U0dFhN9/pCm8HFWF8R0hptLt37+LQoUPIyMiARqNBS0uLx0IGWDUd9wkzt4SMRtNqtXjhhRewdu1a9PT0uN4YwiPcHwsOgl7QJiYmUFJSgsuXL89o+igsZMFBUDedw8PDdr6Ptm/fHu5nhShBtx7Nka6uLsEzyMKEFv8P3CQXuPmEO0cAAAAASUVORK5CYII="
|
<image>如图,PA,PB分别与⊙O相切于A,B两点,点C是劣弧AB上一动点(不与A,B重合),∠P=70°,则∠C=()
Choices:
(A) 110°
(B) 115°
(C) 120°
(D) 125°
|
125°
| 69,824 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAABxCAYAAAAwLkaIAAAYMUlEQVR4nO1dbVCTZ7q+EnTdsbjpLLGk3WC6EDSIrZRWpRaJFLDa0l16ypT+oLvY2o2KZ4uzseVMW5ye4ZxqhZbp2i0ejy7OujN0imhX29GWrcGhI9LOwdUg2ALihq0QfxQMbWnN+17nR0jIx5uQQICgXjMa3vf5ut/nfu77uZ+v+5GRJCIEJCGTyfyGX7t2Da2trejo6MDXX3+NxsZGV7ru7m709vZ6xFer1UhISAAAzJ49GytXrkRcXBwSExNx//33Izo6OmjaRFGEXC4fx1eFF7JIYpg3LBYLPv30UzQ0NMBkMuHKlStIT09HXFwc4uPjsXz5ckRHR0Mmk2HBggW4++67PdJfvnwZPT09AIChoSG0tLSgu7sbFosFTU1NUKvVyMzMRFZWFnJycjB//nzI5XIf5ozVkKYSU84wURQBwG9r7ejowL59+3DkyBEMDQ1Br9cjMzMTer0eOp0urLS0tbXBZDK5/imVSuTn56OoqMglmREHRgCuXr3K6upqpqamUq1W02g0sr29PeR8RFGcEB1ms5klJSVUqVRMT0/n3r17+c0330woz3BjWhjmrNi+vj6WlJQwOjqahYWFPHbsWMB0giCEXJZ7mlDS19XVsaCggAqFgqWlpbRareOmIZyYFob19vbSYDBQoVDQaDSyv79/OsgICGejslgsLC4upkKhYElJybTTOukMc2+RNpuNL730EmNiYlhWVuZqtZONiapK0qENSktLqVQquX37dg4PD4eBstAxZRJWX19PlUpFg8FAq9XqV7WEo3LHg2BVXV9fHwsLC6nRaHj8+PFJpsoXk84wi8XC7OxsLl26lM3NzZNd3JTBZDJRp9MxNzfXR006mT8ZjW9SR4Kff/45li1bhtWrV+Ps2bNYsWKFy6yfKfBH76pVq2A2m5GSkoJly5ahra3NFeYcskzK2C3sTWAENTU1VCqV/OijjyariIhBXV0dlUol6+rqJMPDKWlhYZg7QXa7ncXFxdRqtTSbzeHIfkagpaWFd911F0tLSwPGm+iwIKwzHYODg3j66acxNDSEo0eP4vbbb3dKccRM7Uwm+vv78eijjyI+Ph779+/HvHnzwl5G2PqwtrY2LFu2DBqNBiaTCT/72c9cYU5mzbT+KxCkviU2NhafffYZfvrTnyItLQ1dXV3hL3hC8jmCEydOUKFQcPfu3SGlmy4TfjwIpMqkvmPHjh1UKBQ0mUxhpWPCDDt//jxvv/1215hkuqduIgn19fVUKpXs7OwMW54TYpjVaqVWqw1Zsm4mlJeXMzk5mTabLSz5hWR0OKPKZDJcv34djz76KBYuXIh33nkn/Lr6BsIzzzyDoaEhHD58GMDEjLCQjA6ZTAaZTAaSePHFFwEAb7/99rgKvpmwd+9eXLlyBdu3b5+4xTwesaypqaFWq42YJYeZAIvFQrVazfr6+gnlEzLDmpubqVQq2d7e7sGomWTxTRfOnDlDpVI5oQmFoBkmCIKrlUzHLPWNgrq6Omo0Gl69enVc6UMyOnJycpCVlYXS0lJ/6vWmmNEYD9zr5tVXX0VHRwfef//9cWUUEE61V1tby9TUVNrtdsnwWwgew8PD1Ol049JUQalEm81GtVrNlpaWWwwKExoaGqjT6UJeuZY06+mlJV977TU89thjWLZsmWut50aaF5xM0CEUPu+zsrKwdOlSVFRUhJwhSf+qrbOzk0qlkgMDAxNoT7cghb6+PiqVSvb19QWdxiVhTsmhV2soLy/H5s2boVAoXO9uSVd4EBsbi8LCQuzYsSPoND5WIt2smb6+Ptxzzz3o7Oz0YNgtBA+OYTn39/djyZIlPnXsL50c8JQY90g7d+7E888/f4tZE4A/ZjnlJDY2Fk8++STefPPNoNL5HYddvXoViYmJuHjxImJjYydC8y1IwP3ARVdXFx588EF0d3ePeaLG7+TvX//6VzzxxBO3mDVJcD8MkpCQgIceegiHDh0CMCp9UraCK5W3oB04cABFRUWTQeu44EcReEAU7SHFjxSQxG9+8xv8+c9/BjCqDqVO+EiqxLNnzyIvL891tmo6QQAI0HGTAmSyKP+JZ8hMmSAIUKlU+OKLL6DRaPzGk1SJBw4cwG9/+9tJIy4UEIGtLJksCiMKBD4tb4YwCwCioqJQWFiI/fv3B44oNTj7xS9+Ma7zWZMBQRBcSzf+lnAE2kfC7Z7Hizizlnyam5up0+kCxvGRsI6ODgiCEPbTjuOFux53rnYDnp2xjHKH9pPJPOLLZ5KIAXjggQfQ29sLq9XqN44PwxobG6HX6yeVsFDhqRJFmP/2FmRymWvLQs7vKyCDCHI0HmeQ0eFEVFQU0tPTcfLkSb/0uxjmNCFPnjyJzMzMqaEwRJBEZfEjuOfXH6JNFEASItshf+dF5Py+apSxnJkMA4DVq1fj5MmT/vttbx2pUqkipv9yhyiK3LUpi8jZ5BN2/oMKAlk0iwJnWLflg9OnT3PRokV+w2e5M+/y5cuw2+0R038BI5Y5gQtHK7Ht3b+j/vzHIAUAcshkMgi0gxQBCA51IXNLN11ETwBpaWno6enB4OCg5JSgRx/W2dmJ5OTkKSMuGMhG/vvT7m3I2lSJJ5bIIZNFuVRGlGwWOju7AMhA2ahxPxOZ5URSUhK+/PJLyTCPyd+Ojg4kJiZOHWVBQkAbvvwEWLNmDQCMSNgoGk7sQdaWx7AYcshmMKucfNBqtYEZ5jSFOzs7odPpIm69K+rCRfxdJkOidjEAeMxsmP9WgT99AhQbtjrCpoXCiYOkiw86nS4ww5zo6OhAUlJSRPhUcoewOBFZJLq72gEAIhwSdl08j5IntiFrSwWeWBJZNIcKki5B0el0uHDhgmQ8j6/s7+/HXXfdNfnUhQg5l+CRTVkwvvNHxzOigAv1+EnUvcDmCjT8catH/EjTEMFALpe7+mW1Wo2rV69KxvOwEm02m8dBvEgBSRj/1IBLa+SQyfZABoCQo/68gDw3yeLIJLFroxA4o2Y7nAybO3cubDabZBwPhg0NDYXkkm6q4GTAOx+LeAdOk12Eu4IQRQd7otz4M5OY5Y558+bh22+/lQyT021GYGhoCHPnznU9M0JnC0ZWizzeyeVymE7+HUlJSbjvvvvw2WefBcwjUr8NAG677TZ8++23kqpdJooinaI4OrkauQjkaDIpKQkdHR0AHAPQ06dPTyVpEwLd1vwGBweh0WgwMDDgE08+0/bCB2vBXrt2DUBkS5I7vPngj26Pr4+OjsbQ0NDkUTXJePvtt/Hzn/8cP/nJT9DX14eNGze6GDeTEMj4m5EMk2p9XV1dKC0tRU5ODqxWK7q7uzFr1izodDqcOHFiGqgMHc7vGhoawm233eY3kgsJCQlhPfE+VTh48CBVKhX37t3rE2YymajRaJifnz9l7v4mipaWFqampkqGeUjYvHnzPFQII1z/Dw0N4ZlnnkFFRQVOnjyJ5557zieOXq/HxYsXodVqsXjxYrz33nvTQGlo+O677/x60fFgmEqlwpUrV1zPkWyQfP7557jvvvugVCrR3NyMRYsWueil2zQPAMyZMwevv/46jh07hh07dmDdunXo7++fLtLHRG9vL+bPny8Z5sEwnU6Hr776akqICgRBcMwV+pPwyspK/OpXv0JVVRXeeustzJkzx6Nxee/tcOazYsUKfPHFF1i+fDmWLFkSse4qvvzySyxevFjy+z0YptVqYTabXc/TpRKjohyz8d4SfvXqVeTk5ODYsWM4e/YsHnvssaDyc88nKioKr732GkwmEw4ePIjVq1fj8uXLETX/2N7ejoULF47NMG8Jm2qVGKjSPvzwQ9x7772uPQ/j2ULunn9ycjJOnz6NdevW4YEHHsCuXbsmTGO48NVXX2HhwoXSge4WyOWuS1Sr7iKvC9PqxsG5t1AQBA4PD3Pr1q3UarVsaWmZlPJ6enqo1+uZlpbG8+fPB6RpsiEIAufMmeP3ACVIzw2av4zTRMQmHFEU2d7ezpSUFBYWFobNV1MgVFdXuzx+ux++n8rG69xM6q9Mx74VN9W3atUq1yU004l9+/YhMzMTRqMRf/nLX6ZkFeH5559HW1sbzpw5g6VLl+LMmTMAprYvN5lMgfeFenPwf6v/hwUFBY6H68LoP6ln93fekIobRNjAwAALCgqYmprKrotfUfjhum88f+m96XR/FyKcfnxLS0un1Ef92rVrWVtb6zfch2EX29qpUqlGX/irlGD/DiGsubmZGo2GRqOR9uEfQ0vvr3FJpQkSVquVBQUF1Gg0YXdUKQW73c7o6OiAh9R9D0NcF6hWq3nhwgXXs3uYd1y/Uucdb4yw8vJyqlQqNjQ0SMcLNe9AZYaI48eP884776TBYJhUbwrjOgwBAPn5+aitrXU8zJIDdtGpPn0jz5KP/hsH/vWvf2H16tVobGzEuXPnkJWV5TKdI2Vs9Mgjj6C9vd01mfzxxx8HpE2ynoJAbW0tnnrqqcCRXKxzUx+tra3UaDSUCvPABFVifX094xfczaqqKt+mNFF1G0YJc4dzMvnpp58OeCVJqLDb7VQqlezp6SHp3zIdNetH1JozYkpKiktvC4If44Ecl2Hxve1b/vumYqYsuZetra2eaUbgTlNQeY/Vh42TaVIVNzw87Lo4x9/lAqHkL4oi6+vrqdfrx4wPUnpQWFVVxfXr14++CFMrNZvNTE5O5oYNG8YcW0W6D8bm5mampKRw7dq1IXmzkUJeXh4PHDgwZjzJE5iCILC/v58KhcJBiASzxqMKqqurqVKpApqtMw12u51lZWVUKpWsrq4eVx5O91DXrl0bMy7cW7E3E176wza++h8vT1i6BgYGmJeXx7S0NJeO9lfmTIXZbGZaWhr1er3PN44Fg8HAsrIyjyk5fwjofu+f//ynX8dgTt07FpqamqhWq/nyyy/7+FqcqQj03Tt37qRKpeLrr78eVF59fX1UKBQcGBgIqj7H9JdYVFTEsrKyoAp3h1NVqFQqj0FnpPdL4cClS5dck8nnzrf5jSdQZMnvt/KFrSUe75yQEooxGTYe93s9PT1MS0tjXl7ejNlHMRnYs2cPY2JiuH37dklPrlf6+zh//nwfgyVQow7KI6nRaOTvfve7oIisra2lSqWS7IBvlP4qFPT19XHt2rVcuvQe1w2FToYUFBSwvPw/SQaqF8+woF3I3nnnnZLrUU4m2Gw2btiwgcnJyUG5+b7RVaO3AVFXV8cYpeOK4e+//54NDQ1MSEjwmFg+/NYmwnF0gMgx8EeauXHLTo98g3aD/t5770k6aSbJ1tZW6nQ6GgwG/vDDDz7hNzpzpCD1zVarlU89lU+NRsMFCxbw+PHjFChSNNcRkDNryxuOdCLJtkME5Ny8y/NigpAuGsjOzvaxfqqqqqhSqXj48OGg8rgZ1aI7qqurOXfuXD788MMkSTvPMRtg1pYKn7rZtSmLlR94Gi0hMcz9ogGr1crc3Fymp6fTYrFM8DNmLoLVHoIgsLi4mHFxcVSr1Q5jTCTr39xIYDXbJPqx+jc38sj5cfRh7mhubqZCoWBMTAw3b94cavKbCoIgUKDIbwYHuHbtWmZkZDAmJsbRxwsi7TQzG+CmN9/3m4d3g/BaExF9lgYEei4jpKam4sknn8R33w1h3759ePDBB1FZWek65hMMnGXQj4vwUPKYbgSiQy6Xo7u7GyvTHkS8NgFdl7qxd+9eh2sNuQxRFy6iAcAv45N8PdGNwHvnmhfDHOds6fHGM6vZs2dj3759MBg2YdVD6XjxxRfR0dGBzMxMJCYmYuvWrWPuCXE/j+a+W9cd7utNUpUSKbuSA9HR2NiIVQ+lY+sfSvDF5/+H59Y/i7y8JwA4vkkYqX1CgAxu38wRU1GqMZC+o2vSYahIua8TRYeVaLfbmZWVxeLiYldYa2srX3nlFSYnJ1OhULCwsJC1tbVh3/EU6VanIAjcs2cPVSoVm5ubWVhYyLx/+7VPPJdK9LIESZJth1hxxHd45NOHCYIwpiXnnDIJdKViT08Pd+/ezdzcXAJgdnY2d+/ezZ6enpAq3JueSGeW3W7nli1bmJycTIvFwvL//q+AVyrW7yomAO46PLof8tyRN4gcg2R8D4Z5V8a5I7tY77Wv0ilhTpjNZioUioAXv9hsNtbW1rKwsJAKhYLJycksLS2dtI2h04WBAYdx8fjjj9Nms41eWtp1ieRoQ/cWiHNH3hgdMI+Y+I4EvmX4ShhFivyRAtuZDfgwTArHjx8P6VrgpqYmlpSUUKvVUqVSccOGDTx8+DB//PHHsRNHKDo7O6nT6Wg0GimKInfu3EmFQsGTjZ+64gSjG9wFQqpL8mvWVxZv4po1a3iOdr8q0j1Ds9lMrVbLLVu2hLSM0t7ezsrKSqanpzMqKop5eXncu3dvUCu4kTIIN5lMVKlUrKmp4fDwMIuKipicnOx5OFL01U6BIUjG9zE6SMeAreJIPbPl0gM6Fw1eGTpVQkZGht81tECwWq2sqalhfn4+58yZw9TUVJaXl9NsNkds3+VcRW9qaqLVamVqairz8/NdfZZnoxIoCNcl8/H2a+zPXzF8ZorbDnHTriOO+S0/Hd9o8b6Z2u12bt68mVqtVnISWEqH+8OxY8doMBioVqup0WhYXFzMjz76yG/8UGYd3H/HA+d3Ll68mJcuXWJLSwvVajVLS0t9ygkn3FSiI3OXmd52aLTzCwLexNXU1FClUvHEiRMB0wWqZPew1tZWlpWVMSUlhdHR0SwoKODBgwddkixVOROVSn8VPjg4yLVr1zI3N5c2m411dXVUqVQT3kEVDEZUokO1Ha7c6GWtvOEg3FuSRI8fHzg/tKWlhSqViuXl5WEh1pmvxWJhdXW1a8iQkZHBqqqqgAfqw9Xau7q6mJSU5NhObrfzlVde4YIFC6ZMbTv2JZIOVVh52MEckTz/wS7Hc6APFcduxRaLhdnZ2UxJSXEt4JG+6bzVlHe4v3KGh4dZV1fH9evXMyYmhosWLaLRaGRTU1NAusYDk8nEmJgY1tTU0GQyUafTMTc312dVPRwq1x8cKrHtELHGc0W5/s2NrhG4e2X523wzFuPq6+upUqloMBjGdWF3sK23ubmZRqOROp2OSqWSRUVFrKurm/AJlHfffZexsbE8evQoCwsLqdFopuV6ZOzalOVSgR+Y7aRIGtZIDOLcMN6WY7PZXDtmy8rKPFpmqOokGBq6urpYVVXFjIwMAmBubi6rq6tDWg6y2+0sLi52LdA6aZ/KI0ju8DsOk5Yi/2Oysa7bcIfFYqHBYKBCoaDRaBzXrlm/13r4oW9gYIAHDx5kQUEBo6OjmZKSwrKyMs+t4l4YHBykXq/nggULqFAoWFJSwr6+Pr/Td/7UeTjhMDrE0Ny9i6JIQRz9O1Q40/T19fGFF15gdHQ0CwsLJ03FSFXu8ePHWVxcTI1Gw7i4OBoMBh47dsw16K+urmZ0dDTnzJnD0tLSiNn9FfIC5mTAarWyurqaqamprrFMe3t7SKo30KR1oHxEOmZpysvLuWTJEspnRXH27NmMioris88+K7nBczoH8SFdbT8VaG9vx/79+3HkyBEMDQ1Br9cjMzMTer0+7BcgmM1mNDY24mSjCSaTCfNjlFi3bh3uuOMOZGRkYOXKlQBGfRk6f50I5LtxshBxDHNHb28vPv30U3zyyScwmUy4cuUK0tPTERcXh/j4eKxYscLl9ezuu+/2uSjt8uXL6OnpgUwmg81mQ0tLC7q7u2GxWNDU1AS1Wo2HH34YWVlZyM7OxvzYOzzczrrfLjEdzJFCRDPMG4ODg/jHP/6B9vZ2fP311zh16hREUYRMJkNXVxd6e3s94qvVaiQkJABwrJSvXLkScXFxSExMxP333+/yTOB97Yd/587iiJT5uRFwCjAjGOatisZ6HypEUURmZiZOnTolWUY4y5oopl3GpfZueP+OdRfyRMuWyWRobGxERkYGurq6XJuDjEajR9mR0LannWHeN/B5/wY6/D3RFu8s2z2f+Ph419+7du2CXq/Htm3bPDYMTSemnWETQTgr8NSpU1i+fLnP+2XLlqGlpcX1PN1SFvEMmyrL7OjRo3j88cd93ntfzzXdUjYjjI7Jgrsh4c9n/7Zt2wAAO3fujAizftbYUW4seDMJALq7u2E0Gn0swe7ublRUVKCxsTEimAXc5BLmRE1NDQCgqKjI473Tq5pzJ7Nz8DyW9TqZiIxmM81Yv349MjIyXM/d3d0uZkhtO59Oi/GmkjBvlXfq1Cm/vgmd47Kx8phq3FQMuxFwSyXOMNxi2AzD/wMVYbcnJXA/4wAAAABJRU5ErkJggg=="
|
<image>已知:如图,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为()
Choices:
(A) 55°
(B) 110°
(C) 125°
(D) 72.5°
|
125°
| 69,825 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAIEAAACECAYAAAC3bUjjAAAdS0lEQVR4nO1da2wb15X+hjIqyzAqGws0bJGCVmxJdJLadH84Izs1rV3sgpJTmywQyy12awW1xARYRPTCXagIrGy6mzhIGop2fsiPYFWnPwRnt4rkmJTSBULJSCyhaCs2TiyJlCkHBSJ5gUou2op0a87ZH+QMZ4Yz5MxwSCrSfoAg3nncx7nfPffcx5zLEBFhDYMAMKIwh1mce9KOkx/Jn+xAkC7ABcAieWPtw1LpDJQa8upk0IjnP4yid98TeGMuBSICESHYeQmHGC9GK5LLymLNk4BXdLy6YwAwFMUtasPh7XzxObguRNG7/xIOPTua8+5ax5onAcMwOV0CRodw6RuN2CFcsMCCejQ8BuCTGcwBADgwzProFtY8CYDcLmFk6C14j7RmQpxwvf7RJoD459eFaACsp5JmQBTE0KUTEDggQuzWBPB4I7aXP1sVxfohQaZ7Z27HcLPDjRbhRkYEcwG8cgnodLsqkLnKYv2QINMnxILvAI82SG49QAy9x0/ioyY/fthiyVqR6wRrngRiC58oiNd9hLZD27P1PHcOTqYB/4KfIPbRybSxqGAPKo0U1srogVnLk0VEJLHw1az9zlAKF1py24P8/bWKNU0CZXDIKkDxb2NYC0RZ891BuqI5UThdZAJAlKk8vhmQfhX/RScAAGyodAZKDwuSySQmJycxMzODzz//HLBkK+694as4fPiwEOZJ0Px3f4uvPmSF3W4ve47LjTVBArFKnp+fx/j4uFDpkUgEyWQSLMvCbrfjoYceklj/kUhEQgI+npde/Dcs/u9dzE7PwOFwwGq1Yu/evWhubsbBgwfLWbyS4wtvEywvL2N4eBjj4+MIh8MAgObmZrAsi8bGRuzevRtbt24FwIGIyVHfDMNkWr+6fRCJRLCwsIDJyUmMj4/j+vXrOHDgAJxOJzweDxwOxxfaNvjCkuDdd9/FlStXMDo6Co/HA6fTCafTibq6OtmTvD2gXMFpEqRU7isTBwDGxsYQDocxPDyMP/zhD/j+97+P9vZ2SfpfGGJQQaQKPyIGpxzkOC7nUT5u5Xu5WFhYoK6uLrJareR2u2lgYEBf3hSgSQQFEI/Hqaenh2w2G7EsS/39/UXHqQmc7L9BGJBASqg0edpaK1OOQu8tLCyQz+cjm81Gfr+fFhYWDKWjBDNIIMbExAS1t7eTzWbTRAajMsuNiEh3g81AvwTy5Fn9lrHMySs/kUhk0zJJeGaTgEc8HhfIwGss0yo8B8bky6MoCXChEwSAsM9PMf4ar+L5h0Y6CAyIDUSl74oEoiScM2fOkN1uz6l8s1EKEgiakuMoHo9TW1sbsSxLU1NTmt81Mx+FYFgCQkFDJwjooCBxOYmm6Bp1AtQZ0s7UUChEdruduru7aWlpyWj2NKNUmkCOiYkJcjgc5PP5csqlpbKUGhwREcV6aV9m7kt6T7vMi5bAbKCDmvZ1UpDkBIhS4EkQ0+SnWQ3xLC0tUXt7O7lcLpqeni42W5pRLhLw8Pv9ZLfbKRQKaXo+TZB0haboGnWApd6YzKCO9RLbeU30kr48GZs2zgwqOcQQvEXYRTcRnZOONOfOvo5PdjaBPfoU6gvEE4lE0NraioMHD2JkZGRNz9KdPHkS4XAY586dw49+9CMkk8m8z0uHmBYwmMSV4G3+JgCAi3I4ekq0D4LRtxpujAQM/3IMePRfcfgbE/h0TjQ/PxfA6zgFDzOBbzRuV9/AzQDnz5/Hc889h/7+fhw/flzT3L2WZ1YzrFYrRkZGUFtbC5fLhfn5+QJvpKuJGZnBzlgQj518DaMgMBkxvB+z4Nv1VZI3dM1O6FMc0n6GC/mpN5aiaKCJ2ECUOCJ6wL1HHU1+mqVr1MGckHYTMjV1/Phx8nq9guFntvWsJT5eBKWz3PODtxW0dA+hQC/FiCjYmbWzUnSN/DKjWy90agKLRM2MRhk8tSMbBQPgfe8w3Dd8qB8ZxKXO76AVTLblZuiZTCbR0tKCgwcP4vz589i4cWP6tsHZNVLRDHriq9TMHsuy+OCDD3Dp0iVcuXJF9TlCCDM4hO1EaD1yAheH0lvjmZEhzDRsV1wBVZNLbuRaIZqM4DhOwkAudILQGaRooIlOjKSfueaF8FuMpaUlcjqdmg0jI9DTqrWIoBxaIpFIUFtbm8IEU0aGc37qDT7IXIlSb1PaQAx2nKBrXKqoWUPjQ8RMV0BERLE3aB9Ae89GM5lU6AqIaP52nJxOJ01MTBjPsTwfKhWkeYwsIkE4HJbck4fHxsby3heHOY6jcDgsyUeh+MPhMD3zzDPU09OTk89ooDcrT44oGmiiJ85eI38gxF8yDEMk6N2fGZeiKU2EzBCF4ziKBpoy9yDMHxClNQDL7qWGhgbR/dw/hmHy3jfrr7a2lmprayW/q6urdcfDMExOnostw0MPPURnzpwR5M1xUfIHQsRxD0jQDLGztE8+B2OQCeauIuZ86pNGMpmEy+XCq6++iqampoJ9FWVW36iIVbjFxUWMjo5ieHgYQ0NDkj0BAOBwOLB161Y0NzcjHA6DiBCJRHDv3j3cvXtX2ItQW1uLhx9+GC+//LKwjyC7/IyShdvb2+F0OtF+vB2MhQHDAE/0RjHRlR5wc4jh3P7X0PDRxbTdBbHodW6bK8QSTkKw3D6e43JnCsVIJBLkdrsFG0AtSTP63Xg8Tn6/n5xOJ1mtVmpvb6fBwcG87+QTAT/tK45zz549NDg4KIxo5O+bEeavuVyuXNspZ9WOKFsvJVxAKlhBqkuaKWpvb6f+/n4hDoZhjKejgnA4TCzLks1mI5/Pl9PX5oOGdiBgYWGB+vv7yePxCF2IeArYLELw/xOJBLlcrrzlSUtMXvn6yFDSOVO/308+n0+aoInTtFNTU+R2uxWNTSOGoR4kEgk6c+aMsMJppkYQ/15YWCCHw2Hq8rkcptWIXOgTExPkdDpzVgDNIAG/TOtwOAqq+0IoNj9LS0vU1dUl2T9gdhfxwQcfkNPpLCqf+VASTbC0tEQOh4Pi8XhugkUKvbu7m+x2u2m7d8zSTIuLi9Te3k5f+9rXJEvGxdgEYvT09CgOHc1ASUjgdrtVW6hRofOTTGfOnDF1f4GZ3RNRuotiWZYGBgaKtgmIpBrW6XTqsne0wnQSDA4OktvtVk/QgNCnp6eJZdmcyRoxjBqVZpOAKDv7J265ahXO51vNJhBjenqaHA6H6ZtsTJXAysoK2Wy2vEaMXqHzln+p9hgYIUEhwvH3T58+TceOHaPq6uq8aRYKi9Hd3S2ZSDIDppKgUAY5jtMkdF6I/Pj897//vWl5lKMUmkCMgYEBYllWsI/kql6rTcAjkUgUbGh6YZoEbt26pUlVFZqc4XHmzBnyer0Fn83XKvUsJWuFkW6HtxO+/vWv501bySZQQqEuVy8MkUBJEPmMQUmCGoRudiHzodSagId8yKx1nkANDodD08ZVLTBFAlNTU+RwOLQlWKCAvBFYyi5AT37MxMDAALW1tVFbW1vePJS7oZgiAa1agCh/AfPNL5QK5SCBWHP6fD564403VNMvZBOIoaYN9HZZxX13wHG6tABRfqErLpiUGOXUBHzl8OWUT3hptQl4mKUNipaAHi1ApF5An89Hfr+/2OzoRiVIkN5bIR32MgyjOGdQqFXz2kC+mqtrd5XWB5UiXV5eJqvVqjgiUMuEktDl2qScmz7LSQIxBgcHyePxKOZBKU9qMunr66POzs6i8lIUCc6fP593GKeYoEIB9WoTM1FqEuQjtFL3p8cmIEprFbWGqBVFSYBlWbpx44a+BGUFDIVC5HK5islGUaiUJiDK1YBabQI5sdra2mhgYMD41Lmhtyi9nGuz2fQnKCugmePdwsj1h1BJEhBltaB4allvnoo1EA1LwOjSpriA/Li5HNBjo5QT8Xic7Ha7RJ3rzVMikSCr1Wr4A17DLuzGx8fR3Nxs9HUkk0l0d3cjEAgYjkMMIlL5/i79edxqdRtTV1cHl8uFvr4+AMbyuXHjRrAsi7GxMZCBfcOGSJBMJhGJRMCyrJHXAQAjIyPYs2cPrFar4n29hWEYBgz/Hv8qATDO87Lh+PHjePvtt7FlyxZDlQgATqcT169fN0QiQxKanJyEw+EQPh/LB7VCXb16FUeOHFF9z2jLZRgmu/eagfDbvH315sPhcGB5eRlTU1O63+Xle/DgQYyNjRlK3xAJwuEwnE6npmfVKnN0dBQuV/ZzaqMtIBdp9U8hb1o7ZP4s3qBJ8ZcGHo8HQ0NDut/j5etwODA/P4/l5WXdcRgiwS9/+cuiuoLJyUls27ZN0hWY0Wen7QILQl4GlkOEIHEgInAURMfFp8B4Q5C6uF09OHLkCIaHh7Fz505BFnobBv8hjV5oJoE4Q5FIBHv27NGdGI/h4eG8XYFRMAyDES+DQ5/8BDG6iNZMJ8CgFReCncDFIYxm+ofV1j0cPHgQkUgEN27cEGStt2HY7XZEo1Hd5NFMAj5Dy8vLSCQSqgadFgwNDcHtdpvYBaRBIx04dLEJvZcz5xaIi8dwkk/kVuNYwePx4OrVq4bfb2xsxOzsrO73RFJSV5PiypqdncXOnTt1JyRGIpGA3W43ddjGIYazL78FdLwA3w5LumsQ5Xsu+ilAq7UzSOPw4cOG7AIedrsdMzMzErnyMsjX3LIk4IdSwtNZcYkjnZmZKdqnUDFdiSIIAKKY/gjo9KRPN+INQiBNkNB/TwCdbrSuSh2QhsPhwNTUlOHG0djYiOnpack1Pi5JjCT6g5gEomEVEYFGziIwl9tuZmdn0djYaCiTPIrVJDlgAEsshptows763B6OGXkNvg9Z9P5w9R1yJdZWdXV1WFxcNNxNbt26FTU1NVhcXMz/IAPJ8FkqsUzaxITgbX1HcIwkzuzi4mJR9sDmzZvR0NBQ+EGdoB31eBwTmI5JicthBM+2vgV0noZvx+qbOJKr7mIbSHV1NRKJRMHnxJNqilIZ8f4HPtm3C431hc8P0ouqqips27bNlLjEYHAI3+kALv77m5kTTgHMBfAtphUXO0ZAFxQOQlxlFgLDMEVr2W3btuGzzz6TXOMQQ+BJRjJvUlVVBe9ouvxSw5ABYmf34ar7NB6f4BRFtLi4mD44Qgfk6m3Lli263tcEBviHi1H0WnyoZxhYLBYw9e/g6VgKdNGlYhitPs1QU1Oj+x25fOUN1oJ6/POHUfTuTx/6RURIBX+Ai61PIjDHZaVAxABzAbyKt3Ghfg6fNj2OBgUjamVlRXdGxZlKpVKora3V9b5WWFAP34fpUQHHcSC6AV/mUOzVaw6mwVdkdXW17nfFnk5qamqwsrIifYAjWDCHWzdO4EhLxlCsfwxNosSJKOMRq9NPcxwRzQUyblJznR1s2bJFbFuumT8lP0Pl8p9kdt537tyZU2+p4A8InUEiIvorzaX9TmXC4NfZeYdTDB9p5gE5nE4nXbp0KeeaGKdPn5aExV/Sbt68uaxbygsBQM6XvvJ9EuUMv/jiiyRqm7oh9wyTRkrmUKwp63mOiDYwDAPcPovX8J8gSo//aaQD+2eVPRIzDIPt27dLwiTqkwqF+WtIl7Ti6/wMw0gOtiqHUyqlMC+LgsO7AlhcXMRXvvKVrFwJ4JjbCF4h9MZS6NrOYO7cfjTUPwnEPoRvhwUWzAXQ9I8curvswktz0U9BKnWzceNGwSmzkQJXVVXh3r17QrjSUMsvXynlIgRPxvv37xdVhkQigU2bNmWvMYBl7j28gzY8tcMCBgy2d72ATkwIjrItTP1JTE7+F67GUumhxLcYNPgmMOlryKy6SWG1WnH37l1NBeQ4TvE+T4LVBHn+LRZL2TXC2NiYpjG+Ut7zXYsFB8Edbc2spwCWuRg+AbAr4w53gzgjlHoYXeMr6ALAWGpUTeqZmRnNBSQiiUBTqRTu3Lmju6ClxIsvvliRLkApHI1GiyrLnTt3YLPZhDCHGIJXUjj2dpoCxITwbP1J3EAHXsiMFDbwXhAJAFNVA0olwFSpDwGtVqtkiFeogPIW9ac//cnQSlcp8dJLLwHIJSxQfkLcunWrqLLcv39fMoSvYjKzs/VVOMmn2eRH7MZJQTMIJ6QqN/pcz5iNjY0YHx+XFIDvP7UUGEDOIkclIVablSbAm2++CavVmjPjpxVKy/xyo5xv9NkgB0u+WRRK3QelEqBUIhNOYGdjHeZvT8Pj8aQJkEoAXDKnQJs2WsA9WBHeFd+fuRUBpRLgHqzkJipJPyFJX8t18X3xNdU0RIZZpbuE3bt3F7XCKl/mzyEAkNPaGVjyz5vy3YL4f0NDAyIfz+Ddd98Vug7Lhk2SCt200YKVJAemqgZMVQ02bcy2sJpqBkxVDWZjn8GyYZNqJfFxy7sm8XW+++Kvi++LfxciwmqxCfr7+3XvuBLHI1/m1zr6Kjh5LjUcE9j6N1+VLFfyLV6c8J///GfVMAAcPXoUAwMDmjIIIK+NIn9G/KyW94CsTQBUViMMDQ3pJoG4omdnZw2t0BYkgVJr5Tc/PPLII5IWr8VIBICWlhb84he/0J3ZUqOSBLh586bocG9jMLrhJ7uAVEBlirF3715MTk4iHo8L18QqH8g/b8CyLO7cuaN5dkxP3oyi0jbBhQsXit58Gw6HJbOfWiHRBGrDQ/nQsbm5GePj48J13gYQIs3YCLyBZtmwSSBA4n7amPz2ob/H/7z/niQ9cWXzccvzJL4u7//lcaj9lqPSNkFLSwuCwaBgbAMqRl0eRCIR1NXVGVumJ43gHqwIvxOJBNXW1lIikSB5FFrDlf4knYfR/JsZvn37NrEsK7mm9zNzJY/yWqFpV4W8NW7cuBEOhwOTk5O6WwCP5uZm3LlzR8OZgOVDpbqEvr4+HD16NCcvenD9+nUcOHBA1zsC8jGEe7Ai/Mkh/zRdHpVaWHy9nP4K1aCUr3KGf/e73+U4/ipQLTkQf5puxFGFvtREEDup0FJgJadMROV2UpELADnr++UkxNNPP53jqkcvCX7+859XxkkFUa7rdTVfvfnC4XBY2JRSiVNKy60BGNHxP/F4XNFhl/ydQnIp1udTUSTo6+uTOK7SIhAllq8Wx1WlJIBSA1E7v4B/Tos39Yo7rhJnQK5SGdmBV0p9L19IvQ4xzUSlbAK/3y+4sFPLkxbIG2JZbQI+Qd5zliTSPAJQK2AlnVmW2ybo6enJe4aDHhKY4dq2KBIQEUUiEUU3bErhQucdrAa3tqUOu93uguXUSoKyu7XNxyy+T5fvIlYSiLybEEPJ3WupUWqbQCw3h8NBp06dKqjxtJJArgXK7sdQDKU+Xcs8gRJ4i9moOza9KJdNYLVa6Wc/+5kmD7BaSLDqXN0TEXk8HsHC12MTKLF3bGyspOcAilEOm6C6upp+/etfk8vl0mTFayHB7t27V9ehF0RZp4wXL16UJiBTiVrHwH6/n9rb21WFZtacQjk0wM2bN3Wd5VSIBGY7ATWNBETappL1WL79/f3kdDpLe0RsCW0ClmXp8uXL5HQ6dXVv+WS0qg/CIkpn0G63UzweN2wTyDExMUEsy5pywocSSmUTtLW10alTp8jr9erWZvm05ao/Eo8obbBs375dmoiGeYJ8iMfjwqmjZqMUNsErr7xCTqfT8LyHmoymp6dp9+7dAqlM6xJNiUWGI0eOaDIS9YA/dbS7u7ukx+QWG758+TKxLFvUcbZKMlpZWSGn06n7aAFN6ZkeI2UPtHr44Yeliem0CZSYzh9X39fXV3Q++Twp/dYbXlxcJI/Ho2meo1ALVpJRKWdUTSGBUqHUzgE0qgnEWFhYIK/XS3a7XfPCkzyP4hU7I6uffHhlZYV8Ph/ZbDbTFsHkaSnNCZi54loSTSA+5pYXkJCgCSTgMT09TUeOHCGn00kTExOG4uBtgnzDWKWp37/85S/0+uuvk81my2mhxVaQOL1yTJ6VhARitLe3009/+tNsgiaSgAd/qLbNZqPOzk7N6w96NcDS0hKdO3eO3G43VVdXU3d3d0kqh08zkUiojoxMTa+ksWfAry3YbLaiSZCvlcXjcerr6yOXy0W1tbV07NgxGhgYyFtR4vzIZykHBwcpGo1ST08PORwOslqt5PV6S773AQAlEglyu91lWVBjMomWFMlkEt/97nfR2dmJ1tZW8EkSlc5TyfLyMt5//30MDQ1hdHQUNTU1aGxsxJ49e/DlL38ZQNp55DPPPINwOCzxDv7xxx9jcXFRONfh8OHD8Hg8cDgcJcmrHAzD4OjRo/B4PDh27FjpEyw5zTJYWloip9NJmzdvXjUOoTZv3kwAqLa2tui4CpVJz/0vfelLOaenKmFVzxOogV8qLoWKM7yMKmsH8i6hnOFEIiE4nionykoCIhL6OjMLWkyLEJNATohyhkshF60wlQQcxxFHRCnKXyk8482a8CkGfEXIK0htj2Qpwp9//nleDZmiKPXul3YZ6d8Wwj4/xdQKpxGmkSBva+Qk/wQ82+mltrY23cMsPi2zFpAqqQHC4bDk0Gs1POBmqbdpn8T/IBc6kfY3yb8mvJ7rhDQfTCJBSvQrzVqBsZk/MOlwZ+ivwrMcx9HAwEBZxsJqqCQBenp6NC+Vp+gadTSlW/0Dukb+QJRSmf9ERXaJht8UZU8eTlGU/PvYDGtTmavXqIM5QUHKnb6dnp4mlmUrttuYz0e5CLCwsEAsy2o+YZbjOOJCJ4jNVHg00ESdIX2tPR/MtQky/8WsJSIKBXopSjHyd7yh2n8lEgny+XzEsqymKWCzdxaVwyZYWVkRFsCUypivTPnc0qqB4x4UfIaoVKODYJa1FOvNOMtWh7jw/CYSr9dbls2m5bIJQqEQ7dmzR9NSuJwMKYpSb1Nas6YoSr37cjWqYjwabQPTScBxHEUDT0gmQgRCaHyfKP1ljc1mo56entIunpSYAN/73veEbw20bKVX1AaxXmpq6pVoViWNalQ3mkMCUepi1qYJkaf/KpDrpaUl6unpKSkZSjVPMDU1RW63mxwOR9FrDdFAE7GBGcm1FEWp1/sTZTLo7CrN7w5krOVCfhIUgUGqisnQ3d1tqqt8oLj9BDzsdjsRZdf+zah8InmjepC9tl+fhs0H04eIadZGM9eUNIBxq3ZpaUkwrFiWpf7+/qK0A1/5xRLg+eefJ6/XS1ar1fQvrNXXG/ZrMg61oOhVRCICg/RJ5RxiOLf/n4DLN4STx8jElUJxXJOTk7hw4QJGR0fBsiwOHDiA5uZm3St9ai5k+LSU7i8tLWFsbAzXr1/HtWvXsHnzZni9Xrjd7qJOilMEQdXRuFkwdSk5KzQWvbEP0bUjr9dcU5BMJjEyMoLr169jbGwM8/PzaG5uxq5du9Dc3Ayr1arq229+fh6PPPKIUMlKFZ5IJDA5OYk7d+7gwoULSCaTQhoHDhxAS0uLavxmNgDlBGAKQUwjQaH8ZAWS6zTbTCwvL2NsbAy//e1vMTY2hrt372JmZgYOhwO1tbXYunUrdu3aJTz/4x//GD09PcL/P/7xj/jNb36DX/3qV9iwYQOSySRYlkVdXZ1ALK3apuQkMAll2VSyGhCJRHDv3j0sLy8jEokI18+ePYuuri4hXFtbi29+85sgIjgcjqI8jH5RsG5IsFZQCu1igl6WH6Gp7dTR/+eefhD0+zfUAhNIII9CW5Tl6iulVOM031uNKJXEVt85sSZDfmCsAFK7xwG0vjTVmicBIKvQzE9igLlz+4VhLbO/FzGE0NGZdsH/RbDqzcK6IIG4QokBMHcOTzIM6j99QZgYossM2plD+OSx7WkVsX4UAcxfO1ht4IikO5+uUQf4c4Kl067BTlBnKFURz6qVxJrXBASCWOHdPvsyLqEDwQstkCvCHY92YGd9VnOsF2WwruYJOATxHPMUPg5EMdElPwu6tDOZqxnrotREBJDseFjJA4B85LCesKHwI19skJYZtvUzEFDEmtcEYgJwO+rxOICPo7dzH5wLIBBKZV4qT95WC9Y8CcSw4BBOBZow6bOjYzQ7Q0gjHWCOE55qrapg7iqHdWUY8qCRDlha38pe8IZA51sql6EK4/8Asq1VldPcAvUAAAAASUVORK5CYII="
|
<image>如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()
Choices:
(A) 4π
(B) 3π
(C) 2π
(D) π
|
π
| 69,826 | null |
π
|
"iVBORw0KGgoAAAANSUhEUgAAANAAAABqCAYAAADN9d9nAAAN/ElEQVR4nO2dTWgbZxrH/+9IpJB1SQ8OubiktuRiNin0kLL9uLjEzqbRaOqAu7iXUpbU7q1xWxlKcyjYYZe4jSntRa6hUAohG3tla0aJHY3TQEnbQ7Z1aYIdPDIEfGjALG3WPQQ88+5BmvGMPJJGtmV9zPODiaX5fBWe/7zP8348L+OccxAEURaqqqK1tRWMBEQQ5cMYg6ZpEKpdEIKoN4aGhhCNRhEKhagGIohyiMfjCIVC6O7uBuecaiCC8EomkwFjDK2trYhGowBAAiIIr8TjcfT39wMAOjo6AJCACMIT4+PjGB0dBWMM4XAYjDEAQLDK5SKImieTyQAAzOYCVVWxsrICgAREEEXJZDIYHBxEMpm09pniAUhABAHOueWS2RkaGsLo6CiArJBCoRAkSYIsywAATdOoGZsgvFBIZNSIQBAFsNctbuIBSEAEUZBCorFDAiKIHUACIggPFGoqoFY4gvAAYwwPHjxAMpnEwYMH0dPTA4BqIIIoytLSEi5evIhjx47h8OHDOH/+PBYWFgCABpMS/sbultk/37p1C4ODg2hvb8fLL7+MxcVFnDt3Dn/88QfefPNN6zzGGLlwRGOQ309TqN/Gfsw8/ujRIyiKYm3Nzc0QRRGXLl3CsWPHij6XBETUNfliMCnWBM0Yw+rqKhRFQSqVwrVr1/DCCy+gt7cX586dQygU8vx8EhBR13jpqzG5e/cupqenMTk5CU3TEIlE0NfXhy+//BLNzc3bej4JiGho5ufnkUgkoCgKDMPAqVOnMDIygkgkYsU9xURYzBUESEBEnZNv4Ovr60ilUlAUBbIso6WlBadPn8b09DSeffZZx7Veaq9S55CAiLrGjGdM0SiKgq6uLvT09GBkZASHDx92va5UzeIVEhBR87gZ+927d5FIJDA1NQVN03Dq1Cn09fXh66+/xoEDB0reczfEA5CAiF1it97obpj3vXHjBhKJBGRZhq7riEQiVjxTLUhAxI6phHg453j48CEURcHs7GzJeGYvyuQGCYjYMaU6MMsx5vv370OWZczMzEBVVYiiiJMnTxaNZ0qVqZKQgIhdo5BQShnzwsICpqamkEgksLq6img0ijNnziCRSKCpqcnTM/aqxsmHBETsGuUYdiqVgizLSKVSCAaDiEQi+PTTT3H8+PGyn1Fsf6UhAREVxTTs3377zSGacDiM3t5ezM7O4siRI1Uu5fYhAREV4/79+1AUBdPT01Y8I4oiPv74Y7S0tAAoPFGtXiAB+RQvw1i2QznxTCWev9eQgHzKbhmuruu4du2aNbI5EAhAFEVP8UwjQAIiymZtbc0x3uzo0aM4ffr0lnimWi1jewkJyKeUa9yZTAaKouDKlSv44YcfEI1GEYlE8Pnnn+PQoUOu15S6fyMIjATkUwp1fto/3759G5cvX4aiKFhbW4MoihgcHIQoinjsscfKel4jiMUNEhBhGbZhGJBl2RrV3NTUBFEUMTExgZdeemlXnlFqX71BAvI5+fHMM888g76+Prz33nvWIlJEYUhAPsHuQpnxzOTkJL777jtIklQyntnpMxsVElANUUmD+/HHH3H58mXIsuyIZ1RVteKZ3e7UbHTxACSgLVTzrbmbz81P1fTEE08UjWf8UFtUAhJQHvVsRA8ePLDGmsmy7DlVE4ln+/guM6nppkiSZOUTs2+SJFW9bOWwtLSETz75xEo9Ozc3h56eHvz666/49ttv8c4772xLPPU+Rm2v8J2ATGOZmZlBNBqFpmngnINzjnQ6XdWWJy8dj4Az9WxnZyeWlpas1LNXrlzBG2+84TnPWa1ND6g3fOvCmQZivp3Hx8fR39/vWEB2ryi1Elp+PHPw4EFEIpGCqWfJ+PcO3wrIHF4PZMXT1tYGAHjrrbf2vCxuBr/deKYYpWIdioXKx7cCWllZwcDAAAYGBgBkV1wGqvv2XlpaQiqVwqVLl3Dnzh1Eo1H09PTgiy++cLhk2xVCqd9G4ikf3wpIURRommYtXb7dt/pOMVPPzs3NYX19HaIo4sMPP4QkSQgEAq7XkBBqB98IKL8nHtiMf0xXbqf39bK/UOpZt3iGXKraxzetcHZDnJ+ft0TDOUd/fz8AYGhoyNO9zKC/mIHb96+uriIejyMajeLxxx/HxMQEnn/+efz888+4c+cOhoeHqTGgTvFNDWRHURSMjY0B2DRSSZI810TmNcUMvNBSGl5TzwJUA9UDvhKQqqro7u4GAMiyvOW4Kap8vBqyfSkNXdchiuKOUs+SeGofXwmoq6trWz3shQx5fX3dygVQbupZojHwlYDy2Y6LVGgpjeHhYTz11FOVKShRs/haQF7Fs7CwgOnpaSSTSSwvL3uKZyh+8QcOAXGDwzA2vwsBBr/aQCqVQjKZxNWrVyEIAqLRKIaHhz3HMyQef+AQEBMYAgwwdA7mM/F88MEHuHfvHvbt29dQqWeJylLXLtxO3aT81LNPP/003n33XUfqWYIoRlEB8Q2OrEfHIAQB5Fw8y7Xj2dqKI1t7CWa3rG0/AAhBBsvMix1zPNx+Xu75nIOB5V0PMFtZhQAD9Fy5GUNAsN2HMfzyi3vq2eeeew779u2zxsZ5geIcoqiAWICB6RwsZ6QQGAQOy7XjOsCCDAKyBsxZVlg85wIKuc+GDpjDuoods+M4b4MDPDvhjW+4X2+W1dA5hCBDICdAXWeYnbsKWb6KG6oKfeMRXnFJPbu4uFh2EzeJhyjuwjGACdg0cs4BwVRP7i2/sXm6YO1n1mlMyBo2BwMrdsz+XM5hsGw8BmRFilL3NssQYHj4++9QlBSuXZ3DXOrfaGkNo7f3b/h3IoEjR/8MYGsiQa+1SaWSshP1SWEB2YxU2ODgnAEGA+y1BWNbaw9u/lPIwIodc57mfqb73pWVFczOXsfM9BSuqypE8TSikVP4xz/P48knWyyXMFvszeu9DMuxQ8Ih7FgC4nr27R4QgC0GmosjhICtpmAMAs8Ki21WEGCMQQAHN7K1F5B17QTzmkLHHDAwZN0284Hc4Fkx266/ffs/uPKvy0gqMtb++z9ETv4Vfz9zBlOJBJr+1GS1JrrhpeahGIcoxWYNxAAYHBsbQCAvsGcCg2Bwh64452ABQNc34wYhmDPIAAPXOfRsJJ9tADDvlTu2oefEZjvGNziQa6AQXO5tGAaSioLZa3NIz6rYvz+AE6+cxMTEBF78y4sw7OXYyDYc8FxMBN353UvNQ+IhSmGZLxPM2qcAQp6ocsYVCOa9qXN/hWAB42PZY26PYvZrGEMg6L6Uxuuvv46zgzNbEoA4vMkgK/6dIHaB4s3Ypptj2JreXNjtN7U99ez3339vLaXx2Wef4dChQ1QzEDVD8VY4A9B5LvYoYrOFlscoh/ylNCKRCM6ePetIPesVil2IvcIhoFdffRXJZHLLSWbeNC+zL70arq7rVtaZvVhKgyAqgSMUcUs2GIvFrKydO2VtbQ1fffUVXnvtNezfvx8jIyPo6OjAN998g+XlZYyNjTnEQ9kxiVrH1YWzZ6i5cOEClpaWMDQ0hAsXLpT9AHuqpp9++qmspTSoJiFqnSCwGTOoquqa2rajowOLi4vW91Ixxq1btzA5OQlFUTynaiKIeiQIbL7pr1+/jhMnTmw5KRwO4969e9b3fPE8evTIEc80NzdDFMWCqWcJolFg3BZomD3z+ZjpnuwuXH7qWV3XceDAAUSj0aolKdwJN2/eBAB0dnZWtRxEbXPz5k10dnbio48+yu7gnHPDMLimafz999/nJoZhcM451zSNA+DpdNo6pqoqR3ZQGm20+XIzsWqg8fFxcM63zIcx18vJb94uVFvVax+M+Uax3iyo399CVA7OOQRBsGzfasYeGBhAV1eXdWImk7FE4tY3VE4623qlkX4LsT3yK4l8mxBUVbV2hsNhq88nHA4jnU67JiB0u7HbzesV6n8iTErZdNBrssFGq12K4ZffSewcz8nlyzUqeosTjQ7n3F1Au2H89BYnGh3mOhkUZPwE4RVLQPZah9wvgvCGJaDtTEkgCL/jmxXqCKISuApofHzc6g+SJAmcc8/LHxKEn3AIyBx9YJ9QNzY2BkEQ0N7eXq0yEkTN4hBQOBxGLBZzjLoOhUKIxWJobW3d88IRRK1jCWh8fBwAXGedhsNhEhBBuGBN6X777bcRj8ddTzKXgQcae0gPNd8TxXC1/UJzfvIx5weZoAbmZNBGW7U2k20tsGU2MDQKjVyrEpVFADaz8KysrACAQxyZTAb2KQ9A43W0NtrvISpHfsVhNSLE43EMDAw4xKKqKgYHBx0T7QjCz+S/bB1JRVRVxYkTJyyV5TdpEwThxCEgigUIYiuSJEFRFIf7lk6n0dXV5exI9ZN4JEmyhivlb6qqVrt4RA2RTCYhiiLS6TQ450in0+ju7s6O3OGN1JxWJpIkYWxszJHHrlC2IcLf2O0ik8kgHA5D0zQajW2KxxyJEYvFqlkcogZRVRWxWMwS0NmzZxGLxRAKhUqsD9TAzM/PQxRFANk3iqZpANyHMhH+ZmVlBaOjoxgdHQUALC8vIxwOA/DxfKBMJoOBgQEIgoBwOGz9hxBEPoqiWDMU4vE42tvbkclkAPhYQIqiIJPJwDAMxONxtLW1NdwIC2LnmEIxXX1zXOj8/DyAUks8Niimu9bW1mb9bW1t9VUrJOENu6sPbArKtB1ftsKZDQb2UeYE4YYkSbh48aLl4tvXAgZ86sIpioLjx49XuxhEDaOqKgRBgCzLaG9vt/oIo9Gow833VQ2kqiq6u7ut75qm1eVaRkTt8H9fstfZKYozGQAAAABJRU5ErkJggg=="
|
<image>如图所示,在数学活动课上,几个同学用如下方法测量学校旗杆的高度:人站在距旗杆AB底部40米的C处望旗杆顶A,水平移动标杆EF,使C、F、B在同一直线上,D、E、A也在同一直线上,此时测得CF距离为2.5米,已知标杆EF长2.5米,人的视线高度CD为1.5米.则旗杆AB高为()
Choices:
(A) 16米
(B) 17.5米
(C) 20米
(D) 21.5米
|
17.5米
| 69,827 | null |
17.5米
|
"iVBORw0KGgoAAAANSUhEUgAAAO0AAABxCAIAAAC2i7PgAAAbBUlEQVR4nO2deXAbd3bnX18AGvdNEMRFECBBipdESRZ18JIs2Y6P8RnZcWZ2Zmt3KpVJUknVpJLUHrW12drZVFLemanM7K63Jp6Vx45nxrLGtiRKsqmTFEVJvMQTvEASAkkAPHBf3b/eP+iRdVCXBd79+bPR6H5AfX/v9/r93u81lkqlgIdnnYOvtgE8PFmA1zHPRoC895BAIFh5O3g2Iel0OluX4v0xz0ZgCX/8DUEsZFIpjGQJgQgHHMvahXnWFRwAm46G49FYnMVYBBhwHAAAYDgulKposVhMZl8e2dNxbB4mOtykZUZVtF0FSiprF+ZZV7CInR46feT8Zye+mKICSY7kGJYDlmGFMnX5az9seLr2aRPQ2dPdIlmJKziAeMw/1HnsYufVMW8C0lw2rsqzPsGAEEhoikiGB855hoc9aa1AYTDKMUV8qOPsl5+e7OrypyIoyzfNyrhgAUYnhq4e/bAn82xRWT3gfNS9eSExQu889JY4Rw+h/9KjOCB89e//sFxcmbk8feXXf/XT1osfJp2Vfy1TC7eIsnnXLCiOQ/hMc1tfU/OgSJAxSjVqoLI9a/CsKwgAjqLFqelKjaikcrvKkickzGZDod1EgGphIZlmU9n2x0+s41QoNn5lYGiibxoypFIsp6U0nwTZ5CBgvdGAvw+vQJqiCh0oALjZ6ZGRybBAKTfbbHJKle3Hpyf1nAlvp+/yLwckzqmCevV5tyJ434HGcRxCiOP42HkDguM4fiua5DiY8IR9o1e3FO3KzzGlkwJBdLTn2rmjpzvFTyura6tNdP4a0jGXgaTbNxtsni/XFsqqLOx5vQposeI+F/X5fI2NjUNDQ+FwGAAwbONk5giCwDBscZQ+eKBiGIZhGEEQCCGWZVfMwmWC4ziKonQ63c6dO+vq6r5aQeMwLrywMN4913OjcfA0atPipEImF+v3/ulh49Z8u8usyP5C2zfXMcfE4uN9N+fxQO4Lu/S9aWa0sUCPqeU6gCUHWzQa7e/vv3btWjAY/MY3XWtgGMaybCgUYlmWpmmRSESSJADcq2YMwziOYxgmkUhEo1GJRCKXyxcProbh2YHjOKFQaLFYcnNzEfpqKuYgFQxGZr2BnGRqYgadm8Iy82Tujv27d7zywk77VoNAuAwe7BvrOJ5MBq80pxYITe0hnZWiB4MCMOhkcqnmPhe1WCw/+MEPotEowzDf3N41BkEQ0Wi0qalpdnbW5XIVFBRotdolpbnosGdnZ/v7+1tbWysrKw8cOLDomFfe7GzBcRyO40KhUKVS/b6cIcNxwXH3/EzQ2vAn/6bAVVSKvNEr7zVebPvdj6Lx73+PfXnndinQRJYt+aY6Xhjyt5/8vLFjJEI5JlrPMB7vvGAQHaoXCu53RZqmbTbbN7zd2kYikXR0dMzMzMjl8oqKigecmU6nSZJsbW3VaDRbt25dMQtXkChERkcC2GimpGrbzuoKvQ0skDca8PsvNF3sv159rbKitFhAE1n2yd9Axxyg1ML40Ehb8/DU8DVPvHvwEpacj6lLktX7E5sv5cZxnMvl8vl8J0+eFAgESqXSbDaLREtnRymKwjBsYmJifHw8Go1KpdIVtnbZSYQyvt7JNO1V2J+XkloAAA5sZZbC6+WijqFA0OuLM04ShFl2yI8vOxSDUNvgLHdN8r0/+kvRnysFbCpOjZ/pCTC/pfKkYjq79q19MAwTCARlZWWvv/76lStXPvjgg+9+97sWi+V+J8tkMpVKlUqlbt68abVa76f4dQoTnp8b7AjTRVhpsVZCSwGA4yAVTccjc8AIZDK1QkksQ172sXTMAbeQDox1to0ORI3q8uqaKlXuokPp9clvjLdElBLRptPxIgaDYe/evVNTU4ODg5cuXdq1a5fdbl/yTIqiFsPiTCazrh/yliQTjUzcCFKy7fYqh04pAuAg7fWcvNB6emQwaS425ditGLUMtTePo2OO42Z7Bq63/fwDNnd7wVsvyhQSAA4lQ4G54VH3qDdKBiPR3HiaoiliA2XVHgmCINRqdUNDA03TTU1NLMvm5eUJhcJ7z8xkMqFQCACUSiVJkgAcx2ZSSQYBToqEJIGt01UkjmMzyD82PtHRmUZVYFZmYlEmTfhmxlo++b8nT55cCOUdshWZikxLp7OekMfQMYu4D4+1/OLdI50DedUqw1NRziiJx3rPtv76yOmWy82TiQnKNzrwknvqmb9osNk0G2q6fBQoirLb7clk0uv1jo2NNTY21tTUqFSqu07LZDLRaBTDMJlcTlIUQJCb6fj8vRvj6ZziP/5WuUViWp+lgolE8v+8+8vP/vVDv/smMzAlaT7zuZATk+F4Ijbg1uYefPYHf/Rs7T5HAcBybNN4vPg4nJalqdyyCqPDpsAZAGDZdDQZno8LzZIcopyABJ6Yi2UyaKNNl4+ISCQqKCjYvXt3W1vblStXDAZDaWmpRCK5dUIkEgkEAjKZTK3RigUEFp2cHmlpvfjlkX/pm1PvyDzzrMW4XnWMEIQWUnGQqMvLMQ5BdCYcgRDHglBt2H2w/tn6w2+U5uHLNdtg9+6XfsC+poWFhUgkCkAKJVKJXCIiOS4VS4TD8TRKI8AwjKPEFC3RSARUthMr6wWO4+Lx+KlTp5qbm61W61NPPVVVVbW4OMIwzJUrVy5fvjw5Odlw4OBLB3bByLGPfvPJf/5/7WMeSVHtK2/9w9+8WK4qWZ8zGUJofn4+Ho9/tVR7K/bHcCDFtESskAqpO0WRxX1Nj+ePlUqlUqm87QAGQplMJ5Nly5z1D4ZhEomkqqqKZdnLly8DQE5OjtlsJggiGAy2tbUNDQ3V1taWbtkCJA3asuKa+NugazkySrCIBFi/ExmO4xqNRqPRrMrdN126d2WwWq0URQ0NDd28ebO1tTWTyQiFwp6eHp/PJ5fLKysrrRYTkCQYdpYbrM5tVu31j3rnWApgHS/urSq8jpcLrVZ7+PDhxsbGo0eP+v1+oVB49erVsrKy2tpai8WyGGkAAMCGy72tBryOlwuBQGC327dt2+b1ent7e4VCodPp3LVrV3Fx8Z35OA4hhHgxPxnrNFm5blhc5yNJMpFI7N69u7CwcMmkMs8Twut4eZFIJPn5+YcOHTKZTCdOnBgcHFxtizYmfFyx7Mjl8p07d2YymTNnznR1dWk0GpvNRj3K4iybhvDwyLCnpT+QTjOYIldorXiqQOvQ3O3REUKLNdAymYyiKHzzbfTldbzs4DhuMBgqKipmZ2fHx8dPnTr16quv5ubmPvyb6QU0fLbl6Kn/+psbkUiENVYKdn7vP7y1L7/GfFd2nmGYvr6+ZDJZXl6uUql4HfMsFyaTqa6u7vjx4x6Pp62traqqymQyPfAb/nBy9GyHNCZ97m//7gVS4B3uHr7ceKQ3V3TCbK4xwe2bgxKJxJkzZ6LRaEFBwWplcFcXXscrhEgkcjqdlZWVyWSyvb2doiiFQimVSjGMIEkCx3AMw3GC/LqmkYsxyWSALjRUWb71TB5AcPzse/IvfzQw09A+DdtzvtYxy7J+v9/tdi9u+NuEzhh4Ha8w1dXVIpHoyJEj7e3ter3eVeSSyphUMsOwLIuYTDqZyci+qqMJySSMueYZjVAi4wAw0IrkZsdu6YKZFOBwe1gxOzs7MjIikUjUarVssy6t8jpeOTAME4lEhYWFBw8ebG/v/N0nH4lf3InCM8d/e+JMe89EUtzxTmL6xW/79+3ZlQsykZTCRSaZhMQwDIDzNLmH3CfoF+22igYbyG970puZment7VWpVEVFRZs2qbcZ56DVRaPRHDx40JafP+4Z7Wz7oq3pwo0rN+NaOWXC48PXvGOTE2FIIwCRCJdLxRgL0dnp3parx3/x+YXrnyQaRDnFOwwgvs3/TE1NdXd363S60tLSR0qDbER4f7wK0DRdX18rlQjPnv40V2f6ix//qUihQBgAYLQmT6G+FfuyACFfxydn3/3no22Dl/DK1B6GvKeQ0Ofz9ff3NzQ08DrmWVEwDLOYzQihkdGJaCw6OT9fX1GhuqOQ8KsTAQS02mKu3LtHpocJpre/seuy+EtD3U4zLRNimUxmZmZmbm5OKpXqdDqxWLzyv2WNwOt4dSAIwpib+8yhp5uamo5/9plcKq2pqVncTX3bWTiATL/lYEPhngPhttbf/fqn//B5e7MhYy53aHJkQiqVSvX29obD4dLSUq1Wu2o/Zg3A63jVEIlERUVFCwsLoVDo6tWrDMPU19ff+6CGAWCUBDRPFW0NvPliz09nmSFfMJnRAFCpVKq/vz8ajZaUlGzOtPEt+Oe8VQPDMLFYXFJSUl1dHY1G29vbh4aG4vH4fU4Xq8xFu3cVavXSSCLFAQYAyWSyr68vGo2WlZVtcn/M63iVycnJqa6uttlsoVCoubl5bGzsrmYACKF0JpNIMalYnMWlBE6SKJVOJQEgFApNTEywLFtYWKhQKFbpF6wJ+Lhi9ZHL5fX19QKBoLW1VSwWq1QqvV5/q9A+Gon29N7o7b/h67264O50J/NEdqa/I84GtJNen0KhMJlMG7Av0WPC63j1wXHc4XAkk8mxsbHh4WGapmtra1VCZn5mYmQ61uv2dHZ2dHbe8PvnaLFUlUuZCP9g93VPHxGLxw0Gg9PpJIhs9/1bb/A6Xis4nc633377vffeO3HypMlkykn1dX354c/PTHZ6IhyL4jFJbvG2yjeeL8+TSWLBIffgwMBAKpWqq6srKCjYnDUVt8PreK0gFAqtVuvevXuvXrvW2NgY991IBucKS7dvrTMr5Eock6nybPZtpUYZRcQWrBZzMBjs6emx2+0Oh4PXMa/jNQRJknv37hUIBD/72c96e/vNFvNf/fu3a/btE9/WyQUAWFavVKtbW1snJiYsFssmz7gtstnH8ZoCwzCpVJqXl2ez2bQ6rUQi0ev1d4kYAKLRaE9PTyaTcblcyiVWATcjvD9ecxgMhkOHDslkskAg4Ha7VSpVfn7+7SdEIpHOzk6GYcrLyzd5uu0WvI7XHAqFYv/+/VqttqWlpaOjI5PJqFQqhUJxa8k6Eon09vZqtdqysjK5XL661q4R+LhiLYLjeHFxcU1NDU3Tbre7tbX19pcDhUKh8fFxgiCcTqfknqhjc8LreI2y2Lpz+/btIpGopaVlcHAwkUgghObm5qanpymK0mg0arWazxwvwut47ULT9P79+0tLS30+X1dX18jISDKZHBkZ8Xg8drvdZrPx6bZb8PHx2gXDMJqmt2/fjhC6cOFCJBI5fPjw4ODg6OhoYWGhzWbbSO/SfEL4Ab3WycvLq6mpMRgM09PTzc3Nly5d8vl8TqfTarXyOr4Fr+N1gFwuf/XVVysrKz/++OMvvvgiHo/n5+frdLrVtmsNwccV6wCKovLz8/1+v0ajMRqNZrOZT7fdBa/j9QFBECqVymg0ikQil8u1aff33w8+rlg3RCKR8fFxlUpVVlZG05v0PYX3g9fxOmBxh8jc3NzExIRcLne5XBvsLahPDh9XrAM4jguFQoFAIJlMLu4WWW2L1hy8P14HMAwzPDzs9/sdDofBYFhtc9YivI7XASzL9vf3z8zMlJWVGY3G1TZnLcLreB2QTqcHBwcDgUBJSckjNQDffPDx8VqH47iFhQWv15tOp51OJ7/8sSS8P17rLCwseDwehJBGo9HpdHyB25Lw/nitMzU11dXVpdfrCwsLb3t7JM8d8P54rbPYplutVrtcrk3bFvah8ON7pWBTEJ/1BkKBUBIwDMRqWqG1qkU09RBX4vf7PR7Ptm3bCgoKeH98P/j/ZaWITWZuHH3v/fPvnxslCDJT9Jyz4Y3//rKr3HjfjUksy0aj0UAgEI1GdTpdXl4ex7++9z7wOl5+OAbSkz7P4IV2LiMr2V+j4WJj1yeu9x9jj+n+mKstLdPhOL5EJXE6nR4eHg6FQmazeTFNwRcc3w9ex8sPYmC+f9Q380W46vmXtnxrB8FOn/voJ/9y5JNPPz9bgatNjlqVZCkdJ5PJrq6uSCSydevWTd4W9qHwz3nLDkLYvF8qE5tffrmsojwHBHrCWLentvrlBk1iytM/4PEjxCz1xVQqtdjeuLS0lG8a9GB4HS8/GAESc47JUV2iM8pwAABSb3UUVlVaiHR8fnY+xgG71PdCoZDX6+U4zul08v1WHgwfVyw7OEkqbRYOAOC26EFIS2VqkUQqEFAkBvdGFaFQ6ObNm8lkUi6X5+Xl8YXzD4b3xysBRhA4QeDwtV5RPJxMhTT5JpPVrMVwwT1fmZycdLvdBoPBbrcLBPd+znMHvD9eeRBAxDuVGJ0Ul5TkbynNVdzzSjwAGB8f7+vry8/Pd7lcfJriofD+eOWJcqi/b5LsnthRW2LdX0YTv9cxx3EIIQBgWdbj8bjdbovF4nQ6+X4rD4X3xytNOpScaulI4FLjK9Uuhz4P+8qXJBIJt9t98+bNYDAYCoXOnj0bi8UMBoNer+f98UPhdbyypObmxoa725NYZeG2Pyg2AOCIS6SSCwvzo6Nj3d3dk5OTPp/P6/XOzs5arVa1Ws0740eB1/HKwSEm1vXxxOBQV/6bJRaXC0ACEE8khkeGjx07Njg4qFAojEZjUVERQRBGo9HhcPB9Kh4RXscrBRPGZjo7fKkeVOKqKtnqEEoAwUx79/W+z9u84VDY6XAUOBx2u31ubm5gYECj0VRVVfE6fkR4HS8/HEKZRHri6vT1Y595CiekJX/O+sTz4vGFqXjnb89d6G4akxz+1vMvPl2TazQKhcJr164FAoHc3NySkhKZTLba1j8WiE0nkuFQLM2mEAZ3VDWROE5LVRKxmCJhiXz5E8LreNlB6Xi068NzJz/5+add14NiRqgd+xUhFhBshkGhBamjcPsLB3fs22U2mwmSjMfjwWCQZVmlUmkwGNZV5hgBxOdGL17+5f8+0xfoDgsBMcBxiAMAxLIWmXrPa3/93NM1djNA1ve08DpefjAcp8QirV1fotwbTwsIYFiOYdn5+XD3ZPSpEtUzdXuLHPkESSKEPB7P+Pi4TqczGo3rrWkQBoATAoFIJkxPTwbGUshRrtUo9RTCcYj4grH+o1/8Fk9wzz5fbTYJyOwO0MfTMcem2Uw6mUEs4jAM53CKogihAGMZ4BAmEBB8guhecAEtKXutzvVS9bcR4r6aUmOxWGdn5zvv/M9Ss3qv2SynBACAEHK73WNjY8XFxfn5+RzHrauMGwYgVtufqvkzDQe/sl6bIv/tD7duLdohTVOkwH/9X69/9Pf/q/E3vxplFT95s96utWT13o+nY+zmpYHmE+823RydjlG0gtHX7juw5Y0/kA+1MqkFSW29RSpdR/PgioFhpFBACm//a2KxWCQScbmKyku3yH//dmiSJBfbzb/99ttbtmxZVyL+GpEMWNqKiw2ltrwSo0gJIgDIr9pHEd/3+D9t8p56//NS0cFtFlc2K58eTccoFJ/1D/dNTA419w8Me7yh2VCKECZZNDTcPX8BR529Fpm4+Km93ANe1x2JREZHR+fm5tLp9HrzNNkEwzCO4/r6+m7cuBGLxUZGR48fPy4QCDAMSyaTzc3NQ0NDAwMDHMet/eCY4ziCIMRisdFotFgsBEEAiqD54bE0OSw2NtD418WmYruh6rU9Vec8c/0ftLj3FthSLkUWFfAIOkYpCHcPNX3243883SzekXvg3/2n/+YsNcrTqQgR67py/LMP/+Nlb9n3d75ch8gHhe9er/fdd99ta2sLBAJZM3/dkk6nU6kUx3Hnz59///33F0f1Yh+3TCbzzjvvUBS19oc6QkgkEtlstpdffvk73/kOTdMQXmD6bgxlFDdydQIBdVs3RQyQUq4Ra+SsYG42FonPAGSxw9dDdZxk2dHeo5/87ljbOeQq2FH75sGdVWU6BQUABgC6qL/DpQ6gHEKi0WIPbK2gVqsbGhocDkcsFsue/esVHMcXF+oQQos1FYuQJInjOMMwtx9cs3AcR5LkYivbxT2wqdDcZN8lijxgszsldz6nYjil1uZqdTlECGWYTDqrljxMx5w/5mttOnblTBsIv/3W63+4+3tVt2+wMWmtZbW7TZRNK1NRD3THkJOT88orrzy5xTxrFQ6AW5if7W0PKByiXVsMUvEdH2MYJhDSArEcxDRFktnNxTxk7T7jG58+/+XlCdm8uf7br1fuqbh7l5iINuTkVucZc7UqIPhCgE0NAhgNBed7WrcLmPySIhDfKVWE0ELQNxf1I71KppDlZPXeD5AeCzA3M9Jz9fMeP2011tbVO/T2e9y3SGc37Hx1m8tRrgIh37FpM8MhQDMxJj2urZTqTCUiuNMdxyHS13NjfMgDVltBXo4uuysXD7haBmDMN9bXcnEG9haU1G7Np6h75wJKZ1ZrTWoMg6U25/BsIhACvz/OxOd2OKQWvfmuT8OjcwOnWzrmh2etO10FDqN4yWt8Y+7vjxELkWBkbtbHIJFGbdBrBEs+xmEYhuPY2n+05llmOIQS4+4F30hao4S7y5sSwZFrFz/8uDlgiBUe2lcmK8x2R/37+2PEQSKRSSVjOCYSCsVCfu8IzwNgMcw/cs03MZjIqzHoTcrfH4+j+dHua1cvnDp/uYsWV9TvfqZuq1mky7aW7q9jDIAgcZykABDLMizA3T2ZOOAYhDCWIwkc+GrvzQwCf3Dm+oWz/p5JqfE5TkwkIhEGOCATfdM9pz/4p09P9NHJijf+5M1n3ni6KAfHV7BOCCdAqaDlMjXDTYVjc9EMBncV3CGIdwaDZE+4zGkkzXyfkE1M86Wuf/7JjzvP9EbTEuWPfOdUtJJAAADJaQ5l0rnP7avbXb3NvrvKZCSyL2J4oD8mgcjTGW1b7OKJqfa+qxf7bHu2WoT0opLZMBMY6e7rGo3pMzklVo6vm9vUxGP4QlisqSjOFZAcE2ZmQ34AAEAMK9Hlbzv02sG6soblfEHPA/RHAeSbnNvqXmpqPnq8/VjoA4uDISx7clkAIKY6pju+/B/HRWAx/3APZlAvo4k8a599+/aWlm5BCGEYBnd0BeVwghLK1OJlLkHFUqnUXYduL09BEV9o+ELz6WOnO6db06W5SnGhCgEAEtG4Ikckd5VvKayvzlMT/BoIz2OTTmdtcfoh8QAuM6rKX3lenJGgDz75p19cnU189UHRi7kv/NmRl3bsL+T7jvGsPkv4Yx6edQcfDvBsBHgd82wEeB3zbAR4HfNsBHgd82wEeB3zbAR4HfNsBHgd82wEeB3zbAR4HfNsBP4/+pAsGhappV4AAAAASUVORK5CYII="
|
<image>如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()
Choices:
(A) 60°
(B) 50°
(C) 70°
(D) 80°
|
60°
| 69,828 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAKMAAABgCAYAAABxEMKaAAAZw0lEQVR4nO1dfXAb5Zl/Vk5wKzhEK4pSQhDgWBSc1pw5xqC7xldkR4BTPK3ChElb42KIiRXOiWmbPzJjhks7buPE8dSB9C4dTD8YOJzYTm2UoQ6ESWjd5o+4F/kjnIppMVdTcXVC5EGJYr2/+2O1q93VrrT6lqh/M7ak3XfffT9++z7v87zP+ywHALSEJRQADPkuwBKWIGCJjEsoGCyRcQkFg08MGRH5p5wAS6fEuZ4c/z1Ox2PqDMVnHHBFq8CAiDjJZ0IwIhh0pl1CtgGAOE7eGUU3MgKQE5AjYtLHDkQTw7vpyARTPKUGYmC5LacECwsLObt3/iFvZyBMBCLGFsURUklEoiIkIxERcZEKRiptkAx3l7lJ2v7gDmIGjjiOk0kHgyF31ZU29gsvvEAPP/xwzu6dT/APoUH83lrHkcGwjDgDR8tKlhNn4Ijj7qUpYvJBhIqSjDwBOa6EiAziCMSTk6h367PE1dXRrbeDFwX5KqYE9913Hx07dozOnTuX76JkHRzHiSTjOI72jzJyryMa8IZpMRwmxhjtfoKjCs5BZ4udjDwJBTDiInTjuBIa6mkl1NVReDRMHBSiII8z4xUrVtDdd99Nhw8fzl8hcgippArTFE2hlb62xkAGg4E4jqPvHnidWuvepH97cp/iuiKFVBwQEdHUAP0a99JT5aA36srpNk5etTAL57aACnzzm9+kl19+Oa9lyAWUc+WzRzxEt94iT8RAt6x20Ov/MyM7XJRkZIxFR73I/NH97Ov07PYNRETkuLWcTycZDktK8iuwGxoa6K233qIPPvggr+XINoR+EVr+tddeo/V195MwvWIEAkd0S3k5EeQDRNGRkSeigYgYIcxXcKhnKz333HNk4DjiKlwaV+auqmrWss997nNUW1tLhw4dylk58gmOiMI0SUcPgO578AsiOQ3EK5bv+HzksN0qu6boyEgGEP/cGYgrIcLkYRrF/QTwCsuZod1ku8XKJyWOGOMJm0trqprZgohow4YN1N/fn7uC5AmC+a1k6m3itj5At5OBODIQ6DKfYGqAvnvgdbq/bp3suqIjo4FKoqJgYpgM20fpufYHRbnwx5l3iMK8kiM3rObftr9hwwb6/e9/T++//36+i5I1IByZQnFEg0dfI9tNN1HU7ricAJB7m4uoroWeaqhQXFyk2NNaKwyRGPCGAQBbailyzADH1j0AgHA4DCCc8/IxxlSPNzQ0oLu7O8nMMlCgHIGBb/MQJuAgwpGJxejJycN8/9S28O2jqFfRkVHZyTzZ1Ds/HA5rkiJf6O/vR1VVleq5QitrqjgztFscKJR/XQMTmtcV79q0CqCy3smDEZGB195kdsrcY2FhgSwWC01MTNDNN98cW+Y4a+26l+HzDMZYSqtdxU1Gjd45dOgQeb1evqNLiIhFlgZzVNVE9zp8+DBdd9119OUvf1n3dXN//YA+b1kR5668hSHfAECcYZn44HMsTBzH0U233Ezf+ta3iOPAL1yo9F3RKTBSiI4Pkv47efIkPfTQQzQ1NcWPOAzEgWLWQfOJNWvW0NTUlPgb4pKm8jNMwWCQBgcH6ZWX/4tCFy+J1yglAMfx9cw3OI6L2A8NRLhMHwUu0DP//gytXr2aLyNFJJPaEJ/VyUOOIMy1PB4PVq1ahfXr18NkMsHj8eS5ZOoIBoMwmUzwer1x0/X398NsNqO9vR2BQCBHpUsNQh9I573z8/MoKyuD0WiE3+9PmEfRk1FQYADgyJEjWLZsGcbHx+HxeAqakI2Njejo6FA9Nzc3h4aGBthsNvzud7/LccnSA2MMjDG8/vrrMJvNMBqNeP/993VdW5RklBJQwPnz53HDDTfg8ccfR1tbGwCIhOzv789xCRPD4/HAZrPFHO/r64PZbMamKrkWujnyTHk2qx/PF5QWi2AwiPb2dphMJnzmM5/Bb37zG/FcImtBUZJRDU1NTXC73fD7/bBYLKJYO3HiREESMhQKwWw2Y3x8HAAwMzMDh8OByspK8Zivxw6y98CH6IijPJ5PKMk1Pj6OiooK1NTUYMOGDdi2bVtS+X0iyDgyMgKr1SoSsLm5Gb29veL5QiVkS0sLduzYgd7eXpjNZnR2diIUConnPZsJ9h4l5Xzosed/RFQSsbOzE0ajEZ2dnRgZGcHq1atx8eLFpPIsejIK4vnNN98Uj3m9XpSVlckarBAJ+bOf/QylpaWorq7G9PS07Bxjr2Iz2SHlImMM8PXArjiea0jbdWZmBna7HZWVlfB6vWJ/COI5GUN+0ZJRqKQgnpWoqanB0aNHZccEQvb19eWiiKoQxG1nZyc++9nP4qqrrsLY2FhsQs9mzVWMQhDRAHDw4EEYjUbs2LEDoVAIjDE0NTXFiGe1Ob4aipaMAPDqq6/KxLNA0HA4jP7+fjidzphrxsfH80rI06dP44477kBNTQ1mZmbQ1tYmKlxSeDYT7tmnLqJjRXdu4ff7UV9fD6vVihMnTojHBfEcDAZTyrdoyagmnqUIhUKwWq3w+WI7bnx8HFdffXVOCXn58mV0dHTAbDbL7nvixAlcf/314lyRf6A8MSIaQEGI6OHhYZjNZjQ2Nspsn0J/vPXWWynnXTRkVM491MSzMk1XV5eqCAeiI+SBAweyUj4pxsbGYLPZUF9fj7m5uZjzVqsVx48fjx7wbAbRZsToKJ7NGRfReud0gUAAjz76KMxmM4aHh1X7I1ntWYmiIaMUSu1ZgHJucu7cOVx77bWYn59Xzcfr9cJisSTv0iVBvM5cWFjAjh07YDab4ypO7e3tkodGSxRnR0TrIePY2BisVivq6+tVV1JS1Z6VKDoyaolnrUZtaWmJS7bp6WlNQqbj0nX8+HFYrVZs3Lgx4VLY+Pg4zGYzQqGQXFHZ7OHLoFBmcjVnDIVC2LFjB4xGIw4ePKiaJhPiWUDBkVFKALX1Ti3tWQuCmSceBELu27cvucKqYH5+Hm63GxaLJamlyLKyMoyOjqZ9/0zB6/WisrIS1dXVmJmZUU0jaM/bt2/PyD0LjozxoCWeE8HhcGB4eDjmuJTkU1NTsFgs2LVrV8rl83g8sFgsaGlp0ZwaaKGjowONjY0p3zsTENqjq6sLRqMxYVtIxXMmHIOLhoxK8by4uJjgimjjDg8Pw+FwJEz/zjvvwGq1ajowaMHv9+Mb3/iGqIik0jFerxcmk0m2ApNtSJcYAWB2dhZr165FRUWFuCSpBaVxW8+9EqFoyJiseJYiFAqhrKwsZpVDDTMzM0kRMpNuXhUVFRgYGBB/K8mSTfT19cFkMqG9vV2XnTCT4llAwZFRzVqvKZ6Z/JrotbF5dHV1oaWlRVcZBELu3LlTM43UzUt1BSUO1ObCALBr1y5s2rQpqbySuZ8a/H4/XC4Xrr/+erl5Kc51mdKelSg4Mipx/vx5rFq1KqahYhFGa53G8lndFszPz8Niseiey83MzMBms6mujghuXh0dHSmvNqjB5/PBaDTKHrpsjozCHHfTpk04d+6c7JzWfTOpPStRkGSUjo6CeFYbMdUarLWOMDgRPT4xtAe1bn7bqtvtxu7du3WXY25uTkbId999N8bNK9OoqqrKujPHwsIC3G63quNIonXkxsbGtI3bWihIMgpQrj3HAwPAMAlHnTvyexJ79gyInwBvwrFarbqVBMYY/vKXv8Bms2Ht2rUwm8344Q9/mFUlo6urCy6XK+P5Cg+usBrkdDpVV4OkUBJzZGQE5eXluHTpUsbLBxQwGdWM27EjYVi2D3xiaA9a9wwCAAb3tmLP4GRMvk6nU6YkJMLZs2dx1113obS0FBs3bkyiBqlhdnYWpaWlGd/zEgqF0NHRAZPJJPP1TASBkEJ/nDx5UlOEpzulKFgyfvvb31bVnoXq8hWXKyyDe1tBXHSuODjB5EELmH4zD8A7jJrNZvT29sLv96OyslJmC1Q2frKdoZX+nnvuwS9+8Yuk8oqX//T0NKqqqlT9JvWWK9Ha8yfWzihozxcuXNCVXmgI6XzRXVeLSSkVJV/Lysri7swbHx9HZWWl6OYlYH5+HpWVlXjkkUf0VyYF9Pb2or6+PmN5GY1GdHR0yKYXWuRRs98ODw9nRXtWouDImMg1TAZpe04Oguq2iD/37t2LMPiRUdnwvb29aG5ujjGxCKJM6eYlhUBIYYTUMtOkg7m5OZSWlia9iqPMw+FwJDQ9JSp3NrVnJQqOjE1NTdi6dSsA/R7CAC+it+wdjDmuJurVzDyJ3LyU+4GrqqrgcrmypszU1NTEOCdEyxCJLwSVmFAMOPRKP0wmE7a2utM2PcXz3I4X5ygVFBQZBe1Zr3iOIhxj0gEA9zoSFRol3G43Ojs7EQgEdLl5KREIBGC327NGyIMHD8bMbRN1+vz8PDZt2gSLxYLR0dG0g5dpGbezIQ2APJFxcXExpiJJiWcJJo50aewVMYA4wtAkAIRjhhCfz4cVK1bgxhtvjHHzSsbhNFuE/PDDD1FaWiobpdWsCQLeeOMNWCwWuFyupMS7lvT56KOPklp7zgTyOjKm4xqWbP5S/O1vf4Pb7cYVV1wRd8lPz9qwlJDBYDCjo0V9fX1CM8zHF4Noa2vDNddcI9HA049HmQnP7WRREGJ6eHg4JdewZMEgd/M6fPgw7rnnHnmaFMgUCATgcDjgdDozujzY19eHmpoazfPj4+Mov9WGmpoazM7O6s43UR0z7RqmF3knYzzxrKch1Cbw4nWS736/H5s2PRyz38Rms8Vd2tNr4A0Gg3A6nZqETJXkpaWlqkTbtWsXjEZjxjzUpcbtVatW5UR7ViLvZMy4eFb2A4vv5vXjH/8Yzc3Nsdmk0KGJCJkKlGGXfT4fqqurUVlZmdCArVaHRPVqamqKcQ5JxqqRDmRkDF5cFP9ygXj7npMCU3xGMDc3hwcffDCurS0QCMBisYgKTCqrKNJrPv74YzidTtTU1GRk2iENu3zgwAF8+kojdu7cyW+ahzy2OXG8RWGvuxVenbq0tK3T3fecLmJGxlwRMVXtWS+ScfNqb29P6GKvl6SMMYRCIbhcLtjt9rQJGQgEcOWVV2Lt2rWwWq3Rh2pyEEQkeiQJaK2LPcYrNPED7efSuK2FnJExlX3PqSCRm5faPXw+X4w3T7plkRIyebtpFAMDA7jiiitQVVUlIfYUakmwoSoINjmILV28I0gyNciH9qxEXDIqxbaaGNcS6/FE/uDQCG66uRwf/t952XGleNbKQ+04Ywz7evbDbDbj+z/4ES4EgjH1kaZVor6+Hi+99FLM8WQhzTudETIQCKCxsVEc3SsrKyM3iIjmui06Hhh5e6qlZoyJ4jlbrmF6kXBkjPdbz3fl77/652XiWTgXo50mkff09DTs/1yD6rv/Bf99Zko8HrzIG9f1jPajo6Ow2+0J0yWLUCiEjRs3orKyUrcxWthz3dDQAL/fLwu7zDApGRVVkOSAXgjiWUBSZIw3QklJpSTYx8HL4jWNjzTLxLMWUfQe//4PfiS6eeklsBbWrFmDU6dO6UqrB9IHrLGxUZOQQrpgMIjvfe97MBqNeP7552VpxLDLk4MgjrBnSP4+lcE9W3n3OS7qPhdzH5UyZmNjVarQNWeUiulEaeOlGxnhxbNUZOnJQ6atRoh9+vRp3s3rX2tFN690yXjgwIGsbIgSEI+Qgtua3W5X3TQvhl2OKC5dg7EucBNDe2SeS4kgeG5n2zVML0QyahEu3rlkRKkgDn49ehxA1G9ODxml3z+68DGefvpp0c1L77RBj0ISDAZhsVg03fEzoWA1NjbiS1/6kuwenZ2dMJlM6Ozs1LxOCLv8hz8MwCET09F54VC3W1t8K9JmY99zupCRMd4IEo80ehQYqfYcTzGJl7fg5vVAfQP+9Of/1aVs6ambFNu3b08rqoQetLa2wmaz4dSpU6ipqdG9wUsIuzw1tEccHaUUUfNc0ppDCuK5kF4Rp3sFRm9nJrXvOQJhlNSKEpGqm1cqmJmZkcVLTAfxOrqurg4cx+HJJ5/UbWQWFBsAorhWbsnVc/9s7XtOF7rImI7tUf++Z3UkE80rU3C5XPj5z3+elbz9fj8aGhpgtVrhcrlgs9kS7tITEAqFYLFYMDY2lnBEy8e+53QRl4ypLg/q3fcMaDea3mhealHL0sXx48dRXV2dkbykOHr0qBj1VVBi2traUFZWJlNa4tVDK+yygHzue04XWXWUSGrfs6QD0onmlSlUVFQkHbZEC4FAAC0tLZrTjKeffhpWq1Uz9JwAxlhM2OXoydjpYa73PaeLrJFRz75n5W/ezWsTbrzxxoRiPZMTb+Vbp7TeLJDKPcfGxrB69Wo4nc4YZwxpfh0dHbBarXj33Xfj5segEnY5DnK57zldZI2MWvuetZDvlzZ6NvORYgUEg0Fc+w/L8E/P/Dal/EKhEHbu3Amj0ag7brhASLWg+ECULELYZSl1mEo6KXKx7zldZIWMyex7TieaV+ageOuUZzM2e4AdD92Bf3xYe1uCFqanp8Wor1rE0kJnZycsFgvOnj2rmUYIu3z5UqzGn899z+ki42RMxjUskZtXvKc1o0+yrwd28e0CPvTY+e+zs7NYuXJlUv593d3d4qb5VNHd3Y0VK1bEdZ7lwy6/lnApupC1ZyUyTsampia0trYC0Nbs1F7amE/4euya80SXy6Ur1Mjc3BxqampQXl6ekfXt7u5uWCwWTUJKwy7HezBzue85XWSUjPG0Z6HCWi9tzB8Ur7Tw9cAuvGUA/EuD7rzzzrg5vPTSS7j66qvR1taWUS9pgZDj4+MxHuVerxfXXHNN3DbM9b7ndJESGdXmJYk2Vk1PT8Nut+sOPpQzKN46xdir6OnxyTqqqqpK9loyAfPz83C5XLBYLDh+/HjagaDUrjl48CBMJhNOnz4dk1Yadll5XT72PaeLjI2M8bRnaTQvKQriydTx1qm+vr6YcHjHjh2DxWLBxo0bs2YLFdpHiLctndIwxuKGXS4Ez+1kkREyaq09q0XzKggCitD31inBm2d2dhbBYFCM+poJz3C9UCOkWthlIH/7ntNF2mQ8f/48Vq5cKRPPeqJ5FQKSeevUzp070dzcDJvNBofDkXA9ORskeP7552EymWRTBiHsciHse04XKZNRmFArN1ZJo3l98MEHMdcUOrTK+J3vfAdElNZ7BjNRlv7+fhkhpWGXhf7I177ndJHWyChozwsLCzI3r1deeSVT5cs7pqenUV1djaqqKjzwwAOa79DTQjoPoNa1AiFPnjyJ9957Twy7nO99z+kieTJG2ieqPZ/Ii5tXJsEYUzUe9/b24spPC1FfL2JsbCy6Sy/PEAjp8/lgt9vx4osv4oYbo+JZHmYayEQwqGxDNxmVndXU1ITHHnsspZc2Fi74Dpubm4PT6URZWRl++1v52rSWmScfEJYaL1y4EKM9M/Ff8YADANIAiIiT/kaYOK6ERkZG6Ktf/SoZjUb6whdsVFu7jj71qU9pZVNw4EAEjojIQESMiIgAEMdxdOH8R/QfB/+T1qxZQ7W1tbR8+XIiYgTOQByIzpw5Q2+//TY99NBDeayBHBcuXKCRkRGamJig0tLlxNcrtv8KHapkZAQySKshqxWjn/70BXr/vT/TXz/003XXXUtC5TVvwnEUh/MFh7m5ObJ8foXYBtLyA6B9+/ZRc3MzmUymnJcNHP8w8WBEBo6IcbR+/Xq66647KVFfFDKWqR0UOsG9jqPnRuXn9gxN0FOPPSqOJFIII6f8WGy6fCPVEUOoC8dxdOnSJXrmmWcyXbSkyyL9TcTFbe9C7AsZEsnx1jp+wzgDcGZoN4gIA5PJve2z0Ew6ekujlW5ubg5mszkvWmt0XXlRtYDSthZe2cRYboJ5pQvNMZ0RKEyTdHb0Xrq/4TbiiOiL5WWRk8k9YYX2NOotjVa6FStWkNPppF/+8peZKpJuCG0JcATi5fXg3ieI4zgyGAxkcG6hME1Sa+seyTSjhBhjRAU+U9IkIweiqSMeIvf9dHskmXubi2qf3EtfW2MgAMQIJCgArNBrmjSY7Jeydm1tbdTT05Oz0ggQ2tlgMBA3fZg4jqNn/1TO9wdjhJ51tIxbQ7R6tax/DAZD4WszyqFSaq0f6H5CtmQ24JXYqph8+A+Hw8VmSUgb1dXVGB0dzfl9GWMIRwJA3evukp1bXFxE1xYHH4uHRfozzFAMvRMzMhoMBgLCREQ06vkJDUyFCAw0uG8Lff2LJTQ4ERkxRNOIcCFXEA9edARjcVJlBtu2baP9+/dH750jiwHHcfSrnv10jPsK7d//lOxcSUkJlZWvplvKbiPiImLdwMmtI4UKJTsFX0U2cQi0Lvrm+kVMoJYoGoiSMYQVD1shrYFmaxxQxl9cuXJlTj2SGFuM6Qv+BBCGWizK4lBeANWRkf8c+vUxal13n3i8ZMpHx4iorNxGRPwTxzgori0cG1e2xgGpMrZ8+XJ64oknxNExF4oax5XE9AV/gshAJarpiwUx7BEKP+r5CdU6HyQiItAUOSq+TkRfofsbbhPTLpO8T7ewkH0RLeCxxx6jF198kRYWFnJ2z0T1QxEtMEgRQ8YzQ7uJ4zg6cIzo618s4U0GXAW9se5xAt4QNWuhQTgiIoR500EOSRAfkTJmuU8A5MXMw26/nWqJ6B3fH2OJNzVA3b+akpWxaMiplNuqm8FVg0HHzlEKSV/LpaH91KlTfCDPHGKg+4lIBNszYrt7j3SB1kUjkSXa2F9o0FyBkRMxsWJSOFWNlDXHBbLb7bkJQiCpl7AiRmQAEcGxVfnKDXWlplAR12tnCfqxsLBAV111Vb6LUdRYIuMSCgaFY4tZwt89lsi4hILB/wM69yhZFnyMsAAAAABJRU5ErkJggg=="
|
<image>如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()
Choices:
(A) 12
(B) 13
(C) 6√{5}
(D) 8√{3}
|
13
| 69,829 | null |
13
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAYAAABw4pVUAAAQE0lEQVR4nO2db0xTZ/vHv6dK4kK1GrvRxWMKo4SSsgwGbvwCSUW76POobEYWNEBSX2w8Bpf1l6A/jCa6jBc802Rbho84Z3SJy0gkgMqT8ShqWdjGVjZJRkN9aBVXCCXlBaw14wXt9XtReugpben/U9BPUuWcc59z7nNf5/pz7nPd92GIiJDCzM7OYmhoCCaTCZOTk9Dr9dw2i8WCiYkJ+F4Cy7LIzs4GAKSlpaG0tBQsyyInJwdFRUUQi8XJvoSIYFJNIOPj47h37x7u3LkDvV6PyclJlJWVYevWrcjOzsa2bdu4Rs3MzIRcLuft/+TJE4yNjQEAnE4nDAYDLBYLrFYr+vv7wbIsysvLodFooNFokJGRkexLDElKCMRkMuHy5cu4ceMGHA4H1Go1ysvLoVaroVQq43ouo9GIvr4+3L9/H3q9HlKpFJWVldBqtZxmCQoJhN1up9bWVioqKiKWZamhoYFGRkaSXo/h4WHS6XQkk8morKyMLl26RDMzM+R2u4PuE2pbrCRdIDabjXQ6HYnFYqqpqaHu7u5kV4GIAjdqe3s7VVVV0caNG6mxsZHsdnvQsokiaQKxWq1UV1dHEomEGhoaaHJyMlmn5gi3Ya1WK9XX19OGDRtIp9ORzWZLcM0WSbhAHA4HNTY2klQqpdOnT3N3XaT4N2Yy7lqbzcar+9zcXMLPm1CBdHZ2kkwmo7q6uogFEc6FJ8uU2Gw2qqmpIblcTj09PQk9V0IE8scff5BGo6HCwkIaGBgIWi6ZtjnQeSM9u16vp7y8PNq7d29YN1g01yeKd9Q2ODiIN954A9u3b8dvv/2GN998M2hZhmHiffqQeON773kjPbtarcbvv/+OgoICFBcXw2g0hiwf1fVFLMIQXL16laRSaUC1FkobAhGPmly/fp2kUim1t7fH4WiLxEUg8/PzVF9fTwqFgoaHh+NxyKQQq2AMBgOxLEuNjY1xqQ8RUcxP6rOzszh48CCcTie6u7shkUiCaSIYhuH+FwwCCPGrw9TUFPbs2YOsrCxcuXIF6enpMR07Jh9iNBpRXFwMuVwOvV4fVBiAj90WWBhg4luHjIwM9Pf3Y926dSgpKcGjR49iO2C0qtXT00MSiYRaWlripa0C4Aq7ZDg+sLm5mSQSCen1+qhrFJVAhoeHSSKRhBWTp4ozP1YBAnx+DKji+MW4HNv3Gru6ukgqlZLZbI7qWGEJxPeEdrudFArFitSMC8f30YU7owtLZqoA6NjF/0R2kDDur6amJlKpVORwOCKuY0Q+xOVy4dChQ9i1axfq6+tjs5UC8GgE0GgUC0vZ+NvxfXhoGeOeT+Be/hgUhvs5efIkCgsLUVtbG/w4QWKpsATidYINDQ0AgM8//zyc3VIGIgJZbuMso4SCW+vGI9Mt5GZnLj4gBmgN/4YLNxz46quvYLPZcObMmYDbgwYW4arS1atXSaFQRN05KDS3v2zgmad/Hd9HwD4aJRdnhSLxdu4wdrBarcSyLHV2dvL3DeFXlwgkUOGBgQGSSqWCvECKHU8ktcSpVxyL+liRYDAYaPPmzWE/MC+rIePj47Rly5aE93ImEtdoT0ABuN3uMLQiciH4097eTnK5PCzrsqwP0Wq1+OCDD7Br164wrWfq8ejxY1QoFUvWMwzj4xPcMN9pBcOs8axnKmCGGzE+OwMADhw4gNraWhw5cmT5wqGk9e2331JRURHNz8/HfJcIScPboNt+jwX+pnn09gWCJ4jyMW0eH+PBFXTfYOt8mZubI6VSSd99913IckEF4nA4iGVZMhgMEZ88mbj9/vZddo328Br4tjnADgtcOL6P72MWfhdu/5d/vhiuvbe3l5RKJc3NzQUtE1QfP/roI+zZswfFxcVLtgnaH+UH4/e377JIsQtuz00HIsJb2QF24Aj8ELJ4rW7ecjQ9sjt37sRrr72Gc+fOBS8USEpms5mkUinNzMxEfTekCuHd0S7OZHl/DMP4mSx++Wix2WwklUoDJk643W6+yfJWXqvV0unTp6M+aTIJmT+1zAq3e9E3zs/P0/8UKoL4D39ii7x0Oh3pdLqA25ZoiM1mo82bNwfVjlTyH8uxnEB8qa+vp3feeSdAEVeQv6PHqyWB2li0YLY4E9bc3Iz33nuPe7dB/l0HKeQ/lmNJTYNUveX8BfT/+AOuXbvGK+K5dl83G58UhIyMDBw4cACffvrp0o2+0rHb7SSRSJKaGCY0vb29xLIsWa1Wvy1haEMMxsLrp/17hHki/+abb7B///6UywgPBflFR+Sj0UsiIeKvtFgsqKmpQXt7O1iW9dtnqTYsOR4TRvdwELKzs1FWVoaOjg6/k9CiXygoKOC97VpJ/iIcfK9nZmaGFAoFXbt2TbD6dHZ2klqt5q3jTNaDBw9ILpfzNq42gXiZn58njUZDp06dErweUqmUxsbGuLbm9PLrr7+GVqvlqfxKcuCR8OGHH0IsFuPjjz8OWY4SPHRmzZo1qKmpwZUrVxbb2istlmVXaPd6ZLS0tFBBQQE5HI6kWIDlxpkMDAyQUqnk1oGIaGRkhGQyWcIrJzTBIyrhmJ+fJ7FYzEW2IgDo6+uDWq1OqHoKTaCISgjIzwyuWbMGZWVl3GBWEQDcu3cPO3bsSHrlksXs7Cx2796Nc+fOhUz+TgaB/LJarcb9+/c9C0REMpls1fqPVImoQuHrR5ixsTEqLi6G3W5P8r3iwQ2CCASCKOyMjoWM0LA4evQoJiYm0NnZ6dk3VXKM/Vi3bh2mpqaw1mw2Q6VSCVYR0cJbDF7TLNPi4Tbj+fPn8eOPP+L7779f3DcVcowDkJeXh9HRUaw1mUzIyckJWEiwuygOp7x79y6am5vx008/pfTsDd42VigUePjwoUdDvIPz/QUgiDBCaEe4N4g3ourq6hI0ogoH7/UolUqMjo5CZDKZOIEIpca8QJAJsM7v9WkoUimiigSlUgmj0QiRzWbDli1bhK7PEvhNH957CJfLhcrKShw8eBDV1dWJqFbCYFkWdrsdIqfTifXr1wtamXjpZbh9VKlIeno6nE6nRyCp4PT8u/E8SWsM93v7/74Muf/58+fxww+et35Lji38/DrLIhaL8fTpU0AsFkc1jiEReDviPDlSe32SDEapAoEG2Liot7eXsrKyKC0tjTo6OnjHWUl4E7MB4SYECsiF4/t88nA9AnFzaTp7yOz33lSpVHKZIiUlJUmubfyYmZkhiURCa4VVVD7mO6048skt3DbfXFjjceYM59QZEMiT8OnneFLtQS9aRJztEho34cuWI6g4ftGTYejH48ePwUnBp+2/+OILKJXK5TMCUxyHw4H169djrVgshtPpRHp6uqAVIpEFD28Cfz+q8SyDrwR3/v0JKo5fhMIvBNZoNBgZGUleRROEN7gSeQUiOJZHuAnglVdeAcAXhvlOK87eBI6+//7CwP8FUj94ChuvUojEYjEcDofQ9QGyX0EFgEePzQAWQlU3gWDG/+7yMWUL7oOI4vcAkwI8ffrUoyEymQwTExMBC1ES43cGCvzt+B7844svF5YZ0OM7EDE5EB27iBv/fJ9ffpU4cS/j4+N48cUXsVapVMJsNgcslJSL9nEW//jnTTx6ew0Y5iy3+baZFp08N7/S0n1XMkSE0dFRqFQqiBQKBYaHh4WrDa9BRfjkxuJ4DiLiR1z+A0BWgTAAz41vNBqRk5MDkbfbVzACWMVkmspUwWw2Izc3F0Ff4ZIAL6cIAEPw5MySaMF7w0cT4jMIM9UgIrzwwguYmpqCSC6XY+3atTCZTLxCQjhNhvtHFMQcrT5hAMAvv/yCrKwsSCQSiIgIarUafX19QtcLwKK54szWKvETodDr9di+fTsAQMQwDMrLyxfzgpIOP6U/VZMQEomvQBgiopGREezYsQOTk5O8gsnwI74uwvO3n58IFdquApficrmwceNGmM1mvPTSS57LycvLE8yPLI1iRcEL+LPChQF4ptVlWRYZGRlgmMV+bbz77rtoa2sTsm7PFN7nrLa2NlRVVfE2kNvtpgcPHlBmZmZy38o84/gO2PEiogU/UVBQgI0bN6ZMtPUscOvWLahUKu4rQUTkibK8aLVaXL16VaDqrW7IP5yHZ9Ta4cOHuWWGYfifPJqenkZOTg5MJtOKGom7ErFYLCgpKcHY2Bjv5SAvTpFKpdBqtfjss8+eyf6kZHL27FnU19cjPT2dP66T/Fp+fHwchYWFMJvNIWeqfk70TE1NITc3F0+ePFnSxpyGeOXCsiz27t0beNoHH55rUPQ0Nzfj8OHDgW/4QOHYapqeKdUINT0TUYivIxw7dgwOhwOtra2JvmGeGYgIhw4dwquvvoqTJ08GLRQQh8NBMpks4BR/z4mOu3fvkkKhCPlxsZB5pG1tbbxJMFdizmyq4J0Ec7npdkN2z1VVVWHTpk1cRqDvQyQ9d+oR0dTUhPz8/OWn2w0kJV9N8GZlr+SJlIUmkomUw0p9DzbV+HMTtjwGg4GkUmn8phr3stIn4xeCYJPxhyKiwSE6nY40Gs2Kn+k6ngSzEn/99ReVlJREPLtrRF9pc7lc2L17N3Jzc9HS0hKrn1vV1NbWwul0cjNIhE2kd8T09PSK/eRRsojlk0cJ/yjYs0ZnZ2fiPwoWiNXx2bz4stxn88KJSmMa8Tk8PEwKhYLq6+tpfn7+mQ2D5+bmSKvVkkqlilozvMSUSKNSqfDrr7/CYrFg586d+PPPP5+5J/jp6WmUlpbC6XRiYGAA2dkBBkhGQMyZTRs2bEB3dzfy8/ODftI6lJB8t600YQ4ODqKgoABvvfUWrl+/Hp8JGOKgsRxXrlwhmUxGPT09YZmvlWzi2tvbSSaTUXt7e1yvI+6zBhgMBpLJZNTU1BTvQwuGb4O7XC46deoUyeXyhHyqPO7JmMXFxTAYDNDr9Xj99dfx888/B9PMeJ86YXh7ufv6+qBSqTA0NITBwUGoVKr4X0fcRexDR0cHyWQyqquri6oPLFVMms1mo+rqapLL5Ql/9kpouvL+/fsxOjqKTZs2IS8vD2fOnMH09HTY+ws9JGFqagonTpxAfn4+NwVfwj8fmFBx+2C1Wqmuro4kEgk1NDSk9DdKrFYrHT16lCQSCel0uqB1TYQGJ30qIJvNRjqdjsRiMVVXV4c0Ack2WV1dXVRVVUUSiYQaGxujftUQS70Fm5vJbrdTa2srFRUVEcuydOLEiYCTOSdKKN7jDg8Pk06no5dffpnKysro0qVLgqY/RdT9nihMJhMuX76Mrq4uOJ1OqNVqlJeXQ61WcxN0xguj0Qi9Xs/9pFIpKisrodVqY37KjgcpIRAvRISJiQncvXsXvb290Ov1mJycRFlZGbZu3Yrs7Gxs27aNeyLOzMzkUvm9PHnyBGNjYwA8E7oYDAZYLBZYrVb09/eDZVmUl5dDo9FAo9GkXFK5IAKhCMYuzs7OYmhoCCaTCTabjTc41WKxYHx8nFeeZVnuTk9LS0NpaSm2bt0KhUKBoqKiZbs3IqlbIvh/wgmnciaCE+wAAAAASUVORK5CYII="
|
<image>如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为()
Choices:
(A) 12
(B) 16
(C) 17.5
(D) 20
|
12
| 69,830 | null |
12
|
"iVBORw0KGgoAAAANSUhEUgAAAKYAAAB0CAYAAAAPfklTAAAMJ0lEQVR4nO2daZBdRRmGn+5MJiFhCZsGIyKIS7GKIAJKoaUoSlGIpRFUUIrIEkQDKlTQm3c+BhhI2C1FNjeKRVwKscACykItqhRKRCBGUMmEARQJ0QgGhnjntD/OHRiGmeTO3KXPudPPvznnnj7v1Lzzdfftr792ZkYiUTR8bAGJxFgkYyYKSTJmopAkYyYKSTJmopAkYyYKSTJmopB0xRaQaAxJWwKDtR/nAP82s8HxnygHKWKWn+2d41ZwdwOf9PgfSHaOpOmxhTVCMmbJMbMHwc3z3j1kZpd0k33FuXAm3p8WW1sjJGOWnD5pLvDmzPvvAhwGT0LA47eKLK0h0hiz5Kz3HEKgSrVrhaTXe+8rhHBPlnUti62tEZIxS04IHB4CD8PgsQ5OyLLwZ7Oe/WLrapTUlZeY66QZ4A7Bu4vNbOk0+Jhz4WCZnR5bW6MkY5aYlV0cAMyku/sOgIrZAwT+5UI4MrK0hknGLDFZ5ucDD9rixU8C9PZqH5yb65y7KbK0hkljzJIiaVfnWBBwd0k62MMewbmFwbkrQ5ZdEFtfoyRjlpdNQuCjEDJgVgYrCeGD1tPzaGxhzcClrRWJIpLGmIlCkoyZKCTJmIlCkiY/JULSXsACYImZrYmtp5WkiFkueoGFwNaxhbSaFDFLgKQtgKXALcCfgCfjKmo9KWIWHElvAa4Afm5mVwLPAzvFVdV6UsQsMJLeD5wAnJ0nBAOwmtyYD0UT1gaSMQuKpGOBg4CTzWz1iFurgJ2jiGojyZgFRJKAzYDjzGxo1O2VwAHtV9VekjELhKTZwAXAIzb+WvHjwGxJ3syy9qlrL2nyUxAk7QhcDdxhZpeM9zkzWwdUgde0SVoUUsQsAJIOBE4Bzjez++p4ZC2wI/BUK3XFJEXMyEj6DHA88KU6TQnwBPDGlokqACliRkTSmeRd8nFmtn4Cj/YDpd9wtiGSMSMgaSawDHjczBZNool+4NCmiioYqStvM5JeTz7JudvMlk6ymX8AMyTNaJ6yYpGM2UYkvQu4GPimmf1wsu2YWRV4AZjXLG1FI3XlbULSfOBw4MtmNtCEJleTz8xXNqGtwpGM2QYkfYXcRAvM7IUmNTtQa7MjScZsIbVSgEuBZ8zs5CY339EToDTGbBHKq7BdA9xvZue04BWPAVu0oN1CkIzZAmpbIC4DrjGzH7TiHWb2DOAkbd6K9mOTuvImI+lw4EhgsZm1uvjAc+QrQA9u5HOlIxmziUj6IrArcLyZPdeGVz5FPgFKxky8GkkeOA94wcxOaOOrHwPe1Mb3tY00xmwQSduQT3L+YmZq8+v7GSf9rfbPUlpSxGwASbsBS4CrzOzOCBIGgE3HSRre3qQTM9gT+BXggG2h606zyu3tFjpRUlGtSSLpw8DnAJnZwxF1LAMuNLNX5Waa2eUhhONDCJsBrgvePeTcTcG5PpPOb4O2GeRnDz0HbMnLgfBF4L/kQ5/RW0eAFDEnhaSTgL2BE8xsbWQ5axknaTiE7D3O+et7enqer126w6TFwLekvhvMFjdjaXRDbOI9n80yTgX/PcgGADwcEJzbO4Q5+5BvR34VyZgTRNK5AGa2ILaWGsNJw78debFPmotzu2WweOR139V179DQEPj17wVa8h3rMGa21kxPOOfmhrDF2WaL1tW0/ex/3mvJkkVjmhKSMetG0hzyjWL3mdnlkeWMZBXwrtEX13s+TCCQbfGbV96pTgPwuO52iAuBo4B7h00paWvg3zOnT+/d0HPJmHUg6a3AWcD3zey22HpG0Q98ZPTFEJgf4B6zRc+OvJ5l7AKOzPt6t3FMmuukGTj3/uDcOZJmdMH+3ne9V6r0kEf6cSn1VwrtoFYNo5e8GkbRTAnwd0YlDecZ8u59OHfj6A+HwKnAcqtU7m+1sJVd7EtgEzJmAKcPOXcLZH+q59lkzA0g6TjgaGChmRWyJMtYScNdXewLzKC7++ZXflZfA7dTCNM+3g5tWcZ8HE+YaQlwtvf++izzD9TzbOrKx0FSDzCbsathFI2XkoYlzXKOSgAYHOyWtAewk4cPBefeHELY06zSluTiENwRwbmbAcws9Pb2XgrV/nqeTcYchaRNySc5D5tZT2Q59TLAy9t554XAryDcCbwPmAlUM7jRenp+3S5BfX3aEdw8vH9p5l+pVP5c7/PJmCOQtBNwDvBDM7s5spyJsIraBMjM/kr+O0RD0mbec1YIQJXZkrpqQ466SWPMGpLeSb682FMyUwIsB4q0Y3J6lnEthIOgup5J+KypS5K1yre7N63B1pMBz5KX+1sIiHxz16yYoiZIIO+uLyFPTl5Bvi7eLoaA35vZ/5rZaLO78s0pT4WIKvkf9RTgj8BVwHaUs/TKLPJiroeQ/w3aacz1wANAU405pZM4JPWSV8O4MraWRpF0MrDCzO6KraUZTMnJj6TtyRN7b2mk8EDBeJR8GNURxpxykx9J+wEXAd/oIFNCns3eMTUzp5QxJX2SfEx5mpn9LraeJjMAzCp75vowHfFL1IOkrwIHklfDeDy2nmZTqzQ8RIdEzY4fY0rqJq+GsdrMvhBbT4tZS4dUGu7oiClpO/KNYve1qBpG0eiYSsMda0xJe5N/4XyVmV0bW0+b6Ae2jy2iGXRkVy7pCGA+cIaZdWSZvnFYRYcU2uq4iClpEfAh4PNTzJQwRtJwWemYiClpGvmX5uvM7MTYemJgZlVJg+RJw6X+p+yIiClpW/JJTplyKFvF03RAQdfSR0xJuwMV4Aoz+2VsPQVgZNJwaSm1MSUdChwDVMzskdh6CkJHVBourTElLQTeQTGqYRSJjqg0XMoxpqQ+YJ6ZLUimfCWdUmm4VBFT0pbkG8V+X7BqGEXjOWAHoJBbjuuhNBFT0tuAbwM/TqbcKE+RZ7SXllJETEkHA58HzjKz5bH1lIDHgJ1ji2iEwhtT0gLg3eTVMJ6Jrack9AP7xxbRCIXuyiUZ8FbyahjJlPUzAMyW1M5NaU2lkBFT0mbkk5wVEeqalx4zWydpCHgtJc3NLFzElPQm8q20vzCzS2PrKTFrKfHSZKGMKekg8kSM80tYDaNoPEmJlyYL05VLOgb4AHDKWIXuExOmH9g3tojJUoiIKenrwF7kk5xkyubQD2wTW8RkiRoxJc0ClgH9ZnZqTC0dyEtJw2b2YmwxEyVaxJT0BuBq4NdmdkEsHZ1KrezfcNJw6YhiTEn7AxcCl5rZTTE0TBFKmzTc9q5c0pHAYcCpZrbBkwsSDVPapOG2GlPSGeTbS48zs8F2vnuKsooxjlopA20xZq0axjLgn1OgGkaRWEV+lmPpaPkYU9LrgO8A95rZua1+X+JlhvMLypg03FJjStoHuJR8o9h1rXxXYlyGk4ZLRcu6ckkfAz4BnG5mdZ3tkmgJT5HPzEuVzd4SY0o6FniLmR3VivYTE+IBYM+NfUjSR4FdgCr4mZA97b1/VtL1rRY4FhM2Zm9v7+7VanX1WEuHkj5Onq62BlhaK5RamPX4KUggP1f9GEm3j1UyR9JrnHM/8t4/kWVZH/AYZDs45+7OINoWlgmZpk/absi5n8LMg8f5yHTgP+T1KD0FWYufwjjyMebAWDcvkTZ1zt0DLJf06RG3lvf22jeyjJaf0DsedRtTknfO/SQE5sJhY1bkNbMbgBuapi7RLHrGuvgfz9IQ2IEwZ7dX3/U3ZFn16RbrGpe6jem9P4kQtg2OAevZreiHfiY2Qp+0TXCchHOXW09+yP1IKpXKihi6hqmrqzXTEcA0XPiZa/JBQ4k4VLvYi+DwUMh6Txs1Zp+0o3PTDpF0WQi8jZLuIUm8Ep/5OQBZ5ldHljImGzSmJPeicxcPDYVBSScSeHtw7m/tEpdoHVmW/QEXwGfvGH1P0ua1FbtobNCY3vsznHO3QHYucBuOTXyeSpUoORWzR53jCkK4SOo9cPi6pLd770+Gmd0x9Y07+TGzT4GfK1XOA1giOY/bKstPRkh0AJKdaNIjGVVJeghY471fl2XZ980W/z2mtjEPOZX0Wufcb4JzN5okSXM8HJ3BaeBvhezCtMzYWUjaGhisHWQVnfEi5poQwp6EMFxk/vkMbgQuh2xT8iOVEx2Ema2JrWEkU/pY6ERxSUuGiUKSjJkoJMmYiUKSjJkoJMmYiUKSjJkoJMmYiULyfyzuAJlRhJinAAAAAElFTkSuQmCC"
|
<image>如图:过△ABC的边BC上一点D作DF//AC,若∠A=40°,∠B=60°,则∠FDB的度数为()
Choices:
(A) 40°
(B) 60°
(C) 100°
(D) 120°
|
100°
| 69,831 | null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAGsAAABuCAYAAAAgcu2/AAANoklEQVR4nO2dX4hbVR7Hv7MWG2GxYUGbJ70PnXJXBrlFIdlM2bk+LE3rLr34YDNPRnGTFLdOXHWZATEIlRHcNckipJ2XOL7EumCmLCbzIEwK204KCxOkOmkTNnmRpE8ZEUyqxd8+TG96k9wk9/9NpvOBoZ3c5J7f5Ht+v/PnnvM7U0RE2Gci+JXdBuyjnH2xJoh9sSaIfbGk5BJIVOw2YjD7YnXIIXTqc7uNGMq+WPfIJdYA7wyOHrHbksHsiwWgkgjh1vMCcM1uS4azL1YlgQ/xNhZwCze8T2HabnuG8ICLVUHiQ+DthXuxb+YoxjgKYupBnsGoJGYxHZHEvmAWdPGkfQaN4IDdBthGJYEvj15Fp6rmQpi9Nc5B8AENg5VcAqEvj2JB4kSVWzfsM0gp9ICRDYIAEOCleJmIqExxr/gaCMGs3SYO5IFusyaNsW6zSqUSarUaCoUCbt++jVKpBADI5/Oy73e5XGBZFgAwNzcHp9MJjuPAcRycTqdFVpvHWHlWqVRCPp/HlStXkM/n4XQ6wTAM3G53lxA8z8t+vtFodAn6/fffo1gsolgsgmEY8DyPubk58Dw/keLZLlaj0cBnn32GixcvAkDXF+pyuQwrp1gsdirCV199hccffxzvv/8+/H6/YWWYjl2N5ebmJvl8PnK5XBSJRGh7e9uysgOBAD399NN07NgxcjqdFIlEqNlsWla+ViwXa3t7mwRBII/HQ7lczuriqdVqkcvlops3bxLDMNRoNCgWixHDMLS8vEytVstym5RimVj1ep3C4TCxLEuZTMaqYvvI5XLk8/mIiCgSiVAsFiMiomazSYuLi8QwDKVSKdvsG4bpYkm/hGQyaXZxIwkEAh0x6vU6MQzT5U31ep0CgQBxHGdrpZLDVLHS6fRYhRcxBErbJ6l3Sdna2iJBEIjn+bFpz0wTKxqNkt/vH5s/lKg7BIrIeZeUjY0N4jiOtra2LLBwOIbPDbbbbczPzwMA0un0WI1nLl26hDNnznS95nK5IAgCLly4IPsZnueRyWRw9uxZrK2tWWDlEIxUvlqtksfjoXQ6beRtDUEuBIqM8i7x84IgUDQaNc/IERjmWYVCAfPz80gmk2M50Mzn8wOnnUZ5FwA4HA5kMhkAwPz8PNrttlmmDsYIxVOpFPE8T/V63YjbmYK0FyiHEu8SSafT5PF4LG+PdYuVyWRIEISx6O0NYlgIlDKoZyjH1tYWeTweS/9uXWLZYbAW5HqBcqjxLqL7FdUqNLdZjUYDZ8+eRTqdhsPhMDIyG45cL1AOJW2XFEEQ4Ha7sbS0pNdEZWhRuNVqEc/ztLm5aXTlMRylIVBErXcREfn9fkt6wJrEsso4I1AaAqWoabuIrKu8qsVaXl6mxcVFM2wxhVG9QDm0eFe9XiePx0PValWdgSpQJZaWWmonakOgFLXeRWR+h0uVWOMyR6YUPZVLi3cRaRNZKYrFisViFIlETDHCLLSEQCla2matIitBkVitVosYhhnrGYpe9IRAka2tLeI4TvXnotGoKXOIisSaRK8yqn0VBEH1Q0izKvdIscx0azPRGwJFtHqXGRV8pFhmNphmYUQIlKLVuziOM3TV1lCxqtUqsSw7cV5l9BBDq3cZPXc4dG4wkUggFAqN/dxfL0rnApXCcRwYhlH9pFgQBBSLRdRqNWMMGaTiJPYAiYwPgSLj0DMc6Fnr6+vgOM7QJcxWsL6+Do/HY/jaD63eFQgEsLq6aowRg1TU0qiOA2ZOMmv1Lp7naWNjQ3f5smK1Wi1yOp0T17Gwwm4tldiobrysWBsbG8TzvO6bW006nSa/329qGVq8S6tH9iLbZuXzeczNzRkTZy3k8uXLOH36tKllaGm7OI5DrVbDzs6OvsLlFDQqxlqJlaFbi6cY0QeQ9axisQiO4/TVAotZW1uDz+ezZEyoxbvcbjeuX7+uq9w+sRqNBhwOx1gte1aCFSFQSjQaxXvvvaf4/QzD6B4c94lVKpU6e3cnhXa7jfX1dQiCYFmZar2LZdnOfmet7AmxrAyBUtR4lyme1Wg0cPjwYV03tRqrQ6CIGu9yOp1wOBxoNBqay+sT6/bt2xM1xWRHCJSixrscDoeuDQ19YrXb7bGbZa/kQpidncLU1O7PbCgHMZXtCy+8gJmZGdtsVutdesZafWLt7OyMUU+wglxoFtPngXdWCUQEKmcxs3IK06EcAODRRx/Fd999pyu86EWpdxkqFt25ix93fsBvfn1I8w2NJBeaxqkbL6J89SJOilkbj5zExWwQWFlDDsCFCxfw7rvvWrfeXAatM/Jq6RJr6uABOBwO/Hj3jqmFKiIXwqkVL+KrC0OzazqdTgQCATQaDayvr1tmXi9qx11a6AuDhw8ftjWk7FJB4vwKEHwHCzJKyeUGTKVSeOONN/TPv2nECu8a+lif7tzt/Mj9Ln1t1GeVXtuljG+vAa/98Q8y76tg/V//xSN/Pg2f5HWXy4W//mUBS0tLfTZbxSjvqtVqYBhG8/37xHriiSc6g7epgweG/kt37mLq4AFMHTzQJ6D4upprHSq3UH7o95j+7YFOWZ3P//sfOHf1WSz/7VTX5+nOXbz66qv4X6mMK5v/6SrLKsFM967emd1//r37Qdkv7Z9l/y/+Lv0Z9j4l1+6Tpdceepj6k2ruvi7Nttl7b3FF1o87P4wowxyGzcjLfN2q6POsJ598smtaZFTNlHqJcZzEn14BVs4nkLs3oKrkEpidOoVvX8mgPCRDNMMwCIVCiEajBtqjnEHeZcg0nqiaWPtKX39DLMt2KSpeU+ox+j2L6Jd2ieJBLwGgRx56mOANUjxbVnzvud8d72xus9KziOS9a/haxjJl40Hy3svT6w3GqUxZCvaEli6xxD8KMu46+Ev9WfaaXHgcdW1QmFXy+d7XSl9/Q+5jz1Kr1Rp4HzPpfdg4cB1GOU5eUaByz2vxctdbZYOo3D4sq/9YI7Bzl2avd8mvvc9ScEDG62zQ29dmy3bdeZ7vShos9qomjUgkgnw+j2KxaHnZvW1XPp/vy+1bSZzHCoLIyrTB00/N4KneMwHkaoW4RntYKJsU7MzVIXpXtVolhmF6ru56VW+oG8ZQzzKnp2ctHMfhxIkT+OCDD2wpm2EYfPTRR/0Zsyu3cAPAjIoDu2TFElN02xE+zGBxcRGXL1/W/VhdC0tLS/jkk08MWdo3cLrpzJkzuHTpku4CxgGHw4FkMomXX37Z8rI//vhj/PTTT3juuee6Lxw5ihkAN27JHDJZyXXGl10Mio+TuuNxGIuLi7S8vGxZeel0mtxuNwUCAdnr5biXAC8Fs/fbrXI2TsEB7djQ+Y9J3ZwwiFarRSzLmppYRKRarRLHcXT8+PGhC2bLksEw4B0oFNEIsazO+mUFVqzjF9MDffrpp4ascRcZ+ohEEATUarU909EAdnu6LMsqznymhaWlJZw+fRpffPGFsXOUo9Q0agfEOGHmrk4xGpnxvSmas99rbReROXmo6vU6sSxLzWbTlM0disTai95FZFyuDBFRILPaesVPwyYxH8Yoms0msSxrSDiUbvQ2KyGZYrH24riLyJjdktIeZiqVGjiu0ouq58x70buI9G0ar9frxHEc1et109NRqBJrknLjqkH6hatF2pEwOx2t6hUcVqQXtQMt4Uv69NeKB52alttMSj53tfh8PsWn5W1ubhLP89RqtSyb6dG8NmovTkVJx0nDaDabnYeKVlZcXQvZJi0TtRKSySSFw+Gh7xEnCaxuEnSfRTJJOd6VMmz2QWyn7Ohs6Rar1WqRz+cbi/McjWJQnsXt7W3iOI4ajQbxPG/5abCGHXYWDocpHA7vmU5H7zo/MTNnJpMhjuNsGb4YejJdMpkkn883Vuc86sHj8XRECQQCdO7cOVuHLYYf0DlOB1rqRQx7Kysr9Mwzz9h+Tpgpp6lWq1XieX5PPFZ5/fXXyeFw0FtvvWW3KeYdfdtsNkkQBAoEAhM725HJZOixxx6jN998025TiMiCE8BTqRSxLEuRSGRi2rKNjQ3yeDwkCMJYVTTTxSLa7UnFYjFiGIai0ejY9hi3t7c7p36P42S1JWKJNJtNikajxDDMWI3L6vU6BQIBYll2QDtbprhXXC4mWTaWVb5O3QgsFUukXq9TOBwmhmEoEokYeqqAGsQHjwzDKHi8vyuYuA2nnA0S4CUV+wp0Y4tYItVqlWKxGLEsSyzL0vLysqnhp9lsUiaToXA4TE6nszNVpiwsZymIIHW2TJXj5LVYrCkiIuMWtmmnVCphdXW1s5+K53m43W7wPA+n06k6s2i73UahUECj0cD169eRz+dRq9XA8zxOnDgBv9+vLu1RLoSpNQF08SRQySHx0nl8PvMOrg7Z32w0YyOWlHa7jXw+j0KhgCtXrmBnZwfFYhEMw3TlkeA4DocOHcLNmze7Eq0UCgUAgMfjgcvl6oiuJ5VsJTGL6ci1e795Ec+uYuGk8u06RjCWYg2iVqt1ZRIoFovY2dkBy7Jdafc8Ho/BWdIqSMy+BKxexcIRUTggXr4qmwHHNKyLuBNMOU5eb5zuN0/qdy0ageYTwB8kKl9+Drz4/P2EXxp2LRrBvlgjqWBXq3vCVHIIvRTBNQQhWNe32MVSP540ssGegfD9pCIWj4eJaIy67vuMZj8MThD7Yk0Q/wePAYq7q4eLiQAAAABJRU5ErkJggg=="
|
<image>如图,点A、B、C在⊙O上,若∠AOB=130°,则∠C的度数为()
Choices:
(A) 150°
(B) 130°
(C) 115°
(D) 120°
|
115°
| 69,832 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAABqCAYAAABzj0V/AAAamUlEQVR4nO1df1RU153/3DeoScROfgxlooMkMvxQ7IlSNayhQQr+SFWilT3Yra14mshGNj0kAaOtm3i2nIYEa+0uUdTdaHP6g7ZENm6MgLiAsQ0H7YmngfBjGMVCImCSVQfPUZl3v/vHm3nz3vxiZpiBgfg5h6Nzf7337vfe76/7vfeCJgE458Q5d0lTQhTFUT9H2Ya6fdGWZiWRrC75dYdeIgDS39NFJFIXFRXtH/X7+AMBkwCMMRCRS5oSgiB9qrIc59xjm+7y7G0o2+cgAIItTQOQRs7nF2vAGEN5dwKICEQEcW8mNCwBQuIcP75w9IgY06eFAEQExpiKCCOVtcNbnZHak58LG8E5l+oQByCAMxPWxz2F7O0H8e7rW6U6AIQ5q7D/5dVgjz468scFEROe0HbCORPRHXwp4z8kwkoDg8sD5PThgziO1TC9/oz8XOIcTBBgjEsCHjUG+T28g5Ezz/uKQJ6BPqaPlAcCOCMIYODoxHqWhMSDtXhj6wpHfRAYGII91HzBpJDR7uSpc5rzb08Ec05XzgN3deyylxhkNo6Ll3AcwJy4R+CoziGME5GBScC6ATUBrl+/jgsXLqCjowOfffYZmpqa5Dyz2Yy+vj5VXYPBgLi4OADAlClTsHTpUsTExCA+Ph6LFi3C9OnTvT7bnShQDg7GJNZun1MkckBgIRAh3jHhWXdfXx9Onz6N+vp6NDY24sqVK0hLS0NMTAzmzJmDJUuWIDIyEgDwyCOPIDY2VlX/8uXL6OnpAQDcvHkTLS0tMJvN6O3txdmzZ2EwGJCRkYGsrCxkZmZCr9eP+E4cJqxnCUioqMFr+SugIcgznsw1ONgzB/+cmRD0vvCKMTXmPMBunzrbvp7Q0dFBRUVFZDQaKTo6mjZu3EgHDhygTz75xKXN0aK1tZXKy8spJyeHdDodJSUl0a5du6i7u9trvZOHXiQAdKC+U04z1R0kZBeTb18ZXIQFoX3B4OAgVVRUUEpKChkMBioqKqL29vYxf4/W1lYqLCwkvV5PaWlpdPjwYbr+f9fcOGys1FH/psNRAlD29oNBG4D+IuwJ3d/fT4WFhRQZGUmbNm2i9957T87zlQOECu+88w7l5uaSVqulnTt30uDgoNfy7jx4Y4WwILS7j+/t7aX8/HzSarVUVFRE/f394/BmaniajX//+9+poKCAtNoHqLCw0OVd7d/HudWWENLXdIuwMK+UGujQ0BB27tyJhQsXIjo6GiaTCWVlZYiOjgYAF1dnqKE0yzyZZLNmzUJ5eTk6Oztx7733Ijl5Ll599VXcvn0bgKSIATYXKYBxsbHGfmy5hyiKVF1dTXq9nrZu3ToiGxwrjCRTZUVSkdbf30+bNm2i2NhYqqmpca1DnMQxntZhYUf39fVhy5Yt+Pzzz1FdXY3U1FSXMl69UiGEcjHE2fYlIsc7kQiCAMYYoqOjsWDBAnzxxRf48Y9/jISEBLz11lvQ6XQq//hYYtxZ9/nz57FkyRKkp6fjo48+cktkwD3bdPZ2kdPKlLfVKX/hzsHBGJNVamVXcs6xaNEi1NXVoaqqCgsWLMDixYvR1v6J8u2D9m4+YbQswV8tUln+6NGjpNPpZPY23lp0oHBm75xzKigoII1GIytmVVVVFBUVRVVVVT61ocRL2SBAUJlqwGoyke+m2pjIaOePsFqtVFBQQPHx8dTa2joWrzBmEEWRmpubSa/XU1ZWFlVWVsp5LS0tZDAYaMeOHX61yUkidp1Z6keRrLT/5dUErKZ2W6DDSBhzZezatWu0atUqSktLo2vXrsnp4+VICDasVislJydTZWUllZaWUn5+viq/v7+fUlJSKCcnhywWi9s2nPtCpC76TvZLsvrGSeIaLz4tOWF8QchkNLkxg9ra2rBo0SLExsaisbERWq1WlqPjoWiFAnv27EFMTAxyc3ORnp6uWlQBgOjoaPzlL3/BPffcg9TUVJjNZlW+Uum0983FU6cRkZQgqXAkWWeMMcQlrsLxThMIwyO/mJ8DdkR4krM1NTV0//33U3l5ebAfGTZob28nnU5HPT09RCTN7sjISJUDRdk/r732Gmm1WmpoaPDa7pvFa+hAfSdZrVaVWVZ36CVC9ks+vduYsO6PP/6YtFqti03pjl0rO2KisfMnn3yS9u3bp0pbtWqVSk4749ixY6TT6TwukojURasFh+I1rCD0/pdXu2Xd7votqIR2F3k5ODhI8fHxk3omE0kWREpKClmtVlU/KOW0J25XUlJCycnJbmW2tft9F2KKokii6X0CQBV1Zp/eL2QzWhRFslqtlJWVRdu2bfOpvB0Tzcy6cuUK6fV6amlpcclrbm6mpKQkVZq7Gff973+f1q1bR0TOocJFVFThxAmJU3G2FDrsHiGe0c4oLCyk5cuXk9XqmwkwUZGbm+vRZLp16xZNmzbNo4atLJe65HF65ZVXpASREycTrQaottvefyKJ5pNyfLg/CBmhjx49SnFxcWHjsw4VampqKDY2lm7duuWxzOOPP+7e5y2KRCK3/X+Yent7yWCYSceOHaOuunJiAMHufHM44ehAfaffXC8khG5ubiadTjcugQGhhrKDb9y44bJw4Y4AO3fupB07dvhEnJaWFtLpdNTW1qZKt+8ACXQxJOiE7u3tpZkzZ7odwZMFdhlbWFhIeXl5JIqiWyLa02pqaig1NXXEdjm3EudWqqo6RrGxsTI3tBN3NFZI0AmdlZVFpaWlwW42LKAkZktLC+n1ep9E09DQEE2bNo1u3Lght+F5cEgzd9euXZTz3Q1u8wNRVoNK6MrKStnEIJp4drCvGB4eppSUFDp69KjPdVJTU/3icjk536Xo6GiPdfxl4UEhNOecLBYLGQwGtybGZIByFu3Zs4fS09P9qr9jxw6VZq6a0aIra9br9XTkyBFKTEyUFT3nkCQ5NMkHBG1GFxUV0datW4PVXNjAmSv19PSQVquV3ZzO8OYC9ianOefys9rb2+nhaD0REeXm/iOVlJS4tO8vtwwKobu7u0mn06lWoyYKfJV39o5dtWoVvfbaa34/x2Kx+GRPExFVVFRQbm4uEUmrXQ899NCogyODsmRUUlKCbdu2QavVBqO5MYWvW2MEQcBvf/tb9Pb2ori42O/nREZG4rHHHsMHH3zgkuccCdPQ0ICMjAwA0mrXD37wA5SWlvr9TBVGNUxsI26izmZfYJ/Jg4ODHt2cvqKwsFDFhj1Br9fLPghRFFV97OxL9xWjntGlpaV45plnJuRs9gX2teHt27dj48aNWLx4sV/1lbM1NTUVZ8+eVeWT07p9R0cHACApKUl+fnR0NDZs2IC9e/dCo9EEtkHP76GhwODgIGm12rAIrg8lGhsbadasWWSxWBSar2+zSlmuv7+fpk+fLpuf7tpQymcluru7KSoqyicZ7w4BzWiyjcLf/e53WL9+vRxcPxlx+/ZtbN68GQcPHkRkZKQ8m3ydVcpy0dHRiImJwfnz5z22oZTPgKOv4+Li8MQTT+Cdd94J6DsCIrT9cJijR48iLy9PlUcTexeuC3bv3o3U1FSsXr1alR5IKDER4Vvf+hYaGxtd8uztNTU1IT09XS6v7M8f/vCHOHLkCIjI/+f7M/2VtttHH31EsbGxqvyJto48Etra2kin0wVVNFVWVtKqVavc5rW3t5Ner1elKfvUarWqQpX8gV8zWhnA9+tf/xqbN29W5Y/1Lv5QQhRF/OhHP0JJSYl/ookAe3C+O962bNkynDlzBlYuuuQ1NTXhySefVKUp+1Sj0WDTpk04cuSI7+8jv1cA4JyTwWCYFMuQnjxM+/bt89vN6cn97Lw/KykpgZqbm13K5ebmUkVFhddHuItY8QU+E1rJQtyxmIkKT1t2ndfTgymW8vPz3a7wKe1nT3AXWeoLfGbdShaiVBgmOpTfRTbF5/nnn8e2bdtkW9a5nDuQrDSNrCRlZGS6KGTO9rMnaDQapKWluVXovMEvGW3/GLsJQJNEw7Z/B2MMf/jDH9DV1YWf/OQnfjSgHAgjd+kTT/wDPvzwQ5Xm7GnyuNOuly1bhoaGBt/fDwhMRuv1etXBMBMZShn95Zdfkl6vdys/fUVxtj22y7EpLnv7QelYC1sZzrkLm/ZFPtvx4Ycf+i2n/SZ0T08P6XQ6f6tNCOTn57vslfIEbzL7QPHTVHHKJJUjM60FqPhgrapMbm4uHag4JP/W6/XU0dHh8/LjtGnT/Fpf8Nth0t3djeTkZH+rhT3+/Oc/491338Xrr7/uU3kXma2QYpc6CZlZ0um9DHPwVPEadJp7VMWXfTsDjQ2nADjkc2Jios970ObOnYuuri6fygKAQOSQUZxzle1nPlWBuktW1cd0dHQgPj4eRK52YLjDkzfp9u3bePbZZ7F///7AF2dsdOfmOrxBCTAqZPXFjveQGPeI9MPWwRnpy9DYeAaAQz6TB53H3XvHxcUpCG2z21XVnY7EZMx2tjQIjDkOXeAw4cUVzwFcMXKZNKOTkpIcB69MIHiaLT//+c+RmJiI9evXAxidG/d/T59C8Zrl8u+Kl7Ox539WY+vWLCmBSZMpPj4ejDF0dHTIyq3y3PGRDsmxz2gCABtjLl4nHT0p/UmrXBWnbYPBJkhUEIlTxfYiWrt2rby5yy6TVj61Qj7ry5+YpfGEN7ln3wHZ29s7Yllf4FDGbH+KkwKd27YrYJ7sZ5d90orfv/nNbygnJ0eZS0RERWsdAf6m2nICBKo1cdtQcBI3pw8XgzKzwE9wMNvgto+2gYEBzJo1C5xbQWxi7GkWBAGiKEIUXcVNXl4edu/eDYPBIO9NDnTBgsx1KEOx48RfItB/vyF3r+NgG+mfjIwMHD9+HIB7+9l5Jit/GwwGXL16VSFCBXCY0H5iNbIyjWCMYY4xDmC2/efOspZfrEEdX46tRsKJtXMRpyAmYwxDN25ixozpEISIcTldJ1BoNBpoNGpxc+jQITDG8NxzzwFwdKS7axlGAmMM5osXkZ1kVPu4bV0ktcVVaenp6Th79mxAzqf77rsPFotFJUK762qheXGtrB9sf+EpZG9/E1lGDjgbCcXFxRIjMJ+k7CLJrlOaEnq93uZ+Eyd03PbAwADpdLqgnqFSnA2qU2xz9sVt6ovbk8iVjbe3t7vY0vaDZmGz42tNjudHMNjPkwZOHS5CWdkvUFZWBkBA9vYDLkswX375JX71q19hypQpfo/CcEBPTw/ef/99WCwWJCUl4Y9//KNLGfL3SoZrPfi3f38bAFB2nOGfnt8F4wOexRpjDJxzMMbw0EMPobi4GCkpKXIeqc77dr0YBgAsFguGhoZUafXv7UWtiWN5HFD/n8VYES+g1kRYYQQiAEG6JsB8EnV8OYj2AABMp97EoYuxAIPq3Pg7d+5MWCIDwIkTJ/DFF18AAAYHB+V0ZYf6t9wqAPfPxqv/+op8FKQExwRSlQV33LHBODZs2KAq4UxU59/2d7vnnntgsVgcesXFGvyCFWGPUcrPfDYf2Vt/gZqGWqwwrpS0bmv3+4Sni4hbrWS9PUzW28NUd6CYtle878I6ED6nSgaExMREmb2lpqba2Kv9WKeJEzhx7do10mq18glFdYdesm2Yt32L+SSBOc4Lh3RelfThdSZOxEXanj2Dptv4/Npih/+Vc06RkV8LOEBtvCATkBPV19dT4twkWrBgAZ354MMJRFo1+vr6yGAwyL+L1oJqLw4TEdEd3knZ9kPnRCsRiQSXqEYuknjbSpy7X0d3KGMTBIqP8G1NOXwVTKVCZlfGuurK1Xa7fcO804kIEcqoRiJSSGMC3RElg4AJEKYIgChC97UHYLkxhKjor0MgAh+WPD1Mo4GgsdsSXE4HBAhTFYaYtzyVcFKUsz2feaxvf1cmveew7b0FDTQaAr9jBUGQfkfYuoRJ1xO5Pl0I0f1Yo4fSjh4aGsJ9992H+OUFICoA4F2JFJQxTow5BD/ZOo3B0clMI+C+yHsxdNMCAQBZATY1ApqpGjCR23ytBBomsCkR0EyNgCBwcCvJrXrOU0JZTgMB3PaKnuozsCkSwfkwAVMjoJkigHERohVgU6dCM0WAuX4/7mUMzHZLzdM7DrvtlHAksjNu3ryJGTNmQL06wcHhfg1CkEa266I5AwAmgGnIQQzRiqivR+HTTz8FOIETB79jhXhHlB5IkNIZk50CTCOAcbKNJy95SnACFwRI/c3ApkSACb7UZ46Zb/8dIf0+sD0HS9bX4W9clMJlyQTh9Xw8/fKhCRlA0dfXh6ioKBVHYkwDAWqnEOfSopRARGDk7PJTd6bAuc2lp0FC0lyYui9KxyQLGmimRsh/shPNW7/52qfkZgD4U1+BAzvWYFtXHD6//g6MEEAkgsGIPXXlOP7GuzAzcpkZ4QJP7tiuri7MmzdPGrRw9JXzoBUE6Uh2wb7SQVYrrFZFFTlInAEagA+LIMYQZzSirfVvECI0iOAiHGOEbPdvMgjgINHeDkCCzRL3lqcEgzT4/GnbA0yn3sS210+gdk8pwAkEclp5YyCyHZYu91H4+PA9rbh98skn0goYmHxDHidXB4tDm7GDMTDOwYchyTvFDa5MI0CAAKZhSEpKgslkAsDAIgRwqxXiHSvEO2RrTZKXEEUpXQSECDspvOUR6I5VIigTIPjYtj1ih4alQWq9bQUpfv/Xmy9j7Y43sTyWwAQGGnaM/p6eS7YukNibGEYzeSR0d3cjMTFRtSAlyHd3KG7UVTjbfQAnbpVMk3APJVI6Pe7wTlrjdMmYEkVOxyDb6zqOjghfK9vfUCKfCM2tIim/OZyCA70trPCLNQTmONBcTieS7c+aLpGIHAe7ye0SD1tnSiDBgV6FEdlYJ4GBMYegT09Px5kzZ8JCW3W2g1Xv9IgRawgwX+qW/PkQQSIH590oWvEvyC6qwMp4Adwm/53bDQcjy50yFkhcvVdCswibvapRbxXNyMhAQ0NDeNibTgRSvhNjcfjOy6vx3H8cBoEgkAZ0uRYRmnhg+0FUlz0jNSEIkubqMnDHX2a7U8YaGxtVW2t9gq9TP9y35HButd1BoE4TRdF2+Yh6nVbp/5bKOk4FCmfZPKZbchITExERESGHqYYDGNPY7iBQpwmCgD3vKkJ7SMSKOMXdU7JSquQMPCzEkjucP38eBoPB78MHAt4In5OTg9///veBVA89yPX/dkIDkOOolKxZEBxs0h5BGY6orKxEbm6u3/X8uihcebHHhQsXsG7dOvmS7bsIHez9Looi9Ho9/vrXv2L27Nl+tRHwRvjHHnsMDzzwgMstMHcRfNj7/fjx40hOTvabyECArJtsy2F5eXk4evRoIE3cRQB4++23sWXLloDq+sW6nXH16lXEx8ejs7NTWklR3Nc0We6xCheYzWakpqbi0qVLiIyM9Lv+qKgRFRWFLVu2YN++fSrC3iVy8FFWVoaCgoKAiAyMckYD0rrowoUL0d3dPWlPDxxvDAwMIDExEZcvX5b72F+uOeqpN3PmTKxZswZ79+6V08LVBp2oKC0txZYtW1QTyV+uOeoZDTjkx91ZHXwMDAxg/vz5aG1tlZ0kgehAQSE0ABQXF8NisaCioiIYzd2FDRs3bsQ3vvEN/PSnPx1dQ8HxwEoHjzsfcxzOPuNwgqd+qq+vJ6PR6PVOLV8xakIr14Ptl6dM5M134YJbt25RUlJS0K6VGrUyppQVubm5ePDBB1FWVhbQHuO7cKCkpATz58/HypUrXfIC6tugDBcFpGv3DJP6grNQo6qqimJjY2lgYICIPN+R5Q/uXlkYJrCLO/uVhR9//HFQ2w/pJaRGo3HSX0IaTNi54bFjx4LedtDMK3d44YUX0NbWhpMnT7ocK3EXDnDOMTw8jGXLlmHlypXYvXu3nB4sd3LICM1tuzueeuopJCQkoLy8PBSPmTTYtGkTbt68ierq6tBs8gsme3BWGERRpMHBQTIajVReXu5zO18186ykpISSk5NDuu98TI4vaG1tJa1WSzU1NXedKE44duwY6XQ66u7uHrnwKBB0Qnu7m1Gr1Xqd2f5eNTTRUVpaSlqtlhoaGkL+rJDNaHfEam1tJaPRSAUFBfLdT/62MVGhFEe3bt2ivLw8Sk5OdpnJynLBFGEhixBwp0wkJyfj3LlzMJvNyMzMxPXr1/1uY6LC/i1Xr17F0qVLMTQ0hObmZsTFxanKKU8uDGYAx5iHgtx///04ceIE5s+fj0WLFqGtrU3Os3/gZHSfMsZw7tw5pKSkYMWKFfjTn/7kMVokJBE6o2UJo2GvR44cIb1eP6ndpfb+qaqqIr1eT1VVVW7LhdrSGPdDw86dO0cPP/ww/exnPxt1W8pBJ4qhP8LSmzy1v4vVaqVdu3ZRbGys6jjKsdY/xj2Kb9GiRWhpaUFTUxMWLlyI5ubmgNtSbQAXhJAHKXoLiGSMoampCfPmzcOFCxdw/vx51c0FY65/jOmw8gJRFKm6upr0ej1t3bo1rH3kI83G/v5+2rRpE8XGxoaNWBr3GW2HIAhYt24dTCYTHnzwQcybNw+vvvoqrl69Ot6v5gJPs3FgYAA7d+7E/PnzMWfOHHR0dLhdTx4XjPdII/J8m1x+fj5ptVp68cUXqb+/Pyxdo6IoUm9vLxUUFJBWq6XCwkKXLa3u3vsrJ6MB9zPEYDCgoqICnZ2d4JzDaDRi8+bNqK2tlcvQOIcVV1dX43vf+x7mz5+PGTNmwGQy4Ze//KXLllZ3usJXVkZ7A+ecBgcHqaKiglJSUshgMNCOHTvGJbChtbWVCgsLSa/XU1paGh0+fFg+NCaQW+LHCiFdj/YV9nVX8mF5jojQ2dmJt956C9XV1bBYLMjIyEB6ejrS09Mxd+5cVZujRVtbGxoaGtDU1ITGxkZERUVhw4YNyMvLc/FqOX+PJyjv7hir7UthQejR4NNPP0V9fT3q6+vR2NiIK1euIC0tDbNnz8acOXOwePFi2QM1e/ZsPProo6r6ly9fxuXLl0FEsFgsOHfuHC5evIje3l6cPXsWMTExSE9Px/Lly5GZmQm9Xj8enzlqTHhCO+P69eu4cOECOjo68Nlnn6n2b5vNZvT19alO15s5c6btwjbC1KlTsXTpUsTExCA+Ph7f/OY3A97UFk4gIvw/kMw/uMCtiYwAAAAASUVORK5CYII="
