prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import numpy as np from pandas import read_csv from astropy import constants from pkg_resources import resource_filename from .likelihoods import * from .priors import * from .funcs import stellar_relations, flux_relation np.seterr(divide='ignore') Msun = constants.M_sun.cgs.value Rsun = constants.R_sun.cgs.value Rearth = constants.R_earth.cgs.value G = constants.G.cgs.value au = constants.au.cgs.value pi = np.pi ln2pi = np.log(2*pi) # load TESS limb darkening coefficients LDC_FILE = resource_filename('triceratops', 'data/ldc_tess.csv') ldc_T = read_csv(LDC_FILE) ldc_T_Zs = np.array(ldc_T.Z, dtype=float) ldc_T_Teffs = np.array(ldc_T.Teff, dtype=int) ldc_T_loggs = np.array(ldc_T.logg, dtype=float) ldc_T_u1s = np.array(ldc_T.aLSM, dtype=float) ldc_T_u2s = np.array(ldc_T.bLSM, dtype=float) # load Kepler limb darkening coefficients LDC_FILE = resource_filename('triceratops', 'data/ldc_kepler.csv') ldc_K = read_csv(LDC_FILE) ldc_K_Zs = np.array(ldc_K.Z, dtype=float) ldc_K_Teffs = np.array(ldc_K.Teff, dtype=int) ldc_K_loggs = np.array(ldc_K.logg, dtype=float) ldc_K_u1s = np.array(ldc_K.a, dtype=float) ldc_K_u2s = np.array(ldc_K.b, dtype=float) def lnZ_TTP(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the TTP scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) a = ((G*M_s*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # calculate short-period planet prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_planet(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_planet(P_orb) # sample from prior distributions rps = sample_rp(np.random.rand(N), np.full_like(N, M_s)) incs = sample_inc(np.random.rand(N)) eccs = sample_ecc(np.random.rand(N), planet=True, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) Ptra = (rps*Rearth + R_s*Rsun)/a * e_corr # find instances with collisions coll = ((rps*Rearth + R_s*Rsun) > a*(1-eccs)) lnL = np.full(N, -np.inf) if parallel: # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) # calculate lnL for transiting systems a_arr = np.full(N, a) R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) companion_fluxratio = np.zeros(N) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_TP_p( time, flux, sigma, rps[mask], P_orb, incs[mask], a_arr[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=companion_fluxratio[mask] ) else: for i in range(N): if Ptra[i] <= 1.: inc_min = np.arccos(Ptra[i]) * 180./pi else: continue if (incs[i] >= inc_min) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_TP( time, flux, sigma, rps[i], P_orb, incs[i], a, R_s, u1, u2, eccs[i], argps[i] ) idx = lnL.argmax() Z = np.mean(np.nan_to_num( np.exp(lnL + lnprior_Mstar + lnprior_Porb + 600) )) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': rps[idx], 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': 0, 'R_EB': 0, 'fluxratio_EB': 0, 'fluxratio_comp': 0, 'lnZ': lnZ } return res def lnZ_TEB(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the TEB scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. res_twin (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # sample from prior distributions incs = sample_inc(np.random.rand(N)) qs = sample_q(np.random.rand(N), M_s) eccs = sample_ecc(np.random.rand(N), planet=False, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate properties of the drawn EBs masses = qs*M_s radii, Teffs = stellar_relations( masses, np.full(N, R_s), np.full(N, Teff) ) # calculate flux ratios in the TESS band fluxratios = ( flux_relation(masses) / (flux_relation(masses) + flux_relation(np.array([M_s]))) ) # calculate short-period binary prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_binary(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_binary(P_orb) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) a = ((G*(M_s+masses)*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) Ptra = (radii*Rsun + R_s*Rsun)/a * e_corr a_twin = ((G*(M_s+masses)*Msun)/(4*pi**2)*(2*P_orb*86400)**2)**(1/3) Ptra_twin = (radii*Rsun + R_s*Rsun)/a_twin * e_corr # find instances with collisions coll = ((radii*Rsun + R_s*Rsun) > a*(1-eccs)) coll_twin = ((2*R_s*Rsun) > a_twin*(1-eccs)) lnL = np.full(N, -np.inf) lnL_twin = np.full(N, -np.inf) if parallel: # q < 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) & (qs < 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) companion_fluxratio = np.zeros(N) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_EB_p( time, flux, sigma, radii[mask], fluxratios[mask], P_orb, incs[mask], a[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=companion_fluxratio[mask] ) # q >= 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra_twin <= 1.] = np.arccos( Ptra_twin[Ptra_twin <= 1.] ) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll_twin == False) & (qs >= 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) companion_fluxratio = np.zeros(N) lnL_twin[mask] = -0.5*ln2pi - lnsigma - lnL_EB_twin_p( time, flux, sigma, radii[mask], fluxratios[mask], 2*P_orb, incs[mask], a_twin[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=companion_fluxratio[mask] ) else: for i in range(N): # q < 0.95 if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (qs[i] < 0.95) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_EB( time, flux, sigma, radii[i], fluxratios[i], P_orb, incs[i], a[i], R_s, u1, u2, eccs[i], argps[i] ) # q >= 0.95 and 2xP_orb if Ptra_twin[i] <= 1: inc_min = np.arccos(Ptra_twin[i]) * 180/pi else: continue if ((incs[i] >= inc_min) & (qs[i] >= 0.95) & (coll_twin[i] == False)): lnL_twin[i] = -0.5*ln2pi - lnsigma - lnL_EB_twin( time, flux, sigma, radii[i], fluxratios[i], 2*P_orb, incs[i], a_twin[i], R_s, u1, u2, eccs[i], argps[i] ) # results for q < 0.95 idx = lnL.argmax() Z = np.mean(np.nan_to_num( np.exp(lnL + lnprior_Mstar + lnprior_Porb + 600) )) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': 0, 'lnZ': lnZ } # results for q >= 0.95 and 2xP_orb idx = lnL_twin.argmax() Z = np.mean(np.nan_to_num( np.exp(lnL_twin + lnprior_Mstar + lnprior_Porb + 600) )) lnZ = np.log(Z) res_twin = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': 2*P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': 0, 'lnZ': lnZ } return res, res_twin def lnZ_PTP(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, plx: float, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the PTP scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. plx (float): Target star parallax [mas]. contrast_curve_file (string): Path to contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) a = ((G*M_s*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # sample from q prior distributions qs_comp = sample_q_companion(np.random.rand(N), M_s) # calculate properties of the drawn companions masses_comp = qs_comp*M_s radii_comp, Teffs_comp = stellar_relations( masses_comp, np.full(N, R_s), np.full(N, Teff) ) # calculate flux ratios in the TESS band fluxratios_comp = ( flux_relation(masses_comp) / (flux_relation(masses_comp) + flux_relation(np.array([M_s]))) ) # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10(fluxratios_comp/(1-fluxratios_comp)) lnprior_companion = lnprior_bound_TP( M_s, plx, np.abs(delta_mags), np.array([2.2]), np.array([1.0]) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: # use flux ratio of contrast curve filter fluxratios_comp_cc = ( flux_relation(masses_comp, filt) / (flux_relation(masses_comp, filt) + flux_relation(np.array([M_s]), filt)) ) delta_mags = 2.5*np.log10(fluxratios_comp_cc/(1-fluxratios_comp_cc)) separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_bound_TP( M_s, plx, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period planet prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_planet(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_planet(P_orb) # sample from prior distributions rps = sample_rp(np.random.rand(N), np.full_like(N, M_s)) incs = sample_inc(np.random.rand(N)) eccs = sample_ecc(np.random.rand(N), planet=True, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) Ptra = (rps*Rearth + R_s*Rsun)/a * e_corr # find instances with collisions coll = ((rps*Rearth + R_s*Rsun) > a*(1-eccs)) lnL = np.full(N, -np.inf) if parallel: # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) # calculate lnL for transiting systems a_arr = np.full(N, a) R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_TP_p( time, flux, sigma, rps[mask], P_orb, incs[mask], a_arr[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=False ) else: for i in range(N): if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_TP( time, flux, sigma, rps[i], P_orb, incs[i], a, R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=False ) idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': rps[idx], 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': 0, 'R_EB': 0, 'fluxratio_EB': 0, 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } return res def lnZ_PEB(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, plx: float, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the PEB scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. plx (float): Target star parallax [mas]. contrast_curve_file (string): Path to contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. res_twin (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # sample from prior distributions incs = sample_inc(np.random.rand(N)) qs = sample_q(np.random.rand(N), M_s) qs_comp = sample_q_companion(np.random.rand(N), M_s) eccs = sample_ecc(np.random.rand(N), planet=False, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate properties of the drawn EBs masses = qs*M_s radii, Teffs = stellar_relations( masses, np.full(N, R_s), np.full(N, Teff) ) # calculate flux ratios in the TESS band fluxratios = ( flux_relation(masses) / (flux_relation(masses) + flux_relation(np.array([M_s]))) ) # calculate properties of the drawn companions masses_comp = qs_comp*M_s radii_comp, Teffs_comp = stellar_relations( masses_comp, np.full(N, R_s), np.full(N, Teff) ) # calculate flux ratios in the TESS band fluxratios_comp = ( flux_relation(masses_comp) / (flux_relation(masses_comp) + flux_relation(np.array([M_s]))) ) # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10(fluxratios_comp/(1-fluxratios_comp)) lnprior_companion = lnprior_bound_EB( M_s, plx, np.abs(delta_mags), np.array([2.2]), np.array([1.0]) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: # use flux ratio of contrast curve filter fluxratios_comp_cc = ( flux_relation(masses_comp, filt) / (flux_relation(masses_comp, filt) + flux_relation(np.array([M_s]), filt)) ) delta_mags = 2.5*np.log10(fluxratios_comp_cc/(1-fluxratios_comp_cc)) separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_bound_EB( M_s, plx, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period binary prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_binary(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_binary(P_orb) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) a = ((G*(M_s+masses)*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) Ptra = (radii*Rsun + R_s*Rsun)/a * e_corr a_twin = ((G*(M_s+masses)*Msun)/(4*pi**2)*(2*P_orb*86400)**2)**(1/3) Ptra_twin = (radii*Rsun + R_s*Rsun)/a_twin * e_corr # find instances with collisions coll = ((radii*Rsun + R_s*Rsun) > a*(1-eccs)) coll_twin = ((2*R_s*Rsun) > a_twin*(1-eccs)) lnL = np.full(N, -np.inf) lnL_twin = np.full(N, -np.inf) if parallel: # q < 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) & (qs < 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_EB_p( time, flux, sigma, radii[mask], fluxratios[mask], P_orb, incs[mask], a[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=False ) # q >= 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra_twin <= 1.] = np.arccos( Ptra_twin[Ptra_twin <= 1.] ) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll_twin == False) & (qs >= 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL_twin[mask] = -0.5*ln2pi - lnsigma - lnL_EB_twin_p( time, flux, sigma, radii[mask], fluxratios[mask], 2*P_orb, incs[mask], a_twin[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=False ) else: for i in range(N): # q < 0.95 if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (qs[i] < 0.95) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_EB( time, flux, sigma, radii[i], fluxratios[i], P_orb, incs[i], a[i], R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=False ) # q >= 0.95 and 2xP_orb if Ptra_twin[i] <= 1: inc_min = np.arccos(Ptra_twin[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (qs[i] >= 0.95) & (coll_twin[i] == False): lnL_twin[i] = -0.5*ln2pi - lnsigma - lnL_EB_twin( time, flux, sigma, radii[i], fluxratios[i], 2*P_orb, incs[i], a_twin[i], R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=False ) # results for q < 0.95 idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } # results for q >= 0.95 and 2xP_orb idx = lnL_twin.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL_twin+lnprior_companion+lnprior_Mstar+lnprior_Porb+600) ) ) lnZ = np.log(Z) res_twin = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': 2*P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } return res, res_twin def lnZ_STP(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, plx: float, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the STP scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. plx (float): Target star parallax [mas]. contrast_curve_file (string): contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. res_twin (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) # sample from q prior distribution qs_comp = sample_q_companion(np.random.rand(N), M_s) # calculate properties of the drawn companions masses_comp = qs_comp*M_s radii_comp, Teffs_comp = stellar_relations( masses_comp, np.full(N, R_s), np.full(N, Teff) ) loggs_comp = np.log10(G*(masses_comp*Msun)/(radii_comp*Rsun)**2) # calculate flux ratios in the TESS band fluxratios_comp = ( flux_relation(masses_comp) / (flux_relation(masses_comp) + flux_relation(np.array([M_s]))) ) # calculate limb darkening ceofficients for companions if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s ldc_at_Z = ldc_T[(ldc_Zs == ldc_Zs[np.abs(ldc_Zs - Z).argmin()])] Teffs_at_Z = np.array(ldc_at_Z.Teff, dtype=int) loggs_at_Z = np.array(ldc_at_Z.logg, dtype=float) u1s_at_Z = np.array(ldc_at_Z.aLSM, dtype=float) u2s_at_Z = np.array(ldc_at_Z.bLSM, dtype=float) else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s ldc_at_Z = ldc_K[(ldc_Zs == ldc_Zs[np.abs(ldc_Zs - Z).argmin()])] Teffs_at_Z = np.array(ldc_at_Z.Teff, dtype=int) loggs_at_Z = np.array(ldc_at_Z.logg, dtype=float) u1s_at_Z = np.array(ldc_at_Z.a, dtype=float) u2s_at_Z = np.array(ldc_at_Z.b, dtype=float) rounded_loggs_comp = np.round(loggs_comp/0.5) * 0.5 rounded_loggs_comp[rounded_loggs_comp < 3.5] = 3.5 rounded_loggs_comp[rounded_loggs_comp > 5.0] = 5.0 rounded_Teffs_comp = np.round(Teffs_comp/250) * 250 rounded_Teffs_comp[rounded_Teffs_comp < 3500] = 3500 rounded_Teffs_comp[rounded_Teffs_comp > 10000] = 10000 u1s_comp, u2s_comp = np.zeros(N), np.zeros(N) for i, (comp_Teff, comp_logg) in enumerate( zip(rounded_Teffs_comp, rounded_loggs_comp) ): mask = (Teffs_at_Z == comp_Teff) & (loggs_at_Z == comp_logg) u1s_comp[i], u2s_comp[i] = u1s_at_Z[mask], u2s_at_Z[mask] # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10(fluxratios_comp/(1-fluxratios_comp)) lnprior_companion = lnprior_bound_TP( M_s, plx, np.abs(delta_mags), np.array([2.2]), np.array([1.0]) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: # use flux ratio of contrast curve filter fluxratios_comp_cc = ( flux_relation(masses_comp, filt) / (flux_relation(masses_comp, filt) + flux_relation(np.array([M_s]), filt)) ) delta_mags = 2.5*np.log10(fluxratios_comp_cc/(1-fluxratios_comp_cc)) separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_bound_TP( M_s, plx, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period planet prior for stars # with masses masses_comp lnprior_Mstar = lnprior_Mstar_planet(masses_comp) # calculate orbital period prior lnprior_Porb = lnprior_Porb_planet(P_orb) # sample from prior distributions rps = sample_rp(np.random.rand(N), masses_comp) incs = sample_inc(np.random.rand(N)) eccs = sample_ecc(np.random.rand(N), planet=True, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) a = ((G*masses_comp*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) Ptra = (rps*Rearth + radii_comp*Rsun)/a * e_corr # find instances with collisions coll = ((rps*Rearth + radii_comp*Rsun) > a*(1-eccs)) lnL = np.full(N, -np.inf) if parallel: # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) # calculate lnL for transiting systems lnL[mask] = -0.5*ln2pi - lnsigma - lnL_TP_p( time, flux, sigma, rps[mask], P_orb, incs[mask], a[mask], radii_comp[mask], u1s_comp[mask], u2s_comp[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=True ) else: for i in range(N): if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_TP( time, flux, sigma, rps[i], P_orb, incs[i], a[i], radii_comp[i], u1s_comp[i], u2s_comp[i], eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=True ) idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': masses_comp[idx], 'R_s': radii_comp[idx], 'u1': u1s_comp[idx], 'u2': u2s_comp[idx], 'P_orb': P_orb, 'inc': incs[idx], 'R_p': rps[idx], 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': 0, 'R_EB': 0, 'fluxratio_EB': 0, 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } return res def lnZ_SEB(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, plx: float, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the SEB scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. plx (float): Target star parallax [mas]. contrast_curve_file (string): Path to contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. res_twin (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) # sample from prior distributions incs = sample_inc(np.random.rand(N)) qs = sample_q(np.random.rand(N), M_s) qs_comp = sample_q_companion(np.random.rand(N), M_s) eccs = sample_ecc(np.random.rand(N), planet=False, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate properties of the drawn companions masses_comp = qs_comp*M_s radii_comp, Teffs_comp = stellar_relations( masses_comp, np.full(N, R_s), np.full(N, Teff) ) loggs_comp = np.log10(G*(masses_comp*Msun)/(radii_comp*Rsun)**2) # calculate flux ratios in the TESS band fluxratios_comp = ( flux_relation(masses_comp) / (flux_relation(masses_comp) + flux_relation(np.array([M_s]))) ) # calculate limb darkening ceofficients for companions if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s ldc_at_Z = ldc_T[(ldc_Zs == ldc_Zs[np.abs(ldc_Zs - Z).argmin()])] Teffs_at_Z = np.array(ldc_at_Z.Teff, dtype=int) loggs_at_Z = np.array(ldc_at_Z.logg, dtype=float) u1s_at_Z = np.array(ldc_at_Z.aLSM, dtype=float) u2s_at_Z = np.array(ldc_at_Z.bLSM, dtype=float) else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s ldc_at_Z = ldc_K[(ldc_Zs == ldc_Zs[np.abs(ldc_Zs - Z).argmin()])] Teffs_at_Z = np.array(ldc_at_Z.Teff, dtype=int) loggs_at_Z = np.array(ldc_at_Z.logg, dtype=float) u1s_at_Z = np.array(ldc_at_Z.a, dtype=float) u2s_at_Z = np.array(ldc_at_Z.b, dtype=float) rounded_loggs_comp = np.round(loggs_comp/0.5) * 0.5 rounded_loggs_comp[rounded_loggs_comp < 3.5] = 3.5 rounded_loggs_comp[rounded_loggs_comp > 5.0] = 5.0 rounded_Teffs_comp = np.round(Teffs_comp/250) * 250 rounded_Teffs_comp[rounded_Teffs_comp < 3500] = 3500 rounded_Teffs_comp[rounded_Teffs_comp > 13000] = 13000 u1s_comp, u2s_comp = np.zeros(N), np.zeros(N) for i, (comp_Teff, comp_logg) in enumerate( zip(rounded_Teffs_comp, rounded_loggs_comp) ): mask = (Teffs_at_Z == comp_Teff) & (loggs_at_Z == comp_logg) u1s_comp[i], u2s_comp[i] = u1s_at_Z[mask], u2s_at_Z[mask] # calculate properties of the drawn EBs masses = qs*masses_comp radii, Teffs = stellar_relations(masses, radii_comp, Teffs_comp) # calculate flux ratios in the TESS band fluxratios = ( flux_relation(masses) / (flux_relation(masses) + flux_relation(np.array([M_s]))) ) # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10( (fluxratios_comp/(1-fluxratios_comp)) + (fluxratios/(1-fluxratios)) ) lnprior_companion = lnprior_bound_EB( M_s, plx, np.abs(delta_mags), np.array([2.2]), np.array([1.0]) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: # use flux ratio of contrast curve filter fluxratios_cc = ( flux_relation(masses, filt) / (flux_relation(masses, filt) + flux_relation(np.array([M_s]), filt)) ) fluxratios_comp_cc = ( flux_relation(masses_comp, filt) / (flux_relation(masses_comp, filt) + flux_relation(np.array([M_s]), filt)) ) delta_mags = 2.5*np.log10( (fluxratios_comp_cc/(1-fluxratios_comp_cc)) + (fluxratios_cc/(1-fluxratios_cc)) ) separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_bound_EB( M_s, plx, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period binary prior for stars # with masses masses_comp lnprior_Mstar = lnprior_Mstar_binary(masses_comp) # calculate orbital period prior lnprior_Porb = lnprior_Porb_binary(P_orb) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) a = ( (G*(masses_comp+masses)*Msun)/(4*pi**2)*(P_orb*86400)**2 )**(1/3) Ptra = (radii*Rsun + radii_comp*Rsun)/a * e_corr a_twin = ( (G*(masses_comp+masses)*Msun)/(4*pi**2)*(2*P_orb*86400)**2 )**(1/3) Ptra_twin = (radii*Rsun + radii_comp*Rsun)/a_twin * e_corr # find instances with collisions coll = ((radii*Rsun + radii_comp*Rsun) > a*(1-eccs)) coll_twin = ((2*radii_comp*Rsun) > a_twin*(1-eccs)) lnL = np.full(N, -np.inf) lnL_twin = np.full(N, -np.inf) if parallel: # q < 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) & (qs < 0.95) # calculate lnL for transiting systems lnL[mask] = -0.5*ln2pi - lnsigma - lnL_EB_p( time, flux, sigma, radii[mask], fluxratios[mask], P_orb, incs[mask], a[mask], radii_comp[mask], u1s_comp[mask], u2s_comp[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=True ) # q >= 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra_twin <= 1.] = np.arccos( Ptra_twin[Ptra_twin <= 1.] ) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll_twin == False) & (qs >= 0.95) # calculate lnL for transiting systems lnL_twin[mask] = -0.5*ln2pi - lnsigma - lnL_EB_twin_p( time, flux, sigma, radii[mask], fluxratios[mask], 2*P_orb, incs[mask], a_twin[mask], radii_comp[mask], u1s_comp[mask], u2s_comp[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[mask], companion_is_host=True ) else: for i in range(N): # q < 0.95 if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (qs[i] < 0.95) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_EB( time, flux, sigma, radii[i], fluxratios[i], P_orb, incs[i], a[i], radii_comp[i], u1s_comp[i], u2s_comp[i], eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=True ) # q >= 0.95 and 2xP_orb if Ptra_twin[i] <= 1: inc_min = np.arccos(Ptra_twin[i]) * 180/pi else: continue if ((incs[i] >= inc_min) & (qs[i] >= 0.95) & (coll_twin[i] == False)): lnL_twin[i] = -0.5*ln2pi - lnsigma - lnL_EB_twin( time, flux, sigma, radii[i], fluxratios[i], 2*P_orb, incs[i], a_twin[i], radii_comp[i], u1s_comp[i], u2s_comp[i], eccs[i], argps[i], companion_fluxratio=fluxratios_comp[i], companion_is_host=True ) # results for q < 0.95 idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': masses_comp[idx], 'R_s': radii_comp[idx], 'u1': u1s_comp[idx], 'u2': u2s_comp[idx], 'P_orb': P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } # results for q >= 0.95 and 2xP_orb idx = lnL_twin.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL_twin+lnprior_companion+lnprior_Mstar+lnprior_Porb+600) ) ) lnZ = np.log(Z) res_twin = { 'M_s': masses_comp[idx], 'R_s': radii_comp[idx], 'u1': u1s_comp[idx], 'u2': u2s_comp[idx], 'P_orb': 2*P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idx], 'lnZ': lnZ } return res, res_twin def lnZ_DTP(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, Tmag: float, Jmag: float, Hmag: float, Kmag: float, output_url: str, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the DTP scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. Tmag (float): Target star TESS magnitude. Jmag (float): Target star J magnitude. Hmag (float): Target star H magnitude. Kmag (float): Target star K magnitude. output_url (string): Link to trilegal query results. contrast_curve_file (string): Contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) a = ((G*M_s*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # determine background star population properties (Tmags_comp, masses_comp, loggs_comp, Teffs_comp, Zs_comp, Jmags_comp, Hmags_comp, Kmags_comp) = ( trilegal_results(output_url, Tmag) ) delta_mags = Tmag - Tmags_comp delta_Jmags = Jmag - Jmags_comp delta_Hmags = Hmag - Hmags_comp delta_Kmags = Kmag - Kmags_comp fluxratios_comp = 10**(delta_mags/2.5) / (1 + 10**(delta_mags/2.5)) N_comp = Tmags_comp.shape[0] # draw random sample of background stars idxs = np.random.randint(0, N_comp-1, N) # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10( fluxratios_comp[idxs]/(1-fluxratios_comp[idxs]) ) lnprior_companion = np.full( N, np.log10((N_comp/0.1) * (1/3600)**2 * 2.2**2) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: if filt == "J": delta_mags = delta_Jmags[idxs] elif filt == "H": delta_mags = delta_Hmags[idxs] elif filt == "K": delta_mags = delta_Kmags[idxs] else: delta_mags = delta_mags[idxs] separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_background( N_comp, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period planet prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_planet(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_planet(P_orb) # sample from R_p and inc prior distributions rps = sample_rp(np.random.rand(N), np.full_like(N, M_s)) incs = sample_inc(np.random.rand(N)) eccs = sample_ecc(np.random.rand(N), planet=True, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) Ptra = (rps*Rearth + R_s*Rsun)/a * e_corr # find instances with collisions coll = ((rps*Rearth + R_s*Rsun) > a*(1-eccs)) lnL = np.full(N, -np.inf) if parallel: # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) # calculate lnL for transiting systems a_arr = np.full(N, a) R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_TP_p( time, flux, sigma, rps[mask], P_orb, incs[mask], a_arr[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[idxs[mask]], companion_is_host=False ) else: for i in range(N): if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_TP( time, flux, sigma, rps[i], P_orb, incs[i], a, R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[idxs[i]], companion_is_host=False ) idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': rps[idx], 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': 0, 'R_EB': 0, 'fluxratio_EB': 0, 'fluxratio_comp': fluxratios_comp[idxs[idx]], 'lnZ': lnZ } return res def lnZ_DEB(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Z: float, Tmag: float, Jmag: float, Hmag: float, Kmag: float, output_url: str, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the DEB scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Z (float): Target star metallicity [dex]. Tmag (float): Target star TESS magnitude. Jmag (float): Target star J magnitude. Hmag (float): Target star H magnitude. Kmag (float): Target star K magnitude. output_url (string): Link to trilegal query results. contrast_curve_file (string): Path to contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. res_twin (dict): Best-fit properties and marginal likelihood. """ lnsigma = np.log(sigma) logg = np.log10(G*(M_s*Msun)/(R_s*Rsun)**2) # determine target star limb darkening coefficients if mission == "TESS": ldc_Zs = ldc_T_Zs ldc_Teffs = ldc_T_Teffs ldc_loggs = ldc_T_loggs ldc_u1s = ldc_T_u1s ldc_u2s = ldc_T_u2s else: ldc_Zs = ldc_K_Zs ldc_Teffs = ldc_K_Teffs ldc_loggs = ldc_K_loggs ldc_u1s = ldc_K_u1s ldc_u2s = ldc_K_u2s this_Z = ldc_Zs[np.argmin(np.abs(ldc_Zs-Z))] this_Teff = ldc_Teffs[np.argmin(np.abs(ldc_Teffs-Teff))] this_logg = ldc_loggs[np.argmin(np.abs(ldc_loggs-logg))] mask = ( (ldc_Zs == this_Z) & (ldc_Teffs == this_Teff) & (ldc_loggs == this_logg) ) u1, u2 = ldc_u1s[mask], ldc_u2s[mask] # sample from inc and q prior distributions incs = sample_inc(np.random.rand(N)) qs = sample_q(np.random.rand(N), M_s) eccs = sample_ecc(np.random.rand(N), planet=False, P_orb=P_orb) argps = sample_w(np.random.rand(N)) # calculate properties of the drawn EBs masses = qs*M_s radii, Teffs = stellar_relations( masses, np.full(N, R_s), np.full(N, Teff) ) # calculate flux ratios in the TESS band fluxratios = ( flux_relation(masses) / (flux_relation(masses) + flux_relation(np.array([M_s]))) ) # determine background star population properties (Tmags_comp, masses_comp, loggs_comp, Teffs_comp, Zs_comp, Jmags_comp, Hmags_comp, Kmags_comp) = ( trilegal_results(output_url, Tmag) ) delta_mags = Tmag - Tmags_comp delta_Jmags = Jmag - Jmags_comp delta_Hmags = Hmag - Hmags_comp delta_Kmags = Kmag - Kmags_comp fluxratios_comp = 10**(delta_mags/2.5) / (1 + 10**(delta_mags/2.5)) N_comp = Tmags_comp.shape[0] # draw random sample of background stars idxs = np.random.randint(0, N_comp-1, N) # calculate priors for companions if contrast_curve_file is None: # use TESS/Vis band flux ratios delta_mags = 2.5*np.log10( fluxratios_comp[idxs]/(1-fluxratios_comp[idxs]) ) lnprior_companion = np.full( N, np.log10((N_comp/0.1) * (1/3600)**2 * 2.2**2) ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf else: if filt == "J": delta_mags = delta_Jmags[idxs] elif filt == "H": delta_mags = delta_Hmags[idxs] elif filt == "K": delta_mags = delta_Kmags[idxs] else: delta_mags = delta_mags[idxs] separations, contrasts = file_to_contrast_curve( contrast_curve_file ) lnprior_companion = lnprior_background( N_comp, np.abs(delta_mags), separations, contrasts ) lnprior_companion[lnprior_companion > 0.0] = 0.0 lnprior_companion[delta_mags > 0.0] = -np.inf # calculate short-period binary prior for star of mass M_s lnprior_Mstar = lnprior_Mstar_binary(np.array([M_s])) # calculate orbital period prior lnprior_Porb = lnprior_Porb_binary(P_orb) # calculate transit probability for each instance e_corr = (1+eccs*np.sin(argps*pi/180))/(1-eccs**2) a = ((G*(M_s+masses)*Msun)/(4*pi**2)*(P_orb*86400)**2)**(1/3) Ptra = (radii*Rsun + R_s*Rsun)/a * e_corr a_twin = ((G*(M_s+masses)*Msun)/(4*pi**2)*(2*P_orb*86400)**2)**(1/3) Ptra_twin = (radii*Rsun + R_s*Rsun)/a_twin * e_corr # find instances with collisions coll = ((radii*Rsun + R_s*Rsun) > a*(1-eccs)) coll_twin = ((2*R_s*Rsun) > a_twin*(1-eccs)) lnL = np.full(N, -np.inf) lnL_twin = np.full(N, -np.inf) if parallel: # q < 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra <= 1.] = np.arccos(Ptra[Ptra <= 1.]) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll == False) & (qs < 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL[mask] = -0.5*ln2pi - lnsigma - lnL_EB_p( time, flux, sigma, radii[mask], fluxratios[mask], P_orb, incs[mask], a[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[idxs[mask]], companion_is_host=False ) # q >= 0.95 # find minimum inclination each planet can have while transiting inc_min = np.full(N, 90.) inc_min[Ptra_twin <= 1.] = np.arccos( Ptra_twin[Ptra_twin <= 1.] ) * 180./pi # filter out systems that do not transit or have a collision mask = (incs >= inc_min) & (coll_twin == False) & (qs >= 0.95) # calculate lnL for transiting systems R_s_arr = np.full(N, R_s) u1_arr = np.full(N, u1) u2_arr = np.full(N, u2) lnL_twin[mask] = -0.5*ln2pi - lnsigma - lnL_EB_twin_p( time, flux, sigma, radii[mask], fluxratios[mask], 2*P_orb, incs[mask], a_twin[mask], R_s_arr[mask], u1_arr[mask], u2_arr[mask], eccs[mask], argps[mask], companion_fluxratio=fluxratios_comp[idxs[mask]], companion_is_host=False ) else: for i in range(N): # q < 0.95 if Ptra[i] <= 1: inc_min = np.arccos(Ptra[i]) * 180/pi else: continue if (incs[i] >= inc_min) & (qs[i] < 0.95) & (coll[i] == False): lnL[i] = -0.5*ln2pi - lnsigma - lnL_EB( time, flux, sigma, radii[i], fluxratios[i], P_orb, incs[i], a[i], R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[idxs[i]], companion_is_host=False ) # q >= 0.95 and 2xP_orb if Ptra_twin[i] <= 1: inc_min = np.arccos(Ptra_twin[i]) * 180/pi else: continue if ((incs[i] >= inc_min) & (qs[i] >= 0.95) & (coll_twin[i] == False)): lnL_twin[i] = -0.5*ln2pi - lnsigma - lnL_EB_twin( time, flux, sigma, radii[i], fluxratios[i], 2*P_orb, incs[i], a_twin[i], R_s, u1, u2, eccs[i], argps[i], companion_fluxratio=fluxratios_comp[idxs[i]], companion_is_host=False ) # results for q < 0.95 idx = lnL.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL + lnprior_companion + lnprior_Mstar + lnprior_Porb + 600) ) ) lnZ = np.log(Z) res = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idxs[idx]], 'lnZ': lnZ } # results for q >= 0.95 and 2xP_orb idx = lnL_twin.argmax() Z = np.mean( np.nan_to_num( np.exp(lnL_twin+lnprior_companion+lnprior_Mstar+lnprior_Porb+600) ) ) lnZ = np.log(Z) res_twin = { 'M_s': M_s, 'R_s': R_s, 'u1': u1, 'u2': u2, 'P_orb': 2*P_orb, 'inc': incs[idx], 'R_p': 0, 'ecc': eccs[idx], 'argp': argps[idx], 'M_EB': masses[idx], 'R_EB': radii[idx], 'fluxratio_EB': fluxratios[idx], 'fluxratio_comp': fluxratios_comp[idxs[idx]], 'lnZ': lnZ } return res, res_twin def lnZ_BTP(time: np.ndarray, flux: np.ndarray, sigma: float, P_orb: float, M_s: float, R_s: float, Teff: float, Tmag: float, Jmag: float, Hmag: float, Kmag: float, output_url: str, contrast_curve_file: str = None, filt: str = "TESS", N: int = 1000000, parallel: bool = False, mission: str = "TESS"): """ Calculates the marginal likelihood of the BTP scenario. Args: time (numpy array): Time of each data point [days from transit midpoint]. flux (numpy array): Normalized flux of each data point. sigma (float): Normalized flux uncertainty. P_orb (float): Orbital period [days]. M_s (float): Target star mass [Solar masses]. R_s (float): Target star radius [Solar radii]. Teff (float): Target star effective temperature [K]. Tmag (float): Target star TESS magnitude. Jmag (float): Target star J magnitude. Hmag (float): Target star H magnitude. Kmag (float): Target star K magnitude. output_url (string): Link to trilegal query results. contrast_curve_file (string): Path to contrast curve file. filt (string): Photometric filter of contrast curve. Options are TESS, Vis, J, H, and K. N (int): Number of draws for MC. parallel (bool): Whether or not to simulate light curves in parallel. mission (str): TESS, Kepler, or K2. Returns: res (dict): Best-fit properties and marginal likelihood. """ lnsigma =
np.log(sigma)
numpy.log
# coding: utf-8 ########### an plotting function given by professor ######### import pdb import pylab as pl import numpy as np def plotDecisionBoundary(X, Y, scoreFn, values, title = ""): # Plot the decision boundary. For that, we will asign a score to # each point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = max((x_max-x_min)/200., (y_max-y_min)/200.) xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) zz = np.array([scoreFn(x) for x in np.c_[xx.ravel(), yy.ravel()]]) zz = zz.reshape(xx.shape) pl.figure() CS = pl.contour(xx, yy, zz, values, colors = 'green', linestyles = 'solid', linewidths = 2) pl.clabel(CS, fontsize=9, inline=1) # Plot the training points pl.scatter(X[:, 0], X[:, 1], c=(1.-Y), s=50, cmap = pl.cm.cool) pl.title(title) pl.axis('tight') ########### 1. LOGISTIC REGRESSION ########### from scipy.optimize import fmin_bfgs # the optimizer we tried in PA1 def get_path_pair(name): return 'data/data_{}_train.csv'.format(name), 'data/data_{}_validate.csv'.format(name) dataset_names = ('ls', 'nls', 'nonlin') def get_xy(path): # given data format being x1, x2, y D = np.loadtxt(path) return D[:,0:2], D[:,2:3] class logistic_classifier(): def Wx(self, W, x): return W[0] + np.dot(W[1:],x) def set_init_W(self, x_length): self.W = np.ones(x_length + 1) def train(self, X, Y, lmbda): Y = Y.reshape(len(X)) # uniformed initial guess, does not matter much though self.set_init_W(X.shape[1]) # negative log likelyhood function as our loss NLL = lambda W: sum(np.log(1 + np.exp(- y * self.Wx(W,x))) for x,y in zip(X,Y)) + lmbda * np.linalg.norm(W[1:])**2 # optimize NLL and save the weights self.W = fmin_bfgs(NLL, self.W, disp=0) def score(self, x): return 1/(1 + np.exp(- self.Wx(self.W, x))) def predit(self, x): return 1 if self.score(x) > 0.5 else -1 def train(model, dataset, norm_penalty): X, Y = get_xy(dataset) clf = model() clf.train(X, Y, norm_penalty) return clf def validate(clf, dataset_v): X, Y = get_xy(dataset_v) Y_estimate = np.array([clf.predit(x) for x in X]) acuracy = sum(Y_estimate == Y.reshape(len(Y))) / len(Y) return acuracy def get_accuary(model, dataset_name, norm_penalty): t, v = get_path_pair(dataset_name) clf = train(model, t, norm_penalty) acuracy_t = validate(clf, t) acuracy_v = validate(clf, v) print('validate: {} acuracy being {}:{} percent under norm penalty {}.'.format(dataset_name, acuracy_t*100, acuracy_v*100, norm_penalty)) return acuracy_t, acuracy_v def plot_logistic_regression_boundaries(model, dataset_name, norm_penalty, show=1): t, v = get_path_pair(dataset_name) clf = model() X_t, Y_t = get_xy(t) clf.train(X_t, Y_t, norm_penalty) title = '{} λ={} Train'.format(dataset_name.upper(),norm_penalty) plotDecisionBoundary(X_t, Y_t, clf.score, [0.5], title=title) if show: pl.show() # else: # pl.savefig(title) X_v, Y_v = get_xy(v) title = '{} λ={} Validate'.format(dataset_name.upper(),norm_penalty) plotDecisionBoundary(X_v, Y_v, clf.score, [0.5], title=title) if show: pl.show() # else: # pl.savefig(title) ############## 1.3 Polynomial feature expansion ############# # since we already have the non-expanded classifier # we can simply expand X before train and expand u before perdict from itertools import combinations as C class logistic_classifier_expanded(logistic_classifier): def expand(self, x): expanded = np.fromiter(map(lambda x:x[0]*x[1], C(x, 2)), float) return np.concatenate([[1], x, expanded]) def set_init_W(self, x_length): self.W = self.expand(np.ones(x_length)) def Wx(self, W, x): return np.dot(W, self.expand(x)) # for n in dataset_names: # for p in [0,.1,.2,.5,.9,1,3,10,100]: # get_accuary(logistic_classifier_expanded, n, p) # plot_logistic_regression_boundaries(logistic_classifier_expanded,n, p,0) def tune(model, dataset_name): lambda_range = np.arange(0, 15, .1) acc_range = [get_accuary(model, dataset_name, p) for p in lambda_range] acc_range_t = [a[0] for a in acc_range] acc_range_v = [a[1] for a in acc_range] pl.plot(lambda_range,acc_range_t) pl.plot(lambda_range,acc_range_v) pl.xlabel('λ') pl.ylabel('Accuracy') pl.legend(['train', 'validate'], loc='upper right') pl.savefig(dataset_name) pl.show() # Code for generating graphs # for n in dataset_names: # tune(logistic_classifier, n) # for n in dataset_names: # tune(logistic_classifier_expanded, n) ################# 2. SVM ################## class svm_primal: def train(self, X, Y, K, C): assert (len(X) == len(Y)) n, m = X.shape # don't have kernal, just ignore the parameter K # parameter theta being optimized being concat(b, w, slack).T # formating constraints accordingly P =
np.zeros((1+n+m, 1+n+m))
numpy.zeros
import abc from inspect import isclass from math import acos, asin, atan2, cos, degrees, pi, radians, sin, sqrt import numpy as np from matplotlib import patheffects from matplotlib.collections import LineCollection from matplotlib.mlab import griddata from matplotlib.patches import Circle # http://treyhunner.com/2016/02/how-to-merge-dictionaries-in-python/ try: from collections import ChainMap except ImportError: from itertools import chain def ChainMap(*args): return dict(chain(*map(lambda d: d.items(), reversed(args)))) def dcos_line(trend_plunge): tr, pl = np.transpose(np.radians(trend_plunge)) # trend, plunge return np.array( (np.cos(pl) * np.sin(tr), np.cos(pl) * np.cos(tr), -np.sin(pl)) ).T def sphere_line(dcos_data): x, y, z = np.transpose(dcos_data) sign_z = np.where(z > 0, -1, 1) z = np.clip(z, -1.0, 1.0) return np.array( ( np.degrees(np.arctan2(sign_z * x, sign_z * y)) % 360, np.degrees(np.arcsin(np.abs(z))), ) ).T def normalized_cross(a, b): c = np.cross(a, b) length = sqrt(c.dot(c)) return c / length if length > 0 else c def build_rotation_matrix(azim, plng, rake): azim, plng, rake = radians(azim), radians(plng), radians(rake) R1 = np.array( ( (cos(rake), 0.0, sin(rake)), (0.0, 1.0, 0.0), (-sin(rake), 0.0, cos(rake)), ) ) R2 = np.array( ( (1.0, 0.0, 0.0), (0.0, cos(plng), sin(plng)), (0.0, -sin(plng), cos(plng)), ) ) R3 = np.array( ( (cos(azim), sin(azim), 0.0), (-sin(azim), cos(azim), 0.0), (0.0, 0.0, 1.0), ) ) return R3.dot(R2).dot(R1) def fit_girdle(data): direction_tensor = np.dot(np.transpose(data), data) eigenvalues, eigenvectors = np.linalg.eigh(direction_tensor) axis = Vector(eigenvectors[:, eigenvalues.argmin()]) return axis/axis.length def fit_small_circle(data): eigenvalues, eigenvectors = np.linalg.eigh(np.cov(data, rowvar=False)) axis = Vector(eigenvectors[:, eigenvalues.argmin()]) return axis/axis.length class Vector(np.ndarray): def __new__(cls, dcos_data): return np.asarray(dcos_data).view(cls) def angle_with(self, other, precise=False): if not precise: self_length = self.length other_length = sqrt(other.dot(other)) return acos(np.clip(self.dot(other) / (self_length * other_length), -1, 1)) else: return atan2(self.cross_with(other), self.dot(other)) def cross_with(self, other): return Vector(np.cross(self, other)) def normalized_cross_with(self, other): return Vector(normalized_cross(self, other)) @property def attitude(self): x, y, z = self / self.length if z > 0: x, y = -x, -y return degrees(atan2(x, y)) % 360, degrees(asin(abs(z))) @property # this should be cached def length(self): return sqrt(self.dot(self)) @property def direction_vector(self): if abs(self[2]) == 1.0: return Vector((1.0, 0.0, 0.0)) direction = Vector((self[1], -self[0], 0.0)) return direction / direction.length @property def dip_vector(self): return Vector(np.cross(self / self.length, self.direction_vector)) @property def projection_matrix(self): return np.outer(self, self) @property def rejection_matrix(self): return np.eye(3) - self.projection_matrix @property def cross_product_matrix(self): return np.array( ( (0.0, -self[2], self[1]), (self[2], 0.0, -self[0]), (-self[1], self[0], 0.0), ) ) def get_rotation_matrix(self, theta): return ( cos(theta) * np.eye(3) + sin(theta) * self.cross_product_matrix + (1 - cos(theta)) * self.projection_matrix ) def get_great_circle(self, step=radians(1.0), offset=0.0): theta_range = np.arange(offset, 2 * pi + offset, step) % (2 * pi) sin_range = np.sin(theta_range) cos_range = np.cos(theta_range) return ( ( self.direction_vector[:, None] * cos_range + self.dip_vector[:, None] * sin_range ).T, ) def get_small_circle(self, alpha, A=0, B=0, step=radians(1.0), offset=0.0): if A == 0 and B == 0: sc = self.get_great_circle(step, offset)[0].T * sin(alpha) + self[ :, None ] * cos(alpha) else: theta_range = np.arange(0, 2 * pi, step) alpha_ = ( alpha + A * np.cos(2 * theta_range) + B * np.sin(2 * theta_range) ) sc = self.get_great_circle(step)[0].T * np.sin(alpha_) + self[ :, None ] * np.cos(alpha_) return sc.T, -sc.T def arc_to(self, other, step=radians(1.0)): normal = self.rejection_matrix.dot(other) normal /= sqrt(normal.dot(normal)) theta_range = np.arange(0, self.angle_with(other), step) sin_range = np.sin(theta_range) cos_range = np.cos(theta_range) return ((self * cos_range[:, None] + normal * sin_range[:, None]),) @staticmethod def from_attitude(trend, plunge): return Vector(dcos_line((trend, plunge))) class VectorSet(np.ndarray): """Class that represents a set (collection) of Vectors. Parameters: dcos_data: Is an array of direction cosines. """ item_class = Vector def __new__(cls, dcos_data): obj = np.asarray(dcos_data).view(cls) return obj def __finalize_array__(self, obj): if obj is None: return def __getitem__(self, x): item = super(VectorSet, self).__getitem__(x) if np.atleast_2d(item).shape == (1, 3): return item.view(self.item_class) else: return item # @property # def stats(self): # """Contains spherical statistics object for the data # set. # """ # return SphericalStatistics(self) @property def attitude(self): """Converts this data from direction cosines to attitudes.""" return sphere_line(self) # def count_fisher(self, k=None, grid=None): # """Performs grid counting of the data by Fisher smoothing. # Parameters: # k: von Mises-Fisher k parameter, see # stats.SphericalGrid.count_fisher. # grid: A stats.Spherical grid object to count on. If None # the default grid defined on stats.DEFAULT_GRID will be # used. # """ # if grid is None: # grid = DEFAULT_GRID # return grid.count_fisher(self, k) # def count_kamb(self, theta=None, grid=None): # """Performs grid counting of the data by small circles of # aperture theta. # Parameters: # theta: <NAME> (1986) based on Kamb (1956) theta # parameter, see stats.SphericalGrid.count_kamb. # grid: A stats.Spherical grid object to count on. If None # the default grid defined on stats.DEFAULT_GRID will be # used. # """ # if grid is None: # grid = DEFAULT_GRID # return grid.count_kamb(self, theta) def normalized_cross_with(self, other): """Returns a VectorSet object containing the normalized cross product of all possible pairs between this VectorSet and an (n, 3) array-like Parameter: other: A VectorSet like object. """ vectors = np.zeros((len(self) * len(other), 3)) i = 0 for self_vector in self: for other_vector in other: cross = normalized_cross(self_vector, other_vector) vectors[i] = cross if cross[2] < 0 else -cross i += 1 return VectorSet(vectors) def angle_with(self, other, precise=False): """Returns the angles matrix between this Spherical Data and an (n, 3) array-like. Parameter: other: A VectorSet like object. precise: whether to use arccosine or arctangent (defaults False) """ angles = np.zeros((len(self), len(other))) for i, self_vector in enumerate(self): for j, other_vector in enumerate(other): angles[i, j] = self_vector.angle_with(other_vector, precise) return angles def get_great_circle(self, step=radians(1.0)): """Returns a generator to the list of great circles of this VectorSet vectors. Parameters: step: Angular step in radians to generate points around great circle. """ for vector in self: yield vector.get_great_circle(step)[0] # because of plot_circles class ProjectionBase(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def _dtr(self, x, y, z): raise Exception() @abc.abstractmethod def _itr(self, X, Y): raise Exception() def __init__(self, rotation=None): # Maybe check if rotation is already a rotation matrix, and # sets it directly if so. Then a matrix generated by a # Vector could be used here. self.rotation = rotation if rotation is not None: self.R = build_rotation_matrix(*rotation) self.I = np.linalg.inv(self.R) else: self.R = self.I = np.eye(3) def _pre_direct(self, data, invert_positive, rotate): if rotate and self.rotation is not None: x, y, z = self.R.dot(np.transpose(data)) else: x, y, z = np.transpose(data) d = 1.0 / np.sqrt(x * x + y * y + z * z) if invert_positive: c = np.where(z > 0, -1, 1) * d return c * x, c * y, c * z else: return d * x, d * y, d * z def _post_inverse(self, data, rotate): if rotate and self.rotation is not None: return np.transpose(self.I.dot(data)) else: return np.transpose(data) def direct(self, data, invert_positive=True, rotate=True): return self._dtr(*self._pre_direct(data, invert_positive, rotate)) def inverse(self, data, rotate=True): return self._post_inverse(self._itr(*np.transpose(data)), rotate) class EqualAngle(ProjectionBase): def _dtr(self, x, y, z): """equal-angle (stereographic) projection. Projects a point from the unit sphere to a plane using stereographic projection""" return x / (1 - z), y / (1 - z) def _itr(self, X, Y): """inverse equal-angle (stereographic) projection. Inverts the projection of a point from the unit sphere to a plane using stereographic projection""" x = 2.0 * X / (1.0 + X * X + Y * Y) y = 2.0 * Y / (1.0 + X * X + Y * Y) z = (-1.0 + X * X + Y * Y) / (1.0 + X * X + Y * Y) return x, y, z class Orthographic(ProjectionBase): def _dtr(self, x, y, z): """orthographic projection on z=0 plane.""" return x, y def _itr(self, X, Y): """Inverse orthographic projection from z=0 plane to unit sphere.""" x, y = X, Y z = np.sqrt(1 - x * x - y * y) return x, y, z class EqualArea(ProjectionBase): def _dtr(self, x, y, z): """equal-area (schmidt-lambert) projection. Projects a point from the unit sphere to a plane using lambert equal-area projection, though shrinking the projected sphere radius to 1 from sqrt(2).""" return x * np.sqrt(1 / (1 - z)), y * np.sqrt(1 / (1 - z)) def _itr(self, X, Y): """inverse equal-area (schmidt-lambert) projection. Inverts the projection of a point from the unit sphere to a plane using lambert equal-area projection, cosidering that the projected radius of the sphere was shrunk to 1 from sqrt(2).""" X, Y = X * sqrt(2), Y * sqrt(2) x = np.sqrt(1 - (X * X + Y * Y) / 4.0) * X y = np.sqrt(1 - (X * X + Y * Y) / 4.0) * Y z = -1.0 + (X * X + Y * Y) / 2 return x, y, z class ProjectionPlot(object): point_defaults = {"marker": "o", "c": "#000000", "ms": 3.0} line_defaults = {"linewidths": 0.8, "colors": "#4D4D4D", "linestyles": "-"} polygon_defaults = { "linewidths": 0.8, "edgecolors": "#4D4D4D", "facecolors": "#FF8000", } contour_defaults = {"cmap": "Reds", "linestyles": "-", "antialiased": True} arrow_defaults = {"lw": 1.0, "ls": "-"} net_gc_defaults = { "linewidths": 0.25, "colors": "#808080", "linestyles": "-", } net_sc_defaults = { "linewidths": 0.25, "colors": "#808080", "linestyles": "-", } text_defaults = { "family": "sans-serif", "size": "x-small", "horizontalalignment": "center", } @staticmethod def _clip_lines(data, z_tol=0.1): """segment point pairs between inside and outside of primitive, for avoiding spurious lines when plotting circles.""" z = np.transpose(data)[2] inside = z < z_tol results = [] current = [] for i, is_inside in enumerate(inside): if is_inside: current.append(data[i]) elif current: results.append(current) current = [] if current: results.append(current) return results @staticmethod def _join_segments(segments, c_tol=radians(1.0)): """segment point pairs between inside and outside of primitive, for avoiding spurious lines when plotting circles.""" all_joined = False while not all_joined and len(segments) > 1: all_joined = True segment = segments.pop(0) if abs(segment[-1].angle_with(segments[0][0])) < c_tol: segment.extend(segments.pop(0)) all_joined = False elif abs(segment[0].angle_with(segments[0][-1])) < c_tol: segment_b = segments.pop(0) segment_b.extend(segment) segment = segment_b all_joined = False elif abs(segment[-1].angle_with(segments[0][-1])) < c_tol: segment.extend(reversed(segments.pop(0))) all_joined = False elif abs(segment[0].angle_with(segments[0][0])) < c_tol: segment_b = segments.pop(0) segment_b.extend(reversed(segment)) segment = segment_b all_joined = False segments.append(segment) return segments # @staticmethod # def _close_polygon(projected_polygon): # print(projected_polygon.shape) # first = projected_polygon[0] # last = projected_polygon[-1] # mid = (first + last) / 2 # mid = mid / np.linalg.norm(mid) # if np.dot(first, last) == 0.0: # mid = np.array([first[1], -first[0]]) # if np.linalg.norm(first) > 1.0 and np.linalg.norm(last) > 1.0: # return np.vstack( # [projected_polygon, [2 * last, 3 * mid, 2 * first]] # ) # return projected_polygon @staticmethod def _net_grid(gc_spacing=10.0, sc_spacing=10.0, n=360, clean_caps=True): theta = np.linspace(0.0, 2 * pi, n) gc_spacing, sc_spacing = radians(gc_spacing), radians(sc_spacing) if clean_caps: theta_gc = np.linspace(0.0 + sc_spacing, pi - sc_spacing, n) else: theta_gc = np.linspace(0.0, pi, n) gc_range = np.arange(0.0, pi + gc_spacing, gc_spacing) gc_range = np.hstack((gc_range, -gc_range)) sc_range = np.arange(0.0, pi + sc_spacing, sc_spacing) i, j, k = np.eye(3) ik_circle = i[:, None] * np.sin(theta) + k[:, None] * np.cos(theta) great_circles = [ ( np.array((cos(alpha), 0.0, -sin(alpha)))[:, None] * np.sin(theta_gc) + j[:, None] * np.cos(theta_gc) ).T for alpha in gc_range ] small_circles = [ (ik_circle * sin(alpha) + j[:, None] * cos(alpha)).T for alpha in sc_range ] if clean_caps: for cap in (0, pi): theta_gc = np.linspace(cap - sc_spacing, cap + sc_spacing, n) great_circles += [ ( np.array((cos(alpha), 0.0, -sin(alpha)))[:, None] *
np.sin(theta_gc)
numpy.sin
""" The goal of this script is to train a TD3 RL algorithm on the random deformation task and compare the cumulative rewards to the ones gathered by alternative discretization strategies. For this, do the following 1. Definitions and imports 2. Train with stable baselines 3. Apply alternative methods 4. Summarize and plot results """ """ 1. Definitions and imports """ # i) Import basics and custom environment import numpy as np import time from scipy.optimize import basinhopping import class_random_def_2D_env as def_2D # ii) Import stable baselines from stable_baselines3 import TD3 from stable_baselines3.common.env_checker import check_env # iii) Initialize and check np.random.seed(0) def_2D_env=def_2D.Env() def_2D_env.reset() check_env(def_2D_env) """ 2. Train with stable baselines """ # i) Train a TD3 Model # start_time=time.time() # model = TD3("MlpPolicy", def_2D_env,verbose=1, seed=0) # model.learn(total_timesteps=100000) # end_time=time.time() # model.save('./Saved_models/trained_benchmark_random_def_2D') model=TD3.load('./Saved_models/trained_benchmark_random_def_2D') """ 3. Apply alternative methods """ # Note: All actions are in [-1,1]x[-1,1] and get mapped to [0,1]x[0,1] by # the environment translating input actions from the symmetric box space # [-1,1]x[-1,1] to indices # i) Grid based sampling def grid_based_sampling(environment): grid_x1=np.kron(np.array([-1/3, 1/3, 1]),np.array([1, 1, 1])) grid_x2=np.kron(np.array([1, 1, 1]), np.array([-1/3, 1/3, 1])) grid=np.vstack((grid_x1, grid_x2)) action=grid[:,environment.epoch] return action # ii) Pseudo random sampling def pseudo_random_sampling(environment): Halton_sequence=np.array([[1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/17, 3/16],[1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, 10/27]])*2-np.ones([2,10]) action=Halton_sequence[:, environment.epoch] return action # iii) Random sampling def random_sampling(environment): action=np.random.uniform(-1,1,[2]) return action # iv) Numerical integration def quadrature_sampling(environment): Gauss_points_x1=np.kron(np.array([-0.77, 0, 0.77]),np.array([1, 1, 1])) Gauss_points_x2=np.kron(np.array([1, 1, 1]),np.array([-0.77, 0, 0.77])) Gauss_points=np.vstack((Gauss_points_x1, Gauss_points_x2)) action=Gauss_points[:, environment.epoch] return action # v) Experiment design based sampling n_average=1000 fun_table=np.zeros([n_average,(def_2D_env.x_max[0]*def_2D_env.x_max[1]).astype(int).item()]) for k in range(n_average): def_2D_env.reset() fun_table[k,:]=def_2D_env.fun.flatten() def loss_fun(x_vec): x_vec=np.reshape(x_vec, [2,9]) index_vec=np.zeros([2,def_2D_env.n_meas]) lin_ind_vec=np.zeros(def_2D_env.n_meas) for k in range(def_2D_env.n_meas): index_vec[:,k]=def_2D_env.round_to_index(x_vec[:,k]*0.5+0.5) lin_ind_vec[k]=np.ravel_multi_index((index_vec[0,k].astype(int), index_vec[1,k].astype(int)), [def_2D_env.x_max[0].item(),def_2D_env.x_max[1].item()]) f_max=np.max(fun_table,axis=1) f_obs_mat=fun_table[:,lin_ind_vec.astype(int)] f_obs_max=np.max(f_obs_mat,axis=1) loss_vec=np.abs(f_obs_max-f_max) loss_val=
np.mean(loss_vec)
numpy.mean
