image
unknown | problem
stringlengths 14
525
| answer
stringlengths 0
124
⌀ | id
int64 0
70k
| choices
null | ground_truth
stringlengths 0
124
⌀ |
---|---|---|---|---|---|
"iVBORw0KGgoAAAANSUhEUgAAAF4AAABfCAYAAABhjnDLAAAQN0lEQVR4nO2df2gcVbvHn7G2qX1z3aojTq+ji+2C024urKTW5XbtRG+kESMu2BK5VJtKZCuxGLErK1SCWHBj+0fAgL3kiltoIfAudytGupWUmyZb3JpCtCRupekmNbyw/YHdsmo3zWa/7x++M3dnd2Z3Zn/nvX4gtHvOmXPOPOfM+fmc5zAAQP9EjI+PE8/z9Nhjj9U6K3m5q9YZKDfbtm2rdRZ08U8l+Pfee49EUaz72k5ExCy3pgYAMQyT43706FHasGEDPf3007QcXmnZ1Xg1oc/OzhIR0cMPP0yiKFY7S0Wx7ASvxmeffUa7d+8mIqItW7bUODf6WPaCP3r0KB06dIgYhqENGzbUOju6ubvWGSiF2dlZAiC36ePj4xSNRmucK33UXPBanWWhZ+bm5mjPnj00OjoquxsRema6xeShZFCHpNPpvP5utxtEBCLC7OwsAEAURdnN7XaXlE46nS6Yh1Kp+XASZaptv/76KzU2NpYhR9Wh5p1rMULPriunTp2iffv2lRRHtal5jZdAgTb3xo0bND09TeFwmObn52lqaoqWlpbou+++ozt37ijCsixLVquViIieeOIJ4nmeNm/eTDabjUwmU3VeqAB1I3g1Ll++TMPDw+T3+2liYoLsdrssyJUrV9LHH39MmzZtogsXLlAsFqMVK1YQEdHVq1fpp59+IgCKggqFQvTMM8+Q0+mk9vZ2MpvNtXu5ivYgRTAxMYH9+/dDEARwHIeuri4EAgGkUikAQCKRQHd3NziOQzAYhMfjgcfj0RV3MpmE3+/Hnj17wLIsrFYrDhw4gMnJyQq+kTp1I/jBwUHwPA9BEPDuu+9iYmIiJ0woFILZbEZnZyfi8ThSqRR4nkckEikqzVAohJ6eHlgsFvA8j6GhoVJfQzcVF3yhYdnw8DCsViscDgfC4bBq+GQyCY/HA5ZlEQwGFc+Komg4TTVGR0fR3NyM5uZmjIyMlCXOfJQs+EIZ0vIPh8NwOBzYsGEDhoeHNZ8/d+4cHn/8cezcuRPXr19X+DmdThw7dsx4pvPg9/vxyCOPoLW1taJNUNWbmpmZGTidTnAch4GBAc1wi4uLci33+/05/vPz82BZFslksux5TKVSOHz4MFiWRUdHB+bn58ueRlUFHwwGYTKZ0Nvbi0QioRlucnISNpsN7e3tObVcoq+vD93d3ZXKKgAgHo/D4/HAZDIhFAqVNe6qCd7r9RZ8gVQqhd7eXrAsC5/Pl7cZM5vNqk1B5jPlapeDwSDWrl2b84WWEn/FBZ9MJvHqq69i06ZNmJmZ0QwXiURgs9mwfft2xGKxvHFKHWE1kIQ7NTUFi8UCl8slD21LoaKCn5+fR3NzM9rb2/M2LX19fWBZFoODg7pqUUdHB44cOVLOrOoiHo9DFEU4HA7NJlAvFRP85OQkOI7LO7mJRCKw2+0QRRFzc3O64o3H42BZFvF4vFxZLUhmZVhcXER3dzfMZnPR8wegQoKfn58Hx3F5a2V/fz9Yls07stF6rrOzs9QsFkVmAXi9XpjN5qJrvkLw5eiMbt++jebmZs2aPjc3B1EUYbfb87b5WlitVoTD4VKzWRZcLhdEUSyqzdes8UYLQQrf0dGB9vZ21TgGBgbAsiy8Xq/RfAL4YzIlCEJRz1aCVCoFURSxd+9ew88W3dSoFczBgwdhtVpzOtJYLIbW1lbY7Xa5XSymYF0uF/r7+4vNckW4du0aLBaLosnU826kN2AhhoeHwbIsrly5onD3+XxgWRa9vb2GMpZNIpEAy7IljyaMoievkUgEJpMJo6OjuuNV1PjMfUvpb2xsrGAkMzMzOQnHYjFs374dNptNnuiUUsCDg4Po6OhQuFV6X9QIUsXTOzrLaWpEUZSFPTY2BiJCNBrN+5JOpxMHDx6Uf/v9frmWlzLZyEzTbrcrVibrEbfbrXvElSN4aW8knU4jGo2CYRhEo1HNCEKhEDiOQzKZxPXr17Fjxw4IglDyyEMSejqdxtTUFMxmc0nxVQNpjqFnVVMh+LGxMYVqREtLS15ViXQ6DYfDgcHBQbmWv//++2VdMUyn0+jp6VF8UfXMoUOH8MILLxQMpxC8z+dTtO9qNT3z8w8EAti4cSNee+01CIKAc+fO5YTRQ77wyWQSHMdVZGm2EiSTSZjNZrm/03q3nM5VErZUCNLv7AhSqRQsFgvuu+8+dHd3512LKYWhoSF5XrBcOHbsWMFFPFnw0Wg0ZxuNYRj4fD7VBwcHByGKYsU3iltbWxEIBCqaRiWw2WyqGzgSsuB9Pp9CyNFoVDGczKzx0ibzp59+Wok8y2nNzc2B5/myLMNWm5GRkbyzbFnwmc0MALmdVyMUCkEQBLS1teGhhx6Cx+PRPX41ghHVjVqi1Y7zPI+pqSlVv7vGx8eJYRg6c+YMrV+/nhiGIYZhSBRFTTW3EydO0Msvv0wnT56k8+fPU0NDA4miSC0tLXT8+HFaWFgoWd9naWmJjh07Rl1dXSXHVWm01BBfeuklOnHihPpDxZSwIAiqei/BYBAdHR1gWRYul0uztLXIrDlaqhtqYeuVkZERPPXUU6p+hgUfiUTAcZzCLVsI169fx8DAAARBgM1mw5EjRwxvXDidzrIrGFWzsNLpNFKpFBobG1W3Mg0JPp1Ow+v1wuVy6X7m3Llz6OrqAsuy6Ozs1LWQlE91w4gej1rYagtfa5vScI0vZs0knU4jkUjA5/PBbrfDYrHA6/Vqbmp7vV709PTkjW+5MDQ0hLa2thx3Q4KPxWIwmUyK4V0xQohEInj77bfBsix27NiRM043m82G+4d6IVseiUQCjY2NORNMQ4IPBAJobW0tPXcZSDVC2hgfGhqC3W4vW/z18HXY7facJtbQiZCZmRlqamoyNNRC1pA0+3dHRwedPHmSJiYmqKGhgV5//XX65ZdfyjYszTzskC8flUQQBLp06ZLCzZDgf/zxR/mkhV6yx7haY16e5+mdd96hNWvWUF9fHw0PDxPP87R3716anp42lGYm0jzlrrvuIoZhyO12581HJWhqasp9ByOfjMPh0K1DWMwKZX9/P7q6umQ3aVi6cePGvMNSrbSk04GZkIFTgeVieHg4Z6HPkODNZnPZlwYyhWa1WuWl5WyMDkvdbrfqBEzaVasmkhJuJoZyUMnN5nA4DKvVqnBTq8l6hqWZW5bZ1ELwMzMzsFgsCjdFG7/we0r+UyOZTNLq1asr0QzSF198QW+88YbCTa0dbmxspN27d9O3335LX331FcViMWpqaqKdO3fSN998Q0REH3zwAbndboXdGvyjM63FkfuGhgZKJpNKx+zSSf62qFlyKsHLQiKRwAMPPICbN2/m1HI9fUUwGERjYyPOnj0r51NLO0IURbjd7qoOM+PxOEwmk8KtLgSvprqhl9HRUYVqibSPkK+Zybd5XwkMCz7526L8BwCmxvtx4+pN1TBq8ej1U5tg5ItDcvvfkTGwLItTp04p8r6CVuH0N6M570M1GNEAf6w98TyvcCtY4zN/syyLv/0cU/XT+n8hv8nzF1RVNwrFPTk5CZPJhL8O/Y/sLv253W60PP0fctiL05dkoddiJqvWuRoym/Iva9bSYlrZSWh1xHrx+Xz05ptv5g3TsEaZzR9++IGee+45+vzzz6n9+RflMAu/p6hhzd3U19dHz4rP0eq/rCQioruZBopGozUzEpdIJHINXGSXjlbTAABP/3sLxsfH84ZVc9esvckk/vWhR1RVN7TivjA5DY7j5P1hPV9dvn6rGqhNoOThpJ6au379erp48aKqXzE1/8SJE7RlyxbieT5vuORvi0T0h22DtrY2+uijj2QbZMuBixcvksViUbjljOOzP2ui//uM/822SbHmILlnP5fpvvB7ilbds0IeR2f6/fd/fUFdrj2K9NXiWP2XlXTlyhV69tln6b3336VX/7MzJ13p2cw4tP5fbaampnLXuPR+LsnfFsu6LGxEdWN+fh5ms7noAw21Rm3UpkvwUhsZi8Vw7733lkXPxePx4MCBAwDyT5JisRgEQUBvb29drK0XoiwbIWrj6GK3/jL/v7S0BJ7nCy64xeNxCIKA/fv3G0qvntDa+su7Ht+w5m75T8LpdFIgEDDUxmWuuTAMQydPnqSmpqa8hnpu3bpFLS0t1NbWRocOHcrxR/3aN5IBQIFAgJxOp6qnISKRSM4szCiFVDcSiQTsdnvNjlWWA0m9w2Qyla7eIaGl0KQH6QzswsJCjp+kjeBwOLBr166i4q8n8ik0Fdz6g8on3d7eTl9++WVRn9/x48fplVdeoVWrVuX43blzh3bu3Ekcx5HP5ysq/lqQLSPpdyAQoBdffFHzIcOEQqGcHRW9Iw6to+jJZBLbt29He3v7stQOViOfmkpRdiftdjvduHGDzp8/L5dw9qYFVL6UM2fO0Lp160gQBEWYpaUl2rVrFzEMQ36/X7ampxbHcuH06dN0zz33aCsHFFua0sEECb1WN9QOOuzYsQMOhwO3b99WuC+HcbsWug8mGCWVSmHjxo157YllEo/HwXFczkSis7MTDoejYkd5qkF2BZGO4uSrOCVtKQUCAVitVl1tcn9/f46yq8vlgs1mq6oJlEpT1OGzYpCOW6qRrbqRefa1p6cHVqsV8Xi8IuasasXhw4d1HZYrWfCZB4y1CIfDilHQgQMHIAgCrl69WmrydUXRB4yLJftIfTYul0u2btHb2wuz2VzQ7thypKQj9cWgZkRCQrK6EY/HcfjwYTz66KMVOahWa0o2IlHuhAcHB7Fr1y709/eD47iirDLVOyWbTSkVNUNBdrsdHo8HHMflzFiXe0eaTqdLMxRUauKZ/0qmsSSrG+vWrYPJZKqJqfBKIq0+Fmsaq+yG+xcWFmjr1q30/PPP0+TkJI2MjFA4HCabzZY5W67+LTQV4K233qKpqSk6ffq0vMyhm3LXBOCPpd/7778fRISvv/5a4Zf9hSxHpNOPpZg/LOlyFmh8LDzP04cffkirVq2i8fFxhZ9U0zNrvFY89UJm/paWlmjfvn105MgRCgaDxLJs0ZEWRaZtG2mxLFsv8dKlS7pM3C4Xbt68CVEUsXXr1pLPCeiq8cgo8dnZWWIYhqanpwn/uO7N5/MRwzA5S6AWi4XOnj1La9euJbvdTpcvX1aNs1CalURvOtPT0/Tkk0+SIAh05syZ4mt6RsKGIA2NW7fbnddin9frBcuyZbfDXg2CwSAefPBBw+Z482FI8FLzouVXSO8823B/rY+8F+LWrVv1YbifiDQtNulFuqpi3bp1GBgYqCtBS9TVVRXZFptKRbqcRRAE3Zsp1cDv98NsNtfP5SzlFrxE9nVEtaLQdURqVO2qCq2mJhqNllwgmRdw7d+/v2i9HSMsmwu4pM41U8hjY2MQRbGk0s98ttCVc6VQT1fOGV6rGR8fp23btsm/3W43ffLJJ6WNaTXId8ni5s2biYjIarXmjKmvXbtGkUiEiKhuL1k0JHgYWNwyEjY7vNqzmdeK/vzzz/IBie+//55u3bqlCMuyLDU1NRGAP68V/RMlNb/B+P8rfwq+Rvwd176KLaB2jgAAAAAASUVORK5CYII="
|
<image>如图:A、B、C在⊙O上,∠C=20°,∠B=50°,则∠A=()
Choices:
(A) 20°
(B) 25°
(C) 30°
(D) 40°
|
30°
| 69,700 | null |
30°
|
"iVBORw0KGgoAAAANSUhEUgAAAGUAAABxCAYAAADMO21CAAASh0lEQVR4nO2dfUxT1//H3y0+JTI7si50s6QCVcoX/qiBTTIrhYnZEjVjkYjZSKiJCzP8Ycmo1qjTZU2GjmX84R9ki6FmWYIZiosmc/nhVopmmpLBkjJx0gKjhjJYAGkydF0/vz/YvevD7fPtA+grIfTee+45557P+ZzHzzlHQESEFUJFRQV6e3t97pnNZuzYsSNFMYoNYaojwCcmkwnl5eUwm80gIpjNZpSXl2N0dDTVUYsKwUrSFAAQCARgPml0dBR5eXmw2+3Izc1NccwiZ0VpSl9fH3Q6HXt98OBB6HS6ZSUQYIVpysWLF6HRaNjr5aYhDCtGU4gIHR0dsNvt7O+8vLxlV58AK0goY2NjAMBqhkajgUAggNls5nSfzgXEshcKk7hmsxkHDx5k74+OjoKIkJeXx/meQCBISvxiIeV1ChHxkkAVFRXo6OhAbm4uiAgZGRkgorg0gq+4RUvKNSWejyYi9PX1QSAQoLe3F3l5eRAIBBAKhSgvLw8pkEiElSptSrmmRApXrk1kTk6VlgBpoCmh8M4vXAnER6IFy5OprHPSWihMwkSizDMzM3GF4U8qC5BVKQs5CP7Fxvz8PAYHBzE8PIzJyUmYTCb2mc1mg8Ph8HlfKpUiPz8fALB69Wps374dOTk5kMvlKCkpQWZmZkTxSKWmpF2d4nA4cPPmTfT09MBkMmFychIqlQo5OTnIz8/Hq6++ivXr1wMANm3aBJlMBgB4+eWXUV5ejrNnz7J9FpfLBYvFApvNhomJCdy6dQtSqRSVlZWoqqpCVVUVsrOzU/WpQUkLoQwPD+PChQu4evUqXC4X1Go1KisroVaroVAoIvLjnXfewbVr1zAzM4O1a9cGdTc0NASTycT+icVi1NTUoL6+HnK5nK9Pig9KIh6Ph/39xx9/UHt7O5WUlJBUKqUPPviA7t27x+k2EjQaDW3bto0+/PDDqN6zWq2k1WpJIpGQSqWiL774gubm5qLyg294FQpXQvrfczqd1NTURJmZmVRXV0fXr1/nJWyNRkOfffYZiUQicjqdMfnR1dVFtbW1JBKJ6NixYzQ9Pc1L3KKF19ZXqGarw+HA+++/j4KCAmRkZGBkZARfffUVdu/ezVv4L7zwAg4fPgy9Xh+Re/Irufft24fOzk5YrVa4XC7I5XI0NTVhamqKtzhGGrG48NcE/+uFhQXS6/UkFovp9OnTAbkv2mIqGNXV1dTd3U1zc3MkkUjo559/jttPp9PpE/fFxcWgbvn6DiIeiq9QRVZ3dzdJJBJqaGiIqiiI5QOrq6vpypUrRETU3t5OFRUVvIXhdDqprq6OZDIZ3bhxI+q4RUtCKvqJiQmqqqoipVJJd+7cSUQQATCaQkTkdrupqKiIvY4Xj8dDHo+HTCYTKRQK2rNnT9BMxofG8C4Ui8VCEomEDAZDxO/w8SFqtZpMJhN7ff36dVIoFOR2u+P2mxEK0ZLAT548STKZjKxWa9x+c8GrUIxGI4nF4phUPF7B+AuFiKiqqorOnz8fl7/B6OrqIrFYTF1dXbz7zYtQ3G43NTY2klwuT1juCQeXUAYGBkgikfDS7+DKNBaLhaRSKen1+rj99yZuoczNzdGbb75JKpUqpZ0upVJJAwMDAfcPHTpEzc3NPvf4bCk5nU4qKSmhmpoaWlhY4MXviPspxDEaMzQ0hNLSUshkMphMJohEorDvJIpgYRkMBnR0dMBms7H3+BxszM7Oxu3bt7Fu3TqUlZXBbrdHHUcuhzFx48YNEolECSuzoyWYphARGQwGqqmpSXgcWlpaSCQSBRSj0RKTUKxWK23YsCEpbfZIkclkND4+zvlscXGRJBIJ/fTTT3GFEUnR1N3dTWKxmEZGRmL2J2qhTE9Pk1wuTxsNYZDJZDQ2Nhb0udFopLKyMl7DDJa4BoOBioqKaGFhISZ/oxKK2+2mqqoqamxsDOmOz4o0UryFwoTvHw+lUkmdnZ1JiU9dXR299dZbMb0blVC0Wi1VVVXx0iHjG5FIFLb1ZzKZSCaThRzDihcmIywuLlJZWRmdPn06aj8iForRaCS5XJ6y4exwRCIUoqXhmJaWloTFw1s7f//9d5JKpVEP9wQIhavouXPnDonFYp9JqHTDWyihis+RkRESi8Uxz7lEi8ViIbFYHFWnOqSmeDwempiYIKlUmlYtLS6iad1rtdqw9SJfeDweunz5MslksohLmbBfUlVVlVB154tohDIzM5MUzffW2FOnTkXcVwr5JZ2dnVRSUpKWFbs/kQjFO5FaW1tpz549Ac8S1XJcXFwkhUIRUYkT9EtcLhdJpVKyWCy8Ri4RzM3NkUgkiuqdxcVFksvl1NPTE9QN3wLq6emhwsJCtvUXzP+gQmlubqaGhoagAaSiLxKM2dnZqIVCtDT8rlQqk1oS1NbWhp1r4mx9PXjwgMRiccpNbSIlFk1hUKlU9OWXX8YcdrSZ0+l0hm39cQpFo9HE1OlJFWNjYySTyWJ6l5kpTVSHkktoWq2WtFpt0HfAZZfFaEk6FVGhGB8fj1koRET79+9PeCb0TkvvNOZC6D+30NLSgkOHDkEkEqX1EjRvKM55m3PnzqGtrQ1TU1MJmwPyTsvs7Gzs27cPn3/+eYA7IvJtR05PT8dlYZgqBgYGSKlUxuWHXq8njUbDU4zCw4wscI0k+8w8fv3113j77bfT0hI90ej1ety4cQODg4NJCS8vLw8qlQqXL18OeOYjFKPRiPr6+qREKpFQDEWQSCTCmTNnoNVqY/YjGgQCAerr69HR0REQnpC5MTg4iNnZWVRUVCQ0Molgfn7exz4g1rrw0KFDmJmZwdWrV5NSn+7duxe//vorxsfHfe4LgaWP8N9C42kkIyMDZ8+exfHjx/HPP/8kJbx3330XHR0dPpmALb66urpw4MCBhEckHfEuOnbv3g2pVIr29vakhH3gwAFcunTJJx5CYGklldvtjnjVVLoxOzuLrKysmN/3L6o+/fRTGAwGzM/Pxxu1sJSWlsLhcGBqaoqNhxBY2rxMrVYnPALLBaVSiT179sBgMCQ8rIyMDKhUKp8FtkIigslkQmVlZcIjsBxgihCDwQCj0ehjxJeIFhkRoaKiAj/++CN7T8hsobGcNWV+fh7PP/98zO97JzZThGRnZ+PIkSM+q8IS1SLz3/tSOD4+vqzrEz4Iltg6nQ63bt3C3bt3Ezr8sm3bNoyOjuLRo0cAAOHIyAiKiorSev+rVLF27Vq0tLRAq9UmvN9SWFiI3377DQAgHB4expYtW5bN4KM/RIS5ubm4Wl+hqK+vx+LiIttsTRRyuRz3798HAAhtNhu2bNmS0ADDQXHuy8X4wfWbD9ra2nDs2DE8fvyYV3+9USgUePDgAQBAeO/ePRQWFiYssEgQCAQxa2qidjfyRq1WY+vWrWhra+PVXwYigkKhwNDQEIgIQqfTiY0bN3I6XC7Mzs4GrI3hm9bWVrS2tiZkTb1AIIBUKsX09PTSJnIulwvPPfccAMD95An7l+w6JlQmYJ6lMqPk5eWhrq4OH3/8cUL8X79+PVwu15KmuFwudrulVWvW+PxPJqEyAfOMy02yBCUQCHDixAlcunQJw8PDvPnLxD8zMxMul+s/TYl0D6xkwuwNyfwdPXqU090PP/yAS5cu4dtvv8Xt27cTGiexWAy9Xu+zS3i8MBmNEQqDz1TkEy+rjr8fP2b/uK697/nD5TaSZ0REOp2OAPi4A0BHjx5l48jcVygUBIAAkOq11wLiFCyMWInEiC8WvM2kAoTy9+PHPpYX/h/lL5Bwv6N5RrQkELVaHfCO2WxmBeVN8f/+RwBozapVpHrtNR9hMBmMb8Ekwohvbm6ONmzYQEREyMzM9Jm8jzZBg2lPNH4w9PX1EQCy2+0B7oIJ5f++/54UCgUplUoyey0ADRUmH+zYsSPAiC8ekyxmdQMRESQSiY/1SrDihutZsI+NVShqtZp0Oh2nO6PRyCmUWDQ3FvwNwC0WC7300ku8GfHdu3ePFAoFEREJmQrG/eRJXBVWvO8DQG9vL/bu3cvpd0dHB68VbLR4twCJCKWlpSgvL8cnn3wS9B2KomXo0+Bi1p+HqniJQmsFHxW93W6nNatWkd1uD3DHFF3MM//3PR5P0EZJqDjGy9jYGG92ciaTidRqNRERCSUSCR4+fIhVa9bE1D8J9h5zP9Jnubm5eOJ2+2xpy7gpLy/3OZzG/32BQBBwL9hvPpHJZFHtxBcKh8OBF198EQAgVCgUGBkZCfmC+8mTpHQodTodTp06xV6Pjo5CIBBAp9Ph3LlzCQ8/Fvgy4mOmUABAKJfLYbVaOR0yQy7Jgkl4psPIHEoTqUAoBcMwfBnxWa1WbN68GcC/msIMGfsTqgjiE+8PMZlM7FA+EWHTpk0R+5OqOSE+jPhsNhsKCgqW0mJsbIzEYnHcFdXTCtNEjncnvrVr17JLI4QymQyrVq3idZDtaYLRjHiM+O7evYvc3Fx2+kEILE3i+J8k+ozo8TbioyjqFn+7OyEAVFZW+tgdActrkitd8Dbii6ZuCbC7I1rq4kskEl7K2KcdZulcsP2+/MfH3G43ZWZm+nRAhcDSpP3q1auf1Ss8kJ2dDa1WG7RD6a9B/f39yMnJ8VmoxVrdM/u8MxAPFiZPK83NzawRXyiICJ2dndi/f7/PPXZ18MDAQFwrbJ/hS7id+DweD7ndbhKLxQE7+rGrg5VKJbKysp61wnginBGfQCDAtWvXUFRUxJ6WxOItoba2tqSukF3peO/ExzUBVl1dTUajMeD+iliynU74J36wnfhCLdkOOJOrqakJ69atCzl584zIsdlsKCsrg9Vq9WlhHT58GNnZ2Thz5kzAOwFCcTgcUCqVsNlsCbc6XIkQx0mqTU1N+Pvvv3H+/HkAwNTUFAoKCjA+Po4NGzYEuOc8ve7gwYOQyWScUnxG9MzMzKCwsBB9fX1QKBRoamoCAM5tQABwbyfHlHfLZWup5QCzE5//1lJcDYCg5zzqdDosLCwkbenySoRJWoFAgMePH6O4uBhyuRwqlQonTpwIcMsWY8Eku7CwQBKJZFlsV7hcuHLlCsnl8qBmSWazmex2+8rZ2DMd8S6aItnYE/9a7IQ8P6W2thZZWVlobW1NiHqvdLxbVQaDAcXFxXjjjTcABE6NHDt2DGq1esliJ5y0HQ7HstgsOp3p6uoKulm0x+Mho9FIZrOZBAIBEQXZbdW/RbActlVPV8Jtq26328loNJLdbmeN8VbMAQTpgneGZoy2Qx1AwNhO2+129veKOaoj3fjrr7+orKyMzpw5Q0Tc/RHGaJ35Y4QS1YHOTIV/5MiRuCrAp4H33nsPEokEp0+fBhA44zg6Ogrgv8lEs9nMWkiumOOf0gnm+KdHjx5xPveuPxiMRiM7jB9WKFxqZ7VaSSQSBbTIlss+xokk3EFpzNJBeK0iUKvVPkXYijlSMB1I6ZGCDFarleRyOTU2Nj7Vlf/i4iJpNBoqKipiNSSeUiOqit6foqIi9Pf3w2azYefOnUnZ3i/dmJmZwfbt2+FyuXDnzh3k5+cDiM/YPC6hAEtLAa5fv46ioiKUlpZiaGgoXi+XDf39/di6dSt27dqFb775Jux+BOQ3tOJ97fOMF/39l4sXL5JEIqHvv/+eT2/Tkq6uLsrOzk6vo8+DlZnM0RfhDm5Zrrjdbjp58iTJZLKYj3n3TjuudIy5+ApWZpaWlsJiscBkMmHr1q1hrQSjgVJssdnb24vi4mIMDg6iv7//v85elHinHWc6xppjIqG7u5skEgk1NDQEHSENdc0HXH7GcjpQXV0dyWSypIyWx13Rh6K6uhoPHjxAVlYWCgsL8dFHH+HPP/8MmksSsTwunk3apqamcPz4cRQXFyM/Px/3799n50MSCl/SDZf7JiYmqKGhgUQiETU3N5PT6UzpCECosCcmJqixsZFEIhFptdqkGycmtPjiwul0UlNTE2VmZlJdXR199913Eb+baCF2d3dTbW0tiUQi0uv1ERW5iSDpQmGYnp6m9vZ2KikpIalUSnq9noaHh5MeD6vVSlqtliQSCXuSXSSmVYkUTlATIx6Lx7Bl+PDwMC5cuICrV6/C5XKhoqICFRUVUKvVKCgo8Hk/Ev9CMTQ0BJPJxP6JxWLU1NRAo9GwvfFUk3ChRIvD4cDNmzfR09MDk8mEyclJqFQq5OTkID8/H6+88grbc960aVPAMoKxsTH2kBiXywWLxQKbzYaJiQncunULGzduxOuvv46dO3di165drH1vvMLmk7QTij9zc3P45ZdfMDw8jMnJSZ/TE2w2Gx4+fOjTf5FKpWyOX716NbZv3w6pVIrNmzejpKQkLbdm9Of/AaDYQyNK3gYMAAAAAElFTkSuQmCC"
|
<image>如图,在⊙O中,∠B=37°,则劣弧⁀{AB}的度数为()
Choices:
(A) 106°
(B) 126°
(C) 74°
(D) 53°
|
106°
| 69,701 | null |
106°
|
"iVBORw0KGgoAAAANSUhEUgAAAH0AAABVCAYAAABkf+t+AAAQW0lEQVR4nO2dbUxU15/Hv2eo0qQIbR3DpGrHv4D/WdEUAk3HAEHrjEKc2iG1sU2b1EZTdPAFac3GZm19Y7Jmd3zYLFIaSUNTUkmgnUFpxAKJqRiwaNBleIh/2MXArjMLm+DiC3Rn7m9fzNw7d+48MA93HkA+yWTuw7nnnrm/c77n4f7mHEZEBDkggEBgjIUKgpH2c/hb7pcw5gcPt0J8UcgSCwFgCGlwEACMoNZ4QpZbrhA9sRvdY/BFYcCF45fA9HpsyY/5rivEQMxGJwSuHaS1RvuF4yC9DlwXJzrKYYXEE7PRpZLuNjXnOe4x6ogVv3M6fJXH0KPLw1ZeGkie2mWFyJD9qTNwomjd3zWXunDpKyMAQPfXXHHgFZKArEZ3S7pvlNbzx1BfXw/GGFh+lZy3WyFKZDW6j6QDwIgVXbQXRAQigs1qxpa/5Mh5yxWi4CXZYySFW7ZHrGC1naDfG4QW/sPxCQDBjU4Uup+/gkyQDHAc57NvNukIblOTxeY+Z9JDOKarMQth29ra6NatW3IkY4UwkcXoRETEBdkmIiKX5+N/vry8nNLT0+ns2bPe05xfBCvICCOSaRg2UoUB8N8OB9avX4/KykrMz89j1apVuHLlCtauXbsi83FEnhG5KGAA2trasGvXLty8eRM9PT3YuXMntm/fjj/++CPmZK0QgviJiGvREOXl5dTU1ERFRUV048YNIiLq7e2lDRs20OnTp+OXtBecOA6JeaOmADWIw+FAf38/qqqqYDAYcPXqVQBASUkJBgcHce/ePZSVlcHhcMQviS8oCRkHDVQ/t7W1Qa/XIzMzE0ajEe3t7cI5pVKJa9euwWg0oqCgADdu3PC7PlBGWiFMkiUxvLTzbNy4kQYHB/3CDQwMkFqtphMnTpDT6QwaX7Qtfvd1rsBxcJK4l0mnIilvPHhpNxqNwrH9+/fDarX6hS0uLsaDBw8wOTmJ0tJSPHr0CIB/SY+2te++TuHdFkfLJHEvkw5FUozOS3tWVpZw7L333kNHR4ewLzZqVlYWWltb8dlnn0Gr1cJqtYb20IlU+gMY2jeuwK+Al2wFkwx5kUo7EZHT6aSMjAyampryOS6V3MHBQdJoNFRTU0MLCwtxTysRkUuk68tB4RNe0h0OB/r6+nykHQDS0tKwb98+nwYd4JVW8pTegoICDAwM4MmTJ9BqtZiYmJClUSeOQRqfQlT8l4PCJ9zobW1t2LNnj4+081RVVflIvBixnGdkZOCnn35CbW0tysrK8PPPP8ecLrExl/1oYKKlJZC088zNzVF6ejrNz8+HHd/o6Cjl5+fT4cOHI7ouEpbbu4C4l3QSSWWgVruYrKwslJWV4bfffgs7fo1Gg7t37+Kll16CVqvF8PBwrEkGAJj0zO34wRgUCoWwzfaahDBLtSEXd6OLpTJQq12KwWAIKvHBePnll9HQ0IBvvvkGOp0OjY2NYV9LJHHt9OzUd7lg0gMWGwfivE4gujyvPwBbqo6diZSVUNLOMzk5SVlZWSEHYkIxPj5ORUVFdPDgwZByH0qyOY4jF2ej3foacrfdR8ls/pU4Giaz+VcK571CKpOwhtxi0s6jVquxfv169Pb2RnwPIsLmzZtx+/ZtvPHGGygsLMTdu3cDhvUqEOcn04wxjF7txF/36gAo0H7+X4HcLWDYii+/NCJJwxvykajcVVdXRwaDIaywp06dotra2pjvabFYSKVSUV1dXcTXWs0mwdOHMSZ4AC0HEmb0cKSdhx9vl4OpqSnSarVkNBppbm4u7OtMeq+rV41eR8PLYljGTUKM7nA4KD093eehL9YNUqlUZLPZZLm/0+mkkydPklqtpr6+Pv8AnGTT1k7QHxOOmc//8zIyeYKMXldXR/v27Yvomurqajpz5kxYYcPtR3d3d5NKpSKz2RwilIss50xkMrf7nTEdrxHdM6xbpiQJaZG0trbiww8/jOiaUKNz0bJ7927cv38f165dQ2VlJWZnZwOEUqCrsx76ivd8jtbsYcCmPcL+kh60i3eustvtlJ6eTk+ePInouoWFBcrIyCC73R7T/YOpwOnTp0mlUlFvb69wzGY1C423QB93Hb+0u2tECZD3cFrtwQzzwQcfUENDQzySRURufzyVSkXffvttiFC+Rl7Cqi4Qd3lvbW3FgQMHQoYJ9oJD+o5dbkpKSjA0NIQ///wTpaWlQfzxfH39lrKqC8QzR0Ur7TwzMzOUkZERtxcpYvLy8uj111+n7u5uIvKW6OX2soUoziVd7PwYDUqlEkVFRQEdI2WDgImJCTx//hwdHR04fPgwvv76a3AuF0DBVGiJjrl7iKvRw5H2xZBL4imYowUDGhsbcejQIezYsQMPHgxibGwMZSWlmH78n0FiWxmGDUgk0h5KQsfHx0mpVAovYOSWW6fTSRs2bKCpqUc+x+vq6kilUpHFYonLfZNJ3IweyVh7KDiOI41GI3St5H74FovFJ53e2F00ODhIubm5VFtb6/HHc0nCLE3iplNySDvgrlONRqPgHh2LKxMFkPjvv/8ehw8f9t5P2FKgoKAAg4ODmJ2dRUlJCSYm/kMSJrx7pBzxyEm8tEfygiMU/f39pNFofEq5HCV+cnKS1Gp1WO/uL1++TEqlklpaWsKKO5Wrg7gYXS5p53E6naRSqWh0dFS2OInco3InT54MeC6Q0Ww2G23dupWOHDmSMPfreBAXeZdL2nnS0tJgMBj83KMjhUTS63K58MMPP+Do0aMBwzLG/KQ6Pz8fd+7cAQAUFRXJ5o+XcOTORXa7nVavXi2btPN0dHTQjh07ZIuvs7OTKioqhP1I5bi5uZmys7Pp8uXLsqUpUfgY3fmMEz7RIre08zx9+pQyMzNjfgHDYzQa6cqVKzHFMT4+ToWFhfTpp58mZNRQLnzkPW018/mOBrmlneeVV17Bu+++i2vXrgnHKMqW8vT0NPr7+yN+3SslJycHfX19yMrKQnFxMe7fvx9TfAlDmgsiLeViWZS71S7l8uXLZDQaY47n7NmzdOLECRlS5IX3x4vnW0G5CGl0qdwHkn/xvljaQ1UV4VYj0nB2u52ysrJo7n/+N+D10nRKfw+PWq2WvSdA5O4CarVaOnDgAM3NzaVsty1k610q99Jv13NC2mqGtNUMruckSLv4OH+OJ9Q5MeJwPNnZ2XhrWyF6+/7wu178LU2f+B49PT3YtGkTNBpNBHoYHmq1Gr29vdi0aRPeeust3Lt3zy8MpcLgjTQXBCs9wc7xn/+a8kp7pHEEItjxf/pHMx05cmTRuANtcxxHBw8epObm5oBxR0Ow0tzZ2bmoP16ylCCsOj2YVIr3pdIeLFysRh8ZGqPs7OxF4w60PTMzQ0qlUhhYkfuhS+Oz2+1UWlpK+/bto5mZGVnvFQuCvAeT2XCx/nI1Lq12wJ028sjili1bsGbNGvT390ccz48//oiPPvoI6enpAOT/S7I0vuzsbNy6dQvFxcUoLCzE7du3Zb1f1PDWX6xhFapEPp7292v/vwVXxA25YNWHlL//6iT9w8lvwmp0irc1Go1svvSRcvPmTVKpVHTmzJmkN/DCHpELlSGi8WuPFo7jqLe3lzQaTdjhidxOkFqtNp5JW5SZmRnS6XRUXl6eVLkPa+xd3CIORDR+7dHCGINWq8Xs7CzGx8fDCg8ADQ0NPq9Qk4FSqURXVxcqKyuxfft29PT0JCchoXJEOP3pWJ0fI4EvtRzH0aFDhxb5p4qXubk5Wrt2bUoNlfLToZ46dSrqv2VHy6L9dGlfWUqszo+RwJdaxhgMBoPPkGwompubceDAAWRkZMQzeRFRUlICm82G+/fvY+fOnZiengaQoH58rLkmkn+jysn8/DxlZGSEVTcWFhbSwMBAAlIVHRcvXiSlUkkdHR0JuV9MRk+ktAeioqJi0YGW/v5+KigoSFCKomdgYIDy8vKotrY2oNzL2eKPyYkikdIuhjwSKPadC0ZjY2NQR4lUori4GAMDA3j8+DHeeecdTExM+JwXjwFQrFVALDkmWdLOY7fbac2aNbSwsBCwJMzPz9O6devi9tYvVsQNUzENDQ2kUqnC9seLlKiNnmxp59FqtXT9+vWA5xoaGujzzz9PcIpih+M4stlspNFoqLq6WnZ/vKjlPVnSLsVgMASV+KamJlRXVyc2QQEgiRxL96XnGGPIz8/HwMAAnj17hqKiIoyNjYV1fbgJiopkSzuPzWYjlUrld5yfOHg50NzcTCqVSra3g1EZPd4eMpGiVqv9umRffPEFXbx4MUkpkheO42h0dJQKCgro0KFDwiBTtC36qOQ9nJkfE0lVVZWPe/SzZ89w9epVfPLJJ0lMlXwwxqDRaNDf34/09HS8/fbbGB4ejn7O+2hySqpIO093d7fQF+c4jpqamujgwYNJTlX8aGtri8kfL2Kjx8uvPRacTidlZmbS5OQkERGVlpbSzZs3k5yq+PLo0SNhOtRIbRGxvIearz1ZpKWlCWvAjI2NwW63o7y8PNnJigvkke0333wTd+7cwcaNG1FcXBx0OtRgkUREqkk7T0tLC+l0OqqtrfVZt3WpE05jraOjg1QqVdgN10XXWiXR8tYOhwNqtRoOhyOlSjoAPH36FEqlEpmZmRgaGkJ2dnayk5RQpqen8fHHH+PVV19Fc3NzSPssvn66ZL72devW4cKFCwBSa71zRsBrr70GhUKB+vp6YVL+RfL0soExhl27duG7777Dtm3b0NLSgpKSErjnx/GtxX1K+rG9DA2/+0Zmttrw1f58gAG//PILhoaGkmJsYm7DLsbz58+xevXq+CcoRSBygbE0v+OrVq3CF0ersW7t6/CbI0eq9yY96Fy7e85jm/W8z8L3Xpb+rIkvMqIswIEwgrHu3ajY/3dgAPJz3UtX+Dfxkzy7ErnnahXWVWFpnm8dRvgp+18MVQ/5O63nj3mf0R4TCCOoqTkntp4CI+3XoTDtxVbPrCrHa9+HrsaM/fmpUW8Dni4LA+pucN41VsgF4ghmE0M+07sNnzpJji8+v9Mzv92Ie4XKS/+e616jhgh0cQ8Uinxgcw4glmrLOe9qBggo60mC89/maNizxoovR/eAdDXhOUwuNzhyPxcd+GfgEk5w5CKzSUdm67+RQizVXZ31sAw7QUSwmI+japsC1uHk6iSRpNR6tkfaryMt7y/uMKLTOXk6dD/8W8LSl3REP54R0H7+ErqxG/9S9yUE2zKAQYGcnC3Iyd0GCKVo2OKzmoHLk2NMZguJVxtNkbLvybX+/1axnDP5/I4XBY7jhFLutllwhGVErZ1dMO31TmKvGHmIbgCbc/MgXm00FapKwgiu1xMq398qOcNhYuIhdFtyhP0XBcYYGG+znC0gcgUNK2i7ezWD9wG4H6o+vwrAbsmDTY2HyEYegtVUCg1OAG6ZG7mKE/XdqNBXeA4u8TlcI8FnOXAK2HcX8F3NQEFgnm39sRBanrx+OkfkWWPF4nfOpAdBX53wNKUKPvIutZ2tXagO4WnyyYKLJP7anLzn3YfcP+zXIe88rZztV3dG1R1NavqSfZ7Iu56cuL1js5p92jlB3rKJSnKSW27i20vXWGGibfGPTJXGZrKQPidxF5Yjov8HRWl7gLskQFMAAAAASUVORK5CYII="
|
<image>如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果\frac{AE}{EC}=\frac{3}{5},那么\frac{AC}{AB}=()
Choices:
(A) \frac{3}{5}
(B) \frac{3}{2}
(C) \frac{8}{5}
(D) \frac{5}{3}
|
\frac{5}{3}
| 69,702 | null |
\frac{5}{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAABtCAYAAABnYdW9AAAY6ElEQVR4nO2dfUyb173Hv49NlFaBuJHcxRXOWGIjnEInM4zCFVSGxmnSBQjRrJKqpCIStzSj02gLgWhsTTVHI4O2qcQWaNIl0ZCWamSwpXc3JM5wVqJRwQTVzDAXeymFDBDslhT3jmz287t/2H54jF/Bj81L+EgI+5znvPj8zu93Xp7zwhARYYOIICIwDOPXz2r8Oe7u/C72KWKcqRCIVjoD6wG+0PlaRLCial+F/0DsyurbhuAFhgHAusX/fs37YAsKsFPBAvCuFBD5txCxYkPwQrBIeUVg0Hm+GtDpgI/4nmxMsxWMDcELAQMv4ZPtBm7RPry8C7hWsBtKrphFPpVkpdgQvFDwLHdNixFnXn4WAFCoUno/srIWnmND8BHCDYoIIAJunq9GQ0MDRAwDkXI/wCwy7xsavz5w9ehZl4D/dgM3aR+InCAijNw4h5RduxYFwKoQftxKZ2C9QDYjRG/cAnWc4dzufmYDsMv34VVg7pm1MoHjmSQJNlnC5/79+xgYGIDFYsHExARMJhPnZ7PZMD4+7vX8jh07sMutnZs2bUJOTg4SExORnJyMjIwMxMfHB0yr5UQhXmm4BgC4YSXsUwAnDjFo/J1LuQtPtKDjzMurQd4ca0bwobh37x6MRiOMRiNMJhMmJiaQk5ODHTt2QKFQIDMzEwkJCSAi7Ny5E1//+te9wn/++ee4e/cuAMBut6O3txdWqxXj4+Po7u6GXC5HXl4edDoddDodtm/fDsBTIQnBWk3CqlByL1at4MPRbIvFgg8++AAdHR2w2+3QarXIy8uDVquFSqUSNA+Dg4MwmUwwmUzo6urC448/Dr1ej9LSUigUy5uPXdEKQWuM6elpam5upoyMDJLL5VRVVUVDQ0OcP8uyUUl3cbxms5kqKytJJpPRk08+SbW1tTQ7+79hheXcBc9l+KwZwU9OTlJlZSXFx8dTSUkJffTRRzFN35/wrFYrHThwgL4mfZwefXQLbd26lWpra2l6ejp4XNHK5BJY9cO58fFxvPLKK0hJSUFcXBysVit++ctf4uDBgzHNB7/ZefDgAX74wx8iKysLubm5eOW75cjO/g9885vfxNzcHJKTk/F65WuYmpryH1esMh2EVSt4u92OkydPIj09HTKZDFarFQ0NDVynygPFsItCROjo6IBSqYTFYoHZbMaJmhowjBjZ2dmIj49HQkICLBYLNj/6CNLS0nDq1Ck8ePDAFR6rYgjvYqVNjj/a29tJJpNReXl5SLMZK6xWK+l0OkpNTSWTyeTl9+abb9Kbb75J09PTpFQq6fr160Tkap5efPFFSkpK4txWCzERPMuyYXW6xsbGSKfTkVqtpp6enhjkLDRzc3NUV1dHEomEGhsbyeFw+DzjETwRUX9/P0mlUrJarZy/yWQilUpF+fn5AStytDqlgYiJqWcYJuTQrK+vD5mZmcjLy0N/fz/27NkTi6wF5erVq0hOTsZnn32G4eFhvPHGGxCLxUHDqNVqGAwG6PV6/Otf/wIAaLVamM1mqNVqaDQaDA4O+oQLZ1JKUGJazdwsrt2XL18mqVQaFXO4HE0aGhrizHp3d3fI+Dwa7/FjWZbKy8uptLTU59m2tjaSSqX061//esn5EpIVbeMdDgdVVFSQUqkks9kc8/T5QmRZlubm5qiqqoqkUik1NjaGHQff1HuYn58ntVpNzc3NPmF6e3tJLpdTbW1twPxEmxXr1d+/fx/5+fn49NNP0dfXh9TUVL4Vikke+Ob1ww8/RHJyMmZmZjA0NIQ33nhjyXHw2bx5M9ra2mAwGNDf3+/lp9Fo0NfXh5s3b+L555+H3W4PGlc0WBHB//Wvf4VGo0FSUhJMJhMkEomXfywLYHBwELm5uThz5gza2tpw8eJFSKVSQeJWKBS4cOECCgsLMTMz4+W3fft23LlzB5s3b8aePXtgs9kESTNsYmZb3Fy/fp0kEgk1NTXFvCfLZ3Z2lqqqqri8RII/U8+ntraWDhw44OPu+f319fUkkUh8honRJKaCN5vNJJFIojqmDacytba20hNPPEFlZWWCzBOEEjwR0YEDB8hgMAT0b29v9xkGRpOYCd4zuRGpdkVCf38/Pf3005SRkSHoPEEowbMsS9PT0ySXy4NWeoPBQKmpqTQ3N+cVNhrERPAOh4N0Oh1VVFTEIjkfZmdnqbKykqRSqd9edqSEo/FERD09PSSXy2lsbCzgMyUlJVRUVBTQX6iKEJPOXVVVFQDgvffei1oaFGAkcPnyZSiVSvzzn//E0NAQysvLo5aHUOzZswd1dXUoKiri5u8Xc+HCBUxOTuLUqVMAfH+XYB1fQapPEC5dukRKpdKnLY12x663t5f27NlDWVlZ1NvbG9W0wtV4D8XFxVReXh7Qf2xsjORyObW3t0eeuQBEVfA9PT0klUq9FkpEm9nZWaqoqCCpVErnz5+PSZrBBO+vgnsmd1pbWwPG2dvbS1KpNGoTW1Ez9ePj49Dr9WhtbRVkGVQ4tLS0QKl0bWCwWq0oKyuLSbrB8GeaPZM7lZWVGBgY8BtOo9GgubkZBw8exD/+8Q/hMyZkLeLXbp1OR/X19UJGH5De3l7KyMignJwc6u/v98lLtFmqqffQ3t5OSqXSqxfPh2VZqqurI71eH2EOfYmKqb9y5Qp961vf8vsKczkEEuL09DSVl5eTVCqlS5cuhRUmGixX8ESuyZ38/PyA/vPz86RSqQSf+xDc1NvtdlRVVaG5uTnkK0ye1QnqtthcEhF+9rOfQalUIiEhATabDS+99JLXMzF/zblMDAYDZmdncebMGb/+mzdvRlNTE77//e8HHAksB0EFT0R46623cPDgQWRmZoYdzp+QAgnuk08+QWZmJq5cuYI7d+6goaEBW7duXTOCXoxYLEZ7ezvOnTuH27dv+31m7969UKvVaGhoEC5hIc2H1WolqVRKs7OzQkZLRC6zXlpaSjKZLGBveKXm/iMx9R66u7tJJpMFnNyZnJwkqVRKk5OTEaXjQVCNNxgMqKio8HnbthTIj9l/7733sHv3bkilUoyMjODFF1/0G3ataj0AZGdno7a2Fi+88AKcTqeP//bt21FSUoL6+nphEhSk+tBCjRRS27u7u0mtVlNubu6KLNQIFyE03sORI0cCTm0LWcaCaXx9fT3Kysoi0nYPU1NTOHr0KPR6Perq6tDV1eW1UCMQtDp3gy2JCxcuoLOzEx9++KGP3/bt2/Gd73wH7777buQJRVx1iGhmZoYkEglNTU0tKzy/bW5sbCSpVEonT54MOL5dbQip8USuvpJMJvM74+npR0VaNhFrPBGhtbUVhw8fxuOPP76sOBiGwe3bt5GWlobOzk58/PHHOH36dNCtyesZhUKBs2fPoqCggFuWxffLycnB1atXlxQnEbk2c9CCw7LxaKparV726pHJyUkqLi6O+kuJaOJP44UYYVRWVlJxcbGPe3t7O2m12ojijkjjGYbBwMAAvvjiC2i12iWFdTqdePvtt5GSkoLk5GQMDQ2hqKgokuysGijMwxtC0djYiHv37uHtt9/2ci8oKMDg4CBGR0eXHXfEpv7y5csoLS3lvhOvg0UBOlu3bt1CWloajEYj/vznP+PHP/7xujLrQg0rxWIxfvWrX6GxsRF37tzxci8pKcHFixfDiMV9uCItcovIXhCRXC4P+7Xr5OQk6fV6SkxMDLrNeSUXYS4HoTt3i+nu7qakpCSvyZuenh5SqVQhy4q/ycP1wfVvyRpPvKpjsVjgcDhCvnZ1OBw4ffo00tLSoFKpYLPZgm5zXssTMZFCfqxkdnY2jh8/Dr1ez03uaDQajI2NBdyK7cFTllyZuv8t+dQrvlBu374dsm03Go04fvw4VCoV+vr6kJSUxPmRQG3hasBkMnHLpRa7a7VavPXWW2HFE6g8ampq8Kc//Ql1dXX4yU9+ArFYjKeffhq3b99GcXHxkvMbURvf1dWFvLw8v37j4+M4fPgwysrKcPbsWVy7ds1L6MD60Wx/bw+D+S+X1tZWXL16lRvK5ebmoqurK2gY4/tV3KZV5tAJEKw4caLZu42vKeT27hMgIgDUfHPEq71g2YV37P4mGebn58lgMJBEIiGDwUDz8/M+7c16I9BwzrOv7kc/+pFgafG3YXvaeS5NfvrW/yYAlF/TwnPrJABU3dJJLlPvPn6p/rcE9hADxfdG8PJeBWzGFiTvS4bCRtDt8tRc1zv20dFROJ1Or/a9s7MTr776KlQqFcxmM+RyOedH68ish4tP+yoAarUaTU1N0Ov1+Pjjj3H37l3cvz8HiSSBe4ZgRZHyOeTXtOBa/csLgRXP4tyJAmDnTsQRAIbxTOhYYbmWj/LfKsCAgcJzHKefUZnVasWTTz4JwFUJXn31VVgsFjQ1NWH//v0+zz+sQo8GxcXF6OrqQllZGXbv3o2RkWFoNBrubB3j+Rb8jinESL33mkMGLBTKFGBX8kIbzwCw3TSCqS6Awh1FzesHkF/TAp0CWHzWusViwa5du3Dq1CloNBpkZWXBYrF4CZ1cS7v8Zj6Q+3pFyN9LRDh79ixGR0chEokwPDy84Acrml5uRHVzBe+4dA8i7PvPM9inABiWZQkMAwbAjfersL98YZbIczynP4qKivDHP/4RX3zxBcrKypCYmMhlil/bPceQrmc8x6Xm5uYuyS9S7t27h4sXL+Kll0rxi19cAOA6K1+k3I/mmyMo1yl5hyiy4Pfl4/hC+sN/vY3OERbPKhncfL8GzyoZv8Lv6+vD4OAgnnvuOSQnJ/usj+MLf70LHQguVKEEzi9XT5kmJibi0KFD+PTT/sDhuE8ib6X06vEVVvN6iCN0yN0DXAzLsqRWq2lgYCBg79NfD3699uqXipDlYDKZSKvVcj16lmxU6JHbomRYayc3SuN03/iHm6g+qFuoKjYrfgssdPAArpPHMAzsdnvQ+fWlLKB82FhKOVAIi7llyxbY7XZOsxnswvdaqtBQvh8tt6xcv9x6sxmi12+gXKfkIiYioqoC0A2rp9aMUCFAQAGNkNP9hNOr9shkMsEW/q01WCKqLmR4cx6eP355xYahoSHXnP0i95Eb57zyVlhzzu3jJCInYeTGOWIYhiBiaNMjW0iakOD6O1xNwSxSfHz8mlkh4w+j0UgqlYrUarXPyVa++BEmS1RduKAsxBKdqz5EQAH9DyvMRpJw8Gyw9MfiJoV7YUOLd9KwRMQ6yfHvf/OE7r8G84zFmkSlUnHakJWVtaSwLLmsYj6vT+ShupCvXdFndnaWtj4m8eu3+I0cH++BHuPvDHX+I6vn3rSlQJGMLPwcQOuZ8xDt9r12ZJeqAL8b+htWuqxcE3PuEcDiLgUBItePWsgkw/mxIIcDrMMB1uG6O5FYFqzDASJgS0I87F/ed/s7wPKvzCR2wd3h9C63YH4Bn2MXnvMbnri8Ei18Zp0EEAtyOhe+u2lqaoJKpYJarUZjY2PgEmTgt+CMxt/j2zqdz+MKZYr7U2wOFJubm8PW+IXpWq4DDj/T5J6fzwBxrh8l8vYACwYiMGKAnAyYOJH7MTFArinehC0JsNu/wpatEjAgkMMJYuLAMARysmDEca6pYKcD5CQwYtf1S4H9+PCfc8UNEgFB4mbEIpCTdfnHxUFELFinE6xTBCYuDgyxYJ0sCGIwcG1LGhoacqUWtkVwTYIQY8XvGwjvnPHVeJt1GAUpsTtS3Wd0xStKn9ED7ytXLb1Ngsj1x4jAiAjk1hRinSD3najxCQmw2+fc2uX00kiCiIuLEYncbiH8+BALYsRg3Df0MXEuQYcTnhGLvRSUEYt438nve4fgwyu+yXYXl+1vYKoL3FOiC/5ku4HjP72Gbz+7l0su2nz11VfYsmWLt6O/dD3X47kruch/bWd4hSsG475HDSTiTMiW+HjM2f8Porg47m+h/IL94jBLw7MceLnhBYLI96Zo4x9uIkXh0fYFk17z+n7gUDVe8YyVYzBtMfeVHVu2POpdKv7S9ciTYQCWIOJqO+vktYGekCLXZxFATicgEoFhXIGf2L4df//7OG8RH7k+MyKX6efafHK7hfDzySXLk3EYcUcJhmH4TSP3EmSf7hnuGbLdAMMwaEA1qOOnUcyNL/fGxvG1r8mWVgYihrf0ioFb+HC1obznGJEYYFmvmqRSpcBqs4F1/NttKhkwcWLXf7HI1aFiAUAEJm5hXimwn7stF8eBYUQQiQms0+Eu9FBxu9p+wF1B40RA0O/ipRWU2/rYjC1IfvY4AOCaMo4zmwzDcC9FvINFfw3CyMiIz/aycNLlBM+I4sAE64iKvDVLqVRiYGAA4k2bfJ9lRBDFBYgsoJ+rLV/4KobI34pAv+Hd/QC+U6jvS8BTiApdOYheWXK4aDI4OOizHyGcixnDGnMQywKLIlGpVBgZGVl6TtcwfodGPkRv/O6vP2a1WpGSkuLjHqrSBb1wkJyuMTtEYohE3hGNjo5Co9Fgeno6zGw/BKzADYKPPPIIpqamlrxLOajGM2J3j13k+2uSkpIQFxcHi8XCuUU0Q7aaIX8f/Wg2v5hiUBQ9PT3YuXPnsramh2fqAwhUq9V6nduybl+7Mv4+hii6KBUFXxaefQ3LUbiwBB9IoHl5eSHXda9H3G+owntQYPiyMJlMeOaZZ5a12inkpcLBeodDQ0N45plnMDExEXaCGwiD0+nEY489BqvV6nMJYziE1Phg5nv37t0+7byHddverxL6+vogl8uXJXRAgFdIer0eV65c8XFft+39KuHKlSs4cuTIssNHfH98f38/Dh8+jM8++yySaDZYAk6nEzKZzGcT6lKIWOPT09Oxbds2r979hpkXDvKzKeXatWtITU1dttCBCIdzHkpLS3Hp0iXu+4aZF47F17MSES5fvoxjx45FFm+4pj5Y735mZgZKpRLDw8NenY1YvKR42LDZbMjKysLdu3cjOj4mbFPvT4CeOiOVSnHs2DGcPXs2ZJgNloenrBsaGlBRURGW0IPpdMSdOw/j4+NIT0+HzWbD1q1bvRLnTzBsVIblMzU1hZSUFIyOjkZ8gqhgKwLlcjny8/PxzjvveLkv3kC5wfIgItTX1+PYsWOCHBsrmMYDC+2P1WoVJHMbLDA1NYWnnnoKf/nLX5Y9acNHUMEDQHV1Nebm5tDc3CxktA8V/prEF154AWlpafjBD34Q9LmlJCIoc3NzJJPJwrrrbWP3bHgYjUZSKpVe5wlFStQuI8rIyBDsMqKHhUB31C2+jEgIhYnKdo/nn38e27ZtC75DZQMf/Jltg8GAtLQ0ryNmBDllJOKqE4Dx8fGQtydvmPrgtLW1UVJSkiBXnS8mYsEHE95KXDG61vGUp+eK0cHBwaiks24vFV6thHPosGfPe0dHR9TyIfhwzt18eLVXr732GsxmM65fvx72JYQPKw8ePEBubi7279/v92xcoYiK4BfjdDpx4MABpKSkoKmpKdrJrWmOHj0Ku92O3/zmN9Gd6RTSfPicjc5jenqalEolNTU1hQy/3gj0uxa7GwwGSk1NjckRMzE9z8RsNpNEIhH8gtz1QEdHB3c4cSyIqeBZlqXr16+TRCLhNH+9ankwFv/m+vp6kkgkZDKZYlYeURV8INNvNptJqVRSRUUFORyOh0r4/N86Pz9PpaWllJqaGjNN9xDVg1oCHdudmpqKvr4+2Gw27N27F19++WU0s7Gq8JTFzMwMsrOzMTc3h56eHigUvocGUxT73bE5occPEokEH330EZ566iloNBoMDg6GDBPNgoglfX19SE9Px759+9DW1hZwNc2a6dUvl0uXLpFMJlv307ssy1JbWxvJZDJqa2tb0bysCsETuaYoZTIZnT59eqWzEhUcDgfV1dVRUlLSqrgZe8VM/WI0Gg16e3vR1dWF9PR0fPLJJyudJcHw3Js7MDCAvr6+kDdjUyyatJWuef5ob28nmUxG5eXlUXkzFSsmJyeppKSEkpKSVt3cxarReD5FRUUYGRnBtm3bsHv3bpw6dQozMzNronNHRJiamsLJkyeRlpYGhUKB4eFhv/f0rOjvWeGKF5KxsTEqLy8niURCVVVVq/qo9LGxMaqoqCCJREKVlZVeeV1K5zQWHdlVqfF85HI5mpubMTw8DIfDAaVSiaNHj6Kzs3Ols8bR0dGBI0eOIC0tDQkJCbBarXj33Xe9VsMuZWgWk2XoUa9aAjM9PU3Nzc2UkZFBiYmJVFtb67PQI1oaw4/XbDZTZWUlyWQyysnJofPnz9Ps7GxU0o0GMXktKwTkZymxxWLBBx98gI6ODtjtdmi1WuTl5UGr1Ya86NhffMEYHByEyWTi/qRSKfR6PUpLS71m3ZYa70qxZgQfivHxcdy6dQtGoxEmkwkTExPIycnBjh07oFAokJmZyc2QfeMb3/DZYvz555/j7t27AFwnQvf29sJms2FsbAzd3d2Qy+XIy8uDTqeDTqcTZFPDSrJuBL+Y+/fvY2BgABaLBRMTE9z9b4Brx8/4+LjX83K5nNPcTZs2ITs7G3K5HMnJycjIyIhoZ+pK488K/T+xDU27nOxFYgAAAABJRU5ErkJggg=="
|
<image>如图,AD⊥BC于点D,AD=4cm,AB=8cm,AC=6cm,则⊙O的直径是()
Choices:
(A) 4cm
(B) 12cm
(C) 8cm
(D) 16cm
|
12cm
| 69,703 | null |
12cm
|
"iVBORw0KGgoAAAANSUhEUgAAAIYAAABUCAYAAABHj0+1AAAQ2UlEQVR4nO2df1BTx9rHvydR8K10qJ28rTOk2lavUqMzKunAK1RRkiu3dS5w0fYfp2oHy49gRdFbuEhhRjpgCUqvYOGObbXauXSqTXipIkKvtlUHR6bQmkRvK1aHTqdU+r7UYgUk57l/JCec5OQXv5KTwGeGIdnds7vZ/Wb32efs2TBERAgQCADjJt5YX4Hv5u9EsoJLxQKQTHzFgpCAajV3omBhQk7yLofQgPp4oiIgW85xkCMAldnVYNRqLFzEC5xi1ASMMPj9zDD2Y0f9fg3wRzXYZhbEWIXjbniZwiMBIwy7fuarxKRHM6mxcz7wmXoBFoERCGeKkRMwwiAXrzXVzajOTQYAqBbMG04TODa1KAkYYfDHAG5A0FVk4dChQ2AYBowixT791KgxJgJAGKzzYKMeLfgjiAhEBJNeiwVPzXOedooRM83fFfCME+2a9GByWkDNf7cFfXvjJoApYYwbFGBos1QEi5lBOgNLRESZKtjCErK11pRm/1UyCGCIAsFKE3owT506hVmzZmHFihUur/LkKZ3CNQEhDCKyGZNEhHv37iEiIgIsy+LNN9/Ea6+95iQ9ISBMKJESEMJwZPfu3WhpaUF8fDxaW1shl8vx3nvv4eGHH/Z31YKGgPtKGY1GHDlyBCqVCuHh4bhw4QIef/xxLItaDpPpur+rFzSIXhh2AxoBaWlpKCkpwcyZMwEAUqkUVVVV2FdaBpVqDaqrq/nJpxglohcG31FV+49aAEB6erogXWpqKpqamrBz5068+OKLGBgYmDI8x4BohOHJ1Onp6cHrr7+Ow4cPu0xz+vRpJCQkIDQ0FLGxsbh9+/Z4V3PSIBpheHJhZ2Zmor+/H4cPH8bAwIAgvru7G1qtFgcPHsSxY8ewZcsWxMTEoKmpaaKqHNSIRhgczkaOzz//HK2trTAYDGhvb0dMTAzu3Lljl2bPnj3YvHkz5s2zeD81Gg0aGhqQlpaG/Px8n9Q9qPCPX817+vv7KTIyknQ6nS1s7969FBISQs8//zwREX311Vc0e/Zs6u3tFVzf29tLiYmJtHLlSrpz546vqh3wiF4YZWVltG7dOkH4q6++So8++iitW7eOVqxYQTU1NW7zKSkpIblcThcvXpyoqgYVohbGrVu3KDw8nG7duiWIe+ONNyg/P59eeOEFkkql1N3d7TG/lpYWmj17NlVWVk5EdYMK0dkYHESEjIwM5OfnY+7cuYJ4hmEQEhKCTz/9FGfPnsVjjz3mMc+EhARcuXIFdXV12LBhA/r6+iai6kGB6IRBVuPz448/RldXF3btctz5LWTNmjUe8+OQy+XD3tJly2AymcZW4SBFdMJgGAZ9fX3Izc1FbW0tpFLpmPNzhPOWlpWVISEhAUePHh1TGcGI6IQBAIWFhVCpVIiNjZ3QclJTU3Hu3DmUl5cjIyMDg4ODXl3nOAoFI6ITRltbG+rq6lBeXj7ueTvr0MjISLS2tqKvrw8rVqxAZ2eny7Qck2E/qWiEwXVERkYGysrKIJPJxr0MVx0aFhaG48ePY8uWLYiLi8OpU6cmRee7QxTCIOtGnNraWkyfPh2bNm2a8PKcwXlLudXQZEYUwgAs9zr27Nnj9ibZeOE4GvCFolQqYTAY0NHRgeeeew6//PLLhNdHjIhCGAzDYPv27UhLS4NCofBL+XxxhIeHo7GxEYmJiVi8eDEuXbrk8zr5G1EI47PPPkNrayuKi4v9VgdnNkVBQQGOHz+O1NRUVFRU+KFW/sPvwhgYGEB2djYqKysRGhrq7+oI4LylJ06cwIYNG/Drr78K0gTj8tUnwnDXcKWlpYiMjERycrIvqjIq+N5SpVIJo9FoFx+MKxifCMNVw12/fh3V1dWoqqoS/bdOKpXi4MGDKCsrQ3x8vMBbKvb6jxSfjhiOjbdjxw7k5eUhIiLCF9UYMwzDIDU1FV9++SXKy8uxdetW224yvviDQSQ+HTH4jffRRx+hq6sLOTk5gjgOsTYw5y29f/8+YmNjbd5SjmCYWvxifPb29iInJwfvvvuu25tkYmtgvlCdeUuDCb8IIy8vD0lJSYiOjvZH8aPGmVA5b2l6enpQeUt9Loy2tjbU19dj3759HtOKdSpxhFupcN7Snp4ef1dpzIxBGC4ONHGD2Wy23SQLDw/3mF5sU4k7wsPDcfr0aSQmJmLJkiW4ePGiv6s0JkYkDPvvr8TtN5qIBI8IVlVVISwsbMJvkvkLhmGCxls6ImFw39/stZaT8SQSieX8K4YBI2HAqLOH0zKM3SOC3d3dKCkpQU1NzThUW9wkJCSgra0NJ06cQEpKisBbGghT5KimkqomQpYa0BlY2xlYBp0WqoVPuXyQmLtJFhkZOYbqBg6ctzQiIgJKpRIdHR02QQTCFOmFMIS2BMGEf0ODZAUDggkVFTosSlqLxKfmO32QuKmpye83yfwBf2+pWq3GBx984O8qeY2dMAbN/bY/fhL+0EcATPWNWLhWBQCo318N5g8LwWAxcnOTBAUMDAwgPT0dtbW1CA0NDYhhdLzhe0u3bNni9NlbsWEnjBDpDLv/HPyhjwHwXecNHNqVAoaRIiX3EJ6e94zLAkpKShATE4O1a9cK8goGPBngHJy3dGhoCNHR0QJvqdgYlY3RfKbGal+YoVGrsMDF3ppr/76OmpoaaLXasdRR1LgTumNcWFgYjh07hq1btyIuLg56vX6Cazd63ArDbmoh63vjx/jHtHQkWX8T5Mk/qTHfLBwaB8390GRn4G+FeZDL5a7z9bZ8h3CSmEESsyCcfx0/TCwQkc1bum3bNuTn58NsNrtM6y/cCsNuamGA6dIZaDj7L7yakAgGwMDQfeza8VeESGYge3uW7bpBcz/+efwj3P3/PmzL2m7XOYPmfoRIZ2C6JBQh0hkuO45L5zitceEMKwXDSgUC4OL5r8UkDm4UUSqVuHr1Kjo6OhAfH+/UW+rPaXdEU8kDcz/+1VgDdWKS5QxNhrGMDC9IQU+utqW7e/cu8vLyUFNTg2nTnB8+PJIP7SgOd2n4ab25zp888sgjtr2lzzzzDC5duiQa49yjMLhvnLG+AjNnzsShZiBlsQRShsHMmTMROu2/8E4jC/Xav4Bb2u7ZswfJf06CMko50fUPCgoKClBXV4fU1FS89dZb/q4OAJ4wPA23iqRc3Lt3z+rQMoO1HsTKvX5+4QMAEly+fBk6nQ5lb+0bt2N5xTQVTBSct1Sv1zv1lvoagR/D2fDLjRoh0hnWGyYSXvggBs2/I0Q6A2azGS+//DJ+/+13FLyRj//7tQeD5n5Ml4QK8uL++OXxBcBP5zg98I1Pvj3hmIer12IlIiJC4C31FzZhODP0HCHeT0pxM6HluocAWG6SzZkzBzdu3ETnt98jWvk/aG/7WpAPV5Zjec7euxIqZ3y6ytPVazHhzJ5w9Jb67Ul8b05XGRi6b3vNsqwgniWirq4ukslkdO2a0RJARFVVVRQWFkZFRUU0NDTkTVFeU1RUREVFReOap9i4du0aKRQK2rx5M/X39/u0bK/8GHycrSYYANu2bYNGo0Fk5CLbqKLRaNDe3o6GhgYolUpcv25/pDOJxAIXK5y39MGDB4iJiRmRt3SsbevRj+HNMHzq1Cl88803Tre2TZ8+HT///DNWrlyJZ599Fm+//bYtLtjc4xMB5y1NS0sbkbd0zG070iHGcSrp7+8nuVxOs2bNoqqqKkHc0qVL6Z133iEiovb2doqMjKRVq1ZRV1fXiMviMxmmEkeuXLlCcrmcdu3aNe5TsyMjvlfiqMTi4mLExsbi66+/xvvvv29393DTpk2Ijo5GRkYGAGDp0qXo6OjAsmXLsHjxYnz44Yd8gQpeT40o9nBP4hsMBsTHx6O7u3viChutoliWJYPBQDKZjH766ScisowQmzdvpqioKCosLKS4uDinRhPLsnTu3DmSy+W0fv36UR3MOhlHDD4lJSUkk8nowoULE5L/mM75jIuLc3rwakFBAU2bNo3a29vdXt/b20sbN26k2bNn05kzZ0ZU9mQVBn96bWlpIZlMRqWlpeNezqiFceTIEYqKiqIHDx44jb9y5YrXeZ04cYJkMhlpNBq6e/euLXzKxvBMV1cXxcTE0Lp162xHZrtrN28Z1X6Mnp4e5OXloba21uVNMqXS+/skqampMBgM6OzsxPLly3H58mUAUzaGN3B7S+fOnQulUom2trZxabdR/SbaK6+8gvDwcBw4cGDMFXCkuroaeXl5yM3NRWFhoctHGIuLi3H+/HnEx8cL4s6dO4fVq1dPuj2mJ0+eREZGBkpLS5GWlubVNSwIEhBAEqv/yfKLlSMeMS5fvozGxkbs3bt3pJc6hRyehNdoNOjo6EBTUxOioqLsnGLeaJh7nGEUeg94uL2llZWVXu0tJSJIwACQ8G54SmyRXjM0NEQKhYLq6urGPId5Q1FREYWFhTk9FJ6zMZzNp5Pd/vjtt99o48aNpFAo6MaNG7bwkdgeIxoxtFotnnjiCbz00ksjl/MoKC4uxhdffIGamhqsWrUKP/zwgyDNlB0ihPOWZmRkIC4uDidPngTgTVsNPyritTBu376N0tJSuyfJyAfD9bJly9DR0YHly5djyZIlNqfYlCCGcdUP2dnZaGhoQE5ODnbv3u10b6njY6fCVx7gMp8zZ44tzFedExoaigMHDkCv1yMvLw8bNmzAvXv3fFJ2IOCqH4jIrbeUiOz3UvFU4tWqRK/XY/369di9e7ffT9YbGBjA6dOncfPmTWRmZuKhhx4SpDl//jwAOF2xBBvE+3lzPs4M8NraWgwNDUGv13s8wN8rYRw9ehTff/+9oGCWZcdt1HD8IJ5WFj/++CMiIiKcpjl//jyICKtXr3ZyZfDjzaosOzsbMpkM+v0apOQesgSq08GefQ3ZmkY4907xIMB2bIErdfoMwrjtI50suOwzkx7Mf6dApdGCWOvOPJMeDKNAlrbe3sbItB5vwP/bX2+0zT1+N/gci3fypZh83gv3CPqMLA+lqxUWUTRX5Q6366JkaLPUeHrefKEfI0sNqqg3EktEBv1+AkA6g+P61+z1eng8yVKDLB+N/5dARhJH/QIFXUWWi3azxOmMQ/ybaGZiyUhrGN4FhnoCQPUCYfgYXvFZapDOOLxJRZulIkBNV4kllixOnPG4iRSssGQkFUBZWp1duzq2GW8qkcBU3whJ1losso4t2TlJUGm0+LNCHFOI7VyORVLbnJFb3YwsdTN2ZO8HQ8Mu8ak5hcPitCJu85PpW7QAeHL+Arup2WawWttNwvd2fdd5Ey3Vf7U1rqqStcxBDpCf7kOY6hvBLHjK8ob3oZ7+gwot33ba2yBTRqoVie1xUsdQx35kGMbWbhK+j6v5zCHojEMgIui02UhZLIHeKJ4td2fOnkGi6k+C8HnzFvihNoEDv7do0QKoANy88d1wP3JdbNJjf/01y1vbPGPUEdSZtjnGbJ2LMss/IYv9wYX7Z/5myUgJLgxNbZaKVBqtQ/opbLB2/6zGp2WRwWHQa+3632Z8fqLNtBgkHFc/IQCk1Q1f7KQs32HUWTrfsWCjjgBQue7qcNyUKjxi0mvtVneOXyyw1qVdlhr0idHSopzl6mpJY8F+SehpJTDWeEfhsqxlFZKlBkGdOeHlB3q8IL3Lay39CoODcgAQwzB2w4owQ9/6CTihcv4UlojIUE8M4LKeU3gB6/rZFJf3SsjqSnXrheZHenJXjzLe9L/7oUgSrowAQKszIjd5kZtMx15+MMSTnVvcsnXPE/8BbY7NSGscpOYAAAAASUVORK5CYII="
|
<image>如图,在Rt△ABC中,AD⊥BC于D,DE⊥AB于E,若AD=3,DE=2,则AC=()
Choices:
(A) \frac{21}{2}
(B) \frac{√{15}}{2}
(C) √{15}
(D) \frac{9}{2}
|
\frac{9}{2}
| 69,704 | null |
\frac{9}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAJ4AAACKCAYAAABbwvP2AAAVvElEQVR4nO2dfWxT573HP8+xC0wLK1LZumrpskKBXJJpbEJqQoYES5zA2l6S22YLF9qAiNSC0w7qoLGNSVULajsSKCUJoHYqvW1UpJUbp6jNi00btqVQzehSiQRaWkq0TltFJMiadXUb+7l/HJ8T27Ed58UvcZ6PZCX2ec45T3K+/v2el3O+j5BSShSKqUACIvQj5347FY5m/Y1tK76uWh6xt6MlvXKKzCUgOgnQ50QIQdOVBUgp9dezpVhEHixYiFARTzEV6MHOD2j46aNM5IG9HlejI7gADXYblD6LNYV1VWQQerDTQMLrB5pwU0xv42PhBVi4cDHcuVRFPMXkkFIixEjDTtJHqchjcX0rTY7yoM9Dm3+qjaeYFMGiAxB9H+AGFty5KPRzdPEZUU4JT5FUDJkq4SmmAL8ZyuTSXEqAKx9eHlVG9DnZ33YRUMJTTBYJoHH6j6c5ePAggly2NWyjua6ChrZes1hv2wHE9i4eW/cf6HsoFJNBwO9//3tKflLM9evXAah4rIkLznrqyvMRQiCEYLsLZFcz4AdQwymKybFz507a29vZ+OADIZ/nrXMgpSPCHvqQi4p4ignh9XqprKzk/947T09PDzk5OYEt/rCfERBKeIoJ8Omnn1JUVMS8efPobO/g5ptvDtqqIfGDNKQVWYBKeIpx0dvby/Lly9m4cSPPP/88mjYiIWNMT6AFjRZrRJqjUG08Rdx0dnayadMmDh8+THl5ORA6gGzcDDBqUDnsPSjhKeLk6NGj7Nmzh5MnT7J8+fKo5SKJLIRA8FPCU4xJbW0t3d3dnDlzhuzs7MkdLKBLJTxFVIaGhli/fj0AZ8+eJSsra8qOrToXioh88sknrFy5kpycHE6ePDmlogMlPEUE/vKXv1BYWMiWLVtobGxMyDlUqlWE4HQ62bp1K8eOHaOsrCxquUi91/GghKcwee6559i3bx9ut5u8vDwgusAmIzpQwlMAPp8Pu93OuXPn8Hg83Hrrrea2yQosGkp4M5zBwUGqqqqYM2cOb7/99qhOxGRTajRU52KGIqWkv7+foqIi8vPzaW1tjdhzTVTEU8LLACbyvNa5c+coKChg+/bt7Nu3LwG1io1KtRnAeKPSiRMnqK2t5ZVXXqG4uDhBtYqNEt4MY+/evRw7dszsuQa34RLVnouEEt4MwefzUVNTw6VLlzhz5gzz588HQqNlskQHqo03IxgcHKS4uJh///vfdHd3M3/+/Am1C6cSJbwM56OPPqKgoICVK1dy/PhxZs+eDSQ3ukVCpdoMpqenh/vvv5+nn36a6urqVFcnBCW8DKWlpYW6ujpee+01ioqKUl2dUSjhZSCPP/44LS0t/PnPf2bhwoWprk5ElPAyCK/XS3V1NX/729/weDxhT3+lF6pzkSEMDAywatUqvva1r9Hd3Z3WogMlvGlH8DCI8fulS5coKCjgnnvu4cUXX8RisaSqenGjUu00I3zA9/Tp01RVVfHss8/y85//HEjuDMREURFvGvPCCy9QVVWF0+k0RQfxjdGlegBZRbxpimGWc/bs2SDfkvhJdURUwptmeL1eNm7cyI0bN3jnnXf4xje+keoqTQiVatOMWCkw2Cyno6Nj2ooOlPDSjmgp0DDLeeCBB3j++eenRc81FirVpiHhvdJIZjnTHSW8NCRYdPGa5Uw3lPDShEhjb4ZZzjvvvMPtt98e1z7TBSW8NCFYQPGa5UxX0YHqXKQdhlnOd7/73YSY5aQLSnhpgpQSj8dDYWEhNTU1NDU1pbpKCUWl2jShra0tLrOcTEEJLw04ePAg9fX1IWY5mY4SXgoxzHI8Hs8os5xMRwkvSYQPfQSb5XR3d2dsJyIaqnORJIJFd/Xq1THNclJ921KiUcJLMkbPNZpZjiG46TxGFw8q1SaReMxywhcsyVQBKuEliWeeeYbDhw+Pq+eaqaIDJbyEE2yW4/F4TLOcmY5q4yWQYLOc06dPK9EFoYSXIMLNcmbNmpXqKqUVKtUmAMMs56mnnmLTpk2prk5aooQ3xcRjlpPJvdV4UcKbQqKZ5YQLTQgx48WnhDcFeL1eampquHr1akSznGgr48xk8anOxQQIns66du0aq1atwmq14na7x2WWM1NFB0p4E8IQzKVLl1ixYoVplmPYvCrGRqXaCRLJLEcRPyriTYBoZjnBZPrdJZNFRbxxEq9Zzkxuv8WDEl6cBJvl9PT0mJ2ImdwznQwq1cbBwMBAiFlOcM81/DYmRXwo4Y1Bb28vP/zhD1m/fv2YZjkq8sVPSKqVUvKlH5CAAIsm9AIR/p/TJcVMpp6ZaJaTLoQITwjBbE0Xn6YJrEHXa7pO+4xVv2i3mmeqWU66EBCen7Gyri40H6CZF0mIQGicxkQSpt1u5/Tp05w5c4bs7OyQbalaZjPTCAhPF52UMkRGX/kkfgABszQBaHh9YLWAVYCUgq/8Us/MmmCWsXMgZRtN7ZssYkTWsbYFE1wucH4RY/9hn8SH3jzAr/+OEMwWwccRzI7x/YrHLCdVy2xmGhpETzdWTY9nN2kCIfXt1qAU7JP6hZ9tEWh+yXBADcOBVD3bIrhJwFf+kWPG2hZMcDlL4Fyx9jfq6vNLNIsuMCElXqOOgfdRTmea5eTk5GS0WU66oEEM+9OT+3nzYpA4pAQRiB5S4pPwpU/iDUQbo4xPgCVwSE0EXfBY24KREp8YEbgp9jj2t2ihEdQiREgU90cY8Th//rxpltPY2Bjxf6GYWrRoY0+auMiOdXV671ZKhoFhqV9080IKPfIYL7MzIkdS4ShibQsrGLFc3PvHh9PpZO3atRw5cgS73T6FR1bEwmpEO79f8hWC2QIQcKD2EMJmY3EeWCR86ZdYtKDoISQWHwwHRSa/BE0ILOhp12jzSSGM0Bp9WxhC6uk17mNPgJlolpMumMMpQgB+vU108uCjYLNB0weBbfoF10IysobVIvH6R9LsTYEcaNV0oXoh0DEIOmGMbcM+CZrAKgSztPEdezjQgTDaeP4Y7yV+HpmhZjnpQpDwBLMtIHtbeVsW07QI6myLWSoDuVWLEFkC+4xCCGZFG+CPsc1qESHlRo7tx2xcBu0fPJhjtYiQQUktyvuZbpaTLozS0iOHT9HkKAf8lCzWnxtI/RykBvh17QXVZbyDGf39/WOa5SiSQ4jwnPu30tTUhBACkXcfaFa8gbbfyCxGtAGJRKPF9QWIVsbj8VBQUBDVLEeRXALC80OfE5csQ0qJlJILznoW5+Qw2xI0MBy8SxKxlwqEEGiahqZp5u/CVjuqbKShoRMnTnDvvffyyiuvUFNTA6RDFJ/Z6M2gvtcR27uQXc3mhssfXQEWpnxaSAJNXRJKBbYDfsrz9Lr0tjXwWNfYX4JoZjlq1iG1aA12G1r+f4HrMM5ePQrYSwUVjmaa6yoofWT/1A6cjROBH0kf72OnPE8g6aOhoZWl69ZSuuB7Uffz+Xxs3rwZp9OJx+MxRaciXXqgOZpc+P1+pJT6hZWSxk6/mXJdjQ4QcOzYMfr7+1NRRfra2llSVgJA2/4muHMxgqU4HBUR9wg2y+nu7g4xyxlPpFMiTRwRRkjEqIszNDTEvn37WLJkCYsWLeLhhx/mxIkTDA4OjutkE72Qlz+6QnNdBULokXjhnUujlg03y5nMI4cqHSeOuHoKWVlZVFZWsmvXLl599VXuuOMOjhw5wrx58ygsLOS3v/0tPT09Yx4n7gsZpk9XRzOtF/QobLeVsDgvYjF6enr48Y9/zK5du3jyySfjO5ciJYy7i7p8+XJ++ctf4nK5+OKLL9i9ezdDQ0M89NBDzJkzh3vvvZeDBw/S29sb8zjB0S9cQCOztHpvu1ls1TsVEu5Yu5algRG8YBm3tLRw//3389prr1FdXT3eP0uRZOJ6yixaipw9ezZ33303d999N6CvIO12u3G73dTX1zM8PExJSQklJSUUFxeH3FQZcl8bfiSaKaSRbRrODhdbbTazd+3Y8Rigr2xo3EkSzSxHkb7EFfHiTZG33norGzZs4MUXX+Svf/0rb7/9NgUFBTidTpYuXUp+fj47duzgjTfewOv1hlRj5B7SUJG7OpopXVseUgd7qUDeUYLX6+WBBx7g1KlTeDweJbppREJHg3Nzc7Hb7bS2tvLPf/6To0ePkpWVxZ49e5gzZw4rV65kz549vPvuu+Y+hsB62xoQQtDsgop8zez0GJ8VrCiasFmOIvUkRHjRUnNRURFPPvkkZ86c4bPPPsPhcPCPf/yDTZs2MXfuzVRUVNDU1MSlS5fIW+fAHxjSCX/19fXxxIPKLGc6kxAngXhSc1ZWFuXl5eZjg5988gmnTp3C7e5iz549WK1W1qxZg624hNXFP+Gb37wFicYflVlORpA2FhbZ2dlUV1ebPdLe3l46Ojp48aVj/PfGDXz/+9/ntttu4+zZs7zxxhsUFhYmrC6pniacCaSVk0Bwis7Ly8PhcNDe3s7w8DCLFi3i9OnTWK1WVqxYgc1m43e/+x0ejyeu443n/Ep0iSethBfpgnu9XiorK7l+/TqPPvoo27Zt48aNGzz88MNcuXKF9evXM2/ePKqqqnjhhRdCpvXGKyAluOSRVsILJ9wsx+hE3Hzzzdx3330cOXKEy5cv895777F69Wo6Ozv5wQ9+EPe0npqLTR1pK7xIZjnRhJKTk8NDDz3EH/7wB27cuDFqWm/58uX86le/4tSpUyH7hUc4JcTkkZbC6+zspKSkhEOHDuFwOMzP402FxrReV1cXw8PD7N27l+HhYerq6rBarVGn9VSqTR5p06s1CDfLmUwPUwiBxWKhrKyMsrIyQE/fnZ2dcU3rKRJHWglvx44duFyuELOcqY5C8+fPZ8OGDWzYsAHQndvdbjdOp5Pa2lqys7MpLi42xageCEoMaSE8wyxneHg4qllOosjNzSU3N5faWv35jXfffRe3201DQwMVFRUUFBRQVlbG2rVrueuuu8Y8nhoDjI+ktPFiNdqDzXLa29tTHmHuuusufvOb3/CnP/3JvO1rYGAgMK03N2RaLxJKdPGRcOHFigCGWc6WLVvS0izHuO2rsbGRixcvcvHiRcrLyzl79iyrV6/m9ttvZ/PmzbS0tPDpp5+murrTioQLL5rogs1yjDQXTDoObXznO9+hurqal19+mb///e90dHSwbNkyjh8/Tk5OjnnbV1dXFz6f6Z8V99+Sjn9zokjJcMpzzz3HI488gtvtNm8iNUj1tJVx/kgiCK9TXl4ev/jFLzh58iRffPEFR48eZc6cOfz617/GarVis9l45plnOHfuXFznnklpOqmdC5/Ph30Ms5xU//NHbHbH9k4OL1NUVERRURFPPfUUg4ODuN1uXC4X69ev59q1a9hsNrO3HM9Nq5ncUUma8IaGhqisrMwYs5yxBGFM6913332A7ttiCHH37t1kZWVRUlJCWVkZNpst4o2smSo6SFKq7e/vp6CggNzc3IwyyxlPmywnJ4ctW7Zw/Phxrl27RmtrK0uWLOHo0aMh03pvvfVWAmucPiRceB6Ph8LCQrZv386BAwcSfbqkMpmItGzZMurq6kZN6zkcDqxWK2vXrqWhoYHz589H3H+6d0QSmmpPnDiB3W6npaWF4uLiRJ5q2hJtWu+tt97C7XZz6NAh/vWvf5mzKWvWrCE7Ozui6MfTJkx1+zFhwnv66ac5cuQIp06dUjavcWKIYf78+fzsZz+jsrISIQRXrlzB5XLR2dnJjh07zGm94uJibDab2XQZT4co1e3HKU+1hllOW1tbiFmOYmzCxWC8X7BggXnb12effcaxY8e47bbb2L9/P3Pnzh3TzSHVQ1SRmFLhxTLLUYxNvO22SNN6kdwcjGm9dLzvcMqEN5VmOTOViUQkY1rvwIEDXLhwgf7+fqqqqjh//nzUab10EOKUCC+WWU46fLtmEt/61rdMN4dY03rBbg6pSMGTFl6wWc6DDz44ans6tSsykfAvdjzTenPnzg1xc9i7d2/Mp/USQeh6tYw4MEVal1GGfODn8See5JX/eVmZ5aSQ8X6xjWm9J554gqGhIdNkaaLTekDQOl0xjNnDxBW6Xm2U38NP4PV6qamp4erVq5w7d075lkxTwt0c+vv7cblcuN1udu/ezde//nVsNps5hnjLLbdEFrpmDNFEWICECGOGIizVRmyPGR9pumHOwMCAMsvJUHJycqipqTGn9ZxOJ7m5ubz00kt8+9vf5kc/+hE7d+6ks7Mz8gH8urdNeNSKJNYQ4YlIcc74yC8ZGBhgRUGhaZYzS/Vcpw0T6eQtW7YMh8PBm2++yVdffUV9fT1Wq5Vdu3ZhtVr56U9/GjKtJ8VYqX8kFQsZZ402b97Mq6++Sn5+Pvfcc8+4/4ipoLu7G4BVq1al5PzTmbGmyCJt11dllxHff/7553z88cdcufoxH13+kM8//5zFixfz3nvvYbFEW08s6NgyoDzzlBF6FYODgzQ2NvPlsBchAfwIEfkB61TPASoiEy6gWIQLLvwYkfa/fv262VuOdX5zyi484tlLdePDYOqdF3CsG9/U11QKMNKxlMCTy1T/v0eWlArQ1CXZZhPUOy+YS0vVlefri6+Mo5kwlZWMdCwluskznnZfvP9vY/mv0FcJF2XAUj1wSk3/ZaSPIenjfddPWLtOX0sib1HQWE7YOF4y2GYTaKP+EP21//W+pNQhU0nEl1cPXPC/vSOL9NRvEyy1lHIRCSKgGymllH5pcsFZL0vs9eb7bTZC3ocVTyh+v36mrSXI1gsjZ/XLXllMsexNWk0UMfGFXpvVtodHFQnXkSaDx12kvoqOu6nOjCq2A359WSnAiHKJSHIywtNdQgiQl3hfM9Yxg/379yPIZUltrrnehSLFBC3d3tfWjmXxnaOKLFhUgvuDj4J2CRlR9oesotPasI2KfM1cXA+pp+Spn/b3B9amHx3+e19/g9zSEpAg+py0X5GARtOh9HsAfKZiBgsJ7a4O1tjWjCqzcOHikPehMxe9bTTLrebSnOses1MCuDra9AIi5McU4derIQOdlzBVm+uYaQKRV8GS7y2a0rMrJo8RLKToo6NJmv0D/UP9x4cfvm+u+A5hwmvrdGNfUzpywIuXcQMLFybyYutVEELoS7+HqTo8At+xSN2MkJ74EX0fwLY1LA2KHhIJfU52HjkVEgk1o90mpcTV0UzJmnWBHfqwLS0HillTHn21xCklfJqvz0kzIxF40cI7Y67cqEgl+vJfSxbcyUg88yOEwL69Akq28th/BkdC6ZMXnPVGkgt92baGdk2S1YkM9JJaG7ZJe31r8s6rmDB+2St/IozRB5/+Ye8JXUelW0eVJ7nVi4FfSr8/9P02W+gwipQjQyyK9CFq4AJZ77wQWjhw+UKmzPz40Ig+wZvo7VJKEIK+1+vJX7fT/Lz1gt9Mt7FIdf1n+nYZPq1mKEuM3AJglPl/0CS30Zp9WX4AAAAASUVORK5CYII="
|
<image>如图,已知AB、CD、EF互相平行,且AB=1,CD=4,那么EF的长是()
Choices:
(A) \frac{1}{3}
(B) \frac{2}{3}
(C) \frac{3}{4}
(D) \frac{4}{5}
|
\frac{4}{5}
| 69,705 | null |
\frac{4}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAJcAAABbCAYAAAB+tRe2AAAV3UlEQVR4nO1dYVBU19l+7kWHSUtmZ5qbQOzarQKKwano+A2kIZIqRKqCJHEGZ0KnJiWhqelXDGBwRul0GqeakDbxIxFBE0xJh8ynxBiNCNiQr3YkzlTtDHETAYOlY8zmD1NMJGbveb4fy73cu3t3WWAXduM+Mwx77z3n3HPOfc573vOec94jkSSiHAKEDMnvc5KQJM9zIQRkWZ6urN3SiKhaFkJMKo5E73tu07VGLAAxYk0jpqWmAwnHCxcu6L+NJAgWsiR7xROQ5Vn6O3s7XkF7n+f3ZMgbw+QxLeTyR5rPP/8cBQUF+NnPfoYvvvjCJ5wVGXyI6pO0rL9TsB/PPPi0KR8CHE1DBCR9DFNH2MkV6AMmJibi4sWLSExMxD333IODBw+Om5Y3AWn4r71KI2VjdT2kggLMS/ZcS5IEGR5iAd4SL4ZQI+zkGu8D3n777aitrUVHRwf27NmDBx54AB9//LEnc176kVVaEkb1LgCSBEAQsiSjo7ESzF0JcVyYlH2qAKS4KZYqhmAQMdptRkYG/vGPf6CgoAD3338/fvvb30JV1aDiypLs6e48FxD9J9CBlXgyWcLxgkVIljzFJABVYoBxZQyhRMSQS0NFRQU++ugjnDt3DosXL8YHH3wwfiQJkCF5SEOguuF9PP/EGgBA4cJUYzDMkuMAAmRwxI1hCmAEQQhhum5tbWVSUhJLS0s5NDQUVBonGp4hAAIyAbBw6z7DCwK/L4bQImIkFy2U9Yceegi9vb1ISEhASkoK3nzzTT2sBjGq0pMq1P4T6FTzQBKkik9O/g9SUuePvkD1GVnGFPrwImLIZfzQRvIkJCTgT3/6E44fP47a2lrk5eXhX//6l/5cU9b5aQdmVfwVtb/MH01DxZUrA5BVFZ7R4ZgSH7N3TRNmVnD6wqqrUlVV/71r1y4qisLnnntOv//qs2tHu0LwZJ+bJFlRCP3eumf3GlMLa/5jGINERq4lkRZdJQAMDAzgqaeewuDgIA4cOIDMzExTeFM8rXSxHnDaEbHk8kcsIw4fPozNm59CUdHD2L17N2w2m//0EOPXdCNidC5vGInlT0d65JFH8MknvaAkkJaWhsOH/xf+WkqMWNOPiJVcE0F/fz+a3ngd+xsOICMjA/X19XA4HBYhPdM+QHCSMYapYRYw1mVUrpfw4lEZgGc6xcO6tejlUaSMzspJCPxhxlsvFcxHFUJAkiTLcEIIOJ1OnD59Gu+//z7+/ve/AwA+++wz/PnPf8bly5exfPlyVFVVYevWrV6xJyaoYwScIrw1/MoC8GTv2Ijt1cpCAmvZS5VCCLqFqhsjp2KENMY1jgat7p09e5YvvfQSi4qKqCgKU1JS+POf/5xNTU0cGBig0+lkQkICh4eHSZIDAwPMzc3l0qVL2d3dPW5eVFWNGVTDABit1t/wEn9a8AzJsY8vhGBF4ZilWwtu/Bj+fk8UWtzTp09z165dzM/PZ0JCAtPT01lWVsaWlhYODg7q4TUC1tTU8LHHHjOlpaoqm5ubqSgKf/Ob3+jEi2H6YJJcvR11hukSz4cTws29W9cS6ytD9lKjVHK73ezq6mJNTQ1zcnIYFxfHjIwMlpeXs7W1lS6Xa9z0HA4HP/jgA8tnQ0NDLC0t5d13383W1taQlSGG8aGTSwjBvdXruPdkn0+g9oYtRGGVz9zcRKGqKoeHh9nW1sbq6mred999BMCsrCxu27aNx44dM0kYq+7SG11dXbTb7UGFS0tL47p163jt2rUplSOG4KCTS+UlrpXXso8eaWXs3l59du1Ytyjcuo4SDNdcLhcPHTrE8vJyZmRkEABzcnJYU1PDzs5Out3ugPHHI1hpaSm3bdsWRE48UrKmpoZ33nkna2trg4oTw+QBIQQpSLX3uHkFwShE3wkC4L7OS55rwzPVgl6Dg4NsbGzkk08+ybS0NMbHxzM3N5c7d+5kV1eXOe0pKtEjIyO02Wx0Op2Wz/0R0+l0Micnh8uWLeO5c+dClp8YzNAlV3tDBSvr23wCVBSCWF9JITwSRqUwMayvr4+NjY3ctGkTHQ4Hv/Od7zAxMZG1tbXjjtSC/Zj+RnMtLS1ctmyZKb2JEOTgwYNUFIWVlZU+Cn8wXXIMgQEhBFVeYiHGTBAqBdV+j8RCYZU5hip46NAh5uXlMTHxTiqKwg0bNvCll17i+fPnOTg4yPj4+LCPzoQQLCgo4MsvvzyldFwuF0tKSmi329nW5tu4Ypg8cKm9zrS4zvi3t/MTy0gNDQ2cPXs216yxVo6zs7PZ3NwcktbvnYYmmVwuF+Pj44MaTQaDrq4upqSksKioyKdM/qRhrBsNDPh8PN4cd1Todrs5Z84c/vrXm2mz2XyUY83gGS4IIUL2DmP5R0ZGuH37diqKwrq6uimnfatDlmXZtDhPwmx9llf4mQaOi4vD448/ju9+93Z0d3ejra0NS5cu1adiFEXBiRMncP369bDsDZQkCU1NTdi4caPfMMEuCDROVcXHx+P3v/89/va3v6GlpQX33nuvadPuZNK/pUGSwm3dfbndblK1FmNXr/6bSUlJHBkZIUnW1dXxtttu42233cY1a9bwxz/+cdiMlk6nkzabTX+3nleGVhGvr6+noiisrq42vSuG4ADNbuUNz8grsA2quLiYDQ0NzM/Pp91uZ3V1NcvKyqgoCvfs2RMw7lRIoL1nOuByubhx40Y6HI6Ywj9BeCSXNo9IklTHzA6WpHOb5gCzsrJ8Kv3ChQvMyspiVlYWz58/b5HG5BXhmzdv0m63+9jMwo333nuPDoeDxcXFIRtEfNsxZqH3+t4ascakl7WkSU9P59mzZ033NPI0NjZSURRu2bIl6K1h46Grq4sOhyMkaU0UIyMjrK6upqIorK+vn5E8RBOmvEGjvr6epaWlfp+7XC6WlpYyKSmJLS0tpmcTlWBCCG7atIk1NTWTih8KCCF4/vx5ZmVlMTs723J2wF++bjXD7JTJNTw8zMTERH7xxReWz7UKPXPmDJcsWcKcnBy/0zX+oKUxPDzMhIQE9vX5Tq6HC4EIXFdXR0VRuH379gkp/LeKfWzKa+gTEhKwYcMGHDhwwPK5NtTPysrCuXPndF8QO3bswPXr14N6h5bGO++8g8WLFyM5OXmq2Q4agVaibt68GT09Pejp6QnK9YBmvrhlVrdOlZ1CCDqdTjocjnFXOJAeKXTt2jUWFxfTbrfz2LFjQb8rPz9/RnSdYLqztrY22u12lpSU0OVy3XJdoBVCtik2NzfXhyjjif/Ozk59jdXAwEDAsNqcZagGBsFCVdWARDE++89//sPKykoqisKmpiafsN718W0nYMjIdejQIebn5wetT2jh3G43d+7cSZvNxueee86v9KutrdWneyJdZzl37hyXLVvmV7+M9PyHCiEjl9vtpt1uD6hsB6rUwcFBrlu3jikpKezs7PR5npGRwbfffjsUWZ021NbW8o477mBNTU1QKsO3DSH1FfGHP/yBFRUVls+C7QKOHTtGu93O4uJifXXC+fPnqSjKjH0gY97H82XhjWvXrnHdunVMS0ubdsPvTCMk5NIq1+VyMSkpiTdu3JhSeiMjI9yxY4e+4mLLli0Tnu6JlK5Hy8dkfI1FO0JCLiGELlVKSkrY2NgYimTpdDq5atUqzp49mw0NDeOGj3QFeXh4mOXl5VQUhc3NzSR9928GU4ZIL6eGkLtQ6u7uNi09ngispE1bWxvvvvtuvdV/G+b1uru7uWTJEubm5ppGyUKIoIkTDQSbshGVXuu1NHdG3d3dfsP4g5Vx8bXXXsMTTzwBp9MJm82Ge+65B/v27ZtCjmcemZmZuHDhAnJzc7F8+XLs3LkTqqp6XJnLY74sjKBnSbp+HRUngYSDsfv372dxcbHP/YnqQdp0j7F1a/N6/lZcRHKLttqZPjAwwNWrVzM9Pd1nQ4vVhpNILp83wkKukZERKooy5c2nTU1NzMnJsXymrbgoLy//VijIhw8fZlJSEsvKygKWJ1IGKsEgLLI1Pj4emzZtwv79+32WA3MCy55ff/11lJSUWMYtLS3FxYsXcf36daSlpeGtt94yxY22ZcgPP/ywfriDx9fYYctwUTUvGS7W9vX10W630+22Xuk6HozTPeO11u7ubi5dupQ5OTm8ePEiyejqPrztd93d3UxPT2d+fr6Pwh9NMEmur0ZU/W8C5LS8n5ycjMWLF+PIkSMm5dMYXvvtnQZJvPnmmygqKoLNZhu3tWZmZuorLlasWIEdO3bgq6++CroMMy3l4uLGPE2TRGZmJv75z38iOzsby5cvx+7duwFEmdQCfCXXlzdCZwU/duwY8/LyJhV3wYIFQa2Y8G7Nn332GYuLizl37twJrbiIVGi+xjIyMoLyNRZJCCu5SDIlJcU0eRtMd3X27Nmgp3v8GR61FRdr1qzhlStXJpbpCERzczPvuOMOlpeX+93NHmndZkCF3rubtOo2tWvSfGCmdv8XT/wKdXV1enhZlk3p0KJb/ctf/oKSkhJ8/Q0su2ljfGNXoaX31YiKe+97AD09PfivzGz86Ec/0m1J0YpHH30U/f39uH79OlJTU3HkyBHTc0aii01vtnlLrkDXgX5r1uahoSHelTRXb23DX940SRrv9N1uNxVF4ZkPz1mG8ZefL2+4+eUNN4e/vGm6VlWVl/qu6CsuOjo6SJolaDQp/6Rnk8qiRYtYUFBgMvdEmuSaELmsnml/17/6xm+4TY+X6StIxyNva2srFy1a5Ld7nizZybEVFxs3boxYB3DBEkTzNaYoSsT6GgtK5zJKh/HCWt3/v9MfMj09XX9mrEDvsMXFxdy1a1dYyEWSN27c4Pbt2y19XEQjjL7GrGYsZhI6ufwRKNCzYD6mdp2VlcXOzk6ThPMOOzQ0xISEBA4ODk4o7Ynmh/R8FM3j8+nTp32eRxKC6bYPHjzI733ve5a+xmYKJnIFGikGkiT+CGnsLpubm7lhwwbTM+94e+r2maZ7xkvbm0DGe/5+e+Ott97yWXERbTqYBs3X2Ny5c312wc9EmYK20E/VRDEyMsKkpCSTq29vrFixwnJjQ7gxNDSkb6zw3l0UjUTr6upiamqqpa+x6URQ5AqV7au6uprbt28n6au4DgwMmA4qsAoTboy34iKa4O1rbDK726eKgOTy131NFgMDA/z+979vaRytqalhSUlJSN4zGWiVqaoqGxsbedddd/msuIi0ob43rPLndDqZnZ3NrKwsk3Ph6cC0H+a5fv16trS0+FREcnJyRLko0nxcJCYmmnxcRCLBgjlexsrXmNblj3c8zmQRdnJ5Z7Kzs5PZ2dmmex9++KG+giLS0N3dzYyMDH0PYiSSK1i4XC4WFxfT4XDwxIkTYX/ftEkuY7ezaNEifvTRR/p1WVkZKytDd/zLRBBsC62traWiKNyxY0fEDPWDhfEcJ9KzL+EHP/hBQF9jYde5woVXXnlF3yp28+ZN2my2qFCgNR8Xc+bMiYoVF4EajpWvsVCPjKeVXJojuaGhISYlJXFoaIitra1csmRJVA35tRUXBQUFfn1cREt5xvM1pkNQ9/Kt0nqXkreb0+ndQiJ5FsXZbDasX78eTU1NeOONN/DYY49Fx26WUaxcuRI9PT3IzMzEkiVL9BUXNKzwiJbyZGRk4MyZM9i4caPu2urrr7/2DSgBgsKz+oICpw5s1Q9clYqqIPAJqrbVm+OErAkEgHZGkJHtPT09dDgcjI+PD2hYjSRYHUBq9HFhNFtEi+Qy4urVqywqKvIpC2nQmUdPVjGeE6Xd8z7eJ+xnXFcVSXjxqGRq1fUdTpStSsP9K+7HtWvX8Oijj4bFX304IEmSZV6vXr2KOXPmzECOQo/PP/8ciYmJ+N3vfjd6x3M2uMAneEhKg/vZV3F811OmOHur14F5f8SvVi3Q780Kd0ZfOEKIQgmp/92LJ1fOR/+pvViQtwjzegWefvppHDp0SD/TOhrgrxF8W4glyzKSkpL0a8+55jJA4NT+/TiKtejdVeZ5ZligOC95IWRHqjmxMErZUXHqOcfxkvAcmKD2nSQg82Svx79E7PCAmYe/85VMYXiJBRZdXyCDRdi1zv6OdsRVFiJVigMlga3PrEbh1r14MMWzdT0+Pj7cWZhWzPROosnAe/Bh2Ytc7se7AJJT5pnDGn57y/Swk+vTK5/i6PNlkGQJsjwLD74ocGTXLzyZGc0Z/WwxixQYCTMeeaJllBgIlt+BMqzp4r8+wl4TJ4+9iJOXv4EQREdjJVanyujol0EA8ijvtZYSqXqXLMv6IVuyLKO345XRIXjFWCCv79HX+SokSUJlfds05jQ0sPwOyQ4UQuBy/79NtwkZav8J7OvsA70rYcodttYnW01+9p8g1o9N6wj2stDQb1sdYxwtuHTyVQJr2Ws4WUQ70lkrp7/zKqNpftL4WdsbKkzncKoU7O2oIwoqRq/DYEQlqXcHxmP0Tp3qRNXaVWPhLvfhKMb6bRmRKamMGCuPWfxfGZBQUDBaZqN/eQmoWp+Ko4VV+KVhWG5EpEpoK4z18gJ5T9TiUnsdnspdCEmSECfJeKZ9Fni0FgKEjDhT3CmbIkgV0qjlXQhh0jna330ReX98wVP5cj8eSv4pgDXIXZXiEzZSIUMCCUiSDM3eAwDtfZexQHoXn/bLSEn2NDBKwKnGKsgLq1CVutInLc+wPkL3GPqB1rSk0XKn5m0GudknnEyhz8Do96b6csmQoEYWTSepfRdYnSojblYc4qQFOLq+EuRxpECGFAXEAjQiaFejjtnQh3nzViF54Tr0f9oHYFQaXT6JdpGHefJFzJ8/3yctCR5JKElS1IwqJQCg6udYV0CX6F7EAkKs0GsVlpK3GeroPBRJUIz+P/KCOdNRAEnyrdb+9pOYn5uH5JSFuDxKLoFeFGzpxO6y+Tj+AvCTVWNHyFAfDau6KhANUluDJMX5fi+9WsZUA3qNMkNSQuNICvBPHC2cdyYiG7LPSPCvA3HISwYkCZAoQwiBxmcb8PI7z6O/ox1yRQEWGvSPsdFwnN4Ao6sOPDDl2MuMJEuyT1cfEnJ5K+Yk9XsCY748TaYHER2VS8DUWgR6IcR8SDLwwx/Ow8f9Azh1YCv44C+QAhmdp05gzeqf+CWP3gCjpA6M5dC6dSM0QnnMEOauPiyy2chgGZJ1FyCHtmO0EsveUsLqv3cc72tN29Du9ne0IznvQVAIJCcn4+jzZWgXefjlqjSovITjLwB5K1OAYBT2ENdBOOArjazz7Ann9Z3DYBqZEVjZjqwc3E42PklWFIKQQAA8efkbqr3v6UtPNBuQ589j/4pmO14oEPYlN5EChnj4L0BA0K9ibjTR3Kq4ZcgVw/QjesbDEYBgbVOx9upBjFzBgp6RHmn2TkiqPvckSfIZVd2KiJErWIyqa5IUZ5BMYlSv0qaGxiAjeqzw4UKMXEHCKIckiSC+gVZ9xmG4RjwB/8r+rYKYQh9D2HBrN60YwooYuWIIG/4fjv9J7f6oIz8AAAAASUVORK5CYII="
|
<image>如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()
Choices:
(A) 3
(B) \frac{9}{2}
(C) 5
(D) \frac{15}{2}
|
\frac{15}{2}
| 69,706 | null |
\frac{15}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAMAAAAB8CAYAAAA/1L8JAAAa9UlEQVR4nO2df2wTZ5rHv2MnZFd1E6qajSNcOSFm4+g41SpUNWq6CZsApSUmLFRUIgit1DawbU9liQNSK+0iVVeg2VXbi46E9FQqgpql4YCGliQ2TdKGI1GySk5KsaltICWrS5ZWhRJ2E7DnuT/Gnox/JY6JPTOOP5JlzzvvvPO87/s87/O874xnQDPBhm6yYTPKB4sZBIDATH/XW53zeg6WlV8rCSXuOFpNDMNw7WO2EEtXyGI5IqiXVwwRw8IGySJse284BQ5CAQAggIi4n75vAACDAKY3WciVw2cJFjNQ3+EEEcHZfgS71i6H1T0/5RMRGIaZPeMDlD//5bFgAJC7AwzDoM61HCzLgojA/rkMCqYAWJ47XS9SYH6liB0GisBtQdsrwihwsNxcTRjMsdO4k7KSaYZoYUFwwdH6PErLlgEA8pctC8hBvnyxEG/lB+baT9GWpwDBhQr9ephrGnD20CsAuLZg8tfhSE058vP0goNCxkbJ49fUYLnTyGcB/h2zNbBwL289skGBq1YbGIsZep8R1+xdj3JLPcryuRyML180BCt8vJU/ntgaG/AZyuE89BKf5q/NsvxfghEagEwQaicDFuH6laEIPpUIcNvqcW3ZLqzNj5+QicbaaMG6V2r57Q4XTdcvCnuOdpS/fPkybty4gUuXLsHtduPGjRv8vuvXr2NkZCQgv16vx9KlS/ntvLw86HQ6PPPMM1i6dCkMBsOs54wVggsVzHIUNLTj0CvrwjZBuKaRwvA3U39EI19axD2MC3vX7cZrrl0znD2KM0gAYSNdOFfLK7210YJ1embaCJjQ/MHb4Rrb7Xajs7MT3d3dGBwcxDfffIOVK1ciJycHK1euRFlZGXJzc/n8Wq0W+fmBo4rD4cD4+Di/7XQ6MTo6itraWoyNjWFoaAhGoxErVqxAcXExSkpKoNeHH5XnHIq5r+IzAPXLlnFN4OtXf/cGf8OXRwoOb6Z6+vcQecEwyvCZIs2u62ssVF5eTk4JzfgfFNbVTthk8W15iSUnmQGyNLQHZvRyywWR1nLGxsaosbGRKisrSavVksFgoKqqKmpubqbr16/HTX6Xy0VNTU300ksvkV6vJ61WS5WVldTY2Eg3b96MuVzWaSXAvxrm7++QNZQwB8Z8yoRSv8/MrWj5Ph0uTr+d5CWFf8InjIOsjRYwa9eC+Xxm65vnBYm4Y/vSiuoNpb4tBT/ycRNhwcRX4RvtBcdOTk7ixIkTKC8vR0FBAfr6+rBx40b89a9/hd1uR319PbZt2wadTjevMpOgkfPz87F9+3Y0NjbC6XTi0qVLePbZZ9HX14fc3Fy88MIL+Mtf/gKPxxNy7Izoc2EG4L56FdNxMreGwl5tQ4PNFf44CXgACvot3GZd7WAYBl/Q8yAi/mP9PYMvoOfmgSHm4u4gS0M7N1qaLXyyHNe2g7GYOesnlvjRHygnFxvZy124cIEqKytJpVLRxo0bqbm5mTweT+KEjpLJyUk6fvw4rV+/nhYvXkw7d+6knp6eqPvN2lDt8wJX+DSXtT5AB4iIH/W5cqUbHbDkpI1MGO9OXCTgTw8xAItlL5fJaSVzTUOcxUwMzo4jAS6Q/wR3Lk0beltbG5lMJtLpdPTee+/R2NhYosWOmdHRUaqtrSWtVkvFxcXU1dUVMa/QPILbSTb972VDDP1ITbkg3A3IPP2TJcL01V0vdRytnlMDyMsnzDBaCSpy+vRpMhqfIIPBQMeOHeN2y9T7eTweamxsJJ1ORyaTidra2mY/yCuvuvp1V4iXvg0/twsD7wGEboGIGw2iKUBORFRklqinp4eMRiMZjUZqaWlJrGAJoKmpiQwGA5lMJurv7w/ZH9gykW8vkC6czCz5FjsQeotL8ADf4fIZQHC878+cbAYQCNdgN2/+QJWVlaTRaOjTU4GKH9zx8lCEmWlqaiK1Wk1VVVV069YtIprFkwfE/EKkFP8HGWwEAyAicnY0BOg6jtSUB1gEEdE+c+QwKGwsLYMP4//NzJLPfxPYHPfJ+6OQgAwPLjtvAILl7WCzDR7YI14H8JUUYmnCE8kVl8tFJpOJ1paWkd1uD5NDSqNb/BgcHKSioiIqLi6m7777jk+f2dNJs20ABOiry1pPQKAXYFmWLGZQuy+JJd8keDpHlCeKLquEmO60lpYWys7RUF1dXUguedUplFhDtIMHD1JOtibCJFmaCh8Mp5fhQ6GAT3m1IId3Fg8Q8UTSIdpOn5ycpKqqKtJqtdTf358U8fx8wbIs9fT0kFqtpurqakle55iNWPUyutseJUw097y43W6YTCaMjIxgeHgYq1atkvWdm/MNwzB4+umnYbfb0dvbi6KiIoyOjgLAvP//QGrI3gBmY2hoCCaTCVu3bsX58+eRlZUltkiSRa1W4+uvv0ZRURFWr14Nh8OR/ANFolxNvAkX0nR1dVFWVhY1NTWJIJG8qa+vp6ysrLDXDIiktyQcq14mjQEE09LSQhqNhmw2m9iiyJYzZ86QRhNpciwtUgYg4NixY6TVaml4eFhsUWRPf38/aTSasFfHpeQFUgbg49SpU6TVauN6X34yE06p7Xa75D1BygCIyGazkVqtTo38caC3t5fUajX19vaKLUpYFrwB9Pf3k1qtTsX8ceT06dO0ZMkSunz5stiihBCrXkb+T7AMIN9/X91uN8rLy1FXV4fS0tLZD0wRExUVFRgfH8eGDRvQ09MDrVYrtkgPTMSnQkQ8gGEkdXFkamqKX+d/8803xRYn6SEi1NTUoLe3F11dXVAqI/zZPMHEqpeyNgAiwu7duzEyMoLz588n5MFUKQCv14uSkhIUFRXhnXfeEVscALHrpaxDoJMnT6KtrQ0DAwMAEPFRJinmF6VSiU8++QRPPvkkSkpKsG7dOr6t5dbusvUALpcLq1evhtVqhdFo5NPl1gFy5uLFi9iyZQsGBgZEnw8sqBDI6/Xiqaeewssvv4yqqipRZVnoHDp0COfPn0dXV5eocsSql5K/GS5cperr67FkyRJUVVWJbowLnX379mFqagonTpwQW5SYkJ0HGB8fh9FoRGdnZ1yfl5kiegYGBrB582YMDw8jMzNTlBB0wYRAO3bsgFarlczqQwqOXbt2IS0tDXV1daKcf0EYQHd3N7Zv3w63242MjAxRZEgRntu3b8NgMKC1tRWrVq1K+PmTdg4gZM+ePXj//fdTyi8h/EqXlZWFgwcPYs+ePSJLNDdkYwBnzpwBEWHLli1ii5JCgDDer6ysxNjYGLq7u0WUaG7IxgAOHDiAP/zhD2KLkWIGlEol3nrrLVn1kywM4MyZMwC4m7FSSJsdO3bgb3/7m2y8gCwM4MCBA6iurhZbjBRRoFAo8MYbb8jGC4huAMKZe7hZfHt7OyYmJvDiiy8mUqwUD8BLL72EK1eu4OLFi2KLMiuiG4CQcBdQPvroI7z22mtQKAJFTV0Bli4ZGRmoqqrC8ePHQ/ZJrd8kfR1gYmICOTk5uHbtGtRqdULOmWJ+GBkZweOPP44ffvghIf8ZSMrrAKdOnUJZWVlK+WWITqeD0WhEa2tryD6/okrBG0jCACI1xEcffYSdO3eGzSuFxkvBEalPfvvb3+Ljjz8OyT/TK2cTjWRDoNHRUTz55JMYHR2VzN/uUsyNiYkJ5OXlweVyxf2RlLINgSIJ/fnnn2PTpk0p5ZcxKpUKpaWlaGtrE1uUiIhuAJHcYGdnJ9asWZNgaVLMNyUlJejs7BRbjIiIbgDB+D1Cd3c3SkpKxBUmxQNTUlIi6avCkjMAhmFgt9uxePFiZGdniy1OigfEYDDg1q1bGB8fF1uUsEjOAADgq6++QnFxsdhipJgniouLRf/PcCQkYwDCyXAq/k8u1qxZI9l5gGQMQDgZ7uvrw9NPPy2iNCnmk1/96lfo6+sTW4ywSO46wNTUFLRaLW7evBm3c6RILF6vF48++ihu3boVt3PI9jpAMHa7HTqdTmwxUswjSqUSS5YswcjIiNiihCAJAxBa7pUrV1BYWCiiNCnigcFggMPhEFuMEOZkAPEKfYTxv91uR35+flzOk0I89Hq9/A0AiP8NTA6HI+k9wEK8kc9gMGB4eFhsMUKYkwEk4ka4sbExaDSauJ5DbIKfYr0QDCI7Oxvff/89vy2VOktiDiDk9u3beOihhyTTQPGGYRhJ3BYcbzIzM/Hjjz/y2/EaTOdapuQM4M6dO3jkkUcWhFIsJDIzMzExMRGQFo8+nqthSc4A7t69i4cfflhsMeaVheLNZkKlUuHu3bsJOddcDEtSBkBEmJiYwEMPPSS2KPNGpBd2XLhwAYWFhXjiiSdk8fSEB0WlUuHOnTtiixFCTFeCE4XYT6JOIS/i8o4wIgIDBmBiP8mM5YMFI3BEDMOAJS+mzUxSTiomwnmBwsJCfl38qdUm9P7PJV9mAEzyverp9u3byM3NDZgI++v6QMRQBncIC0Ah0C4CyOvBvXvTHw/rG/GDTzAHG4hkMP5Uv/L786lUKtyd+Ac4xZe/8gM+TxaQwqKurg4GgwFGoxF/erdWkHn6mLm0s9S5c+cOVCpVYOJ82HdQGWH1LSiJAQDidEshTGWUaViUziW9+UI60pUMv0zHMAwYxUa4wM5J8EijmDCVBPn4yVISdX4oCpSWlsJut2NwcDD0zlfW95SFJGqEiYmJUAMAy3381YylukHH7KtQ8Pq6ad9RAIDLVi/QYQZWNzgFpBmG2HfOECxmoMNF/MWaIxYFljMVcBMbg6ShwvoRGoNKpeKWy5jkWD2Z9nRR5PXXVyGdx4bMFxMT/xAsbvj1x+fl/dXkq8vtj6r3g5ro8FmCZRNQ3+HG2UOvAAD0a3fB2XEEMFtALGFt/vSxCl6YkLN9CztqUPyYB1P3vCAAVf/+3/i9uQt79nOWRcROh0xeQQHC9HtesL7iayoYMMzPsWhRpu/zc84qN9XwlVapVFycSCzu3/dyZdxnp8ULUzZA8PjDNpr+fc9Dgfk9iTeoYBV2WbnRSOH7bNp3lFf8ZFL4YG7f/lHgAbhxt2ZTUITBf5RosLliipAI38Lx2UaUrs0NSLfZvoDl+bKgvIACUHAdEHS2q9YvoTAsA8AgfZESDABGqcSygjVodVwFQPB6gPRFaVi0SAmF1wtOvwie+ywU6WlYtCgNaQqCx0NgCDh8lsVesxKtl3/CvXs/YfLuHVxuOwKzQc83SlZWFu7enRCUoYQCLLxs5LIBBmm+0I29z0KxyBfKsV7c88uYrgBYFjH6rgfCr+D1+8xYvu4cnOQFSwQvOYHDVajY3yiCVInlp59+wiOPBD4b6PBZgsXMBEQZLDlRzmxEaZl+bifwjW1u65dgLOXQBwU3Vx2tWFu6LiCqYODTOiaMrdkufIHn1q5ButKvZABYFvn6XwJEnDIRi/vCkZi4PCyjgNJXpEI5rXjEOuHA77BODxBcaPyvL5G/5tfYsCyPr4NGo8HY/42BVSiRxnDSpaWnIU0xc9l+FOnKgKor0hSC2pE/vE4Y/tWc+n1m7HYYQHSO7xwGevyp4wg+O3yOm1uFHJxYWeMGAX//+xjU6l8E7XDBjho+JGloPAoGehTuLUS06s8rtK+Tr11347PDVXy87/cq72If1uYLvKw/2hQePM1VtL1LKC3Tg1EqoWC9XGjBMrjmvgJz4XJu1UihxKJFafwnza95RKHzGgZwWztRsKEMBMDW2ADk5wLIx8uvlPHHGQwG2O2OgDKCaiwrvWAYBi7bf2L34VZ0/PnwjHmnRyefMSRLRMQADse3+Jd/XRGQ/K3NBsNz3H+/yd2BL1xc+qF3Z26ngKKDwkbruVp0uL2cR2E5r9JxtBqW538dIhMgmASzHkGMfPWawI0wUCoB9r4X7FUrfne4Fc+t/TVIwUDJeuHhBy4CywJQKKAAweObEzBEvjTg2ncu/Me/bcXPFi3CuldqkadbBigUUAqeFVlYWIir19wA+cOeyGVDULaUafjgVZhrGqYnXwKuXXfzv7nOZPkluuSAW+VxuVwoLAh8r/PINTdqdz3LzYn061GQn+sbMdmYBjlyd+BdWLB2WWD7uZ1O5C9bFvYYPifX9l7cu8+i8ysbJ4x/n1IJBRi8aXkWMFtQVaYHwyiQlsZwhnPPg3v3WD6gSktXAF7fBNbLIN0Xs1jP1eLzy7cwMfEP/L68Ao/lAelpfgvmJq/L9QW4fNmORWkMvJ77s5edxq1nee5z1sLe94KddTtxEFz4thV4bi03AgUvbFnP1cJcs1EQs06visjJ00VGwXuA6Rebcz1gPVfLx/8dR6s5JWW4Y+bi/Ii8AADbl9YwE10Xvqj1oqx0WYRrBEGw5CQzQB1XBWmuNkJ6OqGiJjjz7LD+MtoJZguf3NDQEDb75OQkZWVlRVGwPGBd7QSAOlxELOtvDO7L2XGE35fMeO97SKVSBaQF64OzoyHGdvDyvyzm4Lb0UtvRajLXTOtasMoGGADXIQoCN/gQwzDc7/Sf0ZGOKwGFRKP7QjqOVlPN0Y6QdIvFEpjAEul0Orpx48YczyBN/ANKvdVJws7yp2/c1xCxMXmDkTEsS3TF7iCj0RiQbm2oJktDuy/T3PVJiH8g8eur3wgsZobXZf5cQYR4ACHe+/dpauo+TXn84nlnyj4jFjPI6p7eZonIsim8YNu2baPm5uaYzyU1jtSUB4x2fq8gHJmSmfr6eqqqqhKkeMOM1n6Dj13HZrYib9jdYQ2ADTjAO3vZM+C3zkgfqztwpGMpXIPJH4s5sN4dLnqwYU9GCAc0oT4owMQh/PMG/J5W+/CGFf526Pm4Sy9icdxdeDPhcDiwefNm2O32+RNCMsxe/2QjJycH/zs4hF9osud0l+tc8saKAgiz2hBy63Pgukk4m5mJwCrM3vlSf6Lw3PHfsBGq/ITQ9kyO1R8Oh8OBxYsX4xeaJQDC3O4xQ2VjVX6+PSlMWhC+xcXZBFBESI8fUn6i8NzxX28MNX4Goe2ZLNe/AO49D9yTviMMfHGoLN+eTJi0IET3xZEsU8pPFE4RPVJ/0vec/xKZKFIvyZM/iXxJXqyI7gGA8F5Aq9WioKAg5D2z/rwStdsFSaQ+OXXqFIqKiiSr/IBEDCBSfBbuPbNSesdsCo5IfRLuPc+AtAYxyYZAAOdCc3JycO3atdTb4mXGyMgIHn/8cfzwww+SDmFF9wAz2Z9KpcLzzz+PEydOhC4VStduU4Ab/V988cUQ5Zdav4nuAYQXO8Jd+Ghvb8drr70Gh8Mh6ZEkxTRTU1PIzc1FS0uL5F91JboHECp8uLh+/fr1UKlUaG5uTqRYKR6ADz/8EAUFBZJXfkACHiAazpw5gwMHDmBwcFBsUVLMAsuyKCgowIcffiiLV92K7gGioaKiAgBnCCmkzfHjx7F06VJZKD8gEw8AAGfPnsUf//jHlBeQMF6vFwaDQTajPyATDwAAmzZtAsMwOHXqlNiipBAgHD+bmpqg0Whko/yAjDwAwN1YtX37drjdbmRkZIgtTgoBt2/fhsFgQGtrK1atWiW2OFEjKwMAgB07dkCr1eKdd94RW5QUAnbt2oW0tDTU1dWJLcqckJ0BjI+Pw2g0orOzU/CUgRRiMjAwgM2bN2N4eBiZmZmyuk1F8nOAYPvMzs7GW2+9hT179ogk0cIl0lj5+uuv4+DBg8jKypKV8gMyMIBwDbpr1y7cvHkTDQ0NIki0cAnXF4cOHUJGRga2b98ugkQPjuxCID8ulwurV6+G1WqF0WgUW5ykZab/5V68eBFbtmzBwMAAtFptgiWbHyTvASKh1+tRV1eHioqKgBcwp5hfIin/6Ogotm7dio8//hhLly7l0+U2nsrWAwBcY+/evRsjIyM4f/682OIsGLxeL0pKSlBUVCT71TjZegCAG53ef/99jI2N4e233xZbnAXD/v37ASAp2nzWt0RKGSJCRkYGWlpaUFRUhOXLl2Pbtm1ii5XUNDQ04OTJk7h48WJy3J4+x8duSZb+/n5Sq9XU1dUltihJS2trK6nVarLb7WKLMm8kjQEQEdlsNlKr1TQ8PCy2KEnHpUuXSK1WU29vr9iizCtJZQBERJ9++ilptVq6fv262KIkDXa7nTQaDbW1tYktyryTdAZARHTs2DHSarUpTzAP9Pf3k0ajoZaWFj4tGR7b7kf2BuDvjOBOaWlpIY1Gk5oTxAjLsnTu3LmQkT+ZlJ8oCQwgGGEH2Ww2ysrKoqamJhElkif19fWUmZmZdDF/MElnAMEMDg6SWq2mt99+OyA92Uay+WTv3r2k1WrJbrcnfTvJ+kpwtLjdbmzduhUajQbNzc2SflSfmHz//ffYvHkzPB4PTp48iccee0xskeKOrK8Ez4TQrvPz89HX1wedTocVK1ZgYGBARMmkycWLF1FYWAiTyYSenp4FofwAkudCWLT4J8d1dXViiyIZDh48mLTLnLOxIEKgYNxuNyorK/Hwww/jgw8+WLD/LBsaGsLrr78OpVKJpqYm2d7S/ECIbYFiUldXR2q1mvbv30937tyZMW+k5VY5cuvWLXrjjTdIrVbTsWPHxBZHVJJ2DhANr776Kux2O0ZHR7F8+XK0tLREzMswTEJe2hZvTpw4Ab1ej3/+859wuVxhH1++oBDbAsVEOJr39PSQ0Wgko9EYcNUzWWhqaiKDwUAmk4n6+/vFFkcyLGgDCMfp06fJaDSSwWCQfXjg8XiosbGRdDodmUymBTnJnY2UAUSgra2NTCYT6XQ6eu+992hsbExskaJmdHSUamtrSavVUnFxMXV3d4stkmRZ0AYQzYTWZrNRZWUlqVQq2rhxIzU3N5PH40mAdHNjcnKSjh8/TuvXr6esrCzauXMn9fT0iC2W5FmQy6CxMDU1hZaWFjQ3N+Prr7/GCy+8gLKyMpSUlCA7O5vPRwl8E/ro6Ci6u7vR1dWF5uZmbNiwAVu3bsVvfvMbpKXJ+s9+CSNlADEwPj6O1tZWXvlUKhWKi4uxZs0amEwm6HS6uJzX7Xajt7cXXV1d6OrqwuTkJEpKSlBcXIzNmzfj0Ucfjct5k5mUAUTBbCO12+1GZ2cnuru7MTg4iG+++QYrV65ETk4OVq5ciby8POTm5vL5tVot8vPzA8pwOBwYHx/nt51OJ0ZHR9HX14exsTEMDQ3BaDRixYoVvLEFl5Fi7qQMIE4MDQ1hfHwcly5dgtvtxo0bN/h9169fx8jISEB+vV4f8HydvLw86HQ6PPPMM8jOzsaKFSsAPHjYlCKQ/wfwJ1byJLSkmAAAAABJRU5ErkJggg=="
|
<image>如图,一矩形与⊙O相交,若AB=4,BC=6,DE=2,则DF=()
Choices:
(A) 13
(B) 12
(C) 11
(D) 10
|
12
| 69,707 | null |
12
|
"iVBORw0KGgoAAAANSUhEUgAAAJIAAABYCAYAAAAeCK5cAAATBklEQVR4nO2dfUxTd9vHvwUmxtsFlx0fj7HejROzmrJYQp01K6IZOnKPajcxbo5smDHZ4pLhE0CWuWEyNt10kT33loi4BCNGkuEAxZesoJjJAxmY4mMnOItD+4c43FYszyPQ9lzPH/WctaWv9JWXT0JIzzm/37na8z3Xdf1ezvmJiIgwQ1ggIohEoqDLNTc3Y8mSJVi6dGkozQspcdE2INZwva8mep9NVEQAxpVbv379hOuKFDNCcsH1goVKDP7Ai9ZRvCUlJVCr1ViyZMmE7IgUopnQFhu4ejAiQlVVFZYsWYINGzZM2DNGihmPFCO4erDbt28DAJ555hmo1epomBQQM0KKUSorK7Fjxw4AgFQqjbI1vpkRUgxSVVWFAwcOQCQSITk5Odrm+EVCtA2INUZHR9HR0SF87u7uxl9//SV8Xr16NWbPni18lkqlWLBgQcjO39fXByIScqLm5mYhzMUy01JIQ0NDuHbtGi5evIhr165Bp9Phzp07AID4+HioVCrh2JSUFDAMI3w+ePAgLBYLAHteo9fr8eDBAwB2kT377LNISUmBQqFAWloa5s6d69MePtHu6+vDrl27cPr0aWHbZBARMA1abWNjY2hvb8elS5cE0QwMDECpVGL16tWQy+VYsWJFSPKQtrY26PV6XL9+HXq9HpcvX4ZYLEZKSgpWrVqFdevWISMjw20fU0lJCQ4cOAAAMBgMWLp0KdRqNZqamgAAxcXF+PLLL4O2MVxMWSGdOnUKDQ0N+P7775GamgqVSgW5XA65XA6ZTDahOifSydjb24sbN26gs7MTDQ0NMJlM2LRpE15//XVkZGRMyI5YZNIIyZ+L2NbWhurqajQ0NGDZsmV46623oNFoJpTDBNMz7a18b28vGhsbcfz4cfzxxx/YuHEjtm3bNvlFRZOc/v5+KiwsJLFYTDKZjCoqKuju3bt+leU4zu/z8McGUsYX/f39VFFRQUqlkliWpdLSUvr9999DVn8kmbRC6u/vp7y8PHr66aeprKyMDAaD2+PCIQBP5wgGo9FIpaWlxDAM7dy5k86dO+fznOH8ToEy6YTEC4hhGNq/fz89fPgw2iYFhasYenp6SCqVEgDatm2bxxsk1pg0HZJ37tzB9u3boVAoIJVK8dtvv2H37t148skno21aUDjmUV999RXS09ORlZWF+fPng4igVCrx2muvobu7O3pG+kO4lRqs+x0cHKT8/HzBA5nN5hBZFjt0dnaSXC6nNWvWUE9PDxHZPVNycjKVlZVRRUUFsSxLeXl5ZDKZomyte2I6tNXV1ZFYLKby8vJJLyB3N5TJZKLCwkJiGIZqamrG7R8cHCSlUkl5eXn0559/0s6dO4llWbpw4UIkTA6ImBTS4OAg5eTkkFwuJ71eH21zwsIPP/xALMtSfn4+DQ4OejxuZGSEcnNzSaVSkclkokuXLpFEIok57xRzQqqrqyOGYaisrIysVmu0zQk5/f39lJWVRTKZjK5cueJ3uU8++YSSk5PJYDCQ2Wym0tLSmPJOMSMk3gtJpVLq6OiItjkhwTGcWa1W2r9/PyUlJVF5efmEbpKamhpiWVYQYEdHB0ml0pjwTjEhJK1WSwzDUGFhIY2MjETbnIDx1adz5coVSklJoaysLOrv7w/qXD/99BOxLEvV1dVEZA99RUVFgreKFlEX0smTJ4lhGGpubo62KRPCW4enyWSi/Px8YlmW6urq/K7PV0vXYDCQVCqlPXv2CNtqamqIYRjBW0W6szKqQqqoqKBFixYJCXUs9dQGC39hCwsLwxJ2TCYTZWRkUE5OjuDFW1paaOHChXTixImQn88XURNSaWkpSaXSoF19rGEwGCgjI4Pkcjl1dXWF7Twcx5HVaqX8/HxSKBTCGJ1er6fFixdTWVlZ2M7tjogLyWq1Um5uLimVyqgniKFkZGSE9u7dSwzD0MGDByPiXflzHDx4kCQSieDZjUYjyeVyys3NjVjOGVEhDQ8PU3Z2Nmk0mkmZVHuitbWVli1bRtnZ2TQwMBAVG+rq6py6A8xmM2VmZtLatWsD7sxVq9UEYNwfj7ubJKRCcncCftvIyAipVCoqKCgIuI5YZXBwkHJzc0ksFlNTU1NEzunt9+nq6iKxWEyHDx8mIrv3z8nJoaysrIC7G9RqtVMrsKSkhLyNqEXMI2k0miklosOHD1NSUhKVlpbG1PCN0WgkmUxGhYWFRGS/gTMyMigvLy+getRqtdttxcXFbo+PyOj/rl27MDw8jG+//dbrca5PmsYiv/zyC9LT01FdXY3Lly9j3759fk3wjwREBLFYjI6ODvT29kKtVsNisaCxsREdHR3Yu3ev17I8zc3NbuewS6VS9Pb2ui0TdiFVVlZCq9Wivr4e8fHxfpWhIKe5hoPh4WF8+OGHWLt2LXJzc9He3o4VK1YI+8nhEaJowf9mc+fOxfnz5yGRSJCeng6z2QytVovvvvsOx44d81oWAH788Uds2LBh3DGuz9g5XaOA/F2AnD17liQSCRmNxnCeJuxcuHCBJBIJbd26NWrJ9ET55ptvSCwWk06nI71eTwzD+MznPMmiuLjYY2gLm5A6OzuJZVnq7Owcty8WciFvNvD7BgYGSKPRkEQimbQ970RETU1NxLIs1dfXU2trKzEM4/a6ENn7wdyJpa+vjwCQVqt1Wy4sQjIajSSRSCLWkvHGREVbUVFBDMPQnj17pkRXhV6vJ7FYTBUVFVRbW0uLFy9220iorKykysrKcdvVarXbBJwnLM3/zMxM2r9/fyirjhidnZ2UlpZGGRkZ1NPTExPeM1QMDAxQWloaFRQU0Jtvvkn5+fnjjgHg1Ow3GAwEwKuIiMLgkaqqqkipVMb0XCJ34jCbzVRUVEQMw1BVVVUUrIoMZrOZcnJyaN26dbRw4UJqaWkhIvsMDLjphHQMZ95uqqCF5Fi50WgklmW9zmqMxTu8vr7e52xFb52tsY6rnRzHUVFREUkkEmJZNiRDVSH1SNnZ2VReXu60LZZ/bKPRSFlZWSSVSqm1tTXa5kSU6upqSk1NpTlz5tDWrVv9KhNWj+RomFwuJ4vFEqoqw4bNZqP9+/cTwzBUXl5ONpst2iZFHKPRSImJidTd3U1SqTTohlFIhDQwMEAsy5JOpwtFdSHH8U7q6Oig1NRUyszM9DmFJZa9aShQqVRUU1NDHR0dJJFIggpxIRGSRqOhPXv2xPQPbzKZ6N133yWWZam2tjba5sQEX3/9NWk0GiKyzw/jx+cmQtBCam1tpeTkZHr06FGwVXklGJHW1tYSwzBUUFAwpeZABQsf3oaHh8lkMhHLshPuuQ9YSK4XNCsrS5iIHi4mKiKDwUCZmZkkl8upvb09xFZNDnz9di+88ILwcGZZWdmEvVJQHkmn0xHLsjQyMhJTYc1qtVJZWZnwmPcMnjl06JAQ3nivdP/+/YDrCUpIGo2GKioqgqki5LS2tpJUKqXs7OxJP1gcCfjw9vDhQ+I4jsrKygKeu0QUhJB6enoEbxQL8LMVWZYd15SNJW8Zi6SnpwvhzWQyEcMw1NfXF1AdE56P9MUXX6CgoACJiYn8dJSJVhU0R48exfLly8GyLG7duoWXX37Zab+7uU3RtDfS+PqumzdvRl1dHQAgKSkJO3fuxKeffhrwSQQ4yyhZRkaEP6uHfjqDwUAMw0SkBeTNm9y4cYNUKhWlpaXFbB/WZIAPb/xsAN4rBfLkrpNHEiXMQsKseAAixM1KRLwHf3XgwAHs3LkTSUlJgak2QMjDTMnR0VF8/PHHWLNmDXJyctDV1QW5XB5WW6YyYrEYK1euRGNjIwC7V8rNzcXx48f999zjpMVZyDIySjYPjsBqtVJSUlJYEll/HlfmZyvm5OTQvXv3Qm7DdKWiokJovRH9/YIKf/EiJBtZ+TA3aiGO7KHvTH09ZahUDsc+PsbCudTBh8gx4sbV72Gfp+NGLXRvYIC2bt1Kkn/+k86dOeNSnrfVxe4xm3M9Y9NvTM1fXMMbEVFycrLfKYOXZDsO8bPiH/9PgAiAKCEBP9Q3QLN5MwAONgsQn5iIhMQnILJZwBHs28c4xM1KREJiIuLjONgs3OM6ve1zhIN1lD9uFr795r8gT0nBsmXJuHFdj5deznYpz9tK4MZsiEtMtIdozgIrb+OseICzYfqk2IHhGt4AIDc3FydOnHB7PLmGvHHScgltnGVUuJNH/s9MDB/WbGNOibmQnNvGBA/2d32PPYe7fY9Gx3sl2xhZxmyk0+lo9erVpFKp7HOcvNXtGpJ9fZ5hHK7hraenhyQSiV9lPQjJMeTYyDoySjaOo/q6U6R6HNY466j7UGEbcy7vKiRP++jvFpp56E8q3vWf9B8MQ0ePHvWv7hkhBY1reOM4juRyuV9vlhNCG1lGYeXDjFNLKQ5x8QA3NoYf6uuRk5NjPyQ+ASLOApsQmTgQByAuHiJwsFmJd3mPt/nYB3t/z9mzZ7E8ZQUG7g/gf/Q38Pbbb/tX9wxB4xreRCIRcnNzcfLkSd+FeUX93Yfk7q610f8OmenJf/zDubXmFN5cPYVzok4+9hmNd0j9r3+RjJ+tGFDdDgn2yBhxjz+PPXrk9Nlngj/DuPDGT5/2NQffzyESG9WfqieVShXUcIO7ucNE9tey8C8gjZUhl+mKu9abXC6n69eve307nV9DJGS1oe2/2/Diiy96fJSa/Hhk2bXszz//jNTUVFy4cEF4Np0fcpkhOixatAjPP/88GhoahOu5atUqtLW1CdfPnQa8Cokso7COjsKGBOi6dVi5cqX74x73QPv7vP7Q0BDef/99ZGdno6ioCFqtFkuXLnVb7wyRRSQSYfPmzTh16pRwPVNTU6HT6bwX9Nflhao3u7a2lliWpYKCAhoaGgq6vhlCz927d53Cm06nI5lMRkSexz59ConjOOrv7yeWZf02xN3J+vv7KTMzk2QymdN7tGemeMQmjjMn+WExb++B8pkjiUQi6HS6gAZFHUOczWbDZ599BoVCgczMTFy7dg2rVq0Swlasvb5mBjtbtmwRppbEx8fjueeew9WrVz0e71ey3d3d7VNI5CafaWtrQ0pKCq5cuYKuri7s3r1beEfSjIBim1dffRXnz5/H8PAwAECpVDotY++KX0K6evUqFAqF30Y8ePAA77zzDrZs2YJ9+/bh3LlzkEgkPstRDLysagY7ixcvduqcVCgU6Orq8nh8SDwSOcwbOnbsGJYvX465c+fi119/hUaj8dv7BNLymyH8OIY3hULhffFBX0mX2WymxMREp23uEuSenh7KyMgghUIhvMRpOiTSU/k7Go1Gmj17NpnNZhocHCSGYYR9rt/bp0cymUx46qmnnLY5eg1+tqJSqcQrr7yCzs5OIQxOB+8y2b8jeUklxGIxFAoFGhsbwTAMHjx4IOxz/d4+hTQ8PIx58+a53dfS0gKZTAa9Xo+bN2/igw8+8NP8qYG3izBZ8HUj5OTkCOHNVUxO+HJv7e3tpFQqnbYNDg7aZytKJDGz8NwM4cFx7M3bUl5+eST+PdJEhMrKSixfvhxLliyBXq/HSy+9FOA9MMNkwnFqiTePlOCroqGhIcybNw/d3d147733AACtra2QyWShtTjGocctUyJCXJz9/lOr1Th9+nSULQse8vC0Dg8f3pKSkmAymdwe49MjDQwM4NatW1i/fj3y8vLQ3t4+bUUEAJs2bRK2nzlzBiUlJR7LTBZ85UmbN2/G+fPnMW/ePM8eyZsa79+/j48++ghPPPEEtm/fjnv37nldhmA6cObMGafPDQ0NmDNnTpSsiRwLFizAw4cPYTKZ3HqwBG9qXLBgAbZu3YqbN28KPxbv3qcry5Ytw61bt4TP8+fPBxCby16EkjfeeAOff/65x/0ims6qmCC8YKZKjhQKfCbbnqBpPHo/3e89d97XKdneuHGjMN7F/zU3N7utbGZcbHpy5MgRxMXFQSQSYePGjQCAkpISZyGdPn0aarUaWq0WRAStVosNGzagr68vKkbHAtPd+/D09fVBJBLBYDCAiMBxHA4dOgSRSGRffsuxd5LjOKcllvh1KAJ5vcl0geO4ccsueFqCairg+P0cB2yLiorsv4PjwVqt1unH8Lb05HSnuLh43LpmU1VMlZWVHtdwq6ystDscdwX4P2+eaCpPn3DE3fcsLi52u1oQ76GmGgDcLr3liFOHZFNTEwwGA5YuXYojR44gOTkZt27dEpagJIeW2nRJtF2/p1arxYEDB5z6kqYyfH78zDPPeD0ujv+h+AL882U7duwAAFy8eDFcNk5K/v3vf6O4uHjc+q4AcPv27ShYFBsIrbaWlhZkZ2cLO9wpcTp5Ih5yabWdOXPG7cLBgN2jFxcXR8KsiMFff3c3SV9f39/dQ0T2PECtVjvlRCKRaErG+2Dw1orl86Op2MLlc2fH9Wy1Wq1TnghPKwf6WnpyuuL6gzpun4otNh53XR2ODRFMl9ZXMDi+JNW1xcZ7qaksIn/wOmhLU3xEe6Ko1Wo0NTUJn/mW7nTm/wFYoBlfGwXhQAAAAABJRU5ErkJggg=="
|
<image>如图,以BC为直径的半圆中,点A、D在半圆周上且AD=DC,若∠ABC=30°,则∠ADC的度数为()
Choices:
(A) 30°
(B) 60°
(C) 120°
(D) 150°
|
150°
| 69,708 | null |
150°
|
"iVBORw0KGgoAAAANSUhEUgAAAHsAAABtCAYAAACBSB75AAAYo0lEQVR4nO2df0xb19nHv9cGUg2Im7euuFWdOStO4sREIjMRdKFyaEwAFSmk5RWRSiWQspLgTCWrKyGNvmQSU3kV8kMbScnyTqVapmUajUlLO5I4qqMyiQ2moLc2IQVSUpCAQNWkJnsB2/d5/7B9sY1t/OPaOCkfKTH33nPPOfc+58dznnPueRgiIiQoun0Mzl0HGIYBEYEBQNgLC13DdhKBGIBZ7UyuACHUPHIAROHeFBYi4aMUjrPXCLWFwOUvHSAicERoqWWgYvZhkKGEFzQQjsxETiGDc93ECZ6XBBO29wMSzLgDHcpUS6/s7bPXUVt4A28dPRXvzEUHuWQZDAZYEonwokkcYRPgm53BK1fBbPnJsqAvbNbC+NVofPIlFCt0OeTnQOj+NXGE7edNdF+7iuLCYtcRxz99ZqYibtmKHd6tGOPnQOhuKnGE7QNhEH87x6Fk/3bXGadCBgCjoyPQbslctbxFi1MnFiHeuvHqCzvA8zKDX4HRlWA7LZVvBgAsH0N/zuhR4x8fDCdrwTAMRCIRmH21IOY2jsZR91h9Ybtl6Sl0Ajq7r2PLTzKXtWW6Y/uBwiN4e78qXjmMGu52JxiGwbmvM/lRBZ3ZBzGjAv3khfhlhBIEjuNcfzmIIwtpATKYuaUAFgMBIBQeWeX8hXmf61n21bYsu9ZSq6WWTnO0WQuZpPgVq+AwjLMKWz4+haz974BhGBizvBuelk5zSDX64cOHGBgYwNDQECYnJ2Eymfhro6OjmJiY8Aovk8mQmenUAZKSkpCfnw+ZTIbNmzcjJycHqampfP6C42EYcXHl1FkYsReWs78EABAB7qgyM7cAiu2IFwxRAljQVrQYcQCJAoaZmJjAjRs3cP36ddy8eROTk5PIz8/Hxo0boVAosGvXLqSmpgIANm3aBLlc7nX/vXv3MDY2BiLCo0eP0NfXh9HRUYyPj6OnpwcymQwFBQXQarXQarXIyMgI8bEGsY9RYUuLAWffLgv8bF4FZOlYcENa3NoQAeA4jsjVmt6+fZv0ej0pFApiWZYqKiqora2Nbt++LXi6ZrOZWltbqby8nKRSKSmVSnr33XdpZGQk+I2uriecpjrS7iIUVl3YwR/N4RVo9v4MtbX9ntRqNf2H9Bl6MTePdDodmUwmMplMzqAxfFluzGYz1dXVEcuy9NJLL9GFCxfowYMHywPywv7fsOKP1TOsurBDYWpqiurq6igtLY0qKyupq6uLiIhMJhOxLEsAKD8/n1wtH2k0GtJoNNTY2EiNjY108+ZN6unp8Rt3JC/W856Ojg6qqKggiURC9fX1NDMzsxSOLPQyA6ptMSyPxGJw1XiHT9zkcc5BQpIQwg70ur+ZGKfDb9bQ+vXrSa/X09TU1DLhzMzMUGlpKeXn59PY2BjZ7XYymUxkNBqpsbGRGhoaSKPR8IVBLBaTRqMhrVZLjY2N1NTURCaTKWBhCJXx8XHS6Y6QRCKhuro6mpqaIiIiw8naZbXb3NlCKDxCXBBhxqJ2J4Cwlz+w1Wql+vp6euZZKTU2NtL9+/eX3+bzLlpbW4llWbp06VLQ1FYqDE899RRpNBoqKSmhxsZGeu+998hkMlFvb29ITzM1NUX19fUklTrzPj8/7xSuq9UBQFrd8mGY5yPFqiNKDG0cThMiwzDo7OzEkSNHsH//fjQ1NUEqlYYch8ViQUVFBXbt2oXf/va3SE9PDylN9y8AOBwOfPHFF35/e3p6sG7dOrz44otIS0uDWq3G+vXroVarkZqaipycHD7u6elp6PV6fPHFFzh//jyKiorCeg+xIGGEPTExgerqaszOzqKtrQ25ubkRxbOwsID6+np0dXXhz3/+M9RqdVQvz/flu4Vut9v9FgZ3IUhPT4darYZMJsOpU6eQmZmJDz74IKzCKzgxajHCoq+vj1iWpaamJsHi7OrqIpZlqbm5WbA4Q8Gzm6ipqSGVSkWLi4v07rvvklwuJ7M58DAs1iOJVRd2e3s7SaVS6u7uFjzuqakp0mq1pNFoeIUp3mi1WmptbSUip+YulUqpo6NjVfISV2F7lly73U46nY4UCkXQ0i4ELS0txLIsGQyGqOKJpOaZzWaSSqX8kKyvr49kMhnV19cLmk4orErNfvDgARUXF1N+fr6XMULIh/SN69atW6RUKqmmpobm5+fjYnxxo9PpqKamhj+empqinJwcKi8vJ6vVGrd8xF3YZrOZFAoF1dTUkN1u589H+/I5jlsxDqvVSocOHSKlUkkDAwNRpRcO3333HbEsS7du3eLPzc/PU2VlJalUqpXNrgIRV2F3d3fT+vXr+T7MH/GocQaDgViWpTNnzgRNM9S8hBKura2N8vPzl51vbm4miUTCm3tjSdyEbbFYSCKRxEQRi4Tx8XHavXs3FRcXe5k4PRG64KnVar9GH4PBQFKpNOY1PC7CnpmZIYVCEbRGrxZNTU3EsiwZjcaYpsNxHPX29hLLsn776aamJlKpVCv24dEUwJgI21fr1mq1pNPpYpGUIPT29pJcLqe6ujqan5+PaVqVlZUBNfHKykrav39/zNKOec2uq6sjrVbrpYzFk5Vqgvu61WqlyspKys7OFnxO3DMPU1NTAZvs+fl5ysvLo8bGRkHTdxNTYbe3t5NCofCe9ovjkMeXUNK+ePEisSxLbW1tMctHc3MzlZaW+r02Pj5OMpksapuAP2Im7N7eXpJKpTQ4OBirJGLG2NgY5eXlUVlZmf9FCVEyPz9PCoVimbLqLoz//Oc/SSqV0pdffiloujERtrt0JormHQk2m40aGhqIZdmoh0X+WpSuri7aunVrwO6to6OD5HI53yr6iyPcVlJwYXMcR1qtNu4TELGip6eHZDIZNTQ0CK53lJSUUEuL/7ltIqKGhgYqLy8XLD3BhX3p0iVSq9WrppDFggcPHlB5eTmp1WpesfKsVcFqWLBrg4ODJJVKA07SzM/Pk1Kp9NtCRqL7CCrs77//nmQyGfX39wsZbcJw4cIFeu6556i9vV2wOPV6PR06dCjgdaPRSEqlUpAhYdTC9ixher3ey+D/JHL79m1Sq9VUUVEhiPJmtVopIyOD+vr6AoapqKjwO9e/an32yMgISaXSmGiviYbdbie9Xk9yuZxfmxbNkPLixYuUl5fHH/vG5R6bRzsnL5iwq6qqYmYMSFSMRiOxLBv1c3McR3l5eXTx4sWAYd566y2qq6uLKh1BhO0ueT+EWu3L/fv3vZYy+yOUWu9emuVpG/dneYvmHQvyyW5zczMOHToEiUQiRHQJC/lZm/nss8/ik08+wcGDB5GXl4e//OUvy8K4V7AGIycnB6Wlpfj1r3/tdZ+bjIwMvPbaazh9+nTAvITyAFExMzNDEolk1dZ4JRJms5lUKhVVVVWFtAIlUN/szzbPcRyvF0W6uiXqmv2nP/0JBw4cCPnLxicZlUqFf/3rX3j66aexc+dO9Pf3Bw3vu8Q5IyMD9fX1OHbsmN+wmZmZyM/Px0cffRRZBsMpGf76nuzsbC9zojvMak54JALupczvvffeimF9p4SVSiX/PZsvBoOBNBpNRHmKqhm/desWyeXyaKJ44vBVqsJdysxxHHV3d5NCofBrSLHb7SSVSgMqg8GIqhn/8MMPUVVVFU0UTxzuppmIkJGRgevXr6O0tBTZ2dno7OxcUbFiGAZFRUVQKpU4c+aM1zUiglgsRmVlJT744IPwMxd28fBAJpPF5OP3JxHfpcz+8GwVxsbGAhpSent7adu2bWHnIeKaPTQ0BLvdDqVSGWkUPyiys7PR19cHh8OB7OxsDAwMLAvjqbDJ5XIcPnwYer1+WbicnByMj49jeno6vEyEXTxcvP/++3Tw4MFIb39iCUUxvXz5stdS5kDMz8/Txo0b/X4uXFxcvOLnyb5EXLNNJhP27NkT6e1PHOTqi0P5YvTAgQPo6+tDR0cHSkpKMDs76zfcunXrcOLECRw9enTZtT179uDzzz8PL5ORDpBYlqXBobX+OlpCWcqcn59PFy5c8DrX29tLSqUyrLSWNeOOEL77v/e1U3lYQxh6e3vpxz/+ccClzLdu3SKZTEbfffed1/l169aFZStf1oyLXDtvEf+fEyKCeyfd4dG7UKken+0kE53c3FyYzWbMzs4iLy8PQ0NDXtezs7Pxyiuv4De/+Y3X+W3btmF4eJg/JldXQgGGdz7C5pb6Hv4/J86+SAQCMDQ0iM2bN0fyXGsEID09HX/84x+h1+tRUFCA8+fPe11vampCe3s7LBYLf06hUCwrGEBgvUHke8gHDLRbMICRkbtrQ64Y8frrr6O3txft7e149dVX8fDhQwCAVCrF8ePHUVdXx4dVKpUYGRnhj1dSDgNr437uc8t/aGhwTdgxRC6Xo6enByqVCkqlEjdv3gQAHD58GJOTk/joo49ARFAqlV41PVDz7RmAiHzGh64/v7zS4r0zsIvs7Gyvb43XiJ5A43Pfpcwmk4k2bdpECwsLZDKZaM+ePSGnwe+I6tUEMM5NVo/tX269AYC5ubkVt51aIzx8m2By1dLdu3fDbDZjaGgIubm5kMlkyM3NxYkTJ5Camgqr1RpyGk5h+2myTx89C6awEFt8lG4iB+bm5pCWlhbe0yQ8nM/v6uIpfIlEgr/+9a84fPgw8vPzsWPHDpw4cQL//ve/8ejRI6/7dPsYMCIGDLP07+QVZ1PvtQ8a2W1wcISuM8dwN3MPrpb/HqfpGrb7lIb09HT84he/QEpKSiyfN2Z8/fXX+Oyzz5CcnIySkhJs3LgRQGjLh1ab2dlZXL58Gffv30dmZiampqZw7NjbOH78v/g923T7GLygc+7NbrlyElllehjMnLeCxiQlI2n4U9zAy6hTJuNaYaaXjw43c3Nzj42gvZtHZ6397LPPMDs7i8nJaVy7do2/uiTo1femEYhnn30WP//5z5Gbm4uvvvoK8/PzYJglUy1hEHeu7+Ud6agUHo5zfDtxna6W7AuLZBv8iLS1p/x29Exi7JUXMVu3Kfl9RPPy8niFdLmKJOyuwNHgT4H79NNPSSwWk822wJ8zd7Z47Y1aW7i0V6qX1AwnDxOQTOnJyfQUQPuO/DfZFhbItmAnjog42yLZFhZImp5GVquVOM5O9oUFsi0skN3mqc0vnbct2LxfYrBrAcPZl8L5vd9BjoUFsi0skoNz/71ANpvDO7zNQcQtfVKzdRMb0gayicr4+Dg999xzZPnSvY+cg98FmWEYYnz8rCy1V5aPcZ2KQNz/4bu5R+gztEDxwmYwJII4RQwGAJMkhkgkQlJqGh49+h5kA0QpKUhKSQLD2cG5fElyNg5McgqSUlIgFnFw2JeUn8DXPPEMlwwRHCAu2P0iiJLFYEDO6ykpSEoWg+HssNsAUbL7mAMxwN69e3HoZRnujKlgIc7lkccC7pwehUdPepmGEwnyMYfOzc1BIpFgO2+6FuF69zl0Wggcx+HyyVq8miWCwex8FhERAYOdYI51e/mxGBm9CzAMRGJaEgjHAaIk/CgtFXPfW8HBAcfiIuyLdnBuZ5McBw4i3ukJI3a9ZKxwzROOAycSQ+Sy2YpSUiAShXI/A1Fykoc6yTgLAe/IlEAEnNQVQj+8GURGXvlkaDt+a2iB8ezfcNvLJ2bi4NY/3L9zc3NI+1Hq0mhqsBPncARuv3f7f6nDXgDGqx8DAJJOHd0H/TkjwACdlrMo2w7UvZKK/zHaMI9z+OrrE7h66i1wxIAcgCgZWJ+WDqt1DhAlISlpmXkdwb1IhqjtchTAIUqk2rIIAIfBKyehP2eEwXzN+zLjR7wxcm0sFI8ePULa+lT+uLP7OmqL9vHHzO1hGAEUK1zzGO72nLN59nF2r77U3Vc7XPpKcXExdXV9Qg6Pc0QO4hzOX4dnH+6wOeOlla55JujsZ8OKm7OTfWGRHBwFPdYVBu6bnf3dXhpM8GXQbmXt4sWL9J+vLX2sX1vo2UcPkhYgYC9ZXNL0KMwMwNlht3FgksVeBZpJEkMEERhXaKcBfhSiJBE4+yLsi4uwL3KuquHsP8HZnOftDMR87Q92jQO3uAiOA8CIIQ4rbg6czQECgbPZQQGPLRg1JQd07Wi8eg5aXQm2xWhzd6FwN+PDw8NQ7ciC5cpJp0fA68CBLJHLmLIdRu1hr66Kd+LGJCUjqEc30VIBUCgUzgVzoiQk+RtuM2KIU8QBchromggiz7F7WHE77/VshhnXMRGBAQMmOQWi22PottlQ4+E4zd1SmztbcPYaYDj1S//5XiUoiGcBi8WCsrIyqPa/DqK3g8TiUmJDStDOAeKlBJVKpdekeSLDePgnpu0KaAGMjgx6XAdAgzh24B1odS1ejtkTgWDTliMjI9i6dSt/TAFHESI+QOC+weZnDE1La5ofR1pqtd7+PM1O31t7a0+4TjgokYwpwQi2LMmfESZiUxjLso/JBwJLgnM/fm2h04jCuIwp/qZxEx3PBYehbpsV8WBSo9Hwk+qJzXK/lmev0ZJrYyK/TTcl+ISIyWSCRqMB4L+pZxjGY5TqMqpEmlhBQUH465ZXBeeDMnAKMLAQPfo63/n9BMRkMqGgoGDlgATwM9kUYREeGhpCQUEBJicnveOOoV+qHyL+3qfD4cDTTz+N4eFhsCwbclwR12ylUomkpCR+daO7zKwJWlj8vc/+/n7IZLKwBA1EaQAuLy/HpUuX+Ewlej/3pHDp0iVUVFSEfV9UHvsGBgZQVlaGsbGxSKNYYwV8m3GHwwGWZdHf37/M6ftKhF2zPctGdnY2NmzY8Jho5Y8nvs34J598ApVKFbaggQiE7Zt4VVUV2tvb/YZda9aF58MPP0R1dXVE90btePXbb79FZmYm7ty5s7ZjUowZHR3Fiy++iLt37yI1NTVsZTjqGfpnnnkG1dXVy/b/WEN4Tpw4gdraWqSlpUU06hHEpfLExAR27tyJkZGRJ36Xw9VienoaW7duxb179yJ+x4KsvZHJZCgtLeW3WlxDeJqbm1FdXR1VZYq6ZruHBqOjo8jLy1ur3TFgenoaWVlZMJvNUelFgjTjbt555x3Mzc3h/fffFyrKNQAcPHgQO3bswK9+9avoIhJqyo3IuSs+y7JBd8VfIzTcU5RGozHgbofhsuYQJsFwu4bmOG6ZQ5ho94ONWkEjn16goqICGzZsQEtLS7RR/yDx/PqyqakJWVlZKCoq4q9FhQCFcRlPghO31cbXiZsQxNw94+OxdCmx6OvrI6lUSmazeeXAYSCIsAP1Jf4cr/7QCLefjaXjVUGHXv44duwYzGYzuru7IRYHWEv+A4dctoqFhQXs2bMHRUVFOH78uODpCCJsCrIUyeFwoKioCNu2bcPvfve7aJN6IqAAq3reeOMNzM3NwWAwxCzhmDMzM0MKhYJaW1vjkVzCEqxJb2pqIpVKFbGzl1CI2xYKZrOZJBLJmobuB4PBQFKplHfqGitiIuxAJbi7u5skEgm1trb+4B3GuGlubiaJRBK1j+5QiPvmKGazmTZv3kw6nY4cjsfjMxuhcVvHqqqqSKVSedXoUF01R0JcthcgDx1QpVKhr68Po6OjePnll/m9OR9XKAL99ttvv8Xu3bthtVrR29uLzMylHY1iuRQ7LsL2fQCJRIKuri5kZWUhJycHZrM57DgjecmxIFzh9Pf3Y+fOnSgsLERHR0fQzQMFF7yg7USIeDZP7e3txLKsYMb+RKajo4MyMjKoo6NjVdJPiA3N3B5m/TkEd/M4FwK73U4NDQ0kl8tDMoHG6llXdUsgcjXFOTk56Ovrg8lkws6dO/GPf/xjWdjH9bOimzdvIisrCwMDA+jv719dDwwxKUJRYDAYiGVZqqmp8bKph/oNcqIwOTlJlZWVJJfLQ7YteM5lx4KE2+yrrKwMw8PD2LBhA7Zt24bjx49jdnY28DfICcb09DTq6+uxY8cOKBQK3Llzh5+PXgnPueyYEJMiJAAcx9HExAS9+eabJJFISK/XJ7SP7omJCdLpdCSRSKiuro4mJydDui+erVPC1Ww3DMPg+eefx/nz53Hnzh3Y7XYoFAq88cYbuHr1qldYCnEYFmq4cLhy5QoOHjwIlUqFtLQ0DA8P4/Tp0yF/ThvX1iluxUoAZmZmqK2tjdRqNclkMqqvr4/J4oiVapvZbKa6ujpiWZZ3sObeyCaR9YiYz2fHiqGhIfzhD39AZ2cn5ubmoNFoUFBQAI1GI7izGovFApPJxP+TSqUoLy9HdXU1XnjhBUHTiiWPjbApyJz5xMQEbty4AaPRiM8//xxTU1N46aWX8Pzzz0OhUGDXrl28pWrTpk3LPne9d+8exsbGwDAMrFYrb8795ptv8Pe//x0ymQwFBQXQarXQarUBF+oHy2Mi8NgIOxwePnyIgYEBDA0NYXJyEiaTib929+5djI+Pe4WXyWS8fTolJQU/+9nPIJPJsGXLFvz0pz/lC0qiC3Ml/h/O7ZapQ/OPZwAAAABJRU5ErkJggg=="
|
<image>AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是()
Choices:
(A) 122°
(B) 132°
(C) 128°
(D) 138°
|
132°
| 69,709 | null |
132°
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAABzCAYAAACFBhx0AAAXH0lEQVR4nO1dfUxb19n/XRtC98YtTXMnqOrOSTDFfGijI1mShRWSmJA/0gnUdHQq3cy2Cl6cru7CNKZlTf6IOqSQJXlFuqzZVnhJJKbRGN6kWtKkjXlH1bSQJq9qaic2AYa7GFFpTiESIfZ93j+ML/fa1+b6g48APwnhe77Pec7znOc+5znnMkREWMC4c+cOrl+/Drvdjtu3b8NisfBx/f39+OKLLyDsglqtRkZGBgAgOTkZW7ZsgVqtRmZmJgoKCqBSqea6C1GBYRiG/73QiONyufDBBx/g4sWLsFgsuH37NgoLC/Hkk08iIyMDGzZs4Ad4zZo10Gg0ovxDQ0MYHBwEAIyPj6Onpwf9/f0YHh5Gd3c31Go1tm7dCr1eD71ej7S0tLnuYkQsOOLY7Xb8+c9/RmdnJ8bGxlBUVIStW7eiqKgIOp0uoXX19fWhq6sLly9fhsViAcuy2L17NwwGA89x8wkhcUDzhNHRUTpx4gQVFBSQWq2muro6stlsc94Oq9VKJpOJ0tPTqbCwkE6ePEkej4c4jgubJ1JcvBBRatZqCQO3200mk4lUKhVVVlbSuXPn5roJRCQ9wO3t7VRRUUGPPvoo1dfX0+joaNi0s4V5Ic7w8DBVV1dTamoq1dXV0e3bt+eqah5yB3l4eJiMRiM98sgjZDKZyO12z3LLpjGnxBkbG6P6+npiWZb279/Pz8ZoETywczGb3W63qO0TExOzXu+cEcdsNlN6ejpVV1dHTRQ5gzBX4sbtdlNlZSVpNBo6f/78rNY168T55z//SXq9np5++mm6cuVK2HRzKcsTAYvFQtnZ2bRr1y5Zky3QP2E/xT32heQR0kYRu9Injd7eXnznO99BcXExPv30U2zcuDFsWqHW+CCgqKgIn332GfLz87F+/Xr09fVFTB/on7Cf4h7PMPxxTiYRmpubiWVZSdZ/0LhkJvztb38jlmWpvb1dVnqO/GMw0ygknDher5eMRiNptVqyWq2JKPKBQE9PD6nVaqqvr48qX20JCAAx8P8HQI0d/nFLKHE8Hg/t3LmTCgsLyePxhE0nJX8XA9xuNxUUFNDu3btpbGxMun8SQbUloEZzHxERWTsaCQCZrVzi1py+vj6sX78eGo0GFosFqampYdNKyd/FgLS0NHR3d+Ohhx7Cpk2bcOvWLXECwvRCQwFWsePGxe0oLcsGAORmhjEbxTpjzp8/T6mpqdTU1BRrEQ8U5HB8Q0MDpaamksViiZjO2tFIemMj/1xbAv45buJYrVZKTU2VpfMvNjEmBWEfOzo6iGVZcjqdYdOYD9fyaw2mxFkgPmriCAseHR0lrVa7ZDgmFhw8eJByc3NpbGxMMr62xE8QIiLz4RqeQERxEMfr9ZJeryej0ZiIPiwaSEmHyspKKisrE6cjIuozE0r+UxDWR3qAahvNRBTDS2hgEa+rqwMAHDt2TE62JYPA+AjH9k9/+hPcbjcOHDgwnQ5Ax/mLqC3dAQDg4APz+U1cArBOmxlasNzZ0dzcTFqtNmbD5VLE8PAwqdVqMps7eW1aKNICXANspz7iiLgZxJoUi165coVYlp2XzbAHHT09PcSyLJn/q47AQKQIABCJOKIo1xyXy0VPPPHErFtjFzPa29vp8ccfp9HRUfKRVxzJiRlCSJsZ1xyDwYBXXnkFpaWlMyVdhgTGx7/CuXPn4PF48JOf/AQhQ86EfzGPSJy2tjb8+9//5hWBZUSHDz/8EHl534TH40F5eTk++eQTXLzwHgCx8hAW4VhxbGyM1Go19fT0hMQthRfLaBA8Hl6vl/bt20cqlYpOnjxJRERFRUXU0NBAOp2OJiYmwpYlizh1dXVUXV2doOYvHdhsNsrPz6dNmzbR4OAgH67RaGhwcJAqKiro4MGDYfPPSByn00ksy0a0Mi8jFE1NTaRSqej1118XhU9MTFBKSgp5vV5yu93Esqyk0wjHceGJE2BPg8FA+/fvn71eLDK43W7S6/Wk0+kklwG73U4ajYZ/NplMZDKZJMuKyDlut5tWr14dlmuW1xsx2tvbiWVZMhqNYW1pf//736m0tJR/DnCP1BgLaaMI1hwaGhrw8ssv83szQekX3X6MHASPAeD3w66qqkJNTQ1aW1vR1NQU1kn+xo0bWLNmDf+clpaG5557DkeOHJmxYh6jo6OUmpo6p050DyK6u7tJo9FQWVmZyJwVTqqYTCY6dOiQKCywrgdzm5A2ovec06dPo7y8fMF53i8U+Hw+/Pa3v8XOnTuxb98+nDlzBqtXr+bjw0mVwcFBaLVaUVhGRgYKCwtx5syZ8BUKKZ6fny/axVtK68tMfQ2nIsuBTqeja9euhdRnNpupqKhIFB5CHCKia9euiTQKOQ1eKgioyLFqsCkpKZLKgtfrJZZlaXBwUHInNCnwo6WlBQaDAUS0aJ0xosXIyAhefPFFuFwuWCwWFBQURF2Gy+XCqlWrJJUFpVKJyspKvP3226J9Hx4BKqrV6uUtAQHkqMhyYLFYaOPGjWHjr1y5Qjqdjn8OIY7NZqP09PSYG7CYMDY2RgaDgViWpQsXLoTERyvqm5ubyWAwhI33er2kUql4DVlIGwUAdHV1oaioKGqWXWzwW5HzcOfOHdhsNuzYsYOPC4xbtKLe6XSGnFsVQqlUorCwUHQQOQAFAHzwwQfYtm1bVJUuJkipyCzLitLEuv46HA6sXbs2YpqioiJcvnw5NIKIKD09fcmuN/GoyHKwadMm+uijjyKmEa47IuIMDg4Sy7IJb1T0CD2rEirdfXx4OMkfzQm448ePx6Uiy4Fci0tKSgp5PB6xKu10OpGbmxsTyyYWU8aKKd9iEqj00/7G/jSRBAzDMHxeURkCjIyMoLKyEi6XC5cvX8b69esT2I9peDwe+Hw+WRaX7OxsOBwOUZjCbrcjM1PCZwoyt1LjBicZyjCCugWO4PLyhr6nBfryzjvvIC8vD1lZWejp6Zk1wgDSZptgBNql1Wpx48YNUVyS0+nkL2IInmlz8xKqENfLE0Ihfhb8JnBgoEA0hyTu3r2LPXv24N1338WpU6fmxGEl2BothUC/dTqdNOcEiDNfFgFGSlAxEBOGgACnMFGeXJGjIs8G5HBOADqdLuQYo8LtduOJJ56YjbbJh4AIfZ2HoWAYKBQKMAyDkj2H+TRE0U2eYBXZbDaDZVlZ0iEWognzEBEcDods4qjVaoyOjorCksbHx/Hwww9H3ZDZwGFjCereJHxGHPLAgPA5djC5KAFwsWmvYCA5v9iLQCu73Y4XXngBX/va12C1WiO+CEohFikSTPT+/n48//zzsvKuXLkS4+Pj4sD09PQFsbnWWKvnXVOF6q//SN6UL7FMBKzIBw4cSHg7o4FGo6GhoSFZaW02G+l0OjG7qlSquAx7iYDwTGTw+44/bhv1haHNpUuXSKfTUX5+Pp09ezaio8VcQuhxI8ceF3B6D+aoOWhqZNTs8B+7k+qC/xSYgHOCEk3NNgJASqUybityomCz2Uij0cg2lHo8HkpNTZ3dSyKiBeFzON8DdpbslFxCLp5/E3pjKXKmXPQjQafTRXS0mCsQEYaGhpCdnR2XBqxQqVS4e/duApsWHQKHhzK0OQDEGk9f52G8eRGordnrTwuAgkjU1NSErKwsfOtb38Jbb70FIpqjl+fwYBgGdrs9RAmJ1K6xsbEQxSxJpVJhfHwcK1eunJWGzgTKeQolAPodNiA3BwicEsPnMJXVQW9sRHmegMEZ4dlxYPv27XjhhRcAAN/97nfFZYcx38wGgusaHBwMsbxEasv4+HgIxysCxJkvMMhBaa0edW82TT0D1GeGgskFjI242LRXnJ7kS+K5fKkOrmtgYCCqaymlGCRJpVJhbGwsIQ2MFXuPX8StHQwY5g98WKeVw/dzBbYxhDDNgoYc040Qd+/eDeWc9PR0fPHFF5IZ5lJ2H3+PQOTj1wwhYQDOTxMm2NA5Zc5ZgI4oAwMDsq0DgN8R5Otf/7ooTKHT6eB0OiUzzH2nw4ksRZh4//N8KgBSdUfyuAlXhsPhCNm6UWi1Wlit1oQ0dClCagL39/dHJdIYhkFfX1+IAqGQMlUvIz4MDg5GfR+20+lEVlaWKEyh1Wolb9yb73eFBxkOhyMqQysRwWazhXKORqNBUlIS7HY7yOfF5OR9TE7ex/37XnilNxqXEQaBCe10Omf0uBHik08+wdq1a0OuRFMQEYqKitDV1QVGmYQVyQoowECZnIykeTfuPFgIrD9DQ0NRiTWLxYLi4uKQcAXDMNi6dau039QyYoLNZotKIQhLHAB45pln0NXVFRRF8E5O+sXcfZ/f7Dsl9nhxRz54p8Sg1ydYowThk5NesRtGpLhw6abqj5SfOMLkpBc+oul4L4nTe2d/Hb1z545sjxvAv1vb3d2N4uLikHVeAfjdcgLrzjQYJCUroZj6zwBglEooFElT4o7g9QLKFclYsSIJ8Pngpw/Be5/AJCdjxYpkJCkIXn5QIsUJIUyXBCU4+LjI+RkFoADBd98HxYpkv3jmvJgMtDFZAQXnCz8ZEoRoXz57e3uhVquRlpYWopbzq8rzzz+PtrY2cU5GCaUS0wPI+QAFw//miMN9fgYTiKbCGYZPplAKBiVSnBCcD5xCCaXfLDC9/oXJL2gwlMlJgldVBsokpdhPZJaZR67ZJmAJaWtrQ0VFhWQa/sDuj370I7S0tPARvKeSUgkF54OPCD6OgVKoJCiSsGJFMv/HKxAUbNgXtWrGfRl/Ok46ndz88wS5HjcMw4DjOJw6dQpVVVWSaRQBU/c383Lx2GOPoavrfwFG6KzEQKkEfPe9IIVgFiqUUHBCdZvAcVPhIHCBNYgInELpnwWR4sQth4IComzmshcSnE6nbLF29uxZ5Obm8u9EIWuO0DvypcqX0Nz832CCRAGj9K89CtEoMkhKYsB5A4uzb4oPGSQlK4DAO5OPQXISM50nbJx/IfdyABhl1GUTB3Ag+O77Raz3PhfhefbgcDh4sSYc7MBvYVhLS4uIa0JMQcJ97NHRUXr00UclvHE48noX7vnQ/fv3z/uNIwFfAbkeN4Gj7uPj46JwIW1EvMCyLAwGA44ePSqmuk+gCCxDEgzD4N69e5DrpHno0CEYjUasXLkyrKksKThg7969ePrpp1FfX4+HV/4HvBygUCYhaZk2M2JgYABpaWlQKiOvgyMjI2hra8PQ0BAAGZfhBainVquxa9cuHDlyBIqkKS1MGZo5HLWXMoaGhpCTkzNjuoaGBlRVVUX8vAAg4Bwh9fbt24dNmzbhtddeC1vAQtx9nG9IedwEY2RkBKdOnZK1hyZp2szIyIDBYMCvfvWr2Fq5RCHlcSMEEeHVV1+FyWSSZd4Ja3fev38/Ojs70dvbG1tLlxACIn5wcDCix83ly5dx9epV1NXVyVoWwhJHpVLh6NGjqKmpgc/nEzViGWIERLzdbpd8xwGAe/fuwWg0oqmpCSkpKbKWhYg7NhUVFVi1ahUaGxtFjZCqfBlio2fw4B88eBB5eXlRnagLUaUBsffi22+/jc2bNyM/P19U8LJCIIbL5cJjjz0m6XHzzjvvoLW1NeolQpJzhAOvVqvR3t6OysrKoC2FZe4Ror+/X1JT6+3tRU1NDd59992QiydmgqyN6I0bN6KxsRHPPvssvvzySz58qXFPpMko5XHjcrlQXl6OkydPxnSdgGwvgR//+MfYtWsXfvjDH/IKwlJDpMkYfMfNvXv38IMf/AA//elPUVZWFlN9UblwBBSDV199NabKFjOEd9wQEX72s58hLS1N+h41mYiKOEqlEm1tbbhw4QKOHz8ec6UPEsKJsuBwoVh74403cO3aNbS2tsZVt6S2FgmrV69GR0cHtmzZAq1Wu+i/DhJOlAWHB95xOjo6cPToUVy5ciXuE3Yxeabl5ubir3/9KyoqKpYMB0VCwOOmubkZBoMB7e3tkpaCaLXbqDkngNLSUnz44YcoKyuDzWbDsWPH+IsdFiuE739C3Lx5EwDQ2tqKTz/9FOvWrZPMH+3YxOXTmZubi6tXr6K/vx/bt2/HV199tajffYIH99atW9izZw82b96MyclJ/OMf/whLmFgQt8PtI488gnPnziEvLy/sZ+gjEYwk9tlnE/HW4fP5cPr0aRQXF6OwsBCtra3YsGEDfv7zn2PVqlUJ7UNCvKGVSiWamprwm9/8BiUlJbhw4YKokZHul5nrW6pircNut6OmpgYsy+Ls2bP43ve+ByLCX/7yF3z00Uc4dOgQ/CfwGImrx2JDQl3VDQYDzp49C4PBgDfeeGPG9AtpfZKa8WNjY2hpacHmzZvx7LPPIjs7Gzdv3kRmZiZaW1tx6dIlPPfcc+JMwbddxYGEnyNYv349enp6YLFY8O1vfxsff/yxZLqFtjYJJ8r169fx8ssvY926dbBYLGhoaIDD4UB+fj6eeeYZXL9+Hb29vbxJxriDAcMwYBglGIaBQnjbVTyI1RVIDs6cOUPp6elUXV0d08df5V5NItc1KlJ5Ho+HTpw4QTk5OaTT6ejEiRP8923cbjdVVlaSRqPhP8kZXFZjrZ4Od/b544I+aRwNhLSZ1RM45eXlcDgcWLVqFbKzs3HgwAGR4XQmJFrsSZX38ccfo6qqClqtFlevXkVLSwtsNhuqq6sxMTGBX//618jLy0NGRgZu3LjBv3QH720NOICd38+euo40Bztr9bg50B9Xe2f9eJRKpcLvfvc7XLt2DW63G1qtFr/85S8xMjIy21WHxZdffoljx44hMzMTtbW12LJlCwYGBvDWW2+hoKAALpcLe/bsQVZWFiYmJmC1WnHgwAGkpKRIlsfYOnEcmcgR3Ll4y3EJWWvlXxIhiaj5Lk643W4ymUykUqnoxRdfjPjl3kSLtfPnz9NLL71ELMtSdXV1yF3aZrOZKioqKDU1lerr62WLYvPh2ikR5r+OrLFWH/UdcQHMK3ECGB0dpT/+8Y9UUFBAarWa6uvrw188PkMfX3/99bDEcbvd1NDQQBqNhoqKiqi5uVn0nU6r1Uomk4kef/xxKiwspJMnTwZ9S236Lmsxpu+Fqy2J/L3paLAgiCOEzWajuro60mq1lJ6eThUVFXTixIlpYs1AnADnCDnNbDbT7t27iWVZMplM5HQ6ieM4slqt1NTUxMfpdDrat28fOZ3O8BVwEbi4z0woCf2eaqSLySNBJC6DA+YbLpcL77//Pi5duoSuri7861//QmFhIZ588klkZGRgw4YNvLV37doMfOMban7PpKqqCkePHsXp06exZs0abNu2DQ899BD6+/sxPDyM7u5uqNVqFBcXo6SkBHq9Pu5PoFk7fo/XLlHIBUqxghFoGvNCHIriqq2vPHdw7f+uw2634/bt26KvZfT398PlconSq1Qq5OXlISUlBcnJydiyZQvUajUyMzNRUFAQtRk/YlsJMJYyKDnCoSw3MZolE6QGLnhwHDejjIikWCQGQd9a6DOL1hn//aTxf0pNRKjggIUGkvymQWh88P+wZcTdoNA2JLIOIecs+GsgAgPuf/D/6+s8go4+6TkViTDxzUPOnz94coSpNxGYV+LIHSyGmb581X+95C/8D5z0x/9IwiIe/8yW3khk/I2aFcS8E5oIyBksfmZOPRx55TiYkhI8lcuHyip3Vi3gs1T0AhdrnMgC3/l7I6hED+7i0rgxaf6Jw4sEqQEXNO/zDryHEvxCC7xf8hRyHpTLPuPA/BNHpm5i/MMlHN9bBoZhoH8qToPiA4L5Jw6mrxoRB07/7Pi9EW82HfdvZOWWz23j5hELgjgMw0zf58IHTv3v+x9cpBIQ5yfgZx2NyFon/+KfBxnzqq0JIbmC2DrBvHYB9N6bPCc5+m+BKAP+NWpBzK3ZQ1y2hgRByuTh3xMRm0aEpnm9sXGumzknmN/ZsIxlLGMZs4r/B7ezhFjievl6AAAAAElFTkSuQmCC"
|
<image>如图,在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()
Choices:
(A) 100°
(B) 110°
(C) 120°
(D) 130°
|
120°
| 69,710 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAJ4AAABZCAYAAADPaJ13AAATg0lEQVR4nO2deVBT19vHHxz/sI0LW1CQ9aeAUhAZWTSgvlSLWlHAhVbrbg24gjJ1FKpdUHSK2kTrqFiU6qAWxZ2lqHVpoYKOWsAtxLXuCiqKBCT5vn8IkeyB7JjPzB3Iveee89zw5Tn3nPPc51oAAJkxo2faGdoAMx8mZuGZMQhm4ZkxCM2EBy1vBiSPS1y+YU0wo5xmwrPQ8mYo8ijm8ywDtm9GHdpcV5sXs4LKWd7k0dPQlphRRpsSHp8bTAcjvyXvIkNbYkYVbUd4fC6l0m+0xZ1H5Swvcje0PWaU0kaExyduKtE3cY39q7cHmXta48aiLaxc8LnB5B7frH9l5xK2jDCcQWZUYvoer7GLBfBuy2UTy8vc0Ro77Q1tgEbwuRQ8lei3wvcdK59XbkCDzKgNTJRcdtNMNQucCgCoAIfVbAabnWtoE80ooU3c4xERVVdXU6dOncjCwpCT12bUxfTv8YgIAPn5+dGuXbsMbYoZNWkTwktPT6ebN2/S9OnTaceOHdRGnHibxuS72gcPHlDfvn3Jz8+PiouLycHBgbp160abNm0iT09PQ5tnRgEmPaoFQHPnzqXY2Fjq0qUL1dTUkJOTEw0YMIBCQkJo9uzZlJiYSB06dDC0qWakMOmuNjs7m65fv05JSUkUFBREAoGACgoKKDIyki5dukRXrlwhHx8fOn78uKFNNSONAUfUGlFZWQl7e3sUFRUBAN68eQMGg4H58+cjISFBXO7o0aNwdXXFxIkT8ejRI0OZa0YKk/V4ixYtovHjx9OAAQOIiOijjz4iT09PCg0NpYyMDKquriYiopEjR1J5eTk5OTmRj48PbdmyhUQikSFNN0MmOrgoKCigmJgYKisro44dO4r3z5kzhzw9PamoqIj69+9PCxculDivrKyMYmNjCQBt3ryZ+vTpo2/TzTRhYI/bYl69egVXV1f88ccfMse2b9+OCRMmoLi4GC4uLnj79q1MGaFQiLS0NDCZTHzzzTd4/fq1Psw2I4XJdbVJSUk0ePBgCgsLkzkWFBREJSUlFBgYSE5OTpSdnS1Tpl27djRr1iwqLy+nhw8f0ieffEJHjhzRh+lmmmNo5beEoqIi2Nvbo7KyUu5xkUgES0tLPHnyBPv370dAQIDKOo8fPw53d3dERUXhv//+07bJZhRgMh6vrq6OZs6cSevXrydra2u5ZSwsLCggIIBKSkooIiKCnj9/Tn/99ZfSeocMGUKlpaXk6+tLfn5+xOFwqKGhQReXYKYZJiO8lStXkqenJ40dO1ZpuaCgICouLqZ27dpRfHw8rVu3TmXdHTp0oO+++44KCwvpyJEjFBgYSOfOndOW6WbkYWiXqw7//vsvmEwm7t+/r7LskSNHEBYWBgCoqakBk8kEj8dTuy2RSISdO3eiW7dumDt3Ll68eNFqu80oxug9XkNDA82cOZNWrVpFDg4OKss3eSsA9PHHH9OsWbOIw+Go3Z6FhQVNmjSJrly5Qm/fviUvLy/KysoyBx5oG0MrXxVr1qzBp59+CpFIpPY5bm5uuHbtGgDgwYMHsLKywrNnz1rVfmFhIby9vTF8+HDcuHGjVXWYkcWoPd6NGzdo1apVlJaW1qIAz6b7PCIie3t7ioiIoM2bN7fKBhaLRRcuXKDQ0FAKDAyklJQUqq+vb1VdZpphaOUrQiQSITQ0FGvXrm3xuT///DPmzJkj/lxaWgp7e3sIBAKNbLp16xZGjhwJLy8vnDlzRqO6PnSMVnhbt25FQEAAGhoaWnxuUVER+vXrJ7EvLCwM27Zt09gukUiEffv2wdHRETNmzGh1F/6hY5TCu3//PphMJkpLS1t1fm1tLRgMBt68eSPel5+fDx8fH22ZiJcvXyIuLg5du3ZFRkZGi+5BzRih8EQiESIiIrB8+XKN6vH390dhYaHEPm9vb+Tn52tUrzTnz59Hv379MHjwYFy9elWrdbdljG5wsW/fPuLxeJSYmKhRPc0HGE0sWrRIrQnlltCvXz8qLi6msWPH0sCBA2nZsmVUW1ur1TbaJIZWfnOkgzs1YceOHfjiiy8k9gkEAtjb27e6C1fFvXv3MH78ePTs2RMFBQU6aaOtYFTCmzp1KuLi4rRS1/Xr1+Hq6iqzPzk5GdOmTdNKG4rIycmBm5sbJkyYgIcPH+q0LVPFaISXn58PV1dXvHr1Siv1iUQiWFtby4S7P3v2DFZWVnjw4IFW2lFETU0NlixZAiaTiU2bNkEoFOq0PVPDKISnLLhTE4YNG4bDhw/L7J89ezYSExO12pYiysrKEBwcjKCgIFy6dEkvbZoCRiG8BQsW6KT7W758OZKSkmT283g8MJlM1NTUaL1NeQiFQmzduhV2dnZISEjQmlc3ZQwuPFXBnZqQk5ODoUOHyj0WERGBjRs3ar1NZTx+/BiTJ0+Gs7MzDh06pKVapZIVSW3GmrvIoMITCATo3bs39u7dq5P6nz59CktLS7n3V6dPn4a7u7tB7r3+/PNPeHh4IDIyEnfv3tVCjRXgsJqyZjWRCzaxYaS6M+w8nrrBna3F1taWbG1t6dq1azLHBg0aRJaWlnT48GGdtK2M0NBQKi0tJT8/P/Lz86N169ZpGPVcQVcomkY2pgnM43KJT+7kxTbiXNCGUnxLgjs1YeLEiQrXaHfv3o2QkBCdtq8KHo+HIUOGoG/fviguLm5dJblssJrcXQUHLGPtX5thEOG9ffsW/v7++PXXX3XeFpfLRWxsrEI7XFxcWv8H1xIikQiZmZmwt7fHnDlzWhz1XMFhSdzXsST7XKNEoqsViQTiTZdwuVzq3LkzzZgxQ6ftEMlfOmuiffv2tGDBAq0vo7UUCwsLmjhxIl2+fJmEQiF5eXnR77//rmbUM59ysog4Fe9yQFdwWORtCm+XkVaiUFirU6Xz+XzY2NiAz+frtJ0mBAIBGAyGwqmTly9fwtraGrdv39aLPepQVFQEHx8fDBs2TPX3VMEBi8WB2MflcmACDk+2q9Wl8DQJ7tSEoKAgpYGbCQkJWLhwoR4tUk19fT1++ukn2NjYYMWKFairq5NbroLDMomuVRqlwhMKa8WbvM/N98mrR/pYU3Bnff1rheepqkPVfmmbhMJazJ8/H6mpqQrbuXPnDqytrY3yibLbt28jPDwcvXv3xunTp6WOyptGMQ1Uejxln9X5venz++DO80rrb03dTT/l/ZMAwK5dGRg/frzcdpqYMGGCUnEaEpFIhP3798PR0RHTp0/H06dPgVx2swGF6YmvRcJT5nmUlWtoeCMO7lQl7JbuV0egPF45nJ2d5dbXxLlz5+Ds7Cw30Y+xUFVVhYkTJ6Jz587Yvn27SUc9q3WP19yLqCorb//evZno3bs3BAKBzoSXyyZ06NBO7AHW82qRy343cy8U1sLW1lZlRMqgQYOQmZmptIw+uXv3Lvbu3YuEhASEhISgY8eO8Pb2RmRkJPr164dBgwbhypUrhjazVYiFp0hcyo6p420qKyvh6uogDu5sjfCUel3eGrAaX6jy/lgF1v9fO/FLVoTCWnz++ec4cOCA3LaaOHTokMxDQvri9evXOHXqFFavXo2oqCg4ODiga9euGD16NFauXIkTJ06gurpaXL6hoQEbNmyAra0tkpKSJJ4vMQUkhKfsZl+ZQJQNLmbOnCwT3KlqcKBu3ULhIbAbJ0xl7vF4azBnfbm4/IoVy7FkyRKF1/eunBAeHh44efKk0nKaIhQKcfnyZaSnp4PNZsPX1xcMBgMDBgxAfHw89uzZg1u3bqlV1/379xEdHY0ePXpoPaxMl6i9ctGaaRZtB3dKk8smUPM5LCXk5eUhNDRUZblNmzZh1KhRmhvXjMePH+Pw4cNISkrC0KFDYWlpiZ49e+Krr77Chg0bUFJSonC6RF3y8vLg5uaGL7/80iSintUSXmtEp6vgzvfkir2dOlRWVqJz584qo1HevHkDOzs7cQqMliIQCHD27FlwOBxMmDAB//vf/2BlZYWwsDAsW7YMOTk570alOqCmpgZLly6Fra0tNm7c2KpnkvWFUuEp6hLVQVfBnWIqOGDJiTeTXLeUnGbw8PBAWVmZyqq//fZbxMTEqGXGjRs3kJmZiQULFiAoKAgMBgN+fn6IjY1FRkYGrl69qvfRZ3l5OUJCQhAYGIiLFy/qtW110UmQgC6DO8UoEB6Ad3NccrrgyZMnqxWY8OjRI1hZWcl4phcvXqCgoADJyckIDw8Hk8mEo6Mjxo4di9TUVJw5c0ZvUc2qEAqFSE9Ph52dHRYtWmR0Uc9aF56ugzvfo7irVbSM9Msvv2DWrFlq1T59+nTMnj0bmzdvxvTp0+Hl5YVOnTph0KBBWLx4MbKzs3Hv3j2Nr0LXPHnyBFOnToWzszMOHjxoaHPEaF14y5YtQ1RUlH66l8bZe0mvp3gZqaSkBH369JFb1b1795CdnY3Fixdj8ODBYDAYaN++PaZMmYLNmzfj4sWLRn3PpIqTJ0/C09MTERERuHPnjqHN0a7w9BXcKUFjl0vNNwUj3fr6ejAYDDx+/BhnzpxBamoqxo0bBycnJzCZTISHhyM5ORkFBQV48eIFhg8frpeYQX0hEAjw448/wsbGBmvWrDHoKo3WhKfP4M6WIBKJcPXqVWRkZGD27NlgMBjo0KEDfHx8sGDBAmRmZioMPSooKICXl5dJL03Jg8fjYejQofD19cXZs2cNYoPW3t6oz+BOZVRWVlJxcbF4KykpIUtLS+rfvz8FBQVReHg49ejRg3bv3k11dXU0atQo6tSpk9y6PvvsM2rfvj3l5+fTiBEj9HwlusPd3Z0KCgpoz549FBUVRZGRkZSSkkKWlpb6M0Ib6m0K7tR3qta6ujqUlJRgw4YNmDRpEtzd3dGlSxcMHToUSUlJOHz4MB4/fixxzu7duzFmzBi8evUKsbGxcHV1xbFjxxS2kZGRofARybZAVVUVYmNjYW9vj127dunNu2ssPH0Gd966dQt79uzBwoULwWKxwGAw4OvrCzabjfT0dJSXl6ucIL558ya6d+8u/nz8+HG4ubkhJiZGYi20ibq6Ojg4OLT5LAD//PMP+vTpg7CwMFRU6D7GSmPhbd26FYGBgVof8VVXV+PEiRNISUlBREQEunXrBgcHB0RFRWH16tU4efJkq+em7OzsJN7io8r7paSkYMqUKa2+FlOhvr4eqampsLGxQXJyssape5WhkfA0zdzZhFAoRGlpKbZu3Yqvv/4a3t7e6NixI0JCQpCQkICsrCytTgGEh4cjOztbZr8i71dZWQkrKyv9jtYNyJ07dzB69Gj06tULp06d0kkbcoQnPyWC9AqBJpk7Hz58iIMHD2Lp0qUIDQ1F586d4enpiSlTpmDjxo04f/486uvrW3lJqklOTsbixYvlHlPk/ebNm6cyuqWtceDAATg5OWHatGlaX19W4PHeiU8stly2zLpnVlYWvLy8VLrj2tpaFBYWYt26dYiOjoaLiwtsbGwwYsQIfP/998jLy0NVVZV2rkZNCgoKMHjwYKVlpL0fn8+Hra3tB/ea0erqaixcuBB2dnZIT09Xa/AhsV7O4qACuWBLeS4FwpPKu1HBAauZ8J49e4Zu3brJzdzJ4/Gwc+dOzJs3D/7+/mAwGPD398fcuXOxY8cOXL9+vQWXrRueP3+OTp06qbwvlfZ+Y8aMwfr16/VkpXFx4cIFBAQEYODAgbh8+bL8Qk2T+c1F1rhPeglTvvBy2c1Obux6m1XWlLmzqqoK+fn5+OGHHzBixAjY2NjAxcUF0dHRWLt2Lf7++2/U1ur2Od3W0qtXL7VHqk3eLyIiAm5ubh9sksWGhgZs3LgRtra2SExMlIp6frd2TnKiNnLZsrdqcl8Nz+cGk3t8UeMnFnEqCimu8eH0o0eP0qhRo8ja2ppqamrI3t6eHB0dqXv37uTo6CjxqnZj5uDBg+Tm5ka+vr5qla+vr6djx47RxYsXady4cdSrVy8dW2i8PHz4kNLS0oiIKD8/n4YNG9aoGW/KxRaSnmrnc2MoZ+QWsYaIiOQIj0/c4KlEv70T27sKSSy+bdu20a5du8jDw4OYTGaLXvVkTIhEImrXruXJsu7fv0/du3fXgUWmx/nz58nf35/Gju1Kv/SZQ+WcCiqMUzN9hoxflE6J0MJIXzMfIMpiIxUg8y/Pz8kiih5JYt3yeVROZBqJYBTCJ26wBVlYSG8xlKfR+RZkEcwlvo6tb5NISVcqlq3xhtGIM0uqj2ycXi67JdcmJ85PYhD2IaOkV6zggCPnK3ovPImUCKpj20yPXLBlrkV2xK7e+bngcCqa/TTTNHcn8VUqeAQBMILk23pDgXdS+xHJZlk3Kzgso01qbVCknZeSL8no3mWmK/IOphE7Ujamzt2Lpdb5fF45FcW7k4WFBbnHE3kZbXJhAzJiC+GdM3u3bVEcw/iBCC+PDqaxSY7uqOJKEZG3BykfOjXPullBHJY3mfRYywj4MITH51E5O1JmYpP4XFqRRnI9oWS5HMoSZ1XvSR7RRpxN3UT4IITHz8mS0zfyiTs1nopYHPpGpe4kp5hGxMVRT+ITN8Y8ldJaPgDh5VFqPFH0yGZ9I59LwRbuFE8cqiiMU6ublTif+MQNdqcsr5EqzjWjCLlrtW2GvBiy+DxN7iF2LkjJva8YxUuCkmvYZlpG2xaeGaPlA+hqzRgjZuGZMQj/D5gv2mmeRFelAAAAAElFTkSuQmCC"
|
<image>Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD、AE分别是其角平分线和中线,过点B作BG⊥AD于G,交AC于F,连接EG,则线段EG的长为()
Choices:
(A) \frac{1}{2}
(B) 1
(C) \frac{3}{2}
(D) 2
|
1
| 69,711 | null |
1
|
"iVBORw0KGgoAAAANSUhEUgAAAJEAAABUCAYAAACC/dUkAAAX4klEQVR4nO2de1iN6f7G77V0kk5SMoQOMtqiRpGckvNIDGNMs8cURuQ05pLD2Ex7T43tYhsxuYaZNsa1KdHsaWxDyCaHaNRGjENSdBJKh9Vh1Trcvz/8rK0pqbXetVb2+PzX+z7P93uv1b3e93mf0ysiSbxG5yiVSiiVShgYGOhbisaI9S3g94RSqURkZCQCAwPRtWtXODo64pNPPsH9+/f1LU0jXptIh4hEItTW1iI+Ph6jRo3CgQMHUFhYiBEjRqCgoEDf8tTmtYl0iEgkwh/+8AcAwKpVq+Dj44OEhATY29tj9OjRkEqlelaoHq9NpGOkUin69euH7t27A3hqrD59+iArKwtyuVzP6tRDZyZSKpXYu3cv9uzZo6uUbQ6FQoH9+/fDwcEB1tbWAAC5XI7y8nKYmJhAJBLpWaF66MxEdXV1+Oijj3DixAldpWxztGvXDhcuXICxsbHqWFZWFg4dOgRbW1s9KtMMnZnozJkzAKD6Bf4eSU9Ph7GxMT799FPVMblcDrlcjtDQUJiamupPnAboxEQVFRVISUmBm5sbZDKZLlK2SZKSklBWVobOnTurjkVFRcHIyAgLFy58ZW9nOunp2rp1K8aOHQs7OztcvHhRFynbJLW1tfD29oazszNqa2uxc+dOJCQkIDo6GlZWVvqWpzZaN1FxcTEOHjyICRMmID09/ZW9ZGvKqVOncOvWLXTu3BmhoaHIyMhAeXk5Nm7ciHnz5ulbnmZQy0RHR9PGxobdu3enubk558yZQ5lMpu20bQ65XE6ZTEalUslffvmF+/fv17ckwRCR2hs7e/ToEd59910cPnwYxsbG2LBhAyIjI5GdnQ0HBwcAQH19PaqqqqBUKgE87TcRSpKQsZ6PCaDZuGKxWPV5xGIxRCIROnbsKKiOtoRWb2fffvstbGxsYGlpCeDpF6pQKFBRUQEAKCgowNSpU5GXlwczMzNUVVWhrq4OHTp00Di3QqGAVCoVJNbzPOtVNjExafI8SVRXV8PMzAyGhoYAAIlEgjFjxiA2Nhbt2rUTVE9bQGsmKioqQnR0NLZs2QIAKCsrw7fffgsAyMjIgLu7O7KyspCeng4DAwPs27cPZmZmuH37NgYPHqxx/vLycvz6668YOnSoxrGe5+bNm6pe5qaQy+U4f/483n77bTx48ADTp0/HkydPcODAARgaGmLPnj3/c0bS2u3syZMnyM7ORu/evWFlZQWZTIbMzEyIRCJ4eHhALBZj4sSJGD9+PLKysmBgYICtW7dqQ4pe+OGHH7Bu3TpYW1vj+vXr+Pvf/46AgAAcPXoUEyZM0Lc8YdFfc4wcOXIk09PTWVtby/bt2zM2NlafcgShurqaU6ZM4ahRo3jy5EleuHCB3t7eJMmIiAiam5vz0aNHelYpLHoz0alTpzhp0iTV34cOHaKXlxfz8/P1JUljampqOHbsWA4aNIiPHz8mSQYEBDA8PFxVJiwsjKGhofqSqBX0NopfWFiI0tJS1d8BAQFYsWIFgoKC8PDhQ33JUguSiI2NxejRo+Hv74+0tDTY2NhAJpNBoVDA3NxcVXbTpk04fPgwlixZokfFAqMv9y5btoyHDh1qdPzTTz+lp6cnpVKpHlS1HqlUymHDhnHQoEHcvXt3g3M3btygvb09JRJJg+Pp6ekUiUQNrlCvMnoxUXp6OqdPn95kp+OjR48IgDt37tSDstZRW1tLHx8furi4sKSkpNH5LVu2cPLkyVQqlY3OhYaG0tDQkEVFRbqQqlX0cjs7efIk8vLympykbmtri507dyI0NBR3797Vg7qWkZqaiunTp8PKygppaWno1KlTozKxsbEYNWpUkwOr27dvx6RJk/DVV1/pQq5W0YuJbGxs4Orq+sLzc+bMwd/+9jeEhYWhrq5Oh8peTl1dHWJiYuDn5wdfX18cOXKkyd7oq1evIj8/H05OTi+MFR8fj6SkJGzYsEGbkrWPPi5/48aN47lz515aLiwsjFOmTGFtba0OVL2cGzducPTo0bSysuLXX3/dbNnTp0+zS5cuL4156NAhGhkZMTo6mgqFQiipOkXnJkpKSuKbb77Zor6SM2fOEAD37dunA2UvRiqVMjQ0lL169eKqVate2o6prq7mggULuHbt2hbFnzVrFocPHy6EVL2gcxONHDmS0dHRLSqrUCi4atUq9uvXT28j/8XFxRwzZgz79u3Le/futajO0aNHaW9v3+Ict27doq2tLRMSEtSVqVd0aqKkpCQOGDCAlZWVrao3ePBg7tmzR0uqXkxiYiJNTU25ZcsW1tfXt7jesmXLOH/+/Fblio6OppmZGcvLy1srU+/o1EShoaEMCgpqdb2EhAS6urpqQVHTSKVSrl+/nmKxmFu2bGl1fRcXFx49erTV9WbNmsVx48axrq6u1XX1iU6fziwsLFBdXd3qev7+/hg4cCAiIiK0oKohUqkUkydPRlRUFL7++mssXbq0VfWLi4tRWVmJ2traVuf+4osvkJ6ejj//+c+trqtXdOVWiUTCt956i8ePH1erfmFhIQ0MDLTabpBKpXznnXc4ZMgQlpaWqhVj37599PPzU7v+3r17aWJiwl9++UWt+vpAZybKzMyks7Nzkz27LeXAgQPs3bu3anBTSH766ScOGjSIGzdu1CjO1KlTeebMGY1izJw5k5aWlq/MaL/OTDR37lyGhIRoFEOhUNDPz4/9+vUTtE8lMTGRdnZ2jIiI0DiWg4MDk5OTNYqRk5NDCwsLLlmyRGM9ukAnS4ZIor6+XjVNVl3EYjEOHz6M8ePH4/vvv8ecOXM01jVx4kQUFRXhzJkz6N27t0bxrly5gtLSUrRv316jOI6Ojjh9+jSGDRsGS0tLREZGahRP6+jCqQ8fPmTPnj2ZnZ0tSLySkhJaWlpqtGJCoVBw0qRJ7NGjB/Py8gTR9dVXX3Hx4sWt6g5ojpSUFHbr1k2w701b6MREP/74I318fFhTUyNYzPT0dHbr1o1ZWVmtrpuamsqAgACuXLmST548EURPfX0933rrLWZmZgoS7xlz585lt27dWFxcLGhcIdHJI/7u3bvh6+ur8WX+eTw9PTFjxgwsWbKkxUuzFQoFgoKCEBISAg8PD2zYsEGwpTwkYWRkBCMjI0HiPeObb76Bm5tb2x6k1bZLZTIZ/f39uXnzZsFjFxcX097evkUdmMeOHaO3tze9vb0Fu309z759+zhr1izB45Jkbm4uTU1N+c0332glvqZo3UQpKSns1KmToLey57l79y7d3d158uTJF5Y5cuQI27dvzzVr1qiOxcTEMDw8nBEREVy2bBlv376ttoba2lp6eHhw7ty5asd4GXFxcW32sV/rJpo8eTInTZqk1WkO169fp4uLC8+fP9/o3Pvvv09jY2OuW7dOdey7777j2LFjmZ2dzYKCAq5bt469evVSe5FAWVkZbWxseOPGDbU/Q0tYsGABhw8fLlg7Tii0bqKJEydy69at2k7DNWvWsGPHjg0a2hMnTmSPHj0aNHZLSkro4ODAv/zlL6pj9fX1tLe3588//6xW7tLSUjo4OGj9Kaq6upozZszg4sWLtZqntWjVRA8fPmRgYCALCwu1mUbFoEGDOHv2bF66dIkzZszg2LFjeffu3QZlQkJCCKCBYRITE2lsbMz33ntPrbyRkZEMCAgQ7NG+Oe7evUtLS0sePnxY67lailZNdO7cOXbr1k2bKRqQlpZGAOzYsWOTKynu3LlDU1NT+vn5NTgeExNDAIyPj291ztraWk6dOpV//etf1dbdWtavX08zMzM+ePBAZzmbQ6smmj17Nj/77DNtpmhASEgIzc3NaWBg0GQDNC4ujgC4d+/eBsf37t1LAGoNet6/f59dunTRynhec4SEhHD69Ok6zfkitNpPdP36dbz55pvaTAHgaR/NnDlzcPbsWaSmpmLy5MkICwtrVO6nn34C8HQ7m+fJycmBk5MTHB0dW53b3NwcCoVCrakfmvD5558jOTkZy5Yt02neptCaiZRKJUhCIpFoKwUAoLS0FEFBQbC0tMSNGzfg5uaGuLg4FBQUYPPmzQ3KLly4EMDTMbhnKBQKbNq0CcuWLYONjU2r88fHx6Nv374633+oe/fuOHPmDA4ePIjc3Fyd5m6Eti5xSUlJtLCw4NWrV7WVgps2baKDgwPDwsIanUtOTiYA/uMf/1AdKywspJOTE9evX8+6ujpKJBKOGDGC7u7urZ6yS5JKpZIhISE8ePCgRp9DExYuXMhFixbpLT+pxTbRiBEj+NFHH2krPIOCgmhtbd3s0qPvv/+effv2bTBB7M6dOxw4cCA9PDz45ZdfMjAwkAUFBWppyM7OZv/+/bXWkdpSXFxcuHz5cr3l15qJ+vfvz8TERK3EDg4OpqWlJW/evPnSsjExMRw7diwrKipUx4qLi5mWlqbxEuY7d+7Qzs6OZWVlGsXRlFOnTtHY2JiRkZF6ya8VE126dIlisZg//PCDoHEvX77Mvn37cuHChbx//36L6w0cOJA7duwQVAv5dFXH7Nmz28RGpklJSbS1tdXL2n6tmCgqKore3t6CTl9YtWoVzczMOG/evFbXLSwspKOjIy9fviyYnpqaGvr6+nL79u2CxdSUBQsWsEePHnz48KFO82rFRL1791Z7Qv5vefz4MWfNmkVzc3Pu2rVL7TiRkZGcMmWKYGN46enp7NGjR5ta3iORSDhkyBB+8sknOs2rlUd8MzOzBo/R6pKamgpfX1/U1dUhNTUVs2fPVjvW2rVr0adPH8ydO1djXQBQU1PT5t4MZGZmhoSEBMTExODHH3/UXWKhXZmZmclp06Zp9AuVyWT8+OOP6erq2qKNH1qDj48PP/jgA43j+Pv7Mzw8vMm9h/TNtm3bOHToUJ01+AW9EpHE1q1b0aVLF41m+PXv3x8mJiZITk4WfAvhHTt24Oeff9Zou7v09HSkpaVh9OjRbepK9IxFixahd+/e+Oyzz3STUEhHyuVy2tnZ8dKlS2rVv337NoOCgrhw4UIhZTVi3bp1BKD2/J9Tp07RyclJYFXCkpuby06dOvHYsWNazyX47Wzo0KFq9VJnZGSwT58+aj19tRaFQsGgoCC+//77atUPDg7msGHDBFYlPKtXrxZ8jV5TCGqigwcPMjg4uNX1Pv/8c/br14+pqalCymmWqqoqWlhY8Msvv2x1XXd3d630O2mDP/3pTxovGn0ZgplIqVQyLCyM7777bovrSCQSLl26lDY2NnpZe378+HFaWFi0apnP1atXOWDAAP76669aVCYsjo6OWh1fE8xEVVVV7NWrF9PS0lpUPjMzk2+88Qbnzp2r1uCnUKxZs4b+/v4tLh8bG0tnZ2ctKhKeixcv0t7evtEsT6EQ7OnM0NAQZWVlMDMze2nZ7du3IyQkBDNnzkRMTEyDzcJ1zfLlyyESibBz584WlTc2Noa3t7eWVQmLt7c3/P39ERUVpZ0EQjhRKpVy6dKlXLVqVbObdObk5HDx4sX08vISvP9HEyorK9m1a1dmZGQ0W66oqIijR4/mlStXdKRMOORyOV1dXbWyNY8gJiotLaW5uXmzY2WJiYns0KGDVqeHaMLgwYM5bdq0ZsuMGDGizS4gbAlz5sxhz549BV+7JoiJLl68yA8++IDV1dVNnl+9ejUdHR0bvbagLZGfn8/Bgwc3+aqIZ/Ts2ZMpKSk6VCUs1dXVHDFiBJcuXSpoXEFMFBER0eSXf/PmTU6YMIFubm5tZi/q5sjJyaGTk1OTT2vnz59n586defHiRT0oE46qqioOGjRI0CuqxiYqLS3l9OnTG612+M9//kMbGxu+9957ep/51xrWrl1LLy+vRhPewsPD6eXl1SbHylpLfHw8xWJxsytUlEolq6qqKJFIWF5ezvLyclZUVDT5v9TYRPn5+Y1eBLdixQo6ODi8km/Refz4MceNG8fAwEDVsfr6ejo7O+tt5qA22LFjB8ePH99gxufzFBcXs1evXrS0tGTXrl1pb29POzs7Tp06tVHZZk1UU1PDhIQExsXFcc+ePTx9+nSjMv/617/o4+NDqVTKgoICLlmyhBYWFhrvW6hPKisraWtrywULFpB8+mTTo0cPXr9+Xc/KhKVnz54v3G+7sLCQAOjs7Mxz587x2rVrjIiIYJ8+fRqVbdZEeXl5BEAAPHDgAGNjYzlq1Cheu3aN5NOGmqenJ6OiovjgwQNOmTKFU6dOZU5OjgAfUb9kZGTQ1taW9+7dY3x8PMeNG8eqqip9yxKU/Px8DhkyhElJSY3OFRUVEQBXrlypOlZZWdlke7FZExUUFFAkEjV49LW3t1f9fe3aNdrZ2TE0NJRjxoxpcxsNaMrGjRsZEhLCpUuXqjUm+Crw5MkTuri4NNqa59GjR+zSpQuvXbvG9PT0Zl+l0ezGn+3bt4ehoSEmTZqkOiaTyVBcXAzgaS/1w4cPsWPHDgQHB2PlypXIzs6GQqFAVlYWkpOTVQsGn1FeXo7Lly/Dz88PALBr1y64ubnB3d0d//znPyGXy1FTU4P8/HxIpVK0a9cO8+bNg7Ozs2AdrAqFAsXFxcjLy4OPjw9kMplqBeu+ffuQnZ0NX19fGBsbIyYmBgBgbW2NNWvWICgoSBVHJBJBLBZDoVA0m6+kpARRUVEwNDSEWCyGRCJBaGgozp49i/v37wMAqqqqQBLW1taYNWsW9u/fj8LCQhgZGcHExARVVVWN4iqVSri6urZotuazV607OzsjMTERFhYWEIvFqKysxJ07dzBv3jxcvnxZNXqQkJAAmUyGqKgo7Nq1C7t27Xph7GZNdOjQIRgbG+PkyZPw9PTEhg0bYG9vj7i4uKeVDQxga2sLhUKB48ePIzk5Gfz/N6TX1dVBIpEgISGhwYceMGAAcnNz8cUXX0AsFqOkpAROTk7w8PBAr169YGRkhM2bN8PJyQnvvPMO7t27h5kzZwo2FVWpVKJr167o0qULzp49iw4dOsDd3R3+/v4AnprFw8MDKSkpGDhwoOo161KpFJmZmRg5cqRq6q9UKkVtbW2zq1+VSiXGjx8PV1dXbN68GTU1NZg/fz5u376NsrIyxMXFwdraGgsWLIBUKsXOnTvh4OCArl27wtbWFjk5OThx4gTmz5/fZPzCwkKMHDkSIpHohd+PUqmEi4sL5HI5srKyMGTIENXQjYGBATZt2gSRSITKykqVia5evYrS0lIMGTIEu3fvxrBhw174GUV89l9vgvnz5+O7775DaGgoysvLsX//fmRkZGDAgAEAnv6iJRIJ+PS2CKVS+d/ATfxKScLKygoymQzV1dWqMsbGxjA1NVV9CeXl5TAzM1O9mbGkpAQkBTERSZiYmKB9+/aoqKiAUqmEpaVlszMx5XJ5Ay3PePDgAYqKiuDp6dlsPltbWwBAZWUlFApFA9OVlZXB0NBQNeYokUgajSVWV1ejQ4cOL8zx+PFjAHjh90MSZmZmaNeuHSorK1+6XLysrAxvv/226gKybds2BAcHw9TUVPX9/TZBk1RUVHD48OH08vIi+fQxd9q0afT19W3TO5kKydmzZ/nHP/6RK1asYGBgIP/973/rW5JOyM3NJYAGHZK5ubn08/NrclvCF47il5aW4uzZswgMDATwtP3j4+ODlJQUXLt2rVkn/y9w7NgxLF++HMHBwdi4cSPs7e0xatQoXLlyRd/StApJXLhwASKRCA4ODlAqlbh16xY8PT3h7Ozc9IbxL3LjiRMn2KlTJ9VCuPLychoaGtLNzU3vy4a1zenTp2lpadlgH6OCggKuXr26ze2XKDRFRUX09/fn0KFDGRQUxPDwcH744Yf09PR84a67TbaJcnNz4erqirq6OkyYMAEymQy3b9+GSCTCtm3bMHnyZF38KPRGQEAAjhw58tKnrv9F+Ju2Z319/UtX7jT5dFZcXIwPP/wQXl5eKC8vV70D4+OPP9b4/RxtndzcXGRmZiI4OFiwxvyrxG8/b0uWfjVpooEDB8LHx0cYVa8YBQUFyMvLg7+//+/OQOrSZMP62ePs7xGZTAYnJydVv9HzNHHnfw20uN3eq4pcLodcLm/UFxIeHo6MjAw9qWrbvDbRb/D29oavr2+D97CuWLECUVFRsLKy0p+wNkyzPda/V+rq6rBo0SK88cYbIIkDBw4gKCgIa9eu1be0NslrEzXDs0HPliyD+j3z2kSv0Zj/A3IF6ZR+85eeAAAAAElFTkSuQmCC"
|
<image>如图,在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()
Choices:
(A) 24
(B) 18
(C) 48
(D) 44
|
18
| 69,712 | null |
18
|
