SMILE / tasks /vqa.py
fmthoker's picture
Upload 95 files
401fa20 verified
raw
history blame
13.4 kB
import copy
import datetime
import logging
import os
import time
from os.path import join
from shutil import copyfile
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from omegaconf import OmegaConf
from dataset import (create_dataset, create_loader, create_sampler,
vqa_collate_fn)
from dataset.utils import sync_save_result
from models.vindlu_qa import VindLU_QA
from models.vindlu_vit_qa import VindLU_VIT_QA
from models.vindlu_blip_T5 import VindLU_BLIP_T5
from tasks.shared_utils import setup_model
from tasks.vqa_utils import eval_qa_acc
from utils.basic_utils import (MetricLogger, SmoothedValue, save_json,
setup_seed)
from utils.config import Config
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
def train(
model,
train_loader,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
):
model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=1, fmt="{value:.6f}"))
metric_logger.add_meter("loss", SmoothedValue(window=1, fmt="{value:.4f}"))
header = "Train Epoch: [{}]".format(epoch)
log_freq = config.log_freq
if config.distributed:
train_loader.sampler.set_epoch(epoch)
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, data in enumerate(iterator):
image, question, answer, weights, n = data
image = image.to(device, non_blocking=True)
weights = weights.to(device, non_blocking=True)
question_input = tokenizer(
question,
padding="max_length",
truncation=True,
max_length=config.max_q_len,
return_tensors="pt",
).to(device)
answer_input = tokenizer(
answer,
padding="max_length",
truncation=True,
max_length=config.max_a_len,
return_tensors="pt",
).to(device)
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
loss = model(
image, question_input, answer_input, train=True, k=n, weights=weights,
raw_question=list(question), raw_answer=list(answer),
)
optimizer.zero_grad()
scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
# logging
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and (i + 1) % 5 == 0:
break
metric_logger.synchronize_between_processes()
logger.info(f"Averaged train stats: {metric_logger.global_avg()}")
return global_step
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
model.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "[evaluation] Generating answers:"
log_freq = config.log_freq // 2
result = []
raw_answer_list = data_loader.dataset.answer_list
answer_list = [a + " " + config.eos for a in raw_answer_list]
answer_input = tokenizer(
answer_list,
padding="max_length",
truncation=True,
max_length=config.max_a_len,
return_tensors="pt",
).to(device)
logger.info("Start generating results.")
iterator = metric_logger.log_every(data_loader, log_freq, header)
for n, data in enumerate(iterator):
image, question, question_id = data
image = image.to(device, non_blocking=True)
question_input = tokenizer(
question,
padding="max_length",
truncation=True,
max_length=config.max_q_len,
return_tensors="pt",
).to(device)
topk_ids, topk_probs = model(
image, question_input, answer_input, train=False, k=config.evaluation.k_test,
raw_question=list(question), raw_answer=raw_answer_list,
)
for ques_id, topk_id, topk_prob in zip(question_id, topk_ids, topk_probs):
ques_id = int(ques_id.item()) if not isinstance(ques_id, str) else ques_id
_, pred = topk_prob.max(dim=0)
result.append({"question_id": ques_id, "answer": raw_answer_list[topk_id[pred]]})
return result
def setup_dataloaders(config, dataset_name="vqa"):
logger.info(f"Creating {dataset_name} QA datasets")
train_dataset = create_dataset("qa_train", config)
test_datasets, test_dataset_names = create_dataset("qa_eval", config)
all_datasets = [train_dataset] + test_datasets
if config.distributed:
num_tasks = get_world_size()
global_rank = get_rank()
samplers = create_sampler(
all_datasets,
shuffles=[True] + [False] * len(test_datasets),
num_tasks=num_tasks,
global_rank=global_rank,
)
else:
samplers = [None] * len(all_datasets)
train_bsz = config.inputs.batch_size[train_dataset.media_type]
test_bsz_list = [config.inputs.batch_size_test[d.media_type] for d in test_datasets]
loaders = create_loader(
all_datasets,
samplers,
batch_size=[train_bsz] + test_bsz_list,
num_workers=[
config.num_workers,
]
* len(all_datasets),
is_trains=[True] + [False] * len(test_datasets),
collate_fns=[vqa_collate_fn] + [None] * len(test_datasets),
)
train_loader, test_loaders = loaders[0], loaders[1:]
test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