""" Provides unit tests for sampler diagnostics. """ # License: MIT from __future__ import absolute_import, division import arviz as az import numpy as np import pytest import scipy.optimize as so import scipy.sparse as sa import scipy.special as sp import scipy.stats as ss import reanalysis_dbns.models as rdm from reanalysis_dbns.models.sampler_diagnostics import ( _count_model_transitions, _estimate_dirichlet_shape_parameters, _get_chisq_class_lookup, _invert_digamma, _relabel_unobserved_markov_chain_states, _sample_stationary_distributions) def test_rjmcmc_rhat_single_model(): """Test calculation of convergence diagnostics for RJMCMC.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 4 n_iter = 10 k = np.zeros((n_chains, n_iter)) theta = rng.uniform(size=(n_chains, n_iter)) rhat_result = rdm.rjmcmc_rhat(k, theta, split=True) expected_rhat = az.rhat( az.convert_to_dataset(theta[:, :, np.newaxis]), method='split')['x'].data assert rhat_result['PSRF1'].shape == expected_rhat.shape assert np.allclose(rhat_result['PSRF1'], expected_rhat) model_indicators = np.array([2]) with pytest.raises(ValueError): rhat_result = rdm.rjmcmc_rhat( k, theta, model_indicators=model_indicators, split=True) n_parameters = 3 theta = rng.uniform(size=(n_chains, n_iter, n_parameters)) rhat_result = rdm.rjmcmc_rhat(k, theta, split=True) expected_rhat = az.rhat( az.convert_to_dataset(theta), method='split')['x'].data assert rhat_result['PSRF1'].shape == expected_rhat.shape assert np.allclose(rhat_result['PSRF1'], expected_rhat) def test_rjmcmc_rhat_single_parameter_no_split(): # noqa: C901 """Test RJMCMC with a single parameter.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 4 n_iter = 10 k = np.zeros((n_chains, n_iter)) k[:, 5:] = 1 theta = rng.uniform(size=(n_chains, n_iter)) rhat_result = rdm.rjmcmc_rhat(k, theta, split=False) present_models = np.unique(k) n_models = np.size(present_models) theta_bar_cm = np.zeros((n_chains, n_models)) theta_bar_c = np.zeros((n_chains,)) theta_bar_m = np.zeros((n_models,)) theta_bar = np.atleast_1d(np.mean(theta)) for c in range(n_chains): theta_bar_c[c] = np.mean(theta[c]) for m in range(n_models): mask = k[c] == present_models[m] theta_bar_m[m] += np.sum(theta[c, mask]) theta_bar_cm[c, m] = np.mean(theta[c, mask]) for m in range(n_models): Rm = np.sum(k == present_models[m]) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((1,)) Wc = np.zeros((1,)) Wm = np.zeros((1,)) WmWc = np.zeros((1,)) for c in range(n_chains): for m in range(n_models): mask = k[c] == present_models[m] Vhat[0] += np.sum((theta[c, mask] - theta_bar)**2) Wc[0] += np.sum((theta[c, mask] - theta_bar_c[c])**2) Wm[0] += np.sum((theta[c, mask] - theta_bar_m[m])**2) WmWc[0] += np.sum((theta[c, mask] - theta_bar_cm[c, m])**2) Vhat /= (n_chains * k.shape[1] - 1.0) Wc /= (n_chains * (k.shape[1] - 1.0)) Wm /= (n_chains * k.shape[1] - n_models) WmWc /= (n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) k = np.zeros((n_chains, n_iter)) k[:, ::2] = 1 theta = rng.uniform(size=(n_chains, n_iter)) rhat_result = rdm.rjmcmc_rhat(k, theta, split=False) n_models = np.size(np.unique(k)) theta_bar_cm = np.zeros((n_chains, n_models)) theta_bar_c = np.zeros((n_chains,)) theta_bar_m = np.zeros((n_models,)) theta_bar = np.atleast_1d(np.mean(theta)) for c in range(n_chains): theta_bar_c[c] = np.mean(theta[c]) for m in range(n_models): mask = k[c] == m theta_bar_m[m] += np.sum(theta[c, mask]) theta_bar_cm[c, m] = np.mean(theta[c, mask]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((1,)) Wc = np.zeros((1,)) Wm = np.zeros((1,)) WmWc = np.zeros((1,)) for c in range(n_chains): for m in range(n_models): mask = k[c] == m Vhat[0] += np.sum((theta[c, mask] - theta_bar)**2) Wc[0] += np.sum((theta[c, mask] - theta_bar_c[c])**2) Wm[0] += np.sum((theta[c, mask] - theta_bar_m[m])**2) WmWc[0] += np.sum((theta[c, mask] - theta_bar_cm[c, m])**2) Vhat /= (n_chains * k.shape[1] - 1.0) Wc /= (n_chains * (k.shape[1] - 1.0)) Wm /= (n_chains * k.shape[1] - n_models) WmWc /= (n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) def test_rjmcmc_rhat_single_parameter_split(): # noqa: C901 """Test RJMCMC with a single parameter.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 4 n_iter = 20 initial_k = np.zeros((n_chains, n_iter)) initial_k[:, ::2] = 1 initial_k[:, ::3] = 2 initial_theta = rng.uniform(size=(n_chains, n_iter)) rhat_result = rdm.rjmcmc_rhat(initial_k, initial_theta, split=True) n_models = np.size(np.unique(initial_k)) k = np.zeros((2 * n_chains, n_iter // 2)) theta = np.zeros((2 * n_chains, n_iter // 2)) for i in range(n_chains): k[2 * i] = initial_k[i, :n_iter // 2] k[2 * i + 1] = initial_k[i, n_iter // 2:] theta[2 * i] = initial_theta[i, :n_iter // 2] theta[2 * i + 1] = initial_theta[i, n_iter // 2:] theta_bar_cm = np.zeros((2 * n_chains, n_models)) theta_bar_c = np.zeros((2 * n_chains,)) theta_bar_m = np.zeros((n_models,)) theta_bar = np.atleast_1d(np.mean(theta)) for c in range(2 * n_chains): theta_bar_c[c] = np.mean(theta[c]) for m in range(n_models): mask = k[c] == m theta_bar_m[m] += np.sum(theta[c, mask]) theta_bar_cm[c, m] = np.mean(theta[c, mask]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((1,)) Wc = np.zeros((1,)) Wm = np.zeros((1,)) WmWc = np.zeros((1,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m Vhat[0] += np.sum((theta[c, mask] - theta_bar)**2) Wc[0] += np.sum((theta[c, mask] - theta_bar_c[c])**2) Wm[0] += np.sum((theta[c, mask] - theta_bar_m[m])**2) WmWc[0] += np.sum((theta[c, mask] - theta_bar_cm[c, m])**2) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) n_chains = 3 n_iter = 21 initial_k = np.zeros((n_chains, n_iter)) initial_k[:, ::2] = 1 initial_k[:, ::3] = 2 initial_theta = rng.uniform(size=(n_chains, n_iter)) rhat_result = rdm.rjmcmc_rhat(initial_k, initial_theta, split=True) n_models = np.size(np.unique(initial_k)) k = np.zeros((2 * n_chains, (n_iter - 1) // 2)) theta = np.zeros((2 * n_chains, (n_iter - 1) // 2)) for i in range(n_chains): k[2 * i] = initial_k[i, 1:(n_iter - 1) // 2 + 1] k[2 * i + 1] = initial_k[i, 1 + (n_iter - 1) // 2:] theta[2 * i] = initial_theta[i, 1:(n_iter - 1) // 2 + 1] theta[2 * i + 1] = initial_theta[i, 1 + (n_iter - 1) // 2:] theta_bar_cm = np.zeros((2 * n_chains, n_models)) theta_bar_c = np.zeros((2 * n_chains,)) theta_bar_m = np.zeros((n_models,)) theta_bar = np.atleast_1d(np.mean(theta)) for c in range(2 * n_chains): theta_bar_c[c] = np.mean(theta[c]) for m in range(n_models): mask = k[c] == m theta_bar_m[m] += np.sum(theta[c, mask]) theta_bar_cm[c, m] = np.mean(theta[c, mask]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((1,)) Wc = np.zeros((1,)) Wm = np.zeros((1,)) WmWc = np.zeros((1,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m Vhat[0] += np.sum((theta[c, mask] - theta_bar)**2) Wc[0] += np.sum((theta[c, mask] - theta_bar_c[c])**2) Wm[0] += np.sum((theta[c, mask] - theta_bar_m[m])**2) WmWc[0] += np.sum((theta[c, mask] - theta_bar_cm[c, m])**2) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) def test_rjmcmc_rhat_multiple_parameter_no_split(): # noqa: C901 """Test RJMCMC with multiple parameters.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 7 n_iter = 21 n_parameters = 4 initial_k = np.zeros((n_chains, n_iter)) initial_k[:, ::2] = 1 initial_theta = rng.uniform(size=(n_chains, n_iter, n_parameters)) rhat_result = rdm.rjmcmc_rhat(initial_k, initial_theta, split=False) n_models = np.size(np.unique(initial_k)) k = initial_k theta = initial_theta theta_bar_cm = np.zeros((n_chains, n_models, n_parameters)) theta_bar_c = np.zeros((n_chains, n_parameters)) theta_bar_m = np.zeros((n_models, n_parameters)) theta_bar = np.zeros((n_parameters,)) for c in range(n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): theta_bar_c[c, i] = np.mean(theta[c, :, i]) theta_bar[i] += np.sum(theta[c, mask, i]) theta_bar_m[m, i] += np.sum(theta[c, mask, i]) theta_bar_cm[c, m, i] = np.mean(theta[c, mask, i]) theta_bar /= (theta.shape[0] * theta.shape[1]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((n_parameters,)) Wc = np.zeros((n_parameters,)) Wm = np.zeros((n_parameters,)) WmWc = np.zeros((n_parameters,)) for c in range(n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): Vhat[i] += np.sum((theta[c, mask, i] - theta_bar[i])**2) Wc[i] += np.sum((theta[c, mask, i] - theta_bar_c[c, i])**2) Wm[i] += np.sum((theta[c, mask, i] - theta_bar_m[m, i])**2) WmWc[i] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i])**2) Vhat /= (n_chains * k.shape[1] - 1.0) Wc /= (n_chains * (k.shape[1] - 1.0)) Wm /= (n_chains * k.shape[1] - n_models) WmWc /= (n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(np.diag(rhat_result['Vhat']), Vhat) assert np.allclose(np.diag(rhat_result['Wc']), Wc) assert np.allclose(np.diag(rhat_result['Wm']), Wm) assert np.allclose(np.diag(rhat_result['WmWc']), WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) Vhat = np.zeros((n_parameters, n_parameters)) Wc = np.zeros((n_parameters, n_parameters)) Wm = np.zeros((n_parameters, n_parameters)) WmWc = np.zeros((n_parameters, n_parameters)) for i in range(n_parameters): for j in range(n_parameters): for c in range(n_chains): for m in range(n_models): mask = k[c] == m Vhat[i, j] += np.sum( (theta[c, mask, i] - theta_bar[i]) * (theta[c, mask, j] - theta_bar[j])) Wc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_c[c, i]) * (theta[c, mask, j] - theta_bar_c[c, j])) Wm[i, j] += np.sum( (theta[c, mask, i] - theta_bar_m[m, i]) * (theta[c, mask, j] - theta_bar_m[m, i])) WmWc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i]) * (theta[c, mask, j] - theta_bar_cm[c, m, j])) Vhat /= (n_chains * k.shape[1] - 1.0) Wc /= (n_chains * (k.shape[1] - 1.0)) Wm /= (n_chains * k.shape[1] - n_models) WmWc /= (n_chains * (k.shape[1] - n_models)) expected_mpsrf1 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(Wc), Vhat))) expected_mpsrf2 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(WmWc), Wm))) assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['MPSRF1'], expected_mpsrf1) assert np.allclose(rhat_result['MPSRF2'], expected_mpsrf2) def test_rjmcmc_rhat_multiple_parameter_split(): # noqa: C901 """Test RJMCMC with multiple parameters.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 5 n_iter = 20 n_parameters = 5 initial_k = np.zeros((n_chains, n_iter)) initial_k[:, ::2] = 1 initial_k[:, ::3] = 2 initial_theta = rng.uniform(size=(n_chains, n_iter, n_parameters)) rhat_result = rdm.rjmcmc_rhat(initial_k, initial_theta, split=True) n_models = np.size(np.unique(initial_k)) k = np.zeros((2 * n_chains, n_iter // 2)) theta = np.zeros((2 * n_chains, n_iter // 2, n_parameters)) for i in range(n_chains): k[2 * i] = initial_k[i, :n_iter // 2] k[2 * i + 1] = initial_k[i, n_iter // 2:] theta[2 * i] = initial_theta[i, :n_iter // 2, :] theta[2 * i + 1] = initial_theta[i, n_iter // 2:, :] theta_bar_cm = np.zeros((2 * n_chains, n_models, n_parameters)) theta_bar_c = np.zeros((2 * n_chains, n_parameters)) theta_bar_m = np.zeros((n_models, n_parameters)) theta_bar = np.zeros((n_parameters,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): theta_bar_c[c, i] = np.mean(theta[c, :, i]) theta_bar[i] += np.sum(theta[c, mask, i]) theta_bar_m[m, i] += np.sum(theta[c, mask, i]) theta_bar_cm[c, m, i] = np.mean(theta[c, mask, i]) theta_bar /= (theta.shape[0] * theta.shape[1]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((n_parameters,)) Wc = np.zeros((n_parameters,)) Wm = np.zeros((n_parameters,)) WmWc = np.zeros((n_parameters,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): Vhat[i] += np.sum((theta[c, mask, i] - theta_bar[i])**2) Wc[i] += np.sum((theta[c, mask, i] - theta_bar_c[c, i])**2) Wm[i] += np.sum((theta[c, mask, i] - theta_bar_m[m, i])**2) WmWc[i] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i])**2) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(np.diag(rhat_result['Vhat']), Vhat) assert np.allclose(np.diag(rhat_result['Wc']), Wc) assert np.allclose(np.diag(rhat_result['Wm']), Wm) assert np.allclose(np.diag(rhat_result['WmWc']), WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) Vhat = np.zeros((n_parameters, n_parameters)) Wc = np.zeros((n_parameters, n_parameters)) Wm = np.zeros((n_parameters, n_parameters)) WmWc = np.zeros((n_parameters, n_parameters)) for i in range(n_parameters): for j in range(n_parameters): for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m Vhat[i, j] += np.sum( (theta[c, mask, i] - theta_bar[i]) * (theta[c, mask, j] - theta_bar[j])) Wc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_c[c, i]) * (theta[c, mask, j] - theta_bar_c[c, j])) Wm[i, j] += np.sum( (theta[c, mask, i] - theta_bar_m[m, i]) * (theta[c, mask, j] - theta_bar_m[m, i])) WmWc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i]) * (theta[c, mask, j] - theta_bar_cm[c, m, j])) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_mpsrf1 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(Wc), Vhat))) expected_mpsrf2 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(WmWc), Wm))) assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['MPSRF1'], expected_mpsrf1) assert np.allclose(rhat_result['MPSRF2'], expected_mpsrf2) n_chains = 5 n_iter = 37 n_parameters = 5 initial_k = np.zeros((n_chains, n_iter)) initial_k[:, ::2] = 1 initial_k[:, ::3] = 2 initial_k[:, ::5] = 3 initial_theta = rng.uniform(size=(n_chains, n_iter, n_parameters)) rhat_result = rdm.rjmcmc_rhat(initial_k, initial_theta, split=True) n_models = np.size(np.unique(initial_k)) k = np.zeros((2 * n_chains, (n_iter - 1) // 2)) theta = np.zeros((2 * n_chains, (n_iter - 1) // 2, n_parameters)) for i in range(n_chains): k[2 * i] = initial_k[i, 1:(n_iter - 1) // 2 + 1] k[2 * i + 1] = initial_k[i, (n_iter - 1) // 2 + 1:] theta[2 * i] = initial_theta[i, 1:(n_iter - 1) // 2 + 1, :] theta[2 * i + 1] = initial_theta[i, 1 + (n_iter - 1) // 2:, :] theta_bar_cm = np.zeros((2 * n_chains, n_models, n_parameters)) theta_bar_c = np.zeros((2 * n_chains, n_parameters)) theta_bar_m = np.zeros((n_models, n_parameters)) theta_bar = np.zeros((n_parameters,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): theta_bar_c[c, i] = np.mean(theta[c, :, i]) theta_bar[i] += np.sum(theta[c, mask, i]) theta_bar_m[m, i] += np.sum(theta[c, mask, i]) theta_bar_cm[c, m, i] = np.mean(theta[c, mask, i]) theta_bar /= (theta.shape[0] * theta.shape[1]) for m in range(n_models): Rm = np.sum(k == m) theta_bar_m[m] = theta_bar_m[m] / Rm Vhat = np.zeros((n_parameters,)) Wc = np.zeros((n_parameters,)) Wm = np.zeros((n_parameters,)) WmWc = np.zeros((n_parameters,)) for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m for i in range(n_parameters): Vhat[i] += np.sum((theta[c, mask, i] - theta_bar[i])**2) Wc[i] += np.sum((theta[c, mask, i] - theta_bar_c[c, i])**2) Wm[i] += np.sum((theta[c, mask, i] - theta_bar_m[m, i])**2) WmWc[i] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i])**2) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_psrf1 = Vhat / Wc expected_psrf2 = Wm / WmWc assert np.allclose(np.diag(rhat_result['Vhat']), Vhat) assert np.allclose(np.diag(rhat_result['Wc']), Wc) assert np.allclose(np.diag(rhat_result['Wm']), Wm) assert np.allclose(np.diag(rhat_result['WmWc']), WmWc) assert np.allclose(rhat_result['PSRF1'], expected_psrf1) assert np.allclose(rhat_result['PSRF2'], expected_psrf2) Vhat = np.zeros((n_parameters, n_parameters)) Wc = np.zeros((n_parameters, n_parameters)) Wm = np.zeros((n_parameters, n_parameters)) WmWc = np.zeros((n_parameters, n_parameters)) for i in range(n_parameters): for j in range(n_parameters): for c in range(2 * n_chains): for m in range(n_models): mask = k[c] == m Vhat[i, j] += np.sum( (theta[c, mask, i] - theta_bar[i]) * (theta[c, mask, j] - theta_bar[j])) Wc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_c[c, i]) * (theta[c, mask, j] - theta_bar_c[c, j])) Wm[i, j] += np.sum( (theta[c, mask, i] - theta_bar_m[m, i]) * (theta[c, mask, j] - theta_bar_m[m, i])) WmWc[i, j] += np.sum( (theta[c, mask, i] - theta_bar_cm[c, m, i]) * (theta[c, mask, j] - theta_bar_cm[c, m, j])) Vhat /= (2 * n_chains * k.shape[1] - 1.0) Wc /= (2 * n_chains * (k.shape[1] - 1.0)) Wm /= (2 * n_chains * k.shape[1] - n_models) WmWc /= (2 * n_chains * (k.shape[1] - n_models)) expected_mpsrf1 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(Wc), Vhat))) expected_mpsrf2 = np.max( np.linalg.eigvals(np.dot(np.linalg.inv(WmWc), Wm))) assert np.allclose(rhat_result['Vhat'], Vhat) assert np.allclose(rhat_result['Wc'], Wc) assert np.allclose(rhat_result['Wm'], Wm) assert np.allclose(rhat_result['WmWc'], WmWc) assert np.allclose(rhat_result['MPSRF1'], expected_mpsrf1) assert np.allclose(rhat_result['MPSRF2'], expected_mpsrf2) def test_invert_digamma(): """Test inversion of digamma function.""" tolerance = 1e-12 x = 1.0 y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.abs(x - x_est) < tolerance x = 4.3531 y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.abs(x - x_est) < tolerance x = 0.2 y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.abs(x - x_est) < tolerance x = np.ones(()) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.ones(3) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.random.uniform(0.6, 10.0, size=(20,)) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.random.uniform(0.0001, 0.6, size=(30,)) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.ones((5, 5)) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.random.uniform(0.6, 10.0, size=(20, 5, 11)) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) x = np.random.uniform(0.0001, 0.6, size=(30, 20, 4, 8)) y = sp.digamma(x) x_est = _invert_digamma(y, tolerance=tolerance) assert np.all(np.abs(x - x_est) < tolerance) def test_estimate_dirichlet_shape_parameters(): """Test maximum likelihood fit of Dirichlet distribution.""" random_seed = 0 random_state = np.random.default_rng(random_seed) def dirichlet_log_likelihood(alpha, p): return np.sum([ss.dirichlet.logpdf(pi, alpha) for pi in p]) n_features = 3 n_samples = 500 alpha = np.ones(n_features) p = ss.dirichlet.rvs(alpha, size=(n_samples,), random_state=random_state) alpha_hat = _estimate_dirichlet_shape_parameters(p) alpha_0 = random_state.uniform(0.0, 2.0, size=(n_features,)) def _objective_one(x): return -dirichlet_log_likelihood(x, p) tol = 1e-6 bounds = so.Bounds(0, np.inf) sol = so.minimize(_objective_one, alpha_0, bounds=bounds, method='trust-constr', options={'xtol': tol}) expected_alpha_hat = sol.x assert np.allclose(alpha_hat, expected_alpha_hat, atol=tol) n_features = 6 n_samples = 250 alpha = random_state.uniform(0.5, 4.0, size=(n_features,)) p = ss.dirichlet.rvs(alpha, size=(n_samples,), random_state=random_state) alpha_hat = _estimate_dirichlet_shape_parameters(p) alpha_0 = random_state.uniform(0.0, 2.0, size=(n_features,)) def _objective_two(x): return -dirichlet_log_likelihood(x, p) tol = 1e-6 bounds = so.Bounds(0, np.inf) sol = so.minimize(_objective_two, alpha_0, bounds=bounds, method='trust-constr', options={'xtol': tol}) expected_alpha_hat = sol.x assert np.allclose(alpha_hat, expected_alpha_hat, atol=tol) def test_count_model_transitions(): """Test counting model transitions.""" k = np.array([[0, 0, 1, 2, 1, 1, 0]], dtype='i8') n = _count_model_transitions(k) expected_n = np.array([[[1, 1, 0], [1, 1, 1], [0, 1, 0]]]) assert np.all(n == expected_n) n = _count_model_transitions(k, sparse=True) expected_n = np.array([[[1, 1, 0], [1, 1, 1], [0, 1, 0]]]) assert np.all(n.toarray() == expected_n) model_indicators = np.array([0, 1, 2, 3]) n = _count_model_transitions(k, model_indicators=model_indicators) expected_n = np.array([[[1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]]) assert np.all(n == expected_n) n = _count_model_transitions(k, model_indicators=model_indicators, sparse=True) expected_n = np.array([[[1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]]) assert np.all(n.toarray() == expected_n) def test_sample_stationary_distributions(): """Test sampling of stationary distributions.""" random_seed = 0 rng = np.random.default_rng(random_seed) P = np.array([[0.2, 0.8], [0.5, 0.5]]) exact_pi = np.array([5.0 / 13.0, 8.0 / 13.0]) assert np.allclose(np.dot(exact_pi, P), exact_pi) assert np.abs(np.sum(exact_pi) - 1.0) < 1e-10 n_chains = 4 n_iter = 500 k = np.empty((n_chains, n_iter), dtype=np.uint64) for i in range(n_chains): ki = np.empty((2 * n_iter), dtype=np.uint64) ki[0] = rng.choice(2) for t in range(1, 2 * n_iter): p = P[ki[t - 1]] ki[t] = rng.choice(2, p=p) k[i] = ki[-n_iter:] n_samples = 1000 samples, epsilon = _sample_stationary_distributions( k, epsilon=0.0, n_samples=n_samples) assert samples.shape == (n_samples, 2) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([0., 0.])) assert np.allclose(np.mean(samples, axis=0), exact_pi, atol=5e-2) model_indicators = np.array([0, 1, 2]) samples, epsilon = _sample_stationary_distributions( k, epsilon=1e-6, n_samples=n_samples, model_indicators=model_indicators) assert samples.shape == (n_samples, 3) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([1e-6, 1e-6, 1e-6])) assert np.allclose(np.mean(samples[:, :2], axis=0), exact_pi, atol=5e-2) k2 = k.copy() for i in range(n_chains): k2[i, k2[i] == 1] = 2 model_indicators = np.array([0, 1, 2]) samples, epsilon = _sample_stationary_distributions( k2, epsilon=1e-6, n_samples=n_samples, model_indicators=model_indicators) assert samples.shape == (n_samples, 3) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([1e-6, 1e-6, 1e-6])) assert np.allclose(np.mean(samples, axis=0)[[0, 2]], exact_pi, atol=5e-2) samples, epsilon = _sample_stationary_distributions( k, n_samples=n_samples) assert samples.shape == (n_samples, 2) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([0.5, 0.5])) assert np.allclose(np.mean(samples, axis=0), exact_pi, atol=5e-2) model_indicators = np.array([0, 1, 2]) samples, epsilon = _sample_stationary_distributions( k, n_samples=n_samples, model_indicators=model_indicators) assert samples.shape == (n_samples, 3) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([0.5, 0.5, 1e-10])) assert np.allclose(np.mean(samples[:, :2], axis=0), exact_pi, atol=5e-2) samples, epsilon = _sample_stationary_distributions( k2, n_samples=n_samples, model_indicators=model_indicators) assert samples.shape == (n_samples, 3) assert np.allclose(np.sum(samples, axis=1), 1.0) assert np.allclose(epsilon, np.array([0.5, 1e-10, 0.5])) assert np.allclose(np.mean(samples, axis=0)[[0, 2]], exact_pi, atol=5e-2) def test_estimate_stationary_distributions(): """Test estimation of stationary distributions and ESS calculation.""" random_seed = 0 rng = np.random.default_rng(random_seed) n_chains = 4 n_iter = 1000 n_models = 3 k = np.empty((n_chains, n_iter), dtype=np.uint64) for i in range(n_chains): for t in range(n_iter): k[i, t] = rng.choice(n_models) n_samples = 10000 result = rdm.estimate_stationary_distribution( k, tolerance=1e-3, model_indicators=np.arange(3), min_epsilon=1e-10, n_samples=n_samples, random_state=random_seed) assert result['pi'].shape == (n_samples, 3) row_sums = np.sum(result['pi'], axis=1) mask = np.isfinite(row_sums) assert np.allclose(row_sums[mask], 1.0) assert np.abs(result['ess'] - n_chains * n_iter) < 200 assert result['n_models'] == 3 assert result['n_observed_models'] == 3 n_samples = 10000 result = rdm.estimate_stationary_distribution( k, tolerance=1e-3, model_indicators=np.arange(4), min_epsilon=1e-10, n_samples=n_samples, random_state=random_seed) assert result['pi'].shape == (n_samples, 4) row_sums = np.sum(result['pi'], axis=1) mask = np.isfinite(row_sums) assert np.allclose(row_sums[mask], 1.0) assert np.abs(result['ess'] - n_chains * n_iter) < 200 assert result['n_models'] == 4 assert result['n_observed_models'] == 3 P = np.array([[0.2, 0.8], [0.5, 0.5]]) exact_pi = np.array([5.0 / 13.0, 8.0 / 13.0]) assert np.allclose(np.dot(exact_pi, P), exact_pi) assert np.abs(np.sum(exact_pi) - 1.0) < 1e-10 n_chains = 4 n_iter = 1000 k = np.empty((n_chains, n_iter), dtype=np.uint64) for i in range(n_chains): ki = np.empty((2 * n_iter), dtype=np.uint64) ki[0] = rng.choice(2) for t in range(1, 2 * n_iter): p = P[ki[t - 1]] ki[t] = rng.choice(2, p=p) k[i] = ki[-n_iter:] n_samples = 10000 result = rdm.estimate_stationary_distribution( k, n_samples=n_samples, tolerance=1e-3, min_epsilon=1e-10) assert result['pi'].shape == (n_samples, 2) row_sums = np.sum(result['pi'], axis=1) mask = np.isfinite(row_sums) assert np.allclose(row_sums[mask], 1.0) # for chains with significant anti-correlation, ESS should be # larger than IID samples assert result['ess'] > n_chains * n_iter assert result['n_models'] == 2 assert result['n_observed_models'] == 2 P = np.array([[0.8, 0.2], [0.7, 0.3]]) exact_pi = np.array([7.0 / 9.0, 2.0 / 9.0]) assert np.allclose(np.dot(exact_pi, P), exact_pi) assert np.abs(np.sum(exact_pi) - 1.0) < 1e-10 n_chains = 4 n_iter = 1000 k = np.empty((n_chains, n_iter), dtype=np.uint64) for i in range(n_chains): ki = np.empty((2 * n_iter), dtype=np.uint64) ki[0] = rng.choice(2) for t in range(1, 2 * n_iter): p = P[ki[t - 1]] ki[t] = rng.choice(2, p=p) k[i] = ki[-n_iter:] n_samples = 10000 result = rdm.estimate_stationary_distribution( k, n_samples=n_samples, sparse=True, tolerance=1e-3, min_epsilon=1e-10) assert result['pi'].shape == (n_samples, 2) row_sums = np.sum(result['pi'], axis=1) mask = np.isfinite(row_sums) assert np.allclose(row_sums[mask], 1.0) # for chains with significant autocorrelation, ESS should be # smaller than IID samples assert result['ess'] < n_chains * n_iter assert result['n_models'] == 2 assert result['n_observed_models'] == 2 result = rdm.estimate_stationary_distribution( k, model_indicators=[0, 1, 2], n_samples=n_samples, sparse=True, tolerance=1e-3, min_epsilon=1e-10) assert result['pi'].shape == (n_samples, 3) row_sums = np.sum(result['pi'], axis=1) mask = np.isfinite(row_sums) assert
np.allclose(row_sums[mask], 1.0)
numpy.allclose
from __future__ import print_function # from network import VGGNet from dirtorch.utils import common import dirtorch.nets as nets import pandas as pd import faiss import torch import torchvision.transforms as transforms import torch.nn as nn from six.moves import cPickle import numpy as np import imageio import os import time from PIL import Image from evaluate import evaluate_class from DB import Database def load_model(path, iscuda): checkpoint = common.load_checkpoint(path, iscuda) net = nets.create_model(pretrained="", **checkpoint['model_options']) net = common.switch_model_to_cuda(net, iscuda, checkpoint) net.load_state_dict(checkpoint['state_dict']) net.preprocess = checkpoint.get('preprocess', net.preprocess) # if 'pca' in checkpoint: # net.pca = checkpoint.get('pca') return net # use_gpu = torch.cuda.is_available() # torch.cuda.set_device(2) use_gpu = False # cache dir cache_dir = '..\\cache' Odic_addr = 'res101_AP_GeM-oxf-dict' Ovec_addr = 'res101_AP_GeM-oxf-vec' Oindex_addr = 'res101_AP_GeM-oxf-indexIPQ' Ddic_addr = 'res101_AP_GeM-database-dict' Dvec_addr = 'res101_AP_GeM-database-vec' Dindex_addr = 'res101_AP_GeM-database-indexIPQ' depth = 10 isOxford = True # LOAD_MODEL_PATH = None # LOAD_MODEL_PATH = '../model/imagenet-caffe-vgg16-features-d369c8e.pth' # LOAD_MODEL_PATH = '../model/imagenet-caffe-resnet101-features-10a101d.pth' # LOAD_WHITEN_PATH = '../model/retrieval-SfM-120k-resnet101-gem-whiten-22ab0c1.pth' CHECKPOINT = "../model/Resnet-101-AP-GeM.pt" IMAGE_NORMALIZER = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) REMOVE_FC = False class ModelFeat(object): @staticmethod def make_samples(db, mode, is_Oxford=isOxford, verbose=True): if is_Oxford: dic_addr = Odic_addr vec_addr = Odic_addr index_addr = Oindex_addr else: dic_addr = Ddic_addr vec_addr = Ddic_addr index_addr = Dindex_addr try: dicbase = cPickle.load(open(os.path.join(cache_dir, dic_addr), "rb", True)) # print(dicbase) vecbase = cPickle.load(open(os.path.join(cache_dir, vec_addr), "rb", True)) index = faiss.read_index(os.path.join(cache_dir, index_addr)) if verbose: print("Using cache..., config=%s, depth=%s" % (vec_addr, depth)) except: if verbose: print("Counting histogram..., config=%s, depth=%s" % (vec_addr, depth)) # base_model = VGGNet(load_features_path=LOAD_MODEL_PATH, requires_grad=False) # base_model = Res101(load_features_path=LOAD_MODEL_PATH, # use_Gem_whiten=True, load_whiten_path=LOAD_WHITEN_PATH) # base_model = base_model = load_model(CHECKPOINT, False) base_model.eval() print("load successfully!") if REMOVE_FC: base_model = nn.Sequential(*list(base_model.children())[:-1]) print("Remove FC") if use_gpu: base_model = base_model.cuda() vecbase = [] dicbase = [] data = db.get_data() count = 1 for d in data.itertuples(): # if count == 5: # break d_img, d_cls = getattr(d, "img"), getattr(d, "cls") img = imageio.imread(d_img, pilmode="RGB") img = Image.fromarray(img) img = IMAGE_NORMALIZER(img) img = np.array(img) img = np.expand_dims(img, axis=0) if use_gpu: inputs = torch.autograd.Variable(torch.from_numpy(img).cuda().float()) else: inputs = torch.from_numpy(img) d_hist = base_model(inputs).view(-1, ) d_hist = d_hist.data.cpu().numpy() vecbase.append(d_hist) dicbase.append((d_cls, d_img)) print(count) count += 1 vecbase =
np.array(vecbase)
numpy.array
from lsnn.guillaume_toolbox.tensorflow_einsums.einsum_re_written import einsum_bij_jk_to_bik, einsum_bi_ijk_to_bjk # import matplotlib # matplotlib.use('Agg') import datetime import os import socket from time import time import matplotlib.pyplot as plt from matplotlib import collections as mc, patches import numpy as np import numpy.random as rd import tensorflow as tf from lsnn.guillaume_toolbox.file_saver_dumper_no_h5py import save_file from lsnn.guillaume_toolbox.matplotlib_extension import strip_right_top_axis, raster_plot from tutorial_storerecall_utils import generate_storerecall_data, error_rate, gen_custom_delay_batch from lsnn.guillaume_toolbox.tensorflow_utils import tf_downsample, tf_roll from lsnn.spiking_models import tf_cell_to_savable_dict, placeholder_container_for_rnn_state, \ feed_dict_with_placeholder_container, exp_convolve, ALIF, ALIFStateTuple, weight_matrix_with_delay_dimension, LIF from lsnn.guillaume_toolbox.rewiring_tools import weight_sampler, rewiring_optimizer_wrapper script_name = os.path.basename(__file__)[:-3] result_folder = 'results/' + script_name + '/' FLAGS = tf.app.flags.FLAGS start_time = datetime.datetime.now() ## tf.app.flags.DEFINE_string('model', 'ALIF', 'Chosen the network model') tf.app.flags.DEFINE_string('comment', '', 'comment to retrieve the stored results') ## tf.app.flags.DEFINE_integer('batch_train', 128, 'batch size fo the validation set') tf.app.flags.DEFINE_integer('batch_val', 128, 'batch size of the validation set') tf.app.flags.DEFINE_integer('batch_test', 128, 'batch size of the testing set') tf.app.flags.DEFINE_integer('n_charac', 2, 'number of characters in the recall task') tf.app.flags.DEFINE_integer('n_in', 100, 'number of input units.') tf.app.flags.DEFINE_integer('n_rec', 0, 'number of recurrent units.') tf.app.flags.DEFINE_integer('n_con', 2, 'number of controller units') tf.app.flags.DEFINE_integer('f0', 50, 'input firing rate') tf.app.flags.DEFINE_integer('reg_rate', 10, 'target rate for regularization') tf.app.flags.DEFINE_integer('reg_max_rate', 100, 'target rate for regularization') tf.app.flags.DEFINE_integer('n_iter', 3, 'number of iterations') tf.app.flags.DEFINE_integer('n_delay', 10, 'number of delays') tf.app.flags.DEFINE_integer('n_ref', 3, 'Number of refractory steps') tf.app.flags.DEFINE_integer('seq_len', 64, 'Number of character steps') tf.app.flags.DEFINE_integer('seq_delay', 3, 'Expected delay in character steps. Must be <= seq_len - 2') tf.app.flags.DEFINE_integer('tau_char', 200, 'Duration of symbols') tf.app.flags.DEFINE_integer('seed', -1, 'Random seed.') tf.app.flags.DEFINE_integer('lr_decay_every', 100, 'Decay every') tf.app.flags.DEFINE_integer('print_every', 1, 'Decay every') ## tf.app.flags.DEFINE_float('stop_crit', -1, 'Stopping criterion. Stops training if error goes below this value') tf.app.flags.DEFINE_float('beta', 3.0, 'Mikolov adaptive threshold beta scaling parameter') tf.app.flags.DEFINE_float('tau_a', 1200, 'Mikolov model alpha - threshold decay') tf.app.flags.DEFINE_float('tau_out', 20, 'tau for PSP decay in LSNN and output neurons') tf.app.flags.DEFINE_float('tau', 20, 'tau for PSP decay in LSNN and output neurons') tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Base learning rate.') tf.app.flags.DEFINE_float('lr_decay', 0.3, 'Decaying factor') tf.app.flags.DEFINE_float('reg', 1e-2, 'regularization coefficient') tf.app.flags.DEFINE_float('rewiring_connectivity', -1, 'possible usage of rewiring with ALIF and LIF (0.1 is default)') tf.app.flags.DEFINE_float('readout_rewiring_connectivity', -1, '') tf.app.flags.DEFINE_float('l1', 1e-2, 'l1 regularization that goes with rewiring') tf.app.flags.DEFINE_float('rewiring_temperature', 0, '') tf.app.flags.DEFINE_float('dampening_factor', 0.3, '') tf.app.flags.DEFINE_float('stochastic_factor', -1, '') tf.app.flags.DEFINE_float('V0', 1, 'unit scaling for LSNN model') tf.app.flags.DEFINE_float('dt', 1., '(ms) simulation step') tf.app.flags.DEFINE_float('thr', .05, 'threshold at which the LSNN neurons spike') ## tf.app.flags.DEFINE_bool('train', False, 'Mikolov model spread of alpha - threshold decay') tf.app.flags.DEFINE_bool('tau_a_spread', False, 'Mikolov model spread of alpha - threshold decay') tf.app.flags.DEFINE_bool('save_data', True, 'Save the data (training, test, network, trajectory for plotting)') tf.app.flags.DEFINE_bool('do_plot', True, 'Perform plots') tf.app.flags.DEFINE_bool('monitor_plot', True, 'Perform plots during training') tf.app.flags.DEFINE_bool('interactive_plot', True, 'Perform plots') tf.app.flags.DEFINE_bool('rec_to_con', True, 'Hidden units connected to context units in Mikolov') tf.app.flags.DEFINE_bool('rec_con', False, 'Recurrent context units in Mikolov') tf.app.flags.DEFINE_bool('device_placement', False, '') tf.app.flags.DEFINE_bool('verbose', False, '') tf.app.flags.DEFINE_bool('neuron_sign', True, '') tf.app.flags.DEFINE_bool('adaptive_reg', False, '') tf.app.flags.DEFINE_bool('preserve_state', True, '') FLAGS.thr = FLAGS.thr * FLAGS.V0 # scaling the threshold too! class ALIFv(ALIF): def __init__(self, n_in, n_rec, tau=20, thr=0.01, dt=1., n_refractory=0, dtype=tf.float32, n_delay=5, tau_adaptation=200., beta=1.6, rewiring_connectivity=-1, dampening_factor=0.3, in_neuron_sign=None, rec_neuron_sign=None, injected_noise_current=0., V0=1., trainable=True): LIF.__init__(self, n_in=n_in, n_rec=n_rec, tau=tau, thr=thr, dt=dt, n_refractory=n_refractory, dtype=dtype, n_delay=n_delay, rewiring_connectivity=rewiring_connectivity, dampening_factor=dampening_factor, in_neuron_sign=in_neuron_sign, rec_neuron_sign=rec_neuron_sign, injected_noise_current=injected_noise_current, V0=V0) if tau_adaptation is None: raise ValueError("alpha parameter for adaptive bias must be set") if beta is None: raise ValueError("beta parameter for adaptive bias must be set") self.tau_adaptation = tau_adaptation self.beta = beta self.decay_b = np.exp(-dt / tau_adaptation) @property def output_size(self): return [self.n_rec, self.n_rec, self.n_rec] def __call__(self, inputs, state, scope=None, dtype=tf.float32): i_future_buffer = state.i_future_buffer + einsum_bi_ijk_to_bjk(inputs, self.W_in) + einsum_bi_ijk_to_bjk( state.z, self.W_rec) # i_future_buffer = tf.ones_like(state.i_future_buffer) * FLAGS.input_current new_b = self.decay_b * state.b + (np.ones(self.n_rec) - self.decay_b) * state.z thr = self.thr + new_b * self.beta * self.V0 new_v, new_z = self.LIF_dynamic( v=state.v, z=state.z, z_buffer=state.z_buffer, i_future_buffer=i_future_buffer, decay=self._decay, thr=thr) new_z_buffer = tf_roll(state.z_buffer, new_z, axis=2) new_i_future_buffer = tf_roll(i_future_buffer, axis=2) new_state = ALIFStateTuple(v=new_v, z=new_z, b=new_b, i_future_buffer=new_i_future_buffer, z_buffer=new_z_buffer) return [new_z, new_b, new_v], new_state def custom_sequence(): #s = rd.choice([0, 1], size=FLAGS.seq_len) #s[1] = FLAGS.n_charac # store #s[7] = FLAGS.n_charac + 1 # recall s = [0, 1, 0, 1, 0, 1] + [i%2 for i in range(FLAGS.seq_len - 12)] + [1, 0, 1, 0, 1, 0] s[0] = FLAGS.n_charac # store s[5] = FLAGS.n_charac + 1 # recall s[58] = FLAGS.n_charac # store s[63] = FLAGS.n_charac + 1 # recall return s custom_plot = np.stack([custom_sequence() for _ in range(FLAGS.batch_test)], axis=0) # Run asserts to check seq_delay and seq_len relation is ok _ = gen_custom_delay_batch(FLAGS.seq_len, FLAGS.seq_delay, 1) # Fix the random seed if given as an argument if FLAGS.seed >= 0: seed = FLAGS.seed else: seed = rd.randint(10 ** 6) rd.seed(seed) tf.set_random_seed(seed) # Experiment parameters dt = 1. repeat_batch_test = 10 print_every = FLAGS.print_every # Frequencies input_f0 = FLAGS.f0 / 1000 # in kHz in coherence with the usgae of ms for time regularization_f0 = FLAGS.reg_rate / 1000 regularization_f0_max = FLAGS.reg_max_rate / 1000 # Network parameters tau_v = FLAGS.tau thr = FLAGS.thr decay = np.exp(-dt / FLAGS.tau_out) # output layer psp decay, chose value between 15 and 30ms as for tau_v # Symbol number n_charac = FLAGS.n_charac # Number of digit symbols n_input_symbols = n_charac + 2 # Total number of symbols including recall and store n_output_symbols = n_charac # Number of output symbols recall_symbol = n_input_symbols - 1 # ID of the recall symbol store_symbol = n_input_symbols - 2 # ID of the store symbol # Neuron population sizes input_neuron_split = np.array_split(np.arange(FLAGS.n_in), n_input_symbols) # Sign of the neurons if 0 < FLAGS.rewiring_connectivity and FLAGS.neuron_sign: n_excitatory_in = int(0.75 * FLAGS.n_in) n_inhibitory_in = FLAGS.n_in - n_excitatory_in in_neuron_sign = np.concatenate([-np.ones(n_inhibitory_in), np.ones(n_excitatory_in)]) np.random.shuffle(in_neuron_sign) n_excitatory = int(0.75 * (FLAGS.n_rec + FLAGS.n_con)) n_inhibitory = FLAGS.n_rec + FLAGS.n_con - n_excitatory rec_neuron_sign = np.concatenate([-np.ones(n_inhibitory), np.ones(n_excitatory)]) else: if not FLAGS.neuron_sign: print('WARNING: Neuron sign is set to None without rewiring but sign is requested') in_neuron_sign = None rec_neuron_sign = None # Generate the cell beta = np.concatenate([np.zeros(FLAGS.n_rec), np.ones(FLAGS.n_con) * FLAGS.beta]) cell = ALIFv(n_in=FLAGS.n_in, n_rec=FLAGS.n_rec + FLAGS.n_con, tau=tau_v, n_delay=FLAGS.n_delay, n_refractory=FLAGS.n_ref, dt=dt, tau_adaptation=FLAGS.tau_a, beta=beta, thr=thr, rewiring_connectivity=FLAGS.rewiring_connectivity, in_neuron_sign=in_neuron_sign, rec_neuron_sign=rec_neuron_sign, dampening_factor=FLAGS.dampening_factor, V0=FLAGS.V0, trainable=True ) cell_name = type(cell).__name__ print('\n -------------- \n' + cell_name + '\n -------------- \n') time_stamp = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") file_reference = '{}_{}_seqlen{}_seqdelay{}_in{}_R{}_A{}_V0{:.0f}_tauchar{}_comment{}'.format( time_stamp, cell_name, FLAGS.seq_len, FLAGS.seq_delay, FLAGS.n_in, FLAGS.n_rec, FLAGS.n_con, FLAGS.V0, FLAGS.tau_char, FLAGS.comment) if FLAGS.model == 'Mikolov': file_reference = file_reference + '_taua' + str(FLAGS.tau_a) + '_beta' + str(FLAGS.beta) print('FILE REFERENCE: ' + file_reference) # Generate input input_spikes = tf.placeholder(dtype=tf.float32, shape=(None, None, FLAGS.n_in), name='InputSpikes') # MAIN input spike placeholder input_nums = tf.placeholder(dtype=tf.int64, shape=(None, None), name='InputNums') # Lists of input character for the recall task target_nums = tf.placeholder(dtype=tf.int64, shape=(None, None), name='TargetNums') # Lists of target characters of the recall task recall_mask = tf.placeholder(dtype=tf.bool, shape=(None, None), name='RecallMask') # Binary tensor that points to the time of presentation of a recall # Other placeholder that are useful for computing accuracy and debuggin target_sequence = tf.placeholder(dtype=tf.int64, shape=(None, None), name='TargetSequence') # The target characters with time expansion batch_size_holder = tf.placeholder(dtype=tf.int32, name='BatchSize') # Int that contains the batch size init_state_holder = placeholder_container_for_rnn_state(cell.state_size, dtype=tf.float32, batch_size=None) recall_charac_mask = tf.equal(input_nums, recall_symbol, name='RecallCharacMask') if FLAGS.model not in ['Mikolov', 'ALIF']: # The character to be memorize at each time (with time expansion) mem_sequence = tf.placeholder(dtype=tf.int64, shape=(None, None), name='MemorySequence') def debug_error_rate(z, num_Y, num_X, n_character): # Find the recall index n_recall_symbol = n_character + 1 shp = tf.shape(num_X) # Translate the one hot into ints char_predict = tf.argmax(z, axis=1) char_true = num_Y # char_input = num_X # error rate 1) Wrong characters char_correct = tf.cast(tf.equal(char_predict, char_true), tf.float32) character_errors = tf.reduce_mean(1 - char_correct) # error rate 2) wrong recalls # recall_mask = tf.equal(char_input, n_recall_symbol) # recalls_predict = tf.boolean_mask(char_predict, recall_mask) # recalls_true = tf.boolean_mask(char_true, recall_mask) recall_correct = tf.equal(char_predict, char_true) # recall_errors = tf.reduce_mean(tf.cast(tf.logical_not(recall_correct), tf.float32)) recall_errors = tf.reduce_mean(1. - tf.cast(recall_correct, tf.float32)) # Get wrong samples # sentence_id = tf.tile(tf.expand_dims(tf.range(shp[0]), axis=1), (1, shp[1])) # recall_sentence_id = tf.boolean_mask(sentence_id, recall_mask) # false_sentence_id_list = tf.boolean_mask(recall_sentence_id, tf.logical_not(recall_correct)) false_sentence_id_list = tf.where(tf.equal(recall_correct, False)) return character_errors, recall_errors, false_sentence_id_list def add_errors(data): y = data['target_nums_at_recall'] # y = data['Y'] # y = np.argmax(y, axis=1) y_pred = data['Y_predict'] # print("y_pred", y_pred.shape) # print("y_pred raw", y_pred) y_pred = np.argmax(y_pred, axis=1) # print("y_pred", y_pred) # print("y", y) correct = y == y_pred acc = np.mean(correct) err = 1. - acc failed_batch_idxs = np.where(np.logical_not(correct))[0] # data['recall_errors'] = err # data['false_sentence_id_list'] = failed_batch_idxs return err, failed_batch_idxs def get_data_dict(batch_size, seq_len=FLAGS.seq_len, batch=None, override_input=None): p_sr = 1/(1 + FLAGS.seq_delay) spk_data, is_recall_data, target_seq_data, memory_seq_data, in_data, target_data = generate_storerecall_data( batch_size=batch_size, f0=input_f0, sentence_length=seq_len, n_character=FLAGS.n_charac, n_charac_duration=FLAGS.tau_char, n_neuron=FLAGS.n_in, prob_signals=p_sr, with_prob=True, override_input=override_input, ) data_dict = {input_spikes: spk_data, input_nums: in_data, target_nums: target_data, recall_mask: is_recall_data, target_sequence: target_seq_data, batch_size_holder: batch_size} return data_dict # Define the name of spike train for the different models z_stack, final_state = tf.nn.dynamic_rnn(cell, input_spikes, initial_state=init_state_holder, dtype=tf.float32) z, b_con, v = z_stack z_con = [] z_all = z with tf.name_scope('RecallLoss'): target_nums_at_recall = tf.boolean_mask(target_nums, recall_charac_mask) Y = tf.one_hot(target_nums_at_recall, depth=n_output_symbols, name='Target') # MTP models do not use controller (modulator) population for output out_neurons = z_all if FLAGS.model in ['Mikolov', 'ALIF'] else z n_neurons = out_neurons.get_shape()[2] psp = exp_convolve(out_neurons, decay=decay) if 0 < FLAGS.rewiring_connectivity and 0 < FLAGS.readout_rewiring_connectivity: w_out, w_out_sign, w_out_var, _ = weight_sampler(FLAGS.n_rec + FLAGS.n_con, n_output_symbols, FLAGS.readout_rewiring_connectivity, neuron_sign=rec_neuron_sign) else: w_out = tf.get_variable(name='out_weight', shape=[n_neurons, n_output_symbols]) out = einsum_bij_jk_to_bik(psp, w_out) out_char_step = tf_downsample(out, new_size=FLAGS.seq_len, axis=1) # out_char_step = out[:, FLAGS.tau_char//2::FLAGS.tau_char] Y_predict = tf.boolean_mask(out_char_step, recall_charac_mask, name='Prediction') # loss_recall = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=Y_predict)) loss_recall = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target_nums_at_recall, logits=Y_predict)) with tf.name_scope('PlotNodes'): out_plot = tf.nn.softmax(out) out_plot_char_step = tf_downsample(out_plot, new_size=FLAGS.seq_len, axis=1) # _, recall_errors, false_sentence_id_list = debug_error_rate(Y_predict, target_nums_at_recall, input_nums, n_charac) # Target regularization with tf.name_scope('RegularizationLoss'): # Firing rate regularization av = tf.reduce_mean(z_all, axis=(0, 1)) / dt adaptive_regularization_coeff = tf.Variable(np.ones(n_neurons) * FLAGS.reg, dtype=tf.float32, trainable=False) loss_reg = tf.reduce_sum(tf.square(av - regularization_f0) * adaptive_regularization_coeff) do_increase_reg = tf.greater(av,regularization_f0_max) do_increase_reg = tf.cast(do_increase_reg,dtype=tf.float32) new_adaptive_coeff = do_increase_reg * adaptive_regularization_coeff * 1.3 \ + (1-do_increase_reg) * adaptive_regularization_coeff * 0.93 if FLAGS.adaptive_reg: update_regularization_coeff = tf.assign(adaptive_regularization_coeff,new_adaptive_coeff) else: update_regularization_coeff = tf.no_op('SkipAdaptiveRegularization') # Aggregate the losses with tf.name_scope('OptimizationScheme'): # scaling loss_recall to match order of magnitude of loss from script_recall.py # this is needed to keep the same regularization coefficients (reg, regl2) across scripts global_step = tf.Variable(0, dtype=tf.int32, trainable=False) learning_rate = tf.Variable(FLAGS.learning_rate, dtype=tf.float32, trainable=False) decay_learning_rate_op = tf.assign(learning_rate, learning_rate * FLAGS.lr_decay) loss = loss_reg + loss_recall opt = tf.train.AdamOptimizer(learning_rate=learning_rate) if 0 < FLAGS.rewiring_connectivity: rewiring_connectivity_list = [FLAGS.rewiring_connectivity, FLAGS.rewiring_connectivity, FLAGS.readout_rewiring_connectivity] train_step = rewiring_optimizer_wrapper(opt, loss, learning_rate, FLAGS.l1, FLAGS.rewiring_temperature, rewiring_connectivity_list, global_step=global_step, all_trained_var_list=tf.trainable_variables()) else: train_step = opt.minimize(loss=loss, global_step=global_step) # Real-time plotting sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.device_placement)) sess.run(tf.global_variables_initializer()) # print("PRE w_rec", sess.run(cell.w_rec_var)) w_rec = np.array([[0, 0], [0, 0]]) # w_rec = np.array([[0, -0.7], [-0.7, 0]]) set_w_rec = tf.assign(cell.w_rec_var, w_rec) sess.run(set_w_rec) # With excitatory and inhibitory connections from input w_in_b0 = np.repeat(np.array([[0.003, -0.1]]), FLAGS.n_in//4, axis=0) w_in_b1 = np.repeat(np.array([[-0.1, 0.003]]), FLAGS.n_in//4, axis=0) w_in_s = np.repeat(np.array([[0.1, 0.1]]), FLAGS.n_in//4, axis=0) w_in_r = np.repeat(np.array([[0.1, 0.1]]), FLAGS.n_in//4, axis=0) # Only excitatory connections from input # w_in_b0 = np.repeat(np.array([[0.02, 0]]), FLAGS.n_in//4, axis=0) # w_in_b1 = np.repeat(np.array([[0, 0.02]]), FLAGS.n_in//4, axis=0) # w_in_s = np.repeat(np.array([[0.08, 0.08]]), FLAGS.n_in//4, axis=0) # w_in_r = np.repeat(np.array([[0.1, 0.1]]), FLAGS.n_in//4, axis=0) w_in = np.vstack((w_in_b0, w_in_b1, w_in_s, w_in_r)) # print("w_in shape", w_in.shape) set_w_in = tf.assign(cell.w_in_var, w_in) sess.run(set_w_in) w_out_v = np.array([[0, 10], [10, 0]]) set_w_out = tf.assign(w_out, w_out_v) sess.run(set_w_out) last_final_state_state_training_pointer = [sess.run(cell.zero_state(batch_size=FLAGS.batch_train, dtype=tf.float32))] last_final_state_state_validation_pointer = [sess.run(cell.zero_state(batch_size=FLAGS.batch_val, dtype=tf.float32))] last_final_state_state_testing_pointer = [sess.run(cell.zero_state(batch_size=FLAGS.batch_test, dtype=tf.float32))] # Open an interactive matplotlib window to plot in real time if FLAGS.do_plot and FLAGS.interactive_plot: plt.ion() if FLAGS.do_plot: fig, ax_list = plt.subplots(5, figsize=(5.9, 6)) # re-name the window with the name of the cluster to track relate to the terminal window fig.canvas.set_window_title(socket.gethostname() + ' - ' + FLAGS.comment) def update_plot(plot_result_values, batch=0, n_max_neuron_per_raster=20, n_max_synapses=FLAGS.n_con): """ This function iterates the matplotlib figure on every call. It plots the data for a fixed sequence that should be representative of the expected computation :return: """ # Clear the axis to print new plots for k in range(ax_list.shape[0]): ax = ax_list[k] ax.clear() strip_right_top_axis(ax) # if len(plot_result_values['false_sentence_id_list']) > 0: # print(plot_result_values['false_sentence_id_list']) # batch = plot_result_values['false_sentence_id_list'][0] # ax_list[0].set_title("Failed batch " + str(batch)) # Plot the data, from top to bottom each axe represents: inputs, recurrent and controller for k_data, data, d_name in zip(range(3), [plot_result_values['input_spikes'], plot_result_values['z'], plot_result_values['z_con']], ['Input', 'Hidden', 'Memory' if FLAGS.model == 'Mikolov' else 'Controller']): if FLAGS.model in ['LIF', 'ALIF'] and k_data == 2: continue ax = ax_list[k_data] ax.grid(color='black', alpha=0.15, linewidth=0.4) if np.size(data) > 0: data = data[batch] n_max = min(data.shape[1], n_max_neuron_per_raster) cell_select = np.linspace(start=0, stop=data.shape[1] - 1, num=n_max, dtype=int) data = data[:, cell_select] # select a maximum of n_max_neuron_per_raster neurons to plot raster_plot(ax, data, linewidth=0.3) ax.set_ylabel(d_name) ax.set_xticklabels([]) if d_name == 'Input': ax.set_yticklabels([]) n_channel = data.shape[1] // n_input_symbols ax.add_patch( # Value 0 row patches.Rectangle((0, 0), data.shape[0], n_channel, facecolor="red", alpha=0.15)) ax.add_patch( # Value 1 row patches.Rectangle((0, n_channel), data.shape[0], n_channel, facecolor="blue", alpha=0.15)) ax.add_patch( # Store row patches.Rectangle((0, 2 * n_channel), data.shape[0], n_channel, facecolor="yellow", alpha=0.15)) ax.add_patch( # Recall row patches.Rectangle((0, 3 * n_channel), data.shape[0], n_channel, facecolor="green", alpha=0.15)) top_margin = 0.08 left_margin = -0.6 ax.text(left_margin, 1. - top_margin, 'Recall', transform=ax.transAxes, fontsize=7, verticalalignment='top') ax.text(left_margin, 0.75 - top_margin, 'Store', transform=ax.transAxes, fontsize=7, verticalalignment='top') ax.text(left_margin, 0.5 - top_margin, 'Value 1', transform=ax.transAxes, fontsize=7, verticalalignment='top') ax.text(left_margin, 0.25 - top_margin, 'Value 0', transform=ax.transAxes, fontsize=7, verticalalignment='top') # plot targets ax = ax_list[3 if FLAGS.model not in ['LIF', 'ALIF'] else 2] mask = plot_result_values['recall_charac_mask'][batch] data = plot_result_values['target_nums'][batch] data[np.invert(mask)] = -1 lines = [] ind_nt = np.argwhere(data != -1) for idx in ind_nt.tolist(): i = idx[0] lines.append([(i * FLAGS.tau_char, data[i]), ((i + 1) * FLAGS.tau_char, data[i])]) lc_t = mc.LineCollection(lines, colors='green', linewidths=2, label='Target') ax.add_collection(lc_t) # plot target segments # plot output per tau_char data = plot_result_values['out_plot_char_step'][batch] data = np.array([(d[1] - d[0] + 1) / 2 for d in data]) data[np.invert(mask)] = -1 lines = [] ind_nt = np.argwhere(data != -1) for idx in ind_nt.tolist(): i = idx[0] lines.append([(i * FLAGS.tau_char, data[i]), ((i + 1) * FLAGS.tau_char, data[i])]) lc_o = mc.LineCollection(lines, colors='blue', linewidths=2, label='Output') ax.add_collection(lc_o) # plot target segments # plot softmax of psp-s per dt for more intuitive monitoring # ploting only for second class since this is more intuitive to follow (first class is just a mirror) output2 = plot_result_values['out_plot'][batch, :, 1] presentation_steps = np.arange(output2.shape[0]) ax.set_yticks([0, 0.5, 1]) ax.grid(color='black', alpha=0.15, linewidth=0.4) ax.set_ylabel('Output') line_output2, = ax.plot(presentation_steps, output2, color='purple', label='softmax', alpha=0.7) ax.axis([0, presentation_steps[-1] + 1, -0.3, 1.1]) ax.legend(handles=[lc_t, lc_o, line_output2], loc='lower center', fontsize=7, bbox_to_anchor=(0.5, -0.05), ncol=3) if FLAGS.model != 'LIF': ax.set_xticklabels([]) # debug plot for psp-s or biases plot_param = 'b_con' # or 'psp' ax.set_xticklabels([]) ax = ax_list[-2] ax.grid(color='black', alpha=0.15, linewidth=0.4) ax.set_ylabel('PSPs' if plot_param == 'psp' else 'Threshold') sub_data = plot_result_values[plot_param][batch] if plot_param == 'b_con': sub_data = sub_data + thr vars = np.var(sub_data, axis=0) # cell_with_max_var = np.argsort(vars)[::-1][:n_max_synapses * 3:3] cell_with_max_var = np.argsort(vars)[::-1][:n_max_synapses] presentation_steps = np.arange(sub_data.shape[0]) ax.plot(sub_data[:, cell_with_max_var], color='r', label='Output', alpha=0.4, linewidth=1) ax.axis([0, presentation_steps[-1], np.min(sub_data[:, cell_with_max_var]), np.max(sub_data[:, cell_with_max_var])]) # [xmin, xmax, ymin, ymax] plot_param = 'v' ax.set_xticklabels([]) ax = ax_list[-1] ax.grid(color='black', alpha=0.15, linewidth=0.4) ax.set_ylabel('Membrane potential') sub_data = plot_result_values[plot_param][batch] presentation_steps = np.arange(sub_data.shape[0]) ax.plot(sub_data, label='Voltage', alpha=0.4, linewidth=1) ax.axis([0, presentation_steps[-1], np.min(sub_data[:, cell_with_max_var]), np.max(sub_data[:, cell_with_max_var])]) # [xmin, xmax, ymin, ymax] ax.set_xlabel('Time in ms') # To plot with interactive python one need to wait one second to the time to draw the axis if FLAGS.do_plot: plt.draw() plt.pause(1) test_loss_list = [] test_loss_with_reg_list = [] validation_error_list = [] tau_delay_list = [] training_time_list = [] time_to_ref_list = [] results_tensors = {'loss': loss, 'loss_reg': loss_reg, 'loss_recall': loss_recall, # 'recall_errors': recall_errors, 'final_state': final_state, 'av': av, 'adaptive_regularization_coeff': adaptive_regularization_coeff, 'target_nums_at_recall': target_nums_at_recall, 'Y': Y, 'Y_predict': Y_predict, } if FLAGS.model in ['LIF', 'ALIF']: results_tensors['w_in_val'] = cell.w_in_val results_tensors['w_rec_val'] = cell.w_rec_val results_tensors['w_out'] = w_out w_in_last = sess.run(cell.w_in_val) w_rec_last = sess.run(cell.w_rec_val) w_out_last = sess.run(w_out) plot_result_tensors = {'input_spikes': input_spikes, 'z': z, 'v': v, 'z_con': z_con, 'input_nums': input_nums, 'target_nums': target_nums, 'out_avg_per_step': out_plot_char_step, # 'false_sentence_id_list': false_sentence_id_list, } t_train = 0 t_ref = time() for k_iter in range(FLAGS.n_iter): if k_iter > 0 and np.mod(k_iter, FLAGS.lr_decay_every) == 0: old_lr = sess.run(learning_rate) new_lr = sess.run(decay_learning_rate_op) print('Decaying learning rate: {:.2g} -> {:.2g}'.format(old_lr, new_lr)) # Monitor the training with a validation set t0 = time() val_dict = get_data_dict(FLAGS.batch_val) feed_dict_with_placeholder_container(val_dict, init_state_holder, last_final_state_state_validation_pointer[0]) plot_result_tensors['psp'] = psp plot_result_tensors['out_plot_char_step'] = out_plot_char_step plot_result_tensors['out_plot'] = out_plot plot_result_tensors['recall_charac_mask'] = recall_charac_mask plot_result_tensors['Y'] = Y plot_result_tensors['Y_predict'] = Y_predict if FLAGS.model in ['Mikolov', 'ALIF']: plot_result_tensors['b_con'] = b_con results_values, plot_results_values = sess.run([results_tensors, plot_result_tensors], feed_dict=val_dict) rec_err, wrong_seq = add_errors(results_values) results_values['recall_errors'] = rec_err plot_results_values['false_sentence_id_list'] = wrong_seq if FLAGS.preserve_state: last_final_state_state_validation_pointer[0] = results_values['final_state'] last_final_state_state_testing_pointer[0] = results_values['final_state'] t_run = time() - t0 # Storage of the results test_loss_with_reg_list.append(results_values['loss_reg']) test_loss_list.append(results_values['loss_recall']) validation_error_list.append(results_values['recall_errors']) training_time_list.append(t_train) time_to_ref_list.append(time() - t_ref) if np.mod(k_iter, print_every) == 0: print('''Iteration {}, statistics on the validation set average error {:.2g} +- {:.2g} (trial averaged)''' .format(k_iter, np.mean(validation_error_list[-print_every:]), np.std(validation_error_list[-print_every:]))) current_w_in = sess.run(cell.w_in_var) w_in_b0 = np.mean(current_w_in[0:FLAGS.n_in // 4], axis=0) w_in_b1 = np.mean(current_w_in[FLAGS.n_in // 4:2 * FLAGS.n_in // 4], axis=0) w_in_s = np.mean(current_w_in[2 * FLAGS.n_in // 4:3 * FLAGS.n_in // 4], axis=0) w_in_r = np.mean(current_w_in[3 * FLAGS.n_in // 4:4 * FLAGS.n_in // 4], axis=0) current_w_in = np.vstack((w_in_b0, w_in_b1, w_in_s, w_in_r)) print("POST w_in\n", current_w_in) print("POST w_rec\n", sess.run(cell.w_rec_var)) print("POST w_out\n", sess.run(w_out)) def get_stats(v): if np.size(v) == 0: return np.nan, np.nan, np.nan, np.nan min_val = np.min(v) max_val = np.max(v) k_min = np.sum(v == min_val) k_max = np.sum(v == max_val) return np.min(v), np.max(v), np.mean(v), np.std(v), k_min, k_max firing_rate_stats = get_stats(results_values['av'] * 1000) reg_coeff_stats = get_stats(results_values['adaptive_regularization_coeff']) if FLAGS.verbose: print(''' firing rate (Hz) min {:.0f} ({}) \t max {:.0f} ({}) \t average {:.0f} +- std {:.0f} (averaged over batches and time) reg. coeff min {:.2g} \t max {:.2g} \t average {:.2g} +- std {:.2g} comput. time (s) training {:.2g} \t validation {:.2g} loss classif. {:.2g} \t reg. loss {:.2g} '''.format( firing_rate_stats[0], firing_rate_stats[4], firing_rate_stats[1], firing_rate_stats[5], firing_rate_stats[2], firing_rate_stats[3], reg_coeff_stats[0], reg_coeff_stats[1], reg_coeff_stats[2], reg_coeff_stats[3], t_train, t_run, results_values['loss_recall'], results_values['loss_reg'] )) if 0 < FLAGS.rewiring_connectivity or FLAGS.l1 > 0 and FLAGS.model in ['LIF', 'ALIF']: rewired_ref_list = ['w_in_val','w_rec_val','w_out'] non_zeros = [np.sum(results_values[ref] != 0) for ref in rewired_ref_list] sizes = [np.size(results_values[ref]) for ref in rewired_ref_list] empirical_connectivity = np.sum(non_zeros) / np.sum(sizes) if 0 < FLAGS.rewiring_connectivity: assert empirical_connectivity < FLAGS.rewiring_connectivity * 1.1,\ 'Rewiring error: found connectivity {:.3g}'.format(empirical_connectivity) w_in_new = results_values['w_in_val'] w_rec_new = results_values['w_rec_val'] w_out_new = results_values['w_out'] stay_con_in = np.logical_and(w_in_new != 0, w_in_last != 0) stay_con_rec = np.logical_and(w_rec_new != 0, w_rec_last != 0) stay_con_out = np.logical_and(w_out_new != 0, w_out_last != 0) Dw_in = np.linalg.norm(w_in_new[stay_con_in] - w_in_last[stay_con_in]) Dw_rec = np.linalg.norm(w_rec_new[stay_con_rec] - w_rec_last[stay_con_rec]) Dw_out = np.linalg.norm(w_out_new[stay_con_out] - w_out_last[stay_con_out]) if FLAGS.verbose: print('''Connectivity {:.3g} \t Non zeros: W_in {}/{} W_rec {}/{} w_out {}/{} \t New zeros: W_in {} W_rec {} W_out {}'''.format( empirical_connectivity, non_zeros[0], sizes[0], non_zeros[1], sizes[1], non_zeros[2], sizes[2], np.sum(np.logical_and(w_in_new == 0, w_in_last != 0)), np.sum(
np.logical_and(w_rec_new == 0, w_rec_last != 0)
numpy.logical_and
import sys import numpy as np sys.path.insert(0, "../") from bayes_optim import DiscreteSpace, IntegerSpace, RealSpace from bayes_optim.search_space.samplers import SCMC search_space = ( RealSpace([-5, 5]) * 2 + DiscreteSpace(["A", "B", "C", "D"]) + IntegerSpace([1, 10]) * 2 ) def h(x): return np.array([bool(x[2] not in ["A", "B"]), x[4] ** 2 + x[4] - 2]) def g(x): return np.array( [ np.sum(x[:2] ** 2) - 1, 0.25 -
np.sum(x[:2] ** 2)
numpy.sum
import unittest import numpy import cupy from cupy import cuda from cupy import testing import cupyx.scipy.linalg if cupyx.scipy._scipy_available: import scipy.linalg @testing.gpu @testing.parameterize(*testing.product({ 'shape': [(1, 1), (2, 2), (3, 3), (5, 5), (1, 5), (5, 1), (2, 5), (5, 2)], })) @testing.fix_random() @unittest.skipUnless( cuda.cusolver_enabled, 'Only cusolver in CUDA 8.0 is supported') @testing.with_requires('scipy') class TestLUFactor(unittest.TestCase): @testing.for_float_dtypes(no_float16=True) def test_lu_factor(self, dtype): if self.shape[0] != self.shape[1]: # skip non-square tests since scipy.lu_factor requires square return unittest.SkipTest() array = numpy.random.randn(*self.shape) a_cpu = numpy.asarray(array, dtype=dtype) a_gpu = cupy.asarray(array, dtype=dtype) result_cpu = scipy.linalg.lu_factor(a_cpu) result_gpu = cupyx.scipy.linalg.lu_factor(a_gpu) self.assertEqual(len(result_cpu), len(result_gpu)) self.assertEqual(result_cpu[0].dtype, result_gpu[0].dtype) self.assertEqual(result_cpu[1].dtype, result_gpu[1].dtype) cupy.testing.assert_allclose(result_cpu[0], result_gpu[0], atol=1e-5) cupy.testing.assert_array_equal(result_cpu[1], result_gpu[1]) @testing.for_float_dtypes(no_float16=True) def test_lu_factor_reconstruction(self, dtype): m, n = self.shape A = cupy.random.randn(m, n, dtype=dtype) lu, piv = cupyx.scipy.linalg.lu_factor(A) # extract ``L`` and ``U`` from ``lu`` L = cupy.tril(lu, k=-1) cupy.fill_diagonal(L, 1.) L = L[:, :m] U = cupy.triu(lu) U = U[:n, :] # check output shapes assert lu.shape == (m, n) assert L.shape == (m, min(m, n)) assert U.shape == (min(m, n), n) assert piv.shape == (min(m, n),) # apply pivot (on CPU since slaswp is not available in cupy) piv = cupy.asnumpy(piv) rows =
numpy.arange(m)
numpy.arange