"iVBORw0KGgoAAAANSUhEUgAAAKMAAAB9CAYAAADOWNPfAAAYi0lEQVR4nO2df2xT57nHvydAK12hId3rqKmI6g5MSDEVWUe7TEnVTrGDuV1L6JILFWhDAhSww0hK0Do1vUSCXeitA5kWUBhDYyqMVA2102YjNEGCpVGDUt1UxU4KSViqgAYEaemStkkbn+f+YZ+T89M5duzYPscfyYnP+77nvO95/bzP+7y/GSIiaODevXt45JFHZO5EBIZhVO8jAOq+4ZnLvXqGz3MCCOHzP5XI0BLI7/fjRz/6EUZGRgAEM4NjtoyQ+rLQIPukfK8xYflvfM5xec7Mnv+phCZhtFqtePXVV7Fx40ZMTU2BYRgoKVQi4j/qEQYzj/g/QkIZr5/8jQEzPxEj+T9XHjx4ENZfY6UZMzQJIwD88pe/xJNPPokdO3YAUC6RDMPMUlJZ/gUZ/s8MRIwWvWkolAo3CbSllvuVrqemprB27Vp8+umnqvfOt9bVLIxEhMbGRgwPD6Ouri7q6PgXVJA6hmHAAJjnApnUcPnFZwkBFcUL+YIf/CwAw9jQp5CpUoHiarXDhw/j6aefRl5enmK8860VuUg1w7Is3b17l8xmM7W1tUVyq7bnx/yJ+sVpB3l8wRxjWZbcThsBReTXkIvDw8O0ZMkSGhkZiXcyIyIiYeTo6ekhk8lEg4ODmu9hWUEmhb5eb3HzGZpGHZbE+ceSn4qKd4vDsCw57SCbyz3r80pLS+nQoUOxTuac0VxNC1m7di3q6+vhcDgwMTERTuuGvkiqCwYg9KFqQ7U4XBoZRAQGQNCACdqKfS0XAcuyUIDgP4ZhsGyFDR03h2T3C7l8+TJ6enpQXV0d55RHTlTCCABbtmxBaWkpysrKVMMwgi4IKccqjoOx25FjFQsqUSDaJOkSBsI8DP5cbe1/xfri9QL3IMuX58wYlwIh5QgEAqioqEB9fT0efvjhpFMCUQsjABw+fBgAsH//fk3huVf31u0B2W2gDiWDe8FckqQ/pD0O6MPF4wzWb1glC3pr6CZsK5cDYBUVQH19PR5//HGUlJQEH51sfZRzrefHx8fJYrHQ2bNnZX4iO5HD7yGn20Pk9xDs5elWS6T4Pcp2oa+FGIYht9dHRAGZ9927d8lkMlF/f3/80xglEbemlRgcHKSsrCzq6emZ9Rkul4uIiAJ9F8jmPKoSUSSpMhaeOiftfus9mbvTDoJ9t8IdQbZs2UK//vWv+Wu13zKRzCqM0kSrvURbWxuZzWa6e/eu6rM8dbsIwdqagGDLT9RKZFlRyzH5sisx8PnA+skGhjw+dibf/J5gftrUBbG7u5uysrJofHw87mmdQa6dZ2PO1TQHy7LkdrspPz+fJicn5QF8LcHqmbv0uoPXMomL/CWMgM/rFhVkIIP/LqyalQrwD3/4Q+1mVIRwT9CqtMIRM2Hk2Lp1K23bto2/Zlk2ZB+KS66nzikSTiFpjaiNYD4FFNw4AtTY2Ej5+fnzliYiIrfTFiogkRETm1HoNzk5Sfn5+VRfX88nDACBCY0YsCH7RqWqTqNCFFk0NjZGjz76KPX29sY9j1n+D9GuYpCnL/JnxFwzEhGNjIyQ2Wymjo4OIoqNCk8TOS6Xi8rLy4lo/vKcJT8VoYj62ATajFI4o1k6ZJgWxPjDsiz5fD4ymUw0Ojoq84srApOMJYlCZ8Mr+IW1tbXx6LsEwzDIz89Hfn4+du7ciYceeijm8aRR549//CPy8/PR0NAQtziUZMfbdgnOdesAKPS7c1Oy+M52FsJxlzmNwKjB9eyvWbMGOTk5uHDhQjyiSaOC3+/Ht99+i6eeemoeYhPPrRwaGsLyFTmqQ43iUR+J+MVNXYeYnp4mh8NBNTU18Y4qDRFNTExQdnY2ffTRR3GLQ7mqD/CN09lmYqmZCnHRjEIWLFiApqYmNDU14Z133ol3dIbn0KFDeP7551FQUCDzI5VZ31rhwkvHtIOuGSCmDzfai5BjnfHzt9SBKXaKAquNiS+MKDUaEqsU0ZIlS/DBBx/g2WefxcqVK1VnF6eZG0NDQzh9+jSuX7+u6K806zsS1MJzrn7vX8G41mNVyKXOZcelAQa2nHXywArETDOqCSJHbm4uzp07hxdffHHWhUBpoqOyshL79u1TXFI8Hwze+jtyvr882IFMwKvH23HUZYfD7uDDEJHikhPOM+4IbYQjR45QYWGh8pBhmogQ5mtrayvl5uYmXb563U7y+Kc19dnH3WYExOr9V7/6FZYuXYqKior5iFpXkGSlIJevU1NTqKys5CfNJhRucn8ore2XbiJnVYamVXbzIoxSzpw5g97eXhw/fjwR0ackFDKDlEyhY8eOITc3F+vWrVO4M87pkl2HGjkEgOnH51iJVcQE+xZJ4QYBDFF8556Tii15+/Zt/PjHP8bZs2fx3HPPxTMJuub27dv4wQ9+gO7ubixfvlzkp5b3yUrchTEcXV1d2Lx5M65cuSLLyDTaeOWVV2CxWHDw4MEEp0Q8mhJVuPiYrWL4ybIKnZ2///3vyWq1zvPET33Q2dlJ2dnZCW20hGuYSP3EU97kEykSqhk5qqqqMDw8DI/Hk+ikpAyBQABr1qzBG2+8gU2bNiU6OSG0akdlEtKAkeJ2uzExMSEbeE+CcpK0NDY24tFHH00iQQSADPFvxobpU1TaL2jOenqOcFX36OgoWSwWam5uVg2j1V3vjI6OkslkIp8v8tnUyUxSVNMcfr8fNpsNFy9e1DRkSCnWWowV5eXlWLRoUVynhyWEBBcGESzLUmtrK5nNZrp//36ik5OU9PT0UFZWFn355ZeJTkrMSQqbkYNhGLzwwgvYuXMnysrKEAjMbHVCyaPAE8qePXtw8OBBfO9730t0UmJOUgkjx+uvv47MzEy4XC4Axq2OpZw7dw7ffvstv2Gr7ki0alZjfHyc1qxZQ42NjYlOSlIwNjZGWVlZ1N3dneikxI2kasBIuX37Np5++mk0NzcrThY1Evv378fY2BhOnTqV6KTEjaQWRiA4ZFhaWoru7m6YzeZEJychfP755ygsLITf70/YXMX5ICltRiEFBQU4cOAASkpKwm5Mqmf27NmDN954gxdEmuVEiVQl6YURAHbt2oWCggJs27ZN5K7HH0TKhQsX8I9//AMVFRWiNSh6bNAlfTXNEQgEUFRUBLvdjtdff101HAla3pTirfCpqSmsXLkSp0+fRlFRkcw/1d9PSkwXZMWTBQsWoLm5GWvXroXVauV3X5Ui/HFS/YfijsdQEkQg9d9PSspoRk4LfPrpp1i/fj06OjpgtVo13ZOKfPHFF1izZg18Ph+ys7MTnZx5ISVsRmBGC+Tl5aGxsRElJSWzrjJMVUEEgOrqalRXV2Pp0qUyvxTRHxGTMppRSm1tLbq6utDW1oYFC/S1Kf3ly5exfft23LhxI/ELrOaRlBVGANi4cSOWLl2qq9krgUAAq1evxuHDh7FhwwYAqa3hIyHpq+lwZeXtt9/GlStXRKMSKVy2AIiPx9BrF44aKa0ZgaChX1hYiKamppQfMrx37x5Wr16Nzs5O5ObmJjo5807KCyMAXL16FVu3bsXHH3+c0i3Pn//851i6dCl/2JPRSBlhnK2b5sSJEzh16hS6u7tT0ui/du0aNmzYgMHBQSxevDjRyUkIuhFGANi5cyfGx8fR1NQ0T6mKHWvXrkVVVRW2bNkCILX7SKMl6RswQmabINDY2Ig7d+7gzTffnMdUzZ2TJ09i0aJFvCACxmlBi4jrbMl5RLjKMDs7m1pbWxOcIm1wk2Z7e3sTnZSEkzLVtBKkUpX19vaiuLg4JVqlFRUVmJ6eRmNjY6KTkngSXBjiRnNzM1ksFhobG+Pd4rLOWnC+RKRPVzsew6iklM0YCT/72c+wefNmbN68mV9lKNuLOhaVAgOIzicXRSC5lMS3a9cuHDp0CCaTae7p0AG6FUYAOHjwIBYuXIjq6mpF/3g2EohIJJ0kMSneeecdTExM6HelXzQkVjHHn/HxcXriiSfozJkzcYxFvqNWOJNgfHxcdDyGUbdpkaJrzQgAixcvxgcffICamhpcu3Yt5s93FTNgmAX8OHLwswAZ61yq90iPxxDOTDc0iS4N80VHRweZzWYaGRkhothqI+lBPNdb3GRzuRXDDg4OkslkCntIvFHRtWYkQSd5UVERqqqqUFJSgqmpqZjZi4Q+3IALJVYGhD7U1XlgfWk9ipctE6WDo7KyEtXV1bpechotuhJGklRz0ilYe/fuxZNPPhnTRkP/+21Yuc4GAGg5ehyw5IDBKux/daMoHQDQ2tqKoaEhVFZWxix+XZFYxTz/TE5OUmFhIbndytVopHjqnPxB7oCgupZYAZOTk2SxWKitrS0m8eoRkWakr6f4jx4hIjz88MNobm7G7373O1y6dEk1nFba207A42NBRHDZbcixhroXJVbAb3/724Qdj5FIuLxUylOZm1Q62a+S64SleMCyLPX09JDJZJIdzh4Jgb6Zg76JiOrq6hTDjYyM8HGlu3E45N1hhhRGjrNnz5LFYqHx8XF1IQkjO546JznrLsjcnU4nCTN706ZNhj3iOJKiF7YBI622lapxtWo9XJWv1RxQCxfOXZomWRhB1bBlyxaUlJSgrKxMvXUtcRZWLO1tJ1DseFnkX2FngGV2cG3Drq4udHV1oaamRv5+BuhXjKjPQibJEs0Y7lrL90j8Io1HeM1+Ncl/hNdERIGJbxTj4HA4HFRdXa3qz0oufF43ASCGYQSNlwxiJI2Y6elpslqt1NTUFDZ+/RMgUbWsoi4jEkYlP6kQRPMMJbS6R1U4JFXyxMQEWSwWOnv2rGKcygmZ3a2hoYFsNps8mAHtRrfTRm5v+NMZNNmMQm0zW9jZwiVaGNUEYWBggDIzM+mTTz5R9NdMaErZ6Ogo/Uem+HgMIwohUfC9nXaQ1x8+HG8zzrU7J57dQbF8tpptaLFY8Pbbb6O0tBT37t2bQwTBT01NDTb/1ybRfkCGXEoAgGE+x432IqxYNYuNzEsvV92qHQAURlOpadNI/dTMAC33h7MZ1Z6jhNvtpvz8/KjP4+O6jR555BHRxF6jwhIR+T2E4mAXWLjagd8Sj/k38fJO6dFpC79jMb1IV6OHYCgDxASPDWMYAlFQc3399dfIz38GGzZsDHe7KqdPn8YzzzyDY8eOxSytqYBUZoBgReFta4ezuDh4zZ07rVBJqEoXCbod9CCIxIQO5Ja4EVHo/0zuvPTSS7h//0FUU84+++wzBAIBPPXUU3NNsi4gsBgauolllhUz/WJq1kpYFRumqk1VdtsgGksGEGrliUcERkbu0OOPmamjo0Pzs41wPIZWhNXxbpt4ip0aup8owQq+BEJXTjv4bgaf96h4goOA7u5uysrK0jxkWF1dTTt27IhFsnUDS34qQhH5Q3nP9dFC4Mahe2GUwmXOdWKJKECs7z1VYSQiOnPmDOXm5s56OHt/f3960qwCPq94orHLbiM/sdTnfYucbo8obGobgpEQslf6Wi6Cca3HajAgZKCi6mXYXP+LEquyIfOLX/wCDocDr7zyivJjQxN4q6qq8Nprrxl60iwpDG8ODN1CzveX89cNH7bjCQJuDA3B7tgge4DuEdovwvmHDCOff6ikH6enp8nhcKhOdmhubqbVq6w0PT2tMUUBcZw67wyXvp3TDtr91nuycIYQRiHC9SqcYHLXvFAoyMbY2BhZLBbZOPPk5GTYho7TzvBj1lx15fO6eTdAeWSCZbUKdmohXS8kxFjC6PcQ7OX8JUt+sgEi24UTSKXs4uxC4b44tf99gEpLS8NG67SD6jzicVmf102w7VIILZ/npxdmGi8I/g6STDaUMHrqnGKj2e8RdO0IUReI1tZWys7OptHRURoeHqYlS5aEXXHINZj6hM9mgxMHpAa84TCqMHKD9R4fS8QSsdRPtlAXQx+xfL6oDocK3I8cOUKFhYX08ssv06FD/yMOR0ScMLPstKw1ycGlZea54gKgbytSGUMIY7B6yJhpuIQ+M0sGFDThLNLwk5/8hBYvXqwwhi1+lnTBFp8OwXIFXaOQjywpF3pDdO1YN+wD0XcgCoCIwIY+9OGJUAiFbAgzwYZlWdy5cweZmZn4wx/+IPEVP0u4YCv4CcBT58TuYrvwifw33c39DuUj/16hLYiUZjAZQhiDZED6ukEVxSqGDsexY8ewbNky/O1vf8ORI0dw9epVga/geX1enCCXrA9zaOgmlq/IkaQtiF4nmTFQXjUpIs5KWnfcvXuXTCYT9ff3ExHRRx99RNnZ2TQwMEBKVbR0wdbM8Jh+W83RYiDNGBtee+01bNu2jd8RV3w4+9eisO1tJ2ArLhG5tRw9Dsa1HquQocM6eY4kujQkO3y/I8vyEyf+9a9/ycK5XC4qKSkhIkl/GjL4Tm2nHXxnt+G7dRRI6T295xvp8RgA+ImigUAADocDBQUFwUmmKhNIg7AAZejXQIySdDWtEaXjMYgIYFiAgoeznz9/HufOnUfzexdmEbS0ICqR1owa+PLLL5Gbm4uLFy8iLy9P5EeS7ZH9fj9sNpti2DThSQujBiI9HsPr9aKyshKffPJ/MJn+nXcXCW7YatyYpIVxFvx+P55//nn09/drOpWAk7Hf/OY3aG9vx+XLlwWHs7NIW0bqpIVRBU6LPfvss9i6dSvKy8sjPs+vtLQUJpPJuAcORaj908VUBYZh+OMxtm/fzrtFwpkzZ3Dt2jWcPHkyHklMfiI1Q6R9PXqfdayE0jtPTk6KjseIluHhYcrKylJ8jhHzOhwyzWjELTiUjr6ora1FQUEBfzwGRWnNmM1mNDc3o7S0FF988YVivHqhzmVHXYs/+gckujQkIwMDA3Ne6SccuSEiamxspLy8vFlXGaYkIQUvnC8aDaIGjNL2FEbk/PnzeOyxx3itGA4u+xiGUW3gcO6tra345ptvUFZWFvM0zzdSWSH0wZGxF8fYD/EEmKh6rQzfgCFJ9TswMIB//vOfyM/PVw0jRHi8h1q1y7m/8MIL+Oqrr9DZ2TnXZCcdTN9NfGhbgVUhQYzKqImBkk5phI2IWB+PodRAGR0dJbPZTB6PJyZxJAMsy8rXF0WB4TUjwzB8Ka6vr1c9HoPUtGMYFcDvuCXAZDLB6/Vi9+7d8Pv94Z+dIjAMg1tDN7FseY7Yg5u7JCM4AVn22rEoGXpgZGSEMjMz+X11nPZQVjJKG0V9JrlbeaIsq/KdiOjdd98li8VC9+/fj9k7JBLl9dCzTSAW++teGIVVJcuyqn17mzaVyXaMEGYwy7IUID/ZUUR+ra1FWThx5h84cIBsNlsEO1EkK9dFmzsJF6Fp2X2MQ/fVtLBRwTU2SFg/ENDV1Ymuro9RU1PD1yrCAyoB4OjRo8jAKqxwrsQqWTtFZR2NLJw4u2tra7F48WLs3bs30tdKKvwtl5BR8Z9YBQYAi/a/B/P4eosbHZfel4Un/o/Uw+AEvpumvLw82bYlPq97xiD3e6jYGVz7rLbOmUO0NNW+m4j10y7ZuumZe8fHx8lqtdKpU6di8DbzD0sBxcaL22nj14sLd+kQmS6SWsrwwtjQ0EDPPfeczF263lmc2ZJzTYiIfB7RfjpEROT3EMMw5HJ7VPbOCT5jcHCQsrOzqbOzc45vk1gCJDaD3E4bvSexacJV2oYSRmlJHB0dJZNJfDwGUTDDhLuteuqcsr1yZgjwe/YUVYg1IMuyms4/ISK6cuUKZWdn81ulpCoedwX/vm6njTx+cSEM16gzlDBycEJZXl5OLpdL5i89oNLndctKuJCgFhXvxMqyLLEUIK/bqWzEKzg1NDRQXl5e1CctJAJpo5ArmPLaRPleIYYURiKinp4eysrKUjwew3vURa669zU9J8D6JDuZBST/JS16wb1KLfvt27fTpk2bNMWtN3TfmlZjz549OHjwIJYsWQJA3LhrazuOIsdPNY1pZfQPoAMI7uYPBFf9SRC16CXuJDmP+fjx47hz5w7efPPNSF5HFxhSGP/85z/ju+++w44dO3g3BkB/Sx0YhsHJdgYvWzPg7YtiZISXNm1ZKx3Xfuihh+DxeNDQ0IC//OUvkcefyiRaNc83sT4eQ15NC/B76C3PdZmzlkm1vb29lJmZyW+jYgQMJ4z79u1TOB4jEDLmAqG9GyPDe9RFAESC5/O6Fbe9EwniLBE1NTWRxWKhsbExQ8wKN5QwCo/HiPWP6/O6RePYShuEEkW+1KCmpoYcDocOhgxnx1CrA9evXw+bzYZ9+/bxbhThij9FwqyCI4W10pEumX7xxRdhsVh0fxahIRowRISrV69iZGQElZWVIj+l9S8RoyaIkEy4ZdigW4RRnT9/Hm1tbfjTn/4UbQpTAkNoRk47PXjwQNNC/GTk1q1bKCgoQHd3N8xmc6KTExcMIYx64d69e7o+gSstjGmSBkPYjGlSg7Qwpkka/h96grvclfV2WQAAAABJRU5ErkJggg=="
|
<image>如图,直线l_{1}∥l_{2}∥l_{3},直线AC分别交l_{1},l_{2},l_{3}于点A,B,C,直线DF分别交l_{1},l_{2},l_{3}于点D,E,F,AC与DF相交于点H,如果AB=5,BH=1,CH=2,那么的值等于()
Choices:
(A) \frac{1}{5}
(B) \frac{1}{3}
(C) \frac{2}{5}
(D) \frac{3}{5}
|
\frac{3}{5}
| 69,713 | null |
\frac{3}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAAGUAAABrCAYAAABudky/AAAmxElEQVR4nO2de7hVVbn/P2Ne1lp7w0YpTAtJMZW00gxBvMGT9zDTFPQJ5CKJoae0sozj08lS0VS0LJGOZWWZl8QUC03UXwc8aOUFFE23egTEu8hl771uc1ze3x9jzrnXBjbCBqXCl2c+rDX3WnPONd4x3vv7HUpEhG2VxIFzIAARKCAAUWDTjyjAWIMKAwIckdYQRmAMFGLqRGggBsL0QCzKOghDf0GV3q7LzV16/WCdx1r3zLZEipwR+aEcjnwcESAKI2ICQgeERTAOrGemFZcPohWLICilQCmwdu07bhRt20whgCBAggAbgFFgAMEPtAIs4l/XQZkIJF1KYcTihx7ixdbnMS6d9UqhMnYGQbpS1k/ZfOjmqbZdEsAQoAkwOCwuZUeQvnIoMSjBj6AW/6UggjVlvjL5P6jXNVHghzFIh9MY42+QMmtTaZtmisPrDj90dRQ6Py/p0BScgBgIHBQ12DK4hJ9c/XMG7v4ZdtypPwGeV9Z6ZoTZCumhut6mmQKdYkQRpP+8slY4FBYIwFiI0g8GBf548+/Zbe+9ebL1H8TFYn6tIF0xSqWCqUF8bQp7os36Rf/ilOl2BwT4wVU4QKeHgqCINYpQAlAFnmldwkpX5Mjhn2HPfQZQKIad9oIKUICzFuUEFXid1ZPn2mZJAUogFFDOv0YcXt1n+iAiLBQATT2pcNe9c/n86FOoiqH/rjvT1FT0agZvOosIQRiiogjCoHttvgHappmCNBwq/d8FYIvgsiP9rGrj9tm/ZOr559Bv+xZ233UvXn+zkn9NgCgIUErhrO2WGRuyujLatpmyDrl0yQASe/NXOZA6S196jXLFous12nU7jy5+mk98Yl8AjLZeFKqAWq1GsAFTeGNom9YpKO9yQCq6VOAdEgDXBDhwb7HizVWceeYl3DbrJiIcvQPN4kUPEwVefTfFIcZCgKFUKtG5vHpIsg2TExGTHi4/WxGRmj/hrFz4X2dKrxJSjD8ijz2yXOrlNpk0cZSXWEFRTh47QXR2LWdFnEil3C4iVqxJutzLSSPZ9FiXlMi2G/sSMp8kI5eawwFZrMVQwxlLIWjyfkeUflpHEOIjAQ7iNLKCdagQdJIQFwpkGiK7h2q4l6f3Y18boLUGKRNrqkQc9wLbAaoCBDiJAMGlukTh+aUAFQRIDz35jLbplQJdnTqVnVDgzWJAInTiiIsWJwZsiSBU3gDAkbiIMEhNYq1RAlHBK3q/Wkpd7vP+StkIyj36zK5NKX/pIC4EJMagVEwQKsSBYDHOEqcMcVYIgoAojjHah2u8+Np02uaZkpOiixOhUn9f0r8VoiKKACeOL550ArfechtREPt8i7aEoSIMQ4w1RHERCLBW1rl8J2XxhHXpfaZ0S37QVNj5PkkMd999N4sXL2bNmnacgyRJiOOQet2b0lEUUavVgIbA5CbSNq9T3olEBGstURSxbNkyRo8ezXbbbUdraytLly7Ng5AZaa2J4xgAa22PGPM+UxooG4o8yttA1lqGDx/OFVdcwfXXX08cx1QqFX7zm98gIjjnCIIA5xxhGGKtJUjDLptK27z4EpH8gPUzpFqtcvbZZzN27FiGDRsGwJAhQ2hubmbmzJko5fWJiBCGIdVqlTAMe8QQeJ8pOSmluh3EP//5z6xYsYIpU6YQBAH1ep1CocBVV13FbbfdxsMPP4wxJhdlTU1NALme2VR6nymsuzoycWStZeHChcycOZNrrrkGmxZClMtlFi9eTHNzM7/61a/Yeeed8+9lK85aS7EhAbZJ1PPI0b8vOefEGCNaaxk6dKg88sgj+d+stTJhwgQZOHCgLFy4ULTWYowREcn/d851+X9TaZtfKTp19CS1soBcR5x++ulMnjyZ/fffH+ecT2Clyvyss85i3LhxtLW1EYZhrugzsta+r1N6SnEc59UnYRjmr2+44QaCIGDixIlA5yAnSUKxWKRv375cfvnlnHHGGbmlBVCr1VBKrWMqbwpt80wxxhBFEUopRIQoimhtbeWKK65g5syZRFGEcy73PQqFQu4cHn300XzoQx/i7rvvRmuNUopSqZTrpB7TZojefysyxki9Xpe2tjYZNmyYtLa2iojXC9ZaMcbkOmLkyJFywAEHiLU+H5IkyXqvWavVevQs2/xKAa9XwjCkUCgwfvx4pk6dyp577okxJhdFjY7gTjvtxI477sgll1yCiBDHcW55JUlCkiQAPba+3mcK5Ap++vTp7LLLLhx//PF5aKVR+TvncsPg+OOPZ+7cuTz44INUq9Vc/BUKBQqFAlrr3DzeVHqfKXg9sWDBAu6//34uueQS6vU6YRiSJEluWSVJQhAEuW4BuP322znvvPN47bXXAF+MlzEt01M9oW2eKVprKpUKX/va15gxYwbNzc0Ui8V81ktqBhcKBZxzGGNYtWoVL7/8MjvssAPXXnsty5YtA7KIsWdatnJ6RD3SRP9ilClkkU4HLyOttZx00klyxx13dFHY2WvnXK7gkyQRrbVMmDBBdtxxR3nppZfy66/PUdRa9+h5t4mV0mieZoFDYwy1Wo2rrrqKgQMHcsIJJ+S+RaMJnOkS8D5NJpYmT57MxIkTWbVqVZfPZX5OZmr3hLYJpmQKO/PKlVJEUcTjjz/On/70Jy6//PI895HpDugMKGZBSEktLGstAwcO5POf/zw//OEP889njDDG5MzvCf3bMyVjRJbjUEpRq9VYvnw5Z555JrNnz+6yGjLdISK5Sau1plgs5pHkKIpoaWnh7LPP5umnn2bu3LlorSmkOfksFNNTRb9N6JT1yfvDDjtM5s2bJ+VyuYvOyT67Pscv00cjR46UY489VkS8nlm5cmX+3cZr1ev1Hj3vv/1Kgc7QvKTi54ILLmDEiBEceuihNDc3d4lbSSpyisUixph81WTmMUC/fv1YvXo1t956K1EU0bdvX5xz+erIfJtCD6tZtola4iRJKBQKKKWYM2dO7pNkeiYbbF8HTBe9A55Z2d+y12PGjOHiiy9m8ODB7LLLLrlhkOmVnubnYRvQKZL6G845XnzxRS688EJuu+22PLSSRYmDIMgDjVk0GLxOagwylkolOjo62G677bjtttsYPXo0WutcJzWmhXsalPy3YEre+ElnyAQ6cyUAlUqFM844g2uuuYbevXvn8SroFDPZamg8l4mjxnC8iLB69Wr22GMPvvOd77BgwYJcuWeMWDu/sknUI030T0iNjt/aSlprLeecc4786Ec/6nJ+bUfynShT3CeffLL0799f2tvbcwex8f7vZx5TavQLsjBJJoLuv/9+lixZwte//vUuK2ljZX6m8LOwS3NzM8cddxzjxo3L8y3ZdbNAZJIk23bsq7GSJBNZmd/wwgsvcN555/HrX/+6i1Ivl8sbfX1J41/Z61KpxJAhQxg4cCA//elPCYKAUqmEtZY4jvPA5TatUxpbpbPBKBQKrFixgtNPP53rr7+evn375srcOZeXAW0MZZZVpic6OjoAuPjii7n99tv5y1/+so6zuDkp4X95pmSzOJuVjbP6/PPPZ+zYsQwZMoQkSXLrCTwjGw2Ed6Js0J1z1Ot1Fi1aRFNTE/feey8f/ehHcyZk12yMg20q/cszJaOMMVprjDH89re/pVqtMnnyZIDcT2kUdRsbMMy+k1lipVKJu+66i0ceeQSlFB/72MfyVRJFUR4/62lA8p/Q+rIiosWJFSe2S7Ngbsus1UC4trXT2toqn/zkJ6Ver3cbtt/YEEh2zUqlkp+bNGmSTJ8+XYYNGyYrVqzILa+GW4nW2Zust1FLdz2Oa9NWXyl5K7t4tA2PG6QxJDicb3gyKbiNOExi0y94VJVGsaK1RmvN6NGjmTVrVq50M2q0tjY2BNIYqJSG6scPf/jDXHzxxYwedSJx7K/rrP8dIhCFWRayEcHCv29s318fbXWmKIFqOcEpUCEY0enPEPIoUGrFBgqidACss0iqeLOYVaFQYMqUKXz729/uIlI2h9Yu2M50Rblc5vDDD+eYI4/iD7ffntZ++e/Uan64G1PHnlze/Lohu2wrt0I4P72UouYiVAiOOiGKkALYDGkOiByCQUkAEvjm3SDANPSDXH311Tz77LNce+21+azenKK4jBrjWMYYRo0axZIlS3jssceIwoAkqVMoFnPkIxE/gYwxhFHkO7icBgVWhQhBjv22vmmz1VcKqYNnrI87xaQANAZCBU6BhB4YzZrEo82pVLHTKZIefvhhbr75ZmbMmJHnx7cEQ7KEVWZJRVFEnz592GuvvfjP//xPAApp3sU6iwg4A+C8Ywlpb3gMLhVzmUzuggHTSVuZKQEUe4GK6FUoga4QiCZGCNAgkARQVWBIZ2vg+wkRsIm3ilavXs1XvvIVZs2alV95cwKCjZRZUJnllkWcjz76aJ577jnuaLiniKQi1iOJOasJuiiQbLjdBqGmtnLo3oGyGK0JwgLFuITTNbAG4l7UtcOGfkWUCFBemCEaKEBYiBARxo4dy7Rp0/KWhGxWb4mVIg3tdY1UKBT45S9/yeeOPoa9PvEp9hi0O3EYAg7rNKEKPEbLWr3aAUEq5kwKabWuCNvKK0UDq4niqo8dSUAgTRD1InFAKUWnQwgk9ghD9SpQRQNrkhpXXv1j9tlnHw4//HCAfACjKNoiTMkq8KGT2a+//joLFy7kgx/8IP993a/QBsJQkegqYAmDGFTsZS8mlcV44NUUBMERYbvrEN4ow/ldo4qIWyZjTj5Uwqgk0FuKxNJMSVqadpLlb5SlTUQ6RDpN/XpNxGlpN3W5/68PyZGfO0bK5bKI+FKfd6rv3VQyxqzj65x++umy8847yzPPtIo4EWtErDbi/au6iGjvszgRce0i0i5OtJjsdziRuojUxOPCrE1dmOKclrruPHTPIs8bRd4pq4rImyKyRsaPP0see2RpPvDX/Nc50q838nR7WV4VkUQkR7ZJkkTefOtt2Wff/eTtt9/utpC6p6HzRmpkSPb6tNNOk0suuUT23XdfqdW16CR9Nisikkii273jK4mIfVvErJC6JFIRK2KciPEM6ZD1M6XL2lEqohB6cy0MI6LNN/M3KBZAgbOYcjuWmF0/vguSruj/+PYURo0czte+/h0qeKBTbz47wjhg1EknMeMnP6WlpaVLIbU0WPhbwk9pLEVtLCXaaaed+OY3v8mkL48n8lAtOG9IEkchxibgDFO+9CV6R/0oFgo0N8cUo4BeURPDR4yivWP9DuTW1SnOgFR48enHWVmrQm+oBIBVEJfY86N7sPS5VymAnyChBSpcNO18Rnx2OAcdenAXB81a24UpW8L6MsYQx3Gezwdv2RWLRcaPP5WmpiK/n3U71npkXAQSkxCFCgLHz268kfHjP8/Cpx+lWqlTrbXxl/nz+PBOA2jpvf57bsD6Eoyx3opWAXEYgBi0hSBbReLQ1pt3KgyJs5nZcB4UURSi8sFyGCv+b06IiLl7zv2MGTcGCyQWesUKOirs8+l9aX7qcV5vc+zYx6PUPfCX+7l/3v/wwN0LMNYSRSFB+qwWDxlojLdsrECTovNZgpBCsGmrZ31FEB0dHfzoRz9izJgxXH31T4nCEmHkF3KgQgpRCQh9KMhoLMLHProriakx+44/cvLJYzjupbZObJ6NZ4ry8RsrhKlIQ4UEQTprEYxLq8uzQQkjQiUY6wjCyDt/zmCcEKffsVY6/2YKmI7e3HTrvcz+9pXEQO8QqK3EkPB061P079+ffr0cWgIW/v2vjJtyNmNHncK0711IFATUlSXMIrgppHlm4WTvUwA7H8qRTcPajKKIarWalxzFcczSpUvp06cPv/jFL5kwcRJRBIkuU4gLnhkm8jEjBU/94xn2+8xgWoolfv/7P4LaDh3A2LFHdHvPDYsvFRCFgnHprxKXIo35104c2hiSdEVJdl4FZBNSKYVyDlEKheR/ExECIt5eUWf44V9g+94RTTikugIiobaqnekzr+fYkUdSCiPqFc3pp5/Fvp/Yl0LUi0IcEgWpudqgO8S6HKQ5CAKPTrQZVKvVaGpqQmtNqVSiUqlQr9c55phjuOmmm3hi4SISnRDHICQp7Hrqn2jHwsUv8PVzL6RJ9eaMcZPYdc89yco5Mj9lbepmpaj8dyoVEliLVSGIImy8yvrEQRry7W5pIoITQYkgDub/7TH6fWQABQwhFShY0I6v/NdVbDdoGKNPGEEzcOH3v8fpEycx5ZxvEEUhoVjAoq0ijGKCVGSqMEzR7QTdsGIzkZq/3wTK+hkzB/LVV19lxx135Be/uI5Ro05k7n330PeD2wMRoi1RGAJliCMW/LWVRx77Pz41cADfOvccBuyxMxWgF9BdnDofYucMSbYilGoYUEUYpko0BUP2pwMCZzH5TBRcCo4ZINhMh4ggQYoCr4QA63dPEIvDcsnll3DU0UekIE6O9mUvs9uAPVn6Vgf3/L//pSWA2bPu4vkXnuWcb56LriU4kXR1CE4pz+Bcg/l6384zm0dZXj9LXoFX/m+88Qa77bYr06ZN49FHH81nfRR5bx2leeXF53j51TfY9WO7QTHmwIMPJQwVBdZBsupKnTZ9p39i1jHvnWht1k3ROCM1rdPD5ACZzllJ0mtVEu3zUc47V7XKakl0RR586AGJW0oCsUSh/z/erkVKJWTOnbPEOSPtWkvrspfkE4MHy6o1azzogDaSaC2Vek3qJr22ONG5f2XEvuP7jafGxFitVhPnnIwdO1Z22GEHaWtrE2syfygRkZpIrSJiayJujcy65Xr54RU/6QT+FJE2LXLhFT+RFavbu73nRnr0Tkw3jpjr5uhKVuq1injPMBHnPKKpcxXR2mcAGzOBmZNWr9fls5/9rDz00EP+XukzaK27OHXvNlWr1S7vJ0yYIN/73vfkkEOGpxNOxOmKiKuJmETEVkTqb8mpp54gf39koXRo7yyWReSEUybIpZf/tLuBEpGNRFv1oiZcryxe+8trf8RHVTPVlZkDzucgCk3kQaGUVq1aRd++fQEYP348I0aMYOLEiV3iT5lsl7Tm970grTVBEBCGIePGjeOggw5izZp26onl3HO/Se/m0OdMEsfTTy/ikBGH0FYD5yIolMDWPO590MTjf/8b+31qEPV6hWKpeZ17bdD6cs6QGIMh2GTlmFGhUCBJ0goPcST1BAhShvhBrtfrecFb3759ERF+/vOfE8cxX/7yl/NCO+d8jmIj5tEWo0yPNKaW4zimpaWFb593HvPmzePvf/97qiBCKBbY+5OfYsXKFVhbwTqNrrdTNZpqUkfXVrPXnoNwViiWSut16Tc78ygb2FsKGmtqO5Og1llwQhhFZLCAjbW3ra2tjBkzhgcffJAoivIC7Ub4p0YEunebGgHWlFIcd9xxxHHMH+64gxUr1tDS0psoMERRCC51hIIEiBCKlOuWQjHEOCimQKBKwJg6UVRcR7y862GWLDRhrcUYb6OEQUgYFVJMc9+6FgQBIkKlUmHMmDHccMMNNDc35z3pWYlPFj5vLNB+t0kplT+jUooPfOADvPXWW9xxx2z69t2OQiEkiotonfg8sAJcgDUOa4Wmos9cRmno3iT+uaNuJtVmM6XTrHNrHZ6yWlsIiCKPaF2va0R8pYSkBQ/gGThu3DjOP/989tprL6Az9iQNyaaMMY1V9e8mKaXyoGdW93XiiSfygx/8gNdeez3fDy2KCumWTx4mN4xiwlBhrKMYRWSBmrigsBso1HtPVkqmIDt7Cb0+yRR1tgJ+9rOfMWDAAI4//vi8KTTTIdLQt5jFo3raKbUplE0ASTuKwzCkVqvRr18/fjZzJmPHju1EpQgiRKV7pgSeBQoohAEmMenOEWnePw7QSbJeR+VdZIpfMWuLmKyoQWvbRRw9+uij/OEPf+Cyyy7LravM4mqsy83O9bRLalOpMQ2cvS6VSqxcuZIDDzyAk046iXvuuSffE00Fgd9pKIjSc1ndWON1UoOhu0m1+Va83eCR+RbWWqlWq+v1L9544w355Cc/Kc8++2x+Lssm/jNQhpQn4h3Io446Svbee2/RWku1lnjHMPW467WKiDMNgAfpOEjmljSMTzd+yhaoLPB1WF13sOy8rKQhFUlbCIIgoFqtI0CtrqlWq5x77rlceumlDBo0CPDLu7m5uccF0luSRIRarZab5cVikd13350hQ4Zw9tlnUyrGaVJQYYzz5UZK5ZIgo/UieHfjZrwnSa5MZIn40H1Tk1eaxWLMFVdcQf/+/Rk5cmRqoZkuZT1bm5RSNDU15TBTWms6OjoYPnx4jksM+P0eo84eGUWITeu/NnWTmy1XYrTutgddKCv7tKJBQhQB9913Pw8++CBz587NGZeVhm6JSpQtQVmCK7P64jimUCgQRRE///nP2X/wfuw/eD/2/sSnqNc1YUyKdU/XtMFa47Oh4XrXf3kGoaGUolqtEkcxgQp48823mDp1Ktdff33ejZu1pmXfea+U+YYoDLvi2NfrdVasWMHjjz9OGCr+/Oe7aWtrA/zK78R3Ad2zrYO3gKLvNiKZKXqTKjp/WHFinJVDDh0h/zPvwVx5NlIWnOwpYsOWpEbDJGs6HT9+vOyyyy7y5JOLxJqaZCVFzokYVxcnVrTO9LgPwq4zLtKtnt8Civ4d9sjLzF6f/RCUwHe/+12OHTmS4YceAtAwu1yXhs/3wg/ZWJIU9DMLtXiY9XF0dHT43esCn+IJVIR1Qhhlm2x3V8bdPW0R8eUQH89S+B14lEPrdItXCYjCgrfQnOJPd81h8RNPMfU75+XZzSyGlWE1wnuo5KWbI1XQSvmotnEah/V+CEK/HXbkoosuYuJpk4niIjYrBiHAWdLic9IS1Widyeu3wV2/AbDZTLFiUIjfgQeXoy9kA63TKCvAsiVLueCCC7j15lsAqFeT9V7zn4my2F0Udo1OB0HAyGOPY8CAAdxxxx2Eoco3scmaiGo67cNc34VlAxbZ5srcTDZW6zW/pV5KxpgupaNvv7VCjj7yKHl4wUPijBWrXfdC9b2kbrNznU5erVaRcrnsYXBF5IQTvyiD9x+af7xc7swiVmtJ7lCuP+m3toO9Lm0xkziKIgLVufCyeJekkd/p06dzzDHHMOzAAwHW2pTsn5ecc7z66qu88ooH70yMj1j369ePq350FV//6tk0NzfngAalYjHdBl0Ie5iE2mymKNJK99R8rVQqXR6yWCwye/ZsWp9/jkt+eCkm0Z0h638mhnTzLG+++SaDBw9mv/0Gp+H7iNdee42vf+Mb3P6H2xi2/1AOPvQgFC6Pb4lzRGHQTWa0s0elW9q8td89DklmPj755JPy6U9/Wmq1mj+Xrmdnuo/9vKfUrW3qxcuLL74gO+/8kfxskhiZOHGS/Oa3v5OXX35ZBu/3GVn+0lL/eddZZGGMeQfsl+7F12Yr+kwRNkZ8jXGEUURHucrESadx0y03UywW08I5h2BRISRJdXNvv/mUWovd5YPCMCaKCnnuxoskx7PPPEP//v358Y9/zJIlS/zO2gBpG2AYhu/g/HbTm9Lt2U2gLL8AnaHtKArQ2vLVr36Vs846i48P+niXrSvyNuiebvryHpKktQFZoi2DAfnd737Ha6+9xiGHHsqhw4d7Uz7d9jzsKahBSipJEsnMV0mze5MmTWL58uV5f5+kpmCmI8Ajkba0tNC2ZhWlUglFmBZW+1LS5S+/TK1WY9CgQVSrVZqafS1ur6YS5XIZa4xHG6IT2TSKoi4Ic9IA2Jz1G2bAadDZTl0oFDDG0KdPH1atWoWI0KdPn3ybpvb29nylZttqrFmzhu233x7nfN9kuVzOdaGfaN5cV0qxdOlSBg0aRFtbGy0tLfkudk888QSzZ8/ukprOQnb1Ws0XRuS08fM/L5zIvOkgCLjzzjv5wQ9+wCmnnJJvCDZ37lxuvfVWpk+fTp8+fSiXy0ybNo1P7P1xTj31VAIVsWjRIi6ffiUXXHABzb16scMOO3DNNddQrVY5//zzUYHwzNP/YObMGZw8ejTDhw8n0ZZ7772XOXPmcPnll9O7d29WrlzJRRddxGGHHcYRRxxBqVTivvvu495772Xq1Klsv/32AFx55ZVYa/Mu3eeee47p06czdepU9thjD7TW3HjjjbS2tvL9738f5xzt7e1MmzaNz33uc4wcOZIkqTF//nxmzZrFd7/7XXbZZRc6Ojr44Q8vZ+edd+bUU09FKcXzzz/Pj3/8Y77xjW8wcOAuHHHEUcyYMYNly5Zx2WWX5aLKOYfRvoXbpi3bm8oURLoiTd95552y3377yRNPPCFaa0mSRCZPniyjR4/OE0+LFi2SffbZR2bNmiVG10Wclh98/3syYvgh8uabb0q9XpfX33hLDjr4ULny6mt8k5MT+c2Nv5X9999fFi9eLFmB3sknnyxnnnmmdHR0SJIk8re//U0+/elPywMPPJA/01lnnSWjRo2S1atXS0dHh7zwwgsyYsQIufbaayV7/uuuu06GDRuWJ8pWrlwpxx9/vEydOjVXuvPnz5e99947L+5bvXq1TDnrK3LCicfnhsozzzwj++yzj/z617/O73/11VfL0KH7yyuvLBcft0rEWQ/rcdwXTpB7/jxXtHGijRNjO8ezp51kNH753HPPlS9+8YuyfPlycc7J8uXL5bDDDst/vIjIzJkz5aCDDkohxa20r1ohxx59hEz9zrki4nsO58+fL4M+vrcseOivosWH5CafMUW+NOZUqdf9Az/f+pwM2f8zMmvWrLwCccaMGTJs2DB55ZVX8oE98MAD5corr8yf8b777pOhQ4fKwoULRUSkvb1dTjvtNJkyZUqOn/Loo4/KAQccILNnz84H59JLL5XDDjtM3n77bX//55+XI488Uq792Yy0FU7k5ptvlmHDhslTTz2VX/vYY4+Vb33rW2klpxYnif/f1kXEyppyRVasbpfEdXUWN6eAkywK2tHRITfeeGOXqOjjjz8u8+fPF5HOiO2cOXPyQdRJTZa92Cr33/snEdFijffgZ82aJW+tWClGfP3smnJN7vrjPeLEm5Raa3nqycXy9OKn8ntpreWGG27oEjFesmSJLFiwIB9YY4zcc8898vrrr+dNp21tbXLTTTeJSCeozbx583KmZbP2lltuySMMSZLIokWLZMGCBWLFiRORcrUiv591m6xe3Zbfv62tTe677770ujb9jTXxdcOJGFsTXyHtj3Ld5L+5npgeW/wqHfAuJTSZEm2ECY+iKC+Ay7ODaTsC4nDWEcQFH/8JQgLl+99dConhDESRD/kEAXlAKNGdxkRW4d5YIiqpApWGipa1qXH3UWlw2NaG78isw0x3Wmt9r3tK2mgKkTciMqhb/5vD/H9nDdrUKRZ9t1bVhASRymE9/H0hEEcUBT3yjwPnHMViMQcpa0RqyJI6WUlPZvXktVxK5em1oMEiCpQ3iXOGOB8xBf8+K2Ot15IuNV8ZQ+I47jL4WTYyM78zBjVi12d+knOOSqXi75VWNWZlSY11Yo3MM8bhHMRRnAeJPewteb9jHskOQ4rFElonCBCk3bpGIIuvRqF3C3zxYQ+YEgRBF9M3e4BsxRSLRSqVSj5IjTvviEu7psQw6UunEKuYsFgiCGJKhQL3zrnbNzSJL4Ysl72zWIgjdGIoNhXy5tHs+o25lew+2cQwxnjzOwVDy1ZHNrgZEEFzc3Oe7WxMK2e/K/uO/w0QRwFB4NvxakY8aJLD972ITUu4LFiDq1kg5tY/3EUQxZTCmMMOP4q3V6zkissuTfNGPvYVRz2GwO2uPGhjyIrTHSK2Q6S6Wsad+AW5+e57pUNEnnz4MekTNsn8R5+WVeKb+a04f+nEl944t2kQtFucGrKBThKpi5ay+Gf1isJnDbVtE5F2EVeTV1uXy8D+e8nIUyZIW/qx5a+8JB/aaQe59NJpeaa1p3uniGx2mMWhogiMgVqNV15azkHDDgagpe8H+Ej/AblP4YMXDhSkc/GfoloFcV4nsp68hwTUazWiQEHShrSv5vCjv8C+BxzGLbf8GgAnmg/v+AEmTRjHkP33w5oEZy1RGJHUerZ3cLTpkZa15KQAUcT/LV3CB3fcif69emE0nHfphex18FB2/fCH6S0pJpwKMQokcMSN82Fr8SaLeSkQfIVN2t+bDktAIW4B1wamzANz7uP5Fau587prAGgCQqVQYYH9hw6lZbvt8koWay2F0nu2d3CjiEtE6qtETLvc+MtfSu9CSYogzaUWWfDU89KeiQjrjch6utyN0yLOelCTrRkpduKfQ7QYsaIz3Mr0b1lLnLh2kTWLZdiAZrnsv++UVyTFVdG+O62WlFP/pVP0v8via/3R0/x9AQhCHpj3OP/718XU3Bp+df2VHDLkszz5xGuIAgmSrIuaQCBszFlvTQmmIIvWhmgifF1Boxizzotaef0NKpUKTX16Y/CrKYwi6kmdKPbmsRBQ18bn7oIIY7fKTkMOjGbZ88/zdodmwG67Q9LGyV86iR0++BHun/sgRjzMYKhSseAav21ZRxxuDUrnpuD8PMmapIEw8CAF2jpEoN/2LZTw/hfOUig0YazDEZBYRyH11YIAgk1Et8ioB0xZa8UoxaJFixh86HBK2wFhwIoXXyCp1dljr73TNm8hxBGK70DzI5AhKW5FylA2cRgCdIq4l2t98ZiiIkLho7tRaurNC888jdYeStHbygEvvfwKc+//C0EKGEfo61Sc2gCq6obgVt9Zwq1tKuuGoybiVsmEMaPkwYVLpCwiYt6SfXbrJ029dpVlb3k9YsRXomdyWovkgcyNN7/fBcoexlqpSyI1SfVAFitxVrRoEekQqb8u9/z2OoEmuW3OPB9esYn89dHHZOjBw6WjbqTu0t8mIuV60tnC3t29u9GnG8WUJKlJxhRjfUVgtdYujy/8mwSBVxsRsUQUBIUMPfgAqVbTisH83j79m8WKciW7tRV9+oBGalKXpBMozYiITUSkIolZI+ISEaPlsQfneZCPMBKCSMZO/HJWA5kzxIhI3boeM2UjGlFdlxhSomspMAyUqxVKTUVCArAhGIctRiQCJQX1qqFYSiFgU/PTprUaYV7w1n1LwLtOmQhRDqscQkBI4B81xbd0pkoQN2FtRBgokDIQYIMmNCAG4sgDXUchOCf+cyll+mGdn7iBCu+N0imNTl4YxHnXUq+mZkJCf/3QYZQQOm+/l5MacVPklWbKAEnzjJ1Rra3IEEgnikfVtkQ4ApQ4UAaCAFExQdzsMWmUAp3gtIMgwmpLDBTS8tQ4BGMsWNeZfZfUcFifMbMBy/P/A5XH9fXzYIH6AAAAAElFTkSuQmCC"
|
<image>如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯上点D距墙1.2m,BD长0.5m,则梯子的长为()
Choices:
(A) 3.5m
(B) 3.85m
(C) 4m
(D) 4.2m
|
3.5m
| 69,714 | null |
3.5m
|
"iVBORw0KGgoAAAANSUhEUgAAAMQAAACaCAIAAAB5QHC7AAA2gklEQVR4nO1daXQU15V+Vb1vUrf2XWgHxG7AYjMCDNgxCRgCDo6Nh9V4nDgez4mTeM7MnMlJMvFMzhyfTOxZ7Dh27NixDXhhs2zwSAJJCIkGLIGQ2ISEdqlbrV6ql6qu+fGlXwoJFCRVC0T6+8ERrVL1q6pb995373fvZURRJBHcixBFURRFlmVFUWQYJhgMsixrs9liYmLC9I1smM4bwR0HwzAsyzocDoZh+vr6vF4vIQSSJAhCOL4xIkz3FMQQ6CfR0dGEkD/84Q+XL1/2er2CILjdboVCEY5vjwjTvQPxRtDPT548+c4773z88ccqlSoYDBoMhmAwGI4FRITpHgGkh2GYQZ8HAgGn0/nCCy/09va2t7erVKrwrSEiTPcU4CfB6RYEged5r9dbXV09f/58m81WVVVFCOnt7WXZsDz3iDDdI8CWTfqJIAiBQKCsrOzs2bOfffaZz+crLS0lhMTFxfl8vnAtIoJ7AIIgSP/L8zzHcU6n86mnnqqrq3M6nadOncrLy/vggw9EUfT7/eFYQ0QzjR+CwaAgCGN0fv1+P8/zQz/Hzh/fEggEFAoFwzADAwNr1qzhOE6v10dFRf3kJz8xGAwcx4XJc2LESNByfIGXmGGYoc7y7YPneYZhsMOHY2Q0Gnme53leq9VKj+zs7GxsbFyyZAm+Dv/29/ebzeYxXcbNoJT9jBHcFF6vV61WsywLMeJ5HiKlVI7sEeA8SqWS53mXy6VQKHQ6ndFo9Pv9+Nzv9xNC/H7/+fPna2trvV7vuXPndDrd1KlTg8Gg0WgURTEckkQiwjRuGKQwRipD0vPAViqVSqPRSAjx+/0OhyM+Pp7neaVSqVarGxsbjx496vf7p0yZsnr16gMHDrhcLhxMCHG5XGq1Wq1Wj/GKhiIiTOMHURQ5jhMEQaVSQUuN7jwKhQIuNiydWq2Oj48nhHAcV11dfeLECYZhFi5cuHjxYvhGsbGxH330Ef7LMAyVKtkREaZxgt/vZxhGr9dLPxQEYaSZDZ/Pp1KpWJZVKpWiKHq93kAgwPP8l19+2draajAYNm7cWFBQQAhxu91er1epVM6YMaOsrEytVnMc5/V6TSbTqPXi8IgI0ziBmpVgMOj1ekVR1Gg0o3ioGo2GhKSQYRin01lRUXH69OmcnJxvfOMbU6ZMob81GAyEkEAgwLKsWq1uamrKz8/X6XT4MBwbuogwjR/sdvulS5caGhp6enpiYmKmT59eUFBgMplGdBLIgUKhOHPmzPHjx51O5/Tp05955pmkpCQcEAwGg8EgQuGiKKpUKkEQYmNj6+vr8/PzQUQJU2ggIkzjh2AwqNPp3n333U2bNuXn5zc0NMydO5fjOPjmfr8f9osQgkyIUqmkRtDr9ULBqFSq2tra6upqv98/derUOXPmwGGiQDoFPyMQwLJsdnZ2fX09IYTnebVaHdFMEx5arTYnJ2fZsmUbN24UBCE1NZVusmD1CCEul4thGIPBADFyu908z0dHR2u12oGBgRMnTpSWlqakpMycOXPKlCmxsbGEkGAw6HK5oqKibvW9DMOYzWa/3x8MBmFtIz7ThAeiz1VVVYIgtLe379q1a9KkSUiDBAIBQggiRoQQjuMQMYLfY7fbKysrm5ubFQrFpk2b4uPjIUYkpM+GkSQgMTExEAg4HA6LxTIKr/82ERGmcQKeut/vT09PLy4u7u3t1ev1iDQKggC/OBgM2u12g8Gg0+kEQTAYDG63+8CBA+fPn8/IyCguLs7IyKA+Fkzh7UTSRVGMjY1VKpUdHR0Wi8Xv9+PrZEdEmMYJsC82my06OjotLa2wsNBqtZrN5tjYWGrRdDodVE5fX59CoTh06FBDQ8PkyZN37tyZlpaG8zidTkKIUqnU6XRUwfh8PljJmyIYDCoUipiYmGvXrk2dOjVMnF0SEaZxg81mQ2y6sbHxlVdeycnJaWtrmzx5MnKjwWBQo9Fg/1VfX19bW2u1Wh966KEf/ehH0hjjoJwaxEKhUAwjSRRZWVnnz5/H8bJfHRBJ9I4reJ73eDzwr7u7uxMSEgghHo8HabWmpqa9e/eKolhcXLxw4UKPxyOKItwmeFEqlcrtdmNPR0I0BJZlh5cP8BS6urpef/31f/zHf6SBA9mvLqKZxg/YdkG1+Hy+hISEQCCgVCpZlq2uri4tLWVZdtmyZXPmzFGr1T6fj4bLeZ7XaDQMw8CRoieURgGGAcuyfr8/MTHR5XIJgoAkcUSYJhJ8Ph8ND0L9Q4V4vV6tVqtWqz0ej16vf/vttzs6OkRR3Lx5c3Z2No4MBAJSy0V38qOzUIgtEULi4uKsVuv8+fMjoYGJAafTiQ0XlYZAIOD1eg0Gg91uR9may+XS6/XV1dWffPKJzWYzGAy/+MUvLBYLwtMIW8u4JCqCSUlJXV1dMp55ECLCJDMgSYFAwOfzKZVKrVarUqkgHJCka9eu1dfXl5eXz50712AwbNu2LS8vb9++fbNnz87OztbpdIFAgMYwxw6wphBPz8/Pr6mpIaNKMN8OIrRdmeFyuYLBoEqlMhqNGo2GknQ5jrNarW+88cYbb7zR2tr68ssvsyy7Zs2amTNn6vX6JUuWlJeXcxyH6KVckkRCFhah0dzcXGimMNXNRTSTzDAajXC0EQdiGKa9vb29vb2+vr6xsXHFihU7duwghBw6dKi9vX3Dhg3YnWVmZq5du/Z3v/vd5s2bU1JSZF8Veg3ExcURQvr6+lDmKzsimklmIKhoNBoVCoXT6ayqqiopKfnqq69mzZr1r//6rwsWLHA4HLW1taWlpd///vddLpfBYKAUtqVLl3700Uccx7lcLrnWg10byE+EkKSkpCtXroSpbi4SZ5IZ8FHsdntNTU1VVVUwGFy+fPnSpUsRVUKY8dVXX92yZYtWq9VqtQ6Hg+d5BL55nm9oaDh+/PiuXbtk9GngMMFPOnDggNvtfuyxx+Q6uRQRMyczent7jx8/Xl9fn5ycvGXLlqysLBKKKhFCeJ5/7bXXFi1aZDQasXGDxXE6nSDUpqenFxUVvfrqq88995xcS4IwEUJEUUxMTDxx4oRcZx6EiDD9GShlJITA1yE3lsn6/X6FQgGFQT8PBoM0L3bp0qWvv/66paUlMTFx27ZtqampHo8HkQJKs/z4448nTZo0f/58/C09uU6ng4kwm83Z2dl6vf7ll1/+0Y9+JK1estvtFotlFNeFGgSsPDc39+DBg+KQ8t+hn4wCEWH6E7DBoWIEMAxDeWQKhQKPH4wRWCij0ajT6To7Ow8dOtTT05Oenv7d7343MTGREILSR0JIf38/1M8HH3yg1WpXrVpFCEGdJP0ipVJJd1hRUVEsyz700EOvvvrqs88+q1QqESywWCxUx4waKpVKq9V2dXUlJiZKy/fGLkkkIkwUSK0PvacIZCtCwIcKhUIQhOjo6Kampvfff7+/v/+RRx7ZunUrMh44BprG6/XigZ06daq/v3/t2rV6vZ5y4jiOU6vVOC1t7sYwjMlkysnJuX79+u9///stW7YwDKNSqRA6H8V1wd2G6Oh0uujo6MuXL4OfKYoivpGueSxSFXHA/wTpfURhGu0oQo8BWZEQwrLsiRMnKisr/X7/mjVr5syZg99CknQ6HcTF7/f7/X6j0djS0nLw4MEHH3wwLy8vEAgEAgG9Xo8cLR4nFgB+EnRPMBgURfHAgQNKpfKRRx4B8wn/jui6YOBwObjAvXv3ut3uJ598ElpWmvelkjc6RDTTn0AliYoL1UOov9bpdGq12maz1dbW1tfX6/X6Rx55ZPr06YQQh8OhVCqlKVij0SgIAnxqn8+3b9++mTNn5uXlQVygnKDb8ESxAGzg8YcsywqCsHbt2g8//PCDDz7A/svn841UmOjJ8UUMw6SmplZUVNCrxjfitGMMGUSE6QYMpWcMDAxERUUZjcbr169XV1d3dHSkpKSsXr26sLCQHkNjgHiz+/r6YmNjQWj0er2//e1vc3Nzi4uLCSF9fX3wqBiGiY6OhtqAPlMqlVR5QALQlWDDhg2/+93vqqqqCgoKRtHbVHotPM+rVKq0tDS/3+90OkH2hd4ao04CIsL0Z0DnU4WEAreoqKimpqbjx4/b7fa0tLTi4uL8/HxwbdF4BAoJ1CJqoQghOp0uGAxWVlYajcY1a9bg/HFxcaIo+nw+/NXAwMBNN2i0qsTtdhuNxh07dvz6179WqVQmk2mkOWCpDwRhSkxMVKlU3d3dqK2TvjwRMycboAnozw6Hw+FwvP/++3q9Pjs7e9WqVZQ7y3GcTqejdg1RA8o2iY+PB72kurq6sbHxu9/9LkxJIBAA+Ro2xel0QpJQ7o2/9fv9IK5g4wY/PRgMbtmy5ciRI263e+nSpSO6KGrdSMgPU6lUGo3GZrOZzWZcAhaAd2kswnTPOuA8z2N3FgwGwQWD2rhVwhxONwTC7/fX1dXV1NRcvXp127ZtSUlJMGSBQIA6yNhbSQvQBu22mpubP/3009WrV0+ePBnCN6L103XSOFZzc7PVai0oKMjNzdVoNLhAKJthdmHUZ6dLtdls58+fP3fu3NNPP00/x78RzXRz0JcEtYvBYBB7Ma1WC/GCr0CJItj5d3d3nz17tq6ujmXZxYsX79692+l0Uha2QqGg91qr1aKZ38GDBwsLC81ms9lsRlyR5/lAIPD555+vXr06NzcXzvsYr4IQMmnSJK1W+9lnnwWDwbS0NBQtUTm41RloXIqeSqvVxsfHcxwHORMlnVUjDvjNQY0O9t4QKUKIx+MB0ZEQQm0TIaS1tbWuru7ixYsmk6m4uHjKlClwemhpkTRgDUYH2kUMDAy89NJLP//5z81mMwqJ1Gr1u+++m56ePnnyZDLaJ0SDTxB6nCQpKWn16tWffvrpmjVrdDodBHp4L4qWCNPFa7XalJQUj8djt9sTExPh4dEo1yiWSnHPChNAt77UzdTpdIhrUxp/c3NzfX19U1NTbm7uN7/5zezsbPrn9OaiNxd9y/GMA4HA7NmzlUrlyZMnGxsbjUZjTEyM1+ttbGx0OBxbtmwhhMB5Gl3kWtoNDF0oFQpFZmbm5s2b33777W3btqE1D8Mw+JZbnQeuEt0cICjKsizi4DQCjrjXSBcpxT0rTNTVoK8mnodGo3G73Xq9Pjo6+tq1ayUlJf39/VlZWVu3btXr9YN6F/259Weo4xtlc+PfzMxMQsi8efNQAceybHt7e0lJyd/+7d/iGDSyGYWZg+aj4S7YI7Q9iY+Pf/zxx994442dO3fC2A0ftpamTXCwUqmMj4+/fv36jBkzaLZxpCscintWmKg3QEKKBHcNdOyLFy/u2bPH6XSuXr164cKFUksRDAbdbjfLstg2kxvtFI0JQVgFQeju7k5OTp41axbLsna7/cyZM0VFRXq9Hs2TdDod+gKOFHjkIF5Sk4frEgQBsa633357+/btJMQVHuZUg1pZEEJyc3ObmpqoxsIPY0yn3LPChJvi8/mQ2CKEcBzHcVxbW9tXX31lt9tXrVq1aNEiEmow4nQ6NRoNMmX02QyjVLCfcjgcb731VlFRUWtra0JCwh//+Mfs7OzFixcjnQJpHsYA/cVLgH9Nd6aUG+50OmfOnOn1en/1q1/9y7/8yzAVvdJ0DQn546IoFhQUHD9+3OfzYUeCvoZj5Ibfs8JEQmWy+Lm3t/fUqVMXLlxgWfaBBx5ANg2+J/bztFI2EAggvcCyLH4VCATQPwSvOA1S9/X1Pf300+Xl5Vqt9r//+7+vXLmSnJy8evVqQojRaARrAFutUfhMkGOGYQblT5Dbgbjff//9JpPpN7/5zZYtW/4ibRwuEfWQkpKSXC4X6A9wqkgo2z2idUoxweJMtBgIt2aow0j3JjQe7XA4jhw5YrVas7KyHnzwwUmTJo36q8mNJq+3tzcQCERFRdnt9sbGxtbW1qeeekoWLsfwy5CuIRAI1NXVnT17duvWrSBzYq8AZTy8Y/6f//mfRUVFc+fOhQyNjpUgxYTRTDAcSH/ifcLnoI9BS9Ouo3hD6urqKisru7q6CgoKfvCDH4DrODqINxtzY7FYEDb0eDwNDQ27du0KtySRIcKEXJsoir/97W+3b9+O2YQw3AqFYngLGxcX19HRgaCANIQ2akwYYaJNsURRpJJEe/JJn2JPT09fX19paSnDMLm5uU8++aRerw8Gg8O/prfCrTS3NKBcWlr60EMPhYmlPwhD2Q0JCQlRUVHXr1/fu3fvhg0baHOL4YOZgiDk5uaCwgtFPvZmzhOpOgWRa5oVQUaMbkAEQejr67NarV999dXnn38+bdq0devWrVixQqVSeTwelmVH5wjT6MCgTkgQHZfLtW/fvsLCwtzcXLziMl3rLUFFFv2Z8LNWq33wwQdNJtOePXuo86dSqVAqc1MwDJOXl9fb20vkayQ3YTQT9ApuJdL16OWA39rt9rNnz9bX14uiWFhYuHz5cq1WCy+VNookf8mHuClutVtWKBQ+n+/LL79MSUnBrlChUICvMoarHMGqpC4jGlosWbLkk08+KSsrQ62w3+8fPmQAsUMK6K8rzkSVMGrN8IC7urpYlq2rq2toaNBoNEVFRbNmzaLvGd5dRINA3xmFcqLbH7qJo6isrOQ47vHHH4fryvP8OEgSpTZIt130w82bN//v//6v3+9fuHChlKw3FPC9YmNjL1y4sGDBArqbG4uxnjBmDiKCvCx+uHjx4tdff/3yyy+3tbU99NBD27dvnzt3rhjqD+nxeJB6czgcarXabDazLNvS0jLS72VCwH/B0xAEARmYRx99FKEaj8dz02FLsoPG4qUfKpXKvr4+nU7ndDq3bt3a3t5utVoJIcPESyE0kyZNamxsJCFW+xg3EBMmNCCKosvlgt5ubW09ePCgzWbLyspau3YtotuDgryD7ovL5QKPZ4xrgCSJovjv//7vu3fv1uv1o45JjhF0JRhiQUKkUEKIy+X64osvWJZdt27d8Cc5efJkaWnpiy++SCTldaPGnTRziJUxt+hihtb6yJnDjphMpnPnzn355ZdOp3PhwoULFiy4/Qc56oEhCEnQiQAg4/7yl7984oknMFGJhPJosuyubx9Dw2zI3JlMJqPROG/evPPnz3/00UcbN25EvICEXEbcTLAbCgsLDx48KOWijAV3TJikGQCe5ynDENl42iYLTWr1en1NTU1NTY3X6y0uLkb82uPxjD3O9hdhNBrB6fZ6vRqNRqfTvf7668XFxQkJCVqtluq/oaZnnMHzPNQ2ahaSk5MFQbh48eL+/fu/+c1viqLY2dmZnJyMOwYaIM/zer2eYZj+/v74+Pix7+numDBBkig7gl4J3pJAIAAdoFKpysvLDx06pNVq169fP3PmTJ7n8XTHzb6YTCbop/7+/oaGBqVSOWvWrEFCLK0+uyOgRgoRE41Gk5mZKYpieXl5fX19bm5ucnIy7hsJbQY9Hk9UVFRUVFRLS0tcXBzLshOVaTkoO4GUk9/vh0JGJ9Avv/zSarWmpaXt2LGDBnJomwci8RLCB9gvo9HodrtdLteBAwd+/vOf09+CRHArSz2e0Gq12NPRd4xhmKysLK1W+8Ybb+zevVur1ZrNZthBaUI3Kyurqalp7ty5ZMxMyzvmgMN+MQwDG0f7DzscDgSNLly4kJiYuGLFivT0dPwJ+D24YIfDAfMX7nUi4erxeDiOe/3117dt22Y2m8EDhlqVVtiNkcIxRoBGjNuISmKNRuP1eu12+549e9avX5+cnMwwDKURwwhcuHDhs88+e/HFFycw0xIen9TGORwOm8127Ngxp9MZFxe3adOmrKws2hmCKiGO41iWBcN/dLyzEYGe/7333lu+fDltZoIuudIjkX4OU+/R24F0r4qwHFJPycnJRUVFe/bs2b17t3RLC2pURkaGz+dzOp06nW6iCpPX64W7TQjhOK6xsdFqtV66dAkjHCl3lmVZjUYjbaaOURDoix1uSQJ6e3urq6tzcnLmzZuHT4buoikhcxzWc1PQTBzCXVgePhRFEdSA/fv3r1mzBlxNqkQxWLy1tRWz6saCOxxn8ng8p06dqq2tFUXx/vvvX7BggbQgENX72HEQQlD1gU7+OGbsoZHbwccff9zf3//kk0+igzYJNWKjMfFBjXjuFIaSZMiNvsGRI0euXr26YcOGmJgYKmeiKL7zzjsZGRnLli0b4/2U80kMejtpNsPn80lT/YDb7a6pqbFarWq1euHChbNnz1ar1dJm55Sb9ue1SjZ99BMZ1w/QcAPoQSUlJUqlcsmSJfiuoXVqzMgngIcJN9WLoH/h54ULFwqCUFFRsXjxYtR/or5g8uTJ5eXly5YtQ5P7US9ANs1EO4fcajU4QBCE69evX7x48cyZM1lZWTNmzMjJyZGxuexY4PP5OI6TDidpaGiwWq2zZ8+eOnUqkchZmIb/hQ+0U5nH47FarU1NTevXrzcajUql0mazud3uw4cPP/zww3SvMzrI9kr19/fTWXoejwcRZ5/Pp1Ao/H4/qhzb2tqqqqo6OzsNBsOWLVtMJhN8atCcVSrVHXzFQa/WaDRw6rG1KSkpmT59ek5ODrmxePyOBwJGCszPYBhGr9fPmDGD47iSkpLHHnsML4/JZLp+/Xp6evooWvZIIafPNDAw4Pf70R8YSoi+vo2NjSUlJb29vXPmzFm0aBGdBCrlmJIxZ63HAkoIZhjG4XBER0e/9957Fotl5cqVcJVop4Bx2ELKC3pX3W433mpCyIEDB0CHNxqNHo/ntdde27RpU3Jy8lg0rmyagOM4Gj/E2HUkomtra2tra10u1+LFi8H7QQ2Qw+HQ6/UjHXccPrAsS8csmUymQ4cOBYPBhx9+GL9Ft278HL55bWECShsYhjEYDHDSvV7vypUr9+3bV1tbW1xcrNfrdTrd119/PcYW5PLv5gYGBuh466NHjzIMs3z58vvuu4/neafTiTGP0uMpY1A63/iOAHnQgYGBlpaWsrIylGXSHOKgfn53cJ0jhZSMijuM7JDb7d67d29WVtaiRYtKS0s9Hs/ixYulLuNIIZswuVwumgypra09fPhwdHT0ihUrCgsLQTCi+lPqvdKKMFnWMBbAtHV1danV6jfffPPxxx9PTk72eDyBQID28qJEzfCNuZUd9GWgMXH6K7/f7/P5Pvvss6SkpCVLlvz617/+wQ9+MBYzJ6dm6uzsLC0tra+vT01NXbFiRX5+PpFcDJqQ0EClVIxuSrIef/h8vkAg8OGHHy5YsCAzM1Or1UIV0eiLy+XSarUYxTx2+v14AqQMXAXmt9K0rs1mO3z4cFxc3MmTJ3/4wx+OhYUxnDC53W7aBgQPGzQMPHK8yjiyp6fn448/5jguMTGxqKiI1qbJGFSkKdU/rXvID7cP7DFpjBgyzTAMIt0KhWLZsmUg+0q5AGCikRDbJNwbBblqE+g2SJT0xUMrGFwCsguff/75vn37nn/++ezsbCpPeMR06BmRvE4ejwe1ZdLvuuWTxl6dHk33OISQnp6e+Pj46Ohol8tVV1d36tSpjo6OVatWpaSkpKeng8OK5RqNRpD/xw50Rgc1BaCFtiM6D0aaxMbG2mw2v9+fkJDg9XoVCoXFYvn00099Pt/KlSs9Hk97ezshBDwNKE48XSpPcl3XrYC6kbFDqVS6XC5kM0VRHBgYYFnWbDb39vaiDSHLsnFxcefOnbty5YrVap06darNZtNoNNS7RZFnUlJSUVFRcnIyTqvX651O56CbP5xmgmeA6oVAIPDP//zPzc3N2dnZzc3NP/vZz5KTk8vLy99880273V5QUMAwTExMjFardbvdaPyAnINcbxhtCYLxbYiGsyw70ofKMExUVFRnZyfP8+np6W632+FwJCcn19TUuFyuyZMn5+bm9vX1eTweNDCV9i0lktal4TZzcu1z3W632WxG/Aw5chg4o9HIMAwavzY1NVmt1piYmP/4j/9ISUkBoRT9Wz788MNr167NnTu3tbX19OnTO3funDZtms1mS05OBh1Ieh9uqZmomwyPR6VS5efnC4Lw/PPPl5aWvvTSS2+++WZsbOyyZct27NhBfQuXyyWKoslkghEZGBiQiyVCnapBDP+RAtc1aAx3U1OTQqF47LHHYmNj8e5qNBoElmhvJ+k3TqwNHcdxHo/HYrFId6McxxFCWltbL1++nJ+f//TTT6elpanVarAz1Gq11+u9du3aRx99tG3btm984xuEkD/+8Y+pqakajQaCTvunUdxSmKhXT6Vh5syZDQ0NhJD+/v758+e7XC6McESAmxCiVCrR2JquOEzMNXCuQScaRV9sOnW5o6MDehvpdJPJhHbvtFXIoDoninGot5TLJ0OIFZ19BEFAMwyXy3X16tUvvvhCoVCsXLmysLAQ1WBqtToqKooS3js6Ovx+//r166GovvOd7xBCeJ5HWw60Ir5haMcw6xAEwe1204xHf39/ZWXlL37xC4fDsWzZMrPZjNBwd3d3RkYGav5hhkARAd9erhAfmpPC0tGNySgA7Y0TJicn+/3+999/f/bs2QUFBb29vdHR0Uql0uv1iqKILt50qskgeZooDjj8HviaGo3G5XJZrdbKysr4+PgHHngAne+w4zabzfgBmxJ8YrfbaVDKYDD09/dDHrRa7dA0wC19JiSQpXewrq6uurp6x44dyJl0d3d7PJ79+/fPmDEjKioKCSzpWIWwgmbKRhraQLmLKIrgmJeXl1dXV//whz+UHuNwONCob5h4UripO3LdQzSRQtq0rq5uz5490dHRa9euTUtLozEnKd2DUlNQaPDCCy9MmzbtmWeecblcDQ0NWVlZSOHRghZp4Op2HXCe53/605+ePXt2165dFRUV7e3tL730Un5+/rFjx86cOfP973+fhl6wz0I5KcdxMjICZBFTrBMhlqNHj168eHH37t0kdBM9Hg+cU3JjLTmV3TseDBsFBgYGysrKqqurExIS1qxZQ4mHgiBA6yAZD+KltF80z/O9vb3/9V//5fP5oqOjp06dunbtWhISjKEE/OGESUq26u7ubmhoaG5uFgTBaDQuXLgQHdZbWlreeeedF154AZl26Z/gX+kj4TgOdTbjED4eJhCKJV26dGn//v0bN25MS0ubQBFtEkqiD2X7oJoZzPpgMIjBYp9++imKTx5++OGkpCRpLavsGM7zkMpZQkKC0WicNm2ayWTiOA4BJ0S0aa3IoMplWiyBq4L3R24skg8fBkkSlS0sqbOz8/jx4+vWrQt32V04gCS6lJLq9XqhUOl2pL+///jx4+Xl5atXr77vvvsyMzOVSiWcxfAl14cTJjSsoSwRWgpNV8yyrNFoNBgMFy5cmD17NrnR0iPGWFlZabFYUDYJkeI4ThTFcejxMFQn0XqSo0ePxsfH05mndwk773aApAJNQgiCIG3I4fV6W1tbT5w40dzcPHny5H/4h3/geR6EH+gzyjMLxyXfUpjom82ybCAQwL5GqVS63W7sdNAeymAwREVFnT17FsJEJD44BPGVV16ZNWtWQUEBHVgzPrSToZt5fOJ0Os+cOeP1eh988EH8agIZOEIIIoqEELVaTdNZPM9zHNfZ2Xn69Onm5ua8vLznn3/eZDJRoUGHKlojDyq97GsbLp3ChoAvRjibykQgEEDbv7S0tJaWFup2wKAg+aVWq9evX08rAxEmgLINN7+MCpOUcMfz/KVLl86dO7d27VpcFKKXEygICfYtdZsCgYDL5fJ4PF988QXP85mZmTt27IiJiXG5XJTEhxJFmqFD4DscaxsuaIkV09oGqQsijfQkJSX5/X4akaIzikB4MJvNbW1teJnG35pIJ6l5vd6enp6LFy/OmTMHsUqfz2c2m0fXnvBOYRCfp7Ozs6qqqq6ubvny5Xl5eUlJSeCHQVzsdrter6e6QDpGPBwvz3A+E42+07EhoihiWIdCoaCeE+ocent7lUolnop0oWhcRK8H8UBBEMaNY8mEpmO1t7dfvHgxKSkJw7uxNrADxmclssDv98M4nDx58siRIxzHPfDAAz/72c8GCQdcctoSThRFVBriMIyxk31ttxQmmK2hTVuoecIByD9YLBabzUY9QaoMeJ7v7+/v7u4moUDOuLGnpckQQojX6+3u7r569SqiShBoi8UCfsU4dFORCwaDoaKioqKiQq1Wr1q1Cj0COI6DHYDhQwN0qaFnGAZdYqVj7GTHLYXpVm4p9Y0gLiqVym63z5kz56uvvsKF0Z586M5eVVU1c+bMkydPTp8+fXzKg2g8l8p0X19fY2Njc3MzJqwRSbEbFOSdlSTsMXFXpSkEWniIw7q7u7u7uz/66KO8vLxHHnkkLy+PGgdpYeqgmzzIOQlrFmjEGS5q72hdvU6nw2gsRFGZ0LwRdCZ96623pLE1OE9jSa7dzgoZhgGXjWVZtOA5c+bM9u3bxydeOiI4HI6oqChp6SkhxO12w5GAJPX29l6+fLmxsbGjo+M73/lOdHR0bGysNMN9l5RejVKYSChuoVAotFptQkKCIAidnZ0ZGRk0/C2VGEEQ4MvTnnnygsZX6ckR2eM4rre3t6ysbPXq1fhE9q8eI+j23ufzoT0mAi74kOO42tpaq9XKMExRURHGjlHctB78DmKUQ9AA+qLrdDqj0djW1paRkTHogWEwF8wKvWx5K2Kl5ZHkxqGOTqfzwIED9913X05ODkjod8+tp8AGDSWghBCe58FGP3HixOnTpzFMcebMmUSSWKREhruqYGbEwkRH3GEIEH08aWlpnZ2dRDLfjQ5Kwx9S1iVtMSgLaBhiaJLR7XaXlpZmZGTMnz8fIVYpnfkuAY0GdXR0YAqe2+0+cuTI5cuXs7KyHn300ZycHNwuOi5nUNpqkGt1BzEazSQNjtMmpwUFBRUVFfTWUKXldrsROmckY6xlB725tAcXz/OVlZWCIDzyyCN0pvHdJkmEEI1G09PTY7FYkpOTOY577733Ojo6Jk2atHbtWjpomoS2NVRipLeRjtK74xixMNEaaiIJRDEMk5OTs3//fpTREIkTM7S1Oc/zgiDI9SaJQ7oiwT9raGhobW39m7/5G1RGoCJFlm+UFyzLxsfHt7S0HD58uKOjY/r06Rs2bLBYLBAjBPZgDaSlPtSy31VWe8TChAD3IHkihOh0OrfbTen9Uj0EJhoMItIs4dvKiaFW3V988cVzzz2HLTe1AndhvVtnZ2dJScnVq1dnz569adMmRIBJiFmK/Q09mOa4pJr47qFYyVaEyfP8J598QghZv349y7JIMY6DY0iDFPDSPB4PwzD/8z//s2HDhujoaMpNkPa8Civo3oI6c0M/x4fo19Pe3j516tR58+ahzQEiGndJw6eRQrZFK5XKpKQkjJokoTTcOLwx2CdC5YD799Zbby1cuDA2NpZa0kGsvbACFHi6z+I4DhlxrVaL0h29Xt/Y2FhWVub3+wsKClauXGkwGDDTF13RJlaLFSnkfAMyMzOrqqpoG93xaT0D64mXXqfT7d+/PykpKT8/X5q7FW+cgRRWUEsKTYnKkGAwCHpCZ2fne++919fXt2TJklmzZg3idUGX3yX7/FFATmEC5bKtrQ2ks/EBWl9qtVqHw9HW1tbU1PTcc8/R0APlw4zbeuh3IaEEjwf9et59992urq6lS5du375d2kSfRndp9A7KbNzWLBfkFCalUhkfH3/hwoWsrKxBdQvhA9x5h8PB8/zevXt//OMf22y2xMREeOJD93rhBkbdE0k4rba2tqSkhBCybNmy+++/H44d3c9SoYEthtM9ESWJyN4gNTs7+/z584SQ8eyIje3bW2+9tXPnTp/Pl5iYiE4HzI2VuHha4V6VwWBAiZlKpbJarZ9++qnZbN60aVNeXh495qb0KRq0C+vywgo576xCoZg0adLJkydpi4txMP94mz/77LPi4mKLxYLX/aalDWS8ojJ6vf7//u//SkpK4uPjd+3alZqa2tfXR27MjiMYhgJIpVIJHUYF/e5M+/xFyGzm0OxrPIWJZdk//OEPKSkpeXl5Go0GpRrYHNFjxlOSDh482NjYqNfrt2/fnpeXB05tbGwstiO0jw8t1KcxXgjQoOjdxIJswoQ4CorV29vbU1NTKX9XxvMTQmBESKj8bf/+/agzwbaIpnGkQjzSZ0PTqNIokXhjX4NBraecTmdVVdXx48fz8/OXL18+ZcoU6EhKQ5NubIemJu9ORsNIIZsw4V4oFIr4+Piuri7Zb41KpcLYJ7qX1uv1X3/9tdPpnDJlSm5uLgkJHDogjNQ3kgaHpMIHkaXxRrRrwp7f4/GoVCq/3w/qY1pa2tNPP63VamkhIc12T6wiz1FDNmGC/wi36dixY3KdVgrUiFHN5HK5jh8/Pm3aNNoKHfx0IlPXB7jDcJa9Xi8t7aIHsCxbVlZ25MiR+Pj4p59+elCrWmSQpKzUex5y+kyI90yaNOnjjz/GCy2vw4QHiV4cZrP5vffemzp16uLFi+HYSit4RrG1vqnmgJmmHEB84nA4QG65fv16YmLiiy++SD1FzAZiGAYdfyZoVmTUkPNqIToWi0WlUnV1dWVlZckrTH19fWazWaFQmM3mDz74wGg0FhcXE0J4nqflFqKkc+MoMKhXwlBi9ZUrV2pray9fvlxQULBhw4asrCwUTeh0OloyzzAMrVMD7uzosHGDnFdIu4ukpaVdvXp1KOtyLBAEAb6I3+9vbm6+evXqj3/8YxJyhKUPEjWKo7AsKN4YlHih6ZGLFy8eP368q6tr2rRpu3fvhjYihNCxi+RmfBjgr0GSiIzCBFuAjlJ5eXlNTU2LFi2SUZgGBgYsFktHR4dGozlw4MC2bdsIIS6Xi+d52lAQ304kdNDbBy0PpGsWBAE9nKxWa0VFRTAYnDJlyqpVq1JTU3EAbBlETdplW5pXvnv4IeMAmYUJzKGUlJTKykp5G/Whxi0pKem1115buXJlQkICrVsloW4ylLg3ClowFSPKE3K5XG63+7XXXtNoNNnZ2ffdd19SUhIJcbQNBgO2jfD64VFJpxjQikf01JsodXljgWzCJPV5s7Oz7XY7bvQoMnR0FiAJjWHBgzEYDL///e8TEhKmT59OQilefC/DMIOcbmkCdRCkoVRaZEdCDpNCofB6vRcuXDh79uy1a9fWrl2bkZEBzhr680nJfYOIfkOdraHH3MOQ+SLpE42Pj29ubi4sLBzFSSBG/f390dHRarXa5XJB0+zbty8pKQndS7xeL9pmDL8S9AMiEqoaLb9EttVkMmHzRTOv586dKysrGxgYWLBgwVNPPdXX10eJ2LTEeXwmcE44yHxHVCoVbnRubm59fT1UyEgBDgYa94qiCFtWWVnZ19e3fPlyhUJB0zXDl0yJIUirrLxeL2pUEEDy+/08z6PDbnl5eWlpqVqtXrx48fz589GWTxqBlPbXGsV13fOQmTWAUlqlUpmfn79v375Rn8ftdqPtqyAIWq22urq6oaFh+fLlMTExGLlBQr7IrYTJ7/fTBKoUWq0W7ktPT49Wq0UTo8rKygMHDkydOnXz5s00vS/dEtIWNhM6dxZuyCZMwdC0Qtzo9PR0n8+H/psjOg+0TkxMDOpJwHqrr6+fNWtWXl4epAcNM6QT7oZCWqAIX4fG6F0ul0ajQT+1qqqq06dPu93uXbt2GQwGg8EAR55aNPq30t7Dfw25kVFANmGiZZBo/GswGCwWS0tLC6bb3j6og+JyuWJjY0FUmj9//n333UcI8Xg8EKCBgQFqgG4KaYMvSrZUKBS9vb2Y1Xn48OFjx47FxcWtXLnypuYYTY/NZrM0YTeoTCACKeQUJtp4BPYuLS3t0qVLIxUmQgjqAmJjY1FIqdfrFyxYQEItDIPBIGJO5MbJUoMgJSzQHaXL5YqLi/v8888rKirS09OfeeYZ5PUCgQB6A+FbUDiq0+luKq8RSboVZCbHwUvFg4yLi2tsbBzpScALgFCWlpZevnyZ9sHBHGlBEBCl9Hq9t5IkItFMtFwdc0IOHjxYVFT07LPP0qAR4lLUcrEsSwt/4eDTDnp3yZzFuxayCRM2cUHJHK3777//0KFDhBCbzRYTEwP5kJZBoqcF1Ab1VPBblmVPnz596dKldevWiaGWy0j0YlgUubGpkpTECLAsi5JqhULR2dl55MiR9vb2mJiYX/7yl9IwN/2Tm/rU8N/HrbJlokNOCsqgTxQKRVRUVHd3N/QHG2qMSULeOuRGyjujP9vt9pMnTy5ZsgSTrOAyQ9roSTDAHiNmSCiwhP4h4Bup1erGxsYTJ060t7dPmjTp8ccfT0tLg9RGFEw4ILMwSR+SSqVKTk4+f/48cvuEEOoID2qCQ4H+ef39/fv37581a1ZhYSHyX3RLKKWw0cw8xAhKkTamuXz5cnl5eXt7+9y5c7/97W8bDAafz4fxG4PyZdIgeARjgcxBS6lIMQyTmZnZ1NRUXFwMIyjt9oqQIAmZEioKgiCUlZVxHHf//feTUO8iynlF/wZpKZzL5TIYDKGOUQwhpL6+vqampq2tbcGCBd/+9rdNJhP+ZGhihwbHJ3RNyN2DsAgTRXp6+smTJ8mtZyBJuYg45quvvvJ6vU888QS8K5ZlNRqNz+ejXeekU8h9Pp/RaKRs/HPnzpWWlvI8P2XKlEcffRTt/WhPH3IjfVYqQxGrJwtkFiaqk/DfpKQkhmE6OzsR2qFhQ5ZlsVFCVhWmJxgMXr169cqVKyi/dzgcoAoNmlpJo4gwc/Dur1+/vn//fofDUVxcjFkJmPhDu+DTEZ30POKQZnMRjBFyCtNQSlp0dLTJZGpra0OLD0SuIQo8z+MY+iDb2trOnz8/e/bs7Oxsnuejo6MRBPf5fPSEPM/TwZuEELvd3tHR8c477/T29i5btmzJkiXoGyEdYOV0Oimjl/aPpwZOah8jGCPCKExiaLJCX1/f0BSpWq2WhgYGBgaam5u7urq+9a1vwcsmhGByY2JiosPhwFg0arB8Pt+ZM2esViu0UVFREQk15MMBUVFRSO1BG0Eih86PIxG1JB9kLsLED1I3fM6cOYcPH161ahW4TUjfwu+hQ8PsdvupU6euX7++c+dOErKG0vbnGo0GrXNxfHV19eHDh81m8+rVq6dMmUIXMChlJiViD/K+I3u3cCDspBx4Sz6fDzqJag6EiAghAwMDV69ebWpq2rVrF8KMqDFCCBRuuFarRcajrKysvLw8ISFhx44daWlpTqcz3OuP4PYRdmFKSEhQKBQtLS2YnEkD5ZCtQCDQ09NTXV29bt06asKkmQ2NRgPKkdVqra2t1Wq1zz77bGpqan9/f19f3/C53gjGGWEXJqVSaTabm5qaMBEatEakTTiOs9vtx44de+CBB1JSUuAdw9NCDzWtVisIQnV1NWYNrlixYsaMGTgt9nfDJHojGH+MB/c0MzPz8uXLLMtCXND6kxDCcVxpaWlqamphYSGYT7QTpkqlGhgYKCkpqa6uzs7OfuaZZ2JjY+EAgcmEmT4RSbqrMB7ClJeXV1dXh5I0ErJiNpvt9OnTCoVi5cqVtIRSo9GgT0F9fX1VVVV8fPzf//3fx8bGut1u6kpL3eq7sEn8XzPCLkyiKILs0dLSgiHoLMs6nc4LFy40Nzdv3bqV4zjwGwcGBlwuV01NTXNzs8VieeKJJ9LT0wOBACQGvXLUajX8KlTyRyTprkLYhSkYDIIH0tramp2djf2azWarrq5+6qmnQFEihHR2dtbW1jY0NMyYMWPjxo2ZmZkk1IgCEsOyLJ3NioDn3TDgIQIp5BcmUIsojwz/5ufnt7W1wae22Wzvvvvu5s2bLRYLwzCXL18+evRoT0/PzJkzpWXX5BbicvdMd4hgEGQTJlofTQvTsC+Dn5SYmNjQ0OB0OrVa7b59+zZu3JidnV1ZWXns2DFBEObNm7d58+aIzZrokE2YtFot6kDgHWNGLCLXhJCcnJwvvvgiKirq888/j4qKUigUv/rVr1JTU1etWpWXl0fpShNr9nIEgyDbuAtgaBNLnuc5jjOZTL/5zW/MZnNNTc38+fN7e3vnz5+fnp6OSCbHcT6fz2QyRezXhIZsKSqO4wghYJIguh0MBu12OzhxhBCj0fhP//RPc+fOjY+P37Fjx4IFC1JTU8GP0+l0qCjCSSKYoJBNM1HeGdJwlBsprSCoqKhYtGjRoOCQIAgIY0Z2ZxMdcpo5aTsHt9utVqsx6A1USY7jzGaz3W63WCwQIPbGkb1/sUg3grsccgoTbaDT0dFx4MCBCxcuqNVqj8ezdOnS9evX4xg4VVTs0KOCEELryiOYuJCz2ReVBr1eP2XKlA8//PC1115rb2//3ve+x/P8pk2b0LPWYDBIKyQj1u2egWzKQAzNcyaE6HQ6jUaTlJSUm5u7ePHin/zkJ//2b//mcrkQCicRbto9CtkeqlKp1Gg02LgpFArQ1hiGcTgc3/rWt6gnBA/J4XDI9b0R3D2QWUPQDoIsy0ZHR/M8HxMT88orr1gsFlTr4rAIdeSehJz9mVBzApZ3a2trT0/P0aNHfT5faWnp9773PWzioL0iPfzuScimmWjJNgaMqFSqjIyM9vb2kydP/t3f/d26desIIXa7nRCiVCojwcl7ErKFBmgtAKTK4XCgLQm8pd7eXqPRCFGLqKV7FTLn5iglV9q2hvbEgT8eHR1Nh+lEcC9BZmGK4K8ZkXhPBLLh/wGRMGN/2gNinAAAAABJRU5ErkJggg=="
|
<image>如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E的位置,则∠1+∠2=()
Choices:
(A) 90°
(B) 100°
(C) 110°
(D) 120°
|
110°
| 69,715 | null |
110°
|
"iVBORw0KGgoAAAANSUhEUgAAAIkAAACACAYAAAA/K0oBAAASf0lEQVR4nO2df0wU57rHv4PY27QkNQ2J6xWzHtna1TXRG02FSIs9Lj+scllOMPEPreXGNsrSU/FH1KRGm5IUcxaFFAgJJsW4ieRK3OUKYdUlhRRbDCS09yxgGuilUhMsJnKz3BPo2Z3n/rE7y/6Y/QW7M7Oz+0k2sDPvzPvszHee93nfeecZhogIEkBfyKD5IcAA8DFIexL0sBFAmjiGSQmC6wAJjGSOfNMDQmUBYLaxICIQEWxmA7RvZ0NCZoqLv0B4Lu94XPGSOfqEJ3hClfh3DQPCGOrqTNhaWoTiTRt9fjmR0/0fK4aZoqIvZMAwXp80BgyjxZjXAXLpKLbHRgIiYUEAxjq7oS4uAAB0XmsC89bbYLANp6v/4nMFMcwq939pkEhLGX/cP5PztqZRh8fbGioZaJgi2EAgwL08xm0SiY6TiIjM1/TkPhwEpJHJxgaUZN2fZIWlUdpXoOe+eKgsAGn1Bt+DE8MDJQFP4jLhQU8TTO54RF/wZ2zeEuglGABMkjgPPsY6e8Bs/pPri5ez2PSWFtafJ31jlhg6E9FFQgAwZkYzTqJU4/plm4r3Y2taENO8fjwlS3PjxvLAgmLt/oDl2dmb41qv6CJhAJgtD1FZVOg5/6dPnwYAVFVVhd6WEaE/KBKEMfQ0E/brtvitYTE5+TO0m7P9yscOAUTiG2l7G0/u4OuhpRkFxaU+5fSFDNiN+4LuNRm8iPdvZMZ+BqPfj63E+P72sf/C2WYriguKfbaN6eUTu/AmNCwbGEnZzAZPoAoGXoGr69PJE7wmG9wRMNVVUqXBFLC+sgCEgpN+S50xtYEhEvCSjGLEkCva0NCAly9fxtEo6cAwvl7izTffxF8//SuIGUMho4HexkLnjtswZgajKQMKT4LuN8fXLmFEwiJ4y8azzktMvb29KCoqQkVFBdavXx8/EyXETz/9BKvVCqvVioyZAWwrO8sbZBjMNpwp1cTfoJj6pWWy1Kg4eVc0NjbS9u3byW63C2iVOExNTVFWVhZ1dXVFuaUzboNIgjU34VuaUN4GqK6uxsTEBO7duxdbwyTEixcv8O677+LMmTM4fvy42OZ4iHvvhlMgE+Z+AoUxxWAwwOFw4Ny5czGyTFosLi6ipKQER44c8RUI+f0NQjyvdWED1xUyPz+Pd955B+fPn8exY8fENidmOJ1O6HQ6rF+/Hi0tLUHLEVGQsaFALxzLWQUJJRIAmJycxPvvv4/bt29jz549AEIdvMTgk08+wezsLDo6OrBq1arwGwhNfEKd+NLX10cKhYImJibENmXFXL58mXJycmhhYSFgHd/YkhgklEi8D1pbWxup1WpPj0cqBzQaWlpaaMuWLTQ3Nye2KSFJGJHwieDs2bNUXFxMDodDBItWhslkIqVSSVNTU2KbEpaEi0n8KSkpgUqlwvXr18U2JWIeP36MgwcPoq+vDxqNxtMzkWxcJbJIV4zdbieNRkMtLS1imxIR4+PjpFAoqK+vj3e9FJvNhBcJ0dIopdVqleRB5piZmSGlUkkdHR1imxIVshAJEdHg4KCkezx2u522bdtG9fX1YpsSNbIRCRGR0WgklUolud7CwsIC5efn04ULF8Q2ZVkkfODqz6VLlzA4OAiLxSLKwBTxDOwdPnwYq1evxq1btwS3JxbITiQAUFZWhszMTLS2tnqW8Z08IaiurobNZhNNtLFA9Dmu8aC9vR0jIyNoaGgAIJ5Arl69iu+++w4mk4lXIAlzfYrX0sWX6elpUiqV1NPTI0r97e3tpFQqaWZmRpT6Y4lsRUJENDQ0RJmZmTQ+Pi5I15irw2q1enpa3vVKuXseClmLhIioo6ODlEolzc7OClLfyMgIKRQKGh4eFqQ+IZC9SIiIampqKC8vj/dOayzhBvW6u7vjWo/QyLJ3w8fRo0eRnp6Ob775Jib7I79g+MWLF8jNzcXnn38uqwlRgEx7N3zcuHEDT548QV1dXdAy0Vwv3gKZn59HSUkJjh8/jg8//HBFdkqRpPEkAPD8+XPs2rULX3/9NXQ6XUz2ybIsSktLeace+nubRCWpRAIAo6Oj0Gq16Onpwfbt21d8EisqKjA3NweTyRQjC6VH0jQ33LWg0Whw48YNlJSU4Pnz5wFlorlmLl26hImJCbS3twfUIytECZclgMFgoNzc3Kh7PNxYR0tLC6nVasndTIwHSdfceFNRUQGHwxH1jTez2YxTp05hYGAAWVlZcbJOQoitUjFZWFigvLw8unz5Mu96lmUDRkkHBgZIoVCQzWbzlOHbTk4koUjczxu7z+Ps7CypVKqIZouNj4/T2rVrg049lCtJKBJXXhTvxH3j4+OUmZlJQ0NDQbfhbhiaTCYBLJQWSSKSpWwFLI2SFgjI7mixWEipVNL09HTA1nNzc6TRaKixsTHulkoR2XeBCQC8fub1qiYwBQXY7JfWo6ioCNXV1SgrK8P8/Lxn+eLiIkpLS1FSUgK9Xi+M0RIjCURCnienzdf0oAIt2Ics4JcQl4jw2WefYefOnT5D60eOHMGGDRvw1VdfCWm2pEieLvCYGZUWoLkYYKofBE0h5XA4sH//fuTk5GB+fh5PnjxBV1dXwk49jAXpYhsgFFXNVjQ3NgJjZhRsVgUtl56ejo6ODqjVaqxZswbDw8NIC5ZTNklIil9vvqZHU1OTK2m/pizs0HlXVxcyMjIwNzcHm83GWyZZHDCQDCIZM+MBq/V5Pcrbm1yehO9E9/b24sKFC7BYLDAajdDpdHj69GlAOTnc3Y0Y8TpWsSFoUj4iIlunO8fp0jpTXSWd/Nvdpe29RkeHhoZIoVD4jJe0traSRqOh+fn52BqeQCS8SIJhqNR6kgZzYyInCpcSCWv1Bp/yExMTlJWVRRaLJWBfp06dopKSEkHsliKyEkkk90z4SszOzlJ2dja1tbXxbuNwOKi4uJjOnj27QgsTE1mIJJw4nBQ8yY3dbqedO3dSbW1tyH3Y7XZSq9XU2tq6LBsTmaQYJwnMROjKVuh0OnHw4EFkZ2ejsbEx7H5+/fVX5Obm4vbt28jPz4+PsRJEHiLxVwFffkqeZR/9RwX+9+Uc7t69G3Fv5dGjRzh8+DD6+/uxadOm5ducQMijCxzJ+fUrc/HiRUz98j+4fft2VN3ZPXv2oKamBgcOHPC5xyNn5CESNx6nGOact7S04N69e+js7MSrr74adT3Hjh3DwYMHUVZWBqfTGX6DBEcezU0UmM1mfPrpp/jhhx9WPPWwrKwM69evjyieSWhEDJoFh0sSPD4+HpP92e122rFjh+znmSSNSMJlPYwU/+729PS0J6mfXJG1SLgTyp3IWEw95BuTGRwcpHXr1sXMQ0kN2Yvk5cuXpFar45bnlRNNe3s7qVQqwVJcCImsA9fFxUUUFRUhNzd3xTPLKMhzvd7Lv/jiC3z77bfo7e2V1SQlWYukrKwMa9as4U03Eeykr5RDhw5hzZo1Pkn9Ep2EHifx17f396qqKjgcDty4cYN33kgsBeK9f6PRiJGREdTX18ds/6IjUjMXV2pra2nnzp1kt9tFeZqOC5Sjf9miNEkYkXCPXIY76W1tbZIIIIeGhmjdunWex0ETGR+R/N8//+n5SI1Q4uDWWSwWysrKCppfXmivcvfuXUGT+sWLAE8iRYEQhT/BfFMPpYBQSf3iSUDv5h8OB15LT6wnLSYnJ5GXlwej0Yh9+/aJkoYqVJ1Hjx4FgITNLR/Sk/g3P3zNUbDmKVTTFWmzFqyc9/KZmRlSqVRkNBoD7PT/PWKxsLBAu3fvppqamoRMSxG2uQn1PZL/o1nHt5xl2aDb2+12+rfdu6m2tjaooEPVISSzs7MJm5UgqnaFryn6h8MRU8/mD8MwAXUSEViWxaFDh7Bnzx6cP3+e1z4pNZuZmZno7u6GVqvFxo0bsWPHjpDlSUKZG8MOpr2Wnh5SCK+lp3s+8YL8BsMYhsFHH32EjIwMXL16NWGepvNO6vfbb7+FLCsVgQBeIlmpR4inR/Hf98WLFzE9PQ2j0QhAWgc0HAcOHMCpU6eg0+mwuLgotjkR4endcCcimEcI1usJtp33iY10nX8dfPtuampCU2sr+vr6kJGR4VnHlSUivL56tc+24X5bPAnWbHz88ceYm5vDnTt3BLcpaiINXqQQ/HFvnODLRkQkzYR2wWxyOByUn58fNKmflIhIJFIQSH9/f1RTD6UoGH+4pH537twR25SQhBSJVIbpbTYbKRQKGhgYiKi8lAQSzhYuqd/g4KBAFkWP5G/w8WU9lJIIYoHVaqWsrKygzajYiC6SUK8fm5ubi+vUQynR2NhIO3bsILvdLrYpAUh2Ztri4iK0Wi327t2LL7/8UmxzBKGqqgrPnj2T3BsvJCsSvnf7yh2n04ni4mLs2rVLUtkeJTl98cSJE3A4HAEvGZI7q1atQkdHB8xmM9ra2sQ2ZwlxW7tAampqKCcnR5Jtc7zwj8W4rEuR9ubijaREcvPmTVKpVPT777+LbYrg+AuFeyR1amqKd32wZfFAMiLp7u6mrKwsz0HxR27d3lBwv5VL6ie2V5VE4Do8PIySkhL09PSEvYWebFRXV4uelVp0kfhPPUzhC/e2UJVKhevXr0e1LcVqTooY7otzpzMzM6RUKqm9vT1omRSuGXgajUa0pH6ixSRc1kODwZVPNSWK0ExNTdHatWupv79f8LpFaW64QaNt27ZF7UKTmUePHqG8vBwDAwPIzs4WrF5RRHL48GEA8HmfborIuHnzJmpqajA8PIw33nhDkDoFn6p18eJFzMzM4P79+0JXLQuOHTuGiYkJlJeXw2KxCNLjEdSTNDQ0oLW1FYODg3j99dddBiTQ/FQpIWhSP6GCH27q4czMjFBVyhouqV99fX3c6xJEJHxZD1O9meXhfdyePn3q82aNeB3TuItkdHRU8tPzEpmhoSHKzMyMa1K/uIpkamqKlEqlbJK5SJWOjg7Kzs6OW4qLFYskmIsLNfUw1dTEBu/jePnyZXrvvffikuIiLr2bxcVF5Ofno7i4GFeuXIn17lN4QV73Zw4dOoSMjAzeRIIrIeYicTqdKC8vT7qph2JDRPjjjz+wd+9elJeX48yZMzHbd8xFcuLECTx79gxms1lWuUwThefPn2PXrl1oaWnBBx98IK27wCzL0pUrVygnJyehUz9JjYjeK+hXZmRkhBQKRcyS+sVMJK2traRWqxM+iZxcMJlMlJWVFZPBy4hEEk7NXV1dtGHDBp+ph6kejPjU1tb6ePblnpOoYxLym+30+PFj6HQ6WK1WaDSalbd/KWJKRUUFHA7HypL6rUSp4+Pjsn/XS6KzuLhIeXl5VFNTs+x9LFskoaYephCWcM0Il9Svo6NjWftflki4O5Dc1MMU0sdms1FmZiYNDQ1FHZtELZKFhQXSarVJ+0r2RIFPCF1dXSEzRQUj6sA10qmHJKEUkymWaGhowK1bt/D999/jlVdeiWibAJF4XsTN80buc+fO4ccff0T3vS688uq/xMToFMLBXbjeSf34XsbuT5q/G2HAcv/40NDQAKvVCpPJ5BGI6I/+pYgKzrO3tLRgdnYWly5dCisQIuLrAjsDlrS3/2dq6qFM4GIVLqmf0Wh0ryAKFs6GiUlY9Pb248CBIuh0f4FarQYRIQ0MWKRijkSD/OLEyclJ3LlzB/39/di9e3fQ7UKKxOl0or6+Hna7nX9jhkmYlN0pgp8vheJfceLEJ57vLjERgDRXzBLak/gRSZSTIiHw9ypEQLCGwScdlr6QAcMwSEtLc/1lGNR1ji4VSAlEtjAMYL6mB8O4NMAUVoLFGPT6uiWREBGaHhD0hcDfTH8HEeHvZgPO6rahcwwA1+tJIQu8vQg7bgbDMGj6ZZPrNTFEoPpCrGI0wKbspcc8GYYBYQxPHuxD5f2tAADNW66Hkl0tkltPBBCTcipygTCGoq1lKKw04H6ja8ojAwBbdTBUakHZKt9ngcc6e8Do92MrGAAs9KfKoK28Bp3GSxIpgSQwLPwTbnZea4IV+zDadDqgdHb2ZuAtjXucxN1BNtVVElyOggCQyRb6RlBqYlFiw9IoaQGqNJhClnPJyu0aHlqaYbKxYIlgqqtE2bY0mEddnR+K86vcUwgPM/YzrAD+lK0KWc7te1hgzIxmnIROw4AAlJ7WQwvgoaXTtUPG1QSlkB+uMRF+vKLRNJgtD1FZVOjaCEsq26R6y1NYogmkUywT2roZf2aAXyYmA1eOmVHXOeq+2eumsgBksvm2VcA+GnUHLKn4Qw4E3pfj4lCD+b89y2xmA6HgJLHkJJZlCTazwSdY9XwKTgppfQqRYFmWOA1wH63e4LP+/wEQopnhW6Jr1AAAAABJRU5ErkJggg=="
|
<image>如图,点D,E分别在△ABC的边BA,CA的延长线上,DE∥BC.若EC=3EA,△AED的周长为3,则△ABC的周长为()
Choices:
(A) 3
(B) 6
(C) 9
(D) 12
|
6
| 69,716 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAPAAAAASCAYAAABl2VMbAAAF4UlEQVR4nO2bTW8bRRjH/7NpjwjEoeKYeB3SSHwHgmK7kNabCvgEiCapxKnNOlRCqntBapLSS0XipHyHNmkr1bsU9wtwLeC1AzfEAXFFiefPYfZldm0nfVkrNt6f5Hh2nnl5duZ55tURZIeAgQD63wJAtVqFIHDzVhU9oZ8wY2ghCSFGt5Oq1Wrse9w4qf8M3XlB5Y96chm6dA9G1y7GhqDzq9Xq2DrBKJN03mq1ils3q+GzEU99cgEZL0/mNBnpIONPmteqoD/Jkt2zrThmAs44HiFENgBmpI7uk2cIILCxpLH99LwBQwIMZxGJ5KSdoei1V2k0GqHspLSDptFo9BygR4VxXclQQPmgMCAINJ438NGHc6H8zHGZ9YSKzHlfhbm5udNWIUa2Ghg9BJXzkp1wpqXQ5a8xLI/6yWZGxijSdemj3x8Ffqx7s+dsw2klSqA2ko/uiixjxBnl7cCrYlvqLMXwz1SEEKi5HgjCCK6JhGDMwwkP10tX4yWJWILsGqkPBFBZNMLGjj4WvMSJYhp1MQgEcb5xVxaT9fsfy05VhzelnzM6u3ZMZ8JDpbINIJhE0m3LoYTAxh5hW8C20wRJePUtrBSn4bYFDCP0wihEEjtrO2C5jCmzVyNJ33nHoAFfing7CADrDyRsC6h7BElQElu2gWlxGU12Uqs5HFP1fZFv3OsPGdeBhOdsw5qdTq3+NEhux9iqQwiBe940SEJKCXl3HoaYBvI5LeUYnMkINZn+sn8J8wX17rncZCiOXSMFuPcrQKEAPOq3TDES3+NOvB0IgMLDC9gomn6kAFbWH8C29rF6Y3cgWkQzmbotICIdiN9QqzkwCwUs5KYGUn8aEB4u5y/AqtTw8PYSAP86zvwYW5UyzFzuhBL+f7QcF8IuIw8DBPD19U+waNdQNAPLE9EMwlYdDotYygH75VnkmTnpsYRr2AgB1ejGbLex5c6XsfeijUGsXqKZTPVZy3Exe7EEAHB3dwFzCoCJ5eVi6nW/Lsnlv7tbwx7KuHP7y660Zv59TE2a8bxjwMHvLextLIf74MId4sG6GtwMSCKcQSTxzU4Dt78ogp0JfHZ+umufy1g4W0J3/fYUAAi47hMsFApdyc38jB9Kb2DsZ8jtgyY2V0oQQqC0tIncVP7Y9KdGeCbq4d7SJuzaV8gHi0Ntf1y8solSXoRxY3EEQ8B5tIl6U22B6jurKOVFeLhswIiawfmhgm/vfo9z776Hdz4o4DDZ1UweYw+dKZwyakCj8PBkg+GeRafl/YryjNkVPwjcx9/haVOCkrCD84wh67KYPbXa2IOBvGlq8m43HacrTLbr2NC2YoUry7AAOD/WAejXSP7Smf/+g7/+/hM/P97CjDkZFQR0DXlCTAxW+5FAX4X4zdlqh3sWXc5WHVfX97FQmvcj0tFA9CiKLa3jBZC/dEnpI4Z95vIHweAx9nLDNwANGveZA/tiIXrtVht7AuFZgAGozjauuVhfKoUZ/zg4wAQmwCOCR8GhM9VzUBrhywnqdqzHHzHe5sfJ+qY7OX/4rMs7ifTpHf5G6mg/iwl0cZ85mDGD2TdaKq9duwAs2lgpqKVsGp6k//unjvvMwerCfLjcXFpSe6a1tbVYvqHCzMEC4LVa8fcRykZrbju8/RhK/QeA83gTxfkSQIYHfOBFzBcmVYKtSjk4hqHTJCnJG5+e41tnQZx9m5+v3adkhDyUWjgeL2WP8JGkPOqTLiHT6Vtev/zSlx1KpW/4nJD3ri41JJu0ANY9Lc57qtrYsv2YzoC1IFcXdR06lCRtC7RrTwde95tQ31klAG47TQbt1KxvEZZNKQfde6eHerfILpr1rdAvg48QQrMhkuwQ3SXFnYQd3UlUvFR/QofpHB5FeWTkNJIdUpKdw47vVDLu9LLjO1XCoKWqM4gP5cflT+otqfSS7C1nj/K7muLl5AF6o4tE4yuD7E1a9Sd1AIwuI9AHlrTqT1N/kvSc7ZjOVqXWO7/fmaetf9rv35ce49d/t3Iypw5WkxYAAAAASUVORK5CYII="
|
<image>如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()
Choices:
(A) \frac{1}{2}
(B) 1
(C) \frac{3}{2}
(D) 2
|
\frac{3}{2}
| 69,717 | null |
\frac{3}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAABqCAYAAABzj0V/AAAYSUlEQVR4nO2df0xb57nHv8euQrdA3GpO490ccDqca7uQJim0TYGVi+beZmqiMs0qaS8NpuWKSvRqaEob2lKxTlEwbbemGpWosi5OmwFpyVxdRXf0LjRG5UdUqhu0QoEF2hj7Die0E8zOLWnwee4ftg8+xjY+9jHYrB8J4fOe99d5n/d93vc873velyEiQgJwIMjAiAtEQLggRASGCR9XtHvBzM/PY3h4GOPj45iZmYHNZuPvTU1Nwel0CvyzLAuNRgMiwoYNG1BUVASWZbF9+3YUFBQgMzNTzJNFzXesz5AMmEQFHQsR5CoJTqcTPT096Onpwfnz5zEzM4OSkhJkZ2cjNzcXd999N7KyskBE2LZtG9RqtS9P/kK32+24fPkyAMDj8WBoaAhTU1NwOBzo6+sDy7IoKyuDwWCAwWDAli1blj/fGgowVpIiaF6wIiQsprDGx8fxu9/9Dn/4wx9w7do1lJaWoqysDKWlpdBqtZIW+ujoKGw2G/+nVCphNBphMpmQm5srOu9rBiUIx3HE0WX6fTWIYRiCT7z+v2bqI29ICC8fTgyzs7PU1tZGBQUFxLIsHTp0iMbGxhLNvmhGRkaovr6eVCoVlZSU0PHjx2lubm7V8yGWhAUdgKPL1GE6SO3THBF5ieM4GjD7hN1PS0IVK+ArV65QfX09ZWZmUmVlJZ09e1aqLIdFTP66urqooqKCFAoFNTQ00OzsbNLSShRJBM0REUf9ZDZ10GVuMcj9MnWaQGjp87uEtu4I8XEcORwOqq2tJYVCQYcOHaIrV64kXDDJKliHw0F1dXWkUCiovr6eXC5XUtJJBJkU6p8hgAZ70aDPhpqR+/sEgIEaOToAYw5MgwPgT44LPywgIng8Hjz//PPYvXs3VCoVJicn8corr+C2225LuB9MJDxFGcqwLIvW1lZMTEzg5ptvRn5+PpqamnD9+vW405McqWrMgBnUPLAocPMSR/bTVcRU/Z7sIa05XNuyWq2kUqmotrZWtBrk442h1cbbsmMN53K5qLKyktRqNXV3d0uej3gQJ+gI+eKon5oZs2Dg5XsIr6+f5lV3MEt+HQ4HGQwG2rVrFw0ODorKUipjs9lIp9PRvn374q64UiFNi57upKqW/vDuCLT08P3z0NAQqVQqOnLkiCRZSTUWFxepsbGR1Go1jYyMrFk+JBG0/XQVmTqnBW4cXaZ2Ewimjohq22KxkFKpjKre1gtdXV2kVCqpq6trTdKPQdBevi8J7VMCo+1mHKT26cUlze5vyUxVOCF7yXtjkerq6kij0dDo6GjYuNOVaM8xNDRELMtSQ0NDTGGkLJMVBR0tKe/A0RADydJf88Bi2LBzc3O0d+9eKikpSQtDg9S4XC666667yGg0ktvtXrV0V369CnqtCH3BkN33HIgIxBGICJyv4oCI0LBHDoYPw4GIMDo6isLCQqjVathsNigUCkneHNKJLVu2YGBgADfffDP27NmDqamp1Ul4tWpUd3c3ZWRkUFlZGe+2PpR1/JjNZlIoFGSz2ZKeVkyC9gaLJA7pjIyM0KZbFJSdnU333nuv+AjWAZH6W6vVSkqlkiYnJ6P6S5SYLGOC+WaRxqUvv/wS5eXl+I+6pyGTyeByucRFsE6IZJUrLy9HfX09Hn74Ybjd7mX+KLjrTGCiManz0V6vF3v37oVWq8WNGzeg0Wjw4osvYn5+HhkZGclKNi15/PHH4fF4YLVak5NAUvSEn/r6ejIYDPS3v/2NlEolzc3NUV5eHl28eDGZyaYlCwsLtGfPHmpqakpK/JJMaoTj5MmTOHv2LDo6OtDe3o7y8nIoFAro9XqMjo4mK9m0JSMjA++99x7eeustvP/++wASU9XLSEbtuXDhAimVShobGyOO40ir1dLQ0BARETU1NSWt1q4HhoaGSKlUxmQuFTNwk7xFO51OGI1GnDp1CjqdDh9++CFuvfVWFBYWAgC2b9/+bYuOQmFhIdra2rBv3z58+eWXUf2KmnZNpPaFw2AwkNls5q+NRiOdOnWKv7548SLl5eVJney6o7GxkYxGo2TxSbJmLEBHRwcVFBTQ4qJvXtrhcJBKpaKFhQXej9vtpoyMDN7Pt4RnYWGBdDqdZPPZkrVot9tNLMvyfTHHcdTY2Cgw4AcyplareQPBt0TmT3/6E+l0Ovr6668TjkuSPpqI8NJLL+Ghhx7i+2KO42CxWPDUU08t86/X6/Hpp59KkfS6xmAwYOfOnfjVr36VcFw3SZAffP7557BYLJicnOTdurq6sGvXLn7BPLA0eNDpdKtnzE9zXn/9deTn56Ompob/eIDiWEcuqkWT/72OQt7vjhw5grq6OsFsVGtrK55++umw8eTl5WFkZERURv9Rue2221BZWQmz2cy7xbXIMRb9Hq3Td7lcvNUrwMjICGk0mohhbDYblZSUxNi7fEu4MhZLTC06Wg0ym82oqamBQqHgW/pvfvMbPPXUUxEtO3l5efj000+ltfysY7Zs2YKf/vSneO211+KPJJGaNjs7SwqFgmZmZni3ubm5mGqfUqlMyYXuqcrk5CQplcq4V6UkNOpub2/HT37yE6hUKt7t1KlTvF07GjqdDuPj44kk/w9Fbm4uSkpKcObMmbjCJyRoi8UCk8kkcGttbUVtbe2KYfV6PT8go1VW4dFT42L1uOpUVVXhxIkTcYWNW9DDw8P46quvUFpayrv19PTglltu4d+lo6HVavnXseR+csqt7EXAUpFQikl6//79GB0dhd1uFx02bkGfPHkS1dXVAre2tjb+lSpSKw2463S6qK9YkrXyML0T/+12KJxQtKn2zbNMJkNlZWV8rTrewQHLsoLvk8PZtaNht9uJZdl4k5cELsLvaG5rzYULF0in04kOF5fBZHx8HIuLi9DpdPy9N998EyaTCRs2bIgprq1bt2J2dhYej0dMFuImkHdusBkMw4BhGMgYBszL/QC4sEvhUqs9+ygsLITT6cSVK1dEhYtJ0IFCCqiy3t5eQd/s9Xp5u3Y0dUdB6lgul0Ov1wtG3pTEQRnDMBhsYSAvZtBHXv869H40Hy4B8/JghFBi+/fkI5fLUVJSItiEJxbiMpicP38eZWVl/HU4u3Ys8Wi1WkxMTES8LwWByjP4MoOi8Q5Mc4dR7H9sBkV4duAocPgj9IcI1RcqaSutEqK0tBTnz58XFSauJwlt0dHs2tHQ6XQYGxuLJwsxwzAMuMFmFB2uQvsvK5Ado0KOOGBLAcrKytDb2ysqjAwQ9zx2u13QP4+OjsLlcuHBBx8UlTAA7Nixg19WlCy1TbCj8/jzgLkWj2YvF7LTMREmlB8m9VQ3ANx777344osvMD8/H9EPkVdwLQPEDTomJyeRl5fHXwfs2vGQm5uLS5cuAUjmq8z/YvoE0Hz/PQJX39eAdvT/8STQ8kNenQs9pabqBnwGp0DZASENhQAmsMWInwjz0UH7jYQwPj6O7du3A/Dt0nfmzBnBPLTYzE5OTsLr9UIul68cIA4YhwPjOIgHWeHzMAC4gU48ZqlC+3RRhMBJyZIkaDQaTExMoLDwLgAyMAyztK1bmHz7np6vDJy/ZkSuyZOTk9BqtQBis2uHquTg64yMDKhUKkHNlBrKzoYOb8PuDKhh33/CAF4ubgBa/j2sSk91dDqdv9yWZOV7CmF3ww12osNBkAHcUg0g2YoqdHx8HHq9HkBsdu3Q+EKvd+zYgfHx8aT10QyK8C8twHNvvru0M5LjNJ5kivFcSx/o2WKfx7DJp14fTStaFoNNuAN4uagbIAYysQNvl8uFrVu3irJrR0On02FiYiKp5sZ7n72MduYxqBm5z1iS80c8MM2Bnr1vyVPY5FOvjw6UE8uy/LpvIgpbUQfNb2LMpENODoflHVcYglubx+NBVlaWwK6dCFqtNunTlQzUePTE0kf6RBa/ug4RpP8xk2m4kYqNGzfyVkWGYfyy83dLRJh+14SP7n8K+pM+ofpfr+zoqGZ402DgzzzoXYrIj8fjgdvtRl9fH4xGY8SMxFpYer0ef/7zn0WHkwJhWv4ujEuDDVwBZGZm4tq1a2HvMc530UG/xOHsaUxUbUM2+NcrNR49YUe7CWgeWAQRYXHgKJ4rehLtdmHBezz/h46ODphMpqifvsZaWPn5+YIVoVIXcmjF6enpgV6vx+7duzEwMBB0x9+6ZakvZMAn6OXzBDJfo/09h0crWHAMQPps5CDo9YrghP2kGT884XtQOfsDVOEvkIc8t8fzd7S1teGJJ57AL37xi4QzzDAMbty4gZ///OfIyspKemt64403+L7twIEDePLJJ5OanhQwDAOO4wRl880338Dtdi/z63i3CY89dxJ47jGfQ0sfLJBBFqjvNNiL55qLUeyvFZ1NB3CypQYVYV49VCqVZBvNEBE2b96Mr776atVVZkrt1RkF8q/jDi6fsF2c4zTauZf4scjiwFGYtrF8ACLykv10VdD2UY9T+zS3bD6W4zjKysqiq1evip4PjUZNTQ21trYuSysZnDt3jnJycug73/kO9fWF27oyPXA4HML5/OlOMpk6Bfu68Rv9cf75aIIDA38ktE/7DCb20zI8llONzmlhhWEYBhs3boTXK7SjJkp+fj7GxsYEtZRhmKQMzH70ox/hjjvuQHt7O4qLiyWPf7Vwu938eR+DLQyYnAOwWP4LfdNLg+ttB96G5UAOmFf6/S16WW0YoGYgzLaPRBqNhqYuSfuBXHd3N5WWlkoaZzDB2uHixYuk0WjS/mvOoaEhuuuuu1bwtXTagQwApgc+APYWIScw8nRMYxyANuefBLWIAYfMzEzMu/8uae1M9rdYwX2b2WzG4cOHk2ZbXy2uXbuGrKysFSx6gXl3BjKCHQPdXvxrka/TJgygJecATqIZP7xv2V6BUKlU+Otf/yppptVqNebm5qJOu0nB559/jv7+fhw8eDCp6awGTqcTmzdvBkWw6AVLjhjgJhmzzXdleRtPyv3vxVUduGx5BOowJkCdThf3bFU0NBoNLl26lLBJNRJEhF//+teor6+PeV1bqkAhX08SES5duoS8vLyIE2xMyO+bKHR26boXTEZktabRaDA8PBx3piORn5+P0dFRFBQUJOU16+rVqzhz5kxafh0SbmJodHQU5eXlMccR0WofWgECLE2PSUuyP9FpbW2FyWRaNxvNBk8Xx8JNAbWw7CwyhkDXl6bpmAw56LoXmpwfYPKzvwDwV4ZvOP5+MHTdKwgb7R4RQa/X45133hGqqAhxRHMP5DM4z39f8OC3v/1tUjTRWkBEGBsb4xeAxIIsULChypKBjC/E4P85OTnwysnX+r7hwGTIBYULLBV4rPcYhoFWqxXMrwb7EzxkhLiD/wfCBH6/89ZJPPzww2GPG0xHPv74Y9x+++2itFPErS3CnTYYKLjS0lL09vZCe/t2gRATQaPRwOFwhF1WFG3MEOwndHzBZMhx/fp1vP766+j+8L8lyWcqYLPZBKtwYyFiHx0QcmiLBHzLTQPrioNbVyJkZGQgOztb8n66s7MT99xzD3+O5HrAZrMJ1tXHRMCGwi0sBv33Cr9L8t/zfn2DiIg+++wzUqlUvHuwn9DfYu6Vl5fzh4skGnfgt0ajoeGP/0cYJo3P71hcXKTMzEzRmwgIWvSS6hOeCB1o1bKbfZper9fjpptuwsQXl0DXvWFVZsBdzD3dD/6Zb9HB/mIJH9pXA8B/dr2Pbdu24c477xQO4NJgYUEkPvnkE7AsK3q8wQtarPo1Go3o7OyMGC6aSg93j4igu/MOgeqONTwRLXNjMuT4pfkIXnjhBZ/bhtRb/xUPnZ2deOSRR8QHjKXZh6pLIt/kgFqtFqU+IsbvV6UXLlyggoICSeI8f/487dy5U5K4UoUbN26QUqmky5cviw4bVdDcwuLSH8ct69t27ty57OCPRM59nJubo8zMzLjCh/LjH/+YrFarJHGlClarNe5Zvqj6LFgdhq5wAIDq6mpYLBZhmDjnkRmGwaZNm3DLLbfEtXVDMMPDw7h06RL279+fUDypRrhdJmImkRoW2H5Kym2kSktL6dy5cwnFUVFRQcePH5coR6lBYPspj8cTV/iERihKpRLV1dU4duxYItEIyM/PT2j7yKmpKfT39+Pxxx+XLE9rDRHhlVdeQV1dHTZu3Bh3JCsSrd91OBwJb18YzLFjx6i2tjbu8HV1dfTqq69KkpdUweVykUKhWFbGkh+1EO29k2VZPPTQQ4ltXxhEYP1YPASmImtqatLia4tYMZvNqK6uXmbbXtWjFjiO4/uPeFt1cM10OBz0ve99L654QjeCXw+4XC7avHlzwuMgyQ44e+aZZ+B2u9HW1iYqHIXZezorKwtOp1PU7Mz8/Dx0Oh2Gh4fXxSxVQCyPPvooduzYgRdeeCHhCCXB7XaTSqXij1pIhIKCAtFrrhPt21MNjuPo3LlzpNFo6Pr16wnHJ+kpOZ2dnYLDU+LFZDKRxWKJebCxsLBALMuuq3M6Yjk8RQySGoArKipw66234tVXX00oHo1Gg5GRkZgHGx0dHdizZ8+6moo8cuQI8vPz+U2AKNEeVpLqEoTD4aCtW7cmVBOtVivt378/Jr8cx5FGo1lX5112dXWRWq2m2dlZyeJM+pGF8TA2Nhb1qIZgrFYrGQyGuNJJRcQcWSgGyQUd6FctFgtpNJq4auXi4iJlZGTEtIFsQUHBqpyovhoEPpxLxmSMZCfZhRs4BY4VXmlwFi6sTqdbUR3bbDbatWtX7JlNYdLmWOFwA6fAoOxnP/uZ6LCxfI/V3NyMpqYmEblMTYgINTU1UKlUkmwuEI6EBR1OSOQfIcrlcnR0dOCDDz7AG2+8ISrewEk6kRgeHsbU1FTEqUhKIxPo0aNHcfHiRbzzzjvJS0RqFRFODY+MjJBCoaAPPvgg5ngsFgtVVFREjH+9TEVarVZSKpU0OTmZ1EWLSRl1h6O7u5sUCsWynQ0iMTQ0tKz/DRTE5OQksSwb827/a0k04ZnNZlIoFILBZLKEvWqCJlo64a6urm7FAVrg+OFwhE5Fpsvy3UA+FxYWyGQyUV5ensCal9ItWmzm5ubmaO/evVRaWrribBfLsssWwrlcLlKpVJLNf68GwWU0OztLBQUFZDQa414tEg9JGYxFY9OmTTh79ix27NiBwsJCfr/ucITb7zL4q0hKgwEXBc3OffLJJ9i9ezceeOABvPfee/GvFokzI2uGxWIhlUoV0VxaX19Px44dI6KlVaIqlSotjzrs6uoilUrFf4my2qyJoINV2dDQEH3/+9+nI0eOLPPX2tpKNTU1/HU6TkUuLi5SY2MjqdVqyc2aYlg1Qa+07sxgMNDOnTvpwoULvLvNZqPi4mIiSs+pSJvNRjqdjvbt2yfpBEU8rKnqDsVqtZJKpaLa2lqanZ3lFx4S+dS80Whc4xyGJ7QSu1wuqqysJLVaLcp2kExSokUH43a7qaGhgZRKJTU1NdGmTZvo6tWraTEVOTMzI8h7Kr3np1SLDsbhcFBtbS3J5XIqLS2l+++/f62zFBGHw0F1dXWkUCiovr4+psHiar/7p6ygiXyFUVFRQQaDgb773e9SZWWlZEtrpMBqtVJFRQUpFApqaGhY8344GqssaK/wMqRS208fXNp41tRBdq6Pjpr7ichnaGhra6OCggJiWZYaGhr4hQ2r0ToCaYyMjFB9fT2pVCoqKSmh48ePC4w3qWqlW/M+muM4oulOOggQWoJWfk53UpV/P9LQU2HHxibo0KFDpNFoSKVSUUVFBbW1tdHY2FjU+fF48jwyMkKtra1kNBpJqVSSVqulxsbGtBr9E0m4rjsuOALJBtHiP7GGe6YYS4Y2DoMtcvTev4iG+5Z/DE9+i5PT6URPTw/OnTsHm82GmZkZlJSUIDs7G7m5ubj77ruRmZkJIsLtt9++7PxMu90Ou90OIoLH48HQ0BCmpqbgdDrx0UcfgWVZlJWVwWAwwGAwpO2a8bUVNDhMv/sE1BU69NGzy06Ts582Y6DosKhzqebn5zE8PIzx8XHMzMygt7eXN5UGBBgMy7L86tENGzagqKgILMtCo9GgsLCQ3yo53VllQQtPyCMMoIUpxkTnNE5UZC+5h/l641sSY9U29gh3TC/jdOIvALbnsEL3VRBycP1eU6W2SqyaoMOKjgheALKg85rCeyPJT/gNrkxiKla6VoqkCzq0WAT7SGdnQw9gzOHb/1tQ4M530TnI8e6rdZ7zSoJM1y4l6YJevsdo8O8i/Nu7JrxdkQPzQJAqvWAG8yKH++6LEjhJpKsgV2KNR90+uMFmyIueB+Df7Mb80dLhoN+SMESE/wfqWfkmTLUt+AAAAABJRU5ErkJggg=="
|
<image>如图,已知AB是⊙O直径,∠D=30°,则∠AOC等于()
Choices:
(A) 155°
(B) 145°
(C) 120°
(D) 130°
|
120°
| 69,718 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAI4AAABQCAIAAABAq9oAAAARpUlEQVR4nO2deVQT19vHZyYTE5IQFQRlrVoR4+HghqLVotBKXRADSqkCRWRVUFGPVZajUnGpCpLqQalQqHhkO2yCpa0gckCxFgQXOFQFKVRA1gDZJ5m8f9zX/KggAsmAUT5/JZDc57n55s597nOfO4Hlcjk0jjqAjLUD4wyVcanUhnGp1IZxqdSGcanUhnGp1IZxqdSGcanUhnGp1Ab0na8oKyvT0tKaOXMmQR60tbU9f/5cJBJhGGZsbDxnzhyCDKk77xhVDQ0N/v7+PB6POA/a2tp27twZHx9fUFDg6Oh4+/Zt4mypNYONKgzD8vLyKBQKlUolzoO5c+daWVkFBASYmJgsXLjQwcHh3r17pqamxFlUUwYbVYWFhWZmZitXrhSLxcR58Pz5c4FAoKmpCUHQ6tWrNTQ0GhsbiTOnvrxVqoaGhiNHjsTHx4O5ijgPSktLp0+fPm3aNAiCZDKZlpbWxIkTiTOnvgx8ARQKhdevXz937py+vn5sbCydTifOg87OTkXMcuHCBWNjY3Nzc+LMqTHyfty9e5fNZnt5ecnlcm9v7yVLlnA4nP4vUx6ZTFZRUbFu3bqysrJ//vmHw+Ho6+s/evSICFsfALC839Zid3d3a2urrq4uk8msq6sjk8l0Ol1bW1vl3xI+n3/ixImamhptbW0Mw+bOnevn5wcmrXH6M4BU/Xn48OGLFy/YbDbR3rS1tU2ZMgWGYaINqSNDyla8ePHCx8fn0qVLLS0txLmC47iTk9P+/fvv3r1LnBX1ZUhSyWSyrVu3tre3u7i4cDgcmUxGhCsYhjEYDB6PFxoaGhwcXF9fT4QV9WVIUkkkEkNDw9DQ0DNnzpSWlm7cuDE1NXUoV85hAcMwhmEsFuurr76qrKx0c3MLDw9/9eqVaq2oL0OSCoZhsApeuHBhcnLynj17cnJynJycVJ4EIpFIPB5PLBbb2NisWrWqsLDQ2dn58uXLKv9aqCMjyayvXr06MTHR1dWVw+F4eXk9fvxYVd7IZDKgSk9PD4IgdnZ25ubmqampdnZ2eXl5IpFIVYbUkZFvgrDZ7KSkpGXLlvn7+4eEhDx9+lR5b+RyOQzDOI4Dwbq6uvT19b/44gsWi3Xq1Kndu3dnZWUpb0VNUWq/ikqlenp6pqena2hoeHl5hYSEKDm1IAgCQRAMwzAMA9kEAoFAIGAymQ4ODiiKRkREeHh4VFRUKGNFTVHB1qKOjk5oaGhaWhqfz3d3dz937hyGYUq2CdRSPJDJZJ2dncbGxvb29iKRyNfXd9euXc+ePVPeeTVCZbvAU6dOjYqKOnnyZF1dnbOzc3p6+gjy8WAwDRhEgBHG4/EsLCw2bNhQX1+/ffv2Y8eOtbe3q8J9NUDFG/YLFiw4f/58aGhoVlaWk5NTbm6uChsH44zL5eI4bm1tvXLlysrKSkdHx59//pnL5arQ0PsJIbUVCxcuTExMdHNzO3/+vKen59CzD28bUn0B10Mul6uhoWFhYWFjY3Pt2jUPD4/Y2FiC1ubvCQSWwTg5OWVmZq5YseL48ePe3t5PnjxRvk3FHAZBkFgsFgqFKIquXbvW2Nj4l19+2bhxY15envJW3k+IrVii0WgeHh45OTmffvrpgQMHgoKCOjs7B3l9XyUGBIw5+DVyuRzDsN7eXl1dXTs7O11d3aNHj7q5uT148EDFPXkPGI3iMgRBDh06dOnSJU1NzS1btly4cEFVsQC4GEqlUgzDhEKhiYmJo6MjmUwOCAjYu3fvo0ePVGLlPWH06gA/+eST4ODgqKiox48fu7i4XLp0Sfk25XI5iURCUVQqlcrlcrFYLBaLTU1NHRwc2tvb/f39jx8//u+//ypv6H1gtEs2WSxWTEzM4cOH//jjD3t7+4yMDGXyewiCyOVymUwG1s44jmMYJhAI+Hy+mZnZunXrSkpKvv322xMnTnR0dKiuE2PD2FTXLl++PD093c/PLzU1ddOmTcXFxRAETZgwAXziQ0culyMIQiKRQOiIIAjIS+E4zufzMQyzsbFZunTpzZs3v/7664SEBEI6M1qMWSE0DMPr1q1LTk7evHlzZGSkv79/fX29XC6nUCjQ6/ABgiAEQRQhOEg1vdEIEIlEIkEQhOM4UAu8TCqV9vb2UigUe3t7Fot15coVNptdUFBAaK0ccby7EJogrl+/3tLSYmBgsHXrVjs7u7S0NDs7u6amJisrKxqNxufzoddRQ18Z3na1VKioeABUJJFIOI53dHQYGRnp6+u3tbUdO3bM1NR006ZNtra2o9hdFTAGo6qpqcnNze3+/fsikSgkJCQiIoLJZHp6eiYkJOjr6xcWFtbV1aEoCira+n7uOI4Pq+xCkaRHUVQkEkkkEi0tLUdHRxiGjx49umPHDvUKEcdAqoCAAC0trfDw8N27d587d66kpAT83cLCYvHixXFxcUwm8969e5WVlQwGg0qlyuVyqVRKJpPBEBmWLTCBQRCE4ziI6VtbW2fMmGFvb9/W1ubl5bVv3766ujrVd5IARluqq1evvnjxgsPhgKddXV2Kaxqfz5fJZIaGhqdPnz558uS0adMyMzOfPXvGYDAYDMYIRhX0elAq5jMYhhEEEQgEIpHI0tJyw4YNz549c3d3P3PmjFAoVG1PVc5oS1VeXu7s7Kx4mpKSYmhoqHgql8slEgkEQebm5pGRkZGRkVKpNCUlpa6ujkajUSiUN5KEYAKDBk0egtkL/FfxGMdxgUCA4/iXX365fPny4uJiNpudnJzc1dVFUMeVZ7TDChKJpKenBx4XFRVVVlaCSH1ALC0tLS0tMzMzY2Nj//7778WLF0+dOlUsFkskEiASiUQCe/wUCkUikfQPEQGKy6Bi5oMgCFxLOzo6mEzm8uXLJRJJbGxsRkbG+vXr3d3diei7koz2qJo9e/b3339fXFycl5d3+PDhAwcO6OrqDv4WBweH1NRUX1/fhw8fVlRUCASCKVOmoCgK1k8gNBeLxSBQHC4gx9Hb24vjOMgixsXFbd68uaCgYET9I5DRHlU+Pj5cLjcjI4PBYGRmZg7xjAmdTt+6dauTk9OZM2fu3LlTXl5ubW0NPmXo9doLBHuDBPQDAtZhZDIZx/G2tjYjIyNDQ8OamprQ0NCkpKTAwEAzM7MRdlXVjMG66rvvvhvZG8lkMijlTEpKys3NNTAwMDMzo1KpfD6fRCJJpVIQIg4r9EAQRCKRoCiKIAiZTObxeCQSicVizZo1q7q6es+ePZaWlh4eHiYmJiPzWYWo37Ht6dOnBwUFxcfHT5s2LSMjo6qqikwmk8nkkbWG4ziFQgGDEsx/iqSUubn5qlWreDyeu7t7ZGTky5cvVduR4aJ+UgFMTEw4HA6Hw5FKpUVFRa2trUwmk0ql4q+B+mSnBgcMR+h1uKEIQPh8vlQqnTp1qr29/c2bN93d3U+fPt3b20tktwZDXaUCWFlZJSQkHDp0qLm5+datWy0tLdra2n1H2FAuhm+8RhHQA80kEolIJLKxsZk/f35eXp6jo2NSUpLKOzIU1FsqCIJQFLWxsUlJSXF2dm5ubs7OzhaJRJqamiQSaQTZjf6APCSfz580aZKdnR2LxYqOjt6yZUtRUZFUKlVJF4bImKVrVc62bdvAMjYpKUlDQ2PJkiUMBkMsFiv5gYI4BUSbGIbp6ekZGRmBg9KmpqbffPONtbW1qrowOGo/qvoyadIkPz+/tLQ0KyurGzduVFZW4jhOo9EU2YoRoHgvCOvBIkxHR2fDhg0UCiU4OHjv3r3V1dUq7cfAfFBSAXR1dYODg5OSknR0dEpLS6urq+l0OhAMGmjTa3BgGAbJQ6lUChZtIH3M5XL19PQcHBzq6+tBETjRIeIHKBVg9uzZHA7n1KlTTCYzOzu7rq5OQ0MDCKaQaigzmeLUNIqiYJMTDC8EQYRCoVAoXLp0qa2t7V9//eXq6hoVFaV8Efjb+GClAsyfP//8+fPHjh3j8/np6emNjY0MBgPsp8hksgkTJigTd4D9MD6fD8Owvb29hYVFfn4+m81OS0sjotr3A5cKYG1tffXq1f3799fU1OTk5HC5XCqVCjK8yh8RBy20tLRoaWl99tlnS5Ys+emnn3x8fJKTk1Xh+//4KKSCIAiGYXDoYdu2baWlpeXl5QKBQFtbG0VRJY9EKqpIBQIB0H7t2rU6Ojo//viji4vLIPsGw+VjkQowceLE7du337hxY+7cuRUVFUVFRSiK0mi04SZ5+4IgiFQqBbMXqHTr6uoyNjZms9kwDO/fv9/Hx6eqqkp55z8uqQBMJvPIkSPR0dHz58+/fv16WVkZiURiMBiKiOONWprBW1PUSymupSApBWoRHRwcOjs7d+3aFRISouStJD5GqQAzZ848cuRITEyMtrY2SPsqhpciQz/EyL7vRjPUp/JeIBCIxeJly5ZZWVnxeDwnJ6fo6OimpqaROfzxSgWYN29eTEzM2bNnhUJhbm5uV1cXnU4HxaPDyvkOCNCvp6cHhmFdXd3169dnZWV5enpGRUWBuoRh8bFLBbCxsUlMTAwODn7+/HlpaWlzc/PEiRPBRvNwC377A5bPEokEw7A1a9aYm5unp6c7ODhkZGQMq51xqf4fCoWyZs2anJwcW1vbhoaGrKwsqVSqZMQBkMlkKIqCG6hwuVw6ne7o6GhoaHj27FlXV9ehnxMcl+pNdu7cefnyZScnp4KCguLiYgzDNDU1+xapDbdBRY0UgiAgXOzo6Jg+fTqbzaZSqaGhoTt27Lh///472xmXagB0dHQCAgJSUlIWLVqUm5tbUVGBoiiFQlGU6w4L6HUGS7HnCUEQOK4yY8YMW1tbBEF27dp18ODBwdO+AwSjzc3NnZ2dQqEQhuFFixZBEHTt2rVXr17t3buXkA+mD15eXrGxsURbGRZNTU0XL16sra0FVe/g0+9/ymFYbcpkMsWpSxzHqVQqgiClpaUdHR2ff/65p6enjo5O/3cNsF9VU1Pj6+u7YMECOp1uYWGxc+dOKpWanZ1N9AEKsVh8586d8PBwFH2PdtHodDqDwYAg6PTp0ytWrKDRaG+kDd95KLY/fddtIAVMIpFoNBqGYUFBQRcvXgwMDHRxcXmj7G7gJZ63t/fly5cfP368b9++mzdvcrncwsJCgUAw3H4OCxiGwU3mlJzGVQ6CIFpaWpMnT+7p6ZFIJFKplKD9XzqdPmnSJGCi/47lAFI1NjZu2bLF1dW1sbHR0NBwx44dRLilXlRVVVVWVs6aNWvOnDk0Gm3EBVKD8+TJk9raWnBgSSKRWFhY9K1CHCCs+O233ywtLblcbmtra9/6cuJISEhwc3Pz8fHx9/d3cXFRyZ21VMjhw4eDg4N7enpu377t6OhI3MmRlpaWgwcPtre3d3d3x8XFvXkPvzfCFRzH9+3bV1xcLJfL165dGxERMdyAZwRUV1fb2NjU1tbeunXLw8OjoKBgFIwOkQsXLrBYrMbGRrlcXl5e7u3tjWEYQbaEQmFwcLBcLv/1119zcnIePHjQ97//mcBlMllJScnLly/19PSys7OfPn0aERFB0DeoL5qamosXL+ZyuZ2dnWFhYYTe1n1YdHZ2xsbGRkdHg+MqM2bMCAoKIi7quXPnzp9//unr6ysWi/ufXP6P1ZaWlitXrvD5/PDw8Obm5rCwMBaLRZBbfcnPz6+urnZ3d4+OjjYyMhoFi0Okvb1dW1sbrFggCJo8efLkyZOJM/f7779v27ZNKBQO+CMs/5HKwMAgLi6OOFfeRklJSWRkZH5+/pQpU0bf+iCgKNrR0dHd3Q3u/t7U1CSTyQj6MvF4vJ6enpUrV+rp6Q14Lm/ssxW1tbXa2tqzZs3y8/OrqqqKiYkZa4/+h4GBwbx588LCwvLz8xMSEi5evEjQ75V0d3f/8MMPr169YjAYKIoO+LsAY7zYbGhoCAwMFAgEYWFhMAwnJibGx8ePrUt9oVAoQKG8vDwNDY3AwEAmk0mEIS6XK5FIZs+eLRAI3naNHXkto0ro6OgoKyuDIAisr42NjRUTwzhvMMZSjTN0xn6uGmeIjEulNvwfp3WTRxNNTfkAAAAASUVORK5CYII="
|
<image>如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()
Choices:
(A) 42
(B) 96
(C) 84
(D) 48
|
48
| 69,719 | null |
48
|
"iVBORw0KGgoAAAANSUhEUgAAAJQAAABcCAYAAACIh5wNAAATwElEQVR4nO2dfUwU577Hv7P0FhOrcO16GOvatbrVtYthLTbdWhrsKXhoywJeaLQR2yVBEWlTehG0CffiH5pyhF625+AR3CZilIRWWlelqbxYMWquBhrWuF717MKxxcbdQlt8SV3aZX73D9iFfWXZd3A/CVlm5nme+c3Md57XeX4PQ0SECEGEg779IP61ZBtSl4baFv/DC7UBjxqEPuxYVxhqMwJGRFBBRlV2EJxcjiVLZ2bBEBFUEGlXlYJSU8B8DRAigorgNRyotw3tlIqtS4CT6WKIZuitn5lXFXbwsLO+A/u2rgMAyJfPwNr4GBFBBYF2VSmqqqrAMAx4or+AYRiv0zpz5oz1/3BsoEcEFWCotw0dlAoiAhFB13YAy5cunlIaRqMRe/fuxaJFi6BUKjE8PAwAPgkzUEQEFUCotw28/+zAX8eKOgD4161ej+NfvnwZ77zzDuLj4zE4OIgLFy7g1KlTiI6O9t22SXI3r3M/iuA7nOOuA2VyAkAAqE0/uq80AwRmdF9GWb3TpEwmE6lUKkpISCCpVEoNDQ00PDw8firOyck8OBYsGKIwLIinEwSAsf54FRcAvv/+eyiVShw9ehRpaWl44403wHEcdDodgNHc6uHDhxgcHMS1a9cAAFKpFDExMZgzZw4SExMBACtWrEBCQgLEYrE/rm7KRATlZwgcmAk1CYtmiGi0zmOnPLVajfr6emi1Wrz55psAgNOnTwMAVq1ahYSEBACj4pk3bx7mzp0LqVQKANBoNLh37x5++eUXaDQaAMCVK1fQ3d2NWbNmISsrCxs2bMDq1aud22qxyY9EBOVPnGRTzh7a4OAgDh8+jL/V/h1P/vs8zJs3D1euXEFcXBxycnKQk5OD+Ph470wYO59Go8Hnn38OtVqNoaEhZGZm4u2330ZycrKXF+cZEUEFAAIAJ0Lq7u7G/v37cfr0abz88svo7e3FH3/8gcLCQqSnp0MoFPrfFiL09fWhpaUFtbW1WLhwIaqrq13mWhPjeZV7haLiNpOxVozHfsxmMzU0NNDqxFUkFotpz5499Prrr5NAIKCmpqag26dSqYhlWXrrrbfo1q1bfk8/IiifGXHcxRHdunWLduzYQXw+n3Jzc+mrr76igoItxOfzSalUktlsdtY4dEwqAK06k8lElZWVxOfzqbi4mAYGBrxKxxmRfigPIZc1A9tb2NraivX/sR4ymQyzZ8+GVqtFbm4utm/fjvnz46DX6/HBBx8gKirKo1ahu2LH2wp1dHQ0du7cievXr+Oxxx5DfHw8Ll686J+ed79J8xHEkkMMDQ2RUqkkkUhEycnJNkVZbW0tsSxLXV1doTJzUjo7O4llWWpoaPA5rYigaPKiw9VxrVZL+fn5xOfzKT8/n65fv249ZjKZSKFQUGJiIvX39/vV3kCg1+tJIpFQUVERmc1mr9OJFHmYvOiYeHxkZASNjY145ZVXkJWVhdWrV0Ov10OlUlk7EwcHB7F27VoAwMWLFyEQCJymS2HUwF66dCkuX74Mo9GItLQ03L171214l7b7TeIznP7+fiovLyeWZSknJ4c6OjqchjMajSQUCqm6utpteuEwTOKK8vJyEovFNDQ0NOW4j7ygJnuwHR0dtHHjRmJZlsrLy90WXyaTiWQyGVVVVfnbzIDi7B6Ul5dTSkrKlIu/SMemEx48eIDGxkZUV1eDz+fjvffew8aNGxEVFeU2Xl5eHsxmM44cOeJwjAIwzOFv7G2Uy+UQiUSoqanxKLxlZ4Qxrl+/TgUFBdZKtkaj8TiuUqkkmUxGJpMpgBYGl/v375NEIplS6++RE5Sz7L2pqYmSk5NJKBSSUqmcct3h9OnTJBQKHYrDcK4neYperyeBQEAXLlzwKPwjJaiJD9hgMFBFRQUJBALKysqilpYWr9I0Go3EsixdunTJX2aGHR0dHSQQCDx60WaMoDzNDS5cuEC5ubnE5/OppKTE5/EshUJBFRUVPqUxHSguLqbi4mIicn+vZ4SgJhPTgwcPSKVSkUQiocTERGpoaKCHDx/6fF6tVuvxmzvdMRgMxLLspC/gjBCUK/R6PRUVFRGfzyeFQuH18IcrwcrlclIqlb6YOG3gOI4qKiooNzfXbbgZKajjx49TWloaCYVCqqys9OtouoXOzk4SiUQ+DVNMN0wmE7EsSz09PS7DzBhBDQwMUGVlJQkEAkpLS6Pjx48TUeBaWlKplJqbmwOSdjijUqkoOTnZ5fFpL6hLly7Ru+++a/22R6/XB/ycLS0tJJVKA36ecMRsNpNIJKLOzk6nx6fl4PDw8DAOHz6MVatWIT8/H0lJSbh9+zZqamqwdGngpnnT2KBCU1MT8vPzA3aecMRy7VFRUVAoFDh27JjLgNMGy1eQLMtSbm6ux51t/sRsNlNMTAz98MMPM6Lj0hPsr1Or1dLChQudhg1aDkU+DBl+/fXXkMvlSEpKQmxsLDQaDY4cOYI1a9b40ULP6OzshEgkwqJFi8J+bM5f2F+nRCLBrFmz0N3d7RD2sVAYRZMMlBIRfv75ZzQ2NqKmpgaLFy9GYWEhTp06ZRM3FA/0+PHjWL9+fdDPG04QEdavX48TJ044zp4JcG45ZXp6ekihUBCfz6eCggKfKtmBKJIEAgFptdpHprhzxYULF0gikTjsDwtBmc1mOnr0KMlkMhKLxVRXV0f37t0LtVkOdHV1kUgkCrUZYYHZbCaWZR1e+KAVeZascmIxdfv2bezfvx+fffYZXnvtNVRWVgZ8ZqsvfPfdd0hKSgq1GUHF/plZiIqKQlJSErq7u21a1kEVlMWwM2fOoL6+HufPn0d+fj56enrcfncdLpXfO3fugGXZUJsRVNzd+yeffBIGg8Fm37igrF4dYDs/35VbEQ/cjUwUw927d3H06FEolUqwLItt27bhiy++cJ8AwsuplsFgwMqVK0NthmcQQIwXHmGmwKJFi2A0Gm32WbsNyrIYMAwDhjf2yzDIKKt3bZEHljIMgxs3bmDLli0QiUTQaDRQq9U4f/48Nm3a5Mu1hASj0RiSHIq86XIJsJgAgGVZ3Llzx2afVVD71IQDZXLUtevAEYEjHZiqbSg72DYhOGf9z/4i7bctU43kcjmkUil0Oh1UKhUkEokfLym4GAwGl0VzIAmnXHoiAoHAocgb79hkgL7rwGspIjDgwECE18vkuNnXB8AimAnB7S6SYRgYjUbs3r0bCxYsQHNzM8rLy6HT6VBUVITY2NiAXViwuH37NhYsWBCSc1te2DNnzmDFihVYtWoVLl686CZC4G2Ki4tDf3+/3XnH4PSthIxSmyZgaQaotL51wh57xxCj252dnbRhwwbi8/m0a9euaTFT1huioqJs3BOGArFYbHW1KJPJRndaHL5M7BsLQjeZ0WgkPp9vs89aKe/4th0l6alWodWXZaDqpBy6EykARwCPwcQc6sGDB2hqasInn3yC2bNn4/3330djYyN4PN6kWTSFUcttqkw2lSokjN1K6z31yj/j1OHxnIzcWdRcljnuUBQAIXOHoyS50a8gt23bRgsWLKB38xTU09PzyPQaCwQC6u/vD+n1dnR0kFgsJqlUah0ct7cmWNZptVqH3nJwNFbcZZa6vVFDQ0OUkvJnmj9/Pu3Zs8ejryBdpTddBSiTycJ2dss/22rHMgOeWy/DvmD/3L755htKS0uz2cdjAPT29SFjuchJMTTeqouJicH773+AFStWoLy8HIWFhWhsbLQ6YXeGq2JtuhZ3zprJoYDIdumh+rIMLFvXCh2NgGgEHOmAfQXI3HnQLiYHX7B/bgaDwaEbhQcAB2sL8d7Wrfid4/A7B/zO2Ry2IpfLce7cORgMBqxduxY1NTWIiYnBxo0b8eWXX2JkZGRSo2gaz3yPi4uDwWAI7jVYT8VZNxmGATO2faBMjm03nwPRSeuCRAxEqGo/gJP7WqC3EZH3Xys5u2Zn/XI8hmFQdRJYJ2LQ2TeqwH9jCJyTdqdFoXFxcSgqKkJ3dzdu3ryJF154Abt370ZsbCzy8vKgVqtdGmZJYzoKi2VZ/Pjjj8HNYRmLIHijjRnrAR707XXYXtWCtv+pdIjGo/FwE/H2rju75v7+fkdB0dgaJESEdSIGADe6yI0HzQQiglAoRElJCa5evQqNRgOhUIiPPvoI8+fPx5YtW3Du3DmXBlpENV3EtWDBAty+fTvIZ+VZVWD/UA/WbkdGWT1Sl04Qytg/40uA2BZz9qNqvvDTTz85jhyM17hGf4YndDUNj4z/OdueuM8ejfb/qGTnR7RkmZhYlqWioiJrhdZZOs5wFc7dfnubJjvHVAinz1dG6J+UAVBdu87p8dIMS8V8/AZwHGdTsfalaTQyMkJxcXHU29trs9+1oMa2TWbb09qLabL/iYj+t+s7KioqIoFAQEuWiam4uJiuXr1KHMe5fOCepu1K7IESleUDu1DD6VsJALX3Oh7TtR0ggEdtva4v3Nd2tqsP7HjWvI+xybUcO8swWll/3K5eZ1uJd87zzz+P2tpa9Pf3Q6VS4eHDh3j11VexbNky7N27Fzdu3HAb3/6c7sJMDOtJvMkgu+I4MzPTbR0xaCxdggwAvX162IyxQo+SdYXIKDuA1CU8uGrZ+VoLVKvVzj+FtleYs7fZ1ZvuSe5ivz3x/5aWFlLkb6XY2FiSSCT08ccfW+fO+5q2u1zNFzo6OigxMdF/CfrAgTI5IbPMum3JtTLK6l1mQf7qARSJRNTd3e2w3yood8WDJ4LypFhydcxsNlNzczPl5uZSdHQ0SaVS+ts/6qxjgt6k7S6OpR7hTQer2WymuXPnhs14ZWnG+OgGwzDUpndczcHfWJyEOMPqEtFSbLkqJpwVd+7iTSwGPT32OwfQH8NQq9Vobm7GqW9asWbNGmzIXo/s7Gzw+XyX8e33TbTLmY3kw3ji5s2bIZPJUFRU5FX84MAhUOtr7t27F3fu3EFtba3jQU9V6c9iw1OGhoaooaGB0tPTiWEYSktLo4aGBo/d5/iSE7lLc7pMRfdnBmW5h5ap6GfPnnUaziNBhUJM9gwMDFgdNQCgnJwcamxsDJlPy/BxljHiWjkBKPJ8cpbhaX9RsDEYDFRbW0uJiYkUHR1NGzZsoObm5qC61jl79mxYufPhXG74j2njzseXounWrVtUXV1NEomEnnjiCVIoFKRWq/1tolPS09OptrY2KOcKNRzH0Z49ex4th2M6nY4qKipILBZbXUO7cjvjDyZziRjyz3T8eHpnLhGdXd+MdXx/7do1NDQ04NixYxgeHkZ2djY2b96MF1980es0yUnLMC8vD0KhELt37/bRYm+xb80FpnX34YcfAoBLJ/hW/Kfh8KWrq4u2b99OAoGAhEIhFRcXezx8MlkuE3ErbcsjIaiJdHZ2WldLEIlEVFFRYbMsmTtcicuV43tP4oY7Op0u4vjeU1paWkihUFiHfiorK732W/7pp586XZpjOgnJ3tb79+9TfHz8lJbmmLF1qKlgNptx4sQJqNVqHDt2DCtWrEB+fj4yMzOnNLEzLy8PAHDo0KFAmRpU1q9fj8WLF09eb5qIfzU+/TGZTNTU1EQ5OTnE4/EoOTmZ6urqPJqUYVnebDqvlWfBsrzZyMjUOiEjgnLD0NAQHT58eEpDP54uwBjORBZgDAL2Qz/Z2dl09OhRMplMDjnOwMAAvfTSS6RQKKbVcmf379+nnJwcSklJ8Xq5kYigXOCuWPJk6OdRXcQ6IigfsQz9xMfHW4d+LKs4EBH9fX8tsSxLXV1dYx3XTuokzrTrp2qW/YvhbLuzs5NYlp1Sa84VEUH5Eb1e72To51s6ffq0dc3icBqmGRgYsPp995fP94igAoRWq6WSkhISCp8hlmUpLy+PsrKyiM/nk1KpnFKx4m+xmUwmqqystC5n4s/FlSKCCgJdXV3WWT9PPfUUPfPMMxQXF0dNTU2jAfycObkToEqlIpZlKTs72+fFJ50REVQQ4Yjo3NlOKijYQrFzYyg6Opr+9Cc+/Xf5f7l8uPZz6bxBr9eTUqkkkUhEycnJXq8b6AkRQfkBtw/czaFTp05RamoqPf744xQVFUVxcXFTGrh2R09PD+3atYvE4tGJtgUFBQH9lMdCZOglhFimQ46MjECtVuPgwYM4c+YMoqKi8MQTc/HCC4mQyWQAgISEBMybNw8xMTGQSqUAAI1Gg7t37+LXX3+FRqMBAFy5cgXd3d2YNWsW0tPTsWnTJsflMwJIRFB+hJzNpLGZRMuhLDMKVSdtg9S161DwmghgRpduO3FcjUOHDqG1vQ1PP/00Vq5cid9++w0jIyMYHBzEtWvXAABSqRQxMTGYM2cOEhMTAQDPPfccEhISsHz58qnZ6cExjwh4HhhhAqN9UKWZ4z4JRqeNg1p1jmXjxFk/ACgtLc1pz3w4ERFUkOFIR3ImnXRj4rLM9m2bZI2kgYEB6yybcBZUpMgLMvr2OpR08HDir1sBAGWZDG6K663bVh87dr4mpovXv4igAoy9GNpVpVi3tRrAqGZa9YTUJbbLaEwmoHAW2LRcc3g6Yf/gO76uRpuewHEcWg/uwDoRg/Y+W28ok4klXMUERAQVeGj8l3rbsA87kLp0VBR/3lKADACt37Y5RpumBUdEUIGGGf/t+LYdpW+kWsXC6+3DSQDPPrPEMRrDOPVzGu5EBBUELLJob6lGSsq6Uf+i0CPj2b8AkOO1lCW2AcfwxM9puBGplAcBfXsdnl1X6HggoxR0Yl/wDQogEUFF8CuRIi+CX4kIKoJf+X8/Z+fOr389HQAAAABJRU5ErkJggg=="
|
<image>PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是()
Choices:
(A) 70°
(B) 110°
(C) 70°或110°
(D) 不确定
|
70°或110°
| 69,720 | null |
70°或110°
|
"iVBORw0KGgoAAAANSUhEUgAAAG0AAACCCAYAAABM6kYBAAAPFklEQVR4nO2dbWwU1RrH/2e3uHKtNCTV/SAG6LaxvRahaigNkhT7glBbMGmliSHECO0aMBpgi8RAmmhu7As3fhBoQWyIaWLwA0KLtdvCpVFMMU1K1KZLutsrAUx7XWKatOIads79MDvTedvd2e3Ozux2fknZ3TPnDGfnv89znvMyZwillCIGmpubRa8myceidwVMYscULQUxRUtBTNFSEFO0FMQULQUxRUtB4hKNEJLoepjEgAVg5Klhu9sM5nVWKGeSFCyARS4SAUQDJXQ+OwV3zPSsesFeec7bCcUjBN7BkxjwCY4DADEtTG8E5sKAilTz4lDFPnFuCpCYRipNtMAidH3CAONM02kw1VVY7RBYVujwvXv3klZBEzkWKnB9nH4Dpw+DVpQDvfIocfbPOZw/fx719fWY+t90cmppIsIiaq4AUJ8bAyhDQw7QU12AXGoROc3MfyzFO++8g7y8PLT+6+MkV9cEADKkCYc7r6K19WNgcgA1+bkAEcYhbMifkWGRzadNT0/DbreDUmr24zSG76dRsG6xra0FhBAQR6VydgUCgQCKi4vR0NCA+/fva1dbEwBcPw0AQm6RUgpKKSbcp/CMY5Wqk9hsNvz888+w2+3Yt29f9AImCyIDYNsxy4FB0IvzbdR/f/UByAlTjBWaYt51Pv744/jwww9FuQKBAGw2G5vXdJsJw9JxuAaW3K3ApeMY8LFiNG0nqGxoR7vzFdQ0dSoUY12qVALpcpMNGzZg//798Pv9pmAJxOJsuQRKg6A0iAoHm9h6kYKhFAzD4FJro2JBpT62VJjvvvsOS5cuRUVFRYKrvbiRRY8c0exCjd1kZmaitbUVf//9d2y1MomIBZC7tXBp8UAI4ds1AHj99dexd+9e+P3+hJx/MWIBlOfHtGqDTp48CQBYs2YNZmZmNPk/0p2w7lErsrOzcebMGUxPTyMrK0t1uXSNPsN/L+HcpRjdJsXsdjv//siRI3C5XJidnQ2bPx0FAyJ9L0vYuWhdZzK5dvO9996D3+9HXl4ebt++LTu+GKCQRORUOdijSJJ7jOba7HY7urq64PP5sHLlypjLpwOybyecfRF8fwImOZYW7oJL0x0OB//+8uXLOHbsGObm5tJeMLVwyzwMu9CjuLgYv//+O/Ly8nDjxg29q5M0+s+4QIiVHbTf3gQKLw4fPgOA/ZFTSpMjWjxtU3Z2Njo6OnDhwgXk5+drUCtjQX1uEEJwYiI3NEJFEfx3OSwkD8hdxecjhOjrHtVQXFzMdw08Hg+OHj0aMcqUYrRgprm5WTYXSeHFjtwtqGnqDA0bsmO7FkclTjVVI2f1ajYjw34Xw7pHJZYvX46JiQkUFBSodpmp0B4OnunEJVTjeMueUMq8LI7cZ+DIyQsls98l6Z3rhWC32/Hll1/iypUrMXXMjQyFFyca2+Hq7EcuJxYFGEJBKFCxt01WJqUsjaOsrIxv52ZnZ3H8+HEEg0FVZY3mLuGbxEUKOHIEc5eEXaoo9hIMO0GNFBAt2kWem5vDtWvXUFhYiCtXrkQ9nxHdJYHCIm9ZPUNLHJMVPS6EaBf5ySefRE9PD9rb2/HHH3+EzceJbzRLYxw5qAYwOTkJ6f0R1OdGx6BXVsbwokWDE7Wqqgq1tbV8+vnz5xXzGc3SrMjF/tOH0Na4FZ2Dk3y6d6ADlgODcJbniswwaSF/sgkEAvjiiy9QVFQUMco0gtVRsMHGhPsEnBV5bKeaEBwctIBebGUzSX5nKRU9qsVms6GnpwfffPMNhoeHUVxcLDrOjeUZweq4GuRWOEGpU1WZtBSNY9u2baLP/f392LJliyHEWghp6R6VCAaD+OSTT1BUVITr16/rXZ0FsWhEs1qt6Ovrw/vvv4/PPvtM7+osiLQSTc0CpZ07d6Krq4v/7PP5NK9Xokkr0eJZoHTo0KGoUabRSCvR4uHChQtwOp1wOp0IBAJ6V0cVaS+amr5YQ0MDRkdH+fWZRl+TmfaiqQnvhXkopWhubsamTZswNjbGpxmJtBctVggh+PTTT7F792688sor/M0j8QinldimaAKEF/mtt97CnTt3kJ2dDQBx3Y+gVSfeFE2A8CJLL/iJEydQUlKC0dFRAPq6zLQexloI0rWWBw4cwLJly1BZWYm+vj68+OKLutXNtLQQUstRcm179uzB+Ph4VMG0tkJTtBBq2x+ujQOAr7/+GuXl5fB4PEl1l6ZoC2DHjh3YunUrSkpKcPXqVT5d61kEU7QFcvDgQXg8HtmcXcxEMdT53f9M0RKC3W5HZmYmAODmzZt47bXXcPfu3dhOorQToOQwIaZomrBu3TqUlpaipKQE3d3dqss1bWdn0omF8LPqhBCQGpcgl0Xwr0lCeffddzEyMoKXXnpJ8bhS0NJ6kcJVA7i9VLABTydq/ukQFGRfTNE0wm638/fazczMYNeuXfwNk9JAhb2h0ItxuFDhYN93dg7AUfEytq0WiBYqZoqWBDIzM5Gfn4/nnnsOIyMjsuMEgG9gEAVV5QDYtf1wrAahuWhslO/BYoqWBKxWKz744AOMjY2J7jXnoJTd1qqtkV10VNnQjpzVuWE3azFF04BwHe1HH31UtistO1wGDPS28+2Zi9vRVuk01BRNE6Tzc6BAd3c31qxZg7/++kt2swj1DqKNNPHbXDmqqtk7aJQsjZiiaQ9hdzmdmppCX18fSktLYbVaBYcJBv/Tj4NVZXxaYyO7H1lTU5P4XGb0mFiUXOLIyEjIWBgcPHgQ69auk5cD6xq3vCzeFNW1gwC55ey9agiCQZC3PHNqJkFwLpFSilu3bsHpdGLJkiXo7e2d3xuMAJTMb5PvHehAXuXbAID2S0TWhLmPV4bcoVWULrK0B/Qh/2cSH4QQHD16FHV1dRgYGIDNtgSA2BK5HdrZ9fts8MHQ+U4191fhUPofJJa2lGTgAX2IpcQ0wFgR7iL71Vdf8emUErZZ4261Ej4NhptoFW5RqwKzTVsggUAAR44cwYYNGxSPy0Y/BBbHH5PdCqr8aBiubESTErpJzgofZhDFPFLrlJZVe0xNvkjpXD2FddbSc2zcuBFPP/00vv32W8XjUiMixArhDu2EyyC6rMq2RKBidwPpl+ZeMx6yiguPhXsfyzEh0jLh8kuFEn4WvtdKuMuXLyuOcnDIvR4jPhbLfGk8Y48P6ENeMGGa1oGLmgsu/WGpLRcr/f39qK+v511VJMG0Iuq3ivZLXUxBS319PYaHh3H27Fldb0zkLW2h1qKltRmlC7Jr1y788ssvKCsri55ZQ2T9NCXLCWdt0rZDKT2WY0qBj9rywjZN6XzxCH/79m2cO3eO/1xVVcUvK9ATXrSlJCMuVxeuHJceyzGlz2rLS9PCvY+EMBxvaWnB2rVrcefOnajlko0qldK9w82JJWyn/H4/hoeHDbltoep+WjpDCEEwGITH48Gzzz4LAGhrk28kFitabeMbMeSP5OLSiR9++AGFhYVob29P6Hm1ijDTWw0VBAIB7Nu3D83Nzdi5cycA4290vehFs9ls/O1LHEYWDEiTAeNYdpibnZ3F/v37UVdXp3W1NCMtRFO7w1wwGERRUREIIejq6ooqstHuteZYVO7RarXi+++/Vz1eaFQ3mRaWFolz586hpaWF/6zHAG+iSVtLCwQC2L59O/x+v2gvrGiRodEjRyBNRFO60DabDW+++SYfxnNEE8ToggFp4h65C+3xeDA0NMSnSwVLF9JCtGAwiObmZmzevBlTU1N6V0dz0sI9PnjwAFNTU/jpp5/wxBNP6F0dzUlZ0WZnZzE3N8ffOtvR0aF3lZJGSrrHoaEhFBYW4uzZs3pXRRdSztJmZmbgdDrx+eefY/PmzXpXRxdSTrSsrCyMj4/rXQ1dMbx7nJ6eRl1dneyZY4sZQ4kmHaC9d+8eioqKsHbtWhw7dkynWhkPQ7lH6WjEU089hR9//BErVqzQqUbGxFCWBrCroISbppiCydFNNKkrnJ6eRklJCXp7e/HCCy/oVKvUQDf3KHWFy5cvh9PpxO7du3WqUeqgq3scGhrid+R+5JFHTMFUooto3DqN2traRTHAm2h0cY/379/H3NwcxsfHRTuVmqhDM9GkE5N+vx9LlixBVlYWVq5cKXpIj0lsaOYehYJ1d3ejoKAA165dA2DcVU6pQsIsLdzaiuvXr+Ojjz5Cb28v1q9fDyA1pvSNTMJECyfExo0bF/0Ab6JJuHv0eDyirWBNV5h4EirajRs3sGnTJtTW1uKNN94AYLpCLUho9Lhu3TqMjo5ixYoVKbF+MFWxANweulIUdo2h3DZBrIFyq6C4LV5tNhs/wGsKFp5YmwxpfgvAbRgjFUnBcxJuMy4GN2/eRGFhIcbGxrBq1aqYKrHYifUHLc1PqEBGNbPDXF/r+eefx2+//Sa7J1m4hV68D4tLZ7jrV1paGvc5FNs0pRvHKaV4MPcn1q9fj8ceewyUUixbtowXhnsVbZFnCsYjbeMX8oMmlKGUEuEWTQy73R1EiaH/Gbh7726o3WJgwDnUtIdSKnCPku3SFhr9mdGjdvCmQgXxI8XCoz+zPdOOkGgMv5cgwBoc98Aai+BhNZ2DXnHfIIompqVpBI2Aqwa0Y2CCUkrphPsUBUDd3kglTCLhqgEFLFy3OPRXTSdoUJyRiXweWSRB+SbOC0/PqygvywEAOHJykvdLSlPYJzcxoic3nXJZkEd2wAv2iReUUj62COvIWO2CMnUn3KdoTVMn//nQdtBXD3eq+iWYKMPQCVpVfYj7wOOqgehaRyNkaRZRIAIAvl99uNTayLdnlccpej5uYHOZTVVc+AbdsBbksR/4a8ggJ78alzxe1efh3aM0aLgieGDNwBkXKnMJ3JOmXnFDgSuD/dhWXi45YIEj9xnE0uflo0fR+X1utOEwynNY6yvb04BqAIOD7vgrvcihxIvLrQzKKlYBED+xyee9hZp8LmZgACZyWG4RvYQYvDoAV9XLfDeA+ibRAzMYiQvu+vu8IK7Q05oET2yiPjfebu1BVSW3xa4FsBBRUfk551tJUcPIhfYMnaA14UJTE9W4Tx+irs5+WbqrBhQ1LkpD11ZNjCfqp024T1HCPpeX/SOh1xqXwtlMAVXBzP/whX1cxts/f20l+ecRX2OGYQ9G7FybLBxuUELeqZ4fuIiV/wMmSdCaea0GigAAAABJRU5ErkJggg=="
|
<image>如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为()
Choices:
(A) 10√{3}米
(B) 20√{3}米
(C) 30√{3}米
(D) 60米
|
20√{3}米
| 69,721 | null |
20√{3}米
|
"iVBORw0KGgoAAAANSUhEUgAAAMUAAABgCAYAAACt6batAAAWLUlEQVR4nO2dW2wb15nH/4duNs6iSOIGSIQ8mNLuQ2WSXo/3Yc3ugyd5ihJ0a7rmxQHSmt6HKMECGzpAUwebzFDKLrhZLCjkxXKAwHS8F0WkLQVFrSIPCZPdGkpQIMqKFxlFS6cvofJQOumDqAblfPtAzmg4HA6H5Axv4g8gJM4MZw7POf/zncvH7zAiItgJAWBNThGBsfqTUkrEvEtE1O2wNVnDBhGBgdXlpYQs5jxHMZ+TjzgASPAnK0gFxvnXKfbnXK0Q9bSnFQSQxNngdYAcVTGNUWCMNTQuDvJAzGYguAF/sgKiCirLZ3A96EE0J/UnoSNAT5oTPYugx3IwiqzbBZeHahVgXLCGMADII58LIBCo5a/LBZeinnH+dUJPRGFGEJtRF64HonDnqteODYUa/cpNAFgqheuBMwgSA2ETc2dfQz4g1Lqf4y5UJ/Qp12qFXKv5lBMxz5JIunLIu4/ABbmnMC7UarfToXq/d44ByObzQOosmIPBwc6CLVdAyVDP0zlK9KHWSXuPZQAhi7kogyi4qglye+BpNjLfh2itLGPYa0yQxY0UQcxWQETYjDLMecbjiW7pgyjqH5mdC2Hu+hyOOQ7ggGceWaoWKI37w82RdZJLIYUA/O7qAbcows+2kLqe71/aRgDbRdEw66R+mxEwh2UQESQiVJJ+uNxuAAAbd50aqDYUe41F9vp1IBCAu9aQsFwOOQJcLlefUjgafMvuBzCmWaiQp2hzIjxPMyxn3cqpbL6+hTM7a7UfqOaFQ1n3kbtOgWUXGHNAQhIhzzy2cAbR2hoFUQWMHehvwocRshlJkhqOLQdAAAg4QmK2QhJlSHDLx0AIvGN3soYSSZKqr6R/L68AYtWWh+AWKEMSUWOWj2kDRmTvijZBqnWFVANs4w/UGRaqWQvar1bDwCOgnsb8Nf3RMXXY33EnVhtHGDxKLctaKX7/+z8AYwwOh6Pu76i+mn4/R+08Y7j3nj9D+qMPm6zhOBqOjwXRGbaLgjEGarUUpym93d1d/PKX/4NkMgme58HzPNbW1kBEI/uSJKnpuXj83/E3J07gf2/9Ev/2r6/j7atXGyYwxlbBQrrtf7VEopZ9XO3pS5cu0bPPzSrv0+k0Pfnkk3Ts2DFaWlqyPImDSqlUIp/PR/8YeYHK5TIREZXLZQqH/54uXrzY59SNLvaLooFKyyu8Xi+tr683qGVjY4POnj1LTqeTEomEUlFGkfX1deI4jlZWVmpH6vMtFotROBzWz4PxQLsreioKo7KSz21tbdH09LThfQqFAoXDYXI6nRSPx0dOHLFYjE6ePEmFQqFqaCWJFFHIGSURJRIJmpmZoVKp1KeUjiY9XSEz6vPK59588008++yzhveZmppCIpHAxx9/jN/97neYmpqCKIoolUptpYd0Jt70jtmN/My7d+/iySefxNdff4333nsPU1NTYJBdPfZcY+S/4XAYP/3pT/HUU0/hzp07Te+r/X9MC/oqSQ3lcpmcTicVi8W2PlcqlUgQBJqYmKBIJELb29s2pdA+1tfXaXp6mtbW1tr+7NbWFnEcRxsbG9YnbB8yEKKQF/hWVlbI5/N1fJ+dnR2Kx+P0yCOPUDgcrnY/dBYPtc/tN7FYjLxeLxWLxbo0tZO+UqlEXq9XNQapZ1C+6zAwEA5G8qLctWvX8OMf/1g5Tm2a/Pvuuw8XLlzA9vY2eJ7H448/jqeffhobGxuGz+0VpOnObG9v47HHHsPXX3+N9fV1TExM1KWpnfQdOnQI6XQa165dw8LCQkPe7cuFz07pryb3KBaLNDExYfl9l5aWiOM4mpmZoXQ6bfn9O+WDDz4gjuNsSVMkEqHZ2dmxdeiQgRFFLBbTnXu3qmDX1taI53nDLoaVzzO6ryAIxPN8y7FTN2lZXFwkn883cjNzvWBgRDE9PU35fF73nFUVVZIkWl9fJ5/PRxzHUSKRMLzWaorFInm9XhIEwfZnEVXHaPJYxc7njBoDIYp0Ok08zxte0+2AWXvNxsaGstZx6dIl21vUtbU1mp6eri5KtsDKyruxsUFer3c8M9UGAyGKcDis22r3omUrFAo0OztLTqeTYrFYy4WwTtJ08eLFhkW2XrbahUKBeJ4fqDHVINNzUWgrQ7lcpgceeKDvfd9isUgvv/wyOZ1OEgSh7bUSPQqFAnm9XorFYg3net2VKZVKNDMzQ1euXOnpc4eRvluKxcVFmp2dbX1hj5AXAp1OJ0UiESoUCh3dZ2VlhTiOM9Vd6hVVZ8Jww4RGp2sjo0rfRaE4/w0Y5XKZFhYWyOl0Ujgcpq2tLdOfi0QidPr0aSqVSgNZyQydCcf0RxRyRTHj/Ndr9CpxIpGg6elp8vl8hgPWfD5PPM9TPB63MYXWYORMOIhC7iV9tRSRSIQWFhaIaDgKQu4S8TxPH3zwQd25paWltqxev76v+rnpdJq8Xm/HXcRRpW+i6NT5bxCQp5A5jqNkMknPPfcchUIh+v3vf9/vpBmiJ8SxM2EjfRPF6upqnfPfMFgKLSsrK/Sd73yHHnroIcOFwEGnlTPhfqNvDoFvv/12nfNfNw5rDW6DrfwIyfgSMuGIePXqVczPz+P999/Hr371K3z00UeYnJzEwsICdnd3W37eUpTk6kRVNIhFJ6N2JozH460fN+K/zbA9xI0e29vb4DgO29vb1t/c5l/w7+7u4vnnnwdjDJcuXcLBgweVc59//jneeOMNrK6u4ty5c4hEIjh06FB98gY8VM+FCxdQLpdx+fLlfielb/TUUsj6u3r1Ks6fP2/PQww2iemW27dv43vf+x54nseVK1fqBAFAsRQff/wxGGM4fvy44squJE8lCHvao+5i8C4sLIDjOJw+fRq7u7sjbxV06UefbXp62vS8f2c0C47QOmhCMxYXF4njuLbSXSqVKB6Pk9PppNnZ2ZazPNpFtHbHWYaBUyQiqpi/n9aZcD/Rc1GYcf6zkrqK1cFY/u7duxQMBml2drbjxa5yuUyLi4vKQuCwzPR8+umn+9KZsCeiUFfMZs5/vcWcxZA9TK2MNZVIJIjjOPL5fLY66EmUoahHFW9WFXsWAPmTlYY2Qs8y7Udnwp5aCnud/7IkuusLXnnJgYep+dSv9ng8Hiev11vXXbJy2nhlZYV4niee5zsKVtCcPcFLlCHRXQtiLf2pdnaZ/AjQchtmU3Ym1DZmwziNboaeisJu5z+JMhR1VSuBcizpr4ti3qog5ah8kUjEUvHqPVeSJEqn0zQzM0Mcx1ke/bBCyxRwi0qD8E5UoE3KkugXKUftjVmaOROOIj0Vhd3Of3IlyJFEFVomMZpR/updrUWOynfjxg3b0qiHJEm0sbFBwWCwreiHcqWWqInokn5y1b67lBXIHVhWxlWdtvFmnQmH2Yr0TBRa5z9rM61awdWVYDPqIX/S3NhBkiSKxWLE83zf/YDu3LnTcfTDvTytEElEm1FXXTfSpds4tM+oRybsmSgikYjt3qObUY+qEhwhMWOuuzQzM0MXL14cKFfqYrFIkUiEJiYmSBCE5hWwyR4t1YG2S+lKbkZddGb5T5alT+tMOMyWQUtPRFEul+nw4cO2znlLlKFXPaqdkTx+Wm7xmVZR+QahoEulEr366qtK9ENtHsoDaK0ypKxALtUEQyUp1I21qnS+bkO050z46aefDkReWUVPRNFt5D8zSFmB3J76QWWGpOo7VVBiGTkq37CE2CyXyxSPx2liYkKJfqjPnmXY6y5pgjPLWFCP9ZwJh10gPRGFz+ez3QOzvhJUqUibJPpFyqhaxC+++IJOnjw50LMorSpVIpEgp9NJoVBId2FNnoqNZva+d/2qRHcWQku5XCafz6f8NmbYsd0hcHt7G8ePH0exWLTxKTlEPQFgOYuou7YzKLIQ3UdxI5hBTvQAAN566y288soreOKJJzA5OdnyrvJee/1Avc9fszTkcjncunUL3/72n+O11/4FZ0NnQakQHKFk7YojELObiLq73wRXToORM+OLL76InZ2doXcmtF0UsVgMf/jDHxCLxWy5v5T040DoBuBggKT9KkcgZqtCEUURN2/exG9+U8D58+dw//33A2jutdprQeilQ05DszTKvP766/B4PLjnnnvw0ksv4fTp04b3tSKdze57+fJlvPfee1haWmpwmBwa7DJBchfAfue/+udpKRaLdOLECRJFkYiqrhs8z4/MdKJ6vGY2+mEv0jTMzoSWiUKvUvba+U/LzZs3daPyDasw9PKY4zj67LPP6o6pox8uLi6anmpWFgMtGCgPc2RCy0VhxvnPztkJ+d56UfnUaIUxjDMmrWb17ty501b0Q6uRnQm1QR4GnTpR/FGSlFe39Cvyn1FUPi2fffZZg8UYJnHoWQk9isUiXbx40dLoh83Q5p+eM+Gg53GDpbBCEETmnP86yRyjz3QSlW9Yu1KdrP3I0Q8nJye7in7YLmpnwkEXBJHFolD/WqyXkf/kqHw+n69p5TYqjGHsSpkNS6P3XeSFwHajH3bLsEQmNBSFtjul172S36szf2tri1zHjjXtiv1Rkmi3UmkpwGbdOfXxra0tJSqfNp3a76NFLeJhshhWegiYjX5oFcPgTNjSUhi9b/Z/5Cc/UZz/JB0RGd2/necsLS3R3/I8ra+vKyIbdWG0G0TOrNWTu54nT560/Vd2gx6ZsC1RGLXY8rmdnR36i+9+l7744gvT9yBqLDwjsezs7NDs7CyFQiH6UlWBtc+RTIhCy9raWsO2WIPUnYrH4xSJRGy7vzyNznGcrdugaSMTWj2+7AZTY4pmLa7etSsrK3Q6GGx6XSeWQk3m9m3yer20uLhoeG+jZ7ZCTxiDgNZK2CnWjY0N8vl8yo+e7HjeoEYmVERh1NUwIwr5f5/PR6l33215XbP3RM27XIlEgv76xIm6vq8doiAaTItht5XQ47e//S2dO3dO90dPVuSH7Eyo/q1Nv/O5ThRGlceoRZfPqbf9NVrz0DunFYL6OnlKLxwO0+7uruGAv9mYwiph9Au7AlKbrYCFQoFeeOEFZa3DinGX+tnyNseDgOkVbTOVSr3tr1Vql/ue7fryWLnV8CBYjH5YCS2SJFGxWCRBEOjw4cO6P3pq935qWm1z3Kt8NyUKs62s1c5/zaLyWZ05re7Xb4sxiNsWtBv90CyD4ExoKIp23D7kWQsrKJVKFAqFOorK16lgBlkY/bASZvNRHf3w/Pnzptc6tPdXv++3M6FlDoFa579OK2e7Ufl6aTX6IYxisUiTk5O2P9OKfLxy5YoS/bBbJ0DZmfDDDz/sOl3t0lIUZjLLrPNfq3vpReUbNNbW1ujUqVM9E4ZRFJR+z9I0o1n0w3bT2ywyoRFW5IkllkJ2/us0Qc2i8g1qoScSCQqHw4bXWJH2YrFITqeTdnZ2bLm/3aTT3Uc/7CQyYbd5Y4kounH+k6PyDdoCTivMCMMMRgXYi1hZvWBjY4NCoVBb0Q+19NKZsGtRtLvtr7oStIrKN+itoZ4wrEqzbCUGYY3EKgqFQkP0w2YxdvX+v3r1ak+cCbsWRSetmToqn17XYJiwymKokSRpZKyEHqajH+qQ7oEzYVei6CTyX6uofMOAtnWzWhhGY4lRQv7RU7Poh82we5vjrkTRrl+/HJWvWCwOfNeoXawURjMrMWx5ZnaLMvPRD/ew05mwK1H4fD5TYeuLxSLxPE8vv/xyN48beDoVhnbhiuM4K5M1ULSKGNIq+qEarTOhVY1Gx6JQO/8ZkU6nieM4SqfTnT5qqGhHGHqF2IsQo8PA0tIScRxHMzMzLetOK2dCo9VzPToWhdr5rxmCIBDP83U/ONoPXLlypaNZKbWVGLaukl2sra0Rz/Pk9XppdXW16XVGzoTt5mXHojBy/isWi+T1ekkQhE5vP/QIgtD299/vVsKo8pqJfmiVM2FHojBy/ltbW9ONyrcfaUcYoz6WMEurVr1V9MN2nAmbPcu0KNQDpGaR/1pF5WuVmFHErDD2u5Uwi1x3CoVC0+iH3W5z3Lal0HP+aycq335EEAQlwLNMsxknK+O5jirqvGkW/VDrTNhOfrYtisuXL9eN9DuJyrcfMbIYYyvRGjN7FwqCQE6nU4l+2GlkwrZFITv/yVH5Tp06NdBxkgYJURQbhLGyskKnTp3qT4JGEL3oh7Iz4e7urql7OAz2rQAg1d5U/9y+fRtfffUVHnzwQczMzODw4cN49913cejQoR7spDGckGrjl2g0CgAQRVE5Nj//z8px7fVj2oOIcPDgQVy4cAF37twBz/P4oe80PvnkE0xNTeEHvr/D3bt3NZ+SGu6js5ORBJADYAAIIFb9FwAuXLiAUqmEX//611hYWMAJrxfW7ZGzfxDFOQASjh3n8B9vX8Pq6g0Acvskqf4f0woysVPT6uoq5ubmwBjDN998g5///GeYmvpLEKBbfxkRESGLqOcoXsszEEixDMAZLNN1BAHs7u7ioYcewqOPPoozZ87g3nvvg57Kxpjjk08+wa1bt/DMM8/g4YcfBgCwWiNEtZJyoH977o0in3/+OX7xi5solb7Cf//nfyF4NtRwDQH4FgAweBDNZsA8wbrNFJNBhhDzA5RC8OBB/OhHP8LDDz+sKJNYtSDHtAcjwOv14pFHHlEEAdTE4GBgtb37COPMbUUzS6E9zgiYnJzE88//A7788kul4dHCoOo+SUjirCcPISvCUzMqsgWZd70DSgYwNuudMu4S9YMGwTTrL2lQSoqlUki5jiiCAKoWxO0CsLWF/Hj00AXGghh3keyhwYJo3mbm3GCMVV8eERksIxBc3iutVOo6/IEA5HECUXVsccTtAojGo4cu0Fb6ZJDtFQZzYS5fQSrgR0r9md4mcV9BORFuB8Nf5QRlS2YpSQixs8i73XCAql2nVCqAQIBBbtUYq047beXywBFPzYLUBNO/7zOUKGOwnAgXYwjhHaUwKpQEhe5BkIXgVz4hje1yl2gbIqIKgGpdD3rmkfe/A0qGoMwrueYRDQAul6u6j7aUFcgdWCbSLPpVMq/SEYD8yQoRNZwe0wYVWiY/QK5oppaPlb2TGYHORDN9Stn+YjPqIuAMLevU5s05P4nZSnVFezPqoum5/6u7QKIMCR4Q3K+QXnGNBdIGEtFyAAR3lDLjnOsb6oZJfVRbIg4JSbwWBUJnPDVDI4Fyc3Czo5iXBGSy83ADDX2msXk3j8SSSKUAV+AMPGA63c/xiK0XsFwOOdS6SAqOhrrsOMBCSCGPOc+B6sDPcQAOTxTuZAWUm4MHrLa4LRelVBPIuCBNQdXCyAJwu6YB1BoUUs9+HABjLkRzcp6O87afOKg24FNeUvVvKlA/jbg3vVVzARnPu5uD7f0hdZ4x4KiYg5T0Ay4Bm9Leouk4b62HqAJyu+EBkM/nVWdqDVA+irlUteEf534PILcbbqYtjCrZfB6uYAhHWWNR0Hj9wjIYOwAHgvin6BHko0cRSEmQJUCpAFiQ8MNA7WIifV/18Y9crEVK+gmqmTyi6mSG6D5CYrZi8Mkx3dIQzaNWFqi5miG4XDtTLQcdL1l9iKg6uhiPsDuGciLcnnlsqQ+6BWSy0TpPAjLh+TmmPczkqewF8v9uHhUObty83QAAAABJRU5ErkJggg=="
|
<image>如图,四边形ABCD中,AB∥CD,AB=5,DC=11,AD与BC的和是12,点E、F、G分别是BD、AC、DC的中点,则△EFG的周长是()
Choices:
(A) 8
(B) 9
(C) 10
(D) 12
|
9
| 69,722 | null |
9
|
"iVBORw0KGgoAAAANSUhEUgAAAIMAAACECAYAAACzmJjeAAAUoElEQVR4nO2dTWwb55nH/2rTYg4pxAYFPE6AalrE63EQNKOTxjK6GqHJepQGyPhSM4ci44tI7WFFHYpQQIFRgAC0kQCkUSxYG0Upo1jQ7oUysPXI2F1QOthkit2SBgKTqbwg7eyC9GWHBjY7dCzp2YNEmp+SSA45JM0fQECc4bzzUPzP+/G8z/s+Y0REGDECwLfsNmBE/zASw4gyIzGMKPOS3QZ0k0KhgGQyWXUsnU4jn8/D4XBAEISqczzPg2XZ3hnYZ4wNQwcym80iHo8jnU7jyy+/RD6fx8bGRtMf/NixY3jy5ElToYiiCIfDgampKbAsC1EU68oZRgZSDIVCAevr69jc3MT6+joAQBRFnDx5svx0S5LUdvnxeByFQgHxeByPHz9GPB5HPp+HJEk4e/YsJEkCx3HWfJk+YmDEkM/nsba2hitXriCbzUKWZczMzECW5Z78MKXa5vbt29jY2ADDMDh//jxUVR0eYVAfY5omhcNhUhSFWJYlt9tNiUTCbrOIiCiVSpGmacRxHImiSMFgkAzDsNusjuhLMRiGQZqmEcuy5HQ6KRKJ2G3SgcRiMXK73cSyLHk8HspkMnab1BZ9JYZcLkder5c4jiNN0wbuSTNNk/x+P3EcR6qqDpwo+kIMhmGUReDz+QZOBI0IhUJlUeRyObvNORK2iyESiRDP8+Tz+cg0TbvNsZxQKFT+fv2ObWLIZDIkyzIpijIwT067lGo+QRAoFovZbU5TbBGD3+8nnudJ13U7bm8biUSCRFEkr9fbl7VgT+cmCoUCzp07h4cPHyKRSECW5V7e3nYEQUAsFsP4+Djm5uaQzWbtNqmaXqkuFouRIAh9P0zsFaX/RzgcttuUMj3xQAYCAdy8eROhUGh4vHUWUCgUsLCwAIfDgWAwaLc53Z/CXl5exsOHD6Hr+kgINTgcDoTDYbz11luYm5tDsVi01Z6uiuHChQsYHx+H3+8HwzDdvNVA43a7sbi4iLm5ORQKBfsM6UbbY5omybJMoVCoG8UPLbFYjCRJss1zabkYTNMkURRfuGGjVSQSCdsEYakYTNMkRVFGQuiQVCpFoij23C1vqRhUVR01DRZRajJ66ZyyrAO5vLyMkydPQlVVq4p8oRFFER999BE++OCDno0yLBHDxYsXAQBer9eK4kbsI8syzp49i6WlpZ7cr2MxxONx3L59G5qmWWHPiBrcbjeKxSJWV1e7f7NO2hjDMEgQhIEL4hg0TNMkQRAolUp19T4diUFRlNFcQ49IpVIkCEJXO5RtNxOBQAAcx0FRFAvrqRHN4Hkei4uLWFhY6N5N2lFQL1Q6ojHdrI3bEoMsyyPHkk3kcjniOK4rD2LLzcT169fhcDheuMCUfoFlWbhcLnz88cfWF96KcgzDIJ7nhz5msd8pzf9YvaCopZrh448/hsvleqFXKvcDDMPA5/NZ7ow6shhKax3dbrelBoxoD0mS4HA4sLa2ZlmZRxbDpUuXsLi4OApS6SNcLheuXLliWXlHioHM5/M4ffo0UqnUSAx9xuTkJEKhkCX7RxypZhjVCv2LpmmWjSwOrRkKhQJOnTqFTCYzEkOfYlXtcGjNsLa2BlmWR0LoYz788ENcu3at84IOG3tKkkTRaNTS8ewIa7HKK3lgzZDP55FOpzvaH2lE92FZFjzPY2Njo6NyDhTD6urqKIxtQLCiqTiwA3nq1ClEIhHwPN/RTUZ0n2KxiOPHjyOXy7Xdv2taM2SzWRSLxZEQBgSGYSBJUnkrxHZoKoaNjY1RX2HAmJmZwebmZtvXNxXD5uYmZmZm2i6479BdGBsbe/5y6XZbZDmSJHXWiWw2zHA4HEOx0RbRFgWmQZgO0Fb52C2aB2g6sHXAdYMJx3FtByg3rBmSySQ4joPD4WhfZX2C7joBDwLYurOI18tH5/CrwDTu/vFPeGCjbd2gk9qhoRji8ThEUezEpv5Ad+Hdq9MIXKsUQgV372Or1zZ1mampKXz++edtXdtQDF9++SVOnjzZkVH28wCXP7kKzP8aiw2UsHX/LjD9Bk703rCuwvM80ul0W9c2FEM2mx38XVYe/Al/vAvMK3ONTuKvXwDTv/h54xpjgLFcDOl0ekj8C9N4o9Gjr38Kz91p/OLnwyaFPdd0oVBoa7HukIvhLu7XdQp0uN69iunAtYbNxzDQbu1QJ4ahEcLri/j1PHD1k8vPRwwPLuPM2Lu4On8Ld4ZVCQA4jmtrj8m6HFX5fH5oop/nrmwhcOYETox59o9MI7BFuDO8OgCwt4tcOxuFDXXCMuB1LN4hLNptRo+ZmJhoq2aoayaGqWYY0Rp1YigWi0Md4ra6uorJyUl88skntm/C2S1YlsXjx49bvq6umSgUCkPhhm7EZ599hpWVFXz99de4f/8+Hj16hKtXr9ptluUwDGPN0LJQKGB8fNwSo/qNS5cu4euvvwYAfPPNN/j9739vs0X9RZ0YGIbB06dP7bCl67zzzjsYGxsrv//e976H73//+7hw4QKuX78+tM3GUakTA8uyyOfzdtjSVZLJJL766iv89Kc/BbDnmEkkEshkMpiZmcHNmzdx/PhxnDt3Dqurq/bu4WwTQz603CMej2N5eRl/+MMfGs65qKoKVVVRLBaxvr6OmzdvYmlpCYIg4Pz58z1LpGoV2WwWExMTLV9XVzO0673qV9bX17G8vIxIJHLoD8owDBRFQSgUgmEY0DQN9+7dw+zsLCYnJ3Hx4sW2J4EGgaGuGVZXV3Hjxg3out7WcFmSpHIcaDKZxI0bN3Du3DkUi0UoioLz58/3ZdzH48eP8dZbb7V8XV3N0K4rs9+4ePEiNjc32xZCLYIgwOfzIZVKIRqNYmJiAktLSzh+/DgWFhYs3SehU9p2D9TGwZmmSQzDdBqKZytut5u8Xm9P7pXL5SgYDJKiKORwOMjpdFI4HLZ1JzxRFNtKmVglht3dbSruPqNjJzh6mPsvemaZeb3BNE1yOp0UDAZtub9hGBQOh8npdBLDMKQoCoVCoZ7vgdVuMHOD6Ogdmpl7m/51wBbbGoZBiqL0VTa4SCRCqqoSy7IkiiL5/f6ub61sGAY5HI62rm0ohvl/+Hv6R5uernYwDIMkSerrvSljsRh5PB7iOI54nidN0yzfra10H1EU27q2YaTTxA9/iIePHmKbtvGUtvGUdkEAiHbwlLaxXf7kLr7Z/8w3VUs2nx9/SrvYrSr9oHPNP0dNjv9nNovZ2Z/hU/9nmD37DrZBFXZTzee7nrWxKaIowu/3I5PJIBKJANhL6PajH/0IS0tLHa+gLtFR/Gq9PnboXzb+jWZmJSLaoae7O7RTPrdLz3Z3K/7eod3y39v7fYzKv4l2dp9RseqaZucqqS3vWcOy/yPx7zQ1M71f9e7Q091nVCzb+/z9bvl95XfpDzKZDPn9fpIkiViWJVVVO9oO2OPxkN/vb+vahmJ48n//S+OvOMg0zf1O5W753LOKzxV3n1W9npWPl36AvfdPK36g5ueqbWgskufXR6NRkmZ/Ro9y/13x429X2Xfw+/4jl8tRKBQiRVGIYRhyOp0UCoVa6gwKgtB289NQDE93dyp2bCk9jZU1wd7nDvrBdire14qh8bn6MupL3zv+T+EwybJMhvE/VWUPuhgqMU2TwuEwqapKDoeDZFmmYDB44Mikk84jUUWfYbemTf27s2dx+/ZtAGP4NoAd2gHGvoXnc35j+DZ2KvoPtN/+j+Hb2MV2RVmEsX3v1kHnqhnDLnYalP27313F2j+vIRKJwOEYb3r9oMMwDJxOZ9k1vri4iHv37mFychKTk5MIBAJ1rvG1tbUmKR8e4PKZ54uOz1x+AOgu1K09Lqmi5GMo7j89iUSCBEEonaVnTZ/gUjNR+8Q/P75bc03jc5V9g8Zla5pG7oWFBtfvXfv8s4e9H2wSiQR5PB7ieZ54niev10uJRKJx9sCtAE3XLDLeCkwTME21644P3OCLZdn9aqmy42gPqqqSpmm22tCPXL9+nd577z16+eWXaWxsrNqP0UAIe9yieczTrZqjB05UKYqCtbU1uFzzwJg9lXGxWMQHH3yA999//4XfXyqfzyMej+Pzzz9HPB7HxsYG3nzzTRQKBbz22mtgGKZqWKl/6sHd6QC26taInMAb8w3WmR6kujvxOzQ1+7f01KZawTAMkmX5hc2DFY1GyefzkaIoxLIssSxLiqKQz+ejcDhMiqKQKIoUjUbJ7XbXuOFb34Pi0H0geZ7veta0RuRyuRdqD8pUKkXhcJg8Hg+JokgASJIk8nq9FIlEyqOIXC5X9mSWHhLTNIll2eoh6H4TMV/bFhzAofEM58+fx/Xr17GystJhJXd00uk0Lly4gGAwaMkG2f1GsVgsV/OlKp9lWQiCgKmpqYZxEsViESsrK7hx4wZcLhcymUz53Pr6OkRRbDBt3WThcTMOU0smkyGO41oReUckEgkSRXGocmUmEgkKBoPkdrtJEARiGIYkSSJN00jX9UOdSsFgkDiOI03TGn62cRKz5s3EViBQ13kkOmLCsl7lr9R13Zbs8FZiGAbpuk6appEkScQwDAmCUG7TW/EORiIR4jiO3G53U2dTtQugmlvzqBtCbgWmm/YjjiSGg25oFSU37KClR4zFYuT3+0lVVeJ5vuwt1DSNotFoW98nGo2SKIqkKMqhNWR9x7GaPZ8Cyq+DOpRHTljWzdqh9M/sdyHkcjmKRCLk9XpJkiQCQKIoksfjoVAo1HFHO5VKkaIoJEnSkSKVrE5reGQxdKt28Hq95PF4LC/XCiqHdhzHVQ3trBzl5HI5crvdxPN8Sw9cJzOUjWgplaGVyU1N0yRVVcnn81lSXqdkMpkDh3bd6NAahkGaphHHcS2H6nUj2WlLYij19Ds1wDTNcnygHZimSdFolDRNI1mWyeFwEMdx5HQ6ye/3txVM2ip+v78c8dTO/7MUeGslLac/9nq9HT3NhmGQKIo9DVFLpVIUCoXaHtpZSTgcJo7jyOPxtB0oq+s6ybJssWVtiME0TeI4rq0vkslkupKptZJGQzue50lV1ZaHdlYSjUZJEARyOp0dNTmmaZIgCF3xCreVGD0SiZCiKC1dk0gkSJIky79ELBajYDBo6dDOShKJBMmyTJIkWSJETdO6NnvblhiIWmuzYrEYSZLUcSes2dDO7XZbMrSzklwuR6qqkiAIljWJqVSKBEHomsDbFoNhGCQIwqE/sK7rJElSW+1yaWjndDq7OrSzEsMwyOv1EsdxlnaQu9k8lGhbDETPn/hmSg2FQiTL8pGUfNDQLhwO9/1chWma5Pf7ieM48vl8lj+9DaOYLKajVdiiKOL999/H8vIy/H5/1bmVlRU8fPgQul6f5KNy1u7evXuIx+NgGAaiKDadtetnVldXcenSJciyjEQiYfmeWKurqwDQ/eAeKxRV66p2u91VnZyDhnaVc/WDhq7rJAgCqaratZqr2/2ESizZnyEcDmN2dhavvvoqLl26hFdffRUAMDs7i2QyCZZly0+9y+Ua+BiFZDKJpaUlMAxjWVLyRmSzWSwsLCASifRmO0arVGUYBr300kv03e9+t2poN8jT0bVkMhlyOp0kCELXO7Cl9aO99Iu0IIb9XE+oeVXkfvrzn/9MP/jBD2hmZqbvO3ytYBhGOTS9F6u8TdMkWZZ7PmJquWa4NV8ZV1cfTZNIJOgnP/kJvf76613pVfcS0zTJ5/MRx3Hk9/t78l1K8zZ2rChvMf79Af76RWVc3RyUeeBuRVIHQRBw7do1vPLKK3j06BFOnz5t2QrjXvLb3/4Wp06dwpMnT5BIJODxeLrebhcKBZw7dw4ulwuyLHf1Xg1pSTpbAZquaBb2omjqF2MQ7bWvgiBQJBIhSZJIVdWBGDVEIhHief7AULNukMlkbI8Gb0kMrYRQEVVvohEKhYjnedumrQ+j5EBTFKXnbu1UKtXzzmIjWuxAVgRXNl26VU1pIUwpsldVVRJFsW/mETKZTNVilF4TDof7Jhq8BTHcovmqrLH70bc1x5pRmlLO5XIUi8XKC0bt6mA2WozSS0qRXk6ns2+G30fvQOpr+KKD1H8rKyvQNA1zc3MoFotIpVIYHx/HqVOnOsrs3iqlxSizs7OYmJhAJpNpsoy9e6TTaZw+fRozMzMIh8P9k9LhaJqpaSKoFJPf2vItoufL5txuNxmGQblcjmRZJlmWu95hK00kNVuM0m1KQ9Vuzz62y5HEMF3raEL94oxWCQaDVR1KXdfLM35WU1qM0kmoWaeUIp3sbBoPwzJ3dDuUAkBKEVCmaZLX6yVBECwJSm1lMUq3qP2O/YytYigRjUbLcYqpVKochV1qSlql1cUo3aCyg9qvw+la+kIMJUq+CEVRyotVW/FNtLsYxUoymQy53e6eurCtoq/EUCISiZAgCOUdzn75y18eWM12shjFKnRdJ1VVyzYMkghK9KUYSui6Tk6nk1iWJVmW6cc//nFVB6wUatbJYpROSCQS5Ha7y/YNSnPQjDEiG/fQPSKFQgFra2sIh8OIxWL4zne+g7fffht/+ctf8N577+Gjjz7qSWLWUtqizc1NrK+vg2EYuFwuKIoyFIlhB0IMleTzeYRCIfzmN7/B9vY2XnvtNUiShLNnz8LhcFgaO5lMJlEoFLCxsYHbt28jmUxClmXMzMxAluXhSCBfwcCJoZZkMln+sQqFQnlLHJ7nwfM8jh07Vv6sIAhV3r5SYG6JJ0+eIJlMIpvNIpvNlj9f+vEHKUi3HQZeDI3I5/NIp9NIp9NVaRnv3btXlXKJYRhMTU2V3zscDgiCAI7jBipbnVUMoBh0XL58Aot1exuO6JSB23ZZd72LP9ptxJAyUGJ4cPkMPvliGm/+zahW6AaDI4YHl/EpruHXb96125KhZUDEoMP1IfCrRdQE5I6wkoEQg+5ag3Jnse3AmhFHo/9HE7oLY+9erTgwj1t0BXO2GTS89HfN8OAyzqwpoL05FNBWANPTDbbGH2EJ/ZsY/cFlnPkQuHanog7Yuo+7eMM+m4YdO2bHjgJqQutKMZd7r8YLd0Z0Rv/3GUb0jP7uM4zoKSMxjCjz/7x3DMKnq907AAAAAElFTkSuQmCC"
|
<image>如图,△ABC的顶点都在⊙O上,已知∠BOC=120°,则∠BAC等于()
Choices:
(A) 60°
(B) 90°
(C) 120°
(D) 150°
|
120°
| 69,723 | null |
120°
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAACZCAYAAADKOd9nAAAbPUlEQVR4nO2df1AU9/3/n3t+7BnDhDaSgnxxLgh2LsHxDtSB6S/SisaMEJhiykzrRDMa8VdHMYfBH6iNkjJ6URMwVdGJrWEaJypJxESFGDMxUxUMP4RgRji1plU0Wgl0UMru6/sH7rq7t7u3d7d3HPYeM4zevt/73vfua9+v9+v93tf79QaF8YmsrCwC4PaXmZkp5GFZ1vDrmhDGJz766CNkZWWhvb0dRAQiQk1NDZ566ikhj8lk/OMNC0wHRKSalpCQAADYtWsXMjIykJiYGNC6hAWmA4Zh3I59+umnyMzMBDAgrLFjx4LjOMyfPz+gdQkLzEc6OjqQn58PhmGQn5+P+Pj4gKhAOWGB+Uh1dTU6OjpARMjKyhJUI4+WGvWHsMB8oL29HQAwduxYABBUoxglNWoEYYH5wIkTJwQhifutFStWBPzaYYH5QHV1NaZMmQLggen+/PPPB9xCBACGAqVsH0Jqamowbdo01fT29na3vsxowgIbYoRVogF0d3eD47igXCssMD+pqqrC/v37A2YVygkLTCdKLejevXsoKChAQ0ODMJ8o7mEC0er+z/ASH1Lksxgcx6GkpATDhw9Hc3Oz4ixHIGY+wkaHj1y5cgV2ux2nTp1CWloauru7g3LdsEr0kSVLlsBiseDUqVN4/PHHceHChaBcNywwHciV0JEjR9De3o7e3l6kpKQgJSUFTU1NQalLWGA6EFuA9+7dw7Jly/D666/jypUrmDBhAiZMmIDGxsag1CUsMC9xOp0YP348oqKiYLVaYTabYbfbgyawsNHhBd9++y3Gjx+PhoYGfPzxx6ivr8eePXvwr3/9C5MnT8a1a9cCXodwC/OCgoICLF26FPHx8Th79iwmTZoEk8mEuLg49Pf3o7OzU8gb/h42yBw7dgx1dXVYtWoVAKC5uRl2u11It9vtqK+vF36Hv4cNIhzHYdmyZdi+fTvMZjNYlsX58+dhs9mEPHw/xresQM0thgWmg82bNyM+Ph4zZswAAHz11VcYN24cIiIihDy8wPiWFSj/jrDAPNDZ2Qmn04mysjLhWGNjI2w2m6QVTZw4UWIphvuwQWLp0qWYN2+e5MPkuXPnkJKSImlF48aNw/Xr19HT0wMiCvdhg8Hnn3+OL774AuvXr5ccb2pqwsSJEyXHGIbB+PHjce7cuYC1LiAsMEU4jgPLsli8eDHeeustmM1mIY1lWbS0tGDChAmSc0wmE2w2GxobGwPqnxgWmAwigslkwvbt2zF69Gjk5uZK0i9cuIBRo0bhiSeecDs3OTk54P1YWGAyGIZBZ2cnXnvtNYmhwdPY2Ijk5GTht9jwEE9Rhc36IFJUVISXXnoJVqvVLa2xsVGiDk0mk9CS7HY72trawLIsTCZTQAyPsMBknDlzBkePHsW6desU0+vq6pCamio5xgvGbDYjMTER586dC7ewYMBxHBYsWIBt27YJg2K5n4a8hclJTk5WdRkwgrBPh4iKigo8+uijyMvLE46J1ZrL5cIjjzyCuLg41TLsdjsaGhoCVsewwO7z3Xffobi4GJ999plqnoaGBsmErxJ2ux0ffPCBsZUTEVaJ91m9ejV++9vfIikpSTVPfX29xEKUw3EcJk2ahMbGRrAsG4hqhgUGDBgSH330ETZu3KiZr7Gx0W2GQwzDMIiMjMSoUaNw8eJFo6sJICwwAMCCBQtQWlqKH/7wh5rWXWNjo6ZK5Pu75OTkgDnl/M8LbPfu3Rg+fDhmz56tmoeIhIldtdUpYkEH0innoRCYr1NA//73v1FcXCyZ0RAPhHkYhsG5c+c01aHYjA+kU85DITBvZhT4lsBxHIqLi5GdnY3JkycDeCB4vjz5+EvL4BDnnTx5siAwo+cTHwqznuM4XQNVcb6mpiYcPHgQzc3NQrpc8OLf9fX1mDlzpmrZ4ry8U863336rOWbzhYeihcmFpfZWi/MtWrQI69atE2bdPU0l6RmDySeCm5qaJMeIyO8pq4dCYHKUVJqYyspK9PX1YcGCBcIxrRZ68+ZN3Lp1S3EyWAxfBsdxQj8mLpdhGL+nrB46gdXW1qKjowOAct/W1dUFh8OBt99+W1GgSi2gubkZ48ePx7Bhw3TVQfwx01PZ3jLkBSZ/6FOnTtXMv3HjRmRmZiI1NVVRoEotgHe60XN9Hn7Gw1PZ3jLkjQ7xQ1+xYoViVBqe1tZW7N27Fy0tLV5do66uDr/61a8UnWvULFTeKaerqwuRkZHCcb0GkiqGB/QLMBzHuf3mOI527txJtbW1pHVLzzzzDJWXl3t9zaeeeorOnDkjXFtvHMS0tDQ6efKk19fTYsipRKU33OVyAQCefPJJZGVlSdQU///9+/fjzp07WLhwoWb58n6mp6cHLpcLNpvNzUmUPIyxlPoxeb28ZUgJTK3T3rlzpxA+yGq1Cg+W4zgwDIOenh44HA6Ul5fDZDJpdv5idcVxHBobG/H0009j+PDhXteXd8pRup6v7gMhLzDxzSrp/l27dmHz5s1gGEYIHcS/vbxwSkpK8Mwzz+BnP/uZajlKmEwmNDU1wWazKZ7j6aHzYzGxue8vIW90aD3cjo4OMAyD/v5+MAyDEydOwOVySR7kN998gz179uD8+fOSc+m+AUGy6Sg59fX1mDRpkk91t9vt+Prrr3Hv3j2YzWZDrMSQb2Fqur6jowMFBQV4+eWXMWzYMJhMJjdhAQNrul599VVER0cLx3hVCQwISqul6JnhUIN3yhFPf/ndygw1YYJEYWGhEMW6vb2dWJaVRLkuLCwkIqIDBw5QUlIS9ff3E9GAdSe3MrXo7++nYcOG0ffff+9zXWfNmkUVFRU+ny9nSAqMR+vh9/b2ksViodraWp/LqKurI6vV6nP9iIicTictXrzYrzLEhLxK1EJLlZWUlCAtLU3VJY3uq1rSMK/lMxy++GnYbDacO3fO6/PUGNICU+PKlSsoKyvDCy+8gF//+teKD1o8plITmtzpRu9copjJkyejpaXFMKech1JgS5YswcqVK5Gbm4u4uDhs27ZNM79aS21qasKkSZP8MhQee+wxN6ccvwwPw5RriFBdXU1Wq5Xu3r1LRERtbW0UFRVF169f96qc/v5+ioiIoBs3bvhdp+zsbHrvvff8LodoiPdhcvgoNdu2bRPWdFmtVsyZMwcrV670qiylZUXk43SS1hSVtzxUAuOj1Dz77LOS4+vWrcMnn3yCM2fOeCyDFwrvwyH/YuwtROS2biysEono6tWrFBkZSZcvX1ZM37dvH6WkpAhjMk84HA5at26dIXX7xz/+QVFRUW7HvRkT8jw0LaygoADLli2DxWJRfINnzZqFkSNHYvfu3apliM+rq6tz86ZSy+uJMWPGABgIfSTGpwlgA16gQefo0aNksVgEQ0ONhoYGiomJ0WVIREZG0tWrV42qIk2ZMoWqq6uJyL99xYZ8C2NZVhKlRgzJWobdbkdubi6Ki4s1y+zo6MCIESMMdVETO5f6Mwk85AXmdDrx5JNPClFqgAfqSi4wYGAG5MMPP9S02jw5jfqC2PD4nzE65Krk+vXrFBUVRe3t7brL4DiOduzYQWlpaap5ioqKqKioyOd6KtHW1kYWi8XvcoZUC5OrEj5KTXx8vOo5pOAnn5+fj76+PlRWViqe09jY6PM3MDXGjRuHW7duoaurS7VuuvBb5IPEZ599RnFxcR4NDSVYlqXTp09TTEwM3blzxy09Ojraq1arl7S0NPr888/9KmNItDC5zmdZFkuWLJHMaCjlU8NkMiE1NRWZmZl47bXXJGmdnZ34z3/+E5BNb2w2G7766iu/yhgSApM7zpSXlytGqfHkYCNnw4YN+Otf/4rW1lbhWF1dneayIn8wYqHfkBAY8KD/6uzsxIYNGxSj1Ijz6SEmJgZ//OMfsWzZMuFYU1OT4RYij81mQ11dnV9LkIaMwHiKioowZ84cjwsT9JKfn49r167h4MGDAPxzuvFEcnIy2tvb0dfX53shxnSnwYE3FLq7uw0t9+TJkxQbG0t3794li8VCLS0thpYvJikpic6ePevTPCLREDE6gAFDQx6lxijS09Pxi1/8AqtWrdK1rMgf+H7MV0fSkPdL5Nm9ezciIiIkUWqMxOl0IikpCQkJCT65AujF7/XPBrf4gHDjxg2Kioqi1tbWgF7nueeeM2Q2Qo5Y/dXW1mrOsnhiSKjE4uJi5OXl4emnnw7odSIiInD37l0cOXIEgHExD8Xqz2az+eeUIxHfPe7BX4hw9uxZYUbC145aC/H8pNVqpbfeeosSExN9mkHRi8Vioa+//tqnc6Ut7AeM9N8gQ7LxCRFh4cKFKC0tRWRkpORNlef1FX7c1tPTg0uXLmH+/PmwWq0ePa38gQ/R5wshpRLli8n37NmjGqXG6GifTU1Nwm5F5eXl+NOf/uT2hdgo/ImUoy2wPnrwp/RbfMzTuXrTMCCMrq4uvL6+BNu3lrvnUztfXk/xMQ+Iv4FZLBb84Q9/gMPh0HWuJ+R9oXyfFq9wU5Ly/kvrt57/e5MmomDxMpo/f77+8+X9r/z/HpgzZ45kOS0/iPbkm+8Lly9fVnTK0YN3AlNKUzJU/BRYQ0MDxf+/J5V9L4x4gRSw2+30xRdfSIwQ+eoXI+ANp6ioKJ98RjwLTHxMZ+vwV2BpaWm0+22VJToBEBi/rKinp8ctbfr06fTGG29IjhlhrWZkZAhOOd7woA/TqetV8ff8+1RWVuK///0v5s6dq1i20dGqOY4Tdit69NFHAUgt0K1bt+L111+XbOZmhMHj64yH1OjoI2WT/geMchp/XJ4mPu5F2vffdeGVV17B9u3bVcs2jRimfL6SkaH2fxEMwwjrmMXHeKxWK1566SUUFRUpnu8rPhseuttiEAbTDoeD5s6dG/DryMnPz6fS0lLV9O7uboqJiaHTp08bds2WlhafpsH0CSwIwmppaaGoqCi6du1awK8lJy0tzaM1WFlZ6ebq7a1DqDg/vzpGyadEC22BBXGqKj093acoNf7CP7jOzk6PeX/+85/Tjh07fLqOknBTU1OFSDlKEX6U0B44/4B58BdA9u/fj66uLkk4vGDBLyv68Y9/rJhOIgOkrKwM69evx3fffef1dZRcF8SGh94YVoM+NSWOUhPI71BqePLylc+05+bmYs2aNYZcOzk52WvDIygC03Kd3rBhgyRKjdJ5gUS8l4qnTx4Mw+hy9daL0rYfSs9InmHQ4Jez8v0HH5ktmKSnp9Phw4fdjov7HHn/8+c//9mvj5D8PXZ3d5PZbFb8lKP2LIIuMPHNT58+nZxOp668gULPsiKlB5eSkkLvvvuu39fnnXL0Mmgt7ODBg8I8XTAEwyN++O3t7RQTE6OaTvTgpZHXUcvV2xtmzZpFu3bt0p3fmD5MonY52W937t27h+XLl+PNN990C1xMAdyhFZAaEUpbc6haZzIrj3f1VtuvRe992O12rwKvGCMwyT2aBn5z7hXmb2Ljxo1IS0vDlClT3B5EoPY/VqK+vh52u113/EQxRISSkhLs3btXcPX2xUiy2WxoampSFLCi0P1qzzL0GAyXL1+mxx57TLHfCJTBoVbu9OnT6cCBA36VvX37dsrIyNB1PSVu3LhBERERkhkUrfON78NYjkjleizLUmZmptu8XbAtQ56YmBi/lxX19/dTUlKSX4K3WCzU1tYm/OafR0CsxEVTIYS9k/85P5C6PPNRanp7e/29rM/wD+H69esUERFhSJnitWosy3ptROXk5OiOlON3H7b9OGHRVKCqhRM2+OSoFVMwBc9lP/AjFEepGTFihLqODjB8H1lfX+/zsiJxvTmOEwb+GzduhMlk8nrR+YQJE3TPePgtMEILLtAi5CQNPIgtW7YA9BSsi614WmSN8FFqxBsBBNPAkKM1JeXJeBALjBeO0+nEjh07hF0pvMGrj5letv773dODJt/ygZMWvlE18KO1ijIWuw+EPUWpCQZyNZWdnW3IwFdMaWkpZWZm6s7Pq2dvnHI8C8yDPVD1xiJJv7XIWeWWZ+bMmbR27Vrhty963mgCsazo7t27ZLVaffLVEDvlaD0bXS1MYq3IBLhoKqiqZeBg1RuLyPlBiySLVpSaYAuNv4+bN2+6mdJGcfToUTdXbz1W8NSpU3UJWlcfJnGRFnc7bR/ibSwU+q9xCWORkPig59KKUgMYs3mMN/D30dTU5NVuRd7w7LPPurl6kw7jil9OC2j3oV4/sft7LgAAqj45jkXPTrtfKyAp+5UB4d2vn1KUmmCj9LC0divyFfmiebGrt54Xk9+UwGN+b5q7vGEvmgo6dF5ZrXV2dnodpSbQ8Co4Ly/P50/9elmzZg3l5eVp1kPcJSg55fg8cH5w2sAFWj5wSgyNqlb3viAvL49WvlpELpfLYyWCzU9+8hOvPmloodYPe+vqrdcpJyCfV06ePEk/+tGP6M0336To6Gj629/+RkShIazu7m4aMWJEQNd/8Xjr6q1n+yrDe32WZfHyyy+jt7cXf/nLX5CQkICioiJs2LBhUAbKJOvD+GVFvuxW5C25ubkYM2aM7rVmNptNmPGQ15vH/5kOWcHl5eW4desWiouLUVdXh+zsbNy+fRvvvPMOZs+ejf7+fn8v6RXyl4T/BqYVr95Itm7ditLSUly/fl01D18PcYg+1Zfbz1YvobOzkyIiIshutwvHWJal1tZWmjZtGj3xxBM0ceJEun37tpGX9Qp+WVEw1bPD4aA5c+Yoponrcfr0aUpKStIsy1CB5eXlkdlspi+//NItjWVZKi8vJ7PZTI8//jhdvHjRyEvrguM4stvtdOrUqaBeV83VW26waDnl8BgmsNOnT5PZbKbly5cLU09KFpTL5aKJEyfS8OHD6fjx45I08dsWCA8qflmR0ZF09PDuu+9KXL3V7s2TU44hAuvv7yeLxaLp3C/e8HPp0qWUk5ND0dHRtG/fvqCppzNnzvi9W5E//PSnP/U4/vv973+vmccQgTmdTho2bBgdO3bMY95jx45RbGwsdXd308WLFykhIYFWr15tRDVU4Vt6RUWF6mA2GDQ0NFB0dLRqVG+WZcnpdFJ+fr5qGX4L7MaNG2Q2m2nWrFluqlBJJdpsNvr444+F37dv36b09HTKy8sL+JdoT8uKgsHixYs1BcJHylHTOn4LbPbs2RQVFUW/+c1vyOVyqfZdLMvSypUr6cUXX3RL6+vroxdffJFSU1MN2ZxGDT3LigLNnTt3KCYmhhoaGiTH+Wcmdsox3KeDj1Jz8+ZNWrt2LUVERFB5ebmi0fHll19SdHS0xKSXV2jDhg2UkJBA58+flxxXqri3/Z58t6LB+rRDRJKo3kraSO6UI8b7L86iC6ekpNDevXuFY21tbZSamkrPPfcctba2SgSXlpZGhw4dUixHzPvvv0/R0dFUU1PjbdU08XXFYyDgOE7T1TsnJ0c1zecWVlFRQampqYppmzdvppEjR9KmTZuIZVkqKSmh3Nxc3WWfPXuWoqOjDd3sc9++fZSTkyP85jhuUL96a7l6r127lhwOh+J5Pgnszp07NHr0aM3xgsvlovT0dEpJSaFRo0Z5vRTW5XJRUlISLV++XDHdG5XIsiw5HA6Jm0IoMG/ePEXBHDp0yM05lccngXmydMQP85133qH3339fV7nygfPt27dpypQplJub6/dgNz093e0T/GB+PeA4TtjZQu5bouWU47XAlHYICuSN9/X1UX5+Pk2cONGnBet83YzercgoysvLFVuTWqQcrwWWlpam+2utt4LUyr9lyxaKjY11syD1oLSsKFRQc/XOyMiQGGk8HgUmfoj8fNhgddaHDh2i6OhoycBbDwcOHKDp06cHqFb+c/LkSbdtSRwOB61fv94tr0eB8cLhB3x///vfB9W6Onv2LMXGxlJZWZnuc8S7FYXCV28l8vLyaM2aNcLvyspKiVXLo1slOhwOmjdvnjG18wHxg7569SrZbDbdW8YbsawoUPAv/9WrVykqKoo6OjqISH3cqEtgfJQab/dCDgTiBd0zZsygGTNmeLQgA7VbkdGUlpZSVlYWEQ0IUuyUw9+3RGBq6mKwotToYfHixWSz2VQtQKVlRaGqFnlX7yNHjhCR+9wny7KeW9h7771Hdrs9IG7NRlFWVkajR4+mM2fOuKVVV1dTenp6SPjz6+HYsWOCq3d+fr4kygLLslKvKZI5pQx2lBq9LFmyBLt370Z2djaqqqokafyyIn7dVjCCtXiLuE7Tpk0TXL3lG3abTCZ1JxyO46ioqIh+97vfBePFMoTm5maKjY2lLVu2CMdycnJo3759ivlDVWvw68APHz7s5pQDIuVPDXyUGiVDI5RVyz//+U9KSUmhuXPnUl9fH1ksFtXBdqgKjGjA1XvmzJluTjluLYwXhlaUmlAWGBFRb28v5ebm0i9/+UsaOXJkSAtGDd7VOyEhQeJtxRC5e1MePHgQeXl5WLVq1aAua/WXAwcO4JtvvsGSJUsQGRkpHGcYBhzHhcS9MQwj2A5EJKlTb28vqqursXTpUuTn5wMQef6K5dbT04PVq1dr3pCCnEMGvt5jxoxBXFwcKioq0NPTI6TLH8xgIjY45HV65JFH8MILL2DcuHFCPoZlWdJaj8RxXNAX3nmD+OGrCeLSpUuaez0PNkr1VnvuiirRE6EsRD2tJ5TrrwR/T0QkVYnPP/88GIaR/NXW1roVECrqRIns7Gy3e5DXdygJC3jwvBmGAeTTNFlZWVRTU0Mcx1FNTQ0BEObhQt065MnKyhLqzHEcFRYWEobGZoTCM965c6ewYJKfXywsLCST/O07fPgwMjIywDCMm97nl+iE4myBHH6nc4ZhsGnTJmRlZWHFihVCOoWo0XTp0iUwDIP29nYhstDWrVvBMAwSExOl68Nqa2tRWFgo/C4oKEBhYaHbNu+hrFJqa2sVd4m1Wq24cOGC8DtU1XpiYiIKCwuxadMm4VhCQgIKCwsRHx8v3WXW5XJh8+bN2Lx5MxiGwcWLF92EFao3ynP8+HFMmzbN7XhiYqJEYKHIrl27AEAQltg4SkxMHJCFWH+KdT+vQ/kPakMFqPRVDoeDCgsLg1wbfQjfugDauXOnZl5Bt/FBrfgWNX/+fABQtBJ5Qqkv4zgOHR0dEpXO09HRAafTqdjyQgGGYeByuQDATaPJEQR24sQJZGZmCgm8AMeOHat5oVDBZDLh008/RWJioltaQUEBsrKykJGRMQg10weJpqc8ZSQiqTrkmyeGiCnMA9EQhGjAvQ0iszjUgYpKbG9vF9YagB9ryf+8CSM32KjdAwDDF1UEEt5uELsF1NTUSF64odWE/gfgXz6GYQiAm6H0/wE6yplEV4bM4wAAAABJRU5ErkJggg=="