|
<image>如图,AB是⊙O的直径,C、D是⊙O上两点,AB=4,∠COB=60°,D是BC弧的中点,P是线段AB上一动点,则PC+PD的最小值是()
Choices:
(A) √{2}
(B) 2
(C) 2√{2}
(D) 4√{2}
|
2√{2}
| 69,833 | null |
2√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAABLCAYAAABJGtQxAAAffklEQVR4nO1deXAVVfb+3v5e9k0CZsRtWJRYbqEQisAQB4KEEBIChgkgTOHojIVguY81jE6V/FAclgELajAQMWxiWExMKJYwA6IzKAJGMBY6giwGQvLy9u73uvv8/gjn0i8QgkLIIl9VKsvrd/vm9elzvnPOd28biIhwA+0GTdOgqiqICGazGQaDAQaDAQCgKApMJhNkWYbVaoXRaARfLr/fj8jISCiKAkVRxGtmsxkmkwlEJMa5FnM0Go3iOwAEAgEYr8noN/CzYTQaYTKZYDabEQwG4fV6oaoqAMBsNgMArFYr/H4/VFWFy+WCwWCAzWbDuXPnsHbtWrzxxhs4fvy4MDAAcLlcUBSlbefepqPfQKsgIvj9fvj9flitVkRERMBoNEJVVeGVNE1DREQETCYTIiIi0NjYiHXr1mH8+PF45ZVXcNttt6Fnz54AAEmSoKoqoqOjIUkSNE1rs7mb22zkG7giGAwGREREAABCoRBkWYbdbofVahVhCGgKHefOncP777+P7du3IxgMor6+HgMGDMCoUaNgs9kANHmp+vp6JCQkIDIy8pqFrkvhhvF0AKiqCoPBAKvVCovFIv5uMBjg9XoRCoVQVlaGHTt2oL6+HqNHj0Z8fDwWLlyIv/zlL4iMjISeusbFxQl+csN4ujiYJBsMBhARQqGQCGd79uzB5s2bcfjwYRQWFmLSpEmwWq14+umnkZOTg169esHhcEDTNEGsLRYLiAiBQAAOh0PwoGuNG8bTzlBVFSaTSXgIIoLP50NFRQVWrlwJv9+PKVOmYM6cOYiIiIDD4cCaNWtQX1+PKVOmwGKxIBQKIRQKwW63AwB8Ph9sNhsiIiJueJ6ODg4Zl7tQLaXOJpMJoVAIJpMJLpcLGzduxPvvv4/IyEhMnToVw4cPR1RUFKKiogAAJ06cQElJCaZPn46UlBQAwKlTp9CtWzcYjUa4XK6Lwlhb4YbxXCX0dRqTyRTGM1RVFfURTdNgMBjE6/pajtfrxY4dO1BcXAyPx4MJEyZg/PjxSEpKgslkgt/vBxHB7XZj4cKFuPvuu5GZmSnm0L17d5hMJgBAdHR0m4Wp5rhhPFcJ/YUKBoMIhUIirTYajVAUJaz4xx6IjWbTpk0oLy+H2+1Gfn4+xowZg8TERFitVmiaBkVRYLPZIMsyjhw5gv379+Ott96CzWYTpJgNp/l82ho3jOcqwcQWACIiImCxWESdxmg0wmw2IxQKQdM0wUl+/PFHlJWVYevWrdA0DdnZ2Rg9ejQSExOFF2NPxRVmWZYxb948jBgxAqmpqbDZbG3KZ64EN4znKtFanYY9jsViQWNjI6qqqlBSUgJZljFixAgUFBQgKioKNptNtBZUVYWiKLBYLOK9K1euhKZpmDRpkjBCbl+0lxHdMJ5rgMvVaTRNg8/nw7Zt2/DOO+/A6/WisLAQ+fn5iI+Ph9VqFWMEAgHY7XYR8lRVhdlsxnfffYfi4mL87W9/E5VkoIlv6UPW9cYN47kGuFydpqKiAqWlpXA6nZgwYQJyc3ORmJgoQpqet9jtdmiaBkmSxO+SJGHevHn4zW9+g4ceeggAIMsyLBaL8EzthRvGc5W4VJ3G7/ejvLwcxcXF0DQNBQUFGDt2LBISEsK6583Td87c7Ha7IL5bt27F999/j5deegmxsbGQZRlmsxmyLLc77/lFGA9fpOYX61K1lyup2ejRvE6zadMmUad57LHHkJmZiYSEBBHO9OMzOWZi3DzVP3PmDJYvX47s7GwRrrgoaLVaw3jR9YL+M+vyxkNEomwvSRIcDocwpGAwCLPZLO5y/htLJBj8YXG9Ru9pVFUVnObdd9+F3+/Ho48+iry8PCQmJl7ESfQXms/LhsS/83neeecd9OjRA7m5ubBYLAgGg7BYLIJYt3XvSj8XrlFxy8NgMHR949E0Tbh3h8MB4EKWYrVaYTAYhHTB4XCIv8myLNJrIhIXlo1KVVV4PB6UlpairKwMHo8H48aNE5yGPUNroixJkmCz2RAKhQAAdrsdBoMBR44cQVlZGV555RX07NkTRARVVWGxWGAymaAoCjRNa3PPYzQaIcsyiAgWi0VkekTUtY2HPYm+oBYKhYTHsdlsICIhZ9A0TYQgfg244C3Yg3m9Xmzbtg2rV6+GLMvIy8tDdnY2EhMTRbrOYehKLiyLuxgulwtLlizBwIEDMWTIEABN/Sp9AVCvKmxrsMHyXPn8Xdp49N6GYbFYRHoMXJBYAhAXXP8aF+yYa2zevBklJSWwWCzIysrC2LFjERsbK8a0WCzifa0ZzqXmBwBbtmzB8ePHsXz5csTGxgoSrQ+lRqPxulSTuVzAP3OoNBqNMHN1tKtClmVIkoT4+HgYDAb4/X4Rs5lDBAIBEBEiIiJARPB4PDCbzYiKioKiKJBlGTt27MDy5cshSRIKCwvxyCOPICYmBtHR0dA0TehueAz2YpxZtQRO1/1+P0wmk+io5+bmIiEhQchPrVYrVFWF3++H2WwWBLwtlYIAwridpmniJvH5fDDMmTOnSwrguUD3/fff43//+x9GjhwpVHbMa/hi88+KosDhcMDhcAi9cHV1NY4cOQKv14vevXvjvvvuQ2Jiogh7fr8/jEQrigJJkpoI5Xlie7k5Wq1WuN1uWK1WJCQkYMuWLfjqq68wffp0wdWYe/l8PkiShLi4OJEItCVp5nAqyzIURRGG43a7kZSUBDOLrTsKOBMCIAppQHj3uvlxlxvLZDJh//79ePDBB5GcnIyIiAiRQdjtdvj9fuGGmXecOHECX331Fb7++msYjUbcc889uP/++xEfHw9JksSHKcuyeK+qqpBlOYzUchbV0lyZjAYCAVitVhw4cABffPEFJkyYAIfDAYvFAlmWhfdh7wQ0rZ7gjn1bQq8WCAaDUFUVkiQ1fb5er7fDeB69YbA3cLlcICLExMSICiwfqy/M8fv0MBgMcDqdePzxx/GnP/1JGABnU/omJtB0R23ZsgVr1qxBdHQ08vLykJWVhejoaJjNZpHhsGHoQxMvd+HzKooiDEmfrTWfN3OKuro6vPjii+jbty9mzZolPI3dbhfH6HtlbrcbUVFRbU6cQ6GQCJHcPgHQFNojIyPb7MQ/FUw0ORXds2cPXnzxRfj9fuTm5uKVV15BTEwMgPB/iojCLpAeRITBgwdj165dyMjIEE1Mh8MhLobP58PWrVtRXFwMn8+HSZMmIS8vD/Hx8WEk9efC5XIhOjpazEev5WGjqKqqQiAQwNSpUxEfHy/m2BL4/7ie0NuKxWLpGNkW10OYXGqahpqaGpw+fRrr16+HpmnIycmB3W7HjBkzkJiYCOBCjYTvPEmSwvQ0QNMFSE9Px/PPP4/Tp0/j9ttvh8/nQ1RUFNxuNzZu3Ijy8nJ4vV7k5+eLlJv1NNcCUVFRYXPlO5jDztGjR7F27Vo88cQTuP322wEATqcTsbGx11Wf0xIutehP07SOYTwsQ+A70uPxwGKxoH///ujTpw+ICM899xwqKyvFuiS9COpSehq+8KqqIi0tDZmZmXjzzTcxd+5cmM1mlJSUYNOmTQiFQsjNzUVWVhaSkpKgKMoVZUlXCvaIzHt8Pp8g6cFgEJqmYdmyZbjrrrvw29/+VrynrfXH1wIdwniYdHLl12Qy4ZZbbhHxVZIkJCQkCAE4G5vX60V0dPRFehqbzSbucu4+P/HEE8jLy8OCBQtQU1ODH3/8EVOnTkV2djaioqLExeJCIvePrhbsFfV1IACizL9jxw7s378fK1asQFxcHAKBgMjkOjra3Xj0LpE71JwRsYvkWkxaWhrsdrvIUFivGwqFWtTTBINBSJKE6upqhEIh7Ny5E9OmTRPKPb6o7HG4RcHSiqst/zPZ1ddJvF4v7HY73G43Fi1ahLy8PNx6660AIAiy/v/vqGhX49G3D/RhQt8OMJvNaGhowMGDB/Hcc88hIiICqqoiNjZWjNOSnkaSJFRWVuKDDz7AyZMnMWvWLAwZMgQ333wzLBYL/H6/MA5ukHL9BMA16RtxFsZaZP0q0Lfffhs2mw0FBQXixuFsjssJHdmA2t3z6Hd0MBqNQgjFi/b9fj8qKytRWFiIHj16IBQKCQ6hX7XAhsOElPU0FosFOTk5yMrKQo8ePUTK7ff7LwoNnDpzEfFaQF/VBppCcEREBGpqalBWVobZs2eje/fu4tzBYFCQ6Ruc5zLgO57jvNVqFTwHaKq77N69G7Gxsbj//vsBNH34kZGRYSIsJricPa1fvx6RkZGYPHkyMjIy0L17d1gsFmFs3AzlkMc8S9/bUlVV1GkupflprgtqSZzFVVqDwSB4TiAQwIIFCzB06FAMGDBAHOtyuYRH5ezshudpBfwh6es1TqcTe/bsQXV1NSZOnIi6ujocPnwYwWAQw4YNE7yEtb+VlZV499134fP5MGHCBIwbN66phN6smciCcgZXT4EL5JbrTfosib+zOJ2lGvX19di1axeqq6vxzDPPID4+XhQg2cDZ23FPraqqCocOHUJJSQkSEhIANBlZfHy8mAtLMzo0qB2haRqFQiHxs9PppGAwSJqm0caNG6lv377Uo0cPuvPOO+mOO+6ggQMH0vfff09ERKqqUn19PRUVFVFubi4NHz6cli5dSqdOnSJZlsUxrUFVVTGPQCBAgUBAzIHfL8syqapKgUCAiIhCoRDV1dVRaWkp5eTk0B133EFFRUUUDAaJiMjn85GiKOI9iqKQpmlERHTmzBkaOnQorV69Wsyzo4M/B/3n6ff7qd3Dlr6sz9mTqqoYPnw4+vfvD+CClsViseBXv/oVPB4Ptm7diqVLl8JutyM/Px+jRo36WXUaPkbvgbh9IUmS6Jrz+Vlq+uGHH8LtdsPpdOLuu+/Gww8/LEoN3Fg1mUywWCxoaGhAYmIiGhoa8N5776F79+4YMWLENSkFtCfaPdviZiK7d842eH026fiFz+dDcXExdu7cCZfLhYKCAowZMyZsLfdPrdMwt+H+FpN1rhUx4ZVlGR999BE2bNgAv9+PSZMmISUlBS+99BJmzpyJW2+9VcyVd6zgsJeQkABVVXH06FFs2bIF8+bNQ1JSkpB3dvjw1ALa3fPwBW7eLNR3pX0+Hz766CMUFRUhGAwiLy8PeXl5IuUGfn6dhpuaep0uQ9M0sVBv9erVqK+vx6RJk5CTkwObzYaFCxeiX79+wkPq/y8m3ixlCAaDWLFiBQYNGoR+/foBuL5Lg9sC7U6Y6TxJ5pUA/KEHAgEoioLS0lKsXLkSUVFRyM/PR05ODhITE2Gz2cIkGpeq01xJys1GFgwGReNPVVUcP34cX375Jd5++23ExcVh2LBhGDVqFHr27AmLxYJdu3Zh586dWLFiBaKjo0VticOlzWYT/5PP58P27dtx7Ngx/PnPfw4z1s7qdYAOYDx8wTlsGAwGeDwebNmyBRUVFfB6vXjyySeRkZGBxMREIfNsaGhAbGzsRSnzT6nT0PmaUEREhFDqnThxAnv37sXOnTtx9OhRFBQUYNy4cYiPjxd9s9raWmzevBnp6elISUmBy+VCTEyMaLGwB2RDkmUZb7zxBp599lncdttt4obpCGuvrgbtznmY49jtdjQ2NuKDDz7Ahg0bQEQYM2YMRo8ejYSEhDD+YjAYRMeZl8ow4WWewTtMNA9beg5lMBhExdrpdKK8vBybN2+GJEnIysrCa6+9huTkZGHgHGb27duHL7/8Eu+++65Yl85z4aUxnNpLkoQ1a9agb9++QsxuMDRtF9cZmp+XgzAevhsA/CR3yu9pDc31N/p2gsfjQUVFBYqLiyHLMsaPH4+xY8ciKSnposVyDHb9wAXuwP0xDmHcU9LzJ24T8JhutxsffvghSktLIcsyMjMzMWbMGKSkpAgJJhciebOCxYsX47HHHsMtt9wCAMJrskheLwCrrq7Gpk2b8I9//APdunWDJEmwWq2IjIy8wXlaA7tnPYHkAprH48G6deuwbds2SJKE3NxcjB49GklJScLTtGScbIAWi0XogTisMLjdwQU65lSapqGurg579+7F0qVL0a1bN2RmZiI9PR29evUSxsUtDPaMiqLgnXfeQffu3ZGVlRWWJXJ1mBfnsRLwrbfewuDBg3HnnXcCaOJhvISns6NNjYfdNuuFOQtpbGxEeXk5VqxYgZiYGIwZMwaPPPKIqNP8lKbgpaSowWAQQJMnsNlsohpMRPB6vSgvL8f69evhdrsxZcoUpKWlhRmN1+uFxWIRFWH2JidPnsSGDRvw8ssv46abbgrjaVyv4i1WVFXF2rVrIUkSpk2bJuZgMBjE62x8nRWtGs+VhqVLQd+trq+vh91uR1VVFZYsWYLk5GQUFhYiKysLkZGRoqDGH6a+59Ta/LgFwYbD65yAJkPgflJFRQXWrFkDWZaRn5+PrKwsJCcnh7UwiEgYDYdV3lhgxYoVSE1NxZAhQ0S2xD0o3nXUZrMhEAjA5XKhpKQEs2bNwm233QYAYolNZGSkWAvWmdHmYYtrLvv27cOiRYtgsVhQWFiIgQMH4vbbbw9bf8Tb3bMhtSYD1d/pTJL1a5p4ZURlZSWKiorEfn/Dhw9Hjx490Fy/zQVLnoN+zfrnn3+OXbt2YfHixUhISBDkmEX5zHPYmyxduhT33Xcfhg4dKirPevUjr1rtEoS5LUFEOHfuHGpqapCRkYHMzEzRtNSvYmAD8Hq9La6m1IM9m34lA4cep9OJzz77DHPmzLmohcF8w+VyQVVVsVaLVYc8NsPn8+G9997DwIED0bt3bwDhWh82cja2Tz75RDRq4+PjhVHxevjrscH29UCrpIK5Qktfrb2X9Tfjxo3Dtm3b0NjYiOzsbBw8eBAejydMGsHFvcjISLHysjW0tHKSw1djYyNSU1MxZswY3HzzzdA0TXCiyMhIxMbGio0GeENK/XJhIsLu3btx6tQp/P73vw/L8vj/Y1ksJwGvv/46Jk+eLEgyAEHc6bz+iOtKnRltmivqeYPD4UCfPn2wbNkyjB07FtOnT8eSJUtw5swZABfIrX6r2SupDuuX6+gzmKSkJGRkZODtt9/G6dOnMXv2bNTU1IiiHIcSHof5CvMu/dNjNmzYIMIsv58NkDes5DS9uLgY3bp1w6OPPioyNJ/PJ7wbrzDlOXdqtNaO1zTtZ3+pqkqyLAvJg8fjISIiSZKotLSUpk2bRqNGjaIdO3YIaUYgEBDvlyTpojF5PE3TyO/3C0lF8y89Tp8+TTNmzKChQ4fSv/71L1IUhbxer5gjSw00TSO32y1+D4VCVFRURNnZ2XTixImwMUOhkDgPfz948CClp6fTxx9/TD6fL+xzYOjP1VnQkiSjTY1HfyE1TRPaFkZNTQ298MIL9NBDD9Grr75K9fX14ni9DsbtdpPf7xfjBINBCgaD4vXLfbFRNjQ00IoVKyg9PZ2WL19OjY2NRHRBqxMMBoUhhUIh8vv91NDQQA8//DCtXbs27EPTGzKPL0kSPfPMMzRr1ixyuVzCsLsC2s14WBSlH0//u8/no8rKSho8eDCNGDGCdu/eHWZgfEEVRREiLR73SoyHDYOIqLGxkT799FMaOXIkPffcc3TgwAFhrB6PR5yDiMjr9dLcuXNp/PjxdPbsWWFc7Bn155Zlmaqqqmjw4MFUU1Mj/mf2kp0d7ep5ZFkOU83Jskw+n09cKCKikydP0osvvkiDBg2iJUuWUENDAxERnTt37qLJB4PBS4a0SxkOewC+2LIs03fffUdPPPEETZw4kQ4dOkQul4tUVaWGhgZhuEePHqUHHniAPvnkE+E1eUz9dyKiH3/8kbKzs+mf//znJUNUZ0e7GQ+PIUmSMBb+8PUeRtM08ng8tHLlSnrwwQdp6tSp9Nlnn4mwoCiK4BF6D3AlBsTv599lWaba2lr6v//7P3rooYeovLw8zLgbGxtpxowZ9Pzzz5PX6yW/3x/2fp6v1+ulYDBI8+fPp5ycHKqtrRWv6TlRZ0e7hi0ep/mdyMdwSCBqIqJHjx6lmTNn0qBBg2jt2rVUV1d30Rj6C9Sa8fL4Pp+PfD6fGMPn81FpaSkNGDCAnnnmGXI6nUREtG/fPurVqxdVV1eTLMukKEqY1lrPvw4cOECDBg2iTz/9lFwuFymKInTQXQUtGY+B6PLFlFZebi2TE5VYfVqq3+iRpacsG9XOSzQaGhqwfft2LF68GOnp6ZgyZQruuusu8X7eXeJK5uDz+RAMBoX+h86n5tyB/+abbzB37lx4vV489dRTWLp0KYYNG4bHH39cHBMIBERF2uPxCAHY7NmzoSgKXnvttbAqMle+O3vnHGj56cbXhfM0d+P69FrvmfSehI/bt28fTZkyhUaOHEnr1q0T4UWfsl8uZEmSJDwHcxtN08I8kKqqdOrUKZo7dy7169ePBgwYQKdPnxbz4qxKHzYVRaGNGzdS//796dtvvw1bceF2uy9KFDozfnbYula4kvh/qWMCgQCdPXuW3nzzTUpNTRUpvdfrFccwj2le89GTWj6u+bnYOIiI3G43lZWVUUVFhUjlQ6FQmBHy344fP04PP/wwlZWVifSdiEQW2JXws8NWe4POh7dAIIAvv/wSTz/9NJKTk/HCCy8gLS0NVqs17FmaXPkluvCA+suBddDcAOUt3vQCM54Dh0tVVTFnzhzU1dXhr3/9K2666SZRDVd1O4Z2FbQUtjpFQOa+0YABA/DBBx/g3nvvxcyZM7FgwQJ4PJ4wVR43J81mMxobG1vtHzHHYvBTZ1h7zMbA+wF6PB58/fXX2LNnD/Lz88MM55eGDu15tPNLX2JiYkQviC/o/v378dprr8Fut+PVV19FWlqa0BrzZglXqgdir8IaaH0DE0DYE/s8Hg+efPJJ3HPPPZg5c6bo/NP5zrl+2U1XQaf0PEajETExMU0TPS8pdTgciIqKwsCBA7Fq1Sr069cP06dPx+LFi+HxeIRSr/njE1sCezVFUcL0RHpBPYc1VVXx4Ycfwul0oqCgQBgOj6E/J51v2nZpXDfWdRUIhUKibhIIBETWRETkdDppx44dlJaWRgUFBXTq1KkrLs7pybIenE0xSebxjh07Runp6VReXi4yLx6n+TlDoVCXIc4tEeYO7XmACzpog8GAb775BkOGDMHx48eF+4yLi0NaWhrWrVuH6OhojBgxQkhNWwML6Kurq/Hf//4XLpcLAIQHYeLMz/gsKipCamoqBg8efNFTcfS8R69G7NJoJ2O+IrBnUFWVPvvsM+rTpw8ZjUbau3cvEV2QRfAd7nQ6qaioiAYNGkTTpk2jH374odVznDt3jvLz86lv3770xhtviBYDn5+/7927lwYNGkRfffWV+Nul0vPmFfOugE7pefR76fTr1w+rV6/GPffcIx4vBFx4sp6iKIiLi0NhYSFWrVoFn8+HwsJCVFZWhh0PNKkMmeOUlJSAiDB//nx8/PHHmDVrFg4cOCD0z6qqwu124/XXX8fEiRPRp08fsYspC7v0XEcv+u/yaB9bvnJwNZioSSZx//33086dO8XvXMnVNC1MA1RXV0ezZ8+m3r1707PPPks//PCD2F+HPcbOnTupV69etHv3biIiqq2tpfnz59MDDzxACxYsEA3R+fPnU2FhIdXW1ob1uroKp2kNndLzMDhrqa2tBdC0nAZo2qCb+ZB+CTGvAf/2228xY8YMHDt2DNOnT0dVVRWCwSAMBgNOnjyJN998ExMnTkT//v1BREhOTsYf//hHzJs3D4cOHcLvfvc7VFRUYNu2bZgwYQKSk5PDVoN2eU7TCjq08dD5pTW8z3J0dDRiYmKQnJyMYDAIo9EoNlLiUELn0+pVq1YhEAhg/PjxWLZsGbKysvD666/j+eefR21tLdavX49u3brhqaeeEst8/H4/7HY7MjIy8Pjjj+PgwYP4+9//jv79+2PYsGFiJwx+xFIwGLyqxnFnR7vvknE58P49zB94dYMkSSIL4+XAAER959y5c/j3v/+NSZMm4aabboLRaMQf/vAH9O7dG8uXL8cjjzyCs2fPYvny5ejWrRuAJkPlVZ2SJGHlypW466674HK5MH36dERHR4utfSMjIwUf+iWjQ3se4MJWtECT51HP71DKO3fx3c/EVVEUrFmzRjw2gCujoVAImZmZWLhwIVJSUmA0GjFv3jx8/vnnor8VCoVQX1+PdevW4dSpUzh79iwmT56MlJQUMRfgwrYw7f1c8/ZGhzYeDlu8+XVDQ4PYB5CrybwXTyAQEM+m2rZtGwoKCpCSkiJ2S7Xb7QgGg7jllluwatUqLFu2DIcPHxbhjNenS5KEpUuXwmw2495778W4cePE44+4bdGcZ/1icb0Y+9XizJkzlJaWRrGxsZSWlkYVFRWi6qzPAg4fPkz9+vW7aKmM/hjOko4dO0aFhYWUmJhIGRkZ9J///Idefvllmjx5MqWlpdGBAwcumkdLEo9fAppnW2bu53R0xMTEYPXq1UJByI9N4kdY8yMbDxw4gNTUVBHCGKTrNWnnNym49dZbsWjRIrz33ntYtGiR2JenZ8+eGDlyJH7961+HbV3XHNTF+1ek8/xcu9LTA8Nbb73VKdIFbngCF5b5arrnnkdERMDv96OqqgpHjhzBtGnTEBcXB6/XG7Z0mMfinx0OBxRFwRdffIHt27fD6XSiV69eGDZsGHr16iWyuJbm1JJhdSU4HA4UFBSIXV35YXrm+vr69p7bz4beiLjrrSgKunfvjhMnTqCuru6yO1HQef7icDiQmpqKxMREHDp0CElJSYiKisLRo0eFvueXYCSXgnZ+ryTu77EkRlEU/D+GTG4/tswbyQAAAABJRU5ErkJggg=="
|
<image>如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()
Choices:
(A) 10°
(B) 20°
(C) 25°
(D) 30°
|
25°
| 69,834 | null |
25°
|
"iVBORw0KGgoAAAANSUhEUgAAAIMAAABTCAYAAAC8o7RJAAAWHElEQVR4nO1dfVCU171+3nf5MFcNt3UJG4MhFYxr19SV3OZaS0rExW4KveIN1zqJf2jbCSjNTWPtjK1Nmk6d6wcYTUsTuE4n9F6sJpJdTUyDEUfSsbloMxUVREeSUj8iYFqxdMLC7vs+94/d9913P1mW/QDHZ4YZ9nz8znnPec7X75zzO+AdUJIkn9+yLFOSJNpqKgjA/VdcQRc7uL5qR5JyGX+IuAOIorsYZEgAAKHLDp1Oh7qP54AkSEJ6eRlShPngA3nJzGpckZLsDEwkiNBBQiespidgqarBkdofeP3mlWHH+qUQ5zwIwN1dCEnKZ7xwhwweKJX71q5atOAxdNY+5xdCRF7eHCB3nicCAeH2ooNAksnOxESBhE5YhYcwp/pNvLJxRYA/KYGCCPG26xPcuDNn0EB3/iJaQOTOeRAkIcuyj78g6DxEkIMLmOS4QwYA/pUrkRD8hgCSkKF0ordnsd2eXzVmuItB+uJcWAD85dJHAOBDCKHLjl2HzkMdVW/DwTVhE0hZltUlXLRxOzs70dvbi9///vcAgAsXLqCvrw+3bt1Ce3s7ACA/Px/Tp0/HrFmzMHv2bABAUVERsrKyYDQaw6ajgwlVu9ZhxXNlmP1gB36w3AQC6DhUjS/96s/ge/+uhqVw+60mkjaBjJQcx44dg91ux+HDhzFt2jQsXLhQreTFixfjrrvuwowZM2AymQAA7e3tuHXrFv7xj3/g1KlTAICLFy/izJkzcLlcKC0tRXl5Ob761a+GzM+5Q9X4UtkmCIJbx2CpqsF7tT/wqXwGGUomOxJKhkgKcHh4GE1NTXj77bfR3NyMhx56COXl5SgrK0NOTs640u/u7sahQ4fw29/+FpcvX4bVakVp6TdQXr4SouieIAZTIChEGU/vNhkwoXqG+vp6vPjiizCbzXjiiSewfPlyZGZmxiX9vr4+HDx4EPv27cOlSx9he/V/4R59FtLT01FYWBgsxwBEVSMJyBDF20xNk2j9txbKnoDNZqPRaGRBQQHb2trCxpFlOaScSMP7+rtos9mYkZHBtLQ0fu5zn2NFRQUH/nYzZNzRZE5WJJUMJ06cYEFBAY1GIw8fPpyUPNTW1lKv1/MnP/kJ9+3bx1mzZvHee++lXq9nc3OzGk6ilwAuWfL5fbsgKWRwuVysqqqiwWBgXV1dTGSG6x2Cob29nV/5yldYUFDArq4uHzm7f/EyMzIyePfdd3P16tXsv/FX1V/pFcaa3mRAwsigFOLAwAAtFgutVisHBgaikiVJUtRdtcPh4I9+9CNmZmaGJKIsy+zv7+eiRYuYm5vLz8/I5IEmm8fzzjARE3R3dzMvL49VVVV0uVyhA4Yr6zHWg7bimpubef/993PlypXs7+8PGl7b4oeGhrhmzRrOnj2bubm5XL58ech4weJPNsScDKEKo6WlhQaDgQ0NDaHjyme5fannMIkA78ESPM036ZYbTavs7+/nt771Lebk5LC5uXnUCvP3r62tZWZmJteuXUu9Xh/wDcEOx0xGJKRnaGhooMFg8FkphKoQST7LHUuXcMc5WS3UNypAoEIlRECcILKUuHV1ddTr9dy0aRMdDkfEefaXqZC5pqaGCxcupNVqZU9Pz7iGrImGuJOhpaWF2dnZ7OnpITl6q5FkGyuWbudZ2VsZLp5ldRGIitd9ZPhL0sru6upiQUEBFy1axNOnT4dNUztkaWX4E6Krq4sGg4EffPABt2zZwhkzZrC2tjaozMlIkLiSobu7mwaDgSdPngzwC9qaSUpvPk1UNAUU5oFKEEW+JKEUWOAOh4PPP/980IqKVh+h9VPIffnyZXZ1dXHRokUsLCwMWJFMRsSFDLIsc2BggHl5eXzttdfGVDgHKsGn3wwMf6ZmCbF0hy8Z/NDa2sq8vDyWlZWxt7c3qnxHgt27d9NsNnNwcJAkuXPnTur1em7btm3MaU4kxIUMLpeLFouF3//+9wPcSf+W4x5zZVmmxCY+rZksanGgEkRlU9DFRH9/P1evXs2ZM2f6KIr8EQkpw65yNHLWrFnDsrIy1a2np4eFhYURDUsTFeMmQ7DWtH79elqt1ogK1kfW2e1cUnkgiPtWFgnBe4yGhgbq9Xpu3LhRbamJgMPhYEFBATdt2uTjXl9fT71ezxdeeGHM359sxLxnaG1tZVZWVlQKpTM1S1i046yPmySf5fYiBAwRXV1dLCwsZH5+fsiWGO+xu7e3lxkZGQHp9/b28vHHH+eCBQvY1tY2abSWMSfDokWLwuoSQsE9RLiXlKrbue0sEkBY3BNHme5u/IUXXqRer2dNTU2AnETP4nfv3k2r1RrUr7GxcdRl7UQiSEzJYLPZaDKZxtw9upo0N5fgq3TSDg2HDh2i0WhkaWmpZ4KY/IJ0OBzMycnh+++/H9S/v7+f5eXlNBqNbG1tVd0n4tIzZmRwuVzMy8sb1+5jqOK5efMmS0pKqNPp2NT0Rsj4/q0sUa2usbGRCxYsCBvGZrPRYDCwqqoqoXObsSAmx3ZI4te//jXuu+8+lJSURC1HIOA+ROI+rSzLMvbu3Ys5c+YgLy8PX/7yl3Hz5i2fOP7H2bVI1Kmkp556CoIg4PXXXw8ZZsWKFbhw4QIGBwcxf/58HDlyxHu4dqIgFoxyOBw0GAxRLalCtd6enh4WFxfTbDarauyTJ0/yHkPWhGpZSnev6DiUITLcMPC73/2OOTk5XLNmDQcGBibMkBETMjQ0NLC0tNTHbWwfKFEZ/10ul1vVm6nn9q2BSpwnn1zFzZs3a+J5/psAE7HCwkLabLaQ/toyGRwcVM90aOMkkxgx0TOUl5ezsbExuvgkle9va2ujyWRSN4GCpXX18hVmZGTwypUrHG0CGQuCjKVyamtr+d3vfndMclpbW2k0GlleXj7q9ni8MW4yOBwOZmRk+OgVxsrumzdvsqKiggaDgU1NgfsS/ti8eTOffPLJqPIbT1y5coUGg2HMqynlwI1er4+6UcUC4yZDc3MzLRZL2DChKleSJB44cIAGg4GVlZURK6oGBweZlZXFU6dOjTm/8UZ+fv6oh3pDoa2tTd0ej2ZvZbwYlQyjtdKKioqIdwe1snp6emi1WmkymaIqvD179nDx4sVjjhdv/PznPw9QUY8GbXm5lWovcMaMGTE7HxopxtQzKBtKWhgMBs/47cVoY/W2bduo1+u5ZcuWqPX3TqeTZrOZBw4E7mUkEx0dHTQajeOWc/r0aXV7PNj8KR4T5nENE6dOnWJ+fn7E4dva2mg2m2mxWIJ+YCiE6p2OHj3K3NxcDg0NjRo2nvCvmLy8PHZ3d8dEttJwgqneY40xk0H74Y2NjayoqBg1zuDgIJ977jlmZmaGnCD5V2KkzC8pKWF1dXVEMhOFVatWxfQeyPnz59Xtce0hmlhjzCo6rVbv6tWryMrKChvebrdjzpw5GBwcxKVLl/DUU0/5+CsaRP87mJFqD2tqarBt2zbcuHEjwC9ZF2MNBgOuXr0aMw3jvHnzcPz4caxevRqPPvootmzZElbzGi3Gpa/t7e3FzJkzg/r19fXhm9/8Jn784x9j//792LNnDzIyMgIzoKn0aD7QaDRi1apV+NnPfubjHquKiAYGgwGffPJJ1GSkep/TC0EQUFVVhQ8//BB/+MMf8PDDD6tmCGIFEdDanRhbZVy/fh333HNPgPvOnTthMpmQn5+Pzs5OPProo5FlJsq9hJ/+9KfYv38/Lly4oLol87q8wWBAX19f1PEFQfDJv5YYOTk5ePfdd/Hss8/CYrHg+eefx/DwcFA5CqkUk4a+CFLX2jHDf4Q9e3AH7R2hx91/XbTYZ1n4pz/9ifn5+eoBUUmSEqYmrq6uZklJSULSGg3Nzc0hzzjEAkq5Xr9+nWVlZTQajVFdWPZ38SWD7KJEz3lEuYMWgIc6vEs/ib7LwJycHF65coWDg4PcuHEj9Xo9X3vttbAfEQ+0tLTwwQcfZFpaWtj0E4WOjg6azeaEpdfU1BT26J/3asFIWDkh7TO89L31OHLpI1Q3v4MvCcHtEKSnp8Nut6OiogLXr19HZWUl9Hq9T7cmCIJqpEPrrrjFAq+88go+/fRTAEB2dja+/e1vx0RutBgaGsKrr76KDRs2xEV+sLL79NNPUV9fj+zsbPzmN7/xsTERqZERn1qmPAJZIt765TNA0RLwvy9CB3+rZ5LbwoknUydPnvQp/BDcihsRgOTODxIB/4bkY3jM46fX67F582YAwPHjx/HAAw+olm4UIih1p5R/AEm03QhJsuMNPlN9gHLHm0RxoA5BGzZn1v0B2sdQiOea/+jRozQajTSbzTxx4kTc0gkF/+Ev0cNEpFBqINRwLarsktxWDqteOY5d//lvAGQsnTsnCE+9s9B775uJa9euRczueMFisaCrqwunT58OMNyVCPh3wZHoXxKJqmUCRMH9Jwg66HSpEMUUCMvW+4RzLy1JCDoRB3etwyt7XsWMz6dj+sL/gA4uOJ2fQXK5IMkyJJcDktMJ2dNjZWffh0+u/AWuEQckSbNUoQuycxiScxiS0wlCo0MI4hcU2nAulzdc0Piyx20EpAxpxOGJJ/vJSYxl197eXsyaNSshaWkhy3KArkYG8asjxLpiwHZOcps8poQz9q1YOjfXJ6zaM8hdNhyVloHDTvzt5jA+OLADuTm50CEVYkoKdKIIXUoaRDENouBO5v7s+9D/15tISUuDILtAzxlG2SVDSEmHLjUdouD+7W49wf2CfJYmXBpESB7ZLo17qhqfECGm6CBAguySIKZNcf+mE5IECKnp0KXoIFBKiC1Pf2WcYlm2apmg6hCUv52HOsednkR3GYqi6J0fwD1HECFAEjpxQajCivkiJHSielcTvrj8G/j6F2b7yHHHPG+D7tn38KuNK9RW/FF3NwAdBJFqhVEeAXRui2eghHsNWei9dhmS0wlJ9hS0x9i2Mu8UdJpKCOenBSVQSPEYbRcg6NIBygCpxpchoOOd3Zjxzzr8kyBASE9FyYZfQExJhQAlCQGiLkUzBWZCLLsqZKBn0id4KuuXzRLWFwM1BztAEmfsO/DDsvk4eN7pzSGDKYjCQyd4hyklvgCoE/3OQ29j7tctAN1W88XZc6GDCT/c4GcsvWa9Rb2rYO+QSdnJZ4rBKQIIiFz6vWpKI8OUZImy0+k5piaT8ggb//d/Ajeq5BG6Rka8Cg3ZSUn5Hc7PX4YnrVCyq9ctJVIf4/mRIfflGvkMH58KWqq2a2QPq0fqAn7HEaE2qpzyORahiGcVfU3nAQLgW53un4rRMFUvIEe2vS9JzhAGx9yu9l3rPHUsEgBt54PrG1Slk+x00OWUSNlJ14im0km6nEN0DTv8bsBLPPl/J/jIw/nqb3dwidKIg5ISWB5xy+VofhrITnc4JZgiW5boHBnizvVLiOIKytr4spNnbFs5NfUxnqNEKYFkiHQL++zBahav8+6wri8GLVU1pGqVxrfyIyWDN7wvmbTpKMrDqmILO5X0/OJDFSAN0zXioCtogUnuFuzvIY1w9qwsXv7zR0FavIMjjs8CW7jHzzXi8POTfAjg7gU84TSyzx7cxoypoK39M444nZ48ueOes2/l56c+xg466Roe0sSVvGkG64liCP/DLdoWq755JQrentgP0SzBQ1rBoUx22ollT6tuO3fu9GiZA4kmKks+QUyDLtU9YVNWgcrwKoMQdCle5YfHQxZSUfyNMrz1zrvQpaZ6x2YhBWJqOlLSpkCXkuKrtvL46VLT/fxEiKnpnskpACHVk590H9mv1m7Cv6ytQdmCu9yTQkFQ417681/wt89ECBAhpk2BLjXVE1f0pqnNZxxgt9tRVlam+Spvasfeq4e9Q4ZTkmB7qRIr5ouwd8jqBFNGdMo4xZRxgDsE2I8cwbpiq+q2YcMGiBTwzDPPBgpSiOvPFC2jZWmEshz8+lokB2LHB605H/d+SbX9XNCQSrebTIOdIQ/Edr5JLKtUfyrfsq469D2LWGB9sUDbOcnPLXi6njmDnyU1DzFcTndXKwUxl6OEHxoaCjgq7yNrnFDnLbJEueMN9wTonOT+TSX3Ms8d3BF2cpQIBDsqr+Tf9lIl11fb3OdIScodNgJgzcGOcacbrKQ7DlUHXGIWBEF1swVpT0m/RDMWKK3JvwBd7OBSgEu/p5wTjN3uaLSXaPxtMqyzeOcIyncAS9TJnDe95Bn4mCDX6yJH9bql6p6JRJnyuYOEDxGU9BNfqMGu15319FgBf6Ps+yQDSb94O1bIdI952oL1HxNJ99o7kQh38VZd8UhOtaeYCHdD/RETMsiyzPr6ehYWFsZCXOTpBvyfvAI2m83ct29fCN8g63o5sCfw31VMNKFjYsBAEAR85zvfwbVr1/DOO+/EQmRk6cKr9xcAkO5lWbANm3hi7969IIlVq1YFPcyq/FYXjZ7XbtxLdUmNo3yPsr+Q8MdNYsmsaM34hEO4e5ok1WN6wSPHLBshoZjx0ZroCQW/myEB+Uu26eGYmjZZsWIFpk+fjsbGxpjJ1J7yIam2JLX1QHOS2G8TShbivytVV1eHefPmhXjKyBc+6iSK8Nd+iaKY3FNbsWbXeEz/hYNM34lXyB5Dq+BOkuk/7Z3UgE2nsA3fb5mZ4DnDuB8sY5DzjFVVVfj4449x+PBh6HS6cZF1IkH7rcPDw7BYLCgoKMDWrVuTnLPYIC6v10mSBKvVivnz52PXrl2q+2R4CjDSPK5duxYDAwOw2+0JyFWCEI/uRmtIvKGhYUKuqbWIZNKmDeNvSDxSGRMdCXliQNm4CfeWw2RBS0sLZ86cycuXLwf4ybI8ab+LTMDjI0ePHvV5fGQiIuR5gBCPjyjkHs0I6WQjxoR7liiZCNfVK88SNTU1JTBHicWEerBsosBfaVZbWxtA5tsRE/MpwyRCS2aHw8E1a9bQZDIF3BwbTTM6GZGwdR5J5Obm4sMPP8TFixdRWlqKW7dujR4xAsRyH0JZVt64cQMWiwUDAwNoa2tDdna2T7hQmsKJvnQOh4TlXCm8jIwMNDc3Izc3F0ajEfX19QFhOUbVh/di6fhVJpIk4eWXX4bJZMIjjzwCu92OqVOnTjyj3/FAMrulSB5GD2ZuMF5oampiTk4OLRbLhDQ4Gm8klQzK+Gqz2Wg0GllQUBAwSYt0DB7PoZHW1lbm5+fTbDarD57dDkqksSJpZAj2ZHBdXR0NBgOtViv37NkT1rD2WEnij97eXtbV1fFrX/sas7OzuXfv3sgzf5sioWSIpLU5HA42NjZy5cqVnDZtGgsKClhbWxtWaRUpMbq7u7l7927m5+fz7rvv5urVq7l///6oVjaTedUQCnHZqIoEkW4IHTt2DHa7HYcPH8a0adOwcOFCzJ7tvj28ePFiTJkyBXq9HiaTCQDQ3t6OW7duYXBwEH/84x8BABcvXsSZM2cgSRJKSkpQXl4e1o7DZNhQiwcSRoZQBay4R1IBnZ2d6Ovrw/vvvw8AOH/+PPr7+/H3v/8d7e3tEAQBCxcuxPTp02EwGDB37lwAQFFREbKysmA0GlVZjMKU0O1OkqT1DHcw8XD70vwOxow7ZLgDFf8PHck8Pw+p3ZIAAAAASUVORK5CYII="
|
<image>如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,OD⊥AC于点D,若∠E=30°,CE=6,则OD的值为()
Choices:
(A) 1
(B) √{3}
(C) 2
(D) 2√{3}
|
√{3}
| 69,835 | null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAABsCAYAAACoyNYlAAAOYElEQVR4nO2dT0wbdxbHv+MkW/fSJlUP7qXApTJ2qg6bA1YPMVlV2t1TILWDiRQCl6TNoZhbc6htWCm0PQBpD5QeAo20BUMaaPfQzWpXJJfCjQT8h6gqoB5q70olUg+Zgcbz9mCPPbZn7LE99gx4PpKFPb/fzPyY93vv935v5veGISKCiXoIAJP+KmABoyMOhIKni8qMikXvBhwKpCrBAIAAQgQjp3uxKK3HCA1tVjWYAldDRsg5LIiM9GI0CjgcjrztUoxoPE2BVwFFgxilIALOEnUAMIzx7LspcNWkL9VzhNHbyyAYIsSjDjgd8rWNJ+o0psDLkG+WBdy7uAhPJAhnNIYoHHA4C0Vr7HH8uN4NMDpSs7w58iZ6F2MAY0EvAMArI15j65CxW2cI0iKlaBAjCIOIQEQQFjyAsx2ndW5dpZgaXhYLKBbA6V4G4UjOS4vEYkChuA/BPBxkUhKBiAAQ0E7BSIoE2qSAE5ltIOBdChORIAh6N1UVDJEBJ4smdcMcw+uEUfXIFHgNKAlVDLoYUeSmwNVAgOitv/POO+B5HoByJI0p+GskTIGrgQFAFoxPTmBvbw9TU1N6t6hqTIGrQsCDhw/wr3/ex+3bt/Hll1/KVzOiDS/AFLgKksn/YXh4GLOzs2BZFq2trfj++++LKxrRhhdgClwFPp8Pk5OTsNlsAICrV68qa7nBMefhSHvbUgdM+jsYDAIARkZG8vZ57bXXsL6+nu0Eao5rBEwNh7K3vbS0hI2NjSJhA8DQ0BBu3bpV1XF1RbcYn8HZ3t4mlmXp119/lS1PJBLU0tJCHMc1uGW1YWp4AUQEnucxODiIqakpvPLKK7L1bDYbXC4XlpeXG9vAGjEFXgDDMPD7/fD5fHC5XIr1iAh+v7+sWTcapsALmJ2dxf7+Pt57772S9RiGQWdnJziOw6NHj4rKyai+sM5Dim7I3c6Mx+P01ltvVTQuz8zM0MDAgOpz6E1TClxOEBzHEcuyFI/HKzoWx3HU0tJCiURCq+bVlaY06XLTpb6+PgQCAdjt9oqOZbVa0dPTg7m5Oa2aV1fMwAuAiYkJ/Pzzz5iYmKhq/52dHZw7dw67u7vaNqwONKWGS1lbW8O3336LsbGxqo/R1taGjo4OLC0tZbcZVY+aSuCFQkgmkxgeHsbMzAysVmtNx+7v78edO3eyvw0ZZQOa10snInK73bSyskJE2njULS0ttL29XfNx6klTabiUYDAIt9uNrq4uANpo5NDQED777DPDmnMAzafhgiDQysoKud1uzY99GOLrTafhu7u7GB4eznOwaoEk2myz2XDu3DnMz89rcuy6oHePayQcx5Hb7abV1dW6nWN9fZ1YljVklI2oyTT8xo0b6O7uLnlTpFZYlgUAPH78uG7nqIWmEfj8/DwSiQT8fr+mxyUZB03NwxG6obeJaQTxeJxYlm2YM8VxHL3++uuGjK8feQ3neR59fX2Ym5urObiiFqvVigsXLhgyvn7kY+mDg4Po6urClStXGnpeo8bXj7SGT0xM4OTJkw0XNiAfXwf0j7EfWYFrcVOkVsT4ulTIusfY9XUhtEWc++7t7RHLsoaIa9vt9oofqqgnR0bDSfLQ/6VLl3Dz5k20tbWV3afeXL16FdPT03U/j1qOnNOmtFJEL54+fQqHw4GdnZ2GzRJKcWQ0HAAePHiAhw8fGkbYAHDq1CmcP38es7Ozejcljb4jinYkEgliWTYv2GGEeLYgCNn4uhE4EhrO8zx8Ph+mpqbyFvc1wiOmTN42JRiGAcuysFqtWFtbq3t7ynGoBK50YW/cuIHz58/X9aaIEgzDqOpYH3zwASYnJ+vfoDIcKoHLXdilpaXsPW5A/8CGEt3d3VhbW0MymdS1HYdK4IXC3Nrawqefforbt29nt+ke2FDgxRdfhM/n0915O7TTMp7n4XK5MD8/L7t4gAy4GD+ZTKKjowOJREK39h0qDZfy/vvvw+/3K64UMZqwgdwS46WlJd3adygFLprFgYEBXdtRDbrnh9FtQlglP/zwA7ndbkM/GVoOPePrh0rDnz59iuvXr5dcKUIGd0mICNeuXcP09LQuba2700ZEYBiCFqNHT08P+vv70dPTU3vDdESMr+/u7uKFF15QvZ80Hbv4XS5Fe6m07XlSOOB/z360gmEYoCJDIv/OkI8//hh2u/3QCxvIxddnZmYq2i8nRCH9ncRtQnZ7bpuCtSu08fvcQV3HkGri2/VaKdIIlP5f9fH1VOajhvL1Gj6Gq5mOSPuluMLT0Ks5qkB1fL2MiPJ1WIU4C3uAVMP3uYPsR+63dJvccfa5A5rzniAAxCD32ojjlhN03PM17XMHxRqQyvXUfe6Azrn/RP/+139kj1143sJ2Fv4/RkH8n+fm5qi3t1fFDkRhr/S1GyAm7RgRAPIsqLUAMjlelC6i3G813wWB6GvPCYIzQJsk0D53QCkK0wUGBGeA1rl92Ybx3AH5/X4aHx9XPLb0t1LnlNtHD5TyyrS0tNAvv/yiYr8UhT0MwTtPokIItElBZ/pdLMU7yh+vIpN+wP+OP1hPFG0r6eQxMcTjgMPbi9MZd8KCi7i7GYAzOorLN+Oyu/3ju++yN0UKz5mxTHm/xTrSunL76YXcUGa1WnHlyhV88cUXZfcjxBCNEzxeLwALFkdDiMIJr9cLh1PGOWMUsnkX9gAl8yxXpqQ5eRoeCdBpy5vZXpgri1DACTru+bpo/+3tbfoje4b29vZKHrvwt5rvRqPcEmNBeJ7+GwmQAx4Kk0BCJEBObzhTobB+aac4q+G1TsXk9icAkbt3sdXeA0/eKxsFEAhyswae53Hp0iVMT0/j5KlTmrTNyNhsNnR0dMjnXwfAMMcAANFvvkEMd9HLWGA5PQpyOtJWjimsX8YpFiWv5HxJy5W2i2UpSXfb5w6I5x7RR84T5AhtFu3DcX+ni5b8sn2Op4GBAZqZmSnZplLOo9IYbmQtLzftTI/VIGdok4hStBFykGchVdUUV3UsvZoLljZD9swL3kRSRAKRsOAhoJ0Cm8+zJdmshkLaUun/RFpjEASBWJal9fV1+fJIgBxwUCiaviKphYDEUVPvoROpFHjlws54kQuerHcuIghCzkv3zqeFKwgKKzwr+2cOM+Pj4+T3+2W1diPkKLqOREQU9lQ0JSMqI3Cl+a4sQu6vQESpzCsb88152hwB6e1GXCmiFxzH0csvv1zkvAmy1zHTCfAuhQs6QTmrqPnNEwIASuGY5bj8tMAZwGYklJ2iAQLa2504duwYXn31VS2bcuj46aef4PF48jJCWixpv1oqJvGmCbzzoIXeis6h+duFGQBgjkEQij1IIHP3DEz2js7ExC28/fbbuHz5cnp/Soflmg2GYfDjjz/i888/z9suCCVeQF+NqtZqitSYEkF4nlf+38zYvLKyQn/981/yzZi0YrN4bRKkyQKlFF4KcTiUu0SlvPeGPPEi1wC5lSImRPfu3aPu7u66HV+3R5zcbjc9ePBAr9MbFo7jqLW1tW6KoMsjTmLaS7fbrcfpDY3VakV/f3/d3m/a8OfSl5aWcOfOHc0yIR5FkskkOjs78eTJE82XGNddw6X9aWdnB6Ojo3krRUyKsdlsOHPmjGJ8vSbqMlDIwPN8xWkvjbDcVy9WVlbo7Nmz2d9aXYuGjeFDQ0Pw+Xzo7OxUVZ8MuFSo3pDEGnZ1deG3337LviJLq2vREIFL3wWm6pm2JhQ2UCzU/v5+fPXVV9qeg6i+TtvW1hb6+vqwurpqiBwnRkWuk/M8j7a2NsRiMZw8eVITJairhouZGRqZ9vKwovQIlLjEWDOLp4knoEB3dzfdu3evnqc4Uii9LdFut+eV1eLA1U3DJycn0draeiRWijQKhmGKHs602+1oa2vD/fv38+pVTdVdRUJhj1tbWzv0Kzz1pPB6ahlf19ykJxIJcrlcTf0wg1ZIBW+z2TSJr2ti0klihnw+H8bGxrJpL8ngy3eNjNR0Dw0NFWWBqubaajotqyTtJTXpXLtakskkXC4Xnjx5UtES40I0c9oqTXtpCrsyxPwwy8vLtVnNmgcFSq8UYVlWdqWIiXasrq6Sy+Wq6RhVazhlehnP8xgcHMTU1BROZVaKFNYx0QaXywWe57Px9Wqub9UCF01yYdpLaSNMs609165dyy4+rOb61uS0zc/PY3l5ObtYn0xHrO5I4+uFFlUNFWu42D+2trbwySef6J5KstmQxterotwgLxe3ffbsGbEsa6h3eRx1pHIQ4+vVUFbD5Uz09evXMTQ0pJj20kR7pHKw2+1obW2t6hGoIoFTmSF9cjz9LrCBgYHqVj6YaELZFJ5KshFVvTBpDICiFYurq6t0tstNz549q942mWhGcXy9/ErSvDF8I+TIJI0hSlGYPED2t/wKz+ZZzmtExsbG6MMPPyzys9Jr73OK61n8nYQFD11YTOUELi5LvbCYE2LYmxP4G2+8QQDIAqbYEpifhn6kKbteeuklKpQh8C4tCEK2I6Stdzt9FM0KPJWXNIZIXH9sl08JZaIbSk+7ZIUtGYYlCb/IAy+F6XlOwzdCjkzPsRAAso9syh3XxKBshBwExpFVUIGkK0w3KRAKEwmZMVzsHWL6CCESoHaAHCOPqfQ4bWq/Echqd2b4LYUFBDCxu7gb9cDrZQAIgCOEkBeIBUexoJiIGYBghlH1RwBhC7Eo4HA684tkpmYWMMDGwgJiXg8uggFgAZg4ojEATiccUDqGAFgYpUJ5zHLNywkWMNFNROXq5oknnUnCQojgm7vxTErHNIsXnfhbFLgQCkpysaTJ/pIL0kmqklzec7Nc83IGADmdcAKIRaO5wJmk7sJIEBHJhoyLb5G4/vn504oxx27DEU7PvaXZnop8M0FQ8dSqzCyg1GPwKSrVUczyepaLzrZUcQun1f8HNTYbnhVv61oAAAAASUVORK5CYII="
|
<image>如图,已知D为△ABC边AB上一点,AD=2BD,DE∥BC交AC于E,AE=6,则EC=()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,836 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAIsAAABMCAIAAADSltOkAAARIklEQVR4nO1de1BT15//nnsTIo9ECIUCIqAgAuYnogJqBUFdH4hYlGp/A9TqSLtrp866ddq6dd3uz+3UsR2czthRW+sqrhafVBRUKA/BIhDEjFUsygJVebfBQEISwr1n/7hwveYFSASS+hn+cM459+ae7+d8H+d7HiKMMQwGjDFCaNBm1gGmu0PuzTCbWx7EUBrZDj1WiCExZFNAw9OIYTYfNrg2zKg9G4QhvWeGYhJfYVjg2iejtgq9EropmPBA9CgbniH92F+TxZdt34aIVzpkBLifG5pTRjxXDaPHHs9oqU6na2lpkcvlYGOh9uAgAGiGG5Lm0QgwovVaIAwAgC0kEoSeKYlAIPDz87O3t+c26GeIacQyoVAovvzyy7a2Nnd3d8t8yFiAGVsIIaVSWV1drdPpNBpNVFSUUChkmNBoNHfu3JniP9XN9bV+B4N5gGiAHhLzFO3Ur/fvz1oQZidAJGZ5IhCmwXIMsQqgVCrlcvmePXvmzJnDbdDPEJdJBu7u7ps3bw4PD7fMh4w6uGOuoqLi3Llza9askclkjx8/TkhIiIiYx+eTTU1Nhw4d2rDh7xJJCMYUAAAmEQEAPT1y1b/983+Fz5y3L/1rJ2ceHwABDUDgAR2ylJVjGWpqajpy5AhJknoNnlk5rimzAefEdqevry8jI2PLli1hYWGzZ8+uqak5ffr01at5mze/29HRwefzxWIx90GMASHs4Oj44aa0zLM/ERjRABgwAsAYY3gmJmwJmgb1IMb9EOdzMateVueNmI/Pysry8/MLCwsDAAcHh7lz54aFhZWU3Ni3b193t2L69GBXFzFwe4cAA4F4ZOBkHyeCDxgjAARoIELob2PZ7wTT4h0k2rY6VrhACLW3txcVFW3YsAEYDcAYAEiSjI1d9MUXX8TExGi12h9++OHx4ybugxQQQBAIgKBpsp8h07CQuTFltwafD1mpAjEoLCwMDg729PQ0rBKLxZs2bUpLS3N3d9+7d+/p06eVSiVThYAADATGCGGEECs5hBAxQJel3MCgobIt5+WePHlSW1u7aNEiHo8HAExcx9ZijEmS9PX1TVy3dteuf29uebJz587rxTcUnV0I9wFN00QfRdAUQjQAjQEwBqANRjoNBuH4sGCY9dH7CZN+iG1npdpDUdStW7ecnZ2nTZvG9txAHAgASBJ5enpu/9ftd+/WnD1zsaLiZnikJFIyq6i4QFYrq5ZVz4kOFxDAhAgI9ccHyHJqNPAxQNM0GAjcJENWSgwMjC2VSlVaWpqcnKw3AWQzBRgjhAEItpuERCLxDwgq+6X0VuXN61fz+TTvn95aQfABUYBIRofYWBsACMB4wEHR/SUjg1GZDxLLWS/Ky8sdHR0lEglbotd/hLDhtFMwgR8bGxseNvN+zb3Tp88INE9X+PtN4DPsEAhowIgNGxCyrCIZhw36IYSQXC7PzMx8//33+Xy+QT3x7I9AeuUIA0EQIrFbxBuLvvx6/5SpAXv+sft/j/3P40e/UxSFgQBEDjxu8LaXAxtkiKbpH3/8cfHixV5eXsN9tt9jAQBCdgLBunXr/vM/dut6NcePHz9z5kxb+x80R2kM4+OXMdO3BYbYiQ6DxsbGR48eRUdHm3+KpumOtva2llbGP3OBABDQjH55eHq+9/6/JCYmdnd3f/Hf/8i9nMM8DcbchmHybOSwNT+k0+kKCwslEgk7B+LO5zDGSqVSKpXm5ORIpVJn0USCINo62hcuXLhq1arw8HAHBweE0IDnpwEAEAEAEokkMDCwtbX15MmTBQX5ycnJQUEhjo6OoxBP2QhDrKQePXr0+++/b9y4kcfjsbltpoqm6YcPH166dEmtVicmJu7du5fH4zG1JSUl169fv3379ooVK4KDgxnT0h+d4/73CwQCX1/fTz75pLKy8vz5LFfXkujo6NDQUIFAoBfHW3a9xhYY4oqjvLzcw8PDz8/PsFl5eXlBQUFERERUVBQTgrMPRkdHh4WFFRcXZ2Zmrl27NjQ01NRvkSQ5f/78GTNm3LhxIz8/v6SkJD4+PjAw8OUpky34IRY6ne7SpUtr1qxhlIOVGsa4ubk5Ly9v6dKly5Yts7e3NxSoUCiMi4tbv379kSNHOjs7gcmWYsCADbNyIpFo5cqVW7ZsCQwMTE9PP3TokE6ne0mdsh2GMMaHDx9etWqVt7e3XpVGo7l8+XJISEhERISZN5AkGRwcvHz58uPHj6tUKjCbkEQIubu7r169+ptvvhEKhWlpadnZ2S0tLRZfkrYFhphYoLGxsbq6OjExUa8cY/zkyZOampqYmBiSJPWyc3ogCCIiIkKhUNy7dw+IgTUH09EZxtje3j4lJWXXrl0ymWzPnj1NTU0mW78QbIEhANBqtVlZWfHx8Y6OjkwJdyzfuXNn0qRJr732GvcRUzy5urp6eHjU1tb29vaa/1GEEEH0C5AkSZqmfXx8BALBiHpiAFuIFADg7t27SqUyMjJSr5zh6cGDB9OnT2elaR4kSXp5ef32228URQGYWxqiaRohpFarKysrT548mZycHBERYW9vb9n1GltgSKPRlJeXBwUFeXp6Go16nz59KhaLhy44oVCoUqn6+vrMN6Npura29tq1a11dXenp6UKhkP3dF++MAWyBoebm5vr6+rVr15qSvqOjY3d3t/mXcK2iWq2eMGGC4aYOLjQaTXZ2dm1t7Zw5c2JiYhwcHNgqy0YKtsDQlStXZs2a5eHhYWo1zN/fv76+HoYsu+bmZjc3N8OsK8vi48ePDx486O3tnZqaOnnyZPNcjhDWGilgjJl8WmNjY0VFxfr165mcGAtu48jIyAcPHnR2dupVcf/NktfR0dHU1CSRSJiVWS6YrXfXrl3bv39/XFzce++95+fnR5LkS90aZZU6xLhohJBOpzt+/HhKSgoTQRluS2JKvLy8Zs+enZ+f/+abb3JjLUOVoiiqrKzMxcVlxowZerU0TdfX11+7dk2lUm3bts3X15cpf9l7cq1Sh1iJ3L17V6VS6YVwBit1yMHBYcmSJffu3WNsHQOjA7+lpaW4uHjNmjVOTk7cco1Gk5ube+LEiUmTJm3dupXJKqH+dfGXmzy1Sh1it9EWFRXFxMSIRCJ2IJuSl4+PT1xcXHp6OrO1kc/n60V9Op2uuro6IyNj69atkydPBs6Et6ur69tvvwWA1NTUKVOmEATBVr3KbZuDTCZTq9Xz5s0bykSHIIh58+ZNnz593759ZWVlkZGRr7/+uouLC03T3d3dra2tUqm0o6Pj008/9fHxYR5BCCkUivLy8pycnPj4+GXLlnFfOGrbcq2JIe6Y1Wq1paWls2bNYvb0DnGu4+Li8tlnn+Xn5//8888URbHxHpOR27hx48SJE9nGdXV1Fy9e5PF4H3zwQWBgoN6rRm2njTUxxBUKs5D64YcfDusNGGMnJ6eEhITY2NiOjg65XI4QEgqFjD7BANM0TRcWFubk5MTFxUVERDg7O1u0H8ODNTHEQqfTfffddxs3bmT9+RBHNNOMJElnZ2ejcqdpuqGh4ezZsxRF7dq1y9XVdcx3pVklQxUVFQBgmIUbIbq7u0tKSiorK+fOnbts2TKL50BfDNbHkEqlunr1alJSkvnRbTTQMhV9YYzr6+svXLjA5/NTUlKmTZtmyS8eGayMIZqmq6qqHBwcgoKCzLc0fvLdGGcURRUVFWVnZ69evXrBggXc9QuM8RAz4i8PVsaQQqG4efPmggULGMc+QvT19TU0NFy+fFmhUHz++edMWMjNR4y5EwKrY+j27dt9fX1z584dYnszk8re3t68vDyZTDZjxoyEhAQm+8nozXgghoWVMXT+/PlNmzbppWTMQE/W7LTpzz//PHjwoJOTU1JSUkBAAJucHlfcMLAahjDGBQUFYrGYOe84lPZGxc0siZ47dy4hIYHdljWeYTUMKRSKzMzM3bt3j2QxhvE63d3dH330kZ+f3zjUGEOMKkOmj7kPfv6moKAgKCho0qRJL/bTarW6sLCwurp65syZsbGxIpHoxd4z+rAOHero6Pj111/j4+OHFfuyhk6hUBw4cAAhlJSUxN1SMt6CAqMYVYYGhKGvMRgIMK5bAAA0Td+8edPZ2TkkJMSMQI2Ku6ur6/bt26dOnVq3bt2SJUsIgjBclxvzGY95jIkOEc9famQcbHq/q6tLKpXGx8dzd2votTScu2CM6+rq8vLyFArFzp07je7khnEZvOlhrKwcwdUkM0JCCJWWlopEIlO73dnFNHhe3FevXi0uLo6Ojo6KijLldcY/PTCmfmhIl20olcrMzMyvvvqKzWOadx4URbW0tGRkZBAEsX37djc3N8MNIXoY595oXEcKNE2fOnUqNjbWzHlHrnB7enoKCwvLysrmz5+/fPlyOzs7o48YO7Y/fjGuGWJ2xO/YsYMrU1MCbWhoyMrKIkny3XffDQgIMOP/xzklehg1hvqv/oLnIzozURxN00VFRRKJZNA77iiKKi8vz87OjoqKiomJGXpOyCowagw9xwQeKAEDetgQrrGxsaGh4e2339bbl8MFRVHt7e3nz59vbm5m9uhYl34MBaPBUP+tbBgj6AOEMEYUIpkrd3kAmKKBQP3XRwzQgzGuqqoSi8X+/v6mhK5SqX755ZeysrLg4OC0tLRxsiRqcYwGQ9wz7FqNOiPjRGm5dH3qlqWxbyAAgiBg4H49tr1arc7Pz//444+5m6e5IbVcLj98+LCdnV1iYqJEIhnns86RYJSsHHMbDoWJh3UNIUHT/jYrdM/+g66eXmFBU3gIeIAAaISeJWN++umn0NDQqVOnsjECy59Op5NKpceOHUtKSoqMjBSJRHoNbMzQjZYfQjQAYBp5eHhIggIwj5fy986qqipJ0BSCCX85B3rr6+uvXLly9OhRbhqbkXtdXd2VK1f++OOP3bt3651XtTFiWIwaQwgACJJwdXUF6EMYxE5Ce3tH/vMTVwyg6+3NyspKTExkL0RgqrRabWFh4a1bt4KCgt555x3u1kM9PbMxqkY1liMQMNeIYor6o6Nj6YoVZP/NrwigX13q6uoUCkV4eDhX0G1tbceOHUMIvfXWW/7+/nppAhujRA+D3wBoEQyMbgxAU7q+8krpypUrhSJHwEAO3KkHAL1abWlpaUhICJtEUKlUMpksMzNz+fLlixcvNnoVAgubpMo4Q9wrgkeIARPEnHunaJ32bs19ZxdXB0fHp097BHZk/cMHjQ3/xxw1JUmyoaFh69atJElSFFVfX19QUNDa2rpjxw4fHx+bJGBQGGfIgidjEAbAGBEIANNazcXsrKMnTondvPn8iVOmTLUToO6uTheh0wQ7fp1cfuPGjYULF3p7e2OMc3Nzq6qqQkNDk5OT2UO8fwXopQ15RussaeIQgoG3ETzegjei/KYFU2D3tFN9+VKu5G+BG9YnurmI7QV2TS3N169fT0lJ6erqOnDgAEmSqampvr6+zJRonGegLQi9bhp3uZYycQDMZW0DrBN27p4+7p5+AJCZeSbA3/Od1A18Hh8B9Pb2njhxIjk5uaamJjc3NyYmZuXKlXoZaDZU++uwBWYiBUvP0mmEEMb9xpOiqAsXzqWnf23HI5mkqkwma2hoIAiisbExOTlZIpHonZHjvsu26TFn5bhQKpV1dXUTJkxg7d7I5MK5oReh9vZ2hUIhlz9VKLoBoKen5+jRow8fPvT394+MjCRJ8v79+6YubWOjGBvjqb29vbOzkzlEzS3Xt2ZMz5VK5ffffy+VSpk7UCwhCxqe3VFNaHW9nX8+9fDwYMq1Wm1TU5NIJBKLxYzuWtLMWgn6+vqEQuG2bdv0zvuNnSDG/D86tRLYbErYZjB2q+CvtGdoeKVD4x3/D1t4oOhF1Rw/AAAAAElFTkSuQmCC"
|
<image>如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()
Choices:
(A) 130°
(B) 105°
(C) 115°
(D) 125°
|
115°
| 69,837 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALQAAABtCAYAAAAI/EvVAAAZp0lEQVR4nO2df1QU19nHv7OLoedIsjFuwpp3E/JjEQwmXZFGmlIwshj7Vo8YaZtUbLDHxh9rg3kDie8JksakPVRQacSUHNuGk9KG9BCQaH2JYAMGW9RYtskqasRwYmxQkrj4owGZmef9Y5lhZ3f2FyzLD+/nHI/szJ07d2e/88xzn3vvMyCGT0RRJEEQFNtqtqwlQEMACBlrqF/8iNasKXaWVxzLh7GlDCIiDRg+4TgOGo0GRAT+eB04jsOOT+4CkQBRFEGlFkzS3A/ccy8AgEAgEgaO1Y5m069LIka7AeMBAiByx/G9hEykr9uMxu35AJxix32PonhNOrjY6SAAGnAAE/KowQTtFxEcNHhnWxkakYYPt/+PR4l7Y2OBe2eAczkG0EAURWg07CEYTjgiotFuxFiGiCByxzFfMxNxm2vwat4SEJHTOntBBIEjgAMHeC/GGAGY+fADx3HQHj+JvxFgmh47sFVULStZBg04p+CZmMMOE3QAiAPCJHL+wUHpI0tCdtWvKIpgD7/wwwQdADQjDhYAZ05/7NzgqtzjNdhad8xZjmigB0kARJ9uCWNkYIL2iwgtErB2y1q8mrcEW985DgAgEvBRXTG4pxvwzOIEAE73ROQEQMPB/dKOhLVmTwBPWKfQDwI5La0GHD6qK8Y3M58FcQAISF9XgsbtzwwWJoyY3xxMxMRfp3UiwwQdJLJm/YhXEuBwxeUqZFF03lzXq1gDgcWhEZz14zz+ADo6OnDy5EkcOnRI3nb+/Hm0nzwBzsVcHD16FFeuXJE/p6SkQKt1djBnzZoFnU4HIsKMGTMwbdo0uYwEi2n7h1loPzgvjwiO04IANB9oxsn2E9jX2IDj9mP4+OOTMBrvxIwZM5D84ByIcE7zuN1wB+LiYhXWdPbs2YiKipI/Hzx4EDzPg+M4HDlyBJcuXQIAHDt2DN3d3RBFES0tLTCbzTCbzUhKSkJSUhLmzJnjs83XsyVngvaCKIr497//jbq6OjTufw8nTxzHqVOnkJKSgjvvvBO1tbUwJ34T7cdOYMqUKUhLS0NGRgbSHk5F9K23hXQex5EjR9DW1oZ//vOf+OCDD3D06FE89NBDePDBB2E2mzF79mzMnDkzZOcbzzBBQ9mJOnHiBOrq6lBVVYWuri4sXrwYixYtQnx8PO6+9x5c7rmEpKQk/OIXv8CyZY+DiMO//vUvNDc3o7FxH5qaDiAmJgZz586FxWLBww8/DJ1ON+z2EZHC5Th48CA++OAD2Gw22Gw2XLx4EY8//jieeOIJxMXFXZfWGWCCBgDYbDa89dZb2LVrF77++mssXLgQy5cvVzzanbPrgAULFiA5ORmbXnpJtU9IRDh06BCam5vR0NCA5uZmPPDAA5g3bx4sFgvS0tLwjW98I+TfoaOjA2+88Qb+/Oc/IzIyEj/72c+wdOlSGI3GkJ9rTBOWSaphQG3esi/sdjtZrVaKiYkhk8lEGzZsoLa2Np/HWK1WyszMDLpt7733HhUUFFBKSgoBoJSUFCooKKCmpqag6wqEtrY2slqtZDAYKDU1lXbu3EkOh8OjnCiKKkcHjyiKtDaDc84PV/x7mI6RQAJ5nidU53Znwghawp+oW1tbaeHChWQwGKiwsJDa29sV+71d6LKyMjKbzXT58uWg2uNeX29vL7377ruUl5dHiYmJpNVqyWKxUFFRER06dMjv8cHS2NhIOTk5NHXqVMrKyqLW1tZh1efJ4PVemwGq+UiQFzYUWy2yqImUv40oiqpCHy4TTtBE6iKor6+ntLQ0iomJofLycurt7Q1YLPv27SOj0UifffZZqJtKDoeDamtryWq1UkJCAkVGRtL3v/99Kikp8fvEIPIteFcB8TxPlZWVFB8fTwsWLJCF7c0ABHsj8WSnhzNWe2xfNR+Uvq7ErfKhnSMQJqSgXampqaFZs2ZRXFwcVVRUyNsDvZinT58mg8GgatlG4gfp6uqiqqoqWrlyJZlMJtLpdJSVlUVlZWUeTxOJYFwtIqKqqipZ2IcPHx5eg0UigUT68J1isvx8i8fu4jXphIxVzqID10skIoFGZnnahBV0RUUFxcfHU2JiIlVXVwclPkEQSBAEcjgcZDKZqLKykgRBUNQRjIiGI/zOzk6qqKig7OxsMhqNZDAYKDs7m3bu3EmdnZ0BncdbW998802KjY2lzMxMamtrk793MEjnLF6TTiW77B77a7aulgUdDiacoJuamshkMlFqairV19cH/EhW25eRkUEFBQUBlQ+G4dTT3t5O5eXllJWVRXq9nmJiYmjlypVUWVlJ58+fD/g8rvsqKiooJiZGFnZw7RRIpGM0D/PouIpPXLwmnSw/36I0BiPgO0tMGEE7HA5auXIlGQwG2rt3LxF5WixRFAO2lkONaATLUK23JLa2tjbatm0bLVy4kKKioig+Pp7Wrl1Lb7/9NjkcjqBuHknYOTk5qlERrxx7281PHohsHKshAFSyyz5iUQ13JoSg9+7dS9HR0WS1WuUoxHAu4FAjGuHA3/dqbW2loqIislgspNVqyWw2U15eHu3evZt6e3v91s/zPBUWFlJ0dDQ1NDQE1J6aratpbUmtx761GVC4G643F/OhVbhw4QLl5ORQTEyMakx3KO5GY2MjGY1GOnv2bMjaOZq4x8CTk5OpoKCAGhsbPcq6Xq/W1laKi4ujtWtXyze2IHjGlHmykwWgGnv/4MbjNXLOknAz6oIO5JGoJszq6mrS6/W0YcMGn5YnmEfu6dOnKTo6mlpbW0PmL48lent7qb6+Xo6BA6C0tDT65S9/SS0tLR7lL1++TFarlUwmk0eURxAE+nDXZqdwNe4DKqDi2o/C9bUUjLqgg+XChQuUlZVFCQkJPgcJghWka0TjesHhcFBNTY0iBv7II49QSUmJHM4TyfnUMhgM9L/PbaD+/n7flY4yY17Qrtb58OHD8ggfzw/PB5MELw2ZWywWOaIRrg7MWEMtBp6ZmUnbt/+G/vGPf1B2djbNmjVLDvF5YzSv35gXtITkYtTX13stE6xVlsqHK6IxllG7dlIMfPny5XIM/KGHHqJbbrmFdu7c6XKcy5A2MUH7paioiIxGI9ntnoF7IgpqQMD9YnuLaExEKz2U7yRdW4FEam9vp8IXXqT77ruP4uPjqaioaLBu1fOFP1nlmBY0z/OUk5NDiYmJ1NXVJW8PVYdtokU0RgJ+4FKLIi+L1mw201/+8heaPXs2rVo1OKytvGFGp1M9Zhep9fT0wGKxwOFwoLm5GdHR0fK+QNbWkco0b1EUIYrOrEcdHR3Izs5GdXX19TdnGIGnQNAOXGqO08rzv3Nzn8aOHTvQ1NSEzs5OPPbYY7h27ZrbogLNYAaeMBJ2QQdyITs6OpCcnAyz2Yza2lrFOrxAUVuxodFooNFo0NPTgwULFqCkpMTv+ryJynBWtCxfvgznzp3D0aNH8de//hWTJk3CI488olgA7DyJ57GSQRkxRuW54IPW1lbS6/VUXl4+IvXzPE8Wi4Wef/75Eal/IqI2heD111+nuXPnyp/z8vLIbDbLruFo9UHCJuhA5lEcPnyY9Ho97dmzZ8TawSIaoYHneYqNjVVMZiotLaWYmBg6ffr0qLVrzFjozs5Oio6OppqampB0+tRunu3bt5PZbKZLly4Nu/7rCW+/R2lpqYdxqKqqIqPROGqiDqug3S+M9PnChQtkMpmorKyMiIb3uPJ2LItohJ7e3l4yGAweK2ukuejSjD3pdw7HdIJRt9CXL1+mxMREeu6550bM7/K16oQxdARBoNLSUsrKyvLYV1BQQBaLZdgjusEyqoLmeZ4WLVpE2dnZRKS0rkO5m91vCPdVJ4zQI1lpNRcjKyuLVq5cSUTh6ySOShyaBkJ3K1euxNdff42KigoAylDSUPK4uR4vJRzPysrCY489hmXLlg2v0QyPkJsoioiMjMSqVavw8ssve5SvrKyE3W7Hli1bwpf4Jiy3jQoFBQWUmJjocxL9cH0uFtEIDw6Hg/R6vcJKS79dV1cXGY1GqqmpCUtbRkXQO3fupJiYGMVwdqhxnaMxEedljBWka1tYWEhWq1Xe7jq/xm63k8FgGP4K8wAIi6BdLe3p06dJp9N5XZIfCtwjGkzQI49kpb0ZqT179lBMTMyIR5nCaqF5nqeUlBQqLS31WW44rkYwEY2JuCol3Lhew/Xr19P69evlz+6GpLS0lJKTk4nn+YmRCqy4uJjS0tJ8lgk2R50rFy9epNjYWPrTn/5EREyw4aarq4t0Op1PV9JisVBJSYnX/cMlbIK22+2k1+t9PnLkubduSV0Cob+/X7HqhBFepN8rNzeXCgsLvZbr7Oz06ECGkrAImud5SkxMVKTi8sVQHkdWq5UWL14ckFVmlnvkOHv2LOn1eurp6fFaprS0lFJSUkbk/GGJQ2/atAl33nknnnjiCY/po2rTCYONWe7YsQMHDx5EZWWl4gU73mDvKgktrtfaaDRi4cKF2LJli9fyubm5AJy/W8gZkdvEhba2NjIYDNTd3U1EobWOgiAoIhosmjF6uEey9Hq9zzGG9vZ2vy7oUAiZoNXE1NvbSwkJCSEPqkvnYnM0xh6SsHNycvxGs6QMT6Ek5BbaVdgvv/wy5eTkhPoURHR95tEYT7S3t5PBYPCZBEitbzXcp+yIuRwOh4MMBsOIjAZKq05YRGNsk5mZ6ddKt7W1hdT1GLGXBr3wwgu4dOkStm3bFvK6161bh3PnzqG2ttZnObqOXxEcTqTr7P4CU5vNhszMTHR0dMgvGFUjPz8fPM+HRiuhuCvcO3qSdf78889DUb2CsZwZlOFJZmYmvf766z7LeBuQGYr7MSIux8aNGxVDoK4Mx0dSi2iwmPLYwv33aGlpIZPJ5Hei//r162nDhg3DPv+wBe0u0PPnz3vcbaEQHYtojF/S0tKooqLCQweu2pFCfUElWlchZBZaaqz7BJVgUbPgLKIxvmlqaiKz2ey33IoVK3wOmweCQtD9/X3yv6EQyOSUYOF5ntLT0+WIBnMxxidz5871Ox4hDbYE8qYBbyjGgCMiblD8HyxFRUVYsWKFIm3XcMnNzcWNN96Il156CQAbth6vPPPMM9i0aZPPMvHx8UhJScFrr7029AxL7gofqnW+cOFCSKyzqwW+njKDXg+YzWa/SYSkqRJDXS3uU9DuLoiaSyJ9Li0tlVdveysbyD6JxsZGuvvuGOrsPONRrq/va9Xj3dvp/n0Yo0ttba3f+fBERBkZGQHPzHTHr4X29bm/v0+2qCkpD8nvBZTKSJbU/Rhf9RMRdXR00B13/Jcc0QjkeG83n7dzMMKH6xx3s9ms+oInVxoaGgLqRKoRlKDV9vX391FHx8c0bVq0/Ji4dq034Drcyw5GNN5QbXCgdfs6J2P0qKio8GmlJfF7y/XhD789rIiIG8Dz13zuf/PNt/Doo1ny8GYww82uZQVBkPNo/OhHP/JbnjH+yM7Oxrlz53DkyBHV/VLK46VLl6Kqqiro+mVB+xKtPyorK7Fs2eN+y9HAtBHyMn0kNzcXUVFRckQjFG1jjB2ICFqtFgUFBfjVr37lM1f4kiVL/M7V8XYSIlL6nGr09/epRheOHj1CJtM9ikeG5EdL/9xjx/39fXLHTqKsrIySkpSJZ4LpVPrzoZnbMXbgeZ5MJpNHkkcJURSJ53nS6/XU2dnptYwasoWOiLjBZ/yZvMxce/PNt/DjH2fLd5tGowHHcXJ9Wu0kj9hxRMQNmDQpUj5fQ0MDioqKsGvXO4ps/d7aJG133ee+zdvfjPBDbpZYq9Vi3bp1ePHFFxVlpHIcx0Gr1SIzMxPV1dWq9Xl1Pf3dTYIg+LRuRqPRZ9IYfzFjX3M0WLx5/OP6PkhXent7feaRFkWR9uzZQ8nJyar7vOFT0P7ixYGO0Xvjq6++kudouKcuYEPcE5/S0lL6yU9+4lWgPM+TTqcLavK/zyiH2qPdlfr6eq/RCGBwNbDaMKYgCPjhD38oZwbVaDSKRxMb4p54kJvrsXr1auzbtw9nzpxRLa/VarFo0SK8/fbbiu0+V/QPp4FNTU347ne/K392b7BGo4EgCKrizM3NxeTJkxURDSbiiY273xsZGYknn3wSxcXFXkW6dOlSVFdXK/b70klAS7BIxQkXBAE333wzPv/884Beu+Zax44dO/C73/0O77///pBe2caYOPT09CA+Ph42m02e1Oaqlb6+PkyePBk9PT2YPHmy3/oCMolqPcqjR49i+vTpXgXpfsdJdezfvx9FRUXYvXs3EzMDOp0Oq1atQlFRkbzNVW+RkZG4//77YbPZAqovIEGrGfEjR47gW9/6ltdHhdpjoaOjA8uWLUN1dTVuv/32gBrImPjk5uaisrIS58+fV91vNpths9kCmlIalIV2Ffb777+Pb3/72wH7vdLbW7ds2YI5c+Ywf5khM2XKFGRnZ2P79u2q+yVBB6SZYEMtUojFZDL5jD+7xh8FQVDk0WDxZYY7XV1dZDAYVJM8Hjx4kBITEwOqJ+i8HKIooru7GyaTCT09PT7vGilPQ6B5NBjXH6IoguM4cByHp59+GjfddJNiBBEArly5Ar1ej6tXr/rM7wHAv4VWs6Z79uyhBQsWBFSerTphBIqUitd15bf0pDeZTGS32/3W4dcpUYtwtLS0ICkpyW95XxENNg2U4Y6Uild6zR8wGFyQ/Gjy41AE3TMTRRE2mw3Jycmq+6SeaEdHB7Kzs1FdXQ2j0RjsaRjXKRs3bkRxcTH6+voU25OSkmCz2fwawqAFrdFo0N3djdtuu011n0ajkSMaJSUlmDNnTrCnYFzH3HPPPUhPT0d5ebm8jYhgNpvR1tbmvwJ/PonaJKE77rjD6ywpKTPo888/79ffYTCIPPtTdrudjEaj4m1ZZ8+epVtvvdVvXX4ttFoU4+LFizAYDKrlpVUnaq/KZTDUcHcjEhISkJSUhMrKSnmfTqfDpUuX/NdFFFzYrq+vDzqdDr29vR7pU8vKyvD73/8eBw4cwI033hhMtQyGApvNhh/84Ac4ceKEHKqLiIhAX1+fz9Bd0D50d3c3brnlFufBLmLev38/fv3rX2P37t1MzIygcberZrMZM2fORGVlpbwtKioKV65c8VlP0IL+4osvZEFLsIgGY7ioRS/y8vJQXFwsf7755pvhcDh81hO0oL/88ktMmzZN/swiGozh4m6dpdDvd77zHUydOlUeYY6KigqtoEVRxBdffIGpU6eCiBR5NJYtWxZMVQyGjGSdJSG7urKbNm3Cpk2bIIoipkyZEpzL4X6nEAny31IHsLv7PHQ6HTiO85pHg8EYCmoRtbS0NOh0OtTV1Sl8aPeppPZ3SlBrF52CFuEUrrsfw3GDvUnpZD09l3HbbbfJb2/94x//6Hc4kgEcOHBAnoTDhv0Dh4jw1FNPofSV3yAqKgpXr14FoBQ/j+N4enE+ACACADRwCtc6n8OrDcoKS3bZ8cziBPmOuHbtGr766iu88sor+OlPcxROO0OdTz/9VDE/AXAaj8LCwtFp0DiDOODUiZO4JXkKvvzySwAiAA1EEDTg8Mq6MnAZGYibOeBySPZ1xz7C6vlOERMRPty1GXmZM7GrfXBYGwD0ej2efPJJ3HTTzb4bwiw3OI7DqVOnVPd9+umnYW7N+IQjYMWKFbjrrrvwn//8B5KnzBFQu20NKCMDQoPTy4gAAA5OUYs4hlP7LFhXHw8AuD/2XgCSMJ2PSde5qu4DKwx1rl69ir///e8e21esWIHU1NRRaNH4QrLE7pC9Dg3CfJTFA3nzp+M+aFw6hUQ4XrcXsD6ChAHf2bp+KdLXlSBzhvpJmC8YGIsWLVLdzsTsH29iBoCnXmvEq88sgUYgpE+/x7nRdfJRzdbVBKexJgBUY+93m0TizP8sukwoUZuoz7IeedLc3Ky4tozAEUXeKToiInJm2KrdtkZxPedZi4mISOPMWOT0Pxr2lqPm+DUQEWq3rcGjMyeh1j4YHpGiHhycjrpzm+fdw9wQT1JTU+WEhMT6FkHBcVqAk6JxGtCJOuzjM+Rr+eGuzYi7y+keOzuFnAY4XoPfcquQGR8BArBovRXzwKGhvk71JN4eAwzGiEAD0bj2Wmif+j+8mrcEACCKwOkzZ2TDOhC241D77j6szpgv79AeO4m/gfDfsdNlP4YAwCWrDZGgiFUzGKFnIERHwFarBfm/3Q8AqLX/FktmAtbvaVG+LwJAOU52loATRZ44TgvrfA6WrQIW3weQph0LuJloxFwcowbc59T94ClYdIMRRkQQOPK/DpVIgMb+zlZwnHNA5dH7tdBqtYjgHkBjxioQvechZhDzkb3hyz92HynMz88Pc+vGLxpwqsmOBv929vM4Tqvsboui6IxgeOttkmv0gkUyvOEe+cnPz/eIbACg/Pz8cDZr/BJExguNpG6nwjlnV8/1LnC5UzgpbE3O+4ahjqs1efbZZ3H48GEPy33gwAGUlJSMRvPGHwOeRiCxoQg1YRIn1SGCg8Ytna4IcBr5BCzW4Z2WlhYUFxd7TejtLnKGGs5OITA4ou2uOddtqmZWQ8rdSmd80EozMftm48aNyM/Px9133y1vk0TsTeQMd5RvdvCnOXW/IRClMjX7pbm52WPYWzIOFRUVrGMYIP6iG657I7yWYgyLTz75BAA81lgSEVpaWtDU1IQ//OEPo9G0CQ3r2Y0Qkpvx2WefKbZzHIfU1FQPV4QRGpigR5D8/Hxs3LhR/vzJJ5/IMejNmzePYssmLkEnmmEEx9y5c9Hc3Cx/PnPmDLPMI8j/A0bCywY7oto/AAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆的直径,∠ABC=50°,点D是⁀{AC}的中点,则∠DAB等于()
Choices:
(A) 40°
(B) 50°
(C) 65°
(D) 70°
|
65°
| 69,838 | null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAABoCAYAAADGpx+DAAAXzUlEQVR4nO1dfWxT19n/2ZRWYqZuVbM46IIHGDAL2lyzlpSljSIMzba4ytS0adf0JZNYjUi1OQopqZT1Q2rVrC/vQBUTCR9qpmVaJLLQrmFNcFidCtY0QQOpCQ7ESZOagRs2KcWhSop9n/ePcG/vvb73+vojjmn5SVGu7/m85znPOed5znOeA8piRKNRikaj/LMSWJaVTSv3nEjZqcTl3jU1NREAAkAul4uIiGpraxOujxr0yGLo9Xro9Xr+WQk6nU42rdyzEliWVUwfD3JxP/30U+h0OgQCARARWJbF3r17odPpYLVaNeetCWntEilCjqOSRTLcl04AkOW42tpa8nq9aa1fVnEix1FSrkgGQu6YbdP0IV5+Bw8eBAC8+eabMWFWqxUrVqyQHT2ShY7S/YVpAMuyMUQQEliv1/P/v/jiC5w7dw5DQ0O4cuUKfD4fn254eBiXL18W5c0wDFatWgUAuPPOO/HQQw9h2bJlWL16NTZs2ACDwZBy/XU6HRobG+F2u0XfIvyOdCIriaiGS5cu4eTJk+ju7kZPTw8uX76MgoICLFu2DCtXrsSDDz4Ig8EAIsKKFStgsVhE6cfHxzE2NgYACIfD6O/vx+joKILBIE6dOgWGYVBUVASn0wmn04mcnBzZeigRZGRkBFarFV6vF06nM6ZDzgVuCSIODQ3hyJEjePfddxEOh1FYWIiioiIUFhbCZrPFxNfa4+XiDQ4Owufz8X8mkwllZWWorKzkOVgNUiJmBGmbXdOMiYkJampqIofDQQzD0K5du8jv9/PhWhcGyS6WuPwHBgbI4/FQbm4uFRQU0KFDh2hycjImHlcOy7IEgJqammLKHh4eJq/Xm1R91JB1RAyFQlRdXU0Gg4F+8YtfUEdHh2LcdK5mlSDsLG1tbVReXk5Go5Hq6upoYmJCtg6cbCgkmNfr5eXEdGPOiaiVY4LBILndbjIajbRr1y4KhUJzXLPkEQwG6fnnnyej0Ugej4c+//xzPowjqtfr5YV8KIgb6cK8c+LU1BTV1dWRyWSil156iSYmJua7SoqIRqMizguFQqK6T09P0+joKB/OsmxG5NV5JWJ7ezuZzWZyu92KQ9OtgFAoRBUVFWQwGGjhwoUZH0UyMpxKiRMMBsnpdJLdbqfe3t6YNGo9eD41MWr62P3799OSJUsIAP3sZz/L6Igy5xobvV4vWsb39fXhgQceQFFREc6ePYuNGzfGpNHpdIqy1VzLXGpQ0se++OKLOHDgAD755BOsWbMGS5YswQMPPIDBwcHMVCxj3YWImpubyWQyUWdnZ0xYvJ2I+YJaHSKRCFVWVlJhYSFNTk4Sy7JUVVVFL730ErW1tZHJZKK2tjYimv0+oRiSTmSEiJFIhKqqqshqtdLAwEBMeKLbTNmAcDhMJSUlVFpaStPT0/z7rq4uys/PJyKivr4+YhiG6urq+PC5+J6UiRivUpOTk1RcXEw//vGPRULyfENurtaKyclJys/PJ7fbHRMWDofJaDRSKBQilmUpFAqRw+GgsrIyCofDqVZbFilPMGrqrcHBQfzoRz+CxWLBhx9+CKPRKB3KUy1eE+TKkc7VSpDuqIyPjyM/Px9bt25FY2NjTHyDwYBNmzbB5/NBp9MhJycH//znP3HnnXciPz8fo6OjyX+IEuakaxBRZ2cnGY1G2r9//1wVoQlC64BU8cknnxDDMHTw4EHZcI6z9+/fT+Xl5THhDQ0NZDQayefzieIL65oM5oSIAwMDZDQaZRcw84F0zEOnTp0is9lM7e3tinE4Ivj9fjKbzRSJRGLitLe3k8lkokAgkLbOlXYiXr16laxW67xzoBAlJSUiFRj3pwRp43JKidOnT8vG5zqJMN26detkZWAiotdee43y8vLSNkemlYiRSIScTidVVVWpxhMutzMFl8tFw8PD/O/a2toYQsrV6dChQ8QwDA0MDCRUZ07UUEJFRQWVlpbGvE+mXdJKRI/HQ06nkyKRiGpl5kP+k9tBcLlciopplmXp5ZdfJpvNRmNjYwmX19nZyYsacpienqb8/Hx6+eWXRWUmg7QRsbm5maxWa1YqsE+cOEG1tbUxneeFF15Q3B5yu92Un5+ftFgkFDWUEAwGiWEY1XlWC+KKGCzLxhUFPv74Y9TU1OC9997DkiVLRGmzAV6vF1u3bo1R2cnt1M/MzODnP/85/v3vf8Pr9caIRVphMBjw0EMPiWx+pGAYBu3t7XjuuecwODjItxfLsom1XSIUlzPk5XrT+++/n1JvmksofWZtba1oOJ2cnKTCwkL65S9/KbuyTBRKooYUbW1tZLFYkh7FUhpOWZalzZs3U0NDQ0xYJuc9tbkkEAjIznuBQEC0+x4KhSgvL0+kIkukfLnvPX/+POXm5mrqEPX19VRWVpZw2UQpEDEajVJrays5HA6+ksIPmS+dp7Qxm5qaqKmpKSaey+Uil8tF0WiU/H4/LV26NGmxSK3D2mw2+uijj+LmMT09TTabLSnZWhMR5SoZDoeJYRjq6+tLuNBMAgAFAgH+N8eB3IKmt7eX7rvvPlq0aNGcKCeef/55VVFDiO7ubrLZbCKFuhYkzYk1NTWyCuBsgdTGRfjHDaEdHR1kNpvJ5/NRZ2cn3X333WknZDxRQ4ry8nJ67bXXEiojKSIODw+TyWTKql0JNcgN7W+99RYxDEP/+te/+HecvjcVQkrLUhI1lKabUChEJpMpIROPuESUK6yysjJmiEiXMjcVaJ2Hq6uracGCBXTy5MmYdBwh//jHP6atXj/96U+ptbU1bjyuzTweD3k8Hs35J8yJXE/JNi7U2mmqqqrI4XDQ22+/TRaLhYLBYEyc119/nQDQ8ePH01I3raIGhytXriTUxgkT0ePxJLUMny9wxJ2enqby8nJyOp107do1Ippt3Ly8PFFjzQUn+v1+ys3Npa+++kpzGrfbrXlBlBARJyYm4qqS5gtqQ2k4HCan00kVFRUxDVlfX08FBQU0PT1NXV1dad9C4+pls9kUdzXkEAgEyGQyadrp0EREriL79u2jyspKzRXJJJSG01AoRHa7XXWO2b59O23cuDGGgOmUdePtasihtLSUmpub48ZLiBPtdju/K51NUCJgIBAgq9VKe/bsUU1//vx5WrhwIRUXF6e9blxHkBM14nWS9vZ2KiwsjFuGZiKePXuWLBZL1lqfSXH27Fkym83U0tLCv1Nb/Fy8eJEKCgpo9+7dc1IfLbsaUkQiETKZTDQ+Pq4aTzMRPR5PwsNBpsF1sO7ubjKbzTFKeS2WeXl5eXNmlVBcXKwqasjVT0u7ayYiwzCi84FE2WHcK0VrayuZzeYYdaBUr6tU92AwSBaLRZNclyi0iBpSA+Pe3l6y2WyqaTQRkTP8yXbs27ePLBYL+f3+lDqY3+8nhmGou7s7rR1VzYBKCZFIhAwGg+j4nBSaiNjY2JiQsJpuaDkiVldXR3a7XXbOEabVem6wr69PlqOl9UoUWnc1hIg3DGsiYnl5OTU2NiZUcKYQiUSooqKCPw+hBjnjKDVCdnZ2EsMwol0QDsku8JIRNRoaGvjNBmG53LMmIubm5sbMh9kA7jxEWVkZv32jtKdZW1srsqfhwk6cOKFqvtja2koWiyWGw5MdZhPd1WBZNu68GJeIY2NjtGTJEs2FzhWktp0TExPkcDg0bYdxQ6gcR3m9XtLpdKrp9+zZQ3a7PWk7UWFnSkbUICK66667FEeauIZSgUAA69at0260k2bQTSMt7tyEXq/H+Pg4HnnkEZSXl4vOQ5CCQddbb72F2tpaWcOo0dFRUTqpgRLLsqipqUFxcTFKSkowMzOTUP1ZlhWd+RAaUCnVVw7r1q3DxYsXZcPiEnFoaAhr1qzRXFi6odPpeAd3AHDu3Dk8/PDDqKmpwQsvvCCyEFM6IPPee+9h69atimG1tbV8g0ot4rg833jjDSxbtgxPPfVUQvWXOxRbUlKCY8eOJeRdymq1iogo7GyaOFHO4U8mwZ0c7unpwU9+8hMcOHAA27dvB/B1Iyk1yMjICABgxYoVMWHd3d3o6OjAjh07+PRS7hC6I2tubkYkEoHb7U7pezZv3oyenh5Eo1HNaWw2m4iIos4RbywuLi5W9CWTSWG/ra2NzGZzQjsBHADQiRMnZN8rrUzlvo1lWQqHw5Sfnx+zwky0LdasWZPQt7S0tChaw8Ulot1up7Nnz2oubC7Q2NhIDMPQ+fPnk0ovXZkGAgHS6XSafctIxYnJyUmy2WwisUsaJ54IUlVVRb/97W+JSFsH8Pl8isrwuES0Wq2yq7p0Qfixct4p6uvrKS8vT3YHPhG4XC6RkJ/qN42NjaVkgt/Z2UkbN27UHL+vr48cDodsWFwims3medkEjkQitH379pTOQySKRAV4v99POTk5ou05rcOqnKihZrfr9/tp7dq1snnFXdhMTU2lxQeoEuTOHMzMzKCsrAz/+c9/4PP5kj4PAcwuXmw2G+6//36cPn1aNa7W1SJXZ5vNhnfffRdPPPEEBgYGAHy94BCumoWgmwsn6VkN6epaWheDwYDr16/LVyhej9EQJWUIex3n1GD79u1pOQ9hs9n4ITQRTUki6OjoIIZhVI/AyXFovF0NoQfHyclJMhqNsnllBRE5BINBWr9+PdXX16ctTzkiSufedGx0qx3tU8o/kV0NIRGlEFPoq8jXfzdhMBjmzHWHENz2TyKKdi2Nz5nG2+12OnXqVCpVjIuGhgZyOByK7SVXXzkDKjmuvXTpEjEMI5tvLJt9Je4VagubVHqwMG1vby+ZzWbe+9KtDO60tNbzFMJdDaX2ZFmW/H6/ohI87sLGYDBgampKNiwVp+Rc2uPHj6O0tBStra14/PHHk85vPkECLc/evXtx3333Ydu2bbJ6WClcLhe6urpUXV4TEcLhMBYtWiQqi3tWJ+KNKEzGe3F98hr/GzeiYGduiOLghoz6iHuvEtZ86Ah27NiB999/Hw8//LD2PNTeS+skV36aIW38P//5z/jvf/+LX//616L3QlUZR9BNmzZhaGgIExMTivnr9Xp8+eWXWLx4sewKVp2ICxcgJycHlz6/wv8GAP1dC2d/34jOvlu4QNxYwvcKYQ3/9794c+//4bTvQ9jtduj1erHeUpiHEEp5C/9zabjnDBBSiAULFuCdd97BRx99hN/97nf8e5HS+ub3Ll68OO6xcGD2FoLvfve7smFxh9O1a9dieHh49seNKOgOyaUhStymgueeew5Hjx5FT08Pli9fHj+BlJBqcYRxtaSbI3znO99BV1cXDh8+jMOHDwNQ3iHhdjXUcPHiRcUtwbhEXL5qBS4O+mMK5p+FXKEClmUxMzODbdu2IRgMoqenR+SkQZr3rQyO40wmE7q7u/Hqq6/i+PHjivG17GqcP39ecUvwayIqcJPNZsPIyEh8bw5xuDEcDuPRRx/FHXfcgb/97W+JaYEyPBymCiHHWSwWdHV1obKyUlFjZLPZcM899+DMmTOKeQ4PD2Pt2rXygfw6VSIfchgbGyOTySQKE8kxCumEMmcoFKL777+fP03Fztwg+ioy+1+SJtG8Fd8pPacZWsWsnp4eMpvNirZKO3fuVDWgUjPP0KSOMZvNdGEguW0gv99PFouF9u3bFxN2qxwJSBfa29vJYrGI1HNcp1UzoErZUIqI6H+efiYpk0XOdnMurKlvFUhVfI2NjWSz2WK4Ss2A6o033lA1CIsrJ+JGFI888gg++OCD+JOBAF1dXXjsscfwpz/9CeXl5dIhPKG8bmVwN8xxz263G8888wweffRRTE1N8WEGgwH5+fmyokZPTw+KioqUC9HSm7h9M61oaWkhs9k87xYB2QiOM91uN5WUlIiU33/4wx9idjU4M34hh0qnIc1+bJYuXRrXgDgajdKePXs0WwNk44GcTKKsrIwqKipUnd1qOVCjyQe4Xq/Hk08+ib/85S+q8WpqatDS0oJTp06pXlMnHF6+zWhpaUEwGMTu3bsByIsara2tePLJJ9Uz0tpruEOmcuDOQzidTn4b5tvOZVoRDofphz/8IX+aWbirwR0yHRsbU71TQ5WIXq9XNCza7Xb64IMPYirhdDqpvLw8YXdWtzGLUChEFouFWlpaRKKG5uPeSvaVRLF+0aSOF7jzEDt37kzxM7694No6EAjw1nOcqCF0vCDnx5xzb6bIiVJbTaJZot19990UCoVobGyMrFarrJvM20gc0WiU+vv7KTc3lwoLC+n3v/99jAsUl8vFE054SCjmTmGWZXH48GGsXLkSW7ZsiZHpqqurce3aNfz1r39FUVERfvCDH6Q8wX+bwZ014fDll19i0aJF6OjogMvlwiuvvCIbd3R0FKtWrUIgEMAd0kw//fRTALNnF1wuV0yhTz/9NDZu3IgnnnhC9bSUtHK3IQ+ujbj2WrRoEa5fv47BwUH84x//4ON1d3ejtraW/+3xeL4+6cWxKjc2c6btgUCAdu3aJcv6jz/+uEhZ+23TgaYTSh4zqqurRe+4e4ohY8EOYUbSiEpnFTiXVdx1c7eRPKTtp+Qq0+Vy8YQ7ePCgiJB6jpW5i6holrDwer2wWq2y+4irVq3Ctm3bsHv37m/MRu58Qdp+v/nNb+DxeJCTk8O/GxkZARHxCpRf/epXAICTJ0/ORiAiGhkZoZKSEhHlm5qaFC+2IpqVD81mM3388ccp9sXb4MS87u5uslqtMfK21I+51Ak9OI8SELCn8ASR2vEvqSP321BGvIs+OUfuf//732PCXS4XjYyM8L852vC/U62c0+nkZcXb82PykLtSQcmP+WOPPSbqFCkTMRgM0tKlS7Pmmr1bEVovN1HiZlUialVi9/b2kslkykpfN/ONeG3Y399PJpNJdNdyoiNaWojIsmxWX/g1n1AjiNYLv+LRIUbtlgqqq6sxMDCAzs5OLFgwf4a7twJmZmZQVFSELVu24NVXX1WNy7Ks7N4r3Ty/kRYicoVEo1EUFxdj7dq12L9/f6rZfuPANToAPPvss5iamopr+a0145QhZPeJiQlavXp1Vl1Hm214/fXXs/c6Wg6JXAz9TbAAkH6D8Ji2FMKLodOFrLii/ZsuX3LXxDc0NNA999yTdmf4c3ogf2BggKxWK1VVVfFanW8yweT88BDNXqxSWVlJeXl5/OXU6WyHOTU3y8vLw5kzZzAyMoLNmzfj2rVrMQpfkqyrsuUK22QgXEFy5w+vXr2KTZs2YWpqCr29vbBarQDSewJszm0GjUYjOjo6sH79emzYsIH398JB+jHfJDPGM2fOwOFwYOvWrTh69Ojc+QNKG0+rgBs63n77bTKbzTELHi0+vm81tLW1UU5ODh09enTOvy2jRCSaVTOZzWbRRY8syybs4C5bEYlEqL6+niwWi0iVNpfIyNglHDIdDgf6+/vh8/lgt9vR19c3q3WQ+BvV6XS3zPzI1bOnpwfr16/HuXPn0N/fj7y8vJi4NBd2RxnpKjch5a5jx46R2Wwmt9utqHNVGmrVLKI5ZGqIDoVCVFFRQRaLZV52czK2iiAZPy2lpaUYHh7Gvffei+9///t45ZVXcPXqVT4+8LXXYUC8cuXyEnoGFkJJ35jqNwgRCoXw4osvYv369Vi5ciUuXLiALVu2pLVMrRXLOOSurg0Gg7Rjxw4yGo20a9cuunLlSsbrpZVzg8Eg7dy5k4xGI3k8nnm/TzLj63mS4Ui9Xg+GYXDgwAFcuHABkUgEq1evxrPPPouurq6M1U3OWRDd5D6WZXHs2DE89dRTyMvLw+LFizE8PIy9e/fGeAHJOOazB8mtSjlMTExQY2MjORwOYhiG6urq5mXTeWBggDweD5nNZiooKKBDhw7FdaKbaXEprfuJCXYezVqLoaEhHDlyBO+88w6mpqZQWFiIoqIiFBYWpv2mgMHBQfh8Pv7PZDKhrKwMlZWVvMngXMy3qWDeiJgsLl26hJMnT6K7uxs+nw9XrlxBQUEBli9fjhUrVuDBBx/kNSPf+973YLFY+LQsy+Kzzz7D+Pg4gFmvyn19fRgdHcVnn32G06dPg2EYFBUVwel0wul0iuw/tSCRzpkuZB0RE22EL774AufOncPQ0BAuX76Mnp4ePmxkZASXLl0SxWcYhueohQsXYtOmTVi2bBlWr16NDRs2xFWNcfXTwo2ZIuj/A9Wy56W6jX54AAAAAElFTkSuQmCC"
|
<image>已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()
Choices:
(A) 4
(B) 5
(C) \frac{20}{3}
(D) \frac{16}{3}
|
\frac{16}{3}
| 69,839 | null |
\frac{16}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABwCAYAAAD/h0UQAAATqklEQVR4nO1dX0wbR7f/Lf2qz0iRbqJWwpWuYqL7YGMnzfJUV6qy0KoNeYrd2JikD6FSFad9CfSlocpnTFqF9Ep1i1QJkj6QVFcCTAqhUiMiVbXpQyCqKkgAG3pVoE92UhX35bKQr+y5D2aN/+yud+31n/z5SQjvzs7M2Tlzzp6ZOXOGISJCGUBEYBhG93KXlpYQj8czrmOxGGpra2G321P3DQZD6rpUtJQTTLkYpxUiWWIDx+NxhMNhRKNRhMNhPHz4EEtLS7BYLKirq0vlE68fPXqEO3fupPJvbW1hZmYGRqMRZrMZjY2NsFgs4DgOFotFMz2VRkUZl6/nj4+P46effkI4HEYsFkNTUxPMZjOam5thNBpVNXg24vE4lpaWMDs7i+XlZUxNTYHneTQ3N4PjOBw/fhz79u0r5rXKgqqTuLm5OQwMDGBiYgJ2ux1HjhxBc3MzWJYtmYpbXV3F1NQUpqamMDk5CY7j4PF44HQ6da9LN1CVYHBwkCwWC7EsS/39/RSLxVTlEwRBVzp4nqfh4WFyOBxkNBrJ5/PR+vq6rnXogYoyjud5CgQCZDKZqL29naLRaCotnSHZzNGTWUplxWIx8vl8ZDKZqLOzU3VnKgcqxrjBwUEymUzU0dFBKysrGWl6S5FcmfnqEdPX19dTHez8+fPE87zu9GlFyRmX3TjRaJQ4jqPTp09XVQ9Wg42NDert7SWz2Uy3bt2qKC0FMU6ppyqptfPnzxPLshQKhQqptmqwsrJCLS0t5HA4KJFIFK0hCsmdw7j8hWznVpyH8PX1deI4jnp7e6tCzeiFsbExYlmWZmdndSlPCwNlJG47p5BC+1Q0GqXGxsbHXsrksLKyQna7ncbGxnQpL72dRYGQEowdxiWl6N6oj9xWEAACGsgdnKftkRPkCm4XpA7GxsbIbreXxfioJHieJ4fDQT6fT/G5vO+toVlqAIAQQfdBBoe7I3AH50FEECgIV9SD5zwR2Ky7Uz1qR+uXL1/GN998g++//x4HDhzISKuWaSMtIIV5CoPBgPHxcQDA22+/jc3NTcnnlN6biAAtzSLQPPkPgmDz0XzW92ubRsgFN42o7AqCIBDP8+TxeOj8+fPqu88TBDktowiBaMQtarrkH4Mags1KNvcIzUu0P+77rQQ0UPeChNFB8+Tzj6iuf319nex2Ow0NDakn+gnE7OxsQUbLiBsE24UUo/6OjJDLJgpVJvPgs4HgHt69U+Dnh+d5amlpoXA4rPhRfVKR/a6xWEyT5Ak0Tz4byNazkJkw76MGgKz++YzbcDG5NwuB1+ul/v7+XUKeIqbJYXp6mjiOUzUEEhZ8ZIWVfPN/Z1qWOwzNEC4iqlnUYW1gYGAARISzZ8+m7j2OBojesNvtOHv2LNrb25UfJGDhxg1EbC64bIwqG6XGBiCyGJVMHB0dzVtAOBzGxMQE+vr6VFT39KGtrQ0HDhzA5cuXZZ8hZgE3RiOwut04xNRkmO6ECCKLgNVmy8wkBF0EIMN6ERaC5HOfoBH6W1G8V1ZWiGXZqln2qOZvq8PhkBykC4KQUpOSBmLQJWk8gohoPpgceDM7pqjV3U0jC4JiA/A8TyzLZizFVArVyKhsiBa32F67NG8nmSNhOQqLQ+QCyOYezSmPISIiaBv7ERHq6upQV1eHF154AUDym0Y7K9RU5kV1yloZ/+OPP/Diiy9W7Dsr1wabm5tYWlrCvXv3YDKZAACEBfQcOoRR1zwWuw8CABYXF7F4wwe/fwyMf/d+Rh0kUUM+Rl67dg1dXV344IMP8Nprr1WVIcIwDE6ePIlAIACj0ViW+tKbMN/15OQkHjx4gMHBwVR6Liywuj3o7u5Gq20nPZspSZlUFvN0VRSLxYhlWfrhhx/IbrdX5Wy/yWTSNnNRZnActzvpnmn7ZyLtOvtzUJNke/5eJcLv98Pr9eKNN97Aq6++iv7+flU98xl28eWXX6Krqys5p5ne9mm/KWvuMkcytfQUcSpHRCwWI5PJJCl1lTQYql3iiIg6OjooEAgUnF8T46RM2mIJKAWqnXGCICh2ejWoUSvec3NzWFtby/E1/Oijj/D1118jkUjk5KHqctmsOMT2YBgGRqMRTqez8E+NWg7LDSCJiAKBAHV0dBTUc0qBapc4EaLUbWxsaM6rSuLkpE3E+++/j/Hx8YzNF8+QBClonbq6OjidTgwMDGguVxXjBgYG4PV6ZdMNBgPOnTuHzz77TDMBTzqUxrgMw8Dr9eLq1avaC84nkjzP00svvZR3PpLnebJYLFWhoqpRVSpZ2Xa7naanpzWVJytxtCPiExMTOHLkSN4dLAaDAZcuXcKHH36YkT/9Nz3FxoqS5J0+fRrXrl3TVJ4s48SpmuHhYXg8HgD5G97pdGJtbQ1zc3MZhIq/q2lqrJrgcDgwOTkp62QkhaSXlwxDHj16hFAohGPHjgFQ1/A+nw89PT2qCXgGwGg0or6+Hnfv3lWdpwaQZ8j09DRYloXBYFBdoNPpxPr6OsLhsOo8zwBwHIcff/xR9fM1SupvYmICx48fl0xTytfX14fOzs68lT/N37xsOJ1OfPfdd6qfr1FSf6FQCE1NTZJpSvlYloXJZEo5icrh2TdvFyzLYnV1VXIGSgoZxkm6BCQSCaytraGxsTFvIVKS4/f7cfHiRUWpeiZxmWhubkYoFFLVLhmMS5eA5eVlNDQ0qKpQSnJYlgXLsrh+/bosIc8kLhMWiwXLy8uq2kV2OCCGoigGvb296OnpwdbWVlHlFAO5vkvpPwSZp8qsEMxmM3799dfd6hUkT5Zxy8vLMJvNRRFiNBrhcDgqttia/eLp10z6j5r0Hi4g96HywGKxIBrddZVUkjxFiSuWcUBy2aevr0/T4FIvMEzSuZTSllPyQ/VKl+4wm81YWlpS9awslWtra6ivry+aGKPRiNOnT6O3t7fosgoFwzApradG+1G61JUR4rTiX3/9lddAkWVcIpHA3r17dSGoq6sL169fr+iyjyh5SZlLMoYiQfg9tqRkMgwYxorW0QUwFZS6vXv3IpFI5NUOshRubW2htrY2b0VqTNdqWfbZbYwaLPS4cdDWjYhrBPMkQBAE3A9asdB6CO7R8klcdvvV1taqM+bklhygwY9IjWMQz/NkMplKGiKD53k6depU0hvbaqXffvtN8rn0PYECUYYbXHKPWq5XcbmQ4bqnAMW5SrVQ471sMBjg9/vR1dVVVF1K+Oqrr1KzNZFIBO+9914qjYhAtA2K+ODxR2D1B+G31iRVp8TrV05ZqoNu9Klhfnt7O+bm5jA3N6dXtRkIhULgeT5Fzy+//JJBH8M8h1H/J4jiBLq7bZl+jEi6g0ciAFBTIfNEPcresUq57HPhwgXs2bMHQPJb8emnn+6kJNmwjSBGbgBwu9GaJWYMACyOIrgIWN0ncLDcgziRDrXaT06H/vOf/9TFvVzq+6dnUJds3Llzh/bs2UNXrlzJrFtI7vpsAKih+77kFyy5gT7/9jI9kd0+at0YZBm3f//+kvltTE9Pk91uL0nZRPI+J9s0Qm6J/dRE23Q/eIIAkCu4uw+tEuaJWn8Z2RXwUk4A2+12GI3GvMs+aiFFv1RaDVrxL78VEX8r/Is7YzksYKT1ZbzcmozxEnSluVxU85dOjqNqzdJCkb0PoVBIqWKlXrtN8zTid1EDdiMoWV3DdF/c8SlQZURtByJL8g2xZI0Ti8Wiet6sEBw+fBj19fVFS51WzVCDg3D7gogkPxMgimAh6MIh205TMELZJ5dFpK/IFDxzYjabsby8rC9laWAYBoFAAB9//HFqApoUZvO1IF8+hmHSJi0FMMxzaflqiqq7GESjUdVLabKMq6+vx9raWs59PV/owIEDaGlpSS37ZPeyQr+zqvKlHtltAimXwnJibW0ttcU4H2QZ19DQIKkq9X6hSi77VAPSBWF5eRkWi0W760I6LBYLYrGYaueVQlH0dqPHHOmCcPfuXdjtdvWuCyKHN/l/p/6ApPNKOfwjfT4frl69+lTv9kkkElhdXQXLsqqez5hkNtQ+n/H/6NGjuH37tmRGPb91+/btw5kzZyq+7FNJ3L59Gy0tLarbVdEh9ujRo5icnNSLNkU8zXvsiCjFOLU2hKJD7EvG/wSDf2Ap+r8AMlWpmC9dtaYjW+0qpRGR5GKrXBlK9wGAwT+wtfl3xr1qBsMwCIVC4DhOdR7F1QFD7fN45513MDT8P6nr9P+b/L9hqH0ehtrnMxoo/b6WtM7OToTDYczNzWU8lw65/On/CX9nPFvtzAuHw6ivr88JgayEvMs6ra2tCAaDAHYbIh1yUqUF6VIvteyTXacUsjuV2nzVgOHhYbS1tWnKk5dxh162Yu9/vIDp6WnJ9PTerwfEPXb379/Xpbxqx9bWFiYmJlJ7ENUixTg5qWEYBu+88w6uX7+uWJCe6sjn8+HSpUuKZVdiSkpvEBHGx8fBcRz27dun7Z3E2WZ+4xHxG49yZqHFyOb1pv+ieDyeM2stl0+8ryUt/drhcFBw5FvV+dPvmUwmikZ+TaXL0VEJZLef1KKyGucr1a5c//3Z52WNZTI7O0uNjY0599W8VDVu3pfC2NgYORyOgvKqYtzG/22V3L1OiiEOh4O+/fZbzWU9DowTBEHWhUNN51Q0TtLHbKV2apUaT3Z3d+OTTz4pSX2Vxs2bN1FfXy85xaVqEK6ll2xsbJQ9lkkhQd6qXeJ4nie73V6Uw5Tm8+O06GU9Qh8WEmWu2hmnR+wzzX6VTqcTDMOocjnQY+3uSVv2icfj6OvrUwxnrwpauCxKUCwWI4vFUraw9VrrqxaJk9I4LS0tdOvWraK1kSaJEyXIaDQiEAjg1KlTxfUalTAajThz5gwuXrxYlvqKBclspOzt7QXLsjh27Fjx2qgYrvf29pbtuDEtw5FKSpycJBUzZpNC0acSezyesh07FggE6Ny5c3mfqxZVKSIajZLdbtf101L0qcQ8zxPHcZrD9hUCtaEVq4lxf/75J7Esqzs9upwDLp5FUI5zvdWonEowTkpFimfqpXuE6xUdXpdtVkajEf39/Whrayu5m53D4UiFVqwmSBkbXV1dePPNNzPCaunl3qjb/jjxrLSTJ0+WlHkMw1R1aEXasSgvX74MnudTgVf1hm6MIyK0tbXB4/GgubkZq6urehWdA6fTiXg8jpmZmbw0lQJK5W5tbaGtrQ0PHjwoKEi2FiKKgpTOnp2dpVdeeYVmZmZU59EKpd0+lTJOYrEYcRxXFitbF+NECuJLpJ+bqjeOHz+ecxaCIAi6Mk5tJ5ueniaWZfNa13oZJyVjHFHSqvJ6vSVbgJWTunJL3NDQEHEcl2NVl/J8oZJu3jcYDBgYGMD+/fvR1NSk+z4ElmVx+PDh1FlslUBnZydu3ryJycnJnPPqSrrjp2RdIguhUIgsFgsNDg7q2hOlln3KIXGiavz8888z7pfrFC/dGadEeCwWo/b2duI4TtezVbMXW0vJuPX1dfJ6vUUvhBaLskhcNjNDoRCxLEsdHR26zLakS50gCCWJGMHzPH3xxRdksVhKanCpRVkC1GTr+qamJkxPT2P//v2w2+149913NY37KGsclR5aUYyEpzZvPiQSCXR3d6OhoQG///47QqFQxkH1eiGbrrx0lrJX5NP3os/mtWvXyGQykcfjkT3qLB/Sl320qspsOgVBoNnZWfJ6vWQymcjn85VlHlYLymacqMHQ0BA5HA6qq6sjr9er+Rsi+nLkY5xch1pZWaHe3l6yWCzEsiz19/dXzeH02ZA8TrqUoKwzu6XuxeNx3Lx5E1euXMHq6ipef/11vPXWW2hqakpFJZAqZ3NzExaLBYIgYGpqKu/ul3g8jnA4jNu3byMUCgEATp48ifb2dl3CGpcSZWccIN3ockgkEqnGnZqawvLyMo4cOQKj0Qiz2YyGhgbU1dWhpqYGRIR79+7hwoUL+PnnnzM2SfI8j5mZGTx8+BDRaBRzc3Oora0Fx3FoaWkBx3Gqtjlpob1QqKqjWJENBAI7EXqSfwzDZFzr9SdVbva9UtRd6jqkyjMajbS5uVldqrIsIFQsOpBWpKQrD80EISNWdLUHQlWNjN7HPD7bsJICB1Ce+OzZAb6fGMaJnVXAMC76Fx6j41+SLJCkVwzeJ8HTJ4ZxAEC4j56DJzHyuPAMQLCVSU0aiH+2Vj8WQLvceQxjRmvCYs8nuAHAarVWmhTVaA0SRtwNgGsIRARhcQTW0R4cag0q5nsyGEcAIn58a3XDVWlaNIKwgMVIFK7WVgAAY22F241k+MXdh3LwRDBOYIJwB634lxuILlphs0LyZasSi6O4seiC280ko9X2WOEZbUC3L7mZX8C2tLVZ7DiuGjDiTx7wICz4yAoXjVQyxKtG3OuxEpjdMZzNP6LqsAppxuXLV4l0mTzzPbadQWzNzsufyM+4Sr2fkH05Tz6bGMB7OxWlPTfYdy7kJa4KmZeaHBb/LfjIH9x9UAi61B+vUjb606Kqp01uC4JAwoKfrFkdbTeEfoExmfPOPJQpXUj7WKXGOgyweMOP1lEbut27BY3eiKR+C/k+cmV7P/kItPOjI4i4PanDK5KGCoCDB5H8TAvyR6LtdpBtJQZXPD0bQDKCefJgo6TKQWq+L7fHVop+ea2ZriaT18OtZgLS78kXwJBARFCYjabkdEzF0otFldKf+3wNYHsb3d1++N22/PmJHpNJvWfIwBMxjnsa8Yxxjyn+H2xhdGGClgE9AAAAAElFTkSuQmCC"
|
<image>如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()
Choices:
(A) 4√{3}
(B) 4√{5}
(C) 8
(D) 10
|
4√{5}
| 69,840 | null |
4√{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAGMAAABuCAYAAAAzpa1LAAAPKUlEQVR4nO1dT2wbVRr/vXG6qWgrhBokDkghiZMmTVBTcemhgkPt0m4RSSS0HIhUkJBQbVaqoBxWlKSRWMEuCdvVpumuuOS42i3xBJolarpSDxyQQhWx+F8ad1vRIJVbIEibNJ737WE845nxjD1jzz+j/iTL9rw/8+Z97/vz3ve+N4yICE0MAsDUfxyAoP7LzE9hLfoWhvtZZcEQQqidJdzQd3P5cQhZnB0+53dzGkLTE0OBkb3/9OYlsHgcPf3aqxxaQRA2ofCLIQZDuXPFj5OgeAx8iYMb8zFm+jsMaHpiaMc2YwzIiliiON7uZvh3vAcDOkEmgEjSFDSSKlg0PTFgEDVvzlzHpbeHAQCxnq6K7IxFSj84iB5yhqvQihpx6re4dOkSGGNg/SMwjnwi0ugJAYw91BneICtiCcfUDk+Lk+jp6NbJMcYYGGM6goQJLUE3wBVkRbCzi6BrfwUg9//a7QKAbhAIzGAAh01xq6Amx2QiRpD7n1JpTsSJEnGo12LJyYoynPMAWlobjChkxraHIKLwcgXCJjTrBRkmfYSyCatBmAkBAL8IzlDWp0RRBAAMDw87KhcW/DKIURI/+/fvx549e/Ddd99Z5JTnFmHlkOYXUySLH1EUsbW1hV/tboUoivo1KPWXEFpCAGh+a0rBoUOH6JFHHqHZ2VkaHBwMujl1ofk5A7KuKBaL2LVrF06fPq1eazoEPRrcwKFDh+iDDz6gI0eOEBFRKpVqSu5oes4QRRGMMbS1taG3txdA2ZpqNu5oKmKQieE3MTGB8fFxrK6uqsQAgPHxcUxMTNiqIyxoKmIolpDSocrIHxoaQj6fx4EDB9S8Ru5Qyjy0pjzC4OAgpVIpIiKKRqOUTqd16aIoNpXuaCrOII2I0c62JUnCvXv3dGIKkDlGm9dYR+gQ9GioF1quSKfTFI1GTVdjm8myairOAOSRbVyDWltbw8DAgE4fUIkDtLqDwswVaAIFbuxAxphqQSnIZDKIRqMV+RQolpVReYeNOKEnhrEDzVZmC4WCzpIywmreETrLKlAhaQNGPaDVFQqOHDlCX375ZdV6zHRH2Dx+TcUZVv6KXC5XlTO0ZbTc8ZAzGsDg4CCJoqi7dv/+fWpra6vIazbqwz7vCD1nKNDOtrXI5XIV8wvAfNSbzTvChKYhhtGCUnDr1q0KS6oarNaswoCmIEY133Y2m8XTTz9t20wN9Ypu0HLSDgYHB2lubs407YUXXqiwrmphbm4ulLoj9JyhjOCRkRHT9HQ6baozqmFkZET1m4cKQY8GLcwsILN5hYKtrS1qbW2lYrHo+F5Wa1ZBzj1CxRlW/gqrfVC5XA4dHR2IRCKO7xVKf0dgw8AGqnEFEdGnn35KQ0NDjutVRn/YVnRDxRlk4a+wQi6XQ19fn+P7KKPfzLKiIBcPgx4NVqjFFUREo6OjNDs7a5luR/6HiTtCxRmAub/CCrlcruqEz478D5W/I+jR4NSC0pbbu3cvbWxsNNyGsFhWgXOGHX+FGb7//nvs3r0bjz76aMNtCI2/w1fSm8COv8IMN27coGeffdayHqcIg78jVJzhJL4inU6jp6cHgDsRSWHwdwRODC0mJiZw4cIF3TWyUKqFQkFdBnGr0y5cuBDoim5oiGHlr7DaRFDPmlQtBO7v8FUoVoFdXaGgvb2dCoWCKteN3/UiyHlHKDjDaSze9vY2fvjhB7S3t6ucY/yuF4H6OwIZAgZU81eYjfSVlRXq7+/3rD1B+TsC5wwlvsLKX6E/XkLG6uoquru7PWtTUP4OX4lh7FRAtqDGxsaqljOKnlwuh4GBAVfbZsTY2Jjv8R2+EsOpv8IK+Xze0SaEehCIv8N3waiB1oJyYgUNDg7S8vKyR60Kzt8RmJgycoWTEVcoFDzVGYH5O3wjuwFO5xUK7t69S0888YT7DbKAn9zhuzVFDvwVZqi149xt+Onv8JwYxgcwi69wUoeyDOJ1x2jhV3yHjhjEi+A75Y8b96rXX2FVx9raGvr6+nxdUfXN31EhuLhE0oMdcmspv15/hRVisRgtLi422Crn8MPf4bmYqtdfYYV8Pu/6aq0d+OLvqCCPyhmc+IMdkh7skLQjESciLu3ouaaUV3qwQ5LEK+qQP0VSUuT4ipRpmlU71PtzTpubm9S6Zx89+N+WoXy5rfp2c0M9jY1kr+M7qnAGA2sR1G8GgAkRMBaBPCAIJAFsVwuEXREwSSrpGAIVOVhLC4RdLWCMQEXFghLw4q9fqEgzGSKaOiJg4AAY8vkcDvX2oKW11VBeaStARQ7saoHQIgAkgSttbBEA4hVnpjuB1/6O6mKKCWARTYcRByJM/U3EQTtF8B2p/JDEQUxQz5tjEbkT3p+YwPj4edO0ig4iDlKJzsBaWsAYsJpfRbSzs2p51hLRHXXHIoLmv/EwQ+fwMr7Dghis/MBCBIwk+fBeqXxdToxA2NWiflQRajDDPv/8MwDA8NCLFWnWoIp+WysU0Nt30GZ5b1DT31HxeNbnrZOhL1RiULEIrnCATjExIAJQUQK0o4wJJSKVW0FUug4CcVKv/+H37+PdsTHTNPmaEUzmQkPdmUwGndEuG+W9hemKrtIkZux8QUMffZrRABB0v0gCL3IDa5e4AwauAANrYTIRd4rgO7yUXpLfkgS+U8S8+Dm2iUr+Cn0al+Q6lKchZW7DBAgmdRcKBRzoPWBSXtYxgDxoqOb/xmDq71D7ptylyeMMjEUgCKx09HcEAmNgxxOVE0aC3bUpTlyqbYnUuzvQDorFIrW2ttLm5mbDdbkB7byDc+v4kEQclMqU09PiJMXPfGSa19Y8gzg3iC5zuOWvMMP6+joef/xx7N27t+G63IBWdzAWKXEbh1YUccogz5IYPhgBIYupqRQODp3E813yqyQqDZcq4DsmcwgHqNdfYYbFxUWKxWIN1eEW7Po7suIkJSZTct6pBE2Kacu8RDU4Q5kPCII9FUku+SvM6jSetBYkavs7ZO5Yvf1fzJyT9cvI2zPoih60VOZKYU/glq5Q8MYbb9DFixddq88t6LlD0qUl4qU3FxBRMh6jTA3h4PraFDXor7BCPp/3fBOCUxCR+ozz8/PQTduyImZwRn1HYOeJkzhYSzg0OjK8tKC0ePLJJ+nu3buu1ukW5sQUHT58WHctNZWgZElfaPFmImlZT8Oc4Ya/ohZ+/PFHbGxsoL29PfjoIhOMDA3rJAIALC3O4NhJ/b7h5HEG3hnTXDHojUZHhdv+CjMsLy+HIu7O3CKU9YSiO9LipPpWGwDEGCOw0u/S22/UetQvuY6G37nktr/CDJlMpsKSogDeEmN+P1m47Nu3DwCwRl32uVdZ/yvV4aoCN4uvcAO3b9+ucCiF4eCun3/+GdPT03jqqafw4Yd/xLvv/k63ZmW24qEXTXox5RoxrOIr3EC98d5uQjva19fX8c4776CjowM3b97EwsICrl1bxEsv/QbEyjtJjONFfuWp/o2axpu4Ai90hYL+/n5aWVnxpG4nWF5eptHRUWpra6P33nuP7t+/r0vnnFMqNV+3fnOFGF5u9FIWCLe2tjyp3w6uXLlCR48epWg0Sp988knNttQ7MF0hRrX4ikaxtrZG7e3tntRdDZubmzQ9PU3t7e0Ui8Xo6tWrtsvWG9/RMDFSqcoJj5u4evWqrwuE9+7do3PnzlFbWxu99tprFYfd28Xhw4cdc4cjYng92zbWzzmnixcv0tmzZ12p3+p+nHOdPjh//nyFPnCKek5dqIsz/Nwy//rrr9P09LTrG8aU+pzqAydw6kJoSEy56a9QYKznueeeoxs3brhSt4KffvqpLn1g9xnrHax1iym/tsq3tbXR+vp6w/VwznX64NVXX61bH3DObRPGKMZdF1NmN3EDxoZubGzQvn37TNOcoBF94GdcuWNiyBMbf7jiq6++omeeeabu8l7qAydQBm4twtYkhl/+CjPMzs7S6OioozKNzA+8gl3LqubalB/+Cis42XGuXS/6+uuvsbCwgKWlJZw6dUrNQwH5QmzHd9Siqh/+CisMDw/TlStXquZZXl6mV155xbX5gVewE9/hSGf4HYrb29truUDoRB+E5aUltQayI2KYvb/CKxSLRdq9ezdtb2+r14z6YGFhwZe2uIVa8R22ieE3VxQKBXWBUDs/OH36dN3zgzCgGnfYJoafuoJIJv7Ro0ddXS8KA6oN6ho+cA5AgCiKyOVy+Oabb7CychMCIiCPvJ6M5POkLv3tMh5sbeOxx/bjzJkzYIzh8uXLkL1jXLaMBAYWvs0iOiinAmlPB8rlchBFUWeREgBGRMRBqBbl8I+//xPZfMazBpPJ5oI7d+6go6MDgEwgr4jvL+SoLkZAX18fXn755RIVSslaNknENVtMSttMqm/Wlaqk1Ydw2D0eoOLBpNLlch9W6IxEHCoBlD1Ac7U2iQYC9weCJ1C7rnZ7y2FkBBCyWF06hpNDctxcf3eX33yM5HGhFOWj/cSQrYjxC/wQOXswiWian0qWn+14AoQsksmpcg4GIDv/BZA4gYOlGpJnRxBLTmLEZMeuV3rz0jWORBxIpWUlTUSYTDD0szhymmjVxoKI/YOulVn5CMDpO53qs9HF4xBYP9DZBeh8FFMJ3dZEZTt7GRpW80hySZShY/HKzcGJOCiW+Nibm/oAThmKARRLTlakTSViNCmmSZCtGHln27UvZpDKFEFESE0lMDIgIJXW7nors5pX1k1u/guwno6K653dMVxfW/Pmpj5g/uO/4DqO4c/Tb1WkdXb1oCt6EFBHeyZFiJ/RUPJbigOUnKyyDu82d3CiydIokVHmxNRUQtO+JlHeCrjMFQmTEAEtBHm7IYe4uITE88ehcAnLFnAdQEe023pfq9vnmLAs/nWZcOJFZStnOYb69u1biPUogYkCqgW7hwkcBORu4TqAzmj1o/xKYkrA0uIM4ieGAAjgyCLePwJC2bKq5+E5JEfpLFOAcOYU+lnpHBCU6J35DOdmruNE/IScT2666/f3It04maaKHxoY4wnUT0kk1Fp+5jVERq10LVJTCVNWTsTl9pg1pdH7e50u5/nWWkxlUqpYru1cqnkrG5lsVCKVGixmNBczKQIEnS7z5P5epxPR3FSCGIRSx8sE/I/4ke7ZbK7aShY3rTEqbD5EmTsFfcQPUDN22o37+5X+beoj9dmYwczlRPR/2uc8ttl6ohgAAAAASUVORK5CYII="
|
<image>如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为()
Choices:
(A) 4
(B) 5
(C) 6
(D) 7
|
7
| 69,841 | null |
7
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAABaCAYAAAB5cP74AAASjklEQVR4nO2df0yT17/H36d4ZVvIl28WEpdcFjcpCLRbMJJpRCMbLcKMsQpO/9nQyCZQjJ3g1CGjTlG8FMFYmEYccu9NplEuZbooAjc4dWLEuF3bUgWW7cqSrxvLNOLuFwf93D/ap336Cwr2x1PglRDa85zneT495/2cH5/znHMYERE4CAAzW7+IAACGlir0xqqgSAzDDP7CDC69ATOU6WGoaxNZwznSYKR2JADWfPKPJSL+F2JckAgggGCESlEMkMjlRHIJmWHyiGzpScRQe5mglJnRrDeDiEBE0BQwJDIZjCC/icFiCQ/+fQiEmq11YHI5YhPdZD/NSMKXMFgynzEGghEmpoRCYs+Roto2FMg7sK3wsF/tcH30rbRUF8IsS4O5zQyRG0ky5keZTktEljQlwNhyESzuddsRrpSYFytD+/1+P1vhDqMObSRHUSxDhzwOCS6Zb3Z72gyTg9+MAwMutl1ChjzDHsQYGGOIiYnjnQT4Ix9E7i5aWNeO2iIFACAtdp7LcYLI+iNmhOELLKWtJS0JRlyqJWSuTnSJ199/H7K4GOtJwBgF/KQR8Rs0AKA7rERtba1FlZI1jlUD2W2xhPveoOmLJS2Z8T6YMhOJztW0UYcdde0OJYffrLDd2lpVEI2CiKDXaRA7L8Yee6bZ4Hd0l9oQP0/sEq5UrQHJ81G0WsIL9UuVYcWoA1NdtlQV1m5mb/+PYDOdCb9CAAYHB62fjagtqsM76avsB406MMZQh3zQ5Tqns31fQjMioiqlHMV17QCAZr0ZCgmDMp2hrs0SSabU4O8Pu/DSSy/h9ddft55o8VswxhwbRdyFPYTP4MizZ8/w7//5H6gt3gDFNo1jujEABGh0eqeSwX8w8jLXUlNTceXKFcTFxSFzxbv4+8uRlgvwfsCMCCbOhQsXsGDBApw4cYIXyvdcBha7IKzuUH7m8lGr1TCPjCL8xRdQWVmJjz76CCUlJYiMjAy0zSEF52xyx82bN6FQKGAymbxORz96rQFYZUhkd4cyxsA83FI0KwwlJSW4d+8efvvtN8THx6OxsdFt3JmSwoInMQwPD2Pz5s2oqalBZGSktQNnbyQ6pB/BoYfnTyy9DGej3dyVkchm5Jw5c9DwZQPOnz+P+vp6JCcn4/r1647xZzyZY3Lw4EHExcVh/fr1ALgkt1cTXPoREczM/sASkYNAfM0sr2IRQMxsLzms5dbC5GRcvXoVZ86cQXZ2NpYuXYrq6mpER0f7x9opgslkQm1tLe7cuWMJGKMesJTYjt/9iVWSXFHloV/L901Zqxf+b1i/fj16e3uRkJAAqVQKtVqN4eFhP5kc+mzatAlqtdr+4PCe/olUtf6olkUO/7xo2XIKddZpREQEPv/8c+j1ehgMBojFYjQ1NfnO0inC8ePHAQBKpdLlGDdm4S3+KC183reJjo7G2bNncfr0aRw4cADLli1Dd3e3r28jWMZ6agcGBrBnzx7U19cH0KKJ4bfObkpKCm7fvo3169cjMzMTmzZtsnnkpjKenloiwtatW6FUKiGRSATbC/O796OwsBB9fX2IiopCYmIiqqqqMDo66tW5Qk20ydDS0gKTyYTdu3cDEG4vzG+C4GdmZGQkKisrcePGDXR2diI+Ph7ffPPNuNcQaqI540m4XPjjx4+Rn5+P+vp6hIeHB9K0CeM3QbjLzJiYGJw/fx5arRYqlQpyuRwGg8FfJgQMT8Llwnfu3InVq1cjJSUlkGZNiqA4zFesWAGTyYSMjAwsX74cn3zyCR4/fhwMU/wCv8To7OzEhQsXcOjQoSBa5D0+E8RE6/uwsDAUFRXBZDLhzz//hFgsRm1tra/MCRr8sYvh4WHk5+dDq9Xib3/7W5At8w6fCWKy9X1UVBS0Wi06Oztx9uxZSKVSdHR0+MqsgMNPh4qKCiQkJEChUDiEC7mx7J3rOgBIJBJ0dnaiqakJGzduRFJSEr744ouQdYMbDAZotVq7e5qHkBvLgnspMisrC319fVi8eDGSkpJQWlqKJ0+eeH2+UJ6+3Nxc7N+/P+QELThBEBHCw8NRUlICg8GAgYEBxMXFeRxmd4Y/Shgsjhw5grCwMGzZsiVoNkwWwQmCz5w5c9DQ0IBz587h6NGjSE5Oxs2bN13ieXqFLxA43/uXX37B/v37Be2eHgvBCcJdRqakpKC7uxtbt26FQqHApk2b8PDhQwBjv5EUCJzvXVhYCKVSifj4eLfxhVKleUJwghiLDz74AL29vYiOjsYbb7yB8vJyPHv2LNhm2Thz5gx6e3vx6aefeowj5AYlEGKCYIwhIiIC+/btw61bt9DV1SWYYfbHjx9DpVLh5MmTmD17drDNmTQhJQg+c+fOxfnz53Hq1CmUlZUhNTV1wm5wXxbfKpUKWVlZWLRokc+uGQxCVhAcaWlp0Ov1WLduHVJTU7F161avh9l9NW3gypUraG9vR0VFxXNfK9iEvCA4CgoK0NfXhxdeeAFisdjrYXZ3dfpERDI8PIy8vDwcPXoUERERE7JZiEwZQTDGbMPs165dw6VLlxAfHz8pN/h4DT++YNRqNaRSKRQKhcc4ocSUEQRgzwSpVIq2tjbU1NQgLy8Pq1atQn//xBbaGBwcxJUrV9we4wRjMBhQX18PrVbrcH9+nFBjSgnCORNWrlwJk8mE1NRULF68GDt27LANs4/1BD969Ahvvvkm8vLysGDBAuh0Opc4o6OjyMnJwcGDBzFnzhyX4zMlhEAJCwvD9u3bYTAYMDg4CLFYjOPHj4/5BH/88cdYu3Ytenp6UFZWhr1797oIQ6vVIiIiArm5uW6nP4ZqCQHykrKyMiorK/M2esAxm81eHb916xYtXbqUFi5cSNeuXXOJd+HCBXrttdfoyZMnDuHNzc2UlJRESUlJ1NPTQ1FRUdTT0zMpW4TMlBHE+IwS8fLp3LlzFB0dTdnZ2fTgwQMiInr06BFFR0dTZ2enx6t0dXVRRkYG7d+/398GB4UpX2XYETnMLrIMs9+HRCKBVCpFaWkpCgsLsXr1aixfvtway3Um208//YQHDx5g165dgTE7wEwjQdjhmnuzZ78AtVoNvV6P7777Dl999RWWLFnCi+mYPIODgzb3dFjY1FzZd9oIgj9hmlmffK7h96/R0ejo6MDXX3+Nw4cPe5xttmPHDmzYsAFvvfVWgKwOPNNGEAxcjeG6OgtXk7z77rvo7u5Gbm4u3s3IdBhm7+joQHt7O/bt2xe6PQgvmDaCsGP/yYaWatsEW8YY5IVVAICcnBz09ltmm82fPx/l5eXYvHkz6uvrp4R7eiymnSDM1oqjSpkOqeIbGMgMMhPMZABqi22i4Nzgt2/fRkNDA37//XeMjIwE0/SAMK0EQUQQgaFKKUdxXyyI2pFgXeiCIRE1Og3aay9aVpy38scff+Dp06doaGjAzp07p8xsM084CGJkeMT2NxVhjMHQUoXiunY0H9bawjwxOjqKvLw8VFRUIDs7Gz/88AMyMjKQkpKCwsLCKTmb3UEQs8JnOfyfShAsJURdbTFkSo1t6wHiRejt/9HhhJqaGkRERCAnJweAfbZZX18fACAhIWFKzDbjM/WrDP7qbawHpjbmuNI870PbpTrIrOtM/+/PP2Pfvn1uX//nzzbT6XQeZ5tRCA5wjSkI5yqEmZlLleKpihmr+vG2avIUb6xwZ5tGntnjMON9/DcIMWL7SvNclhlaqlDXBijztwMAtuTnYffu3Zg7d65H+xITE9HW1oZDhw4hJyfHZZg9FLunYwrCuQohETl8HxkewazwWZgVPstFJFz4RI7x4cfzFM4/n//f2b6R4RHLgl6JcZAB6O8z2q5nWT3YspUUV5U0NjbiH//4FcXF213sIjfvPKxcuRL9/f1YtGgRFi5ciNLSUgwNDbnEDwUmVGUwM3ObQf5uhHrTpnHX/nE4jzEwJCKjQIZifr1v1EHEJIBSg8tHt2NwcBC7dn2KEyeOIyzsX1zu4+mpDw8Px549e2AymTAwMIDY2Fg0NjY+9yt6Acd5tOuvf/7lMgL21z//orKyMlKXqseN6y6c/32sY768tsPn/3M8R5kOAgNZV1ekZr3ZNmT9/vvvk0q13e29J8KtW7do8eLFLsPsQh8atz1C/KJ2Mjzv+X69tuPuctC2ErRuorW2tuLbb7/FvXv3HMJpErPDkpOTcePGDTQ2NiI7Oxupqamoqalx+3aVkHDxQ7hL+Fnhs8DMzNaG4IdzVYZzUc1v+Hl7jF/1TPTazm0Jd5+Jt6a3M8PDw9iyZQuOHz/usg7U8zQOc3Jy0NvbC7FYDKlUivLyckEv6moThLsGnDd4Oo/f8PP2mLvv3p7vHObu81iLduzatQvLli3DihUrxvvJE4abbXbnzh18//33gplt5g6vGpUjwyMupUOo4JzxHHxxdHd34/Tp06iurvarLdyirqdOncJnn33mcZjdk82BwCs/RCjjXNw7J/bo6Cg+/PBDVFRUICoqKiA2paWlwWAwYMOGDcjMzHSZbebtjDJ/CGdcP8RkqxKh4iwQjUaDV155xeaeDgRcRiqVSttss4SEBGg0GttsM28WPgmJta5DiZ9//hkHDx7EsWPHXI75s9jmZyQ3zN7V1YXW1laXRV0D7e2c1oLIyclBaWmpW/d0oFegiYmJsc02U6lUyMzMnPBsM18wbQXR2NiIoaEhqFSqoNngzr/BzTaTyWQus80CwXMJIpit4efh4cOH2LVrF44dOxbUt6c9lULcMHtPTw+ePHkS0EVdJy2I8cQgZLFs27YNGzduRHJycrBNGZOoqCgcO3YMFy9exOnTpyGVSl32NvM1kxbEeLu/CHXot7W1FTdu3IBarQ62KV6TbN3bbO/evdiwYQPWrVuHgYEBv9xrWrUhhoaGkJubiy+//FLw2xS4IysrC/39/UhKSsKCBQtQWlqKp0+f+vQe00oQpaWlkMlkSEtLC7Ypk2b27NkoKSmBXq+HyWSCWCz2elFXb/B6q2e1Wo3Ozk6kpqa6HOvs7HT4L0S4XXTv3r0bMI9kILh+/Tq2bduGF198EdXV1c/dLpoWJcTo6Cg2b96MI0eOhJwYxnteuUVdc3NzsWrVKttss8k26ifkk05NTXXbGBN6A62iogKvvvoq3nvvPVvYZN5xCAbe2piTk4OsrCyUl5dj/vz52LFjB4qLiyfcVnIpIcjlgxuE26N02QzVZDKhpqYGJ06ccIgTCmKYKBEREThw4ABu376Nrq4uzJ8/3+YG97bEcBnU5mZGO+w17Qxvx2ehwe8OExHy8vKwZ88eh20KpqIYOBhjtr3NTp48aZtt1tPT49X5IuekcRbAWPtQCj1ZT548iaGhIRQWFgbblKDwzjvvQK/XQ6FQYMmSJWPONuPy3aXKYIzvyvWwJzgJ/yl7+PAhdu/ejcbGRo/uaSF7U30Bl0fcMDsA26KuHFwa2Lbw9kW3U4icPXsWL7/8ckj7HCbLWO9SGAwGNDU1ITExEUeOHHFJH697GW+//TYYCbPd4MyDBw/w66+/Yu3atS7HpmqDks9Yz7hEIoFEIgEAXL16FZGRkQ6+C4cSQpnOUNdmP1kEhn/T3UXRaokfzPYvg4ODIedzmCy+FLmIr6bay4QCOaDR6UFE+B9dJYoVUugMBHcrsgmZ6SIGwLftOZHDq+kw4l5bGjJXWybDSmJj+FG5SIKrNpTp9mWBHP7SC4JtmnBwyjTdYSUYC7OlE8EIpbLKsZdhbLkIZp0OD5ihVK2BrOCwbS0FANbVVoSEGbWXCXnpQIt+xOaY0us0kMXFjH/6dIHLNKMOjDHU/jgPRKOWv5p0y/zWeTHWuZ3W6YbNVQUEOM55HAuhzFM0k4HkcqXtc2VlE5nJQBrNfwXZMmExataTDCCZUkNEDgv7kqZARpXNd60r2VrV03apDs16M8xEaK4qwBqpyNp+CO5WiONhbGmFOCMdANByuBYQx4EhEUVFa4JsmTAgsrza/3V1HdqRhiNayzIH/NwTi+dDHCvhZn+PEhmaCfJ8m3LMZCAZQAWaZr7GAqDjidOsKSQw29qk9pJNGAWYIHCfnw4RiMi21rUIukttKFiRblMOM95HO4B54liLyqzxhEhbqxbNd80gIijlMsRxvWRhFGCCwJ6fMW57BWRNK1sOt12qgzxDYTkII+SSNQDsPQ4I1c1r1KEO+baG77wMrlE8g3ssi8CTc34SWXSi12kcGpK2P2v1IXSaqwrcFoNKpZKEWsUFA36Vwe8MmM1mIkMzVTbfJaIJ7JcRPOyZaibXZkGB3LU3VCAHFVQ1+d+0EIETANeL1Oj0tmN6ncbh4Q8BQdjhK1vfUulYojmVcuN1macNTsngnG5cF5Tj/wHDA/0V3GHIcQAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()