return train_loader, test_name2loaders
def main(config):
if is_main_process() and config.wandb.enable:
run = setup_wandb(config)
logger.info(f"train_file: {config.train_file}")
setup_seed(config.seed + get_rank())
device = torch.device(config.device)
cudnn.benchmark = True
train_loader, test_name2loaders = setup_dataloaders(config)
config.scheduler.num_training_steps = len(train_loader) * config.scheduler.epochs
config.scheduler.num_warmup_steps = len(train_loader) * config.scheduler.warmup_epochs
model_cls = eval(config.model.get('model_cls', 'VindLU_QA'))
(
model,
model_without_ddp,
optimizer,
scheduler,
scaler,
tokenizer,
start_epoch,
global_step,
) = setup_model(
config,
model_cls=model_cls,
has_decoder=True,
pretrain=False,
# find_unused_parameters=True,
find_unused_parameters=False,
)
if is_main_process() and config.wandb.enable:
wandb.watch(model)
best = 0
best_epoch = 0
has_gt = config.dataset_name != "vqa" or config.test_types[0] == "minival"
logger.info("Start " + "evaluation" if config.evaluate else "training")
start_time = time.time()
for epoch in range(start_epoch, config.scheduler.epochs):
if not config.evaluate:
global_step = train(
model,
train_loader,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
)
if config.get('no_test', False) and not config.evaluate:
if is_main_process():
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
best_epoch = epoch
else:
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
eval_res = {}
pred_name2file = {}
for test_name, test_loader in test_name2loaders.items():
if test_name not in config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {config.test_types}"
)
continue
logger.info(f"Evaluating {test_name} split...")
qa_result = evaluation(model, test_loader, tokenizer, device, config)
# sync/gather results and eval
pred_file, gathered_result = sync_save_result(
qa_result, config.result_dir, f"{test_name}_latest"
)
pred_name2file[test_name] = pred_file
if is_main_process() and has_gt:
eval_res[test_name] = eval_qa_acc(
test_loader.dataset.anno_list,
gathered_result,
is_vqa=config.dataset_name == "vqa",
)
if is_main_process():
if len(eval_res) > 0:
logger.info(f"eval_res {eval_res}")
if config.wandb.enable:
for name, acc_dict in eval_res.items():
log_dict_to_wandb(acc_dict, step=global_step, prefix=f"{name}/")
if not config.evaluate and has_gt and eval_res[config.stop_key]["overall"] > best:
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
for name, pred_file in pred_name2file.items():
copyfile(pred_file, pred_file.replace("latest", "best"))
save_json(
eval_res, join(config.output_dir, "eval_res_best.json"), save_pretty=True
)
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
best = eval_res[config.stop_key]["overall"]
best_epoch = epoch
if config.evaluate:
save_json(
eval_res, join(config.output_dir, "eval_res_best.json"), save_pretty=True
)
for name, pred_file in pred_name2file.items():
copyfile(pred_file, pred_file.replace("latest", "eval"))
if has_gt:
save_path = join(config.output_dir, f"{name}_acc_eval.json")
save_json(eval_res[name], save_path, save_pretty=True)
if config.evaluate or config.debug:
break
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch}")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
run.finish()
def eval_after_training(train_config):
# general config for all
train_config.wandb.enable = False
train_config.evaluate = True
train_config.pretrained_path = join(train_config.output_dir, "ckpt_best.pth")
if train_config.get('num_frames_test_final', False):
train_config.num_frames_test = train_config.num_frames_test_final
train_config.batch_size = train_config.batch_size_final
train_config.inputs.video_input.num_frames_test = train_config.num_frames_test_final
train_config.model.vision_encoder.num_frames = train_config.num_frames_test_final
eval_config = copy.deepcopy(train_config)
eval_config.test_types = (
["val", "test"] if eval_config.dataset_name != "vqa" else ["minival"]
)
eval_config.output_dir = join(eval_config.output_dir, f"eval_after_training")
eval_config.result_dir = eval_config.output_dir
if is_main_process():
os.makedirs(eval_config.output_dir, exist_ok=False)
Config.dump(eval_config, os.path.join(eval_config.output_dir, "config.json"))
logger.info(f"===========> START eval_after_training [{eval_config.test_types}]")
main(eval_config)
if __name__ == "__main__":
cfg = setup_main()
cfg.result_dir = cfg.output_dir
main(cfg)
if not cfg.evaluate:
eval_after_training(cfg)