|
<image>如图,△ABC为等边三角形,点D为BC边上的中点,DF⊥AB于点F,点E在BA的延长线上,且ED=EC,若AE=2,则AF的长为()
Choices:
(A) √{3}
(B) 2
(C) √{3}+1
(D) 3
|
3
| 69,724 | null |
3
|
"iVBORw0KGgoAAAANSUhEUgAAAKoAAAAVCAYAAADW6nUiAAAGKklEQVR4nO2ZzWtc1xnGn3PuPXdGHruBQhddNhFNWtp1KsmuIwcCaRdWwG3oppTGRK5lsmiKgsFQMF60xJ+JGtebJAS6CTgmQV+OGzD2IrhOaYsdyeqo+SfaSHPPx/t0MTOaO6M7IzvG0h1FPxDSnI/L857z3KPzvqNIEjvsUHD0RgNEBCKyGVp22KErPY0qIjh58iROnTq1WXoKQ/YF7Zd/OtvpUOmMpatR+2VzHgWdL6hSaosVbcx2OlTyYsk1Ksm+2Jwdti+dB2WcNyhrUpIguW3+pdwPIYS+irups5809yK7/k1yjdqEJG7cuAGl1NfqKkAS169fh9a6b+IWkW2zVyRx8+ZNxHHLnj2NqpTCgQMHHrmwoiEiMMZAKYUoirZazn2hlEIcx32luZPmC9b0ndatm6naqaPuUCS65Uc9T9SvJQxwPlMWiQ0iBAREiAqYXzI4+LwrqY5hiii4B7mxqAhxrHOy/pzzlRRkz91+PIKJjXQT4mpY/fAIdlUqqFQq2PONx/DKbA21mQm88vHm6HwQGBxmJyoYKCdISgNruit79mD3xCycl8Ls1Xod7Y5sxrJroISkvKsex+7d2D36BpYCATYJwjwkeN6b+zOv/aejXfLH9ydCV7vD14cMywPHeLXZ6i2nxw1N/GO+ubylArsi3vKjwxHN/jdZlyj0dprjxtDsPcelLvtaRCQ4LpwdYenoVTbjeDmOaH4zx5ZRGXKmeqa1z/lCkvDacivgdpOGPjet0Kd3+fpQzNLoFJc7++wMj5SOrpm3WAiDW+CZYcP92TdJAt29c9wbx9x7obp18rJsaJF6LGdHSjzaWOxgV3nlcMzSxNWsUUlxlmmaspamjd+WF1+b5NjBMXYeKP1szSwSHBdODzFKnuHUulNTGEKVU1PFtCkl0C2c4bDZ33HiC4Nb5JmR+mlUNERkvX8k0C2c5YgZ57S1TGurvHtmH8sDo5xaJtuSKRUbJMHDBkJrhU/ePQH9zCjk/L/rdwpqoHE/z17T2fG5qKzXSVCqmPvgb4gOz2Diic4ZCloPYmJicLMkPhCkoDp3GbeHf4H31mknwAJ9/ZtZ/DxNpKA6+z4+5d/xQuVtKK3x9B/+if/+70nEOucrVGoAJOzyX3FDPYtfPa4w/9On8ASQ2WVpKyoXZCm+EuQyFm8p/OipYpqxO42X7PJtDB96Hp0+pVSxcEtj6HsFiaunSeqxzF/5B47MWNi0hi//9Udw8ocYfaMKIseoCgrBe/z+7U9w4sUhrNRS/GTwOyA1GBystfCioRQBBlhr6z8hWxbItFvfnt/16us2zoVW1pg7X+CthbUOns2/LayXtvGus/ZBgl8sYxGAdCknU4qTObdBQqrzuHx7GIee77ApA9zsR3g3GsHPOvu2GObteDOWz17CwecAKI1o8Cgmfyn49LUL+Bh5J6p4XHvnBC6cv4DHvvktfPvpF6EjDaUAFUXQOkbcmOU9YJIESRJDBw9PABB4J9AmQZIkiLXArxmkV1+W7DgDjYAgveZrxCaqL4MT6CRBYiJAPGxDozERINK+TEpBPf5d/EAr3FpYgpesJYlgU8y9dRFfPOBmbA5EqC7i9vAhZL1IcajVpnHs539B8vLxnOvM1qLyKqIUVOcv47OXDuK5egvEL2FpQSEa/j4G64OyF1rP2r15Hr80TyeBIoGLc1N89dJ8477r6JrFgeCYNpKuNE25kq7Q+Ua79a3LsnimqaOjJ31+XyAZ6FsZWnBMXXsVImw0X1KmNUsn2b4enzPPsNPjTEol7ju3SGstrU1ZW73Lc/sHeKyZgWb15fCo+9s1O9ZW7/D0cMy9a5rrCcid0yM05QGOrs8MH56H1N+lAFqPZcRwfLoRx+oKr/xa0ZRb679m1OAtv/x8mmbsd0xX6pvvbI0zF3/LV/80zdR5Olc3iYjkmqn+ILdmnrqOlpl69nU+I2vI+3n2RsbsZlSSlEB/7zz3GUNjDI1J1rLNwtF4scya1sxPUubAuhJbsSs01tqcWNavP0gyBM+3JsdYLhuWyxVeXfJ03nJyrDGxUuGh45fY7stAl6aZtsAQWu2pbyxPm6F79WUQz/RBn/0wRt3hkfOwtfb/A/oSRd9kkSAsAAAAAElFTkSuQmCC"
|
<image>如图,D为线段CB的中点,CD=3,AB=11,则AC的长为()
Choices:
(A) 4
(B) 5
(C) 6
(D) 8
|
5
| 69,725 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAG8AAACSCAYAAABLyZSnAABDfklEQVR4nO19d1hU1/b2e6YywwhIEVERqUGwkptYYolRYwVLvDExoibXhknsWK4aE4zd2HsvScRgiTWIYm9gIwoWutJ7Gdq0s74/xjnOMEPVmPvL5/s8PMA5++yz91m7rL0qQ0SEt3itICIwDMP9Hx4eDo1GAy8vLxQXF8PLywuJiYm4desWPv74Y9ja2lb5bHUQvPaWv4XRx799+zb27NkDFxcXZGdn45NPPkF8fDxCQ0Nx5MgRA+LpP1sTId8S7w1gxowZ0Gg0OHbsGCQSCc6fP4/s7GxYW1tXS5yaZiDzdtn8a6DRaHD79m0UFxfD3Nwczs7OEAqFMDc3R2pqKqZPn47Y2FgEBwfDx8enXu94O/NeE3RLHMuyuH79Ok6fPo2jR48iOzsbQqEQ3bp1w5gxY+Dr6wsPDw9YWloiLy8PSqWy2vpqeulbvEZs376dmjdvTkKh0OBHJBKRTCajtWvXUllZGQUEBFC7du0oOTmZiIhu3rxJCQkJdXrX25n3GpCVlYWnT58iLi4Oa9euRUZGhlEZIoJCocCqVavg6OiIrKws5ObmIj09HTdv3sR///tffP/993Bxcak1x/mWeK8Ba9euxa5du6BQKFBeXo5u3brB3t4eV65cQYsWLeDo6IhLly4hNzcXFRUVKC0thbm5ObKysrBgwQJkZmaiU6dO6N+/P4CaGRUOr3/h+P8L9+/fJx8fH5LJZCQWi0ksFtPJkyeJiGjfvn0UHR1NRESrV68miURC1tbWFB4eTrNnz+aW1ICAACotLa3lGzUUF7aFwuKJ3hLvFTFp0iQSiUQcIT788EOKj483WXb16tXk4uJCy5Yto1GjRpFYLKbevXvXaa9jKY4GARQW/3bPqxPIxF5kaWkJhmFAROjcuTO2bdsGV1dXk89PmzYNz58/B5/Ph0QigVgsxpw5c+Di4lLrNuyYtR2sry+cXdm3e15dYGovGjRoEE6fPo1GjRphx44daNGihcH9qKgopKeng2EYVFRUgIjw3nvvITk5GQqFAmKxuMb36gbNuR2BoN69wfz0BMBbhuWV0a5dO7i5uWHYsGFGhAOAefPm4cqVK+Dz+dBoNLCysoKbmxvi4+PBsiw0Gg0AID09HVFRUejUqRMaNmxoUAfDECjhHM5Rbyx3ASYO9MRx8MB7Ex38J0MsFoPH48HMzMzk/XfeeQcKhQJlZWVQKBTIy8sDy7IwNzeHQCBAw4YNkZSUhFGjRiEgIAAJCQkmauFh9rbzWDH+YwCA7zuuL66+Rb2RlJSEnTt3IjExEQ0aNDBZJigoCNOnT4elpSUAoGfPnhgwYADeeecdiEQiHD58GKNHj0Zubi7mzJkDb29vozrO7QjEypUrwTAMeG59Xi7fr4Pj+v8RDx48oI4dO5KHhwc5OTnRnDlzDO4/fvyYTpw4QRUVFUREtGLFCrK2tqZTp04REdGiRYtIJBKRWCym7t27U1RUFLEsS0TE/SYiYuPP0qxtZ7n/48K20Izt2v/f7nl6oFpKNmJiYjBmzBgoFArs3bsXd+/exfz586FQKDBkyBDk5uZixYoVuHv3LoYOHYpp06bh008/xcWLF3H06FGUl5fj7t27YFkW3bp1w/bt2w04VB33isRz4E0/Dzq+AgSAAZCUnAAeuXANfos6YsqUKdSwYUO6dOkSd23jxo3UuXNnsrS0JKlUSu3bt6fhw4dTnz59yMfHhw4fPkwjR44kGxsb6tOnDzk4OJBYLKZjx44RaVijd2yZ5UsACC/OdEREgX7grvnN2vb2kF5XPHz4kHx8fGjmzJkGy9v9+/dp1qxZ5OLiQhKJhFasWEFERKWlpdSjRw/q2LEjOTs7k62tLU2ZMoW8vb1JJBLR9avXiIjImHw14y3DUkukpKTg6NGj+Oyzz6BSqfCf//zHYIk9c+YM9uzZA6VSCT6fj5MnT+LQoUNQKBT47LPPIJVK0aFDB/To0QN//PEHkpKSYGZmBg2xALRLIgDcvX+n9o16HaPxn47o6Gjq2LEjWVpaUo8ePejcuXNGZZRKJf3www/UvXt3srGxIaFQSO7u7vT111/T9u3baePGjZzY7NNPPyWhUEgNGzakhw8fEhHR0aNH6eTxUzRq1CiTbdDOTI3BtbcMSw148uQJxo8fj+zsbMyfPx/jxo3j2H56weAkJiYiNzcX3333HVq1aoVx48YBALy9vUFEiIyMRH5+PiIjI9G/f38UFhYCAFQqFc6dO4d79+5hx45dGDp0MEaPHg0WBB4MGSftfy8XSiJ6awZRHdLT0+Hv74/8/Hxs374d7733nlGZ6OhofP3114iLi0NgYCCioqKQkpKCuLg4aDQa/Pzzz7C3t8epU6dw8+ZNREZGorCwEGq1GgAgFArh7e2NwYMHIyAg4KV0RcdeVofXtLL8IzF79mwyMzOjkJCQKst89dVXJBQKycLCgqRSKVlaWtLevXtp48aNNGjQINq8eTMNHDiQfH19aenSpeTp6WmgXbe3t+POfhxMcS8mrr1lWPSQk5OD69evQ6FQAAC8vLwgk8nw8OFD7bmrEhQKBdLS0gAAarUaKpUKFRUVOHToEHr27Inff/8dPj4+sLOzg0qlwp49e/D8+XMAgJmZGczMzPDFF/7o1auXYcWmZpypa680NP9hePDgAXXq1Inmzp3LXVuyZAlZW1tTYGAg3b5926D8vn37qFmzZiQUCjlJyfz586lNmzYUGBhoULa0tJT69OlDQqGQnJycyNvbm5o1a0bh4eH1bu9b4ukhOzubevbsSRKJhCZMmECFhYVERBQUFESurq4kk8lo2bJlRESk0Wiod+/eJBKJSCAQkEwmo2vXtGe2fv36kaWlJd26dcug/oEDB5JYLKbFixeTv7+/0UHflHisOrzlNvWQnZ2N7OxsqNVqxMTEICUlBZaWlliwYAF69+6NoKAgLF++HAzDQKPRICIiAgDQtm1bqNVqmJubAwCaN2+O8+fPc1wlAFy+fBkPHz6EUChEr169oFarUVZWxp0VHz16BJZl0apVK+4a1SSue9XR+k/DDz/8QB07dqQrV64Y3cvIyCB/f3+ytLQkiURCIpGIOnfuTNevX6exY8fSgQMHiIjo/Pnz9N5771FoaCgRESUkJFD37t1JKBTSwIED6fnz5zR37lySSqV08+ZNunfvHrVs2ZLmz59fp7a+JZ4JhIWFUUZGhsl7aWlpHCFEIhFt376diIiGDx9OgwcPprKyMlIqlTRp0iS6f/8+ERHNmzePK3/hwgUiIpo8eTLJZDKaOnUqdejQgdq1a0cxMTF1audbbrMSiAi9e/dG48aNTd5v0qQJZ3PCMAykUikAoLS0FGfPnsXTp08hFAoBAKGhobh69SouXboEADA3N+fOcWKxGEqlEps2bQLDMNi/fz+8vLzq1Na3e14lVLfHEBHUajVKS0sBACzLIikpCQDQsWNHXLhwAY8fPwYRITo6Gvv374dEIkFJSQn4fD4GDx4MZ2dnANqjBb0wWlq3bh1at25d57a+JV4dwDAMTp06haioKAAAj8dDixYtoFAoIJVKYWdnhx07dqCgoIAjokKhABGBz+fj888/50RrCoUCPB4P8+bNQ9u2bevVnrfEqyPOnDnDzTYLCwsAwJIlS7B582bI5XKkp6cD0M5SKysrlJWVQaPR4IMPPoCbmxtXDxFVa/tSG7wlXi1AL1j2+Ph4xMbGGtxbv349kpOTUVRUZFBeKBTC2toaKpUKEokEs2fP5pZMXRlAK5wGgGfPnnGzt7Z4y7DUArp9MCgoCLdv30br1q3RunVrlJaWIioqyuA8pyvPsixSU1NRVlYGAJDJZAZldEupjY0Nnjx5gqFDh2Lv3r11atfbmVcHlJaWQq1Wo1WrVlCpVIiPj+dmDukdqHU2KLp77u7uRjPKzMwMfD4fYWFhCA8PR0ZGBsdt0lsvodeLP//8kxNCHzx40Oh+ZV9yfQwbNgzu7u4G15RKJcrKyjBv3jy0aNEC27dvx4ABA4zqqg5viVdLrFixAvfu3YOzszPc3NzA4/EMiKQ/6/Ly8hATE4PS0lJ07tyZc93SR35+PgDA1dUVixcvxsCBA+veqDod6f8/RWhoKDk7O5NQKKS1a9eSUqkkpVJJCoWCKioqSKFQcNeIiPbu3Uv29vYkFArpxIkTJuv8+uuvSSwW086dO+vdrn/UzKM6xDCpC0JCQpCamop3330Xffr04SQoppCTk4MjR46gsLAQHTp04EwhKreroqICMpms3mc84B/Gbf4VhFOpVMjLywMAzJw5E56enkZlSG/5XLlyJUJDQyEUCvHdd9/BxcXFqF0qlQppaWlo2LChERdaF/yfIB79jWY2J06cwIMHD2BlZYVmzZqZLKNPnMTERAAAn8/nVESVwbIsysvLoVKpwOfzAQDPnz836cteHd4o8epCBDLBDPwdOHHiBJ4/f46RI0eiXbt2NZbX+dtpNBqUl5dXWaZdu3ac29eTJ0/g5+eH/fv316ltr33Pq27fqQsRqipbVFSE4uJisCyL3NxcNG/eHLa2tibLv8oeqBs8OTk5EIlE6NevX42OkEVFRdwS265du2o9Xv38/HDjxg38+uuvuHPnDhQKBbp27fr3xh6r6sUqlcrkRq9QKBATE8OxzizLQiKRoE2bNpwQF9B6mD548ADHjh1DWloa+Hw+oqOj0alTJ0ydOhW9e/c2qr8+hNN9PIZhEBwcjIcPH0Kj0dRq1fjtt98QGRkJhmEwbtw4ThxmiiBNmjSBRqPBsmXL0Lp1axw8eNBoZtdEyL905mVnZ+PJkyeIiYnBtWvX4OLigm+//RaNGjXiyu/atQtLly6FnZ0dnJ2doVKp8Oeff6JVq1aYPn06ZDIZTp06hYiICPD5fCgUClhaWkIkEqFbt26oqKjA2LFjMWDAAGzcuLFWbsLVtVv/Y4WFhSErKwvNmzfnhNBVfVCWZXHp0iWUlJTgo48+Qu/evbl7psrrBoSXlxfWr19vckl+4xGQ5HI5hYeH088//0ydO3cmOzs76t69O3Xv3p2aNWtGw4cPp9DQULp//z6dOnWKunTpQoMHD6bIyEjKy8uj7OxsWrZsGXXu3Jnc3d3Jzs6O3N3d6dixY5Sfn09yuZzKy8upoqKCNBoNyeVyWrBgAVlaWtK2bdteWz+eP39OXbp0IaFQaOR7p4O+odDhw4fJzs6OJBKJsR2mCUyaNImkUikdOXKk3m18rcTLy8ujSZMmUatWrWjgwIHUpUsXCgoKouzsbFIqlbRx40bq3r07eXh4UMOGDally5Y0efJkk6EslEolDRw4kGxsbLRuUHowZV3Vv39/atOmjVEYjdpaYlVGYGAgSSQS8vHxoXv37lVbVi6Xk6+vLwkEApJKpXT+/HmT5fTbMmbMGBKLxZzFWX1Qb+LFxsbSlStX6NatW3T79m0qLS2lH374gZycnGjfvn1UUVHBeYXqN1wul5O/vz9JpVLat29fte/YsGED/fLLL7VqT1BQEEmlUjp69GiNZWsiaFpaGnXr1o2EQiEFBwfXWN+ZM2fI3d2dM0gyZYtS+Z0BAQEkkUg4QptqU03trPWeV1RUhLt37yIxMRGpqam4d+8enj59CoVCgYqKCvTs2RMxMTHo3r07Ro0aVeX6LZPJ0LdvX3Tt2tVkuRdLORiGwTfffFPTks/V++9//xsnT57E5cuX0aVLF9jZ2VW5P9W0l+zevRt37twBwzBV2rLo486dO8jIyAARYcaMGSZtUSq/k16ohKytrVFWVoazZ8+CZVn06dOHO7jX1E6BroNVdRQAcnNzMWXKFPz5559o1qwZWrRogd69e+Pzzz9Heno6srKykJmZCYZhkJqaigsXLuCjjz6q8qUjRoww6oj+u2trt6h/z97eHubm5ti6dStiY2MREBAAX1/fajtfGUSEpKQkXLlyBSqVCjweD6dPn0ZFRQWnlysvL4darUbDhg0hFotBRLh8+TIUCgU8PDzQsmXLavumA5/PB4/Hw/Xr17Fr1y5cu3YNbm5u8PLyMqqjugZXi0ePHtEnn3xCrq6uFBoaSmVlZVVO78TERAoICOC8QuuL+u5Tq1atok8++YT69etHdnZ2FBQURBqNpuYH9fD111+TRCIxCrdYOQSjzsTd0tKSu79x48Za9yEwMJBEIhFJpVJycnKi0NBQKi8vr1Nbq102Dx48iAULFkCtVmP58uXo06ePyXK6keXs7IxVq1aBZdnajZwqUNvzGVUa1TNmzACgXeIXL16MDRs2wNXV1WimVwe5XA61Wg1nZ2c4OTnBzMwMpaWl3MwDtIZHAFBSUoKEhAQQEXx8fNCzZ0+T7aqu/QKBAGPHjq3y29ZUgUlcunSJXFxcyNnZuVbc0/8ihg4dyvkW1AZKpZIGDRpEQqGQ9u7dy6l5lEollZeXcz86NVBISAg5ODiQTCarFaOkj7Fjx3LHEH3Gri6ocuZdvnwZRUVF2LZtG3r27Inc3Fykpqaibdu2BorHWg6Qv0U+aWFhgfj4+FrH+Dp06BCuX7+OVq1aoUuXLgYSG1PSoTNnziAvLw9CoZA7xOtQU591M7lv374QiUS17ZIBBKZeVF5ejidPnmD06NH45JNPAADbt2/Hxo0bsWnTJgwZMoR7pqioCAkJCXB1dTVw983KykJcXBy6du0KhmEQExMDe3t7gzD0gNZq6ty5c2jQoAF8fX05C+ScnBzY2NggKysLSUlJEIlEYFkWDMNAKBSCz+ejrKwMRASRSAQPDw8j9Yq5uTl++eUXDBgwAIMHD672Q+Tk5GD37t0oKirC999/X2XkPh2OHDmC0NBQEBFat24Ne3t7ru+VJTWVkZ6eDrVazQ2o+g5sgakREhkZiTt37mDixInctczMTOTm5mL//v0oKioCEXGiq6NHj2LJkiX49ttvAWi5059//hkHDhzAl19+CTs7O3z//ff44osvsHDhQjAMg4iICFy/fh3Hjh1DVFQU+Hw+zp07h969eyM2NhZRUVGYPHkyoqOjsXLlSpSVlUEikXCGPWKxGE5OTsjMzER5eTl27dplIJICgFatWoFlWQOzvKqwY8cOXLt2DQDg5ORUY/mQkBDk5uZCKBRi6tSpaNWqFYDaEeLRo0ecwFtXXjdI27dvX2sRn8DUy3SuThUVFQCABw8e4Pbt2wCAq1ev4v79+5DL5RCJRCguLoaDg4OBrmvLli0oLCyEu7s7fvzxR0ilUmRmZoLH43EO+AsXLsT169ehVCpBWmEBDh8+jBMnTqC0tBQqlQqDBg1C3759AQAHDhyAg4MDiouLcfXqVQDAe++9h7y8PDRv3hzt27c36odYLIZAIKjxgz579gznz58HAPj4+MDR0dGoTFXLoK2tLZo3b15t/ZXRtWtXuLq64vbt2+Dz+UhISMCoUaNQVFSEo0ePwsPDo1b1mNzzEhMToVKp4OrqCiLCqVOncPfuXfB4PLi4uOCdd95BREQEWJaFSCTCuHHjMGTIEBQUFCA2Nhb379/H9evX8f7778PGxoazMLa2tgagncWpqalo3LgxeDwenj17Bh6PB4FAYGADqdFo4OrqiiFDhuDixYuwsLCAQCAAj8cDn8/H5cuX0bJlS3z33XdGy7HueaFQCIGgelnEunXrcOvWLQDAN998Y9I0Qf/smZiYiMzMTADA4MGD6+xnIBKJuD3y8OHDuHPnDnJzczFv3rxaEw4wQbyysjLcuXMHw4YNw/Dhw5GcnIzw8HAAWsk5n89Hly5dUFFRgQcPHnAHVkArmVi+fDlKS0vh7OyMyZMn49y5c9i7dy9kMhn++OMP9O/fH1ZWVpDJZBCJRJx0nWVZzqZDF0hbJ924fPkyHj16xO1xPB4PEokEhYWF8PDwwAcffGDQB9ITPJibm0MikVT7EbKysqBWq9GgQQODJdPUbGMYBj/++CNu3boFKysrDBs2rM6mDLp9W+cl5O3tjeDgYKPVoyamh6dfkGVZBAYG4vjx42jatCkA4O7duwYxIHX2+HK5HFKpFBKJhHPAT09PR2FhIVQqFSZMmAArKyucO3cO/v7+WLFiBWJiYnDhwgU0bdoUdnZ2UCqVBsQbP348wsPDcejQIQwZMgS2trbIycmBXC6HTCaDg4MDrK2tuXPku+++i0ePHmHt2rWcgavu4wBARkYG5HI5hEIhtzRX/jgAuHCLfn5+NWrLz5w5g8uXL4NlWYwcORIdO3astnxVKCkpARHB09MTmzdvrjPhAD3ilZeXY8KECVxiouLiYgDAkCFDOI4TAGJjY7F7927cvXsXZmZmBmyura0tOnTogHfffRcXLlxAYGAgysvLOXmdQCCASCRCUlISkpKSwOfzwefzDY4eMTExiIuLw4ULF3D37l2UlZUhLCwMjx8/RsuWLdG0aVOwLAuFQgFfX184Ojpi4cKFOHXqlFHnnj59iuLiYu4dpmZRWloa0tLS4OzsjPHjxxvMIlMf7+jRo0hNTeX8+HQDoy7QmcIDwPLly9GpUyejMrW2mE5KSsLcuXNx/vx5/PTTTxAKhdw5hMfjcftJ8+bN4ebmhg8//BCWlpb4888/ERYWxo36zz77DEOGDMG2bduwadMmWFlZYfPmzVAqlZg5cybs7OzQsWNH3Lx5E7GxsfDw8ACPx4NIJIJKpcLq1asREhKCRo0aQSqVwsXFBU5OTnB3d8eJEyfw7rvv4tmzZ9w7t27dipKSEojFYgOtu/4HYFmWC1hTGUVFRZg2bRquXLmClStXmvyIlZGTkwNAK03SHQ/qyurr+gzAKCRxXc7Egvv372Pq1Km4c+cO1q1bh9GjRxsV0nGdOlafx+MhKysLT548QVZWFscQyGQyhIaG4uTJkwAAGxsbJCQkcG5RPXr0gIeHB3bv3s3tLw8ePECvXr0gFArx+++/w9raGp07d4adnR3UajVOnz6NmzdvQiAQ4PLly4iPj+c+gEAggLe3N/r374/OnTsbtbtfv364fPkynjx5YlJIvWXLFvz+++8AUOO5DgB3rAGAL7/8st4JnAAt88bj8QzEbkDdBoLgjz/+wM2bNxEUFISxY8eaLCSXywFoHSZ0cr1r164hJCQEKpWKO1hfuHABhw8fRpMmTdC0aVOIRCJcvHgRarUa7777LoYMGQJAa88ybdo0ODg4IDMzE+PGjUPr1q1haWmJhw8fYu/evRxnK5fLIRAIMH/+fKSnpyMtLQ0SiQTl5eVYsGABRo4cWaUR7BdffIGQkBCcOHECX3zxBZo0aWJw//HjxwCATp06mQzurQ+1Wo2ff/4ZGRkZaNGihXHgm2pgajbxeDwIhUI0bNgQcrkce/bsQbNmzTB06NBa1yvIzc1Fp06dqiQcoF0ivvrqK3z88cfctYEDByI1NRXh4eGcCsPPzw/dunWDVCrlzNoUCgWEQiGEQiG3n/Tt25fbu9zd3dGtWzcA2oNyfHw8du3aBY1Gg88//xxyuRzW1tacZ05JSQm2bt2Ks2fPonXr1tVaLwPaKEabN2/GrVu3jD5MSUkJAGDUqFE1zrzffvsNly9fBo/Hw7hx40zGITOFqvZD3XHnxo0bWLp0Ke7du4fZs2fXqk4O06ZNo6CgoGoFoFWpVViWrbdQ9VVR2/fevn2b2rRpQ3v37jW4fvLkSXJwcKC2bdvS48ePa6xnxIgRJBQKSSaT0ZkzZ+rVZn3MnDmTxGIx2djYUMuWLenkyZN1Vl8JGIbhDpxVQbdUAloftcTERLRo0QINGjSoUpRTUlKC+Pj4KlnvoqIijslISUlBaWkp7O3t0bBhQ5SXlyM7O9vgzJWbm4vc3FwuE4harYZcLoezs3O1rsHW1tZG57DU1FRs2rQJubm5GDBgAIqLi7kAN2q1Gmq1mtvHBQIBEhMT8ejRIwDaY4Vum3gV6Jip4uJi/PTTT/XyEhLweDycPHkSI0aMMDrsmsKKFSuwfv16LFq0yMhMITs7GxkZGRAKhVizZg2Cg4Mxffp0jBw5kjOXsLa2hqOjIxYvXgy1Wo0mTZrg7NmzSE1NhZeXF1avXo2DBw/iwIEDWL9+PacjW7FiBa5evYqOHTtCpVLh0qVLyM7OxpYtWwyOMpWRkpKCoqIibnklIqxZswbh4eFgGAa//PILQkJCQESwtLSEUqnkoj0AWm0Cj8fjllg/P796Myqkt/fpBNN9+vRBv3796lWfoGHDhmAYhjtom3qRDpGRkdi7dy9sbGxMduDo0aNYtmwZ5zioOyrs27cPfD4fAoEAH3zwAX766Se0adMG69evR2pqKuRyOVQqFTIyMrBmzRo8evQIcXFxSE5O5urOy8uDTCZDx44doVarkZGRgdTU1CqPATqcP38e8fHx3ExSq9XcGcvCwgIeHh4Qi8VQqVSc1oJhGE4OW1FRgSdPnoBlWTRp0gT+/v71dg7R/55qtRru7u6YM2eOgR1rXSDw9fXF77//jvPnzxvYnVQmnEKhwMaNG8EwDL7++mtYW1sjLi7OwOPTz88PmZmZ2LZtG6ytreHr64v79+8jIiIC/fv3x6BBg+Ds7IyMjAx4eHhg1KhR2Lp1K/Ly8sAwDNq2bYtbt27h4cOHALSjvry8nHPY12g0yM7OBqCVrjx9+hQ3b96Eg4MD2rdvbzIxRXR0NCwsLODg4AAABqE4Bg8ejKVLl0IqlXJpYfT7zuPxEBoaivnz5yM+Ph7/+c9/arU6VYXKE0IsFsPKyqre9Qlat26NkSNH4siRIzh06BCGDh1qkoObNm0afvvtN+zZsweFhYX46KOP0L9/f6xYsYITODdp0gQLFy5EXFwcZ39vZWUFiUSCTp06YcyYMQCA//73v9ixYwdkMhlyc3O5TllaWiI7O5s79AuFQmzZsgUbN25Ew4YNIRKJcOLECTAMg5SUFDx//hxhYWF49uwZZs2aZXTIPn36NCIiIuDv74+uXbsCAC5evIikpCS4urriyy+/NBJoExkaZEVGRiI5ORn29vZGxwNTq1N1qFxWo9Fw13Jycrj0NLUFDwAmT56M1q1bY/To0QgKCjJoXFFRERYsWIDg4GD4+/ujSZMmOH36NHJzc+Ht7c0RDgAn/SgqKkJBQQGioqIQFxfHCbtjYmLAsizatm0LoVCItLQ0brnm8/ncsgVoU5tZWlrCxsYGFRUVsLW1xbvvvgtXV1d4eHhwaqOAgABs377diHD5+flYuXIlGjZsyMV81jFRADBlypRqxVIMwyAnJwd3796FRqPBl19+aVT+VawDGIYBn89Hfn4+bt++jaFDh+Lw4cN1qoPTKtja2kImk6GgoAA5OTmws7PjYmIFBwfj+++/R7du3TBv3jzcv38f9vb2yMnJAcuyHDe6f/9+bN68GSUlJVCpVIiKiuKUto8ePcLgwYMRFBSEIUOG4MSJE/j999/B4/GgVCqhVqtRUlLCZS/29vaGh4cH+vfvj/z8fKxevRrPnz8Hy7KoqKiAUCjkfOYqR1pIT0/Hl19+iadPn2LLli2cQ+SaNWtw9epVNG/eHD4+PjV+fJ3OEUC9BdCVoZutIpEIRISVK1ciPj4eRIQ2bdrUqS4eoJ2yOlvHFStWGHyM999/H7/88gu++eYb7N+/H8+ePcOBAwcwe/ZsbNu2DUFBQZz4TC6XIy8vDwqFgku10qpVK7Rs2RKzZs2Cq6sr8vPzcfToUYSHh2PgwIHo3r07p+bx8vLi9iYzMzNu+W7RogUqKirQtGlTWFpaIj09Hc7OznB0dDSKgZKTk4NJkybh/v372LJli4H5w59//gmFQoGJEyfi/fff5z5mVSgoKOAsyUzpC+sD3ZIsFAqRlZWFU6dOoVOnTggNDUWHDh0MylbXNuAF8fbv34/IyEh069YdfJEYCrUGCrUGKgI6dOiAli1bYsKECdi4cSPatGkDe3t7FBcXQy6XY8mSJThy5AgA40AxTk5O3AzVGeo0aNAA0dHRyM/Px+eff85pyhmGgZubG9q1awepVAqlUsntfVKpFE2aNEF5eTnKysrA4/Fw584dPHnyBBEREZx7WHp6OiZOnIjIyEjs2rXLgHBXr17lzmr6fnNVzb7U1FRkZWUBAPz9/Tli1/bDVgeGYVBcXIy0tDR069YNs2bNMrCB0f2u0WIaAJeFg8/nQcRnoNIAPD4PghfPHjlyBKdOnYKzszMKCwuxYMEClJWV4V//+heioqLw7NkzAEBhYSF4PB48PT0hkUiQnp4OlUqFgoICzJkzByzLYvjw4Rx7HhERgdzcXDRu3BglJSUICgpCx44dYWtri6KiIjAMg/T0dOzZs4c7P+bl5YGIOIHunj17UF5ejlatWuHgwYPIzMzEmjVrjATRISEhiI+Ph7W1dZXuxvr44YcfcO3aNbi7uxvZxugIUF+wLIvnz59DKBRi1qxZBsKIuljmcdZjBQUFKC0tBQMG2qD+L9G3b180atQIzs7OnARELBbDzMwM69ev5xS3jo6OmDx5MmbMmMHFkyQiBAcHIzg4GDweD40aNUKPHj2QmpqKs2fPQiwWY+vWrYiLi8PBgwchEokglUrh7u4OCwsLXLhwgbNOA7RLqE4u2LRpU+Tk5ODs2bP4/fffYWFhgXXr1uHf//63QfvLysqQkpICABg6dKgB46Eb6fof6+rVq7hy5QoAYNasWUazri4wNYPUajW3DdQlX6ypymnfvn0kkUjop59+ImJZUqg0pGJZUqrUVKFSU4WaJZaIWFZDFSo1KXW2tixLihdlFCz7Ujand71CxZKaZSkvL4/y8/MN7iWnplFmdjYnq8vLy6O8vDw6c+YMRUXdJ4VKTUWlZZSSmUV5+flcHZk5uZRbWETyMgXlFxbSyJH+JLS2pS07dhq2W8MSsSz9HHyIHFxcqYGtda1857799lvOnL0qg+NXgVKppL59+1Lz5s0NPIrkcnmd6hEAwMiRI3HixAlcuXIFARMngC+SAGAg5POg1AACvnY+gmHA4zEQMgBAULGAUMAHA4JKTWD5PPBAUGkIPD4fAgbQaNRQk9YbhsjwnqODPVTgcaNTd+zo168vVGoCw+fBQmoGqVgE4vEhZIi7LmAAltVAJbaAhUUDNJZZoFPHjtBotG0SEkGpYaFgeHj6KAa56dkYMmwQOprQ++mjpKSEy33AsiwKCgrqPzOqgG7vz8rKgkql4gQgpaWlmDRpUq2ZIx6glST069cPt27dwo6du1/eZRgI+QQV+2IZJe013d8ssVCqNVCoWbAg7WJLAMsw4L8oxufxwbAAC21eB/17PIYHhgWo8vpOAMtjXuy5DAR8vnbAkPHzednZSExKQtu2rdC4sQP4fEYvxAUDPo9BclISCECvjz6CpVX1h+CDBw8iMjISAoEAnp6eBjpAqsIGpj4QCAQgIty+fRsBAQH47rvvuMA6tYb+NBw1ahS1aetDNyIi9fJFsVRULKeUtHRSaVguKwqr0VC52oSvAstyS6Xuf4WK1db34p5Gr6xC/3+96+UqjXEGFhPPz5o3j8wkEgoKWvRiudevW0MnTp0iV1dXEpo1oJBjx17erwJjxozhPINq69hZH+h8Fezs7MjNzY3mzZun3VbqAO6QzrIa9OzTB5evXMfI0SMxZdI36NunD5RKJTZu2gKxuRSrVq7ksqIwPAZ8NQsV8SEAgWEAlhjwGIAHFhrwwNcNEN6LKf7inpp4EOnsIHkwGQyGB4KawC3RGhZc3brnc3Kyce5cGJo7OuKTT4aYHJyhf/yB58+fo137f8Hdzd1kGX3ogtrY2NgYRep7nfDy8gKPx4NarcbKlStrNMc3BY54DMNg+KfD0bSpI9at/Qmhf/yB1JQUJCcn4/jxM1gYtIBbrl48ASGfB4VGA61MhAeh4OV1pYaFAgAY7fFD/xndPQIDsUBHOoJKzQJ8PsqKi5Geng4Xdw9tHeBBKNDuu7rnc0tKMP6bb5CbkYm1a9fC3cMTLAgaDYEnADQaFs9SUhD99AkAEUaO9oenp+eL+4zJAVNQUMCFGR46dGidJR51QXJyMogII0eOhJ+fX73q0CMeD2IB0LN7V3zQ4T3I5XLw+XzcuXMHUVEP8Sw52bjDDAOxQDtSiYiblWXl5VUrLBkGIgHf1A0IX1xfv3491q5dC39/f4wZMwYymQz29vZarQHD4HlyEqZMmYJbt25h06ZNJu0+eAI+dm/fhpuXr2gNfYqLkBQfh4KCAk7tw7IsGjRoAHd3d2RmZmLGjBk4d+4cXFxc8MUXX9Q7LEhtoFAowDAMfH196+9oYuqiLsMUAHz88ceYGDAB3y2cBzsbG8yZMwcymaxKV2QA2LRpE9RqNUaPHm1k9FMbZGRkQCwW4+7du7h79y6ysrLQpEkTuLm5gWVZpKSkID09HZs3b8bw4cONnqcXUdWfPHkCQMs1rlixAuvWrYNareZcilmWhZmZGdq1a4fCwkLcuHEDfD4fM2bMqJUZ4KtAJz0yMzN7vV5COrCsBioW+GbqFOTmZGPDhg2IiYlBYGCgSVM7HTIyMrBp0yYcPnwYS5YsqdLrkyqpX/TxzTffYNy4ccjMzMRvv/2Gixcvcv4Sw4cPx5gxYzglpqmBtHPnTly9epWzZFOpVLCzs4OVlRXS0tI4o2KGYZCRkcH5U/D5fCMO86/wLSwqKjIQ6qenp3P+j7We8bXhanQesEuWLCEnJyeyt7en6dOnU0JCAhUVFVFhYSEVFhZSSkoKXbp0iT766COSyWQkFAqpe/fulJycXGsOKjc3lz766CPavHmzwbvlcjnl5+dTfn5+rbJdDR8+nIRCIa1evZrKy8uptLSUC2ZaUVFBcrmcC8gTERHBpZhp1aoV3bhxo9btrS/Gjh1LUqmUIiIiKDExkTp37kzvv/8+PX36tNZ11CqUh27kzZ07l1PAHj9+HIWFhbC3t+dsPpKSkrhD7c6dO5GRkYEFCxZg69atWLp0aY2jOD09HYGBgXj8+DEn79MPAVJVuyrj3r17nDa+SZMmRgZKYrGYi+TAMAzOnDmDu3fvAqhaz/e6IZPJwOfzceLECURERCArKwvr169/NS+hmtC2bVvs3r0bjx8/hkKhwL179zgOrU+fPvjwww9hY2PDefjk5eVhx44d0Gg0GD16NLy9vU3We+DAASxduhRyuRzfffedybjMVUF/UKhUKmzfvh1xcXFo3rx5tXkKdM8kJiZCoVDA0dHxlSLP1gU6u6E1a9agWbNm2LlzJz788EPufk0DXVeoTjC1ZOnHVzaFjRs30nvvvUcuLi40depUioiIoNu3b1NkZCRFRkbSvn37yMvLi7y9vens2bN1bZJBWw4ePEgODg4kFApp/fr1NT6bnJxMPXv2JIFAQKtXr67zu+sKXVt1h3Rvb+96y0/rPPNMqSxqslr++uuvMXDgQPz444+4dOkSnjx5YuCsWFJSAh8fH8ycObPGkU9V+MzpcO3aNeTm5sLKyqpW57Q1a9bgxo0bcHR0RJcuXWos/6rQtVVn/rFo0SLOvLEyTPVVH28sQLiTkxN27NiB9PR0VFRUGDSKx+OhcePGteKyasP5MQxj4DtX1Ue4fv06/vjjD6jVasyYMaPWJuyvA1KpFDwej1PCmkKtlLFvEvU591WFykQpKSnhrL+7detmFG2hcvlff/0VSUlJYBjm1fRq9YDurKkLZaxSqZCcnAxXV1cDC/XqUK8Y0/QXBOwuKChASkoKEhISOJuYmlB5ZAYFBeHcuXPo2rVrtX7lOujsX1xcXEz69/2V0Gg04PP5nJfQ9OnTMWPGDAND45pQr5n3Og+tZWVl+OWXXxAWFobExEQUFBTAz88PCxcuNGnDWNUSeOfOHRw/fhzl5eX47LPPDDJmmXru8ePHiIuLAwBMnz4dnTtVr+cDALCkVYm9hu7rrAEePHiAdevW4eLFi1i0aFGdVoC/LSmGQqHg/MlPnjzJ+QIAWqfH0tJSeHl5wcvLy0BCU9XAOXjwIJKSkmBhYcGZZegTrPJzmzZtQlRUFCwtLeHm4g56QRMDIhMMCEXMS3Xmq0Imk6GiogJTp06FtbU1fvrpJyPzjZrwtxFvxYoV2LNnD9LS0oyWYWtra5w9exaXLl2CUCjEqFGj0KtXL5ibm1cZzjA3NxeAVhb7r3/9C0DVhM7NzeXknr6+vmjVxvulqkvvGQK9sOl5cQ+MEUHrC51vhKWlJYKCgjBs2LA61/G3EC8qKopzzK+MFi1aoF+/frhz5w46dOgAjUaD4OBg7Ny5E5aWlti4caORBCQpKQmxsbHg8XgYNmxYjQkEg4ODueQVvXv2qrq8ASErzbpXICLLstzetmDBAnzxxRf12or+lowmJ06c4FyKgZcMkL29PZYvX47WrVtzUZfeffdd/Pzzz3Bzc8PDhw85c3UdWJbFqlWrcP/+fQwdOtTozFR5Vt+8eRO7d+9GamoqLCwsYO/QGLMGaW1zdJ5B2p/BSMDL0JNGn5YBgPqHplSr1bC3t0eXLl3qzUO8MeLpf0SdmbwOusYHBARgyJAhGDJkCD788EP8+eefiIqKQqtWrTBz5kw0adLEYG8EtHtdSEgIWJZF3759jbhG/WMCoI3sFx0dDR6Ph88++wydOnXCiuOEmb7A2TiWi9eyZRYLd2YwEl6YQVbhnFyvb8Hj8eDo6IhGjRoZeCfpoGtrTVz9G1s2dR/x8uXLuHHjhskyOk7LxsYGK1euRFhYGGev6ePjwzmoAC8Zi4iICBQWFnJ+C1VxozrVU1FREQQCAWQyGXr27AmJmQSEeDxGIFbouaVPXH4CiU8YTJ+9A8eXjweIuHXzdWx7IpEIZmZmnNI6KSkJlpaWsLa2rrXh7RtfNs+fP89J/CtD38HT09MTkydP5gTUa9euxdWrV5GXl8fFs05JSeGW37Zt26J58+bVdvjp06d49uwZ1Go12rRpoxWHMUDCufPgeboZlXfx9MWJJ9pl2kBfWPdum0RFRQVyc3Oxd+9e+Pr6msyIWR3eOMPSsWNHuLm5Ge1dAAxCUOmgmzExMTEoKSnB7t27ERwcjPXr1+POnTucF8+TJ0+we/dutG7dGhUVFQbLsi4axf6fD+DGjWuQSCSYOHEix6icP38G/XuvNnq3q9s7wBNTvWDxquNerVYjPj4eCxcuxNOnT9GkSRP06NGjTnW8ceINGDAAf/zxhwHxLC0tYW5uXqXdC8MwaN++PaysrPDw4UPk5+eDiLhZJBaLkZ+fj61bt8Lc3NxoH9GlsdHGCdUG13nJmifgzErC6uWVD8csEuPi4OdpSjVVP8LplnSWZZGVlYXy8nKcP38e3bt3x4YNG4xy8/3PCKb1oS+MtbW1RVBQEHx8fGBjY1Nlg+fPn48zZ87gxo0bmDJlCqRSKS5dugQrKyuMGDGCy09gZmZmMOtEIhHUShVCjhxGYWE+hEKxga6QEhLABPrBDTzozyhKOI+Jq45ja9iq19ZvXb908WkAbezNVatWmUyq+D8nmAa0I//u3bu4dOkSnJ2dOWdHU0hJSQHLskhPT8eqVaugVqvRp08fnD59Go8ePcLw4cMxZ84cg+QVpgZAZnYW4uMT0aBBAzRr1oTjOsLDz+EdV50XEI97fvb0PoBvICb0Mt4LCQDzilyLSqWCpaUlFi1axKmuTA/cFwOKXggNuPvs35vwV5f0tl27dkY5dcrLy2nu3Lnk4uJCPj4+1LdvX+rcuTOdP3+ec9QQCoV0+PBho3orB6OpqKigoUOHklAopP/85z/a3BAsEUtxNJABhcXrKZnjzxIAgl+g9v+/oN9KpZL69OlD7u7ulJiYWG3ZQD/Qi/Fi+OM3k/62tKPp6ekoKCiAVCrFqFGjjKQmFy5cwMWLF5GRkYHc3Fz06tULS5cuhYuLC/bt28dFdHj69CmeP3+OzMxMZGZm4tChQ/Dz8+PCDgPAqlWrEBoaChsbG4wYMQISiQSx4ZvBY9xxioCP3V4e0PlufbAtLA50fBmA18dZ6kB6Zzdd6MnqsOI4IXAwEBZPIJbAEiEubAv8PN3f7LLJsiweP36MXbt2ISwsDHw+H8uXL8fYsWONlotu3brhl19+we+//44jR47gwoULuH37NkpKShAdHY28vDw4Ozvj6tWrOH36NEpLS0FEnABAt++lp6fjwoULUCtVmD59Oj766CNkZmbCo9ckEE16pf5QPcwC9YUGuryy+tGgjN6BeDxmtWdQQjy2b0vC+Am90D8x6c0smyzLUnFxMQUEBFCbNm24nHinT5+u1fPZ2dkUHBxMs2fPpvnz55O3tzcJhUJauHAhhYeHU4cOHUgsFpOFhQWJRCIDW5QFCxaSTCYjkUhE169eI5aIli5dSmTs3mLc7nr1tnbw9fUlLy8v+u233+jf//53lVm84sK2UOA2rV1P2PaZtPVcHHf/jcw8hmEQFBSEXbt2YdmyZXj27Bn27t3LzQ6qYQTb2dkhOjqai7qns1YLDQ3F48ePkZCQAE9PT1haWiIiIoJjXkpLS3H//l0olUowDIN7UfdhbWuD0tJS+PuPhoWFBRdWuUePHlwkXYFAYBB1Xifv1P9bIpFAKBRyhrMMw3BJfiufV/X7JxKJkJubi5KSEhQUFGDy5MkwNzc3UkNpfzFIfpaIlRMCsHKC9nZY/EqwpHW6eSPEO3bsGPbt24dPPvkE06ZNw7Jly1BWVsbFrq6OcDk5OZg1axZOnz6Npk2bIi0tDXK5nIs3LRAI4OHhAZVKhbKyMnh5eXFOmkuXLsWVK1e4+C4bNmzAmTNnDKL4sqxWnqlTQenCkJAJx359H4f09HSUl5dzRNV5FzVq1AgNGjQwOmvq6uHz+VAqlYiOjkZRURGcnJywerWegIDR+8UAYSdXIiye0NsVmOXnB2dXFloX1jdEvJs3b6KwsJCLq1lWVgaxWFyt8Y0OP/30E44dO4Z169YhPz8f8+fPB8MwmDJlCr766isIBAKUlZVBLpdz2U10BrsZGRkoLy/nrn399ddcGyobQOmiT+iHrjIFXdndu3fj4cOHsLGxQXZ2NvLz8+Hs7IwJEybA1dXViHg6IvN4PMjlcsyaNQvJycnYtGmTQcAC/RMIJYRhpZ7M1W3gwBfn0Rdl/sJlncPRo0fJwcGBunXrRuHh4TRmzBgaMWKEyXRulTFixAjq0KEDxcbG0rRp00goFJKjo2OVJun65vE6k/fhw4fTw4cPX2ufiIiKi4tJqVRSfn4+paSkUGlpqdHeVZVJ/oABA8jd3Z1SUlKqrD9s+0xuv+P2aFabvo2IXm/O2OqwZMkS8vDwoM6dO1Pz5s0Ncs1Vh0mTJlHfvn3p888/J5lMRjKZjDZs2GBQxtQHWrBgAclkMhKLxbVKHVobvK6sZfrnvEePHlXJGAX6ac+gL6GhQD+GI+gbOyrMnj0bI0aMQF5eHpYuXYrMzEw8e/YMSqUSTZs25eSaZCIyXnFxMVJSUqBQKDBo0CB8+umnBnVX3jNzcnJw8eJFKBQKdOjQoV6GvKbuvy7DK3rBCOl89DQvQlA2atQIYrEY8ee2wv3jAADAyhMv91t6sQ+Hrf4YRPTmznk8Hg9OTk5wcnKCs7Mzdu7ciUuXLgHQqn/8/f1ha2uL0tJSLq60ubk5nj17hvj4eC6Uff/+/auNT0lEWL9+PR4+fAiZTAZ/f61HbFlZGYqLiyESiQyC3QE1yxBft4uXQCCARCJBfn4+srKysG/fPpw+fRpBQUEYNGgQ3HpPBNHLJFzGCkQWRMzfI9sUiUTIy8vD+PHjuWB006dPh5OTE4qKiqBQKGBmZoacnBzk5+fDxcUFaWlpAEx7C+mDYbSJphwcHKBWqzF+/HgAWgvl1xFeGHh1nz0ej8cFSD9y5Ahu374Nb29vdOrU6eUhHnr0MnoVD8ybOipUhp+fH65evYr27dujZ8+e2Lt3L1QqFb7//nsuxIVSqcTcuXNhZ2cHb29v/Prrr/Dw8DCZHk3/Y8bExCAtLQ0pKSlGCQlfF17HTJRKpVCr1di6dSvGjx+PRYsWGdip1uYNf4ts8/3330evXr04y2hnZ2eEh4cjJSUFbm5ucHd3h7e3Nzw9PUFEePToEQoLCzFmzJgaQ0n9/PPPiIyMhFKpNNob/5egy6Hk6OgIf39/NGzYsM6W6H+bYFonjQCAMWPGwNPTE0FBQQZJp5RKJZckkc/nV2lNrD8TioqKOAVtXRJXvGnoJDOLFi3iQjXWdUb/bcQTiUScVMLFxQWffvopoqKiEBIS8rJxPB4UCgVUKhU6depk4LJlapRWVFRw/gc9e/Z8pYBvfxXoRcaykpISLmtLffGX73m6j1x5VOkMiUaNGgVAG9ZfoVAgJCQEgwcPhqenJxeRncfjYdSoUXBze6kYNTVKdabztra2mDBhQr2jpv8VUCgUOHbsGGJjY6FSqXDt2jUuam998ZcTr6qloEGDBjhz5gzu37+P9u3bo6ysDAKBALGxsbh27Ro8PT05XdeAAQO4PERVoaysDJcuXYJCocD06dPrnavgr8KGDRuwbt06iEQiSCQSpKWlwczMDFZWVmBZFuvWrYOZmRkCAgJqXedfvmyaWt6ICMOGDeM+uA4uLi5o3rw5rly5gj179nC5YX18fMCyrEnrMh1WrlyJmzdvgmGYOqcB/avBsiwuXrwIkUiEzZs349ChQ/D19QWPx0NMTAy+/fZbLFmyBDdv3qxTvX858UzNPCLCr7/+ipKSErzzzjsAXmYO0QVZDQkJQUxMDHg8Ho4fP47BgwdXa9eYkJCA8vJyuLu71yqd2psCvRBGN27cGLa2tujatSu8vb3h5eWF8vJy/Pe//8Xt27exZ88ebN68udbW0sArLpuPHz9GfHw8x3joQywWc0kNhUIhF1fSysoKBw4cwM6dOxEQEIBWrVohKSkJiYmJnOdO48aNuZAgLMuiYcOGePr0KU6fPo0PPvgAlpaWUKvViIuLQ0lJCQQCAcelvv/++1wsy7KyMgM/Pf3zYOWDti6Iji5BhinzBHNzcy5Rh+6+vrbA3NycC6Gs01UKhUKUlJSgqKgI0dHROH78ODp06IDk5GRoNBpkZGRgxIgR6Ny5M1QqFdLS0iAWi5Gbn4eSYjnMzc3RqFEjkzE4GaqBxNVJE5YtW4ajR49y6UN1VZmZmUEulyM/Px9qtRoODg4QCARgWRZisRjZ2dlISUlB48aN4eDgwElTdKoipVKJZ8+eQSgUomnTppxZH6ANhSyXyzlzBysrKzAMY5QvSCAQcKaEALiPm5OTg8LCQohEItja2nIfWZdgKjMzExqNBhYWFtxZjMfjQSqVIjs7G6WlpZBIJLC0tDR4loiQlZXF5UvShd7XZZd+8OAB0tPT4enpicaNGyM2NhY5OTmwtbXFO++8A6lUyukHdQNl2LBh+Pzzz03SBKjFzKvu7DF69Gh8/PHHBqNZKBSCYRhMnjwZUVFRGD58OMaNGwcLCwsQEczMzBAfH485c+YgOTkZX3zxBfr16weZTAapVAqVSoXFixcjPT0d8+bNw5AhQzhNuFAoREZGBubMmYPY2FgsXboUPXr0ABFx9Y8dOxZRUVGYN28eevfuzeVpkEqlKCoqwjfffIPk5GTMnz8fvXr1gkKhgEgkAsuyiI+Px+7du/HBBx9g4MCBUKvVXJuLioowceJExMfHY9GiRejduzfUajXXrvDwcHz//ffo3Lkz5s6dC5lMxg3WnJwcTJ06FTKZDDNnzsQ777yDNWvW4PHjx1i8eDGcnJy0UevBgBjdhCE0adLM8INTJZrUS6dRA1auXEn29vYUGBhIFRUVBqqU1NRUGjlyJNnY2JiMe7J06VJq2bIlLVu2jIi0ahjd8yqVimbOnEnu7u60YcMGg3o1Gg1Nnz6dXF1dacuWLUb1Jicn0/Dhw8nd3Z12795tdH/u3LnUsWNHGjx4sJHur6ysjAICAsjBwYGmTJlilLsvODiYevToQa1bt6aLFy8a3KuoqKApU6aQm5sbbd++nbseGBhInTp1qjK0l65nYdtn6pn7BRJLcRQYqO1frYlXW13Wli1byM7Ojr777jujexqNhmbPnk329vYmCbdv3z5ydnamH374weieUqmkMWPGkFQqNflsUFAQWVhYVBkIRxe0RhfTTB/Tpk0jsVhMc+fOpWfPnhn1dezYsSQWi2nHjh1Gz8bGxlLr1q3pq6++ovj4eKP7EyZMIFtbWzpw4IDB9W+//Zbee+89E0pirdJVZz/qN2sbd0d3bebWUCL2L1DGnj59mkJCQkzeUyqVdPLkSQoPDzc5GDZu3Ehr1qx52Vi9MomJifTxxx/Tjz/+aPL+kSNH6NixY0bXdf8vXryYdu7cabJdM2fONCK6rg6NRkMjR47URr43gZMnT1L37t2NjIZ1mD9/vknFs4540dHRRu9kKYH8ABo4W0e4l5ZuW2b5chZk9Q5fZer6q2iaWZY1MouoXN/z58/r3C4dysvLjcrrnikuLq623my99AGVIZfLq41qWPm9OuiIF/MwWpv2QO+edqn0pTjdLNTrW9j2mZx2vd7hq2pzneqg99KZ05mqk15wV46OjnVul+75ypH/9MubyrunX646H3eZTMbpGE31t6qUqDweDzwej4tCwbUVsdg4fhUCt519aWykV2fvcStf1lFlq14DXpcGurYmCHMGMVxZhuGDYRhsOx9f6dn6+5HXpp21RUFBgfYopaxk4xmfhBMAXGshsP7btAqvFS9Y6GXHCYF+wNZzcWBZNeLCtmBib3ecS9Av/Ga7TCYkJjp1kJWVFUQSfe0+W6sBwNVU5WL9fwSs3m+W4siXGUjxpN3PdNxZmDET+NosweqLjIwMEx5CGmIpjvwAmrU9zOgZNv6sgbn7P4Z4RERxYVsMWOtAP8aIY/s7iVb1u/UTgGi4s9228y9HXVzYFs7tTFfu/z7xWNb0gRaGfnf/yzDVwriwLQZ90Q1K/f78nyeePmb7gc7GaTsXtm0WMVUsmUT/q0Q1kYKHDNuq//c/g2GB1q5/OQLxsZt2w+81fhz8AJwLD/t7G1YHEDEmrcYMwojo+1i8gTa9EZy/cA6BA/QMjhLicRyVWG49/cnrNqR9HTAkHVvptzH+McQ7d2oVevf8GAALQjyGuPcD4IsevfSIx/x1Z7zXAoPxxKv0WwvS1+CZWnlNJEX7n71feWPnfgw4MxN1VLPn/S/1r7r7/w/mXTKv6PGQmAAAAABJRU5ErkJggg=="
|
<image>如图,AB是斜靠在墙壁上的固定爬梯,梯脚B到墙脚C的距离1.6m,梯上一点D到墙面的距离1.4m,BD长0.5m,则梯子的长为()
Choices:
(A) 3.5m
(B) 4m
(C) 4.5m
(D) 5m
|
4m
| 69,726 | null |
4m
|
"iVBORw0KGgoAAAANSUhEUgAAAJwAAABZCAYAAADLnU1KAAAcuUlEQVR4nO1deVBUV9b/3dcYImDUETWJigqIJlE/pxxHqzSJGyCKy5QsZjMSTUCTGUFQY2Z0yjhOxSVkpsaFoFNjXMZGHaOEZmvAXVOTRSfBUmSRqKkZEusD0Xwuoe/5/nj9Hu+9ft30Co2ZX4nQr++76++ec89dzgV1AnDeQpxzn8RtIU4W4qr4LRYLERFlzgIBOj8zM32Sl84IC6nbRb/OptMV/oCIiAR0EjDGwDkHOIFzDiLySrwCGAQwMMZanwkCiCzYdJSQOQsoqRbTIyJUmbdi1lNRXkn7YYAApmoLVZ1xsc62rWSIEn6FGnB0CsIxGACIRIDAUFu+HeZa5jXSSSCytP5mBhCqcQkZiIlk4KhCTk4phkyNQdzgQV5Nt7OjtbNyADW4hExERwBgAAhY/F4BMmeZkLlyZ+cgHFqFDziqsTz2LTCBgzHvEM5iEYnGmEH+zQDUlZnxzIzpAIDyHTuAIYNAiEBaWoxX0n3YwDlQYy5BwLCoVhJaf0U8NQP5VdX+TzhpICCRYsfKXFhmxmFgOAAvZZ8Z9OOpq6vFptRoMGZAzBvvI3zgEAhg4N4VrA8NBEGA2VyMuOjJYqMBEKUeEBkxDGCsMxCOwAAYDAzmHVkQpk4BFQjtknFzQTZKawictyArfjrCI8UxCbwkWR8WcM7Buah9Ct8nTJ0aDoK1rqwtVVtXhVmREf5POAEMBIBXl6OUR2NhBGCa+RQivZwGF1MBYDUQaouxWchCdIQ4RhkycyYirdUlKHX8fwFBECAIAOpqYVgej0gIYKzVEON1xVj8XgHipk3yf8IRxGHA2zvM2PhGDIgIs4YOASB4xWjgVtkvkkisDsYYyirKkDltimgZE/DGG2kAgJUrV6re+y9aUV5ehmHh4QAgzyRwzrFyWRwwOwtpU6KA9pqvcQbSXJj0W5rjKfkwUzWvE7/yQ++laed55hxQSbU4R2f9R1kzQct2mInzFnmuzpvw1Vyjr2CxWFrbjKppFsQ6k3G1RGyz2VlyW/oV4SRw3iL/baktosztRfLnavNWysopVoS130jukKK6ZIuK3Ew0heUfVYWS90nX2cBbLHSl1H6d5ZiriKiVnIzIy5NZHoLDAsE678brimFYVg46skn8zDkqdq5AKUVjY2qs6j2LxQKDweCzvAAAEbWOS7g4LSNNpWihDPtTgrLc0nCoFdx/Veq25dPl3iJJFeWyyYy3t6re1ZNm7qoop9/qXBrQI3DOHWoM6TtHYfxGwhERwJi1N3Ao59ekXsI5F1caIA7YGXFrT9K3e8gFCUNkAWMGefmKMabIT8fAlfx3NKS8kvhB/Ntap0qI7eYHhNNHK/HEArXO6XDOce7cORw8eBDdu3dXvSUW1sMiMQM+yT+C77//HhEREXaDCYKAAQMGKPLYShBXCGMwGOR43HnfHlytCylNd+swPDwc/fqHYfKUifJUkzStJZUkwOVYvQxlZpSSjiCAYAEgQGAMytFA8+0fMHfuXDQ2NiIpKQnhVlNcjsMNCGCwEBeXtQQLBEEA5xx9+vSx+w4joLKyEnfu3HErTQlEhLt37+LGjRsexWMwGBAeHu725gaJaAEBAQgLCwMRoaWlxeE7xDjuNP+AL7/8EqGhoRg3bhwmTJiARwO7gBEHJyZuhoDYgh0u4aReZSEOA2tVmeIuBLVYlp6npKQgKOhRxMfPwgsvvIC8vDzExsbaS8IJaNQ4AQcPGpGRkYns7GyXyuEPuHbtGu7cueNxnu7du4f6+vpWlWmlSnNzM86cOYM7d+5g4MCBuHHjGkaOHIWPP/4YYWFhDtPscMI5A+X4zWQy4c0330RlZSVCQkJQUlKC5ORkHDhwADExni2qK9NpbGxEr1698Pe//123AmVLzP+rTxf2yOhInX777bcoLi7Gp59+iuDgYHTr1g1xcXEwmUy4ePEiAgMD20yjw1WqI0iDeHF/GqG5uRlpaWnYu3cvQkJCAACxsbHIy8tDUlKSrqTTK7SSWEoon/Xs2RPdunXD9evXERYWppu3zgxlh9GOPbU4d+4cysrK8O9//xstLS2Ii4vDsmXLMGzYMAwfPhxGo9GGbMo0VM86g4STkJKSguDgYGzZssWGNJKky8vLQ0xMTJuqxB7plN89/fTTeO655zBp0iSvlsNf4Ejl3rlzB2VlZSgtLUVQUBDu3buH9PR0LFq0CH379gUgtkePHj2QnZ3ttOr2KwknTqYqFn01qvTYsWOorKwEABuySJJOIl1bYzp7ZFN+N2LECNTU1DyUhLNHtmvXrqGkpARnz57Fo48+iqioKGRkZCA5OVkV7pNPPsHp06dRWVlpl2x6ndqvCKfNnPS5qakJixcvxp49e2RVqgdXSaeFsoKICJMnT8b69etdLEXngJYkZ86cQUlJCRoaGmCxWJCYmIh33nkHQ4cOtXn31q1bWLJkiY0q1RJMr1P7nUrV6xVKVeoMvGVINDQ04IknnrBrOHR2NDc3o6KiAkVFRejatSsYY/j973+Pl156yWHHllTpBx984HKafiXhANteUVhYqFKlzqAtQ8JZ9O3bF8HBwTaGg1cmlzsQV69eRXFxMT777DMEBARg/PjxyMzMxJQpU1Th9NSuyWSSVWlbYfWe+ZWE00q3W7duYfjw4di7dy+ef/55l+MrKSlBUlISDhw44JT1qoeIiAhER0dj4sSJtpXXyYh35swZFBYWorGxEQ8ePEBaWhqWLl2K/v37231HWU9SexiNRowfP96tPPgV4bR47bXXEBQUpGuVOgtP1WtcXBxaWlqwcOHCDlOr7kzgSp2hubkZJSUlKCsrg8FgwOOPP44VK1bg5Zdfdnp3jZR+SkoKevbs6fRkuB78RqVqK9VkMqGiogJff/21R/F6Ok83YcIE5ObmdiqyAUBVVRXKy8vx+eefw2AwYNq0aVi1ahVGjRolh9HOCtgDY0xXlbojBPxSwnmqSvXg7jzdxYsXMWLECL8wHNpS4USEU6dOwWQyoampCQEBAcjKysLChQvRu3dvt9PVqlJPlsz8knDiWmkQtm7d6tV4laRzxZAICgrC2rVrVYZDR62d6q0MNDU1wWw2o7i4GF26dMGwYcOwcuVKzJ4922UJpJVaRCSrUnesUi38RqVK0E7wauFJQ7s7T9ejRw/U1tbaWKodAWW6VVVVMJvN+OKLL2AwGPDCCy9g1apVDrdUtQW9WYIzZ86gsrLS7XG0En4l4XyhSvXgiiFBRJgwYQKCgoKwaNEin+XJWVgsFpw8eRImkwm3b99GcHAw1qxZgwULFuiuZ0pQrktLn9vqNN6wSrXwCwkn9Zz09HTMnj27TbJ52tNcmadjjGHs2LE4fPhwh25BamxsRGFhISoqKsAYw/jx47F69WqXiKCsM2c2i6anpyMhIcEmDU/q3y8IJwiCSpW2VSBPxTqgJl1b83Tx8fH405/+5HGa7uDixYswm8346quvEBAQgNTUVKxYsUJeQNfm1R4c7lHTsdKLiopw5swZ3VkCT+rfL1SqJLr37NmDiRMnej3+1g2dgLJuiQilpaVITkxC3sEDiImZqnsK6/bt2+jduzfWrVunu1VJGZ8zDS9VudbqlP5+8OABzp49i/z8fPzwww948sknsXr1arz44ouuFNsp6OXZF6pUgs8J54z41a6VemNwqskF9A7biEXnKC0ta3PKpFevXkhMTPR454gjUt68eRNFRUU4duwYAgICMGnSJLz33nsYNmyYzcYCX6p2T9ZK24LPVWpbxNGzSr1LNgAQNGckRQKKJ40MiI2NxYEDB5CUlIT9+/cjLi7OZnv7E088gbq6Oo8Jp0eUf/3rXygrK0NlZSWCg4Pxu9/9DkuWLJEPCGk7oC/JZjKZcOrUKVy8eNEn8bf7GE67NqfdduTt3isdZm49qCMSSWxEQHIgFRMTI0+ZHDDmIWZatCqeX/7ylzh+/Lhnk54KFXr//n2cOnUKR48exd27dxEVFYWPP/5Y14BpL0Pl1q1bSEtLs7uD1xvo0DGc3rYj76tTOWYQqZdxLNQCAwtQhkBpcQnmzZtntV6jIaniffv24dVXX8XevXudIoC9VYHvvvsORUVFOHHiBARBQGJiIt59913dBXR75PaVSvWlKpXQYVaqvQler5NN1qUCJC951eatiIp5Sw4yc3kOjm54AwJjmDZtmmi9Jr+APOPfMW3aNADimmpgYKDdMw5aSOuUEs6fP4/S0lJcunQJPXv2xIYNG7B48WKHC+iODrp4G/a2HXkbHUI4SXQrD8P4DNa2kaTN9rfjsWQDUE0WRBADsRr8ikVhDmM4uuENAOKUiXH/PoWki8XAgQMBwGbFwW6yjOHu3bs4deoU8vPzce/ePYwePRonT57EmDFjAIiktAflJK2v0dTU5HNVKqFDVKq9Hby+UKfceqQaEESyXX4K/MgmlRsHUeIVoZryZaeDgO3a66BBgzB06FC89tprdtNjjKGhoQH5+fk4deoUHn30UaSkpOCdd97xaAFdC2+qVT1V6iu13S4SztFhGCV80aNFR4MMNaVbsWSDCcVXCmx8htirWO3a66hRoxyqnC+++AKFhYWoq6vDgAEDkJubi/nz53uvME7kWQ+OyGNPlUpjUG+TzqeEc+ZcaXuAiJCz9S3MWvEhYoeIz5Sd4OrVOpvwUkUrSTdv3jwUFBSovr979y6OHTuG/Px8tLS0YPz48Th69CgGDx7cbiqxLdg7g6pnlUr14rO5PmpHLFiwgN58800ics9ZoHuwkIWu0CyAtpXW6LqdypwFmrVC9Kppz8VXcXExhYSEUFBQEG3cuJGys7Np8uTJFBgYSL169aJ169bR7du3fV4ab2LBggWUnp7erml6lXBKF5zSZwkFBQU0cODADmkUS22RjvdKIk4WqjZv1f1OD4cPH6bAwED62c9+RoGBgTR69GgqKCjwVbZ9ioKCAoqMjKR79+61q6vXdpFwjY2NNGDAADp+/Hh7JGcDzkUJt72sSnWv1o9WyTd7Za4itIX0XKkWFxdTQkICASCDwUBGo7GNNP3XW2FTUxP179+fTp8+3e5pe51weqpSqUrbGy1czM+2lTMIs7NaHVbXFhEg0Iy3Wx1Uc85VXi2bmproL3/5C0VGRtKECRNo7969NHjwYEpOTqbu3btTcXExdUZ0hCqV4HMJZzKZOkyVapExR33LnVKNKgXSpUuXaNGiRRQaGkqLFi2iyspK+bvo6GgyGAz0hz/8gbp3704lJSXtWQSP0ZYq9bVkVhGOP7DIP+5AK90k0d1RqlSEhSwWi+z+nkisVM5Fl/jKLOftN9Lzzz9PQyIiKTs7m5qammxiW716NQUFBVFISAitWbNGV9K1n0HkGrSqVJnP9hoC2Eg4d8mmh5SUlHazSrUGi7P4z3/+Q2vWrKH+/fvTnDlzZPLYi+vcuXMUGBhIa9asoaCgIPrtb3/r95JOKsuCBQsoIyOjQ/PiNcJpG0iySpubm4nI/3r96dOn6eWXX6bQ0FDKysqi2tpa+bu28tqlSxfavn07rV27lkJCQmjZsmV2x3R6xPVmXTjbyZSq1Bf5cBYOCadVsXoqV08FNzU1UeSgCDpRflyXwM6qbnvhbPIludtX5LPl3o825bl37x7t2LGDnnnmGRo1ahTt2rVLboC2xjPKv3v37k2rVq0io9FImzZtoqCgIBXpnGnI9mxsrSrtSAu6TQnn6LO9v19PWURLlixpM5zeZ2fT0SOZXucgIqqvuUrp6ekUGhpKCxYsoE8//VQ3TWcxcuRIeuWVV8hoNJLRaKSNGzdSt27d6PXXX+9w61VLZM45vfrqqx1mlWrh0tIW/cjBugg2z5QwmUw4efIkPr/whb2VDZfvP1CmKb1v41imi2CTvyMFR5Gbm4vaqhosTF2ES5cuITQ01Ol0lVuMlOmNHDkS1dXV8uewsDCsXbsW69atQ0JCgksn/L0NX58r9RhaBtpTgXrf6anS/v3704ny43bDuSPhHD3Xxv3dd9/R5s2baWhEFE2dOpUOHTpkN66WltY7vVxRMzt27KDHH3+cjEYj5eXlkdFopP3791N2djb17duXXnzxRerRo0eHGxIdOcFrDzLdtZLKFXDOQT9y+Vzps88+22Z4VyDljTQ7qZT3EVy4cAGpqal4+umnUV1dDZPJBLPZjLlz59qN12AwyHlpy7GyEjNnzkRDQ4O8OUF6XzpdVVFRgdjYWCQlJaGkpMSlsroDe/l1dK60oyDvh5MaVasyJeipU+V7haVFsjv7oKAgMIsiEQdqWKUuNWnYyxP9yGWy5f3jALZs2YK7t/8PS5cuRUJCArr1fEz1bltlswdysGMiODgY69atQ79+/Wy+a2xsxB//+EeMHj0aFRUVHvmncwfSudKMjAx8/fXXPt9U6Qqc3oBpj3CA43Ol2or1xjjixo0b2LJlC/76179iypQpWLx4seq0PpHarYE3IeU/LCwMc+bMsXtus7m5Ge+++y5GjBiBs2fPuuWfzhlS6oXx5blST9Fmi0jq0pF0kFSpRDalyFZ6JAcgXymkDNPWVmsJ5eXlSExMxJgxY9ClSxecP38eRqPRxjUEY8zrZJPyIcUbHh6O+vp6m3QlPPbYY1i3bh0uX76MMWPGuKRe9dS8PbjiosEf4NBKpR95mxals+dKHXm3dkSOH374Afv27cPmzZsRGhqKt956C0ajUXX4xJfqSYI2/tGjR8NsNqueKTsHEaFr165Ys2YN1q9fj1GjRsluJaZOnQqDwWA331KndKfT+PpcqadwWCLWRZB/JCgrVTpX+tFHH6nOlerBSc0t4/Lly0hLS0N4eDg+//xzHDlyBOfOncNLL72kOoEO6PvG8AWU8U6fPh1Xr161G1bKU9euXbF69Wp8//33GD58OJKTk1FWVqYKowd3yCbt4P3oo4/8atymhEeHaFw9V+qMJDpw4AC2bduG+vp6ZGRkYP78+ejRo4dLl0+0lQ9Xoc03EYFzjsDAQOzcuRNdu3YF4NhD5f3795GdnQ2DwYCamhpdQ8JTtMe5Uk/hNuG0l6y5Ai0ZGhoasHPnTuTk5GDUqFFIS0vDjBkzPIrTnvTzJnr16oVf//rXeOqpp5wKb7FYsHnzZjDGUFNTg4MHD3p8IZ0Ek8mE9PR0VFZW+q10A5wwGvSgFN3uHIaRiPHPf/4Tr7zyCn7+85/j5s2bOH36ND755BOHZLPXP7TSzBlnyZ6iT58+uH79ept5k2AwGJCVlYVHHnkE/fr1Q2Jiolfm6aRzpbt27fJrsgFuSjhPzpU+ePAAu3fvlv33Svc4+XtF6SEhIQE3b97E4sWLXXqPiPDnP/8Zzc3NuH79Og4ePOiRem3Pc6WewiUJR0SyVfree+/ZRqYhm5LL33zzDTIyMtCvXz+cOHECOTk5OH/+PObPn+/XZHNkgEycOFHXcHDGR1x6ejr69u2L0NBQJCUlobS01G54ezLBYrHI50q17eGvl5Y4JJw2w9K5Uq0q1VtykmAymTBz5kxMmDABoaGhqKysxJ49ezB27Fhv5N/ncCSx4+Li8O2336qeudLQqampCA8PR69evTB37ly76tWeFX7nzh0bVSp9568SzimVKqlKZy9Zu3XrFnbt2oUPPvgAUVFRWLhwoc31hw8LgoKCsGHDBvTp08ftOHbv3o2vvvoKTU1NOHToEKKjo52ysDuDVaqFqlTKxXDpM6D2waunSiVcuHABKSkpiIyMxKVLl1BeXi66NH1IyKbXN7t3764yHNzB/Pnz8Ytf/AIhISFISEiwmVDWg1KV+qPqtAcV4QRBUIlhqZfZU6WAOI7Yt28fxo0bh8TERIwbNw5Xr15FTk6OR/cF+CP0bssbNGiQwwlgZ5GcnIxnn30WXbt2RUJCgkPrVZolkFSpP6pOe7CR23qD5N/85jc27uxv3LiB1atXo3///jhy5AjWr1+PK1euIDU1tV39hnQkGGMYPXo06urq2g7sRFxz585FbGwsunTpgoSEBF1DgoiQnp6OxMREv1wrbQs2a6nasYPJZMLx48fltdITJ05g+/btOHHiBBYtWoTPPvsMTz75pLz+15l6myeQxrVTpkzB/v37HYZ1ZQAfHx8PQRBw9OhRzJ07F4cOHUJsbKwcR2FhoeztSC9efzUWJKiMBnv3le7cuRP19fWqBfR58+Y5ff3hw4z79+8jODgYf/vb3/DII494Ld6TJ09i165dEAQB//jHPxATE+Nw25G/E00C45wTADAwqLaGEDA3YS6qqqrQ0NCA+Ph4LF26FCNH/Y945wHg8tmEzgpuddUqoHWrFWMkeznv0aMHVr29AoMGR8hvuLOIoyXNyZMnsXv3bnDOcfjwYezLO4Be3R9TWKWt6RBZAGZQtYlfnGHQwHZahICmW/+LSZOm4MKFC3juuecwduxYeYFaHVQAQ8dtV25ftDaudq5t+/btCA8P17hiFazveIYLF75Eff01QLDg8cf7o7rqiixJ1RJNQXI/lgbMerYBjDH5xhYAWLZsGbp1C4aqpzIDGLeA/LQwPgUzAGTR/aq+vh7ffPMNiMF64w2BEbxST4xE1/+cA5s2bcK4cePk76R2E3+LbmX9HSoJZ28QKlWksuf4o7j2NeSOqSg75xxMEGSBIhtOjDklZPS2Pjkai4ntwcHkuyfU6rv1micLiAkQ/EzUtR6iURJLA7JwMIPOnjOFRHxYod3mxHkLBCEA4AQImrJbO6T2Fhuf5U1MDgTAAkKAsi38VK3KLGKMiZWoGNG1WD9oySbeUEVi+Icc0jan1jMN1pkkLdkAuYF9RbbiHZlyftjs5SBUY/nyD8EABKA1j0Tkl2QDNEp/xa8MYIK1QAJDFyYgp/yK7VskSrafkkp1RkG6u7W9raUpXlcMxhi21wyVT6RZPpgCA4sCIgfZ5lWSxvBDgUCkPnWeOUt0TUpEdLl0CzHGVI77JN8VStelDzs4byGyqMuaNQvExJG6zc/2siq360b7noWu0GwGin97q+ycU2qDbSvj5LaS33cr1fYDOOetBaHLNF2Ip2qyEHH7zpiJRIfMPwWIjatXVgtlzgKVSF6+uEiO6Zgh1p8rcMCS0txMgjVOiyZgaW6mum0sapex/sg+lW+RK6VbRPfx1owq3cn/lCG1myx9uLVzzllGP5LonyQnJ4eIiJYvXy77FXYFSjJpnV4v/9CsTl+bn04EQVSr4vxSff1V5G9MtY7jDIh5n+PohjdUm/rU+GlM+kqjN8Zap4ZqzWV4eloMAmAArytGYZ0YauPGjRBALo/nBMWknTQGE+pqkc8CEB4RpnquDdeZIACiVUUASgreR0ktwcIJpblLETtEQOnVltZzoJqL0jrDRKM3oOpo1jqor7+KzWnTwBiDISIOUeEDrQG4aKXqWbF2wKG2KoksImFJAKgF/EedqSrrj3KmgOxMTPsTWr0n1RXjfZaFmHCAwYIpry9GPASYS8sVgdW+0jrSC0+7gXQkO1k7Z7W4YbU0NxMRkYOtXwrW/xmc1QBSvZLVAmXMIHbyiMGIZ0D9tW9sTvVTXTFyK6oBppSM/r+ZQiZceXkZsuKmArBmvK4WJnBERgwGwK0mtroCfxLTIgxgmnLyq8V4nzIREyk29qBBgzE4LFIZwvrbtfrRHm0UMAS/+TATm1Kj8WGF6ACRc46asm0wZJYhdfIQv51vswtpMJc5q9Uale6mAouXLS69Qe1PBbKtYP2jNDeTsnLUblX1aoTzFp2njtKRwquNjiulW6waVCBAoFkrPuy0bYAac47uXBJmLydOtpXmb97IOwLKzil1UV9AOw2imvGQ2sUB71zke7ugQ++871zgqDZvV11dbq4mTI108Mp/YYP/B1WHinv3rLFHAAAAAElFTkSuQmCC"
|
<image>如图,▱ABCD的面积是8,对角线AC、DB交于点O,EF过点O分别交AD、BC于E、F,则阴影部分的面积是()
Choices:
(A) 4
(B) 2
(C) 6
(D) 无法确定
|
6
| 69,727 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAABhCAYAAAAeJqnsAAARlElEQVR4nO2df0wT5x/H38+VH5o48Q8SNeuC0hLBkqhbNS5S2wWNLq5G55wsbiudGkgkcUSLGjWSbIYpOjXqBHWBZsHViNPv0C2LspQiUwcGF3GIFBAlGTpNxmKyIfSe7x/ljmu5awv0B2X3Soj2nh/33D2fz+f53HOf5zlCKaUQwWAwoKamxuOYw+GATqcTyy4TpTBSCXa7HXq9Hg6HA5RSOBwOLF68GB0dHeFsn0yIIVIWAAAIIeCSOzo6kJycjPb2dsycOTNsDZQJLZIWoLa2FhaLhf9tNpthsVjkzh9nSFoAq9WK7OxsdyZC0NbWJnf+OETSApSVlaG9vR2UUpSVlSE5OVke/8chjLcBoJTyHc1pvMlkAuB+CpAZXzCEEI8DhBA4HA6YzWb+GCcQycnJYW2cTOghLMtSbyEwGAwoKyvjLQCX7uOBQSZK8bAAtbW1IISgpqYGKpUKhBAQQqDX6+XOH6dIPgVQSuFtGQJJk4kufE4EyYx/hjwFcJw7dw7V1dVhbo5MuBnyFMDR3NyMJUuWYOnSpbh37x4A2Qkcj/ATQWLzAbt378Y777wDg8GATZs24enTp2FvoExo4QVAbD5AoVBgy5YtcDqdmDJlCmbNmoV9+/bhxYsXYW+oTGiQnAoWkpCQgOLiYjQ1NaGxsREpKSmwWq2hbptMGAhIADiUSiUqKytRWVmJM2fOYN68eaKOonA4kf2GsY1fARDrwEWLFqG2thZ79uzBhg0bYDQacf/+fT5dOJzI8wVjm2FZAG/effddtLW1wWAwYOHChcjLy8OzZ8+C1TaZMBCQAPgy4wqFAlu3boXT6cTEiROhVquxb98+vHz5UrIOeVgIHqO9lwEJQCBmPDExEcXFxbh9+zYaGhqgUqlQUVEhWoc8LAQPYdheIHjn9SsAw+0slUqFixcvwmaz4fDhw9Bqtairq5O1PoQMp4+8847KB/DFokWL0NDQgJ07dyIrKwsrV65EW1tbqE73n0ZMuQwGA/82V/j31ltveeQLmQBwrFmzBk6nExkZGVi4cCHy8/NlRzHICLWaEwYurJ8L6+NC++fPn+9RNuQCAADx8fHYvn07mpub0d/fD7VajUOHDqG3tzccp/9P4W3iuaAeq9UKnU4HjUbjkR4WAeBITEzEsWPHcPv2bdjtdqjValy4cIFPl/2E4FFbW4tPPvkEgLvzk5OTQSnl4zs5wioAHCqVClVVVSgvL0dRURHefPNN1NXVyaFnQaS9vR0mkwmEEGRnZ0OpVIo6ixERAI7MzEw0NDQgNzcX69atw9q1a9HZ2Sk/Jo4SLpSfG//1er3kmo6ICgCHyWRCW1sb5syZgzlz5sBisaCnp8dnGdlKSPPw4UMAg+O/MMLbm4gIgFjnxcfHY/fu3WhpacG///6LpKQkHDp0CC6XS7S8bCWkcTgc/PgPDK7rKCgoGJI3IgLgq/OmTp2KY8eOoa6uDteuXUNqaioqKysDLi/jXtXFLePnHgENBsOQJwAugyh79+6le/fulUoOG9euXaMajYZmZGTQ+vr6YZdnWTYErRqb53Y4HBSA5F97e/uQMmPCB/BFZmYmmpqaYDKZYDQasXbtWnR1dQVcPpLWItzn1ul0vMaL/Yk5gmNeADg2btyI1tZWaDQazJs3Dzt37sTff//tswwViXPk/qIZX+0f7rVFjQAAwKRJk1BYWIimpiZ0d3dDpVLhxIkToo6iGNx8eCgJpXBxdXtfg/CcwrRz5855TLSJEVUCwDF16lSUlZXBbrfj0qVLSE1NxQ8//DAkXyTMfyjPKVW38HhnZyd27NiB6dOnY9u2bbh79y6fJiacUSkAHBqNBlevXsWRI0dQUFAAg8GAhoYGv+WC3Um1tbX8CupIDS+XLl3C6tWrsXDhQkyYMAH19fXYsGGDR54xNxMYLFasWIGmpiasXbsWRqMRZrN5WI7iaFm8eDH//3Bana6uLhQWFuK1115DaWkpsrKy8Mcff6CwsBBKpRKAuB8kJCoEQEyrxI5t3rwZra2tUCqVSE9Px549e3yuYQiGthYUFIhOtYbSEly5cgWrV6/G/Pnz0dvbi+vXr+PHH3/EunXrhuQVW+8hJCoEQEyrpDRt0qRJ+Oyzz9DU1ISuri6kpKTgxIkTAdcrhViHWq1WGI1Gfj9FKWcsGDx58gT79+/HjBkzcOTIEV7bi4qKkJSUNOJ6o0IARoJSqURZWRmqqqpw/vx5pKen48qVK8OuR8rz5sZ8pVIJvV4vmmekCAXpp59+QlZWFtLT09Hd3Y3q6mpcvXpVVNtHwrgVAA6tVgu73Y79+/fj008/9VjsGghSnXry5El+jn3BggVBaSvH8+fPceDAASQlJaGoqAhGoxHd3d04fPgwVCpVUM817gWAY8WKFbh//z5WrVoFg8EAs9ksutjVn9MEuE1/cXExCCFB3TeppqYGH330EdLS0vDo0SP8/PPPsNvtWL9+PRQKhWR7RsN/RgAA9xqGzZs3w+l0Ytq0adBoNCgsLPRwFP05TcLHPToQZyf6kkUC7w589uwZjh49ipSUFOzYsQNLlixBV1cXjh8/LqrtwfYtxp0ABKIhCQkJKCoqQmNjI+7du4eUlBScOXPGb70PHz6E2Wz2CKtqb28fVvu4Drx16xav7c3NzaiqqsKNGzdgMpkQHx/vt55gWYJxJwDD0RClUonz58/j8uXLsFqtSE9PR3V1tejN3b59O2bOnImamhreChgMBmRnZyM7O1v0Xbs3PT09KC0tRVpaGnJycnhtLykpQWpqKp8vkM4NmiWQerU4Vl4HB4L3a1ex17CBvJqtrKykarWaLl++nN69ezdo7bt58yY1mUw0MTGRbty4kTY2NvrMH6zXyIH04biwAP7Gbalj3qxZswYtLS1YsmQJdDod8vLy8OTJkxG16cWLFzhz5gzS0tKQm5uLjIwMdHR04PTp05g7d67PsuGcTRwXAhBMGIbB1q1b0dnZiYkTJ/K7onivYaASZvrOnTvYtGkTZs6cibq6OnzzzTdobGzExo0bMWnSpHBcwrCQBUCCyZMno7i4GL/99hvu3LkDtVqN8vJyPl2opZy2v/766/jggw+g1WrhdDpRVlYGrVYbgdYHjocAUFc/XC/74HrZB4YFSHTHTQSFpKQknD9/HjabDaWlpdBqtfyuKM3NzcjNzeW1/eTJk2hubkZOTg4SEhIi3PLAiBH+IIoYKBgWbB8LyrgDyWTcLFq0CDdu3IDNZsP7778Pl8uFKVOmID8/H06nM2o63JsY/1lkAOD+/fs4cuQIvvvuOyxbtgxTpkzB2bNn0drair6+Pj4fDSBkPZA84cKnD0BYuIeEPtYdVjowRLDsQAbKgh0YMliXwF4Ijrteujwtia80qXwD55cuTweO9YNSOpjeTz3z9w/PprlcLlRUVECn02HlypVIS0vD77//jrNnz+Krr76C0+lEXFwcZs+ejf3796O3tzegjh0rnQ/4EQDKAAQMmFgGBABRKECYGDAMAFCw/QCJi4UiLgZwueB2jCnYPhYkNhaKuFgwDAuWv/G+0jzOLMgXAwYuUNZXeQImVgHCpcfFQhGrAGH74eLaGKsAYdmAhrW2tjbk5+dj2rRpqKqqwu7du/HgwQNs2bIFiYmJfL7ExER8+eWXuHHjBq5fvz5ksWs04H+HEAUd7CSWBRjC/59S16DmgboFgGVBCQMQrrzgxvtKE8KyoIwCbkUhILGxbqHzW54TBMHvGAaggwIoJQEulwtnz56FwWBAZmYmpk2bhqamJthsNixbtsznPeIWu9psNhQVFUGr1eL69es+y3gj9VgZaiR8AMEtVChAXrpAqQJgCYiwBBMDRYyXOWMhuOEiBHqhlIKCYIixlChPfeg2IUSyXGdnJ06ePAmr1Qq9Xo+dO3f67XApuF1RKioq+MfBgwcPBvQKN1LDwuBewf2CMZIQD60iCoDt6wdlmMEOYRgQtn/QHwB1m2mGAQELyvkElA6W85UmhBAQypn9wOoWERUeMe06d+4c3n77bWRkZPBBlIFoeyCsX78eTqcTWq0Wb7zxBiwWC54/fz7qekPB4BBACMD2w9XHgsR4jgxEoQABA+Jx2G1eaT/nkLEDtbnNMLg5BRcBw1sJX2lu541lARBmmHVTsH0uUMG/rr5+/jcIwPa58OhRJ3bv2Anl9Omw2WzIycnB48ePPYIoh4uU6Y6Pj8euXbvgdDrxzz//QKVSSS52jSSDm0UrYqAYcOjErBFRiGgqoxgoEwtFnGDsJQwY7nisVznJNAImbmCsH3bdZPBYnAIEBIq4OP73/y79D2vWvY83dRmInRiPm/X1uHjxIlatWjXS+zbYah+mm1KKxMREHD9+HDdv3oTdbodKpRpTjmJgG0W6BM5flCAMmT516pRoyHQ4SU1NRVVVFb7++mt8/vnn0Ol0qKurG5Iv3M6g73kA6p4HoGBErcJYRCxk+sqVK0ELovTGV4eJ7d6VmZnJvxx67733+MWukXoK8D0PQOB+3laM7d4fTci08MaPpBMC9d6985lMJjx48ABz585Feno6CgoK0NPTE/angZC/DQzkpo5U+rmQaY1G4zNk2tdNjeQWtq+88gp27dqFlpYW/PXXX1Cr1Th69ChcLlfYLELIBWA48+KBXPSff/7JazsXMv306dOQhEyHi6lTp+L06dOw2+24fPmy5GJXf4xEaCIeD+BLA4UXxIVMz549G48fP0Z1dTUfMs0wDJ83UmPpSBG2l1vsWlJSgu3bt0On0wW02JWrZyQWLOIC4Ivnz58HHDI9ll6wDAexdnO7onz44YcwGo3Iysryu9h1pNc/JgVgNCHT0SYIvixWTk4OWltbkZKSwi929bd93nAZMwLQ09ODU6dO8UGU3iHT3jcq2ky9FP4Ellvs2tLSgq6uLqjVasnFriMh4gJw69YtZGdnQ61Wo76+Ht9++y0aGxuHaHsgkb/jEU7QuV1Rrl27hkuXLiEtLW1Ei129iYgAvHjxAqdPnx5RyPR4RcrCeU8mzZkzB1evXsXBgwexbds2LF26FHfu3BnxeUMqAN4XJQyZ/uWXX8Z8yHQ4Ge7ahhUrVqC5uRmrVq3C0qVLYTabR7SGIaQCQAjhQ6bnzZsXdSHT0QC32FWpVGLWrFl+d0XxZtQCIOWMtbS0IDc3FzNmzEBdXR1KSkqiLmQ6WkhISOB3ReGeGkpLS0XzevfXqKOChWapt7cXNpsNJSUlePbsGfLy8tDe3o7JkyeP9jQyAaBUKmGz2dDQ0ID8/Hy0tLR47BQmNlkUsAD4mmniQqYvXLiA5cuX44svvuC3TRluXTKjR6vVora2Fg0NDR7DrNg99ysAXGd5F3a5XLy2d3d3Iy8vD83NzR5Rs951+GqITPAJxMca9ncDxUKmW1tb+ZBpMZ9A7vDQI/WZOMD3pFlATiC3QCKQkGm5syOD2GfiLBbLEOvtLQyESohHYWEhenp6MGHCBJSXl0Ov18NsNgclalYmNBgMBtjt9iHH5s+fj+LiYtEyMcDQWaeenh5UVFTg6dOnyM/PR319PV599VUPkyJrevjwd78ppairqxPdrm7BggX49ddfJcvGAEPNdkJCAo4fPy6p7XLnhxfuA9G+dgv//vvvYTQaPY5TSqHRaHwKgOQQ4AvZAow9pL4izm1edeDAAdFyQ5xAq9UKQggYhoHBYPCoRHgymbFDR0cHLBaL6PHi4uIhlkEII8xMCMG9e/fcS6xZFmVlZSCEDGsjRJnQ463pUptVms1m6PV6/gtiUpXRgWGAWiyWIduIWSwW6nA4RLcYi+QXuWQGgdcXwdrb2ykAqtfr/ZellNLy8nIqkAUPysvLaVtbW3BaKhNUampqJD8R53A4AlJQQimlhBBYrVZ8/PHHwbFRMlED4/2dWSnoOInB+6/j3Y8Md8BfB/uK2ZeJHoZ8MobTfG4DZCEdHR2ora0NqCKZKIXSQSdQ6O07HI6AvEiZ6IZ3/YUfHiaEiD4Syow/RjQVLDN+iPjCEJnIIgvAf5z/A8x80gwc3bsQAAAAAElFTkSuQmCC"
|
<image>如图,线段BD,CE相交于点A,DE∥BC.若AB=4,AD=2,DE=1.5,则BC的长为()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,728 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAEwAAAB+CAYAAACOJfeNAAAcKElEQVR4nOVdy3Ib19H+zgzmigFAkKBIK66SS1l6n8rCoZ4g7xA/gqu0yjOkKsss7RfIKi8QZp9NqrKL/MuWJZEEiNtcMbf+F4NunAFBipZEWZS7ikVgruf06Xv3aSgiInziQERQSrWOFUUBALAsCwAwmUwwGo1ARIjjGJ7nQSkFwzBa97W/faKwjSygQVSapiAiZFmG0WgEAMjzHEEQXHvfrwJhu6AoCvT7fSilBEFFUUBnuF3M1/lgI/zIgCkMAKqqwmKxwGAwgGVZqOsawG6E/WoobHvydV3D8zx4ngfHcTAYDDCbzQBA5NavmiWvE/pZlsE0TSwWCwyHQwBAFEXXP+fXoCWvg7quYRgGlFJCgdPpFPv7+6iq6terJa+DoiiwWq2glMJgMECe59jb28Nqtbr2nk8WYcxyDHmeIwzD1jHTNOE4DogIk8kEvV4PRVHAcRwAG1nGygH4hBHGBulisQAA2LYN27YBAEmSIIoidDqd1vWr1Qqu6wJokAkAs9kMruvKAnyyCFutVlitVhgMBgCA8XgMx3GwWq3g+z6CIEBd15hOpwAaebZYLFDXNZRSGI/HAIDhcIi6rmFZFqIo+nQR5jgOOp2O2FRMXUx5WZbBMAzs7+8DaNiPqQoADg8PsVqtEEURTNMUD+CTRRjQUE2e5wCAwWCAv//973j+/DmqqoLrukJVQCOngiDA5eUliAjdbher1QpBECBJEqxWq0Zz3lezgod93fAZUSyTiqKAbdt49uwZvvjiCxiGgeVyiX6/D9/3kaYpsiyD4zgIwxCdTge+77feo5S6v67RTetsGIYgiuHPf/4zTk5O8PjxY2RZJlQENK5RVVUwTRNVVaHb7cIwDLHFiAhlWSIMw/tBYbvCMyybdsG2sfndd9/h8ePHePLkCYhIDFZ+BiNKN2J1BJqmiaIoYFnW/ZBhO306w2ghhohkojp8//33AIDPP/8cJycnci/QaFLDMBAEASaTiTxHKQXTNEXgs5aczWb3A2G3gV1IBYC//e1v+NOf/gQA+N3vfgegkW9shy0WC6RpiocPHyKKIqxWKxARXNcVM8QwDERRhOFw+GkgTJcqumnw3Xff4S9/+QuUUvjtb38rx23bRhAEsCwLg8EAVVUhCAKMRiPUdY0oijAej/Ho0SMURYHFYiExs3uPMJY7QJvKmBVZZp2enuLLL78EADFWi6LAy5cvAQDz+RxnZ2c4Pj5GEATwfR8//PADPv/885aLdG+15HWglML333+Pr7/+Gqenp61jDGys1nWN3/zmN3K83+9jMpmI4E/TFGdnZ3BdF1mWwfM8gD4hqKqKnj59SgAIAD179oyIiE5OTuTY06dPqSxLyrKMiIgA0GeffUavXr2iNE2JiMiyLMrzXJ47n8+JiCiOY7oXZsW7AmlmCa1tKnaROp2OaFZGRV3XME0Tl5eXcF0Xvu+jrmsQ0afHkrtAl21KKYlSMOsppZBlWSuQSESwbVtcItM0kSTJ/RX6HNva/s++4U2wrSRs20ae5y1KZD/UMAxJx/m+f38R1uv1AGwChd1uF1mWtZIZWZYJAuu6FsuefUUODJqmiV6vh9lsBiKS6EQURSAiBEGwodK7F8V3A1VVtQQzEVGWZXR5eSnnGc7OzoiI6PXr10REVNc18dRfvHhBvu+TaZpERHRxcUFHR0dy73K5FGVQliXdW4TpMB6PqSxLImo0GiPy5cuXog1Z05VlKciq65qIGk0ZxzEdHBxQnuc0n8/J9306OzuTa/j+e60lmcWqqkJd1+h0Oi1LX4f5fC45SHa8f/jhBzx69AjdbheTyQS2baPT6YjsYjYtigJBEKAoivsrw3Qn27IsEc5AE45mOcY5xr29PYmRMY08evQIYRgiSRJ4niemw2g0QhRFSJIEruuKW2RZ1v0I7+hAW6EeTpVZliXZHqa8OI4lE9TpdCTPWNc1ZrMZ+v0+TNPEwcEBXrx4AdM0sVwucXR0hLqukWUZXNdFFEUbR/wXmfU7ACOLC0csy0IQBHAcR0LOHPph9rQsC3EcAwA8z8N0OsVwOIRSChcXFxI0dBxHYvkchJxMJuKop2l6/xDGYFlWy9AEGkecs0RAw47MulzvFcexIFIpheFwiCzLEIYhXNfFYrGQgpRut4terycR2oODg/vHkrcFjqoCkEDgaDTCq1evMBgMhN0AtBDPn1erlSBtsVig1+thsVh8Wq7RtnwDGtb1fR/Hx8dYLpetZEdRFJhOp7BtG3VdI0kSeQYjkAU/0GSe7i1L7oJtZQBsEhzT6RTL5RJBEMB1XcRxDMuycHR0JA44Kw2Gsiwl680ewyfLkgxVVaHT6aAsS0lmJEmCwWCwM53GhXVMZUmSwLIskWv3liWJruYlt6MNHKLhpEaapvA8TxRDURTo9XqiENgX5QiF7/tIkgRAIweXy+X9ZUlaZ4m2jzFwGPrBgwcteRRFkcir/f19kXH8fbVawXEcxHHc5CHXbB4EAR4+fHg/WHKXML8pLwk0JkYYhuj3+1itVlJboWtPRg5TJgcOdZRwLAxo2PVeUNh1KTTDMJDnOebzuXxmo3W1Wgm76QjgOgmgKViJogi+7zd+omHg4uICe3t7qOsaq9VKkrmC6PcUMPjgkOd5K4SzWq2IiGg2m8kxAK1oRRiGck6/dzAY0PPnz1vPN02T8jyXyAdHK+4NwjjMon9OkqR1DU+OEYM1PfBkGcmMxCRJKM9zAkCO41BRFERE9Pz5c1oul3R4eEjz+ZyWy6W8494g7DqYTqeCoB9//FEozXEcmk6nlGUZ1XUtSGbKYuRwMJHjZOPxWJ6dZRkFQSABxDAMP/54GO0Q+MDGXkqSBL7vXzmvmxhse3GNBDvq/P/Bgwf4z3/+02hBpRCGIYIgQBiGMAwD3W5XKnk+eoTdBuq6xsXFBYIgkPg7rbUe+4zbFT1cjcOGLRFhsVjAdV3s7+9jPp/L+SiKMBgM7n/J5mw2E+11fHyMbreL2WyGIAikkoepL03TVvSCzRL+r5SCbdtwHAfj8Ri2bWM6nUqdrDzrrmXMXYKeBMmyjObzOQEQwV7XNWVZJvF+oraiCMOQqqoi3/cpSRLyfV+eWVUVeZ4nz+b33VuWjKJIKqGTJJHPbHgy5Wyzog5sezFLAhvZxwbrduTi3rJkEARNgdu6IA7Y1LWen5+/8X7dMLVtW2L/RATHcWCaJiaTiSR0z8/P4fv+/RL6pGnM2Wwmm6n0CAPHuq6jMKKrOQHbtkXo93o9oVJWGGEYSuT1XkUr9InyhoOiKCT64HkeDMPAdDrF3t7ejc9i7ec4Dvb39yUEBDSsp5c8dbtd1HXdaNs7m90dA7MKB/2UUkiSBEVRSP3XLmCkm6YJ3/fhui7yPMd4PIZSClEUif/pOA5s227V0360FMaSgtZhnG3j1TAMiUAsFgv0+32xu3YZstvARiytN8UPh0N5T5qmcF0XFxcXUrPBdRcfrVlRVdWNf2weTKdT8n2/5e+laSrXXQfs7rx8+ZJGoxERNWZGkiQUBIFcp5skRB9JqQDdIt61K6XG1jqfY0WQpumVLXy73sGbSfViO10JAJAk8eXlJQ4ODj4OGbbLV6yqqhXfYpOhqioURSE2l54WY1Zk4a9ryF3vYJa2bRtxHMs9u5B7eHjYbH54b7N+j0DreLzrukiSBJPJRIpI2HnO87xVX8HFKMAmPH0TZFkm9huti+X0ZzDS9OIVwzA+DoRtSwWllCBDKSVNOBaLBZIkwXK5hOu6LeRxacBqtbpRSzJwrnEymUhKbrFYCKJ4g4Nt2yjLEvP5vBnPxyDDrgMOHxuGgSRJZMsxsEmfsc3FZkWe5+h2u1L0uwtobV8xC+spNd/35Xue5+IF8Dg+Cgq7DniQnOlhC55T/0BjwE4mEywWC/i+L/H42zwbgJRFMVv+9NNPQmW2bUsxCrDe+/3zFf6HAQ4rEzX18Rwx5bJLrIfOap+jDOfn57d+B5sijuMQADFVtkPccRzLOz5aCmN3ZzKZwHVdKKVQFAWOj49bjThM00QYhsKCg8HgVhSmp944M6RrWc4U9Xq9VjeCj9bSZ63E0VJ2gIuikLZV8/kctm2j1+uhqiqUZSltFd4EjuMgTVMJD1VVdaUQJYqiFrLuTQViVVUSiuHEK2vRm+Jdt4EoisSt2hb6HK3ghO9HHw9je0opJSbEtsX/tsA1ExzONgwDvu+Lz8hCH2iocTqdNgZx6ylUoq4L+fulaW84HOL8/Fw0JYBWgci7gL4x/rPPPsPl5SW63a68MwxDPHz4EIvFAmEYigu1gyUrUE2A0cHuBP2HAd77w4Vv7DOysL5NCPo27+BSc47Auq7bCkmz2SLFxe9ldncApmlKTRaXTwJvLkK5LRRFIdY+rUNIzHosIznIaFmW1LnegDAC1SUIAJQBQ5kNyxJBKQuNb1qB6hoEQKmO5rBujgMKqkWtzbmaCIABKGMnJVuWgbLMYBgmXNdBp9OYDa5rYbmcrU0ABWXYUDJWBWWYgIy7A0PVm7GoDoz1GLnXDq39VgB49eoVHj58iCAIUFWV7GeKogjdbhdxHL+JJbfZk0DEnj+BqIZS5hq51fo6/TNAVIDAA92co7oG1QUI5g62qhFHESzHwypL0e93MfRtzNMaeZ7Bsj25X5n2+tm8SLxA6++82FtzieNY+lZwySajYrFYYDQa4ezsDIZhSO4AeKMdZkIppioFULW5hao1KW9YRNEa4UqJNlHKAFUVyOxA0eYcAVCGsZ6kAeghFarh+UETZy8KAB0sVwpFnsHghVjf3zyTF3SbmtV6Qa/CdpMPIkKn08HFxQX29/eliwCHvW+/X1KZzaBAzerp/KM6MAxL/uQcEXSybd2zPrfdc4L/N38AQLLHh2ULy5JKk2PVO8i0yWQisnI2m6EsSzx48ED8Vk6GMNKCINhQ2IZ1mhm2Vwmo6xJKaREAZULVJQiMKAJRs6KKSqx5t0GQMpuV2TpnKAWYneYancKYQpW1zgwBg8EexpNzjA72UQnFN3LwbbR5kiQSNur3++LYl2Up6ToW9DrIMiuotR1GwDYZK7M53xqZWhuRbLdV6/MKyjA2Nh2UCNrrzjWtFAh1XUApA4ZhoSxLlFWGo6M+qipBTTUOD48ApTC9PG/uJ+5RSGvWZuH/hu/ryESapvjpp58wnU5xeHgIwzDw6tUrqbHgzapZlgFo/M9buka6sH//wKVEOoRh2GwkMAzMZjPZvaGbGww/xxZjSh6Pxzg8PATQ3vvNO9p838f5+TkGgwGICFEUodfr3RJhVGqC9f0Byyz+zIMHNg08uGMcb+3zPE8Cegzv6k86joOzs7OmVcy6PhYAjo6O8H//93+wLAu+7yOKopsRRlSsKatzJ9TFyNCphd9TVRVs2xZ24D2R+r0Mb4MwTqRwfpPRwFkj3vGmd4F648aGjYF6N8CDua65NgtjhtlsJrsybgpB3wYsyxKXSwemruFwKPVkXGhHRL98eEdnSwZOd7FbUte1UAHnI/Wtyu/CktyGlEs1uUzA8zwsl0sxJ4BGrr5zeOc6fOttD3Zdq7c25m5wjAygoYBOpyOUwPYQsEHodu5RB6YUDgDyWPSmtrwgQFMqdXR0JLt2uQiFa12Bxr99Z4TdJNu2z+nf2VhkIc6VOOwUz2Yz2LYtu2WBDZKv2wivA7M7KwdO0DKLc14yyzIcHBzANE18//33MsbVaiU2Wa/XkyDinSdB9Pp6Hbju4eLiQo5Np1Mi2iQfuN8E0aZskohaGxRugizLWjUWnCjhXhR8HOuycwZ+f57nFMex1PdXVUV3Ht7RtaDOPsyC3W5XcoC+70sBbhiGYidx8JCtcZYpN8F2Obq+mZ6jEOxDWtbaUC7LVjadbT6+D/gAiVzaEuo60pIkEYHL9o/rupua+HXAkDM6ej2r/vxdYoFNhslkgm632/T+WkOapjAMo1Vbxtknvo6N2fPzc/Ev33udvj54fdeYPgkGvUk2943gBo0ApEdhWZaCIJYj+g6zm0Av6+R3ApA2ydy8w/M8kVeXl5dSarC3tyclAkmSXBcPez9w3cpzvq8sS6ld6HQ6or6TJJF0mf6c2awJGtq2fSsjmg3QIAiEpYMgkCIW27ZbzYoWiwXKssTBwQHKsmw2xHc6MiamvDuTYXrNlT5BNjc8z8NqtZJqGbaumcq4dwRvO2ZK0f3J64DWUVTP8/D69esWC+vl6lyt2Ov1oFTTU58pjemIi4yrqnq3HohcqHEbyLJMDFCeKLPXarVCURQ4ODjAcDhs9chh0N+z3QF4F7D80wtO2KpnWajbcOwmAQ0b805cVgicn7yaZvsZYNv2lSb/DE+ePJFBG4YBz/PECGX2kP706zr7y8tLAI3cuO657wrb0sd1XZydnUlDD5Z5XNe6v7/fagwSRdHb22E31Y8SNY0auWkjEdHTp09JKUVEm5ZVXOQBbRi3tbFuAwDEDszznOq6FnuKC1yqqpL3DwYDWiwWNJ/PZdsN1ptUZaxvOxguqtVB35d4cnIixxi++uor+uabbwTZXD3DA+YmatuN1N4WsN53REStPUQ8JjaGLcsioqZA+PDwkIiaqqDtDaxxHL999Q7vl9aB2fBf//qXtDHWBf7vf/97/Pvf/wbQtKxiYUvrgl52X941EkE7FL9+jD/rMqwoCjx8+BD//e9/W/X6LGO5hvatEUa0aa++Df/4xz/wxz/+8crxL7/8EmVZwjAMseIBSPAOaFJeN/3qi/5+IhKtq//pyNluEKn7imzFAxvFwnF+Dk+zsnAcp2mKS7uW45bAQpK2TIddBSNEhG+++QZKKfz1r3+VkC9fxz2+4ji+letzmzYMnMHWS9R1N42PsYGsV+1sdyOQ2NnbyofrhP7//vc/evr06ZXjz549IwB0enq66SeolDxHd663n73LgX/Txgei62UYH2MH3HEcSpKEqqqibrcr78AaPTy2qqrebZP8LuH87bff0rfffnvl+MnJCX311VdE1GhJz/Ok3fH+/j4BoOFwSABIKSXn7uqPyzQdx6EgCFoLBqClwTmScXFx8W4I22UCAGiZE0xZJycnVJalIJlXj4ha216SJGmp/7v8IyJpw5Dneas/NY+FrxGN/r6QdXp62lpBnUpOT0/lOmbH4XBIRG0W0Vf5rkHf2szjJWoXHU+nUzGfmH1/ltAnuro5821MAKWUbE6o1j+Zo9fCb8fs3xfo42eTYrFY4MGDB+K76hki7i6gF/P9LLNCR1ZVVT8bWaymAUiBGvuGjCzuQXgXoI+f03emaaLf72M8HksLv8lkAsMw8Pr1a9muEwRBo3mvozA+fB0B6vGsnwOu6yJNUyyXS/R6PVnpXfGzDwVKKTEr9PiYThQcXro2WnETp+rRytvC8+fP8cUXX4ijPRqNUJalID6OY9lNq5eA3yVwTA6ABAocx5EGH2y38QbUuq4bdXBbO2cbTk5OrpgAuoDn57CCsCyrJWw/pJC/DrIso9FoREopGRtrTl0ZiaN+m4feFJn4wx/+QP/85z+JaKMpdbNCf6lpmmLfvGnH7F2D3ubq4OCAwjAky7IoTVOK41iiGGVZtjNKt3k4T2wXJUKzp9jm0hHGL1NKySAvLi6oqqor24M/NGzbhFmWkeM4rXNBEAjVpWn6bobr6empuEF1XdPJyckVt4jzjtCsZ6JfnsIYlsslDQYDIqJWDIzhxYsX0qOf6BYUdl0ilqhxg3T5pVOWDvoA+BdffmmE6YY3jy9NU5GrSqlWkpnjdO9EYXpUlZG3jbTZbEae51EURWI1667PxwC84ERN9j3PcyrLknzfpx9//JGImuDhO7Hks2fPJKqqv3jb8c7zXH4+gmXWdDr9KBB2dnZGeZ7TcDikMAxlnMvlUiKz279x9NZZo9PTU3z99dfynX+Z6vHjx63rRqMRwjCU9BaXc7+vHR1vC6vVCkdHRwA2qbs0TSUmtlgsWnsxiZqGIG9NYdtJDmhkTbTRrHyMqassS6Gum+TjhwAuMgE2u3GrqhJHnOXccrmkJEl2syTLmevYZTsqgbWn/+TJkyvXYqsqZjqdUl3XLRLXEceqm0HvjknU7lLCk9lOxmxr4m0jWRcFVVVRmqa0t7fXWuw8zyUxQkQSXMyybIMwPSbFF+kDI7pZY+oQhmHr1122s0H6JPg9URTJ/boHwO8cj8c75R4vAk+UiMTw3L6WtfP2Z6ytesuypOSKjzMINe56OU8oDEMZzIsXL96IKLZjiEj614zHY2kVys/Rr9MnlWWZbHKfz+eSO9w2cNM0pbquZXJFUbRMAH4uP1sPBBK1F4xdI2lsC1CappSmKeV5TkEQtE0Q7gP48uXL1sD5ZdPptEXmt4E0TXfKMz0fqL9D7yCgA9tsPOHLy0uZLN+r910lajSf3gWAQZ/0fD6XBdPHylTEhizRpsiP/Uzoq8cPKctSZMO2XNGRwBlkfkYURWK/EG2oMgzD1i9Q8f8sy2RS3PRxl2zaZq0kSVoID8NQbKe6roU6eD6MQEZ8URTyDCIi27aFQlkJzOdzGQMvSpZlBM/zKAiClhC3bZsODg4IAJmmSQDo+Pi4dQ3fc3h4KBGLIAhIKSX3DAYDsm1bEg0AqN/vk+M4ZJommaZJvV6PAJDneaSUujIWpZQkRwDQaDSS6wGQ7/tyjt+rv4+vcRyHbNsmAGRZlnxm6mLNyEjkRWcKk14WL1++pMvLS5E5TF3ApvG153lCLcvlUh7GqwaAwjCUFWEhOhgMWnWqruu2BgVA/LSyLMXx5RahfN1yuZSJccaprmthZdM0heKApp6ClZhlWRTHMSVJQnEcy7yqqmk7mue5IEMp1WJdRqJO8SJoTNMUgatrDyZHHhRjmwfGsSMGfgYf40HleS7IJdrIl8FgIFo0DEPJVSZJQpZl7fT5OKqQZVmri8m27bf9ncH3faqqiubzuUQjmG0ty2rF8BjBvAjY9WD9e57n0uiaz7MWcRxHXmzbdksm8YvZNWIBHsexUFKWZeR5Xus+3/epLMsr7VyINpTGlMT38Xd+pk4dPBfLsmg+n4u5o9ubSqmWzNw2hxim0ymBMauzU57nwir6gE3TbIU6ptOpGHh1XQur6lTG19u2LfdVVUWu67Yy4FmW0cXFBZVlKc/kATPLEzV984MgoPl8TsPhkNI0vbKg4/GY4jimw8PDlrmhz+Xw8FBSamVZUhAEIq+YK4g24alWuZOeqOSbiXY37dGxz+3TwzAUWbVN/qPRSCiAF+Xs7OyKUXh8fNwemHZe/zwej1tszZ8vLy9b3/W270SNXORWyewBsLOtx8AWi8UVo5vnKgjTSY8nx2p616B134uI5MV6nQKbG2EYCutuI1NnI56sbjTzc9lVqarqCjXxZ511mG3ruqbBYHCFyhgBy+WS9vf3BRk89l1zFtzohp8uYJmFqqqi5XJJnudJ5eB0OpXV0smYwyV7e3syUX6xbkkzkuI4lsbZOuJ11Z5lmXgKzJr6d6Imi16WpSgoHYGsffVm3v1+v4UURp5+7/auFJkL38iD5AiE/lvY+s26Va6vBqt7vp5bfPLLer2eIElfOf61UL6WWXc+n7eocls86D9PMZ1ORZEsl8vWT7qyGOCxlWVJr1+/JsdxxLgdDoc7KYt/X4TNkLqu6f8BRLE5BinC85sAAAAASUVORK5CYII="
|
<image>如图,AB是斜靠在墙上的梯子,梯脚距墙2米,梯子上的D点距墙1.8米,BD长0.6米,则梯子的长为()
Choices:
(A) 5.60米
(B) 6.00米
(C) 6.10米
(D) 6.20米
|
6.00米
| 69,729 | null |
6.00米
|
"iVBORw0KGgoAAAANSUhEUgAAAGsAAABJCAIAAAC1uU9mAAAiNElEQVR4nO18eXQUVfbwq+rq6qW6O52ts9CJQkggIGFYBAT8gTrAoHPYMm4YiCJ+0XFBHOU4x3EEweMyMh7mDCAYdQTCoMwRdBAZCQJD2IQAgRDMBLKStffuqq693vfHJc8eVL6RxPP5zfnu4XA6Va/eu+++e++79757H6XruqqqFotF1/V4PG632xFCJpNJVVWz2SzLsqIoVquVpmmTyaRpGrzFGGuaRtM0wzAIIfhQFEWbzYYQ4nnearUyDBONRl0uF+onCAaDVqvVbrfD0DRN+/1+juMsFgtFURRFGYZBpgBoC4Jgs9lomlYUhWVZ+L+/8AGgMMbRaJTjOIwxkCMcDttsNovFgjGWJImmaYvFommapmmAq2EYNE0jhFRV5XneZrNZrVZRFCmK4nne4XBYrVaEkCzLGGP43Xfged5ut9M0HY1GWZZlGCYWiyUnJyOEMMaCIADhEEKAmyiKgDlCKB6PG4bhcDgwxhRF9Qs+BBhd1+12u8lk0nUdY6zrutlstlgsXV1dFosFUAyFQoD92bNnU1NT4/G4IAgsy+bm5iYnJ+u63tzcnJGRYbVaDcOArgRBcLlcGOP+QhT4jud5TdOArxVFiUajGGPDMLq7uzVNYxjGZrNlZWXRNG2z2TRN03VdURSz2Ww2m3VdF0XR4XD0F0oAlCRJsFCqqoJoyLIMvKaqaiwWa29vP3bs2L59+86cOePz+WRZhkV2u90TJ04sLi6+7bbb0tLSgAcFQUhNTTUMQxRFjuOITPULYIx5nnc6ncCGFovltdde++STTy5evBgIBLKzszVN6+npKSoqmjp16r333jtixAin04l6ZcXhcJjN5v5ChgClaRrGWFEUi8ViMpkQQvF4XBRFwzDS09Pff//9Z599NhgMjho1avr06bNnz5YkiWVZWZaPHz/+/vvvNzQ0TJs2bcmSJXfddRdCqLOzk+M44D5d1w3D6C+9A6rD7/e73W6e519//fUNGzaEQqFp06bNnz9/5MiRoihevny5ra3t5MmTO3fuRAgtW7Zs2rRpEyZMYBgmGAympKToug5z7E/AGMuyLAgCbA6xWAzkoqmpacaMGWazubS09Pjx46IownNgBPgzGAxu2LBh3LhxCKElS5Z0dnbCQ0EQdF2HrvoR2traMMa7du0qKioaOnToY4891tjYCCjBkmuaFolE4vF4KBRavnw5QigzM/PkyZMYY5/PhzGOx+P9ixLGGCX+EQ6HeZ7HGJ84ccLpdBYUFFRUVGCMo9FoZ2enYRjRaBQQjcVi0BJjXFdXt2HDBoTQnDlzGhoaMMawh0QiEUVR+gtRXdcjkcimTZs8Hs+IESMOHTokSVI8Ho9EIqqqXkUaYIjOzs7777/farVu2LABYxyLxVRV7S98CCAYW5IkVVWBs86dOzdy5Mif//znZ86cwRgHg0GgiN4L8KUsy/F4XFVVXddlWd6xYwdCqLS0FLBUFKUfyYcxNgzj+PHjqampQ4cOPXv2LOATDAZBC8GfsiwTxg8EAoBAcXFxSkrKnj17+hGZRECapgHhJEny+/0Y47vuumv8+PFGL3z7G0mSYrHYVQRSFOXdd9+12Wxr1qwBihuGAR3+INA0jTCUIAggfbIsS5J08803l5WVaZomyzI8B4C1h0GhB0mSYKV7enowxkuWLElPTz9w4MBVY6mqKssy+fD6AMGQsizDbNetW5ebm1tVVfV9FCTIYYx1XZckCfgXYxyJRMrLy9PT0+vr64PBIJBY/4GAMY5Go4ASxhg6kSTp6aefHjJkyOXLly9dugSjJzIgwUdRFE3TDMMgCxyLxS5fvnzXXXcNHz48Go0qigJqGngWGveVgqDdRFH0+/0/+9nPHnvsMYzx9zEgMOy3gajFSZMmLVmyBOYmSdIPRcgwjFgspmkadAjK98KFC+np6e+88w5YmqCLgcQ8z8MSapqmqiqsJTQAYwBjrGlaVVWV0+l888034U9AT5ZlWLO+6EcEGEMXa9euHTRoUFtb2zUYG3CVJEkQBLLOmqYpigJ8t3XrVoRQc3MzTO+H8qAkScTAAiUrSdKaNWuGDh2KMQYG9Pl8IMVk5oRYuFchAgXBPOjo6MAYv/TSS6NHj4ZPYAjCDX0RZEQER5KkhQsXPvzww/9hdwRpWHDypLW1ddiwYX/84x+vErH/EGBWQE1wOTDG48aNe/bZZ8FJB76GoYkig1dEvRiGAbMQBAE6CYVCtbW1w4YNO3fuHDCypmmk/74Ares6QsjpdDY2Nh48eLC4uBj6/U7LEWPM87wsy8Q1BgkymUzRaBQhRFFUenr6//zP/1RWVuLrkg7wo8nyIIS6urq++uqrqVOn8jxvNptBVMG91TTNZDKxLMuyrNlspigKpkNRFPj4EFZACDkcjvT0dFVVa2pqaJo2m83ggIGt3heDmgalixAKBAI+n6+wsNDlcqmq+m3ywQ+Hw2EymWCFAVGYjN1uVxRFlmWEUFpaGoRtYBo/CGRZDgQCZrOZYRjwf7u7uydNmjR27NiUlBRZlh0OB3jHuq6D9wmMCSoFvHJFUWiaFkVRURSO4zo7OxmG4TguJSWluroaIQTkBicPuP66KciwLEtRVDgcNplMY8eOBSSu4fo0NjbW1NQ0NTVZLBa3262qKkgEQghj7HK5KIrq6Og4evToihUrXC7XD3VFKysrVVWdOnUqQshms8Xj8SNHjnR3d+/ZsweiWyTOFgwGc3NzZVnmeZ6iqBtvvHHUqFE5OTnwFmPMMIzZbJYkKSsrCwJO06ZNO3ToUDweZxjGZDIRHuxLwIYBzmcYRlVVRVGcTidIE+kUBJaiKNj+7rvvvhMnTsDwqqoC6+Xm5oJZY7FYOjs7WZblOO6NN94wmUwURXm93u7u7lAolJGRAc5MTk6Orussy0IAArSV3W4PBAIcx6WmptbW1gJWFEWFQqFIJLJo0aLk5ORAIGAymWw2m9vtjsViYNKbzWaO46LR6FNPPbV69WrgTYRQIBDIzMxUVTUajXo8HkVRgFcgVIMQEgQBwjkQ17lOEsbj8WAwiDE+cOCAyWSqr6/HvVYYAFHPEOHIz88vKys7evTonDlzGIaZM2dOfX19V1eXKIrxeLy6uvqrr75asGBBTk6O3+9vbW1tbm7meb61tfXcuXPNzc21tbXHjh1rbGyMRqM8z/v9fp7nu7u7L1682N7efu7cuc7OTkEQYrFYNBqVZbm5uXn9+vVZWVnFxcW1tbV79uypqqpqaGgQBKG2tvaZZ55hWfbpp59uampauHBhenp6S0sLuHqBQABjHIlEYAoQLlmxYsXMmTNVVSXeNP5+u+0/hCvWjCAIn3/+ucfjaWtrA6n8PgqmpaVt3br1o48+stlszzzzTFdXF+hEwEZV1T/84Q9ms3nu3LlgVVzVz1UPCeqwZrAMxPWGV62traNGjYKwAsa4q6sLPjxz5szw4cOXLFkiiqIoirqu33LLLfPnz4dmxFqEucA0586d+9xzz4E1lmh19wUQGK6iKF66dKmgoGDr1q2wbt9HwaKioptuugkhtHTpUph/PB5vb283DCMUCj311FMIoQEDBvz+97/HvQ4WmHig4BVFMQxD13VRFCHGAxYfTIZwB5BAluVIJNLR0TFw4MCqqqqenp5wOAxvv/zyS4fDsWDBArIera2t+/fvdzgca9asaW9vxxiHQiGMMZiu0Hl6evqHH35oGAZxS/rIgBhjlOgY3n777dOnT8e97uR3UjArK8tisbz00ksg/sB6MP9FixYlJSW99tprLMvu27dP13WwZohNA2PBaUZiz2DKAYkhNgXRKtJmwYIFxcXFuNdO3LdvX05ODiwSxtjv90OH4XD4/vvvB6sF1gyGliRJFMVTp055vd7z58/DqgPtwGi/PtP1CgUxxu3t7cAau3btSktLq66uJnP7NgULCwvvv/9+8srn83V3d4uiWFpaihBqbGxcv379uHHjYP3BtCSuNHFCAWPCGvF4HKT7KqmPx+Mgs7t27UIItbS0xGKxgwcPer3ekpIS0j+R95UrV+bm5no8HniL/12hz507d/HixSBhJPYBE++LOKNoNAqbGkyyqKho9uzZiS2uomBubu7HH38cj8dBVQOUlpa6XK7PPvuspaVl2LBh5eXlGGPYoKReAFwTuwWRvGoCfr+fOFu6rsNKRCKRkpKSkpKSXbt2ud3uWbNmEekDLRSLxSoqKkaMGLFt27YtW7a4XK5jx47BCoFar6qqys/P//LLL4k6xr2RiKsI/YMpSH7BfNatW8dx3Pvvv/99FBw6dOjq1asJgTDGs2fP9ng8586dMwxjxowZt9xyiyRJsMikDfH8cIJQk40SSBaPxwkPxmKxRDrqur53796kpCSE0FNPPYV7+ZeoxYqKCo/H8/nnn8OfsHcT+kaj0QkTJjz99NPwlogCEfM+STGZG/Sl6/ratWsRQrt37wYuE0UR4sAgaFlZWRs3biRzeOKJJ5KSkk6fPo0xnjJlCk3Tp06dwr3ylRjF6zvcfffdFEWtWbPGMAzwjoF3tmzZMnjwYHgOs9i0aRNC6B//+EckEpEk6cEHH3S73WA59SM+AAj3chlRQ9XV1Y888gjLshs3bkzcRgVBEATB6/Vu2bIFWpaUlCCEampqMMaLFy9GCMGpQEdHB+G+/gIYce7cuU6nE7QExlgQhC1btqSlpa1cuRL3BhRg2crKyrxeb3t7+yOPPEJRVCAQ+L64XB/hGwqSkJyu63V1daWlpSkpKfPmzTt//rwgCCTUUVRUVF5erihKSUnJwIEDd+7cuXfv3iFDhmRkZHzwwQeqqkIoCU5K+xFREIjW1tbFixdTFPX444/39PRs3bo1KSlp6dKlwJJEqHmeX7FihcViYVl28ODBICKJplI/AsIJejQejyfGRJ977jmWZb1e7+OPP15RUVFTUyOKYn5+/oYNG9577z2z2QwnjQihkpKSnTt3Yow7OztBjoB81xFhvTbAMm/cuDEnJwch5HA4Ro8eDa+AxPX19ZWVlevXr3e73Qghu92+Z88eSZLC4fCPxIMUxlhRFIZhaJoGpQ45C5AEc/r06Y0bN+7du/fSpUsej+fWW2/dt2+fIAhOpzMYDGZlZd1xxx0PPvjglClTGIbx+XwWi8XlcnV3d2dkZCCE+jFPpaOjw+12Q2RB1/X6+vrdu3dv375dEISCgoJIJGKz2ex2e21tbSgUcjqdY8eOnTVr1quvvjp06NDNmzeDD64oCmxH/QgU7t2bYKrAQZCkI0mSw+GgaToYDH711VcnT55sbGzctWtXQUHBo48+Onjw4Ly8PJvNZhiGy+UKhUIQUGhqavJ6vWazWRRFi8UC8Y9+gcREHAgRUhRVV1d34cKFo0ePXrp0yTCMESNGzJgxIz8/f8CAAQihI0eOTJo0ae3atYsXL8YYQ8Shn0HvPSggezFRixhjn8/3r3/9C9gV7P4hQ4b85S9/Ib4zyCkxGgRBgH46OztJV/0CxFeBk0KI4+ME/xeawXkZxNzgyapVqyZMmABeVr9rFYwxDTFRhmGu/E3ToG5NJlNPT09SUlJ+fn4wGIzFYjabLRwO0zQNiUgmkwmcDYSQxWKRZdnpdELwLhKJeDwe8Hn7a6VpmgYpVhTF4XCwLAuHMAzDQP4YNIOsHV3XIeymqupvf/tbTdNWr179Y6S+IYTQNemL8bcs6kGDBq1fvx4n7D99MUd/PCCn79Fo9PPPP0cIVVVVkbeAM+xLiadU1wH9pqR+asCyrN1uj0ajTqdz8uTJ8+fPLy0tjcfjYN6S6DTHcRRF4T5E+f9rKcjzPJwogdT/7ne/u3z58oYNG3RdB/1DWuq63pco/38tBSmKkmUZTIVQKFRYWPjmm2++/vrrZ8+eRQiBkwpK//9T8LuB4zie5w3DAOtHkqSHH344MzNzzZo1kF8LVJMkCXbR6x7ov5aCoig6nU44RHQ6nZB6/eqrr3722WcQbaRpGo6b4fD2ugf6r6UgZHpD8JGiKEjnnzlz5h133PH2229D6iZCyGKxKIrSl8TWbyiIdU1VVPin9+kU/ycBaWlp4CawLAsxBXBIXnjhhQMHDkBWLghyLBbrS371NxSkTIzZTFOIMpnNJhoJgoB6D4shYsowjKZpZDDIa+B53mQyxWKxvsz2RwKz2QyZ6OBNw4nwyJEjy8vLH3/88a6uLpZlOzs7U1NToT1wJcZYEARRFBO7grMUADjVIa++V4phxcDyhMR5hBBFUT6fDxwAGMNms/X09ACi/08ARVH33Xff7bffvnLlyp6enqysLMhBRQhB7iFFURzHkdIiMJtNJhOkOUAeROLO850UxLqidnd28bxoZllk6Lqm87yIEFJkMceboyqqpmOn06mqKoUMM8OoiqoqGk7oQLuiELTvSmHqfavq+LvbY11RVUUzMPxQVQ1/0+a7uvzPIRaLcRxXVlb22WefHT58GCGkaRrLssAowKeRSCQcDkNVFOTlwKkD9ACx+mtTkDKZ6YyMTDtnjQtCJBbTdMNmYxHCZsbW1d2l6aoqioyZlSRRU4yk5BQza2ZorF2ZG9ZVTJvN//4wgX5X3jKmXrn5VnvKZKYphHVVp1mz2UxThqZqyHTlt94XEkKyyrRp04qLi997771AIGC1WmEnEUURIiZOp9PtdhMn2mKxOJ1Om80GR8/ApNemIEKUSRR5SVI4jnO7nKzFEovFIqHQha/rWJq5afgISZFlWXFydklVRTEeiUQoU+/cDN2grpio3zwkYOgGbaIphBBFm80m+hrtKZOZochvxkSs3r5UStntdqhvevLJJ//5z39+8MEHhmHAmZfFYuE4jmEYWZZFUQSJjsfjsVgMokE2m43jOEh/IB1+R7rNFfucphUxbrGyclxhWOPUqVN1589/vnt3MBr+xxf/qLtQl52dPf7msTabw263K1fZU9eeIjYwMv2bE9B/xWP/RwAzEA4dH3rooeXLl8+ePTsvLw8h1NXV1dTU1NDQ0NLSYjKZPB6Pw+GYOnWq0+kERY8xBtsokQevxGYMVVFUAxsaaJ8rAQxFvthw8eUVL0MuWnJyGsc5rWaEEHK7U8xmlJ9f8GjZo6dP12CMsa4qKnxqaLKiQjffPOwFQ1NlRSO5pvr3tDc0VVZ1A1/r9/UCSV0VRbGoqOjFF1+sqal56KGHJkyYkJaWZrVaXS6X1+vNyckBws2cOXPHjh0Q6QElmBj37KWgpiqyoiQg5/f7X3rppfy8PKfd/uyzz37xxReCIJw6eTIna8D/WvzI6erT699+e9myZTfk3ujknA+VPqgkkB7IpMhKwkNDI4TTYSxFkXupe3V7Q/umwff9vk6AVB6McSAQMAyjsrISITR48OBRo0aBXPM8H41Gu7q6uru7e3p6Pvzww9LS0ry8vKlTp27evBkOW0j4FsN5MQSfITtAEARJklpaWp544gmbjfvNM7/p7u5OrDuYMWMGyVYQRbGpqWnVqlVZWVl33nlnXV0dCVlDtz9GDVHfgRy0nzp1aty4cUlJSWPGjIFqBoxxNBqFCZKAtmEYp0+ffuyxx2iafuihhzDGkUiEGDqIpAmQHKcTJ05kZWXZ7fa68+d145usFEmSDh8+PHHiRJACOBGOx+Pbtm2z2WxFRUVjxow5e/Ys5E1Btz9GHVsfoaurC2Tw8OHDN954Y0pKSkVFxaBBgyCNIBQKwXE+lJzBcTmJJX/wwQcDBgyYM2dOYlAZJZYcCoLQ1tY2ZsyYUaNG7/9yv6oZDQ0NQKmOjo5wOPz1118XFhbCEmmaFg6HV69ebbVa33vvvXA4fM8996SkpAiCEA6H9T7XafyoUFlZOXLkSIQQZLA88cQTY8aMgdKJnp4eRVFInZeiKBcvXsS9sfqtW7eyLPvII48QxkKQwkPOUsvKyjiOq6+vhxxTeEhUb2Vl5cSJEzs7O+H7HTt22Gw2SLKBSmSv1wtVL4IgADP+1IDn+ba2tlmzZnEct2LFCngoSdLw4cMXLFhA0syCwSD8ALKSLDKM8fbt200mExx1YNhJIMqoKEp9fb3dbt+0aROwJKRPGIbR3d0dDod9Pp9hGMOHD6+rq8MYv/baa1arddOmTZCLhzGORqNbtmxhWfbgwYP4p3p+gjFet25damrq6tWrIWMNjMEvvviioKDg008/xb1+Me5NQVAUBZjJ7/eDdlq0aNFNN93U1dWlaRoihSzd3d2/+tWvpkyZAvYkGOjQBagzVVX3799fUFDQ3t7+7rvvejyet956C3pM/H/o0KHFxcUgC/142tmPcMcdd8yfPx8mJYpiLBaDOHZaWlphYWFzczOc2ZKksgsXLsiyrKoqHKWCNnO5XNu2bVNV9UoOq6ZpFy5cQAhVVFQkbrVk04Dx/vrXv+bk5Dz66KMIoRdffJHIPqnhfPnllxFCRUVFDQ0N/Vsd21/w6aef3nDDDV9//TVOSN3EGD/88MMQPXnnnXcwxn6/H0TwqvJUskHPmzdv3rx5qqoi3Cut1dXVFovl6NGj5AkpcYPPJEn6+9//brVaMzIynn/+eSBfLBYDRjMMY/Xq1RzH/elPf8rPz9+/f38kEvkxMn36CBUVFVOnToWSMILer3/9a6fTuWXLljfeeMPr9V68eDHRliB1fvAbtNnmzZtTU1M1TbtSoa0oyvbt26dPnw4xCZJXCseDhJvKy8sRQiUlJSRLCvRrPB7funWrw+EoLy+HlPny8nIw3yHJl5g1UCmMewssIa0ayuPgOeFryFuEoRML+BJXBWKoJFsfzvhxAqfAKCTjXNO0e+6555577sEJDLh27dqkpKSKigrQPGlpacuWLSMkIxlfQAdy0FxVVWW32zHGDImY7ty5k2EYuEwEojdmsxmOEcDvh9ssUlJS7r33XpfLdeHCBbfbnZWVdf78+c2bN7/99tvbt2+/7bbbLBZLWlraxx9/PHXqVCj0GTRoEGQ6QGzR4XBA1QNFUaBwhw8fHggEIpEIwzBOp9Pn82malpmZ6XK5otFoU1OTzWbDGFMUBVV0EKED/ZOcnAz2FpTQkYqn+vr6pKSklJQUyAGCBFlID8rLy/P7/bA877zzzgsvvPCb3/zml7/8JdQWrF69+o033li4cGFWVlZKSgqcLGOMoWfiXBcWFg4ZMiQcDjM0TWOMTSbT0aNHR48eDbcdMQwDgSegHSyFyWS64YYbgsHgM888A2Ubdru9sLDw4sWLYKP/7W9/W7NmzYULFxiGuXTpUk1NTU9Pj8vlGj16dFpaWkNDQ319PTiVEONNTk6GE7Xp06efPXu2tbVV13Wr1ep2u+PxOMdx6enpDQ0NsVhs0qRJx48fBwpaLBZIaIK4saqqHo/HbDa3tLTAIRykQXEcB/E+sJAh1gLsOX78+FdffVVRlMzMzGAwaDabz5w5k56ebrPZsrOzJUlqamqqr6/3er0kEoEQuqroieM4h8MRjUYZuCTG4XBkZ2fDO0mSSMyZMDBgP2zYsIqKisrKykAgMHPmzJ6eHsMw7rzzzqKiIpqmjx07NmjQIJfL5ff7EULjx49PS0u7fPlyRkbGgAEDxo8fDz4piRplZmampqYGAgGPx5Odnd3R0QFBzVAoNGnSJLfbfejQocmTJ995552aph0/flySJJ7niYUBe/3AgQPz8vIsFktdXV17e3tWVlZSUpLf7x87dmw4HA4Gg5IkAfJA7hMnTmCMH3zwQZ/P19PTM23aNIxxenq61+stKChQFKWmpuaBBx4YNWoUx3FwxwokNWCMEUJa771Zly9fbmxstNlsCGMcDoc1TXv++ecnTZqE//0eAMAysU5BVdXu7m7w/0glDbQHo0mW5V/84hcLFixI7IQoJrAewJ8h/jnYT6QBUXOhUIhsYrg3658oIwLghAEaRE9d9Qr3llfMnj174cKFiZ+DzQy8AsqxtbWVvDUSACYCnZ86dQrklUYIWa1WWZZHjhzZ0dEBWZTRaBS0L0g+1JIC6gghj8djt9vb29vJcwg6chzn8/kURamurp48eTJN02CswvECCC/LslBfm5SURFRwOByGH7FYjKbpWCwG005KSkrM+IN6VlCCYGnBh5qmgbYiqspkMgFWIPJAWbhKKisrC3gKrAhZljMzM0OhEJkIQshms0GEBXCGREXon2VZGMLv92dnZzMMQ8N4LMvm5+czDFNVVQVPiPoEFQ5xXehOlmXI6IFjPJ7noUISIZSenl5bW6soyujRo/1+f1JSEoTFQY5IUTSwEmz0six7PB7ILACaOp1OwzD8fj9sNW1tbZBTC142qCSbzeZyudxudyQS4TgOyAo8Czsh1GAjhPTe6zRg+efMmfPll19ijJ1OZywWoygqGo0mJydDbpzdbg8Gg6mpqaBGSZU49ENqXH0+30cffTRixAhVVRHshhhjn883efLkpUuXknAA2AFwMwTuDRMkOtGhUAg2OHjS0dFhGMby5ctvvvlmYCJijpIqflLNRsQEMtfBOoMhQOuTkgeckGCJe2NT4DMQUSXKBIyP7xwItPC5c+fy8vJ27NgB89ITLlUhEA6HSblTokKA3iKRSE1NDUJo8eLF0WgUgdcB7V555RW3293S0gJar7OzE+ZAlGBXVxdE/cA4IvjBZqeq6sWLF71e7yeffHJVRc5PB0RRfO6558aNG0dKPPC/K2ISPSRLSJaKmMkzZ84cOHAg3GiEcK8qBf8ZIVRWVoZ73RJVVcmNVcTbi8VixKLu6elJLLuZMmXKqFGjYOCfYHAQoLm52ev17tixA2MMtczkFXBlIucCWUjoAGN88OBBhNArr7wCWh5hjHt6eoj47N692+1279+/P7Hikcg1z/PBYBAGSNxhwalYtGjRgAEDPv74Y9LgJ+jVAS2WLFmSmZl57NgxSMwFTywWi4VCIbiKg+z4idngQJOMjIxZs2aB8pEkCUHlM3Fv4/H40qVLHQ7HmTNnIOIAfK7rOgmZwY0UkiRFo1ESdFi5ciVCaN26dRjjSCRCLj35v0GlawHoUEEQFi1alJmZuXv3boxxKBT6djCYBLVwr9jJsjxkyJCUlBRIKIaIDvL7/cBKEORpa2vjeb64uJim6ZdffpmYeNCR3luhDlYhsFhDQ8OqVas8Hs/GjRthPQGnH6kCpu8AzBWPx+++++7MzMzly5cD3+HewEF3dzeZMqlXP3bs2LBhw2688cZDhw7h3nIBnuevxGaAP1taWsgwf/7znwcOHHj77bcfPnwYcvkxxtFoFC5+ACTOnj27bNmyMWPGDBw4ELxxjDGEphNN2Z8awMUYcBY2b948s9n85JNPnj59Gpwi0gzEDmN85MiRVatW2Wy2Bx544OTJk4FAAHYbaExBEZOmaWC7gmMEZUGnT59et27d/v37s7OzocYlLy9P0zSO4/x+/4EDB44cOeLxeMrKyhYtWgRVTikpKQghn8+Xmpraj7U4/Qik1gNj3NraesMNN7z11lsfffRRdXV1RkbGyJEjb7755tzcXJBQnue3bdvm9/uhHjM3N9dqtYLtSWZHYYxDoRDcWAtWJeRqw/+apjU3N+/du3f79u3nz59nWRZ8BjjMv/fee2+99VaXyyXLssViIf2Qrsj9yj8dwBhDKMAwDKfT2dnZmZycbLVaKysr9+/ff/DgwY6ODqjEdLvdXq934sSJd999d15enmEYaWlpsFnDNS5XXAx8zYwL3HvxDBSeyrJsMpnA27PZbP1/p+lPAMBABr8QROra8L8BJi0O9MX67dcAAAAASUVORK5CYII="
|
<image>如图所示,四个圆相互外离,它们的半径都为1,则图中阴影部分的面积为()
Choices:
(A) 2π
(B) 3π
(C) π
(D) 4π
|
π
| 69,730 | null |
π
|
"iVBORw0KGgoAAAANSUhEUgAAAGcAAABpCAYAAAAnSz2JAAATO0lEQVR4nO1dcWwTx5r/OUCf7gg4vVrN0pqakkUYzCmBRId1CtgR4ZrXBikSudKqSE3bqI5IpUN9cRudQkNVqqYQeqAGKW3aw1TRe9HVVVALB1XT4jipzhxISQ9HDo3jwAUOV0mFI1MpEHu/+yN4s7bX9tpZO076flKkeHd25tv9zTfzzTcz3yiIiJAFCImhUCii7g0NDcHr9aKvrw+3b9/GyMgIAGBychJDQ0NhaXU6HVQqFRQKBTZu3AiGYVBWVob8/HxotdqkZRKTJ1NQZAs5Qly+fBk2mw02mw2XLl3Ctm3boFQqsX37dqxZs4b/yEqlEkVFRWHPDg4OYmpqCgAwPDyMO3fu4PLly/D5fHA6nTAajTAYDDAajSgpKcn0qyUHyhIMDAyQyWSivLw80mq1VF9fT93d3eT3+yXnwXFc3N8+n4+sViuZTCZiWZZUKhXV19eTy+WS5R3kxoKS4/f76cSJE6TVaollWXrnnXfI7XaLpo380HLA5XJRY2MjaTQa0ul01N7eTtPT07KXkyoWhJyJiQlqbm4mhmGotraWBgYGZMl3PgQ6HA6qqakhhmGopaWFfD5fWspJBhklx+/3U1NTE6lUKjpw4ACNj49nsnhJuHHjBtXW1pJKpaLm5uYF1aSMkWO1WolhGDKZTOT1eonjOFlqYKI8pJYRmW58fJz2799PGo2Gzp07l7J880HayXG73VReXk7FxcV05cqVeRGSCTIj0d/fTzqdjiorK2l8fDxjTRpRmsnp6ekhhmGora0tncWkFSEyWlpaiGEYcjgcYdfTCdnIiRT2448/DnuZpYBQZbNYLBkpT3bNCQQCVF9fT0VFRVnZ4c8XbrebtFotNTY2pr2sHDkHtFNTU9i1axd++eUX2O12qNXqyAGv6P/ZjEg5CwoK4HA4MDg4iD179uDevXtpKztpcmJ91OHhYZSUlGDHjh348ssvsWrVqqg0Qj/VQvqskoFCoYh6Z6VSiQsXLkCj0UCv1+PmzZvpKVwO9XO5XMQwDFmtVv6asA9K5FZZzLBYLKTRaOjGjRuy5z0vcjiOo4mJCWJZlr766iu5ZFp06OjoIJ1Ol5QfUApS9koTETiOw65du2A0GnH48GGZdTq7QAmmDw4ePAiPx4Ovv/5atjKTIidSwLq6OkxOTsJqtcom0GJFMBhEZWUlCgsL0dLSIk+mqapcW1sbFRUVya7Kixk+n49YlqXOzk5Z8kuJnJ6eHlKr1UtyHDNfuN1u2QbfSZMjZ+FLASHLU2iBRlbeVK3TpMkxGo2L2leWKbS0tFBVVZXoPalkJUVOV1cX6fX6uGmENWkpjWeSRSAQIJ1ORxcvXkw5D8nk+P1+Wrt2LV29ejXlwn5vsNlsxLJsyhN2kt037777Lp599lkUFxdHWnvymI1LEDt37kRxcTFaW1tTel7SOGdychIsy+L69et4/PHHs84vRgu8viweRkdHodfrMTY2htzcXP66FJklac6pU6fw6quvIj8/Pys/QjbKFEJBQQEqKyvx+eefh7UykmRO1O75fD5iGIa8Xm9K7eZfMTv8UKvVSfc9OQKSRMlrb2/H3r17kZ+fP/9q9DtFQUEBysvLYbFYknswEXtarVa2dWXpQrab7BzHkc1mSzgMiUTcPufy5ctYtmxZ2HpkykLrLJv7HGBWPoPBgFu3bmF4eFjyc3HJOX36NF588cV5C5cJ9PX1QaFQ8H9vvfXWQosUhRdeeAFnzpzhfyes6LFUKhAIkFKpTMsMn9wwm80U+SoAyGw2L5BE4hgYGKD8/HzJ3hP+jSITOxwO0ul08ksoM8xmMxkMhqjrdrs9irBsgFqtlryrYTk9HAyFFjKE2m+bzYY9e/akTcXlQF9fH44dOwaPxxN1j7KwbwSA5557Dna7XdJGrpxYK2J6e3thNBrTIZ9sOHToEMxmM55++mn+WoiUsbGxhRIrLsrKyvDDDz9ISyymTqH+JttnOQGQ3W4XvWcwGLKuzyEi8nq9xDCMpLSi1tq1a9fAsmyYLyjbENKMyIWLwGxz19vbi7q6ukyLFRP0UKPz8/ORl5cnaa2bKDmjo6NgWVZe6WTGunXrAAC3bt2Kurdz506YzWasX78+w1LFhrDLWLduHdxud8JnYmpOsjuPMwl6aLiYzWYcOnSIvz42NsZfP3r06AJKGB9arRZOpzNhOt5aE2J0dBS7d+9Ol2zzRkjeo0ePwmg0hsnv8Xh4A0Hs3RYKQlk0Gg1GRkYSypcjdtPtdmPjxo1pE1QOhNpwm80Gmh2vgYjCLLdsIQYIl2Xz5s24fv16avM5Pp8v64wBihi3ZNOHTxYrV66UtDtBlJx79+5BqVTKLtR8kIiM8+fP4/vvv+d/R5KZTcjLy4Pf70+YbrnYRZ/PJ7qFIxtx8+ZNvPHGGxgeHsb09DT0ej3a2tqyev4pNzeXjzISD1GaQ0T47bffsk5zInH//n28//77KCwshF6vx/DwMNxuN7RaLTZu3Ijjx48jGAwutJiikKo5oh6CGJezBj09PcSyLL/DWQiO4/gd3Dqdjvr7+xdIytjw+Xy0evXqhOlEvdK5ubnk9/uzbobR6/VSVVUVaTQafrFePBm7u7uJYRjav39/Vq2BGB8fp7Vr1yZMJ2oQKJVK3L17N2ssomAwiA8//BA6nQ6FhYW4fv06nnnmGQDhhgJFGAFVVVUYGRmBWq3Gli1bcPLkybD7kekzhampKaxevTpxwhBLwhqo1WqzJpKSzWYjrVZLFRUVMYMWSYHT6SSDwUBFRUUxF+FnqqVwOBy0ffv2hOlEOxe9Xr/guwi8Xi89//zzpFarqbu7O+zefD5iZ2cnHxBpYmJinlKmhosXL1J5eXnCdKLNGsuykhxzUkApNB2tra3YsmUL1q9fD5fLhaqqqrD7oaYslbxfeuklDA8PY9WqVdi0aRM++eSTpPOYL0ZGRiR5YETJKSgo4EM1ZhI//vgjtm7dim+//RZ2ux0ffPAB76kQIyLVPlGpVOKjjz7Cd999h87OTpSUlODq1atJ55NK5QBmfZcbNmxIfoEHx3FktVpp//79cmtzTExMTNBrr71GDMNQV1dX2suLbBY7Ojr4qIWRcdbS0Q9VVlZST09PwnRRmqNQKFBQUACXy5VSrUgWp06dAsuyePTRRzEyMoJ9+/alvcxIjautrcXIyAgCgQBYlg1bvpQOi9XtdkubLxOrHemaphaWc+XKFSouLqbS0lJyOp1x02YyyEQiueaLZKapw5u1wAPi7t8n7v59qvqnP9K3/5n6rqxY8Pl8ZDKZSKVSZSz6UjzEIrqtrY2USiU1NDTEDSmZLLq6umjfvn2S0oY3a8tWQLFiGQAF/rHMgEt2m2RVJQmd42effQaWZbF8+XKMjIzg5Zdflpx/uhCr2aqvr4fb7cbk5CS0Wi26urqSzlvsm1y6dAllZWWSMwgHFyDu/gNy/Jd8iwoHBgaotLSU9Ho9XblyRZY8M4n+/n4qKioig8GQ1OBcbKd1MosKY5ITmHlAT/6dim6OuIl7EJi9F2r2gsK0s80gF+Ai8rhPUxOT9K9v/onWqFTU3t4e/cz9mThvJkgXKj/m88GHvx8QxwXn7s8Ew9PPBEWLkorjx4/TY489Ro2NjXH741hN5cDAgOT+hijOLoOcZStQ+c978ec//+VhUwdg2TIgZzkUOQDAgQKA4pFHoHhkORAMYFaLOdAMh7/8x5fY+PdbMDnlw/9cG4LJZOLvYcUjs8/lcKAAJ1K6MN0KAEEQF3ld+HzOQxkJmOFm761YBnCBORlXLAM4sbKk480338TQ0BDGxsawadMmnD17VtgC8f/HGiR3dnaipqZGeoHRtAce1sBZH9AW3Za5GhecmdOa4MxsbZy+P1czg0TOaz/RHw0G2hbyYXGBuRoenOG1gOO48HtCBGfEa7ng+TlZZ6LklvR7ngj5/Hbv3i3Z55dMk0YUs1mb+2BarZYG/vvq7Mr4GcGHifhQ9+7do8bGRlKpHqe2j/5NPL/gTDgZ8cgRkiC8Huv5DJNDRBQMBqmlpYVUKhU1NTVFbSsUNm8pbZ6ikOoFHsw1MQILpqamBp9b/h2YmQFyls2pXE4OQLPNzdmzZ8GyG/B/t27B6RzEgfoDoCCFVHM2begZcOL3hFAo+LxnwQFcEs9nCDk5OXj77bcxMDAAp9MJrVaL8+fP8/eFlqDFYkmuSQMEUwYzDwSd6hzzsxt215D3f29HMev++TpVlu+mf9BtoR8v9QqqTIzOPO69YLixEWo2Iw0H0eeDEWkT/U4PYs3QprphV9J8dHPzO/SnfznI/56enubD3re2tlIgMPeRkxm9Z9tMazxIlXV6epqOHDlCSqWSjhw5QtPT01RTU0MnT57k0xgMBgIQ9tfb2xuVV9wgEf39/XjyySfxt3/4Awo36/DT9WFcvXoVdXV1uH37Nl5//XUwDJOcqv5OcPPmTVgsFmg0Gty9exfj4+P87CcRoaysDO+99x527NiBvr4+7Ny5M2y1KpAggkfuI38Dp/MnaAo24K3GtzA2NoaVK1eGZSAEZdHy14XEgwcPcOHCBfz888946qmn8MQTT+D48eNhG5+FUXfHxsawfv36KHJiNmuR2/l8Ph+tWbOGtm3bRizLUnt7e9bv31kI9Pf3k0ajoaqqKvrmm29Io9FE9TV2u53fO8RxHBkMBmpoaIjKS5Qci8XC76kUtrWdnZ2k1+vp2rVrVFNTQyqVihoaGqI29S6mvkQqEr1TIBCgpqYmys3NpY6ODj6k17lz56LcOBaLJay/8Xg8omVEkePxeMhisZDH4xHdCFtaWsoHw5uYmKAjR44QwzC0d+/erFwjlgm4XC4qKioivV7PV9SWlhbas2ePaHqj0cgTcubMmTCChIgiJ6RuHo9HdNueWBjJQCBAnZ2dVFxcTDqdjiwWC83MpM9kzSa0tbVRbm4uNTc389fixUAVq/QARKdPwpZGhVgM/cXaUxmv8L6+Ptq3bx8xDENNTU1ZtZhPTni9XiovLyetVhvmaRervMLmymKxhBHh8Xhi7m3lyRkdHQ17yG63x50MC4UujjWwGh8fp4aGBlKpVFRTU7MopwpiwWq18msOhEaR3+9PGLrYYDCENWEhRRADiMRVLZJhMZhMJqquro6bZnp6mjo6OohlWSotLc3IAo50we/384ZQZOzOQCBAFRUVMY9uCRlYkX9i/XoIMJvNpFAowjol4Qg23nbxQCBABoOBDh8+LOnlLly4QJWVlaRWq6m1tZWmpqYkPSfEQlmCQhNZbDHiwYMHYxoAqUJ0aVQymJiYoA0bNoSdAJIIbrebX0dQW1sryeW+UKREmsiR4DhOloMmxN4v5iA0mVMExY5okQKfz0etra2k0WiooqIi4amCmSbI5XJRYWEhbyKHAgpFdvDJHtEiS1zpZD6Gy+WiDRs2UFNTk+RnhLBarVRaWpqU9yGdZImZyJGor68nnU6Xtsha827WhPD5fGQwGKi6ujplFR8YGIjrfUg3YpnIQvh8PqqoqKDKysq0urDScqDegQMHRA/US4Z4r9fLH5FcXV2dEe9DyEQ+cOBAzI+eyQP10ra/sK2tLeGBFFLICgQCZLFYqKioiPc+JDN/JKUMv99Pr7zyiqiJLMSiP4pSCLkPce3v76fq6mpZvQ/xTGQhsS0tLZSfn5/RfUsZOf7YYDDwxx/LATm8DyETeeXKlaImcgih448rKioyfl5QWsgRa0q6urqIYRiqq6uTzd/m9/vp008/Tdr7EOlFFluZGTo4XK1WxzTx023aZ3RPu9/vf7h8SkUHDx6MWxPjvbjYvXPnzlFFRQXvfYi1+PzUqVNxTeQbN27wA+Tm5uaUT/CQAwsScGBiYoK3xGpraxMGFZdSQ0Np3G431dbWklKppNraWhodHSWixCayw+GgmpoaYhiGWlpaZN1ZkCrmTc58VNvv99OJEydIq9USy7LU3Nw8rx3TQoS8D2q1msrLy0W9yMPDw9TY2EgajYZ0Oh21t7cnpSmLolmTQ8jBwUEymUykVCpJq9VSfX09dXd3R403Uimrq6uLLl68SD6fj6xWK5lMJmJZlidM6hLZTLuPUj7ENZ1wOBzo7e2FzWbDpUuXsHXrVuTl5WH79u1Ys2YNH0VRqVSGrWgBgMHBQUxNTUGhUMDlcuHOnTtwOByYmpqC0+mE0WiE0WiEwWBASUnJAryddGQlOZEYGhqC1+tFX18fbt++ze/0/vXXX6PCMep0OqhUKgCz4RoZhkFZWRny8/OzOjSmGBYFOWKg38EauYVbBZ4AierMUicGyDJyhITI+fG/+OIL/kiAUJT5bDwlJBJZRY7c2hAKZex0OvkAradPn4ZCoYBOp5O1rLQgo7bhPJGsKQsgapkrx3FkNptjhtnPJmSV5iRCMgGJQlE4jh07FpXH5s2bRcPsZxsWrbWWCAqFAhaLRTTWAS0SS29RaY4YxOqWx+OBQqGIeZbBYiAGWALkiH1o4d6XxYxFT44YQhuQxE6kGhsbQ19fX6ZFSg0LaY2kE6E9MEKrzG63x13+mm1YsuQQRa9PzsaTqEIQGyYsWWttKWBJ9jlLBX8lJ4vx/zSZ2dAuTryuAAAAAElFTkSuQmCC"
|
<image>如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()
Choices:
(A) 135°
(B) 115°
(C) 65°
(D) 50°
|
115°
| 69,731 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAKMAAACCCAYAAAAqnHgTAAAl4klEQVR4nO19e3hU5Z3/51zmfk1CAoqEiyCKtVpU3B+rgoUtXcUK9PGysiLW6lpcoKVKXexjqwV1+1h9urhbBUTteinWVVdBKQLWWlEp4gpYERGUUHJP5nLmzLm+398fk/dlJsQmFEky8XyeZ55MZiaZM3M+53u/SERE8PC5YIxBlmUAgGEYCAQCAADbtqEoChRFARGBMYa3334bJ510EhKJBBKJBLLZLGKxGCRJ6suP0O/BGIMkSZD7+kD6OzgRGWNQVRWSJEGSJPh8PiiKglwuB0mSoCgKvvGNbyCVSiEej3tE/BvgkbEHICIQEVRVFY9xkkUiEeTzefz0pz/FP/3TP6G2thaMMcTjcWiaBk/x9BweGXsAxhgURRH3XdcVzzmOg02bNuGMM87A5s2bkc/nxfOeZDw6eGTsAYqlm+M4QnUTEXK5HHbu3IlJkyahtrYWVVVVCAQCSKVSYIz11SGXJTwydgOuojm4zQgAzc3NWLRoEX74wx/is88+w+TJk2GaJjKZDEKhkCCth57B+7a6QWc1y6WdaZp4//338cQTT2Dw4MGYMGEC6urqEAwGEY/HEQgE0NjY6NmMRwG1+5d44IQkImEPtrS0YMeOHdA0DYZhYOfOnfjwww/hOI547eDBg/vsmMsRnmTsBo7jQFVVOI4DSZIQDAaxd+9ezJ07FzfddBMYY4jFYti9ezeCwSAkSYLf7xfxyL5Gsd3a1tYmfs/lcuK+rutCgvOfjuP0vs1LHnoE27bJsixaunQpVVdXkyzL9OGHHxJjjBYuXEg+n48kSaL58+dTJpMhIiJd1/v4qIlc16VDhw5RLpcjIiLGGKVSKWKMERGR4zjitZZlifvpdFq8pjeOkTFGHhm7QSqVKvlpGAa5rkumaVI+nyciosbGRnIcR3ypRIWTXHxy+wNeeOEFqqyspDPOOIM0TSPDMIiIKJPJEGOMcrkcbdy4kaqrq+mBBx6gxsbGXiGkR8YewjTNIx7jJHRdl1zXFa9Lp9NERJTL5XpNqvQEXELbtk1vvPEGjR49mrZs2SKkoq7rpGkaMcZo6NCh9NBDD5Fpmr0uGT2bsRv4/X7ouo729naYpgmgYGOlUilIkoRUKgUigt/vRzQaBVCwx4oD430NXdeFzfvJJ5/g9NNPx5lnnolUKoVcLodgMIhQKITLLrsM48aNw+zZs+H3+5FOp3s1GuCRsRuk02mEw2FUVFSIE1NZWSkKJF555RXcfvvtwgnI5XKorq6GqqqCvH0JwzBQVVUFVVUhyzI++eQTKIqCd999F8lkEqFQCLquY/369RgzZgy+/vWvi6hBMpns1QySF9rpBolEApZlwTAMqKoK13WhKApisRgAYO/evWhsbISqqlAUBa7rCg+8N6XK50FVVaTTaQQCASiKgtraWgSDQbiuC9M0EQ6HkU6n0dLSAtd1MXnyZITDYRARMplMr6Y0PcnYDWzbhs/nQzweRzgcRiaTESTL5XJQVRWnn346MpkMHMdBPB7vVypaVVUkEgn4fD788Y9/xJQpU1BZWYn3338fqqpC0zTcfvvtuPTSS/H666+jtrZWFIXE4/FelYweGbuBz+crOSEVFRUlFTtEhGw2i2QyKdJ/vLonGAz2yjG6rgvGGIhIBN0BIJ/Pl8QQDxw4gKqqKgwaNAiBQABEhOXLl2PZsmX49NNPccEFF8Dv94vP19tVRx4ZyxyO48B1XciyXEIixhhCoRDC4TAMw4CiKPD5fAiFQqitrcWf//xnPPzwwzjrrLOQTCbxu9/9DpdeeimSyaQIdkejUU8yeug5ZFmG3+8HcLi8LRqNQpZl4UWHQiGsW7cO55xzDnK5HEaPHo3HH38cyWQSkyZNQjgcxvLly3HKKacIm7gvKo48MpY5ZFmG4ziwbRtAwazgUFUVlmVhwYIFuPLKKzFu3DhkMhm0t7fjO9/5Di6//HKsWbMG0WgUhw4dwle+8hVYlgXLsiDLcq+HdiTqDy5fGWPp0qVwXRe33347ZFmGLMtCuvQWNE1DKBQS79nW1oZQKIRQKISDBw9i0KBB8Pl8JdXqn376KWprayFJUokUlGUZuVwOkUik11S01wMzQGDbNqLRqCCi67oiDvrBBx9g5syZeP311wEUJGV9fT2ICCNGjBBk45XsiqIgm80iEokgnU6XOEO9AY+MAwgtLS2CQHV1dVixYgWuuuoqXHDBBcLTP+GEE2CaJkzTLGkuS6VSMAwD8Xgcuq4jkUiU9Pz0Bjwyljl8Pp8gFw/ZNDQ0YNOmTfjggw9w/fXXiyA2cDhuGggEYNs2iAimaSKZTCIQCIAxhkgkgra2tl4P2nsZmAEAXjuZyWQQDAaxc+dO3H///XjnnXeQSCQAHG65LXZw+H3+98UtFVVVVb12/BweGcsc2WwW0WgU6XQasVgM7e3t+Od//me88sorIiVZLh2Knpouc8RiMbiuK+y7Sy+9FP/+7/+OmpoahMPhsiEi4EnGsgevsIlGo5g7dy5OO+00XHnllQiFQsjn8wiFQn19iD2GR8YyRz6fRzgcxssvv4w///nPeOGFF4SULCciAh4Zyx7hcBjvvfcebrzxRrzxxhuorq6GaZpQVbVkEkY5wLMZyxz5fB5z587FT3/6U5x00kmQZRnRaBS2bZfdEIHyOloPR2DevHmYMGECrr76akiSBMMwQERoa2vr60M7anhk7OfgJWIchmGI+6tWrUJDQwN+9KMfIRQKiYC1JEkYPHiwKJ4oF3g2Yz8Ht/0sy4Lf7xctA7t27cKKFSvwwAMPYOTIkXAcR2RMTNMsKS0rF3iSsZ8jn89DlmUoigLbtpHP56EoCq688krcfPPNmDBhAhRFgWEYgnx+v7/s7EXAI2O/B+/ek2UZPp8PwWAQF110Eb773e/iqquuElPSihun+CTdclPTHhn7OWzbRjgcRnt7O4gIv/71r2GaJubMmQO/31/Ss2LbtngdUJqHLgd4NmM/h8/nQ1tbGyoqKvDWW2/hlltuwUcffYTKykqk02nE43FYloVAIACfz1fW03I9ydjP4TgOEokE2tracPPNN2PlypWiEieRSIhwDq/W5tmXfD7fL/q2jwYeGfs5+HCA733ve5g+fTq++c1vQlGUkv7tRCIBWZaRz+dLQj/lJiE9MvYxOKE4iXRdF8/xx3hf8+LFixEMBtHS0iKqdYoRCoVEr3a55aUBj4x9DkmSoOu6yCGHw2E0NTWBiBAMBvHb3/4W//3f/43169cjEAigubkZVVVVJYWwAwUeGfsBeGEDULD1qqur4TgOduzYgWXLlmH16tVIJpPI5XIYNGgQDMOAaZplVQTRE3hk7GMQESoqKgAUVHQgEIAkSVBVFUuWLMGMGTNw9tlno62tDclkEkSEUCg04KQi4JGxzyFJEmzbhiRJCIfDyGazICL8+Mc/RmVlJW699Va0t7cL1cwLIfx+PyzL6uvD/0LhxRn7ATKZDCorK8UA++eeew5r167Fiy++iHA4LNoHeFxR13WEw+Gyyz13B08y9jFs20ZlZSWAwiQITdNw55134t5778XQoUPBGBPSMpFIoL29HeFwuNcb7HsDHhn7GHzkniRJCAQCuOqqqzB79mxceOGFICIoioJ4PI58Pg+gMDXXcRz4fL6SmOJAgEfGXgAvWCCiEgI1NzeXFDPMnz8fw4YNw/z58+H3+0tyy+FwWNznj/fW/MfegkfGXgCf+sAYQzAYxKFDh0BEIkxDRHjmmWewe/du3H///QiHw2WZzjtWeA5ML8A0zZKNWZFIBADEgvS6ujrccMMN2LZtm3iOh3i+TPAkYy+gmFSGYSCRSIgaRF3XMX36dNx7770YMWKEsAX53JsvEzwyHmfYtg2/3w/XdcXOFT5wSZIkLFq0CGPHjsW1114r5nIHg8GSSpwvCzwyHmfwlB0fJAoUpKMsy/j5z3+Offv2YfXq1WJopyRJaGxsRCAQ6PWRdH0Nj4zHGXy2tiRJYuRIJBLBW2+9hVdeeQU//vGPEYlExED4XC6HZDIpQjlfJnhkPM4gIuEdA4XSLtu2MWfOHHz3u9/FxIkTkcvlRMlXKBSCLMtH7Jz5MuDLpQeOAzrPwwZKHRZJkkqmhFmWhauvvhqXXnopZs2aBZ/PVxJPLFbn8Xi8Nz5Cv4EnGY8RxftXuBTr7HjwjAkA3HfffQAKg+mLe509eJLxmCHLcgkJu6ox5DHGN998E4888gh+97vfld3sxN6AJxmPEV0RqqsG+sbGRtxwww1Yvnw5Ro4c6UnELuCR8RhBRCI+yIlZTEbe03LZZZdh7ty5mDp1KhRFgSzL/WIFcH+CR8ZjBJ/o8HnPhcNhUQBx8803lzRRFacIPXg24xeKYpXN9zm//fbb2Lx5MzZs2CAquYPBYK9voSoHyABD6a17eNZO1+AS0nEcmKYJwzDwve99D7/85S8xZMgQ6LqOeDwOx3EQjUYHZIHssUAGXDQ31QNUREjONjp8IwBaLg/qeFU6k/FIiYI05AHt4n3TwWAQc+bMwU9+8hOMHDkSsiwjEomUhHkGAlzXheM4R1xYfNnR0UAFGOKxCCARvjn1G3hjyztQFRW2C8iSjIcfXoHZs68AAEQiITgEyBIQikZg2BYCyvHV9N15nX2t5vguZ6DQNhCPx0FEuOOOOxAMBjF58mQMGTKkS+fG5/OVfTEE/+x8hiR/TFGUo7aJVWbb8Hdcqf+7di2uuWYO5lwzF/9v4oX44IMP8I//eDG+9rWzcFLtMMRiIaTTaVQkE1Dkgkco48tt88TjcbHnuaKiAowxvP3221i3bh3Wrl2LIUOGCAJaliU6+7oiZznCsixBvmNtEFPlDiLmNQ0+1Y/3338fUx6bglA4jJEjR8KyLLguQyxWyJ3KsgxGgOsWyuUl6fh+md2drL6WLLZtI5PJiI2ktm1j+vTp+O1vf4uhQ4cKdcUXRkqSVCLtO48oKTd0JiARif3XfD9NT7WXqmsaTMNAxaAabHt7Ky677DIcPHgQY045BT/60Y+wYMECUX1s24R4LApJAlwAPtWHvp5p0NdTFYhIVGXHYjFMmjQJy5Ytw4UXXgjLskr2QHPwfDWXKAMB/ALjFx3fb300ZpQajkQQ6iDb7t27sXr1aqx96WV8VncI7257FyefPFwk+V3XheIr3DcMA1JIgnKcbcb+DlmWxQbSefPmoba2Ftdddx3y+TwSiYSQfMX7oB3HEaORyx1c6quqWqLFXNeF67pHpbrVVNHYjCeffBKbN2/GmDGnYu3a9Tj7nLOx5c23MHLkCARCQQSDKlraU4hEIgXx2wv2YndquK9tLsuyMHr0aKxatQrvvvsuNm3ahObmZgwbNgxEdEQhhSzLAyrY3fmzWJYFxhgCgcBRX2xqorISkCTU1/0FRIThw4fD7/Nh2rRpGFwzGNu3b8fpp4+D3CEAn3rqKTQ2NqKyMonW1lbEQuG//g7HiO7EfF/neH//+98jnU5j//79mDVrFlauXAlN0xCNRtHc3IxIJCK8ZsuyxGxuxljZ7fbrClzKO44Dy7IQDAYxatQonHfeeTj55JOPSliozLah+P3YuHEjpk+fjlgsBiNvwnFcfHbgMwwfPhyqCpAE6LolJmbV1dVh2LBhyKUzx/Gjdo/urr7uHASezlMURazEtW1bSGTGGPx+v9goEI/HxVjjXC6HSZMm4YEHHsC5556L4cOHI5vNQtM0hEIhqKqKXC4nimX5z8bGRiQSCfj9/rIbAt8ZxWS0bRuKosB13RIhwceySJKE9vZ2bNmyBddddx10XcfZZ5+Nl156CbfffjtUxe+HY5p46aWX8LO7lkJWFIQjEQw9qRqxaAxjx46F6wKmbSMc9uO6665DLBqBZRfCFGF/36qcL0KNu64rSKGq6hG9J67rwjAMRCIRsck+l8vh4Ycfxl133YVkMolHH30UgwcPFnNwiAi6riMSiSCXywGASAfyudvciRlI4LFGXrFeX1+PmpoaSJKEffv2Ydq0aTj//PPx4YcfgoigaRpOPfVU3HnnncA7W16jeCRM0ZBKkWCQkokYRcJhmvaNS6ilOUXMZUSMyGVEtkNkMyKHCre8bVFfgzH2V29/y//jP3O5XMlz2WyW9u/fT7Nnz6aTTz6ZrrjiCjrvvPOopaWFGGPU3NxMjDFqa2sjx3GIiEjTNMrn80RE1NzcTK7rHvFe5QzDMMg0zZLPRUTkOA6Zpik+o67rdPrpp9P8+fOpubmZLKvAHcYYzZ8/n5566imSHDNDhm0DkOEYNlwAgUC4Q20FIUmAohTUdC5nQlKlDk8xVgjgyuV9ZXNJBRSuasdxSkaJMMbQ0tKCbdu2YeXKlWhqasLMmTNx6qmn4vrrr8fmzZsxcuRI0ecSCoVESEPXdfh8PqiqCkmS4DgOVFVFa2ur6P4bKCNKqCi00xm5XA6vvfYabr75Zrz55puoqqpCMBiE4zhQFAXPPvssxowZA9WyLESiUYAk2LIFXyiM1uY2uExGTU3hi3IcQOlIpwYDfgT8heAtpL4P2h6rgxONRsV9vlcFKNhC7e3tWLduHVavXo1Ro0ZhypQpuPbaa6FpGqZOnYoHH3wQY8eORUNDAwKBAEKhQobKtm1UVVWVkJrbmbqui6ljhmH0+fd3rOBmRnHEgNuPfJchACxcuBBXX301qqqqoCgKJEkSK+hmzZpVyGMTy5OVTxGRRZaepf379hJzGTGXUUN9CxEjsi0iRkRaziSHiAzHJYeI0jmtt7TBcYPjOKRpGmna4c+yfft2uuWWW2jcuHG0cOFCeuGFF+jQoUNkWRalUim67LLL6I477iDDMKi1tZVc16V8Pk+2bZNlWUI1vfPOO1RVVUWRSISSySTdeOONZJomaZpG7e3tA0JNm6YpTJLOYIxRNpultrY2GjZsGP3P//yPUM/79u0rMWUYY6RCkqBpGiqCYbiui+HDh0OSJJimi5qaSuh6wUNSfDLCYT8YDkubSDjS5+m4Y4WiKKKaZt26dXj66adx8OBBTJ48GWvWrMGYMWNgmqZwOh577DE4joNbb70VgUAAfr8fTU1Nwkg3DAM+nw+33XYbfv3rX2PLli048cQTUVdXh0suuQS33XYb7rzzTiQSCZimWfYDP/nxM8ZE5Q7PLEmShEgkgv379yOTyUDTNORyOQQCAQwfPhwAhMNnGAZAZJGWbSNiNjHXJCKXtEyWiIj0XIdIZESOK+4WHBjmksPcLq6H8oKmafTzn/+cxo8fT1OnTqVHH32UGhsbybIscl2XDMMgIqL6+np68803afz48fTBBx8IB6kgCR1KpVJC0t199910wQUXUGtrKzHGxJX/6quvUnV1NTU0NFA+b/blx/7C4DgO2bZNtm2XPM4YE99dLpejESNG0IMPPkiGYQiJ6Lou1dXV0YYNG8iyLAKRS8QcInI7bt17eX2lXAzDoHw+L47PsiyybZtc1yXGGNm23aXacF2XbNumfD4vvL6PP/6YfvKTn9BJJ51Et912G23ZsoU+++wzsiyLdF0v+cKIiA4cOEDDhg2jzZs3l/x/XdeIyCbLKlzI27ZtpVgsRjt27BDHxBgj07Tp9dffoEgkRpqmkWWyAUPInmDlypVUUVFBzz//vDCJ3njjDbriiivo008/JcYYoY+PsVukUqkjrrrO6Or5fD5Puq6Lq5Nj69atNGPGDBo3bhzdcssttG/fPmpsbCTHcYgxVkK0AolMyuVyNHPmTLr77ruptbVVPJfP56hwAduU1dqJyKYZM75FCxfOJ03TKJvNimMhInrmmWfppKEjaM9H+yjVrtEAMBm7xYcffkiO41B9fT1t3ryZBg8eTJFIhCKRCC1evJh27txJjuNQOp3u/2TsLKW56uQOA1FBVei6TplMhrLZLJlmqcRpa2ujBx98kM466yw677zz6KmnniJN00QcjJOG6DBxikn8b//2bzR9+nThdByOq7nkOBYR2cTIItPK0eDB1fTSS/9LuVyuJPboukQzZsyi71x3Ixl5g7IZnSyra8N/IIFrJW72tLW1UXNzM6XTaUqn0+LiT6VS1O9Lbnj9Hx+42VWhgaIoIr7H/0bXdRw4cACrVq3Chg0bcNppp+GRRx7B2LFjS9ZX8Ert4nF0xSvTnn/+eWzduhXLli1DIpGAZVnw+XwdmR3etM+g6zpaW1tBRKiurobf74eu62LZ5B//+CZ+//vf460t7yCftxGPR1HmIdoewbZtWJYlen74nkOgsIApl8shFosVRrn03TXTMziOI64qDm6Lua4rwiq6rgupuXXrVlq4cCGNHDmSFi9eTJ988gnpuk6tra1CYnWVoUmn0yW/v/fee/TVr36VNm7cKKQwl5yF+zlKpdqIMZsMUyPGLEom47Ry5cPCRiUqOElDhpxIP/jBD6mxsZVcp5DVcpwvgZ6mw85McXaL2/78Mdd1+7+aLrYHXdclTdOOSNMREbW0tNBvfvMbuvjii+nMM8+ke+65h9LptHBGuJNDVCAUV83cXiGiEvXe3NxMs2bNojvvvJMMwyhxlA7DJcYcIrIpnWklIpsWLfo+XX75t6mpqYkYY/SXv/yFBg0aRIsW3VJIDeo2EaMOm3Hgk5ETj6toxhi1t7eLCAPRYUdUIurfczZ4Cg0oZHuK6wPz+TwaGhrw+OOP45VXXsGwYcNwzTXXYMqUKfD7/aLgU9M0UTVTXMiQyWRKlodzpFIp3Hvvvdi1axfWrFkD13XFRDDGmBhzrCiF48hqGUQ7eqAty8HMmTPxf/+3A9lsFuFwGGvWrMF5550HxoBwKAjLYvD5JECSMNDbpovPH3VURPl8PnEuGWMwTbMwe6i/k5EfHl9ZEQqF4DgONm/ejJdffhnPP/88Zs+ejWuvvRa1tbWi3AuAWPbIbUJFUcT6C9M0kUgkxOOapsHv9yOfz2Pnzp244YYbsGnTJlRUVIj52qqqii+z0BudRzgchstsqIoKXdcRDIZhWRZM0xbvGwqF4PP5YFkO/L7DZrphWggGyzvo3RMYhgG/3w9ZloXNzX2B4p/dqunO1RhEBXXW2WPlaR7+M5VKlby+2NYiIhETLA6Oft57FqfOnnjiCTr//PNp6tSp9MADD1A6nS6pDukKXE0Xg7+ev3cmkyEioj179lBtbS396U9/Il3XP/d/Fv4Hj8/axD3q4nht139UdPNARCTMnx5JRsuyYNu2SHoDgKZpomrZ5/MJlcfBGDuiltA0TeTzeVFU0Pm51tZWVFVVCZVJHVdMc3MzVq1aheeeew6jRo3CnDlzMHHiRESj0R43xBNRSaU1/52/F6/DmzRpEubNm4errrpKVNt8Plinn8Dh8UWfU0dZ/G0PcBXdU/BZ5t2SkYdUqKNYlDGGWCxWUg3Dc7K8LMi2bQSDQVGVkc1mRQ6YE4zbEtRRYMn/Jz/5ruti165duPvuu7Fnzx6cc845mDdvHsaOHSvswZ6guICVVyLzi4QX1HJyLliwAKlUCitWrBDmwF9/H4+MXwR6TEYqit25rgtJkiDLMlzXRUNDA0444YQSCdh5AQ+vWQMKJz+fzyMYDCIQCIjyKe6UEBGy2Syefvpp/OY3v0EqlcL8+fPxrW99S/Tf8v/NbbfuwAsXuqqopo6WA1mWsWrVKqxYsQIbN24Uu/pUVe3mPTwyfhHoMRmBQg9DNBoVJ7RzESlvQDJNUwSOgcPTBviqieK/AQ7PNrQsCy0tLXj22WexZs0ajBo1CjfddBPGjx+PQCCAbDaLRCIBRVGQSqVEkxOXxt2hsxeuaZoIlAOFFt2vf/3rePXVVzFixAixXLz7nl+PjF8EOBm71XWmaYpmGtd1C+NNOjbH19fX48QTTxT2FlfnHJlMBoMGDRInnYoKL7mt+dFHH2HFihXYsGED/uEf/gFPPvkkEomEWFEBQLwfY0xkNFKpVEnx6l9DsVnAj5Pfz+VymDp1KlavXo2qqqojLhgPvYij8XgymYwIQtfX19O//uu/UjKZpJqaGorH4xSLxSgWi9G0adOKcrKHPUtercEYoxdeeIEuuugiGj9+PN1999302WefkWEYohSLl14RUUnumBdrHm3A2HGcI7z2pqYmWrBgAd111120Z88ecay8p6X4fT/nW6Fib7pw87zpowX3pntERn5SOEEsq5DaSaVSNGPGDHr99depvb2dMpkMvfzyy7Ro0SJx8otJlUql6L777qNx48bRJZdcQuvWrROFDZyA/MB4FQ0vwSIq1MUV/945fdcViglYXM196NAhevbZZ2nChAmUzWbJdV1RcMGJ2DPCczK6nW7dwCOjAD/nKggF24X/7AKRSASGkUcwWMg6+HwKcjkNsVihdXPixIlQVRWPPfYYZs+ejaamphJ1vXfvXjz66KPYuHEjvva1r+Hpp5/G6NGjRQK9GFw9cvu02JvlthwHb6T6awgEAsIsCIfDSKVSSCaT2L17N5YsWYL169cDgAhqczXd820E3diInwfPCjgCHXmajt+6IGRhCpkrUl/BoB+ZbAaxaAxvbvkjZs6cCcYYHn/8cSSTSbF0h/cfn3/++QiFQpgyZQpeffVVVFRUQFVVkQE5GnQmR0/tOv66XC6HRCKBxsZGLFmyBD/72c8waNCgLvf0lWQGukV5j7XrL5CIdfKmu/juCwHswv32VCuSiSRsx8bKlSux+NYl8Pl88Pv92L59O4YOHYpMJoNEIoF0Oo3du3djxIgRqKioEEHvWCyGYDAowiq9gUwmA7/fLybKxuNx3HfffSJNVQyiz2+79PDFo8feNICOGSqFHCrPK/p9frz33nv4wx/+gDFjxmDGjBmiyYhnYuLxOMaOHSs8YJ/PVzKvzzCM4z5rhjpy0VylP/LII6irq8OLL754xOSsYnhE7AOUeHefY1QXSu0LhjljFjU0HqSW1gY646unCafgySefFPldosMtjIwx0nW9JM/b1tZWkrs+3uCOzmuvvUannHIK1dfXH/GaYufJQ+/isDfdDRkP9wG7HT0fNjFm0S//4xf0q4eWC8+Te8633norua5LLS0tRETC++UeMn/j3jzpjDH6+OOP6ZRTTqG1a9eKIg9e4MlL4/nF46F3wTnRrcGWz+dL8sWWbYFA2LBhAyZPniymBgQCAVxzzTWoqKiAJElIJpNiYplhGCLrwdWiaZq9snqira0NALB48WLMnDkTU6dOFWlIbnIAEBmXYvVc7j3h5YZuHRjqyJr4fAps28aOnf+HqVO/CUUhmKaLeCwOTdMAFBqyd+zYgWHDhomQja7rwi7kKxp6cyYhEWHJkiXYu3cvHnroIVRVVQHAEbMRqQvPuftCCQ9fBA7npnvgTXf8CYDCYPlcLlcU+vCVxBS5g1Kcfy4+yV2d9GMBJxWPJfIyNI4XX3wRP/jBD7B9+3aR1uR/45Gtf+CovOliKIrSaSn3X/8Xf2tssKfg3XzhcBimaaKyslJMFtuyZQvuv/9+/Od//mdhCGqH9x4MBntcZOGh91D20VrXdREKhZDNZsXWAW7r3XHHHfi7v/s7XHTRRYJ8vA2VtxJ46D84ajV95H7BvlVzuq6LukM+KZaIcP311yOXy2H16tWimsjn85U0Z3lqun/gb1bT/Q08X53NZhGNRsEYw0svvYTt27dj/fr1CIVCYIyJ+ke+ybSnxbkeeg9lLxmBQoaIZ1M+/vhjTJo0Ca+99hrGjBkDXdcRjUbR3t6OZDIpbNbOFeke+g5cMpa9zQgcziXruo6bbroJy5Ytw8knnyx2OgOFcckcvO/ZQ/9CQTJ2U0JWAOt0/28snfqCUdxwdfnll6Ompga/+MUvxCoNXrTBGINt24KEnjfdf3DYZuQE7Dbi0pl0vUNC3vJq23bJsKZgMCgyPACwatUqHDx4EMuXLxcVQcWTIDoPjPIkY//D38io3pOGXAXzrQHc1mtqahLTI7Zt24b/+q//whNPPCH6XXiI5/Piml5VTv9Dv7cZFUURDV+8w0/XdVRXV4sG/wULFmDRokUYOnQoampqoKoqWlpayn5e9pcN/X7WDo8FFtt8RIT6+nqccMIJmDdvHoLBIO655x4xCJ7PdPHIWB4omzijqqqCWNzO03UdQ4YMwdKlS/HJJ5/gueeeQzAYhCzLME0ToVAIfr/fI2SZod+TESgUQ3BS8UmoBw4cwJNPPikyLEAhdsirhdLp9FH32HjoW/R7MmqaJjxi27aRSqUwaNAgTJw4EUuWLMG5554Ln8+HxsZGYUcCnrdcjuj3NiMvOeOLf4gI06ZNw8SJE3HbbbeBiETKzzAMUb3DCyH6ejm6h+7RbzIw77zzDmpqajB9+nThNRMRGhsbUVNTg6qqKkybNg0VFRUgIixduhSVlZX4l3/5FwSDQRG45rN8gMNS0SNimaEXWx26RGtrK9XV1dHw4cNp165dYrWFruu0e/du+v73v09NTU3U0tJCdXV19JWvfIX27Nnj9aoMIPS4B+Z4o6KiAieeeCJCoRCee+45kWVJp9PQNA033ngjBg0ahIqKCgwePBiPP/44Ro0aJeZDexg46HMySpKEtWvX4p577sGf/vQn7Nu3D7quo6amBn/4wx8wdOhQABATZ88880zR2OWVgA0s9DkZdV2H67q4+OKLMXr0aOzZswf5fB6yLCOZTIr6Q8dxQERoaGjodoe0h/JEn5ORr8PIZDL49re/jQ0bNiCZTGLTpk2igaqxsVHM1z7hhBOQTqcBeK2kAw19TkZN01BZWYmKigpMmDABu3btwv79+7F161ZMnjxZrD8zTVOkBHkw25OQAwt9TsZNmzZh/PjxUBQFPp8P11xzDdavX4/Kykokk0kABelZXLHD2wy6mtPtoXxx3DMwvJyrmDjUMdgdKDgwlZWV4rlzzz0Xf//3f49nnnkGlmWJ2KGiKCXFsJ3nOnooTxS3fxx3yaiqqtgUxW080zTx0EMP4bTTTsP111+PX/3qV+K52tpaXHHFFTj11FOPqMQurkH06hEHBjgRGxoa8P8BOFg2Bw3/PTMAAAAASUVORK5CYII="
|
<image>如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,则∠AOM的度数为()
Choices:
(A) 40°
(B) 50°
(C) 60°
(D) 70°
|
50°
| 69,732 | null |
50°
|
"iVBORw0KGgoAAAANSUhEUgAAAKYAAAASCAYAAADR06UUAAADZklEQVR4nO2asW7bMBCGf6pd2i2P4FhA/CBxptBv0E5FPCVQC9DomjUe4qVFCGRqXyFTJL1HBkpvEctAa10Xk6El0bHTxJIMf4AA80jKd7oTj0cItCDPc7IJw5AAEACSUpJrXNvRdjLGGmunyxe7gMs2RkSEChhjS+2LiwscHBxUDW08RFSyR3N5eWl+M8Zwfn7eODtdOjLG4HBfa7BtAwClFLrdLrxNbuJybtNZV+82ONnWsQ36vhi9dK6byneNNthZ1LFJ24z/xbbt5ubGyJ2pfM+eOtkole/Zsy32gbmnMdjJe2VgRlGEJEmck9tGUXcpJTzPA2MMg8EAADAajZzj97wtdpHqrXr4/X6/VNG2tTIHYI5XkiSB53lIkgR5noOIcH19DcYYfN9fGl8ng8EAjLHS1TZcMVZlXxRFZlIlQgjinL9hPVYfAGg0GpXkQggKw9C066h+i//JOSellOkTQtAKtzWO554h59w8c12hK6WoZGGe5ySlNIN2CW2byy4ppQmCOrGdWbU4cM5JCLFNlV4dbaPtC6UUAaAkSeh9cXlN0xQA0Ol0wDl/g4W9PhhjGA6HkFKW+ogIZ2dnNWhVRqfrKIrQ6/VK/b1eDw8PD9tW61XRaVsIYWRBEEAIgU6n81T8EBHyWYbbnz/w5fMnAMDR0ZHpq8Ilbyq6kDs8PCz1NWnvpp/r/f09Tk5OSv32PrjNpGmK8Xhs9peTyQRXV1dgjD0FJmMMt79+YzKZ4N2Hj/B93zjL5bQmOXMTmq631m88HuP4+BjA8iKglKpcSdvG3d0dlFIgIkgp4fu+WTxMYOoU/vj4CCJCGIY782Zqut0uAJSOwLTMVIQL6swISZIspTkdrHqV6ff7dan2KmgfaJ/obVQcxwAWgZmmKYIgWNpjpWkK7+8f5LMM+SwDAOSzDPNsatpaZreL8k371hm3Sl7UqThGSonhcLgUhFEUIQgCszoBq79I2gZxHMP3/dJHG0EQgHPe+sCM4xinp6emXdpm6eMHLMr0eTYlzrmRff/2damammdTU1Xp37a8+HuTvnXmuObPs6m57HbVHPvDAQClCldXjHV+LKH9odEV664c4dnHYERkfGHaxQmbBlUxIF5yjyrWla8TwK57PUcdgVl8aezLPmNtI3meO+0rvnD/AIlK7ySBEeG3AAAAAElFTkSuQmCC"
|
<image>如图,AB=8cm,AD=BC=5cm,则CD等于()
Choices:
(A) 1cm
(B) 2cm
(C) 3cm
(D) 4cm
|
2cm
| 69,733 | null |
2cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJ8AAAB+CAYAAAA6A8PHAAAXnElEQVR4nO2dfUxb573HvwdCSFVXrFde4qqevMQmJXF1RTO6+ApWooET0nJvHKUZTZOudKJiwUzhBqomUqa2GhPpYhK2izOqdi3RZXdUyi7OlLakkFumklsmWElVG/ICeSlIJYHuhkE7DMfnd/8wPvjg4/d3cz4Swj7Py/n5nO/5Pc95XhkiIgQIAWB8hNvONeK65jAMWlcsDkBaoNlLrDCCUoYv4XEYQo2hLpzsJVYYIaljubMkAE3VZjB6PR7Z7HZQQsIHAYvPXUsMI/SB504age16cF0ciFkUpy83KSGBIMQn0JK7Eocs6CI9DmuAi/qN2AzGQ5wSEmKE5PncPxvNXTDXGgAAxRvVS3ECf4+RWKGE5Plcjq2jsQqnT58GwzBgtLuF8SXvJ+GHAMTHiR+2WdCN7SAiEBGGLCZsXK8WjyshIcIq/1HSQERCTzZkAVPTDer6DX/o2sgNAIGLzyNPiZUHBUmjUU9wVvuow8oREVGVHvyx4p81LsZ0BJu1xAqDIQrkzSC0ngp/PSISK5sAFSUezbduOUl4Ej4Jq/9LrM5msVjw3HPP4euv/xFO1hIrgIh1vhIAImDnzp0AgK1bt2J0dDRS2UukIMGJz0cpy8DZ/vfnP/8ZU1NTOHr0KNYq1oVnnURKE5z4AqjEFRUVYXh4GLm5uXjgfhkA4M6dO6HYJpHiRHzMU3p6On75y19idnaWP3bo0CH86Ec/wvT0tNd0Ab10S6QUATa1hIfD4cChQ4dw6dIlDAwMID09PdqnlEgCYiI+F3fv3sXatWul3g0JAFEcamy321FSUgKHw8EfW7t2LQBnE82ZM2dgt9ujdXqJJCBq4svMzATDMGhra/MIs9vtsFgsyM/Px/j4eLRMkEhwojrJorq6Gm+99ZbH8czMTHR0dGDfvn1obGyMpgkSCUzU63xTU1OQy+XRPIVEkhI1z+fSdKDCu3z5Mqqrq6V64AoiauJzf5v94osvcPv2bZ/xN23ahK+//ho6nU7qllshRH1iLRHh1KlTaGpq8hkvMzMTb7/9Nl588cVomySRIMSkne/27dvIy8vDzZs3cf/994u28bm3/bk+2+12ZGZmes1Xai9MbmKypIBKpcKRI0fw1VdfeRWL+3HX56amJuzcudNrt5wkvOQmZj0cYp4tEI4ePYqzZ8/ik08+kd6aU4yYdq+FysDAAPLy8uJthkSEielKPqOjo9i7d2/Q6dyFd+nSJUGXnUTyElPxffe730VfXx/+8pe/hJSeiGAymbBt2zZMTU1F2DqJWBNT8aWnp+OnP/0p3n777ZDSMwyDjo4OlJaW4tlnn/UID6QGkQS1jBVDzOt8s7OzyMjIwOrVq8EwTESaS6Qml+Qk5qs3ymQyfsQLIN5cEszzMDs7i8OHDwtGTkskBzETn7ugiAiDg4OYn58XjRuMF8vIyMC9e/fw+OOPw2az+T13IMclYkPcmlp2796Np556ChUVFRHJz2w2QyaT4fnnn49IfhLRJ27iu3jxIqqrqzE8POwRJtXhVgZxW7G7qKgIpaWlonU1954Qb9Di0mxivPvuuygtLRXtlpOK2sQhLt1rvuK4CMfzORwO1NXVwWKx4OLFi9iwYUPIeUlEj6ToXvOFL1FfuHAB27Zt8zkyJuDzAGACXXZLWp4rIOK+UcaFCxdw9OjRkNP78pA7duzghTc+Ph5wt5zweXSuzOoSHi2LJ/roMkvpPPKG97CVRtw93507d6DRaDA+Po6srKyonae6uhqfffYZOjo6Yjg6RtqByRdxvzLr1q2DwWBAe3t7SOkD7VJrbm7GU089hW3btgWXP//Jt7cSt8PP5U3qCk8EiNAKp2ExMzMT1fw5juM/37t3L+w8XFgtJudywPqDwgBbB79MMLYLwzxzWbkkhPiiiZhoXDQ3NwcofO/rS3NkI73b+tT8cet/U7HRFKiZK5K4F7vuXLx4EUBk2+K8vZDY7XYMDAwEOFvO92UiAF0XOgTfh0ZuwHjwcHDGrjASSnzV1dUYGBgIKw9a1ofsLY5rttzBgwfR0tLiN40z0PPQ0LkPUGWz4mrtaQwtRmAAXBhlYNAyotW6lV7VcxFx8dnONTp3JNpe5fXCu+IYGy2CMKPRCJPJFFYDs9hEJG9xGIaB0WjEiRMneNGJp1l82VgWRHCKbPfmTdhZxeCDc0OLx6+AaL1YEq/HViIRF592Vy2sFhPQdQXDovJz7strslj5PdtclJeXIycnJ9ImBQTDMLhy5Qr27t0r6JbzfNvl3I4N8SIr2V6Czq5OAIDNch7QbIy+0UlOVIrd66OAXu/c3Gh5MVa1Q4tu/UHU7tJ6pJPJZHj11VejYVJA5OTkQKPRIC8vD5cvXwYAMIttdUQuf5XGey5m6NqiyNKg3VWLjdfqYLERPuy+iR27NkvFqx8C2P4qeLpv3EQ2unDNBmx2bXlPgOWUEenZRlRt+GHCjlxpaGhAXl4eHnjggcUjzudTdNuHzlHsPLyL/64vqUJX5zmoN6jxqFS4+iVsz0eC/xwIQ1i/vggbsosxOjK0FHHYuS/verqKDepHwPi4OWazWXRptVixZ88eqNVqEBFmZ2fhcDhEvdgNMNjM/w4OhhI9TtftBql3xNLc5CVSbTau9jSrxUQdVo4sJ41UZepwhpGNivRG4shGxUwx2fw0tfb09FBOTk6kTAuLhoYGKigooMnJSecBjqijsYoA56bqrt/owqgvpqHYm5mURLzYvTDK4PAuBpYLS77iVLUZv7lgxtC5RqCqxM1b8A+AoFhTq9XgOA4vvvgiHn744UibGDSrV6+GSqVCVVUVDAYDDIfNoMNm0bjNF7r4z8t/l4SQiL1wMAwDcnv7y1ZvwLWbo7CcNIIrPojNADq73keJvgSAsK3L/QaNj4/jscceQ3l5Obq6uhBt/DXNTE9PY3x8HBkZGVi1ahWefvppvP7660HnLSFCJN2oq8glIr5/U1D0pi0Vud66vQoLC6mmpobm5uZILpcvFXcxZm5ujurr6ykrK4vq6+uJZVkiIpqcnKTCwkIqLi6Om22pQsTE577nboeVIxqykL7aufeuq47k/CsS1PncRXj8+HHSarU0NzdHRESVlZXU1NQUKRMDpru7mzQaDZWWltL4+LhonPr6elIoFNTb2xtj61KHsMW33IN5fA8wn08//ZSysrJocHCQP9bX10e5ubkBnTcSTExMkMFgIJVKRefPn/cbv7e3lxQKBb3yyisRt2UlEJtRLdyy/8uYm5ujnJwcMpk8R4Hk5ubygnQXXLjic0/PsiwdP36c5HI5HTt2jPe8gTA1NUU7duygwsJCmpiYCOq8K524DalyvwmVlZVUVFQkGq+pqYmMRmPY5/J203t6ekir1VJxcTGNjIyEfA6TyUQKhYK6u7tDzmOlERnx8ffVy7g3Hw97Z2cnyeVyGhsbEw2fnJwkuVwelDcKhImJCTpw4AApFArq6OiISJ59fX2kVCrp5z//Of+CIuGdiDS1EAg+5yt4mVAz+dUUysvL0dLSAqVSKZpULpejoKAAFovFea4IjPX79a9/jUcffRRKpRLXr1+HwWAIO0/AucG11WrF559/jm3btmFsbCwi+aYskVTyUtHm7gG9jwIuLS2liooKv/l2dnZSSUlJeMbR0gvME088QVarlYj8vzCFSlNTEykUCnrvvfcikl8qErc6X0tLC2k0Gp/D2F11NZZlSaVSeRTNgQplcnKSKioqSKFQUFtbW1h2e0PMlv7+ftJoNFRXVycVwyLEZSTz6Ogoamtr0dbWBplM5jUewzBgGAbp6enYt28fzpw54xHujzfeeAObNm2CTCbD1atXsX///rDt92brcvLy8jAwMICxsTFs3brV70Y4Kw53JXLsAs3NL/3NR6FVgGVZys3Npfr6+qDSDQ8Pk0qlCjh+f38/6XQ62rp1q6DtMF60tLRE9OUmFfAsdjkH2ecXaCFKzVFHjhyhgoICn8WQt+JUp9NRT0+Pz/zv3btHNTU1JJfL6c033wzL1kjz6aefUk5ODhmNxoi/vScjMRGfS0wff/wxyWQyv+1p3sTX2tpK5eXlXtO0tbWRXC6nyspKj35XsTwj3eDrLT/34zMzM3TgwAHKzc0Nq10xFfAhPo7mXUXwgoM4WiqW+eJ4Me7c/ALZWc4jD2fxzZKDiKanp0mpVFJr6zseYXyyxRcMjuOEeSyef2ZmhhTrHqa7k1OC9Fbr55T/xDba8v3v0//29bnZvTyf2PYu+BL3m2++SQqFgtrb22NoUWLh2/NxDrILBMLRPH8DOZpfFAWRU6jOIPfPRI4F500vKyujsrJ9omGeCPNbWHAJnqMfl79Av21pISKi6Xv/R/9eV0dyuZyampoWRbZo7+Lv+Mc8Sw5ezKyPhp/YY7VaSavVUkVFxYoshv0WuxzrJhCOdfN6rODlhPeIHMt7Kld+rWf+k77zne/Q5J0JjzC7fcFTEBwrLkqOpQ8vfkT/otPR2bNnSbHuYdr/3I9pYnLS026OFVYfolyXDZW5uTmqqKggrVZLV65cibc5McWL+JZ5u8VieEEgHKFA+CKGYwXF6dgXX9AD/ySn/+np8Qjz6o2WC5iPvkBDw1dpzX33UXZ2NvV+/PFS+uXi8vc9wWhrayOFQkGtra3xNiVm8OLji0DOQfZlN96jruc8SvOCYxw53IpdO+tsHC4oKKSXXj4iSOOqH3KOBS8CdgrFPe9vvpmjY8eOUZZ8He188kl6+eWXhQ9AkouPiGhkZIRyc3PpwIEDNDMzk/IjYPhGZoYBQA7YWQ5p6WmCWRZMejrSwCBd0I7KIGMVA45lYV9gYV/gFvtwGWSsSgM4B17/lQkz38zitddedUvjDLMvsJjn0rB6lStTAss6sEAAGOdxV96WP72PRzZqcOXKFVz9fBBm82n817tn8c08h4x0Z9oF1jmZ28E6wPn9npio1Wr09fUhKysLjz/+OIaGFldASO7FY70TmEY5WmADewpdb6v9/f0kk8loeHjYIzxQbt26RaWlpaRWqz2GKpWUlKR0g+3Zs2dJoVBQy+LLVSoSkPg4lg2quJqZmSG1Wh3yhXPNn/jWt74lmD/hTnt7OxkMhpDyT0TEBsreunWLtmzZQmVlZSGvK5jI+BSfY0GkDS8AKisrQx6F4j5/wtsYPyJnN926desEjcmpWEdiWZYOHTpE2dnZ1N/fH29zIkrER7VYLBaSy+UBDSl3wXFc0PMniIhqamriMsEolrgeqPPnz5NCoUip3xtR8Y2NjZFcLg9YPETOJ7uhoSGg+RPLPdvg4GDCrGwQC8bGxqigoIAMBgNNT0/H25ywiaj4SkpKqLKyMuD4kZg/kZubS319fSGlTUZYlqUjR46QSqXy+N2+qh2JWCUJWHz+jG9qaiKNRhNQN1Ek5080Nzd7FXwiXvBI0dXVRQqFQnTGX7IQludz3VybzUYymSygcXOnTp0iuVxOR44cicgq9Pfu3aOHHnpoRfaNTkxMUEFBAZWUlPAvXsn0wIVd7M7NzVFubi4dP37cZzzX/InCwkJ+/kSkKCsrEx0dkkw3IhxeeeUVUiqVSbd6Qtjiq6uro4KCAq/hsZg/0dnZSYWFhVHJO1no6ekhhULhdYR4Ij6IYYmvu7ubsrKyvLbHvfHGGySXy6mmpiaqjaQsy5JSqaRbt25F7RzxIhjRTE5OUnFxMRUWFoouYhStmXqhEpL4OI6ju3fvklKppD/84Q8e4a75EzqdLmbzJ44dO7bi1kzxJp76+np66KGH/E45iDche76nn36aDhw4IDg2PT0dt/kTt27d4icYxfuJjhW+fmdvby8plUo6duxYDC0KjqDE5/qxb731FimVSsHbqq/5E7GisLCQPvjgg7icOxGZnJyk0tJSKigo8NvjFI8HNmjPNzIyQllZWfybldVqpYKCAvre974X98be1tZWKisri6sNiYhrEaPOzs54myIgKPGxLEs6nY5vo3vppZf4+RNixPppmpmZIblcnpIjQMJlYGCAVCpVQq2eENSKBb/4xS+wsLCALVu2IDs7G19++SWGh4dx6NAh0fixXpNYJpNhz549Ie/dm8ps2bIFn332GUZGRpCfn4/x8fF4mxT4QkG9vb0kk8koPz+ftFptwjZo9vX1kU6ni7cZCU1zc3NCrJ4QkPj+9re/0YMPPkj33XcfmUymhHHb3sjJyaHLly/H24yEZnBwkDQaDb/4ejzwW+zevXsXSqUSa9aswc2bN1FbW4v09PRYOOWgILd5DuXl5WhtbY2fMUlAbm4uBgcH8eWXXyI/Pz+APYejgD919vb20re//e2kWfbfNTBVoVAkvIeONd5eAOO1ekJAxa6v4eyJisFgiHudJpmwWq2Uk5NDlZWVMSuGfRa7tnONsNhoacnaIQsYhoHFlvhT+Z5//nn87ne/8xmHUnVKYghotVr09/fDbrdDp9Ph6tWrHnHcr1dErp1Qiw63XQtsVOza0IWcLrujsYqgPxiTpyJcWJYlhUKRlF473rhWT2hra+OL6mi02S7zfEuTxU9Vm5G2fTs2Lu7J7Gqza6wyJoXHSE9PxzPPPIPf//738TYl6di/fz8++ugjNDQ04Cc/+QlmZ2ej0mYrWuxaThpB+h/C8aEDxC2d9AbUOGzQLm7yl5i4PxiVlZXSW2+QuK5fTk4O/vrXvyIzMxM6nQ42my0qJyPBivG2DudmfbYO30Vskgwc0el0ce9zTnba29ujMlJp0fOlAZxT8T8zd8NcawAAFG9Ug7ytbJIku3m+8MILaGlp4b9TElQZEo2ysjL09fWhpaUF+/btw+zsbETydYqPAKQxsJw0ovm02bkKvHYPAIBBmugNIyIkbNnrRllZGc6fP89fMGkP3NBQq9Xo7e2FQqHAY489hsuXL4edp1N8DIAhC7pID3K2/cFq+RU2rlc7g0VuGMMwSeH9srKyUFRUhD/+8Y/xNiXpWbNmDU6dOoUTJ07gySefhNksvtt6oDjFN2QBU/MhX9wSEa6Pjoh4PC5pPJ47Bw8exDvvvBNvM1IGg8GATz75BG1tbdi7dy/+/ve/h5ZRo1HPb8RssTkrgsZi18bMaVRs9JyUnIzD1FUqFb8qQjLan4iwLEt1dXWkUqlCWsSIIRKr0MFZpLr+pwCvvfYa5ubm0NDQEG9TUgoiwvvvv4+KigrU1dWhtrY24LTi4luWOV/nS2Ix3r59Gz/4wQ9w8+bNhByVk+yMj4/jmWeewYMPPoi2tjZkZWX5TeNXfEBSa06AXq+HWq2GQqGItykpAcMwHu8FZrMZa9asQXt7O/Lz832nXxKfcL9cMcEJvGAScunSJXR1dcXbjJTBpQcxXWRkZKCyshJyudxreqHn4xXnFKI/j5cqHlEiNNxFF4pjEvbtMsLD/rJKJOEt74khIhi3M/y2qa6/xnM2PlwiPNzFFkqJGJf9diMOOXtiFj8CcF4M84eEKj1gslgXG85NqDP8Myy25K4+JCruD7TlpHHpod9eBcIQjMZGQfzkF9+yst9dUhzZcLWrCDt3bQbAQZutBhJ2F45kZel6MgzDDzg239jA95Zxp/RIY7TAhmxBylWxNjXieHVgHIb/9CEY405sBgOAwc9qdqPY+CsYtOKVZIlQcJU4HIAr2K7djWKjCV3NS+19jHY3ThwsAqNRC1Imv/hEcb4wXRu5ju7TvwVjrgMAnLNy+A+tU3CS8CILgzRYTprRjSLYmg97hGs0jwCazcKDoXeuJBCc+GdjMajD5pzB1tFYReCnBSTSxqepgWvahdHUEXCa5K/zAcKi1/V5yAIzcxCGTc7ejF2HjSgG0NV5DpQCVd2EggBm6Bq6AazXZPuKJiD57wKJN5tYPriIqh3beTG6Ls4GTXZCNRGlBIzgH/jRT+LReJJffIx4/a27sxn6nf8KACAMQa/dDUCPnf+mXYokNfVFDNq8EUUAboxcB5AmvCdDFr59VZhoGQ7yPcs/0cKXD46yWkz8EDHB37L5KN4GVSXa70umcFe92mRZ2m3AajF5nQsU0MCCxMetX9qjz0/YZy0RXWznGvGooY7/7t7sQsuat1JEfBLJiOQSJOKGJD6JuPH/6nCDDbdiwpcAAAAASUVORK5CYII="
|
<image>如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A′,若∠A′=32°,∠B=112°,则∠A'NC的度数是()
Choices:
(A) 114°
(B) 112°
(C) 110°
(D) 108°
|
108°
| 69,734 | null |
108°
|
"iVBORw0KGgoAAAANSUhEUgAAAIUAAACVCAYAAAB2DDmnAAAOWklEQVR4nO2dX0wbRx7HvwPh6vICfSlqLrcmR09KTuhUifQhSaWYpBFpopxMWoFRJdpTrpy82MpDiNSkjfpARBXgpS2QxrpIpP9N1YRIyeGKPwGpgpe2eciDeWqASknzZPJQSIrD3INZ4z+79tqe2Vmb+UiWvDu7Mz/vfv2b38zOzhBKKYVEkkCZaAMk9kOKwlbcRqdftA1SFLaikxzEkGgjIEVhH04RDAFQmkUbIkVhE1Q4o+PwAlhfF20LsE20AZIJ1BKCRRqFcwj456ui7ZGiEM5E7b/wX/orABVLUHBMtEGQohCLn+DwIgBCNnbswJ9E2rOBjCmEoeLPZRSUbnymnACOwwa1h/QUYvCDkHUk9SVfWxRmTSpEdnNbD9moLlRKMQjATwgG4qk7ME5/FeoxpCgkaciYQpKGFIUkDSkKG9DdcwFHjhwRbUYcGVPYAC3wtMutkJ5CkoYUhWAWFhZEm5CGFIVgPvjgA7S3t8PhcGBubk60OQBkj6ZwPvvsM9y7dw8AcP36dezdu1ewRdJT2ILa2lqcOHECwWBQtCkAZOtDKDdu3IDH48Hq6iqAWCvEDrdDegqBnD59Gh999JFoM9KQnkIgqZ6BEIKVlRU8++yzAq2SnkIYWpWRSENDAz7//HMB1iQjRSGInp4euFyupH0ejwdff/21GIMSkNWHIAghmJ2dTWqCPnjwANu3bxcebEpRCMKopWGHFoisPgRgl55LI6QoBHDu3Dm89957umlVVVWYmZmx2KJkZPUhgExNz46ODlRUVGBwcFCAZTGkKASQKW6YmZlBa2srfvvtN4ut2kRWHxbz6aefoq6uzjD9wIEDePjwoWH6/2oJCDH6qExslJ7CYqqrqxEIBNDS0mJ4TLYWyEQtwWFMgi4c3NzpJyCgoJ8UbqMUhcWYaXISQhCJRFBdXa2b3kkIbk5SLB4EMOWEE4tYXP8rnGW/xPYViKw+LOTBgwemjtu3bx++/PJLg1Q/huDElY2b7z+E2PdX2QgCkKKwlHfffRft7e1Zj/N4PPjqq6/0E/0DABZxeCOOGMA/2b9NRiWWAYCGw+Gsx0UiEWp0a7wAhS++ReEcZ2fgBtJTWMyuXbuyHmMUSwAqLgFQ48HkCXiPsX/rVAaaFhEKhdDc3Kz7yFwP3YB0ygly6Bgo5TtdmvQUFuHz+dDb22v6+JqamrTubvXQEuDjP3+e9BQWkevTT1VVEY1GEQgE4udvJlJQjr3gUhQWEI1GUVFRkZMo5ubm8Nprr2F5eZmfYQZIUVjA+fPn8cMPP+D27ds5nSdqbIUUhQVs27YNN2/ezPnNclGikIGmBTx9+jQnQczMzMRjCLO9oCyRouDM/Px8TsfPzMzA5XIhEomgqakpQ3c3P6QoOKOqKk6fPm3q2ERBVFdX48SJE/jmm284W5iOjCk4Y/YFn1RBALF3QyorKy2PK6QoOGMmWNQTRC7ns0ZWHxwJBALY+TfjUVYAMDIyYigIYTB/xCaJU1NTQ4eHhw3Tg8Gg4dNQDUVR6OjoKGvTMiJFkQNjCiig/1Em04/PdMPNCIJSSs+cOUPb29sLMTtnpChyZFwBhXMsaZ8KUF/KcZHIQ8ObblYQlFL6888/U4fDkY+peSNFkSPeBK8w7vPGvvi8NHWoS3t7u+4//NtvvzUtCA2ra3kpipzwUkDZEICXwjlleCR0RlkNDw/ndYOlKOyMLyWWSK0zEki9kf39/XnfXAD03r17eZ2bD7JJmgOdAwB8G4u2+IxXBgyFQnA4HPHt/v5+dHV15d3f4Ha78cUXX+R1bl5YJr+ix0sBUFXbnPRufk+hoaGBdnd3U0opvXjxYsHuf3h4mNbX1xeURy5IUZjFBwp40/dPKtSZ0hzVRMBCEJRSura2ZmlcIUVhEq9eDOEDBZxpLQ8AtK+vj+mNlKKwGTDosALS+yzef//9eBprG6xCPhBjDK9lGl588UX09PRkfDGZFbL1wZCTJ08C4LNuR1tbG65du8Y8Xz2kp2BEZ2cnhoZi72TwuKTz8/Oor69HNBplnncqchZ/BmiCeOmll7Bv3z4uZezatQtPnz7lkncq0lMUiCYISin3aZStGnAjY4oCaG5ujgtCg+e82uXl5QiHw9zy15CiyJPm5maMjo7GBREIBDLOZcWCN954w3jeCpZY1vgtIdxud1q/gaIo9PLly1zLDQaDtK6ujmsZlMp+ipxJ9RAaVtX3VpQjq48cMBKE2TknigXZJDVJY2Mjpqendf+lp06dgtvttsyWaDSKbds43jruFVQJ0NDQkPHZA0zOZcWC+vr6jCPEWSCrjyzs2bMHP/30U9Z63MxcVixobW3F6Ogo1zJkoJkBM4LIdS6rQllYWMDOnTu5BptJolhZexJPqKx4hluhxYBZD7F//340NjbiwoULFlnGvwWS5ilW1p5IQZgUBCDmXU/eZcqYIgWn02laEKJwOBy4c+cOt/wzimJl7Un8o7eduC/buWbTzByXaX+qTdnKSMTpdGJpacm0IM6fP8/tqWgmWlpa+K5KmNoc+f2Px6a3zXzPJS3XchK3f//jcfyTuJ2pjEQURcl5yJvD4aBjY2PZD2TM6OgoVRSFW/5ZY4rEbb20RDIdZyYtkx252pepzFRy9RAaIlcG5Fl21m6xyopnMl7UYg9K8xVErnNZFRPxmCKXulePQs8Xkffzzz+flyAA4OzZs3jnnXc4WGWeJ0/4XJd49aFdeKN/fiZ3rndepj4PozSj6snM+an7Es/Vy0cbDJNvp5Poxer37NmDjo4OdHR0MM/bdI9mKfVfFCoIQPxKw/39/ZiYmEAoFGKet6l+CimIZAKBABRFYWVSXrz55pv4/vvvueSdMdDkGSeIgIUgAKC3t9dwBWKreOGFF7jlvWUeiLESBCC+6uBtx5bo5tZe5WMhCDuNsqqqqsLc3BzzfEteFIQQKIrC7GZ2dXWhqamJSV6F0tLSwmUyk5KuPjRBLC4uMs0zHA5bNqgmE6FQCG+//TbzddFLVhQ8BKHla6dLxsOekqw+eAkidS6rUqXkRMFLEABw8eJFdHV1Mc+3UB49esQ0v5KqPgghqK+vx927d7nlb7fLtX//fng8Hvj9fmZ5loynIISgoaGBmyDsisfjYb5QTEl4Ck0QP/74I7cyLly4gNHRUa5l5MPy8jKee+45ph6s6EVhhSCAWI/od999h6NHj3ItJx9YV2tFLQqrBKGVZddLxdq2oo0prBSE3UdZ6a2LXghFKQpCCNxut2X1+4cffoj29nZLysqH119/ne1SldyGBHMCAHW73ZaXGYlELC0zF6ampmhVVRWz/IoqptA8xPXr1y0v1+6XiaWNRVN9iBLE1atXUVNTY2mZwmHmczgCAVWGRl1dHfe5rFgAgN6/f59NXkxy4QgAy1fbSy2/GHC5XLSvr49JXrauPgghUFUVV69eFVK+nUZZZaOtrY3ddIpMpMUBAFRVjdbesYYzZ85Ql8sl1AazrKysMPNqtmx9aB5icHBQuB12GWVlBlYtENuJwi6C0Gyx2eXJCCt7bRVT2EkQoVAI5eXlos3ICUVRcOPGjYLzsY0oCCHo7u62hSCA2Cirs2fPijYjJ1pbW9ksFMMkMikQbCzEZicA0LW1NdFm5MTs7CyTddGFxxSEEPT19dlu7GOxxRMaLOwWWn3YVRCDg4Pcl2mwNQX7mjyBDasMDVFzWbEADNZFF+IpCCH4+OOPbechNB4/fowjR46INiMvmpqaCn6V0HJREEIQDAaZDklnid1HWWWjra0NwWCwoDwsDTQ1QVix4Gq+vPXWWwAg7HlLoUSjUVRUVBQUbFomimIQBBCz8/79+1wnBeFNoS0QS0RRLIIAircpmkihv4FrTLG6ulpUghgZGUFVVZVoMwqmrq4OIyMjeZ/PTRTLy8uorKzE2NhYUQgCAM6dO4fe3l7RZhRMoeuic6k+Hj16hOrqakxPT+PAgQOss+dGKVQdAHDnzh28/PLLea+LzlwU2ruNxSaI1dVVVFZWloQogMIEzrT6KFZBAEBPTw9cLpdoM+xBQf2hCUQiEQqATk9Ps8rSUgDQ2dlZ0WYwo7y8PO8VEJl4ivn5+aL1EIns3btXtAnMOH78eN6vEhYsivn5u9i9ezfC4XDRCoLHXJSiaWtry3v1oIICzfn5+bggimVwqx6NjY145ZVX0N3dLdoUpuQbbKaJYqKW4HDaHGJeUDqUtKdUBAGIX6aBF3m3QHQjDR8odo5vbExSBaBwbo4vCIfDli7lzBujy1DsINOQwvEdFED8o0xSSicVqkxSqjuLvzoAKJOvbmwdxBUncLhs89Ddu3fj7/+ox+DgINbX11FGgXViKLq4akVTVlaG9fX1pH1aMNbZ2SnCJKZQStOu844dO9Jm5FUJwSXswDil0O7yRC0BWQRUqhtTqCDkFm7RRRwFAD8BGQBUSqGNs25ubsb27dt5/C7upF44SinKy8vTxFIqUEoxNLRZ9ccEkR4OABNwkn/jCl3Q8Zs+JLkV+Dj5Non1qLF7avQyptcXCxnSRKFq9UvsMCmMEsKbEhsakdJPoWIICq4c1LaHMO4EMPAXTHBxbhLrmMAtADiefexpsij8lwDn5XjwAQDXFgHgeNK+YmWiloAQnU8t+8XZ7Mc1LAGAmdAp0W0kVx2UjjsTmislQuw3eRP3xJrcSftKkY3fGe9qSEn1bf7+uCgA6H7EzhDBnv/oxkjq1oidJhXd3+kFqHNqc7s0e20M8RoK3ZvhX1RaeLP+8bOudV5S+C8B8MLwvfb1/EYqFRdDOn0UydhmKgIr6BwA4NO7IOYj863AFhKFiiEA6ic6SVMnsQTAp5e2Bdk6opi6Bf2qYwLOQ0vAzpuQmoixZUShHlpKrzr8BIQcxpKPgv5yTIxhNkT4pCVWYPyEVu/BkOT/jRqAIaxqZAIAAAAASUVORK5CYII="