Choices:
(A) \frac{25}{4}
(B) \frac{25}{8}
(C) \frac{15}{4}
(D) \frac{15}{8}
|
\frac{25}{8}
| 69,842 | null |
\frac{25}{8}
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAABJCAYAAADsfgJUAAAPrklEQVR4nO2cXWxUVbvHf2vvmVKx2F5AxBhSbAFbyhsxXAgxhiIt054X7RD0gKEoEhSZKYKUxBhQmqNGja3QpC0lQHg52ojHg536XtDaastJFI4hsfh22mqtInoBgYshcFDamb3OxZ7ZM3u+Oi39os4/mczM+trPWv/1rPWstZ61hZRSAkgpKbMp1LUShpW4ZSsLESABER6fxMRBAxRTiPFPCEHtFxJHITR2aUgpkVJS6RDkiQK60UxkSvROkMToIFpbSsD1gRMhhP5Z5UDShdNZ5U+hRORRkKAzDZJufsBJSZ5fG4Hy2hYchV/x8vb9powCQCTVdbQghCDAAwDdLhRFUPtzlqFc8sAqFPE3yMqOqUyKzozOdHfTKXjwAT9ZwSRZ8wv48od+wNyTknSONnQeJN0U5q2hwFFJa025EStzS6h0FJCVvQAhohNqCf1zqrUZW+GBkBB9jM7OXgB9EmSgJwXjkhh9uD6opU08jrtmlylcCKFzMT8XXZ2icCCllJqmSU265UqxQrqlJs3wyUpHgSxwVsokxh6adMsCkI7KxlgJQuCT4XQpAeaF+yeE4++6NRuK7s/ZXddGUWHR2HXJJAyI7h9pA7LmzTfCYpueSsS8Z+hrY3Mz8+dmmWMlOHeugVUOyktyI4pL2ri3Dxlu3Pj/Bowk/5oyGC/it7sipUTSTd3ug6wqtgdjul0IRVAntiFbaglO2KayRy54EoCfuJCmkXkLKAD6+34kYLMaadyfU+Xqjl9gl6tS4l9Whn8qXV1jMU0kEQW//HrB+N1Y5Qi2v3+O7HJVSgq3SSl9wUyajJhDMUXGQCzCk5/R/fT09Bht/q+mSqkgjLiVjvfNpMTgC1NErEQg7Xa78X348GF55cqV2D0gDjQtTs8Jwb59++S+fftG9IyRQtO0cX2upmmyo+N/ZHp6un/jLTQyPLUvPCBqWyqmidA0KWogg8N7Y2MjHo8Hu91O8xctzJ49m8LCQg4dOsTly5dJFCLB3SU5AXNuorKNFr755htKSp7gH//4Tz0gUGVJQgaKiJLIb+VqERFI3SQOzZKens6zzz3Hf//XJ3g8HrZs2UJ7ezuZmZk89thj1NbW8vvvvweL8JMyEnLGu3HHG52dnaxevZqjR49itz+pBwaqLKLwEbKB4FfnqKQrAFJGiYlhHgt/trS0NNatW8eJEyfweDzs3LmTs2fPkpuby5IlS6iurubixYt6niHImQhtTARjJVdnZyf5+fkcOHCAtWvXAuFtZN79kVKayBAR6UNyyjiRQ+qI/yGpqamsXbuWDz/8EI/Hw+uvv05nZycPPfQQixYt4r333qO/vz9mMZNVG8dCrt7eXgoLC6murua5554zwsM7j2l5KETCa0TltkSOkllVVex2O8eOHcPj8VBVVcVPP/3E0qVLyc3NpaKiArfbPaLHTRpNjitGtOFSl723t5cVK1awd+9eE5nRMFJexnx33WazcfjwYa5cuUJ9fT2XLl2iqKiIefPm8dprr9HZ2ZlwWdE0ZkJIjtva0Zv04sWLFBUVsXv3bnbs2DEmYsV++hhh+fLl1NfX89tvv9HQ0MD169ex2+3MnTuXXbt2ce7cuSHLCCdQCDF5NDccfrEuXLjA8uXL2bRpE+XlIcdhYyD3hJ1/PfLII9TU1HDhwgVcLhdSSp555hnmzJlDWVkZFy5ciJovmpbGmutGrcH8xThXCcN7QPF/2wzvgYjkIODy5csUFxezceNGKioqEpL79mRNAAkmi4vQRXCszQVN02RXV5fcu3evnDlzpkxLS5Nbt26Vzc3NccsbTQy1sVDpKDC2RDXZI1cSedSl+TcBrly5InNycuTOnTsjygmXfzTaWEopLUMRPloI7Y0xrWohyMvL480330RVVa5evcp9991HeXk5paWl2O12Vq9eTUlJyfhaxiEL/V/6wFG7UJeXHIodBTT/YrbgBQrXrl2jsLCQ5cuXs3///ogix0r+Se1yMHPmTPbs2UNXVxdnzpwhJyeHiooKMjIy2LhxIydPnsTn8429IP6213pc1DLfdGb8c18bCx7INiW/ceMG+fn5LF68mPr6+rGXLwSTmtBQzJs3j/Lycr777jvOnz/P0qVLqaysJD09nfXr1/PJJ58wMDAwZs+XwD+b23DYVhlhVc5C6lpX4iwvMcJu3LhBcXExDz74IMeOHYtd3hgZcncMoaHIzMzE6XRy5swZenp6ePzxxzl48CDTp0/n6aefpqGhgRs3bozOw0La/YtTtdTtXmMYRrv75iNlm6Gxt27dYvXq1cyePZuGhoa4xf4lh9xEMGfOHF588UU6Ojq4dOkSNpuNjz76iBkzZrBmzRqOHz/OtWvXTHmGpR3+dhfdLurYFnSplBL5RZ2R7NatW9jtdu666y5OnDiBqqqjUb1h444nNBQzZ85ky5YtnDp1yjgZcrlcZGRkUFxczJEjR7h8+fIwtUPf+XH39VOwQJ8rw7uDz+fjqaeeAsDlck0YmTCFCA3XuvT0dJ599lkaGxu5fv06paWltLS0kJmZSX5+PocOHTJOhuJrrN5EdbW7cTp2AuaNIp/Px/r16/F4PDQ2NjJt2rSYMo0Hpgyh8TYc0tLS2LBhA59++ikej4dt27bR3t5Obm4uy5Yto66ujl9//TV6wd0uFEWhrlVhTZ4Fl9tM0qZNm7h06RKnTp0iNTV1SJnGGuO2Dp0sSE1NZd26daxbtw6fz4fL5cLlcrFnzx6ysrKYNWsWOTk5wQwL7WiaZqxFpf8oSyLZvHkzXV1dtLe3k5aWNmF1CsUdr6EjGdYCeVRVNR37vfHGG1y9epUjR46waNEi3n77bXp7e/VMAePIf5S1fft2Ojs7OX36NBkZGaNUm9vHHa+hgc354QxvsdLa7XY6Ozt54oknWLZsGY2NjaxYsYKMjAzsdjulpaXk5eXxyis7+PLLL+no6OCee+4ZraqMCu54QmFs5iqbzYbNZqO+vp6vv/6ajz/+GJvNxh9//IHP5+Ozzz7j3nvvBRh2hxoeAueriQ2md/yQe7uINmSHhz366KPU1NSwZcsWpk2bxtq1a9m8eTNz586lrKyMb7/9dsQWrZEriquBu6kKIVREYZk5j7sxeGe0cJspLmFCJ8IEH49nJqpZ1dXVHD16lDNnznD06FHj2G/GjBmUlpZy//3389JLL3H69Om45YTXyXi6FlnXvJJyNOlmZdtBk3Ut8tYg3Y0UOCuRrbWmPAkTOhEm+ET5GoU/t7a2lnfffZfW1lYyMzON8MWLF/POO+/Q19fHV199xezZs9m6dSuzZs3ihRdeoKWlZciyI11WIl1YBNDa3GQKc/f149y2i5hX8pMIIlSLjh8/zp49e2hvbycnJyfmEB04Cert7eXs2bPGYUJGRgbPP/88LpcrxslQqHtm5H3P7qYWHO4ufthdQxfSGKJb+gX2vJh+uUmEIqBFDQ0N7Nixg46ODmNtmojHRHZ2Nq+++ipdXV2cP3+ehx9+mLfeest07Hfr1q3IcqLQ8cXPYF+YR7FD0NLUjQAkvUhtblRntb88obHm6ZMnT+J0Omlra2Px4sUjLj8zM5OXX36Zc+fO0dPTw9KlS6murjaO/eKdDEm60bS5CODfVhXR3NoM+F+dMP/BqM5qQobUSGqDDPqCFVQsKViE3gP37ds34kqNBB0dHQDk5+eP+3Nv3rzJ999/z4YNG5gzZ86IHNGiLWVCw27evElPTw+9vb309/cjpcQ36EWoSjBft4uqvvmUl+QhgbJVgoIDGr/UlVFUU0OujBwdTOtQoVhJET4GvRqKxYo6Of2fRwgF8BI6KAUaI9DQAdLuvvtuHA6HsWkwEmt7qKF5+vTpLFmyhCVLlnDz5k3ef/99FIsgVO1czf0U79IPzwVQYNtG26kmsrOy9TPYaPxEei955cDAgPSG+DCFJhsr56xwjN4tMN1hyyR1nCpUVPyH8dzxqamOaG1cVVUVksInpbtRQvx7u3F2ijS8g140IPVuqz7/+ofkwFCM9DHo9en71qoVa2BxHBIOCharJagX8eLMXQ0NycDgAAgVq0XVO2TU/AFZBapFRXp1uVEspCiSQe+Anl6xkKIqyNDOHXbTS8qAJapFNVLGFrqV27S/jDXl+uF5v8yittwOKMjcEpyFBdhKFsYsIY7EChaLikDB93+D+gUZRUVRLDqZaHh9YLGmkGK1IHxe9OlXw+vVUCwppFhTsCgaXl9gbRUvzlwxiUSgkGK1ouIbouyArBKfV0OxppBiURGalwG/jK/8PY309FRSAj61in+npcg5/KYZRciQ4Txwacy+q9bwitDJ1NtICEFNSyuL4rjux5daqFhUiRo45pMaKIrxW5M+BgcHGBj0+inwhwvF2MlSFBWhabpI8eJMtdSQxu1HgWqMCEPlF6iWUI0XKKp+Bba25Q+efww++ZfffUSTuJuqKJifFfWqihynnTGTe6vxSC3sO9DmhI0mkTLGIFQYb30TiopPteKVEp8mzIaSYiHFmmJ8LIE4KaM20pBxEUmjpBxGfgheipX08CMv8GSevhyo+uAkuU8WUfRAVkR/D+yTjjuUQM2UsG8/wi5kR5PRyKH5BhgIDH8i9G6wwqAPNO8gUlGD4UJB0bx4Q3qVJv3haPiMvUmJVBT9QfHiIiSXIe8STKDsIdD9eTMLVj4OaDR9UAvZOQgWsqt8TQK5xxoJnqj4q6139OhpTW/jRPMy4NVQVNXcGf4cREEJOxBQsFgUNO8AA4MDDAwG3tapz2f4BvVwn8CqKiF5YsVpeAcH9A4iVBR0syixsjW8Xh8Sic/rRYvyv6evn2MVz5A2I5V/L68je17A+z1yL3W8htsgEpyvhf7eonijh2HlCsVKSpxyhapGPlZYSLFGTYzVGsPzLWacgsWaYvqvACmmsFj5FVRrCpaQOUYJy/dVSz0f/6+GPRfKilaxIC+YN7ysyQsljjkUSJEIUq0hw99kg98CDPj8hMQYmtbt4qDYpm9mK4KsomIWMomvId4G4hKq+fThNJXBSbxr5K+CMH3pv/2vV3M1t5quMOzapb/lcvv27eMj4jgiLqGKqluvf/45XuIMH0Edi34VHhRam+soLCoxpXGuEsgHCsZWuAnAHe9TFFwpiYhZwd1UxSL7bgDqFkX23cb9JRFhdzrueEJ1aAgRSVheSTlSlkdJP3UxmU26YSCBakw9+ycqpgihfsQjTfw1OJ1ahA5hiU9aQ30UMbUITSJJ6FRDktAphiShUwxJQqcYkoROMSQJnWJIEjrFkCR0iiFJ6CTFSA/fJy2hU9GbYDgYqdfhpL3BPRFulFOhE5lun8VM5PdTnQoVnswYjfZN6IA7SeSdg0k7hyYxMiQJnWL4fwtJCtRhJxN7AAAAAElFTkSuQmCC"
|
<image>如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()
Choices:
(A) 1
(B) 2
(C) √{3}
(D) √{5}
|
√{3}
| 69,843 | null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAK8AAABkCAYAAADwvWACAAAayElEQVR4nO1de3AT17n/rQwXIiYkKc5YMAx0LrEMGD8Ay73hFcAylIY2CWsgtkkvqcUFmunDIplcGsr0grAz/aOdPiKnDRnIdWwDxqIZINg82gy5TkfCDnZs/JAa33LDTDKWYkpJy8Pa/e4f0q5WT0uyJK+EfjMaSbt7zp49+zvf+c53vvMdhogIaaSRhFBMdAHSSCNaTJroAsQDNpsNQ0NDOH/+fFTpFQoFeJ5HUVER5s2bh+LiYgAAz/NQKNLtXS5g5KQ2EBEYhvH7HQ4sFguOHz+OTz75BLdu3QIArFy5clxl6e3txd/+9jcxr6KiIpSXl0edZxqxhazIOxakhHY4HGhubobJZMLFixehUqmwceNGLFmyBFqtFtnZ2VHlL1SHIGEdDgcuXLiAjo4OnDlzBlarFWq1Gt/97nexZcuWkPdJS+o4g2QKjuMCHrdaraTT6UilUpFarSaDwUBWqzXo9cGOBwPP817fvrDb7fTb3/6WtFotKZVKYlmWzp8/H9E90ogNZEteIm8Cmc1mYlmWlEollZWVUUNDQ0zv5Utyp9M55nVms5l0Oh0plUrSarXU2NgY0zKlERqyJi8RUWtrK2k0GlHKmc1m8Zwv4SKVsr5pg0nbsWC1Wkmv15NKpSKVSkVGozHqcqQRPmRLXilp9Xo92e32gNeNh7DjQTCiG41GkcRvvPFGgkv1YEF25LXb7WGRNhiilZ6xhkBijUZDVqt1oouTkpANeXmep8bGRlGnjZS0coTdbiedTkcASK/XR5RW6FEmqmdJBkwIeaUvRJCU1dXVBEDUF4XjwQZOyQSz2SwO6oaHh4NeJ+01pHWUJnBgJMzOS0EmHRwOB771rW/h2rVr+NOf/iTOZiUbxrLpjoyMYNmyZbh16xbee++9pH1OOSFhFnTpzJkAu92OFStW4NatW7h+/XpSv9BQxCUifO1rX8PAwACWL1+OtWvX4sqVK17n04gcCSMvz/MAPCS2WCzIz8/HokWL0N7ejszMzEQVJe4QnlWAtMc5efIk9u7di9WrV6Ours7rfJrEEWIidBW73U4qlSroIEYuFoNYQ6q7CoNTqd06jciQcPJ++eWXpFarqaGhIaVG1NE8g9lsJo1GQ62trXEoUeojoeS12+2kVqv9pE2oF59MxI6mx7Db7VRcXJyWwFEgITovEcHhcGD58uX48Y9/7DcwCzXYSSavrFAunL56MABwHIfMzEycPXsWL7zwAiwWy5hp0vAgIcy4efMmVqxYgVWrVmHXrl2JuKXsEKgRZmRkAAAyMzNRX1+P73znOyKBiSipGu5EICF23pycHDzyyCN+kuVBB7lt3xzHgWEYdHR0YM2aNejq6orKH/lBQ9ybNsuyAIDW1lYAaXOQFIKakZGRAYVCgeLiYuzatQsbN26Ew+GY4NLJHzGXvII04XketbW1qKmpSeqZs1gi3JUVpaWlAIALFy6kV2OEQrxGgq2trQSAWltbief5lLXdxgOCVebll1+e6KLIGnHTeWfOnImXXnoJ+/bt8zqeliTh1YHFYsE3vvENWK3WtP4bBHEh78svv4zTp09jcHAw1lknLSjEauhgZN6xYwe6u7vTA90giDl5bTYbCgsLYTKZsH79+lhm/cDB4XBg7ty56boMgojJO1aXV1ZWBsDlgJLG+MDzPF555RWcOXMm3YsFwLglr7Q7tNlsUKvVop6W1m9jg5kzZ2L//v3YvXu31/FQqsiDgHGR17fyiouLUVBQgLfeeismhXuQEIqIRqMRv/rVrzAwMAAg9DT0g4SY6byC1B0eHsbjjz8eiyzTcEPQfU+dOoV169ZNdHFkg5jpvGldN3bwlcJEhJ07d2JkZCRdvxLERG1wOBx4/PHHYTab0zNpcQAR4S9/+QvUajXsdntKrToZD8Y1mhKkw/Hjx5GVleVH3DjNf6QsgtUXwzDIzs6GVqtFTU0NgLS7JBAjx5xf//rX+Pa3v+13XG4DCwJAxIFHsEbFw/cUERfvYokYyx/4e9/7HhobGwGMseBTSAPOHfkycc+QSERMXkE6CC3fZrPBarVi7dq1sS1ZHMAAYJgMgHc9Q0BJJ+UPua6Xw8tXKBQoLy/H7du3A864SZ+EcR9QIAMMw7ieOQURMXkF6SC0/IsXL0KpVHoFXU6WLo1hGJGYPDj4VYdAZBm9/A0bNuD3v/+933Fvmc37HkhJhE3eYPqYyWTChg0bvM7LcWJCqi4oFArwGIBhiQIKxSQwDIMMZhLyaq+BCKIYI+Jc0nfiiu0HlmXx4YcfAgggJMRX4Kn/ZBEkUWG8bmlKpTJp4tLydJ+IiPprCwkAVZo8oaRGW54nAFTRMkpEHDl5+S78BBAwlpupEgTGpdqL34UG6qfUdEeNiLy+K3nNZnPQipQjeN7pJm4+HewfdR/z+BqfrHS97D4ZE5eIQi6X76spIFQeJyKiUTpBFQwI20yJLF7CEFH/7qsOfPzxx9BqtUljd6TB17H1J13IqzmBffNdGyGRrzrEu1eCBLVITDwKCgrQ2dnpd5zDNbQ0d6PSvfRqEjZjUwUATk6KT+wwrq2sOjs78dRTT8WqLPEFAacM+/AJVaBlr8e5W6FQgIgwin709zGAwj0gJQY8Q1DISuN14etf/zqGhob8T/SfwomuCux71mUeG3hdg7KmAhy8tjHxhUwAxjWy6u7uhkajiVVZ4gon0wxTA4Btm7AJChBxIBKsZjwyBkxouUrI3fwM5oMBGIjElZsMXrp0KXp6egB49xzWP5xEDzViq2IyFIpJ2IJ6ENcl9jJyBhEXsJ6JCBzx4ChAXxhMnxDXnAXR9TmOoxDJZQeu30CFAC2q+UQ8Jl1X17INBKaSTMQTRzzxvJOI5Kv7+ta9k++jA4WeQaiz7yAVApRXe20iijcuCGMr4f243gfv4iLvGWQrpAwXWgAgme0J0muOjIxAqVSOo60lFvx8NdQMACg80sr9jNypCrDvAttMR/EcXKqCy7AvP5OfgGnTpnktj2cGTWjursBzz7r+ZyzYh32VQM/eQ2jG6MQUcpxwcZB394Bu2zWT4dkrT3ohEed6ae53y4PgRDMMtX1+GXd2diI3NzcBjxAbTKLN+NmhAvT+pAKHBt0NFEDLNgaTNjWh4g8c/vsZeRNWioULF3oN2gZPNaOnchNY94QKjwEMDAAoyEFeku3SK4xDAEAwUzNu0pJ0PkGaSJgKJbheLqEPry/ZgmOM3LS+KMAAC/Z2oa+GwU8XTAbDZIBRMChjToCI0PCMIqBvAcnWuUghTkDcQ5/LyrDpWQCuY6e2LcC+TuD5n73m0uGTCDzP+83kArx7qpsRz/k1Sek8uLW2Ej+9CpT/dKGfj2lHRwcKCgri+AjxwYK9XaC9wc7yEEghVJpcnIuE+nc1Jh4FBXn4+OOPsWHDBkxlXD0gs2kSGhiAIYCQj4P9ndg3Xz5T22OB4OoNpSZZHoLFx79H9DnimUrk+g34L34fDi4GFG7WS6caR0ZGMH369BgXP74Qyh9cmioAyHPdndCIBEeb6dOn4+bNmwA8eyZzPA/iCTwRiLqxb/4k2VlKgoHjyK9/aNnGIINRQKFQeEldhmFQaXL6ktf114lmvFAO7HuN0Hs1FwsW+orw5EQgacqDAHITmgD/Fi4f3wCpd5tLL2SCNkRRZyQn5PQMwSBSiyBOELHvEk5WAlTZ7DZtEpzUC0PBIixYGEAWE3E4XWlCWdd/YuFgH/qYAuTkuM4Jkku0uCmSfy8FhdumyzBMEMtKYhrsWCQUyuIZyPDuAbaHwNJGKQbxYyZhPM8Q73crLTsBrndBPIgAJ/Wivx9uXV4BU+0B2LAQz215HgvnK7yNhTzPu+bG3X7brk8FtXjZO12/9Xte8bkuuT4Mw0x4GaIpn1zKHU45Ii2rYNPl3JMLXL+B8hgX/7h+Ay2qbPbiqleTpMEaHGQawbv1JqepHCjIwUKQ5Cp3EuJQXV0NInJLAUqKj9FoBMuysi9zsPJ1d3dj586dmDJlCrKzs3Hnzp2ElovjuLDfudPp9Po/PDyMxsZG6HQ6qNVqKJVKaLVa6PV6tLW1udnFiHbdwVPN6KFGsEwGMhbsA3IXiCxkGEZibeg/BM1WHvXmfwV39x4mPTQF1oFeQOGx5RJ5O63IZSQeLogIu3fv9greIffAKESuLRGOHz+O3/zmNwCAH/zgB6iqqsLUqVMxderUuN3XdwVzOJDW56efforz58+jq6sLly9fxo0bN/Dkk09izZo12LFjh9eaRxenXNYeAOCpHy3N3VhU04uevbnor83HgQXz3eXgwTEStQEAMcgnQ9dXxNE1OrgYHp9QP9XBtRWTVqulNKKHMP3pG/5V+N/c3Ewsy9KMGTNo586ddPXqVSJyTZ9qtVrZ+VFbrVYyGo3EsiypVCqaOXMmsSxLBoMh5IYxgcLfOgcMlI98Mgy4poM500E62D8qqhRE5PHnFeaTR/9518+dIZB7Q2vbGVq6dKnbByC5IOdYwQMDA/SjH/2IsrKyaOPGjdTU1ET379/3u04OW2CZzWYyGAwiWVUqFbEsS0ajMeKd7jnivYjWV1MQ0JHeaSqnSpOrPkS1QboLI4EAMHDeuQcGABEwWTkFzjv3wIODAhl47NHH8fe//x3cXScAJyY9NMWr+3DeuSf+juRcONeFOj7poSnieeG37z2EZ5WLynDz5k0cO3YMv/vd7/DVV19h165d6OrqgkqlCprm1q1beOyxxxJYSlfM4AsXLuCDDz7ARx99hNmzZ2PVqlUoKSlBbW1t2HGEifxDWylAHl8TXIOpuRuLtjQgR2IC6q8txMLXctHCM2JGHuYTR6P/vOvVGu7/4x9eLWL0n3eJ53niOI7+RZEhSjFpOunvSM6FkyZY+tF/3hU/0v/SMgfDRO31dvr0aaqoqKAZM2ZQVVUV/fnPfxbPjRVNXvLq4oa2tjbS6/W0dOlSUiqVpFaraceOHdTQ0CCunolH3QEgRmqJYCQq7LaTouowycN8Br6GTgUY8EyGeFgqxRiGQfYT2TD/z0coKioKt/FGhVDSWXqNr5SV/g41uAxX+lIAiTHW9b73ttlsePvtt1FfX48FCxZg+/btePvtt70GXoF6BOkxi8UCtVoddjkCIdA92tracP78eXz44Ye4cuUKNBoNVqxYgUOHDmHp0qXIzMwEx3HiFlyAezFrjHswCnNwOKa7kUAKxZTJfjeYPXs2/vfG/+HfVi6PrpRJhkitK8L1X331FY4dO4bDhw/jiy++gE6ng9lsxuzZs72uFxqHLxGIvPdk+/TTTzFnzpwon8KFkZERXLhwAX/84x/R3d2Njo4OFBUVYeXKlTh48GDQYNZS4gqYKNVLJG8g3VAK13JxDxiGQV5eHjo6OlBeXj5m+vEgnnlHC4FooaTxxYsXUV9fj7Nnz+Lpp5/G66+/jtWrVwfNM1g+vsc7OjqQn58f8NpgUtDhcIhkFcxWy5Ytw5o1a7B582aUlpaGbJyCxI2094krBD1DqiMGQiC9sbW1lZ4sKg6YzlcHDedcoP/hph9L5w31bLHE0NAQ7d+/n+bOnUvLli2jI0eO0O3bt2N6D41GQ21tbSGvsdlsotkqOzublEolabXaMc1WApJhz+ewo0Q679xDxtR/8Wt1DMOkdORCCkPS3L17F8eOHcPRo0dhs9nw4osvYvv27XjiiScizl/631eKCv+nTZuG69eve9W5zWbDpUuXcPHiRbS3twMAli9fjpKSEixdujRu0Tsn1GITDsNDSS2NRiM7Y3micPnyZaqqqqIZM2ZQRUUFvf/++3G/p8ViIZVKJdpYtVotzZw508/GmgySc7wIKXl97amBWtmePXvw17/+FS0tLfFrYRMAkkhAklgNbty4gXfffReHDx/GI488gt27d4Nl2bjbXAUb63vvvYcrV65ArVZj1apVWLt2LYqKisK2sUYiKSlEryMLG/l42W82m0mpVI43G9mC53m6f/8+1dfX09NPP01ZWVmk1+upv78/6vzCwfvvv096vZ40Gg0BILVaTTqdLibhtaKRyqHSTNSMZUws3SqVKulVh0AvwGKx0M6dOykzM5O2bt1KJlPswyYJ921tbfUiq0ajIb1e75kC5l2+A4B3eK3miiBuiOWnxPyTcQo/HMSEvDqdjliWFf/L2XcgEKTl/eKLL+gXv/gFqdVqys3Npbq6OhoeHo7pvex2OzU2NpJOp6OcnJzAZPUBx3FUpfsPYtnNfufEGGvkIukonaAKgFBgoL4U3vc5IvIG6zoE1cE34J7cKi1UeZqamkQPru9///vU09MTs/tKyapWq4OaraTlC1TXSqWSWlvPe3lWOfk+OrjYE1xEmOYXgo5Ig6ykGmI2Qa5Wq+mNN96IVXYJQU9PD7300ks0Y8YMeuaZZ6ipqSkm+fq6Bj700EMR2Vh9wXEcGY1Gys7OFlUAjuOIeNdqg3zkk6H/nleaUb7H5dZa0Rw06lGyI2bkNRqNlJWVFavs4obh4WGqq6uj3NxcUqvV9Mtf/pI+//xzIoq+pzCbzV5kHY9rYDCoVCoyGt/0O37tUL7oOigtv5N66UAhCC+0pMkbDrKzs0mv18cyy6jhS0STyURbt24VHbstFkvUeUttrIK3VazJSuRRHYxGI6lUKuIlLq8cx5GTel0qg6GbiLw90UbpBFUyoEU1vSlr8x03eaUV1traGlD3nSjYbDbS6/WUlZVF69evp/r6erp3797YCX3Q2tpKBoOBSktLRbJWVVVRY2NjTJ/Vt8EJpNNoNHTooMGzMNF9nOs/QLnIowMDo548iCOe58lpKicg3+tcqiHmTqHCqJloYubHR0ZG6K233qIlS5bQvHnzqLa2lj777LOI8ghkttLpdNTU1BSQrNE8Z7gqSmNjIymVStesmU//f9/0vERlcHpWw9AJqpSYy9KSN0wI0jeW3Wc4OHfuHFVUVFBmZiZVVVXR5cuXw0pnt9vHtrFOAARyu3RdI3Gca68M4RzntjIsqun1SieELsit7fXLK9UQF3d8lmW97L7xwtDQEL322ms0a9Yseuqpp+jIkSN0586dkGkCma2kZJWTlBJ03UAQJyaCbaCSmnz1QlzIa7Va3TbJ2Euu27dv05EjR2jZsmU0d+5c2r9/Pw0NDQW9fnBwkBoaGkin00XlGphoCFLS4XBEPhXMEwnSWbqbUaryeFwbZ4fCnj17cObMGbS3t0flLkk+TiEffPABjhw5grNnz2L9+vXYvn07SktL/RxErFYrLl26hEuXLqG9vR1EhLy8PKxevRqlpaUB90cmn5UKckBZWRk+++wzmM1m9xFPTAPfugkEnndCoUiuuLyRIm7kBYDi4mLMmTMHJ0+eHPNaCrAy4caNGzh69CgOHz4MlUoFnU6HrVu34uGHHxavE7ytrl696uXHqtVqUVJSguzsbHl5/4eBN998E3v27PHz2ZVC+kyutd7ScKC+8BA/pRBPsW6320mtVlN1dXXYae7cuUP19fVUUlJCs2bNoldffZVsNpt4XrCxlpSUiGYrnU4XsY01HN020fovx3HiVHt0Ko3bhEZ8yqoKUsR9/bTwMgTdLRghLBYLVVVViR5cp0+fJiKX9aK6utprQkCn00VlY5XTYCwQ7HY7KZVKMhqNY14rkDPQxjdePhIpTOOYkjcYOerq6rykiVC5n3/+Of385z+nefPmUUFBAdXV1dHIyAgRkZfZqrq6OiqyBgujFOhcsPSJIrzdbietVkssy/rdU5yU8DnO87wfOT076ThplAKHk0oVjFvnFfQt4VuijohB+RRgUFZWhvb2dhw9ehSTJ0/GD3/4Q9hsNqxduxazZs1CT0+PGCtg5cqVWLduXdDl18mOQKsQNm/eDCLyGx9QkunriUSEw1GX4i8Naizs0sKdqsBk9ph4ZaXJiXfwAv4d9Xj3uQzs2LEDhYWF+OY3vwmWZXHt2jUolUo4nU48+uijIWMFpBoCLaUKRFwg+SJxJhThiuhgHc8o3+PyXkIFnXA7Q/M8Tye3gVwbVHv7EhiNRtJqtbK0sU4EBG80AcH8G9Lwx7h0XsGrCQUGGvCN5sefoEqmkk6R/xIUo9FIGo0mpA4bLPxnKkGn09GmTZv8jqcJGx6iUxvAg4HCvdVVPg70vYocidbLgwBmIXIOKfAs/MMD7d69G0SE5cuX48yZMwFXvkp3v0k1OBwO7Nq1CwACrrqW24SJbBE+z72lgSh1t50UR+U8+ceRDSU3jUYjKZXKgPEOUlX6WK1WUqvVVFZWNua1qVoHsUL4Oi/PEydRAYRFfotqel37GfO+1zu9vgOB4zhqa2ujadOmkcFgiKzkSQjB4y7Qsz4IalKsEb7kddepxxHaQIsZj0teoIGGi+xjSw9hIoNlWfryyy/DLlIywWAwEICwJiDSCA9hK1c8uWJEinG05quxgIDeawNee8UKOFV7CIMIbyPq4uJiXL9+Hbdu3UJubi6amppCqTle33LHuXPnUFxcjHfeeQcWiwU7d+6c6CKlDsbDfNdSE4WXQ7Sw8K/iD9Hpa4IezLKsl0+DXBCoWw+km9rtdjHCjV6vl83SqFRCROT1vDjPy+L6D1Ch12Zw+XSwfzRIuvDyHxwcJJZlCQCxLJvwVRnByhUO7HY76fV60cl9osueyohqkiLYywy+NVN04YasVqtI4rKyMllNbPhKW6vV6kXacBzx04Oz8SECa0NoAnLuuAEexxBp9JfxrWC12WzEsqxIjLq6uoR1w6EIxvM8NTY2ig2stLR0wreXepAQNnk5crpepHt51FhSQ+rdNB75IpVwdrudDAYDqdVqUqlUpNPpAsYRS4RE8y2H1WpNm7sSjLiupABiF8fVN5/GxkaYTCa0tLSgpKQEhYWF2LJlS9wigNtsNpw4cQJXr17FuXPnkJubixdffBGbN29O2ajwckdE5OV5QKEAeLoPBhlu85iHUOQTkJkYBFmWEh0CNQSHw4Hm5mZcunQJH330ER5++GHk5eWhsLAQGo0GDMNg3bp1Ed2jo6MDN2/exNDQEDo7O9Hd3Y2+vj5s2LABixcvxpYtWzBv3ryYTeNS2u0xKsRd8iYaFosFnZ2duHr1Krq6ukBE6OjogEajCSv9lStXkJOTg+nTp2POnDlYvHgxNBpNRA0gjfhCEGIpR95gaGtrC+s6X59iWYSvTyMg/h9+FAUIg0cH6wAAAABJRU5ErkJggg=="
|
<image>如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是()
Choices:
(A) 32°
(B) 24°
(C) 16°
(D) 48°
|
24°
| 69,844 | null |
24°
|
"iVBORw0KGgoAAAANSUhEUgAAALwAAABcCAYAAADUDd8pAAAXMUlEQVR4nO2df0xb57nHv4fcha6LhFY5ne+dIzeJyUidrlREGr1hYho2oQtaqUqFtLWLq7FLwZmWNa4aKanobsmSdSYNd5Db/ZDqqLlNrkZrc8ctSXBX7kYkprQjdzE4DZBLQqSQ0alMjjanMed7/7CP42Mf/4JjGxx/JITPeX+c97znOe953ud5fwgkiQIY6+vEhOF5NBiF0BkRQFEui1QgA+T/E03hdSbGsbvBFnU2/6vmbiT/n6oQdczYn6/t6oFgNuNLRiGlF6TAyiXvBT5aY2OERAsEXIetoNkEcVCESBGIkPmCtpd/5L3AC4Iga7QFIaLJH/8vDNKMPaUC3jNvglEIVoegFLdAXpD3Ak8oaDWhlnvXv59Bz54GAIBp08ZQqChLWyC/yHuBDwq7GHVOgOuwFT09PRAEAYLxiYjQoqi0BfKJvBf4IMHbpCT4XhcGaQZJUCQ8Ljs2rd+YIH2BfOEfcl2AbCKgCKLXhVW7z4BnjkonMTF1GUBB4O8KmO+Id37a20xEUDXnOxcWSJLP1SJ8rmaXPUeFLJAtBLJgewOg3LsteFvzjrvuaYpRtpfh4WG89957Mvv8HWKrp9A+rGzuOoEvimjGvR9dxPbt29HQ0IBvfvObGPeMJU1fsM2vbO46gZe4ceMGHtteh2/U7wAAVFVV4Z+rtmHXrl34+OOPc1y6Apki/wVe6pKGEfHpp5+ioaEBra2teO5fWvG5z30ON67PYnJyEoIgwGAw4PDhw1hYWMhRoQtkirwXeILhzmhQ/y5CU1MTtmzZghdffAFf/OI/4t5778WJ/zyJSxc/ws9+9jOcPXsW77//PsrKyvDuu+/mtPwFVCa3RqLsY7PZaDKZGAgESJJ+v5+rV6+m0+lkWVkZ/X5/OK7b7abRaKTJZOIf//hHkqQoior5FlgZ5GULzziWlJ///OcYGBiA0+nEqlWrAADFxcX47Gc/i0cffRRbtmzB/v37w/Framrg8XjQ0NCA2tpaPPvss/jzn/+clXsokCFy/cZlC7fbTZ1Ox+np6Ziw8vJyjo6Ocm5ujlqtliMjIzFx5ufnabPZWFJSwo6ODtmXoMDKIS8FPlrt8Hg81Gg0PHfunGL8uro6Op1OkmRvb29YtVFSXyYmJtjY2EidTsfe3l7Vy14gs+SlShNpK79x4wbq6urwy1/+Elu3blWMr9frcePGDQDAk08+iS1btuDll19WtLkbDAb8+te/xsmTJ3Hw4EF89atfxR/+8IfM3EgB9cn1G5dJfD4fKyoqeOTIkYTxOjo6uHfv3vDx7OwstVpt3C9CJA6Hg1qtlo2Njbx69eqSy1wgs+RlCy/xzDPPYOvWrfjBD36gGM5Q51an0+HatWvh8/fffz/sdjssFgtu3bqV8Bo7d+7ExMQEysrK8NBDD+Gll17CzZs31buJAqqStwL//PPPw+/3o6enJ67VRlJZdDodZmZmZOe//e1vo7S0FB0dHUmvtWbNGrzyyivweDy4cuUKSktLcezYMXVupIC65PoTk4zF2L27u7tpNBrp8/lSiu/1emkwGGLOz87OUqPRcHR0NK3rnzt3jlVVVayoqODw8HBaaQtklmUv8OnS399PvV7PmZmZlNP4/X4WFxcrhjkcDj788MNhR1U69Pb2UqfTsb6+nlNTU2mlLTi4MkNeCbzH40m5sykhCVZJSQlnZ2cV49TX17O9vT2tskj5+v1+dnR0sKSkhDabjfPz82nlU0Bd8kbgZ2ZmqNPp2N/fTzL9FrK8vJznz5+Pm7ek2sTLN9n1Zmdn2dLSQo1Gw+7u7rTTF1CHvBB4n8/H8vLypObHREQ6nyQihdDhcLCiomJRqk0kHo+HZrOZRqORbrd7SXkVSJ8Vb6VZWFjAt771LXzta1+La35MhUjnkxI7d+7E5z//eRw6dGjR1wAAo9GI06dP4yc/+Qmee+45mM1mjI0ln3hSQB1WvMDbbDaQhN1uX1I+69atw/T0dPiYZIyn9Y033sCRI0eSCiiTTAMUBAE7duzAxYsXUVdXh23bChNPssWKFviuri4MDQ3hxIkT4dGPiyXa+aQ0rECn0+HgwYPYuXNnwskhUtpEgk8Sq1atwp49ezA5OYnPfOYz2Lx5Mzo7OwsTTzJJ1pQnMc7vRdLf30+dTidz5y+l4+d2u1ldXZ1S3Orqatrtykt6pFuGyPiTk5Osr6+nwWAId75TSbc0FuT/87zvnDWB97jsFASBMLfKA0SGK9njshMA2+zOhHmdO3eOWq2WHo9HtfLFcz4pMT09TY1GQ6/Xq9r1IwV4cHCQRqOR1dXVaZlYU0Wq55hn4emjIE2KjA7LE7Ig8AvhX8GK/jo94kJMLJFjNAG0O8funFNoxWZmZqjX65O2gOly69atuM6n6HKIosju7m5WVlYu2WqjlL9Ed3c3NRoNLRYLr1+/vuTryK7JMZoF0OmJuvaYkyZr/i5IlQUd/s4lJqaKYDavUtSPd9Ua4Ta3Yk/Dg+Fz0fFu3ryJ7du344UXXsCOHcHVBqjSOjGrV6/GPffco2ipiS6HIAiwWq0oLi7GkSNHlnzteEt/WK1WTE5OQqvV4qGHHsKBAwfg9/uXfD0JEhg87ZRNch+bmIK19flQeP6twZPVTqv78hRKMYhLUUYOV+f3gdI2tNWa465RvbCwgKeeegq1tbWwWq3h82quE7N+/Xpcv35dMUx6+JFCcOzYMbzyyiuYmppKmGYplJSU4ODBgxgdHcX58+dRWlqKt99+e8n5XuwbQNuYBx/tOYpx4U45T08JEftc5R+ZF3hK/8axfn0N1m8yYWpy/E7QuAuDqMEGXMIGw5eCO3Aw1kphtVpxzz334LXXXstYUbVarcw0GYn0YkW+YHq9Hj/60Y9gsVgSpkmFZC+HTqeTTTx59NFHcfbs2ZTTA/K2ZGBKwBMPGvGNNgEDfePB9LwIUXxgUeVfKWRe4EN1Nt43gI11DTBs2ITLkxMAAHIMph+eQfeeTRg4SjzWsDmURG5i7Orqwrlz5/Dmm29mtKjJnE9KSM6urq6uJV07kXBFCvO2bdvwwQcfoLW1FY2NjXjqqadw7dq1+Ol5J70QPjUOcj0AEdtr63DafRqCIMDT1w+h9EtLuo/lTtZUGqVP5ZHvH8W/ne7Bxb4BoK0OD0qPRFpHBoDL5YLdbsfAwADWrFmT1jXTUSlIxjifUuXYsWNob2/HlStX0k6bCkrC/J3vfAcTExMwGo145JFH4k88ERT6IOOXAMMmAEUwPr4HpR/Z4Bwnzrgv47HHH0T0BhL5RFYEXuQYCD0AoHTjBly6chmuw1YETK14EALePXMKj9U+JktDAB9+8AG+973v4dSpU7j//vvTvm46n2RBEGKcT6myYcMGvPTSS9i5c6diuJL+rwZr1qzByy+/DI/Hg2vXrilPPGHsb9epqZBgBzHXtcI90AdsMIQanRXtj0xMNkxBHpf9jvlrzCmztYscYw1qOEZR5vSYnp6mTqeLO8BKFEXVRxim43yKJhAIsLKyUnEkZKaR6iFy4kmigWmdnZ2ydBxzUgDY2Tcmi5ePPqiMC3yb+c6GA06PSPGCK7zxgLOzLRRWRMAcFHoGnUBGo5Gvv/46yewNnU3H+RSJVD6v10uNRqO49k22EEWRvb29XLduHevr6zk5eSkcdqe+IxucIFazSdE/km/kZHhwIgG+fPkyV69ezcbGRkWHTybLkmjmU6rY7fZFfyXUxO/389ChQ9RoNOGJJ3Nzc3ckXFaV+S/oEllS1qK2goynW4vEj3/8Y2zb9iiGh4fx1ltvyYIzYSaLzLO4uDiu8ylVdu/ejZs3b+JXv/pV0rhUQaePl0dxcTFefPFFeL1e+P1+bNy4EZs3b8b5/z0fjCCryqK7Z4vO7L9j8VuTQ4cOsbKykn6/n5OTk9Tr9VnXiaVl95aCtNLZ8lmnZoH79u3jfffdR6PRyFOnzih+LfNRZ48mNzOexFj1xOl0Uq/Xy+aVzs7O0mg0yhZJyjRKM5/SQbqvjo4OmkymlOJmmvn5eWq1/8TR0VH29/eztLSUNTU1qg6+WylkXODFmB+xjIyMUKO5X3H04fz8PKuqqtjc3BzMJsNC0tLSEu4sL4VAIMCKigo6HA4VSrU02tvbabFYggcLIgOBAI8cOUKNRkOr1cq5ubnQ48l/XT7nc1qnp6ep1WoVzWiRM//r6+vZ0NCQ8VV7o5fdWwqjo6PUaDRpLRmiNrOzsywpKVG0HEkrIms0GtrtdlVGfi53ZAJ/+9Pb4T81idcqz8/Ps6ysLKVWMBAI0GKxsLq6OuUFlhaDw+Hg008/rVp+7e3t3LFjR8z5bKkz3/3ud2mz2RLGiZx4shR1biUQ08KrLeyk8sO9ffs2TSZT2q2pzWZjeXl53DVklspSnE9KBAIBPvLIIzlRbbxeL9euXZvyWjjSjidVVVUZmXiyHMiKwCthsVjY2Ni4qLR2u50GgyEjDp7FOp8SMTo6yrVr12bsJY1HQ0ODbCpiql+V119/nVqtlhaLJetlzjQJBT5axVFSeeKpQEpxpQo/0HGAVduqeNN3M2Hh4qlYtz+9TccbDq5/YL1s8aTockbfTyqo4XxSYt++fWxoaFA9XyVEUeT7779PvV6/6D6Pz+fj/v37uXbtWnZ0dPDWrVsqlzI3JG3hEx2n8jv6+K3/eIsGgyHo9VOIm07e/f39XKdbx+Hh4bgvZ6JrxCPRsnuLxe/302g08vjx46rmG4/KykpV1KiZmRk++eSTebPjSVoCrxQWr9VXymNkZITrdOvo9XrDrX0qAp/o/O/+53fUarV0Op0pv4DJSMf5lExNiAyXJp+r+TJJ+Udep7e3l+Xl5YvKK979DA8Ps6KiYsWviJySDh+vpUxVKG9/epuTk5PUarX87Xu/jQlT7NSmkbfH46FOp6PjjWCLJorikgR++/btfOedd1LWeZWELl68vXv3LrrvkgqBQIAGg4Fut3vRY5ESxTt+/Dh1Oh0bGxtzam5dLGGBT/T5T0XgEwnYXz7+Cw0GAx0Ox6JemlS+HtPT09xctpmHDh1KmiYe0oNWy/kUmaeE3+9nWVlZxtSD7u5ums3mjOQtIa2IrNFouH///oyaidVGJvCJBCORYCbqtN703WR1dbVsuelEndF08o4W6tnrs9xasZU2my2uPp8KajqflBgZGaFWqw33Y9QiOIRAu+SxQJEkau1nZ2dpsVio1Wpj+gvLdTXklD2tizVXWiwWNjU1LSptqkRWrs/nY3V1NZ9++mkGAoFFVbzaziclbDab6qqNbAiBSqRSf9LEk5WwInJKAr9YYW9vb2dVVVXWN/H1+/1sbGxkfX09b926lbbQq+l8indtSbVRy7N5/fr1uEMIskVvby8NBkNo4slkzsqRiIQCv5ShBsePH5eZHyMffKY/d1L+zc3NrKysTMnTGFmmTDiflBgeHlZNtWlubpYNIciVShEIBGi322UTT5Sefa7Kl5HBY0NDQ9TpdLK3PNs3KF1v//79NBqNYVNgKuVItOye2uzevTuu+pRqnUlTC3O1nY5SOefm5mi1WuPueJIrVBf4yclJ6nQ6Dg0Nhc9lY6peIrq7u6nX65MufhpZrkw4n5Su5/f7lzxoK3oIwXLiwoULNJlMLCsr429+85tcF0ddgZ+bm6PBYMiaNzEdTp48yS984QspWzDUmPmUKtIXcTEt9NDQEB944AH+/e9/z0DJ1KO/v59btmyhyWTK6cQT1QTe7/ezqqoq7d3ussmpU6fijr2PJpWZT2p+qaxW66IsLGoNIcgW0orI0sSTbKOawDc1NaluEssEkns/meNHTedTKvh8vrSXAV/sEIJck8uJJykJfLKWrL29ndXV1Vk3Py4Wr9dLnU6XUKAz7XxSQkm1iVf3gUCAGzdu5ODgYEy85er0kZDG7EgTT/R6fdYGpi25hXc4HDQYDDHmp+XOzMwMy8rK2NHRoRieDeeTEi0tLWxubk5al93d3Uknia8U3G43KyoqsjLxZFECLz2MoaEharXaZetkSMb8/DwrKirY0tISE6b2zKdU8fl8siUGlQQ/E0MIskGyl9jhcGR84knKKk30J9Pr9VKr1XJkZCRumpWAz+djXV0dm5qaZLqk1+vlxo0bc1Imt9tNnU4Xd1BWJoYQLBd8Ph/37dsXnniitpqccgsfKfSS+fHkyZOqFiZXBAIBNjU10WQyhYUsUzOfUqW5uVnxy5NoFYJ84urVq2xsbKROp1PVzJ22SuP3+/mVr3wlru67krFarayoqAh3GrPlfFJifn4+xoFHxg4hWGmkO7Tg97//fXhF5LNnzy75+jECn2zhpMbGRj67Mz8/pyTZ0fGvLCsr45X/mw47n8Lrj2ZZTevv76derw9/dcbHx6nRaPjJJ5+ECpTV4uSU3t5e2cST1CezyI8Rmyz+6lN79+6lyWQK67p5Vd8RN/OLX/yCOp2OVVVVOV+nxWKx0Gq1klzeQwiygd/v54EDBxQmnqS+YlpsCy8qOwEcDgfLyspyNkApa4QEv7e3l/feey9fffXVnBZHssi8+eabMasQrBTDgNpETjyJ8aUsRNVJ1A7wAplozWYRQBHee28Q27c/hmeeeQZ6vR4CARHMk13eihBvT6O//vWvKCkpCR+Tmb9nQRBilsD+29/+hhMnTmDr1q34cvnDEO6ata0T8+GHH+K/+/vxoNGIrq4u1NTUJE2TROCDdHV14ZNPPgkfZ+PBLwcoIEq4RJBCxu49Xr1evXoVAwMDaGlpiVOuuxNBECCKYrjO6uvrsXXr1lBosLGOSZOKwIchohbSL5AtPv74Y2g0mlwXY8XgOmzFE3uOBg9q2yCebsX3d52RvwLW2mDrJf2tEorQ2RfcNptkjLCn867kC5H3nK27J3nXC7tU79EyFyOD4y4IgoCeyxvAYB8VPGzGqqIvg+s3ANEdnzYzaHcFxyt7XPbwZmT5vHa4VAeRG7BJfyZrjq0inj5ZeaQN4cjY/tldjRjcEdKs8MxEUaS9zcSfOi/IrTSyLSTJ8BaT4S0nwxnnL/Y2E+2uP1FksD5MAFt/+k5sxCxUgr3NREQ8D5Fj/LqwDF7CZUpwl8IajnEhZu82Z2cbnZ4os6THZY+ozAW2mUFT2+GsFXg5YDWbQgIW/KLZ28zBOsnyW25vMxGm1vCxdHmP67DsJSgQRGqc2uxOhWe1IEUK7eIXUoMmpi7D3WNDkSBAEFbB/JqIwZ4fJtWrVjoM6XoYd6EHpbLdqC9PDGLThvXZ6ayHFJexvk7YjrrhPNITDrpz+aAJtWClkSOMX4IbwAZDqcKzKgr3QYNPNRRh8NRROD0iRBLOzjY8saUIrrH426bni2lSug/XqUG0ba8Nn++0mnF0sAbW5xsyWwCpaoXg39EeG0xWOx43yuuXJCamLsemKxB/K9RwcCg83OSPOQlzq9Tyyz8R0Z+GPCWm02puTZ5IZRZC9S4ZDqJpM4Mm66sFhSYKqcNqlckrg8I89jbtrj+RjNDhnZ1tcuEOdVilis/7Co564aMRRTGzdSBlPuYkUMR3LsgbF1EUo6xmBaIJdlojZFYUOdbXKWu4wgLfZgadoUZFat1lFoI8HrchMrrDHjof557VrImYvKIbGvGOhcYEuREhn59J2oSqQmoUEMesDCmCgNx/znNJmxl0jcnP5UKcRJI/ba2R13/IFi89vIKYx0GhYqJPBYcWJBsykM/h4+9AMD4ZPnR6RDQYBXmaTJcPQPTYD2utgKODd0LtLg/2PG6MiZeV8uVReHpjafKQ5TQ8iJGDx8ZdcPHx4MtXQDVkTYWIhYSR8zFcAOKa96JPZ+L6ke2NJOxjfZ0QjE/giS1FMO/qDBeEAHbVmjEeeSLD5cu3cJnAF2FVwgR5Gx6nEY0+nYnrCwiNf5eE19uH3YPBF8Flb4O7xwahKDiYr0gQYO46HXKMxRZw2dbvMgr/f2xQ21CH3HlsAAAAAElFTkSuQmCC"
|
<image>如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠PAQ的大小是()
Choices:
(A) 70°
(B) 55°
(C) 40°
(D) 30°
|
40°
| 69,845 | null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAANIAAAAWCAYAAAC14MLgAAAFfElEQVR4nO2bsZLTOhSG/+MsM8xQMMPcchtCR6iXhqwzc2nzCiSmo8e5t6NnH4AyNq+QB7iJPUNBDQUDKy+wrwBNYp1bONJasp3dhbW9ZPPNZMeWLPlIOkc6OtaCLaSUHEURA9C/smeumqo6z5OlSfKyEFGrsjTNdRqHprlI24mZGTniOMbh4SFsXr16VUi7SogIlij49u0bptNp47LYMDO+f/9+IVnK2vGnc13GoQ2q2m6PsWMnzmazygrrpEz5Pn36pK+JqDFZ8jAziMiQJU+TsrRFVdu/fv3asCTNU9X2OI6N+z3AVNIqxuMx+v2+nnEvUuZ3+fnzJ969ewfANDTP89Dv92t/f5UseTzPw5MnTxrpj7b48eNHadufP3/e+Dg0TdW4FzjPHySi1nxiWxa06J+XyXJT9knXaRyapqrt9p6+tDeu08ZyJ8v1YNf2SwYbSlasrXZbLsuuP3aU4eRvbJuKoggnJydNynNhzrH/2tgZ0Y4yDEOylcR13UaFyRPHMYgIg8GgNJ+I9DNhGNYuTxiGICIQke6XyWRS+3t3tMtgMNDjrn52xA5AtbPr+z67rnv1DmcFZR9klW9a9bEWAEdRVKtcQggGwL7vF9KCIKj13W2i+l7pgBoD1XYAPBgMWpSwOVzX1Xqm+uX4+Nh4pmBIUkoOgkAXaJMgCCqN+fDwsJD3KycuzitjG5HC9/3ajbhJNk1WQggjXwhR2ifbSt4OhBBMRCyEMJ5x2NprqD3R/v5+q64dAHz48AEAkCSJkf727Vs8fvwYnufpNP7FIMCmMsqde/36tZHOzOj1etjf37/0+64rm/phsVgY+aenp3jx4kUTYrVOHMfwfV/fe56Hly9f4v79+8Zzjt2Bb968wWg0AgAcHBwYebbR1c2jR49wcHCA09NTnZYkiZaj2+3q9DqCAOPx2Dgeot5LRBiNRoXO3BZUO+M4hhDCmLAAQAixtW23EULg6OhI74+m02lhYgWsYEMYhrrQgwcPCsrZZMRKnfnr9XoQQujB9TwPo9EIR0dHtX5VV6ugMla14jU9mbSBGmdlML7vI47jG9F2m+l0qvUvCAJ0u92ChwTkDClz6Rjpaol0tcRi/h96Dx82KLKJPesRESaTCebzeWG5bQKlXPnJ5CYoFjNjOBxiNpvpiFXeE9hmlMEoPXz27BmA7LOQjaMKjMdjjEZjOI6zruQETahJlTLm3bePHz8iDEMMh0MA2cHa4XBYqyKrzhNCFPKSJNGh920lSRJ0u10QEfr9Pt6/f48kSTCbzdDv92/EJLJYLAy3VsUPSicS3/d1OFMIwSxTfvr0b75zC5URK+Z6/idJEUWRjoqUhZrRQDRRRS9hhdijKGr0s0Bb2KH9IAj076bguq4RnVN2wlzU/5L/2kt5tVyylJLlasnpasnpKmXJzFJm97oOma7zl5zmK86nr1Ysrfqr8qSU7LpuJvCt23z85TN/+fKZ//1nwpKzwaRbt/nevbv81727ufJnshpyp9J8X3p547fPWd2UsK9tMGpC26aQfxVVB1U3TaDFs3YsIaUEOXsgSEjJoE4HmRPDYAmQQ9l1ykDHAYHBaQo4eyDKXwMsV2B04OgyZp5kB52OY4rAEpCypL4Nda/lBiiTV987oI6zvs+3ZUcZYRhiPB4DAIIg0BFcIPvKP5/P2xGsZvg3z1BuNiQCmFdgVsqagtEBEQBOIaVZNDO+FFJSpry6vrUC84Y8Q4YUkp218VnplXWbctvtKNzv2HGF7JUnE5RmE3UAmYK5AzCZAXPqlCi7/lPBBTepzGBQyeqx/ZvcHX8e2ixYrnIrTF59M+NhmQLknOWQA+IUZ+sZZ9e0dvV0Bp+V25RnQABkzmYuUPeOHS3yPzlqwCSoQrHTAAAAAElFTkSuQmCC"
|
<image>如图,C是线段AB上一点,AC=4,BC=6,点M、N分别是线段AC、BC的中点,则MN=()
Choices:
(A) 2
(B) 3
(C) 10
(D) 5
|
5
| 69,846 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAHAAAABbCAYAAACriwG+AAANSUlEQVR4nO2dT0wbVx7Hv2NWoqpQhkOiuFUUtoEQUlg1p22kDSotGMqqVb2rSs0hUl21q02cSoCaQw+VuORQqWYhq5CkyiFwqGRtoDZdp0Dg4GycLYfdwKoYsy00Jmolo0Zq6dI2RHh+e7CfmRnPP9tje8blIyHs9968efO+83vzZub9fgaZhUAkCIJeEVoM+iiwqF3Origdv9cFAkAcUv8BkC+4aNo+YUotRvQQiASKUgegKyDrCL0TworI2yxQSkQm2mLQRzDQB0ZxoFAIAGegHAcMvj0MzuVCY7NKVUSpohwn+W8nstu8hP/OtKP7lacBAM2H603dX8ECEkg5naTpE4Nvg1wdEGYEUaogKWNHwVIImV5YXb0nyVn65FNwZ7vxNFKDqLfnD2h/2wd3Mwf58efDrwqtQN7pKYMUwHEOpBroAJaCuCl0YPgwcK7jcOpgAIAcEuvt6+sDz/M7dRFZXlQOAihtB8tLMUxPT+Nfd/+N+vqUpX25cg+zw5fAXToHkAMff57EpRZmN4UPgIXXIINjoomqPzs8g+F33ACAjiMN4sIZlpeXcfnyZayuru5kW1w8ABnxYrEYgp9MIPTpjYx4ADAzdQmBRQEkEAIDp/HH31QhGKX0tmY0oMgEBk5nZl8AqOOsT7Xs1NQU1dbW0tTUVLGbZSojIyPE8zxF/nFbmhENEFxnMl/ZJM7rC5i2b3MtkADJuL4UxAx1gVKzXSwGfWh8Sv0i3tXVBb/fj9deew3j4+OmNq1YjI6OoqenB7du3cLvWk+kEtOmFZyagberE5k+icYwywGHGg6b1wDTTgUGmx1HAwTXnyVpgQFv5uzTukWIRCJUW1tL169ft/StxMWLF4nneZqfn1fM97p2bheSaesD2ilq6L7LGKYIKO9kn7cjM2SyA2A3tNAZRhmRSIR4nqeRkREzmmg6g4OD5HQ6KRaLyXKSmXu9rL+O05kyZmGeBQoqn1mSsK2Zr8T8/LwlRJSfoO+//76KeOKN2IdssQSV9Hwo+iRGDaODCBPxypUrRW2PUfr7+6muro5WVlaMb5R1sFaywBJcohYXF8npdNLQ0FDxd6YBEy8ej+dXgYHnxblikgUmFXTcOcu0mqz13FOcFovFyOl0ks+nf/0sBr29vdTQ0JC/eEWibENoPsRiMaqrq6P+/v6S7re3t5eampookUholBINiyWcOBdJQPPGeLllxuPxkor41ltvaYonmbsZGB4tOoSWlng8Tg0NDdTb21tQPWqdydI9Hg8dO3aMvv/++4L2U0xsJyDr3EQiQUePHqWenh5T6yUi2t7eplOnTmXEs/LDBI6ITHmmWg7W19fR1taGEydO4OrVq5plxYep9ZA8mUzi5MmTSCQSCIVCln87YmsBAWBjYwNtbW04duwYrl27plrOSOdvbW3h1KlTSCQSmJycRE1NTU7blwPbCajUkUzElpYWjIyMoKqqytB2Yra2tuB2u7G9vY1AICARL5d6So3p7wNLhfi843ke4XAY8XgcJ0+eRDKZzCpvRDwACIVCquLp1VMObCugvCN5nsfk5CQSiYSqiEpsbm6iq6sLABAMBlFdXW16W4uJ7QTUsoCamhpMTk7i22+/xUsvvYStra2stTliNjc30d3djX379uHGjRu2Ew+woYB61NTUYHp6GkQEt9uNR48eKZbb2NiAy+WC0+mE3++Hw2HPrrBnq3Worq7GxMQEgNRb/s3NTUk+m/Q0NTXB7/erTnrsQEUKCKREDIVC2LdvH7q7uzMiPnjwQHLboSQeYL3JihoVKyAAOBwO+P1+OJ1OuFwurKysoLW1Fc8++6zmPaOdqDgB5U9cqqqq4Pf7UVdXh5aWFjz//PO4cuVKVlm7UnECKg19X3/9Nebm5tDQ0IDPPvsMDx48UC1rNypOQDlra2t47rnn4PF4sLi4iOPHj6O1tRXr6+uZMra2xNI+Oy8tai+Ajb2gtQe2E1D8akfxNU86SbwEQ6ncuXPn6OCv6+jevXtFamlpsJ2ARlBdBJWUClnwIiULUHECsmWIly9flmZItNtZ8tHf308HDhzQXuNpYSpKwIWFBdpTy9PotRGJYPKV0u3eDyTbDQ0N0f79+20pouUFNLqcgS3FHx0dlWyTWubfTtF0EvMQki/vHxoaIqfTqernYFUsL6ARmHjj18ck6b6zLxA6z2SVT1mk1MlEEAS6evWqprOKFbG9gLOzs8TzPI2N/U1ymcsOJpC+7gnKAjKYr59dRLS8gFpD6NTUFPE8T6FQaKd8+v/pTlD7mQHF7QIDXgL3AkVJUKx/ZGSEamtrKRKJFNT2UmB5AdUIhULE87yiNy+7zmXiscg08rr0XdzGxsZSXrcWF9GWArLOnZmZUS4QHSdwouFTYUb68efqq8eZVbL9WNnl23YCGrGMLAuUpWesT2OCy0Rkw7RVRbSVgGyCcefOHSJS9mwShG0SKH37wAIMCES0FCRw2feAcpSuiUzEQCBgxmGYim0EZOLdvXtXp+TO0Hi6k928OwoObxUOh9Oz3TH9wiXEFgLqBRNQIxefBiNlI5EI7dmzh/x+f07tKCaWF5A9IdF9zCXqfz2vo0KYm5uj2trasvvtMywtoM/nMyYeQ5B/LdxPMSv6oCDQ/Py8ZUSUCLgt/Jj5KzfsVc/S0pJqmXK6fc3Pz9PevXvL7refZYGlEk+r85l4a2trJWlLvrCXxkzEcpxQZRNQDasGE1AjFovRE088QefPny/L/jUFlA+pSkOs2pCrNRyr5cnXqqiV00qXt6kUJ2Sp/fbF6Fqg1ncjn43myYMJ5Fq32smmtE0xiMfjdPDgQXr33XeLvi8xOQV8TdJPqOIez0orlDfeeAMLCwuYm5uTuDQz5PsEsh0tq7jHs9qntF2xqKurw507d+ByufDw4UMMDg6WZL+6Aip1jDxfDyJSjKudTCbx5p/exH8WlhEOhxXFU6vPiotyDxw4gHA4jLa2NgAoiYiZhb2FWpLW9kqdzYIJ3L9/X1c8ed1WFI+xf/9+hMNhzMzMwOPxFH1/GR951klqFqVmhWrbiTtdnvdo+394/fXXsb6+jk+C0xmXZvk+toUfU/4NBuqWp4nbpXdsxcDM4AtaGA5yoDWM6iFuJPNH//nnn3X90e0MEeGHH35AW1sbjhw5go8++kjVla0QDPlG5CMeUXZcFnEwgenp6YoUjx03x3HgeR63b9/GN998Y8hvn9KhqQ3aFAAdAZP0U97XRiYaa0wuwQRyOQCrwXGcpP3Mbz+RSODVV1/F1taW5ra5DqeaAlZxj2f+8oXjOEkwgVAoZMtgAkYQW58YJuLDhw/hdrs1RcyVormXsYORBxPQug7kOnxYDb0IGsFgEADgdruz/PaN1iOnaAJyHGcomIB8m3yGEbtQXV2NYDCIxx57TOK3XwiF/3aSisUoBRNQKmtni8uH6upqjI2Nwel06opopG8KFlDJWtbX1xWDCSiVrVRr04L57T/55JNobW3FxsaGYjlDfWP0oanRd12JRIKampoKDsZaiSj1ocfjoWeeeSanoLLiekxdUsEi6fb19ZlZbcWgZgQej4eam5tzcvlmdZkmYDnfiVUC+frtFyygIAhliyZvd+T+/kzEXFYjFCxguX/PodJ47733cvLbL0jAaDSaFUzAygHC7UIuwRfyFpAFE/jwww/zrWIXDc6fP09Op1N3WSVSvgQaC2AVDIqJN3qt/AtbKxkjq9JTFpjDqBeJ/NMSPwlX6bBL0dDQEO3du1fVL0Q0hOr/9k/KuaNG5KFj3k/s7KKOlt++5BooyP6L2QkmMEZMuN0JS+lgIs7NzUnSVSYxUstiDo5/vxFSLr5LUWGG4vf7M97JLE13Tczy8hc4fvy3ePnllyW/j75LeYjFYpiYmEA0GkV9fb3+oiYCcH9tLeutgs5muxSR7777DhcuXEh9EV/wAgPejDsyXGdIoCh5vT7Fa6IgCCX9ocNKpdB5hAMcgKUgHByH4a8OgSgJEgg01IkqrhlcfYPSourUu6pf3qs80zH8PjQz4AmizwDUgr8RpSI9DExECzpDdskNuT16XQq/Ry8KE+aY+MswZtGOCxf7skQ/VN+IQ/VHRSeBsCM+SU+EXfKD9SERgZAe1ER9O3yT4HUBgUUhs+jL5+XQzLmwBALXAVCjL4Dhd9x57F7ALyBuekkh0Sp2IgK4GFydlzB7868Q9/XZTg5fNPrgmOWA+vrD2RVlPgnZlrZrekVDfE3kOA5LE5PgGp+C3FCeauzA7JdfwQECSOE6upPkyJ6rcDt5u5iBoJozdXMKL7pe3ElIG0/DoUaACI4OAF+tfCndigAsBTEwEc1OF3/dvRc0B0oZgrw3BYpi8hLh96807ySmjWd19Qt0NNYDqXs/aWC4xaCP4DpDSXE8zd17vqIg7dakNCE6rhwWMzqe0QxE4qDgqZt4pWh+SdrWbMhufn75gkCqxhEY8NKZDz6W1EKUvrVIB/IrbE2MnlXu5uecv/NGKEod4KQB+qKBzFMyJqaqgEr7tupZXCn57HIVnRhQuHlH1qWOiOj/dY7F3hkP1wYAAAAASUVORK5CYII="
|
<image>如图,已知AB∥CD,AO=2,BO=3,CO=6,那么DO=()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
4
| 69,847 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAALcAAACECAYAAADSgLqcAAAgK0lEQVR4nO2df3AUVbbHv93hmX0WW3HLUAzLwESc+EbiapaqXaldtuJqhChJQAM7RqMJbiC8x/4BJAG2lhJ1g8+n4YnPQH4MLEFAUm4IClGSSeLCmj9Ygsq6gYT8IhpqC4NaYGANOn3P+2OmO90zPb9/k/5UUWS6b9++3X3uuefee+65HBERNGIWBvvn4cFNHGMMPM+jbAmHbUdULsopBR2pjFAJYxc+2gXQ8AwPTiHYRASe50Ek4NV3CaW5QGs/AxGBiHC+bQdy774riiWOHTThjiMYs4HjOBAJAJcAQj96sA4LjRwYzqOmxorUzIV45I6UaBc1JtCEO47g+SkAAI5LAAdgsM2KtMWPAgA6LBYgNQWEO7F69cIoljJ20IQ7DhDtbmcuXBjCqyUPg+MSsHDVNswxpIIHB6b1ogBowh2XiGMAbc3/i9Z+BsZsKMt+FHOMdrsbnCbdgCbcMQ8R2bUxyG5rg9nt7sEWVPJlWGi0dzZTc3JgBA+OU3ZAJzOacMc45JBTHhw4LkE63v5BO0qzHgJjDBw4rFq1GgCwYcMGAO5NmcmEJtwxDgkMDATGmOMID8YYrMe2YWHmIoDnICrqsiUchLsWgkjQtDcATpvEiW0YSCGo/dZq3LXovzChl5gifWs/k0wVIkGh7ScbmuaOcZz7hqkL/9MxYSNAoO9AROjp6UFSUhLy8vLwsHGiInDc5NbemnDHOKKAyhtY8S8eCRgdHUVOTg5ef/11nDhxAl9eviy7enJ/3sn99HGCfUZSNgUPAQBw48YN/OY3v8GTTz6JwsJCmJf/Bm+99RYAu//JhJ0+OdFs7jimqOgZCALhzTffBMdxOHPmDJ566imcPXs22kWLCTTNHYcwELZu3Yre3j7s2rVLMl3uvfde3HLLLfjb3/4W5RLGBppwxwECKc2Ldw+/g7q6Ghw9ehSJtyRKx3mex+rVq7Fnzx77gUneJmtmSZzR1dWFRx99FB9++CFMJpPL+atXr8JkMqG/vx9Tp06NQgljB01zxyhqncGLFy/i8ccfx/79+10EW9RRSUlJyMjIQGNjY0TKGctowh2j8Lzy01y7dg05OTn4/e9/j0WLFgFQDg/Kx7RXrlyJ+vp61XzFSjMZRlI0syROyMnJgdFoxGuvveZT+pSUFHzwwQdISUlxrNyhSTepo2nuOGDdunWw2WyorPR9XWRhYSEsFovUAnAcNym0tRxNc8c4FosFr7/+Ok6ePOlXB/HixYtYsGABBgcHkZCQoGlujdiio6MDL774It577z2fBFuup2bOnIm7774bLS0tANQ1982u1zThjgHUhKy3txcFBQVobGyEwWBwOa9mYsg1M8dxKCoqwq5du6R7OHdSb3ZNrpklUUSMP+LM5cuX8Ytf/AIVFRUwm80B501E0Ov1+PTTTzFt2rRgixt3aJo7QqjpEDXBvnHjBpYvX44nn3zSb8GW34Pn7UvOnnjiCfzpT3/yv8A3AZrmjgBiwBwRNaEWWbFiBWw2G/bt2xeSe585cwb5+fk4d+7cTW+GOKNp7gggChXP8x4F2+4M1SvZyYHgrKvS09Pxox/9CF1dXQHnGa9owh0jHD58GBaLBUeOHEFiYqL3C9ygtrhBHPOebGhmSQzgzRkqWK5evQqj0YgLFy5MKmcqTXNHGU/OUKEiKSkJ2dnZOHToUFjyj1U04Q4znqa8RWeoTZs2Sc5Q4aKoqAg1NTWKYzd7o62ZJVFAHN/OycnBnDlz8Prrr0fkvqmpqTh69GjYWohYQ9PcUUJ0hnLn5RcOnVNcXIy9e/eGPN9YRdPcEULuuLRr1y5s375d4QwlCAISEsIbQOfixYv4+c9/jpGRkbDfKxbQNHeEEAW7o6MDL7zwgoszVCSETa/X47777sORI2p7jdx8aMIdIYjIqzNUuO8PACUlJXjzzTcjeu9ooZklEeLy5ctYsGABXnzxxYCdoUKBIAjQ6/Xo6uqCXq+PWjkigaa5wwwRSc5Q+fn5HgXbedgwHCtnEhISUFBQIEWmupnRNHcEcHaGcufqGm7E+/b29uKxxx5DT09PxMsQSTTNHWacnaHkgu1OM3vT2B0dHejo6HA57k1Pifc1mUy47bbbcOLEiZt6XaUm3GGCMabqDCXX2O60t/y4s/CdOXMGS5cuVcw2imn8cWktKipCfX19VFqQiEEaYeHUqVOUnJxMPT09IclPEAQaHh4mvV5PjY2NpNPpaHR0lIiIGGOKtM6/1RgbGyOdTkdjY2N+Xxsv3MTVNnqIzlAHDhwI2VT3V199haysLGzZsgV5eXkwm83SChtnjS3+9hTGeOrUqcjKysKBAwdUr70piHbtutkYGxuj9PR0qqqq8prWnZYUBMElz/nz51NFRYV0XU9PD5lMJq/3cM5LTmdnJ82fP99rHvGKprlDTH5+Pn79619jzZo1LufI0eGT28hqw3+iHUxEEAQB+fn5uO+++/CHP/xBuk7eKQyUX/7yl7h69Sp6e3sDziOW0YQ7hKxbtw6CIODVV19VPS9fbibi3KGT/+Y4DqtXr8aUKVOwY8cOl/xWr17tcUkaqYRzcKawsBC1tbUe08QtUW45bhosFgvdc889bjtonswDZ8RrNm/eTAsWLKDx8XHVfMRO4ZUrV3zO05lLly6RTqcjm83mc/niBU24fcCbYHZ0dNCPf/xjGh4e9vkab/eoqakhk8nkIrjO6UpKSnyy793BGKOlS5dSY2NjwHnEKppwB0lPTw/NmDGDTp48SURK4fNXwEWamprIYDAoKos7Tp8+Tenp6QHdR36/rKysoPKIRTThDoLR0VEyGo3U0NAgHQt2nLizs5N0Oh11d3e7nHNXWdLT06XKFQg2m430ej2NjIwEnEcsonUofYScprbdRYaSjzH7y/nz57Fs2TIcPHgQaWlpLufddQ4V++AEgOhMdeDAgZtrXWW0a1e84KyRi4qKqKCgIGT5j4yMkMFgcLF95dqaMaaqva9cuULJyckunVl/6OnpIYPBEPD1sYimuX1ErpFDERlKzpUrV7Bo0SKUl5cjLy9Pcc55aFBNe4uhGxoaGgIug8lkwqxZs4IaN485ol27Yh1njX348GEyGAySX0ewjI+PU0ZGBm3atMmn+7sjFLON9fX1IW2Noo0m3H7gzhkqmE5kXl5eyATKZDKpdkQ9IS/72NgYJScn+zRuHg9oZomPqEWG8tXV1F3n8ne/+x2uX7/uducxfykuLsbu3bv9ukZe9qlTpyIvLy8o8yamiHbtimXEDpw/zlDeEDuEL7/8Ms2bNy+oTqAzo6OjlJycTOPj4wHncfLkSa/mTaDj95FG09weEDtw+fn5eOCBB1SdobxBTkNrPM/jwIED2LVrF95///2QBqacNm0aHnroIbzzzjsAAhuOvP/++3HlyhX8/e9/dzssyPN8XKzg0YTbA4yxgLbJk+McUri1tRWbNm1CS0sLpk+frnqNO6FyV0Y5K1asQHV1dUBlFfMqLi52MZWISHGvuFjBE9V2I8apq6ujtLQ0t6aDv83zqVOnSKfT0alTp0JRPAnnDq2vU/dqCIJAly9fJp1Op3DYkp+PFzThdkN7ezvp9Xq3QuLvRx4YGCC9Xk8tLS2hKJ5HKioqaOPGjUHlsXTpUoVbgUg8LUPThFuFnp4e0ul0qv4agWiuS5cukdFopAMHDviUPljtKM52BuLGKgpvS0tL3DtTacLtxOjoKKWmplJDQ0NImuCxsTGaN28evfzyyyEone9kZ2dTU1NTwNfbbDYX8yaetDZRHIyWEJyXYcn+hqB+DZHiHPnYQXOODBVsp0kQBCxbtgzz58/Hxo0bg8rLX5599tmg3AMSEhKQn5+v2OZPdRdiD3kQqX+fiBHt2uUb7jVo2RIQ7O+YcjfUEpFA/dZq6RgAau1nRIJM6whOvx0888wzQc0WOmv6goICWr58ecD5BYOoeUdGRgJugYaHh31ypirNdbxrDgTwjvfOE8dxVN3W75KeUWRagTgRbs9sWAKqbj8v/bYxgfqsVYQlZfYDKoIshzFGFRUVNH/+fLpx40ZIyrRp0ybKyMgIakJFjjdhEATBRYg3bdokrZgPlIyMDGpra/OarnQpqHVw4jejfsrhFlMvTdj9kTZr4kq4XYaliJFAfbSYX0z9Du0ufuCdGxdTWY1vIxNNTU2UkpISMmeoqqoqmjt3bsh9NBhjfgnI8PAwzZ49W/Wcr9p8z549ZDabPaYRqJcezS0lsWS1tbUkEKPy8lK310RizWbMC7enjyAQoz5rFeVuqCPG7C/LLgA2Ks1VahJ3hDoyVGNjo2QOSOWM0tjwlStXyGQyuQw/+lNBxsfHFYuQ1a7ts1ZRWe37REQkDB6j3A124Y42CuG2XWfSv3jBWlcqs6+nTNh+OXatwZirfS1WhJGREY9jz/42o8ePHyedTudzRQml0MvL2tzcTAUFBZSYmEiZmZnU2dkZVN7eFiErvwEULaYgM0uIOS++CK/2dtHc8STYRPYOpfXCxEsSiJG1rlRpkggqYRGuXlN1hnJe+eIr3d3dpNPpfBIk8R6htEHPnTtHZWVlpNPpyGg0UkVFRcjWRJ48eVJ1EbLYSpYtAbUM2J/FWleq6P+oIT73pBduefMmEFMoYTZwbKLTKGNnebbqC5YLbnZ2Nq1du1ZxPlBhE0cVghlXDoTR0VGqqamhtLQ0SkpKouLiYmlqP9Sdt/T0dPrkk09cjguD9m8gCAIxxuh86xvU0hcbU/Quwv3ddbFgAtmuM/r+mv1/QRDouzGb49j3RGR/ge7MGE8mjq/mj7t04jFr1UZaX9uiOC5QLy3hH6Oe699Lx0REF9a1a9dSVlZWSDo1ol1bU1Pjck4uYOK95MfcrYn0FkOwoaGBli1bRgBo2bJldPDgwbB30F577TUqKSkhxmwyzcuotXa9zx33UOCp0jq3BArhFoTvVQVJzvfXbarn3P3tzzlfrpH/XZoLsnbbFJXMWrWRcjfUShXT+RqLxeLRGcofxsfHacGCBbR58+ag8/JGV1cXlZSUUHJyMqWlpVFVVRVdunQp7Pclsg+tfjH6JU2fPl0a2hRb1NJcxzyCjInWNrIanCnuJ0wIN2M2EmhCIIiIetqqqOXvSsGSmwlyzRpO4XY+3metkjovifh36eVuXPzv0vEN/2d1PNdE2To6Okiv19PQ0JBq3v5gs9lo6dKlVFxcHHAe3jqUIyMjVFlZSSaTiXQ6Ha1ZsyZkozr+IhAjs9ksOVP1te50mSgL1wiJ1zF+Yqp9Jbc2N6N+ygXI2j8hHKI5ImYg/62Wh9pvf4Xb+cFs11wrmIhzqyKms11nqs5QwdilJSUllJ2d7feIh7dA8ePj47R//37KysqihIQEMpvN1NzcHHA5Q4H4HltaWigzM9Nr+lCKuLf3K82Oyv5VW88RMYdwM2aj78bsgiEKy86NZZSTk0P9JJDtuvKcSKTMEnklUqRnMiFmRDeu2cspkLIlufSZa2QoosCH4rZu3Urz588P6RKxzs5OWrFiBU2dOpUWLFhAFovFp0kgsSMXCcTIVBPOVILbfoPjbMju7elbleaCdlr7iIikVr21nxHE28tNC2tdKe20ttBifjH1sQnBVrtBKDuU7jqOnq7/nhjZbGJHV5DSi+fHx8cp81cL6fnfv+j25fiCKEQWi4VMJpPX2UxfhhSHh4dp8+bNNHv2bDIYDLR582bq73f1xYgmdsVhkwT1ueeeo+eee84lFZHYoYuwnc36aDH/iH2GmjlGb0Thlif8jgnEhlqovLaVWJ9VMcwWzSFCuQZgzObS7jm/VPlpMTJUKCZMmpubPS5g8IYgCPT111+TxWKhBQsW0NSpU6moqIiOHz/u8Tp5+GK1ihLJGdALFy7QrJl6t6MzdpcIZneOikB5+lurJIc5cWba/ptI2oeSAHAANpZvwH+/+j/AwDE8tutzNL20GhgnJNxqXwu45YXnAWZ3dOT4KSBmC6fT4gQ8AcxDCAUuAXBysezs7ERfXx8KCwuD3lv9n//8JxoaGvDUU09h+vTp4DjOr7WOAwMD6O7uxtmzZ3HHHXfg3nvvxdy5cwNyq/X33sFARC6hK3bu3ImsrCzMmTMHAINyKa79dzjK+MILL7gca7OUYeGqbQDPgSOgpU/Aw3cyEHGYIibiHAlfqdyGVypfBQfgsXW7QN8SFM/GJgocMcEGPAs24CLY58+fx0cffYRVq1YpBFt86c4v393H4DgOX375Jd5++208/vjj0qJeXz7cV199hU8++QRnzpzBrbfeip/+9KfIzMzED3/4w6A+vFq51YTQHWrPKj/m/Ddgr9wff/wxzp49C6PRiB/84AeOK50r58SWJ5GgtXkbWvsZFho5u6Cn8tJvySz5fvAYldW0kI3Zm7g+a5VycD62Ji4VODfLvjpD+eJGeunSJTIYDD6HKZbPGt5+++1UUlIS8gXBkUIcijQajZSWlkbV1dU0OjoaM4uExdlR6Tf1Ua7Dt4Uxm93mdk5ERNRmKfM48+TFRTpqjIyM0KxZs0KyEFcMxlNZWSkdc/dhGxoaKC8vT5o19LZTQahGOJxnPINFHIrMzs4mnU5Ha9eupZ6enqguMXO39Upr7XoqrWt12Pk2uzsGJnz7sWPDIsmTzjpov3j9EhAHEPgJ4zyWER9eFMY33ngj6DzHx8cpMzOTysomKr182pnI3kKIs4bp6elUU1MjjaJES7sFet+TJ0/SypUradq0aWQ2m+nQoUMhLllgeHKuks+OilqbQ7bk2x+UP3esaG9R2NScoQLFbDZLTvpygZHPGur1eiorK4varKEzvgi287NUVFSQ0WikefPmUU1NDX399dd+5RcN5DPUin9L1ivSOSZx3EgpU/wX06xbt07VGSqQD1RWVkaZmZmSH8X4+Djt27ePsrKyKDExkQoKCnyeNZS/22gKi3jv8fFxqq+vp4ceekiqnAMDAwHnFy2cJ4gkbxbBfkYQhOA0d6ws9ffmDOVpFs2ZyspKSk9Pp2+++YY6OzupqKhImjWsr6/3eVbS3SROKDaECgTxWZKTk1Urp9q3jJXvq5znsM9GuxNuexq7gnPS3LIXr6avFUu5YuPB29vbadasWX5PrKiVv6GhgRITE6m4uJgMBgPNnj2bKioqfM472trMmc8++4y2bNlCBoOB5s+f79OUvj/fNRLPqyaH6srCdRIv5tdQesJdZKhAKl57ezslJiZKTv/BLs0KN+4Ea2xsjPbu3UsZGRk0c+ZM2rx5s4vZESuKKdzErXB/8cUXZDQa6eDBg0QU3Ac7deoUmc1m2r9/f8ztpOurdmxvb6eioiJKSkqigoICam9vd5vXZBFuafo9nrhx4wYWLVqEjIwM1SnZQPJLTEz0a5YvFhgaGsKePXtQX1+PlJQUFBcXIy8vL6Qxv+OZuBTuFStWwGazYd++fdIxxlhIY0bHqqBfvXoVb7/9Nvbu3YuLFy+isLAQzz77LAwGA4DQv4d4Zor3JLHF1q1bcf78efzlL39RHA/lB41FAXnvvffw1ltvwWq1Ijs7G1u3bkVGRoZLJYy1ckeTuBLuw4cPw2KxoKurC4mJiV7T+yukoqBEUkA8tRBDQ0Oorq5GQ0MDTCYTCgoKsHv3bpnTkvfNpiYzMS/c4sc/ffo0Vq1ahQ8//BDTpk3z6Tp/iYagON/z6tWraGhoQF1dHb755hsUFRXhr3/9K+644w6Xa2OxhYkpotSR9QtPkaFibWw5EBhj1NzcTGazmaZNm0YrV64MeijS2/KzyTBiwhERiQsV/IUxINyK49q1a/jVr36F4uLigHYTCzdy7UkOv2pftWlvby9qa2vR0NCA9PR0FBQUYNmyZT6ZXJMFIgJxAEfqLavz+1ekkUv6sbr1E04oueUksAEqK58INxaO8FfuNK8vzlDxoH2cyyj39zYajbRt27aQhT27mfH0pd3JAc8YAxtqAccloGbQBEEQQEQQXnsQCbwRXOqdUkXguASpthAJYB7j6vuGs5aT78rrbZu8SNrIge67KJbx0KFDyM/PR2pqKj766CPs2bMH/f39WL9+PfR6fSiLetNBJKhaFqL0OcsBif0t0Q9WzW97Z3k21bR5DmoYSuQ1sK6ujubOnRvS8AmhwJuNLz/f3d1Na9asoeTkZMrOzqaGhgafZkDjoUWKNvZ4JbyT2+ujki83ERHs4WfF4O1KN5UWS6kyxrXoAuuHl52/MMY8bpMX6x/+0qVLtGPHDkpLS6O7776bKisrIxb2bNIgqIRyExjt3LhYWqwgECOIa87kMJkQKz0ABad0oRe0np4emjFjhuo2ebGKzWaTglMmJydTSUmJFBE10HcU65U4GshDH9tYDz2aa4/BLhCT+oNSaAdGxMG+5gyrH7rLbttw6iEQtmzZAvkyfg4MFILdtUnWw/3222+xe/duPPjgg5g7d65P10STL774Al1dXejt7UVKSgrmzp3rsdxyxJ3BYuE5YhmO4/D888+7fPPzbTuwof3f8O7/rLKPmHA8wAHV5UvwX/1G0DvblJM4RBx8fdehEGyx8BzHQRAEvP322/jJT36iKiBq4Qaiwb/+9S98+umn+Pjjj8FxHH72s5/hwQcfxK233iqlkX8IdyEjYqWCxjoT31w5YP1BxzE8svB/QSSA5xMkATfelQr0O9LlAlTuMEvkDaEweMweUDBCiJGhQr2aOxTYbDZpRXhycjKtWbOGuru7XdIp+iGyorusJNHwG8UCBWmTL+XwtCAItGNTtjQ4AnE/k51tvVIm/a1VqjsWhKJgckRhELfJ+/bbb0N2z0BQi39SXFxMSUlJZDab6c9//rPrRcz984lHNYEOLeKmUkROy/YGnUI7ECPqb1OuJs4pd90lICSFUhlhaWpqIoPBELJt8vzFuUwjIyP08ssvS4Fo5OEafMvve4+tD6PwjjbdbMgHNMQ4hBN7Hinf4focEJaUuY/PHUlOnTpFt99+e8hCI/iiIdXWf4qBaB555BGaMWOGFIjGl3v5urpFcV5T5AEjUC9l86C2AYdgyyK7YkmZ4906hgLtO8860rmJ7BMsah/e2zZ5obyXOzo7OxVmR6BB3u1OSjbqs1bZgxmJJp3DZGGOv4nEmBt8RPeRiXsU707chtsROMrxu7rVeZ2oI5yaPOaDJxsyVHzzzTeq2+RFguHhYdq6dSsZDAYpEI18Rbinlf2eKr14hd3EW6yYKZtIY9+tIpKzvjcD/vo0id9vCmQDLKKfBxeQj6DvPPnkk3jggQci5uV37do1NDU1Yd++fejt7YXZbEZHRwfuvPNOl7Ty4TnysMpFEATVsMjDQwnIziYAPJy9LTfkpuLIkjIcznS9r4Z7FN8E9nfKmA0877ocgUQvQqgsVqAwjyV7c4YKJSdOnEB9fT2am5uRlZWFtWvXYvHixT5f7+kdiJMwPM8r3C6tA0P4D/59DA0QjMaJ61t3lQF3l6JsTiZ4JDimwLRxbt+YUCqeBNsOAw+70nFJEWqhln94i8WCtrY2nDx50kXrOWtJd3hL99lnn2HXrl3Yt28fZs2ahcLCQmzfvh1JSUku5QkGMQ8Gu/+2XWMMYM6cTAj8OVz4fAAwpgJgYENWdLCFmMP9H3jjfwKwt46E78Hh34Iuy2TDvWBDOcMeWuvI1e4RaWtrUzhD+WrX+7KaZGxsTNqKQ6/XqwaiCTc2m43Ot+yglj5BsT23QH2Um1tGAvXSI9yj0h5D5DirET7Cto5Grl17e3vx9NNPo7GxEbNnz3Y57w5ysw5SPP7BBx/g6aefhl6vR2dnJ55//nl8/vnn+OMf/6hqT4cPe2tw/LMpWJSqfKWWjXWofOclDLa145YNS5HKJYCkXSC09Y/hJKwLhIkIX331FXJycrB9+3bcf//9Xq+Rmw1qFeDChQuora3FgQMHkJKSgt/+9reorq5WBKKhEJk4vsODuH4QDGCMYZYhBX0dn6HNUgZauApG8Khufx9ZC19zPFdw+/No+Eg4m4Xx8XHKyMhQ2drNO/JhtytXrpDFYqF58+aRwWCg5557zsXXO5Cx+VAOefZZq6i13751oDipUF7bar8P9Tt8IYSw7bKr4UpIhVsUMHG1yTPPPEMFBQUB59fc3EwFBQV02223ed3SLprT2aVLnbaJlvk+2H13xBUji51sbo1wErZwai+99BKOHj2K48eP+7Wau7e3F7t378b+/ftxzz33oKCgAE888YSUB/m5wtwZCrerKQkA8QDv+R7aUGD4CYvNffjwYdTW1uL06dM+Cfbly5fR1NQkBaIpLCxEV1eX6sJZ0f9bxB9hDZ9gy/Zi5BJAIIXY2hze74rwBIwAjgsspoaGb5BjW2HRW00Nd37Kaojb5J07p+4LLs+rsbGRzGYzJScnx0VMbI34wqPN7Ung1fDFGaqnp4fWrFlDOp2OsrKyaP/+/dLeMxoaocStcFdvyCHOvraHAJ6sA0Q1G8pVHYKIJrbJU3OGGh0dpaqqKikQTWVlpSIQjVtnf83JXyMIXHplNGgFz/M4hmxH8B0CkYC29RzehxFG+SWyrmh+fr6LM9ShQ4ewfPlypKam4h//+IcUiKa0tBQzZ86U0rmzg7U1hhpBIUo5owmXzNK6Y0SkDKTIBlqlcVsR0X5eu3attE1ed3e3tPGoPBCNpoU1Io3CLKnekEPILfdyidIssVgslJycTBUVFWQymchkMtH27du1QDQaUUcaCiQM4NgrR1Fe+zu5VlcxDSbMko6ODqxatQq33347RkZGcPDgQaSnp3trKTRzQyMiTEjq4BCOALhzzhwQJoJRtlnKwHMceC7B/nvIfu7cuXN48803cfDgQVy+fBk1NTVeBVvMM9Cgkhoa/qA6icOJMk/AwysrMXBHKu58YxD07itSmrlzTdi7d29AN9V2A9CIBBNSducc5ALovzAkiw1r/2/wwgDKF2e6vVRDIxZxhKQHOBixzVqNbasWoaZjSJHIerQSDz+0EIBmTmjELuTkJuXiOEWDVvDGRXatLZ7JLQd79xUnNwiZP4WGRgzy/18XJ/5KffxLAAAAAElFTkSuQmCC"
|
<image>如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()
Choices:
(A) 10°
(B) 20°
(C) 30°
(D) 50°
|
20°
| 69,848 | null |
20°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAABuCAYAAAA9IBFhAAARr0lEQVR4nO2df2wT15bHv9eJqJZaG1iyIggLlzgoRqEqEn0iKqla2gTKJo6diipFShteoSRVn9QfD4dtS5d/lzRhgarEaZ4q1FcoElRxSKqS2Gl5avoD7R+AGh70xQGbhBIWuhst9ClhnTn7hz1mbI9/z/hX7key4pk7c+9x5sw598y5cy8jIgInLtrMDB+c1gAQJHtNGCM7yqB5sIsAsDQLFwdEBMbkBBMAaCRy+7dVQr2a85D2PoK1XsCQi0Dk+3RZNVjFLHBBAMh3YUWFy4a7WSpDVIUDJDeKumrBlS4BCC78lXajxoDA1Wxtt8Na348/7vkTwIIvbDYYu2AZfBZ6j4WBMQbGCvwfBg1jYOa2tMjElS4Bxp1DKFi9yrcRuJoCSo0mnL7iypRYsSH/x3+599sJ1nrA4ZoLWOy/DXXBXF6WFnG40sULAcPOQfxLdXVIgQaGsnJk9b+SIcjkEVy4DCueLSUQrqK72wFDTTW2GFb6ywX5ehQii/9T2QUxF75sF/BszSOAv/8mMu76GfXGUv+WAAjZ0JuLzLjDidW11WCMwdnTBRhWAmRAS0sNAID51UK1GJM40RH8f1xfUX1bd3ixa5AAULfTFenUjCMIwZIMfbxbdLgEgIbCRVcVbuli4XdLzq+HUW54JKx4z9ubgXordj0ruqawUzNOaNQ6PNCBMy4BgiBgd10dSkv97jTMsKnkZtOr4zmIQCTQGNWHWATRwqHe6tsWrUmQUZlLm5hyiDJJLZ3gGgzITETU3R1uvX0HqicXI+IPh6PhctiwatNr8HV/g+98m2MMLdUPIr7vvvsOdrsdDz/8cFplZIyF9b+2bNmC9evXS/b4nsc5eqxwUg3276rGgy69gLa2f0V7e3t65OVKlyjyT+s9Hg/Wr1+P3377Da+88goWL14MQD4LIKckSnLkyBEYDAb88MMPYWVtZoaaA+R71uj/LW1mBtR9hfZXnwscp2pSRT0jmh+EdsKDyvx/Z2ZmaO3atWSz2ejEiROk1+tpamoq6XpTYXp6mhYuXEgLFy4kr9cb2P+3wSNBwUPoJ9B1SEP0U6iWMucL8qkjfxkAENDc3Iz169ejpaUFADA5OYna2i34y1++jehqo9WbCna7Hc888wxu3rwJp9OJzZs3AwBWbXoNRK9FOEvSbUhD9MPda0yiJb8FdHb+B+x2O5xOJx566KFAyVtvvYXR0VF89dVXKCxM3739/PPPw2w2Y3JyEhMTE7DZbACybAyC+sY0DwhzOb6odHh4mPR6PU1MTISVERE1NjZSU1OT6uKJ3L17l7RaLd2+fZt++uknKikpodAIOvBT5qL7UTW9LH9OFw8MECQPsYgYPB4Pmpt/j2PH/gydTuffT5BaxU8//RQTExN45513VBONJI7qzJkzqKysxJIlS7BmzRpotVqcO/efoT/Fd44mut1T0ypypYsTjeQy3L9/HxaLBXv3vosNG54M7A/tpy1YsAADAwPo7+/HRx99pIpc0jZPnToFi8US2GexWGC326OekxFUtKJ5S2NjI7W0tMR1rCAINDExQXq9nnp7eyMeI/2bDDMzM6TVaoOi5pGRETIajRHbyxRc6RKko6ODqqqqaGZmJqHzLl++TCUlJXT27FlV5BoYGKCqqqqgfV6vl0pKSujy5cuqtJks3L0mwPDwMD788EN8/vnnQZFqPBiNRpw8eRLbtm3DlStXFJft1KlT2Lp1a2B8HAAUFBSgrq4OfX19ireXEpnW+lzB7XaTTqejkZGRlOrp7e0lnU4XEvGmhtfrpeLiYvJ4PGFlogUMdamZdLFc6eJAmnFQApvNRhUVFTQ9PS1bnqhCOJ1OWrdunWzZ3bt3qaioKGaGJJ1w9xoHoRmHVGlpaYHJZILZbMbs7GxYeaLRZW9vLxoaGgLbJHmMotVqsXHjRvT39ycvsNJkWuuznWQDh3jYvn07bd26NeV6YgULR48epbq6upTbUQqudFFwOp20YsUKRftfIoIgkNfrpeeee47efPPNpOsZGRmhioqKqMfcvn2btFot3b17N+l2lIS71wh4PB5s374dx48fD2QcpFCKKWvGGDQaDU6ePIlvv/0W+/fvT6oeu90e5FrlKC4uxrp16zA4OKjqkKq4ybTWZyNKBw6xmJqaorKyMjpx4kTEYyIFF3q9ns6fPx+zjYMHD1JTU1PGHwwTcfcqS6yMQyoXTu5cQRDI5XJRSUkJOZ3OuOu6cOEClZWVxXWs2+2moqKioDF2mYK71xAOHDiAGzdu4NChQxGPSSV3KXcuYwwGgwH9/f1oamrChQsX4qpLzLVKoQjuU6/XY+XKlTh79myCEqtAprU+m3A6nTJDldLLwMAA6XQ6crvdMY+tqKigH3/8Me669+3bR6+//noq4ikCVzo/brebli9fnnLGIVUEQaCjR49SeXk53b59O+Jxly9fJp1OF7MuKefPnye9Xh+xPF1w9wpgdnYWFosF77//Pp544gnZY0jFqE9aN2MMzc3NeOmll2AymWQfHgPAF198AbPZHLXeUFe+du1aAMDFixdly9MFVzoEZxwiXQg1L5Bc3e+99x4ee+wxbN26FXNzc2Hlvb29eOGFFyJXGuEeqaurQ29vb7KiKkNG7GsW0dnZSU8++aRsxiHTjxe8Xi9ZLBZqbW317/ENPXe73VRcXCwTic5FeOn7AU6nk9auXauKvPEyr5UuGwKHWMzMzFBlZSXt27cvsO/gwYO0c+fOkCPjm03A6/VSUVFRXIGKWsw7pRMtgVJDldLB9PR/k9FopI8//piIiKqqqujMmTPRT5JYulCL3dTURAcPHlRazLiZd0pHlP6MQyJEcuniTdLT0xPkWpPpApw6dYqeeuqpVMRMiXn53mtjYyMWL16Mrq6uzL+kEgGSmY7i0qVLqKyshNlsxmeffRb5XER/m+vevXtYtmwZrl27huLiYmUEToB5F712dnbil19+waFDh6IqXKbvRTnZKioqYLfbsW3btsA+l8MGx3jIgSGyh/4WrVaLp59+Gl9++aVi8iZExmxsBsiFwCER/o/GyCSZh0TqaIOmB5NxwT09PWSxWFSWUJ68V7pcDBzixdZmJZPJRGNi5BqheyendFNTU1RUVESzs7MqSihP3rtXxlgg47B3715s2LAh0yIlRoTZMR09VqC6GkzqISP0FuRc9dKlS7FmzRo4HA5FxEyEvFI6itAPU/odh7QSpi8a0PgQHLQZu0qB03XG4NV6YiD9HzU0NMjOACB3rJLkjdJRhCWIOjs7cePGDRw+fDgDUqnDnm4n2nf5lhaoW/1gJlCCb86VaMoi/R/V1tZiYGBANs0WeqyipN2hp5F8CxyIQmZGZ5CZ8T2+zITYzzMajWnv5+aNpQtFfMfh2LFjsu845CKiWyXyrXQzNtiFVWWPBB8T5xoQsSbZUZO8VDpp4CAOVYp1EbIZgk/hNG9/jfZdzwT2X3OPQ+P/WeLvEx0iYyyuFfEsFkv6R52k1a6micbGRsnIjAfEenaVrXS1mQIu1eEiIoHIWu/bZpC62OSWECgpKaHR0VHF5I1F3qXBOjs7Zadj5USmtbUVK1aswLvvvhvYRxHXhk2dnHKvse6PVGZVms80NDSEuVhVB63muqUT78jr169jw4YNOHHiRO49AM4wc3NzWLRoEVwuF5YuXap6ezll6aSI94qYcTCbzbmZccgCCgoKUFtbm7YoNuuVLpIhlpr/l19+OXczDllCrOyEkuS8e+WBgzLcu3cPxcXFuHPnDrRaraptZb2lC0V6j/DAQTnEeezSMcYu55ROXMwtHzMOmUb6eqKaDjAn3evs7CwqKyvR2trK+3EKMjk5idWrV2N6ehoFBQWqtZNzlg7I8aFKWYxOp0N5ebnqY+yClO7vmA18shVxqFK0WZU4ySP3oFhpwtzr3zGLhcjOTvnw8DB27NiBkZER3o9TiUuXLqG6uho3b95UrY2cca88cFAX0fZUVFT4F7I7p1pbUZUu1N3Kud9I7jiaq47XjYvH/M/s/wa94xDp/FA5pfs4kQlN7lssFgwMDKjWXkz3Gm07nu+JlEWS44XmF7HkHxbBZrNFPF+qXNJt8Xu2dhmyDSLC999/j5aWFoyOjqrSRkLuVe7iqR14dHZ2Yupq7MBBlEsqH1e0xGGMobKyEr/++ivGx0Pf4laGmEoXakXkysWP0gwPD+Pw4cM845BmxIXsQnOxSj3SDShdqtZKaWt3/fr1wDoO/6T757DyHHymnVPIvTuh1Bi7QJ9O2geSI1rfS+680D5WPGViG2LG4ZU/vIodO3bEdX6sPl2038YJ5969e9DpdPj5559lx9ilMrI47jRYOjvjL774IhYt8gUOcqg5lJrzgIaGBtTW1mLnzp2y5cleh7gCiXQqnNrrOHCCiWZzIr2eKB1AmwxRLV00F6kGPOOQXdy5cwcrV67EzZs3FR1jF9XSqRmZhuLxeNDc3MwzDlnEkiVLAgvZKUlWpMEyvY4DRx7GGBoaGhTPTmTFeLpYgQMnc3g8Hjz++OOYmppSbIxdxi3dgQMHAtOxhpIF98O8R6/XQ6fTYWRkRLE6M6p0Ysbh+PHjshkHHqVmB2azWdE3xdLuXsVnOx6PB1VVVfzl6BzgwoULsFgscLvditSXdkuX89OxzkPEheziXYc2Fhlxr+LL0bt27cpE85wkkBsAkCxpV7pcWceBE0xDQwP6+voUqSutfTqecchdvF4viouLcfHiRej1+pTqUt3SiTrN33HIbQoLC2EymRRxsaorHQ8cchupI1Tq3QlF3WukoS4845AfiAvZTU5OoqioKOl6FLN0kRQuH9dxmK+IC9mlau0UUzo5hZPOqrRgwQKlmuJkELPZnPIMAKpFrzzjkF+InuzWrVsoLy/HrVu3kn5ZSpVAIt/WceA88GRLly7Fo48+CqfTmXRdqihdc3MzKisr0dLSEhBWnFdOhCth7iFes1RX2VHcvfLpWPOfK1euYOPGjZiYmEBhYWHC5ydk6fg6DhwAMBqNWLRoEc6dOyerE7H0JCGlk4tQxQbEl6N5xmF+ILpYOZ2INQ4y6T4dX8dh/iBnuVLJTsTs08XzQm1jYyMWL17MMw7zAKk+LFu2DN988w2MRmNCdcS0dLEUTjpUiZP/SPXBbDajr68v4ScRCbtXvo4DR0RcZSfRd1mSemRCRLh+/TrPOMxzkl3ILsjSxat/9+/fh8XyPA8c5jnJLmQXpHSMUQzFEwCI6zj8jq/jwElqITsZ9ypAqouh0WtHRwf6+vp4xoEDQLqQ3X9Bq/1H36LvQV08AUQsSIcY0RyJSmatZ+joD67U5hhDS3UZQMDw18Oo2bwJO37/CpYvX676D+JkP0SETz75BB0dHWhsbAwvh1QHfQZNI7Vq7acJe+p9ikZEGBvqQmvNKjjGfWeOjo7i397dyxWOE0ADhh07doRMJebrhjl6rNAwn5Vj5jYQrqKtzYbCYE104a/9ddjZVwoAMJSWBlnKN954AwCfCZMTGSICrjqhWbUZ9dbuQIxA40PQaFbBahtEoVR1xh1OaHabYCAGMGDP25th2m1DjSG4YgaucJxgROPFmBvmss2ob+uG/d9fDZQzwyZ0WU1gpaUIGpdyzT2Ovg86oPnAF5UOuQjtIQrnqyG4IQ6HwWflnH86gtMwYWz/Tp9x8isJEcFQVg56xACQBGs9aMjl+36m548EPNgORRC8JMjtp7mgv7x8/pQLNEb1AFm7B/3b8gSiCBofwgewosaniNi0sxX1ABzDQ/KazQrCrBwRgfmrZDIZNl6ef+UkfeI2fhX9jMFQWuo/JhyCAI0YaTi/dsBaW+07mDFg/CpOA4EKpA1LETAX+M4YC2uJl+d3uTSgJMTOajHpIxPHQAdqnt3kP9mF+lWbAZjwbHWw0oVGrRoUPGhRBl6e3+UiBIAZSmFmwNi1q8HHk8+Tdjtdvu2xoS7ynxP8qbf6PXAE3y5E8tic+YQgeIO2hz7eTQDI5hgL7Bsb6iKYdwe2I44yoUSfxcUKZXl5/paHlI07bCjb9Fpgu76tG/b9u3wRLgT8P8Juz63YyKeYAAAAAElFTkSuQmCC"
|
<image>如图,将△ABC沿DE翻折,DE∥BC,若\frac{AD}{BD}=\frac{1}{3},BC=8,则DE的长为()
Choices:
(A) 2
(B) 2.4
(C) 3
(D) 4
|
4
| 69,849 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAI4AAABhCAYAAAAA75lfAAAdqUlEQVR4nO19e1RU1/X/59wBBkElakjNq76Qh0l/aa2kLlSQARQfID6SWoyJNmJlEI0m+mvSxiTLfmP6rYmPRkGsbZIm2iZq6ghBRUtiu+JqoiExyhtj6U8NQijKe+beu39/3Ll37p0XrxlA8bMWi7nndfc5Z9999tnnnH0YERHuAABARGCMKc/FudtQNX4NksJ0SpgoiuA4DkQCGNM5K2ZAgOtrAvoLRGiZRkQpMpPXA5DCRFEEAHCc1GSM6TCQv7g7jGMFZ2UQEMCDsH31TiB2OkLCZIaRosUBzS423GEcDUSAAfk7jaDEmWCFBEZyE3ES05BNKtEAZqIBzzgEi+qJA8pMyKdZWD+e4ZQhAuGMU8UycExUntnA5Zs7jMPIV/UkImPncexemwwAiI0IswYTiGT5winDlVonGmgY8IwDVd8f3ZGJ3bt3gzEGLmKeLYJjYIwpSTkMXIaRcYdxrKDSIzhOM0FW6VJs+h3CQ8b2NVn9Fj59TUB/AJWZwK0+BjqZpYRVXqoCENp3RPV30ADH1oxoAjgCQKZSgYiI0uNBAAgMZDC+7jKvKIq9RWa/AyMa2JZjIgIYA4MIgFM934E7DHgdx6b0csozrN+Su29KEF1GDQgMeIkjgyBNsP7wx32orLiMGQmxMBgMmrg7sOEO40BaRuDA8O2332L06NEYPnw4fHx8UF1drU1IAjCAFzbVuMM4BBBsK93+/v5KVFtbm8OKuRoiAdwAFUV3GEeFF154ASNHjgTP8zh79ixeeeUVjB8/Xoq8M15pcMeOY8WBAwdQW1uLV199FQDQ3t6OpKQkHD16FHq9/g7T2GHAzKqIyOksSRRFvPvuuygsLMTevXuVNHq9Hjt37kR8fHxvk3pLYMAPVW+99Ra+/vprvP766w5xRISamhrMmDED58+f7wPq+jF6197Yd3Bm5b1+/TrNmjWLBEFwiFOH1dbWksFg8Cp9txoGhMQhJzOj2tpazJgxA0VFRZ0qo6KiAmvWrEF+fr43SLzlMCB0HMaYMrUGgM8++wxLlizB2bNnO13G+PHj8eGHHyIxMdFbZN5SGBASxx7x8fE4ceIEOI5TnVpwY6+xpgGAw4cP49ixY8jJyelNkvsdBoTEUWPatGnYt2+fwgi2Uwuu59tyGgBYsGABYmNjkZaW5l1C+zkGFOMkJiZi9+7dePDBB5XjLt3B4sWLERMTg4yMDIdyelLurYTbmnHUo/DixYuxfft2PPzww+A4TiNFOgM1QzDG8MQTTyAqKgrJycmadF0t91bFba3jyHpLcnIyli5discee0yJU+stPcE//vEPfPzxx3jxxRd7XNathNvi83A1XDDGkJaWhtTUVA3TEFGnmaajoWfatGm4fPkycnNzu0j1rY3bWuIsXboUS5cuxYwZMzTh7mZQ3YXRaMSMGTOQkpLi0XL7K247xiHrmtSuXbsAAJmZmb327kWLFsFoNCobwG5n3Har44wx5OTkwGKxwGg0KuGylFHrNj2RPOq88u+DBw9i4cKF4HneQcrdbrgtdBw1Dhw4gOLiYmRkZGg2ZcmdLBv71GHdgTqvmoEOHTqEP//5z8jLy+t22bcEem1VzAVEUSRR5J3EOC48doQrV65QdHR0z4nyAGbPnk1XrlxxCHe2oEpuTtmoF2ddHceRw3vzsE6vMA4vCk4rLTeiK+YReefM46zxr1y5QgkJCT2ktHtwVrfm5mZKSEigyspKt+evutPZTttSXZLoJMzD6BXGKT76O+nQW/xKIpIrLjhJA1q148Mul19TU0ORkZH95oBcW1sbEUkMPnXqVCopKVHiRFF0wvjWZ2fkOwlT19OROQSHNN5Arw1VEmPEUjFZiEjbHgKVkIGBXs+9qIRVVl5yW57c+O3t7RQZGelxersDp8MQEcXFxVFlZSURddyh6tiKE1nSidLkDZp4sfK4FG4XpynndmGco9u3ksFgoIuiWQmTh6f0eBDiVlkDiYiETsvwH/3oR9Ta2uqy03oL6mFX/V9GTEwM8XzHupxI2qqLVEHJAJ2otEWIokhi5XFK2rjb5XAkEO9Cd/QMvD6rIqtdJb/8Esbr/o6qch2IBACSH72jO9PBQo1IT5olZWAAgQOYe7dpoigiKioKubm58Pf377M1IlEUlSm+KIrKDMt+xrZ//34X9h0t3Qx2++KtM8CTp04AzGYRr6yqQubKdOcuV0QCB51D2Z6E11ubMQZiZRg7PhEh42NQWVVmPcMkQig3IZfNxFhWjJCQEABWJ44dlCmKIubNmweTyYT77rsPgMSgcif2JtQLpu6Y97777sO7776LuLg4NDY2dlguWRmm6uQprK6sQmn6m6hUdVfhZR0SxsH5p8U5Z15Polc+05K8XIQnzkFo2EOoqKgAAIioQJwxH7syw5G3C5gzJ8JKkK2yHJhTRli3bh0yMzNx9913K2GMsW6tevcmHnzwQbz33ntIS0tDW1sbAMeOl+34jDEQgL9/wyFh3FjMeg44VXDJmqcSRGOkdG7f6L2PyKOtTHa/5U4/WemLxFDO6hFCwvbVO5B18veoyM0FVs9DqF0LysOUPSNs3LgRjz766C1rmR05ciTWr1+PZcuWAQBs34X0Q9A4FqwEIDl3MiTMxkenTgAAqgpOAuPGuHWKIOEWGKqIpCFGrgyD1OkClUAUx0LHASFjx6G08pKk18zORAR88NGxPMxNjLdZXxXCmKILyVi2bBkefvhhLFmyxFNk9wkmTZqEzMxMJCYmQqf0gPRDRyopUXUJNHY0ACA0fhXCStJRUAWcOnkJ8XFj+9YHoae1bXtNvvjob+nDEusUvPQIAaDV201EZJ2GYzqVkNby6Wym8Nprr1F2drYmrLW11cPU9x4EQaDCwkJKS/uFyzQFe7KpQjXrOpHzHG3YU0B79uzpDRLdoseMo2YUQdBaiDMMIGa1N5hKBRJLj5AhczsRER3ZudJmi0AsFVO7Q9nyFLewsJCefvrpnpLaZ1CbCuwNgPv376eMjAyn+ewZRLbfZBdUyCV7nNbOoseMYy8d1M9a6SMxlSvzjCBIUsleiphMJpo3b55d2r612XQV9jYd9TMvCvTe/rcpY/UaJawga4PyUW3Yc1yTd0NSElVQ38OD+3FkLzN2oVbbBgNzMwWQ3KjZP+fk5ODChQvYuXOnY3m3iY9h2Qa0d+9eFBUVITU1FVOmTJF0Rq7/Osb1+EYuUrYsEOx1b1HkATifMosg3GhsxF2Dh+DnP/85amq/haXdjIKCU54kr9+CIGLxT38Gk8mE4XcNwweHDiIqKkoV378cZvR4I5cIAiNJQsiSQGIead8LMZtthuNcv44DQ1DgYFy4cAEHDhwAAERERPSUvH4L++uLGDh89NFHGDIkEHUN9ai59q0mfX9iGsAD03EOTKq4k41NjLEOvZCrDXwcx6GtrQ1Dhw4FAHz33XcIDg7Gpk2bNHnUQrK7lmIPC1q373FGo/r6os8//xwjR45ETEwMwsMnYNLEH+OLLzt3pr3P0Ee6FRE5V3IXLlxI9fX1StwXX3xBM2fOpFGjRpHRaPTo+725gux8+4Qjli1bRiEhIZSTk6MJf/7558lkMnmLvB6jz3cAymhrayODweB01xwR0b/+9S9asGAB6fV6Sk1NpatXr/YyhZ1HR0wjCALl5eWRXq8ng8FALS0tTpl44cKF9MEHHzjkVf/vK2gYx9JmVv48ic582bGxsfTNN990mK+hoYGefPJJ0uv1lJGRQZcvX/YUmb2Cy5cvU2JiIj3wwAN0+vTpDtMvX76c9u/frwnrDxvWHCSOp5mmM/jpT39KtbW1mrCOvqibN2/SihUrKCgoiAwGA505c0aJ6w8NS+RIx6ZNm2jYsGH03HPPKWGdkRwLFy50aJ++htcZp6OGycjIoD/+8Y89esdvf/tbGjVqFEVFRdHx48c7ztBLkPZSi3TmzBmaNGkSTZgwgc6fP9/lcgRBoKioKGUXoRzWl3DLOPZDl7OhzNXQ5m7Yk8PTfr6C/vSnPxGRcynhrAxBEFyW/dr/bKGQkBAaN3osnTxe4FCf3oYgCLRs2TIKCgqinTt3uk3bGSmZkpKiME+/ZpyOnjvz21mcIAj03HPP0QcffOCyY7tatrm1XWGmw4cP0/fuvod+MOFhevPNN/uEeY4cOUJ6vZ4WLFjQ4bbSrmDixIn9Qq/rEuM4i7O0mZVOkxvIWTq5sSxtZnr77bfpl7/8pdO0rt7VEX2iKDrQ+tFHH9EPf/hDChkzjrKyspyWZ4+e6kc1tdcpISGBhg0bRufPX/DKEZV58+b1OfN0SsdRD1UdpXUW3t7Spvz+26EP6ZlnniEiyZunpxjH/re51bbafu6zsxQTE0NBQUFkNBqpurpaU4ZAokMHd4eBNm3aRMHBwfT888+Twyb0bjJka2urQ97GxkZKSUnpVnmegsI4rpjDXVxXh5O9e/fSk0uWuiyjJ2Xb/1YzjhxeXl6u6Bzr1q3TnHfqiWQ4d+4cxcYZKDExkQr2vaKsbDOAkjfuUXW85/SSoqIip8eCekv30TCOO13AXQfbK6/qcDnu0qVLNHv2bKdxrt7RFcXblSJv/1sQBGpoaKDHH3+cvv/979PkyZPp7x8Xuqx3R1i/fj0FBQXRb37zG8ramERAElUoZ8ekoy1zNmZ3UEr3UF1d3WdHnjttOe6Jgnnt2jV67LHHvLZjr7NfmbN0/7P5N5ItaHosXbhwwSHe1RBz+vRpCg4eQVFRUdTW1iYxjd3hOJ7nrYfqkqiSenbGyZ52+bm6upqioqLc0uoNdIpxusI09hW8cuUKTZ48ma5fv95h2r6AQJKt5Xfb3iC9Xk/33nsvHThwQIpzQt/ly5dp2bJlpNfr6dSpU0RkO3F5rNwxfUXBLqsUclbXztW/o9lYdXU1paamKkeP5f/ehFvG8cQSxNSpU7udt6voCiPan7+Wn44dO0YhISH00EMPkclkora2Nioq+oouXrxIW7dupdDQEEpNXawpa0OypMtoGMFaYMHeDVrG6aZQ6EialJWVUWxsbJfy9AReW+Rsbm6m6OhoKioqcojrTUnT3cbLzs6myMhI0uv1yt/EiROpsLBQU66sx0j7gB3rtWGezFSO9Hi6X48fP06LFy/uOKEH0CHjdGZ7gH3nNDQ00MKFC+nLL78kImldyR72G9v7I65cuULh4eGk1+tpxIgRNHXqVIfVe3kD+YlKx/zSEMY5jfMW9u/fT2vW2PYvy23s6eGrQ8bpjnSYO3eug62kPzAJz/OdclQkCAJt2bKF9Ho9TZgwgUJDQykiIoImT56sbIU4d+6ctYxymsdAWSfKte+ySiK1tHGAl5okOzub0tPTiUiy+XgDHt9zHBMTgxdffFFzQRg58bXnLKyvoPYL+Nlnn+HZZ59FWVkZ5syZg9DQUAQEBKCmpga+vr4ICAjA/v37ce3aNYSFhWHz5s0ozX8D6aXhoCP/KxVYeQJs/Ewkb9yDv72W5rqeHthI7Mpf84EDB3Do0CEcPHhQ+0oPtbtHGWflypVISUnB7NmzlTBPOaLuDWzcuBE5OTkICQlBdHQ0xowZg6amJrS2tiI4OBjt7e24efMmhg0bhqqqKvz73/9GYWEhRowYgUn3VuPwv+SSOByv4DFjnOpkhxdvflV7y1C39eHDh1FUVITNmzd7/J0eY5ynnnoKSUlJWLRokSbcvjL9SdLIyMvLw4YNG9DQ0ICZM2ciLCzMLbMTESwWCwICAlBXV4dPPvkHzp//Eg/e/wA2/N+NWL58uZKur+u6fv16TJgwAStWrPBoud1iHEEQFO8QALBv3z4MGzYMCxYscEgrN56agfpaCsk0tba2IjU1Ffn5+UhOTkZkZCTq6+sxevRo3LhxQ5NHPr2h/u/v7w9fP3/wlnbU1NTg66+/RlFREWpqarF58yvIzMzUeD7tK6SlpSEmJgZPPPEEAKn/LBZLj2jrFuOoO76goADZ2dk4dOiQyzT9Efv27cOvfvUrBAQEYOnSpfDz80N7ezu+973voampSXNSw1kT6XQ63LhxA83NzRgyZIjicqWmpgZXr36LQ4c+gJ+fP55+ejleeuklJ50kn3zonTZKS0tDXFwcFi9e7JHyejRU5eXl4f3338fbb7/tNp0rJuoNUW7/jtraWsyfPx9fffUVUlJSEBkZifb2dgiCAJ1OB0EQNL6QXZXn6+sLHx8fRZqazWbwPK9IYovFgqtXryI3Nxf19fVYsWIFnn32WTzwwANera87rFmzBhMnTlRcrPQETBRFctd5IggQbcdR5YY7ffo0/vCHP+Cdd97pMRFdQWdutHOF9evXY/fu3YiOjsbkyZMREBCgHCLU6XRobm4GAIwYMQJNTU1uy5IlEc/zCtP4+PggICAAAQEBAKRzYXq9HuXl5TCZTNDpdFi3bh3S0tJw991395oOpP5wly9fjuXLlyM6OtplGndhgJUHOpI4Iggcac99l5aWwmg04uTJk33qe6+z7/70009hNBpRU1ODOXPmYMyYMRgxYgRu3LiB9vZ26PV6+Pr6AgDMZjNaW1sxaNAgt2XqdDpFush5eZ5HS0sLWltbERgYCH9/fzQ1NUGv1yMoKAjnz59Hbm6uciV1ZmYmEhISetYQXYDcZosWLcILL7yAiRMnOk0nS193UBjHmfJq/0WIoojPP/8cL7/8MvLz8/vFrEGGK1qefvppvPfee4iPj0d0dDSam5sRHByMa9euQafTYcSIERBFEd999x10Oh2CgoIgCIIy7KjLVv/39/eHKIqwWCzgeR48z8PX1xe+vr7Q6/Vob28Hz/MIDAyE2WxGU1MTBg8eDH9/f9TV1SE3Nxf/+c9/8IMf/ABbtmzBpEmTOvwQPKU3iqKIuXPn4o033kBoaGiXy7RYLM4ZR4baPiWKItrb2zF37lycOtX/HQG89dZbePXVV8HzPObPn4+RI0dCFEUMGjQI9fX1CAwMhF6vR2trKywWCwIDA+Hj44Pm5uZOfXFqRuU4DjqdDqIogud5Zdap0+lgNpsBQJqB+frCbDYr5Tc2NuKf//wnzp49i1GjRuHXv/41fvazn3m9bWRMmTIF77zzDsaNG+e2fvYQBMG5juMsk8ViwYIFC/D+++93KMa9gc7e+lJXV4f58+ejrKwMU6ZMwU9+8hMMGjQILS0tAKQhRpYO7spxNZvqDOTrqmXmUSvbch10Oh1u3ryp6EMnT57EmTNnEBERAaPR6BEF1h3I6kbYYDDgL3/5C0aOHNml/B3qOEQCGm/exFNPPYUXfvUiIiMje0RwT9CRqM7KysJLL72Ee++9F3FxcQgODoZer4fZbFaGF51OpwwjZL0pz8OrLgCgKN1y+aIoam6taWtrU3Qjxhj8/PzQ2NiIL774AufOnUN9fT22bNmCtWvXelSPdPaxTJs2DZ988kmnJh2yTshEInJwhgQCI6lCDbXfYnVmJnbtysKQYXe5dVXSV6irq8OPf/xjNDQ04PHHH8cjjzyi6B9msxmiKMLHxwe+vr6wWCxoaWlBYGCggw7jScgSx8fHR8OYaibw8fFRjHF+fn4ICAiA2WzGf//7X3zzzTf46quv0NzcjCVLluDll192VCU8RHddXR1SU1Nx6NAhDBkyxCFe/R6LxQJfX18XEkckfPHZ53jwvvvx/AsbkL5+LSb+aBKIcR26LektbNu2DZ9++imuXr2Kixcv4tFHH8WcOXNgNptRX18PvV4PjuPg5+cHPz8/ZZlA1i86MvB1F2o7j6wniaIIQRA0Umfw4MG4ceMGzGYz/P39QURobm5GYGAg7rnnHlRXV8NiseDatWs4ffo0GhoaEBUVhbvuugvFxcU4d+5ct+hzJbVra2sRFhYGIsK+ffucrgLIEARByzgEACSgrq4ek3/4f3D9uzpMCAvHk2lpqK+rwT33fh+NzU1gjNDa2qxtMEHy9cI4ASRKDebMK1dXIAiSu1pZT5AV9JaWNmRl7QLP8xg0aBD8/f0RGBiIlpYWDB8+HP7+/mhpaYEgCEpHyjMfvV6PQYMGKTYbb0E2JPI8D4vFovzJyrO6XoBN55Djhg8fjvr6eoXJedECiBKzDx06FDcbm6VG9wCCg4NRW1uLIUGD0XjjJoYOHYrr1+sc0hEJIJKGXx/1FBMQwZgOf/3rXyEyYPSosWhubcf/u/ofDB06FNe+vQ4fHQPnQ46zDiY5WAIDyOpyn7GeDWuyVVan00nvEwntZh6M4yAIAoYOHQpfX18cPHgQ999/P2pqahAcHIzq6mrcc89INDfehEXgodPpJPGqki7eNiOo75cQBEEZMnmeByANZUOGDIGfnx+amprA8zwCAgIQGBgIAGhoaEBbWxv8/PXw85Fo//N772BPVo6Uv9WTjC95VJsaNQ0Xii9ix47fO03FmA48b9FOx9Worf0Oj6ckI3jEMKxevRrTZiRaByh7J4/ehZqZ7feuFBQUoLKyEitXroBO52ulzpn7Su/Cleh3Z4l1pZs4C7ev05dffolHHnnEY4xv/07ZtZx9vNz8LS0tksXdnnE0thsI1ltI+g42L6PaYU9pUAJEcpyqS/+1efqTwbLzsH2s6qHCW3BgHFjA4KuR1BaLBZy923smpQYAO6YRJRf5ZPO7541prD04jrN2tt31PPKrmXamojCGE6XXG0wjT7W9CeWaJuhU1n3eQ2WTtbvlK42kPj+6M10yJzA/sPh0gJUhI+N15Y4OTs1dxgQGxln/rHaIN3JLrYRC0WE4jpMkk6YjbI0nK3qeYix1OcYEq31EZ/NyypgBJeCtVNjuklDXzb4cT0G9L8kZ7Jmq60zG2eqham5PmUUYY9YraziIEEBlJjDGsL0y3KawvzkbHIsAhY4HA6DX6x2dR6bH2644lO/JNJU6bliXvaZ7exO6XL5AvOIcID0edKTEdjJya8Z0AptOxdTucv93f9gsr0Zn6RFFXrpBEE7+4lZ6lCZBLCYDA8Wu3mZ9uS1ua8Z0ev1oqfIMEiXiBBKljFwMFZNFei75m1PGUR/Qt/l+4R0bw4N9Jb9ToBKabljlULYxDjRdrnA/QU+ZVZ0/PV7bDyW5/2vrYA/BtN2ouTeVyNa/ph2rNO/3kRRLHRiAkrw8kDEFEVa/2cbMFMRlbENSmPbaQE41RKn99TrKQY9IU+k91sIqjuaCTQjTlE0kYEzEdOwuKdHOQvrYHXlndCoRAhgBPBh8mZ0ex+S5bClKkI7dYRxElOL3O75B5tokzKko8widoiiCceXYtm43Vu44ovQ/AMWJd9KaLE0eTj0+V16qQuGudYruMOtNwsk3nwHBpqRKMxbPGJ46C/X7co/nYW7iDM2laowxhI0PB8BZ77myKqy3wASKgw6M6RSmIVhUupgIkIDi3KMIT0oEAOTt3AYhZBQ4hOPZZ+b1+P1kXa8Ty8tRSEDY2FCHNIzpHPRDTiaQiJB/NBumEsk0fnT7KiSHMxwtE233/akK6k3IdhwLSmDaRZg1O1xlNZWmq1VlpYiNCLOmZ15bvPQ2GHy1korpcKmqCtlr54ExhnlrczA+JNxz75PfZb1nQ74wVgappuHWhAAUxuGA8qPIolWYGyZJltlrM2FgQP6xXBezp965NFUmnEDwKasAtzoFEUw10wAHlJmwLutjzE20XrdoVR9vPZuN/cxP6p5juXtgKpWWT1bFTUdImOfaXrFqhE+AgYkoLy+X1tTkcMZAZSa8kVcsX3YJIoCTk+Qez8eq5FmAVcxzZZX4O0HZ5COns1WM65UbdxljUNMYETLW4Vpp4+p5QHw61s+ZYM2EW2KYkqFuW5teY61jmQlZtApJYRIThSbN1uggPQWDbEwNxdptv8Ce9fOxPb9Uab6S3K3gVh/DutkRqjtVyTYdV09xLVRCBgYHDdse3nCM6AqilSa1Zi9f1cgMq5SL0m5FuGtH045VlL79iDTLVZ3jX2X8BXnKNZza/07x0d8Rk0zuBPXU3A6QbTUAiDFmyxS3ykaoSB4jsjuQaWTKIMQpz7LNyd4l7K0PqT6r4uw+FlGyY6VvP+KRt7huLq2ZxZ65HbaOqteniEha9bYJKM0I0BeH7uzXUlzFkZO1qv4Mabiw0VuctxUPzd0ATeOrYCoVlOHLE5DbTtu+rhe1mSjyJGcAbFOvziqW0vSRBxP1EMDgo7uFlIs76Db+P6TrflqompYRAAAAAElFTkSuQmCC"
|
<image>如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()
Choices:
(A) 1cm2
(B) 1.5cm2
(C) 2cm2
(D) 3cm2
|
1.5cm2
| 69,850 | null |
1.5cm2
|
"iVBORw0KGgoAAAANSUhEUgAAAL0AAABGCAYAAACZgpXqAAASl0lEQVR4nO1df0xU157/3KEVm7iP/jFdB0ODwvCk0o10sQlGUrp5oOyzMPxBdtaUbHFX4fXxmtLKoO260WRpisp2bYIrP2qkkeSR99iHVlphZmixSyNVUtwWim+ZUSwm5ckfUiEVk+F+9o+ZO9x75wfDj/nBwCcZZu65597zved8zvd+zznf80UgSaxykIQgCF7P2az/hTtbfovc5BALtSwQAWiWfBd/9bMSsfQaiQLIG1SuAQgbKnPLvV8kRo6uqDIIEATnR6PRuH8LQgwarDbvFy1AfKl+5OUoPoaqZXiK0GGN9CoIAEQXIxoPN0LMz8eWZBGAiieayNF8Jy8RlQagy06IogiSIG3IF17B3+UkufMp5A9QfHLW/fvEpVmYCgCzja4yiBHLGRSk6r1cuLhnCQXWSA94NJAGArqaTEBODtAhPymGVKxAQdhwiybsdvG7sbERRDJSK5/DL2VNLOd5oFat0qy5jWGYkJvsLLOhsQvJObvx66QtnveLHJ3ggTXSA84GkrUZ7WZ0MxelScDl/Oegd1eTJiI1mN1ixXN7cwA4Zf/U7kw/efKkz2sCtdHJuXzycqxNDUBSMgToUVqWCwGCqmoiU0EAa6Sfg4wDhxusOFG6GwAUr25BlS9ScGfUjtqyPU6bXr8HW5M3u8UUVVRUauT5iSnvHHdG7TjlKmd3aS2Stjjrxnu9RC61IleyEMFNAgIkYGky4dSpU9C4CARBRYyI0/QiLJ/WostlZ5sbK5GcNGfHa1RsXMosjKWj1m3PVxbIxjokwIjUB16x6knvJIHoJPdtMyzMBTnrHKSZz2KrjEDOCxBRxKfdilM0ISfJSbwtm5OxZXOg86sLaH57N07BhBzXrVP2vgI9NCC8dKQIqh9vWPWkl0C7FZq3rThZuhtStYzeve09sxD4QHD5ISpIZf3cAtPeHCfxBECf+xvs1i+fzpWe0/J5p7McV3ppaSkA4HCVa7pSXqT67RhUeJY1b9twDaw35RNOKtFsc6aZCkDBlVZQ1UAxjPJ5K1tKMxXMyewv/1IhL0e6f6UBNDV0zZUriorvUEBekq9y1elrpCdJzvo9G07CS1DLMGI+6+6oUmcNhpzqctQfdYcLF0RRVCgCT1nzOeJqZ4Fcc0NYLIjQDN5CVU4gMkSCLEp4d7WoMgjI/YCuNQWg4XABXj8JjPAi1kivgH9fFbp8UNzfiAAC+BE5uPJJtnR4h4X04hdE2FBgaMTlS/J1ChGVhhiMpDasDWQBuKcr52tAd+W6vkNBeOc8u3q2XQaFyMpB3bLIJ1+0k+lHQqMuPCyQ2kQum91iRcxzKaqcGqRszccnt2x4IoTyRS4EEYKsAa9evYovuj+PKP8aCQIBel0Ics2ZC3P5pLdScKEBORt2L8wnn4zF7373W8TF/RWs1s/w97kfeORJStkK/DkSumqY4aTEXDUcP34cxcXFgMaTMITGOaXjTg999akJf+3aV+jquuI+Fii6PUCXg/BSeT///DOGh4e95vEkfOjq5dy5czh37hxefvklxMXFgbiNz04Rv8pJ8shrG7nlXGEP6RA7jJhvGm1iYoLZ2dnMy8vj/fv3QzrtthRYrVZmZ2cH5d4TExNsampiXl4eATAvL48zMzNBKUuOQOr+wYMHLCoqYlZWFu/fv+9KnaVo62JBVYPqhqRo6yIA1ltGVt+UpbcK7e3tpU6nY01NTRgkWhrGx8cZFxe3bPfzRvSmpiZOTEwsWxneEAjRpTyDg4PU6/WsrKykw+FQ5OlqOKRYO5BgKgCRX0lyFc/TSxVYXV1NnU7H3t7eMEu0eOh0Oo6NjS36+snJSZ4/f56FhYUhJfpi0NbWRp1Ox7a2NleKfI1lhAXqtQO72TlPX2ByJ61a0k9MTDAnJ4e5ubkR2bgLQU5ODjs6OgLKK3X2yclJNjc3u4menZ3N+vp6jo+PR6Rp53A4WF5eztTUVA4ODnqc97eIVm8ZobxzrErS9/b2MiEhgdXV1eEWZVlQWVkZ0LM8fPjQTXRBENxE//HHH0Mg5eIxMTHBrKwsFhUVcWpqyp2+GLcHURRXH+lramqo0+nY09MTblGWDS0tLTQajV4bf2pqihcuXGBRURFjYmK4a9cut0ZfCMKl/Xt7e6nVagMebwUi5aoh/eTkJPPy8pidnb3izRk1BgYGmJqa6j6enp5mS0uLm+iZmZmsq6tbkt0fDtTV1c0/3pqH5aKXLKuC9H19fUxISODRo0fDLUpQ4HA4GBsb69b4/oi+kFmScGFqaopGo5EZGRlB6ahRT/ra2lrqdDpardZwi7JI+PYAnZmZYWtrK//hH40EwK1bt/L06dP84d7K0uhy2Gw2pqWlsby8PGhrAlFL+snJSRoMBmZlZS3Yfo1kSEQ3Go2MjY1leno6//PD0ywsLGRTU1O4xVsS2tvbqdPp2NzcHNRyotL3pr+/H0VFRdi3bx+qq6sRExMTbpEU4AIjhs3OzuLixT/h4sVPcPHiRej1SSgp+WecOHECiYmJAADRMYuhIZebAOHavRSZXibq5yeJd999F21tbbh8+TJ27NgRdAGiCh9++CHj4+PZ2dkZblEWBcmedjgcbGtrY3FxMTds+AXT0tL4/vvv02bzvmsjmO4IwYS0XpKXl8cHDx6EpMwVRXp/A6zJyUm3L8ZKmKXw9Szt7e0uom9gWloaa2pO+iS6/F7L7Y4QCly/fj0sEwwrivS+cOPGDZ++GN4Q7tkJNdrb27l//37GxcUxNTWV77333rxEd0Ocm5JbqjtCKNHU1ESdTheWN/KKJ31dXR3j4+PZ0dERcWT2h/b2dpaUlLiJfuzYMQ4PD3vPPOt8rrMmg8f+1Poqk3vv569y59wRIrUuZmZmWFJSwvT09MA79jIjMkc6AWB6ehr79u3D+fPncf36dezduzfsGxnmg9lsxsGDB/H000/jnXfeQWJiIq5du4bh4WEcP34cqampXq/jHQsEIQZXhF87A6c6V9JheVvAZ9C7ww6+sD0dN2/eBLC0oE7Bwt27d7Fr1y4AQF9fH5KTwxT/PCxdbYkYGBigXq9nRUUFHQ5HRGo1SabOzk4eOHCAWq2WKSkpPHLkiG+N7u0+Ls/BynpPM0C0XVG40V64cIFGo3HpwgcBnZ2d1Gq1rKurC7coK8+8kWzB9vZ2kkt/jQejw1itVjfR9Xo9jxw54uEZGGi5Z6vyFW6xs/TtZKV2R4gU1NTUMCEhgTdu3Ai3KCRXEOmnpqZYXFzMjIyMsNmC/tDT08OysjLqdDomJiZ6Jfq8ENWHTi2v3hThq7s4HA6uW7cuJLubAoHk75SVlRVR/k4rwqYfGhrCiy++iLi4OHz11Vc+bUGGKJqJVM7Vq1fx+uuvY9OmTXjttdfw1FNP4cqVKxgdHcX777+PtLS0hcmmNsPtt/EJoAjICogwN5kU/wnE4grNHRMTg23btuG7774LezjJoaEh7NixA+np6ejp6YFWqw2zRDKEudMp4O2V3dzcrNopE1709fUpNHpFRQUHBgaCUpZ8X6caI+azCrNHwquvvhp2d4Tm5mZu3LgxYtpMjYhyQ5DPOExPT+ONN97AzZs30dvbG76RPoCvv/4aFy5cwKVLlwAABoMBV65cQXp6OoBlfMOoozMlJ8EgAPbbtwHoFXnujNph2ps7d6lraf+FF17A0NDQ8sizQMzOzuLNN99ET08Puru7FW+6iIK8BzwS5z7hxNDQENPS0lhWVsaZmRnFGyBUMzV9fX0sLy9nQkICExISWF5ezr6+voCvXy45pW1wcm0viiIr873HkZS7I4RyVmtsbIyZmZk+dzdFEjzMm3ATvqWlhTqdjq2trT7zBKsiBwYGWFFRwcTERD777LMsLy/ntWvXglJWoBDpnJoEQA0EAq5oyl5MG9IZHeHpX8SFVMaVFk0iYkg/MzPDAwcOcNu2bfz+++89zoeC6DqdjmVlZSt+K+FC3RGWUre1tbXcuHHjioom4demn5GZqusFz2N5nvWqmQdveX2ds9vtKCwsRGZmJr755hvExsZ6yTcXs/CxzPCV33uGSjml3+ryh4aG8NFHH6G9vR2PHz+GwWDAxx9/jJdeeikiVzIDBV12/fPPP49vv/0WCQkJAV+zUExPT2P//v24c+cO+vv7AyorYqDuBWpN7+84kN/znbvwhz9Sp9Px/PnzCy5Hfiwfj4iiqBibPBKdAYKOHDlCvV5PrVYbFRrdFw4dOhTUSA+Dg4Pu3U3eHPwi0Y6XY0Gk93bO2+A3kHs8evSIpaWlTPvbDK+LON7MLInMvo7VvwcHB3n48GGmPP831Gq1PHDgADs7OyO+UZYKaa/sckFeX21tbdRqtUHf3RRMBGTTyzXmfHnny/dIJEdGRrhjxw7u37+fEw+n6A2B3vvnWVFxbnh4mMeOHVMQ/bLZ4v1mUYpguCM4HA73mzJY6xKhgpv0vojt79xizJvf/6md8fHx7gWUQMg9370loqduT2dcXBxLSkrY/tkVn9eQkf8KXgqk6AjL5Y4gBVsK5e6mYEJBen8zN/7I6aujyM/Jw7J9M/S91+t8mU/e7v2/t/7Mo/9ezdTUVMbFxfGfDpbyD5c+8bDxA3m2aIMoikxPT18WBy9pd1N1dXXUKIqA3RCWQprR0VFmZGTQaDTy4cOH8+b3Vbk2m401NTVMS0ub0+gub8vlRDQ0bnFx8ZLdEerq6qjValfsfmNfUJF+VvkvCl1/fBJ+dn5ySGEd6uvrfebxRzI50Tds2MDi4mK2tbUFtC1wNaO2tpYVFRWLulba3ZSRkUG73b7MkoUffjX9I3F2QaaBnLwOh4MVFRWLGviMjo6ytrZ2jegLgFpxdHd3Lyo6ghRsqaSkxOuYIBreggGbN/4eVn1ubGyMO3fu9PDD8IfR0VGePn2a6enpXL9+PY1Go1+iR0PlBxP+oiOo606+y0un00XE7qZgYn7SL5BbHR0d1Ol0PHPmzLx55USPjY2l0Whka2trxGyCWOmIj493uyPMpySOHj0aUbubggkn6UWSnFWEkyBdFeW1rjzjK8rncf1V3NjYGOvq6piRkaEg+uPHjxX51LHH1zT7wpGbmzvvP2vwt7tpvrpfqW3i3DklAIAGEJTu3II6we26oEy8d+8eXn75Zdy6dQv9/f0eYdnu3buHM2fOYOfOndi8eTN6enrw1ltv4aeffkJrayuMRiPWrVunuEbyB1F/u1wnFudzscqwfft2d3QEb3XW39+P7du3Iz09HV9++aXP3U2+fHNWrJ/SUvuqZAeePn1akT4+Ps66ujpmZmbyiSeeYFFREVtaWgK28f1hpWqYUEPujqCus+bmZj7zzDMRu7spmFDY9FUG5f/qEQCeNf/fXAaRCnPn3/5VaQeOj4+zvr6e2dnZBKAg+mKIukbupcGbO8LMzAzLysqYlpa2oFAkEqKhTTwGsocL5nbpSLt21Dt0xsfHmZWVxVdeeYUjIyMKohcWFrK5uZmTk5MheYA1eIcois7oCOud7ggiyR9++IEZGRksKiri9PS0M+Os95mcaIZAzhl7hA0G4RA+YDv00IB2MzT6PTDbiJwkQhCIq1f/B0VFRXjyySexbt063L17F6mpqe6P5Au/hvCDJBobG5Gfn49NmzahvrEBpkOVOHTokPv8irXLlwDFJhK7xQqhai/0dA5qD7+9BwVVDchNBgDiL3+ZwBdffIHy8nIAzs0Y+/btWyN6hEIQBGx85q8xPj6OTZt0+O8/trnD6knnPRG5ce2XCwpNb2kyYXdprXPGhoDZRuQmiyAF5+5MjeCxYX8NkYUFa2+RgMYzfzS/BZxd2kV7S0ctukZEUCTMjYewWy/AYtdAEARIs5TRWQ3RA39EtciDRBmqQNhQdaTBfV4+qRmthAck0gsiaDfjFEzYrXc+bM7B36AAgKXbDNB7JXBtvnxFgHYzBEFAnS3FGfWYhPgfu6ERUgD9XPQ0AaIzv+s7WqGRvrq7LTDtzZk7IwspRx+dXljT+xEPwoZC/R4YDjfi0olSZxoJQZ+Ds1X50G+ZI73oak8hym36JyQj3fxpLXI/OAVgrqKAfPwqJ0lBbRGEBkJU23zRhO6PGvEJ8jFS8y/uNKndkvW/BJP17nSNSolFaxsLI+azTNn9ujJREECDCWw/ESax1hAw/MwsEDYUCinY2tCFk6U5kA/hBAJEdJJ6Pihmb9YQXRDtZsTo96DeMoKyHP38F6wCkIxy422VYz4dvhq1nSCoRyyrsRaiAD6bLTkJBXBGPVa/0Gk3o9FqC7ZoEQkNgblac6kG52F0T1tFEwRI08eiKl2PN5pMOFW2B43dI+50m6Uemretq9bkcdv00TpSX4OT5PLJCsPhRlysORhGicKL/wcR04dirdct/QAAAABJRU5ErkJggg=="
|
<image>如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()
Choices:
(A) 2√{2}
(B) 4
(C) 4√{2}
(D) 5
|
4√{2}
| 69,851 | null |