import numpy as np import torch import sys from sklearn.neighbors import NearestNeighbors as NN import geop.geometry.util as gutil from torch_scatter import scatter_add, scatter_mean from torch_geometric.nn import knn """ Iterative Closest Points (ICP) Method according to point-to-plane metric. Inputs: source: o3d.geometry.PointCloud target: o3d.geometry.PointCloud sigma: soft-thresholding [default 0.01] max_iter: maximum number of iterations [default 100] stopping_threshold: stopping threshold for ICP algorithm [default 1e-4] Outputs: transform: np.ndarray of shape [4, 4]. Transformation from source to target. """ def icp_reweighted(source, target, sigma=0.01, max_iter = 100, stopping_threshold=1e-4): """ If target has no normals, estimate """ import open3d as o3d if np.array(target.normals).shape[0] == 0: search_param = o3d.geometry.KDTreeSearchParamHybrid( radius=0.2, max_nn=30) o3d.estimate_normals(target, search_param=search_param) tree = NN(n_neighbors=1, algorithm='kd_tree', n_jobs=10) tree = tree.fit(np.array(target.points)) n = np.array(source.points).shape[0] normals = np.array(target.normals) points = np.array(target.points) weights = np.zeros(n) errors = [] transform = np.eye(4) for itr in range(max_iter): p = np.array(source.points) R, trans = gutil.unpack(transform) p = (R.dot(p.T) + trans.reshape((3, 1))).T _, indices = tree.kneighbors(p) """ (r X pi + pi + t - qi)^T ni """ """( <r, (pi X ni)> + <t, ni> + <pi-qi, ni> )^2""" """ (<(r; t), hi> + di)^2 """ nor = normals[indices[:, 0], :] q = points[indices[:, 0], :] d = np.sum(np.multiply(p-q, nor), axis=1) #[n] h = np.zeros((n, 6)) h[:, :3] =
np.cross(p, nor)
numpy.cross
def plot_solution(system, filename=None, num=1, smooth=True, limits=None): """Quickly plot the 1D eigenmodes stored in the system object""" import numpy as np import matplotlib.pyplot as plt sol = system.result grid = system.grid title = r'$\omega = {:1.4f}, k_x = {:1.2f}, m={}$' plt.figure(num) plt.clf() fig, axes = plt.subplots(num=num, nrows=system.dim, sharex=True) for j, var in enumerate(system.variables): if smooth: if limits is None: z = np.linspace(grid.zmin, grid.zmax, 2000) else: z = np.linspace(limits[0], limits[1], 2000) # var_interp = grid.interpolate(z, sol[var]) # axes[j].plot( # z, var_interp.real, 'C0', label='Real' # ) # axes[j].plot( # z, var_interp.imag, 'C1', label='Imag' # ) axes[j].plot( z, grid.interpolate(z, sol[var].real), 'C0', label='Real' ) axes[j].plot( z, grid.interpolate(z, sol[var].imag), 'C1', label='Imag' ) axes[j].plot(grid.zg, sol[var].real, 'C0.', label='Real') axes[j].plot(grid.zg, sol[var].imag, 'C1.', label='Imag') axes[j].set_ylabel(system.labels[j]) axes[system.dim - 1].set_xlabel(r"$z$") try: axes[0].set_title( title.format(sol[system.eigenvalue], system.kx, sol['mode']) ) except: axes[0].set_title( r'$\omega$ = {:1.6f}'.format(sol[system.eigenvalue]) ) axes[0].legend(frameon=False) if filename is not None: fig.savefig(filename) else: plt.show() def get_2Dmap(system, var, xmin, xmax, Nx, Nz, zmin=None, zmax=None, time=0): """Create a 2D map of the eigenmode var stored in system.result[var]. This function assumes that the eigenmodes have the form f(z)*exp(i kx x). """ import numpy as np dx = (xmax - xmin) / Nx xg = (0.5 + np.arange(Nx)) * dx if zmin is None or zmax is None: zmin = system.grid.zmin zmax = system.grid.zmax dz = (zmax - zmin) / Nz zg = (0.5 + np.arange(Nz)) * dz + zmin xx, zz = np.meshgrid(xg, zg) # Wavenumber kx = system.kx val = np.zeros((Nz, Nx)) def return_real_ampl(f, x): """""" return ( 2*f*np.exp(1j*kx*x + system.result[system.eigenvalue]*time) ).real # Interpolate onto z-grid if type(var) is str: yr = system.grid.interpolate(zg, system.result[var].real) yi = system.grid.interpolate(zg, system.result[var].imag) else: yr = system.grid.interpolate(zg, var.real) yi = system.grid.interpolate(zg, var.imag) y = yr + 1j * yi for i in range(Nx): val[:, i] = return_real_ampl(y, xg[i]) return val def get_2D_cylindrical_map_in_cylindrical_coords( system, var, phimin, phimax, Nphi, Nr, rmin=None, rmax=None, time=0, z=0 ): """Create a 2D map of the eigenmode var stored in system.result[var]. This function assumes that the eigenmodes have the form f(r)*exp(i kz z + i m phi). It returns a map in the r-phi plane at a fixed value of z (default 0) """ import numpy as np # Create linear grid in phi dphi = (phimax - phimin) / (Nphi - 1) phig = (np.arange(Nphi)) * dphi # Create linear grid in r if rmin is None: rmin = system.grid.zmin dr = (rmax - rmin) / Nr rg = (0.5 + np.arange(Nr)) * dr + rmin # Contruct meshgrids rr, phiphi = np.meshgrid(rg, phig) # Azimuthal mode number m = system.m # Wavenumber kz = system.kz val = np.zeros((Nphi, Nr)) def return_real_ampl(f, phi, z): """""" return ( 2 * f * np.exp( 1j*kz*z + 1j*m*phi + system.result[system.eigenvalue]*time ) ).real # Interpolate onto r-grid if type(var) is str: yr = system.grid.interpolate(rg, system.result[var].real) yi = system.grid.interpolate(rg, system.result[var].imag) else: yr = system.grid.interpolate(rg, var.real) yi = system.grid.interpolate(rg, var.imag) y = yr + 1j * yi for i in range(Nphi): val[i, :] = return_real_ampl(y, phig[i], z) # This is how you would plot the map # xx = rr * np.cos(phiphi) # yy = rr * np.sin(phiphi) # plt.pcolormesh(xx, yy, val) # plt.axis('equal') # plt.show() return (rr, phiphi, val) def get_2D_cylindrical_map( system, var, xmin, xmax, ymin, ymax, Nx, Ny, time=0, z=0 ): import numpy as np x = np.linspace(xmin, xmax, Nx) y =
np.linspace(ymin, ymax, Ny)
numpy.linspace
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for coefficient-wise operations. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import tensorflow as tf from tensorflow.python.ops import gen_math_ops _ADD = lambda x, y: x + y _SUB = lambda x, y: x - y _MUL = lambda x, y: x * y _POW = lambda x, y: x ** y _TRUEDIV = lambda x, y: x / y _FLOORDIV = lambda x, y: x // y _MOD = lambda x, y: x % y _NEG = lambda x: -x _ABS = abs _LT = lambda x, y: x < y _LE = lambda x, y: x <= y _GT = lambda x, y: x > y _GE = lambda x, y: x >= y _AND = lambda x, y: x & y _OR = lambda x, y: x | y _XOR = lambda x, y: x ^ y _INV = lambda x: ~x # TODO(zongheng): it'd be great to factor out this function and various random # SparseTensor gen funcs. def _sparsify(x, thresh=0.5, index_dtype=np.int64): x[x < thresh] = 0 non_zero = np.where(x) x_indices = np.vstack(non_zero).astype(index_dtype).T x_values = x[non_zero] x_shape = x.shape return tf.SparseTensor( indices=x_indices, values=x_values, shape=x_shape), x_values class UnaryOpTest(tf.test.TestCase): def _compareCpu(self, x, np_func, tf_func): np_ans = np_func(x) with self.test_session(use_gpu=False): inx = tf.convert_to_tensor(x) if x.dtype in (np.float32, np.float64): y = 1.1 * tf_func(inx) np_ans *= 1.1 else: y = tf_func(inx) tf_cpu = y.eval() self.assertShapeEqual(np_ans, y) if x.dtype == np.float16: self.assertAllClose(np_ans, tf_cpu, rtol=1e-3, atol=1e-3) else: self.assertAllClose(np_ans, tf_cpu) if x.dtype in (np.complex64, np.complex128) and tf_func == tf.sign: return # Return early if x.dtype == np.float16: s = list(np.shape(x)) jacob_t, _ = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) xf = x.astype(np.float) inxf = tf.convert_to_tensor(xf) yf = tf_func(inxf) _, jacob_n = tf.test.compute_gradient(inxf, s, yf, s, x_init_value=xf) jacob_n = jacob_n.astype(np.float16) self.assertAllClose(jacob_t, jacob_n, rtol=5e-3, atol=5e-3) elif x.dtype in (np.float32, np.complex64): s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype in (np.float64, np.complex128): s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _check(self, result_tensor, result_np, input_sp_t, tol): self.assertTrue(isinstance(result_tensor, tf.SparseTensor)) self.assertTrue(isinstance(input_sp_t, tf.SparseTensor)) self.assertAllEqual(input_sp_t.indices.eval(), result_tensor.indices.eval()) self.assertAllEqual(input_sp_t.shape.eval(), result_tensor.shape.eval()) if tol is None: self.assertAllClose(result_np, result_tensor.values.eval()) else: self.assertAllClose(result_np, result_tensor.values.eval(), rtol=tol, atol=tol) def _compareSparseCpu(self, x, np_func, tf_func, tol): x_sp, x_sp_vals = _sparsify(x) res_np = np_func(x_sp_vals) with self.test_session(use_gpu=False): self._check(tf_func(x_sp), res_np, x_sp, tol) def _compareGpu(self, x, np_func, tf_func): np_ans = np_func(x) with self.test_session(use_gpu=True): result = tf_func(tf.convert_to_tensor(x)) tf_gpu = result.eval() if x.dtype == np.float16: self.assertAllClose(np_ans, tf_gpu, rtol=1e-3, atol=1e-3) else: self.assertAllClose(np_ans, tf_gpu) # TODO(zhifengc/ke): make gradient checker work on GPU. def _compareSparseGpu(self, x, np_func, tf_func, tol): x_sp, x_sp_vals = _sparsify(x) res_np = np_func(x_sp_vals) with self.test_session(use_gpu=True): self._check(tf_func(x_sp), res_np, x_sp, tol) def _compareBoth(self, x, np_func, tf_func): self._compareCpu(x, np_func, tf_func) self._compareGpu(x, np_func, tf_func) def _compareBothSparse(self, x, np_func, tf_func, tol=None): self._compareSparseCpu(x, np_func, tf_func, tol) self._compareSparseGpu(x, np_func, tf_func, tol) def _inv(self, x): return 1.0 / x def _rsqrt(self, x): return self._inv(np.sqrt(x)) def _sigmoid(self, x): return 1.0 / (1.0 + np.exp(-x)) def _replace_domain_error_with_inf(self, fn): def func(x): try: return fn(x) except ValueError as e: if "domain error" in str(e): return np.inf * np.ones_like(x) else: raise e return func def testFloatBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32) y = (x + .5).astype(np.float32) # no zero z = (x + 15.5).astype(np.float32) # all positive k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(x, np.tan, tf.tan) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) def testFloatTanhEdge(self): x = np.arange(40, 40 + 6).reshape(6).astype(np.float32) self._compareBoth(x, np.tanh, tf.tanh) x = np.arange(-40, -40 + 6).reshape(6).astype(np.float32) self._compareBoth(x, np.tanh, tf.tanh) def testFloatEmpty(self): x = np.empty((2, 0, 5), dtype=np.float32) self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(x, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(x, np.sqrt, tf.sqrt) self._compareBoth(x, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(x, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(x, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) # Can't use vectorize below, so just use some arbitrary function self._compareBoth(x, np.sign, tf.lgamma) self._compareBoth(x, np.sign, tf.erf) self._compareBoth(x, np.sign, tf.erfc) self._compareBoth(x, np.tan, tf.tan) self._compareBoth(x, np.arcsin, tf.asin) self._compareBoth(x, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(x, np.sign, tf.sign) self._compareBothSparse(x, np.sign, tf.erf) def testDoubleBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64) y = (x + .5).astype(np.float64) # no zero z = (x + 15.5).astype(np.float64) # all positive k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(k, np.tan, tf.tan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) def testHalfBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float16) y = (x + .5).astype(np.float16) # no zero z = (x + 15.5).astype(np.float16) # all positive self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf, tol=1e-3) def testInt32Basic(self): x = np.arange(-6, 6, 2).reshape(1, 3, 2).astype(np.int32) self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(x, np.square, tf.square) self._compareCpu(x, np.sign, tf.sign) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sign, tf.sign) def testInt64Basic(self): x = np.arange( -6 << 40, 6 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(x, np.square, tf.square) self._compareCpu(x, np.sign, tf.sign) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sign, tf.sign) def testComplex64Basic(self): x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype( np.complex64) y = x + 0.5 # no zeros self._compareCpu(x, np.abs, tf.complex_abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(y, self._inv, tf.inv) self._compareCpu(x, np.square, tf.square) self._compareCpu(y, np.sqrt, tf.sqrt) self._compareCpu(y, self._rsqrt, tf.rsqrt) self._compareCpu(x, np.exp, tf.exp) self._compareCpu(y, np.log, tf.log) self._compareCpu(x, np.tanh, tf.tanh) self._compareCpu(x, self._sigmoid, tf.sigmoid) self._compareCpu(x, np.sin, tf.sin) self._compareCpu(x, np.cos, tf.cos) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) # Numpy uses an incorrect definition of sign; use the right one instead. def complex_sign(x): return x / np.abs(x) self._compareCpu(y, complex_sign, tf.sign) self._compareBothSparse(y, complex_sign, tf.sign) def testComplex128Basic(self): x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype( np.complex128) y = x + 0.5 # no zeros self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(y, self._inv, tf.inv) self._compareCpu(x, np.square, tf.square) self._compareCpu(y, np.sqrt, tf.sqrt) self._compareCpu(y, self._rsqrt, tf.rsqrt) self._compareCpu(x, np.exp, tf.exp) self._compareCpu(y, np.log, tf.log) self._compareCpu(x, np.tanh, tf.tanh) self._compareCpu(x, self._sigmoid, tf.sigmoid) self._compareCpu(x, np.sin, tf.sin) self._compareCpu(x, np.cos, tf.cos) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) # Numpy uses an incorrect definition of sign; use the right one instead. def complex_sign(x): return x / np.abs(x) self._compareCpu(y, complex_sign, tf.sign) self._compareBothSparse(y, complex_sign, tf.sign) def testGradGrad(self): np.random.seed(7) shape = (5,) dtype_tols = [(np.float32, 1e-3), (np.float64, 1e-6), (np.complex64, 1e-3), (np.complex128, 1e-6)] op_range = [(gen_math_ops._inv_grad, [-2, 2]), (gen_math_ops._sigmoid_grad, [-2, 2]), (gen_math_ops._sqrt_grad, [1, 3]), (gen_math_ops._tanh_grad, [-2, 2]),] def rand(dtype): x = np.random.uniform( real_range[0], real_range[1], size=shape[0]).astype(dtype) if dtype in (np.complex64, np.complex128): x += 1j * np.random.uniform(-2, 2, size=shape[0]).astype(dtype) return x for op, real_range in op_range: with self.test_session(): for dtype, tol in dtype_tols: x = tf.constant(rand(dtype)) y = tf.constant(rand(dtype)) z = op(x, y) error = tf.test.compute_gradient_error( [x, y], [shape, shape], z, shape, x_init_value=[rand(dtype), rand(dtype)]) self.assertLess(error, tol) class BinaryOpTest(tf.test.TestCase): def _compareCpu(self, x, y, np_func, tf_func, also_compare_variables=False): np_ans = np_func(x, y) with self.test_session(use_gpu=False): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_cpu = out.eval() # Test that the op takes precedence over numpy operators. np_left = tf_func(x, iny).eval() np_right = tf_func(inx, y).eval() if also_compare_variables: var_x = tf.Variable(x) var_y = tf.Variable(y) tf.initialize_all_variables().run() print(type(x), type(y), type(var_x), type(var_y)) print(type(tf_func(x, var_y)), type(tf_func(var_x, y))) np_var_left = tf_func(x, var_y).eval() np_var_right = tf_func(var_x, y).eval() if np_ans.dtype != np.object: self.assertAllClose(np_ans, tf_cpu) self.assertAllClose(np_ans, np_left) self.assertAllClose(np_ans, np_right) if also_compare_variables: self.assertAllClose(np_ans, np_var_left) self.assertAllClose(np_ans, np_var_right) self.assertShapeEqual(np_ans, out) _GRAD_TOL = {tf.float16: 1e-3, tf.float32: 1e-3, tf.complex64: 1e-2, tf.float64: 1e-5, tf.complex128: 1e-4} def _compareGradientX(self, x, y, np_func, tf_func, numeric_gradient_type=None): z = np_func(x, y) zs = list(z.shape) with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) if x.dtype in (np.float32, np.float64): out = 1.1 * tf_func(inx, iny) else: out = tf_func(inx, iny) xs = list(x.shape) jacob_t, jacob_n = tf.test.compute_gradient(inx, xs, out, zs, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf_func(inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, xs, outf, zs, x_init_value=xf, delta=1e-3) jacob_n = jacob_n.astype(x.dtype) tol = self._GRAD_TOL[tf.as_dtype(x.dtype)] self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol) def _compareGradientY(self, x, y, np_func, tf_func, numeric_gradient_type=None): z = np_func(x, y) zs = list(z.shape) with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) if x.dtype in (np.float32, np.float64): out = 1.1 * tf_func(inx, iny) else: out = tf_func(inx, iny) ys = list(np.shape(y)) jacob_t, jacob_n = tf.test.compute_gradient(iny, ys, out, zs, x_init_value=y) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf_func(inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, ys, outf, zs, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) tol = self._GRAD_TOL[tf.as_dtype(x.dtype)] self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol) def _compareGpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=True): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_gpu = out.eval() self.assertAllClose(np_ans, tf_gpu) self.assertShapeEqual(np_ans, out) # TODO(zhifengc/ke): make gradient checker work on GPU. def _compareBoth(self, x, y, np_func, tf_func, also_compare_variables=False): self._compareCpu(x, y, np_func, tf_func, also_compare_variables) if x.dtype in (np.float16, np.float32, np.float64): if tf_func not in (_FLOORDIV, tf.floordiv, tf.igamma, tf.igammac, tf.zeta, tf.polygamma): self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) if tf_func in (tf.igamma, tf.igammac, tf.zeta, tf.polygamma): # These methods only support gradients in the second parameter self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e)) def testFloatDifferentShapes(self): x = np.array([1, 2, 3, 4]).reshape(2, 2).astype(np.float32) y = np.array([1, 2]).reshape(2, 1).astype(np.float32) with self.test_session() as sess: inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) s = tf.reduce_sum(inx * iny) gx, gy = sess.run(tf.gradients(s, [inx, iny])) # gx is simply the broadcasted y self.assertAllEqual(gx, np.array([1, 1, 2, 2]) .reshape(2, 2).astype(np.float32)) # gy is x's column summed up self.assertAllEqual(gy, np.array([3, 7]). reshape(2, 1).astype(np.float32)) def testFloatVariableOverload(self): x = np.array([1, 2, 3, 4]).reshape(2, 2).astype(np.int32) y = np.array([1, 2]).reshape(2, 1).astype(np.int32) var_x = tf.Variable(x) var_y = tf.Variable(y) with self.test_session() as sess: sess.run([var_x.initializer, var_y.initializer]) left_result = (var_x * y).eval() right_result = (x * var_y).eval() np_result = x * y self.assertAllEqual(np_result, left_result) self.assertAllEqual(np_result, right_result) def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e)) def testInt8Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int8) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int8) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) def testInt16Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int16) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int16) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD) def testInt64Basic(self): x = np.arange(1 << 40, 13 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int64) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) def testComplex64Basic(self): x = np.complex(1, 1) * np.linspace(-10, 10, 6).reshape(1, 3, 2).astype( np.complex64) y = np.complex(1, 1) * np.linspace(20, -20, 6).reshape(1, 3, 2).astype( np.complex64) self._compareCpu(x, y, np.add, tf.add) self._compareCpu(x, y, np.subtract, tf.sub) self._compareCpu(x, y, np.multiply, tf.mul) self._compareCpu(x, y + 0.1, np.true_divide, tf.truediv) self._compareCpu(x, y, np.add, _ADD) self._compareCpu(x, y, np.subtract, _SUB) self._compareCpu(x, y, np.multiply, _MUL) self._compareCpu(x, y + 0.1, np.true_divide, _TRUEDIV) def testComplex128Basic(self): x = np.complex(1, 1) * np.linspace(-10, 10, 6).reshape(1, 3, 2).astype( np.complex128) y = np.complex(1, 1) * np.linspace(20, -20, 6).reshape(1, 3, 2).astype( np.complex128) self._compareCpu(x, y, np.add, tf.add) self._compareCpu(x, y, np.subtract, tf.sub) self._compareCpu(x, y, np.multiply, tf.mul) self._compareCpu(x, y + 0.1, np.true_divide, tf.truediv) self._compareCpu(x, y, np.add, _ADD) self._compareCpu(x, y, np.subtract, _SUB) self._compareCpu(x, y, np.multiply, _MUL) self._compareCpu(x, y + 0.1, np.true_divide, _TRUEDIV) def testStringComparison(self): x = np.array([["abc", "bh"], ["c", ""]]) y = np.array([["abc", "bh"], ["def", "hi"]]) with self.test_session(use_gpu=False) as sess: cmp_eq = tf.equal(x, y) cmp_not_eq = tf.not_equal(x, y) values = sess.run([cmp_eq, cmp_not_eq]) self.assertAllEqual([[True, True], [False, False]], values[0]) self.assertAllEqual([[False, False], [True, True]], values[1]) def testString(self): x = np.array([["x_0_0", "x_0_1", "x_0_2"], ["x_1_0", "x_1_1", "x_1_2"], ["x_2_0", "x_2_1", "x_2_2"]], dtype=np.object) y = np.array([["y_0_0", "y_0_1", "y_0_2"], ["y_1_0", "y_1_1", "y_1_2"], ["y_2_0", "y_2_1", "y_2_2"]], dtype=np.object) z = np.array([["z_0", "z_1", "z_2"]], dtype=np.object) w = np.array("w", dtype=np.object) self._compareCpu(x, y, _ADD, _ADD) self._compareCpu(x, z, _ADD, _ADD) self._compareCpu(x, w, _ADD, _ADD) self._compareCpu(z, w, _ADD, _ADD) def _compareBCast(self, xs, ys, dtype, np_func, tf_func): if dtype in (np.complex64, np.complex128): x = (1 + np.linspace(0, 2 + 3j, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 2 - 2j, np.prod(ys))).astype(dtype).reshape(ys) else: x = (1 + np.linspace(0, 5, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 5, np.prod(ys))).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) if x.dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): if tf_func not in (_FLOORDIV, tf.floordiv): if x.dtype == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(x, y, np_func, tf_func, np.float) self._compareGradientY(x, y, np_func, tf_func, np.float) else: self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) # TODO(josh11b,vrv): Refactor this to use parameterized tests. def _testBCastByFunc(self, funcs, xs, ys): dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128, ] for dtype in dtypes: for (np_func, tf_func) in funcs: if (dtype in (np.complex64, np.complex128) and tf_func in (_FLOORDIV, tf.floordiv)): continue # floordiv makes no sense for complex numbers self._compareBCast(xs, ys, dtype, np_func, tf_func) self._compareBCast(ys, xs, dtype, np_func, tf_func) def _testBCastA(self, xs, ys): funcs = [ (np.add, tf.add), (np.add, _ADD), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastB(self, xs, ys): funcs = [ (np.subtract, tf.sub), (np.subtract, _SUB), (np.power, tf.pow), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastC(self, xs, ys): funcs = [ (np.multiply, tf.mul), (np.multiply, _MUL), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastD(self, xs, ys): funcs = [ (np.true_divide, tf.truediv), (np.floor_divide, tf.floordiv), (np.true_divide, _TRUEDIV), (np.floor_divide, _FLOORDIV), ] self._testBCastByFunc(funcs, xs, ys) def testBCast_0A(self): self._testBCastA([1, 3, 2], [1]) def testBCast_0B(self): self._testBCastB([1, 3, 2], [1]) def testBCast_0C(self): self._testBCastC([1, 3, 2], [1]) def testBCast_0D(self): self._testBCastD([1, 3, 2], [1]) def testBCast_1A(self): self._testBCastA([1, 3, 2], [2]) def testBCast_1B(self): self._testBCastB([1, 3, 2], [2]) def testBCast_1C(self): self._testBCastC([1, 3, 2], [2]) def testBCast_1D(self): self._testBCastD([1, 3, 2], [2]) def testBCast_2A(self): self._testBCastA([1, 3, 2], [3, 2]) def testBCast_2B(self): self._testBCastB([1, 3, 2], [3, 2]) def testBCast_2C(self): self._testBCastC([1, 3, 2], [3, 2]) def testBCast_2D(self): self._testBCastD([1, 3, 2], [3, 2]) def testBCast_3A(self): self._testBCastA([1, 3, 2], [3, 1]) def testBCast_3B(self): self._testBCastB([1, 3, 2], [3, 1]) def testBCast_3C(self): self._testBCastC([1, 3, 2], [3, 1]) def testBCast_3D(self): self._testBCastD([1, 3, 2], [3, 1]) def testBCast_4A(self): self._testBCastA([1, 3, 2], [1, 3, 2]) def testBCast_4B(self): self._testBCastB([1, 3, 2], [1, 3, 2]) def testBCast_4C(self): self._testBCastC([1, 3, 2], [1, 3, 2]) def testBCast_4D(self): self._testBCastD([1, 3, 2], [1, 3, 2]) def testBCast_5A(self): self._testBCastA([1, 3, 2], [2, 3, 1]) def testBCast_5B(self): self._testBCastB([1, 3, 2], [2, 3, 1]) def testBCast_5C(self): self._testBCastC([1, 3, 2], [2, 3, 1]) def testBCast_5D(self): self._testBCastD([1, 3, 2], [2, 3, 1]) def testBCast_6A(self): self._testBCastA([1, 3, 2], [2, 1, 1]) def testBCast_6B(self): self._testBCastB([1, 3, 2], [2, 1, 1]) def testBCast_6C(self): self._testBCastC([1, 3, 2], [2, 1, 1]) def testBCast_6D(self): self._testBCastD([1, 3, 2], [2, 1, 1]) def testBCast_7A(self): self._testBCastA([1, 3, 2], [1, 3, 1]) def testBCast_7B(self): self._testBCastB([1, 3, 2], [1, 3, 1]) def testBCast_7C(self): self._testBCastC([1, 3, 2], [1, 3, 1]) def testBCast_7D(self): self._testBCastD([1, 3, 2], [1, 3, 1]) def testBCast_8A(self): self._testBCastA([2, 1, 5], [2, 3, 1]) def testBCast_8B(self): self._testBCastB([2, 1, 5], [2, 3, 1]) def testBCast_8C(self): self._testBCastC([2, 1, 5], [2, 3, 1]) def testBCast_8D(self): self._testBCastD([2, 1, 5], [2, 3, 1]) def testBCast_9A(self): self._testBCastA([2, 0, 5], [2, 0, 1]) def testBCast_9B(self): self._testBCastB([2, 0, 5], [2, 0, 1]) def testBCast_9C(self): self._testBCastC([2, 0, 5], [2, 0, 1]) def testBCast_9D(self): self._testBCastD([2, 0, 5], [2, 0, 1]) def testBCast_10A(self): self._testBCastA([2, 3, 0], [2, 3, 1]) def testBCast_10B(self): self._testBCastB([2, 3, 0], [2, 3, 1]) def testBCast_10C(self): self._testBCastC([2, 3, 0], [2, 3, 1]) def testBCast_10D(self): self._testBCastD([2, 3, 0], [2, 3, 1]) def testBCast_11A(self): self._testBCastA([1, 3, 2], [1, 3, 2]) def testBCast_11B(self): self._testBCastB([1, 3, 2], [1, 3, 2]) def testBCast_11C(self): self._testBCastC([1, 3, 2], [1, 3, 2]) def testBCast_11D(self): self._testBCastD([1, 3, 2], [1, 3, 2]) def testBCast_12A(self): self._testBCastA([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12B(self): self._testBCastB([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12C(self): self._testBCastC([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12D(self): self._testBCastD([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_13A(self): self._testBCastA([1, 3, 2, 1, 1], [1]) def testBCast_13B(self): self._testBCastB([1, 3, 2, 1, 1], [1]) def testBCast_13C(self): self._testBCastC([1, 3, 2, 1, 1], [1]) def testBCast_13D(self): self._testBCastD([1, 3, 2, 1, 1], [1]) def testBCast_14A(self): self._testBCastA([2, 3, 1, 1, 5], [1]) def testBCast_14B(self): self._testBCastB([2, 3, 1, 1, 5], [1]) def testBCast_14C(self): self._testBCastC([2, 3, 1, 1, 5], [1]) def testBCast_14D(self): self._testBCastD([2, 3, 1, 1, 5], [1]) def testBCast_15A(self): self._testBCastA([10, 3, 1, 2], [3, 1, 2]) def testBCast_15B(self): self._testBCastB([10, 3, 1, 2], [3, 1, 2]) def testBCast_15C(self): self._testBCastC([10, 3, 1, 2], [3, 1, 2]) def testBCast_15D(self): self._testBCastD([10, 3, 1, 2], [3, 1, 2]) def testMismatchedDimensions(self): for func in [tf.add, tf.sub, tf.mul, tf.div, _ADD, _SUB, _MUL, _TRUEDIV, _FLOORDIV]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): func(tf.convert_to_tensor([10.0, 20.0, 30.0]), tf.convert_to_tensor([[40.0, 50.0], [60.0, 70.0]])) def testZeroPowGrad(self): with self.test_session(): for dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): x = tf.constant(0.0, dtype=dtype) y = tf.constant(2.0, dtype=dtype) z = tf.pow(x, y) error = tf.test.compute_gradient_error(y, [], z, []) self.assertEqual(error, 0) def testComplexPowGrad(self): with self.test_session(): for dtype in np.complex64, np.complex128: for base in 2.0, -2.0: x = tf.constant(base, dtype=dtype) y = tf.constant(2.0, dtype=dtype) z = tf.pow(x, y) error = tf.test.compute_gradient_error(y, [], z, []) self.assertLess(error, 2e-4) class ComparisonOpTest(tf.test.TestCase): def _compare(self, func, x, y, dtype): with self.test_session(use_gpu=False): out = func(tf.convert_to_tensor(np.array([x]).astype(dtype)), tf.convert_to_tensor(np.array([y]).astype(dtype))) ret = out.eval() return ret[0] def testScalarCompareScalar(self): dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64] data = [-1, 0, 1] for t in dtypes: for x in data: for y in data: self.assertEqual(self._compare(tf.less, x, y, t), x < y) self.assertEqual(self._compare(tf.less_equal, x, y, t), x <= y) self.assertEqual(self._compare(tf.greater, x, y, t), x > y) self.assertEqual(self._compare(tf.greater_equal, x, y, t), x >= y) self.assertEqual(self._compare(tf.equal, x, y, t), x == y) self.assertEqual(self._compare(tf.not_equal, x, y, t), x != y) data = [-1, 0, 1, -1j, 1j, 1 + 1j, 1 - 1j] for t in [np.complex64, np.complex128]: for x in data: for y in data: self.assertEqual(self._compare(tf.equal, x, y, t), x == y) self.assertEqual(self._compare(tf.not_equal, x, y, t), x != y) def _compareCpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=False): out = tf_func(tf.convert_to_tensor(x), tf.convert_to_tensor(y)) tf_cpu = out.eval() self.assertAllEqual(np_ans, tf_cpu) def _compareGpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=True): out = tf_func(tf.convert_to_tensor(x), tf.convert_to_tensor(y)) tf_gpu = out.eval() self.assertAllEqual(np_ans, tf_gpu) def _compareBoth(self, x, y, np_func, tf_func): self._compareCpu(x, y, np_func, tf_func) if x.dtype == np.float16 or x.dtype == np.float32 or x.dtype == np.float64: self._compareGpu(x, y, np_func, tf_func) def testTensorCompareTensor(self): x = np.linspace(-15, 15, 6).reshape(1, 3, 2) y = np.linspace(20, -10, 6).reshape(1, 3, 2) for t in [np.float16, np.float32, np.float64, np.int32, np.int64]: xt = x.astype(t) yt = y.astype(t) self._compareBoth(xt, yt, np.less, tf.less) self._compareBoth(xt, yt, np.less_equal, tf.less_equal) self._compareBoth(xt, yt, np.greater, tf.greater) self._compareBoth(xt, yt, np.greater_equal, tf.greater_equal) self._compareBoth(xt, yt, np.equal, tf.equal) self._compareBoth(xt, yt, np.not_equal, tf.not_equal) # TODO(zhifengc): complex64 doesn't work on GPU yet. for t in [np.complex64, np.complex128]: self._compareCpu(x.astype(t), y.astype(t), np.equal, tf.equal) self._compareCpu(x.astype(t), y.astype(t), np.not_equal, tf.not_equal) def _compareBCast(self, xs, ys, dtype, np_func, tf_func): x = np.linspace(-15, 15, np.prod(xs)).astype(dtype).reshape(xs) y = np.linspace(20, -10, np.prod(ys)).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) self._compareCpu(y, x, np_func, tf_func) if x.dtype == np.float16 or x.dtype == np.float32 or x.dtype == np.float64: self._compareGpu(x, y, np_func, tf_func) self._compareGpu(y, x, np_func, tf_func) def _testBCastByFunc(self, np_func, tf_func): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, ] for (xs, ys) in shapes: for dtype in dtypes: self._compareBCast(xs, ys, dtype, np_func, tf_func) def testBCastLess(self): self._testBCastByFunc(np.less, tf.less) def testBCastLessEqual(self): self._testBCastByFunc(np.less_equal, tf.less_equal) def testBCastGreater(self): self._testBCastByFunc(np.greater, tf.greater) def testBCastGreaterEqual(self): self._testBCastByFunc(np.greater_equal, tf.greater_equal) def testBCastEqual(self): self._testBCastByFunc(np.equal, tf.equal) def testBCastNotEqual(self): self._testBCastByFunc(np.not_equal, tf.not_equal) def testShapeMismatch(self): dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64] funcs = [tf.less, tf.less_equal, tf.greater, tf.greater_equal, tf.equal, tf.not_equal] x = np.arange(0, 10).reshape([2, 5]) y = np.arange(0, 10).reshape([5, 2]) for t in dtypes: for f in funcs: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x.astype(t), y.astype(t)) class LogicalOpTest(tf.test.TestCase): def _compareBinary(self, x, y, np_func, tf_func, use_gpu=False): np_ans = np_func(x, y) with self.test_session(use_gpu=use_gpu): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_val = out.eval() self.assertEqual(out.dtype, tf.bool) self.assertAllEqual(np_ans, tf_val) self.assertShapeEqual(np_ans, out) def _not(self, x, use_gpu=False): np_ans = np.logical_not(x) with self.test_session(use_gpu=use_gpu): out = tf.logical_not(tf.convert_to_tensor(x)) tf_val = out.eval() self.assertEqual(out.dtype, tf.bool) self.assertAllEqual(np_ans, tf_val) self.assertShapeEqual(np_ans, out) def testScalar(self): data = [np.array([True]), np.array([False])] for use_gpu in [True, False]: for x in data: self._not(x, use_gpu) for x in data: for y in data: self._compareBinary( x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary( x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary( x, y, np.logical_xor, tf.logical_xor, use_gpu) def testTensor(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) for use_gpu in [True, False]: self._not(x, use_gpu) self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) def testBCast(self): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] for (xs, ys) in shapes: x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs) y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys) for use_gpu in [True, False]: self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) def testShapeMismatch(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1) for f in [tf.logical_and, tf.logical_or, tf.logical_xor]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x, y) def testUsingAsPythonValueFails(self): # Ensure that we raise an error when the user attempts to treat a # `Tensor` as a Python `bool`. b = tf.constant(False) with self.assertRaises(TypeError): if b: pass x = tf.constant(3) y = tf.constant(4) with self.assertRaises(TypeError): if x > y: pass z = tf.constant(7) # The chained comparison should fail because Python computes `x < # y` and short-circuits the comparison with `z` if it is `False`. with self.assertRaises(TypeError): _ = x < y < z class SelectOpTest(tf.test.TestCase): def _compare(self, c, x, y, use_gpu): np_ans = np.where(c, x, y) with self.test_session(use_gpu=use_gpu): out = tf.select(c, x, y) tf_ans = out.eval() self.assertAllEqual(np_ans, tf_ans) self.assertShapeEqual(np_ans, out) def _compareGradientX(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(c)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, out, s, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, s, outf, s, x_init_value=xf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _compareGradientY(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(c)) jacob_t, jacob_n = tf.test.compute_gradient(iny, s, out, s, x_init_value=y, delta=1.0) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, s, outf, s, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def testBasic(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(1, 3, 2) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) self._compare(c, xt, yt, use_gpu=False) if t in [np.float16, np.float32, np.float64]: self._compare(c, xt, yt, use_gpu=True) def testGradients(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(1, 3, 2) * 100 for t in [np.float16, np.float32, np.float64]: xt = x.astype(t) yt = y.astype(t) if t == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(c, xt, yt, np.float) self._compareGradientY(c, xt, yt, np.float) else: self._compareGradientX(c, xt, yt) self._compareGradientY(c, xt, yt) def testShapeMismatch(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(2, 5, 3) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) with self.assertRaises(ValueError): tf.select(c, xt, yt) def testEmptyTensor(self): c = np.random.randint(0, 3, 0).astype(np.bool).reshape(1, 3, 0) x = np.random.rand(1, 3, 0) * 100 y = np.random.rand(1, 3, 0) * 100 z_expected = np.zeros((1, 3, 0), dtype=np.float32) with self.test_session(): xt = x.astype(np.float32) yt = y.astype(np.float32) z = tf.select(c, xt, yt).eval() self.assertAllEqual(z_expected, z) def testNan(self): """Verify that nans don't propagate where they shouldn't.""" with self.test_session(): for c in False, True: for a in 7.0, np.nan: for b in 5.0, np.nan: x = tf.select(c, a, b).eval() y = a if c else b self.assertEqual(np.isnan(x), np.isnan(y)) class BatchSelectOpTest(tf.test.TestCase): """Test broadcasting of Select when 'c' is a vec and 't' &'e' are rank2+.""" def _compare(self, c, x, y, use_gpu): np_ans = np.dstack( [x_i if c_i else y_i for c_i, x_i, y_i in zip(c, x, y)]).transpose( [2, 0, 1]) with self.test_session(use_gpu=use_gpu): out = tf.select(c, x, y) tf_ans = out.eval() self.assertAllEqual(np_ans, tf_ans) self.assertShapeEqual(np_ans, out) def _compareGradientX(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, out, s, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, s, outf, s, x_init_value=xf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _compareGradientY(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(iny, s, out, s, x_init_value=y) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, s, outf, s, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def testBasic(self): c = np.random.randint(0, 2, 16).astype(np.bool) x = np.random.rand(16, 2, 8) * 100 y = np.random.rand(16, 2, 8) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) self._compare(c, xt, yt, use_gpu=False) if t in [np.float16, np.float32, np.float64]: self._compare(c, xt, yt, use_gpu=True) def testGradients(self): c =
np.random.randint(0, 2, 16)
numpy.random.randint
import os import time import numpy as np import copy import tensorflow as tf from tensorflow.contrib.nccl.python.ops import nccl_ops nccl_ops._maybe_load_nccl_ops_so() from base_model import BaseModel from sndcgan_zgp import Network from sndcgan_zgp.utils import * from sndcgan_zgp.ops import nccl_all_mean, network_mean from sndcgan_zgp.ops import TowerConfig, device_sync_op, optimizer_op from data_loader import parallel_image_filename_loader class TrainingModel(BaseModel): def __init__(self, sess, config, device_list, model_name="model_name", dataset_name="default", data_dir="./data", base_dir="./"): super(TrainingModel, self).__init__(name=model_name, base_dir=base_dir) self.connect_paths() snapshot_list = list() snapshot_list.append(dict(type="file", dir="base_model.py")) snapshot_list.append(dict(type="file", dir="main.py")) snapshot_list.append(dict(type="file", dir="parallel_training_model.py")) snapshot_list.append(dict(type="dir", dir="sndcgan_zgp")) self.snapshot(snapshot_list) self.sess = sess self.config = config self.device_list = device_list self.num_device = len(device_list) self.model_name = model_name self.train_data, \ self.sample_data, \ self.num_batch, \ self.file_type = parallel_image_filename_loader(data_dir=data_dir, dataset_name=dataset_name, sample_num=config.sample_num, batch_size=config.batch_size ) self.build_model() def build_model(self): size = self.config.final_size batch_size = self.config.batch_size gf_dim = self.config.gf_dim df_dim = self.config.df_dim z_dim = self.config.z_dim c_dim = 3 tower_prefix = "Tower_{}" main_idx = 0 self.gOptim = lambda: tf.train.AdamOptimizer(learning_rate=self.config.learning_rate, beta1=self.config.beta1) self.dOptim = lambda: tf.train.AdamOptimizer(learning_rate=self.config.learning_rate, beta1=self.config.beta1) # Data flow # Data parser def _parse_function(fname, number): image_string = tf.read_file(fname) if self.file_type in ['jpg', 'jpeg', 'JPG', 'JPEG']: image_decoded = tf.image.decode_jpeg(image_string, channels=3) elif self.file_type in ['png', 'PNG']: image_decoded = tf.image.decode_png(image_string, channels=3) else: raise ValueError("Image type should be in 'jpg', 'png'. Got {}.".format(self.file_type)) image_resized = tf.image.resize_images(image_decoded, (size, size)) image_resized = image_resized / 127.5 - 1 return image_resized def _parse_function_test(fname, z): image_string = tf.read_file(fname) if self.file_type in ['jpg', 'jpeg', 'JPG', 'JPEG']: image_decoded = tf.image.decode_jpeg(image_string, channels=3) elif self.file_type in ['png', 'PNG']: image_decoded = tf.image.decode_png(image_string, channels=3) else: raise ValueError("Image type should be in 'jpg', 'png'. Got {}.".format(self.file_type)) image_resized = tf.image.resize_images(image_decoded, (size, size)) image_resized = image_resized / 127.5 - 1 return image_resized, z # Start towering # Iterator self.iterator = nested_dict() # Loss container # Tower, data config print("Tower configuration ... ", end=" ", flush=True) tower_config_list = list() for idx, device in enumerate(self.device_list): # Tower config tower_config = TowerConfig(idx=idx, prefix=tower_prefix, is_main=idx == main_idx, num_devices=len(self.device_list), device_name=device, is_test=False) tower_config_list.append(tower_config) # Data flow # For train if tower_config.is_main: dataset = tf.data.Dataset.from_tensor_slices(self.train_data) dataset = dataset.repeat().shuffle(len(self.train_data) * 2) dataset = dataset.apply( tf.contrib.data.map_and_batch( map_func=_parse_function, batch_size=batch_size * len(self.device_list), num_parallel_batches=int(batch_size * len(self.device_list) * 1.5) ) ) self.iterator['train'] = dataset.make_initializable_iterator() # For test if tower_config.is_main: self.sample_z = tf.constant(np.random.normal(0.0, 1.0, size=[self.config.sample_num, z_dim]) .astype(dtype=np.float32)) test_dataset = tf.data.Dataset.from_tensor_slices((self.sample_data, self.sample_z)) test_dataset = test_dataset.apply( tf.contrib.data.map_and_batch( map_func=_parse_function_test, batch_size=1, num_parallel_batches=batch_size * 16 ) ) self.iterator['test'] = test_dataset.make_initializable_iterator() # Only for test sample_x, sample_z = self.iterator['test'].get_next() print("Done !") # Building network print("Build Network ...") network_list = list() dummy_network_list = list() # Fetch dataflow x_full = self.iterator['train'].get_next() for idx, (device, tower_config) in enumerate(zip(self.device_list, tower_config_list)): print("\tCreating gpu tower @ {:d} on device {:s}".format(idx, device)) # Fetch dataflow x = x_full[batch_size * idx: batch_size * (idx+1)] with tf.device(device), tf.variable_scope(tower_prefix.format(idx)): z = tf.random_normal(shape=[batch_size, z_dim], dtype=tf.float32, name="z") # Establish network network = Network(name="Network", batch_size=batch_size, size=size, gf_dim=gf_dim, df_dim=df_dim, reuse=False, is_training=True, tower_config=tower_config) network.build_network(x=x, z=z) network_list.append(network) dummy_tower_config = copy.deepcopy(tower_config) dummy_tower_config.is_test = True dummy = Network(name="Network", batch_size=1, size=size, gf_dim=gf_dim, df_dim=df_dim, reuse=True, is_training=False, tower_config=dummy_tower_config) dummy.build_network(z=sample_z, x=sample_x) dummy_network_list.append(dummy) # Establish test network if tower_config.is_main: print("\t +- Test network @ tower {:d} on device {:s}".format(idx, device)) self.test_network = dummy # Using NCCL library. Need to run all variables in list. self.test_enforcer = network_mean(dummy_network_list, lambda x: x.y) # Otherwise, it will hang. g_loss_list = nccl_all_mean(network_list, lambda x: x.g_loss) d_loss_list = nccl_all_mean(network_list, lambda x: x.d_loss) self.g_loss = network_mean(network_list, lambda x:x.g_loss) self.d_loss = network_mean(network_list, lambda x:x.d_loss) self.gp_loss = network_mean(network_list, lambda x:x.gp_loss) print(">> Done.") # Compute gradients print("Compute gradients ... ", end=' ', flush=True) self.d_optimize_op = optimizer_op(d_loss_list, network_list, self.dOptim, var_name="type__discriminator") self.g_optimize_op = optimizer_op(g_loss_list, network_list, self.gOptim, var_name="type__generator") print("Done !") self.sync_op = device_sync_op(tower_prefix, main_idx) self.network_list = network_list # Saver to save only main tower. excluding_towers = [tower_config.name for tower_config in tower_config_list if not tower_config.is_main] tracking_variables_list = [v for v in tf.global_variables() if not any(tower_name in v.op.name for tower_name in excluding_towers)] self.saver = tf.train.Saver(var_list=tracking_variables_list, max_to_keep=None) def train(self, config): # Initializing print("Initializing ... ", end=' ', flush=True) self.sess.run(tf.global_variables_initializer()) print("Done !") # Restoring if config.checkpoint_dir is None: pass else: print("Restoring ... ", end=' ', flush=True) self.restore_checkpoints(config.checkpoint_dir, config.restore_list) print("Done !") print("Sync towers ... ", end=' ', flush=True) if self.num_device == 1: print(" >> Using only one device. Skip syncing. ", end=' ', flush=True) else: self.sess.run(self.sync_op) print("Done !") counter = 0 start_time = time.time() # Check test input print("Checking input pipeline ... ", end=' ', flush=True) y_sample, x_sample, _ = self.sample_runner([self.test_network.y, self.test_network.x, self.test_enforcer]) save_images(y_sample, image_manifold_size(len(y_sample)), os.path.join(self.get_result_dir(), "9_naive_gen_image.jpg")) save_images(x_sample, image_manifold_size(len(x_sample)), os.path.join(self.get_result_dir(), "9_input_image.jpg")) os.mkdir(os.path.join(self.get_result_dir(), "Result")) print("Done !") print("Train iterator initializing ... ", end=' ', flush=True) self.sess.run(self.iterator['train'].initializer) print("Done !") # Batch training epoch_time = time.time() effective_num_batch = (self.num_batch // len(self.device_list)) print("CKPT directory: {}".format(self.get_checkpoint_dir())) print("Effective batch size: {}".format(self.config.batch_size * len(self.device_list))) while counter // effective_num_batch < config.epoch: epoch = counter // effective_num_batch idx = counter % effective_num_batch counter += 1 # Syncing if np.mod(counter, 5000) == 0: if not self.num_device == 1: self.sess.run(self.sync_op) print("Sync towers on step {}.".format(counter)) # Update D network for i_discriminator in range(config.discriminator_iteration): self.sess.run(self.d_optimize_op) # Update G network for i_generator in range(config.generator_iteration): self.sess.run(self.g_optimize_op) if
np.mod(counter, config.print_interval)
numpy.mod
# -*- coding: utf-8 -*- import numpy #only accept order = numpy.nan or 0 def designmatrix( c, order ): if numpy.isnan(order): return numpy.array([],ndmin=2).reshape(c.shape[0],0), numpy.array([],ndmin = 2) else: n, nd = c.shape X =
numpy.ones((n, 1))
numpy.ones
import csv import time import math import numpy as np import warnings from rdkit import Chem, DataStructs from rdkit.Chem import QED from sklearn.model_selection import KFold, StratifiedKFold import torch import torch.nn as nn from torch.optim.lr_scheduler import ExponentialLR, StepLR import torch.nn.functional as F from torch.autograd import Variable import random from tqdm import tqdm, trange import threading from __future__ import print_function from __future__ import division from sklearn.externals import joblib from sklearn import metrics from sklearn.ensemble import RandomForestRegressor as RFR import pickle import seaborn as sns import matplotlib.pyplot as plt from azureml.core.model import Model def get_fp(smiles): fp = [] processed_indices = [] invalid_indices = [] for i in range(len(smiles)): mol = smiles[i] tmp = np.array(mol2image(mol, n=2048)) if np.isnan(tmp[0]): invalid_indices.append(i) else: fp.append(tmp) processed_indices.append(i) return np.array(fp), processed_indices, invalid_indices def get_desc(smiles, calc): desc = [] processed_indices = [] invalid_indices = [] for i in range(len(smiles)): sm = smiles[i] try: mol = Chem.MolFromSmiles(sm) tmp = np.array(calc(mol)) desc.append(tmp) processed_indices.append(i) except: invalid_indices.append(i) desc_array = np.array(desc) return desc_array, processed_indices, invalid_indices def normalize_desc(desc_array, desc_mean=None): desc_array = np.array(desc_array).reshape(len(desc_array), -1) ind = np.zeros(desc_array.shape) for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): try: if np.isfinite(desc_array[i, j]): ind[i, j] = 1 except: pass for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): if ind[i, j] == 0: desc_array[i, j] = 0 if desc_mean is None: desc_mean = np.mean(desc_array, axis=0) for i in range(desc_array.shape[0]): for j in range(desc_array.shape[1]): if ind[i, j] == 0: desc_array[i, j] = desc_mean[j] return desc_array, desc_mean def mol2image(x, n=2048): try: m = Chem.MolFromSmiles(x) fp = Chem.RDKFingerprint(m, maxPath=4, fpSize=n) res = np.zeros(len(fp)) DataStructs.ConvertToNumpyArray(fp, res) return res except: return [np.nan] def sanitize_smiles(smiles, canonical=True, throw_warning=False): """ Takes list of SMILES strings and returns list of their sanitized versions. For definition of sanitized SMILES check http://www.rdkit.org/docs/api/rdkit.Chem.rdmolops-module.html#SanitizeMol Parameters ---------- smiles: list list of SMILES strings canonical: bool (default True) parameter specifying whether SMILES will be converted to canonical format throw_warning: bool (default False) parameter specifying whether warnings will be thrown if a SMILES is invalid Returns ------- new_smiles: list list of SMILES and NaNs if SMILES string is invalid or unsanitized. If canonical is True, returns list of canonical SMILES. When canonical is True this function is analogous to: canonical_smiles(smiles, sanitize=True). """ new_smiles = [] for sm in smiles: try: if canonical: new_smiles.append(Chem.MolToSmiles(Chem.MolFromSmiles(sm, sanitize=True))) else: new_smiles.append(sm) except: if throw_warning: warnings.warn('Unsanitized SMILES string: ' + sm, UserWarning) new_smiles.append('') return new_smiles def canonical_smiles(smiles, sanitize=True, throw_warning=False): """ Takes list of SMILES strings and returns list of their canonical SMILES. Parameters ---------- smiles: list list of SMILES strings to convert into canonical format sanitize: bool (default True) parameter specifying whether to sanitize SMILES or not. For definition of sanitized SMILES check http://www.rdkit.org/docs/api/rdkit.Chem.rdmolops-module.html#SanitizeMol throw_warning: bool (default False) parameter specifying whether warnings will be thrown if a SMILES is invalid Returns ------- new_smiles: list list of canonical SMILES and NaNs if SMILES string is invalid or unsanitized (when sanitize is True) When sanitize is True the function is analogous to: sanitize_smiles(smiles, canonical=True). """ new_smiles = [] for sm in smiles: try: mol = Chem.MolFromSmiles(sm, sanitize=sanitize) new_smiles.append(Chem.MolToSmiles(mol)) except: if throw_warning: warnings.warn(sm + ' can not be canonized: invalid ' 'SMILES string!', UserWarning) new_smiles.append('') return new_smiles def save_smi_to_file(filename, smiles, unique=True): """ Takes path to file and list of SMILES strings and writes SMILES to the specified file. Args: filename (str): path to the file smiles (list): list of SMILES strings unique (bool): parameter specifying whether to write only unique copies or not. Output: success (bool): defines whether operation was successfully completed or not. """ if unique: smiles = list(set(smiles)) else: smiles = list(smiles) f = open(filename, 'w') for mol in smiles: f.writelines([mol, '\n']) f.close() return f.closed def read_smi_file(filename, unique=True, add_start_end_tokens=False): """ Reads SMILES from file. File must contain one SMILES string per line with \n token in the end of the line. Args: filename (str): path to the file unique (bool): return only unique SMILES Returns: smiles (list): list of SMILES strings from specified file. success (bool): defines whether operation was successfully completed or not. If 'unique=True' this list contains only unique copies. """ f = open(filename, 'r') molecules = [] for line in f: if add_start_end_tokens: molecules.append('<' + line[:-1] + '>') else: molecules.append(line[:-1]) if unique: molecules = list(set(molecules)) else: molecules = list(molecules) f.close() return molecules, f.closed def tokenize(smiles, tokens=None): """ Returns list of unique tokens, token-2-index dictionary and number of unique tokens from the list of SMILES Parameters ---------- smiles: list list of SMILES strings to tokenize. tokens: list, str (default None) list of unique tokens Returns ------- tokens: list list of unique tokens/SMILES alphabet. token2idx: dict dictionary mapping token to its index. num_tokens: int number of unique tokens. """ if tokens is None: tokens = list(set(''.join(smiles))) tokens = list(np.sort(tokens)) tokens = ''.join(tokens) token2idx = dict((token, i) for i, token in enumerate(tokens)) num_tokens = len(tokens) return tokens, token2idx, num_tokens def time_since(since): s = time.time() - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def cross_validation_split(x, y, n_folds=5, split='random', folds=None): assert(len(x) == len(y)) x = np.array(x) y = np.array(y) if split not in ['random', 'stratified', 'fixed']: raise ValueError('Invalid value for argument \'split\': ' 'must be either \'random\', \'stratified\' ' 'or \'fixed\'') if split == 'random': cv_split = KFold(n_splits=n_folds, shuffle=True) folds = list(cv_split.split(x, y)) elif split == 'stratified': cv_split = StratifiedKFold(n_splits=n_folds, shuffle=True) folds = list(cv_split.split(x, y)) elif split == 'fixed' and folds is None: raise TypeError( 'Invalid type for argument \'folds\': found None, but must be list') cross_val_data = [] cross_val_labels = [] if len(folds) == n_folds: for fold in folds: cross_val_data.append(x[fold[1]]) cross_val_labels.append(y[fold[1]]) elif len(folds) == len(x) and np.max(folds) == n_folds: for f in range(n_folds): left = np.where(folds == f)[0].min() right = np.where(folds == f)[0].max() cross_val_data.append(x[left:right + 1]) cross_val_labels.append(y[left:right + 1]) return cross_val_data, cross_val_labels def read_object_property_file(path, delimiter=',', cols_to_read=[0, 1], keep_header=False): f = open(path, 'r') reader = csv.reader(f, delimiter=delimiter) data_full = np.array(list(reader)) if keep_header: start_position = 0 else: start_position = 1 assert len(data_full) > start_position data = [[] for _ in range(len(cols_to_read))] for i in range(len(cols_to_read)): col = cols_to_read[i] data[i] = data_full[start_position:, col] f.close() if len(cols_to_read) == 1: data = data[0] return data """### **Data Process**""" class GeneratorData(object): """ Docstring coming soon... """ def __init__(self, training_data_path, tokens=None, start_token='<', end_token='>', max_len=120, use_cuda=None, **kwargs): """ Constructor for the GeneratorData object. Parameters ---------- training_data_path: str path to file with training dataset. Training dataset must contain a column with training strings. The file also may contain other columns. tokens: list (default None) list of characters specifying the language alphabet. Of left unspecified, tokens will be extracted from data automatically. start_token: str (default '<') special character that will be added to the beginning of every sequence and encode the sequence start. end_token: str (default '>') special character that will be added to the end of every sequence and encode the sequence end. max_len: int (default 120) maximum allowed length of the sequences. All sequences longer than max_len will be excluded from the training data. use_cuda: bool (default None) parameter specifying if GPU is used for computations. If left unspecified, GPU will be used if available kwargs: additional positional arguments These include cols_to_read (list, default [0]) specifying which column in the file with training data contains training sequences and delimiter (str, default ',') that will be used to separate columns if there are multiple of them in the file. """ super(GeneratorData, self).__init__() if 'cols_to_read' not in kwargs: kwargs['cols_to_read'] = [] data = read_object_property_file(training_data_path, **kwargs) self.start_token = start_token self.end_token = end_token self.file = [] for i in range(len(data)): if len(data[i]) <= max_len: self.file.append(self.start_token + data[i] + self.end_token) self.file_len = len(self.file) self.all_characters, self.char2idx, \ self.n_characters = tokenize(self.file, tokens) self.use_cuda = use_cuda if self.use_cuda is None: self.use_cuda = torch.cuda.is_available() def load_dictionary(self, tokens, char2idx): self.all_characters = tokens self.char2idx = char2idx self.n_characters = len(tokens) def random_chunk(self): """ Samples random SMILES string from generator training data set. Returns: random_smiles (str). """ index = random.randint(0, self.file_len-1) return self.file[index] def char_tensor(self, string): """ Converts SMILES into tensor of indices wrapped into torch.autograd.Variable. Args: string (str): input SMILES string Returns: tokenized_string (torch.autograd.Variable(torch.tensor)) """ tensor = torch.zeros(len(string)).long() for c in range(len(string)): tensor[c] = self.all_characters.index(string[c]) if self.use_cuda: return torch.tensor(tensor).cuda() else: return torch.tensor(tensor) def random_training_set(self, smiles_augmentation): chunk = self.random_chunk() if smiles_augmentation is not None: chunk = '<' + smiles_augmentation.randomize_smiles(chunk[1:-1]) + '>' inp = self.char_tensor(chunk[:-1]) target = self.char_tensor(chunk[1:]) return inp, target def read_sdf_file(self, path, fields_to_read): raise NotImplementedError def update_data(self, path): self.file, success = read_smi_file(path, unique=True) self.file_len = len(self.file) assert success class PredictorData(object): def __init__(self, path, delimiter=',', cols=[0, 1], get_features=None, has_label=True, labels_start=1, **kwargs): super(PredictorData, self).__init__() data = read_object_property_file(path, delimiter, cols_to_read=cols) if has_label: self.objects = np.array(data[:labels_start]).reshape(-1) self.y = np.array(data[labels_start:], dtype='float32') self.y = self.y.reshape(-1, len(cols) - labels_start) if self.y.shape[1] == 1: self.y = self.y.reshape(-1) else: self.objects = np.array(data[:labels_start]).reshape(-1) self.y = [None]*len(self.object) assert len(self.objects) == len(self.y) if get_features is not None: self.x, processed_indices, invalid_indices = \ get_features(self.objects, **kwargs) self.invalid_objects = self.objects[invalid_indices] self.objects = self.objects[processed_indices] self.invalid_y = self.y[invalid_indices] self.y = self.y[processed_indices] else: self.x = self.objects self.invalid_objects = None self.invalid_y = None self.binary_y = None def binarize(self, threshold): self.binary_y = np.array(self.y >= threshold, dtype='int32') """### **Smiles Enumerator**""" class Iterator(object): """Abstract base class for data iterators. # Arguments n: Integer, total number of samples in the dataset to loop over. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seeding for data shuffling. """ def __init__(self, n, batch_size, shuffle, seed): self.n = n self.batch_size = batch_size self.shuffle = shuffle self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(n, batch_size, shuffle, seed) if n < batch_size: raise ValueError('Input data length is shorter than batch_size\nAdjust batch_size') def reset(self): self.batch_index = 0 def _flow_index(self, n, batch_size=32, shuffle=False, seed=None): # Ensure self.batch_index is 0. self.reset() while 1: if seed is not None: np.random.seed(seed + self.total_batches_seen) if self.batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (self.batch_index * batch_size) % n if n > current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = n - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __iter__(self): # Needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class SmilesIterator(Iterator): """Iterator yielding data from a SMILES array. # Arguments x: Numpy array of SMILES input data. y: Numpy array of targets data. smiles_data_generator: Instance of `SmilesEnumerator` to use for random SMILES generation. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seed for data shuffling. dtype: dtype to use for returned batch. Set to keras.backend.floatx if using Keras """ def __init__(self, x, y, smiles_data_generator, batch_size=32, shuffle=False, seed=None, dtype=np.float32 ): if y is not None and len(x) != len(y): raise ValueError('X (images tensor) and y (labels) ' 'should have the same length. ' 'Found: X.shape = %s, y.shape = %s' % (np.asarray(x).shape, np.asarray(y).shape)) self.x =