|
<image>如图,BD=CD,AE:DE=1:2,延长BE交AC于F,且AF=4cm,则AC的长为()
Choices:
(A) 24cm
(B) 20cm
(C) 12cm
(D) 8cm
|
20cm
| 69,735 | null |
20cm
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAACGCAYAAAAVZ4LWAAAUIklEQVR4nO2df0xT57/H36csyt2IuKze4VYFFSZYjeyLDhLNcF+K9ptrLjUzURcXIZLR8SPD73RC7q7MjEWdxUumbJAtEzJdajbXMk2sE++6zSUQzMBrC3znj+Hgj3nBfEHIFVzbz/2jtPTHaemP055TOK9EW85zzvM8PZ/P8/k853me83wYIiKIBAYBYGxTf0gAAObWOtxKq4RqVRxv1QoHCd8ViCWIAey3TAIQQOhBpWo/QN63MVZalagAQcC4fCcQ6is+BpOfj7RVLOKOEcMqKkCItP5XOWyKPNiu2CBxUw07DON9TIiIChAKPXpcoXy8ncbgav4LyPASto31MiEiKsCMeAuz/OM2NLytAgDkpS33SidIYO9bC18RRAWYEYlbh05/ogwNDQ1gGAaMfJu7qZ86kYHDBQj/9gq/hgLAKeIp009kBRHBpNcgbfkKlhNjhyf4rkDM0KMHU/kd6LuPp8YDgFt37oKhFTNeKmhIZEY0pQqCXeykM9mIiKg0H85jijKN90W2KFcyRBiiGHlgFRjDw8OQSqXsiVMWIhYQ+wCB4tJMxsfH8Ze/rENnZyf7OTEifAAQLUAI/L1yH26aTXjmmWeg1WpBRF4DP2zHhIioADPgEKTj02w2Y9OmTbhx4waysrLQ19eHxMREb7MfI25AdAEz4GjFjs/i4mLU1tbiueeeQ0FBAbRarU/hx0LLEhUgIOwjek1NnwAASkpKAACvv/46mpubvVs6EzMGQHQBgXL//n2sXr0aRqMRcrnceTwlJQUGgwHp6ek81i50RAsQIPv378fevXuxatUqt+OFhYVoaWkBAMRkW+Jl9CHGMBqNJJPJaGxszCutv7+fZDIZWSwWHmoWPqIFmIHJyUmo1WqcPHkSCQkJXulLly7FihUr0NbWBiKKOSsgKsAMHDlyBOnp6VCpVKzpDMOgqKgIp0+fts8QxsCzvytiJ9APfX19ePnll/HLL79AJpP5PG98fBzLli3D7du37WMCMYRoAfywb98+HDx40Ev4nm0mISEBW7duhV6vj2LtuEFUAB+cO3cOAwMDqKys9BI4m5kvLCzE6dOno1U9zpjzLoBYxuwfPnyIlStXorW1FS+99FLAeaWkpOCHH37A0qVLY6YvMOctAJug3nnnHRQUFGD9+vVB5eWwArEifEC0AF50dHRApVKht7cXCxcuDOrae/fuITc3F/39/RGpWySY8xbAFavVirKyMtTV1QUtfABITk52uoFYQVQAF06dOoWEhAS89tprIedRVFRknyCKEUQXMMXg4CBefPFF/PTTT2FN7IyOjiI1NRW//fYb68ih0BAtwBQVFRUoKysLe1YvMTEReXl5OH/+PEc1izC8zEAIjEuXLlFqaipNTEyEdL3N5r4E2GAwUG5uLgc1izxzRgE8heTg0aNHlJycTAaDgbOyLBYLPf/889Tf389ZnpFizrgAX8/mhw8fRk5ODrZs2eJ2nMLoGsXFxU2vFmIhnLy5Zk50AsnHCl3HAk+TyYRnn32W0zL7+vqgVCoFPyYwJyyAr9ZfXFyMDz74wEv4obYJ1+vS09OxePFi/PzzzyHlFS3mhAKw0dLSgj///BNvvPGGV1ooQ7lsVqawsBBffPEF67lCYU64AFeICA8ePMCaNWtw4cIFrFu3jtO8XZVgdHQU6enp6O/vx/z58zkrh0vmnAVgGAb79+/Hzp07ncLnqg14WoDExETk5uYKe50AH48efOJvgWckMBgMpFQqo1JWKMwpBbBYLJSenk46nS6qZSYnJ9PAwEDUygyGOeUCNBoNUlJSfC7wjARxcXHYtWsXzp49K6jOn4NZ3Qkkl07ZvXv3sHbtWnR3dyMlJcUrPZKYzWZs374dvb29ES8rWGaVBfDUZVfhqtVqVFdXIzk5mTU9ksjlcsTHx6OjoyMq5QXDrFIAXwJ1LPDcv38/b8u1hLpodFa7AMC+Zj8jIwNarRYbNmzgrR7Dw8PIyMjA4OCgoMYEZpUFYOPQoUNQKBS8Ch8ApFIpNm7cKLwxAf4eQLiFbbq3s7OTFi9eTENDQzzUyBudTkdKpdLn1DQf8O8CnDsp2OBukDz+DnLHBavViuzsbFRUVGDPnj0cVDR8bDYbZDIZurq6OJ99DBX+XYBTqJ5Vkfg4jx2HHjs+GxsbkZCQ4Ff40dZ9iUSCnTt32reVEQq82p8pfJlEm1u6NeD8/vjjD5JKpWQymcKvHMd0dXVRZmYm39Vwwr8FAMAw7C2RcabbN14mooA2XnrrrbdYd/PwhHjwfpmZmQCA7u7uqJfNhiAUwHc13LdbZxhmxm7A5cuX0d7ejsOHD8/4zM/XmEBRUZFzWxm+4b8T6APyO0zrHrjJweTkJFauXImmpiZs3rxZsO/oDQ8PY82aNRgcHERcHL/BpgRiAWxOc1y2mYGEYSCRSJw7bjCMAj32KE1TTAVu8uD99993LvAUqvAB+5hATk4OLly4wHdVhNEJ9KQ0H/TNzelOn3237jwyu23BbXX7q7e3l6RSKeu0q6OTKaTnb51ORyqViu9qCG89gI3MlJdf5nW8NN++LbubEF2+5ubmUn19fRRqyA0TExMklUppeHiY13oIxAVM09N6CcwLy9yOEYDlaQq0/eOOu2mfCuLY0tKC8fFxVFRURLGm4TF//ny8+uqrOHPmjFcaRbFbJigFIAIM3xmgzFd6paUuf4FlMEiC0dFRVFVVobGxERKJoH6OX4jI55vE0ey/COuOMT249IkVyn/PcD9OhNt3b0HhYRkAoKqqCgUFBZyu7o0GDMMgOzsbExMT6O7u5m+1EK8OyBUbEZl19vArrm7eZiMy6wgAafTuI3vt7e2UlJREIyMj0a0rhxw7dowqKytZ06LRaRWOAhCRXqOmsjq91/HSfBA2q4lo+qZYLBaSy+Wk1WqjWsdwYBPowMAAJSUl8bbVrGAUwEZmUgD0rdllzH+q5SP/Ta/zjx49Kujl1sGwZcsWunjxIi9lC0IBTHqNMwKX5z93s29XjoGBAXryySfppx9+5KfCHOGwCFqtlnbs2MFLHQQ7FOyPrVu34u7duxgaGsJTTz2FV155BQqFArm5uX63dA0VivDq4YmJCSxbtmw6/Ey4BLF2QlhPAQGg1+tx584ddHV1YWhoCHq9HpmZmdBqtcjIyEBGRgbKy8tx/vx5jI6OclKmq/Aj0V7i4+Od4WfIY10DYAs+9EwwusqL3QmRsbExkslkZDQafZ7T3t5OtbW1pFDYgz1mZmbSgQMH6OLFiyFvARNpbDYbtbe3U05OjncazfQ0YA0rSGVMuYB9+/ZhZGQkqOXVV69exffff4+rV6+ivb0dOTk5UCgU2LRpE/Ly8iJY2+DJyMiATqfzuVHVtGX3XD7nck6w7ip03YkuJpOJpFJpWAs8JyYm6OLFi/T2229TZmamPeyrQkG1tbXU3t7udi4fE0dHjx6lqqqqGc8rzWfYO80sT0szETMKkJOTQ42NjZzmOTIyQl9//TWVl5dTeno6JSQk0NatW6m+vp66uro4LSsQBgYGvMPPWL0V0WazUWn+dBxjIqKbuuOUV84Sw3gG3BTgz4n/c/4TEo2NjZSdnR3xcgYGBujMmTNUWFhIycnJtGjRItq+fTt98skn1NvbG/HyieyzmjPtWGYjM+U7WrvNTBrNN9OfFJz18rIAQhN+uAs8A7kZvs65ffs2ffrpp7Rjxw5KSkoimUxGu3fvpubmZs62gPMsu7m52c+YgH0cxKTXUKlGR0REurpSryFyK9kC7hcKXgF2794dkF+MBiaTiU6dOkUqlYoSExMpNTWViouLSavVcvbyydjYGC1atIh1fsMhVN3xN918v6srCLbn4lcBPF0Cm4vw5TL8uRN/aa4t4r+vXKZlS2X0z+H/Deh6z3p6/h6u6ezsJI1GQ0qlkuLi4kgul1NlZSXpdLqgdiDxtAKFhYV++zuu/r8sX+GxUio4ZrQA/v4O5Hswaa6Mj/7TuZtHINf7UlZ/ZXDNtWvXqKamhjZs2EAAKCsri6qqqshgMAQ12WM0GlnHBIjIPj+S/6ZT5Cc0dS7iD/zdCQdBKQBbmi+rEEwebLz3n//BumbOcb6j1YSikJHEdbbSYDBQVVUVrVu3jgDQxo0b6dChQ3Tt2rUZ80lOTqbbt297tW1dXanT/9uxC72srIwiogCuxwIVXrgK0NvbS4v/lX2BJxcWiQ/GxsZIp9NRZWUlyeVyiouLI6VSSRqNhjo7O73Or6mpoZqaGuffDsUqU7j7fCK7S3BXisBxKoA/cxmIAnBpAZRKJdV9eDSsvIWmAJ4MDQ2RVqul4uJiWrFiBSUmJtK2bdvo1KlTZDKZqL+/n5KTk53nm1qPu3X8GIbx0REMzgo4h4Itk48AAE/M/xfWEUPL5CPWNF/XOY4Hk2aZfITz+m9RW1trXyZleQwAiJsX7za8yXa95zHXes3028KBXIZeKYxZw3v37sFoNKKtrQ1GoxEWiwVWqxVarRav/PWvzvkdIisYxuVlEpe3qwmSoEPWBzwX4EsBuMSxs6ZOp0NOTk5EywoFTwGHI/CZ6OvrQ319PSYnJ93nPtymen3NCfieK/AkIAXgWvi+bpxarQZgf7Xb33mzCX+/cXx8HGlpabh161bEws/4VRPL5CM30xoKbPrF9oOvX7+O1tZWfPjhh37Pm234+40JCQlQKpU+w88EaLz9E0Y/JmBmGo61WCyUlZVFzc3N0ahOTGE0Gik3Nzdis5NRWRE0U0t2hGsTylYufEA+WvPGjRtx584d/P777xFZjcT7ghCuwrXFOuSnL1BdXY34+HjU1NRwXi7vCrBt2zasXbsW77333pzo9PnCVQye9yCS4Wd4XRRqMBhgNptRXV0NYG50+nwxvReC+z0gImf4mUiEpI2KArAZmcnJSajVapw8edJt50yeDZKgcLWIhYWFEQlJy5sLqK6uxt27d3Hu3Dk+io85IhWSlhcXYDab8dlnn+Gjjz7io/iYZMGCBcjLy0NraysA7iwlLwpQXFyM2tpaweyWGQswDIOioiLnhhJc9ZeirgAtLS14/PgxSkpKol10zKNQKNDb24vBwUHO8oyqAgwPD6OqqgpNTU3RLHbW4Ag/8+WXX3KWZ1Q7gUVFRXj66adx4sSJaBU5K3B9Gujr68O2bds4Cz/zBCe5BMCPP/6ItrY2QcbNETqu/j49PR0LFy5ER0cHsrOzw847Ki7AarWitLQU9fX1EZvWnEtwGX4mKi7g2LFjMBqNuHTpUqSLmhOMjIwgLS3NK/xMSEPpEZljdKG/v58SExM5e5NGxI5KpeJkf6SIu4CSkhKvcG0i4bNnz54Zh4YpEOMevi76RqvVklwu520HrNmI63sHSUlJYYekjZgFGB8fx4EDB9DU1MT7luizCYePj4uLw86dO3H27Nnw8iOKTCcwlN08RNghH5277u5u7Nq1K6xH64iMA1y/fh1arRY3b94EMDdW90YSX/cuMzMT8fHxuH79eshb5XLuAqxWK9RqNY4ePQqpVApgbi/0iDSFhYVhuYGwXYBn625oaMBXX30Fo9EotvwoEG74mbAtgKuA79+/j8OHD6OhocErTSQyhBt+hjMXQETOcG1yuZyrbEUCYM+ePSFHIePsKeDy5csoKSnBr7/+innz5nGRpUiAWK1WyGQy3Lx5E1KpNCjXy4kFmJycRElJCZqamjBv3jxxYWeU8RwTCMb1cqIAR44cwfr167Fly5agKyDCDSGvGg5rHJH8h2sTiQ6O4eH09PSgN7gM2wKo1Wq8++67btu0k+gCoorruwNBdwbD0bzm5mbKysoSJ3sEQijhZ0K2AI5wbb4me0i0AlFHJpMhMzMzqDGBkBXg4MGDKCgoQFZWFmu62BHkh2DdQEDjAOTxXNnR0QGVSsVdiBMRTiAiPH78GDKZDL29vc65GH8EZAFchW+1WrF3717U19eLwhcYDMM4Q9JqtdqArgnaBRw/fhxLlizBjh07AIi+XogUFRUFPEMY1FDw4OAgVq9ejRs3bjjX+Hm6BxH+ISKsWrXKb/gZB0FZgIqKClRWVrot8BSFLzwYhgm4M8huAVw2I3R83bt3L7799luo1WrExcWBGIARrb9gIAaQgHG65IcPH+Lzzz/HgwcP/K4TYLEANre4c46vS5YsQVFRkTMzu/BjLuzgrMTRGG2wgqYEtmDBAixatAjt7e1+r3WzAEEEnBSJAcbHx71exSPYpmQscfl/ivLNjo2K4pwbFtW1mu0Xir19YUKuHza3Y17CJwIDCexit4GI3BWg4TtCaT6g0f8PiAgmvQb7VauhN4s9fcHCOAQLONszY/NqsPoTZZBInrA37M2lIPShvPwEJK6nEXrwjyv5+FvBKgCAPG0Fq08ge5yBSPwckRDwbpyS6WM9ejAMg4a7y0Fkhc1mA9VvhoSRg1Ysc58NNOk1pCibDj5Ymg/KKz3u/Dv6sTRFwsFGZlIALjKdDiZRV5ZPGr1pKmLIlGS/qSt1i0KhNztzcs3VKzMRfvG1kbSurpSAV1ijiuk1pdRqstkVwJGBazgy3ZQyeManYa8B+2ErWcT0aKR7Yptu/Y5YQm5K4vJV4vQhPXp8jDehktt9R8Hfy6AAcMXQGoATYj8sQZyYHoV08uyPMQDT8yvaACxPTbMfYjwGd8iRxxR6wxWUbtk8fc5UBstWpDqPkcfnTJDjsURMj2g6wzCBC8XBlD44FeCK4WPkKwvs2kQ9yJdvA5CHf1OtdpTmVBxXhSTYYIOVVTsYSMT0CKc7nueno0pNfax6AQoAd2/fmr7AoVA9euf4Dkx6jb3Tx3jEoleo3d1KhCJWiHCBlfW7rk5NANyCS5v0GsLmN53nuT0GugrZ5uO4Z5qIMHHIyNnAAQIkbo/5RET/D29BbzucYzvRAAAAAElFTkSuQmCC"
|
<image>如图,点D、E分别在△ABC的边AB、AC上,且AD:AC=AE:AB=1:2,若BC=6,则DE的长为()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,736 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAK0AAAAXCAYAAAB5/s9QAAAGFklEQVR4nO1a3U4bRxg9s0RKlLfgz1EwD5GWXRJ6EcxDVA1eqtLge8xVpWBDW9XuK0SqKq+voNiVSF+gF/FuWvLzFHVCJO+cXuyP99c2YGODfKRV7O+b+ebM+Mw33ywRJIkAisVi6N8pwigWiyCJvb29cVNJxd7eHkjeuN+QJIQQfdsp18DlyigWixP1AwyysONEJA9NPHZ3d1EsFgde1xsh2iluNxTlYjJMbD3pmWSK24WLngx3oobT09NLBRoVSOLVq1cAxltnCyFA0l+f3d3did3cHsdJKql64fT0FI8ePRq4fUy0F+l8HZgUYUQ38aTwuq3odSm7E214U3bnFLcHSZrrlRRCNe00e6RjUsqlKQAhSXalKhHUsVkv4+3Cc+Sy4xZzmNdEjU2AGOz94rhAAJPLrstPXxWoNsK+ktHCztNsaAJKeDLdH4ewsJ0rjI5pBBK9MpnS0ztaKOgOLmHWyxBC+I/2rfN9jAQToa8KKIoCIQQUn68KyyU6SSeHgAQA/PKHRF4TKNdaIInXtX0Ucssw3tih9r5Ko1M43KpAaBoy2aBVhiY7nIlLl0gkF7Ab3zjYxIyiOIu/mgdhQd/a7yP0IcKlVtafYDl3BEs66yBpQlYL0LbKfptJkULlhPhGI2othytJlPICWaHhzYB/ebo+uDIUb/Bv40us5pYAAMuZBcdOJam1s+ZdkeigpkI2pCupLoKTHc7EU45eAfCfOoQQqHxYgJQSkgR/XIUissDsg7jQRwJnBcq6hsLZAsgmHrrzFljCz7USmpUjP4NNihQIC2+pO6Wdu5N2Kg1sqn9ie+tgvORSYNWPMJNfw7K7ivr2BlbzpVh5eidY7wghAMtAgxoqi0BBy/gBHCggbQgx4xYiw6o143EIC4+XNqDmD9D45fuuYymHsq6B8wtDGHcQKDDrZRSqTdRbJxfreh3FpJfa/XGctbTqRxCZ2YDPsc89UPHr2fsRkxocwSV69+4DTqpViKpTlhomUVmK91EQOeK3qk1UdnIAADUzH+sgxIz7QSJ4hbsaFCCS0+sHFTSFip8q27HWc3OLmF98OKSxe4MkqpUCVL2EpwkX0rfvPwCIsndxHWlXRMZxj9Ljk2M80Z44JhJeUliYywRs40eQeuOkCsMkJIlaOY9cVsAwidjqMoCXhzpxb8Z5AKr6i6CbUkpKKQMWm8OGlJKSJlWA+fLvQ49/YT4ul5LRSvTnNVDVS+E+UnIUazMoJE2uYIUWSdoy5Cvl1RjfiYBZI7RN/6u37nrZiDXtnsmWgb9sFe12G/zUQcsoITO7GLpZeDdm+rt0eK+hSPpjCesMTQBz8w+6/mjba4KwztAUwPxCNuYz62VUG4C++TzcRwhc9ys6Av6FS1hnEPoaHgKB90MSsAwUqk0/A08SjOMG8o9X4WVVYToamE0oA52VtQyI7RNUdp76Du/YS6oAhn7zpBtTpMWWoWMkvHFGC7mUgUrg/TszZPdeCa7k95HLipS3BolFw0gQvJcYxw1kZqOlnQJ9ewNQn2FnPb4Bx43GcRXq2jqc15sWtOUNACtYW08oavc3VwiAgMJaS7LdOWdeczYu7s3wi+9esN05J2mzbZ+zbZ/zv84nP1V7NpudUAr37G37nCRD/rAvfox6R8PXh7+FYnjHyA/1v2N2mx3/e9CXNH4SevlLeTV0dNGsueVT2jFrkzJqufz4g/g9eGtXa3VLFNty+IbmMOTxL+t/XS/5+nMeRLjG9YGoISSQHt9lxJf2+SI+PzBtvjzcJACWaqbfxqyXia+eJfaPbpIk4V4F/kZ2H0cUHuzA405DymiIkaNlOAIQAIUQIb5+TX79tK6IS4vWTvW17XO2O+e9hdlJ9wWzdjS29yN4O1DbKoc2jR9PxmOHPnf6iLbPDxkUYKoYe8XoJ5Sr+pO6pPBMtI+a34D8B51m7L8mRnFfuYuP8jPuK3dT/X3RowTuVR9n13dA7oRsH+XneMh+JfYV/QP9QaVXjBHzS+ySwjPRPmp+A/IfdJr+FdcTw2Vx1f7jij3FzYMgnWu4J4y0zJmWbdP6BYU2qC86xkViR23Bvv3mNsXNwv9VDQ29KzvZDQAAAABJRU5ErkJggg=="
|
<image>如图,AB=10cm,点O为线段AB上的任意一点,C为AO的中点,D为OB的中点,则线段CD长为()
Choices:
(A) 3cm
(B) 4cm
(C) 5cm
(D) 6cm
|
5cm
| 69,737 | null |
5cm
|
"iVBORw0KGgoAAAANSUhEUgAAAN8AAABgCAYAAACdZaeMAAAQq0lEQVR4nO2dX0wb17bGvzFUsdS00DaVHN0oMSokJKEHu6kaF64aW2pUIA81L6mt6jSMojJY5zYOD5UTqWqIelRK0hYm5zbE6T0d82SH21xDpDCOWskgNcFXrWRHSgIqPsXpC5NTtZlIV411Cuz7YGz+E5sYz9jeP8kSeDzbCzOf15q1916LIYQQUCiUnKNR2gAKpVih4qNQFIKKj0JRCCo+SpYRwfNRpY3IC6j4KFlF5JrQr7QReQIVHyVrRHkOA6hDzc5KpU3JC6j4KNkhyuPqTjesuKG0JXkDFR8lC4jgz+6EszGKH2/VYU+V0vbkB1R8lMdG5H7ETnej0mbkHQxd4UJ5LEQOTNPFBU+0Yoi4QaX4aKjno6yfKA/ux/dBCEk8JnpQV7cHNOpMDyo+yrqIijy4szvhdi7IbE7coemWDKBhJ2VdMAwDoA49E9fhrAREjsF89ElDz3Sg4qNQFIKGnRSKQlDxUSgKQcVHoSgEFR+FohBUfJR1EQgEYLFY4PF4lDYlb6HZTkrGyLKMyspK/Prrr9i0aRPi8bjSJuUl1PNR0iYWi8HhcMBoNKKyMjG5/tRTTyESiShrWJ5CxUd5JIFAAI2NjbBYLKitrUU4HEYoFAIhBBMTE3A4HAgEAkqbmXfQsJOyIrIsw+fzoaurC9XV1XA6nWhoaFjxtfF4HM3NzXjrrbfQ0tKSW0PzGCo+yiJisRi6uroQCATQ0NAAl8sFvV6f1rksy0Kn06Gzs3NjjSwQaNhJAbByaNnb25u28ABAEASUlZWBZVmahEkD6vmKmExCy0zweDwYHByEIAgoLy9/fEMLlFKlDaDknvHxcfA8j4GBAVitVgSDwYw83KNoaWmBTqdDc3MzvF4vdDpd1sYuJKjnKyIGBgbgdrsRi8XgdDrR0tICrVa7Ye8XiUTgcDggCAKqq6s37H3yFSq+AkeWZXg8HvA8D4PBAI7jshJapkssFoPdbkdnZyfMZnPO3jcfoGFngbIwtLTZbFkPLdNFr9dDFEXY7XZIkgSbzZZzG9QK9XwFRq5Dy3SJx+NgWRb79+/H8ePHlTZHFVDxFQBKh5aZ0N7eDgDo7u5W2BLlofN8ecz4+DhYlsXu3btx9+5dBINB+P1+1QoPSIhux44dsNvtRT8XSD1fHuLz+eB2uyFJElwuF2w2mypCy0xI/g1+v79o5wKp+PIEWZZx4cIFuN1umEwmcByX99nDUCiE9vZ2eL1eRZJBSkPDTpWzMLR88OABgsEgvF5v3gsPAEwmEwRBgN1uL8ptSdTzqZRCCC3TRZIk2O12uFwuVd+vZhsqPhVRiKFlusiyDLvdXlTbkmjYqQIKJbQUOQYMM/fgxIzOLS8vhyiKGBkZQUdHx8YYqDKo51MQn88Hnuchy3LBhJYix+CveyZw3bn+7rQdHR24e/cuBEHIomXqg3q+HCNJEj755BNs3boVg4OD6O7uxtjYmGpWojweieaYhw89Xlvojo4OHDhwAI2NjQU9F0jXduaISCQCnucxPDwMm82GcDhcgFttJnDnRg2sWWjJntyWZLFY4Pf7C/CzAkAoG4rX6yUmk4kYDAYiCAJ5+PCh0iZtHEOtBK1DWR0yHA4Tk8lExsbGsjquGqDi2wCmpqZIZ2cn0el0xGazkdHRUaVNyglDrSBZ1h4hhJDJyUliMpkK7nOk93xZJBKJgGVZvPrqq3jw4AHC4TC8Xi9MJpPSpuUAEQMXW2HdgKZ8yW1JJ0+exMDAQPbfQCFotjMLeDweuN1uxONxOJ3OgshaZozIgRmwgrg3riVmPB6H3W7HG2+8gba2tg17n1xBxbdOJElKTYg3NDSA47gi8XArEYXIVWHASrCB2kvhcDig1WrzflsSDTszJBQKgWVZGI1GAEA4HIYgCEUsPKCeqULTReBiE4MM59bXRW9vb0FsS6KeL02SoSUAcBxXNEug1IzP50NfXx+8Xm9+bktSMtujdqampsipU6eITqcjLS0tBZdtWw+iKBKz2UwEQVDaFEIIIcFgkJjNZjI5Oam0KRmzSHyzs3+QP2bmH9OzSpmlLKOjo6SlpYXodDpy6tQpMjU1pbRJquD+/fvkueeeIwDIpk2blDYnRXIuMBwOK21KRiz3fLMz5I+ZP8hMEQpPEARiMpmIyWRSzTe7GhgbGyNHjx4lzz77LNm+fTsBQLZs2aKqi31qaoqYzWYiiqLSpqTN8ns+MotpMgsNUwoNo0gknFMkSQLP8/B4PDRruYRkKflffvkFRqMRBoMBpaWJFYmyLOPbb7/Fl19+qZrPS5ZlsCyLN998My/uydcQXwkImUHioAYlGg1ApjFDAIYpRQkz/9rESCUoZZhFY8wdQImmBMyS8Vc8toIdWPD+zKrnE8zMJmxdZDdTglKQFW0MhUKptZbJEnsFuX4wQyRJwmeffQZBEKDX62E0GrFt27YVXxuPx3HlyhWcOXMGhw4dyrGlKxOPx+FwOLBr1y6cOHFCaXPWZG3Ph1lME7JAIAQzBChhmMTPswQajSZ18TNMKTTMwp8BQqYxg+RFv9axRUYsGm92dgaEKUXJWmOnRDknyNTvc8Ils/i/hw/xdf9/g+d5aLXa1IQ4JdGl6OLFixgeHsb+/ftRU1ODzZs3P/K86elpDA4O4r333sO7776bA0vT4+TJk5BlGb29vUqbsiqPDDsXX+AzmEHJnNebwfSSUxmmFCWYwTRhlniqOQGTNY4tsmEG09AsF+Va5y8Nlxf8/s97EvhzPC4PXMa/m+px7JgTBoMhqx9kPpLsUnTmzBls3rwZu3btQk1NzbrGunbtGhoaGvDhhx9m2cr1c+HCBQwODsLv96tyxdEq4lvi7WZnwDAlAAgYJnnhryUQzJ+/THyrHFs2xgKRpTX2cvFd/98Qvjj3NwSDidDyz+/8GVu3/ltR3Muuxfj4OD799FNcvXoVFRUV2LdvH7Zs2fLY43733XeoqqrC+fPns2BldggEAjh9+jREUVTdXGBKfCkPBzJ3gc9f+GTpvV7iWczMzgCp5wgIYcDMhYaEmfeW8yJd69gC5oTEZDL23Dn/+tc0+n0+8H/7Tzz5tBZ/4f4Ddput6BJJK+Hz+XDu3Dn8/PPPMBqNqKmpybpH+OGHH/Dkk0/C4/GoxtskF7z7/X5VlShcLL45H7j8AiWYmZ2FZkUPlXSczBKPtEKyZM1jS8Sc0dgE/5j8Cf/197/j8v/0o37/a3jP+Rf86U+1c+dqEveNS8cqAiRJwvnz53H+/Hno9Xq8+OKLG34B3r59G7Is48qVK6oRYCwWQ3NzMwRBUM0tR5rLywhmCaBZlhhRnuHhYbjdboRCodSyL5q1THwu586dw/DwMPbt2weDwZBWAiVbTE5OIhwOY2RkRDXhnizLaGxshMvlgtVqVdqc9MSXSN2XqCZci8fjqTkonU4HjuNo1hKJz8Xj8eDMmTPQarXYu3fvuhMo2UCSJHz//ff4+uuvVRPuqWlb0priS4WizErTAbknFovB7XanJsRdLhfteIr5BIrf78fu3bthNBqzkkDJBpIkIRQKwev1qup/5XA4UF5ejs7OTsVsWGVLURR8PQON5gk8UfIEntBowDAM6jkR0dzaByARQtntdlgsFpSVlWFsbIy2GkYigWKxWHDw4EHcu3cPra2tOHjwoGqEBwA6nQ5msxlWq1VVJeF7e3tRVlYGlmUV25a0pucTOWZ+g2RUBFfVhFs9j1eTMV1oaLkykiThq6++wueff46KigpUV1ejsnLj/x+PSzwex+XLl9Hd3a2a1TBAYqvYpUuXFNmWtIb4ouDrjwB915HUmsgxaMLQhpYKoKHlyoRCIZw9exbBYBC1tbV4+eWXc5pAyQbT09MYGhpCW1ubqlbDDA8P4/Tp06kldbli9bqd0avox2H0VQJAFCJ/BE0XWzFENkZ4gUAAfX19qazl2NiYarJkSpH0/h999BE0Gg0MBgOcTqfSZq2b0tJSNDU1QRAE/Pbbb3C5XEqbBAAwm80oLy8Hy7Lo7u7O2VTEqp4vytej6viN1O91PUPoczYimwFOMjvH8zz0ej2OHDlCQ0skvP/HH3+My5cvo7KyEq+88oqq7uOyQTAYhNFoVFUdllgsBpZlcerUqZz0yVhFfEtCziiP+qrjQJbu92KxGHieh8/ng9VqhdPppKEl5tuC3blzByaTCXv27FHNJPVGEAqFUFZWBp/Pp7QpKZLdknLhCFYRnwiu/ke8f92Z8nQix6DpVg8mFjyXKYFAAG63G5FIJLWNp9hDy2QC5YsvvsC2bduwc+fOvEigZIvbt2/j3r17uHbtmmq+aOLxOFiWRW1t7YZuS1p5qkEcwK3Dh7ISYsbjcVy4cAG7d+8Gz/M4cuQIJicncfz48aIWXigUwttvv429e/fim2++weHDh9HU1FRUwgOAvXv3oqKiAq+99hpkWVbaHACAVquF1+vFgwcP4HA4Mh8gKoLn6ufapdWD46OAyC2r7LaC+KLg/3prvtNMNAqRq0fTRaD1g/S9XiwWQ3t7OyoqKnDz5k34/X6IoqiKZT1KkbzH3bNnD9555x38/vvvOHbsWOqGv1ipqKhAbW0tXn/9dUiSpLQ5KTo7O1FbW4vm5ub05wKjPOqrmtCPDzBBCAi5jvdxBEzTLeypWvzSZdnOeqYKNwCgisHx5JN1regZ6oNzjURnIBBAV1cXXnrpJfz000+p0LKYs5aSJKG9vR3T09N4/vnn0d/fjxdeeAEHDhyg60+XsG3bNpSWlqKurg7bt29XTTKmra0NOp0O+/fvx9NPP42jR4+uXqJildxIpfMDtPYPYOdSz5WtYjB6vZ4AoA/6KOiHVqtdVQNDrSCo6yETy45MkJ7W5c9nTXydnZ0EAGlra8vWkHlJskORXq8nFouFPPPMM0Sv19Pyg2ni9XrJpk2byObNm1VViezR1/cQaQVIXc9y6a0GLZqbJZK1PvV6PTlx4kReFnFVE/fv3ydWq5V4vV6lTUmPiR5Sh8xapNHOtI9BcgXKwjLyvb29qkmZ5zPl5eXwer1gWRayLCu+/Sc96pYlVdaCNkpZB7FYDCdPnkRFRQVGRkbQ3d2N0dHRAumrrh6SKf+bN2+io6NDaXPWpnInanAD/VeX7/uJiivvBqLiy4BAIIDGxsZlW5vUUjS2UEmW/2NZVmFL1qIR1lbgxvEj4MWk1KIQeR5Xq1ZZlrlxQXBhcP/+/VQCpaGhQVVJgGJDEARitVpV3Nd+ggz1tJK6ZHa0rpWslX+hLcJWIRKJgOd5BAIBtLS0gOM41ZRCKGYGBgbgdrvzty3YAqj4FrAwgVLULZ5VTnL/nd/vz2sBUvFhfgOvz+eD2WymzVLyALXW4syEok64BAIBNDc3pxIoo6OjNIGSJxgMBvj9ftjtdlXVhsmEovN8siynNvBWV1eD47iiXuyd70iSBLvdnrMNsNmkaCbZx8fH0dXVhUAgAJvNhmAwmLfhCmUenU6X8oCyLOfVF2nBez6PxwO32w1ZluFyuWgCpUBJFsPNl8aYQIGKb2kFNJpAKR5YlsWOHTvUvyIGBZZwCQQCi4rrhsNhmkApMgRBAID17UDPMQXj+SwWC7RaLa2ARgGQaIw5MjICQRBUe5tRMOKjUJbi8/lw6dIlCIKgysn4osl2UooPm82G8vJyNDc3q3I1DPV8lIInEomklqOpCSo+CkUhCirbSaHkE1R8FIpC/D9Irvl5nk+NaQAAAABJRU5ErkJggg=="
|
<image>如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()
Choices:
(A) 4
(B) 5
(C) 6
(D) 7
|
5
| 69,738 | null |
5
|
"iVBORw0KGgoAAAANSUhEUgAAAJ0AAAATCAYAAACKnA9+AAAEi0lEQVR4nO1Z3W7jRBT+jlmB8hTQJKvuY1Q03UpAXJ4Bia24RFubK6T2khahXgBtstK+w5YVIna67Wvsxi4Psd2tEM18XIzHGTtO60CShiafFDnzez6fOefMmbGQJJa4lyAJEblzDnt7ewCA3d1dAMCD2waZjua5hMY862WeuBmjt43fuSsyS0wPdx3dimBvqGMb3XI3nn/M+xqVMjrbc+bRi2aBeV/I/xNuzekA4OzsbKn0HM7PzwHMR940CvPCzejKoJTRLTGAiCwdcEysra1lyrK8Mlli2jAmZlKzQU5XwvQW2Tpv9M0pKuY+6FxEUoMjCQcqea38+YBAFLYRxtZgLG5CbZQWPvNSJcqWD+IC/nfHaT+SEzWUkce2RIi/JQM+IhD5ACIuIqgJsiiDrLyUlzPg1j6NISJw4BSpSIESYWdzO2Nk2RtutVAGyDiAiODnuKYNi4T6qQFHakC9CqN0EUmdcyLaGTVJsgz7LwjPBYKICa8+jnzgoXyJNzM1PL1pGpvYf0HsbAHHQQ8k0QuOsN2o6yBGklS0HyTJY99js9lkj1koLhr6VOzRBej6rbRWKUVF8shv8jjMa2k6MDINL5JU7LG55Q/19dws31lCMeElX7BneEYdAmAQkU7qNYoAr0Be4fT5t0CjAbwkAJXxNjvcL0acc9B91sIJmjj44au01kS0Wn0VtWrd6q8mqxdb94lMwwsA4rALWa0NDas+auLkdTRJJiPB3I4nAOLwFcRrop7w9J9uwvVb2KgiiXQkVeJC170Teq2OtkzXo/EoDfv/YsBEOa8V3t5XqcL/08RwpNVrFLR3kvWbIaxXDto7hHaZNMIZpKdXk6p9//wM+08eAwDcR3WA9kcLB/mE8d4jvsAJgNpKNamwIj+zXj7NLzcs0DsR4fcDYr1RtWqTCBi91us3EyTcrFcOX/6Y5plBeweP65IeSjOfwcJnHg4PD/UJo76JDx/8DUJvuQBAXkHxr7Rs6uxyvn7ctjL9bqrPc7pNRmmIWXRnoFwpMq5JO2VyQCn6YhlfZLYwA8YBvtn/DZ9tfDphLsUgJQ1pWv4fOICHjZp2lvWvn8AFEHQ7ACyjY9RFiHW8u3wHKn3aWPn4IQBApAICEFQAEiIf6THqCiIV3Z4zREFldJtU0vZRRmHPnX3B4vH2U6SSRKGr0TJuS7ySdtZWsCVAfHEx3CUO0OpGufmccjldWfkc3BbkcXrWxWrtk6F6/+km4HrYbtwQ6UrKL9Nuck1zau++OoX3eUO3wYHEf+IEQL2W5J4krfyNVOp9uid7rU5attvM3t1X79lXl7xWb9lXl8P9SCr2ea3eUplTjNWm57hkn9dpe34OxX6m/abxRVzz8ofTkH6hfBsmP2l1B4nJm86vBTnv+POXkZ90zEHnmnaupKIOISCs0+x/lV+GX56atzXgZXJioMko6Ykjv5kme2GsF8tzBwmg67cGC2gZli5nDWBUfaHhjjnHuHPfJPPfoBf+QgCUVC/tZO68yqd32DKyesGRlaQ7FJG03Apmc31ThCwv6+d6+ron4f8P4YLXtzq5UEYAAAAASUVORK5CYII="
|
<image>已知:如图,点C是线段AB的中点,点D是线段BC的中点,AB=20cm,那么线段AD等于()
Choices:
(A) 15cm
(B) 16cm
(C) 10cm
(D) 5cm
|
15cm
| 69,739 | null |
15cm
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAABxCAYAAAA025a1AAAbMElEQVR4nOVdfVBTZ7r/HbCiY5SuzZh0jIuaqFGYuyC4OoUtOoSCVls60GE70hVmaVeJ7cUWF9yyK3vrXnGILR2xdcd2wGp3bBcbXPWqFWuYhbtacLVXAqEkLQpdYLGjVGhxl+S5f4QTT5JzkpMvQPub4eOc9+s57/M+z/O+z/vFEBHhAYT2CQZvnxt7YACGAEIKjHQOy8AAAMgedF8ibKIJCBX2f0IoSAX0rTaQjWAjgq6AQTSTijaMtdX7uM0+sIwjtKEDWmRE35OpV/efQ0Hqefzn1jcAAAxzv8rbA8g4Voba/vI/YBYvcAtcuEiD+i8s405XsPHgMG6MY6wMnTl7Fump6c5xGECpXDyuZIUKDw7jWI6RXU2efpuw9ullbtEsli+gWawcX9pCgAeHcSwYgGn7Ati61tF7dKCtDkVv1yM9NR33b7fEjgePcQDqzpzDkvnuUqUtfAbQbMGrT0fft8MAB8gbbAL/u0azeQgUAX/Tu6azkZFSGdDHRhsRWe0vjXoCQEjdEhCNkwneGecCt+oVrG+rr1kLlynAVJvN5lR+a53OziCeH11da9DomQxgiESMQl1cDERWMEy4CHm2YTy0sa8eECJyGsO5Pt8PEFerDGBnwtjjGNOI/eXC+lAaftd25mAacV7wxOOCYehe9PuQaYBP4uAelXH7x7X1+yZtYoTftZLdaGDGeMcwuHnzpksBAGwEojAwYw3ufmQaAEwJNAPjX95Ep6rQ4VoKpBrEVuLg4CCuXr0Kk8mE3t5+GAyfOsIsFgu+/roXRFY7MQQoFAoolfZe5kMPPYTExEQoFAosXrwYy5cvh0QiCYDqiYFXG+csQa42qx2pzDJoW21OPsFgq5+enh7U19fj/PnzMBgM6O3tRVJSEubNmwelUokVK1Y4Kn/+/Pmorq4GABgMBjz33HNIT09HV1cXAGD4zhA+a2mG2WxGT88NNDb+LxQKBdasWQONRgONRoM5c+ZMekkU1zkZgytD9mq34mznF6j85CyWgQkqw0wmE9577z3U1dVheHgYjz/+ONasWYPk5GSo1WoPKW0oK/svAGHIyHgKa9euhclkQmRkpGAKo9GICxcuoKGhAQaDAVKpFFlZWcjNzXVI6qSDv91R/d4C0tV9TClIoVannr/zMMCX8dnAwAAdOHCA4uPjSaFQUFFREbW1tQnGF8p7586dtHPnTiIiys/Pp6KiItE0EBEZjUYqLCwkuVxOSUlJdPDgQbp9+7ZPeQQ6rvUG/xhn1FOBTk9kPMY/qPWR5r6+PiosLCSJREI5OTl06tQpv8hiwWVcX18fSaVSam9v9yuv2tpays7OpocffphKSkpoYGCAN16oGeUKvwZZW9+ux/5XMwAK43fYitSWPT092Lx5M5YsWYIpU6bAbDbj8OHDWLdunT9k8UImk6GkpATbt2/3K31mZiaOHj2Ka9eu4c6dO1CpVNi2bRv6+/ud4o23TfSZcXVvaPH2/v1gGAZMzDMAeLrxxDu8c2BoaAg7duxAXFwc5HI5zGYzKioqMGfOHF/JEYWtW7fCZDLh7NmzfuehUChQVVUFk8mEadOmISYmBmVlZRgZGQkipeLhG+Pa6nCOUmEjApEVrXU6LF6gBMO4sIixCx1fG6yrq8OiRYtw69YttLe3o6ysDI888og9WYhabUREBCoqKvDKK6/AarUKxnNrgDyQy+XYvXs3WltbYbFYoFarA2oQfkO0UjXqOfbM3gHR7y2w2zoR6O7uJo1GQ7GxsXTx4kXH+2A5l7ng2jguUlJSqKqqyq/yhGAwGEitVtP69esF7V8oIIpxugKNw1mrb7VX2OYn7M8MQCkFFfwJx+q2ubmZHn30Udq1a1dQjLi3PIQYd+XKFZLJZI4eYrA6FKOjo1RaWkpRUVHU2toa1LyFIIpx/CTYpY4lUIjMmpoakkqldObMGd+pI/8qQIhxREQvvvgiabVan8sRQ0dtbS1JpVKqra0VRWcg8Hsc5w2jo6Ok1WpJpVI5WuF4wRPjBgYGPA4PApWU5uZmmjt3LpWUlASUjzeEZM5lcHAQ69evx+eff46WlhZER0eHohi/IJVKUVJSgm3btvGGB9pBSkhIwOXLl3Hu3Dk8++yzGBoaAsAzqxHgms6gMo6IYDQakZCQgNmzZ8NgMHh0NU0UCgsLYTabQ9YblMlkaGpqwrRp07Bq1SpYLBb3WY0AG0hQGffJJ5/gscceg0QiwcmTJ3HkyJFgZu83XFt3eHg4KisrUVhY6HF4EAgiIiJw+PBhPP/884iPj0dDQ4NXunxB0BhnNBqRnZ2Njz76CLNmzcKBAwdQUVGBrVu3hqxyxIKvdT/55JOYP38+qqqqnN4HqsJcUVxcjEOHDiErKwsWi/NC3ICkLhiGcmBggFQqlWOMJJfLqauri7799lvKysqipKSkcR3jeOqccHHt2jWSSqV08+bNkNO0a9cuio6Opjt37gQlv4Alzmq14rnnnkNaWhq0Wi2GhoZw69YtREVFYebMmfjzn/+M9evXIy4uDi0tLUFv0YEgJiYG2dnZ2LlzZ9DydP0+9vm1115DXFwcnn/++aAVFBAKCwtJo9HQ6OgoEdkHubGxsW7xzpw5Q3K5nGpqagIt0ivEShzRveHBeAxZRkZGaNWqVaJp84SAGFdTU0MqlcpJDR49epQyMjJ441ssFoqOjiatVutgdCjgC+OIiKqqqkij0Ti9C5Xn48aNG6RQKEiv1/OGiy3Xb1V56dIlFBUV4cSJE5BKpY73ZrNZcIZ64cKFuHjxIvr7+7F69Wp88803/hYfVGzevBk9PT04deqU412oHN7z5s2DXq/HCy+8AKPR6KZaxZbrF+N6enqQlZWFI0eOQK1WOxVuNpuhUqkcz66ESSQSh92Lj4+H0Wj0h4SggYjGZXjARUJCAg4cOIB169b53Xj9YlxeXh62bt2KtLQ0AM6txGQyOTFOqAUVFxdj79690Gg0+Pjjj/0hIyhg6UtLS4NKpUJlZeW4dKAyMzPxi1/8Alu2bPEvA1/0s81mo6NHj1J8fLygjZJKpdTX1ydaZ7e2tpJKpaLi4mJfSPEIX2wclz6TyeRGfygxMjJCarXaLwe8TxI3PDyMoqIi/PGPf0R4uPsS9MHBQYyMjEAmkzneedPZy5YtQ0tLCz7//HOsXbsWg4ODvpAUMLj0LVmyBDk5OSEdHnARERGBffv2obCwEHfv3hWVhoVPjPv973+PJ598EvHx8bzhnZ2dTmpSCFzCGIZBZGQkTp8+jbi4OCQkJEyo3SsrK8Px48dx9erVoOTnreGmpKTgJz/5CXQ6neg0AMSrSovFQlKp1OMytSNHjlB2drbbe6468qY6a2trSS6XBzSn5etwwBX79u1zGx4EAm/fzK5E80VFi5a4119/HVqt1qO3v7OzE4sWLeI2CrcW5K01ZWZmor6+HsXFxdixY4dTPnxwDfMUVyy2bNmC3t5e6PV6UWV6g7dvlslkyMnJQXl5ufhMxXCXbRG3b9/22HpycnKC5hkZHByk9PR0Sk9P92kxqs1mC1jiiIhOnz5NKpWKRkZGAspHLNg6vnXrlqj4oiSuvLwc+fn5DmkjTovj/t/e3i7KxonBrFmzcPr0acTExCAxMdHNsy6EYA2c09PToVarUVlZGZT8vEEmkyEzM9NRHnmTam+cHRgYoMjISFH6NzIyMmizAI61LDYb1dTUkFwuF91t9lXihLSI2Wwe1+EBW56YGQSvEvfBBx/gmWeegUwm89gK2L1orPvLU1wxYCWHYRhs2rQJJ06cQH5+Pvbs2SM6D7E0CEmpUqlEbm4uSktLRZfpD1g6lUolkpKScOzYMa9peBnH/eCamhrk5uYCEP5AIoLFYhHlMfFUlqc4CQkJuHLlCk6dOuW0lsMTgqE2S0tLcfLkyaAND/jApXPTpk2ObWKewMs4NqOrV6/i1q1bSE5O9lqwyWTysv1JOK3YOFKpFBcuXIBMJnOs5Qg1IiMjUVZWhpdeeinkZQHAhg0bYDQacf36dY/xPKrKQ4cOOaTNm2SYzeZx2UsWHh6Offv2Yfv27UhKSvK44CdQdc3mkZ+fj6GhoXHxqYaHhyMnJwfV1dWe6fdkABUKhaj9aTabjbKzs+mDDz4QYYL9A18Horm5mRQKBZWXlzu9D8ZwwBX19fUUFRVF33//fVDz5cPFixdJrVZ7jCMocR0dHRgdHcXSpUsFmc7tQHR0dIRU4vhUKmv3Tp48iWeffdbJ3+cJ5IckpqSkIC4uDm+99ZZgen/y5UufkJCAnp4et61cXAgyzmAweLVtXHR2dvpl4wKFVCqFwWDAww8/jKSkJPT09HhN42+nRafTQafT4Z///GdQ83VNHx4ejqSkJBgMBsG4goy7cOECVq9eLarA/v5+TJ8+fcIWv4aHh+PgwYPIzc3FihUr0N3d7TG+v5KhVCqRn5+PkpISv9L7gtWrV+PChQtu78m+3ETYxsnlctHbbxsaGmjVqlUiNbj/ELMeo7GxkWbMmEHr1q0LCQ23b98muVxOzc3NHmkKdM0Ka+eE8uFlXFdXF0mlUo8ZczOsqamh3NzcAMj0D0IftW3bNnr00UcpNzeX19cYaKUePHiQkpKSAspDDCIiIgT9tLyq0mw2e9yoQS7HYrguVxgvCNmUWbNm4Ze//CUAIDEx0cnuudLuD/Ly8jA0NIQPP/zQKd9A4ZrH0qVL0dnZyRvOyzguI/gIcv1wPsYF40PEQKic8PBwVFdXIy8vDytWrEBTUxOAwDoQbFns4qJf//rXjp4swzBBc/OxUKlU6Ojo4A0XlDh2GCDmQ7u6urBkyRKPRIQK3srRarWora1FVlYW9u/fH7SykpOT8dOf/tT3mWsfoFarnSSOC17Gtbe3+9S1b29vx4IFC7xHnCAkJiaiubkZ1dXVeOGFF2C1WkX7SD1Bp9OhoqKCd7zli/SxcV3TqNVqwWUcvIzr7+/H3LlzRRV6/fp1/OhHP5qU++C4UCgUaGpqwu3bt4O2GDcqKgpbtmxBUVGRW5gv0sd1ZHChUCgwMDDAm8aJcSN3bRi5a8Pwd//GzJkzRRXKpyYnKyIiItw2ofCBbfliKv+1115DfX09mpubg0orAMyYMUNwFsSJcdMi7I93vv1G9FGAJpNpUqtJPhQXF+Pdd9/Fhg0bcOjQIbdwX6RFIpHg9ddfx8svvxxMEgEAM2fOFMc4FkNDQ5gxY4aozD3tFZjMSEtLQ2Njo9vmS0+2SSgsPz8f//73v/GnP/0pqDRKJBJ89913vGGCjJNIJA7VOXLXfqyv6zMAdJqvY6HSnXF8ccWEiYnn6T0AWG3hsNrCnd7xQalUOm1CuXnzpkdp8xT21ltvobi4WLSjWwwkEgm+/fZb3jBBXyUROVSn0N+RuzZ0mK5hkSrKqYJG7towLSLM8SM2jAtuPKH33PTcv+FhVqe4npjH3YTibfOl63vuc2JiIhITE7F7927BsoIJXsZJJBIMDw+7vf9+xOpUkVarFddv9GLBwnudk1AMvF2Z5ykON66YdCy4du/999/njePN9u3ZsweVlZWiZijE4M6dO4J9Da+Mi5jKOFqs65HvPT09eGT2TETOmu6opGB4ECYKrN0rLy93LMb1BFdGRkVF4aWXXuIdHoiBa70NDQ0J9u4djOOqE4lE4ujNCLUyhmHQ2dnpmDzlpg+2B8GbLQwmWLt39epVvzahlJaWoqGhAZcuXfK5bNd689RJdBvHTYsIw8yZM3Hnzh3He9ZOuKqerq++wOIlMfh+xIqIqYxbfPbHVX0JhXEZxI0nJr2rrfP0vzewm1BiY2N5N6EQOyfGg4iICOh0Omi1WtHlCYHtJPLBUSPcjoBcLsc//vEPrxlbLBYsWbwA06eFu6lRbgfCFUJhfM9i07u+Cw+zOtk9X+wdi927d6O8vBwajcZprSPDMB61ysaNGwHY16QGgq+//lrw8FXer1myZImTc3Pkrs1JolgIreya7Ee/C4FPithNKCUlJaLsHov9+/ejqKgooOFBZ2cnli1zvwMPEGCcSqXCtWvXnMZKfMzwdy3lZIVQg4uOjkZLS4vD7t2+fdtrXitXrsTq1auxa9cuv+kxGo1Ou5+44GWcWq2G2Wz2qO6sViu6u7s9urvu194lH91cu7dixQpRmy8rKiqwb98+r4tbhWA2mwX9wIIS19ra6jHTrq4uyOVyRERECMa5X1WmJ7q5dq+urs5jPgqFAoWFhSguLvaLjvb2dt8k7sc//jEeeughmEwmAPwtcKKWK0wGsHbv5Zdf9roJZceOHWhqanLMwIvFpUuXsHDhQsHpMsG9A8nJyY6j+lx7jMD961wOBogIy5Ytw9///nevm1AiIiJQXl7u8+yBwWDA448/7lYuC8HdOqtXr8ann37qFsYy0XXb8A8J7HCA3YQil8uxatUqfPnll7zxN27ciKlTp+Ldd98VXYbBYMCaNWvcynVAaGlYe3s7yeVyx7Prkrb09HQ6efKk9zVmE4BQ7B3wBm+bLz/77DOSy+WiNi2Ojo6SRCKhvr4+9ztgx54FR6VqtRpTpkxx2DlXg93e3j55b3qaAHjbfLlixQpoNBr84Q9/cHpPPF6YlpYWKBQKyGQywSOB3RjHzSQrKwtHjx51I+Lu3bvo6+v7QapK10rmwnUTiqvd27t3L9555x2n4QGfF+bDDz9Edna2RzrcGOe6O7KmpsYt0VdffYV58+bxni70oMPbEEcqlaKhoYF38+WcOXOwfft2j7MHVqsVhw8fRl5ensdy3CWO809sbCxmz57tdhB0R/vkGgrwScFEjiHDwsJQVVWF7du342c/+5lT/RUVFaG5uZn3cG0AOHHiBKKjoxEVFeXxluAw1zCGvX147Lv5pK7rxnX7cYc+flCowMckTyotmPBUzqZNm6DX6/Hzn//csRg3IiICe/bsETxi8f2aQ/ekjQG4t0HbC7T/CXP9ZFdCNm7cCL3+uNOiz7a2NqhUqoAusg0VuPSPB/O8TRyvXLnSsRg3Ly8Pd+/eRXZ2NiQSyb1N+mPJLRYL/trUiMzMTE4OLkqR4X17745vO2yQSqXIy3ve6aCWL0wdk0pVAv4dPxWscr2Vwy7GBe5tQnnzzTfx29/+1j5RO5a8oqICWq2Wfw7O5npHnxfYbDbq7u52OoAtKiqKrl+/Pu7XS4rFRIzjPIFbT1VVVSSXy6mxsXHs/tZXiIiot7+PIiMjOduqrDw53YPX2UWGYaBQKLB+/Xq8ufcN/Otf/0JPTw/mzp173zqRxxvceuJuQlEqlaiuPgSLxYI9u/8beXl5HN/kPdaQ46+N03nkoCDVcUMmAaAwMKSrsx/rzh5X1NjY6PVEgInGZJM4PnR3d1N8fDwtX76c0tLSBI+e0u8tuMeT1C1kIyMVFOiIsdls5NQinmCwUNuKV5+OhvH4XsRkFEHfakNGNGH79mK0traiq6vL6wBxIsFuehe7hz2YICKEhYXBZrN51UhWqxXHjx/HtWvXEBv7H7hy5fN7gW11YKKfgUarw7mqV53eFej0CHPy/KMNHedSsPZp+3R59CKuSysMO3fuRNNfGxE25Yc38BYLtpcpxoyEh4cjLi4O06dPh9n8Jfr7+0FkBaENqa5MA4BlGajYkoKFqkXOqrK1TkcarW7syUoFqSBNwRtOouvtMO3JgMmsKrkdFe5h2maz2fHerh5TyEjuJ+vq9xaQvtU2tnnfxk1gv/cUnPtQXaHRaNxO85lMmMyM46K0tJSysrIc7LHZbGQjI2kA0nq5NHhs+bFdEs+deRv6VhtsRNDvLcAzMWGoM7oPLqurq1FVVSV4jhbdp2tNxhPHjh3D4cOH8c477zjeMQwDpr0T5wEsUPE48DmXq4/1OW1AWx3exhZkRDMgAE+/ooUGQP3Zv3BS2t0vCoUCtbW1yMnJcUz7TDTup8Zy+fJlbN68GadOncIjjzzi5IGygZxciVzfMfdy9TD2T92ZcyhIewJgw9u+QD2ABUoVJ4N7Y4uVK1dCp9Nhw4YNjkNGWUzE+I4tk8bZ5eUrenp6kJGRgYMHDyI6Otp9vm3pYmgAfGm2r2t1hDKArb0Oe4+PrS5jdWZBKkg/dhMXq2ddDSQLroF1vYZsMmCy2riRkRFauXIl/e53v/MYj+1r6Or+j4js9d1WV0FI3WKPYCNCa53OqUMCzmDPE1jmjY6Okkaj4b1be7zg6nrbuXMnlZWVTRA1wsjJyXG7ok3IbdhapyPGPnlDACiloMIpPCRXbU40JlLihBjBXrU5NDQUlHKmBENvS6VS1NXVITExESqVynHLFQsKwjFM9wv4vvP48eOorKzExYsXnbZNBVIvQbuVODo62rFWwvWm3x8K01xBRNizZw82bdqE2tpat8VVgdRLUCSORVpaGpqampCRkYGOjg5UVlb+INelAPYFVZs3b0ZLSwsuX74c9BVxQb3AHbi3s8VsNiMlJWXcrxWbDBgYGEBiYiKGh4fxt7/9DQsXLgx6GUFnHGA/dvDkyZOIiYmZ8GvFxhstLS1Yvnw5UlNT8dFHH0EikYTEVISEcQzDIDw8HFVVVSgtLYVGo/F4zPyDgmPHjmHDhg2orKwM+bEZAds4bz2jTZs2ITo6Gk899RS0Wi1+85vfPHCdFavVirKyMhw+fBj19fUeD2kNGoIyqBCB7u5u0mg0FBsbS5cuXfI7H75LBANd+xJI+oaGBlKr1bR+/fqgXQglBuPGOBZ6vZ7kcjm9+OKLHj80VAuRgpVvX18f5eTkUFRUlF+X0waKkNg4T8jIyEBnZydmz56NpUuXoqyszM1JDYRu7Bdovv39/dixYwdiYmKgVCrR0dGBJ554IkjU+YBxbyocdHd3069+9SuaNWsWFRUVjds9bb7CZrPRjRs3SKvVUmRkJBUWFk44rRPKOBZ9fX1UWFhIEomEcnJy/FI9oVKter2esrOzKTIykkpKSkTbsVCvOR0Xxon9iIGBATpw4ADFx8eTQqGgkpIS0ZdWBBPXrl2jwsJCkslklJSURAcPHvTpntbxAEM0CWcbYT8c4L333oNer8fw8DCSk5OxZs0aJCcnB3XvORGhra0NBoPB8SOVSpGZmYm8vDyfXVU0Tg71cWUc30eJ+dCenh6cP38e9fX1MBgM6O3tRVJSEubNmwelUomEhATHKXNRUVGYP3++U/rr16+jq6sLgP18rObmZlgsFnR3d6OxsREKhQJr1qyBRqOBRqOBTCYL2jeHCpNW4jxhcHAQV69ehclkQm9vLwwGg6MBWCwWt/MiFQqFQ3KmTp2Kxx57DHPnzsXixYsRHx8v+vzpyYT/BwuJd7fx4kuRAAAAAElFTkSuQmCC"
|
<image>如图,有一圆通过△ABC的三个顶点,与BC边的中垂线相交于D点,若∠B=74°,∠ACB=46°,则∠ACD的度数为()
Choices:
(A) 14°
(B) 26°
(C) 30°
(D) 44°
|
14°
| 69,740 | null |
14°
|
"iVBORw0KGgoAAAANSUhEUgAAANsAAAATCAYAAAAZOHiZAAAFC0lEQVR4nO2ay27bRhRAz6UdoJuguwJdWooFxEqBol+QxqITL1rL/YtIztP+AGdtye4jUtH+QoGIKlDEtdzCXXXZRSUmsZ1kWaDbLgrE0twuSFGkLCqO82gY8QAE53FHHF3ex3BIUVVlBOvr65FzSjyqiogcax+nw7gxk8qdO3dQ1Xfa3qxxnakxnIzT6CnVbZSYmJ941tfXgwAy1tneVQWkpPwfxDpb6mgvj6qmekwJkLhntosXL0bOKS/O3t4ekOpwkunbwN7eHtPjBNOofHJE5MT6ehHZlGQTDrSxmS0lJeXVMnaDJCUl5dVhRdOaidQ6zSpOJ018J+I5akoXEKfBPF/kLaO8IIgliAyOarMDgNV/2+OZwiDRKS43i2tveq6Jo9Osekq9XBrZr77M1JRFueoc65sURgUbBZzN8sAwF0oobcrlqi+RvIVXbUcpFaDitFFV2k6FteIFnI7G/5utlW8R2yaXj7aHlZZGa8gvrdJ2KtDaxx2pjofcLK6x0WhTWy0CA71N0mtt7yV+KFO5DpYl1J5kglck+uUClnwEmWzibKs/X+Uhj1rzLC7NAZA/lw1kAmeT0ABns4zalzAtg0ZMwkS+fEi/gvA4PATbtkA0kq5Ue6wsnGfXvsrq0iBqTZTeIj5j+U0udn6ZQqlC6+7qQPT8EpVSgUw2hyQsFPWDidv8CSkvMufPv3xrmUK5QjEv0Wc2oYc+uMdv1jy3c8ofV3JEE5uFas8rKiRxTf06aD19yiwt9juAgPp6aW5dR3JlSpcXjo1JWuQ+NSN8xtmssSuX+Oru7aioCNlsjkzuvD8uIfYVupUHj5+wW1tDRLBEsLdMEFAswjddprlW/5XNG5+DWnySzTKMyJRfMKgmK/q8DhSXmZl5MrMFHh+6AAgW2mnQUpsZfUTm3GxohJnoj5AVl/pqndLGtSD6hyneqrE8lzzdeMHTorVdp9E2GGO4Vy3xxQUr2GS0wjfdqV6j9t33fPDhWd7/eJnhyBL9/MiaWIMJ0/nxPpnFItlsjieHB4C/TLr1C3dXc9yva7B+95hsvYm7zy4MBaA4ErBBooD4y0jXoc5Vinlvw2fpdpl5oLXdBML/xnVoMY8++5e///qH33/YYO5cFtWjYOko9IBuyOF6fv/R0LIo3N4dmt24vji53nPGa1DXoNyfU9wcXw07hxKKxBaqytZKja93vsFt3o+s3yeRYzr3q/1nHB2WkYTt0sogITnbrcgjw3Bg8ZzNdZCbO8FuGXhrz64RvMWz75MyBUz7ilJUQeQMItNAj/5+jKqCnPH6CGfDcX1hwnLT9G9K/HhBxAIUtOfPycILDITqvRHXOj2Ki+oMqspsNsP+0wOaWytQKDGHsL3zM1fsK33hiWQ4i5t8jgLw+GAfsJCwjOtQbXYSFpoG+aq1XWdhsejXHmDnl4FPWVya825/pWQrniloo21UTVdvfPaenj3jtdnXN9QYox5H2i+pHqkxz6JH0N7VAV015ig0Jq4vzFHomsPtceO9shnqi6+fEjM4tZ2KNtrGa2o3VUS0VGmoUVWjHbWZ187LXzHh9I61NKolBbTitFVV1RijbaeiFMoj5d923MZm4EORw746EDKqqPaGzCHqAMb0fCM1UUM34xwi7EDDzhbXN/wb3Zj2uPGv39nCY0u2p1ABdTqq2mlooVxR1YExece8/hn20Jjfe7c57kBtpzLQkRDoLqkMe9Eo/gMeHpFwuhhN/QAAAABJRU5ErkJggg=="
|
<image>如图,C、M是线段AB上的两点,且点M是线段AC的中点,若AB=8cm,BC=2cm,则AM的长为()
Choices:
(A) 2cm
(B) 3cm
(C) 4cm
(D) 6cm
|
3cm
| 69,741 | null |
3cm
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABcCAYAAACYyxCUAAATW0lEQVR4nO1da3BU1Zb+9jkd0NC3EofGwCUQAx2eSsVExgCd6egIBgnCjBRhShzDVGYEnFELuOKdAn4OeI0YBIdIqCJYaFFlLswoYEDwNiEIYQrC1PAI5oUGqISU2CHhmd57zY/T5/Q53ac7ndCdNI+vKpU++7332mvttdd+MSIixBiEEJAkKcC9ra0N586dQ21tLa5cuYLDhw+DiMAYw8mTJ9HZ2amFtVqtyMzMBABYLBZMmzYNI0aMQFpaGiZNmoQnnnjCNG+1ORhjUahZ92CxSBAVra2tcLlcOHjwIFwuF5qamuBwOJCamoqRI0di6tSpeOyxxwAAmZmZiI+P1wjZ3t6O06dPAwA6Oztx4sQJNDY2orm5GZWVlRg7diycTidmzJiB7OxsDBkyRMvXv0ME6yDB3O8J1M/gnBu+f/vtNyotLaWMjAxKSEiguXPnUnFxMdXU1ISMF8wtGKqrq6moqIhmzZpFVquVHA4HlZWVUUdHR9hljQb6nCDBKlVVVUULFy4kq9VK8+fPp4qKij4ty65du2jevHkUHx9PBQUFdPz4cUNYIUTUy0PURwQJVZm9e/eS0+mklJQUKikpoatXrxrCh+KEnvTYcBpUCEEtLS1UXFxMw4cPp5kzZ5LL5Qo7j0ig30TWwYMHKSsri8aMGUNlZWW9TqenPTdcIno8HtqyZQulpKSQ0+mkqqqq3hSvx+hzgrS0tFB+fj4NGzaMdu7cGeAfrMHM3CMtRvzzUL9LS0tp6NChVFhYSFevXo1onv6IsIoQGp999hmefvpppKWloampCfn5+QFhJEmCEMLU3R+hVFMKQ3nUhwmVZ2FhIerq6pCYmIiJEydi69at3abda0ST2moP6+jooHnz5pHD4aDz58/3ibYSKfhzYU1NDWVkZFBBQQHdvn074vlFlEPIr1dKkoRLly7B6XQiMTERP/zwA8aNGxfJLKMOfy6cNGkSfvzxR9y8eRMvvfQS2traTOOZcVxYiDiJyderqquraejQobRhwwbTcPcTp5hhzZo1lJKSQmfOnIlYmhEhiL5hhRDEOaedO3eSzWbrk/lENBFMcVDdy8vLyWaz0bfffhuR/KLCIatWrdJ6TrA5w/3OHXqokuDjjz++57QiRhC1gfPz8yk7Ozvq6mF/IVhHam5upoyMDHrrrbfuKf2IcsgHH3xATqfToH14PB7t94PEFUSB4qyjo4MyMjJo3bp1vU4zYgTZsWMHpaSkhGX6uB/h3/ihOGXYsGG0d+/eXuUTEYJUV1eTzWYL0Db6yiAXazh27BjZbLaAOVc47dErgugTbmlpoeTkZNq1a1dvknogYKa4bNu2jex2O7nd7pBx/HFPHHL79m1yOBy0Zs2abjN6UBGqvu+99x7l5ubS3bt3w44b1ophsJWxRYsWobOzE19//bW2lBoq/MMGzjny8vIwbtw4fPLJJ4Y2Coqe9ARVVHk8Htq2bRs9++yzpitsD+vY4Q/OObndbrLb7bRr167ojSFut5uGDh1K1dXVRGRUbfWFedgQrM6HDx+m5OTksIyRvdrksHjxYgBASUlJeGz4gCMcEb1gwQKkpqZi7dq1ocP3hOqcc81MEEx7eARztLS0aKpwKHRLEH+553Q6qbS09N5K95CiqKiI5syZEzJMjwhy/PhxSklJMR0zHqF73Llzx3TCqEePdNN169bhnXfegSzLmux8hPAxYMAALF26FB9++GHvxxAVNTU1NGzYsKgsWz5McLvdZLPZqL6+3tQ/LA4RQqCkpATvvvsuBg4c+Igz7gEJCQkoLCxESUmJqX9Yau+dO3eQlJSEM2fOIDk5OeKFfJBBJtOCs2fPIjc3FxcvXtTEv4qwOGTfvn1IT0/XiPGIQ8IHEQW018SJE2Gz2VBVVRUQPiyCfPHFF1i0aJEv0iM7VdiQJCmgvYQQKCgoQFlZWWCEUAOQx+Ohjo4OSkhICLkrvD/ByaeWC1KsqucPfEoACBIjMNCr739OnHSquug7e1sw9fbq1atks9k0S7AaLmRXl2UZlZWVmDJlCqxWawCVYwJCNwSSBf+5chbGz6hALXlAXICLn9BV9Bb+7t+3+cKxvjuQo3IH6USXEAJDhgyB3W7HqVOnNFOKEKJ7kXX06FHk5OQEzai/QTqdZPMHr+DtuvHg/FuMhQwCICENGyo24pu1u1HvF0+A90kZhRCmHSAnJwcul0trS0mSghNEreihQ4eQk5MT1l7Z/oCqpdR9vwlv/6kCFR/+SamgIFAAE/scGGOQIPsHiAr0Da7+F0IgOzsbLpfLr4heWWomU9Xxw8xUEitrHpxz4pzTstnKWEFEJIRHKx/nnL4vXUHALKqjLvIITkLEhunHrH0llZX0q30qzp8/j2eeeQayLBvknz58v0MiQKpD/bfAzBl/AwBgTAZjpMnm7/YU4dWVebDDAplJYCw2TD9WqxXDhw/HxYsXNTeJTDZIq7hw4QLsdrvBXf3f35VRIUEGGhvxDYDUkWM0dwGCJCmibP1/A0v+6Z99kbxVjoVxcMyYMTh//rz2LQXr6UII1NXVaQTRuwOxURkFApSaijkMaPq5UXOVIEOgDitm/Btm/XEjcsfoJECMMDcA2O12NDQ0aN8SYH64RZIkA4eYITa4RILMxmH6yplYsmmz5sobv4FFGg+xYjP2/Me/gkihQux0JAV2u93AIRbA3N5CRKirq8NTTz1lcNdXKJYq9/bafWicy8DYes1tfwPHjFGSIr4Yi8nlZrvdjvLycm28k4Dgx8Vu3ryJhISEPi9kT0FE4JyjaLcHnDwgZeEN01MVIkhggIg9YgDAoEGD0NnZ6RujQwXu7OwMmKHHIoTwQJIU7UnyTgi9PmBezoDEAOrqx1Kaw2q1oqOjQ/uWAGUs0I8j6tjgdruRmJjYtyXsBWQ5DoAyiR08+An8ftgwHD16VPPXOIPF9UfxQiIxMRHt7e0+h1ATF8bYfbC/St1X20Vjx9sVoyJAz0/JCjoBjKU6ud1uSkhI0L5DiiwiiqmB2xzq/MgCRhbtmxG0CWBADEmCh8eGKchfUw1obX2A+Ph47coj8lONY0PlVaCW7NONn8Fm+yskJSXho48+CllGi8zgEX1jXAyFGzdu4He/+532bdF7+u+oGzx4MNxuN6xWa0xqKCrUkk1/6UUsXboUAOBwOLqNZ5H6xrgYDEIItLe3GzRZA0EkItBdj/b9xOOPGy4FM4SNeVEWW1A7O+nmQpIkobOzU+MQIvITWbIMkgGAAXEWWKxWuN3uvi35Awi9YdZf9Hd0dGhTC2VJwA+Sjo3T0tLw888/d5vRI4RGKOtGQ0MDRo8erbWlQWQZQZiYNh5NFxpAXQQWxwDOQZwAiwVMAkACdNdLFFkGk73SnAjUpQ6YEjBA8tnzQvkZsteFY7KSf9D4BLrLASg9jHGmiF5JBpPhCy/JYJa+HwtVrjAT8/X19ZgwYUI4S7gMo8ba0djYAKiNIUtKpRSTJJiQwQZYwAbIABdQ8iVQlwDiLGADLIAkAI/KpqH8DFXQhZMBcO/qX7D4DCxOBkCQOQPJpHwLDvJAKWOcrKwi9qpJ7w2MMW388Ed9fT1Gjx4NIMgSrr7IaWPScKGh0ddowmuCUH8TB931eHsnKfqnIIBJ0CbHsq4hQvnpIQiQ1HAMLM7Lkd3GZ+Ay6RdqAQNHEPqFIl6Yaap1dXWGC3kCRBYDU8rMgAkTJuB//+8MeFeXYp4QDMwbQwgBZiYCBBSxAhZcFAXzM4QL5h5m/BhBqMM5nZ2duHTpksGiroUkjwekcgJTKmy1WjF+vB0na06C3+7ycQcAyeIVCVp39G4qkBgAAagzYa9hj6EbPz0YU7ivJ2nHKEJND44cOYLnn3/esJ1UC80YUxq4SxjYPCcnB64jlZBli2FeTwQwiwR4PF6xRV5/rzznXnHGmY6LQvkpcyASUDpEj9JWB3plDJEA7RtdAqTzV75jA5WVlXjxxRcNbr4mln0DtF7UvfDCC/jLXw4DstITVV2aMabI+QEW759OW2LM5x7n13+D+nnd1RL1KG2fW5d3DDHGZeZp9QNU9ZZzDpfLFbDnrdvp9tSpU3H8x//BjZs3lAiSFNNmlFiF/5zt2rVrqK+vx3PPPWdwD23t9XgwaMBjmPG32fjzrj/H7Ga5+wH+u3a++uorzJ49u2fHEZjFArJI+Id/fAPbtm0LFfQReoiysjK8+eabAe7diixJkvDKK6/g7NmzuHz5clQK96DDX1zV1tbi119/NbVIh2WyHThwIF577TV8+eWXkSnhQwb/Wfr27duRn58fMBYLISAR8YBJGCfVOunR/BYvXoxPNhTh9t0bAYnEEmJ1nFMbv729HVu3bsWSJUsC5iiSJEEiJgEM4KSsg3DOITMJRBySZNFWf9LT0zHleYfhsGIsLPGSyZGxWMb69euRl5eHUaNGmfpLqlYue20ivs3X6ujvq+zKP76PTzduAOeK9ZSYsSGEENpfX8Gf7dXvWOSUO3fuYMuWLVi5cmXQMJIQAgK+/UqBPd73nfXXUzDi9yk+jUsYK212nq4v0NN74fsLmzZtQlZWVsjbvSXF5Ovbr0Sk9H4BjrrvN2F/nbG3f/TRR1i9ejXa29sVkdbPuF/EVWtrK9auXYu1a9eGDMc4CVLEloDKDQIECXWYy8ZiyU8cL6cZe+DixYtRU1OD3NzcKBW/9zh8+DAAwOl09nNJjNi9ezdmzZrVPUEoiLDd/Ifl+O5CHdZ/81+wQz24yMGYjLa2NowaNQqvv/46kpKSIl/6BwyXLl1CeXk5Ll++3P3WXHV3n/6A2oEty2nz/grKk1+hOvJd7ac/KlZaWkrPTErv90e0giFWjtypV/yVl5eHFV7StCnv2EFNFTggXsa/2AX25I1TuEOneamDZWFhITIz0g0XCviIHB1Ni7y72sOBtsnar1xmv++1TGZQ22DBggWYPXs25v79HM1v+VymtSWTGBhjKDlUqyVo2AP7hxXLiIiI11Vohyj9ofa+W7dukcPhoNWrVxv8o8EZvenx4d5GHSnoLwol8l0T6+HGG5QEES2bA9p8ULld7sJ+5aKDip+4coEZJw9x3kUHtiwn5RSlsmE5GEHUinkED3mRcqQaQAgREYLooZ7ejQY451RWVkZ2u52uXbumuJGHurwDA6damslmUa363bDPSBDVcfnm77REfzqw0fBtBrWh9FeNxwp3hIoX7fHl2LFjNHjwYKqtrSVOgjjvMvj/dGCjobMvm+Pr/ApBmioIc5cbIh3YstxAEOFN1P9STBXqZfytra2+OBGoeCwdHQgGPbf98ssvlJSURHv27NH8BemuIydB+z9fpkkhALS/wde++Oz9XPJuNKGKBuUilBVz0K3YMsPKlSsNz1VEgiDR7M2RJrb/cxUejydwHCNBy+Yo4omIvMOE7ztgUA9VYOHHembIz88nh8MR0Qdd9JUK98VOs3DR5LZgD7oIv5uHeMM+wpz3vJ5EHnGe5jDQis8VjpIEuM4gZzwvod6GoKl48Nn1OQWqtkII7Ny5Ew6HA5MnT8bZs2d7p0v6QW+XCsdG1V2YSKvlJ06cwOTJkzF//vwAazjz3jyk5nfo0PdYnvsyBAhggGhqxDcEjB49WlnpiFaP2bFjR7ePggXTdHrz1q0ZenOdbU/zVh8FC/VcB/fe4yWEh5a/CqqoV0TZXXGBXgUIUCbgnHdF9+lVVfsK9mxeOPDXUPx8e52uHsFeBOqOKGvWrKHk5OSwns2r+34TMcYMgzkAwqvvGvKK+lu4zc3NlJ6eToWFhUHfo+qu4pyiN7CH8zyT/3h069Ytys/Pp6ysrPDGSkFEwmPoXOoNd5wbx/CoLF6QzpyQnJyMI0eOoL29HTk5OaitVUwEZmcmDOOVNw3F8sx0ywIE/aJZd/l3h56OSadPn8a0adPw+OOPw+VyYciQIZqf2YEcJQEATNa24irHDmQQuiBJAJGvfn36WvSmTZvIZrPRqlWrenQhs2JJ0L3lROZc46+N3YvK7M8t169fpxUrVpDNZuvR3ffKxJAbxkvD/Y9eeMQdIurH57uTk5NNn+8OB/pJFpG5KnyvCoE+fmlpKSUlJWnPd4cr2vRl1LuYuyuIOEH8CxtM01EfuB83bhxt3749LNsS513d3gYXqYmkx+Oh0tJS7YH7o0eP9ih+wMumJgQIeLKWRHQ4pCeNUlFRQU6nk1JSUqikpKRHE8pgBLwX7mhpaaHi4mJKTk6m3NxccrlcQdMOt55qnFCdqc+0rHBRVVVFb7zxBlmtVlq4cKHp/CXcOYL6QHJPCLN7927Kz88nq9VKBQUFdPz48Z5VIELod4L4N5rb7abS0lLKyMighIQEmjt3LhUXF9OpU6d6lE537tXV1VRUVER5eXlktVrJ4XBQWVkZXb9+nYj6b8WxV29Q9RVaW1vhcrlw8OBBuFwuNDU1weFwIDU1FSNHjkRWVhYGDRoEIkJmZibi4+M1Fbq9vR2nT58GoBwdO3HiBBobG9Hc3IzKykqMHTsWTqcT06dPR3Z2Np588kkt3/589i8mCBJuA7S1teHcuXOora3FlStXtB0mAHDy5EnDrRNWqxWZmZkAgLi4OEydOhUjRoxAWloa0tPTTS9mM9wwrfvfl/h/DS2wdeUxWKAAAAAASUVORK5CYII="
|
<image>如图,半径为5的圆O中,弦AB的长为8,则圆心O到弦AB的距离为()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 69,742 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAK0AAABtCAIAAABcJXagAAAgzElEQVR4nO1deXRU5fn+5s4+mclMdhIiYRMCIpKiCCpKREXAKCoqrsBRkFrkUKueolaFI56Dba3Wom0tokHhJKKsLhQPNtAWWkEqCEqaBCTbJLPPnbsv3++Px1znBwYLZhIm5PmDM2Tu3PW77/cuz/t8Jkop6cMpIQiC0+lsamoqLi4mhKiq2tDQMHToUHxrMpmMf9MXTE+fwNmO5uZmp9NJCMEgUBRFVdVbb721p8+ri2Hp6RM425GXl0cICYVCZrPZ5/OFw+FXXnll4sSJ+NYwA5TStDYJffbgB2Cz2fx+f05OTmZmJiFkz549999//86dO00m0wkPnlKavpNsnz34ASQSiX79+kWjUYZhBEFgWXbgwIGYI3oT+uzBD8DtdtfV1fl8vszMzF//+tfXXHONJEnjxo3rZfagbxz8AFiWHTx4sCAIK1asOHz48JgxY0aPHu1wOPBtsn/Qc+fYBegbBz8At9vNMIzT6Rw2bNjWrVsbGho+/fTTvnmh14JSyvO8LMuKosTjcUVRSEcUwLLs3Llzb775Zrz9fr+fUhoMBlVVxTaSJGmadvJMkUbo8xO/hSiKLpeLEKLrOkIDSZJ4nt+yZcuKFSv8fn9LS0tRUdFTTz21Zs2ajIyM4uLiQYMGDRgwwGKxmEwmTdPMZjPDpOt7ZUr3ia0LEQgEnE6n2+3meV6SJI/HY7FYBEGwWCxWq3Xfvn1bt2599NFHTSaTy+UKh8Nut9tmsxFCYAwopYqiGK5DeqFvHHwHTdM0TVMUBQ6BpmmBQKBfv36Kovzxj3+srKzcunVrQUEBy7IOh8NqtRJCJElSFMVqtdrtdkKIqqoWS1qa2LQ86VQARQSz2axpmt1ul2VZ13UMgjlz5tTX1w8ZMgR/9Hg8kiTFYjGHw2Gz2axWq6ZpsiybzeY0HQSkz0804HQ6W1tbeZ53Op2SJJlMJovF8vXXX48fP37y5Mlz5869+OKLzzvvPIZhWlpa7HZ7RkaG1Wo1mUwMw1itVqvVquu6KIo9fR1niL554TtEIhGHw+F0OmVZppT++9//XrVq1fz584cNGzZ9+vSamhpKKcMwdrtdkiSz2Qw3wmq1ut1uWIK+eSHtEQgE8vLyIpGIzWZjGOb5558/dOjQ008/PWLEiC+++GLq1Kkmk8lsNiMyhCVAWEEI0XVdURRs0KMXceY4F8eBoigcx/l8PkIIz/Oapnk8ntzcXEKIy+Uym80LFiyIx+NvvvkmzP5f/vKX+fPnU0pFUfR4PCzLZmRkJKcKGIZJ34gRSO+zPwPAknu93sbGxmg06nK5PB5PNBqVJEkQBJPJdOWVVw4ePHjt2rU2m83hcCiKEolEcnNzHQ4HEgyYHXr6OroY55w9sFqtiUSCYZj+/fvjcQqCANtw4MCBefPmvfzyy2PGjGlvb8/Ozm5pafn73/9+wQUXYANjDz107qkEPfcgiqIkSZTStrY2VVVlWeZ5ftWqVWPHjj1+/DilVBAE8I4opddee219fT3P85RSlmUppfAGevQKuh7nnD1QFMVisfA8n0gk8vPzY7GY1+tdsGBBKBTau3evJEmRSCQrK4sQoqpqMBh0u92DBw82hgUhBKnDnr6OLkZvm+d+EJjvPR6P0+mklFoslgsvvHDatGkbN24khLAsm5WVJYoiBsry5csXLVrU1tZmtVotFovL5VIURdf1NA0OT4FzbhyYTKbc3NzGxkan07l79+6LLrronXfeqaioIITs27cPUUN7e7vL5aKUNjU1XXXVVYqiaJpGCEFYqOt6+tYVO0NvG9c/CJj08847b8WKFf/5z3927dpVWFhICOE4buzYsag4DxgwQNf13bt3DxkyJB6PFxcXR6NRn8+n6zqyyOmbL+oMvXCqAyRJslgslFKUDCwWC+gCFoulvb39zTff9Pv9DzzwwMiRI0VRVFXV6XTyPO/xeGgH83jOnDnPPvvswIEDe/hKfhw0TZMkyWaz4W7E43Gv14vaWPJmvXZeQMrPbDazLIvMv8VisVgsDQ0Ns2bN8vv9L7744siRI/1+v81ms9lssiyjgIRQIhKJBIPB3sE7crlco0aN8ng8fr/f6/WGQiG8EsnoVcYtGQzDqKqq63pGRgbm9aamps8//3zDhg0vvvjimDFj4vG4w+HIz88XBMHlciGIcDqdyCatW7du8uTJvcD4m81mRVH279//xBNPFBYWIiUK2kQy0v46OwPP8xaLBXQSQogkSbt37962bdtLL72EEhHGB6WUYRhZlq1WK8dxLpcLxKQNGza89957KEb39KX8WMRisaNHj5aWlobD4ezsbI7jCCEnDIVeOy9omsayrMfj0XVdluWHH374n//854oVKzweD8qDqqqqqioIAkqIiUQiLy9P0zSbzbZ///6SkpLMzMw0JRclIxqNZmVlVVdXDxkypKKiIicnJyMj43vsXA/lr1IOeH+U0rq6uosuuujPf/4zpVRVVUmSotEovhVFERsHg0HDLaCU/vSnP/3Xv/7FcVyPnX1XY/jw4UuXLhVFceXKlXv37tU07YQNeu04iMVilNKqqqrLL7/8q6++0nU9kUjgK5CSKaUgokmSFAqFKKWhUEiW5XA4PG3aNEqpJEkgIqQ1RFF8//33KysrA4EApfSzzz7bunXryZv12nkhMzPzoYce2rBhQ3V1dWlpKRJBlFKO4xAyJRIJTdOQFMrOztZ1nRBitVrXr18/YcIERVFsNlv68gkM2O322traG2+8MSsrKxwOr127dvTo0SdvZqFpkj8AMRwfCCGghOCPeL/tdjumvfb29vz8/DvvvHPq1KlTpkzJy8tTVZVhmIyMDF3XkSg0m80ZGRnGzvFO4OdVVVUbN260Wq08z9vt9nS5P51B1/Vjx4653e5YLOZ0OtFk8T15sG4zUD8SSOzjs67reJWTrX0ikWBZFtP8Nddcs2PHjqamphN2Ao/he4Gdf/bZZ4sXL8ZmgiCk4kK6Gbt3796yZUskElEUZcqUKTt37qSUnuz6WE5OKZydSB6/qPjRDrZgc3Oz3W5HaWDdunXPPPPMpk2bhg0bBvthVIZoxzj43v2rqupwOCorK6dPn45xZjab0+XmnALjx49fvHjxwoULBUGor693u93xePx76iPdOzrPHIqioPgLkrggCKIoGuVgVVV5nn/kkUduv/12Sil8IuNX/+MhEonE1KlTYWkQSpzsV6cdWlpaDG9XEARN09ra2k7eLG38A4ZhjFGMBiN8hn8XjUZnzZp16aWXVlVVgXGKVxkEQ2yGK+2MUmYymTZt2lRWVsYwjFFglGUZDSrpi8LCQk3TEomELMvZ2dmEEI/Hw/M8OHbfoTvH5o9BIpFAIIduVPwRNKE9e/bMmDFj9+7dlNJ4PI6vkl9lkI6SPYzvxc9//vP6+vpgMEgp1XUdrka6IxAI4FawLCuKYiwWg009YTPL6tWre2agniZQKSAdCWOXy5VIJNB+um3btnvvvXf//v21tbXZ2dmapiEfgNSpLMuoNzIMQzs3fnV1dTt27Bg/fnwwGEQWEnuQJKn7LjIFmDt3LiEEJCsEyW1tbUVFRSdsljbzgiiKdrtd13WO40wmk6IogUCgvr6+oaFh0aJFdrsdf0RTut1uN5rSdV1HyxGlFFXH793/gQMHJk6cGIlECgsLA4GArutZWVkwCd17oV0MXH5GRgb6Nm02W1FRkSiKJ6bMU22XkKmllIbD4WS3DhYeNxqmmFKqKIooinibOY5TFKW+vn7ixIl4OxEWGvng8vLyZ5999gxOSRRFY2ZJJBKYXC699FJEU8bRkYT+MdeeRkh5vTEzMzMSiVitVrxedrs9Go0iC+RyuQKBQE5OTlZWVigUQtuopmlwZ0Ao9fl8eGYgUEQiEa/Xazabx44d+9xzz02dOvV0zwe7hfEghLhcLlmWN23aNH36dLhOeFEQc/a+PoVOkeqBBhYXpTQajVJKVVXdt29fcXHxqFGjXnzxRUze2JJlWSSFQBPFxqIoPvHEE2vXrlUUhWVZWZY//vjj888//8CBA2d2PrIsqx2Ajgml9J577jl8+DA2QJxpxKg/9vrTBCm3B7Is22y2RCLh9XpFUQwEArW1tbW1tRzHjRs3ThTFJUuWBINBp9PpcDiQ7bFarfF4nBCCRvR77733jjvumDVrFsMwL7zwwsGDB2trawkhzc3N/fv3P93zsVqt4KfAi8QY1XV9xIgRoiiCxYSeJ5L+6lf/O1Ju9xwOB8MwDocDfn4kErnppptisVhubu6TTz4ZCAQIIRkZGTabDeVgTdPQLmg2m3Vdb2trKy0tXbRo0eLFi2+++eZIJFJZWQk70b9/f0T5pwXMC/hsMplsNtuf/vQnzC/oYgafEedw7oyD7sgfGFF7OBymlDY3N2uaFo1GGxoaJk6ciK9gjTEdRCIRGORgMKjrejwe37hxY2lp6eLFi+F1xuNxTdOam5vPwI9DggH7x9QwYcIEnBiOTpPKEKeoR/QypNweyLLc1tYGgQh0lBYVFTU3N8MlvOGGG44dO0YIEQSB4zjQA/EuchxnsVh0XV+3bt1rr71WXV29efPmRCJBCMnIyBAEoaio6Az8OAhWGKnJbdu2jR8/Hg1MDocD0SZMUa/sU+gUqR5oePM4jmtvb0/m/GiaNmPGDNpR+9I0TRRFtA6KomjU+n72s59VVFQYf5Fl2Qgsz7geGAgEjKLD3LlzQ6EQGhcppaFQCCeJI547fmLK7QHDMEgB5eXl4fXy+XyJRGLlypVr1qwhHRGayWTieR5M82g06nA4Wltbb7vttpycnOrqarvdjnAOilQILM+MPCiKos/ns1gsGExHjhwhhLjdbnybnZ0N/xFH7Isbuwwo30GcMh6PS5Lk9/v/8Y9/fP3117TDY/D7/UgNGWSCv/3tb+Xl5ZCioR0xZ5fAyGVpmvbCCy+sXr06OXY9Z5HycWBwQQ188cUXVVVVsizH4/GDBw9+/vnnlFKWZY8ePUopjcViy5cvnzFjRjQaBdXYyEh2FYwHP2HCBIy8XsBD/JFIef4AdVvQOlpbW6urqysrKw8fPrxs2TKkuzdv3kwptVqtAwcOTCQSzz//vKqqa9ascbvdlFJZln0+H6hmXXVKlNJ4PN7e3l5aWor2hHPI/neClPc3IjYTRTEzM9OQGnQ6naqqms1mURSTG0Wuu+66a6655vHHH4eeJaJ5bNlVlFHUXXRdf/LJJ6dOnVpWVgZNpC7ZeRoj1QbHmHrxaDEm8AF/h2U+fPjwJZdc8umnnyJeoJRGo1Fwzw2noUuAncuyPHnyZOSV+5wD2j15ZYvFYrCKnU4nsgKCIBBCwuFwv379XnrppQ0bNmzbtg1xvK7rLMs6nU6r1YpWrC7sM6eUEkK2bNkyadIkQx0ZRqJL9p+m6I6+90QiYbFYHA4H3DGbzaaqqtVqZVnW5XI999xzhw4dWrNmjd1ux1NHsgibQYJE07SuajFD5mDmzJlvvPGG1+sF5RVp7C7Zf5qiO/pcEZ3rug5aHPjzeAB33333eeedV11dTQgRRREvqBHN479QrT3dgxr1ZdQsoIKD5t9EImG1Wg0VzHMoaXgKpHriYVk2Go0agRlEzCmlO3fuHDRoEEiFCB3hQHTVcQ3/A+4IpVRVVXx4+eWXKysr8S1OrM9FSLk9QB1BURRZliFDajably5dum/fvgMHDpjN5vb29rKyMkjVQbajS46L+R6GB/sEs5kQ8uGHH1ZXV1NKTSYT/tjnH6R8HECBACwEpAVXrFihadqrr74K+4+JH4Qzw1b/eEDbAP1uhBBjOY2DBw8WFRVlZmaGw+GsrKxeoHTRJUj5XfB4POFw2OfzSZLkdrunT59eXl7+2GOPoczP8zzDMJqmZWZmMgwDxYIuOS6YZ0a2AApIhJC33nrrnnvuIR0dkigt9o2GlPsHeAaBQGDnzp2XXXbZwYMHKaVIKkejUVVVOY4Dd629vb1rDy2KIoqZRrqitrZ20qRJmqYltzmcnPk+B9Ed84LJZHr//fc3b968detWdBBbLBa0JzMM43K5OI5DJzKIrF1yXHCKEAugd1HTtM2bN1933XWGK4D6BTyYvrgxtXA4HPPmzVNVtaqqymhEcblciAmDwaDD4XC73VjypgubyCilxqPF8lmxWGz79u2bNm3SNA3UZCyagEa2vnHw/UCIRQhhGMaYPqEkZTKZoCZhs9kQnWdkZKA1Ark5hPtoT5g3b96sWbNmzJgB1SpKaXJnHZqUyUmyTT8elFJQH8xmM8dxdru9sbHxggsuSB5qxufeKaF+Wjj1tAF6FgI/0HxBNjSo5bSDCR6LxdBnYszK27dvv/jiiz/77DMwPpDAOXWHYdcC042RG7jvvvs++eSTbjt6eqFTewASN9iCDocDiTm89zabzW63w8MC0xyL1EBpBrPvokWLIpHIzp07jXKiqqo2mw0TNsdxyXIkKRrfhvYHIpFDhw6Vl5en9KDpi06TJw6Hw2w2Q0UG6XdN01AcEgQBNxfmFOuYJhIJ5AMURZk/f/6gQYPWrFkDUUKU9bDmIaUUs3KqLww1LdQmJEl6991358yZc44ni06FzgwFz/Mw74FAAITjZJMOk4vNIElBKUU+oLy8/L333pMkCexyJArxK5iQ7iGDJxPhZVm+6aabjIp2H05Gp+8HCsStra1VVVXjxo0bO3bs8OHDCwsL//rXv8Kxxzsty7LD4YDD9dFHH5WVlb311ls33HAD2tQxpxg0cNrhw9PUFzktFgtK3oSQeDyOjHVfSakzdOofILAuLCy88847P//88yVLlhQXF2uaVl5ePnz48OLiYnAC4PwfP3585cqVwWDwyy+/5DgOzj/P81jiFIPAmEegYZNq/yB5xYSqqqpbbrml94nldyE6tQeYSvHAWlpaCgsLQSA4evQoOo5lWcaWzc3NK1asyM3NhXQxupKRF7Lb7WazGYuZkI5Kj8Vi6fIo8WQIgmCz2Sil8Xj81VdfvfHGGy0Wyxn0wZ0j6HQcINfmcrl27949YcIECCk89dRTixcvhg3APd21a9dtt902efLkxx57zOgnt1qtGEaYe9A4nLzIYTfE6zjJYDC4bdu2hx56yOVyaZrWlyfoDJ3aSbyyUBg5ePBgVlaWpml+vx+dwpj+NU0rKSkZPXr0Bx98MHDgwJ/85CeJRMLpdLrdbrQM4/HDGGBpdPxWEISuqid1BoZh2tvbCwoK3n333SeffFLXddiwbjBFaYnOHMhgMNja2qooyk033bR//35KaU1NTXFxMdy9RCKhKArqyM3NzTU1Nddff/3s2bPr6urwW6EDBgkFAijdueJdIBAIh8PXXnstUknJMih9OAGnyidyHCfL8uzZs3meR+PRgAED3nvvvWg0iseZzCRWVXX79u0VFRXz58/HKojYJrlLMBKJHDt2zBA3TClw0Mcee+ydd95BpNo9x01TdOofIFu8d+/e8ePHO51OlBIopbm5uZgRCCFmszkcDsfjcaySPGnSpKqqqoqKioULFz788MOtra2EEIfDQTtGg8/nKykpMZioqYYoinv27Ln99tvRbd3nHJwKnQ0QOHf3338/FMhEUSwtLR01ahS+gkSBKIoYHIIgYF0DSZISiUQ0Gn377benTJmyePHi48ePYxue5yORSHeKFr///vsQ0kLzDD2X9AxOF52Og+bm5ssvv9xqtQ4ZMmTSpEnZ2dmQrIUwhcEChfEPBALJc4QgCDAna9eunTx58vLly9HVSinlOK571rdQVXXBggUQ4KEd7Su9Qzo7Fei0fwFqlPn5+QY3xGhJgxVBDwJUx6xWK0YGmg7gk2PJXFmWV65cWVNTM27cuLvvvrukpATxQqrzSIlE4q677tqwYQPqzpjLaIe4fh9OQMr7WLDUFaV01apVa9euveKKKxYuXJjctCrLsrGYAhZZw7CjlKLHAXnAU6SEwUPUdR1jFKWQ1157bdCgQbfccgshhOd5URSzs7ODwaDX68XeaMdizaSPr9wNOllOp1OW5cbGxgceeGDHjh1ms3nmzJkrV64EHQHrYqHFAPkGlAej0Wg4HIYyDcrfne0fBslglEBoweVyffjhh5MmTULSk+O47Ozs9vb26dOnwwym+qrTDikfByzLchw3YMAATdNqa2ufeeaZHTt2JBKJ0tLS1atXYw05aBbhPQZlzev15uTkEEICgUAoFDpRHDwJ4BwbO1EUxePx7N+/f9iwYV6v12azNTc35+Xl1dfXX3bZZcePHzeE18m5JIv3w+gGH0TTtFgshlWwkv/+q1/9aty4cb/73e/wX2Sl/H4/x3Esy4ZCof/drQPXGZrslNI77rjjo48+gktrFKBjsdjQoUORAaNJi7rQJEW3cxYptwcw9U6n0+fzUUpjsVgkEhFFsaWlZdmyZXv27NE0beLEia+88orb7dY0raCgwOVyud1uj8cDuWwEpZ3t3+hSopRCD7GxsfGbb765/vrr4/G4x+NBrsJisYii6PV68exTfdVph5SPA2heyrIsy7LJZPJ6vVlZWVartaioCHmIX/ziF9u2bQsEAlOmTHn55Zfh9CEzAaYrFt/pbP8gO+Xl5Rka4tXV1XfddVc0GoXb6Ha7OY4zm80+nw+K7TRpXgBSfRPOfqR8HNjtdjAPkhvXo9FoIpGAD08pZVl22bJl69atU1X16quvfvPNN7HqNnRWT80ot1gscBUJIQzDSJK0d+/eO++80+fzmUympqYmQ3TfZrPB96RJkQLQx09J+TgA1R29IpRS2OScnBybzeZ2u0GDLigoQNT3+OOP19TUHD9+fObMmZWVlYQQq9UKwazO9o8oA2wDyPnrup6bm4sqc3FxMaWUYRhBEKDxfIIN6DMG3wI3BdEabiLtoKv3CJD6DQaDTz/99NVXX/3666/j7wa7EIt0Qfly0qRJO3fuxLegzC9cuHDLli2XXHIJ1nRAeUzTtNbWVkrpiBEjTvBV8aueveSUgiapwaHZhHaUi/EZFM5vG42N3+Bnhr5o9yMYDCqKEgwGZVn2+/3z58+//PLLN27cSCltamoypA8ppevWrZs3b96NN944ZcqUeDyOrwYMGEAp/e9//3vzzTcfOnQoucwtCEJpaemXX36JqlgoFDJy4RguvRJ45Fi/EQt2oWAEHDlyhFIqiuJ3+URd10H4J4RomtZTU6aqqizLInmAVYW++eabZcuW1dbWLl++/IorroA3wDDM+eeff+zYMY7jtm/fvn79+qFDh8L3rKio8Pl8mzdvfuWVV/bs2ROPx1mW7d+/f35+/vnnn2+1WhctWoQ8I8uyhuOi99IgAj6T3W5HYpcQEovFkLXzer2EkLa2Nrvd/p3PDIE7jJoerMvhHFiWhb3iOA46mk1NTQ8++ODVV18NCYtly5a98cYbtEP3JBQKLVy4sKKi4qOPPqIdlJNPPvnkyiuvxG7xQgiCEIvFjJQlDKau60ZvVq8E7D2yt0jSNDU1XXHFFS6X6+DBg3l5eZRSAiNJO1aqA4moZ5e8Rx8ETLqx1BxMdyAQePrpp6dPnz506FDasag75n6/3z9mzBj01oVCISQqrr/++iNHjhjVUZ7njeulHSOga3X5zkIYk+aRI0dAFs/Pz8dXc+fOXbp0aWNj47eSVaSjUdwI0npqSVsoa6LlgXb0O8CO4YF5PJ5du3Zhvc4lS5YMGTIEVMfnnnuutLR05syZR48eHTRoEHZVU1Pz+uuvr1+/HlMAMlrof0VdFOUliyVt1jc+XZjNZkmS0IKMz0888cTs2bOHDx9uNpsfeeSRK6+8cubMmd/OC7IsS5KEW89xXLIr0f1gWRZrNSHzSDtIMYaVghmoq6urqKiYMWPG4cOHOY7r168f7dBOjsVisiy3tLTwPH/ppZfGYjGjsQl70DsCE6S59N6bV1ZVFQv54qbV1tbOmjWLdtyKJUuWwB834f8Gqxi9KLW1tT2lBxCLxXJyckAzR4hIKXW73YIg5Ofnf/nllz6fLz8/32azNTQ0FBQU1NXVffDBB4lEYvLkyW63e/To0cXFxbt27SopKbHb7bFYTBAErPwEwgQsAcMwbrfbYrHg7uTm5sZisR653lTj/vvvJ4REo1Hk9V966aWrrrqqrKzMZDJVVVW98cYbH3/8cTQaPeuK7l6vV1XVeDyO9RshboXssizL/fr1i8fj0M1wu926rvt8vtmzZ8+YMaNfv37Tpk3jeb6urg6lavhECAdg9qF3YbfbsU8s+WK1WnvrIDAAGRpRFEeOHNnY2Kjr+rvvvvvoo4/eeuutoJp+GzfCKcNqZTzPsyxbUFDQ0yf//wDnDlXmWCwGCT5jGW+WZdEnAw3fc5xUkox4PA4JIgjIrV69etWqVX6//w9/+MNXX321cePGW2655cEHHzzr/MTOgBaUcDicn58fjUbhG8JzZBjG6XTqHS2ULMtCsKGnT/msAKZ7JAYhS8jzPCFE13W3293Q0FBYWOh0Ok08z6MURClFrQ8bnYL60SMAx5AmLez6zTfflJeXjxo1auzYsb/5zW/Wr18/bdo0GINkLf9zHOj1xvIFUKGAdAnWTxswYAAh5OjRo2ddHukU4DgOEjuiKI4ZM+a3v/0tpVTTtLq6upKSknXr1tEON7h354VOF8gj0STaPrxvQRD8fj8+f0feBRPQmCPOtjxrOBzOzc11uVyqqo4dO/a6665bsGABPP8hQ4Y8/PDDeXl5sGdQQjnbzr+nYIiVwlVEVl5V1ebm5qKiIuTvNU2zgC4MqUEMAtTuDNHzswQ+nw/55pqaGrfbvXTpUpfLhQKEJEkXXnjhsGHD4CdCtqdvagAopR6Px2g/h5yl2+02mUyhUCg3N5dl2e/qTMirQJLa4HSfVTCZTPF4PDMzc+TIkb/85S/vu+++trY2BDUQXAIhhed5lE/OwkvoESiKAuVikPZgLw19ElhQh8Px7byAJbOMH5+Fzjb0ultbWwcOHIgemIKCAp7nsUAsFvKCakcoFMrJyTkLL6FHgMdqdO8kk/ySP5+Nr35nwPoteXl5+/fvxwfkzDHttba2lpSUwGYY4m19+B+RNvkWvOtms7m0tLS5udlorxNF8dChQ4cOHSopKREEITMzEwnHnj7fNEPajAOsstvY2DhnzpwHH3zw2LFjIL83NDS8/fbbZWVlqELxPJ9qpZVeibSZF3Rdj8fjPp+PECJJ0uDBgyVJKisrGzFixO9///v6+vrCwkKXy8WyLCEE/nAPn3Fa4f8ArBp9m9xyMmwAAAAASUVORK5CYII="
|
<image>如图,直线a∥b,将含有30°角的三角板ABC的直角顶点C放在直线a上,若∠1=65°,则∠2的度数为()
Choices:
(A) 25°
(B) 30°
(C) 35°
(D) 40°
|
35°
| 69,743 | null |
35°
|
"iVBORw0KGgoAAAANSUhEUgAAAIoAAAB1CAYAAACRQ3moAAAdsklEQVR4nO19fVBb17XvT2CXNiHvQHI8qEG+coJsywW/ios7oWP8wEbEopUn4oUUMlepYeoOKdAGx3aNX+3BGTONci3XzgRSJ7QzuEM6ZEIrnDoNCfhWxCQh/sJTC0uu5VgutCUVGUOJY1wkrfeHOLK+DujjSAgnvxnN6Ozvs8/vrL32OnuvDbrL4XK5Eq7coHn9ggyHaglIIgAE5dPkomGqrdX7JovNrQVFEu5CEJHnv0gkikkd/uV61xlqXp88XHGXuiESidD68cMgcoKIQC+WIDkpB3g4CyIA5J8nDlgSv6rih7nI0d/fD7vdjosXL+Ly5csYGxvzxJ07dw6fffaZ55phGCgUCs/18uXLkZWVBYVCgWXLlmH9+vUh1RlqO100jM3ZZVDW6dHbsgOEWS584/9C/6NikGylO1/YNUWPu5IogPttvXz5Mvr7+9HX1wej0Yjx8XHk5+eDZVnk5eWhtLQUK1as8ORRKBRgGMZzPT4+juHhYc/1lStXMDo6ildeeQV2ux3nzp0Dy7IoLi6GUqnExo0bkZWVFUFbnRCJkvHm4ZfRh2IMtzwLwJcQD2etAmTfCLtsoSCicGRmgsPpdKKrqwsnTpyA0WhEcnIyNm7ciKKiIhQVFUEqlfqkJ6Koh6a//vWvePfdd9Hf3+9T53e/+12Ul5eHXBfhEh4VZWOV3oDWHZog8S6IkAROzHikTbwQP3UodhgYGKBt27YRwzCkVCqpvb2dbDZb2OVEqqB657NardTW1kaFhYXEsizV1NTQmTNn5i9k2EAASN/957gqqaFi0RJlamqK9Ho9SaVSkslk1NzcTCMjI4KVL8RsyWaz0d69ez1tPHLkCE1PTwdP7CGKSbD6hcSiI8rExAQ1NTURy7JUXl5OAwMDIeXz7nghJEe46OvrI7VaTWKxmHQ6HU1NTfmWTcOkBKhWb/Crx0k0bFhwAi0aokxMTFBjYyMxDENVVVVktVoXukm8mOthmkwm0mq1xDAMNTU10b8+u0OY3x+q9ZEqRESmbj3h0dqYtjcULAqivPbaayQWi6mhoYHGxsYWujmCYGRkhGpqauj+tHR6/vkXPOHDxw+5jWwiEAAqrtd75XL6FhJH4ZLQRDGbzVRYWEgFBQVkMpnmz7CIYDKZSKlU0j333EPJycm0efPmkBVwl8sR49YFIuEss0QEp9OJ/fv3Y9OmTdBqtTh16hSys7MXummCYHJyEvX19Vi/fj1UKhV27dqFzMxMpKXdj/z8fLzwwguYz14hEiXP/nPFurkeJBxR/va3v6GoqAgWiwVmsxk/+MEPFrpJgqG1tRUymQwikQhWqxU7duxAeno61q9fj/7+P+H06dMYGBjAoyUlGB8f5ynFmxzxe3wJRZS33noL3/rWt6DVatHZ2QmGYWL2rSaeOHnyJHJyctDd3Q2j0YiXXnoJLMt64jMyMqBUKvHqq6/iD3/4A1QqFdauXYv+/v4gpS3QI4v7YBcEDoeDGhoaSCaT0dDQ0EI3J2pwsx6bzUZqtZokEgkZDIagadvb26mqqopGRq4Tw6R7bEGDg4MkkUho796989YTDyy4RLl9+zY0Gg1sNhvOnz/v8xFuseLmzZvYt28f1q1bh/z8fFitVmg0mqBplyxZAqfTCYnkP/CTn9Sj8f/tAQA88sgjMJlMGBwcRGVlJZxOZ0DeeErbuBKF/D4rTU5OoqioCJmZmTAYDLjvvvvi2ZyY4NixY1i5ciVGR0dhMpnws5/9DCkpKbzp77nnHkxNTQEAfvrTn+Jkbx/Onj0LwP31uqenB0uXLoVKpfL5su3flzFH3GSXH0ZGRkgul1NTU9NCNSFkhCLiBwcHKS8vj/Ly8mhwcDDksk+cOEFqtdpTT1tbGxUUFASka2hoIIVCQXa7PfSGC4gFIYrNZiOpVEptbW0LUb2gGBsbo6qqKhKLxdTe3h52fqPRSIWFhZ5rh8NBCoWCurq6AtLq9XqSy+ULYnSMK1FcLhdNTEyQXC6no0ePxrNqQeAtWaanp6m5uZlYlqW9e/cGfLsJFQMDAwESpK+vj1auXOn5gOhdr06no7y8vIjrixRxIQp3o9PT05Sfn8873CTaF1M+GAwGyszMJLVaHdFyBm8MDQ2RQqEICFer1aTX64PkcA9DSqWSHI74WWjjJlEcDgep1WqqqamJV5WCgzO7Z2dnU19fH2+6cAhvMpkoOzs7IK/ZbCaWZXl1koqKCqqoqIi6/lARN6LU1NSQRqPxCVssEsRut1NtbS2xLEstLS0+cdHeA6evBUNdXR3V1dUFjXM4HKRUKmnPnj1R1R8q4kIUg8FAMpks7uOqENDr9cQwDNXX19PExERAfLREGRsbI7FYHDTObrcTy7JkNpt54yUSCRmNxqjaEApiTpSRkRGSSCSLzuLa19dH2dnZpFQqyWQykcvl8vyExMTEBDEMwxuv1+tpy5YtvPEDAwMklUrJbrfHVELHlCgzMzNUUFCwKGY4XCdbrVZSq9Ukk8noxIkTMa93enqaUlJS5oyXyWRz6kQ6nY5UKhURxW44F5Qo/o3cu3cvr8KVaJiamqKdO3cSwzDU3Nwc3xnFPHbPrq4uUigUc7ZJpVLxzpKEgOAShSOLyWQiiUQSdFxPNLS3t5NYLKaqqqoFMWalpKTwL7qeRUFBwZwGSk7XiXa6zoeYDT0FBQV07Ngxn7BEm+UMDAxQXl4eFRQUzLulQojF2XxgGGbeF+r06dP09a9/nT777DPeNEeOHPF8DhAaMSFKe3u7j1k60TA2Nkbl5eUkFoupo6NjoZtDYrE4qCTzV561Wu2cyw4cDgfl5eXxLmmIBoITxW63k1gsTsg1rv5m93/9618L3SQiIpJKpSENGSMjI8QwzJz7l7h1LEKbIgRfZvDzn/8clZWVCbfGtaurCzKZDBcuXMCFCxdw4MABpKamLnSzAACpqameJQTkt3zA+1oikeDHP/4x9uzZw1vWI488AqVSCb1eL2wjhWSd3W4nhmHoH//4x4LoI8HqHBoaovXr11N2dnZcDFORQKFQhGxnmpqaIrFYPKdOZbVaadmyZTQ1NSXYc4haopAX41taWlBZWQmxWBzX1VdcG7zrHB8fR319PUpKSvDkk0/CZDKhsLAwbm0KB6mpqbh582bIaQ8cOIDt27fzpsnKysKmTZvw61//Oio/Lv4Zowa3fIBl2QXdwedyucjhcJBeryeWZWnnzp2LYnpeWFgYlrSba80KhwsXLpBYLJ532h0qBCNKc3MzlZeXC1FcxOjp6SGZTEZKpZL3+0giQq1Wh20F7uvrI6lUOicRlEolHTlyxHMdzTAkmI4ilUrDWgIoJDiz+8qVK+NidhcaGo0moimtWq0mnU7HG9/T00O5ublRtOwOBCGK0WgkuVwuRFEhgxvudu3aRSzL0qFDh+JqdhcSWq02InsOt2aFz5rscDgoMzMzQFGORLIIMj1ub29HVVWVEEWFjFdffRUymQx2ux1msxnPPvsskpOTedNTAjuWWrJkCRwOR9j55HI5KioqsH///qDxycnJeOqpp/Cb3/zGJzyiiUbY1PLD9PT0vEYgoeByucIyu/OVkWhoaGjw0SXCAbdmhc/AaTabSSwWRy1to5Yo3d3d+Pa3vw2JRBJtUQD43/zR0VF873vfQ2VlJfbs2YP33nsP69atC7v8u2GLqjdYlkVjYyN27twZNF4ul2PFihXo7e2Nqp6oiWIwGKDVaqMtxgP/B3n79m3s27cPOTk5kMvlsFqtePzxx++qB84wDG7cuBHx8FhfXw+r1Yp33nknaLxWq0V3d3dAeDj1RU2U/v5+KJXKaIsJit/97neQyWSwWCwwmUw4cOAAUlJSElrfiAaRkv8rX/kKdDodduzYAafTGdA/xcXFQTe8h1NfVES5fPky0tLSkJGREVL6UB/w2bNnsWHDBuh0OnR2duKNN97wGdruJmkCAOnp6ZiYmIg4v0gkwuOPP4709HT86le/CugfuVyOiYkJfPLJJxHXERVRenp6wjKLz/eAx8fHUV1djdLSUlRWVuL06dM+3qHvZghB/sOHD2P//v2YnJwMiCssLERPT0/EZUdNlI0bN0ZTBAC3I+FDhw5hzZo1YFkWVqsVdXV1d53k4EO0EoXDunXroFQqodPpAuI2btyIt99+G0CEpoJopkxCTItPnDhBMpmM1Gp1Qnt6jCU6OjpIq9UKUha3ZsV/fYvJZOLdPxQKIiYKt6QgUpjNZiopKYnbavdEhsFg8NkcF62tJ9iidofDEdLaXD7MO/QQj5iyWCyQyWRhS7DJyUns2rULGzZswObNm2GxWPCd73wn7HLuJixdujQiyywfdu/eDaPRiI8++sgTlpycjOXLl8NqtUZU5rxE4dMTrl69ijVr1viE8ZGKA+fs7tatWzCbzdixYweSkpK+MLoIH1JTUz3OdIDoFdvU1FQ0NzejoaHBJ1wul+PKlSsRlRmxMmuxWAKOHOG7wf7+fuTk5KCzsxNvv/02WlpaPM7uvugkAe645/LGfC/dfKiursb09DRef/11T1kymQyXL1+OqLyQhx7/hgeTKP4YHR3FE088Aa1Wi+eeew6nTp2a0+webecsVtx7770+breA6F+g5ORk6PV67N69G//+978BwGPZjgQhDz3+x5v985//hFgsDppnamoK+/btQ25uLhQKhcfsHmpdXzQsXboUMzMzgpdbXFyMtWvX4sUXXwTgdlPK7792boQ99HAPc3JyEmlpaQHxr732GlatWgWLxYLz58/P6+zuS/iuwhcaBw8exMGDB/HJJ58gPT0dN27ciKiciI+Ku3Hjhs92h7Nnz6KhoQHT09Po6ur6wlhUhcBXv/pVTE9PC3IimT+4NStNTU3Ytm1bUKttSIhkTu1yuYhlWRofH4/a2d2XmN/1RbSw2+20bNky+uMf/0gymSyiMpJ81UdfJ/zDxw+hezi4gnnjxg289NJLWL16NViWhcViwdatW8MlaXisjgNOnjyJNWvWIDc3Fx988AFvOiHbnpKSgunp6ZjVwbIsdu/ejYMHDwZ8KqjfLIJI5Ps7dHwY/lzgPXySOwyxzuTCY9/wVTTfeustqNVqAO61DpGczJkoID9x39raik8//RREBIlE4ndogwsiSgLFQOd+7rnn0NTUJHzBs7h9ewYHD76AlJQU3Lx50+e+6x4V4eG6P2PHY2sxfPwQcjQ7YTC5oMm+c6MeZdafLYfrWyEqKcGqbG+SuPDBBx/AaDQCAB588MGY3Vi84KsTuN+iYO+OmxxJQFJsZmbJyclB3ZgLAZFIhJSUpdi+fTuSkpI8YQBAsOBybzFKH8sBAGTLeF5673GI+8ZgOFRL+u7fUzGK6aLPMVN3TqBiWZba2tpILpdTfn4+9fT0RDT2JRRc7v0ycrmcFIr/HfJ5hUKAYRianJyMUelOcpF7W4tMtson5uJxPSnr7jjgqS0R+VxzQMDnp2ED1eoN7lMzS34UtFIiohX/ISWr9S9ERNTZ2UlyuZwKCgoSdn9vSHDNnuHnFrAEIGinuVwuIpewC7X5XF9Ejzsv99nTZyj3m74+bQ2z5xhyP4PJFfQEuiR4iVmH8xZ+8so7eLFhMwBAuSqYGHKLrrT7GUxNuffLVlRUwGw2o6amBlu3bkVRURHPWTMJitkuOFRfghzN27jkcoGI4KJhoHUnSuoP+SQXiUSASFgDIZ9CGz3umMo++/wm/tf9aT6xvT0vw2By32+3vhZlOUk4HmwC48MufT19JUXk9Tb9Ny9P3ftl/ydoXHt7O61YsSLsPbULCX2t0kuC3nkL3RJmIw0HHYL9DoOMAtnZ2QFbLoTeWnLc0O3r69dv1PA+Utcfd+h2qRu9KPZoxKZuPVY9tDJQy3WTC8uWLcPY2D+Dcnjr1q24du0aqqur8f3vfx+lpaU+n7wTCy5cevMX2PlyHwyHW2fD/A3WfNfCuZcJZsYX2vj2j0/G3B9jZ59pd08vajc/CsAdJDJdQR+Ah2UrA/K67/RSN0QNPWjdofFkunLViqQkBxyuW3A4bwFwD00O5y04XdOQyWQwm82eMH84nLfwX9rv4S9XhqHRaFBeXu4hjMN5CzOOz4Pm8y8jWPlzhXvHe4fxIwmtLTugrNP7TAc5XLn6MXxtCrE58DEc1xfhwPs996whmr3N3p6XUaJ6bDb2EkrWagBsQulj3wgsSF+r9FFkZmY+p9qSO8rN5p/ofMTgjONzInIPL9/f+qRHNHHh/v+5a4fDQUePHqWHHpaQSqXy7PLzT8tXnn/9/ulmHJ97ft7Xc9XhLW713X8OOCbW5XJRbUlwhVZoxGOYVqvVZDAYfBR2kZciG3zy4kaACd/7obhcLk8n+/8fGBigR/L/k/49c9PnoXBl+JfJYfr2FB09epTEYjFpNBo6dz64B4RQCOR/Hcr/AFz8vecl8QfXocHihMaWLVtiviRUJpNF7FsviZNP3iJKBBE4Ebsk+WtwOG/5jJcikQirV6/B1atXsXTJPViS/DUsSf5aSKIwOTkZNTU1sNlsKCoqgkajQVlZGS5cuBBcdMbYzO/KlkEJ4KrV5FsvLGjQ7OQdkoRGcnJyTJYacHA4HBgdHeVdvurfz/7XSYBb/ji9x/JZK+RcyhTL3g8SuRcnAaHoAr5ISUnBM888A7PZjKKiIpSWlqKsrAwWi8UnnUgkCrvscJAkWgtVrRI7Xz56J3D4TSSJ1gB1evS27PAEB1BWQA7HTEeZfeCXL19GRkYGz5IPl+dZuxDo5gyYJQoX5HDe8kgGb0ZxUmVJsm8l3/rPb2Pg/T/55PNOz/3mirv3njQ888wzsNls2PB/8rFhwwZUVlbCeuV6SPm5uGDKK99/f+xo7UUtvQyRKBmiJBFEOWUwmFy+JCGC2+bkpcwKKGgidX0xH7gHfurUKeTn5/NI6CSvf7OjCfmnmA3gho9Zx+w+jCKv5N5Qqb4D45/eDzrscOXNFZec9FVPWEpKCp7dvhvXrl1Dbm4uNmzYAO1/VcN65bpPXiIKWrZ/GN9/PrS+SyByglxOEDkDhhuRiOuT2BzsmpaWJsgmMD70G/8HpaWl7nuYRxJSkK+eSeSXS4RAseP0e6s5bN5cEpUFNtjQlpqait27fQnz1FNP4fr167x5hIL7bZtV28j/A92CHxEdEbihxNh/CiqVyh3I04WctAnWx0lzdTyfjYSDXC7H5ORkVJuf+cAR5uOPP0ZWVha++c1vorq62kOY+RCJEuyrsPN7b4oFONcXQiMJIlgslpCcCfhwwY8Wc74mcw0fHAoLC9HX1zd/iyPEfffdh/379+P69euQSqUhE8Z/MfgXGSdPngxwJhBuv0QtTzUaDTo6OqJqRChgGMaHMOvWrcPTTz/tmXXxYbGs7E9PT49oPWsofd3R0YGysjKfsHD7RRCifPjhhxgZGYm4EeGAI4zZbEZaWhpycnJCIszdivn62mKxwGazoaSkJKp6oiZKSkoKysrK8Nvf/jbaosICy7LQ6XSwWq1IT0/3ECYW+lI8EKtZz7Fjx1BRUeFZ2RYpBFHlq6qqcOzYMSGKChssy+L555/3EGb16tXYvn37oiSM0EO20+lER0eHIK5dBSFKYWEhPv/887gvJfDuWI4w3N7axUYYhmEi33PDg76+PrAsC4VC4RMeCSEFMw788Ic/FP6MmHkQbHzOyMjAL37xCx/C7Nq1K+KtlPEAEcXEMqvX64NKkwVxSMwhEU7XCIaxsTGqq6sjhmGosbGR9wj7cCH06jOj0Sjo8XpDQ0MBp2tE02bBJArDMKirq8PBgweFKlIQZGRkoKWlBSaTCTdu3IBMJsOePXuiljBCz+yCub6IBjqdDo2NjZ6PgBTtdlUByOsB565rIY6EDRUjIyP09NNPE8Mw1NTUlDDn+QwNDZFCcWeFfDRvv9VqJZZlPecKCiH9BDkBjGaVI5ZlUV1d7eOVkOZZ5xBvSCQS/PKXv4TJZPIY7/bv3887NeXaG+t2+6+Zjebtb25uRl1dHVJTU3klSdj3Ey3T/Nlqt9spIyNjURys5HK5yGazUVVV1YJLGJvNFpXXRg5nzpyJySmlMT332J9EiXiyBQeOMCzLkk6nE7yj58PIyAhJJJKoyvA+91jovo7pSeqJcPh0uDCbzVRRURF3wgjh+qKlpWXOk9QT4qg4f5hMJpJIJAGiPJGlinfb/AnDTTNj1f7p6WlKSUmJOP/Y2BiJxeKQDtqOBIIRJVgHBnOMu9hgNpupvLycxGIxHTlyRJBTP/nIFo3KqFKpSK+P3bYSQZVZ/w5wOBxUUFBAR48ejbaaBcfQ0BBpNBpBCeOPSD1L63Q6UqlUgrfHGzEbejhwSlqoJ4UnOrwJ09LSIuiBlwzDzDnrCiaJBgYGSCqVCmZx5kPMiUJE1NXVRTKZLO4ziVhiaGiIVCoVSSQSOnr0KC9hwtFpMjIy5jVWepdnt9tJIpFQX19fyHVEirgQhYiopqbGdyc9JbZiGyoGBwdDIkwokEqlISujDoeDlEolNTY2RlxfOIgbURwOB6nVaqqpqYlXlYJiPlJ7EyZS75hyuTzAUMlXb0VFRVwnCoISZb7OnJqaovz8fGpubhay2oTCwMAAFRYWklQqDZswCoUiJF1u586dpFQq51R8F43BjQ8TExMkl8vvipnQXOCWDYRDmPXr18/rN06n01FeXl7c9b24E4WI6Nq1aySVSqmtrS2k9N7eFRYbjEYjFRQUkFwup9dff90nzv9+ONcXfPep1+tJLpcvyNf5uBOF64SRkRGSy+XU1NQU7yYsCHp6eig/P59Wr15NnZ2dQdOo1Wpe1xcNDQ2Um5sb82kwH+JGlGBvycTEBOXn5y9aBTcScIRZs2YNdXV1+cRpNBoyGAw+YTMzM6TVakmpVC6oeSFuG2qDrYlgGAa9vb34+9//jrKyspidMJFI2Lx5Mz788EMcPnwYzc3NyM3N9Zxy7u/6YnJyEqWlpZiZmcGJEydw7733LlCrIewKt0jhcDiooaGBZDIZDQ0NhayLLEadxb/NBoOBFAoFKRQK2rRpk0fxHRwcJIlEQnv37l2IZgYgIYjCwWAwkFgsvutnRMFgMBiIZVl68MEH6cCBAyQWi+e0uMb7JeE9NGGhMDo6iieffBKZmZl45ZVXwDAMb1qKwfk2C4mamhr09vYiKysLnZ2deOCBBxa6SR4knNMPiUQCo9EIuVwOuVw+5w7Eu4kkra2tePPNNz1kSSSSAFh4HWUuEXrp0iUqLCykgoKCsL0ZulyuRaHDnDlzhvLy8kilUgV85+HcuIpEIi9Xn8U0TE63L/44tnPBiRIKOjo6SCwWU0NDQ1yNTUISzb+skZERqqmpIbFYHDAl9k5bW+LrvtTtF7jYz+V67LEoiELktrk0NjYSwzBUVVUVsCMx3tIj0vpMJhNptVrPqn9f24ivb30XXaTikrqAMuLlJNkbCaej8IFhGDz//POevTj5+fl44okn8P777wOIr75CcyjRxDM36O/vx5YtW6BUKpGTk4PR0VHs37//zgGeBNzxH+cu49LxdyBa9VBAWQ+vVKLvL1ejvo+wEFdaCoipqSnS6/UklUpJJpORTqejkZER3vThSAChpJPNZqOmpiZPG8NdQqmvLSF9N6ebOT1KieHQ03O6I48FEoIooTyYudIMDAzQtm3biGEYUqlU1N7ePu8CoPmU3UjJYrVaqa2tjQoLC4llWaqpqfH4/Q8HLhqmYj9dhPunr1XGfehJCKIQCfMWOxwO6uzsJK1WS5mZmSSVSqmqqiok4kQKm81GbW1tpNVqSSKRkFQqperqanrjjTdCK4DvtocNbjL4x5uOEwAvSRMfJJzBzRsUpUHNYrGgv78fvb296O/vx/j4OPLz88GyLPLy8vDQQw9hxYoVnvQKhcJj4CMifPrppxgeHvbEX7lyBaOjo/joo49gt9tx7tw5PPDAA1AqlVAqlSgqKoJMJgur3Z60hDsuOwnoPlyHXirxHI3Doe5REV7Gj0Dvvhxxv0SChCaKkOAeyHvvvQe73Y6LFy/CYrFgbGzME3/+/HmfD5MMw/h4K1q+fDmysrKgUCjAsiwKCgpi0FIXCBbPUcIeD9qXuiHKLgNK3CSJ9iUKF18YoiwWDL+pR85ju4LG6btN2PFYtuc6FmThK/NLonyJkLBo7ChfYmHxJVG+REj4/xrA6pAF2s91AAAAAElFTkSuQmCC"
|
<image>如图,C,D是以线段AB为直径的⊙O上两点(位于AB两侧),CD=AD,且∠ABC=70°,则∠BAD的度数是()
Choices:
(A) 30°
(B) 35°
(C) 45°
(D) 50°
|
35°
| 69,744 | null |
35°
|
"iVBORw0KGgoAAAANSUhEUgAAAG4AAAB8CAYAAACIRYVrAAAYeUlEQVR4nOVdf0xb57l+jpM7MtXJyb3zitWZkRRDXByppBA1UlkJi0noFg26oTDdUY1IlWhxpJKGqzEpG0RqJbJCStQk65RFJdK0sTsWky1dIHGE2SUSG9HIvbOBFLLAbIYztpUM2jiTOe/9w5yDj32OfWwf/6B9JMTxOd+P95zne7/v/X69H0NEhE8orPsZnLsOMAwDIgIDgLAPLrqGQtKAGIBJt5BxQpNuAZKJs9cIjRXApT+ugIjAEaGjkYGZ2Y9xhtYtacAnjjhO9IvgxB1YUW1eo+jY2etorLiB146cSrVwquKTQxwBoa8zfnkATMH2sKBP5ltg/+BuauRKEj45xEnUe/3XBlBZUbn6i1slF8jLM6ZMrGThk0NcCAjjuHqOwwtVhat3AsYIANy9Ow1LQV7aZFMD6584GZuYGf8AjPUFFNKaKjIA4PoVms/ZgzRxfWL9E8fzEkwgAX3911GwPS+sCrUerQIqXsWxKnOqJEwOKI3gOC7sOvie0rhirBBHLrIAZHMGhXHZCACh4tV4xc0opJW4ZMB5+S0CQAzDBIgK+uvoc6ZbPNXAEK3PkRMiAsOs1oOEKEMgHECa9TtMIoF128YJpAECIfJlUCPdFq5jbExHpiJtkXnG/3/w4AFu376NyclJeL1eDA4OCs+mp6cx95c5ERkGgwF5eQFTf2rqDp55pgTVX6uCsSAfJc8U47HN2kA+AJiompq5yLiq0uPx4MaNG7Db7XA4HJifn0dpaSlycnKQl5eH3bt3Q6sNfPxt27YhNzdXFH92dhYzMzMAgNdffx35+fnYuHEjPB4PhoeHYTAYUF5eDovFAovFguzs7FS/oirICOImJydx4cIFXL58GUtLSygrK0N5eTnKyspgMpmixpdTnKJnduHihffw9K4i4Z7L5YLD4RD+dDodampqUF9fL2jqukB6bCKihYUF+tGPfkTFxcVkMBioubmZJiYmhOdKuwVEK5J3OY6jLVtZ8nq9ks9oNXmn00lNTU2k1+uptLSUzp8/T4uLi7G+TsqRcuK8Xi8dPXqUtFotfetb36L3339f9Tw4jiOfz0dZWVkxxevt7aXa2lpiWZZaWlpoYWEhtnyDrhsrINsdUVokIyFh4pRqhtvtpoaGBmJZlpqbmyU1QU2Mj4+T0WiMK67b7aYjR44Qy7LU1NQUXVaZT/DKftBJ2x+JiMjZ10EIHRRIAAl3B+SsQx7Ly8v47ne/i127dkGv12N6ehpvvfVW0o2CP//5z/jCF74QV1yDwYB33nkHd+7cQVZWFnbu3Im2tjY8evRIOoLUJ+BcmLq2D1+pDgytmY2B9lOt/ldS+3F9fX3Iz8/Hhx9+iImJCbS1tUGn0yUzSwFerxfbt4fPxcWC7OxstLe3w+Vy4e7du9ixYwcGBgYkw1KIjTfx634w1hewEwwIwJHXX4TF2oGvmVXqfySqslJVpdvtJovFQkVFRTQyMqI4XqT7saK1tZVaWlqihgseI42UN8dx5HA4yGQy0cGDB6O2f7bORlH7FlpFcjJGlVKoXlXeunULu3fvRnl5OcbGxvDss88qihftfqzwer3Ytm1b1HB8fgzDCNck0UNiGAZlZWVwOp0oKipCSUkJXC6XbLrX+8/B5uRARLB1NuLFnRr0ja8IgwVMopVdQrSHoLu7m3Q6HfX39ysKr5Z2SaGyspKuXLmStPR7e3tJp9NRb+9/hz3jnJdEsxD8bEVjh23tXoLvrgpxfr+frFYrGY1GcjrDR+CTSZAczGYzjY2NxR1ficyjo6NkMBjCqmRbZ2MQSSvClFKHzaU47WhImLjFxUWqrKyk0tLSjOq4siybEnm8Xi8VF++imppDtPzPJSIK9OEu/THQhvHaBuwjl6jfkFgblxBxTqeTjEYjNTQ00MpKuCDp0DSiQGHatGmTqmlGehefz0d1dXW03fC4YIyszQdqkjJ5Gzdx/f39xLIsnTlzRk15VMHExASZTCbVCo7SdL7zne8Qy/47ORwORcMjiUgXF3FOp5NYllVshKQCwR+3v7+fLBZLSvPt7++nrVu30pkzZ0in09H09LQqQ1tyiHk+7u9//zuqq6vx5ptv4sCBA4mZtCoiuBvhdruRk5MTcd5PzXwHBq6jtrYWP//5z3HgwAEsLi6iqqoKIyMjwhRUODgkNP4RC8t+v58sFgtZrdYklSN10NraSsePH09JXnyTEVr71NXVUXV1tfBb6OirlG9MlDc3NwMATp8+Ha0wxF+SEgCf7+zsLAwGQ9LzGxgYEGlaMH784x/D6/Wira0NQMjAghqfRynD3d3dZDQaY57qSAcqKyuT3v4Ga5qc8eJ2u8lgMJDNZpMMk5BxosRiGhkZIZ1OJ5roJEqfuS+FYFlMJpPkQIBaGBgYUGycjY6Okk6nI6fTqXhcVAlEGie1KJUvNZlkQUaDVquNufOt9EPKtWmR0NvbS7m5uarWVhGrSo7jyGKxUHt7u+SzTMTi4iJptdqY4ih5F47j4iKNx/Hjx6mmpibmeHKQJY7jOOrp6aHi4mLy+/3CvUxEcNXjdDppx44dqueRCGlEgdEVk8mkWs0FImlClpaWyGAw0OjoqCoZpQr9/f1UWVmpeppqDDjY7XYymUzk8/kSlkkTZqqu4sSJE/jqV7+KkpISFWzX1ICIMDMzg5ycHNXSvHbtmqzJHyv27duHp59+Gh0dHYkLJsXm1NQU6XS6jBrtVwKO4+j48ePU2tqqSnpqaVowvF4v6XS6hBdLSXbA33zzTVitVrAsG4nwxEuNymAYBh6PR+h8JyJjpM51vCAiZGdno66uDu3t7QknJlki1pu28bBYLAlrSCz9tHigxjcO07j29na8/PLLEbUtk+HxeML2EwDKtW9gYACHDh1SVdNCkZ2djW984xt4++23408kmMWFhQViWell25mKUIs4KysrrCSnop8WK6anp0mn09HS0lJc8UXdga6uLqqvr1dPuhQgmJS//vWvxLJsXOmkkjQe1dXV1N3dHVdckcYVFRUFZm/XKcbGxshsNsccLx2kERHZbDYqKyuLK65A3NjYGOXm5qokUnpw5cqVmDvfyTZEIsHv95NOp6OZmZmY4wrGycWLF/Htb39bjbY3bZAzTOSQCkMkEjZs2IC6ujq89957sUfmGTQYDBk9baMELS0tijvf6aoeQzEyMkImkynmeBogsCPU7/eH7f5M9nqNsEKUYHylGz3UHMZKFCUlJfB4PLh//35M8TQAMDQ0hLKysqQIFgtiKSYk0S+7d++eaMmCVJh0V4+h2LBhA0pLSzE4OBj+kJMvyhoAGBwcRHl5edKEUwQK+R8FDMOEhZ2bmxPtiQuuMYgoKcNYamDv3r1wOBzhDzRB8oc+IyLS6/Vh7Vu6ELFVDXko1fmWmzLJlDZNCmvtnPJl6ZiZmSGdTpc8qZSCi2XxTPgLer1e2c53JpNGRMRx0iM+UvvIseqPTDM9PY3CwsJQRUw9ZBxbuy53CnvXGA2DiiOdkFpIOj8/L2mYZJIhIgeGAZ566ilMTU2J7vM+pW1OAgX63HD2dcBSkAfN5OQkCgoK0iSyPIgIndYK7Ky+ChcFNghynAsrZ5tXyRNjZmYGer1edC/TDJFIMBqNuHPnjugeYXzVp3TAv3Rnpw2FVS+gcvuT0ExPTytyApNqnDqyH81T+SCyo3BVFxkU4p2+DtjPXsV4SHM9Nzcn6nxnqiEiB5PJhKmpOwA4wRoev3wVBZUWAEDfqR8CxgIwKMSxY1UBjZMjjtI0Weq63In/+uEN2N4+qziOx+MRqsr1RRoHQoA4l2sCII1gDU/d/RN+eOxFaBgGXz92DnnGQJNG0EDj9Xpl3UqkqgNOEBeSc2ebsa/xLZHbed41/dTdPwVkCypTRIR79+5Br9evM9IAQAMGARcdbrdb1NDz+8g5IlgrLMgvDLw0A0CzvLyMzZs3p0VkHsH0ECbxwXVGwmdywCC53n8OFusLeCqoUDEMA6/Xi4WFhXVG2hp+//vf49atW7h7d9Wt/ngfzuHV1cLLIe+Fr8DMaNYKuF6vT+vEaVgXYHW/dJh7CY4jZ98p0bPgENnZ2aTVajPW5JfHCvX29pJWq6UvfvGLwl3xPvIAOCJhpxS0Wi0tLy+nUNAQhHaqV/dMh7rh5e9brB2i+3a7nQwGAwGgH/zgB8mWVhUEDxz09vYSy7Jk++UlMhgMwvdorAgvvI0Va54bgPT605ZER2OFsG+a4zhBCwOkiTvfPGkMw9Czzz67FidDESxbd3c3sSxLN2/epMXFRWJZVvD5tfankXR0kxHESX1o635IChy6ZTjYafaePXtSJnOi4EnjXXrwxElB6vtg8+bNcS9YURPRtWRFFI4fxmpvb6cnnniCWJal4eHhJEupDkSkrQTeh98VJT/uJ65p0m6cxIPQ5QZdXV3U0NCQZqmU4d133xVpGg/eU4RSaLRaLZaXlwEAD//lE/5SDYpz3SMRqeIpLxU4ffo02tracPPmTRQVFQn3iQjLy8t47LHHFKel0Wq1WFpaAgB89jObAACb/i1LVYGjgRR4RyCZ+TSGYcImUNOFSIWvq6sL7e3tGBwchNksPh6GYRh89NFHETw0hEOj1+sxNzcXllAqoSS/SKP8qdqsHw1y79HZ2YmTJ09icHBQdnjR4/Hg8ccfV5zXRpPJhOnpacmHHz96KAjz2c9sElWhvHby9/jfPKTCKnkmFc5ut+Ol/6wTSAuNPz8/j23btuHhv3wiOfnrSHkkG21tbeju7o5IGgBMTU3FNr125swZevnll4VG7+NHD0WNYKTfSq5jeSZ1f2BggNj/2CoYIqHhlx9+RBs2bKAP/7lIHz96KDwPvU41OI6j1tZWys3NpXv37kUNX1NTQz/5yU8Up68JTCdMKTIOpEpvMo0ZwRD5aY/s2OPf/vY3fP7zn8fWzSyISCRfKjUt9PudOHEC3d3dGBoaUuTwdHp6Gjt27FCeYejShY8fPQzrU8mV3GjaIvVbaRq/ev/XkssNQsMPDf+WiouLI+aTao1rbm6m3NzcmFYob9q0KaZtV5rc3Fxs3LgR/+v8P4HMeIwTNbXu2rVreOmllyTbtFDMzc2punU4URw9ehRXrlzByMiI4lXVv/vd77Bt27aYtrZtBIDnn38ew8PDKCgokKxe5Br5UENA6j7/m1ZNfjkjBwiQ/9vBIcF6fL68LCzf0Pj3/+IVDBM+jWDDSepaDZBEF+bo0aPo7++Hw+FAdna2Yidwg4ODMa9r1QDAl7/8ZfyP47dxvdhnP7NJlmz+L/QFgp/xICIRaQcOHFCU9uzsLLKzs8PSlLtWC6GEvPLKK7h69apAmlQY/j1DMTQ0FPu6VqLAcIter5etT1PRRsS7hK62tpZ6enqSJJUy1NfXU1FRUVyeg/x+P2m12piHHSNu+uBN6mQTFy9pHMfRnj170jq4zJO2uLgo7WgtylkGCW36AICamhr09PSIVFmqSlMbiax7DPWykGocPnwYt2/fhsPhAMuyklVjpDaOYRj09PSgtrY29sx5BqU2NiZ7QjLRFcZ+v582bNgguKwKRjJl9/v9VFNTQ8XFxSITPtY8gzc2xho34lbiZL68GsvCZ2ZmIrbNyQBP2pe+9KWE5zET2kocTE5XVxcdPnw4IWGUINHtu7zMIyMjKZ315kkrLS1VZfJZtc37ibjLSKa/R7m0e3p6VHUlGAk+n48OHjyoGmm826140xLtntDpdDh8+DC6uroEI4UUjGFSAvNpSiCXttvtTolh8ujRI1RXV8Pv98Nut8c0byb3/To6OmC1WmNKKzRhEdxud0R3RfG2e8nY6tTU1EQdHR3RAyYAn89HlZWVVFlZqYq7QqK1LWGJfOOw/UoGgwEHDx6UdVcUzzhmshyaReoKkAr7HpaXl1FdXQ0gcIhhVpY6KwNOnjyJw4cPy45NKvrGUmzy7orUcMSWTD8ie/bskT1YMFEsLS1RaWkpVVVVqaJpvBZFcnsYS20mu6iyubk54ZVTyd4Jqtfrye12q54uT1pNTY3qfcTa2lp64403ZJ8rTVuWuKWlJdLr9ZKufZUknmzSInW+E0E00hKB3W4no9GoigZHXMb8s5/9TORMWylS4WZpZmYmsIBURSwuLlJRUREdOnQo5neOVph5Z9pXr15NREQBUdefy7mvl0OqNsoPDw/H1fmW+8A8acnyHpgy9/U8lB4YkWp/jz09PVRbW6tKWg8ePEgqaSk5MEKqRMod0RKMVLukaG9vp6ampoTT8Xq9VFRUFPdQX7QqcnR0lD73uc+pfmSMKocipcOPiNVqpdOnT8cVN9g0N5lMSTtWLfhQJKn8E0FMe6yamprIYrGIGu50+Xusqqqi3t7euOPPz8+TyWRSRWul4PP5aM+ePaq50g9FQgf/pVLTQktpcXFx3J1vt9utiLRENCP04D810yaKkThnXwddvHmfjEYjfe9730uppoW+qF6vp/v378eczszMDOXm5oad3S2XTzx44403yGw2J3XfociZtrzQK8SRi/at7gzlD7e9ePFi1AySMRnr8/ni6nzzpMVafYW+Q6R3stlswuG2yUSAONnH/CHkRJ3WRqqoqCAXccRReo+T5gmQgtxH5eN8//vfT4pMHMdRe3s7sSybEofk0bsDXMB1Q0ffJdrHlItOj+cPcLdaraoPD0WSy+FwUGlpqeK4ExMTlJOTk7ChECxD8LXP56P6+noym800NTWVUB5KETatE+qcExN9uE4VOJbP4IbFFPCrtTpjYjabBacq+/btw4MHD5TMRkSfspBAsFwejwdPPPGEorwmJydRXl6OY8eOoa2tLaHpHibEKQ4Q2HTy3HPPYXl5GSMjIzAajXGnHwsE4qReh2EYHDlnx9lj1QAAS37+6oO1SCzL4sqVK9i5cydKSkrgcrkiZqjGpkmPx4Mnn3wyarg7d+6gvLwcLS0teO2111TLn8etW7ewa9cuVFRU4Be/+EX8s9nxYE35wp132jobBVcUjIRzGB58tdHd3U16vZ4GBgZkw6hhrDQ0NFBXV1fEMGNjY6TX66OGixe9vb2k1+upt7c3LX5V5LsDLpvIJZGzryPwmyOK5IL21q1bpNfrI845JYrq6uqw0YhgjI2NEcuydP78eeGeWh/X7/fT8ePHKTc3N6knH0eDNHEu25pnHwq8dJhvKZnvwHEcud1uslgsVFRUFLGTHO/HjJQuT1q8y96kwMvpcDjIZDLRwYMH034eOsRV2Ap1NlqE6vGy008ciX0Di6vLyM6fbTYb6fV6amhoiPiisRIoN/WfDNKIAmOadXV1lJubmzFO3qKPnKwkVsUsLS1RS0sL6XQ6am1tTZhAn89HWVlZYfeHh4dpy5YtdPHiRdWqRa/XK5Ld5/NljJ8wMXFJlMntdlNDQwOxLEvNzc00Pz8fVzoTExNhne/h4WFiWTbqoLPSj+52u8lqtRLLstTU1JSRnpcia5zceyZAsNfrpaamJtJqtVRXVxdz1eNwOETr7YeHh2nr1q0xzxRIDWNdunSJvvnNb9KWLVuopaVFqB0yRcuCkTbXeQsLC/Tuu+9ScXExGQwGamlpUXRoRXd3tzDzzQ+7JTK943Q6qampifR6PZWWltL58+ejLkvMBCIZIsH3Yco9CvGYnJzEhQsX0NfXh+XlZZSVlaG8vBx79+4NcyFx8uRJLC4uYu/evWGLbJW8g8vlwtDQEAYHB+FwOKDT6VBTU4P6+nrk5eUpTifdEIgDJAQmxHZSURwIzdPj8eDGjRuw2+1wOByYn59HaWkpcnJykJeXh927d2NiYgInTpzAmTNnws68m52dxczMDIDASuTR0VHcvXsXbrcbw8PDMBgMKC8vh8VigcViEfZrrzesEsdB6vSMNUR7njw8ePAAt2/fxuTkJObn5/Gb3/wGf/jDH2A2m/GPf/wDHo9HFN5gMCAvLw8Mw2Djxo147rnnYDAYkJ+fj+LiYsXDUpmudSKNy1yIC87s7GxMJzN+EpExxHGgVQ/80khBrb2ukJ76T4TAQRBhpNHaFFDfqVehYRhsYDRg9jeCMA7rkbcSPuFxPSMDiJMRgQFo8jIYhsHZPxlBRFghDtS1HxrGDGzf8anWwI3pFiCAcOOHMI4DhS/C0ngK188cXXtQWI2ORguQl5oJy0xFhhCnQSh5l0+dhZ2xwHW2KSx0Xl4BmIIMOPMujcgY44QHEQHMBPYzZhR0/hJnX/+6bLhMNteTjQxo4wIgImH9BDP+AewAnsxbGzUJLV2fZtKADCGOsEoEw4kIEVmamVUxpB0ZQdzaWXABcaiwABYE3N0SrQTC8IROXEZHnzPlMmYcUjigHRkhA+62zkZiQk61cvZ1iA9L+pSC47j0Tesogetyp+hgJKnTrD6t+H+jutplQ4eLdAAAAABJRU5ErkJggg=="
|
<image>如图,AB、CD是⊙O的直径,弦CE∥AB,CE为100°,则∠AOC的度数为()
Choices:
(A) 30°
(B) 39°
(C) 40°
(D) 45°
|
40°
| 69,745 | null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAAI8AAACOCAYAAAAIP1s2AAAdZ0lEQVR4nO2dfXAT1733v2vD9XBRr5rJMmxi9SrFMhbIDEpMHkQrRuJBJmbiNnJhBs/EM3EnPNdgk6mbuBcz9Qydxm3oRBQ6Beo8ZibOAK2ZUGQuTlCDGItYbkxNSu6NZJnYBFP33pjHvjd27E6VIOv3/CHvovf3F8vWZ8ag3T179uzZ7/7Oy+/sOQwREbIYIgLDMCG3o2FychJ2ux02mw3j4+Po7e31OW632zE5Oemzj+M4lJSU+OzTaDR4/PHHsW7dOmzcuBFisTiq9MST5oUAk+3iiZXJyUlcu3YNPT09GBoagtVqRX5+PrZs2YLi4mIUFhZi27ZtPufI5XKsXr3a5yHfv38fQ0NDQhiXy4Xe3l6Mjo7i7t276Ovrw7Jly6BSqVBaWopt27ZBp9NBLBan9X5TyaIXz5dffgmLxQKz2Qyz2QyHw4Ft27ZBq9VCpVJBqVSm7IHyFs1qtcJisaCnpwdKpRLl5eXQ6XTQarXIz89PybXTQdaLJ5jJJyK8++676OzsRFdXF9RqNbRaLbRaLTZv3pzWtPjT19cHi8UCi8WCgYEBVFVVoaamBtu3b48rvoxCiwibzUYNDQ3EcRzpdDrq6OigmZkZIiJyu90Rz48mTDKZmpqi9vZ2UqvVJJFIqKmpiRwOR1rTkAiLQjxGo5HKysqopKSEDAYDjY2NZTpJQQknztHRUWptbSWZTEZbtmyhK1eupDFl8ZFV4vHP/N/97nckl8tJo9GQxWJJ6bXSiclkIpVKRUqlkoxGY8bSEYmsEg/Pm2++SVKpNCWiSYRoBed2u6MKy4to3bp1dPbs2YwKOhgZF08sGWK1WkmhUCw40aQaXkRlZWU0MDCQ6eQIZFw80TAxMUF79+4ljuPowoULmU5Oxujo6CCWZamxsZGmpqYynRzKy3RrLxKnT5/Ghg0bwLIshoeHsWvXrkwnKWO88MILGBkZAeDpuDx//nxG07Ng+3nu37+PPXv2YPny5fj1r38NuVweEIYWej9ICvnoo4/w0ksvQSQS4cyZM2BZNu1pWJCW55133oFSqURVVRWuXr0aVDgAlpRwvN9xIoJSqURvby/UajU2bNiA69evZyRRCwan00mNjY0kkUgWVMUwk0TToLBarcSyLLW0tJDL5UpDqjwsGMszNDQElUqFkZER2Gw2bNq0yec4+ZWu/tuLlWis67e+9S04HA7BEt27dw9A6vNoQYjn5s2bUKlUqK6uxuXLl4M6Kv0zcSkVWZFgGAYsy6Knpwc6nQ4qlQp2uz31eZQ2GxcCs9lMLMtSZ2dnppOyaGhvbyeWZemDDz4gIt+iL9TveMioeC5cuEAsy5LZbM5kMhYlRqORWJYlk8mUsmtkRDxut5s6OjpIIpHQrVu3wobLEZlQ+dTf30+rV69OWcdq2sTjfYMdHR0klUppZGQkXZdfsthsNpJIJCkRUMrF4/9WXLhwgSQSCY2Ojqb60ksa73x3OBzEcVzSi7C0Flt85ThcUZUjNfB9Qf39/UmLM23i6e/vz1WOMwRvhfhKtM1mS0q8aSm2hoeHSSwWL2mP+EKhvb2dVq9enZRqQ0odo0SEr776SugAPHjwYKoulSMGDh06JHzRwX+9QSE+JAjX0Zhyr/q+fftw7949XLlyJepE5UgtbrcbGo0GarUar732WvwRJWy7guBdxkqlUpqYmEjFZXIkwNjYGHEcl9CIzJTVecbGxiJ2AubILFarNaGXO2XF1tatW1FTU4O6urpURJ8jSRw5cgR9fX24fPlyzOemxKv+xhtvQCQS5YSTBTQ3N2NycjKuIa1JtzyTk5PYsGEDenp6Qo4AzJEZyKuh4v375s2bqKqqgsPhgEgkijq+pIvn+9//PjiOS6wWnyPt7Nu3DytWrMCxY8eiPidp4iEi/PGPf0R1dTVGRkZQUFCQjGhzpInp6WnI5XJcuXIFSqUyqnOSVudxu92oq6vD8ePHc8LJQsRiMV599VXs378/6nOSJp6zZ8+CZdkl/V1VtrN37144nU50dXVFd0Iy+gtcLhfJZDLq6ekR9uUGcmUnRqORlEplVGGTYnnOnj2LwsJCaLVaYV/O/ZCd6PV6AIjO+iRDrTKZbElNPLDY8C8l+PmOIpGw5enq6sLjjz8OjUaTaFQ5MoR/KaHX6zE3Nxf5K9REVatUKnNWZxFiNBpJo9GEDZOQ5bl58yYA5KxOFkN+38Dz6PV6jI6O4s6dOyHPjUo8FKIf8be//S1qa2ujTGaOhUi4hk1tbS3OnDkT+lwKpYwIzM3NQSKRYGBgABKJJJ4ocixwhoaGUFFRgdHRUQCBg/jiLrZMJhOUSiUKCwsTTmSOhYlcLsdjjz2Gvr4+AIFWKm7xnDlzBtXV1UHNXpzGLMcCpLq6OmTRFVexNTs7izVr1uDTTz/FypUrcx2Ci5jJyUnI5XLcv38/YKmDuCxPX18fysrKIBKJcsJZ5LAsi+LiYnz44Yc++4koPvEYjUYfV0SOxY1Wqw1wVzAM4xEPX2417GDAML5/Ry/ZAyK7fv36IhSPO2BPYHnuFvYvpVqdVqtFT09P4AFPX+EcEXl8HPXlDB01ej5H/dj4OgEgo/3hPHfj4/9FIpEorXPfpZV5N4+Pv2eJDxCYmZmhgoICYREYnvlia/4/xoHbV/83dujXAwBK18rmFeY5TgAslvehVqvnK0+Bb2v2EfweGMbLtvDVugBzsxjuPzIikQhPPvkkrFarz36fOs/gpSvIr9+J0vncamisgq7BAL3Cs83AjZ6enkVWZOX5di0IQskLFMv8MRJEsyCmdEwLWq0W165d89mX550/IyOf4r1TTUJ9Z8dxwtUTr3gHx40bN6BWq4XtxQCDIC1GBvDZTQBvaZhFct+xoNVqMTAwIGwTEfK88+fqe6fQZSe4iWA8Wg+9gkGXnYQX0PnVl3A4HFAoFGlNeMrxygT7paPIYxjk5eWBYRiUHzgqhCFaut0Scrkct2/fBuDlphBqP3YjoXy/sOkmO+kAqjcYhX0DAx/SP/3T18npdKa2hpYhDPU6ArbTx/M1ZD4PdA0Gv5BzS7ISXVBQ4LNgimB/u0xXUf/MDgim2f4JzADWyIoF9U1N/Q9ksjVQqVS4di1I0y2LOdpQjqbhYhCZoZg3tQzW43iXAeaTVzDoUwHKQ7CSbrGzbt06fPLJJ8J2Hs1XFt+7cgo7duoB5IEwiPLSKgDbsfO59UJgu92BLVs24/jx43j22Z2orq7G/fv3fS5AWejXsl86iqZTZhiPnQTgDt5rvoSLLJ7S0lIMDg4K23mD//ZLMAyD35gBvcJTUc5jFDCX7weRGeu9XrHh4dsoLi6BRqPBuXPncP78eZSUlOBXv/qVECYb3RUnTjVB12DAcwoG/o2A4Tufen7wTffsezcSwtsYFBUVCUs2AUCe4rlXQG4CEcHtdsHtdnt+/+FkQER37twRvj/ftWsXTpw4AafTiY6ODjz11FO4ceNG6u8myRAGMfIeUFFeEbQkumo6BV3DM1gPBu6lphz4GoN169ZhaGhI2Pa8ZgwfMF8I7KlN+0Y0Ozvr+RB+fn9DQwN+9KMfQSQSYf/+/aisrMS+ffswPT2durtJMsygp25XJPMUz95vmv3SUZy6CjTsbwIA5IFZknUdHpFIBKfTKWzP2+gQPaWM5xifobOzs/hH0UoQSNj36quvQi6X491334XD4cCKFSsgk8lw7ty5FN5G8qD1a1EO4M6ww7ODn0UCg2jUN2F7/etCJ6ln/9LoVQ6GSCTCzMzMwx2xNNWk3/jnoLNoulwu0uv1tHfvXiIiGhgYoKeeeorUanXSpm1NJYZ6nW83he0iIWgTnZZkE53n1q1bPl+TxiSeVatW0/j4eNBjTqeT1Go1tbS0CPuOHz9OLMtSc3NzgFNtoVFfLjjLCQBdsvmqxC38s/TgncQOh4NkMpmwHw8zZC5iJCKRyFcEfpk5NTVFCoWC2trahH3j4+NUU1NDEomEuru7401/mgiVB3NkNptJLl9LSqWSrFbrfIZGzrPFBD/PJE9MlieaUu6vf/0rSaVSnwm73W43WSwWksvl9Mwzz2TluhNyuVywSiqVKtPJyQhTU1MkFouF7aR7+AoLC2EymdDY2Ch8rsowDDQaDWw2G7Zu3YqNGzfiZz/7Gebm5pJ9+RxJhkJ8FMjviJqAYisM/f39xHEcffTRRwHHRkdHqbKykuRyOV2/fj2WJGQMT7ElF4otoqU1jYzb7U6s2GJZNuycvf6Z2d3dHXZ5pO7ubiosLKQ9e/aErIhnmmQuq5jt3Llzh4qLi4XtmIqtlStX4m9/+1vI4/6uiWeffRZHjhyBTqcL8IHxx2/fvo1vfvObKC0t9XFzLBS878l7JtGlyBdffIGVK1cK2zGJ55FHHsHnn38e0wWff/557N27F88++yxmZ2cDjq9cuRKvvfYaLBYLLl68iE2bNgkTKEQiUw8xG/13yWB6etpn5emYxCMSiYJankgP8eDBg9BqtaiqqvLp3vZGoVDg+vXr+OEPf4idO3fiwIED+OKLL8LGu1QfYqaYnZ3F1772NWE7ZvH4dE/PE81DNBgMePTRR1FbWxtWbM8//zxGRkbgcrkWnJtjqRZXPLOzs1ixYoWwHZN4ioqKhKGI8XDu3DlMT0/j5ZdfDhtOLBajra0Nly9fxrFjx6DRaHy8udGQige91C2dw+FASUmJsB2TeIqLizE8PBz3xfPz8/H222+jt7cXv/jFLyKG37x5M27evInvfe972Lp1Kw4dOhS03hSMpf6gU8GdO3cgk8mEbR/xuB48/AuGXC6HzWZLKAEikQhXrlzB6dOn8dZbb0V1zg9+8APYbDbcvXsX69atwzvvvJNQGnLEh81m811PxL8t/+Cr0O38e/fuEcdxSekzGB0dDervcrvdYftTzGYzyWQyqqyspLGxsYBzvf/PkVz8B8DHJJ5gESSCzWYjlmXpxo0bMZ3ncrmotbWVWJal1tbWxfvp8wJidHRUMBz8yxm2zuNfjD34irCh9En8x78PBoSJdG6wYyVrFXj77bfx3HPPBa0Qh4qD3Pk4+K8/xo3+D2G1WlFaWorr16/D9cBTUfY+J1QRnCM2hoaGhMoyX58MK55ly33/X/4PDJ5++mn88YP3AXgezLLlnj/vh+S9P9Ix9be1+M1vfoPy8nKMjY0BeCiAZcuB/GW+rSbv89cU/TMu/9sV/PznP8f3a/8PXnzxRUz8v8+F9PJhcwJKHIvFgqefftpnX0ytLdcDQKP9NiwWi8++WB8O+TWj9Xo9WlpasGPHDkxPTwe4BHgxhKKqqgof226hsLAQitISnDzpGbwf6bwckeGflcVigU6nCzjoQ7A6D7/vwVdEn332mTDFSqj6Eb+fLxu9w/mf4719+PBhUqlU5HQ6ffZ7V4AjxW2z2UitVtPm//VtGhgYCHlPOSLD53GoKVYE8XgLxJ+vvvS0gPhjcrmc+vv7Q4oinEDCHSMiqquro8rKSnL+3RU0TLRxt//fN4llWWpsbKT/npwOvKkcPoRroZpMJp8BcEErzHwdwZ/l/8BgzvWw+NBoNLBYLEJ9wv887/2RjnnXaVwPgJMnT2LZsmU48NK+mOL2riwDngmobw/dwd///ncolUqcOxv7AqxLBfKbX9kfi8USfEWjaJXp/VabTCaqqKiIWd3R4nQ6SaPR0MGDB332R9N/E2z8TX9/PymVStJoNORwOJKb2CWASqWi/v7+gP1Rice/qJiZmSGWZWlmZiZlHXL8YPoTJ04EPR7PdQ0GA4nFYvrxj3+8aGf6SDYTExPEsmzQvrSo+nn8EYlE2L59O37/+9+nzIckFotx7do1vP7660HX/I5nYNYrr7yC27dvY2RkBCUlJTk3RxScO3cOu3btCpiDGUB8Sya53W7q7u5OadHFX8fhcNA3vvENMpvNAccinRuOcG6OHA/ZvHmzMGbbn4jiCfUQXC4XcRxHf/nLXyKGTZSBgQHiOE5oeieCdxqdTicdPnyYWJalI0eOLEk3R7hnNjg4SFKpNOTxiJ2EoYql/Px8VFdX4+LFixHDJsqmTZvw5ptvoqqqKuz6T9HgncaCggL85Cc/wc2bN2GxWLBx40ZhkY6lQrhndv78+fBLYiWi0oGBAVIqlWnzYnd2dpJUKo3qS4t40mQ0GonjOKqpqQn7lUgyr7mQkUqlNDIyEvJ4TO4Jf5Vu2rQJAPD+++/HEk3c7NmzBy+99BIqKioiDgqLxwrq9Xp88skn4DgOMpkMb7zxRkznL6YBaF1dXXjiiSdQVFQUOlCi6rx48WLEtSiTTVNTE+l0uqQ2t/2tBu/mUKlUSalrZRv82rH++eK9nbVLY9fU1NDu3buJKHRxEW8x4n1ee3u74OYINo4p2dfOBPEujZ0U8XR0dJBGo0lrhrlcLqqoqKCGhoaAY8lOx8TEBO3du5c4jqPOzs6kxr0QUSqVZDQaI4ZLSDz8Q3K5XBmxPjMzM6RSqai1tTUt17NaraRUKkmn0wVUJLPJ0oTj4sWLPhM4BYO/16RYHiKit956K+11HyKiyclJksvl1N7enrQ4IwmBd3O0tLT41LuyWUB82pVKJXV1dUV1TtLE43K5SKFQRGXuks3o6ChJpdKg107VAx0fHye9Xk9SqZRMJlParhtI8iaY6ujoiGnuoaSJh8hj1qVSKX355ZfJjDYqbDYbcRwXsis9FbjdbsHNodfrMzbTh7dM4xXt1NQUSSQSunXrVtTnJFU8RES1tbU+8xKmE4vFQhzHpX0SzUy7OZJh5RoaGqixsTGmc5IunomJCeI4LmzPZCoxGo0klUozMnXdyMgI6XQ6UigUabOAyRDOrVu3SCKRCMNMI307x5N08RARtbW10TPPPJOKqMPC33BbWxvJ5fKkfV/mf41IGXvhwgXiOI5efPHFuNwcCRHhmQfr9FOpVHF1QaREPEREarXaZ1bUdNPa2koqlcpn0HY6W0MzMzPU1NREYrE4bfngdsdeXB45coQqKyvjul7KxMPPXxdLBSzZ1NXV0Xe+852gdZB0CenPf/4zqVQqUqlUKcmL+nIQA985pIHtZPcyQaHulW/g+FvHaPMmZeIhelj/SLvp9mL37t1UU1OTlLgScXe0tbURy7LU1NSU5AnN56i+HGT0mnT8aEM5gdH5CMifsbEx4jguoY7dlIqHyPP2xzPiMFmWwel0klarpebm5qTElwipcHO4yU7bywNdNPXlIZY/IE+fnFqtTjhPUi4ep9NJTz75JB05coSIYhNFsgQ0MzNDCoWCDIbgmZlurFYrKRSKoG6OWLFfOuoRiV9WGerLfdbT8Ka5uZnUanXCXQopFw+RpwkrFovpwoULGevCHx8fJ6lUumAcmw8ePCCDwUAsy9Lhw4ejGF7i6Un2zz1DvY4MXZ5+Le+8NR7dRyivC4ilvb2dOI5LSldGWsRD5Pl2atWqVQED2UORCpGNjIwQx3H0hz/8Ielxxwvv5pDJZEHdHMEQ5iEiO233qxzzGOp1AcWW0WgklmWT1omaNvEQeb5YePTRRzPaAvMfTJ/qCaGijddkMpFUKo3NzWE3Bq/X2I2EPEawSESeopJlWeHjvWTcb1rFQ+TpQAs3K3w6MJvNGe0FD/XgnE4ntbS0EMuyAfWzYEs2GY/W+yxd7na7aY7cnuWfvOo7DoeDOI6L2rJFS9rFQ+Tx3kqlUhoeHs7E5Yko8mD6TA6vCOnmcHv/tFM549tEJ7vR08/jJRy73U4SicRnFaJkkRHxEHkElOlOxOPHj5NCoUjpQnLBRBitMDs7O4njONq79198+spsXQa/TsGHf95FFb94TCjhJPqCZEw8RJ4ijGVZunbtWsbS0NzcTBqNZsF+uz41NUWNjY3EsmxMA974ynG4oiqrxUPkqX+sWrWKOjs7M1ZUvPDCC6TX6zNy7Wi5desWqVQqUqvVEa01P2g/2MwWySSt4gkljoGBARKLxUJHYrpxuVxUWVlJdXWB/SILjba2NhKLxSHdHC0tLWkb05Rxy8PjcDhIqVRSZWWlz1CKROoMscAPpj98+HDS4042ExMTVFtbSxzHCUNvJyYmSKPR0JYtW6JuyWZlsRWuqdrY2EgSiSQjH9p9/vnnJJfLMzqUJBZ4N8fmzZvpkUceoZaWlrSOYlwwlseb7u5u4jiOjh8/ntbrut1uYWZ6o9G44L+GcLvd9NOf/pREIhGJxeIo3RzJY0GKh8jTba/RaJLiPIwVvlMt3d+hBSOUgPnPoSsqKmhiYoLGxsaosrKSZDJZ1C6gRMm4eCK5B3hHXktLS0r7Y/zp7e0ljuPIbren7ZrRMDU1RU1NTSGHdfBujt27d9P4+HhK10jNuHiigR8HwxcnPKkuViItsJtq/O/v7NmzxHFcyO/meXg3h1gs9nFzJDqbmj9ZIR4evoKo0WiEIiUeAcVyTnt7O8nl8oRHQ0Z7zWCWmJ8HuaysjP70pz9FfU2Hw0EajYaUSmVK+nyySjw8vG/MW0SppLW1lcrKymh2djbl1/LGZDLRli1bSC6X09mzZ+OOh3dz1NXVJXVIcFaKh6ezs5PkcnnUIor2e6RgNDQ00M6dO9PSFDaZTLR58+aoZ6uIhnjdHOHISvGEmk9GLpeTwWBI2eymu3fvpj179qQk7tHRUWptbSWZTEZbtmxJ2vCJYFMBlpWVkVqtjtgLHelFy0rxeON9g3a7nRoaGojjONLpdNTR0ZFwC81/9lSdTkdNTU0JxckzNTVF7e3tpFarSSKRUFNTU8wz1MdrSfmvOZqbm32+FI2FrBcPj/+Nd3d3U01NDYlEIqqoqKAjR47QBx98kHDcMzMzpFQq4/bDWa1Wam1tJZ1OR2KxmGpra9PWL+PPxMQE1dTU+Lg5YiErxRPLG+J0OslkMlFTUxMplUoqKCgQxGSxWGh6OvYVcT777DOSyWQRK7ETExNksVgEseTn51NZWRkdOnSIzGZz0upPibY4LRYLyeVyqqioiKlbgiFaWivNT05O4tq1a+jp6cHQ0BCsViuWLVsGlUqF4uJiFBYWQqvV+sxsKpfLsXr1ap94+vv78d3vfhfN/3oQZU9vgsvlRm/vddy7dw937971ibe0tBTbtm3D9u3b8fWvfz3Ndxweml/xZm5uDgaDAQaDAY2NjWhqakJBQYEnDIBg87wuOfHwmeXN5OQk7HY7bDYbxsfH0dvbK4QjIgwODmJyctKTg/O5xXEcCgsL8fHHH+Oxxx4DADzxxBqs/No/YvWjq7D6MQ4FBcsR42KKGcaN//zPz3D69GnIZDKcPn0aGs1W+NwDAQRP3iw58cSOG0BeyDWp+vr6cPXqVWGbF1x24blHHoYAmr/V6upqlMjlOcsTNz522zejQ5n0kFFFWBgt7fjdAAFAlGnMJpuaOXzy0TfLBi8dQ5edhOIsGN7v54ISDhCgfAaBaTQerfcUUwwDZkc9CINoaDiaE0/suAF4BEEYRKP+Zc/uMJrwfxhZY+wHu8AwDE7dLfLcLxHcx8qRxyiANcVYlun0ZZpwxYh3pflhGM/7xjAMfnngJJjycqxVBBZf4YqzBWd9gkAYxA5FFXQNBlw98Yqwn1FUwVCvA2RFS0s8wYQS7kEyDOMRQRDLcenYAVC5Du6Ttz1h/c9NRoIzyKVfnoQZ22E/8XLAsaKitYBsfa7CHB1uEG9xAGCwCwdMDE5UEPIar8L93knf4LHWojPIw6Q+bAgQBrGDUWCt4RJOvvLdkLeTq/NEASHPU5Gc3z5wyowTLz8HANCVFAVWlrNEOIB3UvOE+2AGP4EZwBpZkU8YfzuTE08UeGuh65cNOHXyJPIYBoyiypOhWSSWsDAA3yDwr78BgcV3ePFEKtCW2vHBLlylcriJ4CaCrcuAtd8MYnmiZaHdHwAgD7R+LXQM8OnIMABPp6HAYBeOXrIDQIgKM1/IhXqjltTx+R5muxF5P7wKeu+UEGz4zqcAikLE49uZmLn0x36cwXo0vF4PfVMV1shseOU5BQDAfukoSk/eAb2n9wSco/Ce3aV+nMgzyxY8PfbzU5p4ZiCdfwxBJ1jivdaZTn8098fjdrt9pgDyn43D/z7/P1oqwWFRZAWSAAAAAElFTkSuQmCC"
|
<image>在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是()
Choices:
(A) 1
(B) 3
(C) √{3}
(D) 2
|
2
| 69,746 | null |
2
|
"iVBORw0KGgoAAAANSUhEUgAAAKMAAACICAYAAACLB1t1AAA2T0lEQVR4nO29eZwU5bX//67q6r2nZ4EZVleQHY3GDRVEVKJ4cY2aqMGFkGu+GsPv54bGmytRs1wBFQ3xa64xqMEFjIgGRTRGDEYFQQUVRBDFQWaf6b27uur5/tHzPFPdM4MIDNPE+bxezQzTW3XXqbN+zjmaEEIA2LaNruvqZ1dCtP60AflOmgA0G4Sdu880sSwLt88PmsZHH33CnHvu4ZFH/ozb5+G/brmVQw89mFQqxeWXX44QApfLRTabxTCMLj3+HnQNulbq9gC6243b5wNNY9WqVYwbN45YLEY0Eae2tpZwOMy1115LVVUVtm1j2zapVIrWa6sH+yG0YtWMqXgcr9fLu++9z+VXXMG4cROYe/99JNJZQkEfImtz7LFHs3LlSvx+P0CPVtzPUbRnzhcMAvDYY49hmiZ33HEHhmHg0wy2f7UDA40f/OAHbN26lV69elFaWorL5ermo+7BnqBoNSPAjupqJp45iZPGjuWee+6ntraWfgP7o2kaUuyEEGiapp4Tj8fJZrOUlpZ26Wfowd5H0fqMZipFY2Mjn3zyCcOGDcPtdjHwgAFs/6oG6RZ+8cUXQE4AJYLBYI8g7qcoWmF0ezwcfPDBGIbBiBEjEEIjGo0zoH9fmltaAKioqEDTNHRdJ5PJEIlEyGQyWJbVzUffg91B0Qojuk5tbS2HHnIIL730EqZpEggEyFpQXlbKkuf/hs/nxzRNPB4PHo+HcDiMx+PBtu2vf/0eFB2KVxiBgwcN4vSJE7n33rksWbIETROYpskf//dhDJcLl0tn8+bNyseVGjGbzXbnYfdgdyFaYVlW3s+uhN16yzp+z/1jCWGbbbdsWkQjzeLee+eIXr0qha4b4uDBQ8WTi54R6bQp0um0es3m5mZh27aoq6vr8uPvQdegaKNp2zTR3W5AY0dNDVVVfRGtz9E0DcMRQTc0NNCrVy/k57AsC7fb3aWfoQd7H0VrpnXDoG7HDkzTpG/fvui6Tm1NHemMhaZpxONJhBBYlqUEMRKJoOt6XqqnB/sPilYY0TQq+/Ylk8kAkMlk6dO3D8cffzyfbf2cQMDHV199pQSvqamJcDgM0FOF2U9RtMKYjMUwUymCoRCQyyW+++4aNn70Eddffz3vvLOafv36IYQgEolQXl4OQCaT6Qlg9lMUrTB6PJ4cUUIImpubKS8vZdasWZT37s20adO47777aGxsxOVy4fF4AKirq8Ptdvdoxv0U3SKM0qPTnf+Xf9R00MDl8RGNxkDTKCuroL6+nhUrVqALm9MnTODyy3/ElClTqK+vx+fzYZomlZWVaJpGKpXa55+pB3uObtOMmuPWBl3dMmmTknAZyWQagC1btjCgf18GHXowqWSCiRMnMnXqVH7+858TiURU9JxMJpVwtiYKsCwrj1pmmuY++IQ9+KYoUjOt4/F5SafTih42b948TjvtNDweD36/H03TGDduHNOnT2fKlCls27YNIYR6vNvtVsGNrutYlqUqMz1pn+JEkQpjDjIQaWlp4ZVXXuHwww+noqJCUcX8fj9HH300kydPZubMmcRisQ5fR9avbdvuId8WMYpaGAOBAKZp8s4773DUUUcRiUSoqKhAiFxZMBgMkkgkuOqqqzj22GP5xS9+gWVZpNNpTNPMI03out4T2BQ5ilYYTdNE0zQ0TeORRx7hxz/+MbW1tQQCASzLUlozGAzS1NTEtGnT6NevH3feeSfxeBy3243H42lHuNU0rUc7FimKVhilEMViMf71r39x/PHHI4QgFArhcrmUbwgQDodpampixowZNDQ08Je//IXm5ua813PmHnuEsThRtMIo6+MvvfQSxxxzDCUlJcRiMfr27Qu0CVQkEsEwDEKhENlslnvvvZctW7awdOlStmzZoh7nFMYeillxomiFUfp6TzzxBFdccQUul4vq6mr69+9PNptVkXI4HKa+vj6XJG+NkmfPns2zzz7LmjVrSKdzqSFnvbqnQlOc6DZhlEIi4WRnW5alzPRLL72kUjotLS34fL52r9W7d2/1u67r6LrOk08+yeLFi1m8eDGxWAyv1wvkNGnha0hNmclkVC28B/se3RZeSuEQQuRpOsj5i5lMhmeeeYYf/vCH6v9CCILB4C6xclwuF/Pnz2f8+PGEQiEmTZpEJpMhHA6TTCZzTV0ul/oJqLJiPB4n2Nqd2IN9h2410zJFo2lau7SLx+Phf//3f7n88stV0joajVJSUrJLSWtJmPjHP/7Bn/70J5YsWYLH41HlQ5/Pp+rY2WyWZDLZVR+zB7uIbk28SXMsNZNM2ei6Tjqd5osvvmDYsGFomobf76e6uprS0tJd0oyapuHxeLAsi8cee4wf/ehHlJWVMW7cOCzLwjAM1eZqGAaJRAJd1/F6vT1asZvQbcIoGeVOVrmu63g8HjRNY8GCBZx44omEWilkADU1NfTu3XuXhFFqT1mVWbhwIeeffz6ZTIbTTjsNyPmthmFgGAalpaUIIVSVpmcgQDdA9h/syx6YQmSzWWHbdt7fxo4dK5YtW6b+3tTUJDwej8hkMnm9L52hubk57/+NjY2itrZWnHnmmWL58uXqc6bTaZFIJNTjTNNsdyw92DcoitSOk0WTyWT4/PPPiUQinHTSSUoLJhIJSktLsSxLBRo7Q2lpqUp8W5aFz+ejtLSU559/nltuuYW3334bIQQejyePcmZZVk/bQjeh24TRKYDOvpXa2lrWrVvHEUccgdfrJZlMYts2mqZRVlZGS2sD/668fllZmfJL/X4/Ho+Hmpoann32We644w7WrVunqjoSPamdboRUkd1hprPZrEgmk0IIITKZjBBCCNu2xYknnihWrlwpamtr1WPfe+89ceyxx4p0Or1HZlQ+d/369eKiiy4S77//vrBtW1iWpY7F+frO3xOJhEilUrv93j3YObo16e1yuXC73aq1tKmpic8++wzbthk8eLDq+kulUkQiEfx+/x53/8nnjhgxgquvvpobbriBVCpFOp1WyXBN07Asi0wmk6fB/X4/Xq+3h0neReg2YZQVF5fLpU54KBRi0aJFHHnkkfTu3VtF2qZp0tzcrGbr7A1omsbYsWO59dZbufDCCzEMg8bGRiCX9Ja9NTIP6Swh9viUXYNuE8ZAIKBKgm63m2g0itvtZtGiRVx66aV5j3W5XEQiESorK1Wv9J6ipaUFwzA4+eST+dWvfsXpp5+u0kEyQJI5T8MwME1TXTSyetSDvYtujaZl1cPlcmEYBtXV1aTTaY499ljM1pnekOuDrquro7y8fK9NvCgtLSWRSKBpGocffjgzZszgsssuwzRN3G436XSaZDKpjkG6CD0TzroO3VqB8Xq9qgri9/uZN28ekyZNasfK1jSNmpoa1aS/t8ykfI9IJMKpp55KVVUVp512GgsXLqSyshKv16vGpchKUSaT6UmIdxG6TTMKIfB6vXmtpcuWLeP8889vxzfUNI1IJEJZWdlee/9YLKbG58l698CBA7n++uv57W9/qxq8dF0nEokoXmQPF7Lr0H2tqg76fyaTYcOGDaTTaYYPH45hGHmtBbquI4QgHA4jhNgrTG1JxrVtG7fbTSqVoqqqismTJzNixAjmzZtHTU0NQoi8TsOeNteuQ7f6jDKA8Xg8PPXUU5x33nkEAoHcgRXUraurq6msrFR+3t6ArEsDeWmdq666isMOO4w5c+awZcsWgsGg8mFLSkqAtmlnhReGaK1v9+Cbo9uEMRaL5SbRtnIZX3/9dSZPnqyICrIZC3KC2dLSgt/v3yc9z7quc+WVVyKEYMmSJUpLOyN5XdcVHxLahFO2xfbgm6NbfUbIpU8+/vhjIpEIRx55JOl0Wp1gpwasra2lrKysQ6Z3V0DXdW655RZM02TOnDmK4dOZi9DTk73n6DZhLCkpwTRNfD4fCxYs4Oyzz96pRmlsbKSsrAyXy7VP0iuyR/v666/nk08+4ZlnnsnzY9PpdJ45dpr8nvTP7qEofMZly5Zx6aWXkkwm2yWUpQ+WSqUoKSnZZ9WPcDhMNpvFsiwefPBB1qxZw6OPPorb7ca2bTwej5pSUdjg1eMz7h66tRwYCoX417/+RTgc5qCDDsLv96tqh4QQgkQigdvtVoK6r3yyZDKpNN6sWbP429/+xooVK2hoaFCP0XWdbDabd8w9kyt2D93uM/75z3/m4osvxrIsJWRO30vTNBKJBKFQCMMwyGQy+0Q7Sk0se2n8fj/z58/n4YcfZtOmTTQ2NioNWMiv7Kld7x66TRglAWHp0qWcf/75ys8SrYRXmU/UNI1MJqNSPvuq51kKmGmaeZru4Ycf5re//S2ffPIJ9fX1KjHujPJ7fMbdQ5cKYyQSaTfJIZ1OK8331ltvMXToUHr37q3GlTj9Lalhtm7dSlVVFZZlKaHsasikfCgUUhdGIBDA4/GwaNEiZsyYQXNzM5FIRD3HNE0SiUSH5ULp+8pbD9qjS4UxGAwqn0oSHGQJEOAvf/kLZ511FoZhoGmayuUVIpVKFRVTRrKLfvazn1FdXY0QgnQ6jdvtVpPTevDN0WXCKMkFkuniDDpkUCJr0fI+2V4gzbNENBolHA6rvxVDPq+yspKHHnqIG2+8kXXr1u00GS+Pt8eX3Dm6TBidbGip1WSqBGDVqlUccMABDBgwQPWdyHRJoc/V1NSkthlAcQijEIIDDzyQu+++mxtuuIHNmzcjhCCZTOYJZuGxOitLPchHlwmj1HbOmTqmaaoS2sMPP6wGOjmrF9lsVgUM8m8NDQ1UVFR01aHuFiTbaPjw4fzhD3/gmmuu4cMPP8Tn8ykfs6OLpkcYO0eXCaMMSKQwyqgTcizrN954g8mTJ6NpGj6fT2nNjuYoNjU15bUcFINmNE1TzRY/5JBDmD17NjfddBNbt24F6FAYe4Rw5+jy1I4UwEwmo8z1yy+/zBFHHNHhknJnzk6ezEgkktdOWgzC6IRpmowaNYo5c+bw05/+lLq6OnWMPf7irqPLhFFGlJLYIE9KIpHghRde4NJLL1U90DJgkWxq+Vz5HGfnXrHA7XaTSCQwTVNlCPr168cDDzzARRdd1NN/vRvoMmE0DINUKpXHF5T/f/nllznnnHNUK2rhFDLnThfIcRkHDhyIx+NR7JmuhvTtOrvJnKczWCktLaWsrIzf/OY3XHLJJTQ3N6vWWmfw1jOstGN0mTBms1l8Ph+2bROPx4Gcplu+fDljxozJ4wJ2BnmiJZcR9l1d+uvgTGybpqkS2eXl5QwdOpTbbruNn/zkJ2rjQiqVUs/p0Zodo8ujaZn0hlxQ88ADDzBlypRdEirpY9bV1Sn/sliaoQr9VilgLpeL8vJyhg8fzpVXXslll11GPB5XPm8sFssbjt+DNnTp8nPpC0oTpWkalZWV1NXVfe3wJuco5crKStasWcPAgQOLJhCQLa0Sssda9utomkYymeTJJ5/kvffe4+677yabzeL1eovmgio2dKnNk4GIYRh4vV4WLVrECSec8I18PjlmxBlNFwMKL1jDMNTFLLWkEIIpU6Zw/PHHM23aNNXm2jMepWN0mTDKrjrZGwLwxz/+kZtuummXfCZ5smOxWB6XEYqDFSO1W+HoE1l/z2azBAIBXC4X5557Locddhhz584lHo8XXWagWNBlwijNs/QZv/zyS5qbmxk7duwusVbk82VdurD5qVjQWQOWM3J2uVzMmDGD0tJS7r333nYLk3qQQ5dTyCCnRVasWMERRxxBIpHYZRqYaZpqs6ozYCiGpLdz3LKT6OHc3gpt64UNw+DCCy/E4/Ewb968HmZPB1DC2FFH3p4gm82qerJhGPz+979n2rRpBIPBXRYmwzCor6+noqIir7F/VybXdjU6Gs0n21elqY5EIni9XrxeL4lEgn79+nHFFVfQ0tLCggULyGazxONxVTLNZDJFpfX3Ndppxr2ldWRyOJPJsH37dmzbZtCgQeq+XX0Nuczc+Zr7C5wXjRS43r17c+2117Ju3Trmz5+vhLWlpUVVdYpB83cHlDDu7S9AOviGYbB06VJGjRpFZWXlN0pryBk7Ti7j/iKMTmII5IjGsn9n4MCB3H777fzpT39i5cqVJBIJteWhsCHt24Qu9RllAPP4449z4YUXtiMPfB00Tcujj+1PmrGwxCm5mtFolGw2SygU4u9//zv33HMPb775ppr3I1cTfxvRTjPuTQ1pGAZffPEF27Zt45RTTgFot5ptZ9A0jbq6urwa9v60L1rXdVKplCqHyrYEmSwXQvD0009z++23849//EOlwr6t0KFrolP5mn/7298YN26cGgiaSCR2+TU0TaOxsZFevXrlCfD+IIwy9yjXwsljdropPp+PSCTC4sWLuf/++1m/fv23umGryzSjpmk0Nzfz4osvqiFKkBtrsitJa/n4lpYWtb1qf4LzM0p/UG5tzWazKqDp1asXvXv35tFHH+U///M/WbVqVXcdcrejQ59xb5346upqNm7cyJgxY9RGARkh7ypkNF1secavg9frzduWIAMaObRepn4g9xlLS0t59tlnufvuu1m7du23UjvqTh9OcgWlX7YrJ13u5ovFYu12SC9cuJAf/OAHGIaBbdvKRBdWLHb2Xo2NjfTv3z/vfmnqnH9zRqCF41EKsa+E2bmQvaPNsfJ78Pv9mKZJ3759ueOOO/jVr37F+++/rwQyFoshhCCTyRCNRveLi3F30Gk0LSsJstJQeJOQgiHzZbZtK37fsmXLmDRpEpCbFFtWVkYmk2lHoeooSpZmrqmpKW/gk/P9Cysd8v+FWqVYT55zIq4MckaNGsWMGTOYPXs2n332GdFolGAwqGr0wWDw35ac26kwSkG0LEvdOpqI4HK5yGazSgPIJeUfffQR0WiU73znO3kM6Wg0iqZpnc4zlJMX5H07duygoqJCtbDKqV/ymOQAT6cwOkelFKsgylKihNfrxTRNdF3nuOOO48orr+Tqq69WLo1MjO9P6a1vik6FsTB6LTyx2WyWVCqFaF1gLmGaJh6Ph4ULF3LxxRcr0yzza3KX89cJozRpjY2NqmdaCpvL5erwmAqDsJ21jHY3JG9UHpvsNEylUui6zkknncQf/vAHrrjiCnbs2IHb7cbn87Wb/fPvhE6FUdZYnVpNkkclg0ZOipBaUV7ZAM899xyXXHKJMilyDo3P59ulaFqyduTQJzltwnkcHfWmyOcWsyBC2/ebyWSIRCJq0L0sfXq9XiorK/nd737H1KlT2b59u3KDCn3zfxd0Koy7csK9Xm/ezhbJZH7vvffQNI3+/fvTu3dvTNOkvLw8z1fsqAe6sK1TUvTl6zun1kqh/DphLHyPYoH0Eb1er9qfWAiPx8PBBx/MXXfdxc9//nM+//xzxZUsxs+0p9ilcmBHGkZOfnBO/Jf5tAULFvD9739f0e9N00TTNNxuN7FYLI+b6JzO5RTGbDarcoxOYTNNc5e0XjELYiHkBSeHjkomuNfrpaSkhJEjR/LjH/+YmTNnUltbSyAQ+Lf0G3cqjDuLoqWpkL4jtGmuJUuWcPHFFxMIBIhGowQCgVyAgSCbzfl9mqahawINO++1pdClUilisZgaSeccBiCDpM6Or7OfxQRJnHC2KBiGoUx1PB5XAmcYBmPGjGHChAnceeed3yhPuz9BlyZQcvBkkOBsv5Sm2JkfDPi9gE02Y+L35cxvKpXirbfeom/fvhx8yCEIIBgKIQDd5UKgES4tQQCaJgCBpoHLpeFyaeh6mzAGg0F21NRR1acftmgzwQGfH6/Hq7aeSnMdCASUOZd0f7fbjdvtbufwF4tW8Xg8ihRRmHuVAQ3ksgPhcJgLLriAU089leuuu45UKkUikVCCKbMK+zO+NpruLJXgMgyypqmi40wmozYXXHzxxerLVa0Crc8T8rWEDZrUWB1UG1q1o8/ny3v/YhGkroZzpLQM3gKBAN/5znc444wzuPbaa9F1XbHgNU0jHo8jhNhvOZE7NdM7P/E68UQKl9sADfVFvPLKK1xwwQXomoaW9+i2mwag6SC0tr8KeW8bcgnfALrW9sVqLh2+HfIItOdFHnTQQZxxxhkMGzaMX/7yl6rE6pxBvr/6lDvVjIVRaiFkx14ymSQQCLB69WoOOuggRfn6WmhSsDoWsObmZspKw3knQ+YYvw2QGtHZn61pGqFQiJ///OeEw2Fuvvlm0um0mg4sN9Xuj9hpaqcwXVII6e8IkduQ+tBDDzFlypS8PJjWwa3trdtrQ+fzGuprVcJbfcGahi32v6t+d+Bs84Vc0CiHTWmaxs0334wQgvvvv1/NIRJCKCu1v2GPNKMMcGTUvHz5ciZNmtTBSGEbhPNn7ofVehOoP+ehqalJpXaguKPjrkBh2VSyfdxut5pocffdd7NlyxYWL16sgs5gMPjvZaa/KZYvX86QIUOoqCjD7XaRC0o6u+X+lUKogpu8V7SJRprbtpiKNo34bRFGWe2SkCMDARW46LrOrFmzePXVV1m5ciU1NTXddbh7jD0SRpkySaVSvPLKK1x44YXoeVeknYuapVZUomc7fssXSPU8WucyetomSXybNKP0FwuHFzi3cclKUyAQ4M477+TFF19k9erV+22KZ7eFUQDNLVEgJ4xPPvkkl19+eVtbgbDBFsRbWvjhhd+norSC8pIKhh1yCOGSUi646DKSpkUsYXH7Hb/j6p9ei+Wkfgn4/PPPqOhVhgboei4fmbHA7XZ1SrT4d0FHUypkvle6QZZl4Xa72bFjB7169eKGG27gr3/9K6+//rriBEQiEfU9yYm6Rfu9iVZYlpX38+uQzmSFZdtCCCFeeuklMWHCBGHbtrDtrDAzCWGlEyLaWCtsKy2aa7aJG6+7Wvx+zq9FtP4rse6D98Tg0UeLn1z/C1ETzYqDhh0hXnzlH8KybZFKpYQQlhC2Kb536njx7up3hG1nRSQSEYlkWiQylsgKIWzHsdi2LeLxuIjFYsI0zV06/v0dtm3n/Z5IJIRt26K2tlaceOKJ4pVXXhHZbFbYti0aGhpEKpXKe04xYvc1Y2uiVQB/nv8ol156KdBa5hOgu90ES0vR7CyhgJ+vqr9k+NAhBEvDjBgxnCO+cySbNn/B9poaRo0+gqHDRyJayRepZJJENMrnX2zF48m5AqFQCJ/Pg8etk0jkovVkMkkkElG5NVmF+TYM45QcztraWgA1z6hXr17MmzePJ554Qpns8vJyReSNRCLFa8alVH5TzWgLIWLxpIjFk2LgAQeJ5uZmIYQlsqmkELYphJ0RIpsQ8fpqse2T98XoQf1FuvkrIRIN4vbbZgiPv0J8+FVMrPm0Rixc+ppIWJbYUd8khBCiuT6nUQcfPFBs2bRB2HZW1NbWiowtREs8LUzRphmdV7vUBN8GyPOUSqXU585Zldx9a9euFWeeeab46KOPRCwWE5ZlKe25q+d4X2OPAhhfwMcLL7zA0KFD1X5mNXswmwXbxl9WxvKXX+aLrTUMPngwA/ocSHNLM1/s2EqoLMihh1Ry/JgxuHSdXhWlNNTXEi4vw2rNqQVaa7S9e/dG18AfaGtwN02TeDxOJBLZb0tguwtd19Vwe6npZBNYc3Mzo0eP5q677uJnP/sZ8XhccUlluqgoIaXym2jGnFZMi6wQYuL3zhRPL3xG2LYtYrGIsNIpIURGCCsjovVfCpFNiPPPOFm8+PR8EW2sFu+88pyoLAuJc6dcLeqylmgRQmyPCZESQmSFEMlETGlWv9stzv2PM8W11/xULFq0SGz7qlakLCHiGVtYrQow56fa7XyobwNaWlpEJBJR2q6lpSXvu2hubhY7duwQkyZNEtXV1cq3zGaz3XzkHWOPfMavdtRRW1vL6aefrrrf9NZIr2bbNoLl5WDbbNu2jZNPPplQOMR3x47lkksuoa6ujnhG0JKAkgC0RHN+oM/vJ5NMsunjjxk65FCuv/56hg8fzuN/eYKTTz6Zc845j+nTp/PKK6+qBUCappFOp2lsbNxn+6i7G9lslpKSErU4U9d1SkpKsG2bxsZGUqkU4XCYqqoqbr75Zn74wx/y2Wef4fP5inaM8241U2hAIODluedeZciQIQSDQSzLwuv1g7BAaFQdMBDNtvnH35dz0tiT8ZaXQ9bGSqfJWjafbvgYA/B5wNCgNOSlpraB/lW91NqOyspKRo4cyXEnnMiVU6dR29BMTW0t/3zjDWbPnk1DfS2GYXDUUUdxzjnnMHbsWDweT97Kt39XyOkcctZlOp3G6/WSTqfVNjG5bvjEE09k5syZ3HrrrcycOZPDDjusaLZG5EGqyEIzLX9mMhkhhFDOcSKREELkgoXzzz9fLFq0SKVTEolE6+MtIYQlmhrrxQXnnSM+/mCtiEcaxUcfrBW/u2um8Hk84tEnnhabt30lMiJnnlNpU6WKrGxGLH/5JTHx9FNFJpNz0E0zd386kxWpTEZEIhERjUbFhg0bxNy5c8Xpp58uhgwZIk455RRxzTXXiMWLF4vNmzcrk5VKpdRncEJ+Pvl7MpnMu9+2bWGapjBNs0Pz77x/XwcGnR2PhAxY6uvrhWma4s033xRnn322+PTTT9XjEomE+szJZFKZ+u5Ap9sO5LYBWQOVV568Gmtqahg7dizr169X86vlc4QQZLNZRo0axZYtW9QGqaFDhrB+/XoeeughTp84kT59+6qKTSaTUekHy7JYunQpDz30EM8++6wyu5JJLs2MZVnE43FVpWhubmbjxo1s3ryZJUuWsH37djRN45hjjuGMM87g6KOPpm/fvmogkyTgAnlaRv4uiavO3p1kMollWSSTSUpKSvLmczubxrobQgi1WaylpUXVtJ955hnWrl3L1KlT6devn6KbObswnav19iU6FUZnj4tTKDOZDB6Phz//+c889dRTLF26lEQikTfKTT52+/btimPn8XjUT7/f32EfjNOXeeKJJ1iyZAmPP/64KnvJDazO4xNCtHsdWTZLJBJs2bKFt99+m9dee40NGzZQWlrKkCFDmDx5Mscdd5yiu8lI03lROF/buZJEOFokZMXJuVJDfs7uhvM7ki0clmXx2GOPsXr1ambPno1pmoRCIUzTJJvN4vf7sSyrW9ycToVRfqGiIF0iNdcpp5zCnXfeybhx4/J8NMnOloPV5Wwdv9+f4yeWldHY2Eg4HG7X6gptyfR58+axfv167r//fiUQzh0rzuMSHfToyOORNCyZdtq4cSMff/wxr776KmvXriUUCnHMMccwatQoxowZw+GHH45lWaTT6TwWu9T+tm3T3NxMOBxWJ1p+L5lMpl17RndBfk+JREJpdnkestksf/3rX3nmmWeYP3++ajmRrJ/u0IqwC8LYET766CMmTZrEpk2baGlpoXfv3uo+OWkWaDdMvqWlBY/Hk5fvcp44ORXC7XZz5513kk6nuf3229u1MDhRGKzI9XCyv0SaVMMw8Pv92LZNKpVSJvXDDz/k7bff5uOPP+bdd98lFotx1FFH8f3vf5/Bgwdz6KGH5lH7ATW4QGpiaKsbF0ukKs+fvAjlhRWPxwkGgySTSRYvXsyyZct48MEH81yReDzeLWzxTnXxzr7UV199le9973sYhpHH6rYsK28tmZwRIzv8vF6vWmhZ2NsimcpSSzY2NuZtxCr8YqQQyhZPmWwPhUKEQiHV7upyufIWGkkTJN2Go48+miOPPFINV2psbGT16tUsWLCAjRs3YlkWJ5xwAhMnTmT48OH079+fsrKynZphp+B2Fzwej9KKcrCUx+NRPn0gEOCiiy4iFotx2223cdNNN1FVVaV6bbrj+He6rs2pdaQfmEqlOPfcc5k5cyYjRoxo4xu2boaSEyN0XVdm2fnBIpGICnak2ZVaSnb7AUybNo1jjz2WqVOndmj2RGs3nKRZOU203NUnzY7UEM7+kMKARXbjyfZR6Z9+/vnnrFq1imXLlrFu3TrC4TDDhg3j1FNPZejQoQwfPlyZ72QymTd5rLsRiUTU0KxYLKYauOR33NTURDAYZO7cuTQ0NDB9+nQlkN2BnQqj1GDQZnKbmpoYMmQIX331FS6Xi5aWFsrKyoBcA5VMvMqARBbnpa/SkYkuNNepVIpp06YxceJELrnkkrwReIWBhRRm0Uo0lQLudMKdUb48McFgkHQ6rSbqSk0qnyM/r3OciG3bbN68mXfffZfXXnuNTZs2UV9fz9ChQznvvPP43ve+R79+/TBNs9u3YMnyn3S5nKP5otFoXtBiWRZ//OMf0TSNq666imAwWFwBDLQJl/Pk3nXXXcRiMX796193KBgdXVUdCZF8T/m6zqjVsiz+4z/+g1tuuYWxY8eq3mjpBznTO7uDXTGjnT1GHp/0GWOxGCtWrGDJkiWsX78ej8dD//79Offcczn88MMZNmyYilALj7nwb8lkMm/dW6Ev3JGFkBei/I525TMKIdS0DjlBLh6Pc8899yCE4KabbsLr9aqLtqamhqqqqg6V1N7ETgMY2Wsh/T3TNBk/fjyzZs1izJgxe/zmTo1WKKRjxozhgQce4Oijj1YCK12FYvDJpCCm02ll+i3L4pNPPmHTpk28/PLLbNy4kWg0yvDhw5k4cSLHH388Bx98sMphyqhVEh4knFFvrrKVu0+OX5a5zEK/uzOB7ez4U6kUfr9fuSl1dXU88sgjAEyfPl0t3QwEAio3a9t2nqnfm+hUGOUX0tLSotT2hx9+yAUXXMC6dev22C+SfqI6kIIPd8ghh/Diiy8ydOhQlYTdU424t+FM60hIF0VOXduxYwcffPABr776KmvWrAFQmvO4445j5MiR6uKXgietSKGm6+j9U6kUmqblRcO7kueUF3YkEiEUCin3pqamht///vf06dOHn/zkJypL4HR1Co9tb6FTYZQHKw8iFotx//33E41Gueuuu/b4ynCaoY4qF6WlpWzcuJG+ffuqC6PQF+xuFE71dR5/R3lOy7LYtm0bmzZtYuXKlaxatYqtW7cyaNAgzj77bCZMmMDgwYPVvG8ZfCSTSWzbVhrY+X9ouxgkYWJXLlgpyFL4pdmGXCbjtttu46yzzmL8+PGq5i27DrtKKezy8vPGxkbOOuss5s+fz8CBA3d5GWVncC4PLxRG0zQJh8PU19erQMNpqopBGCXTurDJHnLRvDRnuq6rWelyz4tkqEvX5+OPP+b5559nxYoVWJbFgQceyLnnnsuIESMYNWoUgUCgnW8OqEkSskHL4/F8o4S1HN7v9Ofl36qrq7nxxhu55pprOPzww5X2rK2tpbKyct+aaecBu91uNm/ezMUXX8yqVavyNonuLpxCJdM8MqKNRqMMGjSI2tpaZSLk/cXgL3YE52ReZ+Tq1D6S3ub0e1OpVF6Cevv27Xz44Ye8/vrrvPPOO9TU1DBixAhOO+00jj76aIYPH65qyB0JJ+ya7ygv8IaGBsrKynC5XCrKlsfT0NDAtGnTuPHGG5XvLrVkob+6N/C1wiiT1jNnzsS2bX75y1/uFRXdWT4zmUxSV1fHuHHj+PTTTxFC5LkLhc/tLsjATvpUToGQSXg5HU1CBh8ej4fGxkZKS0sV+UMOWpUVIqlRGxsb2bBhA8uXL2flypUkk0n69OnD2WefzejRoznqqKOUOZf+465qx3Q6jcfjUeP3ZDDjNMd1dXVMmzaNO+64g0MPPZSSkhIlyPtUGKUZ0nWdfv368dprrzFs2LC9KgyS4SO1STQaZfv27VxwwQW8//77Klp1mnXn792FzsqDsiTodD1kdUkGFTJTkc1mFTkB8ndYS9i2TSwWUymtxsZG3n//fd544w0++OADtmzZQt++fZk8eTJnnXUWgwYNymv23xkkoUS6D3J9smmaNDU1UVVVBcAHH3zAvffey7Rp0zjuuON24bUL2xp2TVY0u1UYhRx4bmfRdB0rm8VlGNiWxVtvvcV//dd/seT55/F6/Wqvy57Abh0ib1kWsVhMOc+idZLZ//zP//DSSy/l1aWdqR35N0Dl/SC3zqJYIu7OcoBOfNOcpwzipBaMxWKsWbOG5cuXs3btWuLxOH6/n/PPP58jjjiC0aNHU15envf+ThILoJYnOVnghcykSCTClVdeyYMPPkhVVZ9cnlED0xRomsAwcq+fTqfweR35UcsCdHS9TXmYmSxur9HOVetUGEWrsGm6zrXXXMOgQYOYPn06mm6oYvuewJkIl9UaaYoXL17Mo48+ysKFC1XKoaNFRjtL6hajX+mMuvf0YpZpFinw0jX48ssvqamp4bXXXuPdd99ly5YtDBgwgAkTJjB+/HiGDx9ORUWF8gudCWzTNJXvWFpaqs6zpmnU1NSQyWSYOnUqTz75NOUVZTQ2RikvDykXIZVOUhYO0dzSTFlpKbawcWku0FwIi1Z+qJ6rDBmaSmdJ/7NdWCrQ0dDRNAGahrBtXnjhBV5f8U/Q2jROR3mvbwL5AeQKM5lqCAaDqqYtvyBAmSlp9pwmT64SlleZ9DO7E046mRQWabqdx7onkPlMr9eLYRj4fD7C4TADBw7khBNOUAymDz/8kJdffplbb72VRCJBr169OOWUUzjuuOMYN26c6h6srKxECEFpaamyXDLw8vl8VFZWMnv2bM477zz+8IcHGTJ0MJal0dLSREVFGWATT8QpDeeGdbk0F5C78LKmlSNqtL6mTLRLjqwQor1mVP6gsEDTeHPlSq677jreWfUu8XickpKSvZZekTtNnAwbTdO477772L59O7/5zW/aJX6lRnEytQsrOJC/SLI7sC9dhVQqRTKZxOVyKeKKM4qXQisb/T/99FPWrl3LqlWrWLlyJd/97nc566yzGDJkCOPGjcvLZ8oMgabl2OBlZWWsW/chc+65j1//+i769+8DgK7lhLKkJEg6k8aysgQDITQtt7TKcLUl4aORBIbbhc/vRdPayqJfG01fc801jB49mquvvjqPu7c3IE2Wk8cIcOONNxIOh1WN1Pl4mfR2+jRS8zij22KA05eVdDdov05ud1AY6BT60YWEZ8ix2WWFyLIslcfdsGEDzz33HG+88QZbtmzhu9/9LgMHDuSyyy7jmGOOyWP4SwLGitdX8j93z+Lpp57EsrMEg34MI2dR05k0HrdkYOmtWYTcDHZEzs803BrJZIJ0Oq2YXZoQlgC9Q2Gsr69nwoQJLF26lH79+qko0fmhdxeSFVOoFZPJJDfccAMjR45kypQp+Hw+xVl0lqUKT4wcdORcG9edkK6H1NBSe0th6Ao3QrT2vViWpRhHUmidCXJpTSQlUBIi5LEtW7aM6upqli1bxkcffcSwYcMYN24co0eP5swzz2yt1pSxcuWbPPzww9x//32UlYUBm5ZIC+GSMGa2lTXu8aG1mutEPI2uu/B6jdwU7YIgSRO2KdB0bDv3hVl2buIXwD//+SbTpk1jzpw5eD2GukIgv0lpdyAL8PKEeb1ekskkQggeeeQRDjvsMMaPH68S3pZlEQwGlfmxbZuysjL69OmjksCAahnY0wrRniIajarF5x1hT5dROlNFzteTVsNJapDKRQYo0hpBmzsh6//OlcQyxdPY2MhTTz3FunXreOeddxg1ahRHfucoLr30Ml5ZvpytW7dw2y9/gddjUFpWhi0sDFfucwt00hkTw+VB13Nz3lPpLD6vQVNTW641nU6jCTsjQEMI0HQDywZ0yJg2Tz/9NHPnzmVA31wo//nWLZSXl+eGM8kxJrsJSaSVCddQKERzczOVlZW88847lJeXM2zYMBobG9UVHg6HiUQi6qJobm6mvr5e7W2Gts1e3b15NBQKUVVVRVVVFYFAgHQ6TSaTabfiZHchrYW0ZFII5fvISpBsTNN1XTHe4/E4vXr14sADD1QsfCGEuniamprweDxUVFRQV1enRjS73W4+/fRTwuEwX2zdxgcfvEckEqG8ohQhLFavXk1pWSnJVBKf18+mTzfx0B8fYf4jj+L1BbjiiisZc/wYItEIF5w/md/85jek02muu+46+vTpg9ZYUy3KK6tA0xHo2IAlQNdyV0simcFjaOhAsjUCypppDPfea9qJRCKKWyfp8TLqdEbt0j+UcKY2ig3RaJSGhgZqa2tJpVKqJ0eSdbvSry1MbXWU6qqtraWuro6mpiaAPDqbM7As/P5t20YTEI9GqaqqIpFM8vnWLWzfsZ1nn1uMu9WCbt68hbPPOYdDDjmM2bPuobJPJY888jj33juXOXPmcOb3JjB27In8+q67GDNmDGVlZRhlvSsAgbBtTEuQzmbx+r1E4hl8Pg+hkAfDBc3NUXpXVuZWt2gB9sYEZpnjCgaDSiCLNUf4TVFaWsqAAQNIp9Pq5MqE/d4IYPYUMq+bSqVUcCV9RtnK0SlE60oQDVKxGIbfQ6ylpdUl0Piy+ktOn3g6Y8acxKxZc6iq6ouma/zw0st49rkXOOGEE6ivr2fUyJEMHz5czW03tEyas8/7Pv98azUVvauIp01SsQRnf/9C/u//nUsqaZGIRwmXhEhn0vjcXpqbmigr38X1Gp19nlbCrhS+cDis6uDbtm3jgAMO2KPX727IyN7v93cJqWBPkU6n0XU9b4D/Lg8hEJCOx/C43eDz4Q34CAQCxGIRPF4vc+bMoaqqD7NmzaKqT18SyRSGy0M4HGbM8WNobGrE59Y455xz6NevX1uVTVgxEYunuPba6Rw6eBiXTLmCxpYIl/3ocgYOHMjS559B08DQNLVQSAirNULafXSkASW5c8mSJfz4xz/udjLEnkA2ZznJHdKPLYbP9bXab2cQkEnE8fi8uf/YWdB1hJ4T5JEjRzJq9Gh+P+9B3F4/fn+OKW4DTU0pSks8YAky6QQlJSGVITHMlhaC/hCxWIxJk87kgAP7M0D048QTx7L1i8+IpyyEZRHwuPF7czkjYWfx+fesHCgbtWSPtSw93XHHHXl92PsrCrWhrDQVC2RuVwYvkE9B25lPqwnw+HxgmQjLQjN0YpEIwZIAX9XWs6Omlv/v/z8d0zQpLeuFpuskU1k8XoOyMh8C8Brg9YRUdsYwDAx3SQlbN21m3XtrGT58BM0tSe67/wEWzJ/Puo0b8XoN3LqBS4NEIkUw4EOIveN8yySspuV6dRcuXMiOHTsYPHjwXnn97oSTraNpWrums+42206NLdlGhfd1Cs0GM0s6nsDj94LLwON1o7lcZFIpSsMhDjjgAErKSkmlMzS3RKms6k0sniEY9GCaufShx8hvT9bRBCtWrGDr518yoH9/RowYQUtLC6s/+IADBlSg62BmoSWSwO/P0eHZS9Grx+NRjT5bt26lpqaGAQMGdGvv7t6EbIN1CiLkbx/rrpusWMk8rzMVJrVmZzdh2+By4S0JoTm2pEFOwQSCQZYtW4awNfw+L32qemOasGrVasxsFr11O59zkxqAHqlr4MVly3h64dN8tnULf130NE8/+QSPPzafRNLC0EBHUFqS6wgrKSlB2xs+j8gFRoicFpkzZw5XTZ3Kxk8+JVRWrhYW5Ym92ifT/dHo18FJHZMpkkLT2N036Tc6tRO0Me87u2lSmjSNdCKRM7uBIMISVPXtx4knnsRjjz7OU08swDRNGhubeerJBWjCxrZyJtow2qpksoWDZLRZnHbqeBGPx4UQQjQ0Nourpv5EHDx4qEiYtrCFENFYUo0tTqfTYs+RW63RUL1NCMsSt9w8Q7z/wXqRNG0x9vQzxAuvviZSti3SQghTCJG1hLCzlhCmKUQ2kxuzLIpzSPq3B7kZnLadVb/LWzweFf/93/8tjjzySFHRq0KcPP4U8cSTT4tINC4sW4h4MtVu9LUQQhhvvvMuI0cdgd/v58svv2TAgAH4vAbhgJdYUz3+ykqCgRy7Ql7xe4VpbWYpr6zkjb+/wgP3z2XpS8v44stqoskEw0Y8hq1pavGlroGG1hrK0+Ym7P+WfD+GJD23vycQCDFjxgyuueaaXEkyEMDn9eY0qwZ+r7fD5zF+/Hjx6quvikQiIUzTFNOnTxder1fMmTOnneTuvdUWlhDxmKj9/DNxxy9/IXZs/0p8tvUL8faa98Wwo44WjWlTRCwh4kKIjGhds2GLnEbMZlq1Y49mLHZYliWSyWSezKRSqU6n4xobNmzg3HPPpaSkRDX7PPHEE0yYMCGP6i6p6c6JXnuCf739Fo8/+hh3z51L1rap7NuHNevep/rLbbj11mZ4tJxalBA6attgj1YsaojWpL/sqZF9OV6vt52PKqGtW7dOVFVVIYQgmUxSXl6uZigW0rJkV5jY45KdTZ/yXmRSCZ5d8gLjTj2Fn/6f61jwxF8IlFWQicfYsu3LXD3XlaOja4LcPkLsnJl2udiLS2F7sJfhnOwGOdlxprQ66i7UMpmMcLvdqmdWhv2GYRCJRAgGg3kztJ0jlXcbApobGwCbYEkYt9tLbUMdussglkjj9XsJl5Zh6ODSNFy0CiN2ayAtQHf1aMcihnCkjCQjX7T6+p21umpCCCFH1kmypXxy4XD5vdYiKiCbSmJ4vQjLRmgauHRiyQToLgI+n0rp5LjCAt0mJ5HqDr1HGPcDSKF0Nl8V5l0ldMhx76TkSt6aMxEqiZh7k/ZkeH1kMyaaYWCJnOkN+QMEvF5iiVirEOYEUcjcmA2g5QSxB0UPy7JUdcfv9xMIBPJaZAvx/wBIF9zoYuLpVwAAAABJRU5ErkJggg=="
|
<image>如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=33°,则∠B的大小是()
Choices:
(A) 33°
(B) 45°
(C) 57°
(D) 78°
|
78°
| 69,747 | null |
78°
|