4√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAAB8CAYAAACrHtS+AAAaQklEQVR4nO2df3Ab1Z3AvysBpo1AMZHPaxAVENHIFTO4485gijgrh0qU1nEE8TQ5qs45xZC0CVPPYSe+IWC4ujMuMW1mcIqDmUFzMYM6J85p44Jsi1qA3HHxDPZ07NrFSvPDoZFjl8iWc2jO0n7vj9XKK+2utJJWP2z8mcnEu+/t26/e9/34vu++HwQiImyQMQgA5wa74Pw9B+E7W/MtjTCyfAuwFhBXI7zw7KM/TufBnLKhcBEQIuK8fvR1wF3fg7u3UvQNFPlgjtlQuAQMdjcDmEwAfQTQ6qYKUtkAGwpPDwQAim6v8dwADMIj8NRWCs7uKoevgwwKOVsLV7JChgAAGV2Fj3QNwstPmYFAgN3l9+ZXLhFsKDwlqJirwe4m6OjoAIIgQKbdGRNWqIOfDYWnRCS7kG7KXfgoICIgIswMnoSv36OJxiQKtBO/Id8CiAERgSByl4HM+6K1lIhVH/5tAGT/7gL87cuRGwDnz58HAC3QrYCsYI02wHUARVHZSxvDMdevHdmFQJttOOCl7zXXQvTe7uZTiNkTJ2MIxALtbDIEJWwVCnRInRbrtg+XsgtIlhJfjSnUerRuFZ5LCB7d5tLmSIU1YbSxSdZUDw8Pg9/vh48//hj+/ve/w8zMTDRsbm4OpqenY+LrdDogSTJaI5nrBx98EDZv3gwPPPCAoAzhcBjkcvmaau/XdB8+Pj4OH3zwAbjdbvB4PLCwsAAVFRWgVCrBaDRCcXExVFRUROOXlpaCTqeLSWNychIWFhZi0rx27RoMDQ3B0tISjI+PQ0lJCVRXV4PRaASj0Qh6vR5sNhs88cQTcNNNN+Xq50rCmlL4wsICvPPOO+B0OmFoaAjKysrAaDSCwWAAg8EAGo0meSJpcPHixUih+hDc7g9hbv4qKJVKaDlyFKxWKyiVSgBYI8ZdnkYHiChuOBUIBLCnpwdrampQoVBgfX09OhwOnJ+fz4GEXLxeL956661YU1ODt99+OxYVFeGePXvwN7/5DQaDQd5nsjlsTJWCHYePjo6i1WqNZmhPT49ghuYKv9+PWq0WZTIZBgIB1Gg0ODU1hTabLVogrVYrTkxM5FXORBSUwimKwr6+PjQYDHjnnXdiZ2cnzs/PF0QNCYVCaDKZUKvVotlsRkTEtrY2bGpqisbx+XzY0dGBJEmiyWRCl8uVL3EFKRiF22w21Gq1+K1vfQt7enp442TVo5Yk7Z/85CdosViwrq4Ou7q6EJFWsEqlwmAwGPN8KBRCm82Ger0e9Xo92u32rMmdKnlXuMfjwcrKSjSZTPjRRx/lTY54hbOvOzs7saKiAufn51GhUOCVK1eiYVarFbu7uwXTdblc+NBDD6HBYMDR0VHpBU+RvCnc5/NhXV0dqtVqPHv2bL7ESIrL5cI777wTL126hH19fVhVVRUTPjIyghUVFUnTsdvtSJIk1tfX583gRMyTwtvb27GsrAzb2tpEG2L56Me9Xi+WlpbiyMgIIiLW19dje3s7J15lZSV6PJ6k6QUCATx27BiSJImdnZ2SyyuGnCp8dnYWq6ursbq6GmdnZ3P5alGwCxVjkTP2RCgUQpVKhV6vlxPXZrPh3r17Rb/H6/ViVVUVms3mnNf2nCm8t7cXVSoVdnR05OqVacNY5M8991xUsW63G/V6PW/8YDCIJEmiz+dDRPGtUWtrK6pUKnz//fdTljHdFi/rCg8Gg/jkk0/itm3bcGxsLNuvSwuKomIy8NChQ2ixWGLiNDY24rFjxwTTaGlpSRguxMjICGo0GmxsbMRQKMSRS2qyonBGUL/fj1VVVWi1WjEQCGTjVZLDWOTx8mo0moRW9oULF1CtVscoTazC/H4/WiwWNJlMWc+nrNVwr9eLWq0WW1tbs/UKyXG5XKhWq2PsC4qicGxsDNVqddLn6+rqBMfcYpTf2NiI9913X1btm6wo3OPxoEql4oxPC8FjJoTX60WSJKMWOZvW1lY8dOhQ0jRcLhdn2JYqJ06cQJIkeVsTKfJPcoU7nU5UqVQF6VYUgrHI33rrLd5wvV4v+veUl5cnbPrFKI0xcMUM9VJFUoW73W4sKSnB4eFhKZPNKisrK2gymQQNLq/XiyqVSnTf3NXVhU899VTGcjEVR2rvnGQKHxkZQZIkRZXKQmra+SxyNsePH8f6+nrB8HgLPxAIIEmSkoyv+/v7kSRJSb++SaLwsbExJEkSnU6nFMnlDCGLnI3BYMDe3t6E6cQX4EOHDsV45PgKuNhC73A48I477sCpqSlR8ZORscJnZ2exrKxszSibyWg+izwen8+HSqUSl5aWkqbHxuv14te+9jXOuDpdHA4HqtVqSVqNjBQeDAbRYDDw+pcLmUQWOZvu7u6EzX0izGZz0pYhFVpaWtBsNmdciNJSOFOqn3766ZR8yIVAMoucjdlsRpvNJhieqFk+e/YsmkymtGQUes/OnTuxpaUlo7TSruF2ux21Wu2a8aAhrvrIGYs8kcICgQAWFRUJNqPJ+uBQKIRarVaw703HcJ2fn0e1Wp1R95mWwqemplCpVBasb1yIZBY5G7vdnrSGJlNaR0eHKIdNKng8HlQqlWl749JSuMFgwBMnTqT1wnwhxiJns2/fvoy/Wfv9flSpVOj3+zNKB3G1cFEUha2trVhTU5NWOikrvKurK2P3Ya4RY5GzCYVCqFAo8NKlS5ywVJvihoYGySc7hEKhtOfKpaRwn88nuSMgm1AUJdoiZ+N0OrGyslISGSYmJnDbtm2SpMVmZGQE1Wo1b+uRqFCmtJjw4MGDcODAAdDr9dlaFyEpS0tLYDaboaOjg3eNGAPGLb5xOBzw2GOPSSKDXq+HkpIS6O/vlyQ9hgceeAD27NkDjY2NHPkTLmQUW6LcbjdqtVrJnAnZhKIojkUullAoJHkrZrfb0+5zExEMBrG0tDQl41m0wo1GY3RMWki+cCFSscjZeDwe1Gq1ksoSCoVQo9HghQsXJE0Xkf6cmsrvFKXwtVK7mYKYqkXOfr6pqSlj5wYf8atUUpEpEcx8OrG1XJTCq6urE3qcColULXI2FEXh1q1bUzLwxMJepSI1J06cwN27d4tqeZMqfK3UbsTEPnL2OFaIiYkJJEkya/IlW6WSLkwtF/PtPKnCzWYzdnV1FXy/HT+PPB3a2trwwIEDWfutYleppEN7e7uo7xoJFT47O4u33nprwfvL+Szy+IkJYqioqECn05nVwi12lUqqXL16FW+55ZakXr2E4/C33noLHn/8cVAoFJKMHaUAIzsfsvnpT38KCoUCfvazn8XcT2VjnYsXL8LMzAyYTKboe7LBM888A6+++qrk6ZaUlMAjjzwCdrs9ccREpUGn02WlNEoJY5EnmqQghhMnTqDVapVIKmHSXaUiBr7FjvEIKnxkZAR1Ol30uhD78Ews8niqq6vR4XBIIFVyEq1SSTWf2cZoKBRCtVqdcDqUoMJbWlqwra0tpZfnknR85EIw675zZavwrVKRiqampoQzkAT7cKfTGe3PCo3FxUVRPnKxvPvuu2A0GnNmq2g0GqiqqgKHw5FxWhhna5hMJnjvvfcSPhADRVHo8/lQoVAkLYH5aOZT8ZGLla+mpiYr42M+2JMos/GZmZmpI9Ra8TbpdrsdH3vsMcmFSZdkKzszIRAIoEKhiBpRUpOo0Ol0uqwsKaqurhacBiVj1fRorXc6nbBjx46Mm5tMYWRihlcnT56EP/7xj3D69GlOnITpCF4A9Pf3Q0VFBZSWluZ8Q9zGxkY4deoU536m+7Tu3LkTnE4nfyBfKdBoNDmf5JCsVLMtcr644ZhNysOccP6X0u5Ovk0KctFdLS0tYWlpaUbzzfnk9Hg8gh49jsKDwSDK5fKC8p0LWeTsH5uSeiKRQ6EQKpXKrHy2FEv8KhUpuHbtGhYVFfGGcRT+ySefCG5tkQ8WFxcT+sgzqYcu1x+y5ttOBlNYvV4vajQaXFlZkTRttVrNW5BlGNdv/eUvf4Hy8vKM+hCpCIfDsGfPHti3bx/84Ac/4I0T39t5B7voU4Yi/3YffV2wb+7tfQd2794tsdTiYPrprVu3Qnl5OfT19QGANC5dgiBAp9PB5OQkJ0wWbyDMzMxwtpjOF0I+cob4zOk6Wgv3PvouzGAYKEQI4wzAywfA0tLN++w777wDFoslG6KnxOHDh+HkyZMAIN3G+tu2bYvZK56B43iZnJwEnU6X9yMcTp48CcPDwzEWeTzszOk6Wgs/ntYB4u9ACzJ6E3vQwisDr8HvXj4L3rgzxz7++GO4+aaimP3U84XZbIYLFy5wNu9PF0SE8vJymJiY4IRxFD4/Pw9qtTqvRzi8//770N7eDmfPnhXl/ZoZPAk/fvksDPySPlYKOacmxP8WCs6cOQOWxxPPTM1VoZfL5XDw4MFoLc8UgiDgjjvuiNn4n4Gj8MXFxeiG7/ng3LlzYLVaweFwgFqtFvXM668ehtojp6LndrOVff7CubjYFADKaIUnac5zWegbGhrAbrfD4uJiys/yFczi4mK4du0a576M/QBiGK4H/xe+uumrEAqHIZzjVj0dHzmCFz49C/Dd7/wLfR0ns+v3HVB7pAa00bItg+m/ToPf74eHHjZIKH1mKJVKsFgs0NPTk/KzfAVz06ZN/IUn3mxX/VMZzl29iuEcu8nTnUdOefujh8ZFx+WR/2YGXos5UI6hvb0dGxoaJJBaWiYmJiT7JM1smxYPR+Hym2/B5evXJVd4MuHT9ZFTOIO1ANg1OINsDxtzv+Zo7EmBLpcLi4qK8J577snrdt1CGAwGSaZZMbNk4+EoHG7chCuhEIYjH9RXQiFcCVNIISJF0dchRhaKosNDIVxhC8i+HwpHnqViw1ZWomG8s1bYaUTeL5T2a0dqcdOeo1G5Vz51ovK22/DxllOcdLZu3Ro9NjL+a1W+J3lQFCXZKhW/349KpZJzn7eGX7/+v3QNp6hopkZEwlC06tN/U8zfoVCkVWD/jUiF6YxGTjw6bIB31kpseuEwU8iE0262bMJbbrsNlbfdgjcD4ICXwpUVVmGJ/Jay0lJBhRcCUq1S8fl8uGXLFs59jpVefKsCAoElxhoAuQwhTCHT4QMwBgIiIFIQDochFKaip60CIiAhi0YjCBl9jyfsb+fPw5NP/wj+O94ij8Sjz2QnQCaTg5xInPbL/xOAz69ehc8X/PAFInznHgAgAGQxJwMjNB89CkVFRfCVr3wFdu6MPfO7EJDL5dDQ0ACdnZ0ZpbO8vAzFxcXcgPgSoLlrK/71009ja3WkqQzHNK1hVs1lQYVjWwVWK0F3CfTffr8ftfd+HU/39GA4vimNpM1JXTDtcOTv/1u1PZimPK4rCVN0l+52u9Fs/i5qNBrs7u4uqI9FV65cyXiVyujoKO93gtXv4VQYQhRC8W2bYXl5mVUkCJDJACiKAmTXFoIAAinW0A3pIRFBAAEI4ej4CKPnbxOEDAhAWAmFoK6uDvbu/T7s+9cnQMYZVhAASAElOu3VIVc8Mp6j4wgAqK6uhvfe+z2cOXMGXC4XqNVqeOWVV+J+O6dyCIZJCUmSYDabE3oZk3H9+nVef8pqDhEAgBRs2bIZlpaWYrKJVhQRaWJXH5DLCLqghMMQCmPEoUWAnC4h9H0kQE4wmUWHPfvss6DcvBlefOk/QR5NFCHMjP0JAm4Qm7aMoJ+laNcpRVGASa9Xuf/++8Fut8PIyAhMT0/D3XffDc8//zwsLCzk1b18+PBh6OrqSukZtrzXrl3jbdKjCicIOdwgl0Oxshg+u3yZu8hcRnDrCiGDG+TyyD9ZTO2P3pcRQBDE6qyVX/8aPB9+CLY336TDVhMDuTzSV6eSNuvZ1bjJrlk/ISKXRqOB7u5umJiYgGAwCOXl5fDMM8/A5cuXOXFzAeN4Gh4e5oQJFUS2fJ999hmoVCpOHE4bqNfrYXp6OuZhpnZmSqo+8nxQWloKx48fB6/XC2VlZfDNb34T9u/fL9mHjVQ4ePAg7yoVoYLHLgjT09Nw33338UaKoaenB+vq6hAxMuyJH2OniZTzyKUm0fg7GAxiZ2cnqtVqtFgsODIykrPxOrNKZW5ujjc8kRwmkwn7+vo49zkKHxsbk3zGSyq7H+YDsQq02Wyo0+kSzgqVmpaWFnzxxRdTfk5oxkvW57Ql2498LdLb24tVVVWo1+uxp6dHshrPl8758+dRrVZjOCxyYibSFeymm27iDeNdiKDRaHBycjIFUYWReh55IUGP5c2o0Wiwq6sLv/jii4zT5FO6xWJJaU+2RLNWOUYbQRCwfft2+OijjzIwN2jiZ63g2jmbXhT0WP49OHPmDAwNDcHdd98Nv/jFL9L6ps3AZ5AdPnxYtOcNEcHj8YDRaBSMwOHtt99Ou1amsh/5euPChQvY0NCAKpUKW1paJF3NIrRKhQ2T94lsDF6FX7lyhbO2LJV+qpAt8lxw5coVbGpqwi1btuCBAwdS/hDCl9ednZ345JNPJn02rbVliPT2F+kMQQrdIs8lfr8f29rasKSkBK1Wa8qredh5v7y8jCRJJt3So7+/H6urqwXDBZcLm81mGBwcTMm7FA6Hoa6uDvbt2wdPPPHEuuuzU0WpVMJzzz0Hs7OzUFVVBWazGXbt2sXrPeODnfebNm2CPXv2xLhb+fJ3cHAw8VdAoVIVvwOEGNazRS4VNpsNy8vL0WAw8DpGEjE1NYUajUZwyJzRDhCI/Hu8CDXx6e5+uJ5IpfuLH8uLxWw2CxaU+D1e+ORJqPD29vaEZ3YxJLPI8z11qFChKCrlsXxfX5/gSQ0WiwW7uroSPk8rXEAfs7OzqFQqY2ptfFS2Rb6h2PQZGxvDvXv3IkmS2N7ezjHOmLxlpkAxzTZ9Pxzdp8bv59/NiopM8AR+Ja268Xbs2CFYavyLgYx3P/yyE5//zFheqVRiU1MTZyxPUVTcWSq0rtrb2/H7+7g7MVJxa+UhNpArhNBeq+GV9OaRbyAOn8+HTU1NqFQqsaGhAS9evBgN8/v9MUO0YDCIZWVlaey1SsUtsqfoe/9cvR1ttv+KibphkecGZiyvUqlw79690W2y2WeppLJnOm8Nj8f9h6GYWh6dR7785bXIs4HY7/JmsxnfeOMN1Ol00W/m45+MiUqbQBT2jrDnuRiNRti/fz+o1WrYsWMH1P9oP6hvvyPGSZAgqQ0yID5vbTYbXLx4ERQKBWzfvh3kcjn09vbGKGywuxkefbqDvqhthtBvn4b/ODoQO8XpyO7V+WfMLgqnXF4AAHjppZfg5z//Ofz5z3+GY8eOxSgbgJ4cCLD+vogVAkyeMp63+vp6aG1thUOHDsHQ0BA8+GBk4SUBgOcGgCAI6PTeG92ImPqlCW4g7gXYquV62pprmXVaiNMDnTGL8SwWC774QivdRKTQVG2QnFSGtEzcxsZG/Lf9q34SZj1d7ZFTGL+T1WvNu7FrcAaBrTkK/4rfI2pwJhKZvTITEXFubi7hiT8b4/DcQFEU77llA683IcCq/tgMvN6EA944o21m4LVI6aBproWYa8S1eTLhemNlZSV6MuHqqj26djef6mducKAwztNGlxBmmZiMs66aGbatxbNH1xMvvPAC1tTUxA6hI61x18A5Tny27mNqeHMtYP85OsJgdzPdnJ8Lcx5cq6cLrweETheOKjxif8XD6A5iHqhtjlyFkcIZ3BVpIvj65rV4fvhaJ9H54YmadMrbHy0IUYUPvN60GhnjS0yY1yo/cOAA7tu3T5Ifs0FyzGZzwkP0mC55tZaH6W1PohWZpfDmWiLaZzOlBYha9EaX/MdCURR+8cUXaDAY8Pjx45L8oA2EOXbsGJrNZt756au6CeOn/b9GABkCQdtitUdOxfbhMwOnWIYa6x+reY8mzNO0z87OIkmSOVuJ8WXE4XCgWq1OuuuymEFxygfG8zE2NpaW0jfG7clhlD01NcXJr3TyTxKFI9LWI0mSoqdEbZAcp9OZ0kGyYpBM4Yj0t3OVSpXwrLONAiAOp9OJKpUKR0dHJc0zSRWOuCqoy+WSOukvDb29vbwVRwrFS65wRLp5LykpydlJQeuJX/3qV6JPCk6HrCgccXXrx9bW1my9Yt3R2NiIer1e1Hq8dGt7wgkQ6XyrZbOwsAC7du0CrVYLb7zxBhQVFWXyqnXL8vIy/PCHP4Tl5WVwOBxZ3c064enCYhFajqRSqcDtdsPNN98MFRUVMD4+LsXr1hV/+tOfQK/Xw1133QVOpzP7W5en1S6kANP09Pb2IkmSvEdGxcddi6Qje2trK5IkyWvgZisvMm7SU+Hy5ctgtVrhxhtvhDfffFP0BvhrEeScyrDKuXPnoL6+HhQKBZw+fZp3e61sCpZz2tvbkSRJbGtry2h7yUIkUc0MBAL4/PPPI0mS0SnGuSYvCkekJ9rX1dWhWq1OeRXlWmz63377bSRJEvfv35/QJ57t35Y3hSPSP87j8WBlZSWaTCYcHh7OpziSwVaay+VCg8GABoMha2PrVMiZ0ZYMm82GWq0WKysr1/xatVAohDabDfV6fXTuWSKE8igbtT2vNZyPvr4+NBgMqNFosLOzM6ODWHONz+fDjo4OVKvVaDKZCtK9XHAKZxgdHUWr1YpFRUVYV1eHdrs9xsArlH48EAhgT08P1tTUoEKh4OzlUihyMhSswhkCgQDabLZohtbX16PD4Ug+GSCS0dnIcJ/Ph3a7PaZA9vT0rIkRR07H4ZkyNzcHZ86cAafTCUNDQ1BWVgbV1dXw8MMPg8FgAI1Gk5X3Xrp0CYaGhsDj8YDb7Qa/3w9GoxF27NgBFoslt+PoDFlTCo9nfHwcPvjgA3C73eDxeOAf//gH3H///aBUKsFoNEJxcXHM2aKlpaWcg3QnJyejRzYSBAHj4+Pw+eefg9vthsXFRRgfHweVSgVGoxGMRiNs374dvvGNb+TyZ0rKmlY4H8PDw+D3+2F0dBQ+++yzmBN25+bmOPue63Q6KC0tjbkmSRK+/e1vg1KpFH1CIh+YwNuWL/4ffdNSBghlkr0AAAAASUVORK5CYII="
|
<image>如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=\frac{3}{4},则弦AC的长为()
Choices:
(A) 3
(B) √{7}
(C) \frac{3}{2}
(D) \frac{3}{4}
|
\frac{3}{4}
| 69,852 | null |
\frac{3}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAFUAAABlCAYAAAA8j6/3AAAOZ0lEQVR4nO1dT2wTZxb/jRNC/9BND0ZJJFcJ+aMGpYdKsAIVKrQlKZEgTqRmpT0ElQMpCQQJ0Tj00EOrXQ4tSK2EqScOICRCV91GS7qJFuwE1Eph1ywXJAKJsFMShYOlcDCbSnUae94exjOeGc+Mx56xx5H2J4088/198773vffmm++NGSIilDiICAzDqOZFpr/B023H0dZQZKJ04LCbACOQMlQqAYQIBttOqFfi7JOVDcFUKRgAXIq1/jN+cB0d2NbAAZAzHA51yS4GNgZTFULnAIPAiAdobQUmpZlcUcnSwsZgKgMZY2khiNvUho/qgYmO7WgUb8ORMQB2YGMwFeAZm8KZ4Wl88dH7AAB3c6O8iH2zXkTJM1V0TgggAqZGPDh37hwcDANH4wGAUUz5/0tqdvCWn+OZ93MQU9QGoiSICOGgD2/W1ysqwHbGltvbvXHQwjQcp6dBP3wppj1dXABQn1kWBBA0fduCgzYAWE8HASCGYSgY4dM8bhDDyyS5h4aJs5dEGRiijfBElQTDlGnnoyTsk4iS16kAZAwVZEAqC1oMtUtaNgRTAWBtbQ3J5LqoJ23TlwawMZhKwPj4PzA9fcdocQD2qYQNoVMBDu++uw9OpxM3btzgk0pNkUpQ8pJKAB49mkM0GkUoFMKzZ8/4DBWGknDYLCcbQlL7+vqwfft2RKNRbN68GZ999pndJOmi5Jn64sULNDc3Y35+HrFYDHv37sXi4iLKyrRdLLtR8tN/dHQUnZ2dqKysRG1tLd566y1MTEzYTZY+bHroMIzm5maanZ0Vr2/cuEEHDhywkaLsKGlJvX37NpxOJ1paWsS0jo4OzM/PY2lpyUbK9FHSTP36668xMDAgSysrK8Phw4fBsqxNVBmA3VNFC4uLi/TGG29QIpHIyFteXiaXy6WaVwooWUllWRYffvihaOVJ4qS4XC68/fbbGBsbs4s8fdg9qkREHCdfuIvH41RTU0PLy8uadW7evEmtra2FJi0vlISkKhdHxsbGsGfPHrhcLgDqT0itra0Ih8OYn58vCo25oCSYqoTX68WpU6fEa4HpUuaWl5ejv78fly9fLjZ52WH3VFHi/v371NLSYqhsNBqlrVu30traWoGpyg0lJ6l+vx8nT55UzSOFGqiqqsJ7772H77//vhikGYfdoypFLBaj6upqWl1dNVxnenqadu/eXUCqckdJSSrLsuju7saWLVsM19m/fz+eP3+OR48eFZCyHGH3qBLxLlUikaDa2lqam5uTpSvLqeH8+fN07NixgtKYC2xlqpRJk5OTefudKysrOauNQsLW6S/1T71eL/r6+vJqx+l0orW1FdevX7eKNHOwe1SJiCKRiOln+ZmZGdqxY4eFVOWPokoqabxkYFkWAwMDea/mExHeeecdxONx3Lt3zwyJlsD21ylra2uoq6vDw4cP4XQ6TbV18eJFPHjwACMjI7pxAgVHMaeFYJikBmpkZIR6enosaT8Wi1FNTQ3FYjFL2ssXRZ3+artLWJbFiRMawRA5gIhQWVmJgwcPYnR01HR7ZokpKLR8SyKiUCgkMy56ZY0iFAoZXjsoFCyTVJKp5nS0CMMwsjzp+VdffSVzo6zQgbt27cJLL72Eu3fvGqBTkac41yurC7tGMxqNktPppHg8bkl7UilnWVbU02p6vNCw3vqr7HESupBK4tmzZxGLxXDu3DlLuweAX375BU1NTXl7FGa3aRXMpdIjLJlMoq6uDj/++CMaGtLxj2ShG9TX14empiacPn3aWJsEEGPRnjcrxZ7jOH6aJTkiSmpuGR8bG6P29nYru87A7OwsNTY2GiiZtLxvS10qhmEAhkmFMDo0R51lWdnrkkKgpaUFTqcTd+7cyWJweBZYOl0tH6YsmJubMyhB5jE6Okrd3d2yNKnB4jiOPO70DkwABCb16/ZQvtEZljB1sFMgypE6QEAHPeEyF0hOnDhB58+f12wrHyutVofjOIrH47R161aKRqO69T1uiFEvREThoI86z/hzpkOANZLKZRLm83QS0EFhUWclaXV1laqrqykW+68l3RrBqVOn6M9n/yKQmSZZcLUoTIfcHiIiSlCYWDZIXOo3X+TIVHWlLiVMkkgeN6jTMyzW83q9dPToUc12CoG5uTmqra2lRELxFiH1Gw76yDMcICKioH+QfFNhIpUZlgsskdRw0EfuoWFFapJ8Qx28bkqhubmZ7t+/ny5SJH983759NDk5qdpf0D8o06nS2ZYvDFp//Tj66el/4uD7f5AbQAANjW+K17dv38brr7+OnTt3pssUYWWOAPT39/O7BFX6C06cRzBC4DgOQ4fSH2Qw16lpROgQDlKY1jNyfEMdogR3d3fT6Oio+e7yQCKRoOrqalpcXJSlc5EAoXNQvPb7/WSFapIxlfttXTyMgosE1C1lOEAAiJ0K07Nnz6impsay5/x88Mknn9Cnn34qSwv6B0V9KoXH48lIywUZkpoTQzlOmzB3ytejpNwPVPMJi3gkEgn+yY8yPRaebkb1fnJB3kzlOI7WKUxugKYXJOmRgOg8C+/zAdDy8nJRV4rUAIDGxv5OkaBPg+kOYgCaMmmsdJkqVQec4jqcIuzlTRX0yqYKcoARiWOnwsSt8eX+9u1fSaq6OY4zrGa0yumlS/OV9wOg4GsORAYkVe/ayPnevXvp5U0VhtvPpW3ptZLRaowFQC6XiyIRC/wmHRhyqYTFBlpPgNkk/5gFrSdA6wnVeg8ePMDz589NL+cp+9QrIy3LbCrPWEw5cuQILl26ZIqerFByWU1ykipTidMoS0TErfHpR48eJa/Xa1pS9dJzmTlI6fbq6uqCeiKipGpJG6DwmUklTaX+ixcvMD4+jsOHD5sb9Sy05QqXy4WdO3difHzcsjaVkE1/tekNpKaRkMdkpivrMRXluHppBH/q/iNee/kV/Lr+m2odZT0p8zTb1qgv1JW2oXU+MDAAr9drgD15wqhIy6adAc+ooaFBDH/MoZuCQqBDbdumlchqqDgQaP03QCrBanZHYg+CtwJwuVyy8MdSQllZGfr7+wsnrXocz+exlYjo0KFDNDY2Jl5n6aZoEOjgOE71FblVDye6kspsKhcPo1haWsLDhw/R1dVlbrQLCIZhUFVVhf379+PatWuydCtg+V4qlmXR29tb0h85ENDb21uYOCxL5D2FeDxO1dXVGe+ELO4mZwjTWo2OxsZG+cK5BbBUUq9du4Z9+/ahqqrKymZNQ29a9/X1Wf+EZeUI7dixg2ZmZjLSLe4mb6jRsbKyQk6n09I9rZZJ6r179xCPx7Fnzx7bP2GUC5xOJ9rb2/Hdd99Z16hVo9PT00Msy6rmWdiNKWjRMTMzY+meVkvuViuOSc9A2AE9OlpaWigUClnSjyXT//Lly+jp6ckIfyzljxwqIb5xTYHMqLBsXM/2lCE8R+st/BropijQoyMWi1lmsLJKqlLaSDGCt27dwvbt22X7TDciKisr0dXVhatXr5pvzOyotLe30+TkpK5EW9CNJchGRygUoubmZtP9mNKp8/PzePz4Mdrb2zeU/tTCrl278Oqrr+Knn34ypVNNMdXr9eL48eMb4jnfKHp7e+Hz+cwJSTZR1prWwrbIlZWVrNPBQDdFgRE6VldXyel0GrovLWTdm51hqFK/o99eR2trq+l40lIASab6li1b8MEHH+DKlSt8HvJwr9R5nWWTFsc7y/8O/cfQyGl2U2QYpWN2dpZqa2vz7sdB0mg88Uxf1d791138bstr2L3r97mNIEw61RYhGw0tLS2oqalBIBBIVZDUhfq5tF2HdHozan2ppF24cAEnTg5kZuhA6LDYXoIaA43QMDAwkH7Ckr5BlpSZHvGAYRj+6BwCmAUMDbHy+aBmkjiOk2VEo1FxM4LRNzpQ7KWyCwIdRmiIx+PkdDpVvzcobMKT7h4X0jzDAbmfqjZ+fGxU+vrSpUs4cuQIKjZvzis6rhT8WSM0VFRUoKenJ2MBmxBBV+MBuIeG8cMXR9NtNrwP31AHGurr5ZKaEVOU2sEnIJFIUF1dHS0tLeUlIeKo2iStudIxNzeX8W2XqRGPIuom1RYlKegfpGCESPaa9MsfCOhkUD/wBH1tTXgy/Q3ebGtCfYTQ1sB/LXLt1ziuXLnCx3HmYHNK5TPyudIRj8cxMTGBrq4uECK40HsOnuGA5C/wAIADAwfaevng5XJpZC7hCR5PHMJHP/CLI03bGmUdMAQcO3aMr0KSBskBzqHP5M8//5xvAwAU3wAoNKTfHFD7wqUehK9mEBHw88/4BwBW+sdiBIBxyIOVpSKsDN3xuKESymMcpfQfUfkifQ9JSoZvZahENUBaUx5T5MiMKdLhklI/+YY6iGEYWVvskCdDFxUcnOwn7/r8Kb8dXx4TwN8PFwnwO8g5jjIMVWCBb4dXyKDgQlJkmHawuaTjSIAYhsmQ8MGOlNTLYhlzur28IDW+jNQIM9klTg2C4PmCT0hgaDjokwXhiUzlIgFJRpI4ClNHxqhog6P0SH7svyl2KMaARgKmoz7yhTQKhY9MCZPbkWnB9ZG+n7AiEMM9JA95EpmqDN0RnFl+NJNpKdWRLmXYpB5xxUIiFTfLEc8Q1j/Mh6SbjJXSg8hUjzv9p4SCxIFxi6OZbaaq6Ru7Q3yIiMJTF8kzHOAlNBIoyp8sQinKAIhhIFMFRiCVbE5SJ+j/mBiAmNR3AIILxZVUZUCvx3+zgL3x92bZmpzAVF6BC4n8z8IUq6IWisPcMxJ9GvQP5mWccoV1G9Qa6uEGEFl8ml7ZSvnCC08j8BxsVVSwdhcnqTjztBDEF/CgLfWid1tdA+oVDzQFgSVDk5JIQZX4phZk2WnrWyDplPqSknOtuNlCw/IleTE2VRrMm7K+cljF4HQ7SsOoFtBbDJhmqnK9VRtJxVXhbLDU+DIoPmP/Bzpr8RdDWNbYAAAAAElFTkSuQmCC"
|
<image>如图,△ABC中,AB=AC,AB、AC中点D、E,点G、F在BC上,DEFG为正方形,DE=2cm,则AC的长为()
Choices:
(A) 3√{3}cm
(B) 4cm
(C) 2√{3}cm
(D) 2√{5}cm
|
2√{5}cm
| 69,853 | null |
2√{5}cm
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAABuCAYAAADyIufnAAAPGUlEQVR4nO2dbWgbV7rH/+O0aT+01ReFytTgbiLfOChQtSbEBRUXrDS+jeUYktaBplgfvOuCWupL5ZeAUxfilnTjBkPcGye+UH9IIQVzDamzJLay5IMLKS6bhrrXXSylKU62WsSCXBssb6X53w/S6M0jaWxpRi/WDxxFmjNzjvSfc85znnPOMwJJQmUIQADQc1TAuWs2LPJ/YcRjAEQAFWpnvy3R5FcVIq9nz98EWmojomqW/bZEu1+WwK2/zsD5eqNmWW5nNBOWAuC6PoTXrIe1ynJbo2Fb6Mb/sRuH9gAadOvbHg2EFQEAnhkXKvbtBgAIgpDuhDI5QANhw1m4XH/B61Zr+KNyhVUdTZpiEYv4yzmi0RqusShXWNXRRNj7M7cgdNvw81gvZjxa5FhGE2F/fuDBtT93YoaHcGiPFjmWEbTwPElIHqgy6qOpg4Jlq0kztBNWACoi9dXn85XHsiqjubN2fX0dBw4cwL17d7XOeluhjbBxlfPcuXM4cOAAzOaXNMl6u6Kh8STin//8F/burcG9e/dQXV2tTbbblC0JG2/dktzgIkxl/b799tuoqqrCJ598UnYrqsxjmRLICRf/ThCEJKUBOc2+/fZbuFwuLC4uQhAE2euWyR0Z+1hBEEBI3aQomyY2jBFTDlQdDgeGhobw1FNPRa9bRj0UGU8CJL3CyWfGuiEIQvjvaA8geNDTM7rxcgzX+LGxMTz++ON46623cln2MmnILCxjL/RMQxAEjLhrQBIkIZ63okKoAYwRBz9EiJGTKAC//fYbPvzwQ1y4cCF2yfIYVn2oEJF/ZwvAlp5LG45d7LFxdGaRFDee53Q62dHRQVGUOVhGNTIaTxKusTFcE1qw+GnHhmN7jP8B4Q/GDf2rx+PB+Pg45ufny32qxiga7hButAo12HvpJv78p9c2HmcIgrAjYukSUgtvs9lgsVjQ29ub84KXSY+yGuu5j2sARneH+1HpTpDqoCDsiLzGzKzpGzfx008/YWJiInelLaOYLbkUY/LJEwqF8P5/dWF4eBhPPPEEgLLBpDXKhN2zGy0APPfvh2trnEb0TOOSyx15J2J1dRXnz5/H888/jyNHjkTTlftYjcloXoXC1uz0ZSeBirD1G2Fx+iLR0h2fmP94+Ig7d+7kF198kUMbr8xmUTzcISNCIuqIYnNvZOgjMjqc6ezs5JEjRwgBbGpq4vz8fMrrlYdA6qFc2IgGoTRa3L17lwaDgX6/nwdfrufLLx+kTqfju+++S5/Pl2VRy2wG5cZTpIuskOkqpS73vffew0cffQSdTofzQ59haekRfvzxR5DEvn378NlnnyEUCmXZeZRRhBL1RTEo61WK56uvvqLZbGYwGIwmbW1t5dDQEEnS7XazubmZRqORExMTWdyLZZSwqT42FYFAgFVVVZydnSUZ6zsXFhao1+vp9/ujaV0uF00mEy0WC+fm5nKRfRkZciJsf38/T5w4IWsMdXZ2squra8PnIyMjNBgMbG9vp9frzUUxysSRUdhMluvS0hJ1Oh2XlpZkj3u9Xur1errd7g3XXVlZYX9/P/V6PQcGBriyspKxwGVLWhkK+1gx4TWetrY29vf3b0gbz8DAANva2lJe++HDh3zjjTdoMBg4Pj6uqOBl0pNVUzw7O8uqqioGAgGSqWtTIBBgZWUl7969m/Z633zzDevr61lXV8fZ2dly7cyCLQsbDAZpNpt59erVjGlFUeTo6CgbGhpSHo9nYmKCVVVVPH78eEITXhZaOVsWdnR0lBaLRXH6YDDI2tpaTk1NbTgmJ1ggEODg4CB1Oh2dTmeCZV0mM1sS1u/302AwZGxakwWbnJykyWRiMBhUfM6vv/7Kjo4O6vV6joyMbKW425ItCdvV1cXOzk5FaZOFamho4NjY2KbznJ+fp9Vqpclk4o0bN7aU93ZC+ZqnJKfDVseec3NzNBgMUYNrs0xNTdFoNNJqtaadYNjubGq4Q5JNTU1RN+FWaWtr48DAgOL08fmLoshgMMihoSHq9Xo6HI7yBIMMm2qKv/76a9bW1vL333/PKlO3251Q67faZC4vL9PpdFKv13NoaGjLrUApoljYQCBAo9GouH/LRFdXFx0OR/R9srhyYqe6AaQJhqqqqvIEQwTFwp49e5bNzc05y9jn88m6GrPB5XLRbDYrnmAoZeNKkbCp/L1KSPfjnT17lq2trZs6R0ke4+PjrKyspN1uT+nDLnUUCdvR0UGn05nzzJOn+3KJNMHwzDPPsL+/n6urqznPo5DJKKw0PFHL8zM+Ps76+nqS6jSNS0tLbGtrY2VlZcIEQ7o+vRSa6IzC1tfX8/Lly6oW4oUXXuDk5KRq1xdFkXNzc3zllVeiEwxKzilm0gp75coV1tXVqV6IGzdu0Gg0pnU1bhW5CYbnnnuOzc3NOTXcCo0EYeN/hJWVFRoMBt65c0eTglitVlV8wekmGPR6PZ1OJ5eXl9OmL0Zka6woiuzr6+PJkyc1K8j333+val8uh8/no8PhKMkJBllhHzx4QJ1Ol9IfrNZdbbfbE1ZjaIU0wWA0Gnn9+nXN81cDWWGPHTvGM2fOaF2W6PqpfC1um5qaYm1tLa1WK3/44Ye8lCFXbBDW5XKxuro6b35XaQd8PhkZGSn6CYYEYYPBIE0mU179rX6/n3q9Pu9Tcn6/n06nkzqdjoODg0U3wYD4FYgjIyO0Wq15LhI5PDxMm82maZ7pJhhaW1s3NcFQCJZ1tMb6fD4+u2sXv//b37i+tpbPMkVnkm7fvp3XcsQzOzvLuro6WiwWfvfddynTFYKoZJywDoeDDocj76KS4R/n6tWrNJvNeS9HMuPj4zQYDGxrayvoCQaQYXNfr9fT5/MVhLASdXV1vHLliuyxXNWMrVwnfgdDf3//hh0MhVBrQSZ6feKFXV9bi/7JvY//LBm5tEqOxeOanubemhr+luS0SHV+cjmTv0+u8Xq9bG9vL8gdDLh9+3bCktBUP5bceyX/38wxuc+bm5t5Pm6NVSYxtRaXDM+AWSwWms1mulwuVfNSCkgmjNXW19YSmpJMoqSqxcnplByT+1zqJiRXYy5utM2itGmdmJhgdXU1bTZb3icYKgBAr9cnbIaOj/Cy88kn8e9AIOXG6Z1PPhn9UwOTyYTW1lYMDg6qcn0lKI14c+zYMXg8HjQ0NKC+vh7d3d1YXl7ObWHSRFVi3OFoqIJ04ikh2/PTMXD6NC5fvoxffvlFtTxyxY4dO/DBBx9gYWEBa2trMBqNWYVoSNaRCfeYmJAwIf6WVHUzGTPpmsxcGU+pmnoyvBXTbrenPD9TH5sva39+fp5NTU00Go2y+5bSIYpiJOxDKOlA7DVVL6F4lWK+h0FK9wsVKlKIhsbGRhXdpZEbQFQobL5FlSgUl2c2SBMMnZ2dG2axlBlpIdlPw+eGj4nMEA7o34GAqn3nZnnnnXfw4MED3Lx5M99FyQhTxI50OBxwu914+umnsX//fnz88cdYX19PeEZCqnPDxCQjw0H7Y+krAIgAqTwQdaEwOTkZCztUAB6ebFhaWuLx48czTDDEaqgoiglhmXqOIiFSHoBoSMSiE5YkLRZLScVqnJ2d5UsvvUSLxbLpNdbdR2NiLk5fIgBOu4tU2Dt37mS1FbNQGR8fj4ZoyDzBEKLIRdqEI1yUavXizaiwmj/bbiswqc85ePAg6uvrMTw8nJ8C5Rjp+7W3t8PtdsNsNsNsNuP06dNYXV1NcVYF7rtuAU4bjJF+t9t5GC09l8LP6FX5JlQNaStmsS5dSSbZXvB6vbTb7aysfI6jo6Oy54RDDcf61+k4L2bRCkuG55Dlor6VEnNzc3z11VdpMpmiEwzSTeA8GhNTEll6X/BNMdOY/qdPn8aVK1fgdrtTpikmUn3XYDCY8F6AAHpuYEh0Rh+Nbv1jJ1oAzNyaBpCH58dulnQO+GeffRZdXV04deqUhiVSj/jv+ujRI5w4cQI22xGcPHkS8/PzaGxsjD5H0PVXF7qbD8dOdj/ANQB7Ig/kKOqmmIxFfdNqK4ra+P1+9vX1pVydIdHdEml2RVLkIlsAAraohVz0wpLhYUJy1Ldic14Eg8Gou9Fut8e5G0NxPolQLHy/EO+YqEh6NkOJCCuth1ZzK2aukNuHK4U4yuUEQUkIS8a2Z6ixFVMtpCU1mwlKppSSEZYMR327ePFiXvLeTNMv7bI3GAwpx6jZUlLCSk8RURLQOh8oNYxyQcEPdzLBuLGf2WyG1WrF0NBQHksUJr5coiji888/h9FohNfrxfz8PM6cORN9+rVaBSgpkqO+5Zutxn4URTEry77khCXJ999/X3F0VrXIhWFUFjYJv9/PXbt2cWFhQfO8tTCMlFD0fawcOp0Ovb29mroal5eXcerUKbz44ouoqanB4uIiOjs7Nct/A3m7pVQmEAiwuro6q62YSprCVB6jbPvIbCkZYeV+xC+//FLVOFXXr18v2KDYJSNsKsxmc85DL0iG0f79+2UNo0LwU5eUsHI/qMvlylnUt4cPHxaEYaSEkjKe5OZuGxsbYTQaceHCBcXXYdKEt2QYmc3mwjCMlJDvOyuXpGoC4x9YvBlST6UVPiUlrByS2Ha7nX19fYrPy+QxStePlvvYnBKK/BveoRYNcxT51Ov1JkR9S/XMATWn0rSkRISN7TJLR19fX3QrZrKwS0tLfPPNN4vCMFJCCQgrv/tMDrmtmFpOpWlJCQjL9DVVTHwdHh7m4abXI4bRfxelYaQEgUy7Z6/gEUFUQH6JamSlJtwzo/h59zs4tAcIhULYu3cv1tfXUVtbi+HhYZhMJk3LrAVFL6wkXmo8OCoY8a6b0cXVLpcLoVAIrx0+nOHc4uWxfBcga0ggxaJykhjrvQTabPjDHhHS+nir1RreaJyUVml0mGKg6D1PyWJIzQ9JuP6nBzx8CJjihuPJ5224TnE3ZMUvbDJRee7PYIaH8Kfnia9t+6JbDZXWyWKvvSUnrETvJRc+/eMhAEBLrTHhWLHXRiWUjLDxYs2MdePcuXOoqKhAhfE/EV9PieKvjUooGWGjEVc805hBYziiCom/z3yOvXuqY+kAhAdJpU3xW8Vx0O1CRfctcPLT6Ge//OwBsBvh8HTSfZxq5FtC5MUtklPCu9Eu9tiiO9CkXd3dLbEdaS09lyJbDrcH/w+Yt1Dt2qmg0AAAAABJRU5ErkJggg=="
|
<image>如图,B地在A地的北偏东60°的30km处,C地在A地的北偏西30°的方向上,∠BCA=30°.直线l表示经过C地并和BC垂直的一条公路,则A地到l的距离是()
Choices:
(A) 不能确定
(B) 约42.4km
(C) 45km
(D) 40km
|
45km
| 69,854 | null |
45km
|
"iVBORw0KGgoAAAANSUhEUgAAALoAAABbCAYAAADEFp/WAAAcC0lEQVR4nO1df3BU1b3/3N11N1k2u2HJShLJiyFkTRN5E0AQMZ0gJPxw9IHEDlTRMlN8kQQFbWmJP19HO3RoaEVRB6TRVF4FxyH4A9sKTp1Aa0EFRwlY3gsCGayQEEjA/Hrd+31/bM7N/XHu3bu72ewG9jOzkHs/55x7fnzPud/zvd9zjkBEhCTCBhFBEATp+tSpU2hpaUFraysOHDiAS5cuobu7G/39/Whvb8cXX3yB7u5uTJs2DQcPHoTD4UBfXx8AwO12495778X+/fsxadIk9PX1YebMmXC73SgqKkJJSUmcSnnlQEgKemjIhbqtrQ3bt29Ha2srTpw4gU8//RSnTp1CTk4OlixZgszMTNx888248cYbcfbsWUydOhU2mw0dHR1QVzURYfTo0ejs7AQA9Pb24uuvv4bVakVTUxPa2trQ0NCA06dPo7u7G/fddx+sVituvfVWlJWVoaCgIKIyXI1ICnoIdHZ2YsuWLfjss8+wY8cO3HPPPfj+97+PCRMmYM6cOcjLy8OJEyc0QgwAgiDA6/VyhZzxAOD3+/GPf/xDlweCgnr48GEQEQ4cOIB9+/bh3XffRUFBAZYsWYKbbroJt912GwRBuOqFmgu6CiGKouJ/NT788ENavHgxAaDCwkJat24ddXV1KcIAIADkdru5aQCgoqIi0qtiFt+It9vt5Pf7dflx48YRANq2bRutWrWKAFBVVRWtW7eOzp49qykvD2rOKOxIxlUp6Dz87W9/o+rqapo6daokgCUlJdywdrudBEEgr9fL5d1ut6EQZ2RkSILMAwCyWCy68Z1OJ3k8HgLAFUyXy0UOh4OmTp1Kr7zyCjeNqw2W4X1/JBa+/fZbrFq1CjNnzsT27dvx4IMP4pNPPoHdbofT6cThw4c1cSwWC2w2G4gI58+f1/CCIKCrqwtWq1VXXWFqBZuMqnmHw4GUlBRu/PT0dHR3d+Py5ctcFcVisaCnpwd9fX04ePAgAoEAbrnlFtx9993Yu3evYX3wnnfFIK7dLE6or6+n/Px8qqyspPfee0+6b7VaCQC5XC5uPDO8IAgano26oeKzUTzS5zPO6XRquN7eXrLb7ZSTk0NLly6lzs5ObhpXKq4KQWeC9swzz9DUqVOptrZWEyYrK4sAUFZWliIei4sBVUTOy2GWz8zMjCq+EZ+RkUE2m43LC4IgpfHxxx9TSUkJVVZW0sWLFxXhrlQd/aqwurz44ot47LHH4Ha70draquHV1g0eb7VaEQgERiTvcDjg8XjgdDpx8uRJ6X5fXx/mzp2Ljo4O7N27F9dee60Un9UJXSkWnDh1sGHB008/Tbm5uQSAJkyYwA0DgBwOBxUVFXH5zMxMaSTkjXbx5tmbSK8pGafHW61WcjqdZLfbadGiRfTBBx9ww410XJGCvn37dpo+fTpZrVbJBMcTEqfTSVlZWSQIAjedUNaTROXlcwKn0xnShMn4M2fO0OrVq2nx4sXU2trKjSNPfyThihL0lpYWuu++++g3v/mNNHEzamSmt6ohiiJ5vV7D+KNHj05onpkwjcrP3hZqnD9/noqKiujZZ5/lxh2JuGIEva6ujhYtWkQXL14kAJKgyiGfWPp8PvL5fNy0HA6HpNKMRJ51Yr3yYcA6E0rd8Xg8VFZWRjt37uSGG0kYsYLOhLa+vp5KS0upsbGRiMjUSM5e+Xp8KCFKdD4vL0/3TeX3+0PWD1P3GNauXUs//OEPFemMNIwIQder2NWrVyter0zI09LSuOFtNptpOzXvmUNhZ48nH8pOzzoAzw5/8eJFKi4upvr6em7cREfCCzpP4Jqbm2nOnDnU1NQk3WOTqmjt3COd17PTs/mIUXyjibm8Ezz++OPcMImMhBd0NX75y19SVVWV4t71118f8nXMRrskHz7v8XgoIyND6iR79uyhyspK6unp4YZPRIwYQRdFke68805qaGhQ3Gf6ql4jxdvOnei8GTs8U/nUqKysHDGqTMIKurxRPvvsM5o4cSKdPHlSEYapK1arlZtGotq5RwrvdDoNrTMul4uysrJo9uzZXD6RJq0JK+gMBw8e1KgqRIMTr8mTJ3PjjXQ7eLx4JpyhOgHjANDRo0cVVplEREIL+ssvv0yrVq3S3BcEgTwej66JjY30iWrnTnSeCfC4ceMMeXUnWLhwIREl1kjOkBBOXSRzHGJ/P/HEE3C5XFi7dq0irMVigdvtRmdnJyjYURVOR+xvh8OB3t5ezbOSvDHvcDgwduxYtLa26jqQud1udHV1cXmfz4e2tjbN/XgjIRZeqIX8Zz/7GUpKShRCTkTSgge5l55cyG02GwDA5XJxGzHJh+b7+/tx4cIFrhCz+KIochd6p6eno729HbNnz8aRI0cSayHH8L9EjFFVVcVd/sWck0LZkbOzsw35eNu5Rxofrj/+qFGjiIjoxz/+MZ0+fZobNh4YEkFX6mQBE2H4mDFjBh07dkxznwm5Xr9EjO3ISd4cr+4EtbW19PHHH3PjhAP5AphIEbWgD9W0o6qqir788kvNfT3rCSt4vO3QVzsfyg4/bdo0+utf/8rlwgN/ADWLYVFdQvXG2tpa2rRpk+Y+q0CPx8ONF287c5IP8npuA8xVeNKkSXThwgVuGLOQtiiJMH7MBT2UkK9evZo2b96suc8qWK+Sk3byxOYZxxzEKisrFfxQmCDDSWGIBD2gePCRXXXUeCR0NrZs2UJPP/20NlMDlZSXl8eNF287c5I3Z4cvKCggokGhvvPOO7nhhwNDNqKL0v/NVA6EFPQvvviCli9frs3QwCig91mfVWIi+4MneS0viiIFAgHdtbl6qK4YfLOzX92uI2GlQRQD1eXXK6upoqKCmkO8WHi928ifWhTFuPtzJ3ktL1dBQsV3OBzkcrl039R6qK4QJOE+squOYGIgVWNIBb1xQzXV7dpJs2Es6Lyt3lhvNbLTCoKQcHbmJG+eZ64ZDQ0N9Nxzz3HDaXGUZmM2fcnkqblxUNDDkHVTgm5q4tDcSNV1jcGMVKwYuKk1CdXW1tKHH36oSBvQ2mnlzwSM9yI0w0drJ5anL8+bXv6H+vlsFzAz+UtEXl2+0tJSOnz4sCasWtKO7Kqj8po66bq6AgPX4ZkbQwq6kYgHGzz4wJqammDY5kZFxuTpbPvvNzT+ywB/ITMDz04rF7RIeL30zdqJI00/Ej47Ozvs+NHWTyx41knl3KxZs0KOyo11KxW7jDUeEWVRzAt75KqLLIONG6oVk4U51VpB/+TQl1QxZ57y4dCuRpdXRCzswPKvbGlpaQpeLejxtkMnip08VjwAmj9/vvKmSvCrK5g+HpDkLFz9nCgMQddNekBlkZsWq+saNcGWP1CtSAOAtIsWD8xOKwgCd6Rlb4FQvF76Vwofbf3EmjdSR61WK02aNIm2bt06GEaeSHMjCRXVMq6ZZgNc+QoF096L8t33iP1x7G0Iqz/Aiz9ZKPH/03JCE/fJJ36B2+fNk8Iwj8NTp05xPdxSUlJw4cIFOBwOiKLI5Ts6Okzxeul3dHTAbrdLrr5m4rO/w00/0vyZ4aOtn1jz8vyzdhcEAT6fD4FAAIcOHcInn3yCr776KsgBAIJp7vrTHqyYWwEgWPfC0eP4EMD4CeaPtJEQdtcY6HZ11eVSj935ZVBXCto8g5MSpqcfOnSIqh58SIoKGK/xZGnq2WmZvhYpHyp9Hq8eiYY6/Uh4vUMEoq2fWPMs/8wEyeq2rKyMAiq9oWbOoJrCvs8As4MWvTC1F3OCLpK5hDlh5s6dH4wuiuT2jFEUUg12ikOseFbJejqxIAiKj1XqVzJLX91J16xZQ7t371bMU/SeH2ovxFCr8eNZf0PFq8snEtEvfvEL+sMfthFRUP2VT0Cl34A1LxLngei9F0VR+WDZxa2lNw1MNp2U6vASBJs0mttsNsrIyKAZM2YodtdivNVqHXKe7UDFJqEsrHyUke9ZyBrG7XaTw+FQuAvL48uPamHpMN7hcCj0Vbk3IPvJJ23yX35+viafsayfWPOCIFBJSQm3rH6/X/ctpRKriDBEbroB1XUQdyyYQ0REaU4fASnkTHVzc8wKy9shaqh43oai6pMoGK8eyZnQu1wumj9/vkJ9KCgoUAg5ENzXccGCBfTcc8/Rhg0bpNX08r0Q5dafvLw8qVPFqvyJwOuVj3V0j8dDDz/8MDcMUXSOYDHzXrxt1gz67PMDAwV0ktvJ30GqoKDAcEsFxsvVDXmB/X6/oYmSx8vBGkC+ELi+vp7uv/9+ysjIoLKyMnrggQdo/fr11NLSQh0dHVK4pqYmScCzs7MVbg29vb20efNmevXVV+n2228nh8NBM2bMoNraWsUOY2asE4DWwY2FMVt/icqzDsJWhi1btowOHjzIDRsNhkR1kf9PRPTu+4305H/V0ve+l0d22zUEpPAfrjPSynmjkcCIZ18suTqhbHkYG0nfeOMNmjNnDl133XW0fv1604sF1qxZQ8XFxZSbm8tdHaXGG2+8QVVVVWSz2Sg/Pz/kF1H2NtDjQ9VfvPlQ7edyuTQqS7iOX2YwBCN6QCPsLjcIQuRCOly8y+Wi3NxcKikpoaeeeor7aozl1g1/+ctfaMqUKVRaWqpZeGJmf/ORyouiaLhyafPmzfSrX/2Km26kGGLVJUBvNW4nf+F1BAFkEfQrweFwGLri8nj5SBxJfIbU1FQCQLNnz6bXX3/dbOHCQrgdZNOmTTR58mRqamrSVVcYoi1/IvA+n8+wk0yfPl1zP5rDf4dcR78ubyxBADmcIJ4vAgBKTU3VXR7HXtex5P1+fxjec3wMyQoZTsMtW7aMsrKyDDfxj3X9xJJ3uVwhdfacnBxyuVz0yiuvDNkbdUgF/Z133qHrr/833UJE6w8NQDqXR4+Xn8kjx/vvv08AaMOGDSZLE1/U1NTQrFmzqKWlRboHDJoyeUhEf/VweMax9p06dSo3XCQYUkGfNGkSeTwers2T9eJo9g1xuVyGIwmbHKmxdOlSevTRR2O+VdpQpi+KIp07d46WL19Oa9euJbfbHfK4mkjqN9Y8A2sbI97n8ynab82aNfTnP/+ZGz5cKGpN7BalX7j46KOPdAsRykGJjdSR8mlpaeTz+bidoKysbMQfGrtp0yYqKCjQPSzXzMQwEfZ9CcWr3Qa6urqotLSUGydcaJ4ciZATBV8z58+f19xnHop+v58bL9p9Q/RcQZuammju3LmGeR5pAs8zu40aNYqAoCcoD+wUC703QaLvC+P3++mjjz7icuFgSAT9+PHjtGzZsmB8zseOjIwMbrxo/ZmLi4u5/Pr16+mRRx4JuxwjAQsXLqS9e/cSkb7vCIPa316NePujq3neF+msrCwqLi7mxg8HhoKuVmV4qo3YLdKDyx6kAwcOKNKZMG4CjRk1hlKFVM1DxW6Rsr3ZlCqk6lbC6NGjKVVIpVQhVdP5xG5RSlvxxbRbpEceeYReffnVYD7FyNSwREdNTY3C/4WHaP3d47EvjHqQZG+isrIybhpRmRd5QqV3zf4uLCxU3GcCLPVUVRz5viA8QXQ4HJQqpEo6mzq+3LlK3gmX3r2Ujnx6RLqWc4oyjDCVhYc1a9boqgNG+66IomjIh4o/HDwzPDD5ee2116I+3DcsQedxTR800cP/+bDEAaBUIVW5JQKnEzgcDu6IywQ4PSWdm+FUIZWsVuugP/NA/MWLF9PZU2dN5Xukgwn3W2+9RWvWrFFwrP7i7S8fDa8+B1YURd05nlmEXGEkpAqgHtLlN27eiBWPrICQKij237506ZImrM1mgyAIGDVqFHp7exV7mzOexe/o6JDuB8s/uEJl7NixUvpEhMceewxLliyBz+cLVZwRCVZ+BlYPlZWVAIB9+/YBgFR+t9ttuD96WlpawuzPLi+bIAhwOp2aQwYEQcC0adPw7bffatI0DanX6LzmjTixW6QbbriBRFGk9JR0afLAC4eBnpyXlafhiLR2WPWIzHhfmvKL4Zbnt9BTTz3FjcP7m4jviJbICJXPe+65Z7B+dL6oMvNeIu/7AgPrHACqqanhcmagEHSjV7wk7LJKf/311+nl376s0cnl6TEhldtR1ZNaxqsnrur4zITG7r+/833JusLuBb4LaMoT6beBkYSCggJD3xKjLUXU7RMvXu+LN/sa7PP5Ih6cTH8Z5QlKbm4uud1u8vl85Ha7g+FUGYnWjmrE/+hHPzKb/SsePT092q0jSKnzjsT91RkHgFauXEn79u3jhgsFU4LOG82JSFoQoZfJcOyovEowih8Ln+WRjqamJqqtrZWuWd15vV4iit++NZHyubm50nJCIqLPP/+c7r//fm7YUDAUdLmKoa6k3bt3k9Vq1T2iL1o7rVH8xx9/nHbu3GmU9asWK1asoHfeeYcKCgrI7XZTTk4ON5zX6zUcpBJtf3UGPXkLhYiduh566CFd34tY2VlFUaT+/n4qLCxU3EtCWQ9sFNTb7SDednIzdvTCwkJuJ5g4cSL19PRw4xkhYkEP1RNjZWf1er20f//+yDJ9lWDdunVxa59oefVCdTVKS0vp+eef53JGiEjQL126xHWYUvsbq0dbM/7IoVaeLFiwIGT+kqM8UUVFheZevP3NzfJpaWlcnlln7rjjDi5vhIgO1N29ezdmzpypuDd58mQEAgFkZWVJH3PUJzqreTlY2La2Ns0HEgBIT0/HuHHj0NDQEDJ/6g9RVwPUdXbXXXehtrZWus7KyoIoiob1H6p9hovv6uri8na7HYFAAK2trfxKMEI4vYKNlMuXL6fjx49L9+V7mvDCw4Qd1Waz6fLMRFVVVRVOdq8a6L3B8vPziYgUu17xwGsf+b4zZtpvOHhmwp41axY3nBEiUl3k2xOMHTuWBEGgKVOmcMOGa0dVh2G7a6ldNZPqSWjs3LlTslzoCVEoO3Yi2tnZl/BwELagf/fdd9JGPSwDzE6rRrR2dGBwjeTatWvDzWoSRKbrfyTx8hNTzMKUjk4y/a+trQ12ux2CICAzMxMAcP78eU2cMWPGSLoWcXRur9dryGdnZwMA2tvbsXz5clRXV5vJahIqPPvss9i+fbt0zeo6VPtE236x5AsLC1FeXq6JY4hwe8a2bduklS3XXnutgmOj8lDYUR0Oh6Qi6X30SCI0AoGApv4U6wEM/Nn1Nv2Mt51d7cZrBjYTHUFhxTh27BguX74MADh79qwiDPsBgMPh4LpqmuHdbrfkqvm73/0OP//5z3Xzk4QS6vqxWCyYPHkyvvnmG2RnZ8NisYCIQraP3W5HX1+fLh9N+4bLy8uUmpqK3t5e+P1+g1rQIrQ/ukqo9u/fj0AgoPEXBpT+xj09PZq0Qvkrp6SkICMjQ+GPvHXrVtTU1OjmJwkl5PVDwTkY7r33Xvz+97+HIAggIskfXd6GRASr1QpBEOByubhCHg9/dXmZWL4zMjIwZcoU6ZQMMwjbjv7Pf/6Tq1MxO2h2djYuXbqkEUgzdtS+vj60t7dr5gRJRAb2hp03bx7efPNNZGRkKHRfeRu5XC6IoojMzMy429H1eKZJtLW1Yfr06fj73/9uui5kgi4/iyb4N0n/DOL48ePcTOTk5AAAzpw5w+XZaPHNN9/o8larVSHkn376KebOnWu6MEnwkZaWhsOHD6O9vR3t7e0aXhAEpKSkAIBh+8SLt8h4Jh+XL19Gd3c3p7RaEES5oFswKOzB2wIBEAY7wJkzZ7Bo0SJNJvPz89Ha2mpoPQkEAtyDnbKysiT+X//6l4LbsWMHbrvtNkUBk4gMlZWVaGlp0bxpx48fDwDo6OgI2X7x4knDi7j77rvx+eefK8KqVTEGARb1p0zVVFV1fejQIaqqekC6BrQHb/HOCY30HE35ipnkB6Lo0NDQQE8++aTiHvtGwfMSJUpcOzqDPN/Bg+LUv4GDvUhtRx/o7CS/lnWy1tZT8Hq9AES4XC54PB5cc8013Imp3A7LG8lD2WmZzqZON4nIcMstt+DcuXPStcvlktQY9cRUEISo7eyx5uXfcQDgxQ8I1RVA4xERoiiCiFBXLaBYqMAxImVXUZwAXV5DIjVTNTsFOiDS1q1b6aWXXpJ8W/RGasZL+7KoFiOHspMyv4fJkydz+SQiQ1FRkeIkED0vwnjbyc18Z3E6U5SaBDXT7Art4unqiuBRoBYAEI/tgiAI2PT1eMkkRRvLYRGKgfH5wS5jEdDf34+a6mr09/cjJydHM1LTgL2zv79fYQeVH6TK49U9NRAIwGq14uabb9bwSUSOo0ePIiMjQ7o2sn4Ztc/w8qLCHiJY7AAssNnscDqdg2V7+48Q/HkDYQflcnxBOfYeb4FFpGbMLboL5TV12PvCTwZTLFqIuupy5BdMCF4T8H99/SAAHo8Hp0+fhtJSE/w44XK5AEC3EC6XC0Sky7NThV944QXk5uYqeEpOSKNCcXExOjs7dU+0Zh/rAP3283g8w8xbBk8ctzgQ1Kct6OzsHBhAgzL4pw/+hHkV7HTyQY08P98PEMHyzm9fwl6hHBsHhFzE4JHh+fl+jM8vliId/eoYXC4XLly8OBBmMMH09HR4PB5cvnyZO/sdM2ZMSB4IdpZz587B6/VqGiOpp0eH8ePHIxAIGH4MUm8exMDqPi48BYV8fOH3AAEQ6f9AAMZ400EIgHAEf3yJMH9BkTwKAKCl5TjKb5gAy4s/eQnVv65B0YAMWTD4GX/hoy9iYfEAIQR3gHrvvfcgQCl0OTk56OzsRGdnp5RJ9j8bpTs6OhS8vICMt9vtkonx5MmTmhE9UfHoo49ix44d0rW6DtRYuXIldu/ePSx5k6Orqwvfffed5j5TF91uNzfPo0aNAhBsf55hIea8axRAIk58dQwU6AvKH0Rc68uEgGsgHP1fCDVzUTQwnhMG7CpHd+GnL+3FvIp5wft1u45wlX412Mp8+Qp9ZgJiR3IAwd2YmOOX3W4nj8cjHT+uxwPBZXTMwR4A7dmzJzjRkJkWE83MWFRUJE2czSwMYeG9Xi/94Ac/GNbyrF27Vmo35ufPfh6PR2pXh8Oh4Fl7xJe3Uap3LMFip6xxeQQB9O83TqTz51qpcUM1Vdc1aspbUw7CnOCx6oDAE3TtIVsMoRpmqBpu4sSJipUx6oYZ7h/Li3zxLuuc8uvMzExNGPVAwH7y/d3Z7rGx/I0bN04aPIiCO62tW7eO3nzzTW4bbNy4kerr62njxo3cNh4O/rXXXpN4URXmroX/QSI1UzlAjUdkbHNjsMwVK6RbKIfA7Q3U3Gh6pI8Uw9VpYoVjx44RAOl8e71VVgyHDh0iq9VKBQUF0i5nSUQIkaj57Q38QQkWSXaZBIHZzuVC/WXjrxW9wdRzE1i9iCXq6uok1cUMnnnmGbJarZSZqT0yfjjrbbgPD44aovJ/zUf8EGeQCkREzW9vwI0LfwqG8po67NkkMzWaBA2Dr/hwPCORn3/VQZpZhqbUbUNEECAAAiAQEQWNihbpi78gi8SNHEZDhwqf6IIzVPnTS0d+P551wXt2tG0Xa14LEXzPc3FA0Dm9xqAjJZFE3KCUy0HBVg/Qan7AH1eZmIiAoZCLCBiwST7Jx44XFLxl8HsN4wUBpHI3ByTVJYkkrhzwVJ6ItqRLIolEhXyBvhz/D9i/JOiJVEEZAAAAAElFTkSuQmCC"
|
<image>如图,两个半圆,大半圆中长为12的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()
Choices:
(A) 16π
(B) 18π
(C) 32π
(D) 36π
|
18π
| 69,855 | null |
18π
|
"iVBORw0KGgoAAAANSUhEUgAAAGgAAABkCAYAAABq3nXaAAAM60lEQVR4nO2dT2zb1h3Hv/Q6gB02VO1JtxBbsjDDDjSGLoxSwNzWzXJ7CLMiqYoerJOiYgcru8QBBsguCjjBCkhZB8jIIUpOanORgSIWchkVILPcXpQCRWxEBpQE3agdCvkSUK0t/XaQKUsW9ccUKVKqP4Bhi+J7fOb3vd/7/3sMERGOcC0TTifgiO4cCeRyjgRyOS85nYDDks1mkc1m8ezZMzx9+hSPHj3C9vZ2x/tZloUoivB6vTh58iQEQYDf7wfLssNL9AAwbm8kVCoVrKys4P79+1hZWYEgCJiamgLHceA4DoIgwOPxdA2/vr6OUqmEzc1NfPXVV8hms5AkCefOnYMsy13DOw65EFVVKZlMkizL5PF4KBAIUDKZpHK5bEn8mqZROp2mYDBIHo+HJEmiWCxGxWLRkvitxFUCaZpGS0tLxPM8BYNBSqfTpGma7c9VFIUikQhxHEeRSIRUVbX9mf3iGoGSySRxHEfz8/OWlRQzxGIx4nmeotHoUDJHLxwXKJPJkCAIFAwGXZNzy+UyRaNR4jiOksmko2lxTCBVVUmSJPL7/ZTP551KRldUVaVgMEiCIDiWRkcEyuVyJAgCKYrixOMPTT6fJ1EUKZVKDf3ZQxcomUySJEmuMWf9omkaBQIBikQiQ33uUEcSLl++jAcPHiCTycDr9Q7z0QPDsixSqRSOHTuG8+fPd+0cW8owckG5XG70NcaBdDpNoijSxsaG7c+yXaByuTxS9U2/bGxskCiKtjcebBVI0zTy+/1jJ45OsVgkQRBs7bfZWgddvXoV09PTkCTJzsc4BsdxiMVieO+991CpVGx5hm0CLS8vo1KpIBKJ2PUIVyBJEqanp3H16lV7HmBHsczlciRJkiuGSoZFOBymRCJhebyWC1QsFkkUxZHr5wyKpmkkSRLlcjlL47VcIFEULU/kqKCqKnEcZ6nlsLQOWllZgdfrhSiKVkY7Mni9XszOzuLatWvWRWqV0pqmDaVf4HY0TSOO4ywz8ZaVoOXlZYiiCEEQrIpyJGFZFnNzc7h+/bo1EVqhstW5ZtSx0ppYUoKuXbuG2dnZkRsAtQuWZXHlyhUsLi4OHtmgCtvRchkXrJjoG7gEraysOL/OLHMJDMPs/1zKOJeWJubm5nDjxo3BIhk0l0iS5OBgaIHiPhB8cSo0rq1SCCBfvNAl3HBQVZW8Xu9AcQwkULlcJq/X65h5Ww0dFKdOIe4zvO4Eg2bggUyco+Ytcwlv3fQhfmcOx42+X3uMwrDTZMD09DTu379vPoJBckcgEHBkIUXDtIVWDb/tVLKcoFgsEsdxpsObFkjTNPJ4PM6Yt0KcfAAZ61MXzw11kA7P86anx02buGw2C1EUHWy9+fCrEwaXM39HZM2Hi28bGj5HePfdd/Hpp5+aCmtaoAcPHmBqaspscAtYw+O2SiaDS2/dhC9+B3Pu0QeiKOKLL74wF9hssZVlmdLptNngA9NWz+yZvU71kpNsbGwQz/OmwpoWyMnlsHX2GgrQf3zkomqnDZZlTdXXpjdwvfzyyyiXyyOzU81pTp06hXQ6DZ7nDxXOdB1UqVSOxDkEXq8XpVLp0OFMCfT06VNwHGcmqK3cvn0bk5OT+Oijj2xbBjVsRm4TcSc+/vhjLCws4MWLF3j8+DGeP3+OmzdvOp2sBkMtQW40b9evX8eLFy8AAN9//z1u3bpl6oXYBcuypkq1qRJk9mF2UKlUsLy8jO+++w4Mw0Bv87z22muYnJyEx+OB3+/H1NSU89MiJhhZRxbb29tYWFjAqVOn8OzZMzx8+BAzMzMAAJ7n8eWXX0JVVaTTaRw7dgx37tzBq6++ijNnzmBhYQHr6+tDTa/pettMm17TNGJZ1kzQgVFVtbEjOxqNHnodRC6Xo2g0SqIoEsuy5Pf7KRaL2d6nMzvtYLqjalJb0xSLRQoGg8RxHMViMUt2FGiaRplMhiKRCAmCQF6vt+GTwWqfCWY79qbf8iAjtIchn89TIBBo7Li2c/RcVVVKpVKNjMDzPIXDYUqn0wNnCI/HYyoO0wL5/X7KZDJmg/dEURTy+/0kCIJDc071MbREItHweCKKIs3Pzx/6/x5k6tu0QJFIxJYtjfr2QkmSbM0AZsjlcrS0tER+v58AkN/vp6WlpZ6mS1EUkiTJ1DNNC5RIJCgcDpsN3kYymSSe50mW5ZFZfJ/JZGh+fp4EQWj4FEokEm31VywWM7073LRAVqxY0TSNYrEYcRxHwWBwKHWaXZTLZUqlUhQOh4njuMb/lEqlyOfzmV44MlBTzGzTsdnVSiQScaWXqUEpFosNnxATExOmGzctHVWq1VDd3f+p9ZiIOOyKlVKphMuXL2NychIAkMvlEIvFXDnwOigcx6FSqaBUKuHChQvmRzDaJKvVqLpTpVqtv1zSz4oVO/owbiccDlM4HKYLFy50aIW2Tjj64gWi1VDbQpiBBCLq3h/K5/MNYezuw7gF3WlHIpHovPJpb3q+eeVRIe4znBXuIlD99+5OlXZ3alQjolq1/rla2793ceFDWlz4kKrVfUUVRaF3/nyBTr9+hm7fuk01g/ib4zWk032G1/evtaR7t9Z6/26fuc4k+Xy+xWlHJpMhv9/fepOBOHVWKYQQHVxR0b0E1WpUbXmJNao2/sn6d/VE/YaqO1VKp9MkSX+gN9/8U2NBSW23+cW0ls7W71oS0XRfjWqNTNElfEOIvfQafu6SIQYklUqRKIotDZ5gMNjmb67zosoCxUPt13uauFr1wEtoKj27eznz7Jk36OfcCXrnvEzKvxSDHL//kjp+dyANhsJ1C3/QNPf6bCHRaJQCgUCLKdNdmLWat8Mv7O8w3cAAzN5fEwyYupCgGsAwzbcx+NFLE/jgL2Go//sGP/npz8DzJ821VtpaL/Xa081sb2/j/PnzAIBUKtXSUltcXMSVK1daW29bT/A1gF//sv9Few2BqFpDtWr0ShgwE0CtSqAJBsz+ZTBEqBHw/vvv49KlMKrVXfzu93/EJ//8BNTURiddbwZgQMbftT2VsL/eaO/vQ4S3m83NTczMzGB2dhYLCwst3+luoGVZNgjZYUVsJ/SipDcAdg3NQI2qO6sUP1g0m8zcf775L/2C46hUKlEk8lf67etnaO1hrr0h0LGRUL9uZEIP00ioX+v1eTAURenqjqzz1EJnE1eIx9saCER9jyTUaPXSj3vazuYxJ90Gu8lZrBXEYjGSJKljXy6dTpMsyx3Dr4baF1kW4r6O77YvgQrxKXrjrK/DboJ9jHZ764Ogo+7Mrx+XmJqmkSAIPccU632eA53UDnQVqLZbpd3Nf9AH8QKthjpt92jFqO1fLpcbs5ajMlLdjKqqfTmVtWMKpkcJWqWQL04FKlDc1//a507D66No9nQPxb3mfFKpFAUCAcuf31Wg1ZDesz2cQETdd9/pZm9paan/CB0gkUj05aHYTvdrnQVaDbXYSRgMQ3Sjl3uucrlM8/PzxPO8K11m6oOdvV66bv7smjIxFqgQJ19zhVOIk8/Ens9+fMdtbGyQJEkUCARcYfaaBzt7YZePuGbaBTISYzVkelNuLpcjURR7TjGkUinHzd7Bwc5uaJpmONZmNW0C4cBmqHq73ZyZ01EUpa+K1kmzZzTY2Qm9lA3j4I2hrT4sFoskSVJf2yaHbfaMBjs7oZeyYXUXhro8tFwukyzLFI1G+7rfbrNnJj12NgiMcOT0k2g0SrIs95Vj7TJ7uuf4fjdCRyKRvkuZlTh2flA6nSaO4/p2ZWyl2es12HkwnU4OVTl6ApeqqhQOh4nn+b5z8qBmr9dgp47e+ZRl2dH1eo4fkUZULx2yLPfdpzBj9vo9/6dYLFIgECBRFF3RgXaFQDq66dGdZPSy9/2avX4GOxVFaZRmpxbrG+EqgXT0OZV+z1DtZvY6DXYanaWqL5VyE64USEfTtMZ+neaXqChK24s0MnsHBzsVRWk5QFeWZUsP0LUD1x8V3Uw2m8Vnn32Gzc1NrK+vg2XZFj/dgiBgZ2cHn3/+Ob799lu88sorOH78OJ48eYJSqQRJksBxHM6dOzcyG4pHSqCDbG9v49GjR43P+sHrLMuCYRicPn0aQH1T8ai6jB5pgX4IjOw2/B8KRwK5nCOBXM6RQC5njATawo2zTOsRAQwD5uwNbDmdtEFwshNmB63r99xzTIBZxqgEAcAWnnzdvDh9BnIIWGt3DzwyjI1DPwDA1j3cxUXc2dvdsXXjLN66GcIqzTibrgEYK4G27t3F2toaTjARAIAvXgCRixxom2CMTNwW7t0F4oW9zWaFOBA5gbM3RrqJME4CFfAYF9E4EeD4HP4WAtbu3hvpVtz4CJRZwdcX3zY+qmaUcboZaQ3ti/v1BZcuPCngUIzFaPZZhsFa21Uf4oV/u+qQDTOMhUDjzPjUQWPKkUAu5/9KkMaHhyKM2gAAAABJRU5ErkJggg=="
|
<image>如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()
Choices:
(A) 70°
(B) 80°
(C) 110°
(D) 140°
|
110°
| 69,856 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAIoAAACHCAIAAABGe1btAAArdUlEQVR4nO19eXwVRbZ/dffdc7OyBIxgWMWwB8IeBPQzz48O4jaC4OADxhHGcfm5jLPp840PdUbHp4yg8GZAHZTR0fHhIDrv8eEpsisjEJawKCEQyHrX3ruqzu+Pk1s2MVETbkhQvh8+fPp2d7qr69Q5dbY6JQEAuYDOCrmjG3ABX4UL5OnUuECeTo0L5OnUuECeTg05HqsjxCFgsWTN/FkzPIrkD/oVSZYkZeCI8ZVRwwaimpYDxOYXdLxzDTkrK5tRFq2rUzLCK1977amnnho3bjxjzDDNzz77bN68eY7DVVWVJeKVpY5u7XcOsiR7dF3P7dKFOE68tvbNN99csGABGkM/uXNhNBoFgG5duziWo+tmR7f2OwcPISQzM5MQYI5jWdbJkycnTZrkMPupp55Zvnz5m2++SQgQQrxer9/v7ejWfucg67pOJMU2TcXrfe+99ypPVA0fPjwQCHq88okTJ0pLS/1+DwFuO2ZdfV1Ht/a7B11XARiADXZ8/IhL//KX1yhnhw4dJBL51eNPawCazTiAaVscLuBcQ/b6A7FYjNl2TVVVJBIbOnQo53zgwIFzb7vt8f9YfLyymhDCgetqklG7o8fSdw6ybds5OXmK17dq1csXX3xxUVER59yyrIqKiksuuSS/W3efVyaEhEIhj8fT0a39zkFmjFHOdF1///33F9z+o0gkoijKz372s00ffnjXXXd6vTKlDBj1+/22ZRFCKKWWZRFCkPscx8EHcc4ppYwx/AkAeEwptW0bAAghjDE8iX/LGHMcR/zJBXwZkmk5ikfKDPllymSZEH/ItB3mOJ/u2TNo6DCHkaBCFMJj0WhOTo5DudfrJYRYlmUYRlZWlizLhBDOOR4QQiilnHNFURRFYYxRSgHA5/OJOwFAlmVJ+sKKAgBKqeM4oVCoIzqh80KiADIh9bXVOSGP1+93iI/IileRY4mkHMyWZZLp9UyeNO66667t27f/kKHDCwsLFUWxbdvr9UqSpGmaz+djjMkpND5XkiRJsizL7/cTQhzHMQxDkqRQKIR/jjcQQhRFcZPqAtyQPjteWdirlwQUrKQcCKia4/UHPLJkWLYczLBt3jM36967F4ZCoS1btuzeU2YY1vDhw8eNG9e1a9fRo0dPmDAhEAh8+bmQivJh1wMAHlBKNU3Lzs7Gq5xz982KopyDbz6PIDkApmmBYyrUDIVCjuzzeP3UsYisUMlDKckKSIMG9jt4sJxIhBDZspytW7d+8skndXV1O3bs2LNnTzAYHDdu3MCBAydMmDBy5MiLLrrI4/GYpmlZlizLyC6maVJKvV4vMlMikVAUxev1IgtiUwQJL0BAShi2R5GCXplQkxBSH1Nz8rooErEpM5nH65W75YR7F/RY+/bfelxUkJGRadkUZwjHcbxeL+e8oqKivLy8rKzs//7v//bs2eM4zqBBgyZMmFBUVFRaWpqTk5OTk6MoilAWAMDr9QIAzkPYDrdgvAABSbOZ3ytH62tzMvyeQMB2QFI8wKikeBzJA0DCPvmF5587cqj8d0//XvH4CJE554lEIhgMIiugvPL5fMFgkBASiUT27du3Y8eOQ4cO7dixIxqNcs4vvfTSK6+8curUqYMGDcrNzTVNU5Zlr9crSIJS7gKFmkCiAKZlZ/g9BKip6/5QJpEUiXBOpIaYmpuT6ZWlyorPJk+evG/fvlBGpuMwNIBkWTZNE2UUPotSKkkSamXIKx6PR1XVmpqa8vLyrVu3fvTRR4cPH04mk9OmTbvkkktGjRo1atSovn37hsNhcqb6dwEIiQMQQiRCCOGEEBGgs23b6/NpmnFRz/z6+tp77723uLj4Rz/6MaWUECJJkqIonHOkQUtzBsou9+zCGOOcf/DBBxUVFZs3b96yZUtNTU2PHj0mTJgwatSokpKSvn379ujRA60on89HCLEsCw+avEUYT5Ik4YhxHAeP8b3IkahucM4dx1EUBe9sdJnIMiGEMZYulaTJ97ZwzxfHXzvVStBcIhW2mFLq8Xh8Pl8sFtuxY8djjz22ceNGQojjONgFQjn+5mCMiT5F24gQcuTIkY8++mj//v0bN24sLy8nhEyaNGn8+PF9+/YdNmxYcXExcRGDc440cLMazmTIuDilCarg/YIAtm1j+30+H3I5Wmmt+oqW0ERfbeGeL47bSB4kDE7+iqLouu73+4uKilavXl1cXGwYRjAYxKuklRqXe8jj6EblDc9gj1dXV+/du/fAgQOHDh3auXPnP//5z8mTJxcWFo4ePXrs2LGDBg3KysoS77UsC/lMyFjxIne/J5PJWCzWq1cv94vcx2nBNyPPFx3+tf3WPHncM0deXp5t24SQJ554oqqqasmSJZZlBYNBIRNs20bh8w1b7O44dAtRShVF8fv90Wg0NzeXEGJZlmVZgUDA6/VSSrdt21ZVVfXxxx9/8MEHBw8eDIVCo0aNGjFixJgxY0aOHNmvXz93M0zTdDspUF0UEliwIAo3RVHOMXm++W2kJfKQlN6sqmpubi7a/PF4fOrUqR999FFubq4sy6KXbdtGFa6ldgj2Eh1EKZVlGcUR0gmFnsfjQYee8DUQQlB9R8cdKoenTp3auXNnWVnZgQMHPvzww5qamuLi4okTJw4YMKC4uHjMmDHY4/h2PLZt27btYDCI7+WcI8EYY8lkMicn56u76Rvim/U7dx1/zchokTyCgfAbkB5XX331T3/602uuucZxHFmW0dIkLSvELZEH6SqiGuhwkyQpEAjg+WQyKUlSZmYmIUTTNOGLw57FR8myrOt6OBy2bXv37t27du0qKyvbuXPnnj17+vfv369fvzFjxowbN27w4MH5+fkejwcdsshhjDHDMBRFCQQCabSFvwF5+Jk/20QeHNc4A8myjPLBtu133313zZo1a9asIYS4b2hVcwW1BMeIk8guOCZQ1/J4PGL+aGIbAYBgXDfPGYZx8ODB6urqTz75ZOPGjfv27fP7/SNHjhwyZEhJSUm3bt0GDBjQs2dP/CvGWCAQSJd8+zry8DMP5DaSR0z78Xi8Z8+euq43NDR06dKFEOLxeCKRSDgcRrJJKbTqG0R8QejE2PUk1fuovgu5hyebfZFhGIQQFHq6rsuyjD5AHFL4hJqamt27dx88eHDPnj0ff/zxsWPH8vPzR44cOWLEiPHjx48cORI/7ezxzcjTRLh9FYW+SrihWAsEArquoxtGkqQHHnjA5/M9/vjjyWQyMzPzq/WCzgZkd03TKioq9u3b989//vPjjz8+dOiQZVlFRUUlJSXjx4+/7LLLBg4cKJRSFMVu1VwMHdTLyZlaDx5zztHuQLZENcpxLF3Xs7MzGacA4FE8hCi2TdFKkWX51KlT3bt3R+GBTW0FeTjnpmnqul5SUnLgwAG/348TrGC1zg/8ZnKmnHQcp66urqKiYteuXdu3b9+6dWt9fX1hYSHKQ9Q1srKybNvWNM3v94dCIaSZ4Hg8xi4W2qAQ4JRSv98fj8dDoYDXq5iWEY029OjRQyKKZVG/P0gIUVXVsqxwOIx3Zmdn19fXd+3atXXkQXpcfvnlv/zlLydOnJiRkYETxvlCHtRocFaTJMnv9wsFEqOIaISpqnr48OHDhw/v3r17586dO3bsoJSOHTv2mmuuGT16dNeuXYcPH44++GAw+GWTFnUQSVI8HgX5Ci1FxhzT0kOhoESAEHLi5IleF/dlDMQELAS1qqrhcFhV1daRR5bl48ePHzt27Nlnn3399deRdZqN93ROiCiiOOM4jmVZItKBX4riJZFIoP1LCKmpqdmzZ8+2bdt27dpVWVm5Z8+eadOmTZw4MT8/v0+fPqNHj+7evbuqqqjIuGwswhinlCqKRAhXVTU3N4txx7T0jGAGIbJtg88XwGkCSUJSkhAjma0jDw46WZYHDRq0c+dOZPlgMHi+xGnQaUtSXydMY5QBoltjsRiqGLqu+3w+n88n1Ev0CYXD4W3btm3duvXw4cN79+49cuRIbm7ukCFDhg8fjvphr169ZFm2baooiqJg56AkZKqWCGeEqk5XPfnE75Y+/18ABCVhUVHR5s2bFUXJyMi47bbbIpHIqlWrWk0ev99v2/aDDz7Yu3fv+++//3wMBAjVUTQbZwi3G7AJ3HogIcQwDHR3iRDw4cOHDx48eOjQoY8//njbtm3JZHLw4KFTpkwZOnRoXl7e5MmTAgEfZTYADwUD0XhDdnamTDy/f2bJpg+3vv3223V1dX369JkyZcr69evj8fiwYcN+8YtfLFy4kEALwLkO51K02FGkJhIJSun+/ftHjhwZiUTwfEsP6WwQc7j4icJN0zQ8g7oPHieTSdu2Mf0IgX50tJYcx9F1Xdd1zHUBAF3XVVXF59fXRzZt2vz73//n3Ln/Om3alV6vt3//vpNKx/3rvDkAJoBuWPVJrXbCxDGrVq3CZ/7yl7+cPn36iRMnysvLhw0b5jiOpmmtIw/Oh3hp2LBhmzZtAgC8el4A+xe9fMLzhqCUmqYJKReGZVniEtJG/HR/Lz4Qn9Z4MwdKOePAASiDSDReWVl5++23yzJRZDJx4ijHjHIaA0js27ezZ8/8o59/ZlrO88uWyop389YttsMOHTn8+htvYgNaQR7OOY4yPFi7du0VV1wBAI7jNPlblBXujz9P4e53zM60bRt5DhlLnMdOoAwogO2AajoN8cTzLy4v7N9vyLDBj/3HvxVd1v/111aBFQemA1OtaNXKF/6TSETOCBGP/67777c46JRaDCzGHQDGgfHWkAeHWzKZxBuqq6svvfTSEydOAIBpmjjE0PP4LSCMAJo7hmEgnYR4RPmGoxCPHYfpBk3qzl/++t8z58zt3bfftTfdUHHyhGbrN/3gup8s+pGjx6xELY3XgZO0605ePXXSH5Y+rwF8su9ARpdut8xbYAGoFnUA8F+ryQMAhmEAAAroefPmPf300yIPFO8Xx1/mqvMOqqq6P800TRTvQpxYloUdpWna559XPPrvi7t07XHzzDl/XvPGidPVhmNTgId+/fOhwy7jzAQwgetMbQBbrT6yP9snna6p1hgYAAvuvCuU1/V0NO4AxDSTto08osdxDty1a9fw4cMhJZ3dTMMYc4vv8x04weAH4v+maWJv1NTUvPzyyzNmzOjdu/f99z+4/0C57UAiqdkOowAv/mn5gEv7U2aePlUJ3DKTDcBNrsWWPfXEzddek9RUA0BjMGzMuD6XDT5yosriYFCgALRt5MHhAwC6rjPGxo8fv3//fgAwDENVVWyxyN0935FMJsXcI0QZpDpn27ZtM2fOLCwsnDVr1v/+7/+iXAEA26aUMwZ834H92blZFZXHAJhDDdNIAtjA7ZNHD33/yqnP/PZxClATTy64865ATt6SF1Y4ANGkajGO5OGtUg2QRUzTxFkRpfArr7xy00034VWhhopp89sBEQwEAF3Xq6qqHnnkkZKSkhEjRixbtiwejzPGVFUFAMswqe2g5K+pqbmkT+E769YyoJTahqHZlgHgnD5RmZeVkR3yhzOCRJJ9WTnE69+weatmM5NB0jCRNm0hD3Y6pTSRSOBtkUikoKCgurpaiDJBvG8BhTRNw69gjFVXV//973//4Q9/mJ+f/9BDD23evBnviUQiwmzS1AQAw38zZky/9967OafxeNRxLM4pAKurqwEOjm2ePHHcsiwKkDBNnVKdUotx1bQoQCSR5AC8DeTB9R7I79huVVXnzZv37rvvVlZW4j2Cx8XB+Y5PP/30nnvuKSoqmjZt2urVq92DVUy3qYmZxaINAOwni+74/vevNgyNc0qpjQTDEazrusMoANjUcQCqIxEbQKfUAdBtB5WCtpDH3RTB7JFI5NChQ2PHjkUJIO4U7NUhcHccxkFEw5qo/u6PEuaL+LlixYpJkyb16dPnN7/5zenTp/FRkJqH8Dn4ZDzPmcOZs/JP/zV61Mj6uhoA5lZlRaejVmZzEDq04xJo4h+0TbhBinUAwLbthoaG0tLSnTt34rfV19fjpY6lEADYti0U3ybAEeY4Dl5132YYxoYNG2bNmuX1emfNmrV+/Xo8j4oPYwyLCQj9DQmTEhXsk0925nfvunfPp5w5AMwt5LHTaYoeTcjjAD9b8ogJBj0f4s7HH3/8jjvuwJ/JZBIvdaDdk0wmhUmPGr9t24lEAtk6Go1+MaJdxCsvL//5z38+cODA0aNH/+lPf8KTtm2rqqppmtuv09DQINQf0SeWZe3du/eSPoUffvhhPB7Hk1pS5TTld3CRx24kD2eufy7CNE5grSOP2+QUGjYAVFZWFhUVJRIJvEFIuY6CWxt2jxJxHm1MZCDbtpcuXTpp0qSCgoJ77rmnvLwcXH42Yc9xzt10qqurw0dhjj8ejx5T8vvnntUs02GUchaJRGzTAg5iDAjh1ugXSC95REPxs/EbkEi33nrrH//4R9u2Ua1E33Za+rrNwK7HZmuaJjpUDPyDBw/eddddfr//1ltv/cc//gEAmPaGtzU0NKDxQCk1DAMdV3gJD06cOIEyDZ8285ZZty/6SX0i4QCopoU801AXAQ7AGimUIg/Hf41UcUEQpi3kEZea+Hodx9m4cePo0aMBAC0AABAMfu4hDGTsXNFaTD6trKxcvnz5hAkT+vTp8/DDD0ej0WQyKbxqTXQE9zE63wDANE0kGKYQ19fXDxgwYMzY8THNjOgmcoZuOxyAOTweTTT2NgBAI7FaIg/q32dFnmZv1jRt1KhRn376qeiFs+vhs4KghxCzlNJkMrlx48bZs2cXFhbOmTPno48+ahImENqdYRhutmCMxeNxwVXiAAB0XU8kEjNnzvR6vZUnqpIOMwFOR+MmA9V0HArRhhh8wRIcvmAg6gA9kzZU/BN/0LpSBeDKdsdHYm4KJnhOnz595cqVzz77rMjF7ShgFiPnjevIy8vLX3rppTVr1vTp02fu3LkvvvgipoBBKt1OLG3A4YjZE5xzQgjmG2PSAR6Hw2ExdoPB4LJlywoKCurq6jLCWZRIhmnnZmV5ZGI7lEskIzNMzgxHS4RAKrlN+toSbF89AJu1e1pCRUVFYWEhintwqTTpAuojYsgbhiGaJFyWKJrw1aqqvvrqq6Wlpb17937ggQeOHz/e2jeiOyAWi6F80zTNrcI5jvP6669Pnz79CyvqTLX47JEe4YafEY/Hf/CDH7z11lstWRttBk/VtAAAjPKKyKYINrvfeODAgdmzZ+fk5Nx4441btmwRSnZr34uqnVCghawDgNOnT+/evXvy5MkoDCHVCelFesgj4vNr1qyZMWMGAMRisTS2MhaLueMu6EExDEP0F149derU4sWLe/fuPWTIkBUrVuBJVVWxeW0gj3AKCP0C34uV1UaOHFlbWysU1M5LHkgN5Nra2hEjRtTV1cVisfSmiGC/uM0p1HdRK1m3bt1VV13Vo0ePRYsWVVRUwJlMhjeLMfTNIaQ0SkthcR8/fnzChAnHjx/H6iic89OnT6flM5sgbeRB6xoA7r333kceeQRcjp+zhzshxjRNTdOwmyoqKhYtWtSjR4+rrrpq3bp1mqahqHG/2rZtwzDa5sLAv0IaW5aFOtuRI0fmzZv317/+VdyGbp72cAGnhzxoomL7ysrKevXqld5oAjYGM5UAwLbtFStWDBkypHfv3osXLz516hSeFK50pIfbSWjbdhvkrfsJKLvq6+t//OMfP/fcc2IiFHZe5xVu6LtFxQkAMJ0uja0UjdmyZcuNN96Yk5Mze/bsAwcOuG8QLgzsUDeTnU3mED4NiV1TU7N8+fI777wTAGpra/HJ0WhUhFrS8a1nID3kEd5SbOXq1asXLFiQRrfb8ePHH3jggd69e5eWlr766quNoUnLwoxAnko2Ey0XcgbDu212zqZScByUb6+88sqMGTMYY8gotbW12EtiTko70mP3YDRXdFAkEikqKqqqqnKHGISgwKiJcMiDSy9CGgtiq6q6cuVKNFweeuihgwcP4vPTPlSFBuj264hPw//ffvvtWbNmnWNHYtpUA3cQQdf1+++/H3OsdF3nnFuWpaoqjnRhWrpdL265BABbt26dO3du3759Z8+e/Y9//EMECNy+8DSaViJJzx2OwwNkvrKysokTJxqG0Qb172yQNvIgRBrpzp07x44dCynHKHqy8eNxojJNE6MmQtFCVfjRRx/Fei5LliypqKhokqfptj/EnJwWfDk4LWRmQ0PD0KFD6+vrhfZxzpBOu4dznkwmUUdwHKe0tHTDhg3uMY7eBLeRKNyL77333vXXXx8MBjHiwlIJp3i1rq4OleYmYzyNEIwrPNZ4xjCMsWPHHj16VMxn59LbmzbyCCHGU+HbZcuWzZ8/HwCOHTuG6xqEkWjbdlVVFed8+/btP/vZz3r37n3VVVf95S9/QccJpVR4UODMlHN3eC29A1k4ojCRWpwfNmwYxulRL28STGlvpJM84hg7sb6+PisrC+dS8UmmaeJ3vvTSS0OHDh06dOjjjz9eVlb2ZYYwTTMSiSB7YRyWpyLTkAoQtOmTm4cgj6BNbW3t/Pnz//znP+OLcNnC+Src3Okv4gvnzZu3dOlSEUIFgI0bN95zzz2EkOuvv37q1KloUQIAZmWICKx7hDZZsNFkdKcLYnwg11ZWVq5cufL222+HVHQYr4qo3blB2sjDUhn7QiuNx+P79+8fMWKEpmnxePxXv/pVnz59SktLn3nmGbzaq1evY8eOocRzRwogpQW4s01t2xbquLjhLD9eQMxnPBWnf//996dPnw4pXyKqPNiAcyrchLWPY9b9bpaqzuWSPIw6ltFY15/FYxFIka2+vp4D6IaF0Q7DtDkApbSoqGjcuHH5+fl33XXXkSNHxMC3LGvx4sULFy4E14zCvxJn/7U4QULKyyDO4xARquA777wzZcqU9Pql2obmycNTS1g457Isu8kTjdQDMNsyANirq1/BmN7YsWMty/rxHYtMy/n9M8+WjBnHAWLx5MmTJ1esWHHLLbeAa/ppaGhAY76ysnLw4MGapiHNvsKkSCOFIBUmEOqZ2++pqurnn38+YcIE9yrGDkQrluwCgJpMYli3pqZGlpRdu3ahHFu7dm04HL7ooou8Xs+6deu+973vEUIyM8MFBQXXX3/9//zP/yQSCcybIYTk5ORwzj0eT69evQYOHPj00097vV5d17HwSnsDx6KiKLjeGte5Y9Fg/MZrr712zZo1tm2fm/Z8DZrlHjx2c0/qEjN01TS0got63Db3VgCWSCQwZ2XOnDn/vfbvp07XTL/2Og6g6WYiqaG4mD179vLly9EwSiQSwoGI1uvAgQMhtf6kpUGULu5p4rt0fy+Gbb73ve99+OGHyDcYJuhYNE8ed4RYkIcxhompzz37TG5OFnUsy9QhNasvX778YPlhxmHZC8tPV9ealsN4oxa0devWyy+/HI9Fii8ecM6Li4uff/554W1rFukij/shaF0JhZMxNnPmzDVr1vBU8OIs35UWNE8eESzhnGNR0cZ7qK0m47k5Wf/+6CMATNeS6DbGaEpS1TmA7TDbYZZNVc3AUlanT58eN27c3r17eUpDRUvi1KlTK1eu7Nev37/8y780NDTQlpHeuQdSGYrigZqm3X333UuWLMGcaTFG0/W6NqPFMnnwpVpLAOA4TjweV1V16NChhJBgKIQbKHi93uzs7IyMICGkrq6OEEIpDYUCPp8vLy8vPz9/9uzZL7zwQiKRwAKYkUjkvvvuGzRo0LZt29566621a9fm5eVRSqUWkC5JTikVn4M1QAAgHo+/8sorwWBw/vz5fr+fpiqHaJqWrve2Hc1yDxocOHyQexrDAZx+/tmR7KzwH/9rOQDT1EaPAGrGlEE0lmhMs6OcpxJCVFWtrKwsLCxUVXXz5s233nprKBR68skn6+vrcQUkS60ua1mpTg/3uNeI4fdWV1fv2LFjzpw5IlmAnxk96liQZnuhWdVAzD09e3R/8IH7ABhnDnoqy8rK3n777eqaOg4QicY13US7R2RQMMauuuqq4uLigQMHrlixQijTcGaSVEvCLV1f63bMYMba1q1bp0yZgkq2m/zplaVtRuvIE49FqGM9/4fnvB75b2/9NRZtAIA333yztLTUcRwOcKyikgNgTQzGQcQZbdtev359cXGxWL4kPp6lIpLUVR6lCdL4wbFYjHOOSdgNDQ2jR4+ura0V/unOhhbJAyl3gFANOOe2ZTi26djm+nf/npWZocjE4/EsXLgwEomoqkoZoGqg6aZl06SqQ8oUTyQS8Xi8oKAgEok0UYrwdU1UgPTKNPe7IMU3uq6PGDHi8OHDQtCl6y1pRPM+N+aKZiJ5Uj9ZMhEDYKahaWrCsU2MVgHAiRMn0Nypb4hyAMrAshuDbCKO8NOf/vTqq6/GwAlPTXjipeegg1CZxuPx48djvorblQfp9lCcJZonD3e5dnCPMTzfUF+LlikAA05NozF16PDhwwBgWo5lUw6QVHXdsBhvnFfQvqOUYgF+8Yq0C66vhVgNcsstt7z44osg1oS6PK1CqncGCn1lGVhX8WlEXpcuhJBAMGgaBhbGRUNhwIABhBDhGvF4PIFA46YUiqLk5ORQShVFGTBgwLRp09555x1IlVPD8tiQ6pd21FAJIYRgVdrHHnssNzf3jjvuQDK090vPBs2TpyVTQ1NVnCiwOqDP74/H44FAIBaLmaYZCoXQVvD5vJWVJyWJ4AIl9wPvu+++VatWoWogHstTlcNbGkTp+tpEIrF+/fry8vKlS5fG43FCSDAYdK91Sbuldbb4Wv7C+umpX8y2DEZtnH4MXYVU+gelFCWbZTce6IYFrjppqBFEIpG+ffsmk0kRneQu3357qwa7du2aOnVqVVUV/qSp/KnOIMeaRTrX9zQLkR6Nc3JVVdWTTz75xBNP8DNTQdK75kQoI6iG4MOx/sKRI0fwEiqKnValRqQ5kaoJqGt9fX19PVLo1KlTQ4YMAVcnYqJI6xv/Na92rziklJaUlHzyyScAoOu62/zqzORp3xKtWHAbAAgh4XAYZXrPnj2zs7O3bNnCUvv9+v1+1A/T9V7OuWmaWVlZGRkZ6LQdPnz4b3/721GjRhFCbNvGluBWqp16N86W6JYW7sG/EiFkADAMIxqN/u1vf7vhhhuoq6BnerPX3MscDcO4+eab33rrLfgSm+Ks2ZnrzrUv92iaJsuyz+dDVzHn3O/35+TkXHnllfv27Tt58qQsyxhXtm07jVum27bt9/sZY59//vnq1asHDx587bXXUkozMjKEGUcIwX1nhBu7E6J9ycNTm+uJ7cdQqoRCoenTp7/++uuEEFw8HQwGIX0KdCgUYowlk8lPP/10+/btd955p3g7YwwZixACAJZldeqNultiq7QIN5RX1JW7jDM2AJSVlU2YMCESiYhLQlM4e6DCtnHjxsmTJ4Or1odbVYFU9Yh0vbQ90L7kYa51B5jtLs4bhjFgwIDKykrMPuCuioNpwfbt20tKSsQKYZEyh+SJx+NiWHRs+Z+vRrvbPc0Cxcsf/vCHRYsWAQA6Vds2RbsXdQg1+ujRo5dffjmuBxKrujut7fkVaHfNrVngEMb9UODM9WytAk/VmQCAmpoaPFlWVnbttddu2LABXL7dSCTSme2bltAxW1Og5zQQCFx33XWrVq0Su8a1FrgbmSzLlmV1796dUppIJJYsWXLzzTdfccUVKNZisZgkSbhRd7q/o/3REt3alXtw7tF1vby8fOLEiRhxaEMFK2QL95k77rjjd7/7HWMskUhgJBAXAHdg7b+zQcdwj2magUAgEAj0798/Fothck8b7B5JkoLBILJFIpF49NFHs7OzH3zwQUIIYywjIwP96LhfXNq/4hygY8gjdgNSFGXu3LnLli0jKSOxVUAy+/1+AHjttdeOHj365JNPEkKwhhRGqdHpmZ2dfUG4tQK1tbUstUIxPz/frel+c3DOUevbtGnTrFmzAACXsWHJGPHAaDR6PuoF0FGaG+ppwts/c+bMN954o81PKysrGz16dCKRcKvmONkg8eDM6mLnEZonj67r2HfoCkO3JrjWiWF6G5yFTSeGM6V0165dJSUlaMOKjCrUF9BViv3udpuKOE1NTc2QIUOOHTsmwnrnKaM0i+bnHr/fHwgEotEobviOe3GiJMEJPBQKoSqMLqy2yVWWWt5VUFBACKmoqNA0Teyvl5OTo6oq7oOITlWv1yvWdjPGFEWprq6eNWvW6tWrL7nkEie1jff5tZHdV6P5L8EBm5mZCQBoMfh8PtM0u3btSgiJRqNi4ZLYBLnVL051oizL+fn5U6ZMeemllzIzM0U6MUnt4wmp7FFCCG6HixvH27Z97733PvDAA4MGDTIMA3fp9Hg8yWSybX3RGdEsT4mEo1gsRggRtZZoamsY/NkkQ6xV4KllG/jzyJEjhYWFcGadPvdc4q6WgrbOwoULH330UXAZTLir0LdfuCGvEEKys7MVRQmFQkgnhN/vx10JsUJqIpFow5gQkg3ZpX///hdffPHatWuRZdHhL3bjppRmZmaiEUoIyc3NffbZZwkhDz/8sKqqYvNXjE10ojybs0dLdEMvL2MMN9yura1FIxzrfojb2myNi4RNZKB4PP7++++XlpaCq7Cd4E5kKZGR+vLLLy9atMiyLORjwzBwvaq76si3A82TBwumY5JNKBQS0oNSigKEc37y5EkAOHXqVBtq24gQg8gWrq6uBoBRo0bhKi1RfgzvdxxHeKM3bdo0ceJELKdm23Z9fT0GI4SjqLWN6cxokXtEpxNCFEXBdbCKoghJctlll7U5loUPZ6kCirj5hOM4d9999+LFi/EeHBMY50a2MAzjwIEDkyZNwpQB6ip5ICrrCY3/2wHinnJpqh6qyEzDTaPdU3S7xoH27t1bUlKSTCaxGUL6iXhacXHxsWPHsHZVul7amSGHQiHcSwQ9YLIs67qOo9Xr9QaDQdwcmqQSB5qdvdI1EQ4ZMiQcDm/atCkYDNq27fP5MNUW83uvueaaX/ziFxdffLHH4+nUCQLpQ2OJfWQFQojf7w+FQoFAABMnMAUX5cY5MPckSVqwYMEbb7yBXEsp9fl8GNGZN2/ejBkzbrrpJo/Hg2pkGzTG8w4SAFiW5ff78TfnHFVVx3HQZeDz+dxZTtDcTvTpohy2pKCgYPfu3V26dGGMxWKxvLy8X//617IsL168mBCC3gqv1wuuDR2+rZDds4hhGOiKRyIBgKIoWDcDtan2bg1K0euuu+61117DBd9du3Z97rnn6urqfvOb3wCAqqqSJHm9XpGr9i2HUGF5qtyC2NcBUuYhT20LDe3syeaca5pWVlY2fPhwfOyGDRvmzJnT0NCAKw7RW4rl3Ttwf6BzBtJkty20ZnRdx40uAYCcabq2dxwIZ7uxY8du3769qqqqX79+aOIAQG1trVhGeY6X1XUUPJhQuW7duhtvvBGVpd89/VS/Pn0ZY1lZWdnZ2chkyDrCy9J+YIz5/d7/9//u+bd/e1jTjA0bNnTr1oUzh0hSdnYmpVSSFVwjLCvM5/G2d3s6GKZuTJw4sVu3bkc//8xybA5w24L5oXDGu++t5wCaoWdnZ0uS5Pf6ZNLe87BMJG9ObhciESKRjLB/29bNAIw6BoDpOEnL1qpra558+j9xW3YnfdvkdFqQieMnDBs2TFVVDkA5owBVNdUFl/Q+cfqUwyhPmfS6qgH/+qodZwPGwaEQSSR1Mwlgnqo6DuBw2wLHBJo0jAYAe8q0qb965LGEBSrldWryW08eGdMnAICkqsjkd89/8MEHe/bo6ThOPBFHF7LP59NUtZ25hygKkSQp4A8AgZ4XXcRRPVMUQkggEHjyiSc++OCD7t27o1aZlRFu7/Z0OOR+/fpdccUVoVBI1dTMcKZhGoZp/PCHP0yqSb/fn5WVpet6LBZTPJ6MjIx2bYpEwLZ5ZkZQIqShoQE4J4TIsmwbBmOsvLyccz5+/PjMzMxueWHTNDXTaNf2dAbII0aM8Hq9DQ0N4YwwEPD5fMFAMDsrOxwOW5YlESkUCoXDYV3TSPvbgIoiy5LMOMvNzZVkGatZ+4JBxeebNWvW/PnzKyoqBg0aRBnJCocyA52gWmE7Q87JyTFNs1u3brZjY4kIymh1TbVEJNu2KWss6ebxeFj7RyEZ40DANA1ZlqljB0Mhjz/IHfbjBbdv3749EosGAoHs7GzH4bpmWm3K+z3PMG7MWMCtvyyTA0STiaXLX6yur6MAlDNUDRzHaaxh1M6IJ3QOwLgJYFJHB3Bqqk6tWLY0FJIliXi8JDM7a9/Boyb7Yt/WbzfkQ4cO3XbbbYqi+H3+WDx2ww03cM67dOkCBCilqqZmZmZ6PJ5EPH4OhFtmZpBxRggBAoqiMMpN0zx27Fg8HufcfO+99/Ly8gb06ycBcSj4vGlb7Nh5sXf3nlAoJEkSkYjH59328U7dts7YnJ5zzjkwDqmSnu03WByHAYChx3U9AuAc+/zoJQUX64k4gJFM1i1fsfSiiwvqGxIOB9W2bd7+7NzRIMxpLHXHASzH1m3LcOyOIg/n8NlnRwBsAMM0khIh3XLzdmzZbBqJ73//SiKR7t27e30Zmsksxr8L5JHURDIjMxyNRjmBvNy8hKYiM0lEagwSYFFRIIQQkAhpz1SYeDSRnRuONNTmdckloJiaEcjIjEfqg+GAJEken8+2uEMlyrluJLt16+KR5G93REECDpRRj8cDhFBGZcXjUMfj8XQIeQgQXU+GMgKUWh7ipZR7vEEiEyI5pmFYjpMZzuUgKwrhhGhqMiuc2V4t6RyQCYAI5OBBGusLtAGYq6aqqmVZHr+fALENwzQMn8+XmZkpy3I8niSE1NfVhkJtyU49vyDBdyGodd7i25Mt/q3EBfJ0alwgT6fG/weozuWFsUKVSwAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠B′BC′的度数是()
Choices:
(A) 35°
(B) 40°
(C) 50°
(D) 55°
|
55°
| 69,857 | null |
55°
|
"iVBORw0KGgoAAAANSUhEUgAAAJMAAACLCAYAAABlYKvjAAAU3UlEQVR4nO2dX2gb95bHv7KToiwsEe1D5iHgYduks9ncdu6WJWOl4DELtZ27tOrLvaI0jfOwssLuXjsPpXYpOIGCKYW19LAoKXtRvH1Q2gsrh6WW87KWuTQ2dBer3WykRr5YYblIuVuQuhSkJLbOPlgjS/JIGo3mn+z5gGk8o/nNr56vzu/MOb/f+TmIiGDThhiCwVOYnHzJ7I5Ymj6zO9ALxCYu4EuzO9ED2GJqw2ZwAotw4+xp2yq1wxZTKzaD+Or0TXhwz+ye9AS2mJoSQ/DT05gc28TD+26cOWV2f6yPLaYmxCYe4vTNMbO70VM47Lc5GWITcFz4rOaAD0t0E7a0WmNbpkY2g5h4+D6IaPcnHYDbfQb2KNceW0w1bMaCmPj0NG7WxpPSD2z3WylkUwUAAW4KpHd/X/KhcgwE+GjJ3O5ZHttnstEMe5iz0QxbTDaaYYupgeXlZQwPD+PWrVtmd6XnOHQ+Uy6XQyqVQiKRQKFQwOPHj5FKparn19fXUSqV4HA4MDQ0VD3OsiwGBgbgdDohCAJYlgXLsib8H1iXAy2mTCaDeDyO1dVVZDIZrK+vw+VygeM48DyP48ePg2EYcBxXvebDDz/E2toajh07hnfffRfvvPNOta1MJoMnT55gfX29+rskrKGhIYiiWNfWYeNAiSmXy2F5eRmrq6uIx+MAAFEUMTQ0BJZlIQgCnE5ny+sHBweRTCZx7tw5vPbaa8hmswiHw2AYRvYaSVjSPQuFQvWeh05c5kUltCGfz1M4HCZRFIlhGBofH6dwOExbW1sdtyVdS0S0srJCoihSLBYjnudpZWVFURvZbJYikQj5/X7iOI54nqdQKETZbLbj/vQaPSumaDRKXq+3KiClD7sZGxsbxPN83TGPx0PRaJSy2SyJokjT09Oq2vX7/cQwDHk8HopEIlQsFrvqq1XpOTGFw2FiWVbzB8PzPG1sbNQdy2azxLJs9R5zc3MkCIIqq0e09wVgWZbm5+cPnKh6RkySiMbHx1U/zFZtj4+Py56bnZ2l2dnZ6u9ra2vE8zxFo1HV98tmszQ1NXXgRGV5MekpIiKiYrFILMs29WnkzufzefJ4POT3+7sSQqOoeh3LiimZTJIoirqJSGJqaqrtg4xGo+TxePYdD4VCxPM8JZPJrvogiYrneVpbW+uqLTOxnJiKxSJNT08Tx3FdO9XtSCaTxPO8IusiiqJsf6Q2QqFQ1/3Z2NggQRBofHyc8vl81+0ZjaXEtLKyQizL0tzcnCH3k97WlCD3tidRLBbJ7/eT1+vVRATS0B6JRLpuy0gsI6bZ2VkSRdGweEyzoasV7YbESCSi2VCVz+fJ6/V27ZcZieliymazJAhC3RuT3hSLRVW+TjabJZ7nWwp+a2uLBEHQzLpq5ZcZgaliisVixHGc4U7n/Pw8TU1N6Xrt9PQ0jY6OamJpJb9Mis5bFdPEFA6HaXR01HBHszEQqQa5AKccUiomFoupvpdEsVik8fFxQy14p5giptnZ2aZBQr2pzb+pRcrbKSGbzdLo6ChNT09r4vuY+bdrh+GT465evQoACIfDRt8aiUQCiUQC4+PjXbUjiiJcLhcWFxfbfpZhGMRiMRw/fhxjY2PIZDJd3fvatWsYGhrC2NgYSqVSV21pjlGqlcy0mZFepcOTEtQMl1IqRotX/lgsRqIoWioeZZiYvF6vqQ5kq/ybWhrzdkqQXvnHx8e7HvbW1tYsJShDxKQkZaEn7fJvZrQbDoc1eeWPxWLk8XgsEYvSXUxqvr1ao6eY1QQ/JbRKxUQiEfJ6vV21oQW6ikmPoaVTOsm/qaVZ3k4JUirG4/F0NVyFQiHy+/2qr9cC3cTUzTdWSzrJv6mlVd5OKdFotOtUzPT0tGF5TTl0EdPW1hbxPG+6Y2ikoLUYSrVIxXRjJbtFFzEJgmD6vBy1+Te1KMnbKWV6elp10lvLfnSK5mKygsNN1F3+zQr3XFlZIY7jVKVizHIxNBVTJ2kGPdEi/6YWLQOj+XxedSrGjHCMZmLSK5ajBi3yb2rR4ws1NzdHoih2NGQXi0USBEEzYStBMzGZHZiU0OLNqlu8Xq/msyTX1tZIEISO2jV6pNBETFZ4gBJaDjNq0WuYVZOK0UPYzdBETFZ4eyOyRpBUYm5uTtUKYCVIqRglX5psNkscxxkSpulaTFZ5gFby2Yh2+8NxnG7LtJLJJAmCoMi1MOrNtisxWekBWsVnq0XvV/RisUhTU1NtUzFGPaeuxGRGLEcOI/JvahkdHdVk2m4rotFo27n0Rjwr1WKyklUyIv+mFmlhpd5Cb7fKp/PnlaaAu7Z09e6P2xegpbT8Faqn7d64cQMej6dpESyjkKbOejweU/vRDJ7nIQgCbty4oet9GIbB2toaAGB4eBi5XK7uvNPpxOTkJD755BOFLb6Eya+X4HO7EUhLuzWk8UtM4cKpCcTkLlHzLbCKVTI6/6aWfD5PHMcZ9vdqlorp/Lktkc8doHTjMYDcgf3mSZVlWlxchCAIplulGzdu9ESpP5fLhcnJSVy/ft2Q+4miiLW1NQSDQVy9erW68MDpdGJiYgLBYFBZQ7FFfHb2NOq3bRyDxwfce5De/3k1yjfCqWyHmfk3tZgRUJ2fn69LxWxtbRHLsoquXfKBfDJ7fCz5QNhnsVQ44FZ5iGbm39QipUTMuq/091I252mJfLL7xVQccxmVdTzMLS4uYnR0tGXVWr3Rav2b0Uhlnm/fvm34fWOxGFZXV3H58mW8+eab+OKLL1pftPkQ932e/XvsbX6FL+8BPo/M7nudqtwKqRMr5N/UYrZlD4fDdPbsWerv76eLFy82/Vw64JZxsitWSWaII+pwmOtkvNULq6RvukHPvJ0S3nvvvWrcSP5LuUS+mq3SiNKUXgqQr4WQiDoUk9kRb6uEJLpF77xdO2KxGPX395PL5ZK1kIBMsNLtJl+zaKV0XSedMDvSbMX8m1rMXr1z8uRJOnnypKZtdiQml8tl2ooTK+ff1GJmiAUAsSyrqXVU/DaXSCTAsixcLpfSSzRlZmYGs7Ozpr5Fas3c3ByuX79ueDWTXC4HhmEgimJ1jxktUCymeDwOURQ1u3EnWD3/phaj8naNSGIaGhrC6uqqdg0rNWFm+Uu9kn9Ti9F5O6I9fy2ZTBLHcZq1q9gypVIpU3JgvZJ/U4vReTtgzzJxHIdMJqPZMKtYTJlMxvCdH3O5HILBIObm5gy9r9H4/X6sr68jkUgYcr9cLocTJ04AADiOq9sJtBsUiSmVSoFlWcOd34PodDcjFArhypUrhtzr0aNHVcNgipiMHmZ6Nf+mFiPzdtIwB+zuPdxtnU0Jy4rp8uXLphRRNZP5+XnMzMzoHiqoFdOrr76Kb7/9VpN2FYnp+++/x8svv6zJDZVw69Yt8DwPnucNu6cVYBgGExMTujvjtf6v4cNcqVQyzG8plUq4fv36gXe6mzE1NYXFxUXNhp5GSqUSSqVSNfjscrlQKBQ0aVuRmGrNot7MzMxgcnJSk/ttxiZw/rwDDocDDsd5nA/KToO3FE6nE3Nzc9V66Vqj57M0vKh8K1KpFOLxOPx+f5ctbSJ43oFTHwMfLUgrKz7C2akLOB/c1KSveiJF+pUUre+UxhCPlg54fQR8+yntPHlS/Snv7B7mOM6QCLRWUfZmc5TTAXfL+ThWQq/Etlxl3kYZqKXeMvUfRd/RfjjggOPoc3BUzhrhM2mWf4tN4MJnbgQWJhtWVVS49wAy6yqqLC8vY3h4GLdu3equH13CcRxEUdQ8byc3zGnmN+2TV3mbyk+eUrm8d4hhGF1zR9rl35pPdidqbrFqYVmWAJDT6eyyL92jx2RAuYq8Wk1FaeEzlUFPn6L89Cle+BPnbuxj5xnKT5+CypISd6qfoR2qUeje8fLTbVBtszLnZPNvtZ97ttOm7Upfk/+Gf70HXPmbv949v12u+XwSv78PuH/5C3mLVWFiYgIALBEsdTqdmJ2dxczMjGZtyqXFNBt59smr1jKVt6n85Bm9WFXuDpWfVRwp2qHy0+29f1et2U6dZSs/e0I7tdc0nPvD//xBZoJ97efKVH4q+W8t2i5vU/nBP9LwUTcF01Lfn9CO1Mev/pael871GFouoJBb5iQnAzW0fptz9MPRTzglefzlMtBXuaRcBtFOjYWg3dnC5TLI0QeHQ2qiH45yedeCyJyb/ehDXGvMv5XLoL7+yudq/LdWbVfYeXYP/111ihxwHOkHNmOY+MUtvPLJP+MfXlT7tTOPcDiMy5cva9KWngn7JmJyAJUHhv5+7AAAEajsqDrlu1cfQd9zz1V/queI6oe2WmrOJRIJ/Nd33+E9uSGFmrTQqu0X/x7TPuCzj4OIVSIAv48Fcf7UBdz3RfHvf9dqgLMuUjZAi5eCRgdc07iTZKKqQ0Z5u2b42uVtz5u0+NvfVkMFu+xQuSZ8QLRTMxQ9ofJ2ZSzaedYwzO2d43/+c9r4j//cby8rQ1RHbVeH5zQFfG4CjtLzR4/Sn7p9FFhKy75Y9BJarLfL5/Pkcrnqjmm5fK1qZxwOB1DeRvlZGTjSXye4467nUfjx/xrsWB8cR/pA25IzXK6c74PjaH/VWS/vONB3pG/vmsq5f/nNb/BXr7wC/rW/rJzbdaKpjN3htaO2y6BnOyAQ6BmLX9/8HcpPfsL//vQTCiv/hF+P/VnN+e3mls3CMAyDycnJrpxxOSukZdjnSPVf/UfR1y//IYY5gdwf/1gd+ar0HUHfczIXOPrheK5//+cr556Un2H244+r9YQqjcHxXE1jHbW9e23dsXa/9yB+vx+Dg4OqZ3HIiUnLGSGK0imv/uxn+E6jaQqAtvm3w0S3oQI559swMUnDDPfyGTz4XptpCtrl3w4n3eTtMpkMBgYG6o49evRo3zG1tBST48juWxr3F3+u2ZyXwzQVVy/Urrd7/PjxvtEgkUhoNm9M0TDndDrhcrn21UnslIO6/s1o1Obt9PaZFIc+u13KfNDXvxmNmrxdYzmkbDZLDMNo1ifF85nOnTuH9fV11aI96OvfjEaNM95omdbX1yEIgnadUqq6bnYIMrvA1UGmk7xd4+PWuqqMYjEVi8Wm9Xza0Yv1J3sFpTtqyUW6ta7Ap3iYczqd4Hm+46HusK1/MxqlebvGIa5QKCCTyWi6AqijOeBDQ0Mdl2A5jOvfjEZJqKBRTHpUtelITKIodlSC5bCufzMaJXm7RjHdvXsXIyMj2nak03FR6RTPg1J/sldoF3qp3dVdr2fT8VInr9eraD28nX8zlnahgtpiFfF4HBzHaf5sOhbTpUuXsLCw0PIzdv7NHFrl7WqHuYWFBVy6dEn7DqgxZ+0Ky5tdlfcw02y9nbT2MZ/PE8MwusT8VK3o/dWvftV0uwQ7/2YuHMdhdHQUgUCg7rhkmXTdrkSNAptFtO38mzVodLCLxWJ1HWDLQGV6qTLlGQS4yRdIEy35ZHd2kkOVZWIYBh6PZ1/W2s6/WYPG4he1VollWflQzebuwosv8RHSRCD6Gu/jEhwX7uPMKYU3Vqv+Rutk59+sh+TbSnnVplYpHSC37O6WS+Rzy20TJo/qKiiN1sme9GY9pDqZuVwO29vbTa1S7NMp3HMHsDDZuBTsFM6cPQOlhqmJZWq2c/RS3Tr9bDZLAwMD9PnnnytKNtoYj9/vp9HRUXrhhRda7OAkv+dupxyRl9hLmPyacHrCgUUP4eYYdlfFnrqAS2fS+LqiYIZh8MMPP+DixYsYGxvTdOsEG204duwYlpeX4XA45IOUmw9xH8DZ090vUG0iJgDYxMP7bpx5v/LrS7sb/X72IA1USj8UCgVsb28DAL755htDC6PbKGNrawsAQERIpVJNot5u5U52K5rarHSA3NXyM2laCrgJMnu2RqNRGhkZoTfeeKNrM2mjPR988AG9/vrrFAqFmnyi+TCXXlrqqDBaUzGlA+56fynQumEr7ChuU8/W1hZxHNf2DXvJtxtXClQ3J0zTUiBAnbpRLRzwmm01m746dt5xG+NQntZK01LAR27JeLh9HQuJqKmYlsjXUGFNSdU1s7ddtdnDjL2M5eNMsUXcb1NhTY6pqSlkMhldqsTaKCeVSiEYDCIUChl74/36ahzi0rRUydcoydGYsX+azR7FYpEEQdB0oYBS9onJjf3BSkg1jhTSzbIom+4wc1NsB1GzEm3dce3atbr/2ujP4uIiFhYWEI1GTbm/bjsUXLt2DY8ePTK9nvZhYX19HcFgEJFIxLxO6Gn2isUieTweO/6kM8lkkgRBoHw+b2o/dBUTkbkO4WFga2uLRFHUpCh8t+guJqLdNzye5y3xP3yQyOfzJIqiZb6ohoiJaPcbZFso7chms5YSEpGBYiLa+wM0Vsi36QzJR7KSkIgMFhPRrmkeHR21l0KpZGNjgwRBsKTLYLiYiPbe8ppPi7CRIxqNWuKtrRm6BS2VcOXKFRQKBYRCoeqesTb7KZVKmJmZQSaTQSQSsew8e1O3VQ2FQnjrrbcwNjbWVYnDg0wqlcLY2BgGBgYQjUYtKyQA+gYtlZJMJkkURdNySlYlEom0XYpvJSyx4TPHcYjFYnj06BGGh4c1qzneq+RyObz99tu4c+cOYrGYtkVM9cRsNTeysrJCHMfR9PS0ZR1NvSgWizQ3N0csy/bk264lLFMtoigimUzi+PHjGBwcPDQT7eLxOAYHB/Hjjz8imUz2ZuEPs9Xcimw2Sx6Ph3ie78lvqhKkuV+iKPZ8wQ9Li0liY2PjwImqVkQHJSPQE2KSqBVVOBzuOZ+qWCxSJBI5cCKS6CkxSWxsbND4+DgxDENer5cikYjZXWrJyspKXX8PmogkTI2Ad0upVMLi4iLu3LmD5eVleL1ejIyMQBRFUyPqpVIJ8Xgcd+/erdZEunTpEjwez4GO9Pe0mGopFAq4ffs27t69i3g8DpZlIYoihoaGdBeXJJ7V1VXE43EkEgmIooiRkRF4PB7dtn63GgdGTI0kEom6B+x0OsFxHHiex4kTJyAIQsfli3O5HFKpFBKJBB4/foz19XVkMhnkcrk64fZMkFFjDqyYGpETQiqV2rchoySwQqGARCJRd45hmH2CZFn20FiedhwaMSlFEpjL5bK36egQW0w2mmG5dIpN72KLyUYz/h+gjxKkgDa5TAAAAABJRU5ErkJggg=="
|
<image>如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()
Choices:
(A) 116°
(B) 118°
(C) 122°
(D) 126°
|
118°
| 69,858 | null |
118°
|
"iVBORw0KGgoAAAANSUhEUgAAAK8AAAAYCAYAAACMXa24AAAFiElEQVR4nO2aTWgTWxTH/zOZSVqNH43YD5FoTLUUVwVdlRTURbtw4aYrwQZii6DZ6EKEasWNiz7BIiLv9cmjJbW+0Mdb1EVVFFwJ1m5CF3VTEWuqoRpsTCZN7+S48HXsNDNp+pU79eUHA3PPOXPnTzj35N47F/QLMjY2Rq2trRSLxXhLMSUcDtPZs2d5y7A0d+7coWAwaOoXUQCBQAAPHz4sJNQSyLKMZDKJ8vJy3lJMEQQBiUSCtwxLo6oq0um0qX/Z5J2bm0MsFsPc3Ny6CttoGGPIZrO8ZZgiyzJkWeYtw9IwxsAYM/Uvm7yCIMDpdObYiQhEZGjnTTweh9PpRCwW4y3FlI8fPyIWiyGTyfCWYlmICDabzdQv0DLZlslkEAwG4XA4MDs7q6vANpsN2WwWoiiCMQZJkqCqao6AYiKKIhwOByRJwvz8PDKZjKUqsCAIqKiowL179wAAx44dg8fjQTKZ5KzMWsiyjO3bt0OSJPT09BjGSMt1kkql8OnTJ3i9Xvh8PjDGIAiClqSi+KN4q6oKm80GxhhEUQQRQZKkvCNno5AkSRtQVkpc4Efybtu2DV++fMGbN29w8uRJVFdXQ1EU3tIsgyAIsNvtGB8fx+zsrGncssm7c+dO+Hw+NDU14ejRo+sq8v9Ma2srbwmWp6urCx8+fDD1LzttKFGCF8+ePcPU1BTa2toM/aXkLbFpKWift0QJK1JK3hKblrwLtjNnzqC/v79YWlbN+/fvcfXqVSSTScTjcRARtmzZguHhYd7STOno6MDExATq6urQ29uL6elp1NTU8JZlCXp7e/HixQt8+/YNiUQCsixjZGQkJ8608l68eBGPHj3aUJHrxe7du/H48WMMDQ3B6/Xi0KFDiEQicDqd+Pr1K295Om7fvo3GxkYwxlBbW4vKykq0tLTg8uXLvKVZhv3792NgYACjo6Ooq6tDIpFAU1NTbqDRgYdIJEJ+v58aGhrW85zFhhIOh+nWrVs6m9vtpiNHjnBSlMv9+/cJAHV1denstbW11N3dzUeURTl8+DCl02mtDYAURdHFGFbeiYkJ+P3+vN+Vrca7d++wY8cOne3u3bt4/fo1IpEIJ1V6AoEA/H4/rl+/rrNfu3YNp0+f5iPKotTX18PhcAAAzp8/D7fbjbKyMn3Q4kxmKYX++v0PYimFkskktbe3F2eYrZG3b9/SlStXdCOViGhmZoa2bt1KIyMjnJT9JBgMksvl4i1jUzA1NUUASBAEcrlc9OTJE8M4XeX9s78P586dg6u6ChUVFdi3b1+xBtqaCIVCmJyc1EbqAtFoFG63GwcPHuSk7CeDg4PG87YSOVy6dAk3b97Ey5cvceLECbS3txvG6XYb7HY7IpEI0lkVT58+RUNDQ1HErpWqqirDs7uBQACVlZU4cOAAB1V6iMjS54utxKtXrxAKhSBJEsLhMARBQF9fX86XNi15jx8/jufPn0NV0rCVlyEajaLcJkFVfhwGtpWXafcLbQA6/2KMYgvxFRK31D4/P4+2tjZNu6qk8eDBA4yOjuKfQWscovd4PBgfHzf0ff78Gbt27SqyImsyOTmJjo4OSJJ+F3fPnj25wZ2dnQSA8N/0l6UUqq+v12z//h3WzTNYSlnR/Up8K30PEVFP92/k8/mIpRTtunDhAjkEkcKhgbzvKCYzMzMEgG7cuKGzNzc3UzQa5aTKerS0tNDY2JjW9ng8Wm4uJce60sRbfK22DyMKsXd2dpJDELWBtnB/6tSpvO/kyd69ezW9jY2NFI/HeUuyDF6vV/ttFi673W4an3MwZ+Gv18i21GcUa2Rf3F5tHyvtO987S/waaLsNi+eRq2Gtz/Pqu8TmRau8ZguvBfJVQqPnVrNgM6qqhT6/1Ga00CxV31+L7yTZ0Lk2U5QfAAAAAElFTkSuQmCC"
|
<image>如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AB=()
Choices:
(A) 10cm
(B) 11cm
(C) 12cm
(D) 14cm
|
10cm
| 69,859 | null |
10cm