np.asarray(x)
numpy.asarray
# -*- coding: utf-8 -*- """ This module defines the NormalizedWorm class """ import numpy as np from scipy.interpolate import interp1d from scipy.signal import savgol_filter def _h_resample_curve(curve, resampling_N=49, widths=None): '''Resample curve to have resampling_N equidistant segments I give width as an optional parameter since I want to use the same interpolation as with the skeletons I calculate the length here indirectly ''' # calculate the cumulative length for each segment in the curve dx = np.diff(curve[:, 0]) dy = np.diff(curve[:, 1]) dr = np.sqrt(dx * dx + dy * dy) lengths = np.cumsum(dr) lengths = np.hstack((0, lengths)) # add the first point tot_length = lengths[-1] # Verify array lengths if len(lengths) < 2 or len(curve) < 2: return None, None, None fx = interp1d(lengths, curve[:, 0]) fy = interp1d(lengths, curve[:, 1]) subLengths = np.linspace(0 + np.finfo(float).eps, tot_length, resampling_N) # I add the epsilon because otherwise the interpolation will produce nan # for zero try: resampled_curve = np.zeros((resampling_N, 2)) resampled_curve[:, 0] = fx(subLengths) resampled_curve[:, 1] = fy(subLengths) if widths is not None: fw = interp1d(lengths, widths) widths = fw(subLengths) except ValueError: resampled_curve = np.full((resampling_N, 2), np.nan) widths = np.full(resampling_N, np.nan) return resampled_curve, tot_length, widths def _h_smooth_curve(curve, window=5, pol_degree=3): '''smooth curves using the savgol_filter''' if curve.shape[0] < window: # nothing to do here return an empty array return np.full_like(curve, np.nan) # consider the case of one (widths) or two dimensions (skeletons, contours) if curve.ndim == 1: smoothed_curve = savgol_filter(curve, window, pol_degree) else: smoothed_curve = np.zeros_like(curve) for nn in range(curve.ndim): smoothed_curve[:, nn] = savgol_filter( curve[:, nn], window, pol_degree) return smoothed_curve def get_group_borders(index_o, pad_val = False): #add zeros at the edge to consider any block in the edges index = np.hstack([pad_val, index_o , pad_val]) switches = np.diff(index.astype(np.int)) turn_on, =
np.where(switches==1)
numpy.where
#!/usr/bin/env python # # Created by: <NAME>, March 2002 # """ Test functions for linalg.basic module """ from __future__ import division, print_function, absolute_import """ Bugs: 1) solve.check_random_sym_complex fails if a is complex and transpose(a) = conjugate(a) (a is Hermitian). """ __usage__ = """ Build linalg: python setup_linalg.py build Run tests if scipy is installed: python -c 'import scipy;scipy.linalg.test()' Run tests if linalg is not installed: python tests/test_basic.py """ import numpy as np from numpy import arange, array, dot, zeros, identity, conjugate, transpose, \ float32 import numpy.linalg as linalg from numpy.testing import TestCase, rand, run_module_suite, assert_raises, \ assert_equal, assert_almost_equal, assert_array_almost_equal, assert_, \ assert_allclose from scipy.linalg import solve, inv, det, lstsq, pinv, pinv2, pinvh, norm,\ solve_banded, solveh_banded, solve_triangular from scipy.linalg._testutils import assert_no_overwrite def random(size): return rand(*size) class TestSolveBanded(TestCase): def test_real(self): a = array([[1.0, 20, 0, 0], [-30, 4, 6, 0], [2, 1, 20, 2], [0, -1, 7, 14]]) ab = array([[0.0, 20, 6, 2], [1, 4, 20, 14], [-30, 1, 7, 0], [2, -1, 0, 0]]) l,u = 2,1 b4 = array([10.0, 0.0, 2.0, 14.0]) b4by1 = b4.reshape(-1,1) b4by2 = array([[2, 1], [-30, 4], [2, 3], [1, 3]]) b4by4 = array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0]]) for b in [b4, b4by1, b4by2, b4by4]: x = solve_banded((l, u), ab, b) assert_array_almost_equal(dot(a, x), b) def test_complex(self): a = array([[1.0, 20, 0, 0], [-30, 4, 6, 0], [2j, 1, 20, 2j], [0, -1, 7, 14]]) ab = array([[0.0, 20, 6, 2j], [1, 4, 20, 14], [-30, 1, 7, 0], [2j, -1, 0, 0]]) l,u = 2,1 b4 = array([10.0, 0.0, 2.0, 14.0j]) b4by1 = b4.reshape(-1,1) b4by2 = array([[2, 1], [-30, 4], [2, 3], [1, 3]]) b4by4 = array([[1, 0, 0, 0], [0, 0, 0,1j], [0, 1, 0, 0], [0, 1, 0, 0]]) for b in [b4, b4by1, b4by2, b4by4]: x = solve_banded((l, u), ab, b) assert_array_almost_equal(dot(a, x), b) def test_tridiag_real(self): ab = array([[0.0, 20, 6, 2], [1, 4, 20, 14], [-30, 1, 7, 0]]) a = np.diag(ab[0,1:], 1) + np.diag(ab[1,:], 0) + np.diag(ab[2,:-1], -1) b4 = array([10.0, 0.0, 2.0, 14.0]) b4by1 = b4.reshape(-1,1) b4by2 = array([[2, 1], [-30, 4], [2, 3], [1, 3]]) b4by4 = array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0]]) for b in [b4, b4by1, b4by2, b4by4]: x = solve_banded((1, 1), ab, b) assert_array_almost_equal(dot(a, x), b) def test_tridiag_complex(self): ab = array([[0.0, 20, 6, 2j], [1, 4, 20, 14], [-30, 1, 7, 0]]) a = np.diag(ab[0,1:], 1) + np.diag(ab[1,:], 0) + np.diag(ab[2,:-1], -1) b4 = array([10.0, 0.0, 2.0, 14.0j]) b4by1 = b4.reshape(-1,1) b4by2 = array([[2, 1], [-30, 4], [2, 3], [1, 3]]) b4by4 = array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0]]) for b in [b4, b4by1, b4by2, b4by4]: x = solve_banded((1, 1), ab, b) assert_array_almost_equal(dot(a, x), b) def test_check_finite(self): a = array([[1.0, 20, 0, 0], [-30, 4, 6, 0], [2, 1, 20, 2], [0, -1, 7, 14]]) ab = array([[0.0, 20, 6, 2], [1, 4, 20, 14], [-30, 1, 7, 0], [2, -1, 0, 0]]) l,u = 2,1 b4 = array([10.0, 0.0, 2.0, 14.0]) x = solve_banded((l, u), ab, b4, check_finite=False) assert_array_almost_equal(dot(a, x), b4) def test_bad_shape(self): ab = array([[0.0, 20, 6, 2], [1, 4, 20, 14], [-30, 1, 7, 0], [2, -1, 0, 0]]) l,u = 2,1 bad = array([1.0, 2.0, 3.0, 4.0]).reshape(-1,4) assert_raises(ValueError, solve_banded, (l, u), ab, bad) assert_raises(ValueError, solve_banded, (l, u), ab, [1.0, 2.0]) # Values of (l,u) are not compatible with ab. assert_raises(ValueError, solve_banded, (1, 1), ab, [1.0, 2.0]) class TestSolveHBanded(TestCase): def test_01_upper(self): # Solve # [ 4 1 2 0] [1] # [ 1 4 1 2] X = [4] # [ 2 1 4 1] [1] # [ 0 2 1 4] [2] # with the RHS as a 1D array. ab = array([[0.0, 0.0, 2.0, 2.0], [-99, 1.0, 1.0, 1.0], [4.0, 4.0, 4.0, 4.0]]) b = array([1.0, 4.0, 1.0, 2.0]) x = solveh_banded(ab, b) assert_array_almost_equal(x, [0.0, 1.0, 0.0, 0.0]) def test_02_upper(self): # Solve # [ 4 1 2 0] [1 6] # [ 1 4 1 2] X = [4 2] # [ 2 1 4 1] [1 6] # [ 0 2 1 4] [2 1] # ab = array([[0.0, 0.0, 2.0, 2.0], [-99, 1.0, 1.0, 1.0], [4.0, 4.0, 4.0, 4.0]]) b = array([[1.0, 6.0], [4.0, 2.0], [1.0, 6.0], [2.0, 1.0]]) x = solveh_banded(ab, b) expected = array([[0.0, 1.0], [1.0, 0.0], [0.0, 1.0], [0.0, 0.0]]) assert_array_almost_equal(x, expected) def test_03_upper(self): # Solve # [ 4 1 2 0] [1] # [ 1 4 1 2] X = [4] # [ 2 1 4 1] [1] # [ 0 2 1 4] [2] # with the RHS as a 2D array with shape (3,1). ab = array([[0.0, 0.0, 2.0, 2.0], [-99, 1.0, 1.0, 1.0], [4.0, 4.0, 4.0, 4.0]]) b = array([1.0, 4.0, 1.0, 2.0]).reshape(-1,1) x = solveh_banded(ab, b) assert_array_almost_equal(x, array([0.0, 1.0, 0.0, 0.0]).reshape(-1,1)) def test_01_lower(self): # Solve # [ 4 1 2 0] [1] # [ 1 4 1 2] X = [4] # [ 2 1 4 1] [1] # [ 0 2 1 4] [2] # ab = array([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, -99], [2.0, 2.0, 0.0, 0.0]]) b = array([1.0, 4.0, 1.0, 2.0]) x = solveh_banded(ab, b, lower=True) assert_array_almost_equal(x, [0.0, 1.0, 0.0, 0.0]) def test_02_lower(self): # Solve # [ 4 1 2 0] [1 6] # [ 1 4 1 2] X = [4 2] # [ 2 1 4 1] [1 6] # [ 0 2 1 4] [2 1] # ab = array([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, -99], [2.0, 2.0, 0.0, 0.0]]) b = array([[1.0, 6.0], [4.0, 2.0], [1.0, 6.0], [2.0, 1.0]]) x = solveh_banded(ab, b, lower=True) expected = array([[0.0, 1.0], [1.0, 0.0], [0.0, 1.0], [0.0, 0.0]]) assert_array_almost_equal(x, expected) def test_01_float32(self): # Solve # [ 4 1 2 0] [1] # [ 1 4 1 2] X = [4] # [ 2 1 4 1] [1] # [ 0 2 1 4] [2] # ab = array([[0.0, 0.0, 2.0, 2.0], [-99, 1.0, 1.0, 1.0], [4.0, 4.0, 4.0, 4.0]], dtype=float32) b = array([1.0, 4.0, 1.0, 2.0], dtype=float32) x = solveh_banded(ab, b) assert_array_almost_equal(x, [0.0, 1.0, 0.0, 0.0]) def test_02_float32(self): # Solve # [ 4 1 2 0] [1 6] # [ 1 4 1 2] X = [4 2] # [ 2 1 4 1] [1 6] # [ 0 2 1 4] [2 1] # ab = array([[0.0, 0.0, 2.0, 2.0], [-99, 1.0, 1.0, 1.0], [4.0, 4.0, 4.0, 4.0]], dtype=float32) b = array([[1.0, 6.0], [4.0, 2.0], [1.0, 6.0], [2.0, 1.0]], dtype=float32) x = solveh_banded(ab, b) expected = array([[0.0, 1.0], [1.0, 0.0], [0.0, 1.0], [0.0, 0.0]]) assert_array_almost_equal(x, expected) def test_01_complex(self): # Solve # [ 4 -j 2 0] [2-j] # [ j 4 -j 2] X = [4-j] # [ 2 j 4 -j] [4+j] # [ 0 2 j 4] [2+j] # ab = array([[0.0, 0.0, 2.0, 2.0], [-99, -1.0j, -1.0j, -1.0j], [4.0, 4.0, 4.0, 4.0]]) b = array([2-1.0j, 4.0-1j, 4+1j, 2+1j]) x = solveh_banded(ab, b) assert_array_almost_equal(x, [0.0, 1.0, 1.0, 0.0]) def test_02_complex(self): # Solve # [ 4 -j 2 0] [2-j 2+4j] # [ j 4 -j 2] X = [4-j -1-j] # [ 2 j 4 -j] [4+j 4+2j] # [ 0 2 j 4] [2+j j] # ab = array([[0.0, 0.0, 2.0, 2.0], [-99, -1.0j, -1.0j, -1.0j], [4.0, 4.0, 4.0, 4.0]]) b = array([[2-1j, 2+4j], [4.0-1j, -1-1j], [4.0+1j, 4+2j], [2+1j, 1j]]) x = solveh_banded(ab, b) expected = array([[0.0, 1.0j], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]]) assert_array_almost_equal(x, expected) def test_tridiag_01_upper(self): # Solve # [ 4 1 0] [1] # [ 1 4 1] X = [4] # [ 0 1 4] [1] # with the RHS as a 1D array. ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]]) b = array([1.0, 4.0, 1.0]) x = solveh_banded(ab, b) assert_array_almost_equal(x, [0.0, 1.0, 0.0]) def test_tridiag_02_upper(self): # Solve # [ 4 1 0] [1 4] # [ 1 4 1] X = [4 2] # [ 0 1 4] [1 4] # ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]]) b = array([[1.0, 4.0], [4.0, 2.0], [1.0, 4.0]]) x = solveh_banded(ab, b) expected = array([[0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]) assert_array_almost_equal(x, expected) def test_tridiag_03_upper(self): # Solve # [ 4 1 0] [1] # [ 1 4 1] X = [4] # [ 0 1 4] [1] # with the RHS as a 2D array with shape (3,1). ab = array([[-99, 1.0, 1.0], [4.0, 4.0, 4.0]]) b = array([1.0, 4.0, 1.0]).reshape(-1,1) x = solveh_banded(ab, b) assert_array_almost_equal(x, array([0.0, 1.0, 0.0]).reshape(-1,1)) def test_tridiag_01_lower(self): # Solve # [ 4 1 0] [1] # [ 1 4 1] X = [4] # [ 0 1 4] [1] # ab = array([[4.0, 4.0, 4.0], [1.0, 1.0, -99]]) b = array([1.0, 4.0, 1.0]) x = solveh_banded(ab, b, lower=True)
assert_array_almost_equal(x, [0.0, 1.0, 0.0])
numpy.testing.assert_array_almost_equal
import copy import glob import os import time from collections import deque import sys import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from a2c_ppo_acktr import algo, utils from a2c_ppo_acktr.arguments import get_args from a2c_ppo_acktr.envs import make_vec_envs from a2c_ppo_acktr.model import Policy, MLPAttnBase, MLPHardAttnBase from a2c_ppo_acktr.storage import RolloutStorage from evaluation import evaluate from a2c_ppo_acktr.utils import save_obj, load_obj # EVAL_ENVS = {'five_arms': ['h_bandit-randchoose-v6', 5], # 'ten_arms': ['h_bandit-randchoose-v5', 10], # 'many_arms': ['h_bandit-randchoose-v1', 100]} EVAL_ENVS = {'ten_arms': ['h_bandit-obs-randchoose-v5', 10], 'many_arms': ['h_bandit-obs-randchoose-v1', 100]} def main(): args = get_args() import random; random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) if args.cuda and torch.cuda.is_available() and args.cuda_deterministic: torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True logdir = args.env_name + '_' + args.algo + '_num_arms_' + str(args.num_processes) + '_' + time.strftime("%d-%m-%Y_%H-%M-%S") if args.use_privacy: logdir = logdir + '_privacy' elif args.use_noisygrad: logdir = logdir + '_noisygrad' elif args.use_pcgrad: logdir = logdir + '_pcgrad' elif args.use_testgrad: logdir = logdir + '_testgrad' elif args.use_median_grad: logdir = logdir + '_mediangrad' logdir = os.path.join('runs', logdir) logdir = os.path.join(os.path.expanduser(args.log_dir), logdir) utils.cleanup_log_dir(logdir) # Ugly but simple logging log_dict = { 'task_steps': args.task_steps, 'grad_noise_ratio': args.grad_noise_ratio, 'max_task_grad_norm': args.max_task_grad_norm, 'use_noisygrad': args.use_noisygrad, 'use_pcgrad': args.use_pcgrad, 'use_testgrad': args.use_testgrad, 'use_testgrad_median': args.use_testgrad_median, 'testgrad_quantile': args.testgrad_quantile, 'median_grad': args.use_median_grad, 'use_meanvargrad': args.use_meanvargrad, 'meanvar_beta': args.meanvar_beta, 'no_special_grad_for_critic': args.no_special_grad_for_critic, 'use_privacy': args.use_privacy, 'seed': args.seed, 'recurrent': args.recurrent_policy, 'obs_recurrent': args.obs_recurrent, 'cmd': ' '.join(sys.argv[1:]) } for eval_disp_name, eval_env_name in EVAL_ENVS.items(): log_dict[eval_disp_name] = [] summary_writer = SummaryWriter() summary_writer.add_hparams({'task_steps': args.task_steps, 'grad_noise_ratio': args.grad_noise_ratio, 'max_task_grad_norm': args.max_task_grad_norm, 'use_noisygrad': args.use_noisygrad, 'use_pcgrad': args.use_pcgrad, 'use_testgrad': args.use_testgrad, 'use_testgrad_median': args.use_testgrad_median, 'testgrad_quantile': args.testgrad_quantile, 'median_grad': args.use_median_grad, 'use_meanvargrad': args.use_meanvargrad, 'meanvar_beta': args.meanvar_beta, 'no_special_grad_for_critic': args.no_special_grad_for_critic, 'use_privacy': args.use_privacy, 'seed': args.seed, 'recurrent': args.recurrent_policy, 'obs_recurrent': args.obs_recurrent, 'cmd': ' '.join(sys.argv[1:])}, {}) torch.set_num_threads(1) device = torch.device("cuda:0" if args.cuda else "cpu") print('making envs...') envs = make_vec_envs(args.env_name, args.seed, args.num_processes, args.gamma, args.log_dir, device, False, steps=args.task_steps, free_exploration=args.free_exploration, recurrent=args.recurrent_policy, obs_recurrent=args.obs_recurrent, multi_task=True) val_envs = make_vec_envs(args.val_env_name, args.seed, args.num_processes, args.gamma, args.log_dir, device, False, steps=args.task_steps, free_exploration=args.free_exploration, recurrent=args.recurrent_policy, obs_recurrent=args.obs_recurrent, multi_task=True) eval_envs_dic = {} for eval_disp_name, eval_env_name in EVAL_ENVS.items(): eval_envs_dic[eval_disp_name] = make_vec_envs(eval_env_name[0], args.seed, args.num_processes, None, logdir, device, True, steps=args.task_steps, recurrent=args.recurrent_policy, obs_recurrent=args.obs_recurrent, multi_task=True, free_exploration=args.free_exploration) prev_eval_r = {} print('done') if args.hard_attn: actor_critic = Policy( envs.observation_space.shape, envs.action_space, base=MLPHardAttnBase, base_kwargs={'recurrent': args.recurrent_policy or args.obs_recurrent}) else: actor_critic = Policy( envs.observation_space.shape, envs.action_space, base=MLPAttnBase, base_kwargs={'recurrent': args.recurrent_policy or args.obs_recurrent}) actor_critic.to(device) if (args.continue_from_epoch > 0) and args.save_dir != "": save_path = os.path.join(args.save_dir, args.algo) actor_critic_, loaded_obs_rms_ = torch.load(os.path.join(save_path, args.env_name + "-epoch-{}.pt".format(args.continue_from_epoch))) actor_critic.load_state_dict(actor_critic_.state_dict()) if args.algo != 'ppo': raise "only PPO is supported" agent = algo.PPO( actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch, args.value_loss_coef, args.entropy_coef, lr=args.lr, eps=args.eps, num_tasks=args.num_processes, attention_policy=False, max_grad_norm=args.max_grad_norm, weight_decay=args.weight_decay) val_agent = algo.PPO( actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch, args.value_loss_coef, args.entropy_coef, lr=args.val_lr, eps=args.eps, num_tasks=args.num_processes, attention_policy=True, max_grad_norm=args.max_grad_norm, weight_decay=args.weight_decay) rollouts = RolloutStorage(args.num_steps, args.num_processes, envs.observation_space.shape, envs.action_space, actor_critic.recurrent_hidden_state_size) val_rollouts = RolloutStorage(args.num_steps, args.num_processes, val_envs.observation_space.shape, val_envs.action_space, actor_critic.recurrent_hidden_state_size) obs = envs.reset() rollouts.obs[0].copy_(obs) rollouts.to(device) val_obs = val_envs.reset() val_rollouts.obs[0].copy_(val_obs) val_rollouts.to(device) episode_rewards = deque(maxlen=10) start = time.time() num_updates = int( args.num_env_steps) // args.num_steps // args.num_processes save_copy = True for j in range(args.continue_from_epoch, args.continue_from_epoch+num_updates): # policy rollouts for step in range(args.num_steps): # Sample actions actor_critic.eval() with torch.no_grad(): value, action, action_log_prob, recurrent_hidden_states = actor_critic.act( rollouts.obs[step], rollouts.recurrent_hidden_states[step], rollouts.masks[step]) actor_critic.train() # Obser reward and next obs obs, reward, done, infos = envs.step(action) for info in infos: if 'episode' in info.keys(): episode_rewards.append(info['episode']['r']) for k, v in info['episode'].items(): summary_writer.add_scalar(f'training/{k}', v, j * args.num_processes * args.num_steps + args.num_processes * step) # If done then clean the history of observations. masks = torch.FloatTensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]) rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks, bad_masks) actor_critic.eval() with torch.no_grad(): next_value = actor_critic.get_value( rollouts.obs[-1], rollouts.recurrent_hidden_states[-1], rollouts.masks[-1]).detach() actor_critic.train() rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.gae_lambda, args.use_proper_time_limits) if save_copy: prev_weights = copy.deepcopy(actor_critic.state_dict()) prev_opt_state = copy.deepcopy(agent.optimizer.state_dict()) prev_val_opt_state = copy.deepcopy(val_agent.optimizer.state_dict()) save_copy = False value_loss, action_loss, dist_entropy = agent.update(rollouts) rollouts.after_update() # validation rollouts for val_iter in range(args.val_agent_steps): for step in range(args.num_steps): # Sample actions actor_critic.eval() with torch.no_grad(): value, action, action_log_prob, recurrent_hidden_states = actor_critic.act( val_rollouts.obs[step], val_rollouts.recurrent_hidden_states[step], val_rollouts.masks[step]) actor_critic.train() # Obser reward and next obs obs, reward, done, infos = val_envs.step(action) # If done then clean the history of observations. masks = torch.FloatTensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]) val_rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks, bad_masks) actor_critic.eval() with torch.no_grad(): next_value = actor_critic.get_value( val_rollouts.obs[-1], val_rollouts.recurrent_hidden_states[-1], val_rollouts.masks[-1]).detach() actor_critic.train() val_rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.gae_lambda, args.use_proper_time_limits) val_value_loss, val_action_loss, val_dist_entropy = val_agent.update(val_rollouts) val_rollouts.after_update() # save for every interval-th episode or for the last epoch if (j % args.save_interval == 0 or j == num_updates - 1) and args.save_dir != "": save_path = os.path.join(args.save_dir, args.algo) try: os.makedirs(save_path) except OSError: pass torch.save([ actor_critic, getattr(utils.get_vec_normalize(envs), 'obs_rms', None) ], os.path.join(save_path, args.env_name + "-epoch-{}.pt".format(j))) if j % args.log_interval == 0 and len(episode_rewards) > 1: total_num_steps = (j + 1) * args.num_processes * args.num_steps end = time.time() print( "Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n" .format(j, total_num_steps, int(total_num_steps / (end - start)), len(episode_rewards), np.mean(episode_rewards), np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards)
numpy.max
import hashlib import math import numpy as np import pprint import pytest import random import re import subprocess import sys import tempfile import json from catboost import ( CatBoost, CatBoostClassifier, CatBoostRegressor, CatBoostError, EFstrType, FeaturesData, Pool, cv, sum_models, train,) from catboost.eval.catboost_evaluation import CatboostEvaluation, EvalType from catboost.utils import eval_metric, create_cd, get_roc_curve, select_threshold from catboost.utils import DataMetaInfo, TargetStats, compute_training_options import os.path from pandas import read_table, DataFrame, Series, Categorical from six import PY3 from six.moves import xrange from catboost_pytest_lib import ( DelayedTee, binary_path, data_file, local_canonical_file, permute_dataset_columns, remove_time_from_json, test_output_path, generate_random_labeled_set ) if sys.version_info.major == 2: import cPickle as pickle else: import _pickle as pickle pytest_plugins = "list_plugin", fails_on_gpu = pytest.mark.fails_on_gpu EPS = 1e-5 BOOSTING_TYPE = ['Ordered', 'Plain'] OVERFITTING_DETECTOR_TYPE = ['IncToDec', 'Iter'] NONSYMMETRIC = ['Lossguide', 'Depthwise'] TRAIN_FILE = data_file('adult', 'train_small') TEST_FILE = data_file('adult', 'test_small') CD_FILE = data_file('adult', 'train.cd') NAN_TRAIN_FILE = data_file('adult_nan', 'train_small') NAN_TEST_FILE = data_file('adult_nan', 'test_small') NAN_CD_FILE = data_file('adult_nan', 'train.cd') CLOUDNESS_TRAIN_FILE = data_file('cloudness_small', 'train_small') CLOUDNESS_TEST_FILE = data_file('cloudness_small', 'test_small') CLOUDNESS_CD_FILE = data_file('cloudness_small', 'train.cd') QUERYWISE_TRAIN_FILE = data_file('querywise', 'train') QUERYWISE_TEST_FILE = data_file('querywise', 'test') QUERYWISE_CD_FILE = data_file('querywise', 'train.cd') QUERYWISE_CD_FILE_WITH_GROUP_WEIGHT = data_file('querywise', 'train.cd.group_weight') QUERYWISE_CD_FILE_WITH_GROUP_ID = data_file('querywise', 'train.cd.query_id') QUERYWISE_CD_FILE_WITH_SUBGROUP_ID = data_file('querywise', 'train.cd.subgroup_id') QUERYWISE_TRAIN_PAIRS_FILE = data_file('querywise', 'train.pairs') QUERYWISE_TRAIN_PAIRS_FILE_WITH_PAIR_WEIGHT = data_file('querywise', 'train.pairs.weighted') QUERYWISE_TEST_PAIRS_FILE = data_file('querywise', 'test.pairs') AIRLINES_5K_TRAIN_FILE = data_file('airlines_5K', 'train') AIRLINES_5K_TEST_FILE = data_file('airlines_5K', 'test') AIRLINES_5K_CD_FILE = data_file('airlines_5K', 'cd') SMALL_CATEGORIAL_FILE = data_file('small_categorial', 'train') SMALL_CATEGORIAL_CD_FILE = data_file('small_categorial', 'train.cd') BLACK_FRIDAY_TRAIN_FILE = data_file('black_friday', 'train') BLACK_FRIDAY_TEST_FILE = data_file('black_friday', 'test') BLACK_FRIDAY_CD_FILE = data_file('black_friday', 'cd') OUTPUT_MODEL_PATH = 'model.bin' OUTPUT_COREML_MODEL_PATH = 'model.mlmodel' OUTPUT_CPP_MODEL_PATH = 'model.cpp' OUTPUT_PYTHON_MODEL_PATH = 'model.py' OUTPUT_JSON_MODEL_PATH = 'model.json' OUTPUT_ONNX_MODEL_PATH = 'model.onnx' PREDS_PATH = 'predictions.npy' PREDS_TXT_PATH = 'predictions.txt' FIMP_NPY_PATH = 'feature_importance.npy' FIMP_TXT_PATH = 'feature_importance.txt' OIMP_PATH = 'object_importances.txt' JSON_LOG_PATH = 'catboost_info/catboost_training.json' TARGET_IDX = 1 CAT_FEATURES = [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 16] model_diff_tool = binary_path("catboost/tools/model_comparator/model_comparator") np.set_printoptions(legacy='1.13') class LogStdout: def __init__(self, file): self.log_file = file def __enter__(self): self.saved_stdout = sys.stdout sys.stdout = self.log_file return self.saved_stdout def __exit__(self, exc_type, exc_value, exc_traceback): sys.stdout = self.saved_stdout self.log_file.close() def compare_canonical_models(model, diff_limit=0): return local_canonical_file(model, diff_tool=[model_diff_tool, '--diff-limit', str(diff_limit)]) def map_cat_features(data, cat_features): result = [] for i in range(data.shape[0]): result.append([]) for j in range(data.shape[1]): result[i].append(str(data[i, j]) if j in cat_features else data[i, j]) return result def _check_shape(pool, object_count, features_count): return np.shape(pool.get_features()) == (object_count, features_count) def _check_data(data1, data2): return np.all(np.isclose(data1, data2, rtol=0.001, equal_nan=True)) def _count_lines(afile): with open(afile, 'r') as f: num_lines = sum(1 for line in f) return num_lines def _generate_nontrivial_binary_target(num, seed=20181219, prng=None): ''' Generate binary vector with non zero variance :param num: :return: ''' if prng is None: prng = np.random.RandomState(seed=seed) def gen(): return prng.randint(0, 2, size=num) if num <= 1: return gen() y = gen() # 0/1 labels while y.min() == y.max(): y = gen() return y def _generate_random_target(num, seed=20181219, prng=None): if prng is None: prng = np.random.RandomState(seed=seed) return prng.random_sample((num,)) def set_random_weight(pool, seed=20181219, prng=None): if prng is None: prng = np.random.RandomState(seed=seed) pool.set_weight(prng.random_sample(pool.num_row())) if pool.num_pairs() > 0: pool.set_pairs_weight(prng.random_sample(pool.num_pairs())) def verify_finite(result): inf = float('inf') for r in result: assert(r == r) assert(abs(r) < inf) def append_param(metric_name, param): return metric_name + (':' if ':' not in metric_name else ';') + param # returns (features DataFrame, cat_feature_indices) def load_pool_features_as_df(pool_file, cd_file, target_idx): data = read_table(pool_file, header=None, dtype=str) data.drop([target_idx], axis=1, inplace=True) return (data, Pool(pool_file, column_description=cd_file).get_cat_feature_indices()) # Test cases begin here ######################################################## def test_load_file(): assert _check_shape(Pool(TRAIN_FILE, column_description=CD_FILE), 101, 17) def test_load_list(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = map_cat_features(pool.get_features(), cat_features) label = pool.get_label() assert _check_shape(Pool(data, label, cat_features), 101, 17) def test_load_ndarray(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = np.array(map_cat_features(pool.get_features(), cat_features)) label = np.array(pool.get_label()) assert _check_shape(Pool(data, label, cat_features), 101, 17) @pytest.mark.parametrize('dataset', ['adult', 'adult_nan', 'querywise']) def test_load_df_vs_load_from_file(dataset): train_file, cd_file, target_idx, other_non_feature_columns = { 'adult': (TRAIN_FILE, CD_FILE, TARGET_IDX, []), 'adult_nan': (NAN_TRAIN_FILE, NAN_CD_FILE, TARGET_IDX, []), 'querywise': (QUERYWISE_TRAIN_FILE, QUERYWISE_CD_FILE, 2, [0, 1, 3, 4]) }[dataset] pool1 = Pool(train_file, column_description=cd_file) data = read_table(train_file, header=None) labels = DataFrame(data.iloc[:, target_idx], dtype=np.float32) data.drop([target_idx] + other_non_feature_columns, axis=1, inplace=True) cat_features = pool1.get_cat_feature_indices() pool2 = Pool(data, labels, cat_features) assert _check_data(pool1.get_features(), pool2.get_features()) assert _check_data([float(label) for label in pool1.get_label()], pool2.get_label()) def test_load_series(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) data = read_table(TRAIN_FILE, header=None) labels = Series(data.iloc[:, TARGET_IDX]) data.drop([TARGET_IDX], axis=1, inplace=True) data = Series(list(data.values)) cat_features = pool.get_cat_feature_indices() pool2 = Pool(data, labels, cat_features) assert _check_data(pool.get_features(), pool2.get_features()) assert [int(label) for label in pool.get_label()] == pool2.get_label() def test_pool_cat_features(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) assert np.all(pool.get_cat_feature_indices() == CAT_FEATURES) def test_pool_cat_features_as_strings(): df = DataFrame(data=[[1, 2], [3, 4]], columns=['col1', 'col2']) pool = Pool(df, cat_features=['col2']) assert np.all(pool.get_cat_feature_indices() == [1]) data = [[1, 2, 3], [4, 5, 6]] pool = Pool(data, feature_names=['col1', 'col2', 'col3'], cat_features=['col2', 'col3']) assert np.all(pool.get_cat_feature_indices() == [1, 2]) data = [[1, 2, 3], [4, 5, 6]] with pytest.raises(CatBoostError): Pool(data, cat_features=['col2', 'col3']) def test_load_generated(): pool_size = (100, 10) prng = np.random.RandomState(seed=20181219) data = np.round(prng.normal(size=pool_size), decimals=3) label = _generate_nontrivial_binary_target(pool_size[0], prng=prng) pool = Pool(data, label) assert _check_data(pool.get_features(), data) assert _check_data(pool.get_label(), label) def test_load_dumps(): pool_size = (100, 10) prng = np.random.RandomState(seed=20181219) data = prng.randint(10, size=pool_size) labels = _generate_nontrivial_binary_target(pool_size[0], prng=prng) pool1 = Pool(data, labels) lines = [] for i in range(len(data)): line = [str(labels[i])] + [str(x) for x in data[i]] lines.append('\t'.join(line)) text = '\n'.join(lines) with open('test_data_dumps', 'w') as f: f.write(text) pool2 = Pool('test_data_dumps') assert _check_data(pool1.get_features(), pool2.get_features()) assert pool1.get_label() == [int(label) for label in pool2.get_label()] def test_dataframe_with_pandas_categorical_columns(): df = DataFrame() df['num_feat_0'] = [0, 1, 0, 2, 3, 1, 2] df['num_feat_1'] = [0.12, 0.8, 0.33, 0.11, 0.0, 1.0, 0.0] df['cat_feat_2'] = Series(['A', 'B', 'A', 'C', 'A', 'A', 'A'], dtype='category') df['cat_feat_3'] = Series(['x', 'x', 'y', 'y', 'y', 'x', 'x']) df['cat_feat_4'] = Categorical( ['large', 'small', 'medium', 'large', 'small', 'small', 'medium'], categories=['small', 'medium', 'large'], ordered=True ) df['cat_feat_5'] = [0, 1, 0, 2, 3, 1, 2] labels = [0, 1, 1, 0, 1, 0, 1] model = CatBoostClassifier(iterations=2) model.fit(X=df, y=labels, cat_features=[2, 3, 4, 5]) pred = model.predict(df) preds_path = test_output_path(PREDS_TXT_PATH) np.savetxt(preds_path, np.array(pred), fmt='%.8f') return local_canonical_file(preds_path) # feature_matrix is (doc_count x feature_count) def get_features_data_from_matrix(feature_matrix, cat_feature_indices, order='C'): object_count = len(feature_matrix) feature_count = len(feature_matrix[0]) cat_feature_count = len(cat_feature_indices) num_feature_count = feature_count - cat_feature_count result_num = np.empty((object_count, num_feature_count), dtype=np.float32, order=order) result_cat = np.empty((object_count, cat_feature_count), dtype=object, order=order) for object_idx in xrange(object_count): num_feature_idx = 0 cat_feature_idx = 0 for feature_idx in xrange(len(feature_matrix[object_idx])): if (cat_feature_idx < cat_feature_count) and (cat_feature_indices[cat_feature_idx] == feature_idx): # simplified handling of transformation to bytes for tests result_cat[object_idx, cat_feature_idx] = ( feature_matrix[object_idx, feature_idx] if isinstance(feature_matrix[object_idx, feature_idx], bytes) else str(feature_matrix[object_idx, feature_idx]).encode('utf-8') ) cat_feature_idx += 1 else: result_num[object_idx, num_feature_idx] = float(feature_matrix[object_idx, feature_idx]) num_feature_idx += 1 return FeaturesData(num_feature_data=result_num, cat_feature_data=result_cat) def get_features_data_from_file(data_file, drop_columns, cat_feature_indices, order='C'): data_matrix_from_file = read_table(data_file, header=None, dtype=str) data_matrix_from_file.drop(drop_columns, axis=1, inplace=True) return get_features_data_from_matrix(np.array(data_matrix_from_file), cat_feature_indices, order) def compare_flat_index_and_features_data_pools(flat_index_pool, features_data_pool): assert flat_index_pool.shape == features_data_pool.shape cat_feature_indices = flat_index_pool.get_cat_feature_indices() num_feature_count = flat_index_pool.shape[1] - len(cat_feature_indices) flat_index_pool_features = flat_index_pool.get_features() features_data_pool_features = features_data_pool.get_features() for object_idx in xrange(flat_index_pool.shape[0]): num_feature_idx = 0 cat_feature_idx = 0 for flat_feature_idx in xrange(flat_index_pool.shape[1]): if ( (cat_feature_idx < len(cat_feature_indices)) and (cat_feature_indices[cat_feature_idx] == flat_feature_idx) ): # simplified handling of transformation to bytes for tests assert (flat_index_pool_features[object_idx][flat_feature_idx] == features_data_pool_features[object_idx][num_feature_count + cat_feature_idx]) cat_feature_idx += 1 else: assert np.isclose( flat_index_pool_features[object_idx][flat_feature_idx], features_data_pool_features[object_idx][num_feature_idx], rtol=0.001, equal_nan=True ) num_feature_idx += 1 @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_from_features_data_vs_load_from_files(order): pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) features_data = get_features_data_from_file( data_file=TRAIN_FILE, drop_columns=[TARGET_IDX], cat_feature_indices=pool_from_files.get_cat_feature_indices(), order=order ) pool_from_features_data = Pool(data=features_data) compare_flat_index_and_features_data_pools(pool_from_files, pool_from_features_data) def test_features_data_with_empty_objects(): fd = FeaturesData( cat_feature_data=np.empty((0, 4), dtype=object) ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 4 assert fd.get_num_feature_count() == 0 assert fd.get_cat_feature_count() == 4 assert fd.get_feature_names() == [''] * 4 fd = FeaturesData( num_feature_data=np.empty((0, 2), dtype=np.float32), num_feature_names=['f0', 'f1'] ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 2 assert fd.get_num_feature_count() == 2 assert fd.get_cat_feature_count() == 0 assert fd.get_feature_names() == ['f0', 'f1'] fd = FeaturesData( cat_feature_data=np.empty((0, 2), dtype=object), num_feature_data=np.empty((0, 3), dtype=np.float32) ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 5 assert fd.get_num_feature_count() == 3 assert fd.get_cat_feature_count() == 2 assert fd.get_feature_names() == [''] * 5 def test_features_data_names(): # empty specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), ) assert fd.get_feature_names() == [''] * 5 # full specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), num_feature_names=['weight', 'price', 'volume'] ) assert fd.get_feature_names() == ['weight', 'price', 'volume', 'shop', 'search'] # partial specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), num_feature_names=['weight', 'price', 'volume'] ) assert fd.get_feature_names() == ['weight', 'price', 'volume', '', ''] # partial specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), ) assert fd.get_feature_names() == ['', '', '', 'shop', 'search'] def compare_pools_from_features_data_and_generic_matrix( features_data, generic_matrix, cat_features_indices, feature_names=None ): pool1 = Pool(data=features_data) pool2 = Pool(data=generic_matrix, cat_features=cat_features_indices, feature_names=feature_names) assert _check_data(pool1.get_features(), pool2.get_features()) assert pool1.get_cat_feature_indices() == pool2.get_cat_feature_indices() assert pool1.get_feature_names() == pool2.get_feature_names() @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_features_data_good(order): # 0 objects compare_pools_from_features_data_and_generic_matrix( FeaturesData(cat_feature_data=np.empty((0, 4), dtype=object, order=order)), np.empty((0, 4), dtype=object), cat_features_indices=[0, 1, 2, 3] ) # 0 objects compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.empty((0, 2), dtype=object, order=order), cat_feature_names=['cat0', 'cat1'], num_feature_data=np.empty((0, 3), dtype=np.float32, order=order), ), np.empty((0, 5), dtype=object), cat_features_indices=[3, 4], feature_names=['', '', '', 'cat0', 'cat1'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order) ), [[b'amazon', b'bing'], [b'ebay', b'google']], cat_features_indices=[0, 1] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order) ), [[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], cat_features_indices=[] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order) ), [[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']], cat_features_indices=[3, 4] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), cat_feature_names=['shop', 'search'] ), [[b'amazon', b'bing'], [b'ebay', b'google']], cat_features_indices=[0, 1], feature_names=['shop', 'search'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order), num_feature_names=['weight', 'price', 'volume'] ), [[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], cat_features_indices=[], feature_names=['weight', 'price', 'volume'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order), num_feature_names=['weight', 'price', 'volume'] ), [[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']], cat_features_indices=[3, 4], feature_names=['weight', 'price', 'volume', 'shop', 'search'] ) def test_features_data_bad(): # empty with pytest.raises(CatBoostError): FeaturesData() # names w/o data with pytest.raises(CatBoostError): FeaturesData(cat_feature_data=[[b'amazon', b'bing']], num_feature_names=['price']) # bad matrix type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=[[b'amazon', b'bing']], num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float32) ) # bad matrix shape with pytest.raises(CatBoostError): FeaturesData(num_feature_data=np.array([[[1.0], [2.0], [3.0]]], dtype=np.float32)) # bad element type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([b'amazon', b'bing'], dtype=object), num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float64) ) # bad element type with pytest.raises(CatBoostError): FeaturesData(cat_feature_data=np.array(['amazon', 'bing'])) # bad names type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'reddit']], dtype=object), cat_feature_names=[None, 'news_aggregator'] ) # bad names length with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'bing']], dtype=object), cat_feature_names=['search_engine', 'news_aggregator'] ) # no features with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[], [], []], dtype=object), num_feature_data=np.array([[], [], []], dtype=np.float32) ) # number of objects is different with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'bing']], dtype=object), num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float32) ) def test_predict_regress(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_sklearn_regress(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostRegressor(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_sklearn_class(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, loss_function='Logloss:border=0.5', task_type=task_type, devices='0') model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_class_raw(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict(test_pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_raw_predict_equals_to_model_predict(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, task_type=task_type, devices='0') model.fit(train_pool, eval_set=test_pool) assert(model.is_fitted()) pred = model.predict(test_pool, prediction_type='RawFormulaVal') assert np.all(np.isclose(model.get_test_eval(), pred, rtol=1.e-6)) @pytest.mark.parametrize('problem', ['Classifier', 'Regressor']) def test_predict_and_predict_proba_on_single_object(problem): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) if problem == 'Classifier': model = CatBoostClassifier(iterations=2) else: model = CatBoostRegressor(iterations=2) model.fit(train_pool) test_data = read_table(TEST_FILE, header=None) test_data.drop([TARGET_IDX], axis=1, inplace=True) pred = model.predict(test_data) if problem == 'Classifier': pred_probabilities = model.predict_proba(test_data) random.seed(0) for i in xrange(3): # just some indices test_object_idx = random.randrange(test_data.shape[0]) assert pred[test_object_idx] == model.predict(test_data.values[test_object_idx]) if problem == 'Classifier': assert np.array_equal(pred_probabilities[test_object_idx], model.predict_proba(test_data.values[test_object_idx])) def test_model_pickling(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, task_type=task_type, devices='0') model.fit(train_pool, eval_set=test_pool) pred = model.predict(test_pool, prediction_type='RawFormulaVal') model_unpickled = pickle.loads(pickle.dumps(model)) pred_new = model_unpickled.predict(test_pool, prediction_type='RawFormulaVal') assert all(pred_new == pred) def test_fit_from_file(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) predictions1 = model.predict(train_pool) model.fit(TRAIN_FILE, column_description=CD_FILE) predictions2 = model.predict(train_pool) assert all(predictions1 == predictions2) assert 'train_finish_time' in model.get_metadata() @fails_on_gpu(how='assert 0.019921323750168085 < EPS, where 0.019921323750168085 = abs((0.03378972364589572 - 0.053711047396063805))') @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_fit_from_features_data(order, task_type): pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(pool_from_files) assert(model.is_fitted()) predictions_from_files = model.predict(pool_from_files) features_data = get_features_data_from_file( data_file=TRAIN_FILE, drop_columns=[TARGET_IDX], cat_feature_indices=pool_from_files.get_cat_feature_indices(), order=order ) model.fit(X=features_data, y=pool_from_files.get_label()) predictions_from_features_data = model.predict(Pool(features_data)) for prediction1, prediction2 in zip(predictions_from_files, predictions_from_features_data): assert abs(prediction1 - prediction2) < EPS def test_fit_from_empty_features_data(task_type): model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) with pytest.raises(CatBoostError): model.fit( X=FeaturesData(num_feature_data=np.empty((0, 2), dtype=np.float32)), y=np.empty((0), dtype=np.int32) ) def test_coreml_import_export(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 20, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml") canon_pred = model.predict(test_pool) coreml_loaded_model = CatBoostRegressor() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") assert all(canon_pred == coreml_loaded_model.predict(test_pool)) return compare_canonical_models(output_coreml_model_path) def test_coreml_import_export_one_hot_features(task_type): train_pool = Pool(SMALL_CATEGORIAL_FILE, column_description=SMALL_CATEGORIAL_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 2, 'task_type': task_type, 'devices': '0', 'one_hot_max_size': 4}) model.fit(train_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml", pool=train_pool) pred = model.predict(train_pool) coreml_loaded_model = CatBoostRegressor() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") assert all(pred == coreml_loaded_model.predict(train_pool)) return compare_canonical_models(output_coreml_model_path) @pytest.mark.parametrize('pool', ['adult', 'higgs']) def test_convert_model_to_json(task_type, pool): train_pool = Pool(data_file(pool, 'train_small'), column_description=data_file(pool, 'train.cd')) test_pool = Pool(data_file(pool, 'test_small'), column_description=data_file(pool, 'train.cd')) converted_model_path = test_output_path("converted_model.bin") model = CatBoost({'iterations': 20, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) output_json_model_path = test_output_path(OUTPUT_JSON_MODEL_PATH) model.save_model(output_model_path) model.save_model(output_json_model_path, format="json") model2 = CatBoost() model2.load_model(output_json_model_path, format="json") model2.save_model(converted_model_path) pred1 = model.predict(test_pool) pred2 = model2.predict(test_pool) assert _check_data(pred1, pred2) subprocess.check_call((model_diff_tool, output_model_path, converted_model_path, '--diff-limit', '0.000001')) return compare_canonical_models(converted_model_path) def test_coreml_cbm_import_export(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 20, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) canon_pred = model.predict(test_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml") coreml_loaded_model = CatBoost() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") output_model_path = test_output_path(OUTPUT_MODEL_PATH) coreml_loaded_model.save_model(output_model_path) cbm_loaded_model = CatBoost() cbm_loaded_model.load_model(output_model_path) assert all(canon_pred == cbm_loaded_model.predict(test_pool)) return compare_canonical_models(output_coreml_model_path) def test_cpp_export_no_cat_features(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_cpp_model_path = test_output_path(OUTPUT_CPP_MODEL_PATH) model.save_model(output_cpp_model_path, format="cpp") return local_canonical_file(output_cpp_model_path) def test_cpp_export_with_cat_features(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 20, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_cpp_model_path = test_output_path(OUTPUT_CPP_MODEL_PATH) model.save_model(output_cpp_model_path, format="cpp") return local_canonical_file(output_cpp_model_path) @pytest.mark.parametrize('iterations', [2, 40]) def test_export_to_python_no_cat_features(task_type, iterations): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost({'iterations': iterations, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python") return local_canonical_file(output_python_model_path) @pytest.mark.parametrize('iterations', [2, 40]) def test_export_to_python_with_cat_features(task_type, iterations): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': iterations, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python", pool=train_pool) return local_canonical_file(output_python_model_path) def test_export_to_python_with_cat_features_from_pandas(task_type): model = CatBoost({'iterations': 5, 'task_type': task_type, 'devices': '0'}) X = DataFrame([[1, 2], [3, 4]], columns=['Num', 'Categ']) y = [1, 0] cat_features = [1] model.fit(X, y, cat_features) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python", pool=X) return local_canonical_file(output_python_model_path) @pytest.mark.parametrize('problem_type', ['binclass', 'multiclass', 'regression']) def test_onnx_export(problem_type): if problem_type == 'binclass': loss_function = 'Logloss' train_path = TRAIN_FILE cd_path = CD_FILE elif problem_type == 'multiclass': loss_function = 'MultiClass' train_path = CLOUDNESS_TRAIN_FILE cd_path = CLOUDNESS_CD_FILE elif problem_type == 'regression': loss_function = 'RMSE' train_path = TRAIN_FILE cd_path = CD_FILE else: raise Exception('Unsupported problem_type: %s' % problem_type) train_pool = Pool(train_path, column_description=cd_path) model = CatBoost( { 'task_type': 'CPU', # TODO(akhropov): GPU results are unstable, difficult to compare models 'loss_function': loss_function, 'iterations': 5, 'depth': 4, # onnx format export does not yet support categorical features so ignore them 'ignored_features': train_pool.get_cat_feature_indices() } ) model.fit(train_pool) output_onnx_model_path = test_output_path(OUTPUT_ONNX_MODEL_PATH) model.save_model( output_onnx_model_path, format="onnx", export_parameters={ 'onnx_domain': 'ai.catboost', 'onnx_model_version': 1, 'onnx_doc_string': 'test model for problem_type %s' % problem_type, 'onnx_graph_name': 'CatBoostModel_for_%s' % problem_type } ) return compare_canonical_models(output_onnx_model_path) def test_predict_class(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict(test_pool, prediction_type="Class") preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_zero_learning_rate(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0, task_type=task_type, devices='0') with pytest.raises(CatBoostError): model.fit(train_pool) def test_predict_class_proba(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict_proba(test_pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) @fails_on_gpu(how='assert 0.031045619651137835 < EPS, where 0.031045619651137835 = <function amax at ...') @pytest.mark.parametrize('function_name', ['predict', 'predict_proba']) def test_predict_funcs_from_features_data(function_name, task_type): function = getattr(CatBoostClassifier, function_name) train_pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool_from_files) test_pool_from_files = Pool(TEST_FILE, column_description=CD_FILE) predictions_from_files = function(model, test_pool_from_files) train_features_data, test_features_data = [ get_features_data_from_file( data_file=data_file, drop_columns=[TARGET_IDX], cat_feature_indices=train_pool_from_files.get_cat_feature_indices() ) for data_file in [TRAIN_FILE, TEST_FILE] ] model.fit(X=train_features_data, y=train_pool_from_files.get_label()) predictions_from_features_data = function(model, test_features_data) for prediction1, prediction2 in zip(predictions_from_files, predictions_from_features_data): assert np.max(np.abs(prediction1 - prediction2)) < EPS # empty empty_test_features_data = FeaturesData( num_feature_data=np.empty((0, test_features_data.get_num_feature_count()), dtype=np.float32), cat_feature_data=np.empty((0, test_features_data.get_cat_feature_count()), dtype=object) ) empty_predictions = function(model, empty_test_features_data) assert len(empty_predictions) == 0 def test_no_cat_in_predict(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred1 = model.predict(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices())) pred2 = model.predict(Pool(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices()), cat_features=train_pool.get_cat_feature_indices())) assert _check_data(pred1, pred2) def test_save_model(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoost({'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) model2 = CatBoost() model2.load_model(output_model_path) pred1 = model.predict(test_pool) pred2 = model2.predict(test_pool) assert _check_data(pred1, pred2) def test_multiclass(task_type): pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE) classifier = CatBoostClassifier(iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_multiclass_classes_count_missed_classes(task_type): prng = np.random.RandomState(seed=0) pool = Pool(prng.random_sample(size=(100, 10)), label=prng.choice([1, 3], size=100)) classifier = CatBoostClassifier(classes_count=4, iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(pool) classes = new_classifier.predict(pool) assert pred.shape == (100, 4) assert
np.array(classes)
numpy.array
# $Author: carthik $ # $Revision: 267 $ # $Date: 2010-06-08 22:33:22 -0400 (Tue, 08 Jun 2010) $ # $HeadURL: file:///home/esp01/svn/code/python/branches/patricio/photpipe/lib/suntimecorr.py $ # $Id: suntimecorr.py 267 2010-06-09 02:33:22Z carthik $ import numpy as np import re from scipy.constants import c from .splinterp import splinterp def getcoords(file): """ Use regular expressions to extract X,Y,Z, and time values from the horizons file. Parameters: ----------- file : Strings list A list containing the lines of a horizons file. Returns: -------- A four elements list containing the X, Y, Z, and time arrays of values from file. Example: -------- start_data = '$$SOE' end_data = '$$EOE' # Read in whole table as an list of strings, one string per line ctable = open('/home/esp01/ancil/horizons/all_spitzer.vec', 'r') wholetable = ctable.readlines() ctable.close() # Find start and end line i = 0 while wholetable[i].find(end_data) == -1: if wholetable[i].find(start_data) != -1: start = i + 1 i += 1 # Chop table data = wholetable[start:i-2] # Find values: x, y, z, t = getcoords(data) # print(x, y, z, t) Modification History: --------------------- 2010-11-01 patricio Written by <NAME>. <EMAIL> """ x, y, z, time = [], [], [], [] for i in np.arange(len(file)): # Use regular expressions to match strings enclosed between X, # Y, Z and end of line m = re.search(' X =(.*)Y =(.*) Z =(.*)\n', file[i]) if m != None: x.append(np.double(m.group(1))) y.append(np.double(m.group(2))) z.append(np.double(m.group(3))) # Match first word which is followed by ' = A' t = re.search('(.+) = A', file[i]) if t != None: time.append(np.double(t.group(1))) # return numpy arrays return np.array(x), np.array(y), np.array(z), np.array(time) def suntimecorr(ra, dec, obst, coordtable, verbose=False): """ This function calculates the light-travel time correction from observer to a standard location. It uses the 2D coordinates (RA and DEC) of the object being observed and the 3D position of the observer relative to the standard location. The latter (and the former, for solar-system objects) may be gotten from JPL's Horizons system. Parameters: ----------- ra : Float Right ascension of target object in radians. dec : Float Declination of target object in radians. obst : Float or Numpy Float array Time of observation in Julian Date (may be a vector) coordtable : String Filename of output table from JPL HORIZONS specifying the position of the observatory relative to the standard position. verbose : Boolean If True, print X,Y,Z coordinates. Returns: -------- This function returns the time correction in seconds to be ADDED to the observation time to get the time when the observed photons would have reached the plane perpendicular to their travel and containing the reference position. Notes: ------ The position vectors from coordtable are given in the following coordinate system: Reference epoch: J2000.0 xy-plane: plane of the Earth's mean equator at the reference epoch x-axis : out along ascending node of instantaneous plane of the Earth's orbit and the Earth's mean equator at the reference epoch z-axis : along the Earth mean north pole at the reference epoch Ephemerides are often calculated for BJD, barycentric Julian date. That is, they are correct for observations taken at the solar system barycenter's distance from the target. The BJD of our observation is the time the photons we observe would have crossed the sphere centered on the object and containing the barycenter. We must thus add the light-travel time from our observatory to this sphere. For non-solar-system observations, we approximate the sphere as a plane, and calculate the dot product of the vector from the barycenter to the telescope and a unit vector to from the barycenter to the target, and divide by the speed of light. Properly, the coordinates should point from the standard location to the object. Practically, for objects outside the solar system, the adjustment from, e.g., geocentric (RA-DEC) coordinates to barycentric coordinates has a negligible effect on the trig functions used in the routine. The horizons file in coordtable should be in the form of the following example, with a subject line of JOB: !$$SOF ! ! Example e-mail command file. If mailed to "<EMAIL>" ! with subject "JOB", results will be mailed back. ! ! This example demonstrates a subset of functions. See main doc for ! full explanation. Send blank e-mail with subject "BATCH-LONG" to ! <EMAIL> for complete example. ! EMAIL_ADDR = '<EMAIL>' ! Send output to this address ! (can be blank for auto-reply) COMMAND = '-79' ! Target body, closest apparition OBJ_DATA = 'YES' ! No summary of target body data MAKE_EPHEM = 'YES' ! Make an ephemeris START_TIME = '2005-Aug-24 06:00' ! Start of table (UTC default) STOP_TIME = '2005-Aug-25 02:00' ! End of table STEP_SIZE = '1 hour' ! Table step-size TABLE_TYPE = 'VECTOR' ! Specify VECTOR ephemeris table type CENTER = '@10' ! Set observer (coordinate center) REF_PLANE = 'FRAME' ! J2000 equatorial plane VECT_TABLE = '3' ! Selects output type (3=all). OUT_UNITS = 'KM-S' ! Vector units# KM-S, AU-D, KM-D CSV_FORMAT = 'NO' ! Comma-separated output (YES/NO) VEC_LABELS = 'YES' ! Label vectors in output (YES/NO) VECT_CORR = 'NONE' ! Correct for light-time (LT), ! or lt + stellar aberration (LT+S), ! or (NONE) return geometric ! vectors only. !$$EOF Example: --------- >>> # Spitzer is in nearly the Earth's orbital plane. Light coming from >>> # the north ecliptic pole should hit the observatory and the sun at >>> # about the same time. >>> import suntimecorr as sc >>> ra = 18.0 * np.pi / 12 # ecliptic north pole coordinates in radians >>> dec = 66.5 * np.pi / 180 # " >>> obst = np.array([2453607.078]) # Julian date of 2005-08-24 14:00 >>> print( sc.suntimecorr(ra, dec, obst, '/home/esp01/ancil/horizons/cs41_spitzer.vec') ) 1.00810877 # about 1 sec, close to zero >>> # If the object has the RA and DEC of Spitzer, light time should be >>> # about 8 minutes to the sun. >>> obs = np.array([111093592.8346969, -97287023.315796047, -42212080.826677799]) >>> # vector to the object >>> obst = np.array([2453602.5]) >>> print( np.sqrt(np.sum(obs**2.0)) ) 153585191.481 # about 1 AU, good >>> raobs = np.arctan(obs[1]/ obs[0]) >>> decobs = np.arctan(obs[2]/ np.sqrt(obs[0]**2 + obs[1]**2)) >>> print(raobs, decobs) -0.7192383661, -0.2784282118 >>> print( sc.suntimecorr(raobs, decobs, obst, '/home/esp01/ancil/horizons/cs41_spitzer.vec') / 60.0) 8.5228630 # good, about 8 minutes light time to travel 1 AU Modification History: --------------------- 2005-12-01 statia Written by <NAME>. 2006-03-09 jh Corrected 90deg error in algorithm, renamed, updated header, made Coordtable a positional arg since it's required, switched to radians. 2007-06-28 jh Renamed to suntimecorr since we now use barycentric Julian date. 2009-01-28 jh Change variables to long, use spline instead of linfit so we can use one HORIZONS file for the whole mission. 2009-02-22 jh Reshape spline results to shape of obst. Make it handle unsorted unput data properly. Header update. 2010-07-10 patricio Converted to python. (<EMAIL>) 2010-11-01 patricio Docstring updated. """ start_data = '$$SOE' end_data = '$$EOE' # Read in whole table as an list of strings, one string per line ctable = open(coordtable, 'r') wholetable = ctable.readlines() ctable.close() # Find start and end line i = 0 # while end has not been found: while wholetable[i].find(end_data) == -1: # if start is found get the index of next line: if wholetable[i].find(start_data) != -1: start = i + 1 i += 1 # Chop table data = wholetable[start:i-2] # Extract values: x, y, z, time = getcoords(data) # Interpolate to observing times: # We must preserve the shape and order of obst. Spline takes # monotonic input and produces linear output. x, y, z, time are # sorted as HORIZONS produces them. # Save shape of obst tshape = np.shape(obst) # Reshape to 1D and sort obstime = obst.flatten() ti = np.argsort(obstime) # indexes of sorted array by time tsize = np.size(obstime) # Allocate output arrays obsx = np.zeros(tsize) obsy = np.zeros(tsize) obsz =
np.zeros(tsize)
numpy.zeros
