metadata
library_name: transformers
language:
- ta
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small En - Vishal Sankar Ram
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_11_0
config: ta
split: test
args: 'config: en, split: test'
metrics:
- type: wer
value: 67.42770167427702
name: Wer
Whisper Small En - Vishal Sankar Ram
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4155
- Wer: 67.4277
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.08 | 10 | 0.5279 | 73.3638 |
No log | 0.16 | 20 | 0.4622 | 70.7763 |
0.45 | 0.24 | 30 | 0.4298 | 69.2542 |
0.45 | 0.32 | 40 | 0.4193 | 67.1233 |
0.334 | 0.4 | 50 | 0.4155 | 67.4277 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0