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABzCAYAAAB5Eze+AAA2PUlEQVR4nO19d3hUVfr/Z/okpBCCoYWeLCJNIJCQJSQQigpKEEFMECkWFKkPsoJtLQiLBVmRRVB+31VW1wYIKKGpSBUQKaELAUICpE4y/c699/39MXlP7gwBgoTF9ft9nydPkpl7zzn3vOW8/YL+20Gt/AkAhYh8ROQjr+QkIoUmT55IISEhZDQaKSwsgsLDouivf32FCguLxV2SJJHH4yFV9Q/o8/nE37cKeH5FUUhVVVIUhYiIjPiDg8lkApGK2bNfh9PpQsOGjfH444/j9KkzGDtuDO644w5kZAyG0aivvJag0+kAAKqqQq/Xi/9/T6C/1Qu42aCDDj5Zglfy4Pz5PPTt2xdNm8YiJiYGgA6SJEFVVRBVXl+JJC0Cf4/wh+c4IoLBoEdubi5at24Ns9mM4uJirFy5Cl27dkGHDh1gNpsEkmRZhk6ng8FggMlkusWrvzL84TnO6XLCoDfi+LHj2Lz5O2RlZaJLly6IiYnB4sWL0L79HQJpiqIAAPT63/+2/OE5rk5oGIj0+P777/DMM9MxYMDd+OGHH/Hqq7NhMhsxatRIAFWcZjRWbYksyzAYDL9Lkfn7J60bBJ1Oj9wzv+LSpUvo2rUrmjRpgoEDByImJga7du1CSUlp5XW6AE77vZ9x/xWIIyIQaw81uLYK9CAoOHz4MLp3T0TjRo0B+DmpsLAQ4eHhCAmx+q+s1B6JCIqigIh+txol8DtCnKIoYsMAvyrO/0uSBK/XKxCoKApkWRbXEvkRJssyHA4HFMWvJXolD2xlZdi0aSMaNmwIt9uNkpISPPzwwygoyEP//v0QGhoCVVXh8/mgqioAP/epqir+5/Vp5+TPakpQtQ06ulUzV4KqqtDpdILaAQRQuZbbdDq/+m4wGMTZQyogSTJUUmCxmAEQdDqgosKGo8eOYObMmThy+DgsFiui6kbC5fYgOvo2/P3vC9C5c2f4fD6YzSYYDAbIsgyfzweLxRIgNrVr0/4vyzKMRuNN5UoW2bxPQhLcasRpp/fbU/7/GTFerxeKokCv18NisYhrxeb5CCaTHtDsnSxLMBoNUFUFFy9dhEFvhKL4EQroYTZbER0dBY/HB6PRr5BouYs3yuv1wmg0wmg0CgLi9bESc7NF6e8WcT6fL0Cbq8lytDYXCFBVgsfrhaLIMBr1UFUVTmcF9AY9wuqEweP1wOP2IiIiEqGhYZBlFYpMMJl0gE4Hs7nKXvP5fAAgkKWdj9enReDN1jqvhLhbbg4EPzgvks+ckJAQ8Z3H4xFnjcPhwNmzZ3Hq11xculSEkyeP48LFfBgMBtjtFSi4kAevV4bJZITL5YTL6UFiYndERdWHoqho0rgpmjePRVx8PG6//U+IioqCyWSCoigICQkR4pvnZIPcYDCI9Wi59D8Nt5zjGPjgNxgMAeeLJEmw2+0oKSnBqVOn8OOPP2LLli2w2Wy47bb6aNSwKVq1ao3WrVvitpj6CAurA7PZiDp1QlCvXj24PW5kZWXh0sVC9OmTjnvuuRcmkxmFl0pw6NB+5Bfk4/z5PDidDiQkJGDw4MHo2rUroqOjYTabAwiHRXmw6XAz4XcrKrWaGruYZFlGWVkZysrK8MUXX2Dbtm0oKytDfHw8unTpgpYtW6JVq1aIjo6GxWKB2WSBNcSvUPiVCxP0er8wmf/OG/jpp13o13cA1qxZi+effwmdO3dGUWEJDAYdVFJQWlqG/PzzyMvLw969e/HTTz/BbDajW7duePDBBxEXF4fIyEhxxiqKIhzQN9tk+F0gTntm8IJ8Pp9AmCRJyMvLw86dO7Fhwwbs27cPffr0Qd++fdGhQweEhYXBZDIhIiICer0esqzAaDQAhADlBABUVcYv+3/G9Okz8MLzzyMlJQ3jxo1Fx46d8NRTExAaGoJgcDgc8Hq9cLlcOHv2LHbs2IEvv/wS9erVw6BBg5CamorWrVsjNDT0sufSPpP2s9rYs1uCOKZMVVVRXl4Oq9UKq9UKp9OJ0NBQ6PV6SJKE3NxcLF++HN999x0aNGiAgQMHomfPnmjQoAEiIyOr3QQe2+PxwGw2Q6/Xi/NIln0YMiQDHTt2wnPPPYfQ0DrYsGEj3nrrTbzxxhvo2LEjfD7fZaJZCy6XCyUlJTh8+DDWrFmD/fv3Iz4+HmPGjEG3bt0EAtlEkSRJrMPhcPilgdl8Q/t3SznO5/OhoqICERERMBgMcDgcCA8Ph6Io+PXXX7Fs2TJs3boVnTp1wrBhw9C+fXtERkbCarXWaHxVVQDohLZnNBoxe/ZsnDhxAi+//DIaNWokVP7HHnsMd9xxB0aPHo2YmBj4fD7o9XoYDAbhBDAajQHIlGUZNpsN+fn5WLt2LbKzs9GoUSM89thjSE5ORp06dYSvU6/XCzOCpYnW/3m9cCXE4bpDsr8BZFkW0WRJkqisrIzy8/PprbfeorS0NJo8eTJ99913VFpaGnBfTaPPqqqSw+EgWZaJiOjAgQOUnJxMX3755WXjfPvtt5SWlkY///wzEfmj3vw9r08bdeaIM4PT6aScnByaP38+paen09NPP0179uyh0tJSEaGWZZlUVRU/NwJXioDfdMSpqkput5tsNpv4e9u2bdSvXz8aOXIkrVu3joqLq9IHHA4HSZIUsNhrgcvlIq/XS0R+Ihk1ahS99NJLZLPZyOFwkM/nI6/XS5Ikkc/no4cffpjmzJlDZWVlAevUgqIo4h4e1+l0CuJwuVx04MABmjp1KqWmptL//M//UFFRERH5icFms5HP5/vtGxe0rv844txut1jA9u3bady4cZSamkqLFy+mS5cuBSyQF6YoSo3zPZxOJ/l8PvJ4PEREtGjRIhowYAAdPnyYiKoeuLS0VCDhp59+oqSkJNq1axcREXk8ngCOVVWVZFkWa3G73SRJkvjM5/OJDbTZbLRhwwbq27cv9e3blzZt2nQZ0m8EbhniGHbs2EFpaWk0bdo0Onz4cABX8Q9zBH9eEygrKxOieN++fZSWlkbLly8XHEjk5xZOAuLfWVlZ9Je//EWIZ0mSxOb4fD6BRF4LI9Pj8ZDX6xVz8n0FBQW0ePFi6tixIy1dupR8Ph85nc4bRt4t5bh169ZR586d6b333qv2HGNKZq5zu91UUVFRo4fmB3G73fTkk0/SrFmzhOjlsfjM4c+IiH7++Wfq168fbd68OWA8r9d7mYjzeDzkdrsFgWklg1ace71e2rhxI3Xt2pXmzJlz2bP+FviPIC5YtHk8HnruuecoPT2dli9fTk6nM+Ba7UFO5Kd6puDg764GPp+PPv30U0pPT6d9+/YFzKGqagAyWPlQVZXGjRtHs2fPpjNnzoh5XC6X4DYWj3w9n5W8ebIsi+tlWRZcvn37dho4cCCNGTOGTp069Vu3UzwD0U1AHA/m8/mooqJCTGSz2WjChAk0YMAAWr9+vUAEb4qWy7RjVYcoVVXFBmk1P742Ly+P0tPT6f333xdnHREJsaglEn5wr9dLx44do6SkJPrhhx+IiISI5HGDCSd4fTwui04W90REhw4dooceeojuvvtu2rt3b8B9Ho9HIForkq+0v0SXI+6GHW7sjDUYDKhTpw4A4KeffsLw4cNhs9nw2muvoX///sK+YUPa6XSKyEDwWMFgt9uFoex0OsV1DocDsixj3rx5aNGiBQYPHgyLxSJS7sxms7iWx+XfJpMJrVu3RkJCAtavX4/CwkIREahK2Qs0cYPXx3Ybu+3YmSDLMtq3b4+33noLycnJePzxx/HRRx9BVVV4PB7Isgy93p/H+Zt9nldFdw1AVdUAEfjFF19QSkoKPf/88/Trr7+Kz91ud8DZoRU5VwOPx0M+n4/Ky8sFVWu1v88//5zS0tJo+/btAWsqLy8PmI/P0mCOPnDgAHXv3p02btxIRCS4pqamCBEFcLLP5yOXyyX+r6iooI8//piSk5Np7ty5VFJSUu1+XAluqqhk8ZCTk0Opqan0xhtvUEFBARH5N167CT6fT6j6NTnD+Frtg7J2WFpaShkZGfTWW28Jld7pdJKqqmS32y8TQyzStZ+rqkpPPfUUTZkyRZgn/Ew1ISw+B2VZDkC4oihkt9sFoX399dfUvn17+vTTT4nIj1A2la61v7z2WkMcbygRUVFREfXq1YueffZZstls5Ha7hSamVT4cDoeYXPt3TeZiIrDZbCRJEs2YMYPGjBlDubm54uEkSRKaZHXA12i55MKFC/TnP/+ZvvjiCyIicfbUxPOhncvj8QScv4qiCHNFURRaunQpJSYmUnZ29nV5hXjdta5VOhwOGjt2LA0fPpxOnDhBRIHiw+12i03Xqv3XgzS73S44zuv1UnZ2NvXq1UsoFtqxmNuq01z52mDzYMaMGZSVlUXnzp0T9llN16Ydi7mVFSO291wuF0mSRLNmzaJ+/frRL7/8EjD/1cbXrrnWEOfz+ejZZ5+lPn360MmTJ8XnTqdTiIrg88LlclFFRQV5vd4aUV5RUVGAtuh2u2nAgAH05ptvBhjaZWVlwquh9b6wKLvSXDabjU6fPk0DBgygr776qlof5ZVAUZSAZyW6XPssKysTeoDdbqdp06bRyJEjA/brSnDTtMpVq1Zh/fr1eOmllxAXFwdJkuByuWA2m0XYg8M6brcbiqLAYrEgNDQUJpPpmjErl8uFiIgIWCwWkaL3t7/9DVFRURg2bBjMZjPcbjdUVUV4eLhIeWCPvza9nKpJ/SMihIWFoXnz5ujSpQu2bNmCoqIioSFyWvqVQKfTwWq1IjQ0FDqdTozLfyuKgrCwMISEhMButyMsLAxTp05FcXExPvroI9jtdjEWXU+gpiZUxXKbXVKM9e+++45SU1Pp3//+t7iORUN1lHM9mhqDdiyfz0c//fQTJSYmBng8tNxxpTmCPwu2q3w+H507d44SExNp7dq1RERXPSuvpLxUZ/cxt7MbjIho9+7d1Lt3b1q8eLG4p6SkhFwuFxHRZe6y6+Y4IoLH4xFxLrancnNz8cYbb2DAgAHIyMgQ1+v1ehiNRiiKIu5jyvwtYX6OZamqCpfLhffeew+DBg3CnXfeGTCn9u/q5gj+TPs/P1fTpk3x0EMPYcWKFThy5AgsFgsMBoOw7dgG43vUoKTZ4HE5fsZSgHMwVVVFt27dMGnSJGzatAmfffYZFEVBZGQkVFWtUc3CVRFHRHA6nQgJCYEsy5AkSeQ6zp07F02bNsVjjz0mjN5gA7W2Emrcbjd0Oh2WLVuGwsJCDB8+HFFRUbWWZeXz+QSBZWRkoKCgAAcPHgww2k0mE8xmM2RZhqIoAgF0DfHGzgkey2AwiBTAe++9F0lJSfjkk0+Qk5MDg8EAs9ksfgO4oqi+6s7qdDqEhISI0LzJZILP58Pnn3+OS5cu4ZlnnkH9+vXh9XrFNQCEZ4A9FzcCPp8PISEh2LlzJ7799luMGzcO8fHxV/SyXC9Q5XnEnphGjRqhX79+2LlzJ3JzcwFUZVtzchCfY8HpetUBI50qz1POr3G73TAYDHjiiScQExODVatWobCwECaT6YoZb1q4JkvodDq43W7/xXo93G43Fi9ejCFDhiAuLk48mNVqFVRYm2AwGKCqKubNm4fk5GTcfffdlyXm3AhwegFzhtlsxr333oucnBzs378fAIT4AhDgpvot8+t0uoD8mLCwMIwdOxbbt28X8wUrOdXBNUWlJEmIjIyEwWCA1+vF8uXL0bZtW/Tq1atqkEoNjrU1Phe0Iui3gl6vx/z586EoCkaOHInQ0FAhqmoDWIow8SmKgtatW+Ouu+7C6tWrkZubK3yYrL1yfkpNiFSbUBsseg0GA1wuF5KSktCnTx+sXLkSp0+fFmnvwFWSbqtVmTSgKIrQdHJzc6ljx470888/B2hU2iClVgOtqS10NWA32tdff01EN6cTgjY6XlpaSrIsk91up/79+9MHH3wgtENOgyCqua9R64jg/7VuN7Y3bTYbDRw4kJYuXSquDQ4sX5dWycUWkiRh4cKFSE1Nxe233y40KraZAMBsNgtK8Xq9NaL4qwERYf78+ejWrRsSEhIAVIlO0tSx3Qiw/ceacHh4uLDtUlJSsHXrVhw6dEiccdr5asL1WumjtS9ZVHJ0ITIyEv3798eePXtw8OBBALgs20wL10QcT1ZWViaUA86tZ02S1VztD+dM1gQcDocQCU6nU2zOZ599hsLCQmRkZKBhw4Zis3jDaiOLmM0XRgxvFhFh0qRJOHfunNhIPse9Xq8o9bqeOXi9/MP7Y7FYIMsyRo8ejbNnzwacrVcizBpxnCRJ+OCDD5CWloaWLVtCp9NBlmVxqFe3eddjCjAhlJeXC0302LFjWLp0KTIyMpCYmCgUI6bS2tIqtRBcBxcREYHMzEysXLkSR48ehU6ng8vlAuDnBlmWa3TOXWmtwaZTREQE0tPTsWvXLpw+ffrGtEoAyMvLw4oVKzBy5EiEh4cDgOC2GwU2Nn0+H0JDQ4VoWbx4MRo1aoS7774bRqMRHo/nsmKL2tZgiQJT5AEgMzMT5eXl2LVrFzweD0JDQ4U9VxvFH0QkzA2e7+zZs9i5c6dYS3VwzVkVRcG2bdvQvHlztGnTRoiKkJCQWjOwqdIrwxre6tWrkZOTg6lTp6JRo0Yics7cyAij66gNr8katMAbFhoaijFjxiA7O1tofG63W9iqNwpaA93n86FJkya4/fbb8csvv6CwsPCK911zZrvdjnXr1uHBBx9EWFgYAAjjsDaARQ5vVHl5ORYvXhzg1mL7iusE2JtQG2fclZDP46qqigceeADFxcU4ePAgPB4PjEYjLBZLrREOcx0rdkOHDsXJkyeRk5NzxXuuibhff/0V58+fR2JiohBjFoulVmw0Bm016oIFCxATE4Nhw4YJ7mLKZk5joqkNrbK6zQ8+eywWC4YPH45Vq1bhzJkzMJvNgnhq47jgPBU+Q7t37w6dToejR49e8Z6rIk6SJGzevBmdOnVCdHT0ZWGS2gCW77Is44cffsCmTZvw1FNPoUmTJuJ7dlbrdDpRWF9TxaCmoD3fgkGSJDz88MOoqKgQZ091DuYbmVtbnmU0GpGSkoLjx4/jzJkz1d5zVcR5PB5s2rQJd911F+rUqSM4gGNqtcFxXIwoyzLmzp2LYcOGISEhQWRasY9UG98iIni9Xo2oVP01cjWE61k1b2RoaChGjx6NVatWYf/+/cIJfKPIIyJh/7rdbuHLHDp0KE6dOiVMkWDQ88RsM2iRcerUKVRUVKBDhw4B/jlOtasJeDwegWx/DxJ/DTc7UvmQnz9/Pho1aoTMzEzB2YwYrS+RvwsJCakUsSpURYbkcYFUBYAKokBpIElSALJklaACKCsrF+bFlc5LLTdkZGRAr9dj8+bNkCQpIDVPa3NdjzRgpURVVVgsFoG4Fi1aQKfT4dy5c+I64hIraDgueOGKoiAnJwctWrRAZGSk+JxFW03tKLPZLEwHNjSBqqJ9o9GIvXv34quvvsLYsWPRuHFjOByOasVhsPHNnKbX6WA06qFTZSiyT6yfiOByufxnh9sDpXIsvV6H4tIyGC3ma9au8UbJsgyz2YysrCxs3LgRR48evcye5JAP218+n69GRwojPXg/4+LiUFhYiIqKisu+0/ONweDxeLBz504kJCSIAnZ23QCocciGDXhVVYVnXRuTcrlcmD17Nh588EG0bdsWAIQYvprLh8HrdkMlgt5kAvR66PUGlJWW4v3330dSUhK6dOmCTp06oVtCArp1S8S+A4dgAPyFlaoCWamZAc3S6N5774WiKMjOzobX6xWdGlgiaBFVk6OENXQtofJ9SUlJyMvLCzjn+Dt9sP+NwW63IycnB507d4bFYgmwnSpvrJE4UFVVGNY+ny+gGQwRYeHChbBarXjooYcQHR0tHqQ6CqwOTBYL9DodnHY7ZEmCTq9HeERdpKamIjIyEo888gg+/PBDLFm6FN26dcOIB0dg/8EchJj8Kr3RcHXC4I3kClOLxYLHHnsMmzZtElofRw20/cBqSnja6xjpvD9JSUkoLi7G6dOnAQQ6Bi4blW8qKyuD0+lEq1athGIABLqyrhUBpsq0B22XIL7HbDYjJycHq1atwhNPPIH69esD8HO62+0WhHFNqlUUEABrSAgMJhOokrPbtm2Lli1bYvDgwejRowd6JvfA3LlzkZCQgMVLliCv4CKsNUhW0mqbnI6RkZGBunXr4uuvv4bdbhcuOyAw1aImx4nW+6K1HVVVRbNmzWAwGFBQUBDwPVCJOO0mseZ44cIFxMTECBcXL+J6elfpdP4MKG1El8coKSnB22+/jb59+6Jz586wWq0iqMkitSZ2mq5yPYbKDVNkGR6PC6dPnUJYWLgQyQAQVTcCnbt2xd6f9+Fc3vngRg1XfAYGs9ksfsaNG4dt27bh6NGjog8YK2ys7NQ0tYFBe2ayIhITEwObzQZJksQ1QCXitG4kPlTPnTuHli1birA7G738mwe+FhJ5PK/XG9Dc7N///jdyc3MxcuRIREVFCY8Eu76CHb5XfHAAsleC5HYDpMJgNMFstmJddjZiY2OFPVhUXApZUdCkcWOoigqDoZK6azJHJbcxQlwuF/r27YvY2Fhs2LABdrsdJpNJIIr3sqbBVu1eMWEztGjRAk6nE2VlZYHXsjzWbpIkSSgsLETjxo0DQjYMvLia+OqISHRP4OsPHz6MTz/9FNOmTUN8fDxcLpfItOLcSe5ccM05dDoYTEYYzWboDAbo9AbodYQ1a9agXbt2iI6OhsfjQUREHeh0BuQXFCAurjXqR9e75tr9w+uEtgj4kWE2m2EymZCRkYHt27cjJycnICWBG8fx/dcCFo1aBwfjo3HjxvB4PAH5lwCgZ27TikAiwtGjR9G2bdtqW1Zcr1dckiRhn7hcLsybNw8DBgxA7969hTjl71lM1iQRp3Kx0Pn7fkDx+gCosNlsiImJQWxsE7GhFrMFLpcLX/z736hXrx7q1YuGy1uzhFetE4BjawAwYMAAREdHY/PmzaIUjMNdfE9N9ok5WQv87H/6059QVFSEixcvAoAwp4SoDOaosrIy1K1bN0A0BnNnTUQZcw5f++WXX+L06dMYMWKEiDZrESRkeOXv4HmrWwcjT6/XAdDjhx9+QIcOHSpb1FcpXO+99x4Ki4sxbNgDqBseDpPJWCPi0O6Pdp+sVivGjRuHLVu24MiRI+Jz5pyaZEJfbU4AiIqKgtfrhdPpDPhez2eVFgmKosDpdAo3140A23tGoxFHjhzB0qVLMXHiRMTGxgYs8DeDTgdVUSD7JOjMZvgkNz5ctgwNGjQQipXD4cADw4bj9ddfx/z5byG1ZzLckg8Ev/F+I9CrVy9ERUVh3bp1sNlsQnKxR+hGQz9hYWEBig+DnhGmPUR9Ph/Ky8tFGAeoorrgn2txhDYX8c0330SnTp0wYMAAWK1WYR5cDa40L/+oPh/0egP0Oh0OHzyArKwsrFu3Hi+++CJ69+6NpKQkpKeno3Hjxli7djUy7r0XKulhMBpAVDPl5GpgMBgwceJEbN26FQcOHABQ6WIjqlFtxLWgbt26kCRJpEgKz1F1YQ0u0NC2/LsRUFUVGzduRG5uLsaOHSt6c9XGg/n9kAS9yYKGDRpg6tSp2L37J8yYMQO5ubk4duwYUlNTMXPms+iVkgKdDpBkGXqDHoZaiOcpioKePXvitttuw48//oiKigohHmsjgsHtpq5oDmjFJbN6bcSaVNWvLMyePRujR4/GnXfeWYtNqHUwW62V1KgiukETtGvXHqtWrsCHH34Al8sFj8cjciN9PgVeWYbVYoTX4wORWiNb7mrAKvz48eMF11mt1lrr1RxsDwqOCz50OZVca9tpU/GCf64mJvmAfuedd9CmTRukpaUJ0VleXh6Qa3EluPrcKvQ6HaxmC+zl5Xh/0bvom94XDocDTqcLTqcTXq8XW7ZsQV7eeZhMBigqAQRYLEZAp7+uEE91wOtPSUlBw4YN8f3334v2iWz73SholSNhb2v/0TqR2enJ31/p51oPtGvXLqxZswZPPfUUYmNjr89GQ5XNGEws/jkMIACr167G3Xffg10/7cbzLzyPv/zlL3jzzTfQrl17NG3aFM2aNcPEiZOwes03sJpNMOp18Hp8gHrjHMdgMBgwffp0rF+/Hjt27PD7QW+gax5DMKfxnhsZQSwuuQAvPDxcGMPa0AZ79xnJzMrsUQgJCYHX60VoaCjKysrw6quvIjMzU/SH5LNNK0r4LGAvDYeBzGZzgMfF5XKJNQLAxo0b8c477yAiIgwPjsjC3ffcg7j4eABAenpftGjRCiaT3xOTnZ2Nxf9YhPXZ32Li5Elo86c2fq/LFbQ/rhe4FoGpqlrZAt+Mjh07ok2bNti2bRs6d+4szBGgyizihN6ahsXKy8sRGhoqnpnNF6MWq1okceyMRR7/1k5IREIc8AZzUFCWZSxevBjNmjXDfffdB6PRCEmSxOJ57JKSEkRGRgZ4aDi6zBFhSZICqj537dqFBQsW4OLFi7jnnnvQp08fdOzYUVS6cLilY8cOYgMeeeQRJCcn45///CcmPDUBU6dMQf/+/cVcXElbp04dEaqpSYdzblYqSRIsFgumTJmCyZMnIz09XfTD1BKq1ktSE+BIf3C7fGOwb439hWazOSDXQ4s4BlZomGLZYyBJEnJycrBu3Tq8+uqroqqHa7+0xSHcfJQjyvxwnNklyzIsFgt0Oh0uXLiAd999F1u2bMF9992Hfv364Y477hDeHfaJsksK8HOEJEkICwtDly5d0KRJE3z11VeYO3cuNm/ejAkTJiAuLk7Ym1qHQ024QhuSUVUVHTt2RPPmzfH111+jXbt2qF+/fkCholaHqAl4PJ4AxLF0EzKA0wgAv9spKioKZWVlAdxYHeKYk0wmE5xOJ/R6PaxWK1555RWkp6eje/fuAjFapYcdt5Ikifu1Fa9stFutVlRUVGDBggXIzMwU3YrGjh2LLl26CMnAHGy1WgUSOInWYDDg0qVL8Hq9aNCgAR599FG88847Ignos88+E0jg59OmAV4NtBEPvve5557Drl27sGfPHoEsbeSfj5eaZMqVlJQE1NOLilh+MK033mQyITY2Fnl5eUIUVBcN4PORqYEXtGTJEjgcDowaNQohISFwOBzCZhOHqyYwqTU/tOeAJElYtWoVPvjgA4SHh2PixIno0aMHGjVqJKiP16/VUFmKcPzMYrGgbt26cLlcArkJCQmIjY3FunXrsHjxYqxbtw4vvvgiWrVqBcCfCMtOCO0bRoKB5+XjwWw2Iz4+HomJifj2229x5513omHDhtWmFtYEzp07hzp16iAqKuqyiYmoqqcjkb+PyKJFi2jatGlks9mIiC7r+6FWlh5x+6Py8nJSVZX27NlDHTp0oC1btoj7tO1yuWknz8nADW0YNmzYQIMHD6Y+ffrQ559/LvqnEPkL27nciDv6cGtCbnCmVtPjhMubuMkNj7F//36aPHky9e/fn5YuXSpacFyteD94H7Qd+mRZphMnTlB6erpoeqNqSqS0XfmuBfPmzaMZM2bQ+fPnA/bMSJrMJC3ntGzZEhs2bBAWO2lsMwZWJDin3u12Y+HChcjMzETXrl0FhWm1Mq0Gx9TncrmEKNi5cyfef/99FBUV4c9//jP69++Pli1bIjo6GgBEd3GdTieUl+DKGe0a+XOOgLByEBISIjTjTp064fnnn8eKFSvwz3/+E1u2bMEzzzyDjh07XpMjWCSzbsBHQnx8PLp164YtW7YgMTERTZs2RfBe1yRF4/Tp02jRooV4fn4esaPaXHidToeYmBhcvHhRsDRdQRYzYgwGA5YvX45Lly4hMzNTFPxrvSREVXXT2ocIDQ3FmTNnMHPmTLzwwgu47bbb8Pzzz2Py5MlISEhAeHi48P9xRJ21Na3Hh4mCNAoXI0p7tmo3jD+vX78+xowZg3fffRfR0dGYNm0a/vGPf8Dj8VwVcWzGcCxRq+CMHz8eBw8exI4dO8T6+B6dThcQt7sSXLx4EaGhobBarYE4YHEX3JgsPz+fEhMTae/evQHNxVRN3w6v10sOh4OIiE6cOEHdu3enlStXBogxbfcgNai3CP9+6623qGfPnjR69Ohqu6EH3xtc5cnrqu7/4L8ZgvuhsEgnIiouLqYPPviABg4cSJmZmbR7925xHfcnIyLRC1orLnlMvmbevHmUlZVFx48fJyKi8vJycrlcAX1ftH9r9+bixYs0cOBA+uyzzy7bD8FxnFrGlBgREYHmzZsjJyenWg8JF/dx3fRrr72Gbt26oWfPniJdQavG2u120SsE8NuJn332GYYMGYL9+/fj8ccfx8svv4zevXsjPDz8spfsBYs/rfgN1naD42fVxdJY0eLUQa1SFB0djdGjR2POnDlo2rQpJk+ejL/+9a+oqKgICCzzOjjRl7scsTbr9XoxdOhQ5Ofn4/jx40LiWCyWgAg5a5esaTPHHj16FJGRkSL9Qrsfep1OJ/IYtYk1FosF3bt3x86dO4UI4Mk4usv/L1myBMXFxZg0aRLq1asnrqFKTdTr9cJqtcJiscBqtWLDhg0YMmQIPv/8cwwdOhQvvvgiHn74YTRr1kyswWAwiCzomwlaw59zQJ1OJwwGAzp06IBnn30WL7/8Mvbt24cRI0Zg586domqIxSSfl3a7Xdiz3JulRYsWSEtLw7fffoszZ84IDwhr4FoXHiOPiX379u1o0KABWrZsKZwdArRihDVEZtvvv/+ekpKSRO/J4GJ8WZbp5MmT1KdPH/FyBqKqlvKSJIn+kUREx48fpzFjxlBaWhrNmzeP9u7de1nPxmCRWBPN60ZB26KRi+m17ZtUVaXjx4/TK6+8Qunp6bRo0SLR0IBbGnN3PL5fq4VfuHCBUlNTxR5pxatWTHLzVZ532LBhNGfOHNFETntEGNlbwlTANpXJZEJcXBx8Ph9KSkoQHR0dkLXL+YTvvfceWrdujW7dugliYN8i+yXZZ7lt2zakpqbi0UcfRUJCgvBusNfB5XIJCmZtTZuzeDNAa18Jd1JlqgX7Sg0GA1q1aoUpU6agTZs2WLZsGXbu3ImpU6eic+fOwhXH0oUlktvthtlsRsOGDXH33XcjOzsbHTp0QFxcnPCmsNdFW7/AL5m32+1o3ry5OMYCkpC1lMF2CLekcDqdNGHCBJo3b55QQvhg9Xq99K9//Yu6detG+/fvF60dzpw5I6itoqKCFixYQL1796bHHnuM1q1bJ1rbctsIbcterYKgXcfNBK3ywvaotl0jcwBzGBHRwYMH6YUXXqCUlBSaPXu26CzL3MZrZ/tVURS6ePEi9e3blz7++GPx/Np9YtuxvLyciIg++eQTGjVqFO3fv1+Mrf0NrTaj/c1iauPGjZSeni5eP8JsfP78eerduzctWbIkQCNljWjNmjXUp08fysjIoE8//VQYkERVPUK8Xq8QG9yVT658FYp2o242sGhk4tH2uWRicrlcAWLdZrPRmjVrKD09nTIzM2nnzp1irLKysoA+mryvs2fPpilTpghnAotWl8slEM4M8uSTT9LcuXOFphp8TIGIqvUO8GdFRUWUmppK69atExvr9Xrptddeo6ysLMFBTD1btmyhhx56iAYNGkQLFy6kI0eOiO8YQTx28AuImPqD+ybfbHC73QEbrW2uw+uo7pwh8jfQmTVrFqWlpdHLL78sXo6k9brw8zOxM9dpPTsej4e8lUR86tQp6t+/vzgTta0mGcBfMKYVRaGSkhJxscfjoSlTptD06dMFF2RnZ1NqaqqgMiJ/N/GJEydSv3796LnnnqPdu3dfhhSiq/eNvFUQbNMF/68FrVLBUFJSQqtXr6Zhw4bR4MGDae3atQGE53A4hOtw0aJFlJWVRUeOHBHjuZ0u8nqqusK/t/A9euKJJ+jYsWNE5CeaCrudvJJEPsU/LvhmSZKopKREvACBtSyv10sHDhygHj160OnTp0lRFOrVqxctWbKEiIguXbpEL7zwAiUnJ9MTTzxBW7ZsEXL6fwNoOeHEiRM0b9486t69O82aNUu8LYtFrqqqdPbsWerfvz+9//77AVztcbnJWWEnUomGDrmfFr77boDv0+P1kqKqJFcSjJ6j0kQktEuusNHr/a0LmzdvjubNm+Orr77CjBkz0KhRI4wYMQKffPIJhg8fjsLCQsyaNQsvvfQSevXqhYiICMiyDKfTedPtsFsNer0e58+fh8PhQHx8PCZNmoS3334bNpsNw4cPxzfffCO0TABo0qQJhgwZgtWrV+NQZVcFqvRdmq1WrF61CmFhYejcuYvwrVJl0rDL46oy3CspQQysbXfEtc5t2rTB/v378cwzz+DChQvIzMzE9u3b0ahRI9xzzz3o3r27CIewF4CDoNcTNPxvBO7VyWkXXD9w7tw5fPnll1i5ciX69++PiRMnitCMw+HAAw88gPT0dEyZMsWfJkg66Ix6PHD/UCQlJeHpSROFf1Kn08HhdEJv0MFsscKo00PPnmr2jrAdYbfb8fe//x3nzp0TXMeT7tmzB/fddx+effZZjBgxQiCNKSO4MvOPDNrgL6dByLKMZs2a4emnn8Yrr7yCo0ePinYbfM/w4cNx6tQpnD59GnqDATqDHj9s3ASfJKFDhw6wWq1wOBzCTWgwGmC1hEC8xZdb7vG5xofuO++8Q507d6ajR48SkV/N37BhAzVs2JBWrFgh5DprRNr28vz570Hx+E8Av1OOfxMFxi9PnjxJS5YsoX79+tHMmTOppKSEHA4H3XPPPfS3OXPJ6/HfM3rkw/T6q6+R3W4noirPUUlJCbk8bvJIXnJUmiR67pLDFENEWL9+PfLy8lCvXj2EhYWByN+Upk+fPsjIyBCRcZa/THVOpzMgT4VLbP/IwHvDqRcc2efwksPhQFxcHEaMGIGZM2ciPz8fw4YNw44dOzDy4ZE4sH8/zp45i+xv1+HSpUtI691bpP6z5IqIiIDV4ndusx5iZAcwVTqZy8vLsX//fgwYMEDUfbHyYjAYMGHCBIwfPx533HEH+vbtCwDCo80BTm0a3h/5fAMC67I5zqZ1X3GvT6vVit69e6NFixbIzs7G3Llz0aFjB1y8eBFfffE59uzejQeGD0ePPyfjcE4OXnnlFfx66hRiY2Mxd+5cnMvLQ+MmjdG+XXv/xD6fT7Cmw+GgTz75hI4dO0YFBQX05JNPUlFRUQDbV1RU0Jw5cygrK4sKCgouSxHgfvm18X7Q/xbQ2qvBhjIRBbxehq/fvn07PTNjBsW1bEm31a9PT4wdR3ZbOc189llK65VKi95bRF999RV98803NGrUKLpv8GA6lJMjxjDqdDoRY1q7di2mT5+OZs2aAQASExMREhICg8GA8vJyAP42E6NGjcJTTz2F77//HiNGjBCdgbi5qNFohMvlumq/xT8SiHz+ap6VuzBxuIg7UCQnJyM+Ph4WgwGvz5mD9h06YO6cOfjmm28wbdo0jBr9iBh38+bNMFnMAUU4RvY4X7x4EWfOnMHf//53qKqKffv2CVmr1ZhKS0vRuHFjjB8/HjNnzoTJZML9998Pg8EgXkGiqlUv3fvfDpzWwfmQnDjLGXJHjhzF1EmT0aVLF2RlZSFr5Eg8Mma0iL8ZDAYMHDgQRcVFqBNWR4xr1Ol0yMvLw7vvvotHH31UNIlRK6tsGLitLav5PXr0wIQJE/Dhhx+ibdu2aN++vVBhORv4/6DqDGRClmVZBFxfeOEFxMbGYuYLz+PNv/nfOvlQZqa4lypzZzp27AhJ9iG6XnTVwDNnzqQOHTpQWFgY/fLLLyRJEv31r3+lNm3aUGxsLL3yyivifWrsbyOqenHd9OnT6f7776f8/Hwi8qf2aV/x/L/FJLgWBHeFnzp1Kg0ZMoR+rXyjVVrPnpQ5/EEqKy4lxSdTWWVndq2DudRWRs5Kc8A4aNAgJCQkoE6dOqJnV0pKCtq3bw+j0YjGjRujuLgYMTExsFqtKCsrQ0REhMgynjJlCiZNmoSXXnoJ8+fPF+YDBVWZ/G8FFpHa837x4sU4fPgwZs2ahdZxcSgrLoHT5UL9+vVhNBqg0+tFQm54eDicTqc/m9kaAtJX7qeWKoI1HwZOP5AkiWw2m9Ak2Zl84MAB6t27N7377rsB7+D+P27zA6eEqKpKX3/9NfXr14+WL18u9qeitIyG3z+UHskaSfnn8ojIr4k6nU4qKyujXbt2VSXEVo4Jji+xxc9Zvpz/oI3oat93ynkafF92djZ16tSJVqxYQZIk1filfn900JpGe/bsoZSUFHr77berAsUqkaqo9PH/+x9q1iSW5r/1Nqk+P3ouXLhATz/9NK1atYpcLhcVlRSTozKQLcI62nhZsPuKKNBG4egwEQWkHSxfvpx69Ohx2bvdmFu18J8Olt4s4LNLG8NjotZGrktLS+muu+6iSZMmCV1BlmURPistKqYF77xDycnJlNC1K/Xq1YsyMzNp2bJlIjXC6XIJRtER3XgxNrEH2+HAggULsHLlSsyYMQP3339/QFFGaWkpIiMjRfukmhb3/Z6Bk3g4I9rpdAb0I9PpdNi3bx+mT5+O2NhYvPbaa2jWrFmAt4VNMkVWsOXHLbhw8QJIJTRo0AB9+vSB2WwW1/Feg24QtPkasiyTw+GgDz/8kJKSkuj1118XVKhNwuFUwD+Kd0X7DhzO7mbOWLt2LaWmptKMGTMoLy/vsvtYO7+W9OF9E8lCN7poTm/QigqXy0UbNmyg9PR0Gj9+PBUWFga8cvlW5JXcTOBn533g3JT58+dTcnIyLVy48LKsAK/XK360xw6PoxXB2jlqDXFEVWdkSUmJKNfy+Xy0Y8cOGjp0KGVkZNDZs2eJyE9ldrv9D6O48HPwy+MZZs2aRT179qSPP/6YXJVnkyzLIhVPWwrGHMqJxIwwLsciukmI48VolRoWFcePH6eZM2dScnKyUFrYsV2dQ/a/ESoqKgTS8vPz6YEHHqARI0bQ1q1biagqm4uo6uXwjBTOmuO/WWNn58VN4Tg+q7Tp21puYrmfn59Pb775JvXu3Zvef/99cf8fxbPCSNmzZw/de++9NG7cODp06JD4no8GJmZOltWm2MuyLM59Ls68mqi8Ya2Sc0xMJpOICAAQTmmtx/xf//oXli1bhlatWmHChAkBbxb+b4aCggJ88MEH+PHHH5GYmIgpU6bgtttuE20/+J1BHKvk9A6q1BBZW2QNVVuMqa3hY7+n3t/m8cbNAZ6Q6xC0KjI7nblVxp49e/Dpp5/i4MGD6N+/P8aPH39ZfXPwe+mCH4KBl17dIwS39dBWxQS30NVep21DrO3AoN1wLXz00UdYsWIFIiMjMWjQINx1110i/MIqPNcisJP5ejo78DU3BXFXA64/4/IjnU6HwsJCZGdnY/fu3Th//jwGDx6M4cOHo04df9iCC0t4I7UhIm1DmeBN1wJTN1BV0MHXXGmztDVrvFkej0dERrTSY+vWrfjHP/4BWZaRkpKCu+66C/GVzXGYu2qj7eEtQxwA0XFIp9PBZrOhbt26AIADBw5g586d2L59O2w2G/r164dhw4ahUaNGAchTVVW8+ix404MLKElTq85/a0uX+V5FUUQ7fa2I0uv1osWg1vA1GAyoqKjA+vXrsXLlSng8HiQmJiI5ORlJSUniqGDju7YcDLeU47Qby51/iEhEzA8cOICtW7di7969cLlcaNeuHQYNGiQaAAAQm8xVpADEW6W05wQnMWlbAzPnAlWFjNozRa0sMGSJwGKRuaWgoABr1qzB9u3b4Xa70a5dO/Tq1QspKSkin5Jb7nNrDW0Z1Y3ALUOctocVL4QVGoPBENCo7OjRo9i+fTuOHDmCoqIiSJKEvn37onfv3qI7EVBV08ZcCECcTdrWwFwarW0tDFR1UOLAcHD/FsD/3oUdO3ZgxYoVsNlsaNiwIf70pz+he/fuojEO4G9bpeV27jTkcrkCXvb7W+GWIY4RpaVmjo5zJyJtW3sAOH/+PA4dOoScnBycOnUKdrsdRIQmTZogJSUFvXr1EuJWWzMdPO+1zjRtixC32409e/bg+++/x4kTJyDLMkJCQhAXF4e2bdvijjvuQHx8fACS1MomONo3WzFRaFPHb0Rc3tIzjs8JXoi2SQCbEqwIcB8xhn379uHkyZMoLi6Gw+FAbm4ujh8/DrPZjNtvvx0tW7ZEbGwsmjZtinr16iEkJAQhISGiLwiDw+FAeXk5JElCRUUF8vPzce7cOVy4cAGHDx9GQUEBYmNj0b59e0RHRyMqKgqxsbG48847ERERIcbRptUz4ktLSwH4G19rz1zuw3IjXHdLOY4fkDmOkagoSkB5slZssdjRQmFhIXJzc3Hy5EmUlZXBZrPB5XLBbrejoqJCJOOqla2J+Szk7hC84dwiKjIyEqGhoYiIiEB4eDhatmyJ+Ph40eibgcWwltsAiPOWn4kjApwUBNT85VFX279bhjhV0+ZPK9oYUcH2DIu56npIaj9zu90oKipCeXm5eBeQUtnYTZtVbTKZUKdOHYG8kJAQREVFoW7duuJ38Jq1m81iT0tUAAK4Lnh9tVXwokWP1u78j4jK/4Mbh2Ct9f8Q918K/x9pYpY70Yz0tQAAAABJRU5ErkJggg=="
|
<image>如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()
Choices:
(A) 35°
(B) 130°
(C) 25°
(D) 40°
|
130°
| 69,860 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAKcAAAAWCAYAAAClgIw8AAAEwUlEQVR4nO1Z204bSRA9NVig7F8AtiNh/gFW9rDwFPMXYCMRBfLO82JnFWlNVoq0f7B4yAvXSHxDYg8KEP6ClcjgPvvQnvHcTCBZ32CONLK6u7q7uqq6Lm0hScRga2sr8DuMGAUeE2j8iK6M3rCSwA///d/a2kou0z0xUsbZxck/mKbfEJFBszCSGCnjvI+SE0N4PBgp40ww+nhIZJNuBdH8/HzgN8H/g9PTU4gI5ubmBs1KX3F6egpA29N9c+5U79hJEIeneNn9qdZD0q6unjNBgkHDCFqmCrSae1VYzSGx3fuwMRSsqkiPvv/R/qeK8oIBQwQiYxARiAiqe80InRF0sp36iLDxsrjZc0bvjTajJFFe0AcaE/eQApECbPFZ5wAMlWwhUmPSDWUGrDdlGEZK87uwAgUb5XK1PXcoblZfUDtSWCkAFesTSKJhVfC6OBtxhJ4kw6L5Y60GMU1kc/5eFRDiIAQqIqgdESUT+KfRQktpnrZXgZzkYbsn6dOLkl8CImNRAgFg72q+r6bQUrcgidbbRaSMWWBquj336TyBETbOT/JYejEDAMilM/G+hD4opUiS9WqJFWuXeeT5mcpH0eIwQLHJvFmO9K8sgIVyZQAcdYdikwWA+dJ2ZGx7Nc9qveEStjEcMu4N9NkaVsXTkyJZMsFC+XeGz54iOk5GRADbwjFN1DLAppnFbMAFGSBb2kMQgCj056k0uI+9tw/JTkao0ukC/jr/Cii2E5Z+8dcdH6o1nCCPZm3D63Nlnk4/BzLae3TE/EifnglA9Nkuvl7hpLYDqem0sd5QqOWikcNAKDSv7ZygtlEEABSy05EJXugSBbJfoSiosIOjAyyaixGq6elsm1za8XawiiZs/Lm5g1JlDTNt6yPp2WHxVQ1FVymPPOX0TIXA0f4O6g2djtWrJSzPGvgQU3gb/lyn/nYd7/9+j4lfJiC5ZYQrTJK+PNOASP8kSu+zsb9DL1/x4/LyS+dC9TGFY1yDAM/O8RHAVDrjDXfNLQV4EhX9mYV3sopiTkASxVdrMAEcHuxFSH2x0sLJ7a+4vr7Gzb83aFgVZCczAcm7Zb/fQPsFcb+zC0h5yfNEHmwLr999DHnU/ihb4hqi3+ki1zfmPrviZCiK6er/ccAVi3VwjNJvCwAUIALYX3AMYHo6E5mjrcu2IOtHXjgHdF4AUREPFBZgrxHezdo/QnYymm6UXy4D5io2XuR8cwacv808RwHA1eVFp68tT3VmeW97rjMNV/ux1f+I4/BwB+biC2jd2DBzywDyWCxGIyEqpYIXMesNRUc5LJm6Pf5snEvrVTrKIUk6yvE+F/52i7fB/laQ1h331ml1xsLzSXrz9Rotr/LdbX6joxx+Uw7ZrGv+zVVNp4I8xe3vQQWbPzseB+tNmQC4Xf/s9TWsClFYidD2mr9BjjesCnUlYHQyNBiEucpuQLjDr0zdvgls5hoKSW0c/nmq2xpOaH6X/VR8v9NytEIBTjwb7xxO9AWq1huRixNroN8zph8Yd5/f7qINK6brc1cP+Buq8TsRfUKL/Ld+y1ukJBXbjhvz4y66+4zdxcdD+btrzwSjge9qLCWpO5WbKD1Br+BVDGEv+FD87PxBrZ1gePEfS9je4Z0ecj8AAAAASUVORK5CYII="
|
<image>如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()
Choices:
(A) 3
(B) 3.5
(C) 4.5
(D) 4
|
4
| 69,861 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABjCAYAAACR8o4mAAAMP0lEQVR4nO2dX0wbRx7Hv+O0ja6q2j61PDWJbZrwVCpVCmlU1YD5kwB21OTkSKna9AiF9qKjTTBwLwlSU10LpCktKDHQliJVIanIAU0C9jqNkYpCpT5Q3UPgsMMh9YHcUyLRI9Cwv3tYr72218bArje29yNFxjP7ZzLf+c3+Znb8G0ZEBB3N4UG4w7kwZ6xDiSnxsYbUFCm7ScYqGAI4Wfpe+ByiuCfqoqUAlsQx3U3doKoK7DDxwXNY3BN10R4BuB4nYLUCVxkEyfiESuuiaQEB4IW+jwIecChGjYnHD1V5eBEGrCWLLpoWMAAGwZQaL3BorSkHI8Cel5vU6bpoKYWP+Mb1NKC9vR2MMRjM+yLyEjn1umgpJVzdFPDAS6UgIhARZrkuvGjcFspnCR5qj6laRh0AwiNMKgEFPDCc8IKGW4XvRJibmwNghmCNhsQuJ+moCk+rwifPExHR+cYqCupIHr9wjNOGUJrd6SLiKeKcaBiRPiOiNtGWtln0Z1oKWEuwByvLEd/XMiNdNI25du0aOs59HpHG1lBZFy0FxHsCDQ4Owm63Y2lpKc6J8sm6aCmAyZjO4OAgqqurYbVaE5won6yLliIEa+NBROjr/xZ/OVaN69evY8/ugvAxSV5LFy2lGNDf348P/laP8Zs+vPrqqyCJNSXrYeqipQjGGHp7e1FfXw+fz4f8/PwNX0ufEVEI0dmQe34BQEdHBz755JNNCwbooilGPLGAsGA3b97Erl27Nn0vXTSV+fjjj9HZ2Skr2EYno3TRVKSlpQV9fX2YnJzEtm3bYvITWWcidNFU4tSpU+jv78f4+DheeOEFRa+ti6YCJ06cwOjoKMbHx2UtbLPooinMhx9+iLGxMfh8Pjz//POq3EMXTUFqamrw008/wefz4bnnnlPtPrpoCvHOO+9gamoKk5OTeOaZZ1S9lz4jsklWV1dDgvl8PtUFA3RL2xQ8z+Pw4cP47bffIgQjog2788mgW9o6kA6GHz58CIfDgYWFBXAcF2FhagoG6Ja2LkQxlpeXcejQIdy7dw+jo6N46qmnUloOXbR1sry8jAMHDgAAvF4vtm7dGspTu1sU0bvHdbC8vAy73Q4AGBoaihAMUL9bFNFFS5LFxUVYrVY8/vjjGB4ejhEsleiiJcHi4iL27duHnJwcDA0N4YknntC0PLpoa3D//n1YrVbk5OTg4sWL2LJli9ZF0kVL9E7r/v37sFgsyMvLw8DAAB577NHw2x6NUmgIY0zW6xMFy8/PxzfffBORlyovMR5Zb2lArNd39+5dFBQU4JVXXokRTO74VKOLFsXdu3dhsVhQXl6Onp4erYsjiy6ahPn5+ZBg586d07o4cck60eI5HvPz83j99ddx8ODBR1owIAtFk3seiYIdPXoUZ86c0aBU6yPrRJNCRJiZmUFBQQFqamrQ0tKidZGSIqtd/pmZGRQWFqK5uRn19fVaFydpstbSpqam0lIwIEstbWpqChaLBe3t7Th27JjWxVk3WSeaKFhHRwfefvttrYuzIbKqe5yYmEh7wYAssrSJiQlUVFTgq6++wsGDB7UuzqbIKEuLN3AeHx9HRUUFent7014wIMNEkxs4u91u2O129PX14dChQxqUSnkiu8ellfDff9L27awSuN1uOBwOXLp0CWVlZQC0f62iBJGWJgqV5oIREQYHB+FwOHD58uWQYID2r1WUICMdkStXrqC6uhrXrl3D3r17tS6O4iQWLbq7lOs+xbRo60zU1SbbDcc7LkH6pZF/4oPa9zF6ZRh79u4Vjk3zniOaxI5IdHcZ/SlWSLSg0vT15EmRHhcvXXr+0gq+++47fFD7Pobc17Fnzx7Q/5YT3yNNWV/3KNdqU1EhSVjKt5cvormhAaO+G0LIh6UVsCe1W5uoJmu7/Gu1VGmr14iuri7U19djbGwML730kmblSBVhS9ts36/ms0NybSKKCEfU1dWFM2dbMTk5iV3bjGvH3csAYsdpchUvWlt0ntQKpXnxnJa18qT3iHNt9uTWUPoXX3yBf3x+VojRsc0Ye414f6c5YdE2+h+Kd16i6yV7ToLjxBgdcaPgRDeUDCI5R0TDVio3gyEK5vP5sH37dk3KpSXJj9M0InoFsNPpxPfffx8ToyMTpqeSJbFoClqXUKkEOYd1rQoX88QYHT///HNMjI7MECwYk18KAYTIukvZNJZQqfIVG289vZTjx4/jxo0bqgZV0YpwoM7oBs2DmCG4G0a4blIiGgFAktYkhzTkQ6YJBgAs+BpQGr9faMQG2Wau+vu0RjuDgTEYDAYwxsAYg8v776TPFwUbHx/PSMF4SeRiqUCJGrHqorUOE5w24Dw3K2yE4zmPupKd4AKJz+N5Hm+++WbIwp5++mm1i6oJ8rYkEP0eniBYoOqiEfyYuVqF4uIdAACT0RiZL7NEYHV1FQ6HA/Pz8ymLgqM9fPgzWCXeHmeod2L2RgB+NDW51BctwHmBhkrksi0AeDSdKIOt0SXsMEux3cDq6ioOHz6MhYUFjI6OygqWWdvjiGIJUhAMoDseMMbQ6c8NbdXFf2aFgeUCZqP6jsjcfwIYaW0Ha68FIwb3LKHVxMt6i2KMjqWlpbhBVTJvPGaICvMegN0sNOzhT4WFtEQEZirF+cYqsB1m9S2Nu3oWnsAq+Ic83K6TKDUzcAFDxMQuEeHBgwehoCputztuFJzMEkyASToOrucCRlCFs58eAwXVFP/PueZdMBqNyokm12VRwIM2NKDEKHiO1ppa2ABwNzxgCD9oFxcXUVVVBUA+qErmYxC6Qfjx5bvtcLqOwwRDTAMtrmlFiUkp71HybJJq5/2RQ2OFZC+VwB2MIOyMMAC///479u/fj2effTZrBQN4of4Cd/ADhPoJjdfinLFJwnsyC8+bcA53tR3W4tLgzf04YC4DWCWKrYJoi4uLKC8vR05ODgYGBrJQMADgwShqMwYKy8IkxwHCcQo4IpIbBBXzcxeQG9zSvm1EoqLNGdoH8969eygsLMQff/yBoqIifPTRR5svSppCDMIz3mSEjQiBOT+AqKFRwIvuOSNqrWZlvUfRszOX1IGnuphho9iaxBgdL7/8sirRtNMRoa7M+Gt3A0rfLYPJOItaqxlEhIDXhdzOO6DhVnFKcPPIbTcaL21hYYHy8/Pp6NGjStw67Tl9+jSdajlNFNzwlYhohjsvbOzKhEkQW6OLiMJ1qoilxTjhFPbopZOg/w3G6CguLkbnl51K3DojYGSA9DHzorUORHWSI4TnmViP6ozTZPYEkwZV6ezsVHY72rSHXyPfkOCbApDMeG1+fh67d+9GZWXlIx+jIx1QfUZEGqOjra1N7dtlBYqLJh3F3759OyRYusToSAdUmzCenp5GUVERGhoacPLkSbVuk5WoItr09HTaxuhIBxTvHqempvDaa6/FCCbnoOhsDEUtTRqj46233orIy8RXKloRx9Lkxw1ha4nN/+WXXyJidOgiqUeEaI324HoEtiW8NoHZ4BdH5Ex+TD4xMQGr1Yqurq60DqryKBHWQljNFl4r0hxZ++LKKY+fQmsTzjcCuexASLjoJ5M0qMqRI0f0Z5dCSLXgg1rMelyw7TLCIK1igh+30SAsuglS9+kInLYfcLKpF8JKoXAX6XZzqKysxNdffx0KqqJ3i+sjupGHv/pxG06UmARdXC4OppIi7DfugEFaxQHOC7bTHDan4KdpZxVGpv2A5BW4283B4fgzBgYG8MYbb+gWtkGE+uQl34VPP+dFXvCtv7fHBZh2gMGM2toSwXsUZ+K93uuoKP0sPJkb/DTm7gRmwgeKUXAKCgpw69Yt3Lp1K7QeX2d9+Hw+WCyWiDSCsIqtrfY9tNUKaR6/MAVI4mJVYZGNH9fbKLQUQErAP4PKPDOIASsrK/j113+h6e/NETeTCqaLlzwWiwWFhYUAwh0cg7BUQ/QtnFVV2GGSOIPiizfe7w69bJPC+90EgC5ws5HpCrwA1CGSvvwMpcyOEeyNxJNQz93d3URExPNCrYe8R++PHHaatse0hKYTZYDNiVqrOSJddzeUInaofOOmF879xaEfONXU1AAAGpubhAOIiHiaIRtAHj+FTIif5YRX3vaGSKvi4/xNRLxMq9Hzk88XabIFtZDgtIGcLjcRCb9iIRb8QQYAYsJPDmW6xNgb6l2ksghrQwwRGkj/iUL+H3TVlu29juhbAAAAAElFTkSuQmCC"
|
<image>如图,DE∥BC,AB=15,AC=9,BD=4,那么AE=()
Choices:
(A) \frac{12}{5}
(B) \frac{57}{5}
(C) \frac{135}{4}
(D) 12
|
\frac{57}{5}
| 69,862 | null |
\frac{57}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAGMAAABtCAYAAAC1Md/lAAAW1klEQVR4nO1dfWxT57n/HQfK7eLVmzgUs3pK27hgMFWNEoZpsptw40D46CWUoNCSimyKBMRsYiO6ZFrW0DWbqOpsoAZaLUiYNl29YXB6gWEWI8KI12imArQ4NhC6tIAWRqaaJtyGNfFz/7CPc47P8UdC/JGwn+Q45/06j9/nfZ7n/X4YIiJEARGBYZhoSeIG9yqGYQTlRnqH0+lEX18f/vrXv+Ly5cvw+XwgIvT29uLTTz8VpM3OzoZKpQIAzJo1C1qtFjqdDnPmzMGSJUsmhP5Eg4nFDMAPQJZwQkZGRuBwOHDmzBmcOXMGbrcber0eSqUSGo0Gzz77LFiWBQCoVCpkZ2cL8nu9Xty+fRsA0NfXB4/HA7fbjTt37qCjowOLFy9GYWEhDAYDioqKJGmI1vD4DSlhoDjg9/t5D/HkiJKfB5/PR2azmUpKSigjI4NKSkrIZDLRxYsXY5bHLzNS+Xy4XC7as2cPGQwGAkClpaXU0tJCAwMDY/otiURMZgh/5kikiDHBYrFQeXk5ZWZmUkVFBdlstvEXNk5YrVYqLy8nuVweFw3xMPxBEZdkjBfhP8BsNlNWVhbl5eWR2WxOaquMJp3Nzc2Uk5NDGo2GLBZLUipeCuNixlhJ5ZhQUFBA7e3t0mWmqAL4sNvtpNfrQ0xJNhIqGefPnyedTkcFBQV07ty5UHg6VHw0cEzR6/Xkcrkk04TbrYlATGZ0tZrI1iX10hGJsADu3LlDlZWVpFQq6ejRo0Q0PgZweaTyJoOhZrOZZs2aRUajkXw+X8LfJwP8oW4bwjq5hG7sKK2J0A+T7u6ePn0a8+fPh1KpxLVr1/Diiy8CGF+XkMsjlTehXcwgNm/ejGvXrmH69OlQq9X485//HDU9xRolxEI0TjUaq6m4uJjcJCGSfqJw6di3bx+pVCq6cOHChLaYdEBHRwcplUpqbm5O2DsgssbBZ1tjNZlaj5GBMQSZEbmQoaEhqqyspJycHLpx40bCiE01enp6SKvVktFopOHhYck0D6I+ebrGH/hiAHS3oo2KsfMZBo7iuVgABpG0Qn9/PwwGA4aHh+F0OkNTElMR2dnZ6OzsxK1bt7BmzRrcvXtXlOZB1KcMEnm3H3Bg/85SgADDM0+DiMLNCQjApUuXsGjRIqxevRrvvfceZsyYMRr/oPozTSGXy2Gz2aDT6ZCbmwuv1ztxhY/KV+DL1lhNCNQ1MQxDhupfSYqU1XqMlEol2e32cYvlZIfVap3QOhAacLeNqk220GNXqynwHDY1ZbVaKSsri7q6uiaEiHRGLBvgcrlIpVJNCENCzBjpthGKtwUICIbZGqtpW6NNEHbp0iViWZY8Hk/cBE9mxDsJybIs9fT0PNC7QERkqjaEVBM3wKsuBjHBMIPRREREfX19E9YKphosFgup1eoHGhzGPR0yNDRE+fn5ZDIFGDN1ZWH8qKuro5KSEhoeHh6XtpBRhF4Phf4EsHXrVty/fx/5+fkAINUJe+jx85//HNOmTUNNTc24urgyfiY+Y5jQH6CxsRFerxcrVqxAQUEBDh8+9IBkTy0QbxXwgw8+QFtbGw4ePCiKj6egEKRW9Ox2O2VlZdFnn31G9fX1VFFRQRqNhmpra6OKXCJmNScLenp6SKVSUUdHx5jyCdSUQLQYP27fvo3KykpYrVZ8+9vfBgCo1Wp0dnbi0qVLWLduHQYHByWZnIyJvHRFdnY2Wlpa8NJLL0mO0jlQmMTIIleaDDU1NaisrERubm4ojIigUChw4sQJPPHEE9Dr9aKdGhweZoYUFBRg1apV+OlPfxpRTYnqJ5LIdHR0kEqloqGhoVBYfX09vbq7XpCuubmZlErlmEXyYYDP5yOlUhlzgwUHyUWJkZERbNmyBfv27RPMNwEAE8bkqqoqWK1WlJWV4fDhw+NvSlMQCoUCr7/+OrZt2xZXeklmtLS0gGXZ0MJQLOTl5aGjowNvvvkmfvSjH8VNLE3RyUQ+qqqq8NVXX+Ho0aMx04qYMTIygoaGBrz22mtjeml2djacTie8Xi9WrlwZ0bDz8bDYlLq6OjQ0NMRMJ2JGS0sLvvWtb6GgoCDul3EtXKFQ4NSpU5g/fz70ej2uX78+BpKnLkpLSwEAra2t0RPyDcjw8DBlZ2eHttOEjxPq6+upvr4+LmNkNpuJZdl/G/YgbDYb6XS6qGkEkmG1WqFSqUJS8SBqZPPmzWhtbUVZWZlgNPqwYu3atQACGzYiQcAMi8WC733vexNGAGfY9+7di+3btz8UBjsSGIZBZWUlLBZLxDQhZvT39+Ps2bNYv379hBLBrRt/+umnWLVqVdQR6VTHpk2bYLPZInZuQsw4evQo1q1bB7lcPuFEyOVyHD9+HAsXLkyIYY8sb35xWp50JltOWZbFsmXLcPLkScl4GRAg8IMPPsDGjRsTSsybb76J2tpa5Ofn409/+tOElSu0bHwGiIdRAjuYBLUZrpo3btwYWVUREQ0MDJBCoYi4F4jDWHpT0cBtCGtqanrgsoiI/P7hMS92pWpGOVpdy4DAca2lS5ciIyMj4S0FCBh2l8uFt99+G9u3b8fIyEh4AxlTeQyTIZSOOLKnasApl8sxf/58XLhwQRQnAwCHw4E1a9YkjSAigkqlCm0IKykpERj2sVaUiHnB7KOhQtsxVmZPNNasWQOHwyEKlwHAiRMnYDAYkkYMV9nchrCcnBzk5OSMe0MYd2BTFB76T2g7Uj0NYzAYcOLECVG47O7du+jv78e8efNSQFYAe/bswWuvvYZly5ZFHRRFw1gqONWjncWLF6Orq0uknmVerxcLFixIEVmj2LRpE44fP47Kykrs37//gctzf9gIhmFCn+LtjaG4VE9PymQyqNVqXL16VRju9Xrx9NNPp4gsIXJzc+FyuXDw4EFs3bpV1HJiI2AbGo3FWFh6Cm4KnD0hvxvYXyNgSKrx5JNP4sqVK4IwmdfrhUajESVOlZFTqVQ4f/48/vnPf6KwsDD+ETsBgAyNxmLUXHsG5HdgAScDzALsbTXBsf8UPCk03vw61Wg0Ihsp83q9kvYilUZOLpfjyJEjKCwsRG5uLtxud+xMTEA11RxwwPbr/RF1EaVQR/FvhNBoNGLJ6O3tTdszFa+//joaGhpQVFQUl2F/+0ANDEYT1mrFNX7t+ieh/1NtwBmGgUqlwt/+9jdBuGxwcDAh81HjgZRqLC8vx/Hjx7F582bs27cvcl5042obUFJcAkZiTqrNfgBF21cGDv5MKNXjg1wuF00YygYHB/HNb34zRSQJEUk1Ll68GBcuXMB7772H73//+2GGPVDxjOca2gh4Rr0A4eMK94eNONAGbN/64wRRPnYoFArcu3dPECYbHBzE1772tRSRFD9UKhWcTicGBgZQWFgIm82G+fPnY9GiHDidTtD8Z1AE4FpPtyAfd2J3ebUJpVoGRGPtoSUGUpIBxHeXCxFN3EThg6K+vp6mT58eOsag1+uJKHi0IXjGhIiI3DbBkYZRjKR866nP5yOFQiEIk9yqQ2m+Ird7927MmjVLFL5zfxuq8fboYE+7DrYuP9qadoal5H622LakEjIpcUn13A0fkRrGu+++i6ysLEyfPh05OTmh8P1/pMBAL/gpFfWsgjaGYUBJuEcrEgYGBvD1r39dECaTy+UiQ5JOCG8YHHOKiorQ29uLGzduoLOzE5WVlbh//74onRijDEh2k+PTdO/ePVEvViaXy/H5559HzJRuCGfO47Nnw+l0YmhoCIWFhejv75dMlw7g0+Tz+ZCZmSmIT3s1FQsMgBkzZsBisaC0tBQ6nU5ixJ5etgEApMZ3sieffBK3bt1KEUkTi13/swv79u2DwWAI29uaOtvAB1/j3Lp1C0899ZQgXqZWqyf2lH+SIKlKGWD9+vWw/+EUduz4Md54443IaVMAvsbxeDxQq9WCeNnChQsnJTOEuzyCX8EB3XOLdLh48WMcOXIEr7yyCf8a/ioYnx5MAQK3jWq1WkGYTKPR4JNPPomQZZKAmylnMkIVzrIsnE4npk17BHlLn8ft27fTyhb29vaKZstlGo0G3d2BKYT7//oy9Jms4K+Hz5gxA4cOHcKGDRuQm5sruSNDComWIL/fj56eHsydO1cQLlMoFGBZFleuXMGMRx4FgND3ZEX4BoVdu3bhrbfewgsvvBDXoZVES5DL5cLChQtFW6NkQOStI5MFUi05nCGlpaVwOBzYsWMHfvGLXySTPBEibY2SAZG3joSrLT8Nw0/DAjUWSa1FU3nxqsNI6cLDuZbMPXNxDMMI8mq1Wly8eBF2ux0bNmwQjNiB5Bn4SFujZEBgh99HH30k2gAQrrZkzDTB8/1/fYkZjzyKGY88KmIQFz6WOD746SKF8/Pzv8Pp47+DZVk4HA7I5XI8//zzuHnzZiiOvyyaKAwODsLj8fCOc49CBgCZmZnQ6XQxVZWfhkMM4ZAMgx+PDePSPDL9PyTz8SuYM+wvv/wyli5dGjLsXJqJtBnhjD158iSWLVsmuZVWxr38pZdektwdHa31cvFSLThViFSRUuE7d+7EO++8g5UrV+J3v/tdQgx3eJkWiyXibv/QPMEL/7066kGOWEikdCSy7NWrV6O9vR11dXX42c9+lrD3AKMHklavXi0ZH2LGzJkzsey/CnDi+B9EiTjpCFdRXDhfT4eHjyWOX+ljLTvcdkT7PxwLFizARx99hPb2dmzYsGHcDTIW3n///agHkkLMmPHIo9hY/jIOHRrb9UWRVFQ09RUpTuo53vzhYZH+lwLDMJg5cyba29shl8vx3e9+V2DYJwJEBLPZHPVAkmA6s6ysDDdv3sS5c+dCBQAQtc6pCIZhkJGRgUOHDqGqqgqLFi2Ke8QeDz788EMAwIoVKyInCl8oN5vNVFBQQEREQ/f/L/QhSp8NCcmA3W6n2bNnU0tLy4SUp9PpYjpMEU30V1RU4NatWzh37lza9ZSSiRUrVuDMmTPYvXs3fvKTn4TCaRxjEO5mBO6mhEgQMSMjIwN1dXWor68f80snI6JVrlarxYULF+B0OqNedBYLDQ0NqKuri5lOcgmsoqIC/f39OHbs2LhePpkQa2yhUChw9uxZPP7449Dr9YJV0Xik5ODBg5g+fXp85+v5Oou/reu8M3D515dffhkKe3U332aMPHTXqTY1NY3porOol39JVJ5AMvhtJP/5PBQWFoauOiKisIu/JO+0n5KgoAQYjUaYzWaUlZXh3XfflUgnnNvbtWsXXnzxReh0OnGhUpUXjbN9fX00Z7aSXK6PyU/Ba/FefTWuVjGV4fF4SK1WU01NTXCbaJjLIz9Re3s7qVSqqDdAh28xFdqMMBU4e/ZsHDpsxvr163ArOAjiy0P6rCgnFxqNBh9//DEuXbqE1StXYWBgdBMgAbj+yXVUVFTAYrFAoVAAJF1X4fYq7EyuOMOKFSvwwx/+EBs2bMDIyAj+frsvWvKHBo899hjsdjueVmdj6dKloftQ7g0OYu3ataivr0deXh5AQOuvt0HG7f9dXg1CN4xG8fnCaUQEMLwDJASAEfo53blzJ7q6uuH6+AK83R584xuPYcmSpXjuuecmxXGCRIJlWWRlZSE//z9htf4ee/bsQXHxClRVVQHdrWC062AwmkZ7Xt2tkDFabDPZRGUxfr+f+OJiXM7gQJswkam1C9tL1CgsLMRjj30DGs1cOJ1OeDwezJ07F0uWLIFSqRTk4TNzsoO/hBu+nPvFF1/g5MmT8Pv9+M53voN//KMfp0+fAiPzYjmjBYwmtL21U6BGfmUsBi3fi51rhVt1ggZcaICqixkytQYclXS1mkKuHG7/XeiyYWBggN555x1Sq9Wk1+vp8OHDMS+DmQrw+/00PDxMDQ0NpFAoqKGhgX77298KXDYEPPQUkVuiD2trrJb0fSjyRuYnNxXxCwkeOGl1Bx4vXrxMLMuS1+MWENfe3k4bN24klmWptrZW5JUs0uGUyXRnOkenw+EgtVpNa9asoc8++4z+8pe/BJ2ZXA2kIzcZwAi89AQjogLhibpaTYKTPsbl4pM/v7ceiejm58aNG1RXV0dKpZLWr18/pRyf9PX1UVlZGalUKjpx4gQRhbn54eox2IA57RJAZI+fHBDuGYDvAItTT6Fo/6gK4pw/nT59OmLhLS0tlJ+fT2q1mpqammJ6XUlnCTGZTKRQKKiuri50JXlEB1huG4EJZwaHyEwJG/SNUHXxKAM4xoQYIvyiixcvkkqloj179ogK5ldsV1cXVVVVEcuyVFVVRd3d3REJSjd0dHSQVqslg8Eg8KlUW1tLarWaPB6PqBEF1BTIaLKJG5jbFoFJYczwdx0jGEYPKHKFhus+/gvu3LlDer2eNm/eLLjEXgo+n4+amppIrVZTfn4+vf/++1HTpxKcs+A5c+YI3FEPDAxQWVkZGQwGunv3riAPX3NwDZmreD8RuT9sFB4ADZMSATNsjdVk5Fd8dysBoEZbdBdw43EnarfbqbS0lJRKJdXX11NfX19c+ZKBpqYmUigUVFNTI3AgH8udKF8G/H5/qCfKfUZtr7SqAhfh9/sFKoqTikjdMyns3buXVCpVRB/aUujt7aXa2lpiWZbKy8sjOm9PBlwuF+Xk5FB+fr6ocyLlaNfv94sYEB1CJoSnBtGIiIOhj0CkJHJLwG63E8uytGvXLkGrioXh4WEym82Uk5NDGo2Gmpubx5T/QeDz+choNBLLsiKvxj6fj3bs2BHzKnFx1cTuPUkwY+LxoM7ZXS5XKP+WLVuop6cnYT0ts9lMM2fOpC1btoh6e3zn7J9//nlC3s9HQpjB4fz586TT6aigoIDOnTsXCo9WseGdA5PJRFlZWWQwGMhqtU4YbW63m/Lz8yknJ0ekVu12O+n1etLr9RFVbiIGqwllBgez2UxZWVlUUFAwbptgs9mopKSEVCoVvfHGG2M2+FzFffHFF1RTU0MKhYL27t0rSMMxYd68eYIeVLKQFGZw4JiSl5dHZrN5XDaht7c3pMNfeeUV6uzsjDvv0aNHSalUUkVFBd25c4eIAjbhN7/5TchWpYIJHJLKDA4Wi4XKy8spMzOTNm3aFHM/kRSGhoaoubmZdDod6XQ6MpvNonEOJw09PT1kMBhIq9WGjLDVaqXy8nKSy+VUUVERk4ZkzA4khRmRfojP5yOz2UwlJSWUkZFBK1euJJPJFLf3Lg6dnZ1UUVFBLMvSjh07qLe3l4gCDKurqyOFQkE/+MEP6Je//CUZDAGnwqWlpdTS0pK0Hls8YIgSe1yH4ljXoMAcGRwOBxwOB86ePYuuri7o9XoolUpoNBo8++yzYFkWQODuqezsbEEZV65cQXd3N06ePAmbzQaWZXHjxg1kZmbC5/MhNzcXhYWFMBgMKCoqGtfvABJ73i/hzOCDwhZo+N9ScDqduHnzJjweDy5fvhy646S3t1fkqFGtVuOJJ54AAMyaNQsymQwajQarVq3CkiVLEvirJg5JZUYyIVixZAL+BQlFcFNb6IrV4Apz2iA9LtVIAPb/kVBdDNi6/CA/wU8EUzUDLVOM7tErFVJLZDhSY6oSDz+5qajYKAqvLpa6Ji89MOUkg2vr3f/7BzBznxJFPv2MAY6r6ek/cOowI8gFzgbYT59GSXGJMA0DZGcLr4hIJ0wdZnBcoMD1qacOEFauFXs/uH79Kgxzs0Xh6YCpwwwODMB0XwWCtzsL0N2KmgMOlBSXpOXW1KnHDACt9jbMe1Lc+o071gGGbdi5VptWXdoQUt2DmChwUy7cCuUxN293eHDrDJZXp47AODD5mRG25wtSK5aiPUzpiSk7Ap+MmJI2Y7Li38xII/w/+KnyTLVcMW4AAAAASUVORK5CYII="
|
<image>如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是劣弧⁀{BC}上一点,连结CD、BD,则∠D的度数是()
Choices:
(A) 50°
(B) 45°
(C) 140°
(D) 130°
|
130°
| 69,863 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAABlCAYAAABHq207AAAPOklEQVR4nO2dX0wb157Hv2OyCg9IvLhaa+uKBJzG3XY3rlKp1S0tqkob3w047BWRt22k5AEtXfFCWpuQ3Uo81JG4N/TW0pIbY7QSVRsVqajc20uT2Gbv5YFISPTWXalqSGynRFRqKvJARaN17trz3YfxjMd/MYMHTJmP5MSeOf/4fef8zplzzpwBDWoCUfU9HPQQgPRxeSnyFr3eMeW8CSVg2QNiqWgGGhEAMBGGyWTCaPwQSIIkxN+2wyQcBmwHsoHVantdGXUF9f/HGWN6ey63PYzIGF0AXQNjqmMSlwc6GQgnlOMmdQ36zR8Ir0tAOCapzDRxecCEQ0IX4kbt0pXZ8TF8hk689+se5ZiQ+b/FdhjNzc3ZwPlqd54YKLgKvC7QNRDU5QozkOx+QgC9Y6Gctq0gnCidzbZpBBKRWQiHWwqugoP2Tny2FANZ0NIZVIPEHfyBQEtzs1S7MmbOt7YgSO3WPumnCAgmzEau459eHZFCy3VTBFpaHgeWAEGQThCASRBgUB3EWET9CxBM0v8w5WqR+WqS1DRBRAxXR9J4ub0ZzGhMEjAB8fgtuOw2KRFVGmmKSi/H+Gj7ACbAdgAuAIk7dxQbAybJzokwxmbjkh6ycoq/jIdyei7q4wAYiMRIVS8Suc2hgUZkO0bGPBk731LOxcKXpfs0MZUbR/4SGnub3rFIQaJeF4gTnpKZGWwNtR1j4cvZm+pM979YxwSiKCr3COG4dG8gMlvDcMKbE0FOBIDSmzHQTsHFX4FJka+u+iO5RJncG2wIRk2rBsU9VrpshRAokqi0I6jqyQiCAFEUIRi9yC0hCAI2K4GJAooMNJbKITeoIVh12IwVBYgwCapYakGK6Zh/zLjV1gfJa5YaNjTJNwVSgBzFi4x+CHlhBEO16qGypeTBTMpxqrWgMiJSOENTkeszvGP1KGVLARDyhkRKzqcZ1C6GaLsQQ7RdiCHaLsQQbRdiiLYLMUTbhRii1SDqm+li4xeGaDUGmTuwkf2WHdYyRKspRAglB/BNSg00RKsBshpl5BAAiKp1OhnkGmiIVgMUDDtKy92kc5llc2oM0WqGbJvlPSFAELIfk+r72OxtQ7SdJtvpyEpx8TPC6wLCcULMLLVLMQaXqRMvt9sM0XYaFpm3JOK4RS9eaZFcZzAYRB1seNxjhy07CWqgN8XEuX//PgCgr68PP/74YyYgEJudxeGOdml1VSKMq3ekdu3ir4cBGG2abuSLJLvBu3fv4tKlS3jhhRfwyCOPAABef/11NDY2ZgICd79N4GLvMZgEASbbMTze3JRJxaT612DLUFnmLaG+QV5aWsKFCxfw9NNP48iRI1hYWEB/fz/a2toAAL/4xXMARCX+nz4fQTgupRcOetB88CAE4+a6esiGlnt3Ml988QXOnj2LQ4cO4aWXXsLKygp8Ph/W1tbw4Ycf4rvvvkM6nc7ErQNgkrr3iTCGM+0ZATQfaIGt5RBIISfTKi6y/PlTbhHptWvX2NvbS6vVSpvNxv7+fi4uLhaE+/LLL2m1WrmyslJgx3DQQ+9YqEwBVGv5N8teFU1NMpnk1NQUz5w5w8bGRj755JP0+Xz8+uuvy8ax2WycmpqiKIoZO2ZXb3td0vL8AlTXiiHaJllbW+PExAS7u7u5f/9+tra28v333+fy8nLJOOra2dvby97eXuW3bMdY5FLOknz5uQopgdz0DNEqYGVlhYFAgE6nkwDY1dXF8fFx3rt3r+I0RFHk5OQk7XY7k8mkchwwSefl2qYIpHp2whCtMuLxOP1+P48ePcqGhga63W5euXKF6+vrJeOUa+9WVlZotVoZjUZzjmuxoyGaimg0ynfeeYd2u51ms5lnzpzh9PQ0U6nUxpHLkEql2NraSr/fn3M826ZtDoHU9vS7IAg1++A8yQ1XSMthbty4gY8//hgzMzMAgI6ODpw8eVK5h6okrY24cOECbty4gatXrxac02RHrVfPFqLuOJ9++il7enpoNptpt9s5ODhY4Laqxfz8PK1WK1dXV4ue12LHPSHa+vo6Jycn6Xa72dDQQIfDwZGREcbjxfrW1c330Ucf5fXr10uGMURTsbq6ymAwyK6uLgJge3s7A4EAV1ZWlDD5HYdqP47sdrs5ODhYNsyeF215eZmjo6NsbW1lXV0du7u7OTExwbW1tW0vy/j4OB0OR073vthFsSdF++abb+jz+ehwONjY2MhTp05xamoqx1haURt5M7UwHo/TYrFU5H41ilbpDnNpbuc+IuWMtLi4yP7+ftpsNlosFvb29nJmZkbX8lRKMpmkw+Hg+Ph4ReG12LFol5+qbq7ybHz+dj+qriqr0C3eiFAohOnpaXz++eeor69HR0cH3njjDTzzzDO65pvPRn/r4OAglpeXMTk5WVF629/l13EbkWKDse+++27Zwdid5vr167RarWVHTfLRIkFBjEp12ILeJSk2GOv3+0sOxsoutBY2oVldXaXVauX8/Pym4ukjmkjmtntpzZmRhQYuNRj7/fffa0pfD0pdFOrjTqeTPp9v02lvWbSHqbTy0SMzmWKDsR999NGm3MpOo67lfr+fzz//vKYxyirUNEkwkdK+ucib37k04OEtjTWt2oOxO+kS1XlHo1FlFloLVXGPydthQkDeNoLpzJa42WOoYEOz+fl59vX1sampiU1NTezr6+Pc3NymC7lZ9BRUnbY8Cz05Oak5PU2iiaKoNGQiYzyxv15ZoyC5yv+Tal88RE8wrLhPObN8dzo9Pc2enh7+7d89yr//h3/kuX//j4LB2ErdcKlw5Y7nl6kSV6+V/FloLWgTjVREuzzQyX2/ksfKiv/R8m8AfJhKK4Ox//LGKWUw9uJv388ZDVCnUSq9fErF2Uio7RJucnKSNpttyyMv2tyjUssSdAH0BMM5PchiBvvfh0kC4D93n+S+/fV8xflLXgqMKX69nDBaRCt3vBJxqy1aqVloLWhs06Q/SN6U83eR2zkBQmNv82/21xMA9+2vV1YKAeDBZhtPnTpVMCBbyrCiKO560eRZ6Pfee68q6WkRzSSvV/2rmDs0Iw+svPqvI/ifP/4n0DWABw8e4JXMDvACgC++/AsaGxtht9txNRSuaMhGC39N186LHIaHh9HQ0IC33nqr4BzzhqPyf1cNWb1k6ja76us5EAwXKBsOeujJOw5VR2T2z3O02+10u93KDG25zsZGHYn8cJXE36hNq0Ztm5+fp8ViKTkLrQVstcsvb407Fs7dBtfrAq/dztsONy+zZDLJwcFBms1mfvLJJ5suSK3z008/0Wq1lp2F1nKroUm0gmwS4YK9jPf9alBVoPI314uLi3Q4HHQ6nZtaF1jruN1uejyFu6ZvlS3XtHzKubhymaVSKQ4NDdFsNlc8r1RL5NeYYrPQ1aLqom01s5s3b/K5557jiy++WHbZdC0himKOaIlEouJZaC3UnGgyw8PDtFgsHBkZ0ZqdbpRrh+RZ6EAgoFv+WkSrymJVVjBzfffuXZw+fRrJZBITExOw2+1astWFUuU/f/48vv3224pnobWw44tVK+k9jY6O0mKxcGhoaMvLrfVEnoXWeyWXFgl2ZDXWDz/8QKfTSYfDodvK3q2gdRZaC7tGNFKqlVeuXKHZbOb58+d16Zlpxel0cmhoaFvy2lWiyayurrK7u5t2uz3nyt6pSU6/38/W1tayrruaZduVosnMzMzQYrGwr69P92UHpYwejUZpsVg0z0JrQYsda2Z3g+PHj2NpaQkPHjzAU089hVAopFtexXqKDx8+xMmTJ+H3+2G1WnXLuyps5xVSKXNzc2xqauLp06d17b2pa9ybb77Jnp4e3fIqhRY71qRopPSYUH9/Py0WC6empnTNS56F3onVYD8r0WQWFhZot9vZ3d1d1SkRmZWVFT722GM7duuhxY4106aV4tlnn8VXX30Fu92OJ554Ah988MGW02RmBCKdTuO1115DX18fHA7HltPdNrbzCtkMxXp40WiUDoeDx44dq0oPz+fz0el0bjmdraDFjjUrWilSqRR9Ph/NZjNHR0c1pyPPQstzfjt1X7gnRJORp33a2tp48+bNTcVdX1/fcBZ6u9hTosn4/X6azWYODw9XHMftdrO/v1/HUlXOnhNNdmnLy8tsa2vj0aNHN+wF6jkLrYU9IVq5tmdiYoJms7notI8oiozH4zSbzcosdC081/azFS1/CUA57t27x46ODh4+fJgLCwvK8WQyySNHjug6C62Fn61oWpiamqLZbOa5c+e4vr7OwcFBut3unS5WAVrsWPFyA+ZNydfy3lgy9+/fx9mzZzE3NwcAiEajMJvNO1uoPLTYcUtrRGqV3XBBqdlsWfdpykRDRnpBZF6SLgAkIAgidu1+2nnbfuQjIg0T6rTXtFpng7+/4jC1SGWXZOa1UPFIAJGEnsXRgvREDVXfAUkM6Xos/cRNLQg2kPcyIEEQEIzEc8IU1KtKeyxpLtGFEjtZ1wjqmwLvidznEZSPy6vrpjVa8LrAQER66OX2bEDZmKAUFTv/8XP/BXZ24mBLKiu41stLJ+SaQwC/+b30ZqRQTHqzBEkkIgG47LbcgDuMiBiW/tiBl9ubAQC2AwcBFHoBbvYNGJFxL9DeDswwJ4pQxvXsJNIbGuO4CS9etQkg4ggEwjjY/jJ+efBAbsAd5k7kvyEMHIf8gq1zbx2Da2AM7S254QS1VBtVXTEeoidwXXq81+WVjlXDJ1SJUtv7xcKXlQckI2MeBiKxmiq3TDjoKdivZSM2FG3A45WGkeKhvL1Faptw0EOhnDFE1sTVp37jRTj4NgEwlCgfp+h+j6KYIsXCq6CkaCKZZopplljgqff5wuA5xvB2djIulnl8d5vLp0RTeS8pmZi0w0Sg/DyfqVizJgh14J0wZvmK0ojfDv0Oh1sOqEKp2jMBMKEOJtQVd9w6n2d+lzgRxkV4lYf6bR0daBHKNN96l79Eh2f2TxF4j7eryn0HnwGwtUgFl21fmB5JMp3jKtLxEHHCm6NuZKzM24Y2cjN6n1cHFUWGg2/TG7xWcG5gYKB4kttefqnWezoz3kDM7JYkgEAnY0yXTRJkbgN+eeB4TjsguxoUdZH6bWGknXTWGCq8ro3djh4Ue8mPvCFBwUftKtUdrDw7Fx3GEkGYMv1hqkf3a3bcRypxIhLAoWP/BtCEYiMh4TgVl7mTSDbN3j6R5R/KJAkIVLr9/w/3GZxjcYortQAAAABJRU5ErkJggg=="
|
<image>如图,正方形ABCD中,E为AB的中点,G、F分别为AD、BC上的点,若AG=2,BF=4,∠GEF=90°,则GF的长为()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 69,864 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABbCAYAAACRd3yIAAALa0lEQVR4nO2df0xb5RrHPwf0uiUsZglRE43itcAwLBIhGbDpljnNfjCHER3TbfefAVtcMrlmabndMhI1Yy4bYDSBDJNrliVuunu5cR3uqsnQC6Ihc8tAfrSNxczEGsyybAmD2b73D3q609LTnlKgHPp+ktL2vD/OO853z/u8zzkPryKEEEgkMRBCoKCAAn7O0dycS+2+bAD8+EgjPaR+WjIGKTEPqtVRFFVUTt5ftZlPFSVYJ1xUk8ckkigoYd/dzX+jtguWZ/81ajspLIlxXE28xwGaSsPlNhUpLIkh/Dio3inYv0/Q372CvOzI9QR+QApLYgABfFHdTnn3m+S4nFxlOTmWyFZLCUjqnjkcn8SkuJpL2XTiOzjRFjhSFXj3o2ebpMWSRMfVxHv8E+EXCCHwn98FpXnkoBBNPtJiSe4iCCwDA5bI1UTpTjjZnROs4hruB54MaRYpjoWQSELwBT9NSq1ENDp9wieGReNKAscQUCMc4s/Jiv6pvSiBDiQpi76fFL0sEI1XIjvx0sdKeUIlcNfKhIoqkv3RE9XUXiUpjh/tjRotqoiMTm9SWKlOQCmTFimKHAL1Qm2UP/DTN6W6FFaqowAi8rSmTn///k87p8+cRhVSsDwgH3kTWhKZgLjuMimgb775hpKSErZtrWRgYCAoJLVOtDuGMo6VokxZ0Wk+9vZeoq6uDqfTSUNDA4ODg+FViGWTpMVKUSJNfW63m1deeYXNmzdTXl6O2+2msrJyWv1LYUnwer3s2bOHwsJCCgoKGB4e5o033iA9farvZBQprBTmxo0b1NXVkZubS0ZGBi6XC7vdzpIlSyLWjyeWLoWVgoyPj3PkyBEeffRRrl+/ztDQEEePHiUzMzNqu2gB0XCksFIIn89Ha2srWVlZ9Pb2cunSJVpaWnjwwQdn/FxyVZginD59GqvVSk5ODp9//jlFRUWzej4prAXOhQsXsNlspKen89FHH/Hcc8/NyXmlsExKtCcLAL7//nusViu//vorDQ0NvPzyy3M4OuljmRY9UQ0ODvLSSy9RUVHB9u3bcTqdcy4qkMJaMFy7do2qqiqeeeYZVq1ahcvlYteuXUkbjxSWyRkdHaW2tpaCggIeeughXC4Xb731Fvfdd1/UdrP9fKcUlkm5desW9fX1WCwW7ty5Q39/P2+//Tb333+/bhutmOKJSU0HKSyT4fP5aG5u5vHHH2dwcJArV67wwQcfGIpFzbaYtMhVoYk4deoUNpuN/Px8vvzySwoKCpI9JF2ksEyAw+HAarWydOlSPvnkE1auXJnsIcVECmse09nZyYEDB7h+/ToNDQ2UlZUle0iGkcKah1y+fJm6ujr6+vpoaGjg9ddfT/aQ4kY670ki0nJ/ZGSEyspKnn/+edavX4/H4+G1115LwugSRworSWhXaF6vl7179/LUU0+xbNkyfv75Z/bt20d6evqcruRmEimsJHLjxg0OHjxIfn4+9957Ly6Xi/r6ejIyMmY9gDnbSGElgfHxcY4fP47FYuG3337jxx9/pLGxkczMzKCgzGqpVKTzPse0trbyzjvvUFRUxLfffsuyZcsAFoygVKSw5oizZ89is9l4+OGH+eyzz1ixYkVIuVFBxXpcZr4ghZUgsS70119/jdVqxefz8eGHH/LCCy8kdD4ziAqksOImXEh6F7q3tzeY9HnkyBFeffVV04hiJpDOexwYmYa0SZ8VFRW43W62bt2KoiimX+nFgxRWHEQTldfrZffu3Tz99NMUFRXh8XioqakJSfrUtl/oIpPCSpDR0VH2799Pbm4uS5cu5ZdffsFqtcZ80G6hT4tSWNPk1q1bvPvuu1gsFm7evMnQ0BCHDx+O+KDdQrdOkZDCihN1dZednc3ly5fp7e2NmfS50K1TJOSqMA7UpM+8vDzOnTtHYWGhoXZmiT3NJCHCmrg9Fvz8l0WL53wwycDIRVeTPhctWsTHH3/M6tWr4zpHqokKwoT1l0WLmbg9ljKigugXXU369Hq9HD58mPLy8pDyVLRERkkpH8uoE93f3x+MQ23fvp2BgYEpooLUtERGiSqsidtjwVek79pjsdoaLTNSL9rx8DFN3B6LeYNXLb927Ro7duxg9erVrFmzJiTpMxVXdokQVVjqlKj3rk6b6hSqoj0eT5kWbT2949r22vfw8d0Zvx31l/DHH39QW1tLfn4+WVlZuN3uKUmf0jrFR1xTYST/y4jlSRQjPl+46I200yZ9AgwNDcVM+pQYI6awolkVtTySZZnPaJM+3W43fX19NDY28sADDwTryKkvMYLCStTqzKbVmsm+29rayMrK4quvvuLixYucPHmSRx55BMDQUwsSY0yJY0WyPHphCK01C5+C9GJi0cq054i372g+FsDZT89w8FA9mZmZpkn6NDNBYU13KtNrF60/o23i6VuvbWdnJzabjZs3b3L06FE2bdqkOy7JzGHolo7ZgqZCCK5cuWL6pE8zYyiOZSZGRkbYtm0bGzZsoKysDI/HI0WVBGLGsebLii/WKu33339n7969FBUVsXz5cpxOZ8K7K0imj2lu6eit0tTdFXJycli8eDEDAwPY7XYyMjLmeIQSLaYRVjjq7gqPPfYYo6Oj9PX1GdpdQTI3mFJY6u4KPT099PT0cOLEiWAsKhJ606gMgs4eSX3QL97HTrRJn+3t7VOSPvXQO4cMgs4eSRWW0QurJn0CtLS0zNnuCpLpM68fTf7hhx+w2+14PJ6k7K4gmT5J87Gi+Tfq7gpbtmyhoqIiabsrSKZP0oQVaRpUd1coLi6muLg4mPQpMR/zYlWoJn3m5+eTmZnJyMiIoaRPyfxlToUVPv2pSZ95eXmMjY1FTfqUmItZF1akbTa0SZ9Xr16lt7c35u4KMuZkLgyvCvViTrFiUeFlp06dwm63k5eXR0dHh+HdFWTMafaZyXQ2w8JKNMio7q6wZMmSaSV9SmafmfzPO6txLCEE3d3d2Gw2RkdHIyZ9SuYHsUR16NChuPpLyMeK5vf09/fz4osvUllZyc6dO3WTPiXJRXsNhRARX9OxZAkJSy8WtWPHDtasWcO6devweDxUVVUlchrJLGJENKrA4mHGVoVerzeY9PnEE0+E7K4QaaASc6G3cNMjYWGpuyvk5uYChOyuEM8gJeYj2nWctrAmJiY4duwYFosFj8cTTPoMf9AufA6XmIdErleaAISA8zUKihL2WtmIK0KjtrY2LBYLFy9epLOzMyTpMxyZBGpeIl4vPa2FHb9HAVBgY4tg+MlScn46gGjdiB8He5QysmuyEa2TGzC2t/8L2z/sDA0Msm7dWgoLCzlz5sxM/lskSSQtLS22ldJoTXRUkbaxLfi9+ryPFmrYTSuKCPTkx8n7q3IYsPtoWT9psc7XKGzCgWjdyBf/vUBP93eTfcf4m+XyD5KZF71rt3btWp599lngrlZqu6pwiFY2BtTmqFYoO1FCo/N/IFSczaKYKuEQfiGEEMNNJQKlVDQ6fSIEv5CkKH6/X/jEsGhciaD0uHCFacEnzokqZZdwiMn4hBAiICQQKAhAFDe6RHgzKSrJpE5KxDGXb0qZTwyL403nhRABYakqrD4fEI/zmCgFUdw0HFVLUmepxZ/+oUlrVe2IWTcNIM3l4HRXFVs2KJPOmeXv2Kuh582jdOguA0L8OEkKoChOBrqg+Mns4LFwdYiA750G4HScoae6POiECeFkuB8ozcOikY+MQqUGQmdhluZy0hd2LMS4aJql+XHi+PQ7qsvXBw927M6ltguqD+wjR68TyYJFL37lt2SzXIGen5wR23W834RbCTVEgVda4L1ENIW7/Bp84s+o86ssX3jlQTV0VE0u7pqGNfU1PnqAYBxrKn5C7vgIopssWb6wy7W4mliVU0uXUGOaK2h0dvGm5a5e/g9a9QLGEiM/owAAAABJRU5ErkJggg=="
|
<image>如图,△ABC中,∠C=90°,AB=2,sinB=0.4,那么AC的长是()
Choices:
(A) 5
(B) 4
(C) 8
(D) 0.8
|
8
| 69,865 | null |
8
|
"iVBORw0KGgoAAAANSUhEUgAAAIYAAACBCAYAAAAFfMIpAAAX/ElEQVR4nO2deVRU593Hv/cCL9o32tgkfbNo3yi4pMaq7WlSPEVziqg1goRtBBteIQOM7IMwkVSTNumpEQTZIpvWmFbxpPUYoyZlIComhhgqoDGiGUAitXEJaIMFWeb+3j9m4c7KALPcgfmc45G5z/a7937v7/c8z10ehogIAoeIwDCMkRQOLTWluDozAf5edjdrXMM62gBL4IuCr2JCGzL8E40X4gSvd0HjFMLgwwDg1PIof7kcXEAAZnpxAHRFA9aYh3FhKc4hDL2LnwWDqopMYPly4Bg/kbOrWeMZ5xAGAx1xUKscH5E/4mYBRwOegrd6Nxgn2R1nwHmOJC8yvFxWg+1xKwAAgfO8HWTQ+MZ5hEEAEVBdkYmcnBywDAPWe6XRfC7GjpMIgwMYDtQmRzX5g0gJIoJCXoK5Xk/qZtULOy5Gh7ujDbAUaq2BW3oN6Ei2dtvV9lYAswwzM+bmPlxYBDkBpZkBBJUfoCoFR0REmYEgRr0tILOUOAfbON5giJxh5lMJIgYsazzykSqTgYcgl9cYNU4hDBf2x0k6nxpGNoHlUvzocQ5haM+wrrlbt27FK6+8gt7eXqPZXUFk9DiHMBhDT1F78hTOnz+PAwcO4IUXXkBtbe1QdnvaNk4RfB+DYHii79y5g+joaOzcuRNffPEFcnJyMHv2bDwx/UdIk6bgBw9Oc3U6x4jwPYYR3ebk5MDPzw8zZ85EYGAgfHx8sHz5csyY/jg2xkvw4YcfqouSXlWCvgaEhcMGyqPk5MmT9Jvf/Ibu37+v3dba2kphYWF09+5damxspJiYGMrKyqJvvvnGgZY6N04ljLt375JIJKLGxkaDtL1791JKSgpxHEeDg4NUUFBAYWFhdPjwYSIi4jjXFNhIEHwfg89rr72Ghx56CCkpKQZpHMchISEBK1euxAsvvAAAaGpqQnFxMaZOnQqpVIoZM2bY22TnxdHKtJSTJ09SVFQU9fb2msyjUCgoNDRUJ4QolUoqLi6miIgIevfdd3Xyu7yIaZxCGOZCiD579+4lqVRqsP3ChQskFospJSWF2tvbbWDl+EL4oxIAhYWFePbZZ7Fw4UKTeUgdEaOiotDd3Y1jx47ppC9YsAAVFRVYsGABZDIZ9u/fb1ObnR5HK3M4amtrKTIy0mwI0aelpYWCgoLo22+/NZre3NxMGzdupMTERGpra7OWqeMKwQjDWLzv7u6m0NBQOnv27IjLmwopfP785z9TSEgI7du3b0x2jkcEE0qMzVQWFhbi5z//OZ555pkRl4+KisLdu3cNQgqf9evXIycnB+fOnUN8fDwuX75sNB/xBm4TZkbV0co0xdmzZykiImJEIUSf5uZmWrt2Ld26dctkHo0HOHDgAIWGhlJ5efmo2xtPCFIYPT09JBKJ6PPPPx9ROWNuvrS0lDZv3mxR+Y6ODpJKpSQWiy0aAY1nBDnBtW3bNri5uUEmk1lchkw8rTUwMACJRIKQkBCsXr3aorr++te/4tChQ/D19cXGjRtNPjk2rnGwMA2oq6ujyMhI6unpGTYvx3EWdQYvXrxI4eHhdPv2bYvtuH79OqWnp1NMTAw1NDRYXG68IChhdHd30/r16+mzzz6zet27du2irKysEZc7cuQIRUREUH5+vs6Nu/E+OhGUjywuLsb8+fPx7LPPWpSfRhAFY2JicPPmTVRVVY2o7sDAQOTl5eHGjRuQSCT4xz/+MTEeMnawMLXU1dVRWFgYdXd326wNTUjp6uoa1RV//PhxCg8Pp+zsbB3vYQ5+O87kZRzuMYgIvb29KCwsRGJiIh544AGdNGsyf/58+Pr6Ijc3d1RX/OrVq1FaWop79+5BLBajrq7OZF6N7fx2nMnLCGJUkpeXh//85z/YunWrzdvq6+tDTEwMoqOj4efnN+qTdeLECZSVlWHx4sVISkoyELQzicAojnRXRETnzp2j8PBw+u677+zWZlNTEwUHB485bH333Xf0+uuvU2RkJJ08edI6xgkEh3qM+/fvIy4uDmKxGEuXLrVr24WFhejq6sLvfve7MddVW1uLPXv2YM6cOUhMTMS0adMsKkcC9iwO7WOUlZXB29vb7qIAgPj4eCgUCpw+fXrMfZlly5Zh165dYFkWSUlJkMvlFpUTqigAOC6UNDY2GoxC7NFr57fR2NhI4eHh9O9//9viMua2ERGdPn2aoqKiaMuWLSOaUBMaDvEYfX19yMnJQXJysk6nzR5XEMMwWg+xaNEiLFmyBPn5+cOWsWQbAPj6+qK0tBRTp05Famqq2XkTcny/3yQO6WMUFBTg22+/xRtvvGHvpg3Q9HNiY2Ph6+s74vJkpp/w+eefo6SkBI8++ijS09PxyCOPWKVeu2BvF3Xx4kUKCgqirq4uezdtkvr6ehKJRDYZGfX29lJRURGFh4fT0aNHrV6/rbCrx+jv70d8fDwiIyPh7+9vr2YtYvv27ejt7bXKKMUYTU1NyM/PxyOPPAKpVIrHH3/cJu1YC7v2Mfbs2YPp06cLThQAkJycjCtXruDMmTM2qX/RokX405/+BC8vL0ilUvztb3+zSTtWw16uyditbyHcO+Db8Omnn9L69etHPfFl6f5cvHiRYmNjSSqVCvZVBrt4jP7+fuTl5SEmJgYPP/ywdrsQxvF8G3x8fLBgwQK89dZbY67LHPPnz0d5eTnmzZsHmUyGysrKUbVnS+zSxygtLcW1a9fwxz/+0dZNjQlS39ATi8VIS0uz6CHksXL58mUUFhaCZVmkpqZi9uzZNm/TImztki5dujTip6ccTV1dHYlEIoseRDYXPkYSKnfv3k0ikWhErzLYEpt6DKVSCbFYjPDwcKxatUoQocNS3nzzTbAsa/a5U7LyXENLSwvy8/MxODiI9PR0zJkzx2p1jxhbqq6srIzS0tJs2YTNGO2T6tagsrKSwsLCqKKiwu5ta7CKMDQuk+8629raKCgoyOw7HULnzJkzFB4ePqZ3W0ZLe3s7JScnk1gspubmZru3b5NQolQqIZFIEBQUhOeff97a1duV119/HZMmTYJMJrPrNLWmrUOHDqGyshJ+fn6Ij4+326sMNmnlnXfewZQpU5xeFAAglUrR0NCAhoYGu/aRNG2FhIQgPz8fbW1tiI+PR2Njo30MsLYLamlpoeDg4GFDiKXvhNiD4ew4derUsB9tsWX7Gg4fPkwikYgKCgpocHDQJrZosJrHICJwHIft27djw4YNOncSyUi0YhhGMKOU4exYtmwZZs6ciZKSEoe0ryEoKAiFhYX45ptvIBaLUV9fbxN7AFjXY1jy6QFnpauri0QiEZ07d87mns6S+o8ePUqRkZGUm5tr1JON1UaVMCyqQ6n3v27jCoWCgoOD6fr162MySMhY8h0we3L79m367W9/Sy+++CJ9+umnVq2bNyrRfJaZNf45XjNwHAeJRAI/Pz+IRCJrOzVB8dprr+Hhhx9GcnKyo03RUl1djbfffhtPP/00UlNT8b3vfc+icmRmlMUOZWJApM7Ez2vBYPbgwYOYNGmSjihIwI+tjYWMjAzU1tbi/PnzjjZFi7+/P4qLi9HX14fY2FjrPDqg60CUBi5FP8oM/VblbW9vp9DQUOro6LCmJxM0crmcIiIibD4yGA2nT58mkUhEv//978f0RJreqGTop87SDtrlsDmeM1HlzcnJQWhoKKZPnz52lToBRAR/f388+eSTqKio0G5ztE0afH19sXv3bnh4eEAikeDEiROjrlRLZiC0a49p/pVWK3SUxPcgBw8epMTExFGr0pnp6uqikJAQh0xXW8onn3xCL774Ir366qvU2dk5opEK9LPK1g6J4Up1CYEBabXBy9zR0UHBwcETKoRo0BxguVxO0dHRJkOKECbwent7KTs7myIiIuj48eMWl9PxGBwpKIBZQwpSEkdEXEsVASB5i24hjiNKTNxIBw8etIbtTgvHcZSVlUUlJSWONsUsHMfRmTNnKDo6mrKysujmzZvDloHOXIS8hAJlZdrfmYHQ+a1SC9G7775LCQkJ1rTdaens7KR169bRpUuXjGdQH16j3sPODmVwcJDy8vIoIiKCjh07ZjavjseQl2fo9C8MPQVH165dI5EozCLVTRROnjxJiYmJ1N/f72hTLOLLL7+khIQEenXLVpP3rIYmuAiQBTHwzyP4e6nWUF8RtwPyFtVvDRKJBPX19VixYgV6enqMdmj5rwGOd1iWhYeHBw4fPozFCxdh+o9mQKlUatOJCCzLqiaTCCBm6N6II44RwxAmT/5vdHd348iRI+jo6OClcgBYEHhLeFObHDnIwh9mEPr7gWX/F4/AxB2o/kgOf68V2qLPPfcc/vnPf0IkEk2Yk28OhmFw8+ZNNDU1IfqlGDz22GMGx8XUhcKCAeegRUBZloVUKtWb5FZNQTAA3DUJNSeqsWmNP/7LA+gfILDX2vD+AFA6S7V2umY15HXrwnH+/HlcuXJl3E9/W8qWLVuwYcMG/PrXvwZgbqpZdUU6CnN3Ogxs1sSUzEB1n4LjqK9PQYEAAQGkUM9wdnZ2auPPrVu3KCgoiFqvur7cf+TIEYqPjyelUml0Hoh/DA0xtd166Pch+L0J2VqVjQzDqG1lVf8HyAgKeYnejkwhj0k/II9AGfX3Kamvj6Nr126oBiSDHPX1cTSgVB2Q2FgJ9feptvUP6lij3d7Xx+nuvrk0U/n6uaEdMlqeowH170Fu6O++AU43/4B1hwE3b96kkJAQUigUGtMoY61up71EFjCMOGyMuV3m+A5BtUkzMoV+QU59IAc50h5U3o12GhgYevA3LW0T7XvnHdKcmEGO9P4mUg7wT4i5NF2L+fkG+1ViNFueJwAl/7dGVAb7MnakUint3buXZ7WC1gRm6u4JxxkO+x0JR0RK9Tnk2cuRgkrL/k4cKaisVE6sftDR+ckwcHcDBgfVAxclAFaVgyEgPX0T3j9Sha++agcH9RKpHMAx2mxg3VQLLXMYJo0PB3As4KbO5+bBwJ21rLybB6MTxd3cGd2bxVbq6x07dgxdXV2IiorSGt1aXQN2nrfBMhaz5gXg6JVW6zQ8Skj7P2kPYGt1DZ56fjkIQE1FGTDLCwy8ERfvb7onpOmHMG4AywFKUt1Lc+OV+J/HHkVkZDDy8rbD3Z1UJ09thcnjby7NknyWlrcht2/fRnl5OV555RXeU9ssamo+wGr/Xxl0PL285zp8BKdjkdqUq+2tyIlfCZZhsDI+F7NmemuzaE8zN0joV3sGMPyKGLi5AcoBArG8q49VCSYwKBju7u74y1/2g1N3ulkA2qE8AaTeZjZNby8YApRaV0DD121HcnJysGbNGr03xVrxQQ7Bb7l6FDc0PYTWlisInOdtWJEDtMLwTm7NcdU8FREhY80a/K/XkO/VHlOGAcAB/QMAq+d+GTdVRt1XGhi4u6sElZaWgcPvHcXVr6+qtnsAUBL6+wn9SsDDnRkqYzKNMNhPGORUxnio6+7vV82rqCw1VZ4wOKA6zsoBAjfs79Hz4YcforOzEy+99JLOdmptBZMZAG/NXIDGa7TKsTH7KFb7/2oor2rGeURPyVkNdZvUKkc2ZcLfS3VcvNeswWz+JWZpj2W4Z1IqKyvH/S34zs5OCg0NpUuXLvHevlMdGHl5BmWWVfNyq7q5mYEg6HRIHTA64Qzv1cjLMyij9O8GWTNkKluHFQbHccQNDo0EzJGYmEiVlZUWWut8bN68mUpKSgwOMkeqeR/+MFVzZxprM0kY6ApSf1hNpBJxZlkVEQ0jDOXAyMb/V69epZCQkHH5jMYHH3xAMTExBqsOaOeBGMPJrbKaFhO12feFK34rhvNWuv80YrH4vRJLd2I8hpTOzk4KDw+nL7/80mi6zqeZDA6T8dct9NMcg7H2Vdss7tBb+rbUunXrQETC//gYDxpmKLljxw74+vrixz/+sdF0/kdsDTuUQ4fY8Bg6elUQY+2zJlPGTFZWFvbv34/r16/bonqrY0701dXV6OjoQGxsrB0tcjw2Ecb06dMRFhaGbdu2Gb0ah7tChUJ3dzcqKiqwadMmeHp6Otocu2JVYfBP+Lp169DX14dDhw4Z5BPKy8zDkZubi1/+8pdYtGiRo02xO1YVBv+EsyyLzZs34+DBg7hx44ZOPmfwGB9//DEUCgXi4+MdbYpDsGnvx8vLC2vWrEF2drbOdqF7jHv37qGgoAAymWzChRANNu8WR0VFoaenB++9956tm7IaO3bswNKlS7Fw4UJHm+IwbC4MlmWRnp6OAwcO4F//+petmxsztbW12s8aTWTsMpCeM2cOVq5cidzcXLP5HN336O7uxq5duyCVSidsCNFgtxmWDRs2oLu7G8eOHTOZxxF9D9Lc6YQqhPzsZz/D4sWL7W6H0LCbMNzc3JCRkYE9e/bg1q1b9mp2WC+k+RbYmTNnoFAokJSUZCfLhI1d52TnzJmDVatW4c0337Rbm5Z4oXv37mHXrl1ISUmx+Gs04x27T9aLxWJ0dnYaXYJS/+q2Rp/DkjqKi4vxk5/8BL/4xS+s2rYzYxdh8A+ym5sbsrKyUFZWhjt37hg8OMvHGn2O4V4H/Oyzz/DFF18YfFNrIr1maQy7CEP/BM+bNw8rVqxAdna23Tqcxtrp7e1FYWEhkpKSjIYQoU/E2RKH3fcVi8W4ceOGxasa24KCggIsXLgQPj4+DrNBqDhMGG5ubpDJZKioqMCdO3fs3n59fT0aGxuRkpJikDaRQ4gGhz4p8tRTT8HPz2/YiS9r09vbi5ycHKSmpmLy5MkG6RM5hGhw9CNEiI6ORkdHh11DSnFxMZ5++mksWbLEIM3lLVQ4XBienp5IS0tDeXk5urq6bN5eQ0MDzp07h/T0dIM0cvSy2QLC4cIgIixevBi+vr4oKCiwaVv3799HQUEBEhISdJ/ThEsU+jhcGJqTIZFI0N7ejlOnTtmsrZKSEnh5eWHp0qXabZrQ4RKFLg4XhgZNSCktLUV3d7fV629oaMDZs2eRlpams90lCOPYXBgj6cwtXrwYPj4+2Llzp1Vt0IQQiUSCqVOnWrXu8YrNhTHSK1IikUChUODjjz+2mg1lZWXw8vLCc889Z7U6xzuCCSUaPD09sWnTJhQVFeHevXsm81nqiZqamvDJJ58gNTXVWiZOCAQnDABYtGgRfHx8kJeXZzLPcJ6IiDAwMIDc3FzExcXh+9//vrXNHNcIQhjGrv6EhARcvHhx1CGFYRjs3r0bM2bMgL+//1hNnHAIQhjGrn5PT09kZGSguLjY5BeIzYWTy5cv46OPPkJmZqbFZVwMIQhhmOKZZ57BT3/6UxQWFhpNN/XMhFKpxLZt2yCRSDBt2jRbmzkuEbQwACAlJQUXLlxAXV2d0XRj3mb37t144oknsHz5cqP5+Q8AuzCO4IUxefJkJCcnmw0pfJqbm1FTU2MQQjRopr5dE1vmEbwwAMDHxwcLFixAUVGRzpWu+ZvjVJ9bUyqV2LFjB+Li4vDgtGkY+gLo0OfYXIKwDKcQBgAkJSXhwoULOHv2LADdm16ab21WVFTgoYcegr+/v/b7JSrx8HdzLN/smzg4jTAeeOABJCYmoqioCD09PQZXfnNzM6qqqpCRkaHdRmAF+BUb50DwR4kfOpYsWYK5c+eiqKhIJ8/g4CDy8vIQE7MBP/zhD7XbXUFj9AheGPpXvFQqRX19PRoaGrSi2bdvHx588EEEBKzVfm2XiHjrxboYKYIXhj5TpkxBamoqcnNzwTAMrl69iqqqKu0ohMB7vsLV0Rw1Q2uiORlvvPEGPD098fXXX2PVqlUICAgwnlGzDpl9zXN6nM5jaMjIyEBVVRU8PDy0oiBwkJfJtPMUTNDLIKYFL8tKoc7gwkKcThgaBzd58mS8/fbb2lcPqFUOlnHDW23e2plNLtcPLDsb8Nas6+ZShqU4bSjhQ/gKQcxcQFaGI9vjeCkcSl8OArtiJ+L8vPQLueKLGdyHzyJ0ONRUVOB9BECxXayXxsLLey7wJE8UakEQCIyr82ESp/YYRAQwrQhiZmNuWRWy41YYpLumwEeH0/Ux+DAMA7S0430AXur1YQ3S1Qyp3zUlbglOLQwAqtXy1GhXPdYsssDPBmP3TVyYwvmPktcsrGWA1rY2aJeEZFT/uJYqlNW0aLO6wsoIGPVSF3ZiuHVSOI6jqrJNBIBKqxXa7Qp5ieklp+yzfoxTI3hhDIdGOF/Ji3WWoRbMArhOyv8Dc9N0lFPa7QoAAAAASUVORK5CYII="
|
<image>如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()
Choices:
(A) 8
(B) 9
(C) 11
(D) 12
|
12
| 69,866 | null |
12
|
"iVBORw0KGgoAAAANSUhEUgAAAEMAAABlCAYAAAAWP15YAAALN0lEQVR4nNVdXWgTaxp+0lbSerK2F8FmIZzaGjA1KQ4Iu+VYaMWf9ZxjiuABb/VCXVfZbVbjdjFCxRWUIAp60VgvFLwQtCjihZoU/OnuulRIdpv6g0mNPxcFZU1tbJNt2ncv6gwzk5nJZGaaJg8MzXzzfj/zzPe93zfv+35TExERKgxEBJPJxJ2Hw2E0Nzdj9erVusqt0tuwpQCfCADYsmVLXpoWVBQZbCfmd+ajR4/C4/GgublZd/mmShkm4qFBRBgYGEBzczO2bt0KI26jYnqGeBiMj48DAFpaWuDxeAypo2LIECMYDGLfvn0AAKfTaUiZFUnGwMAAAoEATCYTHA6HYeXWGFZSiZBIJEBEnI4Ih8PckNGLiiGDiDA+Pg6v14s7d+5w6UYRwVZSEfD5fASAAFAikSAiIo/Hw6X5fD4iIpqfn9dcR8VMraVARSpQFh8+fDC0vIolY3BwEPfu3TO0zIogQzySs9ksent7MTY2pihXLCqCDPHq8+LFi8hkMojFYopyRUO3mi8xUqkUWa1WCofDZLVaDS274mYTr9eLmZkZ9Pf3o6GhAfF4HFar1ZjCDaV2kRGPx8lqtdLExAQREXV0dFA4HDas/LLXGcSzYRw5cgRHjhxBY2MjAGDdunV5ekMPyn45zirFx48fIxKJ4Pr169y11tZWRKNRw+oq+57BoqenB2fOnIHZbObS3G43YrGYIYYdAJWhM65cuULt7e157x2pVIosFouu9xE+yp6MbDZLdrudhoeHJa/b7XZKJpOG1FX2wyQQCKC9vR0bNmyQvO50Og1TomVNxsTEBM6fP4/Tp0/LyjAMY5gSLRsySEIJHj9+HLt371Z0Drndbrx8+dKwRpQlotEo2Ww2SqVSRCRvtBkZGSGXy2VInWVLxubNm+nixYsF5aampshsNlMul9NdZ1mSce/ePXI4HLI3KO4lDoeDYrGY7nrLRmewmJubw+HDhxEIBFBdXS0pI35VZxdfelF2ZFy+fBlWqxU7duxQnccoMspqmKRSKbLZbBSJRIrKd/PmTdqxY4cgTcuqtKx6xunTp7Ft2zYwDKM6DxHB6XQiEonob0DR9C0Skskk1dfXc7aKYjA7O0tms5mmpqZ0tWHRewapfKM8duwYvF4vZ6soBjU1NWhtbdW9+Fp0MtQYaZ89e4ahoSEcPnxYcz0ul0v3srwsdIbX68XJkydhsVg0l9HW1pbnOigWS07G4OAg0uk09uzZo7kMIjJmetWlcXQim82Sw+EwxKibTCbJZrPpKqOkPYNEyvTChQtwOp3YtGmT7rKbmpqQTqfx6dMn7YXofiQa8fnzZ7JarfT8+XNZGTULJ75MR0cHPXz4UHOblkxnnDhxAjt37kRra6usjJqZiC/jdDoRjUY1G4gX3VVAopBFYCEU6dq1a4aZ69g6WCWq1ee6JOsMsTPIqDoYhtG38NI8wDTi0aNHtGrVKspkMoaX/fHjR7JYLJrzl5wMhmHo+vXrBeWKfetk5a1Wq2bXQUkV6NWrV1FbW4tdu3YpypGEnikE/lDRqotKRkY2m4Xf70cgECgoqyfoRM9K1HAySGZaO3v2LNrb29HR0WF0lQK4XC7ts5TasSj+XQwmJibIarVSPB7XlL8YPH36lBiG0ZS3JJE7e/fuRUNDg6ohohfpdBoNDQ3IZrOyBmVZGPpYJBCJRATOIKMh7q3z8/PU1NRUlOuALUO1zqACHUjuus/nw7Fjx1BfX1/cU1IJsbI1mUxoa2sravHFliEgY3omwx2FKlVz/f79+0gmkzhw4IDqhhkBhmEQiURUv6OwcgIyltfVCv7y0d3dDZPJlHfIQY0zaLGwZs0ajI2NSbaPvY+qqiruHqqqqtDd3Z2vM75Oz8iOLY/HI5gR2Eh/KfT391NnZ6fs+FxMxGIxcjgcknXNz8/n3UcoFFq4F7Ewn4yv0zPcQUT008/bBedsWo/3z4IyUqkUNdp+Tf98+i9JcsXlykFOTimdiOjLVJrMtXX05csXyTo8Hg/3u7+/n4iIgsGgsgLlD5tQKATX2lZB+vRMBq61rUjEX3N6hohw8m+n8OO236H9t7/B8rpagQ6anslgeV0td0jpJ7GcXPryulp8nZ7h0tm/v7J8h5aWFvz7P6N5dYTDYWzfvh0AcOnSJS72Y9++fepXoKFQCJ1dG/Ma933TKuTm5rnzd+/eYWBgQDHaplhI6TAWrF6oqzULZF0uFxLx13ny4+Pj2L9/P0wmE/bv3y/YD1uQDJbZQCCAjRs3AhBOo+/eJuF2reUa4ff7cejQIcNsFWohVpZyfpS7d+8iHo+DiODxeARRQZyli+1+UhgfH4fP5xNUTER48+YNAoEAQqEQpmcy6PnTH3H79m38/sAf0NfXx8nN5uawrGZhRuH/ljqXSlebn/977PkLpD7/V1BmIpEAAI4AdriwyFtnSBHyj78P4/umVYJrJpMJf+39C3786Wf8sKEDy+tqcf/+fXR1deG75XWYzc3hf7O5vMYvq6nGbG6OO8Q3JiWnlL+memGKZPOyf1euXIkXL18J7m1oaEhAwN69ewEsbCEHoG45DoBGY2PceTweJwACrXzz5k1iGMaQcCKjYLFY6OPHj9y5eEpl04LBIBEVsHSFQqGF3YGmKm6XIHuEQiFOLpPJGOYM0gK5tcv69evp4cOH9ODBg7z28w+WIEXr+A8bOripS0mjX7hwAWvWrDHEGaQFcivhtrY2xGIxHDx4UNXSXJEMJQJYTE5O4syZM3j8+HFB2VKDYRiMjo7KXieReVGTpYvPcl9fX0Fn0GKC3xbx03e73Yqb+vJ6lJ7xKd4ZpGYclwJs3e/fv6f6+nrJa1LtK7pn8NlUcgYZ8dkXLSBe17fb7Vi2bBnevn2b1y6p9mk2CD969AiRSAQ9PT1aizAEJBoaUitR1kAslhVDMxlSO4MKVbYYUOqB9C2IhbV6FeqtmsiQcwYt1dCQA2sClIv1ynt4xSqnTCZDdrudnjx5UmzWJcHw8LCk60BKgRbtKjh16hSi0Shu3Lih9YGVFJOTk2hsbMTXr18Lmx+LYbmUziAjYbfb6cWLFwXlitIZfr+/4M6gcgTDMKrCIlVH7kSjUdy9exevXr0qLFxmcDqdGB0dxc6dOxXlVPcMn88Hv9+PFStW6G5cqeF2u7kZhZRUpJoxJ7czaCmX3MUgEomQw+EoKFeQjFwuRy6Xi27dumVEu5YEmUyGzGZzwdCpgsNEy86gcoPZbEZzc7Pi6zxQQGdMTk6ir68P58+fN7JtSwKp13kxFMnQsjOoXKEqooc/ZvgKUc3OoEpRoEQLBuvNmzcrylSRjOXH7/ejp6dH0RlUbi9mSlAVMCvF0MjICNlsNt17vsoJuVyOzGazYgSRpM4wYmdQuYC+9fzq6uqCn6XJW44PDg5iZGQEXV1d6OvrW6w2LglmZ2cRi8XQ2dkpeT2PjHQ6jd7e3kVv2FLgl19+UfzErqI9gzSELVcyqhS4KEiEUt5yw6VLl7gYru7ubgA8h/M3VPFvWCqILRwOy1ZQCb0mkUjAZDJxMRlEhHPnzkl/jFk8vXg8Hs6pzDqeX79+bfxcVyKA90ldPnw+X56jnCODXU3y+WFDDyrNzMfeSzAYJACS8e/BYDDvvgQ9gw0BZOHxeCRZrRQA4GIvVMnzT1gmIYpbqEQkEgkCQA8ePFCdR7AC5Qd/BYNBOBwOLg6qnEES/92CRTFKniNDHPzF/h+AoaEh7a0sEcTOZCJCS0sLAEg+zEQiIT1Lsl0kGAwKxherPPnhSpUCsQLl30MoFBLEovHBkSEO/sI3vVHp4OLSRF+ulwLC4bBk0BfLXiUZcPTi/+7pUo/LNfoEAAAAAElFTkSuQmCC"
|
<image>如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则AE:EC的值为()
Choices:
(A) 0.5
(B) 2
(C) \frac{2}{3}
(D) \frac{3}{2}
|
\frac{2}{3}
| 69,867 | null |
\frac{2}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAFkAAABeCAYAAABIDrgXAAAQZklEQVR4nO1dbUxTZ9//n7nMTZl1o0lLLCub3bO66sS7Gt0oFpVNM4sBx4LJSMadBx+ysQ8ko4zFZH4YuYMZH5bIEhPMQ33iB7kHQWN1fMCE18feqxtuwCBZLUYwYmBbWTUrcHp+zwc49bQ9p2/0lJfn/iVNeq7X//md//U//+s61wsDAJQiACCGYSKmmZ6epuHhYbp58yZNTEzQ0NAQERHdvn2bZmZmgtIqlUoyGAxERLRr1y7SaDS0e/duys7OJoVCIc9NJAAmGSTHQl6kfHfu3CG73U6tra3kdDpp3759QaQRERkMBlIqlUH5Hz58SKOjo0RE5HA4aGJiggYHB6mvr48OHDhAhYWFZLFYSKvVLvUWl4SkkJwIbt26RS0tLWS328nj8ZDFYqGjR49SQUEBrVu3bkllz87Okt1uD/xUKhUVFRXRe++9R9nZ2cm5gXiAFOP8+fPQaDTQ6/Worq6G0+mMKz/HcXHX2dfXh6qqKuh0Omg0Gly6dCnuMpaClJFst9thMBhgMpngcDiipk+EzFjQ1dUFo9EIo9GIzs7OiPUkSwbZSXY4HDCZTNDpdLDb7ZLp5CJVCq2trdBoNMjPz8fAwICoDCueZJfLhcLCQqjVajQ2NspVTVREIoplWTQ0NECpVKKkpATj4+OyyJBUkvkb6ujowObNm3H69Gl4vd6Ey0kVPB4PamtroVAo0NfXl/Ty4yJZ6uaF4fX19bIJKzc6OjqgUCjQ2NgY9UHHowhJ02Sfz4fS0lIYDAa4XK6Ua2OyMDQ0BJ1Oh4qKCrAsC2DpLeupZLiBExMTlJOTQx6PhxwOB23dujWhzslKgMFgoFu3btHo6Cjl5eXRb7/9tuR7SYhkLPZfANDt27dpz5499Pbbb9PVq1cpLS1tSQKlGhDpiykUCrpx4wbt3LmTjEZjoFcZKU+0ShLG+Pg41Go1zp07t6TmtJIQahrq6+uh1WoxNTWVsNlImGSfzwej0Yja2lrJNKvRLgtl5v9XVFTAbDZjfn4+oTJjGruAyADQiRMn6PHjx3T16tX4ms4qhN/vp0OHDpFer6dz584FwsV4EUW8TxcA6urqYDAYRH3g1ai9sWBqago6nS6hjlXc5sJut0OpVOLu3btxV7baMTIygs2bN6OrqyuufHGR7HK5oFAo4q5kLYFXsrGxsZjzxGWTi4qKaPfu3XTq1Kkl2bjVDqvVStPT09Tc3BwIg8A+I9RWx/o0+vr6oFar4fP54nz2qx+h7xmPxwOlUhkYvYuGmEk2mUxoamqKS7i1jIaGBlgslpjSRiWZ4zi0t7fDYDCAZdk16z3EC5/Ph6ysrJjeT1FJZlkWer0e165dS4pwawkXL16E0WiMmi7q2EVzczOpVCp69913k/8GWeX44IMPiGVZamtri5ww0hNgWRYajSbuj53/n3Djxg3o9fqIZjSiJjscDlIoFIG5D4IHs2QtSARi9QrDlkOugwcP0qNHj+iXX36RTBOR5MuXL9Px48eTLliiEBsnEIYt1xj2sWPH6MqVK5LxEUm22+107NixsPDVOiAvF44fPx5xoEyyxzc6OkoHDhygBw8eyCbcWgAA4jiONm/eTC6Xi1QqVVgaSU2+cuWKqBavFCzXeyEUDMPQunXr6OjRo3T58mXRNJIkrzR7TETU29tLDMMQwzD01FNPUU1NzXKLFEBRUZEkyUEuHO+GTE5OQqFQJPwlQA5YrVaEiAsigtVqFU2fyp4px3Hwer1IS0sTHWMP0mT+hXbz5k3as2cPPf300/I+/hhRU1ND33//fZiJ6Onpoa+++ko0TypfzgzDUFpaGu3YsYN++OGHsHhRc3Hnzh3avn277MLFAp5I4bDiSoVer6dff/01LFyU5MHBwcAM9uXGF198QVarlV5++eWwOLfbvQwSScNgMNDw8HBYuKQmb9u2TXahYkF3dzcVFBSIxjU3N5PVak2xRNLQ6/XkcrnCwkWN7vj4OGk0GtmFioaxsTEiIlFZent7qbu7e0WZkS1bttDExERYuKgmP378mDZu3Ci7UNHAmwgxwffv3y9pRpYLmzZtosePH4dHiLkkUq7IcsBqtcJsNgeu3W53RNdtOTE+Pg6NRhMWLkqyBPcpgZh/azabQUSBn9vtjit/quDxeKBQKMLCRccuGIZZMd3W1YSZmRnSarXk8XiCwkVtclpaGj169CgVcsWF/v5+6u/vX24xJOH1eun5558PCxcl+dlnnyWfzye7UPHgm2++oeLiYiouLqYzZ84stziimJubo+eeey4sXJTkjRs3ir8lU4BQM+X3++nkyZPU3NxMTqeTBgcH6bvvvqN33nmHpqenI+ZNNf78809Rr0yU5MzMTFG3KRUQvg+mp6cpLy+PZmZmqL+/nzQaDaWnp1NXVxeZzWbasWMHdXd3B+VdTty/f1/UpxcleevWrTQyMiK7UFJgGIaGh4dp165dZLFYqKWlhdavXx+IIyI6deoUtba2UmlpKZ0+fTqQdzm1eXR0lHQ6XVi4KMk7duwQ7YOnCm1tbZSfn09nz56lzz77TFJDc3JyaGBggH788UfKzc2lhw8fLqs2Dw8Pi4/5iPl77e3tyM/Pl82fjIS6ujrodDoMDQ0FwmLxfRsaGqBSqdDR0SGneBHx5ptvis4oEiWZH7Tnl1ilAl6vF8XFxTCZTJienk6oDIfDAa1Wi9raWvj9/iRLGBkxD9rzUKlUtG3bNurs7EyJjZuYmKDc3FxSqVTU1dVF6enpCZWzd+9e+umnn2h0dJRycnLo/v37SZY0HDw/169fJ5PJJL76S8g4x/oxO89hdp7DP+ob8F8VFUFPRI4uKz8lV2yZwFLqa2xshFqtRnt7+xKkix0lJSWSq8DCzQXHYW6ew/AvI8jMzBSJTh7RNpsNarVatiXCAwMD0Ol0qKqqknVeNcuyUCgUmJycFI2XJJnlAL1eLzoPbqlEsyyLysrKwBJhOeH1elFaWgqj0ShbXZ2dndi3b59kfIQZRKCjBUXUfuUazbFYGP7yczTHgvzE8LaG5lnQHAua54JsUCB8jgUJo2Y8HrIcO073H0xR7/866OWtW6WMXVAZkAjnFmVlWdDcPEd+LP5nQXN+UNrGjfTfzf9DJysqKScnl1paWmKwtPGhvb2dLBaLdIIw2gWa3NfXh7/t2Ysn72kO8yz35P88B07wfyFK+B/wsxxmFy8GBwfxqn47PltcYCmMCxEiqAx2nsN8lLJ5uWfnuQV5BdccFlrf7Z+GYDAYUF5eDp/PlzTTp9Vqg1zOUARIDlTIcZid84PlFpp1ZtZ/4Oa/nIG4+QDHXOAlyf/muSfhHATp5jhc7+iAOiMLLf9sC4qb40kRgPNLkC9S9oJCcEHKERwXfO3504uTJ0/CYDBgZGQkMnsxoLOzE3q9PmIaSU3mb7yp6TzMh95eJD2EvAhE+AXX/6j/CpmZmXB+7wyLEyM5jMwIZc+FaK4YyZzIQ7h48SLUajVsNtti8sS2xsnOzkZra2vENMQXGGh6i8LwVbAsC71hF65cvf5EixfEwPy8QLPBwS9o0nN+4K+//kJZWTneysnB1NRUUFyANIkHNRel7LD8UTSZC43HwrrE7OxslJaWJvS5LdblDE/MhcBHDr3v9vbL2L7zb5gL7QEKTcZcsIaNTzzAnr0mfPj3/8RfQvdJYCuDtTXkoYWYo1DtDc6/kPdJWsH1XMh1SMvx+XyorKyEXq+PeckYn0+r1Qa60ZE0P8aPeRxM+/fHvMTM6XRCo9Hg66+/jq34ZYKQmLa2tpi2leDzSC0xEyM7tgXsfg7dMS6W5G1dpIGalbZMjZfn7t27MBqNKC4uhsfjkUz/xx9/ID09fWmLJflK/exC8+JtYGFhIerq6iQLq62thU6nk72DISdYlkV1dTWysrKCOmJCxfj0009RVlYmWUaoEiVlAbvX68WRI0dw5MgRzMzMxFPkigNPkN1uh1qtDjN5ieySEJHk7u7usDkOoZW4XC4YDAZUVVWJCruaMT4+DpPJBIvFAo/Hg5GRkSAlC50PQkTo6ekJKyfiLgEMw5Db7Q6bClVcXEw///wznT17lkpKSmjLli30/vvvJ6WLKiZDqIhyzgsRK7uxsZGeeeYZYhiGPv/8c/rkk08CcXl5efTll19Sbm4u9fb20v79+8M4kxy7qKmpIbPZHEbwo0ePiGEYunv3LhUUFJBOp6Pt27fT7OxsQjcViSwstLS48iQKyW0UiKiyspKIFiYUnjhxIiiuu7ubcnNziUh8YiRfaBA4joPNZkNPT0/E6Vo+nw/btm3DwYMHkZ+fDyIKbPzU2dkZVF6iENt0KdWYmprCq6++ivXr1+P3338Piuvp6Qmak2c2m0Xn6FGo8G63GzabDW63O2iinxiEW5axLIuOjg5UV1dj586dWLduHQ4fPoyGhoa4nPxYwXGc7MRfunQJGzZsgEKhwL1798LibTZbkD2W2s0lTFX5J+F2u2OaOTkwMICMjIywrcumpqZw6dIllJeXIysrK7Cz6/nz5+PaWkYKchI8OTmJw4cPQ6lUIiMjA6Ojo5ITIXnHgCdcbDJkEMnCJ8MwDGpqamISanx8HEajERaLRXIMwOVy4dy5cyguLoZCoQjsh9na2hrm+C+nZ9LY2AiFQgGtVou33nprccwlHHxLF8pKRIEBJyECJI+NjQUl6OnpEc0ghdANUcUgFMjpdKK+vj6iPU8lRkZGYDab8cYbb+Cll14K2hBVDDabLYgfft60mAtHfIJQ+xtaSCQIyTtz5gyUSiV6e3tjygtA1J4fOXJENnseWnd9fT2USiUqKiqgVCpj2vtNaCoABCyAGIhfhCi0J0InO57FiMnapHp6ejpgz7VabcCeNzU1hfW0+DoTMTEDAwPIzs6G2WzGRx99FNO+z7zXFfqL5CSsiu3WeXteWFiItLS0iPY8Fvh8PtTW1iI9PR0lJSVL2m49loebsoMD9Hp9xIMDYgXHcXA4HKirq4PJZIrbnnd1deG1117Dvn37kJmZGXRwgFwI85PlglxHYPh8PtjtdlRVVeH111+XtOderxcff/wxXnzxReh0usARGMlANJ895Stwmpqa4j7Mhb+JWIifnJzExYsXUVZWBo1GA6VSiUOHDmHDhg3YtGkTMjIy1u5hLqFwOp2orq6GXq+HSqVCeXk52tvbkzLJ0efzobW1FWVlZXjhhRegVqtRWlq6ZLOQaKuPulcnYtgjOJY0kXDnzh26du0affvtt0s6YOvevXs0NDRE/f39cR2wtVT5o0GSZLkrlgJ/VJzwVDKi6EfFZWdnU2ZmZsJHxcl5v8t2ilkqEI24VClSUo7AWGng9YYn8MKFC4FtdfLy8ohoYbw8VS11TZLMkzc2NhZY5IPFDwDNzc3EMExq9/NY0ut2BSCif0okOpJotVpFB3LkwqrXZKkmf+HCBSIiOnPmTNjnKoPBkNL9PNbsi49hGLLZbPThhx8GwhDyogu9lgurXpPFwO/48sorrwSFhxL67xdfnFjJDXLNkCzUSn4ag9vtDiN/bGyMent7UyrbqvcupMB/r+S9CI7j0NPTE/ULvBxYsyQDC9PMSPD1orq6Wtb6pNzJNetdrCSsGZu8kvFvklOA/wMpn9NebP5KuwAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是△ABC的外接圆,若∠AOB=110°,则∠ACB的度数是()
Choices:
(A) 55°
(B) 70°
(C) 125°
(D) 110°
|
125°
| 69,868 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABgCAIAAAC/quo3AAAcxUlEQVR4nNVdWWwb17k+s3MVrX21qMWURGuJFku2ajteIjtx2twERVCgLVCkKdACAYoUvShQtLjoQxHcp74UfWyBNmhgFAhuYzQ2Ere1ZXmRYtWSU1mSJVELLZNaTFHcZjj73IffOplIliLSpKh+SAyKM5w555///Pv5BxkZgizLhmHoup5MJuEbXdcNw1BV1TAMQRDgSziqaRqcIIqiYRg8z8NR+DOr0DVD1wxdN/SnUHVD1g3ZMJRINPSrX/1PdXXVe+/9L5xpGIaq6jAFPHg8/pSALwKfaZQhkCSJECIIgmEY+EbXdYqiBEFwOp0Wi8UwDIIgNE2Dk2VZlmXZ4XAghAzDgJ9wHJep8aQBV57rzTfftFqtL754JhqNMzSnanJenkPXCTw8TdMoioLJpgSCIPBniqJS/v12oCjK/EFVVfjT6XQihGKxGNzYbrfDUZZlgcq6rtM0jRBSFCVTg0kPvMAjhEpLS+vr62mattlYp9OhaQamMkEQJEkC66QK4HT8Z8b4HSEEvAD3IAgCP4nLly8/ePAgPz8/Ly+voaGhs7MTCK2q6tTUlMfjgUei63oGB5MqorGoxWJZWFj47LPPVlbWZFn+r9feaG7xyrJss1kQQk+ePCkuLiYIgiAIXddTZXmCIDDdDcPIGL8jhBRFAV4ACYMQikQily5dunnzZjKZnJ+fv3z58tzcHEIITvP5fBcvXkwmk0DxnAsZnueHh4cNwyBJ0u/3X758eWlpCXjiyZMnd+/ejUajaEOipgqSJEmShMdGpneJ7YCfJ9AxmUxOTEwMDAz09PT84he/eOWVV6qrq+vr6xFC6+vrCCGfz7e0tETTNE3T5jWYK9y/f399ff1b3/rWz3723y+//LIsy5IkWa0cQmh2dvbevXvhcBiE4fPTLZN0N8sWhNDq6urQ0FBnZ+fXv/51lmX9fr/Vai0qKkIIFRYWSpI0MzPT1tbGcRwWOxkcTKpYj6zPz8+fP3/+7NmzCCG/328YRl5eHkIomUwGg8FEIpGfn0/TdHp6CMwYLBIySfdNXBAOhycmJrxeL8dxIyMjd+7cKS8vLy0t5XmeIIjHjx9PTEy0trYCuc3iLyeQZXl1dbWqqioWi/l8c4qidHZ2lpQUIYTi8bgoigcOHDhw4ABBEKIopnF9QRCSyaQoirIsa5qWMb2qKArLsgghTdPAlBQEgWGYK1euRCKR1dXVYDBosVjwUVVVPR5PWVmZ1WqFuYHlk208NeeIp/8jRMCHQCDgdDoHBgZu374dDK62tbW99NJLqqrTNAkM9I1vfAOuAKtzO2DjIplMwtRkWaZpemRkJBgM1tbW9vT0oAzyOzbbYTUhhDwez8svvywIwvr6elFR0enTp1taWmialmUZIVRbW3vmzBkQ94qiANGTyWSmxpMqOjs6nU7n3NxcKBRqbW3t6+tzOCywFmOxmKIopaWlCCFN0ywWyw7XoSgqFArpum61WiVJQgjRND06Onr//v2SkpLDhw/DaZlf3SDCYHDxeJwgCHCOEokEfDCfyTAMOHLw2CRJyrpVA9P9wonREXpqv8qKzNAcQRBP2dFAsqIihD766P8mJiZ+/vOfcxwnyzLHcWAo73ATkEVAhLt3746MjNTX1x8/ftxms2maJklS5u13hmHwmICLZVlmWRY4XZIkp9MpiqKqqjAsrFTxNzkBL/AWiwWPXJZVVdEZluJ5fmxs7PDhwzC2ncmNwTAMSJvBwcGJiQm3233u3Dk4lEwmHQ5HJvUqduQoisJOkK7rsNwsFgvLsvAkZmZmbt26lUgkgNlhPun5gZmC3WanSCqZTIKRzrK0zcYyDBUOhxcWFrq6ukB4siz7lcy+srICRO/v7x8cHPR4PBcuXIBDiUQCnl+G7Uggt5mCJEnCnSRJUhRFkqRoNNrf3+/z+cCCVFUVForNZsuhKRlPxBFCVqvV5XJpmhGP85FIQpIUv9/PsmxtbS3mJNBP20FV1dLSUkVRrl27Njs729PTc/ToUYQQz/MIIYfDAes7w3QHU1LXdTNHMAwD0QmGYTiO4zhOVdX8/HxQ9zRNw5TwY8sJnI6nIlEURYoinE77gQMOhmGmp6e9Xi9BEBzHAcvvzOxwdHR09F//+ldjY+OJEyc4jotEIhCYQggZhpFIJDJGdxAm5nvDlxAyRRtKRhTFQCDg8/kOHTqEEAJbHh4MBMsyNZ5tQZiVKoBECEmSouuIZVmLxaYoiqYZmm7EYrFAYNHj8QC3AqebpehWUBT18ccff/755+fOncPeyYEDBxBC4XA4kUgQBGG1WjNGd+x2IoSwauU4jqIo8IlUVdV13WKx3Lt3z+PxNDQ0JJNJzAVpRJoyBBL+4zirLKsIkZIkMQxDUQRFEcvLwXA43NTU5HK5EEI2m02WZYgDYz6DR4IQkmVZ1/WhoaFIJFJbWwu/wlY1QqigoAAsukzGgXeAoigkSYI9o6oqWFQ0TZuDCrkGiTb8bWzIqqo6MTFRWloKuhSEJ6xIURQ5jguHwwghu90OTM2y7NjY2J07d9xu99mzZ61Wq2EYLMtiz8aMTNqR2wGvSsMwaJpua2uDKAdeH9ik2YPBbAdN0zZJOUmSpqenu7q63G43mFsQTUQbMrOgoADb6YZhgJ3e2tra0dFBkiSkpWCOYEmbL74X/M5xHKT0QJGCFGJZFgsWsMxyS3e4O2Qr4RtZlqPRKEEQkN6DLzcFZ2iahmdw+/bt+/fvV1VVnTt3zuFwgNmGib5VhGad7qCLQLgjhCYmJgYHBzc5yTknOtpYc2a34/Hjx4qi5OfnR6PRQCCAECIIwmKxxOPxSCSCEFpbWwPKDgwMDA8PHz58+LXXXgMbmmEY0KWapkF8ZtPtsi5n4FFTFMWyrCzLly5dstlsvb29m07LOd1VVaUoiqZpGIkgCGNjYwzDDA4OfvDBB/Pz86+88srbb79ts9nA9dN1vbCwUFXVmzdvzs/Pd3d3d3d3I4REUbTb7SBnYF7YdjAj6/wOohxU6Pz8fCAQKCwshEM4v46JnsNQMIwQM6YkSXNzc263+0c/+pHH41lfXweZgza8QtClw8PDQ0NDhw4dAjs9HA4DlcFLFwQBckxb/cG90KsQ/0IILS4uFhUVHTt2DEa2Vax/pQuePQDFDcOQJAni1YIgNDQ0qKoajUYTiQRN06CfgI1Ylv3444+Xl5cvXLhQX18PdnBBQQHaiGmDshVF0WKxbJUze6FXgeU1TQuHw4IglJWVIYRIkgRD2EzoHJnwTwFPHWj02WefiaLY3t6uKMqTJ094np+amlpbW4PsK0Lo6tWrwWDw4MGDhw8fdjqd5lngRALog2feK+v8DjYsQkgQhLy8vN7eXofDkUO+3gEgEMDP8Pv9paWlLpeLoqhf/vKXJEmOjIwsLCwUFhZGo9Hx8XGfz9fV1QWxF13XVVWFmPYzrfWt2Au6I4QIgrDZbE1NTaDldz++PUMsFsvLywNmX1tbm5ub6+joWF1dFQShqqrq1KlToVAoHo8jhCKRyOjoaHd3d0dHB0JIURRVVUEE7T6+tBf2DM541dTUIFMCbF8BUtihUMhut/M8X1xc3NjYeOfOnb/+9a/f/va3NU07f/786dOnb9++ffv27QsXLrS2tiKEeJ4XBKG4uBghZBjG7pM2WZeneDSBQABiGoIgZPumaQOskZGRkZmZGdCf8/Pzv/3tb0OhUFdX1+jo6J07d9ra2lpbW2Ed22w2ILqiKIlEYvc3yjq/Q2IsFotduXLlxIkTXq/XZrNl+6ZpIJFI2Gw2WIg+ny8YDH7++ed2u/2Pf/yjruuNjY3j4+P9/f0dHR19fX2hUMhqtdrtdqylKIpKaRHvkf2wuLh4//59wzBkWbZarbktyXsmHA4Hz/OxWCwQCNA0/fbbb1dWVq6vr9+4ccNutw8NDX3wwQdHjhzp6+tDCBUVFdntdojASJIkiiIE/nbvf2Sd31mWVRRlaWlJkqSqqiqgeG7txWcCEr8IoQcPHvh8vu9///vFxcXRaPSf//znj3/84xdeeOGHP/xhTU0NZOfhX57nHQ4HhONBae3eSMv6/CH43t/ff+zYsWg0iu3Z7erEU72+YRhQ/YHVBsS7U70+ZMEgv1pYWFhQUGAYhsPhsNvtHo+no6OjpqYGF/8AcHkESZKpWgp74a+ur69zHFdbW3vw4EFkquzJCCADZxiGIAigORiGkSQpjdQVxGeCwWBxcTE4dDdv3gwEAq+++ioElHCuY1NBShrYi/Vus9mOHj0KhhfKdJ27KIoQbCgqKhJFcW1tDaVVWqwoCkEQi4uLg4ODr7/+ejwev3HjxuzsbF1d3enTpzmOkyTJZrNBAczz66e94Hen03n+/Hn4vGmpPj8sFgvP86qqulwui8UCFDcnVXYJWILT09MEQZSVlQ0NDU1OTr7wwgvHjx9HCCUSCVxThRMJz4OsV4MahmEunYSUE9o+9JhG/EBVVaguf/Dgwb///e/y8vLu7u5nRl93vn4oFBoeHh4bG6uurhYEob29HZcrQaoS0qog2VId5CZkXc6Ew+Hr168Hg0FwQyiKymyRzMrKCk3TJEkuLCz85je/effdd999993r16+ncSmHw3H//n2/37+4uHj06NHOzk6LxQLZaqj/Al8EF3Q8D7JO94cPHz548ECSJByogW10mbp+aWkpxGz9fn9tbe2pU6dmZ2f/8pe/pHodURSj0eg//vEPwzDOnDnT3NwMWhQHIIHosFyen+5Zl+/T09O6rldXVwO/sCxLUVQikchg1TXUmrW2th45ciSRSPzkJz+pqKhI4yI3b96MRqNvvvnmkSNH0Aah4SgEv1iW1XWd5/nnH3zG+B3KCnGFHgQreJ5fWVmpra2FEKthGDzPDwwMvPXWWz/96U9nZmbAFIFSvfRKJPHSsdlsdrs9GAx2dHS8/vrrOJMF0DQNaId/hWu+4cPg4OCHH3544cKFF198EU6z2WxQr4EQYhgGjFSSJDPCMRmjO1T2xGIxWJ4wSp7nV1dXGYYBN5rjOLvdXltba7fbFxYW4NlApiZtix4elaIooAB1Xe/t7T127BioQXwOVDAwDCPLMqTfrFYr8IrVar1x48b169d5noe9hjRNS5KU1frkDMt3juPATCRJEiQmdjo0TeN5nuf50tJSr9cbjUaxkQM1ZenZxbhwXtd1n883NDS0uro6OTm5vLwciUQEQcD63DCMcDjMsqzVak0mk5qmuVwuWZZv3rw5Pj5eXl5eU1MD+yDME8kSMibfIZFojjVaLBa3211QUOB0OiF8AaVVONULS1iWZZghmA2p3he2lTocjtnZ2V//+tfvv/9+aWnpyZMnf/e730GORdd1iE9wHAf5T13XFUUBG/z69etTU1NtbW1QUFdWVhaNRmHtkiQJ6afMEOjLyNhF8figxwDMimVZqB6QJAn8DpqmNU1bWVnB0hzL3PT4q7i4WBRFmqbD4XBVVdV3vvOdwsLCnp4e2BaDENJ13el0ws78SCRSUlLC8zxkOS5duvTo0aOvfe1rR44cee+99yoqKkpKSmDZZZXoKIN0x+YKSZIgQCYmJmZmZrxeb0NDA+xQiUajdrudoqiSkhKXy4VTB2ijdDsNp0kQhFgsVlZWBhUs8Xj8008/DQQC77zzjmEYLperqampu7vb6/WyLAtkzcvL0zTtypUrwWDw+PHj7e3tsiwvLS21t7fDRMAEyB7RUQbpjgupgeiSJN26devq1attbW1NTU0XLlxwOp1waHl5GQR9IBCoq6vDXQqAxVLleoiZiKJ469atkZGRWCwGlY6VlZUgW1ZXV99//30oljpx4gTo8KGhoYcPH545c6azsxNKlA4ePNjU1CQIAqzUbNfMZrIfB5AMYiOiKIJz8eKLL3766acrKyuw80GW5f7+/qtXry4uLo6Ojrrd7vr6epD4QPdU7ysIgqZpsAM/Pz8f7qJpmsPhUFWV53lJkh4/fjw5Ofnw4cPZ2dlvfvOb165dC4fDR48eraurQwipqhoIBDRNKygogGWHiZ69fW5fqshFuwiPbBdXEQQBQiKCILhcruXl5cXFxR/84Ae9vb21tbUPHz7s7+93uVwHDx7s6ur6/e9/D1s+SkpKwNoDon9lPgSMVKAF6Oq1tbVPPvlEkqRXX33V4/GYy/B1XQfLFTYw+ny+8fHxd955p7e39+zZsw0NDRDOzcvLGx4ebm5uZlnWbrfjfYeapmVvcyGNswHYjwfSpypqwVaBzQwIobm5OVEU3W43x3Fut7u6ulpRlL///e/d3d3Hjh3D2zywVMEFQ9uZkqIo2mw2WFWwHdDhcDx58uSTTz7Jy8traWlpbm5GGwVymqbZbDYcgocSsJaWlqmpqebm5vb29sbGRuASRVGWl5etVmtFRcWmHXtZjRjSmNC7ZPkdjkKMF5xpgiBqamoOHToE1bAkSZ46dQrIVF9fDzl4+AkoMdiAibZPAZoFriRJ8HTv3LkjSVJrayvejwtanSAISIPE4/F4PF5RUWEYxrVr16LR6EsvvdTe3g5E1zQNopi6rtfV1cEt8I2ySvcvKtCfM98GVhe0xdE0DfaZw7ZVKCF3Op3f/e53rVbrn/70J/wriqI4jrNYLJjxt8vP4cA6QsjlcrEsOzMzMzw8fOzYMSB6NBqFLS94iw9CiKZpiNXcuHFjbGysoaGhp6cHzHPYMUNRFJRsYLsTh6n3mu4QL9RSBMRY0IbEqKioaG1tBYaCb0KhEMuyZ86c8fv909PTcL5ZqhhfbsK1lQ9AY+MYzt/+9jebzQa6ER4hcLEkSclkkqKotbU1WBYfffTRgwcP+vr6enp64BsoSwfqr62tlZWV4TADVg9ZrSR8eo/nT/BTFMXzPNjvEE7CEoznebvdDhPzeDwHDhy4d+9eQ0MDEBRoDSebgypbgRtKIITW19cfPnz4ve99D5gXmXKesIYQQi6Xi+f527dvT05O9vb2trS0oI06ZIqiYDyTk5OGYUAAEvQTXAR4JXu73b5Q/ZskzHZPe7vvwW+C2pjR0VGKojo7O9FGoMZutwNd7HZ7eXl5KBRCGzrcXKKPvrzn2AwgFpAjkUgsLCzIslxZWUlRlCRJsEsNNsTgJBxN07du3fL5fOfPn+/q6sLjBwkDZJ2YmOA4rqmpCQYDwt0cMsoW3dfX17F4MdN9u/tt9z2IGpvNtri4ODAwkJeXB8YMz/OFhYWBQMAwDBD3NE0vLS3NzMxYrVYwUaA5AUx7B6nKsmwikSgrK4tEIsvLy7quLy8vQ4Gu1WqFqjSo+U4kEhRF3bt3b3l5ubOzs62tDW1swsMBOJgIhEshtIunhjdKZA/02NjY+Pj448ePLRaLxWIBlrHb7TvvBt8KVVWdTuf6+jpJkjdu3GhpaVlaWsJmA8hNgiAgIr+2tnbx4kXChK+8PsMwyWQSiv/D4fD8/Lyqqn/+858rKyufeT5kpU+ePNnc3AwCCmeLsKPg9/tFUayrqwOZjoeBw79ZjM/k5+e73W6n0wmZQ+gGBKXcKV2I5/nKyspQKDQ0NKQoisfjcbvdkiRRFIXT2XBZCBIUFBRsojtw+nZyhqIo2DditVqhNtowDFw5vRVer7eqqsrj8WC5j8mKvSFBEKLRaENDQ0ozzQjo1tbWlpYWLPIMw8DsmdKFwK9JJBKaptXV1b311lt5eXmgM3FtHt61hTaUmJnZd7bb4HngnpmQyiBJcjs/CyItWFxgOQa9ccA0CgaDsiw3NzdnNfT4TNBAcYZhwHwEi2I3Lvsm2Gy2aDRKUVR9fX1zczMEWmGeILV1XYednLDqt5Mw293XMAzQwFBSAQTdwd7AbA42MWHqWQE6U1GUycnJiooK6AmS0mSfHzR2pvEEcOeSVGG1WlmWhRwb2siEbOIjzNRbFdfOUh7Oh3N2yRPYTDDHOKEHBU3Tq6urCwsLr732GsqmHN8ONOzbRBtbe4Hf03DVcAYHXFZFUSDnCTyOee2ZUSDDtGd3B/uVIAjMvFgk7hxX2HQUHAWoo/L7/ZqmHT58OCf7T2hzE43nvBBCaGhoqLGxMS8vD6wjhJC5PnRnPt2N6QZKIqWfYGCPCdbB9PR0RUVFfn7+7q+QQTytyMFWIzARjDIlIIT8fv/FixenpqbgCsZGhTQ4pbgRDex+2zQOUACg0re7Pm6KBWOGWM0O52+e6oZWANcpEAiADQrtNrJA251Aoy+zJPbZvlKGAteYdWM0GtU0raSkBGtOHFk1M+kzgwG7seLNF9mqlnYPhmGWlpZGRkb6+vrgOriCc8+Q8qDNgQTQBJi/hoeHKysri4uL9Y0uY9sZeTkE8Mrc3Fx5eTkYXSgX3RGeN/iAdZ2maWNjYx6PB5dT5bbf73YAcTc6OtrY2AhlHSj72dStSLNvv5nrceek0tJSj8eDNjpw7bOOSk9BUZQoilNTUw0NDU6nEyay9/ut0rwf8PgXVyFJiqLeeOON2tpaSIFCBDwzY8woCIJYWVmRJKm6upphGEVR9l6porTrCYxnNRjwer1oo8xzH0p2jKmpqdLSUiio0r/ccnHPkA6/w1jNUVOe5xcXF+FPMGbAkkmjvjfbkCRpfHy8oaEBYqW5WpQp013/ct8YwzBEUUwkEvPz8z6fDwJM+7DtA0YymXz06FFlZSWM8D+G7iDKYZ8ytLt2Op1Xrlz58MMPi4uLwX3HzcZz/ooaXdfxGKAGeHFxsaSkpKSkxHzU3HR0b5Ay3bF1yHEcxPx4ng+FQuXl5Wa/BpRVDlUrNlSw2oStJiMjIxzHlZWVmcPIe+w0ofT8JqyL4N/Hjx+vrKw0NTWZG6PjcHmmB7xbmL0H3F8WITQ9PV1SUoLDMkDxvTdp0nGy0YbBq+s6CHeXy+X1enGH5S+uvg/6EGx61YthGNAGB7a6bXrL154hHbrgFASI8pKSkrNnz8IeeGyT7ZAJ2huYKwOAqXVdHx8fJwiiqqoKlD8W/XtvBaRjv+MyB5hbRUUFEB2Z1oE5pZcTYHGH+V0QhPHxcYQQCBlz7v4/Iz5jloaGYeCG0ObdckD3HLI83No8VEmSAoHAwYMHzf3uzKUre4l06I5ZKZlMhkKh+fl56NuK6Y5nkpMpAcwum6qq0Io7kUh4vV54SyZCiNx4cdve+3dp6j1Ij1AUdffu3Y8++ggCqjgri8VlDu0ZlmVh6xokGimKgiq2kydP6roOTTU3vUNzL5Ey3aGWCtdEwBvJ9oPdshV4RwNsKltZWYGWofsB6cQJYD7QSHRsbAzqPfchwKYCXo7H448ePWpsbIRDm6LZORhbqj+AflAIIUVRgsEgTdP7h4nMwHoVSLy6uhoKhXD9KT4tV6RPRz5A73mn00nTdF9f3z5swolBbLTPCAQCDMNUV1dvTeTmxKR5rnodt9vd2NiY2/fVbgdc4WQYRiKRePToUVVVFW4GRHz57b9oz034dOS70+kEUVNUVARbobMwsOcFtg41TYvH40tLS5CDNJ+A/oPkDMhNnuej0ShUEuCSm/0GcxlPNBpNoylN9pAmq7pcrj/84Q/37t2DP/ch3XVdZ1lWFEWGYQKBAEmSbW1tm+LsxMbOnr1fsinLd+jNEolE1tfXY7EYlF/vffz6KwGktFgssVhsYGCgqakJ3I5cj+sp0nnO0IfA6/XW19fvzybLAMiwB4PB4eFhcDJyaLBvQjr2DGw+P3nyJA5Dbn0vVM6BPSZN02pqatxuN/5mPyD9/pG4L+wzazr2CRRFiUQifr8ftpbtH+ZIme6Q5zPvX9n7ov3dAOIZgiDAuxl1XTe/hjHnSCcuZn5U+FVomRxUJgBeKOSy0UbIN9eD+gIp0x32oEKoALqpoX3wtrGtgLZJwBawTXlfmQD/DyNEHw2G4+44AAAAAElFTkSuQmCC"
|
<image>如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3的度数为()
Choices:
(A) 78°
(B) 132°
(C) 118°
(D) 112°
|
112°
| 69,869 | null |