"iVBORw0KGgoAAAANSUhEUgAAANgAAAAVCAYAAAAkViCHAAAGkklEQVR4nO1bO28bRxD+ZkW7CZIiyKON9aBh0j/AKW2RlNRYUsr8gVg8AbYlJX/CJJEAphCkTII0AcKji1AWpdZdisAkBVuWkdJVgAApLJPcSbH32HtRlHyUSOc+gODd7uzM3O7M7uzcHiTb6PMgtMwSA2AQGJjnpywH0ieID07fQ/V9m+VE9f556t+ulzVZt7jtkyQjb4ZH2PNEAeov2rmklNwyS0wOQ9fJBjFOEA+8gwlrHCan70evv2u7tiwiGtoBhob0ynD9YLCMFCABCNhgAGRfM4OI0HjcADsUAmAJYB/3v1zH5+mPkWB0eNL42XOvxmFy+n7U+hMRIBlMrixm1iiUrBtzHynat8ST339xb2xn4X006h1klrMBeqE7F9h1Lkd57V9BuuSeB0lwrmBxMs04Iyb9mRlMwrkOwDJdIgKd0VxtvsSAJOmrPLmxvgKGwrv/innpTTAQ/hBr0vr+PPS3OXllCa8s6bfxwTmHKOgy3FA0H/k8CC0dxDhJcpw7ApvqCev6keovmbnvMmzVH4xs/+XIOEWSg5hPivO8e7QEFw99nzyJuBj9JZjpTPuwwfoq/3C2Yz5ax3PC/KxdL8NsT/JQvluwR2hSR2RU+hsF5TiBX6GoUYkzJzncVjKkVnho/BIilyZGB/dWtgYqlaQ44kFgcmNVVi8bPmPpwDDKF6LjsAg39hw6YDXDjyAxVt1lFPOA2WaV9GBGyyxh/upMrHJYcxf7OYVIQVjPWa63A22cFq4jKS+tGA9B+TzmMnqHSOheTKEeneC08Pc9DkwIIbD9ctoxGP62AEFZYDpeo4kbtrHXWtLRvVQkZCmvnOysqbwBkNzGMxhYzkgwOiiXa8gsL2Hps+l4BFgq60tNdZdxpwA8qP0JaTn01sp1mG3v81kOJsHW4DIEzIoBuZCHbEpfalPAjjc9zRPEBAFGB/nsKnJGCY+rm25VZgWlYg4zc+mLUy8U2iTLKvJ5BgMrWdccN6tNGIV93F2vIG6bYWYcPNrB1YUcAIF6pQo5mwYhg83N1XiEhAVx3MHh7jwWb18DAGTnwic+dwWzY8mOiSbm8fUsYT+fxrWQEHFS9wCTgHqlij26ie8ebgTqZmbSmJ5RAzo+8bl2SIGATr0Bso1N0/HK3C3sPTuy7uKLfIgIh0cvsb21CiLC6ub3mJvNxMZfD2n164NHDZCxhKz1Ds64pybFlaw/3PfBMAx10a5xzii9XXozwakguc05gIulWgRFfyxfjug6lYxbXDJbAZpaucjIr/noz/Yuyo9iHlxrSZZSspHPOWnzPvdi4a9DSsW7Vi563u39Zr178I+P0P3NrNzFDz/+issffIrLN76KbRZIMByo8xx7AKZn5wCEJQTEWEYPBFhm1kGjSlhYdlcQ+xmOjp4jl55x6QHEEi52TGxjTYWkRJheXEKGyeI+9fb8NbB1dBAAmjvbzj7TrBj4IitgtjmYRbRz9+iYaPJNvPnnFf79+xX++OkbpK+ExZVJYmPUiOrhsYkKw0AADp6DjCVc1zQlIqBjYmt7D4v5xdjF1htNFBcKjgobGxsAAevr6zFJ0JJ69nbpoO46NYDb94vIAWju1AOtBVjtu+jeLqqbK07Fi8MjDyEzj/cAvwPgTBo5AH+9OATgOwPaMVEJSQOPC5gZ5k7TmpS9ZwPX7q8C+TVsLmdjnyV2H28jv7jsKTMKBL6Si0lCcJU1G7uOUwPByMODslFwzm7VWpJZSr6z9CHj0nt86f1P+KZR4eOu+n5H9iUfdyV3pROQ8nHX+unhtJR83O06dZ5I22rz2qqPisKl7Lm8u9r3Q6HtJXe7tm7q+nW3y8c96dWx50bI0ZIvtt6O7R/UnjplLbPk7F+GxXnrb+8fay1tF9KuKduK0N3ez5xGfvi5w+DPo8cp+AfqPWxUmZFz+Us+4NyAI1PBs4hScyLpdxDJXcdIlSFL7Vo5nn7N3O/phj2ozvt4Ot1QvDVH6vvupXYfz7Z6NFAG1w8Yz7gnm5zvsEIM3ZPwcIbqLKmaExzCzzP2bFBwXJxfIXryC55FZMabPiCmCCkCWDK6DFyeIoAZPahym86zmE4RUlDll1JkbX7VfSpFEDygzq+DtGSG6DaIt623/zkC9wkSnANSURXC/o5GAKIH9BiABKb0xAyFOYH7F2XHQx325Gi6ST/smuD/A2fhkH3Gm76W/dGupoSqhyC3nNQXNz2nCUNali8A9PRUmFU2sC4E/dPwTpBgDPEfeb3dUxrF7oYAAAAASUVORK5CYII="
|
<image>如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()
Choices:
(A) 10
(B) 6
(C) 4
(D) 2
|
4
| 69,748 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAFkAAABYCAYAAACeV1sKAAAaLUlEQVR4nO1daVgUx9Z+u2cGGFaJO4m7Ro0L4A64BI0YNcmnNzf57k3ckmgQVxYZBBeQfRVZxeWquO8ao+ZmMRoTTTQmJpq4a9yjxrgAwwwz3XW+Hz0gwwwwwIB+ufd9Hp6H7qo+Vf12zelT55yq5oiI8F/UK/in3YH/BPyX5AaAvPyBIAhQq9VQKu1hY6MAE0SIjEEuk0nljAFEoLI/BpExACh3jiAIglEjkkYSwQEo1U0cAI7jwHHSOa60LuMA4sqdARgxkKEdGGTIeB4KhY3x3XAAV+46qS5B1AtSH4hABnk3rl1HsaYYMpkMAA+e51BQUACtVgue46U+8UBBYSGKigqlA0MbjDHodCUQ9HowxsAB4GU8XFwaYdCgwejQsaN5khlj+OSTT7B9+3YUPi5ASYm2jORSMpko/Q+SiBNBYIwkEojAcVylJMs4MkNy6X9PzoGVnilPMoFY+VcHged5yOUKVATHm5JMgmgg2XBMhLt37qKkRAteJgPHceA5DlqNFoJekO4DAOMBvV4Ax3OQ2dhAFEXoRT3AGOyVdnB0cIBOp0dBYQG0ehEKnkNubk7lJAuCgCNHjmDt2rVo7OqKju07QGGjgFqthlwmg1JpX0Ykz/PgeB4yABzPAxykc4YymWHkl79VGZiBVKPTqDDwwDEOXIWRzHM8eN5YszHGwMqN7qogk8sM10tk8jwHb28fKO2UgOEYBLRo0RJOTk7SoDE8IIWtHRwc7SGTy8GIIDIBYCIcHezRuEkTcETYsXMnsrNzoNbqpFFfAWUkl5IEAB07dEBIcAhGvPoqirUayHkZlPb2KDVEpJ+5gQTDkCw9Li/nCZkEIrEin1K9iicZBxBvctr0RKUnzcOgSjhDf3leZui74c/MA7cEZ3/5GY8ePUKr55/H/T//hFZbYlLHSCfrdDrY2dnizt27yMnJgaOzM0aOHlXzlv8/ohYEHz18EKGhKjg6OUI1V4Utm7dAq9WY1Cv7DUo6To42bdohTBWGxo0bIzhwNj7auQuCXl+n/v8Vce7X01CFhuH3O3cxRxWKt9/+XzRp0gSFhabqooxkjuOg0Whgb2+P18eMQWxcAp57rjGm+vvjs39/2qA38Kzj1M8nETpnDh4+eoiUlCQM9xsFAlBQWITCQrVJ/TKSicjwMhGh1+nQtXtX5C1bhtatWyNMpcK/9+1vyPt4ZvH9d8cw9cOpuHz5EvLycvHm2/8EAGhLSqDT6yTrC8aTaKORXPpX+oLr4eGO2Lg4FBcXQxUain17Pq5gSv1n4cfvvsei+Qvx+42bCAwKxiDfYWVloiBAr9PD3Bu02hnf8FdHIDMrC0qlHYKDg7BpwwaQaJnp9FfCiW++RdDMGbhy8SLSUlLx/pQpKE+fIOih1+nAzAxCuckZwGQyMfqN16FUKhGqCsW8iAhwPIc3xoyBg4ODde/kGcUPR49BFToHV69dRcTcCIx56+/gK0yEiHHSRMrM+DMayTKZDIIgQBRFk4pDh7+CpOQUNGvZAlOnTUP64sUoKTG1Cf9q+PH49wgJDcb127cQl5iESVP9wduYzjRtFHawt1WCY6a2YNlILp1ACIIAkZmSDACvDH8FSnslJk+ejLi4OLi4uGDmrFnWup9nDrdv3sK8efPw+507yMrJwYiRI8HLzGtYaaZrZiIGMzq5uumqj48PcnNz0bFTJ8TFx2Pr1q34K7qkf791G/PCw3H27FlERkZh5GujKyUYgMH/wYPjTOuYnDGaMlcCX19fLFu2DO3atYNKpcK6dev+UqrjwtlzCPD/EPv370d4eDj+Oe7daq/hOcmfw/NVjORSN6VCoYBcbvZ9aARvb2/ExsbCwcEBc+fOxebNm6HT6Wp4O88erl+9hriYGBw6dAgB06Zh/MSJkhPMAlQ2QI2uLvWymXrRzGPo0KFIT09HmzZtMHfuXKSmpqKoqMiia59FXDx/AcGBgTj+/feIjY1HUEgw7B0ts6AYY2CiCN6Muqh+yFYBjuPg5+cHJycnBAYGIikpCXK5HCqVqi5inwpOnz6NwFmzcfXKFcxfsADvjBsHWztbi6+v6q1klfCTl5cX0tPT8dJLLyEhIQE7duywhtgGw5UrV6BSqXD8++MICAjA+AkTakSwhMppNtLJpVVrYy14e3sjLy8P/fv3R0hICPLz86HVamssp6Hxww8/YObMmbhw4QIy0zMwY/YsyM3YwXWBke8CeBJ7qw3c3d2RlZWFli1bQqVSYePGjWYnNs8Kzpw5gwULFuDQoUMIDAzEe1M+gJ1SWUtplXNmRLKM4yHnzIWPLEenTp2QkpKCzp07Y9GiRUhOToZaber+e9q4duUqFkTMw+mff8a8iAiMGzeuTvKYKEIURZMYI1BBJ8sNsTRzb8iaYODAgUhNTYWbmxvi4+OxYsWKOsmzNh4/fISEhHgc+OJzjB83DrNmzYarq2udZIoGkmW86QCtt7yLfv36ITExEd27d0dkZCS2b99eX03VCA8fPMCckGAsW7kCzZs3x9ixf4Ojk2Od5ZbOlC2aVlsTQ4YMQVZWFtzd3REYGIgtW7bUZ3PV4vtjxzDtQ3/8cvoX9Hb3AMdxVptAMSalTVSrLuoDffr0wZo1a9C2bVuEhIRg06ZN9d2kWZw88SOmBwTgwJcHkJScjKCgIBQVFuGPP/6winxGpSO5Gt8FQUpMEaw8PW7fvj2SkpLQpEkTREZGIj8/H/qGCs4S8OtPpzB/XgQePHiIlNQ0DBw8CE2bNoVMLoetbU3t4crb4TkecnlVOtkQNRFFAboKTntrwMfHB+np6XBxcUFERAQ2b95s9TYqgulFHP7sAEJDQ3H+/HmEhIRg4vvvgZfJoNPrASLY2NhUL8gCcLyU01G1TuakJ0GMwOrJtvX19UVsbCxcXV0RHh6Obdu21Us7pfjhu+OYEzYHJ386iZmzZmHCpEllZUQMzBA8thYIMDsvMFIXPM9DZGK9TiD8/PyQkZGBZs2aITg4GHv27KmXdm5cuoKkhHjcv3cfaWlpmPzhFDiUsyJEkZXl8FkNBLMxPiOSOY6TEgit+HQrguM4DBs2DKtWrUKjRo0wY8YMq1sdl89fQEhwMA4eOojY2Di8M2E8HByNzTRiUqaoOVJqA56TIiPmfBh8xYqMidDXg06uCA8PD+Tk5MDOzg5hYWHYvHmzSQC3Njh18icEBQbi+I8nEBIWhrFv/91sPY4IPDhwVhrIpdmiFRMjgQovPiKCyFiD+RsGDx6M7OxsNG3aFBEREVixYkWtp+BMEHHoiwMInzsXP586hVBVGCIiF0DpaG/+ApJmuLJa+mkqQhQZBMbAm3FJGPmTS3VUQ8bs/Pz8oFQqERQUhPnz50Mhk2PSe+9BrrDc1U1E2L93L+bPn4/79+8jPCIC733wQT322mwvAFRjXRCRNIKZlV8GFmDQoEFITk5Gx44dERsTg/X5+TW6/sBnnyMsLAwajQYJSUmYOGkS7B0qGcH1BgJniCxVhGm0uoFHcimGDh2KtLQ0ODs7I2LuXOzYapl5d/nCRURFReHGzRtYuHAhxk+cAEdnp3rurSkMifyWkcyZrLpoOAwcOBCL09Ph9sILCFOpsD5/LXQllc8+v//uOIKCgvDHvXuIjYnDm2+/bXFbzGBdWGtAiSIDOM5sEPpJcgsMWfJ89SkB9YlX/IZjTYu1+HDyZMycMQMajQYTJ02CTYVw0LdHjmLmtOk4f/E8li7Nw7iJE2rUjiha9/3DmAiFTAFHM6lrz+QSs+49e2BJZia6dO2KRVFRWJ6XB3Xhkyj46Z9PITY2Bnfv3UFMTCzGvvnmU+ytBJ1OB01xMWxt7UzKnkmSAaDfgP5IW7wYL3Z+EUlJSUhLSUHBo8c4/fMpBPj74+b1G0hKToF/wFQ4WBi2ry/odTp8c/gwrl2/ZjbLyESBNLQJVxW8B/ogPX0JwlQqZGZm4sbNG7h+7Tru37+PiHnz8M64cbVa62FNMMawaeNGxCfG4/aDP8x69So4iDgoeBkUNbBR6xvuvTyxJDMTgwcPxsrVq3HlyhXkLVuGCe9NqhPBHMcZ1mTWXghjDDm5uViwYAH0ooiWTZpCYWZtYTmSOdjK5HCwVcLJvu7hGGuCEUNBgbTgRa0uwpXLl+vsX+HlMkAmA6+oXdBYEARkZWZiXkQEBgzwworcPLzy8rDqTTiZTAZ5JUlzTws//fAjwlVhuH37FhbOm48+fftiYeRC5K9aDUFfB1+H8XrMGuPjj/Zg4cKF6Nq1K5JTUtC3f3/oBQGiGf+LkV7gZTLJhHvaig4AiLDv472IjYmB0l6JpXl5GDLUF1cuXUbg7NlYFBWFRw8fYPKH/nBycW7Qfh3/7hji4+PQrVt3LMlYgjZt2+Di2fO4e/cuCqpaYgZAWlnKc2bjVA2Ng198iaDAQNy6fQuBQUEYMtQXANC+YwckJiaic5fOiI6OwfJlyxp0sdA3h7/GjBnT8eDBA8THx6Ffv34AAL1ej+LiYrNZU0ZsMkEEMTIsk3o6ICJ8uv8TqFShkCvkiI2Nw4hXRxrVealHdySlpKJ3795Ykp6ObVu2gNVwsVBtLKjjR79FTEw07t29i7jYOLzs61tWZnFKQIlOB1FoGH9yZdi+dSs+eP99NGrUCGvz12LCpIlmk/88PD2Qk5uLnj17Yvr0aViXn1+jES35aCwn+/LFS5g9ezZuXL+OnNyl+Me77xiVazRaaLVaszFDY73wlM3jL7/8EhHh4WjRogWycnPQZ0D/Kk2szi91xeIlS9CpQyeoQudg/dq19dKvO7duIyI8HNevX8eCBQsx+o3XTepwht0GGjy5xVKIooj9+/cjLCwMcoUCUVFR6NK1q0XXdu7aBYuXLIGb2/OIjl6EDWvXQasxXUReW9z9/Q5CQ+fg888+xcLISLz1j3+YrcfznNl0AOAZIXnPnj2YOXMm1Go1klNSMep105FSFQb4eGH58hVo364dQkNDkZeTixIzWyLUFI8fPkLMokXY+/FeqMLC8N4HH1QaTOB5HjwvN/vDM7ucoSG9cJs3bkJ4eDh4mQxR0dF47bXXqlxlVBn6evVHcmoauvfojtTFadiyaVOVYTTpHit3IRQXqZGTnY1du3ZhwsQJCAqZAxvbynM0niwDqUpdMMkM4eVy2Fgrq6YafPPFQcydEwoASFmchrFjx5rNJbMU7p4eyMjMQp++fRE6Nwyr/rWq0roKhaLS5XQ6bQlys3OQnr4Y48ePR/Si6Goz74mo0tzuckNGMt14Wd3yky3F0S8PY8a0aXCwt0fmkgy8Mfo1KKzQbteXuiIxKQndunVDxLwIbNiwwWw9xhhkMrlJdFnU67FqxQokJMTD28sbAQEBcGn8XLXtliYFmUs7NraTDXZefU6rdRod9mzdAf8pk1FUrEZUTDT8Xh0B3ooqqkuXLsjIyEDbtm2hUqmwbcsWk+zN0vSD8iNZoy5GWkoq4hPi4e3tjbj4eLTp0N6iNpkhyl+1TqbyJNfPSNaX6LB65UpMmx4AW3sllq1YiTfffqte2urRowcyMzPh6uqKmTNmYNnSPGg1T2ZjCoUCer2+bJFnUWERUpKTER0TjV69+yAjMxPd3Xta3F5p5lWVWZ2lu0dVljRXZwgM6/PzkZSciBYtWyI+IRHDRvqZzVOwFry8vJCVmYVWrVohJSkJu3bsKJuwODg4gOM5yOUKEBE2rF2LxIQEeLi7Iy4uDu07daxGujGISTkr1VgXhp1bqH6m1fs+2oPEuHi0a90WGZlZGD5qhNXbMAffob5YvnwFevXqhaiFC7Fj61YAgFwuh52dHRydHbF7x07ExMbA09MTSUkp6NazR43b4TgOHM+btVaMc+EAg+/CulO/bw5+hTBVKLp37YbUxWnweXmwxUtprQHPPr0RtSgaDk5OWLBgPs79egaiIMDF2QXbt2xFTEw0mjdrjrTFi+EzZFDtG6okqlTuTiXvG1VhO9YUep0eH+3YhdmzZ8HJyQkLI6Pg2b+vVWTXFB69PZGVnY0WLVpgxvTpWLduHW7fvo3ly5fD3t4emVlZGODjXWv5BIIoCOa5o1KIjIIDplOfbj3o0rnzVFeUaLW0bvUaateqNdlwPH3+0b46y7QGLl+8RC8PHEQyjiMeoGEv+9J3R47WWe63h49QtzYdKD0uyaSsQuqslPpZV/+sTluCTes3IDU1Fb/duA5wHK5dvQY8A+sm23fsgFGjR0MkQt/efREdE4P+3l51lkugSvOdKzjtAUZSTK22YIwhPz8fsQkJ6OHhjvz8fLz51t+RkZmBVbl50BQW11q2NXDu7Fl8efAgenn2QlTMInj7+FhFLhGBM+xhaq5QgsgoOGAG9e7ajS6cOVvrn80ne/dR08ZNqFevXnTy5EkiIrp9+za9/+4Eat2kGSVERpO2WFNr+XXB6VOnaPjw4eTm5kb79u+3quyvD35FXVq3oyUJKSZlFRxETNpNthaTEUEnYOvGTYgID0f79u2RmJCAnu7uAICWLVsifP48vNilC9IWp2Bpdg70VeS41Qd+++03pKal4fjx4wgJCcGokSOrv6gGYIxJs0hzhnIp20wQafaUqdSvpzv9dvFyjZ6iuqCIUuISqEXjJtS/Tx86dfIns/XO/nKGRr4ynOwVtpQYG0fF6uIajpfa4cSJEzRkyBBq3bo1ZWRkUHGx9dv98rMvqFXTZpSRmGpSZkTyrMn+5OXhSTeuXLVYuKaomLJT08nZTkndXuxMh744UGX9s7+cof957XVydXKm5IREEvVCDW6l5jh37hyNGDGCFAoFRURE1AvBRESf7f83ubk2psykNJMyI50c6B9AXh696MZv1ywS/Oe9+5QcHUcdnm9Fg/oPoP2791h03YXzF2j8u+OobevWtDQnlzT1pKNv3bpFkyZNIhcXFwoODqY7d+7USztERJ/s+ZjcXBtTXnqWSdkTkhlRcMAMi0kWSwTKTk6jZo6NyG/Qy3Tk0Nc16tTdO3dp0vjx1KJJE4pdFEMaK6uOx48f05QpU0ihUJC/vz/dvHnTqvIrYu+u3fRC42a0One5SVntSBZF2rd5B3Vye4G8PHvTkQNfEbGad+zG1Wvk5zuUGju70OLEFCp48KjmQsxAq9VSQkICOTo60pQpU+jWrVtWkVsV9u7aTa2bNKf8vJUmZeVIZmUkX/+tCp3MiNbmLKMXm7uRTw8P+vrzA8T0Yq07d/b0GRo7ajQ529hRfGQMlWi0tZZFRMQYo5ycHFIqlTRmzBj6888/6yTPUny8cxe1bd6SNqxcY1JWTidLI3mAu2elJGsL1LQh71/UrlFTGtKjF32zv+qXnKW4eOY8vTn6DXJr1ITio2NJo6mdjtbpdLRy5Upq3rw5eXp60okTJ6zSP0uwd+du6uD2Am1evc6kzJRkz95004y6KC4spqzkNHJzbUx+PoPppyPHrdrJa5ev0qR3xpGLkxMtioqiEm1Jja4v0ZbQmtWr6QU3N+rdqxcdPXLEqv2rDqUkb1pTDckh02aST68+9Pu1G0aVmCDShtX51Nz1OfLs1p1OHD1WLx29dvU3+tuYMeRkb0+JsXGkLiqy7EJGtO+jPdTm+ReofZs2tG/Px/XSv6qwb+duatfCjdavyjcpMyI5aOp0GtSnH929+XvZaZ2mhNavWkM9u7xEXr370v49e4kJtXjLWYjLFy/RW2P/Ri4OjpSUkEDqInW113y8+yPq4+FBnj160sa160hbS3VTF+zbuZvatXSj9aurIXn2hwE0uP8A+uPOPSIi0mlLKDZyEbVq3pJeG/EqHfvmKDGh9i85S3Hp/AUaMXQYuTg4UGpiEpVoK38ZXjh7jjy696DWzz9PBz79jIjV3wCoCpaRLDCaOdmffL28qfDhI2KCSEszs0nB8zSwX3/6+cSPDdlnOvvrGXp1uB895+xC8TGx9OjBQ5M6v546Ta+9OpLavtCKli/Na9D+VYRFJIs6gWZM/pCGDxpCD+/eo81r11NjZ2fq4+FJ3xz8qkE7XIoL587T2DfeoEaOTjTdfyr9ee+PsrLTP/1Er48aRS2bNqO1q03NpobG/l0fUXu3582SXC4lgCCTyfDo4UNs37Yd27dtQy/P3shbmgeflwdb1WNlKTp1fhGrVq3G9OnTsW3bNuRkZ0NdpMbli5cQFRmF06dPIzs7G+MnTXwq/SsPG3t7KGxszG7F8CR7zpDL9eu5s0hITEDTps0wZcoUdO7SBX/e+wNFhUUmmbVEZLJGghGVZVVK33Yqt6eEqQDjQ0ifXAPPgZfxkCvkcHJwxAAvL2zbtg1Lly7F44ICXLt6FZ9+9in8hvuhVevWOH/2HIrURRD0Akq02ifRCY6DKIgoVqshisbheicnJ8jk8rKlvxzHQV2slpJgygVE9YJQ9jm88vdI0ifRwDGCQiHH8WPHDNtIVPF1BiIGO1s7FAt6XLl5A7du30ZmZiY2btwIjUYDjZlvGhERYKYDep3e6INWNVmDInLSjlO8TNpp0cbGBuoiNa5evQodE7FkSXpZFOvw14dx7tw5cDwHQS9AW55gSA9Z0Ovx+OFjMEEwilq4NnaVvjnISr8jCOgEvbSfPxGYYdORoqIiaISqd/7iATAArZo2h72ZZb9PvmImk8N36FA8evQISgd7yBUKFBcXQ6PVSBtAEUFfoTEeHORmHPwywzfuyojmOfAyedkHDp+QwJt+9JAjcBwPW1tbaDQaQ0qqlJ9nY2MDpVIpPXSNBowxaLQa2Cikn6koirC1tTVKziEiyGH4/Fy5Z63T6YyWHxAReIUcnGGLG6LSxG7j3EAigkyhgK2dYXmvYRkF04to5OKMnu4eJnxwVO7RizppNCiVSml9Gytt7MmuLsYXV7FKq9wHDTkAsDAdtsqsznJPgwlC2dcepf4ZghJkXJ0HB8hMZTJBlNaZGPrJwbAat1SA4bxCobB4KZpQoodMITe5ByOS/4v6wTORaf9Xx/8BDJAcQiZdNfIAAAAASUVORK5CYII="
|
<image>轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()
Choices:
(A) 12cm
(B) 24cm
(C) 36cm
(D) 48cm
|
36cm
| 69,749 | null |
36cm
|
"iVBORw0KGgoAAAANSUhEUgAAAJ4AAABtCAYAAABQg9jMAAAUG0lEQVR4nO2df2wb53nHv6TSqkAEq0CUmkG5MLWomqtShE4KTEGM0dikTG4kme7kyECVmU600JsChMlES1lV0J4NTE28RAbkmbZaWEYFVGlVSPHSwpHklgEExJ4DS4CVybEoh4H+iFz/UbHaGhqg7rs/6KOPFH+JvOMd7fsABMiX77333N33nvfHPe97BpJEiXNwlwFvnZOmGNFy8CTe+0kHAKNKVulk4p64Km++R/i9zfBPLoAkBH4KvOnGwdNTapumk4Z7QngAcGMe+Nv6LQAAA6zYefA5fLoYUtconbTcE8Lj4gTeNNpglRzOjWu/hc36LRWt0snEA2obUCgEMPW7SXifa4in+btb8Na5JgTfq1fPMJ2MGEq9c0ES3U5jYueixQu+96ZqNulkp+Q9Hj6bwlvwgrwrtBK/l+4LSr6Nt7i4iBabVW0zdDZIyVe1B3cZ0PA20VCdmD4+Pg4AcDqdAGJe0GAwFNc4nbSUhPAExEw0IiYcAsDiBIzWv4vnmQwS9RLxbdu2DQAwMzOTUJYuQG2g+aqWJIwwxEV3JxGofhYk4x+p6C5cuICvfe1rAO56PhFddNqgJDxeIgKy3S9/vcOB1z2vgQbg3w4dXuf1dNRH8x5vPZlNDgR+h9XwCpxOJ3bvcgJY7/V01KcEhRerfkU3neyu+/sH8Eb3v8Z/+3w+HD58WB9i0RiaF15MZEJCmrSdJm2xzc7O4pNPruLv9zwfTxN7tb/85S+VNFNng5RgGy89u3fvhtPpxL59+xLSP/zwQ3R0dODatWsoKytTyTodKZr3eLmyuLiIjz/+GO3t7ev+czgc+OY3v4nh4WEVLNNJheY9Xq7jbvv374fdbserr76a8n+p1zMajfqwispo3uPlIpDPP/8cU1NTOHDgQNo8Uq+ni059NO/xcsHj8eDhhx/Gj370o4z59Laedih54d28eRN2ux3Xrl1DZWVl1vwNDQ3Ys2cPXn755SJYp5OOkhSetN3n9Xrx4IMP4tChQ1nzArEhl507dyIUCqG8vLwY5uqkoCSFJxIOh2Gz2TA7O4vNmzev+z9ZdOLv3bt3Y8eOHWk7IjrKU9LCO3ToEMLhMN55552U/6frEeteT31KVni3b9/GY489ltbbZUP3eupSssI7fvw4ZmdncebMmby2172eupSk8G7fvg2r1YpAIIDq6ursG6Rh7969+O53v5t1GEZHfkpSeKdOncL09DR+/vOfF1TO4uIi6urqEAwGcxqK0ZGPkhPe2toatm7ditHRUdjt9oLL279/PywWS9rhGB1lKDnhnT17FuPj4xgbG8tr++Seru711KEkhCcVy+OPP46hoSF873vfy2v7VOher/hoPkgAuBsoMD4+joceeihn0Yn3VCrRSe+33t5enDhxAuFwWAZrdXJBUx4vnWcS07dt24b+/n44HA7Z9/3KK6/gK1/5StrBaB150ZTwMnHhwgX09vbio48+UqT8mzdvYuvWrfj000/zGpDW2RglI7wdO3bA4/HE51AowWuvvQYAutcrAqoLL1v1CgCBQACvv/46rly5oqgtf/jDH1BTU4Pr16/rXk9hVO9cpOttStOPHz+O7u5uxW35xje+gRdffBF9fX2K7+t+R3WPl43Z2Vns2bOnaFHDYltvbm4OZrNZ8f3dr6ju8aSkugcOHz6M3t5eGI3Km0oSmzdvhsfjwY9//GPF93c/o2mPd+PGDTgcDoRCoaLOkQiHw7Barbh48WJBQQg66dGUx0vmyJEj6OrqKvrEnMrKSnR2duLo0aNF3W+pkt1zJa4EQQCgRgmFQjSbzYxEIorvSxCE+EdkZWWFVVVVXFxcTMinszEmTnfRYDAQANHSzTVep9d7kpr1eMePH8eBAweKEqRpMBjW9a5Fr3fkyJGEfDq5wcUJGA0GDARrIAhC7MU3b/8NygzfBqurtenxlpeXaTKZGA6HVbUjHA7TZDJxfn4+nqZ7veys8TpbALZ0n1z3j9/bTP/kgjY93rFjx+B2u7Fp0ybVbCCJTZs2obu7G2+88UY8PXnWms56Lgyexjk04z/6JHOXCQBGbKnZii3fsmrP462srNBkMnF5eVltU0iSkUiEJpOJMzMzaptSEghcYAtA76kPMtYOmvN477zzDvbu3ZvTIysq4HGSyywvL0dPTw8OHz4s+77uSRZv4ByALVu2ZGwTa0p4t2/fxqlTp9DT05NTfiUa+6nKPHDgAC5duoTZ2VnZ93evId62hhRp0nEXTQnP7/ejsbFRcw/oy8vL0d3dfV96vY3WKobqLWgBsHjjxt00sawbEzg1FYwXrAkikQjNZjODwaDapqQkEonQYrHw4sWLJO+/3m3m411L+DVxuosA6J9cIAVSIPnp5AmixRsvRzPCO3nyJNvb29U2Iy2CIHBoaIgOh0NtU0qChYmTsUHjO5+Wg6dIxkRIkpp4Vru2tgabzYZf/epXeOKJJzQ7UCva+dOf/lSR8Pt7BSKxjZcKTbTxhoeH8fjjj8Nut2tWdABQVlaG3t5e+Hw+tU0pGvn4JYNkE+nWCSWp5IkTqK2t5eXLl9U2Iyei0SitVisDgYDapmiGW7ducXDwZ9z7fBuvXLlCUtomXEu5jerCGxsbo8PhiBtaCo12sa1XCrYqxerqKoeGhuh0OgmAFRUVnJ6eZjqhJZ6pNfWFZ7fbS8J7SEUWjUZpt9v5/vvvq2hR8YlGoxwZGWFbWxvLysr4zDPPsLOzk+Xl5Tx//jzJZMdxV4TJN6mqwpuammJdXZ2aJuTN2NgYt23blmPuNXpbkNDLi312cYFrTOcltMLY2Bjb29tZUVHB2tpa9vf3c2lpiQsLCzSbzRwdHd1wmQnCux35Mv4pBg6Hg2NjY0XZlxLY7XaOj4/nnN/bAk5KhilPHmwm8Nwd8a0n16pciSo/EAiwo6ODVVVVtNlsPHr0aMIY69LSEi0WC4eGhvIqf53Hk1t0ySdF/B0IBGi327Pm1wLpbBobG0t5DCnL4AKbWrzr0r0tkjGu5HO1QTs3Qqpjunz5Mjs7O2kymWixWNjV1cW5ubl1+W7dukWbzcbjx4/nvX/FhZcOp9PJkZGRdelaFF4m7HZ7dq8txAZURYFJOXmwmdjljecrNnNzc+zp6aHFYqHJZGJnZ2fKEQbxuvzpT3+i3W6nz+dLSE+VNxMZhZdc9aaqitNVzZmq7cv/fYlbv13DP//f/2Y0Ll0ZmdKTbVLyRhIEIWev95/eJvonF9Zpa+J0F5HkCZW++YLBII8ePUqbzcaqqip2dHRwamoq63aRSITbt2+nx+PJmjfbMWT1eJl+5/I91X9OpzPeNkgnjI2Wne4mybSPQhFPrsPhWNfWkZ54gQtsNjTF23KC5OPvbrnjCZXrYAiCwKWlJfb397O2tpYVFRVsb2/fUPs6Go2ysbGRLpcr5dDXRm+WDQkvk+fJlk80bP5/PqHZbGY0GqUgCIx8+eeEvGK+XASZyb5M9shNIBCg1WplNBpd958gCBSCH8TEJbk2Akkh+MHdh+kJG4lfChPj8vIy/X4/n3nmGRqNRra1tXFkZCSlnVJ7U9Ha2srW1taC7JGSUxsvnefIRxz7/uEF9vf3x38nC6+QstUSHpna64lMnO6i99QHsUgNyYX1tiBWzcpYs66srHBoaIiNjY0EEK9dVldX8y7T5XKxsbExo2A3Slx4maqlXISXS3UYCoVoefQvEqYsylXVbmQbJQgEAqyurl53ccRQ8A8Wxd93PZ1cbbtIJMLh4WG2trayrKyMDoeDg4ODvHXrVl7lSfF4PNy+fbvs00wThJfpAmUSSK6dC4/HQ5/Pl7VzkE/Z2dp4xfJ6Z87e9XpiaJBh3cAx6J9YzFBSZkSBjo6Osr29neXl5Xzqqac4MDDApaWlgo9DxOfz0W63F+Qt05Hzk4t8L5x4ksQpiysrK3mVo2nuOKrp6em0bb2krLkXneQFz58/T5fLxcrKStpsNvb19TEUCm2w1Oz09/fTZrPJ4jVTkZPw5PAWPT099Pl8JTdOlxt3OgFCbHxS2oaVg4sXL9LtdtNkMtFqtbK3tzdhrq/cDA0N0WKxyOo9k8koPLkeof3xj3/U1JRFJZmZmaHJZCq4TTQ3N0ePx0Oz2Uyz2czOzs6sUyzluKlHR0fTTkGQ02kUJUjA5/PlNOhYykgviuj1ki9Ttss2Pz9Pn89Hq9XKqqoqut3uO6FGxeH8+fM0mUwpH5PJjeLCi0QirKqquoe9XeJYm0Dyymyy11uL9WZTeIxQKMRjx46xtraWlZWVdLlcGw63KiSWUdxmenqaJpMpPpkp1+3yRXHh9ff30+VyKb0b1Uh3+nfv3p22rbe8vMyBgQH+1dN1LC8vZ1tbG0dHR2UdJ9sIYvOgmHGRiglPEATNT1lUkrm5OZrN5vhQRCw8fJD19fUEwNbWVg4PD2ccqlCqIyYtd35+nmazuehBrYp6vMHBQU1PWUxHLhc8lzzt7e38wQ9+EA8P37lzJwcHBzUzpBQKhWixWPjuu+8WfbRBMeGJk2Lut8VupOHhX/3qV1lWVsa3335bc23c5eVl2mw2+v1+Vfav2PRG6ZRFrUMZphb/5je/wf79+/H1r38dR44cwdNPP43r16/jhRdeQDgc3tCyHHLYk6m8cDiMxsZGuFwuuN1uxfefzqiCSeWma2trc+4hqU2+1Yw0PNxqtdLn861rzwaDQT700EMpq9d0+1Wy2ltdXWVdXR17enoU20cuyFbVSk/W+Pj4PbfUg3h8MzMz7OzspNlsThkenko0LpcrHrGbbR/JazHLSSQSYX19Pd1utyLlbwRF2njbtm0riSmLuTI/P58QHu52uzfkzZeWllR7ciOKOBqN0ul0sq2treg2pEJ24QUCgZKdsiglGAyyr6+PNpuNlZWVfOmllzKGh2fzUh6PJ+HpTbEnsLe3t9PpdKo2VpiM7MLbsWNHSUxZTHXBl5aWODAwQLvdzoqKCv7whz/Ma85oKm7evMnKykpVvF5nZyfr6+uL8uqGXJFVeOmmLGqZW7du0e/30+FwsKysjK2trRwZGVHkIiV7vWLQ29vLuro6RWLqCqFg4SU/HB8eHi60SMVZXV3lmTNn2NTURABsamri2bNncxrYLaRqXF5eLprXEwQh/gxYKwPWUmTzeDMzM1mDINUkEolwZGQkHh6+fft2+v1+xQId0+HxePjqq6/KXm7yDTE4OMjq6mrevHlT9n3JgWzCa21tzXs5AyURw8MrKipot9vzDg+XqxOwsrLCRx55hJ999pks5aVCjKkTI5O1GHwri/DExVu04u2mpqbY0dGREB4uDuxq4SL4fD7FInbEmLrkCGUtHLcUWYTncrlShgAV82A/+ugjut1uPvLII7RYLOzp6YmffDUXv0mF+II+uaN2pqenWVVVVRLPxwsWXqa3LCp9IT/55BN2dXXx0UcfjYeHiytSZrNFyScEuSC315uZmWFVVVVRI5YLoWDhiVMWi0UwGEwID+/o6CjJpyRyeT1BEOIxdeLiiKVAQcIr1pTFUCiUsO5HPuHhWuTo0aMFez2xxvn1r38tk1XFIavwMlVH4pTFVPkKrcbEdT/q6u6Gh2db90OLZIpAESO0Z2dn8yrriy++KGhxRDXZsMcTD14cFpAOhhbablpZWeHg4GDCuh+ZwsO11lPLh/7+fjqdzg1vt7KyQpvNJvsc3mKRd1Ur15RF6bofANjQ0LBu3Y97QWDpyPRa0nTHvbq6yieffLKobWu5yUt4hU5ZjEajHB0dZVtbW8K6H1oLDy8WG/F6kUiEDoej5Ocp5yW8fKcsStf9qK2t5bFjxzKu+5HJ091LXvDLL7/k5s2bs46/RaNRNjU1cd++fUWxS0k2LDzplMVcLv709DTdbnc8PFzpdT+0Rq7tXr/fn9XrPf/882xtbV2/FFoBK3OqxV3h5WCvQHJw8GdZpyxeuXIlHh5uNpvp8XiKsixCKRONRlldXc3f//73Sf/EVipwu91sbGxMWJ2glAHX0ihOIBcmTnFCMr4ZjUZZU1OTskqYn59nb28vrVZrXuHhOkz7WtKenh5FFkdUE6S+c9YocIG7DEgQnvjuKjFPKBRiX18ft27dyk2bNtHlcpXU6LnWSPWCvp/8e59iiyOqSayqveP0pL7Pf9DL5uZmSpeFrq2t5X+9/1sODAzwqaeeYnl5Odvb27OGh5dKu0MLSF/Q5/f7abPZ+M+NiauJGlIt2F1iPAAg9lZbgTAYY++KnRz0AvUNwFvzAASARvxi5Be4du0ampu+j+985zuw2Wxo/P5OPGAsw9WrV3H16tV083Y1/Q5aLWEwGBCNRjE9PY1Dhw7h7NmzmJ6ehtlsxoO7DNjyynUcaKhBcNKPmoYabAkSDdVqW50fD4hfaLijv+AHmGQDfrIFOND8lzgHAAbAaDRi9+5dsFq/jfLycgCxE8Uss8510eWGeC7LysrQ1taGEydO4NKlSzCbzSCCuHauBS+/F1NZ9ZYtKlsrA8ku0OuNrUSe6t0MMdb0qlNB5ubm1i2OGHsd1en4b+n7z0qVBOFNnO5KaEtID07uIACd9CQ/wbl7XYwEEjt8pUp80R5hYRKTbABjYsTCxElsrX4s7hnXVZl6FSobyY2VzZs3x9MIYPL9Y5gIEuQaJk534VmrARM3imykzMSEF5xAWdck3nz5WQCxg/0stJgiuxD/pstOPlKdy3ja4gTegjfeiaj/RzeaDMCFC5NFsk4hYi/rRYIL97aAMMTSmr3qrJ+mE2PidBf/5fRk/Hfa95+VGAZyjaLj0yk+AggjCMKY0vMd3GVAw9uxYRMiCKehBufQjAWOw1rC181Arh8PEZMMMOh1apEgEk91cNKPmmf/SZJiBCAALV7wvTdj30tEeEwxlvv/t0Z/HeGllxgAAAAASUVORK5CYII="
|
<image>如图1,若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC等于()
Choices:
(A) 3
(B) 6
(C) 7
(D) 12
|
7
| 69,750 | null |
7
|
"iVBORw0KGgoAAAANSUhEUgAAALcAAAATCAYAAADS45xnAAAE2ElEQVR4nO1b3W7jRBT+jrsSVd+Cpq1E04eoVDu7ixBthcQjgGoXidIKcdeIu4JTuNiWW64XsXF7Q9j0ok8AaInDLrvtW7QJiMzHhf8dp+2WJnFYf5Iz9jkzkzPHn8fnzCSiSApuBwK4bdsCV2N3dxcigmq1Om5TJhZampwK7KtUrVaTTvarTAKxA9vJ/nHlGSKT4N3x4Kp7GddpaaXmU5bhRxwKmeIJQEGW/w+Ce9k36foICJ4itwoVEn7EoXmhSMGToWLS3jKjxHW+EZGQ/MJBtWMB9fLycqL0ngkVKwvcNU5PTwHEfV5ARBLkDnwUlGncG9xTdBo4mAIIgYjQBbGHhYLU/XjdN1o4c5OM4lJ/1m4d1/Cq9BnWykUcMmwk/F/gTuDF3EwlXAIQbWyt7hQOHxEKP98dkgllhl+/2TyAGAbmF5OvArI3dOPuGpOUnjn7FkSmvMSoYkLRhWXVxm1WbrF5X8IkMjj2j9sAVHK1JCCBU/sENHTwpJ8WIlMjMPm/w6oINE2DiEALB66j7Y8yPysSft7SdiAiODifBdmDIsFvK5jSloDZ0nhNzClI4tHPhGkAtvMMJNFybOysLcFxJUluAYC2gyZWsD0vONFLWLz1/uV4cfCU+Ngg6i1veZMkbFNQFgN/5Cq+1UC0YZTXYWzW0Hy05YWJALC4hpqpY3ZuPvX2efMS+WAyik9KIgLiOV40V/BwdQkAUJ4rJRolYFkWSbLX/pG6uZ9We1DZ4jxB0eWKYQUXITZ0sGLa4zFqAOo1k8AK3QzH1msm660JcPhQ0RtIud+PbOpWdD9NQ8LrBLmP9z7ijKZxRtMIgLplU6moW6UUlV+SOeG4YsqQHkmy5SQHHci/tnTC2BiVdddC0aUO0LTrMWkvVabaqFx4fkTwfKCUyrjXwcSA8Ki3VFglCkvcYzSmHuLi4gIXvR5ajo2Ft0uQWLYpIhCoaAdoWO+g14EgaYg/pMbTBh4YDzwRiSB3nptdiMlyAPcFTgDMzs3HhBoyN5B95CekGgX8NQ8RbxUvNfRm4zAMPR3bxPqShiPX9x5JL5nZauBgey1s9PLs3DsZsAWfW/jLmD8dEu+ulgGVjK/Pzv6EvlDKDUEiO5JxdCDN8nVuHsxRgyk6th0cYiPch3l/24IOoNk4AgBo+5sVSHkdOPkOjkuA3krD+vYhvv/8A7xnfgV2Ol5n3S7Q7UK63egLfFkfAvnr6m5SL0NOAOx0vM2Q31xMb1TwDgD8/ZdfQwFtBzuHJ+GMngdwcQE6gPNXZ/3KtoP9IzeqG/zux38g3jiSh/OAN26n0YR5vwLA33dsvUy+BcPgJQhUOp1kUBNcZ+nj55cD5MH1TfvP6uOK9sq/Vp2Op+t0WK+Z/HTvcVTXL00DRMX0W6bi2evC2CHqn9gbBEDbaYWylmMnc4Mx2pcLfaxKUJoGwmRb8Tl1IEzMFVMJpWJvMPlIqs5Fvy52qIAwA/q4tv844dL1btDes8FL0I5/uYzkvz72Eo5ryKIGJHDD1iul6B7VCIkSo2QyPF778qIP0HLsRBIZHroVVeop9v8qsNsFpqeRKUvrsupmyePXt+3jqr7fmgYEaP+wh/KHXwAAZrR7uFT/+OcavnzyDNur5f7+8oDEX5qCX1sWSIOpsAy4+t9g/wKwznkv4ra86gAAAABJRU5ErkJggg=="
|
<image>如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()
Choices:
(A) 2cm
(B) 3cm
(C) 4cm
(D) 6cm
|
3cm
| 69,751 | null |
3cm
|
"iVBORw0KGgoAAAANSUhEUgAAAKgAAABcCAYAAAD6SP67AAAPS0lEQVR4nO2df0xb57nHv8fOAqnplRPftBlR5Vy6tiIwgmtAUSgzS5ylcG+HIqqV3dYo4BBQbxHbpN5OV6n7R/9hi5IgJwx3C9BAGhat0aJqStVhN0AnDLkpaUpMrxq1uSKRnDCc9I6UGinxc/9wbPzr+Of54R/nIyHF5z3nfR/H3/Oc533O+5zDEBFBQiJNkYltgIRENHJaoC2VDBgm9E8Dl9iGSfjJaYEO/jehRQvYXAQi79+RduCfJZGmDTktUOA2LqMVOzesbvml5TL2VXyG3R3HxTNLwk9OC/TvE8Ngni0J216mLcPlmU9FsEgilJwW6KnTw2g2vBy2/dniZwH6nggWSYSSwwK9g4F3GDTXPB7WMvPFDMqf/aEINkmEskZsA0Tjmxl8r30/NoRtt+JX73yOoxM/E8MqiRBy1oOOnX4P24qfCdvesns3ULUPv4jgWSWEh8nNO0kLqGAex29dtDqD/8YKZv1uoLIZdPGkqNZJrJJzAl0YP4THa/8zYtvRiVuS50wzck6gEplFzsagEpmBJFAAp06dgsVigfv+ktimSISQ85d4h8OB0tJSKBQKfPvtt1AoHkVT08+wf/9+bN++XWzzcp6c96D/VvevaGhoQH5+Pmp/pMMHH5wDyTzYqf8JGIbBc889B4vFgpWVFbFNzU0ohzGZTKRUKv2fm5qaSKFQkNPpJCKi5eVl6uvro+rqagJACoWCjEYj2e12sUzOOXJWoA6HgwDQjRs3grYPDw8TAHrrrbfCjrHb7dTW1kYKhYIAUHV1NVksFlpZWRHI6twjZwUKgNxud8S2yclJAkA7duxgPd7tdlNfXx/V1NRI3pVHcjIGra2tBQDk5+fDbrcHtdntduzYsQOTk5NgGAZbtmwBRZhH5uXloaOjAxMTEyAiWK1WEBH0er0Uu3KJyCeI4IyMjBAAmp+f93vKyclJIqKwz0REb7/9NgGgy5cvxz3GyspKxNh1enqa66+T9eSUQN1uNwEgm83m3+YT5dDQEAGIeIm+dOkSASCTyZTUuHa7nYxGY1Ds2tfXxxpiSKySUwJVq9VkMBjCtvtEeunSpZjH19TUpGSDL3YN9K4tLS1S7MpCzgg0NKUUSrwzcaPRSHK5nObn5zmxa3p6WvKuUcgJgV69ejViSilZzp49SwCov7+fk/58+GLXTMgM2I63EADvX+U+IrpNra2HOR8nJwQql8vJbDZz2qfL5SKFQkFNTU2c9hvI5ORk+nnXu6MEgCoOHFvdduc8AaAW8yjnw2W9QBsaGqikpIS3/vV6PalUKt5FEyl2Fd673iQtQNqO42EtR9rLqOdvtzkfMasF6ksp8c3hw4fDsgN8I0Zm4ELvPgLKaZGl7cIC92NmrUAjpZT4ZG5ujgDQG2+8Ich4gQjjXW+TFiDjceFOQqIsFugTTzwRMaXEN8XFxbyGFPHAi3d1WQkA9fzNyZ2hcZCVtzrffPNNLC0tYWhoSPCx5+bmUFNTA4ZhMDc3J/j4ALB9+3acOHEC9+7dw3fffYdXXnkFw8PDyM/PR0FBAfbv34+pqanEOpV5b/eSh+HB4igIejoIwOzsLKcppWSx2WwEgCwWi6h2hGK326m1tTUJ73qbKtlm6ndtdHTiFi/2Zp1AGYbhPKWULIuLi6RSqej5558X25SILC8vk8ViiTt29U6SECTGhfFDhIpW3mzMKoHynVJKlvr6elIqleRyuVLq5/bEodXkOECa9mOxD0qASLHr1atXg/ZZnDgcZEOklBOXZI1AhUopJcvAwAABoA8//DCp44+0l4ekeLyz6qCEOYe43W6qra0ljUbDS//xkr6/aAIsLy8LnodMBofDQXK5nDo6OhI67uiBsoe3E4O5PfZbAsqJy/Tj0tISdXR0EACqrKyMurBbCLJiFl9cXIzm5mbs3LlTbFOisnXrVty/fx+ffPIJnnzyybiOWRg/hF/+/nNYPxpk3YeLH9FisWDbtm149NFHkZeXB7fbjYsXL6KzsxOvv/46ByMkiWinBkfEWqWUrphMJgJAs7OzUfdr0YLKD0Se9HknLWWUbGTrdrups7PTH0++//77YfssLS2JGjpltEDZCt8yhYmJCQJAhw+zrQLyxpk945FTOK3bk5uknDt3jqqqqggAdXZ20vLyMlVVVVFXV1fE/TUaDZ3+40jC43BBRgtUJpNRT0+P2GakhNvtpo0bN5JOtzO88eEqIVsEF+mNPyO3sY3T1dVFAKikpIRGRkbC2gHQrVvhJ8PY2Bj9yw+K4huIYzJWoC+88EJappSS5aWfNwbV5HtxkhagoxdCVXibNHGmmQK9ZXt7Oy0tLbHu293dTUVFkYUol8tDbBOGjBRouqeUksVXF3X27J/82460lxEq2lZ3umuLmQON5S2joVKpIi7ENplMtGvXLhoaGoq7Ly7IuF85U1JKyTI/P08y+dqghS7GSgQlx9mWtQV6y1dffTWqt2TDF9cTETmdTjKbzaTT6fxjp1qTlSgZJ1C2wrdso7q6mtRqNXk8nqj7eTwev7fcunVrQt6SjbVr1/oFqdPpyGw2k9PpJL1eL/ht5IwSaKamlJLFV5M/MzMT1ma1Wv2ezWg0JuUt2fAtwA7NjszOzgr+/58xAs30lFKyzMzM+Gvy79+/Twff8uZPi4qKBI8HiYiUSmXM3C2XZIxA+Sh8yxTOnDnjv+S++OKLKS86SQWz2Ux6vV6w8TJCoOm6SolPHtAKHTz4Xw+95VM0ODhIBoOB5HK56FcRITMoQSN5PKt/6cLp06ezMqXEhs1mI91O7/rM5uZmWnQF5x75qslPhKampqQfA5QoYb98OolT6MI3MfHdm9+yZUvM2FKImvxoOJ1OwZxGWq9meuaZZ2AwGNJ+lVKyTE1NYffu3WAYBtevX4fL5cL169dhMBiiHrdhwwbcu3cPi4uLeOyxxwR/xOOmTZugVqvx8ccf8z9YqGIDPWjoJT9SCMAWEkQLF+IJJUwmE23a9P2I+7EdH2pn6PdJF7q7u0kul1NhYSGdOHEipb4OHTokylVmZGSEtFot7+PEvMRH+xzPvxNp8+FwOGjdukf8k4F4jmc7mdjGEBq73U56vZ4AUGNjI6f3tX3PnhK6Jh8Ap/nXiGOEbkhUXGxeNZE+QpHL5dTb+7uIBnNxwghJoLfke2JTXFxMpaWlvI4RSGdnJx04cIDXMeKaJLF5IrYfPhWBNjQ00LZt21LuW0yB8uktY+Er13A4HLyPJcRiZn/v0S6H8QiUCw8auEop1b7FEKiQ3jIavpr8vr4+3sfSaDSc3P9nI0ig0X7IaB6Ni0mS2+2mdeseCQr2Ezk+VgzKl0ivXLlC9fX1BID27t1LN2/e5GegBHG5XKRSqai+vp7XcUZHR0mtVvPWf9z+mW8vJNazlJLFbDZTXl4eKZVKQTxVsnBVkx8NmUzG24kZl0D5FmemrFKanZ31e8uGhgb68ssvxTYpLgYHB1OqyY+FyWSixsZGXvqOKlAhbn2my7OUomE2m2nt2rWkVCrT7llL8ZJsTX688DVZEv0md7quUgr1lteuXRPbJE4oKSlhrTtKBb4WM4sq0HQsfMuU2DIVfPf9Q5+7lAqzs7OkUCg468+HaAJNp8K3a9euUUNDQ9Z5y2iMj4/HqMlPHKVSGfNdU4kiikLSZZVSX18fKZVKysvLS8swg2/cbjepVCrS6XSc9Gc2m6m2tpaTvnyIIlAxC98CvWVdXZ2g5QvpSlNTE61bt46TO15cXxUFF+jBgwdFSSnlureMxWpN/tmU+uF6MbOgAhW68O2rr77ye8v6+nrJW8bgxo0bJJfLU7q6cb2YWVCBCpVS6u3t9XvL3t5e3sfLNmpqamjz5s0xa/LZUKvVdP78eU5sEUygfBe+OZ1OamxslLwlR/hq8pOZlZ85c4azJzMLIlA+U0r9/f1UWFhIcrmcuru7eRkjVwmsyU8UrhYz8y5QPlJKgd5Sr9en5duAswm1Wk3V1dUJHdPZ2cnJbVXeBcplSknyluJhNBppzZo1cU9wuVrMzKtATSYTrV+/PqU+bt68KXnLNCHRmnyNRpPy43l4E2iqKaWBgQHJW6YhidTk22y2lBcz8ybQZFJKLpeLDAYDAaA9e/bQ9PQ0T9ZJpIperyeVShXzFTWpPqqHF4Hu3bs3oZTSyZMnqaioyD9jTDb/JiEsvsc0RpsAp7qYOS6BLowfImukt9hHIN6UUqC31Ol0ZLVa4xtAIq3whXLRavJTmSzFcaSLtEBcAo0npTQ0NBTkLR88eJCAuRLpSnFxMetVU6/XJ72sL6ZAe9r2UXl5GcXjQNlSSi6Xi5qbm/3eUuxldhL8wFaTf+XKFSooKEiqz6gCtR1vpiMXRmkbYgs00iqlUG8pxZbZD1tNfrKLmdkFeneU2sxWorujhCpj1E4CU0qBLyPV6XR04cKFhI2SyGxcLhdt3LgxqCbf97aQRGEVqLGt3fuP/7PGfGEUwzD+xSAAqKurS/KWEmE1+QDofoQpx76K4NfsAKCj4w+PidSxtbc5aGe2l5kuLS2RUqkkAFRVVUXnzp3j6KtJZAv9/f3+mvyml15kne23VoCOjnkf/uB7zePYIhFDRBT0wNB/2NB6kjDQqQfgfR30rz/TYqAr+CGypaWlcDgcAIC6ujo8/fTTQe0MwyCwa4/HA5ks8vNyn3rqKWi12ohtQiGTyeDxeFBQUIDS0lJRbck25ubmUFZWhj0/rcP5P/8FoZIDbqGc2QMbXYEKAO7YwKj0GF0grAna7xsrmJ+8B7q4+m7yOcccINOEDdrT04Orjv/B/17/GozcA3oQ3B5qhEwm84vA99nj8eDOnTs4cuRIst+dc77++muxTQhi8+bNyMvLE9sMeDweaLVaFBYWBjmawN/Ut1+oI5LJZGjraMcfLO8AAN4bOYOXf/6Sv31hfBhr2lq94gRwoE4PTfsx6DcCfg96tEODX73zGQDAukjYpQJaKhm8e8l7kKb9GGYsr3H9vSViMDU1JbYJfsbHx+F0OiO2RbtC+mAYDz76yIovvvgCHo8HDMMAAMZ+14If/8e7/v2sdwi71j88JuwSLyHBM3f/cQfr/2mD//P+Cgb//lfCzg2rYrW5vJ8lgUqIy10bmD2nAsLKBVQwj+OHx0Yx+Joeaf2WD4nsZ2zkFFoML69u+OZzfAqgXFMGQPKgEiLTUsmg5SPCjzYAPu/5Kcqw+HBGLwlUQhRuffwbfH/Xr8MbKvcFZZH+HxK0ShS4hgkgAAAAAElFTkSuQmCC"
|
<image>如图,△AOB中,∠AOB=120°,BD,AC是两条高,连接CD,若AB=4,则DC的长为()
Choices:
(A) √{3}
(B) 2
(C) \frac{3√{3}}{2}
(D) \frac{3√{3}}{4}
|
\frac{3√{3}}{2}
| 69,752 | null |
\frac{3√{3}}{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAHsAAAB7CAIAAADbpWgoAAApVUlEQVR4nO1dd3hUZdZ/752emUkyKZACShUEIwhiBNGlbEBEmkgUC6ASAVHs4gKrLkoR14o0aSsRFWQVG8rq2lCpgvCIQICQkJBJpvdy2/v98XPebyAkJDE6yfPs+SPP5M7ce88973lPP+dylFLSSkAQBK1WSwhRFIXneUqpoii7du265pprFEWJRqMGg4FSynFcojGtD/hEI9BQiEajIHcoFOJ53u12i6KoUqmefPLJI0eO8DxvMBgIIcFgsIXzUKuhuE6ns9vtgiAkJSV5PB6LxRIKhdauXUspbdeuHaVUEIRgMKjT6TiOE0Ux0fjWCa2G4oQQnU4XCoUIISaTSZKk/fv3X3311aFQyGw2cxyn1WoVRZEkiRAiy3Kika0TWg3FQ6FQcnKyRqMhhKjV6pKSEqPR2LNnz4yMDEIImNpkMkHy/I/izQORSMTn8xFCJEnatWtX165dCSGDBw8mhASDwVAoxHEcz/OEEL1en1hU64HWRHG9Xp+SkkIIOXTo0Jw5c3Jycrp27apWqwVBSE5O1ul0lFK/3y/LskqlSjSydYI60Qg0FJKSkkRR1Ov1Pp/P6XRarVaO40pKStxut1arlWUZAj05OVmWZZfLlZaWlmiUzw+ticdhhj/22GMFBQWRSIQQcurUKZ1OBzNRr9dXV1cTQlQqldlsTjSydQNtPbB48eJBgwZlZmYeOHCAUvr000/n5uZ27tx50aJFVVVVlFJFURKMYgOAoy3bX2AgiiIMlWg0qtPpCCE+ny85OTkUCiUlJeE4z/Mcx3EcFwgEIPFbILQaqQLfHT7OiRMnRFFMTk6mlILchBBBEDQajUqlauFSpdVQXK1WS5IkiqKiKHv37v3ll18IIT6fj3k9RqOREBIMBgkhsBFbJrRczM4BaMXU1FRFUSKRyJw5c8LhcEpKiiiKoihSSkFltVrt9Xrtdnui8a0TWg3Fs7Ky1Go1IYTjuLS0NKvV+vnnn8uyrFar9Xo92N/j8YiimJSUlJmZmWh864RWQ3FCiM1mw4d9+/aNGDFi/vz5kNocx0WjUY1GYzKZIMEFQUgopvVBq6G41+sF5/I8n5+fn5+fX1BQ8Oqrr7rdbkqpx+MhhGATeL1eRFdaJrQaipvN5lAo5Pf7CSFHjx6NRqP33HPPl19+mZKS4vf727VrF41GPR6PoihpaWlsN7RAaDUU53neaDQKgsBxnE6nc7vd3bp169+//4IFC5KTk2Gkq1Qqnud5nk9PT080vnVCq6E4wGw2U0otFotOpwuHw48++uh3331XU1MDQwUuksPhaMmRrNZEcUVRNBoNx3FWqzUzM9NgMOh0uilTprz44otCDAghPM8ripJoZOuEVkNxOPEIYAmC4PV6RVH0+/1jx4612WwffvihVqtFWNxsNv/PA2oGiDf40tPTA4GA3+9PSkoyGo1FRUWffvqpLMtarTYSiQSDwWg0mkBU64dWQ3G9Xu92uw0Gg8/nk2W5bdu2aWlp4OWePXs6nc5vvvkGPzOZTC2Z4q0mI8HzfEpKiizLycnJKpWqpqaGEMJxnNvttlgsW7duvfLKKw8ePOj1ei0WS3JycqLxrRNaDY/zMSCxOCLAYrF4PB69Xj9x4sSXXnopLS3tf9UTzQOgMvuLDwjum81mm802d+7clStXWq1WQkg4HE4osvVBq6F4PCCZQmILAOeIEHL33XcvXLiQEPI/67AZQJZlSilIeU7eilJqNBqtVuvcuXPPnDmzefPm1NTUxGDZAGg1FGd5wnOOS5LE87zD4cjOziaEPP7446+88koC8GswtBqKQ23GS3OASqWKRCII0oZCof79+1966aXvvvtuwhC9ELQmipO4dBojOsdxiqLodDpZluFzPvroo2+++Wai8LwgtBqKA5BgIzHSo1wCCSDkgAghqampw4YNmz9/PiFEluVoNAp/tYWEcFsNxWmsHIX9SwjhOA41bxqNRq/XIxGRk5Nz/fXX79ixw2q1qlQqWZYRU2zTpk1LyH+2Goojiw9LPN46VKvVWq0W/2o0GlTVXnrppYMHD37ttdcIIZIkcRyHYEtLsGFaDcUppRzHIfANorOvVCpVNBoVRRGkj0Qioig++uijx48fDwaDLASm0+mQlksstBqKs/xO/EFKKbJCHMeBl9VqNciq0+mGDBkyadKkjIwMq9XK87wsy263O0Ho/z+0Goqr1WrG2szLJ4SIoog8HDL6TKwTQu68887q6uqTJ0+mpqaiKaslFNy2GooTQmCW/FYvGaO4RqPBMqBoC0RXFEWWZbPZvHz58gceeCAQCPh8PrVa/T8ebwRQSmVZliQJ7n48xSORiCAIarU6KSlJr9fzPC9JUiAQIIT06tXLYrHs2bPHaDSipiWhD0EIKM4ibYIggF+gbWRZhjkFkzYajaIpJCEAGQ3tx2oNIV4MBgPsQnSl8Dyv1WpZbe3GjRvvv/9+lUrlcDhMJpPX62X1LTDk/+T0xW/hZkSIRFH0er2Komi1WrvdrlKpMjIywFYwA1gha6IAmhN1WKRWSCseYLEQQhRFefzxx++9997c3FxCiNFo5DgOZiIEFJpx/xz8CSgOPQ5sgIqiKIqiIHUbDAZhk0Wj0QRaV0yCk1rx8fMCEv+EEJfLVVRUdPDgwbKyMkII+oYIIfCMtFqtWq1GRe6fAzxarzUaDcubSJLk8/natGmj0WiSk5OR5SKEiKKYwHo+KQYkjtD1NITr9XpKKbhEo9HMnDlz5cqVKAVADTR7Xmbm/znAh0IhKHdRFEOhUDQa5TguJSUlGAyC8TmOg6BPSUlJYMZWrVaz2CFz9+uhOM/zHo9Hp9OlpqZGo9HCwsKSkpKvvvqKEGI0GnmeV6lUlNJAIKAoCjrM/xzgU1NTYQYkJSUlJSWhRy8SiZhMJlmWq6qqCCEGg0EURbVancDeA7VarVKpINYaUo4CNiKEoMRZr9dPnjx5zZo1giAYDAZZlmVZ5jiO2TZ/+APEgIelpdFootEoU5uEkLKyMq1WC1WpVqsjkQi2ZKIARuE5crye7BrHceAPkDsajY4ZMyYlJWXbtm2EEGxlEivH/VPluCRJsJwWLFhwySWXpKWlderUKSMjY/To0X6/PzU11el0ejweDHdIYP4wFAox86MhALkhCEJmZqZarXa5XISQxx9/fNWqVXa7Hbs5FArBTPxTpYparXY4HGlpafPnzx81atSuXbtKS0urq6sfeOCBPn361NTUpKenw0smCe2vMZvNBoOBqbgL2iqEEJVKxQrJkZPr0aNHfn5+cXExDkKEEkKasd4cbi1YE+4LQxKCjg8EAihuCgaD1dXV7dq1I4QYDIZbbrllwIABKHQihGDoQwI9IDwDS0RAqzfBxpg6dSoyRKFQCBk70qw9FRaLpbq6GniiKo8JZLgRPKuLrKqqGjhwoMlkgpJMTk7u378/SxiyHpzmwqyxEO/cw11o2nXatWt35513PvLII1BR2dnZZ86c+YN6KmbPnp2VldWzZ8/LL7+8Y8eOl1xySZ8+fdSKorjdbrVa/dFHHxUVFRFCNBqN3+83m81ZWVlgbUmS4E0ktk+SuYjkd6w9pfTBBx/s1avXU089hXrotm3bohm3WZCMRqNt27ZVFKWsrOyFF14IBAIrVqzA7JeysrKjR4/+FoXQarXvvPMOQhYI7RNCfvrpp4kTJ5JY4OXPVOi1Ab44OB1akTSpEgiG2dy5c6dNm6bT6Ww2Gyyx5sJTp9Ohg6Bt27Zardbj8YDcFRUVHMd1796dDwaDarXaYDBMmDAhJSWFUupwOHQ63eHDhzdv3jxmzBhCiFarhb+QQAMRQrDhXn5dAJF96623VlVVbd++3Ww2S5LUjJWhlFLwq9Fo/PXXX4uKiiKRyDfffKNSqTIzMzt16sQbjUa9Xr969erhw4e7XC5FUbKzs30+X3Fx8VVXXYUwC4S4yWRKYBM/WBt5CXK2Im0UqFQquNmvvPLK66+/jo7QZpw5xPyAYDB49OjR5557rmvXrrfddhvsUQJ7nOO4BQsW5OXlpaWlIdzcvXv30tLS4uJi2L/BYBDh5gT215xTNMEiEI29TjQalSRJq9X27t27Q4cOx44dEwQBZYvNAh6PB1TS6XQ//vjjqlWrSktLBw0aZLFYfhs5dfjw4UmTJoXD4Xbt2iFWdfHFF3/11VeXXHIJiRmqlFKsD6YN4DmRXId4lSRJp9Mh3MEmEcIphxHGDpJYdRXUIEvPk1h9BKRe7esEg0HQBYrnN9u28TwOE0WSJLVavXTp0vz8/B9//BGWgtPpTE9PlyTJZrPl5OQQQmw2G+LVJMZtWGkQAfrWZrO1adMGBEHjOm6kUqmCweAll1yiVqunTZvGcRxSsoRS6nK5EGaLRqOUUp/PRyn1+/3RaDQcDofDYVDn2LFj8XNCwGj4jMId+rsnnLDTa18HRwRBkCRp9erVa9asafItgsGgoiiCIPj9/sWLFz/yyCPo9aeUnjlzhj0UyFIXIHocCARAH7/fX1NTAyRBxu3bt69YsYJS6vP5MEtq0aJFlFI+GAxaLBawMzgavaomkykcDjMmopR27doVfM2OMMbB+lNKWfwIaNXFaHV9hePnvQ7bWEAVBW9NWGDU88Ni0Wg0Dz744JEjR0RRhFGQlJRE40LBLMJF4/xG5nwFAgEIYUqpyWQC4yPWLcvyW2+9NX36dI/HYzabTSbTtGnTMjIyZFlWG41GSZI8Hg/G2DmdTrPZnJSUhKEwPp/v008/RafwZZddtnPnTuRQYDbECwStVgsRCSEAqoE62A1IiSHfhGwAPZ9U0el0570ObBVRFFNSUrZu3UoI4Xm+CT4wx3FOpzMrKwt3gZlw0003TZky5eTJkx06dPD7/R6PJzs7m+f58vLyzMxMFhyOX/6KiopBgwbV1NSUlpbm5eUdPXo0IyOjvLw8Ly9v+PDhXbt2dblceXl5FRUVFovF4XB069Zt9erVoVBITQhRq9UgNyGEVS0ZjUa/35+cnNylS5eHH364V69eWAkmghmNSCyoD04HpUBKSGH2tOwzjYnp+FpZGqsBqus6WBudTocUINRDY01y2Awcx2m1WoPB4HA4pk2b9txzz508eRItW4jGAAdE0plGYQhTSnNyctxud0VFxc033/zee+8lJycfO3bsgw8+uOOOO1JSUn7++We2ETHlCANhdDodYeLbZrNVV1fLsiwIAq6OpASldN++fQMGDDh16hRojZ0FJFBiyWQf+9A0YFKirutAem7atOndd9+llELKNQogBARBwLmVlZWU0s2bNxcWFiJhzXQSU2C10WMf2G/27NnTu3fv6upqXB/g8/msVqssy5imi68ISBx/XVEUmTCqrKxEeerXX389evRonHkOEvFkYpRix88RtbX/jX8MnF7PdaA533jjjVWrVrFKit8DoG8wGBw6dOiXX35JKQ0EAvgKFkT807FcKzD0er2hUIhSunXr1ssuuwxVAqIoOhwOoEpjrBOJREpLSyml4XCYR1UCcyaxSYPBoFar5Xk+Kyvr1KlTWq120KBBo0aNGjduHInTHvGiLX7TkThVE7/raS2FGV9dFZ9Rq30dKDFMwmJyqWnRY5fLxRKNKpUKnbjLly/fuHFjKBQCwpFIhNm7tZFHTa/JZOJ5fvv27U888cT+/fvhuLJMGeyTcDiMKQ0dO3aEPGjQ9D0sl9Pp3LFjx5QpU9g6i6KI8SbNDudsBUmS2EaMRCJr1qxZs2YN23DwIWlsd9Y+vSEgy/L06dO3bNmCfyFtsAP8fj/2Fi4Lw4ZSGo1Gt2/ffu2111ZUVDT8jvVRnO1Z9rQ2m23x4sV///vfJUnC3lEUpbq6urGPVw+we0mSFAwGYTtTSqPRKLYwpXTlypXIWEIDMYhEIqFQKF6vNBxCoVAgEOjevXs0GrVarTRmViuKEgqF2KLa7XZ8JYrismXL+vTpA1EeiUTKy8sbcqML70oaE6aEkLS0tClTpvj9/ueffz49Pd3r9UqSlJaWRpsv3gKrEVILyW5IGFYkDp/Q4/GgcpzE1SPqdDqe51kOs1Gg0+mMRuPkyZOfeOKJrKwsSZIQMUXNVyAQgMXCKnWfeuqpH3/88bPPPtNqtZB4bdq0aZDhVNdSQHHjM26P8j5Kqd/vf+ihhxYvXgwuQHFlY3mqHohXp7i+x+OBTMTxDRs2vP3225IkYb9TSt1ut9VqZSLlHN5vCKAYRlGUvn37ut3uM2fOUEpramqY7QE5QymVZXn27NmFhYXYc+BxoNEQ2VInj+Nk5n2g4E+j0Xi9XpPJ9PTTT3///ff//ve/KaWIAjeWp+oCVg+Oz5Aq0FF6vT4YDLrdbtjsgiDgOCEkNTU1KysLcUGEpBt7X1zT7XY/8cQTU6dOzcnJCQQCcLwJIZIkwWVRFOWpp57yer2bNm1yOp2EEL1eH++KXxjqX5B4WQlGhv0OE2rUqFGbNm2CbdtYnqoHmJl/zvEjR4489dRTEyZMaNu2bWZmZkFBwdChQ5csWbJ3795QKOTz+RwOB/ZBEzQn9off71cUZfTo0d988w2sQ0opNBalNBwOz5o1a/LkyTU1NcyQRa2ooigej6chN6qT4nhgqC/sOLa/BEHA/Twez4gRI7766qsmPGE9gBgTQ+D48eNffPFFmzZtioqKPvroo+rq6vfee6+4uNhut0uS9MMPP8ycOXPUqFHMehFF0WazNfamLpeL8dbhw4eHDRsGUkJ0YC3vvvvu0aNH49lramoEQcCqMPFbf/ALUCfFmdnHCI3rQo+Hw2Gn00kpPXjw4I033lhSUtLYJ6wLwDVYwnA4vHfv3ueff76wsJDVHcqy/Oabb7799tvxZx06dGjevHkzZ8789ttvm3ZfRVHC4TBsEr/f/+STT27YsAE4YO3vvffeXr16/fe//6VxPAeaYIHjvc16oNHTsCORCEq32A2OHDlSWFi4Z88e/AtDgsatfKPAZrPhRK/XW15e3q9fvx07djCViIdfsWLFqlWrcAQqjlIqCMLWrVsLCgpgreI4zDjgg79wTHBBXI1tULfbDWkZCoWqqqqGDRuGfxVFGTly5Ouvv/7GG2+89NJLNMaOuBFkDvNULwhNnD8OcrPA+tdff3377bfv378fzxAOhxGEYRZ0o0CSJK/XGw6HCwoKTp8+jdAE+4pSunLlyjfeeIP93mq14oGdTmdJScmAAQP8fj/uzqx7URQDgQAELg4CN4gvsBF+CdkiiuLChQvfeuutQCAwY8YMjLJ8//33//nPf8I48Xq9+fn5R44coZS63W5wIZP49UATKQ6k2cIKgrBt27Zhw4adOHGCsbbP52saxfFI11133YcffnjOVyD9qlWr4ikOr4Qprk8++WTMmDGUUrfbHQ6HIdxBUOY00hjTRCIR7FdZlnEFiAhFUU6cODF06NCRI0c+9NBDuPKWLVs2b95MKS0uLkZUNRAI4MpMkV7w6Rodl6CxCG04HDYajShoURRlxIgR06dPv//++ymlLJDftHo+vV6/cePGLl26DB8+nBBSu4SaxjlcoVAIdhvr9Bg5cmSbNm0++eQTs9mM0ngSSx8iEwDNjNchIJsI1wmhfIvFQinlOK5z584///xzJBJ5+eWXkQnhed7r9RJCbrvtNrfbLcuy0WjE1HnEjRvieTUlEoSUHQxV1jxJKR03btygQYNuuukmhIfMZnOTZ/m89NJLa9euxePhL4CenRmgsYIhhPIppUBs6dKlzz77LPQbmhFgNUcikZSUFDRokViUDZsSVc5wZVEyP3To0IULFwaDQXAxIaS8vDw9PR1RP57nMasLYQBCCDzECz5aoykeDoexkmlpaeivoLG0SDAYnD17dnp6+syZM5G+alpVwu7du/v06UMpbdOmjcPhANORszN57ANyRqjwQ1oHlVYdO3aEy0ZitU0sqheJRHieDwQCmFiBbBnoiE1ZXV198803X3zxxUVFRXPmzLnrrruQyyaE+Hw+jUaDZTabzVVVVTzPJycnIwCJHVM/NLFWlnVro4xRkqRQKGQ0GkVRXL9+vdPpXLJkCUK+Tbj4xo0bJ0yYwHFcIBCAWEDtBvNFa38QRREdm0lJSSUlJZIkXXfddWvXroUzDMqyU7ByeASU6zscjuTk5EgkYjAYvF7v/fffX1BQsG7dOkLIqFGjgsHgvn37/H4/c0GR7TMYDDk5Odg6ZrMZWekLP94FJX1t8Pv9gUAAyjNeOyPujBTHrFmz5s6d24SLg1ishiAUCqE5E9/W1pyIpsXjgA8ej+eWW26B0XL06NEFCxbccsst7du3v+iii/r06TNu3LiVK1fu27ePnQil6vV6L7/88u3bt8fnE/bv3z9w4EBK6Zo1a9555x2oVkmSunXrdvr0aRqLEiuK0pDYdVN43GQyGY1GbNj4KcgWi0UQBJ7nNRrNwoULf/zxx1dffZUQwqZYYzHI2aK5NgdEo1G9Xq/RaBwOB7Z5PV2NycnJeOGBEiuGgZZLSko6ceLE119/3bNnz7lz53bp0mXZsmWnT58uLy/fuXNncXFxbm7uqlWrrrjiiq1bt6JMKhKJ9OzZc+PGjUOGDEGFP7TCFVdc0b179zfeeANVLhiDrlKp7HY7azv3eDwcxzWo0qgJbHheAI/YbLZ4h+KOO+5YsGABjZlisLJZCLAuSE9PZzyO8QXsKzDdOfY4wOl04q1AcExOnTrVvn37JUuWMH8YPhELfwKHQ4cOzZw5c9y4cadPn87Ly4PLit+4XC5YlqWlpTabbdCgQWvXrn311Vftdju84m7dulmtVvjeNGakXhCa8w1MkDb4jOfctWvXlClTEGLEbF+M36if4n379j158iQ+I2vFvoIAifc5cbyyshK2P5IShw8fHjBgwJVXXgmS1dTUsCFDNEbQmpoadoWXX365R48eL730khIbSkQpRcCOiax58+bdcccdn376KXyo3Nzctm3b9u/fv6ysLBKJgI1Y8KseaE6KIxEOyR4Oh8FrpaWlQ4cOPX78OFLVeNraaXIGgiDMmDEDC+ZwOOJJEO/lr1y5ksaS0WiKpHEO95gxY9avX19QUEBjgX7mDFNKWeSvtLQUOV/InJtuuikcDrOwAaXU6XQyVF0u16WXXoptBIhGo3CgYD5iCS8IzdbXoygKJsukpKQoiqLX6zMzM30+X4cOHTZu3Dhp0iRCSEVFhUajEQShnrc5ajSa3Nzc06dP+3w+rVYLo7OeClO0hMF4SE9P9/l8kyZNGj16dEZGxo033kgIqaysDIfDqMZGqLlNmzYnTpwghHTo0KGsrGzy5Mn/+te/7rvvvqKiomHDhqGIUBAETMTVaDTYPRaLZerUqStWrMDDOp1OWMYwgfx+f2ZmZoNmWzSMfS8MyNFgzSmlZ86cgZkB7vD7/VddddXp06dhS9QT95EkaceOHbfddhv7N36r1pYqYHPwbFVV1bp165YsWUIpHT9+/IkTJ8D7+BY6hkXeA4HABx98MGzYsB9++IHGXP8HHnhgy5YtiqKAl2HgQ5fgB/369UMsBfIK+5iJ8oZAs1GcpdtLSkqYpRWf9i4rK+vZsyel1Ofz1RNHxkUKCgoqKioopZhvxb49r+YMBoO4oCRJI0aMgKzo27cvO7GqqoqlwgF+v//tt9++6qqr8C8MPrfbbbfbR4wYAZsyEAiAyk6nkwVM3nvvvfvuuw+fcVMwhNVqZRK1fmg2qYLYAiGka9eu8DIMBgOSv7Isa7Xa1NTUlStX3nDDDS6XC7Wl5wWNRqMoyu23375+/fr4ufrxcE74Qq1Wp6SkSJJ0+PBhk8mUlZU1derUtWvXImPncrmys7NVKhUsOZDps88+27x584YNG2BKw+BLTU1NT0/XarXHjx8nhKAikxCiUqnwwe/333zzzcePH9+7d6/dbrdYLIFAwGw2Q4qiXe3ClLrgmvxOCIVC8ZVcGzZsuPHGGyEZq6qqWCUMSpxoTG7Isjx+/PhPP/0UuScW4fP5fHBrN27cyK6JyHAgEHjmmWf27du3fPly5vvQmElK40TZ1q1b8/PzmdUI6Ye9KIripk2bFi5cyC7u9Xqj0SgWD3vXarV26dKFoQqjMBgM/t6sWzMCCu8YQu+8886MGTOg2UVRrKqqwlwXCE0aMzlEUczLy/N6vaBUvHmzevXqlStX4vnh9QF69OhRXFw8evRoLCRWiFIqSRIrqlm/fn379u2ZvrHZbPgxE0HHjh0rLCwEBzDrE1uB/WbhwoXwM5jxijkSDaHGn0FxJLRY+ioajf7973+/4447aueOnU4nWAYVEMFg8LLLLvv2229LS0vxY4fD4XK51q1bt3bt2kAggMXA9I5oNNq3b99rrrlm165duBr2lsvlgsGnKMr8+fNHjhzJSBMOh1EO5/P5sKJY8ssvvxw442c4iH0ANCorKwcOHFhTUwPvDEE02rC01x/e9Y0glEajwRuSbDabVqt98sknc3Nzp0+fjsAQYiOyLKelpWVkZEDlwjT84osvli1b9vnnn8PwSk9Pt1gscKaZV20wGMrLyydNmuT1er///vv8/Hyr1SoIAuKXoijm5OQ4HI7ly5efPHly69atNK4mH+XEiKSzAScIRbAAL5DkeR4RMUJIbm7uuHHjlixZgskdiE3SWOj4AtBkzm0gwBmDeUvPzsPddddd8+bNQ/FFdXU1SyjHF7VCvC5btqxfv3733HPPwoULv/jii9dee23dunXIoq1evfrhhx8ePnz4zp0727Ztyy4e7xNRSufNm3fdddcxyQZ9wOIHzC+D7divXz9WcYigELsgoqQwzPr163fy5Ek2oKYety4e/gypwlJ0jNxQlTabbcaMGS+88AL7pcfjide0TqeTSc9IJHLo0KEXX3zxsccea9++fWZmZmFh4eDBg5ctW/bLL79A61566aUQ62VlZTgFVt1NN900fvx4SikICgqyKipWQIlTTp48CTnOToesYG4Bq51fvXr16NGjcTC+Pqt++MMpHl8jx8wGGvMd/H7/X//6148//pgtBn7sdDqh90AXFopBavjNN99EaQONVWJCji9atAhCA7+EgTF16tQbb7zxnMISOE04F/4LY4sNGzYsXbqUxulSOFnA/Bz8BwwYsHv3bpZNbYi58ofLcZfLhQFKaA3W6/UIq8KZNplM27Zte+GFFz7++GNCCKY2RCIRdJYmJSWBK5GUYMJdEARQGXkGNEVqtdprrrlm+/bthBBFUeAHTJw40efzffzxx3i7Byxr9mZgSqkoimlpabiFJEk8z+/evbt///6EEKTrmDWCyARWkRACCbZ48eJnn32WxFq2TCbThSnSFL5tDkDRCMR0eXn52LFjf/nlF0op63yIRqPneM/nrVdh5VfICQwZMgRnybJ87733Tp8+HVcTBMHlcuF0QRBwX2ahx+uM3r1705iVXX9uHtvilltu2bx5M4u4ud1u5lIEg0EW6mCQMIoDwPuUUq/X271796NHj1JKI5GI2+1moThY6/hcu14Fj1pTU4OKrfXr16OnYOrUqffffz/r0oQQgCGIeBbzuWgs7FdWVjZ79uxDhw7hOMIM9QAE186dOwsKCgRBgD6Ip+95FyxhFGc1guzI7t27x40bt3//fjjiTEFhWgB+c956FQwbpbGI0ujRowcOHDh27Nj420EygLKoc4vnR9xo69atffv2pZTa7XYW/KoL//i2oDlz5syfP58hib0YnwaIf8xEUhxPVVlZCcwcDsemTZtuv/12pn/wTtn49EXtSBYIx74KBALDhw/v1KmT3W6HY4lCSfRO0LNLvNFrgsXYsmXLRRdd5HA4YMlcMNgdDodZ2YUsy1dfffXBgwdpzFEKBoPsB/Rsiids7hWaHxwOR25ubiAQcDgc6enp48ePHzNmzMSJEyH+CCEcx8VXCNFa9Sqs/xMyfcaMGQMHDvzuu+9mzZr1/PPPOxyOrKwsURQNBgPiX0hgouxNEASVSuVyuf7zn/+sWbOmtLQUffmEEMS2HA5HXfjjfQloW+Z5vqioaMmSJeiGxnxdtK7R2NxodmLCKB4MBjmOy8jIsNlsZrPZaDQipzFhwoQePXqMHTs2FAphqgArM2KEJmeXZcF4sNvtEydOzMvLg0M7Z84cQRBef/11QgiEuEqlwqwDQgiME7VaXVNTU1xc/I9//OPjjz9mAUJCCMdxx44dY43FtQGn47PT6bzrrrtQWq0oCgbugNwoNT3rzEYIgmYFDNNESARHmDBBUdX48eOh95xOJ/sN05ywVWgscBiNRvPy8t5//31K6cmTJyEZKisrN23adPXVV0+fPn3btm2//vor3FT8Zu3atePHjx87duzy5cvZ9mey7oJpYoYSVAKl9JtvvnnggQf8fj+rOkZ56TlVzgmjOKt6DQQC8YKY6fdnnnmmsLAQHsc5fRrnaE4MhEEXMyME87D8fv9PP/30t7/9bfz48V26dLFYLFdeeWVhYeHq1athGjFMINZpXGygnlwVWxL4bkjhDh482OFw+Hw+lpiNl+aABFuH5wVWtb1o0aL58+eD92GHgBYbNmxAsBQPc/3117/66qu0YU528wLL+bGVvuKKK2isrwGAwin2b4ubsY+EESEkGo0++eSTFRUVGAgJdy41NdXtdkcikY4dOxJCfD7fNddcM2LEiFmzZhFCfmt8jwUszwvx9KrreANpTSnlYjPmEa0Lh8MjRoxYunRpVlYWLCVZls9NeDVpaf9YgHEdCAQQTrr++utXr15N48L/K1asmD9/PqW0V69eb775Js5Cn+sFexWUWsAS040CqMT4E2Gh+3y+wYMH09iSQKPEx1taHI8TQtDrBesqFAp99tln77zzzrZt21hMpnPnzoqidO7c+ZFHHpk0aZIsy3a73WAwGAwGzD2q5+JcHRBuJGBUPIkbAg0TRa/Xd+jQYd68eSTuLRFnVcc1dm3/aMC0KLAGq+yprKwcMmTIjh07KKWCIDzzzDO9e/dmPfThcBhKj3EcqoLOC+ewNjveNGxZygLpIXad/Px8BAmYCmWntDiKoy4ZnyORiMPhYLUoV1555Z49e44ePZqZmTl79mxKKV4pAlayWq1ut1sQhAbWRp0DciMB9K0tjhC9eO6556ZNm4YjGIDOfnDW67paAsA3IYRUVla2a9cOMQq4pgcOHFi+fPl3331XWFgYDAbz8/PtdrvT6UxOTu7YsSN6Ss6cOXPmzJlevXrV4y6eFxo7OATd/5hDFT+zRJKkcDick5Mzd+7c7du3X3TRRT6fDx4soMVRnBASDocx65z16cixMVslJSVardZoNG7evNnj8XTr1i0pKcnlcoXDYb/fr9frs7OzEWus6+JKXLdO/MwopZHTn9LS0pB7Y1Y8MMRXarW6oqKiX79+eXl56DD6/zneLZDioijCRYZq8nq9GO+KoWJ4PzvGHypNGnn4JwAyJHa73Ww26/V6l8vFKs1bIrqUUqRjCCGsOxicW1JS0r59+7/85S+33nprMBhctGhRopE9F7xe7+TJkzt16tS2bduhQ4dmZ2cfOHDgrPfJNUHJ/KEA7c8qeDweD7NbevfuvWzZMnTDu1yua6+9ljVKtzRAURh4pXv37r/++iv7qsXxeCgU0mq1EN+UUhLzNtPT0ydOnHjfffepVKqkpCSLxVJYWPgHTWr//XDs2DEUTR45csTpdHbt2pV91eIojtwxiak4+A7btm3DbHxZluFSYyRs586dE43veeCXX3554okn8HoDzPU7611hCdt49QJSiPjsdDpvuOEG+DvMW2ne4VzNC1u2bElPT7/sssuys7ORTY032xP/FtzagDE6zJxSFGXfvn2IZ4HHBUFArgA2eyJxrQWKouzYsaO8vBx+b8eOHTGrgAnAFidVSOwdd6ynPyMjw2g0hsNhu93OohlIrGBmdYsCr9drs9l4nkcDptfr3blzZ7wJ2+Iojv54TISzWq2EEFEU1Wr14cOHMzMzKaWEEJVKhba5xOKJwHf8EULIgQMHhgwZgrQqlGd+fv5ZfUwJk3Z1ANpQIMRZhqG4uLhz586VlZWoS967d+/NN9/MauQSC5Ik2Ww2IByNRmfMmEFjGYkBAwb06tWrpWTd6gLoRpZmY/qzpKTkhhtuwOT/devWsVL0ROGJEU9ut5vFBb/++usBAwZcdNFFqampgwcP7tSpU8eOHfFVvOb8PwVux/F8PTI4AAAAAElFTkSuQmCC"
|
<image>把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是()
Choices:
(A) 75°
(B) 105°
(C) 110°
(D) 120°
|
105°
| 69,753 | null |
105°
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAABhCAYAAAAz+EQTAAANuUlEQVR4nO2dT2gbVx7Hvy5N1z11dgm7ExbWL/TgKWzw+FAYWBaNycEjeqi8dPHkUo9pIAqFRAaZOvQgelLDFpQeyrTgILsXOWxYJdAi51BmvCwoWRYkQcEupTsTKEjQg4bCIm2X3d8eklH035Jm9M/xBwY0o5n3nvR9v/d/fm+GiAinTA0vjDsBp/THi+NOwHE4joN8Pg/btmHbNh49eoRqtVr7/uHDh6hWq+B5HoIg1K7zPI/5+XmIogiO4yDL8hhS7z8zk1YklkolmKaJBw8ewDRNOI4DURTBGMPc3BwkScLs7Gztfve8VCrh6OioIZyjoyMUCgU4jgPTNCGKImRZRiAQgKIoDeFMCxMhmG3b2Nvbw+7uLhzHgSzLWF5ehizLYIz5Fk8+n4dpmjg4OMD+/j4kScLq6ipUVQXHcb7FM1RoTFQqFUomkyTLMjHGaGtriw4PD0eaBsMwKBwOE8dxpKoqpVKpkcY/CCMXrFwuUyKRIMYYaZpGhmGMOgltSaVSpKoqMcYomUyOOzkdGZlg5XKZYrEYMcYoEolQsVgcVdR9YVkWaZo2scKNRLBUKkWCIFAsFqNyuTyKKD3jCidJEmWz2XEnp8ZQBTs8PCRZlklV1Ym1qOPIZrMkSRKFw+GJyGxDE0zXdRIEYWLqKK/ouk6MsbFb21Ca9VevXgUA6Lrud9BjxXEcrKysYHV1FeFweCxp8HVoynEcLC0tYWFh4cSJBQAcxyGTyaBQKNQy5cjxy1QPDw9JFMUTUwQeh67rJMvyyOs1XwTLZDIkSRJZluVHcFODYRgkiuJIO/yeBUskEqQoykS0oMaBZVkkSRJlMpmRxOdptP7DDz/E48ePkclk/Cqhpw7GGDKZDNbX1wEAiqIMN8JBlU6n0xQKhfzMPFNNuVwmSZKGXjwOJJjbwKhUKn6nZ6qxLItEURxq9dC3YOVymURRfO4aGL2SyWRIUZShhd9XP6xareLSpUtIJBK+zlOdJBRFwfLyMjY2NoYSfl+CbWxs4M033zwx0+3DIhKJwHEc7Ozs+B52z4LdunULs7OzYxuSmTZ0Xcfu7i4ePnzob8C9lJu5XI5EURxauXxSKRaLJAiCr42QnixsfX0dyWTS35zyHMDzPK5cuYIPPvjAtzCPFezTTz+FJEkQRdG3SJ8nIpEITNNEPp/3J8DjTFoUxamdfJwU/KxSulrYzZs3sba2Bp7n/ckdzynuusp79+55D6yTksVikRhjp6MZPuGXlXW0sJs3b+L69etTuTp2EvHNytqpeGpdw8EPK2trYTs7O1BV9dS6fEYURfA8j/39/YHDaCvY7u4u1tbWBg70lM6srq7izp07Az/fsmoqn89jfX0duVzOc+JOaaVareLcuXMoFosDlWAtFnZqXcNldnYWoVAIe3t7gwXQXKnxPH/aUR4yXubMGiwsn8+D5/nTjvKQkWW59uZovzQIZprmFMx1mdicmcHM0yN42x53gvpmdnYWoigONPXSINjBwQECgYBvCfMdcxMzMzchWAQiApGB314+j01z3Anrn0AgANM0+3/QLRsrlQpxHDe5nWVrmxQotG01X1YIUWMcKfLEoJ3omoUdHR2BMTaxnWXzk8vYj76Hd1jjdfto8E7oOBFFcaAplwbB6t0mTBYmvvxIwfa7ctN1G999DUTfaL4+HQiC0OD5oBdqgtm2Pbkroezv8DV+i1dZ8/WvcHc/iinVy5tghUIBCwsLvidqeNi4ffUysP0u5HEnZUAYY7Btu/2X5matJTyzaQLmJjbNabEwdhFvKR/hZq0Jb+N28DwuYxt6c6U2RczPz+Obb75puW5uzmBmCTDoaWv4jS8xswS8IdcJViqVJrjDzPCOvg1cPv80153H3bcsUOYdsHEnzQOzs7OtnWdzE0sfRWHQn56VHPK72I4KT36r21xkjJ0uvx4xhmGQLMt1VyzaVkBKc9+ljukoEjuws7ODpaUl3LhxA6VSadzJ8Y79Fe7uK3jrIut4S216ZWZmBjR+t1N98fLLLw80HjdJnDlzBj/++OOT/q99G8HzR3ivvjhsYqr9Jdavlbxw4cLT4arJPorFIhKJBARBwKuvvopXXnmlabDia3xnd/7NUy1YPB6HLMt4++238eKLL3qaeh8m1WoVOzs7CAaDWFxcxOPHj5FOp/HFF1/g7Nmzz25kF/GWso/LV2/Drnve3Ayi1kB2KzMA9N/qT7Vj2qhUKqQoCum6Pu6k1MhkMqRpGnEcR5qmtbwH3droIHIbHsCzo36otKWVOI1i1RMOhykSiYwt/sPDQ4pEIsTzPCmKQslksuOAenvBujPVRWI7dF3H3NwcLl26NLIGSalUwq1bt/Daa69hZWUFc3NzyOVyyGQy0DSt44D6IC3zmhcBnudRKpXwm3O/rn35v3//p/b5hZ+daTmvv8c97/Rsr9/1cl+36y/87AyuXX0Xfz77SwSDQfzlzp/x81/W1RM+Ua1Wsbe3hzt37iCfz0NVVaTT6b4G0KvVav+zI66puR45m4vEbue9fO7nu37jqT9vrn//W/2Jsn/9G4miSP/85tu2cQzCcfVSP0QiEUokEn09UysSFxYWUCgUuorr5uDma/U5fhh0s8Lme+rvlX7/O6TTaaiq6ulNyKOjI9y4cQPnzp3Dxx9/jEAggGKxiGQy6ckvh6cikTGG+/fvt9zgFoWd/rRe/sxxwhjD/v4+/rD6R1y/fh2hUKin50qlElKpFD7//HNUq1Wsra0hl8v5Ot460Byka2q5v/+DRFFsW0TVFzPtrnf73M93fobd/LlSqVAoFOpaBFUqFUqlUhQKhYjneVpcXKT333+/4/1ewQB+bWpP/Mv5kX71i7Mdm6Dd/thOIvf7XbvzXp9vV4e1+xyJRCgcDjeEZxgGaZpGPM+TqqqUTqeJ6IlPEkEQWtZpGtHuA7S9MOiajgaJQ6FQLbHNTHv/rB5d1+nixYsUjUaJMUayLFMymWz78njzf2JtKwR4FywWi1EsFuv7uQbnYIFAAAcHBy3lfLc6bJoolUq4d+8ePvvsM/zwww/49ttvcffuXbz++usdn+E4Do7j1M7ZOxlYCMKre8uDgwPEYrG+n2voOMuy3LBWbhQtwGHj9pdWVlawuLiIQqGAZDKJ77//Hvfv38e1a9e6rqsYxuKkarWKfD4PSZL6f7jZ5E7K2vpO9VIzrr/Ddp5Ui8Ui8Tzf+sy24qlI9LK2vkWwQTpzk4JlWbS1tXVsvdRMuVyujfu5VCoV0jSN4vF4azweBdM0beBNDFoEmzavN+VymXRdJ0mSiDFG8Xh8oKUO9QK5g7KdRv69COZ1hXXbjoAgCCPfuKZf3L1SOI6jcDjsmz/5CxcuEM/zXcPzIlgymSRN0wZMXQfB4vE4bW1tDRzosMhms0PfjahcLlMymezox9ht1mPApr2iKJ7GHyfei4BlWbVNdiRJIl3XR+IQOpPJkCzLvq4k86O66Tg2Ms7GR3O9FIvFxrIEL5fLkSzLlMvlfAmv28BEr0yUJ5xh1UtesCyLZFn27Obcr8Zc19HHUVjZKOolr7Rr9veLH9ZFdIxgw/LmNq56ySuapg3UGPOzq3Ts+L6u6y2j24Pgtr7cPS/HVS95JR6Pk6qqfVUVoij6Vg/2NCHjJcJ0Ok2qqhLP8xO156UXUqlUz9uXJBIJX1dxDcXnby6Xo3A4TDzPUygUolQqNRFdBD8xDOPYDYKG4fO35ynP43KKZVkUj8dJEAQSRZF0XT8Rg8jdcHfIaFf6VCoVkmXZ95ZuX3PU4XC4YXytuV4ax17M48bdc6W5BehlgLcbfQnmLof+5JNPTly95AV3vYibmRtLI4Oi6Lz0ul8G2nvlpZdeakjA6fHsYIy1mesyKIooGURERpTgfh6A3pZqm7drb09wHIdCoQBRFFGpVMb++s4kHZZlgeM4pFKpxv/P/g5fK09feWUCPO0wdrymdbmjjtP9wxrptn9Y/XSM1xVXxwpmRNHRhOPxuC+d6mmnXC5TKBTqMN7Y+PqQVy9L3YtEcxNfvmEg6ppzE1tbW5ifn0cwGGxYWfQ8Yds2gsEgrly50n7Ztv0V7mIbFhGIDGCp7uW8QeispUHRqPHEKZeyTVYX1U93me3clbG2lTqrOt5LwHF0FOxJUfj06MGOT/dxbodF28qz6uTJbHWrR7p+aC+YEX2WK4xoz+7tyuVy18UrJ4FKpULhcPj4utvaJqWl2e9NLKJ2glnbpNQJNMiCk55+0BQyCRmyUTAj+iQnPK2z6ovFfkXTdZ0EQTgxRaSu68QYG/sseP/vu/TB4eEhybJMqqpO7UBwNpslSZIoHA5PxCTrUAVzSaVSJAgCxWKxifjRvWBZFmmaRpIkjd2q6hmJFwFVVZHNZgEAi4uL2NjYmFjfULZtY319HUtLSwgEAshms4O9tDAsRp1DyuUyJRIJYoxN1Ei/u2KLMTaUaRG/GLlgLpVKZexzaYZhTPyKrWZaNssZB7ZtY29vD7u7u3AcB7IsY3l5GbIs++oSMJ/PwzRNHBwcYH9/H5IkYXV1FaqqguM43+IZJhMhWD2lUgmmaeLBgwcwTROO49R2t5ubm4MkSQ3OSNzzUqnU8GKee14oFOA4DkzThCiKkGUZgUAAiqJMrMv3bkycYM04joN8Pg/btmHbNh49etTgksjdw4Tn+YY3JXmex/z8PERRBMdxU7BFSW/8H1AYV7T2sNq+AAAAAElFTkSuQmCC"
|
<image>如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()
Choices:
(A) 40°
(B) 45°
(C) 50°
(D) 60°
|
60°
| 69,754 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAAEcAAABYCAYAAACnMOpRAAAVC0lEQVR4nOWde1RVZfrHP/tcOYAYMOAFLwyCt2yEolzRVGQIpR5bOeNdW44mE5cpMaGaaX7OGnPNjJnLSEygkfIyzowzKUJqC3SqGWypjaI5jMVNREkXUyAg57r3/v1Be3cOnAMIqGXftc7inP3uvd/n+e7ned7nvewXZBeYzWYZcPuUlpbK31fQ+YDZbJZLSkpkWZblkpISGZCrqqpuumDfBgiyLMt8DVmW0Wg0KIeqq6uJjIykqqqKMWPG8H2DxvXH4cOHyczMVH9nZGSQmZn5vSQGwM2tcnNz3eLN99WdFLhZTnFxMVVVVciyTG5uLpGRkVRXV3dH7I19crcYKjkKCYoLJScnAx2u5g2CINxI2W45NNBhAYcPH2bmzJlqgUJWRETErZHs2wDFv8xms1uM4eu4o0CSpJvo7d8OUFpa6haEBUGQAdlsNt9q2W453PIcD1bVJa54Ona7QuOtoLGx0SMJ3xdiALxazunTp3nnnXew2+0MHz4cPz8/RowYQWBgICNGjGDIkCH4+/uj1Wr7VPF3wQJ13gqqq6vZtGkTGo2GqKgovvzyS5xOJzabDY1Gg8lkYvjw4YwfP57IyEjGjx/PnXfeSXh4OIGBgT1W/G0nBrohR5IkxowZw+DBg0lKSiI2Npbm5mZaWlr44osvqK+vp7Kykvfee4+2tjYAgoODiYqKYuLEiQwbNoyYmBji4uIYNmyY272/C1YDLuR0Flir1RIREcGsWbPYtm0bgiDw4IMPEhwczJgxY9BoNDidTtra2jh//jynTp2ioqICm83G5cuXMZlMHDhwgE2bNhEcHExsbCyJiYncc889fXbFmw2dQkrnJ6m40OjRo1m6dCkFBQW0traSkJCA1WpVyTQajdx1111ER0fT0tJCeXk5p06dorKykkceeYTVq1dTU1PDwYMHWbVqFX5+fkydOhWz2czEiRNvkdq9g9eAvHv3bnJzc0lPT8doNFJXV0d2djbx8fGYzWZsNluXvpVWq8VgMOBwOKioqODgwYP4+PjwwgsvMG3aNGw2GyUlJbz77rtUVFQQFhbG7NmzefLJJ/H19b0pCl8PvJKza9cu8vPzSU9PB8BgMFBfX8/rr7/ehSBBENyIEgQBg8GAIAgcP36cwsJCYmNjWb9+PT/4wQ8A+N///kdxcTF79uyhubkZs9nM4sWLGTFixE1Qu3fwmudoNO5FNpuNkSNH8txzz/HBBx+wf/9+fHx83IhRXFOWZWw2GzabjSlTpvDSSy/R2NjIY489RllZGdARvJcuXcp7773H2rVr+eyzz3jiiSd48cUXqa+vv1H6Xhe8kqMo7PrXlaAPP/yQ/fv3YzQa3UjpfA+LxYLRaCQ5OZmHHnqIZcuWsXfvXrcYN3XqVAoKCti1axdXrlzhiSee4Pe//z1Xr14dcIWvB17JUaAoofztiSBPTbQoilitVh599FGWL19OVlYW+fn5Xc4bP348BQUFvPXWW3z22Wc89thj7Ny506Nc3fR6Bgw9kuMKRSC73c7IkSNZuXIlp0+fpri4WCWos4u5or29nQkTJpCWlsb69espLi72eP+7776bgoICfvvb35Kbm8tPfvITzp4963buzciTrouczjElLCyMtLQ0N4KUWNXZLRVYrVYiIyNZsWIFzz//POXl5V3ur2DatGmUlpYSExPDokWLyM7Ovm4F+4PrIqczbDYbAQEBpKSkcOrUKf70pz+h0WjcgrmnJ2yxWJg4cSIzZswgJSWFq1evenUTo9HIyy+/zPbt2yksLGThwoVcvHixP2L3Gv0iBzqSxYCAANLS0jh37hw7d+5Eq9V2ae06w2q1Eh8fT1BQEL/5zW+8uolC2uTJk3n//ffV3Oif//xnf0XvEf0mB74hKCMjg9raWnbs2NEjQbIsI4oi8+bN49ChQ16VdSVNp9Px6quv8utf/5pnn32Wt99+u9v79xcDQg50EDRo0CBWrlxJTU1NrwhyOp0MHjyY6dOns3btWhwOR6/qMpvN7Nixg/z8fNasWePxnIEI2ANGDnxDUEZGhkqQEoO8PUmHw0FcXBxXrlzh3Xff7XVdkyZNYt++fXz88cesXLlygDRwx4CSA+4WVFtby65duzxakGtrptFoSExMZNu2bYii2GMdyrUhISEUFRXR2tpKcnIyVqvV43l9xYCSo/SzlBj0/PPP09TUpBLkOlThmhOJokhsbCyXL1/m2LFj6r28wdVljEYjeXl5WK1WFi1a5Oaa/XWtASHHNfFTvjudTnx9fUlOTqa5uZldu3YhCEIXgpTrTSYTkyZNYs+ePW5lvYFWq6WgoAB/f38yMjIGQiVggMjxpojT6cRgMPD000/T3NxMTk4ODofD42CXw+EgNjaWsrIyWltbe1238jC0Wi15eXlUVVWxatWqvinSCQMeczpDIWjFihU4nU62bNmCKIrodO4jtLIsM3z4cAC3rLkndHax3bt3c+LECd54441+y37DyYFvCFLGhjZv3ozT6XQjSHGtUaNG9SvBCwwM5J133qGgoICSkpJ+yX3DyXGNQRqNhvT0dARBICcnx40gJSmMiorizJkzSJLU5zojIiLYsGEDq1atoq6urs+t1g0nx9XsFXdKS0sDICcnB7vdjk6nQxAEJEli1KhR1NTU0N7e3q96p06dyrJly3jmmWf6TPRNcSsFgiC4EaTRaMjNzVUJkmWZgIAAHA7HgHQuMzIy8PX1Zd26dR4H4nrCTSVH7ligidPpRKvVkp6eTnBwMPn5+djtdnWAfvDgwd0umvJ2b094/fXX+fvf/87Ro0fdjvcmVbipbuUKJRNeuHAhQUFB5OXlYbFY8PX1ZdCgQVy6dGlA6hkxYgQvv/wyv/rVr3A6nW5lPVnPDSVHsRRvwoiiiCRJLFiwgKCgIDZs2EBbWxsBAQHXTU53mDNnDsOGDWPjxo1usvRkPf0mx5WAzpV5+y0IAhqNBp1Oh0ajURPFSZMm8eabb9Le3j7gs6Lr1q1j9+7d1NTUeJTNE7zOlfcWrpV0Z6YajQatVoter0cURSwWC62trbS2tvLll1/S1taGXq/nzJkzNDU1AR0LOE0mE6GhoYSEhBAYGIjRaOyTnBEREcyZM4c1a9awY8eOXl3Tb3K6g9KXMhgMtLW1UV1dzblz59SmWhlm9fPzIyQkBJ1Ox9y5c/n888/Zt28fjY2N6HQ6WlpasNlsDBs2jJEjRxIREUFcXBwxMTEEBQX1Wp5nn32WhIQEjh49SlxcXI+uNSCW42nWU5mNqK2tpaysjKqqKnx8fJg4cSKzZs3iRz/6EVFRUYSEhGA0Gt3c6MCBA5w4cQKn08ny5cvx9fWlpaWFxsZGampq+Pjjjzlw4AAOh4OYmBiSkpKYPn2625SyJ8X9/f1JTU3ld7/7HUVFRT26Vr/J6TzLoNPp0Ol0/Pe//+XQoUM0NTXxwAMPsHz5cuLi4vD39+9WAeiYwomOjiYsLIy8vDxSU1MZOnQoISEhTJ48GUEQuHbtGhcvXuSTTz5h/fr1bNy4EbPZzM9+9jOGDh3qVfEFCxawefNmjhw5wtSpU7vVbcDcShAETCYTDQ0N/PWvf+Xq1avMnTuXefPmMXLkSK/XeIIoiphMJpYsWUJRURE5OTk888wzBAUFqZmzRqMhPDyccePGYbFYqKio4MCBA/ztb3/jqaeeIjk5GZPJ1OXeer2eFStWsHHjRuLj47sdxnUrseNQP9cDJa4cPnyYjRs3cuedd7Jv3z5Wr17tlZjucOXKFXx8fJAkiRkzZhAdHc2WLVu4fPmyGpAlScLpdHLt2jUAoqOjycrKYu7cufz5z38mMTGRjz76yOP9Fy9ezFdffcWJEye6lcONHAN6t7+9gU6nQ5Ik8vLyOHbsGFu3bmXTpk3q8ENfoMyRK5OHCkGvvfYaFy5c6NJiSZKE1WrFZrMxYcIEsrKyiImJITU1lXXr1nXpW5lMJubPn8/WrVu7laNfeY5Op8NisfDaa68REBBAYWEhDz/8cH9uCUBTUxOhoaFqDmWz2TCbzTzyyCNkZ2d7JAi+IVMURZKSkvjFL35BYWEhS5YsUdMDBfPnz1dbTm/olhyNjxZRKyFqO5hXvotaCb1ej9VqJSd/C5PvjWbnzp3q2hvo3kU7l7m2cpIk0dDQQGhoKA7BiaiVcGpEbDYbM2fOJD4+npz8LZxvqEPnq3e7VpHTqRFptbURGhrK8y+tprm5mTlz5tDY2KieGxoaypQpU9i9e7fX/KxbciRrR/9HK2o6chax43QDemw2G6+/mc3D9z/E1uw3cWpEVVE7Dgzo1Y8rQd2VQccUc319PaEjhiA4UOuUZRmr1cqMJ2fy4JQfs3njG1yqvYjez+BGjKiV1Gtssh29rGN5ytPccccdLFq0yI2g+fPnc/DgQex2u0eCeu1WsiwjaiV0khZBENi+fTuTJk3i/15Z46ZgX0b8Xa+pra3l2rVrBAYGfjM+3ImgWbNmER8fT3Z2NnV1dR15UqcHqFwniiKiKPLUU0/h6+vL4sWLsVgsANx77734+fnx0UcfeVyp3yM5WlGjPhVZljEYDJSWltLS0sKGDRvw0RhVKxgInDx5kuDgYHx9fbsspVNksFqtmM1mEhMT2b59u0qQN/cQRRGHw8HSpUuBjkwZOlrZpKQk9u3b1+UaQRC+Iaen5lshpr6+ntLSUjZv3uyWR1xv8+8N//jHP4iKinLLP0St1KV3b7PZmD59ujoZWFdX5yaPJ0uQJIlly5Zx8uRJNm/ejCzLzJw5k2PHjqlrqV3RJc/xZAFaUYOkk9E4Bf7yl7+QnJzM5MmTMQoGNbC6XqfEkust+6qtifLycu666y4ER0dgdY0hiixKkG6xtvLj+x7g8ccfZ9vOAs6ePYtxkI9KhiupTk2HexkMBpYtW8Ybb7zBmTNnGDt2LEOGDPGYE6m19uQaer2e48ePo9PpVLPs7jrXoOsKWZa9ln1Y8gE+Pj4MGTKkYzhV0roR40qQ8rFYLMTFxfH4o4+Rn5PHmU9OYzKZ1HIlDin3EUWRUaNGkZCQwIsvvghAfHw8H3zwgXdyuoOkk7G32SgqKuKll15Cr9erivaEzud0F7ALCgqYMmVKlzmtnqAQtHDhQv74xz9SXl7useugyGOz2UhISKC5uZmCggISExM5efJkl3N7lecoVjNq1CimTZumlvemZept63XixAkuXLhAbGxsl+HM3qC9vZ24uDgWLFhAQUEB5eXl+Pj4qOWeHtLs2bPJyckhODhY7Ya4osc8RydpkW0SZWVlrFix4rqF7u2c0dq1a4mLi+vSSvUWgiCoFjRv3jzeeustTp8+rVpQ50E5h8NBVFQUoaGhFBYWct9993UJyj035VotFRUVGI1GHn/88T4J7SqUJ+zdu5fz58/z8MMP98lqXOHqYtu2bePUqVPdulhSUhJ79uwhPDyciooKt7JeOffRo0eZPXu2m5n2BZ5crKGhgVdeeYX58+djMBj6RY4y4KYQZDKZ1FUb0dHRXdbvOJ1ORo8ejcFgoLq6Gj8/P+677z71Xt2So9VqaWlp4dKlS32ymp4gSRIZGRlERUUxadIkbDabW3nn0cWe4HquxWLh7rvvxmQysWvXLqBjfbPFYumSM8XFxXHo0CHuuOMOt/u5uVVnQTQaDZWVlYwcOZKxY8f2Wsje4oUXXuDixYv89Kc/xW63dynvz8osWZZpb29n3LhxLFy4kD179nDkyBG33rwyAzthwgSsViv/+c9/3IY33MjxNJVy7tw5HnjggR6XzvZGWFds2LCBDz/8kJSUlG7XDPYVii5Wq5Xx48ezZMkS9u7dy5EjRzCZTOpwiLK6IyYmhrKyMrf3LbxqrET/+vp64uLi+iSgp74RwC9/+Uv27t1Leno6fn5+vVoH2B8oBKWlpbF//34OHz7sNhjvdDqJjo6msbGRL774Qj3erTm0tLTgcDiIjo52O97TU/Y2ydfQ0MD8+fMpLS0lJSWFQYMGeQzAN+KlD6vVytixY0lNTaWwsJAjR46or0RJkqSOXNbV1anXdGs5dXV1hIeHM2jQoC5lnuCNFFmW2b9/P7Nnz8Zms5GZmYmfn5/XlulGvfRhsVgYO3YsaWlpKkFKb16v16PVat3I8dpa6XQ6rl692qWHfL349NNP+cMf/sCnn37KjBkzuP/++7Hb7Tidzi5zXjf6rWFBEFQLSklJYevWrciyTEJCAk6nkyFDhrgNm3olR7GC7mYPOivj+v348eNs376df/3rX0RGRpKVlUVAQIDbu6GeJgNvBqxWK+PGjeO5557j7bffRhAEpk2bRlRUFBcuXFDP6zEJHD58uNcn2vnYxYsXef/99ykuLubzzz9XfTwsLAybzYbVanWzFvAetL29/TdQsFqtjB49mp///Ofk5uYCEBUVxdmzZxFFEa1W2/1L90ajkcjISK+m3tTURGVlJWVlZXzyySecO3cOf39/7rnnHubMmUNgYCBOpxO73d6RcX7d2/62vFfudDoJCwsjNTWVLVu2MGXKFERRVBdXdUuOLMvU19dz+fJl2trauHbtGpcuXaKuro7KykrOnz+PRqMhMDCQsWPHMm/ePIYOHYper8dut9PQ0HAzde0zjEYjCxYsYM2aNYSHhwM99K2U1Q9PP/007e3t6jisa4o/ePBggoODsVqtnDlzhn//+9+IonjTY8hAQBmjcjgcOByOjoUQ8teaeIorX331lduqzs5v4UmSpFpYf5bGfltgNBoxGAzqshZB7oBKTGtrKxcuXKC1tZVx48b1akeT2xGyLHvfkWDAKvgO7HbiCleZPWZ3paWl6uYfgiCQlZXVp4q+a8RAJ5nlTsjMzJQ7HwbkzMzMzqfetigpKZGrqqrcd7XNzMz0uMubsrutgtt1WzxFL77eelRtyktLS3n11VepqqrqYmrydUyvfJcge+j+ZGVlYTabOzZQUgqys7O97mBbW1t7c6S9xcjNzSUxMZGioiLAJSAXFRWRmJjo8aLi4mK3rYBvF7haTXV1NYIg8MMf/hCz2dxxUJbljuDjZYvf78tu2kqDU1VVpX5Xoyygbi/uCm7zlkqSpC77QCv6auSvg21mZqbbe5GKmWVmZrJ+/fqbY+e3AMrgltINKikpITIysqPQlcVZs2b1uJP27dKMS5IkV1VVdUldcnNz5dzcXFmWXdxKkqTbRvHO8KTX6tWruxiB6792yMzMlP8fPktIGT8Acb8AAAAASUVORK5CYII="
|
<image>如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA,OB为直径作半圆,则图中阴影部分的面积为()
Choices:
(A) πcm²
(B) \frac{2}{3}πcm²
(C) \frac{1}{2}cm²
(D) \frac{2}{3}cm²
|
\frac{1}{2}cm²
| 69,755 | null |
\frac{1}{2}cm²
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABjCAYAAAB5XvlIAAAXRElEQVR4nO1dbUwc17l+ZzGpk7jefCzttkIijte6uFQq6ka3tCYlqqDFCZtsVVr+WCpSaahCrupKwMUSFZHiHzR1WqeX3LK2qjqqq1oNTXRznZQGopIGy1T+sb4qNbkxG5OLXS+mgcXLfs3Hee6P5Qyzu7O7s98L5pFWMGfOzJyZec573vN+nBEAgHaQFSYnJ2nfvn20f/9+Q/VBRAL/HyBBEIgRyKSWbh+YSt2ArYyWlpa0dQAQY4ygMAJjxPuxTCAJrNBNLBl2iJUl+vv7yeFwpJRW8YOBcAeNDcLOUJg5XC4X7d+/n1paWhLIEw8A0WEPRBCIBEEgQRBUaVUhCDtD4Q6IPB4PCYJA+/btI4fDEbNvp49uYodYBsFJ43K56OmnnyYiotra2pg6grD9JE+22CGWQQiCQKdOnaITJ06QIAhks9kMSSjcoVzbVeoGbBV4PB4iImIsqhtNTk7Shx9+mPY4AVEzw52GHWIZgMfjoR/96Ef0xhtvqGXXrl1LeQy3U3GpJggCIQnFtqUtCztIib6+PhARBEHA/Pw8AMDhcICiggh9fX1qXcZYwvGMMSiKAiYr0b8bdSQwiEyBgsRjtgN2zA15BSOt2sofLXbMDTvQ9jMAFIlE1G2/309ERP/85z/pz3/+MwWDQZKCMjHGKLAeIZkEWgtGSCSikKJQIBgudvPLBjvEioPWZCAIAlVWVpIkSRQMBumTn/wkXbx4kaqqquhrX/sa9ff3UzCyTqHbYbrn3rvIRES7776LZDCqrDDRPffcrZ6LSyvtubezeWJnKDSId999lwYGBujGjRv08MMPU2VlJfn9fvroo4/ozJkz9I1vfCPpsYwxVZE3mUzRmaUpSqrtOAwS0Y7yrqdwa+F2u9Ha2oqamhr8+te/htVqhdvtxtzcHCwWC1577TXU1NTgu9/9Lnw+X8I5FUWB3++H3+9Xy0KhEGRZLswNlQnu+KEw2XDk8Xjo29/+Nh0+fJja2trI4/HQwsICtba2Un19PdXW1lJnZye98cYbNDs7S3v27KHa2lr6wx/+EHMek8lEe/bsoT179qhlu3fvpoqKClIUpaD3VlKUmtnlBq/Xi+7ubpjNZhw/flyVNF6vF3v37sXCwoJa9/bt27BarZiZmQEATE9Po7a2Fu3t7VheXi5J+8sF24ZYqYa0dMMdAPh8Phw7dgxmsxm9vb1YXl6OOa6rqwu9vb0Jx509exZ2u10d2iKRCI4dOwaLxYJz585lcSfG2lvu2BbEyuVFhMNhDA8PY+/evejq6sLi4mJCHa5PcR0qHo2NjRgdHY0pm5mZQV1dHVpbW7G0tJRxW7c6ubYFsbLF6OgorFYrnE4n5ubmktZzOp04ceJE0v1utxtWqzVh+JNlGUNDQ7BYLDhz5kzCcVudPKmw7Yml9/LGxsZgs9nQ3NyMS5cuJa0HAFNTU3jooYcQDodTXqenpwfd3d26+9xuN+rr69Hc3Byjoxlp61bFticWB2MMk5OTsNvtsNvtmJycNHRcQ0ODrrSJh8/nU00RepBlGcPDw7BYLBgZGVHbtF1xRxDr0qVLaG5uhs1mw9jYmOHjxsbGUF9fb7j+6OgoGhoaUtaZm5tDQ0MDmpqaVKf2dsSWJ1aqXn/lyhU4nU5YrdYE5TodZFmGzWYzLNk47HY7zp49q9s27fbw8DAefPBBDA8PZ3T+rYItTyw9LC4uoqurC2azGcPDwwn6kZEhaGRkBC0tLRlfe2ZmBlarNekMUouFhQU0NTWhoaEh5eQhGbT3UW7D6pYjVqoHuLy8jN7eXpjNZgwMDBh6uXpIpy+la1cym1d8Pf7/yMgILBYLhoaGVHsY35cpYbI9Lt/YcsTSg9/vx/Hjx2E2m9Hd3Q2v16vuy+YBDw0NobOzM+v2eL1eWCwWzM7OxlyfW/FlWcbt27djjllcXERrayvq6+tVQhtpe6kJlAxlTyzGWNKHJ8syRkZGYLVa0d7enlQZzuThe71emM3mlGYBIxgZGUFzc3PGx505c0aVXulMHKlQasKVPbGS4dy5c6ipqUFra2tGPTwdtMNYJlby+LqyLKOuri6jWSiH1+tFW1sbamtrcfHixYyPLwdsOWKNj4+jvr4eDQ0NmJqaymvPTOe6yQSMMUxNTaG6ujpG8iSLi9fD2NgYLBYLBgYGMpZeoVAoswbnGVuGWDMzM2hqakJtbS1ef/31vJ+fMYZvfvObKV032aCjowODg4NZH7+8vIz29nbYbDZMTU2lra8lqSiKWV83V5Q9sWZnZ+F0OlFdXY3Tp0/ndK5U0m1qago1NTU56TV611lcXITFYsnZGHr+/HlYrVb09PRgfX091yYWHHklViqDYKZYXFzEkSNHYLFYcOLEiby/8Hg0NDTglVdeyfkaehgeHkZbW1vO5/H5fOjs7ERNTU3GhluguKaIspNYy8vLOHr0KMxmMwYHB/Oi76RDpq6bTBEOh1FbW4vz58/HlGf7gsfHx1FdXY3Ozs6iPJ9sUHJi8Yfr9/sxNDQEs9mMnp6eGFtUIZGt68Yo+P2Nj4/DZrPlRfIC0efV09MDq9WK8fHxvJwznygosYz0SFmWcfLkSVgsFnR0dORsP8q0Pdnam7JBW1tb3n2DXDfs6Ogoq3Dokkqss2fPorq6Gm1tbRm5T/KFbFw3uWBhYQFms1k3StUIknVUv9+PgYEBVFVVqXazVIblXK5lFHkhFvdvKYqilqWa6p4/fx51dXV49NFHMT09DaDwCqXe+XN13WSDwcFBdHR0JJRnqivp3c/MzAwOHjyI9vb2jFQJbWqa9r1pyzNFzsTipFpZWVH1h2TGuenpaTQ2NuLzn/98giJbDGhfhhHXTSHIHg6HE2Z1Wj0zH+cfGBhIGg6dCqIoIhgM5kUPzPtQqJVaHG63G21tbaiursZvfvMb3eNyzbLJBIyxlBEIhboux9jYGD73uc/FJK1yScETL3IlGQ+Hbm1tNSy9+P2KoohIJJLT9XMmViAQALAppbQi/dq1a/jOd74Di8WCkydPlk32bz5dN5mCv7zW1lZdKz8nWK5SgzEWk8zBw6FTgQsFWZZj3lXqDpYoSIDoGuQJhdr1nwRBABFhYmLC8Em9Xi96enpgNpsxNDSUFxGfTzidTvz0pz8taRs4ubWpYcDmS8ynQXh2dlYNh0419IuiiFu3bqnbkiQZuIh+cVKJ5XA4VDJNTEyAiHD16tWU1/D5fBgcHITZbMbRo0eLNv3NZMjSum6CwWABW5Uevb296uRBew9cWuTb18eTOU6ePJm2rqIoOTmykxJLm30/Pz8PIkrq7wqHwzhx4gSqqqpw5MiRrKfT2SBdeG58mdGsm2LA7/fHpOhrke1LTdfJ5ubm0NjYmDIcemVlJatra6FLrImJiZglEB0Oh7rNGIMCBgYFjMk4ffo0qqur4XQ6MTs7m3ODColCu26yQXyKPkeuynM68HBorcGWS0iue2olejLCKuB8iIUusVwul6pjxUsqBkBmChb+zwMiQlNTk26PKzdw180777yjlunNYEuBRx99FC6XK6asGPFUPJnDbrfD7XYnTBy0QzL/XxtSLYoiRDBIYAiFRQQC0TYzxvSJ5XA4VDJxknk8HnX/eiCCtfWPQUS4fPmyoZso1NRdFEXDWTfxrptSB8NxJEvRL9ak5/Tp0zHJHMms9rwjBoNBtLW1xQgf/uNIINb8/DyefPLJmDIiiulRwSCDxEL4h9cDq9WKrq6utFP3UsZgJ3PdlIvEAlKn6BcDXq9XTebgyw5wcAmm1b0CgQAcDgeuzs/hxj8WACjqCtMAQPGve/SUK4ZEnqvzCeYGRWJQIMMvrcR42QsR2ZkPlMJ1kymK7bfkiJ958mSOY8eOJZg8RFHEysqKeszhw4dxe2kBCtvUxdqejOrjFK91aYdBACAybbBws3crQQUKZIjYVDAvXLigLjrGLb2ZSKlCOUxTuW7KZSjkMJKiXwzwcOja2lrMzMxAFEW8++67MRKeT/CY/PFGSXRfX19f1A7KXwq3VcX/HA6HejL19YkMfr8fMlMQkUSVwcFgED/+8Y8N+amKlTNnxHVTTrDb7fjtb39b6mYAiM6i77//fpULq6urAKK6X19fn67R3OVyRYkFIMqYDN6huPQRACCC6HQzHA5HXTsb53C73bDb7WktvVpwhbGYWTfcHVVO4Cn6a2trJW2HLMt4/vnnYTabVWJprfJEpPuu+vr+PToUrsvarI6Q+ouHGi+t2fatRz/ZIctyVEzGXYdbevWC24qhzKdbMK1ckU7KFvLZ8eWebDYbHA6Haux2u93qLPXKlSsxdk4+DHJD+sTEBOi2FLtTj1TJYORbMNxW8qUvfUlXMU31kLKdbvOcvlRZN6XOFE4FbYp+sa/b3t6OmpoavPnmm2p5OBxGKBRSdSyXy5VgdwOi+rnD4YjasT4OKti0+SoQxYD6fzpIGYyfp0+fRlVVVdLU8Xy/6HJy3WQDPbsbY6wgERmyLKsuucHBQdy4cUPdp501ckt8vNGcSyqtPk5BMNz8eElzok3rafzQqDdUJhs6tXU5abxeL5xOJ+rqanHhwl/SSsdkQ3OqcgD4/e9/B7u9PqZsq0FRFNTV1eHVV19N2JfPTjg9PY26ujo0NzfHkEVRFNy4cUMlVigU0p/gCbQx/G16NBhjoBALYS282QuSvSy9bSP/a7c5WcfGxtTky5UV/QiITM/NiRYKrcNms+Htt/8Ys28rgqfoZ+M3TOeQX15expEjR3Ttj1qJBSCrKBATIUyf+ESloY8NSFKYKit3J5RJkrGvXPGvQHzrW9+i999/nwKBAH3xi1+kP/3pTymPq6zcnfYzubxdv/rVGXrooYfoscceS2hrOUKSJFpdXdXd99WvfpUOHTpEzz//fMbn1fviBi976aWX6ODBg2S1Wunq1avkdDpj6n32s5+ltbU1dfvuu++mjCEiiKASUBmdbFjT/o0vT1Zfbzt+3zvvvI2amhocOXIkxleW7tybYbSb9ZaXvar1OhIJ6tbZasg2RT9ZsoXdbkdjY2PCxICbjLQO57W1tYR1vNJdg4MYRATk9ZTDhhFiGRmuku3j6UvarzlEIkHDx3MMDQ2qrptUx5QTwuFw1NgcFzYTv16p0RR9vZe9vLyM7u5uWCwWdX1ULdJFimbjoSBRCkBEJKkSzpFKgqRT3rXw+/1J91248Bd84QtfUBMAMjn39esf4cEH78P8/P8mtCvdvZU7kqXo6yF+fQYeuXD06FE1DDpeZ+KLjGidzKkklREQACiQ0840CvVi4h9EpgkAHFvNdWMU3HaUaYq+2+3eiBT9V1y69FcwJkNRJDAmb/wy83JkOhM1lKVTjN4e33C+HnpjY6NuCK22fjLXTTkbQbPBE088kTRFn9/r6uoqent7YbFYNpYgVzRkkjXb2bnPjB6TklipXDz5gNEAPYvFguPHjydNH+Oum+1GpHikS9E/d+4cPvOZz6Crq0szEYolltYnW8jnVfLVZoKyCJGldgxdv34dhw8fjgtCiw4R+VwwbStAL0V/bm4OTU1NqK+v1w0TVxRlYxhkdw6xJDCEZQmSIqvx9BFJVG9ckTddCmfPnlXX5IyEokTa6q6bdIh/+eFwGESkOoX5bPrnL0VTumICVUoowHdlbvnKL3aRQLsqNptRIZioYpeJiIHW1tZo731mAkAQiL7+9a/Tlffn6N96nqUDB/+FlpaW6IH77qdr167Rc889V7qbyAEAMv6avSAI9MILL9B7771Hhw4dotnZWfr0pz8d3RdTMX/tzBRl/RV7RVFIEAQSJYV2b3gHQERrt1fp4sW/UmdnJ93yLtGxY8forrvuKm1jCwgt+Xw+H7311lvk8/no1VdfpaamprjKpBJKlBS6q7KCiIgY6b9mU6HYVzphGQujqf604UVfC6zDt+7HM888U9bx9vlCOBxWzTDDw8NYWVmJqgsQIUoBMIhRk8KG6UiUNqNTeC6o3q9QKBtixYMTzeFw4PL//E19EK+9/l/o7e+DBIaIEp0lvvfeewnx9tpzbHWMj4+jpqYGTqcTi4uL8Pl8mk5nSog40F9nIxGSVLik2LIlFgeP8VkPRDDy8i8hgeHn//ELSHE9LhwOY3BwMKt1oYqFTNeyWFxchNPphM1mw1tvvaWWcwt5NP3qCmTmB5NuQ2ERNf2q1J2qrIk1MTGxEamowOVy4b//OA4JDH5ZggIGf+B2guthZmYGjzzyCB577LGCrmdqFNks7KH9GuvQ0JAuIRVFweOPP46A/yYUrOOXo78AEM2SKeVskKNsicUYg8vliupWG8Fks+9fxe1wWJVW2thXbjwNBoMQRTFlvH0xkSmxpqamcPDgQbS2tqodgyd9aJcZmpiYwH/+8heQFB8+uPq3uBh0wEgEcCFRdsTS+g61OY4Ox1MAgJActX3JTILMJNXzLopizFpTt27dwgcffKB+aLIUi+dmgqWlJXR0dKC6ulrX2RyJRGIWRhsdHY3Rq/Ri0EsJU2HmmrqzT0P1+LT6ww8/JCKi/fv3ExFRW9vjRES0u4IoHImaIbT2H0VR6FOf+hSFQiGSJIkeeOABOnDgAE1NTdH3vvc9amlpoeeee44ikUg+bysvePHFF6muro4OHDhAV65coSeeeELdx59bJBIhkyn6uhhj9Oabb9K8530CQC6Xix5++OGStD0pCs3cTJVIXn90dFTthdpzcJEvgWHFt6l7hEIhNatH697hZTzenmf35tLGfGF6ehr19fVoampK++neaBBmdPHZubm5aDYMosPsxMRE2X24vOhDodGXGJ/qz8u0Ip+fSZt4+vHH0ZTvUCiaxMHjxbmuw+Ptn3nmmZItYbm8vIyuri5YrVY1sDEV4pfLTpZ+BZR+NshREomVapUX/VT/TVtNDNmyeIY8haqzsxPV1dVF+1yIVhLfd9996O3t1U3lMkIMh8OhWVYq9lkW2rlsFEWTWFEPu5JAqnRLPRYSPDIiPt6+ELh06ZIab57tN5/jO938/AeFam7OKDix9KRTqdel0r4svXj7fMLn8+GHP/whLBZLzt9b3EooO3NDqTAzM5Ow4H6uEpSH+XR3d6vDXjkMU8WwcRWNWLIsIxgMFnzR1lygKIrhePtUBJmdncWhQ4dgt9sTVsczeo7Co7DkKjixtOHEpR4C04GTP128fTLwdaOMJoKUdhklZSMGvjAoOLHKcQ2qeCRb13xkZARVVVUp4+05uBmjs7OzrL4bmArRUJvCSM2iBfoxxkgURaqoqKDKSmMp/cUAY4xMJhP5/X669957yWQykSRJJEkS3XPPPXT9+nX6/ve/T16vl/7+979TIBBQ2x8MBunmzZv0gx/8gG7evEkul4u+/OUvqxZyvetwRCIR2rVrF1VUVBTtXhPaBJEEqsw4gtUQCkLXLQRupdf2XJ5qziHLsqqI80VfeZiO2WzGiy++qC5jvVXAmKxa7guBsg5NLhYYY0RECZImHA5TRUUF7dq1ixhjtLq6Ss8++yxduHCBFEWhr3zlK/Tyyy+r8eaZAlnEu+cLIImIiAQqzOixQ6wscPnyZZJlmR555JFSNyUrAAqREO1MO8QqExiVMqWURsnBotESG6QiKhyxihY2kwyIzkwNl5cSp06dIpPJRIIg0FNPPUVERP39/bp1y41UgJJAqkKi5MSKj6tKV14KeDweEgSB5ufnVcL/7Gc/I0EQyGazlbp5hiAIFdEfVcb8CoWSE6vcoCclDxw4QP39/fTCCy+oZfv376e+vr7yC7ArE+wQKw7xUvLUqVMEgH7yk58k1LXZbLRv375iNW1L4Y5X3tMp2YIgkMvloqeffrqIrdr6uOMlVipSeTweIqKd4S4L3PHEyifihf+dPBjsECsFeIYQzxjSwuPx0OTkZExZvPQrl1ltSVAwZ9E2Af90sXY9hLfffjvm8x47SMQdr7wbweTkJLW0tKjbfX19MaaHHUQBzUTo/wF+zVaQpEDTzQAAAABJRU5ErkJggg=="
|
<image>如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()
Choices:
(A) 2√{3}cm
(B) 3√{3}cm
(C) 4√{3}cm
(D) 3cm
|
3√{3}cm
| 69,756 | null |
3√{3}cm
|
"iVBORw0KGgoAAAANSUhEUgAAAGAAAABZCAYAAADB7SFdAAANjUlEQVR4nO2de0yU556An7lwaUVAHW5SqcKAdq1yKQRswswAWqGurdvTphVNkxMttWZtt2tOtEnb1GzaNE3cpscmjZITTI67bTmx9qgIRSvXKgtFPc6UkRmuAorcZERhmOv+wTJLvcEMM4Mf+PznzHzv+w6P7/ze9/f9vu8T2e12O4+ZMcQzPYC5zmMBM8xjATOM1JWDzGYzHR0d9Pf3Y7VaEYlE7h6XVxGLxfj4+DBv3jyioqLw8/PzWt8uCWhra2PHjh0MDAwQGBiIzWZz97i8hkQiYWRkhPb2dlatWkVBQQFPPfWU1/p3SUB/fz83btxg9+7dxMfHC1qAVCqlrq6O3bt309vbi9ls9m7/rh4ok8lIS0vjmWeeced4vI7FYuH8+fNs3ryZ3t5efvjhB3bu3MkTTzzhlf5dCsIikQir1crw8LC7x+N1NBoNJ06cIDc3l3fffZeSkhJOnTrltf5dngGzAZPJRF1dHSEhIcjlciIjI6mrq+Pw4cMsX76cZ5991uNjmNPL0K6uLiorK1GpVISGhgKwdetWwsLCOHjwIAMDAx4fw5wWoNPp6O3tJTk5GR8fHwAiIiJ4++230ev1FBYWenyBMWcF3Lp1i4qKClJSUli6dOnv3ktJSSE3N5ejR4/yyy+/eHQcc1ZAS0sL9fX1KBQK5s+ff8/7mzZtIikpiYMHD9Le3u6xccxJAePBNzw8nLi4uPt+JjAwkLy8PIxGI4cPH2Z0dNQjY5mTAsaDr1KpJDIy8oGfi4mJYfv27VRWVnpsaTonBUwMvlLpw1fimZmZ5OTkUFBQgFqtdvtY5pwAg8HgCL5PP/30pJ/39fVly5YthISEkJ+fz82bN906HoEKsDF8TcOl2hrq1E30jEz9yInBNygoaErHREREkJeXh16v5/vvv8dqtbo47nsRngC7FdO1ek785RP2vJ/Htj/m8s5XP9F4c/Izq6Ojo9TV1REREfHA4PsgUlNT2bx5M0ePHuXcuXOujv4ehCfA3E9/u4aBhH9l7/6v2ffaEtT//Sf2n2xgaBIH165do6qqCqVSyeLFi53uetOmTSQmJpKfn09HR4eLX+D3CE+ANJiFz/4zb7yoIiNNwb/88U/8e5qJm31X6TM9/FCdTkdfXx+JiYmOna8zjC9Nh4eHKSgowGg0uvgl/h/hCRD74jc/hAWSsX+aRDIil6wlOzGSoIf8TQcHB6moqCA5Ofmena8zyOVytm3bRkVFBSUlJS63M47wBPwOM903rtAatAFlrJyFD/k2LS0tXLhwAYVCQXBw8LR6zcrKIjs7m4KCAjQazbTaErQAo/4iF8tbkWcnsiTyyQd+zmazUV9fT2hoKMuXL592v76+vrz55pvIZDIOHTrE4OCgy20JV8BwK5fVvzC4agPpceH4GYcYtZi5Ow7bbDYaGhooLy9HpVK5FHzvR1hYGHl5eeh0OgoLC11emgrwhIyN0c7/4ezxv5LfGsvLG+7QUF3N9a5BVq1TELNwLBC0tLTQ2tpKd3c31dXVdHZ2kpqaOunO1xnGl6ZHjhxhxYoVKBQKp9sQngDrLZoqv+Prv5aiufMPes4dxeq/kMTX96AMDmTw5gClp89w/Phxbt++TWBgIFqtlqysrCntfJ3llVdeQa/Xc+TIEeRyudMzTHgCxPN4Ous9voh/C5HNgnHUhFX6JJGxKzH2dPP1n79C81sDGzduRKlU0tzczBdffMHatWsJCAhw+3Dmz5/PG2+8wa5duzh06BAffPCBU3VFwhMg8iEgLJqVYb9/+bZhgP/4z/103+hhz549pKamIpFI+PXXX4mOjmbFihXT69d0i47uUeaHLiTYX+J42WAwUF1dTXBwMKWlpaSmppKTkzPlZoUbhCdgsVj4tvAoza1t7Nq1i+effx6JREJHRwdFRUWsWbOG8PBwF1u3YRrUcPzLvWzZ/mdK2occ71itVr777jtOnz7Ne++9x+uvv05+fj4NDQ1Tbn1WCGhsbOTkyZO8+oc/kJyc7Hhdq9XS399PUlLSNILvKH3/+Dtf/uVvXLh8FeOExY5Go+H48eO8/PLLqFQqtmzZgkwm45tvvqG5uZmpVP67JMBmsyEWi71WvDQZer2e0NBQ1q1b53hteHiYmpoaMjMzkcvl02jdj5DEV9n7b9tYFxmCr3ks32ExmaipqSEyMpIXXngBGCtW27p1K2fOnKGoqGhKAlyOAX19fdTU1GAymTCZJknCeAixWMzQ0BBFRUVYrVbUajUBAQFIpVJaWlo4ceIEb731FvPmzZtOL/gERpPwT8sIkrZgs4xVSfT19qLRaFAoFI6SFhgTHxERQWJiImLx5P+/XRIgk8kICwvjwIEDM1qcKxKJsFgsGAwGfHx80Ol0iMVi7HY7165do7e3l9LSUjZs2PDQU4+TM8qt23cw2+zwf5XgQ0NDXL9+nWXLljn+0P39/Zw+fZqsrCySkpKm1LJLApYuXcrhw4cZGBhw68kJVxCLxfj5+WG32xkdHUUqlXL16lX2799PXl4eL730EjKZzG39jf+sWC1WjEYjvr6+jvf0ej2XL1/mww8/nPKsc0mAj48PUVFRREVFuXK4xzEajchkMjZu3Oim4mE/5s8LwN/3CQICxnJOEqkEf39/RkbGTscNDw9TXV1NTEyMU/mmWbEKmsjAwADHjh1jxYoVbsr72DAPtXBJrUHX0YhG3cpti53ghcEsjohAr9cDY5UWVVVVZGRkOLXknXUCWltbuXjxolvSzmMM01NfxKEfy7lKAz//12ku9o2yKCSEhNWrqayspL29Ha1Wi0QiISEhwanWhbcTfggWi4X6+nrCwsLcknYew59Fq15l31dZIBIjEgWxOFiKWCQhOTWVsspKjh07hlarJTMzkyVLljjV+qwSMP4z4M60M0jxXxTFqkX3xru4uDjy8vIoLS1Fq9WyY8cOnnzywecl7ses+gm6cuUKfX19Uyq4cgf+/v7Ex8djNptJSUlh2bJlTrcxawTcvHnTcc7XlT+Eq1y9ehWNRsPatWtdijmzRkBrayv19fUolUoCAwO90qfZbObcuXMEBwe7nG2dFQLMZjP19fWEh4cTGxvrtX47OjooKysjIyPD5UtbZ4WAqVY7u5vffvuNwcFBUlNTXaozglkiYLzgylvBF8ZiztmzZ1mzZs20Yo7gBQwODlJeXj7tgitn0el0qNVqFArFtLKtghfQ3t7uqHb2VvAdHh6mqqoKuVw+7Q2foAWYTCZqa2u9Hnzb29uprq52Ou9zPwQtoKuri4qKClQqldeCr91u59KlS4jFYpKSkqZ9pxhBC5gYfF1dhTjLjRs3OHv2LOnp6U7nfe6HYAU87DpfT6LVamlra2PNmjX4+/tPuz3BCpjsOl9PYDAYKCsrIyEhwekrbB6EIAVM5TpfT9DS0kJtbS2ZmZksXLjQLW0KUsDEna/70s4Px2KxUFtbi0wmc+s9kgQp4H432fA0nZ2djhJ3d664BCdg4nW+3gy+Go0Gg8EwrbzP/RCcgPG0szd3vv39/fz888+kpaW5/VyDoASYzWbHztebwbepqQm1Wo1SqXR7ibugBHR2dno97TwyMuLI+3gi3SEoATqdzg3Vzs7R1tbmUr3PVBGMAHdd5+sMdrudixcvIpFIeO6556ZUbOssghEwcefrnoKryenp6aGsrIz09HSPlWEKQsDEna/7Cq4mp6GhwZH3mViE604EIeD69etUVVWRnp7utZ3veN4nPj5+mhd4PBxBCNBqtYyMjJCWlua14Nvc3ExtbS1ZWVluLW+/m0deQE9PD4WFhSxYsMCreZ+6ujpkMpnH7577yAtobGzkzJkzXL58mR9//JErV654/KKQrq4uR94nIiLCo3090sW5drudoaEhcnJyiI2NpaKigpMnT5KTk0NGRgYxMTEeeXiEWq3GYDCQkpLi8Z880aP8FCW73c6tW7cwm80EBATQ1dVFWVkZJSUl2O121q9fj0KhIDY2FolEMnmDU6C3t5fPPvuMBQsW8P7773v8ZM8jLeB+2Gw29Ho9VVVVFBcXA5CdnU1GRgbR0dHT3iydP3+ejz76iI8//tilm284i+AEjGO1Wmlra3PMCJvNRnZ29rRmhNFo5MCBAzQ1NbFv3z6PpB7uRrACxnnQjFCpVERHRzslorGxkT179pCbm8trr73mlYcTPdJBeCqIxWKWL19OXFwcmZmZlJWVUVxczKlTp3jxxRdRKpXI5fJJf5psNhsXLlxALBaTkJDgtSdDCX4G3M2DZoRSqSQmJuaBM6Krq4tPPvmElStX8s4773jtUVaCnwF3M3FGqFQqysvLKSkpobi4mJycHFQqFTExMffMiMbGRtra2ti+fbtXnyM262bA3VitVpqamqiurqa4uBi73U52djbp6emOYH3nzh0+//xzjEYje/fuZdGiRV4b36wXMI7dbkev11NZWenYR+Tk5LB+/Xq6u7v59NNP2blzp+POJ95izggYx2q10traSkVFBT/99BMikQipVMqdO3f48ssvvXqBH8zCGDAZEokEuVxOdHQ06enpVFZW8u233xIUFDQjz8ScczPgbmw2G01NTfT09LB69WqvlbqMM+cFzDSPfDp6tvNYwAzzWMAM81jADPNYwAzzWMAM879PYapbRUI1bgAAAABJRU5ErkJggg=="
|
<image>如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()
Choices:
(A) 100°
(B) 130°
(C) 150°
(D) 80°
|
100°
| 69,757 | null |
100°
|
"iVBORw0KGgoAAAANSUhEUgAAAHEAAABNCAYAAACRxosGAAAQXUlEQVR4nO2deVDU15bHP7/uBhRlETQqAnFDBBVRZDEuRCObycOX5BmX0RjXiakaU3EqmufMVCZVU28Sq6Ixk5jnipoQIwiJpsIiuCRA1ARZjFFI2FFEQFwAEejuO3803dANKkJLN+C3qqu77/Y7fb+/c+6953fPbUkIIUCggwAhSQhAJtSoJQkJgQSArKVQG0gG30VzmnhAvmFZw3YeVE90IK299h7W5gNkEVKrokL3LpAhoX5EWw+7hnEhaUhsgdAkgtS6M7tPoJ4H0/ePQvtBCIEkSUhCaDRRWc+9RrDu3w9ZH+VQjx4BhXlZ5OSV0FCvYpjraKb5TEZhBn0ja/2ltbE5F/8tP545j5AMzVtfg9C8JCj78wK7tn/I+YwMInZ+wreJ5zC1FkIrEqXmsQ9JorKsgLiE8zQoVch1RU0vbHdDAloPNs4jJ/PSgjf53//5gDEjrCgtu2Yy2VpDof9VQtlwl2tXi7B2ccPCxh7QDOVSHyQRNDe3FkUFlzn18ykKrl7iWQ8/wv8SZELJWiAzTIj//hjfx52kQdaIw5BBzal9k0A9qBrJLbvGXxe9wlgnO/7IykdhaW1qqQCQafRMgxtlRVTVKhlkZ4eyvh4He9vmnL45HopWfXOnspAma2deCw/n+WmTyb/8J9V360wqnxYKkBBqJWeTj/HP46ls/vv72NdcYuunh8jMvoyH8+y+a0qbf/fdmzfYvWsnBVVNfG1pwYnoY3jPDmbkMDsTS6iBAkColdQ1qnluijfDbfpxteweY8e74zDQkvqGJlRNDaaW84lDkiTUarVmgidJyGVy/szPw9rKkkE2VjiO8KS/YyNVFZW88C8r+Nv8EKyklqWZSWVv8di0L0hmRgYnkpJQKBQmF7a7YGlpSXV1NcePH2Pq1Gns2rWL9n661k9i6n5p47ExRHl5Ofn5+cjl8ocV6zWwsLDgxo0bHDp0CB8fHyoqKnjppZcIDAxsVUo0EyiZnEBoz+3WbB7MwUyYCp9++il2dnasWLGClJQUEhMT2bJlC9bWmtmoECoAJEmGOczc2ywx+jKEEOzZs4e6ujoWLVoEgL+/PwqFgrS0NG0pJEmGJMkxBwKhHRK12tcXtfC7776jsLCQdevW0a9fP0AzPgYFBXHmzBlqa2vREGdefdNnNdFwKpCamkpqaipr1qzB0dFRL8/X15f+/ftz+vTpR7ZjCvRJErUdr33PyckhJiaGxYsXM3r0aL080GjjvHnzOHv2LLdv39ZryxwsVp8kEdCtB69fv86+ffsIDQ3F19dXL781fH19sbW1bVcbTY0+SaKWoJqaGvbu3cvkyZMJCQl5aB25XE5wcDDnz59vo42mRp8kEUCpVBIREYGNjQ2LFy/uUB0vLy8cHBw4ceLEE5bu8dBnSYyKiuL27dusXLkShULx6AqAQqEgNDSU9PR0Kisrn7CEHUefINFwBnnixAkuXrzImjVrsLN7PCe2l5cXw4YNIzk52Zgidgl9gsTWk5SMjAwSEhJYvnw5Tk5OnWovLCyMjIwMysvLjSVil9AnSNSisLCQb775hgULFjBhwoROtzN+/HhcXV1JSkoyonSdR58h8ebNm0RERBAQEGDgzH58SJJEaGgoFy9epLS01EgSdh59gsT79++zb98+nJ2defnll43SppubG6NGjTKLmWqvJ1EIwddff40QguXLl+uNj111mYWGhpKTk0NRUVGba3Ynej2Jx44dIz8/n9WrV9O/f3+D3K65zEaPHo27uzsJCQldaqer6NUkpqWlkZqayqpVqxg8eHCbfH3PWue0Jzg4mIKCAvLz8zsnpBHQK0hsz3xduXKFmJgYFi1axJgxYx5Uk44F2TwYrq6uTJgwgfj4eF3ao5ziQgjdyxjoFSQadlpZWRkHDhwgKChIz6n9pBAUFERRURG5ubmPKClAF01lvCcgvYLE1qipqWHfvn1MmjSJsLCwR5QWBq/OwcnJCW9vb+Li4jqkXZJkaMq7ho45DXsIVCoVBw4cwM7OTufUFgCikZTEaM5nlyC37E+TWskY7+n87YUZGGtjdEhICFu3buXy5csPcSS0vyug+elmp/f39ipNPHLkCNXV1bzxxht6Tm1JsqCmppKr1woZNdYNhfo+v1/Jo1Gl3arZ9S0XQ4YMwdfXl/j4eNRqdbtlGu/X8HvWeVJSfuKnH1P4KSWFP4qKUQm6dP1eo4lJSUlkZ2ezYcMGbG1t0cTJtuynHeYymXkhnowbOxR39wnYW/dH3sb0da4jtTsD582bx9atW8nKymLq1Klt8pVN9zgSsZWiGls8PSeQn5XN0NFT+a8P3kHRhWDVHkti6y2VGRkZxMfHs2rVKkaMGAFoCWzuFtFIbtZZjp7KxmHQIP7zH9txctSuGbtuTrVyODg44Ofnx8mTJ/Hy8mq2Bi3tWw90ZNqchSybOB17WyvyA55DqBRYdXF87LEkajuusLCQw4cPs2DBAiZOnKjL11IoAXeqblDWJOfdTf9BRXE+jrZyhFCDJBk9zmTevHmkp6dz4cIF/P39m6XQaFlT7U2uXPqNH3+6wECHoby+ahVjnBy0v6jT1+zRY+Lt27eJiIjA39+/7Q5tmoNmgaL833B08WL6NC9CQ2dx7kwyNyqrn0igkK2tLdOnTyc5ORmlSgW0TEVLrhaglMvwnuTO4CG22NgaJyCnx2ri/fv32bNnDy4uLrz66qsGuS30/Hk5k88//wLVQGduF+dxveg3ZDbD8J3x5AJEAwMD+eWXXzh39iwzZ85Eq2XFJddxm/4XXnvej4qKGwzsZ5zQiB5JohCCyMhIlEoly5YtM1g0N8dINH+zsbNl0ev/hgo5amUj7m5jGeM5EXtriycmn62tLbNnz+b06TP4B/hjobDgSmYasdGRzFmyCYBnnhlqtOv1SBKPHz9OQUEB77zzTjtObWgd5TVsxBiGjWjrdhNCoFQqAePvHZUkCX9/f06fPs25878wa8YMysrKsXEcST91A2o045ix4l0eGRVlbkhLSyM2Npa33nrrIT5RLVofiNTSWSUlJRw69CUDBw7E0tIS3XLboCu0gUWGaYZlDdMkSUKhUJCVnY29nT3v//f7WFlatpJKDcJ4EVU9ShNzcnI4evQoS5Ys6SCB2veWTj516hQJCQk888wzeHp6IJM1z1SNDEmSGOfuzsmkJM7+nMbzz89pyRMykIynOz2GxPLycvbv309wcDB+fn4dqKF/l5eWlhIVFUVVVRWvvPIK06dPfzKCGkAhl5OYmIiPzzRsbGxaiSbpaW5X0COWGLW1tezdu5eJEyd2wKmtD5VKRXx8PNu3b8fe3p7Nmzd3G4GgCY2Ty+WtQuOMD7PRxAcN8iqVioiICAYMGMDSpUsfq03t7rba2lqWL1/OlClTjCVuhyCEwMLCguDgYH744QdmzpzJwIED9coYY1w0e03UmsDVq1d3eKd2Y2MjsbGx7NixA1dXV7Zs2dLtBLaGn58f1tbWnDx5Ui+9101s2vtBSUlJZGZm6pzarfEgzb1y5QrR0dGo1WrWrl3bpf2lXYVWPoVCQXBwMDExMQQGBmJvb2/U65itJmZlZel2ajs7O7fJNySwrq6Ow4cPs2fPHjw8PHjvvfdMSqAhfHx8cHBw0NtwbKwtGmajia1RXFxMZGQk4eHhTJo06ZHls7OziY2NxcrKivXr1+Pm5qbLM5cDJGQyGcHBwURGRjJ37lwcHR2NJpfZLfZv3brFtm3b8PLyYuHChQ8te+fOHY4dO0Z2djaBgYHMnz+/w+OmKSCEYNu2bTg7O+sOdjAGzMqcNjQ0sH//fkaMGNGOU1sfv/76Kx9++CEVFRVs2LCB8PBwsyYQNENAWFiY0UPjuv1XP8i8CSH46quvaGpq4vXXX0cma//+qq6u5ujRo+Tm5hIaGsrcuXN1ByWZi+l8GDw9PXFxcSExMZFly5YZpU2z0UStU3v16tW6Q38MkZKSwkcffUR9fT0bN24kKChI76QrcydQi5CQEC5evMi1a8Y59LbbNbG9jv75559JSUnhzTffZMiQIW3yy8vLiYmJobi4mLCwMObMmdOmTE+Cu7s7zz77LMnJyaxYsaLL7ZlcE3Nzc4mJieG1115j7Nixenlah/XHH3+MJEls2rRJj0Azm5M9FsLCwrh06ZJRQuNMOju9fv06O3bsYNasWbz44ot6eaWlpURHR1NZWUl4eHi3+ju7C7t370aSJNauXduldkymibW1tURERODp6alHoFKpJC4ujk8++QR7e3s2bdqkI7Ana157CA0NJS8vr8vBOCaZk6vVag4ePIi1tTVLlizRpRcUFHDkyBHq6upYunQpPj4+evV6ysSlo3B1dWXcuHEkJSV14Pnog2ESTYyKiqKiooKVK1diYWFBY2Mj3377LZ999hkuLi5s3ry5DYHQ+zQRNNpYUFBAXl5ep9vo9jExOTmZxMRENm7cyPDhw8nJySEqKgqVSsXChQv19o72FRw6dIhbt27x9ttvd6p+t2piZmYmcXFxrFu3jqFDhxIVFcWuXbt0Duu+SCBoQuPKy8u5fPlyp+p325hYXFxMdHS0zp32wQcfYGlpyfr16xk3blx3iWGWGD58ON7e3iQmJuLh4fHYY/8T0MS21vnO3btERkbi5uZGcXExu3fvZtq0abz77rt9nkAtXnjhBcrLy7l06dJj130Cmqh/FymVSg4eOEBJSQkqlQoHBwfdePgULRg8eDCBgYEkJyfj4eHRKhjn0Vr5ZM2pEOzfu48vvviCkSNHMmrUKPz8/KiqqqKsrKxXzjY7C7lcjkKhID09nfT0dAICAmhLoJr2YimNTuLV4jzKb99j3Dh36u/covTaNaZOmYL7+PFYW1uTmpqKWq1+SqABtOOgi4sL9fX13Kkup7ziJg0NStRYMNrNDVtrC9obrrqwxNBXdXXDHY4fjyP7yp/cFwLbQTY4O41nQehsLOQy1Go1KpXxN+n2LggUCjlWVv3ITItl+47PGTIqgKa79dg7u7Px39fgOMCqnWqdgFqtfVcLzUe1iNm5TaxYuUHkXasUQghxcOc/xK6vj3em+acQQlRczxU7d/6fuFuvEvV3q8WWd/5V7PjySLtlH9ucCq3iCkl3AkRFQSYJJy+yfNPfGeOkOfQnOOxl7insdcEj2jvN3P6OwFygCSVoic8oySvEZug4bPrJoN8g/KdP5djvBe3WfWwSWwePaAPIsi/8Qv2AAUyb3LJcGDZyvKac7ngRGUJo/3Pjca/a+6G/Nmzij6wSnvUN0KXcq2tgmGPbU7Ggk+tE0fw/SdoRTiGTo1Q2otLKob5P+fUK6huVenpn7PNbehck3ZRFXVuF2t6Ose7uANwoyuD4j6kEeLf1J0MnZ6c6bWw2j95+M3BK+Ind/9zLnAAvSspKsLR3Zf4s7VN6kz977gHQmNPG+zXEfnmIcxnXcBo7hpxbpRz6PgHvOX8lZIY37R1j1kUHeMsYd63gNw5+FcOdeiVTngtkfvDz2Fpp75Gn6vcwCCGaLZTErfJC9uw5QFnVXWxsByBJEDAvnNDZfsia/y1Oo0RGI/EpjIeOTPpaHyjRUvapnTMbdMRaaaeS+mWfktgL8P9sbNYI0slSpwAAAABJRU5ErkJggg=="
|
<image>如图,AB∥EF∥CD,∠ABC=46”,∠CEF=160°,则∠BCE等于()
Choices:
(A) 26
(B) 16
(C) 23
(D) 20
|
26
| 69,758 | null |
26
|
"iVBORw0KGgoAAAANSUhEUgAAAHQAAACBCAYAAAARxZ6NAAAZK0lEQVR4nO2df0xb57nHnwNpkVIrzlR3nGhOTtY4zelAwxXVQlYqSEMaOjkJLWhQjXWeRsbtmO5Q5yRIRSPZ0Mbt6Ibu2ELCqiZSestUq87t4JYfZnEUUKlgDVJh0ItZnJEoRmQ3plDNUcz53j/MMf5xbB8b/4LwkRD2+fG+r9/n/fm8z/u8DABQkgFADMNE9dz4+DjduXOHLl++THa7nT777DMSBIEYhqHZ2VmanJz0PMswDPE8T1/+8pc917Kzs2nbtm2Un59PmZmZxPN87H5YDHCLRyCGSZf1PJMMgcoVoD+zs7NkNpvJYrHQRx99ROPj48RxHO3cuZP27dtHLMuSVqv1PC8lILEAiIyMjJDdbqfh4WGanp6mmzdv0lNPPUXf+MY3qLCwkIqKikilUoVMf7S/Rz4CEaURiChULCAhOQKNhK6uLvrwww+pv7+fbt++Tfv376f9+/fT3r17ae/evWHfjyazBwcHaWhoiCwWC1ksFuI4jg4ePEjFxcV06NChaH9KjBCW/6dJ/raEClRu5v7tb3+jM2fOkNFoJI1GQ2VlZVRQUOBT+xKZtpGREbpy5Qq9++67NDs7SxUVFfSDH/wgoc2z7IKJFMHhcKC5uRk8z4PjODQ2NsJmsyU7WQFYrVa8/vrrUKvVyMrKQmtrKxYWFgAAgiDEN3K/4APiE4CkC3Rubg719fXYsmUL9Ho9BgYGEhKvIAgBGRKpQMxmMyoqKqBSqdDY2AiHwxHLJC6z5C9HiSdcns9JE6jdbkdtbS1UKhWqq6tx8+bNoM8Gy+hY1gi5YUk9Z7PZoNfroVKpUFdXh7m5uZilyyfu5f9TvWfQaw28vwRX4gXqdDrxs5/9zPPj7XY7gPg3V3LC935GqgaHY2ZmBrW1tWBZFk1NTXC5XOFfihABUzhChF5rQAsMIME1tLOzEzt37kR5eblHkOuRmZkZ6HQ68DyPvr6+8C8Ifv9D0HbiOA4fPowpLEneT4hAbTYbdDodNBoN+vv7ExFlUhBrtFi7u7q6oFarUVZWhpmZmYDn3F/ChOn1ufecAed6e3CY0QUVaFq8h9t/+tOfKCcnh3Jzc2lsbIyee+65eEeZcLA88xOnFQzDEMMw9K1vfYsmJiZIo9FQdnY2dXV1+Tzn/kIkNW/0hEnu+5juJTM9T8d2MfTnw0+ShlZEJ9CSz4txwel0oqamBhzHYXh4WPKZuA/zUwRBEDAwMACWZVFXVxeyb/Xpx72uGwwG9zVrD46cOOu+uCT4PhTraYuYGJvNhtzcXJSUlMRpKL82mZubQ1FREfLz81fGEEHKtH9TK1ZUIloRqAQxbXIZhqHBwUHau3cv6fV6MplMpFQqYxnFmgNeijiVSkV9fX2k0+lIq9XS6OjoSpvqh7tRFtxNLQ4S3JWPrL1naI9mR8gIY4bJZALLsvj4449jGey6xGw2g2VZmM1mvzsrgx3B2gM6avC523vOgBPnen0rtteXmAm0vb0dHMdhbGwsVkGuKaTGA+HGCMPDw1Cr1ej4r3fdz3vdO3PisKeJFZUIx494Nbsnz0iGGROBNjU1gef5lNS9pjoTExPgOA5tbW0xCW/VAm1sbIRWq90Y/IQhVG212+3geR6tra2rjmdVAm1vbwfP83HTXa4X5EzPZmZmwHEcjEYjrl27FnU4UQvUZDKB47iNZjZCQgllYmICSqUSDMNErVHbFM1Q/MqVK/Tqq6/S5cuXieO4aIJ4IEGYReqOjg566KGHKD09nbZs2RJ1JBFhtVrBsmzAuuWDovWJBy6XC5WVlfjmN7+Jbdu24c033wTLsj76X7lEVEPv3btHZWVldOrUKXrmmWd87kmVPMTdeGrtMz8/T0ePHiWWZam0tJSuXr1Kr732Gt2/f59efvllslgslJ4uz+KPiCKrodXV1SgvL4+41Gwgjc1mA8/zqK+vh8PhAMuyPgOi4uJi1NXVRRRmgECDNZ0dHR3QaDQe+5kN5COVp8PDw2BZFu3t7QCAhoYG6PV6n3fm5uagVqvR3d0tOy5ZNfTGjRtQqVT45JNPZAe8QXBEFamo9nM4HFCpVLBaV+xKxEIwMDCAbdu2yTYICClQMdDi4mI0NDREk/YHglADQv97LS0tUKvVPirS2tpaVFdXBw3DYDCgoqIiNvNQk8mEPXv2wOl0hg1sg9DCrampgVar9altdrsdSqUyZA1cWFiAWq2GxWIJG3/IPtTpdILjOIkVgQ0iYWFhASUlJdDpdAFjkKqqKs/idSiMRiOysrLCGp6FrKH19fUoLy8PupKwMfcMj91uR25uLqqrqwOEYbVaoVKpZOvBi4uL0dzcHPKZoAK12+1gWXZdW+fFEqnCPTY2Bo7j0NLSIvlOZWVlRGMTm80WtgAEFWhtbW1AZBs1Uj4WiwUsy8JoNErev3btGliWDTsN9M9zKbl4IylQOR31BsE5f/48WJbF0NBQ0EpQUlIStOaGIlwzLSlQg8GA2traiCPbwK0g4HneZ07pj8ViAcdxEc8cxMKh1+vR2Ngo+UyAQMVJbjSK4QcZUcGen58fdpBTUFCACxcuyA7bv5ZPTEyAZVk4nc6Ae2l+el1qbW0lnU5HarU61nrodcv8/DwdOHCA7t+/T2azOaSlY09PD926dYu+853vyA7ff4GD53nKy8ujP/7xj4GLH/6lQaPRYGhoSHbpeRAINRi02Wx48sknUV9fLyssrVYLk8m06jR1d3cjNzc34LqPQIeGhsDz/Koje1DwV7CH47333oNWq41J3C6XC2q1GhMTEz7XfQRaXV2NpqYmz/eNaUpw3n///SB2tdK4XC5oNJqYat3q6uoCltc8AnW5XJ7B0IYgQyOlYA/H+fPnUVBQENN0jI+Pg+M4n2skCs9kMsU8wvXIj370I2i1WszOzoZ9Vszbf/3rX1Cr1XFxN6DVan2U9mniKKm7u5tefvll+UO7BwgAtLi4SC+++CL94x//oKtXr/o4rwqGmLdnz56lp59+mp555hmfvS6xoKKigrq7u1cuiKWI5/mADnaj6XVjt9vx9NNPSyrYwyFlWhJLhoaGkJeX5/lOwIoifoNAwinYRYIVfn/TkljjcrmgVCo9OmEC3B32t7/97bhFupbwFoy3gj2a1srhcOCxxx4LqQaMBcXFxZ65bRqRu/9cj1vl5QC/Pk3s9y5cuEAVFRV06dIlKi0t9Vz3fz4Up06dopdeeol27doVuwRLUFhYuNKPAnigtwFKIUfBHo5ErlgNDAx4FBaM0+mEUqmkL774IjKD3nXI0tIS6fV6un79OnV1dUnqZCHTePzYsWO0detW+vWvfx2PpPowPz9P27dvp88//5w2TUxM0Pbt21NYmG7XohERzg+pBA6Hg1588UXKzMyk/v5+ysjIkHxOjjCnp6fp0qVLZLVaI0tElCiVSsrIyKAbN25Q2vT0NGVnZyck4qhYXhDCct9l7WvzuI1hGIZK6toDXxGdFsjs7m7cuEH79u2j/Px86ujoCCpMuZw6dYpqamoS6l8iKyuLrFYrpU1OTtLu3bsTFnHELFcIhmGo7UQJ7X7+f2gKS8tOJKYI//FDOnrynI/sPLVIRi0dGRmhvLw8+ulPf0q/+MUvVp3c0dFRMpvNZDAYVh1WJOzevZsmJycpbWpqip544omERh4pIKK2k0fo1c+eIAgfeDld0tCbvWfogzc6aZoEirBikslkosOHD9PFixepqqoqJmk9ffo01dXVkUKhiEl4cuF53t3EFxQUpLzd7VTvGY/zCEEQfJxLuO+5fd9FMleMRsEeDm/TkkRr2YxGI0pKSrBpcXGRlEplSm/9O9f6Kh05cY4O7iLyHvGAiK7bpkl02y03/T/+8Y9pcHCQRkZGgupk4efuTQ4NDQ3085//fNV9cDRs3bqVFhcXadMXX3xBCoUiZYUJstLEn4kO//tzy4VuZcTLkEB9nc105MRZH993wVhcXKRXXnmF7t+/T1evXg3bLEaSJ9GYlsQShUJBi4uLRGq1OqTz4WQjWHtWmlu/e2JT3De9/GyIZm52djaoBXssiJVpSbSMjY0hKysLpFAoUnrPp+jwt61vSvL64eOh/fuYzWZ89atfxcMPPxyVaaq/U2QpjEZjzExLomVmZgZqtRpEqXOOQFDOHD8KOnLc831pqjusE0ORHTt2gGEYEJHPMlOsiIdpSTTcvXsXSqUyOi8oiebf3nif/n40nRhmRY3WawUdfDz8u4IgxHxRWQQAXbx4kb7yla/QgQMHPNeSMR7xxJnqTa434ScCgV6ezWYzduzYgfT09KDW5tHidDrjZloSKWKTm6ZQKMjhcCS8REWDd7mXrnSBI90DBw7QjRs3aGRkhNra2ujChQsxS09bW5vHtCTZzM/P0yOPPEKbxPmLN0jBOam/vp1hItPBa7Va6uvro+LiYrp79y795Cc/ifg3eufL/Pw8NTU1+drzJJHFxUX60pe+RJseeeSRAIGmmjCJJAQnwH0xglMNeZ6ngYEBOnjwIP3zn/+MWHfrnS+//e1v6YUXXqCcnJyIwogXi4uLpFAo3AKdn59PdnoiJ40JWzularBaraahoSEqLCykubk5amtrizjq+fl5+v3vf09DQ0MrcSW5VXM4HKRQKCjt8ccfp5s3byYtIfFEzF7/jFYqlXT16lWanJyk7373u7S0tHKqAmSMiE+dOkWlpaU+piXJEqaY3ps3b9LOnTspTaPR0NjYWNyG9qmKQqGgnp4eWlxcpJKSErp37x4RhRfM7Owsvf3223T69OlEJDMsYnrHxsZIo9FQGs/zND09nZL9ZqzxL7QZGRlkNBpp69atdOjQoYCxhBT19fV07NgxyszMjFcyo2Jqasp9/OW1a9ewZ88eAMB9wen5e5AQBMHjQ0hqs66o8ovUa0kiYVkWNpsN5HQ6kZGR4VFYi8J8EK3m6+vrwfN80N3rkXotSRQOhwMKhQLAsqG1txnneqydkZxM2NraCo7jAraFyPVakgy8zTg3ERHl5eXRwMAAZWVl+bTLLtzzfN7EZAR8935G/B7sXbn35DwX6rp3OsXPoeIQEccQNTU1pFAoqKioiDo7Oz3HRJ8+fZpOnjyZcNMSOQwMDKycRy4Igs9WCP8aGuq7nM+R3Is0Hu/v/v2//2cgsoNlRY+ZAwMDUXstSRTeWyECNitFKgypgVSsBRrqejQFTC7i3pavf/3rOH/+fFRhxBv/zUppACgzM5O2bt1Kk5OTPlUZQEBT688mJsPzt94oKCig119/nT799FN6+OGHk50cD/Cafg0PDxPP856uwLPht/DAs3TlyhWfFyOZm4YS+mqJZ9jheOutt+h3v/sdvfbaa/TWW2/Jfg9xVNR4y+XKlSu0f/9+n4gBAO//93s48Hxh0KodqgmUuhdqThvsXrAmXc774frQaJpdb9OS69evQ6PR+DgVSQX8t+RLOs0Q8R4srMfpTCikTEvsdju0Wm3Ejv3jhbgZ2RvPinB6ejqVlpbSO++8E1C15Q791xP+piVERJmZmWSxWMhisdCxY8eSmDo3Fy9eDPSLIUpWEIQAx1MPqiownGnJwsICiouLUV5eHheTUDkEczzlqaEMw9DevXvJ5XLRxx9/TETrewQbinCmJQqFgjo7O2lpaYl0Op0spX6sMZvNlJmZ6VbIeyNKVnQ53tjYGFcnD6lOpF5LqqqqwnrgjLVeXBAElJSUSB5PueFe1Y9ovJYYDIaA0x7CEYmQQ7lX9YekAn5QHSBLHYgjl0SechyRA2TgwXVRHu5AnHC0t7d7BiqRHM4TCWFdlAcLPJyz+vXG7Oxs1IXYOw87OjqgUqkwOjoalzXlqA4RAIIf87FeF77lHogjh+7ubjz66KM+GpxY5FvEx3z4RyoexLPemZ6exqOPPhpT05KBgQGwLIvOzs6Yhbmqg3iAB+eorNWYloSqeZ988gm2b9+Od955J8qUrWA0GvG1r31tdUdlAcClS5fA83zKLu6ultHR0bialkxMTGDHjh1oawu9jzUUqzrMTor1fNykeCBOPMcGMzMz4Hk+6t1vBoNBdtcnS6BiZzw6OhpVglKVy5cvJ8y0xOFwICcnJ+T8XqpQiX3x7du3ZcUje/v2ejyyuaCgIKGmJQsLCygoKIBer5el1I/bkc0i6+lQ9e7ubmg0moSvlty7dw86nQ6lpaVhW4aYHKoeCqfTCa1Wu6oOPlXIyclJmtcS8VitoqKioC1eU1MT8vPzIy5wsgXqvR0gMzMzJbahy8W/bzIajXjqqaeSriSpqalBXl5ewPy3u7sbLMtGtUASlQsUi8WCzMzMgMXVtUCqeC0Rqa+vR1ZWlkcjJ57WNDw8HFV4Ufu0MZlM4DguIasLsSQeB+J4E41SvrX1D+A4Dv39/VCr1TIL27KDEL8gV+WkqK2tDTzPY25ubjXBJIx4HoizWn7zm9+AYRhUVlZ6rh0/QiDy/WvrmwrpDWbVXqcaGxuDbsNLNVpaWlBSUpLsZPhgt9vxxhtvYPPmzSAiZGRk4NatW577x48Qzva6hfi/PX8AEaFnalmkEpKNiRuxxsZG7NmzR7L59W9mkjUQkTItSUZaBEHAzMwMWltbUVBQgIcyHsbmzQq88sorWPx8wScPBUzhMKPDFJYAARCsH3r8HgYjYoEGywRxcTdVT5doaGjA97///aTFb7PZ0NLSgry8PCgUClRWVuKXv/wlMjMfQ0dHR8DzgiBgqveMx/2dILhr65ETZ90VM0hZDCvQSEqxuGMr2IGyyaqdd+/ejdq0ZDVYrVY0NzdDq9VCqVTie9/7HoxGI1wuF8xmc9jjKnvPGZb7zrSwNVMUcMw9N4o7tqQs0pLFak1LImFiYgKNjY3Izs6GSqVCVVVVgAKjqakp7NREgLtGikIUhSu6kgUAQXBhCS6v70LsBQq4m5fc3FyUlZUFDJYSXUvtdju2bNkSV/uosbExz3Z+lmVRXV0tqX+dm5tDcXEx8vPzpdPjlTWCtcfHA6noTvb42R73d798FAUbN9+qTqcTNTU14Dgu4klyrIQuCEJMTUu8uXbtGgwGAzQaDdRqNaqrq0OuV4qrJnV1dbLUeb3nDB7hASuOoP39BvsTF4F6C+Tdd9+FUqlEQ0NDWGV0rGuvXK8lcuMdGhpCbW0tOI4Dx3GoqakJewD94uIi6urqoFQqIzJHOX5kZXoi1k7xsIRQJMT7sc1mg06ni7vKzV8w3qYl0RYWi8WCmpoaqNVqaDQa1NbWyraq7+zshFqtRllZWQi9rK+APus761EiMN5KBa/mNxQJdWfd2dkJjuNQXl4ed5vf1Xgt6e7uRnV1NViWBc/zqKuri2g6NjMzA51OB57nQxbglUIWutatvCB92XtglHD/5E6nEw0NDVCpVKirq4uJYKVqn2haIheTyYSqqiqoVCpkZWWhoaEh4sWHmZkZ1NbWgmVZNDU1YWlpKWj6AtIv+ciS57LcBiZpDuftdjtqa2uhUqlQXV0d9V4aqcyS47XE5XLBaDRCr9dDqVRCq9XiV7/6Vci5ajDBXL9+HXq93lNIg+m2xQ1hUSPj1aSfIDA3N+cZNOj1egwODq56cBTMtMTpdKKjowOVlZVQKBTIzc1FS0tLyBWjUGkxm80oLy+HSqVCQ0NDTPXZAqJokpECAhVxOBxobm4Gz/PgOA6NjY0RLc2JP97ftGRhYQEXL15EeXk5MjIykJ+fj9bW1qAtQrjCZLVaUV9fD7VajezsbLS2tgb005EuoXmuSbzmP9sMR8oI1JuxsTHU1NSAZVnk5+ejpaVF1shSAPBUjhbnz5/H2xfOo6ysDOnp6SgqKkJbW1vI/jqUEIaHh9Hc3Izc3Fyo1WoYDIawG5KSBQOktqPcrq4u+vDDD6m/v59u375N+/fvp8LCQsrLy1txh7aMyWSil156iYiIdDodHT16lEpKSkilUsmKC8teqQcHB2loaMjjT4HjODp48CAVFxfToUOHYv4bY0nKCFTMzFDMzs6S2Wwmi8VCH330EY2PjxPHcbRz507at28fjY6OklarpWeffZY2b95MLMsGbFkfHx+nO3fueL7/9a9/pdu3b9Pw8DBNT0/TrVu3KCcnh/bu3UuFhYVUVFQku0CkAikj0GgZH/+U7tz5P/rLXyw0O3t72Rua+5jn2dnZAO9oPM/7OC/Ozs6mbdu2UX5+vo/PAjkFLBVJCYHGNPO8Tw6QOEVgrQpKLhGeVh4fpDLYv5zJLndMkM8h4goXTwqUedmkhECl8M94/+9iJsc6s6XiWUs1OukChXvqFPE7Yib3tx8nhmHcfyUnCWSlEyciP4slGGtJmEQpIFBRGHIQxc4wDGG6mxiGof+07vYUCuHNA5Se9gSRRsaxheuUNXHcpD8gK5VoXiDdybP0QdMPPdeZXc/TH47riHl8Q6BrArEem9vP0gd0mKaaqlZugogYgTS79hC+qklG8lKClJi2RIJAU/Qi8wTtOdtDb/zw+YC7KdCLJJU19+uZ6ev0ARFpls8dCyyPgufTGiurMWFNNbneiMLyHVD5ls+1NkKNBWumhnrq2i4NHSGi6b//nQhe14kI07101mxNfOJSiUQs6cSavrOGAJPGqd4zsg2p1jNrRqD+K49TvWd8ttmt7AFJvTXKRPL/F6z5XKViiMQAAAAASUVORK5CYII="
|
<image>如图,⊙O上A、B、C三点,若∠B=50°,∠A=20°,则∠AOB等于()
Choices:
(A) 30°
(B) 50°
(C) 60°
(D) 70°
|
60°
| 69,759 | null |
60°
|
"iVBORw0KGgoAAAANSUhEUgAAALgAAACECAYAAAAji+ERAAAjg0lEQVR4nO2df2xT59n3LwNbqsqbeYSnHJ65PezBDK/OVK9mwlWt1/A2bV1hwBXeUmlUMyJtRNN384QDmZY2aHXVrE3fZW8zERr6LtKiLWzp0m5hDeAW9126QsOUajgLFaZ1ZTacmj4LTbSZ4pzv+4dzTvzjHP/K8Y8QfyQkzq/73Dn+nvtc931f93UpAICqVCkSICICSEEKOmBfQc//PlluOw4codd+8ljR7r+iaCVXqUJECuJIoVAQEdFzr3F0+MB26jl1kQAQh4tEzzXRgZdOJlzByXr/qsCrFJkVBIAornH6YFJB99b/V7xlJy1ZD2yn9y8FiWi+tZdZklWBVyk6fAuOSyfpefoqaWnFvNlC9OGFP9DG9evi5xXh3quKUGaVKgIABIF73zxFLbb7iCgu+p6DO+j532+ni6/VF+3+imons0qpOLBTQc//PmHHjhbCa88V9Z7VFrxKSYibJy0EPJfUqscPkmCfpB1bJFUbvEpJ+OCDD2iHTktElC5gBT+cmHyMo8UbF1UTpYIotPVKvG5iYoI++eQTevPNNykcDtOFCxeE86ampoRthUJBAEin01Ftba1wTl1dHa1du5bMZjPV1taSTqeTpb4Hdirovv8Num993n/eoqgKfAkzNTVFXq+XfD4fvfPOOzQxMUEsy9K6devo7rvvJoZhyGAwCOeLCXZiYoKuXr0qbJ87d47C4TCNjY3RpUuX6PLly2QwGGjz5s20detWqq+vpzVr1kjWKVH0AIg+OEUrtA8Ix08GEkSeYJoUi6rAK4hcWsTjx4/T66+/Tm+88QZduXKFtm7dSlu2bCGTyUSbN28uSr1GR0fp7Nmz5PP5yOfzEcuydN9999GDDz5I999/f8515ymBrgWqAl8CTExM0OHDh+mVV14hrVZLDoeDLBZLUutcSs6dO0dvvfUW/frXv6apqSl6+OGHae/evRnNGcIckWJl6So5T1XgFQgA+vTTT6m3t5defvll+ve//02PPvoo7d69m1iWTTtXzlEHqfpI3ePSpUvU19dHfX19pFKpaN++ffTd736XlEplwWXKCqpUBBzHgeM4RCIRtLW1QaVSwel0YnR0VPL8UtQpH7xeLxoaGqBWq+HxeDA9PQ0AiEajAOaKUMPsVAVeIYTDYbhcLqjVajQ1NSEUCiUdL4Wg5SIYDMLpdEKpVEKv1+Pvf/97+kkl+nOq4+Bl5vr163To0CGqq6ujW265hfx+P/X09JBGo0k6jx/WqxSk6jI3N0enTp2i0dFRmp2dJb1eT0ajkZ77ybM0NzcXv5aoZL3MqsDLAC+O48eP08aNG+nChQvk9/vp2WefTRqTTqUkNitJizeR1Lpcu3aNnnnmGdJoNPTWW29RTU0NuVwuOnbsGL377rv0p9E/U11dHb3xxhslG0EhoqoNXg6CwSBsNhs2bNgAr9db7uoAKNwECoVCePzxx8EwDJ544gmEQiEMDQ1Bq9XO294LDA8PQ6PRwOFwJJlgxTS/qgIvMQMDA1CpVGhvb08TQLnhhZaL4MbHx7F7924wDAOPx4N//vOfAIBIJAKNRiPZOZ6ZmUFraytUKhWGh4dlq7sUVYGXiGg0iubmZrAsi7GxsbTjS6UTOTw8jPr6emi1WvT29iIWiyUddzgccLvdWcsZHR0FwzBobW0VyijGM6gKvAQEg0EYjUbY7XZh6CyVcglc7L6p+2KxGPr6+qDX62E2mzE0NCRa1uDgIHQ6neiXSew+kUgE9fX1MJvNCIfDhf0BWagKvMjwLVV3d3e5q5I309PT6OzsFOzmM2fOSJ4biUTAMEzGc6To6OgAwzAYHx9fRG3FqQq8iAwNDRX8o5eS1NY1FArB7XaDYRg0NjYiGAxmLcNut6O1tbXgOni9XjAMg1OnThVchhhVgReJ3t5esCwLv98v7Kt0O9vv98PpdIJhGLS1tSESiQjHMtW9v78fer1+0Z3msbExaDQaDAwMLKqcRKoCl4lEAXR0dECn0+XU8pUTvs5erxc2mw0sy6K7uztNqJnEHQ6HwTBMUsd5MS/y5OQkWJZFT0+PZH3zoSrwPMn2kD0eDwwGg2RnspLo7++H0WiE0WgsuNW02+1oa2uTtV7hcBg6nU6035KvyKsCl5He3l7odLqkT3ulMTMzg+7ubrAsC5vNBp/PV3BZfX19MBgMaUOFchAKhcCyLAYHBxdVTlXgeSLVggwNDYFl2SSzpNQ2dzZToq2tDQzDwOl0YnJyclH3CoVCUKvVoiMfcv3dk5OT0Gg0i5rtrQpcBnw+HxiGSRNNJXQqA4EAGhsbwTAM3G53TuPNudR7+/btOHToUMHX58rY2FiajZ8PVYEvkkAgAIZhJKemi42UmEZHR+FwOKDRaNDV1YWZmZmM5+dDb28v7rzzzqKYJmKMjIygtrY2zYU4F6oCXwTRaBQGg0G0x18OOI7D4OAgzGYz7rjjDvT39+d0TT6EQiGsWbMmafizFDz77LMwm815v1RVgS+CpqYmNDQ0lLsaiEaj6O3thVarRX19fVE9FOvr6+HxeGQtM9eXzGq15j2ZVBV4gQwMDECr1QqffjGKbYNHIhE8/fTTYBgGjzzySNFb1d7eXhiNxpKZJkDyM+Q9FUdGRnK+virwAggGg5IjCKW6P++D7XK5CrJNC7mnWq0WOtLl6kDzvj25OmdVBZ4FsR/SarWivb29JPdKZGxsTPDB7ujoKOlkksViQWdnZ8nulwm3252zaVgVeJ4MDQ1JuoTyyN26Jfpg9/X1Fc1EkKp3d3c3TCZTSU2TTMzMzECj0eQ0SVUVeB5Eo1GwLJu1EyeHwFN9sEux+kWMQCAAtVqNQCAg7KuE8f3BwUHo9fqsL11V4HnQ1taW8dPIxzZZjABSfbClJjjkElm2csxmM7q6umS9Zz5kWpBhtVqzmk1VgecI7zV35cqVopTP+2DzcVEqwROxq6sLZrO53NUQheM4oeObqS9SFXiOuFwu0Y7lYls13gdbrVajvb190Y5acrWygUAAKpUqyTSpRH7wgx9k7PDf/AJP+L1Tf/yLJ4/gpOTvtxBqLBwOQ6VSIRwOJ5WxGDF5vV5YrVawLIvDhw9X1Ar7WCwGs9m8JJbZ8X0EqVb85hf4PKlS5HARO4jSBC4mWrfbDZfLVdh9U8rr7++HwWCA0WhctCtosejs7ITFYil3NXLG6XRKzq4uG4EnwgHoOdCC7du342JCS81xXNqLMD09DbVaLRqoJtcWfGZmBj//+c+h0Whgs9lEHbMqYWQCiLuoqtXqiugD5ALHcZicnATDMKJfwWUZus3b20JUX080nJJVV6EgJOSFARG9+OKLZLPZkmIF8mHLsoVSm5qaoieffJK+8pWv0NjYGPl8PvrDH/5A99xzT9q5pQrLlom5uTnas2cPeTyetDDNlYpCoSCdTkcmk4mOHj2afkIZXrqywgVOoOXICXCBE6AdLVnP12q1ea+K532w1Wo1WltbhWnlSmmlpfB4PKivry93NQpiZGQERqMxbf+yE3hLy7yoL57AjgNH0o4nivDMmTPQ6XQZz0lkdHQUdrs9zQd7KeD3+9NMsaVELBaDRqNJW3SyrAR+8iU3FAoCxa0P7DjwUsbzm5qa0NHRkbXcwcFBmEwm6PX6nHywK41YLAaj0Yje3t5yV2VRHDx4MM2ddvkI/GLcNBE2Tx4WtsVa5FgslrFF432wWZaF1WqVnL7P1ywphxnj8XhgtVpLfl+58fv9YFk2ad+yEDhvbyeK58SR/UmCT2VoaAgWy9a0/ZFIBB6PB2q1Gk6nExMTE0WpczbkGjcfHx8XXuRK7yPkgsFgSHLCuukF3tOyXTBJ+DHvlh28mbJC1A4H4uZJ4lI03gdbrVajpaWlbLbq0NAQdu/eLYvAY7EYDAYD+vr6kvbnOwxaSXR0dKC1tVWo+00v8EJzweh0OkxOTmJsbAwNDQ1gGAadnZ1lC+jT19cnLEkrdIV5Ku3t7bDZbGn7l6Kwec6cOQOTySRs3/wCF2V+ckfidwyHw1j9H2tgsVig0+mK6oOdK93d3YsSdqpo+XAMYitjlrLAY7EYVCqVMIK1TAWeDP+D8j7Ya9euxZe+9KWMPtjFFMHly5fR3NycNIIzPj4u29cjGo0u2RGfXLBarUIM82Uxk8nPTSIluRK//emnn9ILL7xAt2n+k15//XVavXo13X777bRt2zbx8oqYxPS9994jnU5HX/jCF2jv3r1ERDQ7O0vbt2+n9957T5Z7eDwe2rBhA33nO9+RpbxKY8uWLTQyMhLfKOOLVkLEk5CGQiHs378farUazc3Ngv+FRnM7br31VtyYEzdL5O6EpS69Sg1b3NzcjKamJtE65AtvmlRy/MTF8vbbb+Mb3/gGgOVmonDxf36/H3u+G/fBfvrpp5N+7Gg0ipqaGtx1110YGRmRdI+VQ9xDQ0MwGAzQarUZV4mPjIzIMisajUah0+kq1otRLqanp6FUKgHcRAJPFZyYAL1eL+rr68GyLHp7e0WH2sbHx6HVauHxeNJazXzunwvd3d1FEZtUXdxuNxwOh+z3q0R4j8ibRuCZ4DMQ3H333VkFNTg4iIceegh+vx8Mw8hWh+npaRw6dCgnv3JeoHKmPjlz5sxNb5okYrFY4PV6b95O5uzsLP3sZz+j2267jQYHB+nIkSP05z//mXbt2pXxugsXLtD69etJr9eTUqmks2fPLrouH330EWm1WgoGg/TEE09kPV+hUNDZs2fJ4XDQ1atXM56LHLISX79+nZxOJx0+fJjUanXO9V7KbNiwgd5//31aVe6KyM3U1BR1dXXR0aNHyW63k8/no/Xr1+d8fSAQEPy17XY7vfrqq7R58+a863Hp0iXSaDRUU1NDLMvS5OQkrVmzJqfRl+vXr9PevXvpxRdfzCrIXMprbW2lTZs2kd1uz7X6Sx6dTkeBQODmGUUJBALC4t0f/ehHBedd5D9tQHx0Q6/XZzw/NUyEz+eDzWbDl7/8ZSG0W772eTQalc0250OdLRfThGdwcBB2u73yTRRk+QS//fbbtH37dtqyZQtt2rSJPvzwQ/J4PFRbW1vQ/WZnZ0mlUhERkdlspnA4TJcuXZI8P7UFvXz5MjkcDvroo4/IYDCInpONmpqarKZUIlLPKBqNktPppKNHjyZ9CbI905uB1atX0+zs7NJtwQcHB2E0GmEwGCRn5AoZ2eB9UHicTqdkcJloNIqjR4+isbEx5/tlOicWi8ka0LO5uRlOp1O28pYSvE/KkhJ4NBpFT08PWJbFgw8+WJQ42BqNJslTcGhoSDT4TSQSgVqths1mk2W0g+O4tCVjixlr9/l80Gg0mJ6eXtK+JYVy/vx56PX6pSHwSCSC9vZ2wQe7mHGwlUpl0qTKzMwMVCoVrly5glAolHTsww8/lO2+58+fl201+8zMDFiWFY2j7fV6odPpYDAYRFb3L8z4Xjx5WHAzVihWzrsVz4meW4mEQiFoNJrKFngwGERTU5OQQKkUPtg0b7Ultnpbt26FyWSCUqmEz+crSosYDAYXHWCTr1dzc7NgNiXuB+ImGC9ck8kkOFQm/kWHD2wH0UJIDT6GTJLv/BxXsCuy3Ij9HtPT01CpVJUp8LGxMezatQsajUbwwZZbVFJBMsUE3tzcjK9+9atF8wWX82/zer3QaDSSU/upAk9mLi5ukWgD8RY9OY5MJVNWgUv9oMPDwzCbzdDr9UXzwc4mJqVSiSNHjiRN0/Oh2xbrDyJ272AwKNsQHh83O1PfJNVESXzRebNELJxd4FTPkhJ4xZgovA+2VqvFvffeW7Y42HxdVq5cibvuukvwJ+a555570vbJgZwxABsbG/Pyn4mzsPijZQdJLuE7+ZI7WeAVYp5I4ff7sXHjxhSBz90Ad+Mz4V8x/4jp6Wl0dHSAYRjs3r0b7777bvFuBumWe3p6Osn0WL9+vWgW4M7OzoKG3DJ9Mbq7u2ULTzwyMgKWZTE7O1vQ9byd3XPqoujxTOKvRKSHCbkYuBs3iibuUCgEl8sFhmGSfLCLTarQwuEw3G43VCqVMGvIcRyMRqPo0jA+iuncnHyfaJ/PJ0t44unp6ZxTekjBBV5PN0/mH1m66VJZZopYI3Lq1CnU19eXbibT7/fTI488Qt/85jdJrVbT+fPnqbu7m1iWFWbWUMIZNr/fT7fccgu9//77wqyhQqEgpVJJ165dSzt//fr1VFtbS3/6059kq4PFYsnLT0YKl8tFO3fuJIvFUnAZ3Hot7SCiDz4MLOxUEIECtP/+fbTjwBG677+IiDgiqqwJ8MSZYl5D165dI6VSKTKTKbTgHMCbK3xnb96EWRhbii2YNHNcShnx/W+ePAHrfAKl3t5eRP/9rwQz6EaG1zKh7MTOZuJ+4Xq+rqn15sBx8Tr/vze9aH60MWvH1el0poVR4Glrays4jHIicq2KB+Idc61WK+rbns/oDMdxOHxgG2ine2Ff4ASIVmDnwcwRwCqRrq4uuFyuLCYK//+Fg0AsYeRUEAsHCGZN/P/9v/wl9Ho9tlj+B4Z++1uR8wDE4iJMJ6W82GdJZYOb//ESrxeEfyN5OxaDbds26Ovq8Mu+/5v1wXg8HrjdbtFjY2NjaZGT8iUUCkGlUskyJc8nRk2csCloyDHhEvdOhTCMSBIjKkuBvXv3oru7OwcbfO5GgogS9nPJHVLuxmf49Nqn6Ox8Hvr1t+NbDkf8wSe+JNwNkdZYpBXnbiQJX/jRMl2fUO9oNIrwlb8L28FgMOe+Be+FJsXatWsXNZNqt9vR1tZW8PXAwvPYvXu3LF8UyXukZw1YMvBeodICX9gx32omtthIEiHfYWMYBo2PNiLw/vvi5XE3ksvOKHARUyLT9VwMH1/5B348P6Xf1vajZEGLCFxsjeX4+LhoRFmepqamgnO1x2IxYancYrOxDQ0NSZomy5XE58kwTMqSNf5zz8XSxTV3A9yN6ylvMIcLE+fx6B4nGIZBW1sbwlfCEOzhufkfMKk1XjgW37whbqLMmxf8/ThuLsFEWbieS/q6xPDeuXNo3LMn3sKmCjrHFpxfdMyPlqSKUCoOdbEQewl500TOJW03E+KLjoUxcLFWbr4Vn8fn82Hbtm1g161DT/f/wcw//1ukZRXpIGY8FhevuAkkXva5s2exx+nE9PR/L3Qsb9yIvxBJ13Ip25lhWVbSDInFYlAqlXn7xciZrczhcEj2E/JGxAxZeKnmlqQn4ujoKAwGA4DEwD8rVpFi1edIsWoVkUJkCGbFSjp27BgZjUbav38/PfzwwxT88ENqav5fpFz9H/HrhItWzpf1OVKsXJkyphM/RitXpRxTEK363MK9FasWyhAp+7F9j5Nt505ar9XSjRtzhJUL9VcoVhAlXatI2c6MyWSi0dFR0WMrV66kbdu20WuvvZa1HJ5XX32Vdu7cSdFoNOdrpHjllVfI7/eTx+NZdFlElPRb89sLw24rMizW4CT2l5/R0dGFZYbZ3oZoNIqfd7+IDetY2Gy2ovhg50ripFAgEChavMC+vj58+9vfljw+MDCQc6qPSCQChmFkMSf4suQcZlwgw+TN/Ec85/PLTGLoNpL6BEUiETz15I/w1du/jMf2OHH+/HnhWKGfrUKui8ViwiKH5ubmgu6bDxzHCVmNpZiZmUFNTU1WL0eO43DlypWkMMyLweFw4Mknn5SlrJuVWCyG1atXSwffDAaDaGxsLKkPdibC4TAaGhpK3qFKXbqWitVqxcDAgOixXIIQ5Qsf26U6apKZ1PDJgg1+9uxZ+ta3vkVms5l0Oh1duHCBnn/++aT0eaVgamqKWlpaKBwOExFRbW0tDQwMFBS6YTFYLBZ66623JI/bbDYaGhoSPaZQKGh2dpY+/vhjYTtXIOKuMDU1RW63m/r7+6mmpibnspYDqc/L5/PRli1bFvYPDg4W3Qc7V7q6uubHsNvS0maXmngKE4vk8VAoBKVSmfS8Euvb1NRUgOuqOHa7PWM+9ioLpKUwGRoaik/QNDaWZYFqYvyS1DWP5SRbEioAMBqNouseExf8ZiPb8+7r64PBYCh7AP6lgFgSqhV2u50uXLhARPFoQL/73e9K8ml59dVX6e6776bGxkZhn0ajiXuAlRHMf9pWrlxJu3btol/96ldJ+xN56KGHRM2UVatWUV9fnxBfJdO9Mpkvly9fppaWFvrFL35BK+eHVMXqUSVOf38/Pfzww8k7E9Xu8/mg1Wpht9slI0PJ1cLzM4JSLVMlTDBIJYLlkTtAZyo2m61gt4DlRs6JYKPRKA4ePAiVSiWaGLRYwpMaHSi30LVaLc6ePZvxOD/CEwqFFm1K8H9vX19fxgagSjKSqbylBDQ+Pg6DwQCLxSLrNLMUdrsdTqezbFnMpPB4PBmXqrndbrS2tiIajWLjxo2yrCkNhUJQq9VFjf9ys2G320XXtmacyYzFYujo6MAXv/jFnFJaL4bp6Wk0NTXh9ttvr6hW69q1axk7m3yATrfbndHNNh/q6+uL/rxvBvjGeXJyEgzDpFkBHMfltqo+EAjAYrHgzjvvzMtRv5A01uWeWBLD7XZL+l3zoy1PP/10wRFtE+nt7YXJZKqol7xSkNKT0+mU7KtImihi9PT0QK1WC59kOch0f4/HUxH5ZPi4KFICzhSgMx+CwSDUanXGGdTljJhWLl68CLVaLWna5h0XJRwOw2azQafTLWoVdy7w/QCHw4EbObi5FhOXy5U02cI/7HA4nBags9DFDBaLRZYXZTnB/y5SCcLyEnjihYODg2AYBk1NTcLbU4wRj1gsVhEJS3kHrKmpKWHf5OQkNBoN/vGPf2Rs4XOBj5FSNU1yh//iZRqYyCrwTKKdnp6G0xlf0VOqiFQ+ny9JZKWkra0NDQ0NwrbZbBZW4NvtdtFh1Vzgf6hSjFbdTFit1qxfPFlCt50+fRrr1q2Dw+FYdJy9bJ54vL+KXOHO8iEajYJlWXi9XszMzAgPl+M49PX1wWazFZQk1mw2o6urS9gu99j/UmBwcBB1dXVZv3iyxSaMRqNobW2FSqWSjCsi9sMVklx1fHwcNpstyW+lmKJILHtoaAg6nS6tky0WoDOXOnV1dcFsNldFnYHURoMPMnr69Oms18oefHNsbEyYICpVWLZiJlgSE97WrVtFvfvMZnNeATr5cHClek43C263O8lUzERRosvGYjF4PB6o1eqSTFg0NTUV9EIV0mr+9Kc/hcViwZo1a9LmBDo7O7Fnz56cyonFYrJGll0u8Fnjcu3QFzV88uTkJCwWC0wmk6zJlcTo7OwEy7JFbc0Tx6kHBgag1WqTTBK+Rc5lJKSzszPJ37xqomTn448/hkajEXVRlkJWgUv9SN3d3cJChnwmiArJL1lMxsfH0dfXJ9Srqakp7VOp1+uzzg9MTk5m9TWvko7VakVra6uwnYs+itaCi4Urtlqt0Ol0IsmP5L+3y+UqunkUjUZhMBiSFhXzATqlRoNisRhMJlPBQ4rLlY6OjoLmCWQXeLZhvsHBQajVajQ3N8u2ekcqNQhvHi32PpFIRPLrEAgEwDCM8NK+++67SatKEkcAOI5DR0dHziEnqsQZGRkBwzAFffFkE3g+5kTiBFEme0oOuzRxAqqQMWogvvCgq6tL8jqfzweGYQQfEoZhRF1d/X5/1TTJk7GxsUXFgilrjp5Tp06BZVk0NDSUJJf64OBg3p3dvr4+6PX6rJ/GoaEhsCwrpD5M9W6LxWIwGo1JcwTVjmVmeFcIPthUIc+r7EmoZmZmsH//fqjVaskJIrno7+/HmjVr0N7enrMt19vbm3Pr0dPTA51Oh9/85jfYtGlT0jGPxwObzSZsV8WdmVAoBJZlcezYsUWVU3aB85w5cwYGgwFWqxXBYLBoAgiHw2hqairaErlnnnkGd955J2699VbBFBkfHwfDMLh8+fKiyl4uhMNh6HQ6WeYIKkbgQPwzfujQIajV6iTfjETkEj5fTigUEhV74kRCrvfkz/N4PFAqlfjxj3+MWCwGg8FQER6RlUri852cnATLsrJNgFWUwHkmJydhNpthMpmKvi7R4/FAp9MlhYbjg1wGAoGCX6jHHnsMn//85/H4449LLmWrminJnDt3DgzDSIbE48nnuVWkwHm6u7uhUqnw1FNPyeYnLTaMyeeY5Fvy3bt3J00oFMLMzAxWrlwJIsLx48ez1mO54/V6wTCM7NGLK1rgQNxUeOCBB9Ja2WIRi8XQ3t4uiL1QIUajUdx6663YuXMnGIap+pxkgE8IXIyw0BUvcJ6BgQGo1Wq4XK6KCe+Wiba2NuzatQtAfNLJaDTC4XBUXFiMchKJRGC1WmE2m2VZsC3GkhE4EH8gTqcTGo0GJ06cKHd1JOEnJ65+HBGCx1+/fh3Nzc1gWbaglupmM2l4r8DW1taiLtNbUgLn4W3m3bt3FzRBVCyxcByHaDQKvV6P3wq5QXniGREGBgagUqmSzKDE6/MZsal00YvVb2ZmRlgYU4pljpWVkzlHHnjgAfL7/aRWq+mOO+6gY8eO5XV9PvG68y23ra2N6urqyOFwUHIem/ijbmhooL/+9a/0l7/8herq6uiNN95Iuj5T3ZAQeDPbuZVAav2OHz9OX/va1ygQCJDf76dt27YVvxJFf4VkJrVVOHPmDPR6PaxWa9HsuFw5c+YMNBoNIpHcFkUPDw8LrgpS8dArvZXOhVAohG3btkGn0+U0SiLn37zkBC4GP/KhUqnKNloRjUah0+mSlqy17KCktNhEhJ5TFwEs5HSKRqNon09e29raWvaXNF8yiTEUCsHlcoFhGHR0dJQlJMaSEHi2RE88k5OTMJlMMJlMJY8O5XK58Mgj30mrW8uOBVFfPHlYMv97OByGy+WCWq1GU1OTMM2/FFvwYDAIp9MpvLSlcKSTYkkIPF/40BL5OFUVCsdxePtPo9Bo/lNkCPAititsuDjfweQCJ0BEOHFJurxIJCJ0wpxOZ9EXh8iJ1+tFQ0OD8OwrYUj0phQ4EP88Wq1WGAyGok4QRaNRaLVaDA8Pp6WSfP/UYew4cCS+wcVNFmE7C9PT0+js7IROpwPLsvB4PBW5+j4QCKCtrQ0ajQZ6vR7d3d0Z5ylK/UW6aQXO09/fD7VaDbfbLfngF5P38weu72HPd8Xjh598yZ1kfyeaJhzHpedWlWBiYgLNzc1gGEYIEsT7tZfDhBkbG8MLL7wAo9EIjUYDt9tdsQFDb3qBA/HPfkNDgxCVSi5Onz4tkWwqbpK07JgXNbcgdjH7Ox+Gh4fR3NwMnU6H1atXw263o6urqyhfKf7lGR0dRWdnJ2w2G5RKJfR6Pb7//e/ntbq9XCiA5ZPV6MSJE9TY2Ej19fXU1dWVNUlUJmZnZ6muro5efvlluvd/3puW8x2XTtKK/W8QXv1JfJsCZFdsoI1HTtBPHrs/LUV8IUxNTZHX6yWfz0fvvPMOTUxMEMuytG7dOjKZTLR27VoyGAzC+bW1taTT6RbqCNDf/vY3+uSTT4SEWGNjYxQOh2lsbIwuXbpEly9fJoPBQJs3b6atW7fSvffeS2q1Wobal4ZlJXAA9K9//YsOHjxIx44do56eHtq1a1dBZT3xxBN0/fp16u3tjRsgKYr1vtRCJ+k+eu6x+4lAhA9O0ooND1DPyYvUVK+dP4sjfgJoMfDiJCKamJigq1ev0unTpykcDgsZ9IjiLwS/rVAoCADpdDqqra0Vzvn6179ODMOQ2WwmhmFo48aNOd87l/0lp0xfjrLDZ1CzWq24cuVKXtd6vV5oNJoMnam5BfMEAIeL2EEEou0I5Gx5Lw0qfRhz2QociE8QPfXUU3lFq52ZmcFtt90mGdyHH+smIigSJ3l2tKScOZfT/cohoHxXMFUyy8pEkWJiYoIaGxuppqaGjhw5kvGz/Oijj9Itt9xCL774YvIBEIHij7Kcn2bIYBoUWoYc95adsr5eFUZnZ6cQMFQsZYrX6wXLshKmSW4tciEUGs+lGGQL7FRpVFvwFD766CPat28fhcNheumll2jTpk0EgD799FOqq6uj/v5+slgs5a5mlRxZku6yxYRlWfrjH/9I3/ve9+jBBx+kH/7wh/TZZ5+Ry+Uih8NRFfcSo9qCp4AEO/Lq1au0b98+Gh0dJaVSSX6/n2pqaspcwyr5UBX4PMjQQTpx4gQplUq65557SlyrKovl/wPeOtGOQ4b4KwAAAABJRU5ErkJggg=="
|
<image>如图,一块直角三角板的30°角的顶点P落在⊙O上,两边分别交⊙O于A、B两点,若⊙O的直径为4,则弦AB长为()
Choices:
(A) 2
(B) 3
(C) √{2}
(D) √{3}
|
√{2}
| 69,760 | null |
√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAAJQAAABxCAYAAAAztYrlAAAUYUlEQVR4nO1dfWxTZd++9uFWBrMFHC0KbmPO9QGeZ8VAdoDxtAtfA2PoAPnQRDowYfi+CDMuThOzLZpMfJ9Q+MN0GLFDE4G84raIbmhCNxTLoqYtEgp+ddNAN8H3bOI4TKC/94895zzt1o52O6c923old7br9Hzc576v+3f/zu/c574TiIgQRxwiITnWGRhvSEhIGLKNb7P8b+O5DSfGOgPjDbxYiEhIE0FIPOKCEhkJCQkhhTPcb+MF46LLO3fuHLq6uuB0OofdT6VSQafTCVyn00GlUkmaN38RjXcxAWNMUD09PWhtbUV7ezvsdjsuXLiA33//HQzDQK1Wo6mpCVVVVcL+NTU1Aby8vBx6vV7ogs6ePYtp06ZhwYIFKCgoAMMw0Ol00Gg0o8qnvx81EUTkD9kLqqWlBW1tbThx4gSuXbsGvV4PhmHQ1tYGj8eDzMxMAEBiYiJ8Pp9wXLi8u7sbTqcTa9aswerVq+FyuUBEyMnJwe7du2E0GqFQKCLKs7+IJkI3FwCSIRwOB5WVlZFarabVq1cTALLb7eTz+cjn8xEA4X+p+NGjR2nLli2kVqupsLCQbDZbWHkfXKQyLWLJIJu7ZVmWzGYzzZgxg3Q6HVksFvJ6vVERz7241Wolg8FAarWaVq1aRR6PJ+g9BBNPXFBRBsuyVFVVRZmZmQSA3G53TMVzL242mykrK4tMJhO5XC7hPgAETRMNMbtjXkhZWVlUVVUlC7FEynlhhbJYExExiUO9+eabWLBgAQDA4XCgpqZmRA51rPnPP/8MvV6POXPmoLS0FF1dXZEXxjhDVAXldDoxe/ZseDweOBwOVFVVYerUqbIQx0h5aWkp7t69i8mTJyMnJycgTDEhEQ0zyHEcVVZWUkpKStSf1qLFdTodAaDi4mIyGo3k9XqjUbSyg+SCcrvdxDCMrCpfbG6xWAJ4Q0MDJScnU21trdTFKztIKiir1Sq0XLlUvticZVlKTk4mr9cb8DvLslRZWUkMw1BbW5uUxSwrSCIojuPIZDKRyWSSVeVLwWfNmkVms3nY/Q0Gw4SxVqI75T09Pdi6dSv0ej3q6+tl5UCLzTMyMvDAAw+grKxs2P2bm5vR29uLzMzM8f8kKKY6vV4vGQwGam5ujrnliAY3Go3U0NAQ9v42m420Wi01NzeLWeyygmiC8ng8xDAMORwOWVS21Ly5uZmKi4sjPp5lWUpMTKSysjLiOE6s4pcNRBGUx+MhnU5HHo9HFpUtNec4btSNx2KxkMFgoK6uLjGqQDYYtaC8Xi8xDDNhxOTz+chsNtPevXtFOR9fduMFoxIUy7JkMBgmTDfn8/nI6/WKGgrh43RnzpwRq05jihELiuM4MhqNE8YB5/8XyzIN5vzDzFjHiAVlMpnIarXKqrKl5g6HgxITEyU5P8uyZDQaqaamRsz6jTpGFIeqr68HMPBi1CejuJDU3GAw4JNPPpHk/EqlEo2NjfB4PHjjjTcwZhGpAt1u97h/nRKMP/roo2Q0GqNyvcrKSioqKpLCgEiOiATFcdyEFJNCoSCdTieMJo3G9S0WCxmNxjEXq4roq5fS0lI4nU5ZdUPR4GazGZ2dncjLy4vq9TUaDbKzs+F2uyX/flA0hKs8m81GKSkpsrIc0eBer5eysrKI47iYXN9ut5PBYCCWZSW0K+IhLEFxHEczZ84kh8Mhq8qOBi8rKxsy3ina+bHb7YKo5Y6wBPXiiy/S3r17Y1650eYOh0M2PmNDQwMZjUap9TBq3FNQ/iZfTpUdDW4wGGSVH7PZTBs3boyGLkaMe8ah9u3bhz179iA1NVUWDnK0eFNTE1pbW2WTH2BgboZZs2bhwIEDkC2GU1usHdJYcY7jKCkpaciwXrnkz2g0ktVqjZLNiQzDhg146zRp0iRZtVSp+dy5c1FRUQG1Wi2L/AzmjY2N6OnpgVarBcMwkBVCKY23TpBRy4wGf+SRR8aEz8iyrDAGTU4I6UMdPHgQHR0dsmqZ0eCFhYWoqqqSvc+oVCrhdDpRUlKCnp4eyAahlKZSqcjj8cS8JUaT82ECueQnHM4HPuUSowoqKJvNRgaDIeaFFW2u0+nG7GBBucSognZ5R44cwbZt2wDIy8xLyY8fPw6tVosFCxbIIj+R8vz8fFRXVyPmGKwwjuNIpVJNqFABx3Hj4gHk/vvvJ7vdHgvDJGCIhTp27BiMRuOEChXU1NSMiwcQl8uF0tJS3Lp1CzHDYIVNhM/H/Tk/7SIfJoh1fkbLrVYrPf7447EwTkQUxEKdPHkSHo9H4HJoeVLy3NxcNDQ0IDU1VRb5GS0vLS1Feno6jh07hpjAX10ej4eysrJk0dKiwQsKCohhGNnkRyzOsixptdqYzFEVYKFaW1thMBgAxL6lSc1nzpyJ/v5+WCwWWeRH7KDnpUuXsGvXLkQbAYJqb29HQUGBrApHKl5dXQ2GYZCfny+L/EjFGxsbEVX4m6vxPtMcz/kwgVzmQZeKe71emjp1alSj6AlE/1k3Ii0tDVevXoVSqQQgr5YmJn/hhReQmZmJ8vJyWeRHSl5bW4ve3l7U1tYiGhCGr3R1dUGpVI57MXV2dqKlpQWXLl2SRX6k5v39/SgqKoLT6QxYiUsqCBbq3LlzKC8vx1dffSWbwpCCr1+/Ho2NjaM+n9lsBjDQEPft2ye8qgIGXl3xv2s0GmzdujXm988wDOx2O6SGIKi6ujq4XC7U1dXF/Oal4qdOncKaNWvC3v/06dNYsWIFGIZBV1cX+vr6cO3aNUydOhU5OTkAgDt37gSsVnXr1i0oFArcuXMHANDR0YHr169DpVIhPT0dv/76KzZs2IBVq1Zh06ZNUZunff369di2bRuMRiOkhCCo6urqMbuiQbg8OTkZ3377LfLz80Puv2PHDtjtdly5cgVEhCVLlqCgoABarRYajQZ6vT5YOd4T7e3twiKR58+fh91ux82bN5Geno6FCxdi8+bNeOqppyS7f5fLhY0bN+LChQsRL9cWEXjvvKqqiqqqqmTxdCIFz83NDfop2OXLl2nr1q2kUqlIpVKR0Wgki8USsIiRVMntdpPFYqGSkhK6//77KSMjgwoLC+njjz+WpDz27t1LZrNZ0qc8QVD8xeRQ+WLz/Px80ul0wkcHAGj37t2Uk5NDaWlp9Mwzz5DNZpNcQPdKNpuNnn76aZo0aRKp1WrasGGDqKEN/49OpIIQ2Ozp6YFKpYp5tyQFLyoqwrZt26BSqZCSkgKlUolffvkF//rXv/Dnn3+ivr5+xF2ZmNDr9Xj//ffR19eHAwcOwOfzITc3F0VFRfj+++8BjK481Go1rl27hrq6OuluglfWeB1l4HA4aOHChbRu3TqaPHky7dq1K2Bos9yTx+Ohp59+mlQqFSUnJ5PL5RpVefgHdaWAIKiNGzeS1WqVlRjE4NnZ2ZSenk4vvfQSsSwbc4GMNHm9XqqoqKCMjAx64oknRlU+lZWV9Nprr0krKJPJREfq36E7tzlSpCbJQgyj4SdPnqRp06ZRdnb2mBZSMGGVlJTQjBkzaP/+/SMuH6l8KcGHyszMxM+eXzFlyhTc5G4LXaIcfKBI+ZIlS1BRUYGMjAx8+umnQvR/PECtVuPEiRNoampCXV0d0tPT0dHRIfwebnkZDAZpxkzxyqqtrSUAdOf22B65OHv2bDp8+LAwl3isLYrUaf/+/aRWq2n//v0RlZfD4aDs7GzRLZQgKKvVSiaTSRAULy4+BeM+n28I55MiNUn4bfDN8N3qvcQb7HqhjlcoFLRAN588Hg9dvdJJ//j734hl2YB9xmtyu92Um5tLK1asiOiL5+LiYtGnsha6PIVCIQxu581iYtLAsNjk+yYF5b67/UhMSkXyfZNw5zYnWL20SffhJncbiUmpSExKRdqk+wSz67vbj+T7Jgm/++72BzXLd25zwvFTpkwJeXwPew3Tpk3Df//XTnz99deYPUuDN//HjB07diB9ikK4xnhGXl4ezp8/j0cffTSiaRt37tyJQ4cOiZsZXlm2f3/cOdgh9+fDWYrBlm2wpQl2vmAcfpYvWMvy3//SpUs06yE12f4dlLxzmxO+/vW/5kSwUnxqbm6m7Oxs+uSTT8KyVJMnTxZ1fgRBUA6Hg1JSUoJ2Q/y2kYohXLENFmuwwuD3b29vp4cffph+/ulywDEGg4FsNtuEFZTPN+AfabXasLo9/pWb6IK6e+cWKRQK6vuzJ2Tlhmt5glmycMQWSqyDj//www+FQfj+eWhs+F9hLvGJLCifbyAgmp+fT6+++mpIMfH7ZWVlSSOofy5bTHa7fVjLEExswSxVKIeaF0swhz0YH3z8Bx98QPp/LqH/+707IE99f/bQP/7+N8Fi+Z/f//+JlFiWpaVLl95z9uYpU6aQzWYTV1BENOzCOKEsSTT5mTNnKDc3N+CjTD5NlDBBpInjOJo7dy699dZbIcuXf8IXXVAHDhwgk8kkSzE5nc6QUe/BE8vGU2BiWZby8vJClq//fBajRcBnVHq9Hk6nE8B/Ht35R+5YRsA7OzthNBpx+vTpoFHvl19+WZgkLI6hUCqVaGlpQV5eHk6fPg0gsHxTU1PR398vTuR8sMIUCoUsIt78/xzH0bRp00IOePOfJCyehk9ut5tmzpwZtLzFmgd9iKAefvhhstvtshCTz+cjpVJJ77zzTshCYhgmIL/xNHx6++23KScnZ0h5i9XtDZkso7KyEkeOHBliFmPBU1NTsXLlSmzfvj2odT1+/DiysrJQUFAQ9Pc4huLZZ5/FsmXLsH79+iHd3l9//YWWlpbRXWCwwrxeL2k0mphbJgA0Z86ckI62/0CxWLf6sZY4jqP58+cLT358eYvxtBd0js158+ZRc3NzTMWUm5sbsFjR4DT4o4p4iix5PB7KyMigjo4OofxZliWVSjUqQQWdY/PFF1/E8ePHAcSm26uoqMDy5cuFz50Go7u7G0eOHEFlZWVwsxvHPZGZmYnnn38e8+bNE8pfqVTC5/OhtbV15CcOpjKWZWPW7Xm9XsrIyBg2prRlyxY6evRozFv5WE8cx9GcOXPo2LFjQvmP9t1eUAulUqkwa9YsHD16VNgWLUu1adMmmM3mkDGl9vZ2dHR0YPPmzWE0lziGQ2pqKg4fPozy8vKAkZxtbW0jP2kopfFxiWhZJp/PR59//jnNmzdv2FbFzyUe69Y9nlJRURFt375dsFoKhWLE4YNhV6OK9uKD8+fPp4aGhpA3zj+FxLoCxltyOBw0ffp0YSpxfgjQSDDsenmvvPJKwOQKUnZ7p0+fRl9fH9atWxc0L/39/aipqYnaPEcTCfn5+Vi0aJEwlbherx+xYz6soJ588kl0dHTA5XJJ7kNt2LAB+/fvD5mXmpoa7Ny5U1hyLA5xUVtbi+nTp6O/vx8Mw6C5uXlE5wmYwS4YGhsbYTKZwLKssE0KceXk5OCHH34ImofOzk6sWbMGDocj/gJYQqxduxYPPvgg3n33XahUqoA6Dxvh9Iv+jjAk8KEYhhk2DGA0Gof1reJJPF9KqVSSz+cjrVZLbrdbXB+Kh8Viwa5duySxTCzL4uLFiyEnwmpra0NPT09I3yoO8ZCfn48ZM2bAYrFAq9Xi0qVLEZ9j2CVieTAMg6VLl2L16tXCNrHEVVlZifXr14fsysrLy2G1WsO/ozhGBZPJhEOHDuH8+fMjeukeloUCgNdffx2nTp0S3UH/6KOPAuan9MehQ4eEucTjiA62b9+OH3/8Ee+99x5cLlfEx9/TKfeH0+nE8uXLceXKFVHWRvn+++9RWFiI3377bci1ent7sXjxYthstviTXZRhMBiQmZmJ7777Dg6HI6Jjw7ZQAKDT6VBRUYGampqBg0dpqbRabchXKPEwQexQWlqKL774AhcuXIj42IgEBQwMwGttbRWl25s/fz5WrFgx5BqXL19Ga2srysrKIs1eHCLAYDDg+vXreOihhwJmdgkHEQsKAI4ePQqDwYDOzs6Bk4xQXD/99JOwWJE/4h8dxBaZmZmYPHky0tLSoiOorKwsWCwWbN26dcRi+vLLLzFz5swhX7E0NTUBQDxMEGMsX74cf/zxB7q6uiI6bkSCAgb8n9raWhQXF6O/P/JPrerr6wPCEMDA+7p9+/ahqqpqpNmKQySsXLkSvb290RMUMNDX7ty5c0SW6sSJE1i1alXA+erq6uJhApmAYRgkJSXh6tWrER0XVmBzOBiNRng8Hmg0GmFbOOKaMWMGsrKyhG38sN6RvpSMQ1zk5eXh5s2bcLvdER0XURxqOFRXV6O7uzvstWJSUlJw48YNwfHmlxzbs2ePGNmJQwTk5eXhxo0b8Hq9YR8zqi7PH9XV1Zg7dy6Ki4vR29s7cPIQYvrmm2+gVqsFMblcLrS2tsbFJDPk5uair68vomNEExQA7N69G3v27EFJScmw3d7Zs2cxe/Zs4beXX345PnBOhli2bJmwqla4EFVQAFBcXAyz2QyGYYR3QYPFVV5ejoULFwIYCBMoFIohT3xxxB5arTbilatG7ZQHg06nQ0NDA0pKSnD+/Pkhlkqv1wujA2tqagK+rolDPlCpVIjUxRbdQvHQaDSw2WzYtGkT1q5di+7u7iGWqq6uDgaDAXl5eVJlIw6JkJCQMCQBElkoHgqFAlarFS0tLXjssceEcU0cxyEtLQ0HDx6M+LE0juhBo9EEGAB/EBESEhICLFhCQoJ0FsofxcXFuHjxItra2rB48WJcvHgRLS0teOmll+Lv62QMhUIBn88XNFo+WEzCdrHiUKEw+MLnzp3DihUrcPv2bSxevFhYo5dHnMuH9/f3w+Vy4bPPPkNhYSH8Ecw6EZG0XR7fr/qDYRgsWrQIS5cuDTp0JQ554bnnngsI8fjDv355cUlmoXjFhjKNcYxthLJQUfGh4pg4kERQcas0vjFc/YruQ/H9ajD/KY6xj1D1ywtMEqd8cN8ax/jBvXoeUbu8eFcXhyiC8g+9D97u/zeO8Y//B5g2douqBKCkAAAAAElFTkSuQmCC"
