Datasets:
ArXiv:
License:
File size: 6,599 Bytes
efe3fe7 6c879fb efe3fe7 f524403 e585479 f524403 8abb26c 0a4fdb4 3ea0538 0a4fdb4 3ea0538 0a4fdb4 cc8b810 f524403 cc8b810 2d4f27d cc8b810 2d4f27d cc8b810 f524403 cc8b810 f524403 2d4f27d 0d91ffd 3c76c08 0d91ffd 2d4f27d 0d91ffd cc8b810 2d4f27d e8df1b6 402a2a2 e8df1b6 402a2a2 0d91ffd 3c76c08 0d91ffd 3c76c08 cc8b810 0d91ffd cc8b810 0d91ffd 3c76c08 402a2a2 507fcaa 3c76c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
language:
- en
- zh
tags:
- robotics
- manipulation
- vla
- trajectory-data
- multimodal
- vision-language-action
license: other
task_categories:
- robotics
- reinforcement-learning
multimodal: vision+language+action
dataset_info:
features:
- name: rgb_images
dtype: image
description: Multi-view RGB images
- name: slam_poses
sequence: float32
description: SLAM pose trajectories
- name: vive_poses
sequence: float32
description: Vive tracking system poses
- name: point_clouds
sequence: float32
description: Time-of-Flight point cloud data
- name: clamp_data
sequence: float32
description: Clamp sensor readings
- name: merged_trajectory
sequence: float32
description: Fused trajectory data
configs:
- config_name: default
data_files: "**/*"
---
<div align="center">
<font size="10"> FastUMI Pro Dataset</font>
</div>
<div align="center">



**Enterprise-grade Robotic Manipulation Dataset for Universal Manipulation Interface**
[Project Homepage](https://fastumi.com/pro/) | [Example Data](https://huggingface.co/datasets/FastUMIPro/example_data_fastumi_pro_raw)
</div>
## 📖 Overview
FastUMI (Fast Universal Manipulation Interface) is a dataset and interface framework for general-purpose robotic manipulation tasks, designed to support hardware-agnostic, scalable, and efficient data collection and model training.
The project provides:
- Physical prototype systems
- Complete data collection codebase
- Standardized data formats and utilities
- Tools for real-world manipulation learning research
## 🚀 Features
### FastUMI Pro Enhancements
- ✅ **Higher precision trajectory data**
- ✅ **Diverse embodiment support** for true "one-brain-multiple-forms"
- ✅ **Enterprise-ready** pipeline and full-link data processing
### FastUMI-150K
- ~150,000 real-world manipulation trajectories
- Used by research partners for large-scale VLA (Vision-Language-Action) model training
- Demonstrated significant multi-task generalization capabilities
## 📊 Model Performance
**VLA Model Results**: [TBD]
## 🛠️ Toolchain
| Tool | Description | Link |
|------|-------------|------|
| **Single-Arm Demo Replay** | Single-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_singleARM) |
| **Dual-Arm Demo Replay** | Dual-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_dualARM) |
| **Hardware SDK** | FastUMI hardware development kit | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Hardware_SDK) |
| **Monitor Tool** | Real-time device monitoring | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Monitor_Tool) |
| **Data Collection** | Data collection utilities | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Data_Collection) |
### Research & Applications
- **Paper**: [MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm](https://arxiv.org/abs/2508.10538)
- **Tutorial**: PI0 (FastUMI Data Lightweight Adaptation, Version V0) Full Pipeline
## 📥 Data Download
### Example Dataset
```bash
# Direct download (may be slow in some regions)
huggingface-cli download FastUMIPro/example_data_fastumi_pro_raw --repo-type dataset --local-dir ~/fastumi_data/
```
Mirror Download (Recommended)
```bash
# Set mirror endpoint
export HF_ENDPOINT=https://hf-mirror.com
```
# Download via mirror
huggingface-cli download --repo-type dataset --resume-download FastUMIPro/example_data_fastumi_pro_raw --local-dir ~/fastumi_data/
📁 Data Structure
Each session represents an independent operation "episode" containing observation data and action sequences.
```
Directory Structure
text
session_001/
└── device_label_xv_serial/
└── session_timestamp/
├── RGB_Images/
│ ├── timestamps.csv
│ └── Frames/
│ ├── frame_000001.jpg
│ └── ...
├── SLAM_Poses/
│ └── slam_raw.txt
├── Vive_Poses/
│ └── vive_data_tum.txt
├── ToF_PointClouds/
│ ├── timestamps.csv
│ └── PointClouds/
│ └── pointcloud_000001.pcd
├── Clamp_Data/
│ └── clamp_data_tum.txt
└── Merged_Trajectory/
├── merged_trajectory.txt
└── merge_stats.txt
```
## Data Specifications
| Data Type | Path | Shape| Type | Description |
| :--- | :--- | :--- | :--- | :--- |
| **RGB Images** | `session_XXX/RGB_Images/Video.MP4` | `(frames, 1080, 1920, 3)`| `uint8`| Camera video data, 60 FPS |
| **SLAM Poses** | `session_XXX/SLAM_Poses/slam_raw.txt` | `(timestamps, 7)`| `float` | UMI end-effector poses |
| **Vive Poses** | `session_XXX/Vive_Poses/vive_data_tum.txt` | `(timestamps, 7)`| `float` | Vive base station poses |
| **ToF PointClouds** | `session_XXX/PointClouds/pointcloud_...pcd` | `pcd format` | pcd | Time-of-Flight point cloud data |
| **Clamp Data** | `session_XXX/Clamp_Data/clamp_data_tum.txt` | `(timestamps, 1)`| `float` | Gripper spacing (mm) |
| **Merged Trajectory** | `session_XXX/Merged_Trajectory/merged_trajectory.txt` | `(timestamps, 7)`| `float` | Fused trajectory (Vive/UMI based on velocity) |
### Pose Data Format
All pose data (SLAM, Vive, Merged) follow the same format:
| Data | Description |
| :--- | :--- |
| **Timestamp** | Unix timestamp of the trajectory data |
| **Pos X** | X-coordinate of position (meters) |
| **Pos Y** | Y-coordinate of position (meters) |
| **Pos Z** | Z-coordinate of position (meters) |
| **Q_X** | X-component of orientation quaternion |
| **Q_Y** | Y-component of orientation quaternion |
| **Q_Z** | Z-component of orientation quaternion |
| **Q_W** | W-component of orientation quaternion |
## 🔄 Data Conversion
[TBD]
## 🤝 Collaboration
FastUMI Pro dataset is available for research collaboration. The full FastUMI-150K dataset has been provided to partner research teams for large-scale model training.
## 📞 Contact
***
> ### ☎️ 开发团队联系方式
>
> 对于任何问题或建议,请随时联系我们的开发团队。
> | **负责人 (Lead)** | Ding Yan |
> | :--- | :--- |
> | **Email** | **[[email protected]](mailto:[email protected])** |
> | **WeChat** | **`Duke_dingyan`** |
*** |