File size: 6,599 Bytes
efe3fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c879fb
efe3fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f524403
e585479
f524403
8abb26c
0a4fdb4
 
 
 
 
 
 
 
3ea0538
0a4fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea0538
0a4fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8b810
f524403
cc8b810
 
2d4f27d
cc8b810
 
2d4f27d
cc8b810
 
 
 
 
f524403
cc8b810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f524403
2d4f27d
 
 
0d91ffd
 
 
 
 
3c76c08
0d91ffd
 
2d4f27d
0d91ffd
cc8b810
2d4f27d
e8df1b6
402a2a2
e8df1b6
402a2a2
0d91ffd
 
 
 
 
 
 
3c76c08
0d91ffd
3c76c08
cc8b810
0d91ffd
cc8b810
 
0d91ffd
3c76c08
 
 
 
 
 
402a2a2
507fcaa
 
3c76c08
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
language:
  - en
  - zh
tags:
  - robotics
  - manipulation
  - vla
  - trajectory-data
  - multimodal
  - vision-language-action
license: other
task_categories:
  - robotics
  - reinforcement-learning
multimodal: vision+language+action
dataset_info:
  features:
    - name: rgb_images
      dtype: image
      description: Multi-view RGB images
    - name: slam_poses
      sequence: float32
      description: SLAM pose trajectories
    - name: vive_poses
      sequence: float32
      description: Vive tracking system poses
    - name: point_clouds
      sequence: float32
      description: Time-of-Flight point cloud data
    - name: clamp_data
      sequence: float32
      description: Clamp sensor readings
    - name: merged_trajectory
      sequence: float32
      description: Fused trajectory data
  configs:
    - config_name: default
      data_files: "**/*"
---

<div align="center">
  <font size="10"> FastUMI Pro Dataset</font>
</div>

<div align="center">

![FastUMI](https://img.shields.io/badge/FastUMI-Pro-brightgreen)
![Dataset](https://img.shields.io/badge/Dataset-150K-blue)
![VLA](https://img.shields.io/badge/VLA-Ready-orange)

**Enterprise-grade Robotic Manipulation Dataset for Universal Manipulation Interface**

[Project Homepage](https://fastumi.com/pro/) | [Example Data](https://huggingface.co/datasets/FastUMIPro/example_data_fastumi_pro_raw)

</div>

## 📖 Overview

FastUMI (Fast Universal Manipulation Interface) is a dataset and interface framework for general-purpose robotic manipulation tasks, designed to support hardware-agnostic, scalable, and efficient data collection and model training.

The project provides:
- Physical prototype systems
- Complete data collection codebase
- Standardized data formats and utilities
- Tools for real-world manipulation learning research

## 🚀 Features

### FastUMI Pro Enhancements
-**Higher precision trajectory data**
-**Diverse embodiment support** for true "one-brain-multiple-forms"
-**Enterprise-ready** pipeline and full-link data processing

### FastUMI-150K
- ~150,000 real-world manipulation trajectories
- Used by research partners for large-scale VLA (Vision-Language-Action) model training
- Demonstrated significant multi-task generalization capabilities

## 📊 Model Performance

**VLA Model Results**: [TBD]

## 🛠️ Toolchain
| Tool | Description | Link |
|------|-------------|------|
| **Single-Arm Demo Replay** | Single-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_singleARM) |
| **Dual-Arm Demo Replay** | Dual-arm data replay code | [GitHub](https://github.com/Loki-Lu/FastUMI_replay_dualARM) |
| **Hardware SDK** | FastUMI hardware development kit | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Hardware_SDK) |
| **Monitor Tool** | Real-time device monitoring | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Monitor_Tool) |
| **Data Collection** | Data collection utilities | [GitHub](https://github.com/FastUMIRobotics/FastUMI_Data_Collection) |

### Research & Applications
- **Paper**: [MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm](https://arxiv.org/abs/2508.10538)
- **Tutorial**: PI0 (FastUMI Data Lightweight Adaptation, Version V0) Full Pipeline

## 📥 Data Download

### Example Dataset
```bash
# Direct download (may be slow in some regions)
huggingface-cli download FastUMIPro/example_data_fastumi_pro_raw --repo-type dataset --local-dir ~/fastumi_data/
```

Mirror Download (Recommended)
```bash
# Set mirror endpoint
export HF_ENDPOINT=https://hf-mirror.com
```

# Download via mirror
huggingface-cli download --repo-type dataset --resume-download FastUMIPro/example_data_fastumi_pro_raw --local-dir ~/fastumi_data/
📁 Data Structure
Each session represents an independent operation "episode" containing observation data and action sequences.
```
Directory Structure
text
session_001/
└── device_label_xv_serial/
    └── session_timestamp/
        ├── RGB_Images/
        │   ├── timestamps.csv
        │   └── Frames/
        │       ├── frame_000001.jpg
        │       └── ...
        ├── SLAM_Poses/
        │   └── slam_raw.txt
        ├── Vive_Poses/
        │   └── vive_data_tum.txt
        ├── ToF_PointClouds/
        │   ├── timestamps.csv
        │   └── PointClouds/
        │       └── pointcloud_000001.pcd
        ├── Clamp_Data/
        │   └── clamp_data_tum.txt
        └── Merged_Trajectory/
            ├── merged_trajectory.txt
            └── merge_stats.txt
```

## Data Specifications

| Data Type | Path | Shape| Type | Description |
| :--- | :--- | :--- | :--- | :--- |
| **RGB Images** | `session_XXX/RGB_Images/Video.MP4` | `(frames, 1080, 1920, 3)`| `uint8`| Camera video data, 60 FPS  |
| **SLAM Poses** | `session_XXX/SLAM_Poses/slam_raw.txt` | `(timestamps, 7)`| `float` | UMI end-effector poses |
| **Vive Poses** | `session_XXX/Vive_Poses/vive_data_tum.txt` | `(timestamps, 7)`| `float` | Vive base station poses |
| **ToF PointClouds** | `session_XXX/PointClouds/pointcloud_...pcd` | `pcd format` | pcd | Time-of-Flight point cloud data |
| **Clamp Data** | `session_XXX/Clamp_Data/clamp_data_tum.txt` | `(timestamps, 1)`| `float` | Gripper spacing (mm) |
| **Merged Trajectory** | `session_XXX/Merged_Trajectory/merged_trajectory.txt` | `(timestamps, 7)`| `float` | Fused trajectory (Vive/UMI based on velocity) |

### Pose Data Format

All pose data (SLAM, Vive, Merged) follow the same format:

| Data | Description |
| :--- | :--- |
| **Timestamp** | Unix timestamp of the trajectory data |
| **Pos X** | X-coordinate of position (meters) |
| **Pos Y** | Y-coordinate of position (meters) |
| **Pos Z** | Z-coordinate of position (meters) |
| **Q_X** | X-component of orientation quaternion |
| **Q_Y** | Y-component of orientation quaternion |
| **Q_Z** | Z-component of orientation quaternion |
| **Q_W** | W-component of orientation quaternion |

## 🔄 Data Conversion
[TBD]

## 🤝 Collaboration
FastUMI Pro dataset is available for research collaboration. The full FastUMI-150K dataset has been provided to partner research teams for large-scale model training.

## 📞 Contact
***

> ### ☎️ 开发团队联系方式
> 
> 对于任何问题或建议,请随时联系我们的开发团队。
> | **负责人 (Lead)** | Ding Yan |
> | :--- | :--- |
> | **Email** | **[[email protected]](mailto:[email protected])** |
> | **WeChat** | **`Duke_dingyan`** |

***