|
<image>如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()
Choices:
(A) 3π
(B) 6π
(C) 5π
(D) 4π
|
6π
| 69,761 | null |
6π
|
"iVBORw0KGgoAAAANSUhEUgAAAJYAAABrCAYAAACVDXslAAAZzUlEQVR4nO2df1Bb15XHv4ImdGM5ihu5fuvIlmtELCriKsbekJqMwlo4eOrsKjUduTVe0467Si1vq7TslEw98XRCJmQLTTrFibxMGphxJkyHVHSbbJw1ruWaTEhxjRsEwgVaMmLHpHgaHMmxuhX67h+gh34jhEAS5jPGoPfuve/qvXPPPe/+OEdCkriFIQCJ+MkPIEf81P/LRgypvguDRhKZca5ySUgk88+3XMiZO8nyJvTRz94OYgAWQ03y5aZIqOZq95mqF255wQoQ/nieP3oCkvJy3KsJPuoPeZCx/k4lcwlopmrFFcGaQYJZ4ej4sRks18N/xg9/eLqgBxnr7wCpFLZkykqnNvtU2q6cIQTbWBKJBBjowBmW40QBUFN+L4pCOssckFOQSHJnMobaZOEEC9v169dx+fJlDA4O4urVq7Db7eK5kZERjI2NheRVKBTIz88HANx2223YuXMnFAoFCgoKUFxcDKlUOud3S6c2k9zyxnuYkX306FE0NTUBAx0of3EEZ5q+FyOnH6REzBteztjYGM6ePYvOzk7Y7XZcvXoVpaWl2LBhA/Lz87Fjxw5RODZt2gSlUhlS+gcffIDR0VEAgMfjQU9PD0ZGRuByudDV1QWFQoGysjLo9Xro9XqsW7cu4jul9QWCK4jYGo4S07qIAKg3/0fIeb/fT7/fH3RkKuS80+lkTU0NVSoVBUGg0Wik1Wql0+lMWR0D13c4HGxqamJlZSXlcjnVajWPHTvG4eHhlF1rIawIVoB+G4802MSPjo6G6c/+yKTBwjUxMUGr1cpt27ZRoVCwpqZmUQRpLhwOBy0WCwVBYGlpKZubmzk5OZmyesyXFcEiyX4bUW4SP/pJ2hof55GGX8bMMj4+TovFQqlUyqqqKr7xxhsRaRIVilTT3t5Oo9FImUzG2tpaTkxMLHkdbnnBajiiF7s+m8NPTvl5pDy4O2wISe9yuWgymSiTyVhTU8Px8XGSoUKULoEKx+Vy0Ww2UyaT0WKxiHUlF7+Ot7xgJUJfXx8//vhj1tbWUi6X8/jx42nRAskyPj4u1v2pp56i1+uNmTZVArciWCTpDzOl/KTf7yNJHjt2jLm5ubzzzjtpMpnmFKhM0VbRGB8fZ1VVFZVKJd9+++1FvdaKYDGqfc7x8XHu2LGDa9asIQBu2LAhoqVnrgjFxu/30263U61Wc+/evYumeVdG3hE+XwicPXsWGo0GTucVbN26FdXV1SguLsYzzzwdN182IJFIoNPp4HA4oNVqsX37dvT396f+QosirtlEkNrx+Xz8/pPTtohMJuPp06epVCp57ryd4+PjlMvldDgcGd3dzZf29nbK5XK2t7entNwVwZrB5XLxi1/8Ijdv3szNmzfT4Rjg+fPnuXHjRjGN1WplSUlJGms5N8kIfU9PDxUKBWtra1NWj5WuEMCbb76Jbdu24S9/+QvWr1+PS5cuQaMpxCuvvIJvfOMbYjqTyQQAOHnyZLqqOifJTOFs374dFy9exJkzZ/CVr3wFHo9HPMdkZ/xSJqIZwnxarM/nY01NDTdu3EiFQkGTyUSfb/pt0O12UyqVRoyiOxwOyuVyulyulNY7E/B6vTxw4AA1Gs2Cp4aWnWDFIlzgXC4XS0pKWFpaSplMxqamppDzra2tMbu948eP02AwLFpd0019fT1lMhntdnvEuUQb7i0jWMHYbDYKgsAf/OAHopEeTkVFBa1Wq/g5+IZ6vV6q1WrabLalqG5asNlslMvlSWuuZSFYsVpR+HGfz0eLxUKVSsXz589TpVLxxIkTEflcLhelUmncSVy73U6FQhEzzXJ4c6yrq6NGo6Hb7Z533mUhWIkwOjrK4uJiGo1Gfvzxx9Tr9TSbzVHT1tfXs7Kycs4yTSYTTSbTshCiAOHfpaqqKqluf1kKVvjNCXR9ga7NYrFQr9dzamoqWvaEu7nJyUmuW7eO3d3dc9YhW/F6vSwpKeHx48fnlW/ZCVa4LWQ2m1lYWMje3l6SZEtLC1UqVcypjJ6eHsrl8phCF36ttrY2ajSauBO72Y7L5aJCoZiXTZnVghVPKwwPD7O4uJhVVVWijdDd3U25XB53IZ7FYqHFYplXPQwGA5966ql55ck2Ag3O4XCEHI/1DLJasIIJ/oJtbW0UBIHNzc3isUCrC38DDM7n8/kol8tF7ZYoLpeLa9euTenK0Uykvb2dSqUyprYPvpfLRrDI6a7PZDJRo9FEtCy9Xs/6+vq4+W02GzUaTVLXfuGFF6jT6ZLKm00cO3YsoRebZSNYw8PD1Gq1rK6upsfjCTn32muvsbi4WBxVj4XBYAgRvvmO4m/bto3Nzc3LxnCPhtfrZWFhYdSxv2CWhWCdOnWKgiCwpaUl4pzb7eY999zDnp6euGVMTk4yLy9vQVM1geme4CXAy5HOzk5u2bIl7gtLVguW1+vl4cOHqdFoODg4GDVNTU3NnGNNfr+fVquVFRUVC65TbW0tjUbjgsvJdIxGI+vq6mKez1rBcjqd1Gg0PHz4cMyWMzw8TLlcntA2qJKSEra1tSVdn4Dger1eKpXKqLt2lhOB9WmxtHNWClZLSwsFQeCpU6dIxraFqqurExrYczqdlEqlSU1dRCMw3ZOq8jKVeEMzWSVYbreb1dXV1Gq1c06OBlpUItrqySefZHV1daqqSXJaqGPd9OVi3Me7x1kjWA6Hg0VFRTSZTAmNclssloRXRCqVyqhLRBbCtWvXKAhCyEvDchGoYEwmU9ReISsEq7m5mYIgJGwDTUxMUCaTRd1MGo7dbqdSqUxFNSM4deoUNRrNnMMc2UzAjg3v9jN6abLH48HBgwdhtVpx4cIFGI3GuOk5s4z21VdfxWOPPSZ6YIm3XLelpQXV1dUpq3MwBw4cwIYNG9DQ0LAo5WcC+fn5KC0txeuvvx56Ij1yPkssbeJwOFhYWEiz2TzvCV6tVptQ1+bxeKIuP04lo6OjlMlkHB0dXbRrpBubzRYx65B2wYqG1WqlIAhJbUnq7e1NuGtraWlZkl039fX11Ov1i36ddBGYYw1uPGnvChm0C8Tj8WD//v1obm7Gu+++i3379s27vNbW1oS7tra2Nhw6dGje15gvNTU1+Oijj9Da2rro10oHubm5OHDgAF555ZXZg+mT81B6e3upUqlosVgWZOwqFIqEurZ4y48X4+2tp6eHgiBklTMRMvF70d3dTbVaLX5eMsGKV8GmpiYKgpD05oRA2U6nk4IgJJQn0eXHqeSJJ56IO16WzcMRPp+PUqlUfBNPq8aanJxkZWUlS0pKUrJPz2q1JjxPl45dNm63m0qlcs6VAdnKnj17xCGhtNlYFy9exPbt27Fp0ybRWetCOXfuHMrKyhK69rVr1/Doo48u+JpzwSAbUiqV4uTJkzCZTPjrX/+66NdeanQ63aw36FRKbLgqj6XaX3jhBQqCkPKJWkEQErKvkll+nEqMRmNK/SRkCgE7y+/3L21XODk5SYPBwNLS0pRvUR8dHaVcLp8zXbLLj5MlWuMKzLHFqkM221p5eXmcnJxMfVfIGE4kLl68iC984QtQq9Ww2+0p6fqCGR4ehkajmdOJxa9+9SusW7cOWq02pdePRbRR/3Xr1qGhoQGHDx/G1NRUQnmyhcLCQgwNDaU+5Em0m9LY2IhHH30UJ0+exLPPPovc3NxUXxaDg4MoKCgIuX40IWttbcXBgwdTfv35cujQIaxevRonTpxId1VSikqlwpUrV1Ib8oRhkRCuX7+OqqoqTE5O4vLlyyHRExItI1GGh4ehVqtDjoWXc/36dbz11lv46U9/Ou/yF4OXXnoJDz30EL785S+nXIOnC7VaPT+NFa31hx8LfpDvvfceioqKoNVqceHChYSEKryM+TA4OBghWOG0tbWhrKwsYx6iWq2GxWLBN7/5zXRXJWWo1epp15OpMNjCQ4HU19dTEAR2dnamoviE0Gq1cxrDDz744IKWHy8GPp+PGo0m4+qVLHa7nTqdjinpCgNa5tq1azh48CBu3ryJvr4+yOXykHQM6+bCPy8Ej8eD1atXx6zf4OAg+vr68KUvfSkl10sVOTk5ePnll2EwGFBRUQGZTJbuKi2IVatWwePxzN0VMkFXge+88w7uv/9+PPDAA7Db7bj77rsjygkXolS+/Xg8nrih1lpbW1FZWZlQOLalRCKR4IEHHkBlZSUsFku6q7NgpFIpbty4kZqu8JlnnqEgCClf3jsf5toMsRjLj1PJG2+8wdzcXKrVanZ1dWXtWFbAlcGCBGtiYoJ6vZ56vZ5//vOfU1W3pECUNhJ4OIu5/HihBOqoVqvF+D2Z7pk5HpOTk5TJZMkPkL7zzju477778PDDD+PMmTNYu3ZtytRpsjDKWypJcflx+PlMIDiQZjYTUf9EpDBcLR8/fpyCIPDChQsJS/Jiq/ZYXaHb7ebq1asz3hNMZ2cn1Wo1tVotu7q60l2dpAl0haLGMu+WQJKXO/sjkaD8aCOA2Vb161//Gg8//DDee+899PX1obS0NGEJXqihHlwexf9mWb169bTRGMbrr78OjUYz5xhXutm1axecTid6e3tx17VuSCQS8SfwHAKE39tMQnyJCtYkDUf0fNZ2aebTAPWAGHW0t7eXEomE999/PycmPlzidkCGh8kNR6VSRd3EumfPnhDvx5nJ7HdrNJcT2MX+mZBkfvZTHyVuYqYQHqexp6eHxcXFzAnWJH8aAnbvDbTsQlQc0eMPfxoBAGi1Wrz//vvY80gFVKp70dzcvMRtIb45KJVK4Xa7Q46NjY3hwoUL2L9//2JWLAVMf7eGo+X43h82g+zE5yHB9L/P44WOBnSeeAsD4Wo6AwiWH4lEghs3bkAqlQY9rYEOnEAB1EExrf7wx19j8+aN+MTnBQBsVqvwg6efwltn38bPfvYzPPTQQ/hdX694PphPfF7xZz7noqf7ZPoAg49/EpJfEAT8cWw0JN+rr76K8i89khWDjv2/bMS/n+iE7fmX0l2VBTE2Noa1a9fOClbH6TM48shu8eE1msvxn6fLYPr2XtzxqU8DAO7Inf79YPEDePfdd/FPlQZU/ONuPPvDZ/DRjeti4Z/4vLjjU58Wf4IFIN65YILTidpK4g86fgfuyJ3Nr/r8vRgZGcGNv90U6/uzUy34l/1VcwpwJvDiiRrozQ0waCJt0aGRP2IujZ0pDA0NQaPRzNb2zOkX8WLNY1glXYUciQQ1QwUgO0M02CdTXvGhAYDZbEbP73+H/iEntFotzp49uyiVnb1m2M2dqRpJqDffi4GBAay67e8AAJcuXcJfxpdm+fFCIQbwhzNARXlF1PNnTr8IvfkRFGZBhMT+/n4UFBTMDDcERXG/8bebYdbZ7LHwczf+b/ZzILaf0Wjkn/73g9B0Qfkiygi/3jyPBz53dnbyoV068fjR735bXH4cq6yMod8mBjsPH5RxdDTMBkIXmQr7nTlotVr29PRMDzcMDP8RZerN8EcYh/74YUSDzj20S4crV67gc5/7HLZv357S0Guf+D5Bx4/NyMnJwapVqyDZfQTEAMzm6ddwklCpVBgYGAAATE1N4bXXXsOhQ4cy+tU8AD9/L/QARoYHQm63HwOwGKJ1kdOamxnYPTqdzlmNdaQcbHv/ptiyw5fBkPE1SHA+ctrvwj+UlvAfSkt48f1LMfPc+NvNkAin0bTRjb6fE2Gv2zf6fk7cnsN/bfx5SNp1G/6evf2/p81mY+EXNCGaNpO1lp/kj8x6ovxbswdntFi0YYZMnUcM3rQKzMxPIULdhpLMg3nppZcol8tZW1ublHe7kDGcsKr96Fu72NAR6nLbaDTSarVGeD/OFo6Ug0BOQs+DzLxg5/X19TSZpk2qoCmd2P31Qlr7xMQEjUYjN27cmMBGzZk6zNwxW+Pjs4OFYfyi8UjEjbdardy3bx9vv/32hHYBZWrLz1aCN6zGnSsM6bKSJPDwOjs7qVQqaTAYIh2iRn2+A9wF0NzYMXN+bkM14Es0Ly8vi3wkhH6vwK2ILvRTGdsYAlvsP/xwelYmrvUXPN6ULIGR2V27duHKlSsoKipCUVERfvKTn8TN53dewVkAn8tXARI/RIM1jjGuVqtx11134Wtf+1pG7MRJjBwAfvFTwESPNrdKSjJ2a9jFixdxzz334LOf/SyAOKNuZOR+t4WSl5eHp59+GhcuXEB7ezsefPBBXL58OeqbZ05AfigBguR/rhtbWVmJjRs3AgCee+65FNV8sQl8P3/EmeCGlKlCBUxvVAmZOiOD1O4iadlY6ru5uZl33iVjTU1NkHE/NVOV/pBJ8BD6bRGGe4CA47WJiQlu2rQp85egBN2aTO3m5iKa47W0+8eamJhgVVUVFQoF33jjv0PO2RqPEMCMEE0LnKOjgdB/i37GbgdarZbnzp1jV1dX3GhVmYw/xt+ZSEa7irTb7VSpVKJxL46JzYw8B35CxnWmYjsdCfihqq+vp06nW9aei9ONwWCIiGOUMYJFTocLOX78OOVyORsakl9/FO6Ou6KiYll6d1kqAo08Wlcdyx13RglWAKfTSZ1Ox+Li4jmjdsXCYrHw+9//PslpZ/7RgmCusHCyMoBAS0sL5XJ5mHEfm+AW5XK5QsJxdHV1URCElLtPupUZHx+nTCaL6sc1I2YxGWNs6tChQ3A6nZicnERBQQE6OjrilhP8Oq5QKLB37148//zzAICdO3eitrYWX/3qV6O6Dlph/jz33HOorq6OvpBy6eU8Oex2O9VqNffu3Zuw1gkOKxeYWF+u3vSWmlhh5QK9RtYIFjk9XhIw7gOTzHMFuAwEwgzgdruZn5+/Ym8tkOBAmNGeQVYJVoDh4WHq9XpqtVp2d3dHnA/+om63m4Ig8OLFi+Kx3t5eKhSKOUPTrRCdzs5OqlQq3rwZew45KwUrwKlTpyiXy2mxWOLGJYwWbNxqtVKr1c47Ts+tjtfr5ZYtW/j222/HTZcRxnuyHDhwAMPDw/B4PNiyZUtkBKoZ9u/fjzVr1oRE4TKZTNiyZQu+853vLFV1lwV1dXW47777sHv37vgJl0jQkybR+bOuri5qNBpWVFREjbQV2PodbFu53W6qVKpl4/RssWlvb6dSqUzIAUzGC9Z88Pl8rKur49133836+vqIaZzu7m7K5fIQPw69vb0UBIEjIyNLXd2soqenh3K5nA5H9Mn/cJaVYAUYHR1lRUUFNRpNhHHf0tJClUoVMjHd1ta2Ym/FwO/3i9p+PiFilqVgBWhra6MgCDSZTCHGvcVioV6vD9FoJpMpZFhihWm8Xi9LSkqiTtvEY9kIVixbbHJykiaTKSSmtM/no16vp9lsFtN5vV5qtVqeOnVqSeqbLVRVVdFgMMw7X9YLViLGvd/vZ3d3N7VaLfV6PUdHRzkxMUGVSsWmpiYx3dDQEOVyOS9dityyditSV1dHjUaT1A6rrBes+eDz+VhfX0+5XM66ujq+//77vPPOO8U3Rb/fz7a2NqpUqpCbma0rOxeCzWajXC5P+qXmlhKsAAHjXq1Ws7GxkTKZjCdOnBDPP/744yFxD7NdsOZb//r6espksqjOgBMt65YUrAA2m42CIHDfvn3cvHkzzWYzfT6faG9lvsO21OL1elldXU2NRsOhoaEFlXVLCxY5bdxbLBZ+5jOf4datW6nT6Tg5OSm+Yi9V+Ll0EKx9JiYmWFxczMrKyqRsqnBuecEK0N3dza1bt3L9+vVUKpV0OBw8ffp0hL21HPntb39LhUIRczlRrO4vXre4IlhhNDQ0UCqVUiqV8s0332RtbW3Ccaazkfb2dgqCwPb29pSWuyJYUXC5XCwtLWVubi6//vWvs7S0NCudjMRjamqKx44dE7VzqrklBSvRN5vW1lbm5eVRJpNxzZo1y2b9VvBq3MDUVqL3ZOWtcJ5MRdkW6vf76Xa7aTAYCIBlZWUhc4zR/IhlMuPj46yqqqJSqZxzPdVCyer1WKkkZ8aBhHn3rOP+nJwcrF69GqXVdfjNb34Dp9OJ9evX4+jRo7h27ZqYLtP58MMP8eSTT6KoqAj5+fm4cuUKysvLF/eiiyq2WcUUA9v4j5RD9A0h+gDtn56w/uEPf8jbb7+deXl5fOKJJ0S3PZmouVwuF81mM2UyGS0WS6T7qEVkRbBCmKKf/dwV5OxtamDaZeMv+mb9WI2Pj3PPnj2UyWS84447WFVVlVGbM2w2G41GI2UyGWtra6P6rljshrAiWEH4Oa2hgl1THimPHW6kp6eHExMTtFqtLC4uFseC0hEQyuFw0GKxUBAElpaWsrm5mR999NGS1yOAhMwCt8JLhh8dP/43PPa9F8Ujv+ibwmNFQCIO/AcHB/Hyyy+jo6MDHo8HOp0OZWVl0Ol0Cw4SxZkItYHf/f39OH/+POx2O86dOwe5XI7KykpUV1cjPz8/pWGRk2FFsMIw75ag/Hk/DBoJOn5sxmM1L8LW548aMSJA4BYGP8ixsTGcPXsWnZ2dsNvtGB8fx86dO7Fhwwbk5+djx44dYhjhTZs2QalUhpT5wQcfYHR0FMB0RK2enh6MjIzA5XKhq6sLCoUCZWVl0Ov10Ov1WLduXULfb6kEbkWwghnogOQ7neCZJgAAMYjdkkLc22DDie8ZEi4m2sO7fv06Ll++jMHBQVy9ehV2u108NzIygrGxsZD0CoUC+fn5AIDbbrsNO3fuhEKhQEFBAYqLiyNiW6dbQ4WTkij2y4WOt87iSIVe/CwZGEQngApVQUg6sVtC9PgK0R6wTCaDTqeDTqdLbaXjXDOdrGisAATMj8x2g8QAdks06MQu9PPMdJi3FRJmRbAAOP6rEff9c03kifJvgf/zYkzNFOv4rUpwd/z/TvGQ5ufAYqsAAAAASUVORK5CYII="
|
<image>如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=()
Choices:
(A) 140°
(B) 145°
(C) 110°
(D) 125°
|
125°
| 69,762 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAANIAAAAWCAYAAAC14MLgAAAD/UlEQVR4nO2bMW/jNhTH/zTS6/U7ZLHHeE6WQKa/gOei6JDoKxSl1+zOkqE43FBU0lIUXfMFIsrIkD1DFgnwd0hyuRz0OgQkLJGS7Z5kOxB/gADzkdRj3tMjHymFERFhiSRJMBqNdLlU7WgYIgJjzJDvyg/O/ybr2IQtB5LqwBgrNL64uDA7lto4mmOxWCAIAkNu88Ou9HbF/1U2Kf/tveXC9fW10YgxhsVisfJGjv+PsqVamR4eHqztbH5oEpvervu/yhdJkhTKB6tuRETwfR+e5zUzMsdKnp6ecHt7a8jb9oNNb9f9X+WLMjq1IyLM5/NCLqjoyuyzLyRJAs65Yfe2/TCfz60B02X/l/dHijzPC3vbQmrneR6klIUOy0bsskG3ied5iOO4INuG7U9PT53/S1TFRPmAiJVP7Tah6sTJ8f28B9u+hzFui15VhYqvujhzRmyPfbGt8/96VAaSMpIzVrvYHlTOORhjxrULqvR2Mc2rozKQgLfNZ5Zl2xpLJ7E9qHEcg3OONE1BRCAiCCFaD6bxeAzGGHq9ng7e8jEv0K2ULooibYvxeAwAmE6nRrvaQFInOG722Q39fl/bfjabYTweW53YFDc3N+CcI45j5HkOKSVGo5ExmXYhiLIsA2MM9/f3ejILggCMMQyHQ6N95Xuk6XQKzjn6/X6rA3aYJEmCk5MTAMWH9vj4GHd3d63qjuNYT6CHh4et6tpnBoMBhBCYzWZa1u/3IYTAYDAw2ltXpCiKMJlMdnIE63j7wmQymRhy20zYJEmSQAihy77vQwjRuck0iiIAKASRYjgc2icYKpGmKYVhSGmaEue8XO3YAha3EBGREIKEEK3pDcOQAOgrTdPWdO0zACgMw436FFakb1++4vMfn/Drz78AgE4vHNsjy7LCqrAsv7y8tK5UTREEgT7gCMMQg8Ggc4dNam9UTt9oRTamA4mI8Pe//+Dq6go//PSjNQ90tI+UEkdHR4bc932MRqPWvnlTAaPSuLOzMzDGjLf6XWBV0NjQgZRlGYgIj4+PICJIKTEcDt2+aMucn5+Dc67LaoYEYOxZm0RKCd/3C3qJqHMTqppI0jQtyBljyLLM+joAwFsyvrwfen1+IaK3fDn88y96fX7RMvVblZdlZWxt16lbp12dvDymVTr2BSllYX+iLsYYxXHcun7OeWFPpPR3EbVXlFJqmZSy9swAQghijOnN5evzC3HOtSGnv/1e6KAezDzPjYCy/d6kbp0+q4LnPQdTnudb11kVwF0/aIrjuGAPIUStf4yPVr99+YqDjx+sZVvdMnXt1qmrG8em46vT6XA0zcp/7Dv4+KH2QXQPqMOxdNhQXl025Xv77+reDkcT/Aet8jvVsAD/GAAAAABJRU5ErkJggg=="
|
<image>如图,BC=\frac{1}{2}AB,D为AC的中点,DC=3cm,则AB的长是()
Choices:
(A) 4cm
(B) \frac{9}{2}cm
(C) 5cm
(D) \frac{11}{2}cm
|
4cm
| 69,763 | null |
4cm
|
"iVBORw0KGgoAAAANSUhEUgAAANAAAABYCAYAAACER3nBAAAW80lEQVR4nO2dPXAb17XH/0t7nh0XglURLhJIlZYAbYEubNAzESi/mQhyEyjCh/yKCC4S0I1DpQlSGAD9MkNPJqY7Ua5ITgqAAE1KhWnPZCagUwQcz8SgRHzQReCPwlBj0GoM6sXc84rFLncXX7vALj7I/c1gAOzXvbt7z73nnnvuuQwREUxM+gQRgWGYht/9gcNROognA+viFl/qCCkEEcAa0v4xzVfUfoaJSQ9IBaat8BAAcL0nSMJXHrHJJ/BkgLBGHIgIRAR/+gmMBfJw2OvHSdoTNW2LKUAmBtNZCIgI4Oj4NwAwgC7Fk+F44XE8j3cQxR6lEcCx4PpSa/AxDrAOfhvDHAuNmtbxyd5zaGLSjiZCQICkDPMFlZH81jn9/HwQ/1u8gLcLMUwKiXMAjQEMWNhjAQTFPGkTWsbsA5n0A6G/09DvUQiT7ukij/jk83jHngSlgmJ6fD4IvbZypgpn0hcEoeG/OYi1tsE2BEIRxQIwYbfL0uPzMYamrYeGJsUUIJO+kgowYJgnMMYwYBgGzFj9m2HgT+tgNFDAFAoooI1q2EwB0yDUpgCZGIqyeAZShDU/AH+St4RxBI72EHNMiJYwXdN3OOAAUCzuSfJ0LKgfzseR19LkKDAFyKQtvXaRlZU5IY9CEfD5/QCA1HwMBTjg9/thr1vCeijPjemTH6mUD0j9DxzzeQAcGIzVzdoM1hwxTOJ4XEozZGIigeM4Ay9OxOWjZIeP1uhHOiq8TQ7/Wn3nUdf5Uu5rduzR3ts0wYtm/TNBsfx/NN+CEtMKZ9I3CEB+3oEX4kVxmz2+h0KMNy5DB88EUunp0Mz4d7yNg1rlzFThTjCkcVTdUAgA8lhPF2GP74GI8CBuh71uHWMAWcHvhocPH+KDDz7ArVu3Oh4rCI+QliDARMQPEKn0gjAFaMRpV9iUbjODEiICAIYDCmmsF+zw+3ihcdh9sE805klLK3R4eIhkMolr165hamoKu7u7eOutt+oXKnTMmGhel6atYUDVVOFOIIeHh8hms/j666/x5ZdfyvZ988034ja3291w7uXLl2G1WsGyrH4ZqutGe/MOvJD2YS8fFzvuAEBpP3zMGj68PsYPcqKzJXlnZwcrKyu4d+8e3G43gsEgrl27JjuGQwpjCPBpNKhzSjWtidqmIiOmAI04uVwO29vb+OKLL7C/v4/d3V08fvwYL7/8Ms6dOwebzSY7/vz58zh37hwAIJPJNFzv008/xcOHD/HFF1/A6XTCarXipZdegtPpxMzMDM6ePdtVPgWPgHX/HgoxO4TCujfvwAvxCaxJfNRa9V2+/PJLrKysYHV1Fc899xxCoRACgUDLPBHSYOBvlymFgKgQKgWmAI0Yu7u7yGQy+Mc//oFMJoPz589jZmYGFy5cAMuyuHjxYteFvFlalUoFOzs7ePDggSy9S5cuaRIoUSAYyMzUDADy191sGuBwcPAI9+7dw8rKCr766ivcvHkToVAI58+fb5qOVCYIeYAcjcJIADFtGhcCr3KqUONMARoBdnd3sbq6imQyCavV2lUB1jMvUgF2Op0IhUL45S9/qWtePv74Y6RSKXzyySfweDy4efMmZmZmdLu+bvRsCDfRFWEMo1wu08LCArEsS06nk95//3369ttvB5y7RjKZDIVCIbJarRQMBimZTDY9Ts34UqlUorm5ORofHyePx0PLy8tUq9VaXsfQMSuVmAI0QJoVgGw2S16vl2w2G/3hD3+gUqk0FAWlE7VajRKJBAWDQbJYLBSNRqlarXY8r1Kp0NLSEjmdTmJZlhYXF6lSqfQhx/pgCtCQkMlkyO12k8vloo2NjUFnpyeq1SrFYjGy2WwUjUabCoQgbFarlcLhMOVyuf5nVAdMARowW1tbNDU1RW63mzKZTMN+NW4qw8rBwQFFo1Gy2Ww0NzdHf/vb3ygcDpPFYqFgMEiJRKKr+xmmZ2AK0ICoVCrk8XjI4/GIte8wFQy9KJfL9Pvf/56eeuopYhiGXn/9dapWqyfmXk1PhAHw7rvvwuVy4a233sLHH38Mp9MJwIjpzIPh8PAQKysruHLlCl588UWsrq7iL3/5C7777jucOXMGr732Gu7fvw+guSdFs21Dy6Al+DSRzWaJZVmKRCIy6xLHcSeiRt7a2qJQKEQWi4VeffVVGh8fp2g02mBJy2azNDU1RXNzc5paI+G4YXpWZlCRPvHuu+/i3r172NzcbHCTGeWWZ39/H6urq0gkEpiYmMDPf/5zXLx4EWfOnMHu7i6sVmvDOS6XC59//jkWFxfx2muvYWlpSWyF2yGfFj4kDFqCTwqtasVKpUJut5sikUifc2Qc1WqVlpaWyOVyEcuytLCwQLu7uzQ3N0csyzY1hrSiVCqRy+WipaUlVccPU+tDZBoRDGVra4ucTqemAjXMSMd5wuEwZbNZIiK6ffs22Ww2Wlxc7Oq6tVqNfvvb31IwGKSDgwMdc2w8pgAZxMLCAnk8nqEfFOxUo+dyOQqHw2S1WikQCFAikRD3ZbNZcjqdNDs72zBo2k1LkUgkyOVyUblc1nzuoDAFyADm5uZGWmWrVCr03nvviW5ES0tLsoqgUqnQjRs3yOVyNR0AbSU8at15Wl13GDEFSAeEglGr1SgUCslUmWHT2VtRq9VoeXmZPB4PWa1Wmpubo1Kp1HCM4J/Xi89bJyqVCl26dIn+/ve/93wtozEFSCdqtRp5vV5aXl4edFY0IXUGDYVCtLW11fQ4oT8XiUT60k+pVqvk8XhkKuMwYgqQDtRqNXK5XLS1taV5TGMQlMtl0cXG7XbT8vJyS8fPcrksekwoWyQjkD6XWq1GwWBwqCslU4B6RGh5WtXcvdCLkCnPrVartLy8TC6XS3TybNdZr9VqFIlEiGVZQ+5NCx6Pp2UeBq0imwLUI6FQSLcaUo/CoLzGxsaG6PUcCoVE03O79BKJBNlsNlpYWGg7H6df1Go18ng8qocD+plHU4C6QHhBc3NzXY99aE1LC8LENKvVSl6vlxKJRIMgNCOXy5Hb7aZgMEiVSmXgtbuUarVKbrdbtXWuX3k3BahLotEoRaNRQ1qNbhAmprEs23JiWqt0Dg4OKBwOD/2gb6VSoenp6aEaJzIFqAs2NjbI6/X2Ja12wiXMAvV6vTQ+Pk7hcFjW0VcjmIuLi2Sz2VS70gyaUqlETqdTVYvaD0wB0ki5XKaLFy+qmq7cK60EIJvNit4BwWCwqxmsmUyGnE6n6BE9SiwvL1MoFBoKFdMUIA3UajVyu92yjjiRsfq2MsiIzWajl19+mZaWllQXfGn+vv32WwoGg+R2u2l3d9eQPBuJcC96Gm96wRQgDdy6dUt3o0Ez4RO2CaZnt9tNNpuNIpFI1/q/4EVgs9k6Dk4OQ83eiVqtRk6nk4rFYstj+nEfp0qA1vzS5S1ADL9IJsHf3C1FSj/7PcLENMH0nMlkeioMH330UdOJfKNAu/suFotif2hQQn+qBIiIFyLGEaO9+no0R7RGPoBgf5v2SB5zTPj3ww8/kM1m0+xZreWllkolikQiZLVaG2KidVs4SqUSeTweunLlylBZrvQkGo1SLBYbWPqnSICOiKM9ijpAE7EHJJEV4vJRYgGyx/f4/4oz9R7vEQRCGRNtYWGhp+kPUtUvEomQ0+kcuBeB0dRqNWJZdmAVxMkXIIWg2GGn6N6PikN4wYI/SRwn3XdEuVyOXC5XR9WnUysh3a+MiaZnZz6RSIjCqIy7oDXPo8LW1hZ5PJ6B3M/JFyA6lqEHcTvBEZWpavz+YwGSbed+bBmvrWVaLQqqMDFNGhNNT7LZLLlcLtGL4LTh9XoHEpDyVAgQ0bGQCGqalCNao+sSFU6Qr0QiQTdu3Og6zUqlIotvrcX0rCWNcDhMLpeLstnsUEau6RU191KpVMhms/XdoHB6BCgfJTsmKZZvXMyWS/nqi84ekfTZO51OzTMjlRPTIpFIW1NrQ140vPzFxUW6cOFCSy+C0yZE/fBNVCIToMPaY/Fz0uBSPpn6JryOI1ojH1NX3yTvaGNjg65du6b6+sLENIvFQjdv3jS0857JZGhiYmIkvQj0RClUDx8+FFuhftHQAp1E4SFRfSvItj6YZwkAsfONap3T+WLH1qdcLlMkEpFNTGv18vRyGPV6veR2u/syuW2U6MZDXo93cioECIx8AFX8NDEoEBFtfth60FQaE02YM9PJhKrlRTU7tlariTNIR33lBiOQPrNSqUQsy/Yt7bYCpFTpmql4rVS+duqgWlWx1XHttivzJB5Tf8ZyM7USvn/UrO8jTExTxkTrRK+13MbGBrEs2zRErklz+mmR69gCtfuv5reWfVrTkf5vJezt0hAEhoh4AeOOzcFEfG0meD0LE9OUGNVRF7wIvF7vifUiMArpOzQaTbGxHx/+H556+r8athmNMs1Wxyjz1+k8wtjxQrP1H7dv38ZPf/pTTExMAAB+97vfIR6PizGeSbGCtN5xmg8ODvDnP/8Zd+/exfvvvw+Px6Pr9U8DLpcL33//Pfb392VxyJXvTg86Lm8iFMx2+4XPcMPJ/hEdr9J8eHiIZDKJK1eu4K9//Ss+//xz/OY3v0GpVMLs7KwsQLqRgc3v3LmDV155BRaLBcViER6PZ7SW+hgChOcVCASQSCRk+4x4d6IA9dqSGNkS6XNteV3BMMDOzg7eeOMmzp8/j7t37+IV1zS8Xi/+9Kc/4bPPPsOzzz6LN998Ezs7OwCMW7dmZ2cH09PTuH//PjKZDCKRiCSfQ7QSwQggPK9QKITV1VXjExR0uU6d+nZ9Fb2MCK2MBWrO79QHEn5LY6K5XC5aXl6m7777jogaO5/NViHQsz9SqVQoFAqJXgQm+uJ2u2l7e9vQNFR7IoyyeVs5Ma1ZTLRqtUpWq7WlpUuYbqBmzEcNgotPu1mVJ8mToJ8Iz02Y+m0kqgRo1IRHeIBbW1uymGjtnELVTJgTriv1OmgXDrcZW1tb4uQ2qReBKSz6Uy6XyWaztdxvyECqlGFw7dF6k6VSiW7duiVOTEskEvTDDz90PK8bPyrB7+3q1atks9noj3/8Y4OHgDSmgdfr7VuIXBMem81G//73vw27/lA5k3ZbIygnpkljoqm9pnTwtJt8CEE/lJ7XghcBy7KqB/dOokf1oDA6+MhQCVAr2oWg9Xq94sQ0NZ7Tza5VLpfp3LlzHY9XW6CFuT/PPPMMPfPMM3T9+vWOk9tMjEGYvGgUI7HMvdSUu7Ozg9nZWTz77LO4e/cufv3rX6NSqeDOnTuaFqqlukmaiPDpp59iZmamY9pqTcpPP/009vf38Ytf/ALvvfcennzySVitVszOzmJ3d9c0TfeRK1eu4JNPPjEuAcNEU0ek6pGwIG0nN34ttXw4HKbbt2/3lEeO46harbZcaFcwiesV/8CER817ZlnWsH7n0LZAh4eHWFlZwczMDF599VU8evQIGxsbyGazmJ2dxdmzZ9uer6WW39/fF113pFCHgVPp/g8++ABTU1Ow2WwolUpiiyYcc/bsWczOziKXy2FzcxOPHj3C1NQUrl69ipWVFRweHmpO36TxPTd7ZizLolQqGZOBYdPGhZhogonY6IEwjuNofHy869ZAWGg3HA53NblNuN8zZ85oigGn1zGngUgkQgsLCwZc+ejYiDDIRy0dpFTGRDOaarVKFotFtk3NIrlCiFy9FsQVTOKXLl3qOQqpgClAPEtLSzQ7O6vLtZRPlBego/4/6Gq1Srdv3zbMTUYtWl3fpQvttous00vhlcbBVtvnM2nNP//5T8OmN9RbIMW8GJ1oVogEs6J0Ytog1xXVYuaULrTbrEAbkT9hJQaLxUKBQMCckdoFzbQMveiLFU4YFxGW4xBq7mFQMYSFstqhZqHdftxLMpnUPO5lwmOxWLpuxTmOI+KOv6U0CFA3BaHZOZVKhRYXF2Uj88Notm3nwjNMC+1KETwvLl682HI1OhM5Nputqy5CJ2kQzdhEBJKYBTmkEJ/Pq7LkCecIpuerV69iamoK33zzDTY3N5HL5Rompg0L33//vcwkTnylgmQyCZZlYbFYkMvlcPXq1abnUxOzabNteiIdlN3c3MTXX38tmsSTyWRTk/hp5yc/+QkeP36s+TwGQDrIgGEYMGP1b4YB44giD2o+kMrRHsVaRPFshuCdbLVa6Y033qCPPvpIg4x3jx5qUygUopWVFfG/cqHdQdCtFiB4n4+Pj3f0Pj9taA3RrORB3C6GfhZX9Agkm/eB8nE7ASBfqjGKp4AwMe1nP/uZOD9m6C1F0kDz9UIqPNhqtUrh8JvkdL7Ij8UMKIt6oGb+k8Aw9EP1RHY/kp+XZroXID4sNMPLgxD22c8H42zwRKBCDHGKIeoAwMjjCBwcHODOnTuYnp7G5cuXQUTY3t7G9vY2QqFQR++AgVMftJaqqgCwvr6OqakpOJ0vIJf7F2ZmZjDK3mpnz55FKBTC9vY2MpkMAODy5f/G9PQ07ty5g+rBI/FY/jlwx2rnyDo/8GVV5pkg/CTguXErHj58qOl64qMopLFeuA6/nwEYYG/egdfTE4jF/JANpB7RGvnsUdqjJPlhl8WRzuXuEzDWPEDhqH/qgReZJttO4kdYmU9coe8U3XvrD1+2nxtvnJX8oK6RCR9p10YMa8UASAdS8BfScBTeQQF2+Bz1x8oATucLIDqCGsiA8EFGw98mBxWBikyGDCHCEjGSRkcog/Xyi5bvts07J4CYPNbTRfhSR0j7x0CFGByTz8OBPRRik0ArKQOu09pI9wQaUXU3J+uWeTjFt8rjR+tRyPvrWhcUa7lvL0p2+GiNjpf85Nfa5eVjDACoEMM81kBE4IjApXyAwwG7RJq11wrazzEaVW2iWFudIBjFt8rjR0uHUIYt4/VQ5bZWtNq39+E6in4fAmD4Vg5FFEsQ5WOMCjFMBoF4zCG2dvlikW8XVSTcSlCGTYVLBiQ2fOVnMsbb9EVOkBpXvy3peyLkEZuUPwOHyjG/UYIBwOWjsDMMGOYJybvOI+6PIw9qEDIR4p/TeroIn98vbk4HHJjPA75YDJP1KoaACYoXOH78Z1KqxvkppWzaRqtdJyKSN72KZRwfxO2yTiHX5LxhR8vUhgfiEIVkX8pHAOhX6dbDFsMMx/0oOkQfa6sFftnO+sJpgorH5aM0gcZy0AwojSsAAazMuDYSM1L1QFji8Vfp//D/Uz7erp/2Nx/vGhXp0cD92ISkQMlZ80Nc7mVkx4bEvlt9zVtHnF++RnE7D+KT5KuXg17RFFx+pCmk8WEhgNj1J0DI4515wJ9nAKSQbnb8cGmgPUOFGG7Ml2CP7yHuaK+iiuq3aMEaboiI76HU85qfD+KdwgRi+bd5NUtxDw77rzBpf0K3xE8FMisjA4K9+eJackZTpZHCtyZHMsuR7K45aY2t5pkMM0eSFdd5HbV9a9r7+z1BveXWCJ1Be3yPtzTuReFwOMROYOue5Og/HoZhwGEdqTSAwHXRmnR8AMAU15EuAHa//7hjPIRW1M6MgUMBxQJgd/AxLsQoTGl/3WBSNyYwPqR0aF5Hv4SooZDGesEOv483zJPjefgc9d/ASKgpvcAUCigCsNufb7o/GZ9HCdcRizmOzxkyK6paxOpB4YbG+NM4ojX4wAH+JDgujQCZAtQRAoBiEUWHj/esADAGH+KxSQD1EeyRrG014JjEsWjUC1b9lo/SfryeBnypFAIj3frwMLDD7gCKqQ/r0w0k+9JprIP3YdOtguhZCRxyBJ3YPn+/vmX0+zXdwPcBeQucEAKD7xfJTdongVamaqmlUS9OvABJHSaPhYjvXMrC9hI1dK5PGvdjE3JHURVjIaPKEa2Rr8EpdqztFJ1u+H/SE55M2IVQbQAAAABJRU5ErkJggg=="
|
<image>如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=()
Choices:
(A) 55°
(B) 44°
(C) 38°
(D) 33°
|
33°
| 69,764 | null |
33°
|
"iVBORw0KGgoAAAANSUhEUgAAAH8AAABXCAYAAAAtQppIAAAQ+UlEQVR4nO2df2hb1d/H3zet7NvHuEx3Zen3icvahod8G/kukmoj65qBex4iVoys0gnVbZIvKXQPdrDM/VGZfxScbrgqUQuZLoUKKeu+2x8VIpuYJhGL7WiFjUzo0kodT7UDU9Nhpkk+zx/pzXKTmzQ/bn8k7QsKveece+7JfZ/zOed8zrn3gjY4/f39BIAAkMFgICIiq9W6toVaJSTYgBARpqenwTAMbty4ASICEeHChQtgGAYajWati7gqbEjxGYZBbW0trFYr3n///UR4TU0NrFYramtr17B0q0fZi09EaWH9/f0AgPfeey8trr6+HgqFYsXLtR5gSOjulDkMw8DhcODQoUOJMCICwzBrWKrVp+xbfirT09MAkGbaN5rwwAYUf5MHbDjxa2pqAACBQCAtbnp6Gl6vV3CcUJas3Sxz7XA4HASAPB5PIszj8STm+ZmIxWIrXLLVpSzEL0SUkZGRhHMHQF6OnXKpBBtytF8sVCYzgw3X5+fCcu2hHIQHgMq1LkCu5NPafvrpJ0xMTGBycjJxzA3w7t27h+vXryfS7tixA4899hiqqqrwyCOPoKqqCo2NjaiqqoJer4dWq4VMJhP996wHSt7sz83N4YcffsB3332Hb7/9FpOTk3jooYewe/duNDY2AgCqq6uhVqsBAFu2bIFer8fXX3+NL774AoODg6irq8OdO3fwwQcfQCaTYXJyEvfu3cPY2BiuX7+Obdu24cknn4Rer8fu3bvR0NBQFl7AkhT/1q1b6O/vx6VLlxAKhaDVatHY2Ihnn30WWq0WO3bsEDzv9u3bOH/+PAYGBiCVSmE2m9HW1gaFQoEvv/wSHR0duHr1aqKicPz888/48ccf4fV6cfPmTXi9XtTU1ODgwYMwmUzYuXNnaXYFazbUzJOpqSk6deoUqdVqUqlU1N3dTX6/f9nz5ufnqa+vj3Q6HbEsSxaLhSYmJnhpuNH70NAQKZVKmpmZ4cUJje7dbjdZLBaSy+Wk0Wiop6cnp/KsJ0QTfyWmP+FwmD7++GPSaDSkUCios7MzTTiha0ciEXI6ndTa2koVFRXU1tZGQ0NDOV3TbreTSqWiubm5nH/T6OgodXZ2kkKhILVaTYODgzmdt9aIIr7BYODNmbm/QgmHw9Tb20tyuZxMJhO53e6MaZMF8vl8ZDabSSaTUVNTE9ntdgoGg3lfv7e3l9RqdUHnulwu0uv1tHPnTnI4HBSJRJY9Z638BqK1fIPBQIFAIHFstVpzqgDJZjVVdK6VZ7s5U1NT1N3dTUqlklQqFfX09PDMdj4kX+fUqVOk0+koFAoVlJfb7ab9+/eTQqEgm81G4XC4qPKsBKKKn0pzc3NOnrNMomciuR+XyWRkNpvJ5/MVWPLMHD9+nPbu3ZsQLh8xuLSjo6NkMplILpdTX19fxnRrgSjiezweQZGtVuuy/vKxsTFSq9XU0tKSVXSuHz9w4AABoNbWVnI6nTmZ1WTyvdlms5mMRmNBLTeZiYkJ0uv1ZDAYaGpqqqi8xEIU8a1WK2+RhMPhcGQUPxKJ0DvvvEMsy5LT6cyYd3I/rtPpqK+vj+bn5wXTLidsoa2sra2NWltbeRUtOa988j19+jTJZDI6ffp0QWURE1HEz9S3W61WQYvg9/tJq9WS0Wikubm5tPjkflyhUFB3d/eatpZIJEImk4na29tFyc/v95PBYCC9Xr+m08OixQ8EAoICT09Ppy2bEsVr/vbt28lms/HCg8Eg2e120uv1JJVK6fDhw3Tt2rViiyca4XCY9u/fT52dnaLlabPZiGXZNbMCRYvvcDjI4XAkjjkTaDAYeCY/GAxSc3Mz6fV6XiseGhqitrY2qqiooJaWFhoYGKA//vij2GKtCL///js1NTXRyZMnRctzZmaGdDodtbe3Fz2uyJeCxedEBkCBQCBxHAgEEg9AcGFzc3Ok1WrJYrEQUXyQZ7FYiGVZ0mg0ZLPZBM3/eiQYDJJWq6Wenh7R8gyFQvTiiy+SwWAoyLdQKAWL7/F4BB07qabe7/eTUqmkrq4u6unpIZVKRdXV1dTV1SXY35XCRon5+XlSq9XU29vLCy+27BaLhdRqdcF+inxZEd8+dxPGxsZIJpORSqWiLVu2UHt7Ow0PD6/EJVed2dlZ2rVrF6/LE4Pe3l5iWZbGxsZEzVeIFVvYGR4eJpZlqb6+ns6ePVuwp2w9MzMzQwqFIud1g1y5fPkysSxLLpcr48KSGCwrfiEX5wrvcDiovr4+a96ljt/vJ7lcTi6XS9R8fT4fsSxLo6OjouabTNEDvlRGR0cTZqu9vZ3sdnvBhSsVJiYmiGXZrAtQhcBZz5XyBYhq9qempohlWRoeHqbZ2VmSy+VZ/eLl0PI5fD4fVVdXi95X2+12UiqVNDs7mxZX7P0TTfxgMMgbAZ88eZK6u7vFyr4kcLlcJJfL6caNG8umzUe4np4e0mg0ok8DRRE/HA5Tc3MzdXV1JY5Zli2ZubuYXL58mRQKheim2mKxkMFgENURJIr4bW1tZDKZEsd9fX2i+cFLkYGBgbTtYGJgMpnIbDaLll/R4tvtdtJqtbypnFqtXpV56nqmr6+P6urqRLV+wWCQFAqFaGseRYk/OztLLMvy1uFdLteya/gbhbNnz4reV7tcLlIoFKLkmZf4qYMUk8mUNqgzGo10+fLlogtWLnR3d6dtBxPDDXzkyJFii1Z4y3c6naRWq3kDEL/fTyqVKu/dNeVOV1cXNTU1iTZYC4VCpFQqi25kBYk/Pz9Pcrk8zftksVjSFjs2iXP48GFRtoNx+Hw+ksvlGXc15UJOT+xQynNyr732GliWxblz5xJhCwsLUKvVuHXrVtk+21Ysr7zyCgDA6XSioqKi6PyOHTuGxcVF2O32wjLIt7a43W5SKpVpNbinpycxz99EmEgkQkajkQ4fPpwIy7X/F1pjCQaDxLJswVvc8hbfYDCkLWNGIhFSKBTrZlfqeiYcDpPBYBBtO9ipU6d4lSkf8hJ/dHSUlEolRaNRXvjAwADPybNJdkKhEOn1+oK2gwm1/u3btxfU8PIS32QyJQZ0yYXQ6XT0zTff5H3xjUwwGCSNRrPs5s1s3QIXV2jrz1n8iYkJksvldP/+fV64z+cjrVab94U3ie9tVKvVaTuZk0kVX6gyFNr388WPRij611+Jv+TrJLf6ZFpbW0XfyrQR4EScmZkhpVJZ9D0spPWnt/xYlGJ/RXjC37hxg7c2z8FtY9p06hTH1NRU0dvBQqEQyWSyvNy+Ob2QyeFwwGw2Y8uWLbxwm82Gjo4OUeasG5m6ujq4XC50dHTgq6++KigPqVSKl19+GRcvXsz9pLTqkGj5MYotmf9/1NXGF2+WuoVYLF7T5NX/Sb/+31w8LBpLyYPrPqIUS8s/Q1yWdNnP58rKL3c0EuOnj6zvnUPj4+PEsmzBTxznu6gmKH70z6X+PhalifHr9F8q1VIfFaPY0g202Wxk+de/uJOSuooYr9uIRZJverY4XiFS8vtr+bwTIi9ViKTjB/FZKts6gdu4WciSeCQSIblcLrjlS4jsZp+R4N9XruDVtra4e5cIkDCIRqPo/dCGo0f/F7FIBLFIFIT41yooFgOBAecNZiQSMESguJnJHMc3RyBGspSOAVNZGf9/2fMZMBUSMCnHSRkj/WJrC6V41/fs2YOBgQE8//zzuHnzpmCaTEgkEhw8eBCDg4M5X5xPSgtRq/9BE+PX4+Y0Em9FV65cof3//T/CrTYW5Zvz5PyyxQnkkW/evIHqcsfrnKGhobTtYLm4gkdHR0mr1eaUNiF+woQu3VCi+ChfpVLx+nqiuIt3eHg4yRwTEcX4Zjr6wBzzzX6muCSWTHZeeZeZ+ETxh2AL2Q6mUqly2kSaeAMnwzCgWBSxKANmafR+8eJFHDx4EJBIwMQIYIDJyUncuXMHL7zwAkAxxKKRJUsqAVMBcKaWolHEYvFwSSVniLPFESgSBSoqwTDxvHh5VzJZzidQNBZPG40BlQyQ9Ti5a1i/HDp0CIuLizAajXC73YLvFySBN5O2trbC5XKhvr4+6/sBH3SIkgpIKishqaxI9KkjIyMwGo1L8QwYAB9++CG6urriYYxk6ZxKSColDy7ESMAkhfPIGJfUtwvlnfV8hhfGLHu8PiGBvr2zsxPt7e147rnnsLCwkBYvJO5TTz2FsbGx5V8Mmc0sSKVSCoVCFIvEzeUvv/xCcrm8LJ+7W++cPHky57eDcV7D5fr9jKP927dv4+9/fwL/8be/xVsbA3zyySdob2+HVCrNoR5vIibvvvsu9Ho9WlpacP/+/axplUol7t27h19//TVruozij4+P45//1EBSWQlGwuD+/fv47LPP8OabbxZW+k2Kxmaz4YknnoDJZEI0Gs2atqGhIfHW8UxkFH9ychINDQ2JfsjpdGLPnj1l8bbpUsbhcEAqleLVV1/NWgGefvpp+Hy+rD6CrOJrtdrEoKG3txfHjh1LxGfLdJOVo6KiAgMDAwiFQjCbzRnTNTY2Ynx8PPugL9NgIPlZO7fbTXq9Pp/xySYrTDgcpqamJt52sOQBHvdATTKpA0BB8efm5ngnmkymrC9K3GTlERq5Ly4uklarFXwaOhKJUEVFRdY8BcX3+/2kVquJ6MFa8+aa/fqEezSe2w6WXEmkUmnW9X3Bb+wsLCzg4YcfBgCcO3cOR48e3VyzX6ds3boVbrcbTU1NkEql6OzsTMTJ5XLcvXs343MUguIvLi7i0UcfxcLCAgYHBzE1NcWLpzL5tBhQ+r+FYRjs2LED165dS1QA7gPRMpkMd+/eRV1dneC5EiB95B4MBrFt2zacP38eBw4cSKs5pXyzAMDr9YJhGDAMA4mkPL4up1QqcfXqVXR3d+PSpUsAgMcffxzBYDDjOZVAupjBYBAymQwfffRRwduK1iterxfNzc28MIZhymLqqlarMTw8DKPRCKlUCpZlcffu3YzpM5r9ubk5/Pnnn3A6nSVvGpO5evWqYPgbb7yBnTt3rnJpxIdhGDQ0NOCll15CS0vL8i2fgxP5t99+Q1VVFSwWSyLDTUoDIoJOp4NOp8PWrVvR0dGRMS3vKd1yauGZEDL7wMb0WBY12inFG7Z37154PB5eWCn+jmzs27ePN6BlGAZerzc9YSYHQCwWI4/HQ7dv387oJCjVlyhy5V7uUahS/X1E8a123NvPuTekJ3/9jCjLyxmICBKJBIFAADU1NStcVzcRm+QZzPT0NGpra9O0zGj233rrLRgMhrIUnojg9XoTJpFhGJw4cWKti1UQQm3X6/XCarUmjo8cOYLjx4+naylk2hwOR8JUlCNCH3wEkPatoFI1+w6Hg/fxi1RzzyFJHd1PT08DABQKBQwGg5iVdF1w4sQJfP/992ktxuPx4MyZM7ywUp35XLhwAYFAAEQEh8OB2trahK7JpJn9Tz/9FK+//joA4Jlnnln5kq4iXq8XZ86cgcPhWOuirBicyJyJ5/z8qTMcIEX8/v5+nDlzBhKJBLW1tRkvkNpqSoW3334bJ06cwK5du9LihFpGKeLxeHDkyJHEMfe7hPSUpCai+Bo/PB4PNBqN4AVK1RyOjIygpaVFMO7zzz/H8ePHV7lE4nPhwgWeE6u2thYMw2Dv3r3piYniH0BMfbQ39Xt5pUrqJ9+EBj/c4DabT2O9k+lrZ/v27ct4DriRb/KNMRgMibBMX8EuxZEwBL7wyYXn8rXvciPrXK4UBc5G6le9OWuwEYUnSvHwcf8m9+lUJos93O/Yt28fRkZGEuHZPJil+tszlTs1PKd3725SnpTHHqZNCmJT/A3M/wOaziU5yq6JSgAAAABJRU5ErkJggg=="
|
<image>如图,AB是半圆的直径,点D是⁀{AC}的中点,∠ABC=50°,则∠BCD等于()
Choices:
(A) 65°
(B) 115°
(C) 120°
(D) 125°
|
115°
| 69,765 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAAE4AAACACAYAAAClSF/ZAAApLklEQVR4nOV9e3hU5bX+u2fPJTNMMpAQSXiACETKRRHQCEYKcomCEELViiCm1HKaIrXAgbRwVHpEfRR7pIAcBKN4KdWIJRS5KEEUEZR4DmA5CoaQGAiQNCFhkknmuvd+f39M9pc9IQlR0R+h63nmmZl9+/Zee93X+tYnkSQ6MJAqJEkW/zUQEiRIADRNgyRJIAlVVSHLMlRVRVAJoZPdgZoaN2JjO0PTNJhMJng8HkRHRwMAAoEAbDZbq+NKHR1xQBPySEKSpBaPqa+vh9lsRlRUFADAHwghymaBoigwm80Rx547dw4JCQkwmUytjnlVIM4IOvXoUF9fD6fTKf57PB5ERUVh7dq1KCw6gYz0KVBVFU6nEzfffDNsNhtkWcazzz6LUaNGITU1tcVxzC1u7UCgs6ORLY3QqVMnAIDf74eqqoiOjsaRI0fw9NNPo6qqChKBU6dOYf/+/di5cydGjBiBQCCAwYMH49prr219YHZwUKmFv1WVJKlpkfs0wwZNU0iShw8fJgDKssznn3+ehYWFHDhwIGVZZkFBAUnS7/e3OW7rTNzBQGdPXcQRADSDzCOEEgkEArBarZBlGRUVFUhKSsKHH36IwYMH44477sDbb78Nm82GYDDY+oCX8+3//wCd0oxgpDJqF+3mvn37BMUlJSVx27ZtJElFUThq1CjKsswlS5YwGAy2Ou5VhziddTVN44lda7mrSBPI07Qw6/r9fvbr148mk4mSJBEAV6xYQUVRqKoqn3rqKU6ePLnFl6JDh0ecDrpM0qlN5QlOAbirSLsIAYqicHjKLZQAPvzww5w3bx4BcM2aNeFzVbVNaiPJDq9V/YEQbGYZVqsVCggTwwZwzpJ10CZPQZ9kwoRIUW4yASFVASQJPXv2xOLFi+FyufDb3/4Whw8fxiuvvIJAIABVVYXd1xw6POKibBbx2wxAlYgPXskGx94B7bmvWzzH7w8Kg7i6uhoAMG/ePPTu3RsPP/ww4uLi8Nxzz7U98A/ANT86eL31VFWVmqZQLX6Pi9a9T7VoB5GxKFJRGCAlJYUIK1++8847gp1zc3MpyzKXLl3apklyVZgjdnsnmEwmSJKMxes+xJ+y7gRMJkz5yXUXuWAawn6r1+tFlMOCxMRE3H///fjzn/8MksjIyMDGjRtx9OhR+P3+1gf9ISjgxwSfr0Fo0vyXFgoqAsApv19P0mCeqE0aNjk5mQA4c+ZMPvnkk3Q6nXz66adZV1dHkjx58mSb43Z4GadpADTC9/V25GtpIP8LAPB/763Ga2VJCAaDIAkNKuw2BzRNw949H6G2thYAkJaWhoyMDIwZMwZTpkzB+fPnsWLFCvTp0wehUAgWi6XlgX8QMvgxQSPr/+/vxNRsscnj8XB3ziL+9s/vRBxaU+MmSd5111202WwEwN27d4v9GzduZGxsLI8cOUKS9Hq9rQ7b4RG39g+TCEkmpLDNFqLGhVNASZIb2fUlBoNBYZe9lbuJAIThO2jQIJaXl9Pj8ZAk169fz8GDB/Pjjz/+1zCAddAfVv/WEeb3++nz+Th69JgIOehwOOhyuXjixAlxzrPPPssdO3a0Oc5VhLiWqUNHhqIoPH78uECYNcpGa5SN+fn5nDZtGh0OB/Py8oQJUllZ2eZoV4U5EoaWH8VkMoVjcdTwwe73mnZohESgc+fOyM3Nxa233ooFCxagpKQEVVVViI+P/w6jdUDQmsWxNTRtkCQJZadO49XXNoptwWAQiqLh1KlT0DQNO3bswG233YYhQ4bgk08+EVq3Vbi87HLlQTAYpKZp3LBhgwgljRw5kgBosUYRALdu3SqOX7p0Kbt168bNmzf/aykHPcqrQzAYpKqqnDBhAgFw9OifMjc3l1H2TpRlmYMHD2ZSUhKXLVtGj8fDYDDI1atX8y9/+QsbGhpaHafDI05jUwxOB1Vr2hYMBvmPf/yDAGiz2bhixQoGQ2rYc5DAv/71r3zuuecIgNu2bRNexlUfVpIABANBmEwmYeVTU8MJnEY5t3btWjgcDqiqirS0NFSfrwzLMALHjh3DU089BafTifnz58NqtWL8+PEIBAKtew24CpRDKBSCzWaDxWJBIBCAz+eDLMsIhUIwmUwIBAIoKSmBz+fDhAkT0KdPH1RUVKChoQEAIMsy/H4/Zs6ciTfffBOzZs3Cli1b4HQ6ceHChdYH/kH450cEY+inoaFBeAC6u/T0008LI3fPnj0kyZycHAKg3W7nkCFDhM3m8Xj41ltv0eFwcN++fW2O2+ERR0bKI2P8rbS0lHFxcQTA2bNnCy2ZnZ1NAHQ6nezZsydlWRb+qaqqzMnJ4eeff97mmB2eVUkiFAqJ/5Ikwev1AgC2bt0Kt9sNm82G9PR0AGHWJgmLxYJQKIS1a9di8uTJeOCBB/DFF19AVVXcfffdSElJQVVVVavjdnjEKYoihLiqqlBVFTabDbW1tXj77behqiquv/563HzzzQAAi8UCs9kMTdMAAD169MDatWsxYsQIzJw5Ex9//DFiY2MRCATa9B46POIsFoshGS1BURTIsoy8vDz87//+LwBg/Pjx6N69uzhORzAQLo3o3r071q1bh+7duyMtLQ0HDx6EzWYTyG0JOjzigDD7BQKBCJPk3XffRTAYhMvlwoQJEwA01Y+YzWbIsoxAIICHH34YH374ISwWC/Lz8/HXv/4VL774Ir788ss2q5WuCuWgqqoQ/H6/nwUFBbRarZQkiRMmTKDb7Y44du7cucL9SkhIYLdu3fjZZ5+J6xQUFPDo0aOtJnrIq0Cr6uZHTU0NyXD46IknnhBaU4+rqaoqXKjc3FxarVbKsszCwkLOnj2bTqeTeXl54thLQYf3HHR26tKlC4CwQbtr1y7Isowbb7xRsKnJZIKmaSCJXr16IRgMwuFwwO12Y9WqVejXrx8WL14MABgzZgwkSYLVaoXdbm954B+ACH50aGhoYDAYpNvt5ptvvinyCTk5OVRVlYoSdvxVVaXX6+Wnn34qWPWll14iGQ5c5uXlMS4uTth0bcFVgTgdISSZlpZGAIyPj2dJSQmDwSAVRRFREpIsKCigw+EgAMbFxfHo0aP0+/30er3C4d+xY0ebyZoOr1Vra2thMplgt9tx7tw5nDt3DgDwb//2b0hMTITJZBJF0zpbV1ZWwmKxwG63Y8yYMbjzzjuxcuVK2O12ZGdnY/PmzW2zKXB1sCpJ+nw+jh07llarlX379uWJEyfEPqOw9/v9fP7550WGKxgMcu7cubRarRclaK7q+jgyjLSSkhJaLBYC4GuvvUa/3y8eXDdHdHPjySefJACOHDlSBAlmz57NmJgYEQggOzjiLhVQ1B88MzOTDoeDSUlJLCsrE9t1xWC81pIlSwiAMTExzM3NJUlWV1dz8eLFTEpK4vLlyy+Z5briEWcEPbGsa0pd8Kuqyj59+hAAp06dGkFhOhiLBXXE6dpXt9/IcMjJ5XKxsLBQ2IYtQYex4/TApCyHC6BJit979uxBSUkJZFlGRkaGmB2jqqqoVjIer2kaZFlGfHw8pk+fjscffxzXXHMNrr/+ejz00EMYMWIEHA6HsA1bhB+ENC4zGE2J5qCqKjMyMuhwODhkyBCWl5eL7cZvIyxYsIAOh4OpqakkybVr1zI6OlrYdDqlteVBdAiKk2U5os5Nj7+ZTCaUl5fj/fffBwDcf//9SEhIABDOm0ZFRbXqqKuqivr6emiahjlz5qBTp074xS9+gbq6OixcuPCSSekOgThjOEiSJJjNZjGbZu/evWLC2v333w8gzIrNa3dDoZB4ATabDYFAAF9//TU2b96M0aNHY9q0aYiOjkZ2djZsNhseeOCBtm/quzPQjwNGltOFu76turqaEydOpMVi4eTJkyP2NY9s6MqEbFIOkiQxLi5OFBH6/X7u2LGDAFhYWCiKDFuCDuM56E46EA5Ynjt3Dl988QXee+89hEIhzJw5UxwHhGfPAIDP5wMAoRhUVQVJOBwO9OrVCy+99BLmz5+P9evXw2azYdy4cSguLobFYhHzwFqEy0cbPywY5zHotllGRgYBMCEhgUVFReJYnbL046qrqyP2LVu2jJIkccSIESTDygEAN2zYEEHZHTqT31yz6Rpv3bp1dDgclGWZ69ati2BFMtLwNf72eDycNm0aAfCmm26ix+Oh3+/n448/TqvVypUrV7brvq54xJFNwUqyKV86aNAgAuBtt90mEKMoitivI1H/DgQCIooyePBgAmCPHj3o8XhYWVnJUCjErKwsxsTEcPv27SwrK4tAeHPoEIgzhoUUReHRo0cpyzJtNhtfffVVkmF/VVXVCCT7/f6IkLrO7tddd53wHHr37s2TJ08KZbJmzRrecMMNJNu24654xBkR4Xa7WVdXx/nz5xMAY2NjWVNTQ7fb3aJv2rycVb/WDTfcQABMTExkdnY2LRYLX3vtNXFscXGxCIy2Blc84pqbICUlJXS5XATAadOmRQjz5tTW/LfX66XP5+PgwYNptVo5cuRIVldXc/369QTAtWvXitmFl5roe8UjjgxrN/1BXnzxRQKgy+XigQMHIh7Q6JQbkahTYSgUotfrFbOhhw8fLo6ZN28eY2JimJ+fTzIsE9uCDoE4Hc6ePcthw4bRZrMxJSVFbG+JPcmWqU5VVaFYunbtyh07dog43datW5mSkiLYti1zpEMYwIFAAKFQCAUFBTh8+DACgQCWLl0q9uvGLYAI39SYjdfdLK/XK6InNTU1mDFjBt577z2QxJgxY5CZmYnz58/D7XbD4XC0flOXixp+KFBVVVBLeno6AXDYsGGsqalpM5liBKN2ramp4dChQwmAN954I9955x0OGDCA27ZtE2NdKohJdhBW9fv9PH78OGNiYgiAjz32WLvPVVX1Iu04bdo0mkwmjh49miS5fPlyxsXFcfPmze2+7hWPOJ1SFixYQJPJxJiYGB46dChC+LcHdG0ZDAa5dOlSOp1ODho0SFDtpk2b2LVrV86ZM4der7dN45fsAIjTWadXr14EwJ///OckeZGL1RoYlYV+/OOPPy4S0rm5uSIk//HHH7NHjx6cO3fuJcsgrnjlQBI5OTk4ffo0unbtikWLFonQd3tAr1ACwiVhJPH11+Ep5/3798fSpUuRl5cHi8WCG2+8Edu2bYPdbofJZBIFiq3d2BUNR44cYUJCAgHwiSeeINm2mdAaBINB1tTU8OzZs7zuuuvocDj41FNP8W9/+xsTExN54MABcRwZLoNtC654xP3pT38iAPbt25fl5eUiuNgeNiXDPqwOui+bmJhIu93OpUuXUlVVbt68mYmJiWKGjT5GW3LuigidK4oCTdNgNpsFizgcDtTU1GDTpk2QJAk333wzunTpIsoZ2pqDYISoqCgEg0FYrVaYTCaYzWZRpaTPzb/77rthtVoxd+5cFBYWIjs7GwDaFgfflRIuFzR3bXSq0Ku/0ThN8uWXXxbHNA8ZXQqMIXC3281hw4YJJ7+goIANDQ1UVZVvvfUWY2JiuHTpUpIdZIa0saqSDGtTvcXFsGHD+M9//pNkU1JaP6c9YIycNDQ0cMSIEQJxQ4cO5YYNG8R133rrLe7fv/+S14xAnBZS6A+ExCfUvvu6LGB8u5qmcceOHSLTrlOA0YtoLxiRptt+AwYMIAAuW7aMGzduJAC+/vrrEefoVN8aRMg4ySzDRiIY0mCyyDC33DXxsoKe2tNLqvQU4JYtWxAIBCDLMsaNGwdFUUASNpsNJBEMBtvsYdkcJEkSclG/bkJCAh544AE4HA7MmjULxcXF+I//+A/YbDaYTKZvWTytaQwEFIZarxu+rGA0LXQt5na7OXDgQALg5MmTRfTXmCrU5VJ7oHnoffDgwZRlmaNGjWJ9fT1JcteuXXS5XHz22WfbrALQoQ3EaQwJttWosYmVBQtrGgONxwSMmDZs9wfUyNnyLezTWdDn8zEYDDI3N5f2qGi6YhO5e/eHYvxgMEhqGutq6+n1BgzX1u+12X2HNFLTeP78BfHf7XYL2elyubh69WrW1dVRVVXu2bOHI0aMYF5eHr/66qs2X0bbFKdpDEQ8uMaQQJDGUOMDhX/rVGr8Taqhxge46LjwPl8wMk9w9uxZpqXdQViiOWr0aJIa6z31DKmk19sQcX6Dx9N0bfFCGu+38b+nIUBVCyOwurqWnoYGoVVTUlI4cOBATps2TWje48eP8+DBgyQjbcDm0LbLJUmwmIiQ0ji/XSNgksRvFSqCQQWBoAoVDBsOGqHCBLnxMJMsQ9IIDS3vMxFwOJ0icVxQUIDduw8g2mHBb7KyAEjo5OwEswmw26Iiznd06tR07fANQ7YYm55JkEyESZIQCPjhdHYCIYkY3YMPPogtW7agtLQUmZmZCIVCuPbaazF8+HDRvfVbyrhmVKazQEhrmousqgZKMoCqRrKn8Xot7Kv3+KkyrMnKy8s5ceJEAp048a70i+vT2rp2c9ls+K+qqvj/yf4DdDqdjIuLE5QVDAbZuXNnTps2Tfxvd3NRTVEQ0CmrsXOzeIsmQA2pgMmw3SRB1lQo4nUz3OfIJEGGBkW/FgmapDAVtLDPZJVhQjhC++abb+K998ItLiZPmoRoV5f2X/sSoGlhR7++vh6hUAiKomDbtm04d+4cLBYLPvroIzQ0NOA3v/kNFEWBzWaLmJXYKsU12XAtaVSNoeZCXlBAC0ogQgFokTPmW9inaRpVNcTBg28iAN566608eeIEa2vr23ltoyJTqRr+ezx+qtToabzWvk8+Y9euXQmASUlJzMnJIRnWtpWVlUxPT2dubq7I07YG7fQcjErh8oJ+c9u3bxeabtOmTSTb71K1Bbri0U2a/fv302q1EgDnzp3L5ORkTp8+nSSFiVNXV3d5AplaSP3B7DodORkZGbTZbKKE/nIgjQynBMkwRYVCIX788cfiBZ08eZLHjh1jWloaf/7zn4tx2+PStSkeNEVBIKggBOkH8yJkWcbnn3+OvXv3QpZl3HPPPWL2Mi9DG3Z9Uq8eGdEjHj6fDz6fDz179kReXh7cbjemTJkCWZZhsVhQWlrapufQJuJMZjNsVjOsP6DvZTKZsGvXLtTV1cHr9WLOnDnweDxwOByixu37gKqqolMEEI4I612lDx48CKfTCZJ499130aNHD6SlpeHzzz9vu8858P3DSjpZ6+UFJA0Ni9uWE2RTFESWZc6YMYNkWNZomtYudm1uNrQkm3QXze/3s66ujr179xYt0PT8gqqqvHDhAp955hnm5eVd0p373ogLa8SmGXoLpzT1Zmv6TOJJzXgjqkDM1q1bxYyYnJyc7xQW10G3v/S5Dy3VgHzzzTe0Wq202WxctWoVx40bx4ceekjkUvV0YltlrORljcepgtIWTgl3D9Thxd9PIjCJRYxEHhlO+wHg8OHDWV1dLYR5WyX6F43cWHgTbml7sRbTNWtdXR2//PJLOp1OOp1OFhUVsaGhgTNmzOD48eMFko3N+lqD7404nUJ0tlR5ghMmL7joARZOaeyS2rhZTzLHx8cTAP/4xz9G1He0l1VVVWUgEGiRRfV7MCJgz549ghM+++wzwcIZGRnMyMhoF9LIy5AeNJlMgEYoSnj2ccnuPbAO7A8a9AlJ9B0wCe9+fRK662GxWPDWW2+hqqoKqampuPfee4UPaZwR0x4waksgXK6va2W/3x+hnWtra8WSBHl5eaI+JCcnB5qm4a677hIeQ1uew/dGXFRUFGCSYLZYIEkSdu/Zjol33A6T0WmTJCT37Q+YwuvLAEBeXh6WLVsGh8OBRYsW4frrr4fdboemacIcaU/u1Bhw1POnejcIk8mEqKgoWK1W+P1++P1+lJaWivYZ77//Pl5++WVYrVYAwKpVqxAXF4fdu3e33+W6HKDyBCeZImWZqoYbkq39wyTR0JgkZ82aRZvNxsTERBYWFgp5prN+e+WbrgjIiz2N6upqVldX0+Px0OPxsKSkhPPnz6fD4aDT6eTKlSuZmJjIRx55RLC1Hpu7FFwWxOkySS1+j1N+v/7ifm4ndxEAX/ygUGzr2rUrZVlmenr6RXEvHRnteYCWShxIsqKignv37mViYiIdDgfj4+PZt29fUc3ZuXNnfvXVVzx48CBTU1OZlZUVcR+XUk7tRpxqXAtGDV2EHDLcMnvRuvcv2r5wCogp4QbHmqZx5syZwo4y9tvVb7Z5PW9zRdMcqc0Rb5zD2qdPH65fv5579uxhZWUlZ82aRbvdTqvVKtanqa6u4siRI/mbX2fx5MmTVFWV2VNASAaTSv/d+Bzt81VbUPG6FtW/Q4aFJ3ScqsU7w4NlLIo4t1evXnQ4onhXxiSBnOZspqfy9HB6KBSKsBebg7EWWIfp06dz7NixERHmF154QSDjnnvuoaIorKurY0VFBVNTU7l48WJWVlbS6/VywWQw39DyvCj/RSFuLgurnshf0/RmTJHG74sfFEasG6NpGu12e0SSWfc6fD5fq0mY5hRmlIX6izWm9Hw+H++9917ecccd4ry6ujp++umnIjricDg4duxYcXtlZWX83e9+x+PHj1NjESfrXMIirluXL77JdpRA6Ipca1yCriW4Lm0uyLkANGiaCc19Yw0UWvaRRx6Bz++Dw+FA586dcebMGVy4cAF2ux2nT59GbW0t+vXrB5fLJcpPu3XrBk3TUF1dDVmW0a1bNwBAVVUVnE6nSC3qaT0gXFbRvXt3lJWVwefzwW63w2KxwO/3w2q1IjY2Fo8++ijOnDmDu3+WgddeewPdunXDqlWrAI0ofH8t+k8cCwDY/dI6oO9vIDEZWVnJAL7FSnD6w+uHhxcPa1r3j43L1+nfRtC71J84cQK3jx2N6vO1CAZ8SEpKgqZpOHfuHOx2O+rr6wEAPXv2hNVqvWjNQD3KoZsaiqKI2cw66McGAgHs2LEDDQ0NmD17tqhLOXToEPbt2wcAOH36NKKiojBmzBikpKTghRdeEKvG7fzvf8ekR/4sKCf/JJHW1/BQ34U19dWG2nesQt290kvtrVEWyrJMSZKEnwrDHHn943Q6L9qms5nxeFmWxbfNZqMsy6IhC4CIMfTzLBaL6Gjj8/nYr18/Tpx4J8vKylhTc57ZU8CdhWGlk52e3sxdbGe1EgEYaaglq775MYC+DqCE+novVFXF2rVr4HK5cM0112DOnDkIhUJiFjMbs/TV1dX4+uuvBUvu378fN9xwA0wmE4qLi+F0OnHrrbfCYrHgq6++wj/+8Q84HA6x+KJO9TrbhkIhOJ1OBINB0dTlwIEDsFqt2LJlC35yXT/YOzlw5MgRZGdn4/7778fb//Vb/ElahOf6hbNcyZMnI7m5r9BeKlPVUOO3ykXpF6vp1Tu+iihS1mtBdI22cuVKcY6xTsM4K6a5n2jMqOuRjuaKwzil0rhPUZSIclf996effiooNCoqitOmTaPX2+SXvvDCC9z4TBYXrXv/Ii2dnd20ZsQlEef1ekmNrL4Qmar794wmg1bXqvnF4QhJmItV+nwNVBSFRUVF7N+/vzABampqLhnT/zbQUjGO0XQxphnXrFkjZg5u3ryZN9w4mJmZmTx7tlwcs3AyuOtEKOJ62VPA7PW7xP9LIk5RLu7E3Ny1UovC9poxlHTGcCOLFy8WMmf79u2CCtvrVrUFRlmrI7C1qIrX62V2djadTidTU1Pp9/tZWlrKgQMH8t577+WXO9dEyEKjASwh0qa7JOJ0O8l4gyfy13DKH14Uxu/CKWB69rqmc6iIwGBNTQ2TkpIIgEOHDhXXNH5/HzCyr6qqIp6ng7F8LBgMcs6cOZRlmT179hRsfvz4cY4ePZrZ2dkXrSinP5EO+tZLIi4QCtLvN1Kbxp3rFxAwibehU1q4RKOJQt1uNzdu3Ci03/Lly9uJjm8PzV9CcyTq9/Xoo4+K+8nKygqzsUYWFRUxKyuLmZmZLCsrI0l667/n1HI9PN54S1w4BXz/RPh/eEknU5iMm1koqqqKfm59+/ZlcXExycuTL20OxmvqlU/NvY1gMMhHHnlEvPD4+Hjed999EZ7HihUrGqnue+YcxCKIatNKa0bfU+XXnAIw+6Ud4f2G8NCePbvF2509e7Y453LKuObXURSFfr8/IvprdNGys7MpSRKnTp3Kffv2ceTIVA4aNKjFSb21tbXGUUg24eOSgUzRsqJxpbU9ez7Aoonjmw4o+QbbJAnX9kmGJMnCJpNlGe++ux2BQAAxMTHIzMwUp+hVlXrg8fuA3nNJv1dZlsX1PR4PbDYbfD4fqqqqEAgEUF1dDZIoKirCbbfdhjfeeAO33347HnroIXg8Hly4cAFEeGZhTExMk8+Jpl7DBC5txxnbVQSDQS7KaJJp+lKcwCQWGpI1OvTo0UMUP+tQUVEhfl9uljVmyCoqKvjOO+9w2LBhvOGGG5iYmMiRI0dGeBUHDhygqqosLS3lzJkzOWDAANHjXFc6TZV9kXAR4prHxEgyEPKzaPd/t5D2A6WM7MgLNAbu/vKXvwj3pqCgQKTtyKayhIaGhgh7zqjJvF6v+K9rRj0/2hzhzUNKuihIT09nv379uGnTJn700UfMy8vjmDFNy0v169ePJ06cYCgUYk1NDWfOnMn4+HgeOXIkIuZXV1cnXooe+4OqqqysrBTmgzHyaVQI+oNeDJFhch2Mc0v1BzdWfutg7Jiq120YX5rH47koUKmP4/V6I5Dm8/no9XrFOjULFizg6tWrI7yLpUuXMiYmhvHx8UxOTqbL5YrorL9mzRqWlJRc9JTBYFDkWlVVpSkUCiE+Ph7x8fGora2NmLFSXV3dOBHMhPr6OhGF0EDDKkJh3vf5fELWnDlzBl988QUAYNKkScK3lWVZRB8uXLiAUCgkZGgwGITFYhFN3PVrOp1OREVF4cKFC/B6vRFNQvXJasZq8qioKFgsFiiKgm+++QYmkwmxsbFCnno8HtTV1SE5ORnHjh3DwoULcd9996G4uBgAMHfuXMTHx4vO+rW1tfD7/bBYLIiOjm6qQ7n99tsRHR2N4cOHo1u3bvjss8/QpUsX9O7dG7W1tVCUIGRzFI588T+4tldvnD59GsXfnETCNYm45ZZb8MADD+DUqVOQJAkJCQkoKCjA/v37UVZWBgAoKyvDK6+8gkGDBqFz585ITEwMo9tkQm1tLRoaGqAoCnw+H6KiomA2m9GpUyfExsaKY1wuF0wmExwOB2prayHLMk6dOoUePXrAZDIhOjoafr8f0dHRkCQJPp9PTEPSwePxoHPnzujUqROioqJQWloKRVHw+OOPw2azYcyYMTh27BgCgQDi4uLgdDrh9XrhcrmgqqqI6Xm9XjidTkhOp5P19fVwOBxiDpU+3dBut8Pn84mAog5OpxMN9fUiIsLGY53OGAQCPtTV1QEIa09FUURMLTY2FpqmITExEWazGSdPnhQxOKfTCVmWIcsyunbtCqfTCVVVERsbC7PZjMrKSlitVqiqiujoaHzxxRewWq246aabYDabRQ2x2WyGoiiQJAkffPABUlJScM0118BsNsNsNmPbtm0IBoNISEjAvHnzoGkavvzyS+zcuROjRo3CuHHjEAwGoWkaunTpApvNhltuuQWapsHlcsHtdqO8vBzQDVRdWPbv319k1wGI3pN9+/YV24YNG8bExERho9ntdhFxAECTKexVmM1mET+TJEloWf0jy7KIoVksFrGQos1mY7du3UR4GwhPH9LPczqdIjanj2uMvxnvpfl4xvieHsI3nqtP8bTb7XQ6nXQ4HGJsh8PB2NhYxsTEUCLJ3NxcZGVlYdOmTRg7dizcbjd++ctf4ssvv8Tnnx/ENdck4NChQ/j1r3+N8+fPY+fOnRg4cBD+8z//iGeeeQYWiwXLli3DgAED8D//U4B33tkMVVXx+uuvo66uDp988glWrlyJuLg43HfffbDZbDh69Cj+/ve/Y9SoUbj99ttRXV2NyspKfPjhh/D5fMjKyoLH40F+fj5Onz6N6dOnIyEhAVVVVTh//jw++ugj/PSnP0VhYSH8fj+qqqqQkJCAzp07o7a2FoFAADU1NYiPj0fPnj1x7tw5hEIh1NXVwWazIS4uDufOnYOmaVBVFd27d4fT6cSZM2danODrcrkiV4fTownPP/88p0+fTrfbLTTfnDlzOGlSOk+fOUWSPFdxliNGjGDqrcN54cIFqqrKDz/8gPHx8Vy2bJnQbiUlJczMzOTy5cuF6bFq1SomJyfz+PHjVBSFoVCIv/vd79ilSxceO3ZMaKt58+ZxyJAhPHv2LMlwkCA9PZ0PPvhghEZOT0/n/Pnz6fF4uH37djqdTmZnZ9Pn87GqqoqHDx/moEGDOGPGDPp8PtbV1bGgoEAcR4YnEWdmZrJLly4iRnjw4EHed9997NatGwsKCnjw4EEuX75cTCrZsGED9+7dS+j+o9vt5vz58zls2DDxID6fjzNnzmRycjIPHz4sHmTEiBHs06ePMBILCgrYpUsXrly5kj6fj36/nyUlJYyNjeWDDz4ozJgXXniBCQkJPH36tDB/Zs+ezYEDB3L//v3CnEhJSeHUqVNZUVFBVVVZXV3N8ePHc/z48cKEOX78OAcMGMClS5eypqaGe/bsocvlYk5OjnCfSktL2a9ffy5fvlzUvx05coRxcXH85JNPxEt48MFfMCUlJVy+r4WfMTMzkxMnTmQoFKKiKPT5fJwxYwYzMzNJkrDb7fzb3/4mbKZnnnmGqampLCwsFFSQlZXF1NRUlpSUUFHCIaOhQ4fyscceE7bX1q1babVaOXfuXJJhy/vYsWN0OBz81a9+JWyzGTNm0OVysby8XNhsc+bMYUJCgpjeXVpaytTUVI4YMYI1NTX0+/2sqKhgWloaY2JihJ31wQdhat+8eTP9fr8IUq5du1YQw759+wiATz75pHieX/7ylxw0aADLy8sb7cBwcWOvXr145txZYbelpaUxPT09wkhPT0/n2LFjiQ0bNjA+Pp7Hjx8Xgy1YsICJiYncsWMHGxoa2NDQwIkTJ/LOO+/kkSNH6Pf7+c9//pNOp5NPPPGEMDj1rvVLliyh3++n2+1mcXExAXDLli0kw0b0+PHjOWDAAH700UeCiufOnUubzcZt27axoaGB1dXVHDp0KPv37y9a1Pr9fo4ePZopKSmsqakR1N6jRw+uWbOGjfJaIEpvmbFixQrGxsYKFtU0jUuWLGH/gQN45MgR1teHl4vfsGEDBwwYIObjNzR4OG7cON5zzz3iPlU13D4XPp+PS5Ys4YwZMyJcnnvuuYdpaWnif2VlJUePHs1HH31UDL53714CYHp6usi6FxYW0uVyicYDNTU1fPXVV9m9e/eICbQ/+9nPmJiYKGa3KIrCWbNmcdCgQeJllZeXMzU1lUOGDGFZWZlodzZ58mROnTpVhKlWrlxJh8PB1atX0+Px8LHHHiPQNM+VJJ//8wpCAt94440w5YUUzn7oVxw8eLAQG263mw899BCTk5N56NAhwSX9+vVjWlqa8FgqKyvDvqp+gN6lT5cRHo8noqRTZ1Oyyd0pKSnhq6++Sk3T6PF4WF5eztLSUhYVFQlh7vP5+MQTT4jJGLoCys/P56FDh8T1KyoqOHv2bL7++uvi3LKyMk6dOlWcq7tYs2fPFq6SvkJl165dhXzetCm8VvTJkycZDAbp8/m4e/duQQy6PF2wYAEzMjLEfZHhxbmTkpLEtSsrKzly5Ejee++9In/R7oS0Dmwh4Xw1QEvpzbag1Xhca/j8sZH2Ld/rJSH/5d9DksKNlKWM34M4iT/8IUcgrb3jCcQ1P+G7Iui7PGhb5xibvH9XIAAW50OSJPx3UTLIcC9gdcV4mKTrwL69v/098l8ANBZxCmCoCG0Kf734+3Su212kH9huuCIatvzQ8EHOeryLdBQtn924pUlC9U3+CdA7XIH0bYTct1YOHQ2Ik5gqXYefrN+F5359h74RmhRe7j0sCjREivvm/y+GK76b1/eG4hK8C6Bvnz5N2yQYkAaEy+Ebf7Lx/yXg6kccmmKGEduaKz+p2fcl+PCqR5zWtw/SAZSUlACIXPaTxflY/8GJlk+8lLy7XJrrSob8lxYRMDVpT4YLofUK8u8CVz3i9GkGRfkvRkSDjZNVvgv8P21ta5/6tXjBAAAAAElFTkSuQmCC"
|
<image>如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙1.4米,BD长0.55米,则梯子长为()
Choices:
(A) 3.85米
(B) 4.00米
(C) 4.40米
(D) 4.50米
|
4.40米
| 69,766 | null |
4.40米
|
"iVBORw0KGgoAAAANSUhEUgAAAH4AAACbCAYAAACkqi+5AAAPTElEQVR4nO2dT2wb1b7Hv2eSlC6QYBEUCyGFNkkbki6QChILIAmJQ7iq1PAuIlcCpCyCRO0ueCUIFl2yw2n63ittKhawqESeBNjhopfQpKIt7QqJIt3YaSHhzyvcG4kFDiwIrT3fu5g/Htvj/+PxcXo+ktt45syZ4/nO+f1+5zfn2KATnRWQrqSwos4kYhECIIJHCpZZNcuEIlEKkkSVEICo9mCF58QXZnBgfBFxLqOPAhQZfYgERkU/xmKreO1wP1prOZESXS6+3QCCQc14kyU6cHS0HyvBI1g+3A8A0AAdALAai0AIATH6SnZtiZixXQiI0ZBRi0JKVr77Hj1Yxjfx7O2fzIQh9oURenrU3qYBxh1yYHwaOuMYWT6LWDyjLh86DMajGAlHwPOnVTeXFCKBPXuGsbcniI31BABAB4F4DOcRxB7ewN7uHquwqbr5RkAAEFheWsjUKATi324gfOSYjx9DUQkkkVhYRNfYOLq6evD9xjoAQGANI/+5glOv7cPiaeKZw30wdziEF8Dawv8hFP8HbkyfQsK06QLAZxsC4/35Nr6GuFDhIUIIUyPDHFu6zB49hf8+/z9ILCxChJ9BHwQs166BGbe9+L2GZ/v68ZejwOKCYS6IBMg9oFE0y8cLZfcbDzMaAcD+rr345vsNxE6EkQ6G0QeBpfNLGAuOmQdo5r9m9EckwPSDAICnR57B0vISACCxsAh07zOdALJ9vNK98QjYZh4AHurpwso701hmEK8f7geRwOKZdMbMW9ij+3iUkdgqSSOPEwqC0VWdM+EQ41ZmRyfTlWV5FHUmFISRuAEYjafIeJQj4QhJMjrzCgWs/cMZHUkjgUMSC7MnsO/YMfSZo/7YiTCWGUSX+A7HjqnArtnJTbZpgBEcrFMznL+5d3wsiNPTz4JdT7tWopARI3Bz0yfPK0dnQrapCEWitinQSYaDI1nmQSEf1apTU65eISm5dt3loUorSQghCpdxbHCWdR6jaDxZ/TdXGvu9Dms415oroDG0A4RVKKcSAhDmOf72/AQ++N95L9qtqBIC0Ip2wozYWfm6Sk291euFEOjo6MDm5mbFjVV4ixCi4iyqVrpI/kmcf1+/fr3SKhQSUJHwuXfVwMAALl265GmDFP5QkfC58cDQ0BA+//xzTxuk8IeKTb2TgYEBXLx40aOmKPykbOHdgofe3l7l55uUsoUvNG5Xfr45qcnUA9l+XiUBm4eahXf2eMsqqBtAfmoWvre3FySz/LxK58pPzcIDwODgIC5fvgxA9fZmwRPhh4aGcOHCBQCqtzcLngg/MDBg93hFc+CJ8L29vQCAtbU1L6pT+IAnwgOq1zcbngmv8vbNhac9XmXwmgfPhHcbzyvkxRPhrbH74OCg6vVNgifCW2N35eebB89MPaD8fDPhqfDWeF75efnx1McDqtc3C576eED5+WbBU1MPqAxes+C58NZ4XuXt5cZz4YFMr1fP5uWlLsJbfl49m5eXuvV4FdnLTV2EV+N5+amL8IDq9bJTN+HVeF5u6trj1bo6eamb8Pv371fr6iSmbsILIZSflxjPhXcmbZSflxfPhXcmbZSfl5e6mXpArZ+XmboKD6jxvKzUXXi1fl5OfO3xav28PNRdeLV+Xk7qLjyg1s/LiC/Cq/Xz8uGL8Goennz4IrxaPy8fvggPqF4vG74Jr/L2cuFrj1cZPHnwTXi1fl4ufBFerZ+XD1+EV+vn5cM3Uw8oPy8Tvgqv5tvLg68+HlC9XhZ89fGA8vOy4KupB1QGTxZ8F16tn5cD34UH1Pp5GWiI8Gr9fONpWI9XkX1jaYjwajzfeBoiPKB6faNpmPBqPN9Ysn4/nmkd6XRmp9aqQStwa1Tzm+VOrl+/jsHBQfX78x5Q8+/HixYNrW0CAoDWVlh0L1Dr5xtLw0y9Wj/fWIoIT+i3dKRu6UjdJgjDFaRu6dB1qwiRNsuk0w5T49ieumUcm9ml2/uGBp7CpUJ+3lnHbUcdrnVn2qrT0e4Us8unVMLIoojwAlqbgIBAi2n+RYuApgnTBeyGngK0XRpadwmINKETAAj9NiHaNLTu0tCiEWn7ghO8DXvfk08+gauXr7ic21mHgAaCerG6rbYC+m1A7DJdlk6krDa2CQgdUNIbFDf1QkBrcQinA9DMbFtbG3S7NxGmLoAO6ELASsqJFscFz9n3UF8vgBas5fp5HdA1YZ5KZOKNYnVbH8i8Aez3rc73hMoSGxSK2bMurqbTMKE6IJxHaAKtuzT7ZQeDxS5uzr7Hn3gCl938PAtUo4TzBFtGphw+MCuFLiBaAP02Ac3Re27fNm4I3a7BMMcaoIHQLZ9PgJpZpcu+J4eezF8/LwBBy7yXWbeiIuxxvHMMr7VptkU3IPRbgNiVEV4IYQR7tv8WaLH2k0hbAZnIxAhw2fftxg08NTSEf/3rn9BvEWjVIAQhiArqJnTL3UCgZRfAou/FjrpZqhnHZyVwCkPoaUBryVyuWhM4TgKBAC5evGjn8BWVUXMCpxBMAzkmwFPU+nn/KSo8U+bYGHXVXa2fbwBFhRet5ni5pb5iqHl4/tOwlK0TtX7ef6QQHlC93m+kEV49n/cXaYRXT+r8RRrh1fp5f5FCeLV+3n+kEF6tn/cfKYS3UH7eP6QSXs239w8phFfr5/1HCuHV+nn/qUB4vXQRD1AZvGowZMx9rkm6TWPSQbIS4f0xDmr9fDVYU0xcOmfe8zUNQohq1Kx/z1fr56uAgLNzkiz6iLsK4c3prnVErZ+vDmc3yb922ZpVab/ra/ZVZF8FosikU53I1UyKqD4XNZ6vnIJOkQBdpk9JKTygen2lOKUNjwoIYb40AU0IzCzEs8qXJXx8YQafxLPvqXp7XzWerw6SeOc8EQoCkdgqSGI1FsH0+AHEHBrmCZ8bSBOreHV8Gmk6Fy4CrIPyJO1IXvX4atCNqdZI4MbyMJ453AcA6O/pyivZmrvBCgat4cDs0TPAaBD7D1gLGoAf//9HgJovUXexc3g5t78Zyf/8Rj9OLCyiNTyGPtMuh199FiPhCMb7rWupA3RB13WSZHQmxEjsYw5jmHHq1B1lvvrqKwYCAZ47d86tiqx6qmViYoJzc3M11dGsFLp21vZkMsmTJ0+ys3MPx8bGuL29bZeJRo4SRrxHAIyuOutKkzRMqzvxKEORKBn/iAgeyTu5rutcX19nZ2cnT548Wd2nK/LBSHJubo4TExOe1b0TWF9fZzgc5n333cepqSl+u7GeXUAnQ8GM2NGZEAHwk7izULqw8OFw2Ojh8ShHwhGjzty7UCc3Nzf58MMP880336z9U+WwtrbGQCDgeb3NyMrKCg8dOsQHHniAkUiEyWQya7+tTDxKjB5xbI9zBDA6sU0B4a27xHpZwueim2YjmUxyYGCAk5OTTKVS1X42VwKBANfW1jyts1nY3t7mu+++y+7ubj7++OOcn58veUx0JpQRWSf11Y8JgJHYala5/OFcIoZlBu0IezUWwb69e9yDCzOYuOeee/DZZ58hmUxifHwcf/75p2dB150Y3f/00094/fXX8eCDD+Lq1auYn5/HF198gYmJiZLHLi+dRnDsMAAdFAmMHvgPAE/ZEb4NSaYtQ5H4OM+fxyKhbDNRIl6bmpriY489lmeKKsVyK7l+vtaAUTaseIkkr1y5whdffJGBQIDHjx/n5uZmeXWQXI1Fsqy0/crR0wLGOdOMhEYosqLANEPB0uY+90OQ5PHjx9nf38+bN2+WLFsKNz+/k8RPpVI8d+4cDx48yP7+fr7//vueu0s3Ckf1RSjnss/NzbGzs5OJRKKaU2TR0dGx4/z8L7/8wrfeeouBQIDPPfccr1y54uv5qxK+XObn5xkIBPjll1/WVM/ExATPnj1LUu7eXk7bVldXOTk5yfb2dk5PT/OHH36o6HivKFP4dNa7UskFJysrKwwEAlxaWqq4cRZzc3N8/vnnqz5eBj788EMODAywu7ubZ8+e5W+//dbQ9kDX9fJsdw1cu3atZJavGM06nk8mk5ydnWVnZyfHxsb46aefNrpJNjB6c7pkwVwqNUu1ZvkCgYAn8YIfWNm19vZ2Tk1NcX19vfRBLtTT9Nfk4yttmJXle+ONNyo+VzPk7Utl1yxkiFOQ24hSbXKWr6b5yWSSg4ODFWf5ZM3bu2XX8q9p44XOpa5RfSG2t7c5Pj7OQ4cO8Y8//ijrmHr7+UrFuXnzJqenpxkIBDg5OVnzyMVvGjL16q677kI0GkUgEMDQ0BC2tray9tMl3Vvr+nm3Op2UO7fg6tWreOmll/Doo49i9+7d+Prrr/Hee+/hkUceqapdDaPBN17BLF+WSzH/bpSfL5Vdk9GUl6LhwpOZLF+p7Fytfr5SgRqdXasnUghPlpfl89LPu1kUi2LZtZ2CNMKT5WX56vl8/qOPPrKza3Nzc/z999/rch4ZkEJ4Z4+7du0aOzo6srJ8zv1e+/nM3LXS2bVm9OWFkE54MpPlm52dzSvr1Xi+0uzaThKdlER4NwrN5avGzztFc2bX3n777fy5aztM4EJIKzxJ/vrrr65z+Ur5eUs86/9q5q7tdKRdOwcA9957L5aWlrLm8gH58/DoSM7QsS78559/zpq79sEHHxSdu8Y7aHGGNMJbFz334u/evdvO8g0ODmJra8teV2eVdWbdhBBVZ9fuqPX4jTQ3lWJl+S5dupTn56udu9YMD1TqQVMJT2ayfO3t7VxbW6s6u3anCFyIphOeNLJ8bW1tPHjwYNHs2p0ubjHyVsvKBF2+wGdrawtnzpzB/fffj5dffhkvvPAC7r77btfj7yifXSFl/vyYn5i/LFhk+4ULFzA8POxno3Yc0kT1AEDjd85yNlp/aIidCEOIFoyMjECMvgJiDeHwjHmsZPev5DRc+Oyv6GrJLyAAJD6GEALvfLcXOtMgifR/jUETfcDeLvNYZdYroeE+vpRcOuN4uv+vGAlHsHzqNXu79tA4IqERiK4eYwOtygq5CoWThgtfir+fOI0VDCN+6pi9zdK4q2sf0GOuArXvICV6OUgY3GUgEhgV/dgXieKd18ZLFVY/K10BUnQPur0hwLVvcAHA3u6e0pXYZl5RDlIIL9zeCEBz+9ZtF/tk2axc42WMEhRuNFx4Iv/pGgBAJ9i3DyMAvtu4Ye7VMzdGImZ/W6MV0OeOClxHCQqDRqUMy0LPfB+P9R0uuq4b3/5Q4JseFOUht/Am8YWZsr6MSVEc57OLfwOQfcMOI3b8FgAAAABJRU5ErkJggg=="
|
<image>如图,已知△ABC中,AC=2,BC=4,以AB为边向形外作正方形ABMN,若∠ACB的度数发生变化,连接CN,则CN的最大值是()
Choices:
(A) 4√{2}
(B) 6√{2}
(C) 4+2√{2}
(D) 2+4√{2}
|
4+2√{2}
| 69,767 | null |
4+2√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAARcAAABvCAYAAADG1YTMAAAxz0lEQVR4nO2dfVwUV5b3f9XtGzMmZGdgaZJWjIBBQSE6jowhAQUVo0aMOKhxJ84THcW3xZEkZgTRxCRGUMmISkbX6GxMiPKm4IgKUSJGXjQS7QaiYFTYiOjOYGQNaFed54+miuru6qaBpruV/n4+iXS9nrp176lzzr33XIaICA56JBzHQSaTCb+JCAzDAABqamrw7LPP6ux34KAjOGpOD0ZfcfCKJT4+HiEhIbh9+7YtxHLwmNDL1gI4sB76lgoPb7HU1dVhzpw5eOqpp6BSqeDs7GwDKR08Ljgslx6EWLFwHCf8zTAMjhw5gtGjRyMyMhI5OTkOxeKgyzgslx4Gb6XwioZlWaxevRrZ2dk4fPgwRo8erRN7ceCgsziUSw+DYRhBedy4cQOvvvoqPD09ce7cOcFacSgWB5bA4Rb1QBiGQVZWFgIDA7Fw4UJ8+eWXDjfIgcVxWC49ALGb09LSglWrVqGgoAD/+Mc/4O/vL3mOseCvAwfm4qg9jwHtDVXi99fU1CAwMBA//fQTysrKEBAQYNQF4hWLOPDrwEFHcCiXxwBeQfBKRF/ZyGQy7N+/H0FBQYiJicHf//539O/fH0D7ysNhvTjoLA636DFCHKzlaWlpwbJly3D27FmcPHkSQ4YMEfYRUZeUh8N1cmAKR814jOA4TkexqNVqjBo1CgBw7tw5+Pj46CiDrvYKORSLA1M4ascjjtitETf23bt3IywsDPHx8di1axf69etnC/Ec9GAcbtEjjr710NTUhOjoaFRUVKCoqAienp7gOA5nz55FeXk5GhoacP/+fZSVlQEAysvLcffuXbi4uMDX1xcAMHbsWPTu3RtPP/00/P39ERgYaPXncvDowzhmRT8+lJeXY9asWZg6dSrWrFmDvLw85ObmIi8vD8OHD8f48eMBAAMGDIC3tzcAYNSoUfjFL36B+/fv4/z58wCAK1eu4MaNG5DJZDh27Biqq6sRHh6OqVOnYsqUKUIw2IEDUziUy2PCJ598goSEBEybNg0VFRU4f/48pk2bhqlTp+Lll1+Gq6trp69969Yt5OTk4MiRI8jJycG4ceMQGRmJ+fPno2/fvhZ8CgePEw7lYue01yNz9+5dLFiwAGVlZbh//z7Gjh2L119/HdOnT7d4wJWI8ODBA+Tm5mL37t1QqVR47733MH/+fMd8JAcGOJTLI0xZWRmmTJmCBw8e4De/+Q3ef/99jBkzxmr3LywsRFxcHP71r39h06ZNePnll40e61A+PQ+HcnlEWblyJbZt24Znn30WqampCA0N1dlvqcZsznWOHDmCt99+G//2b/+Gbdu2ISAgoMv3dfAYQA7sBo7jjO5jWZaIiBobG8nf35969+5Nu3btspZoJmXj2bt3LykUCsrIyNDZzsvuoGfhsFzsDDJhKZw5cwbh4eFwcnLC2bNn4enpaWXp2kelUmHGjBmYO3cu1q9fb2txHNgQxyA6O8OYYomLi8P48eMxdOhQXLlyxa4Ui3ggn5+fH7755ht89dVXmDVrFpqammwomQNb4lAuds7t27fxwgsvYOvWrYiOjkZpaald5V4hiflJrq6uOHXqFNzc3PDiiy/i1q1bNpLOgS1xuEV2TGFhIaKiosCyLD788EMsWLDA5PHWnEhoyn0T8/HHH+Pvf/87vvnmG8eYmB6GQ7nYKQkJCdi1axcGDhyIF198EYmJiVa7t67i4MAbuEQEBgzQwU6ohQsXorGxEQcPHrSonA7sG4dysTNu3bqFyMhIPPXUU1Aqlairq0NOTo51hSDoKZA2BSP92zQsyyI0NBTBwcGOIK+FkbIgTVmwNTU1VovXOWIu3UxHMrkdO3YM/v7+iIiIQEREBE6fPo0vvviiG6Uzgr5lQnw14fR+tw/HcZDL5Th48CA+//xzZGRkWEREB1r4HD5ipBQLy7J48803ERoaivr6eqvI5pgV3c3orxWk/+KJCBzHYfXq1Th48CBycnJARJg+fTqKi4vtY5KgoGxker/bh39eV1dX5OTk4MUXX4SPj48wA9tB1zEV+yIiXL16Fb///e/h5eWFixcv4sknn7SOYNYeWONAl2vXrlFgYCBFRkZSY2MjEREFBAQYDESzHW0D4Djhfx1DPABv7969FBwc3GWpHJjHf//3f5NCobDqgEseh3KxIZmZmaRQKCg1NVXYtnfvXgoKCrK6LKwJraG7p+OjbcUjdDUaDQUEBFBmZmaHr+PAfJqammjevHkUEBBAlZWVNpHBoVyshPjr3dzcTDExMeTl5UUXLlzQ2a5QKKi4uNgGElqPvLw88vLyIo1GY2tRHktKS0vJy8uLYmJi6Oeff7aZHI6ArpXg/eKrV69i7NixuHPnDr799ludSX4ffPABgoKCrDqzWQqCCuuGy8EwjPDfsHWXLHJtjuMwadIkDBo0CCkpKRa5poM2Nm/ejFdeeQXJycnYvHkz+vTpYzthbKbWeghiiyUtLU3S/2VZlurr66l///5UXV1tbRF13J6L64YRAIo8IIq1HIg02Nap+4jK4sKFC/Tkk08KcSZr0JEJlOZM1LQ14udpaGigCRMmUHBwMNXX19tQqjYcysWCSFVIjuOoubmZFixYQL6+vqRSqSTPjYuLo6VLl3a3iCbRKpahlKAybIRfzgLBdy1dalVFnWl6+o173rx5tHHjxs6IalGMKRJ7UDDmKMT8/HxSKBS0YcMGK0hkPg63yAKQkcXIAOD777/HyJEjAQDnz5832gWblZWFOXPmdJ+QJiAikDoBUesqMGzdAST4to7IlTq29V/GyH5T6HfDz549G7m5uR0V12LwY5CMdeXaQ3IrU9M5+LErb7zxBrKzs7FmzRorSmYGNlZujy0sywr5TT777DPhKyj1JaquriZ3d3edAKd1c6CwWssEM+lLCZuEo0sUP0zXciHq+pe9ubmZnJ2dDcz47np2fXn5+7AsaxdWSkeorq6mkSNHUlRUlFVdy47gsFy6gaamJrz++utITk5GUVERXnvtNWGwnNSXKDs7G1OmTIFcLhe2WXPBMQ0O4uBBALNmYRZJjChWH0RGJTBs1iz48uYKdf7LTq0WXt++fTFhwgRh4GB7lkRXEV9X/C5++OEHu7BSzIGIhKV5o6OjkZaWBmdnZ7tc09uhXCxMeXk5Ro8eDWdnZxQXFwvzOGQymaTC4DgOhw4dQkREhJUlbUOuroAawDC/oWAYuWiPtsIeXP8uKhCJhIShbY2wk22R9ObCRERE4NChQ2AYRigfazR0/l4JCQkICQkxSAtBdjjlrqmpCX/4wx+QlJSEkydP6sySl6pbNn8GG1pNjx2pqamkUCgoKyvL7HPq6+vJ2dmZmpubDfZZwzXiOCKWDlAkQMPWXdLdR7o9RVrXoWsy8c/EuyGNjY3Uv39/unfvnkgmy7so+tdsaGigl156icLDw6mhocHi97M04rErUnXFHnEoFwvwr3/9i6KiomjkyJF07dq1Dp2bnp5OERERkvusEwfQNnapnqIvZ4HAtCoWC9+V4zhB0QQHB1NeXp6F72B4P/7foqIicnd3t4ueKnNISkoihUJBOTk5wjaO49qtH7aOI/X4iYvUajqaY4qTxPT2srIyzJ07F6+88gr279+vEzeROl6f6upqDBo0SPJ4c87vOlpz2i9BDRV84ecnx7v8TNtZaSAuqlvuyg/OA4Bnn30W169f7/S1zCknfv+mTZuQnJyM9PR0vPDCC52+Z3dDRLhz5w7mzJmDhw8fory8HG5ubsJ+c+qFreNIjpgLDF8CGfFV+eP4/R9//LHOaEixYpG6rhT19fVQKpWSx1urcvDpW3wT1CAiPHz4EMQR6ED3KBZ9BgwYgB9//LHT5/PlZCqoefv2bUyePBlHjx7FxYsXrapYjNUnfcTyf/XVVxgxYgTGjRuHwsJCHcXyqNDjLZeOJNrh+emnnzBv3jw0NjairKxMUA6d4ccff9RZ6N2aqSp59FUYw3Q821xXeOaZZ3DhwoVOW2p8mRkrt5KSEsyaNQt//OMfkZCQAIZhhIZsjbI295kYhgHLsli9ejXS09ORnZ1t86kgXcFhuYggvWTTUl+ckpISDB8+HP7+/jh9+nSXFAsA3LhxA0qlUriX+P62MmutrdyUSiWuX7/e6ec1Je/mzZsRERGBPXv2YP369ZDJZELPlLWfUx9ewfHv/vvvv8fo0aNRW1sr9Do+0lg9ymOnmNMzs3HjRlIoFJSfn2+x+3p4eHQ4CGxJ8vOPk4+PD/k/H0BFRUU2keHChQsUEBBARJYLQjY2NlJERAQFBQXZzVwbfcTPumvXLmHAJZF0fbSnxeXMmQPnUC7UfoVuaGigsLAwCg4Otni3Zd++fQ26Fq1ZiXx8fAjasAsFBgZa7b5i6uvrSaFQWEyxlJaWkoeHB61evZo0Go1dNVT9Z2xsbBR6Gs1psLZWMBqNhuLi4kipVLartB1uEUy7H4WFhUJg7eTJk3B1dbWiZD2LzsZbxGzfvh3Tpk3DJ598gg8//BByuVzS/bGFS8RxnM4zlpSUwN/fH0qlEqWlpWYlzm7Pbe9O6urqEBISApVKBZVK1X6Q2Tr67tFA/6uydu1aGjBgQIfcBfF4CnPw8PCg69evmy+khcnPzycfHx8KCLAPt4hl2U59ne/du0eRkZEUGBhItbW1Ro+z9ZefZ8OGDe262LYepyImNzeXFAoFJScnm31Oj+8t4iFRT8WtW7cQFRUFJycnnD9/vkPWCn8Nc7/C7u7uqK2txcCBAzsutAUIDQ1FZWWlTe7N8z//8z9QKBQADL/M4u5/Y2VaXl6OyMhITJs2DWlpaQZDAsR0l8ViSj4xfN3q3bs3Ll68aLJu2XqcCgA8fPgQb731FnJzc3H48GGMHj0aLMuaLGOeHuEWUav5qG9Ck8is5LsnCwoKEBAQgGnTpuHo0aPd7gZ5eHigrq6uW+9h79TV1cHDw8Ngu7hxGWtou3fvxuTJk5GYmIitW7eaVem7A2PykTauCQA4cuQInn/+eUybNg0nTpywGxebJNwrIkJNTQ0CAwNx8+ZNXLhwQei9MreMe4TlYk6+Do7jsGbNGnzxxRfC+AJrjDlxd3c3qlxsMebFFtTV1XV4kFhTUxOio6NRUVGBoqIiqy301VEYhkFLSwtWr16N3NxcHDp0yG66mPn6JdU+Dhw4gJiYGLz33ns6EyQ7Uid7hHLhMVYodXV1mDVrFhQKBb777jthoXdrNGyFQoG6ujrJl9YTFAugLX/xQML2UKvViIqKQkhIiN2tQa3vHlVVVWHOnDnw8/PDhQsXbLoOlb5sUvWrpaUFy5cvx9mzZ5Gfnw9fX18hEC2euW6OkukZtdcER44cwejRozFv3jxkZWUJisUYUiZkV/Dy8sK1a9d6jCKR4ocffhBiTu3lJdm3bx/CwsIQHx+PlJQUu1IsgK41vHv3bowbNw6xsbHYt2+fzRe4ay+Go1arMWrUKBARzp07J2RNlLJuzKqvFg0pP0JoNBpheY/S0lKbyWEq5UJPgE+58NNPP0nu53tMmpubaf78+RQQECA5HsSeelbu3r0rjF25cuWK5DH2JC9R2yC+tLQ0ne1dkbNHfi5ramrw29/+1iBQZQvc3NwwfPhw5Ofn20wGW5Kbm4uQkBDJrzrHcSAiVFVVYdSoUejVq5dOAi7+GMA+elY4jkNJSQlGjBiBAQMGoLS0FF5eXsJ+0utAsAeampowe/Zs7Ny5E0VFRYiKitKxHrskZ9f03aOHseU9bElSUhItWLDA1mLYhMjISNq1a5fR8Sf8++KHxdsz77//vsWnh1gKqfItLS0lT09PiomJ6ZYF6h4r5SI24fQLs7m5mRYtWkTDhg0zuryHraiuriaFQvHYrkBoTHEYS9DN71u4cKHkciz24FKIZaivr6fg4GAKDQ21elY7/cx+UvukSE5OJoVCQbm5uUaP6Wo5P1ZukbFIeGVlJUaNGgWO41BaWmp0eQ9b4enpiV//+tcoLi62tSjdgrHgX35+PoYPHw43Nzcdl4FflfLhw4coKSkxeF+2cin03QWO43DkyBFhXFR+fr7Vx66YCqxK7bt79y5mzJiB9PR0lJWVYcqUKUbP73I562gq4ojl2v6z/fehY0hp6s8++4zc3Nzs1qzmvw72sCiatZFaFC09Pd2o22ovS4CwLKuz3ndZWZmtRTKLoqIiUiqVFBcXZxUrWcItejQViz737t2j+fPnk7+/P1VWVtpanHbhl3M11rvwOMGyLH377bc6y7mKe+/UarWNJTRNZWUlBQQE0Lx583QSi+tji3lMxmaA83OZTp06ZTVZHkvlolKpyMfHhxYtWvRIdfGuXbuWZs6caWsxrEJYWBht2bKFiIhu3LghLPBlqrHaEj4htn7eFX3sZWIkD7+GdFhYmFnxIEvKb1K5cHouEmegeERulMQ1pN0rc10vY8dJb+dl3blzJw0c4k3pWZmtMunKaA9mtTGam5tJoVBQcXGxrUWxOOJyz8vLIy8vL9JoNMJs25SUlHbPsyV88qnAwECz8q7Yg9ynTp2y6RrS7VguhgpA52+9xi35N+kqHlP7yNhxZlz73r17NO/112ls0O/o6tWrJFYqxp7FHvn0008pKCjI1mJ0GxqNhgICAigzM5NWr15t80GM7cFxHJ0+fZqUSiWtWbPGrFiFrd0hcUInW6XRIDLDLdJVAMYtCOON2Nx9ejJIiit9fllZGXl5D6XYt9+ih8LLlz5WY2dmqxQBAQGUnp5uazG6hb1791JgYCAFBQVRREQENTY22sVX3hhr167tdKzC2s/FsizV1tYKZfvPf/7TqAwdzTvUGRgi/ckyBK51HWCmrUcJYBjwi1Aw/HFgJCYn6Z8v/m1qn+E1oJcwW+raKTt3YOP69/DJnj2YPHmyiWsbu5f9UVJSgoiICBQXF0umIngU4TgOly9fxpgxY9CnTx/ExcVhxYoVdjNSVZ/a2lrMnTsXDQ0NmD59OpycnIR9DL+ukw3Qv7f4d3V1NQ4fPoygoCD89re/RVVVFZycnAzq0Pr1660iqzArmkAgSWUBgGmbUSnKsAGGCCRWQtqtYEDCWjjaQ/ljjO8jiWQ7jDhxkN61f7p7F/P/30I03W1A8blzUCqf0SqkRxwiwpgxY/Duu+9iypQpKC4utvmEt67Az569c+cOxo4di169eiE3N9eqS2Z0NHVFVlYW3njjDbi6uqKurg47d+7Ev//7v+Oll17CwIEDbboGs/69+d/Hjx/H5cuXMXv2bDz99NPCGuRyuRyxsbG2UYiCmWQQozA0oyTdlw4EXdvbxwdlTR3HshoqLimhIb5DKWF9guADGwSf2/ltTxjz0VeuXElTp061a7dBCl5e/rkaGhrI2dmZvL29ha5nWyNeTpbn559/pkWLFtGvfvUrcnFxofT0dKqvr6f6+npKS0sjFxcXmwVHjVFdXS3Z07Zx40by8fEhDw8PSk1NJSLru2lmD/+3l+qdlJRE7u7udOLECVuL0u1oNBoKDw+n2NhYW4vSaU6dOkVOTk7k6+tra1FMolKpaNiwYTRx4kRyd3eXVIL19fXk4uJCZ86csYGEhhibJ1dfX0+urq60YsUKWrRoESkUCpsodbOUC0e2+dqLNe3t27cpPDycgoODhbko4i+PvY0vsBT37t0jHx8fu5po2R78e9uwYQM5OzuTj4+PXY83Sk1NFdINhIaGUmZmptFj9+7dS5GRkVaUzpDm5mZasGCB5LwrIu3I59WrV9PatWtp7dq1tGjRImH0tzWtF5PKRXCVrCWNEYqKisjd3Z3Wrl2rlesRcxPMxdhzXbt2jXx8fOjtt9+2skSdo6GhgUJDQ0mpVJKvry/dvHlTZ7+US2ILGhsbacaMGTRmzBhhYTpnZ2eDwWbi91JdXU0eHh7WFFMHlUpFvr6+tGDBAkmFXVpaSgqFgn766SdBuTQ0NJCLi4vVR6rb3axo/UqXkJBACoVC6K+3h0ppCxobGyk8PJzCw8PtdhQrEdGZM2fI3d2dPDw8aObMmTqy2nr8Bz/Klqhtns1f/vIXIW7Hsiw5OztLuhD8da5du0YeHh5WfRZeZmMJncSMGTNGsHJ55UKkDSeEh4d3v7Ai7E658DQ0NFBwcDCFh4cbHbas/6XXDyQ+Dug/Y0xMDPn6+po1StTafPTRR+Ti4qJjZdojpsauhIWF2Z1bdO/ePbNWZTx16hSNHDlS+C1WLhqNhnx8fOjChQvdLa6AXSqX/Px8UigUBjNmeyJi5cL/vXfvXnJzc6ODBw+afa6pbV1Vxv/85z9p6tSp5O3tTa6urpSenm5119XY/cTPxg8wmzp1qtEPVm5uLimVSmpsbDTIM8MHdC0x6tXcMi8tLSUvLy/JhE5S1xC7SgkJCZSQkKA9ljj6uaVJ2KffSyum9ROtu4/TXkPqeH04TkMscdZRLsYsDH00Gg3Fx8eTUql8LOfXWJLS0lIaOXIkjRw50qaZz0pLS+nXv/41ubq6UlBQkPBltDfrMTMz0+wVA2NjY8nV1ZV+9atf0ZkzZ7qtK7q9RmpOQidjsCxL8fHxhhak5DgT8+XS32MsIsuyrO0sF7H/S9T2VZkxY4bdjIV4FDhw4AB5eXlRWFhYtyhkUxVt6dKl1Lt3b/Lw8NBpANZWLFLWHS8Dn4HwueeeM3AJjD3bvXv3yMXFhby9vYlhGHJ1daWwsDAqLCy0qNzGyomfJBkUFES1tbVmLXErtV/rFsUJ+429yXavbeRM/e3irHg2VS5ipNahtbcvnz2j0Who+/bt5OrqShEREZSZmUkPHjww69yOlnNzczPt27eP3NzcqE+fPpSUlNQZkS2O/seKSLdnRSoIbky5LF26lP7whz8Qy7KUkpJCQ4cOtfgHz1i5SyV06oiLKVZEa9euFdwikwiXZ1v/3979WIPEXSxxxHG68tpUuWg0GoqNjbX7mbGPAhqNhgYPHkzvvPMOBQUFUd++fSkyMpL27dtHDQ0NJpVIe5W3vr6edu3aRRERESSXy8nJyYkmTJhA9+/ft/RjWAzx2JWOKNDi4mKDQWdxcXEUFBTUrWN1OI4TEnyLA81diV2JA7o8LMsSW5FBACjzkulyechdojCAGIYhAJSU3bHc0zZbcfH69et49dVX4e3tjXPnzrW7GJkD06SkpGDIkCH44IMPAGhzpebm5iInJwcrVqzA8OHDMX78eADAgAED4O3tDQAYNWoU+vfvj//7v//DuXPnAABXrlxBbW0tAO2clZqaGkyaNAkuLi5wcXHBf/3Xf2HKlCk2nWNjjLt372L+/Pmor69vd+In6c1nY1kWb7zxBpKTk3Xq43vvvYfFixcjMjIS2dnZFl+P+vbt25gzZw4AGCxOb+mJnRW5WzB8+ptGr03EgmG0z5eTvB1LLrE44deBVNuiiYNWS9DNr0EDABkZGQgMDMSf/vQnpKWlORSLCcxpwHfv3sXGjRvx4YcfCtucnZ3x2muvIS0tDY2Njdi4caNQab///nskJCQgISEBSqUSDMNg0KBBwraamhoAwNNPP42tW7fi6tWrePjwIb799luUlJQISZ2lK2fbwuvWVj6FhYXw8/ODn58fioqKMGDAAKPH8kuUinn33Xfx7LPPIioqStjGP8OOHTvQq1cvnXWTO4N+mRQWFmLEiBEYN25cuwm+21uN0vg9WRCxAAC/V2KhIRXCABADAK3tUhBLJsj4A3ljhp+u3MK/xm7GiGTskJ3TRfjgmo+PT7vLezhiLubzzjvv0Pz5843u72hZpqamUlRUFBFp4xbPPfccLV261OykztZ+dw8ePKA1a9aQUqnsdI7YyspKcnFxoRs3bggBSX2XJD4+njw8POidd97psszWSOgk5RYRsaQhFYWJ3CKpSckXszcRAAJj6A5lbV5MACg6MZPYiiwCZBSdqB0btDQMhImLiciKS4vU1NQgMDAQLS0tKCsra3d5j568dnJHqKurw44dO7Bx40ajx3S0LIODg1FYWCisy/z+++8jJSXFbHfAmu/u+vXreOmll6BWq6FSqRAcHNyp64SHh2PUqFEYMGCAsOA6b9mIV3WcO3cuDh8+jKSkJACds87q6uoQEhIClUoFlUqFF154QdjXWevEJJIiipKnSFigw6e/qbVCVRmIjfBD6LIk4ToRf96JzC2L4ekNhP3nCWRu+RNqfriKpCVhGJ98CeOPX0YFOOu4Rfv370dQUBBiYmLw6aefPtL5SeyN+Ph4LF++HG5ubpL7O1NZlUolmpqa8MEHH6CoqAgzZ87sqpjdwpdffonAwEDMnz8fWVlZJt1rU0rgk08+AcuyRnPMiJVl7969UVBQgJSUFBw4cEBomFLXl9p25MgRjB49GpGRkZIyd4diJkYsD3/9Ntl08isB4MTaaNir0JAK3Pa3kKXmhH0FR6txLf8rpBzfhporV4DLx8BM+hje1Xn4qvWYbg3oNjU1YeXKlfjmm29w8uRJ+Pj4SCaFctA5ysvLkZeXh6qqKqPHdLSyqtVqREVFwcPDA3PmzIGnp6fdvTO+Xp09exb5+fnw9fVtNyGUMflv3bqFuLg4/P73v2/3vnzCJTc3NxQUFCAkJATOzs6YOHGi5PX1g8WxsbHIzc3F4cOHJdcn72hSK3PhpTAWI9PdzkHWqoB4eeTwxZTo8bhaUwmZny9QkYntJ77CR0uS4YMq/OfOAtCyJKya7ousrSkIXTYFQ4ksZ7nofyHVajV+97vfQS6X49tvv8Vzzz1n9AEdtI/4K8j/HRsbi7i4OJNfbI7jzLZe9u/fj7CwMMTHx2P9+vU4fvw4gO5/Z/ryGbMyOI5DeXk5Ro0aBblcjvPnz2PYsGEAOv/FX7p0KRYsWAAXF5d2XRzxfk9PT2RmZmL+/Pm4ceOGSflramowevRo3Lx5ExcuXJBULF15hq5g+G7bZNCXZ7DnUBABmXnHEbpsE96K8AWjViMf47B1WwwAIP9oKiaHhWt7nCwRONLHnNmbDrqGeHmOriLOD8JPy29qaqJ+/frZ1Qxsfji8qYmFHeH06dNCrhnp4Kcu+sewLKuTTkIqkJ2Wlkbu7u7CTGX9ILH+rG1LBsPXrl1L8fHxBtsfcpdoHGN6nIswII59SKTOoNBlSYLsidGhlJR9kYiIMrcspujNWdqT1BkEjCN162A8i6rKpqYmzJ49G6mpqSgqKtLp0nPQNUj0NXz48CHefvttbNq0qctjLmpqajBmzBhoNBqcP38ePj4+AIBf/vKXCAgIQGFhoXBstwQb24GIcPv2bUybNk1Y33jGjBkmz9GX05jcQUFB+Prrr9G3b1+z5dFfj1yhUOj85mlpacHChQvx3nvv4cSJE0IXtr6lID6HDyRbEv37cZWZ6C0bjpMEvDq8NzZnqQAAWVujwUxcLIRiNi+dpJVH3htMzHHkb1sFgAMLNfJ2ApOn+4KgtVQmhE8HAFy6UgPgJHwnLtE+m6Ueory8HM8//zzc3d1RUlICT09P7cOYqJC2qKyPKuJK8vnnn6N///7tNrL2yMjIQFBQEFauXIlPP/3UoJFFREQgJydH+G0Ls/3rr7/GiBEjMHLkSJw+fRpKpbLdc/TlNCV3RxeOJzN6h9RqNUaNGgUAOH/+vNAzKnWuOdezBCzLggNBNvRVYSwSEYtVM/wAcJixcifoeKoQoIndkQ8i0o5Py9sJAGAYOeTwRT7lYxhkIBBSjnGYMUx7kh/fw3Q8FYCFArrbt2/Hhg0bsGPHDoMKb+rFOrqbOwYR4cGDB1i9ejWysrI6HQBsaWnBqlWrUFBQgIKCAiFuoU9ISAj27t3bRalNU1VVhebmZvj7+xsEQBMSErBv3z6kp6frdNfaAv5D2J4y2L17N+Lj45GcnGxguetbEWSFQDkfVuUtXA4EGRjhLwIJAVwpGIZpVTgc9G0RGbT7OBDA6S8DxJmnXEpKStC3b1+DCiAeal1WVmbWV8VB52EYBps3b0ZQUBACAwNNHltQUIBBgwYJFiQPP+3Cx8cHpaWleOKJJyTP5zgOv/nNb9DY2IiqqirBXbI069atw+TJkxEQEABA2+CuXbuGuXPnQqFQQKVS6QSsu6tHpT34e968eRPl5eUICAjQkaWpqQkLFixAdXU1zpw5g8GDB7d7ze5ULILiIl3vQCb0HWn/Mn8VLxNGAhhAZhgYbvctcRyHuLg41NTU6BRGSUkJ/P394ePjg6KiIodisQK3bt3Cli1bTA6Y41m2bBnq6+t1tmVlZSEwMBALFy7E/v37DRSL+KvMDyLjB9RJHddVk/769es4c+aMMK8GAA4cOICxY8caHbtia2u3oKBAmB7By1JWVoaRI0dCoVCgpKTELMXSXbS0tACQXriN32c12qLD0lmmVCoVeXh46PRKJCYmkru7u2SSosc1ebY9sHTpUoqJiWn3uPz8fJ2lPDQaDb355pvk5eXV4TSHe/fupalTp3ZUVLOIjY0Vel/u3btnMqM9UfdOKzCnt2jJkiXk7Oys0xaMJXSyxfQVU2kuWZa1eppLwS3irRKxdUJESE5OxvLlyyGXy3Hnzh388Y9/RGNjIy5cuCA5KpTsbMDV40JNTQ2+/PJLVFRUCNuMlXVqaipiYmIAaIeaz5o1C0qlEmVlZXjqqadM3kf/muHh4Vi2bBlYlrXobOC7d+/is88+w8WLF1FeXo45c+YgODgY58+fN9p7YwurRez6FBcXY8yYMZDL5UJI4M6dOygtLTWYJGlNWfl3FhwcjD59+mD37t0GEyy3bt2KQYMGCe6ntQQzSmNjI7m4uFBjYyN9/fXXpFQqO5R42TH50HJERESYlVO4traWXFxcqLm5mfLy8sjNzY1SUlI6fD+xBerr60snT57s8DVMXffjjz+mBQsWCF/+jIwMyeO7cxyImPYsl8bGRnJycqLVq1fT6dOnDRI62QslJSWkUCjo3r17lJCQQGvXrqXbt2/bZGkRiYXo29i0aRNu3LgBd3d3pKSkIC0tzWBimK0CbD2JM2fOYPbs2aiurm53TEZ8fDyam5vRu3dvfP755zh48KDREaHm8s477wCATkqHrsCyLLy9vTFw4ECwLIsvvvhCiNkVFhaiX79+Vl1LGgASEhIAGF+k/aOPPkJGRgaeeOIJVFRU4IsvvkBISIgVJTSOfhv8j//4DyiVSvTp0weANlbXq1cvpKSkALCed9GLF45hGIOuwOTkZAwcOBBPPPEELl26BBcXF5SVleH+/fuoq6vDa6+9BplMpiOsQ9lYnlWrVmHDhg3tKhaWZbFnzx4oFAo8/fTT+O6779CvXz8UFhaiubkZVVVVWLFiRYcrVkhICP7yl79YTLns2bMHP/zwA+RyOZ555hmMGzcO1dXVALQD21xcXJCVlQXAPtxslmXx17/+FQMHDoRcLsd3330nLFJfXV0NJycnqytDMeL2RkRISkqCn58f5s6di5aWFhw6dEhn/pl4smV3lm0vfeF49uzZg5s3b8LJyQn9+vWDQqEAy7Lw8fGBm5sb/Pz88Nprr+mc41AslodXDK+//rqwTVzO4gryt7/9DT/++COcnJzQp08fIb4SFBQEuVyOyZMnd6oyhYWFITIyEvX19TojUjsDx3F48sknsWLFCrzyyivo1asXlEqlQZc5j60VC6BtC3y59u3bF8OGDcP//u//wtnZGQEBAXBycsLRo0dtLSYAbXm5ubkhNjYWe/fuxc8//4x169ZJzj/r7rLVcYuIWKxb9y6IASrVFaitrcXAQQPwS6f+cHV1hZOTk+hUw0E13QExANMqoW73mtT9rSOTtfn555/xi1/8QhhZaaxSVFRo39mQIUMgl8sxcODALt+bL/PPP/8cI0aMgJ+fn8E+QAbIWIAzVlll0L4b3etyIOHdmiULtWVP03nPjBxozbSmLxvDyIUsbDzSZdgmo3AuAZAxUKvVqK2txYABA9C/f388+eSTrYrb8LmsjbGUDxzHITExEXK5HLGxsUbPN+YGWkQ2atUufFHzvqd2rxxAC9DaqSRu3Nq/WXR3YyZiAZkcMhjer62ySdM2GvFxR9vYpMY2WAUZgSEZODzUzobl2noeiRhINUC+4ZvbOBlGrp32wmgAjjH80MgYMCTTq596ZSGhhMQfL+FarXWsbZ/hR8vwPNsi9bxVVVXo168fBg8ebHSqTTcrF5Y4MAaNkABwxEHOyATBtKa4qPBFyXy7C/4e+l8b7VePAxg5GECnUvUE+PJgW98RD8dpIJNZNk1PZ3xzQxdZW284sJARWj9cHbieaNi6QUMH/3EU100SrCMZMdDNhkQGI0o5jgMj020FSycy2HFCtEEGgAuBmgq0c2vsIB5kz8i0w3RbTavWjUQEEAmVViaTiSqKTMhG1d2KBQCoVQbeUuLvLQMDplWx8PsNztX7Sj0O6CvRFZPkQjCeYRjI5b2x+ZDaovc01oB4Nw3QNn6+vIn055kAfKOXQd6qWDiYa7WILVCO075XjmvLigZhxLBuPQbpzX9plY2TGd5XJjO0cbcfJyyZwOCQSqN9VpaQGC2HLxOKChu7Q48CMq1V0lpQotgGwxAuHUpClko/kQ8LmfHc35YXUHQvhpEbdXOISOdf/vjHBannA/gGACRlq0BEuJi9CbERfshUm58kypx7S11L3MPIK3utfNqmzHGcUKeyNi/WfgwYBszExWBRiejozWbdnyFAdTgJDMOgV69emLAiudUNapND53h+GyNSxmhz1RgyTL7FSdRpllOhEtF4xbetHsXuyMeSCaewYvnWDszL6T7064NN3GIjyGQymTBzkmnV8BwegsNl/DlCu76JYYOVGWzvRhGFLyLHafT2cchOXiLkwZCFL34szVTxMhj6FgELNapOjMfLrwwFAAz31va6MGS5UaLG8oyIFY44iTXvqspkMqAyEwwjR8oPXq1LXBBoazh6MX6Al3lzcJjKLMSc0MYUOFUmClJisSwpW9dNFpWRbn1tDc7qPI/coDtWsN5FiqYyNw8yL0/wH1/+qs96haLg+yuwA91iqFjtqP7LgLYyItKanzL0RvKyv0I2cSK8/KT8SvOmn1sCbaXRmtH6sQQWlTh+eTBYtrXSHvsEhMfPHTKlJCoO/QPMspfxXOs7WhozE+OXJmKGn6zb34+4O1wmk7VZvq3bOFJjgu9MhC7bhIKU2DZ5fCOQGB0KL6/2Z1oTEbK+Z1qTFQEYFoGszYux8/iJNiup9f76LiP/9FINTkcZitBaNtp9eXl5mDxpkhCU5o/0bF1Q7lGnu/MpydqM2LaCztyyGOzECaDjLZBLqme+sne/3ymO9ehTmX0UE5b8WTebF9rcIfsxELuP6upqFGyPhZzR9haFbWFRkKLterTWV0y4D6O7LXvrNuQz4/DXbSsN5PH09IK3GcoFDGOQI8jTczAADmAYcFSJiTIZGGY8KhnCpuWhYJjxUIHDpcOJYBi5QQyqLdjM6cRi2m4pBws1ju4kTJ4+tFXutjpWXX0Foc89WgrGmFvbncgYcDpxDFJnIJ+bjFhPDicm+AhRcSlsHdPYueMtvDpcrk3PJ1J0LNSYwDCQMeNRAQ5JS8LAMGFQE4tLhxK1eVEOXbKd4B2AiAwsMfH7yD/2N2ReZMGSBlmbF+PV4XJkXrKe5SYO6orRkAo7V32C6E3LMVRivEDEqlSdWIYxxGfyd6m+ehXREydpXS/GF3mkwrgJQ/H91qWgCUsRhpO4knUIfz4BZG3+E2qqdVdHELtEMlEsRnwjmboKzLKXMUzUgUFEYKsy8daOAkwOC29XdntCyvrtDuUirguytt4fbeNcvvMkdsROB8MwgnY2JoQt/DsOJFSy7ce1JnGi92UwjBzZau0eOdoq3OXkZWAmLUcYCnA5+zBW5suQuWUxaq5UPxKWjTZoqt8IWxVpRSZ2YBFm+MkggxyvrFyCMAD5xw5bUUBp5dKr8jLyAQz28pYMlvK50MyF725moca2ozLsiOWtGQ4Vh/4BHy/CCXYi3vYC8jEO2wvykb/tTZzISwVaU0ULFrqgUMTlygefOYABso/nY8hgDwDQUUArVswEJi7Gqum+PcM07iA6OYa1/2jHB2Rtjcb27du1Fdp3JvhKbFAJWn9yVipcsUnHEAeGX98WWk0Zu/0rZGxehO2fbBWOU2cfwbAhDI5z4VjlzSIf45BScAz521ahIE+b45N5FLoT9cuYAP61ZR07gcWTJgm7ZJVXkA/A03uItaQDA+0wBZaMl6Wxj5BZAxxFcRwA+HjZdmw79ledqxw/fhw7rwA7Ymcg69hxACexdPE2sFDj8gkICaSF+zEAOBJZhdr6r/1syaAhFXb8ORUTJrzaVs/UB8EwDHZgEejYTl2hHBig7SnkUWe0LRHAEV06lEhLkrIMprzrYIO8UByJlj0Qy6POIExYJGxLWhJGmLCIiLTLHwDapRT018l95Gh9ZI7jaMkE/jm0zzWeAYEZR5eIfzbbPSNLagoFhDWExe+KUx2gpGwVsR2oQBzHUeaWxZSYdUlnu4ZUNB6M8D4To0NpSes9vzu0SVsHJG7TtkkrBf/7YvYmYrSOEUGr2ohhGAJAm7JNr2/uQPc9a5WLOoMw8U9E1FrUXOt6JImi9WFsmGCOJY44TqNTGcXicBwnrK1CREJDy6x4QBruISVGhwqKU3UokRC2qPU8az1B19DPYSIsEi7819oQWt8hJ3FOdyEuQp33w2kEpc4vZM4Sp5W9Vel3hO+yPqLFSW318WL2Jvoo65K27oZqn1tDKhqHcVRBHLHEad+7uA4bewapj5UeUorQkXXRdBlg0+LxQiU9pNIW8qKJbRWXb7BibJUEiuM47X+tX2TxgyUtCaNM1UPtD3UGYeJiIiJ6QCoKRaiwUFPispcoevMh6wpuQTScYdmzpE2iZOvKLlUv9BWhVH1qj4zNi3SVKQNC6zsVfwQvZm+iccs3CectmQBBufGytVd3OSKdBFBiC0fY5lAqZmEyE50+HKcRGri1Ed+TZVkidVZrJdP+t/mQWruPOMpMWiSqcIlCheZIusLZO5Lug5FXoLXypPMhWx1OJIPIneucXFLKoR1FIVgk0tnidOQwQyTxdR6VumMtpMrj/wMXJ20rwVNcOQAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是温州某公园的一个圆形雕塑,在某一时刻,太阳照射下它的影子AB的长为5m,此时,身高为1.5m的小芳的影长为2m,则这个圆形雕塑的半径为()
Choices:
(A) \frac{15}{4}π
(B) \frac{4}{15}π
(C) \frac{2}{3}π
(D) \frac{3}{2}π
|
\frac{3}{2}π
| 69,768 | null |
\frac{3}{2}π
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAAB6CAYAAABwWUfkAAAVOklEQVR4nO2dbWxT59nH/ycZTVUyma3Z8LRMCbMNLkbDCDSChmpWHB5azDCCFj4wiUrVKHGqhS6PoFpaVjUfus0ZqZTQTExtqvGBqgQnChpucbUwwmDLpETPnBeaBKUKm0JZqSmpmoz4/J8Pjo+P7WPHTo7tY5qfhPC5z9uVc93Xdd/X/SqIJAWEEQEUSEf9HQ0YNr4IpyVyxSL5SUFYhQwdSieIAdQ4a3Mg0iKZoCDRiRPVb0KorMRKS3Q6ScXfi2gbSdECIopr/50LrHwC4kURhNxtixCEyLH89yLapkBuk4IgAAPtuMhK/MIk4MPKlYg26AKQwdBPAqEyfZF8oAAx7rf6pA/Nv3ACAOwrDXE3CELh7A8R8mrcItqmQO5+2xteQHNzMwRBgGDZjViLJSkrlwsWXXceEamMDbTjIrZKyvS3u7FyhSlcHQcQcu2CICxWwvKQrwEABtoh1HjBD1oAhHQ7PDoCwAQoGO2iJech7io7EdItPX6RFMmqSkhpdpebck6fPs3bt2+TJEVR5CL5gUDG+2GSkouWW+/k5CT2798Pr9eLTZs2wel0YseOHTCbzVnLmIvMj1AZzaiiGAIExMbMAHDp0iVMTk7iiy++QE3NixgaGsKPf/xjmEwmHDlyBFeuXFmwQAr5bhE1IMlUHfDMzAyNRiO7uroov6+np4e1tbU0m80sKSnhwYMH2dbWxsnJSXX9zyLzBpGfwagTyuVvkK2trbTZbAkfODIywsbGRtpsNgqCQIfDwZaWFt68eVMdiReZF4g1Z5HxSg4fiaIYZ9XJCAQCPH36NPft28fi4mJarVbW19ezt7dXFeEXSR1BFEWmGi5xtnL2zjvv4O2330ZXV1c6RQT+9Kc/obOzE16vF8FgEDt27MBPfvITPPXUU/MseBZJmfnkDrlVzzfE8vv9rK+v57p167h06VLu27ePf/zjH6XQLZNoJSyMliOY8Do1mFPRYWFiP85cZXXs/ckYHx9nS0sLHQ4HCwsLuXnzZjY2NnJkZGTOex8oRDKicHUVPy+LJtWxaiWmpqZ49uxZHjx4kCUlJTSbzaytrWVPT49q78gJYurRTSZQbDBJlXfeeQetra3485//vJCiI2mT6pUrV9DW1obOzk4EAgE4HA7pX1FR0YKerSUIWWvz7EFU2oJfsADSqYGT0W5cFMW0PUE4dNu8eTMLCwu5e/dunjp1ihMTEyk/Qyvlc6bL5FgWpGgyVFZv2bJFDVnS4vbt22xtbeWePXtYVFQkhW5+vz/rsqRLonpPJpW/YEWHrbq7u1sNeebN+fPneejQIZaWlrKsrIwul4s+ny+nMsVyzn1Y6ixC5WGK7KfL1ZCVdy9I0eEc2dTURKfTOed1apDKs3p7e1lXV0eLxcLi4mLu27ePp0+fZiAQyInrDg54CCHSEyiSZL+HAFjl9mRFhgVbNBmqKX/nO9/RZIvX+Pg4f//733Pnzp2hble7nU1NTRwbG8vK+0X20w5wW5U77py7yk53e3aKGlUUTZKNjY1JrVoL3Lt3j2fOnOGBAweo0+losVhUDt3iy1hPQxWBrexXCK48DVWhMQBZQDVFT01NUa/Xa9KqE9HV1cWamhoajUbq9Xo+99xz9Hg8nJmZUeX5YWtO7p5jM0fkWM0soJqiyfyw6jCxZfXg4CDdbjfXr1/PoqIiOp1Onjp1irdu3Up4z5zMlsO/9fxz3nKphaqKzkerlhP+yBMTE2xtbeXevXtZVFTE9evX0+12c3BwMOE9iswq2t3+f/OSQ01UVTSpPate6EebmZmhx+Phc889R71eT6PRmDB0i+/e7ecTQgLX3e+ZrYgpjQNQv71bdUXLrVo7rVBzk6qsPT09Uuim0+l44MABnjlzhvfu3WPiyli0Vfvb3bNxdGJFqv3tVFc0qT2rlqPmBxwbG2NTUxPt9tBIWofDERe6iaIYUiwSj6yVro35X00W1KmRiOnpaZSXl+PChQuwWq2J2tjzpsMhlljZSeLzzz/H+fPn4fV60dnZidLSUuzevRt79uxJ+A2ySUYUDQBvvPEGurq64PF4MvH4nJJKJv3www/R3t6Ozs5OaTTN9u3bsXPnThQWFmb8/bFkTNFhq/b5fLBYLHPfkCd8/PHH6OvrQ29vL0ZHRzE+Po5gMIju7u64a202GwDg61//OqampjA2Nobx8XHs3LkTZ86cWZDC01W26oqWC1BfX4/R0VG8/fbbar4i6/T19aGtrQ0ejwe3bt3Chg0bsHHjRqxYsQLl5eUQBAGPP/543H2XLl0CAAwPD+PmzZv461//ir/97W9YtmwZfvazn8HpdEYZgfzbKSlyQcVdBsp9iUAgwJKSkrwZEiSvqPl8PrpcrqjesHR76BJV/Hw+X1RPW01NTcrPnm9lMqOKJsnjx4/z4MGDJLXU6Z+Ys2fP0mg00mKxZKV/W97TZrFYeP78+fxoMIklEAjwW9/6FkdHRzP9qgVx+fJlVlRUSB87F7z33ns0Go202Wz8+9//ruqzM65oMtqqtcbg4CAdDgdLS0vZ2toadz7bXkgURTY1NVGv13Pv3r2qdadmRdFaK6vDM05qa2up0+nodrs5NTUlncuFPLHcu3eP9fX11Ol0PHbs2IKeRWaowUSJ48ePY3x8HG+99VZGns8Ua6ScbdxwOBzQ6/X4wx/+AJ1OlxGZ1OA///kPfvrTnwIA3nvvPRQXF895j+K3mE8OnA+ZtOpUrDB8jd/vp9FoTMtKcs3MzAyrq6tpsVjm/f2ypmgyUlbnqvbt9Xqp1+t59uzZnLx/obS2tlKv189rIGZWFZ3Lsrq5uZmlpaWanPGRKOMrpXd3d1Ov1ytWHJPdl1VFk7mpgTc2NtJqtaY10F/LjI2N0Ww2J1V2LFlTdDiXZduqvV4vy8rKODExkVaRofXGnbGxMZaWlqbsxjOuaKUPdvToUf785z/P2PPDDAwMsKSkRJPuWol0M1dXVxf1en1KsXbWXTcZGpOl0+ky6kpv375No9GYtxWvVDl16hQtFsvsCJfEZCWOpkJcd+TIEQDAiRMnVH9fMBjE1q1bsWXLFvzqV79S/fla48iRIxgZGUFnZ2fCa7LWYBLLrVu3sGrVKly/fh3Lly9X9dnV1dX417/+pTjoQSnT5TvBYBDbt29HRUUFXnvtNeWLMu5bklBTU8OamhpVn9nb20u9Xs+7d++q+lytMzExkbSSm5PKWJhMlNUOh4ONjY1pyfGg8Morr/DAgQOK53Jq0aSyVc9XKV1dXSwrK5M6KL5qBAKBhBMocq5oNa3aarWm1YjwIHLixAnFRYRyrmgyYtULca/vvvsurVarilLlJ+GFCbxeb1S6JhSdqlUnyggzMzM0GAxxf9xXlXCml88KTbgdUjZZvnw5nn32Wfz6179Oel2isMjn82HZsmXYtm1bJsTLCyiLkp955hlMTk7iH//4h5SmCUUDwLFjx/DWW2/h1q1bUhpTDPE9Hg+efvrpBy4+TofYv33v3r1ob2+XjjWj6OXLl2P//v148803pbRk+3fI0zs6OrBr166My5hPOJ1OSdEkc9tgEsvIyAhLSkoYCARSvufq1as0m80ZlCp/0ev10pxuzVg0ABgMBjgcjrTavzs6OuB0OjMnVB6za9cudHR0hA5ynOniSNeqV61axWvXrmVYqvzE6/Vy48aNJLM4CjQdnn32WZSVlc3Z83Tjxg1s3rwZ//73v7MjWJ4RDAbx6KOP4vr169GVsemp/0r/cskvf/lLNDc34+7du0mvu3z5Mn70ox9lSar8o7CwEJs2bcLVq1ejFV308ENR/2cDJYdiNBpTKqtHRkY0NSVXg84RZrMZo6OjuQ+vEsW+dXV1c1r10NAQTCZTpkRLGy3G8UajEUNDQ8kVHevKlVx7IlefrBhIpYgwGAzY8ZQDv2s4EXdd+N7RkRtRFh0rpzztq8qaNWvw0UcfJVd0rCuP/X966r8oevghFD38UJzyw+npnJO7vump/+LlV+pw8s1mfP7559I5+f13PvsUSx8pltLl5+W/v8rK1ul0uHfvXnquW/4R5WlqfchY1xeOq5tPNim6xUAggGXLlgGIz4Qks1rX0Crf/OY3cefOnbkVPZdFyK1TTTi7vXGysnpychJLly5VvD8X5aXP58Njjz2GdevWqbJ9oxo88sgj+OKLLyKKXqhVqu0ew3tVGwwGbH3CjtbW1rhrgsEgCgpyXp+UeOGFFzA0NIS+vj7U1tbmWhwAwJIlS3D//v34OFrJMsNWHXsunB57Tp6ezjl5ZpFfd+ylo3j99dcxPT0dlf7QkiIseehrUfeG/ycZVzfIDvEZL5dB1/3797FkyZLUm0CnvpxWuYEuPZxOJ994442oNJ1Op9hUmquBgB9e9NFsNtNqtc45VSZbMo6NjbGsrCy1ESa5VjIZGcY7PR2RpaysLGsr6SciWl1BpUQFsrdDTm9vL61Wa/LeKy00h4ZZu3YtKioqovqrv/GNb+Czzz6Luo5Zbp0SIHfNBVJif0eDVM8QBAGV1Q2yuwpCi4JmQda7d+9Cp9PNHUdnokY9HwRBwPHjx6WyGgi1+vj9/rjrsqpsxmxCRqDBVYk1zgvopwiSCLIfaK6NUraAzEQGsX+73++HyWTKfRNoOlitVlRUVKClpQVAqB13ZGQk7rqshlazrwp/4IbqStQOm0D6sHr2ZAFXo7HdDV/zBQxG3SyqL07M3z4yMgKz2ZxfigYQZdVGoxEDAwO5FglA6AP3dzSg9qQPnhPNMScjPxlVB8/s5yeJoaEhGAyG/FO03Ko3b96My5cv51okSXUnm2uxtdoNpyXeowyP3gBACFkqVUhCFEVcvXoVmzZt0t4Ik1QI18CnpqZoNpu1McJEDO2I0+CRLykZqYW7tsUvyJ7pEMvr9bKiooKkxsaMJYIk5OVZuAbe0tISP9oxR3BgED4A3zetjjvn72xA8wcFcB1+MSo903UJj8cTGU+X0SyVQcJW/Ze//CX3o0DFyEYp4Z3pItsmhCzd7vpNVHo20Owo0HSwWq2wWq24ceMGAoEAhoaGAERbNbNg4WQovhKwGk8+b0dtc6giJgDAQDsKBAvgcuNi0/9G0rNAeF1ws9ksCZo3xJZpXV1dNBqNPHToEF9//fUcSTXLrGhVlZFNUgBkbUvCWF566aWo1RE1OQo0HbZs2YL169fj0qVLUXONcocI5bBJlq7qVu/KmEwmnD59Ghs3bgQSSJRXvPrqq+jo6EAgEMD777+f9ffHW4ly7xUpa7ETIumZ4N1330VxcTE2bNggEyIPeL5SiHKHALi1+jfSeZvNxsOHD2tsfnTMDnVZeuvMzAxNJpM0hThc3OWFosnQXsuRGHUgahfXcFm9du3ar/yKB42NjdKKB/I6Td4o2lVpj9qD2V1lj2qAsNlsPHr06OIaJgnWMMmPMnqgHc00YTUEqVy7MezDyhUG6ZJXX30VbW1tWLNmjdTp8SBDhTr0iRMnYLfblXfOy3q2mweehqqoHVvdVXYCT7B/thwMuyibzcbXXnuNer0+auSJKIoP/PJTOV9nbKGIDMWmgiCrkFUejpyXKTBcVrtcLu7evTvxM/NY6Uqyz8zM0G63s66uLuF9mnfdwkA7TuIwRFGEKIY68vnBych5WXuxzWbDd7/7Xaxfvx537txJOBtTi1NnUkVJ9traWjz88MOJl4cEtO+6/e1ubq36reI5Jbvs6uqiyWTiJ5988pVZ3XfNmjVzru6reUVXVabfjFhRUUGPx8PBwcG8Wq87XTS/XrcysgYGkWS/J0mbsfIoynD55fF4pMYTr9fL8vLyhCvwx6blS/mtuRX4M0FIFcmHzFqtVno8HpJz76mRL8oNo+k9NeYmqNqeF6IoRlk1STY1NWl2l5x06O7u5vLly9NuAdSAomdj4UTp87Q2URSjrJpc3Pcqj0nuvmOtmgztZGcymaS+Wi26bblMoigyGAzS5XItaCc7bcTR8+6vK0g6iiQ8Xkq+VKLFYkFPTw+6u7vxzDPPRE2y1wryWPnTTz/Fjh07cOPGDVy7dg0GgyHJnUlQJw+qyAIMTMk6layaZMLdZrXCfHebDRP7LXKu6KSuU5RfN5PsdFJiy2r5O+faPzoX5O3+0dlEjPuhYNUKOaS7uzurO8IrZfCzZ89KO8KrHR3kvaIT1dZjsVqtPHfu3Bz3Rj726tWrWV9fT7/fr3CVevT29rKuro4WiyWjmSzvFR2LkosnQ1a9du3alJ/j8/nocrlYWlrKsrIyulyueYU1iZ79/PPPS8+uqamRnp2pKCDvR4EmJzzyMvT/t7/9bezfvx979uyRrigrK0N5eXnUXYzZBK2vrw9tbW04d+4cPvnkE2zYsAEVFRUoLy+X7rXZbHFvv3TpEgBgeHgYN2/exJUrV9DT04MVK1Zg7969cDqdWVv58AFXdITp6Wm8/PLLuH//Pnp7e6X069evY2JiQjquqKhAUVERgNBE+7Vr10rnHnvsMQDA6OgohoeH8eWXX2JiYgLBYBDd3d1x73z88cchCAK+973vwWAw4Ic//CF+8IMfoLS0NFN/ZkIeeEVHWWcK46nDVggAExMTGBwclCbX9/X1IRAIAAhlnGvXrknX6vV6rFq1Sjpet24ddDqdZvbG/FquBVAT1zYBJy9Gjgsg4Dft/8QvdqXuHpVccCp8/PHHGBsbk47lmSC2KMgJGSn5s0hs5aWqMjLRzd/ulnVxprdAzEIrRVprWtVGE+gCkFsKMYDrF7fiyV2hqasWk7y5sEB2XXrPnQvXNiFqYRpBEFBQUImBnK4wFk3eK1rOQMcFCK4npbVDXDW7Ya/6XdwKBGo70eb3iapKwOMXIc4ubemuEmARNKTsXLsUVZj1kp6GKgqCQCHFmYxquVeR/dxa6VIsRmJXOcgVD4ZFz5roRe9JnPtnECIJT0MVdq8pQHt/yKKoEFyoVUEa6LgAYeWK0PNkr/m+yQ7fR6OqvGOhPBiKhgjMDgt2WkKzOXa96IIdwEVvaDugkFLVX+4JALwfePGkfTsAgLJIzmBYCUiZKTPvTpUHRNEF8Hgvoup/QntTCgCEgY9Ca4oYTQDEWUNT/88l/PC+CWx3zq5dMus5BACjox/Bbvq+JCMgxq3HkjVyXXaoRWhYcOh3eN0QYKs0MS9j4U6/h5XVDdKhKEsHIqFersl7RYdjZQHR86fl03YySWheWEdMajC0xMW2Q0wev2dv8de8V3RWEWMP+2mHwHP9sjFe/nOEkL2MliqLip4nCT2Jhtx1GFEU+f9btjigT+8/TQAAAABJRU5ErkJggg=="
|
<image>如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()
Choices:
(A) 1.5
(B) 2
(C) 2.5
(D) 3
|
2.5
| 69,769 | null |
2.5
|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAAB1CAYAAACGYelhAAAYPklEQVR4nO2df0xb57nHvwfapbshcSM5iqWeXm/DBDemG63XrlusAjem8TbWuhoRTHNVR0LiNm5vzA1dmIZErsYkppKUaQljo1G93UzNVG5N2vTWCY5iJKTSGYlc1QYSTAqBCbdEKo1p42j2ee4fxgf/trGPsfnxkfhxznnf9zznvM/7vM/747wvQ0SEDY7hGQbdA5FnD8BJA9gHJhci5Q0FuRZgLThziXCkGjA7OHBEICJ0HmGgYKoxhg2v/wnZFApAzBiuw4Dn9oEv78fODOBI9RUcfflUTmXLNZtCAcYufABm7zfBMAxCC/y3StSw3pjKnWB5wKZQAMtlC36o1gAAaNkEEIDi4r0AE7QJXE5kyzUbXgEIDlj+AGi0+5ZPBEwAA2Bq6gbUJd9aDlmwfJmwmZRhwysAM+YCY/jhircfLPFj/WjutkJTrQkPzzDYBK+FZ8M/ab9lACXfkPHHgeznYDA+DzzTiGPPPZIg9iawBLTO4Tgu5CDiGjnpAEDvOFcucI53CAwI1S+ld48NBkO0MTuCnBdOokzbDAaIaul39jtw7DnFqtIjouXqYWOxYRUACGYaIVFNl07GbiRl2NAKAARK/8bIquywsZ1Aisz8TeDUrZKNrQARRX9mZnbTtfOTcV+uBRAWDkGd/uKLL3Dt2jVMTNzApQELbkxcx8TEBB5//HHMz89jbm4uLCbLsiguLgYA3H///di/fz9YlkVJSQmUSiW2b98OhmE2VP0PbCAfYG5uDleuXIHVasXVq1fhdruhUqkgkUjw4Ycf4tatWygpKUFNTQ3q6+vx5JNPhsWfmZnB9PQ0AGBpaQl2ux03b97ErVu3MDQ0BJZlUVVVBbVaDbVajT179uTgKYVnXShArFJHRLh+/TrOnj2L/v5+fPnll3j66adRVVWFyspKlJaWAgBGRkagVqvR3d2NwsJCmM1mvP/++ygtLcXPfvYzaLVavuQnuq/T6YTNZuN/xGIxamtrodfr48ZfF6xxv0NKJOp4WVhYoJ6eHlIqlcSyLDU3N9P4+HjMsKOjoyQSiejcuXNh530+H5nNZmpoaCCxWExyuZxaWlpodHQ0JRmIiBwOBxmNRtqzZw+pVCrq7e2lzz//fNXPQ1xU/1XM8LFT8CeUMRXyUgFi4Xa7yWg0UlFREel0Orp48WLC8OPj47Rnzx7q7e1NmvbQ0BAZDAaSSqUklUrJYDCQzWZLWba+vj6qq6sjkUhELS0ttLCwkHLcUFLtcRSyXzLvFWB2dpYaGxtJJBLRq6++SvPz80njTE9Pk0Qioa6urlXfb3R0lFpbW0kul5NYLKaGhgbq7+8nn8+XNO7c3BwZDAYSiUTU1NREbrc77Hq6XcqxYgXS2sAWwOPxUEtLC4nFYmpra+NLVbKXOD09TVKplH7zm99kLIPL5aLOzk5SKpW0fft2qquro3PnzpHH40kYz+1287KfOHGCvF5vajfkwv/2dx4hBPqyCNUvEUdOeuml16LDZ0BeKoDZbCaJREKNjY2rMqdut5vkcjm1trZGXeM4LqHyJFOs2dlZ6unpIY1GQwBIq9VSb29vVCmPlEen05FUKiWLxRI7kD9koCoog9NMAEht6FwJt3zuSKc5oZyrJa8UYHZ2ltRqNZWXl9Pw8PCq4i4uLpJcLqejR49mR7iIe5lMJqqtraVt27aRSqWiM2fO0PT0NB8mVKFsNhvJ5XL68Y9/nFShOXKSGkx45i9z0vAMdfY7hHsQyhMF4DiO7HY7SSQSam9vX3X8xcVFKi8vp4aGhixIlxiv10t9fX2k0+lIJBKRQqGg9vZ2cjjCM8rn81FraytJpdKoa6GYTx4h4N/IGcMgmU8eIbMzuS+yGrKuAKk4PiaTicRicXwzmSAtj8dDKpWKdDpd2jJmSqhcFouFGhsbiWVZkslkZDQayW6389fffvttEovF1NfXF50OOUmdBTOfiJxaAJ/PRwaDgWQyWcxSkUx5vF4vVVRUUG1tbUpe+lpjt9vJaDSSTCbjfRqLxUJ2u50eeughamlpCY/g/B8CsGLm12AeSs4UYHFxkTQaDalUKlpcXEwaPlIZvF4vaTQa0mg0eZn5kYyPj1N7ezspFAoSiURUW1tLxcXF9NOf/nSlVbHs6CWv5zNv/gXJiQI4HA4qKSmhxsbGlDIvMvN9Ph8dOnSI1Go138RaT9O2pqen6ZVXXqEf/OAHBIB27txJN27ciFsFcBxH5DQL7gAS5UABLBYLiUQiOn36dNpp1NXVkUqlimqPJ2vq5Rq3200dHR3EsizV1NTQvXv36PZnC1RfX08ikYhsNhuZTx4hJsIKOPo7w+YwrtueQIfDQTt37kzq7CXixRdfpPLycrpz546AkmUPjuNoeHiYdDodicViOnr0aFhzMZibZrOZxGIxuVyuQIYvdwAxTKBJGK7Y/tCoGbFmCrCwsEDFxcUZlXyj0UgKhSLKZ8jHUu/1eslkMlF5eTkpFArq7e1NXF1xxPsIYZYtoncwbvw0WRMF8Pl8pFaryWAwpJ1GS0sLyeXyhD1v+cDMzAwdO3aMJBIJ6XQ6GhoaSjHDAqVap9ORVqsNuxI19V1AfV8TBTAajaRWq9P21tva2kgqldLs7KzAkgmHxWIhrVZLLMtSe3t72orq9Xrpqaeeora2NmEFjIMgCpBIw00mE8lksrSHSLu6uohl2fB6M09YXFykrq4ukkqlVFFRQefPn191GpHvjuM4mp2dJZZlyWw2xwy3bqqA4eFh2r17d9wJG8kepKenhyQSSdz42SSRbA6Hg59M0tDQQOPj4+kP9caJZ7fbSSwW8x1k2fJzsqYAQS1erccffFCTyUQikShhv3m2iPeyz507RyqVimQyGf3+97+P24ElVGb19fWRVCpN23qmQtYU4MCBA9TR0bHqeBzHUV9fH4lEorApWtkmXqa53W5qa2sjiURCtbW1ZLVa16TVEbxHa2sr1dbWJpQxE7KiAOfPnyelUkn//Oc/44aJ9zAXL14kkUhEQ0NDScNmE5vNRnV1dbR79246fvx4zhxQr9dLcrk8o76TRAiuAB6Ph1iWDRsBiyRehgZ7Ca1Wa0r3Ekoxgul4PB564403SC6Xk1KpJJPJRH6/cP3u6WK1Wkkul5PX6xW8MAiuAM3NzdTY2Bh2LhWhh4aGSCQSZU3TE+FyuchgMJBYLCa9Xp9QeXNFXV1dWnMlkiGoAkxNTZFYLE46uhepEHa7nUQiUcwx8nRJZfqX2WwmjUZDUqmUOjs7s+psZYrb7SaxWExutzv/moFBgfR6/ao7MOLN3c8WCwsL1NHRQVKplDQaDd/Wzsfu5EiamprIaDQKmqZgFiCooaGlP9lLHR8fJ4lEEnfuvpCZYrfbSa/X0+7du8lgMJDL5RIs7bUi9B0L9W4EUwCj0UjHjx9POXyiuftCdKpwHEc+n49MJhMplUqSy+XU29tLHo8na71q2SQoZ2Njo6DdxIIowMLCAolEopT7v4Nz9yOdGqEyY3Z2lp+Xr9PpUvrKZ70ogsvlIrFYnPTbhFQRRAG6urro8OHDKYWNNXc/05cfjG+xWKi2tpb27NlDbW1taQ3IrAdF0Gq1ZDKZBElLEAUoLy+PWcoiX2Zw7r6Qjszi4iKdPn2aZDIZqVSqNXMmcwXHcfTOO+9QRUWFIOllrACjo6MklUqThos1dz+T0jY+Ph42IJOLMYNc4fP5SCwWCzJCWpDJ4gAE4C9/+Qv0en3CcEtLS6ipqUFZWRl6e3v586Hf/FOcZQoiz//tb39DZWUlfvKTn6CsrAwulwu9vb1QKBQJ09lIFBYWQqfT4c0338w8sUiN8Kcy3SQkCMuyCYdr7969m/HcfbfbTe3t7cSyLGm12pz0FuaaSGs5PDxMcrk843TjVgEc/yuU8H7x8fHrJJFI4pryVOfux4s/NDTET6Zsbm5OavLWgwMnFD6fj4qKijKeIhexShjHm1CG/xVKQdiqm4ODV1FRURFz0SS/3w+dTgefz4f+/n4UFhbyaVOImaaI5V/u3buHN954A2VlZTAYDFCr1Zibm8Nrr70GqVSa0JptpMWbklFYWAiVSgWbzRbzOqVYFRZEHvIvMV78kISvXh1EVVVVzBv+/Oc/h9vthtlsxrZt2wCsZFBoRgX/n5mZQVNTE1iWxeDgIM6ePYtr167hxRdf5OPHFocSHm9kKisrcfXq1ZjXUi4MqzEXkQY23nQtvV5P5eXlKXVWvP/++1RTU0Msy1JHR0deD8jkGx9++GHGfgCvALFW3f74Qie987E/+joFevPEYnFUgvHm7oeysLBAnZ2dJJVKSa1WCzoKuNnYtm1bSt9WxiOgADG/Uwh8p2Z2RM9aJQpMUojsjEg2d390dJT0ej2JxWJqbGyMGpBZj330uaa8vDyj+QsBHyBGdfH6y2fAVFejVMGE1auB1beBiYkJlJSU8OdPnDiBt956CwMDA2GLKPr9fvz1r3/F97//fRw6dAhPPfUUPvnkE/T09EStrxfLN8gGFNNPWJ/Lx8pkMly/fj1wkIL7E/nsYUvFBlfW7j/5CqhaDeq+AULkIo0FICK4XC7I5XIAwO9+9zucPXuWX1ETCKzc+ac//Qm9vb14+umn0dHRgYqKinSfU1AiO6DWc+tBLpdjcnJZAdJ4jLBWAAMAY/0YwAEcK2FgVRdjH0WnyjAMJiYmIJfL8cc//hEdHR0YGBiAVCrFlStXUF9fjyeeeAJEhL///e84f/58HmR+7BK+kvnrc91suXwvnM7xlMISoi1r1FO/3G3FmWNacAwHdUlpbK0iwO12Y3R0FMePH8e7776LwcFBlJSUoLW1Fc8++yzm5ubw61//Gg8//HCelLCC6CZjzHAc1lN1wLL/ioWFhZAzAdkNzzAoKAg064M/py44oxMIdQjMJ/99ZV26yGXKlgm6ZhKJhL7+L0V06NAhfjLlWs7j3yKA3W4npVK5ciLEdz5SvbLOQPCT80infsUCON/FVZ8G/rt++O/64ejvxN5vFkcXE/Ljo48+gtvtRtH2r2P//v0YHx/Hm2++ie985ztJNZZi9AbmCueFk4HSUcDAPLYsT8if3EuYnKKiInz55ZcAluVlAA4EP5y4PnAAP3xuHwAOcpksZvz7iAjM+AUwTZdBl7vBeTkUPFCAyambAIqjqgCGKcT/Wj5AYWEhGhoa8Pnnn+P06dPZfMaMIQZgghlLfjBMIQDgvf/+L34PgGb9M/i/H+0PiVWA9VAV3LlzB0tLSwBWsqoADJwXLCH7JTL4jyYtDhhOQauI8AFOvfwMGMXzgPUP6HcSQIH64/lj3ehufh7VL5+MuilDgebd1772QFpCr3XpZyjwE/BnV4ze956q5mX53pP7I2Llf+YDwLZt2+DxeKLOu1w3YT3TzNf/1a9zsJ5uik4gsk7x3/WH/R/8CR77vvKR/66fglFDr0emk861VMIlOh8pk/+uP8GCCrF7OddieTahWFxcJJFIxB8Hn+VI9Up9H1h8MnAc+WgJ2z4FDxRE/WUYBgUPFKCoqAh3bt9BwQMFKHigAJx3pcQEq5HVXgslNFy886HxQ/8G4wT/j7oHb4AC4cbePcWXlAKGQfUr0VYvX/F4PNixY8fKCYYBxvrRjZd4c/9s0xGoAQxYLkQ16lbV+A19uUVFRfjqq6/Aebm4mSgUkUqQKExoWP7/yKcOOe48okaZ9gM4KTAU7icncKY5ZtWXjywtLaGoqIg/ZhDYLvdlzUH+XMH4JKwAviUriYqf9M3GK6VFRUVYWloKK43rAS7Etz9pqMarrr0gusxvLs1gH7r6O2E98wHG1kE7wOP5Etu3bw/zqy5d6saBg88CAAhjqFY8D+AAfvTsvqimDd8VHFq6k0FEvAKkE3+1CJl2wXJGOy+cRHO3FWbHZfAmYbkvnJj8z/ggX30VsAAMw8Dx7kl8+7lmEICespD3Vf0S6HJ3zPhhYwHxXnTQCgSvMQwDiUSCfyz8A9/2fpsPExk+9DiVa6H3CA2XSvy4PsC2gqjzANB9phlqQ2dYs4iYgCq4XJ9EvYN8ZW5uDrt37wYAlD17DBwdSxCaA6ggrArk38hqzbhcLofL5YobL1HVEO9arONU40ee4/9notMhjGHSCmiqNWHpBt+L9VI31HwbOr+ZnJzkZ0QHqzcif0iI0Oq7IMofSinHY1kGmUwGh8OxaoFzDgHM2A0MEFAs2xd12XnhJM5cBgwv/WcOhFs9TqeTH5YPVG8c39GF5bOJSHg1kYf/yCOPYHJyclXC5oTI6pwBsK8U1QCmXGMRQcdg1EZXDfmMy+Xi90gMsEpfKVlHQ7yZOfGmhK0XOo+owxZgjrlPzzpAmClhaZKrNfzSJVKZj1SvjHwibKQs9+sCpYIQk0IzaltVVlZicHAwkyTWlMh5CWcuEyhQCMARhZj99dGnYbPZMp5ok7ECxJuXnk8QUdKx3fVR44czOLjyXUYklOKAW0abR09MTKCqqgrz8/PpJpE7aKXdH/MyBbrV8xW/348HH3wQLpcro53MM7IAcrkc9913HyYmJjJJZu0hAAwHBuGGIVgdAPmX+ZHldGRkBCzLZryNfVoKECpMbW0t3nrrrYyEWCuI/0sITvhgsNJxEhwRDA2bL0T6L+fPn0ddXV3m6WZSBQDAtWvXoNVqMT09nbEwW6SG3++HRCLByMhI0g9mk5Gxu1teXo5du3atq9bAeue9996DQqHIOPMBgdo7er0eJpNJiKS2SIE///nPOHz4sCBpZVwFAMDt27f5T5QydUq2SMzU1BT/eV3oRJB0EcQCiMViHD58GF1dXUIkt0UCXnvtNRgMBkEyHxDIAgCBcenHHnsMLpcLIpFIiCS3iODTTz9FaWkpZmZmBHvHgvV5siyLmpoanDp1Sqgkt4jgt7/9LQ4fPixoARPMAgAr9dOWFRCeTz/9FGVlZXA4HLyfRQJ82SyoAhARfvGLX8Dj8aCnpyfsfH58ILp+qa+vx6OPPopf/epXwiac0VhiDDweD0kkkrS2jNkiNlarlWQyGb/1rJBkddOodNYG3CKcbG8aJejANy3XJnV1ddi1axc6Ozvjht2qEhITfJft7e0oKyvDwYMHk8RI/0ZZ4datW2ltHLnFCvE2juQ4Lv92DIklUKZbx24GUt06NltkfffwTDeP3uikunl0thC0GRiPpqYmOBwOWCwWFBYWJo+wibl37x4qKytx8OBBnDhxIuv3WxMF8Pv90Gg0KC0tzfvVRHLNCy+8gKWlJZjN5rW5YbZNTNDELSwskEwmo9OnT2f7lnlLMp+nvb2dFAoFv8byWvhIWVeAUD7++OOUt4fdbA6i2WwmsVhMLpdrTZ99TRWAaGWD6ESWYLNlfkdHB+3cuZOuXr265vdecwUgInI4HCSTychgMIT1Fm62jPd6vaTX60mhUNDk5GROZMjJJzAKhQIjIyOYmprCgQMH8MUXXwDYXL2Dt2/fxv79+7G0tITh4WHI4qzjl21y9g2USCTCxYsXUVZWBqVSCafTGbWVzEaEiDAyMoLHHnsM1dXVePvttwWb3ZOuQDnHZDKRRCLZsN3GoVVbX18fSSSSvNkkIy8UgOM4stvtJJFIqL29Pa83jkhXHp/PR62trSSVSvNqk8u8+AyWYRh897vfhd1uh81mw+OPP46PPvqIv5ZPpCPP4OAgysrKMDo6ipGREX5Jl7wg1xoYC7PZTBKJhBobG+OOIeSbZYjF/Pw86XQ6kkqleVu95YUFiESr1WJychK7du3CI488ghMnTuD27dv8dcrzKWafffYZfvnLX+LRRx/lv5fI2nh+puRaA5MxOztLjY2N9OCDD9KxY8dofn4+1yLFZXZ2lgwGA4lEIjp69GjU5ln5aLXy0gKEwrIsenp6MDExAb/fj5KSErzwwgu4dOlSrkXj6e/vR319PcrKyrBjxw64XC68/vrrUV9J5aXVyrUGxiJWSQkdVOrp6SGlUkksy1JLS0tO1ilyOBxkNBpJIpGQSqWi3t7euIs15WPJD7Imw8HZYmJiAmfPnkV/fz+WlpZQUVGBqqoqVFRU8DuaCYXD4cDg4CBsNhtsNhvEYjFqa2uh1+ujtr9bT6xrBQhlbm4OV65cgdVqhc1mw/z8PFQqFR5++GEUFxfjiSeewI4dO0BE+MY3vhH1afXMzAy/xsHS0hLsdjtu3ryJW7du8dvhVVVVQa1WQ61Wr8uPYCmG87xhFCCSO3fuYHR0FBMTE5ifnw/bZXtqagpzc3Nh4VmW5Uvy/fffj/379+Ohhx7C3r17oVQqc9tdm0U2rAJskRp53wrYIrtsKcAm5/8BXCKrhRmOZDcAAAAASUVORK5CYII="
|
<image>如图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=25°,则∠D的度数为()
Choices:
(A) 85°
(B) 105°
(C) 115°
(D) 130°
|
115°
| 69,770 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALEAAAB0CAYAAADKDNPCAAAbZ0lEQVR4nO2dZ1hU19qG76F3UQQEg2IFWxS7ggUVBSxENBgT1NhS9cQvVaNRE40xKmknMSbEHisogqJiI4JgQUUUEUVUREG69DYz6/uh10nOURPRgZmBff/iYmbv9czm4Z2913rfd8mEEAIJCS1GR90CJCSeF8nEElqPZGIJrUcysYTWI5lYQuuRTCyh9UgmltB6JBM3RIRA+ZfVAaVSu5cK9NQtQKLuUZZkE34wgsTUTPR19TAy1qOkXEmvoWMZ7OKIrkzdCmuGFIkbIDrGFtgbFvDt0oV8symKlu1f4Nye7xg/bhLHknPULa/GSCZuiOgZY2ligIGBIa7jpjB6uCftbJpw/9Y57uQUq1tdjZFM3CCRc3j/Qe5X6OHm4kjMzo1E31by6ier8OrWXN3iaox0T9wAUeQmcfTEBWSNWnLv9C5Wno3FaeRsln0yAxtTdaurOVIkboAkn4km7spt3F6dzfv/msXLw5zZ99tK1odEo9DCiQrJxA2Q8+fiuF1qjKdHf6yb2dG5qxP3M68R/sdJihXqVldzJBM3MPJunSJ0zyFkL/Snf6dmZCSf4dvlv1JpZIv3kP6YaeENphZIFsgry5DrGGGkr6tuMVpNeXk5u0IiyFCYM7CHA9G7N5F9+QSXipuxfM23vOnrqg2GeASZpld2ZCQdYX3YeUZNfo+u9obqlqP13Mm8R3VVJTpKBWXl5cgVAoumzWhp11Td0p4Zjf7Hq8hJYdlHH3KgqB2jpxv892tCkJWdjampKU3NzNSkULsoqKhAz9iI5nbN0LJFub9FY++Jq0tyORa6ge0HEjAzb4K5yZ+XvbC0lLCAAEK8vdkxfTqXEhLUqFQ7uHE7jZ3vvMMOd3c2zZ9PVl6euiWpDI2MxKLyPnEXzmPi4IyTtSHVBiYY6D94rVKp5MiWLcjmz2daVRUZ58+z++ZdQsZ9jrGOOUJUQ72KM8+LDsJAgfzASkYdCqUN8MeFC0QYGTF+7lxM9PXVLfC50TwTy++zN3gndw1a0cfBjOKKaozQgYd37iVyOXdOn2Z4VRUWgAVQERfLkrhdQHOgHMnEf8UYdO4zS3mQrg9/0wfYeO4s+eXlkolrg+TY48SeS8bcrowD8Re5XqzE1dwak4e3xI309Wk7bBjng4KwLi7mNmDlPZqIj+fQ2MQCpVKuVv2agkwmw9RUn/z8alb+EMPBYCeiuUhX4CTgOGQI1qZauDz3GDTGxIqqcq4m/EFiroK3PllMUzMd0i/tZtXy9SgUCnQeBlc9mYyhfn4crqxkbUgIFq1aMWbOe7RybKXeD6CBZGaW8v33h/gjIplenu9wwSmVndGn2XHekNUthmKoW0+mLIWGkHohRowdO15s+eOyEEKIqsI74pdFM4Whvr5wGuAjTqQWPHJMhRBCXrcytYY9e66I9u1XCiOjueKD9/eLe/cqhFIIcSq5QFi3CBAjhm8SxcXV6papEjQmEptYt2TMWD862FsCUFlWhk3nIaxd64YwMMZSt+qRY6RZ40fJz6/gm29iCQg4ioODBYGBr+Hv3/k/r/dxsmTGa1346qvjnDhxC0/PtmpUqxo0frFD4umJi8tgwYIIDh1K4qWXuvLll5507PjoIkZCQhaenr/RvXtLQkJexcBAY2danwrtVi8BgFIJ69dfYOzYjURGprJokRebNvk91sAAL75og69vV44dSyE29nYdq1U9kom1nOzsMt57by/Tpm2ncWMTgoMnsXjxEMzNDZ54jEwmY8qU7hgb67JmTZzWF4pKJtZioqNvM27cRn76KYqJE3sSFjaFMWOcnurY3r3t8fTsyMGDVzh58m4tK61dJBNrIRUVCgICTuLru55r17L54YfxrFs3llatLGt0nlmzelNVpWTjxvNaHY0lE2sZKSn5vPlmCB9+GEK7djaEhExj1qw+GBnVfM63Vy8HPD3bs3t3AvHx92pBbd0gmViLCAu7ypgxm9iy5RyzZw8kOHgS/fs7PPP59PVlvPtuX/LyKtm27aIKldYtkom1gPv3K/n882P4+m6msLCCdete4fvvR2Fv//wpqH36ODB6tBNbt57l8uVcFaiteyQTazjx8dn4+29j8eL9DB/envDw15k8uSsyFeU4mZnpM21aL/LySgkKSkAbVw2kxQ4NRamE7dsvMX9+OHfuFPHZZx7Mnt2Pxo2NVD5WSUkVvr5bSEzMITp6Jm3aNFb5GLWJFIk1kHv3Snn//f3MmLEVY2MDgoKmsHChe60YGMDMzAB//55kZRWwY4f23RtLkVjDiI29zfvv7+fs2ZtMnNiDhQs9aNeu9iNjYWEl3t4bycoq5cSJmTRrpj0lX1Ik1hDKy+X88MMpRo1aT0pKFitWvMTatePrxMAAjRoZ4u/vQlpaDps3a1e5lxSJNYAbN+6zcOERtmw5Tf/+rVm61At3d8c615GfX4a7+zoAjh2bjpWVcZ1reBakSKxmIiKu4+u7gS1b4nj33YHs2OGvFgMDNGliwrRpPUlMzGDHjstq0fAsSJFYTZSUVLFqVSzff38MU1NDlizxxt+/K/r66o0rGRkluLn9ip2dKaGhk2naVPOjsRSJ1UBiYjavvbaDJUvC6dGjFfv2TWfqVBe1GxjA3t6Mt9/uRWxsGocOXVe3nKdC/VetAaFUwu+/X2T06A1ERl7lo4+Gs3PnK3Tr1kzd0v4LX98u2Ns34rffTlNY+GhFjaYhmbiOyM4uY968CCZN2oqxsS6bN09i+XIPmjTRvK/r1q0teeONXkRG3uD48ZvqlvOPSCauA06cSGfChC2sWHEYP79uhIRMxcfn6fJ+1YFMBi+//CLNm5uxevVJSks1uw2CZOJaRC4X/PxzHGPHbiQuLv3h3O84nJyaqFvaP+LsbMWECS4cPpxCTEyauuX8LZKJa4lbtwp5660QZs8Oxs7Okr17p/LRR26YmWlHxx0dHRn+/i7Y2pqwZs0Z5HLNncSSTFwLHDqUiq/vRjZvPs2MGf3Zt28S7u7a19zFxaUZnp6dOHQomZgYzS0olUysQgoLq1i+PBpf3w1kZxfz88+vsHq1Dy1aNFK3tGfm7bd7Y2CgR2DgOTR1SUEysYq4fDmXyZODmDcvjH79HNm1ayrTprmgo+VXuFcve4YNc2b//kROndLMglItv8SaQVBQEj4+GwgLS+Tjjz3Yvv01+vSxV7cslfHuuz0pLZWzefMFdUt5LJKJn4OcnHI++SQCf//fAcGOHf4sXz4cK6vayftVF337tsDLy4nQ0ATi47PULecRJBM/I3FxGfj5/c6KFUd46aUuhIVNxc+vk8rKhjQJQ0NdZs7sTXZ2Gdu3X9C48n4pAaiGVFcrWbs2nqVLD1BcXMXHH3vwf//XDxMTjenNWCuUlcnx89tKfHwGR47MpEMHK3VL+g9SJK4BGRnFvPVWGO++uwN7+0YEB7/O/PkD6r2BAUxM9JgypScZGUVs335BowpKpUj8lBw+fIP58/cTF5fOjBl9WbzYg+bNtaeERxUUFVXh47OZa9fyOXXqDRwcNGPqUIrE/0BJSTXLl0fj47OJtLT7rF49jtWrfRqcgQEsLAyYMqUnmZkFbNmiOSVMUiT+G65ezeezzyIICjqPq2t7Vqzw/LPjjlCQmniWhOuZgBIhQE9Pl8rSYvQbv4Crmys2WrLEXBNyc8sZOXIjeXnlxMa+gY2N+vf9kCLxE9i1Kxlf33WEhCTwwQfDCA5+9X9aRsmgIpfNq+Ywzvd1jlxMB+DW2cN8vewXUnM1Pw/3WWja1Jhp03qRlpbL9u2J6pbzgDrfYEHDyc0tF/PnHxZmZp+Kli2/Frt2XRYKxRPeXHhTvDHQRpg7+4iE7Ae/yr+XKg7vPyGyCurHfhiPIyenVHTo8J3o1u1HkZ1dqm45QorEf+HB3O9WvvoqAnd3Z/bunYqvb8cnLh3fTIzlQGw2rsOGYGNQzJHdu0jMNWKYlys2jervjEXTpia88UZvLl3KYO/ea+qWI91OAA979Mbj6bmes2dvsWTJKH7/fQJdulj/zVHVnI06TLpcD1n+DdYsmcPKDRE0sXm4xUA9XPT4KxMmdMHOrjHr15+hoKBCrVoavInv3Clmzpx9vP76Npo3N2fbtkl8+ukgLCyevF0AgLwokwN7wrFo3ZsZb83Ao183+g5wp43V3x9XX7CzM+Odd3px4sTNfy4oFeJ/VvmUVFVXq0xLg56diIy8xbx5+zl9+ibTpvVlwYKhT91t/c6ZzXTvM5kOkxazb9MizKmmpBwMZRVUykwxM6z/8SElpQB391/p3NmanTv9n/yPX1VEzNEwDsUkUVEpaNzMjibmBuRk3qbarD0zp71C8+foM1f/r/RjKCuTs2pVDH5+G0hKyuHHH1/mp59eemoDK5UKDm7bTo5OI1zdh2IulMir5Vw7FcpP64O4r9klaSqjTRtLpkzpzuHD1/njj1tPfqOeES1b2ZGwdxMrVq1GYdOBvn370cJSxqmLl8grf744Wn+fPp7AjRsFzJsXwe7d5+nXrw1Ll3oxcGCLGp3jj4gQ1ofHY9WsCVlJx9m4MYW0xBOEHD2H99vLsTVpGLFBR0fGxIkubN58lsDA0wwf3ubx2y7oGNDUwhKlTIFdv7HM9PfARibH1nwKPX0MsW/yfFl/DeZ2QggID7/Gxx/vJS0tl5kzB7BggfszdbhJSblOfmERZkZ6lJeVUVGtAAGGppY4deiIhVE9f6r7H2bP3s+PP8YQfmQK3kPbP/Y9J3cs46VX5tN11ncse70/CadP09Z9AoM6/N3D89PRICJxXl4Fq1bFsHLlMVq1siAw8FVefbXLM5+vXTvt30pWlUyZ6sKW0LP8+mMc3q3bP3DVX9eFKnM5fvgo2fpWtDQuYPualZzLbs6G6c9vYGgAJj537h4LFhzk4MFERo16ka++8qJzZ9VcPIkH9OjejIVDhtN4qwUiB2SNAEdgNuAMxZk3iToei22vl3n/X7MxzTxFZLoutqranFu9ay21h0IhxIYN8cLBYbkwMlogPvvsqCgoqKj1cfOLi8XO4GDx+5Yt4k52dq2PpxGcEUK4CvGLbqyY3nyZCJ6xW+QOLhTCXQiRKUTSiZ9FU13ElCVbxYPFT4WoqCoTT1oIrSn1MhJnZZWydGkka9acwMnJll9+mYyXV7taH7e4spTQjz7CaPNmDIVgn6cnQ1Z+h7WVLRqVgKsihEygVynD5BtDbhllkOQ8F9fUaKr2m7Jv1FRGX1+OXkABQfc3kKswo0NrexRKgY6ODob6qmvfVe9MHBl5m/nz9xEXd5Nx43qxbJkHrVvXTbf1o/uPYrz2V/yqlciAA7t345fQCJ2mg5HJy+pEQ10i162ibYUVC1LHEGC6Gr/CKEZXAhkl7DywgXPegyk/kMkFC+jt2p27Vy5xO78XbZqaqFRHvTFxRYWCwMA4Fi6MwMAAAgLGMXNmT4yNa/cjlpfLiYvLIPzQLfZsi2DmQwMDKIBGVsYYWBogFIpa1aEOlLoyzMsM0dOVYWxiSNn9P1/TMQKqjOjXwg+3XydjZAUlhRWYmqs+PbVeTLGlphawdOkxNmw4hZtba5YtG8mAATWb+60p16/nExGRyt69lzlz5hbFxToMG+HIgMZxdAjbQFV5JcVTpjB08VJsmljXUxMLZGUyzOfoczc3m4Mt5mIRvpXLdyspHDyTTyu+w3qoCSytXR1ab+KwsGt8/PF+rl27x6xZbnz6qTvNmtVOonZRUSWRkTfZs+cKUVHXuXu3EBubJkyY4IyPT2c6d2mOUq+S8zHRVFdW0X3gQGwbaUYJT61yHpgNeY0LOWkdyeGDdxlUOBzfIe1gNVC78UR7TXz/fiXffXeC5cuPY2ZmTECAF/7+XdHVVe1CQ2mpnOvXc9m79wpBQVe4efMeBgYGuLm1Yfz4jgwd2oZmzczqZal+jYgHAkFkQ3aGgsCTsdh+bsyMhT1rPaFPK02ckJDN/PkHCA9PZMSITixZMoJevexUOsaNG/eJjU0jOPgiERG3MDKqxtm5OV5eTowZ46xx3d01AiVQBHk55bw0fQM37hRzKuptHF4wr9Vhtc7EO3cmMnduOFlZRcyd68GsWX1VttNmUVElp07dJTw8mYiIJK5eLcDJqTGDBjkxapQTAwe2pFEjVc3Q128C153n7Td28fXX3nzwgWutjqU1Js7MLOXrr4+zZk0Ubdva8OWXI1XWbf3ixSz2708hIuIKZ8+mU16uw8iRjvj4vIibmyPt22t+U2xNo6CgAg+PdRQXVxEdPbNWC0q1YootJiadDz4I5/TpVCZO7MHnn4947p02s7NLiYy8SXBwEidPppKbW4ajozVz5gxg9OhOdOjQFHPzhpHgXhs0bmzE5Mk9+fDDUIKCknj33V61NpZGR+KKCjmBgWf54ovDVFYqWLjQg9mz+2Jo+Jh0v6egqKiKy5ezCA1NYteuZO7dy8XMzJTBg9vg59eJgQNbac0umtpATk4Zbm6/YmlpyIEDU2nynCmXT0JjI3FaWhGLFkWwceMZ+vdvw9Klns+80+aVK3kcP36DPXsucezYbczNZbz4ogNvvdULb+92dFBBOqDEo1hbmzB9eg/mzj1ASEgy06d3q5VxNDISh4dfZ+HCcM6fz+DNN91YuNAde/uaddzJzS0jOvo2Bw8mERGRQlpaEV26WDFkSEdGjnTCze0FjI3rX3MTTSM9vQhX10DatbNk1y5/LC1V/2CsUZG4pKSKgICTfPvtUczMDFm3biL+/i8+9U6bcrng/PkHZeQREckkJmagq2uAt3cbli3rQr9+LWjVqgEsPmgQDg4WzJzZnS++OERExHUmTOik8jE0JhJfvpzDggUHCQu7yKBBzgQEjMTF5Z/nYoWAu3eLOHIklZ07L3Pu3E0KC6txcmrGxImdGDHCGWdnq1rPoZB4Mlev5jNs2K9062bHtm2vqnwHKbX/ZRUKQXBwEnPnhpObW8gnn3jw4YcD//EhID+/gvj4DMLCLhMScpWCgiKsrCzw8urCyy93ZNCgVlqz3VZ9x8mpCRMndmflyuOcOHELT0/VpsWqNRLfu1dGQEAUq1Ydp337pixf7s3YsR2e+H6lUnDpUg6RkSmEhCQSFXUXa2tdunVzxMenI97ebWnVqm7SLiVqxoUL2Xh6BtK3b0t27HgVQxW2NFCbiU+evMPcuQeIirqGr68LS5eOeGL38bt3S4iKSmPfvstERqaQmVlGz562jBjRCQ+PdvTpY4+Rkdq/VCT+BiFg1qxwfvvtNIcOTWPQIEeVnbvOTaxQwLp1Z1m06AAFBdUsWTKcN97o/UjjjaoqJadPp7Nnz1WOHLnClSvZGBmZ4uvbFm/vTri6tmyQPYK1mZMn7+LtvZZhw5wJCvJT2XnrNHzdulXEl18eZdOmU3Tu7MDmzSMZOvTPnTblckF6eiHh4ckEBV0hKekO5eUKunSxZ+XKkXh5OdOypaVKv4ok6o4+fewZM6YzoaGJnDp1h759X1DJeessEh8+nMr774dz7dodXn+9P59/7vGfvN+srDLOnEknNPQye/akUFVVjJ2dFcOGtefllzvSo0dzaQm4nhAVlYaX1zomTHDht9980NF5/kTNWo/ExcVV/PTTab74IgJraxMCA19j8uSuKBSCM2cyOHQohT17LnLuXBb29kYMGNAaH5+ODB3aGgcHi9qWJ1HH9O/vgKdnB/btu0x8fF969Hj+lNZajcTJybnMmxfBnj2XGD++C0uWeGFjY0JY2FVCQi4RE3ODvLwq3Nzs8fR88JDWo4edyhPbJTSLo0dv4OGxnjlz+rNqlddzbx1cayYODk7iiy+OcONGAW++2YehQ9sSHZ3G3r0XuXo1FysrC8aOdWbMmE706GGPjY1qK2AlNJeyMjnjx2/lwoU7HDnyFh07Pl+qq0pMLAcqlUpMdXTIz68kIOAE//53DBUVcnr3dkRHR0ZqagalpQpcXByYOLEzQ4a0xdHREj09Keo2RPaHX2PUmG18MH8oixb1x0z32cPxU5m45H4e5Qodmlg1RhdAKEH2YNC8khKObdlCya1U9J37s213FfvDLgIyLCxMsLU15IUXLHF3b8PYsc507mz7zGIl6g9yJbzkG8i1qBD+NbUzAyZP5MWuLs9Uj/e3Jr5/5yqhO0K5U62LibEhQimjVfsODHDrR9NGxhSWlbF32TJMli3DUQj2yyxYLLxR0AlQ4OLSDB8fZwYPbkWjRkbI5UqUSiUKhXjYEEcj0jYk6hqZHmXyYi4GLKJt6DZsgAudO9Nr/Xp69OxZ89M9ycQJEYHM/ewnlM0H8q/3XsPOXIe9G1YSV9Ken77/nJYWusQnJ3Ny8GDeyXqw83oe0BtnbuAHVGJhYUTTpkZUViqorJSjVCrrYzcniZqiY4y8OpmA4k3MfGiIeCBm3jxmLVtW49M9doot/uAvvDLpPYTTBIJ+WU7Xhw9dDk0+Ivp6JWYmDyorzM3MUDg6cicrC1vgOjDGdwD2riMRiirk1dXI5QqEQCppl/gPunpG5BU0o2znHxTcTsMMyNDTw8rhQYOKhNj97IuIpKBchpmZKQamVvRz98S9+xNa6v5vh8HK/BQxpb+NQN9efL8v4ZEOhAqlUiiUf/4cFREhArp1E9/a2Ig1k/zFncyM5+hvKNFQkCuV4uDWLSKgXTvxra2tWP/eeyL3fqEQQojivFQxe2QLgY6hmPPNTvHbwveEo0M7sWRrlJA/5lyPmPhKxGrRGIRjv1dFQs7TbSiYcu+eiElKEnllZc/1wSQaFgohxOX0dHEqOVkUV//Fa8ocMcujrbCw6yaiMoRQ3o4WA9pZCIMWQ8Xpu49u/vjI7cTdG1cpADq3b4uD1dMt6LW1taWtrTTrIFEzdICOLzyaP5Fz7ihHLmbRbtAketiBrNwOezt7qqLiuXIjn972Jo+c57+wad4CQ0CmK+OvW09UlOVzMz0bufRgJlHL/HH4COm5pQz1HoYJQHkZVVWVINNHT+/RwPqIiZ3d/Zjj14/4A3vYHBpHaWkp6VfPsWdfBNlFVQ1zzzCJuqM0naPHT1Nq6ox77wfNcTKuXyMl9RZG7XrSydHykUMesbW+2Qt8/usWmgf8RGzIRgqut8bM3AKXfgNwcbJHBUlHEhJP5N61c5y8mEw3z7m4drACKtm5aS2J+SbMX/EBXZo9Wrb22Jtew0atmP3FKqoqy6mqlqNrYIyxgVQ5IVG7lNzPZtvv67iYWc2krp0pvHuLw3sDWbsrnhmf/Zu5/u48rm2OxlQ7S0icjTlCwKoV5JQInLu70tzamMysPFwHjGTMqEEYP+FeVjKxhMaQm1dASWkZZiaGlBUVUFIlsGvZlsZPcu9DJBNLaD3SZIOE1iOZWELrkUwsofVIJpbQeiQTS2g9/w/Usx29uDl2kQAAAABJRU5ErkJggg=="
|
<image>如下图,AB∥EF∥CD,∠ABC=46°,∠BCE=20°,则∠CEF=()
Choices:
(A) 144°
(B) 154°
(C) 164°
(D) 160°
|
154°
| 69,771 | null |
154°
|
"iVBORw0KGgoAAAANSUhEUgAAAKEAAAB7CAIAAACTlneoAAAt7klEQVR4nO19aXAV15X/vbf312/Tk56edgkESEiAFiQwYMAsNjhMcGwT45ngSohnKrNmyjN/z4dJnJmUPyTjqRnHTuzYmZQTT9U4NsZLHBtvibeYzcQgSwIBlhASaF/f1nv3/X84UvuB9GSLCCQIv3qlavXr1337nnvOPfdsFzuOgyYDxnjS8w6ik1+PJr8e0cmvv44rBjLbDbiOy47rNL72wab7gqaRsTSNrE4nqtOcvo4rh+t8fO0jLR+nQzr+TqejXcesY9qyerrXp9W3r+NK4bqsvvbBXiRj6TgYhkkkErIsY4xt2zYMg1Lq8Xgsy2QYBmOMEaaIGoYh8IKmaxzHYYwJJgihaCzKcZxH8uiGLvIC3BDu7zgOxphhmNTHIYQwxtASy7LgK7dhcJB6E/d6jPF05c3lRro565LlItzwj5kKyRTPFgQBIWTbNsZYkiSWZUdHRzmWI5gkk0lFVTDCAi+ommqaJsZYURTLthBCAX/AI3ngt7Ztm6ZpmqbjOIQQlmVTCTzpW13HzCKtrFZVFVgTY0wIQQjxPO/1ek3LRAh5Za9hGEBRy7ISicSJEyc6OzsNwxgZHUEIDQwOGKYBHM+yLM/zLDs29+u6HovF4Nil63UCXz5gEJ7u/66sNk1TEAT4qru7u6+vLzMzMyMjo2+gPxQKZQQzKKJDQ0NZmVmWbXV0dNx3330+n+/WW28Nh8NbbtkCd9MNnSDMMAylFB7EcZz7IDSZrLZt+7PGpYip67L6kpuUVq8WRdE0x6be/fv3v//++6tWrVq5cmVjc9PZs2dvv/32kuISjLFlWyzDiqJYWlrqOA6l9IMPPmhtbQ0GgzfccEN+fj4vCHBD27Y1TbMsSxAEEAypZHMpfclvch3pMNXayTRNYLtz584NDg7m5eUVFha+9OuXf/Ob32RnZ5cUlwSDQaBKVlZWRUWF4zhf/vKX16xZc/bs2ePHj+/Zs8eyrE0bNhYUFBQUFDAMI8syQkhRlEQikZWV5T4IpTCr24Dr9J4ppKWxYRgwg46MjHR2dmZkZFRWVqqqquv6vHnzcnJyKKIMYRBCqqZKolRVVfXLX/4yGAzeeuut8+fNv+mmmw4cOHD8+PF33nknLy+voKAgJycnLy8vHA57PB6PxwNMn/pESul1ul4OpKUxwzBA45aWliNHjuTl5fX19X300UeiKN59992bNm4yTMM0TdkjG4YhiVJZWRnDMJZl+X1+y7bi8bgkSXV1daPDI9Fo9OTJk4cOHYpEIrW1tWVlZV6v9yLGvU7gyweW4gvdDBikJCYI66bBsmxXT7dNnfUbbhoYGmw901a+qKykqNi2LMeyHcvGCAX9gWQyGfQH5hWXvLHv9RtXr1EU5Z577onH4xUVFWc7O7Zu3fov//IvDQ0N7e3tb7z15m9ee3XHjh15eXmyLEuihBAyLdOyLJ7nCSEMGVP1KaJAeLCU4QlnHOrYjk3I3DLj4BR1Es2ExvTHIy0fj0ZHg4GgYRoNDQ35+fnr16+vqKg4fvz4T3/6U13XCwsLvV4vy7KWZbEsK4oiQuiOO+5obGzkef4HP/jB0aNH33jjjY0bN37jm7v/67/+a+vWrWvXrl21alV3d3dbW9tbb70VjUarq6vXrFmTE8nhWI5SqmkawzC2bcseGSGEETZMQ1VVhmFAwwcdDYIaGIbhOZ4wxKGTxzhch4u0NA4EAgih9vb2hoaGysrK4uJiy7JGR0fPnz8/NDRkmiZCiOM4wzDAuNHT05Ofn5+dnb1nz57e3l6/308p5TiuoqJCEARJkhiGcRwnOzt7/rz5WVlZyWSysbHxP/7jP0Kh0Lp161auXCl7ZNuxRUHUdE3XdUmSBF4QeAGNDzhomGVblmU5jmM7NigE1zE1sJ2GDzDCwyPDL7/88p49e/7sz/5s8+bNTU1Nb731VklR8Zo1a1asWCHLsmmahBCMsWEYwMoHDx58/vnnb7vtNkmScnNzu7q67rp755YtWx5//HGwj46OjoYyQgihaCxqGEZPT09zc3NrayvGuGwcoiBCGxLJhGmaXq+XYzmHOq6URgg51AGtzbWazREQhCeV1XNxfYwQYhgmFArt3LmztrY2GAzatv2lL31pzarVgUBAFEXgYNDLoEGDg4MZGRmEEEVR1q9fjxB66KGHznV27ty507ZtXdf9Pn8gEBgeGfb7/QF/ACGUmZlZUlIyODjY3t5++vTpvXv3hsPh+fPnL126tLio2Ct70fi8a5ommEdYlhV4gWByXVB/QaTl43g87vf5FVUhhABjtZ9tn1cyT1NVSZIQQo7jOI4DRhKYIxVF8Xq9jz32WDQavffee3/yk5+8+OKL3/3eA3fvvFvVVEqpawCBeZdSSghhGRYhZJhGLBZLJBKvvPJKMpkkhBQXF9fU1JSWlrIMa5gGz/EUUZgjGIZxpfRcI/Mc5OO0NB4aGgqFQgQTMDszhBkZHckIZsSiUUEQXDOnC0VRwCj95ptvvvDCC36//6mnnqqrq3v8iZ+aplleVo4QiifirpELSGs7tuutAhim0d/ff+LEiaampoGBgUgkUl9fv3TpUoyxKIo8xyOEHOqAe4oQMtf06quJxhjhWDwmy/LIyEhWZhZCyDANjDHPcuBKIoTwPA8XA1OyLGsYhm3bu3fvfu655374wx9u2bJlz97n29vbH3zwwfz8fNCZNV0DxcqlkOM4tm3D/CoIAsdyCKHhkeGmpqaWlpahoSHLstatW5eXl1dcXAxCBQQDx3HX5+PPRVoag1ScCHZcSF707FgsFggE+vv7MzMzv/71r//f//3ftm3beJ7/8MB+wzBeeOGFdevWsQxr2ZZpmpIopZOxlmWBJgWMrht6T0/P4OBgY2Pj4OCgKIq1tbVLly71+XymacKYcBzHFd22Y9u27U4B4OFGCDEM87kcn6rTofHl+Ode7CqDMJVwzLTDpybFlaCx66u/CMy4XL3o2TArQz/u37//+9///p133rl8+fJARjAej1dWVkK/J5IJuBJs15M0CGPLsoBOYC3XNE3TNJZlT5w40djY2N/fz/N8UVFRTU3NooWLTMsEvlc11TAMSZJAnquaCvogfIsQcgMZ0vYFvBHCaDz8dAoagzriDibLtjDGDGFompyE6eJK0Dht/sT4W0+kcV9fXyQS0XXdtu0f/vCHmZmZ//iP/2hTh2CSVJLJZDI7nK1qqiiKmqYJ4/6oi0AwgRUwQohlWfZCtkgkEz09PR0dHV1dXSMjI7qu19fXl5eX5+XmudcYpjE6OpodzobrHcfx+/yarmmaFgwEp9bRXO6cmonR+FhkGAaUCd3QQfZcTTRO+4bO5M+GdzZNU5IkTdM++OCDZ5999r//+79t6oQyQpZtUUo5lrNsi2EY0zTdkIGLb+84sOZ2mwH9nlSSYP8CDA0PNTY2njhxIhaLFRYWFhUVZWZmhkKh7OxskNuDQ4OhUAjkOUzhiWTCK3vT0XjsQRNc6ek6l+CxlZvrcYdOYPDM6IBzkca2bbMsq2kaLJ1jsdj999+/e/futevWgZKFEFJURZIk27ZZhp2ir93JlSIK0zNCiOM427YVRbEsy+/3A38Dmx44cODIkSOO4yxcuLC8vDw/P9/n8zmOA8tr3dChkYZhcBznBilM+r4umVPJNun1tm1zLGdapqqqLMtCbFM8Efd6Jp+Dpou5SONYLCZJEs/z8Xjc5/PF4/EnnnhC1/XvfPe7Pb09Xq/X6/VGo9FgIGjZ1hTqj7uOAksWQohhGIywO++CVsWyLKUUXF4IIUVV2tvbf//73586dSoSiVRXV8+fPz8jIyMYDLrrcoYwpmWm08MhTGUiH0/dVIqorusMw7htIzMUazxH52PbthmGiUajgUBA07TGxsYnn3zyOw98d17JPDBiwJXglARDykQAjYHAEEoGE2QimZAkCVjcsi0gM/ybSCYopT6vDyF0pv3MsWPH2tvbOY6zLKumpqa+vl4URVfzSic/3JinVKfnFDR2ZTXBxLTMRCLBsqzP67ua5uNLoLGu6wghy7JAfY1Go3//93+/cfOmv/rLvxoeGQ4Gg6B8wbQ6hayGWdClLqhgIO1tx0bj62mMMfg5OI7DCMOUD2xqWdaZM2f27dvnOE5paalpmllZWcuXLw/4A1PQGE0mq6eg8Wh0lGEYn9c3NDzU1tYmCMKiRYtEfnJdcrqYQRoTTNGkH4LwpB+K0eQfhChGvCBwAq9oKstxhGW23Lr1008/VVQllBGCEUAIATqlwxh1MaaUOtRxqAPGFtux3R/CsoplWZfMY/YyQoA2DMMsXLjwn+77J8uy/vM///PunTsfeOCBn/3sZ2//9u1oNAprM8uyQGbAAaUUIoXB7sYQBtydlmXBChtkPsGEYAKWc57noevb29sfeeSRlpYWSZTS9s80P5gh8EEEI/JZt18KjS/lR5MB3AYoZeAHg8GKigpd15uamhBCGGNN1+Ar3dBn6rlp22PbsXgsEomUl5cjhHw+X1FR0blz5x5++OF9+/adP38eGEXTNBh8HMsJvMBzvGmasXgsFo9hjL2yl+d4URBhNBiGoRs62DqSStIjebyyt3+g/913321tbQVv7BzEzBhlUIpshznSoQ7BpLKyMhAIHDp0aOWKlaIgxhNxWZYJJiad3Ig2g+A5nuf4Xbt2VVRU7N27t6ysbOddO7u6u/r7+1taWp544glBENavX19TUwNB47qui6LIMizP8YQQNwTYsi1N03ie5zleEARQAD2SB4RKV3eXqqqmacqynJubCwu2y/1q08WM0ZhjObdfGIbRNM0jeWSPvHjx4vfff394ZDiUEXItBukWx1NguhPSaHSU4zjZI2dkZCTi8b6+PoRQJBLJzMxctmzZ2rVrP/nkk+bm5sOHD0cikbKysrq6OsMwTGzyPM8yLMuwuqEnEolgIMiyLCiMGGNYKcGau6+/7/z58yUlJV6v17btcDiclZk11/xgaAZpjBDCeGyFw3GcaZpwXF1d/fbbbx89enTt2rUMwximcWUc+xA3oqgKy7KiJPl8PoooxlgQBIxwYUFhfn6+pmknT548ePDgK6+8cuDAgcWLF9fU1OTk5EB8mSRKAi841LFt2zANCHpBCBFCHMeJJ+JNTU1NTU3RaPTs2bOjo6OqqoKgutyvNl3MJI0R6C/j/ijLsiC6o7KysrGxsbKyMjcn1zAN27ah76Z15+nysaIqHskDVAGH2MDAQDgcjsfj4L0WRdEjeWpragsKCuLx+B/+8Ie2tjYIXquvr1+0aJFhGtFoNJwVBu8WSClRFBnCJJVkR0dHbm5uVlaWIAiiKObn54dCIa/XO9fyNtBMzsfUAfYFL9Bnox6Tm2666emnn+7v78/NyZ3aKzCDUFXVI3mCgaBhGIZh8DwfDAYxwn6fHyGk6ZphjC3Zs7KyssPZBQUFiqJ0dHQ0NDQ899xzgiBUVVUtW7bM7/dzHDemgRPLsqzB0cHW1tb333//jjvuqKyojCfiIyMjfX193d3doYxQ2loas4cZozFYlQVegKS3VEKWl5cPDg4ODAxQRMFdY5jGJUzJ00JmKBMhlEgmhoeHDV0XBIHjuFg8xnGcJEqgPaFxqxnP8RAfmBHMqKio6OvrO336dEtLy8GDB6urq/Py8sBqBgZLURR1Xd+yZYvf70cI6bq+YsUKyAXRdM31qc8dXOC7TnVup/0B+cyO0drW6jiO3+8fGRkpKCjo7OwsLi6Ox+MQ9NPf3x8Oh0Fffeyxx2RZvu+++zo7O2VZhkeAMOd5HpLeGIYBU6gkSaDdYIw9Hg9CSFVV8FO5BoFUu2Nq3pT7FSHEMIwf/OAHBw8ePHr0aCQSKSgo+Ld/+7fVq1djjFmWBbMJpIPwHA9rP3BIg5FyYGBgaGiora3t2LFjiURix44dS5Ys0TQtGAwmk0kYo/hCoBQXhet2ROOGd9fWZjs2hEkRTHRDh9hT8EOD8IMzrW2tmZmZAwMDCxYssCxLVdWAP3AJ9c4+o/HEg0lh2hZCiOf4ru6uPXv2tLW1wXC2LCszMxNePh6Px+PxSCSSTCZzcnJCodDx48ePHTtWU1OzZMmS7u5uuJXrQHR9zxzHUUrBzKlpGsbYPYaXd+E2Mjc31427TvUiqKqalZXV0NAAZo1gMBiNRpctW+amT7IsC5YQjuMkSdJ1HWwjCCzkGENoSm5u7rlz51599dVEIrF06dLKysrS0lJd13Vdn0hgt8FgnAFLjmma4IWEed1xHIgdhjNg943FYl6vd8GCBX6fXzd00zSbmprOnz9/yy23nD59+vTp0zfffHN2OHtkdCRjPAb5i2PaApPneEg7DofD69evr62tlWVZ13VN0/Lz8wcGBoBOuq7n5OT09fVBhN6yZcu8Xm9PT8+aNWtOnToliiIkzsCruvTmOC4ej0OwGHQisK+u62BgoRcCIeQGCcEs4JIfBn5JSQnGOBAIMAzT3d199uxZn88HfAzCw80B6O7uxuOFDEBzlCRJFEUYr9u3bzcMY9++fZ2dnWvXru3u7oahiS4UKsCI8K/7XrquG4YB/TBmlbPH+JhhGK/XqyiKYRilpaVer9fv88OsUVxc3NHRMTo6aprmmTNn4PV9Pt906XUpNIYe15Hu8Xhqa2rhjBuiVV5WnkgmWJYVBdGhzvz580Gv0Q2dEPLSSy9lZWXNmzfPlVouKKJgnXYj412LPxq3qKRe7PIxSe+vhVbF4jGPx2MYhkfymJYJKx8IJUsNTIvH4zzPgwfTMAzgPJZlJVGKxqIBf6D9bHtzc3MkEvn617/u9/kTyQS60JgMfy8SJ/AI8JDCQ8Fo6v7L87xt2/F4HGOcmZlpmAbY3RiGWbRokc/nk2U5MzPT6/X29fdFsiOXIKunTWPbsUHQUUohcA6OEXAAaymKcubMGYZhPB4Pxhi0VtM0IdPit7/97V1fvQsICdrZmO5j2xhjlmGZC+PFJh4jhDD6bDIGoeJeNs5TGCFkmqYoiKBIJ80kksbiftxHsMw4L47r2/CtG/3pOE4imQj4A83Hm3/3u9/deOONq1atQghBNEtqw9wDGHNgBYO2uF4WaBgdF0ZgGE8kE36/PxgMwqiCMSdJ0lNPPVVVVRXKCA0NDY2OjoK8mS6xxl5zuj+wLEsYd614JI/LYbF4zO/zDwwORKPRV155paOj49577x0cHBwcHNyxY0d2ONsre0tKSk6fPg396NDPclNdPwRCCAiPLlQLLuimC2Wje82YqpXC1hAFxrIsx3KGYURjUV3XQ6HQ2HhiL6h3Y1om+CTcW8FzvbL3WMOxN998MxqNrly5siC/ACGkGzqbPjYPzCagRY6Z9lKGKL4wNhACGTDGMLCIQJLJJKQCNTc3h0Ihn8+nKEpPT095ebmma5fg15o2jVmWtR1b13VQjiiliqag8akinBUeGhpqb29nGKampubTTz995plnotHo/fffzzJsZWXlK6+8cvTY0aqqKjqenQY97vY7x3KpS0zX5ZdOJjvoszmYUooIctmF5/mxaZ7lwllh9ydAP7ihy9Mcy8GjL3pib1/vyy+/nJeXt2PHjkAg4I5pwzTQZOA5Ho9XUHHdoy7vpjYAGqzrOtgSMMYeyYPRmK5w5513Hj58eGhoqKioaNWqVSDYBUG4hOX3tP1OEIsDUxf44KBMk23bSSWJEGprazt//vyyZcsyghnz5s3jef7NN99UFMWhzpIlSwRB2L9/v+M4LMOCzIeoWODj1Jd3h/pFej5FFLJjLNuCShUsw7IsmxpPTxFVFCXgD/i8PjCgGqbhSogx+YkoRdS0TN3QTctUNdW9APS1pJJUNfXFF19ECNXU1CwoXRDOChNM4ok4IQR8HjzHcxcCyAkaFqzBYIVG8Ng7EkLAQQlneJ7nWE72yLCwth0bokokSfrSrV+64YYbgoHg5s2b582bh9AlFrQjqTqq2wUXzX+pYDChjsNgwjEsdRzqOCxhqOOYuuH1yLFo9P1332Mw2bxxUywa5RjW7/dnZWV1dHTYti1JUnl5eXd3d39/v2mZDGGAaUDt5FgumUxSx0EOxRTBAUGYwQT+hQ98C+cZTODsRMEuSRJ8xY6DYRiHOmC1dg3mbs0hSZQcx9E0jSGMruuyR5Y98jPPPDM0MHjL5ptrq2swQoauI0r9Xh+8stueiz7ggEcOhW8ZTHiWc1sO593fQn9Cl1LHIQjDzSVBpI4j8gJ1HJ7lRF4Y65NLoPEl/GbyGxGCEBoYGPjoo48ikUg4HA4EAr29vcePHw+Hw5mZmeCgraurs227v79/LADKtgkmruEzXUDdDAIjfBE3wJiA4FxJlGzH9vv80Vj00R8/GovF7rzzztraWrdhMGHPQaP0FJgxGoOeOTg42Nvbu23btqKiIoTQ4cOHTdOsrq7OysoCSVi2qEwQhIaGBjdwFSHEEMayLIroFaAxYGyaTAHDMAF/QNVUhjCarj333HOKomzcuLGyshJsbbBCBQk31xJwpsZMJoR1dXUdOnQoFovl5eVRSg8dOnTo0KHbbrtt06ZNEF8BcSCLFy9uamrq7+9HEFHr2DAJYYTTBZHNOFy1LtX0iBAihMTisddee+38+fPbt2+vWlZl23YymYzFYrZtz8H0qi+CmaSxpmmJRKKqqooQ0tra2tvbW11d/c1vfnNB6QKEEEx7sXhsw4YNyWTyxIkTtmNzLKeqqmEYYM9Kl2Q1gwBVC02IoAYaC7ywd+/e5ubmr371q3l5eRBNBoZ0URTBfgIWksvdzhlEWtaZ7pRDCNE07fjx46qqLl682LKseDxeVFTE8Twa9+bajg1ZkP/+/X/3+Xy7d+8OZYSisSjLsuDkUFRFGi8i8AUx3TC2Sd8LVkrDI8Ovvvpqa2vr1q1bV69aHYvHCCE+2QumKxgErkF7tqbkKdThdJgxB18ikRAEoba21nUJhMNhQghFKKkkQcSpqgrL6Pr6+l//+td9fX2BQIDjOJ7nYRV0BRxzF8XYugfxRPzIkSP79++//fbbV69aDfZLNK7zI4Sg7itoDH+iOhcoJhhjkL2wWh0eHjYtk+d5iI7WdV3ghXgiXlNTMzAwMDw8rOs6xE+ZpmmYxhTGo5kCMGWqoAZN++DBg2+88cbWrVvXrVunG7rf7zctE/REd/XlqoSqql7uds4g0tIYp8EU9wKniiAI0B2O4wSDwTFnC3Uc6mRkZDjUkWU5JyfnxhtvfPrpp8HJClYCN5FiRpBqTkk1MAm80NPTw7Ecy7ADAwMYYVVT33v/vV/84hcbNmzYtm2bJEmmaWKEoaIUy7KuR8sZBywiLisuslt8kf5Ph1krtFBTU9PT0/Phhx8ihCilHMcZpnEFghpHRkeKi4oHhwYt28qJ5CiqcvLkyR/96EcbNmxYsGABz/EYXVBC/XK35wpg1mi8fPnycDjc0NCAELJt2yN5rkxlj4xghkPHYlcQQidOnPje975XX1+/ZcsWsBdCygXo3pfGN3MNs0Zjj8dzyy239Pb2xhNxkIQsw14BvrEdm2BimmY4K/xp66ePP/54eXn53/7t3xYXFYuiaDs2RCDZtn0lbTKXFbNGY1VVV61ade7cucbGRlEUNV2zbOsK2EAURTFMQ/bIrW2tTzzxRElJyXe+8x2v1wshVxABAutg27avjU1tZo3GPM9nZWVRSj/++GOCCcuyuq5PjA+ZcXi9XsuyPm399KGHHrIs69vf/nYwEITALjSuQn9WQn3uBdJeAmaNxoIg8Dy/YcOG5ubmznOd4B+8As9VVVXTtCeffDIzM/Ov//qvYXaACDLwcrolGmfR0DGzmDUaQ5Xbbdu2dXR0fPTRRwghhmGmTludEei6/tBDD+Xn5993332Lyxd7PJ6kknSDhyDEzrIshjBTRIpdXZh+jMA082jTAUIMwuHwtm3bmpub0Xj0wbTzdC9cOLrLSoywaZqGYTCEgQOCSW9v7z/8wz8UFRVt3749O5wN1btgpeQ6lERR5HkeFvQz+L6ziFkbqvF4nCIqiVJ1dfXw8PDJUyehhMpM3V83dEophIeOjIyIgqgb+tNPPw3VI4qKihzqqKrq9Xrhq5l67hzEbOpc4GVauXKlx+NpbGxE6QtUXAIwxqIgjoyOJBKJ3JzckdGR119/PZlMbt68ubKykmM5N1ASXSu2jnSYNRrLHhlyPgVeqKioaGxs1HRtBtUusIxSSv0+P0X0+eefP3Xq1K5du5YuXcrzPIRzS6JkWqZlW+I0nV1XF2ZZrTBN07KtZcuWnTp16siRIzNbVz6eiEMi4Y9//ONjx45t2LChbFHZWFk8fUw4z8HKuTOOWXs9wzREUZQ9sq7rCxYskCTp448/nsH7m5YJFXf+93//t7u7e8eOHSvqVySSCduxWYaFrA6IG4TEshl89FzDbA7hsQ1fMPbK3o0bN3Z2dvYP9M/UzYE79+3bd/LkybvuumvTxk0IIajTAxekRu1cG3bpdJg1GrMsa5hGLB6DTl+/fn0sFjt27NhM3Z8hzOtvvN7c3HzTTTfV1tQmlWT/QH9WZhbLsolkQtM1CJpXNVU39Jl1a841pKUxTYOZerC7mSMkc/r9/vz8/A8++ICOl8HCGEejUcdxwIWQ7j4YYciahKh0hozVqf7Vs786efLkhg0bNm3ahBBiGCYYDFJECSGyLAuCAIFdsBqewmZ5CX70uYZZ42MoLAHbKhumIcvykiVL+vr6zp49Syk1TAMj7PP5IDJkCrUIUrOhamYsHkMIUUqPHz/e0tJSWVl58803swwL5jNImr1S7zeHMGs0JphARgwYpERBXLlyZTKZ/OSTTziOA70XCAy5DlPcBygHmWSqpra0tLz44os33njjmjVrIDsSyhAAx1+xF5w7mDUaU0TH4m0tEw6KCosKCws//vhjSinIUlVTKaJT+/hi8ZgoiMMjw4ODgxnBjMOHD//kJz+pqqq65eZbZI+sauro6KgkSRhh3dCvQIzOHMSs0dg0TVgN67rOMizMiGvWrGlubu7q6oKYG8i3n7rEpiiKhmmEMkLZ4ewP93/49ttv19XV3f6V2yFen2XZzMxMhjCGaViWdW34g6eLWaMxmC3dDHHIOFqxYgV4lOEkFDNmCJO6uflF4LmxBNR333v34YcfXrRo0b3fvFc3dE3T0PhmEqBqzcGKO1cGs2mvpoiyDCtJkm7oMD3n5OSsWbOmsbFxaHjIoQ5DxryNU2Sg9PX3eSTPG2++8eijj27fvv1rX/sa1EyBrSOgEKaiKJDwqajKFXzFuYLZ1LkURUEIMYSB8DlIedq8eXNfX9/AwEA8HkfjRscpbJyR7Mhvf/fbl156ae3atffccw/LsMPDw17Za5jG4OAgpVQSJSjbgxCCAlt/apjJ+OppwaGOmyKcnZ0NZfoc6lRVVQmC8Nprr0FQ/lgGimMTTFRVBXYfGRmB1TBC6Oixoz//+c+rq6u//e1vw5lgMAiPCAaDGI/VLncXwenW/enisaf9YgRP+vlc//flW3/POXM8y7A333xze3s7pdTdKheUJo/HMzwyzDKsx+MBT/M777zz8MMPV1VVrV69OplMNnzS0NHZIYnSaHQUTVaQ5U8TVyKEarpYt27dM888c+zYsdraWjB7IWGMvUIZoaSSlCSJYHLo8KHXXnutrKzM7/ffc889kUjEsqyBgYHHH3/8xhtvvKh6C/y9NmLwpos5x8eKqnhlb1FR0UsvvYQQgnKmUMDF3VibYNLwScNTTz3l8Xj+/M///JFHHnEc5+mnn373nXd9Pt9N69dHo9HZMjpO1wZ8uW3GaA7SGNLFVq9e3dbWdu7cOcifgGhnlmX7+vt4jj/RcuKRRx4pKir6i7/4C57n77jjjvr6eo/H8/obrx87duzev/zLjGDGVWpbvhyYczSGVWxVVdXChQsPHDiAIIKTMJRSQkgkO9LU3PSjH/0oGAzu2rWrsqKysKBw586dy5cvv+eee77yla/cd999//Oz/1E1dbZcCHOQj+fcfAx13HNycurr6z/88MO7776bUgrFeGCvv71792KM/+7v/q6kuAQhdL7rfEVFBaU0FArFYrF9+/bt2LFjee3yP82pd1LMOT4mmAwND3Esl5ubOzg4ePr0aSilBnbNBx98sK+v74EHHlhQukDTtVg8VpBfIPACbMH3rW99KzMzc8eOHYlkYmL9nj9ZpKUx6KW2bUPOOEg88ObiCTsSEkygiC2chyRdOl79kFIKpUENw4ACoVCyCXRmd0slNF79FmoN1NbWlpWV/fKXvzRNE+o+Pfjgg7Zt/+u//mtBfoGiKlALkyK694W9n3zySVlZWTgcPnr0qGmamqZBKRlnAtLJRnphhS/QAKCW6aRwZwG3oJrjOLquQ3mvJ598srW1lVLKEAZjnEgk0vXzFVgfp5XVUN6ZEAK2CF3XHceRJMlBn9E19frPQinwWOlAjMc4CWzOEx+Bx4s8p/6LEDJNMx6PezyeBQsWvPjii11dXQUFBY8//vj8+fPr6+sLCwvBjZhIJgghiqLs3Lmzrq7uwIEDUAMY9tZO915TuKLphEJudMq9+BBCuqGrqsowjCzLkHdpO/bAwEBXV5eiKFBC1zCMz92T97IiLY2BqC4jUkrBMZdKvFTATpnw5mP8jTAa3+EepRSB/ewm4wPWrfUL/8oeGbbm2LhxIwRkdXV1GYaxbt26BaULKKIEE9hd0XZsURTvv//+Z599duvWrU1NTffee++jjzw6xQun1slNhTvaJn27iYDSvQIvQKEBjDGUEfXK3lAo5PF4GIYReMEwDfCOzCLS0hg2mhsZGfnDH/7Q29sbCASgYDdmSCr/Qa1Yx3GgDrhbt5IQAuUL3dog7g57Ln+4eWNusXKWZTs7OxcsWKAoiizLUFP6rbfe4jjulltu0TTt5KmTqqpKkiQIAiQKj4yMfOtb3yotLe3t7d29e/eGDRuGR4bb2try8vImfS+v1zvpeSh7Ty6EOygnArZLhcIYhmEoiiJJklf2wrBLJBJNTU2SJHm9XrfB06fOzCAtjZPJJMdx/f39HR0dnZ2dXq8XCnkDjd0pGXJ2YbqdlMaJRMLtO5xSxRvKNU+ksaZpzc3Nuq7LsmyaptfrPXToUElJyZEjR959912oDT86OuruhF5aWtra2irLsmEY3d3dv/jFLxKJxBQph+n2a3Wznr7gvMhxXDQapZR6PB6YthctWrR8+fLc3FzbtgcHB/v6+qLRaDwehw0XpkOUGUZaGsN4X7hwYWFhoTsZezweRRsraeMqJsDHgiC48eigfMG/oG6k9hf0PpRCcqnuXsOybH9/PyEkMzNzdHSUZdmf//zn+fn5t912G2wnwrJsLBaDzRiGh4cFQVi6dGlFRUVDQwPDMCBO3IJLE5GuJE8sFkPj48/9i9LP3yzLgrvM6/UahqFpWlZWVkZGBs/xqq3KslxbW1u3vG7/gf3Nzc0lJSX5+fmfS4zLhLQ0ppSqqgo6F9Tqh/MQHTcRlm2latF0fH9b2IMn7VPGtxhI/RckG1RyFgShsLCwpaXF7/fnRHJUTdU0bdHCRXB9JBJxd0HecNMGOAk7rUw3zXW6KRpQd8DdXVDV1LFi6KYBfQXuL9gzamBgYBZpnFbJNE3T4/GIogjDmed5nucNwwBvIKxMbMd2TQ14vDIzVLTmOI7neLfelu3YUO7KtEzbsUHJhO12TMuEmzjUgT1LE4nE8PDwqdOnzp8/b9v2kiVLBgcHT548iVK2o3WoMzA4IPBju5OfO38OIWSYhqqpAi8oqkLSAJT8iR+3xrVlW9BCCM513ELEF37c4k6KqpiWKYkSEJhlWUmSVFU9e/asQx1RFAsLCxctWnR5yTglpl2G1Jmm/QinuRyYHlwOsHSWZbmvr+/wkY84joMa+3v27MnOzt69e/djjz0WiUR2fW1Xb19vRkYGzJ0sw8YTcXd+xV/Mk/i5ZkKc4qeaov3p7kMIOX78+JkzZ/x+P4hxv99fXFw8cX8qNF4tfer7X9SeS8Cs2TIxxpCZAiXtOY47ceLECy+8cLaz42/+5m+W1y5HCFVUVESjUUVRamtrn3322S9/+cuBQAB2s4DtK9IpULOLefPmhcNhdwsp4Gw6WdzBzNql02GW7dUQOG2aJsdxe/fuffbZZ//5/v9XUVFhmAYh5NZbb9V1PZQRCgaD3d3dn3zyyerVq+GHrkJ0xcohf0Houg4aDEIIgkrR+ELrC0qaGcdsxmWKogh2FU3T2tvb33nnnZycnHXr1kmiBJqqV/aCXbO0tLS2tvb3v/99Mpl0qGOYBqj9qTkyX5AnLrft0G2SpmnJZNI0TVh3XCSlryRms+aLeyzLck9PT3d398aNG2EfcIwxxN0NDw9TRD0ez6ZNmxoaGkZHRyHYDzJc5mDqMAw+27ahtAioopIkzWKi86z1EUylhmGAQIPaK4ZhhDJCDnUgjJLneJ/PBzks8+fPt2373LlzCMpHIwq+CveGX5A/Ljcfw0vB7MNxHCEEHC2pfPynIqtB5+I4Doxc2dnZ9fX1p0+fbm1rVVWV5/lYPBZPxA3DsB1b9sjBYLC6uvrw4cOKqvi8PjA9zlbjp4C7Mae7exV4JtAsCWo0u/7jZDKJMYYExoULF27fvh0h9Ktf/erjjz9ubm4+deoUy7IZwQxN0yzb8sreurq6I0eOnDlzBiEE+mq6jbRmEWR8M06asmFnqh/sypN52nsNTLcEFUnjw8EYm6ZpmibsM4EQGh0dHR4ePnGyJRAIRCKRSCQCghrqlCKEOI77xje+sWrVql27dvm8Plg+uVtqu7Od69VO99xJz7v98Eeuj2cK18L62PUnumdkWWZZNjsnAi4pt6yhWx+cYFJXVwcJymiCJZmmxMFfRypmc+0EeWYYY5jDOI7zer2yR5ZECSIO3LxFNz1848aNvb2958+fd6jD8/wVqL14DWA264GAIxJjDP4roKKma5quGabh+piBO1mWdaizePHizMzM9957T9d1nuPnmgFkbmI29Wrk7tPGMLDGgBVU6g6JCCHY3J3neAjCveGGGz788MPh4eHZavlVh1mjMYQVmKZJKQW6AkPDbh5wgbv9N9SDB81r5cqVmqadOHECootmq/1XEWavVsS49psa/QMC2XbG4g5c3Wos9o9hEEJ5eXm1tbWHDh0aGRmZ2bp81ypmcz4GzwzoXMCyQEVCCMdysLswwzCWZUEdPOBmhmFWrFjR0tICCcrX8bmYNo1hc98v/kmH1BhsCOwCnp64QzBLGJ7lbMsSON62LOTQ6mVV8WjsN79+hTpOMp7gWY5jWNu0qO0QhGFT4YnbEk/rQ+3xjY3T9cNlxnTpMgXmXC5MOowF1hBCCPH5fKtWrWptbU0kEh6PB9bQbuCj40xV6+kL4lpaal81OgshxDX9eDyebdu2DQ8Pd3d3C4IAyRygkRmG8ccU4brYyHVNUPqqoTHP8/Y4EELLli0rKSk5evQoGp/aDcMATS1dFO3UMnDit9cGgdFVRGOEkGmahBDwuhNC6urq9u/f39XVhRASBIHjOIyxKIoQg3FpcCl9zRAYXUU0Bh0NtDOEkGEY5eXliqK0t7eDgg2zNVwMnsfp6jIXiegZ131mC1cNjSGyAo13PSEkOzt769atsiyDiIbVF0LIDQWfFiYSeObaPsuYsX3M0z4gTWddwv1hAa3rOpg5NU0TRRGyicAoxvM8sPsUJW6nfu5EbevKhE5ORDpf5yVg2vHV13HV4aqR1ddxybhO42sf/x8cvQR2CNB49gAAAABJRU5ErkJggg=="