import tools as tls import camera import numpy as np import cv2 import matplotlib.pyplot as plt def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. `vertices` should be a numpy array of integer points. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def sobel_absolute_scaled(gray): # allow images with color depth = one if len(gray.shape) != 2: raise TypeError sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) abs_sobelx = np.absolute(sobelx) scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) return scaled_sobel def sobel_magnitude(gray, sobel_kernel=3): # allow images with color depth = one if len(gray.shape) != 2: raise TypeError # Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Calculate the magnitude gradmag = np.sqrt(sobelx**2 + sobely**2) # Rescale to 8 bit scale_factor = np.max(gradmag)/255 gradmag = (gradmag/scale_factor).astype(np.uint8) return gradmag def sobel_direction(gray, sobel_kernel=3): #, thresh=(0, np.pi/2)): # allow images with color depth = one if len(gray.shape) != 2: raise TypeError # Take the gradient in x and y separately sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, sobel_kernel) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, sobel_kernel) # Take the absolute value of the x and y gradients abs_sobel_x = np.absolute(sobel_x) abs_sobel_y = np.absolute(sobel_y) # calculate the direction of the gradient absgraddir = np.arctan2(abs_sobel_y, abs_sobel_x) return absgraddir def channel_threshold(channel, thresh=(170,255)): # Threshold color channel binary =
np.zeros_like(channel)
numpy.zeros_like
import math import matplotlib.pyplot as plt import numpy as np from typing import Dict, Tuple from CSIKit.visualization.metric import Metric from matplotlib.colors import BoundaryNorm, LinearSegmentedColormap from matplotlib.ticker import MaxNLocator class Graph: def __init__(self, metric: Metric): self.metric = metric self._axes = [] super().__init__() def plot(self, values_per_measurement): """ function to plot the visualization into the axes. return axes[] """ self._axes = [] self._plot_axes(values_per_measurement) if not isinstance(self._axes,list): raise Exception("return value is not list") return self._axes def _plot_axes(self, values_per_measurement): """ Abstract function. This function has to fill self.axes It should call self._create_new_ax """ raise Exception("Not implemented function plot") def _create_new_ax(self): """ return new axes and appends it to self.axes """ ax = plt.subplot() self._axes.append(ax) return ax class TupleGraph: pass class PlotBox(Graph): def _plot_axes(self, values_per_measurement): axes = self._create_new_ax() data = list(values_per_measurement.values()) labels = list(values_per_measurement.keys()) if all(isinstance(k, int) for k in labels): # if name is metric width = max(list(values_per_measurement.keys())) / \ (2*len(list(values_per_measurement.keys()))) axes.boxplot(data, positions=labels, labels=labels, widths=width) else: width = 0.5 axes.boxplot(data, labels=labels, widths=width) ind = np.arange(1, len(values_per_measurement)+1) axes.set_xticks(ind) axes.set_xticklabels( tuple(values_per_measurement.keys()), rotation=45, ha="right") mini = min({min(ar) for ar in data}) maxi = max({max(ar) for ar in data}) if maxi > 0 and mini > 0: axes.set_ylim(bottom=0) elif maxi < 0 and mini < 0: axes.set_ylim(top=0) axes.set_ylabel(f"{self.metric.get_name()}[{self.metric.get_unit()}]") axes.set_xlabel('Measurement') class PlotCandle(Graph): def __init__(self, metric): super().__init__(metric) self.plot_wick = True @classmethod def _calc_average(_cls, values_per_measurement): averages = {} for mes_name in values_per_measurement.copy(): values = values_per_measurement[mes_name] averages[mes_name] = (sum(values)/len(values)) return averages @classmethod def _calc_std_errs(cls, values_per_measurement): """returns standard diviation of each measurement """ val_per_meas = values_per_measurement.copy() std_errs = {} for name in val_per_meas: std_errs[name] = np.std(val_per_meas[name]) return std_errs @classmethod def _calc_confidence_diff(cls, variance, interval=0.95): """ Retruns the +- confidenz delta of the meassrements""" INTERVALS = { 0.90: 1.645, 0.95: 1.96, 0.98: 2.326, 0.99: 2.576 } if not interval in INTERVALS: raise Exception(f"Invalid interval {interval}") confidenz_errors = {} for name in variance: std_err = math.sqrt(variance[name]) confidenz = INTERVALS[interval] * \ (std_err / math.sqrt(len(variance[name]))) confidenz_errors[name] = confidenz return confidenz_errors def _plot_axes(self, values_per_measurement, plot_wick=True): axes = self._create_new_ax() if all(isinstance(k, int) for k in values_per_measurement.keys()): # if name is metric width = max(list(values_per_measurement.keys())) / \ (2*len(list(values_per_measurement.keys()))) #width = 4 # for name in self._values_per_measurement: # for each measurement self._plot_candle(axes, values_per_measurement, width=width, plot_wick=plot_wick) else: # else plot by name width = 0.4 self._plot_candle(axes, values_per_measurement, width=width, plot_wick=plot_wick) ind = np.arange(len(values_per_measurement)) # plot unique text at the center of each candle axes.set_xticks(ind) axes.set_xticklabels( tuple(values_per_measurement.keys()), rotation=45, ha="right") axes.set_ylabel(f"{self.metric.get_name()}[{self.metric.get_unit()}]") axes.set_xlabel('Measurement') @classmethod def _plot_candle(cls, axes, values_per_measurement, width=4, color="#008000", x_offset=0, plot_wick=True): averages = cls._calc_average(values_per_measurement) if len(values_per_measurement) == 1: plot_wick = False if plot_wick: std_errors = cls._calc_std_errs(values_per_measurement) # confidences = cls._calc_confidence_diff(self._values_per_measurement) wick_width = 4 if all(isinstance(k, int) for k in values_per_measurement.keys()): # if name is metric # for name in self._values_per_measurement: # for each measurement x_arr = values_per_measurement.keys() if x_offset != 0: x_arr = [i+x_offset for i in x_arr] # add offset to x plot if plot_wick: axes.bar(x_arr, averages.values(), width=width, yerr=std_errors.values( ), error_kw=dict(linewidth=wick_width), color=color) else: axes.bar(x_arr, averages.values(), width=width, error_kw=dict(linewidth=wick_width), color=color) else: # else plot by name ind = np.arange(len(values_per_measurement)) ind = [i+x_offset for i in ind] # add offset to x plot if plot_wick: axes.bar(ind, averages.values(), width=width, yerr=std_errors.values( ), error_kw=dict(linewidth=wick_width), color=color) else: axes.bar(ind, averages.values(), width=width, error_kw=dict(linewidth=wick_width), color=color) class PlotCandleTuple(TupleGraph, PlotCandle): """ Abstract class to plot group of bars by datatype tuple """ def __init__(self, metric): super().__init__(metric) self._values_per_measurement: Dict[str, Tuple] = {} COLORS = ['#008000', 'red', 'blue'] def _plot_axes(self, values_per_measurement, plot_wick=True): axes = self._create_new_ax() axes.set_autoscalex_on(True) # gets the size of the contained tuple tuple_size = len(list(values_per_measurement.values())[0][0]) if all(isinstance(k, int) for k in values_per_measurement.keys()): # if name is metric width = (max(list(values_per_measurement.keys())) / (2*len(list(values_per_measurement.keys()))))/tuple_size # for name in self._values_per_measurement: # for each measurement for tuple_i in range(tuple_size): self._plot_candle(axes, self._get_measurement_by_tuple_index(values_per_measurement, tuple_i), width, x_offset=( tuple_i-1)*width, color=self.COLORS[tuple_i], plot_wick=plot_wick) else: # else plot by name width = 0.8 / tuple_size # plot each bar of group per tuple for tuple_i in range(tuple_size): self._plot_candle(axes, self._get_measurement_by_tuple_index(values_per_measurement, tuple_i), width, x_offset=( tuple_i-1)*width, color=self.COLORS[tuple_i], plot_wick=plot_wick) # unique label per candle group ind = np.arange(len(values_per_measurement)) axes.set_xticks(ind) axes.set_xticklabels( tuple(values_per_measurement.keys()), rotation=45, ha="right") axes.set_ylabel(f"{self.metric.get_name()}[{self.metric.get_unit()}]") axes.set_xlabel('Measurement') @classmethod def _get_measurement_by_tuple_index(cls, values_per_measurement, tuple_index): """ this function returns a "normal" measurement dict like used at CandlePlot to reuse the CandlePlot._plot_candle() returns Dict[str, list[int]] """ measurements = values_per_measurement.copy() result = {} for name in measurements: measurement = measurements[name] result[name] = [i[tuple_index] for i in measurement] return result class PlotCandleTuple_Phase(PlotCandleTuple): def _plot_axes(self, values_per_measurement, plot_wick=False): # set wick false super()._plot_axes( values_per_measurement, plot_wick=plot_wick) {ax._axes.set_ylim((0, np.pi)) for ax in self._axes} class PlotColorMap(Graph): def __init__(self, metric): super().__init__(metric) self.vmin=None self.vmax=None self.cmap = plt.cm.plasma self.color_legend = True def _plot_axes(self, values_per_measurement): for measur_name in values_per_measurement: axes = self._create_new_ax() amplitude_per_sub = values_per_measurement[measur_name] amplitude_per_sub = np.matrix(
np.array(amplitude_per_sub)
numpy.array
# -*- coding: utf-8 -*- import unittest from snewpy.flavor_transformation import MassHierarchy, MixingParameters from snewpy.flavor_transformation import \ NoTransformation, CompleteExchange, \ AdiabaticMSW, NonAdiabaticMSWH, \ AdiabaticMSWes, NonAdiabaticMSWes, \ TwoFlavorDecoherence, ThreeFlavorDecoherence, \ NeutrinoDecay from astropy import units as u from astropy import constants as c import numpy as np from numpy import sin, cos, exp, abs class TestFlavorTransformations(unittest.TestCase): def setUp(self): # Dummy time and energy arrays, with proper dimensions. self.t = np.arange(10) * u.s self.E = np.linspace(1,100,21) * u.MeV # Dummy mixing angles. self.theta12 = 33 * u.deg self.theta13 = 9 * u.deg self.theta23 = 49 * u.deg self.theta14 = 1 * u.deg # Dummy neutrino decay parameters; see arXiv:1910.01127. self.mass3 = 0.5 * u.eV/c.c**2 self.lifetime = 1 * u.day self.distance = 10 * u.kpc def test_noxform(self): """ Survival probabilities for no oscillations """ xform = NoTransformation() self.assertEqual(xform.prob_ee(self.t, self.E), 1) self.assertEqual(xform.prob_ex(self.t, self.E), 0) self.assertEqual(xform.prob_xx(self.t, self.E), 1) self.assertEqual(xform.prob_xe(self.t, self.E), 0) self.assertEqual(xform.prob_eebar(self.t, self.E), 1) self.assertEqual(xform.prob_exbar(self.t, self.E), 0) self.assertEqual(xform.prob_xxbar(self.t, self.E), 1) self.assertEqual(xform.prob_xebar(self.t, self.E), 0) def test_fullex(self): """ Survival probabilities for complete electron->X transformation """ xform = CompleteExchange() self.assertEqual(xform.prob_ee(self.t, self.E), 0) self.assertEqual(xform.prob_ex(self.t, self.E), 1) self.assertEqual(xform.prob_xx(self.t, self.E), 0.5) self.assertEqual(xform.prob_xe(self.t, self.E), 0.5) self.assertEqual(xform.prob_eebar(self.t, self.E), 0) self.assertEqual(xform.prob_exbar(self.t, self.E), 1) self.assertEqual(xform.prob_xxbar(self.t, self.E), 0.5) self.assertEqual(xform.prob_xebar(self.t, self.E), 0.5) def test_adiabaticmsw_nmo(self): """ Adiabatic MSW with normal ordering """ xform = AdiabaticMSW(mix_angles=(self.theta12, self.theta13, self.theta23), mh=MassHierarchy.NORMAL) self.assertEqual(xform.prob_ee(self.t, self.E), sin(self.theta13)**2) self.assertEqual(xform.prob_ex(self.t, self.E), 1. - sin(self.theta13)**2) self.assertEqual(xform.prob_xx(self.t, self.E), 0.5*(1. + sin(self.theta13)**2)) self.assertEqual(xform.prob_xe(self.t, self.E), 0.5*(1. - sin(self.theta13)**2)) self.assertEqual(xform.prob_eebar(self.t, self.E), (cos(self.theta12)*cos(self.theta13))**2) self.assertEqual(xform.prob_exbar(self.t, self.E), 1. - (cos(self.theta12)*cos(self.theta13))**2) self.assertEqual(xform.prob_xxbar(self.t, self.E), 0.5*(1. + (cos(self.theta12)*cos(self.theta13))**2)) self.assertEqual(xform.prob_xebar(self.t, self.E), 0.5*(1. - (cos(self.theta12)*cos(self.theta13))**2)) # Test interface using default mixing angles defined in the submodule. mixpars = MixingParameters(MassHierarchy.NORMAL) th12, th13, th23 = mixpars.get_mixing_angles() xform = AdiabaticMSW() self.assertEqual(xform.prob_ee(self.t, self.E), sin(th13)**2) self.assertEqual(xform.prob_ex(self.t, self.E), 1. - sin(th13)**2) self.assertEqual(xform.prob_xx(self.t, self.E), 0.5*(1. + sin(th13)**2)) self.assertEqual(xform.prob_xe(self.t, self.E), 0.5*(1. - sin(th13)**2)) self.assertEqual(xform.prob_eebar(self.t, self.E), (cos(th12)*cos(th13))**2) self.assertEqual(xform.prob_exbar(self.t, self.E), 1. - (cos(th12)*cos(th13))**2) self.assertEqual(xform.prob_xxbar(self.t, self.E), 0.5*(1. + (
cos(th12)
numpy.cos
import six import pytest import numpy as np from mock import patch, MagicMock from eight_mile.optz import ( create_lr_scheduler, CosineDecayScheduler, CyclicLRScheduler, ExponentialDecayScheduler, WarmupLinearScheduler, ConstantScheduler, PiecewiseDecayScheduler, ZarembaDecayScheduler, InverseTimeDecayScheduler, CompositeLRScheduler, ) @pytest.fixture def piecewise(): min_ = np.random.randint(1, 5) max_ = np.random.randint(min_ + 2, min_ + 7) bounds = [min_, max_] vals = np.random.uniform(size=len(bounds) + 1) return bounds, vals def test_zaremba_with_nones(): eta = np.random.rand() zd = ZarembaDecayScheduler(lr=eta) for step in np.random.randint(0, 1000000, size=100): assert zd(step) == eta def test_piecewise_start(piecewise): b, v = piecewise p = PiecewiseDecayScheduler(b, v) lr = p(0) assert lr == v[0] def test_piecewise_mid(piecewise): b, v = piecewise p = PiecewiseDecayScheduler(b, v) step = np.random.randint(np.min(b) + 1, np.max(b)) lr = p(step) assert lr == v[1] def test_piecewise_lsat(piecewise): b, v = piecewise p = PiecewiseDecayScheduler(b, v) step = np.random.randint(np.max(b) + 3, np.max(b) + 100) lr = p(step) assert lr == v[-1] def test_staircase_decay_flat(): steps = np.random.randint(900, 1001) sd = ExponentialDecayScheduler(steps, np.random.rand(), lr=np.random.rand(), staircase=True) stair_one_one = sd(np.random.randint(steps - 100, steps)) stair_one_two = sd(np.random.randint(steps - 100, steps)) stair_two = sd(np.random.randint(steps + 1, steps + 10)) assert stair_one_one == stair_one_two assert stair_one_two != stair_two def test_staircase_value(): sd = ExponentialDecayScheduler(1000, 0.9, lr=1.0, staircase=True) gold = 1.0 test = sd(100) np.testing.assert_allclose(test, gold) gold = 0.9 test = sd(1001) np.testing.assert_allclose(test, gold) def test_exp_values(): sd = ExponentialDecayScheduler(1000, 0.9, lr=1.0) gold = 0.9895192582062144 test = sd(100) np.testing.assert_allclose(test, gold) gold = 0.8999051805311098 test = sd(1001) np.testing.assert_allclose(test, gold) def test_warmup_peaks(): steps = np.random.randint(100, 1000) lr = np.random.rand() wls = WarmupLinearScheduler(steps, lr=lr) peak = wls(steps) assert peak == lr past = wls(steps + np.random.randint(100, 10000)) assert past == lr def test_warmup_increases(): steps = np.random.randint(100, 1000) lr = np.random.rand() wls = WarmupLinearScheduler(steps, lr=lr) lrs = [wls(s) for s in range(steps)] last = -1 for lr in lrs: assert lr > last last = lr def test_cyclic_lr(): bounds = 1000 min_eta = 1e-5 max_eta = 1e-2 clr = CyclicLRScheduler(max_eta, bounds, lr=min_eta) start = clr(0) up = clr(bounds / 2.0) mid = clr(bounds) down = clr(bounds + (bounds / 2.0)) end = clr(2 * bounds) late = clr(3 * bounds) assert start == min_eta assert up > start assert up < mid assert mid == max_eta assert down < mid assert down > end assert end == min_eta assert late == max_eta def test_cosine_lr(): cd = CosineDecayScheduler(1000, lr=0.1) iters = [0, 100, 900, 1000, 1001] golds = [0.1, 0.09755283, 0.002447176, 0.0, 0.0] for i, gold in zip(iters, golds): np.testing.assert_allclose(cd(i), gold, rtol=1e-6) def test_constant_lr(): lr =
np.random.rand()
numpy.random.rand
import numpy as np from scipy import sparse class Solver: """A class representing a linear FEM solver for: Laplace Eigenvalue problems and Poisson Equation Inputs can be geometry classes which have vertices and elements. Currently TriaMesh and TetMesh are implemented. FEM matrices (stiffness (or A) and mass matrix (or B)) are computed during the construction. After that the Eigenvalue solver (eigs) or Poisson Solver (poisson) can be called. The class has a static member to create the mass matrix of TriaMesh for external function that do not need stiffness. """ def __init__(self, geometry, lump=False, aniso=None, aniso_smooth=10): """ Construct the Solver class. Computes linear Laplace FEM stiffness and mass matrix for TriaMesh or TetMesh input geometries. For TriaMesh it can also construct the anisotropic Laplace. Inputs: geometry : is a geometry class, currently either TriaMesh or TetMesh aniso : float, anisotropy for curvature based anisotopic Laplace can also be tuple (a_min, a_max) to differentially affect the min and max curvature directions. E.g. (0,50) will set scaling to 1 into min curv direction even if the max curvature is large in those regions (= isotropic in regions with large max curv and min curv close to zero= concave cylinder) lump : whether to lump the mass matrix (diagonal), default False """ if type(geometry).__name__ == "TriaMesh": if aniso is not None: # anisotropic Laplace print("TriaMesh with anisotropic Laplace-Beltrami") u1, u2, c1, c2 = geometry.curvature_tria(smoothit=aniso_smooth) # Diag mat to specify anisotropy strength if isinstance(aniso, (list, tuple, set, np.ndarray)): if len(aniso) != 2: raise ValueError('aniso should be scalar or tuple/array of length 2!') aniso0 = aniso[0] aniso1 = aniso[1] else: aniso0 = aniso aniso1 = aniso aniso_mat = np.empty((geometry.t.shape[0], 2)) aniso_mat[:, 1] = np.exp(-aniso1 * np.abs(c1)) aniso_mat[:, 0] = np.exp(-aniso0 * np.abs(c2)) a, b = self._fem_tria_aniso(geometry, u1, u2, aniso_mat, lump) else: print("TriaMesh with regular Laplace-Beltrami") a, b = self._fem_tria(geometry, lump) elif type(geometry).__name__ == "TetMesh": print("TetMesh with regular Laplace") a, b = self._fem_tetra(geometry, lump) else: raise ValueError('Geometry type "' + type(geometry).__name__ + '" unknown') self.stiffness = a self.mass = b self.geotype = type(geometry) @staticmethod def _fem_tria(tria, lump=False): """ computeABtria(v,t) computes the two sparse symmetric matrices representing the Laplace Beltrami Operator for a given triangle mesh using the linear finite element method (assuming a closed mesh or the Neumann boundary condition). Inputs: v - vertices : list of lists of 3 floats t - triangles: list of lists of 3 int of indices (>=0) into v array Outputs: A - sparse sym. (n x n) positive semi definite numpy matrix B - sparse sym. (n x n) positive definite numpy matrix (inner product) Can be used to solve sparse generalized Eigenvalue problem: A x = lambda B x or to solve Poisson equation: A x = B f (where f is function on mesh vertices) or to solve Laplace equation: A x = 0 or to model the operator's action on a vector x: y = B\(Ax) """ import sys # Compute vertex coordinates and a difference vector for each triangle: t1 = tria.t[:, 0] t2 = tria.t[:, 1] t3 = tria.t[:, 2] v1 = tria.v[t1, :] v2 = tria.v[t2, :] v3 = tria.v[t3, :] v2mv1 = v2 - v1 v3mv2 = v3 - v2 v1mv3 = v1 - v3 # Compute cross product and 4*vol for each triangle: cr = np.cross(v3mv2, v1mv3) vol = 2 * np.sqrt(np.sum(cr * cr, axis=1)) # zero vol will cause division by zero below, so set to small value: vol_mean = 0.0001 * np.mean(vol) vol[vol < sys.float_info.epsilon] = vol_mean # compute cotangents for A # using that v2mv1 = - (v3mv2 + v1mv3) this can also be seen by # summing the local matrix entries in the old algorithm a12 = np.sum(v3mv2 * v1mv3, axis=1) / vol a23 = np.sum(v1mv3 * v2mv1, axis=1) / vol a31 = np.sum(v2mv1 * v3mv2, axis=1) / vol # compute diagonals (from row sum = 0) a11 = -a12 - a31 a22 = -a12 - a23 a33 = -a31 - a23 # stack columns to assemble data local_a = np.column_stack((a12, a12, a23, a23, a31, a31, a11, a22, a33)).reshape(-1) i = np.column_stack((t1, t2, t2, t3, t3, t1, t1, t2, t3)).reshape(-1) j = np.column_stack((t2, t1, t3, t2, t1, t3, t1, t2, t3)).reshape(-1) # Construct sparse matrix: # a = sparse.csr_matrix((local_a, (i, j))) a = sparse.csc_matrix((local_a, (i, j))) # construct mass matrix (sparse or diagonal if lumped) if not lump: # create b matrix data (account for that vol is 4 times area) b_ii = vol / 24 b_ij = vol / 48 local_b = np.column_stack((b_ij, b_ij, b_ij, b_ij, b_ij, b_ij, b_ii, b_ii, b_ii)).reshape(-1) b = sparse.csc_matrix((local_b, (i, j))) else: # when lumping put all onto diagonal (area/3 for each vertex) b_ii = vol / 12 local_b = np.column_stack((b_ii, b_ii, b_ii)).reshape(-1) i = np.column_stack((t1, t2, t3)).reshape(-1) b = sparse.csc_matrix((local_b, (i, i))) return a, b @staticmethod def _fem_tria_aniso(tria, u1, u2, aniso_mat, lump=False): """ computeABtria(v,t) computes the two sparse symmetric matrices representing the Laplace Beltrami Operator for a given triangle mesh using the linear finite element method (assuming a closed mesh or the Neumann boundary condition). Inputs: v - vertices : list of lists of 3 floats t - triangles: N list of lists of 3 int of indices (>=0) into v array u1 - min curv: min curvature direction per triangle (Nx3 floats) u2 - max curv: max curvature direction per triangle (Nx3 floats) aniso_mat - anisotropy matrix: diagonal elements in u1,u2 basis per triangle (Nx2 floats) Outputs: A - sparse sym. (n x n) positive semi definite numpy matrix B - sparse sym. (n x n) positive definite numpy matrix (inner product) Can be used to solve sparse generalized Eigenvalue problem: A x = lambda B x or to solve Poisson equation: A x = B f (where f is function on mesh vertices) or to solve Laplace equation: A x = 0 or to model the operator's action on a vector x: y = B\(Ax) """ import sys # Compute vertex coordinates and a difference vector for each triangle: t1 = tria.t[:, 0] t2 = tria.t[:, 1] t3 = tria.t[:, 2] v1 = tria.v[t1, :] v2 = tria.v[t2, :] v3 = tria.v[t3, :] v2mv1 = v2 - v1 v3mv2 = v3 - v2 v1mv3 = v1 - v3 # transform edge e to basis U = (U1,U2) via U^T * e # Ui is n x 3, e is n x 1, result is n x 2 uv2mv1 = np.column_stack((np.sum(u1 * v2mv1, axis=1), np.sum(u2 * v2mv1, axis=1))) uv3mv2 = np.column_stack((np.sum(u1 * v3mv2, axis=1),
np.sum(u2 * v3mv2, axis=1)
numpy.sum
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. # Written by <NAME> """This file contain the utils class that can improve programming efficiency on IPU by popart. """ import builtins import string import numpy as np import popart from _globals import GLOBAL_V, set_batch, get_batch_size, get_anchor_return_type, train_mode_on, train_mode, safe_mode, safe_mode_on, safe_mode_off, get_builder, set_builder, set_seed, get_seed, set_options, get_options, set_device, get_device_type, get_ai_onnx_version, set_memory_proportion, get_memory_proportion, enable_global_initializer, get_global_initializer, get_exclude_weights, set_exclude_weights, get_all_trainable_weights, load_model, set_load_strict, load_strict, set_weight_fp16, get_weight_fp16, get_all_tensors_info CONSTANT_COUNTER = [0] TENSOR_NAMES = [] def unified_op_warpper(func): def warpper_func(*args, **kwargs): results = func(*args, **kwargs) return results return warpper_func def name_scope(scope_name): return get_builder().nameScope(scope_name) def add_input_tensor(dtype, shape, debugContext=''): input_t = get_builder().addInputTensor(popart.TensorInfo(dtype, shape), debugContext=debugContext) return TTensor(input_t) def identity(input, debugContext=''): return TTensor(get_builder().aiOnnx.identity([input.getIpuIndex()], debugContext=debugContext)) def pad(data, pads, mode='constant', constant_value=0, debugContext=''): constant_value = constant(constant_value).cast(data.dtype.upper()) pads = to_tensor(pads).cast('INT64').flatten() result = get_builder().aiOnnx.pad( [data.getIpuIndex(), pads.getIpuIndex(), constant_value.getIpuIndex()], mode=mode, debugContext=debugContext) return TTensor(result) def _conv2d(input, filter, bias=False, strides=[1, 1], pads=[1, 1, 1, 1], dilations=[1, 1], group=1, debugContext=''): """Encapsulation of function get_builder().aiOnnx.conv! args: x: input tensor ksize: int,kernel size stride: int,stride of conv pads: int, conv padding c_out: int, output channel group: int, conv group nums,default:1 """ args = [input.getIpuIndex(), filter.getIpuIndex()] if bias: args.append(bias.getIpuIndex()) output = get_builder().aiOnnx.conv(args, strides=strides, pads=pads, dilations=dilations, group=group, debugContext=debugContext) if get_memory_proportion() is not None: get_builder().setAvailableMemoryProportion(output, get_memory_proportion()) return TTensor(output) def relu(x, debugContext=""): """ args: x: input tensor """ if isinstance(x, list): x = [ele.getIpuIndex() for ele in x] else: x = [x.getIpuIndex()] x = get_builder().aiOnnx.relu(x, debugContext=debugContext) return TTensor(x) def maxPooling(x, strides=[2, 2], kernel_size=[2, 2], padding=[0, 0, 0, 0], dilations=[1, 1], ceil_mode=0, debugContext=""): """ args: x: strides: maxpool stride(output_size=input_size/strides) kernel_size: window's size that used to find max value """ x = get_builder().aiOnnx.maxpool(args=[x.getIpuIndex()], num_outputs=1, kernel_shape=kernel_size, pads=padding, strides=strides, dilations=dilations, ceil_mode=ceil_mode, debugContext=debugContext) return TTensor(x[0]) def avgPooling(x, strides=2, kernel_size=2, padding=0, count_include_pad=0, debugContext=""): x = get_builder().aiOnnx.averagepool( [x.getIpuIndex()], kernel_shape=[kernel_size, kernel_size], count_include_pad=count_include_pad, pads=[padding] * 4, strides=[strides, strides], debugContext=debugContext) return TTensor(x) def check_all_constant(tensors): for t in tensors: if isinstance(t, ConstantTensor) is False: return False return True def resize(x, roi=None, scales=None, sizes=None, coordinate_transformation_mode='half_pixel', cubic_coeff_a=-0.75, exclude_outside=0, extrapolation_value=0.0, mode='nearest', nearest_mode='round_prefer_floor', debugContext=''): # TODO Check whether each parameter is correct # x:N-D tensor # roi: 1-D tensor given as [start1, ..., startN, end1, ..., endN], where N is the rank of X # scales: tensor(float),The scale array along each dimension. # sizes: tensor(int64),The size of the output tensor. # Only one of 'scales' and 'sizes' can be specified. assert None in [scales, sizes] and set([scales, sizes]) == 2 if roi is None: assert coordinate_transformation_mode == 'tf_crop_and_resize' else: raise not NotImplementedError roi = constant( np.array([0, -1] * x.shape.ndims).astype( mappin_gc2npy[x.dtype])) if roi is None else roi scales = constant(np.array( [1.0] * x.shape.ndims).astype('FLOAT32')) if scales is None else scales sizes = constant(np.array( [1] * x.shape.ndims).astype('INT64')) if sizes is None else sizes inputs_list = [ x.getIpuIndex(), roi.getIpuIndex(), scales.getIpuIndex(), sizes.getIpuIndex() ] inputs_dic = { 'coordinate_transformation_mode': coordinate_transformation_mode, 'cubic_coeff_a': cubic_coeff_a, 'exclude_outside': exclude_outside, 'extrapolation_value': extrapolation_value, 'mode': mode, 'nearest_mode': nearest_mode, 'debugContext': debugContext } result = TTensor(get_builder().aiOnnx.resize(inputs_list, **inputs_dic)) return result def matmul(x, y, debugContext=""): if check_all_constant([x, y]): # degrade to np op result = np.matmul(x.data, y.data) return constant(result) else: assert x.dtype in ['FLOAT', "FLOAT16"] assert y.dtype in ['FLOAT', "FLOAT16"] return TTensor(get_builder().aiOnnx.matmul( [x.getIpuIndex(), y.getIpuIndex()], debugContext=debugContext)) def scalarTensor2int(t): if isinstance(t, ConstantTensor): return int(t.data) assert isinstance(t, int) return t def reshape(source, target_shape, debugContext=""): """ args: source : tensor name target_shape: list of int e.g.: [3,4,5,6] """ if isinstance(target_shape, TTensor): target_shape = target_shape.data if isinstance(target_shape, np.ndarray): target_shape = target_shape.tolist() if isinstance(target_shape, list): target_shape = [scalarTensor2int(ele) for ele in target_shape] target_shape = constant(np.array(target_shape).astype(np.int64), debugContext=debugContext) if check_all_constant([source, target_shape]): # degrade to np op result = source.data.reshape(target_shape.data) result = constant(result) return result else: return TTensor(get_builder().aiOnnx.reshape( [source.getIpuIndex(), target_shape.getIpuIndex()], debugContext=debugContext)) def softmax_2d(x, axis=1, debugContext=""): assert axis in [-1, 1] assert x.shape.ndims == 2 x = get_builder().aiOnnx.softmax( [x.getIpuIndex()], axis=axis, debugContext=debugContext) return TTensor(x) def _batchNorm( x, scale, biases, mean, var, num_outputs=1, momentum=0.9, epsilon=1e-5, debugContext="", ): results = get_builder().aiOnnx.batchnormalization( [ x.getIpuIndex(), scale.getIpuIndex(), biases.getIpuIndex(), mean.getIpuIndex(), var.getIpuIndex() ], num_outputs=num_outputs, epsilon=epsilon, momentum=momentum, debugContext=debugContext) results = results[0] if num_outputs == 1 else results if isinstance(results, list): results = [TTensor(r) for r in results] else: results = [TTensor(results)] return results def _concat(tensor_list, dim, debugContext=""): if check_all_constant(tensor_list): # degrade to np op np_arr_list = [t.data for t in tensor_list] result = np.concatenate(np_arr_list, axis=dim) return constant(result) return TTensor(get_builder().aiOnnx.concat( [tensor.getIpuIndex() for tensor in tensor_list], dim, debugContext=debugContext)) def sqrt(x, debugContext=""): result = get_builder().aiOnnx.sqrt([x.getIpuIndex()], debugContext=debugContext) return TTensor(result) def sigmoid(tensor, debugContext=""): return TTensor(get_builder().aiOnnx.sigmoid([tensor.getIpuIndex()], debugContext=debugContext)) def transpose(x, dim_order, debugContext=""): """dim_order: list of int. eg:[0,2,3,1]""" if check_all_constant([x]): # degrade to np op result = np.transpose(x.data, dim_order) return constant(result) return TTensor(get_builder().aiOnnx.transpose([x.getIpuIndex()], dim_order, debugContext=debugContext)) def mean(x, debugContext=""): return TTensor(get_builder().aiOnnx.mean(x.getIpuIndex(), debugContext=debugContext)) def gc_slice(x, axes, starts, ends, debugContext=""): if check_all_constant([x, axes, starts, ends]): # degrade to np op x = x.data x_slices = [] for start, end in zip(starts.data.tolist(), ends.data.tolist()): x_slices.append(slice(start, end)) return constant(x[x_slices]) else: x = get_builder().aiOnnx.slice([ x.getIpuIndex(), starts.getIpuIndex(), ends.getIpuIndex(), axes.getIpuIndex() ], debugContext=debugContext) return TTensor(x) def topk(x, k, sorted=True, dim=-1, debugContext=""): """ args: k: the count of return dim: in which dim to sort and clip """ if k.shape.ndims == 0: k = k.unsqueeze(0) else: assert k.shape.ndims == 1 values, order = get_builder().aiOnnx.topk( [x.getIpuIndex(), k.getIpuIndex()], axis=dim, sorted=sorted, debugContext=debugContext) return TTensor(values), TTensor(order) def constant(x, debugContext=''): if np.isscalar(x): return ConstantScalar(None, x) assert isinstance(x, np.ndarray) return ConstantTensor(None, x) def shapeConstant(x, debugContext=''): if np.isscalar(x): x = np.array(x) assert isinstance(x, np.ndarray) return ShapeTensor(None, x) def gather(x, indices, dim=0, debugContext=""): x = get_builder().aiOnnx.gather( [x.getIpuIndex(), indices.getIpuIndex()], axis=dim, debugContext=debugContext) return TTensor(x) def addInitializedInputTensor(array, debugContext=""): """ args: array: an numpy array that will be copy to IPU return: str: tensor name """ name = get_builder().addInitializedInputTensor(array, debugContext=debugContext) return TTensor(name) def unsqueeze(x, dims, debugContext=""): """ args: dim: list of int of which dim will delete eg:[3] or [1,3] """ if check_all_constant([x]): # degrade to np op result = np.expand_dims(x.data, axis=dims) return constant(result) x = get_builder().aiOnnx.unsqueeze([x.getIpuIndex()], axes=dims, debugContext=debugContext) return TTensor(x) def ceil(x, debugContext=""): result = get_builder().aiOnnx.ceil([x.getIpuIndex()], debugContext=debugContext) return TTensor(result) def squeeze(x, dims, debugContext=""): if check_all_constant([x]): # degrade to np op x = x.data current_dim = float('inf') for dim in reversed(dims): assert current_dim > dim current_dim = dim x = x.squeeze(dim) return constant(x) if isinstance(dims, int): dims = [dims] for dim in dims: assert x.pureShape[dim] == 1 x = get_builder().aiOnnx.squeeze([x.getIpuIndex()], axes=dims, debugContext=debugContext) return TTensor(x) def exp(x, debugContext=""): return TTensor(get_builder().aiOnnx.exp([x.getIpuIndex()], debugContext=debugContext)) def printTensor(t): get_builder().aiGraphcore.printtensor([t.getIpuIndex()], print_gradient=0) def mul(tensors, debugContext=""): if check_all_constant(tensors): # degrade to np op result = 1 for t in tensors: result = t.data * result return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.mul([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def add(tensors, debugContext=""): if check_all_constant(tensors): # degrade to np op result = 0 for t in tensors: result = result + t.data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.add([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def div(tensors, debugContext=""): assert len(tensors) == 2 if check_all_constant(tensors): # degrade to np op result = tensors[0].data / tensors[1].data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.div([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def sub(tensors, debugContext=""): assert len(tensors) == 2 if check_all_constant(tensors): # degrade to np op result = tensors[0].data - tensors[1].data return constant(result, debugContext=debugContext) return TTensor(get_builder().aiOnnx.sub([t.getIpuIndex() for t in tensors], debugContext=debugContext)) def max(tensor_list, debugContext=""): if check_all_constant(tensor_list): # degrade to np op arr_list = [t.data for t in tensor_list] result = np.max(arr_list) return constant(result) return TTensor(get_builder().aiOnnx.max( [t.getIpuIndex() for t in tensor_list], debugContext=debugContext)) def min(tensor_list, debugContext=""): if check_all_constant(tensor_list): # degrade to np op arr_list = [t.data for t in tensor_list] result = np.min(arr_list) return constant(result) return TTensor(get_builder().aiOnnx.min( [t.getIpuIndex() for t in tensor_list], debugContext=debugContext)) def split(x, lenOfSplit, dim, debugContext=""): """ args: lenOfSplit: (4,1) split into two piece,one's length is 4 , the other is 1 """ return TTensor(get_builder().aiOnnx.split([x.getIpuIndex()], len(lenOfSplit), dim, lenOfSplit, debugContext=debugContext)) def clip(x, minmun=-np.inf, maxmun=np.inf, debugContext=""): if get_ai_onnx_version() >= 11: minmun = constant(np.asarray(minmun).astype(np.float32)) maxmun = constant(np.asarray(maxmun).astype(np.float32)) return TTensor(get_builder().aiOnnx.clip( [x.getIpuIndex(), minmun.getIpuIndex(), maxmun.getIpuIndex()], debugContext=debugContext)) else: return TTensor(get_builder().aiOnnx.clip([x.getIpuIndex()], maxmun.getIpuIndex(), minmun.getIpuIndex(), debugContext=debugContext)) def reduceprod(x, dim, keepdims=False, debugContext=""): """ args: dim: int .which dim to do prod """ x = get_builder().aiOnnx.reduceprod([x.getIpuIndex()], axes=[dim], keepdims=keepdims, debugContext=debugContext) return TTensor(x) def cast(x, target_type='FLOAT', debugContext=''): """ target_type: FLOAT|FLOAT16|INT8|INT16|INT32|UINT8|UINT16|UINT32|BOOL """ target_type = 'FLOAT' if target_type == 'FLOAT32' else target_type if check_all_constant([x]): # degrade to np op data = x.data.astype(mappin_gc2npy[target_type]) return constant(data) else: return TTensor(get_builder().aiOnnx.cast([x.getIpuIndex()], target_type.upper(), debugContext)) def log(x, debugContext=''): return TTensor(get_builder().aiOnnx.log([x.getIpuIndex()], debugContext)) def less(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.less( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def abs(x, debugContext=''): return TTensor(get_builder().aiOnnx.abs([x.getIpuIndex()], debugContext)) def argmax(x, axis=0, keepdims=0, debugContext=''): return TTensor(get_builder().aiOnnx.argmax([x.getIpuIndex()], axis, keepdims, debugContext)) def reducemax(x, axes=0, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemax([x.getIpuIndex()], axes, keepdims, debugContext)) def reducemin(x, axes=0, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemin([x.getIpuIndex()], axes, keepdims, debugContext)) def reduceMean(x, axes, keepdims=False, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducemean([x.getIpuIndex()], axes=axes, keepdims=keepdims, debugContext=debugContext)) def greater(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.greater( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def equal(x, y, debugContext=''): x, y = align_tensor([x, y]) return TTensor(get_builder().aiOnnx.equal( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def logical_and(x, y, debugContext=''): return TTensor(get_builder().aiOnnx.logical_and( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def logical_not(x, debugContext=''): return TTensor(get_builder().aiOnnx.logical_not([x.getIpuIndex()], debugContext)) def logical_or(x, y, debugContext=''): return TTensor(get_builder().aiOnnx.logical_or( [x.getIpuIndex(), y.getIpuIndex()], debugContext)) def reduceSum(x, axes=None, keepdims=0, debugContext=''): if isinstance(axes, int): axes = [axes] assert isinstance(axes, list) or axes is None return TTensor(get_builder().aiOnnx.reducesum([x.getIpuIndex()], axes, keepdims, debugContext)) def cumsum(x, axes, exclusive=0, reverse=0, debugContext=''): if x.dtype == 'FLOAT16': raise NotImplementedError('not support fp16') return TTensor(get_builder().aiOnnx.cumsum( [x.getIpuIndex(), axes.getIpuIndex()], exclusive, reverse, debugContext)) def expand(x, shape, debugContext=''): return TTensor(get_builder().aiOnnx.expand( [x.getIpuIndex(), shape.getIpuIndex()], debugContext=debugContext)) def randomuniformlike(x, high=6.0, low=-6.0): result = get_builder().aiOnnx.randomuniformlike([x.getIpuIndex()], high=high, low=low) return TTensor(result) def flatten(x): '''implements the np.flatten function ''' if check_all_constant([x]): x = x.data.flatten() return constant(x) x = get_builder().aiOnnx.flatten([x.getIpuIndex()], 0) return TTensor(x).squeeze(0) def oneslike(t, dtype=None, debugContext=''): dtype = t.dtype if dtype is None else dtype dshape = t.pureShape assert 0 not in dshape return ones(dshape, dtype, debugContext=debugContext) def ones(shape, dtype='FLOAT', debugContext=''): return constant(np.ones(shape, dtype=mappin_gc2npy[dtype]), debugContext=debugContext) def zeroslike(t, dtype=None, debugContext=''): dtype = t.dtype if dtype is None else dtype dshape = t.pureShape assert 0 not in dshape return zeros(dshape, dtype, debugContext=debugContext) def zeros(shape, dtype='FLOAT', debugContext=''): return constant(np.zeros(shape, dtype=mappin_gc2npy[dtype]), debugContext=debugContext) def where(condition, x, y, debugContext=''): return TTensor(get_builder().aiOnnx.where( [condition.getIpuIndex(), x.getIpuIndex(), y.getIpuIndex()])) def detach(x): return TTensor(get_builder().aiGraphcore.detach([x.getIpuIndex()])) def one_hot(indices, depth, values=None, debugContext=''): ''' values: [off_value, on_value] if indice is -1, the corrosponding arr is [0]*depth ''' if isinstance(depth, int): depth = to_tensor(depth, dtype='INT64') if values is None: values = constant(np.asarray([0, 1]).astype(np.int32), debugContext=debugContext) assert indices.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] assert depth.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] assert values.dtype in [ 'INT32', 'INT64', 'INT16', 'UINT32', 'UINT64', 'UINT16' ] result = get_builder().aiOnnx.onehot( [indices.getIpuIndex(), depth.getIpuIndex(), values.getIpuIndex()], debugContext=debugContext) result = TTensor(result) result_shape = list(result.pureShape) if result_shape[1] == 0: result_shape[1] = depth result = result.reshape(result_shape) return result def tile(input, repeats, debugContext=""): if check_all_constant([input, repeats]): result = np.tile(input.data, repeats.data) return constant(result) result = get_builder().aiOnnx.tile( [input.getIpuIndex(), repeats.getIpuIndex()], debugContext) return TTensor(result) def checkTensorsTypeSame(tensors_list): types = [t.dtype for t in tensors_list] if len(set(types)) == 2: assert 'int32' in types and 'int64' in types, 'only int32 and int64 seem as same type' else: assert len(set(types)) == 1, 'types should be same' def np64to32_or_16(np_arr): # temp ussage while IPU not support with 64bit data local_mappin = { 'int64': np.int32, 'uint64': np.uint32, 'float64': np.float16 } if np_arr.dtype.name in list(local_mappin.keys()): np_arr = np_arr.astype(local_mappin[np_arr.dtype.name]) return np_arr def to_tensor(x, dtype=None): # return ConstantTensor if x type is int,float,ndarray,list, or ConstantTensor # return TTensor if x type is TTensor if
np.isscalar(x)
numpy.isscalar
from numbers import Number from typing import Tuple, Optional, List, Union, Dict import torch import numpy as np from ....data.subject import Subject from ....constants import LABEL, DATA, AFFINE, TYPE, STEM from ....typing import TypeRangeFloat from .. import RandomTransform from ... import SpatialTransform class RandomAffineFFT(RandomTransform, SpatialTransform): r"""Random affine transformation. Args: scales: Tuple :math:`(a, b)` defining the scaling magnitude. The scaling values along each dimension are :math:`(s_1, s_2, s_3)`, where :math:`s_i \sim \mathcal{U}(a, b)`. For example, using ``scales=(0.5, 0.5)`` will zoom out the image, making the objects inside look twice as small while preserving the physical size and position of the image. degrees: Tuple :math:`(a, b)` defining the rotation range in degrees. The rotation angles around each axis are :math:`(\theta_1, \theta_2, \theta_3)`, where :math:`\theta_i \sim \mathcal{U}(a, b)`. If only one value :math:`d` is provided, :math:`\theta_i \sim \mathcal{U}(-d, d)`. isotropic: If ``True``, the scaling factor along all dimensions is the same, i.e. :math:`s_1 = s_2 = s_3`. default_pad_value: As the image is rotated, some values near the borders will be undefined. If ``'minimum'``, the fill value will be the image minimum. If ``'mean'``, the fill value is the mean of the border values. If ``'otsu'``, the fill value is the mean of the values at the border that lie under an `Otsu threshold <https://ieeexplore.ieee.org/document/4310076>`_. p: Probability that this transform will be applied. seed: See :py:class:`~torchio.transforms.augmentation.RandomTransform`. .. note:: Rotations are performed around the center of the image. Example: >>> from torchio.transforms import RandomAffine, Interpolation >>> sample = images_dataset[0] # instance of torchio.ImagesDataset >>> transform = RandomAffine( ... scales=(0.9, 1.2), ... degrees=(10), ... isotropic=False, ... default_pad_value='otsu', ... ) >>> transformed = transform(sample) From the command line:: $ torchio-transform t1.nii.gz RandomAffine --kwargs "degrees=30 default_pad_value=minimum" --seed 42 affine_min.nii.gz """ def __init__( self, scales: Tuple[float, float] = (0.9, 1.1), degrees: TypeRangeFloat = 10, isotropic: bool = False, default_pad_value: Union[str, float] = 'otsu', p: float = 1, oversampling_pct=0.2, metrics: Dict = None ): super().__init__(p=p, metrics=metrics) self.scales = scales self.degrees = self.parse_degrees(degrees) self.isotropic = isotropic self.default_pad_value = self.parse_default_value(default_pad_value) self.oversampling_pct = oversampling_pct @staticmethod def parse_default_value(value: Union[str, float]) -> Union[str, float]: if isinstance(value, Number) or value in ('minimum', 'otsu', 'mean'): return value message = ( 'Value for default_pad_value must be "minimum", "otsu", "mean"' ' or a number' ) raise ValueError(message) def apply_transform(self, sample: Subject) -> dict: sample.check_consistent_spatial_shape() scaling_params, rotation_params = self.get_params( self.scales, self.degrees, self.isotropic) random_parameters_dict = { 'scaling': scaling_params, 'rotation': rotation_params, 'oversampling' : self.oversampling_pct } for image_dict in sample.get_images(intensity_only=False): if image_dict[TYPE] == LABEL: padding_values = [0] else: padding_values = estimate_borders_mean_std(image_dict[DATA].numpy()) add_name = image_dict[STEM] if image_dict[STEM] is not None else '' #because when called directly with tensor, it is not define hmmm... random_parameters_dict['noise_mean_' + add_name] = float(padding_values[0]) random_parameters_dict['noise_std_' + add_name] = float(padding_values[1]) image_dict[DATA] = self.apply_affine_transform( image_dict[DATA], scaling_params, rotation_params, padding_values, ) #sample.add_transform(self, random_parameters_dict) return sample @staticmethod def get_params( scales: Tuple[float, float], degrees: Tuple[float, float], isotropic: bool, ) -> Tuple[List[float], List[float]]: scaling_params = torch.FloatTensor(3).uniform_(*scales) if isotropic: scaling_params.fill_(scaling_params[0]) rotation_params = torch.FloatTensor(3).uniform_(*degrees) return scaling_params.tolist(), rotation_params.tolist() def apply_affine_transform( self, tensor: torch.Tensor, scaling_params: List[float], rotation_params: List[float], padding_values: List[float] ) -> torch.Tensor: assert tensor.ndim == 4 assert len(tensor) == 1 from torchio.transforms.augmentation.intensity.random_motion_from_time_course import create_rotation_matrix_3d import math import finufftpy image = tensor[0] #noise_mean, nois_std = estimate_borders_mean_std(np.abs(image.numpy())) #random_noise gives negativ values ... noise_mean, nois_std = estimate_borders_mean_std(image.numpy()) original_image_shape = image.shape if self.oversampling_pct > 0.0: if len(padding_values) == 2: #mean std padd_mode = 'random.normal' else: padd_mode = 'constant' image = self._oversample(image, self.oversampling_pct, padding_mode=padd_mode, padding_normal=padding_values) #im_freq_domain = (np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(image)))).astype(np.complex128) im_freq_domain = self._fft_im(image) #if self.oversampling_pct > 0.0: # im_freq_domain = self._oversample(im_freq_domain, self.oversampling_pct, # padding_mode='random.normal', padding_normal=(noise_mean, nois_std)) rrrot = -np.radians(rotation_params); rrrot[1] = - rrrot[1] #to get the same as sitk ... hmmm rotation_matrices = create_rotation_matrix_3d(rrrot) scaling_matrices = np.eye(3) / np.array(scaling_params) #/ to have same convention as rotation_matrices = np.matmul(rotation_matrices, scaling_matrices) im_shape = im_freq_domain.shape center = [math.ceil((x - 1) / 2) for x in im_shape] [i1, i2, i3] = np.meshgrid(2*(np.arange(im_shape[0]) - center[0])/im_shape[0], 2*(np.arange(im_shape[1]) - center[1])/im_shape[1], 2*(np.arange(im_shape[2]) - center[2])/im_shape[2], indexing='ij') grid_coordinates = np.array([i1.flatten('F'), i2.flatten('F'), i3.flatten('F')]) method='one_matrix' if method=='one_matrix': new_grid_coords =
np.matmul(rotation_matrices, grid_coordinates)
numpy.matmul
# -*- coding: utf-8 -*- """Test for the csdm object 1) generate csdm object. 2) split multiple dependent variables to individual objects. 3) add, sub, iadd, radd, isub, rsub, mul, imul, for scalar and ScalarQuantity. 4) rmul, truediv, itruediv, rtruediv, pow, ipow for scalar and ScalarQuantity. 5) min, max, clip, real, imag, conj, round, angle functions. """ import json import numpy as np import pytest import csdmpy as cp def get_test(type): out = np.random.rand(10).astype(type) a_test = cp.new() a_test.dimensions.append(cp.LinearDimension(count=10, increment="1s")) a_test.add_dependent_variable( {"type": "internal", "quantity_type": "scalar", "unit": "m", "components": out} ) return out, a_test def get_test_2d(type): out = np.random.rand(50).astype(type).reshape(10, 5) a_test = cp.new() a_test.dimensions.append(cp.LinearDimension(count=5, increment="1s")) a_test.dimensions.append(cp.LinearDimension(count=10, increment="1m")) a_test.add_dependent_variable( { "type": "internal", "quantity_type": "scalar", "unit": "m", "components": out.ravel(), } ) return out, a_test def test_csdm(): data = cp.new(description="This is a test") assert data != "sd" assert data.size == 1 # read_only assert data.read_only is False data.read_only = True assert data.read_only is True error = "Expecting an instance of type" with pytest.raises(TypeError, match=".*{0}.*".format(error)): data.read_only = "True" # tags assert data.tags == [] data.tags = ["1", "2", "3"] assert data.tags == ["1", "2", "3"] error = "Expecting an instance of type" with pytest.raises(TypeError, match=".*{0}.*".format(error)): data.tags = "23" # version assert data.version == cp.csdm.CSDM.__latest_CSDM_version__ # geographic_coordinate assert data.geographic_coordinate == {} error = "can't set attribute" with pytest.raises(AttributeError, match=".*{0}.*".format(error)): data.geographic_coordinate = {} # description assert data.description == "This is a test" data.description = "Enough with the tests" assert data.description == "Enough with the tests" error = "Expecting an instance of type" with pytest.raises(TypeError, match=".*{0}.*".format(error)): data.description = {} # application assert data.application == {} data.application = {"csdmpy": "Some day"} assert data.application == {"csdmpy": "Some day"} error = "Expecting an instance of type" with pytest.raises(TypeError, match=".*{0}.*".format(error)): data.application = "Some other day" # filename assert data.filename == "" # data_structure structure = { "csdm": { "version": "1.0", "read_only": True, "tags": ["1", "2", "3"], "description": "Enough with the tests", "application": {"csdmpy": "Some day"}, } } assert data.data_structure == str( json.dumps(structure, ensure_ascii=False, sort_keys=False, indent=2) ) assert data.dict() == structure # equality check dm = data.copy() assert dm == data assert dm.shape == () dm.dimensions.append(cp.LinearDimension(count=10, increment="1s")) assert dm != data def test_split(): a = cp.new() a.dimensions.append(cp.LinearDimension(count=10, increment="1m")) a.add_dependent_variable( {"type": "internal", "components": np.arange(10) + 1, "quantity_type": "scalar"} ) b = cp.new() b.dimensions.append(cp.LinearDimension(count=10, increment="1m")) b.add_dependent_variable( {"type": "internal", "components": np.arange(10) + 2, "quantity_type": "scalar"} ) c = cp.new() c.dimensions.append(cp.LinearDimension(count=10, increment="1m")) c.add_dependent_variable( {"type": "internal", "components": np.arange(10) + 1, "quantity_type": "scalar"} ) c.add_dependent_variable( {"type": "internal", "components": np.arange(10) + 2, "quantity_type": "scalar"} ) a_, b_ = c.split() assert a_ == a assert b_ == b a_test = cp.new() a_test.dimensions.append(cp.LinearDimension(count=10, increment="1s")) a_test.add_dependent_variable( { "type": "internal", "quantity_type": "scalar", "unit": "m", "components": np.arange(10), } ) a1_test = cp.new() a1_test.dimensions.append(cp.LinearDimension(count=10, increment="1m")) a1_test.add_dependent_variable( { "type": "internal", "quantity_type": "scalar", "unit": "m", "components":
np.arange(10)
numpy.arange
from ..util import BaseCase import numpy as np import scipy.sparse as sps import warnings import pygsti.tools.matrixtools as mt class MatrixToolsTester(BaseCase): def test_is_hermitian(self): herm_mx = np.array([[ 1, 1+2j], [1-2j, 3]], 'complex') non_herm_mx = np.array([[ 1, 4+2j], [1+2j, 3]], 'complex') self.assertTrue(mt.is_hermitian(herm_mx)) self.assertFalse(mt.is_hermitian(non_herm_mx)) s = mt.mx_to_string(non_herm_mx) # TODO assert correctness def test_is_pos_def(self): pos_mx = np.array([[ 4, 0.2], [0.1, 3]], 'complex') non_pos_mx = np.array([[ 0, 1], [1, 0]], 'complex') self.assertTrue(mt.is_pos_def(pos_mx)) self.assertFalse(mt.is_pos_def(non_pos_mx)) def test_is_valid_density_mx(self): density_mx = np.array([[ 0.9, 0], [ 0, 0.1]], 'complex') non_density_mx = np.array([[ 2.0, 1.0], [-1.0, 0]], 'complex') self.assertTrue(mt.is_valid_density_mx(density_mx)) self.assertFalse(mt.is_valid_density_mx(non_density_mx)) s = mt.mx_to_string(density_mx) # TODO assert correctness def test_nullspace(self): a = np.array([[1, 1], [1, 1]]) print("Nullspace = ", mt.nullspace(a)) expected = np.array( [[ 0.70710678], [-0.70710678]] ) diff1 = np.linalg.norm(mt.nullspace(a) - expected) diff2 = np.linalg.norm(mt.nullspace(a) + expected) # -1*expected is OK too (just an eigenvector) self.assertTrue(np.isclose(diff1, 0) or np.isclose(diff2, 0)) diff1 = np.linalg.norm(mt.nullspace_qr(a) - expected) diff2 = np.linalg.norm(mt.nullspace_qr(a) + expected) # -1*expected is OK too (just an eigenvector) self.assertTrue(np.isclose(diff1, 0) or np.isclose(diff2, 0)) mt.print_mx(a) def test_helpers(self): a = np.array([1, 2, 3], 'd') self.assertTrue(mt.array_eq(a, a)) def test_matrix_log(self): M = np.array([[-1, 0], [0, -1]], 'complex') # degenerate negative evals mt.real_matrix_log(M, actionIfImaginary="raise", TOL=1e-6) # TODO assert correctness M = np.array([[-1, 1e-10], [1e-10, -1]], 'complex') # degenerate negative evals, but will generate complex evecs mt.real_matrix_log(M, actionIfImaginary="raise", TOL=1e-6) # TODO assert correctness M = np.array([[1, 0], [0, -1]], 'd') # a negative *unparied* eigenvalue => log may be imaginary mt.real_matrix_log(M, actionIfImaginary="ignore", TOL=1e-6) # TODO assert correctness def test_matrix_log_warns_on_imaginary(self): M = np.array([[1, 0], [0, -1]], 'd') self.assertWarns(Warning, mt.real_matrix_log, M, actionIfImaginary="warn", TOL=1e-6) def test_matrix_log_raises_on_imaginary(self): M = np.array([[1, 0], [0, -1]], 'd') with self.assertRaises(ValueError): mt.real_matrix_log(M, actionIfImaginary="raise", TOL=1e-6) def test_matrix_log_raises_on_invalid_action(self): M = np.array([[1, 0], [0, -1]], 'd') with self.assertRaises(AssertionError): mt.real_matrix_log(M, actionIfImaginary="foobar", TOL=1e-6) def test_matrix_log_raise_on_no_real_log(self): a = np.array([[1, 1], [1, 1]]) with self.assertRaises(AssertionError): mt.real_matrix_log(a) def test_minweight_match(self): a = np.array([1, 2, 3, 4], 'd') b = np.array([3.1, 2.1, 4.1, 1.1], 'd') expectedPairs = [(0, 3), (1, 1), (2, 0), (3, 2)] # (i,j) indices into a & b wts = mt.minweight_match(a, b, metricfn=None, return_pairs=False, pass_indices_to_metricfn=False) wts, pairs = mt.minweight_match(a, b, metricfn=None, return_pairs=True, pass_indices_to_metricfn=False) self.assertEqual(set(pairs), set(expectedPairs)) def fn(x, y): return abs(x - y) wts, pairs = mt.minweight_match(a, b, metricfn=fn, return_pairs=True, pass_indices_to_metricfn=False) self.assertEqual(set(pairs), set(expectedPairs)) def fn(i, j): return abs(a[i] - b[j]) wts, pairs = mt.minweight_match(a, b, metricfn=fn, return_pairs=True, pass_indices_to_metricfn=True) self.assertEqual(set(pairs), set(expectedPairs)) def test_fancy_assignment(self): a = np.zeros((4, 4, 4), 'd') twoByTwo = np.ones((2, 2), 'd') #NOTEs from commit message motivating why we need this: # a = np.zeros((3,3,3)) # a[:,1:2,1:3].shape == (3,1,2) # good! # a[0,:,1:3].shape == (3,2) #good! # a[0,:,[1,2]].shape == (2,3) # ?? (broacasting ':' makes this like a[0,[1,2]]) # a[:,[1,2],[1,2]].shape == (3,2) # ?? not (3,2,2) b/c lists broadcast # a[:,[1],[1,2]].shape == (3,2) # ?? not (3,1,2) b/c lists broadcast # a[:,[1,2],[0,1,2]].shape == ERROR b/c [1,2] can't broadcast to [0,1,2]! #simple integer indices mt._fas(a, (0, 0, 0), 4.5) # a[0,0,0] = 4.5 self.assertAlmostEqual(a[0, 0, 0], 4.5) mt._fas(a, (0, 0, 0), 4.5, add=True) # a[0,0,0] += 4.5 self.assertAlmostEqual(a[0, 0, 0], 9.0) #still simple: mix of slices and integers mt._fas(a, (slice(0, 2), slice(0, 2), 0), twoByTwo) # a[0:2,0:2,0] = twoByTwo self.assertArraysAlmostEqual(a[0:2, 0:2, 0], twoByTwo) #complex case: some/all indices are integer arrays mt._fas(a, ([0, 1], [0, 1], 0), twoByTwo[:, :]) # a[0:2,0:2,0] = twoByTwo - but a[[0,1],[0,1],0] wouldn't do this! self.assertArraysAlmostEqual(a[0:2, 0:2, 0], twoByTwo) mt._fas(a, ([0, 1], [0, 1], 0), twoByTwo[:, :], add=True) # a[0:2,0:2,0] = twoByTwo - but a[[0,1],[0,1],0] wouldn't do this! self.assertArraysAlmostEqual(a[0:2, 0:2, 0], 2 * twoByTwo) # Fancy indexing (without assignment) self.assertEqual(mt._findx(a, (0, 0, 0)).shape, ()) # (1,1,1)) self.assertEqual(mt._findx(a, (slice(0, 2), slice(0, 2), slice(0, 2))).shape, (2, 2, 2)) self.assertEqual(mt._findx(a, (slice(0, 2), slice(0, 2), 0)).shape, (2, 2)) self.assertEqual(mt._findx(a, ([0, 1], [0, 1], 0)).shape, (2, 2)) self.assertEqual(mt._findx(a, ([], [0, 1], 0)).shape, (0, 2)) def test_safe_ops(self): mx = np.array([[1+1j, 0], [2+2j, 3+3j]], 'complex') smx = sps.csr_matrix(mx) smx_lil = sps.lil_matrix(mx) # currently unsupported r = mt.safereal(mx, inplace=False) self.assertArraysAlmostEqual(r, np.real(mx)) i = mt.safeimag(mx, inplace=False) self.assertArraysAlmostEqual(i, np.imag(mx)) r = mt.safereal(smx, inplace=False) self.assertArraysAlmostEqual(r.toarray(), np.real(mx)) i = mt.safeimag(smx, inplace=False) self.assertArraysAlmostEqual(i.toarray(),
np.imag(mx)
numpy.imag