112°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAABqCAYAAACmsVN3AAAgfklEQVR4nO19f3BT17Xud0wSGzeDoPmBMpNGOIAtQxPLybwgA0U27Q0yBJCbvBHJvICYYguGTjB5SeOkN07T3hc1ZJANkxcDfS+CSYvpndY2uVgmkwyyM7fYbtPIQ1+QjI2A9IdMZyLnvbbIneDzvT/kc3yOJNuyLBnZ8M1oLB+ds/c++3xn7bXWXnttgSRxCyAJQRCmXM7AwAD8fj+8Xi/+9Kc/4cqVK1i+fDkA4MiRIygoKEBxcTHa29uxadMmAEBJSQlycnIAAHq9HlqtdsrtyGTcdqMbMF2YiFTJEK69vR0ejwfnzp3DH//4R/z+97/H1772NRQUFGDNmjUIhUL45JNPZNINDAygsbERn376KXp6emTS2Ww2LF26FHPmzEFPTw8AoKysDAUFBTCbzSgqKsKCBQsmf9MZCuFmkHSpkmISyTo6OtDR0YHVq1dj7dq1uP322/Hhhx+io6MDL7/8MubPn4+XXnoJfr8fFRUV8Pl8ACLElrpb+f2+++6D1+uFVqtFRUUFNm/eDI1Gg6qqKuTn5+Ozzz5Dbm4uCgsLUVlZCYvFIkvG6bz/lIG3MC5OnTpFu93O+fPnc/ny5TSbzWxvb2d1dTWdTidJMhgMUqvVkiRPnDhBq9UqH1+4cKFclrK7x/qu1+vp8/kYDoeZnZ0tH3/qqadot9tptVqZnZ3NjRs3srm5ecL2i6KY3I2nETc96ZQPRfoeDAbpdDqp1+v59a9/nVu3bmUoFKLX66XBYCBJut1ums1m+VqNRhNzDjkx0ZSEVRItuhydTsdAIMBwOEyNRsNjx47RYrHwzjvv5KZNm+h2uyd1rzcSWTdSymYClMPO5cuXsX37duj1enz44Ydobm7Gz3/+c/z1r3/FggULYDAYMDAwgIGBAZSVlaGzsxNDQ0MAgMLCQvT29kKv18vDKQBotVoMDAzIQ2k0BgYGZMPB7/ejsLAQAODz+VBQUAAAuHTpEgAgLy8PXV1dMBgM2Lp1K5qbm2EymaDT6XDw4EHce++9OHLkSNx6mEFD7E1POgDo6enBk08+iRUrVsBkMsHv9+P8+fNYtGgRysrK0NPTg8HBQQCA2WzG6dOnkZOTA4PBgK6uLgBAUVERvF4vcnJykJeXJxNPo9Hgyy+/jPvASeLLL7+ERqMBAHR1dWHFihUAgHPnzsFgMAAAOjo6UFZWBpLweDwwmUxyu//85z/j4MGDcLlcuO2223Dq1Ck88sgjeO6551R1Kesf6wWYLsx60o3XwT6fD9/5znewfft2bNq0Cbm5uTCbzbJC39DQgJycHJjNZpw8eRIAYDKZ0NHRASBCwA8++AAAsGjRInz++ecAIm4Pv98PYFTSRUMQBAiCgMuXLyMvLw8A0NvbK0s3v98vf+/o6IDJZIIgCOjo6MDatWsBAIcOHYLdbgcANDQ0oLKyEu+//z6effZZ/OpXv0JxcTFaWlpi+uOGS7wbOLRPG6J1mXA4zNraWhoMBppMJlkfcjqdrK6uJqnWqZqamlhRUUGSDAQC1Ol0cc+xWCwkyZqaGjocDpKk1WplY2MjScrXiaLIRYsWkSQdDgdfeuklkqTZbJbbotVqOTAwIF+n1OeuXbvGYDBInU7HcDjMcDhMnU7HYDBIkrRYLGxqaqLX6+Xjjz/OpUuXsrOzM1XdOWXMekkHqIeW9vZ26PV69Pf3o7OzE/X19XjllVcAALt27YLL5cLQ0BAMBgPy8vLQ3NyM8vJynDlzBkNDQ8jLy8PcuXPh9/tVOl5hYaEs3R577DFcvXoVQMQdkp2dDSCiM0rtkfS0cDgs63EDAwMwGo0YHBxEOBzGwoUL4+pzc+fORUNDA7Zt24acnBy0tbXBYDBAq9Wip6cHV65cQUVFBQwGA3Jzc7Fr1y48//zzePHFF2UdNBEwXcPwjWZ9uiFJuXA4TJvNRpPJxI8//ph6vZ6Dg4MkRyUDSZUrRCnJlBJLeY7T6WQgEJCPpwKhUIivvfYaSdLlctFms5Eka2trWVtbK0s2SRKaTCa2t7eTJO12OxsaGkjGWthFRUVcsmTJhFIv3VburCcdSfp8Pi5fvpxlZWUkI5061lCqHLZI0mg0squri42NjbL/LRAIyERLN5R12Ww2er1eNjQ00G63j9v2cDhMg8FAn89HURRlAvp8PhqNRr7wwgvyPU43Zj3pXnrpJbnzlVKAJA0GA71eL0m1PiVJNVEUZV0tHA6zpqZm0lIgHVLD6XTy0qVLJNVSV5KEJFlXV8c9e/aQpIqAZITIDzzwgOr+pxOzlnTScJqfn8+DBw/Kx5SdP5YhEO2Y9Xg8k65/Ohyx0v0ojYmBgYEYae1wOFhTU6O6xufz0efz8dFHH+Xu3bvT3lYlZiXpuru7uWbNGrpcrhiinT17lkajUT5XKf2KiorkN7+2tpahUCjlbUuWjBNdFwgEZIlntVp5/PhxkuTAwICKgErdNBQK8aGHHqLJZJKPTcfLMitIp+yoQCDA/Px8rlmzRj7W2dmpIppyGAoGgzQYDAwGg/R6vdOmq00WiZBBFEX6fD6V8aA0kpR6LDmqUoTDYa5fv16W9OnGrCCdhBMnTnD16tX0+XwqXxmpJlo4HKbJZJKtuMbGxozyY6UKSuvV4/HQbDbLEi/6xTMajXzmmWfkYVjCxGQfJsWRv9EY49JZQzqPx8NHH32UxcXFcscq3/Joop0/f55FRUU3zIKbDni9XoZCIZU0J0f1V1EUee3aNRqNRlmtcDgcsosmcQyPSbCY8zhLSOf1emkymRgKhVRvdygUotFolPU5n89Hg8HAa9eukYxIuESiM2YS4kkmp9MpkyoQCNBgMMj6qtJqJyMv54oVK1RDdDJ63njXzHjSXbx4kXl5efzoo4/kY0rdJbqTGxoaYoaQmwXRRlW0CykUCtFsNrOxsVEefqdmWEQkW3QZM5J00k2EQiEaDAZ2d3fTZDKpfE7V1dXcv38/yYhus27dOvm3RKzSTIk9SyWUkl1yo0j3eenSJZpMJtk9FA6H+eCDDyb1gk7UdzOSdGSkU/Lz83ns2DGSESJJxJNuWjl0OJ1OWXG+2dHU1KTS23w+n+qllSTesWPHaDabVX7KVLyMM5J0oijSYrHQ5XKpokSUxCNH9RNlZ85GCTZZSHPO5Kg7SXIVBQIBlcQbGBjgXXfdJb/c4yFRt86MJJ1y7jEUCtFisagcnkriBQKBhGcUbjZCejwe2QAjIxKvtLRU7rsvvviCFouFBw8eVOnFE6G1CgSiPkIlWynOTNL5fD5qtVrV1E04HKbVapU98tHEu5kR70VS6sRDQ0MkYyWe1IdtbW0kI3pxWVnZGM7zWB9d34GVREk9+0iK7GPdKhArnezjDBteldaX0+mk0WiUfU9kxHiQrNZQKMQzZ87cqKbOKJw5c4alpaWyJJMsfuVL63K5qNFo+Prrr49blkhymBdYtwrc0TZMiZCtVTOUdE899RTffvtt+f/Ozk4aDAbV8Ol0OpNwbt6cUEo8yUkuBTsoJZ7NZqPNZuPly5ep1+tVLzoZxy/cV8cSVLJt5AfRvYMAWOX+iuQMIp3b7eZDDz1EvV4vzzKQkSmc0tJS1ZRXU1NTWibrZyOUw2+0jud2u1lYWEiXyyWf84tf/IJ6vX6M0iKSTSKZ/KlqVZ01I0inHFaDwSAtFgvLy8tV+kVNTY0c93YLaiRqIIVCIYZCIV67do01NTU0m80qqdbU1ES9Xs+1a9fyxIkTY5bTWgUa6y+QJId5ilUAUTlKvBlBug0bNvCZZ55RHXO73dTr9XQ4HDLR3G43L168eCOaOGsgzdMqRw5piLVYLHHncpUY5ilWCSWs65NmI67zQn0JgYj1Sg5nPukCgQAffPBBPv744zEWaTgc5ssvv0yDwSBP5N9sbo/JING+UY4gUvyhcogNh8NctWqVKu0FGdHtRPcOCiURg0FCxIUikW4GSDplpIjH46HBYKDValV1jBTKdAuTw0QkrKmpUQVMkOSrr77K7OxsPvzww1Sv6xrmMP2sWyUNrRFJd8oe0euk4ZbMcNJ1d3czNzeX7777rkpXa2xspF6vZ3V19S2DIYVQkrC6ulo1xB4/fpwajYb33HMPW1sj+pmSdMPRxoMw+l2yWiVkNOksFgsPHz5Mm81GnU5Hh8MhkywcDtPpdFKn08268KRMQnd3N3U6HefOnSs73yVMtIJ1LEmasaTr7u7msmXL5P+DwSBramqo0+lYXV2t8iPFU2hvYep4/vnneccdd3Dr1q1xvQJjkW7GRpls2LCBd999N202m0p/C4VCsoSz2+1yZ8RL+XULEUy2P6QpMavVOu4LnRDp4nzNCNJFd4q0hC4UCtHlcnHRokW0WCwx01qNjY0xb+AtwsVHIv0SDAZps9loNBoT8gaodLoRSo2eH2fNhHRdAu2ddlit1hi/XFNTE00mE41GoxxRcgupQTgcpsPhoF6vV7lGJkKiWUlmROSwTqfjqlWrWFxcHEOwrq4uWq1WmkymG9O4WYbm5mbq9XrW1NRM2hMw2VQ4EvkyhnRSg5RrVL1eL61WK3U6HY8ePXpriiuFkBYzWSyWpNf6jk069dAaPUBPiXTp0J82btzIoqIilb4WCARkt4nT6Zyx5Eu0t9KplYZCIVZXV8dE5ySDZJN+TSk/XaozOg4NDeGTTz7Biy++iJaWFuTl5WH79u24cuUKXC4Xurq68Pnnn8Pj8aS03vRClL8JY6Z7Gz2HBISoY6lCXV0diouL8cADD8Dr9aK0tDTldSSEKVE9xVAmsSEpW68mk4k6nY41NTUZm/ZhIiS1djRFdUvBEamewUmWPhlFuqeeemrMDEKBQIAOh0OODJ6prhE51Efx+Z77uvx7Ku8qEAjQbDbLeenISL+lqu9SRrob6d3Py8vjo48+SgA0mUysqamh2+2W386ZSDRlmy/Ur6IA0N42eiwS8DgaChR9TTIIhUKsqamhXq9P6xRhykjncDio0Whos9nY2Ngop2BIN0KhEDUajfy/x+Ohw+Gg2WymRqOhwWBgTU3NjDUiIjFlRh7oUxNKWk8QHV2bLBoaGmLiDNOFlA6voVCIR48epdVqpUajodVqpcvlSmtEx5tvvkmdTkeXyxVXb5PSnio7csZIvr46rgRob43vpW+tipBuKncjhX1VVVVN22iVcp1OmSC6sbGRNpuNGo2GZrOZDQ0NKb+x3bt38+mnn5ZdIzqdjjabbUwSziQoV0LJECN9PEz3SDj3qaTKDgaDsrN8MksuU7JSf0qkG6d+Meq72+2m3W6nVqulwWCg0+lUBfkli+jsQYFAQM4sLpHw7NmzU65nuiGRShnEqHSejq6UipWCYxFDFEV5LwydTjfueoV0YsqSTlqVnQWBgmxZRRRckfF56fV6WV1dTb1eL0+lJLPAWRRFajQa/vrXvx5zCJc275hxGBlaI6QaWTcw8pOsz8WRgtIZ8dDY2EidTien979RSImk66srUXWAekGFGtFv4fnz5+lwOGgwGOSYt4k83sp1l3PmzKHJZKJGo6FGo6HJZKLdbqfD4aDH45mxMXMiW2Mk3TAjLhLJuKjrG6YoXh+rCBmJhhxNF6Ys6dTx7ZEj4gUnS7CC+/snZ85LSZdNJhO1Wi1tNptqrWo0orOZh0IhejweOZec5D6ZqYiMIkaVWyRyLMpVEnWdcitQu92uCjnKBEyRdMMjq7KjOqG1KqazJotgMEiXy0WLxcLs7Gw5u7dyGFVuDELOIKt0EohJKlPVyvFizsiIEffTn/6Uer1elbwwU5As6eTt1NlWiax/W4a+3+zFEgDor8eqpXsh1vWjs3pxSnbPGxoaQktLC1paWnD69GmUlZVh3bp16Ovrw9tvvw1BEGA0GuXzjUYjsrOzIQgCSktLY+YKU9Gm6YCqnYQ0uQoAEAlkCbHnNTc345VXXoHFYsEPfvADLFiwILas8eqZBii3hJ/UdRRJCIDbLmBD1P60Ve5hHC4fiQkgQETdVFQHThYS+d577z1otVrs2rUL999/v7zpbldXF8LhMIDIhmw2my35ymYERPj9F7Bz504sWLAATqdT3pYTyLyXLHnSkRTRip3Cv2FZ329QvWQ08IQkIAhT4VVCqKiowNy5c/HVV1+hu7sbd911FzZt2oSnn34aer0+zbWnH4m8m4ODg/jxj3+M06dPo6Hhf6K0dO3k65khkg7kiK9opZPnhof5j5FPqiDpMoJCnxEEgQC4oq6XJPnII49Qr9eztLSUWq1WPi83N5fZ2dlcvHgxP/zww5S1KVFMl24pLTSKXuKX6UCyhsQwL7B+NfjYgYjVKhMuwf6OPJjxSDoccQ2sjE01IE0LRTuGJXg8HjY2NvL73/8+V6xYQa1WS7vdPq4lnCimg1AT1ZGukKPpQtKki6zEziKQRWO9XyXlJvNYRMYLmxmmKF5g/cpRj/uF+rpIGlC3U7aKlTlu45Y9Um4wGGRDQwMtFosqKGGmOI2bmppYXV3Nnp4eWiwWVcgROUrSmWK9J0266AMS6cSR78rhNvp/5TG5o0T18b8Nn2KlsIOtjMwzVpY4+YeocjQaTWyOWoDIySFycvitf/mXmDb++YsvePjYMTkowWKx8NDRowyFQjFtTjcSIUlTUxPvvPNOCoLAO+64IyXS+kYjZaT7e5Ski35o0YSb6Lvo3hEhj0Sk3W3q+q5fjyvpxirv79evx5wXDofZ2NzM/7ZjB+fdey9NJhMPHD7Mz0bShsUj3ni5eJPFeNc//fTTsi47b968KdWTKUiWdOOskRAjAfsKXBNF5GZlxRy7JsbG83Pk2raW/4X/8mYPSEJ078BjBQ+Olo+IBbRgwQIMDg6O2RJlnfGss5ycHGyxWHD48GH836tX8aMf/Qjnzp3D+rVrUVxcjP3798Pv96uuiVfOVC2/6OtJoqurC8XFxcjJycGyZcswd+5cvPHGGxOWxWSswpmCaBbGkwpjDVVxJQhHpeV18T9YCSP39Uay9ohuJ9+8oM7g84/hYZXFKn2EuXPl78o1rpOVvF6vl//9hz+cclDCZCGFHBmNRn766adJlZHpul0c+iR2XeTPiA4kkv8Y/irmpPFJF/ubrBeOuGL+cP0r1W+ie4dsWPxjeFi1JXh0GeN9T/Q86bvP51MFJdjtdra3t8fc71SgDDma7ZkIkiXdyLgV+XONInKzbouRhrlZWXGH1shx5bArysf/PtyPt976OVBUgG/OGS1z7gd2ZH33dpjXEdeGI9fNmzcPX375Ja6JIoaGhtDe3o7ffvwxPujowE/eegsH9+3D0NCQqi3SR2qTNMQrh/ro73q9HjU1NfB6vThz5gwMBgNee+01zJ8/H9u3b0dzc7NcTzI4ceKE7Mz2+/3YsmWL6nfO5iFzEpDnXidCPNLJiJoiY1slsta/C9WaT6X3urIVPLJe/u2xxx7D7373OwBAdna2av61pKQEGo0G1dXVyMnJmcy9JYzBwUGcPHkSJ0+exJkzZ1BeXg6z2YzNmzfLc57joaenB7t27YJOp0N9fb08jTfbMaUZiYmQbreDFCGcCYgOz7dYLHznnXfixq8Fg0FWVVWpch6Ph0zX0SaLBOkTg3ElnXJ4GlPKJQvFhGRbWxsOHjyItrY2+ef29nZcvnwZly5dQkdHB0pKSuBwOFLbhgTQ3NyMDz74ACdPnoROp4PVakV5eTlaWlpw7Ngx7NmzBzt37pz2dmUCpjThn9KWJBF5cvXqVeh0OhiNRly+fBlXrlzBmjVrsHjxYnzjG99AWVkZ9Hr9lIYtTjAZPtHvQCTq5Y033sDp06cxb9487NixA1u2bEFRURGA1KfZyHQkS7pYqyFJyFwTEEU8EZKhEnPuCObNm4fc3Fzs3LkTK1asUIXzABFCXL16FUNDQ0nrdRMRYqLf/X4/Xn/9deTk5KC3txf//Oc/0djYiO3bt2NwcBAVFRXYvHkzTCbTTUe+ySIlkm6KYXUAgC1btsBisaC0tBR+vx9dXV24fPky/H4/uru7MX/+fLz77rsoLy+P1DlNYTzKkCOn0wmz2RxT76VLl9DS0oKTJ0+it7cXmzdvxrp161BRUZH29t1IpNWQGBfiuP+OQL0KKp5CvXv3bgKgVquV10QcOnSIHo+H4XD4hijhiYQcxUtde+jQITkoQQrPjxeUMNMNi2TpkzEJdKTN0MbCpUuXpi2ixOPxxIQcjTVXO9F+qtL6j+zsbHk37kxYyZUKzHjSDQ4OqnKZSIutt23bplrxn2zcWaKr2CwWC00mU0oWkEfX39TURJvNJktzp9M5o7MXJEu61FuvU4BOp8MjjzwCr9cLACgrK4PJZILJZIprXKRKpxscHMS+ffvQ0tKCN954Q6WLTaWe8a5tb2/HyZMn0dzcjPnz52Pz5s1yeH4q7y2dyByXySSh7OAnn3wSWVlZ2LdvXwzJ2tvb5Qycr7/+esrqP3ToEA4cOIBt27alddZjPPT09KC5uRm//OUvIQgCzGYztm3bBoPBkHAZN4KoN86QSCGUSa49Hg9ra2tpMpnkSJPa2tqUDUdSXXa7nX/5y18mfX2qNkuJvlbaKt5gMHDhwoXcuXOnHMqfaYZHsvTJKNKFw2Hm5uaqSKYM7gyHw9y/f/+UEjQrQ44yabU8Gd8SbmhokHP02Ww2Hj9+fNpyBk6EWUE6kty6datq9z1ydF8wrVab9CKWcDjMV199dcohR+NJm4kk0VQklZR/WRme73K5+MUXX6S8rkQxa0inHGJ9Pp9s7Sl3QJwsjh8/Pm6Wo6kQaTyk68EPDQ3JlnA6cwZOhFlDOpKySyHetkE+n492u12VhX0sSBt0JJLlKNP0pWiM175kcwZO9Z5nDelEUeR3v/tdbt++XT4WDofpcrloNBrlZDLjST0py1G8DToynVxTRU9Pj5wzsKCgYNzw/KmoA6Iozh7SkaOpwwKBgLzHq81mUyn+wWAwRnopN1Z755135OPJEi3TCTpR+/x+f0x4/lhGWDL3OqtIR5L3338/77nnHjocDhW5AoEA7XY7dTqdvK03GRlipAzs0VIw08kzHQgEAmxoaJBTd9hsNjY3N8c9N9H+mnWka2pqUiVKVG5O984778gGQWtra8wGHbcwPhLJGajEmNuizzbSkaTFYpEdxAaDgcePH5d/++1vf8v77ruP8+bNS3iDjuiQ+In+T/RYMuds27YtLfVEHxNFcdxywuGwbGxJrpiGhgZVksqx6pmVpHvmmWc4b968GAfxt7/9bd5+++2srq6e1NAZ3UkT/Z/osWTOSUUZ8Y4pFXx5f1VA1U/jldvU1ES73R7JqrVihRyUkGjfJIKMJh0ZkXZS3o+f/OQnvOOOO7hy5cqkfHbxHka83yd7LJNIl8q6Ozs7uWfPHup0OgJgbW0tfT7fmP2XKKaVdInKpEgGqAg5ej71smCpngsXLuTdd9/Njz76KOrsxFeq3QySLp1119bWUq/X84EHHuDevXsTIl3MMxczSNLFDpPD8t8777wzkmoCowkV5Y8QJ9vTrU/KPzH9DnDOnDmRZxfvxXfbVc/I3iaOZHb4amqbDE8aVP6jTroTm2Q2a+T0LPy/v/0NJCGSEEURjLwskY84emz0t2FQpPq8W58pfWL6ncT169cBiBCQJVOR7EX9agHCehGtFOVntLElC1nrz6Nw6W2YXtIpc2QzKsOREMVJxekTRYlJcWSCMFoI0xBaRka3MLPqmI72xWKEQgIgCn048C099tKJPh7BesWTKz90CpXCMuQv4TSTjqN/YwIO2yqRZXePfzkJcaSQVnsJ6vvjbDkuAEDWmERVPpjJPiQ5bcYkr5Mkw0TnKOtIBom2L5H2jHftWLh4YBv2/qYEdcf2RLaFUCEfhXVPRogYOxinD9fFXjrro31qw3J2Jzkn8ch+WsBoLmQJbrtCr1io3nMrVcj0GYxMbJ9y31p182KfzbSSTtrXVIW+OhpX1qk3ZFOeD7tqbzJRFHmhvoRV7mEO8xQrp7ijzy2kBtI28erdHhnXZTFNw6sI0b0DG44AxsIC1S+t+/bi4X99LkYci2hFCytRhcM42aYYEoV+tJ7/r3jBLCALG3DY/U3sfev0NNzDSP1p1JtSUXY62xe/vmGQRFZ/H/5PvBOE6PNTpNNJ451UaAz6D+Jb7z+EulXAwwV58kUiWvH+/67E5vI4qVjbWiBUHMIL9SU40jJKqqz+Vpxf/gSWjhgNwtLlMB5pgTvGDAGiLeRUIJ2LX1JR9vQvzpkDQRAgLlmKbwLoPt8fcw5JtB2oR/9I+1JAOhECFJZm1E2L6EP9W8TRQxuiWhsh1hFjIfJVr0OEKP0XlmNzObH0CStKjvwP2WjoPfUZlq1fLJchLtkA66qfocWtIJjMv+m1k25mZGEDDrl3gEfWo+RAn3xcRB8OfCsLLfmjo1kKnsr4RbTZtwIv7sFi9MJ3tgSFS0d/67/w2UjDlO6SLIjowykUoBxzIC5eD+vqs/hl60WIvIg23zI8sSQrxr/yh74AgBFJm/lLRmclhPKfgX11mLM3H4IgQBAEzBG2AUcje8xxxGpOqyhgWyU2/qwbe5fOwW1ZG3FkDHUjC2qeZPW3Qlj6OAQAWViK517Zga5/P4WLF/8D55c/gSVEfGLFc8XcQloRo04teQ7/qXLMnx3Zb06UiZhS0lH5t78eK1sssid7uPV7AL6J/CWjpFiSvzxuOX1uH7h09KZYvhlVZ5/Htm2+yNAazSsKeDg/zvFbSDvUL7k6LZyajllxvk0RJEf1ur56rNwKvHd4VI/rv/AZhBKl/iaC5RZUnv13nFI4eUX0ofUzPTYunRMpSxCQhSewuQroFPSRoVW+QRFkL853fk9ljNwIv/zNDen5KehEQFA+CGmmiEytc3iYftavlozZyC7ZstNwZOI3egvxtkqwsnVkTyz3jlHH7yon+5U+ngt13FHfy2hno+jeEev74+T2NbuFqWGivo5OEZe+XCZj6V2qU0QIFw6gpMCHV9mA9Zgz+hsnzs0hog8HSp6F8F4X9ixWZHfnMARhzrjX3kIakMAzBzIggQ4IoK0SwhvL0Pefe+PM2Y2eJmCUjCL6cHB1Pnw/VOy+fQszAjf+aQkA1v8MPCrgWXtr3FOIEf1AYZ2etufjs3+NItwtZW5G4P8DEoPzm9A2kU4AAAAASUVORK5CYII="
|
<image>如图,量角器的直径与直角三角板ABC的斜边重合,其中量角器0刻度线的端点N与点A重合,射线CP绕点C,从CA处出发,沿顺时针方向以每秒2°的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是()
Choices:
(A) 35°
(B) 70°
(C) 100°
(D) 140°
|
140°
| 69,870 | null |
140°
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAACDCAYAAABP2n9yAAAK/klEQVR4nO2dP2wTWR7HvzlgsURjnXSnScUUcFirlXCBxMgUMRW+O0VxwV2ca5w0TlLFKVabnK4IFaAtsKvQIJMCGdDdOtJp43Sh2YQGGSR0ibAlu0s6pxujBf2uSOwdOzPj+fPe/InfR7IWz2R+762+8/vN87zvvBkjIoJgZPid3x0QeIsQfMQQgo8YLgSvolhssOuJwBMcCt5A8c5f8JptXwQe4EjwRjGL/C7w3Z+use6PgDP2BW8U8SP+hUKCQ28E3LEpeBXzWeD7JeB/uwl8e51PpwT8sCV4dX4T6V+WcK3xCR/xHURFDx9jVu+0NYp3cD2/q9mSQ6n1T9wFcPXqVT69EzDHWoY3ivgRGyCik89WDkh8i/pPP+HGjRvodDqcuylgxXDBG0XcyQLfL/1WvxufPgIA/rG4iM+fP+P+/fvcOihgDA0BAAEJKtSJiOpUSOB0GwjIEQBKp9O0srIyLJQgAFi+hhsxNjaGZDIJSZIwNTWFTCbD4jwUcILJvfRWq4W1tTUUi0W8f/+eRUgBJ5gInslkUKlUUC6Xsbi4iKOjIxZhBTxwe00AQLVajeLxOBER7e3tUTKZJFVV3YYWcIBJhsfjcXQ6HRwcHEBRFMzPz2Nubo5FaAFjmM2HZ7NZbGxsADgp8ZIkoVAosAovYIXbEtEN0Ww2SZblvn2pVIqq1arbJgQMYZbhsixDlmW8efOmt61cLuPBgwc4ODhg1YzAJUwtTtPT03j16lXvezQaRblcxszMDI6Pj1k2JXCK2xKhDXF4eEiyLJ8Zoe/s7FAymXTblIABTDNckiTEYrG+sg4AyWQSU1NTWF5eZtmcwAHMXava0bqWfD6PTqeDp0+fsm5SYAe3JWIwhKqqFI1GdW+8qKpKqVSKdnZ23DYrcAjzDI9EIkin03j58qXuvlKphNXVVbRaLdZNCyzA5UGEwdG6FkmSsL6+jpmZGWGc8AEugieTSRwcHBhOosTjcfzwww+YmZnh0bzABC6CRyIRpFIpbG5uGv5NOp3G7du3sbq6yqMLAgO4PVtmNFrXsrKygoODA9MTQ8AYt6M+sxCyLFOz2TQ9XlVVUhSFarWa264ILMD16dFsNovnz5+b/k0kEhHGCS9xe8aYhdjf36dYLGYpjjBOeAPXDI/FYohEIpZ8boqiIJvNYnFxkWeXRh7uCwKY/SYfZHZ2FtFoVBgneOK2RAwLcXh4SJIk2YopjBP84J7hRjNoZgjjBD88WePFym9yLdFoFKVSCXNzc8I4wRq3JcJKiHa7TZIk2R6BV6tVSqVSTrsm0MGTDI9Go1AUBdvb27aOS6VSuHfvnjBOMMSzZbvsjNa1COMEY9yWCKshVFUlSZKo3W7bbkNVVUomk7S3t2f7WEE/nmW4lRk0s2PL5TKWl5eFccItbs8YOyHculdrtRopiiJuv7qAyfPhdkKMj4+jVqtBkiRH7W1ubmJjYwOVSsXR8aOO52utZjIZXb+bVdLpNG7evIm1tTV2nRohPBfc6Whdy9raGj58+CCME05we01wEiIWi9H+/r6rdoVxwhm+LJ89PT3tqqwDwjjhGLdnjJMQeo8WO0UYJ+zhS4bLsgxJkvD27VvXsRRFwfT0tLj9ahHf3ojAYvDWZWFhAZFIRBgnrOC2RDgN4cQYMQxhnBiObxkuSRLi8bjtGTQzyuWyeG5tCL6+5IZlWQfEihNW8PzWqpZOp4Px8XEcHh4iEom46UYf29vbKBaLqFarzGKeF3zNcDczaGYI44Qxvr+3jHVZ75LP53F8fDz0yZeRw+2oz20IN8YIK7GFcaIf3zPcbMUIFrGFcaIf3wUH+JV1QKw4MUggBE8mk2i1WtyyUKw48RuBEBxwb4wYRjqdRiwWw6NHj7i1EQrcDgIYhCAi6ltznSfpdJoqlQr3doJKYDJcu+Y6T8rlMh4/fjyyr+oIjOCA/WfQnNAduY/sc2vadP/1S6f3sQoYlXQitsaIYezs7FAqlRo540Rfhl+8cLnvv16jt+Y6L0Z1wd9AlXSA72/yQUbSODGY8tpyPlji9Ur+N5cv6F4CzC4PZvu0a64b/Z3Zdu3+wf8fI5LJ5Mgs+Gsq+LDvv37p9K7hg9vNjjGLT3TiXNmq/tfW8UYnp1EbWtrtNsXj8aFryp0HbJX0L18/n7m+f3P5Ar58/cyy6CCbzeLFixe971bGFHrjD6tjkZEyTgyeAUYlWG+fNsPNYtjNcFVV6Q9//L3uCNpqbLM2jRiFFSd6Ge42S1lmeSQSweTkZO9WK+sKYsQoGCf6SrpeyQZOSqPevosXLvdK+mAp/fL1c+9jdZ9W2L/dz+Df/3ll+fjusdoYRv82I5/P4+joiOt9fV+xWgqMyqKNELZQVZVkWabDw0Mu8Ye1fV6NE5YGbUaZzxNefjerbZ9b44TZ2WDlVuuQEK7Y29sjRVG4xR/GeVxxwjTDL1643Pv4gaIoODo68i3L4vE4lpaWztWbkgN3a3UQK2uu8ySTyUCW5fNjnHBbIhiEMMXOmus8OS/GicBnuJ0113lyXhb8DbzggLczaEZEIhFUKpXw3351WyIYhBgKj0eLnRJ240QoMtzJmuu8CLtxIhSCA9743awSauOE2xLBIIQlnK65zouwvik5NBnudM11XoT19mtoBAeCMVrXEkrjhNsSwSCEZXg+WuyGMBknQpXhfs6gmZFKpTAxMRGKNyWHSnAgWKN1LSsrK2i1WsE3TrgtEQxC2EaSJF+MEcMIg3EidBkO8H+02ClhWPA3lIIHbbSuJegrToRScEVRcHx8HNiZK0VRMD8/H0jjRCgFB9isuc6TwBon3A4CGIRwxLBHi7dyIGDwk6BC3cNOUvCME6EVnIhIURTTEfFWDoREgeoG372g3W6ToiiuX/nBitCWdGDY4K2BTx+BxN//imunW/6czgG7r/Fzw6seBvD2q9szhkEIx5gaI+oFSgyU8HohQUCOtrzpXh9BMU6EWnAi40Xx64VEf/neyhEASnh9Edewvr5OCwsLvrVPdA4EL5VKNDs7O7C1ToWE/wM2PRYWFmh9fd239kMvuKqqFI1G+0ulTjkPCn4bJ0IvOBHR5OQkPXv2rPf9TDkPGH6uOBHqUXqr1cLc3BzevXuHK1eunG5t4OfXu32j86Dh68jd7RnDIIRtms0mzc7OkizLVCqVzvSn+/FzgGaFSqVC6XTa0zZDJbiZ0GHl4cOHtLKy4ll7oRD8PAqtJZPJULlc9qStQAt+3oXu4qVxIpCCj4rQWprNJimKwt3JEyjBR1FoLV68KTkQgo+60FrK5TJlMhlu8X39Hd79HX337l1MTEyg2WxidnbWzy75DnfjhNszxkkIkdHD4fWmZEO1dB0jOrcr7QguhLYOL+OEqVr1QoKQ684eb1EO0Hw/DWBBcCG0M5rNJsXjcWuPVp1O/3Y/ua2TbQNymQl+MsWoPWArZ09wIbR7hhsnulPB/caOkwp9dsbQWK16gRKaICduEZ0AOoILodny5MkTyufzOntOxdadGdyinI67x1DwE4GHT0RoBRdC80PPOGGUhKd7qVA4a+YyEHygnNcLlDAQHYAQ2gPOGidOs3vwIj0EfcEHyjlR95rQv63dbhMAIbRH9BsnTgbRdqeAdQXvH50TGV0rarUaXbp0ScfwLz48P7du3TKtujYFNxidA2eG+AI/0f+Z3Ntb0Ld4nRFc/6wKpiFw5NG1Xp9NWC1jREQQhJdGEXeu57Hb25BAof4LlgwMfULwESPUrlWBfYTgI8b/AR30ElfKlwd/AAAAAElFTkSuQmCC"
|
<image>如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()
Choices:
(A) \frac{3}{2}
(B) 2
(C) \frac{8√{13}}{13}
(D) \frac{12√{13}}{13}
|
\frac{8√{13}}{13}
| 69,871 | null |
\frac{8√{13}}{13}
|
"iVBORw0KGgoAAAANSUhEUgAAAKcAAABfCAYAAACN19eYAAASp0lEQVR4nO2dfWxU15mHn3tnPDaO7dRgx0AMhMzgOuXbxNANyja1iekHOElRJEirJKpSrJYoiTeCUikVUv+pShU58aoKY1IWtNvdSlk1qg1sbMYsrBOF4DS2IE7G4LHlKjRtAgZsB9sznnv2j/G9zMed8RjGM4x9HsnyzL3nnntm5nff856P9xxFCCGQSOLgxo0b1NfXU1ZWRlVV1bTfT532O0hmBAMDAxw6dIg33niD/v7+pNzTmpS7SNKWoaEh3n77bSwWC6WlpWzatInS0tKk3FuKU2LK3//+dwYHBzlx4gRDQ0Ns27YNh8PBF198wcjISFLKIMUpCcHtdlNaWsqbb77JQw89xKpVq1izZg25ublAwO+U4pQkncuXL9PS0sLo6CiDg4OsW7eOu+++OyTNvHnzGB4eTkp5pDglfPbZZ7S3t5OXl0dmZiZFRUXs378fACEEiqIYaQcHB8nLy0tKuaQ4ZzF9fX34fD4++ugjFixYwH333ceKFSsoKioy0gQLM9lIcc5gwq1eMF1dXbS1tbF27VoURWHDhg1kZWXFfX0ykOKcwYQLSwjB2bNnuXLlCjabDZvNxpo1aygpKYkQptn1yUaKc5bw5Zdf0t/fT2dnJwA//OEPWb58OTabjczMzNQWLgpSnLOAtrY23nvvPUpLSykvL+e+++4jJyeHnJycVBctJlKcMwQz/1DvFrpy5QrLli3j8ccfT03hbhEpzhlCsDD7+/vJzs7G5XLxyCOP8KMf/QiLxZLC0t0acuLHDOL69esAvPTSS/T19fHCCy/wve99j4yMDFQ1/X5qaTlnCBcuXODMmTNcunSJ3/zmNzgcDtPWeqpb4FNBijPN0TSNo0eP8s477/DTn/6UiooKiouLTdOmkzBBVutpzenTpykvL6e4uJh9+/axcuXKqMJMR6Q404DgYAWfz0d3dzdVVVWsX7+e3bt3U1ZWFjLkOFOQ1XoaoFfH58+fp6Ojg5GREXbs2MGcOXPYtm1b2vmS8SLFmQZ4vV6am5vp7Oxk8eLFVFRU4HA4AMjIyABgdHTUdAgynZHivMM5e/Ysp06dQlVVvvOd71BeXh6RxufzzThhghTnHUtnZyft7e1omsZdd93Frl27ItLo1bnVajU9nu5Icd5B+Hw++vr6KC4upq6ujocffpiampqo6XUBhgtxJggTpDinHb2lHY9gBgYGaGpq4m9/+xv19fVkZ2dPd/HuaKQ4E0x4lRqPKPv6+rh48SIul4uSkhJefvnl6Sxi2iDFmWCmUqWeP3+ee++9l1deeYVvf/vbRtwOzMzW91SRnfApYGhoCI/Hw69+9Su6u7t58cUXee6550LSzHZhgrScSaerq4vOzk6WLVvG9u3befDBB42+SkkoUpxJ4sKFC1y8eJErV67g9/uZN28e69evT3Wx7mikOKcZfSz89ddfZ9euXRQWFkpRxokU5zTh8/no6Ojg/fffp6ysjO3bt7NmzZpUFyutkOJMMJqmcfLkSYaGhigoKCAzM5NVq1ZFLOsimRwpzgTS39/P8PAwPT09zJkzhyeeeIKHH3441cVKW6Q4E8DY2BjHjh1jaGiI5cuXU1VVxcKFC1NdrGlES8pdpDhvg9HRUY4dO8aCBQvwer0sWLCAr3/968ZygdFI94kZapLKLsV5i7S1tWGxWPjyyy9ZtGgRW7ZsITMzM64+y3QWZoDkWE45QjRFPvvsM9ra2jhz5gyZmZk8+uijrF27lpycHNmZnmCk5YyTgYEBTp06hdfrxev1smPHDgoLC+/YdYZmAlKccXD8+HFyc3P58MMP2bFjB0uXLiUnJ4dZsUuOACK8kOR8blmtx6CtrY3m5maOHTvG0qVLefbZZ1mxYoWxAFb6+45xkMKPKMVpwj/+8Q8aGxu5cOECVquV7du3U1xcTElJyewQ5BSorq5GUZSQ7yVajdLQ0EBDQ0PceUtxhnHhwgX+8Ic/8MUXX7By5UoqKyuNjnQhBH6/P8UlvHNwOp3U1dUhhGD37t1UV1cD5jWKEIKampopPdzS5wziyJEjtLe3s3fvXtPGjqIoabla23ShxzfpwtPDlc34+c9/jtPpnJKfLi0ngVXZnn/+edatW8fevXspLi6WrfApoCgKdrs96nmPx0NVVVWI1fR4PCiKQnV1tfH6xIkTuFwuFEXB5XLNHstpNiqzb98+Fi9ezLe+9S0KCgpYsWJFikqXbkRWzR6PB6fTaZra6XSyf/9+GhoajN/Abrdz8eJFGhoaqK2txel0cuLECQB2795Nb2/v7BGnoiiGQE+fPk1zczN2u53y8nKWL18uq+spIESkOFtbW9m5c2fEcZfLFRLeHFytnzx5ErfbzZ///Gcee+wxSktL2b9/P9XV1dTU1Mwecfp8PlRV5eDBg4yMjPDYY48xf/58lixZkuqipR0KoQ9yQ0MD999/v2na+vp6mpqaIo7v3LmTo0eP8sILL9DX10dTUxN1dXV4PB4gYFnT0ue8lc7vt956iw8++IDOzk6qq6vZsGGDFOYtoCgKWlAnvN41tGnTppD3Oo2NjQghEELgdDpxOp3s3LmT3t5eYxdil8uF0+nEbrfjdDrZsmULkIYNoslm9IQL9/z587jdbn73u9+RnZ3NgQMHYjrvkkiCv9Pg13v27KGmpsboIlIUhcrKSvbs2RO1P1P/7Q4cOEBVVRUAR48epbKyEghsDFtTUxNoJImguwl8IU+Fgi391DvB1atXcbvdPP/88/z61782vghN01BVNe2nraWKI0eOkJeXxxNPPHFb+cT6/o01oIIPKmRgwY+GhkJGKkeubovTp0/zzjvvUFZWxl/+8peQc/rC/VKYt0a4FZ2sFot2Pp7vf0Y1iE6ePMnVq1c5cuQIf/zjHxkYGEh1kWYcU1lq51YNgH5djFpbQ8OLHy9+/AgC1b4fb9BUU7+RRguZqeIPunY8bA5LrHPR0vmD0oVePzo2hqaNc+hIA//+X4dYvWYV//Gfh8nMtrKgeGFY+uRMkpXcPkKIWJZTRcWChkDBMlHFB/4HFK2hofulGhrjCDJQ0CbcgoC/KvCioWFBnbgm2rlggtMJBD4EFtO8W//XxXv/9x4VlY/w8r+sZ6l9KSpWFPxojOPHgooNdcJdEahp667ciUyH727qc0ZiQcEXIq6bnoCGQEMQOhFCCROAMiGqwLFY54LREIZkFRRsKMDY2AjWzCw0v5+Tra0MDl3n2uAAP/jBD3jwwbUTwrUG5aWgGg8WhM9DlI2i2yd4cEPndr9X/doo4gz+eS0o+BEoBIQSjNXE6kHsyajx9lGKsHmuGpmZmXj9fo4cOgLA6tUr2XBvOcULlyCEP2RUTQgx6VzEwJegEd27iXVOojNdi9ca4gxUsdaJvv/gzNWJKtIX1rWkojCOZhzTLWDguEBMSFkgUCfSxDoX8vEmHoiA1btxY5g52Tn8/s3fc8M7zMZ/+mfycvJYtmwpftSJvJQJOd/8gkRcD0Is8UlhppIgy6kA4/hRUMO6kfTqN/R5UFFRJxoaN9/f9FV9E8ctQfKLdS7gt4INFQsqwsj7v99+iyXF91NUNJ852ZmsXbsSARNl1X1ZvdE2jjpxdfT31smMquQOwBBnoI8zOkqI73bzcvNrLKhRc4t2TkXFFpJ349tvU1RUxNC1G3xu+Zzs7GzOn+vif443U1JSwpNPPsncuXMBFUVkhMRTKyF5Rb4PJsRHMo2ZkaSCuPo5RUhDKDFEc6KHh4exWq20t7fT29vL3Llz2bVrF8eOHTPGXHVyc3N56qmngNvzc0KEGaOMkuQSU3Fiok9TISPh3peZE93X18elS5dQVZWPPvqI2tpaY0QnLy8vIo/hoasJLlT4WynMVBJTcwo2LNgS2jMYbRKB0+lkdHSU9vZ2HnjgAV588cUQAZvNTM/Nnt5FDEymLUqSSNKHL3XBCSEYHx+no6ODy5cvo6oqBQUFfPe73yU/Pz8kbTRGhodMj+uTO+IjtLtIiEBPglDgq3FBjlUqNFWkbGz9448/pquri/z8fGw2G5s3b6awsJDCwkIg0t8zi3q8MTZqmnf8wgTTykMJ1PDBwvT7/XK2fJJJekdeb28vx48fp6uri6+++orly5dTUVHB4sWLQ9KFW02zCcb3LgrdW1wPlFIUxZhRHZ6HHkClB1GFE81aS2Emn6RYTiEEg4ODdHd309vbi9vtZu/evYyNjcW94m+w5dSHzObdU2DkD1BbW0tPTw92u53q6moaGxtD8lAUhUcffZSLFy/icDiMfGKV2+whCXZNZGt++kiK5Txz5gz19fV88sknlJWV8cwzz5CVlTWlpajNLNcHH7YDAdG1trZSWlpqzHIvLS2NsIwej4etW7ca8dVbt26NeU8z4U11dzbJrTOt4uzu7ubw4cOcPXuWJUuWUF1dTUlJCUuXLp30Wt2ime0dqR/r6Og0jvX29rJs2TLjvcPhoLe3NyRPXbgNDQ14PB5KS0uByBhqVVVxuVwhMdSxyiiZHqatWu/s7KSlpYX58+fzs5/9zHTtynhmSuv/zSxn0YIFEfmZvQ++z2uvvYbdbmfr1q1G8JXdbqenpwen00ltbS0HDhygpaXFWGYlXOThZZRMD9NiOb///e9z7do1nnzySZ5++umoi6pO5cc1s1La+HjMa8y2fO7t7aWnp4empiZ2795tnGttbcXtdtPY2MjRo0cB+O1vf4vb7aaioiLuckoSR0LFuX37dj799FOeffZZvvnNb8ZVfYcTT1WpCyq4kaRbP52enp6I+3s8Hurr67Hb7Qgh6O7uNlr1egy1x+OhqanJiAAEoq4BJKv16WXK1brP54uwhAcPHsRms7FixQqWLFnCAw88cMsFisea6qLYtu1x41hlZSWvv/6vhqDcbnfILrw6ZgH+uv+5adMmGhoajBjqPXv2RIznT7WskltnypYzWJjvv/8+r776KteuXWP16tW88sor07aBvZmVGhkeCXlfV/cqDocDh8NBXV0dEFjdTI+h1oP29X7OLVu2GMdixVAHW+TZTNK7zkQMxsfHjdeaphmvOzo6xC9+8Qvx7rvvin379sXKImGcOXMmMB0z6O/fDr4W17XBZZ/K+cmum40cPnxY/OlPf0rKvWJW6+Et5P7+flpaWli9ejWjo6Ns3LiRjRs3GuenNqZ9+xQVFCIYnZirGf2+Uw1hFRMWQlbbqcUKk5vr/v5+AE6dOsUnn3zCT37yE9avX29cp/uhyRQmwOXLl1HISni+iqIk/UGTRGIF8wg6uNn4OXXqFO3t7Tz33HM888wzxnk9far238kvKGQqQWiTPYTBhAsz/Nqp5CW5NW6GaYR90VevXuXcuXP09PQwd+5cfvnLX1JUVJT0AuqYzeccuH4DIRTi1UhCZssnIK90xufzMT5J/3KiiPA5+/v7yc/P56WXXqK8vJzNmzcbw4LRrEUyrIjX6zVe65Y+Mzs3offVP4cwGTKV3MQsKmE6CBHn0NAQhw4d4u6772bfvn0sXLiQrKybPl3kjxWoUpPxI86ZM8d4rYtn9MZItOS3hNmI0mwklrGx2WwMDw8npRxWCGzJ3NzcTFFREQ899BCbN2+O8/KwGeST/KiTBTbGymNsbCxiipvP54uznJKpEKt29Hq9FBcXm1w1DeX48Y9/LJqamrh8+TJCCAoLC1m8eDF//etfyc7O5mtf+xoZGRlGWIXX68Xv92O1BkJtNfz4xrygCVSrBastA6tqwe/3IRRQNZVxi4YqQFMA/ICCRbOGfGgzNC2w8Jbf7+fzzz83fWK/8Y1vIITA6/UyNjaGxWKhoKCAkZHEWtXZxvj4uFFb+Xw+fD4fw8PDXL9+nV27dpmOviUaqxACh8PBPffcw6JFi8jJyeHcuXOsWrUKr9eLz+djdHTU8PlsNhtWqxVQ0TQNRWgoc7K56667yMjIYPjGV1wbuoYtS/cYVCyqBiKwcogFDaFYsGhWLFr0VrbX6yUrK8vo1ikvLwcgJyeH/Px8Ll26xNjYmCHYefPmMTY2htfrxWq1YrNFj1OXTE5GRgYjIyPk5uYa+8fPnTuXgoIC1q1bl5QyhKxsPFVkd4pkOrmtXuaIkRWStZ+sZDaQsCEQRVFQJ/504jXKsdLdhmGXpDkJEafL5aKnp8fY0kMn3io/VjrpNqSOVBuGhIizvr4eh8NhbA8nmRmk2jAkRJx1dXX09PRQVVVlBIOZbbwZT9CYRKJzW631cDweD7W1tUa8uL5Zp9vtZsuWLcakXX2XWbO9EiUSCLgUCZ0TFr4zmlnQ2P79+/n000+N2eYSiRmKoiRGnMHGV48Fh9hBY3KLP8lkJEScuuPscrlwOBwIIUKCxlpbW0033pRIYnHb4gxeGKulpYWdO3eiKIoMGpNMCbOmz/8D1eYiOPBHgwkAAAAASUVORK5CYII="
|
<image>小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的()
Choices:
(A) 7.5米处
(B) 8米处
(C) 10米处
(D) 15米处
|
10米处
| 69,872 | null |
10米处
|
"iVBORw0KGgoAAAANSUhEUgAAAHIAAABoCAYAAAAtkKSAAAAW1ElEQVR4nO1df2xT173/3CQ0tA241W4Wd3XqQhxwMVMjJSzJYhZ4OJCJSk1KuyAt05hGCYtZMcVPRBq8FI0nsi1tQQs8qrCSTqiPqYDdp0hAkxTThmEaOrL37CSA3QacDqO4HVmSkWjO/b4/HF/b8fWPJNc/Anwky7rnnHvO997POd9zzvec+z0MERHuQwwNDaG7uxu9vb1wOp0wmUx8nN1ux8DAQED67OxsLF68GAAwb948lJSUQCaTITc3F/n5+cjIyIin+NMGk4xEEhEYhplWmoGBAXR0dKC9vR0mkwm3b9+GWq1GdnY2cnJysGLFCp6MZ599FnK5PCC/mzdvor+/HwAwMjKCrq4u2O12OBwOdHZ2QiaTYfXq1dBoNNBoNMjKypr1c0XznNEiKYkMB/+H7+vrwx/+8AcYjUaMjIygtLQUq1evRmlpKZRKpajlWq1WmEwm/seyLDZs2ICf/exnyMnJCZJt6rWYpAmCkgAcx0WddnBwkI4cOUL5+fkkk8lIr9dTb29vDKUThtVqpR07dpBUKiW1Wk3Nzc3097//Pe5yeJEUREYDp9NJOp2OMjIyqLq6mlpbW2eVn7fy+FeiqRUq2gp28uRJ+tGPfkQSiYTq6upocHBwVrLNBElP5MDAANXU1JBEIiG9Xk9OpzPRIoWEw+EgrVZLEomEdDpdkKwcx01L+0wHSUvk8PAw1dXVEcuyVF9fH7GWx+oF+ecfbRlOpzNA9rGxsZjKRpSkRBoMBpJKpVRTU5MQNTUV4QgMF+d0Oqm6uprkcjmdOXMmFqLxSCoiHQ4HaTQaysvLI7PZnGhxRAHHcWQymUipVNILL7wQtmLORqukxG48PD1cuXIF3/ve97Bq1SpcvXoVhYWFiRZJFDAMg9LSUlgsFuTl5aGgoABWqzVk2hljxlUgSkTTt7S0tBDLsnT27NlYi5NwnDx5kliWpZMnT/JhYvTvCVWtbrebtFotKRQKslgsRBT7QUsyoKuri2QyGdXV1YmWZ8IsO0NDQ9i4cSNGR0fR2tqKhQsXJkKMhOHOnTtYv349Fi1ahGPHjgXYcmkGVqCE9JFWqxUFBQWQy+U4f/78A0ciAGRlZeHixYt49NFHUVRUhC+++IKPm1FfKVrbjhJnz54liURCTU1NAf3ng6BSQ6GhoYEkEgmZTKYZ5xFXIi0WC0kkkqgGNfcbsZGex2AwEMuyZLPZZpR/3IgcHBwkhUJBTU1NRHT/ESUG9u3bRyqVioaHh4PiIr2vuAx2JiYmUF5ejqVLl6KpqSnWxc1p/OQnP8HIyAgMBsO07hNlsBOpLuzcuRMAcPDgQTGKu69x9OhROJ1O7N27d3o3xkJF+KuBlpYWysnJSQqbaTLD/505HA6SyWRkMBiivl80IoXW9cxmM7Esm5CF37kMjuOoq6uLWJblDSWRELPBjrdWPQhmt1jh5MmTJJfLo9Jmog52yM8iUVZWBo1Gg127domV/QOJPXv2oK+vDx988EH4hLGoSSdOnKD8/Hxyu92C8Q+nHtGB4zgaGxsjpVIZUbOJTuTw8DDJZDLq6uoSO+sHFu3t7aRUKsPuNBDd1rp3716sX78eBQUFEaclDxEd1qxZg+effx6NjY0h04jaR9rtdhQXF+PGjRuQSCRiZfsQ8KyWLF++HBaLhd8cTX5jElFb5L59+1BbW/uQxBggKysL1dXVaGho4MP8V0lEa5HeGmOz2R4SGSOEe8eitciGhgZs3rz5IYkxAhEhKysLGzZswNtvvx0UL0qLdLlcUCgUuHbtmqD+fgjxYLfbUVRUhC+//DJgV4EoLfL9999HZWUlsrKy+JHqQxJjg5ycHKjVapw6dSogPMXXHLkQt3KI1GSPHTuGTZs2Abh/CUymidRPf/pTHDt2LCBsUrVyCNU4I6nI7u5uVFRU8N8W3j+YrNiUAiRZ3ZyYmIBUKsXnn3+OZ555BgCQMpVE/5o3lUSh7vS9997jW+P9hRTPL8lIJCKkpqaiuroa7777bkCEDyFNoBNBIV57qUwmm/vLVBxR0DNyYeKSAJcvXyalUslf802RgDC1L1jtMgyDvr4+uN1u0b8Ojie8z03kffhJleq9ZIAE7RoNi/z8fAwMDODOnTsA/CSciQa5cOECSktLBeNojthZGUztQkKQlmSPk5qaCrVajQsXLgCIoqoFE+Ib3X5sOo/Vq1cL3jeXRq/+slo/fBNMCuP5MQzKtr05mcibItToPj7w52PVqlX4+OOP+QgiEl4jtBgb6fT/he4fpNJvz/3+0Q+NtRoC1pB1soPkyEr/xoA02kZfIm7KfwJhNptJqVQSx3EUkkiOrKQByGAR3gne399P38pk4yBujDH5WI21GkLZL4KiLcZGAlaTlTgB7hI/CEpPT6ehoSFK8zZTn3rxTEfe0jaBKSvDEpV/vFetpMBms2H5sueCmj3DMIJzT6GwpADjUaf6w+0w9LSFSJTiTRqIJJhjPvfcc7h+/bq3j+RAkyQRUmB8SwtuXRm4Ng5MQBfpmVsRPD5ucnOXBmTqJUqIsKQkcRKHD+mh0TaiQmDwfcP+BcCE6BeT4JG8Nm6/Uetkresxog1r8O8KBh1lS/CcECkAbDbbnJ52+NCL621AeVm5IDFtZw9DU7sezxEQPNBJ7MAHAJRKJW7cuOEl0jd43Xa4HYdefwkAoFmSEzKD8+fP4y9/+QuMRiNMJhP6+vrCFkjTmI5ESjudvCKi5xo6AOQolgXla/3wTRxuA7S/eH1So6Qg0Pac+PmlUqmE1WpFGsFXEY1vaXH40GEcPnQIBECjDb1H5B//+AfOnTuHb775Bvfu3UN/fz9u3rwJAFCr1UhJScGSJUvw9NNP898AAkBeXl7ENctIalhMNU3LlmANALutB4xK5QtHD3QVkypXxcD3nlKSQaPykMlkGBwcRBoDz1yX6TGijcrA0SEAk7XR5muRvsGKZzCUkpKCjIyFaGhowPPPP8+nGx8fh9lsBgBYLBYMDg7C4XDgzJkzAACz2Yzx8XGwLAuVSgWGYaBWq5GWlsY7+3v00Ufj5gyCwTKU12qgbzqEnS8e9gT2GJGiqsTa2kaca9oxmS458fjjj2NkZARpIIDpNYLRfQT66DCf4MYNO8D4iGQY/1oJjI6OYvv27Thw4EDAkkp6ejpv7Qll9QF83hjHxsbw5z//GUSE1tZWDA4OwuVy8Z4vVCoVWJZFZmYmT3xRURHmz5+PRYsW8db/2WDnoTZ8sZYBw/wXH2awECpUYW5KEmRkZGB0dBRM47Yy0je1AUiB0TqBF5cB28oYHGr3JNRoG9HWtDMogwULFuDWrVtYtmwZurq6IJPJYiLo5cuXce/ePdy8eRNffvklxsfHcenSJTAMA4vFApfLxZurAGD58uVgWRZPPvkk8vLyAABFRUVIT08PyLejowPbtm3D/Pnz0dTUhJKSkqCyk3bK5IeBgQEUFxfPbKsHESElJQUcEfa+8QZGR0fx29/+NmEP7d+CzWZzEPFeVS+TyZCTk4N58+ahu7sbX3/9NQCgsLAQly5dSojss8XQ0BDkcvnM9+x4J/4ulwvf/e530dfXF7eNVzM1OFitVnz99dcYHBxETU0NT2RRUdGcJzLNFxR6l4AXRBNgmFQAHt08MjLCO6A9evQo/0GrJ624ask/v1D5RrIsqfxGpU888QR+/vOf429/+1tIw/9cwPDwMBYsWBDpI55wBnMp78bSZrORTCbjP9qZSx/p9Pf3k1KppPr6+kSLMiP09vaSUqn0LCx7dKuQlSJ0C/W2SMCzs6ugoADHjx8HkNzmuKmQy+Uwm804d+4cXn31Vbjd7kSLNC2MjIzg8ccf9zA1k68HMjIWYnh4mL+uq6vD7373u4A0FOPFZbHyl0gkMJlMcLlcqKio4CvoXMDo6CgyMjIC2fvnxBj/A8Cvigu9Lqn02/jqq9ueeCIUFhaCZVmcO3eOTxPrlilm/unp6TAYDJDJZFi1ahVcLpdoeccSAwMDyMzMDCTysdT5Af/e2b93OwT8/pVKJWy26574yRe6fft27N+/P9ayxxRHjhzBK6+8gpUrV+LWrVuJFicibty4AZVKFb0+nTpiVCgUsFgsAWkqKytx584d/PWvfxVUe7FWtWJh165d2L17N0pKStDd3Z1occLCarUiNzc3PJFTVa3/tXf5JEAVw+NTZ//+/bjHjQfFeStBkAqPsvxowv3j/cNCIVTl+vGPf4yjR4/ihz/8ITo6OsLmkUjYbDYsXbo0ePox6r4X1XV/fz996zuZQeFjY2P0nUWyAJ9q/nlEyj/SPaHuH3Xf43/+1+HKiAZdXV0klUrp+PHjRJR8U6tHHnmE7t69O71Pz/85Mcb3n3K5HGlpaeju/d+AWp+eno4tW7bwrsooRI0PFS4Evs+OIo1/2mjuCwciQn5+Pjo7O/HGG2/gN7/5TVJNrS5fvozFixdDIpFE7iMfS50fUj2tXLkSn31qxmOp8/FY6nyenJqaGpw4cQJDQ0MhHzyZXkgoMIxnS+TixYtx6dIlfPDBB9i6dWtCZBGq+P77inkiZ9KX/OAHP+D3Vf5zYownZ+HChdi4cWOAA8HptMCpiCRbLEGT5j6WZWEymfDVV1+hsrIS4+PjcZVDqOKfP++3r9ira/37FCEIxfX29lLWM08Jx31xjZ5enE3fjN7lw7z9y9T+LFQZoWQSuj9SHzmbftIfbrebNm/eTKWlpTQ0NCRKnjOVIyMjgzeTRu1nJ9SLCPcRT1VVFTU3NxNR+DOo5ho4jqP6+npSqVTkcDgCwoXSxgLezcleREVkuNqs0+lCGpy7u7tJoVCEvHeuE9rc3ExyuTxqx39iYup7D0tkKBXoj6tXr5JcLuevp5JTWlo6LXeVcw2tra0klUqj8kfu9eE+2wrsdruJZVnq7+/nw0RxYZaXlxfyQc6ePUulpaViFJO0MJvNJJVK6cSJE1Glny2RBoMh6J2KQuSBAwdo06ZNRCQs5P101lUo9Pb2klwupwMHDkRMO1siKyoqqKWlJSBMFCIHBwdJIpGEPNuxpaWFKioqxCgqaSBEhtPppLy8PNLr9TEr12azEcuyQQ7sRfMOqdPpaNeuXYJxbrebZDLZjI9CSEaEalXDw8Ok0Wiouro6pJvT2WDLli2Cg0vRiHQ4HMSyLN2965k3Tn3QxsZG2rp1q1jFJTXcbjdVV1dTWVmZ4NEPXkxXxTqdTpJIJPw79oeo/lo3bdoUcipy9+5dkkqlD5ST+rq6OsrLywvZ5UyXSJ1ORzqdTjBOVCJtNhtlZmYK1hgiIr1eP2c3Oc0U77zzDsnl8ll/2e10Ooll2ZCVQnQPynq9nmpqakIKI5VK43LmcDLBe9TwbEbuVVVVtG/fvpDxohM5MjJCUqk0pCvsTZs28ccq3W8IpypNJhNJpdIZGUfa2tpIoVCEbQCiE8lxXFjn9FevXiWFQhGTEV0iEOR7IQyZFouFZDIZb3+OBuGc0/uXFbNzPzQaDTU0NAjGlZeXBxxN+yDh1q1bpFKpoh4r7N69m1555ZWI6RJygIvJZKKioqJYFZ30uHv3Lq1atYo2b94cVjNN5wCXmB47aDabKTMzM2DE5lUH4eyzcxWRphP+8WNjY1RVVUUvvPCC4Fzzs88+S44jlbxoaWkhhUIRVKuOHz8eYLab60taM4VOp6P8/BXkcrn4MIfDQdlPy+j06dNR5xOXg0B1Oh1pNJoANeJ2u0WZXyUaYlTAAwcOkEKhoBs37DQ2NkaFhYX0H2/UTyuPuB4EumTJEhw6dIgPP3jwICwWC5qbm2MtQtSgOH+lPDFB6Oz8BCfe/2+cMpxGQUEB//lCKNm8LgD8ZY3b8fUulwvFxcXQ6XTQarUAPF8S5ebmoru7m3dq7y9woiBm+RMTE+js7ITb7cann36KiYkJ/v/ixYsAEdQrVyIlJQ0Ah2vXrqGnpwdPPvnklJx8XseEEDciAc/29pKSEvzpT3/CunXrAHhOYwOAX//61wFp40nmbMoKR1RnZycAj7ua1NRUrFy5kv9PS0vjwwHAaDTi1VdfhdlsRk6OxwkHgQPjdZPm74mDADAciBif3LNW8NOE//H1RD6zXbhVgnggVF/ndrvJZDJRe3s71dfX0549e6i0tJTUajUBIIZhSK1WU2lpKe3evZvq6+upvb2dTCYT/etf/4qq7EjH1xverKVJ+ghlWuLISrW1jQFp/D49jw/WrVuHixcvoqKiAr29vTh48CDKy8vx7rvv4rXXXvNWrri1Rv8W9cknn4DjuIgtas+ePUEtaiYYHx/H1q1b0dV1GZ9//jnfEnn0GMGoKqHRNvr2BfcYwTAq1DYG9qFxVa3+GBoawsaNG3Hv3j00Njbi5Zdfht1un9WLEYK/qgul+goLCzF//nwUFxcjPT1dUPWJDZfLhfLycix+dhGOHTuGxxZkTHHK1Iu1zDJw2xrR/vtA9zhvasuAtQew80WfT4SYE+mv2qeCc0/gNd0vcfajNsizn8GWLVtQVVU1rfzdbjcuXrwYto/yOlgS+p/qfyce6OrqwksvvYTq6mrs3/+fEBrAGN/SolJ/HVbuIyzzf4MEGN/WAuua8OIyxH/U6oGw55D33nsPr7/+Op544gnY7faAuGgGE15CvC2quLg4oUSFw6lTp7Bt2zY0NTVhw4YNgmkIPShjVFjaaMChnRVR5ZsQ1eot0L+lXrlyBd///veRn5+P9PT0sKovWYkK17dPTExg7969+OMf/4jW1lYsX748RC4c0PM/YFSVaDRaAtRnOPUW98EOICQLh4KCApw+fRrbt28HwzDQ6/Vob2/HI488Mie+3AKCP7TxEnvhwgVs3boVCoUCV65cAcuyQff6KoHHlahwAWEKj2p8LBKCBvic8LDfu6JeU1Mzp/f4OJ1Oqq6uJrlcHvqwa4FZj9efvLbREBxpNVCj0UJTfSDFfR4ZLYaHh6muro5YlqX6+vo5RajT6QyQPbqtLRM04WWV880dPaR5YDE2CjrQJ4ojkbVloMnD8fjfmx9aBVL6ahpHnpWAmpoakkgkpNfryel0Ju2XXQ6Hg7RaLUkkEtLpdCE3SnnBcd6TC4Q9jHlOOPC9L03tW5M3elP47otri6wtm6xhnE9I73EUU+EhyCeo0+kknU5HGRkZVF1dHVpVJQAGg4E2btxIEomE6urqRNce0VTVWRPpKyT8GRgcWWmN3+EoZDUQADIKNcowebpcLnrnnXcoPz+fsrOzqa6uTnDhOqLcs2jJHMeRxWKhHTt2kFQqJbVaTc3NzSG3gcYDIrXIyAeZWIyNPtVAntYZcMKNQF6RXnVvby/p9XpSKBT01FNPUVVVFR05coT6+vqilDt6WCwWampqopdffplYliWlUkm/+tWvBD+DSIS6F2EeGXz+JG+k95tXGd/S4qWdh/k5pMHCoUJFEMtT/8DAADo6OtDe3g6TyYTbt29DrVYjOzsbOTk5WLFiBX8msdd3uj+8rrkBz/JaV1cX7HY7HA4HOjs7eddmZWVlWLNmDaRSqShyiwVxDQICE1YCACJsW5eCsrc5VKgYGN/8JSr1TZNkxmaOODQ0hO7ubvT19eH27dswmUx8xbLb7RgYGAhIL5PJoFAoQESYN28eSkpKIJPJkJubi/z8/ICDqZMSYjXtsMrEauCHzZ6RmmeeVMvPkxJ/xtRch2gnkIRrVx+eaUPturWedAwDpuc62gEszlkymSLxB6HMBBRGmYWLiwXiYmvVrmV4tUrowVpGhXasgZXaAi37U0DTWJecTtr7EmI17VDnT041AjDAFOvERIBa9uYz3WnETEeK4YwLyWRsiIT/B1OZobxv8FQOAAAAAElFTkSuQmCC"
|
<image>如图,⊙O中,若∠AOC=150°,那么∠ABC=()
Choices:
(A) 150°
(B) 125°
(C) 105°
(D) 100°
|
105°
| 69,873 | null |
105°
|
"iVBORw0KGgoAAAANSUhEUgAAAGUAAABxCAYAAADMO21CAAAV8ElEQVR4nO2df0yb953H3w9JSpuwPInqHNbFqXvFadyBJlekEkqogJas3I5QpqBQbZ7kSGnYRKfQOyelGj1WCelYkynsRBQ3rArRohNSmeha1iSEqEZlVyqiozs5Byl2S2oynJBJzmwWoprnfX8YP/jHY2ODjU2Sl4SA7/N9vt/P8/18f3y+vwWSxH2FBPul0/j6qZ9iT166ZVkaWekWINkQX8H8/Z+lW4xlcd8ppePoaUh79+KpvNVbAdxXSrnUcQTcUw7hjwDxUClpRgIdfbjEPTj0FPBhpR66Vfxpq1fyELLwxrv9eOfQ9wEAe3es0hZ+nvtCKZc6juDYsWMQBAFZupcgCEK6RVoWq14pdPShn3tAEiQx3ncK23VPplusZbE23QKQXHLOpqMPWf/aD/7hHdlt4vpXyOJTaZdtuRFnPlKk06mjewmAANhn97sdqQIh+N2qjr67sjImEYHM8B49AQjyryW9u6Ro01VKkOFtCkk5UQPJQ0ihfiJeCvo7jjSNlifTaSxktFIiEoaAgKyQhJSVReLkyZOyAxlf9zFa4qezAsm46iu82rhz5w6++OILjI5eg8v1F1itVlAABAIOhwOTk5Pw5y1/CVq3bh3y8/MhiiLWrVuH3bt3Q6PRYPv27SgsLEROTk56PiwBMk4pk5OTuHz5Mvr7+2G1WjE1NYXi4mJs27YNeXl5eO6555CTk4OpG3/BBx/+AQMDA6isrMSbjUfxVN52nDx5Ei0tLVCr1fjRj36EmZkZOBwOOJ1ODA4OQqPRoKysDOXl5SgvL0dubm66PzmSdFgX4YyOjtJsNlOn01GtVrO2tpYWi4Wjo6Mk5yhJC+ZXb28v//mlCmq1Wh4/fpxut1t+Jkm++d8SOzs7+Y+arayoqODQ0JDsx2azsb29nTU1NVSpVNTr9WxqauL4+PiKfe9ixKWUuYBNKoW6Kpmq8TI9PU2LxcKdO3dSo9HQbDbPKyESj8fD9vZ26nQ6lpSUsLu7e9HwJUmiz+ejxWKhWq1mdXU1R0ZGIvzZbDY2NDRQrVazuLiYHR0dIYpOBwjOhXIiR0tsiSTnogYWElYUXC4XDx8+zJycHBqNRvb29kb1OzExwfr6eubm5tJkMtFmsy0avpI8s7OzbGtrk0thNOV3d3eztraWoiiysbGR09PTCcWXLEApODGDElyKURCWUEKcTifr6uq4ceNGms1m3rx5MzTIIIX29/ezurqa27ZtY0tLS9ISx+PxsLW1lSqVikajkRMTE1Flra+vpyiKPHz4MKemppISf7zMV19+ZQQnTHiuj1YKFvPn8XjY2NjIxx9/nM3NzREJHJybOzo6qNfrWVRUxHPnziX+NTHkDH7mdrvZ3NxMURRZV1dHp9Op6N/lcrGxsZEqlYrNzc2cnZ1dUryJIrcpkiTxyMuQhy4CP5Y+R0xBlIQJuPX09DA3N5d1dXVRc7vT6aTZbKZarabRaOTw8PByvylu3G43GxsbKYoi6+vrI0pvAJfLRaPRSK1WywsXLqRcroiG/ujLoOWS3xKxXzpNIWhsKV6cTifLy8tpMBhCLJ9gBgcHWVtbS7VazaamJrpcLvlZMnNdPExPT7OhoYGiKNJsNkfNQFarlXq9npWVlVH9JEP2EKVIHGdV1l7apTmSc5TsFykIQlSlKEU/PDxMtVrNlpaWiGc+n4+dnZ00GAw0GAzs7Oykz7dgxqYbl8sltyWNjY2KVpjP52NTUxO1Wi2vXr2aEjlClDLed0oeXZXoH3WteuOU/+FcrJbfT2dnJ1UqVUQRd7lcbGpqkq2fwcHBpH1AsgjOFN988w1fffVViqLI5uZmejyeCP/d3d1UqVRxmeeJEqKUvtPmkPakz+7XQ7S2I4DP52N9fT11Ol2I2To8PEyj0Ui1Wk2z2Ry1Qc1UJiYmaDQaqVKp2NraGqGc4eFhajQaNjY2JjXeEKUcqQq0H3PsO22mAPDieOzi4Xa7WVFRweLiYrm4nzt3jkVFRdTr9ezo6IhptawGRkdHWVNTQ7Vazba2Ns7OzsqZ1OVysbCwkDU1NYolSoryNxlWCKqOUOI4jx45FWR92S8SVUeCAhhnFcAjp8/7/5ekiEBtNht1Oh3r6up469YttrS0UKPRsLq6mv39/ctKiExkZGSE1dXV1Gg0tFgscns4OztLo9HI/Px82u2LW0WS/WLYRNyc7Hbk3YsLSuk7beZRy6WQFwUsWGLhXLhwgaIo8he/+AVNJhPVajXr6+ujdshWA/EaG0NDQ6yoqKBGo2FnZ6fs3traSlEU+cknn0SPYz6zK82Mnjq6l5ZL4wtKWai6/C++LIDAXo7LvfyF3r7NZuPGTSKf2aGnTqdje3u7YtGNKlgGWFrRSEQ2q9XKkpIS6nQ6dnV1kfT3zVQqVWSJmQ+277SZEKroz+qhQ1Z9p83ss/tXfwQ17lkEQGG+jlOytqanp6nTPc1/b3qL69evX5HOVKpZbibp7++X29Cenh62tLQwPz+fHo8nLAntrAL4b6cvRhHE/yu0n7KIcD6fj+Xl5ayvrye5UIUpDSrGGn7JxJKSDJl6e3vlPtj+/ftZXV0dErZkv0gI0ZuEAKE9+nC5wv5vaGhgeXm53MCR/lwiimLc9nomKiQZBH/X0NAQv/zySxYVFbG5+e15D6Q0fimGUhbGH+Oe5Ors7KROp1McXvj0008XVUyml5RYxBrfU+Ls2bNUq9UcGRmhRvMEe3p6SJJz/JIvz1tYIWHRX4oCyopQilJkQ0NDVKlUUechSP9YliiKIdbIg0Qg3ZqamqjX6+WGfnh4mCqVSu5UB/omwaVlvO9USHckZkmRJIlOp5MajSauBn1kZISiKPLMmTMJf9Rq5969e3zllVdYUlIid6IDivr9739PrVbL27f8tUyocRUwjxcssUWrr/Lycra2tsYt3MjICFUqFU+cOLGqq6xgFqu+3G43i4qKaDKZ+O233yqG8dZbb7GmpiZ6HEF/x1RKV1cXCwsLQxr2eBgdHZWHJO5nJEmi3W6nTqdjc3NzTL+zs7PU6/Vx1ThRleL1eqnRaJY86RRQjNIQ/v3C4OAg1Wp1fLOkkt9S1ev1imOBwSUvqlLMZjPr6uqixxFHdTQxMUGtVrtoLlqNnDt3jmq1Or5piKCkqq2tXciowWtWpIWpEUXra3x8nCqVKilLbQKKMZvNyw4rU2hpaaFOp4tr8HEBf0Pucrm45XEVXa5bkV6kKP0USZJoMpmSmrtdLhf1ej0bGhqSFmY68Pl8NJlMLCoqinuFjVKN0tDQEDMtEP6Sy+WSS0kyLaaAYmJViZlI8AqYkpIS1tbWhsynJBoOGZrGSmSFrzpvbW3FwYMHIYpiUrcD5Obm4tNPP8Xnn3+OAwcOJC3cZMOwpdWCIMDhcKCoqAjPP/88urq6kJ2dDUEQElqZH5yWubm52LdvH06cOKEcf7CGpqenKYpiyMqSZCJJEt1uNw0GA41GY8KmdjoILAQJHqlIRg1it9upUqkUpzxClNLW1kaTybTsCBfD7XazuLiYNTU1Ga2Y7u5uqtXqlMyiSpLE6upqxWGpEKUYDIaYs2bJxOPxyIrJxDn848eP84knnoi6fjkZpaWnp4clJSUR4SHgMDIyQq1Wu+yIEsHj8bC8vJwVFRW8e/fuisatRGCl/sGDB1lYWMhbt26ldHjI5/Nxy5YtnJiYCIknK9AInT17FiaTaYnN49LIyclBb28vAOCHP/whvF7visYfgPMN9szMDCorK3H79m386U9/wpYtW1K693HNmjX48Y9/jDNnzoTGE9CORqOJOTSfSmZnZ1ldXc3i4uK45/ol6Y88JI+07mLb+Mc8hF1sW+LeH6fTyYKCghXvSw0NDVGv15NcqMJALoxTpROfz8eamhoWFxfT6/WSjLUIcJxtu8BdAQ18fMivnF1tjKaTWLsGAovqLBbLov6Tjc/nY05OTojFC5I8deoUa2trV0SIWPh8PtbW1tJgMMQe4hlv4y4c4scLDqFKSoCenh6q1eq0LgCpqKiQV8OQZBZJWK1WlJWVpazujJc1a9agq6sLBoMBpaWluHPnjvyMi3bUdmH/v+gSiu/kyZP4+c9/jv7+frz00ktLkHj5kERpaSk++eQT2S1LEAQMDAygpKQkLUIpcebMGezcuRNFRUW4efNmnG/9N/5vPP44XnvtNfz2t7/FZ599hvz8/CXJmSxKS0sxMDCw4DAxMUGVSpWukhuThoYG6vV6ulyusDo+Spty6GPFcILf9Xg8rKysZGVlZUILCFNNdnY279y5Q5JEf38/S0pKMna6tqGhgTqdTmE57MdB1hd46OPo1lfwYmyDwSCvWwt+lm4MBoM8oYj29na++uqraRYpNs3NzdRqtctap2yz2ajRaBadok6XkmpqauQZzLUOhwNPP/10mmrT+PjlL38JAHj++efR19cHvV6f0PsXL16EyWTCqVOnUF1dHdNvug7K0ev1GB+fbxQrKipi7mXPJAJ74QOd3HhytcViWdZag5VAkiSeO3eONTU1lCSJa10uF7Zu3RqhOabxvKtoHD58GABQVlaG8+fPw2AwxPT/+uuv49KlS/jss8+g0WhWQMKlIQgCNBoNpqenIQgC1nq9XnznO98BANzDXdljtvBYumSMyeHDh7FhwwaUlpbCarUqKubevXswGo1wu90YGhpaFScXbdiwAV6vFySR5fV6ZaGz8VjI70zl4MGD+M1vfoOysjJ8/vnnIc9u376N3bt3Y9OmTbhw4UKEQphZhzbJ8uTk5MDr9fprp5ycHHmsiSRn+fc01ayJ09XVxfXr1/OJJ56gwWDg7373O2q1Wh47doxk5pi78eB0Orl161aSpOBX1kLumeXf8aiwHkBYdYbHIv4P9hNeupT8xvMsHn/B7nma7bhx4wYA4FHxEZx7779Que8HITJneskH/IfNabVauN3uyOMKgxcEhFdn4b8DHxyusGD3RJ4FE+wvmvsjfBQbt/irp7UbsvDd734Xlft+ECFfeBzMsCosQECurEBdFkw0q0sp193D3agJmwyI6KVJEAScOHECer0eBdu/h1//+tchfpXfkzLOqgQAj8eDjRs3AphXyszMTFTPsXJz4LlSjk4WUZNvPrOXlpZidHQU/zMygn+4exWCIEAQBGzYsAEvv3Fa4cXMPMs02OCSS8pyc3vKSgujhB2mrXffqML39l7EOOdAEjMz/wu8UxdFMZlHhFI8Hg8A5eoJiN5gBtzDnwW7J/JMybC4Jyz4IYlH5Pdn5Pctb1Thta91mJl5HxrOzoeQh/+4/J/48J1ejENKaRWbDGZmZrBhwwYAwFq1Wo0bN24s2juORrRqK1Z1Fu872Xgs5BTuQFsQ7M9+yYKfvfMR+uxEdpDfbDyGtdI6AMCjeAyPUJh/JgHzZxtnUtsyOTmJLVu2AACy9Ho97HZ7zBfSalYukm6nT/4MVUff9V+KFub3m4mvFoKRFZAl/59JVpjdbpcn27J0Oh1sNpuix1RbVokQfpy6382Oa38AfrDnhfAHAIC+j46h6mhl9FuHMqik2Gw2bN++HcB8SZGHjMNItWUVH35lCEoJ6/gKHwJ46p/C5uYFwNH/Lo59BLx26NDC+fcMhBcIM3NwOBzYsWOHv/Rm8nRwLCRJ4rfzh8+EHxYQ61CaTCU7O1tewQOSIXMUqwlJkvz3qAQfiTV/RFPlG6tHIcEL8khyLQCUlJRgYGAg4Rm9dCMIAn76qw/w1ctrIAjHZPc+O+dvQ/VbWpmO1WoNWU2UBfgnjYLXHQGZOz4USRZ+9YEk38lF+hUyP4qUZtniI3zdnUCSY2NjKCsrw9TUVBpFi8XqyPHxwLD+0dzcHDZt2gS73S7fUJEF+Cft161bh7GxsfRIuijxKWShdPutq0ws6+Ed1itXrmDbtm0hV4bIX7tv3z50dXXJDwJVQWYR2VcBAokvRXYQV0KkZUASXV1d2L9/f4ibvDs4HZuGUsFqmWsMbFBSqVQR69nk3cEGgwGbN28OXdO6Csnk0sHgu8QEAR999BHy8/Oh1WpD/IVU1iaTCZ2dnSsi4INIeHty9uxZxe3rIXdy3b59GzqdDteuXcvMu6ruIwJ787/++uuIFTchJUWlUuHAgQNoa2tbSfkeSI4dO4b6+nrFNWkRt9dNTk7CYDDA4XBAFMUVE/JB4ubNm9ixYweuX7+OjRs3RlRrER0AjUaDvXv3Kh5R8ZClE5z3W1tbceDAgehHrSiZa4EjKtJ9i9v9SOCwnMDGU6UFg1Ev3zxy5Ag8Hg8sFkvKcs+DBOeHV1555RUUFBSgqalJ8XngH0U8Hg/VanVGbyFYbfT391On0y16NFVKDvZ8iJ/ghE/kYM+YI321tbXYvHkzjh8/nrJifT8T3Ii3tLSgoKAgZGs4o40tLqa1ycnJuA+Lfogy3d3d1Gq1nJ6ejmsngKJSwl+M51j1hygTfqx6PCTlAoKHLBCcoQN7TgIXECj5USKhq8+Vrup4iDJ3796dv6qjWXaL95j5qP0UJebm5lBRUYEdO3agvb196S3gA8BPfvITeL1e9PT0JP5yojnAf/2T/x6uhygTuP7pb3/725LeX1QpSsXMZrNRFMUIi2w17TFMFVEvSkuAhEtKgMB9XA9LzAKBKwWtVuuywlmyUsiFyzfr6+sf6MZ/dnaWJpMp5PLN5dQay1pMlZ+fjytXrsDhcODFF18MOTTtQSGwb9/r9WJoaAh5eXkAlnfGy7JXuImiiN7eXuTn52Pnzp24evXqcoNcNVy5cgXPPvss9uzZg/fffz95J1skqwiTC7e2XbwY5XLJ+4ju7m7m5uam/urzRIhWZwbOhr9fbxjy+XxsamqiVqtNaOgkEZZcfUWrM3fu3Inh4WFYrVY8++yzEWenLAemecXmwMAACgoK8MUXX+DKlSupO3syJaqeJ3C8bF1dneKYWayrbJNFohdnKuFyuWg0GqnValdktDylS9mrq6sxPj6OzZs345lnnsHbb7+Nv/71r/Lz8NKWit26SmHGG8/Nmzfx5ptvoqCgAHl5ebh27drKHJWbLO0ulvucTifr6uooiiLNZrPCCaorS6y4nU4n6+vrKYoiGxoaUnafTDRSWn0p4XK5+PrrrzMnJ4dGo5Hnz5+P+91UK7Gnp4e1tbUURZGNjY1xVbmpYMWVEmB6epoWi4WFhYXUaDRsbGzk2NjYisths9nY0NBAtVrN4uJidnR0xLW0KpXKSWjofonV46J1+NjYGN577z188MEH8Hq9KC0tRWlpKUpKSrBjx46Q9+MJLxZXr16F1WqVf1QqFWpqamAymeTeeLpJuVISZXJyEpcvX0Z/fz+sViumpqZQXFyMbdu2IS8vD88995zcc37yyScjthFMTEzg+vXrAPyH0AwPD8PhcMDpdGJwcBBbt27FCy+8gBdffBF79uyRF7IvV9nJJOOUEo7b7caf//xnjI2NYWpqClarVX7mcDhw48aNkP6LRqORc/y6deuwe/duaDQabN++HYWFhavikM//B/WEk9D6ueBkAAAAAElFTkSuQmCC"
|
<image>如图,A、B、C是⊙O上的三点,∠α=130°,那么∠A等于()
Choices:
(A) 105°
(B) 115°
(C) 125°
(D) 135°
|
115°
| 69,874 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABqCAYAAACRU14GAAAF/UlEQVR4nO2dT2gcVRzHv1Nq10C2aZO20JIIZkugl0gPRY0KoY2WIqFgtdSLxYPFHOy1pQfFQnsQRA+CGj1YwYsYCXgQhASaViFU0mIsITFND5ukxRKTzW4Ju5fnwcw6u5lN5t977/fm9z6wl9nZmd++z/5+b2Z23htHCCFgYcU23QFY1GOlM8RKZ4iVzhArnSFWOkO26w5ANo7jRPpcms9kUye9XnJUeUlthyKpkO4VlJSc+u3I2IcujJWuWoJ3H6b/AIyU7jiO1sb2+wGYJN8o6RQb2I2FYmyNMEK6CQ1qknzS0k1owHq88qnGTfbijNtoVBtuK4QQka8RyIakdMpZEgaq4slJT4twF1c8JfmkpKdNuIvbTVERT0Z6WoV7oSKehHQOwl0oiNcunZNwKmiVzlW47mzXJp2rcBed4rWXd87oEq9FOvcs96JDvHLpVrh+bHkngOpsVyrdZjkNbKYTQWW2K5Nus5wOSqRb4cFQle22vBNDhXgrnSHSpdvSTg+b6Qyx0gkiu1+PJb1YXEF/Locbt2d837elnSaxpJcKSzh5/jy+Hh5NKh6LAmJJfzi3gL7TJ9FVLqNcqSQVEwkezN/DM3v2VO9k7XvzotLvKLPEx5JeWFtDa7YVzShhrVxOKibtVCplfHP1Y/x4Z7J6J+ul1ztx7aebukNLhMjSi8UVbGvah53NO5HJzGBy9kHN+yb350t/zyOPDrTva6suO/TsMdwZGU9FRYssvVRYwnuvvQzHcTBw+VtMzc0nGZdWio8W8XjvbmR27Kgua25pA/7Kp6KiRZb+cG4B1+/fhxACi/nZ1GQBAMzPTfkuLxXyWCqUFEeTPJGlF9bW0JTJAEhXFmxGc0sH2lqadYcRm0jS3f7cLX/Z7C509zz27deDvijR3nlow7JSYQn5FGQ5AEBE4MKZYwKAGJuYFkIIMT0xJgCItrZuMZtfFOszS4faJoDQrzhsto3V1WUx0DcglldXq8umJ8bEW+9/HmufUYj7Pf1w1jecOCqO3sNWCDeeINOFjQ4N4onOXrx0uAsA8N0nl/HcG+8g174/YrTRkNGOUq+9yy7bYv0cOugrTFdy9NQ53B2+Uv3MU71nlAuXhdRMB+hOHWLKtGDGZTpl3IbkJhyQLN0tqRZasM10zljpDJEu3ZZ4ethMZ4g06SZkuAkxysBmOkOUSOeaUXGQeRnbZjpD7MUZhijLdPsDCI7sfyhteWeIvTjDEJvpxFBx84nSUzab9TRgn+mUfoiqBojYo3eGKM90K98flcPAlEq3wmnAvk+ngOrBnlrKOyD/9mhLY7RkOuU7UFWjY0i3NOmjQ4Mbxqvlcv1YKRar63DPdl1j+KVJf7H/LK4ODGA2v1gdYfLVR/34/pdbAGrLPEf5Oidt0Hog5x1woFO+6rMK3bN0KJNeqZQxeesRTr9ypGa59xKtV35as1+3cECy9MLyDA52HIDjOMhknkTTkeexK5vdsJ4306IOODQBKt9FqvSW3V01ffpBzGJwyH/OOb8Smyb5lB4NrrRP32qGpkZ9q+mln0JJ96L8QC7/+9Smc9Nsltkmln5qwgFgu8qdTY2PoPVEj2+/7sV7Oteoweqv7FFrWICmcAASJjRZx52Xxvv68oeR0NsJGqJ3P1FIsinixKECaTNRJEnYbI6S/UlkJeWq40VpeY+KCFnKw64fF1NkuxiR6fXIyvwo2U62394EIzK9nvpM9i5LYv2tMGWSokYYKd3F2+BBRPitH0RakHnnTMLI8r4Vjc7f/b6qV36Yz5lMKqU3IsjFHA7NYXR5DwsHoUGwN0YyxEpniJXOECsd/z9U0PvX7dkPvtAdljTYS69UyvjswiV8ev1mzV+3b/c8nZpn0tTD6ujdD7/HcQFA7/HjmiKSD/tMnxof2fA4rrTDXjoAvNDdpTsEpVjpAH79w/+p0GmFvXS/x3GlHfbSs3sP4J+ff6sZYwcA96anU3v0zl76/vYcXj3h1DxIcOb2DYz8uZDagzv20gHg3Q+v1TyO68rwXZw7dVR3WNJg9deq5T9spjPkX9cyiMMKMmC3AAAAAElFTkSuQmCC"
|
<image>如图,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于()
Choices:
(A) 140°
(B) 110°
(C) 120°
(D) 130°
|
130°
| 69,875 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAACHCAYAAAD0i6DcAAAXzUlEQVR4nO2df1BTZ7rHv1G3nd7Gpj+O14McmyJxiRd3jMXORsVGKiqtQmEXl84UZ9kZdmMHu+NuQfGOO8zO0ikqvcNM0y2oM8ZpnImVjm2hLQIuyYqFbphJ/sBNKkkFcbfJ4K5U6Nbttjz3D5ogECAJ50cS8pnJmJzz/niC37w/nue87ysjIkKCBDyzSGoDEsQnCWElEISEsBIIQtwI6+DziyCTyaa88uDGmNSmLUjiRljH3h9DRR7Q6iYQjb/eqliE1bJ89NF3Upu34IgbYRHccKIC21Mnru079h4q8ppQfvikdIYtUOJGWJ62dixas2ra9VXqXHzg/FwCixY2cSOs9vaP8Fx29rTrqao0CaxJEBfCIrjx0XHCtuzpLZbH/Rly01KD5EogJHEhLHg+h6wiF6opX4c8rXjpWBOe27FNIsMWLnEhrPY/tSEtdXprdei3O4HnK7AvWyWBVQsbWazHCglu5MtWY7/nO2xfNf47IU8rFql2AnkVoPePhVXe1atX8be//Q2ffPIJPB4PBgcHA/f6+/sxMDAwKb1KpcKKFSsgk8kAAKtWrcLjjz+OLVu2IDk5GWq1ep7fMDaJaWG52+qxesdLQe/Vt/VBP0dL5fF40NHRAavVCrvdjqtXryIjIwMrVqzAk08+iZSUFDzxxBOB9MnJyVCpJpfpcrng8/lARJDJZOjr68PNmzfx6aefwuv1wuFwQKPRYO3atdDpdMjKykJqavyP+WJaWOHi8/nQ1NQEi8UCq9UKuVwe+M/WarVQKpWC1OvxeNDd3Q2LxQKLxYK7d+9i69at0Ol0yM/PB8MwgtQrKRTn3L37LzKZTLRp0yZ64IEHKDc3l8xmM3m9XslsGhwcJJPJRKWlpSSXy6mwsJDOnTsnmT1CELfCam//E+19sZjkcjnt2LGDHn30UfrpT39KarWaAJBWq6WysjIyGo1kt9sltdVkMlFOTg4pFAoqKSmhzs5OSe3hg7gTVktLC23cuJGUSiXV1dWR1+ulZ599lo6+VjMpndVqperqaiooKCClUkmLFy8mnU5HlZWVZDabyePxiG77jRs3qLa2ljiOI51ORxaLRXQb+CJuhHXhwgXSaDSkVqvJaDQGrtfU1FBmZuac+YeGhqilpYWqqqooJyeHGIYhhUJBOp2OqqqqqLm5WdTu8+TJk6RUKmnjxo3U0tIiWr18EfPC6uzspHXrNaTRaKixsXHSPbvdThzH0eDgYERl9/f304ULF+jIkSOk0+no/vvvJ5ZlKTc3l6qqqshisdDw8DAfX2NGTCYTqdVq0mq1ZLPZeCu39UQ5ARh/5VXQGPVRefkfeSs/ZoU1NDRExcXFxLLsNEEREY2MjJBKpeL91+50OslkMtGBAwdIp9MRAFKpVFRUVES1tbWCdV8mk4kYhiG9Xj8vMY+5LxIAyjvYMO1aRcNFPkwlohgVlsFgIIZhqLKykkZHR4OmKS4uJr1eL4o9NpuN6uvrSa/XU0ZGBslkMlq/fj2VlpaSwWCgrq4uXuoZHh6mAwcO0LJlyyZ196HyLfXR81NE5eetg7lU39bHh5lEFGPCcrvdpNVqKTs7m5xO54zpzGYzaTQaES2bjsViobq6OiouLg7MRDMzM6msrIzOnDlDvb29EZdtt9spMzOTdDpdWN38ePeXS330XdB7re6ITZpGzAirsbGRWJYlg8Ewazq3200Mw5DbzeNfiScsFgtVV1dTfn7+tJloY2Nj2DbX1NQQy7Ihdfdj37dWfHZ3sxETwtLr9cRxXEiD14yMDKqvrxfBqvkz00w0Ozs75JnolStXiGEYKi8vnzXdWF8bAeC1u5uNqA7peDweFBYWgmVZnDt3Dg899NCs6Q8fPozr16/DbDaLZCH/DAwMwG63o6enB52dneju7sayZcuwYcMGaDQaZGVl4cknn4RcLg/kGRoawk9+8hN8++23OH/+PDiOm1YueVqxeHUO3mq9NmcMlRdEkW8E2O12YhiGqqurQ0rf0tJCHMfRyMiIwJaJj8vlmjYTVavVVFRURMePHw/MRMvLy4njuKDjzzHqo7wZusIx90XeW7KoFJbFYiGFQkEmkymk9ENDQ5ScnBwXoZBQsdls1NDQEJiJAiCNRkPp6ekkl8uDDhv8vqv61omoQl/rW4S8Ct7tizph+Qfp7e3tIefJycmhmpqauRPGKcPDw1RXV0csy9KqVato06ZNMw7q+9renHCMzuB64IOoEpbRaCSO48KaitfU1NDmzZsFtCp66evro7KyMmIYhkpLSwOzytOnT9OHH344o/NYDKJGWI2NjcRxHPX394ecZ74hm1ilpaWFdu/eTRzHUW1t7TRPvM/no2vXrpHT6QzZHcE3USGs9vZ2YhgmrJZKqJBNNHPixAlSqVSUmZlJZrN5zvS3bt2i7u5uYhiGuru7RbBwAsmFZbPZiGGYsMZUROKGbKRkcHCQysvLiWEYKikpIYfDEXLeb775hojGn/xgGGbWaAXfSCost9tNLMuG9Ou7l2gI2QhNZ2cnFRUVEcuyVFVVFfEjO35x1dfXk1KpFG3YIKmwNBpNyH4qP9EcsuEDo9FIGRkZpNFoIgo0z8Yrr7wS0rNpfCCZsPR6PeXk5ISdL5ZCNqHi9XrpD3/4AyUlJVFhYSFdvnxZsLoyMzPp0OFKwcr3I4mwzGYzKZVKGhoaCitfZWUlvfDCCwJZJT52u51KSkoCsT4xuqnBwUFiWZY+/vhjQesRXVj+rizcBQzxFLJpbGykzZs3k0qlopMnT4pef2dnJ7EsK6iQRRdWJF3Z0NAQcRwX0yGb4eHhwEKJ3bt3S+4mqampIZ1OJ1j5ogrLYDBENK6K5ZCN2+2m0tJSYlmW9Hp9VE06tFptyPHYcBFNWF6vl1iWDduXEuoqm2ijubmZdu/eTUqlkmpra+n27dtSmzQNm81GHMcJsiBENGEVFxdTZWV4s5FYC9mMjIxQQ0NDwDsuVZwuHPR6PZWVlfFerijCslgstHLlyrDy3LlzJ2ZCNv39/VRRURHwjs/neXaxGR4eJpZleV1aRiSSsIKt+ZuLWAjZdHZ2UmFhIbEsS9XV1WG7T6IFo9HI+3BDcGH5VyiHQ7SHbIxGI6Wnp1NGRoZgg1+xUalUvK6JFFxYGo2GLly4EHJ6v59Lir0TZsPr9dKRI0eIZVkqLi6OaddHMIxGI6/uB0GFFUlrFW0hG5vNRiUlJcSyrGjecangs9USVFgajSasrqKyspKKiooEtCh0TCYTZWZmklqtlsQ7LgUGg4G3VkswYbW0tJBKpQorvdQhm6GhoUne8UuXLklmi1SwLMtLNy+YsIqKiqiuri6ktFKHbPzecYZhqKysLKzHo+ONqqoqXmbjggjrzp07JJfLQ55+SxWyaW5upuzsbFIqlWQwGATfkigW6O/vJ4VCMe9yBBGW0Wik/Pz8kNKKvcpmZGSEDAYDqVQqys7OjgnvuNjodLqwZvLBEERYTz/9dEiGiRmy6e/vp/379xPLsjHnHRebcBqGmeBdWP4HyeZCrFU27e3tVFhYSBzHxbR3XExGRkaIYRj68ssvIy6Dd2H5NyCbC6FDNvHoHReToqKisBe53AvvZ+l0dHQgKytr1jTnzp1Db28v6uvrea3b5/Phd7/7HZYtW4b29nacPn0aPT09ePHFF3mtZyGQlZWFjo6OyAvgUeRENO4H+eKLL2a87w/Z9PXxt7tJT08PFRcXE8MwdOTIkbj2jouF0+kktVodcX5ehRWKMXyGbEwmE2m1WkpPT18w3nExYVk24vWMvHaFVqsVOp1uxvuHDx+GSqWCXq+PuI5bt27h1VdfxcqVK/H++++juroavb29KC0tjbjMBMHR6XSwWCwR5eVVWLONry5evAiTyYRTp05FVPbVq1fxy1/+Ej/60Y/w97//HZ2dnXjnnXewbVvikEuhmNc4i8+mU5nyRNDxzXw2Rrtw4cIk73g8LP+KFZxOZ8TPxfEqLIZhgl4PN2Tj944rlUrKzs6m5uZmvkxMECaRhnd46wodDkfQ8/5qamowOjqKQ4cOzVnGwMAA9u/fj5SUFDgcDrS0tKCtrQ27du3iy8wEYbJs2bJpp8qGwhK+DPjss8+wZs2aSdccDgfefPNNfPLJJ7PmvXTpEurq6uBwOLB//344nc74PBwyBlGr1XC5XGEfEsqbsJxO56QjaUdHR7Fnzx6cOnUKK1euDJrn1KlTeP3118EwDPbt24empia+zEnAEyqVCi6XCzt37gwrH29docvlmtRivfTSS9i2bds0g27evInDhw9jxYoVsFqtePvtt3H58uWEdzxKeeqpp9Db2xt2vrCE5WlvQJsn+D2v1wuWZQEED9l8+umn2Lt3L9avX48lS5bAbrfj7bffxoYNG8I2OoHw/Oc//wEAaDQa3Lp1K3D94PMyyGSTXw3t7ukFhDrK929AP9NBPuvWa8hms03bGM1kMlFGRgalp6fzvpFYAuG4du0a+Xw+Gh0dnfYcfEUeqKF1PCTX1/oWIYguQm6xThw6AeTlISV1LOj9r0ZGoVAoUFRUhMOHD8NsNiMpKQnvvfceamtr0dvbi5///Ofh/WwSSMbq1atx4MAB3L59G8sem5hIEa7B1bQb27JXAQBSV62CTCablj8kYbWdrACys0FNwUUFjA/Wf//73+Of//wnXnvtNdy+fRvd3d04f/48tm7dGubXShAN6PV6PPPMM/jX3a8D1zxtf4KsIhepsnHpHPrtTuRW1GN76uS8kw5pIvpm4obsvvFrnlYcugQc3QYs+m076P1j0wwYvvMlHnvkUYyNjWH79u3YsGED7rvvPl6/ZLRw/fp1fPjhh/jBD36A5557LjDjJaKgv9zYZQzAIhw/fhwPPPBAYJzVduIQdugnNHCxbww7VHO0WH4x+f8FgMoTl3DsVzsAmQy71wQ/NerhhxQYGxtDVVUVNm3aFBDVPZqNmz/6Rx99hH/84x/wer1obW0NXI+X7zfBuDR+/etf4+uvJ1qstg+PodVNICK0nihHzg8XB5/QTR20jY39O/B+0oHUc5y7EqSouMR/WioA0mq1UpsjOMPDw4Gwznd9LZMOdPqOrlEeQAdPtE7LN+MYizyt6Fj0DMbG/o2xsX+jr/UtrElbCaJvJnWZ/s8PLpVjdPTOtOv3pg3lXijpZrt+7/17r/GFwWCAWq2GRqNBbW0tr2VHIyMjX2Hp0qUAgEsd7ajYlT1x03MdHwBYlZIyLV9Qzzt5WgPjKaJvIJPdh8+vuzGG8ZlAYPz1/T0AWPaYAv8a/Rpy+UOTrk9NN9u9STZMyTNTev/ne4Xk/3zv+2B1RMK2bdvgdDp5KSsW+GpkFA8++CAAoK25Ftv/7zgAgOBGgWongNzADHESU5uwE/+bF2jqW93jXWNF3vjn/3pgyaTucGzs34HX2rVpAd/Vvd3p1M+z3Yvk+kxlz1ZngtCx2Wz0P6uVBIBkMllAGzKZbNZzDmcdY029Ntt/6rp16wK7wsWDsD5raxDlXL9op729PaKNQhZNtFzzG4ssX/4ovvrqq3mVMRN8j5Pmov5QHtK2N6OPvgMRYYw+A47pkVt5QlQ7ooGRkRE88sgjYeebNHifaSwy0zjl3rHMI4/8N7xe77TrU/PNdm+qHy2c/MEG6zO9n436Q3l4yaUG0QdQff/nkeGHeL31LTQfbYYHUXs2uyD4fL6IHmEKDN4jHdz686nV6kmD2tnKm+leMOGGmn+2vKF+N3f7H/HSsSa0uj8IcndcZAQCEG8+q5lxuVxYu3Zt2PlCCumEMqtas2YNPJ4ZHn2IEU68UYa8gw3TwhMAcL2/7/t3vK/xjWrcbjfUanXY+Wb9K4Xia/KTlpYW09NwghuffQA8u/2ZoPfbmmuRd3A3gsce4heXyxWRsHh1l/Oxr5JUjLkvBn38g2ji5PeZHhmKZ+RyeUT5eG3XH374YQwODvJZpGhQagryAHx+ffJDawQ3Xtk+cxcZz7hcLqhUkbXRvApLq9XiypUrfBYpGouwGs8ezMW+NyZcCuRpxSLZauBgA94/+isJrZMGq9WKH//4xxHl5W0xBTC+ctZiseCFF17gs1jR2Hf0A3z+vAwy2esYf2wEaHXTgmup/HR0dKCgoCCivJOex5ovLpcLBQUFMT2ITzBBUlISHA4Hli9fHnZeXrtCtVqN4eFh+Hw+PotNIAEulwsPP/xwRKICBHDKzGeHkgTRw1w7B80F78Ka905wCaKCUHZmnA1ex1jA+ILUp556Cl988QWfxSYQkdHRUaSkpMDtdkOhUERUBu8tFsdxSEtLw3vvvcd30QlE4t1330VmZmbEogIECnz94he/wJkzZ4QoOoEInD59et5rQHnvCoHxZ3hWrFiB69evJ3aNiTEGBgawbt06DA8Pz6scQVqspUuXYteuXTh79qwQxScQkNOnT/Pi4BakxQLG9xzdv38/+vr65k6cIGpISkpCY2MjNm/ePK9yBHu4aOfOnZDL5YlWK4Z48803kZaWNm9RARB2lWkkR/cmkA6VSkVWq5WXsgR9HDI/Px8AEq6HGODMmTNITk7G008/zU+BvMhzFhKtVmyQmprK20HjRAK3WMBEq/Xuu+8KXVWCCDlz5gySkpLmFRucimCzwnuxWq3Yu3cvbty4IXRVCcLkyy+/hFqtRlNTE6/bdooiLADYu3cvOI7Da6+9JkZ1CUJk3759WLJkCQwGA6/liiYsn88HjUaDjo6OyFZ9JOCdnp4eFBQUoLe3d15xwWCItkhu+fLlOHLkCH7zm9+IVWWCOXj55ZdRU1PDu6gAkVdflpWVYWhoCA0NDWJWmyAIR48exf333y/c/vq8zS9DxL9dt91uF7vqBN9z+fJlYllW0JNoJdnf0Ww2k1KpTJwoLwGDg4PEsiy1tLQIWo9og/ep7Nu3DwMDA/j444+lqH7BsmXLFmzevBk1NTWC1iPZDhd1dXXwer149dVXpTJhwVFRUQEAgosKgLRbHbvdbmJZls6dOyelGQuC+vp6UiqVgo6r7kXyPbRtNhs99thjvMapEkymubmZGIahv/71r6LVKbmwiMb3uWQYhnp7e6U2Je7o6uoihmGoq6tL1HqjQlhERI2NjcRxHPX390ttStzgdDpFmQEGI2qERURkNBqJ47hEy8UDNpuNWJalxsZGSeqPKmERjbdcLMsmxlzzoLm5WbKWyk/UCYtofMylUCjIZDJJbUrMUV9fTwqFgrq7uyW1IyqFRURkt9uJYRiqrq6W2pSYoby8nDiOI6fTKbUp0nneQ8Hj8aCwsBAsy8JsNgsShY8Hbt26hYKCAnz77bd45513AmcoSklU7y2dmpoKu90OpVKJtWvXoqenR2qToo4rV65ArVZDq9Wiq6srKkQFIHYOGfQP6g0Gg9SmRA01NTWSD9JnIqq7wql4PB68+OKLWLp0Kd54440F+ySqw+HAyy+/jMWLF8NkMoHjOKlNmo7Uyo4Eg8FADMNQZWUljYyMSG2OaAwPD9OBAweIYRgyGo1SmzMrUT3GmomysjI4nU7cvHkTq1evXhBLy86ePQuVSoWvv/4abrd73tsMCY7Uyp4vnZ2dpNFoSKPR0Pnz56U2h3dMJhOp1WrSarWB8yBjgZgXlh//imu1Wh313UQonDx5kpRKJW3cuDEqB+dzETfC8tPS0kJarZaUSiXV1dWR1+uV2qSQuXHjBtXW1hLHcaTT6WI6rBV3wvLT1tZGxcXFJJfLadeuXWQ2m6U2aUZMJhPl5OSQQqGgkpIS6uzslNqkeRNT7oZIOXv2LMxmMy5fvow9e/YgOzsbW7dujXhz/Ply8+ZNWK1WWCwWmM1m5OTkYM+ePfjZz34miT1CsCCE5cfn86GpqQl//vOf0dHRAblcDp1Oh6ysLGzcuBGPP/64IPV6PB50d3fDYrHAYrHg7t272Lp1K3Q6HfLz8+Nyn9YFJaypeDwedHR0wGq1wm634+rVq9iwYQNYlkVGRgZSUlLwxBNPBNJzHIfU1MknNrlcrsARLzKZDNeuXcPg4CD+8pe/wOv1wuFwQKPRYO3atQERTy0jHlnQwgqGw+GAz+dDV1cXPB7PpPMX+/v7MTAwMCm9SqVCcnJy4HNKSgqUSiW2bNkClmWRnp4umu3RREJYCQQhJj3vCaKfhLASCML/A6U/JfwBuoKsAAAAAElFTkSuQmCC"
|
<image>如图,AB为⊙O的直径,C,D两点在圆上,∠CAB=20°,则∠ADC的度数等于()
Choices:
(A) 114°
(B) 110°
(C) 108°
(D) 106°
|
110°
| 69,876 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAIUAAAB9CAIAAAADeTcfAAAZCElEQVR4nO1daVBUV9o+fbuhaWFYBFmNLCIIgiCrgLggiAsiDI6KMTPGJSlTZaqciUnFmomf5VijY1UyFmisSGTCuCYQCYhIswSQVVsRFIp9aZClG7qbpfflfj9OvFy7G8Tu24vB51f3uaf7Pvc+Z33Pe95DQlEUvIPRADE0AcNDIpFIJBJDs/gN7/QAVVVVz549MzSL3zDv9EBRVCwWY600h8MpKSnhcDiGZYVhPuqhUCjgZ7lcXlBQIBKJli5dalhWGOadHgiC0Gg0EokEAOjq6iopKVmzZo2Hh4ehef2GeacHHnQ63cnJafPmzYYmMo35q0ddXV1NTc3BgwcXLFhgaC7TmKd6cLnc3Nzc9evXL1u2zNBcXsE81aOmpmZ8fPyDDz4wNBFlzEc9WCxWRUVFXFwcjUYzNBdlzEc9qqqqBALBli1bDE1EDeadHoODg7dv305NTTXCygHmmx4oimZlZYWGhkZFRRmai3rMLz1qa2s7Ozs//vhjQxOZEfNIj/Hx8V9++WXr1q1/+MMfDM1lRswjPaqrq0kkUmRkpKGJzIb5ogeHw7l582ZkZKSDg4OhucyG37kemF39xo0b9vb2a9asgZZEo10V/Z3rAdHS0lJXV/fhhx8uXLjQ0Fxeg9+5HiQSSSQSXbt2LTQ01M/PDyaiKAprCfbVQOzUQFkPFEWNip/2qKys5PP5+Nk4XgzVr/qB0kvGvlKU8hmEnO7A4XDodLqvr6+x2XFnKhO/8/bq0aNHFhYWe/fufVvK2XT9YLPZBQUFAoHgbaGOB4lEUmoBKBSKqalpVlbWokWLCgoKuFyuobjNEUeOHAEATD9Gc3PzJ598wmKxyGSyQYlpAiU9SCSSVCplMplubm6jo6Moijo7O8vlcgMyfC2eP38O8HqIxeKhoSGZTPY21g884PDpyZMnV65cSU9Pv379eldX18mTJxEEASqDK+MB9HGZbq+oVKqbm5vB6BAKFEV//PHHjz76yMvL6+DBg2lpaTKZzMfHx9C8Xo/p/vz3NMyl0+ltbW2xsbEAgCVLlohEooqKCkOTegXwbau+89/h+IrD4eTm5iYmJlpbW8OUJUuWDA0NCQQCg/JSA9WWE1G69vbOBzGvw/v370skku3bt2OX1q9fPzQ01N3dbSBqajBTH6ZcP0gkktqsxi+SSCQCAExOThYWFn788ccmJiYA/MZ51apVEomko6PDIMTwRVyhUPD5/KmpqYmJiYmJCZlMppT59e2VVCptbW0dGxsjnimhoFKpAIC0tLTg4OCQkBAAAAC/FSwKheLl5dXQ0DA+Pq5/YvgiPjIycvTo0a1bt8bFxcXFxWVmZiplfr0ePB7vm2++EQqFxDMlCLD0kcnkxsbG5ubmbdu2waEtHjt27Hj+/PnAwIDqb3Va9ZX+nEaj2dnZDQ8PBwUFhYWF3b59u7y8HJ9B2X6lioqKitbWVktLS2KJEo7R0dHs7OyYmBhXV1fVqytWrJDJZEwmc8WKFfrnhsHa2jopKYnFYn377bcAgODg4AcPHqxfvx7L8Jr6wWaza2trly5damVlpVOi2gC2Bvn5+Vwud+vWraampmqzhYeHt7W1qW6F0un0UOnPURTt6+szMzMDAPB4PBqNprReOZseCoXi0aNHTk5Ovb29OqBKJAQCQUVFRUxMjJOTEwAKgYA/OTnJ4/G4XC6Px5uamlIoFDt27GhqamKxWPgf6nmuLhaLJycnvb29x8fHCwsLXV1do6Oj8Rlma684HM74+LiXl1dLSwtMMVpjQ2bmf5cuey82NlYmk0sk4pMn/6+2tlYikUDCLi4up0+f9vHx4fF4IyMjixcvNhRPFEW7u7uzs7Nv3rwZHx9/6tQpJZvIbPWjqakpIiJi+fLlvr6+uqWpHWprax89erQzZaelpSUAKIVCWbJkCZvNDg0N3bJlS0REBJfL5XA4ZDI5ICCgrq5OKpUaiurY2Nj4+HhqauqqVavq6+s5HA6F8kqVmLF+DA8PX7x4MTg4WCAQYG2cEVaOyclJOp0eEBDgszwAAEChkAGg7Nv3fk9Pz9dffw0AYLPZhYWFcDSckJBw5syZPXv22NraGoTtwMCAiYnJ6dOn5XL5xo0bL168GBAQALlBzFg/GAwGi8W6detWdna2sVng8YPUmpoaiUSybdvWlxdJKIqOjY06OTkBABoaGphMZkhICPRk8Pf3F4lEhuoOFQrF8PCwvb09AIBMJq9YsWJ4eBhOYzGorx+jo6N8Pv/SpUsLFy4sKyszNzfXB9+5Ad+Hsdns0tJSHx8fT09PLINCoejq6rG3t29tbWUwGBs2bHB3d4f6mZqaRkdH19TUBAUF6b+uSySSoaGh4OBgSHJwcNDR0RG6dWMP9Ur9wArd7du3bW1t/f39XVxcLC0tTUxM9Ex9FgiFQsxUVVtbOzk5mZCQgCAIRh5BkK6urjNnzuzatau8vNzZ2ZlMJmPNdGxsbHl5OVyb0rMRaGpqqqenJzAwEACQk5NTXFwcFBQE3y1WOJTrR3d3d1pa2rVr1y5dugQAuHjx4uXLlxcuXGhpablu3Tp9sp8J2Jvt6urKzc3dt2/fokWL8BnEYnFPT09iYuLQ0JCZmZnS9kAPDw+RSNTW1oZNDPUzaGxsbDx16lR1dXV3dzeVSm1sbExMTExISFC69St6kEgkuVwuFotjYmIcHR0BADKZzNvb28zMzIBjEiXA6Z5cLs/JybG3t4+JiYHp2IONjY1xudyMjIz29vaysjKln5ubm0dHR+fl5a1YsUKfTZZMJqNQKBs2bBAKhWKxePXq1SdOnFCzzxp9O1FXV7d///6uri7VS/X19Z999hmKokNDQwwGg8/nc7lcfIba2tpt27ZJpVL9UEVRVKFQzDHnW7keNTk5mZ2dHR4eDssX+mo30NnZuWrVKgCAo6NjQEBARUXF48eP8RmcnJzMzMywSa4eMPeK+FbqUV5eLhAIkpOT4Velp21ubsYmsK2trXfv3lXa8OHo6BgSEpKbm6sXsm+G19t3jQ1SqTQrK+vQoUOqOwf6+/v/9a9/ZWdnMxgMuFjb1dXl6Oi4fPlyfDYqlerv73/lyhUsBTUaO9DbVz9++uknOzu7DRs2qF5SKBRyuTw2Ntbc3FwkEolEIjc3t5SUFNXFAnd3dwsLi56eHr1QfhPosBfTAV68eLFr165nz57hExUKxRw7TCzb5OTk6dOnz549SzxF7fA21Q+ZTHb16tXVq1d7e3vj02da81cFls3CwsLDw4PBYGBTSyOBUeuBvjpwqqysHBgY2Lx5MyH2Ak9PTwRBjCcyHIRR64Ev9RKJpKysLDw8/E13DsB2AAAgl8vxAnt7e/v6+paWlhLFlhAYtR54FBUVSSSSTZs2KS0YgJnNUCguFJwqrKysli5damxLn0atB/aiWSzW3bt3165d6+Li8kY/VygUWO9CJpOVuhl3d3eFQtHe3k4gZy1h1HrA16dQKK5du7Zo0aJNmzbNkk0VCILMvnITFBSEouj9+/e1p0oUjFoPWD+ePn3a1NS0adOmmRxHZsHs4y4ajebu7t7d3S0WizVnSSiMWg8SiTQ1NVVQUODh4REaGorOsAdSG0RHRwuFwra2Nu3/ihAYtR4AgMePH3d0dCQlJc0SHgkbQc10dZb/9/PzM6pRr1HrMTk5effu3YiIiJUrVwLd7FM2NzdfvHgxk8k0kpDhxqsHiqIVFRWjo6P79++fPefs8/PXyhYZGTkwMKA08CWkMdQAxqtHT09Pbm7u4cOHdR3ILTw8fGxsTGl3iKHMvUaqB5/PLygocHFxITw8Eoqi0MUGrkwDABYsWODo6NjW1mYMa9LGpQdsJWQyWW9v79OnT3ft2qWf+yYkJDQ2Ng4NDenndrPAuPSAEAgEJSUlfn5+uvBTJZFI0L2cTCZjjoEbNmxgs9mdnZ2E3+5NYVx6wFa7o6OjoaFhz549umvElbprMpm8fPnyjo4Og8cMMC49ILKyshITE6HDp46gqvS2bduePHnCZrOxFIMMsYxOjx9++MHCwkL/Zw6EhYX19vYODw/r+b5KMC492tvbS0tLk5KS9H/mwIIFCzw9Pdva2rAmyyBDXiPSA0XRO3fu+Pj4GGq7SXJycmVlpWEn6gbQY6Z2+fnz50wmMzIyUp/u9Hgyq1evbmlpwXch+ocB9FDbDkil0szMTC8vr9DQUD1wwGTAkzE3N1+2bJnSBmQ9w1jqR2lpKYfD2bFjx4IFC9RmIHa0o7ZMyGSy1NTU0tJSbJVX/0Mso+g/enp68vPzU1JSDBvwiUQirVq1anBwUBcT9TlKa/j2SiwW37lzx8TEZMuWLdBfTW3h1dFoB/+aKBQKmUxeuXJlWVkZrCL6H2IZvn60trY2Nzfv2LGDQqGIxWL8DFkul8OtAnojY2FhkZCQUFRUpBrpRUvMUVoD6yGRSOrq6jw8PCIiIgAAVCoV74FAp9M//fRTnYZOUV3jsrKyEggEhorXYjD/dtguvXjxorq6+quvvoI2PnwcmMrKymPHjgFcYCv9wMXFxdfXt6SkJCUlhfA/Z7FY58+fZzKZQqEQRVFTU9MJ523FaQewDAarHyQSSSAQXL16NSwsDL87FgOFQlm8eDEW441YPHv27OTJk5cvX+bxeDAF8150cHDw9/fPycnRxX0RBBkdHa2pqaFSqRYWFtCiHHf06nSOWXyteTzevXv38vLyOjs7URQdHBzU0nlbCcXFxe+//75AIJgpQ1VVVUhIyMTEBLH3nZiYOH/+fHBwsJeXV3p6OgyrIZVKMe/32tra+Ph4NptN7H0h6uvrT5w4AT/X1NS4u7v/9NNP2NUZ68fY2FheXt7x48ePHTt248aNBw8eVFZWElhShoeHi4qKjh8/rroci77swHVh/UZRtLW11drauri4ePfu3VlZWXDlHN9vLV++3M/P7+effyb81gAAkUiE7deKiIhISUmh0+lYHvV6SKXSTz/9lE6nX7hwITMz087O7ssvv7SxsdGYhBLYbPb333/P5/P9/f1Vr2J9LOGDHACAVCqF0RVtbGz+9Kc/OTk5NTc3g1e9ra2trV1dXfEhSdU+xZuCRCKJxWImkwlDNEB4enqOjIxgX9X355cvX66vrz979uzGjRsBAObm5gUFBXAHtAYkUJUpxfXr19PT02EU6cDAwJSUFM3+XAOQyWRvb287OzsAgJubm7u7OwwljiAIRvLf//43LIXDw8OQGFETkfHx8ZGRkfDwcCzF3t4ev31CTf3g8/kZGRnx8fE7d+6EKY6OjvHx8QSGJCssLFyzZk1ycjKJRGpoaDh37ty9e/eI+vPZQSaToRgAAJFIZGVlBUsrpselS5fa2trgIdyq29e1xMDAQENDAz4yM4VCwb9YNfXjwYMHYrF49+7dWIqZmZmfn5/Gh8soFS7YiX3xxRfu7u4ikaisrOz69evZ2dkSiSQsLMzZ2Vmzu2iAFy9emJqa4s37Dx8+rK6u/uSTT6KiotLS0mpqavbu3UvgHXk8nlAoxEcXevz4MX57o5r41Pn5+W5ubtAlEMLGxmbt2rWEHBPH4XCuXbuWmprq7u4OADAzM4uPj79w4UJERMQ333xz8+ZNfLwbU1NTBEE0cKOeC+RyeXd3t4ODA2Y0GxkZ+d///nf06FE4OXVzcxMKhYTbsrCAEgAALpdbUFCwZMkSLEU5HjKk5eDgYGFhgb9EVMil/Px8Jyenl/FYAXjZgOzcufPMmTPQsIhdkkgkMplMR25RnZ2dExMTSUlJ2INXVFSIxWLo0QsAiIyMpNFov/76K/YTLXt1oVDY19cHCyLEL7/8olAo1q5di6Wo6T8UCgWVSiWkB1MoFHjDQ3Nz88OHD2NiYlRXnGxsbNasWbN37968vLympiaY+fPPP3/y5MlXX32FzdqIAp/Pf/r0qaurK2w64BSnqKgIz83W1tbKygqOviC0fCfQyS8oKAh+vXTp0rlz544cOYIdbAVg/yEQCPDr1RQKZXJyEm+6mJqaGh8ff6O9SRjwz3Dv3j17e3t8S6iEyMjI58+fX7169dSpUyYmJkFBQVFRUfb29lgsc6LGOYODg2ZmZnATe19fH4Ig/f39HA4nPDwcf4vAwEA6nd7f3//ee+9pecf29vZz587l5OS4uLjAKReDwYiPj09NTcXHh6MAAJQaBH9//9zc3JaWFhiRiMViVVdXa3ZYA4Ig0DAFAGhqauro6Dhw4MDs/dBHH320cePG5ubmyMjI7777ToObvhYtLS1XrlyBb2FwcJBKpW7fvr2oqMjT0xPOsWAsHgBAVFTUzz//zGAwtNdjbGysq6tr3bp19fX10CK3c+fOzz//XCkbBQCgFL4gOTm5oKAgIyPj6NGjAIDq6ure3t7ExERt2IhEouzsbF9f37CwsNdmXrdu3aNHj8LCwpS2bhJSOaCV4s6dOwiC5OTkKBSK48eP29nZMZlMV1dX2FhJJBK42dDZ2dne3r67uxtTSGOEhobm5+cjCIJNPNX7iau1sZSWloaFhfn5+QUEBJw+fXpgYEBLo01eXt7hw4fHxsbmkpnBYOzevVspSBKBGB4eZjAYDAajrq7u4cOH0E71wQcfXLx4UTXznTt3Dh8+DC14eoB6zWNiYs6fP9/f348gSFRUlGY9BwYWi/X48eP9+/fPcQbj5eXFZrOxho5wODg4qMai4fP5SmEfIJKSknJzc9lsNjxPSNeY1mNwcDArK4vD4SAIgiCIra0tNHX88MMPfD5/Lv+FqutvzczM+vr6qqqq+Hx+Xl7eLD+XSCQIglAoFC6Xy2Aw/va3v8GeBhYc8OrqCOGoqqoyNTUtLi5WegpTU9Py8vLR0dGZjvfUDOjL83EOHTrk5eWFpU+f59Xe3v7FF18MDg7Cx6ZSqTKZDHsXmoFMJo+MjIyMjAQFBUGD9lx+BV3QRSIRRloP69g0Gk0ikai1KMNwhYQbm+G7vXDhAt6cNa2HXC7HQncS8vwwGmNGRgaLxTp58uQbPQ+ZTNazqzmZTIbrH7NfIrxw0Gg0/Ehh+hOZTMbPyQlBb29vd3f3X//6V/37476lUB9/V2OIxWJsNsPj8b777rvIyMg59oTa350oGJDJnHrIufODW11ho1dYeE8qlWJRDt9hLiB4woXZYtns0dLSXz/8cD9sqUZHRxsaGmAMPXgja2vrlStX4lfKjCSCITAokznNOV/LD+vlsA/37t13cHCAsbEBAH19fV9++WV/f7+lpSWco/J4vOzsbLweRoK599i6GPgR4H8FwxfCQYJYLKZSqUwm815B/mfHj2O2Um9v76SkpIGBgUOHDkFPnz//+c8GPBdlFqieMISFGYKfsWmQLqoRAXpAiiiKkkiAQqGQSKTvv/9+TXRUYGAAeGmbs7Cw8Pb2dnFxCQkJefHiha2tbXJyMrZuasyAL72mpub8+fNTU1MuLi4nTpwYGBjALysRCAJmvPgiQ6FQSkpK+vv79+7da2JigsUxEggEUqkUGozpdDqTyfzLX/5iVINg1TELlnLr1q1vv/3WxsYGGhwzMzNV488QNSQjzF8UliM2m52dnb1161ZbWzsAgEKhgD28QCDo6ekZGBjo7Ozs7u6Oi4vDGwmMGS0tLV9//XVYWNh//vMfCoUiFAqPHTumO1sWkf67KIoWFhZaW1tjC5BmZmZQJ4FA0NDQ0NjYKBKJdu3apSMvUG2g2hlAd6T09HQXF5eTJ0/CDpJGox08eFD1nE+i+hIi9ejt7Xv6tDEuLlb1vKm2tjY3N7e///3vdXV1pqamxjO0nR1NTU1dXV0HDx7EHzESGhqqdMgQgSBSDzq92NzcPCoqCgAAAIodHwsA6O/vd3Z2DgwMpFKpo6OjxnYg1UyoqamZmJhQXUPT3VoAYXq0trbW19cdOPDhy9XGaT3gicZwydPW1nbhwoU6cuEhHB0dHTQaDVu2qaury8/PJ5FIixYtOnLkiC6eghg9pqamfvzxx2XLPCMiVr9Mm64c4+PjUqkUWpWNcAI4CwQCgbW1NeZvwGazc3JyhoaGUlNTdbQrRUM98FNTFEXhGvs//vEPMhn7w9+ucrnc0tLSxsbGP/7xj9qS1TtIJJJEIsGedPPmzVwut6Gh4ezZs3inEAKh4fwD3yGzWKzS0tLo6Gi8pxeG+/fvnzhx4u7duxkZGRpyNBwcHBzgaVTwq4mJCYIg4eHhOhIDaD8fRFG0vr5eJBJt375dbYbAwMB//vOf6enp+g8Roz2SkpJEItGNGzewlObmZrXL7ERB2/5DLBbn5eXt2bNnJuOHj4+PZr5bxoCQkJCjR49mZWV1dnaSyWSBQMDj8XTq2KCtHrdu3XJwcIiNjSWEjRHiwIEDTCYTHoNAIpGSkpJUT9shEhp7CsHT0bds2TI8PKyUrvF/GhCqtLEUqVQqfAnMx0NH0Lx+SCSStLS0ffv2KfkyvS1zbyWotZfADxQKRUvnxLlD8/4cQZC4uLiEhAQC2bzDtL+PBlAoFHP0UUON5kC510ItVVRlAVRH0Gq8q42W76AWmuuBoujExMTcXQ41vpGeMXt0IV0/iFbt1TsQDsPHW3oHPN7pYVz4f7vlPU9glMWCAAAAAElFTkSuQmCC"
|
<image>如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,则∠2的度数是()
Choices:
(A) 50°
(B) 65°
(C) 60°
(D) 45°
|
65°
| 69,877 | null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAGsAAAB8CAYAAABubE4vAAASmUlEQVR4nO1df0wU177/zFClMaa0AQUrvVYBxbtQabShiW36EH3glUSvP2LbYNg2yg/BiJW2tKG33Ff7Cgs88QWu+LQt3NDEWNDa2qi3rWJijEYTFdZr1XIlsghe1jSx5mYBZ773j9mZnZn9zc7uzu7zk2x295wz53znfM/3nO9853y/hyEiwiRBRGAYZrKXhwwVFRVYuHAhysvLJZojhXY52EAujpSbvXfvHhISEgA4aI4U2uUIiFmRgpGRESQlJQEQZoNIhV/MitQbtVqtSExMBBCZEiXCL2ZF4o0SESwWC2bMmBFuUgLGpCTLVwnTgySOj49jYmIC8fHx4SYlYExKsuQSZrVavZYPJ0ZGRiSpIiJdDKDJwiuzPN3chQsXsGTJEjx8+FBTorTEyMiIYr3SwwCaLLwyy9PNZWdnIycnB9XV1ZoSpSXu37+PWbNmKdIiVboCVt2bm5tx9OhRnDlzRgt6NMfg4KCktouIVOkKmFlxcXE4cOAACgsL8fDhQ92NWqvVKj0QRzo0eSjOy8tDfn4+duzYobtROzw8jOTk5HCToQk0s2Ds3r0bJ06cwE8//QRAP+uCaGrSCz2BQBNmERGmT5+O9vZ2GI1GPHz4UDcSJpqa9EJPINCEWWJH5ObmoqCgANu2bdOiWk0gNzVFPEhj/PbbbzRnzhw6duyY1lVPCtOnT6fR0dFwk6EJGCLtJ/MzZ86gsLAQZrMZcXFxWlfvM8bGxhAXFwebzQYgct6/uYNmCoac56+99hpWr16NiooKraqfFO7du6cw4EYyowANFQx1RzQ1NeH8+fP45ptvtGjCZzrkGB4ejp71ChorGHLExsaivb0dZWVlHo29WkJNh9VqVZiagjDjhxQBM8tTByxduhSvv/46duzY4fM1WsJisShMTf/vp0FvHVBXV4fz58+ju7vb52u0gtVqjYqXjiKCvgcjNjYWnZ2dqKioCNl0KGJ4eBizZ88OaZvBREg2zGRnZ6OwsBBlZWVSWiimQvmupmhAyHY37dq1C2azGYcOHQLg+1RIxDml8XQNpuWM9DJR/JQc5mXXkWJXU1QglE/gFy9epKSkJBoZGQmoHp6ION5M9bmg4m6OiIi47lICcsjUx0vl0tPT6fr16wG1pSeEdN/gkiVLsHnzZpSUlAReGfMz+n8qRt5a+5Q6fy6WQSmtFoslqqbBkEkWzwsj3mazkcFgoM7OTq9lPYHrLiaUdhERRxzfS/W5sP8nqZ3Y2NiA6dYTQjoNirh8+TIlJCTQ4OCgU54vjCIiutqYQwDsH+X0RzzRwMAAJScna0WyLhCW7dNZWVkoLy9XaIciXCkeJNccCeCpDyeP8zD18SAiXG0E3svMRYPZXo5R7mqKFoSFWUSEjz76CBaLBR0dHYp0Z/AKBhII/N+P4yQKkG8Q9gFm7CxHKU7jxHGzVM5qtSLp2cfMChgMwyAmJgZffvklqqqqYLFYpHRnsE7X/v3ECVBeHjIZVrjGfBs3GSA1xSCVs1juYlbis8G8jZAjrF4kWVlZqKysxFtvveXzNcIUCOSvzBD+oxvlme/iFJUgb62j3P37o1FlagIQ2ucsV3j06BEtXryY9u/f774QLygeXHcxMZJSAQJY4TvXRFeJI7lqUl5eTi0tLUGnP5RwYpav2piWMJvNbrVDIiK/KLIX3rBhAx08eDBg2vQEViZhAMLzGsFgMKCqqgqFhYVSmkiPIEMEgBd+u4Xd1GQn/+7du5iVGEWmJgBPAEBtbW2YyRCY09/fj1WrVmHJkiWqQcNCYAYP9TJLDMCQuhxw48YNHOr6Gqd6Tged9mBCzhvduKkyDIPVq1fj9OnTePDggSpXNNA6k8uQupxQ5sGDB5g2bXoQKA0fgrK7KRA0NTXhu+++Q09Pj8dyBCgtgbIE9a6maIFuJEtEZWUlOI7Dnj17hATVUBL/Oq2ssgS5A100IYTM4j1nHzHBdI0QExOD9vZ21P7pY/T394NU3PJF/YlGUxMQUmaxbrU5Ht0oWXtCWn9SUlJQ+19/htFonJR26sqBLhoQdGbxcg656fcjZa24tXw+UjIcZbdv3w5AWMP8xZ07d6LrDbEdQWcW62Xi6m1ahh9WbMWCHx2MEn7x6OzsRF1dHW7cuOFXm/fv34+ul452hGwadFI6CeDNJrTwu9Ga1o9buWlIc7zhAMDid3PmoLa2FkajERznvBfDXTvR5EAnR8iYxah4xaMPTa3AtqpFYJgY8GnPI5MRyJGsKQDKy8sRGxuLhoYG39phmKhyoFMg1PYtnueJ53nVm17lK3k1BgcHKSEhgcxms1Ndrn6/8sor1NPToz3xYUbotEFximMIdK0BrdQsBRHhuouRMzdNVthuWrJfk5ycjM8++wxFRUWK6VCuKaoDqTxW3QOBvS95cyPytj+BbVUvSFl9/7jpwhbIKrTHzZs345lnnkFdXZ3XpqJuV5OIYIuufHr6ulS5wUXc+wcfpkIix3R4+fJlt2VsNhs9+eSTWpGvK4Tn5aOvL6hclGtvb6dFixbRo0ePXF4SjbuaRITHNihNb15MUC4e0YqKivDcc89h165dLi+JVlMTEE5DLonNKxlGLtRtddrevXvR0tKCK1euOJVVO9BFE4LOLFedD0AmNfZnKzHZhS1QnZacnIw9e/agsLAQY2NjirZcxWqKFgSdWb4aYn0114rMf/PNN5GWlqaYDhmGiVpTExCiadCtdLm9wH2WnPltbW04cOAALl26JLUTraYmIETM8vs1h4/FExMT0dzcjE2bNmFsbExhaopG6O5Nsb/YuHEjMjIyUFNTAwDR50AnwxPhJkAL7N27F5mZmdiwYUPUmpqAKJAsAEhISEBLSwuKiopw586dx9Og3rFu3TpkZmZibGzsMbMiAR9++CF4nse5c+fCTUpQEFXMGhsbQ2pqKoqKihQPy9GCqGKW1WrFggULkJ2djZ07d4abHM0RVcwSYzW1tLToOnz5ZKFgFj8xIX0iEWJY8KeffhptbW0oKirS9WkO/kLBLHbKFMV3pEFualq1apXuT3NwBU+muaiaBtWmJvE0BzF8eSTAk2mOBdxzUz0tupom3U2bnqZUX6dbd+Xcpf9qf5cl5sXFxaHjiy+k8OWRDhZwz031tKj+5icmwE6ZAnbKFCcGiun+5MkhL+cuXX49PzGB0dFRzIyPV9C3bMUKFKxc6RSgMhIh2QZFD7sYAPK9r/L/rvLk8FTOlzxMIl3+f2BgAF90dGDatGmK9ISEBPxvaytsNhtSUlJc1Bo+iCe7uoLaI9XrmsXBmSnqfPETDoizAsdx4DgO06ZNcyoTGxuLtWvX4ttvv9Xdw7Jf7/rEnTPc+LjiWw53efL/7n57z7O53MnjqW7eRbmBgQFKef55j9dv3bqVjEajsiGepNAN7sE5pYQjqoHTc5YrtV1cG9R5Yro6T57uPS/W0f74hJe6ebBTpoAmJsCp8kaGhjBz5kzV+jgm+z2B+vp6nD59Gt9//71jRDPCR71u89QH03IGLMuCYWIcQSjZMhxWhSgKGXzlqiuJCzY8jl5V1rFjx6ig4A/kSgrkOHv2LCUlJXk98oLneeL4XjLlKiOufV0MAkqo20s7wYBPz1nuJC7YUI9ec+Myxyhf0YA+dKOstAuAEKspKelZeFuGxfDl77zzjl26xK1wyi1xDMMAzE30Ix/5GbyUv3bfFZiW78O6siMa3KF/8HhnYTc9EQDw4M0m5LIMMn/ZCiJOcGZoJlSy63EzZQEAwGr9JxISZvpUbV1dHc6dO4ejR4/C4T7r3BVs99+wLy0FmYiRyrFYhLmpAG79A33kZZOqxvDILPnzTFjAADyOoDzzfZwqOQRqW++gLeM9lJU4IqEJpqZnvUShERAbG4uOjg6UlpYK4ctVyw/Z17OuH/8PxSv+aE+EVC4tNSfQO5sUdGtuEvvc3NSKNpSge+86RSYBWJBaitT5Qg/6u6tp6dKl2LRpk8sAlWAY8OjGD22lyP+jmOaQolu/nAbS5knOfyFDyFdJN5CUCZniwFEXlQK0zNTr5ipOuk7tQOeLam2z2Sg9PZ26upy9V7i+esop/ZqIOAVNE+bPaBkD2nJYpwpGKCApE/IpydyvCvooXyN4EFjpOvWuJl9Ua/FwG1enOZhPngAzbyEkPzECeFzF/2z/AKeWmbBtjU8zrqbQDbMAeL57JyVAGQdgaGgI8fHxfjeZnZ0No9GILVu2SGk8uvGXdxnkr/y9o3mzCSvYLLwPE3p/2IlMxvct35oh5LLsBzjqohLG9TTIm01U3yVMRe7CgvtqZbDZxqXw5Vx3sdLXWfbZcpjzL/ahxtAPs9z0gugoLp6MQGSP6b68gXp5IS1wBzrO79McwmFu0gWzXN22ozM4oi7VaFe5s54/f54WL14cMB01NTW0Zs0awVboxUIRDgnTxZqljpEByBQEYoF1+8DbPfuJCLR3nWJ908qBrqamBrdv30bHXzugWB+d6ONDv15BDwqG9LDpxhrgQkkUEhzlxV1NFGCQElE73LlzJ4bs4ctdN+4+aFgwEX5mqTwg3ULdOeRwcRV3NWmBrKwsbCuvQFlZmYL5TrwJg2iFn1m+Qt05DCCSL+5qkr91DUTKav4knObw+eefS3Xp4bTIyGGWB8hNTeJa5+/7JjlzY2Ji0NnZiQ8++AAWi0U3B3tGBbPkDnSTlSg1QwwGg9+nOQQbUcEsualJSymorq7Gr7/+in379mlWZyDQXfRpf0FEeOqppzAwMDApc5M3/Pzzz3j11Vdx6dIlzJkzR/P6/UHES9b4+DgmJiaCwigASE9PR3V1NYqKioJSvz+IeGbJw4KLD81aQayrsrISY2NjaG1t1azuySAqmCVfr7Rcs8S6xLO+amtr0d/fr1n9/iLimRWqWE3p6emoqamB0Wj0qbzWUg5EAbOGhoZCFvdCDF8unebgAVpLORAFcTBGR4N/Ap0oIQzDoL29HYsXL0ZBQQHmzZsX0gfmiJes4eFhzJ49O6htyKUkJSUFn376KQoLC8HzOtqKFglQ72oKxWOjGL68ubk5KNqnO0Q8s0RTk3yqCgU6OjrcnuaglcnLKf/jjz+OaAtGa2srNm7cGJaoMhcvXkRvby/efvttTQaJ2h+LiBT1RrxkCSfQOftkhWI6fOmllzB16lScPXs2KPWrB4AubYNOp85BNcrsBdQn0KlHYihgsVjw4osvoqenBwaDwfsFAUBHkuXQrFx1t4IJ9p/qE+hCxijZ8Faf5hDMsR92ZjlujVX9t+fLj8BV5YciLLii8+1eLcrRxGPz5s2YMWMGPvnkEzCudv9ohLAzS7pvmSOi5HXIiJ6HDBhWeNZhlzdIrjZqU1MwRrV66nXuMuH//v378ZeWVly50qs5DcqWwg7HaCUisEwmqn68gvrcHJj6eMUBM3LvDXFXk4hgTIPiwGFiGIerquxTclgYOLNnz0ZDU6NfZ335C50wy0GGo8N/QT/ykZdB4NGNxkYzsPY/0WB3ngMEyQq2qYllMlH1Qy9My1QDh7pQjGLkrbULHcNIpzkE65BuXTDLMX3JzDeH/4abK/PwAliYm1pxc+5CMFiHqqoMqcjI3eCbmgAAzA3BXdUguLUebmyAGWmYV5aC+WAUS9iBAwcU4cs1RRB3+wYE5WFoSids0cl7/fr1dPDgwaDSwZOwt150jhD8trqdCvHk2PL91VdfkcFgIJvtX5rSogvJUoOnPpw8Dpj6eHB8L+pzlSetAiwI2oUFJ/Vv1QGw5tu3cOq9F8CyLGIy3wczL01ZAQNA9oz3xhtv2E9z+O+AaZNDN8xS6HHXjuMk/oB8g6BszFuZgvmyQmTfdKlVWHBG/Ztx0MPjqjRweJ7H1cYcwblPpXiqT8kTT3O4cOFCwPSJCDuzxGNu5TCfPAEmL0/S+tbvfBe/p2to2GpCHzjpWSaYJ9BJXW8+KQ0cEJAxd6Xgx+zGaVxEYmIiWlpaYDQatQtBpOmkOhnw6r99VL/sPxRrFMf3Un2u4FQnptps4zR16tSg0CL3vbramOPBp9k71q9fT1VVVY4mAvDrCj+zyMGvR11bJKWCEZULJsalkhGcE+iUPllihJmG3sl38OjoKCUlJdHZs2cDJU4HzOJ4ch3Ch/M4CrVyoJO3R+R64Dhro/7hyJEjlJqaSjabLSDJCvuaBZaBcukU1y+HJ76TEYmA0fsa7WqSKmftmqCQELOuzf4AzIHoFN7NEBcpO32876atNWvW4OWXX0Z1dXVAVpbwM0sFIhcn07lIGBq0aLOrSWXMd3Sm6P/l2hYoDDLfsXv3bhw8eBDXr1+fHJ3Q4e4mX0eelg507qHNWCYixMfHo6+vLyCadfny8TFcQ3fT4GO4x2NmRRD+DdyBBFAS2RgLAAAAAElFTkSuQmCC"
|
<image>如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()
Choices:
(A) \frac{9}{4}
(B) \frac{21}{4}
(C) 4
(D) 6
|
\frac{21}{4}
| 69,878 | null |
\frac{21}{4}
|
"iVBORw0KGgoAAAANSUhEUgAAAHMAAABvCAYAAADfV/8GAAAU4UlEQVR4nO2dfUxb573HvwdIk904ca900ljqaR1qZ3FEpusWcssqNwbNu0NapyUqHZVGN5AioYlKZbuQEikT/+TesXa7TXUjzRNVcdtsoyobkcZ0k4YoBtIVjUx0mhluiwnURHEG0uhMFIjt871/wHH9jt9f2nykKPg8z3me55zf8/J7Xs7vJ5Ak7pE2dXV1GB0dDbs2NjaGJ598Mu9lKct7jp8z7HY7zGYzxsbGQBJjY2M4cuQI5ubmkO92ItxrmZkjCEJQcNevX4dOp4PL5UJlZWVey3GvZWbI+Pg4urq6gr9bW1vR1dWFysrKey2z1HjjjTfQ0tIS/D03N5f3Fqlwr2VmSH9/f3B8tNlseOSRR3D9+vWClOWeMDNAEZrSEr/3ve8B2NBmC8E9YWbA6OgoWltbg7/n5+cBADqdriDlKaoxkyQEQUg5LJRPP/0UH3zwAZxOJ27evAm73R4Mc7lcWFxcDIsvSVLw5VdUVMBkMkGSJOzfvx/V1dVQqVRx86qrq0N/f39Q2SkrKwuWNVa5k32GdCkqYabD4uIiLl++jMuXL+PKlSu4efMmTCYTHnroIeh0Ohw+fBi7du0CSezbtw9arRbAZy92YWEh2KJWV1cxOTmJ2dlZLC4u4urVq5AkCfX19bBYLLBYLNi7dy/Gx8dhNpujtFWz2RxWefJN0QgzlVrrdDrx+uuv43e/+x1u374Ns9mM+vp6mM1mHDhwIKu1f3p6Gna7Pfhvz549eOKJJ3Dy5MmCdadxYYmwtLREq9XK6upqSpLEzs5OzszM5LUMXq+XR48e5fbt27lnzx6aTCb29fVxZWUlZnxZlvNavqIX5q1bt9jR0UGVSsXm5mYODw8XpBwTExPU6/V86qmnuLS0RJIcHBxkU1MT1Wo1u7u7g9eTJdvCLkphyrJMt9vNtrY2qtVqdnZ28tatWxk/fLr39/T0UK1W02q1xgx3u91sb2+nWq1mR0cHPR5PJsVMm6ISpizL9Hq97O7upiiK7OnpSbm2Z6scJDk/P8/a2lpWV1eHdenxKoXH4wkr+9raWl7Kq1BUwhwaGqJGo2FbW1vaQkym9SUTx2azUaVS8dSpU/T7/SmVwePxsLm5mVqtlhcuXMioHKlQFMJ0u920WCw0Go18//33C1qWlZUVNjY2UpIk2u32jNKy2+00GAxh42wuydsKEOPMgK5du4bDhw+jrq4OU1NTqK2tzVeRohgdHYXBYEB5eTmmp6dhNpszSs9sNsPhcMBoNKKmpgbT09NZKmkccl5dEmCz2SiKYsKuKFsk6tICgQBPnjxJtVrNc+fO5ST/wcFBiqLIwcHBnKRPFqib9fl8bG9vp16v5/T0NMn8z8kUZmZmaDQaaTKZOD8/n3F6iZ5jcnKSkiSxu7s7qXtSfSd5FaYsy1xZWWFDQwNNJlPcyXa+OHv2LFUqFU+fPp23PD0eDx977DE2NjbS6/VmNe28CtPhcFCv17OtrY1+v79grXFpaYkNDQ3U6/WcnJzMe/5ra2tsbm5mVVUVZ2dns5Zu3oR54cIFqtVqnj17Nl9ZxmR4eJiiKPL48eNZbxmp0tvbS7VanbHWrJAXYTocDqrV6rwoOvFYW1tjW1sbRVHk0NBQ3HhKb5HtXiNeekNDQxRFMdhCM8k358JcWlqiXq/PSotM90GnpqZoMBhosVgKttSWiNOnT7Oqqor//Oc/o8JCn3mr58+pMP1+Py0WC9vb23OZTZDIh5Vlmb29vVSpVDxz5kxeypAuzc3NPHr0aEZp5FSYHR0dtFgsKS+HZQO3202z2Uyj0UiHw5H3/FNlbW2NtbW17OnpSTuNnAnTZrNRr9dnvIyVzhxsYGAguIOR78XuTHC73ZQkKTimF8U8c2JigqIo0ul05iL5uKysrPC5556jRqPhyMhIXvPOFpOTkxRFManeJFLYWRemUrtiaa65nFdOTExQq9Xy6NGjYb1BoeaymTA4OMh9+/al3KtlXZgWi4W9vb3ZTpZkbMEEAgH29PRQpVKxr68vJ/kWglOnTrGxsTGle7IqzIGBAVZXV+dN4XG5XKytrWVtbW1WV1KKgbW1NRoMhpT2Q7MmTK/XS0mS8rY81tfXx127drGnp6cg2nI+uHTpEg0GA+/cuZNU/KwJs7Ozk21tbdlKLi5LS0s8evQotVotr169mvP8Ck1TU1PSGwFZEebs7CxFUcz5LsjIyAg1Gg2bm5tj5pXKakmp4PF4KIpi2MpVvGdLSZjx1i1bWlrY09OTlRcYaxVnbW2NnZ2dVKvVHBgYSOn+UkeWZXZ0dLCjo2PLuEkJM9ELUmpOuq1yq5fvcDhoNBppNpvpdrvTyqPUSfYdJ3UGKNFx/97eXhw/fhxqtTqtYyuJ0n711VdRW1uLZ599Fna7HZIkpZVHqbN37148/fTTeOWVVxJHzKTGLC0tUa1WZ30nwuPx0GKx0GAwcGpqasv4n7euNRaKXpJoDzaj03m//vWvcezYMezduzeTZMI4f/48Dh06BJ1Oh8nJSRiNxi3vyeVncsWCTqeDyWTCb3/72/iRMqktjz76aMq75PGUKK/Xy+PHj1MUxYJ9T1LsDA0N0Ww2xw1PW5hTU1N8+OGHk4q7VTc4OTlJg8HAhoYGLi8vp1uktBkbG6MgCARAAOzq6sp7GZLB7/dTFMW4pwjTFmZHR0dGe28Kp0+f5s6dO/N+NkipYF1dXYzsoIpVoMo0Jd57T1uYkiRFfR+ZqAVGhs3Pz9NkMtFoNMb8zjKbSk28tLq6umJ2W2NjY1ECLhYmJiZoMBhihqW1aDAzM0ONRpN2gc6dOxf8VK9Q66qKwObm5uKGFSN+v58qlSrmDCKtRQOr1cqmpqakMg+9d2VlhU1NTdRoNFk7XpguZrM5bldqs9mKVpgk2dDQEHMlLK1FgytXrqC+vj4plVq597333sOhQ4cQCATgdDqT+iiHOTS3MDo6im9961sxw/r7+8NMqBUbZrMZV65ciQ5Ip2ZoNJqk7Qn4/X6eOnWKKpWKNpstneyyztzc3JZdbKywYiHeuBlTmImUj/n5eYqimFSmMzMzrK6uZm1tLRcWFpIsau6RZZkAODY2FhWGItVkI9m+fXvUWm3KLXNkZCThxFXBarVy9+7dWZm+ZJPQKUnocyittRQESZJGozHqIEAFU7Qa5XQ6sX///rjhy8vLaG1txV//+le8++67ePzxx3NumSoRkXkrf7/00kuoq6sLC3O5XHjkkUfyXsZ00Ov1+PDDD1FTUxO8VpbqS56dnYXBYIgZdvHiRRw8eBCiKMLhcODxxx8HUNi108i8GaJU2e12cKN3AsmSESQAGAwGfPzxx2HX4mqzjKNJOp3OKGGur6/jhz/8IZqammC1WtHf35/Q5lwh2apixXvuYkEpn8FggMPhCAuLK0xBEDA+Ph5lO9Xj8eDBBx8M/v7ggw9QXV2NqakpfPTRR3j66aezWfacMT4+DkEQgv8Uin0HRimfJElYXl4OC4sSZmjNPHLkSFRiXq8Xu3btAgD8/Oc/R11dHVpbW2G32/HAAw8Ubc0OLdf4+HjUsxW7ECPZuXMnVldXw65VREZSHurEiRMwm81RJqpv376NO3fuoK6uDsvLy7Db7WF7jsX6UhSj+IIg4Pe//33MOOPj4wVxYZEOKpUKt2/fDrsW06rlm2++icrKShw5ciTKduqXvvQl7NixA4FAAO3t7dixY0fuS55lLl26hD/+8Y/B34qgC+WPJFVI4saNG/jqV78Kt9sdvF6hBCot6vr165BlGZIkRS25ffLJJ1hfX0d3d3cei559Dhw4ECZMpcKWgiCBjcq3e/dueL3e8IDQSacs+/ijk11cC9yl0/UR//NE9AQaRbwAnQrKsp2yKR3rKGMxny36xz/+QbVaHXYtTAF6881f4X9+9r/YsfdfYTB8GYIcrcyoVKqogbcUefLJJ0ESsizD6/VieHgYb7/9dlicYhj/GUehXF1dDSqiCkEFSJmC8O5t3JVlvP/e+5ifm4tKRBl4i3UemQ4qlQoXLlxAbW0tDhw4kNQhsnwRr0Ktrq5GyaAM2BBka2srvv/97wcD5uZckMtkrMs+rFPeOBxDP/7lgfuxstkyyQDuyj6syz7cDatBcvD6uhyAHJZlorA48Tbzj38/4ZN9WJf98Af/9mGdjEgn/rRJp9PhtddewzPPPINPP/00brxiYXV1FTt37gy/qJyBQXDbJ8Aj/1FPbAOxbQd/dLKLAW6MH7Ic4L/9+2ObZ1llrgf83Dxrx7sBH31Rf5MB+S7XgmNPorBQwtPzyXd5V97q/gDXA3e5FvAzEPpbDmyWMcD1YFh8uru72dDQsEWswmO326M2PMpeeuml4Nrkvn37AACX/u9d+O4SvHsHP/uv/4ZvU9sVQOwVH8CNGzcAymCw1vshg9hQj2TIQhnKNytLmVAOgfJGC0oUFgplyEL55hggoELYhm1CMvcLKC8rD1kJEVAulOGzjooJeoINfvKTnwAAfvzjH28Rs7AsLi5iz549YdfCFKDP+mchGCAI5ShjAH4Qfgg4+GUDZmdnNwMrsL1sW/DfNuV2EnE7tERh4RFjx0v6/vR566238NZbb+EPf/hDjnNKDkYMDyTx8ccfo6qqKux6UJgyQ8YUQQipzQIqBCAg+0GUYb9ev7HAK5ShjH74gvkQMrFxHTL8SlokKJRtZJQoLBRBgMAA/KmknUVEUcT58+fR0tICl8sVFR75cnNNpBIkCAKmp6ejtiKD70GAANCPdVlGWVjXtNk6UYZyIXTrRcA2oWyjEsg+rMsyNm4SsK2sfDMtH9Yh4L6QFh8/bENx2agcZbgvpbQJnxwAQQTkAOQtf2+N0WjEmTNn8O1vfztqKlYMU5bZ2VkcOHAg7FqSTmoIP4GKTQ891dXVWF5eLuimc754/vnnsby8jIGBAQC5dwGVDNxcVr1161bY13dJ9VCkDGw+gFarxbZt2+B0Ogv+UNlAqcvx6vSrr76KGzdu4Kc//SmA4miVf/rTn1BZWRn1GWVCYSrdnA9lYdsrZrM5yml2qaIIJ56QysvL8Zvf/Aa/+MUvcPny5XwWLS6Kn+tIEgqzTNjQUu+LeND6+vrY5zY/R4S2VEmScO7cOTQ3N0d5+SsEdrs99rnlVCaqysLz3/72t4w+TyhVrFYra2pqCmqPL9HnCSlp9UpXdPDgQVRUVMDpdGalppUKbW1tOHToEJ5//vmY4czDlOXatWuQJCnmB85pT9EaGxuDGt4XCavVimvXruGXv/xlVFg+lKOBgQF85zvfiR2YbnOfmpqiVqvNoMMoXRYWFihJUphRqXzsffp8voQf2ybdMrm5fqtgNBpx//33R2m1zPPqSCF4+OGH8dprr+G73/1u8IRcPlrl8PAwqqqqgt55I0lamJFHEgGgtbUVNpstKt4XQaDf+MY38IMf/ADHjh1DIBDIS55vvPFGmMPyKDJp9rkyHVNKNDY2JmU9K1MU0zGrq6tx42S0Ri2KIlpbW3HmzJlMkikpGNHrvP766zGPnGQ7z5dffhnt7e3RG9IREbck0eDudrvzYgSxmFFajWKAKtvKkMfjoVqtjnrHkflkbG5NkiR885vf3NoU2OcUktDpdOjr68MzzzyDlZWVmHpD5O9U6O3tRWtra9RabJRcMq01siznzURpsfPiiy9m/ciJx+Phnj17ktJLMt7XFQQBOp0OLS0tePHFFzNNrqTp7e0FkJ0jJ9ycCr7wwgt44YUXkjNpl60a5PV6qdFoCuL1rtCEjl1LS0vUarVbmozbalyVZZkjIyPU6/VcX19PqhwlbXC/WJmamgpz1hZJMgpSMgb3IykpVxilgizLPHfuHKuqqsJMiqai5Ua6wkjm3pw4qXnwwQcL6l6xWGhvb2dTU1PKU5XBwUFqtdrCO6khP3MflaytoFImkaD8fj9NJlNKPVUq7qMiybowlYfLlmO3UsftdlOr1SblmyzSsVuqZGWeGfp/KIV0uVhMXL16lRqNJqHDgKJwubhVN5NPZ6jFiizLtFqtrK6ujjnNkGW5eJ2hRs67suWmuFRR3kdLSwuPHz8eFa64Kc7UoXnOxsxQFAfiFy9ezHZ2JcXa2hqNRiOtVmvwWqgD8UwX6PP2TfuFCxeoVqu/0C2U3DAkKUkSZ2dn2dvbS7VaHWZ7t6i9wYficDio1+vZ3t7+hVaKPvnkE7a0tLCqqipslSjTlpnxQjtT2NqpqqrCtWvX4HK58LWvfa0kvlDONsvLyzh27BhWV1cxMTEBnU4XDMv0HFFWdk1SYffu3RgeHsZXvvIV1NTURNl/+zzz5z//GY8++ii+/vWv45133tnSLkQqDUW5oWDYbDZqNJrg0l8xm2rJlMHBQWo0Gg4ODkaFKTbhAQQ/bU/H7m1BhBkqtMnJSWo0mqQdfpYaillzrVYbtUQXy2Cxci0dE+h5E+ZW54gsFguNRiMnJibyVaScY7fbaTAY+NRTT8Vc1gTAEydORF3v6uqKaXJ8K4rK3NbQ0BA1Gg3b2tpKak03sqJ6PB42NzdTq9XGnVv39/cHrZ1F3m+z2dIy+F8ULTMUr9fL7u5uiqLInp6ekhLqzZs3w8qe6GuxWF1pLK++qVBULTMUt9vNtra2oGeiWAeaikVhcrvdbG9vp1qtZkdHx5aHr5RxMZ2uNBHZNtSRNSRJgtVqxYcffgifzwe9Xo/nnnsOFy9eDMYp9Cfp58+fx7PPPotDhw5h165dmJ2dxSuvvJJVf6IpkdWqkUP+/ve/B3ceJEniyZMng5vf+WihSh4Oh4MdHR3UaDQ0mUzs6+sLO2KabFmw2c1Gxne5XBwdHU2rjCUjzFBmZmbY2dlJvV5PjUbDpqYmWq1WzszMJNxfTRVZlulwOHj27Fk2NjZSFEUaDAaeOnUq7mGtZFHmlqFd7fj4eFI+Y+KRpOmY4mVxcRGXL1/GyMgI7HY7bt68CZPJhIceegg6nQ6HDx+GSqUCSVRWVkZ9DrewsICFhQWQxOrqKiYnJ+FyubC4uIjx8XFIkoT6+npYLBZYLJasdqFjY2NhhiY6Ozvx8ssvp51eSQmTSdjgWVlZwV/+8hfMzMzA4/FgdHQ0uCymCCkUSZKg1+tBEvfddx+eeOKJ4LWampqSMsVaUsK8R2KKVpu9R+rcE+bniP8HSlA34y8tp9sAAAAASUVORK5CYII="
|
<image>如图,AB是⊙O的弦,OA、OC是⊙O的半径,⁀{AC}=⁀{BC},∠BAO=37°,则∠AOC的度数是()度.