|
<image>如图,直线a∥b,∠1=30°,∠2=40°,且AD=AC,则∠3的度数是()
Choices:
(A) 70°
(B) 40°
(C) 45°
(D) 35°
|
40°
| 69,772 | null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAAB1CAYAAACPikkbAAAVRElEQVR4nO2df0xT57/H30eMXTJn+WYu1Ds2nHOuG7uxC39IQhNZaGdx5IpXdtErRrw6wZZFzFjCHzr1Tr9h1zowkw0v26wbbhBxrU5n/YoRI2YoibpIge3rjzJmApElGJrcsrTnc/+AczxtT3+f/hD6StD2nOc8z9Nz3uf58Xk+53MYIiKkSDqICAzDeGwbHBxEVlZWwDTRMkvS3FJIhveFPn/+PJYuXYqBgQG/aaQgJYgkhmu8r169itLSUrS1tUGpVMa0zJQgkhiGYXDr1i288847+Oqrr7BixQqP/bHo7VOCSGIGBgaQn5+PQ4cOYc2aNT4CSHUZM4i7d+/irbfewv79+7Fx40YAsRGANylBJCGDg4MoKChAdXU1DAZDTLoGfzCpaWdyMTIygvz8fJSUlODjjz/mt8diiilGShAJQniBuc+PHj1CXl4etFot6uvrE1KvlCCSBIfDAbVajTfffBNHjx5NWD1SgkgCHA4HCgsL8fzzz6O1tTWhdUkJIkFw3cTExARWr14NmUyG9vZ2pKWlJbReKUEkELfbjZKSEjidTpw6dQpz5sxJdJUwO9EVmMmsX78eo6OjsFqtSSEGICWIhPHee+/h119/xZUrV/D0008nujo8KUEkgB07dqCrqwvd3d2YO3duoqvjQUoQQZDaILRnzx6cOXMGXV1dkMvlkuUrFSlBBIFhCEBkguDExP3/6aefwmQy4fLly8jIyJC2ohKREkRQZnm2EmHogzuGYRg0NjbiwIEDuHTpkofXU7KRmnYGwfP6s+DXA8MQxrFjx7B9+3Z0d3fH3MElWlKCiDEnT57E5s2b0dnZCZVKlejqBCW1/B0B/u4g73vLarVi8+bNOHv27BMhBiAliIjw11MIZyOXL1/G2rVr0dbWhry8vPhUTAJSggiC7dRBWGxibQILQNyv8dq1a1i1ahVMJpOPH2TSQzMeN7EsO/mR9dzDko00AJl7Wd/D/HDz5k2Sy+XU2toaNC1fbhKRaiEw63FT79UX1Fc1gtFqsSRb5DACuFaCY2BgAIWFhTAajSgtLQ1acjw8oMIlJQjvFn/qu+VTA0irAXuB9TlkMhlBePoGBweh1WpRW1uLLVu2xKaucSAlCJ6pC88A6LPgAmnxwSsMLmqX4DWRIYTw7n7w4AGWL1+OzZs3Y/v27fGpboxICUKk1a76vAONHxQDBGiWvDxpfvZKw30fGRmBRqPBunXrsGfPntjWNQ6kBMExNZyyfGpAY2MjGIbBrH/9d367t24YAI8ePcKKFSuQmZn5RHcTQlKC4BB0FUQEIsJt8wEsWfSSxziD++hwOLBs2TL8+eefSE9PR25uLhYuXIhNmzbhm2++wR9//JGIXxE1KUFMwfZbwFT/A40fFPMX/Z9374EYAMxjITAAJiYmUFRUhDfeeAMsy6K+vh4PHz6ExWKBSqWC2WzGa6+9hldeeQWVlZVoa2vD8PBwXB+4iZgET3sTDsuyZNRrCJPXnLc56LWgKR2QxmDk07tcLtLpdKTT6cjtdtPOnTtp586donn39PRQXV0d6XQ6kslklJ2dTQaDgcxmM42NjcXl94VLanHLCwrgEON2u7F27Vo8fPgQ1n+cx1NzZBgcHEReXh4GBweDekxfvXoVnZ2duHDhAi5fvgyVSgWNRoP8/HxoNBrIZLJY/CQf/P5GQqqF8AfL//OY8vJyys3NpfHxcY/tRUVF1N7eHnYZHR0dtHPnTsrNzSUAlJubS7W1tdTR0UEulyvyygdArwXfGj7+KyDb1I9NCSJEDAYDqVSqqabe7bHParWSRqMJeHwwM7XT6SSr1Uo1NTWUk5NDAGj58uW0e/du6urqirb6Hui1QnO8e6rLnBRFShBeiK1r1NTUkFKppOHhYb/HZWVlUX9/v2T1GBsbI7PZTNXV1ZSdnU1paWmk0+morq6Ouru7I86XJRtptQaf7Xrt5FgpJQi/TLYCu3fvpoULF4qKQXjX19XVkcHge6KjQZj/w4cPqbW1lbZu3UpKpZLmzp1LRUVF1NDQQDdv3gw5z16LkR8kc/nzA2vttpQgAtHQ0ECZmZlkt9uDNvmjo6OUkZFBTqczorLCXfkcGhqilpYWKi8vp6ysLEpPT6eSkhI6fPgw9ff3k91uFz3OqNeQ0dLrs918UJ8SRCCam5tJoVD4dAOBLltZWRk1NzdLVodAIvHeZ7fbqbm5mcrKyuhvf/sbAaCVK1d6DE5ZslEB8xb1iXSLB6sKUl2GP1pbW0kul4fVFBMRdXV1UU5OTmwqFSIdHR0kl8upubmZCgoKqKmp6fF17zV72FR4bGYCQEZLb0oQ3pjNZpLL5REP3LKzs+natWsxd34Ry7+rq4vkcjmdPXuWiIh0Oh1ZrVY+vfmgnvRGs89xei0I2m1ENMOmncEuktVqJblcTpcuXYq4jKamJtqyZUvEx0dKd3c3yeVyD3uIUqnkuzxR76+ploETA9EME0Qgrl69SnK5nL+jImV8fJzmz58fV9P0zZs3KT093cdtTyaT0f9NOKnXYuTN8NwfAxCDWfwAk5PJjBBEsJbhxo0bPndXNPlv3bqVjEaRvjoGcGI4evSoRz2Gh4dJoVCQtxGNw98ZmRGCCERvby/J5XIymUyS5qlUKiXLzx/9/f2kUChEZzbd3d2Um5sbNA/eRD+lkBktCO6ENjU1SZKf8A5Vq9V04cIFSfIVg6t7Q0ODT9lEkzOl0tLSsPOdEf4QJLKg+/vvv0On06GmpgYVFRWSlCNcQayqqsKRI0eizlOs7oODg9DpdPjwww95H07v1Uu73Y6XXnopaF4++6OW6hPI8PAwLV68mD766KOYleF0OkmhUNDQ0FDAdMI7O5Spqt1up6ysLNq9e3fAdBUVFRG1fDOihRDy6NEj5Ofno6ioCHv37o1ZOTKZDOXl5Th27JjfNOTllxDsOY2RkRHodDps2LBB1KGXBC3A4OAgFi5cGHa9Z1QLMT4+TiqVKm52Au5udrlcYbcE3gwPD5NSqaTq6uqQ8hHaIMJhWgpC7ESNj4+TWq2m0tLSuD5Cp9PpIp7OcoyNjVF2draHGIgCC+Kpp56KaKFt2glC7CQ5nU7S6XS0evXqmHki+ePMmTOk0+kiPn5sbIxUKhVt2rQp5GMe2yDCZ1qNIUjEV5DzgwSA77//Pu6RYnU6Hfr7+3H37t2wjx0fH4dOp4NKpcLXX38d8nF2uz2y8QOmmRu+2KBs7dq1GB0dxYkTJ+LmxCokLS0N27ZtQ1NTE7+NQvBrdjgcWLlyJTIzM/Hll1/67A+Uh91ujziO1bQShDebNm3C/fv3ce7cuYTGgywvL4fJZILT6QQQfDbBxb9WKBRobW0VbdUC5SFmgwiVaSuIHTt2oKenBxcvXvQQQyh3p9RkZGSgoKAAbW1tQdNOTEyguLgYs2fPRktLS9AuTuz33L9/P9VlCNm1axfOnTuHixcv+gQHTVRMhvfff9+j2xCDC4bOMAwsFktIXZzY74nYBgFMPztEXV0dZWVlifoUJjpii1KppJ6eHtF9LpeL1qxZQ2q1OmK/TGE5kXqATytBNDY2kkKhoDt37iS6KqI0NjbS5s2bRfeVlpaSWq32eQgoEmQyWcSimjaCMJlMJJfLfZ1ivVqFRLYSY2NjpFAofJxnysvLSaVSeYgh0npGY4Mg8rJDuGmC/3uSOHnyJLZv347Ozk6fSLHefWwi4zrJ5XKsWrUKLS0t/LbKykrcunULly5d8hj8RlrPaGwQAHzHEC42uv4r3nB+kFI/7hYrenp6eOeZ6upqUiqV9PDhQ8nyj9QPguOJDn7e0dHBvySdCw5KcXq/Zah41ycnJwfp6elYu3YtfvnlF3R2dmL+/PmSlcfZICI9DwEFIew60hiZz3dhGu67v2ND3SfExTr5HyVM56YJ/Pzzz/jPsv/Ad999xwcHddOERz25z4HKiDViXdaCBQvw448/4t69e5K/JsFut0OlUkV8UwS0Q3An0t//3Mn2Fotwezj7hLhpArNnPSUqptu/9KNoZTE+P/y/WFFYwG8X5i/8nExjov379+PGjRsxe61StGOIsAxTYnebVINQmorrRCKWN65MIsJvv/0GrVaLQ4cOoaSkxCeNsH7xbBnE6u3NoUOH0NjYiMuXL2Pjxo2iaxTREs06BoDQBpXcNu99/gaggdL52+c9zRLL226304sL/4V3LA2Ud6Ay4w3LstTQ0ODxrOidO3d45xkpicYGQSSwQ/i76IH2hXoBohWEi3XS0NAQZWVl0d/r/jtgOi6fZBKEyWSi+fPn+9hIdDodnTlzxmMby7IJs0EQeQki0IkL1Br4E1G4+8S+u1gn7z5WW1vr93jvbf4+xwvuoppMJpo3b57og8Nms9nHeSYaw1moz2IEImRLZaLuMs5jqKqqKiHlRwJ3Udvb2wM+Re5yueiFF17wG8shXKK1QRCF6DEVy6kbBRiMORwOFBQUQKVS4bPPPotJ+bGAYRj+1UqB3qaTlpaGioqKoKugoSK0QURMILUEavZjjdPpJLVaTSUlJXEvO1rCsZ5y/X60K5xERJWVlVE/hRbUDsH9xRPOSSQ9PR2tra1xLTtazp8/72M9DURGRgbUajXa29ujLjvqdQwg+fwhXC4XlZSUkEajkeSuiSdcwI5wQwp0dHSIDgbDHWBG4wfBkXSCKCsro7y8PEn8AuIJJ4ZIn8FQKpXU2+sbDCwcorVBECWZICoqKgTBQcVJtNeTGNx7tk6ePBlxHvX19VRRURHx8VLYIIiSRBAsy/LBQUdHRxNdnbDgxBBtfImxsTE+8kwkopfCBkGUJA/q7N27FydOnEBnZyeeffbZRFcnZAYGBvh1lY0bN0aVl1wuR3FxMVpbWyNaqYx6DYMjaklFSX19PR8cNBSSpcvwDtgRLSzL0vXr1yk7Ozui4+vq6nhLrjDPcEmoIJqammjBggWSxoiOB3a7nRQKBR06dEjyvHNyciLy/oo0HoQ3CRNES0sLyeXyqEfW8YZ7xH/fvn0xyb+5uTmo+VnszhfGpIyGhAjixIkTJJfL/T6jkKwMDw+HFL0lHLwv7sTEBCkUiqB+lt7HSWGDIEqAIJ40p1gObsW1pqYm5mXV1NRQXV2dz/ZAYwIpbBBEcRCE8EdEaslLNI8ePfKJ3hJL+vr6/DrPiIlCKhsEURxbiOvXr0dlyUsU3PJ7vMMVazSakG8cqWwQRHGyQ9hsNmi1WjQ2NmLNmjXe0954VCEiHA4H8vPzsXTpUjQ3N8e17MrKShw+fDiktJLZIBCHp78HBgag0WjwySefYP369T77k+kZCiEOhwOFhYV49dVXYTKZ4l5+cXExbt++jcHBwYDpiAh2ux2LFi2SpNyYCoILsCllcNBYQ0SYmJjAypUroVAocPz48bi0Yt5lpKWlYcOGDQGdZ2jqYZz79+9L1kJEPYbwN/KNxRQtGkK12nEByoqKinzCCcaboaEhyszM9HwrTgxtEEQSjCEYhvFR9+joKPLz8/Huu++KBticEmK0RYcMhfhYm9vtRnFxMQCgvb0daWlpce/ShOclMzMTubm5QZ1npBxDSDbL4JTLjcqjWcqNJf7ueM4xZ/ny5X7n8/FuLViWJavVSmq1OmA6qWwQRBJPO7ngoOvXr5cyW8kIJAYueksyOeZw9V28eLFfE7+UNggiCaedwshpgeI7JxJ/zf+WLVvw4MGDhEer84arb2VlJb744gvRNJL4UQqQRBAulwslJSWYPXs2vv3227gHB40EmuqrN23ahFu3bsFqtSaFGEhkbLVlyxacPHkSDofDZ5+k4wdIJIh169ZhbGws5MhpyQDDMHzows7OTp9odYlCrBWTy+XQaDQ4fvy4z75oYlKKEbUguOCgP/30E2QyWdIamrzZsWMHzp8/Lxq6MBmpqqoStUlEE5NSjKgEIQwO+swzz0hVp5iza9cuWK1WXLp0SfKAHbFi2bJlSEtLw7Vr1zy2RxWTUoxIR6O1tbWkVCppZGREshFuPNi9e7ffOJbJzpEjR6isrMxjm1R+EBwRCWLfvn2UlZUV9PVByYbRaKQXX3wxKYOahsL4+LiP84xMJqOJiQnJyghbEFzgiyftDmtoaHgi/Te9MRgM/DtBORuEPzHH3MnWZDLRc8895/ekJuNdxrIsNTc3k0KhoL6+vkRXJypYlqX+/n5avHgxEUnrB8ERsiCCxTpIVrgIt+HWOxnFzbF8+XLq6uqSJB6ENwxR8FUmm82GnJwclJWVITMzkzeeJNsU03uhra+vD6dPn0Z5eTkUCoVHGrFFOW8oxEWxWCJWh7/++gtz5szB1atX4XQ6ceXKlaDHhErQwKUsCNnZ2dDr9Zg3bx6A5BMCC8IsMABLAAMwBPQN9OP06dPYsGEDLwbgsSUwFFEkw+8Uq8OcOXMAwG+4AY9jCAAT5LMQYXNR+bbnG+QBTL49PnlbT1G493n78+xO5u4gXIL+EjeXQvyl8N74jCH0WtDBUzZiiajX8ikBIHOvd7GhZR5fPOv0pE2JpcJ8UE8AiGEYgnYbsWQjvd4Y8vECSyULQh8GOgqg+7fXwADIXvwyADFzZlI8IwwAMLzNgGEYMEza1P+Tfy/8198TXbW4QFNdHttvAcMwaLy3CCwR3CwLatBgFpMNLHoZ3h2j345SqI5ei5E0hv/hvxs0II3BmPRNrF471YpNVbP31IEnot5SwZKNNJi8Vp7biYx6zWS3T6F1lRA2tVxzw/35dhXJB0s20rxdxX82Gn8glmx08KA5sRWLI5PXrYBsIiMK84EKv9dRbKtHC6HXgsy2SYdOs7HKRxTJeMf1WoykN5qJZVn6wbiNjGZboqsUV7jWQW80T34PcomCXUHwKWxmgnYbv8PtUZCbT5ZskjAfrPRq1Sa3C+sZTbjgpMdmJmAW3y1EyyxuLmqxXoB+xdv82GJW32/oALBo8SsA+GRgwEowFAoDAhCgzAvWJph7WRARDFoNlmRPDZcE9gVuoDl9mTw/RBRgtAh+X6Ak/HThgvVzaHWrwM02tNmrARSgcNXrPodQPB+/YzyqOcWUQPos+BzbUJw9ebEX6Qrx+pR0p7cAHkOvL4EGwL07/5z8zcKf3WeB0dL7+DtvlApw/XotRh9jFACCptKrMUk+24P5oJ7vO4UYDIbp20WI8INx22Mj4hS9FqPHEIDDuyv1Rnxxy83673eT5Ty7WdJrQae8RtDbNBAVyXTn9inPG3tyChr+TTy5uMXbtVmEYnSiBC/62E4dxBvFNX7XIsy9LN+NzBi4ayhYoxBbrgh27f4fxXXFmJE2/+kAAAAASUVORK5CYII="
|
<image>如图,△ABC,AB=8,AC=5,BC=7,AD是△ABC外角平分线,CD⊥AD于D,E是BC的中点,则DE=()
Choices:
(A) 7
(B) 6.5
(C) 6
(D) 5.5
|
6.5
| 69,773 | null |
6.5
|
"iVBORw0KGgoAAAANSUhEUgAAAM4AAABkCAYAAADOmA9MAAAVo0lEQVR4nO2dT2zbVp7Hv1TqCYpiIjs9LNptIzvAdmpJrmSgM3tKJN8CFFgrG9EuAtSx77trpUWBHqYilfZaO5ktdm+x3KLbSHZsp4fFXGrJxWCB5mA7tuQWKCrZOWz3MLYcFEXaqcXfHihSpET9s0iRsvkBDEvkI/WTHn/v93vv997vMQIRMQAAAUQMGIYBARCPiccBB2zMplw/AJBZ4BCL3cJiFgAGwSaTSNAHGGM+xwJr15fROMoK4ihVigAQKYvUvppqn7LRGwcYhkDIgPMyGOJ3MJbYBhFBoCSu7bBwjG/D4zZbztOBrBUL4wwcDgcY5kzpPwOH1w3vWBIZEETLUwFTfcjGOAg74IaGcIvex3Y2CdbjBQAw8ILlYgjDC7fHrpROICsOmyDcCxPgiWKbBJBAKCajGNwZx9BQDBlbS0yFiJCJjeODzO/AJ3h4K+qDgRtubgysXU+dgUoItE1RD8jNb5MSIROlQVQfJyqW/mw6gVQ/YO81eYVdN0ZS7sBkF7CYdYMNVzjJHhasB9jJZitUzgGQ3QntFIRvsZMFXvV6GhUs4bD7oAYiP/mZxUXseMIIl3xkUgwQUC3rb3sFHYPJbiMDwFFDGQilOmNQVhi7fgzDAQCEDBYXduBmWdl3loY9CTv4JgO4PcqWTmOgwMZQyOOBF1qWX2RxYUGsM3UswcYgRIujdNMqWjRmYQGLGET42qB8jOy4TseQLL8DY0gmw8DCm/CO3SuNdAK0kwQ/zoLYsHhBSWnIbtyMhYhISIYJnihtk6DqABW/uUdhgDxsou3OlCAIjQvZNGQ7GaWwW/TMGIahwXCUkhnlb2sPCnQCRqBt4r1DWGS3keW8AARks98gu8iD5xfB8NJxwOfzYWtrCz09PXA4HOjp6dFTgWX38LRR67s/ffoUL774Ih4/flw6UnsWx2n+/cxA2ZVU8Du42TfBcTzGFF2b77//Hn6/H++88w6+/PJL/OUv/4PXXvPi0qVLuHTpEt54442OCX6SkB565cN/eHgIr9eL5557Dh9//CdcvXqt4iIAqi6NPTWqkzBE1NKgZSQSAQDMzs6CYRik02mkUimsra1hbW0NgUAAwWAQIyMjuHz58rFawdPaeiq/N8dx2N3dxdTUFEKhEPL5PPr6+lR9f3scwDyY8iRPNbUe3kKhgP6LA9hc38BA/0BVzUmK9ODBAzx69EilSIFAwJhvccIoFAoYGBjAxsYGBgYGEIlEsPt4DytLy+qCtuaYBkMCUas/vtQazs/PoZ57UCgUkE6nsba2hnQ6jd3dXYyMjCAYDCIQCMDv97cl/EklGo1ib28P8/PzAES3ze/3Ix6PIxgMal4jN3S2MnWEmhZHSaX1kVrEVCqF4eHhhuWlY4eHh0in07Iy7e7uqqyRUpEkD/K0uWyV1kbqu6TTaUxOTmJjYwN9fX2KK+y+jRm03MeRiMfjiMfjSKfTx/7wfD6PtbU1uY90eHiIq1evIhgM4vLly6UHR6SVfk839ZEqZS1b8/mqslL/8vbt2x2SzqYWx1YcAOjv769yH9p5aCVFkqwSANm1q1Skk0ihUMDFixexvr6u+V0LhQKGh4cRj8cRCAS6pnE4kbQTBFpaWiK/39/OLeqSy+VoZmaGRkdHyel0ksvlosnJSVpeXqaDgwPDPtcsotEoTUxM1C2TSqXI5XKdyO/fTbRlcQAgGAxicnISk5OTOqlybTY3N7G6uoqvvvoK6XQaAwMD8kBDIBCo8P3VkMXdt+q+TW1CoRD6+/ttl81M2tU8qQVsFj2n3mxsbNDMzAwFg0ECQH6/n6anp2l5eflY8pg5LagZayNxcHBATqeTUqmUsULZ1KRtxSEiCgQCNDMzo8et2iKVSlE0GqVAIEAAKBAIEMdxlE6nzRatLpIi5HK5pq9ZWlqyXTYTadtVA8RO/fDwsBzd7iRUxwVLp9NYXV3FF198URWMPe6sBiPgOA57e3uIx+MtXRcKheDz+RCLxYwRzKYmuigOANy4cQP9/f26VmI9pWj1+spg7N7enhw/CgaDeO2118prkDrYH9Lq2zT7+dK16XRajoF1UvbTjG6Kk8/nMTIyglQq1RXDxlaZ1cBxHJ48eXLsjv7y8jJu3bqFjY0NfQWzqYtuigOID0E+n8cnn3yi1y07RjPB2FZb80blJRd3d3cXvb29x5a90mWzrY7x6Ko4rQypWp1KRQLqB2OP87Dq5d5quWw2xqKr4gCi1dna2sLy8rLlWr5G8tQ7n8/nsbKyIitTX18fRkZGMDo6WhVDauZ7a1mbdn6vmZkZfPrpp7LLZrXf/qShu+IA2lNxThqbm5uyNWo1GAtUWxs9HnTp8+1Rtg6g17i2Mnh49+5dCgQCet26bZoJbEplWgmCKstKwVgphuT3+ykSiWgGY3O5HDmdTt1jMNJ9NzY2dL2vTTWGWBwA8Pv94DgOV69eNeL2lqfeyti7d+/qPnQvMTs7iwcPHrQ1a92mMW0rDlW4GNJ7af3I7u5uuzJ2HOk7VH63dqhcGXvhwgVcv34dV65c0T0YGwwGMTo6ips3b+p2T5sKjDRngUCA5ubmVMdOZJqoFr/S5uYmjYyM0NmzZ+mFF16gc+fOUSgUotnZ2ZbcrFq/ZS6XI5fLRfl8vjXBbJrGMFcNgGx11tfXcf78+RM70tPU99JY0pzP5zE1NYV8Po9QKCRb6maDsfU+9/bt21hZWbFdNqMwWjMnJiYoGo0a/TGmUqvlT7Bi4kDAQWBKr91hSsgJBIskCAKlUikKBALkcrloaWmJcrkczc3N0VtvvUUul4ucTidNTk5SPB5vaSKoVSbfnkQMVxyjRpCsizqTZoJFKUuquFVH+X21sqVSKfL5fBQIBFRLBiRFmpiYIJfLJS/oa6RIGxsbLc+6tmkOwxWHiGh6epqmp6c78VHmIlS+rd5zSEiGCRgkLlM7VW08HieXy1WlQBJaK2OnpqY0V8ZyHGep0MBJQVfFqeWyHGe9yUlAyETJDbdKSbZ4NwHXKNHEiMLc3JxsXRpZlo8++khWJL/fTzdv3pQVyefz2S6bznTE4hC1tsLxpPAo5iZ4RTeNiGgreY0GARrkMk3f4+DggKLRKJ07d66hAklUBmNfeeUVOnv2LH322WfH/CY2lXRMcSSrc5Kj2kqLW6RNinpAg54wDaI8MMAlM1WWuZkh+kKhQNFolHp7e4njuJb6jNLgw/PPP99VK2OtTMcUh0h0PSR/+6TEc8rfo6jOX6DhpknltF83x8HBAU1MTJDT6WxZgXw+Hy0tLclLzH0+X0NFsn49mbOtSUcVh4jI5XKdiiQTW7FXa46e6UEul6OJiQnq7e2leDxORI0fcmmUTalsBwcHtLS0RNPT0+Tz+cjpdFIoFKLbt2/r6h0YrYCN7i5/vk5idFxxjM7FZgVq7eBdSbHFWtR6+PL5vBwDkhSo3vXRaJRCoVDNMvv7+7S0tESRSMRQRdKTcrxM46/UeJV/ulZ/dW06rjhE2lNxThLKilMrT3tuWj2kfsyFCxfqWvRCoSAHWpuhMoZ03GCs0STY6q3st3h33carHQUyRXFSqRT19/eb8dEGYZ3tA6U8d7ViQFIZp9NJ+/v7Ld//uMFYI5EsfDgp1kMxyROfFEhIhuVjatqvL1MUh+g0TAepti6CIHSssy3FgAKBAG1ubladn56eruuyNYsUjA2FQqo0xSsrKx2bLSIOxIQpQQIVaZt4T1gVJzPiFzdNcXK5HPX29nb9VBytShGVo9qXbvS+5c9uQgnn5uZk90ppEfb39w0ZqJFiSMpgrLSgT1nX+jUgxVJQWaNfo1W8WwcHlExMTBDHcWaKoAs166JOJXVymFcKolYqkDKBu17yVN5Ha2Vsq2mK635exUCMkInqskt6I0xVHGndiJZvbP34Qfcg/ZSiAv2RXC6XHAOanv7Xjs4jXF1d1UxTfFzLVxkvO6J7xPFbOkqsjamKQ3Q6p+KYjRQDcjqd9N5779HLL79sWmytlWAsEVVb8QVWM15mdMNr6EK2ZqiVAhY4fdsYGoZiEZ1yPV0+nwfP81i+v4Ses7/Bn//83/jtb51gCGi4v6WOSMvUf/zxRzx8+BAPHz7E119/jR9++AG//8c/4A+v/x5erxfXr19XfSdiMuC9Q1hkt5HlvJ0TGAalh2oFIgLP89ja2sLS0pLua/1tqvcIJQBQ/Mabm5u4dOkSAOCll16qe60eKOtXqm8tisUifvrpJzx9+hSHh4dYXV1VpRxTPiNuvsPKY6g906CWCT0tU3HMpJ7zsr+/T+fOnaPV1VWxrIX6mNIqWXEg47DqnDZFMjK+pmpO6Ihw9Ev5ryjor6i1LAnP8+A4Tv8PtJHJLrwP1usG42DAMAw8YzwWshlwYQ7/e74P8Xgck5OTKBSemGLxScPyEMRnJhgMIhQKIRaTnhFBPqd9MwcM3Y27SpUEgX79WaCiCQ2O3+9veiqITfMItE3ve0vLGha2SA7IZqLikgd5qkqR/ik0atkcEQcHB409E+F4ySVbxVKK0+q2iDaNEWibOG/tPAdbvLs0LUVUJuW6KWs4a2p3S7V5cAMBjZS/ri0rSm7b30gMyR5VuHCkcO2OVGZM5fKpDHCdc8FgEC6XS9yZTFnub4pyNa6XZBVIIfdRHRlPCTuxccQyg+ASHLyV+akAuD1j8LgBya3p6+vD3NwcpqamNEqbgfoRLbtssap0W5UYKn+1miosTum1UnOPflW8/qV87khhpZSvhV8F+lV5TZ1zRNIE0H+gv/7fgVyu+ItAR8UG15dkleWV3v+ifm+NVrQzCJSlqEd0xVp1X0ZHreOyVcrclMtmMPV7TwyDM2eAotRSC1RuAAQCKVp3AkBUOs4AUp+NOQOgWLIM9c6JSizuP3PpEv794z/BUSrn+A2DM47G10tllS2No0f93tzB985CyGAnC7g9HvXw7wILhjkDhmFK/8NIqv0CzM3N4c6dO9jc3DRBcjWVAwB9feWBjMPDQ1Nkqqk48sP5DAOmKLpAggA4lFecYfDM2fLfGelcvYezzjnpB+K5P+I/7/wHCoVCS9fb1KM8RMqwCRTpc4QBgP0vbFMSY6h+ODmOw9TUVM07komtkOSy8TxvjgCS6ZHdHkHh3ijP/Vx2lySOKo4JCndKdqGK1a5arXPlGwkU+Zd3KfJv083fu3JQo9H7E0I910uaAKk5JaVufrfysUAgUNNlMzvWY6bLplacn2s/XEda/YNi+RpV/0HR36hUwnrnlIp48NcD+jtnP333bb6pex9VyNHo/WlAEAR5yNnDJmTlEQShbkZRJVbfc0c1ytZBmp45UNSyDAYirY+3J4C2SnVWHSGboGuewXL+agzSoCdMfFJjwEBDj6RlAVbFjEyxTSmO8Ks5Ls5pyMWmB6q0VESkUp526k1xrZkrdhutnDXDZaurOLL71mFro+Qk5mLrRuqtnapFJ+urWZdNr+Xrps+OboaBgQHMzc2d6M14uwGrb5MYiUQAiHsDGU7bqtcBauVisy1Q57FykpVOumxdoThEJz8XW7dg9T13pNRjRo+ydYWrBkC1GS/ZK0RNheM4rK2tnW6XzVC11BkruwmnDSvvuSNlKzXSZesaiwOIa+SHh4eRz+fR19dntjinms3NTQSDQVVdkIWWvEseysbGhuaz0q6sXaU4AHDjxg309/eL08ptTIXjODx69AgrKytmi6KJoS6bYbbMAARBoFwuRxcuXLBs5/S0Ie25YxZmBUa7zuIAYku3u7uL+fl5zfNkIZfhpKPlslkJyWVbX1/H+fPndbtvVyqOlIttfX0dFy9eNFucUw/Hcdja2sLy8rLquFUasEgkAoZhMDs7q99NdbdhHaLWBkl2ULTzSC6RXvmg9cYIl61rFYfIzsVmJaQ9d8zYfaKZxlLv5Qdd6apJxONxzM/PI5VKmS2KDUSXaG9vr8plswrSKNvs7Gz7LqQu6mciPp9PdhFsN81czE6i0aj+9ZSv6xXHzsVmLcxakamFVmYfveTraldNIhgMYnJyEpOTk2aLcjpRboEAIBJ5G4CA27O3y8dLZSqKmkIkEgER4c6dO8cXqC216whFDRNcJ7ujAtt16yCKn1rpElXWgBXqpDWXTTtxe1dYHKoZDyhvQ/Hmm2/iyZMnuHLlCoD620fYGEW5Pr777jt8/vnnePfdd/Hss8+qSon77wggYkyL80jybW0+wt+/LG5tkhxjML6gXT6cLGKBLedGe6YTQraHAIZxVCsPAVAcf/vtt/Hhhx9id3fXLEFPMQ4o87YBQE9PD4aGhvD48S7Onn1Ws4yZ9PT04PXXX8eRUJSPjSUJYB0Yd9wDJcYAALSTRGyMB9wVN9DJ+nUOgahICeJKm6XamE/z7pexe9Y0Q72cA1IeOjEJPdE9XkyfleGjdE9Qy23gBiL6QAp3i1Davs4zjhoW1cYEmne3DN6zpgnEtL+V8oqWkMksYDEbBssyoCyHD7IeeAjwcDGMM2q5La84yi/JQEA2FsN9B+BxV9pOc1Oy2tSmW+pl+/4idrCIccYBh/cWyOOu2ShYXnGUUDaG+24WYdJOIW2FCYU2wL0xRm7ZGQcDh8MBN8shI9ea2MJ3Wp0kBVYpMgGAA4QMFhd24Oa3QUTY4t141eNWCKnun1lAcdQC1foxBSQxtuDB+yzwTdYNz6AFRLfR5M0kIcEOAuw9kEAQsgl4Fm9haCwpP6hA5+M5yh0bygdL/7P3sZh1gw2LnozH88/wvkoKIa3mqlV0szR/TALu39oBx7Ngsllk4Ybb2x3m/7Qh1koW2Z1vEGZZAADjHkPppfnRz0pKj1FmMYkdTxhhjyigI/wBYt4zoAUW7ILGaKCBAxi6scW7CXCU8h6DgGuUODWp07sPIRMlN8KUIIGKtE2JmLvGzgjmjrBJCPSIoh6QWzVSm6F7/GDNZ806cRxpSgYVwTBn5MPCDocldwZEYktQXGDxDD9YNaxuYw4kx9fKwc/M4iJ2sCOPRHn4BLaJ1dhK0XyHBwAcjE98kR0Cw4svGZSMEcthrJStXrVhWScF1KZkBjV8yczC+xhPesCxjFxucXG7vOuVjfnIdSHWm1DqZIeTRRARhEwU4McxHsuaJ2MDSJzsXPoryS29T44D0PAwO2AJG1PD6wJAwO+I21ZskiS5a0zYdtcsiJCJ0qsVdZNgJfeaiKho7HbQx6EZeSrKWMNVq2FASBo+BMDAi1iGEFPaTCtMtbVRkVlcxLfhKFi5brLI7gDweOAGAXBYr85qylN2PyvLWMBVa4wos9qlIwBgrDP3yQZyLORaOCxOskUGiTEWt7JAmNPeLt4SVA7Qyu8dNYuIs6MrWm6CAEapU/Z5+3wT5+X4iNyzBuAOg+N58KwHNbGI/M2eB7o0PZSNjdl0hatmY2M1bMWxsTkG/w+uCQ/8jjJ+pgAAAABJRU5ErkJggg=="
|
<image>如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GEF=120°,则\frac{PG}{PC}=()
Choices:
(A) √{2}
(B) √{3}
(C) \frac{√{2}}{2}
(D) \frac{√{3}}{3}
|
√{3}
| 69,774 | null |
√{3}
|
"iVBORw0KGgoAAAANSUhEUgAAAG8AAAB0CAYAAACL1Gw4AAAZ6klEQVR4nO2dfXBU5b3Hv2c3lpaC68umu9INiWSBhU1Lukp5MSYgERmBGRnQWBtoGHobazol1FhopUx75UJQ6rTTWLniTLCoRA3pC1jjNFw2CDZubPWWxQTzQshGCWGuBDfTRNhzvvePzTk5+76b7CYb4DOTgX2ec57znPN7fr/n97yD4wBJkihJEkny7GuFBOD9K3qFZ8Vj3PHMCYqU/O4h/YKuOjRIckgRgiBA6Hod3xMEpHf8AKIoQpIk8D+1+IU2Fx+npUEDASSV+wQBgDB2+R4Vxrr0REKSPJR4gjsA4ul6v0jy3XJw57tXFM28lkh6zRMELVyv/zd+jp04/sRCr3ZJgxomAMaMHZhq0kIQrnY1C0QgVbYmCSHeRblwFz6u6kRlQVrQayQQAoSr3kr6k/ya53KhWQBmTr0NwcqZBEKjCE5Swq4Fkl54EATIsghqGiWqhKoBAWgUHZRGIYNjR9ILjyYTLABOd54DKfpGul7D6+9xSKgEKKkFlvSvNyKS/u0ELMR3X1uHfQ9PxdPvDYWLDTsg/FLCgvne36TobRpoVNopBZrPeFbxkjS2mp30DouM2LADNyzcOvTxdx0Df3p30GtJjtj7jEcaiSbphSdJEjQafwMhYchoDP1fdl6CoRZGPAQTPF+jS9KbTY1GE1jXQaMyWd7/EwAkEaS390Vt0vyFFYvgQpnGsRYcMA6EJ0kSBEELD3wFKH88CYRG49U3QRBAQQONRuOjgSPRslBCGuv6DhgHZjOciTty5AgaGxsxZ84cdHZ24tNPP0V9fb0S39bWhq6uLp970tLSMG3aNABASkoK7rrrLqSlpcFsNuPOO+/EpEmT4pK30SDpheePy+XCkf+x469vHsLBgwcHNVOAyWTCvHnzsHbtWuh0OgBARkYG0tPTfeqns2fPoqOjAwDQ19cHh8OB9vZ2uFwuHD9+HCaTCYsXL0Z+fj7y8/NhMBiC5mOsBSdnIqm5QolNTU0sK/sJzWYzjUYjV65cydtvv535+Ut59OhR3n///Zw0aRINBgN1Oh03bNjAo0ePkhSjfo7cse10OllRUcE1a9ZQr9fTYrFw69atbGlp8bleFKNPO1GMuvDC9f7LcaIosqenh3v27KHNZqPJZOLjjz/OpqYm1tTU0Gg0sqKiIuBeSfIK+ic/+QnT09M5ZcoUbty4kSdPnhx2fp1OJ0tLS2k0GpmTk8MXXniBvb29w04vGJFGROR4/+tGVXjRlNbu7m6WlpZy0qRJLCws5KFDh0iSAwMDLC4upsVi4QcffBDV89555x0WFxfz1ltv5YwZM/jUU0+xvb094CNEO5x08OBBFhQUUKfTcfPmzezp6YnqvliIZWgracymy+VicXExdTody8rK2N3drcQ1NTUxOzubRUVF/Pzzz4eVfk1NDR955BFOmDCB8+bN4/PPPz/sj+9yuVhSUkKdTsdNmzb55HU0Sbjw/LXN/7fb7eaWLVuo1+u5bdu2gA9aWVlJo9HIl19+OS75cbvd3L9/P5cvX04AXL58Offv38/+/v6Y0+ru7vbJ+8DAgE+8WosSUUeOuvDUYXL9VVxcHCA0t9vNwsJCZmdns7W1NWKaw6Gnp4fPP/88bTYbJ0yYwEceeYQ1NTUxp3Pu3DkWFhYyPT2dtbW1w8qLLOjc3NyhOTqDf8eOHQt6z5iYzc7OTubn5/Nb3/oWGxoaAuIdDgfNZjM3btwYUJoTRXt7O5966inOnDmTer2excXFIT+aP6IoUhRF2u12WiwWrlixIqAwqp2xYKi1NDc3l/X13ikf9fX1BMD29vaAe0ZdeA6Hg0ajkdu3bw8a/9vf/pZGo5FvvvmmEpZItzyYg+B0Orlx40ZOmTKFGRkZ3Lx5M5uamkI6E7LwSNLj8XDr1q2cOnUqnU7nsPKkbsG1tbURANva2gKvG1bqw2Tfvn3U6/VBTUtPTw9XrFjBnJwculyuEQss1glJoa6vq6vjhg0bqNPpaLVa+cwzz9DlckVMr7q6mnq9nm+88UZM+aivr2dZWZnyOzc31+e3GpAMmPNIxv7y4fB4PCwpKaHZbA5aGo8fP06TycRt27bF7ZnxRJIkXr58ma+//joLCgqo1WqZl5fHvXv38rPPPgt5n8PhoMlk4pYtW6J+VmVlpU99F0zjZHw0b6gx6AnxEsHDw3Hp0iUuW7aMOTk5QRu327Zto9FopN1ujzntseKzzz5jZWUllyxZQgBcvXo1Dxw4wP7+/gCL0d3dTZvNxjVr1tDtdkdUitzcXEVgsiBDCRDk4NxIlWBCJS9raLQ9Ak6nk2azmcXFxfR4fAXf3d3NvLw8Llu2LCGN3dGiu7ubv/vd7zhnzhxOnDiR69at41//+lefawYGBlhYWEir1RrgOatpbW1lbm4uyaFvCICVlZVBr1c0b0gwHp9/h0ttbS11Ol1ANxZJHj58mEajkb/+9a9D3p8MfYeRUBdiSZLY0tLCJ598kpmZmTQYDCwpKaHD4VCuKy8vp06nC2llKisrfQTV3t5OAIrn6Q9i+UjB6sZgjXCn00mdTse33nrLJ+7KlSssKytjZmYmHQ6HT1wkV3qsGK7j43A4WFJSQoPBwMzMTG7bto0tLS2sqamhXq8PqoGyyRRFkZIkKfVeKOCfwWj7/UKF9/T00Gw2B2hcW1sbbTYbCwoKourYHY/T10Pl+dChQ1y3bh0nTpzIOXPmcMWKFZwxYwbdbjdJ8tixYwENc0EQePfdd4d9DsJ14YjvHmDV2eg/osfjYX5+PktKSnzCq6qqaDQauXfv3qjTuhrp7+/ngQMHuHr1agKgXq/nq6++Ouz0FM0TKSn/kqTEd/lfWMtXzkZvxkpLS5mfn684J263m9///vdptVqjarAmm8lMBPI77ty5k1qtluvXrx92WkMGVfL9eMd3rOXa9Tt5jME7W/0dmsrKSprNZsVzdDqdtFqtLC4u9un0Va+1uxoYzvts3LiRVquVx44do8lk4sGDBwOuEcVgHoYvvrXh4ILEzqp13HXiBHcKO/gOrwRNWE1DQwP1ej2bm5tJknv27KHRaGRVVVVMLzWeiab55Ha7uXz5ct53331K497h8H67YJbpSgTxBboynVXcWdVOdlaxqKiKHQFNBtHH63S5XDSZTKytrWVvby/XrFnD+fPn88yZM2EffK3R1dVFq9XKkpISXrniqxDV1dVMT0/nhQsXYkrTOytncAoS0YFXX5XwnQKT9/esNKSrJtmQ3mUc6ml169evx49+9CPodDrMmTMHGRkZOH78OKZOnRpqzgzodZRGOv0mKaHffC6SaGxsxB133IFHH30UFRUVSElJUeI/cXVh9erVWLt2LX74wx/G/DCFs6+t87qqwqDLumtoSCSYWaiqqqLNZuOOHTtoNBpZV1cXVYm5muq8SBw4cIAGgyGg18Wff/7zn5w5y8K333476rSVjmnRVcVdVWeUCPHd/2JRVWfIG91uN2+77TbOnTuXeXl5AV1c14LnGAq5cG7bto2ZmZnhJ0CpyrFllpXTp0+PegxTAwBC52vY8AvgoQdNiqp3uU5D0IiQlyrSV1tRVlaG3t5ezJ07F3a7HampqT4mIxmmg48VX3zxBR5++GHU1dWhsbERWVlZoS9WTf38/OJn+OY3v4ndu3cD8C6uCcu75bJs1vKVTokSz/DVIhDQ+JlOkaLorWhbW1up1+t55MgRms1mrlixQunuUQ9M+pdEOf5qNps9PT202Wxct24dL1++HNO9Ho+H3d3d1Ov1UU1qinkwVhRFFhUVKWNvHo+Hu3fvpl6vZ1lZ2YjnNCazuY1U6E6ePMkpU6bwmWeeGVH6paWlLC0tjfjsiMLzv0kuGf5C6unpYUlJCfV6fdCRhKuJYB/y0KFDNBgMrKmpGbFlCfWN/YlZ80pLS7lly5agGZRHFPLz82m1WqP2Psc7zz77LKdMmRL1ZOBoKC4uDjqzQG2ZYhJeT08PdTpdRHssiiIPHz4cUB/6PzxYWKLnOsaTy5cvc8OGDbTZbDx37lxc05b9inCj7zG5hAcOHMCqVavCrpwBvJ7m8uXL0dzcjEWLFmH+/Pl44okncOnSpaBeqDpMvfImmT3Wixcv4t5770Vvby9OnDgBo9EYl3TlzovMzEzk5OTg4MGDoVcjRSoBaqlnZ2cPrr6JDbk+TE1NHdf1ofwtWlpamJmZyZ///OdxSzMYNTU1zMvLIxncCkVtNj/44AOmp6ePKHNOp5P33ntv2Pow2U3l0aNHaTAYuH///rin7S9Ij8fD1NRUdnR0jEx4paWlYafmReNhyW28w4cPc/r06VyxYkXYqW3Jxt69e2kwGPj3v/89qutH6nWKoshNmzaF/O5RC89kMrGpqWlEmVEz0vah/2y0RCOPwY32aElDQwMtFgvJQKsUlfCamppoNBrjnzN668PHHnuMt956a8j6cDR6ZIL1DJH0GYOT55yMJh6Ph5MmTQrq4UflztntduTl5cXFm/InNTUVzz33HOrr6/GnP/0JWVlZOHLkiM81gjC0ESr9hlzigbxm3d+77erqwvz585GRkYHa2lqfzQYSkY9gaLVa5OTkwG63Bz43kuRFUWRBQQH37NkzrJITqkSH4s033wzaPpTTSiRqDXc4HDQYDPz973+f0GdGQhRFlpeXs7i4WAlTZo9Fk4DRaBxRfRfso4czhXJ9mJqa6lMfjlaHtjwG97e//W1UnhcOURR96j01EYXX0dFBvV6fkIypCSYYuT4M1j5MlBbKY3ByYU2GERBRFDlhwoQApy6i8Orq6piXlzfqS67UqPtLjxw5MuL0gtHf38+CggIuXLgw7MqfsSI7OztglnlEh6W5uRnTp09XKnMOs6IO1sXjvz9YKKxWK95++23s2rULxcXFWLlyJc6cOTOsfATjwoULuOuuuzBhwgTY7XbcfPPNcUs7XpjNZpw+fdonLKLw2traMHPmTOV3PHf9CdWnGepadX/pvHnzlP7SkeB0OpGdnY3vfOc7eOmll3DDDTcoccMtqInAYrGgpaXFJyyi8JqamjBr1qyEZSpWtFotHn/8cXz00Ufo7++H2WzGc889N6y0Dh8+jPz8fFRUVKCsrCwgfsy3p1JhsVjw0UcfKb8lSYrcVMjOzg4Yp4rV/U8k0fSXBiMRY3CJxG63K53UMhGFZzabwy4IHGtkxyXU+KE/iRyDSyQOh4M2m80nLKLZ7Ovri2kbw0TAMHWPHBdq/FB9TaLG4BKJ7NTdeOON+Pe//+0T5yM8ShI8nqE/kckhvHCeqtrpUdeHAwMDMJvN+PGPf4zZs2dj9uzZsFqtEEUR1dXV+PKXvzxq+R8J8vt99atfRV9fn29kgH5KEq9cESkONqP8L0mGRmu0nDx5khMnTlQWLGo0GhYUFER1b7K8p5yP3t5e6nQ6n7iY5xkIgpAU6wwYhRuflZXls2Zi1qxZqKqqiir9ZPE0w+UjjPAI0SNB/7Wv42Kv21t0B80qhcHbyCEzK/n0dqvML30PhwkXF811g+GiSCVcGsyrxyNBovx/DzwiUVFRAWvWtzB37gI89/xe78EZET5YMuJ2uzF58mSfsJQQ1wIQoNUCX5mgxcAX/4aAyYMT3zXQCgBAiCKgTdFAACF6CEkQoBEIUSQ0Wg00AkBRgigCKVph8J5QcWrU1xGSh5AoQBsubS3gEQlJzhMFeEQiL+8enDz5TwgU4RE1oDA+j9Vzu90Bvkd4sykI+NJXJuPzS96KUiNoIMgfmgCVEs+h9Qz0LjOStV3QCEOlPVycGgIUhMHDSQRoUgYLTBT3C1oA9K6xACVotAKkhh0QJuhw0y16TPySAOHpd8ad9rndbkycONEnLITwhj7Q5IlfRp/bDYmEJPme9gJBQEqKRvkLUKCREK15k64EBAmCFhI0gKDB358WkLJAwDtfXETv/11A3xcnsGNzLjRPvxPkvIbkpb+/XzGbcn2vCI+iBI8Y+LmMxlR0d38KSSSoUZ1RJwACiaFbCHIwHISorgNlUxUuLgCqjgIKnTY1GgiKECQIELxCkSQ07E5F/ulX0CH9FDlIGbx/IZ54dzuw+TiOC57IXy1JcLlcSE1NBTDkxKh6huF1BkRCox0SksViQWtrKwQIvloHAVqt4BW6R4LHA0VCWq0ASIMOhwjvb0SK85pgkfBqdJRpp6SkAIIGouitjyWRgKCBp2E37t/xAF78xcOYOhhPEqLHA8WsJP+ZIAotLS2YPXu2T5jisAgaDVKCvIvZbMaHH/4vBA0AUvXiGDSbQfQmVHjYOAHalOGlTQJarUalwmfxxotb4N56DN+93ftS2hQBGlGCoNWis/M0AMu4Ouvy1KlTWLVqlU9YxKJnsVjQ0noGEISANkc0ba3RQJ0vkiA+Qec+YOfdC3yuowB42IF33voDsGshFkrjR/Pa2towY8YMnzZ2mKaCtx7MyMjEx03/8jOZXpKlIQtA0ToKgMblQrNQiPtMWiVaniHGhldRuG8tXunMhSbYSyUpTU1NmDFjhk93YNiiJ2g1yMzMAAUNmpubE57B4eB/PqxAgGlTYeHL6OzyOjKEt49Q4gnsWvAksOs/8Eja+BHce++9h9tvv105ZkcmKruRl5enzBtMNpRtRRQPVIKABVhUDvzshdfRCQ8EAFLXG1ivycGT5fXKoYnJYvYjYbfbkZubGxAelfAWL14cILxk6N8EVALQeJsIguA1lfM3n8HL+C7ShRsgCAK0aYdwX6cEcfPQaZdJZfb9UBcsu92Oe+65JyA8qlO8mpubsXjxYpw7dy4B2Ywf6pMrCQmCX9mUhasWcrJBv9PBRFHETTfdhNbWVmVdpHxNVJpnsViQkpKStPWejHpnJnknIDWywJJVcECgNXj//fdhMpl8FrQGNtIjsGbNGhw4cED5LYpi0phOQG1OBgdpB1tx3jwG5jMZazt/IyhJEqqqqvDQQw8FjY9oNmUX+8MPP8QDDzyAjo6O5Dj4bxClCYChNrqvWVQfDjx+kCQJJGE0GvGPf/wj6F5uEd9KbldkZ2fj5ptvRn19fdIIDhjKn29/udosjh/BqS2ZRqPBX/7yF1itVkVw/noW05sVFRVh3759QRO6zvBRRgn8lpj94Q9/wPr165Xf6qPCgRjPjL1w4QKmT5+O06dPh9wR4jrxobW1FQsWLMCZM2dCTgCLSfNSU1Oxfv16/OY3v7mueQlm9+7deOyxxxTBBfveMZ/W3NXVhezsbLS1tQV011wnPpw/fx4zZ87E2bNnodPpfE6bVhNzbW4ymbBy5Uo8++yzccnodbyodai8vBxFRUWKcoTaTGhY56S3tbVh/vz5aG1tva59ceb8+fPIysqC0+mEwWAI2yyLKLxQNz/xxBNwu93Ys2dPfHJ9jSObxoKCAnzjG9/A1q1bI9803Jm8brebRqMxYLXmdYZPXV0dzWYzBwYGolqFNaKTK+UNwkd7Q5vxRLhp82oBDQwM0GKxxHRg8Ii6Hx566CHccsstyp7I1wkk7HR1lSOyfft2ZGVl4b777lPCIvYdD7f0yGFdXV3KoRjXGR7yoRg9PT0xWbGozWa4TUzl42jiuTfZtYLD4Qh5HE0k4nZa8759+3wOgiKTZ5lUsuC/HNzlcnHKlCmsqakJuC4ahtXOC8WmTZvgdDpRW1sLrVabVENHycbAwAAWL16MpUuX4le/+hUA7xipVusdEQnVq6ImrsITRRHLli3DzJkzUVFREa9kr0rWrl2Lvr4+/PGPf/QJj6nAx8kiKIQ6djQY16pZ3b59O61WKz///PMRpTNi4QWzz/KBv/4eaKhd3K9GQr1fuAN/YyXumicT7qhtmatRgOHeqby8nDfeeGPIo7ZjJS7CC5Vh+ZD7kpKSa7oXZmBggEVFRbRarWxpaSEZn4IblwkeoSpYq9WK999/H21tbViyZMmI9wkbj1y4cAELFy6E2+1GQ0MDzGYzgPhM+E347BydTofDhw/DarXizjvvxKlTpxL9yKShsbERNpsNS5cuRXV1dfz3sxmx7sbASy+9RKPRyNra2quyvlNTXV1Ng8HA6urqhD0jYcIL1UvgcDhoNBq5ffv2q1KAHo+HW7duZXp6evgTK+NAwsxmqN6BuXPnorGxEXa7HTabDe+9917cnunfC89RniRVX1+PrKwsfPjhh5FPrIwHCS0aEaipqeFtt93GH/zgBzx//nxAvL/2JmKbyGBtz1if093dzcLCQqanp4/q6MqoTCfm4PHa/qxatQoff/wxbrnlFmRlZeGXv/wlLly4oMT7a28sp3oFe14wQu22G+l+kjh//jx+9rOfISsrC9OmTcPp06d9xuMSzmiVkkj1m8vl4qOPPkqdTseysjJ2d3eH1YBQ6cWrHg33bJfLxZKSEup0OpaWlkZ1vmsiGBOzGe4Dd3d3c9OmTZw8eTILCwv51ltvRZ1uonfframpYUFBAXU6Hbds2eIz/DUWO/+OaZ0Xjp6eHu7Zs4c2m40mk4lbtmwZk8Fep9PJ0tJSGo1G5uTkcO/evbx06VLE+0bDk47rkNBwCDZuRb9hkebmZrz44ov485//jL6+PuTl5WHRokVYtGhRwA4J4dIJh3ztqVOncPToUdTX18Nut0Ov1+PBBx/E9773PWRmZkb9XrE8e7iMufBCEerlu7q6cOTIEdTV1cFut+PcuXPIyclBWloapk2bhm9/+9tKT0ZGRgbS09N97j9z5gw6OzsBeDdja2xsRHt7O1wuF44fP46vf/3ruOeee7BkyRIsXboUX/va1wB4C5kQZC+asSRphRctFy9exL/+9S80Nzfj008/RX19vRLX1taGTz75xMdzNJlMigbdcMMNWLhwIdLS0jB9+nTccccdY74lcyyMe+Fdy4yfZaPXCeC68MYx/w+7TIqGQWyS7gAAAABJRU5ErkJggg=="
|
<image>如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()
Choices:
(A) 192°
(B) 120°
(C) 132°
(D) l50
|
132°
| 69,775 | null |
132°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAABjCAYAAABjYhnGAAALd0lEQVR4nO3dbVATdx4H8F+4zmzMREEjGI2cchOVB+9MXAU5bAvtSYEBebhzsAEqtFZ0ynh02hf2xU3Y6Yt6M73rw2EVBwsUQ+GcIzwVaJxK7myOol0SezQ8mCm0sJpKY4HSwHY6yb2oqZQai7DsZnf/n3duMPmG+bL7203+iYQgCECQ5RbEdQBEHFDREFagoiGsQEVDWIGKhrACFQ1hBSoawgpUNIQVqGgIK1DREFagoiGsQEVDWIGKhrACFQ1hBW+LhmGU3NJi+QuFYXKusyC/jLdFG7vUUWyCtWoVTU9znQX5ZQ9xHWAxvEMt6U12b0549JpGrrMIBYZRcnP52abOMXj87lb8swJ9+l51UNDNpd4/7/ZoHo9jfetAJJ4VLUElYxBNq6YTS45kpWyED/C8sgyCICQ6nPywtu36SSbun3dFc7TZj0Snq88CAISFrh3kOo+QzMzMrBwPeuIz/LdSMwDAGkX4J0zdN68OneOWyhcM5GgZkGQZAACeBxkAAJcuXSK8Xu+vgoKCvuc0IM989913Urlc7kxISHgdAEDisOO3IuMHVTQ97XF1a5tNcCTl+JaDTDwWb4rmcXVruyF7kiAUEgyj5OZTHedA4aUAJHD79m319PT0uk2bNn3IdU6++Pbbb9f29/f/MTU1tdS3bWiAPDBKkk/pTfAqbEz54MjJ53CmTrZ4UTSPq1v7thFOpD634RmgaQAA8ErCJsNWgxMAICkp6eW6ujpjUlJSGZc5+cLhcKR0dXXpi4uL41etWjUC8MPsOzj+BH3kZNJKFU1PD7boa86WQ9ORksQsJsrGixmNeLOzd3R0fNfMzMxKj6tbe+rE2ZH3vyCfrSXe/l+3y6NVKBQDUql0gqKoPVxnDXQWi6W0u7v7z3l5eam+kgH4DptbBn2l2hqJX4Cx8YiZmZmVTDwuL/ZoBEFIfvyHIv7mYSJ+7fyf0Wg0Nb29vYdUKtVHrIbjCQzDpPX19acxDJsoKChI/eltlNz8n1sFMdmKkwA/7N3aDOQbgOs+ZOLSBgCARCgLiDEMk+r1+psEQaynaXqW6zyBxO12hzQ0NBi1Wm2NRqOpnn97pV7/1SiA4icbcd07xP5th5jKwIs92kLQND0bFRXV1NPTc/Bev0yxoihK09zcXJWZmXnM397+MEH87AjBNF7MaAul0WhqrFYrY3+FfGe327NMJtNr+fn52VyPFIIqWkREhHliYmLz1NTUZq6zcM1isZTabLZDubm52XOHfq4IqmgAALt27aro6ekp5joHVzAMk164cOHdycnJTTqdLlsmk01wnQlAgEXDcbzaZrMVcp2DC263W3nmzJmOqKio5rS0tOe5zjOX4Iomk8mcSqXS5nA4UrjOwiaKojQGg8GYnJz80vbt2+u5zjOf4IoGAKDVakV1UmC327Pa29tP5+bmPsn10O+PIIuG43jTyMhIotvtDuE6y3K7fPnyCZvNdqikpCQpEIZ+fwRZNJqmZ2NiYuqtVmsh11mWi2/on52dDdbpdNmBfpFakEUDANixY0fNtWvXBHn4dLvdyvLy8q6oqKjmffv2vcR1noUQbNFUKpUN4IchmdskzKIoSlNdXd2RlpZ2LBCHfn8EWzQA4e3V+vr6Dra3t58uLCxM9f0h8YWgi6bVausHBwezMAyTcp1lqbq6usr6+/szS0pKkmQymZPrPA9K0EWTyWTOdevW2axWK2+vqfmGfgCAAwcOPBnoQ78/gi4aAEBsbGwFSZK8fElqampqs2/o5/u7hwVfNLVa3el0OjVut1vJdZYHQVHUnoaGhnf5NvT7I/iiAQBoNJpqkiQLuc6xUH19fQdNJtMreXl52Xwb+v0RRdF27txZY7PZeHH2efHixVf6+/szjx49msrHod8fURSND4tXMAyT1tXVGaVS6SSfh35/RFE0AIDdu3dXXLlyJSBPCnxDv0ajqXn44YcZ+QiCQCOaosXFxdX39/cH3DU1iqL2nD9/3piWlnYsOjq6ies8y0U0RZu7eIXrLD42m63QZDK9UlhYmCSUod8f0RQNILAWr7S3t782PDz86J2hf4LrPMtNVEWLiIgwT09PK10uVyRXGdxud0hdXZ0xODj48+zs7CKhDf3+iKpoAHdXtHPx2FNTU5sbGhqMGo2mxvcJPmIhuqJxtXhleHg48fz588bk5OTnhTz0+yOYleoLNXfxilqt7mTjMa9evXp0YGAgs7CwMEkM89i9iG6PBsDu4pX29vbXnE7njsOHDwfMGksuiLJoOI43jY2N7VnOF9rdbndIbW1tR3Bw8OcZGRnHxDL0+yPKotE0Pbtt27Ymq9W6LNfUpqamNhsMho74+Pg3xDb0+yPKogEs39u8fUN/Tk5OEVszIB+I7mTAZ+7iFaauyl+9evVoX19frpiHfn9EWzSAu3s1JorW2tp6GgCgqKgoacnBBEi0h04AZhavuN3ukKqqqi6lUnktIyPjGJP5hETURZPJZM6NGzd+RJJk1mL+v8vlijQYDB2JiYnE7t27zzAcT1BEXTSAxV9TGx4eTmxsbKzKyckpioiIMC9DNEERfdEWs3jFYrGUms1mfV5eXqpCoRhYznxCIfqiASx88QqGYdLW1tbTk5OTm4qKitCZ5QNARQOAuLi4io8//vi+b/N2u90hlZWVRqVSeS3QPk2RD1DRAGDVqlUjISEhI8PDw4n3ut3lckVWV1d37d27969o6F8cVLQ7tFrtPZfkORyOlMbGxqr8/PxsNPQvHiraHfdavOLve5OQB4eKdsfcxSsYhkmNRmPV5OTkpoKCAlG8p3+5ifolqPliY2Mr2tra/mG1Wg/5+94kZHEW9aVjdrs9q6GhwbgMeRCGxMXFvR5IZ8eC+XY7JLChGQ1hBZrReAbDKLm5/GxT5xg8fndruCvl+NP74hVBVu6S3R8jRZv/5MOTS158JrR7sBUyYP9WSRsTj8GGwRZ9TR0JT83fjueVZQTK86Bp1XTcMwUFtwhzc9jxp4vjFUFW71BLetmbb1+EAC7bkovmHWpJP2EgW8OTS14kng39AwDAuKXyhTJD2BsFeu9eAMkv3UXA2LafOKQDPQxGll3Yv1XShmGU3Hyq4xwovFRAPY+vx5Xj4THDuzasuA40DZKt+9t0uP69Osv10ngGvzWYSUua0Tyubu05A1mN55VlHE4I/Ztv+8bHUiuScUX1ihUrvll6RPZ4PI71A+TODdFqL+kZ6H7EfGP9lq1RUf8KXQ0B9YF4roFPH4Mo9RUVTU/7tq1RhH8CX95WURgm5zKbP0sq2nVLZ+korntv/mGFplXTCfsTXp77i+ADicOOjyf/vjNmxc1vPrKM54euBqciIeGfTH2BPRMwjJI7+iE2JlJxae72267R38G6NVSg/s4XXTSPx7F+kIS9eOTWC0wG4tLQAHlg1FT+6okTZ7953xP6m0DcI8/c+GLLpxADv96w4rpvG4ZR8ttfgipcseYTLrPdz+L3aF+PK29B+PehCi/FYB7O+A6bBXr9Bv3xlJ3h69ZcC8S9g2vg08fCHtlTOzfb2KWO4s4xPCIxXlHHZbb7WXzRVoc6w2D0oXGXRMVgHs5IHHa8F4+8oQ4KugmrQ51RirU93qGW9JYhbzrX2Xw8Hsf6/5pCU6LVXtK3bbBFX1NugpdSjqf/KZAO8fMt+qwzKEh9Mz45/K1yw7nq0Dmn1RhGybveIv8eVpSuD+QnPheGUXLzv8lS/NGM1wHuPLfI7uvn3vRWJOq9mYFyxkkQtTcAAHqJ3hs/bsR17xDEtrWchVqgJb8ENW6pfKHcNPrq3S2Bf/Fwvkq9/qtRAMXPbsB17xABermAb9BrnQgr0GudCCtQ0RBWoKIhrEBFQ1iBioawAhUNYQUqGsIKVDSEFahoCCtQ0RBWoKIhrEBFQ1iBioawAhUNYQUqGsKK/wPkJo28kp3Y9AAAAABJRU5ErkJggg=="
|
<image>如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()
Choices:
(A) 40°
(B) 50°
(C) 70°
(D) 80°
|
70°
| 69,776 | null |
70°
|
"iVBORw0KGgoAAAANSUhEUgAAAHoAAACxCAYAAAALdqmTAAAbE0lEQVR4nO2df1Ab55nHv4twSce4a8dK2MbqwdnCFoa2uNhjt6YljkXiTJ2GtHbtP/AFZtIhRU4qJ8oVd5wxPpOJk0BMrtih57YmHWbqmfgi+eJcyBk3Ys6tycAUehFGLlKKCxQY06kdyBgHaZ/7Q6zQj9VPJO1K6DPDDNp9d99Xet7v8/5+X4aICCkMAWDcn3gAGe5PAxeaMKR+DhWFjP+DKUZG6CDJjbcJF74u4Rr0FYZEJ0cyUt7QAr5u6+TBU2DKy7G+0PMqD08Hl0rObskYmsGC4Uyv60DlWvCXePC+4RhG9P9kJ+UN7alJhmGAayZconI8n8/gcvl6FHk59wwQOT0e9M0GyUvKGxo+7vfg6U6cer4CAKBdv84vOMMo5v/hQZRWdNLg6X5NTc/g1KlTYBgGTOET8FUsEXmUyxlgmHQZnXxcM+ESdrqNaTE1Yv0/53v5doZhwDCMl7FThUypE5AQrpnA6DtA/9MKwGXbIbsNQD4IBManEZZKlTA3lOI01moJLtuS0cIT8US15XBf0+oa/Z7heV6ClMYXhiiFGoshIKKgag11P5lJnUIoGDTfFSoYMUDTKVWNDCwRQxPj0xXKAOF89VRydUvC0IKRiQhvvfUW3nvvvQAhvbtAU0nfqV9GewxfOZ1ObCjQQPXAGpjNZrEgKUvqK9rDgi0tLfhyDoexsTF0df2vWJCUJfUVPc/du3eRl5eHd999FwMDAzh79qyXqlOd1Fc0XGXzyy+/jG3btmHz5s2orKycV3WX1ElLHBK13xPKrVu3SKlU0uDgoLszpK2tjcrKyqRNWAJJKUWT16DEAvX19di9ezc0Go27rRxM1WLvSHokzmgxIViX5cTEBLEsSyMjI373lpKqU0LRwXq06urqUF1dDZVK5afUQKr2DZcSSJ3T4onNZiOlUkk3b94MGGapqDolFE3zCiQfJRoMBuh0OiiVyoDPLpkauNQ5LV709fURx3E0PT0dMMxSqoGnhKLF0Ov1qKurQ3Z2dsAw4dTAUwapc1o8MJvNpFaraXZ2NuxnUl3VKWnokpISamtrC3jfszkm/O9wOEitVpPZbI57+qQg5Vy3yWTC7OwsKisrwwovuG+FQgGDwYDm5uY4pk5CpM5pscThcJBGoyGj0UhE/h0pPM+7/8SYnZ0ljuOor68vzilNPCml6Pb2dqxcuRIVFRUA/DtShOm8gTpYsrKyUFdXh2PHjsU7qYlH6pwWK2ZnZ0mlUvmVsZHO6ExVVaeMoltbW1FUVISysjKv65FO+EtZVUud02KBMAwZKxX6qjoV5nknraLJo9vz5MmT2LlzJ4qLi2PyTl9Vp8Q0YIkz2qIZHx8nlmXJZrO5r0WqQLHwd+7cSamyOunnjB06dAh37txBa2vrot9FPis13njjDZjNZhiNxkW/W2qS2tB2ux0lJSW4fv06cnJyYvpuIsLnn3+OvLw8vP/++4suFqRG9ob2VZkn1dXV4DgOL7/8ctziSBlVS1VmLJa+vj5SKpV069atmL1TrKxOlXZ10tS6ycfxHDt2DAaDASzLxiwOMVUHaldTgImIskXijBYV3d3dxHFcRMOQiyEVVJ00ivbkpz/9Kerr65GVlZWQ+LKysvDCCy+gqakpIfHFBalzWrgI5WdHRwep1WpyOBwJjV/offNsrycTSaNoofysq6tDQ0MDFApFQuNnWRY6nQ4NDQ0JjTdmSJ3TIuG3v/0tff3rX5cs/mRWtezb0QJOpxMbNmzAqVOn8Mgjj0iWjvr6ety4cQNnz56VLA1RIXVOC5fW1lZZTN5LVlUnhaKFtc0mkwlbt25N6O5BYnElo6olN3Q4RnvllVfQ3d0tm27I27dvQ61Wo7u7G2vXrgUg/6FMyQ0NiBtbuCb8qGazGYWFhQHekHiSTdWyMHQwDh8+jImJCcl/UN/M6KnqdevWBQwnF2Rt6MnJSWzYsAF//OMf3S5SThw9ehR//etfJc+E4SBrQz/99NP44he/iJMnT0qdFFFu376N/Px8XL161UvVckS2ho7npIJYEqyslpMbl9zQgX6MAwcOYN26daivr098oiJAKKuvXr0KtVotdXICIrmhBTwN3t/fj/LycthstpiON8eL+vp6TExMxGTeWryQjaE9+d73voedO3fiJz/5idRJCQuh0ijnYkY2hhYU3dXVhcrKSthstoSNN8eCQ4cOAYBsK46y6+suLS0NurZZrkxOThLLsjQxMSF1UkSR1Xi0yWTC1NRU2Gub5cT999+P6upqnDhxQuqkiCN1ThNwOBxUXFzsXtucjAib18lR1bJRdHt7OxQKhXttczKSk5OD6upqvPLKK1InxR+pcxqRa5ZlquwfIldVy0LRra2tyMvL81vbnIzItayWvHk1PT2N9evXp8T6JgE5tqslV3RTUxNKS0uT3sieehHKajmpOuGKJo+uzqmpKRQUFPiN6aYCwVQt/OSJHPCQzHUTEZ577jnMzMzgzJkzUiQh7siptywhhiaRESo5lmOxRviOVqsVHMf53Rf7XeKFZIqurq6GUqnEa6+9JkX0CePQoUPIzMyU/HtKYmi73Y5vfvObsNls+NKXvpTo6BPK8PAwtmzZIvmQqyS1boPBAL1enxRGXqwO8vLysHv3bsnL6YQrur+/H48++iiGh4fxhS98IaoyKtZlW7zLSrvdjm3btkmq6oQb+sEHH8TevXtRW1sbMyPfvn0b/f39sFqtGB8f9zqhzm63Y3R01Cu8SqVyN+eWLVuG7du3Q6VSIT8/HyUlJUE3c4+W6upq5ObmSjY1KqGGNpvN+NGPfgSr1bqoZa+jo6O4fPkyOjs7YTabMT4+jtLSUqhUKqjVamzZssVtrLy8POTm5no9f+PGDQwPDwMAZmZm0NPTA7vdjpGREVy5cgUqlQo7duyAVqtFeXk57r///qjTKiC5qhPTpe6iuLiY2tvbiSiyTd94nqfBwUEyGAykVquJ4zjat28ftba2ktVqjXk6LRYLtbS00J49e0ipVJJGo6EjR44semFdVVUVHT16NDaJjJCEGdpoNFJxcXFEz9y8eZNaW1uppKSEVCoVGQwGGhwcjFMKA2OxWEiv1xPHcVRaWkpnzpwJuBtSsAwsHM8Uy52UwiXuhuZ5nhwOB+Xn53tNKgh1+pxer6fs7GyqrKykixcvxjV9wT778vbbb9P+/ftp5cqVVFdXF/RMLTGkUnVCFB3uwSQjIyNUU1NDLMuSwWCQfEw3mNFHRkZIp9MRy7Kk1+vDTqtUqo67oYWtm4JNKpienqa6ujpSKpV09OhRt0qSYfvkiYkJr7SLbYnl+z2kUHVcDC18MZ7nqbm5mSoqKgKGNRqNxHEc1dTUROwG5cT4+DhVVlZSbm4udXR0EJH37+CJzWaj1atXJ1TVcVX0P/7xD2JZVnQjtpGREdJqtVRcXEzd3d3xTEZCMZvNpNFoaPfu3UEzbqJVHVdDHz16lKqqqvyu9/T0EMdx1NDQEM/oJcPhcNCRI0coNzeXLBaLaJhEl9VxM7QwSc637dnW1kZKpdLt3lKZ8+fPk1KppPPnz4ver6qqouPHjyckLXEztF6vJ71eT0QLTSydTkdqtZoGBga8wiZDpStaenp6SKVSUV1dnd89i8WSsD1NY2powWA2m81ryuutW7do165dVFpaKklngZTwPE8TExNUUlJCe/fu9Tv9tqKigpqbm+Oejrgo2rOi8fHHH5NaraaampqE798pJ2ZnZ6myspI2btzoVZwJxx/Pzs7G1bO5De0k/0gi7TXied5rw/SOjg5iWZZaWlpilNzk58SJE8SyrFe/QriqDm4jJ5EzsH38FF1bDgK8/xpN4jVHMYREWywWYll2SVS6IsVoNHrtPuip6pDwRMam2gX7lP+YeBqk2tpG122eF8kOXoZ2zv+5jC0Y12JqJABkHPB3u74Kv3LlCuXk5NDY2Bip1eq0koNw/PhxKiwsdJfZYqr286ADRgJAWl2j37XaRqOogQW8FM075+junIW0Kx6lP805aI4ncgy84zK0Rfw1nokpKyujX//616TVakmn04XxdZc2lZWV7l7DYKp2qXSAyn2NPE9jrTak1/WeM5aRiaH3PgDzZDmKFApkMsCz+u9Dq2tERaH4bBBhtsd7772HsbEx9Pf3A3CdLpMmOL/85S8xMTGB+vp6FBcXY+vWrfjFL37hF45hGFx4/RQuYSfeaHnO7/66deuxTr0RQWeQeNvdScamg7R8xb10zzJ4KNkZMncWFxfTs88+S2q1WrTrL5XbyuEg9v15nqeRkRFSqVRkNBqpr6+PcnJy6M6dO97haIC08+55/oL/u0LEL1IZW07v/MlBTp6ndxqfpeUrlPSf/+eq7/FOJ30+56Q54a08T3NzTvrNb9pJo1lPSqXSNTFg/vrnc076fM6nchDsXjjhRK8vXHN63nfw3uEd8slsnobv6emh1atXk8ViEa+Bz5fDkVSKfTOWt6EHjATtMzQ35yQnT8Tz16h8xQrSNZmEx2nO/WO5fsA5h4Nyc9fSl9f8E/13R4f7ulDT5x2eP3Cwe17J9AjHk9OduYI87zbovPFFPwfJWHEmlEc7f/485ebmUldXl39ZbYnc0L5kzLtvAIDp/cuo3fXQQtkweB3muWXIWzu/URoByGDc//MA3nzzPzA7O4dnn3kG5Q8/AhBAYCBM1GQyGDDkejToPa/yBCCGmY+KQUZmBjKZ8J5XKBgwAT8TpFokHGrG6w9+8AMcOHAAP//5z7Ft2zavPcuocD20AD6xDfn/VtdMaLowAJc1grCQ5VzNKuPHTpqb48k5Xy6AeZg+nnO5cqfD24VOf3aHWJaljRs3LvR68byIq11QVcB7nviGC3Td592eag/5WYbMzs6SRqOh06dP+6na9LqOANCrHqq2mBoJ5T/2fkmA7wcioo8vNNKye5S0/J57CMuW0/Lly2nZfGOcSKRsnn9j/fGXaMXyLOrp6SEinngP9zrnXHCpvq5b/J7nq+fDLVg09LtTwNBERJ2dnaTRaOixxx7zK6s/vvC6V0eWq6kVuqJM5HHUAvE8HLzrFYrMjAUPTQSGARwOIEMBZMy7oNu3b+PLa9bi+xW7cbbtLAAGmZnzbpIIDifNuxmP60HvERwOAhSCmybMOQVHFerdrmcXrgHOoJ+93bvc2L9/P1auXInLly/Dar0GhWIZgAAb2IMHiBEpGnh4rbgiCqfpw5PTyXu5hZqaGsrKylpyo1GJYGJigpRKJX3rW9+it856b64X3FLOgLbMALkqChSklkI8AIaBIIPJyUmcPXsWBw8eBMuyyXUYp0zx/A1zcnJQWVmJBx54AMdf+jc4nU5XGAgm4N2fvckAwzDgxbpOguUP3jFfNvuo+ckD/5JWc4zxVaKg6tLSUmr7zVs+oT3K5TDrHF5rryiMVYV2ux2FhYWora1FU1OTbDYeT0Wefvpp3L17F1euXAm5Xi2k7SLNeRUVFZSVlSX55PqlgN1uX1D1IjfCjWghfH9/Py5duoS9e/fGZIVhGm/Ip66zdu1alJaW4tvf/jYaGhrcZXU0RGTouro6sCyLp556KuoI0wRGzPU++eST+MMf/oA1a9agvb09+peHK32z2Uxf+cpXKDc3d1EuJE1kOBwOUiqVdO7cuUWdmx22ouvq6lBQUICqqqroc1UaPyhA01S4rlAoUFlZicHBQahUquhVHU5uENY2P/DAA5KsT17qdHd3k0ajIbPZ7FZ1pOP7IRXtdDpx5MgRPPXUU+B5HhqNJroclSZqNm/ejNHRUWg0GndZHWmzNqSh29vbsWrVKmRmZuI73/lO1IlNExoK4MYVCgVKS0thNptx7NixqGrgQQ199+5dNDQ0oKGhAR9++CEeeuihYMHTLJJgKn3wwQfx4YcfoqysLLoaeDC/3tzcTLt37yYiIo7j3OXzUp//JQVCOU3kGsosLCyM6PmAhv7000+J4zjq6+uj4eFhUiqVi0tpmqjheZ54nvcaXxAOmgk06dCXgK67qakJWq0WxcXFsNlssjqke6nBMK7x5oKCAgwNDQFwHWl87NixgAes+5JBIhWAqakpnD592r3LndVqRX5+vtfL0iQetVqN69evA4D7NCGTyQQg9GbvGWI3XnrpJfzwhz90b6Nos9m8mlXpEStp0Gg0bkUDC6oGQtvEz3WPjo7i7NmzePHFF925xGq1ptvPMkCj0WBgYMD92VfVQGBv62foF198Ec888wxycnLcuWRiYgJr1qyJYZLTRINKpcLNmze9rnmqGgjiuoV/iAhWqxUXL16EwWDwCjQzM4MVK1bEMs0xx5WPQ8xthtj0m+Rh+fLlmJmZ8bompmox3IZmGAaHDx92D0V6uoCZmZm4bG0cS1z52NdB+Rs+mWsX2dnZ+Oyzz/yu19fX49ixY0Erye5fpre3F93d3dDpdAC8XcDMzAyWL18eyzTHAW+jur5yBogIv/vd71BQUIBNmzbh97//vet+ErYcsrOz/RQNAI8//rhrxeWFC4EfFhrUZWVldObMGdEGOyKfcZQweJ4POUFOo9G4J71v27YtMQmLA7du3SKWZUXvhdo9OQMALl++jLGxMfdYMyVRbmc8piGHn+rQZXmyEbKsJnJ1pwXa9IyIKDs722/bpGRCWOayadMmunLlitTJiRphLXUgBFWLdYHCbDaH3DCd47iUm/WZjMMyg4OD7oGNQBQXF9M777zjdz2jrKwMly5dCuoWAlUC5MrAhSZ3/zDDMHj4mdf9wiRj7TucSvHRo0fx6quv+l3PAAClUhn04ezsbExPTy8iiYmjSVeOoor3MUA8iAg8DYBankf5wSYAyVX/8OWzzz4L2cx97LHHMDU15d5LRiCsyYEcx2FsbCzqBCYCIkKTrhyGoXwQdWLjvGYZbESzqRGdp97HNVDIdWZyZnR0FPfdd1/QMAqFAlevXvU7pjkznAg0Gg1sNlvUCYwvrhr0tf86iRfevAyjpSPkE8k6KDM0NBTWcLGYhw5L0Wq1GhaLRaZKyACQgdOnDNhZ+xoqNrrWJ3mm9M/2TyRJWayxWCxew8ViBLJRWIYWhsfkqgTCNfz5EvBw+S73Nc+Udnachlb3qNudJyt2ux3r1693fxYzakAbhVOtHx4epvvuuy/CxkACmd+e6Z0B/0aTe4tLr50Pw9sOQm7cc889YS1VjmgqkSe5ublQKBSwWq3RZMS4QkSgja5de2xD19zXAJfS9RUG7DzYiMc3ej4lySG7i+Kjjz5CXl5eWMcdik4lCjeisrIydHV1RZa6BMAwDEAF2FWrxb+eOrVw7ZoJGUwhoGtE578/L9tiJ1zMZjPKysqif0G4bqO1tZX27dsXiadJCJ5OyncLajFXLmeCTaPetWsXnTt3Lup3h33arNVqxY4dO/C3v/0t6dWRbDidTqxcuRI2mw05OTlRvSNs163RaJCZmemehZgmcfT29kKlUkVtZCDCWsmePXtw7ty5qCOLP3yA/+VLIIfqef3cuXPYt2/fouKJ6KDwvr4+PPHEExgeHg5rY5tEIWzL5JWmhb2akhqn0wmO49Db2+t34HkkRKToTZs2YdWqVejq6pKNkYEFe3qlST7JWxTvvvsuCgsLF2VkIIoGZVVVFdra2hYVaexJDjcdCjHn2tbWhurq6kW/OyLXDQB///vfsW7dOly/fn1RlYOY43bVPGh+b8xk996ffPIJtm7dir/85S+LnoUblqI988K9996L6upqNDc3LyrimOO2aIbbhSezkQHg1VdfhU6ni8lU64gVDbjGRb/xjW9gaGgorC65NJEzOTmJDRs24MaNGzH5jaPq9FWpVPjud7+LkydPLjoBacQ5ceIEqqurYyaksBXt25yy2+3Ytm0bbDZbWtWLQKyZOjk5iaKiIlgslpjVg6I2NAC88MILmJ6exptvvimr5lays3//fnzta1/Dz372s9i9NOpeciKanp4mjuPmj1pIEws6OztJrVbH/EzpRa+1OXfuHJWUlJDTmZyD+XJCODwl3INbI9k0aNEj8Pv27cOqVavw2muvxcLBLGkaGhpQVFSERx55JKzwERWX0eY+T4SlIukjhAMT7gFnYsc9xoKYLZPs7u5eOLIwTUh8jyxUKpVksUR/Ul0oYroetq2tLX0IaQDCOYQ0nkTVMxaMQ4cOwWKxoKOjAxkZGelmVxDu3r2LHTt24OGHH3Zv9RUvYm5op9OJXbt2YcOGDWhpaYnlq1OOAwcOYGZmBkaj0es6xWOsPx5u4ubNm6RWq6mlpSUer08Jjh8/ToWFhTQ9PZ2QYi1ue1ZYLBZiWTZdExfBaDSSUqkkm82WsDjjujnJBx98QCzLppXtwYkTJ4hlWTKbzQmNN+670FgsFlKr1aTT6aI6IiBVmJ2dpaqqKiosLEyokgXivjalsLAQvb29sNvt2LlzJz799NN4Ryk7pqamsH37dszMzKC7u9u9x2oiScgiJJZlcfHiRRQVFWHz5s1e+1kCyb0LQSh6e3uxadMmlJeX4+2335ZuY75Eu5C2tjbiOG5JVNLOnz9PHMf57fgkRfElyU5xPT09xHEcNTQ0SBF93HE4HHTkyBHKzc2Na7dmJEiyfnTz5s3o6emB2WzGpk2b8NFHH0mRjLjQ1dWFoqIi9Pf3o7e3Vz4nF0id04xGI3EcRzU1NXEbuUkE4+PjVFlZSbm5ue5iSU4tDMlXhFdUVGBoaAirVq1CQUEB6uvrMTU1BSA5KmmTk5M4fPgwvvrVr7rnuwvjyWI7IEn2nSTOaF6MjIxQTU0NsSxLBoNB1rsVjoyMkE6nI5ZlSa/X+6VVTmomkoGiPVGpVGhtbcX169fhcDigVqtx4MABfPDBBwlLA4VQnMlkwv79+1FUVIQVK1bAZrPh5MmTfrM1ZTdqJ3VOC8bNmzeptbWVSkpKSKVSUV1dndfEhkhUsxiFDQwMkF6vJ47jqLS0lM6cORNw0xiplRwo/pgPU8YLq9WKX/3qVzCZTJiZmUFZWRl27NiBsrKyiA92oRDDgAMDAzCbzTCbzejq6sLq1auxZ88eVFVVSdKrFQuSxtACRISxsTFcvnwZnZ2dMJvNGB8fR2lpKVQqFdRqNbZs2YIVK1aAiJCXl+e35PTGjRsYHh4G4NpItaenB3a7HSMjI7hy5QpUKhV27NgBrVYLrVYrOok+VGYJN0w8EIs36Qwtxu3bt9Hf3w+r1Yrx8XGYzWb3PbvdjtHRUa/wKpXKrcxly5Zh+/btUKlUyM/PR0lJiezPD4mGlDB0mtDIqtadJn6kDb1E+H82uM8VdmubHQAAAABJRU5ErkJggg=="
|
<image>如图,AB、AC是◎o的两条切线,切点为B、C且∠BAC=50°,D是圆上一动点(不与B、C重合),则∠BDC的度数为()
Choices:
(A) 130°
(B) 65°
(C) 50°或130°
(D) 65°或115°
|
65°或115°
| 69,777 | null |
65°或115°
|
"iVBORw0KGgoAAAANSUhEUgAAAJoAAAB1CAYAAAC27fhAAAAMnUlEQVR4nO2d327bvBnGH8oFvnQ3sSXxgm5ALyJA05PEBnoNH5qcbQhQpfeQFCgabAf2LfQszXZiB9hu4vtyYDlX0abAYr87SKhQNEmRsv5QMn+AkViSRUp8+L7kS4piREQIrM10OsX29jZ2d3ebzoqXRE1noCscHBwY9xetz12xA0FoFhARlstl+r/M2dkZBoOB0ZoxxgAgPQ//mwdjLP1tm2HBdZohImNBj8dj7Ozs4ODgYC3ro0oniiIQUSr0KGqvXXjRdAZ8Jk9kSZIAALa3tzEYDNZKS0yH/y9a0jaLDAiu0xqVtRqNRjg+PgYAvHr1yuoc/Dw618kYyxynE5it6/WFIDRLZMs2Ho9xcXEBxhj6/b7xt1w0YnuLC0jeZ+t+22bhguvUYCpw7jL5MdPpFPP5XHu8yf3KgpPz0IWOABCEpkVVwESE+XyO09NTXF1dpdtNIstLwyTorogMAEABa+I4JgAEgGazGRERDQaDdFscx1bn4cerWC6XhfO3zm+rJoQ3akSMpemsVRErRk+dB9VvfQmLBKHVhMpN6twz4CYQVUfCt2INQstBtD6iMHQWREaMiQHPQVi+jQvK9nwqVL8VxSemp0tjnfRtCELLQS4A/l38S0Qr1kcUmPz7IumuQ5H0yyYILQdbFyYKgzGW+V0d4lLlU2fpXPJUFkFoJSIXqunWqkRQRGiywIq49KrdJhCEVgjZfcrjlGK7SPdbXxAH7qskCE3CxdLo2mF8m2+iMlG1S20+wOIx/KbrQhPifpkoilojMkBfMZbLZSniCxbNEZMVk3Fto/nAcrlEr9fLFZdrIDhYNAnT9B2x/WUjMtMxvohMtlhRFGGxWOTmz3W0IQyqC+hqqcpNukzp8RkxBKMLSAfXWTHyjXaxQnxEQTU05Is1kzF1emSZuF5HEJoCVU12FYepI9FGoihaa1ZvaKMh2y5TxcHWsUByzW/bFGzgeUzW5j7oKlXnhFbEevBQhO0MiyK0+SETm+lN8rEy7bvqHFyFwQW2WCwqExkRodfrpd/bZtV4fnlFFGeg2NIpobkWoGn2RRWIU4XE774j3hseDrFpe2aaH5vQGZDbSTbd9nWtmercXekYANlrsQnedsqi6RAfcZMb+yor6Gv4wRdEqwbYtTs3QmjA8xwx2aLoJixWgc8xNBfkIK/NeiKdE5p8sTYP5hYJyG4ycgCad3RMlq1zQhOHiFQxseVyqRSj6VyBLLb3JTOGWlVmmoILTDe9JYoi7XimTBUN9zz36VtnQayUOteYN18P6Fivc51B4LKtV16Ptm0TI20wNVFaZ9F0YQOx8OQ2hAnboZUyUU0B7zqtE5o8bpg3NplXmGLE3pTWpuJSaVVTjTitERof2OUwxqxmgubRVHupLW7TpdKaftsaoTHGVga/iwohbwpPne01mbaNg8roKlBrhAY8CyOvMPIKNi+cUbYl06UnBzyBds7usMGrq9IVsBx0LTpVpWj6ZWB6mkglrrZbNplawxvO039LsjCqdKtuH8lBYpOl6tJgO0e+plotmqvI1mmHFU23ClRrYnRNWCr4NRJRPRbNxZKV3U5qwprxdF3oulWrxaLJBWsTdM3DtlCqauCXQdfaYSZqdZ3ilGCOafDbhKsFyBuLawKfK0HZNDrW2ZS7aNJ16poRRefi+0ztrlOVgSZF1qQl0zUjmrau62BTqZyFto44yojql4FPVkMeG2yj4GzynCs0l0KxnRoTWKXr9yVXaC6hAV2Du4td97IROwZttGp5WLlOWSQ23XJf3GTAD6yEJtewvIFfW4HVLUCfLYVYebtk1Xhv2tmimQTk4ia7dDPXoc1rcthCRO4WLa8dZmPFmpg+7Ss6gXWtIjr3OuUb4NoO4xMYN2n4xcSm3IfCvc51e5N1u4rMMwWOv3Xtabtgug/rWDXfOmDWpS1GsNvUm+Q5FCsIwU1sputs6h5Mp9O0LBhj+PjxY2a/d26XHMBjubXwE3mQh+IfGf6CWrlsbF9MWzcAaMWiDYfDTE1hjOHs7IyL0ssPnyYt///8eV5kj//ven6+UJ9NHopiY4XOzs5we3u7ks5kMsHFxUX6fZ18VIJKgXEc02QyyShyNBoRkb+vU7bJFxhondwvFotMero0UZE1m0wmBDy/Zlu1z0cgW7T7hx/4ubjH77Pf8ObNm3R7HMeYzWYAPPT9T+TlK50LB2CJRyvnithwL2sWSN45SLBMX758QRzH2N3dXdk/n8/XzkuVZIT28sUfMJ/PwR6yHvX29hb9ft/rDoDK5TPGAAJu8bR06FPWIzAwpn9C3cR4PE5DNMPhEADSpgXg7rJMx5PQ6yQiXF9f4+3bt5lj+P7r62vEceyUdq3IZu6f43+kbpLoueEpuglf3edgMMi4lTiOiTGWfgfLXq7LVcxms5UGN98m3i+i8lynKn2T20ySxOGK6gMArQjt6N1heqHRL4yO3h3S/cMPIiL68b/vdP/wI/1ORCvf5e2u+2yO020/ene4kqejd4epOHjhFakossg4cnuWiIgxVnpPk+dBTotv//Dhg/M11QXkNlqSJNzKgYiw+LnE169fsdV7CeDRtQLAL9EWAODn4h5bvZfY6r3Ez8V9eh5xu8s+EfE43Xbx9/+e/At7e3vpfn7sX/p/xe+z3zLncG1bjcdjAMD5+XlmOxGh3+9je3t7ZXsZyOeJ4xiXl5fp9yRJwBhDHMeZHqePZF46dnd3h729Pe3BYiGK26pGTlPFfyb/xZu3bzLHbvVeot/vp0Ijslu2XObk5ASj0Ug5/HZ8fJw5t8i68/Dk852fn6dtUc5sNst0DnyD34OMRbu8vMSvv/6aOdBkdfh+leWpm4uLC+zv7wPIWoLZbKasPLZjjLw3t7Oz4zwUVVRkpt9dXV1l4nc+i4yzXC4fhZYkCXpbEb59+4bXr1+nLtSFKi1b3rmTJMn0uHgtms/n+PTpUxqqKVLw8m/yzlGW27Sl7vSKEEXRo+vc3d3F9+/fAajdFLdq8j7R2skuSxSH7T4xDZdz39zc4E9//mPmHIwx/P3D33B0dIT9/X38XNynbUt+8TZwi8Etm2i5kiTB3d1dJuaYGVN1FIG8spAKlftuBbY9h7weYpNA6vbzUMBgMFAe68poNFrp8U0mE+X5eRq2H8ZYppdaBF/DTUTP99vqynwVGY8fqT6qMACnSIHKaZkGsF2EJn5s8FlUMuI1GZ9U17m4tlP1U1ldmUNWFKLnxaD5NXVq+XdbfBXaYrHo1LMD4n1+kXNsoCa6Xt+7U30cIOrWgx8+0uiKjwE1XbdmwAYLLVi16lC1gTdWaBx+Q1Qv16rD0shp1Jl2nWxkr1PV/S4TF0vZxdu/0RZNvPCur9zTJKLINq4z4OsSDF20ZiLiPd8IoZnWhiWijXhzSR2YmiIbIbQ8mnpn5yaxMUJzEVLeK3UCq+R1rMLdfELsGFQlsq6+V4AxhsXC/JxsEJqGKsTQNYGJ5FXOIDQBsa1WVZuta2KzjUUGoQnwm+ZjKMRHTCLb2ICtC2WLTXeuNlk3Oa+6wKzqfV9AEJqxRprE5hJn0xVImyynajlZ1T7eVgsWTcJ2FSKZdXumbQmflBW4bsfVNgQRodcrtuqQ6lw223xDrhB5jwSmzwgE1+mG6ELLqN06l+MzonjymhS6fUFoT5isy2KxSNdEo6dlRF0Qg5ltEZdIGVOqgtCesFl5kd9w1/ZVW9pjOmSRFRFcu+9ATYg9qXWWFG3bjBCdJSty/Rs5w7YMTK5ELIi23t6yZx8Hi+aIGBPTLVXV9gCtzWIzrgShOSJbK/E7D8KqArRtoaphuCA0B3SxMNtOgo89TnHISKwkZVu00EazwLaG+9g2o6eVIXWVoK45csGiWWD70gkiSmNmeY3punqgOksrWjAeG5TzVKb4gkUrgKuF8+EWy6GZuvMUhFYDKpda53MJPrj0sGxVDejGN+tao427xiZHKIJFa5CyloxXvd/g4eHBq6Evf3LSYobDIaIoyrzsbDqd5v6ON8TFj3gO2498jqatlwq/ctNSrq6ucHh4iMlkAiLCZDLBwcHByqsNbayVSnx5nzYQXGdJiOGMJEnQ7/e1r8+p8gEY+dy+PGwTLFoJTKfTzJtbTk9PV17gKlJFwetmtvogMiBYtFIYj8c4OTlJv9tYMl8sTV0Ei1YC19fXmM1mICKMRiP0+33l+7Ra+WqdkghCc0R2AFxQ3IK9f/8eAHBzc1NvxjwnCM0R2RLd3Nzg6Ogo/S6+djHwTGijrclwOMTnz59Ti+bT+KYP8LZosGgFmU6niKLHd5z2+/10lsRgMAgiE+AV7/+xQcvg46WTagAAAABJRU5ErkJggg=="
|
<image>如图,⊙O的半径为1,PA切⊙O于点A,连接OA,OP交⊙O于点D,且∠APO=30°,弦AB⊥OP于点C,则图中阴影部分面积等于()
Choices:
(A) \frac{π}{6}
(B) \frac{π}{3}
(C) \frac{π}{2}
(D) \frac{√{3}}{2}π
|
\frac{π}{6}
| 69,778 | null |
\frac{π}{6}
|
"iVBORw0KGgoAAAANSUhEUgAAAOMAAAB2CAYAAAA6JSS8AAAZ6UlEQVR4nO2df2wT5/3H32EFzMoaT6BxpagcKz9cROFSOnJJ2uYy6OrANMxKh8OPxdkfwZE22dGEcLpNhonJoE6yo0l1AQnD2s5JpZFQadh8pX3tfKXGqaItDmPENOli2ko+plIbfb+VDR083z/CmThxEv+8Ozv3kqzEd767d5x7P5/nee7zPE8FIYRAQUFBchZILUBBQWECxYxS4jmMioqK5OuwZ2LbYY/UwhSkQDGjJIyhs64CFTuBy4SAPHzpeitQsfMaNq6TWp+CFChmFJ0xdNatgxkOjJLTaJy0p/H0ZbRiE9avlUycgoQ8JrWA+cZYZzPM/bVwjJow3XPrsNGhSzGowvyhQulNFZOHUXHTZZDTiuUUUlGqqaIyiuv9QK3SKFRIg2JGMRn7GNek1qAgWxQzisna9dgEoP/6aNrdns5OjImrSEFGKGYUlUacvtwKnNmJus7Jtpt41NG7Pl2njsJ8QTFjEdm8eTNef/11xGKxRxsbT4OMOgDzukkP/JuBCwRKn878RjFjkTh//jy2bt2KXbt2oaamBl6v99HOtSZ8OOlhPyEfwqSExHmP8mijCPA8j4aGBgQCAajVavA8j5aWFlAUBZvNBoqipJaoIEOUyFgE2traYLPZoFarAQAURcHj8aC+vh4NDQ04f/68pPoU5IlixgLT1dUFlUoFnU43bZ/BYEAgEEBfXx8aGxvB87z4AhVki1JNLSA8z6OxsREej2fOqqjX60V7ezuOHj0Kg8EgjkAFWaNExgIimCuTNqFWq01Gybq6Oly9elUEhQpyRjFjgfB6vYjFYtDr9Rkfo1arYbfb8dlnn+G1117DyZMni6hQQe4oZiwAsVgM7e3tcLlcWR/b0dGBN954A//4xz9w584d1NTUIBQKFUGlguwhCnljMBiIy+XK+jifz0c4jkvZFggECMMwxGazFUidQqmgRMY86erqwsWLF8GybFbHJRIJtLW1TYumLMsiEAgko+TAwEAh5SrIGalLg1ImHo8TjUZDLl68mHU0s1gsc34+EAgQlmWJxWIh8Xg8X7kKMkeJjHnQ0dGBw4cPY8+ePcloVlVVNWc0CwaD8Hq9sFgss35OiJKVlZVKlJwPSF0alCpC1JrK0NDQrNEsHo8TlmXJ0NBQVtcbGRlRomSZo0TGHJipvQcADMPMGs1OnjyJV199FQzDZHVNjUaTct6UxHOFskDJwMmBjo4OVFZWzlnNDIVCaGlpAcdxsFqtCIfDaGpqQiAQgEqlyvn6oVAI7e3toCgKdrs9mQOrUNqUjBljsRiCwWDyPc/zyedxHMclt6tUqqx7NrMhGAyira0NPp8vY0OdPHkS3d3duH//Ps6cOVMwfefPn8epU6dgt9uh1WoLcs5SIxgMJseLTv4dSL0Xin1fFAJZmnFgYAB+vx8fffQRYrEY/H4/1Gp1StWOoihs2LABANDX15fcnkgkMDAwAIqioNFooNFoUF1dDY7jQNN0XroSiQQaGhrgdDqzrmYODg7i4sWLsNlseWmYyuThWeUcJYX7IBgMoq+vL1kYMwyT/JsZhkFlZWXymLt37yabCcJ9QdM0aJoGy7LYsmULOI6TzZA2WZiR53n09vbiypUr8Hq9YBgGHMehuroaarU6JfJlc85QKIRQKISPPvoIfr8fKpUKHMdh9+7dOUWSY8eOpfyUE0KUtFqtWaXkyZmBgQF0d3fD7/cjHA6D47gUA2k0mqzPGQ6HEQ6HMTAwgOHh4WRBn899UTCk6zsixO12E51ORyiKIkajkfT09BS1p3BkZIQ4nU6i1WoJRVHEbDaTkZGRjI9lGEbWPZmRSITo9Xqi1WpJJBKRWk5OjI+PE5vNRmiaJizLErvdnnXPc7ZMvS8sFkvG90UhEd2M0WiUWK1WolariV6vJz09PWJLIIRM3Lh2u51oNBrCMMycOliWJYFAQBxxeeLxeIhGo8kpRU8qhoaGiE6nIzRNE4vFQsbHxyXREYlEiM1mIxqNhnAcR3w+n2jXFs2MkUiEmM1mQtM0sVqtJBqNinXpORFuhJlMabPZiMViEV9YHkSjUWIwGGQfJX0+H9FqtRkViGIj5A6zLCuKNlHMKJQ0drtdViacimDKyVFwfHycaDQaWVdPZ0OIknJLPI9EIkSn0xGO44jH45FazqwEAgGi0+mIVqstavW1qGYMBAJEo9EQi8UiaxNORciuMZvNpLa2VtSqSjGIRqPEYrEQlmUlaQtNRSic5RYJ58Lj8RCGYYjVai1K4Vw0M5rNZtn883Nl165dZMGCBeTs2bNSSykIUg/PikQihGGYkiucJxOPx4nVaiUsyxa8XVtwM0ajUcJxHLHb7YU+tahEIhGyatUq0tzcTB5//HGyb98+qSUVhHg8LkmUHBoaIgzDFL1nVCyEv6eQtaaCmlFIZi71ah0hhNTX15ODBw+SY8eOEYvFQiiKIqtXry7ZEn0qQpQUI/Hc7XYTlmVl3ZGUC9FolGi1WuJ0OgtyvoIlinu9XrS0tMDlcuX0kF5OnDt3Dnfv3sXatRPTfKtUKhiNRixfvhwrV64si8mjxBqedezYMVy6dAk+n082mS6FQq1Wo6enB8PDw2hra0MikcjrfAXJwHE4HLhy5QrcbnfJp2PxPI8XX3wRe/bswdKlS6ftv3btGjweD9599920c6OWIlMT2vNJYhdIJBJoamrCli1bZJmxVGjefvttXLp0KS8P5BUZhS/85s2b8Hg8JW9EADh8+DCqqqrSGhEANm3ahNdeew0HDhzAW2+9JbK64jB1eFa+UTIcDqOhoQHNzc3zwogAYDQacfToUTQ0NCAcDud0jrwiY0tLC6qrq2E0GnM9hax477334HA48MMf/nDOz8ZiMZw9exZOpxOHDh0SQZ04CFFSo9HklHieTzJ9OSAMk+vp6cm6Wp5zZHQ4HFCr1WVjxFgshjfeeCPj9q5arcbPfvYzGI1GXL58ubjiRESIkvX19TkNYm5qasLRo0fnpREBgKZp2O12NDU1Zd2GzCkyer1edHZ2wuPxZHuobNHr9fj666+xefPmrI4bHR3FxYsXMTIygtWrVxdJnTRkOzxLzqNaxOb8+fPo6+vLai7drCNjOBxGR0cH3G53tofKFq/Xi3/+859ZGxEA1q1bh5qaGmzdujXv3jS5MXn1rLmiZG9vL4aHhxUjPsRgMECtVsPhcGR8TFaRMRaLobGxES6XK6exZHIkkUhgzZo1OHjw4IydNpnwpz/9CU888QQGBwcLqE4+CFESAFwuV0p7KJfZD+YLjY2NMJlMGY2TzCoyNjU1wWq1lo0RgYm1FLdt25aXEQFg//79+Ne//oVf/OIXBVImL4QoaTKZUtaY5HkebW1tcLvdihHT4Ha7cfz48YyWbMg4Mra3t2P16tUwm8356pMNfr8fbW1tBRsZn0gk8Pvf/x4+nw8vvvhiQc4pR4S1RXiex5dffolTp06VfKJHMQmFQhlNRJZRZBwYGMDAwEBZGTGRSODw4cPYsWNHwc6pUqmwfft27Nq1q2DnlCNqtRoulwt37tzB8PAwrl+/LrUkWaPRaNDc3IyOjo5ZPzenGROJBNrb2+F0OgsmTg786le/Ak3TWL58eUHPW1NTgyVLlpTVs8d0XL16FYODg2htbYXb7cbWrVuV1bNmwWw2JyfUmok5zehwOMBxXFk9NxoYGMAHH3yA2traopz/Jz/5Cbq7u/Hxxx8X5fxyYO/evdi0aROWLVuGHTt24Pnnn8euXbtw4sQJqaXJFqfTiba2thn3z9pm5HkeNTU1GBkZKZvGeSKRwLZt21BXV1fUxOXu7m4sWrRo1pKwVOnu7kZzczOOHDmCxx57LLn9P//5D/r7+/Hll1/C7XaXVUdfodizZw+am5vT5jXPGhlPnToFk8lUNkYEgN/+9rdYsWJF0UcQ7N69G9euXSuLER5TMZlM+N73vpdiRAB47LHH8PLLL+OFF17Azp07ceLEibJ79povVqsVx48fT7tvRjMKc5mWS7obMPE87M9//rMoM0urVCqsX78eP/3pT4t+LTF55513EIvFZu34WrVqFQ4cOACfz4fnn39eWT1rEgzDgKZp9Pb2Tts3YzXV4XDg5s2bsNvtxdYnGs8++6yoM0jHYjH84Q9/wCeffFI2qXIrV67EmjVr8IMf/CCjz3/xxRfwer340Y9+hN/97ndlVcvKlWAwiJaWFgwNDaVsTxsZE4kEOjs7cfToUVHEicGJEyewcuVKUQe4qtVqPPXUU2htbRXtmsVkcHAQ//73v/H9738/42OWL1+OgwcP4vr162AYRomSmIiOFEVNSy9Ma0Zhiv1yGZkdCoVw7ty5ovWezsaOHTvw17/+VfTrFoPf/OY3eOqpp6a1FTOBZVm88sorOHToEH7+85+nLFAzH9m3bx+6u7tTtqU144ULF9Dc3CyKKDFoamrC9u3bc7qJ8uXpp5/GokWLymIgss/nQ01NTc7HC1Hy5s2bqKqqmtdrTOr1evT29qZ0cE0zI8/zCAaDZbPE2FtvvYUlS5Zg1apVkml45plnSj5p4o9//CMqKirw7LPP5n2uF154AXv37sWRI0fQ1NQ0L6OkSqWCTqdDV1dXcts0M3q9XnAcVxYN7XA4DJvNhu3bt0uq46WXXir5lLE333wT69atK9j5li5dir179+LevXtgGGZeRsmpVdVpZuzr60N9fb2oooqFwWAAx3GSVE8ns2LFCixcuBDvvPOOpDry4caNG9iyZUvBz7t582a8/vrrOHLkCH784x+D5/mCX0OucByHgYGBZFV1mhn9fn9ZZOBPnW5Rar7zne/g3XfflVpGTly9ehX3798vaGScjBAlFy5ciOrqapw7d64o15EbKpUqpYc5xYzjox9j8TcW4OmVT0oirlDwPI9jx47JqlD57ne/i7///e9Sy8iJCxcupKwIXCw2btyI/fv34+zZs2hoaJgXUbK+vh5+vx/AFDP2fdiPl156CQsWLZZCV8EwGAyoq6uTVbt38+bNuH37ttQycuLKlStYuXKlKNdSqVTQarVYtWoVtm3bVvZRkuM49PX1AZhixuHhYTz33HOSiCoU7733Hm7fvi27JOVly5ahoqKiJHNVw+EwnnnmGVGvuXbtWhw4cABnz55FbW1t2Q7PYhgmOZggxYyhUAgbNmxIvn9w727yle795G1TSffZTPZl8rmZtkc++xTHjh3D9vqX8Q3yAACSP+XAN7/5TXzwwQdSy8iar776CuvXrxf9ukKU3LBhQ9kOzxJm3IvFYtPNOPlLF6qrM/18cO8uFixajAWLFk8zqLA9m32Tmfy5mbZPPv7BvbswmUyo3vo8lnzrCQATRrxfsUA2hnziiSfwt7/9TWoZWTE4OIgFCxbkPUdQPtA0jf3798Pn86GqqqrsoqRGo0EoFHpkxkQiAZ7nZ01oFowwddtcES5fMmnD/td/+/DJJ59g3bMbk9vuVxRsXZ+CsGzZspK7kQYHB7F4sfR9COmGZ5ULNE0jHA4/MiPP82lzUWeLXsL+dBFMTGKxGIxGI1555RXJNGTC0qVLcefOHallZMWnn36KRYsWSS0jyeThWRs3biyLxPMNGzakRkb+88/ySgwvZnSc69xtbW3YunWrpFWpTKisrMRXX30ltYys+OKLL7Bw4UKpZaQgRMn6+nocOnQIv/zlL8tiEHPSjHfv3sW3lqjSRjghOk7dJ2yfum/y9mz2TTZdpuf+n/4AgsEgqp7bBCC1w2am36ViyZIl+Prrr6WWkRW3b9+WRTU1HRRFlcXwLIqicOvWrUdmjP7v/+HxSnXWJ5qpijpb9XWmfenez3b8vQcELS0t0Gq1uF+xIPkCMOPvUvLtb38b9+7dk1pGVkSjUdlFxqlMHp5VilFSpVIhkUggmbQZi8VmXNgkXVSUA/v27UMikSiZJONEIoEHDx6goaFBaikZEwwGUVFRkXaaCLmxdOlSdHV1obu7G59//rnUcrImaUbBnZMpdi9pvpw5cwYjIyNSy8gYnudhNpthtVqllpIxwjT+BoNBUh3ZQNO01BJyImlGiqKm5QLKMRpOZsWKFVixYoXUMjImHA5jyZIlssqZnQshb7KUNJcq0jek8sKDzs4xqUVkTDgcLrlSm6Zp3Lx5U2oZZU04HMbq1asfmVF48Fg6jKGzbifel1qGgkKBSJoxXZtRzox1NsPcD2xaL4/xipkwU2KFnEnXfJETnsMVqKiY8qrrROnUl4Bbt26BoqhHZqQoColEojTmIxnrxJv4NRziT/aWF8PDw0UZLV9MhLxJudJ4mmDUUQu0XgYhBIRcRmu/GesOl84S96FQCBqNJrXNKPcvfgIPDjcDR0zA9f5abCzO4POiUKptRp7nZVxrGsNf3u9Hq67x4ftG6EpsmtqSNaPncC90H5qwduxjXMMmlFAtNfmllxqy7k8Y+wve72+F4MWxzjrsPFMLx5HG2Y+TCUJtlKIopMzUtGHDBty4cUMqXXMy8UX3A2fOPNxSWkVgqZtRjtrH/vI++tGPnRUT90StYxSElE4JPfmeSImMLMvKN79vrBNv4sLDdgEBudwK1G5EqdRSg8EgNBqNrKYCyZRXX30VV65ckVpGGh5WUS8/vCdGHYB5HepK6HHX5AngppkxGAzKr30w1om6ZuCI6VGJN/bxNQkFZU8pz7rHcVzy4b+smFJFxVoTft0K9JvfRKl036RMjUqmwHEc8fl8UzdLCgAC1BLHKCGEjBJHLR5uAwFayWWpBWaATqcjPT09UsvIGbVaTaLRqNQyUhh11BK0Tv7vP7w3ah1kVDJV2TH5e51mRqvVSqxWq8iSyh853szZIL/CZMJ4k714uXWigG4thdKZEDI0NEQYhkm+n5YOp9frp62Oo5AfXq8XLMvOOCqmFEi3apKUVFSsg7kfOLPz0cP+nWdq4RglOF0aHano7u7Gvn37ku/TLpZaVVUFl8sFhmHE1Fa2tLS0oL6+vqRGPkwlkUjgySefRCQSKclOKDmyZs0a+Hy+5LPntInizc3NuHDhgpi6ypZEIoHe3l7o9XqppeRFulWTFHLH7/eDpumUJJC0ZtTr9cqXXiC6urqg0+nKIpoohXThSLcGalozUhQFlmVLYnS33Ons7ITJZJJaRkHgOA6xWCw5A7ZCbvA8D7/fP622NON4RqvViuPHjxddWDnT29sLmqbLqu2t3Bf5c+rUKZhMpmm1pRnNyDAMaJpWomMelNty7ACg0+kQDAblm6sqc2KxGLq6umA0Gqftm3Wkv1IK5o5ww+p0OqmlFByTyYTOzk6pZZQk58+fh16vT9+HMNeDSb1eT9xudxEffZYnLMuSQCAgtYyiEI/HCcuyZGhoSGopJUUkEiEajWbG5I85zRiJRAhN0yQejxdaW9nidDqJ0WiUWkZRCQQChGVZqWWUFHMFtjknpKIoCiaTCR0dHcWI2mUHz/M4ffp0SU3HmAssy0Kj0SSnclSYHa/Xi1gsNvvz5kxdXc7VrkJiMBiIy+WSWoYozFXtUpggGo0ShmHI+Pj4rJ/LeKpGt9uN9vZ2WU9OJDVvv/02VCpVSae9ZQNFUXA6nWhqapLfsDsZ0dLSAqvVOueUKxmbkaZp2Gw2tLS0KF98Gvx+Py5dugS73S61FFHhOA67d+9Ge3u71FJkSUdHB6qrqzPqVc9qEmPli09POBxGe3s73G53WaS9ZYvRaIRKpYLD4ZBaiqzo6upCOByGxWLJ7IBc6sBms5nY7fZcDi07lG7+R2i1WuLxeKSWIQsCgQDhOC6rpxA5mZEQec4IIAXyG3QrHdFolLAsS0ZGRqSWIimRSISwLDtnh81UcjZjpj1E5YzFYiE2m01qGbJifHycMAwzb3tY4/E44TgupycPOZuREEJGRkYIwzDzsopmNpuJwWCQWoYs8fl88zJCRqNRwnFczlX1vMxIyKOQPF9S5qLRKNHpdEqbeQ5GRkYIy7LzpikjzGeTz7P4vM1IyERo1uv1xGw2F+J0smV8fJywLKu0ETNEiBTlXnD19PTk1EacSkHWZ1SpVHC73Vi9ejX27NlTGovnZInf78eePXvgcrnKciRGMVCr1fD5fLh582bZPp8+efIkLly4kDKXTc4Upmx4RKFKCTlht9sJx3HztlOiELhcLsJxHIlEIlJLKQhCbdBisRTsnAU3IyGPOnacTmcxTi8akUhkXlS/xSIQCBCGYUq+mi/8HYXuJymKGQmZaC8YjcaSfSBus9mIRqOZNx1TYhGJRIhOpyNarbbkak/RaJQYDIai9RQXzYwCQiliNptLoorS09NDGIYhFotFqZYWEY/HQzQaDbFarbL/nuPxOLHb7YSm6aKOyCm6GQXsdjuhKIoYDAZZloiCCXU6XUlG8lIkHo8Tq9VKKIqSZWEdjUZT9BW70BDNjAIul4vQNE30er3kbYdIJEKcTifRaDSKCSVkcuQxGAyS57cGAgFiNBoJTdOiRm7RzSjgdruJTqcjFEURo9EomhGi0ei0a8+3TBG5Eo/HicvlIlqtltA0TSwWi2j3xcjISLKfgGVZ4nQ6Ra8+p11rQ0x4nkdvby9Onz6NcDgMjuNQX18PjuMKMt9oLBaD3+9HX18f/H4/wuEwtFot9u3bpzwvlDHhcBhdXV3o7u4Gz/PJ+0Kr1eb/PO/h+YX7wuv1Qq1WQ6fTobm5WbIVmiU342SmGkdY7ZeiqOSCksL7dASDQcRiMdy6dQuhUCg583WhDa4gLsIM3IJxhCXNhZnvFy9eDGBirt/JK30lEomUlbj7+vqSM6LTNJ1i8JnuKTGRlRnTEQqFkv8MALhx48aMU38wDIPKykpQFAWNRjPtn6NQPgj3xcDAQDKzZ3h4OCX7S6VSobq6Ovme4zio1WrZFsj/Dzjmvfm63hXiAAAAAElFTkSuQmCC"
|
<image>如图,在△ABC中,∠C=90°,分别以A、B为圆心,2为半径画圆,则图中阴影部分的面积和为()
Choices:
(A) 3π
(B) 2π
(C) π
(D) \frac{2π}{3}
|
π
| 69,779 | null |
π
|
"iVBORw0KGgoAAAANSUhEUgAAAGwAAABxCAYAAAAwLkaIAAARhklEQVR4nO2dfUxTVx/Hvxfc9IloZ1akyy4CtoYyyDMNuJGJ1Ma6mSiZy3S6DAdsJrhgIkuoc3MOlphJRONMWGKyF0pcNhdxbBlLNJNQCs6X1sgfdNQHWmRloUz/UKkZRsrv+UPv3W17W2+hr8gnaaDnnnvv6f2e3zm/e14ZIiJECSICwzAhHxNy+/Zt9PT0wGazYWRkBEajkT9mt9sxPDzsFZ9lWahUKhARnnzySbz00ktgWRbLli1Dfn4+UlJSwvabpP6G6cBEU7CpMDw8jPb2drS3t6OjowMjIyMoKipCeno6lEolVq5ciQULFoCIkJmZiYyMDAD/PryhoSFcv34dAOB2u2E2m2G32+F0OtHd3Q2WZaHVaqHT6aDT6ZCWluZ1f+7xRFoIqURNsFByn81mwzfffIMff/wRd+/ehUajgVarhUajQXZ2dlgfntVqhdFo5D9yuRybN29GeXk5lEpl2O4TNihOuHHjBh0/fpzy8/OJZVmqqamhvr6+qKejt7eXqqurSaFQUFFREX355Zd069atqKcjEDEXbHR0lKqrqyklJYVKS0upra0tovebnJyUHLelpYW2bt1KMpmM9u7dSzdu3IjYvaQSE8EmJyfJ6XRSZWUlyWQyqqmpodHR0Wn/wEg8ICIip9NJVVVVJJPJqLq6mlwuV0TuI4WoCjY5OUljY2O0d+9eksvlVFtbG3KujRRSxHa5XHzaP/nkExofH49CyryJqmCtra2kUCiosrJyykJJebBTtTSp57lcLiotLaWMjAw6c+ZM2NMRjKgI5nQ6SafT0fLly+nChQvRuGVUMBqNpFaraePGjVErKZLC6G2KhlssFqxcuRJr1qzB1atXUVhYGK5bxhyNRoPe3l4sX74cBQUFsFqtkb9pJHODwWCg1NTUoMXGTKGlpYXkcjm1tLRE9D4REez+/ftUVVVFKpWKrFYrEUXOg4s2wX6H2WwmlmVp7969ks6ZyjMJa0sHEeHOnTvYtm0b3G432traIJPJwnX5hGB0dBQbNmxAVlYWmpqapt1W6UvY6jAA+OOPP1BQUICMjAwYjUYsXLgwnJePKwLl87S0NJw/fx7z5s1DYWEh7HZ72G8cFs6cOUMymYwaGxvDdcmEp76+nmQyGRmNxrBdMyyC9fb2kkwmeyyci0AEqo9aW1tJLpfTwMBA0HhSmbZgN27cIJVKNWtZQThw4ADl5ubSnTt3/I4JBZQi5rScDo/Hg/Xr1yM7OxuNjY3hLKlnHNu3b4fb7UZra+u0rjMtp6OmpgYAcOzYsWkl4nHgq6++gsvlQl1d3fQuNFUzNxgMpFKp6O+//57qJR47nE4nsSxLra2tRDS1+mxKgl28eJHkcjnZbLapnP5YYzabSS6XU29v7yPjigkasmBcLjl79qykG8ziT0tLC2VmZk6pwThkp2PdunXQ6XT44IMPplcWP+bs378fNpsNp06dCu3EUNQ9efIk5efn08TERMg5YxZvxsfHSa1Wh9yfJlmwsbExYlmWzGbz1FI4ix+//fYbqdVq+ueffySfI9mt//TTT7FhwwYUFBSEav2zBECn0+H555/HkSNHpJ8kRdWBgQGSy+VxNdxrpuByuUgul3sN7AnmvCX5iOf1l+PAgQOoqqqa0a3vsWLx4sUoLS1FfX09HxZsoCzzULiAkUZHR5GXl4eBgYHHrm8rWoTyjJOA4IrW19djx44ds2JFkLS0NLz++us4evToI+MGfQ+7efMmVCoVrl275jdJYJbwYrfbUVhYiMHBwaC91EG9xO+++w6vvfbarFhRQKlUoqioCKdPnw4aL6hgBoMB5eXl4UxXTAlSmMQFZWVlaGpqChonYJHY09ODV199FUNDQxFJXCQJ5kTFMx6PBwqFAhaLhZ/n5ktAC2tubkZFRUXEEhdJElEsAEhKSkJpaWlwKwv0gsayrN/8rERqjTeZTASA/+j1+lgnSRIXL14ktVod8LiXYJwgfX19pFAoIpuyCKLX6wmAVwZLFNEmJiYoJSUl4JSmpIdWBuDfoqSzsxMajUZohZEpAyLAnj17cPnyZb96rLOzEw0NDTFMmTSSk5NRVFTkNdleiOiLc0dHB7RaLf89UeqErq4uNDQ0oKmpyS+TJcpvAB5Msujo6BA9Jup0+FpYvMOJs3//fuj1emRlZYFhGC/RHA5HrJIXMlqtFp2dneIHfcvI69evk1wuJ6LEcjKIHtRTJpNJ9JhGo0mIOoxj7ty5or0jfhY2MDCA3NxcAIlRjNBDKxocHATwYCEVX7q6utDZ2Yn33nsvYerjnJwc9Pf3+4X7CdbX14dly5ZFJVHhgMtUWVlZAOC3Eg4AFBcXexWViQDXhutLEj1w7fkAh8MBtVodzbSFjZqaGuzfv5//Pjg4CIZhoNfrcejQoYSxLgBQq9XiFsYwjFeu6+vrS1jBOLed+01Lly6Fw+HAoUOH+PB4h8tUarUavb29fsfn+Aa4XC48++yzkU9ZhAj0/gIkRhsjlz6WZXHz5k2/4351mNvtxoIFCyKfsggSqOiLd7GEzJ8/H2632y9cVLBwT/OMNmLCJFL9BQApKSm4e/euX7ioYPPnz49KosIJJ0h7eztycnKwYsUKnD9/nj+eSNZFREhJSRG1MK9BOESEpKSkhMuNwL/1U05ODmw2GwCgsLAQFy5ciHHKpsadO3ewZMkS3Lp1yyvcqy0xkXKhL4mcdjECGY1fkRjIFBOFxsZGyOVyKBQKHD58ONbJmTJjY2Oizp+fW89VdonqeKxduxZVVVUAgFWrVsU4NVMnkPM34yxsphDI+RMVbGxsLCqJmiUwgUo5P8EUCgX++uuvqCRqlsAMDw8jNTXVL9xPMLVajYGBgagkahZxiAj9/f18N5cQP8FUKpVoo+Ms0YNhGFitVtFuLlELE2vWnyW6DAwMIDs72y/cS7BxeJC+bCms9v8BSLz2t5kCEQXsSPYSbB6SsWTJEsyZINhsthnXepAoXL58GVlZWaJTvERHTWk0msCjdmaJOEajMeCoNVHBtFotOjo6MA4P/wHg910Y5otYXCnHpMQLFg4AnieS4HkiySsskTAajV7jQoWIznEuLi5GZ2cn5iEZAAL+HYcH85CMeUj2E5ELD+WYEGG8QOHC84V/k+9PesVNJNE8Hg+6u7uxZs0a0eNegnF1Vk5ODubMmcN3U3BwD8A3LNIPxPeeweII4wr/TxQHymKxgGXZgJMoA0432rx5M06ePPnIHCrM7fHK+vXrkZSUxA/O8R14FE+cPHkSb7zxRsDjvGC+opSVlcFgMEi+USStbLrXPnPmDDQaDRwOB7hhfXq9Pu5Em5iYwLfffot33nknYBxeMCLCPzTBW8ry5cvx1FNP8XUZVxwKixYu3LeoFIaHckwoTKjX9q3LfP/HvCf4waYAcOjQIRQXF2PPnj3BnmFUaWtrQ25ubsDZl4BAsP8wc/Afxrt7rKKiws/KfCcZBCoOgxWVgY6JfZd6vm9Y8v1J/n9z1+944b8r/K7z4osv4vLly37hsULKrNegk9LfeusttLa24s+/R7weTrwVJY/il19+QUlJiV+4WONqrLDb7eju7sbmzZuDxgsqWIp8EcoqdyT8AswNDQ1YvXq1X7jVasULL7wQgxR5Q0RoaGhAVVXVo0esEQWfVuR0OhNuYbDa2lqqra0lIiKHwyE6zWhwcJAAUGdnZ5RT54/L5SKZTCbpGYvOwCRBHcWyLDZu3ChpWZ14xGQyiRZ95eXl0Gg0KC4ujkGqvKmvr0dFRYW05aGk5IBEW35PaGEAyOFw8MccDgcBII1GE5vE+SC2/F4gJicnpS1wqVQqUV5enlDr/A4NDfElx9KlS71mtJhMpqCTJqLJ7t27UV1dLWl5KIZhgjsdXV1d/MzG2tpa/Pzzz7BYLPxxitPmHoZhkJGRwb8k+37EHJBoIXxm7e3tuHLlCr9hgxSCrubGMAwcDgf/wvnDDz+goaEBGzZsiBvXngTDzLk0cdYTqAFVeF40Ed7T4/Hg+PHjWL9+PU6cOOEVb82aNX7dWyaTCatXrw5sYXv27IFGo/FqHdi6dSsWLVqE33//PW4E49KRlBTariSxSL/wniaTCYsXL4ZSqfSLx/WHmUwmEBFMJhOKi4sflHZilZvBYOCX/vGF22ggnrae8n0tETod8UhLSwtlZGQE3WhA+Oy5V5DBwUF/p0M4G1+s15NlWbS0tKC0tNSv+yVWxIu1S8FisWDnzp349ddfIZfLReN0dXVBr9fz9V15eTn0ej0yMzP9TYh7yXQ4HFRTUxMwB3Cb5cTLTudC4tXCfDfLCYTBYPBa2Mxut/PHvCysubkZhw8f5t3fYDm3rKwMGzduxJtvvgmPJ3F6dGPFvXv3sGXLFrz77rvYtGlT0LhNTU2w2+0gIhgMBiiVSr7k4wXjlkiYnJzkK7rnnnsuqOvOTefZvXt3GH7SzIWIsGPHDigUCtH9w4TPmBNm6dKlAB4YBvDASQEeCjY4OIiKigq8/fbb/IkOh8OrZ9ZXOCJCcnIyvv/+e5w9exZffPFFuH7fjOOzzz7D1atX/dx3Dl/vUdjF4isguLUFIWjC0Wg0IS0MyW1aKrZFVSyIdR0m9FqFm5ZKWbtLo9F4NaVxOvDfw5XIeNoWOJqCBRNBbFvgQPF9V1DlPr5tnn4zMKfKK6+8gvPnz2PTpk3o6+vDsWPHkJwcvwNzwoWwOKOHLRn37t3Dzp07YTabceXKFf7lmIK0rqxevdprK5VA8R7ZPEAhtBfm5ubCYrHAbrdj7dq1uH37tuRzExnuGTEMg5s3b2LVqlVwu924dOmSV0uG1PfFYPEeKVioL6ULFy5EW1sb8vLyUFBQMOOnLgmtwWKxYMWKFVi3bh1OnToVkfVOprUtsBgMwyA5ORmNjY34+OOPsW7dOpw9exZA/LbuTwdOrNOnT6OkpASff/45Dh48GLH7ha0OE8LlurKyMuTm5qKkpAS7du3Cvn37InG7mOLxeFBXV4cTJ07g3LlzER/YEzYLE1qPsBgtKCiA2WyG0WjEihUrcOnSpXDdMuZ0dnYiLy8PPT09sFgs0RmFNQ2PNmRaW1tJoVBQZWVlRNsgw+3W+7riLpeLSktLKSMjI+rvnhGxsEBs2rQJ/f39WLRoEXJyclBXVye6JmC8wZUYo6Oj+PDDD5GXlwelUolr167h5ZdfjmpawiaYVG8yJSUFBw8exNWrV+FyuaBSqaDX6zE6OhqupISd4eFh7Nq1C9nZ2RgfH0dvby/q6uowd+7cgOdIycBTIexeolRYlsXx48dx7do1TExMQKVSYfv27bxHGQ/89NNP2LZtG/Ly8rBgwQL09/fj6NGjkgfMRIKYCcaRlpaGo0ePwuFwoKioCPv27UN6ejo++ugjvoM0UrlVCHcPq9WK999/H8888wyOHDkCnU6HoaEhHDx4EKmpqTF/NYmIWz8VUlNTUVlZicrKSthsNnz99dcoKSmB2+2GRqOBVquFRqNBdna236Cb6WC1WmE0GvnP008/jS1btqC7u1t0vEWse7eDjpqKB4aHh9He3o5z587BaDRiZGQERUVFSE9Ph1KpxMqVK/k1mTIzM5GRkcH3OdXV1eHPP//kuyjcbjfMZjPsdjucTie6u7vBsiy0Wi10Oh10Ol3cbx8ZV4JJsZrbt2+jp6cHNpsNIyMjXgNC7XY7hoeHvaZEsSzLW8qcOXOwatUqpKenY9myZcjPz0+4ZQbjSrBIEq4iNNbE3OmIFjNBLCDOBYuF8cd7gRPXgk3FKpqbm/mxKNxQ7VDmMce7Jca1YKHAjfqyWq38pIempiYwDIPc3Ny4txzJRLXlMgJwDbMIMGBIr9fzm8Al2gZ2YiS8hTEMg+bmZgDgdzESkpuby28CF+/FnRRmhFvPMAwMBgM/6HImk/AW5jfQcoaT8II9biS8YNyEQ+G2v1wpf/36dXR1dcUkXREjxk5PWOCm5wi3BDaZTHGzUkA4mRGCEf071JlhGMlzAhKR/wO/zJ5EDh8EVgAAAABJRU5ErkJggg=="
|
<image>如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则DC的长为()
Choices:
(A) 2
(B) 5
(C) 3
(D) 1
|
1
| 69,780 | null |
1
|
"iVBORw0KGgoAAAANSUhEUgAAAKIAAABWCAYAAABM8U0UAAAWqklEQVR4nO2da1AUZ5fH/88Q10R8xaRMJalYhcpoRCBFKlImSxJRGITEvOpqSnKriJJVGX0ZBHL7gubDlm4G1ATQvGqJpcm6tRIGlxGUi5jAVlKSFIkzA3IxGOMmbJKCwWSja2bOfujppqen535jzPyqlJ7unp6nu/99znPOc2lGRIQIRZ3NUNMCMMZARGAACJkw0jksIgWIASzchYziFiKCItyF8Ifqc4RCFfDJJQuICFYiaAsZklg2TIyiIpwkcJbOKvzl/vHrOUMSYUK02n0iGHAZaqxOmpBcSXULClVtKNpWGerCRZGB91SAQvgLKETrI80iEgBJcU0NZ8EWzHXYdd78LLT2D4WmXFFcwpi8XxKvjyyLKHM+zefOIkeVM7HCZusTEpShKVMU75BGI6LPkSNEEQSAYEJTjRW5qxZNrLeJdWhoEFkLEsJTuCj2iMXHAF2lGowx7t+KQhBM2KauiAAhkt0fAJxxZKZ+MHUuFolMJQMA42mU1rTbW8oo4YNxdUCYdGCMofrKPBAR929fNhSKJNC8hAgQok1nTKxEAnTNLVgw19HqqYtXAarNKFmVFJryRXEP64UqaQ2y1Fq0VJVMrF+0GtqtKsxTzgco4rCQlYyUBVC9wTqx2ljPeeysLeErWhRZ6isKCcgkI1llt9UbrBRxQjQ0vMcJTuafVmcId/H+lFitjgITttmMRqG2nl8hy11hMNTeQwCBwBhD0l9LQVQq2cEKkCLajBIm+FQMETmka5ipH20AcpTzbSvkjxEZQmQAk5yB/Ukr0PVfXWhpaYECTMjhR/Ef8XXmm1LlBCfH3Llz8VpanEd3Y9IHK85OgrsQXEvL+JgZeXl5+N9ff8OoeZz7HpMEOFF8Qiw4XoBiYcphNpuxa9cuKJVK0KIFyAJwZXDAcUfjaVQ0GIWDRzwbNmwgtVpNvb29FBcXR83NzeEu0h2Jq7ogEdHo6ChptVqaPn06xcfH082bN4nIYgtWQO/VXxKqiAadlqDaKnw3IoTo7PStRNR4+j8pPj6exsfHiYioubmZZsyYERVjCOnt7aWCggKaNWsW5ebmikRIRGQhstqEJwoss9Rau2NEgBAtTreMmsdo9uzZ1NHRYbe+ubmZZs6Io+bmc8Eu3J+aU6dOUVZWFsXHx1NVVRVdu3aNZs+eTZ2dnV4fixFFbn/EjRs3Ytq0aaiqqnLYdvbsWaxfvx5HjhzB2rVrHbaThxXuOxlfroHZbMbhw4dRVVWFhQsXYtu2bbh48SIA4OrVq5g5cyb27t3rdVkiI2qWQa/Xo729HQaDQXb7ihUroNfr8dxzzwGAgxijIvRchESEy5cvo6KiAjqdDmvXrkVrayuOHz8uiDAtLQ0fffSR0/vhjkkfNcthNpuxZcsWHDt2DNOnT3e6X3p6OvR6PTZt2oS6uroQlnDyIydCOedYV1eH7Oxs5OTkIDU1FYODg3jwwQdx/PhxYZ/i4mJs2bIFtbW1mDp1qm/liUTXnJ+fj2nTpqG6utqj/bu6uvDcc885ddNR7OHd7wcffIDExEQ79wsA5eXl2LVrl/DZH5fME3FCPHPmDAoLC2EwGFxaQym8GPfv34/XXnstiCWMXPr6+uzcb1lZmZ3lkyMtLQ0ajQYGg8FnawhEmGs2m83YvHmzW5csR3p6Ojo6OlBUVITa2trgFDBCqaurg0qlcul+5ZC6ZH9sWkRYRL5inZ+fj9jYWNkoWbyfK3p6epCRkfGnt4zu3K8nuHPJ3gREEWERGWPQ6/U4f/48du/e7fTJc3fSRITU1FTBMh4+fDgYxZ3U9PX1oaCgAEqlEgMDA2hra8OZM2dw8eJFlJeXe3yctLQ0dHZ2Yvfu3bLbvU0NRYRFNJvNSE5OxokTJ7B06VKvvuvsgnz99dfIycnBW2+9haKiIq++Gw78LUtdXR0+/PBD9Pf3o6ysDC+//DL27dvn07GKi4uRnJyMkydPIj093ecyiQm7ED25wFKXHCiB9PX1YdmyZS7FGMkEwv3KEYgoWUrYE9ruBMW7ZHGiNFBW6pFHHsH58+exbNkyALhjxCiNftva2uySz/6QlpaGEydOwGg0BqCkE0zqOqKniWtfYYxh4cKFQt1zz549Af+NUCKNfgcGBpxGv97UB3n4KPnYsWN+pWrkCLtrdoVclBwotyw9ztDQEDIzM5Gfn+/TTQoXwXK/cgTDJfNMWosojpLFBMotS4+TkJCACxcu4OjRo9i5c2dAfiMQiO2EeLmvrw+vv/66XfS7ZMkSj0Toy4PmLkr2l0lpEf2Jkv3l6tWrWLp0KTZs2DCpBMlTV1eHgwcPYmBgAGVlZXjllVeCYqHEaDQapKSkBDRKljIphegscR2qdMrVq1eRlZWFlStXBv0me0Io3a8cwXTJPCFzzYLerY66Fz8Ler0eHR0dsi4gVDm9+Ph4dHZ2orm5GcXFxX4dy5/n3B/364zy8nK3rlm83ZVLDqQNC4JFtILTN/+XQ86a8T/Nrw+nS5Yrz8jICDIyMpCTkxNSy8i73/7+frzxxhshcb9yyCWug+WVgu6aCfJDWaU3HbB3yeFo1ZD7TV6MmZmZTtu4/Tk+j9lsxqFDh1BVVRUy9yvtziUlFC6Zx28hcheXwFs/XwWk1+uhVqu97t4VLMTnMTIyIuTmjh496vE5erKfL12vQkGgund5it91RO5CK+w+Oyrb6rBGzPj4OLZu3Rq0xLW3SAX0wAMPoKOjAz09PcjPz/f4QXO1n1zXqwMHDtiJMFT5TOnvBKLHtbcExjWL/K8zV+x8g/MoebJhNpuRkZEhWEZfvn/48GG8//77WLRoEdRqNbq7u926yGAj/f3vvvsOcXFxIa2XBiZqtglMnc2g4CdhZKLl7EKQkzkbnCWuJyNxcXGCZXz11VdhtUrm9HbyTEuj3/b2dixZsgTd3d0A4JMIA2ktr1y5gmXLlmH58uUYHR3F6dOnQ34/AtrpofocAdkMqr1WYYJ1Y0MFNC2ObooAjNvakk+cODEpXLIn8GJcuXIl1q9fj5MnTyImJgaA4zlKu15ptVrs3bsX8+bNc/kbnlhIV9sLCgowNMTNIf7999+jv78fCoUCw8PD+PbbbwEAw8PDuHr1KgDgyJEjSEhIgMViwVdffYW8vLyQuWSegEbNBBNU2TVoPVcFggmVFZexo+QRVFZcRknJmokdrQQo3Pe4dvo7kyCi/vXXX5Gbm4sHH3wQJ0+ehEKhAGPMo+Szt654+/btQu+jH3/8Eb29vWCM4YcffkBfXx8A4Pr16xgcHAQAzJo1C0lJ3ESl999/v7D80EMPYeHChQC4ei+/zGFFfv4mzJx5H/burQDAv8eGS8UxFgMiCwDugXuv/lJAJ0MNqEU0NTThkRVZAICGigOwKreAYRFKShYJVUQiAlMwNJ5x7N4lxVnuMZAi9PR40n2mT5+OpqYm5ObmIi8vD++++y4qKyvtul4lJCSAiByE+Ntvvwldz0ZHR9HT0wOAC9q++uorAMAvv/wiXJuKigo8/vjjAID77rsPjz76KIgIiYmJePHFFwHYi8/T8574AOjPNKGrqwvfGC4Jq+U8HMEEFfubbe5y+1yxPwQ0WNFVqvFPpQeEk6w3WO3egcLvO2YeQ0pKStgS13bF8VPYH3/8MdRqNX7//XcUFBRg+fLl+OabbwBwgrt48SIYY7hx4wa+/PJLAEBMTAyeeuopAMA999yDJUuWgIgQGxsrLE+fPh2LFy/2/wTdQYB53Czb41rs4QCgsrISO3bswLZt2wIeWAbUNatFT8+2bBXU51qQKGydmEwznFGyp8K7cOGCsHz+/HkAgMViwWeffQaLxYLr168L9S2As1QAkJycLFi7KVOm4OmnnwYR4a677gpahwFXODtf8fr8/HyZxLUVxob9qBmci+qS1YBRB9WBIfs5sAOI/66Z97kmHWqwFdU2CzgvJ1ckQgDgRCjX49rl4QPkir/44gvcvHkTANDZ2Ynbt28D4MY788udnZ2wWLh60BNPPCFU2J988klMnToVo6OjiI2NRVdXF5555hmcPXsW8+dzM6HeunULq1evBgC8/fbbspX9cFQrhPcUSmdytX3W65vQ2dkpuR+cyx0YGkRN6Q7U2CboLdTWB6zsDuUMTMsKg65SjRZrFqpL19htF5vx8TEzklKScfyjE8h4ZimsIOHFWNLjuaOnpwdmsxkA0N3djRs3bgAAvvzyS2H5888/x61btwAAqampiIuLA8C1GsTGxgrLfMT++OOPQ6vVCr9RXl4OxphD9PvKK68IxxIjFqNOpxPG+joTQzDw5nf4tv1//7eT+MenbNbaZliIgL+tYFheacGaJAV0e9UYSigM2tsa7IV4W6TJKd5dNLWkUsuvw4oGVJf8FXxU5qwt2Wg04ueffwYAGAwG/PTTT8J6flksvoULF+KBBx4AwLnDWbNmAQBSUlKE5cceewyVlb69k6+4uNgh+uUndHLFrVu3sG7dOoyNjaGpqcmjtFS4RgvKu2QbJh1YcQuouRrEAFNDBQaUOxzr/AHC0SLeJq9EaDpdiaRVzusN9QbC6iSgvr4e+fn5UKlW4H9+HgEjLtE7MjICxhgSEhLw8MMPAwDmz59vtzx79mwhSjxw4IDXJ+lNumT9+vV20W9ZWRkSErx7i5XFYkFeXh5GRkZw5syZkOVIvRG0Xq+HRqOB8ZIBU6b+g8OE7LqK7WhBJlc/hBVEE1MWu2ol8xW/hegJvAvIzMzEsmXLMGfOHADAnDlzfGoqk8PfZrKUlBSHcb8zZ8502M/YUIGUNWVCZsDhJTY2ODG+hB9//G+PLaOUYFlK/n646nEt5+GCiWshSl21jOum/7NyF0sqXtG++f+8EbGxsYLLnGKLkd555x3s+pd3nRZuiiiWuo0/PFp/G38I2/ll8T5iPHO/E7mySrUKJTWES9SKZAKImZDNkgAnYvzjjz/w0ksv4dq1a2hubpatVzojmO7alUs2NlQgefUb4Duq6IwE0esOJQQzjyi1iK4+e7Cs1+tRWlSCiz3d0Gq1DsJwJhTxemfL4s9ScboSY15enkPXK+ful7vYFWoVSvsTQC0HJzYRYDxdgeTVTTBYzyGJOd4Ui8WCgoIC9PT0oKOjA3FxcWGdQUKv16OoqAhGo9Ehshc8LlkAFiPywIETnDO8O7qc275N9pZSBD8u+dChQ3bRqLc4s2hy+4j3lX4vJSUFXV1dduN+Dx48KCvCiedTAWNDBUprWlG/7wDsurSJLoVd/UlETEwMjh49itTUVGRkZMBsNodNhOJx4nLpJaFULMb+sxOZBLJPtXshSl2y3PYpMq4Z3OivVatWCclhaY+RUPS3Ky4uxl/+8hfU1tbi8OHD0Gg0GB4ehlqtlq0D8ojFUlNdiiy11lZfsr9kg4PDki/KH08qxnCg0Wiwbt06mXqhZ72IHPYN4AM1cVVdic0TJN+X6961a9cuvPPOO3afPWGKi7y7+Hji5RdeeAHXr1+HUqnE4OAg2tra0NTU5FEKxm4sMUzobwFyVDmyN+jc2Spk2V7X6+4K8mJMT0/HyMiI23IEEr1e72Jcsv3D5dpiizpBB6Zo3LGEOiIvJGcRs7NoWuZ7ZrMZaamLceTIEXz66acOLtJdsCHdz5Pv8+uSkpJQ/fcafP/tNWg0GuS9+iLips1wfW6uMOnAktbItptzFftS+TZ1F2g0Gpw9exYdHR1CLjSYjI2NOR2X7L6+KtfsEPhgyvOWFS/SOnxbMh8lBxtfk8+eQOAi4xydwa5VgV/PRczFcFfLkd64UIrRZeJ6kuBZsOJGhJ6OS5bDn3piXl6e4H75cb+eul9PYViEFVszUSqeON70CWLs0jbuL6PUeuzbtw85OTnIyMjw2027siWuXPJkmlvBtUX0oMlP/KSLxyXzPVaCQUpKisO4X29ydL6gzlagpoVsnSqBeuMfWL0oxufj8detrKwMp06dQkdHB+Lj4736rjvkEteTafJRMQHtBiZ2yb60dLj6TnFxscO430BaPmeIb1wQWrYAADt37kRtbS0uXLgQUDFGgkvm8SqPKNWs1CWLo2RXInTmjuW+I3a/3ka/gUB8s/klX59cZ8/8zp07sWHDBixdulQYR+JNueRwHSVPPgJiEcfHx5GcnIzjx48HzCXz7lc869WMGTNk3x8cPrxvcXBVZt4y8sMMfMWTtuTJhtdClLuQnkbJ7tw1H/2Kx/2uXLlyEgjOP7wp/549e7Bv3z60t7cjMTHR/RdkiCSXzON1D23pBRX3uHbXjOdMhHzbr1KpxNq1a9He3m5nEXwRYbDEK3R0hef1RW86xr755pu4++67sXz5cpw/f14y0s49vEv29eWM4cIriyi9mP5GydKuV3z06+6mTYbhpBzB6wywf/9+7NmzB21tbU4to7P7wbvkSPIkftURpS7Zk0hZmnzevn07nn32WV+LcEezf/9+7N69G01NTUhNTXW7fyS6ZB6fB0/JuWRnIiwvLxfe98u739bWViiVSl9//o6HiFBUVITY2FhkZGSgo6NDEKOcpYtUl8zjk0UcHx9HUlKSRy5ZLvoNdvL5TuPYsWMoKiqyE6OYSIySpfgkRHdRcriSz3cyrsQo55IjqX4IACAPsVqtRETU2NhI8fHxdOPGDSovL6fy8nKyWq1UXl5Ovb29VFBQQLNmzaLNmzfT4OCgp4d3+J0ojtTW1lJcXBx1dnYK6xobG0mpVNLNmzfDWDL/8coiOouSA+1+KdKe5hBSV1eHTZs2Qa/XIzk5OeJdsoA3qt2wYQOp1WoiIhobGyOtVktz5syhnJwcamxsDPxjEkWWU6dOUVxcHD377LOk0WjCXZyA4LFFbGxsxPPPP4+NGzeip6cHfX19SExMRHp6Ou69916H/fkkbhTXkI/Wv7u7G01NTTAYDLJ5Rl+PGy7s0zcEELOC8ROzY6L1YHh4GPPmzUNd3X8gPf1pZGdnY+rUKQjFwJo7GW/m4xZf08WLF6OgoEA+2U2heydNoHBpEYkIYEwQY1tbG5ZnZgalK1QUDwhWP7RJACdEmRPkRUggsAh8wv4U2N03aXOjZJqQSQ5XcruycsMFGWMwNVTgtFH6ygpue9T1hhYS/hNh6y3OrZZWkRQRI0IAUDgKiq8fmqBZXQZepdJTiqSTvBNgtv/U2RNvbWCMgSkYKhuMkH2XTQTZCoWz9+Pt3VYNpsrCgiTpCSoc9o0SAmyXuvocoVAFaHUGEBEMukqUrk6GzihjGCLIVnAWUaQnftJNUmXB2gJYIYrWJLqLWsUQIsxoYsLllkyssE2mnjR/bliLFSgUjE2MTAMAmHRoIRVK5jO0qZRIhqjCG9Vd+LDdH1NDE5g6F8lgICig1qxBlvpfQzZ9XLBQSCu522pabZMzAlkLpOMmXL9TL0pwIFF0PDB0Ba3VpWCMIUbBzWHYUlUmCNUaSRVDEXYTmegq1aiuruYqwUlrAEjrgSF7z3gUEeIaUEtzDeoNVhARPtEWYk2yAjojCUJVgEVUkMIz0YRic8lEBCLCN7r3sGBugusu+yEqZBQbJh1qsFlww6t2qJEFoKW5QdiFy/9G1r0hIlsTX68OTHMOdK5G2Dg09C0Arge1s4R+ZNdKIg9dcwsKV+QIn5mpH60AcpTzJ9YxBi7EjBzvxRgDtIUqAqc1qjdwfQELVYxsDxVlqbVCDwm+r2C0z2B4KFTZ7pGVyEpGygIIyCQTWYm/I5F6b3wePGVrAYwSZIgIptOVdvNaCzNOqLbavJhMc16EtUv/P91G8GTKB0WVAAAAAElFTkSuQmCC"
|
<image>如图所示,EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于点E、F,若平行四边形ABCD的面积为12,则△AOE与△BOF的面积之和等于()
Choices:
(A) 2
(B) 3
(C) 4
(D) 无法判断
|
无法判断
| 69,781 | null |
无法判断
|
"iVBORw0KGgoAAAANSUhEUgAAAJsAAABtCAYAAAC2qhOIAAATIklEQVR4nO2dXWgbV5vH/3LiVKEXEX3bRulFLdikUdtcTJr33Shy2ahdsh47FCtdCHYpWO6FrLAsli/SdSCQFgpqKYvGF4vsUHBMLxzCZi1fRGPz7iKHfWMptGAbvLEbqUhZ2LUCS+XQFimxpWcv7JH1MZL1MTP6/IHAmtGcOZb+85znPOec56iIiNCihQK0VbsCLZqHlthaKEZLbC0UoyU2JQjyGBvqhEqlgkrViaGxIMAPYYivdsWUpSU2uQmOofNED+7gOgJEIHqAqxiAqmcV75yoduWU5WC1K9DQBMfQecIOcAE8GD6eOnx8+Dqsd9x463j+SxuRhhKb3+/H+vo6wuEwVlZWsLm5iYWFhX2vMxgM0Gg0OHv2LLRaLfR6PUwmU8X14b+1Y9HIITCcraoTeOfUO2gywwZVPcfZ1tfXsbCwgPn5eSwsLECv10Ov16OjowMMw0Cj0RQlGr/fj83NTfj9fjx9+hTr6+vw+/0wmUzo6uqCyWQCwzAl1o7HkKoHq1lWrZmpO7FFIhG43W5MTEwgHo9nCEKj0Uh2n3g8niHkeDyOgYEB9PX1QafT7V/AbhN6ykOY6JasWvUN1Qler5fMZjNptVqy2Wy0tLSk6P3X1tZodHSUdDodsSxLMzMzhS8IcGSEkbiAItWrC2pebDMzM2QymchkMu3/AysEz/NkNptJr9fT5ORknk95yAqQUURtAY+HmlGDNSs2n89HBoOBzGYzeb3ealdHlLW1NbJYLKTT6UQfBI8VBBiJ8wjSCpCH45rW2tWc2KLRKNlsNjIYDOTz+apdnaIIhUJkNpuJZVkKhUJpZwLk4axkBAgAwWhtWqEREdVUB8HtduPatWsYHh6GzWardnVKZm5uDiMjI/jkk0/Q3t4Og8EgSQilUagZsX3xxRdYWVmBy+WCVqutdnXKJh6P49SpU/j555/x0ksvIRKJSNpLrmeqPlwVj8fR398PAJiZmalroQGAWq3GRx99BAB4/vw5vvvuuyrXqHaoqmULh8Po7+/H8PAw+vr6qlUNWVCpVHj99deRSCRw8uRJ3L17t+4fpEqpmmXz+/24dOkSXC5XwwktHA5Dp9Ph2rVr6O3txS+//IIzZ87g1q1b1a5adalGr8TlcpHJZKJoNFqN28uOELaJxWKk0+koHA7Txx9/TGfOnCGWZWljY6PaVawKilu28fFxPHz4EDzPN6zjLFg2tVqN4eFhcByHu3fv4sKFC/jDH/6ADz74oCmtnKJiW1hYwOzsLFwuF9RqtZK3VpRIJJLyz2w2G9xuNyKRCBwOBxKJBK5evYr79++jv78fm5ub1a2sgigmtnA4jJGREUxPTze00ADgyZMn6OjoAICUdfvmm28AAJOTk/j+++8xNDSE3t5enDt3DnNzc9WsrnIo0VbHYjEyGAyKD55Xi76+Ppqenk69F3w3wVfb2Nggg8FAoVCINjY2iGVZslgsDevDCigiNrPZXDOD6EogNtTmdDrJbren3i8tLaU6EUREk5OTpNfried5ReuqJLKL7caNG3Tjxg25b1NTaLXanB5ntnUj2pnRYjabU+8b3crJKrbsL7NZyOedZFs3IvGHsVGtnGxi29jYIIZhmi6mFAqFSKfTiZ4Ts25ERAzD5PizgpWz2+2pprbeka03KszeaLYhGiHGJkZ2z1RgcnISg4ODGce0Wi14nkdHRwfOnTsHv98vV5WVQw4FCxH0ZmR6epr6+vryns9n3Ww2G7lcLtFr1tbWyGAw0OjoaF1bOVks25UrV+ByueQouuYpZNmAHevmcDgwMjKScdzhcGBsbAyRSCTnGr1eD5/PhyNHjtS1lZNcbG63Gzqdroylb43B06dPcfTo0YKf6evrw/r6OpaXl1PHNBoNBgYGMDY2lve60dFRTE9PY2RkBNeuXUM8Hpeq2sogtakUc3abiWJjimI99Y2NDdLpdEU1lQ6HgxiGqZup80QS90abNdSRTikPm9hn7XY7OZ3Ooq4XfDmHw1FaJauEpGIzmUw1uxJKKcQCuvnIZ920Wm1J9xwdHSWDwUBra2slXac0komtnC+p0YjFYqRWq0u6Rsy6sSxbckDX5/MRwzA1beUk6yDcunULFotFquLqkvSpRcVy48YNfPnllxnHBgYGMDU1VVI5BoMBPp8Pz549w7lz57C+vl7S9YoglWr1en3Nm3GBgMdKRuPuWk4Yych5JCnX6/WSyWQq+bps6xaLxUir1ZY9PlqrVk4Sy7a8vAy1Wg29Xi9FcTISxFinCie+Aq5PEYgIFLiOU/YedI4FKy59vxhbPrKtm1qtBsuycLvdZdWjVq2cJGKbm5sDy7JSFCUr/NAJ2MEh8GAC3UIWq+PduMoZsXjnHiqVWznNKACYzWaEw+GMuFtXVxfm5+fLrosQPHY6nejv76+JaeiSiG1+fh5dXV1SFCUf/BB6bhrBTQ1DNFva4iMEKrxF+gzdUsm2bizLSjKDV7By9+/fR3d3t+gIhWJU2g7HYjHSaDQ1PmYXIM4IglXcN/NYQTByFWcWKqcXmU627yZ1gJzn+X0yL8lLxZbN7/eDYZjaXlcQvIc7i4DVLJaVL4jHq4Dx8kVxi1cC5TajAtnWzWQyFZWmtVhYlq2qlatYbMvLy3UyDmoUz87Nfwv7ohGXL1aeirTcDoJAtu928uRJ/PTTTxXXKx2NRoPJyUkMDw8rvqSwYrFV4qcoyyIeZTtlQR5DPTdh5KZQadrbeDyOeDxe8VpYp9OZmhGi1+tl60lWxcpV2g5X6qcoheCXCXn5Ah6OjAAZ8/hxpbK2tkZ6vV6SsoTBfKVGZQRfrpzfcSfhYZ5X1ndbsdjqJ5gbIM5q3PsijNa0jJCVU25AV4ylpSViGIaIiNRqtSKdr2g0WvZiG48VlP3MBjhjTorXisUmgXFsCCYnJ8lisUhWnmDddDpdVjZLeSl9sU2AOKOVUlrzcMR5iMhjzRFgS2wSIfWSRcG6VSPda0lLCgNcmiuSJbwsSugg8BjLGtKptKvfSDx9+lTS74JhGOh0Ovz222+Kz8gVFtucP39+3/QQwXt3sHizZ3cTuBOwo8DONcWq3WPNTbP++eef0+HDh+tmtijP82QymSQPavI8T6+88goNDg5KWu7MzAy1t7fThx9+WLWguWDlLly4QO+//37Wdxcgzpi210OGlculKLEFOCtZrcaMNjgUCuXvhbReDfvKnK/nISvSm00PcQXSoe8vtsCOwyfW4zh//jypVCp68803a246ixgOh4MAkM1mk7Rcp9NJAOjixYuSluv1eunQoUP02muvVT0dg+h357HmHQIUYx+xeYizeijHXO4irP6OxWJ1MzVZDqLRKGk0GiIqHHcqJ6RXu1Ptd8abS/mfCnYQ+KHHeKvALl86nQ7hcDhnOsvXX39dqNiGI72j1D1B8FgBq2d3vhwRiALgjHmGy+qUTtUJ2BeBmz2dKHYqYH6x8UPouWlHj9DLWDy172astTppT24yx0SDeLxqhTDmz4+NIYjjuHj5clmb2VY63ioXD1IP0oOih/rExRYcw9Djq3tPZoCD0SjepdVqtRnjas1o5TJCQMF7uHPKjG4ACI7hq0dv4TiA48PDKGcnyM3NzYbJPZwhNkpu4ScPB9s//xX+5R/eRIJ2TwQeYTFPAfkGi5vJyoXD4dRkhIy40wk7Kmk7hXy7e2Lbmda+E9Pae3UO8RXPMlaEbCcO7e308pFO4h7vvM90eHOjw4USogjU6gIMqbBYLLvxp8yOVIAzltUpEMiXoCcjMhDIv9VkrZHTjNLzGDb/z4t/3G2HuyfSHd2JnKago6MDT548KSjodCt3+vTpuk2Mko89vyqARxm+7WWIztcsudx0gni8mtbZON4NsxVYzJk/VYPkyC+5TVtbLyiRTND21nPa2npOW9vblCSiZOIFbW09p+3k3mf/beZf6eO/N9NWIplVxu61W1uUdoaWln6kzr8x0ui1f6Jff/0141xuPTLvn79soa5Z9U4kMj+fSFTwXOYnNfMlT9wpwJW39ePo6GhuaxDgyJiawh4gD2cUbXFqkQJiE/5OF0uCtlM/WIK2t7fpl2iUNJpXaFu4hhJpfxMlE+k/8t45h8NB7/3pPfrL4gORaqWXkaTEtiDwAmWnRLVbX+G9INSc/0U6dqYBrYrEnQIU4Kxlr28Qi7EFOGNG7M7I1c+uzIXFRrvWLPWDbqVZta2UxfjTX79HP/74w8655JaIJRIEkHlube2/dqxcdpK75Ja4FSpYdma9930vEUJA11hgiKccf0p8IZHIWGSd+GtEeYO6KqhUu3+1HYAqmUCSCElSoU2V9rG2gzh48BD+9sO/w5///O84IJwrtNFf2jn9yZNY+I/74knuiCBaSm1sj5pC8Kv24k65rwdlzDkXX0gUwCNcRmq5xPFhXLdCkjWvSpASGyVfYDuZ3HmjylAU2tqAZGILpDqA1BlVG1TJbSRob0Et0e5xJJFICqIgoK1t57o853KT3D0HKIHUx5Dcv+wqIdc0q9nZWfT29mYe5N1YlWAVWLVIs2wqILmN7UQSbW0HMn5AVdsBqNCWadXQhgMH2kCJF/jjH9/D//zvf2PjaWT3+AEguYXt7RfYTqpwoK0t7Rrxc3r9W/jLf+5aOeP7+PGHH0CJFzuf205ip0L5rk8ikUgAICQT26B930uHXBF+t9sNs9mcdiSIsa9W91aBBYPghzrRcxOwXs+z8LrWKK61TVBiH2enlCR2+1FPCYtFe4wVIraeQdQnlHgdhdwUNVOXksmspjWXctI85SM7YXEtbyQmRzM6NTWFgYGBjGOiPuGDCQx314VN26GQEpMJIT5VXBdOjpVWa2trNb3FjtRTgOojnUV5FLRsqrZDOHjwEA62FeeCDw0NYWJiQpKHQECv1xc9H74aSO2zjY+Pw2Kx1HY6izJREUkXS4jH43j77bfh8/lk6aFFIhEMDg5Cq9XC6XTWxGyIw4cPIxqNSiaOY8eOYWlpqSEXEkm6D0K+7XKkopRVP0oQiUSg0WgkE5rb7YbBYGhIoQEotjdaPPm2y5GaWtguMX3luhQ0+h4Sku/wIrd1E6gFKyelvzY+Pg6DwVAnGaHKRC4VK/mUVsvKuVwuSVZqNct2mbJtASm2raFcZFu527dvK3JfqdKFNct2mbKJjWEYmEwmcBwn1y1ysFgs8Hq9mJ2dVSTnmBTN6MLCAsLhcHPsISG36axW/jYl8sdWGtANhULEMExNBqvlQHaxRaNRYhhG0bRP6fe2WCzEsqws/lAl6ayi0WjTLepWJN+VMLBerSdYLitXbsMQi8XIbDbXRcZOKVEsuRrP88SyrFK3y0FqK1dJCtJiVqQ1IrJ1ELJhWRZdXV0521UrhdRZssvtHHAcB7VaDZvNVtH96xHFxAYAdrsd8Xgc4+PjSt42A6myZJcztWhubg7z8/NwOp1l3bPuUdqUxmIx6uvro9HRUaVvnYPgy5XTpDmdTrLb7UV/3uVyEcuyDTl1qFgUtWzAznDW9PQ0jhw5gkuXLqVSDFQDwcqtrKyUnCKilIDulStXsLKyAp7nG3LqUNFUU+kzMzNkMpmqEhbJptQUEX19fTQ9PV3wM0K692bsDIhR9VTfwsyJWsjLW0pSw/2yeIdCITIYDE0X3ihE1cVGtGMB5EisXC7FWLlCAV2v10sMwzRVwLYYakJsRDtWRYiD1UKzup+VE/NAotEo2Ww2MplMTTMEVQo1IzYBoYfocDhqoucmZuWEXMLpCDujtPyz/CjeG90PlmWxtLSUSq9169YtxTedSEcsqWF6jM3tduP06dO4f/8+vF5vUwZri6baai9EKBQii8VCOp2OnE5n1S2dz+ejd999l15++WVqb2+nN954g8xmc0NP5ZaSmrNs6eh0OkxOTsLn8+HJkyc4duwYBgcHJd1duBTUajVeffVV/P7779ja2sKnn36KmZmZxp7KLSGSLuWTm3g8jtu3b2NqagrhcBhmsxldXV1gWVa2e/r9fszOzsLtdkOtVuOzzz6D3+9HMpmE0+ls+Nm1UlJXYksnHA7D7XZjfn4ec3NzYFkWZ8+ehcFggEajgcFgKLnM5eVlbG5uYmFhASsrK5ibmwPDMOjt7YXZbIZer5fhP2ke6lZs2czNzcHv9+Phw4fY3NyE3++HVqvNEIher8fRo0fx7Nmz1D7swI5ww+EwGIaBRqPB+fPnwTAMWJZt7uEliWkYsYkRiUQyxjuFnqRGo8nws3Q6XYVrCYIY69zZ8SQdo5XD9avDqKfcL7JSvb5Jo+Eha0YK0gBxVvF0/s1KTfdG64/0FKTHMTzhgRU38VWxmzs1OC2xSQXvxs1Tb2VlgKyjPQoUoCU2ieDdN2HNt8PG6uO6SLAsNy2xSQIP902ryG4uQTxeBZBj8ZqTltikIPgYq1Zz7q57wXu4s4j8Fq/JaIlNAoL37ojsvhfE2IAdi0YOV1taA9ASmwTw+NaOvZTxCCLIj2Go8wTs4BB4UCdp4xWgoYO6SqASyaJuNBpx6voUJlrR3AwOVrsC9U7rWS2eVjPaQjFaYmuhGP8PmgDOdSKBJYsAAAAASUVORK5CYII="
|
<image>如图,⊙O中,直径AB与弦CD相交于点E,连接BC,AD,过点C的切线与AB的延长线交于点F,若∠D=65°,则∠F的度数等于()
Choices:
(A) 30°
(B) 35°
(C) 40°
(D) 45°
|
40°
| 69,782 | null |
40°
|
"iVBORw0KGgoAAAANSUhEUgAAAJcAAABuCAYAAAAqAoGoAAAYVUlEQVR4nO1dYXAT55l+1jRJk3HPmUEM4lDrgAURFbkoQ1NE4sSklo1p4DCpp+YmauMfaV3sds49uBtnml4zU344RaT0Qohz/hG3hamZGiR6vViALpCpffWd27hpZEskduIcpFHqtJjYJA6Yfe6HvPKutJJW1kqyjJ4Zxmj3+759d79n3+/b93u/9xVIEgXcsGiuFnD4DCAAkIjg8vixZ4c17baL0m6hgHlDeq9z9X6TxKHTRFMVsN/jB0n4PS7srV0Pz1D6MhXIlUMIgqD4m0moEVkQBJBDOH+mElt3fB4AYF1Tpts1C+RaBFDTfMpjIhCHyIH/6IHQvBWfR/h40z/uhKPZhVqrEK6XBoTCnCv3IDkv7aWtngigKFx2lkCQVfE804ydew7PTrqKcOL1a9i5Xh+dU9BcCwDzHRa11SuaKysAjKpyxnsYbr8IioT7wLfwyF1LIvOtdLVOQXNlCdFapq+vD6FQCK+//jpee+01XLp0CQAwNjaGd955R1HXbDZj5cqVAIBly5bBarXCZrNhxYoV2LhxYwpCQKG1MOyB0HIaPH149vQwqgUr1rrceG5P7XxuU4FPpd1CAUlx/fp1+Hw++Hw+nD17Fn6/H3a7HUajERaLBU6nEwaDAQBgMplQVlamIGMwGMT7778PAAiFQggEAjh69CjGx8fxm9/8Bl/84hexefNmOBwOVFZWxhdEIpZIoEiAx3sGTVtqIA2dGArAJwA15jX63DgLSAhRFOdVdmJigp2dnaypqeGSJUu4ZcsWulwuDg4O6i7jwMAA29ra6HA4CIC1tbU8cuQIJycnGS29XMamKtDtD/++ziE6AAKVHIqpNT8UyKUzurq6WF9fz+LiYjqdTrrd7qzL0N3dnVAGv8dFhAdJ5b+q3brKUSCXTnjxxRdZWlrK8vJydnZ2cnJyMqPX06JRJyYm2NHRwQ0bNnDt2rVsamrS1jZJUZxJSWuroUCuNNHZ2cnPfe5zrKio4Llz5zJ2Ha0dHV0uEAiwsbGRt956KwGwrKyMXV1dUZWiW7k+f0FlKJBrnujr66PNZss4qaKhVWO1t7fTZrNx3bp1/OpXv8oVK1YwEAjQ6/XSbrfTbrdzYOD3GZW1QK4UMT4+zoaGBhqNRnZ3d+daHAW8Xi+dTicNBgMff/xxDgwM8Ac/+AEtFgsvXLigKNvZ2UmDwcDm5mZOTExkRJ4CuTRCFEV6vV4aDAa2traGv8TSnJPogbGxMX7ve9+jyWSiw+HgkSNHOD09TVEU2djYSLvdzsuXL1Mx1M2KPTExwZaWFhoMBvb29uouW4FcGnHw4EGaTCYODAxEjomiOG9TRTqYnp5mZ2cnKyoqaDKZ+OSTT3JsbExxvq6ujtu2beOHU4k/LESSvb29NBqN7Ojo0FXOArmSYHp6mg0NDdywYUPM0KIHojsyUcf29/fz8ccf5+23306n00mv1xtTZnJykhUVFXQ6nZyZmdEsx+joKK1WK5ubm1OqlwgFciXA+Pg4y8vL6XQ6OT09nRMZQqEQDx48SIvFQpvNxvb29rhzpFAoRJvNxr1795LUpoHkZSYnJ1lbW8uamhpN87Bk7RfIRfWHNDg4SJPJxLa2tqxcLxrd3d2sq6uLTLoDgUDC8iMjIzSbzXS5XGnL19raSrPZnPSayVAglwq6u7tpNBpVhx29oEawQCDAlpYWGo1G1tbWxtqj4kB6EY4cOaKbfMePH0/7GRTIFYXu7m6WlpbS7/dn5XpyK7rZbObTTz/NUCikKJNI0507d45Go5G//vWvdZdtYGCAJpNp3gQrkEuGV199lQaDIe3hQAt8Pl/EJtXQ0JCSKUAim6Rh+/v7dZFJjcQDAwNcunQpR0ZGUm6vQK5ZhEIh1bdUT1vWhQsXuG/fPl3WIJ9//nmaTKasvAhdXV00m82z9jLtKJCLYXNDeXm5LpPhaMzMzPDIkSOsqamhyWRia2trUi2QjNDxrO56Qe363//+91lTU5OSmSLvyaV8DMoFV7/HRbc/uaGzoaGBTqdTV7kGBwfZ2NhIg8HAXbt26TYnkqzumVqySYRt27axpaVFc/m8J1c8iLPOb5IzXDwcOHCAdrs9rh0rlWFxfHychw4dosViocViYXt7O8fHx1OSO941p6en+ZWvfIXbtm3j1NRUym3qgcnJSVqtVs2W/EVDrujbPNDcxKqqqiivSqVm83q9LC0tTXt4cbvdrK+vZ0lJCRsbG3X3Np2v1T0TGBkZoclkYl9fX9Kyi4Zc5Nyb5D7QRJfnBCtRydfjkCsUCtFoNCrWClPByMgIW1tbaTQaWVNTwyNHjmSk49977z2F1T3XEEWR586do8lkSjo05z25YhTzkJtNLjc55I7jthsm2NcedbK19V8Stx2l9icnJ9nZ2cny8nKWlpZy3759cbWevK7a8JHsPKmv1X2+iCdbY2Mjm5ubE9bNf3JF3XzkhofcdDSrd0pfXx9Npr/VvF7Y29vLhoaGiE0qG86Bg4ODXLlypa5Wdz0xMTFBo9GYcAqQ9+SSw+36tmLDgaP5R5FzEglnZmZotVr5y1/+ktFzMLkLzYULF9jW1kaz2Uy73c6Ojo6M+8VLyKTVXU90dHRw06ZNcc8vHnJJw+Es/B5X+HeUVpf8oNQwMzPDrq4ubtu2jUajkS0tLQojZTacA7Va3ReCoyJJbtiwIa5H7uIg15CbqGqM/BRJug98i02uk4piMzMzNJvNMcOatInBYDCwrq4uZ+7L7e3tWbO66wW3202bzaZ6Lu/J5WpyRIZBt18kxfBmz7mhMTzvGhsbi2gtURQVmxgsFgsPHjwYs2CcDUgaKNNW90zCZrOp7s/Me3JpQSAQYElJCVesWMH9+/fT6XRy6dKlkU0MuUYure56wO128+677yapHK7zklwx8w0xamolktJkXRRFjo2N8b777iMA3nPPPbObGK5mSdr4kPu6yz8WFsp8KhXYbDb29PQojuVlCKXo0EEUlMFbIACffHINP/vZz/DQQw+hvLwcH3zwAb7xjW/grbfegsFgwC233JR2iKB0MDU1herqanz605+Gx+NBcXHxnPhZiDSoFzgbJKmhoQHHjh2LOZk3SPRGS+ekTQwlJSV0Or9Or9fL8fFxlpSUcHLyMr1eL0tKSjLqZZoM0b7uZH5qKznmnvGcBs4rcqlCVG5iuPue2E0Mz7/Qzsceeyzye45gp7Mu7kKwuusN6cXYuXOnwjU7r8klbWJYtmxZwk0MDz74YIym8nq9vP322xM6B+qtTTLh676Q0NXVxdra2sjvrJJLj85KdRPD5OQkS0pKVBeVMzlERt+p3Oqe70NgPEQ/67zQXJcvX1ZsYmhra9Nsk/J6vaypqUl4PiHBZDxoqhJky0tFFAQhdv1ShTfSTprf/va3mmTOZ9jt9sjqwoImVzqbGCTs3buXhw4dSlgmFQ22f3clXZ7ZnUFi2CFx9/4TijJyfklW92AwGNPWYtRg+/bt4759+0hmkVxaH6SemxhI0mKxaFpOSUQwuezNVQ6FA6KrycGqbx9QbfOpf81fq/t80d/fT7vdTnIBaC5RFDkzM8OjR4+mtIlBqpsIly9fpsFg0CxLUg0m8xGTrtxUBcWCuYSw1f2+vLW6zxczMzMsLi7mzMxMbskl38RQX1+vu4tJf39/XA+IeFAjmETiE67dCiKF1zWVrtTxrO7RbS3GIVGCzWZjIBDIPrnGx8f57LPP0mKx8M4770x5E0MqndLZ2cmGhoaUZYynweQL4gCIamWM0bCv+wNxfd0XM6HkqK2tpdvtzt7yj8fjwa5du2A2m+H3+/GLX/wCwWAQjY2NkRjs8cCoZEhaEQwGsW7dupRl3bJlC44dO4b6+nqcOnUqfHDYg8PCbjA8lQj/O/VcpM6f//xnPPDAA7j33o34+c9/jiVLlsS0m0/LOunAYrHg/Pnzc+lZ5B2YSkIhZT0lRkdH8cQTT2DFihV44YUXsH37dvzlL39Be3s7bDab5mvMt1OCwSDWrl0b97xEEjVEE2zozVE41pSp5iwZHR3F/fffD6fTif37989L1pSgJnLUsUT9kmlYLBYEg8FU1xaTR/mN3sTwwx/+MCtfS2pDjs1mS9ulxuv18va/KeHD96jvgcy01V1+X9c5N1+LjiWvsLflePT1+XysqKiYnXNpEEa1iOyg2iaGXM8xysrK0vfqHHJTmDWaAqBnaO7UK2fVfd31vG+1lsIfEnOZLqQNwEqDrj7hvlOB3Hlgw4YNKUzoRcUfkrndxKAFRqMxqSVfKxG83pcUk3w1X/d0SaWlvqvJobplLqzJ9Eutkg4CgQAtFgs/JWWyik5oFQNZqr4nnngCJ06cwJ/+dBHr1/8dtmzZAoPBgHfffRcul0vTuBzOUqrvvCC6zb/+9a/4yU9+gptvvjluHam8lnnd9u3bsWPHDtxztw2BQABfe+zr6OnpQU9PT/rCy/D222+jp6cHS5YsQXd3N+6//34AwNDJA/jnwz64/adV72GhoLi4GJOTk/iUSn7HpLjlllvwhS98AWvW/IPieCo3mYkHEt3m1atXExILSCVnoYiysjWwrL0T/f/7P3jkkUewdOkypJtNVQ0vvfQSPvjgAwDAnj170N/fDwA4/NxeVEpZXOXaQBDw5uhbUa3MZiLLAT7zmc9gamoqN86C2ZqLQefb+9Y3w77u3d3dmtYiU71PqbzFYolM1Ddt2hjOxTM7r4qsa0ahqWpuzpXrue7ExARLSkrm5lyRrw/5eC4q/0pldh9wZ0/SNFBcXKxLMoLp6atzcd0//JAkeerUqYy56/h8vkj05t7e/w7vEfCfIAT1L1b/yf2R3U+Ke80Bx0RR5IULF2gymZQT+uEEk8Jkb06uoUYgo9HI999/P6121SLMSNfS4k2hh/NhIs0lcohfEqK/FOfMFrmANKGH/JPVfeCZSNih6AfRVKWSjy/3HyYJoSXcdaLOV/N1jy6bTZ/8A81V4T6QxBxyR2xccslzNSxGmyKK5JO+nrH/w6qiXvzxNTH85TV7/OSPvw1hbTOatlTLpm1ial8BOUBxcXF4YpkA8gm9/P+jo6MoLy+Pa3WXyqouFWUI/3ToNJrwPIQiAUVFRRCsO+H2izhzaI+iK3K1zCRdd2pqCsXFxWFmiSCIYawtfRCrzA/h3bHhcGEAGPbgtOjAKp7HavMa2SrDwt+Vdscdd+DixYsp1/vDH/6AzZs346mnnsKePXuSls8swcJfo9Jzf+50eMlKFEWQDH85ykGoLw9lGJR9qV+8eBGrVq0KM0SAgOGTPSirqcWqVWvw1sjorJzDcLT4cGjPWvQcJrbu+PyCVVZUMW2YzWacP38+pXZeeeUV1NTUoL29HY8++qjmevMhmJrMsQi/xPGeO6NNIQJAXNd0fT0h15bBYBBmszm8piEAODUqRL0FIp7+zr/jR//5b3jVfQZC81bccQ346Brx0dXwQyEZ/n0t9iFJx1M9p6Wc2nFBECK/pXPr16+H//xokscyh+PHj2PXrl04efIkHn744YRl1YiRKsG0DV+J7WiCYgQRZ9uN9cjIFNSeQzAYhNVqRZGAsIYiVwEAzKtX4Y23R+F55ju4ueqbsEDAuf/6FWqqqnHbTQJI4Labww/l4xngtpsE3HaToOjoj64xcjyVc3LIy8U7Lq8v/yvVKTVbcPHtN/HRtfjeDxJeeOEFtLS04OzZs9i4cWPS8vGIofcQmdoIl/2pitpzGBsbg8ViCVsZ/Z5nIvaTyddPEgi77oqiyKmrw7OxRckrV5VfIVeuiop/8uPR5bScm8/xeG1fuRqOZGMwGOK2JSETEWZSNVMkQ7KyUSbJnEHh5iz3rnT7RV7540lWNu0nGQ5cC4C46VYClfz9VeVKe7oESKWNeMenEpCLJNetW8dBf5DRmVKlzko3wkyiTs+WHWwhQXWDhtQZap165Wo4jEwqWkNLuXjX06Nt6f979+7lM88+Hz4oi37zyfRHCX3d9cJCiE2RLYiiqL617MpVkVOfxPoAibLzaueih0R5e6meizfsaql/5RORU7Jj0nmv18uqL/89r1ydMwxnO677jUSwTZs2qW+KTaSW5R2ZT8pb2mJ+7XqYRKFQiPfcHba6J7oPrUOUdn+wxU8w+XZ+URQJkZxzBJQeVNTzitUe2fdyTB1zMm7evJler5dvvvlmTiPMpEqwfJiDyWVMKRCJfPhZ+Lc5h+i9ge3t7dy+fXvKcd0z0bmLVYOJohgTGAbRjy8f3pZ4OOHaPbdpoWo3r3OITU0uDg4OEkDOojRHYzESTC34WxGijIUxRjFVK54IENFVcwYx4IEgCDj8dll43Y0ED1ZjiWAFVpfBZrOhuro66SK2HqDsoTDOA9JqaI1XfyHi6NGj2LlzpyL8Zs5jRaQLyc+puil2HuVqckT8n7q6ulLe2q8HbhQ7mM1mi7mPPCNX7IdE2NCr7uDoPtAUWXmIl+Ag18jnITKSJS5OooM8I5cSktZSizIzhzlChpMcPCCrvzCQzwQj55IcRGvWvCaX5Im53/26puLR2isbw8xit4PF01qiKC4Ocrk8f9RcJVFiqVwjn+xg0rUXbWIpaXOC6rA45J6dzCvnaTMzIq3WdbMPZOEZg/NJg3V0dEQWqdWQZ+SKN6FXai+/x0VU7aYYhzy9vb1cuXIlP/7444xJmg7ygWCXLl3i8uXLF3cyz6QRXyiz2Eu/STqdTra2tmZXWGo3LejtD6Y3bog0xPNFugnU9UI+2sFumATq6cDr9bK0tHRBR1teaEPkyMgITSaTprDtNzS5SNLlctFut2tOpp4L5IpgcgcAURT54Ycf0mq1sqOjQ1P9G55cJNnQ0ECn00ky+/OYhWQHSybLtm3b2NLSorm9ArkYDu9tt9sjfl4LdQ0vl3awJ598kg6HIyXP3QK5ZvHee+/RZDKpxp9fSMjFENnV1UWz2ZzyJpYbmlzR5BkcHKTBYEg/jmqGkU2CDQwM0GAwaMpoEo0bmlxq6O7uZmlpKf3+3ISKypUdTK3swMBAjDZPBQVyqUAKpqslcmCmh850CZasjXjo7u7m8uXL0yJvgVyzUBsiTSYT29raciSRNugxREbvOWhtbdUU2ywZCuRKgPHxcdrtdjY0NNwQdrDJyUnW1dXR4XDokm1t4QfZygE467tuMBhw7tw5AEB5eTkuXLiQM1kSQY/gJ6Ojo9i0aROWL18Or9eLkpKS9GVLm543CA4ePEiTyZRwLTLXpov5arDe3l6uWLFCs+VdKwrkYmpWcoPBwNbW1gWVKUSOVAg2MTHBlpYWGgyGeaV4TobCsIjY7XRMsCUsEAggFAphzZo1OH78eNI62YbWIfKnP/0pzGYzrl27hpGRkUiWDl2hO11vEPT19dFms7GioiKrO4rStYN5vV7a7Xba7XYODAwkj/uVhktPgVxp4sUXX2RpaWkMyeZjwNR7ziYnmNfr5aZNm2ixWBRb7jOJArl0QmdnJ0tLS1leXs7Ozs4FMSebmJjgd7/7XS5ZchNXr17NY8eOJalxXfH/dKleIJdOkLROV1cX6+vrWVxcTKfTSbfbrVouk3J0d3crZJj7CkxhQ4oOYgrkApmJ5ilIqgadvXz5MjweD7q6unDmzBlUVVWhsrISDocjpRTMWvC73/0OL7/8Ms6cOQOfz4fa2lrU1dVhx44dkdgNETll2c7iya4XCuTKAq5fvw6fzwefz4ezZ8/C7/fDbrfDaDTCYrHgrrvuiiSR/+xnP4vVq1cr6geDQYRCIQiCgFAohGAwCL/fj/HxcfT29uLee+/F5s2b4XA4UFlZqSTNLJmaqwUcPjPXZhEEiPgShunDXIp5EWCRbplRCuTKEfr6+nDx4kUEAgG89tpruHTpEoBwmO133nlHUdZsNmPlypUAgGXLlsFqteKuu+6CyWTCxo0bNV+zuVpA1Y9F7LAKEAAcaK7C3sMzGOLLyET6igK5bhAQw6iqPgzf6UPh8FdCWEE1Vwt4Y60LZw5JaWj0SwJaMKJmGPJ3NxfvsXTFoV/1QFgbTmQBYW7kW73GAd8bozL59KNEgVwZRrysaFm7/uxf72kvtlZvVZ4ksLps7VxZTYH/tKNArsWEOGQghuF9jti6fR0UuYQE4K3RN1C9ZlWsVpXn0J4nCuTKc8xRIn7+S2H4DQjNW7FOEBDpcgIY9mDvYR+qq78cq7XmSSw5SQvkynMIEU0U7kq5/pE62uM9g7WryhCttZpbdgLVu7FnhzWmThiJM6apyiOfBhS+Fhc3iGFUC1Y0+0XUWoWwDSxwEoJ1J1C1Gzx9WP9rztrZCuRaJFCztg+dPID1tXtnfxVBrolcHr9CY2UC/w8jdbRp70zowwAAAABJRU5ErkJggg=="
|
<image>如图,已知⊙O的半径为6,M是⊙O外一点,且OM=12,过M的直线与⊙O交于A、B,点A、B关于OM的对称点分别为C、D,AD与BC交于点P,则OP的长为()
Choices:
(A) 4
(B) 3.5
(C) 3
(D) 2.5
|
2.5
| 69,783 | null |
2.5
|
"iVBORw0KGgoAAAANSUhEUgAAAGoAAAB1CAYAAACmoXTZAAAk7klEQVR4nO2dd3wUV5bvv1WdlFAiSAQhJIFMFmAQ+RFssD3YJhqDh2jMjAM7MPbbz9vxvv283TdvZncn7O7MYD54hhkHFntsZAxjAx5jZIskoggCSUgESSAJJYRSq7uru+r90apSR6mRWgSPf5+PoLvr1k3nnnvPPfeccwW73a4IgkAwoCgKgqC0fhO9fpckB/n5lxk9emRQymu/HoLX544gCAKKogT+XHHQUJ7Pf277xC2daDQxatr3WDB9tP86CiD4L6otL1FElmVEQRAQRbHTf+r7iAKCztkYRB2IgvMPnESSrRSd/Zq/HMlBEAQnQUXfZbtW0vVze3VwTaPT6Xx+7uh9WZa9Okltm7MtMoKgtP0uCAgOG3U3LvGrTzKRJAmbzUJD3TX+/G+/4PNjF/2WqRMC618V+o5p2gEEARkFEQHQgSCDIqMIbYWgKFgriti1axe1A54EZBRFAMVJLM9R749Y3QXnwPHNdSrxRFFEQeVQtW56wvoN4+9eXMiVBBs//5e1yDiw1Bfzzhs/4Wf/9ksGbvkNaQkxAXO1P3S5FxQUZOcH5/fWqUFEcBJPVGixVvKXvxxCUkRiY6Jd3nZ2gr9GKIrS7lSkQuPqACHLshf3+Evn2UWedbXb7VzOz2fuo2kAiOgwRvZn8Y9X0XL0C7LOF/tsXyDtckWXCSUioFcEZEFBRkEQdMiyqHWE3WrhwtFsasL7MzReR1RUNIKgazdPtSP9EUp97q+z77YT2ofssu461xa5dVQqigNrSyXHPrvOqFEJqANPFAwY+iQzfpCdhrp6n7neLYd1mVCyLCMrzgqqHaQ2THZIVF3PJb9MYNHC6TTW3yFpYCKyQuva0D7BPOdpVwJ0tOjfTb7tpdOIpICzu9rekx0StTfyKJWTSUvsiaK0CRs6BESDjh7RER2WEwi6vka1QkRAVhRkRXZKKkg03ykl4xe/4JA+kZLr5yk8V8IPXoxtFXf8rwu+OtHhcHDz5k1KSkqQJImbN29iNpsxm81YrVav900mEwAmk4nIyEgMBgNxcXEMHDiQ/v37a887gttgUpxVV+vtkGyUXS4kackserb+Jigg2S1cPn+Uc9eTWD4yOaByOkKXCaV2qjodgHO02202Lh4/jtIvlWEOkYaGJqqr7ERFyog4G+8klztcpzOz2UxhYSG5ublUVFRQVVVFY2MjgiBQW1uLJEkoioJOp9PKVUe0Sjyj0ailCwsLo1evXiQkJBAWFkZ4eDgDBgxg2LBhDBgwgJCQEK/2KQ7ZKdG6iOZOLhORJCsX87IYv3AdgiC0TtcSTTcus+V3H9BrznOkJUV3tYuBoHCUy4IrOgUIm7WZM1mfk38rhJU//Rk9gTs1pfzT4iqiYtsIKviglMPh4Ny5c5w8eZKysjKqq6uprq7G4XAQGxtLXFwcoaGhDBkyBJPJRFhYGBERzulF7UybzcadO3e0/GprazGbzdy5c4e6ujqqq6tpaGigpaWF0NBQEhMTSUlJoWfPngwaNIiRI0fSv39/p6QnAB5SqYKIbLdRcf0Ce68r/G5gDAB2h4WiUwf58KMMbhqT+MnfL6ZXB9N7oAgCocTWfwUcspWGiiJ+/YcPyc3+krSVvyTG4eBm4Sne3r6Dw2dzifrP37J+7Y8ZFN3WcFmWqa2t5fjx41y8eJGzZ89SW1tLjx49iI+PZ+LEicTHxxMWFtZhbQRBwGQyERcXp/3Wr18/7bOiKDgcDqqqqqiqquLWrVvU1tZSUFCA1WolMjKStLQ0kpOTGTlyJOPHj6dHjx5a3iAjWZs5+dVOtn+wk6w8K3/e+m8A2Gw2Si7doMeIJH6yZiWPj03peve2ImhrlArF7sBmlRk2aR7D+/VAEBQcNgm7EMX3NszD1NSCQ1ZQFKdoW1BQwPHjxykoKODYsWNIkkRycjKzZ88mOTnZa73ypT1w/a1tevK9/gmCgF6vp1+/fvTr10/jwIqKCiorK6moqKCwsJAjR47Qs2dPJk2aREJCApMnT2bEiBGAiCI4id0zMY0fJco0NTW1li2QNGYOr/xkCb3F4Hat4HA4lGBuKlWxWhAUlw5s1Vy0LsSSJJGbm0t2djbnz5/nq6++IiIigtTUVG006/VtDdX2ZqLoU9pT1wf1cyDwpy6SZZnGxkaKi4u5du0atdU11Dc2MGTIEMaPH8/IkSOZPn06JpPJWW7r2iwo6toq3rXo3RFkWQ4+oVQoigNFAMXRtiG1Wq1s376ds2fPUlpaSmFhIXV1dQwYMIARI0aQkJCAwWDw0lR0xCW+0nSkt1Pf8UzvWW5jYyPl5eXcunWL+vp64uJ689RT85g7dy7Dhg1rLaOVSIKMgMFNmxEMBJVQCjJC63qlygiyArKggCxTUVHG55/v4//9359SU1Pj1MGhQ2/U0atXr4DF5UDgbyOs/q4oisadKoE66gOrZMNk0FNfX8+cOU/Qp08vJkyYyGOzZhPbyylMqKK8LMsoAuiEB4hQ3trpNilQlmWam5s5cuQI3xzKwmJuZuDAQfz2t78l9ZFhhIYYURSFFStWeOUJ3hwUCGeBUzS32WxeaQNVSXmWZbFY+PLLL4mNjeXw4cP88Y9/4Oz5C1wpKKR3XB8ef3w26emTtMGmKI7Wd4Mj8cmy3HVhQjtOQJW0nURyOByUlNzgk092UlZWRq9evfj+88uJ7xfHO++8ww/WryMqqgevv/4/qaysJC4uzuf00xF8Ec9kMnlxaKBE9oQsy9y+fZuqygp+/MYmLlw4R8rgJCZPncbRo0c5cOAAn3zyCRcuXGTJkiX0juuDiFOEDyaCJpq4Nt9qtXLixAn27NmDJEnMnTuX2bNnExYWRlVVFUajkUmTJhEREcGUKVM4cuQIixYt8srTk2i+OvluhAd/8LU2qVOjzWbjwoULjBn7KMMeGY4g6BAwYDIYmTVjJmPTxvDXv/6VzMxMKioqWLx4MWPGjPHKr9u153ej4FQUhbq6OjIyMvjzn/9MVFQUGzdu5Omnn/a5B4qIiGDlypXk5eVRVVUF0CFhgg1/UqSiKBo3FRUVsW7dOk0DoqYRRZHY2FiWLFnCK6+8gtVqZdu2bXz++edYLBY3SdS1nEC1967okFCuJ6XtQZZlysrK+MMf/sDhw4dJT09n48aNJCf713UZDAZGjhxJWloaR48eDaic7oKvciVJIi8vjyFDhjB27Fi/aXU6HWlpabzxxhukpKSwZ88e/vjHP1Jf36Y5V7cQd0sgFQFPpO2NbofDwfXr13n77be5du0aS5cuZdWqVURFRXXIFREREaxZs4ZLly5RU1MTeM2DhPYODOvr68nNzWX9+vUYDIZ23xEEgT59+vDKK6/w5JNPcuzYMbZu3UplZSXgTlzXU+VAERCh1EJ8jQhJksjPz+ett96irq6ODRs2MHv27ID2ELIso9PpePTRR0lLS+PkyZNuZd4r7vJ1witJEpcvX2bAgAFMmjRJq5Nr3V034upfaGgozzzzDOvWrSMvL48tW7ZQUlKiTZVqv3QLofxlKkkS58+f56233kKv17Np0yZGjvRtuNJep/fo0YM1a9Zw5syZe85V/k5fGxsbOXPmDGvWrNG06p5pPQUGdRCbTCamT5/Oq6++SllZGb/5zW8oKirqUj3vSoZ0HRHqiNu6dStRUVH86Ec/YvDgwX7f9dUhrgYoY8eOJSUlReOq9uwYgglPHSE4dZBXr14lMjKSmTNn+nzP80DTMx+DwcD48ePZsGEDjY2NbN68mZs3b3a6np0S9h0OB6WlpWzdupXIyEg2bdrEgAED3Crq2ghXuKpstEqIIj169GDt2rWcPXuWhoaGzlSrU/DcXymKQnNzM6dOnWLNmjU+pVVfbfK0aAInsUaNGsWmTZtobm5my5YtnZ4xRPCvcvEFWZapqKhg69atSJLExo0biY+Pd6u0ZyNc4WsEg7NRU6dOJTk5mTNnzvhM47luBWMN89wOOBwOiouLMRgMPPHEEx2+0xF0Oh2pqam8/PLLlJSU8Kc//YnGxka3NIG0Q1QTBmqVU19fz7Zt26isrGTjxo0kJiYGXOl2KyKKREZGsmbNGrKzs6mvr++wQ4JpOKr2QUtLCydPnmT58uXExsYGpQyDwUBaWhovv/wyOTk57NixA4fD4Xef5QuimjAQWK1Wdu/ezYkTJ9iwYQPDhw/vYhPcYTAYSE9PJy4ujnPnzrk989WQYEuGql2GxWLhmWeeAbo+GFRJWW3bqlWr2Lt3L5mZmW7pOjTIgfatctSCJEnixIkTfPzxx6xZs4b09HS/mXa2A9Wd/tq1a8nOzsZsNt/V+53tVPU9i8XC8ePHWbhwodt0HiyYTCZmzZrF008/ze9//3suX77s9ry9PnOjjr+E6ry9detWJk+ezIIFC9z2VL4W1852mtFoZMaMGcTFxZGbm+uWp2s9g73HkmWZ8vJybt++zXPPPRe0fDXjn9b+MplMLFq0iMTERLZu3UpdXZ2W1tcZnJaP6xd/nWs2m3nvvfcwGo384Ac/wGAwdJv4rHLVihUryMrKwmw2B1xOV4hns9k4deoUc+fO1STY7oDavpdeeonKyko+/vhjnwalrionRQlAFy9JEsePHyc7O5tNmzbRp08fTQxVF+CuEMy1kuoCq3JVWFgYubm5biK0p5QWjMHicDioqKigvLycFStWaMpXV+1DV+Bp9K/T6UhKSuKll15i9+7dbjOHWq6Xw4KvjF1VRtXV1Wzbto1nn33WS33f3rudgatXRq9evVi9ejWHDh3yMrAMNjdLksTZs2eZOnUqQ4cOdXvWXWos9ahn4sSJbNmyBYvFornYqHDzmAFvCqpsZ7FY2Lt3L5Ik8cILL3ht6HwJIXetw/LjamIymZgzZw7h4eHk5+fffU8ECFmWqamp4erVq6xdu9Zn/boLoaGhLF++nPLycvbv3++luHX77i8TRVG4cuUKGRkZbNiwgd69e2u/3wuIokifPn1YtmwZBw8e9OKqzsBX3e12OxcuXCAtLY3Ro90dz7qTSKo2IzExkRUrVvDuu+9SVlbmV3HrVzxvaWlh165dDBkyhBkzZnRbhduDylUABQUFQOcHiq/pUuWmixcvsn79+nvii+VZJ6PRyOzZs4mJiWHnzp1+03rVTJZlbDYbN27c4ODBg5qU11mbg65AFEX69evH8uXLycrKQpKkTpXvT5y32+3k5eWRlJTE+PHjg1HlgOriClEUiY6OZvXq1ezZs4fq6mqf7/lco2w2G/v27eORRx5h9OjRXZbs2kNHp54hISE8/fTTyLLc6aMCf0cZ9fX1nD17lh/+8IduB4PdCV91UU+I4+Pj2bNnj8/3NI5y1R7fuHGDffv2sW7dunYLdZXzuwuiKNK3b18WL15MZqbTT7azcK2nzWajsLCQ+Ph4pk+f3ukj8mBAPT1YsWIFO3fu9MlV2hqlEspqtZKZmUlcXBwTJkxwS9wdBAnEqSw0NJR58+bR3NzMlStXOl2W62BsaWnRjjKMRmOn8wwGVF3gxIkTiYiI4KuvvvJKI7omVu2uP/vsM1544QU3+2/w1rL7OoMJNlT/p4SEBBYuXMg333zTpdGvHmVcuXKFsLAwHnvsMe33+8lV4DzpXrRoER999JHXzOE2lNUG1NfXM3Xq1KDbUHcG6iAIDQ1l4cKFmM1miouLO52fLMuYzWaOHTvGypUriYmJ6ZThZzChSqRGo5H09HTKysq4evWqO1O4GmhYrVa+/PJLZs2aRUxMjM8M7wfRVK4aNGgQTzzxBAcPHvQ5+gPpaKcFbwmiKDJv3jy3wXi/CaXuHadMmcK+ffvc0ohq5WRZpq6ujqysLJ9Wq2qGrriXVkLg3FctXLiQ6upqSktLvdIF4r3R0tJCdnY2S5YsoWfPnm753y+4Sr4hISE89dRT7Nu3D4vFoqXRCOVwOCgsLESv1zNq1CgtQXuNuJcNVLkqJSWFuXPnkpWV5dcew993WZa5ceMGZrNZG4z3c1r3BYPBwOjRo7Hb7RQWFmq/a1Of1Wrl9OnTzJw5U9tT3M/pwBNqPcPCwli6dCmVlZVeVj3tGdYoioLVauXUqVN873vfIyEh4YEhkqvkK4oi4eHhpKena9bD4CJM2Gw2jh49yuTJk+99TQOA2hiDwUBqairTpk3zyVW+oEqr5eXl1NTUsGzZsntQ487DZDIxYcIEjh07pv2maSaqqqooLi5m9OjRAY+0+2UnHhYWxvPPP8/169cpLy/vML0gCNhsNk6fPs20adMYMmTIPahl52E0Ghk5ciSXL1/WzBFEcJ7HXLp0if79+2sLbCC4V9Oip5rJYDAwYsQIJk+e7DY9tPd+VVUVpaWlrF69Wvv9fg20jqCex0VHR2t2FRqhcnNzSU9Pf2DWJBVa3CHB+Q3F6dEXFhbCmjVruHbtmk9DfFfYbDZycnIYO3ZswILS/YbRaGTcuHHk5OQALoQqKSlh2LBhD2blRaHVH1bUPOZ0Oh3Dhw9n3Ng0jhw5AvjueDWGRVFR0X05yugsDAYDKSkpbRwlCAJ2u52SkhIGDRqkJVRtGO43RNr2eW0GizqQBcLCwlj+/dVcunRJc4RToRLNZrORm5vLI488wrhx4+5t5bsAVW2mnhiIiqIgSRJlZWWkpKR4dMj913/5g6jXYTAYGDc2jTFjxnD8+ElnHAuXuIGKonDnzh0uXLjAunXr7tlRRjCg1+tJTEzk2rVrTisk1Z1Tr9e7CRIPyhThNJUSfGrZXZ0L8vIuUl172+25zWYjPz+fgQMHMnXqVK98H9RBqOodY2JisNls1NfXI9rtdiorK+nbt6+XNjzQuHbdiY7WTJ1Ox7hx4xgyZAgnTx7XQqSqPk45OTm8+OKLXpHDHlSJD9p0qgaDgfj4eMrLyxFlWebOnTv06tXLLeGDCkVxIOPQpmhRFAkLC2PlypWcOXOG27drUBQFu91OUVERMTExzJo1yyufB2EQdgSdTkd0dDS3b99G73A4aGhoIDIy8n7Xyydk2e4ML6fosNmaOfX1br45cw1B0KEPMTF3yVpGD4hm4sSJDB48mJzTZ5g9Zy7NzY2cOnWKV199VQsT96DD81hJEJyR0pqbm51rVHNzsxbq7D5Uz8/nVog6QKal5SYf/fLXfJp5mubmFurv3KboVCa/+OV/ceHmHaIjo3jxxRc5efoUd+pquXLlGgaDiaeeeupeNSSoUKfm0NBQWlpa0KsHafePozxjxjpQQ9MoigKCTEtTGTt/+R8czWti7it/x3Ozx+KwW7h+9ms2/q//ze6sxxj1wjQGDBhIcel1vjn0NaXFN1iwYAGxsbH3qV13D9epWF2nwsPDMZvNTkI1Nzd7uUDe39NdZzwlQRCQrC1kH/iULfvy+fnvt2rBCnX6EPo+ks6c8YM4XXwdSZrIxYsXaKxvJDMzE0ERg+6/da+gSn3q1Ge1Wp3DWa/XY7fb71vFVMFAEHS4BnqSFRv1Zfn8bvMHJC97mdljk11i18o4cFBXd721UTp69uxJTEw0tdW3iYqKctvAP0xwPcy12+3odDr0qtSkOgGr1LxXnOTkXM9A8K2BrySJ6qJzHLqg45Nts5xx5VqvkVBkO7bKqxw6e53pUxIwGHRMnzaFf3zzTQqLrjJ69Ggvg39X3E8bCVe0N3OpJ9Imk8lJqPDwcK5du0ZLq8pIURTC9EGPYtounCG4W+03EEBptW+4WYFh8ERGJ0YDbQGDJauFM0f2c0E3nl/NHAXI9IiKYuOm17l9+zY9e/ZEbCde3oNApEBgsVgIDQ116voiIyNpbGwktNUv6F4Sycm9emeMO7nV3QdFU77Kih0M4NTJtpoN2G2UFpxk8469zFn6MmMTewIiCgKCTtQ0LAreusoHbaPb3n5O5agePXog6nQ6IiIi7mlsB7fKCK6xHhQ3fZ3BYCR5+HD65Z/g0MXriAjYHRbyju/nd7/bgil5Fn+/aGaby07rfSCiKIKotB6NuONh4SRoi28bFhaGXq/X07t3byoqKrwStrhoz0N1Oq/vrmlCdbp233WFYjBgkWVaHA7nMwHAO1qkTTDQZ9ijvLR4ML/96b+Sn5aM5LBzvbmJAYMf5fXnf8CjSW36STW/FocDRVGcn2WHV/kPC1RHwvj4ePQ6nY64uDgtiLvgEjlSbbTaUM/vgXz2/G6RZQRJIkQUvfJzhfq7KTqR5/7hdcp//zGNjY1IBiNDxs3lH5c+7pZOHRiu3y2y3G4ZDzLUbVNzczN9+/Z1RsAMDw+nR48elJeX068dkdZXg1u6+cxKFIz0HjSWn/3MGS/PbLcT7uO4whdBHjbiuMLhcFBZWUnv3r0xGo1t+6iBAwdy7do1rzncc8rzRKhOp/11F9SY4ooAzovBWuvzYMkFQYVq0Zuamgq0blh0Oh0JKSkUFRVpp7p3Kx11J2eZ7bJ2LtUWCN4p1d3LuH73Ena7neLiYi1imwjO8/nk5GRyLl7URHNXzvI3z6u/+5py1N89n4WIorcw0QpfwkuL3X/eFo910TMPf58fRHhaWqlhUp3XTLgQatK4cVw6e/auHcX8TXvtTYmuwoTnO1556D0vttQRpjO2PjNqOjHP8vx9flDhyhiqIJGXl6fFstWmvuTkZHQ6HSUlJV6Z3E+pyVW3p+Hh2QoFDFe1nRoPMSwsjP79+wMuHochISGMGTOGEydOAK0BBiXpvk8Z2ibWxz7r2wo1QEl6enqbTbr60Gg0Mn78eL755hsAbcP4MEwb3wa4rlFWq5Xjx48zZcoU7bkbocaNG8elS5eorq5+KGwKvg3wlFjVuExXrlxh4sSJ2u8aJVSDv4SEBDIzM7sUTP07BA5Piy+bzcbhw4cZMmSI201ybiwTFhbG/Pnz+eQT97vPv8O9gSw7b3fbu3cvzz//vNszN0IZjUYmTpxIcXExV69e/W7qu4dQFEVzdq+urvYyGPUKrNinTx/GjBnTblye7xB8KIqC2Wxmz549TJkyhejoaLfnbnEmFEUhJCSEBQsWsH//fs2d5Tt0PxRF4ebNmxw+fNhr2gMXQrlGwJ8wYQL9+vXjs88+u3c1/ZaiPT2kq8DW0tKixZ9yvVlHhZvUp0oekZGRrFy5kp07d96XG2i+TVA9YtpzYVL9i7/44guvm3VUiL4objAYmDRpEjExMXz55ZdBrfjfKjx1eardvCiKWCwWDhw4QGJiIuPHj/cdU9aXZKe6s6xcuZIPP/wwIIfm79AxHA6HF2epd2/t37/fjZs8bxcQVT8hTwqq0a769OnD9u3b3Z5/G89/uhOu7kyuF66oWvIPPviA1NRULbija1otj/Yyj4qKYt26dXz11VecPXvWzRPxO9w9PNVykiSRnZ1NTk6OFmnU77u+MlChhnuZMWMGmzdvprm5uRuq/7cJWZa5desW77zzDosXL9aO3P2hQ9WDGnzDNer9d+ga1CkvIyMDg8HA4sWLO3ynQ0KJosjAgQN58cUXycjIaDcAh+d9Hd0dxvRBRCDKbEmS+Prrr8nKyuK1114jJiamQ3VdQMo89dKradOmsXnzZp+nwJ7wd6HX3zrUyzvfe+89Fi1apF102RECIpTqSLBq1SrCw8N566233G4V87w90xN/S8Tq6IqnyspKtm3bRmpqKkuXLtWeBXTRV6AViI+P55VXXqGwsJD3339fC/zXUUy/76TEtjvn3333XZqbm3n11VfdnAcDuugrUKhS4Lp16zhw4ACffvqpX6slX4GBv+2c5XodnitUY/8dO3aQn5/Pa6+9RkJCwl3lHZB/javTl9FoZM6cOZrUEh4ezrPPPhtQYd92zvIXi8lsNmuC2Msvv9ypWwsCIpTnnU0hISHMnz+fpqYmduzYQWhoKI899pjf9enbTiBfUDnLbDaza9cuvvjiC1atWsXs2bM75R99Vx5rrp1uMplYtmwZFouF7du309LSwlNPPYVer/cirOv730ao2xCdh7VWfX09GRkZZGZmsmjRIubNm9fpMu6KUJ53R0VERLB69WoMBgMZGRk0NjayePFir3A2ru97Eu5h4LZANvme2vHa2lr++7//mxMnTrBgwQIWL17sFjf2btFlH9Dw8HBWrlxJaGgoe/fupampiaVLl/qMmw7uXPUwEKkjeE5jaiTo999/n7y8PL7//e97cVJnBmiXCaV61T///PNERESwe/duqqqqeO6559r1Sge0M5mHCa7XCnpCkiRycnL46KOPqKmpYf369cxsvWveM9jH3SJovWQymZg3bx6rV6+mtLSUzZs3c/DgwS7dTvMgwrOTVQI0NTXx2Wef8fbbbyPLMhs2bGD27NluG+CuhJ4Livu7ysomk4mZM2fSv39/duzYwfvvv8+NGzeYN2+edvWemh4enJiAHaG9etrtdsrKyti1axenT58mLS2NF154wecVsV0RpoJCKNdRpl5i//rrr5ORkUFWVhaFhYU8+eSTmonuwy79qfVvamri0KFDHDx4kIaGBp599lnmz5/vV5jqysDsloASoigSExPDqlWrSElJ4YsvviAjI4Nz584xZsyYh4aT/EGWZU6fPs2BAwcoKyujd+/eLF++vN1r2buKbo38oU6FY8aMYf/+/WRnZ5OXl8edO3c4d+4cDofjoZL8amtruXPnDh9++CFlZWXo9XqefPJJHn/8ca+gX8FGUAmlKAqKICOic4upFBsby7Jly0hPT3fatYsCW7ZsISUlhcjISEJDQwFvg44HAYLidKYzm81UVlbQ1NTE9evXmThxIk888QR9+/fTApiAu+gdzH2i4HA4lGBMRaqnuiKAoDgv+xUFZ5xy1SFaEASam5t5b/u7VJTd4tq1a1y+fFlz+UlNTe1wZKp2cv464G5vN3VNr+arfm5sbCQ/P5+cC+cx6fQMHZpK6tBhzH1sJtbaYrJyriMY9IyYOIc5wyI5fcvA9FEDUYNwBYtQsiwHh1CK4nCGFpAFnHH2wGG3UlF0hu27D6G6dSo6PWHDJ/PjZ6YjSRKXL1/m8OHDlJSUYDKZCAkJITU1laFDhzJ48GBMLsFJfJfrPXrvVo/mqv5Rb/MuKCigoKCAq1evIkkSNruVoanDmDxlAqH2erZ/ehAFB+ZmG6Io0juuD03l+YRPXs+Pnh6NKAZ3RQkqoZzTlnPqEkURh91C6YVD/J9//RW7Ciz86JlpWCULOTfz2fTav/PMlJE4R53TX/X06dMUFBQ4w3Lq9RiNRpKSkhg4cCBJSUk+xd3A6+d/OnI4HBQXF1NSUqL9r1q2RkZGMmLkaB4dN5r4vn1ovHGJN//pnykw9+Inb77J42NTcNgtXD1zkB/+3Vo2vp3H/DExCOiC6mcsy3KwxHNd6/9t64yoM9F/2CRWLZhJdVFffv7Pa6mvr+TXr8/hk8xzPDNlNIKgIIo6kpKSSEpKQpIkLl68SG5uLpcvX+bixYtcunRJ0ysmJCQQGxtLTEwM/fv3JzIykqioqADq5+S0+vp66uvruXHjBg0NDdTU1FBWVkZLSwuO1vhJ6pnbqFGjGDp0KArOeBaSxczxg5/yQZ6Znb9/0ysS5/cmj2NgYgyu11IEE90i9anEkiSJK/lHWDrnd9glK9XXcrlUFsLkp0fgZGL3FhkMBsaOHcvYsWORJImrV69y9epVrly5QmlpKU1NTciyjE7nvEVAlmXtalaDwUDfvn3d8nM4HNy6dUuzTlWJYbPZNM6y2WwkJSUxZMgQUlJSSExMBNqmTgUJRZZpKi/grQ/38sSyN5mdloRDkVvvCwFjWBiz5r9BYqyCgNBKXEW7riIYCAqhnMuCjCC2VU0RZCzWSk7szUJn/TOV2ToiIsNJmzqfhTPGtk6X/p24DQYDQ4cOZejQodraUVZWRkVFBQ0NDZSVlVFTU0NTU5MmrHiGsvNU2URHRxMbG0v//v2Jjo4mPj6efv36YTAY3JSq7o3TIdttVBadJivnJu//YqaTyAjaODMZwxk/e46zHjglX3AGigwWsYKjQhJkZ5w919/sEnU3L9MQOZNUfQPVNbXkZJlZ8Y//QHJM+yK4p0CgKn7VUe/6DNoCEN66dcstH0EQSEhI8LpP2F+Zvs6U1Gd36m8jAJHRseh0AjKKa+RUrTxnKCCdS3yM4KDrhFLQpgBX2GxW8k6dYPjaN/iXNTNovn2Vn73wIv/+691MnTacWBQ8Y/T5EmcDEXEFwXnzTXJycpea4qtsURTRiyKRPWIRFWisrwNaQ3QLCg67xO0bl2iOGUNitNB2p6+P/LqCrm+gBI//ccZPtrZUk/3ZTWb9j1EIiojO0ItBEwdTVFmDM8yHwe+tn64aZ183gXaHCsrXxZvqd0FvIn7wGCYM7cXHf/oviu+0rnl2C5fPZPKXQ+dxyM5pT6YtFHYwuSooHOU5DSt2G7WlBdwkmdFJ0dgkM4U5mXx+5AKPzt1ADG2isjpqA0V3qpz85S2Kenokjubvf/wq2979kJ/+3ERKK/f07B1LdNIEkqI935IJpvgnyLKsBKvxMgqWlkYyd/2KfX89x/GKEJbMGoNks3D1/CEae47jtQ2vMCstBZ0gdhhK+kHTA0o2C5dOfMnH+48DoDOFMWP+88weM9jtQjJwtimomgm73R4UQqmc0WJp4GDGf3CqyF2qM4WE8eTy9aQlRiMoqqqpy8V2O1yj+qufXdVO7tO3e/z2YLbx/wMPRZduikA8fwAAAABJRU5ErkJggg=="