import numpy as np import struct import os DEG2RAD=np.pi/180.0 RAD2DEG=180.0/np.pi #Change flicks theta in [-pi/2,pi/2] --> [0,pi] def read_flicks_file(file_directory,flicks_file): #Read header file hdrfile=open(os.path.join(file_directory,"flicks.hdr"),"r") for idx in range(2): hdrfile.readline() line=hdrfile.readline() if 'spherical exponential' not in line.lower(): print('Warning! Coordinate type "'+line+'" not recognized') line=hdrfile.readline() n1p=int(line[:2]) line=hdrfile.readline() n2p=int(line[:2]) line=hdrfile.readline() n3p=int(line[:2]) for idx in range(2): hdrfile.readline() nvar=0 for idx in range(12): line=hdrfile.readline() if len(line)>0: nvar+=int(line[:1]) hdrfile.close() #Read main serial flicks file flicksfile=open(os.path.join(file_directory,flicks_file),"rb") #Use struct.unpack, big endian => use '>' at start of format string #Note! Every time Fortran write command is invoked, there are 4 bytes at the start and end with the number of bytes being written #Use file.read(4) or file.read(8) to skip this padding flicksfile.read(25) time=struct.unpack('>f', flicksfile.read(4))[0] flicksfile.read(8) ntblks=struct.unpack('>i', flicksfile.read(4))[0] nlblks=struct.unpack('>i', flicksfile.read(4))[0] newgrd=struct.unpack('>i', flicksfile.read(4))[0] flicksfile.read(4) coord_logR=np.zeros((nlblks,2)) coord_theta=np.zeros((nlblks,2)) coord_phi=np.zeros((nlblks,2)) data=np.zeros((nlblks,n3p,n2p,n1p,nvar)) idx_leaf=0 for idx_blk in range(ntblks): flicksfile.read(4) iputwrk=struct.unpack('>'+21*'i', flicksfile.read(21*4)) flicksfile.read(8) rputwrk=struct.unpack('>'+6*'f', flicksfile.read(6*4)) flicksfile.read(4) if iputwrk[2]==1: coord_logR[idx_leaf,:]=[rputwrk[0],rputwrk[1]] coord_theta[idx_leaf,:]=[rputwrk[2]+np.pi*0.5,rputwrk[3]+np.pi*0.5] coord_phi[idx_leaf,:]=[rputwrk[4],rputwrk[5]] for idx_p in range(n3p): for idx_t in range(n2p): for idx_r in range(n1p): flicksfile.read(4) data[idx_leaf,idx_p,idx_t,idx_r,:]=struct.unpack('>'+nvar*'f', flicksfile.read(nvar*4)) flicksfile.read(4) idx_leaf+=1 flicksfile.close() return time,ntblks,nlblks,newgrd,coord_logR,coord_theta,coord_phi,data def get_flicks_time(flicks_file): flicksfile=open(flicks_file,"rb") flicksfile.read(25) time=struct.unpack('>f', flicksfile.read(4))[0] flicksfile.close() return time def get_flicks_grid_dimensions(data): nlblk=np.shape(data)[0] n1p=np.shape(data)[3] n2p=np.shape(data)[2] n3p=np.shape(data)[1] nvar=np.shape(data)[4] return nlblk,n1p,n2p,n3p,nvar def read_bfield_file(file_directory,bfield_file): #Read header file hdrfile=open(os.path.join(file_directory,"bfield.hdr"),"r") hdrfile.readline() line=hdrfile.readline() if 'spherical exponential' not in line.lower(): print('Warning! Coordinate type "'+line+'" not recognized') line=hdrfile.readline() n1p=int(line[:2]) line=hdrfile.readline() n2p=int(line[:2]) line=hdrfile.readline() n3p=int(line[:2]) hdrfile.close() #Read main bfield file bfieldfile=open(os.path.join(file_directory,bfield_file),"rb") bfieldfile.read(4) time=struct.unpack('>d', bfieldfile.read(8))[0] bfieldfile.read(8) ntblks=struct.unpack('>i', bfieldfile.read(4))[0] nlblks=struct.unpack('>i', bfieldfile.read(4))[0] bfieldfile.read(4) coord_logR=np.zeros((nlblks,2)) coord_theta=np.zeros((nlblks,2)) coord_phi=np.zeros((nlblks,2)) data=np.zeros((nlblks,n3p,n2p,n1p,3)) idx_leaf=0 for idx in range(ntblks): bfieldfile.read(4) iputwrk=struct.unpack('>'+35*'i', bfieldfile.read(35*4)) bfieldfile.read(8) rputwrk=struct.unpack('>'+6*'d', bfieldfile.read(6*8)) bfieldfile.read(4) if iputwrk[2]==1: coord_logR[idx_leaf,:]=[rputwrk[0],rputwrk[1]] coord_theta[idx_leaf,:]=[rputwrk[2]+np.pi*0.5,rputwrk[3]+np.pi*0.5] coord_phi[idx_leaf,:]=[rputwrk[4],rputwrk[5]] for idx_p in range(n3p): for idx_t in range(n2p): for idx_r in range(n1p): bfieldfile.read(4) data[idx_leaf,idx_p,idx_t,idx_r,:]=struct.unpack('>'+3*'d', bfieldfile.read(24)) bfieldfile.read(4) idx_leaf+=1 bfieldfile.close() return time,ntblks,nlblks,coord_logR,coord_theta,coord_phi,data def interp_pointpair(x,x0,x1,y0,y1): if x0==x1: return y0 else: return y0+(x-x0)*(y1-y0)/(x1-x0) #Target angle in degrees def phi_slice(target_phi,coord_logR,coord_theta,coord_phi,data): nlblk,n1p,n2p,n3p,nvar=get_flicks_grid_dimensions(data) target_phi_actual=target_phi*np.pi/180.0 num_blocks=len(coord_phi[:,0]) bounding_lblk=[] for idx in range(num_blocks): if coord_phi[idx,0]<coord_phi[idx,1]: if coord_phi[idx,0]<=target_phi_actual and coord_phi[idx,1]>=target_phi_actual: bounding_lblk.append(idx) else: if coord_phi[idx,0]>=target_phi_actual and coord_phi[idx,1]<=target_phi_actual: bounding_lblk.append(idx) new_logR=np.zeros((len(bounding_lblk)*n2p*n1p)) new_theta=np.zeros((len(bounding_lblk)*n2p*n1p)) new_data=np.zeros((len(bounding_lblk)*n2p*n1p,nvar)) for idx in range(len(bounding_lblk)): idx_phi=int(np.floor((target_phi_actual-coord_phi[bounding_lblk[idx],0])/(coord_phi[bounding_lblk[idx],1]-coord_phi[bounding_lblk[idx],0])*(n3p-1))) if idx_phi==n3p-1: idx_phi=n3p-2 for idx_t in range(n2p): for idx_r in range(n1p): new_logR[idx*n2p*n1p+idx_t*n1p+idx_r]=idx_r/(n1p-1)*(coord_logR[bounding_lblk[idx],1]-coord_logR[bounding_lblk[idx],0])+coord_logR[bounding_lblk[idx],0] new_theta[idx*n2p*n1p+idx_t*n1p+idx_r]=idx_t/(n2p-1)*(coord_theta[bounding_lblk[idx],1]-coord_theta[bounding_lblk[idx],0])+coord_theta[bounding_lblk[idx],0] phi_low=idx_phi/(n3p-1)*(coord_phi[bounding_lblk[idx],1]-coord_phi[bounding_lblk[idx],0])+coord_phi[bounding_lblk[idx],0] phi_high=(idx_phi+1)/(n3p-1)*(coord_phi[bounding_lblk[idx],1]-coord_phi[bounding_lblk[idx],0])+coord_phi[bounding_lblk[idx],0] for idx_v in range(nvar): new_data[idx*n2p*n1p+idx_t*n1p+idx_r,idx_v]=interp_pointpair(target_phi_actual,phi_low,phi_high,data[bounding_lblk[idx],idx_phi,idx_t,idx_r,idx_v], data[bounding_lblk[idx],idx_phi+1,idx_t,idx_r,idx_v]) return new_logR,new_theta,new_data #Target in linear space (as opposed to logR) def R_slice(target_R,coord_logR,coord_theta,coord_phi,data): nlblk,n1p,n2p,n3p,nvar=get_flicks_grid_dimensions(data) target_logR_actual=np.log(target_R) num_blocks=len(coord_logR[:,0]) bounding_lblk=[] for idx in range(num_blocks): if coord_logR[idx,0]<coord_logR[idx,1]: if coord_logR[idx,0]<=target_logR_actual and coord_logR[idx,1]>=target_logR_actual: bounding_lblk.append(idx) else: if coord_logR[idx,0]>=target_logR_actual and coord_logR[idx,1]<=target_logR_actual: bounding_lblk.append(idx) new_theta=np.zeros((len(bounding_lblk)*n3p*n2p)) new_phi=np.zeros((len(bounding_lblk)*n3p*n2p)) new_data=np.zeros((len(bounding_lblk)*n3p*n2p,nvar)) for idx in range(len(bounding_lblk)): idx_logR=int(np.floor((target_logR_actual-coord_logR[bounding_lblk[idx],0])/(coord_logR[bounding_lblk[idx],1]-coord_logR[bounding_lblk[idx],0])*(n1p-1))) if idx_logR==n1p-1: idx_logR=n1p-2 for idx_p in range(n3p): for idx_t in range(n2p): new_theta[idx*n3p*n2p+idx_p*n2p+idx_t]=idx_t/(n2p-1)*(coord_theta[bounding_lblk[idx],1]-coord_theta[bounding_lblk[idx],0])+coord_theta[bounding_lblk[idx],0] new_phi[idx*n3p*n2p+idx_p*n2p+idx_t]=idx_p/(n3p-1)*(coord_phi[bounding_lblk[idx],1]-coord_phi[bounding_lblk[idx],0])+coord_phi[bounding_lblk[idx],0] logR_low=idx_logR/(n1p-1)*(coord_logR[bounding_lblk[idx],1]-coord_logR[bounding_lblk[idx],0])+coord_logR[bounding_lblk[idx],0] logR_high=(idx_logR+1)/(n1p-1)*(coord_logR[bounding_lblk[idx],1]-coord_logR[bounding_lblk[idx],0])+coord_logR[bounding_lblk[idx],0] for idx_v in range(nvar): new_data[idx*n3p*n2p+idx_p*n2p+idx_t,idx_v]=interp_pointpair(target_logR_actual,logR_low,logR_high,data[bounding_lblk[idx],idx_p,idx_t,idx_logR,idx_v], data[bounding_lblk[idx],idx_p,idx_t,idx_logR+1,idx_v]) return new_theta,new_phi,new_data #Do not save the upper edge points (i.e. very highest r, theta, phi points) #Otherwise, the redundant points at the upper edge of every block, which overlap with other blocks, must not be included def get_full_unstructured_cart_grid_noedge(coord_logR,coord_theta,coord_phi,data): nlblk,n1p,n2p,n3p,nvar=get_flicks_grid_dimensions(data) n1pm1=n1p-1 n2pm1=n2p-1 n3pm1=n3p-1 new_logR=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_theta=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_phi=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_X=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_Y=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_Z=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_data=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1),nvar)) for idx in range(nlblk): for idx_p in range(n3pm1): for idx_t in range(n2pm1): for idx_r in range(n1pm1): new_logR[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_r/n1pm1*(coord_logR[idx,1]-coord_logR[idx,0])+coord_logR[idx,0] new_theta[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_t/n2pm1*(coord_theta[idx,1]-coord_theta[idx,0])+coord_theta[idx,0] new_phi[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_p/n3pm1*(coord_phi[idx,1]-coord_phi[idx,0])+coord_phi[idx,0] for idx_v in range(nvar): new_data[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r,idx_v]=data[idx,idx_p,idx_t,idx_r,idx_v] for idx in range(nlblk*(n3p-1)*(n2p-1)*(n1p-1)): R=np.exp(new_logR[idx]) sin_theta=np.sin(new_theta[idx]) new_X[idx]=R*sin_theta*np.cos(new_phi[idx]) new_Y[idx]=R*sin_theta*np.sin(new_phi[idx]) new_Z[idx]=R*np.cos(new_theta[idx]) return new_logR,new_theta,new_phi,new_X,new_Y,new_Z,new_data def get_min_sep_sph_grid_noedge(coord_logR,coord_theta,coord_phi,data): nlblk,n1p,n2p,n3p,nvar=get_flicks_grid_dimensions(data) n1pm1=n1p-1 n2pm1=n2p-1 n3pm1=n3p-1 new_logR=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_theta=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_phi=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_X=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_Y=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_Z=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1))) new_data=np.zeros((nlblk*(n3p-1)*(n2p-1)*(n1p-1),nvar)) min_sep_logR=abs(coord_logR[0,1]-coord_logR[0,0]) min_sep_theta=abs(coord_theta[0,1]-coord_theta[0,0]) min_sep_phi=abs(coord_phi[0,1]-coord_phi[0,0]) for idx in range(nlblk): for idx_p in range(n3pm1): for idx_t in range(n2pm1): for idx_r in range(n1pm1): new_logR[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_r/n1pm1*(coord_logR[idx,1]-coord_logR[idx,0])+coord_logR[idx,0] new_theta[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_t/n2pm1*(coord_theta[idx,1]-coord_theta[idx,0])+coord_theta[idx,0] new_phi[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r]=idx_p/n3pm1*(coord_phi[idx,1]-coord_phi[idx,0])+coord_phi[idx,0] min_sep_logR=min(min_sep_logR,abs(coord_logR[idx,1]-coord_logR[idx,0])) min_sep_theta=min(min_sep_theta,abs(coord_theta[idx,1]-coord_theta[idx,0])) min_sep_phi=min(min_sep_phi,abs(coord_phi[idx,1]-coord_phi[idx,0])) for idx_v in range(nvar): new_data[idx*n3pm1*n2pm1*n1pm1+idx_p*n2pm1*n1pm1+idx_t*n1pm1+idx_r,idx_v]=data[idx,idx_p,idx_t,idx_r,idx_v] min_sep_logR/=n1pm1 min_sep_theta/=n2pm1 min_sep_phi/=n3pm1 final_logR=np.linspace(min(new_logR),max(new_logR),num=(max(new_logR)-min(new_logR))/min_sep_logR) final_theta=np.linspace(min(new_theta),max(new_theta),num=(max(new_theta)-min(new_theta))/min_sep_theta) final_phi=np.linspace(min(new_phi),max(new_phi),num=(max(new_phi)-min(new_phi))/min_sep_phi) from scipy.interpolate import griddata print(len(final_logR),len(final_theta),len(final_phi)) grid_logR3,grid_theta3,grid_phi3=np.meshgrid(final_logR,final_theta,final_phi) logRho_grid=griddata((new_logR,new_theta,new_phi), np.log(new_data[:,0]), (grid_logR3,grid_theta3,grid_phi3), method='linear')#,fill_value=min(logRho_cart)) np.save("Regular_grid_logR.np",final_logR) np.save("Regular_grid_theta.np",final_theta) np.save("Regular_grid_phi.np",final_phi) np.save("Regular_grid_rho.np",logRho_grid) return grid_logR3,grid_theta3,grid_phi3,logRho_grid #Must be a cuboid #f000=f(x0,y0,z0) #f100=f(x1,y0,z0) etc def Trilinear_interpolation(x,y,z,x0,x1,y0,y1,z0,z1,f000,f001,f010,f011,f100,f101,f110,f111): x_shift=x-x0 y_shift=y-y0 z_shift=z-z0 delta_x=x1-x0 delta_y=y1-y0 delta_z=z1-z0 a1=(f100-f000)/delta_x a2=(f010-f000)/delta_y a3=(f001-f000)/delta_z a4=(f110-f100-f010+f000)/delta_y/delta_x a5=(f110-f100-f001+f000)/delta_z/delta_x a6=(f011-f001-f010+f000)/delta_z/delta_y a7=(f111-f110-f101-f011+f001+f010+f100-f000)/delta_x/delta_y/delta_z return f000+a1*x_shift+a2*y_shift+a3*z_shift+a4*x_shift*y_shift+a5*x_shift*z_shift+a6*y_shift*z_shift+a7*x_shift*y_shift*z_shift #Assumes array arr is monotonically increasing def ref_idx_search(arr,target_value,prev_idx): idx=prev_idx if arr[idx]<=target_value: while idx<len(arr)-2 and arr[idx+1]<=target_value: idx+=1 else: while idx>0 and arr[idx-1]>target_value: idx-=1 return idx def o1_field_trace(pos_in,X,Y,Z,B,dt): delta_X=X[1]-X[0] delta_Y=Y[1]-Y[0] delta_Z=Z[1]-Z[0] x_0=pos_in[0] y_0=pos_in[1] z_0=pos_in[2] idx_x=min(max(int(np.floor((x_0-X[0])/delta_X)),0),len(X)-2) idx_y=min(max(int(np.floor((y_0-Y[0])/delta_Y)),0),len(Y)-2) idx_z=min(max(int(np.floor((z_0-Z[0])/delta_Z)),0),len(Z)-2) B_1=Trilinear_interpolation(x_0,y_0,z_0,X[idx_x],X[idx_x+1],Y[idx_y],Y[idx_y+1],Z[idx_z],Z[idx_z+1],B[idx_x,idx_y,idx_z,:], B[idx_x,idx_y,idx_z+1,:], B[idx_x,idx_y+1,idx_z,:], B[idx_x,idx_y+1,idx_z+1,:], B[idx_x+1,idx_y,idx_z,:], B[idx_x+1,idx_y,idx_z+1,:], B[idx_x+1,idx_y+1,idx_z,:], B[idx_x+1,idx_y+1,idx_z+1,:]) return pos_in+dt*B_1/np.sqrt(B_1[0]*B_1[0]+B_1[1]*B_1[1]+B_1[2]*B_1[2]) def rk4_field_trace_cartesian(pos_in,X,Y,Z,B,dt): delta_X=X[1]-X[0] delta_Y=Y[1]-Y[0] delta_Z=Z[1]-Z[0] x_0=pos_in[0] y_0=pos_in[1] z_0=pos_in[2] idx_x=min(max(int(np.floor((x_0-X[0])/delta_X)),0),len(X)-2) idx_y=min(max(int(np.floor((y_0-Y[0])/delta_Y)),0),len(Y)-2) idx_z=min(max(int(np.floor((z_0-Z[0])/delta_Z)),0),len(Z)-2) B_1=Trilinear_interpolation(x_0,y_0,z_0,X[idx_x],X[idx_x+1],Y[idx_y],Y[idx_y+1],Z[idx_z],Z[idx_z+1],B[idx_x,idx_y,idx_z,:], B[idx_x,idx_y,idx_z+1,:], B[idx_x,idx_y+1,idx_z,:], B[idx_x,idx_y+1,idx_z+1,:], B[idx_x+1,idx_y,idx_z,:], B[idx_x+1,idx_y,idx_z+1,:], B[idx_x+1,idx_y+1,idx_z,:], B[idx_x+1,idx_y+1,idx_z+1,:]) k_1=dt*B_1/np.sqrt(B_1[0]*B_1[0]+B_1[1]*B_1[1]+B_1[2]*B_1[2]) x_1=pos_in[0]+k_1[0]*0.5 y_1=pos_in[1]+k_1[1]*0.5 z_1=pos_in[2]+k_1[2]*0.5 idx_x=min(max(int(np.floor((x_1-X[0])/delta_X)),0),len(X)-2) idx_y=min(max(int(np.floor((y_1-Y[0])/delta_Y)),0),len(Y)-2) idx_z=min(max(int(np.floor((z_1-Z[0])/delta_Z)),0),len(Z)-2) B_2=Trilinear_interpolation(x_1,y_1,z_1,X[idx_x],X[idx_x+1],Y[idx_y],Y[idx_y+1],Z[idx_z],Z[idx_z+1],B[idx_x,idx_y,idx_z,:], B[idx_x,idx_y,idx_z+1,:], B[idx_x,idx_y+1,idx_z,:], B[idx_x,idx_y+1,idx_z+1,:], B[idx_x+1,idx_y,idx_z,:], B[idx_x+1,idx_y,idx_z+1,:], B[idx_x+1,idx_y+1,idx_z,:], B[idx_x+1,idx_y+1,idx_z+1,:]) k_2=dt*B_2/np.sqrt(B_2[0]*B_2[0]+B_2[1]*B_2[1]+B_2[2]*B_2[2]) x_2=pos_in[0]+k_2[0]*0.5 y_2=pos_in[1]+k_2[1]*0.5 z_2=pos_in[2]+k_2[2]*0.5 idx_x=min(max(int(np.floor((x_2-X[0])/delta_X)),0),len(X)-2) idx_y=min(max(int(np.floor((y_2-Y[0])/delta_Y)),0),len(Y)-2) idx_z=min(max(int(np.floor((z_2-Z[0])/delta_Z)),0),len(Z)-2) B_3=Trilinear_interpolation(x_2,y_2,z_2,X[idx_x],X[idx_x+1],Y[idx_y],Y[idx_y+1],Z[idx_z],Z[idx_z+1],B[idx_x,idx_y,idx_z,:], B[idx_x,idx_y,idx_z+1,:], B[idx_x,idx_y+1,idx_z,:], B[idx_x,idx_y+1,idx_z+1,:], B[idx_x+1,idx_y,idx_z,:], B[idx_x+1,idx_y,idx_z+1,:], B[idx_x+1,idx_y+1,idx_z,:], B[idx_x+1,idx_y+1,idx_z+1,:]) k_3=dt*B_3/np.sqrt(B_3[0]*B_3[0]+B_3[1]*B_3[1]+B_3[2]*B_3[2]) x_3=pos_in[0]+k_3[0] y_3=pos_in[1]+k_3[1] z_3=pos_in[2]+k_3[2] idx_x=min(max(int(np.floor((x_3-X[0])/delta_X)),0),len(X)-2) idx_y=min(max(int(np.floor((y_3-Y[0])/delta_Y)),0),len(Y)-2) idx_z=min(max(int(np.floor((z_3-Z[0])/delta_Z)),0),len(Z)-2) B_4=Trilinear_interpolation(x_3,y_3,z_3,X[idx_x],X[idx_x+1],Y[idx_y],Y[idx_y+1],Z[idx_z],Z[idx_z+1],B[idx_x,idx_y,idx_z,:], B[idx_x,idx_y,idx_z+1,:], B[idx_x,idx_y+1,idx_z,:], B[idx_x,idx_y+1,idx_z+1,:], B[idx_x+1,idx_y,idx_z,:], B[idx_x+1,idx_y,idx_z+1,:], B[idx_x+1,idx_y+1,idx_z,:], B[idx_x+1,idx_y+1,idx_z+1,:]) k_4=dt*B_4/np.sqrt(B_4[0]*B_4[0]+B_4[1]*B_4[1]+B_4[2]*B_4[2]) return pos_in+(k_1+2.0*k_2+2.0*k_3+k_4)/6.0 def rk4_field_trace_spherical(pos_in,R,theta,phi,B,dt,idx_r_p,idx_t_p,idx_p_p): r_0=pos_in[0] t_0=pos_in[1] p_0=pos_in[2] sin_th=np.sin(t_0) cos_th=np.cos(t_0) sin_ph=np.sin(p_0) cos_ph=
np.cos(p_0)
numpy.cos
import numpy as np from scipy import stats from fastubl import * def test_basics(): max_bg_sigma = 5 fu = FastUnbinned( true_mu=[5, 10], dists=[stats.norm(), stats.uniform(loc=-max_bg_sigma, scale=2 * max_bg_sigma)]) n_toys = 1000 (bf, result) = fu.toy_llrs(n_trials=n_toys) # Length matches assert len(bf) == n_toys assert len(result) == n_toys # No Nans assert np.sum(np.isnan(bf)) == 0 assert np.sum(np.isnan(result)) == 0 # Best fits >= 0 assert np.all(bf >= 0) signal_hyps = np.arange(10) lower, upper = fu.toy_intervals(signal_hyps, n_trials=n_toys) # Length matches assert len(lower) == n_toys assert len(upper) == n_toys # Only signal hypotheses in intervals assert np.all(np.in1d(lower, signal_hyps)) assert np.all(np.in1d(upper, signal_hyps)) # Lower limits never above upper limits assert
np.all(lower <= upper)
numpy.all
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import numpy as np import pyqtgraph as pg from PyQt5 import QtWidgets from src.gui.sharedcomnponets.sharedcomponets import GUIToolKit from src.simpleFOCConnector import SimpleFOCDevice class SimpleFOCGraphicWidget(QtWidgets.QGroupBox): disconnectedState = 0 initialConnectedState = 1 connectedPausedState = 2 connectedPlottingStartedState = 3 signals = ['Target', 'Vq','Vd','Cq','Cd','Vel','Angle'] signal_tooltip = ['Target', 'Voltage D [Volts]','Voltage D [Volts]','Current Q [miliAmps]','Current D [miliAmps]','Velocity [rad/sec]','Angle [rad]'] signalColors = [GUIToolKit.RED_COLOR, GUIToolKit.BLUE_COLOR, GUIToolKit.PURPLE_COLOR,GUIToolKit.YELLOW_COLOR, GUIToolKit.MAROON_COLOR, GUIToolKit.ORANGE_COLOR, GUIToolKit.GREEN_COLOR] signalIcons = ['reddot', 'bluedot','purpledot', 'yellowdot', 'maroondot', 'orangedot', 'greendot'] def __init__(self, parent=None): super().__init__(parent) self.setObjectName('plotWidget') self.setTitle('Real time motor variables: ') self.horizontalLayout = QtWidgets.QVBoxLayout(self) self.device = SimpleFOCDevice.getInstance() self.numberOfSamples = 300 pg.setConfigOptions(antialias=True) self.plotWidget = pg.PlotWidget() self.plotWidget.showGrid(x=True, y=True, alpha=0.5) self.plotWidget.addLegend() # self.legend = pg.LegendItem() # self.legend.setParentItem(self.plotWidget) self.timeArray = np.arange(-self.numberOfSamples, 0, 1) self.controlPlotWidget = ControlPlotPanel(controllerPlotWidget=self) self.signalDataArrays = [] self.signalPlots = [] self.signalPlotFlags = [] for (sig, sigColor, checkBox, tooltip) in zip(self.signals, self.signalColors,self.controlPlotWidget.signalCheckBox, self.signal_tooltip): # define signal plot data array self.signalDataArrays.append(np.zeros(self.numberOfSamples)) # configure signal plot parameters signalPen = pg.mkPen(color=sigColor, width=1.5) self.signalPlots.append(pg.PlotDataItem(self.timeArray, self.signalDataArrays[-1], pen=signalPen, name=tooltip)) self.plotWidget.addItem(self.signalPlots[-1]) # is plotted flag self.signalPlotFlags.append(True) # add callback checkBox.stateChanged.connect(self.signalPlotFlagUpdate) self.horizontalLayout.addWidget(self.plotWidget) self.horizontalLayout.addWidget(self.controlPlotWidget) self.device.commProvider.monitoringDataReceived.connect( self.upDateGraphic) self.currentStatus = self.disconnectedState self.controlPlotWidget.pauseContinueButton.setDisabled(True) self.device.addConnectionStateListener(self) self.connectionStateChanged(self.device.isConnected) def connectionStateChanged(self, deviceConnected): if deviceConnected is True: self.currentStatus = self.initialConnectedState self.enabeUI() else: self.controlPlotWidget.startStoPlotAction() self.controlPlotWidget.stopAndResetPlot() self.currentStatus = self.disconnectedState self.disableUI() def enabeUI(self): self.setEnabled(True) def disableUI(self): self.setEnabled(False) def signalPlotFlagUpdate(self): self.controlPlotWidget.updateMonitorVariables() for i, (checkBox, plotFlag) in enumerate(zip(self.controlPlotWidget.signalCheckBox, self.signalPlotFlags)): if checkBox.isChecked() and (not plotFlag): self.signalPlotFlags[i] = True self.plotWidget.addItem( self.signalPlots[i] ) elif (not checkBox.isChecked()) and plotFlag: self.signalPlotFlags[i] = False self.plotWidget.removeItem( self.signalPlots[i] ) def connectioStatusUpdate(self, connectedFlag): if connectedFlag: self.currentStatus = self.initialConnectedState else: self.currentStatus = self.disconnectedState def upDateGraphic(self, signalList): if self.currentStatus is self.connectedPlottingStartedState or \ self.currentStatus is self.connectedPausedState: signals = np.array(signalList, dtype=float) signalIndex = 0 enabled = np.where(np.array(self.signalPlotFlags) == True)[0] if(len(enabled) != len(signals)): logging.warning('Arrived corrupted data') return else: for i, ind in enumerate(enabled): self.signalDataArrays[ind] = np.roll(self.signalDataArrays[ind], -1) self.signalDataArrays[ind][-1] = signals[i] if self.currentStatus is self.connectedPlottingStartedState: self.updatePlot() def computeStatic(self, array): mean = np.mean(array) std = np.std(array) max = np.max(array) min =
np.min(array)
numpy.min
import numpy as np import pytest import tensorflow as tf from packaging.version import parse as version from tensorflow.keras.models import load_model from tf_keras_vis.activation_maximization import \ ActivationMaximization as CurrentActivationMaximization # noqa: E501 from tf_keras_vis.activation_maximization.input_modifiers import Jitter, Rotate, Scale from tf_keras_vis.activation_maximization.legacy import \ ActivationMaximization as LegacyActivationMaximization # noqa: E501 from tf_keras_vis.activation_maximization.regularizers import Norm, TotalVariation2D from tf_keras_vis.utils import listify from tf_keras_vis.utils.regularizers import LegacyRegularizer from tf_keras_vis.utils.regularizers import Norm as LegacyNorm from tf_keras_vis.utils.regularizers import TotalVariation2D as LegacyTotalVariation2D from tf_keras_vis.utils.scores import BinaryScore, CategoricalScore from tf_keras_vis.utils.test import (NO_ERROR, MockCallback, MockLegacyCallback, assert_raises, dummy_sample, mock_conv_model, mock_conv_model_with_float32_output, mock_multiple_io_model, score_with_list, score_with_tuple) ActivationMaximization = CurrentActivationMaximization @pytest.fixture(scope='function', params=[CurrentActivationMaximization, LegacyActivationMaximization]) def legacy(request): global ActivationMaximization ActivationMaximization = request.param yield ActivationMaximization = CurrentActivationMaximization class TestActivationMaximization(): @pytest.mark.parametrize("scores,expected_error", [ (None, ValueError), (score_with_tuple, NO_ERROR), (score_with_list, NO_ERROR), (CategoricalScore(0), NO_ERROR), ([None], ValueError), ([score_with_tuple], NO_ERROR), ([score_with_list], NO_ERROR), ([CategoricalScore(0)], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_score_is_(self, scores, expected_error, conv_model): activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(scores) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("seed_input,expected", [ (None, (1, 8, 8, 3)), (dummy_sample((8, 8, 3)), (1, 8, 8, 3)), ([dummy_sample((8, 8, 3))], [(1, 8, 8, 3)]), (dummy_sample((1, 8, 8, 3)), (1, 8, 8, 3)), ([dummy_sample((1, 8, 8, 3))], [(1, 8, 8, 3)]), (dummy_sample((4, 8, 8, 3)), (4, 8, 8, 3)), ([dummy_sample((4, 8, 8, 3))], [(4, 8, 8, 3)]), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_seed_input_is_(self, seed_input, expected, conv_model): activation_maximization = ActivationMaximization(conv_model) result = activation_maximization(CategoricalScore(0), seed_input=seed_input) if type(expected) is list: assert type(result) == list result = result[0] expected = expected[0] assert result.shape == expected @pytest.mark.parametrize("input_range,,expected_error", [ (None, NO_ERROR), ((None, None), NO_ERROR), ((0, None), NO_ERROR), ((None, 255), NO_ERROR), ((0, 255), NO_ERROR), ((-1.0, 1.0), NO_ERROR), ((-1.0, 255), TypeError), ((0, 1.0), TypeError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test_call__if_input_range_is_(self, input_range, expected_error, conv_model): activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), input_range=input_range) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("input_modifiers,expected_error", [ (None, NO_ERROR), (Jitter(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([Jitter()], NO_ERROR), ([Jitter(), None], TypeError), ([None, Jitter()], TypeError), ([Jitter(), Rotate(), Scale()], NO_ERROR), ([[]], NO_ERROR), ([[None]], TypeError), ([[Jitter()]], NO_ERROR), ([[Jitter(), None]], TypeError), ([[None, Jitter()]], TypeError), ([[Jitter(), Rotate(), Scale()]], NO_ERROR), ([[Jitter(), Rotate(), Scale()], [Jitter(), Rotate(), Scale()]], ValueError), (dict(input_1=None), NO_ERROR), (dict(input_1=Jitter()), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=[None]), TypeError), (dict(input_1=[Jitter()]), NO_ERROR), (dict(input_1=[Jitter(), None]), TypeError), (dict(input_1=[None, Jitter()]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()]), NO_ERROR), (dict(input_2=[Jitter(), Rotate(), Scale()]), ValueError), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[Jitter(), Rotate(), Scale()]), ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_input_modifiers_are_(self, input_modifiers, expected_error, conv_model): activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), input_modifiers=input_modifiers) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("regularizers,expected_error", [ (None, NO_ERROR), (TotalVariation2D(), NO_ERROR), (LegacyTotalVariation2D(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([TotalVariation2D()], NO_ERROR), ([LegacyNorm()], NO_ERROR), ([TotalVariation2D(), None], TypeError), ([None, TotalVariation2D()], TypeError), ([TotalVariation2D(), LegacyTotalVariation2D()], ValueError), ([TotalVariation2D(), Norm()], NO_ERROR), (dict(input_1=None), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=TotalVariation2D()), NO_ERROR), (dict(input_1=LegacyTotalVariation2D()), ValueError), (dict(input_2=None), ValueError), (dict(input_2=[]), ValueError), (dict(input_2=TotalVariation2D()), ValueError), (dict(input_2=LegacyTotalVariation2D()), ValueError), (dict(input_1=TotalVariation2D(), input_2=TotalVariation2D()), ValueError), (dict(input_1=LegacyTotalVariation2D(), input_2=TotalVariation2D()), ValueError), (dict(input_1=LegacyTotalVariation2D(), input_2=LegacyTotalVariation2D()), ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizer_is_(self, regularizers, expected_error, conv_model): activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), regularizers=regularizers) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("regularizer_container", [list, tuple, dict]) @pytest.mark.parametrize("regularizers,expected_error", [ ([[]], NO_ERROR), ([[None]], TypeError), ([[TotalVariation2D()]], NO_ERROR), ([[LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), None]], TypeError), ([[None, TotalVariation2D()]], TypeError), ([[TotalVariation2D(), Norm()]], NO_ERROR), ([[TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[LegacyNorm(), LegacyTotalVariation2D()]], ValueError), ([[], [Norm()]], ValueError), ([[None], [Norm()]], ValueError), ([[TotalVariation2D()], [Norm()]], ValueError), ([[LegacyTotalVariation2D()], [Norm()]], ValueError), ([[TotalVariation2D(), None], [Norm()]], ValueError), ([[None, TotalVariation2D()], [Norm()]], ValueError), ([[TotalVariation2D(), Norm()], [Norm()]], ValueError), ([[TotalVariation2D(), LegacyTotalVariation2D()], [Norm()]], ValueError), ([[Norm()], []], ValueError), ([[Norm()], [None]], ValueError), ([[Norm()], [TotalVariation2D()]], ValueError), ([[Norm()], [LegacyTotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), None]], ValueError), ([[Norm()], [None, TotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), Norm()]], ValueError), ([[Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), LegacyTotalVariation2D()], None], ValueError), ([None, [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizers_are_(self, regularizer_container, regularizers, expected_error, conv_model): if regularizer_container is tuple: regularizers = tuple(regularizers) if regularizer_container is dict: regularizers = zip(['input_1', 'input_2'], regularizers) regularizers = dict(regularizers) has_legacy = ((isinstance(r, LegacyRegularizer) for r in listify(_regularizers)) for _regularizers in regularizers.values()) if any((any(f) for f in has_legacy)): expected_error = ValueError activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), regularizers=regularizers) assert result.shape == (1, 8, 8, 3) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__with_gradient_modifier(self, conv_model): activation_maximization = ActivationMaximization(conv_model) result = activation_maximization(CategoricalScore(0), gradient_modifier=lambda x: x * 0.0) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("is_legacy", [False, True]) @pytest.mark.parametrize("callbacks,expected,expected_error", [ (None, [], NO_ERROR), (MockCallback(), [True], NO_ERROR), ([], [], NO_ERROR), ([MockCallback()], [True], NO_ERROR), ([MockCallback(), MockCallback()], [True, True], NO_ERROR), ([MockCallback(raise_error_on_begin=True), MockCallback()], [False, False], ValueError), ([MockCallback(), MockCallback(raise_error_on_begin=True)], [True, False], ValueError), ([MockCallback(raise_error_on_call=True), MockCallback()], [True, True], ValueError), ([MockCallback(), MockCallback(raise_error_on_call=True)], [True, True], ValueError), ([MockCallback(raise_error_on_end=True), MockCallback()], [True, True], ValueError), ([MockCallback(raise_error_on_end=True), MockCallback()], [True, True], ValueError), ([MockCallback(), MockCallback(raise_error_on_end=True)], [True, True], ValueError), ([MockCallback(raise_error_on_end=True), MockCallback(raise_error_on_end=True)], [True, True], ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__with_callbacks(self, is_legacy, callbacks, expected, expected_error, conv_model): if is_legacy: if isinstance(callbacks, MockCallback): callbacks = MockLegacyCallback(callbacks) if isinstance(callbacks, list): callbacks = [ MockLegacyCallback(c) if isinstance(c, MockCallback) else c for c in callbacks ] activation_maximization = ActivationMaximization(conv_model) try: result = activation_maximization(CategoricalScore(0), callbacks=callbacks) assert expected_error == NO_ERROR assert result.shape == (1, 8, 8, 3) except ValueError: assert expected_error != NO_ERROR finally: for c, e in zip(listify(callbacks), expected): if is_legacy: assert c.callback.on_end_was_called == e else: assert c.on_end_was_called == e @pytest.mark.parametrize("activation_modifiers,modified,expected_error", [ (None, False, NO_ERROR), (lambda x: np.ones(x.shape, np.float), True, NO_ERROR), (dict(input_1=None), False, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float)), True, NO_ERROR), (dict(input_2=lambda x: np.ones(x.shape, np.float)), False, ValueError), (dict(input_1=lambda x: np.ones(x.shape, np.float), input_2=lambda x: np.ones(x.shape, np.float)), False, ValueError), ]) @pytest.mark.usefixtures("mixed_precision") def test__call__with_activation_modifiers(self, activation_modifiers, modified, expected_error, conv_model): seed_inputs = dummy_sample((1, 8, 8, 3)) activation_maximization = ActivationMaximization(conv_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), seed_input=seed_inputs) assert not np.all(result == 0.0) result = activation_maximization(CategoricalScore(0), seed_input=seed_inputs, activation_modifiers=activation_modifiers) if modified: assert np.all(result == 1.0) else: assert not np.all(result == 1.0) class TestActivationMaximizationWithMultipleInputsModel(): @pytest.mark.parametrize("scores,expected_error", [ (None, ValueError), (score_with_tuple, NO_ERROR), (score_with_list, NO_ERROR), (CategoricalScore(0), NO_ERROR), ([None], ValueError), ([score_with_tuple], NO_ERROR), ([score_with_list], NO_ERROR), ([CategoricalScore(0)], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_score_is_(self, scores, expected_error, multiple_inputs_model): activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(scores) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("seed_inputs,expected_error", [ (None, NO_ERROR), (dummy_sample((1, 8, 8, 3)), ValueError), ([dummy_sample((1, 8, 8, 3))], ValueError), ([dummy_sample((1, 8, 8, 3)), None], ValueError), ([None, dummy_sample((1, 10, 10, 3))], ValueError), ([dummy_sample((8, 8, 3)), dummy_sample((10, 10, 3))], NO_ERROR), ([dummy_sample((1, 8, 8, 3)), dummy_sample((10, 10, 3))], NO_ERROR), ([dummy_sample((8, 8, 3)), dummy_sample((1, 10, 10, 3))], NO_ERROR), ([dummy_sample((1, 8, 8, 3)), dummy_sample((1, 10, 10, 3))], NO_ERROR), ([dummy_sample((4, 8, 8, 3)), dummy_sample((4, 10, 10, 3))], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_seed_input_is_(self, seed_inputs, expected_error, multiple_inputs_model): activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), seed_input=seed_inputs) if seed_inputs is not None and seed_inputs[0].shape[0] == 4: assert result[0].shape == (4, 8, 8, 3) assert result[1].shape == (4, 10, 10, 3) else: assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("input_modifiers,expected_error", [ (None, NO_ERROR), (Jitter(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([Jitter()], NO_ERROR), ([Jitter(), None], TypeError), ([None, Jitter()], TypeError), ([Jitter(), Rotate(), Scale()], NO_ERROR), ([[]], NO_ERROR), ([[None]], TypeError), ([[Jitter()]], NO_ERROR), ([[Jitter(), None]], TypeError), ([[None, Jitter()]], TypeError), ([[Jitter(), Rotate(), Scale()]], NO_ERROR), ([[Jitter(), Rotate(), Scale()], []], NO_ERROR), ([[Jitter(), Rotate(), Scale()], [None]], TypeError), ([[Jitter(), Rotate(), Scale()], [Jitter()]], NO_ERROR), ([[Jitter(), Rotate(), Scale()], [Jitter(), None]], TypeError), ([[Jitter(), Rotate(), Scale()], [None, Jitter()]], TypeError), ([[Jitter(), Rotate(), Scale()], [Jitter(), Rotate(), Scale()]], NO_ERROR), (dict(input_1=None), NO_ERROR), (dict(input_1=Jitter()), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=[None]), TypeError), (dict(input_1=[Jitter()]), NO_ERROR), (dict(input_1=[Jitter(), None]), TypeError), (dict(input_1=[None, Jitter()]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=None), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=Jitter()), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[None]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[Jitter()]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[Jitter(), None]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[None, Jitter()]), TypeError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_input_modifiers_are_(self, input_modifiers, expected_error, multiple_inputs_model): activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), input_modifiers=input_modifiers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("regularizers,expected_error", [ (None, NO_ERROR), (TotalVariation2D(), NO_ERROR), (LegacyTotalVariation2D(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([TotalVariation2D()], NO_ERROR), ([LegacyTotalVariation2D()], NO_ERROR), ([TotalVariation2D(), None], TypeError), ([None, TotalVariation2D()], TypeError), ([TotalVariation2D(), LegacyTotalVariation2D()], ValueError), ([TotalVariation2D(), Norm()], NO_ERROR), ([LegacyTotalVariation2D(), LegacyNorm()], NO_ERROR), (dict(input_1=None), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=TotalVariation2D()), NO_ERROR), (dict(input_1=LegacyTotalVariation2D()), ValueError), (dict(input_2=None), NO_ERROR), (dict(input_2=[]), NO_ERROR), (dict(input_2=TotalVariation2D()), NO_ERROR), (dict(input_2=LegacyTotalVariation2D()), ValueError), (dict(input_3=None), ValueError), (dict(input_3=[]), ValueError), (dict(input_3=TotalVariation2D()), ValueError), (dict(input_3=LegacyTotalVariation2D()), ValueError), (dict(input_1=TotalVariation2D(), input_2=TotalVariation2D()), NO_ERROR), (dict(input_1=LegacyTotalVariation2D(), input_2=TotalVariation2D()), ValueError), (dict(input_1=LegacyTotalVariation2D(), input_2=LegacyTotalVariation2D()), ValueError), (dict(input_1=TotalVariation2D(), input_2=TotalVariation2D(), input_3=TotalVariation2D()), ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizer_is_(self, regularizers, expected_error, multiple_inputs_model): activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), regularizers=regularizers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("regularizer_container", [list, tuple, dict]) @pytest.mark.parametrize("regularizers,expected_error", [ ([[]], NO_ERROR), ([[None]], TypeError), ([[TotalVariation2D()]], NO_ERROR), ([[LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), None]], TypeError), ([[None, TotalVariation2D()]], TypeError), ([[TotalVariation2D(), Norm()]], NO_ERROR), ([[TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[LegacyNorm(), LegacyTotalVariation2D()]], ValueError), ([[], [Norm()]], NO_ERROR), ([[None], [Norm()]], TypeError), ([[TotalVariation2D()], [Norm()]], NO_ERROR), ([[LegacyTotalVariation2D()], [Norm()]], ValueError), ([[TotalVariation2D(), None], [Norm()]], TypeError), ([[None, TotalVariation2D()], [Norm()]], TypeError), ([[TotalVariation2D(), Norm()], [Norm()]], NO_ERROR), ([[TotalVariation2D(), LegacyTotalVariation2D()], [Norm()]], ValueError), ([[Norm()], []], NO_ERROR), ([[Norm()], [None]], TypeError), ([[Norm()], [TotalVariation2D()]], NO_ERROR), ([[Norm()], [LegacyTotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), None]], TypeError), ([[Norm()], [None, TotalVariation2D()]], TypeError), ([[Norm()], [TotalVariation2D(), Norm()]], NO_ERROR), ([[Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), LegacyTotalVariation2D()], None], ValueError), ([None, [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[Norm()], [Norm()], []], ValueError), ([[Norm()], [Norm()], [None]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [LegacyTotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), None]], ValueError), ([[Norm()], [Norm()], [None, TotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), Norm()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), LegacyTotalVariation2D()], None], ValueError), ([None, [Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizers_are_(self, regularizer_container, regularizers, expected_error, multiple_inputs_model): if regularizer_container is tuple: regularizers = tuple(regularizers) if regularizer_container is dict: regularizers = zip(['input_1', 'input_2', 'input_3'], regularizers) regularizers = dict(regularizers) has_legacy = ((isinstance(r, LegacyRegularizer) for r in listify(_regularizers)) for _regularizers in regularizers.values()) if any((any(f) for f in has_legacy)): expected_error = ValueError activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), regularizers=regularizers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("activation_modifiers,modified_0,modified_1,expected_error", [ (None, False, False, NO_ERROR), (lambda x: np.ones(x.shape, np.float), True, False, NO_ERROR), (dict(input_1=None), False, False, NO_ERROR), (dict(input_2=None), False, False, NO_ERROR), (dict(input_1=None, input_2=None), False, False, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float)), True, False, NO_ERROR), (dict(input_2=lambda x: np.ones(x.shape, np.float)), False, True, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float), input_2=None), True, False, NO_ERROR), (dict(input_1=None, input_2=lambda x: np.ones(x.shape, np.float)), False, True, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float), input_2=lambda x: np.ones(x.shape, np.float)), True, True, NO_ERROR), (dict(input_1=None, input_2=None, input_3=lambda x: np.ones(x.shape, np.float)), False, False, ValueError), ]) @pytest.mark.usefixtures("mixed_precision") def test__call__with_activation_modifiers(self, activation_modifiers, modified_0, modified_1, expected_error, multiple_inputs_model): seed_inputs = [dummy_sample((1, 8, 8, 3)), dummy_sample((1, 10, 10, 3))] activation_maximization = ActivationMaximization(multiple_inputs_model) with assert_raises(expected_error): result = activation_maximization(CategoricalScore(0), seed_input=seed_inputs) assert not np.all(result[0] == 1.0) assert not np.all(result[1] == 1.0) result = activation_maximization(CategoricalScore(0), seed_input=seed_inputs, activation_modifiers=activation_modifiers) if modified_0: assert np.all(result[0] == 1.0) else: assert not np.all(result[0] == 1.0) if modified_1: assert np.all(result[1] == 1.0) else: assert not np.all(result[1] == 1.0) class TestActivationMaximizationWithMultipleOutputsModel(): @pytest.mark.parametrize("scores,expected_error", [ (None, ValueError), (score_with_tuple, ValueError), (score_with_list, ValueError), (CategoricalScore(0), ValueError), ([None], ValueError), ([score_with_tuple], ValueError), ([score_with_list], ValueError), ([CategoricalScore(0)], ValueError), ([CategoricalScore(0), None], ValueError), ([CategoricalScore(0), score_with_tuple], NO_ERROR), ([CategoricalScore(0), score_with_list], NO_ERROR), ([CategoricalScore(0), BinaryScore(False)], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_score_is_(self, scores, expected_error, multiple_outputs_model): activation_maximization = ActivationMaximization(multiple_outputs_model) with assert_raises(expected_error): result = activation_maximization(scores) assert result.shape == (1, 8, 8, 3) @pytest.mark.parametrize("seed_input,expected", [ (None, (1, 8, 8, 3)), (dummy_sample((8, 8, 3)), (1, 8, 8, 3)), ([dummy_sample((8, 8, 3))], [(1, 8, 8, 3)]), (dummy_sample((1, 8, 8, 3)), (1, 8, 8, 3)), ([dummy_sample((1, 8, 8, 3))], [(1, 8, 8, 3)]), (dummy_sample((4, 8, 8, 3)), (4, 8, 8, 3)), ([dummy_sample((4, 8, 8, 3))], [(4, 8, 8, 3)]), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_seed_input_is_(self, seed_input, expected, multiple_outputs_model): activation_maximization = ActivationMaximization(multiple_outputs_model) result = activation_maximization( [CategoricalScore(1), BinaryScore(False)], seed_input=seed_input) if type(expected) is list: assert type(result) == list result = result[0] expected = expected[0] assert result.shape == expected class TestActivationMaximizationWithMultipleIOModel(): @pytest.mark.parametrize("scores,expected_error", [ (None, ValueError), (score_with_tuple, ValueError), (score_with_list, ValueError), (CategoricalScore(0), ValueError), ([None], ValueError), ([score_with_tuple], ValueError), ([score_with_list], ValueError), ([CategoricalScore(0)], ValueError), ([CategoricalScore(0), None], ValueError), ([CategoricalScore(0), score_with_tuple], NO_ERROR), ([CategoricalScore(0), score_with_list], NO_ERROR), ([CategoricalScore(0), BinaryScore(False)], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_score_is_(self, scores, expected_error, multiple_io_model): activation_maximization = ActivationMaximization(multiple_io_model) with assert_raises(expected_error): result = activation_maximization(scores) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("seed_inputs,expected_error", [ (None, NO_ERROR), (dummy_sample((1, 8, 8, 3)), ValueError), ([dummy_sample((1, 8, 8, 3))], ValueError), ([dummy_sample((1, 8, 8, 3)), None], ValueError), ([None, dummy_sample((1, 10, 10, 3))], ValueError), ([dummy_sample((8, 8, 3)), dummy_sample((10, 10, 3))], NO_ERROR), ([dummy_sample((1, 8, 8, 3)), dummy_sample((10, 10, 3))], NO_ERROR), ([dummy_sample((8, 8, 3)), dummy_sample((1, 10, 10, 3))], NO_ERROR), ([dummy_sample((1, 8, 8, 3)), dummy_sample((1, 10, 10, 3))], NO_ERROR), ([dummy_sample((4, 8, 8, 3)), dummy_sample((4, 10, 10, 3))], NO_ERROR), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_seed_input_is_(self, seed_inputs, expected_error, multiple_io_model): activation_maximization = ActivationMaximization(multiple_io_model) with assert_raises(expected_error): result = activation_maximization( [CategoricalScore(1), BinaryScore(True)], seed_input=seed_inputs) if seed_inputs is not None and seed_inputs[0].shape[0] == 4: assert result[0].shape == (4, 8, 8, 3) assert result[1].shape == (4, 10, 10, 3) else: assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("input_modifiers,expected_error", [ (None, NO_ERROR), (Jitter(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([Jitter()], NO_ERROR), ([Jitter(), None], TypeError), ([None, Jitter()], TypeError), ([Jitter(), Rotate(), Scale()], NO_ERROR), ([[]], NO_ERROR), ([[None]], TypeError), ([[Jitter()]], NO_ERROR), ([[Jitter(), None]], TypeError), ([[None, Jitter()]], TypeError), ([[Jitter(), Rotate(), Scale()]], NO_ERROR), ([[Jitter(), Rotate(), Scale()], []], NO_ERROR), ([[Jitter(), Rotate(), Scale()], [None]], TypeError), ([[Jitter(), Rotate(), Scale()], [Jitter()]], NO_ERROR), ([[Jitter(), Rotate(), Scale()], [Jitter(), None]], TypeError), ([[Jitter(), Rotate(), Scale()], [None, Jitter()]], TypeError), ([[Jitter(), Rotate(), Scale()], [Jitter(), Rotate(), Scale()]], NO_ERROR), (dict(input_1=None), NO_ERROR), (dict(input_1=Jitter()), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=[None]), TypeError), (dict(input_1=[Jitter()]), NO_ERROR), (dict(input_1=[Jitter(), None]), TypeError), (dict(input_1=[None, Jitter()]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=None), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=Jitter()), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[None]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[Jitter()]), NO_ERROR), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[Jitter(), None]), TypeError), (dict(input_1=[Jitter(), Rotate(), Scale()], input_2=[None, Jitter()]), TypeError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_input_modifiers_are_(self, input_modifiers, expected_error, multiple_io_model): activation_maximization = ActivationMaximization(multiple_io_model) with assert_raises(expected_error): result = activation_maximization( [CategoricalScore(1), BinaryScore(True)], input_modifiers=input_modifiers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("regularizers,expected_error", [ (None, NO_ERROR), (TotalVariation2D(), NO_ERROR), (LegacyTotalVariation2D(), NO_ERROR), ([], NO_ERROR), ([None], TypeError), ([TotalVariation2D()], NO_ERROR), ([LegacyTotalVariation2D()], NO_ERROR), ([TotalVariation2D(), None], TypeError), ([None, TotalVariation2D()], TypeError), ([TotalVariation2D(), LegacyTotalVariation2D()], ValueError), ([TotalVariation2D(), Norm()], NO_ERROR), ([LegacyTotalVariation2D(), LegacyNorm()], NO_ERROR), (dict(input_1=None), NO_ERROR), (dict(input_1=[]), NO_ERROR), (dict(input_1=TotalVariation2D()), NO_ERROR), (dict(input_1=LegacyTotalVariation2D()), ValueError), (dict(input_2=None), NO_ERROR), (dict(input_2=[]), NO_ERROR), (dict(input_2=TotalVariation2D()), NO_ERROR), (dict(input_2=LegacyTotalVariation2D()), ValueError), (dict(input_3=None), ValueError), (dict(input_3=[]), ValueError), (dict(input_3=TotalVariation2D()), ValueError), (dict(input_3=LegacyTotalVariation2D()), ValueError), (dict(input_1=TotalVariation2D(), input_2=TotalVariation2D()), NO_ERROR), (dict(input_1=LegacyTotalVariation2D(), input_2=TotalVariation2D()), ValueError), (dict(input_1=LegacyTotalVariation2D(), input_2=LegacyTotalVariation2D()), ValueError), (dict(input_1=TotalVariation2D(), input_2=TotalVariation2D(), input_3=TotalVariation2D()), ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizer_is_(self, regularizers, expected_error, multiple_io_model): activation_maximization = ActivationMaximization(multiple_io_model) with assert_raises(expected_error): result = activation_maximization( [CategoricalScore(0), BinaryScore(True)], regularizers=regularizers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("regularizer_container", [list, tuple, dict]) @pytest.mark.parametrize("regularizers,expected_error", [ ([[]], NO_ERROR), ([[None]], TypeError), ([[TotalVariation2D()]], NO_ERROR), ([[LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), None]], TypeError), ([[None, TotalVariation2D()]], TypeError), ([[TotalVariation2D(), Norm()]], NO_ERROR), ([[TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[LegacyNorm(), LegacyTotalVariation2D()]], ValueError), ([[], [Norm()]], NO_ERROR), ([[None], [Norm()]], TypeError), ([[TotalVariation2D()], [Norm()]], NO_ERROR), ([[LegacyTotalVariation2D()], [Norm()]], ValueError), ([[TotalVariation2D(), None], [Norm()]], TypeError), ([[None, TotalVariation2D()], [Norm()]], TypeError), ([[TotalVariation2D(), Norm()], [Norm()]], NO_ERROR), ([[TotalVariation2D(), LegacyTotalVariation2D()], [Norm()]], ValueError), ([[Norm()], []], NO_ERROR), ([[Norm()], [None]], TypeError), ([[Norm()], [TotalVariation2D()]], NO_ERROR), ([[Norm()], [LegacyTotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), None]], TypeError), ([[Norm()], [None, TotalVariation2D()]], TypeError), ([[Norm()], [TotalVariation2D(), Norm()]], NO_ERROR), ([[Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[TotalVariation2D(), LegacyTotalVariation2D()], None], ValueError), ([None, [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[Norm()], [Norm()], []], ValueError), ([[Norm()], [Norm()], [None]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [LegacyTotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), None]], ValueError), ([[Norm()], [Norm()], [None, TotalVariation2D()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), Norm()]], ValueError), ([[Norm()], [Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ([[Norm()], [TotalVariation2D(), LegacyTotalVariation2D()], None], ValueError), ([None, [Norm()], [TotalVariation2D(), LegacyTotalVariation2D()]], ValueError), ]) @pytest.mark.usefixtures("mixed_precision", "legacy") def test__call__if_regularizers_are_(self, regularizer_container, regularizers, expected_error, multiple_io_model): if regularizer_container is tuple: regularizers = tuple(regularizers) if regularizer_container is dict: regularizers = zip(['input_1', 'input_2', 'input_3'], regularizers) regularizers = dict(regularizers) has_legacy = ((isinstance(r, LegacyRegularizer) for r in listify(_regularizers)) for _regularizers in regularizers.values()) if any((any(f) for f in has_legacy)): expected_error = ValueError activation_maximization = ActivationMaximization(multiple_io_model) with assert_raises(expected_error): result = activation_maximization( [CategoricalScore(0), BinaryScore(True)], regularizers=regularizers) assert result[0].shape == (1, 8, 8, 3) assert result[1].shape == (1, 10, 10, 3) @pytest.mark.parametrize("activation_modifiers,modified_0,modified_1,expected_error", [ (None, False, False, NO_ERROR), (lambda x: np.ones(x.shape, np.float), True, False, NO_ERROR), (dict(input_1=None), False, False, NO_ERROR), (dict(input_2=None), False, False, NO_ERROR), (dict(input_1=None, input_2=None), False, False, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float)), True, False, NO_ERROR), (dict(input_2=lambda x: np.ones(x.shape, np.float)), False, True, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float), input_2=None), True, False, NO_ERROR), (dict(input_1=None, input_2=lambda x: np.ones(x.shape, np.float)), False, True, NO_ERROR), (dict(input_1=lambda x: np.ones(x.shape, np.float), input_2=lambda x:
np.ones(x.shape, np.float)
numpy.ones
