whisper-small-ta / README.md
vishal2304's picture
Update README.md
e467ce1 verified
metadata
library_name: transformers
language:
  - ta
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small En - Vishal Sankar Ram
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_11_0
          config: ta
          split: test
          args: 'config: en, split: test'
        metrics:
          - type: wer
            value: 67.42770167427702
            name: Wer

Whisper Small En - Vishal Sankar Ram

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4155
  • Wer: 67.4277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.08 10 0.5279 73.3638
No log 0.16 20 0.4622 70.7763
0.45 0.24 30 0.4298 69.2542
0.45 0.32 40 0.4193 67.1233
0.334 0.4 50 0.4155 67.4277

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0