|
<image>如图,矩形ABCD内接于⊙O,且AB=√{3},BC=1,则图中阴影部分所表示的扇形AOD的面积为()
Choices:
(A) \frac{π}{3}
(B) \frac{π}{4}
(C) \frac{π}{6}
(D) \frac{π}{8}
|
\frac{π}{6}
| 69,784 | null |
\frac{π}{6}
|
"iVBORw0KGgoAAAANSUhEUgAAAJwAAAB3CAYAAAD2OykMAAAKnUlEQVR4nO2dP2zT6hqHf7lUUJ0pY8RChlICFClj5A4NW9qzuAu0A2q7OGVqOiCBxADoSkU6g50BpWVJr4ROJCTUMjQpw1UvQxuY0qGiCEdqxVKYihhOes7y3gFS3Pxp88f+Psd+H8lqSVznlfrw+vt+dv0FiIjAMIL4l+wCGH/BwjFCYeEYobBwrqGAdLosuwjHYeFcQiE5hpeyixAAC+cCyukkVqFgaHBAdimOw8LJppzG2uASVGzJrkQILJxUCkj/MYi50TI+7Si4dll2Pc7DwkmkkPyEwaVR2WUIJcBXGiRRSCIw9tzygoY8LcHr+nGHk0E5jeSneyCiH5tpQFGuwQdnVBZONOVCGsk/BrE0Z5mRmh98MmXgU6pwAoEAAAWGuYm5AaCQDODXmdX7p1UWjhEKn1IZobBwjFBYOEYoLBwjFBZOAuvr67h58yaWl5dllyIcnqVK4NKlS/j8+TMuXLiAo6Mj2eUIhTucYL59+4a+vj4AwJUrVyRXIx4WTiDfvn3D+Pg4Xr16hUqlgu/fv+PLly+yyxIKCyeIqmy6riMajaK/vx+6ruPu3buySxMKCyeAWtmqqKqK/f19bG9vS6tNOMQ4yuHhIcXjcSqVSg3fLxaLFIvFxBYlEe5wDtKss1mJxWIIhUJYXV0VWps0ZBvvVc7qbFZ2d3cpGo1SpVJxvjDJcIdzgFY6m5VIJIJ4PI7FxUXni5ONbOO9RjudzcrBwQFFIhE6PDx0pC63wB3ORvb39zE6OtpyZ7MSCoWQTCbx+PFjZ4pzCXxpyyb29/cxMzODTCaDSCTS0TGOjo5w9epVFItFhEIhmyt0B9zhbKAqWzab7Vg2AL4Ig1m4LrHKFg6Huz6e58Ng2YPIXmZvb4/i8Tjt7e3Zelwvh8Hc4TrE7s5mxdNhsGzjncckQwEBJzdFMyhvdnZEpzqbFa+GwT4QjogoT5qikFEVzDTJ0ECARvk2jyRCtiqpVIp0XXf8c0TiI+EMMmtfA0gxWm9zImUj8mYY7I8xXGEVz4cGcfJxf6NQNWDrg9nSIZwcszXDk2GwbONFkNdAWoNzZ14Doa7z1VMqlSgWiwnrbFYqlQqFw2E6ODgQ/tlO4APh8qQ1HKv9nEw0MtFCqVSieDwu9Re+srJCqqpK+3w78b5wpkFKI6lMgxQ07nxVqrK5YQwVjUbbviHAjXheONNQGkwMfna3JqfTXC5Hz549c41sRN4Jgz0uXJ40WOIQMsnMG6SdIRt+ZnVra2sCaz0bVVVpZWVFdhld4WnhgAaBr6KQdkri+/Tp0+N9z58/T4lEgjKZjJQJQy1eCIP59iQL29vbmJ+fx507d3Dx4kUkEgmsr6/j9evXWF9fRzAYRCKRwO3bt9u+380u5ufncenSJaRSKSmf3zWyjXcLrUwQSqUSLSwsUDQapVAoRNPT07SysiK04/R6GMzCUWez0YODA8pms6SqKgWDQVJVlTKZjJD4RNd1SqVSjn+OE/heODuij0qlQisrKzQ7O0uhUIii0SgtLCw4FmP0chjsa+E2NjYciT5KpRLdv3+fotEohcNhmp2dtX122WkYnNfqJ1LV7YwM3BZ8K1yhUKBEIuH4WGhvb48ymQypqkr9/f00MTFB2WzWlu7UaRhcf6nPJMN6N42D+FK4QqFAqqoKjxcqlQrlcjmanp6mUChEsViMdF2n3d3djo7XWRhskqH8utSXN37kkaZhtH2rVif4TjhZsjWiWCxSKpWiSCRC4XCYUqkUbWxstHWMtsNg66W+Zpf9HMRXwrlJtlr29vZI13WKx+MUDAZpYmKCcrncmaf8dsNg01BOBuEizqMWfCOcm2Wr5fDwkHK5HE1MTFAwGKR4PE66rje92tH6ncEnx2qmoQiZKFjxhXC9JFsjNjY2KJVKUTgcpkgkQqlUiorF4vH7rYfBJ2/VEjVus+J54Xpdtlp2d3dJ13WKxWLHVztyuRw9efKERkZGTh/P5bWG9/+ZhiZkhkrkceG8Jlst1asdExMT1NfXdzwuazzr/XFLVm0cYhpaS3c924VnhfO6bLXouk4A6Ny5cw0zPqVJ2Ct64uBJ4XK5nK9kq1Iqlej69euuvjPYc7cnLS8v482bN8hms+jv75ddjnDevXuH+fl5FItF2aU05MSfCf79z1/HWy+yvLyMt2/fIpfL+VI2wP2PiajrcH//8xcunP9NVj0dU5Utm83KLkU6Hz9+xOTkJIrFouv+43niD6FZtpO4+ZnBp3Y466n1wvnf6v5t3ae2Kzbat5X3WtnP+nruz5fHslVrt9bUqx27W758+YKbN2+iWCwiGAzKLueYUztc9RfV7Gv1l1kro/X1dt6zYt2v2eu5P1/if2//eyyb9X3r9706Ju0Gtz4moq1TaqNuIWKS0ahDVU+jS0tLJ/ax7uvHzmZldnYWq6urrlpA7kzhzuoQ1m4lCh6ztYYbnxl8LFy3XcrJLmc99osXL1i2NnDbM4OPJw3NBv9Vmg2+7Zw01H5G7bEXFxfx/v17LC49q/v5ZhOc2u/9iJvC4JavNMie7T169Ahfv35FJpORVkMvMz4+jqmpKaiqKrWOloRzg2zWr0z7uCUMPnXS4IbLXCybPbglDHb1xXuWzV7cEAa79tIWy2Y/bgiDXdnhWDbnkL2AnOs6HMvmLLLDYFcJx7KJQWYY7BrhWDaxZDIZKV3OFcI9ePAAAMsmEll3BkufNMzMzODKlSu4f/++zDJ8iYwwWGqHm5mZwcjICMsmCRlhsLQOV5VtenpaxsczPxEdBkvpcCybexAdBgvvcCyb+xAZBgvtcCybOxEZBgsTjmVzN6LCYCHCsWy9gYgw2HHhWLbeQUQY7OikgWXrPZwOgx3pcEdHRxgdHWXZehCnw2DbO9zR0REmJyeRTCaRSCTsPDQjCCfDYFs7HMvmDZwMg23rcCybt3AqDLalw7Fs3sOpMLhr4Vg27+JIGNzNA4IrlQqpqkqFQqGbwzAuprMF5JrTcYfjzuYPbA+DO7GUO5u/aHcBudNoq8Otr69jZGQEw8PD3Nl8RCQSQTgcxo0bN7C8vNzdwdqxMxwON13NhDd/bP39/Y3lMPNkaNWlMRXSDJMor9WtVthWh0smkwB+PMqTfqxiw5tPtoWFBQBofKmynMbw5TG8xEOYRCDaxD1MITC2g2uXT+4q/a+2mB6nnMbw5RRgmNicG7C8UUByeBXq5hJGLa/2CS6P8RiFP1LYUgyYJ2QDgMu4NnQNNQ2OOxzTDQUkA2PYqetuzWkyhisjPRxAIHByG04WULaxXKbHKX/CDoChwdZkA5oKN4C5TUJeA7T8z4GjmcfQ8zFMpVk5xopSNzE4jVNmqWV82rEcbGAUqgZsfTC7Ko/xEAODGMIWXq7VN6FyocnZkJphGqQcL01tUt5QCNCofsV0xs/ktR+5m5GvriptUt4wqNki002FMw3lROCnGHlh66IzvYRJeUP7tcS5ojWVjajpitBlpIengP9sYm4Ap2QtDNMeTcZwJj7gFn6vujUwh4casPVyjWepTFc0Fq6wip1bv4N7GWM3DYQrI/3vHdyqtrdyGYXkMMaeA9rDOZaQ6Yq6MdxwIICt2r0UDcbDe5gbZd2Y7uBLW4xQXPFQacY/sHCMUP4PyDIGmZesQQsAAAAASUVORK5CYII="
|
<image>如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()
Choices:
(A) 1
(B) 2
(C) 3
(D) 4
|
4
| 69,785 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAHgAAAB0CAYAAABOpvapAAAQnElEQVR4nO2dS2wb13rH/2PHCQEn0MQI7uVOAzROxnnU04ukHskBNAoCmHJbaNxb3NArjRdXooqiooEEoIACitoAjFG0pFAUdG6DK6sbCQ4KSouINLoQubDJZFExjWExoS5IuwvK3VBGEZC2ZX1dkEPxMZT4mOGMaP0AAeI8znzk/3znNed8hyEiwhE9yzGzDTjCWI4E7nGOBO5xjgTWnRDm5jbNNqLMkcA6E5q4iJtmG1HBkcA6sjl3Hp/fHcQ7b7xutilljgTWi805/CMW8Hfv3DHbkiqOBNaFECbGgE+ngJ/uDuKt02bbs8eRwDoQmliGfHsK1imY92B6ZSQrEolUfU4kEtje3obNZoMoilXnRFGEzWbT58GhCTAXf1dxYByr9CVG9Em9Y14w24BWicfjiEQiuH//PpLJZFlISZKqrhMEAX19fXj06BFmZ2fr0gCKQnMch/7+fkiSVJfGgWzO4fyyDKIv9z6PARYqoa0vcDKZRDgcRjQaRTgchiAIkCQJZ8+exccffwxBEMCybMvpFgoFxONxZDIZZDIZzM7OYnh4GA6HA0NDQ3A4HBAEoXECJTEXblf4auoe7uCtlm0xFLIguVyOAoEA8TxPPM+T2+2mYDBI+Xze8GeHQiHyeDwkCAJxHEder5fS6XTddQAIGCR/qvh5dRylYyBgnFYNt7Q5LCXw2toaOZ1OYlmWXC4XbWxsmGpPOp0mj8dDHMeRw+Gg+fl5U+1pB0sIHAwGSRRFkiSJFhcXzTZHk1AoRIqiEMdxh0poUwUOBoMkCALJskyxWMxMU5omnU6Toihkt9vp8uXLZptzIKYIvLGxQZIkkSzLtL6+boYJHfPRRx/Rq6++SqdPn7Z05uyqwPl8vtyAWVtb6+ajdWV9fZ0EQaB0Ok1vvvkmvffee6QoCmWzWbNNq6NrI1nxeBxnzpxBX18fYrFY631OCzE7O4uZmRlwHAe/34/XXnsNQ0NDGB4extLSktnmVdONXOT1ekkURUvm8FZRvbeSmZkZmpmZoVwuR06nk1wuV1e6dM1gqMC5XI4cDgd5PB4jH9NVRFHUrHMdDgeFQiEiIgoEAiSKoundPCIDBd7Y2CBBEMpfuhcIBoMky7LmuVwuV66XiYqeLoqi6d/fEIHVL6c1AnSYEQRh31Z/LBYjSZLKxXMulyNZlk3t2+sucCgUIlEUKZfL6Z20qeznvZXMz8+Toijlz/l8npxOJwUCASPNa4iuAs/Pz5Msy5ZpYOhFPp8nURSb7rMrilI32uVyuWhmZkZ32w5CN4FDoVBPiktE5PP5yO12N319Pp8nSZLqGmNut5t8Pp/O1u2PLgKrdW4vipvP54njuJa7eOl0mgRBqKuqtLzbSDoWeGNjoyfrXJVWvbcSrXo7n8+TLMtda113JHA2m+3J1rJKu95biToIUpuuVhFuBB0JLEnSoR5TPgiPx0Ner7fjdLR+p0ZFuN60LbBWzuwlstkscRynS7uidhBEpdmuVye0JfDa2hpJkqS3LZZC7xZv7SCIUc+ppWWB9aiXrI6e3ltJIBAgl8tVdSyfz5MgCIaNW7cssBl9uW7jcrkMG3nS6iYZWSK2JHAv93dVtF4H6kmjUTGn02nImHVLAjd6VdZLyLJMwWDQ0GdotaCNqhaaFrgbLT6zMdp7K9H6PTsZVGlE0wIf9KqsF+iG91ZS29U0ogHblMDPg/eGQiFyOBxdf27tIIjeXtyUwM+D95r1HWuHe/P5PLEsq1tdfOCsyuXlZXAct/9CrEOOmd/RbrfD5/PhypUrKBQKsNlsUBQF169f1+cBB+WAyslkvYoVSqjKojmbzZLdbj/gjhT5B/cWvA36U0Sr4zRes+ptXw/e2tpCIpGAw+HQJzdZkKWlJfA8b3oJ5Xa7sb29jRs3bsBut0MQBITDYe2LN+dwnjmNm79JgYrVLBYwBubi3frwEfvlEa/X21NTXmux2rBr5bDl4uIiOZ3O+otSfhpUPbaKVRrXWLa6r8A8z1tibq9RGNHv7BR1EGRra4vsdnvd68TVcRAG/VQrL1GK/OP1xxsKHIvFSBRFPWy2JFbz3krUbmn9mPgqjWt6b2Ma1sHhcBgXLlzQsZaxFtevX4csy7Db7WabUocsy+B5Hj///DNu3bq1d2LzJ9wFWgu01kj5Xp6tkc1mied5y88j++CDD+jll1/eO5Dy02BF2Ihm0PTgQqGARCJRF36oV7h27RomJibaCt7STb7++ms8efIEKysrxQOvv4F3cAc3v6kPdro5N4eQViJaqvfyjA2j3toYxalTp+iTTz4pfy4Ge6n24pR/sGG9rOnBkUgEQ0NDOuZF63Dt2jVMTU3pFwjNQLa3t/H48WNsbu557MiXhJQfcJ9mwDDFvzEs4PaUdr2sGSfrxx9/xOjoqCFGm0kmk0E4HMb6+rrZpjRFIpHA22+/jWQyWXX89anboKnm0tD04GQyCZ7nOzbQaly9ehVer/dQeC9QjIrw4Ycf1gncCs+NwIlEAplMBrIsm21K03z77bc4d+4ceJ5vW+Q6gbe2tsCy7KHJ5c2ixtU4TMTjcYiiqK/AR95rDTKZDGw2G+x2OziOQyaTaSudOoHVd5K9xOTkJAKBgNlmtEQikSi/4err68P29nZb6WgW0VYcvmuX5eVl2O32QzdoE41Gdemq9nzE98NY9wJ79S8AcByH+/fvt5VOz3pwOBzGu+++i2PHjpn+Mr9VCoUCksmkLnZXCUwg5J/t4MWXT+IpEXY6Tt5gQhPl0RyGYcBM7I3GTk5O4u7du/jhhx9MNLA9kskkOI7TpS1UJTADBszOLgDCMYaxcDj4TcydZ8B8/hZSpSkrRKsY/91FnC/tOjYxMQEAOHXqFG7cuGGira0TiUR0C/VYV0RzXD8e/M8DXRI3itDEabjhR6pqp5MRfOofxJ2b32ATgMfjAREhk8kgGo1icnIShULBPKNb4Pvvv8fZs2d1SWufRhZhhwhPS3/F6XtUU3TvXbNzwL3NnWviutAk/nJlGL5//1v0l48Xr9058SJO/FcSP1bcZ7O9hH/7/e/x7q/+BBdH/7zt/mQ3qWxgAZ21i+oEZlkWj7YfAWDwAgMwAF5gGDBA+a9YdBN2CDjOMDjBACDCs4rjDMPgRKmY3ynv3LPfuUqqrzsGlNLehP+fb+KZ/Cncf1R5f9HWP2zcw4sfvIXTJZsYAE9LNv71b3+Lf/j7z/HrS5caz1a0ANvb29ja2qoabCoUCnjppZfaSq9e4D4W2//3qPSJwXGmRgSGKf9LQMnLyrtRlI8fq7icafJcJQTgeOn/42p7YDOE//jvp7gyOqJx/x+QSu5A+IsRvFH5BUuZEwDO/ek5/OfaGubm5vDZZ581+EnMpdZ7AeDx48dtN7jqBLbbf4n/ffhwT4TS3zMAz2jvR1c5UfKyEwY0yjSLb+ZXOKO1MVHonzD9wx/jry7uP1+pj2URChVb2yMjI22PEBlFPB7HuXPnqo5lMhlwHNdeguqb/93dXXqyu0tEu2T7xSu0WzErYJeK555WzRXYpadVx3ZL99QfL6Z70Lkm0k7N0flf/oLGQ7X3r9K47RU6/68p2qlJo/Hn4oIzK6xqqERrJUknNu4JXPqxnuzu0pkztfOhiz9OvRR79zypOl+8vv74fue0xa+9bnXiFbJ99C+0oR5P+WkQJ8n2N6GKa2uf0diedDpNoiiaFiy0FpZl6yYD2my2tqcYac7Jql8nW53zzaV6TU7t/KR2yOfz5HK5SFEUU+dqbWxsEM/zVceaW6fUGM1uUu3rKWvtXvk6pm5TeU0O0W00mI7UNDabDYFAoLzvglldKa0GVuVbpXbQFHhoaAjRaBRU6ks+A1PXuOpFFEVBIBDApUuXsLy83PXnaw1waDW6WkLLrXO5HLEs23axcNhRI7V3e+GdVmOq0wUImh7Msiw4jkMikWg/5xxiWJZFMBhEX18fhoeHu9KVKhQKyGQydQMcnS5AaDhUKUlS3abLzxsejwczMzMYGBgo7zlsFPF4HIIgVA1oaB1rlYYCX7hwoXrh03OKJElYW1vD9PS0fmEVNNBqTOmyAKFR2W3l5ZVmoHalnE6nIV0prRBOHMd1HIu7oQfbbDbIsmy9rdpMQu1KjY6OYmBgoKPJ6FrUenAkEgHHce0PUarsp343I78dJtRtDPQKmqY1mKHX3g4HRtmx2litVVC7UnqEgKgNNKdnrKwDZ1WOjY1hYWGhs2KiB1G7Uv39/RgYGMDW1lbbaalLVFSWlpYgy7I+89MPygFHja2DicViJAhC25F4awcz9Cw1mwplaMVoNFZDDUnYTrD0yjdIescFbUrgIy9uHrfbTU6ns+n4H7UNWb3bPE2tbLDZbJiamsK1a9c6rxN6HJ/Ph9HRUYyMjDTVlap8g2RIzMxmc8KRF7eGun/yQWH61e6QUZtzNL02yWazwefzYXJyUr/c1cPwPI9YLIaVlRVcvXq14ZxsdYDD7/fD4XDov3S31RzxPESf1Rufz0eSJNWVfuprWSMj/7QssFr0HJYwRFYhFosRz/NV3SE1XJWRWwm0vHyU53mMjY1henpa36KkxxFFEbFYDLOzs/jiiy8AFBtYJ0+eBMuyhkUfYIg0lxYcyKVLlzA2NnaowiJYhenpaSSTSeRyOTx48AD37t0zLqpCu67faMPFI5rj5s2bdPz4cfruu+8MfU7bK/xZlkUgEMDly5f1zG/PDaurq/jqq6/w/vvvG/qcjkI4iKKIiYkJXLlyRS97ngv8fj9YloWifFBc58zU/J2fQ3240TbRoxjo9dD/ejI/P0+KolQdWx1HxWYarQf93g9dgrB4PB4AKLcOj9AmHA5jZWWlJqTTJn66O1ixmcYI5HHgzr2UPg/VJZuUUBSl57eebZdQKESyLNePH6T8NFixB0PKP0jQ2FyjXXQVmKj4NqWXt35vh/n5eW1xSRW0Zv8jHdE9TpbP5wOAo4ZXCb/fj2g0isXFRY2+7ia+uQn4U6V1VsVA0OVAMrqga3apYH5+nhwOh+X3RTAKdZrt/hMlVmm8ZoucxtvmtIdhke4URcHU1FRXVgVYjWQyieHhYZw9e7ZcomkSWsbd3/wZOlwcuT86ZZSGqFNZvF6v0Y+yBIuLi5pbuNeTIv9g9drm4n4MqNt/sBMMF1jF4/GQJEk9u5NaNpslp9PZ9HSdQaCqcQWdFrPX0jWBiYqvx3ieJ4/H01N1s9frJZ7nD5y9YQZdjTYrSRI2NjbQ19eHgYGBQ78sZnl5GWfOnMGjR48Qi8XgdDrNNqkes3KWWqRxHKfLEo1uEgwGSRAEkmXZ8lWOaQKrpNNpUhSF7HY7+Xw+Sxfdi4uLZWEPy3Ie0wVWyWaz5Ha7yW63k6Ioltk3cX19nVwuF7EsS06n89AIq9L2jA6jKBQKWFpawsLCAjKZDJxOJy5cuKBbeN1miMfjiEQiWFhYgM1mw8TEBJxOp+X3OtTCcgJXkslksLS0hFu3biEej0OSJAwNDUEURQiCoMsPXigUEI/HkUgkEI1GEQ6HIQgCJEnC2NjYod+BxtICV1IoFBCJRBCNRsuCFAoFiKIIjuPQ399fvlbL2+PxeHlu8sOHD5FMJqvSEAQBQ0NDcDgcPbXrzKERWAvV+zKZTFXwsmg0WnetKIrlkLx2ux08z+tWCliZQy3wEQfT89vqPO8cCdzj/D8n7TzSQ02v5wAAAABJRU5ErkJggg=="
|
<image>如图,已知∠AOB的度数为100°,则∠ACB的度数为()
Choices:
(A) 110°
(B) 120°
(C) 130°
(D) 140°
|
130°
| 69,786 | null |
130°
|
"iVBORw0KGgoAAAANSUhEUgAAAHwAAAB6CAYAAAB9RzejAAAZ80lEQVR4nO2df1CTV7rHv2/Sls40behO2mV34qIQxnhlZuNiK1PoICUqa/nlaIuueHFvqcHaO8WVKL0Xrzo6W6q40h17BXFHHPXWndrBH3gVgtvQizM66NId6QVvEsTFmcVCCyx0itvkfe4fIW/yJm9CEt6EBP3MZJL3nPOec3Kec57z+xyGiAgzABGBYZig7dva2jA0NITbt2+jp6cHAwMDnN2tW7cwPj7OPcvlcmg0Gu55zpw5SExMhEajwQsvvIC0tLTp/ZkogolUgbvS09ODtrY2tLa2wmg0YmhoCKmpqVAoFEhJScG8efMwd+5czr1Go4FcLueeh4aG8NVXX3HPJpMJ9+/fx40bNzA4OIhbt25BoVAgKysLWq0WmZmZSExMnDLOgfyHSGHGBO4Lm82Gs2fPoqmpCUajEVarFVqtFllZWcjMzER8fLzoYd67dw8GgwGtra24evUqnnnmGWRmZiInJwerV6/m3EWjkHlQBMCyLBERtbe3U0lJCcnlckpJSaGamhq6ffv2tPwMls7OTqqurqaFCxeSQqEgnU5HHR0dYQs/VMy4wMfGxqi6upri4+MpPj6eKisryWw289xMJ/GCfdf1ve7ubiovLyelUkkqlYpqampoYmIiYoXqixkT+NjYGFVVVZFCoaCCggJqb28XdCdWorIsK4pfra2tlJ2dTXFxcZzgo4mwC9xV0EVFRdTd3R3uKAgSaGbo7OykNWvWRJ3gwyrwxsZGUiqVVFRURH19fSEPLxwqt7u7m958801SqVR05cqVkIc3XfgCd0kflmVJrOTq6+uj7Oxs0mg0dP36dZF8jSyMRiOp1WoqKCiggYGBmY6OVyS8Jrtbb4Oxt+J9tPHZKXsBu3btwuLFi6HVatHZ2YklS5YE3pWIAjIyMtDV1YXFixcjOTkZBw8eFHTnOz3DgHsOKM8FARICwH1qDSanA5vvcu9Qo4ODg6TVakmr1UZ0jg8F/f39lJ6eTgUFBTQyMjLT0eHBCZxlWU6l6/OcQja1HCEA1GIWfF+Q9vZ2UiqVtG/fPtFax9HGDz/8QBUVFaRSqQLqv4cauFfULJkol8khE9nsz+bmgAReXV1NcXFxZDQanX4+ggJ30NTURHFxcVRbW8uZzWR6eDTazIZaytteRzQpcH0eJp+nRqfTUWpq6iOnwqcSYF9fH2k0GqqoqAhTjLzDEzhLRC1Hy3n1t7Nk2/gOWafZxMQEFRQUUHZ2No2Pj/sM8FEt7cPDw5Senk5FRUVktVpnLB4S15Y2A8DQVI0WM4GI0HK0HCtUDAwWAJCAc8vYP0QMRkdHsWLFCsTExKCpqQnPPPOMz0ZiVE88TAO5XI7W1laMjIygoKCAN30bVuxytxGxk/V1fjmXG1gyUQ4D0tc1C+aWkZER0mg0pNPpHtmSGyhWq5WKioooNTWVxsbGwh7+ZD9cAjBA658M0K9c5swNll40kQSqeQl2Be/CxMQE8vPzkZaWhtra2ke25AaKVCrFyZMnoVarsW7dOthstvBGwFX6+jyQwWL/zZKJ8gACcp0tdpdSvPqNNVRYWBi+rDnLsFqtlJOTQ2+99RbPPNSaEjZiub4292Emv/P1gi/pdDrSarX0/fffhzRys52xsTFasmQJ7dq1K2xhgtf6pqlzmF6vp6eeeoq+/fbbUMZr1jBVeg4ODpJaraZTp075/c50YFiWJX/r3y+//BK5ublY8tLLmBOvxKFDH4Wwsnl0sFgsSE9PR3t7u+BaOlGZOk/YNcDY2BipVCq6fPkyDQ0NUVxcnNdFC48JnDNnzpBGown5vLqgwB0qxVWxFBYWkk6n454bGxtJpVJFzcR/pCCkrh1m7mkcCvxaAFFfXy+Y+4qKiqisrIxn9rg/HjwOLXr27FnOTOz0nFLgAwMDFBcXJ7gUaXBwkOLi4mbtooZww7IsdXR0kFKpDNm06pQCLy4uFhz0d+S8s2fPklqtfqzaRUSn09HWrVtD4rdPgRuNRlIqlVMKc82aNaTXO/vsj9X69BgeHqa4uDi6efOm6H57FbjVaqWFCxfSZ599NqUnj1W7+NTX11Nqaqro/noV+EcffUTZ2dl+e/RYtYtPamoqNTQ0eJhPR4MKCtxqtZJSqaTOzs6APFuzZk1ETPJHOw6BOlbCiomgwBsaGigjIyNgz/72t79RXFxcRK3himZYliWNRkONjY2i+clfxEj20q1SqXhr0gLh1KlTtHDhwseqXSQaGxtJo9GI5h+3Lt0xnn7x4kXI5XJkZGQENVS7fv16JCUlYd++feKM/T7iOFbHtLW1ieOhew5IT0/njfQEg2Ow5rFqnz4sy1J9fT3l5OSI4h8cnhLZV1cqFAqyWq3T7kufPn16StX+uL/uH2NjYySXy2lwcHDafkkApzo/fvw4ioqKIJVKp605fvWrXyEpKQkffPDBtP161JHJZFi1ahVOnz49fc9cpa9WqwPuirnjWmr7+/tJoVBM28/H2Lto7gMxwWhITuDXr18PujXoK+CGhgbSaDQzuhZ7thAfHz/t/fRcK/3MmTNYu3ZtUFrC14qZ4uJiKJVK7N27Nyi/H+Nkw4YN01frRPYSqlarQzYW7lDtf/7zn4N420a+Nqp7aBfWh10U4vofrly5IjC+bqNAAJG9GyWTyTi1G4qECla18+PiuVza/3ejn7GxMYqJifG5gWGqfywBgM8//xzp6elc6zwUmwqKi4sRFxeHqqqqgN7jx0XiMPRrY/1s2xwhk8mwaNEiXLt2TdCe4HGmgwv2bWISADAajVi6dKnoEXSnvr4eNTU1vFMR/cFdtAwA+CPMiDtycPosXboURqNR0M6RItvzGTCMFAzDcJ/8HcfslkTktf4OhUqsr6+nlJQUQdXuLbzZppqng6Me37Vrl9sGBn5dfmT769yhDo5dRPqjl0ny8OFDmEwmvPTSS545JgQqsaSkBM8//7ygavcWHsOpcOdOV7OhlpeDC7Yf5eyIaFaWbgBITU1FZ2enhzlxu3vtadTbLUGW1r4nkIEKv9yeizvmv0JiNpsxb948SCT8831IpMNn3P0hIhw/fpxT7f6GY88MEoCA2h15SFr+3zCRDSzLgiUT2AM65O+wC50B46syi2rkcjmeffZZ/P3vf+cVEAYOoUtAlhYcYNRQTW4SBQF9PRcxP3EuJCaTCWq12sNjsUq3uz8Mw0CpVOKDDz5AcXExWJadUuiutnXv52PznQUgugAVJPYSDhV+11KHC/ubYAY7a4UN2AuMWq3G8PCwM90mvxx/u/VPBuhf13L2tRV5+PBCLjZt0kJy584dqFSqsEe8pKQEMpkMNTU1U2Yuh6259T9R+uEFtBz80MMNSZzZwj0hZhMMw0ClUmFoaMjFkK9JDU3VOKD7JSQSe4HY3KPmCojEbDZzJVwsNe4vJ06cQFVVFe7cuePVjWuMjh7egrztdViW6BnXv/ZauN9cBpqlJV2tVuPbb7/lmTn+M1lacAB6ENlA9nEWsOf3c+4kfX193OHy4ei3ugoqPj4eu3fvxsaNGwU3xhMRJzNCL+6cB1ZqtYJxbW46gFz96/Z6i/PAe9jRglCcVSoVRkZGJh3w7Sy9vchT8zU249LYlYyPjyM2NlbkaHrHXVBbtmxBTEwMampqfLu1mHEBQEJCgoc7s6EWBy4A/6rTuZg663JHormHHQ0ZQKgQymQy/OMf/5h0wLc7engz3t20yat/ktHRUchkMjHj6BWhFjsANDQ0oKqqCj09PV7fZRMTkAfgbq/ZzcaMbcs3I1dfi2W8nbYSLgxf3b1oRCaT4eHDh04DAlhzMxiGwYELEiznDmIC7N00CedOMjY2xrsfJJQItdgBYO7cuaisrMTbb7/t9V3pZF9Sd9ilv21pAcMkAdvrcGG/TvC9aBWqL+RyOSYmJpwGDCBRrZiss+11tzPzS3juIJPJIuY80PT0dKqpqRG0c4y16fPsx5EwDCN8QiRLxLL2g+zVajVpNJpZtY+dZVnq6+uj5557zvOoEO78PO8AkXHtCRERmc1mksvlHldgOLAFcKC3Wv1P3Jk1odiyM5OMjIxQTEyMXeDs1DNkrvCH12aYxMRE7NmzBxs3bhS0lwj0s8hrw2vqo71nBQEOKkpkMtnMnQoowHvvvQcA+Ogj7+fHuArZWx19+PBhqNVqaDQaVFdXixvJGWZsbAwxMTFBvftEbGwsRkZGwtZS94eGhgakpKSgoKBA8I4yfxpiWVlZ6O7uDkX0ZpzR0dGgBe5Rwr2ryPCRmJiInTt3ori42MMu0PhFwv8Rm++++y54gcfGxmJ0dJQziJRuTFlZGR4+fIiPP/6YZ+6cKvUPX+6jMTMQEYaHh/H0008H9b5EJpM5h+kiCKlUiuPHj2P37t24d+8ezy7QTMmNM7sJOFIydyAwDIPx8fHgS/jcuXM9EjRSUKvVqKioEFTtwRCNAhbCbDYHPVgmSUxMjOjGjTfV7g/RqLL9oaenBz/60Y+CeleiVqthNtvHp602lvtECq6q/f79+wD8F+RsKdHumM1mKBSKoP6fJCkpiZu0eEIq4b4jqXSo1WqUlZXh17/+NYDZK0h/6enpwfPPPx+UjCQqlQp3794Fy/JLdaQlakVFBYaHh3Hs2DHOLJIyZbgYHR3F+Pg4nnvuuaDel8TExCApKQkdHR0elj9YbTwVL6TyvVUBvqoHf6sOV3dSqRQNDQ14//33ce+v/bDaWNhY8nDvHqdIqp7E4Pr169BoNEG/LwHs1ygKLW5/8gn7ThRXVe/6bbWxeEIqwRNSiUcmcJgHYueKqzsHycnJ2PqbbSh561/whFQCqYTxEKzjPdffs0no0900IgF872ZwxTUxXc1CnaCuYW7btg3Dw8M4ceIEr9pxz4zuv2cLDoEHW51JACAzMxPt7e3cujJXz6YqIa6lNRxIpVL84Q9/QHl5Oddqf1QYHx9HZ2cn0tLSuA0YgSIBgBdffBFz5yXg5s2bAIJrsIWylLv7/fOf/xzvvPMONm/eHLIwI5Fr165h0aJF3ERXUK10wC7g5cuXo+2L/xEsqY5S7m7nMHe3czUPxM5VsFP5/W//XomBB1/j9KmTvHfd2wtCv6MJV6G2t7dDO7lqN1gkDg/ffGMNPvmvwE8X8KbOfal6b3ZCz97ej3nqSdQfreNUu6MR53Dv+jucVY7YuM4DnDx5EuvXr5+WfxKHh0uWLMHExAS+/PJLD0dCpTsS0Gg02LJlC9555x0A/JmxSBtHmA5EhC+++AI/+clPBLeFBQJPioWFhThx4gT3HGnDrELs3LkTvb293NkngU6fRgMMw6ChoSHoM3h4uC5wu3v3LncwXzTR0dFBcXFx9ODBg5mOSkhwP5iPZVmB/eH+wSvhc+fOhVqtxrlz56afk8LI4sWLUVJSAp1OeG16tHPmzBm8+uqrUCgUAKZXXXlUzNu2bYvKRX+VlZUwmUzinFYYYRw8eBDl5eWi+MUTOBEhNzcXQ0ND4p3eKzLkpX6OiYlBQ0MDysvL8eDBgzDHKnScO3cOTz/9dNCnW7vDEzjDMJBKpaisrMSuXbtECUBsfKkzh2ovLS0NY4xCBxFhz549ospCsK9VVFQEi8Ui2EWLdCorK9HT04PPPvtspqMSNA4t9sUXX2BiYgIFBQWi+S0ocKlUCr1ej/fff1+0gMKFQ7W/++67+Oabb2Y6OkHh0GIVFRWoqKjwsPdWrfmD19GULVu2oL+/P+pKChHh5ZdfRlFRUVSrdsdCD6EFnKK20h1IpVJ8/PHH2Lp1K38vcoTjmEXat28furq6oi7DAsDIyAh27tyJw4cPi+63z/HSjIwMZGVlYffu3aIHHGpcVTvvAJwooKKiAuvWrUNKSorofk85QF5VVYWGhgafpzNEKkuWLMGGDRvw7rvvcmbTqf9CDRHh5s2buHTpUsh6SVMK/Mc//jH27t2LdevWRZVqd7B3717cunWLGz2M5EmV7777DuvWrUNNTU3ITuXwawqspKQE8+fPx7Zt2wBEdilxx6HaN2/eHBGq3Vfabd68GVlZWVi9enXIwvd7zvPYsWNobm5Gc3NzRJcSIdLS0rB27Vps3bp1pqPiNe3++Mc/oqury+e+eDHwW+AymQyffvopSkpK0N/fD8D7qUyRSFVVFa5fvx6RE0MWiwVlZWU4e/Zs0JsE/SWgVQ0ajQaVlZXIy8vD+Pi411OZIhFX1e66PTrUTFUIvvnmG+Tk5KC6uhqJiYk+3YqBXwJ3jbROp8PSpUuxatWqqGvEpaWlYfXq1SgrKwtbmL4Kwfj4OHJyclBYWIj169eHRUP6JXD3SB86dAixsbGibeMNJ1VVVfj8889x6dKlGY2HzWbDunXrkJyczI1zhENDBr1Q7dSpUxgYGOD1caMBmUyGEydOoLS0NKyq3Z2SkhIAQG1tbVjDnVLgvuafz58/j2vXrnmMWUdy4w2wjyDm5+eHVbU7sNls2LBhA3p6evDJJ59AKpWGNb2mFLgvNSOXy2E0GtHT04O1a9dyO1ciufHmwF21hzrRiQgPHz5EQUEBRkZGYDAYuA0F4Uyvaa89lsvlaG5uxsOHD5GTk8OdCOUtASOl9LuqdqEeh9iMjo5Cq9UiNjYW586dm7Fj0kRZbB4TE4PGxkb87Gc/w7Jly/DgwYOoOME4IyMD2dnZHgMyYmfKe/fuITMzE+np6Th58qQotzcHi6i7C+rq6rBmzRpoNBremrhIKdVCHDp0CFeuXMHVq1c5MzEz5aVLl5CamorS0lLuau0ZTY/gVkr7pr29nZRKJe3bt49Ylo34e8daW1tJqVT6vOIxUKxWK1VUVJBKpaKOjg7R/HUgyrp0sUhLS0NnZycMBgOWL1+Or7/+OhTBiEZWVpagavcXciux9+/fx9KlS9HV1YWbN29i8eLFYkRTFEK2YUyhUMBoNOKVV15BcnIyDh48GKqgREFItfuLowqw2Wz47W9/i0WLFqGgoAAXL170mOZ0zxzhRlSBC/2ZPXv24ObNm2htbcWiRYtw48YNMYMMCqF4ymQyHDt2DG+99RbGxsYC9rOtrQ3Jycno6OhAV1cXN5Xszow3WsWtWYRw3onZ2NhISqWSioqK6N69ezxXjnpeqLYPtg0QzHsbN26kLVu2+O2+u7ub3nzzTVKpVHTlypWAwwsWjzqcdf1y3rnOJcHkdxj2ADuDyM/PR3f3V0hOTkZKSsrkiNP/ApjM+eR+2DvrtHNmUL9DDqY01dTU4Pz58z533hAR/vKXv+CNN95AZmYmXnnlFXR1dWHFihUBhycavKvanFdQckkw+R3WTd8Mw0Amk2HHjh24e/cukpOT8eqrGVi1apX9TmwP+XgeEBhKlUhEkMvlqKurQ3FxseDFAVevXsXKlSuRnZ2NtLQ09PX14b333gv5PLY3WB/XL5JrUk1eCBI2gXPRYu2xcBV8eno61q9fb7/d6D92wmIRuGVwKv9FaAw5wlq5ciUyMzO5TQB37tyBXq/HnDlzUFpaiuzsbPT19aGsrGzGBO3Afi2IXRPa7w13fiQMA4bJg4ls9sLEAAyJkVIB4OsW+2vXrqGhoQGffvopEpNU+OeiDdBqtVi4cCH27NkTlvFuh9D7+/tx6tQpPPvss/j++++xYMEC/OIXv8BPf/rTgP0KBY7ju5xLyO33k+kLGCz/nQ3LEuxluXZHHjbvB0x0zn45b1gFLiBtzsjFzmaz4ezZs2hqaoLRaITVasWLL76IhIQExMfHIzY2VvSTHkZHR2GxWNDb24u7d+/iySefhFKpxMKFC7FgwQLRwhEDx3/PzMzk7SolmJGXfxQXXe4aBewl/466Duc/3IQnwhtT/qOhXo/lmyb3oufpwZ7fhB3bW7F/fykKCwtRWFgIwK5SjUYjrl69itOnT2NoaAipqalQKBRISUnBvHnzuPtTAftSLNf+79DQEL766ivu2WQy4f79+7hx4wYGBwdx69YtKBQKZGVloaysDK+99hp35WWoS6qY9LZehUTteVN0gjoXB3rsJ2aHVeCOQkyWK5Cofon8HUe5UspaWiBh5kNfd9nD/fz58zF//nzeCQ9tbW0YGhrC7du3cfnyZQwMDHB2t27d4jW45HI573zSOXPmIDExETqdDi+88ALS0tK8xjkQYc905jAYLmHlst95xCUxcQHQ47hiO8SwLMvrW7NkojyA8rbXTfYNbQ4LqtXnUq3BFNDFa+Jj4z9ORsbUcsTzFsQIwZ7GJsrB62Ry6YM77I5sf92e3mS/XzrkkXGl5Wg5Abn2iLm6m7QLe6LaeCMW/AjZHRBNZlJ+3NwyxgzCEhFrbqa87XWef8PcTACotsVCRGEQOBcwyxJLFspnQPq65nAFGyQ254gVEdVu11Nubi7diSAhu2Oo15P+6GXu2SH47fkg5Ok587D1wxmGAcy9OE9AYkICV3fP/Ey50Dl09t4tEQNDvR7QaoEmEhi0iIwz7Aj/h9+/fQDLXst2GlpawDAM9pMe5NJqD4vAOaEyjgRiuQaFRxMn7DnARxL0GmCgZdiUAFzMXQCVh9uZP53SbKiFhJmPiwCWq1wGXVQrUGsw8YRNCFOMOaFOXvre29vn4YYsLahrNbs4ZsMufOL161lsrzVg/6blAIA8dRIvOjOvmeyolpVO3hvu+dFp+V00+3hHqJm809pRK9obbaBag4lzcsdwhJC3LeRR8Q97PW2o1/PuKc/ZUefhMjJW8nhrVzjNXWMZ+hI+OYbruAp62dsHYGo5gtJlSZz6KW9hQOcj5TBACcjSghZWCyICy7IwtRzBgoS5EXqzoTcROs3tsbRXp+EdaZvEroYi88AdsrRA8ptWXt13t88CICFCBBwskxnAQxO4lH8bCRyyO8vsXdXdke259klExtnn1uc5JhbBDV74JNL+n1u18/+dDminJJVuRAAAAABJRU5ErkJggg=="
|
<image>如图,在⊙O中,P为弧BAC的中点,PD⊥CD交⊙O于A,若AC=AD=1,AB的长为()
Choices:
(A) 2.5
(B) 3
(C) 3.5
(D) 4
|
4
| 69,787 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAGIAAABcCAYAAACV1WDTAAAPxUlEQVR4nO1df2zT5Z9/fTa9YayUP5pQpKYMixS7O0s2sp0uVqBDv27LOv1jGjTBO5LJCjk4SrJEjCZiqGd3XxLALM4EEiFiMuj4UiKRztvdjTgFnB7tthzlu+HQbbeZ9DLQklv7uj+6dv3019r10x8DXklhfX4/fT3v9/Pr/TyPQJLIIUhCEISYv9PF1NQU3G43vvvuO/z8889wuVwAgJ9++gler1cUVqFQQKfTAQDWr18PlUqFiooK6PV6yOXyhVdGQgi5JiIT3LhxAw6HA6dPn8b333+Pqqoq0Q9LEmVlZVAoFKJ4ExMTGBoaAgD09fVhdHQULpcLvb292LhxI0wmE+rq6qBWqxPmHfqZBEHIqAElQsESEarslStX8OWXX8LhcMDr9aKurg61tbWor69HcXFx2ulF4u7du3A4HOHP8uXL0djYiFdffRV6vV7iGs1fwIJER0cHVSoVtVotLRYLL1++nHLcQCCwoDx7e3u5Z88eajQaqlQqnjp1akHpLARZJyLdH8XhcFCn07G6upp9fX1ZKtX86OnpYXl5OcvLy+l0OrOeX8FIRF9fH6urq7lmzRo6HA6SyUkM+c1H9EKlI4TOzk6uXLmSRqOR/f39GaWVDHknwuPx0GQyUalU8siRI2nHT/RDZ0pAJGZmZmiz2ahQKNjU1MTR0VHJ0g4hr6rpwoULlMvlfO+99zg9PS15PlKSQZJer5etra2Uy+W8dOmSpGnnTSKsViuXLVvG3t7efBVhwQg1oIVIcCLknAifz8c33niDOp2OHo8n19lLBpfLRY1Gw+bmZs7MzGScXlEuh8q3bt3Cc889B6/Xi76+PqxevTqX2UsKnU6Hq1evYmhoCC+88AKmpqYySi/rRHB2vvjjjz9iw4YN2LJlC86dOweZTCb57DTXWLp0Kbq7u/HMM8+goqIiPHsH5uqdMjKWqRQwOjpKpVLJ9vb2XGSXFxw8eJBqtZqTk5MLip/1JY67d+/i2WefxZYtW3Dw4MHIBrCoJSJe+d9++20MDQ3hm2++QVFResom60S89tpruHPnDs6dO5dWvEInKl75/H4/Nm/eDK1Wi/b29rQTzBoOHDhAnU6X8RyhkBE9V5mcnKRGo0l7aJs1Is6fP0+FQsGRkZFsZVGwGBwcpFwuZ09PT8pxJCEiulV4PJ60C3KvweFwJGyI8Wb8WekjGhsbUVFRgXfeeUfqpBcV9u3bh6mpKRw7dmz+wFK3hN7eXiqVSvp8vrj+Uq//FCJCdfR6vVQoFCmt2kpORHV1NTs6OuL63Q8kRMNms7Gurm7ecJISYbfbWVZWltLay71ISrw6+Xw+qtVq9vT0JK2zZETMzMxw7dq14U2d+wnzNaoTJ06wvLycgUAgYVjJ1pqOHTsGpVKJ2tpaqZJcNIg0D4oGSWzduhV+vx9nzpxJPEnNlG0yKA0qlSqtDf77DU6nk1qtNqH/vBKRyjJDX18f5HI5Kioq5g17v2Lz5s24ffs23G53XH9JVFNXVxcaGxulSOqeRkNDA7q6ugDEqjFJiHA4HGhoaIhxj87sfkdjYyMcDgeAWE2T8cx6aGgIGzduxNjYWCbJ3Bfw+/1YtmwZPB4Pli9fLvLLWCLOnj0bVxoeIBbFxcWora0Nq6dIZExEqH94oIZSg8lkiktERqppYmICa9euxW+//ZaWQfD9CpK4c+cOVqxYgbGxMchksrBfERFI2JoDSM7Rt99+iw0bNjwgIUUIggCZTIaysjJcvXpV5FcECgnnCkUQRCS5z7ahyz33/caNGygrK8tOqe9haLVaXL9+XeRWNN+ELTx9xwD2mCwiP5fLFT6J8wDJEdmgy8rKYiZ2STvrSMX0551HgZoaPKWb8/B4PFi3bl3CDHPZgUfnVciDh7gSkUrErn81gzVGBC4Ggg6zQjQ6OgqVSiUKGylhubTCiMyLSSxA8kVQZHkef/xx/PLLLyL/pEQIAOD+Cy6yBnvXCOiueQpPYy7BO3fu4NFHH5W0wFIgGQmFYKKzdOlS3L59W+Q2r0Tsar+Io3tNAADjU08GHWcb1e+//44lS5ZIWkgp0N3djXXr1mH9+vW4dOlS2L0QSACAkpIS/PHHH2JHP+eWuQOznxDO2HYQAgiAAkCj2Rb26+3tJYAFmxhKhXjL9Fqtlgg2F1ZVVeWhVMnh9Xopl8tFbkUColpJSIcOdOGisAUMEIFAANe6bHiq9MlwsM8//xwAsGPHjmw1nJSQTitPqXcQBQqkWZqFoyiyGgJmK+bugrD7Ao7uCa4hCYKA6zf+ikhNdvPmTZSUlODSpUv47LPPclbgGDD27yNHjkCr1UKv18Nms4W9U6GMokDZMZafnp4WzaqDGZMk/WERsbUYKQgCBYB2V3CPtaUGs6JeRKPZxgCD4r90mZznz5+nXC7P36GTQJJdxGhdG88/D/B4PNRoNCK3iK1SP9NBSUkJn3jiCY6MjLC1tZXV1dWSnJzJCLM/bCwxfrq6bOF+A1H93TzJSY4ffviBer1e5BYhe6mL4cTEBJYs+Ruo1WrcunULH3zwAW7fvg2r1SqB4GaAWbUS3W+0mV9EmekruOkHSQToBo5aULOzLZXkJAEj5i+//vorVq5cKfIviu6QUunQRkZGUFr6JDQaDQYHB/HQQw/hiy++gNVqxZUrV6Qod3oIFzq2c20z18ByfQ1IJ56ebWwCtDjUZYPz6FcYCEdOvPgpNYaGhrBmzRqRWxEZtWUX+SVBucbGfoFarcbf6v4uvGai1Wphs9nw+uuvx0xWsg4BCJJQFLNIafnECfufj0ZFiJR+zrllcZ4RKaXx1uiSL/ol8Lp5cxSlpaVYrSkNX88DAM3NzdBoNLBYLPEjZhWzrT2iPp8ctcBotsGki65IAJ6/DgfDM2STJK0qSoZ4ErEgS7/du3fz0KFDHB8fp1wuF3XS4+PjVCgUObT48zNyoBG+GoJuGgHaulyMHoiERoKpdNhSY3p6mjKZLObwTtpEBAIBmkwm2u12kmRVVRUvXLggCmO326lQKPI76x7oIoTgEDwaoRHUGXfux6+nTp3iSy+9FOOe8lCJERdHjYyMYMWKFQCCe7B2u10U1mQyoaGhAW+++WZmMpwS4s9+uW4NjARueAaifAax2xRUWY1P537tyW63w2QyxXqkw2ZI7OVyOcfGxkgGjympVKqYsNPT09RoNGxvb8+b5ffHOzYTNTvmHNz2lOcQ2cDMzAzlcjnHx8dj/NK2ffV6vSwpKRG5abXauHavfX19lMlkeZ11z60KBD/xVFWu4HQ6Ey5Cpm37Ojw8jNLSUpFbfX09zp49GxO3srISe/fuRVNTE/x+f7Qkzpd1ikiyMCcAR78OLloGAgGQfpjyoI5CsNvtqKurAyCByeXExARWrVolcmtoaAibEkbj3XffxcMPP4z3338/7EZJN2iKEJeMiHoKgjA7RyjK3Rg1DhwOR7h/iK5/SkREsjcyMhJzG2RlZSWmpqbCs+rI8MXFxThx4gQOHz4c3qSRfoMmARkRCOeYp63s7u5uPPLII4mNLdLVc62trbRarTHuHR0dNBgMCeN1dHRw1apV99Xh90g3vV7Pzs7OhHHTVk3Dw8MxqgkA3nrrLYyPj+P8+fNx423fvh16vR67du2K1xiSfi90MGJoHw1BEHDy5EkUFxfjlVdeSVy3dFmvqqpKeOvYfIcZJycnqVQqefr06XSzXRTI6WFGpVKZ9FqHZMd7yeA1bAqFIisXFBYisnK81+fzsbi4OOkG0HwH3kmyubmZRqMxof9iP/qb9QPvQ0NDVKvV84YzmUw8cOBAQn+fz0etVstDhw6lk/2ig8Vi4bZt21IKmxYRTqcz7shoIZei9Pf3UyaT0eVypVOERYNkl6LEQ1pEHD9+PGWGU7kmyGq1Uq/Xi9TYYldL5MKuCYoYvkZOiIJ/M/xPEMPDw0mv9o/Eyy+/jN27d6O2tjbhjp3FYoFMJhPNugvFGm+hmJqaQn19PT788EMYDIbUI4p5ibLkCIjdtm3bxuPHj6fVOpqamhKOGgKBAEdHRymTye6Ju51mZmZoMBjY3NycdlwxEdFaIeq7wWCg0/l1Whn4fD6Wl5dz//79CcOcPHmSKpWKXq83rbQLDWazmQaDYUFmRSIiAlH/R39Rq5/g4KCbpH9Wl6dmC5XKdaNNTU1sampKKb1CxEcffRS+bnQh/ZyICHtby9zavdHMAN1saQluovj/b4bFxcVJ5weJEAgE2N/fT6VSydbW1rhhJicnRY9nLJZOe2ZmhmazmatWreLg4OCC0wFJ+geCO1ebd0bsXM3uZrXY7CTJkZERKpXKjMzfRkdHWV5ezrq6uriLf06nkzKZbNHMur1eLw0GA6urqzk1NZVRWvAHXDSGtg+jfmRbi5G2rv8iSfb+x3/y7yujd5fSM9Mkg33G1q1bE17SbrFYWF1dnXa6uUb0Je2ZSjDsbS2EYGTIoMHPucud7G0t4a3FL784xaamJtpsNv7bv/dkbKFhtVqpUChiFhB9Ph/1en3cpfZCQWi97MiRI5KpUBgj1E8yWK1W7tu3LzwykMlklMlkNBgMNJvNtNls7OlJjyDxQx7/y5CE/fBjP+VyecI1mlQf7cjmQx5Sv3sBhI2w4iNZZSYnJ9nT00ObzUaz2cznn3+ejz32WFoEXb9+Pfy0zeHDh8PuH7fZqNPp5h0c3DNP20CIR0Ry3Z/ooaXQ92iCkknQ/0wFCQo99qTVasNWgkajkWazOaWyLNR/PnR2dlKtVmf/sadNELijzR7r47aLCJJC9OcjqGWnmf+w/R9ZWlrKyspKnjt3jgqFgteuXUu3Xhkj8vmz7u7uGH+p1R5Cc4fIH/2a/WOxYVaWEY+gkpISAmBJSQnXr19/fzwIuJDTNJkg+Q81pxYnJyf46aefctOmTdRqtVQqldy+fTvtdnvaywiJtjE7Ozu5bds2KhQK6nQ67t+/P6sqKBFmrwkKni3ALBMCMrc9Sjd+OHyAwSOWoYJEIPRobGdnJy5fvpzTR2OzjSARcSodx0nsL/Ep/h0vCmj/Wuz2L10u7GsQ2wGF8s3VM8rR9ZS63pEJ5xWRCqOlZq6vcv2lLWyruljWnTJBTp8/i4dQ2yIGMHRxE/7U8DQAQPfk3NNoi32zKBXknYgQBs5+haJdf8K6WWp2/lNjzLGrxWV2libyLZKR61pI0Xz+XtRUeZeIkNpxfvUJzriDR2ztbS1oLCsSXVsHBDtKIquHP/OGvBMBABjowlFhR/goVcM/m2EEcPGC+MyFIDCfVvVZRUEQ0XXhIlpe3BL+Lgz8N5wAVmuijsCGinsvdhb51o1kcNhqn11hCR3LBTbTnXA70D8b9t5BzoiINxcIL60Ic520IAjEltytcxUKsv5E5gOkhoLoIx7gAREFg/8Hbae+CycpyiUAAAAASUVORK5CYII="
|
<image>如图,△ABC中,∠C=70°,⊙O切CA、CB分别于点A和点B,则弦AB所对的圆周角的度数为()
Choices:
(A) 110°
(B) 55°
(C) 55°或110°
(D) 55或125°
|
55或125°
| 69,788 | null |
55或125°
|
"iVBORw0KGgoAAAANSUhEUgAAAPcAAABiCAYAAACMJ0WjAAAkUElEQVR4nO2df1xUVf7/X3fQKFejzzouY01Nymggtk0kxSfpSwrq2NpHTBJrqeixrqj0wza33MfDB26PtUdm6OouGRv1CY1PYQpYuYqJfrBgRdwNU3AsQPlG+9jxx6PQ8btizr2v7x/DXObHnV8wIMp9Ph48mLn33HPO3Hte55x7zvuct0CSUOkzJIiAJECj0SicIzQgAMc554MQ+i97YYO4OvM9kHBKsenTtbhz9m+BabngZwUAAJESNBBAEoJGg6OfvIG7Zr+ERfnleOvFOY7jgvsTEFRx9y2SJEEQCEGI8BUCTnE3fpKP5rG/wZyJmqDVIkmSYsURCKXC0BtIQBC6sx3u+AcbjZ/k487ZO9HEKsRB41YURDRhumYizBWN+O3seEAioPG+16GXCpWQ0Gg0foQNOB+BxCb8ZvZvuw8HqYueCBtA2IS3aIYAQSNAoxEgCAI0goC0Z9d2xS+FJY1rm+57JEndn1tagGnThgBwFgVJbtmfm34n9qXlOIQNKAobUMV9RZFAuS/+x2cKgGnTcMfE7u5Zv+VDkuQ/J8HmoXA38caiVORvb4Qk2WFnI4SCZVi8bivU4hUM3ffItaLe03oS47AHXzdq5HCCIKBibQ4E42Isnj5DDkuKAWJWuTIIQMUfFwPTzRD3iD3qzrqKsidoNBqvHkDQeSBwshmYMTsOghCBCMRj+qKpaD75ba/zNRjwFCbh6HaPGZOKMcZUnGht6j55rBx7aMbt+Box48bLFbCvnqEq7iuIBgLYVIE94nS8OE7EvunjEe+3C+8jnh52zcMRD4+VYaNgxESXotTWug/jDWPDlq9rGacwZaECaNr+V8SY0xEzbhxavvkagEPwU5fuxfpl47DrLWLm7DhAECBJks9elnr3rzDPvrUXG5fNAQCkjjcC6P9ueW/Y/lkVlswwgyRIIn9JGjbumYLcF2df6axdNTied3cvZ0/rUMegKrp7UH98diPe/KwAX3+8C8IzD2FC1yCbRgPHSCbQPd3SxZC+z/rgxjHdJQ+JAID8ffu6XLy5cSPefPMtABLSnl0LILTBLkmScPz4cZw5cwb79u3DuXPncPjwYQCAzWbDl19+6RY+ISEBI0aMAAAkJibipptuQnJyMrRaLeLjHQM0obwaVO0qxFt7ClG4THD8vmk5IAu74hEDDCaqAM7n7bhPEptAGkAAxrFj8eaeNlT8cTGEtGcQBwH5u3dj5owNLldrfM5OqOLuZzRwdKU0xz/BZ5gGSm8CcEx9bPxmjBzO30zYqVOnUFVVhcrKSlRVVWHIkCGIiYlBYmIibr31VsyZ4+gJDBs2DImJifJ1kiTh0KFDuHjxIgDg4MGDsFqtWLlyJVpbWwEAaWlpMJvNmDp1KkaNGqWQl+6pOxwrx0ahW8xy3klQADSqsEOm6ZOdiDG/CAHAneON2Jv+CMbll+Ot2fEQ0YRdbxF/3hjneFcXIuTnolgZU6X/aaogpi90O1SxdhEXr/24+4Dk+BNFkSTZ0dHBoqIiJicnc9SoUczIyOBf/vIXtrS0+EzGeW2wWCwWFhQUMD09nVFRUUxLS+N7m/6bNpuNkiRRco2bEo9sX8PUJa/T9YTY9UWSJEqSRBX/iKIo374l00A46lKWN0lkUxlTn1lDkixft8hxTgCBKWyiy7P1cZtVcfcDkmSXP7+xOLX7AR4VSYrMne58qBqmPpPvEIjkEMrRo0eZmZnJyMhIZmZmsqKiIoz5khQrAKcoS0tLOffRRxgZGclfPvG4V0WyZBq47aizZDniUeUcGr7ulyTZFSrH7mfVXSn4rsBVcfcDErsE7vGsPMUliqL8QK1WK3NycqjVarl+/Xp2dHS4hfP87NlSun52xiuKIu12e8gt+unTp5mfn8+RI0dy6dKltB74b7mCAsCyI92VV1e95KNwqnjivEfy8wtwy7olLcmNRnc5cn+uqvlpn+PyjuoBRQlChAYrV66Uj3V0dKCxsREHDtTinnsSkZycjOuuu879uhDnwgVBCGkE3lf4ixcv4vPPP8eRxq/wwOT/g3vvvdfPdJcGqoVaEGhEQOoem6AACL1Q5CuvvCJ/VgfU+hiHEIGu8Q+30XMKEoQu4Z86dQotLd9g797/RUxMDBYtWiKPanuKrSdGLr0zN3VUUDfccAPMZjOSkpLw0UcfYe/evcjImIc77hjnFlYQIkCqwg4KyXOxh0ulqKHDblyhcRDYVREIET4t1FRx9zGCEAGREiIiNCAJjYvIBCECZ86cQW1tLT7//HMkJiZizZo1ePXVP+Cxxx7DpEmT+mXxRTCLT5yVy9mzZ7F582b5mvb2/4vm5q+xefNmxMfHgwAkUUREhDpSHhq+e3hAzxYIqUYs/UCE4G6Q4GTz5s2IiYnBgQMHsHHjRpw4cQKPPPII3nzzTUybNg1ffdUQdBpO8fXE5DOYQnPsWCMWLPwV4uIn4ETbSdTW1kL705F499138eyzzyI1NRW7d++GACAiwjHdJ3laVaj4QdPVSjvwbI2DErbn7Q7TuICKAkoDXyTZ1tbG1NRUjh49mqNGjWJjYyPNZjNXr14thykuLmZUVBQtFotXvL4GzvqC0tJSJicn02g0srCwkOfPn5fPZWZmsqCggCRZX19PnU7HgoKCgHkKdUBPpWeo4u4DnIVbqRCvXr2aI0eOZEJCAhMSEmi1Wrl69WqmpaV5hS0oKKBOp1MUuGs6oebL3zlJknj69GmuWrWKer2es2bN4s6dOxWvKS0t5YwZM+TvbW1tjI+PZ25uLu12u+I1Kv2HKu5+oqGhgQkJCbz//vuZkJDAjIwMdnZ2sq6ujqNHj2Z7e7vidRs2bKBer2dbW5vXud60gEpCb2hoYHZ2NrVaLZcuXaqYpitWq5XDhw+XhSyKIs+fP0+z2Uyz2ew2fafS/6ji7mM6Ozu5fPlyarVarlq1ikajkcuXLydJ2mw2Go1GVlZW+o0jLy+Pt912G0+ePNnr/ChVCCUlJUxKSqLRaGRRUZFskaaE5/HY2FjW1dW5Hbfb7czNzWV8fLxfCzqVvkUVdx9SXV3N2NhYZmRk0GKxUK/Xs6ioSD6fmZkpCz0QeXl5NBqNtFqtIbXYvkRqtVq5atUqjh49mhkZGayqqgoqLs+0c3NzmZeXpxg+Pz+fRqORNpvNb15U+gZV3H1AR0cHc3JyqNPpuGPHDtrtdiYnJ8tCFkWRhYWFNJlM7Ozs9BuXqyBeeOEFxsbG0mq19jhvhw4dYlZWFnU6HX/zm9/wxIkTPsOKoujXPJUkKysrmZSU5DNMTk4OzWazz/hV+g5V3GFEkiSWl5dTp9MxNzdXfuf0LOAtLS0cPXq0W5fVV0H3bO2WLl3KiRMnhvQ+a7fbWVJSwoSEBMbHx7OoqChgpRIsNpuN119/Pc+fP+9l8upM21mxqS13/6KKO0xYrVamp6czLi6O1dXV8vGioiLGxMTIYuzs7KTJZGJpaaliPMG0ZtnZ2TSZTAEFbrVauWLFCup0OmZmZrrlq6coCfS+++7zOW4giiKtViv1ej23bdvW6/RVgmfQi9uXmFwXZAS6rqioiFqtlitWrGBnZ6d8TU1NDbVardtUVk5ODrOyskJKS+l4VlYWk5OT5fdZV2pqapiVlUWtVsvly5f7HIkPF3l5eczNzfUbpr6+niNHjmRDQ0Of5kWlm0Ev7t7Q0tLClJQUJiUleRXa9vZ26nQ6eYmmKIrcsWMHY2JiZEH6WtEVDD/++CMzMjJkgdvtdhYXF9NkMtFkMrG4uDhsXe9A1NXVMTY21m+vQxRFFhcX02Aw8PTp0/2Sr8GOKm4f+BOb3W7n66+/Tq1Wy/z8fK/zoigyOTmZK1askI+1t7fzlltu8dlyhTq4JEkS7XY7Z8yYwTFjxnDkyJHMyspibW1tUL8hnNjtdg4fPpxWqzVgmrm5uT4H2FTCiyruAHgW1vr6eppMJs6cOdOnkUdFRQWNRqNs3OEcVFq/fn3Y8lVTU8PMzEzqdDqOHTuWKSkpilZhSqaqfSF6s9nscxzBlc7OTup0urC8/6v4RxU3lW3AXTdOIMnz58/LxijFxcV+4zOZTCwvL5e/5+XluZlpuqYXitA6Ozv59ttvMz4+ngkJCSwuLqbdbmdnZydTUlKYkZHBy5cvBx1fOHD+loKCAmZmZgZ1TXFxMVNSUryOq6Pp4UUVdxBUV1fTYDBw3rx5PH36tN8utPO910lNTQ1vv/32gNf5o729ncuWLaNOp2NWVhbr6+u9wthsNiYnJzMjI6NHafQWi8VCnU7n87ynBZvRaHSrAFXCjypuP3R0dDA7O5t6vT6giSjZXWidXc7Tp09Tr9ezpqYm4LVKrVZVVRUzMjKo0+mYl5cX0HjFZrMxISGB2dnZfuPtK5QWufiq0MrLy3nXXXf1Q64GL6q4fbB161Z5AYXSdJMShYWFcndTFEXOmjUraPNSJzabjUVFRYyNjWVSUhJLSkrk+IKho6ODJpOJv/rVr+Rjntf2lWWYcwlosKP/JpOJH374YZ/kRWUQi9tXAbdarZw5c6a8ICJYLl68SJ1OJ3eZCwsLOXny5KCXPra1tXHp0qXUarV8+umnFbvewdLR0cHY2FguXbq0x3H0BM8loIHYs2eP28CjK752ZlUJnkEpbl+FpqCggFFRUczLywt6l1BnC7V+/Xqmp6eTJA8fPky9Xh+U8UhlZSVnz57Nm2++matWrQrbHPCpU6cYGxsbcs+hN7guAQ1WmCkpKW6LaVTCx6AUtycWi4XJyclMSkryuTGCP0RRpMFgYH19vbyM019302azsbCwkEajkcnJyXz//fcVw/X2fbm9vZ0Gg8Hnqq1wI0kS4+LiQurx7Nmzx20A0hmPSu8ZNOJWaknsdjvz8vKo1Wrl7YJ6Qk1NjVxAc3JymJOT4xVGkiS2tLQwNzeXOp2O2dnZbGxsDGvXU0kUbW1tNBgMbls49RWSJPldAuoLg8HAxsbGPsrV4GXQiruuro7x8fE0m829WkJJOqyuVq9ezdLSUsVlnDt27OCsWbOo1+uZn5/fb+aXTrG3tLRQp9Nx3bp1fZ7mzp07FZeA+mP58uVu1nwq4WHQiNuJzWaTB67CsUrJbrdTp9OxtraWWq1WboE6Ojr4pz/9iUajkSkpKVd8RZRzHrqv329tNhsjIyODnmEgHXkzGAx9l6lByqAS965du6jX6/nUU0+5tZ49tRgjHT2A++67j0lJSSwsLGRLS4vsBmjBggU8duyYW/j+HgF2/T0NDQ288cYbA1rY9QTX35WUlMTKysqQfmtsbGyPxjtUfHPN71tOEmfOnMETTzyBnJwcFBcXo7i4WHZPqxQ+FKqrqwEAQ4YMwdatW5Gamopx48ahpaUFRUVFiIuLc9tL3JeTAWeYUPcdDxTeNT2TyYT9+/fj+eefR1lZWUjpBMJ1X+3p06fj008/DWkT/QceeAD79+8Pa54GPVe6dulrSkpK5HXNoWz8F0yYjo4OGgwGAuCDDz7IiooKN1e3oodXN1EUvY71B5528l988QWjoqJYVlbWJ+k5l4CGwpYtW5iZmanObYeRa1bcbW1tNJvNNJlMPHToEMnedYldr7VYLFywYAFHjhzJ6667zmuFk9P7YkAhX8EZn5qaGkZFRQVlVhsqrktAXfFXgVqtVup0OlXcYeSa7JavXbsWkyZNwgMPPIC///3vmDRpEoDurmOoXV+S0Gg0KCsrQ1paGsxmM0wmE7Zt24YJEyYgJSXFzZXLMzOGQBAERAgaCILQ9TcVR+HhsK3v3YABUP69kydPxpYtW5CZmYndu3f3OG4qvMZEREQgOTlZfmVx4s/vWXR0NCIjI/HNN9/0OC8qHlzp2qW3eA4YJSUlMSUlxWtwJhhvG0o4fVM7vW/s2LFDPldaWsrMzEcVr1syDSw/2t0KvbE4lcAUNkpdfpQHiJ1GZWUlo6Ki+MUXX4S11QxlCSjp6BmZzWbu3r2bpGrIEg6uenGTjnXOTmOUwsJCkt6FI9TC0tjYyAULFlCr1TI3N9drc31JkpiXl+dmsOHsjtvZyCkzct3CkmTudDD1ma6dWwZA2XXab2/bto1RUVFBrV4LFJ+TQEtAlSqSpUuXhnVDi8HOgO+WB+pC19bW4q677sKRI0fQ2NiInJwcAN5dQNfv9DMivmXLFjzwwANIT0/HpEmTcPLkSRQUFCAmJsYrvm+//RY///nPXY453NYe+3gnBOPtrr8CAHB7TCr2Nbc6jvST/2qSbvfQ9bcLggCNRoO5c+fi3XffxS9+8QscPny4x2m53uPY2FgAgMVi8Qrn6S/cmb8JEyagra2tx+mruDPgxe1rOuXcuXN45plnkJGRgddeew0VFRU+p7dcIQlBENwK/JkzZ/Dqq6/i1ltvRUlJCVasWIHm5mbk5ORg+PDhABwF0LOiOX78eLfoXeqL3bt34xdpM7sPdIk+Ztw4sCuOUH0t9xSngF2/KzF37lxs2LABDz74YK8E7kpKSgr27dvndVyj0bjlw5m/CRMm4Pjx42FJW+UqELcSf/3rXxEbG4tLly7BYrFgzpw5Xq2xrxbfWag0Gg0OHz6Mp59+GnFxcTh79ixqamrw6aefYsaMGV7XaTQaL0HabDb8x39EOXTdVVZFNGHXW4Q5PU7Wu7MYt7a2IPWOcY4v/eS6OpTBw6eeegr5+fl46KGHeiwy1/TS09OxY8eOoK/9yU9+ggsXLoRsa6Digyv5ThAqp0+fZkZGBo1GI/fv3++235kSvo67Or575513eOHCBflcoHdz1/O33HILOzo65HdtSZLIprLu92pXmsoIgPnbw7tYxB9i2ULCUY0QyGEZPdNVzsf69evdPKL4cisUCE8voIp59PBbHh8fH3I6KsoMeHE7H/57770nG6P0ZD9uJcd3vRVZVFSUW14kSWL5ukVc/Ib33mBLpoGY5r1aLKy41Ev2cldh+xO4MqtXr6bBYPC5w2uw9y7Qpheu8VitVtXGPIwMeHG3tbUxJSWFCQkJ8p7fodiC19fXy47vli1bFtDntCee/q9c03bt+DhCHeNUCKxodMlTV4vd18KWPD5sW+wQtCAIbgJfWCYGPS2Yl5dHg8HA9vZ2Lyu3YMnNzeXKlSu94lbqDXR0dDAqKirkNFSUGdDiXr16NaOiokJei+zp+O7tt98OqrUPtQADkMMf/fgNhZYSclfcibMLH37chbJ1kXJeFpZ1eTlxCevvNy9fvpxxcXE9Xhar5AXU133+/vvvVXGHETdxX/yxU/7rL5S6dw0NDTSZTExJSQnJ4byr47t58+b1+cb3w4YN46VLl3yeD2R+GjY7c4VoHO/bGg9xL2S55L877Wv+OTY2NiTPok6cS0DPnTsXML1//etfvPnmm0NOQ0UZr5a7P4XtSWdnJ19++WVGRUUFvSxRkiTW1ta6Ob779ttv/YbvDa6FUa/X+y3wjlbaXSz9abvic0CtB5lYsGBBUJ5FlXAuAQ2EOqAWXgbMVNj+/fsxceJEtLa2orm5GU899ZRXGLpMkYiiiE2bNiEhIQG5ublIS0vDd999h9deew233norAOVpIH/2zcHgOh02fPhwdHR0dH1TSisCEkS3WS9n6qTYt1M+BDSP/AV0VOAQy4i5QgQ0ggCNRoCwuHvJp698uN6/oqIimEwmTJ06FRcuXAgpK84loJ5xevLDDz9gxIgRIcWt4gdPtbu23J7ddKVuu69uvL8uvuu5jo4OLliwgDqdzqt2v/hjJ/9f57/d4mhvb+dvl7/En42O5uNP/NLNZNI1n/++dNHr97ii1P1UOuavpe/27ukyJSdPi9l9XyvZ+64FV4j4oxwQ+DXL6HjXFbmNiwBiUei7w7h6FiWD6wl5LgH1dU1NTU1IWyOr+Mdvy3390Ei//zsvX8L1QyNx/dBIdF6+JF/netzfub9+sgOx8XGIjIxEc3Ozm/GIM9ywyBtAErW1tZg/fz7u/c/7EDnkOvyj/u/4n80luOfeSXJ41+sEQZA/u6bvRMlCTOmYkpmkk5iYGLS2tsJpC6TRaGRrNEGI8N1LECL6bkFYV8Tsao23LRYwr2UNjkiFeAQaCAKhwVy8WbYQKNyDcoUehz9KS0uh0+kwa9YsXLp0Kaie0KRJk/Ddd9/h1KlTjiz6uMZiscBoNIaUHxXfhNQtd4rF81jn5UshdTFPnTqFWbNmYcWKFSgpKUFBQYFs5ulEkiRcunQJ77zzDhITJuG5557DQw89hObmZvzhD3+AXq93C+9Z8Xh+7gtiYmJw5MiRPk2jpwiCAKk8B48WTsGa9ctwp+B81I7/zuclBPnYnBVbREQEPvjgA9xwww2YM2cOLl3yrjg9iYiIwOTJk72WgHrS1NSE8ePHB5chlYAEFLevls/1/PVDI3HDddcHleC7776LiRMn4p577sHhw4cxefJkt/OSJOG7777DihUrcPvtt2P//v1477338I9//ANPPvkkIiIiQl6PHS48W/bx48cPWFtoiUeRv/FtYFEufjvRu6VsamsJKT7X3z506FBs374dJDF//nxcvnw54PUPP/wwKioq/IZxs9VX6TXyE/Mn4GAIdP3x48cxZcoUlJSUoLq6Gq+88gqGDh3qFmbv3r3IzMxEYmIihg0bhsOHD+P999/Hnaafu4Xrr0UXgRg/fjyam5uvdDYAdLfEcg9K+AYn9wILp83xCivxKCp3/S+waBrmCP7vpVe8XQwdOhRbt27F2bNn8fjjj0MUfQ8QkkRqamrAPdIsFosq7nDifPkONL/t69y/L110O+ccLHHGZ/v3Ba5atYparVZeq+s6oObm+G7yf8qO7/zlyd/AnufgXzC/rafY7XbeeOONIW3j21/Yj6xmGqZyzdEup3xepqlTuOaov8Gw4DaUsNlsvP/++/nLX/4yYNjo6GifO5w6t1lSCR9BW6gFIw5P7451dXU0mUw0m81efrNcHd9lZ2fz4MGDQcV/JfCXrtls7pN9yHqCqwmqc0TcaZHmxB7CSLlE79+uNKPg9CyanZ3t1+bc6QVUidLSUs6bNy9gnlSCJyhxh9rq2Ww2Llu2jFqt1q0lJh3miOnp6dTr9Xz11Vd9et/wJ6iBtIne6tWr+9XZXvCIDhPU1DU8IjlaYenI65wqBBC2r9m7ABVrR0cH4+Pj/XoWLS0tpdlsVowvJydH3kVHJTz4FXdPzFGrqqpoMBj4+OOPy8K12Wx86623ZMd3noLvCQNF4HV1dW620wMlXyQp8jBfT3U1P/XfFe9tz8jpWfSFF15QjNffElDVKUH4QaAHGmxhPX36NJ988kkaDAa5m+p0fBcdHc3s7GwePXq01xkeaNjtdkZHR/s1eR1MWK1Wjhs3zqczQOcSUM+tog0Gg1dZUzdJ7B2a3ppjAo59x+Li4vCzn/0MjY2NsNvtmDVrFh588EGMGTMGR48exXvvvYeJEyfK11yp6axwExERgYyMDHzwwQdXOisDgujoaOzZswebNm3C73//e6/zqamp2Llzp9uMx6ZNm/DEE094zYKEo2wOanpTM7S3t3PmzJmMj49nVVUVCwoKBozju/7E1YVvb/yOXa0o/c4TJ05Qr9d77WaqtAT0tttuc3PhO5Beba5meizuDRs2cNSoUXzuuef461//WnZ85++96Vou7AaDgfX19Vc6G1cc1xkTi8XC6OhotxFyTy+gVVVVcsWoEl4Uxe1vbzKLxcKkpCTGxcUxOTmZBoOB+fn5iut1r2Uxe7J+/Xqmp6e7HRuMLZDnM7dYLF5LeJOSkrhr1y6SZEpKSp+7FR6seInb12opu93O5cuXc9iwYfzpT3/KtLQ0lpd77xU2GAs06ViLrtPp1NZbgYaGBkZFRcmzJHl5eczNzWVVVRVjYmL8bqCo0nOC6pZ/9NFHjIqK4tChQ/nYY4+xpaVFFrGzpg6mlb7Whf/nP/+ZKSkp8vfB1HMJRH19PaOiorht2zZ5CajJZArLtKiKMn5b7n/+85/U6/UEwAULFvD7778PKlLXOK51Qbtit9tpNBr7fHunq5WamhreeOONLC8vZ2RkpLrrSh8jkCIBDSRJ6p6KkIhTZ07DZDLh56Y7cffd9+D66yJlb5eSJDm255KIq9SvQZ9x5MgR1NXVYeHChQAc0zkc7JvsawRHWdEQ37a148MPP4Tdbsdzzz2HdevWuQUlRQhCRNc9k2QXTSqho3HbaACAxB8BjYDo6Gjs2rULu3d9hsih18kFVJ6flgRAGKoY6WDCU7hO32HOpaCu5wfjvK1AgFLX75YE3GYYg7vvvhuiKGLhwoVeq84EebMLQRV2LxHYdVcd9omExsceIZLs4wpQW2v/VFRU4KWXXsLXX3/tZpjh1jsapFy6dAm3334b1q8vQGbmo3DsPed5TxzHnK24Ss+Q76oA4NnpGrnGdDqNf+PjJkdATfdOHoO8k6mIaws9Z84c6HQ6rFy50u34YBc2ALz44ou4++57uoQNuAtb8jim3q9e4fkSvjitexP9I9vXEADLGgef1VWoeG60397eTp1Opzhd6Aw/2CguLqbBYOCpM90rASvWLnJ4RgGItIW0s5GLF79Bsi8dOAwONJJLOyyiCcer0jBzdhwA4M5xMYDgvs9W93vjtWEbHi483dLq9Xps27YNCxcuVNyKSaPRDKqBtr/XH8KyZcuwfft2/Ew7CjhWDkGIQMFJI0RKkEhwwwwMESYCRsc+aoNxjCKsuCr9q4rXuzxUOlqVJdPAtNx8eY1v2DxkXEMEaoELCwtpNBr5ww8/9E+GBiBWq5W33DKapaWlFMXLtLORUwV4eUMVJfKNxaku7pcGX+8mnMAuXZa34Slbm+Pmfqb8qLuhiutntcsUPDk5OZw5c+aVzsYVwW63c/LkyXz5dy/JxxzlbAqb6O63zOkl1c2RokqPkVtuURSZOx0s71pyXb7O8S70caMq4t5it9uZnJwccMeWq/U93N84TE5Ojrz7Ckna2cg0gIvWlPm9Vh3b6T3ycCQtn+JN5mDORIchwX+98AzSAFTu2uHSh+/nd4ZrhIiICJSXl6OkpATvvPOOfJwetgMDdTQ90Np7QRC8wkiShHXr1mHv3r346KOP5GMRx5pRBcA4/g7ZUMUVyvPdamHrLUMAABLxyWeVWDRjBgAJpICIpuOoAmAe1+0BgiAEuFilEeg71xnXFqNGjcKePXvw8MMPo7W1Fa+99po8YOQpapIDajDJOfjnL0+uv0EURTz//POorq5GZeVOjBgxQrZulA1agK5jEfJnZxjn9wF0C65KuszTBOyuLMQMc7rjkOY4pt2ZAeBBmP8rVg7seLguBVG9+SFxxx134G9/+xtqamowb948dHZ2KoYbSMJ2EmyeLly4gFmzZqG1tRW1tbUYO3asW8UgTTQiDUBra6tXpaY5vh1rP26CanYaJhxz2ZruucauP2HGYsV+vPouFBpK79GdnZ3Mzs5mQkJCj53aDzREUeSJEyc4YcIELlmyRF7GqVReKtYuIQCXUXHyq4/XENNyvOJU6TkglXezDWYppyrz3vH6669Tr9e7bTHkykAt3Epl4uDBg9TpdF77kiuWEanbQMr5NzX39cDXqYQESMf8oi+U57ZFtQUPE9u2baNOp7uq95wrLi6WXTB7lQvPYhKg2KjlKnwIlEii+53Ic4zM4SRe6Bq91Dis1TQD753waubQoUPIzs7GzTffjFdffRX33nvvlc5SUNTU1ODll19GZ2cnNm/ejPj4eIVQ3QtDHCuUKC+DFSD4HbfhABtYvOq4wpWLCru730VFRdTpdMzKyvJyvxRsPP3R8rW2tjIjI4N6vZ4ffvhhn6en0jMG5sTqIMM5arxgwQI0Nzdj7NixMJlM+N3vfodz587J4RjAFt3Tvj3cnDlzBi+88AKSkpIwadIktLS0YP78+X2WnkrvUMU9wBg+fDhWrlyJpqYmnD17FkajERs2bMC5c+cUjUX6gzNnzmDt2rWYMGECLl++jKamJrz88suIjIzs97yoBI8q7gGIRqNBdHQ0ioqKUF1djQMHDiA6Ohrz58/Hxx9/HFQcvioBOlxIBbUibcuWLXj00Ueh1+vx1Vdf4cCBAygoKMCoUaN8xq1yZWCXEZAr8k4sKgMLegwmnTt3Dlu3bsWmTZtgsVgwZcoUpKWlIS0tDWPGjJE313DF384vnvEDjq2hqqqqUFVVherqaiQmJiIrKwtz587F8OHDw/8jVfoUVdwDBCWxKSFJEs6cOYNdu3Zh7969qKqqwpAhQxATE4PExETodDokJiaCJIYNG4Z77rnHTeAHDx6ULePq6upgtVrR0NCA5uZmaDQaucKYPn263EK7VhLB5lPlyqOK+yrAVVCe4pIkCRaLBWfPnsW+fftw/vx5NDQ0AABsNhu+/PJLt7gSEhIwYsQIAEBiYiJuuukmJCcnQ6vV+pjKUrlaUcWtonKNog6oqahco6jiVlG5Rvn/oDBsol5o9PsAAAAASUVORK5CYII="
|
<image>如图,在△ABC中,AC=3,BC=4√{2},∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()
Choices:
(A) 1
(B) 2
(C) √{2}
(D) 4√{2}-3
|
√{2}
| 69,789 | null |
√{2}
|
"iVBORw0KGgoAAAANSUhEUgAAALsAAACNCAYAAADvswvaAAAPgUlEQVR4nO2dT2zcVB7Hv29SiahUQohWVOJQIkBtxsOqSJxAqA2cgsSB7XhSkLZQxA1ttc2tB+KZrNj21AQuHDhuq208SZtEghYunZySnqCdP+kFteppVkJMUsSqEsRvDzN23jj2eP7ZfrZ/H6mdscf2vNjf+c33/d6bnxnnnIMgBoUDYLZVnIMxBl7TUSgUUNBrAI7iVH4RxXQBOSygqKYCa2Jw70TEEm497o2ZjDHwqoZXlSkscg1lboDz+9AwhVSuCiUdbFtJ7MRAmMGcsdYzS/MGeFWDkpkFz5dR0XPItLZWNA1ZJY20wuyH85V9gb4bEU9EC2PpN4ViYRabygzuzbSHcIY00scUBBzYwcizE35gQMfp1BSqWhlVLRN2cwCQjSF8glWrKHMgnW7Gb845mmHVaC6H0CYSO+EbDONWJ5Qxhqatb0mOc5jCDwoSOzEEjD3PuaJAwSYWlmrNZWGLmr6Aqij8gCCxE0Mgted5CjmoKnBfyyFfrIIB4KhgoaBBV1Qo9qR8wK0kiJ6x8hsOJlzVy1jIK9BzGTDGkFIK2MxqyCupEKRO2RhiCHAAzGEEtYkBWWKqHK0gIg2z/nNiV2Jnz57Fiy++iFKpNLT37iVWU2QnBsItoDfXmx3XFH766Se89tpr1nIQmZj33nsPq6ur1jKNoBIDwbA74cuCoy3NuLW1hUKhgGeffRZPnvwPU1Mf4MiRI7626+7du9i/f3/bOrIxxEBwoF3ogBXqOQxsbGxgYmICZ86cQSqVwmef/d0S+jBMxZ73NtvlcGyK7MRAdMqqzM99iZWVFVy/voxHDx/g0KFDePrppwGkwNhw3LPbByaV2hvHKbITQ6fRaOD999/Ho0ePcOvWLYyNHcG/r17Byy+/3NrCGEpU74TT8UnsxEDYRbWxsYG3334bZ86cwdzcHEZHR8E5x/LyMo4dO+ZqO4KAbAwxEKJ45+bmWrblOsbGxqz1a2trloUJM/lHYic82ZNtsbG1tWXl0G/duoXR0dG2169cES1MeJCNITzpJHQx22LaFjumhQkbiuyEJ26R3c22mPsA7RYmbEjshCd2oTcaDXzyySeutkXcR7QwjLFQPTvZGKInnLItnVheXsbRo0cBDGcQaRAoshMdES1MJ9viRKlUwqFDh3DgwAHH4wUNiZ3oCGOsK9vixJUrV/DSSy9Zy2EKHSAbQ3hw584dvPPOO13bFpGVlRWMj4/72LreoMhO7MGMwKZtWVpa6sq2iJRKJRw8eLAtCxNmVAdI7IQDW1tbfdkWEVkGkkTIxhBtrK+v95RtcUOWgSQRiuyExfz8PJaXl7vOtrhhZmHsA0lhd1BJ7ETf2RY33AaSwvbsZGMSjjlI9NFHHw1kW0RECxP2QJIIRfYE0+sgUTe4WRgZILHHHCefbNqWsbGxNtsyDE8tYxbGhGxMjHCyDHbxinNbLl++bP2SyGnbfhAtTNge3Q5F9hjhJS67bTEj+bBEabcwMvl1gMSeCNyyLcOOvKaFCTvF6AbZmJjTzS+JhoUMP6ruBEX2GHP58mWsrq7ixo0bntmWQaOxUxZGtghPkT1i2H2wuSyubzQamJycFOq2OP9kTmRYWRjx2DIJHSCxRw67gMxl83FjYwNvvPEGzp0752pbhilCU9wyzoWxQzYmgrjZg4sXL2J1dRW3b9/G4cOHe9q3XxhjUg8kiVBkjwGmbXn8+DHW19cDE7qJk4UByMYQQ0AUkWhbLl686LqPn51FtywM5dmJoeFlW8SRUb+EHhULA1BkjyTd2hY/RW4i81wYOyR2yXGqktuNbQmKKGRhTMjGSI4YmS9duoSVlZWO2ZYgicJAkghF9ghg2pbt7e2OtiVoZKsL4wWJXXJksy0istWF8YJsjISYEVI22yIiY10YLyiyS4LYEd3a2pLStohEKQtjQmKXBKe5LU62RZaBmihlYUzIxkhEN7ZFBqsga10YLyiyS4BbtkWWKG7HXhfGRGahAyR2X+lGrJ1si6zikbUujBdkY3zES6wyZ1vciNJcGDsU2UNA1kGibohiFsaExB4Q5te9zINE3SBzXRgvyMYEhOyDRN0ge10YLyiy+4TTD6CdbEuUBOP2i6SoQGL3ATHfbLctnX66JruIZK8L4wXZmAFxGkgxl51sSyehyCyiqE3ndYIie49086PiKGdb3IhCXRgvSOw94nWBo55tsROlujBekI3pA/HrW3we9WyLE1GqC+MFRfYBMe8AHTfbIhKVujBekNj7QLzId+7ciZVtcSIqdWG8IBszAN2Um4s6cbEwAEX2vui2bksciPJcGDskdg9kr9viN3HIwpiQjfFA5rotfhOHgSSRtsi+s/On9Y/YJe7ZFjeiVhfGizaxj4zsa3skkmdbRKJWF8YLUrUDUajb4jdRrAvjRccOqt3WONkcN9vTyRJ1a5fctuu03t6mbi1Z1Oq2+E2csjAmHcVutzX2x52dPzEysg8jI/v2fADM9b28JiJu57Ze3F98tLevG8FHrW6L38QpC2PSk40RhSSu85tu+hCmqMVte+17RKVui99EtS6MF555dq/IKEbZqBK1ui1+E9W6MF5YYh80QvsZ4fs9dlzrtvhNVOvCeNEWjp1sCuBsEcT15nOn9b28Jr5Hr8d28uyGsbPHv4skOdviRpzmwtixrn6/NsRtv07H63afXo7daV/7a41GAx9++CGOHz+O9fV113YmkThmYUy6mhvjFvGjRFzqtvhNlOvCeNFRwXGaNpD0QaJuiHpdGC888+xRzbTEsW6L30S9LowXsZziG9e6LX4T9bowXkQvZNtISt0Wv4nbdF4nJIjsRtvSnujqEWyTUrfFb+JQF8YLCcSeAkcFM0rz1uOpVMq6DbmSy0OviWo3XI9iQtmW3ohTXRgvJBA7wJCGVr2GrDIOrbIDzjl4+R5UFDCVUaFb4X1vc8VIdOnSJZw/fx63b9/G5ORkQK2PNva6MHGL5iJSiJ0jBQYGcBVZpbnOyGQwoy8giyXMztbMDfe4miTUbfGbuNSF8UIKsQMGUnoRi0oaGd5sEgNDCjmoKlCtVAAAnAEMaFN8Euq2+E1c6sJ4IUk2JgV9cRFZdaGlZuuhSa2GCjgy7WtpkGgIxHkujB0pIjuHjmJRharavzarqNYApNOW0DmAXxu/Nuu2bJFtGZQ4z4WxI4XYWXUTm2oWOTDrq5MD4FUdxSqQVVVr2zsbG3jzzTdx7tw5/OsS2ZZBSUIWxkQKG1NZ1MGVBVt13DIKU7PYVGagtyK+pmn44YcfyLYMiSQMJImEHtkN6PhnHlCz6dZJrqCsz2Aq8xfMYgblSh4H6//FyZMnAaDdtsSr/xQ4casL40XokX2ETTWfZEZQaK1TFAWKVgbPZVAqlfC38+cxf3kOJyZOAjAvCgdY6J/VSLOysoKPP/447GYERuhi75Te0jQNa2truHnzZjOacwDMzP/GNwIFQRzrwnghR2gU9H7t2jV8++23lm0plUq7tiXe1yJQkpSFMQk9sgOwRDw39yWmp/8BAPjmm2/w6aefhtemmLO8vIyzZ8+G3YxAkSOyt/j++5vW89dff932qm0SGHVO+6ZTXZg4I0Vkr9frOH36NE6cOIEnT57grbfewvHjx3c34NjbGSVL0zf2ujCmyMmz+0ypVMLk5CTy+TwKhQLGxsba0mEASNhDJq51YbwINbLvybYQvpOkuTB2Qons9XrdOdtC+E4SszAmgYhd/KoslUp49913LdtCBEuc68J4EYiNMU+qpmkolUr47rvvOkbzJPnIIIl7XRgvAonsom1ZW1vztC1JizhBEfe6MF74LnZ7toUIj7jXhfHCVxtD2RZ5SNp0Xid8ieyUbZGPJNSF8WLoYifbIhdJqgvjxVBtDNkW+bDXhUkyfUd28euQbIvcJKUujBd9i908UWtra5Ztyefzw2oXMUSSUhfGi4FsDNkW+SELs0tfkb1er2NiYgIA2RbZSfJcGDs9i93MtmiaRtmWCEBZmF16sjH5fN6yLc8//7xfbSKGAOcca2triR9IEukqspvZFs65VaDIzxOW1IsxCE6ZFicLk0qF/nsdX+mkHc+/PMhBIqv0XcKyBMPA6SI7WZi4n9tOf5+jjbl//z4mJiawvb2NI0eO4IsvvgDQFL6f/Pjjj7h69Spu3LiBgwcP4sCBA76+XxwQf0Nq8vPPP2N6ehq///47Hj16hP379yfGvph/5y+//IIXXnih7TVHsW9sbKBer1vLX331lb8tbPHw4UP88ccf2N7exueff45nnnkmkPeNGw8fPsTjx48BNAPIc889F3KL/MXpg/zbb7/hlVdeaVvHeJO2jRuNBqanpwEAX3/9NUZHR/1vMYAHDx7gwoULOHz4MObn5wN5zzhSr9dx4cIFPPXUU5ifnw/s+skO432auKR8LRLRw600iJRdc+qo9gedrybm3RbtuIp9BwuYzVc6HnBYcM6h55jVSPP2kOajWvS+JWTS4agg/+rubTUZGwFjDOkpHRWX8mlJ+3C4in0pdxoLAbkUxhhy+g70LJDVm7eGNAwDBi9DU8aRUcgudYQDDBkUKhwLqnkOd8BrOhR9Cqdn7zvuljQb6ij2yuwpFKEgnU4H2JQaaptZ675Kxdk8qlCgqlMYF5qRrFjUJS3NclRQq41DMc/XuNq62+A9a1POOXirbmbSIvs+wCp7DgDgVQ1L44tQKykUA2wIrxZRTKuogAG1PGarSvO5pkER2sgAcL4DxkYCbF004DUdRahYUBg4KtALOZwunsICz1nbMMbAW1ebMfHKJwAusMMXuKYucIOXuZY5xrXKDg+Ke/k0B2veNwwAT+fLgb13HDB46xxi9xwq+f/wMjfCbpo0tNmYpVwNab11ZzrOwAL6ljN4GUtFDq3c9Ov38mnLQiXri3YQKlgqcuRb59CozMDIf4Cp2XLYDZMGS+y8qCK3WMAUS2GEvYpCNY3xTFA91E1UqxmkWx3RFLJQVfNO1+2YYYvYhQMwUEMNOZxqXTOmFJBXgVrxums2JmknMgU0fbpa08ANDs45/ixrSCsKlID8HCsWsaieat4HFYCiFZADUM5nka+aacfmY4IcZtcwACgWUVWze+4CDuzsPrWLO2kns6zP8Kx6rc3bGPpfOZSZQPyewct8RgHP6s3+gWEY3OBlXs5nXdoQXD8iKuzwMteUcZ6vNs/VTuUev6aOc2D3vHLePLdJBgA4MG51Rq/lIHRyTnHdfoKGfL7GgbZOFQM4UowD4McKdzvum+xLt4t5DlkzvdL8l85yTa+E3TSp6HtuDEFEDSnnxhCEH5DYicTwf7gtkQl41l6eAAAAAElFTkSuQmCC"
|
<image>如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()
Choices:
(A) \frac{3}{4}
(B) 3
(C) \frac{3}{5}
(D) 4
|
4
| 69,790 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAGQAAABwCAYAAADopdXZAAAV6klEQVR4nO1df2yT17l+7ECZhjvT1RMfwsw0MZ1pJjU0MLJLJJfirtwBWaqm9f4IV2Et821zdZduDmQSvdA10nK7bFCNKgnZRCpRLVPTZu3SW0gCBCmVuHNvs6oJCYoDgaSLI/NHmNPNIfb33D9sf/71+UccO3ZoHyng75zznfN+5z3v+56f71GQJHIYt2/fxl//+leMjIxgamoKfX19UtzY2Bg+++wzhH6CVqtFQUEBAGDlypXYsWMHtFotNm3ahOLiYqhUqqX+hAVBkWsMmZycxIULF9DT04O+vj5MTU2htLQUGzZsQEFBAbZt2yZV6saNG6HT6aR3SeLmzZsYHx8HAMzOzsJms2FsbAwTExPo7++HVqvFzp07YTKZYDKZsHbt2mx8ZkzkBENGRkbw+9//Hu+++y5cLheMRiN27twJo9EIg8GQ1rKGhoZw6dIlXLx4EX19fdBoNKioqEBVVZUkWVkFswSn08nm5mYWFxdTq9XSarVyeHh4yekYHBxkTU0NBUFgaWkpW1tbOTMzQ1EUY74TL26xWHKGOBwO1tTUUKVSsbKykl1dXUtNAkn5Su3o6KDZbOaaNWtYV1dHp9MZM22msCQMEUWRExMTtFgsVKvVtFqtnJqaWoqio+hIBhMTE6yurubXvvY11tTU0OFwZJiyIDLOEJfLxbq6Omo0Gh49elRqdQtFZGUuRat1OBxhtLvd7oyXm1GGdHZ2UhAEWiyWBTMimQ9fKlXicDhYWVlJnU7Hs2fPZrSsjDDk5s2bNJlM3LJlCy9fvhwz3VLq5nSgr6+Pmzdv5t69e5NqYKl8nzLdvbaPPvoI3/nOd/Doo4/i448/xvbt22OmVSgU6S4+ozAajfj0009RVFSErVu3YmhoKG76lL4vlZYSC21tbdRoNLJivdykIRHeeustajQadnR0pDXftDDE4/Gwurqaer2eg4OD6chyWcBms1Gr1bKuri5teS56pH779m388Ic/xOzsLLq6uqBWqxNJ5LJTVfEwPT2NPXv24IEHHsDp06exevXqRX3fomzI0NAQtm7dCp1Oh76+voTMAJaf3UiEtWvXor+/H1/5yldQUlKCa9euLS7DVEXr7NmzVKvVPHnyZNrENZeRjA1saGigWq1mX19fyuWkxJDBwUGq1eqk+uR3mzGXQ+g3/ulPf6JGo6Hdbk8pr6QYElqg0+mkXq//wkhGKqivr2dhYSFdLteC303KqNNviL1eL3bv3o1vfetbOHny5OJ05V2O/fv3Y3Z2Fp2dnbLxjNG5ScqoB160Wq0AgNdeey1VOr8w+N3vfgeHw4Fjx47Jxsfs3CQrSm1tbdTr9SlPDn4RMTExQa1Wy87OzrDweHY1iiFyiS9fvkyNRpOVBaRcR6JOi81m4/3335/0gDmhhExMTHD9+vUZn+W8m9HR0UGdTpeUdklo1B9//HGYTCYcPnx4sWr1C42XXnoJIyMjeOutt+InjMetP/zhDywuLqbH40lTW7l7kUh1ud1uGgwGfvDBB3HTxWSIy+WiVqulzWZbcOFfQh69vb00GAx0u90x08Ts9r788svYs2cPtm7dGhV3t81HLRV27dqFhx9+GI2NjbETyXHJbrdTo9FwZmYmY63liwqHw0GNRiO7cUIUxXAJod++19fXo7q6OqnZ2y+xMKxduxaVlZVoaGiIilMoFNE7F6enp1FYWIixsTFZhvAuW8/IBqanp/Htb38bdrs9qo6VAMI2Kzc0NODgwYNSwgh+fcmMNGDt2rV46qmncPz48ai4MAm5desW9Ho9rl69mnObkO82jI2NoaSkBNevXw/bkR8mIW+++SaefPLJL5mxBCgoKEBpaSneeeed8IhQK19UVBS22pWT4404JIkxH3ITnZ2dNBqNYWESQwYGBqjT6cIic5IhAcQlzbtUVCwKHo+HGo2G4+PjUl1L3d433ngDVVVVYUY8Fww4pX8CEH3/KSIThSLt+/8ygry8PFRWVuL06dPBug5wS6vV5uz0upykiqK4LNRSonMmly9fpsFgkMKUgO8Ek8fjSftppXQhSlLpD1MAksQQMpKSfcTTMgqFAlu3bsXk5CSmp6cB+GX70qVLMBqNS0NhKvBXtL2n2TeaVSqgUCjwg8OnIKknBcLVWMh7uYy8vDyUlpZKh1mVAHDhwgU89thj2aQrPhQimg+XYdP3/gej9IIkRI4Cr1r8TIn13tKRuBgYjUZcvHjR90CSgiDkrP0gyaZD+4iyWv9TsAc11tNMYB9HpbDl0buKRKgdWXHjxo2s2g/KzI0RwcZt7zmF51/9M7rt7/lDlFICMWqxc3n0riKxfft2XL9+Hbdv34bSbrejsLAwa8T4mCGGh0m/RJw6aUHZ4SY8LnNi+fr4WNS7yxWbN2/G6OgolCMjI9i0aZNsIi7ZEXb5lk1cw9X3gO+bTOERfo71dDWi7FAZ9DElI/eZFajjwByi0m63S+oqkgFLMjAU4zB97BreA5D/gB5AeKfJ3tOMxveA//jxjxG74nNfhQXq2GAwBCUkwJCsjMyVccosyEcZgGvX7QCCqoyw42ffex77DrX4VVloxee+VMjBYDBgaGgISofDgfXr12ebHtmBnQJ67K7di3//7SlJkjjWDaViE3C4Ce/+94+X7bRJJLRaLZxOJ1bMzs7i3nvvzTY9gEKEXGU+/+qfcf0HCijyfiWFddsJU76fE7EEjAAVy2YogtWrV2N2dhbK2dnZHHFZ5GOGnEV59V2CDP49XpCEel1GzAAAlUqFzz//3MeQ1atXZ5seCTEbfIwe3/nz5/HNb34TBQUF+PDDDzNHWIahUqkwOzsLBXyD9WzTkzLy8/Nx/fp1AEBxcTE++uijLFOUGm7fvg2dTrdMLaAfN27cwM2bN8OelzuUAd213HDr1i3s3r0bP/nJT2AwGFBYWAhRFPH2229LaZaT5LtcLl/nShCEJXU/tFiIoki3283t27fz6NGjYXFdXV3UaDTL8lDR8PAwDQYDlQFjslwgiiKeeuopFBUVRR0X27NnD8rLy3Hw4MHsELcIBDpXSpVKBZfLlW16kkZ1dTVWrlyJ119/XVYlHT9+HAMDA3jzzTezQF3q+Pzzz6FSqaAUBAGfffaZbCK5D84mjh07hk8++QTt7e3Iy8uTHYuoVCq88cYbqK6uxuTkZBaoTA2Tk5P4xje+AaXBYIDdbpdNlK1dJ/QPAEPR0tKCP/7xjzh79ixWrVolpZOD0WjEgQMHcODAAdm8cw0kMTo6isLCQij1ej0GBwezTVMYFApFWGN4//33UV9fj7Nnzya9I7+hoQGTk5NoaWmJyjvXoFAoMDQ05FsG6e3tjdo9l0sInABOdIpVbruNzWajWq1O2c3FUqKoqIg2m40YHx+nRqMhSYriHOcCf14357O872l4eJharXZRzlyOHDnCHTt2pJGqzGDVqlWcmZmhzCaHed4R55jtY54Oh4M6nY7t7e2L2tLq8XhYVFTExsbGNFKXXoRuclCShNFoxKVLl7KtSiXMzs5i165dePHFF2E2m1PS+/Qb77y8PJw5cwavvPIKRkZG0k1qWtDX14dHH30UAKBUKBTYuXNncF+QBBEe3sEd3sEdenzrR/5nj9RR8WDeHzYf1nsJht+hJ2INL14c4Ha78eSTT+Jfv78bL/zn82Hlx34/SKvX/3se87hDEYAHDz60CYdfOoR/e7YSoph7K4qhDAFJXrlyhYIg+AUoqLJEcZ53xPmQ3U5ezovekN/z/u21Xs5Lai70N+kV5zgX9k6sOB/MZjPN5mdC0on0iHN+e+blvDfW+z6657x3/PT6n/00ejxzLH28lP8VMd2SbXg8HqpUKjocDoqiSJnN1uE2RAz9aHE+aOjF+WAHwP83LwbC56V90GFMjYjzlRVkuNVqpclkomfeHcUoJnw/0vZFP4/Yh/n1r6/hxx9/vOCKyxRkN1sDQEVFBdrb2/1PSmmhSKFYASU88ILwAsgLU+crcI/iHulvRUgcpfejRVRuaPbrX/8avb296OzsRF5eHgAx5tbcVId2+fn5ePmVeuzfvx9zc3Mp5pI+kER7ezvMZnNYIEVR5P8N/C/zDRsZaHWh/RoxVAIk+NRPMMxLrxgMvxPoGYnzUSrrjij6jxPMc070sL29nTqdLmTW2de6F5Z3YgkJPJtMJtbW1kox2TqYFHpgJwAEiBHFOT7yL1vYe6lXpsvrsxdRSiRMbYXGB/T3XISKiY7r6e31q8srnPePfYLMSjZvH6OCaeM/j9+8SY1Gw/7+/kVWafKQY3rkkbYwG0KSJ06cYFVVlUx2Xnoy0IoGBwcpCEJc//CZwpkzZ6jX61Pyi5gKgg0/WI/l5eVsa2sLSxfGEKfTyTVr1kQtWInifNoHiuPj49RqtWEXuiy16igvL2d1dXVWyg64L4lsEFG+TmpqalhXV0dRFP3dyhCdnSY4nU4aDAa2trZKYdnQ406nkxqNhr29vUtetsVi4bFjx0iGf3sUQyYmJjLieCZQqNvtZklJSdTya6z0mUZnZyfXr18f1lIzXbbD4aBarZatY8mTA0POaRw4cAA6nS6mR83I9Mmm8Xq9KC8vx/r169HU1JQzU+H79+/HihUrcPr06YzkH1kPL774IgDIutZYMvdMoijSYrGwvLxc8lCXK+fgZ2ZmZL2HZgLx3DORcTzKWa1WWiyWtBFy9OhRlpSULMk9Tqmgt7eXgiBk9GY2URRpNptZX18fM01cF3+CIMi6+FsompubaTAYct4hWnV1NZ9++umM5X/+/Hnq9fq4jTKuE8z29vYwJ5gxD/DHQVdXF7VabZj7iGTeywZcLhf1ej3PnDmT9rwDTjATudtN6LfXZDKxoaEhKjxRhQa8FCSz/JpL6O/vpyAInJiYSGu+R44cYUVFRcJ0sgwJreyAu+yFOlK+cuXKopdfs4W6ujru3bs3bfktxJFyUr7fY7kaFwOThBGYmprixo0b2d7eHjPPXFRZAbjdbhYWFoYNXFOFzWZbkJZIuzN+l8vFwsJCnjhxItmscxIDAwNUq9XSTGwqDSiWM/54WNANOzU1P/UtIHk8JL1R3njcbjdNJhOtVutCss1Z1NfXJ9wiFYtR//znP5OakYhEQoaEFue5M0+TySRNyEXimWeeodlsXhABuQyPx8Pi4uKUpL2yspLl5eULfi9pCQkwJnDl0eu/Db/ySFp+vcv8xA8PD1OtVofZz0TqazFXHiWWEJmyA5eCnTt3jiTZ2NjIoqKiJVtbWCoEKv7EiRP87ne/m1Rj6+zszPylYKEIEBm4Nu9HP/oRdTodp6enUyIgFyEnAUajMe6UB5n42rxkOgZJSEjsTFpbWwmATz/99F2nqiK/e3x8nGvWrOHAwEBUWrfbzaqqKhYWFi56H3GSEuLlaHcTu+3hYR0dHdyzZw8B8L777uNvfvObtI9wcwEB5rS2trKoqCjsugmn08ni4mJWVFSkRWX7dp0kIoijLAN8DJFJ/I9//INPPPEEVSoVVSoVH374YTY2Nua0U7SFIbjFYu/evTxy5AjJ4OXEP//54ag3Uh32BiUkbN9PeKLmQ7Xcty/Uc5t8gW1tbRQEgb/4xS9osVgoCAINBgOtVqsk6rFUYKZH7osrN/jdNycnuGrVKv7yl7+kIAgR13cv3qNdiMryUiQpiuG2oKe1li093SxThjMkFv7yl79QEATJANpsNtbU1FCv11Or1dJisUhr2IlcqMbDQhm4kJlmufiBgQFaLBbef//9fOihhygIgn86JHyAvNgZ7RDHAb7digpFXnA1cawbZ2nCcw8Q7+01SI7CSPqcu8gsV27btg02mw0XL17Eli1b4PV6cfz4cYyOjqKnpwcbNmyA1WrFmjVr8Oyzz+Ltt9+W3UWYaHl3ocu/oemTzXt6ehqvvfYaNm/ejMrKSnz1q1/Ffffdh/z8fHz66ad+T3zKMH8gCylHFvG4Je3uGz3HskMtC+Z8Z2cnBUGgxWKJmgMbHx/nyZMnaTQaec8997CiooJtbW1JLWJlUr15PL6dlOXl5RQEgdXV1fzwww9ZWVlJnU4XnPUWmRFHzjEY4mX3KWvAgxUBhDEkQA+ZuHJcLhfr6uqo0Wh49OhR2clJp9PJU6dOsby8nHl5eTSZTGxubs5Yjy2eStJoNDSbzezo6KDD4QijfW5uzvfdIcwQRVGqK4UijyirpchR/uxQU0q0IdIQiaJI0X6Oh051S2FXe5pYe+oDRqVdQEETExO0WCxUq9W0Wq0xF/ldLhfb29tZWVlJlUolnX4K9NjSKR0Oh4MnTpygwWBgYWEhW1pa6HQ6OTExwerqaqrVatbU/NRPa+i3+36L9nMEwB/UhmgPf1hty7mUaEKgAGmro/2c5CM38Ondp6z+ArwRTFh4r2J6epo1NTVcvXo1KysrEy58dXV18bnnnpPtsaWC+fl5SSWtW7eOL7zwgsTszs5Oms1mqtVqHj58mLdu3YqZT2AoEKk5SJ+f4eae0ZToC1NZTYf2SSoqMAj8WRkIKEPUVvyub7JwOp1saWlhcXExtVot6+rqEo5bLl++LNNjuxAlNWLE/6S8SiJ983I1NTVct24dS0tL2drampQd86kp+Z5n9ylrxCA6eSCK8gUhPZ6kh4eHabVaqdfrKQgCzWYzm5ubYzJIFEUODg5Ks6pqtZpVVVXs6HgnbBQdqZKam5vZ39/PkydPsqKighqNhgaDgUeOHIk/5RFVPz7piKuWUry8IakL7pcSk5OTOH/+PHp7e3Hp0iX87W9/Q2lpKTZs2ICCggJs27ZNckm4ceNG6HQ63LhxA11dXWhvb4fNZkNJSQm8Xi+Ghoag1+shCAL+/ve/o7+/H1qtFjt37oTJZILJZErpeieOdUOpfwLNPaOwmPRp/f4gQ0L9eydLWIpX6C3kvZmZGXzyyScYGRnB1NSUdIsAANjtdr+fFiUC7mHXrVuHe++9FytXrsS6deuwY8cOaLVaPPjgg3jkkUfS4l8yyJCrsJge9H9T5GkxeaeeiTOPIWKx92B5Y8Yni3T1lERRjFILCefl0lB2wKBbm6M7JKL9XMoGnUxhPSQXEcWURUzJJIvA2CO08ke7m0JucUgNi2JILmzkqS1D2AA2spIWi3AGeqWrlkR6ebWnSSpTocjjvtrmRVeKdOgzSIHMzxiFLJYh6WmtXtaWgS3dPiaMdjeFddvjlZnKBKXc0bQAHemAEoiYBJP7GcP+LvZ0R7KGPdANpEyHkLiGkT/vxWOP5wMECvLzg3Ey6Rcz+RfqNir63fQ4eF2RllwyjOCZ+WAlBDqFYz29UNTu881EK4DDP30CZZKT/tw4ELQgpEXOlgoyGqanJXwSNNURcq4g5x0ph/lzkGnw3e83otvucwnYfcqK7+kV6BlbOvrSjZxniDKO2uFYN36FWuk6JNNBC8oA9F7oWRriMoCcZ0g89F7ogfX7u4IB0o08D2SNpkUj2zozVYj0jUECNiMweo41A7tcsCwZYu9uihoMAogaJYvLkDH/D/YCbrF0TlWzAAAAAElFTkSuQmCC"
|
<image>如图,⊙O中,A、B、C是⊙O上三点,且∠AOC=110°,则∠ABC的度数是()
Choices:
(A) 130°
(B) 125°
(C) 120°
(D) 115°
|
125°
| 69,791 | null |
125°
|
"iVBORw0KGgoAAAANSUhEUgAAAMYAAAAYCAYAAAChr4ICAAADhklEQVR4nO2asVLqQBSG/2hxeQ1ngMLhCZbKUmysbLW5G+c20NzO0hkLx5mkhMrbUtGw6wvIEzAW2S18C7GAcwsBQxJIUGIUzjezQ7Kb3bM52f+cbAaHiAgMwyywV/QEGOY7wsJgmARYGAyTQKowHh4ecHR0hPv7+y+Yzu5ShJ938dlmvWcnbfN9cHCA5+fnDU6NYYqnVCrh5eVlaXtqxnBdFwBweXkJIuKSU7m5uflyPxdhs+gyu+eLi4uV6z41YzDMLsKbb4ZJgIXBMAmwMArDwq87cJzFUnd9aFuEXY1czf4w1hCGhu+z6zZHGc1HBSkEPDPdHBqDM7TQqLjQudolKAlINbOrUOs0cL4Lz9dq+G59GhDqcH0LaBduxOGZhaHdBrqbniQD4Awn5elhuYxmW0Gig+tcF6lFMBQ4rMzsHuNUAoMnk6PNb4D1Ua800MUVDBGIHvEX53Aaw3dfTMkkDOu76EGgVi2nX8xkR/fQqVWx6NUvWKS2j+5ckBbar6PRkVDt4/xsFo31Ua+0AM/gsX0893m5eQUpaogu7XRhWB/9ahunGGx8rruO7nUgT5csxmGQ2zu/7XcxGLRQcRw4TgXXuIKhNrZYFtC3LQyEh3/NaHCv4LB2iEjCWBTGZPI6L9Ph4N9W0TyOpF5mA2j0OhJxXVgEQwCxTLIpLPpdhPY1HtDa9v2FRq8DiLOTBJ+W0Ww3Y/ULwtjb+7Xwq90A1W1Or0ViAwzlaTxK2z66AyzPJJ/G4GlhX9PElQQG3f72fpWyAd5iTfZQs/xVSrtodFpoTNNtaxB/D2M+ju13EU/BFv75W8r/m5cudA/DxMi57az5xkMRxuMRkfFIeobG49FbCe5ICI+C2fl4tHB9+Dxav25blutW1UfnlGajGBRJCPLM7NyQUR5JAYLwyKzq+ikMeSJk1xhSUhAAkio3o98ARRIg4cU9a5RK9HdMGIG+Ixny0ng8IlJy/sCiokg7XqctS580MfwEcQCIFSEESZWfJIiIRIJdCElezna/A0qCABG6V0PK8yhBK0SUIIxSaf9tgGkH/Wd/7sRS6TeFA0t4MeYpjFX1HxEqs4sYUp58Dw5CLhUFEVHs37WTyet88x2ti7YlXZtUHz7/6Bjrjr3KJsOkMd98v3+i/Rif7V/U2AyTxDxjzBbfssi6KoIn9Qsv5qxtSdkga/9oXbhv2r0xTJT/rwwheKOgfLgAAAAASUVORK5CYII="
|
<image>如图,已知线段AB=12,延长线段AB至点C,使得BC=\frac{1}{2}AB,点D是线段AC的中点,则线段BD的长是()
Choices:
(A) 3
(B) 4
(C) 5
(D) 6
|
6
| 69,792 | null |
6
|
"iVBORw0KGgoAAAANSUhEUgAAAIQAAABvCAYAAAAtx2jmAAAxDUlEQVR4nO2dd5xV1dnvv7udMo1BBpAqHZRehqp0MIqGokJMLPGN5DWQoImJ0bzX98Z7bxJNcmPUqDfYKy2ASC8iRZihDb13R4YibWbOnLbLun+cWZt9Bhh0mBnGT3g+nwMzZ3ZZe+1nPeX3lKUIIQTXqdJIOIJo1CLg17HMKKpioegKX588TnEoTDgaA6Gj6ik0bNyYlNQ0BBDQQFFACMGbb77J3r17+etf/4rjOCiKgqIolT9Wz6uX19cr/S7/5iQEBFMMzFiceDxOanoq8Vgx8+bO4+8vvY7pCJo1a8aRLwu46/v38b+f+y8Mv4FpCnyGwldffcWpU6cYO3YsjuNgWRY+n686H+A6VSaZcVvEo6awTFtYZlzEw4XCtkMiFjsr/s9zT4l582YIIYT47PMVol2HHmLZyjVCCCEs2xFnz54VCxYsEAsWLEhcyzSrdKyO47gfSWr1sd6/B+m6iuMIHMdB1TTQNIRQOHfuHMeOnWDw4KEArFu3gbbtWlK3TiYx00EIOHbsGKdOnWLYsGGUlJSgqiqWZSWJ9qomRVTn3f4NyLYFmqZg2za2GcUwdBTNz5qVS5j485/Tsk17UlNSaHNLe8beex9tWrcmags0ITh/7gyRSISmTZti27bLCJqmVZsNcV1CVDIpCkSjMYTjoBs+UFRwTNauyWHUqNGMHfsD6tWvz9Yt27FsBUsILNvBcRzq1q1L06ZNicViaJoGgKqqVcIMl6PrRmUlk6oqGIaBqig4ThzHdtB9fs6dK+SRnzxC63Yd6dOnN3ePvIflK1dwS7tWKIqCrqnYto1pmmiaRjgcxufzVSszwHWGqHSyLAtFURACTNMiEExl/+4dtGzZkuYtWgNw7KtjGIYBQiAAn66gKQqguRJB0xI/VzddZ4hKJkWBUKiIlGAQ27bZuWM7//u539Ogfj0+nbeAc2fP8MILf6XPrbcycuTdRCwHBYGha6Xnl+rya8AMcN2orHQSwiIWi+LYNikp6bz71lssWLgIn2EQjccxLYvu3bP55ZO/wpeaimVZaJqKoaho1asdLmlUXmeISiQhHOJmFCEcdE1D13RQjEsee7awiGBqGoauYjkOPkVBrWZ74VIMcV1lVCIpCjiOTTAQxDRNYrE4qurgWA66qqFqOpZwAIGuKDh2nKjQCBgG1SwcLkvXJUSlkoMQDkLYmKaFbVrgQDAtA0UtfeUCUMC0HIQisEjYCz6oERLiO4JDOCQm20IIJ/FNqYUuyh4nRNkvK5XKrp/k30uDUIqCqqr4A0FSMmqBEITOh/jy4FGmTZ3O4cP5GHrCm1AEaFDt7uXl6DuiMgQIC8uKEYs6pKZnUhKzQFUIGjqKcFBwUBGgJnS2aTqomoKqKhUSx0KIUvcxAUNLoMg0zYTLCNi2DSSDR4qioSoaqgFnzpzhy6NfsnfvHtblruPTTz8lJS2NRo0a8+57b3Nj/RtRcVDgusr4dmRBvAR8OqatoWgBBFAUsQgYKoplomPjC6RwsuArCs+HaNWuLXHLxmdoFRLFpmm6L1pVVRdKFkKgqqorGVRVTXIRv/76azZu3EgkEmHFihXs3r2bHj16EI/HUVWVBx98kOeff55wOMy7775LZmZmEpNVJ313vQxhgVUChgEEOXH2HHEb6tepjYOCDwF2HNOyefGvfyE1tRaTfvUEpi3QVYWKSmMpATRNw7Is4vG4+7vf73ePO3nyJFu2bOHIkSPs27ePr7/+mvT0dLp3786YMWNYv349S5cu5Te/+Q316tWjoKCAiRMnkpWVxR//+Efq1q17tTNUIfruMgQWwo6AcCgKObw7dTrtO3RgyK39MAWowkFxLHZt28rChYv44YM/pnHTJsRMB0P/9u6cEIJ4PO6+9EslqZw/f56cnBw2bdrEyZMnsW2bQCBAt27duPPOO7nhhhsAmDt3LkuXLuWJJ56gadOmqKqK4zgcOHCARx99lFtuuYU///nPZGZmVtpsfZvnlPQdczsVFFXHNqPMmDGVL1avoVff24gDjgCfqnK+sJjDhw4xcuRI6tevjxDgM9QK6WapJiDBDPLnUCjEpk2bmDdvHsXFxRiGQd26dRkyZAi9evWiQYMG7jVs2+bjjz9m06ZN/OY3v6FJkyZEIhH8fj+aptGuXTueffZZli5dSmFh4TVhiEvRd4QhBE48Tn7+l+zYsYOGDRuSmZlZap2Dadns2L6duG3Ttn17oiVRDL+P80UlpKUG0bVv70xJvW6aJrm5ucydO5eCggIyMjLo0KEDrVq14pZbbqFp06buOeFwmJSUFAAWLFjAjh07ePLJJ2nSpAmmaRIIBHAcB9M08fv9DBs2jOzsbAzDcI3Ya03fEZUBx/P3sWj+PBo2a8OKnI38dOIkGta9AU0BMxonHitB2Ca1MjJRdB/RqImDIOg3Sm2IbzbZpmkSCoU4ePAg06dPJy8vj+bNm5Odnc3NN99MkyZNaNasWdI5juO4P6uqyrJly1iyZAkTJkygWbNmpfC05qoiXdfdY6WBei2YocarDKmrITFA0zTRdZ14PMI7b71FdnY2x0+eIhaLkZ4aTGARAnw+g2CgNggLYdkIR2D4dGyRcBtt20JR1KRre19AJBIhPz+fgoICNmzYwKpVq6hTpw7Z2dmMGzeOm266iRtuuCHJm7AsC8dx0HWdcDiM3+/HMAyWLVvGvHnzeOqpp2jYsCHxeNzNiVQUBb/f77qzkhRFwXEcVq1ahWmaDBs2zA2DW5aFruvVFuyqMQwhV4/P58M0TQAMw0BRFD5bupS1q9eyfPUGCo4f546Ro6mdEiQUs1BVFV1XEI6V8Oc1DduysBUNVVcQDmia7uYaBAIBAGKxGIcPH+bAgQNs3LiR7du3AzBw4EBeeOEFGjVqREZGxkUrV0qDxH11SkpKMAwDTdNYsGABy5Yt47HHHiu1YwS6rrsSwsuIZa8rhGDdunXMnz+funXr0qVLF+LxOLZtV6tLWmMYQlFKE0tKff+SkhJq167Nhg0bOHDgADM++YRgeh3efedNDhecQlNIpKcpoKmUgpk2qBqaruPYYNtgqIlryxezfv16du7cyfHjxzl69Cjnzp2je/fuvPLKK+6K9qasSVezbOazEALTNAkGg6iqyty5c1mxYgUTJ06kZcuWfP3119xwww3u+VfKfFJVlccee4wTJ07wpz/9iVdffZVgMFglc10e1RgbIiHabXQ9sZo1TWPGjBk88cQTvP3WPxk2dBizZ03l//zxb0QcwSsvvUrvW2/F0BSwTAKGmmAIlARa6Qkd7N+3j88/X87OnbuIRqOkpqbSsGFDBg4cSHZ2NpCQGI7jECzNYzBNE5/P54pqiUnIn2VWU3p6Op9//jmffvopjz76KG3btnXtBcuygIuZ6XLPrygKhw4dYtKkSbRt25a//OUv7r2qQmXUaBtCDujMmTNkZmZi2zbBYJBf//rX3NSsGY4dxu/3cd+4sViKjuIzCBgKJSVRAroKSiLDGQABW7fuYOXq1WzauIFgwEetWhm0aNGCwYMH06lTJ/e+Xglg27ZrxwQCAReMkhJDGoFytaenp7N27VoWLVrEww8/TPv27YlGoyiK4rqYiqIQjUaTmOtSFI1GMQyDFi1a8Pjjj/O73/2ON954g/Hjx1drskyNkRCQWHnRaNR9GRIYsu04KjEULRUZjxNAWIDqCIKagm3FOXroIAsXLuKLL3JRfEFu6dCBls2b0LxZUzp37uKKYAlLwwWcQVESmdLeFy8ZRFVVN5bhOA5CCDRNY8mSJcydO5dHH32Uzp07l4a8Y6SkpLhuq2Q4rzq8FEm7SUrJadOm4ff7GTNmTJUxxHcCqbRtm5KSEtLT0z1QsYKmWigIUHzYikHUAp8OBcdPsmjuXHLXrKTw3Fl6ZvekZ+9+NGjSmIYNm1IrI8W9thTh0u0D3PiE1/KX9RAytxEutiVyc3OZMmUKjz76KB07diQWi+Hz+VyvwMtckUgEn8+XdN9LUSwWcz0KaYh6maGy3dPvBEOUDSAlBiqwLRPLsbAtgc8fxLYFYDFq1D1s376NX0z8GWPG3EPrVq0gaRIBhOvaSZ0sV7m8Z9mJNk0zSVpI1aFpGqtWrWLmzJlMmDCBFi1auHaJdEPlNYEkRrvSy/Qy5qWO9UoRCXJdjfT4TjDE5ci2bYqLiwkGgwghCAQCvDF5MkeOHsVnGCxZupS+ffsyYcIEt7ZB6vCyq8zr4l5uQi3Lct1UCSapqsqSJUtYtGgR//Ef/8Ett9ziMppUB1UBMOXl5WFZFj179nQruaQUkaqoInQphvhO1XbGYjERjUaFaZri4MGD4oEHHhCbN28WQgiRm5srxo4dK/r27SveeecdUVxc7J4jhHDrFy3LEuFw+Ip1k/F4XESjUfcjhBCLFy8Wv/zlL8WePXuE4zji3LlzwrZtEQqFRDQaFZZlCdu2K/25//nPf4rBgweL/fv3u98VFxe7z1ZR+k7Xdtq2jc/nc3X4O++8Q5cuXbj55psB6NWrF5MnT2bkyJFs3LiRgoIChBDu8bZtY9s2qqq6QFJ5ZBiGawv4/X5Wr17NjBkzePDBB2ndujWWZbnekK7r+P3+KoOgx44dS+vWrXnmmWdcOygYDF7xGSpEV8Vi1Uje1ffZZ5+Jn/70p+Lw4cNCCCFs205amaFQSBQVFQnHcYRlWe73chULIURJScllV7PjOCIcDru/L1u2TDz99NMiLy9PCJGQOvF4XBQVFQnTNEU8HhfxeLxSn9c7lmg0Knbt2iUGDRokpk6dKoQQlSKJvtMSQtoCZ8+eZdGiRQwcOJBmzZq51rxpmq59EAgESE9PBxKG2Pbt2zl16pTrxgohXFj8cveScPHSpUuZPXs29913H127dsW2bTf7SUoRSfL+lf3ciqJw880384Mf/ICXX36ZL7/80rVdKptqHENcakKFRxSvWbOGoqIiRowY4f49Ho9jGIbrRSiK4orWcDjMc889x29/+1uOHTuGpmkuRiCveal76rrO2rVrmT9/Po888ghdu3Z1A05+vz+RKe3zufEK770rm6TLO3LkSDp37kxOTo6Lm0hcxDtXV0VXLXcqkWzbFuFw2BVjtm0Lx3FcA/HQoUPiscceEytXrhRCJBpqlBV5krxG5NatW8Xtt98uBg8eLNavX+/+Xd4jFotdZBCuWLFCTJo0SezZs0dEo1FXBXmNUe99LzeOyqBYLOZePxQKidOnT4t4PO6OX6q/WCzmzp9lWVccz3dCZUh0T5S6ho7juD7+2rVrsW2b/v37u6L7cqvS+12nTp346KOP6NKlCxMmTOCdd94hHA67q0u6jPK7lStX8sknn/CTn/yEVq1aYRiG6+56XTzvParK5QRcCRQOh0lNTaVOnTpJcLrP53Ohbzl/FW4jUCUsXUHycnY4HHaNQMdxxJ49e8SPf/xjkZeXJyzLEoWFhe7KLm8llP37K6+8IgYPHiy2bdsm4vG4CIfDSW7okiVLrolrWR5FIhHhOI6Ix+OuVDRN050D6X6apilisdg3Hl+NlxCiVP/JlavrOpFIBIAPPviANm3a0LVrVxzHISUlxV2t5a0ETdNwHIfi4mIcx2HChAl88MEHNG7c2A1kSeNw7dq1LFiwgIcffphWrVoluZaGYVSpa1ke6bruGsLS1Tx16hR/+tOfOH78uGsXyY+3TODbUo1iCBk7cBwHv9+P4zgEAgFWrFhBfn4+Dz/8MJCYIGk4XunlyGNkwMy2berXr+/GFgKBALqus2LFCqZPn86Pf/xjOnfu7NZhFBcXu+pAZnBdC4aQalSOy+fzsX37dt5++20Ad84k05Y1Nr8p1SiGAFyYWD6Mqqq8++67jBs3joYNGwKJIJCEpq8E28rwM5DkWUgdvH//fiZMmMDixYv5z//8Tzp16pTUyaU6XMsrkQS/ZJzDNE2ysrJ45plnmDdvHmvWrHHnQkoHb4+qb0M1iiFEGRfOMAymTp1KvXr16N+/P4CLN8jwtPz9cteTiS7Sb5cvNxAIoKoq+/bt4/XXX+f06dPcfPPNrjsn4xwyI1qilt68z+oima4nSwplcK5fv36MGDGCyZMnU1hYCOD2tqxoUk2NYwjJ4X6/n8LCQubMmcPo0aNJS0sDcMW8rG8oT4TLpFZvkmpJSYkrUj/77DNycnKYPXs2e/fu5b//+7/doJdhGK4noyiK+/+16Ozi7SojmUN+N2HCBHbv3s0nn3ziHiOZpiJUYzKmgIsAlilTptCxY8ekDKeKrE4Z8g6FQui6jq7rbkLsU089Rf369albty4TJkwgLS2Nn/3sZ6SnpydJCIlcSjviWrX8KUv169dn0qRJbszGGw2FCsxXRV2hqiLpAuXl5SVFMysK+pimKUKhUFJkcP78+eKZZ54Ru3btcgEeIYRYsGCB6NOnj1ixYkXSPU3TdF26q40wVjZJsMq2bRdAE+ICaHelc8u6nTVOQgghCIfDzJkzh+7du9OlS5erSgSR4lVmLX322WfMmTOHiRMn0qpVK1d9RKNR7rjjDgKBAC1atABISp+X3k9NkQySFEUhNTWVaDTq2lNX0zC9RjEEJHTgypUryc/PZ+LEiUnZzhUhaYilpaWxbt06FixYwE9+8hM6depEOBxG0zTXgLVtm0GDBgG4XoY0Xi3LSkptqwlld3AhLVCUuqLS7ZSh/m87zhrF7oqicObMGZYvX86gQYOoW7cusVjsqq4pV/Ty5ct5//33uf/+++nZsyeRSCTpBUsdLK10mTZ34sSJpCKbmiYhpKEZDAZZvHgxzz//vOtNVYRpa9bTAYsWLcJxHO69914XkzBN86pCvRs2bGDmzJk88sgj9OjRw50wXddJSUlBCOHWZUgD1HEcpk2bxu9//3uKi4tdSQI1p/0PJDcsSUlJYenSpW40tCJzVu0M4TiOO1DTNLEsy5UCR44cYcWKFdx///0ugihXZnkvQYrIstcHyMnJ4eOPP2b8+PF07dqVkpIS9zivfSABKHlPXdfp0aMHO3fu5I033qiq6agUkiDUwIEDadSoEXPnzi0XnymPrglDAK6OkyicaZpMmTKFDh060LFjR+ACLiGTZS9Htm0Ti8XcCKnMH1i9ejWzZs3ivvvuo0uXLkBiFZUt15OqoCzjtW/fnokTJzJt2jTWrFnjglMVmeiqIlGaPS6Z+IEHHmDTpk1s3LixQlhEtTOEF5aWySa2bXPw4EH279/P7bff7qaYS+a5kuhzHMdNkNE0jUAgwMqVK1m4cCEPPvggffv2paSkBMuyXJvhSpMlUcmxY8fSp08fnn/+eU6ePFluptW1IKlOZexiyJAhpKSkMGvWLHdhfBuqdoaQbpHU03K1vv/++9x22220a9cOuFCD8E02EfEii7Zts2XLFmbOnMndd99Nx44d3URZv9+fZJWXd015X4Bf/epXhEIhZs6c6Z5bU8hbeyoDeT//+c9JT0+nqKjo21+wsgCSb0MSNLFtW5imKXJycsQDDzwg8vPz3WNk+rtlWUmJsmVJ5gnIJNctW7aIX//6125mlASSotGoKCkpcc+LRCLlJtnK1Hv5/6ZNm8SaNWuqLCvqasg0TWHbtpsvIYQQJ06ccMd+OapRwFQsFnOLYN58803uu+8+GjVqRCQSIRAIuPpclMlSKkvSKFRVlRUrVrBgwQLuvfdet6pbRju9tZnAFWMgqqoSi8XcxN5u3boBiT5TqampNUZtSMkgYzuqqhIOh6lXr17NdzsdxyEUCrkBGoAPP/yQ2rVrM3To0KRsZ2n1fxNwRVVVNmzYwLx58xg5ciS9evVKchGl0eXz+ZLS5sojXdfdqGJaWhqhUMgtRK6KbOeKkoy3RKNRV5WJ0ihvha4nSnVpdXy8TUF0XefQoUPk5ORw1113uXhA2YJYb2a0bOMjjUNJ0rV88MEH6dmzJyUlJSiK4m5V5M00kgbllVxZabUbhoHP5yMlJcUNib/33nvk5eW5TCdK7aKrxUsqQpLhvbkhqamp+Hw+du/ezerVq91FIEq9sPLQ32o3KmXqumVZzJw5k7Zt29KtWze3uFZyeVmSrQKk+JcPv3btWmbNmsW9995L586d0TTtsq6llwm+qTgtG3pWVZXTp0/zxz/+0QV/5DHXMgp6KUm6c+dOXnjhBUKhUFK7A8nAl7xOdQzWS1JSrFu3jn379jF8+HC3qKa81SU3NJWpcKqqsnr1aubOncsDDzxAv379KCkpccEuKfKrgoYMGcKRI0dYvny5i6XUFJvCS3369OH8+fNs3boVwEVoJZZyqTFXO0OoqkooFGLx4sV07tyZLl26uBNa3qQGAgFXuhiGwaZNm/j4448ZM2aMm/bmdS29qqqyqVu3btxzzz289NJLFBYWuuOuaaBVRkYGnTp1Yt68eQBuF12pQi811mplCDlxOTk5fPnll9x///1EIpErAihCCDcvUtM0cnJymDlzJuPHjyc7O9uNTNq2TTgcJhgMJtV3VMVzjBs3jkgkwjvvvOMGwi636q4V6brOiBEjWLt2LQUFBW6ybo2yIU6ePMmyZcsYPXo0derUcUGq8lLHpYEHsHjxYhYuXMjIkSPp1q2bq8OliygBr6uJ+H0TatGiBQ899BBHjhypcNygqikYDHLLLbcAsGrVKoArdrJRHMeplieRL2bGjBmsWrWKv//9767Yko0/vbD2pc7dsGED06ZNY9y4cUmSQVrR0uL2qqCqqKiSiTKRSITTp09z4403ouu621boSoalV5JUpVQxTRPbtsnNzSUQCNC7d2/XeC871+4YvGhVZX5k2pk3RS0/P1/84Ac/ENu2bXORMolWeht7yOoobxrY2rVrxRNPPCG2bt0qIpGICIVCLqIojymLvFUFqiiryrw1ntFo1G1JIMfvfRb5nJFIRFiWJUpKSkQkEhFCCBEOh6u0lUDZNECJ/JadM0lVojIk0ifVgTTyPvjgA/r27Uv79u1dg0+uZtkWUJSumGg0SiwWQ1EUvvjiC9e17NSpk4sLSJzhal3Lb/tssqJMCEEoFErabEVKKcCtpJJkGIZbTyLFdjAYLNfdvlqS9pkM7XtxmEvds8psCOmjyyLU3Nxc9u/fz+jRo10jzGs3iNIkFdu2Xfg6JSWFDRs2sHDhQn70ox9Vq2tZHlmW5bYeTEtL48SJE8yfP5/CwsKkSZaZWN7wumyNqOs6p0+f5syZM1Vq68jrRiIRzp49e0XgrEoYQoaOJcViMaZOncqQIUNo1KhRknsmJ8O2bVJSUlwOVlWVrVu38tFHHzFixAi3vK66XMvLkWRcryQKhUL84Q9/YP369e533mIZ+bzS1tE0jTNnzvDJJ5+Qn5/vXrcq6dChQ0ydOpWTJ08CyY3mvVRlKkPmJaSkpDB37lxs22bEiBGuqJK1m8ITV4hEIm495969e3nzzTcZM2YMffv2TeoOL11LmVhTnQyhKAoZGRkALsjTpUsXOnbsyPz5810RLQ06IS60NZBqwrZtpk6dyueff05aWlqVMbWXac+fP8/8+fM5ePCg+7dqUxmyMBYSbuaSJUsYNmwYmZmZbrxCUZSkPAcpGXRdZ+PGjbz55puMHj3aLeHzRh+9ruW1yICWto/sJwHw6KOPsm7dOvLy8gDZ4FS4NocXAt+3bx979uyhQYMb3YSbqoK8ZbCwRYsWKIrCjh07gMvbV1VmQ8gHnDp1KllZWQwfPjyJI711il7Dctu2bcycOZMhQ4YwZMgQN7wrJYlskCFfxLWIHchxe6ulsrOzuemmm1i5ajWhkkipS+0+LZaVyBvNzz/K6lUrGTBgAIFgKmnp6Yn9R6tAQniv2aBBA1q2bMm2bdvKPUct669/0w9wyQ4uohRV1DSNrVu3snfvXoYPH04wGExK95LneVGzXbt28cYbb3DHHXcwfPjwJHUgu6N826hlVZDEIaQK0DSNSCTCD3/0AOs3biYUjeEI2ZXWxoqWYGgOxUWnmfrhe7Rr0wrTjCMUFRsds4oipNKwl3PYvHlzTp8+zYkTJ4DL9Naq6M2ESO4BKY0oWYxrmiaffPIJTZs2ZcCAAW70UZLjOEQiEdcWWL9+PTNmzOCuu+6if//+rvHlTXm71Mu/FlCxt3G6HJfP56N3794E0zJJSQkSjdv4DZV4LIwRMFA0hc8WzWPBgnnMW/QZp06d5IGHHqFOZjqFoQjpKX4MvfI9Jild/X4//fv3Z8eOHRw5coQbb7zxknNXIYaQFrNEuxRFcSuGIPGSVq1aRUFBAb/73e+SdKSMVMq2wYZhsGXLFmbNmsXAgQO5/fbb3biAtwt9TYoRyGf29srWNI369eoyZHBdSiIWiiJQldIu+JqfzRtWcebceebNW0hqrTpMnjyZ4pIYmqpQKy0FpQo0nxyXHGfr1q0ZN26cu3GcfI6yJ10VEuZF5bz5i7/97W/F66+/LoQQbiGqRMS8+ZI7d+4UEydOFEuWLBFCJHpCyZ5KEqksLCwsN6+yusmLQEoyTVOYliVipi3ilhDFoYgoKSkRjm2KaVPeE61bNhVrVy8VQjhizif/Ej169BD9BwwWn69YLUpitrCrIFXT26FOoqVyrBINrrScSuGpH/SWvwGsXLmSr7/+mqefftr1Nvx+v2tbSEBp//79vPPOO4waNYqhQ4cmbV7ilRJXqsuobvKGu712jAAcRxCOFGObcdLT04jFTSzb5r5xPyKrXn0KC7+mOBRi8OBBaLqPolAIQ0tIk8omaYBLW0J6apZluXuPXUQV5T65koW40JRcCCGOHTsmHnroIbF8+fKkmIbs9iZXem5urnj88cfF0qVL3WvK7GHJwfF4XBQXF1d717dvSpZlXVR2XxKOiVdefUO8+upkIYQQsVjYc4YjSkLnLrqOadlVEneRnfy80tabbX6prOsKay6vgSe5z7Zt5s+fT4MGDRg0aJBr0EgcXTbslnUTQ4cOZejQocCFamtRml4ngRPZsKMmkXyuSxX8pAR9BP0Gn8xO1HD4fEEcJ47jxLCsKCkpqYm9PyyLSDSO4wgUoaBUaA/i8knmr0rkWMZWnnzySbZt21Z5SKV8aXKnO1koI9PKHnroIfc4CVJJgGTXrl289dZb3H333dx5551uXMIbGJJiTnaZv5p4RdlkEC9zSTdY9qryJqN6/wYX9s8AXMaVKk5ObElJCSdPnkRVFI5+eZQpU6aUVpn7UFUDVdMRCigqaJpKIODDNG1AIEjuniPn5WoWgwTEpIssi5u3bt3K9u3b3WeTvSWggl6GvIncSUYOetq0afTu3Zs2bdq4EyZdS4BNmzYxdepURowYwW233XZZ17LC7XAuM1ZJ3pforZqWdoDXjZTPF4vFSE9Pv2RU1bZt8vPzOXnyJIcOHWLr1q1s2byVzMxMemb3YPr06ezdt4c77riDbt26Y+gGtmOjqSq27WDbcXyGAaULzHsP+TK9m7dUhLzJt/L/Fi1aJMU0vDZahY1Kry+uqiq5ubns3r2b5557zk3VkvtaSgRy9uzZDBgwgO9973tuxXdVu5aX2k1HqiNvFrJ3HFK8BoNBdy9vScePH+fgwYPk5+dz7NgxDh06xNGjR6lXrx6DBg3iRz/8Ea1atiQWixGORvjXzJm89MordOjYkWFDh9OjtODHtm10VQPHweECA0jp620edjXzIpnXGzdq0aIFp06dcssVpPsPV7HFkhcBKyoq4ve//z1du3bl4YcfdvMZKH3QAwcO8NprrzFy5EgXjpYboktLvbi4mNTU1CoNZ8vxepFWb02otzjH+xJ27NjBli1bKCgo4OzZs5w9exbLsmjUqBHDhw+nZ8+e7tYLAMI0iZoWupEQ06fOnObV//f/OHzoEN27daNXdja9e/VCQcGRKlPTUEqZQEoyOX+V/ewffvgh8+bN49VXXyUzMzNJilT4bpKbNU1zs3pHjRqVZDNomsaBAwd49913XWa4Fq5lWUbwfi9tFe/EnzlzhnXr1rlMIHtE1qpVi06dOtG7d2+3DxVcsFNi0RgqDoaRKBeIRCLohkFWVl3+1/94lm07dzJt+gzeevtt1uWu445hw2l7y82oCISTXGboDZtfzbxc6tmbNm3K+fPnKSoqok6dOkk7CF6VhHAch6+++oqXX36Z73//+wwcODAp5r9+/XqmTZvGiBEjGDx4MHABqZSM4TgOsVisyuolvY/nvb6UTPKYvLw8VqxYwYEDBzh//jw33HADN954Iw0aNKBjx45069btoj24pQqSTU8Cfj+qqoCTyJlISU8nHIuhqCoOglQjAfVv2ryZJYsXc2jvPpo2bcKj48fToHFj95pX03i07Pi8GIT8/dixY+zevZvs7Gxq1ap19Qzh9TJeeuklioqK+K//+i+3AyzAtm3b+PDDDxkwYIC72YkXyJIdZqVBeTXNNr/t2CORCOFwmPXr17N48WIOHz5MVlYWTZo04aabbqJZs2a0bt2aJk2aJJ0npRmQNG7p1vkMA2HbOJaFJRw0w5fYcDYeR9MTJYWqomIAlm2zdcsW1q5YwRdrvqD/oMHc9f3vc9NNN7nXl16c1wD+NiQZQY5fRpjl97IZq+ytcUWGkKtYuj+GYRAOhwkEAmiaxubNm3nttdd48sknadeunbvqdu3axeuvv859993Hrbfe6opCL/4vry0n2bsyXORPJLti8hre/70TdinxKLvLFBUVceTIETZt2kReXh5fffUVrVu3pn379rRv354mTZqQlZXlVpGVva8kee3LqSEch8T+4xf237Rd9zSxZz0CNInh2DZ79uxhxowZ7D9wgL59+zJmzBhuvPFGd/zlNUstO1dyPDJ10bvIyqofOeffmCHkgOQh3gRR0zT5wx/+QEpKCk899ZTbEnjLli1MmTKFQYMG8b3vfS9JrEJyA/JL3UvqTsD9WRqgkru9Is47KZJM06SgoIDTp09z9OhRNmzYwObNmzEMgz59+nDrrbfStGlTMjMzqVWr1kXjqarWg5eaau8LPHLkCC+++CKFhYWMGjWKzp07u7sOnj9/noyMjIvSDbzeHlxwoa9ke8TjcSKRCBkZGW7owe/3l88Q3m2LpRUuac2aNbzyyiu8/fbbrv7fuHEjs2fPpm/fvowYMcJNJ/O+vMupBa8akkwkRZx0Ecvzx0+fPs3evXspKCjg8OHD7s/NmjWjb9++3HbbbTRs2PCiDCZRmuImQ9hycqsi8eZyUy2lcHFxMZmZmezatYuXX36ZYDBI79696dWrF82bN09ylaVtUJZxLyu5ytDnn3/Ojh07mDBhQpJndVmGkGiZ1GPecHckEuHZZ5/lzjvv5Pbbbwdgy5Yt/Otf/2LgwIEMHTq0Qq6lF6DyvrSy+3BL2rlzJ3l5eZw6dYoTJ05w/PhxIBHmHT58ON27d3dfsiRpDJe16L338TJwZVJ5wlg2UPGu7M8//5ypU6eiKAp9+vRhzJgxpKenu3MroWmvdPDepzymmDx5MjNnzmTOnDlu6oKqqpd3O+WKkTUHPp+P4uJi0tPTWbhwIZZluZ7D0aNH+fDDD93YxOVcSwlJlzdZ8sV7f5eSqbCwkNzcXDZs2MCxY8dcIzYjI4OuXbvy+OOP07jUWgfcDVOkqvECNN7aCe894Nqk5cnoo1x8fr+fQYMGMWjQIObPn88XX3zB008/TZs2bfjpT39KMBhMAtbkud9U1TVo0IBoNOrOhwxBlItDeAttIFFUUlBQwPTp05k0aRKGYbB//37ee+89Bg0axPDhw4ELLp33ZcgNxC43WK8d4BWJmzdvZu3ateTl5aFpGunp6aSnp9OhQwe6dOlC9+7dk0K5Xmkm8YOyK7Nsgq78SAlY0bbAV0PyvhIok0ahzFYfMmQIc+bMYdu2bfzsZz9j+PDh/PCHPwQugFcy09ubuHQ5Sk1NTcpVldcolyHkRaX/res606dPp02bNvTs2ZMvv/ySN954g549e3LHHXe4mVByhUvXUpSm28mXcDmybZuzZ8+yceNGli5dypEjR6hduzYtWrRgwIABNGrUiFatWtGsWbOLxgkXbBVv1FSK1LI2iJQSciKEEElZ3dWdfyFfjGRgb+2lzC4bN24co0aNYv78+eTk5LBkyRLGjRtHv379yMjIwDCMpM465ZGslJPxKDkv5TJEWeMlLy+P7du38+yzz3LixAn+8Y9/0KdPH0aOHAlccCXl5Ht7R0pG8AJCxcXFRCIR8vPzWblyJevWrQMgKyuL9u3bc88999CwYUOysrLIzMy8aAK9Y5TkFfdlLe7y7APJ+GWvV5l0pet60V95rLfgSaqSMWPG0K9fP7Zu3crs2bNZsGABd911F/369XPrPOS1ZLmjt0W03IAmLS0tCbCCK8QypJElV9qTTz5Jt27dGDZsGP/85z/p0aMHw4cPT+rq4g3MlJ2EcDjMyZMnOXXqFIcOHWLHjh1s3LiRlJQUBgwYQPfu3alfvz7169cnIyOj2ldpTadLlR6cP3+e1atX89FHH1GnTh3Gjh1L+/btycrKApJhA6lCFUXh9OnTzJs3j3HjxrnR6Ct6GSUlJa7enzVrFrm5udxzzz3MnTuX7t27M3r0aNdFlCu/7Oo7efIk+/bto6CggEOHDrF7927OnTtH3bp1GTZsGP369SMrK8vdA0s+uJdzq8oN/K6RN2JZFnexbZs5c+YwZcoU2rZty7Bhw+jfv7+rsr0SVbr3Mrwu7T2fz/fNoOvCwkKef/55GjRowJkzZ+jduzd33HHHJS1027bZt28feXl5nDhxgsLCQvbs2YOqqmRnZ3PrrbfSqVMnlyu9KgQS5Xwy509mS3kf4N+ZJDbjZQppp0kKhUJ8+umnLFmyhMaNG9OvXz+GDBmCz+dzwUMpNXRdp6ioiIyMjAv7oZfHENLa/vTTT/nggw9o1KgRAwcOZPTo0UnHHT16lF27drF9+3aOHDniDjQjI4NevXrRr18/d4tF+WBeBFNauWVffFlE8t+VyuIKXi9JMonMQYGEwXjmzBnef/99Dh48iGVZ3HvvvYl0RQGOSJbAklHgCjaEEILjx4/zi1/8AsuyeOqpp+jXrx+2bbNjxw5ycnLIzc0lHo/TtGlTAoEADRs2pGPHjvTo0eOi6KA3IOR9UG+oVw60bFHPvztTXG4OpLqWCT2Aq+oB8vPzWbx4Mbm5uQSDKYwf/yidOnUiGo3y1ltvkZ2d7bZmAlCEI4Sb3ynAm+tp2TaTJ/+Td999j18+8QS1a9dm+fLl7Nu3j3r16tGsWTO3ZrB58+Y0btz4kjkH8kWXzW/0xiLKRubKwrH/7urCK+bhwpwIRwbQSuNAlo3t2K661TQVSGxYO2/+XPbs2UP9+vW5++67+csLf+Guu+/moYceIhaLJaSzFY0L1WcQK91jO5ASTKxcBXbv20ef3r3RdZ3WLVuSmp5G0BcgLS2NrKws1yWU+f4y5gHJUUGvqPNCrf/uq/7bUFm1IYRAQUF1FFAUFFUgHCexpjUFRwhUVcG048TiJrUya4GSCDEc++oYx48d49SJU/z2t88wadLjieMVBV3VNMxIDDMWJ712raSbHjpymI5dOtOlU2dSgykEAn5qZ9YmWApJm6Z5UdeU61R9pAhQhEqiREggSoWosBJZ3IoqQFFQdZVQSQif30f7jh1o3rwZofOFfHnkKB063JxYoBKHcCJxoWgaGCpb8zZz4PAhdJ9B8+bNad22HcXFRWTdUAcFT3DmOgPUDBKlH0hS9SiJP9iOhaqpIMAWTiLVX1ESuRiOg6ZqOI7AtBx8hr80H8IRIhYq4ZNPP2XVqpUcO3mCcDjM2aLz/OO11+jdrQcWCXFkqNXfz+k6VZwEFkpp6Y0pLBxho6kaGirKZUBqxbEd8er//RvT/jWDP/7lz9xW2rFlwqRfEI6Eee0fr+IzSlsKe+Dn61QDSACitOZL8ZT6lEoIIWxXFaAqqEqpcnEsFsyaxZatuyiJRgiHiqldtwHjx49HXfP5SqZPm84Lf/4Lt/Xv77qGXbt2Zc/evRSGitFUFaEIbOFc1HDrOl1DStiTiQ8XPpIEl/67qqgEU1NYvmQRB/fto0nT5ixetIAXX/w7+luTJ9O5Sxd69+sLAhRVwSGRih5MSUHXdCwhsC0bw9CSsIPrxmRNIDco5XKDNDIRCTsBwHZsHASqoqIoOsO+9z3WffEF9//oQVre0oXu2T14/oW/oa5Zs4bRY8ag6rJFMESjEY4cOULfPn1KEzEsHPtCHeOlcgyu07WjUs1xEamKikC4icaaohOPRhHCJv/gYY4XnMRnBDie/yUL5i9i4KBB6LZt06p1axCJIIk/4GfZZ6tYs2YN//fFv5HmDxA1TRT1Qhe16k4euU6XpwtYovdf+TcF6YYEAwFsM1a6kBVyczawfuNWfvDwf+DTDUaNvofxj41H1w2DLZs307R1C/wBP7t27eLFF19kzJgx3NavH7ZIYOaGpiFIzjG4TteYlMRLLzUhL9gIIoFDJABAQTwWwzB0wqESDL8PxzTZmLeZN99+l5Y3t2XGtJn87e8vM3zECPSfT5rEq6+8Qv7XJxAIVq1aTbt27XjyyScJGn7CVhxD1ROGJReSOK5LiGtPggt1Hl7RIJeqZScimIFAkFgsSlp6OpZtUVRYjO5PIfOGLNLS0hg8bDjvfjiNTXm70H/x5C+xHYf1a3Mw/H5+/vOf0/+227CBuHAwdAMNhbhtoyqgqxqObcN1tXHtSeKESqmnmfw1fl8AxzKJxE1SUlKwYmF8/nSW5SyjU+du3NQyUSU2bcYszpw5R5t2bSte23mdvjvk2DEURUVRDebOns7/fO4PNGzUisY3tSQSPs3BQyf49dNPM+rO/vx/F7hsrK9RgC4AAAAASUVORK5CYII="
|
<image>如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若△AOB=15°,则∠AOB′的度数是()
Choices:
(A) 30°
(B) 40°
(C) 50°
(D) 60°
|
30°
| 69,793 | null |
30°
|
"iVBORw0KGgoAAAANSUhEUgAAAHsAAABHCAYAAAAnfzipAAAO8UlEQVR4nO1dX0wb15r/jckmUUP+SDtsfBN3fa+UKpMECadAodgJrJqWpKJSK8ylkXigklse0BazalQe0Jq7ygMPhBApVSLRB6JWimhB7VXSGyBU8ebCDbkxMlXJOlV5cJW9iVMq1chIdbr2/PbB2IzxH8bGNm7rn2R5Zs75znz273zfOeebM+cIJIk8w0SnCfUD06ETYwfGp36PwT8Sn3zSCSEqpwxAk/Z9SEIQhPUz/kqQ/j+VKSiqGm9aYRQE1P+jESRBErIN+JPQiUf7D2eUaAC/KaIBANxsyKGvIM/TDBBNAzFZ+ptA84CcY8V+fdh8y14xrsnOEYygEec/eTd0QWHxpfubsP9wdGvD/Gt98h4C8+JfG0CT0IlH1jFMn6+PTSZAAfiNOd2MY/MtGwAmv8MjAL/7wysItcVrkIDoPKilvyjkBdlh5yIQCKkUJlxePV7DLFGw9FSxZbMVAADh5d9jH4BH7gkA9VitgxrwphWdrn4MvBtdL9USHQwGMTU1FTm/f/8+FhcXIxWssrISO3fujJyLoogjR45s6PfkK/KkzV4dW5sHZHzaEaKSF8zQfKrD2F/PoV4oWreM6elpOByOyOfBgwcAAJPJhKKikPyRI0dQUlISkZmdnYXP54ucP3nyBN988w2OHz+O0tJSHDp0CKWlpaitrY07LldeCx/Hy5cPyBuygRVyraMAQpbLpn7wk05FBkSZtMPhwNDQEGZnZzEzMwOTyYSysjIYDAYYDAZUVFREl6+ShLA3mJ+fh8vlwtdff43p6Wk899xzaG5uxunTp3Hw4MEM/OLcIo/IVhckefDgAa5cuYKrV6+iuLgYb7/9NoxGYwyx6SJZhbh//z4+/vhjjIyMYMuWLWhubsabb74JSZIyUn7WkeNxfVLIshxzLJP0er08d+4cJUmiXq/nmTNn6HK5SAYzcq900l0uF202GyVJoiRJvHz5Mv1+f9r65AJ5RTYZCaiRcohkm81GURRpsVg4NDSUennhSiPL6xKoppx4110uF1taWqjVatnb20uv15t2edlEHpAd5FoLDZH8J4qiyLa2Nj58+JAezyNqtVpaLJaEf2au/sBEFcftdtNisVAURXZ1ddHj8eREH7XIg3G2BuG2+unTp+jp6cGBAwfw5MljOJ1OXLp0CTqdDnv3/g4PHjzAtm3bIEkSvvjii5iSctUWJrqPXq/H4OAg5ubm4Pf7IUkSenp6EAwGc6LXutjs2hbGzMzfKEkSLRYLHz58yLg2unLx1n/bKUkSzWYzFxcXM6pHJrxDuAyPx8OTJ0/y6NGjdDqdGy53o9h0sgOBALu6uqjVajk5ORk3j7LdDcPv97Orq4uiKKbVlucKsixzaGiIoijSZrMxEAhsmi6bSrbT6aTBYGBLS4uqTk2yMk6ePEm3251hDTOHxcVFms1mGgwGVVaejf5H1smON5wiyd7eXmq1Wo6MjCSVUYNAIMCzZ89SFEVevHgxfWWziPBvGhkZoVar5eDgYM51yLllBwIBWiwWVldXc3FxccPjXSVcLherq6tZXV1Nl8u1KcMbNVhYWKAkSTxz5kxO75tTsv1+PxsaGvj6669nNQBx8eJFiqLIs2fPbmobmQxer5cmk4lmszlnwZicDb2WlpZQV1cHrVaLzz77DNu2bcvavdrb2+F0OjE1NYWKigrMzc1l7V7pYvfu3ZicnMT27dthNBrxww8/ZP+muahRbrebkiTRZrNtOJKVKsI94a6urrwNZ3Z3d1Ov12e9g5l1sh8+fEi9Xr/hDkmycGWyNJL8/vvvaTabeeDAAdrt9g3pkS309fXx4MGDaY9K1ABxoxdyguMU4fP5WF5ezoGB2Bmjm4Hr169Tq9Wyvb09q39qurBarTSZTFnzQBHLjmch8S0muOY7fr5AIMDXXnuNVqs1I4pmCl6vlxaLhVqtlmNjY2mVkc1mqLm5mW+88UZWyk7oxmWOs8MIAisfIXzcyH4Vjxbb2trY0NCQUWUzCbvdTr1ez+bm5rRCrtki3O/3s66uju3t7Rm/V4jshGWN8V1jDTsmVsntb1IQLsdXpK+vj+Xl5fT5fFHX823cqwy5Xr16dbPVicDr9VKSJPb19WW03CjLjqXiPBuNHRxfOQtSXrX4pv64BU5OTvLZZ5/Nq8d761WymZmZSMg1md65rKxut5uiKHJ+fj5j+kS12TGFDTQqSA1G8vU3gTD+O8fXuHOfz0edTpe3Pd5kCAQCtNls3LVrV96EXD/88EOWl5czGEx/Ro4SSYdeid6xGrcaqTFaY8hua2vjO++8QzL/XLZauFwuVlVVsba2dmXq0+aioaGBNpstI2UlIfsczWjigBxbq/qbYt243W6nTqeLaafzAelUvL6+PoqiyN7e3ixoFI1koyCPx0OtVpuR5+ErZMcSKk90sMZ8jjHpN62sQbTF+/1+HjhwgNevX9+wQvkEt9vNEydOpD35IFMTIUZGRmgwGDYc50dYnbWKjVuNrLLeiL5xuHNm7Ihy4VarlS0tLRtSJJ8RDrl2d3dvWsi1ubl5w8GpBG78PM0wRoZcMlcsHUqiQ2kLCwvcunUrz507F7+oXwk8Hg/NZjMlSeLU1NS6+TPdZ1lYWKBOp9tQZYshWx5oXA2krPlEd9ZC4+z29nYWFxfnRWdmo0hGUDhtdHQ0EnJdXl7OlWokydbW1g1ZN0I/InHXPtkf4PF4uGPHDpaUlKStQL5BjUV6vV62trZSp9MlDLlmYzSysLBAURTTjusrLDu44q8TZ16b1NXVxVdffTWvw6JqoJaYtfkmJyep1+vZ2tqa8VmuidDa2pr2UEwxeUGDn4Vg6INg3DfdBSByfWlpCUNDQxBFESaTKYtP3LMPtfPN1+Z76aWXMD8/D1EUcejQIYyOjmZ9+Y/u7m588MEHWFpaSl14lfeQK39Kdd17m81Gq9VKSZI4MzOTVk37pSKeJ5iZmaEkSWxoaMh6qLilpSWttjumg6aWbL1eT5fLxaKioryd55VrhEOuoijy8uXLquVSnb0zNjbG6urqlPVLSvZTBiIf5fmd2b+zvLycY2NjrKk7Rr/8fzEFr5VVm6YmX7LryvS1vydXcDqdrK6uZm1tbVamGgUCAep0Oi4sLKQkl3TC4VYUxf0evfoJTp8+jVvTt3G82ohtwpZQO7+CnxHEVhRFPmrTlFDmS3RdKa/8DsuEjxPdIxNgnDbaYDDgzp07OHXqFMrKytDb25vRexYVFcFsNuOjjz5KTXAt+4msRXms1+u5sLDAf6s/wT/fuB6xpLArUlNGovNUrycqO9k9cwm3283a2lpWVVVtOL6tdPVOp5OSJKUkr6rNVrrEe/fuReK0e/7ln+N2Rgpkh6BsiwcHB1N630vNFDFJklKqQBE3rtbVDQ8Pw2w2w+FwYN++fdi7d29K8ukgm2VnE4IgRIZrFosF8/PzmJ2dRWlpKe7evbuubLJzAGhpacHw8HBUU8JkQ78w68k6TLIsR9IkSaLL5WJfXx/b2trS6oSt18FaT6d48ok6k+v9ts3AyMgIRVGk1Wrd0CPhqakpGo1G1fkjlh2vM7S2Vi0vL+Px48eQJAn37t3D0aNHE8ptRRH+iZqEafHk4p2rlV97LdFxPqCxsREulwterxelpaX48ssv15VhHIstKyvD/Py8+pf91dSIsFXY7XYeP36cJKnVan8VDz82G2NjY9TpdGxtbU0r5p3Ks/akQ6+fEYxqLx0OB55//vnIYnKpLAlVQHzU19fD5XJhx44dkCQJo6OjKcm/8MIL67b/Yaw7zla6wLm5ORgMBnz11VcZW3esAKC4uBgXL17E559/ju7ubjQ1NeHJkyeqZI8ePQqHwxF1jQk6aSm9xelwOFBRUYFbt2794h9+5COqqqowNzcHSZJQWlqKK1euqJJRrs0KJHmwo7Zt8Pl8LC4uZiAQoCRJvHv3bsrtSwHqIMsynU4ny8rKIiHXRLHzQCBAtTSqtuzvvvsOer0eP/30E7799luUl5erFS0gRQiCAIPBgLm5OZw6dQqVlZXo7++Pm7eoqAi7d+9W9X63arK9Xi927tyJ6elpVFZWRlb5LSC7eP/993H79m1cu3YNL774YqRzrERJSUnM823GabdVk728vIw9e/bAbrejrq4uda0LSBlhwiRJgt1uR0tLC44dO4aenh4EAoFIvniWHV4KW4mULHvHzmLcuXMHJlNNYUOWHGBtR6u9vR3z8/O4e/cuKisrI0OukpISeL3ehPLyyvQi1TsJ+Hw+7Nm1G+M3xlBR8UKooMLeDTnH3r17cePGDQwPD6OhoQEWiwV7diVqs0PLemtWdtNJSjYvWPEfh/tw/uUtWFpawvLyMrZv34pLly6F0oXwvh4FbAbeeustXLt2LdRhrowX91hx3AIAhsmOa6ED+KPVgf0TIQGfz4cff/wRev0fIjkKRG8unnnmGZjNZng8Hrz33ntRaYyznYVAmYwlWsaFpmMYfrwPTVPD6MyPTYJ+k1CSlrowooxYA0G5rVIIE53Hcdv0BvZPCxAiuePst1VA1rEe0aGOcpibm7CaQs/QNYIAQRM6broQcsEa5bZKQGjz00H8J0YO/y8emfbhcGQCecG68xGCQJDhCvEyzk+No8MINA7IoY1rBxoxYq2B9aasYJCAzHF0DhKW/pdCNUr7r3ilQHJeIPFQVxM1phbwP/jHdBNqOlbyH9ahJrwxXiQey9BrulC+zNfUT+XyGkE1i6Ktl6WQnr10Obw0ysDKafT6N6tmu+K+Gd63eqARNfsPI+y+BUGAJsGgWlbOEYuTpZCe3XQg5LIhADfdHuBTKwShCBqhB7AFI3ujaYBQO236L+Dt8yci4jfdnpgimfA5afI4eSE9u+kRV44JfHGP6JgIggziZocGF14xwnpzpTKE1jUDgRfZMRGkzBsri91pFK48PJU1GOM2kiG4ziS/QvrG06MW75/oYI1JuSpGaAP6GmvoteIkKxyuFkmut7RlAfmAsY4a1lj/EjkPr5YRXkRBRVd7tc2OhmI7RYV3p9LVE4X0XKQDICbwFwdQ+Wp4s/kBmOsv4G9ojPTMo/bi5LrRGnX7ZRaQW/CCGUXW0dhX6o0dGJ/qxyvUAALw/xMAlwQ+8rXaAAAAAElFTkSuQmCC"
|
<image>如图,AB是半圆的直径,D是弧AC的中点,∠ABC=50°,则∠DAB等于()
Choices:
(A) 55°
(B) 60°
(C) 65°
(D) 70°
|
65°
| 69,794 | null |
65°
|
"iVBORw0KGgoAAAANSUhEUgAAAOgAAAAYCAYAAADwO7FhAAADp0lEQVR4nO2av27iQBDGP0fJicfISYYC8QTmirRcGqq0UaTTUkJzHSVdmt0ySPcCVEgn7DfgCRAnxfseBHLSXsGfrI1tbIzD+pifZAXWu8tk1sPMt4ullFIgCMJIrs5tAEEQ8VCAEoTBUIAShMFkCtCnp6ei7CgdZfNFUfaWzQ8mkcZ3VpZNIsuyQHtKa8rmi6LsLZsfTCKN76jEJQiDoQAlCIOhACUIg7nO0rlSqcCyrKJsKR1l80VR9pbNDyZwd3eH29vbg/0ybRIRBPG5ZCtxPQEhC7LEeCRE04Jlha8OvHObFkuczRaspkDepZSiGZrPQ6djrjfMIXpdIl2nUuMqBkdxP/2I/w9fcSfoA5dBAUy55zPqAPs2K5cpsBwW+1w5QHCOTZtz2Q9IBnzFHaidC12mEBFfqTOo1xlg5jRQs0/4RVI6fMzxgHvNB60XH9wZ4ruxmUO32YMQEmi1wevVI+fz0Kn2MGUu1Evro9nuos+AxmU/IBnwMZ8ytLcurNbhRPRKFaBSNDFu99GYns68UuKNMWzUEHwEbdQaAGavuUvGQvDGmD3cwwYgxQDzmg2ghW73uECSYoAhGFw9ODdU6wxHx/2l4Y0xZG2svSghHnuYsj72lkVPp8vFand9ZGKuGPfXJYzD1SUXMC7TShINnzsKhvrG544CsLnyShRXMSpjT0LadQlk0C+Vm8BfQEI8Az+3Yb2XPS4JD+OhVpJo+POpob6RmIwA7iso5YPnlSjyFTNQGZsffV0UfA70qs3IDdjEEleKR/SGPVQtC1a1h4uucOUrZruSRG8XGAwBFhW550ZOMNrpTxu1hzqoAjWAwLoAdrcPhilGk/0IjQ9QKfD89xeWixWWixWUy/Ct9hWrt3es3t533cLvw+1Z76Xpl9QetunQZ6RFTkbYF1gb7eBw/DQyPkfARn8CQKvbhQ0J0TnyiMWuYS23I0ZLAWHqPplhhNclsTIJ17zLxSqgN7d61OeOcrgf0KdpXme5l2ZM3Piwfg6/zkfEEdP2qMFQ7Rl5vLLZ2s+jIbfaKaDFXWawH0wjvC5rXR93VLcXoL9/3ASE63LxR3FnLWavr24CZ196UBQZoEntx3xhZMJlmpgPXnmOEgslweb8G0UR8xvrCMOIW5eEL7e9n/qt3t61TaJgW/heVN+odv39sXNknTvpMwmiLOw0aF6tdiqt99lzE4TJ7DLoNgjiMk1SRosapwdV2ntR2THt+HCbPvbQ/0YQpvIPWXsMCwuBF5UAAAAASUVORK5CYII="
|
<image>如图,已知点C为线段AB上一点,AC=12cm,CB=\frac{2}{3}AC,D、E分别为AC、AB的中点,则DE的长是()
Choices:
(A) 2
(B) 3
(C) 4
(D) 6
|
4
| 69,795 | null |
4
|
"iVBORw0KGgoAAAANSUhEUgAAAHIAAAB6CAYAAABjjgcQAAAZHklEQVR4nO1df2gb99l/ZLVTaN2pf8jkSs7InS9Enml1jZbFJaZKQCNqrBLnrVqHVe0E85A7F6YwZfOIiws1qxNrxGEudd50TKGCuJuDC002uXHphTrMTNnsgF07TC5O5RIxBaagdFFeND3vH97de5LupDvdnaSl7weEfXffH8/d832+P57v830eHSIi3OcIBoPwxBNPwP79+2tNimZoqDUBakOoXR49erQGlFQXuvtdIl0uF2xsbMDi4mKtSdEU951E8tHX1wd79+6Fa9eu1ZoUzXHfMnJmZgYAAJ544gmwWq01pkZ73LeM/PWvfw0TExMAAECSZI2p0R73JSP7+vrg4sWLoNPpwOl01pqcquC+YSQ7Z2O7VEQERITR0dGvhUQ+UGsC5AARQafTCV7rdDqYmZmBn//857C4uMg9i8VitSK3usD7BF1dXQgACAAYiUQQEdFqtXL3urq6MJfL1ZhK7XDfryO/LrhvxsivO/7jGYn/ntR83fEfNdkRAn/y83XGf7xE/j82UfcSmUql4Nq1a7C6ugo3b94EhmG4Z2tra7CxsZGXniRJoCgKVlZWAGBTOUCSJGzfvh1sNhs0NjZWk/yqoe5mrRsbG/Dxxx/D7OwsfPLJJ5BIJKCzsxOam5uhtbUVdu3axTGjpaUFzGZz3nryxo0bsL6+Dt///vchmUzCa6+9BslkEuLxOMzNzQFJkrBv3z5wOBzgcDhg69attXxd9aD1+kbK2m1lZQUDgQBSFIUEQWBPTw9OTEzgyspKUX6h8grvMQyDFosFm5qasKOjAzOZDPdsaWkJx8fH0e12o8lkQovFgoODgxiLxSqivV5QM4VAMpnEiYkJtNlsSJIkBgIB/Oyzz1Qp2+l04rlz51Cv1+Mrr7yCHo9HNO3S0hL6/X4kCAI7OzvxzJkzmEqlytZRb0yuOiMTiQQeOXIEGxsb0ePx4IULFyTnlfLxFhYWkKIozGaz2NLSgp999hl2dHTgr371K8Gy+GWeP38ee3p60Gg04sDAACaTyYpoqAVUY2S5F4zH4+jz+dBoNGIgEMBEIqHJR/F4PDgxMYGIiA6HA2dmZjAej6PZbOZUd+UQj8exv78fjUYj+v1+TCQSqtOpNjSXyHQ6jQMDA2gymfCNN97AW7duaVZXLBZDkiS5MbG/vx/HxsYQEXF+fh4JgsBYLCa5ASUSCY72oaGhvLG23qApI6enp5EgCPT5fFXppvx+Pw4PD3PXY2Nj2N/fz12Hw2Fsa2vDdDotq9xEIoEej0eWVFcbmjAyHo+jw+FAmqZxfn5etXJLMT6ZTCJBEPiPf/yDuxeJRNDhcOSlCwQC6HK5KqqfnQ27XC7BhllLVMxIsY8ajUaRIIg8ydASLB1DQ0Po9/vznsViMTSbzXn3stksOp1OfP3114vKECu7MP/g4CCazWZcXl5WSL16UFUiQ6EQmkymqnc/mUwGTSZT0QQqm82iXq/HTCaTdz+VSiFFUTg1NVVUltTufmpqCk0mk2AZtYAqjMxms9jf348UReHS0pIaRYpC6EOPjY2h1+sVTN/W1iZI08rKCppMJlxYWKiYlmg0iiRJ4sDAgCht1YJiRqZSKXQ6ndjZ2SlpIa02stksms1mXFlZEXze3d2N09PTiFj8oS9evIgkScoa7wrLSCQSaLPZ0O12y55EqQlFux/Ly8vwne98B8xmMzAMA0ajUS3NIQcsowoOh8Pw1FNPgcViEXze0tIC169fL7L3AQA4cOAA9PX1waFDh+Bf//qXpDoLy9i6dStcuXIFtmzZAh0dHbC2tlbulbRBpS0gEomg0WjE8fFx1VpVJaBpGufm5kSfT0xMiHa7LF588UX0+XyKaRkZGUGj0YgMwyguSy7KMlKo319aWkKj0VjzNdWFCxdw7969JdMwDIN2u71kmkwmgzRNcxohJZienkaTySSohNcSsiUymUwiRVGCkljtwd5ut3Pjnxji8TgSBFG2LDZdKemWiuHhYWxvb6/qmCmLkdlsFh0OR562pFaYn5/Hb3/725LSGgwGSROxubk5JAgC4/G4pHJLNVyPx4Pd3d2SylEDRYwsRZzf70eHw4HZbFZTosohl8thd3c3hkIhSelpmsZoNFry3dhnExMTSNO0Yr3q3bt3saOjA4eGhhSVIxWSJTIUCiFFUXWhmmKV41IblNvtxnA4LLl8n8+Hbre7Itr4jSUejyNJkmW7fzUgiZHz8/NoMplE12rVhtfr5XY1pGBwcFCSZORyOczlcpjNZtFut6uiZoxGo2gymTilhFbziLKM3NjYQJIkaz5DZZFIJJAgCFkTiVAoVNJKQAjJZBLNZrOsjW8x/P73v0ez2axpb1aWkQ6HA0dGRjQjQC4CgQAnXVJb9/z8PNpstqL75ZTlCwsLSBCEKj3R4OBgXnettmSWZOTk5CTabLaaT25YpFIpfOyxx2Tv2N+6dQuNRqPs+nK5HE5NTSFFUXj79u2K8rMMy2QyaLFYNOvZRBmZTqeRJEmMRqOaVFwJRkZGKl76fPOb36zYZGNwcBCdTmdFDZrPzNnZWbRYLJpYGogyMhAIqKK2kgIhQ6hCZDIZJEmyYo1JR0eHosW+y+XCn/70pxXnZ9HT06PJXi0IfbxYLIYmk6kquxn8+ksx8syZM9jT01Nx+V6vV/K6Uyh/Op1Gi8UiaxkjhEQiwe2dqglBifR6vVVbyEpBNptFiqIU7R0ODQ1x+4aVgl2//ulPfyp6Jmfy4vf7i6wZlKKIkWyLqcXeohimp6eLbG/kYnJyUhWV2ezsLJrNZkE1nlSTkcJvrMYMtoiRfr9fcctVGzabDRmGUfTCCwsLSNN0RXkL6x0bGys6iiAXPp9P1V4vj5HJZBKNRmNdGeQyDINWq1VxOel0Gg0GQ0V5hRqQ1+sV3OeU2tjYeYhaOyR5jGRtX+rJLP7ZZ59VzcCJIAhcX19XpaxMJoNPP/00njx5smS6Ut+yu7sbz549qwo9eYx86qmnFHdhaoJ/jkMN2O12nJ2dVaUsxE31pdlsLlum2Amy6enpspveUgF8dVShDWitwT/HoQZ6e3tVN02Zn58XXN9KEYZsNosmk0mVXqKBNSY6e/YseL1evi1PTZ0srK2twSeffJJHk1JYLBbVHSjt3r0bRkZG4ODBg3Dnzh3uvhTfBnq9HjweD/z2t7/l7lX6zTkruvPnz8Phw4fzCKmmowX+CyAijI+Pw6uvvgoGg0FSHilobW3NY6RaDfWll16CZ599Fl5++WXZeQ8fPgy/+93vuOuKvzniprGuFLuWaoE9x6HGWpbfxa2srCBFUYLPlII9inDs2DHZ+RobGxUfM2wAALh8+TLY7fZCBlfWMlTA+Pg4HD58WNBOVi5d/Bb++OOPQzwe52xY1exx9Ho9TE5Owvvvvw/nz5+Xla+zsxMYhimiR9a7IiJ3Zr8ewD/HoQVKWaWrAbZ3k6NOHBkZUbxBISqRtcLp06fB5XJp5m2jra1NU4+RFosF3n33Xeju7oZbt25JyrN37164fPmysorX19fRZDIpag1qgT33z0qMFuvZI0eOyLL3kYpCWoeHh9Fut0teA0s12RRDQywWg/b2dmWtQSWEw2GwWq3cOQ6dTqf6WG02mzlnSmqicHw7duwYEAQBP/nJTyTlb2trg7/97W8V19+wuroK27dvr7gApeAzamxsrChGh9pLIIvFAqurq6qWKYazZ8/ClStX4N133y2blqIouH79esV1PRCLxURPMlUDLKNmZmbAaDTCnj17BE9OiUFOWoDNlr++vl4JqbLrNxgM8OGHH8LTTz8NbW1tgu/GXqsikRaLpeauMt966y3w+/0AIE8K5Urstm3bIJFIwL1792Tlq7R+kiRhcnIS3G43bGxsFKVnr3fs2AHLy8sV09GQSCRg27ZtNXWXefXqVUgmk9Dd3S07r9wGqNfr4fHHH9dknBTDnj174I033oDnnntOtAGRJAnJZLLiOhru3LkDjzzySMUFKAUiwvDwMPzsZz+rKH8lDXDHjh1VP5Dq8/lg9+7d8IMf/EDweWNjY56uVi4avvrqq5q6vvz8889hcXERPB5P1ercvn171SY8fLz99tvw5ZdfwvHjx4uePfzww/DVV19VXHZDOp2Ghx56SAl9ijAyMgJHjhwBvV4vO28wGOSU+3Ikc8eOHZooBcp183q9Hqanp+Gdd97h4pOwUCqR/65/E5m7d7lfNSD3HAd/0T06OsqFguD/pORlGAY7OzsrJ1wh2KMI/D3MVCpVkTU8izxnEIYtW/L+qgEs0UrHxsbA5/NJ7tr5Usf3pMxHMBgsm7eaa0kh0DQN4+Pj4HQ6ZUthX18f1wPRNA0Am6EVG9QQ6VIQ6/Ju374NoVAIXn311ZL5xRoCe59fvtTudevWrZDJZOD27duS0muB559/Hg4fPgwvvPACAACk0+mSk86ZmRnQ6XSwsbHBbfofP34cdDodkCQpzEj2I93LZLif0DX/XiGE0vKf/ffp0/Bfhw4JKsf59f/PvXtFZdzLZMD+zDOgb2jIY3SDTgeBQKCIZiFQFFVTqQQAePPNN+GBBx6Ao0ePQjqdLuqZkGel4XQ6oaurCy5cuMA9379/P3R1dQFFUQCtra24trbG9bWF42Opayn/IyLe/ec/857xz3GIjcdsntHRUdQ3NPxfaKQDB7g0/Gf6hoa88b3wf8T8cbKnp0ex+b8UlFP8s0cR3nzzTcGjf4ibNrAgMv77fD6MRCIINE3n7Z1JZRx7LTRBKldGKBTiznGIMTJz9y4X74oPfUMDdnV1FZWdy+UkNyzEzSME9XIsIhqN4je+8Q3cuXOnIOMBoOx+ZQNBEPDll1+Kir9hyxbR7ol9zv6kYnh4GAYGBkqmef7557nxgI9f/vKXcPHixbx7KFPfCrBpLaBESV0JCt+FtZPavXs3bN++HbZs2VL0HuwyhaKokmU3sJZlpZglBVLzf/jhh9DS0sLNuAqBiBAMBiESiXAL51Jly2Ui+zFrMXPV6XRw5coV6Ovrg6amJhgcHIRdu3bBjRs3wO12w/e+973Kdd7j4+P4ox/9qOz6sVQXKPSMvc8fHxE3zyle+ugjwXzstdVqxa6urrw0bJfj8/mKxkN+fWJjZGFdStdtchCLxfDYsWNoNpu5iAqF5ialPI+ASNcaiURwdHR0M83s7Cza7fayg7IaSgKGYZCm6bJ1AQBHYCFYJqsBtWyDhN6HHw6jsbERvV5vSYt01heQENjJDv+bjI6O5p2JkWTqoZamx+VylT3HEYlEuGCehR+I1eaodQ6/s7NTVQeA2WwWJycn0e12IwCgy+XCcDhc9tRWLpdDg8FQ0k/BiRMn8jRYhY0ZEFHUc4WaKjs55zjEJFLoBZTA6/XimTNnSqaRYjc0OzuLXq8XjUYj2mw2nJiYkCzpuVwO5+fn0WKxSEovhgZEBLvdLmjFVcmMVAynTp2CQCAgSTne1dUF4XCYu2a1GvwFMaqwES7FvEJsIrW6ugpHjx6F5uZm+OEPfwgkScJf/vIXuHr1Kvh8PklWgOw7MAyj3IoREfGdd96p6Hy+VKyvr+O2bdtkHQzlx0cGFbtTPqampmSdYk4kEjg+Po7t7e346KOPYm9vryreJJ1OJ05OTioqoypHBgrjcVQbYt3jwsICtre3l8yXyWTwvffeQ5fLhXq9Hnt6enBycjJviKjUbJN1l8YeGVACTm1CkqQmFtipVErxOQ4t7FtZJhkMBsFx+8KFC+jxeNBgMMgKflZYRznwx0fFZz8AAF544QU4d+6cki5a8P7JkydFz3FIhRb2RDqdDgwGAzQ1NXEapOXlZXjttdfgscceA7/fDxaLBa5fvw6ffvop9Pb2yn4HKXRPTk5CT0+P5PSiYDmqxUHXTCaDBEHUlU+CQnR0dGBvby9aLBYu/JNUb19SJKiUH6FsNotNTU24vr6uuNfJ00jTNK3quqpUPI5aIpVKYSgUQofDgXq9Hnft2qWKF0i54B89V5WRan541snR6upq3v1q+icorGtqagp7enpQr9ejw+HAUCiEJ06cEHReJCWSrFLI8QJdDpq5ZwmHw5r49Jb7QaPRKPp8Pi4MbzAYzHN2ND09jU6nUzBv4RKI/anhLkZT9yyI6jlMomkaP/30U8XlVIL19XUcHh5GiqJEldQsVlZWSs4NrFZr3hp2dHRUFe2Spg6TEDf9cCt1YRaJRATdjqjdPfHLY5XUnZ2dkpTULLLZrOgSBBE56cvlctwOhNJDqYlEAo1Go6pu4jRxKiglHodSsIvpQiX1e++9V6RBKteAKIoSlNjR0dE85ontyMihGVFjp4L8l1Xi5jMajRZpS9SWxLm5Oezt7c1TUhf6C5dTp8vlEmx47PYR+/vjH/9YlEbuu1XVzSdiece7Yi8gZyYm5yPEYjEuAKfZbMbBwUHVwhb5/X4MBoNF9PDHRzUmOIgaOt5FFP6g6XQaCYKQ5QqbjaCqlssxVklN0zQajcY8JTXfxbRSjI+PY29vb969SCSSxzw1vEnPzs4iRVHVdYWNKN85fW9vr+Lz+ZlMBsPhcJ6SempqSlMH+ayVBB8+n0+QeZXOWO/evYttbW3Vd07PQmq4iEricfBx6dIl9Hq92NjYWKSk1lqJsL6+jiRJ5t2zWq15Y2Iul0Or1SpLMvl0F4aLUBuCPs35YMMClWtJAwMDsme6KysrGAgEkCRJpCgKh4eHSzrY05KhBoMB0+m06OEg9jczMyO77KmpqdoHcEEsH1KJ3ariz8TEVFxffPEFBoNBTknd399fFyEp2tvbFflMF0NhSCWtoEqQs2AwWDIeRzqd5pTUBoMBPR5PTZTUYsjlcnjw4EE8d+6cKmWx+OKLL/KCnGnZo8iKHykUdrBUPA7+5iyrpK5lQOlSGBgY4JYFanzwTCZTn2EHEYUDgfLPcSBu7mv29/cjQRDY3t5epKSuV4RCIVW33GoeCLQc2NC8L774IjIMgxRF4QcffJCnpD569KiqZiPV2PpiGAY7Ojpk5RGbB9R9aF4Wf/7zn/HBBx/ErVu3IgCgTqdDiqLwxz/+sejGdL34SRcDq8guBSnvICVYthbfoiJGIm5qPgwGA77yyit46dIlblOapmkEAKRpmgvYqZbVgVZGWCyMRqOiJcLIyAg++uijNQlf/0Cltj779++Hv/71r3Dw4EF45JFH4NSpU3nGx5cvX4bFxUVYXFyEUCgEi4uLQNN03k/I2W8pAyStjLBYUBQFn3/+OZhMJlll3Lt3D/r6+iAajcLVq1ehtbUVAIrfp9z7KYIUbhfulOt0Om5LJ5VKodPpRLvdXna3hGGYqkhupXj55Zdlm14kk0m02WzodrvzxsRqDyWSu1ar1YrBYBARiw/TZLNZ7O/vR4qiZC18c7lcXTF3aGgIX3/9dVFaCxGNRpEkyboIQZXHyFKtiC+8kUgEdTpdkdouFAohQRCKFcN85rK9AcvcU6dOacbccDgsWR86NTWFBEGoFiVIKSRJZKGdypNPPlm0C8A2gmg0igRBqL7nNjc3x2037dy5UxPJjUajXCA0sUadzWa5fVGt1W5yILofyUfhTnk5iYvH4+hwOJCmaZyfn5dESCVjCp+5NpuNs3Dzer148uRJ2cxNpVLY2Ngo+pxhGLRYLOhyuURnt7VaZhVJpBAhVquV0/qzTJXSfU5PT3PW21pq/vkQYi4ruULMLXxfgiCKNFGJRAI9Hg+azWbN9hOVomzXWrhTjijNXQiLdDqNAwMDaDKZcGhoqGoM5WNubg7ffvttjrk6nU60W+afYk4kEviLX/yCo73Uzn6tFR5lGVm4U84eDZdrURaPx9Hn86HRaMRAIKDY+EjphxOT3KamJi66utFoRL/fX3J7rl5QlpGFBrrsOCkVQmFpjxw5go2NjejxeOqqq3rrrbdw586d+NBDD+HAwEBNeo9KIcqR0dFR1Ol0qprL85n697//nfN6wa7FtIyQI4alpSX0+/1IEITkc5D1KJU6xBp7pYfN8/i/+c1v4IMPPoA7d+6A3W6Hffv2gd1uVz0CwvLyMjAMw/1MJhO43W7wer2cao2mabh27VpR3jr4VKKoC0bysbGxAR9//DHMzs4CwzBw8+ZN6OzshObmZmhtbYXvfve78PDDDwMAQEtLC5jN5jwd5o0bN7hwEHfu3IFoNApra2sQj8dhbm4OSJKEffv2gcPhAIfDIeq0gaZpOH78OOzfvx8ANn2iXrx4sW6ZWXeMxALF8u3bt2FxcRFWV1fh5s2beQ5319bWYGNjIy9/c3MzfOtb3wIAgAcffBD27NkDzc3NQFEU2Gy2sk5+2fppmobFxcW8ZzRNA0mSea426wUV735ohcLdAaPRCM8880zVgrDpdDoIBoNAkmTefUQEkiSLGk69oKF8ktqB7Sy0jEki1CExDAN79+4toqGQufWEuutaxVDY5YrdK3Vfaj0NBZ6ZWXR1dYFOp6vLrrWuJZIPtcMsibXfjz76CA4cOFCUbmZmBv7whz9wklpvqLlEKpEeLdDX1wcAABMTE3m0sf5lCydA9YKaS2S9MJFtz6dPn4ZDhw4BwCZtrB88gPplIgDI0LXd5yh15uPEiRO1Jq8kcrkc/i+/Jz3ehrl4jQAAAABJRU5ErkJggg=="
|
<image>如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()
Choices:
(A) \frac{3}{5}
(B) \frac{4}{25}
(C) \frac{2}{25}
(D) \frac{4}{5}
|
\frac{4}{5}
| 69,796 | null |
\frac{4}{5}
|
"iVBORw0KGgoAAAANSUhEUgAAALkAAAAaCAYAAADrJf0cAAAF60lEQVR4nO2bS28TVxTHf3dciSifoeqDPKhEQjf9AMROE9odgS/Qje2UIpB4LdpFWFSqjaEPCQio26pVicOuIaUlWVcqErHZYAL9CpUaJ4Dnni7G8/DM+BVCmAnzl0aee859nDnnzLnn3jtWIiJ4YBeVUiR4syAisbL73Nxcy287GPaN17mVUszNzXVtHDVEWeYoy2bDdvA4yNoPHCeP0xucIEE/CETyBAn2GpJInmDPw+heJUGCeCNx8gSxRD/ptfJvIdodXLx4kdXVVQ4fPryTsiWIAVZXVwEib/uVlRUmJia67gS9FUbslp8rpSK5UH09cmnCJkSlFGhBYrjUiaJze/fwRWmUGD4HD7cDhERyuzMBYmEfW/qAsMGHflXP1GKAmB2oxBmOr3bRedMLtEOwK/ubeN+FSEVxkVDPlZAQ+qpcz6tg914TpiVbdxHSYPQhlt78unN9VeH1YT9Cc/J4w4rgIiZKpQLcXY+0/ukjNlNkHNA+RfHCPQwKNAbz9iUuVeP1DkjzkcIc3KI304rdEkj5BkscfNtw1ajRUqE4mXI+Q7Gv3GIworuHQXZHIoCBpsznM0u9jhoZVC6n3YeevERVyuRnFwKiKtgR+f1dOBOj0DSEwjCUzxh5FiOou6jD8lErehtqnPN/VChkIFu2UpnGYpabxyYDgdnAtYnVUTPS3Z69Sm1ylKGx9taQCHm5rhbJGIoPH59w8jfzO+FU6jiPhz4ID6CqfR7XK/z9KpuiQDHG2btrFNIZihWNaEHEZGH2BseMPIsd8sgE7eCmJ1pqrP+ZZXrG0qMaGSIdvkCzYTp3D0oTkivfkixZKXvoUYUpC5IHIb8Q4N3KI9myKVprl6itVrslWy5TkDXtjmfqNSmkw+VNEITXdBbB+jHLWUeHpl6TQgZhthxo78nJDcytOi/uf8184xuujT5hPTPCiCdY9x23uzXYIX718lXmyVG+fjRQZXQox/Coal1sKujpsLdX+XyzYUth8XdujAwxrtzxDDXO/lGg9oSKvEQ03yX9vm6+Ur6qzRm4+rQG88dRSpEyTsH3Grk2E+imJSdX+9b54QbMnv8IAD3yXotx+l4zdWuwA3yTMtfPrpAunmQGA2frrqmVQ2fnOTfm7agPp+pVPtVa9BYW794kNxVU/OjwBMDLHRbtgn6jwnfWUAJgoKXC8hJWGijCgxJcGMtQehjspiWcVa+c4ssfv+KQkSI1foEV/K+QF9HIJ1V1nUcKhocONCmGpRA73w7Iv3uf62jK3J3PMnU0qMRabQWG32dcOu/xJmjC3npVABoeLrHMpxw5aOl27MwJ8qyw9Fsl0NSxuK4WuSpX2NjYsBZt5SxH3n0H81kdc6uOAOZW3bnswxa77Ie3bj+8XuqF0w2nbPG2rPtnncfYKfgyFwvVdWr5jznqe7F0tcS1m5CdmrHSKDdrbO7OJE7vhzvjWbsr1eU7yPS0m2k4we5goK0B0HhYZOq0wRdnDjmM6tMaz1MDAKQGBlHNX6esFOZWndTAIKmBQcxN15m89NTAoOV80oEHgYjrreflB9oPv82owD+P/m7hA7y4/zXfLtljBB1HvOdg28wfnXNN+++DHl51+Q5q/4EWmqnXKJ0+x710kZMzwTzHWjuEzDYRyY9fF99VkYGJlaoc+WQMsGbME+MXuCc5poOZIfyaa2Y6Ki2Fqpbn9b+sVWozA9qX/clZpTY2N1pWrY36hjQ23attvR5526E3NjfkQWlCAJn95V+H/uznz4RMSda02bavVwlTFiTLhBTWPLsqlYKkFUKmKFVtiogp/o2DBJ1hlrOOb2IFeOs+U2zZwfICPyHMIWyayzPb1tVaW3SP9bz1XtT/a1YMH8/e6mvUwx2zXXuznJd9Rm8vZyc4W41tvC+Mr7V2LkuWVkN4r2y5nWP7DRRusO3It5f424Hz7Yo9zXunexvteN5yu/t+eGFjbrfvTm0SvFlocXKgrTN0csawdt5FYa+8MAfutb2f5m3b7dkS7G30/BViEg0TxBX/A/hEvm+Tzs99AAAAAElFTkSuQmCC"
|
<image>如图,已知点C将线段AB分成1:3的两部分,点D是AB的中点,若CD=2,则线段AB的长为()
Choices:
(A) 6
(B) 8
(C) 10
(D) 12
|
8
| 69,797 | null |
8
|
"iVBORw0KGgoAAAANSUhEUgAAAJUAAABhCAYAAADfoeNAAAAOh0lEQVR4nO2dT2zb9PvH3/3pV1HEJQLBjATUQutkxsQscTHZoeZE1u8BswNNT80ESrNT0wNakL5ShoRUEIekFyIqoWynAhLKdiBmp6SHLYVLUqkiYYmUoB2SWyJxcGglnu+hdZY/Tmondv44eUlWWzv++BP37efzfJ7nsT1HRIQZM0zk/0bdgRn2YyaqGaYzE9UM07GpqArYuTaHubn2ZQPyqLs2BdhUVBex+SiPsNOJcJ5AdLrEvbtYmQnLcmwqKgDI4w98jP9cfLbm+nd5hJ27WNmYycpK7Csq+T52r1zCxZaVF3HpCoCjJyiMpldTgW1FJd/fhVe63rF+6bJzBL2ZLmwqKhn3d73Q0BTyfzwGOizYDDOxp6gKT3DkldChqcIOvtyFpgWbYR62FFXhl5+Ay0vta7Gz7sdjZxifzTRlKTYUlYxv/MDHzdO+wg6uzS3BjzDyjzZnQ5/FzNkqoSxvYG5lV3OTN074ToeFymQyqNVqLetKpRJKpRIAQBTFjn14nofD4TDWVxtjL1HppF6v4+DgoCGW3377DaVSCblcTlMgLMticXERALC/v9/RXiaTQb1ehyAI4DgOFy5cgCiKYFkWLMsO4RuNF1MjqvX1dSQSCTz//PP466+/8N577zXEIggCWJYFx3F9t68KNZfLoVKpYH9/v8W6LS8vN4Rmd2wrqkqlgvv37+PBgwdIJBKYn5+Hy+XC8fExfv/9dzAMg9XVVUiSNJCYzqNUKiGZTGJ/fx/JZBILCwsQRRGrq6uaQ6ktIBuhKArt7e2RJEnEMAz5fD568OABvfPOO5TNZls+m06nKRAIEMdxxLIs+f1+SiQSlvcxm81SJBIhURSJZVkKBAJULBYtP+4wsYWo0uk0eTweYhiG3G43xWKxxjafz0eRSKTn/sVikUKhEImiSA6HgzweD8ViMVIUxdJ+F4tF2t7eJpZlSRAEikQilh9zGEy0qBKJBEmSRDzPUzQapWq12rI9FouRJEmG2qxWqxSNRkmSJHI4HCRJEkWjUSqXyyb2vJNUKkU+n49YlqVQKDTR4ppIUSUSCRJFkURRbLFKzZTLZeI4rkNoRlAUhWKxWMMKCoJAoVCoYyg1k3K5TH6/n1iWpWAwOFD/R8VEiSqdTjfEdJ7/o+czRkmlUuT3+4njOOI4jvx+P6VSKVOPoVIulykYDBLLsrS9vW3JMaxiIkRVrVYpEAgQz/O6hBIMBikYDFrap2w2S6FQiARBaEwKulnNQVC/O8dxlgnYbMZeVLFYjDiO0321plIpEgTB4l61Ui6XKRKJkCRJtLCwQG63W9PHG4RsNkuCIJDH47HcvxuUsRVVuVwml8tFkiTpPonVapV4nh/pFF0Na3g8HnI4HCSKIoVCIdP6FI1GieM4ikajprRnBWMpKlmWied5kmXZ0H5ut5v29vYs6lV/JBKJhuPNcRwFg0FKp9MDtVmtVsnj8ZDH4xnLWeJYiUpRFAoEAuRyuQyb+Gg0Sh6Px6KemUM2m6VgMEg8zxPLsuTz+QxfOM1Eo1Hieb5vkebDTgJwujjDlKc4eb3xvvujMjaiKhaLJIpiXzOdbDZLPM+P5VXbjWKxSJFIhFwuFzkcjoaVNeqHqb7WeQHeFvJhcgKEZgGdrXOG84aOr8VYiCqVShHP833NbhRFIUEQBh5SRkm1WqW9vT1yu93kcDjI5XJRJBLRba0VRSGfz6fTUsfJ2y4odYsXZIKhGr2oZFkmURT7nin5/X4KhUKm9mnUyLJMPp+PGIYhnudpe3tbV8A1Go2S2+3uabFPhzwvaWknH/aSCYZqtKKKRqPkcrn6HrZkWSaXy2Vyr8YLo4lvNaGufZGeWikzhrhejExUoVBoIMe6XC4Tz/NjH7MxE63E997eXsdF2dX6n/lNZgxxvRiJqILBIPn9/oHasCINM0moiW/VD2tPfKsprRZh2VVUkUiEfD7fQG1sb29TIBAwqUeTT7fEdywWaxNWj+EvH6awSWIbqqj6KUVpJ5VKkSiKExU+GDbNie833niDXn/9dapUKkT0LDbVYq3i3rM4lTkMTVSyLJMkSQOJQVEU4jjOdpWSVhKLxejChQu0vLz8bGXc+yzo2SW8MAhDqVHPZDLY2tpCLBYb6FammzdvYnl5GR6Px7S+2Rn1vL/wwgt488038ffffyMajVp+XMtvJq1UKrh58yb29vYGEtTdu3cBYCYonSSTycaF/Omnn+Lp06dYXFzEnTt3rD+4qXZPAzNmacVikTiOm/lROlHjd6qDrigKsSxL5XJ5KLNmS0VlRrGcoigkiuLEFKiNmm6+q5p5MKPM+jwsE5VaRz4ogUBg4sppR0WvyVA6nSae54nInFl4LywRlVnRbrOEOQ3omV03l8lYmTO1RFSSJA1crz2NaZh+0RuuCYVCjUyGldUdpovKLNPqcrkGKmCbFtTzrWcSUy6XiWGYxt9WjQSmiqp5ljEIzVfUjO6oN70amRW3X6xWlGCbKioznOp0Ok2CIMzCB+fQb/m0WgyoYsVs0DRRmVHSqygK8Txv6R3AdmCQenxFUYhhmBYRmT0ymCYqM5xzj8cz1rcejQNm3OCh9dCSQW6gaMcUUTXHQPql3SzP6MSsO4a0brg1M3ZliqgGtVLFYpF4np/Ih1EMi0gkYuotaBzHdbgZDMOYEsIZOKGcy+WQy+UgSVLfbaytrSESicwextqFO3fu4PDw0NQKg/X1ddy7d69l3e3bt/H1118P3HZL6cvJyUljw/z8vK4Gtra2sLi4CL/f31cH1Kz5ULLnE4hV56dUKuH9999HsVhsrKvX63jrrbeQSqXAMEz/jbebruPjY91mrlwuE8uyfc/4ZmmY3lj99BqtigUzZoIDiWqQWvFqtUocx83SMF0YxuOQtBz/arVKDMMMFBrqKarj4+PGovU3x3F0dHSkKcT2z7Zvu3HjBv388889O9etjV7rm7e3f59JYRiCIjqNWTkcjg4BDRpl7+moq36V1s+DgwO89NJLePvttzE/P9/ij52cnGB+fr6xtG/7/vvv8corr+DGjRst25ppbqPb+ua2m3+q+6i/dzvGODJMH3NhYQGSJOGHH35oWa/lxBuiXWXdrv72330+H3377beaVqNXG0dHRy2R926WRO/6bsft1Z9xxePxDMVCNdPNrx0kvKDLp2ofStTE8dOnTzUb7faPVxSF3n333Zb4yExUp4wym8CybMcdSoPUWzWGPyNDRDKZbLyDxcj+W1tb+OSTTwy/YWGShq9+GPVdQm63u2MIXF1dxY8//thfg6q6ujnVzdu1VNzLGW/e1pwGOM/RPq9P3YZcrUmFnu82SsYh35nNZonjuI71DoejryyH7jRN8z/FaPJxGMX2k8g4CEpFEISOm0v6Tb/pStM0z6gqlQoqlQp4ntdtDWdpmE5GPeS1ozXj++CDD/Dw4UPjjfVSnNYwYzRTPqyYy6SgKAq5XK6xsVAqWkHPYrFILMsabstwlYIRkz2KZ5qPM4qikCRJY1t7rxX01JoZnodhUek9yDg803ycGHdBEWk/mbAfv89Q6UutVkOtVtP1ds1bt27h9u3bU/EmzvOo1+tYW1vDxsYGXC7XqLvTFZfLhUwmg0ql0lh39epVHB4eGmrHkKhKpZIukdy9excLCwtwu92GOmNHJkVQKu0xK5ZlG6/t1Y0Rs6an5HcSn2luFZMw5LXTXhreLYbVC0OW6vDwEFevXu26vV6v4+bNm4hGo1hYWDCmbptRq9Vw/fr1ibFQKmqoKJPJAAA4jkOpVEK9XtfdhiFR5XK5nimWzz//HKurq4ZiWHakVqvho48+wvb29kQJSqU9ZsVxHHK5nP4GjJg1rWJ5FaufJDIpVKtVEkVxot9A0V7Ra7S+yhRLValU8MUXXyASiRhpznaoFioUCk20tWYYBjzP49dffwVg3Fk35fGMa2trCIVCgxXLTzh2EZRKc5XCc889Z41PVa/XNZ3vr776CoIgQBRF3Qe1G3YTFABIkoRkMolarYaFhQX8888/uvf9f70frFQqHZbo4OAADx8+hCzL+ntrM0qlUiNhbhdBAa2lxgzD4M8//9S9b9/DX61Ww61bt6Y6fFAqlRohFDsJSqXfWvW+LdXW1hY2NzenNg3TLCi7ngNBEFCr1XByctKSujmPvnyqaX+m+TQISmV9fR3JZNKQo647TqXedTHtzzRXX8s7LdUX5XKZXnzxRUN3khvyqf7999+pTsNMk4VSYRgGi4uLhmZ/ukUlCAJeffVVfPjhhxAEoa8OTjKZTAZra2tTJSgVSZLw8ssv69/BqBlE89uXZsvULK+99pru4W8ob9GaMV0Yi1PJO9gpWNSTGWNOATvX5jA317psaMS9DYhKxsbKT+b1cVKQN1pPpNZZnAouYvNRHmEn4I0TiAgU92J35VqHodEtKnnjSxw5r+DSRbM7O77IG3OYWwHidHYSKQ7v7soUCyuPPx57IV0/+3PpMpxaH9PjeOXDTvLG4+SFlyx+UfjYEPdC+73CcS9his5DC3Fv06tx8xR2ar8q93xLVdjBN7iH75ae4Mh5GUtmCn9ckTewsutE+N4mpsgwn0vhyRGwu3LmCqwD9wj03fWOz50jqgJ2vgE+2zw7tVcuTcFJLmDny13A+19sanzZwpOj4XdpLCjgl5+AcP7UFciHAf9Spz8FoPfwp75uvrGY/Fbw8SROXoC0v2p3k2978mFytrgDp+fJGe5wEHoMf2fDHtEzT995eQoGv8ITHMEJza8qfwP/YyfCn3WafLtT+OUn4OP/PBupCk9wBOCKxsxNu/SlsINr68C9R892mBqzf/ESruAx/sgDrWO9jI2VXcAb1xwW7c3p0PfxPfWLy9hY8uMxvPiv1vXVbrriXnW4c9KpZTsz+VM0BHbM/PJhck7Jd+8g7tVO3WjNjM+YpWk0KWDn2hL8j9W/nQjnH02hheqPmahmmI4pt2jNmNHMTFQzTOd/eH0WFhfUjaEAAAAASUVORK5CYII="
|
<image>如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是⁀{AC}上的点.若∠BOC=50°,则∠D的度数()
Choices:
(A) 105°
(B) 115°
(C) 125°
(D) 85°
|
115°
| 69,798 | null |
115°
|
"iVBORw0KGgoAAAANSUhEUgAAALUAAABiCAYAAAAWaJI+AAAKv0lEQVR4nO3dQWzTZhsH8H/GJCIucJi03mY+JaWgIqX6Dt/qHmjFJS0Xc0G9tUiTw04Jhx0qMYVqSAWBVEdCgvSS9oTUSyNBk3KYuh1IdwtIhaLaUsMu7YfGF7bDkklj73egLk5ip0lq+7WT5ydZ1ezEflkf//3YcdwAY4yBkC7yGe8BEGI3KmrSdaioSdehoiYtyCOV0ngPomVU1ORQ+dgElnkPog1U1KQpLRVDFiIG+0O8h9IyKmpiTUthtT8NCQXeI2kLFTWxkEfqbj/i4xq2N0WcC/MeT+uoqImpfGwb/elx3sPoSIA+USQN8jEEJhYMM2TkWBp+KXFKalJLSyG2/R0YYx8nVYEonoOPug8qavKJlk8hdrcf6bjhSof6ymenidR+EINAIABAhKI+QzwE5GMBfOpC/NOCUFGTrkPtB+k6VNSkwdraGsbGxrC4uMh7KB2h9oM0+PLLL/H27VscP34c1WqV93DaRklNDmSzWQwNDeGLL74AAJw5c4bziDpDRU0OinlpaQmZTAYvX75EpVLBH3/8gb29Pd7Daxu1Hz0sm81idnYWgiAgmUwiEonULFcUBW/evMH8/DyfAXaIiroHHVbMumq1irNnz2JjYwN9fX3uDvIIqKh7SKvFbOTHtKai7gGdFLPOj2lNRd3F1tbWMDMz01ExG/ktramou9BPP/2E2dlZBINBzM3NdVzMumq1irGxMTx48ODI63IDFXUX0YsZAJLJJEZHR21bdzabxdLSElZWVmxbp1OoqLuAk8VsNDQ0hEwm4/m0pqL2MbeKWeebtGbkiFSmiGBA7STKCsupzmxxfX2djY6OstHRUba+vu7MRixEIhFWLBZd3Wa7qKhtkWOyKDJFL2JVZYoMBsgsZ+NWeBazbmVlhUmSxGXbraKitkWOyaLC1Pp5ABOVo8e1F4rZyOtpTUVth5zMIDdmck6G6fxWFYtFFo1GPVPMunw+z6LRKO9hWKK79GyQzy5Aliy+vbe5jXYfrfj8+XNcvnwZV69eRTwex/r6uuMnge2IRqMIBoPIZrO8h2KO917lfzkmm/bO+yeQbSR1sVhkkiSxSCTCVlZWbByj/YrFIotEIryHYYqS+qi0bWzKUuO3rLVVLBdgneAGxmSemppCsViEJElOjNY2kUgEgiB4M61571V+pyqiycngfko3nDzW8lMym/FqWlNRH0mOyTBcymMqU3MKkw8paL8Xs5EkSZ77N1BRHwFg8qGLKDLZ4lOXbipmnRfT+nOuvY/PsRbvMHj9+jVmZmZQKpWQTCY93y+3w9hbe+XfRfd+OKBareLbb7/Fu3fvcOLECbx48QJzc3Oe+aXbrVQqYXx8HMViEcFgkPdw6NvkTrh//z4WFxfx+PFjfPjwAVtbW11b0AAgCAKi0SgePnzIeygAKKltVSqVMDs7ix9//BF//vkn3r9/j6dPn+LixYu8h+a4vb09DA8PY2tri3taU1LboFQq4erVqxgbG8OFCxfw66+/4rfffsO9e/fw5MkT3sNzRV9fHyRJ8kZacz1N9bmdnR02PT3NBEFgmUymYXmlUmGCILDd3V33B8fB7u4uEwSBVSoVruOgpO5AfTLv7Oxgenq64XXBYBDxeBx37txxf5AceCatue5SPnNYMpuhtHYfJXUL9vb2cP369UOT2UwvpvXk5CQUReE3CG67kw/s7u6yRCLBBEFg8/PzHa+nUqmwgYEBtrOzY9vYvIz30YmS2oSezMPDw/jqq6+wtbWFRCLR8fr0529cv37dvkF6GPejE5ddyaPqk9nuvtDrX4OyE8+0pqSGdTLb/SFCMpk8eKRBt+Oa1sYK//uf6sHUC5xOZjOU1s6rSepjgeM1P7uVW8lshtLaBfVV3s0pXS6XXU9mM5TWzmpa1PXtiFl7YtWuNGtlWm1zrF7XbH79mP7+p8rK5TJLJpPci1nnhwfC2OnRo0dscnLSte01PVGsb0fqf35gf+FY4DiOBY7jA/vr4H3G+e0sMzK+zmq+8f3Gn/p7/vf+LX6YncN/hv8NACgWi661Gc3ot6F68kurDpicnMTr16/x/PlzdzZYX+VW6We1zCq921mHmVbnm627XC6z2R++Z4IgsGQyyd6V/2u6Lp68+DUoJ7l5dDr0kl6zNNWXmyUqD7///jtu3ryJoaEhAB+T+ebNmzh58iTnkTXy9CMGHCBJEkqlkjtprVe3sQetZ7XMKoHtTurD3q/3zP0D/2LJZJKVy+Wm7/EKSmtn1CS1sR810tO6fpk+v36ZcX47y4xHhFbWrffMQ0ND+Ozzf7CxsYHvkzM4depUw/qaHW14obR2SKvV76W0M17N0JPZryit7dfSx+RWCe62arUKRVEaemY9mf2oF9N6b28Pv/zyi3MbaVbxXvnYvFKpsPn5eSYIAkskEr5OZjM7OztsYGCA+/Vztzh9dDr0OjXPKxt6Mp89exZv3rzBxsYG5ufnfZ3MZrz2iAGnOX50cmx3OYL6ZO6Fr0J54WtQbnIyrT1166lVMvvlzwcfhWe+tOoSR9PakV2lTb2YzGYore3BNal7OZnNUFrbxPbdpEWUzOYorY/O9aReXFzE6dOnKZkt9PX1YWpqCrdv3+Y9FFdEIhF8/fXX9h6dbN1FmshkMkwQBDY9Pd0zjwroFO9HDLjN7qOT40mtJ/PPP/+M9fV1ZDIZCILg9GZ9jfsjBlxm+7mELbuGCUrmo6G07pztSU3JbA9K6yOwYSdjjFEyO4HSujMdJ/Xa2hrGxsbwzTffUDI7JBgMQpIkDA8P98TVkL6+PkQiEZw/fx6Li4sdr6fjP49x+vRplEqljjdMSDPBYBCVSqWj93ac1LFYDABw7do1sI+PWqDJgSmTySAYDCIajXIfixvT3NwcALT8qGQz9IeMiH9oeaTu3kJioQBAhKwsId1/FzGkkTb8CXhP3aVHiCUthZHwBJZxAypjYOwZvsMUAhObOBeufalFUWtIjQQQCNROI7E8NOeHT0gtLYWRcAJQVDxLjyO0PzsUvwFZHER/qPblFkUdQvwZQ04G5Nx+v6PmMLgwgakUlTVxV/5uAgVRwVK8rnoRxrnBc6gL6mbth4btTfFTtIfGIclA4ZVq43AJOUwe2QVAvHIJ9SUNhBBPxxvmf265Lm0Vy7iCpRAAaMinpjCxICPHxi3fQojttG1sAhis7zGasExqbXUZhUIC4UAAgUAYt3ADKkuDStp9+Vjj+Y0+xfK8R+cGseFksBnLE8XVZUBR9X5aARLUT/Mynq47v2EMjKlQxPZ+2b4U6scgClhebaw9LW9+4cKiqFW8whVc+nSaiRsyUFhepasfXGjY3pQh7R8m86kUNIRw6cqVhjP/7rN/LpeYQiqvV5+GfCqF1fC4SZ9tVdT5LDZNG3PChbaK5UHpY+unpXDrVT9CAELxeE+0g+NpFTllEMsT4Y9t18hdbF+Ko+FiiI41UJkiikxR9f9UWU4WGQAm5xpfTZynKh///+uTePDLIWYaknokEEaiUEAivH8yEg5jYnMQSk6t+SiSuKX2/EZVxLauBPSihkt6z+hWEI9R8aowCOmgjq8c9NbEHN3Q5HX5GAJZCazuMKmlYli9lLbuK3sY3dDkaRpStxYg10SzBi0VQ3j53KerU6QGJbWHjQQCKFgsExUVzyimTVFRk65D7QfpOlTUpOv8H9i0ReL5k/dHAAAAAElFTkSuQmCC"
|
<image>如图,在△ABC中,DE∥BC,若AB=7cm,AC=5cm,AD=3cm,则DE=()
Choices:
(A) \frac{15}{4}cm
(B) \frac{20}{3}cm
(C) \frac{15}{7}cm
(D) \frac{20}{7}cm
|
\frac{20}{7}cm
| 69,799 | null |
\frac{20}{7}cm
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.