# Copyright (c) 2016-2018 The Regents of the University of Michigan # This file is part of the General Simulation Data (GSD) project, released under the BSD 2-Clause License. """ hoomd schema reference implementation The main package :py:mod:`gsd.hoomd` is a reference implementation of the GSD schema ``hoomd``. It is a simple, but high performance and memory efficient, reader and writer for the schema. See :ref:`hoomd-examples` for full examples. * :py:func:`create` - Create a hoomd schema GSD file (deprecated). * :py:func:`open` - Open a hoomd schema GSD file. * :py:class:`HOOMDTrajectory` - Read and write hoomd schema GSD files. * :py:class:`Snapshot` - Store the state of a single frame. * :py:class:`ConfigurationData` - Store configuration data in a snapshot. * :py:class:`ParticleData` - Store particle data in a snapshot. * :py:class:`BondData` - Store topology data in a snapshot. """ import numpy from collections import OrderedDict import logging try: from gsd import fl except ImportError: fl = None; try: import gsd except ImportError: gsd = None; logger = logging.getLogger('gsd.hoomd') class ConfigurationData(object): """ Store configuration data. Users should not need to instantiate this class. Use the ``configuration`` attribute of a :py:class:`Snapshot`. Attributes: step (int): Time step of this frame (:chunk:`configuration/step`). dimensions (int): Number of dimensions (:chunk:`configuration/dimensions`). box (numpy.ndarray[float, ndim=1, mode='c']): Box dimensions (:chunk:`configuration/box`) - [lx, ly, lz, xy, xz, yz]. """ _default_value = OrderedDict(); _default_value['step'] = numpy.uint64(0); _default_value['dimensions'] = numpy.uint8(3); _default_value['box'] = numpy.array([1,1,1,0,0,0], dtype=numpy.float32); def __init__(self): self.step = None; self.dimensions = None; self.box = None; def validate(self): """ Validate all attributes. First, convert every array attribute to a numpy array of the proper type. Then validate that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Array attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ConfigurationData'); if self.box is not None: self.box = numpy.ascontiguousarray(self.box, dtype=numpy.float32); self.box = self.box.reshape([6,]) class ParticleData(object): """ Store particle data chunks. Users should not need to instantiate this class. Use the ``particles`` attribute of a :py:class:`Snapshot`. Instances resulting from file read operations will always store per particle quantities in numpy arrays of the defined types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different types, etc... Such input elements will be converted to the appropriate array type by :py:meth:`validate()` which is called when writing a frame. Attributes: N (int): Number of particles in the snapshot (:chunk:`particles/N`). types (list[str]): Names of the particle types (:chunk:`particles/types`). position (numpy.ndarray[float, ndim=2, mode='c']): Nx3 array defining particle position (:chunk:`particles/position`). orientation (numpy.ndarray[float, ndim=2, mode='c']): Nx4 array defining particle position (:chunk:`particles/orientation`). typeid (numpy.ndarray[uint32, ndim=1, mode='c']): N length array defining particle type ids (:chunk:`particles/typeid`). mass (numpy.ndarray[float, ndim=1, mode='c']): N length array defining particle masses (:chunk:`particles/mass`). charge (numpy.ndarray[float, ndim=1, mode='c']): N length array defining particle charges (:chunk:`particles/charge`). diameter (numpy.ndarray[float, ndim=1, mode='c']): N length array defining particle diameters (:chunk:`particles/diameter`). body (numpy.ndarray[int32, ndim=1, mode='c']): N length array defining particle bodies (:chunk:`particles/body`). moment_inertia (numpy.ndarray[float, ndim=2, mode='c']): Nx3 array defining particle moments of inertia (:chunk:`particles/moment_inertia`). velocity (numpy.ndarray[float, ndim=2, mode='c']): Nx3 array defining particle velocities (:chunk:`particles/velocity`). angmom (numpy.ndarray[float, ndim=2, mode='c']): Nx4 array defining particle angular momenta (:chunk:`particles/angmom`). image (numpy.ndarray[int32, ndim=2, mode='c']): Nx3 array defining particle images (:chunk:`particles/image`). """ _default_value = OrderedDict(); _default_value['N'] = numpy.uint32(0); _default_value['types'] = ['A']; _default_value['typeid'] = numpy.uint32(0); _default_value['mass'] = numpy.float32(1.0); _default_value['charge'] = numpy.float32(0); _default_value['diameter'] = numpy.float32(1.0); _default_value['body'] = numpy.int32(-1); _default_value['moment_inertia'] = numpy.array([0,0,0], dtype=numpy.float32); _default_value['position'] = numpy.array([0,0,0], dtype=numpy.float32); _default_value['orientation'] = numpy.array([1,0,0,0], dtype=numpy.float32); _default_value['velocity'] = numpy.array([0,0,0], dtype=numpy.float32); _default_value['angmom'] = numpy.array([0,0,0,0], dtype=numpy.float32); _default_value['image'] = numpy.array([0,0,0], dtype=numpy.int32); def __init__(self): self.N = 0; self.position = None; self.orientation = None; self.types = None; self.typeid = None; self.mass = None; self.charge = None; self.diameter = None; self.body = None; self.moment_inertia = None; self.velocity = None; self.angmom = None; self.image = None; def validate(self): """ Validate all attributes. First, convert every per particle attribute to a numpy array of the proper type. Then validate that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Per particle attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ParticleData'); if self.position is not None: self.position = numpy.ascontiguousarray(self.position, dtype=numpy.float32); self.position = self.position.reshape([self.N, 3]) if self.orientation is not None: self.orientation = numpy.ascontiguousarray(self.orientation, dtype=numpy.float32); self.orientation = self.orientation.reshape([self.N, 4]) if self.typeid is not None: self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32); self.typeid = self.typeid.reshape([self.N]) if self.mass is not None: self.mass = numpy.ascontiguousarray(self.mass, dtype=numpy.float32); self.mass = self.mass.reshape([self.N]) if self.charge is not None: self.charge = numpy.ascontiguousarray(self.charge, dtype=numpy.float32); self.charge = self.charge.reshape([self.N]) if self.diameter is not None: self.diameter = numpy.ascontiguousarray(self.diameter, dtype=numpy.float32); self.diameter = self.diameter.reshape([self.N]) if self.body is not None: self.body = numpy.ascontiguousarray(self.body, dtype=numpy.int32); self.body = self.body.reshape([self.N]) if self.moment_inertia is not None: self.moment_inertia = numpy.ascontiguousarray(self.moment_inertia, dtype=numpy.float32); self.moment_inertia = self.moment_inertia.reshape([self.N, 3]); if self.velocity is not None: self.velocity = numpy.ascontiguousarray(self.velocity, dtype=numpy.float32); self.velocity = self.velocity.reshape([self.N, 3]); if self.angmom is not None: self.angmom = numpy.ascontiguousarray(self.angmom, dtype=numpy.float32); self.angmom = self.angmom.reshape([self.N, 4]); if self.image is not None: self.image = numpy.ascontiguousarray(self.image, dtype=numpy.int32); self.image = self.image.reshape([self.N, 3]); class BondData(object): """ Store bond data chunks. Users should not need to instantiate this class. Use the ``bonds``, ``angles``, ``dihedrals``, or ``impropers`` attribute of a :py:class:`Snapshot`. Instances resulting from file read operations will always store per bond quantities in numpy arrays of the defined types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different types, etc... Such input elements will be converted to the appropriate array type by :py:meth:`validate()` which is called when writing a frame. Note: *M* varies depending on the type of bond. The same python class represents all types of bonds. ======== === Type *M* ======== === Bond 2 Angle 3 Dihedral 4 Improper 4 ======== === Attributes: N (int): Number of particles in the snapshot (:chunk:`bonds/N`, :chunk:`angles/N`, :chunk:`dihedrals/N`, :chunk:`impropers/N`, :chunk:`pairs/N`). types (list[str]): Names of the particle types (:chunk:`bonds/types`, :chunk:`angles/types`, :chunk:`dihedrals/types`, :chunk:`impropers/types`, :chunk:`pairs/types`). typeid (numpy.ndarray[uint32, ndim=1, mode='c']): N length array defining bond type ids (:chunk:`bonds/typeid`, :chunk:`angles/typeid`, :chunk:`dihedrals/typeid`, :chunk:`impropers/typeid`, :chunk:`pairs/types`). group (numpy.ndarray[uint32, ndim=2, mode='c']): NxM array defining tags in the particle bonds (:chunk:`bonds/group`, :chunk:`angles/group`, :chunk:`dihedrals/group`, :chunk:`impropers/group`, :chunk:`pairs/group`). """ def __init__(self, M): self.M = M; self.N = 0; self.types = None; self.typeid = None; self.group = None; self._default_value = OrderedDict(); self._default_value['N'] = numpy.uint32(0); self._default_value['types'] = []; self._default_value['typeid'] = numpy.uint32(0); self._default_value['group'] = numpy.array([0]*M, dtype=numpy.int32); def validate(self): """ Validate all attributes. First, convert every per bond attribute to a numpy array of the proper type. Then validate that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Per bond attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating BondData'); if self.typeid is not None: self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32); self.typeid = self.typeid.reshape([self.N]) if self.group is not None: self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32); self.group = self.group.reshape([self.N, self.M]); class ConstraintData(object): """ Store constraint data chunks. Users should not need to instantiate this class. Use the ``constraints``, attribute of a :py:class:`Snapshot`. Instances resulting from file read operations will always store per constraint quantities in numpy arrays of the defined types. User created snapshots can provide input data as python lists, tuples, numpy arrays of different types, etc... Such input elements will be converted to the appropriate array type by :py:meth:`validate()` which is called when writing a frame. Attributes: N (int): Number of particles in the snapshot (:chunk:`constraints/N`). value (numpy.ndarray[float32, ndim=1, mode='c']): N length array defining constraint lengths (:chunk:`constraints/value`). group (numpy.ndarray[uint32, ndim=2, mode='c']): Nx2 array defining tags in the particle constraints (:chunk:`constraints/group`). """ def __init__(self): self.M = 2; self.N = 0; self.value = None; self.group = None; self._default_value = OrderedDict(); self._default_value['N'] = numpy.uint32(0); self._default_value['value'] = numpy.float32(0); self._default_value['group'] = numpy.array([0]*self.M, dtype=numpy.int32); def validate(self): """ Validate all attributes. First, convert every per constraint attribute to a numpy array of the proper type. Then validate that all attributes have the correct dimensions. Ignore any attributes that are ``None``. Warning: Per bond attributes that are not contiguous numpy arrays will be replaced with contiguous numpy arrays of the appropriate type. """ logger.debug('Validating ConstraintData'); if self.value is not None: self.value = numpy.ascontiguousarray(self.value, dtype=numpy.float32); self.value = self.value.reshape([self.N]) if self.group is not None: self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32); self.group = self.group.reshape([self.N, self.M]); class Snapshot(object): """ Top level snapshot container. Attributes: configuration (:py:class:`ConfigurationData`): Configuration data. particles (:py:class:`ParticleData`): Particle data snapshot. bonds (:py:class:`BondData`): Bond data snapshot. angles (:py:class:`BondData`): Angle data snapshot. dihedrals (:py:class:`BondData`): Dihedral data snapshot. impropers (:py:class:`BondData`): Improper data snapshot. pairs (:py:class: `BondData`): Special pair interactions snapshot state (dict): Dictionary containing state data See the HOOMD schema specification for details on entries in the state dictionary. Entries in this dict are the chunk name without the state prefix. For example, :chunk:`state/hpmc/sphere/radius` is stored in the dictionary entry ``state['hpmc/sphere/radius']``. """ def __init__(self): self.configuration = ConfigurationData(); self.particles = ParticleData(); self.bonds = BondData(2); self.angles = BondData(3); self.dihedrals = BondData(4); self.impropers = BondData(4); self.constraints = ConstraintData(); self.pairs = BondData(2); self.state = {} self._valid_state = ['hpmc/integrate/d', 'hpmc/integrate/a', 'hpmc/sphere/radius', 'hpmc/ellipsoid/a', 'hpmc/ellipsoid/b', 'hpmc/ellipsoid/c', 'hpmc/convex_polyhedron/N', 'hpmc/convex_polyhedron/vertices', 'hpmc/convex_spheropolyhedron/N', 'hpmc/convex_spheropolyhedron/vertices', 'hpmc/convex_spheropolyhedron/sweep_radius', 'hpmc/convex_polygon/N', 'hpmc/convex_polygon/vertices', 'hpmc/convex_spheropolygon/N', 'hpmc/convex_spheropolygon/vertices', 'hpmc/convex_spheropolygon/sweep_radius', 'hpmc/simple_polygon/N', 'hpmc/simple_polygon/vertices'] def validate(self): """ Validate all contained snapshot data. """ logger.debug('Validating Snapshot'); self.configuration.validate(); self.particles.validate(); self.bonds.validate(); self.angles.validate(); self.dihedrals.validate(); self.impropers.validate(); self.constraints.validate(); self.pairs.validate(); # validate HPMC state if self.particles.types is not None: NT = len(self.particles.types) else: NT = 1; if 'hpmc/integrate/d' in self.state: self.state['hpmc/integrate/d'] = numpy.ascontiguousarray(self.state['hpmc/integrate/d'], dtype=numpy.float64); self.state['hpmc/integrate/d'] = self.state['hpmc/integrate/d'].reshape([1]) if 'hpmc/integrate/a' in self.state: self.state['hpmc/integrate/a'] = numpy.ascontiguousarray(self.state['hpmc/integrate/a'], dtype=numpy.float64); self.state['hpmc/integrate/a'] = self.state['hpmc/integrate/a'].reshape([1]) if 'hpmc/sphere/radius' in self.state: self.state['hpmc/sphere/radius'] = numpy.ascontiguousarray(self.state['hpmc/sphere/radius'], dtype=numpy.float32); self.state['hpmc/sphere/radius'] = self.state['hpmc/sphere/radius'].reshape([NT]) if 'hpmc/ellipsoid/a' in self.state: self.state['hpmc/ellipsoid/a'] = numpy.ascontiguousarray(self.state['hpmc/ellipsoid/a'], dtype=numpy.float32); self.state['hpmc/ellipsoid/a'] = self.state['hpmc/ellipsoid/a'].reshape([NT]) self.state['hpmc/ellipsoid/b'] = numpy.ascontiguousarray(self.state['hpmc/ellipsoid/b'], dtype=numpy.float32); self.state['hpmc/ellipsoid/b'] = self.state['hpmc/ellipsoid/b'].reshape([NT]) self.state['hpmc/ellipsoid/c'] = numpy.ascontiguousarray(self.state['hpmc/ellipsoid/c'], dtype=numpy.float32); self.state['hpmc/ellipsoid/c'] = self.state['hpmc/ellipsoid/c'].reshape([NT]) if 'hpmc/convex_polyhedron/N' in self.state: self.state['hpmc/convex_polyhedron/N'] = numpy.ascontiguousarray(self.state['hpmc/convex_polyhedron/N'], dtype=numpy.uint32); self.state['hpmc/convex_polyhedron/N'] = self.state['hpmc/convex_polyhedron/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_polyhedron/N']) self.state['hpmc/convex_polyhedron/vertices'] = numpy.ascontiguousarray(self.state['hpmc/convex_polyhedron/vertices'], dtype=numpy.float32); self.state['hpmc/convex_polyhedron/vertices'] = self.state['hpmc/convex_polyhedron/vertices'].reshape([sumN, 3]) if 'hpmc/convex_spheropolyhedron/N' in self.state: self.state['hpmc/convex_spheropolyhedron/N'] = numpy.ascontiguousarray(self.state['hpmc/convex_spheropolyhedron/N'], dtype=numpy.uint32); self.state['hpmc/convex_spheropolyhedron/N'] = self.state['hpmc/convex_spheropolyhedron/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_spheropolyhedron/N']) self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = numpy.ascontiguousarray(self.state['hpmc/convex_spheropolyhedron/sweep_radius'], dtype=numpy.float32); self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = self.state['hpmc/convex_spheropolyhedron/sweep_radius'].reshape([NT]) self.state['hpmc/convex_spheropolyhedron/vertices'] = numpy.ascontiguousarray(self.state['hpmc/convex_spheropolyhedron/vertices'], dtype=numpy.float32); self.state['hpmc/convex_spheropolyhedron/vertices'] = self.state['hpmc/convex_spheropolyhedron/vertices'].reshape([sumN, 3]) if 'hpmc/convex_polygon/N' in self.state: self.state['hpmc/convex_polygon/N'] = numpy.ascontiguousarray(self.state['hpmc/convex_polygon/N'], dtype=numpy.uint32); self.state['hpmc/convex_polygon/N'] = self.state['hpmc/convex_polygon/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_polygon/N']) self.state['hpmc/convex_polygon/vertices'] = numpy.ascontiguousarray(self.state['hpmc/convex_polygon/vertices'], dtype=numpy.float32); self.state['hpmc/convex_polygon/vertices'] = self.state['hpmc/convex_polygon/vertices'].reshape([sumN, 2]) if 'hpmc/convex_spheropolygon/N' in self.state: self.state['hpmc/convex_spheropolygon/N'] = numpy.ascontiguousarray(self.state['hpmc/convex_spheropolygon/N'], dtype=numpy.uint32); self.state['hpmc/convex_spheropolygon/N'] = self.state['hpmc/convex_spheropolygon/N'].reshape([NT]) sumN = numpy.sum(self.state['hpmc/convex_spheropolygon/N']) self.state['hpmc/convex_spheropolygon/sweep_radius'] =
numpy.ascontiguousarray(self.state['hpmc/convex_spheropolygon/sweep_radius'], dtype=numpy.float32)
numpy.ascontiguousarray
# -*- coding: utf-8 -*- """ Created on Thursday May 26 11:23:00 2016 @author: <NAME>, <NAME>, <NAME> """ from __future__ import division, print_function, absolute_import, unicode_literals from os import path, remove # File Path formatting from warnings import warn import numpy as np # For array operations from scipy.io.matlab import loadmat # To load parameters stored in Matlab .mat file import h5py from sidpy.sid import Translator from sidpy.hdf.hdf_utils import write_simple_attrs from pyUSID.io.write_utils import INDICES_DTYPE, Dimension from pyUSID.io.hdf_utils import create_indexed_group, write_main_dataset from .df_utils.be_utils import trimUDVS, getSpectroscopicParmLabel, \ generatePlotGroups, createSpecVals, maxReadPixels, nf32 class BEodfRelaxationTranslator(Translator): """ Translates old Relaxation data into the new H5 format. This is for the files generated from the old BEPSDAQ program utilizing two cards simultaneously. At present, this version of the translator only works for Out of field measurements It will not work for in-field. This should be fixed at a later date. """ def __init__(self, max_mem_mb=1024): super(BEodfRelaxationTranslator, self).__init__(max_mem_mb) self.FFT_BE_wave = None self.h5_file = None self.ds_main = None self.mean_resp = None self.max_resp = None self.min_resp = None def translate(self, file_path, show_plots=True, save_plots=True, do_histogram=False): """ Basic method that translates .dat data file(s) to a single .h5 file Inputs: file_path -- Absolute file path for one of the data files. It is assumed that this file is of the OLD data format. Outputs: Nothing """ file_path = path.abspath(file_path) (folder_path, basename) = path.split(file_path) (basename, path_dict) = self._parse_file_path(file_path) h5_path = path.join(folder_path, basename + '.h5') if path.exists(h5_path): remove(h5_path) self.h5_file = h5py.File(h5_path, 'w') isBEPS = True parm_dict = self.__getParmsFromOldMat(path_dict['old_mat_parms']) ignored_plt_grps = ['in-field'] # Here we assume that there is no in-field. # If in-field data is captured then the translator would have to be modified. # Technically, we could do away with this if statement, as isBEPS is always true for this translation if isBEPS: parm_dict['data_type'] = 'BEPSData' std_expt = parm_dict['VS_mode'] != 'load user defined VS Wave from file' if not std_expt: warn('This translator does not handle user defined voltage spectroscopy') return spec_label = getSpectroscopicParmLabel(parm_dict['VS_mode']) # Check file sizes: if 'read_real' in path_dict.keys(): real_size = path.getsize(path_dict['read_real']) imag_size = path.getsize(path_dict['read_imag']) else: real_size = path.getsize(path_dict['write_real']) imag_size = path.getsize(path_dict['write_imag']) if real_size != imag_size: raise ValueError("Real and imaginary file sizes DON'T match!. Ending") num_rows = int(parm_dict['grid_num_rows']) num_cols = int(parm_dict['grid_num_cols']) num_pix = num_rows * num_cols tot_bins = real_size / (num_pix * 4) # Finding bins by simple division of entire datasize # Check for case where only a single pixel is missing. check_bins = real_size / ((num_pix - 1) * 4) if tot_bins % 1 and check_bins % 1: warn('Aborting! Some parameter appears to have changed in-between') return elif not tot_bins % 1: # Everything's ok pass elif not check_bins % 1: tot_bins = check_bins warn('Warning: A pixel seems to be missing from the data. File will be padded with zeros.') tot_bins = int(tot_bins) (bin_inds, bin_freqs, bin_FFT, ex_wfm, dc_amp_vec) = self.__readOldMatBEvecs(path_dict['old_mat_parms']) """ Because this is the old data format and there is a discrepancy in the number of bins (they seem to be 2 less than the actual number), we need to re-calculate it based on the available data. This is done below. """ band_width = parm_dict['BE_band_width_[Hz]'] * (0.5 - parm_dict['BE_band_edge_trim']) st_f = parm_dict['BE_center_frequency_[Hz]'] - band_width en_f = parm_dict['BE_center_frequency_[Hz]'] + band_width bin_freqs = np.linspace(st_f, en_f, len(bin_inds), dtype=np.float32) # Forcing standardized datatypes: bin_inds =
np.int32(bin_inds)
numpy.int32
import collections import os import pathlib import sys import unittest import numpy as np # There's no package set up so do something hacky to import. sys.path.append(str(pathlib.Path(__file__).parent.absolute().parent)) from ucb_learner import UCBLearner class TestUCBLearner(unittest.TestCase): def test_converges(self): learner = UCBLearner(["a", "b", "c"], num_steps_per_update=5, mean_reward_alpha=0.1, q_alpha=0.01, lmbda=0.25, ucb_c=0.005, verbose=True) num_train_itr = 1000 num_batch_itr = 5 action = 0 means = np.array([0.001, -0.001, 0.0005]) sigmas =
np.array([0.01, 0.02, 0.003])
numpy.array
# # Test for the operator class # import pybamm from tests import get_2p1d_mesh_for_testing, get_unit_2p1D_mesh_for_testing import numpy as np import unittest class TestScikitFiniteElement(unittest.TestCase): def test_not_implemented(self): mesh = get_2p1d_mesh_for_testing() spatial_method = pybamm.ScikitFiniteElement(mesh) self.assertEqual(spatial_method.mesh, mesh) with self.assertRaises(NotImplementedError): spatial_method.gradient(None, None, None) with self.assertRaises(NotImplementedError): spatial_method.divergence(None, None, None) with self.assertRaises(NotImplementedError): spatial_method.indefinite_integral(None, None) def test_discretise_equations(self): # get mesh mesh = get_2p1d_mesh_for_testing() spatial_methods = { "macroscale": pybamm.FiniteVolume, "current collector": pybamm.ScikitFiniteElement, } disc = pybamm.Discretisation(mesh, spatial_methods) # discretise some equations var = pybamm.Variable("var", domain="current collector") y = pybamm.SpatialVariable("y", ["current collector"]) z = pybamm.SpatialVariable("z", ["current collector"]) disc.set_variable_slices([var]) y_test = np.ones(mesh["current collector"][0].npts) unit_source = pybamm.Broadcast(1, "current collector") disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Neumann"), "positive tab": (pybamm.Scalar(0), "Neumann"), } } for eqn in [ pybamm.laplacian(var), pybamm.source(unit_source, var), pybamm.laplacian(var) - pybamm.source(unit_source, var), pybamm.source(var, var), pybamm.laplacian(var) - pybamm.source(2 * var, var), pybamm.laplacian(var) - pybamm.source(unit_source ** 2 + 1 / var, var), pybamm.Integral(var, [y, z]) - 1, pybamm.source(var, var, boundary=True), pybamm.laplacian(var) - pybamm.source(unit_source, var, boundary=True), pybamm.laplacian(var) - pybamm.source(unit_source ** 2 + 1 / var, var, boundary=True), pybamm.grad_squared(var), ]: # Check that equation can be evaluated in each case # Dirichlet disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Dirichlet"), "positive tab": (pybamm.Scalar(1), "Dirichlet"), } } eqn_disc = disc.process_symbol(eqn) eqn_disc.evaluate(None, y_test) # Neumann disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Neumann"), "positive tab": (pybamm.Scalar(1), "Neumann"), } } eqn_disc = disc.process_symbol(eqn) eqn_disc.evaluate(None, y_test) # One of each disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Neumann"), "positive tab": (pybamm.Scalar(1), "Dirichlet"), } } eqn_disc = disc.process_symbol(eqn) eqn_disc.evaluate(None, y_test) # One of each disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Dirichlet"), "positive tab": (pybamm.Scalar(1), "Neumann"), } } eqn_disc = disc.process_symbol(eqn) eqn_disc.evaluate(None, y_test) # check ValueError raised for non Dirichlet or Neumann BCs eqn = pybamm.laplacian(var) - pybamm.source(unit_source, var) disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Dirichlet"), "positive tab": (pybamm.Scalar(1), "Other BC"), } } with self.assertRaises(ValueError): eqn_disc = disc.process_symbol(eqn) disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Other BC"), "positive tab": (pybamm.Scalar(1), "Neumann"), } } with self.assertRaises(ValueError): eqn_disc = disc.process_symbol(eqn) # raise ModelError if no BCs provided new_var = pybamm.Variable("new_var", domain="current collector") disc.set_variable_slices([new_var]) eqn = pybamm.laplacian(new_var) with self.assertRaises(pybamm.ModelError): eqn_disc = disc.process_symbol(eqn) # check GeometryError if using scikit-fem not in y or z x = pybamm.SpatialVariable("x", ["current collector"]) with self.assertRaises(pybamm.GeometryError): disc.process_symbol(x) def test_manufactured_solution(self): mesh = get_unit_2p1D_mesh_for_testing(ypts=32, zpts=32) spatial_methods = { "macroscale": pybamm.FiniteVolume, "current collector": pybamm.ScikitFiniteElement, } disc = pybamm.Discretisation(mesh, spatial_methods) # linear u = z (to test coordinates to degree of freedom mapping) var = pybamm.Variable("var", domain="current collector") disc.set_variable_slices([var]) var_disc = disc.process_symbol(var) z_vertices = mesh["current collector"][0].coordinates[1, :] np.testing.assert_array_almost_equal( var_disc.evaluate(None, z_vertices), z_vertices[:, np.newaxis] ) # linear u = 6*y (to test coordinates to degree of freedom mapping) y_vertices = mesh["current collector"][0].coordinates[0, :] np.testing.assert_array_almost_equal( var_disc.evaluate(None, 6 * y_vertices), 6 * y_vertices[:, np.newaxis] ) # mixed u = y*z (to test coordinates to degree of freedom mapping) np.testing.assert_array_almost_equal( var_disc.evaluate(None, y_vertices * z_vertices), y_vertices[:, np.newaxis] * z_vertices[:, np.newaxis], ) # laplace of u = sin(pi*z) var = pybamm.Variable("var", domain="current collector") eqn_zz = pybamm.laplacian(var) # set boundary conditions ("negative tab" = bottom of unit square, # "positive tab" = top of unit square, elsewhere normal derivative is zero) disc.bcs = { var.id: { "negative tab": (pybamm.Scalar(0), "Dirichlet"), "positive tab": (pybamm.Scalar(0), "Dirichlet"), } } disc.set_variable_slices([var]) eqn_zz_disc = disc.process_symbol(eqn_zz) z_vertices = mesh["current collector"][0].coordinates[1, :][:, np.newaxis] u =
np.sin(np.pi * z_vertices)
numpy.sin
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize('array, dtype, expected', [ (SparseArray([0, 1]), 'float', SparseArray([0., 1.], dtype=SparseDtype(float, 0.0))), (SparseArray([0, 1]), bool, SparseArray([False, True])), (SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True))), pytest.param( SparseArray([0, 1]), 'datetime64[ns]', SparseArray(np.array([0, 1], dtype='datetime64[ns]'), dtype=SparseDtype('datetime64[ns]', pd.Timestamp('1970'))), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), (SparseArray([0, 1, 10]), str, SparseArray(['0', '1', '10'], dtype=SparseDtype(str, '0'))), (SparseArray(['10', '20']), float, SparseArray([10.0, 20.0])), (SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0))), ]) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match='Cannot convert non-finite'): arr.astype(int) def test_set_fill_value(self): arr = SparseArray([1., np.nan, 2.], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) arr.fill_value = True assert arr.fill_value # coerces to bool # msg = "unable to set fill_value 0 to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 0 assert arr.fill_value == 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3],
np.array([1, 2])
numpy.array
""" base_lines.py - microscopy images class update: 20191001 - modify gaussian fit function """ import os import sys from tqdm import tqdm_notebook import numpy as np import math import matplotlib.pyplot as plt import matplotlib.ticker as ticker import pandas as pd from scipy.signal import argrelmax # local library from .rfit import robust_line_fit from .rfit import robust_inverseabs_fit from .rfit import gaussian, gaussian2, gaussian3, line, inverseabs from .base_filters import ImageFilter from .lineobject import LineObject from .lineobject import _smooth __author__ = '<NAME> <<EMAIL>>' __version__ = '1.1.0' class ImageLine(ImageFilter): """ Image based on channel experiments - lineprofile and migration angle detection """ def __init__(self, objects, method='tifffile', debug=False, **kwargs): """ initialization """ super().__init__(objects, method=method, debug=debug, **kwargs) """ TifFile class initialization """ # for graphic representation self._ax1 = None self._ax2 = None # fitting info self._peakdatafname = '.{}_peakinfo.csv'.format(self._meta['basename']) if os.path.isfile(self._peakdatafname): if self._debug: print('... read peak information: {}'.format(self._peakdatafname)) self._peakdata = pd.read_csv(self._peakdatafname, index_col=0) else: self._peakdata = pd.DataFrame() self._lineobject = [] self._kfit = [] self._baseline = 0.0 self._beaminfo = [] self._beamdirection = 'right' # full width injection case self._smoothing = 13 self._searchrange = 10 def __repr__(self): """ representation """ msg = super().__repr__() msg += '-'*50 + '\n' msg += '... Wall positions: ({}, {})\n'.format(self._meta['wall1'], self._meta['wall2']) msg += '... Array positions: ({}, {})\n'.format(self._meta['range1'], self._meta['range2']) msg += '... Migration Angle: {:.4f} [deg]\n'.format(self._meta['mangle']) msg += '... Frame Angle: {:.4f} [deg]\n'.format(self._meta['fangle']) msg += '... Diffusion constant: {:.4f} [um2/s]\n'.format(self._meta['D']) msg += '... Peclet number: {:.4f}\n'.format(self._meta['Pe']) msg += '... Pressure: {:.4f} [bar]\n'.format(self._meta['p']) msg += '... Velocity: {:.5f} [um/s]\n'.format(self._meta['u']) msg += '... Particle size: {:.4f} [nm]\n'.format(self._meta['psize']) return msg def set_wallinfo(self, wallinfo=[0, 512, 0, 512], show=False): """ manually set wall information """ if len(wallinfo) == 4: self._meta.update_wall(wallinfo) else: print('... wallinfo = [wall1, wall2, range1, range2]') return def set_expInfo(self, magnification=None, velocity=-1, p=-1, fangle=0.0, psize=-1, ccd_length=16.0): """ set experimental values """ if isinstance(magnification, str): self._meta.update_mag(magnification) self._meta.update_wall([0, 0, 0, 0]) if velocity > -1: self._meta['u'] = velocity if p > -1: self._meta['p'] = p if fangle != 0: self._meta['fangle'] = fangle if psize > -1: self._meta['psize'] = psize # TODO add bulk diffusion contant # line profile def getline_obj(self, frame=-1, coords=None, dtypes='orig'): """ generate line object using coordinates """ if frame == -1: img = self.tmean(dtypes=dtypes) else: img = self.getframe(frame=frame, dtypes=dtypes) self._lineobject = _getline_obj(img, coords=coords) return self._lineobject def getline_x(self, frame=-1, y=-1, dtypes='orig', **kwargs): """ get line profile along x axis """ if frame == -1: img = self.tmean(dtypes=dtypes) else: img = self.getframe(frame=frame, dtypes=dtypes) return self._getline_x(img, y=y, **kwargs) def getline_y(self, frame=-1, x=-1, dtypes='orig'): """ get line profile along y axis """ if frame == -1: img = self.tmean(dtypes=dtypes) else: img = self.getframe(frame=frame, dtypes=dtypes) return self._getline_y(img, x=x) def _getline_x(self, img, y=-1, ignore_wall=False): """ get line profile along x axis using coordinates """ if (not ignore_wall): xs, xf = self._meta['wall1'], self._meta['wall2'] return _getline_obj(img, coords=[xs, y, xf, y]) def _getline_y(self, img, x=-1, ignore_wall=False): """ get line profile along y axis using coordinates """ if (not ignore_wall): ys, yf = self._meta['range1'], self._meta['range2'] return _getline_obj(img, coords=[x, ys, x, yf]) def getlines_x_shadow(self, locations, raw=False): """ get lines with background subtraction """ results = [] results_raw = [] for i in range(len(locations)): line = _zprofile(self.tmean(), locations[i]) results_raw.append(np.copy(line)) line -= self._findShadowline(locations[i]) results.append(_smooth(line, window_len=self._smoothing)) if raw: return (results, results_raw) else: return results # fit line profile with various methods def fitline_x(self, frame=-1, y=-1, method='peaks', **kwargs): """ fitting line intensity profile along x axis """ line_obj = self.getline_x(frame=frame, dtypes='float', y=y) self._lineobject = line_obj return self._fitline(line_obj, method=method, **kwargs) def fitline_y(self, frame=-1, x=-1, method='peaks', **kwargs): """ fitting line intensity profile along y axis """ line_obj = self.getline_y(frame=frame, dtypes='float', x=x) self._lineobject = line_obj return self._fitline(line_obj, method=method, **kwargs) def _fitline_x(self, img, y=-1, method='peaks', **kwargs): line_obj = self._getline_x(img, y=y) return self._fitline(line_obj, method=method, **kwargs) def _fitline_y(self, img, x=-1, method='peaks', **kwargs): line_obj = self._getline_y(img, x=x) return self._fitline(line_obj, method=method, **kwargs) def _fitline(self, line_obj, method='gaussian', **kwargs): """ get line profile and find peak """ nu = kwargs.pop('nu', 100) if method == 'gaussian': if self._debug: print('... gaussian fit') line_obj.fit_gaussian_from(nu=nu, kfit=self._kfit, **kwargs) elif method == 'gaussian2': if self._debug: print('... double gaussian fit') line_obj.fit_gaussian2_from(nu=nu, kfit=self._kfit, **kwargs) elif method == 'gaussian3': if self._debug: print('... triple gaussian fit') line_obj.fit_gaussian3_from(nu=nu, kfit=self._kfit, **kwargs) elif method == 'peaks': if self._debug: print('... peak find fit') line_obj.fit_peaks(**kwargs) elif method == 'gcdf': if self._debug: print('... gaussian cdf fit') line_obj.fit_gcdf(nu=nu) return line_obj def fitlines_x(self, locs=-1, method='gaussian', update=False, **kwargs): return self._fitlines_x(self.tmean(), locs=locs, method=method, update=update, **kwargs) def _fitlines_x(self, img, locs=-1, method='gaussian', update=False, **kwargs): """ get peak position datasheet at locs """ # set all y if locs == -1: locs = range(int(self._meta['range1']), int(self._meta['range2'])) # read from cache if (not update) and os.path.isfile(self._peakdatafname): if self._debug: print('... read from %s' % self._peakdatafname) self._peakdata = pd.read_csv(self._peakdatafname, index_col=0) else: if self._debug: print('... create %s' % self._peakdatafname) d = np.zeros((img.shape[1], 6)) - 1 self._peakdata = pd.DataFrame(d, index=range(img.shape[1]), columns=['loc', 'peak', 'delta', 'rdelta', 'l_inp', 'r_inp']) # iterate over all range count = 0 keep_debug = self._debug self._debug = False for i in tqdm_notebook(locs): if update or (self._peakdata['loc'].loc[i] == -1): line_obj = self._fitline(self._getline_x(img, y=i), method=method, **kwargs) self._peakdata['loc'].loc[i] = i try: self._peakdata['peak'].loc[i] = line_obj._peaks[0] self._peakdata['delta'].loc[i] = line_obj._peaks[0] - line_obj._left_inp[0] self._peakdata['rdelta'].loc[i] = line_obj._right_inp[0] - line_obj._peaks[0] self._peakdata['l_inp'].loc[i] = line_obj._left_inp[0] self._peakdata['r_inp'].loc[i] = line_obj._right_inp[0] except: pass count += 1 # save if updated if count > 0: if self._debug: print('... save to %s' % self._peakdatafname) self._peakdata.to_csv(self._peakdatafname) self._debug = keep_debug return self._peakdata # show line profiles def _show_lineobj(self, line_obj, msg='', save=False, **kwargs): """ show image and line profile """ x0, y0, x1, y1 = line_obj.get_coords() _, z = line_obj.get() plt.clf() fig = plt.figure(figsize=(11, 5)) # plot image with colormap bar self._ax1 = fig.add_subplot(121) self._meta._zrange = [z.min(), z.max()] self._showimage(line_obj._img, autorange=False, wall=True, ax=self._ax1) self._ax1.plot([x0, x1], [y0, y1], 'ro-') self._ax1.annotate(str(line_obj._loc), xy=(x1+3, y1), va='top', ha='left', color='red') # plot line profile self._ax2 = plt.axes([0.62, 0.32, 0.35, 0.55]) line_obj.plot(msg=msg, ax=self._ax2, **kwargs) if save: savename = self._meta['basename'] + '_rfit_l{}_{}.pdf'.format(line_obj._loc, method) plt.savefig(savename, dpi=200) if self._debug: print('... save to {}'.format(savename)) def showline_x(self, frame=-1, y=-1, dtypes='orig', msg='', **kwargs): self._lineobject = self.getline_x(frame=frame, y=y, dtypes=dtypes) self._show_lineobj(self._lineobject, msg=msg, **kwargs) def showfit_x(self, frame=-1, y=-1, method='gaussian', msg='', **kwargs): self._lineobject = self.fitline_x(frame=frame, y=y, method=method) self._show_lineobj(self._lineobject, msg=msg, **kwargs) def showfit_peaks(self, ranges=[], method='gaussian', ax=None): """ show peakdata with image """ if len(self._peakdata) == 0: self.fitlines_x(method='gaussian') if len(ranges) == 2: self._meta['range1'] = ranges[0] self._meta['range2'] = ranges[1] if ax is None: plt.clf() fig = plt.figure(figsize=(10, 5)) ax = plt.gcf().gca() # plot image self._showimage(self.tmean(), frameNumber=False, ax=ax, wall=True) # plot transition tmp = self._peakdata.iloc[self._meta['range1']: self._meta['range2']] x = tmp['loc'] y = tmp['peak'] dy1 = tmp['l_inp'] dy2 = tmp['r_inp'] ax.plot(dy1, x, '.', color='gray', markersize=1, alpha=0.8, label='') ax.plot(dy2, x, '.', color='gray', markersize=1, alpha=0.8, label=r'$\sigma$') ax.plot(y, x, '.', color='red', markersize=1, label='peak', alpha=0.8) ax.legend(loc='best') def showfit_angles(self, ranges=[], method='gaussian', show=True, save=True, **kwargs): """ show peak positions and calculate angle """ # calculate migration angle if len(ranges) == 2: self._meta['range1'] = ranges[0] self._meta['range2'] = ranges[1] if len(self._peakdata) == 0: self.fitlines_x(method=method) tmp = self._peakdata.iloc[self._meta['range1']: self._meta['range2']] x = np.asarray(tmp['loc']) y = np.asarray(tmp['peak'].ffill()) if self._debug: print('... initial: {}, {}'.format(y.ptp()/x.ptp(), y[0])) kr = robust_line_fit(x, y, nu=100.0, debug=self._debug, initial=[y.ptp()/x.ptp(), y[0]], **kwargs) if self._debug: print('... final: {}, {}'.format(kr.x[0], kr.x[1])) yr = line(kr.x, x) self._meta['mangle'] = np.arctan(kr.x[0]) * 180.0 / np.pi self._meta.save() if show: # plot peak positions plt.clf() fig = plt.figure(figsize=(11, 5)) ax1 = fig.add_subplot(121) self.showfit_peaks(ranges=ranges, ax=ax1) ax2 = plt.axes([0.62, 0.32, 0.35, 0.55]) # plot peak position lines ax2.plot(x, y) ax2.plot(x, yr, '--', label='fit') ax2.set_xlabel('locations [pixel]') ax2.set_ylabel('peak positions [pixel]') msg = 'Shift: {:8.4f} over {:3d} Slope: {:12.4f}\nAngle: {:12.4f} [deg] y0: {:12.4f}'.format(yr.ptp(), self._meta['range2'] - self._meta['range1'], kr.x[0], self._meta['mangle'], kr.x[1]) ax2.text(0.1, -0.4, msg, ha='left', transform=ax2.transAxes) ax2.legend(loc='best') if show and save: savename = self._meta['basename'] + '_angle.pdf' if self._debug: print('... save to %s' % savename) plt.savefig(savename, dpi=300) plt.show() def showfit_sigmas(self, ranges=[], show=True, save=True, colname="delta", **kwargs): """ show sigma and calculate diffusion coefficient """ if len(ranges) == 2: self._meta['range1'] = ranges[0] self._meta['range2'] = ranges[1] if len(self._peakdata) == 0: self.fitlines_x() tmp = self._peakdata.iloc[self._meta['range1']: self._meta['range2']] x = np.asarray(tmp['loc']) y = np.asarray(tmp[colname].ffill()) if self._debug: print('... initial: {}, {}'.format(y.ptp()/x.ptp(), y[0])) kr = robust_line_fit(x, y**2, nu=300.0, debug=self._debug, initial=[y.ptp()/x.ptp(), y[0]], **kwargs) if self._debug: print('... final: {}, {}'.format(kr.x[0], kr.x[1])) yr = line(kr.x, x) self._meta['Pe'] = 2.0 * self._meta['channelWidth'] / kr.x[0] self._meta['D'] = self._meta['u'] * self._meta['arrayWidth'] / self._meta['Pe'] # um^2/s self._meta.save() if show: plt.clf() fig = plt.figure(figsize=(11, 5)) # plot peak positions ax1 = fig.add_subplot(121) self.showfit_peaks(ranges=ranges, ax=ax1) # plot peak position lines ax2 = plt.axes([0.62, 0.32, 0.35, 0.55]) ax2.plot(x, y**2, label=r'$\sigma^2$') ax2.plot(x, yr, '--', label='fit') ax2.set_xlabel(r'locations [pixel]') ax2.set_ylabel(r'sigma^2 [pixel^2]') msg = 'D: {:8.4f} [um2/s] Peclet Number: {:8.4f}\nSlope: {:13.4f} y0: {:12.4f}'.format(self._meta['D'], self._meta['Pe'], kr.x[0], kr.x[1]) ax2.text(0.1, -0.4, msg, ha='left', transform=ax2.transAxes) ax2.legend(loc='best') if show and save: savename = self._meta['basename'] + '_sigma.pdf' if self._debug: print('... save to %s' % savename) plt.savefig(savename, dpi=300) plt.show() # show multiple line profiles def showlines(self, lines=-1, dir='y', log=False, window=[0, 0], save=False, fit=False, smooth=False): """ plot line profiles at multiple locations """ if lines == -1: if dir == 'y': lines = range(0, self._width, 50) else: lines = range(0, self._height, 50) tmp = self.tmean() fig = plt.gcf() fig.set_size_inches(12, 6) ax1 = fig.add_subplot(121) self._im = ax1.imshow(tmp, clim=self._range, cmap=self._cmapname, origin='upper') ax1.axis('image') ax1.yaxis.set_major_locator(ticker.MultipleLocator(50)) ax2 = fig.add_subplot(122) if log: ax2.set_yscale('log') # print("... Locations ",lines) # set window if window[1] == 0: wl = 0 if dir == 'x': wr = self._width else: wr = self._height else: wl = window[0] wr = window[1] if dir == 'x': ax1.hlines(window, 0, self._width, color='gray', alpha=0.5, linestyle='dashed') else: ax1.vlines(window, 0, self._height, color='gray', alpha=0.5, linestyle='dashed') print("... Window: %i, %i" % (wl, wr)) res_line = np.zeros((len(lines), wr-wl)) ax2.set_xlim(wl, wr) ax2.set_ylabel('Normalized Intensity') cmap = plt.get_cmap(self._cmapname) if dir == 'x': ax1.vlines(lines, wl, wr, color='yellow', alpha=0.5, linestyle='dashed') ax2.set_xlabel('y (pixel)') i = 0 for l in lines: color = cmap(float(i) / len(lines)) if smooth: ax2.plot(range(wl, wr + 1), _smooth(tmp[wl:wr, l]), label=l, color=color) res_line[i, :] = _smooth(tmp[wl:wr, l])[:-1] else: ax2.plot(range(wl, wr), tmp[wl:wr, l], label=l, color=color) res_line[i, :] = tmp[wl:wr, l] ax1.annotate(l, xy=(l, wl), va='bottom', color='white') print("... Loc: %i Peak: %i Value: %f" % (l, np.argmax(tmp[wl:wr, l]), np.max(tmp[wl:wr, l]))) if fit: out = _fitGaussian(np.range(wl, wr), tmp[wl:wr, l], baseline=self._baseline) ax2.plot(range(wl, wr), out.best_fit + self._baseline, '--', color=color) msg = "%.2f,%.2f" % (out.best_values['center'], out.best_values['sigma']) fx = np.argmax(tmp[:, l]) fy = np.max(tmp[:, l]) + self._baseline ax2.annotate(msg, xy=(fx, fy), va='baseline', ha=self._beamdirection) self._beaminfo.append([l, out.best_values['center'], out.best_values['sigma']**2]) i += 1 elif dir == 'y': ax1.hlines(lines, wl, wr, color='yellow', alpha=0.5, linestyle='dashed') ax2.set_xlabel('x (pixel)') i = 0 for l in lines: color = cmap(float(i) / len(lines)) if smooth: ax2.plot(range(wl, wr + 1), _smooth(tmp[l, wl:wr]), label=l, color=color) res_line[i, :] = _smooth(tmp[l, wl:wr])[:-1] else: ax2.plot(range(wl, wr), tmp[l, wl:wr], label=l, color=color) res_line[i, :] = tmp[l, wl:wr] ax1.annotate(l, xy=(wl, l), ha='right', color='white') print("... Loc: %i Peak: %i Value: %f" % (l, np.argmax(tmp[l, wl:wr]), np.max(tmp[l, wl:wr]))) if fit: out = _fitGaussian(np.arange(wl, wr), tmp[l, wl:wr], baseline=self._baseline) ax2.plot(range(wl, wr), out.best_fit + self._baseline, '--', color=color) msg = "%.2f,%.2f" % (out.best_values['center'], out.best_values['sigma']) fx = np.argmax(tmp[l, :]) fy = np.max(tmp[l, :]) + self._baseline ax2.annotate(msg, xy=(fx, fy), va='baseline', ha=self._beamdirection) self._beaminfo.append([l, out.best_values['center'], out.best_values['sigma']**2]) i += 1 else: return False plt.tight_layout() plt.legend(loc='best') if save: linestr = "_" + dir + "l".join(['_' + str(l) for l in lines]) filename = self._fname[:-4] + linestr + '.pdf' plt.savefig(filename, dpi=100) plt.show() def showlines_allx(self, bg=0.0, bgstd=0.0, window=None): """ show line profile along x axis """ _plotAxis(self.tmean(), 0, background=bg, backstd=bgstd, window=window) def showlines_ally(self, bg=0.0, bgstd=0.0, window=None): """ show line profile along y axis """ _plotAxis(self.tmean(), 1, background=bg, backstd=bgstd, window=window) # experimental data def detect_channel(self, window=11, compareRatio=0.2, minimumIntensity=0.1, angle=0.0, show=True): """ find channel wall positions """ if angle > 0: img = _rotate_bound(self.tmean('float'), angle) else: img = self.tmean(dtypes='float') result = _find_channel(img, window=window, compareRatio=compareRatio, minimumIntensity=minimumIntensity) self._meta.update_wall(result) if show: ax = plt.gcf().gca() self._showimage(img, simple=False, ax=ax, wall=True) return result def detect_angles(self, frame=-1, method1='canny', method2=None, min_length=100, show=True): """ find angle of camera based on line properties """ # preprocess image self.reverse(frame=frame) img = self.filters(frame=frame, method=method1) if method2 is not None: img = self.threshold(frame=frame, method=method2, show=False) # detect lines res = _detect_angles(img, min_length=min_length, show=show) # reverse filtered image self.reverse(frame=frame) return res # adjust line profiles def _find_shadowline_x(self, img, y=-1, xf=-1, show=True): """ find shadow line using inverse abs function """ wallinfo = self._wallinfo if len(wallinfo) < 2: raise ValueError('... need wall information: {}'.format(wallinfo)) x, z = self._getline_x(img, y=y, ignore_wall=True).get() xf = len(x) if xf == -1 else xf # adjust background xmin1 = np.argmin(_smooth(z[:wallinfo[0]], window_len=7)) xmin2 = np.argmin(_smooth(z[wallinfo[1]:xf], window_len=7)) + wallinfo[1] zmin1, zmin2 = z[xmin1], z[xmin2] background = (zmin2 - zmin1)/(xmin2 - xmin1) * (x - xmin1) + zmin1 # peak_position = np.argmax(xline) # if peak_position < self._peak[0] or peak_position > self._peak[1]: # return np.zeros_like(xline) # fit with right side of wall zRight = z[wallinfo[1]:xf] - background[wallinfo[1]:xf] xRight = x[wallinfo[1]:xf] kr = robust_inverseabs_fit(xRight, zRight, initial=[zRight.max(), xRight[0], 1.0], verb=self._debug) result = inverseabs(kr.x, x) + background if show: plt.plot(x, z, label='raw') plt.plot(x, result, label='shadow') plt.plot(x, background, label='background') msg = 'y: {} back: {:.4f}, {:.4f} \nk: {:.2f} {:.2f} {:.2f}'.format(y, zmin1, zmin2, kr.x[0], kr.x[1], kr.x[2]) plt.annotate(msg, xy=(0, result.max())) plt.vlines(wallinfo[:2], z.min(), z.max(), linestyles='dashed', alpha=0.5) plt.legend(loc='best') return (result, background) def _inflectionpoints(self, xdata, verb=False): """ find inflection points in lineprofile """ x_smooth = _smooth(xdata, window_len=self._smoothing) dx = np.gradient(x_smooth) dx_smooth = _smooth(dx, window_len=self._smoothing) wall1 = self._wall1 + self._wallpos wall2 = self._wall2 + self._wallpos infmax = np.argmax(dx_smooth[wall1:wall2]) + wall1 - 1 (localmaxs, ) = argrelmax(dx_smooth[wall1:wall2], order=self._searchrange) if verb: print('... smoothing: %i, order: %i' % (self._smoothing, self._searchrange)) print('... find %i local maximums' % len(localmaxs)) # check wall if np.abs(infmax - wall2) < 0.1*self._arrayWidth: # 10% of array width infmax = _find_before(localmaxs + wall1, infmax) return (localmaxs+wall1, infmax) def plot_lines_3d(self, frame=-1, locations=[]): """ plot line profile in 3d """ from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection fig = plt.figure() ax = fig.gca(projection='3d') if len(locations) == 0: locations = range(0, self._height, 10) lines = [] for i in locations: lines.append(self.getline_x(frame=-1, y=i).get()[1]) if len(self._wallinfo) > 1: xs = range(self._wallinfo[0], self._wallinfo[1]) else: xs = range(0, self._width) verts = [] for i in range(len(locations)): verts.append(list(zip(xs, lines[i]))) poly = PolyCollection(verts) poly.set_alpha(0.7) ax.add_collection3d(poly, zs=locations, zdir='y') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel('Intensity') ax.set_xlim3d(np.min(xs), np.max(xs)) ax.set_ylim3d(np.max(locations), np.min(locations)) ax.set_zlim3d(0, np.max(lines)) plt.show() def _getline_obj(img, coords=None, debug=False): """ get line profile from (x0, y0) to (x1, y1) """ if coords is not None: x0, y0, x1, y1 = coords else: x0, y0, x1, y1 = 0, 0, img.shape[1], img.shape[0] if coords[1] == -1: y1 = y0 = img.shape[0]//2 if coords[0] == -1: x1 = x0 = img.shape[1]//2 return LineObject(img, x0, y0, x1, y1, debug=debug) def _detect_angles(threshold_image, min_length=100, max_line_gap=10, threshold=50, show=True, debug=False): """ check rotation of image - detect edges and lines and calculate angle """ if 'cv2' not in dir(): import cv2 lines = cv2.HoughLinesP(threshold_image, 0.1, np.pi / 720.0, threshold, None, min_length, max_line_gap) if debug: print(lines) res = [] if show: fig = plt.figure(figsize=(11, 5)) plt.imshow(threshold_image) for line in lines: x1, y1, x2, y2 = line[0] theta = math.atan2(x1-x2, y1-y2) * 180.0/math.pi x0 = (x1 + x2)*0.5 y0 = (y1 + y2)*0.5 if show: plt.plot((x1, x2), (y1, y2)) plt.annotate('{:.2f}'.format(theta), xy=(x0, y0), va='top', color='white') res.append(theta) if show: plt.xlim(0, threshold_image.shape[1]) plt.ylim(threshold_image.shape[0], 0) plt.show() return np.median(
np.array(res)
numpy.array
import sys import numpy as np import tensorflow as tf import argparse import matplotlib.pyplot as plt from sygnals import Signal, generate_sampling def display_time_series(x, y): plt.plot(x, y) plt.show() def get_windowed_data(window_size, step, data): start = 0 end = start + window_size x = [] y = [] while end < data.shape[0]: x.append(data[start:end]) y.append(data[end]) start += step end = start + window_size return np.asarray(x, dtype=np.float64), np.asarray(y, dtype=np.float64) def reshape_input_for_lstm(x): # ILOŚĆ ELEMENTÓW, ROZMIAR_OKNA, WYMIAR_WEJŚCIA return
np.reshape(x, (x.shape[0], x.shape[1], 1))
numpy.reshape
# -*- coding: utf-8 -*- import numpy as np from platformx.plat_tensorflow.tools.processor.np_utils import ops import random import colorsys import cv2 import config import os from PIL import Image, ImageDraw def read_coco_labels(): path = config.cfg.POSTPROCESSOR.PATH_TO_LABELS f = open(path) class_names = [] for l in f.readlines(): l = l.strip() # 去掉回车'\n' class_names.append(l) f.close() # print("class_names:", class_names) return class_names def load_coco_names(): file_name = config.cfg.POSTPROCESSOR.PATH_TO_LABELS names = {} with open(file_name) as f: for id, name in enumerate(f): names[id] = name # print("names:", names) return names class_names = read_coco_labels() def decode(model_output): """ yolov2 decode :param model_output: darknet19 网络输出的特征图 :param output_sizes: darknet19网络输出的特征图大小,默认是 13*13(默认输入416*416,下采样32) :param num_class: :param anchors: :return: """ # output_sizes=(13, 13) output_sizes = config.cfg.PREPROCESS.HEIGHT // 32, config.cfg.PREPROCESS.WIDTH // 32 # 特征图尺寸是图片下采样 32 倍 num_class = config.cfg.POSTPROCESSOR.NUM_CLASSES # if num_class is None: # num_class = len(class_names) anchors = config.cfg.POSTPROCESSOR.ANCHORS anchors = np.array(anchors) H, W = output_sizes num_anchors = len(anchors) # 这里的 anchor 是在configs文件中设置的 print("num_anchors:", num_anchors) # anchors = tf.constant(anchors, dtype=tf.float32) # 将传入的 anchors 转变成 tf 格式的常量列表 # 13*13*num_anchors*(num_class+5),第一个维度自适应 batchsize print("model_output:", model_output.shape) detection_result = np.reshape(model_output, [-1, H * W, num_anchors, num_class + 5]) print("detection_result:", detection_result.shape) # darknet19 网络输出转化——偏移量、置信度、类别概率 xy_offset = ops.sigmoid(detection_result[:, :, :, 0:2]) # 中心坐标相对于该 cell 左上角的偏移量,sigmoid 函数归一化到0-1 wh_offset = np.exp(detection_result[:, :, :, 2:4]) # 相对于 anchor 的 wh 比例,通过 e 指数解码 obj_probs = ops.sigmoid(detection_result[:, :, :, 4]) # 置信度,sigmoid 函数归一化到 0-1 class_probs = ops.softmax(detection_result[:, :, :, 5:]) # 网络回归的是'得分',用 softmax 转变成类别概率 # 构建特征图每个cell的左上角的xy坐标 height_index = range(H) # range(0,13) width_index = range(W) # range(0,13) # 变成x_cell=[[0,1,...,12],...,[0,1,...,12]]和y_cell=[[0,0,...,0],[1,...,1]...,[12,...,12]] x_cell, y_cell = np.meshgrid(height_index, width_index) x_cell = np.reshape(x_cell, [1, -1, 1]) # 和上面[H*W,num_anchors,num_class+5]对应 print("x_cell:", x_cell.shape) y_cell = np.reshape(y_cell, [1, -1, 1]) print("y_cell:", y_cell.shape) # decode bbox_x = (x_cell + xy_offset[:, :, :, 0]) / W bbox_y = (y_cell + xy_offset[:, :, :, 1]) / H bbox_w = (anchors[:, 0] * wh_offset[:, :, :, 0]) / W bbox_h = (anchors[:, 1] * wh_offset[:, :, :, 1]) / H # 中心坐标+宽高 box(x,y,w,h) -> xmin=x-w/2 -> 左上+右下box(xmin,ymin,xmax,ymax) bboxes = np.stack([bbox_x - bbox_w / 2, bbox_y - bbox_h / 2, bbox_x + bbox_w / 2, bbox_y + bbox_h / 2], axis=3) bboxes = np.reshape(bboxes, bboxes.shape) print("yolov2 decode bboxes:", bboxes.shape) print("yolov2 decode obj_probs:", obj_probs.shape) print("yolov2 decode class_probs:", class_probs.shape) return bboxes, obj_probs, class_probs def _get_image_path(): img_dir = config.cfg.PREPROCESS.IMG_LIST file_list = os.listdir(img_dir) image_path = os.path.join(img_dir, file_list[0]) return image_path def _get_image(): image_path = _get_image_path() image = cv2.imread(image_path) return image def _get_image_PIL(): image_path = _get_image_path() image = Image.open(image_path) return image # 【2】筛选解码后的回归边界框——NMS(post process后期处理) def postprocess(bboxes, obj_probs, class_probs): threshold = config.cfg.POSTPROCESSOR.SCORE_THRESHOLD image = _get_image() image_shape = image.shape[:2] print("image_shape ", image_shape) if image_shape is None: image_shape = (416, 416) # bboxes 表示为:图片中有多少 box 就多少行;4 列分别是 box(xmin,ymin,xmax,ymax) bboxes = np.reshape(bboxes, [-1, 4]) # 将所有 box 还原成图片中真实的位置 bboxes[:, 0:1] *= float(image_shape[1]) # xmin*width bboxes[:, 1:2] *= float(image_shape[0]) # ymin*height bboxes[:, 2:3] *= float(image_shape[1]) # xmax*width bboxes[:, 3:4] *= float(image_shape[0]) # ymax*height bboxes = bboxes.astype(np.int32) # (1)cut the box:将边界框超出整张图片(0,0)—(415,415)的部分cut掉 bbox_min_max = [0, 0, image_shape[1] - 1, image_shape[0] - 1] bboxes = bboxes_cut(bbox_min_max, bboxes) # ※※※置信度*max类别概率=类别置信度scores※※※ obj_probs = np.reshape(obj_probs, [-1]) class_probs = np.reshape(class_probs, [len(obj_probs), -1]) class_max_index = np.argmax(class_probs, axis=1) # 得到max类别概率对应的维度 class_probs = class_probs[np.arange(len(obj_probs)), class_max_index] scores = obj_probs * class_probs # ※※※类别置信度scores>threshold的边界框bboxes留下※※※ keep_index = scores > threshold class_max_index = class_max_index[keep_index] scores = scores[keep_index] bboxes = bboxes[keep_index] # (2)排序 top_k (默认为400) class_max_index, scores, bboxes = bboxes_sort(class_max_index, scores, bboxes) # ※※※(3)NMS※※※ class_max_index, scores, bboxes = bboxes_nms(class_max_index, scores, bboxes) draw_detection(image, bboxes, scores, class_max_index, class_names) return bboxes, scores, class_max_index # 【3】绘制筛选后的边界框 def draw_detection(im, bboxes, scores, cls_inds, labels, thr=0.3): # Generate colors for drawing bounding boxes. hsv_tuples = [(x / float(len(labels)), 1., 1.) for x in range(len(labels))] colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. # draw image imgcv = np.copy(im) h, w, _ = imgcv.shape for i, box in enumerate(bboxes): if scores[i] < thr: continue cls_indx = cls_inds[i] thick = int((h + w) / 300) cv2.rectangle(imgcv, (box[0], box[1]), (box[2], box[3]), colors[cls_indx], thick) mess = '%s: %.3f' % (labels[cls_indx], scores[i]) if box[1] < 20: text_loc = (box[0] + 2, box[1] + 15) else: text_loc = (box[0], box[1] - 10) # cv2.rectangle(imgcv, (box[0], box[1]-20), ((box[0]+box[2])//3+120, box[1]-8), (125, 125, 125), -1) # puttext函数的背景 cv2.putText(imgcv, mess, text_loc, cv2.FONT_HERSHEY_SIMPLEX, 1e-3 * h, (255, 255, 255), thick // 3) cv2.imwrite("yolov2_detect_result.jpg", imgcv) print('YOLO_v2 detection has done!') ######################## 对应【2】:筛选解码后的回归边界框 ######################################### # (1)cut the box:将边界框超出整张图片(0,0)—(415,415)的部分cut掉 def bboxes_cut(bbox_min_max, bboxes): bboxes = np.copy(bboxes) bboxes = np.transpose(bboxes) bbox_min_max = np.transpose(bbox_min_max) # cut the box bboxes[0] =
np.maximum(bboxes[0], bbox_min_max[0])
numpy.maximum
import os import cv2 import numpy as np import codecs import json import xml.etree.ElementTree as et # tree = et.parse("W:\\2021-12-07-01.xml") # root = tree.getroot() # for cam in root: # ... # ------------------------------------------------------------------------ def changeCamName(camname): """ Change camera names to match actual image data. :param camname: camera name with "bottom", "top" or "colour" :return: """ realcamname = camname.replace("bottom", "primary") realcamname = realcamname.replace("top", "secondary") return realcamname.replace("colour", "texture") # ------------------------------------------------------------------------ def calibrate(objpoints, imgpoints, img, xml_cam): """ Calibrate camera with a set of calibration images. Parameters from: https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d :param objpoints: :param imgpoints: :param img: :return: """ imgpoints = np.asarray(imgpoints, dtype=np.float32) assert imgpoints.shape[0] == objpoints.shape[0] assert img is not None # initial guess for intrinsic matrix and distCoeffs intrmatrix = np.array([[6700.0, 0.0, 800.0], [0.0, 6700.0, 600.0], [0.0, 0.0, 1.0]], dtype=np.float32) # intrmatrix = np.array([float(x[1]) for x in xml_cam[0].getchildren()[0].items()], dtype=np.float32).reshape((3,3)) # distCoeffs = np.array([float(x[1]) for x in xml_cam[0].getchildren()[1].items()] + [0.0], dtype=np.float32) distCoeffs = np.array([0.0, 0.0, 0.0, 0.0, 0.0], dtype=np.float32) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[::-1], intrmatrix, distCoeffs, flags= cv2.CALIB_ZERO_TANGENT_DIST | cv2.CALIB_USE_INTRINSIC_GUESS | cv2.CALIB_FIX_K1 | cv2.CALIB_FIX_K2 | cv2.CALIB_FIX_K3) print(f"mtx: {mtx}") print(f"dist: {dist}") print(f"rvecs: {rvecs[1]}") print(f"tvecs: {tvecs[1]}") rmat = np.asarray([[0, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=np.float64) cv2.Rodrigues(rvecs[0], rmat) print(f"rmat: {rmat}") if ret: return {"intrinsic": mtx.tolist(), "rotation": rmat.tolist(), "translation": tvecs[0].tolist(), "distortion": dist.tolist()} # ------------------------------------------------------------------------ # 3d object points are known: 10x10 circle grid target, 2cm offsets. 3D origin is at the target's center crosshair. objpoints = [] # 3d point in real world space for y in range(9, -10, -2): x = [x for x in range(-9, 10, 2)] objpoints.append(list([list(a) for a in zip(x, [y] * 10, [0] * 10)])) objpoints = [i for sub in objpoints for i in sub] print(f"objpoints:\n{objpoints}") objpoints = [objpoints] * 18 objpoints = np.asarray(objpoints, dtype=np.float32) # Blob detector for better circle center detection params = cv2.SimpleBlobDetector_Params() params.minThreshold = 1 params.minCircularity = 0.05 params.minConvexity = 0.50 blobdetector = cv2.SimpleBlobDetector_create(params) calibdict = {} imgpoints = [] # 2d points in image plane. img = None prevcamname = "pod1primary" path = "C:/Users/Henkka/Projects/invrend-fpc/data/calibration/combined/extracted" # path = "C:/Users/Henkka/Projects/invrend-fpc/data/calibration/2021-07-01" # path = r"\\rmd.remedy.fi\Capture\System\RAW\Calibrations\2021-12-07" images = os.listdir(path) # DI xmls tree = et.parse(r"C:\Users\Henkka\Projects\invrend-fpc\data\cube\20220310\2021-12-07-01.dicx") xml_cams = tree.getroot()[3] # different threshold values to try to account for reflections in the calibration target thresholds = [200, 190, 180, 170, 160, 150, 140] # for root, dirs, files in os.walk(path): for fname in images: camname = fname.split("_")[0] # print(f"cam: {fname}") # assume images are processed in camera order if camname != prevcamname: # all images from one camera have been processed realcamname = changeCamName(prevcamname) print("Calibrating...") calibdict[realcamname] = calibrate(objpoints, imgpoints, img, [x for x in xml_cams if x.get('name') == camname+"_0001"][0]) imgpoints = [] # read image as grayscale # invert, blur, and threshold filter for easier circle detection img = cv2.imread(f"{path}/{fname}", flags=cv2.IMREAD_GRAYSCALE) img = cv2.bitwise_not(img) kernel = np.ones((3, 3), np.float32) / 25 preimg = cv2.filter2D(img, -1, kernel) # Find the circle centers # TODO: one could also do blobDetector.detect() and drawKeypoints() before findCirclesGrid() for easier detection for thres in thresholds: ret, img = cv2.threshold(img, thres, 255, cv2.THRESH_BINARY) cv2.imshow('thresh', img) cv2.waitKey(100) ret, centers = cv2.findCirclesGrid(img,
np.asarray([10, 10])
numpy.asarray
#!/usr/bin/env python # Copyright (c) 2017 The Board of Trustees of the University of Illinois # All rights reserved. # # Developed by: <NAME>, <NAME>, <NAME> # NCSA Gravity Group # National Center for Supercomputing Applications # University of Illinois at Urbana-Champaign # http://gravity.ncsa.illinois.edu/ # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal with the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimers. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimers in the documentation # and/or other materials provided with the distribution. # # Neither the names of the National Center for Supercomputing Applications, # University of Illinois at Urbana-Champaign, nor the names of its # contributors may be used to endorse or promote products derived from this # Software without specific prior written permission. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # WITH THE SOFTWARE. # Based off of SimulationTools Mathematica Package # http://www.simulationtools.org/ import numpy as np import glob import os import h5py import string import math import sys import warnings import scipy.optimize import scipy.interpolate #-----Function Definitions-----# #Function used in getting psi4 from simulation def joinDsets(dsets): """joints multiple datasets which each have a time like first column, eg iteration number of time. Removes overlapping segments, keeping the last segment. dsets = iterable of 2d array like objects with data""" # joins multiple datasets of which the first column is assumed to be "time" if(not dsets): return None length = 0 for d in dsets: length += len(d) newshape = list(dsets[0].shape) newshape[0] = length dset = np.empty(shape=newshape, dtype=dsets[0].dtype) usedlength = 0 for d in dsets: insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0]) if(insertpointidx[0].size): insertpoint = insertpointidx[0][0] else: insertpoint = usedlength newlength = insertpoint+len(d) dset[insertpoint:newlength] = d usedlength = newlength return dset[0:usedlength] #Function used in getting psi4 from simulation def loadHDF5Series(nameglob, series): """load HDF5 timeseries data and concatenate the content of multiple files nameglob = a shell glob that matches all files to be loaded, files are sorted alphabetically series = HDF5 dataset name of dataset to load from files""" dsets = list() for fn in sorted(glob.glob(nameglob)): fh = h5py.File(fn) dsets.append(fh[series]) return joinDsets(dsets) #Convert radial to tortoise coordinates def RadialToTortoise(r, M): """ Convert the radial coordinate to the tortoise coordinate r = radial coordinate M = ADMMass used to convert coordinate return = tortoise coordinate value """ return r + 2. * M * math.log( r / (2. * M) - 1.) #Convert modified psi4 to strain def psi4ToStrain(mp_psi4, f0): """ Convert the input mp_psi4 data to the strain of the gravitational wave mp_psi4 = Weyl scalar result from simulation f0 = cutoff frequency return = strain (h) of the gravitational wave """ #TODO: Check for uniform spacing in time t0 = mp_psi4[:, 0] list_len = len(t0) complexPsi = np.zeros(list_len, dtype=np.complex_) complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2] freq, psif = myFourierTransform(t0, complexPsi) dhf = ffi(freq, psif, f0) hf = ffi(freq, dhf, f0) time, h = myFourierTransformInverse(freq, hf, t0[0]) hTable = np.column_stack((time, h)) return hTable #Fixed frequency integration # See https://arxiv.org/abs/1508.07250 for method def ffi(freq, data, f0): """ Integrates the data according to the input frequency and cutoff frequency freq = fourier transform frequency data = input on which ffi is performed f0 = cutoff frequency """ f1 = f0/(2*math.pi) fs = freq gs = data mask1 = (np.sign((fs/f1) - 1) + 1)/2 mask2 = (np.sign((-fs/f1) - 1) + 1)/2 mask = 1 - (1 - mask1) * (1 - mask2) fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps) new_gs = gs/(2*math.pi*1.j*fs2) return new_gs #Fourier Transform def myFourierTransform(t0, complexPsi): """ Transforms the complexPsi data to frequency space t0 = time data points complexPsi = data points of Psi to be transformed """ psif = np.fft.fft(complexPsi, norm="ortho") l = len(complexPsi) n = int(math.floor(l/2)) newpsif = psif[l-n:] newpsif = np.append(newpsif, psif[:l-n]) T = np.amin(np.diff(t0))*l freq = range(-n, l-n)/T return freq, newpsif #Inverse Fourier Transform def myFourierTransformInverse(freq, hf, t0): l = len(hf) n = int(math.floor(l/2)) newhf = hf[n:] newhf = np.append(newhf, hf[:n]) amp = np.fft.ifft(newhf, norm="ortho") df = np.amin(np.diff(freq)) time = t0 + range(0, l)/(df*l) return time, amp def angular_momentum(x, q, m, chi1, chi2, LInitNR): eta = q/(1.+q)**2. m1 = (1.+(1.-4.*eta)**0.5)/2. m2 = m - m1 S1 = m1**2. * chi1 S2 = m2**2. * chi2 Sl = S1+S2 Sigmal = S2/m2 - S1/m1 DeltaM = m1 - m2 mu = eta nu = eta GammaE = 0.5772156649; e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15. e5 = -55.13 j4 = -(5./7.)*e4+64./35. j5 = -(2./3.)*e5-4988./945.-656./135. * eta; a1 = -2.18522; a2 = 1.05185; a3 = -2.43395; a4 = 0.400665; a5 = -5.9991; CapitalDelta = (1.-4.*eta)**0.5 l = (eta/x**(1./2.)*( 1. + x*(3./2. + 1./6.*eta) + x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) + x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) + x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+ x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+ x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) + x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) + x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) + (1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. + (1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. + 2.*eta*chi1*chi2*x**2. + ((13.*chi1**2.)/9. + (13.*CapitalDelta*chi1**2.)/9. - (55.*nu*chi1**2.)/9. - 29./9.*CapitalDelta*nu*chi1**2. + (14.*nu**2. *chi1**2.)/9. + (7.*nu*chi1*chi2)/3. + 17./18.* nu**2. * chi1 * chi2 + (13.* chi2**2.)/9. - (13.*CapitalDelta*chi2**2.)/9. - (55.*nu*chi2**2.)/9. + 29./9.*CapitalDelta*nu*chi2**2. + (14.*nu**2. * chi2**2.)/9.) * x**3.)) return l - LInitNR #Get cutoff frequency def getCutoffFrequency(sim_name): """ Determine cutoff frequency of simulation sim_name = string of simulation return = cutoff frequency """ filename = main_dir+"/output-0000/%s.par" % (sim_name) with open(filename) as file: contents = file.readlines() for line in contents: line_elems = line.split(" ") if(line_elems[0] == "TwoPunctures::par_b"): par_b = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::center_offset[0]"): center_offset = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::par_P_plus[1]"): pyp = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::par_P_minus[1]"): pym = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::target_M_plus"): m1 = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::target_M_minus"): m2 = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::par_S_plus[2]"): S1 = float(line_elems[-1]) if(line_elems[0] == "TwoPunctures::par_S_minus[2]"): S2 = float(line_elems[-1]) xp = par_b + center_offset xm = -1*par_b + center_offset LInitNR = xp*pyp + xm*pym M = m1+m2 q = m1/m2 chi1 = S1/math.pow(m1, 2.) chi2 = S2/math.pow(m2, 2.) # .014 is the initial guess for cutoff frequency omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0] omOrbPN = omOrbPN**(3./2.) omGWPN = 2. * omOrbPN omCutoff = 0.75 * omGWPN return omCutoff #Get Energy def get_energy(sim): """ Save the energy radiated energy sim = string of simulation """ python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat") val = np.zeros(len(python_strain)) val = val.astype(np.complex_) cur_max_time = python_strain[0][0] cur_max_amp = abs(pow(python_strain[0][1], 2)) for i in python_strain[:]: cur_time = i[0] cur_amp = abs(pow(i[1], 2)) if(cur_amp>cur_max_amp): cur_max_amp = cur_amp cur_max_time = cur_time max_idx = 0 for i in range(0, len(python_strain[:])): if(python_strain[i][1] > python_strain[max_idx][1]): max_idx = i paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat") for path in paths: python_strain = np.loadtxt(path) t = python_strain[:, 0] t = t.astype(np.complex_) h = python_strain[:, 1] + 1j * python_strain[:, 2] dh = np.zeros(len(t), dtype=np.complex_) for i in range(0, len(t)-1): dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i])) dh[len(t)-1] = dh[len(t)-2] dh_conj = np.conj(dh) prod = np.multiply(dh, dh_conj) local_val = np.zeros(len(t)) local_val = local_val.astype(np.complex_) for i in range(0, len(t)): local_val[i] = np.trapz(prod[:i], x=(t[:i])) val += local_val val *= 1/(16 * math.pi) np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val) #Get angular momentum def get_angular_momentum(python_strain): """ Save the energy radiated angular momentum sim = string of simulation """ python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat") val = np.zeros(len(python_strain)) val = val.astype(np.complex_) cur_max_time = python_strain[0][0] cur_max_amp = abs(pow(python_strain[0][1], 2)) for i in python_strain[:]: cur_time = i[0] cur_amp = abs(pow(i[1], 2)) if(cur_amp>cur_max_amp): cur_max_amp = cur_amp cur_max_time = cur_time max_idx = 0 for i in range(0, len(python_strain[:])): if(python_strain[i][1] > python_strain[max_idx][1]): max_idx = i paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat") for path in paths: python_strain = np.loadtxt(path) t = python_strain[:, 0] t = t.astype(np.complex_) h = python_strain[:, 1] + 1j * python_strain[:, 2] dh = np.zeros(len(t), dtype=np.complex_) for i in range(0, len(t)-1): dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i])) dh[len(t)-1] = dh[len(t)-2] dh_conj = np.conj(dh) prod =