Choices:
(A) 74
(B) 106
(C) 117
(D) 127
|
127
| 69,879 | null |
127
|
"iVBORw0KGgoAAAANSUhEUgAAAHYAAACkCAYAAABCUdo1AAAXsElEQVR4nO2df2wb53nHv0cHjQ140ZQUCPNPZM1ywmzNRHV/+Ci7JY0CMmVnNR3Alrw/bKqIRQnYYAkoYAloZDhdK3ltRbnDQjntQtd/TI6KUfFskXaAVmoLV2qxWsrQWrJkU223RUKwUvUGmJQl3rM/yKOO5N3xjjwejxI/gGHx7r279+553+f98Tzv8zJERKhQVgQ9DI6+l36MAUDt46ArRwAAJv2zVUE9XNqvI8OE8XYAtu/gIRGICBt0C+3vHQVzwIuHAJhKjS0viAiEML77hTp8cGIBU+f2ISF4E7hHQ/hCXTe4oYVKjS03GIaB6dFNjN61oeXo3uTRpBj3HsWJA8D0/cWKYA2PiD5dHB/FVOMJvFEnfVlFsAaHMiTLYRHjP5wCe/IN1GWIj7CAubsA++f7KoI1OgzDCH5xMD0KYvSuDSfe2IvM7pEp9CHeQ0JFP6NvNisUhgm08GtMHTiBa3tNSBf5ODqPfB9oH0fXXlOlxhoFJYMTDou4/I3vgz3xBoTN6+LlRuxg3sB/DC2ArjgBpjLcMQRElKFyxc9LpmkcxMO73dgrOFRRxSUml1Az0/Jj1lxUamw5QgDEyoLgeKWNLTOWln6HtVhM/KRA2BXBlhG//OUvsffP9qD1b05JpuHVb0WwZcDS0hJOnjyJL33pS/jMs8+it7dXNF1KE1OljTUUmR2plZUVDPzDJQQCAez8zLM4ffo07t79GUKhEHLVyUqNNRC8UFdXV3HhwgWwLIvndv8JXqh+HqOjo3j06BFaWk5BidgqgjUQsVgMAwMDaGhoAABcu3YNN2/eRCAQgNVqxe3bt+F0OhXdqyJYHZBq7fjjRITh4WFYLBY8fvwYMzMzsFqt6Ovrw49//GPU1tZicnISr776Ksxms6JnViYodEBqAoJhGIyNjaG7uxtOpxPT09Mwm80YHh7GRx99hNu3b2Pnzp0AgBs3buDYsWPKH0oVSsLExARZrVZyuVwUDodTx3t6esjj8WSlr6mpSUuXi0qN1QES9HZ/8Ytf4Pz58wAAv9+P+vp6MAyDtbU1uN1u1NfXo7+/P+36qakpvPTSS6itrVX8zIpgdYBhGMzPz6O3txcrKyvo7++Hw+FInV9dXcWpU6fgdrvR2tqaOs4XiFAohKamJnUP1UCrVJBheXmZ3G43WSwWCgQCWefD4TDZ7XaamJiQvIfFYqG5ubnUb47jcj63ItgiEYlEqKuri2pqasjv94ummZ2dJbvdTjMzM5L3mZubI4vFInpOTsCV4Y7GRCIRXLhwAQ0NDXj55ZcxPz8Pt9udlS4UCuHcuXPw+/2wWq2S9/vwww/hcrlEz8ma+9SUwu2OXA2JRqM0ODhIFouF+vr6KBKJSN7D7/eTy+WSTCOEZVmamppSndeKYDXA7/eTxWKhrq4uWl5elk3b399PbrebotFozvuGw2GqqakhImXtqpBKr7gAxsbG8M4778BqtSIYDKYNR0jEM6KjowPV1dXw+/2S9xRed+fOndQUolIvC+GNKqhkYmKC7HY7uVwu2Y4PTzQaJafTST6fT3HN4zgurbestsZWBKuCmZkZcjqdOYcnPBzHUSQSIZZlKRgMSqYRY3l5mcxmc955rQhWAY8ePaKWlhayWq2SApK6zmq1ytZqKcH6/X5yu91qs5piWwqW4zhFqm1lZSU1Fh0ZGVF1/3v37pHValU0vyuWF6fTqaoQZVI2ghV7eaWtjtr2KRKJUF9fH9XU1NDg4KCqa4mIAoEAsSyraDgjhM9nJBIhs9msqOcshbEmKOScdJgQvJcX09Iq7Scq7VFmGrrn5+fR3d2tyEufTzM8PIxr165hYmIC1dXVCnOYns87d+7AbrenTHb5YCzBSnx/Dou4fPAoRgXHMlehFQKJGLovXryY+rBKCgbDMOjt7cXs7CzGxsYKEorcbJNi8q7rOjJ/2UYAqD0YJ6K44Exc6hLFBAIBqqmpIY/Hk3NyQUqlR6NRcrvd1N/fnzNtLp48eUJVVVUFqWGicpigeDiEb9PX4D1wFL9hAHCMQM/kVjgksYRicnIS3d3d2LNnDyYmJhTZOsXuw5vcWltb0+aEVU8oCPJls9kKqvEAjF1jOe4WnbUN0gO6RWfBknex8Bo6NTVFdrs9p1VFCUpMbmpxu92S1iA1GEKwXNofm8IbP/sW3SKOaNFLLM7SeCqlegHPzc2Ry+UilmU1EcTMzEyqcOSrdsWoqqpS3ZsWwxCCTZAurIWhRLsKBon/4aFxkh9/ip3LZejOB35KUY0Pkpr7aoExBJspj0UvvTX0YPN08C1iDnhpUcUteUP3yy+/rIlq4/H7/eR0OjWpVZl4PB7y+Xya3MsYgiWBbBe9xLKDaUJcGLIRGgczBCuujjMnF2KxWH75Ean9akxu+ZDpiViIijeMYHkSatdG3sU4xWmBvAd4VQwC0y5oZ9OJxWKShm4t2kCPx0M9PT0F30eKqakpYllWs/sZRrAct7H5t2gC+QlzMUO3VHo1go5Go3Ts2DHNVKQUPT09aePgQjGMYBNI9XYzjnOJXm4gEKCGhgZyu920tLSkeW54k5tWnS451DqE58JggpWvTfy5cDhMDMNQXV2d6rGo0toaDofJarXSvXv3VN0/H+Q8EfPFcDNPcjM2DMOAiHDnTgivv/46du/eLevhRyKzTkpmhGZnZ9HW1oZAIKDK+z5fRkZGcPLkSW1vqmkx0YFwOEwWi4Wi0WjW8ECLTlK+JrdC4I3xWk50lJ1ghVN4kUiELBZLzsl7pfh8PnK5XJoOZ0TtyIJjQk9ELTGW2S4HvGnN4XCAiFBdXY3BwUFRh2y19PT0aGJyy0RM9QuPjY6O4tQp6WAheaN5USkSQhWcSUtLi6jrihLVJmZy05JcefjiF79IExMTmqphojJSxZlWFOGHWF5eJqvVqlolRyIRcrlcqSlHrT9uLgr1RJSjLATr8/lEFwMLGRkZoZaWFiJKF5CUsMLhMDkcjoIcxgpFyXvli+EFK6eCM1Hq2Sc0uZUSYX63nSpWYsjmP8ry8jJZLBbZoUqxTG5q0cITUQ5DCzYfVSV3zcjISNFMbmp5//33C3IIz4VhBatGBWcitualv7+fWlpailZDcpGpaqV68lphGMHyL87/n0sFy7VJS0tLaYVCzOSmdw9YSDQa1cQTUQ7DzBXzg3aGYbImIoQDev633Jzvnj17cObMGbz99tt49OgRmpqa0NHRIfq8UhAKhXDo0CFNJ0KyKFqRUYnQcpOvChYSiUToueeeo0uXLmmRPc3gOE4zT0Q5DCNYHi3cOXmT2w9+8ANiWTarkJRaDb/44otF78AZaq5YqILzZXZ2Fm+++SYCgQBOnz6NpqamrIBYpVTDExMTaGhoUL2uRzVFLTYqEKrgfGtUMBjMMrlFo1FiWTZrMqJUtVZLT0Q5DCNYMRWs5uP7fD5yOp2ibTPvKFZKFcxjNps1MzPKYQhVLKWClapM3uQWCoVEe5osy8LhcODSpUtaZDdv1IamLYiiF50cFNIL5k1uAwMDitJaLJaSTiVq7YkoR8kFm28veHV1Nc3kpgQtl1DkA++JqEeToLsqJsHqcLW9YP7apaUluFwutLe3K/aeICI4HA5YLBYMDw+rzXbBzM7Oorq6GrW1tfr0yotedCSQU8FyJbpQk5vWflJK6evro76+Pt2eVzLBynlESKGVyS0YDJLT6SzoHmrJDE1bbEoi2FzmODEh8ya3P/zhD5rkodjWFSHF8kSUQ3fB5jMRMTg4qLnJbXl5merr63VRyf39/WnWJT06T7oLVmoiQuplPR4PdXV1aZ4PjuPS/KSKSb6haQtBV8Eq9YjgOI6i0Si5XK6iT79l+klpXZvkPBGLWXN1E2xmL1jupSKRCDkcDl1WuSnxk1KC1Pu8++67RfNElEM3wSqdiAiHw7qrrkxNomVN0jqqjFJ0EazSUjszM0NWq1XXYQFPMQQQiUSoqqoq7ZhehoiiC1bpXHAoFMoyuamNEJMP/H3m5ubIarUW1PPOzFNmaFo9rUtFF6ySmsBHYim2B2GuD/vNb35T0zgThYamLYSiClZJ29XT0yPqX1sq22muwNFKkfNELOtxbK5ecCwWK+oqN7Xw+ZuZmUn5SeUjAP4avcbIUmhm3SHBXqgA0NbWBp/PJxoadnV1Fa2trbDb7ejp6dEqC5pgtVrR1NSEgYGBvKww/DVSoWmJdNo5vRilRW4iYnl5mex2u+RiJCO4r0Sj0Zy9c7mV6rFYjMxmc9bYuCw7T0r8gnk1V+pVbrngOE42oFYuAYlZj/QusGmC5bg1WhP8W88jL1JzwUZZ5aaGrq4uVXsC8MJzu9109erVtGN6I1Jj1+kpt0Yb2SdyIqWCjbTKTQ1SflJyEd84jtPNE1EOzQQrZY5TY3IzQvuamQe1flKl9qvikekVc9igp3hKT/GUNhJRKpO/N1Iduw2sJ4+1nd3sBTNMHOv0FJ6/a8fvln+Lf7l+XeAWunnNU9oAJ3hiei80PR1JHOcy8hpPyzeXkV74NHEye8IOhwO1tbW4evWqWMcz69iNGzdw7NixnM8pOtmyFtbYdXrKrdNGqhTHaZ2LC/5eJ46IfL53qf1vzyavidP/Pflfch1PmNzi3BqtpQJgxmldoA0S58TiJwrTcbSRau/lrk/ke41bT0Ze3PzNCd5FbWxyfhszpX5SNTU1RYnrqJacqpgTfDyOe7rZoeLWaY1bowfheXrtryz0+MljWueIIpFPyd5kp39NmdwEH5RbF3zojHNCuHVxgcten9mE5PqtjkAgQC6XSzaN1qFpC0FCFZtSW+AwzDMwYQNxEDgw2JGmqZ5Be5sH737bh+d2PYf//O0Sjvz1Mfz9O9+A6/hxKRWhcMccTjKdTkP8NI4fP45nn30W169fl0wTCoVw+PBhHXMlAy/hTbWWqAXCLgQnOvyJ0z9d+Udq70z0gu/d+3eyHWBpbu4+rXNr9JRX34Lax3EbkufSSdSuzefFKS5QxeLXF7fGEm3Gk/rkk09Ez1ssFpqfny/gCdqREqxwDJv98on2VCiCcDhMls8lVPDN2zeo8ZCN/jvVBvHt21qG6hSci8cyziWElqnq19LaTal7J67dTJvrd/74/X5qa2vLOn7//v2s0LSl7OUrnHmKCzpQCRwOB01OTkqa3PSwpZYKMXOc3g7huWCIcs9KE22AY57BjuTv4eFhzM7O4sUXX8Tvf/972a2ptyIrKyvYv38/Hjx4kBrGNTY2YnBwECzLljh3CUyJ8SkQ9DCpoB38v88c+hbm6Ck2sCMl1KWl38Hr9eLJkycAsO2ECgBmsxm9vb3o6uoCkFhL9Mkn/yUj1OT4OaMKFbUTmKq7XHIblPZxIiKK0y1qBwjtNwUVPE4HvnCQDh48SH7/P+uqWoyovvl58cHBQcW+z3q9xWavOLkVSnswnvqI4+1ICZqjhLfDSy+9VNLAkkaC95PiQ9OKISZIPYS72cY+/C5s+36Nt+kKjoDB4uVGvNLNwLvwM3TVmdDT04NLly7B+pf1qKr+U801h9lshsVi4bWIbNqPP/4Yv/rVr3DmzBns2LFDNm0uGIZJe7Zavv71r+Onkz/Byv98iheqnxfEpeIAmEChszAd+X4ytQntwTX40IlOXMGV5uKtYk0F8Focv45pTOGo6XsAAaz3IYjbm0ro8ZzFzRv/hsPNR+B0NmmekZWVFczNzcmm4T/azp07sXv37oKFyjM7Oys78SDHxx9/jA0ujp9O/gTHjx9PzTVzWMR3D1rQffcsxonDkeSUT9DDYMd7NngXOZBgIkhziNLVMHFEtPgdagSIHVpIUxuZc6bGa/X0h2VZunXrVtqx1A5fWdu2EW1wN+ks8xaNFzlfiTY2axvPZPuacYzIOGYpI5AYu34t63hiJ00bDS1kT4XEaYEGh4rfR0EqI+2bZYjjNkvcA0FiXsR6xSpK5MWYekF0wp8jitN84tu1y9XJwjc4zgXitECDB/n9zxOMt4NgYtKOCZFz9jKqILSCN+NZrVZRNx9+mMgOLUjcoMgZTAJgc7dHJvW3Lee22ZkldqsLVIjb7ab3338//SD/+oveVP8kCx0/kYkS6hjEETj+b/o5uurkO10sy8Jut2NgYABAaeMT6sn169cRjUbR1taWfiL5+lzdPnwOwPT9xdQpfvNUMEDo8iAe6pFRqUKUMrLI1ESpOIVbFT6q6urqauqYqH9x8C0CQKz3YepYnObpOwcg2bxpjYh1R9mDxZZEbHVULbVc9FIjGMGmxo1pzVuxm67EzBNtqhI1UHLCYGBgAI8fP84KH7uVuHDhAgDg4sWLOVImZpwAQO67Jno32btlaoaaUiC3HINlWZqentagrBmPqakpstvt4lqJE+xWnatd05GkYAvX+1osHDYiBQXX5ET/1IWkzih8MtpiscDj8aRslOUOJUcInZ2dOH/+PGpra9WvlGNE/9QFTc0LHR0dmJ+fx+TkpJa3LQkMw+CDDz5ANBpNBeIsqyGd1iqAHxKU2zqdTMLhMNXX14u+RzlMxhRlfWxmUI1yRG5oUw6CLYql1+12449//CPGxsZyaYtiPL5gBgYGYLPZJOMol4VKLlaJyXezXr3JrH2yQ5syoqhRY0odYEMtSkIUlAtFUcWUVLGtra3YtWuX6BJEI9LZ2Ylz586l+T+RQZuLnBS75JQqVLtalKymKyd0iaVodHcarSKgGglddvFwOBx47bXX4PP59HicalpbW+Hz+Yq/35yOKFq7owWxWAwNDQ0IBoPYs2ePYYYMW9Yypad6MMoec/zzt8rQRgxdaiwJ7I69vb2oqqoqWag9Pi+xWAw2mw0jIyN5rwIwNHqXpGg0Svv37y+5Ow3vQisXOq+cKcm+O6V2p9lqQxsxdOs8ZaLc1UQZpNDNZGVlBc3NzQiFQvps91kq9CpBYupt//79mmzqoEZ18kset4K6lUO33SjFatPVq1fR2dmJWCyW931JhUOY1+vF5z//eTgcDsMMt4pGqUoUX2P02pem1O263ugi2Fxqr9D92XOxlaw2SilZ50nI0tIS3nzzTfzoRz/C888/r/n9PR4PGhoa0NHRofm9jYruOz5nQkSora3FuXPn8NWvflXz+4+NjeHTTz/NEqoBynNxKa3CSFe5LperoP3sMtV3uXhxFIOSC1aI1oJwOp00Pl7soADGpOSqWIjZbMb58+c1cTr3er2wWCw4cuRI4RkrR0pdssQ4c+YM+f3+vK+XWm6y1SclhBhSsJFIhF599dVU+Fg1AtmOQxsxDKWKeaqrq+H1evGVr3wFQG4/XhL0cHt7e3H69GlJUxxt9d5wEkMKFgCam5tRU1OD4eFh0fNCAfGCDwaDmJ+fR3d3t+R9t/xUIk+JNYYovOpVs4RxOw9txDCkYIUo3UChlHu1GhHDqmIelmVx6NChVHQaMfihTXNzs445MzilLllKkOvpzs3NUX19fck24DUqZSFYInGz23YLR6QGw6tiHuGGvTy9vb04efIkrFZr6TJmUAxhtlODzWaD1+tFNBrFxYsXt0RYhGJQdoKdn5/H4cOHwTAMpqenRR3SqJjxk8qEshMsALzwwgv47Gc/iwcPHpQ6K4bF8IIVq32rq6vYtWtXas+bSg3NxvCCBSAIXZcMZ8cRYNrcUCGd5CYL0D+2kpEoj15xSkImgADOxM8Vm9LmjIlPk7zE+CW2eBhesFm7eJkY7GBMMJlMYBgGHbfjqbT8/hnpv7cnhhcsA+DIFcJ4O4D2cRCXCIUXpwV4bSxe27f5CkRxlMEr6YLhvwIxiT1sFn4DeI45k1G6hxDGPhxtacErdZv1kmF2pKnf7ayKy6Pz9HAItn33E7t4PbwM27f2YerKUdF4wNu908Rj+BoLAIvjo5jG93CUMYHZ1w3uL15JnBCRoPBQOZTZYmF4wXJYxK3RKbBDCyAiLAzZYN23N/eFAJhtXHcNJlgu64jp4Th++HMbWo4mhFn3Sgte2wdlDej2lavRBJvIjlCFPgz+EFONJ/BGXXJ82nwOXXUmcLfPwhPKLggVEhhMsAn46cF1LOLW6M/BnvgyUsqXgMXLjdhxhMGx5m1cJWUgImP3ik0mk3gHiAFwdhx0ZZt6+Svg/wGzyds7GgGfsQAAAABJRU5ErkJggg=="
|
<image>如图,AB=AC=AD=BE=CE,∠E=70°,则∠BDC的大小是()
Choices:
(A) 20°
(B) 30°
(C) 25°
(D) 35°
|
35°
| 69,880 | null |
35°
|
"iVBORw0KGgoAAAANSUhEUgAAAJUAAACZCAYAAAAmYHg0AAAYbklEQVR4nO2df2xT57nHv69NSa8aLtLmDSM8mZKkCw29NYJu2RqRSnEgu41aqrIlW10JqZEi4qCbrVTrldittmnTdG8CYXVoeoNUWohKV1iclZakpGq2Fo02SICaHyoklSfQFESloRuqOYl9nvuHfezj88M+Pj7n2D7xRzLE533Pe177ffx9n/O+z3lfxhERAw8HwJZ4NzXcg+uVP8PummSOEisT/06Go+fFRxvwGZ3HFhCEdmNLNZdkAmEaXbsPGFfLEkVF3/uEjkZgaJIDURREhP/xMzzEGjENBSsiUSGHO/vAGhvxQI3wKAeiZE7h3yWsDWEan8Mf77ViZnMgcB4djR/gPzoPpeRNGBVD0kiCh/ygRi+48xw4UeGMMdm/S1gXAjDzpxGwB+6XpG2q8mLs2lzKMZtQaxhjwHQQ56kRz1cxfND4ALakSJsNRNHklSQmV8KKMADnRs+hqbFJkrap4gHJMRtEXVjn0TH0Pb8bAOB9oEJ6AWaP/8FB6OKXsDA0jXNHCT948kFJ0hdz1yR2YhN2YcGe/ejr6wNjDKzmKYiViIgEfpQNjJV8qhXBzDUw/w/woKDXIgCYDuLA0THs8u5KyZ683ZsO4jwaEoYzGezGA/dXpXjwjDEwxlIMq4TFISA4ch7f3lSZcpgB8Hc9BTTuw4HdW1LSYlYxHQTrGkl0ewTg+txsLFmmhys56FZC1BuJUolNo+/5o/DueiJ5cDoIxhiOYh/o/aPSIrs7vBQvi4YmOSKOqKMRiWNefzeVWHksLCzQZLA7ZgcsaQ/8q2d4KpaRk57LiKSDTUSU6OZKqrQyICIwMIDF/t6xYwe6u7vx3e9+N+uyYkZFADFBT0dI3N3xfpQUG0pDCtaH15wUgSGAoCw4NkBkUED8jS3lpLGxMRAROI6LO/NRcHGnvvSy1mvv3r3o7+9PMRSxAaXrwWS7P7FlMsZQV1eH+fm/4+c//088++yzKCsrUyy0RPFBiGnJrVu34fH8G65fv441a9ZAwTzipAYg8NjE7j5BJHWIXe2jjz7C22+fwYULF7Bx40b84he/wM2bf8/905TIK3zzs7grc+zY/8Ln86G8vFw2Y6qRKQwpcZyM+y6A47i4nSWZn5+ngwcPksPhIJ/PRxMTE5SpnBKFTyQSoQ0bNlAoFCIiirV7mmZVanNbprs7ufR169bh17/+NW7evIn6+nr8+Mc/xo4dO3DmzJmMv4wShQkR4cyZM3jkkUfgdruTCWnMQ9F21FiwOJuchY6NjVFzczO53W7q7e2lO3fuZGXdJfJPbW0tjY+PJ96rNA8JmuZZUqdqYjQ0NOCdd97BBx98gM8++wxVVVXo7OzE3/72N3XWnWroWqpVIgc++eQTLCwsoL6+PueyNE/eyRkWAFRUVODYsWOYnp7G+vXrUVdXhx/+8Ie4cOGCJK+S8ZQGXM0nEAigq6tLl7IUhxRSMikYEA+J7xZFDA4O4vDhw4hGo+jq6oLP54PNZisZT4Fw69YteDwehEKhlKGiTO2uhC5hBpku/swzz+DSpUsIBAI4e/YsXC4Xfvvb3+LLL7/U4/IlciQQCGDv3r36jT2qcbz4bEpOtpphCSGhUIi6urpo/fr11NbWRrOzsyUHPk/885//JJfLRTdu3JC0gUrzkJCVUil1V+m6MZLpGt1uNw4fPoxr167B4/GgoaEBO3fuxLvvvps4p4Q5vPXWW6itrYXL5dLPHVFjeSqz5cTp06eprq6OqqqqaGBggMLhsG5lizVwn1caygGA0LhPt2sWC9u2baOPP/5YNk1ruxdM6ObTTz+Njz76CH/4wx9EU0E3cyyZSxm/IyIcPS98hi0Z6eqtqpIEqVkZ/o780UcflU3XqlwFY1QU7/I8Hg9ee+01XLlyBQCwdetWPPvss7h06ZLGkgUPyMa7YuEzbIRpdHf/ETVP/juaNm1MGCAvX1bm5Zdfxv79+1OOkcD1IK1uiBo5U5nNEMLhMA0MDFBlZSXV1dXR6dOncygtSkRE08Fu6ugeIiKi4CE/dQcnk1k4SjvfZRVu3LhBLpcrrZuhtd0L3qiEaJ8Kiqa8G+rpSPhRjLFYGLXwfCKKxv+1Gvx38+KLL9LBgwfT5l0RRsUzNzdHbW1t5HA4yO/3UygUSjskwYn+7miMxeNzRORv9NIUcStqSCMcDpPT6aT5+fm0+bS2e8H4VGKISLFP37RpEwYGBjAzM5OYCvrRj34kOxUEpE60s+kgjtI+7K5hYAA2NcWeZ1spo/tEhBMnTqC+vh7r1q1LHNP7IhlRmU131KoHx3E0ODhI27ZtI4/HQ6+99hpFIhHZvH/s3pfwp4TF+/3+XKtbFHAcRzU1NXTx4sW0eYgsqFSA+ltaxhh+8pOfJKaC3n33XbhcLvzmN79JTgXFvaix0VfQ2PRk/LxYkn8nA93vTSnTqnd+f/nLX7BmzZq0T8nkrNpqLE9ltrzC/7r4//mpIKfTSW1tbfTeKy/KD3jG1iiROOtWhOM42rNnD508eVJVfq3tXvRGlamL/L+7CxQIBMjtdlN5eTl9+OGHMoUoFZ5z9QqKUChELpdL0TUQo7XddQl9KWjij4kEg0EcOHAAV69exX33/QsIttiaXJA+71hAY8K68sILL2Dt2rU4ePCgqvxa290SRsXXLZ0vsHXrVuzY8RiuX/8c7733nuR8q9/9LS4uYuPGjbhy5Uriri8TWtt9VdZnFCCZDCIYDAIA/uu/DmLDhg348ssv4XA4BOeLH9G2HsePH0dTU5Nqg8oJI/vWQsHj8dDQ0BBxHEfNzc105MgRWXcp4Z9ZzJciIqqurqaJiYmsztHa7tZ0HgTwKrV7924wxuDz+fDmm2+mrHHKjx8kFI9ZK6ZrbGwMDocD27dvN+eCRlpsvhDeEfIqxbOwsEDl5eU0Ozubh5qZg/iOuLm5mU6dOqWYroTWdrekUvGKI1QpnvLycuzZswcnTpzIQ83MQehjzs3N4erVq9izZ49suhFY0qh4fvnLX+Kll15KOUZEaG1txeDgoOw5ZJFuj/8cgUAAfr8fdrvd1IsbJoP5ZGhoiDwej2xaNBolp9OZdv7LCiwsLJDT6aTbt29rOl9ru1tWqeRUisdms6G1tRWnTp1KOU4ilRK/LzZef/11NDc3pwyfAOkjQHTBSIvNF+lUindSJyYmyOFwqJ6yKEYqKytpcnIyc0YFtLa7JZUqnUrxTur27dvhcDgwNjZmZtVMY3R0FBs2bEBNTU3mzDpjOaOSu+MjBalvaWnByZMnTaiV+fT29koeajANI2UwH4jHpdIRCoWovLycFhYWjK2UyczMzJDb7c65a9fa7pZSKjmVSofb7caWLVswPDxsXKXyQCAQwP79+80dRhBipMWaTTYqxRMIBKipqcmYCuWBO3fukMPhUHzSKBu0trtllEqsUiTjR8kda2lpwYcffmiZFWiOHz+Op59+GmvXrs1fJYy0WDNRq1Jy81585IJSerGwvLxMlZWVNDMzo0t5WtvdEkqVyZcigULJzXvxkQtK6cXC6OgoNm7ciOrq6vxWxEiLNQsllVKrOlaJXPB6vXT27FndytPa7kWvVOlUSq3q3HfffUUfuTA1NYVQKISmJumWtKZjpMUahVCBtm7dmvUdnxwjIyNUWVmZczn5or29nXp7e3UtU2u7F6VR8aSb48uWSCRSkJELarpwpWGEXG86tLZ7UXd/6eb4KMtZeLvdLhu5kG/UdOGvvvoqWltbJcMIebvpMNJijURPleIpxsiFSCRCbrfbkJsMre1etErFqxTpGBdULJELws88PDyMzZs3o6KiIo81SqUojSrbOb5sKIbIBWG39vvf/163nRp0w0gZNAotc3xqKabIhcuXL1N1dbVh5Wtt96JTKiNVCiiuyIW+vj50dnbmuxpSjLRYIzBSpXgKLXJBbmjg9u3btH79+rSKWhpSUIHRKsVTaJELckMDr776KlpaWqTb0mY4zxSMtFi9MUOleJqbm2VHqAshisHIYQQhWtu9aJRKTbyUnggjF4QUQhTD6dOn8dBDDykOIxj93WTESIvVEzNVikg5cqEQlKquro7GxsYU0/Wqo9Z2LwqlMsuXApK/cqU1F3ilojypwaVLl/CPf/wDDQ0NkjQy+iFRtRhpsXqRa7xUJpTK4SMX8qlO4mv7fD7q7++XTdMbre1e8EZlxByfWgptzYX5+Xlav349hcNhyWrMRqC13Quy+yOBhP/qV79SjEQwGqU1F/LFK6+8gmeeeQZlZWWJbrgQbhwkGGmxuZJPleL59NNPCyJyIRKJkMvlolAoZNo1tbZ7QSoVj57xUlp55JFHCiJy4c0330RtbS3cbnde66GGgjWqTHd8Zsp+S0uL4iJpZtHb24vOzs7CuLvLhJEymAvCFYXzTb4jF/7617/mxQ3Q2u4FqVRmjkupId+RC729vfD7/Xm5tiaMtFitmD16roZ8RS7Mz8+T0+lMuy2tUWht9xSlogiHpcVo4hXhzDfyQlMpntbWVoyPj6dELpAJ/k0gEEBbWxvKysoMv5ZuSMyM42gpHKWIwJWRy2YUhahSPEqRC0YRDodp3bp1dOPGDdOuKURruxeUT1WoKsXj8/lMHQg9deoUHnvsMbhcLtOuqQsSM0soFUfL4QgthiN0L+4jjoi45SgthiO0HBXmjeVZWuZEZcSOL4ajqXump0lLUSlhvkUuuV2M7Pl8XVPrvbjEpeZfyu1O0uw1FzweD3388cemXEsOOfNQQxqlYli12gYGhii+AgPAVjHYbDassgEAIbIMrCqzY3WZDSxKiFL8+BLBttqO1WV2rLIRIsu876GclqpShMgiF89ngx0coly68/m6EqJLBFuZHatX28A4Dkt8HVfbwDhCLm6imbtFXLhwAXa7HY8++qjh19IdiZmJfCpuOUr34t7Ym2g0qVLRaFwtkq/laPy4RFniipImLUWlolF5VUlXttgXzPReIyMjI1RVVZVbISrIZltao5AzDzUoKlViQ6lVDFGUIUqEaJTBLjzDZsPqMnvitYpPI1Le2Fom7U9yvhQpbI6drmwT8Hq9WFhYwKeffqp72RS/m7x58yYuXryY2E+GBHeZVAQj6gkT4ZajWOK7KcYE+ykyLAOILnEgu+C4jcHGcYJhBwLHxY+DEI3w254RyMZiF1JIk8zxMQZGHKJRUl+2SfBrLsiFGucKP/XU19eH5557LjGMIJySKsioBDG8ZPFO+KJMFwHcS8tih5tI1AUK0pWcbJm0ZCRCzMGW714zlS1wzsNRimZ8nxsTExP09a9/3ZDIhXA4TA6Hg+bn5yVpZk9ZQWP3p3JE/V6KLOv3gYxYX8psqquraWRkRNcyOY6jgYEB8vl8uparFa1GpbLnuAew6ye7wv34iKhgx6XSYcSaC4wxHDlypDCfOs6GdBYXXYp1GffgHk0Wm4l0o+eFEJ2QDmHkQq515c8fGxuj2tpaPaqnCxnMQ5G0SmW7J3ZXt4xl3Y25kOKltCCMXMi1rkIHveBWcNGCkRabjkKKl9KKnpELs7Oz5HK58h62LERru+dl7q/Q5/jU0tLSIolc0Ep/fz/a29vzt5+MnhhpsUoUciRCtugRuZDrtrRGobXdTVeqYlMpyjCCnS5yIdO5PIODg2hqapJsS1u0GGmxclhJpYj0iVyorq6my5cv61cpndDa7qYqVbGplBq0RC6QQMFGR0fhcDjg8XgMqF2eMNJixVhNpXhyWXOhubmZTp8+bUCtckdru5umVGavL2UmXq8Xd+/ezRi5IP7Mc3NzuHLliuW+E9OMShyJUOiDm9mgtFuE2EjEn/nw4cPo7OxMDCMwxqxhWEbKIE8hrIlgFHyXJ94tguO4tN3hnTt3yOl06rItrVFobXdTlEppTQSywK+SVx/xbhGMsbTKc/LkSTQ3N6fsJ2OF7wMwofvTYz++YkEuckHpM/b29krm+SzzfRghg1aIl9KC2jUXzp49S16v16RaaSfbducxRKmsEC+lBbVrLgQCgeJaGyFbjLTYYo6XygbhZ8kUuTAzM0Nut7ugohGU0NruhvlUxR4vlQ3Cz5Jpt4je3l7s378fdrvdMo65BKMs1grxUlpRilwohmEEIVrancggpbLiHF82KO0WcezYMTzxxBOSbWkthxEWa9U5PjnklJiPXJibm0sci0QiVFFRQTMzM2ZWLyeybXce3ZVqpamUnG/IRy688cYbiWPvvPMOqqqqUF1dnThGJZ9KHStJpdLBRy7weL1eOnv2bB5rlD3ZtLuQVXoa6EpTqQSxhWdSaGxsxN27d/HJJ59gzZo1CIVCePzxx/NSPbNhcYtMn0nl7PnWrVvx0ksvWcqoZOxFMRP/DfH5f/rTnwIAvvrqKzz88MNFN+CpOWpCLxkURyJYZyhBeeWFTJ9xYmKCvva1r9G6deskwwjF8P2oNA8JujnqVo2XIkp+Dg7p46PEbN++HXa7Hd/5znckwwhW+X7k0MWorOxLCRvfJuzjAPh3xsJbmI0lQl34V8/wFKLRKBYXF2GzFdTSqsajhwwavR9fYZHaHXY0MhqaTH5OjqaoAQ00RRydO3eOPB5PXneLyAWV5iEh55/QSoqXipH8ygiT+Bwd2F0Tk69Dhw6B4UFs7qzBg2D43ve+h29+85tYWlpCW1sbbt26la9Km0pWRkXxOwES3BHkcz8+01C4AZoeHsW3d3kB2IDpIM59Ecv48stHAABr/3UtRkdHcfXqVXzrW9/Cli1b0NraitHRUXWXLdbB0Vxk0Mqx5xnhiIa6OwmwEWJmRx3dQ2lPiUQidPLkSdqxYwe53W763e9+J7tiXqGg0jyk5+VSeLqoTmv6Uzwxv2qfFzQ0GXvAYai7k7qDk8ksGT7+7OwsdXV1kdPpJJ/PR+Pj4wbWVxumG9VKUSnFH8fUEGFnR+LtZLA7xWFPe64gLRwO0/Hjx6m2tpYqKyupt7dXslBHvn6gphvVyo2XiqnUUE8H+XuCupY8MzND7e3t9I1vfIN8Pl/eNwQ31aiEKrXyjCpGRyOkyiT5QxvhcJgGBgbI4/FQdXU19ff35yWwzxSj4g1oJUciTAa7CQDFh0ElhqU3ly9fpueee44cDgft3buXJiYmDL2eENOUaqX4UrmT62rtqSwsLNDAwADV1NSQx+OhgYEBwwdUTTOqhx9+eMWqVKFw8eJF2rt3LzkcDmpra5Nd20oPt8QUoyqpVP6QM5I7d+5Qf38/VVdX07Zt2+j48eO6botrilGtZF8q32RSnvHxcfL5fORwOKi9vZ1mZmZyViutRpVxmoYouR8fY8ySkQjFQKZ51Pr6epw4cQIzMzPYvHkzmpub8f3vfx+Dg4OIRqMATJz2UWuxJZUqPsbHx6mlpYUcDgd1dXVlvS6pSvOQkNWEckmlCheSUaH6+nqcOnUKk5OTcDqdaGhoQH19fYp6qS0r28qostiSSlmDkZER2rNnDzmdTnrxxRcpFAop+l4qzUNCRqX685//DEBepahYQzNWMLt27cLbb7+NiYkJlJWVoa6uDo8//jjeeust3a6h69M0JYqT4aEgjr/xOi5evIj29na0tbXB5XJlbneFR41UG1UJa8KgGIMIQF1vRESpW/KmNaoUS+SQGigqfl+iGBEbROwgMPr+KHbt2qWpzIRVUOIfAUyQJjGgkkFZgVSDiu2yTqAUgwoe8sefErKDNXaAMA2/v0exzIRlsPg/HY3Sx40ODU8lLphCyc0qfvhgaAAJc2DxGIzp2IB33xebQEQgioKO7ISN1QCbKpTLFMYAReOBQB2NSITGTgYPmRLiUaKw4GiKvAB5/d2i40TdHV7qGZ5SPHdVQvxY7GFJwjQ+P9+Afe8/CIBDTdX9SaOW639LWAPRndzwoT6MoQFTgZ8l0ygmYhWbqoGKzWnKEpogxYLQeOvkKKZaXv9/6/w7KFHI8CqVfDoofWxYlFIXxU1623ErvT73Bcb6DoAxBhtjaDzM4XzgBSN+GyUKBBIMABAANn0NYwA2VVbFj6XelIldaRvsovcJYo74+ZGjGJrkQEQY6unAU1tsGJqmeEkyznqJooaIwJjITEQTLWKHh39PFJ8/FJ1uS/lzOoij2IfdNbGR1Cd/5ocXwNi54XifWhpGsBoxHznWrkQUa+aaSngBfDF7PZEvpmYcMB1Ez/Bn8XPjCiWyuhQrCY6cR0eTN3mxqc9TZDDz6l8lihn+JozhQfh7OnD0wFPoGZ5KpE8NHwbreh/PP/lQ+oKEDpbwsSPeWQMaaJqSkYec4FWi+Em0K8dJ2nRquCfxSD9khhdiJ0oPsfjJ2LL7gMjcbMDOdtDo0YwWTuDA0oywl9ILOV3FdJt44lgwxKB5QrlEiWwoed4ldKdkVCV05/8BjuOOghF7IUoAAAAASUVORK5CYII="
|
<image>如图,点E,F是正方形ABCD内的两个点,AB=13,AE=CF=5,BE=DF=12,线段EF的长为()
Choices:
(A) 7
(B) 7√{2}
(C) \frac{19}{2}
(D) \frac{15√{2}}{2}
|
7√{2}
| 69,881 | null |
7√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAANcAAACFCAYAAADIO21JAAAbD0lEQVR4nO2dfUxU2d3Hv3foU7epXdLsVEykzsAML66mjNXGiXaLqW+sK6C1CZtnTQ2NCpvdZtnK8BKxYhwfQVAwxTKjZNUs28WICygWFma7ENwWtmzAiBHKjGJcU42kimsi7DLze/4YZrjzygAzc+flfJLJzNxz7pnfnHu+5/13L2gKE02jSgNxXAQB4L1SSW8yEpHRJi4juDFNvfgX1WQyf1Glwa4MTL1Sc4UwVTAs+WH/ue1MLoGbypM0FZlomFSqamu4iIgAABymKW00Yf82I9r0BCLzqzoPkIu2Q2+JS2CEANzUi18AOI4DYMLxJoIqDTblQN+uQdqyOGGMFQhzfkx/JkMbOI5DlT4OZDLni+nkRoi4OEAea40r4p84nYIB/4YKm2TTh7JLr0CVdhX782um4vjqrzCExwRABIIet6fKAeHf0GrbIdu4EVtjY4Q2UDAIemyXb0FanhZNpfusxznZZlTnpUIWOy2u7xEcdWLQtYESZYCJAJG5FgNEiE1MRdmg3h//geFHiAi2lawIAGBo12HZG5sBALqzZwFZFgAZsrJkjomEKASA44lEd1aLK0jFcOkeXgTzR5k8AYiRW4+LnDVAuvZWvLF5Ay/UnNlyWYJv/gFDWJz1XgDcuTuM8uzN4DgOm/eVI3aq4ITdiGAqewh6VO0rh0r7LuRTmiBebmzaW2bu7U0JTuSYkh5/KyNs2BgLkG1G6g1DSEuUAzCFXwaHIbprJ9E2bAKZCKrUVMTITGGnLJtqx3AHVwCbrp/zYZX5zUFcZLgDTpVqViY3nTgZ2vD28avYuunXAERsyBVCcHDUDBnaUAYVNsrMEeTbtjmUiXCGn1+WSUF7HMSl+3s74mMlDgnl/3ELkKZC1ka5N21kCIylWNgLRvf3duRu3WAtOPv2mQfveXl5NueFFbJYpAEw3Lljk18cxwF32qHVWeYjTOY3m/l8GqY0gNr0vGP6T83z+Ol2axtssSukyU03lwP79c/9Z9qJyCiUWX7HZPdf287kEgDStA9bjw23VRPSVOb4vHUw2EQAiHOyaMhPiBHaWMqBqxe/4g0nkfH/q30epeVpnZ7BEdl2GB2n5s3T8HAfiRECENlOHDpcZocDTsoGw4rI2j+cwlEzLPPCBfuJL4ey4HAg9MsGuZis8AS3udPT0zP1yVaArNUKNWyvL5HR5vvo6Kg/jQkoLFPtROR2EsdZ2Pf4+iLeSr3T+XsHRHAQHiMEYNfVirN1ihmwtHaWZWZzOpx1Kdoa6eOPP4ZEIkFycjK6u7vNmxTJspHTaN3QyV6h8zLxruvZs2eRnJzMCxPePr/mhYn/2TRjfBtdkuWI3WCV4zibyFqtFmq1GitWrEDJ/x1D0krF7OTMCDJMmJj4DlKpFFevXsXq1auFNiigcDbxRxBBxNPNdJ9whl5gVlYWRkZGkJKSgpStr2PHjh0YHBycvVE09wEiw5+IUFlZCaVSaSMsa10c5tfR2cSf/TGHqXhrwJQCiex3TAMTExOorKxEeXk5UlJSoFarIZFInCUDwHYs5yw9RuAxNjYGuVyOnp4exPL20jHcwzltudxEtmfBggXIz8/H3bt3ERsbi6SkJGRnZ+Prr7+eMQ0mrOCgpKQE27ZtY8KaBzO2XJ4wNjaGkpISVFdXIzMzE4WFhVi0aJFXDWX4DvvexKNHj5CQkIChoSFERUV5dA7DzKxaLk+IjIzEsWPHMDQ0BACIj49HYWFhWK+PBBP2Ijl06BAyMzMdhMWfEWPCmhmvLbETEaKiolBRUYGBgQE8efIEcrkcxcXFePr0qbd+huFj9Ho9Ll++jOLiYsepZY5jopoFM4rLfnbIVVeRn+nR0dHQaDS4ceMG7t27h7i4OJSWluL58+fesJnhQwoLC5GTk4PIyEgmpHni8YQG/93TsZhEIsG5c+fQ1dWFvr4+xMXF4dSpU5iYmJiHyQxvwr+W/f39uH79Ovbv3y+gRaHDnLqFs63REhMTUVdXh5aWFnR0dEAul0Or1cJoNM58Mo9wX1vxBfxrqVKpUFRUhJdeeklAi0IHv25rTkpKwieffIL6+nrU19dDJpPhwoULHp/Puimzx9MKqbOzEyMjI8jOzvaxRWEEucBNkNfo6OigX/7yl5SYmEgff/yxz3+PYespy2fVqlVUW1vrZ2tCD75uBHXISU5ORldXFyoqKlBeXo6f//znuHbtmpAmhTzOWv+mpiYYjUa89dZbrOvtRbyyiDxbyMUCZGNjI4qKivCjH/0IarUaGzZsmFM6DM8xGo1ISEjA6dOnsWXLFqHNCXq8vog8FwOckZ6ejoGBAbz33nvIzs7G+vXr8cUXX3g0/c+YG7W1tYiOjmbC8gWe9B29ias+vzPOnz9P0dHRlJKSQv/61798Yk84Mz4+TosXL6bu7m6hTQkZIOSYazatze7duzEyMoJt27YhNTUVO3bswK1bt3xoXXih0WigVCqxZs0aoU0JSQQZc82FiYkJVFVVoaSkBL/+9a9x/Phxt24uDPdYXEo6Ozvx6quvCm1OyCD4mGsuLFiwAPv378fdu3fxs5/9DElJSdi7d69LNxeGI/zK8sSJE9i2bRsTlg8JipaLnMwKPnv2DGVlZfjzn/+MXbt24eDBg1i0aBGb5PAAi0vJzZs38dOf/lRoc0KKoGu5nAnm5ZdfxpEjR6DX6/GDH/wACQkJUKlUzM3FA44cOYLMzEwmLB8TFOJyh1gsRllZGYaGhvD8+XPI5XL86U9/wtjYmNCmBSQGgwEXL17EgQMHhDYl5Al6cVmIioqCRqPBwMAA7t+/D4lEgqNHjzI3F9iOtYqLi/HOO+9ALBYLaFF4ELTicjUejI6Oxrlz5/DVV1/h5s2biImJwalTpzA+Pu5nCwMHS7e6v78fOp0Oubm5AlsUHgStuGaauJDJZKirq0NHRwc6OjoQExMzJzeXUMBSERUWFqKgoAALFy4U2KLwIGjF5SnLly9HQ0MDrl69isbGRkil0lm5uYQCHMehs7MTer0e7777rtDmhA+ebOMIJa5fv07Jyckkl8uprq6OiDzbkjWbbVuBAt9mpVJJ58+fF9Ca8ACB4nIiBOvWrUNHRweqqqpQWVmJFStWoKmpCYB7x8JgXj9rbGzE+Pg4du/eLbQpYUVQLCL7kqamJhQXFyMiIgJHjx4N6t3h5GSx3Wg0YsWKFThx4gS2bt06Y3zG/Ai6RWRfkp6ejr6+PqhUKuTk5GD9+vXo7OwU2qw54UwotbW1iIqKchCWq/gML+JJ3zHUsIxFnI2jzp8/TxKJhFJSUoLGFcPV/3nx4gVFR0fT9evXhTArLEE4j7kAx9vF8dm9ezf0ej22b9+O7du3Y8eOHejv7/ezhbPD1f/RarVYvXo11q1bJ4RZDE8UGK6Mj49TZWUlicViysjIoNu3bwttksc8ffqUFi9eTH19fUKbElYg3FsuT1mwYAHee+893L17FytXroRSqURmZqbX3FzIgwkjT+I4o6KiAikpKVAoFHM6nzF/wn62cDaMjY2hoqICp06dQkZGBg4fPuz0KSAk8CycxaXkxo0bzKHUz7DZwjkSGRmJ4uJiDA8P48c//jESEhLw/vvvO7i5CD0LV1JSgt///vdMWALDxDUHxGKxzSOT4uLiUFhYGBBuLgaDAbW1tcjLyxPalLCHiWseLFq0CBUVFbh58yZGR0chkUhQXFzsdTeXwcFB7N+/H0+ePJkxrlqtxjvvvIPFixd71QbGHPBk1oPhGSMjI5SRkUFisZhKSkpofHyciOa/L/GNN94gpVJJr7zyCpWVldG3337rNF5fXx9FRUXR06dP5/V7jLkDNlvoGyQSCerq6tDV1YXu7m5IpVL85S9/gclkAjC3mb/PP/8ct2/fxj//+U+0t7fjH//4B5YtW4aGhgaHuAcPHkRBQQEiIyPn/V8YXsATBTIc8aQ16uvro5SUFIqOjqazZ8/O6XeSkpLogw8+sDl27do1Wrt2La1du5a+/PJLIjI/1EIul1tbS4Yw8HXDxOVjTCYTdXd3U3JyMkkkEqubiyecO3eO1q5d6zL8gw8+oNjYWNq5cyf94he/YC4lAQATl0B8/vnnpFQqKSEhgRoaGojIeQtoMpnoxYsXFBUVRdeuXZsx3fj4ePrJT35Ck5OT3jaZMUuYuASmubmZFAoFKRQKam1tdRpHrVbTb37zmxnT+uqrrygiIoI++ugj67FgdOwMFfi6YTs0BOTy5csoKiqCWCyGWq1GcnIyAODhw4eQyWS4fv06Vq5c6TaN1atX4+nTp9Dr9f4wmTEDNrrxRIEM7+CqRamtrSWJREIbN26k7u5uysrKIqVSOWNaV65coYiICPrss8/cps/wH2AtV2Ci1WqhVqsRFxeH7777Dg8fPkRRURF+97vfOd1SFRsbi0WLFqG7u9vmODEPY8FgewsDlKysLIyMjCA9PR16vR5LlixBWVkZfvWrX+HTTz+1iVtdXY0HDx5Ao9EAsF1DY8IKDFjLFaA8f/4cp0+fRnl5OeLj42EwGPDaa6/hwIEDUCgUeOWVV7Bu3TpcuXLF4VzWcgkHXzdMXAGOxc2lsrIS8fHxuH37NhISEjAwMIBbt25BJpMBYIIKFFi3MIiwuLno9Xps2LABCxYswL1797Bz506rsIDpriCrEAMH1nIFGT09PUhOTsYPf/hD7Nu3D/v377c+VIG1XsLDWq4gRqPRoKCgADdu3MCTJ0+wbNkyFBcXY2xszCNhsQrTfzBxBRH9/f1obW3F+++/j+joaGg0GvT29sJgMEAul6O0tHRGXzLWsvkPG3GNfzdufTECj8OHD6OwsNDGpUQikeDDDz9EV1cXent7ER8fj1OnTmFiYkJASxmAnbhe+p+XbN4ZgcMXX3yB3t5eZGVlOQ1PTEzEpUuX8Le//Q06nQ5yuRxardbPVjL4sG5hEEBEOHDgANRqNb7//e+7jatQKHD16lXU19fj0qVLkEql+Oijj/xkKYOPW3HZdxOddRtddSPddTE97X66iufuuL1NodDFbWpqwujoKHbt+l/rmEnfrgHHceA4DiLR95CefwaAaeoFrFnzC+h0Oly4cAEajQbLli1DfX29cH8iHLHfePji2xc2GxAt3+3DPf08m7DZ/g7/+4tvX1hf/O/ufiMYMBGRQvFz+qShyXqsOi+VgFQaJuNUnGFKAygtTzt9otFkPnmK1tZWq5tLc3Oz7W/McsMv2yDsGrjz53InLmcF275Qu4rnSdhcjs9F7MHE+fPneTvkjWZhpakc4g23VU8Jzj0NDQ2UmJhISqWSdDqd1+0Nd2YlLv6xuQqDics17lqByclJksXJqaOjg4gsAgK16R3j6ts1Nq3ZTNTV1ZFEIqHk5OSgeZpLMABnd3+a79jEl2ObUBg3ucLdulNVVRXiZLFWJ8qzp99GWp4Wm2SOce/ctXOWnGGtOCMjAyMjI9i1axd++9vf4vXXX/foaS7EFqE9x6Iy+64d7IZj7loSZ2HOuoszhbnqdnpy/kxjrkBuvZzxzTff2DylxDKu0rQ77/ip0uzGXLNgcnKSqqqqaPHixbR9+3YaHBycq9lhD+ZyD41gK5zBzqFDh2jXrl3W7yZ9i2OXcKpH6dhddN01dNcNHR8fp/Lycusjk0ZGRub+B8KUWYuLCcu/PH78mMRiMen1eqsYJmmY0jlzy8UXiM1MoYnInbA85ZtvvqFDhw5RZGQk7dmzh+7fvz/vNMMFOBtzOYNthRKGo0ePIiMjAzKZzDomE5EMKao3kF2lnXYvMbRBxCWAyz+DptJ9AAfMZ18ATY2nFi5ciOLiYty7dw9isRgrVqzAu+++i0ePHs14LoOHJwpk+I/79+9TZGQkPXz4cPogryeXmw4Cpl/OZg69zePHjyknJ4ciIyOpoKCAHj9+7PsfDVLgacvF8D8HDx7EH/7wB+tD9QiYapHMHG+YBBHBZDKBiGxnDr3QeJCTFkgsFqOiogJDQ0P473//C7lcjsOHD7t8ZJKzNMIRJq4A4tatW2hubkZubq71mP1EPcdFTL07mcL3gjeJu6WBqKgoaLVaDAwMYGRkBBKJBCUlJQ5uLsytxQwTVwBgqemLiopQVFQk2FNK7FscVy1QdHQ0zp07h+7ubvT39yMmJsYjN5dwa9GYuAKEnp4e9PT0IDs72zbAvjwSv5CavGqDfYszUwuUmJiIuro6tLe3o6OjA1KpFFqtFkaj0aP0Qx0mrgCA4zjk5+fj2LFjWLBggV2gfWR+IXV3+bwrPHcoFAo0NDSgsbERjY2NkMlkuHDhgt9+P1Bh4goAPv30Uzx48AC7du1yE8uNWCxzhwKzZs0atLS04MKFCzh37hxeffVV1NXVCW2WcHgypciYHzO5aKxcudL6SKFgw91/a21tJaVSSQqFwif/LxBdXzCX7U8M31BbW0urVq0S2gyf0tDQQMuXLyelUkmtra1eEUUgCouIiUtQ+IVicnKS5PJpl5JQp66ujuRyOSUnJ1NnZ2fACmQ+gC0iCwd/xkyj0UAqlVpdSoIRmsX0ekZGBoaHh5GZmYm33noLW7duRW9vrw+tExhPFMjwPuPj4xQVFUX9/f1Cm+J3TCYTTU5Okkajsbq5DAwMCG2WVwBruYSnvLwcr732GpKSkoQ2xW+Q5ekfHIeIiAjrI5PWr1+P9evX480334TBYBDYSu/B7hUvAM+ePYNMJkN3d7fNwxTCAXJxP3vLI5OOHTuGHTt24MiRI4iOjhbAwvnB7hUvMIcOHXJ4SkmowK+QnVXOrnZpLFy4EPn5+bh37x6io6OxYsUKZGdnu3VzCXRYy+VnHj16hISEBAwNDVl3vjMcGR0dRWlpKc6ePYu9e/ciPz/f+jSXQIa1XAJSUFCAt99+mwlrBsRiMcrKyjA0NIQXL15ALpfj4MGDePbsmdvzAqlBYOLyIwaDAc3NzSgoKBDalKCAiBAVFYWqqircunUL//nPf7B06VIcPXrU6uZiL6ZA2hzMxOVj+Bc/NzcXubm5grmUBCOW/FuyZAlqampw48YN3Lx5EzExMTh58iS+/fZbgS10DROXj7HUpL29veju7kZOTo6wBgURlnvh85FIJKirq0NHRwe6uroglUpx+vRpl24uQsLE5Sdyc3Nx5MgRR5cSxpxYvnw5Ghoa0NzcjObmZkilUtTU1Ahtlg1MXH7gs88+w4MHD5CZmSm0KUGJs0kKy7FVq1ahpaUFdXV1qK2tRVxcHC5evOhvE53jyTYOxvxQKBRUX18vtBkBjzc28up0OlqzZg0tX75cEDcevm7YOpePuXjxIkpKStDX1+dydwJjfjjL12vXrqGoqAgRERE4evQotmzZ4hdb+Lph4vIhRqMRiYmJqKmpCeqd78HM5cuXUVRUBLFYDLVa7fPrwBaRfYR9ZVRTU4MlS5YwYQnIzp07cfv2bezZswe7d+/Gpk2b0NPT45ffZi2Xl7DvmkxMTEAqlaKlpQUKhcKjcxi+wZLPRqMRNTU1UKvVUCgUOHLkiMtrM1dYy+UD7EVSWVkJpVLp9uIxYfkHSz5b3Fz0ej02btyI119/HW+++SYGBwd90pCwlssHjI2NQS6XO3UpYa1V4GBxcykvL0dqaioOHToEiUQyrzRZy+VFnFVAarUa27dvd+pSwoQVOFjcXPR6PZYuXYqkpCRkZ2fj66+/9kr6rOXyMg8fPkRiYiJzKQlCRkdHceLECVRXVyMzMxMFBQWzvoas5fIhBw8exN69e5mwghCxWIxjx45hcHAQHMchISEBhYWFLp/mMhNMXF7EYDCgsbERRUVFQpvCmAeLFy/GyZMnMTAwgCdPnkAikaC4uNjhaS4zwcTlRQoKCpCTk4PIyEjWpQ4BoqOjodFocOPGDRgMBsTExKC0tHTGp7lYYOLyEv39/ejq6rI+W4tNXIQOS5cuxYcffoiuri709vZCKpXi1KlTM7q5MHF5iZycHBw+fJi5lIQglooyMTERly5dQktLC1pbW62PTHIFE5cX6OzsxIMHD7Bnzx6hTWH4AYVCgZaWFtTX1+Ovf/0rpFIpamtrHW85YJmKt1/cZFPxnrNy5UoUFBQgIyNDaFMYAtDZ2YmCggI8ffrUZreH23UuxtxhlVPwMt9rp1Ao0NHRge/ZBxDMDzO0Jm45EKYQAG4qD4gAjjPBvjc9OjoaFPfUY8wFx+vtkqly8uWXX+Lll1+2bbnYvjfPsdY5YV75MCy6IdiK0MT/ZgI4zubpn//WadBud1/88OvomB+XSrzPAK9156bCwi9jwgJn3UP7I+YGSWQXIOKLSwQO/ErYANWmt+2SMdlV0v57qLVwmLOIA0C87MrbzkEkEoHjOIi4CHAiznorMK1OL5CtDG9j6cnxRWbRQF769DXnOA6cyPbam0sLOSq0ukALSk1FjIwvIPu+Z3jN5FsylQAcbySo0oA2PYHICCKCiQxI5bZhw8ZYIc1k+ABnw6XjTeYyoGkfBhFhqL0a2Zvi0HbHHG6tlvknt59VQbRhI9DM+jrOMLdietyGCpumvErOnDkDDrFIzE2A3KGLwAha3FxHgh6DV6cr07iYWHMLNtWjE9lGBsjQhnbahH0xIlxNXWYuKAisG9z7E/7/5n82tOvw6rZN5uOGVlybGpseP15uzkc2yREa8K6jvQKGdTpwqlSrRvL/uAWpKg02xZq/24iLA5Cv1aF032aAm0R6Yqw1QWvf0/JDYSI2+4V1C3dHDCjbt9k85pK/jgSZdDqvYLecwQgJ7OvLu3cNuFKWZR1vbTpJaCrdZw23EZeuJg9lZWUQTRUYgsi8uOPkB2z6oDOVoWAPdxKl7Vo5PtUTTERoO5MLWazUOjVvXaG35JHQ9rPw+YW7iPbZtXK06wlEhDZtLjbLuanZdRNAPHGRoQ3tpo0wkTnycFs1EmRSGxERkXM7ZuoCBXu4XRQytKGczOMtDkCMVIbYmPjpiBwHm5lUoe1n4fMLB0BkdCgDZaTChhizIjbuzUIagPbP2gCIAA7mHRpkaIPojzqYmo5bE7g7YgBgO+tlXiizXyzDzAupwR5uh+7v7VC9scn6Xb4pG3JeuDkpXh4JbT8Ln/f157gIm++WMmBtfAx3cAWAJjZ2Or1qVbpFMdSmN9+vW5UG67G0PO30jbBNru/nbaRJt/fQDvZwIqP1kyrNnFfOwnz1+yxc4OtvV+xV6dNlwETDlAYQkEp6+s4ahyMyTm0wEM2i8p7FfqsQQt+uQdzm6YX1Nj2Zp+L5NR/bDhXS2JcBMyIgbT+o6bjNpNb/A0ycYsrJD44DAAAAAElFTkSuQmCC"
|
<image>如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()
Choices:
(A) \frac{15}{4}cm
(B) \frac{15}{3}cm
(C) \frac{15}{2}cm
(D) 8cm
|
\frac{15}{2}cm
| 69,882 | null |
\frac{15}{2}cm
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAACACAYAAAAyNTpGAABBnklEQVR4nN19d5gUVbr+W1XdXZ2me3IER0AYgiIISEZRzGJCUcGIuoaLuqtXvbvs/emuAbPrusi6D6Y1rmGNoC6KCCaCBBFExIGBgWFyx+rK3++PnnOoHgYZnRlmuO/z9DPToU6dOuc73/nOFwUiIoAACNj7F9j3M+d3cPwGju/Rxm/2DwJgAbABCFb6UreYAKAD8AGWBF1V4fHLgJBCIqpi649xKAphxKj+kDyASxQyWxTa6gM5+mdl9NOyRAAEQRAgigI0TYfb7YIoSohGo8jKCkJRUggGg7BtG2LL/Qwj3Y7bJbU05xwDu9U9AUBqeS+2dElo9b0ACGyMzZbv7JbvxJbPXenPifWfHI+6vznqOIjS49P6+cW9D+Akkv11pvWAtO6o0Oo31Mb7TNiw+ceufZoT4PH7EYs0p7+XPbjooosRj0fh8gCS1J4+7e+zNCRJgCSlJ9SyCLLsgWWlJy0cDkMUJbjdbgCAKAqort4FIoKup4lsL5zjJrT63/l+f/3a/xj9svZbj0d756P1dQeGuPdfJ+G05iI/R9FtDUj7H45sEwIIouh8MAJsAsiGmkwhlJMDsk3MmTMHRwzoh/4VFSBBQCyhg4S22gfaHqjWg0N4772FKC0tw6BBgxCNNkPXDaRSKQCAZVmora3Fli1b4PP5MHv2jSgqKoRpWvB6vWibaFtPiPP/tjh163FzjqeIvVPUXo7Suo32EnPr6w7UPkH8+cadFxzoBr/84QQAHtEFlyBAIgECa4Ps9EsQ4Q0EoCkqnpg3H/0rBqCxqRnRRAwpjRAIyj/Tj7YGat/Ppk49E3fffTeICJFIFG63G6FQKN0NImRlZeHSSy/Fc889hwceeACRSBQulwuxWBSmae3nHm2Nyf4mruWzjOETse+1Ivg21vk706+CeOCfdC34cDIBiAgQREB0A5CQSihIplKQ3C6ccurpyMoNo2JIMWxJ4BJBR+H3+1FeXg6Xy4VoNMo5TyKRwDXXXAPLsjBy5Ej4/X4UFBRAEATk5OTANM1O6sH+0F5u0D3oZuKx0y8TIANp4hGcq06ELMuYN+9JnHnGWWhsbkIgKws1tRo8bqCuqZmLv78WjY2N2LhxI9xuN6qqqhAKhaCqKpqamvDOO+9AlmVccsklKC0thaZpSKVSqKurAxG1bF2dgDbpo62pafVZN9NVt3Oe9KHCBNlwDIYIWARdUfH3+f/An+6+D336HoUTTpqCUHY2ioq9iGsG8nNzOjx+eXl5CIfDOProo7Fp0ybs3r0b2dnZSCaT2LlzJ7KysjBgwAAoigJZluHz+VBYWAjLsmAYRgfvjgMQgNjq1d7rDg66n3gAQJIgsm29BUpSQVNzM2RZRmNDPUw9ildeeQUFBfnQLCDodUM19Q7f+sMPP8TEiRNRVlaGeDyO4uJimKaJ6667DjfccAO+/PJLVFRUIDc3F4IgoKGhAUQEy7IgSVKH7982nMTSBuH0EHR7r3RVSes32EqyCLAIDfWN+M1vrsOFF14Mny8AQRDR1NQEVdXgaTkhK0oi8zxDe1+2bfOXE9FYDDalP0upKfz0008YNWoUkskkamtrQUR44IEH8MQTT2DNmjXo168fSkpKIAgCTNNEfn4+iAiyLHPZqD2wLAuqqgIAkkkFtp0+UALI4GDNzc0gopbfpfj/PRHdTjwenw8AUN8QAQBYmobbb70V48aNw+KP/oM1a9aCiHDG1DNw5aVX4cnHHsMll1wH0zSRG8rlNKeqJlIpHaZpQRAAURT5q7m5mXOMcCgEURBBIEiSBE3XQESYMmUKtm3bhgULFqBfv34oLy/HsmXLMHXqVIRCIWiaBl1PczpFUUBECAQCB3w+3dChGzpqampw5513wuv1IxQKo7S0F8LhMGRZxs6dVUgkErBtGzk5OTAMAzt2VMPn80MQ2tqfbMerG0HdCotqa6uIbIPIJEpFVCJKkG1HKNbQQJZqkakQkU1k23FKWXGKpCxK2TZVNTRQs56g2sYmUlMmkZ3+HW/ZsviL3UvTUmTZGpmWSjV7dtLadato5cqVZFkWrVy5knr16kV/+tOfKBqN0p49e2j48OH03XffkW3bZJomb1tVVdI0Lf2m1X3ZvYiMVi+Ldu3aSeeeex598smnpGs6xeNJ+uMf/0Ben0zxeJR0XadYLEa2bRPZREpSb6Nt1j57dT1sO92JvWNJpOs6dTPxGESkkGml+FhoqXoiivPxX7H8G5r3xJO09LNFlEg1kUFEGhGpRKSQnh7blgnUVIuSyRSlUhp/4Lq6OrJtm2zbJMPQiMig5kg93XLrTeT2uEkURfrggw+osrKSfve731FNTQ29++67VFhYSAAoPz+fvvzyS7IsiwzDoObmZt52LBYj27IPSDxJJUqqqpCqKnT55VeSqqr8Gl1X6aqrr6Djj59IiUSMiIgSiSTZlk3xmEK2RQdov+sJaH/EIxB156ZqgmCgprYehbm94XIJgJCElkrCNv3wuIK45JLLseXHDVCtZkSiSQQDvTDpuBMx+eQxOKJ/b4wcOgqmnhZgPR43JIfFgIhg2zYkSYJp6jBNE16vB0pKgaqqCIfDEOCGIAgQBAF79uxBUVERTNOEpmkQRRFer5dvfYFAAB6PB6lUCpIkwePx7Mekt++WomkGPvvsM7z55tu4//4HYJmEvPwwBMHCXX+6Cwvf/wCfffYZkkkN+fm5ECBA02zIsniA9rteoKYM21b6XoZhwHWA67q2UwDiahJFRSUABDQ1JxAI6pB9AcAOAAR8/PHH+HHrJuhWEySXF7uqk3ju+RfwwcJFWPzx+4g1KRh+9DGYMmUKJkyYgH5H9EFubi78fi88Hg8/EYmiyP/3+/zw+/wA0kJpIBCAZVnIy8uDIAggIgSDQQBALBZDVlYWcnJyAKQFX1+LnEZEe7Xi+4FpmXBJLsiyjDfffBNjx06Ex+NBINsHCGn5qaysFIGgD5FIFCUlpTB0gscj7CUcNlj8VnbrD7oF3Uo8ACC5XSAApgHk5AQhIAnbtqAnU1i9agNKikohyzKyQ8VIJlQMHlyChx++CzW1tXh2wXzU1Tai8qcqLFu2DHPnzsWm77+Dz+fDsGFDcdRRR2HSpEk44ogjUF7eG263G6qW1tewSfd4POl+SBIkSYJhGHx1KYqCrKwspFLpU4/b7ea/B5AWZg/Atw3DgEtyoaGhAdXV1Zg4cSL8/rRyMZXS4Pf7sWvXLkiShJycXKiqDp9Xht5CQD+P7j2JdTPxiPBKPhhkgsgFQEB9QwQF+bnwBn14883XcfqZp8DjcyMRbUYwnA1DA0RBQHFJIUQBKC0tQV5ePkaNGoX/+f1/g4iwffsOfP31l1i3bh3+9Kc/4bvvvkNWVgATJ07EqFGjMHz40TjqqKORk5MDt9sF27ahqir8fj8kSeLHY7/fn/HXNE2YpgmXK32NaZoZxNT62QAbPm/6RNbU1ITDDjscxcWFEAQBipKCz+fDj1u/x1NP/QMPPfgIRFGE2y3DNMFdH36u7e5GN8s8ALUMQiplwO+TQWRBEAiAC8cMG4EnnngCRx55JMI56W0kpVjw+dyAgIw9eJ92iRyuE26sW7cOX331FbZu3YqvvvoCP/74E0pKinHMMSNw8skn47DDDsP48eMBAC5Xek1ZVtr44VQGmqbJuRAD0994PJ6M/ti2CSIBkiTh8ccfh6qquPHGG+H3+7ldbNq0c2FZFu6668845phjIAgCdN2EJElwuX5OlnHKPF2L/ck83U48bIJs205vKy0T0dzcjHHjxmHZsmUoKyvjnWYrn13bXi0ve0xGVHV1dWhoaMDy5cuxaNEiVFdXo7m5GeFwGCeffDJOOukk9OnTB/379+d9ZPdl91YUBcFgkOtiNE2DJEmwLCvD9tXY2IixY8di3rx5OOGEEwAAVVVVmDhxIgYNGoSXX34Z+fn5aGhogN/vRyAQgK7rkOW2vAYOPnqkwAzsJRpGBJZlIRAI4Ouvv0bv3r1RUlLCO0xEGRO4P67jRCqVQiqVQk5OTst2oSAQCKCkpASyLGPChAnwer249NJLoSgKNm/ejK+++gqPP/44vvjiC/j9flRUVGDChAkYPXo0+vfvj+LiYoTDYWRlZcEwDEQiEQQCAfj9fliWxSe9pqYG33//PS677DI0NDTg1FNPRTAYRCqVgm3bePfddzFixAgUFBSgrq4OhYWFfJI8Hg80TesxBNQWup3zMKpmSCQSCAaDuPrqqzFgwAD893//NzcNOE9MvwRODhWNRiHLMucKr776KhobG3Httdfybc7v93MOtXv3bmzduhVffPEFli5diq1bt8Lr9WLw4MGoqKjA9OnTceSRR8LtdvP7qKoKXdeRlZUFIC3vhMNhxGIxeL1eThANDQ0oLCxEJBKB1+uFz+dDMpmEZVnIysqCqqrwer370TIfPPTYbcswDLjdbui6DpfLxQXX8vJyvPXWWxg+fDhs287gOrZtc93MgcCs37Ztw+fz8WsYMZ5++uk47rjjcM011/CjOgDoug5VVSHLMoiIn8aSySS2b9+OtWvXYsuWLfjggw/w/fffo7S0FJMmTcLAgQMxevRojBo1CrIsQ9M0LnADQCQSSeuXWu7DVAGCIEBVVSiKwrlkT0GPJh5JkjKIYevWrZgwYQK2bNnCvfqcYMbO9mxb+wNTAubm5mL27Nm44447kJ2dnSEbOdt3ckj2GyaM27aNdevWYc2aNdi8eTM+++wzVFZWolevXjjuuOMwY8YMDBs2LMMeVl9fj/z8fAiCwGWqRCKBUCgEQRCwe/dubpDtbvRYmYexe+dEffLJJzj++OMzVqwTbQnP+wOzWLvdbhiGgWQyiezsbMiyjI0bN8K2bVRVVfFJZZyKHcFZ34gImqZxYvf7/Xz7UVUVRx55JEaMGMEJS1EUbN++HQsWLMDcuXOxYMEChEIhGIYBIkJBQQF0XecWeiDtcK8oCnw+H0pLSzlX7qnodqs6AG6tTqVS0HUdX375JaZMmQJgL5exLIsPNkNrd4u24Ha7oWka/59ph5PJJP75z3+ioqICP/30E4gIiqLA5XLB5/OlLe4tpycGr9eLrKws+P1+2LaNVCoFRVHg9/vh9Xqh63qGNT8QCGDx4sXYuHEjvvjiC3g8HrhcLoiiCFVV4fF4OOHEYjEQEfx+P3fL6MmEA6C7reppAxsRUTKZJCKiVCpF+fn5VFlZyQ1ynYGmpqaM+xARjRgxgh599FEaOnQoqapKtm2Tqqq8T4qitKvtaDSaYTzUdZ3i8TiNGjWKXnjhBXrhhRfomGOOIUVR+P0bGxs79fm6EvszjHY752HbDvu7YcMG9OnTh9uSOgpq4VTMVsVkjD179iAWi2Hw4MFc5hAEgQvIANp1snMKvIlEokVL7MaMGTNw0kkn4eSTT8YFF1yAXr164cUXX+TbYW5ubrs4Z09GtxOPIAjQNI0Tz8KFCzF+/HiuQ+koWmuEmWC+YsUKlJSU4Mgjj0Q8Hm9zItuzbYRCIcTjcX4a1HUdf/3rXxGNRnHDDTegoKAAsizj8ssvx7x582AYBt+ius6N9eCg24kHQEuob7orH374ISZPntyhk5QT7CQHpGUrdq8PPvgAp5xyCnJzcxGLxfhxnl3D+tUeBAIB2LYNr9eLN954Aw899BD+/e9/o6ysjNvDpk6dipKSEvzzn/+E378/D8FDDN2whWbAuY/W1NRQaWkpVVdX7/Pdr0XaESy9Z6dSKf5/RUUFrVq1ilRVpby8PGpqaiJd1zPu2Z77O53D1q5dS0OGDKGlS5fuIx9YlkXLly+nkSNHkqIoZFkWxePxQ0Lu6bEyjxNfffUV+vTpg6KiIq6H6Sgsy+IcRZZlCIKAH3/8EYlEAn379oUkSSgoKEAqlYIoilz+AZBxstsfsrOzIQgCampqcMkll+APf/gDxo0bx00QwF4D7vjx4xEOhzF//nxuxjiUOVC3Ew/ToQDA+++/j1NPPXWfSewIXC4Xb58puj799FOMHTsWfr8fLpcL4XAYNTU1EEWRT+YvDa2ZPn06Lr30Upx//vlIJpPw+/0QRRGGYXAVgyAIuPnmm/H8888jEokcUEfV09HtxAPsdWlYsWIFxo0b127TQ3vhbEtRFKxduxYnnngiF4hdLhdqamr20aC2F9OnT8fAgQNx1VVXwe12Z8g0brcbwWCQ65rOPPNMhMNhLFy4sNMWSLehO/bQ1kgkErR582YaMGAApVIp0jSNDMPoFHmAtWGaJt+zs7KyaOvWrfy7GTNm0EsvvUSmafKoCPYd0/lomkbxeJyIaG+EAxHNnz+fRo4cSY2NjfxZGAzDyPjMsixSVZW++eYbysnJ4e0lk0neXiKR2Ofe3Y0eLfN4vV6sWLGCW6fdbjf3Je4omF5HkiSIoogNGzbg8MMPz9Aj+Xw+zhlaczzmtCUIAudUHo8HgiDg7bffxrPPPounnnoK2dnZ0HUdgUAAqqoiEonwbY+ZPuLxODweD4YMGYLzzjsPDz30EDcEM1dXtnV2bURq56Dbicc0015z7733HqZMmcK3rM7cthhhAGm5auLEicjKyuKEwdwlgH2NreQwlMqyzG1TmzZtwrx583DttdfiqKOOQl1dHScur9eLcDgMy7Iytia2FcqyjFmzZuHVV1+FpmlobGzkFn9mPmFqhZ6MbiceIG3TWrVqFSZNmsQHrDMHzkkQixYtwuTJkzP0P3l5eWhsbOSuHs77+/1+xGIxrhluamqCJEn47W9/i7Fjx2LmzJmcWwJpfyHWjsvlgiRJ/NTFXC0sy8KYMWMwYsQIPP300wgEAlyYZ+j69C0dR7cTj8vlwubNmyGKIgYMGNDpsdlMeQek3UF37NiBkSNH8skFgIKCAjQ0NOzXJ5oRgGVZKCoqwuzZs9GnTx/cdttt3FEtLy8PQHoLFEUxI46d+SOxbYhFaNx00014+OGHeQYy27aRTCa5RrxTsnB0IbqdeABg8eLFmDBhAj+i/xJnrwOBrWYiwooVK1BWVobS0tKMyc3Pz0dTU1PGFsX+mqbJ47okScLcuXOxYcMGPProo9ym5XK5kEgkkEgkOAfy+XzcbOFUR1iWxYl55MiRmDx5MubOnYucnBy4XC64XC4IggCv19vjj/LdTjymaeKDDz7AOeecwwmm9SR2BIyTCIKADz/8ECeeeCLXvzAwmact+xbzbjQMA6tXr8bDDz+M1157jRMEI5ZgMMiJaceOHTwlnWEY3CSiqiq/jhHVPffcgwULFqC+vp7LVU6i68no9t7puo61a9fysBenLNIZEEWRC8yrVq3C2LFjM5SB1BLloKpqm0TLOEVlZSVmzpyJxYsXo7i4mAu4mqZlcBUiQu/evTMc2Z06H+aED6QJuri4GBdddBGefvppRKPRjC2rp29bXa7nYbqO1v+rqkpERIsWLaLJkydz3xn2uWEYnabnsG2bKisrqU+fPhSJRMg0TZ71QtM02rlzJ5WWlvJ7NzU1ZeiYIpEIDR8+nN544w3eL8uyOkUPpes61dTUUFFREdXV1RHRXl2Poig9wvbVbXoep3nA6cDOhMfFixfjuOOO4yxalmUuX3TGns+2jRUrVmDw4MGQZZnfm4g4ZyAHt2FcJZFIwDRNXHrppbjqqqswYsQI7m0IdM6J0O12Q5ZlXHTRRXjiiScydEVOh/0eiYNBuTyXTQvYCiciGjhwIK1evZp0XeechmleOwPMc2/GjBn0yCOPcI7j5BymaVIoFKJUKkWpVIqIiP+95ZZb6IwzzqBEIsGvZRzUyUk7inXr1lFFRQXt3Llzn/HqbvQIDTO1CIps5W/ZsgXxeBxDhgzh8gCATj1liKII27bx9ddf4/jjj88IIGSQJAl5eXn47rvv4PF4eBjQyy+/jLVr1+LPf/5zhr2KKf46wzbF5LGhQ4fi2GOPxTPPPAPg0NDzHBTOw1asoigZGbbmzZtH06ZNy1hpneHD44RlWfTdd99Rv379MuxOrB/ss1AoRLt27SLbtimZTNKaNWto8ODBtGbNGs4pmW2KKNO+1RHYts05LrPvbd++PcNPqLvRrZzHqWthK1/XdSxZsgTnnnsut6qzz9lvOwOiKOLjjz/GscceC4/Hs0+7gUAAlZWVOO6441BbW4tkMolkMonrr78es2fPxlFHHZUR6sOiHTpLD8VsZoZhYMCAAZg0aRLuueceeL3eHn/aOijE44ydYhrZWCyGTZs2Yfz48RnbVGcLiJZlYdGiRTj77LO5GoBa6VD69OkDSZLw7bffwufz4aKLLsJFF12EWbNmYc+ePXC5XNwXGkiH7TCH+o6CLSymtPzjH/+IpUuXoq6uLkN90BNxUIiHcROmUFMUBYqioLm5GSUlJRnBfW633DKgnUNEhmFgzZo1GDNmDCfi1lxD0zR4vV7k5OTghhtuQH5+Pi677DLIsoyysjJO8LIs80QJnSWTMCJmMtVhhx2G0047DXfddVeGjqgnosuJx7IsZGdnZ7wPBAJ46aWXcNZZZ+2NUGhZYGJLGlw+ZK0L8eynshARZbB5thWuXr0aJSUlKC4uzrCuRyIRbn7wer0IBAJ44YUX8N133+GZZ55Bbm4uUqkUnzxmUmCE3llCvdNV1TRNCIKAP/zhD1i6dCm2b9+e4ZhvmiZfiIZhdLszWZcTjyRJSKVSfKWyTBcff/wxJk+enE7vdiAC+RnCYRYFxk2c/soAsGTJEkyZMgVExOPeU6kU9z12uVw8z86SJUvwl7/8BX6/n+tZuhqiKCIWi8HtdnMbWUFBAa677jrce++9PCFDNBqFpmlwu91IJpM88rRbcTCkdU3T+OnGtm2Kx+OUl5dHtbW1e/MY/5oXEVkWZbRtGEaG/mXIkCG0YsUKUlV1H71MNBolIqLVq1eTz+ejSy65JCNi9GAhEonwEw3Tbjc1NdERRxxB33//fUZ0qbNvB+s01m2nLV3XeVbSRCIBQRDw5Zdfory8PO3G0MEtXRQzvf2c28mOHTtQV1eHQYMGQZZlJJNJ/l1tbS2ysrJQXV2NO++8E5MnT+YpVljKl4MBltIXSI8VK8WUk5ODCy+8EA8//HCGB0AikQARQVXVbpeHupx4nA/IJvall17Ceeed5/jRr3y1oLU1nCkhv/jiC4wePZp/zybJmSnslltuwWGHHYZbb70V27Zt4+3tP1Fl54IZUzVNy0ixp+s6br75Znz22WfcXYQRF3Moo24+iXU58bAUKrquc6FzyZIlOOWUU7osVpslSvr4449x2mmnwev18nslk0n4fD54PB7ceuutkCQJDzzwABKJBE/QzQRrZv3uSgQCAW7ZZ3Ia+8tOfY899hh3CyGHnfD/POcBwE0Stm1j27ZtcLlcqKio6HRnJ+fxOZVKYeXKlRg/fjznIuTILvbmm29i5cqVeOihh+B2u9GvXz98//33EEURPp8PhmEctHyArBAKtaR5AdJO9oZh4He/+x3WrFmDlStXwuv1ZrhtdDe6nHhYEgNJSpeaXrduHQYMGNCp8drOVHFAeiswTRPV1dWoqKjg0acsC8aaNWvw+9//Hvfeey9KSkrg9XqRm5uLSCSSkWzqYEUvsP6zHIQMoigiGAziiiuuwFNPPQVd15Gdnd0j5B0AB+e0FYlEuNQ+c+ZMmj9/frstx858OqZpZpyYotFohv8P+41t2/TYY4/RlVdeye/d3NxMRES7d++m8vJy+vTTTzPa1jSNfD5fhg9NT7EtxWIx6tevH61atYoXUCHK9E7oSnTbacs0TS6oNjc3Y+3atTjmmGN4Lr8DgWXhAvbW0GpqagKQTm8iyzJUVeVcorGxEUC6ZsWpp56KrKws7iMDAOeffz5uueUWHH300RmabVEU9zFD9BQQEW655RY8+OCDnJOzZJvdiYOqZdq6dSsURcHw4cMdJgL7gC9FSUDXVRBZEEUgJycMwAZR+nTiZOMFBQWIx+NYsWIFjjrqKJimCUVR4Ha7cfvtt6OoqAhXX301L4rGIAjCz/oydydCoRCmTZuG6upq/Oc//+Ga6O5GlxMP86chInz++ec4/vjjuda5vQMQDAbh8XgQi8W4rghI6zwaGhqQnZ3Nk00yr8GBAweiX79+8Hg8CAaDmDdvHpYtW4ZnnnmmTRODIAjIy8vLKNPYEzgQI+TCwkLMnj0bDz/8MM/C2t1W94Oi52Fq9HfffRfnn39+G0Szf66jago0PYW6+j147C+PoLSsFP5AEOHsLPTv3x9z5sxBLBbjAm4ikcDKlSsxatSojNS8d955J1555RWEw2HE4/EMbsXitQoKClBfX9/tNiMnWK0vAJg2bRoaGxuxYsUKWJbV7SeugyLzAEBdXR02btyIESNGwDTNFrvRgbcHr+yF7JFRkF+AWbNmYdasK7Bgwd+xfPlybNv2E1asWIE5c+ZwV4tgMIi3334bw4cPhyRJ+Prrr3Huuedi6dKlnNOwEBkGxmGckaM9BUSE7Oxsrrj8/e9/j/vvv7/buQ5wEGWeL7/8EgMGDEBubu4vPgLH4jEIgoBQKASXy4Vx48ZhyJAh8Pl8OO6447B7924A4IF3u3fvxqmnngpVVXH33XfjxhtvRN++fdGrVy9+jJdlGY2NjbwaIJBO1MT0KEDP2LZYzHosFoOu65gxYwbq6uqwfPnyX1RduStwUGQe0zTx9ddf44QTTuDW4LQyzHl7cb9/Q1khACLi8Ti+37QZXq8XkuhCMplCXV0dhg0bxrOnv/POOzj22GORnZ2N6667DiUlJbjqqqu4XomdVlKpFK+VzuDz+TK8GnsCZFlGNBrllZAlScLll1+OuXPndjuHFKlFs9lVL9u24XK58Oyzz2L69Olcg7q35pR4wBeRANsGFv/nY4wcORo52XmwLODee+fio48+wiWXXMLT7i9btgyjRo3C3/72N1RXV+Pxxx/n7qfUkiSbHOWMnKWaysrKsGvXLng8Hp69oyeAFUDR9XSd1P/6r/8CEeHdd9/lQYcsRQuQ9vVhWuuuxEGReSKRCILBIPLz87lugkUoZHZj37+pVAqRSFog/uyzz3H//fejvLwPsrKysHr1anz77bcoKiriQvnChQvRq1cv/OUvf8Fzzz233xIErSEIAs+Tw973BDB/HmdVQUmScP311+P555+HaZowDCPD96h1drKuwkEJ+luyZAkGDx6MgoICuN1ubiFuD3w+H7KysrBu3TrEYjHs2rUL33//PRobG/Hyyy8jJyeHE8imTZtg2zZuuukmvPHGGygpKWl3P5lMxXIk9xTiYWCEw7b9Cy64ALFYDB999FGGU5jTW7Kr3UoOilX9tdde2ydmqr3HTGoxZqqqCrfbjezsbOTk5MDn8yE/Px+BQAC7d+8GEWHNmjVoamrCM888g4qKinbdw5mPx5kto6cQj8vl4icrRtgAeI6gv/zlLzwxlRNsO+5KdDnxMOXgCSecAEEQeHEPFlZ8IDAZ6f7778fs2bP5yorH4/w34XAYuq7j0UcfRZ8+fXDaaaf9YhdSQRC4nseZ5KknwEngjHhM08S0adNARHjhhReg6zpPz8t8nQ/5bWvjxo3w+XwYPHgw9zFmA9Ae4mlqasKgQYOwaNEinHHGGfjhhx8yyieqqopAIIDHHnsMRx11FBRFwcqVKyFJUrsiHNgAi6LIOU9PUhKyslCWZSEYDPItn1VY/u1vf4t//etfUFWV95uVdepqdDnxvP/++5gyZQrfs9nKANoXgZCTk4Ply5cjEomgrq4O/fr14+YNy7IgCAKeffZZvPnmm7jvvvswd+5cPPnkkxnJu9sDJvM49Tw9Ac6ASUEQeAFcIM2Vzz77bPTp0wcvvPBChuKQGXm7El1OPJ9//jlOPPFErj8RBIHnnmmP9z87pbHTEJOBWOGzVatW4emnn8Zf//pXBINBXHjhhVi9ejXWr1//i+QqABmnLefn3Qln/D5TarIoi6ysLBARrrzySixYsGAfjtnlHJTVZvi1L6K9vjSxWIyI9vqZNDc3U25uLjU0NHA/kNa5idvTvjObBfu/ubmZIpEIjRs3jl5//XWet7m+vp7mz59P11xzDSUSiX2iDZgPj7OWlvM5ysrKqKqqqsf48jjh7FPr/EEXX3wxPfHEE1RbW8ujSDrrGbrUn4dROBNSGbtcv349Kioq4PV695Fz2uuCqmkaX30sXFhRFMiyjPPOOw+nn346zjrrLG6lz8nJwcyZM7Fy5UoeKszuSS2Kwp+7v9fr5dyHegDnccIpALP/k8kkQqEQLrzwQvztb3/j3PNgCP2dum21npCFCxfihBNOyJBz2ES2lXSgLbCtJ5FI8L9+vx9z5sxBUVERrr32Wu52wQTFrKwsnHzyyfj73/++T5QBI/C2BpbJPSwn4KEAVvxk8uTJGDhwIJ588kmeGKvL07R0dNuyLCsjbQqDZVl0zDHH0Keffkq2bXO3U2fiJsZaD7RtsTKMLCHTI488QmeeeSbV19eTbdvc1ZRtUbFYjKLRKB199NG0ZcsWsm2bb6msb84+O7fFk046iT766KNOSxt3MMC24I0bN1JpaSnFYjEyDKPTkkR12bblTBHntK/8+OOPaGxsxNFHH52RWKAtV4gDwalqX7FiBR566CE89NBDyM3NhWEYCIVCXIloGAaCwSBCoRDOPPNMLkg6U9ox35+27p+fn88zkx4KICLOTQcOHIgpU6bgySef5MGWXYkOE4+TGJxscunSpRg0aBCPD2eT90v1DywHYCQSwfbt23HRRRfhrbfeQt++fbm9x7Ztrvdhe31zczNuuukmLF68GJWVldwQyrY/YN/KNkzL7PQmPFTAbFy33norXnzxRZ7IoSvRYeKRJGmf/DtAOk3/WWedxd1Qnelk+c3bcVT3+/3YuXMnFwpvvPFGjBgxAh6Ph68s5mnnRDAYREFBAUaPHo1//etfXF/itKa3tTLD4TCi0SiAnicwtwVnqjtZltGvXz8MGTIEb7/9dpcTUKcIzMxkwFa/oij45ptvMHHiRBBRhr6BcR62fRwIhmGgV69euPjiizFu3DjccMMNEASBx52nUink5eXBNE0ebwWkiVRRFNx0001YuHAhT8/PCGZ/QjE7bR0KhAOAhyqzsXe5XLjmmmvw17/+NYPLdgVEJo/82hfrMJBeBdFoFNu2bUNOTg769evHS0Xvc+OWIDxmsmDKQ2eaFGbcu/vuu7Ft2zbcd9998Pl8PMcPsDftrdvthiRJGfcKBAKoqKjA6NGj8eKLL2YQBLPEk8MISkQoKytDXV1dBiH2dDiLpng8Hhx//PGYNGkS/vnPf3LbYOssY07r+69Fp4wOc7MwTROhUAj/+c9/eMW+A8EZc8WiNSVJ4p8/++yzeOWVV/DJJ59wImWDUFtbe0AOIYoiLr/88gwNbHV19X5jvZk34aHCeZwcnHEfSZJwzTXX4Pnnn+fmFsZRGVftDNtXh4mHdYRaDHaCIOD111/HWWed1S7i8Xq9GSlSiIgnI3j77bfx4IMPYuHChQD2Dg4rCVBYWNiuewwbNgyDBg3Ciy++CNM0eaq41mCxW4eSnoeNfTKZ5OOTTCZxzDHHYMyYMfjHP/7BTUOiKMLr9XIbWYf1QJ2hA2Dn/1QqRbquU15eHu3Zs6fdSa7bMlls2LCBJk2aRI8//jgv36iqKjcvtDfRN2t7w4YNGel0WRIlpy7HsixauXIlTZw4MSPtbk9HMpnM0Omwkts7duyg/v370+bNm/dJUWw7UvgeCF2m52GyCpDmDF999RV69+6NcDjcLtaYSCT4dsT24WQyif/93//FhAkT8Jvf/AaVlZX8JMfa9Pv97dq3maZ18ODB6N+/P5YsWQLDMHhaudYciNXeokOE8+i6Dr/fz5OPA2lZLxaLoaioCGPHjsXrr7/O5yiVSnE5qMPOYh2n+0wj4x133EFz5szJSCLwc3CucLYarrjiCpo9ezbV1dVRKpUiy7J4AVii9Er7pcm+DcOgZcuW0ZgxY3jSg9aJApgmuqioKEMjfSiAPQvjOnZL4ZNNmzbR0KFDacOGDWRZFi/++0vQZZyHHC6lqqpiyZIlOOOMM9p9vd/vzzBcPvvss/jpp59wxx13ID8/H16vF4lEAjk5ObzaXnvdOVibAHi8l2EYWLt27X4Nh8Fg8JCSeYDMkxNLZQOkhf+KigoMGzYML730Etc6s2IyHX7GjlI8o2JN06ixsZHy8vIoFov9oqSQuq6Tqqq0bt06Ki8vp40bN2aUNXKWrGb2sF+adJJxuDfeeIPOP/98qqur28d2xd77fD6e7PJQACutzRJjMtcTTdPItm2qqamhvn37Uk1NDf/NLyl/0KWcB0jLPkuWLOHaX3bsdnrCsRXS2mFbURQ0NTXhvPPOw9NPP42KigoAexWKkiRlRA8wvU57kUgkuGZ56tSpaG5uRmVlJT+SO8NtWCGVysrKbg+qay+Y7Y/FrjHHOZYEvKioCOeeey7uvPNO/pnTGvBr0WHicWp0P/roI0yePJn71zqr9rEOE6XLJ9bU1MAwDK4bOuecczBr1ixMmjQJqVSqU8NGAoFAhmb7ggsuwIMPPsj75/P5uDGUlQXoaTHr7UFbxMBcUn7zm99g7dq12Lx5M08501F0mgpV0zR89NFHOPfcc7mPMZB+IPY/IzRN01BcXMz1OhdffDGGDRuGW265BYlEAoFAoNNCf6lFg8w4pCRJmDlzJn788Uds3ryZ943VQRcEAbm5ue02n/R0sOc44ogjMHr0aDzxxBMAOsdFtdO2rY0bNyKVSqFv374ZGkxnFlSWadTr9XIvv7vuuguGYWDOnDnw+XwZXoedsTpYuA/jIm63G8FgEFdeeSUefPBBHhfFBMl4PI7i4uKMGKlDGW63mysD/+d//geff/4517B39GDQacTzySef8GL3rKgrc5lgnWfEwSZo/vz5WL58OebOnYtevXoB2Gv11jSt08JHnMRs2zYMw8CsWbOwYcMGVFVVORIvpE9bfr8f27dv71EhOB1BPB6HYRgoLS3F2WefjcceewyapnW4MEqn+fMsX74c06dPz/A5ZoPfWkD2er2oqqrCk08+iTlz5qC8vJxvEYlEgucH7CyZw0mETIgPhUKYOXMm7rnnHp6MIZlMchmIBSce6mDOckxAvvHGG7FixQp89dVXHV6cHR4dl8uFqqoqVFVVYezYsVwLzNwfFEVBbm4u189Eo1G43W6ccsopuOWWW3DiiSdClmU0NzfzOla6rnca10mlUnC5XBllm5jf76xZs7BmzRps3rw5I4a+d+/ePSJ5UmeAGZqdZbvPOeccvPjiix3O79MpS2vXrl1QFAUFBQV821EUha9ilpzI7XYjFAph9OjROO+88zBjxgxIkoRYLIbs7Gz4/X40NzfD4/Hw3MkdhbMNxskYYeTm5mL69Ol4+umnYZomAoEAUqkUevfujaqqqoOSAb6rwSoGMs5DRLj++uuxevVqrF27tkNb8wFnZ3/UqWkan4zXXnsN06dPz9hmAoEAt7IbhsGJ6rbbbkN+fj7+3//7f/yozNK8sdAZAJ2WJpa14/F4MtQKQJqwrrvuOrz11luIRCI8f6IoimhsbMxIqH0ogznGERH3o7rtttswb948HqbDOLOiKO0u1XlA4nHGYjHBl1pMEqIogoiwceNGjBo1ik+UU+4B0qzT5/Ph0UcfxZdffonnn3+ebydA2/FIBwt5eXmYNm0annzySV64LT8/H4qiHBoVhg8AdtL0+XywbRuqqiIvLw/jxo3Dt99+ix9++AGWZcHj8SCZTMLr9fIaHAdEe1Xguq5nRFYyVXV1dTX16dOHKisr+W+d2diZwe6bb76hwYMH0+eff06qqnLDXU9AZWUlDR48mHbs2EG2bdPWrVtpyJAhPaZ/HUHr+mOJRIK70Tz44IM0Y8YMSiQSlEgkMswPTpNQh8wTpmlmqLPZiYWIsH79epSUlKCsrIz/3slRZFnGrl27cOGFF+Khhx7C6NGjeRBgTzjNmKaJww8/nDvKMxkgGo32qDQrHYEzANDv9yOZTMK2bdx8881Yt24dPv30U54Y3OlpSB3dtoDMvY/l6mM2poULF+Lss8/OKD7Lfi+KIiKRCK699lpccsklOOmkkzLip7o7/T0AXibyD3/4A1577TUe42VZ1v8JPY/TY4ERCDvEeDweXH/99Xjqqad4DmunZ+eB5qddxOPkEM5cgpqm4cMPP8TkyZPbvC4ej+PGG29EeXk5br/99oys5T2BcBgkSULfvn3Rt29fLFiwAKWlpUgkEget2l9XgiXREoR0FURmnJYkCZFIBJdeeimfR6Y0ZK4vB0K7iMd5inKy8s2bN8MwDBxxxBHcP8Tn84GIEI1G8eKLL6K6uhp33XUXj3pwu908JMSZ3as74fV6YVkWbrjhBrzxxhvchNLTcvX8WlCrNHlsawqHw/D7/bjyyivx+OOP88UiSRIkSTqgp+YvJh5nmMf69esxcuRIhEIhrvYXhHSu4/Xr1+OBBx7ASy+9xE9skiQhmUwiEAjwsODuhm3bSKVScLvdGDNmDNxuNxYtWoR+/fodUmHH+0NTUxMnhmQyCY/Hw+vCsy36/PPPh6Io2LBhA+rq6riC9oC7AxHx0w+TopmUret6hoTN3BiZBH7aaafRc889x69VFIWSySTV19dTUVERff311/skDOjMnDHO2lOsf225WLau08XAHMqciRK++OILOvLII2n8+PH06aefcjdYZ1ttJXbo6LO0NS7tGSvLsn42KYPzpNQ6uQN7rkgkQv/4xz9o8uTJ1NjYuI97bjKZ5M/Nxiwej5OYTCYz/G7cbjeP/2a6HKfQxZyyGhsbsXnzZowZM4bLMV6vF5qm4dxzz8V9992HIUOGcKUUQ2edYJhSka0gapU43Akm4BOlqwKrqpqRLZQ9kyAIGDBgAI4++misX78eTU1NfAycbQmC0O60daxP+wMTYlvrxZxuss54KyAta7IthSk1W48ruy+TYZwJKYB0iPaWLVvwxRdf4KeffkIqlcKqVauwYsUKbm1n93DuHKxebCAQgEuWZS4Ap1Ip+Hw+nk2TRVWyY7kz/863334Lj8eDfv36cQu4IAj43e9+h2OPPRZTp07lUZ2dAecEOB3MnFpgxp7ZSYkFD7Jo0ta/Z2CfuVwu5OXl4YILLsDrr7+OSCSSEZTIsmuw907C2N+iONBiYcdoVoXHOR9ApksLm0z2XlVVmKaJVCqFaDSKhoYG1NbWoq6ujvd9y5YtMAwDkUgEVVVV2LNnD5d3SktLQUQoLCxEUVERbrvtNp4sStd1Lmyz4r1er5czCABwsWyirOPsgVgCA5fLleFXw+wkixcvxhlnnAFJkngYzJ///Gc0Nzdj3rx5nZqBvK3Vy9pmJaVZQBuAjJXIjKCMmJzPoSgKJ3C2orKysjBhwgSMGzcOdXV1vN6D854MrVcz44DOEKHW/W79nhEH68euXbtQXV2NRCIBy7Kwfv16eL1exGIx/PDDDzxKNhaLobq6GkQEWZYRDoeRl5eHgoIC5OfnIxwOw+v1YtKkScjLy0NxcTGKi4u5hZ1xaFYI1+v1orm5GVlZWdy2CIAny2LPzpzoNU2DKxAIcBZp2zZisRiCwSB3iWiLAEzTxJIlS/DII49wz7+lS5fivffewzvvvJOxDXYWnN6ATsiyvM9pglqSK7DtwDAM/p7ZuJiR1hlvzxRjubm5+O1vf4tVq1bxa6nFLtTa9zcWi8Hn83HuxsanoaEBiUQCe/bs4Zyhvr4edXV1qK+vRyQSgaIoUBQFP/zwA48VKysrQ9++fSFJEuLxOMaOHYuGhgZkZWXh9NNPR0FBAURRRCgUQklJCYLBYEbuAGcOAKdSly2w1pwNAHbs2IFwOIySkhI+xrIso6mpiftgbdu2DeXl5XxuPR4PXIKQrkHu8/ngcrkQDof5TZ17Pau863a7UV1dzdPaBoNBrFu3DjNnzsSGDRsQCoUyMr13lIic2wIjILZqqEUT6kxU4BxAJ5tn35HD4Z15ETI/asuyoGkaAoEATj75ZGzbtg1utxuapqG5uRl1dXWora1FbW0tmpqaeImmhoYGbN++HTt37uTHe7/fD6/Xi7KyMvh8PoRCIeTn56OgoAADBgxAOByGz+dDQUEBCgoKuFsuk+OYzoUdmZ2hwowQDpTXkS0ctsAYIamqyheRZVno1asXnzMmujz//PO46667EIlEMHToULz55pu4++67cfvtt/NwKZdlWTxFLRtgVVWRSCSQn5/PJ8VJEKtXr8agQYMQDAahaRpOO+00vPPOO7Btm2+BtbW1KCoq6hDhtL43GxDGWdjLmdjJucWIosiFYcuykEqlEI/HEYvFoCgKDMPA119/DcMwoKoqdu7ciUQigbq6OkSjUXz33Xe46667EAgEkJ2djcLCQhQWFqKgoAC5ubkIBAIoKirC8OHDUVBQgMLCQuTk5CAYDGbIST/HGdi25RxfVVU5l3MW+GU+3U63XkZQ+wMrBMwM0WwbZvPM2mMmi6amJlx22WXIy8vDsmXLEA6HUVlZiTFjxuDKK6+EIAior6+H3++HSxIJ9fU1uPPOO/Hyq69DQNqRK78wB7fd8XtcfeU16ciHlklIJBR8s2oNxo4eg0DAh0mTjscf//hHjBw5kk9aMplEYWFhhwlnf2Ccx7IsrF69Gm63G5FIBNu2bUNDQwM0TUNDQwOqq6th2zaqq6uxc+dO2LaN3NxclJaWch1T/yP6Ij+/AKZpoG+fchwzYhRf3aOOPRaACElqmXgH52PbHNsOJUniJ5/92eycJ0LGCVj1ZjaRsixzgnCeboG9HNT5nrX7c2MliiKXQU3T5J6TXtkL2DZANvx+D3Rdw0UXzkQoFMb8vz+FgoJ8KJqKIUOHYupZ5yE3rwg2TOTnh6HrBBegIjfLhXvvvR2JZBMGDR6Hq665Ght+WIOpU89B7/KjMeXEYyEBEMiE1+PHcwtewJLF72P2ddeid68yXH311Zx6nUdPpjhkhlAnl2CCN5BeUY2Njaivr0dDQwMaGhrQ2NiIeDwORVFQVVWF2tpaGIaBhoYG7Nixg3O5oUOHQlVVBINBHHbYYSgqKkJWVhbKy8sxdepUeDweFBQUoKSkJIPtp09NAmCZEEEQ3B7YpgmPzw9NM+CRZYguF1TVgNfrhmESYJmQZTcSCYVP9C9B6yM5A5NFWn/X1m9/qdrDeTIFWmWsJUCLxSEHZQhSCh+88xYqf9yOdxf+Bzl5eUjoGjyyDBJElB8xDBWDBsLlFhFT6hDyF8OlRhrgzQkhIHix4bv1eHL+S/AGvLAIKO19GMK5+TBtwLYJXpcL1btqEfD58d677+Hbtevw+jvvcFU+E0C3bt2KmpoaCEI6N+C2bdsgCOmAurVr1yIWS5d93L59OxobG+FyuZCdnc1Zf35+Pq9sk5ubi/79+3MZIT8/H7179+aGWadjOxNmmfGWFWFjQqLTbpM+dgsAWQBsJGNxBEJhQJAgudKrfU99E7w+P0gT4JNdUAyCDCAQ8EFA5gLoKLrFgk825IAfUCLQjEbcP/du/Oaq63DUkD7YXdeIoqJ8pHQNXlnGrFnTkYjbECUTEEwANlxydhYAEcs++wplpYehvqEavQNH4B/zn0VZyeEYNKgcLhcgQQAIeP/9t6GoUbz40ovw+WTcOPtm1NbXYcuWLdB1HdnZ2XC73cjNzcXhhx8OACgvL+cBdVdccQVPe19eXo6cnBzO8plM4BSEI5EI8vLyuHwA7M3q1dDQwAVdtpUwAmFbB5PBGNEwA2F6smxYmgYRNvxZIRiaBrfXj2gsCq8cREF+DggCTAuIRBMIhYKor29Efn7uQSlJdFCgaYDPBz1lgSxA9qYF6dKifJAowC17oBkCZNmNfC9gQkfQF0ZdfR1c8YYGhApKsPXHKnz88ec46eTJaGxMYPGnq3B4nxIE/BKcO2pObghXXnkZBBsYP34cEoaOopJiVFRUZBjcnCc2NpFON0+Gto71zslnQjebdCfy8vL4/u1Ea5mD7fNMycfvY1mQ3G6sXbUCZ5x9PvocfhgWPPscBgwcDFEUsXHzFpx4/AnwBoM4vPwwfLDoPeTl5SKZTCEY8HM73SELAYDsAUQDzZEodtc2YuSokdAMF7xeAYalwy15YIuAKAKxqIWckAu6qaKgoBCw7XoiitKsS2fQp0sW0/bqjTT3sXsoFO5Ny1dsIY0sStoaJVUi2yJSlRSllAgpjREyNIN0TaempiZuL2G2D2eyIUVRuI3F+bnT7sI83pithiU/IErb3pxefbFYbL/JnZi9xjTN/aZ5sW07be/SVSJbJzVaTw01O2nyxHG05ptVlNJUamyKUcow6avV6+jiy2ZRTX0TNUUTZBGRZdu0e/fuX5zmpcfBtogMg+xoA1mJnTRyaD+6efatlEwoZBCRRkSNKZV2NcfphX99SDFVJ5NUiik1ZNsGgcxa2r51HZ1+8kkUizaRZjVRUotSed9RdPucRyll62SQQUoqfS8ii4hUIotIS6hENlFdXd3e/rQQROvCJESUMZnOYiZEmUVJMp6vVfGS1m2qqppBdG1d60SmW6ZFZOtEaowSzfVUmBumhx+8n+oa6si0LDKJaMWab+nDTz4j3bJIs2yyiciy92+EPaTQQjxkJInsCD234HHKyc6np556gZrjKqWIaPmqb+iks6bR1h2NlNSIGqL1ZNoJSiZjBKIozb3nf+jJvz5OpqGRTQnatGUDBUK96eV/fUjRVJwMMsi0iVIKkaGrpKWiaRoyidSUmjHBjFs4J7K2tpZbfiORCCeUtpIrsUlhaeScHKc1gbS+vnU7RGlLuWEY3LLu9L8mskhXYkS2Sps3rKV/v/YKHTdxPEXjUdr6UxUZtk3z/vEM7aipp2gyRSYRRWJxslqeN5VKdWDmegBsi+xkgshUiPQI6WqMPlj4IZWXV1BeYSmFc/Np8mlnUNWePaRZNkWSOumWSTbppKoKiYAbmzb9iEFDBkFyuVBX14yLps9AMOjGUUMHwecNQIALsAHZC7hcMjxyALZpAOJe2xE7ojurFzMwlbplWQiFQpAkiRvenBEKTCZyuVzweDyQZZmHK5umyfUZ7C+7F1FmrmdnsRK32811Mi6Xixd4JSKYjtPShx9+iNPOPBNH9O+PV1/9F3r1KkYymTaK5uRkw+9L61SyggEkkwqI0KaR9ZCCAAheDyCIgMsLt+zFuHFjsHLVl9iyZRO2/vQj/v3aq/C4vDAMG36fG7AFJJIaPB4vXIeVHo6Gxma88/5HyM4JIRrRMHrMaDz7z3sxYEAviGgRfJmcSQAgQXRLAGwwf7LWQqtTB9KWjsGZb+fn0J7IUeeRva02DcPIcDFh17jcboAsaPFY2mAoSTj3nHPwyutvYNq0C7F5yxYUFRWhoaERvUoLAQgwDAuBgB+CsLeE4yENgbmVSAABWeEgsgQBgAgbABHg9xNEUYBgA6JLRFBM20Nda9duQFKNQ/aKkOUgIk023LILxSV+6KTATcE0wYgmBFgA5PR7wXnjfTWqB9JbHCy9BjlcSZz3TCstDdhaCtt+2ori4mKYhoHjjj8eHyz+GN9v+h6ffrYU50+fzisN2sRqW6TbO+QJB0jPI0SA2BilfbMIIkSwqRYgwoYtAAKJgCCAbAGuvMJC5CIPNlKQBBnhLDdsmyCJCnQlAZ+XuYpaAEwAsuOmPR9OgnGWOXC5XHBJAsgtYWd1NQYOHJh2hHN7MHjwYCxatAj+rCDKDyuDx7N/rvZ/CgKQ3k3stKhCad0eCBBgQQABtNdcIsbjKZimDdsCbCIIAiBK6QEP+Zw+xnarmxwacHr7kcPIats2mpuboadS2FZZifz8AohuNyzTxNChQ/HWW2+hT58+6aQN1MJ8BcDlSl//Swvg9my0TCgBaSZhtfG1zX7Q8lsRLrfHA5dbarm8RdVvAaqiIRAIOgjFtbchYs2IELq+xm2HoGkad6N02o8aGhqwfdtPmHb22YjHEtBNGzf812y4ZC9GHzsao0aNwrBhw2DZIsiy4XaJkFoe1TRtCOicFPzdjdYmVQEEwN7LcfgPLAh88lvsZXbLscQy7RaNqQ8ulwiyAEEUW+QaG5x4WjgQtRBNT2dC1MqP1+ly21Bfi2DAl34I00JOQSEgiCCIqKrahdJexRCZiwdrz0qf7Dzuznd4O9ggmLBhAZAgcpknCcAAKMy3LYINQUqCSIRAfoAEmHYL8WiaBdkjAUQQRB2AiFRCgCgCsl9HuoUWNbxggkAA0kfcQ2X4WMA/8/gjIhBZEIX0SrM0A5LsBQQRqm7A4/ZA0Qx4vS3O8QBsAmDZkCQR4qHy4D8DRjwECQK5IAIQhDgAA0AYsKU0rxBsQEqCCBDsYJp4qOWYZJppnYwgCEgqSQA2PB4XPLIL+zK2QwvMrsX0RkzHpGkabMsCIECJJdOEA0BNpUBW2v3WK3tgWXsXiIS0zMMYTmeUHepeiNhX9JCwd5cBWuzhez8XwAfk/wNsvt5ghmPrBAAAAABJRU5ErkJggg=="
|
<image>如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()
Choices:
(A) 50°
(B) 25°
(C) 15°
(D) 20
|
25°
| 69,883 | null |
25°
|
"iVBORw0KGgoAAAANSUhEUgAAAKkAAAASCAYAAAAg2P6ZAAAEvUlEQVR4nO2a624TVxDHf2eJUB+j2CSocZ6hRGQXQr8kUdWH8BqkKqH9WvOZNS0qCaKPUFGyoVIJOFV5BrC3KDS8RXCM4zP9sHd7bdyQ+EL9l6zdc+ZcZsZz5nJsJSJCH5TLZUSE27dv9xs2xSlBRFBKjZqNEUAHTwMBkhqYGWT6pCmtXC6nnpOEUNeTLMPJYACxvD+Uy5GhGqNhaIopfPQK46GBatoY/aJ9kvaBrGCKKU6EZIwWQFQcTUQEg3OofjlpuVzmxYsXACwuLp4dp6eMkOfLly9PRKqSlYdOot5PA6Hc4RMGyEknWUmTYKAwOXwOA4uLXxJnoRow0p500Mry/1uBTnHmCEv7RImfKpwGNbypgU5x2iheUyilUEb8vLNTB8BIJ6Q61arvVHDr41EwxQ4/zWPpaiCUUhgqfDfxetaNw8VgBacvk3u35MthGKirNoJHqVTJWEdnrDGZCKV68EywLXDcGiJC7UmF71cXcOuCkfaJRmKyx7ert4bI7qBI35ptPveF265ptAhaaxxbUVAW3hh8mZ1RJ9No//4dpRSbb3NIIIPcu4ahCpCbzVjn07k5DKUSPF5Xr3B9ZR6AQj4XD5IAWtKolGyxLEvqKUpbtI7byfezRLiP1scZVE+WrFJXr20hZsk5Y84+DlpEtNTFJOC1Q52ObYrjvow72jrSwXA0PzzUXEfMm3ciuUpm/P0ZSYuW4JS7d0uIZaKrussXJU/0sHLTcB+lznXR6jt/oOYuRO3QT+VmTfb2D4bB3omhgCc/brHHEvfur6cvDYF8fo78xYW4w1CRDj6VqiC0uTcHb9n7+bsoZTN/0lTvbwAdOWmz3eKo9hvPuMLGrOJPa44F0mFGpB2sDqPIjTqD5e7zXZat5ajtc6vJ5+dAxi0spvUleNxf38R2bjCP6hJudX2T1XmVnBA/xiPl/miEDmjv6RaP6xoRYbtis7ZgBPWQxiCRI302c571X/7iwfrXAJhz+YxFA2+mNCLDP8/pXyg8nm4JX60Ugp74TwoHB/uYly4wXkgfGuXtswfkLs4COts9qoRhq8TjU3GlAJ7LpiqyFhzIlfUSJlDd3QEMjGTIdis3efjwoV8hF9boOvkiicTfQKkhHWcJfjLr6FbePty4zhdRT2AEnsutrb2Uhx1/9PL6/aLB6AvD04C7W8W+djVqJw+viCQ04LlUWeLw8NC/AnAdLuZyHLXec3T8HvDTgWa7RaPVDCYZHB3H9CTC/v9KyxzXfo+S2HmE/Y92q1z63Pf2IhKtV9z4BmO5yMZK4YN7nDlSJ6vj0M/PYQJv/3nTPe31DhXXy1gwuca4pTMnQ3V3C2t5FfCjo1VYA5a4vjLvpwMiIlLfFqyiiIg0Wg0REdmu2GI72/Ku1UxV8Y1WM/P9sPUusz9st+W4J01EIvqH9gnfw6r415dHUX/j1SMxzs8IVtFvB2OT+/fCqOjbFVuUUqkqvuY6glXsuFcZT/4HpYejkqi5Thgg05/AFkPg2GZEfFzX0mg1xbbiCUs370SDswws+Qm12ssQRfehBfRee4n4V1GNVjMlnHF+JvXuuLWu+cn9+2JE9Fc76S+r59XZmPI/CL3zulJrnRruk9vRMsnh/wJYLfn62UTBrgAAAABJRU5ErkJggg=="
|
<image>如图,C点在线段AB上,点D是AC的中点,若CD=4cm,AB=13cm,则BC的长为()
Choices:
(A) 4cm
(B) 5cm
(C) 8cm
(D) 9cm
|
5cm
| 69,884 | null |
5cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJEAAAByCAYAAABTCDMPAAAZE0lEQVR4nO2df1CU17nHv68kKnRbjFnKOnfrmrAk4GrEgU7W694sVQyo/DKSa+6YpGZKAy2lwQaEzuiYTM2UJNjaO1pBMx1NO6m5QwZ/rOHHbm7odKmbwUxsZxG8LOgtZsSAd9ZiFOru+9w/ll3e3ffd3++uC+xnZgf2nPOe8+z7Puc8zznv+cEQESHOLIMFaAHAiJvrxYsXkZOTE/R1C8QVI07EoOkPAEBcBRoaGsLmzZvx0ksv4fbt20FfH1eiGGdPCQOGYcAsmP4wDIr3tIiS99TUFPbt2we1Wo3c3FyYzWYkJycHnxHFiXmO7imiZv0gsSxL9+l/qBigupbOsPJsa2sjuVxOZWVlNDo6GlZeD4mi0nEiynA/8Orbj4MBg4eQjs11JWgf+t+g8iAiMAyDoaEhVFZW4saNG/jDH/4ArVYbtnxxcxbj0FAX3mUyoCTHoyIiDF85gyfTFEHlc/fuXezbtw/Z2dkoKCjAX//6VzcFoun+FYXQz4q3RDGO4b/1qNu6yeVIN9cX492zRRg8kxdwHh999BGqqqqwadMmXLlyBampqbw0DMO4/Q2KsIxhnIhTV+zqlzk+xfWOCNb/tX19fZSXl0cqlYqMRmPEZIybsxiGhrrwLupARDOfM42OSB8Nxp07d1BXVwetVouCggKYzWasX78+YnLGlSjmYF3/DQ0PozhDCWDaVxFwV1paWvDCCy+40nz44YdIT0/H+Pg4+vv78frrr0de5Ii1cXGCgmVZt79EDlPWZfF9ncVioUcffZT+9re/kUajoaysrIiaLiHiShQDeLo3rKXTzQ/qHJxJwVUyIiKr1UpLly4liURChw8f9poukjBE8XdnsQhNj+t4TwCcfP8kGhoakJKSgg0bNuDQoUNRk49LvIsfQxARGDAOp9mHAl26dAnV1dW4d+8ezpw5g4mJCdTW1vpXvEgRtTYvjn/8WCCr9f+opqaGUlJSqbm52RVus9lIIpGE/foiVOK9sxiChLpf00HvvfcelMoncO/ePVy+bEZFRYUrSUJCAgoKCnD69OnoCOpB3JzFEAzD8EzSxc8vorq6GgDQ3t7udb5PXl4eDAaDm3JFjQfS/sXxirNX9dVXX1FVVRVJpVI6fvy43+tGR0dJIpHQ/fv3Iy0ij7g5izLk50UnwzA4duwYVq5ciYULF8JisaC8vNxnXgCQmpoKpVKJP/3pT+IL7Ye4OYsyvl50Xrx4EZWVlUhMTIRer0dWVhYA7919z7D8/Hx0dHRg48aN4gvui6i3fXF4jI2NUXl5OclkMjpx4kRIebAsS5999hllZGSILJ1/4ubsAXPkyBEolUosWbIEAwMD+P73vx/wtcQxZwzDIDs7G+Pj4xgeHo6EqF6Jm7MoQhyz1NPTg9deew2JiYno6emBSqUKOj9Pc5aQkICNGzeivb0dVVVVosgcEFFv++Y5Y2NjtGvXLpLJZHTq1CnR8z916hQVFBSInq8v5rk5Y0EEENndQsnLtItw+c1vfoPMzExIpVIMDg5ix44dvDQ0PW8oUDzT5ubm4sKFC7hz545gfCSYV+aM4DmXa8H0K6qE6e/sdJh475+ICH/5y19QUVGBZcuWobu726fpCrZsz/SpqanIzMxET08P8vPzo/IubV63RK5ayl0U6JYgyHw8uHnzJl5++WWUlZXhjTfegF6vD8n3CRSnHIWFhWhraxOMD7alC4R5rUT1pQtmFgYyzk8xLM7ZhQFWYs/abrfbcfDgQaxatQpyuRyDg4MoKysTWXrvcjjHi4TiI9IyRdUDi0G4swdZlqWje4oIKKJBsoeUX3d3N61cuZLy8vLIYvEzLVEAsSaTyWQy6u/vj2gZTualErGsbfq/QSosruPEOBSnrhhUvKclqDxHR0eprKyM5HI5tbW1iSJnOJSXl1NjY2NUypqX5oxhHI60RW9AQmY6pzfmuB2PZxTh7IAloLzsdjvefvttrFq1ChkZGbh8+TJKS0sjI3gQFBQUoL29PSplzaveGTAz4EdE0He1Y/Ozv56ZTThNmvJJYMB/XgaDAdXV1VixYgU+/vhj3L17F7/97W8xMjICs9kMwDEL0XOnDalU6nKw165dC7lcju9+97t46qmnsGTJElF+X35+Pnbu3Ik7d+5AIpH4TBsu806JGIYBCCDGgvYm4FfvruClGbJcQXFGodc8rl+/jurqaphMJhQVFaG/vx/PPPMMnn76aaxduxaPPfYYnn/+eQDAypUrkZKS4nb9zZs3MTDg0FKTyYSrV6/i3LlzMBqN+N73vofS0lIUFhZCoRBeKu3r4TvDJRIJ1Go1Ojs7sX37dp9pwyYqRjMGYS2dM34P6x4OgJr1g7xrbDYb/fjHP6bExESSSqUkk8movLyc2trayGaz8dIHy+TkJLW2ttKuXbtIKpWSSqWivXv30hdffBHYb/JwmBsbG6m8vDxsufwxP5RIoDOib6kV3J6lrhgEN2fbwe7duykhIYGSkpLohz/8IfX29kZCUjeMRiPV1NSQUqkkuVwe9GuSgYEBkslkEZJuhvmhRB6wNEjFAOmHZsLszrVeHgp08uRJkkgktGjRIjp48GCUJZ2hu7ubsrOzKTs7mwwGg1ucry67QqGIuMLPAyVyH+8Z7DrqvkEC58M1YefPt9Py5cuJYRh66aWXaHJy0msJ4Y67BHN9a2sryeVyysvL45k5oXwqKirowIEDYcnnj3mgRIHhfAAWi4WefvppAkBKpZJGRkYE04k1YBdKPjabjZqamiglJYV27NjBk5FLR0cHqdXqcET0S1yJaOZBnjx50uX3ZGVlBbJ7S0jliIXVaqWGhgb61re+5XX9/cTEBC1ZsiSia9LmjRL5akEmJydpw4YNBIBeeeUVkslkdOnSpYjJIDYdHR2UnJzsthafS0FBQUTmLjmZNyPW3ibIt7W1YenSpejt7YXJZMLy5cuRl5eHNWvWREwGscnPz0dPTw8OHTqEyspK2O3u86O2bt0q+FZfNCKmnjGOxWIhrVZLixYtIrVaTRMTEzQ6OkpSqTSkF6exgNVqJa1WSxqNhsbGxlzhFouFpFKpKGNZQsx6JQrWRExMTNDevXtJIpGQRCKh+vp6V1xlZSXV1NSILWJUsdlsVFVVRQqFwu0tfmZmJplMpoiUOeuVyEkgyuTcu7moqIhSUlLcNkVw1lar1RpUnrHKL3/5S1IoFK4Wqba2ln7+859HpKw5o0S+6O/vd22AqdfrKTs7mxoaGtzSlJaWRm3qRKRxKn9lZSVptVqy2+1kMBgoKysrIuXNaSWamJighoYGkkql1NTUREREO3bsoMLCQrd0JpOJZDKZzwHF2YjNZqPc3FyqqKjgbT8jZis7Z5WotbWVZDIZ7dy503XjDhw4QCqViiYmJtzSarVa3srT2WzKiGbkHxsbI6VSSYcPH6bt27e7mXCxmHNKZDabSavV8jbA1Ol09Oijj9LVq1fd0re1tZFKpYpYz+VB4lSky5cvU3JyMu3evZvKyspELydmlCiYmi+U1mq1Um1tLUmlUjp06JBbnMVioeTkZOru7nYLt9lspFKp6PTp0yHJMRtw/h6dTkdLly6lpKQkV4UR67fGjBKFw+9//3uSyWS0a9cuGh8f58WXlpbSW2+9xQs/ceIEabXaKEgYG9TW1tLSpUt5swDC5YErEbc2+KsZnvFms5k0Gg1lZ2eTyWQSvN5oNFJqairPaZ6cnCSZTEafffZZGNLPLqxWKyUmJtLLL78sar4PXImcBNO0Wq1Wqqmp8fm+yIlGoxHcaezAgQMR8Q9inZ/+9KeUlJQkap4xo0SBcuLECZJKpVRRUeE2tE/EV8S2tjZatWoVz2keGxub1a83wuHu3bvEMAx98MEHouU5a5Sot7fXZboCmalns9koMzOTdDodL66mpoaqqqoiIeasQK1W0/Lly0XLL+aVyGq1ujbADGaM4/jx45Sbm8sLd77eeFB7PscCp06dIolEQq2traLkF9NKdPz4cZJKpVRVVeX2TssfNpuN5HK5YIv14osv0v79+336YHOtm+/J6OgoJSUl0RNPPCFKfjGlRM6H19vbS9nZ2aRWqwUVwZ8CGI1GUqlUvLgvvviCZDIZb8R6PqJWq0kqlZLZbA47r6hPSiMf25rcunULlZWV2Lx5M6qrq3HhwgXBzb99Te5iGAanT5/Gtm3beHF1dXXYu3ev1xWh8wUiQmFhIVJTU9124ff1bPxlGBMcPnyYpFIp1dTUuExXqGYlMzOT14IZDAZSKpVz8vVGKPT29lJqaqook/gfmBKxLEssy5LJZKLs7GzSaDQBr/T0RX9/P2/BHsuylJWVxXMk57rv44/U1FRKSkry2skI9P64mbNJ9r7rE2lu3bqFV199FaWlpdi9ezf+/Oc/uzb/5rSSvOuEwrjhZ86cQUlJiVvc+++/j8WLF+O5554TR/hZhLf7BQBFRUVIT0/3erBMoHPC3ZRo8YKH3f5GCucGmM69m3fu3OmKc/5o4uzewcXfRgae/tDU1BT279+PxsZG3rUP5GywKOPrN+bl5cFms4V/OpFn03TP/s8QG0f/GI1GysrKIq1WK0qvwJPR0VFKTk5283sOHTpEJSUlopc1F5iYmKBFixZRUlJSWD1Wn0p0z/5P10foOzdMKB/n58aNG257NwvlI4S3dN7C/+v0R5SXl+eKs1qtlPIvsogo7FwhNzeX0tPT6dNPPw05D59dfE/z5vl3kr2PxQsexuIFD7v5UdzwI7/+TzyVsxYymQyDg4Moef45V5zndVy4eXgL514/yd7H8PAwVmatdl1z4J1fYuumAqRlPsFteQNvpkWCW+aDKN8XBQUFAACLJbCd4YQIapMr5wP0DBPCaDSisrISy5Ytg16vx5rMVT7T+yIQH23xgodx+fJl/NvT/woAGBsbw/Ejzbhy5YpbugfhB3HLjDU/rKSkBL/4xS/Q19cXeiaeTZM30yQUJ5R2dHSU/v3F/yC5XO7qUnuaP395BBPO/a7ZoHVNiX25/BXXio5I+nlzgZSUFNJoNCFf7zJnoXbrabp5/vr+JA4ePIgnn3wSaWlp6O/v97rNW7AEKtuXX34JuVyOvr4+tLe3o6GhwU3GOMLk5uaKZ86EzBUAl+/hGecM7/60G3Wv/QwymQyff/450tLS3MabFi942NVl9/SDuHlyy+Cm46bxdv0kex937tzBQ0mL0PCTn6C+vh6LvpkEwGFCvP22OMCWLVtw9uzZ0DMItMm6Z/8nbwSTu3ez0Lwdf4g9YiyRSKijo4OUSiVNTk7GzIi0wWCgjIwM3gqUWGFwcJAA8Cb5BQqzf/9+v229bQHhIXbGISQiGI1GmEwm5OTk4JlnnkFCQoLgtUIDhpHizTffxLJly7Bu3To89dRTvEPlyKOXFC0n98iRI7h16xaICHK5HD/4wQ+iUm6gTE1N4e2338a2bdvw0UcfBX29z96ZfVovGMwctX316lXodDpIpVKUl5fjkUceEbzW+dCipUBcVq9ezSvX83u0e0kP4j4Ew8KFC7F69erQLg6kyWeJaGRkhEpLS0mhUPg2XVGyIKxHWSzLkkQiob///e/RESAInOZszZo1LnPmeZtYTpjzkUTLHI+MfElyuTzk8vz6RJOTk3TgwAFKTk6m/fv385bedB2rdWycyTh3XrVQXd3R6djQDlkRgqs0g11HXYe6cJFKpSHb9cgxcw8EHxHrrd6Jd+/8YbFYSKlU8sLrioU3R/WU1+eIdWdnJ1atWgWTyQSz2Yw33ngDixYtAgDQUBcWMAwOWxxnY7B2Fuyv8sAwSkD5+HQOIs55I5r+JRa8/uyPBJN84xvfwNdffy1emaKwwHVuGgOBM9YY/olYjjTRmy/4j3/8Q3Ci3jtnCHXFQLN+EESEwa6jqNyUDsOQR0Ihzbx27RoVFhaSUqmkjo4OXrxzH+ji+qO8uKN7igR3oxeL5j11VFQkfJSURqOJyd4PF88tkN1OM/Iwz9GAJSKd7mPHTimsZ9wgFTMlrnvtPG3A0wq4qfvU1BTefPNN5OTkQK1Ww2w2Iz8/n6ehn7x3DGdRhIONr/LiHlM+ibTHlKFXCx/oj9cBeXmAbqamEsdhVSqVrjMzYgWuO91cX4z0Zz/GINnBEoGlQeCdCpTUH3Mk4DRJDMNE4hhaHgxYDAxchlKp5DWJQ3oDULcFyul7Xf+zfBTvacGmNI9MnNp08+ZNUigUVFpa6nNfZGcrVNvMb6FcaSJQiVhLJ9W1dDp2vi+uIyGfoampKWa3yzu6p0jwuAdHy+RoWWcc6+iOb+3atUtwlbDL3wWIYRjqsgjL5mqJvv3tb6O1tRVtbW2Qy+Xeu+dDwzgLIC0tjauI7todgd5zfYsB77z6LBgAxRlKCPkMaWlpriOiYgmLvhk/evccun71js90ztsW7eGHgYEBpKenu4URAL2uCZ2DLIgInS2v41klA8OwgGzBaq3d4xQe1/7QHuk8u+Dh0Nnyunc/goPQpLRYgHuSo+ctcdT26ZboAYywT0xMkEQicUxK8zxtidNysjRIhQwED9UJqAtA3JHftMdRDGBoeNjx3bk/NBw9thaDxfU90IN4fcEOdcGAZ10t42DXUTyZtkIwrfM4b4PBEH7BIkGw4MpZYMumDQD4t0Sva0LxnkIoRT5KPVDOnz8PjUbj6J1xiv/kUwP2FG6ama48NAwdgLTHHwecBy078aepjtrh7n84bSW3F2bRNwva/GDwrIm82sCy1HWMf8QU97rGxkaqqKgISw4x4fZoPH/fFf1Rwd5ONNmxY4fg8nS3A5an/WDXAcseDWZQ5ox7Ezy7qiX1x4L/BUJlEPdUaLjdZO7gV/GeFkFr2d/fT3K5XBRZxMD5ALiDdCzLzgyT7BHnvoWCzWaj5ORvui0ZuqJvmXGmuQONPhqIkNad8fwfAVsupnUPNq+MjIyoHGoXCCy598xYliW7Re/Tt4uoPJwzTgwGA61bt47CHR0P6QxYhsAb03DYyRkXK3Dr7n6dYHlewonzJp77f2FhIc6cOSO4BDvaMAAqG89iqIQBw7zrCu+y0Mx4i8f9jIpcDIO2tjZs3boVrlF1ngyOZ+NXvODU2E+067z5IDSbN0oaSHK7z3TOpUmxBl9m7z2ySPTUPPNUKBR+V8Lw/FSBNMG9oGGc2ulNu51zihzaS4FMf+CqODlGUP0lJ2J81ox169ZhfHwcFy9e9F9+FHHJTM6R7AWuaTa8tBHoqXHz/OSTT5CYmIiVK1fy0tH0e0ohOQSlCku1BVsETiskcmWamSLhP623Ta5iF6HWOzJv8lmWpTVr1vA3ufJnabyEh/mqeIGAZnKyFLkyOStFIJX0lVdewejoKM6fPy+uEBFD6FFE5k3+Bx98gISEBP5CCj/31Wu0KKodIwht/DlXd8sPlcnJSVIoFLyN4cNhTp286Gm/S0tL8cgjj+B3v/udYHqK8SmrkeDw4cNYvXo1tFqtaHkyNMvvJPmZcN/T04OysjJcu3YNCxcujLkVqNHEarUiPT0der2et41POMz6lkhIKbj1Yv369VCr1WhqaprXCgQAb731FgoLC0VVIABzyyfyhrcDYuYT586dI6lUSteuXRM97zmpREIDdTqdLmI3Mdbp7++PaCWak0rkDW+H5s1luIfmRYpZ71gHywsvvICvv/4a586dE4ynKK6MjTR2ux0bN25ERkYGmpubI1bOrHesg+XkyZO4ceMG9u3bJxg/VxQIAF577TUwDIMjR44AiOCQRsTauBjC00caGRkhmUwWkfNQY4XGxkZasWIFffXVV66wSE2/nRdKRMS/gc4jGjyPNo9leG/UBZTCZrNRVVUVKRQK6u/vj4pc884n4nL9+nWUlpZi2bJl+OMf/zjrj2u4ffs2SkpKYLfb0dbWBqlUGpVy541PJFRX5HI5enp6sGTJEqjVagwNea4Pjj281fm+vj7k5OQgIyMD3d3dUVMgp1DzAn8nEzU2NpJUKo35ZdhCdHR0kFQqjWg33hfzRokCoaOjw7X7SSyOJXlWBKvVSg0NDZScnPxAlX/emLNAyM/Px+eff45Lly4hPT3d1TUOBQriXJJAcQ4/2O12HDx4EGlpabh69SrMZjPWr18vShkh8cDUN8YxmUyk0WgoIyMjpP0oI0VrayspFArKy8sT5VQmMYgrkRecpkOn05FKpSKNRkMmkyns/EKlu7ubsrOzKTs7mwwGg6h5h0tciQLk+PHjJJfLKTMzk2prawNa1xbqw3VeZzQaqaamhpRKJcnlcjp16lREyguXeT1OxIX8vDNzxl+8eBEffvghdDodrFYrioqKsGXLFhQVFXndQTdQpqamcP78eZw7dw46nQ6pqanYtm0btm/f7nUOkD+5xcJXOXElgvAN8gwTSjM0NASdTofW1lb09vZCrVZj7dq1+M53voOcnBwQEVQqFW/M5ubNm67NuEwmE0ZGRmA2m2E0GpGbm4tt27ahsLAQCoUi5l4IC8kTV6Iw4N7Q8fFx9PX14cKFC7h+/bprn6RLly7h9u3bbtdJpVKoVCoAwNq1ayGXy5GTk4OsrCwkJydH90eIQFyJ4oRNfJwoTtjElShO2Pw/dHU1wwHve/4AAAAASUVORK5CYII="
|
<image>如图,直线CD与线段AB为直径的圆相切于点D,并交BA的延长线于点C,且AB=6,AD=3,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为()
Choices:
(A) 90°
(B) 60°
(C) 45°
(D) 30°
|
30°
| 69,885 | null |
30°
|
"iVBORw0KGgoAAAANSUhEUgAAAIYAAABkCAYAAABD9UgYAAAUpklEQVR4nO2df2wb1ZbHv+MWSoL7pmynqguGbIkNJu7bGlKhSHWaSHG6KSRLUM2CEIgUReIRI0ipUYMoKlLDKhIODSLtCwuUROKPPhTqdBNUlxoalnRJN4FUrBMnrcODTQUp7R8JSRNn687ZP5Jx/fvn2GO3/UhR6/lx75mZM+eee+beexgiImQwpq0MDp4AGACCoJYuB3Y9ppVSrOsemdQCRIKI0Poloa4ceKfLASKCo8sCc/UGdA1ntD5nJOFsABEF7csYxRAE8xWQYRgQDWPsRBm2PVYAANCq8yWR73qAYRgAPvfaZ7uwTyBDFIMHlgQLFNDZfQyMaRsKsLi97pXHYTBZUK1lFs+7SRws3q+j+18CwzBYJpOB2VoHwgheMjX7HZkBisEDkAFEiyocYO3Ouf4O+wEzGBkDhlmG8v1XcaJ119LeDBA/w/G7nSNdYBgGB366F0RXwfM8qGUrZIwWyL8v4MQMgw/4XVcOsjoWt1qb6wi49jvw2JuEh6dhMgBkMFmC9lnqDGTpcvhty6xXjgC/hmSkCwfx4lKzATz2qgkGACdsRwEEHHuTiBx99wDsKMN7ra8G7cvPvw9qVYHftuXpEiwmhCfNEyBj0GU7gbp/roC3uRl2ws4AFSq1hEJmH4QRHNh1EHUWKwqI8d5nIgLDMKh+9UDQOZJbjJAdKBkDIsIJ20GUV1QBkIHHCLZuMAJ0rYcSsdzMDs+kFXKehR3AvSq1n5n1d/T9HXnJFSNUczB8tBkymQwHTwCPb5AtetCMFnbDX0Bk9/ZQwiG8CTeScvhea+B1y8LdBr/t/qoguWKEouBfXvUGXfz+TvwVgHA94buqTIiub6Qbdz3ge62BXX4quA8GAH93nQs4CcDwf6C5ayS4wNT5wSIS1P24Gn8R/I3dhzmy1KOzdDm899PRZSGUv7j4I+D2ZIdixEkoJeB5/oZXDkeXRYgUEZa6ruHuSGb1SiJw+vRpHDt2LKZjacnHuNEIdd2+vlZlZaVfODzSHcogxVjqkgL4P/cCvjv933A4fsTvv/+Ob775BoODg1i+fDmmp6eDzlyzZg1yc3OxbNky3H333Vi5ciU4jsPdd98NmSwj3SjR8FWGQKUYHh7G552dKNBq0dLSgk2bNnmPj/baSK4YguYODv6A48ePw2b7En19/wm9Xg+VSoW89f+IkpIS/Prrr/jss8+g0+mCyjhz5gymp6cxMzODwcFBjI+PY3R0FO3t7TAYDDAYDCgrK8OmTZvSfXmScOnSJbz11lvo7e3F+62tMJlMAJbuNSN8Y4rywqSpeQuJ0+kks9lMSqWSdDodNTQ0kM1mo6tX/Z1LnU5HVqs1pjJ9/Qi32009PT1kNptJq9VSXl4e7dmzh1wul5iXkTF4PB6yWCzEcRyZzWaamppKuCxJFKOnp4c2bdpESqWSGhoaIj4oq9VKGzdujKv8cE6m0+mknTt3kkKhIL1eTydOnIir3Eymp6eHVCoVVVZWksvlStrRTqtinD59mkpKSkij0US0AL4XJViLeC802vGHDx+mvLw8qqiooKGhobjKziQcDgcZDAbSaDRkt9tFKzctiuFyuchoNJJCoaC2traYz7NaraTT6aI+5HD7o3VRPR4PtbS0EMdx9Mwzz9DExERC9UjBxYsXyWQyEcuyZLFYyOPxiFp+ShXjwoUL9MILL5BcLqfGxkaamZmJ6/x4fItYEB6s7wPmeZ6mpqZoz549JJfLqb6+ni5evChanWLC87zXj2BZlkwmE126dCkldaVMMbq7u73Cx3OjhYdms9lIp9PFdGwy+JYxOTlJtbW1xLIs9fb2Jl222Ah+hMFgIIfDEf2EJEiJYjQ1NRHHcdTX1xfxuEgPtqSkhNrb2+M6J5b9sWCz2YjjOGptbU26rGThed7rR6hUKurp6UlLvaIqhtvtJqPRSFqtln7++eeEy+nt7SW1Wi16uxlIJCVyOp2kUqmopqYm5XKEI5IfkWp/J27FCCfQxMQEFRYWktFopNnZ2aSECmctUk3gtU1NTdG2bduouLg4rX5HoB8hhc8jisXo6+sjjuOooaEh6bJ6e3tJpVJJ9pYG4vF4yGQykVKppIGBgaTLi9ZTstvtpNFo/PwIKXpDSStGX18fsSxLnZ2dQftivSDf40pLS6mjoyNZsRImnMzt7e3EsmzKYh4ul4uqqqrS6kdEIinFmJiYII7jQipFImSatQjkww8/JKVSKYppFxRwamqKzGYzcRxHzc3NdOXKlaBjpCAhxeB5nhYWFkin09HevXtFE2bLli2S+BYCgQ8i1IOpr68nvV4fUnnjeZA8z1NraytxHBfRjxCannQrScIWw2g0UnV1tShC8DxP/f39GW0tBDweDxkMBqqtrU24DLvdTgUFBWmJRyRKQorR2NhIGzdujDuSGYnq6mpqaWkRrbxUMjU1RSqVKu44h8vlosrKyozxIyIRk2L4mrGenh7iOC6pOEUgQ0NDpFAoyO12i1ZmqnE6nTFHSH39iFR810gFcVmMyclJYlk2akQzXrLJWvhis9lo3bp1Ecc9xOJHZCJxKUZNTQ3V19eLKkA2Wgtfwt0Tu91OWq02o/2ISMSsGE6nkziOE13rA61FJn3aDkWgfBMTE8SyrPeTva8f8cUXX0ghoijErBjV1dW0b98+USv/4YcfSKFQ0Pz8fNC+TFWQUHKZzWZ6+umnyWw2E8uy1NTU5BePyEZiUoy+vr6UmPtQvkWmKkQk3nnnHQJAVVVVNDk5SUTZeR2+METR5+sVFxejtrYWzz33XNIjmAXGx8dRVFSE8+fP49Zbb83KeSBff/01Xn75Zdxxxx14+OGHcfbsWXR3d0stljhE05yuri7SarVBXaxk34iampqIUdNMfuMEP0KpVHo/B7jdbrrnnnsycoBPIkRVjMLCQlGH1xEt3liO42h6ejpoXyYrhBCPYFmWGhsbg5rWjo4OKikpiamsTL5OoiiKMTQ0RHl5eaJXGs1aZCJtbW20Zs0aqqmp8foRgXg8HlqzZo2owT+p8FOMwI81ZrNZ9AcoWItkJsOkk76+PiosLKTi4uKYxmPU19dTY2MjEWW+VYhEWIvh8XhIqVSKrv3ZYi0mJibIaDT6+RGxMDQ0RBqNJoWSpYewivHdd99RUVGRqJWNj49nvLWYmZmhPXv20OrVq0P6EdHgeZ40Gg05nc4USZgews5sPXr0KEpLS0XtAe3btw8mkwksy4parlh0dHRArVbj/PnzGB4exhtvvIEVK1bEVQbDMCgpKcHRo0dTJGWaCKcxRUVFona9hA9wvtYiU9pgwY/Q6/UJj+v0ncxktVqpoqJCTBHTjlcxfB/SzMwMrVq1StTPw/X19VRfXy+JMoRbYSdRPyIaMzMzxLJsVnxeD0dIi2G322Puj8eCYC1+++030cpMhlj9iEQGMwvodDrq7+9PSk4pCeljDA8PQ60Wb5HVpqYm7NixAwqFQrQyE8XXj3A4HBH9iFjD9KGOU6lUGB0dTUpWKQm5os7Zs2exYcMGUSq4cOECPvnkE4yNjYlSXqKcOnUKr7zyCnJyctDd3Z3y1XW0Wi1cLldK60glXotBPt/SxsbGoFKp4iqIwnyLE6zF2rVrExQx8boB4Pz583jiiSfw1FNP4fXXX8e3336bliWX1Gp1VluMkD6GSqUSpR8+OTlJf/rTn8KGkOMh0tD+UG284EdwHJdQPCJZBgYGqLCwMK11iknIpsTtdkMulyetdBaLBc8//7wo1iJwld9IK+F2dHSgoaEBer0eDocjpdYqHDk5OXC73WmvVyz8FGOe5gAAM1f+wMqVK5MqeHp6Gu3t7RgcHEyqnFCEcwoFPwIAOjs7sXnzZtHrjhW5XI7Z2VnJ6k8aIn9TfPnqLAFIug++d+9eqqmpCbs/mXiGMPFXp9PRqVOnaGJigrZv304KhSKumWypjKlcvHiRWJZNWfmpJsjHmOMvE5Jc5XFqaoo4jhNl2cRQD0+j0XiXPb7zzjuJZVnas2ePqBOgEsV3Tmo2K0bEBWCFpgUAcpjcoN++xwi/AaClpQXbHq/AuvUKzNOc375Q5UaunwdI5nccreDB5Cz+3+12w+FwQKlUesudpzkQEXJlt4es/yYxEKgpc/xlv28ac/zloP2R/j81NUWr7/oHP2sR7pxQv6Odc2rgW9Jq/0wrVqwgtVpN9v+ye48R/nx/R6ojlfz8888pGeSULkJGPleuXImZmZmg7eHefl8LsH//fjzyyCPIzxcvP2oOk4sLFy5gx44d2P6EEa+9tgtutxvWd15AeZkBDMPg9mVyVO5830++25AjmgzxcvnyZVF6dlIRUjFycnK8HnVgExJ0LJPr/ZuensaBAwewe/du0QRcWFjAvzW+jQ0b/glK5Z348ccf8dxzz6HZVI4N1cfw/eVZEBGu8g7g3xtQ/tK1/KEMI13Cmrm5Odx2222S1Z8sXsXwffh5eXkYHx+Pq6B5mkNraysqKytx7733xnweRcg89Pnnn0OlUuH74UEMDX2PffvehlwuR7NpK8zn1CCyQ7O0jj6DArzztybYDxzDiDenk3SZB8bGxrB+/XrJ6k+WoDhGDpOL+++/3y/OL1iNwGbE15owCzK0trbCbreHdVQDzwGAXNntfvXnMrdjcHAQO3fuxBx/Ge2HP0HZZoP3mJ+6D+K1T07gb4NWP5nmaA4Agcm5CiHpgu/+dDuh586dg0ajSVt9YuNVjBwm1/vGqtVqOJ3OmAoQbvZ7H7yHoqIiaLVav+2Rzglk9tJlmHa/BJvNhqamJu8EJ/KJdB5sfQ1lz1vwrwW3+52by+Tif89NgOZvBYGW6uCjyiIWFBCNHR0dxbZt21Jeb8oI5ZEGjseI5tW73W5SKBQJL1w2Pz9PjY2NxHFcxHiEkG04MKuwQF25TyZiiQeHZft4DIT7AMWyLM1c+cOv2xeOlpaWhJdd6uzsJKVSSUajMfwi74KIw1a/FN6+CPm+jgzzkuiE79SL63YEF9HimM9YFkiZn58Pay0ihZwHBgZIr9fTQw89FKWea0ltwlkMnpxkAKjsJcvSb2np6emhioqKjBnTmggh3XYiQmlpKXp6eqI2RR988AGKiopCpqQK9bFLiEdUVVWhtrYW33//fZSPXddEZFCAijoDzAd8Uk6PdEHGaAGTBfb3dy0dJy3d3d0oLS3NyonaXsJpTH9/f8h5JYGppaL5FsLxbrc7Jj8iFurKQUv5h8M2LUTSWQ6NRkMjIyMS1S4OYRXjypUrpFQq6Zdffgl7cltbm9e3CJULRCCaH5Fs9qJMMtnX/Uw0IqJdu3aFnU7o8XhIpVJFnHsyODhIxcXFpNVqk0rLdO3BX43ZCvBEJIW++M5dzWaCJjX7Emm2e3t7e9gpBpOTk1RTUyNqzg+e9+1txJ/COx14PB7Rl7qUioTWxwhnLTweDzU2NhLLskmldwxqGvhQ+zJPOdrb22nLli1SiyEKAYoRfLOPdFnpwQcf9OuTL1qLYr/jhLRMjz766HWb11QglE/jdrujNq3ZRAxDta6SXq/3DpkLtBZCWqZk/Yhsp6WlhaqqqqQWQzQWx3yG2SlsF1btW1hYoPb2Q1RSUrKUlunFjMkdJgW+w/g4jsvq/K2BLAf8A0JEBIYYQHZt++bNm1FUVITm5v04dOgjaP+8AQ888ABqamrgcrmCljWggA9K1xO+1yb829TUhMrKypBBvqzFT00CTIej611v8MjpdJJcLicAN4QfESuBKwNfLwSt80kAGPAgnMVW5gGYHDyqtYtvRn5+PjZu3IgjR46EtQrhtl+v7NixA6tWrcL+/fv9tmf9ffBTEx+L0Wyqo61bt9L/0LWQtrCcwalTp9Kkt5mNzWYjhULh7ZZnUgQ2WWQAvAPhBKei610TqNwA+vIKmCWDsmLFCqxduxbt7e147LHH8Msvv0AYCBNG4VKoztIzOjqKJ598Ep9++qnXx8pqCxFIkKoMW6nOYiUa/pxQ/mJIbWpsbCSdTkd/zEo/wUcKEs1wlE0EKYbJZFr8z7D12mioEBiNRnr88cdTJlimIkZOtGxgKY6xGPG0NtcRAGIWx917FSNUyzkzM0M63UO0d+/e66ptjYaQRTFbE+/EigwAGMiAkS58iXLwPIHneTi6LLhv/eKkIW/L6eM2yOVydHcfxcGDB3HkyJG0Nn9S8dFHH6GzsxNWqzXuZR6zjcVR4iNdYHbaQMfbvDvOjf8EIGA2WYBvpVQqYbVa8eijjwIAtm/fnkpZUwpF6V52dHTAbDajt7cXq1evTqNkEmGpM3hHQh1dCmb9ZSu820L5GYGr2YiZ2z3TEDu3e7YQUyKba/AAZEIUzI/z58+juroa69evx6FDh5JeeEVKaMl6TE9P46mnnsLs7CysVis4jpNatLThH8eI7fAgpSAiKJVK9Pb2AgCKioqW4hzZCcMwGB0dxaZNm6BQKGC3228opQCQ5AopSwT2SpqamojjONHzs6YLm812Q381Jkoit3s0rFYrsSybVYloJycnqba2lliWvaHHlhBFyD6QLNXV1RgbG4PH48H69evx9ttvp2WxMkogFD89PY0333wT+fn5kMvlcLlcKCsrS4F0WUQ6tM/lcpHRaCSFQkFtbW1JlxeYiSmR84kWexwtLS3EcRw988wz192n82RIi2II9Pf3U0lJCWk0GrJarZJGTA8fPkx5eXlUUVHhN/LqRoriRiKtiiHQ09NDhYWFdNddd9Hu3bvTNujH6XRSfX09rVu3jvR6/Q3vR0QizjiGuIyOjuLjjz/G4cOHwXEcKioqUFpairKyMixfHnFBwZhYWFjAV199hZMnT+LYsWOYnZ3Fs88+i5qaGuTn52f/YJoUIqli+DI4OIjjx4/DZrOhr68Per0earUa99xzD4qKipCTk4NVq1Zh48aNQeeeOXMG09PTmJ2dxcDAAMbHx+FyudDf3w+DweD9Kyws9DvvpmKEJ2MUw5eFhQX09/fD4XDg0qVLOHnyJBiGweTkZMgV/bVaLTiOwy233ILNmzdj3bp1uP/++7FlyxbIZNKtw5XNZKRi3ER6br5ONwnJTcW4SUj+H8v5+DKhFsGDAAAAAElFTkSuQmCC"
|
<image>如图,已知BC与⊙O相切于点B,CO的延长线交⊙O于点A,连接AB,⊙O的半径为3,∠C=30°,则AC的长为()
Choices:
(A) 6
(B) 9
(C) 6√{3}
(D) 9√{3}
|
9
| 69,886 | null |
9
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAAB5CAYAAADoBAX5AAAZ1klEQVR4nO1df2wTZ5p+J6HN3tbFXdUVU+FipDjUNLTryvSKhLchxRzmxC6hdTerkyvlDxanzUqYq3cbpGhBWroXUpamErRhqdQgsQsFp2ZV9kg3gThtqoaa2wBxGihwhDo0ZoOKe+YO09jz3B/OOB7/HmfGTmgfKeCZ+X7NPN/3fr/e9/0YAKDvcdegpNgF+B7S4ntC7zJ8T+hdhllJaHynz2GQXl/FEMMI/2zvc0UrXzExKwll4n6XMI/TK387RztWEm3siBA4UKRjI/3xeRO97k0c7939JM9KQpH4g/mCLp/YSKufoyjbi8rpWQHtPGbl64oCM9umLQCIYZjY/0RE3Ps2Ku36F+Lefp6AQdq56gl6tcJJePt5irbKu59IHnOKXQCx4EmM/h8ly3vlIlHbH6mkjYiomloGOcISvoWWCMi/2zHLq24JcRikD48T7fCGCQCd3Un0m8dXCvrP7wqZRLOeUCLu8+P0If0rmRdHr5e80kD11EOdx73CgLOqY8kfs57Qzzs7CatX0xMlpdEb3sv0BUNUoV0iDPgdaaQzmtB04zUARIjOQf/WyZB5TZQ8jjro5SdepZOwkWl9qrhc2jTvFsy6US5RlFDu/ZdojmXv1E2GomJ1ZQud63qFHmdKYmG/S33orCI0b3JAREz2+HcD+TNa5CaCYZjcxjaJgZip+Hc7ZhWhRNnGNlxcIPHLfHcD4bOOUB6JjfDw4cN06pQn7s6sfbVpYdatFH3zzTc0cPYMXRg+T2NjY+R2nySiEvJ6vfT1118njWLVajWVl5cTwzA0Z84cWr58OanVaqqoqCCDwUAKheKu6Dt5zOhBEQC6du0anThxgrq7u8ntdtPY2BgZjc/QI4/Mp/LycnrqKQMxTClZLBbasmULHTz4Hn366SekVN5PRCX05Zdf0pUrl4lBCQX/9xZ5PB66fPky+Xw+6uvrI7VaTdXV1WQymchkMtG8efOK/drTA2YghoeH4XA4oNVqwbIsamtr0dbWhuHh4ZThDxw4gJqaGgBAU1MTqqqqEAqFcsrL6/Vi9+7dsFgsUKlU0Ol0aGpqwqVLlyR7n0JixhA6Pj6OvXv3wmAwQK1Ww+FwxAjkOC5j3JqaGrS3t8eua2trUVdXl1O+iWl7vV7Y7XawLAuj0Yh9+/YhEAiIfJviQVZCsxEBAH6/H5s3b4ZCoYDVasWxY8dE5REMBqFQKAQfPRQKoaqqClu3bhVdnng4nU7U1tZCqVSisbER4+PjouIXA0VroT6fDzabDXPnzoXD4YDf788rHafTCbPZnHQ/EAhAq9Vi//790y0qfD4fGhoaoFQqYbfbk8oqtqLICVkITXxB/prjOASDQTQ2NkKlUmHr1q3TrvUWiwX79u1Lmd+lS5fAsizcbnde5U6E3+8XlD3XfrqQKEgL5T+Uy+UCy7Kw2WzTIpLjuFjlUCqVGdPq7+8Hy7JpB1T5wO/3w2q1QqPRoLOzU7J0pYDkhKaq5T6fDyaTCXq9Hv39/ZKkCUQriMlkyhrf6XRCo9HkLdbTlcntdkOn02Ht2rUzpn+VvYV6PB6wLIvt27eLjptNBFqtVuzevTunNJqbm7Fs2TLJxCQvJcLhMJqamqDRaOD1eiVJezqQtYW2t7dDpVLJIpbC4TCUSqWoVmez2WLzVanhdDqhUqlw5MgRWdLPFbK00HA4jIaGBmi1Wtlq7bFjx2A0GkWNMMPhMEwmE+x2e+zedEaoiXE9Hg/UajUaGxuLNvIVTWi2gt68eRNmsxlGo1HWCXldXR1aW1tFxwsGg6isrEwS1fkQkCqO3++HwWCAxWJBMBjMO+18IWkLHRoaglarhc1mQzgclu1FeHHr8/nyiu/z+bBgwQLRixi5IhQKwWq1orKyMraEWChSJSO0s7MTSqUy6yBFCnR3d8NgMOT0kdKFGRgYAMuy8Hg8UhcvhubmZiiVSvT29sqWRyIkIdTr9UKpVBZsTrZhwwbs3LlTVJxUxB47dgwajSbvlp4u3Xi4XC6oVKqCLfZPm9Dx8XFotdqCtEwgKm5ZlsXIyIgk/d7bb7+NysrKWH8nB7Zv3y57HjymRSg/amxoaJCqPFnhdruh1+slTdNut8NkMiEcDkuabjysVqtsU6Z4JOlpQMR+t8PhICKiN998U7oN2iw4cuQIWSwWIhKWVUy54wGA3njjDVIoFNTQ0JCUXj7pporzzjvvkN/vp23btuVVTjGZ54X29nZotdqCL3lJvS7LIxQKYdmyZWhubpY8bR4+nw9qtRoul0u2PPIitL+/HyqVSpYPyyNV/9jX14fKykrZ8hwfH4dGo8GhQ4dyLpNYfPbZZ1CpVBgaGpp2WqkgmlC+lsWPaAs1x9q0aVPSprXUGB4eBsuyeW0i5Ap+s+DGjRuSpy2aUJPJJKtYygSNRoOBgQHZ8+np6YFarZZ1qtHU1ASLxSJ5uikJTdfiDh06BIPBIOtoMB08Hg+0Wm3B8st3jJCrtAqFQtDpdPjwww/zKV5a5NxCg8Eg1Gq1rCsrmeBwONDU1FTQPLdu3RrTIMyVKDHdT3d3N3Q6naSaDzkT6nA4YLPZJMtYLLRaLTwez7T7a7Hx6+rqUFtbO608M6G2tjavveJ0yInQS5cuQaVSFU2dcWBgABqNpqB58sTzGoSNjY2y5OP3+6FSqSTTpkhpAIKEifFrr71GDQ0NpFQq5Z0Up0FHRwe98MILBc2TN40oKyujv/zlL3T06FHav38/EeW/iJEK8+bNI6vVSs3NzUnP8son1xpUTGXjyspK9PX1FS1/ALh69SrUajW6u7slT1vKb5yVULvdLpu4yQVerxdqtbpo+ceDX1CRQwvDZrNJMsfOSOj4+LhovR2psXXr1oIu/qdC/EDK5XIlaRBKsbDCj1PS7cjkmkdGQltbW3O2EZEDHMdBr9fnrCgtd1l4vPnmmzAYDHlth2UipqamJqWmv5gKk5bQmfAxec33YixkZIPNZsPatWunnU48We+//z6qqqqmlV5aM+ezZ8/SzZs3qaqqSvxISyI4nU5at24dlZaWFq0MPJAw4tyzZw8REW3evHla6cYbGv/sZz+joaEhunr1at7ppSV0//79VFdXl3fCUuDIkSNZpyvJA3suW4C8kGjhXVpaSgcPHqSPP/44635wYmVIh9LSUrJarfTuu+/mXc60IletVsu6PZYNIyMjUKlU0xa3vIa7XPD5fJg/f75ke5z9/f3Q6XR5x09JKL+FVEzs3LkztwHZDLDk83q9kmkQhsNhKBSKvGcWKUVub29vUftOIqKjR4/GVE0yIl4SdtiErspf6ph6JqMniccee4wOHDhA69evT9n/QcSKT2lpKRmNRnK73XmVJSWhPT09VF1dnVeCUmB0dJTOnDlDZrM55cdIde/wywwxFoY6ECEOoAicVN9mmSJVRicnDMPQypUrqampicxmM926dSvpuRisWLGCenp68itMqmYrl95Orti9ezesVmvO4Y/UE8j0Os5B2N9GOjaCyIYORAqmVdHY2DhtDcLp9KNJhF69ehUqlSrvwkiBqqqqnAcZkY56EK1Ay2Dy4Cee0ELCYrFMe0GmrKwsr7XdJJF78eJFqqysTNWS8xMBInH9+nU6c+YMrVmzJuVzALHukMMg7Xyrjaj+V/TrJQwxTOwJEXH0+X9fjIsoZ6mFOHDgAJ0/f55ee+21vNNYvHgxXbx4MXvABCQReuHCBaqoqEgKWChPW0ePHqVVq1ZRWVmZ4D5foRiGoRhvzBd05QTRxlXrJ2/wLlUZ4jBE/9nZQ1S/ip6jkoI6QL733nvpgw8+oPb2dnrvvffySqO8vJwuXLgguJdLo0rZQnU6XV6FkAJOp5N+8YtfJN0XVCj+p/cyfUHPknYRf6BAXFjXbnr1RDW1NDxXcKfHDMOQSqWizs5Ocjgc1NvbKzqNVC00p0aVKIPNZrNsZnZA5oXm8fFxKBSKzIvekan4EThhI8LGjohgPhqBE/VEIFtxramBqOkGy7KiNQgPHDiQl1aggFBuIox//vHTOH3qvzARmkC4gGMJjuPQ3t4u2v7D+RKBVrbgbCQ6qowM7sCzDIHqnUVbdEistIcOHRKtQeh2u/NaqBeIXGZOKX196ybdf//9VHLvHCqV2UMp4kQhwzDkdDpzW0yIE681u8/SDvoN/bh0DjEMQ6WPd5L5HBc9hCdJQhXnqKza2lqqq6ujn/70p3Tnzp2c4tx3331J89mckMgwO+8RjH05hnCksNU7EAigrKxMIG5nkocuKVBXVycQo/EOuRIxPDyc11w0qQ3e+r/b9E8//CExDFHkTpjCd8IU/jY6VUA4QuE7YYpwsdoQCxMJI76WTMW9wwlnDGmeHTt2jFatWkUKhSIWjvs2IshfED8UH59Pc3KViE9/AsL8JorrSfadd96hQCBAW7ZsIaLEU6KEUCgU0rRQovsQDoWjYw+OQzgUieuKOIS/5aZ+3+Emn3FTcQS/Ae7bCUzEx0nzTOhRU5he5A7fn8fd5xLS5jgc/+A4PjrZGy1ThEM4NIGJOxy4lO9SHASDQeh0OrS1tWUMFwgEMHfuXNHpZyYU0YHSxLeTqzCRyNRAKRLBRGhC8BeOTN6PEQ3hh4xEMHEnkvTsm0mPmrFBQyQSVwnikCFt35dfYsG8BZinUkU1BDlh5Um6jkOhRfvIyEiSwVciAoEAlEql6LIlEaq4X4XAjW+ErTIURoTjEPk27mNm+uihZNK4DM+cTqfQxVsicVnSngiHYTRWofUPb+L48U6oVCp0d3XlTGgx4PF48PDDD6fVIOSt/MQiRigvvh5+eAGuffmV4GNyE+EU05ioSJu6x4GLxN2fmExBQHzqZxaLRSiCuMxpTyTEb2xsRG3tv8UI6+zshEr1MI5/cDwrofEtoNAt9dixY1Cr1SmddqQaFOVSvilCJ0lbXL4YX1ycmgRHE0nT/wjEbmLLmbyf2NISnv1PMIgHHngAfv+YkMQc0+7o6IBWuwjf3AjEheXw0cmPMV/1CFyHXeAQFyfFexRrNM1xHFpbW6HX65MWUzweDwwGg+g0k0SuXq8X2GDGCJ2Q56VdLlfemm68Lmsqm1GO49DX1welUgmn0zm9QkqMxApkt9uxdu1awZabJAsLREQsy9K1a9di1wzDEMIgplTa1W1MLiqItVvh4925c4csFgtt376d9Hp9UjiGYWj58uXkdrupvr4+70VyOZA4Tdm1axcRkcBpx+joKD300EOi004iVKfT0aVLl4iICBPR+RtHDJVIyCcmz0mJRCJ09OhRWrduXc5x+Y+xadMmWrp0Kdlstozh9Xo9dXV1kc1mixkbzTQwDEMHDx6k06dPxzQI021jZkPSQTxarZbOnDkTzeieObKc1MOT0tnZSXq9ntRqtaj47733Hp06dYr6+/tzCq/X6+mTTz4hk8lEExMTtGHDBtFllhsKhYL++te/0tNPP00ajYaGhoaopqZGfEKJMri7uzul7JZj4FBXV5fSxVumvAYGBjK6WssU9/PPPwfLsnl58SwUhoeH8eCDD+LRRx9N0iI8u7MaFN2qB61swTk4YasX7igVTQWF96g5MjKSc5xgMAitVpvW7UwuGB4ehkajmdGkrlmzBvfcc09MBUWwgwSAQyR279mWc4K4BVcS41tQV1dXxmF5qpZWW1sriVuAK1euQKPRyO4iJx8MDAxg0aJFsTlobG83xXbgkfrJveA4pOwiq6qqqLe3VxbNBb7/PHz4MK1fvz5rOB579+6la9eu0Z/+9Kdpl0Gj0VBvby+ZTCYiItq2bVvSgXaJ14XC5s2bacWKFbG8vX/YQ21ko463J7/V5OG2RESLym10ZVFCGVPVkra2NlkdRUQiEVG7+Lzr79HRUUnL4ff7odPpBC7L41HoBQeXy4WamhqYzWYcOnRosnUySWI1E4piCiHGo+b4+HjWhexEiCFiJpGq1+tx+vRnMVOIyOAOmChZrMYjcd0rpU6CTqejOXPm0Pnz52URK0eOHMl57vniiy+S1Wql1atX55w+wzA5K4bNmzeP+vv7ye12p5zOFErstra20ooVKygc5kitVud87GVJolpGOubtdrtsgwaWZXPyU9Dc3IyqqirJDH4ztbZAIAC9Xl8Ui/Xbt29j4cKFGBsbE3x3fkAkELn8vsTgDrR0JL9PWkLl8g3U19eXk2pFX18fNBqNrO5bEwkOBAIwGo2wWq0FtRpvbGzE73//e4TDYahUKsFU7uzOKjAJYjfSUR81/eCSNxoy+ljQ6/Xo6emJXUvhHs1ut2d18ebz+aDRaIriyiYYDMJoNMJisRSE1LGxMSxcuBC3b9+Gy+XCM888M/VwUjMjatJBU3/16TcbRDnNkGKAkM6jJp92OByG0WgsmMfPVCcpBoNBmEwm1NTUyH4CYX19Pd566y0AyQfbptOXycRDQd3aeDyerGK8sbEx5XmghUYoFILZbMbq1aszkjqdgwwGBgZio/20bm0iXEpi0+Uqu+Op+Bd2OBxwOBxJ93l0dnaioqIC4+PjBZkupDvnlEcoFMLatWthNptx69atjGHzQU1NTczKzmaz4be//e2008xKqM/nk8xtGe9RMxVGR0ehVqsL4uA4F8R3ARaLBUajMan1TIfU48ePxySR3++HUqkUfON8U87JG2ddXd20pzADAwNplZ5CoRAMBkNW1cZCIBVJPKk/+clPEAgEJGmd8Zohdrs97cLGFIRGy+nKUDD3qk1NTWkLbbPZZF1qlAp1dXXQ6/XTllbvvvsu6urqwHFcDu5VhatESd1EQuiCOEDmOC6tR03ekCcYDM4K04d4UjOVN92z+EUEoEgOkIHo/Cxf1y2825fEeR3v+q2Y/hzywcsvvwydTpfX6H/Xrl0xSdXd3Q2tViuvi/JMtS7fQwRSedQMhULQ6/WxzerZ0DrjYbfbRZMav4gQCoXw6KOPSn4AYEGO+dDr9UmOg6XarC4mGhsbsWDBgpy1Lux2O9544w0ABT7mIxPEHsTDD6jiW3VbWxv0er3sqzCFwNatW6HRaLKSOjw8DL1ej9u3b8cO4vnHP/4heXlkPyqrubkZGzZsiF1nU/Kajfjd736H+fPn4/z58wBSV3B+EcHj8UClUmFwcFCWsogiNL6g2Q6q4cMaDIZYa+aVvAp1cGwh0dramnaA9+mnn2LZsmUz9zA7HtnO3RwZGYFSqYw9t1gsRfVfLzd4Uv/+978L7uv1epw6dQrLli2TXTFN1gNh4z1qNjc3w2g0ynrY+kxAe3s7lEplbBUoqie0LuFAWPm8kch6ZLPRaITL5cInn3wClmXh8/nuajJ58KR+9FF0M/+VV15JPrI52ZRPEq8tsh2q7vP5oFAocO3aNWg0mruy30wLLjpn/8EPfoDly5fjwYfiBoEZ7FOlgCSEAtGtL6VSiT179gCIetR88cUXYTab085b7+bWevPmTcydOxdEhD//+c+Td7OJ2umLYskIBYChoSFUVFSgoaEBVVVV+PnPfz4jNqsLjVAohMceewzswyxOnDgBIIIIdw47VpJQlYRIcm+hognN1qoCgQCqq6tRWloKlmULfkZ3oZDOl/34+DieeOIJ3HfffZPvHkcWdw4tK6vRMjgVz/kSgWijZKSK9hWWTU9VqVTSCy+8QAsXLqSysjK6fv262CxmPDBpJpH4LU6fPk1PPvkkLV26lPr6+kilUlG8CS5Hl+gymclcOaUzvH7POWox/ZGef8lFxEngR0mSapEG+/fvB8uy34kBkdPpBMuyqc3/eV3ajo0pNfaO1EfNA71cUftQYeaRjhaBKOHh8XjAsqyke35yQOwAjRe54XAYTU1N0Gg0WZXHeWuxxLzO7qyO2ntKQKhokYuYR+l4UdJBLz1/nIBkE4SlS5eSx+Mht9tNTz75JJ06dWqaMkUe5GPy8NFHH9GSJUvozJkzdPr0aaEJfewzcJP/dlBX20Za/VxyXl9c6iFaVE6Ppz8XKXdMt0ZwiMBZX41qU/bRmsvlAsuysNlss3qwdP36dVit1gzz6+TvEBncgWdT+O/lvC14lslskCQG4ltowvXgH0zUteplqugGTfl0FIbir9etW0cXL16kH/3oR7R48WLatm0b3bhxI596WBRcv36dtmzZQpWVlTEX4qmNqOI/K0cEIu+HnUTljwpCcRik1zf9hk4+20K/Sm8qKw5ia0C8/I8M7sDG188iMrgDK1e+LqoP8Pl8sNlsmDt3LhwOR1HPKM3Wf/p8PjQ0NOCBBx6A3W5PKmu2+BE48cvJkyti93gze4n6Th55i9wIdw4t9TuiBjPn/iO1OMlhoOH3+7F582YoFApYrdYZNSJ2uVyora2FUqnEq6++mlc3kWSXEvcnlZiNR96ECjxyZDGgyQXj4+PYu3cvDAYD1Go1Ghsbi6I85vV6YbfbwbIsjEYj9u3bJ1JtUxxJUi9+5kVoZHAHfrnz7NR1x0ZRZuOZwHEchoeH4XA4oNVqwbIsamtr0dbWJgvBXq8Xu3fvhsViwYMPPgidToempqb8NSrEMiQxowyQbOqMDA4jOG8Lrd5UQru6/52WUHS1ZHDXSrJHWunErx+XqGefwujoKJ08eZK6urrI7XbT2NgYGY1GeuSRR6i8vJyeeuqpmBfshQsXkkajEcS/evUqjYyMEBHRrVu3yOPx0OXLl8nn81FfXx+p1Wqqrq4mk8lEJpMpZ8vpmYBUPKUkNB06Xi4hy9sgompqGTxBr1R6aeeqJ+jVE5MB6p1R5/0yIhAI0NmzZ+nChQv01VdfCU7xu3z5Mo2OjgrCq9VqKi8vJyKie+65h5YvX05qtZoqKirIYDCQQqEomscTOSCK0O8x8yHzQR7fo9D4ntC7DP8P6EfM52mZV/wAAAAASUVORK5CYII="
|
<image>如图,点A、B、C、D四个点都在⊙O上,∠AOD=80°,AO∥DC,则∠B为()
Choices:
(A) 40°
(B) 45°
(C) 50°
(D) 55°
|
50°
| 69,887 | null |
50°
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAAAUCAYAAACah0+BAAAFQUlEQVR4nO2a324TRxTGf2fWvar6DgWTXMQ8Q4mINxCpUkA8RexQQcJ1ZfWuwk5bUYc+Bd7khpQEKc9QbKNCAs9RxZ7Ti/3jXe846QXeRTWflOzu7MzOt2e+OXPOrEVVlWkoII7zUmABkylptVqZYyFQUBSRvDFK4fOZQ7HI1LgZZ00JNRaft1otWq0WDlkWAJNwyc4LN/W5IJpwLqGFk+ELWq0fM5NtWmiQjFjeYC6zitipAS/G0DGX7GAXNMhXenYzQ4SLg1ASE3HN8kmSXkZVs8tEbOfV1VVIHZP7AjJnbzfNCeD09BQR4datW/PtfKp/EUkmm4tXaPDF9HSnp6esrn5Hq/XTzDoVmBguZzxViA3tENW8hQbkBlo0L/r59u8RC0hVowlmEYmFlV4u4muLChgbTsj/N8J3linv5oI4E4QI/cMOZ9Ud7tUks5yUlzNYVB2TomAOOaNOG6T0pKpoOGzigMlpLbl8y+PNJ5NycZ7OHc11wUReV8TDGINIneHMyGDeyBs12Hs44bjeQGXI9vZeCdxKgmZtMst/mZyXiC73tp8hvs9ybVYPdnYk+AnRfTVmy4deP0xOVJV2Q6iJX5LgUjHZMEBE6H78Fhtx01/XMVJDr10vgVs5aN6RJAwzxmA8w9ODQb6iOvCis63t4IX6rOlAratKYbA60DW/mStv+Gi92S6Gg83bwOobrePm0G7U9WnvTRHUSkdsmYaPtoO/VFW1H7QV0F4/a7fcmqCDHie6xu6ScOwvs1JShKuRK357eIQsX8t50etLPifvzgvh4ooRD/a6nLDGb7/v5O5Vq8vcWKqxCJmpAFYH/H28xsZmuAzWlqphYiXZ98+J7eHz13R37wGW+nK1ALoxoowvuooH+OWfL7nr380FitVqlSIGUzPHmOOQ7u4fNNrbrDgi2M2dZ2FSVeTGc4l4e3iENDdYid63+eg+t5s/s7niZeplrBHsbdHtdsP1t/YgLMzZcrIN8Glhct0pQ17uKxubK5OyqN/z8zPWlm58Yg4OKICNeIVfM2T4jtfA9RtL+aqkds/LymEKxvvzD5x0nyRxm/+L5eTZbk46ky8Iw4BjvZME4f2gzfI1l2eLRFHA9oMM30UzZtKXiMAw4MnzEzbWN+bPQUBToUT6k3F4Mk4KchZZkO2P46P9JIHrdRrcv2kIBvmZFipneIg8ekX30ffYixH2YsTZ2Ue8XPX5QZN/EwRHxznBK7D9+D7Ut9jdnJkqzxW6skwd+HD2HsQLvW0srGFAJ8rEFsKxDQL2ZSsKG2Bzp8ltgeOjg3zddqOuIjLJHuxYf1j/Wr8JbRVmW3NOSJNsL9WP1YHWpzOaQU8Bxd+aL6E0txnlvU5DAW0H/aSsH7Qz3MrN44tBr9PQRrs3KYjGqB301dpRpm5u68PakY7/uVBHtj8XuLYVBgedUFSOv87BwNmmDMQpPumJuWBo+BOHEDsIZmyZ5T9XqUVHFioejMbhUiAGUzEwHmEtSKUSfjKN6iogxkM8yTwjfLAgX3mT8OWyew4emf5ntlf0IuQqGd4extPUczxMZUECqTljcNDh5r3wC1P6Bwr4W+irfWebS8RWQbDoSCERhKIjkIpE54pUTHh+MQ7bSPocdDRCiQf5snsZEtnnjcbgXfHsRISRAOPrWKg6/S5fUDSu+ExvEBOKCgC1kPZeaqOEYpzKzsIBjpNV8Uw48FfdS0MtKl5UT7Ke9Ir2UsmKSbz0K+qCRO2fJyruYplkV56HXIxR9WAsSLqFa1lSQHX2Dx8uu5d7kKPWf27/BZ8b/gXQHOxnM3oZBwAAAABJRU5ErkJggg=="
|
<image>如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()
Choices:
(A) 6cm
(B) 7cm
(C) 10cm
(D) 11cm
|
10cm
| 69,888 | null |
10cm
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAABpCAYAAAB1RMKHAAANiElEQVR4nO2dT0wbdxbHvwMmsZRDvFJtuexKWFUPg5Kqk5u5EVWmZi84J9wTJgqCniAm2iVSpbQn0EqJw14oMorNye4Joj3YsXdFoj04Nzu7UHMDDhtceyXoYWVSHL89+A82/oON7Rkbv480CjPz828e5DvP7/d+b+YnEBGBYTqYHqUNYJhGYRF3PAkE5wUIQpltPoiE0ubJAIu449HC9DSOgN2OQJxAlN22ncBgP7RKmycDLOIrQRwHMEPSAsAOgsEEcGsIgQGd0obJAov4KrATQtQsQQsgEXyBg34tgFswmbrBD7OIrwSJ91E8G9FBEAToRoAuccB5WMQdTwIRP7LxcBwB+yD6u8MB52ERdzqJCPz5eFiLfvMAuswRs4g7nUTED2TjYQC4ZTJBiwSCa92RXgNYxB1OJpQwS9qiY8F5HfwDUlek1wBAqGnaeSeIoM6ELhnsdgY7axBuT1U4aUcg/rRr/r9qEPEO1oQXGOiiPwrTWVwYTuysvUC0C0e8TOdQVcSJ4DxCQ/cx+EwucximfiqLOBHESyzgge49ovbuS9swnUMFEScQfAmM5YLgLikkYTqTsiJOBJcwMjUCnSBA0I2AowmmnSkVcTaMKCzps3fbZDzTURSLOBHE/FJBGIFMcQnT3vzyyy9Km6AslGXbCQJAgJ0CcSKiOAXsuWMgOLepEpIknbXjjbc6N0mSKmqrFnBxkxo6QVO6YcrgcDhoYWEhv+/z+chqtZJer6eZmRmKRqPkcrnIZrMpaGVjVNbPOUea35xU6FJZxG1ONBqlzz//nBYXF8lgMJDZbCaPx0PJZLKondFopFAopJCVjVFdP3EK2HPRQYZM1HAmZBZxG+PxeMhisZBKpaKpqSna29ur2DYcDjf8tawU1fWzTU57gOJFx7IeOhvichVbm7G/v4/Hjx/j008/xcuXLzExMYFHjx7hs88+g8FgqPg5SZJgNBrx448/ymesHOyEMFUyT6FF/yCA6PtMuWnr7yTmIpLJJLlcLhoeHiaDwUCLi4t0eHiYPx8KhchoNF7Yz+HhIYmiSEdHRy20tvlU08+2E1QupxAP2AlZD80iVpBoNEozMzOk1+vJZrPR1tZWxbZ6vb5I2JVwOBw0NzfXRCtbT2X9bJPz3CAuf8Z5Fk6wiGXm6OiIVlZWSBRFEkWRVlZWavKcNpuNXC5XTdeQJInC4XBDdspJRf3EA2Qv74bJjjMPzSKWiVAoRDabrSg1Vg8+n4/MZnNNbbe2tmh4ePgyZipCJf3EA3ayB+Lnj2YGdQWDPRZxCzk8PMynxoxGI7lcrpLUWK0kk0nSaDQ1f95isdD8/HxRjrldKa+fbXKiOLWW88A4l61gEbeAwgmJhYWFqqmxerBareTxeKq22dvbo4WFBdLpdHTjxg168+ZNU67dSkr0s+2sOLtXLrrgFFuTKEyNLS8vY2xsDIeHh1hcXKyaGquHr7/+Gq9evSp7zuv1YnR0FHfv3sXNmzfx7t07fPfdd/D5fE25tqzcenBWgHZue3CrTPuW3EldhMfjIbPZXDY11myOjo5Io9Hk93NeV6/Xk9VqJZ/PV9Q+mUySKIpN+yZoFY3qh0V8CXKpMY1GU1Y8rWRvb6+uG2djY4MsFots9l0GFrFM5CYkjEZjXamxZtsgimLdN47ZbJb1RqsXFnGLyaXGNBoN2Wy2jiyyCYfDZDQaL50ZaTWN6qe2l6dcgCAIaEI3bUMsFsPm5iaWl5eh0WgwPT0Nq9UKtVqttGmX5uHDhxgYGMDc3JzSppTQqH5YxAX4/X6sr6/j9evXsFgsmJ2dhSiKSpvVFE5OTjA4OIhQKAS9Xq+0OUWwiBtkf38fXq8Xq6urEEURExMTsFqtSpvVEtxuN968eQOXy6W0KUWwiC+J1+vF+vo6dnd3YbVaMT093bR8bjtz584duFwuSJKktCl5WMR1sLu7i/X1dbjdbgwPD2NiYgJms1lps2QlEolgcnIS4XBYaVPyNKqfKz9jd3JyArfbjaGhIdy7dw83b95EOByGx+PpOgEDV7N4/sp64kgkgtXVVWxubsJsNmN6ehpGo1Fps9qCWCyGu3fvIhQKQaPRKG0OhxOFHB8fw+v1Ynl5GWq1Op8aa4f/qHbj+fPnODg4gMPhUNqUxvXTUJY5S5O6uTQ+n6+hWt1uJJlMktFobIvi+Ub107GeOBaLwe1251Nj4+PjHT8hITd+vx/Ly8uKV7p13cDO6/Xim2++wZ07d/Drr79ia2sLPp8PNpuNBVwnZrMZarUam5ubSpvSEB3hiff397G6uppPjY2NjV3ZCQm5icViGBoaQjQaVcwJXNmB3cnJCbxeL3766Sfs7u5ienoaNput7aZMrwLff/990b9yc+VEvLu7i+Xl5XxqbHx8vCvzuXKidF3FlRBxLjW2vr6O4+NjzM7OcmpMZjY3N7G+vo6NjQ3Zr93RA7u3b99icnISg4ODePfuHRwOB6LRKGZmZljAMmOxWHBycgK/36+0KfVTmnWr9DrNyk+blu2mAoeHh+RwOEgUxYYfY2eai1LF8/XopxxlPLEWpqdxBOz27MrtuW0bTjgxVO5p0xrw+/351NjBwQE2NjYQCoU4NdZGdGxdRXltF79OczsQoDjFKeA8/4rN6ndS7mncwvfqMu3N0dERiaLY0qe2z1NRhjXSUyzo33BKH3D68z8R/eMgfkcAEkG8OOiHFlqYHphqWgrs/DsQchMSnNttfzQaDWZnZ/HDDz8obUrtlOr6lN7/fY76+s7i4NL3YZXeSYVveJT7MXam+cj5UsKyMqyDMjHxf/GvIPC3/2Ri4XjAjsEaFna+d+8evvzyy66u1b1KuFwuTE5OKm1GTahKjiTeIYAR/EmbRopOofn9V/jDJykQVAD9hhQIAq5DJQBACin6iBs64N8//wyVIGQ7yRzPZP56oRJUEPIXqHaukErtyh3P2EoQ0COoQHSaPd+HPiFd0L4PfULHlYsogiRJkCQJbrcbNptNaXOqUjLZkQjasdTzCH/5qh+9SCFFQG9eQGmkCFAJPdmf0+gVVOgRBJymP0AQrqEXaaQolf0ZIPqAVF481c4VUtiO8JF+A+E6VEK1z+fEnRN2uf3C34W5CLnqKpo82ZFA5BUw8sUn2X1VVpTpzC6lzz5CaRA+IkUfcEMHEAiZ6CYNQk++Y0HohYB0xhNWO1cIpUFQoTfTCr1C1vNf+PmMJxYq7qeRrvMP1M3o9XrMzs7i8ePHSptSlTMR76xBEHQY+asDli/+jH8kMoeFrBf7CMJHAL1FbqwPfcJ1/C8O9OWE1jTKiJuRnZmZGbx9+xaRSERpUyqSDyfOvprTJV+7VBILA8jGocB19PUIIPoIoh4IQu74tUyMTCmcoqcgnKh0rpBMKID89dI19J1CitL5UOPifaZWWl0838RwQgBwilNKZ71v4UVUENB7zgv3QIVeEDLhxCmlM12gByqhF0A254xcDH3RuTRS9AEpAgBVvu9T+lBD37nBGyFNKdCF+0w9tHvxfI1VbGl8JAG9Qvl4oV0eFGVax/7+PkZHRxEOh5s+yJOlio0oDVQQMNMdGAwGjI+PY2lpSWlTSqjqiTNxMiDkYtBKnbAn7gpaVTzfUk8sCNezWQf2wgygVqvhcDjw7bffKm1KETx9xdSFxWLB8fExXr9+rbQpedri8SSms2j2Swk7+vEkpjORJAnDw8N4/vy50qYAYE/MXJLj42MMDQ1ha2ur4UEee2JGEdqpeJ49MdMQzXjzPHtiRlFWVlYUT7mxiJmGMBqNEEURbrdbMRs4nGAaptHieQ4nGMVRuniePTHTFE5OTjA0NASPx1P3ApbsiZm2QK1W48mTJ4p4YxYx0zQsFgsAyF48z+EE01QuUzzP4QTTVhgMBlgsFlnrKtgTM02n3uJ59sRM26FWq7G4uIiHDx/Kcj0WMdMSrFYrYrGYLMXzHE4wLaPW4nkOJ5i2Ra7iefbETEuJxWIYHR2Fz+erOMhjT8y0NXq9HtPT0y0tnmdPzMhCteJ59sRMR9DK4nkWMSMLRqMRBoMBXq+36X1zOMHIRqXieQ4nmI6hVYO8MiJOIDgvQBCKt7Wdpl6X6VLm5ubg9/uxu7tbU/tEcP5Mh/NBJLCDtXNirLIsLuDczi6Ju+3E1O15BBPN+DWYbqbm4vlEEPOCAN3B/bOlmReAJeE2ogO6oqYVwok4Dp4VrOOsG4C9cfsZBkAtxfM7WNON4JlzG/SgYDFxrQn3nShdV7HsEo3bToJzO7sTp4AdBfulVOqGYSoRjUZJkiRKJpMl+okH7AQ4qZzi4gEnnV/gtnQxRgCJ91FgagrCFADYEYgTqJZFnRmmRkRRhNlsLlNXsYOXI89gD8Rxq8zntKYHMJ07VnZgF/EjI1wixAPAiI7jYab5PHnyBKurq8UHE+8RRZmQoQpllsWNwA8zFrJ9aE334cRt+CMLMJnKd6zRaCDw2+SZS3Lt2rWGPl8i4kTED5gXkJdrDXfG0dFRQ0Yw3U1R4by2H4MAou8TwK1zmksEEYybYDoXZ5Qui+sHzFLuw9lRIgoyFQzTZIaHhwv2bmEsYMezEV3x3MTOGoQlQCqjw7Np5501CLenSlvYA4g/NYHHdYysnNfj+XRbAf8HHLkp4ZGjMz8AAAAASUVORK5CYII="
|
<image>如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()
Choices:
(A) 3
(B) 4
(C) 5
(D) 7
|
7
| 69,889 | null |
7
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAACPCAYAAAAyaNMeAAANIklEQVR4nO2dP2waWR7Hv86ddHSmZKtMYSfjKFKgA1yEdMTb0OyG4k52GjCVoVitLa2UtXQSXu1K4MqJG8g1ONnCpLCHDjeboRtHspY5G8l2cQedcQXF7r0rbGz+Dv9m5r2B95FQMgPM+5n3m9/v+/7MezOEEALO1PKAtgEcunAHmHK4A0w53AGYpoTtxRnMzLS+wpJ+JXAHYJo5rP12hqQXCB0SEEJADkPYXVrEdkmfErgDMM8Zfv8cQuDl7eH8E3h1vPoMbwYyjhTGTDYA8u4lblLCPKJPD2+Px4dHAMYpnZ4Au0u3+X8ZeE90q3yAOwDjlHDwEUie3eT/syQQndcv/wPcAdimdICP+BZfz90czq39gBA+4+OBfh7AHYBhSgcfgW+/xtzdiVOcAHj6aE7jW8PBHYBZbsL/t43bHxLC81F8RlOLQAd4K4BFpDBmlnY7z3uTOPttDfrd/9wBph6eAhhGVVXDy+AOwCCVSgWvX7+Gy+VCtVo1tCzuAIzx9u1bvHjxAtVqFX6/H3a73dDyuAMwgqqq8Hg8+PLlC2RZBgAsLy8bXzDhUKVWq5H19XUiiiKRZZkQQki5XCaCIJBarWZ4+TwCUCSXy2FhYQGzs7MoFotwu90AgL29PQQCAdhsNsNt+KvhJXA6aIg8AJBlGQ6Ho+X9Dx8+IJFImGOM4TGG00I8HieiKBJJkrq+XywWiSiKptnDU4BJFAoFuFwuXF9fQ5Zl+P3+rp97//69OeKvgWmuNqVcXV2RaDRK3G43URSl7+cdDgcpl8vGG3YLjwAGsre3B4/Hg4cPH0KWZTidTs3P53I5OJ3ODk1gJFwEGoCqqojFYrDb7cjn8wNX6IcPH/Dq1SuDrWvDtFgzBdRqNRKPx4nT6ewp8rS+a7fbTWn7N8NTgE4cHR3B4/H0FXm9MLPt34Kp7jaBXF1dkZWVFeLz+UixWBz5Oj6fj+Tzef0MGxAeAcYgnU7D5XLh+fPnyOfzEEVxpOtcXFzg4uICPp9PXwMHgIvAEVBVFa9fv4YoilAUZewRu729PQSDQX2MGxbTY46F6TZwoweiKI6VPsaBp4AByeVycLlcHQM341IoFGC320dOH+PCU0AfKpUKIpEI6vU6JEmCIAi6Xt/0rt92qMQdi5BIJIgoimR/f9+Q69dqNeJwOMjV1ZUh1x8EngK6UCgU4PF4cHl5CVmWEQgEDCknl8vB7XYbPu1LC54CmqhWq9jc3EShUEAikdAtz/eCevgHnxN4RzabbRm4MbryK5UKjo+Ph+4x1JupjwAXFxeIRCKw2WxDDdyMC7Wu33aoqQ8G6Dc7x0jcbreufQmjMpUpoFAoYGFhAdfX11AUxfQwrKoqqtWq4WlmEKYqBVSrVcRiMaiqiv39fWqdLyyIvztohyCzSKVSRBAEkkqlaJti+rQvLSY+AqiqikgkAkEQdBm4GRca0760mFgHqNfr2NzcRC6XQyKRoDLU2g0q0740mEgRmMvl4PF4MDs7C1mWman8er2ObDZLb+i3CxMVASqVCmKxGKrVKjKZDDWR1wtm2v7N0BYhetEYuMlkMrRN6QmtaV9aWD4FHB8ftwzcsBRem6E57UsLy6aAarWKn376CblcDjs7O0x0qmhBddqXBpaMAM0iT1EU5isfYKzzpwlLRYDmx6rNHLgZF9rTvrSwTATY2tqCx+PB2toaJEmyTOUD7N79gAUcoHngplgsUh8/HxYW2/7NMJsCqtUqNjY2cHx8THXgZlxYmPalBZMRIJ1Ow+Px4NmzZ5Bl2bKVD7Ad/gHGIkDjsWqHw2EpkdeLxrSvTCZD25SeMOEA9XodW1tb+PTpE+LxuOXyfC+Y7Pptg3oKaLTpAYz0WDXLsDby1w1qEaBSqWBjYwOVSoXJgZtxYWnalxZUIkBjPdznz59DkqSJq3yAffHXwNQI0His2ul0QpZlZptGepBOp6EoCm0z+mKKAzRm52SzWaRSKebD4riwNu1LC8NTQK/1cCcZK4i/BoZtGdM8cJNKpSxxN+hBvV7HV199hXK5zHTzr4EhEWBrawsvXryw5MDNuFih7d+Mrg4w6Hq4k4xV1P8dQ00gO0yS5Fnn6WHXw51Uzs/PiSAItM0YiiEigITw0seOs8Ouh2stSthenLnduLn5FYbU5dOsTvvSZFBPOQx5idcbIoe3x+fn58Tv95NgMMjMY07GcEaSXm9L5DsMgQD3v0UDmqt9jcpAEaC0vYhs4Ac8/Xx/TlVVqKqKx48fT3SHDnCG35s2cAaAl+/OkPTuYil8HwdYnvalRX8HKG3jZ7zHu/lTnHifYP72tN/vR7FYBAAsLCxgb2/PQDMpImWx+/RR23atc3j0FMDJKRr7eFtO/N3SxwFK2P4Z+G7t9s9v+yFsNht+/PFHyLKMT58+wePxoFAoGGYsDaTsLkJddmuef+KlYI0BNOeD2h9/3r0IIeQs6SUA7l+h9qzXiizLxO12T5AuOCShLrmekFsd0PR7XF1dEVEULfd3d4jARuWTsyQJtSof4u3WBuxCJpMhgiCQN2/emL7+va6cJYm3m9OfJYkXIO1vpVIpsrKyYo5tOtE9BZS2sbjcFPoBlE5PBo4qwWBwIvRB6eAj8GS+/Sy2l6P47E3iu7bMsLKyAlVVrZUG2z3iU8R2G/K95Jd//0lqf5ySX57fnHvwNxt5EJHuowQhLSmjmcb5i//8lwSDwZZFkdpTTS96fU7rfLtN/crozSEJobX517jz4U2SXrFQURTidrstE/l6p4ABjgf5f+O4oQ9e/f0fLXmyVwUNc+3Gv+0VP7ITHIZatU/Tq48MIoQQEo1GSSKRGK5MSgzlAFp34iCVRAgh/8rsteiDQRxgFPu07DGaWq1GBEGwhCDs2w9g+8sD1P/8n+b7jdcgfPPNNy364Ndffx3oe1bCZrMhHo8jFovRNqUvd7WmVcmDMMz3m/sPDg4O+vYfjGsbDYLBICqVCo6Ojmibok0jFPQTZVohWUsEDvKelj4Y9Nr9NIDZaYCQm32AnU4n04Jw4MEgM37Aiek/aGJ9fZ3E43HaZvRkIAcw8+6p1WrkzZs3RBAEptf7GRTWBaGmAwzaXjeCcrnc0X9gVfb390kgEKBtRleYXyVsUsYXAoGAYVvPjAPzDtDA6vrg/PyciKLInO3UHw4dFKuPLwiCgFevXmFra4u2Ka3Q9sBRsKo+qNVqRBRFcn5+TtuUOyzpAA0a+iAQCDD1o2ohSRLx+/20zbjDMimgG263G7IsY3l5GS9fvsTGxgaq1SptszTx+/2w2WzIZrO0TbmBtgfqRa1Wu9sDaGdnh7Y5mpTLZSIIAhOC0NIRoBmbzYb19XXk83l8+fIFLpeL2X54h8OBcDiMzc1N2qZMTgRoR1EU4vP5mNUHtVqNiSepJtYBGuzv7xNRFMn6+jrVPXq7kc/nic/no2rDxKSAXgQCASiKgtnZWXg8Hrx9+5a2SXf4fD44HA66fRpU3c9kyuUyWV1dJU6nk5mNG2gLQsMWiGCZ4+NjxGIx2O12JBIJCIJA1Z5kMonLy0skEgnzC6fidozAkj5wOp1UBOHEawAtWNIHOzs7iEQippc71Q4AsNN/4Ha7IYoi0um0uQWbHnMYh2b/QblcJk6n09R5D9wBekBLH+zs7JDV1VXTypv6FNALWvpgdXUVhUIBx8fHppTHI8AAmN1/oCgKcTqdhpdDyJT2A4yKmf0HkUgEz549w+rqqmFlAOARYBTM0AdmLTjBNcAImKEP7HY7vv/+e2xsbOh+7RYMda8poFkfSJKk+/WNnvfIHUAnFEUhfr+f+P1+XdcKNHrBCe4AOiNJEhFFkUSjUd30gZELTnAHMIhEIkEEQdCl4ox8vpCLQIOIRqNQFAWXl5dYWFhALpcb+VqGLjihu0txOigWi7roA5/Pp3tHFHcAExlXHxix4ARPASbSWF/54cOHcLlcSCaTQ31fFEX4/f6hv6eJbq7EGYrGJhuiKA7Vf6C3IOQOQJlR9IGeC05wB2CEYfWBXgtOcAdgjEH7D/RacIKLQMYYtP9ArwUn+HwAhlFV9a7zJ5FIdGxHU6/X4XK5IEnS6HMTxoofHFPQ0gfjLjjBU4AF0Oo/GHvBiTGdk2My3foPxnm+kGsAi9KuD7LZLK6vrxGPx4e6DncAi5PL5RCLxeDz+XB0dIRMJjPU7q1cA1ichj54/PgxKpXK0EPGPAJMENVqFel0GqurqwNvX88jwARht9sRjUbvKr+0vXi/4fXiNkqQEA63bnvNHWASKW1jcWYG87//AHLT3Q/yHlieWcJJ+zZ4ejVPOKxwSEI9dnk9DHXuesYjwIRR2v4ndhHC4btu+x2HOvbB5CJwopAQnlnCSfIMv63N9f84uAaYLEqnOAHw9NFglQ9wB5h6uANMEnOP8BTAyWmp873SNralztPcASaKl/gu6cXn6DxamvtSGDPLwNedupCLwIlECmNmaff+OHQI0qVVAHAHmHp4CphyuANMOf8HMS+TwszkDoYAAAAASUVORK5CYII="
|
<image>如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()
Choices:
(A) 102°
(B) 110°
(C) 142°
(D) 148°
|
142°
| 69,890 | null |
142°
|
"iVBORw0KGgoAAAANSUhEUgAAAMsAAABYCAYAAABbCQPeAAATrElEQVR4nO2de2wT157Hv8fpEi5ElyKlItWm15A4NMTcbVTaBfVFVWIwV3TjiNCAlKpJBSLEVDdtohVRkWjV/hFdOYEuTm56qZZIjUSQomsHnK0hYRukoAYhlWrjR1tCeV7x1K5ToKRVMr/9wx7Hnozf48c485Gi2DPnzJwZn+/5/c7vnDkDygIadSBA+LeBnMSlu2jJJ8wlOqwm773Q7fEm5YSJZ/xpGk2WpBVRToSrMUhZKZIJ5xWMxcH5L9bUWDF/BBMIF/zZK4Y3fPdhJigNR06qAMhkyf67FM/1CRsXFbIAYi78ACMqywDm29bcOYRG3Rn8eW9HWsuWEijgMwv+/OMVBp0ux7dB5d9OAPZu1GJYtwcfGMqCsgEAESFbIHAi1zfj+8SBAFg7jGAqBsYY2MZGEBzYK6g7WSEW18BXYCtXgDEWVHGKSiow/OPl9BUsVQhrQgBnJn5CCYbwo9P7na8kAx1GsJVGNG7aCAaf7xogEMbCHFRmMH815wB4r5UxXwPiOgEVY+j8qQjEEYgIdGgjVOyPQFFx0HGyQiz203ZsrtADAMj3GxOA4uKVgP9H59JStnRCcGH58jdQVFKBny65AAAMOYB7AMOkwwr6ASuKNb7tXoFQ8AGygMDfXQUEWBmCCzptFSqMJgyZm/2paFUlTI0VKNJkmVgIDtj/CugNZb4N3l+YAbh8+UdUlBT5Uqp8uwnzQjjktbiazVUoLl6Jy5cveTczFyr+PITDzSvxVRfhTwZtUDYW8otcEVbx2e8DHZ0YxgZ8Zv4AAOe3rIwRiopKUKxZHfZIsoO5JsCMm+H3unlL4rKipWsYep0+OD1jyILLDkbMAjDg1GUGg5ZBBeavCIfe68J/nD7sdV2Nm7GKhA3HPGhIAHDkRGdzFxpNe711h2NBrmdVcxcM2uDWQva1xmofQslyjf+79/I4GJuqgI270Vy5KkzuLKkYIhaA4ABoBQCguHgFLl39CdYOI7iKPSgDw6nTduh1+lnf3Y/sq0RUqNyXMMyAIk2Jd0NgHy1E3Eted4aEX13obO7CBv2W2Y0uK5gqB13YAzrVjfCXKK/LjwXXwCkU6Q0AAG3JCgx3tmCIdGiu1ILgwn91Ef5UGeyCgfPe4KzoqgQQ0vWmgH+CKGLA7qADyRJ+MI3NGYwEmayOdBcvZYiNHwQO0lqdROS0UIXRRMQRWdobIwzczqSg1KlHOGbCjzGJDsY6LaJ1iBHJN6BORGCMAKh8n5nI/qzopUYBh0BLSTTjjXxFvHxBPmRJv14E4bVZO4yoau6CyepAs8/KOk6044/my6DTXXPyy04sgQIgIoCxrP1xY0akpnsH5AQimtNPyX5CNZzOgXasNvw7eDdNGEYORHZiCSKgcpw7dw5DQ6eQzf2QaGA0O9bEGAMH8m9jYX9p7xiE3AnnTXjvgfc6V6xYgXfeece3AyAE5AthXuVds3wXNDk5ie3bt+PRo8e+HfL/0WPFPxgbGNQh8guE+SI8v/76qyBn8Oi29+Osays3wrndjIB//OMGPv74Y2g0moAdgfm4kH6ozCxLsH/NU/duPfIWLYbZbE59kTIO8XsEAIODg+ju7sbJkyej65twBKjk4+QKXXTvZw537tyD1WrFsWPHcPbsWRQXF8PpdGJBbi5YmPslRGaWZW5xbTYbRv77a7S1taWhPJmFt90L/ZPq9XqMj4/j2rUr0R1QRkIRcvfuXXz++ed4/fU3UFBQALvdjueffx5FRUVwOp3Izc31NRYiljUUEkTlUsLcZzGIPB4PPfPMMzQyMpKGEsmTTz/9lFpaWohI/J7Kmdu3b1N3dzetX7+eAJDBYKCenh7yeDzk8XiosLCQRkdH4z6+zNywYOrr67F4cWj3i+ZV6Dg67ty5g9WrV+PmzZvIzc0N2ifH+3Xz5k2cOHECx44dw+joKCorK1FVVQWDwYDf//73/uupr6/Hk08+iYMHD8Z/MolEnXJsNhup1Wp68OBBuosiO2pra+nIkSPpLkbc3Lhxg8xmM61bt45ycnKourqaent7aXJyUjS9zWYjjUZDU1NTCZ1XlmLhTarifsXH2NgYabVaIkqvKzZnVD1MWUIJJFJjKeZ+xXvNshRLXV0dGY3GdBdD1qxZs4ZGR0czut8SSiA///xz1Meoq6ujpqYmScojO7Eo7pc09Pb2Uk1NTdC2VAgn3Dk4jqOrV6/SoUOHqLy8nHJycmjr1q1RWRAxpHK/eGQlFsX9ko7Hjx9TQUEB3bhxI63l4AVy8OBBKi8vp4ULF1JNTQ319fUlVMkD3S+pGgFZRcMiRb94SIZRnXTQ2tqKJ554Ap988knQ9lTcv2vXrsFqtaKnpwdutxsGg8EfxcrNzU24DJJEv4RIIrkUoLhf0hDYyl6/fp0KCwtpeno6rvyxMjExQSaTicrLyyk3N1cSCyKG1O4XjyzEMjk5qbhfSYLvNEsNL6qJiQlqa2ujsrIyysvLo9ra2qQIhEeKwcdQZLQbRj5TXF9fj7y8PBw+fDjdRco6RkZG0Nraim+++SZsOorBLbp8+TL6+/vx5Zdf4tq1azAYDP6/nJzkPh5QX1+PpUuXoqMjCevFSS4/iVHcr+TBt/5lZWV04cKFhI7BWxCtVuu3IP39/SFdPD6fmFsXr6uXLPeLJ2PFwnGcaPQrk8cF5Ep3dzfV1tbGnM/tdtOBAweiFkg0xPv78nXl3LlzcZ87EhnthkUb/VJIjIcPH0Kj0cDhcCA/Pz9s2u+//x59fX04fvw4bt26haqqKlRWVuLNN9+ESqWKOYJFEj0OnlT3iydpMkwQxf1KLS0tLdTW1ia6j7cgpaWltGTJEqqrqyOLxUJEmWHpeffr8ePHST1P2sUSauq9Ev2Shmgr88TERFAY2eVyhRRIPMeXooxiJDP6JSQj3bC6ujrk5eUp7pcPSmSAzv9IpPCJQOFqMITXXnsN+fn5cI47cPf+PRiqtsJQ+SYMBkO8RU86dXV1WLp0qbSDjyF4IulniICwIgwODuLs2bMYHx9PY6kyi4RG0/1Zxdf8dTqd6O3tRX9/P+7evYvFixfj6NGj2LRpU/znTBJideXcuXNwOBwpOX/aHysOvPjJyUk0NDSgp6cHeXl5aSxVduN0OtHa2grNyhK8/vrruH//PsxmMyYnJ7F48WIUFhamu4iiMDa7ZnNgXVmwYEFqzp9JbpgS/YqO2N0yDt999z84fvw4+vv74fF4UFlZiW3bts2xIJ999hncThe6//a5tIWWmKTM/YpE0ntFUaJEv2InUsf44sWL1NTURGq1mgoKCmjnzp1kt58OSDF3qVaPx0MFBQX0v57/k7awcSJ2jSdPnkzq4GMoMkIsoaJfmRCWlAv8vRIKZPfu3TFHFRsaGshkMiWjmAmTyuiXkIwQS319vfLkYwTCNRyRBTJrQRp14oup8280JiJyOByk0WiScRkJI/bkY7ipM1KSdrEo7ld8jI2NxW1B+Dc78zisJtqwN9iSVFRUkN1ul7TMiZLsuV+RSJlYlHW/EmdsbIyMRiMVFhZSYWEhGY3GmO8dR+O0QWf0fXaSyfR34shNJtPfg9L19/eTXq+XrOxRly+EdUjF3K9IpNWyRFp4Qk59lmSVVUwgY2NjcR/PYe3wv5PE0t4Y8l0209PTtHz5cpqYmIj7XFIi5cIT8ZI2scx39yucuM6fPx8kkMbGxiCBxCtMjuMELzMKdseEtLW1pb2CEqXf/eJJi1iUuV9zOXv2LO3evZsKCgritiDRiKhRBxrwCcSoq/C/+UuYkyOiu/fvUUFBQVoaNP5a0hn9EpIWscyHdb+iqbgjIyN+gajVampqaqKLFy8mr1BOC2HjbNSrvb09aPdsiWejZ3V1ddTd3Z28MkUgXPQr1aRcLPPd/RoZGaGGhobUCSSg4lvaG2bfoRhQ38I1XBcuXPCvXpkKAoWQqqn30ZJSscxX9+vMmTNBFuT999+PWiCRFqWL7hjeaffCkDERkVEnfAnp3FH9devW0fDwcFTnkopMcr94gsTyy9Qj/18yiNb9klMULBR2u5127txJ+fn5pNFoUmBBQuOwmghMZCASIMaYaCc/cEtvby9VV1enrsCUGdEvIXMsS7KEMh/cL7vdTrt27fILZN++feR0OtNdrISZmZmhwsJCunr1akrOlynRLyEpEUs61/2S2koJj3fq1Cm/BSkpKaF9+/aRwyE+diFn9u/fT/v27Uv6eTLR/eKZM0X/8a+/4He5i/yfeX6Xu2jO98A0/PfA45BvKnljgzFo3S+x44gRKl247YHl5D8Lz0GJPHkIwGq1YnBwEBaLBUuXLkV1dTVqa2uh1WqzdunYO3fu4LnnnsO1a9fmvARJSlKy8ES8CNUjtCzhvkfz2WazkXrFH/zuV6Tjx3LswO/C/pbwsxixWB2LxUJ1dXW0ZMkSKi0tpf3794e1INnQ7xJSU1NDR48eTdrxM9X94olJLGL7xIICv0w9Clr369TQ7IS8R48fhj1frNtjFW8sCAVy4MABcrvdcR0rGxgdHaU1a9YQkfSNQSbM/YpExGfwQ7kygfvFYIyhqakJlZWVePXVV4O2ZzIDAwOwWq2wWCx4+umnUVNTg7GxMZSWls5JS1nqcoXi5ZdfxszMDM6fP4+1a9dKeuympiZs27YNL730kqTHlRK/WMIJIhqE+QcHB/H1119LsphAomULx8zMjF8cNpvNL5Dz58/j2WefDZt3PgmFx2g0wmw2SyqWwcFBjI6OZv4iJbyJiTS+Emrfo8cP5+zzeDxU+Id/plNDdtF8ocZzQrl50eSP1GcJTDs9PU39/f1UW1tLeXl5tHr1ampra4vbxeI4Liv7KGJMTU3RU089Rbdv35bkeJkc/RIS9YIVsbTuyVr3iwLcHorRBeItCP+nVqvx9ttvY9u2bSgqKpK0nNlOa2sr8vLy8OGHHyZ8rFSu+5Uw0SgqnMURtqg2m42WL1+e0sHHUK361NRUkAUpKyujtra2sM9ozBcLkQhXrlyJ+SVIROJ1JZOjX0LCiiXW6S9SzP1KtLJOTU1RX18f1dTU0MKFC6m8vDyiQBRiZ8uWLdTX1xdzPrGp93JpoCSdSJmuqfeBAsnNzaXy8nI6dOhQyqZnzEeGh4fplVdeiTt/Js79ioRkYkn13C9eIG+99dYcgcTaUoVKL5cWLx1wHEelpaX+yaHCexVuxZV0rfuVKJKIJVXrfj148MD//vZ4LYgiAOkwm820a9cu0X2RFp6QQ/RLiCTLt7777rtYtGhRUpZdffjwIQYGBmCxWGC1WvHiiy9i+/btMBgMUKvVkp9PIXomJyexatUquN1uLFmyJKo8Ysuuki+ySZk+yJuo2pLhfvEWpLq6mnJycmjdunVkNpvpxo0bQemSYSUUyxNMpAXsGhsbo169Um7RLyEJiSWR6Jfw5ocSyPXr10PmUUg/breb1Gp1xDCyHOZ+RSIhsSQa/fJ4PNTT00MGg4FycnJo7dq1QRZEEYc80Ov1ZLPZwqaRY/RLSFRiEau08bpfgQIBQOvXr6fu7u45LpaCfLDZbFRRURG0TWzhCbm6XzxxWZZYo1+hBHLr1q2I51KsS+YzPT1NarVadG6dnKNfQuKKhkXz0qHJycmguVjr16/Hjh07YDAYsGzZMrFAQ2ZHQhTC0t7ejitXruDw4cNBv2O46JfsiFVdQvcrsOW/d+8eHTlyhPR6fZAFkWqGqkLm4vF4aNmyZeTxePzbMm3dr0SJSSyBC0/wIhEKRK/X05EjR+j+/fuKCzXP2LlzJ5nNZiLKLveLJyY3jHe/PvroIwwMDKC/vx92ux16vR5bt26FwWBAfn5+8sygAJKrOc9SvvvuO+zYsQNutzs973xMMlGLZXBwEFu2bIFarcb169dRXFyMVatWobS0FIsWzT7nwhgDx3FKJZ6HMFLhP3uOYt26f8W3334Lp9OJf1qwAOI1gUMGvCw7JsKKxTnQjkuaD2DQMnzxxRe4efMmxsfHUVxc7BOICt6LVpjfzFb83377DQsWLMCWLVvwwgsvILwo5CUYgVg4EFRgAAgubGRavOfg8G9a39OJ4MBkdHEKqUBeFT4RVMKvvMk8uLcTqo0bUaSd3asIRWEuwjrh9TSMGxkYC/zLQfuAM/XFkxDR2m/tMIJ0b2Dm9IxIAp/bFWCPYogRKGQxRASQt8Z0niY06gCT1QEigsP6F7QYVsPq9NUVTn51xqeFgH6Hy4oh0qG5JAdndCtRFqJ75vPVlIiUwiyMAb73hnNw4YehDdhcWQYA0JYUz6YjgGRYZVT+fz6lv9c5jM5mAwCgYmVxiGw+2PxcO0tBHBbw3z3wFZhxs7+xNTZVQbe3HQYt+dLIr954xUIAVAzWDiPMXZ1eH1O71b9LLIuCQjgmJn7CcGeLv8+iO8jh9OEPAKh81keubhiD3/0i76g+HNa/YOWK4pD6V7opCkDo/urpU12wODgQESztjaharZrtr4D3SOQ17OAVi8sK1nTa734BwKXLEyLJZzv3ivelAMx1wwkAXFZ0YQ8MviGHyg+M2ABgyD4gyC0vL0XVbtSBaauAob/6lW+sYKhq7kZXy1bo9rYHJvf+U4SiEAIGwGofgnHTxtltrh9xBsByTUnayiUF4iP4BH+0SxGGQqzs2cSwqYPzWRY3dKwMw9gAJw0FRFflN5gZ2/MsingUwuA40Y5/qWyZ23XX7QGd7kpHkSRFkqWQFBTmA/KygwoKaUQRi4JClPw//jqfVj9FDEoAAAAASUVORK5CYII="
|
<image>如图,在▱ABCD中,∠ABC的平分线与对角线AC交于点E,与CD交于点M,已知BC=2,DM=3,▱ABCD的面积为28,则△ABE的面积为()
Choices:
(A) \frac{28}{3}
(B) \frac{21}{2}
(C) 10
(D) \frac{14}{3}
|
10
| 69,891 | null |
10
|
"iVBORw0KGgoAAAANSUhEUgAAAGUAAABxCAYAAADMO21CAAAV+0lEQVR4nO1df0xb173/XBKWLqG5ieo8rBen7orTuIP3nitSCTVUQEtW9kYSpqJSbZ7kSGnYRKfQ95yUavSxSvzBmkyhElHcsClEy9NDKhNdy9qEUNWo7JWK6NE9OQ9S7JbWZDghk5zZLFQ19/P+MPfiH9fGBhubJB8JAeeee873nu/5fs/3nPM93yOQJO4oSHBeOoMvHv4p9hZkmpblISfTBKQaxOewfu9nmSZjRbjjmNJ57AykffvwcMHaVQB3FFMudR4F91ZC+CNA3GNKhiGBrn5c4l4cfhh4p9oIwxr+tLVLeRhy8PKbA3j98PcAAPt2rdERfgF3BFMudR7F8ePHIQgCcgzPQBCETJO0Iqx5ptDVjwHuBUmQxET/aew0PJRpslaE9ZkmgOSyezZd/cj5twHwD68raZNffo4cPpxx2lZacfZDik46fWwfARAA+53BtKP7QQjBtP3H3lxdGlMIgczyGT0BCMqvZb27rGozJSXI8jGFpNKocvMQUnieqJdC/k6gTWP1yUwaC1nNlKiGISAgJ6whFWaROHXqlJJAJjZ9jNX4mVQgWae+ItXGrVu38Omnn2Js7Co8nr/AbreDAiAQcLlcmJqaQrBvBSUoNzcXhYWFEEURubm52LNnD3Q6HXbu3Ini4mLk5eVl5sOSQNYxZWpqCh988AEGBgZgt9sxPT2N0tJS7NixAwUFBXj88ceRl5eH6Wt/wdvv/AGDg4Oorq7GK03H8HDBTpw6dQqtra3QarX40Y9+hNnZWbhcLrjdbgwNDUGn06GiogKVlZWorKxEfn5+pj85GpmwLiIxNjZGq9VKg8FArVbLuro62mw2jo2NkZynJC2aX319ffz+M1XU6/U8ceIEvV6v8kySAgu/JXZ1dfEfddtZVVXF4eFhJY/D4WBHRwdra2up0WhoNBrZ3NzMiYmJVfvepZAQU+Zlm1QKT1UzVRPFzMwMbTYbd+/eTZ1OR6vVusCEaPh8PnZ0dNBgMLCsrIw9PT1Lli9JEgOBAG02G7VaLWtqajg6OhqVz+FwsLGxkVqtlqWlpezs7AxjdCaA0F6oNHKsxpZIcj5mYWFlxYDH4+GRI0eYl5dHs9nMvr6+mHknJyfZ0NDA/Px8WiwWOhyOJctXo2dubo7t7e2KFMZifk9PD+vq6iiKIpuamjgzM5NUfakCKIU2ZkiDS3EEYRkS4na7WV9fz82bN9NqtfL69evhRYYwdGBggDU1NdyxYwdbW1tT1jg+n49tbW3UaDQ0m82cnJyMSWtDQwNFUeSRI0c4PT2dkvoTxYL6CjIjtGEie30sKVgqn8/nY1NTEx944AG2tLRENXBob+7s7KTRaGRJSQnPnz+f/NfEoTP0mdfrZUtLC0VRZH19Pd1ut2p+j8fDpqYmajQatrS0cG5ubln1JgtlTJEkiUcPQFm6kH9s/a64hKgRI6f19vYyPz+f9fX1MXu72+2m1WqlVqul2WzmyMjISr8pYXi9XjY1NVEURTY0NERJrwyPx0Oz2Uy9Xs8LFy6kna6ogf7YAdB2KWiJOC+doRCytpQo3G43KysraTKZwiyfUAwNDbGuro5arZbNzc30eDzKs1T2ukQwMzPDxsZGiqJIq9UaswPZ7XYajUZWV1fHzJMK2sOYInGC+3P20SnNk5yn5LxIQRBiMkWt+pGREWq1Wra2tkY9CwQC7OrqoslkoslkYldXFwOBRTM20/B4PMpY0tTUpGqFBQIBNjc3U6/X88qVK2mhI4wpE/2nldVVicFV1/0vnw4+nI838gfR1dVFjUYTJeIej4fNzc2K9TM0NJSyD0gVQjvFV199xRdeeIGiKLKlpYU+ny8qf09PDzUaTULmebIIY0r/GWvYeNLvDPIh1tghIxAIsKGhgQaDIcxsHRkZodlsplarpdVqjTmgZismJydpNpup0WjY1tYWxZyRkRHqdDo2NTWltN4wphzdL48f8+w/Y6UA8OJEfPHwer2sqqpiaWmpIu7nz59nSUkJjUYjOzs741otawFjY2Osra2lVqtle3s75+bmlE7q8XhYXFzM2tpaVYmSYvxNRgjB/qOUOMFjR0+HWF/Oi8T+oyEFTHA/wKNn3g/+L0lRhTocDhoMBtbX1/PGjRtsbW2lTqdjTU0NBwYGVtQQ2YjR0VHW1NRQp9PRZrMp4+Hc3BzNZjMLCwvpdC5tFUnOixEbcfNK2tE3Ly4ypf+Mlcdsl8JeFLBoiUXiwoULFEWRv/jFL2ixWKjVatnQ0BBzQrYWkKixMTw8zKqqKup0OnZ1dSnpbW1tFEWRH374Yew6Fjq72s7o6WP7aLs0sciURdUVfPGAAAL7OKHM8hdn+w6Hg5u3iHx0l5EGg4EdHR2qohuTsCywtGIhGdrsdjvLyspoMBjY3d1NMjg302g00RKzUGz/GSsh7Gewq4cvWfWfsbLfGfT+CBnccwiAwoKOU7O2ZmZmaDA8wv9ofpUbN25clclUurHSTjIwMKCMob29vWxtbWVhYSF9Pl9EEzq5H+C/n7kYg5Dgr/B5yhLEBQIBVlZWsqGhgeSiClNbVIy3/JKNkpIKmvr6+pQ52HPPPceampqwsiXnRUKIPSTICJ/RR9IV8X9jYyMrKyuVAY4M9hJRFBO217ORIalA6HcNDw/zs88+Y0lJCVtaXlvIQEoTl+IwZXH9MeFNrq6uLhoMBtXlhY8++mhJxmS7pMRDvPU9NZw7d45arZajo6PU6R5kb28vSXKen/HAgoUVVhaDUiQzK4opapUNDw9To9HE3Icgg2tZoiiGWSN3E+R2a25uptFoVAb6kZERajQaZVItz01CpWWi/3TYdCSupEiSRLfbTZ1Ol9CAPjo6SlEUefbs2aQ/aq3j66+/5vPPP8+ysjJlEi0z6ve//z31ej1v3ghqmXDjSjaPFy2xJdVXZWUl29raEiZudHSUGo2GJ0+eXNMqKxRLqS+v18uSkhJaLBZ+8803qmW8+uqrrK2tjV1HyN9xmdLd3c3i4uKwgT0RjI2NKUsSdzIkSaLT6aTBYGBLS0vcvHNzczQajQlpnJhM8fv91Ol0y950khmjtoR/p2BoaIharTaxXVIpaKkajUbVtcBQyYvJFKvVyvr6+th1JKCOJicnqdfrl+xFaxHnz5+nVqtNbBsipKnq6uoWO2qoz4q0uDWian1NTExQo9GkxNVGZozVal1xWdmC1tZWGgyGhBYfFxEcyD0eD7c9oKHHcyM6ixRjniJJEi0WS0p7t8fjodFoZGNjY8rKzAQCgQAtFgtLSkoS9rBR0yiNjY1x2wKRL3k8HkVKUmkxyYyJpxKzEaEeMGVlZayrqwvbT0m2HDK8jdWQE+l13tbWhkOHDkEUxZQeB8jPz8dHH32ETz75BAcPHkxZuakGI1yrBUGAy+VCSUkJnnzySXR3d2PDhg0QBCEpz/zQtszPz8ezzz6LkydPqtcfyqGZmRmKohjmWZJKSJJEr9dLk8lEs9mctKmdCciOIKErFanQIE6nkxqNRnXLI4wp7e3ttFgsK65wKXi9XpaWlrK2tjarGdPT00OtVpuWXVRJklhTU6O6LBXGFJPJFHfXLJXw+XwKY7JxD//EiRN88MEHY/ovp0Jaent7WVZWFlUe5ITR0VHq9foVV5QMfD4fKysrWVVVxdu3b69q3WqQPfUPHTrE4uJi3rhxI63LQ4FAgNu2bePk5GRYPTnyIHTu3DlYLJZlDo/LQ15eHvr6+gAAP/zhD+H3+1e1fhlcGLBnZ2dRXV2Nmzdv4k9/+hO2bduW1rOP69atw49//GOcPXs2vB6ZOzqdLu7SfDoxNzfHmpoalpaWJrzXL0l/5GFlpfUJtk+8x8N4gu3LPPvjdrtZVFS06nOp4eFhGo1GkosqDOTiOlUmEQgEWFtby9LSUvr9fpLxnAAn2P4E+ITMgfcOB5nzRDtj8STeqQHZqc5msy2ZP9UIBALMy8sLs3hBkqdPn2ZdXd2qEBEPgUCAdXV1NJlM8Zd4Jtr5BA7zvcWEcCYlgd7eXmq12ow6gFRVVSneMCSZQxJ2ux0VFRVp052JYt26deju7obJZEJ5eTlu3bqlPOOSE7Un8NwPDEnVd+rUKfz85z/HwMAAnnnmmWVQvHKQRHl5OT788EMlLUcQBAwODqKsrCwjRKnh7Nmz2L17N0pKSnD9+vUE3/pv/N9E4nW8+OKL+M1vfoOPP/4YhYWFy6IzVSgvL8fg4OBiwuTkJDUaTaYkNy4aGxtpNBrp8XgidHyMMeXwe6rlhL7r8/lYXV3N6urqpBwI040NGzbw1q1bJEkMDAywrKwsa7drGxsbaTAYVNxh3wuxvsDD78W2vkKdsU0mk+K3Fvos0zCZTMqGIjo6OvjCCy9kmKT4aGlpoV6vX5GfssPhoE6nW3KLOlNMqq2tVXYw17tcLjzyyCMZ0qaJ4Ze//CUA4Mknn0R/fz+MRmNS71+8eBEWiwWnT59GTU1N3LyZCpRjNBoxMbEwKFZVVcU9y55NkM/Cy5PcRHq1zWZbka/BakCSJJ4/f561tbWUJInrPR4Ptm/fHsU5ZjDeVSwcOXIEAFBRUYH3338fJpMpbv6XXnoJly5dwscffwydTrcKFC4PgiBAp9NhZmYGgiBgvd/vx/333w8ACMz9Xcm4/r6NmaIxLo4cOYJNmzahvLwcdrtdlTFff/01zGYzvF4vhoeH10Tkok2bNsHv94Mkcvx+v0K0zIhsZYiMQ4cO4Y033kBFRQU++eSTsGc3b97Enj17sGXLFly4cCGKIcyuoE0KPXl5efD7/UHtlJeXp6w1keQ3t2czpFmTR3d3Nzdu3MgHH3yQJpOJv/vd76jX63n8+HGS2WPuJgK3283t27eTJIUgsxZ7zze3Z5H77U0AotWZmnqT0yKlK54qTFRNxsoXmv6Q4RFcu3YNALBpQy7O/ed/4cAPvh9Gc7ZLPhAMNqfX6+H1eqPDFYY6BESqs8jf8gdHMiw0PZlnoQjNFyt93YZvY+v9wQ60YZ2A7373uzjwg+9H0RdZB7NMhcmQ6cqRdVkoYlldar0uMPf3mA2bChCxpUkQBJw8eRJGoxGP/tO/4Ne//nVYXvX3pKyzKgHA5/Nh8+bNABaYMjs7GzNzvN4sP1fr0alCzOZb6Ozl5eUYGxvD/4yO4h9uX4EgCBAEAZs2bcKBl8+ovJidsUxDDS5FUlba29MmLYxRdgS33nx5P/5530VMcB4kMTv7v8Dr9TEYk32IYorP5wOgrp6A2AOmnB75LDQ9mWdqhkXg68U8JLFOed+vvG97eT+OjBVgdvYt6G/fXiihAK//8Q2883ofJiClVcWmArOzs9i0KTg+rtdqtbh27dqSs+NYiKW24qmzRN9Zf9/GsODP8lgQms95yYafvf4u+p3E+g1QJGj9fRshfOtbAIDc+zZiHWXRkoCF2MbZNLZMTU1h27ZtAIAco9EIp9MZ94WMmpVLtNuZUz/D/mNvBi9Fi8j71eTni8UoDMhR/s8mK8zpdCqbbTkGgwEOh0M1Y7otq2QQGU49mObE1T8A/7r3qcgHAID+d49j/7Hq2LcOZZGkOBwO7Ny5E8CCpChLxhFIt2WVGILMENQa1vU53gHw8Hci9uYFwDXwJo6/C7x4+PCiCqRcnlxm9sDlcmHXrl1B6c3m7eB4kCSJ3ywEn4kMFhAvKE22YsOGDYoHD0iG7VGsJUiSFLxHJTQk1kKIpuqX1w5DQh3ySHI9AJSVlWFwcDDpHb1MQxAE/PRXb+PzA+sgCMeV9H4nF25DDVpa2Q673R7mTZQDBDeNQv2OgOxdH4pGDn71tqTcyUUGGbKwipRh2hJDpN+dQJLj4+OoqKjA9PR0BkmLh7XR4xMBI+ZH8/Pz2LJlC5xOp3JDRQ4Q3LTPzc3F+Ph4ZihdEokxZFG6g9ZVNsp65IT18uXL2LFjR9iVIcrXPvvss+ju7lYeyKoguxA9VwHkxpeiJ4irQdIKQBLd3d147rnnwtKU08GZODSUDqyVvUb5gJJGo4nyZ1NOB5tMJmzdujXcp3UNIpulg6F3iQkC3n33XRQWFkKv14flC1PWFosFXV1dq0Lg3YjI8eTcuXOqx9fD7uS6efMmDAYDrl69mp13Vd1BkM/mf/HFF1EeN2GSotFocPDgQbS3t68mfXcljh8/joaGBlWftKjb66ampmAymeByuSCK4qoReTfh+vXr2LVrF7788kts3rw5Sq1FTQB0Oh327dunGqLiHpaP0L7f1taGgwcPxg61omauySEqMn2L250IOViOfPBUzWEw5uWbR48ehc/ng81mS1vvuZvAheWV559/HkVFRWhublZ9Lv+jCp/PR61Wm9VHCNYaBgYGaDAYlgxNlZbAnvcQRGjDJxPYM+5KX11dHbZu3YoTJ06kTazvZIQO4q2trSgqKgo7Gs5Ya4tLcW1qairhYNH3oI6enh7q9XrOzMwkdBJAlSmRLyYSVv0e1BEZVj0RpOQCgntYRGiHls+cyBcQqOVRQ1JXn6td1XEP6rh9+/bCVR0tSlqiYeZjzlPUMD8/j6qqKuzatQsdHR3LHwHvAvzkJz+B3+9Hb29v8i8n2wOC1z8F7+G6B3XI1z/97W9/W9b7SzJFTcwcDgdFUYyyyNbSGcN0IeZFaUkgaUmRId/HdU9iFiFfKWi321dUzrKZQi5evtnQ0HBXD/5zc3O0WCxhl2+uRGusyJmqsLAQly9fhsvlwtNPPx0WNO1ugXxu3+/3Y3h4GAUFBQBWFuNlxR5uoiiir68PhYWF2L17N65cubLSItcMLl++jMceewx79+7FW2+9lbrIFqkSYXLx1raLF2NcLnkHoaenh/n5+em/+jwZxNKZcmz4O/WGoUAgwObmZur1+qSWTpLBstVXLJ25e/dujIyMwG6347HHHouKnbISMMMem4ODgygqKsKnn36Ky5cvpy/2ZFpYvQA5vGx9fb3qmlm8q2xThWQvzlSDx+Oh2WymXq9fldXytLqy19TUYGJiAlu3bsWjjz6K1157DX/961+V55HSlo7TumplJlrP9evX8corr6CoqAgFBQW4evXq6oTKTRV3l+p9breb9fX1FEWRVqtVJYLq6iJe3W63mw0NDRRFkY2NjWm7TyYW0qq+1ODxePjSSy8xLy+PZrOZ77//fsLvppuJvb29rKuroyiKbGpqSkjlpgOrzhQZMzMztNlsLC4upk6nY1NTE8fHx1edDofDwcbGRmq1WpaWlrKzszMh16p0Mieppftlqscldfj4+Dh++9vf4u2334bf70d5eTnKy8tRVlaGXbt2hb2fSHnxcOXKFdjtduVHo9GgtrYWFotFmY1nGmlnSrKYmprCBx98gIGBAdjtdkxPT6O0tBQ7duxAQUEBHn/8cWXm/NBDD0UdI5icnMSXX34JIBiEZmRkBC6XC263G0NDQ9i+fTueeuopPP3009i7d6/iyL5SZqcSWceUSHi9Xvz5z3/G+Pg4pqenYbfblWculwvXrl0Lm7/odDqlx+fm5mLPnj3Q6XTYuXMniouL10SQz/8Hl5K/FyOqfzEAAAAASUVORK5CYII="
|
<image>如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于()
Choices:
(A) 70°
(B) 110°
(C) 140°
(D) 220°
|
110°
| 69,892 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAALsAAAASCAYAAAADg69MAAAGLElEQVR4nO2azVIbRxDHf7Plgy+pSvIGIIzLkqvyCLaDVthJVZDzFGHXTjng3JWcJTtOAZc8QyKJC2CRmHuOkZYCA34E55JD2N3pHPZDs/py+LTA/Ku2WE3PzvTM/Kd7phulRUQBoAGLfmgEix8qFQAq8d8rHA8iglLqfauRgaBRPWsvQFdLjYiK9TZ5Mowz4wlrNNEBLMZrac4flUrl1DZ5QvTTbPOk6CV6VBYh0vPHSG+BLE/Gj+ij5tXqJboYQhHp++AKlxfvWm+5QFZv0FiszO4UMla86271mSp2hfGAebwaRPsLxPWBR0Ul8RbIntH6UalU2Nra4t69ex+cxd/a2gLg7t27x/p+0Dn9pG2eNqIzubGulkIJvHr1CoA7d+6kZeOMZF6TvyauJS//d9d+aESHkxNy3C6kg6B6WawlY93NM7tSMjY8GHbhH1R+ra/WEHQP/d0z/ru8wRUuBkZFiCoXLAqX6DlwPBJDay29aDeqUm/3l3cRjpBd4aJAx4/5u15zhMieCfa8aOnIN25VRMK++hcFQ2NHgseT8tORLljGMPR0HHSaNZRSKPtRXBJfyL1GVK4UquSk9Y/jwLeTPox2hunh1hrH6OEEEOl66M4qllIsvZlERNAiyE8lLFXAmsgRhaL12Hp0t6RQluqum1LUmp1I2M//yFpXnXmxbVs6mT0cStaaXw7LHnk1T4rQ78m8hhTd6qn0025UBWaiOdWGddQioW5LEaTaaBtfnO/8aulIEQaOt+oUe3QbXzh2dx6jOY/WNTbNGomtmWDReOaiZ210S/fcvi3AMizb5bDsSimS69jLjWZG1tndw51fPJV+Xu+Dbcdzpoz7joLHs7fZLDkszt0CEu9xvvO7+nyFTWZ4sbRAb7g5l5smN5XvKx8XSHxhFjx2WjM8mMsDUJjKpXXS2UyyaMpr0GKG76cUv9vT3BoUrzxTtd8PvOYaTqfNztMlPGM7r+9BuQD9i3z0Rd88eMMNWux2suWN2mO46eKUbJIlOe85FjyWFpaZrz0ijyKbaNSUF5YpF7Ll4wOdHre95hrKfRCPAdzvHlJ0q5QLaZ44jq6EIY9X/uDF468IAihN5wY2fRmxsa8o5wt8MW+x1vSAiACKybiGsfgiHHXRBY+JiRkmb9js70XtawRi4zKpd5icunEaQzkWlLfLJpDL9esw6P9mxsrCp1dPzev9AzaXo7umpRT2c01rKfLMlnlKab74luXlX/j4k0/56LOH4zScs4MAbCMygQLul2ZZb60jInjNNWRquucDfeS4edJW7n6ZXO4Gb/b3AFBsU3yyydLiNGsrkrrec8WI23ZyNDDrdMPN42XhEwPUWl+h3tZorfmt5vD1bYt6O2KypYjH4jVoiY3W//D327f8Wa8yPTHIsl+yLaAAbwdiUhfmFpnefUrTg43WAQ/m8j18OPoiK6Uiz1GIaJKQ6PmjJX7eWIpcr/Nl6nrPFXGXkp+mCBzsvU7HmyaSthtpREPB8cJRZ4V49ymlwGuwwjzlQhSFmVtwmQE2N1aB+LapvAbqyUuWF8tpG3t7BygNgR8QBBoRQcKQwA8Ik8GKjuR+QBCa298o93V2bkbJhtULjHoDvxdCPyDwQ7Qk7wFBID3tDO6tsb6fsar2fYfWehMmc+RRJ6OgREcYkQkAbuYm2X2zT+OZS2i75BWstda5b8/2fKjPNUupyOPWHFaePuRZs5MSurNaQz15ycJcwaxMEoR/71Bd49tYb+HMlrqi+GiWHg+rTjFNHtTbIqJDcUsfyXUQuC4lt2oEH7UEvjbew1imJTgMJNBh+h7G1bTvi+8ntfyhskgedttO62kJfV8C/Y7vdSj+4b/iH8Y66VD8Q198P4xCizrsynpQq9WSbqOn86vQFwY09RuMYfJMcq5TF0Dcaj3uriMzSTgybedo7Z+WXCSMQnUq5XJ/GHJENums9RsmTxKijt0NHWv5S4og8Ll0RIsWESPOHjekQ/FNQgWBHBqEClKux2QynkDH5b5BKpNko2QZ7cPMJsiWj2jb0HvU76TIzBI61XqmK9cu9uQYjgfHxjAmWqRTTwmUyVIahH8v2Uk9OIsei8YaSSzdcDjRU5zP1PsP3X0vccK8ojQAAAAASUVORK5CYII="
|
<image>如图所示,线段AB=10,M为线段AB的中点,C为线段MB的中点,N为线段AM的一点,且MN=1,线段NC的长()
Choices:
(A) 2
(B) 2.5
(C) 3
(D) 3.5
|
3.5
| 69,893 | null |
3.5
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABzCAYAAAC1ig1VAAAYO0lEQVR4nO2df1CTV7rHv2+sYkvclDZ3Sde00RLWUGgbhV3iFJt0jQWv0aWtHdwdnWG37lJ7Z2fZVaxzx1lwpt2ixdHuOFfQzpjewmy6egUrHQPSNh3ZNtzV1Z2hFyxhC8JuQ6EjaXCb1CTP/SPkJb/Jj/cNIHxmmPD+Oud53+c8z3Pec857DkNEhBRDRGAYJul03G43Ojs7MTw8jL6+Ply5cgV2u509bjab4XQ62W2hUIj8/HxWhoyMDDz++OPIycnBAw88ALVanbRMkSAAvju+eLIKxRWHQUTAlip4zu3Ey3s/wMGDFZPPxQNAwJssd/GWMg90dXXBZDLBZDLh8uXLcDgcyM/Px4MPPoisrCyUl5dDLBaz5+fn50MoFLLbNpsN165dY7etVit6enrQ0tICq9UKs9mMjIwMFBQUQKPRQK1Wo6CgICbZIhVk734CAwGovx0CeTG27G2Ax+PxHu9vh4BZhaoTF6auJwGImSoknEOzmIGBAaqrq6OSkhJasmQJKZVK2rNnDxmNRnI4HOx5Ho+HszwdDge1trZSZWUlPfLIIyQUCkmn09HRo0dpaGgo4XQ91EdbANqyt8Fvn5fjezdT/cW+JCWPnVmndLvdTidOnKCioiISCoVUXl5OBoOBRkdH40onUkGIt4BYrVZqbGyk7du3U1paGmm1WtLr9QGFLhbaT+whYDP1kTvkWFvDbmq3xJVcUswapZvNZtqxYwelpaXR1q1bqbGxMe4HGwmuPIHdbqe33nqLdDodWyCvXr06ff6TVl7V0EaRJAm3nzv/FciMK91kMpFWqyWpVErHjh2j0dFRTt01X1itVqqrqyOJREI6nY4++eSTiOd6LG0EYMqFewJ+Qn5DN7glZUoPVqTRaKSioiKSyWSk1+vJ5XKlShROcTgcVF9fT1KplLRaLZlMppBzPH0X/ZTuc+/u6fXKk+JTbukWi4W0Wi2tWrWKDAZDqrPnFb1eTzKZjHQ6XUClz9+9B+Puv5DSShxRgNKnKhhVW0BA4F8sgkVzyw6Hg/bv309isZjq6uqSEjoWZipEuFwueuWVV0gsFtMrr7xCbrf3uV5s2DP5HK+z5/a1HydsqQpMIEDs0EofFyAkn0mqtkwpuq/9OAGCkBpmtMfq/9CNRiPJZDIqKysjq9WarMycwWfBGBoaIp1OR99XrGJdvvc5ThmS/+tbKkFwpcL7fx9tZnTks22P5QIBCH2tmOaZuVwuqqysJJlMRh0dHRyJzB2JKj2e61pbW0kqldL+/fsnL04oS04ReJt9PAGtP/0XO8BUbYZ8cvvl327Elr0N2JDlgbeJcJIITUZEhMHBQRQWFmJ4eBh/+9vfsH79eu5alMLklwiJNgXHel1XVxeEQiH27ftP/PEdA5RKJUa+HAGRO6F8uYLxeDwUfBMBbcMA2i2EDVmxJ9rc3IyXXnoJNTU1qKio4FLehKHJZtLg30T46quv0N3dDQDo7OyEy+VCT08PrFZrQFOvTCbDihUrsPSeu7FStgItLS0ABGhs/O8pI/BvlA+Av/b3u8Ld+MXWOrT1EbQPEzre3Iun5UyI4r2yhgpWU1ODpqYmXLhwAUqlkhehE8F3n8G/wVy+fBm3bt1iO3HcbjcuXboEAPj0008xNjYGAHjyySchEAigUCiQmZmJtWvXsvdbWFiIpUuXTqY49YzMZjN++tOf4oUXXsCvfvUr7N69O0oDO38dLgwF+Ubqb4fgtxdB5173bsOCUiYb36834vWK4pAEfBbjcrmwa9cudHd3w2g0QiQS8SZ0IoyNjeHTTz8F4LXO27dvo7+/H0NDQ5iYmMCVK1cAAA899BBWrlyJe+65Bz/84Q8BAEqlEhkZGcjMzIRCoYiaTzQP0tLSggMHDsBoNKKkpAQajQZHjhwJOovfHjYgjHu/eLIKF2kDDv3yaQBge4bqL/ahQisPm8jExAR+8pOfwOVy4fTp0wE9W6ng2rVrsNlsbK8ZAJhMJgBAb28vRkZGAIDtOlUoFJBIJMjIyIBSqQTDMCgsLERaWhqAUMUlEwrY6+HtNlu9ejWqq6uh0WiwefNmLF/+AN56620271TAeOtzgO+e9v6YwYajhA0rvVb+jOD7OEc6WDwtyGKmSiDBAwYC2Gw2rF+/HnK5HE1NTVi0aBFnwvnHR7PZjG+++QaDg4P4/PPP4XQ6YTabAUzFzrvvvhuFhYUApqzzu9/9LnJycsKmn6wy44WIcO7cORw4cABXr16F0+nEc889h4mJCbS2tqbMWFj3bun4L2Rv+I/AgwBoSxXo3KGQ+gYBuDXxNTSaH+HRRx/FqVOn4srYFx/HxsbQ3d0NIsKf//xn3L59G9evX4fVagUQaJ2ZmZm477772NipUqkCLCTVSkyUNWvW4He/+x1KS0vhdruxbds2jI6Ooq2tLSUWHxTTp+JJxErlJG73bZSWPoulS5fi9OnT7H7/+Hj58mXY7Xb84x//QF9fHzweD1spimadscTOuYwvtl+9ehWAdwSQTqeDSCSCwWAAwG8BDlC6T9HhMvQvBBMTE3jyySdht9shk8ngcrnQ39+P4eFhAJFjJxBqndMxV6w3XnyxvbS0FADgdDqh1WpRUFDAVu54u3e2mcZDIV1+RH6tT3479+/fT4888giJRCKqqKggk8lEPT09MbcIBbdozYWuVK5pbm4mpVJJRFP3Pz4+Trm5uRH7Jrh6TghMZvoG/nf+aCC5XE42m426u7tJKpVSfX09L8LxyWyQUalU0tmzZwP2Wa1WkkqldOHCBd7yjdq1GvxcLJbP6N/uFweMFhkaGqLc3Fzat28fZ0LxrZDZoHCPxxNg7f50dnaSRCKhoaEhXmT1Kj2GdB0OBymVSqqvPxEiyPj4OKnVatq+fXvKB0NMFypmWsHT5R/O2omIamtrqaioiFwuF+f3EPMgioqKCiorK4t43OFwUFlZGWm1WhofH582vZlWxmwhkrUTEZWUlIR4UC6eW1ilhxvaJJfLyW63T3vunj17KDc3N6nhwvMNpVJJzc3NIftHR0dJKpXSpUuXwl6XaAGY1tK/+eYbkslkAWO/pnOhvjFj3d3dCQk134hm7c3NzZSbm8tp2JxW6fv27Yvq1iPR3NxMEokk7EDBBULxt/ZgIyopKaHa2lrO8oqq9J6eHpJIJAkPcTKbzSSRSMhgMCzE8GmIZu0DAwMkFos5C5lRla5Wq+nYsWPTJhJNoT09PSSTyVIyGHKuEym2ExG9+uqrVFpaykk+EZXuK3lcxJLR0VFas2YNVVRUJJ3WnUw0a3c4HCSXyzkJlxGVnp+fH7HUEXmtOx6XbbfbadOmTVRaWsrZ50p3IkqlklpaWtht/2d86tQp0mq1SecRVukmk4nkcnnSiQfjcrlo586dpFKpYnqXn49Es3aXy0USiYT++te/xpRWJKNEuINqtZr0en08ssZFTU0NKRQKGhgYCDm2UOGLHtuPHj2adGwPsXSTyUTZ2dm8N6eePHmSJBIJ/eUvf+E1n7lIsLX7G4LD4SCJRELXrl1LOP0QpZeVlYX0mvFFR0cHSSQSam1tTUl+c4lga/dXfG1tLe3cuTPhtAOUPj4+TkKhkPd4638DV69eJalUSidPngx7fL4SKbZ7PB4aGhoikUhEDocjoWcVoPT6+nrO3gXjYWBggBQKBVVXV6c879lMtNiuVqsT/uo3QOkqlSrqaxof+I8aUalUtHPnTl66E+ci0axdr9fTxo0bE0qXVXpPTw+JRCJyOp2JS5kkDoeDtm7dSlqtNmyP3nzBv8D7rD3cGAahUEg3btwIe100BL4BeOfOncPzzz+PJUuWcD8QL0bS0tJw+vRp5OXlYd26dexHCvMN/8GQ1dXVOHDgQMgASZFIhJKSErz77rthr4uGgCZHXJpMJpSUlLAHKPVzCrIcOXIE5eXlKCwsZL9Yma/4Rst6P34MpLi4mB1SHhdE3pYekUg0K1yqf/OuwWAgiURCZrN5hqWaWSLFdqvVShKJJGT/dG4eRN4uUJVKxZGI3GIymUgikdCZM2dCjs2nyl6kmrxCoYhr+DnRZEw3mUzQaDRJOCH+UKvV6OjowO7du/HGG28EHLsTP4KIhC+2B6NWq/HRRx/FldasUzqFqUvk5uaiq6sLer0ev/nNb2ZAqpnD9zwixfannnoKH3zwQdyJkkgkoq+//poDJ8QvExMTpNVqqaysbF52z4aL7VarlWQyWVzpCMbGxrBs2TIsW7aMg3LJL+np6TAajVi8eDGKi4ths9lmWqSUQFGsPTMzE+Pj4+wU5xTDW5fg+vXryMqKY0KZGWbRokV4++23sXbtWjzxxBO4cePGTIvEO+He2/1ZuXIlLBZLyLlTeAK2BD09PcjOzuZcUL75/e9/j8rKSjzxxBMBc7jf6YSz9uzsbPT29ka5KnA6E8H169chl4efVmQ2wzAMdu7cifr6emzcuBHvv//+TIuUMoKtPSsrK0DpgS4+0MoBQGCxWLBq1So+ZeSVTZs24fz589ixYweamppmWpyUEGztCoUiQOkBLp4EIXFe8NVXXyEjI4NvOXmloKAAly5dQk1NDQ4ePDjT4qQEf2sXiUQYHx8Pex4xU4XAcrEeF/sBgd1un3XTf8VCcOnNysrCJ598gj/96U/4xS9+Abd7Zmdl5Bt/a8/IyGAXLAp+Lj6bJ1iw++ldAADBzZs356Slh6ulisVifPzxxxgbG0NpaSkmJiZmQLLUUV1djZqaGohEIvb1NVIr5YmXG0CbN2NlFiC4desW0tPTw54YyzvfbCMtLQ3Nzc1Yvnw5NBoNO8PjnYT/ezvDMOjq6opawC+erAK0G4BWAuABFi1aNGdXVQjAE/pvbW0tPfDAA/Twww+TUqmkzs7OGRGNT5qbmynvkVwSi8VhJ5dwW9qoqqGN3JY2dm55hmEY8q0RNlchv1mYfL7J5+S+973v4YsvvgAASKVSvPDCC6kXkGdqa2shEAjwr3/9K+TY3r17cejQIVB/O0pPDODcwV9CIBAI4HK5ZkBU7uh//zgYhgHDMFgkEKD05ROs9udiJTVefv3rX4fM1ElEaDtZhddffx0CgQACeTG7H2KxmL788stUeqS4iNZn7iHvQnb+65351kv58csniDzesfUKhYJWr159R7p3Iu+6OAGfoXm8K0TtPtHm26S+9uNUdcI7Y9Vd6enprFsg5222pDBpi1NXVKMQqTZKRGjY92Ps6lWA6NDU+ZDjcPtxZD99Hn2vlWP9+vV3/JAru90eMK8s/b0dgt92gM55nwsD4POBfoAeBgDclZGRgZs3b0Imk4FJWwxy3p41Cg8gaN7S/o4G7Dp0Hu0W38DA0CmzGYa7yYlnMzabjQ1j9S9vwa5D7wHw4GL/IWzI8k7y/Pq7AJg6XO9vwF1CoXBudFFOLjviU+yJYy9hy94TfgsPTCn884H+yUuSW8FhrnDz5k0sW+ZV+osH38WLQY2Sh1oIh/wegUAsFuPmzZthEyPnbfYv3Lb/vumujfVY9PO87cgeZy/+/t5d2PzUOu95k2uieBzfAvDgw9Y3sHXPJmSBAb6d25XUWPBaemhbC9vKElTmBVlZWbh+/XrYxHxuPtKvLxT4wgKbmd/+eI4FCOx3XgDfusAM38D/uN2QZSu85zGLJn8ZWC404LV3b+PFn/+cTWO6wjXX6e3tRU5Obsj+SP5NoFAo0N/fH1Pi4eJ9LBabLEza4oDWQcpaiS3wsG6cPQf92P3vL2HLy8fxo4dnT2WUT4gIvp5SirEFVZCdnY3PPvss4gnTWYq/1fIFIbAWL0A2Nu7djIo/NEyd098OYfpjwN4GnKt90btvDjYjxwvDMLBYLJDL5bHXXXyzEnoc33rf6SZ//Yl0zH870v/xHIs37aotoLsXLZ5c0VBAHf/3LflmsnY7vp2ayjxCHncKvs+WY4UhIrr33nsx1P85hEJhRIuN9Crn8wLh3D5bGmM8FpxH2LQJoG9Drw/wRmmLAacTRAwES5dElPFOYGRkBIWFhRgYGIj5GgEArF27Fh9f/t/AB+79+mXaBCK59mhuP9KxcNvB8RxM6PUEAEvumtpHBCYtDYKlS6LKeCdgMpmgUqniukYAABqNhl3SCpjqwGA7MWa4wSbc0iL+/zPwvpNHOv9O5sMPP4z7Q5WwSvdX9qx53Qk09qn/g7vVMD8qcD4++ugjaDSamD0zMLlwj9vtxv3334/h4eGUL6S3QOKMjIxAqVTin//8Z1zeTQB4PyBYu3Yt2traeBNwAW4hIpw/fx5qtTrucMY2WGs0GhiNRs6FW4AfGIZBe3s71q1bF/+1NBkIent7oVKpMDIyktJ1PxdIDJvNBqlUip6eHkil0riuZS1doVAgJydnwdrnAESElpYWFBUVhSg8lspcQAd0eXk59Ho9pwIukDz+ivS9Tuv1epSXlwfsJwpdDTocrHsnInz99deQSqUYGhrCvffeOy/6oucSPn0MDw8jLy8v4VAs8JUGhmEgEomwadMmvPPOO+y+BWYPPn00NTXh+eefT7zuFdwY75vr3TcWfj5N5jMX8M0C7b8KZrwIgguBWq3G8uXL0djYGFC6IhSYxEraAglTX18PlUrFrlKdEOFKAl8rOywQP/6e1reyQzJWThTG0gGvtYtEorCzFC6QWvw9bWNjI/Ly8pKzciC8pRMRnT17lrPVmhZIHi5Xa2Jr78E888wzEIlEqK+vT65ULcAJdXV1yMvLg1qtTj6xcCXBF0d8KzB+8cUXSZeuBRJnYGCA7r//fs5WYAwb031xRKFQoLy8HJWVlcmXrgUS5sUXX0RVVRWWL18esJ8SfXuarlQ4HI6AVZUX3tv5JXiRwxlZVZko/PrpC8rnH99IZa6/tmXb3mNxMePj4zAYDIm5lAXiZuPGjVAqlXjttde4TTjW0uFwOEipVKZszbb5Tm1tLRUVFfHyyhyz0om8H7+LxeKILUILLp8bOjs7SSKRcFZbDyYmpfsr02AwkFwup/Hx8QUl84DVaiWpVEpGo5G3PMK+sgXj3xRYVlaGbdu2oaSkBLdu3VrodOEQm82G9evXo7KyEsXFxbzlE3NFLpif/exnsFqtaG1thUAgWOh7TxKHw4ENGzagoKAAR44c4TWvhJXudrvxzDPPsGupAQg70ibcvgUCn4vL5cLmzZvxne98hx3AwicJKx0AJiYmoNFo8Oijj+LUqVMAFpQcL263G9u2bcPo6Cja2tpSMhI5KaUDU3FILpejqakpZD6zaMz3AuJ0OrF161bY7Xa0tram7OuimCpy0RCJRDCZTLh16xZ0Oh07G3EszEeF+2zMZrNBq9UiPT0dbW1tKf2cLGmlA4BQKERLSwukUimefvrpuTFb1QzBMAxGRkag0WhQUFAAg8GQ+vVtuX4HrK6uJrlcnvSQnjsVs9lMK1asoMOHD8+YDEkpPVLjzNmzZ0kikSw02QZx+PBhkkgk1NHRMaNyJF2Ri8Tg4CCee+45rFy5Em+++ea8mJg3EmNjY9ixYwcmJiZw5swZZGZmRjyXUlC55SSmh+Ohhx5CV1cXpFIpHn/8cXY1Ja7KGE9llXPee+89rF69Gj/4wQ9w6dKlAIWHu4eUVG75dCM+9280GmnFihVUVlZGVquVzyx5JZ6+hqGhIdLpdKRQKDgZzMglvFk6MFVqi4uL0dvbi+zsbOTm5uLw4cN8ZssbsXz44Xa78eqrr2L16tVQqVTo7u7mZjAjl3BdiqazBovFQlqtlhQKBRkMhrivn83o9XqSyWSk0+l46xblAl7dezSMRiOpVCqSyWSk1+tDBgvMFeU7HA6qr6+n5cuXk1qtnnWuPBwzpnQfJpOJtFotSaVSOnbsGI2Ojs60SDFhtVqprq6OJBIJ6XQ6MpvNc6agzrjSfZjNZtq+fTulpaXR1q1bqampaVaske6vSLvdTnq9nnQ6HQmFQiovL5+TjVCzRuk+7HY7nTx5koqKitgHazAYZswDWK1WamxsZAukVqslvV4/KwpkovDWOMMFg4ODOHPmDDo6OvDhhx8iJycHWq0WWq0WGo0mpBuSOGjYcDqd6OjowPvvv4/29nYMDg5Co9Fgw4YNePbZZ+Oe1Gc2MquVHkxXVxdMJhNMJhMuX74Mh8OB/Px8PPjgg5DL5cjLy4NYLGbPX7NmDZYtW8Zu22y2gLXWrVYrenp60NvbC6vVCrPZjIyMDBQUFECj0UCtVqOgoCCVt8g54QxhTik9GLfbjc7OTgwPD6Ovrw9XrlwJWGi2q6sLTqcTgPcdOz09Hfn5+ez19913Hx577DHk5ORAIpHMvvdpnvh/fLfk2isP168AAAAASUVORK5CYII="
|
<image>如图,点A、B、C在⊙O上,∠AOB=140°,∠ACB的度数为()
Choices:
(A) 140°
(B) 110°
(C) 70°
(D) 120
|
110°
| 69,894 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAKAAAACdCAYAAAAzK3NeAAAYvUlEQVR4nO2dT2wb17XGP760MVMDFuu+l9IoWo1bWx4bRjzpxiMG72n8giaUg8LjRWNm0UpalKIWr6IKBGWAB9AB2iqBF6RWrLyhtCLjjWTghVTSBaVFTSZZkAICk7HUkgEKkF2R6WYYB+55C3lokuKfITnkDMn5AYKtGc7wivzmnHPPPfdeExERDAw04t+0boDBeGMI0EBTDAEaaMq3tG7AsJHL5ZDL5ZBKpVAqlfCPf/wDmUym5jWZTAaFQgEWiwUcx9WcYxgGk5OTMJvN4HkeVqsVLMsO8C/QFyajE9KcnZ0dJBIJ7O3toVQqIZVKgWEYMAwDjuMwMTHRUEAsy8JqtVauqUYW8Ndff41EIoFCoYBMJlO5hud5XL16FXa7HWazeYB/rTYYAqwilUphZ2cHe3t72NnZgd1ux9WrVyEIQkNrpiay1UwkEvjkk0+ws7MDjuPw+uuvQxAECILQt/fWkrEX4O7uLjY3N7G9vQ2GYWC32zEzMwO73a5105BIJCoPRCKRgCiKuHHjBhwOh9ZNU42xFGAmk8Hm5ibC4TAYhsHc3BxEUYTFYtG6aU0pl8vY3t7G/fv3sbOzA4fDgbm5OfA8r3XTemJsBFgul7GxsYH19XWUy2XMzc3B4XCAYRitm9YxpVIJ4XAYm5ubKBQKWFxchMvl0vUD1BQacYrFIvl8PmIYhlwuFyWTSa2bpCrZbJY8Hg8xDENut5vy+bzWTeqIkRVgPp8nr9c7tF9Mp1Q/aG63m7LZrNZNUsTIJaJLpRLeeecdTE9PAwCSySR8Ph+sVqvGLesvFosFbrcb6XQak5OTuHbtGpaWllAqlbRuWktGSoDb29uYnp7GxMQE0uk0bt++PZxxUQ+YzWa43W5ks1lcuXIFL7/8MjY2NrRuVlNGohOSy+WwtLQEs9mMQCAw8tauE0qlElZWVpDJZBAMBvU36qJ1DNALkiTR6uoqsSxL0WhU6+bomng8TizLksfjIUmStG5OhaF1wblcDrOzs/jqq6+QTCZ1kTjWMzzPI51OY2JiAtPT08eGCDVD6yegG7a2tojjOIrH41o3ZShJp9PE8zz5fD6tm0JDFQOWy2W88847yOVyCAaDY9fBUBP5s8xkMgiFQpp9lkPjgjOZDK5du4bJyUlsbW0Z4usRs9kMn8+H5eVlTE9PI5FIaNMQrU2wEpLJJPE8P3KjGHohn8+TIAgUCoUG/t66F2A0GiVBEKhYLGrdlJFGkiRyOBwUDAYH+r66jgG3t7exublpxHsDZGFhAZOTk7h9+/ZA3k+3MeDGxgY2Nzc1DZDHkWAwCABYWVkZyPvp0gL6/X7s7+9XPgyDwTOo70B3FnBjY8MQnw5wu924cuVK3y2hrgQoV/wa4tMHbrcbExMTfY0HdSPAnZ2dSsxnoB9u376NL7/8sn8VNQPtczchmUwaqRadY7fb+1LwobkA5XFJQ3z6RpIkstvtFIvFVL2vpr3gcrmM6elphEIh/dWpGRyjUChgdnYW0WhUtZpLTWPAlZUVLC4uGuIbEqxWK3w+H9566y3V7qmZALe3t1EoFOByubRqgkEXCIKAmZkZ9XrGqjp0hWSzWeI4zoj7hhhBEFSJBwcuQEmSSBAEo5h0yMnn88RxXM/TXQfugt977z3MzMwM/ZIS447VaoXX68XS0lJP9xmoADOZDO7fvw+PxzPItzXoE6IoAjiK57tloGmY2dlZLC8vGxOIRgh5clgymexqPcOBWcBwOAyLxWKIb8SQVxd79913u7p+IBawVCphenoasVjMmDQ+gpTLZVy7dg2BQKDjRTwHYgHfffddLC4uGuIbUcxmM1ZXV7sq3eq7AAuFAra3t42E84gjL2PcaYek7wJ8//33sby8PBYLbo87c3Nz2Nzc7OiavsaAhUIB09PTSKfThgDHhJdffhnBYFBxLNhXC7ixsQGHw2GIb4zwer0d9Yj7ZgHL5TIuXryIeDxudD7GjE6sYN8s4J/+9CeIomiIbwz53e9+h/fff1/Ra/tmAS9evIitrS2j1m8MKZfLOHv2LNLpdNs53X2xgKlUCmaz2RDfmGI2m2G32xWlZPoiwM3NTczNzfXj1gZDgtKUTF9c8JkzZ5BMJo34b8w5e/YsYrFYy82AVLeA8iZ7hvgMHA4HwuFwy9eoLkDD/RrIKHHDqrrgcrmMM2fOIJ/PG8lnAwDtsyGqWsBEIgGO4wzxGVSw2+3Y2dlpel5VAe7u7mJmZkbNWxoMOTMzM9jb22t6XlUB7u3tjezO3gbdIQgCdnd3m55XTYClUgmpVMoQoEENFosFHMc1FaFqAtzd3TXEp5go1tYOtW7EwJiZmem/APf29oz4TyHRxeu4p3UjBoggCE3jQNUEmEqlOp6QMo4cri1iGzZcnjqndVMGBsdxTfemU02AmUzGKD5ox+EaPpxah4gHWrdkoMgVMY02z1ZFgOVyGaVSyRh+a0kUa3emsDx7iEef23DpvNbtGSwsyyKTyRw7rooADevXnujiI0ytz2rdDM1gGAa5XO7YcVUEmMvlWlY8jD3RRVy/68Z1kwkm03m4H1zGGIWAAIArV65gf3//2HHDAvabwzUsPnobdLQUHujAD5vtEsbMA/fXAn755ZeYnJxU41YjxWF0DYt3prC+XGXuDh6OWRfkiGYx4LfUuHmpVDL2c2vA+etuADZcensWy+eA6KIJ1+8+PWd6iAitY1yiQovF0rAXrIoAC4WC0QNuQH2l2+w6gdY1aoxO0c1OSQajjdELNtAlhgU0GBhWqxWFQqHmmCoCNDohtezs7ODatWv92+BvSDGbzSiXyzXHVJkTYjKZjgXc48zZs2eRy+VgNpshSZLWzdENjaZpqmIBGyl7nJmdPUquTE9Pa9wS/aOKABv59nFmYmICCwsLOHHihNZN0T2q5AENagmHw4jFYpienjZypFU0ypYYFlBlEokErFYrGIZRtDLAuGPEgCpz//593LhxAwBw69YtfPDBBxq3SB808wSqCLDZON84Eg6H4XA4AAA8z6NQKDQcARg3yuVywwULDAGqSCqVgsViqYlz5ubmjHwgFAqQHn9T+emEyclJ4ynH0aZ9svuVcTgchhtG85rRGgGanv92zb9KYVkWX3zxRQ/NGw0++OCDivuVYVkWFosFiURCo1bpg2b1Aqq44GaVDuOEXGzZ6Ck3OiPAF198gQsXLhw73lKA9S65kYumx9+A/cm5Y9Wurdy5Ulff7HWtjlefrz7Wb8LhMG7dutXwnJGOUeiC66l3yfX/0uNvYHr+27D8x7/D/Ny3Kh0R+bj8Uy/YZueqqX5ds+PV11f/W9++QYiwkfuVsVqtYFm25SI9o05XAqyn+sutPkaPv8GFCxca1vyrgZKYtFH82mks2y2t3K9MN/uojQqt5o23FWA7CyJborNT5/smQL3Tyv3KiKKInZ2dsUzYt5o1WRFgrcgOsfaKCSbT0c/JkydhMpnw6v98jGZrOv33f/5Xy4UIe2FQcVy3fPTRR213grdYLBAEoePtTEeBliun0VP+9fVj+tfXj6maiBPkjDw9//D/yAmQzX9Q8xr5umw2SwzDHDtef89W5xr9rvT6+mPN/q829X93K7a2tkgUxb60Q8+IokhbW1sNz1Us4PGAv24Nk5+8BtEJPHh4UCNg+To5xyOnY6o7CvU0O9fod6XX1x9r9n+1qR56a4fdbkcikRirUaNyuYxEItHUAjaPAQ8/xD28iTfOAfQ4g52AgOt3nYi0WN9EFMWxczHVxQft6GQLq1EhkUhUkvGNaCrAww/vIfnp23jp28/j5MmX8Hv8Lw7aTKR+8uQJ/vCHP7RcFX2UyOVyKBQK4Hle8TXj1htuu3B9Y699QH6bjSrh3oGfbA3iv2okSaITJ04QAPrOd75DwWCQstlsT7GD3lldXSWPx9PxdVarlfL5fB9apD8EQaBYLNb0fBMBRshp81O13CJOEOqO1eNyuQgAPf/883T69Gl68cUXyWq1ksPhoEAgQMlksos/Qb+0+3Cb4fF4aHV1Vf0G6YxisUhWq5UkSWr6msYuOLqNz998A52uIBYIBBAIBPCzn/0MV65cwdWrV/G9730PP/jBD7C/v4+FhQV897vfxc2bN+H3+4d6gL5QKCCTyXS1MHtvY8O1KTL555XFNUR1tu55OByGKIqtNy46rsl693tAEaeNgGcpGSWqv3//PomiSJ988gmJokgcx9HW1hYVi0Xa2toit9tNPM+T2Wwmu91OXq+3K2uiFYFAgFwuV9fXsyxL6XS6y6sj5Kz7jvxOEOAkBV/RwOB5nuLxeMvXHBOgDSDU/9ic5I+0cr61OBwOCoVCFI1GSRRFkiSJkslkjRBlJEmiaDRKXq+XBEEgACQIAnk8HopGoy3Nt5Z0635lvF4veb3eLq8+HiIRRRrmabVCaX60SQzYG9UJ12oRElGNEJt9gbFYjFZXV8lut5PZbCae58ntdlcsqNbk83myWq093aOTBPYxIk5CA3cUcaLhcS1Q+oD1RYCSJBHDMJWeXjAYpPn5+ZrXJJNJEgRBkSWJx+Pk8/lIFEWyWCzEsiy5XC4KhUKa9CZ7db8ySlxUI6pHqOqPt+soDgqGYRRlQfoiQCIit9tNPp+v8nsjERIdWTulQpRJp9MUCATI4XCQ1WolhmFofn6egsFgD3GVcnp1vzLdCTlCzoax3gH5bfqwgPF4nHieV/Tavgkwn88TwzA1MVwzERJ1J0SZbDZbuTfLspXUj8/nUz31UywWyWKxqHKvRp9RWw78ZGsksqe5Wh3or+XYbz19E2CzhrQSIVFvQpTJ5/MUCoXI7XYTx3FksVhIFEVaXV3tyuVV0679nWK32ykajSp+/YHf1qCj8dT66cD9JpNJ4jhO8ev7KsBmjVHyJVYLsVfRyKkfj8dTSf0IgtBV6qdTwbSjM0FHyImq9Asd0EHET06diI+oM+tH1GcBEjVvkNJhrFgsRjzPkyiKqrlTSZIoFot1nPpRktnvpi0Wi0XRPY+lxwCy2Wzk7CBF1k86tX5EAxBgq0Z1kgvb2toijuNUFWI19akfjuMqqZ9WvXk1kPOmw059x1MJfRcgUWuz3GlCtt9ClEkmk5XUj9VqJZZl6Yc//CF5PB7Viyyi0SjZ7XZV7zlostkssSzbsXcYiADT6TRxHNe0cd2MCgxKiDKffvopnTp1in7xi18QwzCV1E8gEOg59VOfNx1GOo39ZAaySDnLsrhx4wbee++9hudv375d868SRFFEMpnE3NwcFhYWcPPmzaZ70qrBX//6V1y/fh337t1DNptFLBbDzMwM9vf3cfPmTZw5cwZvvfUW/H5/x+0Y9kJVud2iKHZ+sfrPQmMkSSKO41pai17KlGSLOD8/35c6xHZxWqPUj91uV5z6kXv9w0av1ntgAiRSFuvIIxrdEgwGK+5RLSF20lOVKRaLFI1GK6kfPO1pt0r9KB2+0hPddDyqGagAiZT1+HoVIZG6QgyFQuRwOHq6BxEdS/3wPF9J/RSLRfr1r39Nr7766tCIMJlMEs/zPaWlBi7AfD5PHMe1NdlqiJBIHSH2K00Sj8crqR+LxVKZ0nD27Fndd0gkSVJlkGDgAiRSHu+oJUKi7oXYjfvthmw2SydPniQAdOrUqUrqx+Vy6XJ+Ta+uV0YTARIp/wPUFCHRMyG63W5FVkYt99vuPTiOoz//+c/0y1/+ktxuNxE9q/qZn5+vpH7k+TWDqPpphpodJs0EqNSES5JEoiiqOv5KROTz+RQJUe0HoBpJksjlcpHD4agU2rYqVM1msxQKhcjlclWqfkRR7EvVTzOUhlBK0UyAREcfKMdxbauc+yVCSZJaClGSJLJarX2pwk6n08TzPAUCgWPnlFYC5fP5yvwajuMq82vUqPpphlq1kDKaCpBI+Xop/RKhfO9GQuzXEFkoFCKe55tarW4rruX5Nc1SP73Gsb3NY2mM5gIkOnKHctzTin6KUL5/tRBv3bqlqvuVJInm5+drXG4j1Ky6qU79yPNrPB5Px/Nr+lWIoQsBEil/uvotQvk97ty5Q8899xwtLS2p4oLl8XClgu52bLUdcupHnl8jV/20ml+jyBMcRMj/dPouYCOn/4Ao4mxboa0bARIpD/jVykG1IhqN0muvvVaxiF6vt2shBoPBtsOQ9Qyi9030rOpHnl/Dsmzle9jY2KCXXnqJfvrTn7a2xvLSLc4IPVvNxUaoKZ5tjK4ESKQ86VssFkkQhL71/qofhmKxSF6vt2Mhyi53fn6+Y3c6qPxjPel0uuJun3vuOQJAJ06caH5B03WDIuS0tZ8orzsByi5WifvppwgbLSDUiRDlQtxeYsh+poDakUwm6cc//jEBaNkhaj4V9ID8zvbTBHQnQKJnIlTy4fdDhO0Sre2EGAgEiOf5npPFWhWqRqNREgRBgaXvfTUGXQpQZn5+XlF5ltoidLlcDfNzjd63Woi5XI4cDge5XC7VXOegl3ILhUIkiqKyMEOFqaC6FiDRUY2gkslLxWJRFatD1PmXXiwWaXFxkV544QX61a9+pWrcptaYqxLkyf6K23/gJ5uCjkYrBlIR3Qurq6uYmJjAwsJCyy0OLBYLQqEQlpaWeto2bHd3FyzLdrTLeTgcxv7+Pj7++GOcPn0aFy9ehN/vV2VLhkFt87WysoL9/X2EQqHWy6lVc24Kl/EA9z48vi7cYTTadEeFGrrX7mAJBoOKLFw2myVBELquHlHqfomOLJ8oisdcbj6fJ7fbTQzDkM/n69ki9rNQNZ/PE8/zXVvZiPMo7/ds9bQDivj9iq3i0AiQSHnPshcRKnW/8Xj82FJz9aglxH4MgREddTZYlu0xn3pAEb/z2bJ+NmdHLnmoBEikPLfWjQiVLqrj8/k6unevQkyn08SybEfXtMPj8ZDdbtd8ubuhE6CMPLrQ6untVITtJkXJLtftdndlzaqF2Gl+r9ul3OqRq3D0skb10AqQ6NmH6XK5mj7J8muUPOmtYq14PE4sy6oyPpvP5ytFpkqFqLRgoxmSJJHH42n70A6aoRagTCAQIJZlm36Z8mKYrUTYyv2urq4Sz/Oq5+Oy2axiIfayKqsc662urupuyeORECDRM6siCELDnnI7ETZyv8Vikex2e1d7gXSCUiF2Wgyaz+dJFEWy2+26m1MiMzIClInFYpWKjvqRkVYirHe/ssvtZ9lXPe2EqLQmL5vNVmLNfpR0qcnICVBG7qSIolgT8zQSYf0KXl6vty8uVynVQqwWULtC1err1Mg/DoKRFaDM1tYW8TxPgiBUrFk8HidBECpfkJxny+fzlRJ2PZDNZo9tbdGoXE3eeaCb3rXWjLwAZWKxGNntdmIYhjweD929e7cy6H7+/Hna3NxsuXWEllRvbbGwsEA/+tGPKBgMks/nI5Zl2ybE9YyJiKiTMcNhJ5fLIRwOY3NzE5Ik4e9//zuePHmCCxcu4I9//CNOnz6t+F7yXrhq8dVXX7VcWeuf//wn9vf38eTJE5hMJrhcLvzmN78By7KqtWHQjJ0Aq/H5fPjtb38LAHjhhRdw5swZWCwWnDp1StH1ZrMZV69eVa09FosFHMfVHDs8PEQqlcJnn32Ghw8f4sUXX8Tf/vY38DyPeDyu2ntrxVgLsFwuY2VlBeVyGT//+c/x2WefYXd3t7IJ4euvvw5BEAZqYXK5HHZ3d/HRRx9hd3cXVqu1pi1msxm5XK6yQ/2wM9YCbEapVKoRQSaTqZRozczMVCwVwzBdCUHeaTOTyaBQKGBvbw+lUgmpVAoMw9QIrpOysGHEEKBCZLHs7u5WYrVcLnes9pDjuJrt6RvFiVarFSzLgmVZfP/734cgCA3d7zgwegKMLsJ0/S5g8+PgL8uN9zw+XMMr59140Oo1XZJKpVAqlSq/m81m8Dyv4juMGNp0vvtMxEm2pnvnHu0qpJdtTdXkqDi0yY8e9vBqgO5L8rvlAT7HowY14dHFObgf2PDmG2raPX0wu06IOAFnhED07OfAb4Pt0nmtm9eQkRRg9NEl+J0P8PCg/sQiti+9CZvtTYyg/gAc4tHnToizT3+NrmEtCpybuozLU/r8g0dQgFE8whuYAvB5jQmMYnFbxNu4B7z5hqpxn244/BD3Los40t8h1n7/EFOzAGbXsT7b+lKtGD0BRh8Bb5zD+Uu2qoOHWFt8hLfXZ3Hw8IFurUGvHH54Dw/uXofJZILJdB5uXII+He8zRk6A0UfA1Lkjt/PgqQ8+XLuDqfVlnEMU23erXNRIcYgP7wH+g6ex34EftstTurf0IybAQzzC1JELOn8Jts8f4TC6iDtT60fHotu465Rd1KhxgIcPLqNi3M9N4U2ddjxq0LYTrjIRP/kr2YajvXWd/mfzVf02fewo3hciTt2mWloxMgL0257lvI6+hwg55VWbIs6anNgQfk9tGN6Ha/RGQsaQV0wmPAAA2OA/+AuW9R74VWEI0EBTRqwTYjBsGAI00JT/B0mS+hRxIz5kAAAAAElFTkSuQmCC"
|
<image>如图,M、F是⊙A上的两点,AM的垂直平分线与⊙A交于B、C两点,与线段AF交于D点,连接DM,若∠MBF=20°,则∠DMF=()
Choices:
(A) 30°
(B) 29°
(C) 28°
(D) 20°
|
30°
| 69,895 | null |
30°
|
"iVBORw0KGgoAAAANSUhEUgAAAKwAAABvCAYAAABxTSvCAAAXkUlEQVR4nO2dfWxT193Hv/fakEqEuaimRKqZATtvODwLI9PYQIMU56Wie0g7JpieoII0CRpnEy1BY8/YA5OKxvY4TVGTPEjtVFD/GCrpbFqkOSVZnKnTUiUS+eM6L4uzgQLCIUxtiisV8L2/54/rl3vta+fN12/xR3Ji33POvb977u/8zu+ce14YIiLkyZMlsOkWIE+ehZBX2DxZRV5h82QVi1RYIfwt7wCLSJsCoe/zbR4opV3stRccl8Rj11ptYBhG/NQ2gTACm611wbKojbLCznn/kWSMRHlzhcUUQoZhYr5Ljy007WKvPf+4wec26gTLsuj85yYQkfh5qxYsYwE2mRYsi9ooKKwABO+JclAZExGyPs21QUvDMmGr03rNI4ujxnXnOpZcWBBGUGN5CVabHd0dJyJBmxtgb7LCVFyisgwLR0FhpdZTHuy51gqnJ7pKyR03mGHEe+v4hNBUA9gdHAQicE47Whoq4PQQGIZJuhsktZAhRV2MpV0o197sQA9TjQvtr8eEmUwl2GQqDwqluijzhpH2wxJR3IwijKCWscDGCWiwRB6a+tmaeggjqGF+jreFGygHA4z+CYzlR3BI7j103wnzLBgW+j87O4vh4WGMjY3B5/Ohr68vHOb1enH37l1ZeoPBAJNJrJZXrlyJ73//+1i/fj3MZjO2bduGwsLCJd1jLWNBid2BjhMNCjEEENiMe75a6Y/ojJc+mLbmDjA1NSixBOOmQLh0MXLtz2BsL4jKygC24z+C1WZHgyXom0riJrKEd+/eRW9vL3p6euB2u3Hv3j3s3LkT69evh8lkwsmTJ8NKt2HDBhiNRln627dv49atWwAAv9+PwcFBuN1uvP/++/j0009hMBhQXV0Nq9UKq9WKdevWzfsemZF/oAdAvbkYgFLByzxlBQDQPHC0NpHd+Sey4nnykECCIMwnWdbiaG0iiOWVAJCDE4jmecujo6PU0tJCxcXFVFRURAcOHKCLFy/S6Oho0uXkOI7a29tp//79pNfrqaysjE6fPk1er3fuxB4HAaDfOzkiophnmqlPWEFh+chXgYi4a9Rkd4g3WPNqquRKIzw11QSVlCLK6/TExgw91JmZGbp48SJt27aNDAYDtbS0yBRU7QIeOj/HcXT8+HEqKiqinTt30jvvvENffPGFchrykBUQn200HgfZg4qcacxpYZubbOIXj4OsNrva8qQOgRTNCD8iL5iJHqzP56PXXnuNCgsLqbGxka5fv66evAukq6uLDhw4QDqdjk6dOkUzMzMxcUKFUaqcnNOe0YYpSmF52a/oqjFXFDaRxXO0NoWVUxCEcNUpfahTU1N09OhR0ul01NLSQj6fT22RF83U1BQ1NzeTTqej48ePk893XxbOOe3EiN0jBIBqmltjT5Ji/yDR84lvYT0OmVXhnHbl6iPr4BOGNtUwYXcgZF2BPeQhgR4+fEinTp0ivV5PZ86cUbRaS0FN18Hn84VlP/s/Z+jrr79OmyxLQVlhPR/GVAtSyxN66EL4T3ah9DA4p52YcG3CEgDxdzAfHA4HFRUV0dGjR5OuqKlCEATy+Xz0X4cayWg0ksvlmmfKxIU8lcQorL3JKm8dE1FTTW64BSE1FYTAvNNMTU2R1WqlyspKGhgYUD5vHGuUTiulfO2I4rndbiorK6MXX3xRLIDC3GkyAdmLg3khiAaIYTRJ6VbLTFhgGbyWZhDnJVY4gBUrG6K0vu2Sqmic96riw1KUkWXCySg0WCJrPrz4XxB/C5IwQRBk8S5duoS1a9fC5XLJ0sT7yNNnxyd0/11dXVi7di26urqi7pUH8QKIT5+MStqbGEktEakyeGKAYBCfsQ56PBJJGwg8JpvNRmazmTguti8y2+6VaA6Zg0GDg4O0fv16OnXqv1Mj1DyJVtGFuwRBQu/Ic4nZ2VkcPHgQfr8f169fh06nS7dIKWV6ehp79+7Fxo0b8d577y1prEKyiNaz3BlqtUQ8Hg+qqqpgNBrR398fo6y5VjiVWLduHf72t7/hqaeewvbt2zE5OZlukWJJlqnOZlwuF+l0Ompvb0+3KGlF6jqcP3+edDodud3uOeOqSbSeLXuF5TiOdDrdAvoklw8Oh4P0ev38BtOoRLSeaRPb39zm3//+NxoaGnDu3DnU1dWlW5yMo6GhAR6PB/v27cPAwEBm+LRBLV54wixvdPE8j/r6epSWlqK9vT3d4mQ0hw4dwsOHD+F0OlN+7XyjK0hLSwsA4MKFCwnjZXOhTBbvvvsu7t+/j7Nnz6ZbFCxLl+Dy5cu4fv06/v73v0OjSfzGLhVzqzKdgoICXL16Fdu3b0dlZSUaGhrSJ0yynOFMYD4t14GBAdLr9TEzALLxhUCqGRwcJL1eTxzHhfNLENSdgRKtZzmlsFKkGRpiamqKDAZDvkdgCXR1dZHRaEzZiLVoPVs2jS4iQm1tLaxWK37xi1/EhOWr/vnz61//GmNjY7h69arq11qWjS4iwgcffIDPP/883NiSZkJeWRfG6dOnwXEcuru7U37tnLOwStbS7/ejvLwcDocDVVVVaZIst+jt7UVzczOGh4dRUFCg2nVy3sIqWcvf/OY32Lt3b15Zk8iePXvwrW99C3a7PaXXzTkLG43X68X3vvc9eL3e9Iy+IoCQmz7y9PQ0KioqwHHcghbxWAg5b2GjOXfuHGw2W0JlTVbBo5gvAJjc9JGJCOvWrUNjYyPOnz+fsuvOz8JK1ywKJcwICysgUZkLWYC0Wdckk4m9GdPT09iyZQsmJiaSlsfS+0xoYSkqUfhYyvJIiBUkIfGVlYhw/vx5/PSnP8U3vvGNJUuWCWSGkZCzbt06vPzyy2hra0uabIkKZZSFlVusRCU6FZmnYNgVjyvFm5mZQXFxMcbHx1Xzr9JCvExJI5OTk9i+fTv+9a9/JX1EV7SeLanRlS4YRgMiPm3XTy+RGb1xZ71mKfGM4NyNLgJstZHVpyOfWowgsn6/Kp85ZqcSEQQhIPkemq3Ky+JUVlbC7Xanbbanep/IfQoUmfkqpFSG2I/D4cCuXbuWdI54M4+lKCssA3R0i6tQOzghnCH2JoKFqQkrrSos0HBHLH3kVoaHh/H5559j165dAHJ7iGA4u9J8jz/84Q/h8Xhw+/ZtVa8Tt9UiwIMJ2GSL+J5ov4FXrb34+c/elMVVSyGk51W2+BowtU0x6S5fvozDhw+Hf2day1oNUnWP8Z61RqNBY2Mj3nvvvXnFX+z15ApLkUijH7lAJRvlqRnAVGJF77h8NmXSMkty/ejzhvYdCFt8QQDn/D2sJbE7nXR1deHgwYPJkSmPjESN7YMHD+KDDz6Iib/U60mRKywTieT6xIXamvqYE5hMoZ1FVFjKR3L9COJ1BPJgPGjxCSN4800nNu/bi/qNm2SnGBsbQyAQQFlZWfLlW04kMIwxWycFqaqqwtTUFO7fv6+aWIouAWEEf+4k7N23OSZscvIfQavGpqiFKoo4+pELpXVWAOLuJzCXgEEZTpzYJ4vd398f9l3zLAGZYRMUXTKW1cq2hNJoNNi5cyf6+vpUE0tRYZmRMTC2OmyObgGNONHS2YM6aw2ISLaTitp4vf9EZ8tLYBgGL53ohMm8OdjOkN9CX18fqqurVZdnecHGuGREBF7wYA/24AWJYdu9e3fqFdbp6kXJxuKYasF2/GWg5lW0NPxH+BiRCq8LZdcVq50brs5wZtlqrDBbAEahIzJvYZOPuNbqSNglAwFvvvkmGJSjvLlcZth2796N/v5+FYWJIrTqtIMTxG0ABEFc4FiyuK+6KKxHGrUhSGtrW0hYGbdu3SK9Xq+eaMsKXpa94grs18QfHgfVNsVfJ7igoCDuZiBLRWZhPddawTIW9AB4aQsLlmHAsiwYy49gd3KgTzrVKznhAhRrrZ2uG2iqqw3/fv314wCA5p/Ju7S8Xi82b471u/PMj2jHTnwSYg03MRl0yTQsGMtLMCfYh7a8vBwTExOqyChTWMu+E6J/IsS+cTqxzyJLSCr5rUruxQ1XJ2rq5Y0rWy0D2hhRYpDYQ1BSknn7o2YLyh1I4n/RJQuAeAGO1iZsMse6jCHMZjPGx8fDv5OpK8rrEii6pPKBMaE9V9XsrvZca0VFgzgHq7Mi1t12tAWVOCiI1+vNd2ctEQq1SaQPd8SJTryKjuBLpFLTJsC8OTKYIUoJysrKZBY2mW2cBQzgjo2q9ruVsMWP8wm9hQsJMjY2Fldh1aoRco2wckkertN1A6/WR2qz8n0nYvJemr9lZWXweDyqyJdTMw58Ph+ee+45xbDl8HpWHQTccHWitm6fcnBQT6X5azAYMDMzo4o0OaWwfr8fq1evTrcYOYPnIzsYRoPOG8BLFSyujShECutp5K3XqlWr4Pf7VZEpp9bW8vv9GbEk5FI4c+YMGIbJiIXXLP/ZAqKWecaO2L7CwkJ89dVXqsiUV9gMore3F52dndBqtaipqcGOHTvSLVJ8ErS4CwsLVbOwi55xkIlk4pynhVBeXo6xsTEAwHe/+10MDAykVZ5YnRRAYGP0lKLeds7OzsJoNOKLL75I+ptQmYUl4QkCgmQ6gmYlNPm2SlrIhEZirAQsGIWZygknDSb5PmRXZtgVWKHRgAEDTRYq6+rVq1WrilJBe3s7ysrKUFlZmfIVVeJCUf9lKiPERAOAhw8fqtb4zaleglWrVqnm7C8KyVOMdlVGPnpLNlSvprkVe/ZUY3R0FDdv3oz4r+n2cJio/zLYmGiAum2JBI0uAXwgIJYhRgOtRgMEXYawq0A8Ajwv+jrsCmjZUC9y5DjAQqvVSuYeJQiTIo0XvD4TN70o69NrVuPLh19C/8waUW5WixUMReKzWqxgU1hGGSDs90mqxlZbLVo6BXhIEEc6CR7s0VagBsCN9hNyvy88hhPqv6lJAkQEv9+PVatWqXL+BE+PhUajAQM2rCwMqwHLaoOuggBeADTalVih1YIRAhDdXwE8L4DVrMQK7UpoWQEBIVR1JAqTIo23Ahrwc5xblHXV6tX48ssvwWpXiq6NEMBjnkQZNRowgqC6wYo9v7yR0mqrQYvXDKKeyLA81oILzv9FT8efMQICo6SZWaCsgOizfvXVV+mwsAAYDTTsEwQEQbRMJABMMAkJEEiAEIisD8CGjjMstOHpLhowvABiWTCJwqTXJQECq8EKBgAYsJqVkeMJ0j+79ln47vkk52Kg1UgtOIEoOI5WDSTnVjKInmutaOnsgYP7RHJULHCMdJQak3gJpkznzp07ePbZZ1U5dxyFZcIZz7AasAEeAsMAxEBWoypVseIi3/GvON9uJyLlWjBB+tLSUkx4vcqnS4UzyCh+DdPZ0QKrzR6clxaKI+bfxOQ/JTGj5oYGS1mWGFlMTEyoNswznDMkPMaTUPUsM0EsWBbg+ScgRhPJNIYFKwTAh/VAEHWJYcFCAC9EmpdhC5ooTAYDhkJuwDzPDcC0yQQPxyneaLoed0TSEfzjBvBC7QtBeeTccHXCansB5bKQ4AovWaSsgLhvb3FxsSrnlhRlBhACeMILYFmNLIMYVgMWLFhGnlSjYSHwj/Ek8BhPAkLwKYj+JIQn4nGBgZZlJWnihQngA4/FAsBooF3QuQXwPI+SkhJM3pqAQDx4ngeBwPMBUDA88jt1MAh2rI9OoAfAJlN5TBzPtVZ09gC2V1+XtbGy1S3wer0oLS1V5+Tzm5jAE89n/rZASlNkUrudUWR6T/QuNqGpR3YnJ0sROp5oykm28dRTT6VmikxcpRYEFVsqycNoNEKr1YZfbwKpfmMkH+Au+4/NqG+yoqWjQ4xAAEacYBkL2CY7ujtOpFBO9fjss8+wYcMG1dbjTdhLQMJjBIRgH2vm6ysA4Ac/+AH++te/ZuTMgxMdNzBZw4Bh/y/s3Do4ITIYOgfo6+tTddZyQgvLsKH+zuzJ0Oeffx5/+ctf0i1GXDpv8LL5cqEeA8rCQTtKMvf396u6LkROjdYCxGky1dXVuHfvXrpFUSRmMWY11nVIEzzP4+mnn4bX61VtEensbIYmoKysLMaPzSSiVTM0mTMbSGTbiAhDQ0MwGAyqrniecwoLAPv378eVK1cys5pVEClb7OtcwwivXLmCAwcOqCtDrrkEgLigcUNDA27duhU+lilVb5aMYVkwPM+jqKgIQ0ND+OY3v6laXuekha2srMSaNWvUXeNpseTo3gwff/wxLBYLjEajqoYhpxRWWlkcPnwYly9fDv/OBOsKiAN2cpHLly/jyJEjql8nJ10CAHjw4EF4yZyc2vYoAwltj6rGtkfR5JSFlaLX63HkyBG89dZbYcubo2UzZcTLP7vdDpvNlpIZyzlrYQFxXObWrVvjbt2ZKQ2xbGZ6ehqlpaW4fft2SvI4Zy0sIC6Z8+KLL6KtrU0xPK+sS+d3v/sdjhw5EnfsQLLzOKctLBDZVjJXNkjOBEJWM9H282rVXjmvsABw8uRJPHz4EBcvXky3KDnFwYMHsWXLFvzqV79SDFdDaZeFwvr9fhQXF+Pjjz9GVVWVLCzvxy6O3t5eHDt2DBzHoaCgIGXXzWkfNkRhYSHa2tpw7Ngx8Ly84z6vrLHMZcMePXqE5uZmvP322ylVVmCZKCwgVl9r1qzJnBVVMpi5CvEbb7yBiooK1NfHbjyoOqrMY8hQ7ty5Q8899xy5XK50i5K1dHV1kdFopJmZmbRcP6cVVmk+18DAAOn1ehodHU2DRJnNXPPfBgcH6ZlnniGO4xLGU5OcVth4XLp0icxmc9qsRDYyNTVFBoOBHA6H7HhqJ3kSLYteAiVee+01cBwHl8slTh3PE5dHjx5h9+7dqKurS/vK4MtOYSnYjcXzPOrr61FaWor29vZ0i5XRHDp0CH6/Hw6HQzGcUtg1uGx6CaLRaDT44x//iO7ubnSEpl7nieHcuXO4efMm3n///bhxUto1mFIHJAPhOI50Ot28eg5S7a+pQfQ9JLonh8NBer2evF6v2mLNm2WvsERELpeLdDodtbe3p1uUjEAQBDp//jzpdDpyu93pFkfGsvNh4+HxeNDQ0IC6ujpcuHAh5xtiJPE7pd8fPXqEY8eOYXBwEE6nE2azOZ1ixrBsfdhoLBYLhoaGMDk5iT179mB2dnbONNlc1qV+Z+j7gwcPsGPHDvj9fgwMDGScsgJ5hZWh0+lw/fp1VFRUoKqqas79UnNpHMLQ0BC2bt2KmpoaXL16NXP3O0urQ5KBhBohly5doqKiIuru7o4bJxcaYUTi69aioiLq6urK+HvKK2wChoaGqKioiN544410i6IKgUCATp8+TUajMa2vWxdC3iVIwLe//W0MDg7C7XZj69at+Oyzz+LGpSzxZ0Ny9vf3o6KiAsPDwxgaGoLFYkmzZPMk3SUmW3A4HFRUVERHjx5NOAZhsVVqqqpin89HjY2NZDQas3LUWt7CzpOGhgZMTExgzZo1KC8vx9mzZ/HgwYOYeNKuonhEh1EKXm1OT0/jl7/8JSoqKmAymTA+Po7a2lpVr6kGeYVdAIWFhfjtb3+LmzdvwufzwWw24+TJk/D5fDFxF7L/6mKUNVGBkHLnzh00NzejtLQUX3/9NTiOw9mzZ1FQUJCVvRx5hV0EBoMBFy9exPj4OAKBAIqLi3Ho0CF0d3enTAapsilZbIfDgZ/85CewWCxYvXo1vF4v2traVNs/K1Xk33QlgQcPHuDDDz/EO++8g+npaTQ2NuKVV15J+bL1Ho8H7777Lq5cuQKz2YxXXnkFP/7xjxNOb0+FO5JM8gqbZMbGxvCHP/wBTqcTfr8fu3btQnV1NXbv3p30rYA8Hg/6+/vR19cHt9sNvV6P/fv34/DhwzCZTACyTyHnIq+wSSRaOe7cuYPe3l709PTA7Xbj3r172LlzJ9avXw+TyYTvfOc74TdKGzZsgNFolJ3v9u3b4TVu/X4/BgcHMTk5iampKXz66acwGAyorq6G1WqF1WpdFove5RU2hczOzmJ4eBhjY2O4d+8e3G53OGxychJ3796V+aMGgyFsKVesWIEdO3bAYDCguLgY27Ztm/fr01yysnmFzZNV5HsJ8mQVeYXNk1X8PyOWwHoddP4ZAAAAAElFTkSuQmCC"
|
<image>如图,矩形与⊙O相交,若AB=4,BC=5,DE=3,则EF的长为()
Choices:
(A) 3.5
(B) 6.5
(C) 7
(D) 8
|
7
| 69,896 | null |
7
|
"iVBORw0KGgoAAAANSUhEUgAAAIcAAABJCAYAAAAXBTXOAAAShElEQVR4nO1df0xU157/3LHP1pR9Yx/zXIiTwJPpykb/mJQaMdId7UOXvgc4m9Bim82GpqzU6qa4AqWpedOmtuUp+x5ucRm02Y5ZdpdEE2q1BZH3wlYacXkJpmLVN6MPyx8OwTSjtM/RztzP/jHcy71z7/wA5gfgfhKYe88599xzzv3c7/me7/meewSSRApAAMLUccM2Ac2nloAMKlKUwSN+gjwBIAxyWvl6EoIQHjpz3LlzBxcvXsTg4CA8Hg/cbjcAQBAE+P1+DA4OqtIbjUZYrVYAQH5+PrKzs0ESmzdvRm5uLnJycuZeTrlxRACGsPyAiNkpGzUJEJJNDr3GIomGbQZs/S2xJS8U5nyjHDsPAG5+AgsMCal4MBjEqVOnMDg4iMHBQVy+fBk//PADrFYr1q1bh9zcXKxdu1ZO/8gjj2Djxo2qcj548EAmzO3bt3Hp0iUAwM2bNzEwMIDvvvsOhYWF2LBhA9avXw+bzRZ3OwDxV/Ps0Xps3dEcOimvh3hyB95o6MOBA6/G1xizAdMAkW6Wl9VrwuvLwfKGdnVaUZxR3hMTE3S5XKyoqODSpUtZWlrKlpYW9vf30+fzacsyw/z17nf69Gnu27ePNpuNAFhYWMjW1lZ6vd6I18V7X9FzhoC6XaSw+vYzcyp7LCSdHHpN4D57mGX1TjIoxQZJkm0NZUS5ljSq/HQadWJigocOHeLGjRuZkZHBF154gZ2dnZycnJxxXnNJJ2FgYIDV1dU0Go0sLS1lR0cH/X5/lBtIB8GwCDfLJWKIZJCinMZZX0bnWfeMyjVTpEVytDXoV+xse11McigxOjrKmpoaZmRksLq6mqdPn46afq5SYqb5BYNBdnR0sLS0lBkZGXz55Zc5MDAQMS9VfiLZe6SOQBndGtKE4no9cyp+TKSBHG6WCaWhCotqydLWUDYlPoO6EkfC0NAQn3/+eRqNRr711lsq8Z1oAiQKY2NjbG5uptlsZnFxMQcHByOkDBFBnJIa9e1nQu0k1Uv6SUE9U04O0XNGo1dI4QCiisq+vj4WFRXRbDaztbU1Zrehe/80kycQCLClpYVZWVm02+38+uuvddPF0x7abiixSDk5eo/Usc7ZowoTGVJGI3Upt27dYkVFBXNyctjR0ZGCUirKlqSu6O7du2xqauKPlxtZXV3Nb775Rp1OQ47kEkEPKSWHJCqVfWXQ3UMAxLa68MQkSafTSZPJxMbGRlmpS/fbn0j4fD7u27ePRqOR+/fvl8NFulmmMyIRRZEBd0/SlVEyheRw97YRAAWAgiCECDH1p1fRK1eusKioiIWFhRweHk5VMdMGr9fLTZs2saioiKOjoySnFFJB3T7u3rYZKe1zQdKNYBq7CsKNPlqr4DuOt/HbQy2oqqrC8uXLU1a2VEAQBCibXGDojZHw5Zdf4g//O4TDh9vw0t+/CM9ZJ57culOOL29ox8lf70hNWZNPDu3DD4dUhLt37+LFF1/Ed3cn8Z///V949tlnUVpaCqPRmDDz+XzH+Pg4PvvsFB5//C9QULAOhw9/iB8bjcm0kkdG8oVTPIpUkB6Ph2vWrGF1dTUDgQCbm3/D0tJSkotLx9BAUbWuri5arVYuW7aMH3/8Maurq5mbm6vqVsUI1yYDaTGChWNgYIAmk4mtra0kQxZPk8nEK1eupblkqUFPTw8LCwu5Zs0adnV1ySQJBALs7OykyWTi+fPnmeoRS/LN56KoZbji/OjRozSZTOzpmR7e7ni1hrt27Yqd7wJHf38/i4qK+Ner89nZ2amKKyoqosvlIhkiz08zTezr60tp+VInOUTtA3U4HLRYLLx69aocNzIywhWmn+pOkslZLXBiDAwM0GazKew2QY3pvL+/nxaLhYHAA/marKwsdnV1KXJaZEYwCc3NzbRYLJqZy5KSEra0tKSpVMnFhQsXWFJSQrPZzI8++ihmepvNRqfTKZ8PDw/TbDanzBCYFnIcO3aMZrNZHs9L6O7unnpbAukoVlyYjdQaHh6m3W6n2Wym0+mMu37Dw8PMyspSzeh6PJ6UWYpTTo6urq4pZfOKKjwQCMgK2WLBlStXaLfbmZWVxZaWlujT9hFgt9t56NAhVdjY2BizsrLY39+fqKLqIqXk6Ovro8lk4tDQkCaura2NNpstlcVJGjweDysrK5mZmcmmpqZZkUKCJD2UOpgoihwYGKDZbKbHo563T6Q+ljJyDA8P02RSa9xSRXw+H7OyshasmVyqx+joKKuqqmg0GtnU1DSrWWM9VFVV0eFwaMJdLhfz8/MTdp9wpIQcfr+f+fn58tAsHHV1dayurl6wo5CxsTHW1NTQaDTS4XBEHWnFgl4beDwemkwm3Xzr6upYUlKSFD0tJeTYvXs3KysrdeOkikfzt5yv8Hq93LVrF41GIxsbGzkxMTGn/DTeYAq88sorbGxsVKUlQ7paSUkJa2tr53RvPSSdHN3d3TSbzbx9+7YmThRFVlRU8L333kt2MeaE8Afm9XpZW1tLo9HIuro6FSmktImWgl6vl0ajUfclmpycpMViURkSE4GkkmNiYkJXq5YaTlKq5qKwxYtEPKyJiQk2NjbSaDSytrY25dKutrY2ooTo7+9nTk4O7927l7D7JYUc0oOw2+2sq6uLmKagoCDlnl2zgc/no8PhoNFoZE1NDcfGxtJSDq/Xy8zMTI19SEJVVZVu1zNbJE1ydHR00Gq1RpQKLpeLhYWFybr9jBCpEScnJ2VSVFVVpY0USjgcDlZVVenGSZJ6ZGQkIfdKGDmUDez3+5mTkxPRSOP3+5mdna3xwE71aCUaKZqammgymVhZWRnxTU0HfD4fTSaTxr4hweVysaCgICGjl4RKDqmxW1paaLfbI6ZzOBwRRy/phN/vlz3Dt2/frrHizhc0NTWxoqJCPg8nuc1m052fmunLl/BuZXJyMqpBy+v1cvny5bx582aibz1rBAIBtra2yssF5rsxzu/3R23jK1eu0GQyzdk4lnByROsTSa3SlG60t7fTbDazpKREY9aPZndIN2JJ54qKCra0tMyp/AnVOSQPrkj94dDQkGaeIF1wuVzMycmJsfps/kLS66TlleEkkKb3A4HArAmSUMmxZ8+eqB5cRUVFPHr0aCJvOWN0dnbSYrHQZrMlfVYzEYj2YF0ul2qyUk/3iDRlEQ8SRg6/30+TyaQ73BNFkSdOnJD9IhONSA2oDO/q6mJ+fj4LCwvZ3d2d8DKkA4FAgBaLRZfkoiiyp6eHVqs1/ZKjs7OTJSUlunF+v58Wi2XOPpCzqaTkrGu1WjXm5fmqT8wEx48fZ0FBQcS6WK3WmF8fiISEkaOkpER2kg0vaHNzs7zMYLaY6YPs6enh+vXrF50DkR6sVqtuHUVRZEdHB4uLi2eVb0LIMTY2RpPJpGsNnV5mkDybgZI4kkd3fr7Wo3uxQpKO4RBFkX6/P+KEXSwkhBzNzc2sqanRjaupib3MIBHQenQ/XFAuZQhHRUXFrAYCcyaHKIq0Wq26w8GRkZGITiqJwuDgoOzRLTVAeBe0GHSLWJheyqBV+Ds7O3W79VjtoiLHffGe/BcvhoeHabFYdOOUywxm+4AiXRfNo/thIIMSUn0jDV0nJyeZkZExY4upRnLMhBgk2draqtul9PT00GKxMBgMRn1YM42L5tH9sJEiHMPDw8zOztbV/ZQDhngRffm7/sJr1fm5c+ewefNmVVgwGMTevXtx8OBBGAyGWa+OV153/fp1bN++Hc888ww2bNiA0dFRvP7663j00Uflcj0Mq/CjwWq1Yv369XA6nZo4u92Orq6umWUYzhal5AjvZvzBP2u6nZW52XSPqhc8O51Obt5q06SV3ux4u6/74j26R6+x6h//QeXRHX69Ml9l/uH1eRigtxCKDE14ZmRkzCivmN1KtHPPzT8yKytLFe7z+bgyN1s1YxhOuGj5S7gx5pE9un/17j5ZqQ1P7w/+WQ7XI3K0eyxWRFrKoLfKMBpm1K08oB9Lhcfk8wsXLmDTlr/BA/olKYT9+/fjueeeg9Vq1XRB8WB8fBy7d+/GunXr8MQTT8Dj8eCdfe/CaDTqppe6Eqlc0q8gCKqyPkzYt28fDh8+jDt37qjC8/PzMTIyEnc+McmxVHhMfvjh+OKLL2Bd8xSWCo/hR3gUN27cgMvlgsPhAIC4dACJQOPj49izZw9Wr16NZcuW4dKlS/jggw9gMpnirsz/I4S8vDzY7XY0NzerwteuXYurV6/GnY9MjkgEkKAnBYaGhrBp0yYAwA+4j8bGRtTW1mLFihVxF+Dbb7/Fm2++idWrVwMArl27hoMHDyIzM1NOc1+8F7Ms0cIfRuzfvx8ffvghxsfH5bA1a9bg8uXL8Wci9S+xFES9uMzMTI55b/K+eE+zzCCa0nlfvMcJ3zh/9e4+lUe3nj4S6frwuPCwSMcPE8KXMpw7d44FBQVxXx+3hTR81BEIBLhkyRL5XLnMINrCnnCPbuXHWdNnp4j3IyjRbTbzDV6vV+VG4fP5+Pjjj8dxZag9oNswYfWfJsZ02rGxm/JIxeVyccOGDdpsFG5289mje0ZYONwgqXXb1F2ZH+FaRIoVRXFaVAcVUmPqd2hoiE899ZTs7HrhwgX5OiUkj+7s7GxWVlbOW49uUiHx0lyORCJ8KYPVauXFixfjujakkEqDCumbwgAgCPjmd/+O/7nxGJYaHgvXUzA+Po4VK1bg/fffh81mw7p166YuC2UWDAZx+PBh5Obmor+/H59//jk6OzuRn5+vyWu+QJhqiNB/UQ4PL+L8KXFsGI1G7N27F2+//TYAICMjAz6fT5UmtJ2aKNdLfibTPFH3pyLd3Bb2nfLwrwC+9NJLNBqNmi7C6XRG9Oie/5juOheLBFEuZSguLo654FrigWH6NVDPgRxtOAKx7Jf4Wd70G6T8jO74+DhGRkawc+dOeRO8Y8eOITc3F8ePH8eJEyfQ3d2Np59+WsNmTjGT80hqTMMAz1knBEGAQRAgCHZ4FFIEWFiSAwCWLl2KxsZGvPPOO8jIyMC9e/eippd5oHw7pOPe9gY6e89Mb5qjk2ZoaIh/mR1aZhDLo3vhaPhB+QP+8p8AzW5J86028bSvtJShrKwsbo90zVBW9JxhffuZ0H4f5fWa3ZQksVtUVMTf/stvZI/uRH8bgkwtqaR7tTWUqckRZWeH+YCZtJHL5WJ2djbb26c3Q6ov19a17ayboijykXCR8kb773HgQBNw4yzK8y2AoOxNQh+5P3HihGwdLSoqwsqVK3H+/HmcP39eI544L7sOfVAA/jDwtU6MAaf+419xa+AnABZevSQEg0HcunULX331lRx24CSBbQLy/smNmmIL3L1t+KstTyLPQxgkrZwAzh55AwcP/hqCIEDI2ypnMN0QocHN999/j8bGRixZ8iOsXLlSVQCl3rLQGlAgkGcJjaakWggAIKyC5Wc/kdMttHpJWLJkCRwOB4qLi+UwwoOrp0rx8+JVIABLXh7kWRVZPE11JxLcvW1J37d0vkKtd2yjR0z9FlopgRiqq3LPPeXeviA5rV8olK7eI3UxyTHfFLNUYKHVWa2T6G9BGnoJDESY6QIhBcxAwCBHSEqKIAi6OzkuTixS6RAD9dumCdF7pI6CgiARd2qKtcd6Araan1+Y2k5LAECIEKb63UVXTwV4vReGf+4DTx4IncMDu/AkVrefwYEdWyM7+8RqEAELVzHThaA8nLYNLhpiEFAOPgCg9/dnUf/LaeUU12/gUwB5q0LKqQHQf8jxPPjF5O19va99yiIa+rO/cUSTZkG/CgKAKdJLT+13nzVjy89Do1LiBv7O8rcAylBcnBdKk5aOLs0QRVGlWDrry1RWUGn/W62+tTj0Endv25TlN7SVK6TtXKcGJZISm/KtQ1OOiEpDyKDX1lCG166tAU82qWL/2PdvWL2lB25+AktsV9sFC0ZZ76OxkC46CNNbl8oNQQBCaILttYOn0es5pbnMIDvmq4mh5NpCUlYjlTWaarB4XwkZBllZkBti6udI62sob2jHljyFPjF18KfR61MB6hlZIcLxQkK8XcVDQA4AglbBFuHGtU+JX0yZkgVFWgA4e7oZ5Q2lsCiuYchoOH2evBInHLqkVlVA1FTo4SAHtOJTuP6n0LAtb5UmreesEwc/NWB3TTWUTSSNZICF1aVEhKoCBk2FHhpyaJC3CuUArt/wQOUSCA/2bt2J8oY2bFllQHi3ImFBESPczVGWfiIi1Q94iMkhwILnGsrwautRyArr9V4YhCeBhnacbNoxlVKrkC44CEC4AYwASAHq+oXpV4t+KBsDDdsEHPx0+rzXQxSvUo5q0la0tOP/AAkRI1QQSEZBAAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆O的直径,D是⁀{AC}上一点,若∠BAC=35°,则∠ADC的度数是()
Choices:
(A) 100°
(B) 120°
(C) 125°
(D) 130°
|
125°
| 69,897 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABxCAYAAAA025a1AAAWm0lEQVR4nO1df2xT173/XBilVTOM1MuLu14wXZzi4PTNIyC8V08G4bBURGpQPaUq4dXb0qWNeWr6mgqe5K6riLRoc15BL7Bs0IcrMQlUF4cJidAEME9BTWWk8NTrEFZnDTM8nJpupg40Acff94e5jn/c6x+J7RjIR0p0fX7c+z3nc77fc+6555wvQ0SEOQARgWGYjONjf9+8eRMXL17E8PAwrl+/DqfTGU03MjKCq1evxt2L4ziUlZUBABYtWoTnnnsOHMfhmWeewZo1a1BSUpLDkhUGzFwRlw2uXr2KM2fOoLe3F06nE9evX4dOp8Py5ctRVlaGdevWRSt/5cqVUCgUcfmvXLmCK1eugIgwPj4Ol8uFkZEReL1e9Pf3g+M4bNiwAdXV1TAYDCgtLc1YNrEGmK5R5gIFIy6bwhARLl++jA8++ADd3d0YHx+HXq/Hxo0bodfroVKpcirb0NAQzp49C6fTCafTiWXLluHFF1+EyWSKamrRgQqEcDicNo3f76euri6qqqoijuPo7bffpkuXLhVAunjwPE8tLS0kl8tJp9PRH//4RwoEAnFpMilPPlEw4lLB5/NRS0sLlZSUUENDA504cSKjfImVl4/KtNvtVF9fTzKZjHbt2kV+vz/nz5gJ5pQ4r9dLTU1NtGTJEmptbSWfz5eUJhsy8qkFXq+XzGYzLVmyhFpaWkRlLaQ8BScuHA5TMBikXbt2Ecuy9O6772bViufaRPl8vjjZJyYm5kSOghPncDhILpdTU1MTffXVV0RUGDJm+gypfD6fjxoaGkihUNDJkydnI9qMUDDivF4vGQwG0mg0NDAwUKjH5h1Op5NUKhXV1taS3+8vmEVYUIiR64ULF7Bu3Tps2LABg4ODWL9+fSEeWxDo9XrwPA+NRoO1a9diaGioMA/OdUtIbHE2m41YlqWenh7R+AcJdrudWJYlu90uGp/LsueMuEShpqamyGw2k1KpJJ7nc/WYokRs2V0uF3EcR7t27crrM3M+c0JE+Oabb/DSSy9hfHwcJ06cgEwmy+Ujih5jY2PYsmULnn76aRw6dCgvc6Gz7uMSeR8aGsK6deugUCjgdDofOtIAoLS0FOfPn8ejjz4KrVaLkZGR3D8kF2ormIqenh6SyWTU2dmZMt3DhPb2dpLJZOR0OnN635z1cTzPk0wmeygGIemQWHaHw0Esy5LH48nZM3JCnN/vJ6VSKalp8yBqa2sjtVpNwWAwJ/eb9eBkamoKNTU1WLVqFTo7O3NlwR9IbN++HePj43A4HLO+V8aDEyl+W1tbAQB79+6dtTAPOg4ePAifz4f33ntPMk3GejQbdbXZbKRUKovmU8f9AK/XS0899RQ5HI5Z3Scr4oRONxwO08DAALEsS0NDQ2nTzyMeLpeLWJad1cTEjDTO6/USx3HREeQ8sofdbieFQiFqrTJp8FkPTogImzdvhsFgwM6dO7PJOo8EvPPOOxgeHsZHH32UfeZsW8qRI0dozZo1FAqFss06jwRMTEzQqlWrZvTumxVxwWCQOI4jl8uVnYTzkERfXx+pVKqkL+npSMxqrvK9997Dli1bsHbt2uxVex6i2LRpE37wgx/AarXGhadbypi2j6N76yFHRkag1Wrh8XgeyonjfGJsbAxqtRputzvjxbhpNU5gvq2tDWazeZ60PKC0tBTbt29He3t7xnkyGlWOjY2hsrJyXtvyBCLCV199lVUdZ9THtbe349VXX50nLU9gGAalpaUwGo14//33AaSf+kqrcTdu3IBSqcTly5ez2gwxj+whjCO+/PLLtF/N02rcn/70J2zdulWUtAys7DyyQFlZGXQ6HT7++OO0adMSZ7PZYDKZROPyvZUIAKabRjhNXHj6mpIS3Dd45ZVXcOjQobTpUprKixcvoq6uDqOjo7mUbUagFNu0pOIIYTCzX1aTVyTKPjU1hSeffBIulytpn18s4kqVyOGHH34Yp21zYxrDaffWMQwjqlzFThqQbLUWLlyIbdu2pde6VNMrHMfNyf60VIiVNXI1RQkB9x0S639gYIBUKlXKPAvEWAeA4eFhhEKhnO/+nA1IVPNitCr/XW5ekFimtWvX4urVqxgbG5PMI2kqz507B71enxQ+l0gsoPDLfbwDDMNE/6p3dBReuBxi4cKF0Ol0cYcSJCKOuNiKOXPmDDZu3JgUXiwQGlPHvxlQWXcSn1OkLwyTG9jXiuodHffjoDKKDRs24OzZs9IJpGyoXC6n4eHhWdvv2SKccB3729psIFS/npSH77YSsInc92unR+n7ue+IEIm//e1vCIVCWLVqVT4bVUaY1vXpoT0BGDregdb9fXDwn0TCkvq/4h9RpsL69evx5ZdfIhAIYOnSpUnxSaVjGAYejwdqtbpI+jbhxXqaNAbA/n2tMJitqFMzAAEMQ1HT+MXIXyP5qPhMfDaoqKiAx+MRjRNtlsPDwygvLy+Svm1BdAZEII3A4y+9QE11TSSCiaQTpO3t2Q+D+XmsLgbxZwGlUonh4WHRuChxsdrl8XiK6jVAYETggRnyoA9AmXJ1fDoC+D93YH8v0Nz874WUMC9QqVRJGifwFCUuVruGh4eLi7gE0OpnUM0AI574bbvEDOPNFyImdOv9rm6IEOd2u0XjRE2lz+cDx3F5FSpzJE8uM7QaP3ndgNZ9+6YDh7qxgKkAzFb0/tdbBZQvf+A4Dn6/Py5MULCkUSUAjI+PF9GJcvGDEiBy8da+Xvx1MwOG+X00pYMPRwYr9yGSR8XA448/jvHxcdH03xHLUFzERZBIBxFh3yeEfUAcqySS9n6A2ECwpKQEt27dEk2/gGGYpGH/+Pg4Hn/88bwIOBvEyhl3lmXMHAkD4PTp06ioqMAPf/hDnD9/Pqv7FhNKSkokNY659yIeVxFiZN5PqKiowOXLl0FE0Gq1+PTTT+dapJSIrf/Y65s3b0KhUCAQCCTlkfw6cD8TB6SXv5jKl6g0iRCTVXRUmcq2FiuEwo2MjOC73/0uHnnkETz22GP4+uuvJddwFBN5YggGg1iyZIkomZLE3b59O++C5RK3bt3CO++8A61WixdffBG3b9/G7du38dvf/ha/+c1vUFFRgaNHjwKYNkfFMTMkjZRjDbGZ5/Ly8pyeEJAvCF+O7XY7cRxH9fX1kudInjp1itavX08KhYJsNpvofYoBiacUVVVViaYTJU6j0dDg4GBeBMslLl26RAaDgdRqdcbniDidTtLr9aRQKKirq4umpqaKirhYnD17ljZs2CAaJ2oq5XI5rl27lk8rMCuMj4/j7bffxo9//GPU1NSA5/no1/p00Ov1cDqd+PDDD9Hd3Q2FQoH9+/djcnIyz1Jnj2vXroFlWdE4UeLEJjfzCZIYJIiFHz16FOXl5fD7/eB5Hm+9NbPpLb1ej5MnT8Jut6OnpwcrV67E3r17Jd+b5gJffPEF1Gq1eKSYGnZ2dlJjY2MejUD24HmedDodVVVVUX9/f87vPzg4SHV1dcSyLLW3t6c9SKYQ5tVoNNLhw4dF40SJ6+3tJb1en0+ZMkYgEKDW1laSyWS0b9++aHi+Ku7SpUtUX18fPXM58dj6QkKj0Uju/o0j7s7kJN2ZnCTPF1/QE088URDhYiF1SGlTU1PBjs0VnuHxeOhnP/sZyWQyslgs0dMRCjmQWbx4sWTDSdK4O5OTRBRZLDRXi2FdLhdptVqqqqqa8/3mo6OjZDKZon4HMjm2PheQWiwkNBzJFTXC6KuQuHHjBnbs2IHnn38ev/jFL3DhwoWU+82pADMfK1aswKFDh8DzPP7xj39AqVTizTffTLlYNRdwOp2iI2Vh0kCSuI0bN+J/zp3D3Tt3cPfOHQCIXgu/Y8MSIZY2Vdwf/vAHVFRUAIgsnWhsbJS8hxAWuns3KTxRJrHnzwQcx6GrqwsejwdEBKVSiddeey3Jc1au4HQ6o+taYxFtrImqKJjKS5cuUWlpafR3Ynym1+nizvf3U1VVFel0uriXfrE84XBY8t5C/5z4W+yZuYDgOEImk5HJZKLR0dFZ3S+27wyFQlRSUpLSLEsSRxTZ9MF//rlonPA7scKk0iVe+/1+amxsJO6pp0SHvFKVnYuGlEv4/X6yWCxRAmcyLpjxpg8pGI1GfGS3pzQ3ix55JPoXp8opsHfvXqxevRpLly7FxYsXsW3btrR5ihUsy2L37t24cuUKFAoFtFotXnrppegin0zqI3Gy+8iRI6ivr0+dSWBQzKwMDg6SQqGQNDl3JiejrSUTjevv76d/fvZZ0uv1xPN81PSJDbFna4YLpXGJCAaD1N7eTizL0gsvvJD1nG8oFCKWZdOa3jjixAqo0WjI6XSmNF1icbEmVPBDU1paSna7XdS8CnliSczk3lJhUtf5QmLjCwaDtGfPHpLL5VRTU5OxWxqHw5HR5EfKjY1ERHv27CGTyTSjgodCIbJardF3oFydR3w/YWJigjo7O4njODIYDHFfMcTqva6uLumzkxjSHsLm9/uJfeKJrF88+/r6SK1Wk8FgSPq2V6yfUfKJUChEXV1dtGLFCtLr9aJnfXo8HmJZloLBYNo6SkmcYGLebGnJ2OWIz+cjo9FIHMcleV58kAnLpmw2m40UCgVptdq4OmpqaqJ33303o3sgkwd6vV5iWTblhGsoFKLdu3cTy7JksVhEHeLFHg38oCOTMh4+fJhUKhVpNBqy2Wy0ZMmSjCe1FyCDdRccx6G2tjZ6XJGwLFwY6J46dQoqlQqfffYZLly4gN27d2Px4sWSw95iX+sxE1DCsD9dGW/duoVAIIBvv/0WLPtPcDgc+PnPf575sVuJTE5J7OIU7G8gEIhuC/V6vVRbW0tKpTJjh7QPO3w+H1ksFnryySfJZDIRz/Pk8/mIZdmkcUSYiBwdzQQsIACEza9TmNzU3GxNfgEXdplR9F8EZWVlMJn+FTt37sTknbv49a9/jWeffRbr168Hz/PYsmVLZi3lIQBFxg5xYW63GyaTCRqNBgAwODiIQ4cOQa1W44033sAbb7yB0tJl0xmGurFgAYN9f/0+iKYwRWHQ+5uxgFED3y9L1LjUC2eCwSAtWSqj733ve1RXV0der1cybTgcfij6snQ4ceIEGQwGUiqVdODAgaS+/3RvHymVymh4OBymMLnJAJDBbI1LGw6H6XevbyJrN59iVClR5xaLhRYuXES/+tWvZleiBwRijXNiYoIOHDhASqWSdDqdZDcyMTFBKpWKTp06FRd+rKOZgI2ihw84OprJwWfrMOLen16vjwqVSuseNgj9F8uy1NDQkPYjsMViIaPRGBcmaFuz1THdKMJEcScoUQxxcS3n3uXnx63k4JNZFxxGvPrqq8SyrKi7kYfJTPI8TyaTiViWpdbW1owas6TDCLeDAJC1O94LSGJtIj50KiZhhHkx4oiIPv300yhpKpWKmpqa6Ntvv00r8IOE3t5eqqmpoRUrVlBnZyd98803oukSG7HL5aJly5aJu2jhI8R1HHdTopbFQtJUdpibqbq6WsTOTt9McIrk9XqpsbGR1Gp1Wn8xxaqJmcoVCoXIZrORWq0mnU4n6YFYCoK1irNSccZu2lQmgT9OHQ6eiKbEiXNYd5C1+xgZGEPa03laWlrIYDBQKBSiI0eOkFwupz179mRVmGJBKvL8fj+1tbWRXC6n7du3z2gR0+TkJGm1WtFprdgnR97d4s0lf/x3cacoJRPndkTYdjsI1U1EU9KFCYfDFAqFyGAwkNlsJqLIqiitVltwT/SZQEqWVDJ6PB5qbGwklmXJbDbPajDW0NBAdXV1IjHJJvHz41aKHL0T+ave0TEtr5jGCQSE3HYyNP+nuAQJ5Ux0tTk1NUUWi4XkcnnOnbrmApk0pr6+PqqtrSWO48hqtc56YWzWrjZTKAxRgsYJKir8Jb4AEiUfiiYg0bktUeSLN8dxZLFYisaJUirSYvuvqqoqyeXf6e49Y+e2wuhfRMbECY1p4gQTeQ98tzXyO+ke0iMdMXfSgUCA6urq6Ec/+tGsV0LNBJloVyAQoPb2dpLL5WQ0GnO6N0FwJ33u3Lksug3pOhYQ+azjdiQdH+joaBYf2aQBz/OkVCqpubmZ7t69Gw3v6uoiuVyedSvOJ0ZHR8lsNpNcLiez2ZzUsNJVdKr4iYkJMplMVFlZmZdNorA2GyKmkbn3zhYmaq5ObS7TIRAIUE1NDen1+ri+ged5UqvV1NDQIPnOUwj09/eT0WgkuVyedf+Vidb4/X6qqqoio9EY7dOyHaSFky4kZk5yjVAoRGazmZRKZdy73cTERDRcbEidqoAzGaHG5jl8+DCtWbOG1Go12Wy2WfW7Uv2Qy+UijuMyXjEwU8yauHSVabPZSC6XJ62xOHHiRLTF5xOBQICsVitxHEe1tbXU19eXt2fZ7XaSy+VZv5TPBHnTuFi4XC4qLS2ltra2uHCfz0d6vZ4MBkPOXVIL/RfLstTY2DjjBUuZpAuFQmSxWEihUMRZl3y+wxaEOKLIVI/BYCCNRkMDAwNxhRJmJHLh5XhgYCDaf7W1teXdR7nT6SSVSkW1tbV048aNvD4rFjkjLtPW5XA4SC6X0y9/+cu4zYKfffYZKRQKamlpoUmJ1c2pnmu320mn0+Wk/5J6RiyERb4rVqyYE7faBdO42BfIYDBIu3btim7XFQgMBoPU0NBAGo0mo80TwWCQOjs7SaFQUHV1dUEqUNilI8gutpqtECgYcWLwer3U1NREMpmMWltbo4tlDh8+THK5nA4ePCiZr7W1lViWjS64KYSsZrOZZDIZtbS0FGxnqhRybioTzUomJs/n81FLSwuVlJRQQ0MD9fT0kMfjoaqqKqqvr4++Z7lcLmpoaIiu3SxE5R07dozq6+ujy+hj+8y5nEDPyEdqYRDG1/6/w37sYxw4cABjY2PYtm0b/H4/Tp8+DY7jMDY2hp07/wPbt72MxY89KnknSuP9Kh3cbjcOHjyIo0ePoqysDK+88gp++tOfQiaTzfreuULREJdYIcPDw/jvgx/AcfzP+Pvfb6CyshIvv/wy9Hq95EHfM61Ut9sNp9MZ/WNZFkajESaTCWVlZTMuUz5RNMSlOpP3mvcq+s6cRl9fH86ec8L3f2PQ6f4Fy5cvR1lZGdatWxc9injlypVJDvOuXLmC0dFRMAyDYDAIl8uFkZEReL1e9Pf3g+M4bNy4EQaDAQaDQdKtaDFomoDiIS4DCJV38+ZNDP7vRVy+NIzr16/HnQ4xMjKCa9euxS1IXb58OZ5++mkwDINFixbhueeeA8dxKC8vR1VVVdGdP50Jipa4eAUMI3pARIFPyy42TRMw58QJjy/GyilmzLnLp9iTWmfahorUaOQVc04cgOjmEoFA82YGCxYsiPPC2HFc3FVJbL6HCUVBHMV5DgD2fUJoriZYu3kQEfhuK1rrKtHtpvvaC2MuURTEMQwTN94gDGH4k014/oWItyp1+fS7FDOd6KHG3BOXREAYQ8dPgjE/j9X3aDK3bMWm5t/F+815+KxjPAo3u5Y5HB3N0cWgDEAOt/gnmmJabFtozL3GiaC3Zz8+/nwKRIRj1h3Yqv4Out3JtvFhHJQIKALiwvHWcqgb+/E6tlZGRHvhrddhANDbczyafh5FQBxR/MCku6cXzT/ZHP3NDP0FfQC+ryy/FzLnIhcF5nzmBEDcNJZ5M4Pq9yMO/MIYwk8YNfoYA9zhT1CBeyTfr07icojiIA6A+3gHKutao78j3RcDqn4NdGp/NHyeswj+Hybl0+NS3g/6AAAAAElFTkSuQmCC"
|
<image>如图,在⊙O中,AB是⊙O的弦,点C是优弧⁀{AB}上一点,连接OA、OC.若∠AOC=100°,则∠B的度数为()
Choices:
(A) 150°
(B) 130°
(C) 100°
(D) 50°
|
130°
| 69,898 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAIIAAABxCAYAAAAZBXtKAAAVE0lEQVR4nO2df0wU19rHv4NaNaWiybau7VpAeOsa/tC+NZGkrejLUrm9/Go0YlIaaaKyphppZAHfmqpRC72QlJtIWcBETO1bkpoiV03XXXpZbmkkVVvToGBZREN7L638oUXLqss87x+7MzuzO7O77O9d/CSEnXPOnDkz55nnPOc5P4YhIkIcQ2DBIMF5TASGYRxxAAMWEMRbTHqMLNMiJy3MBY0wCd6TxDZ2IWCdxw4hsMcJIIBgwd43doatbNFE3AuCHU+36YhjgJaqFlB+PlLTWA/p45MZIgjS2NtEe6WbWnWgHA1wLq5bSlniXhC8m0AJoGEjTJSDHSmEs/krkI4ETkpmDHEvCEKbwC3O8b+quQt/2/EGGIZB/vI0EFgXAyL+iXtB8IapVYe6ujowDIOE9A1gGAYMzbzHEvd3zAp0PEGs8VnLBXRRDogIRIQhYxOWp6WAGF+alPhidqQLEGoSHDpe6D8AABo2Ytbeb0Cdf+PDRm4NA1jmOGOGtQ00A9FXFXDKgS4MsUREpCtwKAwGVFDZHOEShh+GaIbpQHAeRcGxq7ZwOZ4JxL2N4AoR8UJw5swZ9PT0uFQ6C8wwIQCAGakRAODRo0d46aWXMH/+fFy9ehVz587l455ohDhESs4JwOHDh5GZmQm1Wo2amhpRPMMwM67XEPeCwL/ZBNjdySxuDg9Dr9djbGwM2dnZ+PTTT3Ht2jXp82YIM6RpcA41ExHefPNNrF27Fh99VIvhoZ/R0XkGbW1tuHjxYmSLGUHiXiPYcd5mZ2cnbt26hXXr1kGleh7PKRejrKwMANDc3BypAkacGaIR7Dx8+BBqtRrHjx9HV1cXbDYb6urqAADXrl3DunXr0N/fj8WLF0e4pOFnhmgEOzU1NVi9ejWys7NhNpuh0Wj4uIyMDGi1Wmi12giWMIJEwIkVEW7dukVJSUk0OjpKExMTNHfuXJqYmBClefjwIanVauro6IhMISPIjBGEvLw8qqmpISKi9vZ2ys7OlkzX09NDKpXKTUiIiFiWDWkZI8mMaBrOnz8Pi8WC999/HwDQ3d2NnJwcybSvv/46NBoNPvzwQ7e4uO5SRloSQ43VaqX09HQyGAx8mFqtposXL/LHrm/6nTt3SKlUUl9fX1xrASFxLwhHjhyhoqIi/nhgYICUSiXZbDYichcC7vjUqVOUkZFBNpttRghDXDcNt2/fRl1dHRoaGviwnp4erF27FrNmzQLgru6547fffhtLly5FfX19fDcJHJGWxFBSVFRER44cEYUVFxeTXq/36Xyup3Hr1q1QFC+qiFtBMBgMlJ6eTlarlQ+z2WyUmJhIo6OjPudTU1NDGo2GP47XZiIuBUHKQCQi6uvrI7VazR+zLCtrI3DYbDZatWoVtbW1ha7AUUDM2wgk8JBzvxsaGqBWq7FhwwZRuNlsRlZWFp+eYRhZG4Fj1qxZaG1tRXV1NcbHx0NyD1FBhAUx6IyOjsq265mZmXTu3DlRmK+qvry8nN59992glDEaiTtB2LRpEx04cEAUxrKsrFvZFTnBmJiYIJVKRWazOVhFjSriShAMBgMlJyeLDERhXGZmZkD5nzlzRjb/WCfmbQSOhw8fory8HI2NjaL5hxwdHR3Iy8sL6BqFhYXIzMzEoUOHAMTZIphIS2KwqK2tpby8PNl4tVpNfX19AV9nbGyMFAoF9ff3e0wXa93MuBCE0dFRUigUZLFYROFcZYyNjVFiYiLvVg4UvV5PmZmZsm7qWCQumoaKigpotVqkpYn3u+G6gmfPnoVGo+HdyoGyY8cOAMCxY8f461CsNxORlsTp4vr2dXV1eTXgiouLqampKajlGBgYIIVCMS0vZTQTc4IgxGazkVqtpq+++spjOqVSSQMDA0G//oEDB/iRzVhvHmK6aWhoaEBKSgreeust2TRXrlzB3LlzoVar/b4Ouah97njfvn0YHBxER0dH7I9QRloS/YFlWd569/am19bWUllZWcjKYjabSalU0t27d0N2jXAQkxqBYRjs2bMH27Zt8/qmm81mrF+/HkBo+v1ZWVnIzc1FVVVV0PMOK5GWRH8wm82kUqm8evgmJiYoMTGR7ty5E9Ly3L17l5/aFqvElCCwLEs2m40yMjLo9OnTXtMHw63sK+3t7fzUtlgkppoGhmHQ0NCApUuXYuPGjZJpSKD+zWYz1q1bF5aybd68GUuXLsXhw4fDcr2gE2lJnA6+GogcGRkZYR0t5Ka2haKrGmpiau3jO++8A5VKhY8++shrd+33339HWloa7t69K+lRpBBthvH3v/8dHR0dMJvNQc87pERYEH2mt7eXVCoV3b9/32talmWpvb2dcnNzw+ro4WyYV155JeamtsWEIDx+/JgyMjKovb3d53NKSkqooaEhhKWS59KlS6RUKmlsbCwi1/eHmDAWGxsbsWTJEmzevNnnc7q6uvg5i+GABC3s6tWrsWXLFuzZsyds1w+YSEuiHMIh5OkYiETO1UyR5I8//qAXX3zRbSZ1tBI1GoFcbFbOkKuurkZpaem0xgrOnz8fVm0AuJf/mWeeQUtLC8rKyvDw4UPZdFFDhAXRI319faRUKj1OOJUyBnNzc6dlTwSKJ4O0uLiYKioqwlYWf4k6QeAeKrewZLoVyq1mihZDjWvavv/++0gXxSNR0zRwcE2CXq9HUlISiouL3dKQB/Xa29uLlJSUqNkHafHixaipqcHOnTsxNTUV6eLIEnWCAADj4+M4dOgQGhsbJeM9OYIMBkPAs5WDzbZt25CYmMhPbYtKIq2SpNi2bRuVl5f7dW5mZiZvqUfTrKFon9oWdYLAGYj+TPS4c+cOJSYmel3NFCkOHDhAubm5HtNESnijShA49+xnn33m1/mcWzlasVqttGLFirD2aHwlqmyE48ePY/78+SgpKfHr/O7u7rANO/vD3Llz0draivLycty7dy/SxREhGn20Wq18xLx588JakPHxcaxYsQJmsxkZGRl+5ZGamoovv/wSq1evDnLpggu3qader49wSQS4qojJycnw6yUiKisro/fee8/v86PBrewr3NS2aFpZHRUf97p8+TI6OzsxODjodx49PT2iTTCimaSkJDQ0NECr1eLq1at46qmnIj4d3qONYLVa+T+pY2GYt3M9xe3cuRO1tbVISkryKQ+pcIPBwNsHk5OTojJHI8XFxUhPT0dNTU3EhQCA96bB07Evv73FHTt2THKC6XTyttlstGDBArp9+zYfPzk5KfodjXCLd6Nhatu0eg1Wq9XNiJR76wWCJusSHh8fx9GjR9HU1OTxut4M18uXL+P555/Hc889J0obboN3uqhUKuzfvx/bt2+PdFG8u5jnzZvnsaLnzZvH/0khtWEVx/79+1FUVISVK1d6LaicMAHA119/jezsbK95RCO7du3C5ORk5D8awqkGT2pULi6QpoGbzvXbb79JqqrJyUney/bnn396zDszM5MuXLjgc3miCZZl6dKlS6RQKNxGTMPpZeT9CNxbL/dmSzULns7z5JOwWq1Yv349tm7dKvpQhus1pPImItFED5vNBoVCgV9++QWJiYl8euG53u4tGti3bx9GRkbQ3t4emQL4KjGBvFWukt3a2ioyEH2VfKl0HR0d9Oqrr/pdtmiAZVmyWq2UnJzstv1fuPBJEIKpWjlnyqVLl4KSX1lZGdXW1gYlr0jBCbjBYJD9aEio8bjAJRQu5127duHx48dBM45WrFiBtrY2rFmzJij5RZotW7ZgyZIl+OSTT8J74XBK3Y8//khKpTJoq5O5JWaxuvBUCu6jIcHSmL4S1tHHnTt34uDBg1AoFNM6j2SUlsFgQG5ubtA2yYoGFAoFamtrsX37dtHUNrlnIA0r89sFQZZhE4STJ0/i8ePH/Mc2p4OcH6K7u5vfBCOe2Lp1KxYsWID6+no+bHpu6ATRbykRIiKAYUUBISfYBiKRfRKL6yZZ0TQ1LVAGBgZEm4tL3ZswjPUQRjRF7gnFeQVdI5CECvvggw9QWFjIzxOQSjPd/C9fvoyFCxeKFr5ExeCNH0g9D7VajfLyct7PInVvwjDuV9VbCWAS7N7cBMcfwxTB4prQNTu/RdZH+vv7SaFQBH37mlBvkhUNcLvDnDp1SjYNS04twP3XFYCMFuLf+qbKfALyaUioGfiT7T9DLgivvfaaz99Q8oZQ7Wk0mqic++cvcs1aX1+fzy+SvV6HKK9A5xanKwAVVDa7pecIibFIDlX3+eefY3JyEtu2bfOYzlc4VXj//n18++23Ubd+IRDkmrU1a9Zg48aN0Ol03vMAMNxlRII6nQ/jnvAydT7+MWgRhQuvGBJBYBgG9+7dQ0VFBRobG2W7d/626d999x1efvllPP3004EUM2pxfUE+/vhjGAwG9PT0eDmTxTdGA97M+R8+hHvCaenLRSlFT55C2H08ePAg8vLyQuLx6+rq8mm2svh5euhP8+lDt1LZ17xJYkufpKQkNDU1QavVelxZTbiJ83UMsjXL3PIdttxAgUBTCGGZqdAYi6EyEDm4by947C5ajAQGBAZkEuzerysAASC4tKOsMA759DM7PW+lt6/FyYVNB41GQ/n5+fJ5Dl1wswOIiNghEwEgvWnI7TyWpohl2dAYi1lZWXTs2LFQZO3TtxeMLRUEJNgtZyKn9awrJF3zBXua5krHQ5viz3E+qCHS6YK7m7uvCCt2YGCA9Ho9FRcXk1KppCVLltCcOXPop59+cjnLfg+mVh3pmk3i/Mgh4IXuBqTQWgy6ILS3t9OqVatC5v8/deqUx9VMQ8YmAlNAvOw7bpa1XCAgnyzslCN4iPKZPHuXirULQnOXXXKm6OdpC0IwnFkDAwPU3NzMV7xKpaKSkhJqbW3lP0rS0NAgOceTpSEqAJzCT9w9u2g/mWIGVRAmJiZCvhVtcXExNTe7qz8OXQGosrLSoeKd6vDnC5+KHgjL2khXIFaXlYXOpsGtzx0CXN/4F154ga/44eFhyXNsNhtlZmaKuuRDxib+fhmA/y1uDoT34+5pDKogVFRUUGlpaTCzdOPZZ5+lgYEByTdwashAQD7pjQ7131LBV6qxpYIKKltE6V0FwZ3AhMG1jK4VL/XG+0J/fz8lJSUJVlZLuJBdy+Ilz6AtcBkcHERbWxv6+/uDlaUIIkJXVxfGx8fx66+/Ol3Lgg7xzZERoECNHTlvAAA028tQsOO/8E3XTSxzJHbtPzth4dqJImIQiNf6xo0b6OnpQXd3N3p6ejB79mysW7cOGo0GR48edfv0kK9kZGRAq9Vi9+7d6PiqA2AE5ZYpr4RH2d47cTyQoAnC7t27sX///pDtVMIwDH744QcUFhZiy5Yt0Ov12LhxIwgExnGb5OhOOd3p6VheYP+dmpKGf5yzOOLslU6Cp0NIcD4sx8Nh5J6qDIODg5IVn52dHVDFS3Ho0CEsX74cZzrPoKioCADAiu/Cibz0O8N91kecipFQyV988UVYdibnNsnq7e2lpKQkfl8ifkDNYRDy7TtLVFFoN6C4OK5baD/+q8AWmH4zIFT1ixcv9lvV+4vJZAra1LaAbQTuU7m9vb0BF8YTVqtVtElWa2urZO9E6FO/YWoSGYifVuY7u48te/nfvhKsNj6YlJaWBrR4mCNgQaiurqaSkpKAC+INqW8v5Obm0uHDh0VhXDeKkbH+OadRYRVnOMprgmiseFfGx8dJoVAE3FPzKgie+sfXr1+XXJgRCqqrq6m6uloUxq0d9FU1CkZd3eNYNqCKj+SkmBMnTgTcNPulEbibzs3Npfr6etn4YCLcJEt4jU2bNvk9HO1a8UuXLuUrfmjYIpKaaJ/9tHbt2oCm9fvdNJw+fTpsn67h3MpS33Dq6OgQfRPaU4XFgqr3F4vFQgsXLvT7PvwSBKvVSiqVirq7u/266HTxtEmWzWYjhULhEBJxe3/9+nU3l+07b5dQa2uz7AOL7vfeM7W1tZSVleXXuX59wSXc6/S0Wi1SU1NRVVUlOUy76r9fRvv/fQEAfD/e/K8ezJll78dnZWVh/fr1bv147tZF+Xnqc08DqXKGmqmpKaxcuRI6nQ5bt26d3sm+SAsr+MFtHDk29u+wvT5KpZL6+/vdysSp+iVLltCiRYviStVPF5ZliWVZt6ltnqpI2IwyLMsSL7nc2yD3VhDwlzc3QKN5A3v37g1MfH1kcHAQ69evx7//8x/ccHju/mnuxr/MTs/d6OgoNBoN9u/fH5YyRTu7du3CgwcPcOLECZcYdzc6B0MsEYFTY4KEZO+MCzyQ6OzsxKZNm/C/1fuQMDs8q4uuXLkCk8mEOXPmICEhASkpKUhOTkVqajIWLVoUljLEGg8ePEB9fT0MBoPP361w2AgO37ugXSOJNu7kyZMYGRkJdrk90t/fj0ePHiE1NQ2LFnGbbUlLNsMw0fthjDDDMAySk5NRWloqCje16vDGDscKqgIdqLMMlZUmp43AsizpCsVj2QBIbxyWbVciQ+jnCcQj3CSVvKpmtzBd8wX37mNloXOM3mJqIcZl1gtRZIQhkM00ZgKe7pulIcqH+7oGIqKmyr+S3jQkno9AsGDwbD52dCwDwGJZajKkBuT55gNB6Wn5hC9dMYpAly1akL9vFl2tepxFPiwfi3dvIyKkpa8AUtPF3cchYxMvNdykx4KqJuIDIvCy8TOLHTOSISPZXPfpCWK4QTjnSKt00yoSBPvULqd9YLSEs+7l2/5PK/N5W8X9xp7gCc4OaDINi+qSZR116wgUmd6mc/UwWghEUzC2VGBDOoOu4eCrMWnk19qMDADZOSkA7LOO/lKZjxvDtyTX/T9BDON4SAxYUTPOcK4BRyD/9GnYiDrokJNmD9ZsL0M+ANM/DfzJrMujp1B31Qhgh42oY9RIFwjKyI2zWJ6Wwt/kE+Sh9GUoADB886b7yqhhA5pNNx0HDowtFVSpN4lUCgNQk/HncGgwWYwtFaJmQHaJ9xNk4Zp84YztG6ZG0ewtXhD4NfVkb4cLGdelX+IHL2xfQolzGRoISHBbqvYEz3D1JFz7ABeDmyUiiBMkOBdJFOi8jFiE+A7IYeh4rPgnWmF6TNEUiTfV4JidnqMFkZZrJnzvhwe7u847JZyTsodGbgpW8Drdyk7/RVR9kioGSOCfmKsvSDwfwdVDFE6PkcQlq95ioKknhwHrivxI2hPECF9wuSr1a2JKqOAKTMNGJKQ7R82MFoJm2cz1GoaD/wdGfsi++p0aFgAAAABJRU5ErkJggg=="
|
<image>如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()
Choices:
(A) \frac{1}{2}
(B) \frac{2}{3}
(C) \frac{3}{4}
(D) 1
|
\frac{3}{4}
| 69,899 | null |
\frac{3}{4}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.