np.multiply(h, dh_conj)
numpy.multiply
PythonMax = max from baseClasses import OOArray from FuncDesigner.multiarray import multiarray from ooFun import oofun from constraints import Constraint from numpy import isscalar, asscalar, ndarray, atleast_1d, asanyarray, array import numpy as np from FDmisc import FuncDesignerException class ooarray(OOArray): __array_priority__ = 25 # !!! it should exceed oofun.__array_priority__ !!! _is_array_of_oovars = False def __new__(self, *args, **kwargs): #assert len(kwargs) == 0 tmp = args[0] if len(args) == 1 else args obj = array(tmp, object).view(self) #if obj.ndim != 1: raise FuncDesignerException('only 1-d ooarrays are implemented now') #if obj.dtype != object:obj = np.asfarray(obj) #TODO: FIXME ! obj._id = oofun._id obj.name = 'unnamed_ooarray_%d' % obj._id oofun._id += 1 return obj # def __init__(self, *args, **kw): # self._id = oofun._id # self.name = 'unnamed_ooarray_%d' % self._id # oofun._id += 1 __hash__ = lambda self: self._id def __len__(self): return self.size expected_kwargs = set(('tol', 'name')) def __call__(self, *args, **kwargs): #if self.dtype != object: return self.view(ndarray) # TODO: give different names for each element while assigning name to ooarray expected_kwargs = self.expected_kwargs #if not set(kwargs.keys()).issubset(expected_kwargs): #raise FuncDesignerException('Unexpected kwargs: should be in '+str(expected_kwargs)+' got: '+str(kwargs.keys())) for elem in expected_kwargs: if elem in kwargs: setattr(self, elem, kwargs[elem]) if len(args) > 1: raise FuncDesignerException('No more than single argument is expected') if len(args) == 0: if len(kwargs) == 0: raise FuncDesignerException('You should provide at least one argument') #return self if len(args) != 0 and isinstance(args[0], str): self.name = args[0] for i, elem in enumerate(self.view(ndarray)): if isinstance(elem, oofun): elem(self.name + '_' + str(i)) args = args[1:] if len(args) == 0: return self #tmp = asarray([asscalar(asarray(self[i](*args, **kwargs))) if isinstance(self[i], oofun) else self[i] for i in range(self.size)]) if self.size == 1 and type(self.item()) == oofun: return self.item()(*args, **kwargs) # TODO: get rid of self in args[0] if self._is_array_of_oovars and isinstance(args[0], dict) and self in args[0] and len(args) == 1 and len(kwargs) == 0: return args[0][self] Tmp = [self[i](*args, **kwargs) if isinstance(self[i], oofun) else self[i] for i in range(self.size)] tmp = asanyarray(Tmp) if np.any([isinstance(elem, multiarray) for elem in Tmp]): tmp = tmp.T.view(multiarray) if tmp.ndim == 2 or tmp.dtype != object: return tmp else: #tmp = tmp.flatten() return ooarray(tmp) def expression(self, *args, **kw): return str([elem.expression(*args, **kw) if isinstance(elem, oofun) else str(elem) for elem in self.view(ndarray)]) def __getattr__(self, attr): if attr == 'dep': r = set.union(*[elem.dep for elem in self.view(ndarray) if isinstance(elem, (oofun, ooarray))]) self.dep = r return r elif attr == 'expr': return str([elem.expr if isinstance(elem, oofun) else str(elem) for elem in self.view(ndarray)]) else: raise AttributeError('incorrect attribute of ooarray') def getOrder(self, *args, **kw): return PythonMax([0] + [elem.getOrder(*args, **kw) for elem in self.view(ndarray) if isinstance(elem, (oofun, ooarray))]) def __mul__(self, other): if self.size == 1: return ooarray(asscalar(self)*other) elif isscalar(other): # TODO: mb return mere ooarray(self.view(ndarray)*other) or other.view(ndarray) return ooarray(self.view(ndarray)*other if self.dtype != object else [self[i]*other for i in range(self.size)]) elif isinstance(other, oofun): hasSize = 'size' in dir(other) if not hasSize: # print(''' # FuncDesigner warning: # to perform the operation # (ooarray multiplication on oofun) # oofun size should be known. # Assuming oofun size is 1, # the value is ascribed to the oofun attributes. # Handling of the issue is intended to be # enhanced in future.''') other.size = 1 #raise FuncDesignerException('to perform the operation oofun size should be known') if other.size == 1: if any([isinstance(elem, oofun) for elem in atleast_1d(self)]): #if self.dtype == object: s = atleast_1d(self) return ooarray([s[i]*other for i in range(self.size)]) else: return ooarray(self*other) else: # other.size > 1 # and self.size != 1 s, o = atleast_1d(self), atleast_1d(other) return ooarray([s[i]*o[i] for i in range(self.size)]) elif isinstance(other, ndarray): # TODO: mb return mere ooarray(self.view(ndarray)*other)?or other.view(ndarray) return ooarray(self*asscalar(other) if other.size == 1 else [self[i]*other[i] for i in range(other.size)]) elif type(other) in (list, tuple): r = self * array(other) return r else: raise FuncDesignerException('bug in multiplication') def __div__(self, other): if self.size == 1: return asscalar(self)/other elif isscalar(other) or (isinstance(other, ndarray) and other.size in (1, self.size)): return self * (1.0/other) elif isinstance(other, oofun): if self.dtype != object: return self.view(ndarray) / other else: s = atleast_1d(self) return ooarray([s[i] / other for i in range(self.size)]) elif isinstance(other, ooarray): if self.dtype != object: return self.view(ndarray) / other.view(ndarray) else: # TODO: mb return mere ooarray(self.view(ndarray) / other)? or other.view(ndarray) s, o = atleast_1d(self), atleast_1d(other) return ooarray([s[i] / o[i] for i in range(self.size)]) else: raise FuncDesignerException('unimplemented yet') __truediv__ = __div__ __floordiv__ = __div__ def __rdiv__(self, other): if self.size == 1: return other / asscalar(self) return ooarray([1.0 / elem for elem in self.view(ndarray)]) * other __rtruediv__ = __rdiv__ def __add__(self, other): if isinstance(other, list): other = ooarray(other) if isscalar(other) or (isinstance(other, ndarray) and other.size in (1, self.size)): r = ooarray(self.view(ndarray) + other) elif isinstance(other, oofun): if self.dtype != object: r = self.view(ndarray) + other else: s = atleast_1d(self) r = ooarray([s[i] + other for i in range(self.size)]) elif isinstance(other, ndarray): if self.dtype != object: r = self.view(ndarray) + other.view(ndarray) elif self.size == 1: r = other + asscalar(self) else: # TODO: mb return mere ooarray(self.view(ndarray) + other) or ooarray(self.view(ndarray) + other.view(ndarray))? r = ooarray([self[i] + other[i] for i in range(self.size)]) else: raise FuncDesignerException('unimplemented yet') if isinstance(r, ndarray) and r.size == 1: r = asscalar(r) return r # # TODO: check why it doesn't work with oofuns # def __radd__(self, other): # return self + other # # def __rmul__(self, other): # return self * other __radd__ = __add__ __rmul__ = __mul__ # TODO : fix it # def __rdiv__(self, other): # return self * other def __pow__(self, other): if isinstance(other, ndarray) and other.size > 1 and self.size > 1: return ooarray([self[i]**other[i] for i in range(self.size)]) Self = atleast_1d(self.view(ndarray)) if any(isinstance(elem, (ooarray, oofun)) for elem in Self): #if self.dtype == object: return ooarray([elem**other for elem in Self]) # TODO: is this part of code trigger any time? return self.view(ndarray)**other def __rpow__(self, other): if
isscalar(other)
numpy.isscalar
""" Model class to be used together with an existing/"physical" model to yield a full propagation model. Will also be combined with case specific parameters. """ import scipy.sparse as sps import time import numpy as np import porepy as pp import logging from typing import Dict, Any logger = logging.getLogger(__name__) class TensilePropagation(pp.ConformingFracturePropagation): """ One more round of cleaning remains for this and related classes! EK: On my reading, the only active function in this class is _candidate_faces(), which is a simplification of the corresponding method in the superclass. If correct, I suggest we try to integrate the present function as an option in the superclass, and drop this extra class. """ def _sorted_propagation_faces(self, g_l: pp.Grid, d_l: Dict) -> np.ndarray: parameters_l = d_l[pp.PARAMETERS][self.mechanics_parameter_key] faces = parameters_l["propagate_faces"].nonzero()[0] faces = faces[g_l.tags["tip_faces"][faces]] K_equivalent = d_l[pp.PARAMETERS][self.mechanics_parameter_key][ "SIFs_equivalent" ] ind = np.argsort(K_equivalent[faces]) faces = np.atleast_1d(faces[ind][::-1]) return faces def _pick_propagation_face( self, g_h: pp.Grid, g_l: pp.Grid, data_h: Dict, data_l: Dict, data_edge: Dict, face_l, neighbor_threshold: int = 0, force_neighbors: bool = False, ) -> None: """ Pick out which matrix face to split for a fracture faces tagged as propagating using the precomputed propagation angle. Workflow: Check that the face_l is permissible Identify the corresponding edges_h (= nodes if self.Nd==2) The edges' faces_h are candidates for propagation Pick the candidate based on the propagation angle Parameters ---------- g_h : pp.Grid Higer-dimensional grid. g_l : pp.Grid Lower-dimensional grid. data_h : Dict Data dictionary corresponding to g_h. data_l : Dict Data dictionary corresponding to g_l. data_edge : Dict Data dictionary corresponding to the edge formed by g_h and g_l. Returns ------- None DESCRIPTION. Stores the matrix "propagation_face_map" identifying pairs of lower- and higherdimensional faces. During grid updates, the former will receive a new neighbour cell and the latter will be split. """ nd = self.Nd # EK: I am almost sure this method is not used, and can be deleted. # Leave a breakpoint here, and take action if ever hit it. # NOTE: If we hit it, the signature of this method is likely wrong (at least it # is different from the corresponding method in the parent class), so we should # revise the implementation. print("The method was used after all. Remove breakpoint, do QC") breakpoint() face_l: np.ndarray = face_l[g_l.tags["tip_faces"][face_l]] if face_l.size == 0: face_faces = sps.csr_matrix((g_l.num_faces, g_h.num_faces)) data_edge["propagation_face_map"]: sps.spmatrix = face_faces return fracture_faces_h = g_h.tags["fracture_faces"].nonzero()[0] tip_faces_l = g_l.tags["tip_faces"].nonzero()[0] tip_edges_h = tip_faces_l_to_edges_h(g_l, tip_faces_l, g_h) tip_edges_h.sort(axis=0) fracture_edges_h = np.empty((g_l.dim, 0), dtype=int) for frac_face_h in g_h.tags["fracture_faces"].nonzero()[0]: for frac_e_h in np.sort(edges_of_face(g_h, frac_face_h), axis=0).T: frac_e_h = frac_e_h.reshape((g_l.dim, 1)) is_found = np.isin(fracture_edges_h, frac_e_h) is_found = np.any(np.all(is_found)) if not is_found or fracture_edges_h.size == 0: fracture_edges_h = np.hstack((fracture_edges_h, frac_e_h)) edge_h = tip_faces_l_to_edges_h(g_l, face_l, g_h) fracture_nodes_h = np.unique( g_h.face_nodes[:, g_h.tags["fracture_faces"]].nonzero()[0] ) faces_h_to_split = np.empty(0, dtype=int) faces_l_to_split = np.empty(0, dtype=int) candidate_faces_h, faces_l_loc = self._candidate_faces( g_h, edge_h, g_l, face_l, tip_edges_h, fracture_edges_h, fracture_faces_h, neighbor_threshold, force_neighbors, ) if force_neighbors: face_h = candidate_faces_h else: faces_l_loc = np.empty(0, dtype=int) ## Pick the right candidate: # Direction of h-dim face centers from the tip tip_coords = np.reshape(g_l.face_centers[:nd, face_l], (nd, 1)) face_center_vecs = g_h.face_centers[:nd, candidate_faces_h] - tip_coords face_center_vecs = face_center_vecs / np.linalg.norm( face_center_vecs, axis=0 ) # Propagation vector, with sign assuring a positive orientation # of the basis propagation_vector = self._propagation_vector(g_l, data_l, face_l) # Pick the candidate closest to the propagation point, # i.e. smallest angle between propagation vector and face center vector distances = pp.geometry.distances.point_pointset( propagation_vector, face_center_vecs ) ind = np.argsort(distances) # There might be no candidate faces left after imposition of restriction # of permissible candidates if candidate_faces_h.size > 0: face_h = candidate_faces_h[ind[0]] edges_of_new_face = edges_of_face(g_h, face_h) edges_of_new_face.sort(axis=0) faces_l_loc = np.empty(0, dtype=int) for edge in edges_of_new_face.T: # sort! # Remove from tip edges if it was a tip, add if not ind = np.all(np.isin(tip_edges_h, edge), axis=0) if np.any(ind): tip_edges_h = tip_edges_h[:, ~ind] face_l_loc = tip_edge_h_to_face_l(g_l, g_h, edge) if ( face_l_loc.size > 0 ): # the else is a tip_edge_h arisen in this propagation step, and does not correspond to a tip to be opened faces_l_loc = np.hstack((faces_l_loc, face_l_loc)) else: tip_edges_h = np.hstack( (tip_edges_h, edge.reshape((g_l.dim, 1))) ) fracture_edges_h = np.hstack( (fracture_edges_h, edge.reshape((g_l.dim, 1))) ) n_neigh = faces_l_loc.size if n_neigh > neighbor_threshold: faces_h_to_split = np.hstack((faces_h_to_split, np.tile(face_h, n_neigh))) faces_l_to_split = np.hstack((faces_l_to_split, faces_l_loc)) fracture_faces_h = np.hstack((fracture_faces_h, face_h)) face_faces = sps.csr_matrix( (np.ones(faces_l_to_split.shape), (faces_l_to_split, faces_h_to_split)), shape=(g_l.num_faces, g_h.num_faces), ) data_edge["propagation_face_map"] = face_faces def _candidate_faces( self, g_h: pp.Grid, edge_h, g_l: pp.Grid, face_l: np.ndarray ) -> np.ndarray: """For a given edge (understood to be a fracture tip) in g_h, find the candidate faces that may be ready for a split. IMPLEMENTATION NOTE: This method is different from the identically named method in the parent class ConformingFracturePropagation in that fewer checks are done on the candidate faces. The present method is assumed to be used in a tensile fracturing regime, where the propagating fracture stays planar, and where the grid contains faces that fit this propagating geometry. In comparison, the method in the parent class aims at non-planar fractures, and thus needs to do much more checks to try to keep a reasonable fracture geometry also after propagation. """ def faces_of_edge(g: pp.Grid, e: np.ndarray) -> np.ndarray: """ Obtain indices of all faces sharing an edge. Parameters ---------- g : pp.Grid e : np.ndarray The edge. Returns ------- faces : np.ndarray Faces. """ if g.dim == 1: faces = e elif g.dim == 2: faces = g.face_nodes[e].nonzero()[1] elif g.dim == 3: f_0 = g.face_nodes[e[0]].nonzero()[1] f_1 = g.face_nodes[e[1]].nonzero()[1] faces = np.intersect1d(f_0, f_1) else: raise ValueError("Grid dimension should be 1, 2 or 3") return faces # Find all the edge's neighboring faces candidate_faces = faces_of_edge(g_h, edge_h) # Exclude faces that are on a fracture are_fracture = g_h.tags["fracture_faces"][candidate_faces] candidate_faces = candidate_faces[np.logical_not(are_fracture)] return candidate_faces class THMPropagationModel(TensilePropagation): def __init__(self, params): super().__init__(params) pp.THM.__init__(self, params) # Set additional case specific fields self.set_fields(params) ## THM + propagation specific methods def _initialize_new_variable_values( self, g: pp.Grid, d: Dict[str, Any], var: str, dofs: Dict[str, int] ) -> np.ndarray: """ Overwrite the corresponding method in superclasses: The pressure variable is initialized to the atmospheric pressure. Apart from this, all other variables are initialized to zero. Parameters ---------- g : pp.Grid Grid. d : Dict Data dictionary. var : str Name of variable. dofs : int Number of DOFs per cell (or face/node). Returns ------- vals : np.ndarray Values for the new DOFs. """ cell_dof = dofs.get("cells") n_new = d["cell_index_map"].shape[0] - d["cell_index_map"].shape[1] if var == self.scalar_variable: # type: ignore vals = ( np.ones(n_new * cell_dof) * pp.ATMOSPHERIC_PRESSURE / self.scalar_scale # type: ignore ) else: vals = np.zeros(n_new * cell_dof) return vals def _map_variables(self, solution: np.ndarray) -> np.ndarray: """ In addition to super's mapping an initialization of all primary variables, map the face values (darcy_fluxes and stored boundary conditions) and quantities to be exported. Parameters ---------- solution : np.ndarray Solution vector from before propagation. Returns ------- new_solution : np.ndarray Mapped solution vector with initialized new DOFs. """ # Map solution, and initialize for newly defined dofs new_solution = super()._map_variables(solution) self._map_face_values() return new_solution def _map_face_values(self) -> None: """ Maps the following face values: old_bc_values, used by DivU darcy_fluxes, used by Upwind Returns ------- None. """ # g_h Darcy fluxes are first copied to both the split faces, then mapped # to the mortar grid and finally removed from d_h. # In d_l, we initialize zero fluxes on the new faces, since there was # no flux across fracture tips previous to propagation. t_key = self.temperature_parameter_key keys = ( self.mechanics_parameter_key, self.mechanics_temperature_parameter_key, ) gb = self.gb for g, d in gb: face_map: sps.spmatrix = d["face_index_map"] mapping = sps.kron(face_map, sps.eye(self.Nd)) # Map darcy fluxes d[pp.PARAMETERS][t_key]["darcy_flux"] = ( face_map * d[pp.PARAMETERS][t_key]["darcy_flux"] ) if g.dim == self.Nd: # Duplicate darcy_fluxes for new faces ("other" side of new fracture) new_faces = d["new_faces"] old_faces = d["split_faces"] d[pp.PARAMETERS][t_key]["darcy_flux"][new_faces] = -d[pp.PARAMETERS][ t_key ]["darcy_flux"][old_faces] # Map bc values for key in keys: old_vals = d[pp.PARAMETERS][key]["bc_values"] new_vals = mapping * old_vals new_ind = pp.fvutils.expand_indices_nd(d["new_faces"], self.Nd) if new_ind.size > 0: old_ind = pp.fvutils.expand_indices_nd( d["split_faces"], self.Nd ) new_vals[new_ind] = old_vals[old_ind] d[pp.STATE][key]["bc_values"] = new_vals for e, d in gb.edges(): cell_map: sps.spmatrix = d["cell_index_map"] mg: pp.MortarGrid = d["mortar_grid"] d[pp.PARAMETERS][t_key]["darcy_flux"] = ( cell_map * d[pp.PARAMETERS][t_key]["darcy_flux"] ) g_l, g_h = gb.nodes_of_edge(e) d_h = gb.node_props(g_h) new_ind = self._new_dof_inds(cell_map) fluxes_h: np.ndarray = d_h[pp.PARAMETERS][t_key]["darcy_flux"] new_mortar_fluxes = mg.primary_to_mortar_int() * fluxes_h d[pp.PARAMETERS][t_key]["darcy_flux"] += new_mortar_fluxes g = self._nd_grid() d = gb.node_props(g) d[pp.PARAMETERS][t_key]["darcy_flux"][g.tags["fracture_faces"]] = 0 def before_newton_loop(self): self.convergence_status = False self._iteration = 0 def update_discretizations(self): # For the moment, do a full rediscretization. A more targeted approach # should be possible. self._minimal_update_discretization() def before_newton_iteration(self) -> None: """Rediscretize non-linear terms. QUESTION: Should the parent be updated? """ # First update parameters, then discretize all terms except those treated # by mpfa and mpsa in the highest dimension. # NOTE: We may end up unnecessarily rediscretizing a few terms, but the cost # of this is insignificant. self._iteration += 1 ## First update parameters. # The Darcy fluxes were updated right after the previous Newton iteration # or in self.prepare_for_simulation(), thus no need to update these here. # Update apertures and specific volumes (e.g. compute from displacement jumps). # Store as iterate information. self.update_all_apertures(to_iterate=True) # Update parameters. # Depending on the implementation of set_parameters, this can for instance # update permeability as a function of aperture. Similarly, various other # quantities can be updated. self.set_parameters() ### # With updated parameters (including Darcy fluxes), we can now discretize # non-linear terms. # Discretize everything except terms relating to poro-elasticity and # diffusion (that is, discretize everything not handled by mpfa or mpsa). # NOTE: Accumulation terms in self.Nd could also have been excluded. term_list = [ "!mpsa", "!stabilization", "!div_u", "!grad_p", "!diffusion", ] filt = pp.assembler_filters.ListFilter(term_list=term_list) # NOTE: No grid filter here, in pratice, all terms on lower-dimensional grids # (apart from diffusion) are discretized here, so is everything on the mortars self.assembler.discretize(filt=filt) # Discretize diffusion terms on lower-dimensional grids. for dim in range(self.Nd): grid_list = self.gb.grids_of_dimension(dim) if len(grid_list) == 0: continue filt = pp.assembler_filters.ListFilter( grid_list=grid_list, term_list=["diffusion"], ) self.assembler.discretize(filt=filt) def after_propagation_loop(self): """ TODO: Purge. Returns ------- None. """ ValueError("should not call this") def after_newton_iteration(self, solution: np.ndarray) -> None: super().after_newton_iteration(solution) # Update Darcy fluxes based on the newly converged pressure solution. # NOTE: For consistency between the discretization and solution, this is # done before updates to permeability or geometry (by fracture propagation). self.compute_fluxes() def after_newton_convergence(self, solution, errors, iteration_counter): """Propagate fractures if relevant. Update variables and parameters according to the newly calculated solution. """ gb = self.gb # We export the converged solution *before* propagation: self.update_all_apertures(to_iterate=True) self.export_step() # NOTE: Darcy fluxes were updated in self.after_newton_iteration(). # The fluxes are mapped to the new geometry (and fluxes are assigned for # newly formed faces) by the below call to self._map_variables(). # Propagate fractures: # i) Identify which faces to open in g_h # ii) Split faces in g_h # iii) Update g_l and the mortar grid. Update projections. self.evaluate_propagation() if self.propagated_fracture: # Update parameters and discretization for g, d in gb: if g.dim < self.Nd - 1: # Should be really careful in this situation. Fingers crossed. continue # Transfer information on new faces and cells from the format used # by self.evaluate_propagation to the format needed for update of # discretizations (see Discretization.update_discretization()). # TODO: This needs more documentation. new_faces = d.get("new_faces", np.array([], dtype=np.int)) split_faces = d.get("split_faces", np.array([], dtype=np.int)) modified_faces = np.hstack((new_faces, split_faces)) update_info = { "map_cells": d["cell_index_map"], "map_faces": d["face_index_map"], "modified_cells": d.get("new_cells", np.array([], dtype=np.int)), "modified_faces": d.get("new_faces", modified_faces), } # d["update_discretization"] = update_info # Map variables after fracture propagation. Also initialize variables # for newly formed cells, faces and nodes. # Also map darcy fluxes and time-dependent boundary values (advection # and the div_u term in poro-elasticity). new_solution = self._map_variables(solution) # Update apertures: Both state (time step) and iterate. self.update_all_apertures(to_iterate=False) self.update_all_apertures(to_iterate=True) # Set new parameters. self.set_parameters() # For now, update discretizations will do a full rediscretization # TODO: Replace this with a targeted rediscretization. # We may want to use some of the code below (after return), but not all of # it. self._minimal_update_discretization() else: # No updates to the solution new_solution = solution # Finally, use super's method to do updates not directly related to # fracture propgation super().after_newton_convergence(new_solution, errors, iteration_counter) self.adjust_time_step() # Done! return def _minimal_update_discretization(self): # NOTE: Below here is an attempt at local updates of the discretization # matrices. For now, these are replaced by a full discretization at the # begining of each time step. # EK: Discretization is a pain, because of the flux term. # The advective term needs an updated (expanded faces) flux term, # to compute this, we first need to expand discretization of the # pressure diffusion terms. # It should be possible to do something smarter here, perhaps compute # fluxes before splitting, then transfer numbers and populate with other # values. Or something else. gb = self.gb t_0 = time.time() g_max = gb.grids_of_dimension(gb.dim_max())[0] grid_list = gb.grids_of_dimension(gb.dim_max() - 1).tolist() grid_list.append(g_max) data = gb.node_props(g_max)[pp.DISCRETIZATION_MATRICES] flow = {} for key in data["flow"]: flow[key] = data["flow"][key].copy() mech = {} for key in data["mechanics"]: mech[key] = data["mechanics"][key].copy() self.discretize_biot(update_after_geometry_change=False) for e, _ in gb.edges_of_node(g_max): grid_list.append((e[0], e[1], e)) filt = pp.assembler_filters.ListFilter( variable_list=[self.scalar_variable, self.mortar_scalar_variable], term_list=[self.scalar_coupling_term], grid_list=grid_list, ) self.assembler.discretize(filt=filt) grid_list = gb.grids_of_dimension(gb.dim_max() - 1).tolist() filt = pp.assembler_filters.ListFilter( term_list=["diffusion", "mass", "source"], variable_list=[self.scalar_variable], grid_list=grid_list, ) # self.assembler.update_discretization(filt=filt) self.assembler.discretize(filt=filt) # Now that both variables and discretizations for the flux term have been # updated, we can compute the fluxes on the new grid. # self.compute_fluxes() # Update biot. Should be cheap. self.copy_biot_discretizations() # No need to update source term # Then the temperature discretizations. These are updated, to avoid full mpfa # in g_max temperature_terms = ["source", "diffusion", "mass", self.advection_term] filt = pp.assembler_filters.ListFilter( grid_list=[self._nd_grid()], variable_list=[self.temperature_variable], term_list=temperature_terms, ) # self.assembler.update_discretization(filt=filt) self.assembler.discretize(filt=filt) # Pressure-temperature coupling terms coupling_terms = [self.s2t_coupling_term, self.t2s_coupling_term] filt = pp.assembler_filters.ListFilter( grid_list=[self._nd_grid()], variable_list=[self.temperature_variable, self.scalar_variable], term_list=coupling_terms, ) self.assembler.discretize(filt=filt) # Build a list of all edges, and all couplings edge_list = [] for e, _ in self.gb.edges(): edge_list.append(e) edge_list.append((e[0], e[1], e)) if len(edge_list) > 0: filt = pp.assembler_filters.ListFilter(grid_list=edge_list) self.assembler.discretize(filt=filt) # Finally, discretize terms on the lower-dimensional grids. This can be done # in the traditional way, as there is no Biot discretization here. for dim in range(0, self.Nd): grid_list = self.gb.grids_of_dimension(dim) if len(grid_list) > 0: filt = pp.assembler_filters.ListFilter(grid_list=grid_list) self.assembler.discretize(filt=filt) logger.info("Rediscretized in {} s.".format(time.time() - t_0)) ## Methods specific to this project, but common to (some of) the examples def set_fields(self, params): """ Set various fields to be used in the model. """ # We operate on the temperature difference T-T_0, with T in Kelvin self.T_0_Kelvin = 500 self.background_temp_C = pp.KELKIN_to_CELSIUS(self.T_0_Kelvin) # Scaling coefficients self.scalar_scale = 1e7 self.temperature_scale = 1e0 self.file_name = self.params["file_name"] self.folder_name = self.params["folder_name"] self.export_fields = [ "u_exp", "p_exp", "T_exp", "traction_exp", "aperture_exp", "fluxes_exp", "cell_centers", ] # Geometry def create_grid(self) -> None: """ Method that creates the GridBucket of a 2d or 3d domain. The geometry is defined through the method self._fractures() and the domain sizes stored in the dictionary self.box. This method sets self.gb and self.Nd. """ # Define fractures self._fractures() x = self.box["xmax"] - self.box["xmin"] y = self.box["ymax"] - self.box["ymin"] nx = self.params.get("nx", 10) ny = self.params.get("ny", nx) ncells = [nx, ny] dims = [x, y] if "zmax" in self.box: ncells.append(self.params.get("nz", nx)) dims.append(self.box["zmax"] - self.box["zmin"]) gb = pp.meshing.cart_grid(self.fracs, ncells, physdims=dims) pp.contact_conditions.set_projections(gb) self.gb = gb self.Nd = self.gb.dim_max() # Tag the wells self._tag_well_cells() self.n_frac = len(gb.grids_of_dimension(self.Nd - 1)) # Numerics def assign_discretizations(self) -> None: """ For long time steps, scaling the diffusive interface fluxes in the non-default way turns out to actually be beneficial for the condition number. """ # Call parent class for disrcetizations. super().assign_discretizations() for e, d in self.gb.edges(): d[pp.COUPLING_DISCRETIZATION][self.temperature_coupling_term][e][ 1 ].kinv_scaling = False d[pp.COUPLING_DISCRETIZATION][self.scalar_coupling_term][e][ 1 ].kinv_scaling = True def assemble_and_solve_linear_system(self, tol): if getattr(self, "report_A", True): A, b = self.assembler.assemble_matrix_rhs(add_matrices=False) for key in A.keys(): logger.debug("{:.2e} {}".format(np.max(np.abs(A[key])), key)) A, b = self.assembler.assemble_matrix_rhs() prepare_umfpack = self.params.get("prepare_umfpack", False) if prepare_umfpack: A.indices = A.indices.astype(np.int64) A.indptr = A.indptr.astype(np.int64) logger.debug("Max element in A {0:.2e}".format(np.max(np.abs(A)))) logger.info( "Max {0:.2e} and min {1:.2e} A sum.".format( np.max(np.sum(np.abs(A), axis=1)), np.min(np.sum(np.abs(A), axis=1)) ) ) t_0 = time.time() x = sps.linalg.spsolve(A, b) logger.info("Solved in {} s.".format(time.time() - t_0)) return x def check_convergence(self, solution, prev_solution, init_solution, nl_params=None): g_max = self._nd_grid() uh_dof = self.assembler.dof_ind(g_max, self.displacement_variable) p_dof = np.array([], dtype=np.int) T_dof = np.array([], dtype=np.int) contact_dof = np.array([], dtype=np.int) for g, _ in self.gb: p_dof = np.hstack((p_dof, self.assembler.dof_ind(g, self.scalar_variable))) T_dof = np.hstack( (T_dof, self.assembler.dof_ind(g, self.temperature_variable)) ) if g.dim == self.Nd - 1: contact_dof = np.hstack( ( contact_dof, self.assembler.dof_ind(g, self.contact_traction_variable), ) ) # Also find indices for the contact variables uj_dof = np.array([], dtype=np.int) for e, _ in self.gb.edges(): if e[0].dim == self.Nd: uj_dof = np.hstack( ( uj_dof, self.assembler.dof_ind(e, self.mortar_displacement_variable), ) ) # Pick out the solution from current, previous iterates, as well as the # initial guess. def differences(dofs): sol_now = solution[dofs] sol_prev = prev_solution[dofs] sol_init = init_solution[dofs] diff_iterates = np.sqrt(np.sum((sol_now - sol_prev) ** 2)) / sol_now.size diff_init = np.sqrt(np.sum((sol_now - sol_init) ** 2)) / sol_now.size norm = np.sqrt(np.sum(sol_now ** 2)) / sol_now.size return diff_iterates, diff_init, norm iterate_diff_T, init_diff_T, norm_T = differences(T_dof) iterate_diff_p, init_diff_p, norm_p = differences(p_dof) iterate_diff_uh, init_diff_uh, norm_uh = differences(uh_dof) iterate_diff_uj, init_diff_uj, norm_uj = differences(uj_dof) tol_convergence = nl_params["nl_convergence_tol"] # Not sure how to use the divergence criterion # tol_divergence = nl_params["nl_divergence_tol"] diverged = False # Check absolute convergence criterion def convergence(val, ref, atol, rtol=None): if rtol is None: rtol = atol if val < atol: return True, val error = val / ref return error < rtol, error scaled_convergence = 100 * tol_convergence converged_uh, error_uh = convergence(iterate_diff_uh, norm_uh, tol_convergence) converged_T, error_T = convergence(iterate_diff_T, norm_T, scaled_convergence) converged_p, error_p = convergence(iterate_diff_p, norm_p, tol_convergence) converged_uj, error_uj = convergence(iterate_diff_uj, norm_uj, tol_convergence) converged = ( converged_uj # and converged_contact and converged_uh and converged_T and converged_p ) logger.info( "Errors: displacement jump {:.2e}, matrix displacement {:.2e}, temperature {:.2e} and pressure {:.2e}".format( error_uj, error_uh, error_T, error_p ) ) logger.info( "Difference: displacement jump {:.2e}, matrix displacement {:.2e}, temperature {:.2e} and pressure {:.2e}".format( iterate_diff_uj, iterate_diff_uh, iterate_diff_T, iterate_diff_p ) ) return error_uh, converged, diverged def adjust_time_step(self): """ Adjust the time step so that smaller time steps are used when the driving forces are changed. Also make sure to exactly reach the start and end time for each phase. """ # Default is to just increase the time step somewhat self.time_step = getattr(self, "time_step_factor", 1.0) * self.time_step # We also want to make sure that we reach the end of each simulation phase for dt, lim in zip(self.phase_time_steps, self.phase_limits): diff = self.time - lim if diff < 0 and -diff <= self.time_step: self.time_step = -diff if np.isclose(self.time, lim): self.time_step = dt # And that the time step doesn't grow too large after the equilibration phase if self.time > 0: self.time_step = min(self.time_step, self.max_time_step) def compute_fluxes(self): """ Compute fluxes. For 3d, the fluxes are damped after the fourth iteration. """ use_smoothing = self.Nd == 3 gb = self.gb for g, d in gb: pa = d[pp.PARAMETERS][self.temperature_parameter_key] if self._iteration > 1: pa["darcy_flux_1"] = pa["darcy_flux"].copy() for e, d in gb.edges(): pa = d[pp.PARAMETERS][self.temperature_parameter_key] if self._iteration > 1: pa["darcy_flux_1"] = pa["darcy_flux"].copy() super().compute_fluxes() if not use_smoothing or self._iteration < 5: return a, b = 1, 1 node_update, edge_update = 0, 0 for g, d in gb: pa = d[pp.PARAMETERS][self.temperature_parameter_key] v1 = pa["darcy_flux_1"] v2 = pa["darcy_flux"] v_new = (a * v2 + b * v1) / (a + b) pa["darcy_flux"] = v_new node_update += np.sqrt( np.sum(np.power(v2 - v_new, 2)) / np.sum(np.power(v2, 2)) ) for e, d in gb.edges(): pa = d[pp.PARAMETERS][self.temperature_parameter_key] v1 = pa["darcy_flux_1"] v2 = pa["darcy_flux"] v_new = (a * v2 + b * v1) / (a + b) pa["darcy_flux"] = v_new edge_update += np.sqrt( np.sum(np.power(v2 - v_new, 2)) / np.sum(np.power(v2, 2)) ) logger.info( "Smoothed fluxes by {:.2e} and edge {:.2e} at time {:.2e}".format( node_update, edge_update, self.time ) ) # Initialization etc. def initial_condition(self) -> None: """Initial values for the Darcy fluxes, p, T and u.""" for g, d in self.gb: d[pp.PARAMETERS] = pp.Parameters() d[pp.PARAMETERS].update_dictionaries( [ self.mechanics_parameter_key, self.mechanics_temperature_parameter_key, self.scalar_parameter_key, self.temperature_parameter_key, ] ) self.update_all_apertures(to_iterate=False) self.update_all_apertures() super().initial_condition() for g, d in self.gb: u0 = self.initial_displacement(g) d[pp.PARAMETERS][self.temperature_parameter_key].update( {"darcy_flux": np.zeros(g.num_faces)} ) p0 = self.initial_scalar(g) T0 = self.initial_temperature(g) state = { self.scalar_variable: p0, self.temperature_variable: T0, } iterate = { self.scalar_variable: p0, self.temperature_variable: T0, self.displacement_variable: u0, } pp.set_state(d, state) pp.set_iterate(d, iterate) for e, d in self.gb.edges(): update = {self.mortar_displacement_variable: self.initial_displacement(e)} pp.set_state(d, update) pp.set_iterate(d, update) def initial_scalar(self, g) -> np.ndarray: """Hydrostatic pressure depending on _depth, which is set to 0 in exII.""" depth = self._depth(g.cell_centers) return self.hydrostatic_pressure(g, depth) / self.scalar_scale def initial_temperature(self, g) -> np.ndarray: """Initial temperature is 0, but set to f(z) in exIV.""" return
np.zeros(g.num_cells)
numpy.zeros
from abc import ABC import numpy as np import pytest from numpy.testing import assert_, assert_allclose from cobyqa import minimize class TestBase(ABC): @staticmethod def arwhead(x): x = np.asarray(x) fvx = (x[:-1] ** 2.0 + x[-1] ** 2.0) ** 2.0 - 4.0 * x[:-1] + 3.0 return np.sum(fvx) @staticmethod def perm0d(x): x = np.asarray(x) n = x.size nrg = np.arange(1, n + 1) fx = 0.0 for i in range(n): fx += np.sum((nrg + 10.0) * (x ** i - 1.0 / nrg ** i)) ** 2.0 return fx @staticmethod def permd(x): x = np.asarray(x) n = x.size nrg =
np.arange(1, n + 1)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Fri Aug 17 10:53:54 2018 @author: lhe39759 """ import sys sys.path.append(r'C:\Users\lhe39759\Documents\GitHub') from SliceOPy import NetSlice, DataSlice import keras import matplotlib.pyplot as plt import numpy as np import scipy.ndimage.filters as fi from mpl_toolkits.mplot3d import Axes3D # This import has side effects required for the kwarg projection='3d' in the call to fig.add_subplot def gkern2(kernlen=21, nsig=3): """Returns a 2D Gaussian kernel array.""" # create nxn zeros inp = np.zeros((kernlen, kernlen)) # set element at the middle to one, a dirac delta inp[kernlen//2, kernlen//2] = 1 # gaussian-smooth the dirac, resulting in a gaussian filter mask guass = fi.gaussian_filter(inp, nsig)/kernlen max1 = np.amax(guass) gauss = guass/max1 return gauss def generateGaussianHill(xmin,xmax,ymin,ymax,spacer,sig): gauss = gkern2(spacer,sig) gauss = gauss + (np.random.random_sample(gauss.shape)*0.05) x =np.arange(xmin,xmax, (np.abs(xmin)+np.abs(xmax))/spacer) y = np.arange(ymin, ymax, (np.abs(ymin)+np.abs(ymax))/spacer) X, Y = np.meshgrid(x, y) features = [] for x1 in x: for y1 in y: item = [] item.append(x1) item.append(y1) features.append(np.array(item)) features = np.array(features) labels = gauss.flatten() return features, labels def generateGaussianHillValley(xmin,xmax,ymin,ymax,spacer,sig): gauss = np.append(gkern2(spacer,9),-1*gkern2(spacer,9),axis=0) x =np.arange(xmin,xmax, (np.abs(xmin)+np.abs(xmax))/spacer) y = np.arange(ymin, ymax, (np.abs(ymin)+np.abs(ymax))/(2*spacer)) X, Y = np.meshgrid(x, y) features = [] for x1 in x: for y1 in y: item = [] item.append(x1) item.append(y1) features.append(np.array(item)) features = np.array(features) labels = gauss.flatten() return features, labels def plotGaussian(labels,xmin,xmax,ymin,ymax,spacerx,spacery,label): x =np.arange(xmin,xmax, (np.abs(xmin)+
np.abs(xmax)
numpy.abs
from ..grt import misc from scipy.interpolate import griddata from matplotlib.pyplot import figure from pyhdf.SD import SD, SDC from pyhdf.HDF import * from pyhdf.VS import * from scipy.interpolate.interpnd import _ndim_coords_from_arrays from scipy.spatial import cKDTree import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as cm import numpy as np import seaborn as sns; sns.set() from cartopy import config import cartopy.crs as ccrs ########################################################################################## def plot_modis_rgb_image(file): fig_style_dict = {} fig_style_dict['fig_type'] = 'analysis' #'analysis' fig_style_dict['facecolor'] = '#E8E8E8' fig_style_dict['label_font_size'] = 18 fig_style_dict['title_font_size'] = 22 fig_style_dict['heatmap_annot_font_size'] = 22 fig_style_dict['facecolor'] = 'white' fig_style_dict['label_font_size'] = 12 fig_style_dict['title_font_size'] = 14 fig_style_dict['heatmap_annot_font_size'] = 14 #file = SD(myd021km_granule, SDC.READ) selected_sds = file.select('EV_250_Aggr1km_RefSB') selected_sds_attributes = selected_sds.attributes() for key, value in selected_sds_attributes.items(): if key == 'reflectance_scales': reflectance_scales_250_Aggr1km_RefSB = np.asarray(value) if key == 'reflectance_offsets': reflectance_offsets_250_Aggr1km_RefSB = np.asarray(value) sds_data_250_Aggr1km_RefSB = selected_sds.get() selected_sds = file.select('EV_500_Aggr1km_RefSB') selected_sds_attributes = selected_sds.attributes() for key, value in selected_sds_attributes.items(): if key == 'reflectance_scales': reflectance_scales_500_Aggr1km_RefSB = np.asarray(value) if key == 'reflectance_offsets': reflectance_offsets_500_Aggr1km_RefSB = np.asarray(value) sds_data_500_Aggr1km_RefSB = selected_sds.get() print( reflectance_scales_500_Aggr1km_RefSB.shape) data_shape = sds_data_250_Aggr1km_RefSB.shape along_track = data_shape[1] cross_trak = data_shape[2] z = np.zeros((along_track, cross_trak,3)) z[:,:,0] = ( sds_data_250_Aggr1km_RefSB[0,:,:] - reflectance_offsets_250_Aggr1km_RefSB[0] ) * reflectance_scales_250_Aggr1km_RefSB[0] z[:,:,1] = ( sds_data_500_Aggr1km_RefSB[1,:,:] - reflectance_offsets_500_Aggr1km_RefSB[1] ) * reflectance_scales_500_Aggr1km_RefSB[1] z[:,:,2] = ( sds_data_500_Aggr1km_RefSB[0,:,:] - reflectance_offsets_500_Aggr1km_RefSB[0] ) * reflectance_scales_500_Aggr1km_RefSB[0] x = np.array([0, 30, 60, 120, 190, 255], dtype=np.uint8) y = np.array([0, 110, 160, 210, 240, 255], dtype=np.uint8) def scale_image(image, x, y): scaled = np.zeros((along_track, cross_trak), dtype=np.uint8) for i in range(len(x)-1): x1 = x[i] x2 = x[i+1] y1 = y[i] y2 = y[i+1] m = (y2 - y1) / float(x2 - x1) b = y2 - (m *x2) mask = ((image >= x1) & (image < x2)) scaled = scaled + mask * np.asarray(m * image + b, dtype=np.uint8) mask = image >= x2 scaled = scaled + (mask * 255) return scaled z_color_enh = np.zeros((along_track, cross_trak,3), dtype=np.uint8) z_color_enh[:,:,0] = scale_image(misc.bytescale(z[:,:,0]), x, y) z_color_enh[:,:,1] = scale_image(misc.bytescale(z[:,:,1]), x, y) z_color_enh[:,:,2] = scale_image(misc.bytescale(z[:,:,2]), x, y) fig = figure(num=None, figsize=(12, 10), dpi=80, facecolor=fig_style_dict['facecolor'], edgecolor='k') ax = fig.add_subplot(111) img = plt.imshow(np.fliplr(z_color_enh), interpolation='nearest', origin='lower') l = [int(i) for i in np.linspace(0,cross_trak,6)] plt.xticks(l, [i for i in reversed(l)], rotation=0, fontsize=11 ) l = [int(i) for i in np.linspace(0,along_track,9)] plt.yticks(l, l, rotation=0, fontsize=11 ) plt.xticks(fontsize=11) plt.yticks(fontsize=11) plt.title('MODIS RGB Image', fontsize=14) plt.grid(None) ax.set_yticklabels([]) ax.set_xticklabels([]) plt.savefig("rgb.png", bbox_inches='tight', facecolor=fig.get_facecolor()) plt.show() plt.close() return z_color_enh ########################################################################################## def plot_modis_rgb_image_with_orthographic_projection(myd021km, myd03_file): z_color_enh = plot_modis_rgb_image(myd021km) myd03_Latitude = myd03_file.select('Latitude') myd03_Longitude = myd03_file.select('Longitude') myd03_Latitude_data = myd03_Latitude.get() myd03_Longitude_data = myd03_Longitude.get() myd03_Latitude_data = np.fliplr(myd03_Latitude_data) myd03_Longitude_data = np.fliplr(myd03_Longitude_data) myd03_Latitude_shape = myd03_Latitude_data.shape z = z_color_enh / 256.0 z = np.fliplr(z) along_track = myd03_Latitude_shape[0] cross_trak = myd03_Latitude_shape[1] proj = ccrs.PlateCarree() lat_long_grid = proj.transform_points( x = myd03_Longitude_data, y = myd03_Latitude_data, src_crs = proj) x_igrid = lat_long_grid[:,:,0] ## long y_igrid = lat_long_grid[:,:,1] ## lat xul =
np.min(myd03_Longitude_data)
numpy.min
# -------------------------------------------------------- # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import numpy as np import os import sys from transforms3d.quaternions import * from transforms3d.euler import * from transforms3d.axangles import * import random from tensorboardX import SummaryWriter import scipy.io as sio import IPython import time from torch import nn from collections import deque import tabulate import torch.nn.functional as F import cv2 import yaml import torch import ray import core import copy import math from easydict import EasyDict as edict from pointnet2_ops.pointnet2_utils import furthest_point_sample, gather_operation import psutil import GPUtil import itertools import glob import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib import cm import matplotlib class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0. self.avg = 0. self.sum = 0. self.count = 0. self.sum_2 = 0. self.count_2 = 0. self.means = [] def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count self.sum_2 += val * n self.count_2 += n def set_mean(self): self.means.append(self.sum_2 / self.count_2) self.sum_2 = 0. self.count_2 = 0. def std(self): return np.std(np.array(self.means) + 1e-4) def __repr__(self): return "{:.3f} ({:.3f})".format(self.val, self.avg) def module_max_param(module): def maybe_max(x): return float(torch.abs(x).max()) if x is not None else 0 max_data = np.amax([(maybe_max(param.data)) for name, param in module.named_parameters()]) return max_data def module_max_gradient(module): def maybe_max(x): return float(torch.abs(x).max()) if x is not None else 0 max_grad = np.amax( [(maybe_max(param.grad)) for name, param in module.named_parameters()] ) return max_grad def normalize(v, axis=None, eps=1e-10): """L2 Normalize along specified axes.""" return v / max(np.linalg.norm(v, axis=axis, keepdims=True), eps) def inv_lookat(eye, target=[0, 0, 0], up=[0, 1, 0]): """Generate LookAt matrix.""" eye = np.float32(eye) forward = normalize(target - eye) side = normalize(np.cross(forward, up)) up = np.cross(side, forward) R = np.stack([side, up, -forward], axis=-1) return R def process_image_input(state): state[:, :3] *= 255 if state.shape[1] >= 4: state[:, 3] *= 5000 if state.shape[1] == 5: state[:, -1][state[:, -1] == -1] = 50 return state.astype(np.uint16) def process_image_output(sample): sample = sample.astype(np.float32).copy() n = len(sample) if len(sample.shape) <= 2: return sample sample[:, :3] /= 255.0 if sample.shape[0] >= 4: sample[:, 3] /= 5000 sample[:, -1] = sample[:, -1] != 0 return sample def merge_two_dicts(x, y): z = x.copy() z.update(y) return z def get_valid_index(arr, index): return arr[min(len(arr) - 1, index)] def fc(batchNorm, in_planes, out_planes): if batchNorm: return nn.Sequential( nn.Linear(in_planes, out_planes), nn.BatchNorm1d(out_planes), nn.LeakyReLU(0.1, inplace=True), ) else: return nn.Sequential( nn.Linear(in_planes, out_planes), nn.LeakyReLU(0.1, inplace=True) ) def deg2rad(deg): if type(deg) is list: return [x/180.0*np.pi for x in deg] return deg/180.0*np.pi def rad2deg(rad): if type(rad) is list: return [x/np.pi*180 for x in rad] return rad/np.pi*180 def make_video_writer(name, window_width, window_height): fourcc = cv2.VideoWriter_fourcc(*"MJPG") return cv2.VideoWriter(name, fourcc, 10.0, (window_width, window_height)) def projection_to_intrinsics(mat, width=224, height=224): intrinsic_matrix = np.eye(3) mat = np.array(mat).reshape([4, 4]).T fv = width / 2 * mat[0, 0] fu = height / 2 * mat[1, 1] u0 = width / 2 v0 = height / 2 intrinsic_matrix[0, 0] = fu intrinsic_matrix[1, 1] = fv intrinsic_matrix[0, 2] = u0 intrinsic_matrix[1, 2] = v0 return intrinsic_matrix def view_to_extrinsics(mat): pose = np.linalg.inv(np.array(mat).reshape([4, 4]).T) return np.linalg.inv(pose.dot(rotX(np.pi))) def concat_state_action_channelwise(state, action): """ concate the action in the channel space """ action = action.unsqueeze(2) state = torch.cat((state, action.expand(-1, -1, state.shape[2])), 1) return state def safemat2quat(mat): quat = np.array([1,0,0,0]) try: quat = mat2quat(mat) except: pass quat[np.isnan(quat)] = 0 return quat def migrate_model(in_model, out_model, surfix="latest", in_policy_name="BC", out_policy_name="BC"): files = [ "actor_PandaYCBEnv_{}".format(surfix), "state_feat_PandaYCBEnv_{}".format(surfix), "traj_feat_PandaYCBEnv_{}".format(surfix), "traj_sampler_PandaYCBEnv_{}".format(surfix), "critic_PandaYCBEnv_{}".format(surfix), ] config_file = glob.glob(in_model + '/*.yaml') config_file = [f for f in config_file if 'bc' in f] in_policy_name = "BC" if len(config_file) >= 1 else "DQN_HRL" for file in files: cmd = "cp {}/{}_{} {}/{}_{}".format( in_model, in_policy_name, file, out_model, out_policy_name, file) if os.path.exists('{}/{}_{}'.format(in_model, in_policy_name, file)): os.system(cmd) print(cmd) def get_info(state, opt="img", IMG_SIZE=(112, 112)): if opt == "img": return (state[0][1][:3].T * 255).astype(np.uint8) if opt == "intr": cam_proj = np.array(state[-2][48:]).reshape([4, 4]) return projection_to_intrinsics(cam_proj, IMG_SIZE[0], IMG_SIZE[1])[:3, :3] if opt == "point": return state[0][0] def make_gripper_pts(points, color=(1, 0, 0)): line_index = [[0, 1], [1, 2], [1, 3], [3, 5], [2, 4]] cur_gripper_pts = points.copy() cur_gripper_pts[1] = (cur_gripper_pts[2] + cur_gripper_pts[3]) / 2.0 line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(cur_gripper_pts) line_set.lines = o3d.utility.Vector2iVector(line_index) line_set.colors = o3d.utility.Vector3dVector( [color for i in range(len(line_index))] ) return line_set def _cross_matrix(x): """ cross product matrix """ return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) def a2e(q): p =
np.array([0, 0, 1])
numpy.array
"""obstacle_avoid_test controller.""" # You may need to import some classes of the controller module. Ex: # from controller import Robot, LED, DistanceSensor from controller import Supervisor from odometry import Odometry from data_collector import DataCollector from predictor import Predictor import matplotlib.pyplot as plt import numpy as np import math # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # hello = tf.constant("hello TensorFlow!") # sess=tf.Session() # print(sess.run(hello)) MAX_SPEED = 6 TIME_STEP = 8 WHEEL_RADIUS = 0.05 SAMPLING_PERIOD = 10 MAX_X = 2 MAX_Y = 1.5 ENCODER_UNIT = 159.23 INIT_X = 0.0 INIT_Y = 0.0 INIT_ANGLE = 0 PRED_STEPS = 450 correction_x = 0 correction_y = 0 correction_theta = 0 # create the Robot instance. robot = Supervisor() robot_sup = robot.getFromDef("e-puck") robot_trans = robot_sup.getField("translation") compass = robot.getCompass("compass") motorLeft = robot.getMotor("left wheel motor") motorRight = robot.getMotor("right wheel motor") positionLeft = robot.getPositionSensor("left wheel sensor") positionRight = robot.getPositionSensor("right wheel sensor") predictor = Predictor() timestep = int(robot.getBasicTimeStep()) x = [] y = [] theta = [] distance_sensors_info = [] x_odometry = [] y_odometry = [] theta_odometry = [] sensorNames = ['ds0', 'ds1', 'ds2', 'ds3', 'ds4', 'ds5', 'ds6', 'ds7'] x_pred = [] y_pred = [] theta_pred = [] data_collector = DataCollector() def init(): compass.enable(timestep) # motorLeft.setPosition(0.5/WHEEL_RADIUS) # motorRight.setPosition(0.5/WHEEL_RADIUS) motorLeft.setPosition(float('inf')) motorRight.setPosition(float('inf')) positionRight.enable(timestep) positionLeft.enable(timestep) def robot_to_xy(x, y): return x+1, y+0.75 def xy_to_robot(x, y): return x-1, y-0.75 def get_bearing_degrees(): north = compass.getValues() rad = np.arctan2(north[0], north[2]) bearing = (rad) / np.pi * 180 if bearing < 0.0: bearing += 360 bearing = 360 - bearing - 90 if bearing < 0.0: bearing += 360 return bearing def step(): return (robot.step(timestep) != -1) def save_supervisor_coordinates(): # true robot position information trans_info = robot_trans.getSFVec3f() x_coordinate, y_coordinate = robot_to_xy(trans_info[2], trans_info[0]) x.append(x_coordinate) y.append(y_coordinate) theta.append((get_bearing_degrees())) def save_odometry_coordinates(coordinate): # convert robot coordinates into global coordinate system x_odometry.append(1 + 2*INIT_X - coordinate.x + correction_x) y_odometry.append(0.75 + 2*INIT_Y - coordinate.y + correction_y) theta_odometry.append(convert_angle_to_xy_coordinates(coordinate.theta) + correction_theta) def save_sensor_distances(distanceSensors): distances = [] for distanceSensor in distanceSensors: distance = distanceSensor.getValue() #there is no real messure. if distance == 10: distance = None distances.append(distance) distance_sensors_info.append(distances) def get_sensor_distance(): # Read the sensors, like: distanceSensors = [] for sensorName in sensorNames: sensor = robot.getDistanceSensor(sensorName) sensor.enable(timestep) distanceSensors.append(sensor) return distanceSensors def calculate_velocity(distanceSensors): # Process sensor data here sensorValues = [distanceSensor.getValue() + np.random.normal(0, 0.1) for distanceSensor in distanceSensors] rightObstacle = sensorValues[0] < 0.15 or sensorValues[1] < 0.15 leftObstacle = sensorValues[6] < 0.15 or sensorValues[7] < 0.15 left_speed = .5 * MAX_SPEED right_speed = .5 * MAX_SPEED # avoid collition if leftObstacle: left_speed += .7 * MAX_SPEED right_speed -= .7 * MAX_SPEED elif rightObstacle: left_speed -= .7 * MAX_SPEED right_speed += .7 * MAX_SPEED return left_speed, right_speed def convert_angle_to_xy_coordinates(angle): angle = angle*180/np.pi angle = angle - 180 if angle < 0.0: angle += 360 return angle def plot(): # Enter here exit cleanup code. plt.ylim([0, 1.5]) plt.xlim([0, 2]) plt.xlabel("x") plt.ylabel("y") plt.plot(x, y, label="real") plt.plot(x_odometry, y_odometry, label="odometry") plt.plot(x_pred, y_pred, 's', label="correction", marker='o') plt.title("Robot position estimation") plt.legend() plt.savefig("results/position.eps", format='eps') def correct_state(x, y, theta, sensors_data, delta = 10, omega = 3): # corresponds to the E set errors = [] # corresponds to the X set predictions = [] xrange = [l/100 for l in range(max(0, int(x*100) - delta), min(MAX_X*100, int(x*100) + delta), 1)] yrange = [l/100 for l in range(max(0, int(y*100) - delta), min(int(MAX_Y*100), int(y*100) + delta), 1)] thetarange = [l for l in range(max(0, int(theta) - omega), min(360, int(theta) + omega), 1)] print("XRANGE------------------") print(x) print(xrange) print("YRANGE------------------") print(y) print(yrange) print("THETARANGE------------------") print("theta: ", theta) print(thetarange) for i in xrange: for j in yrange: for k in thetarange: error, bad_data = predictor.predict(i, j, k, sensors_data) if not bad_data: predictions.append([i, j, k]) errors.append(math.log(error)) if len(errors) > 0: ix = errors.index(min(errors)) return predictions[ix] return -1 if __name__ == '__main__': init() step() odometry = Odometry(ENCODER_UNIT * (positionLeft.getValue()), ENCODER_UNIT * (positionRight.getValue()), INIT_X, INIT_Y, INIT_ANGLE) count = 0 while(True): odometry_info = odometry.track_step(ENCODER_UNIT * (positionLeft.getValue()), ENCODER_UNIT * (positionRight.getValue())) if not step(): # print('saving data') data_collector.collect(x_odometry, y_odometry, theta_odometry, x, y, theta,
np.array(distance_sensors_info)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Sep 11 21:57:41 2020 @author: inderpreet plot the average deviations from different filterin thresholds """ import matplotlib.pyplot as plt import numpy as np import stats as S from ici import iciData plt.rcParams.update({'font.size': 26}) from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) from typhon.retrieval.qrnn import set_backend, QRNN set_backend("pytorch") import stats #%% def read_qrnn(file, inChannels, target): data = iciData(test_file, inChannels, target, batch_size = batchSize) # read QRNN # file = 'qrnn_ici_%s_%s_%s_single.nc'%(depth, width, target) # print (file) qrnn = QRNN.load(file) y_pre, y_prior, y0, y, y_pos_mean = S.predict(data, qrnn, add_noise = True) return y_pre, y_prior, y0, y, y_pos_mean #%% input parameters depth = 4 width = 128 quantiles = np.array([0.002, 0.03, 0.16, 0.5, 0.84, 0.97, 0.998]) batchSize = 128 targets = ['I1V', 'I2V', 'I3V'] test_file = "TB_ICI_test.nc" iq = np.argwhere(quantiles == 0.5)[0,0] filters =
np.arange(5, 0, -0.5)
numpy.arange
# -*- coding: utf-8 -*- """ Title : Normalization Test Script Script used for testing if normalization was done correctly Created on Mon Aug 5 11:47:42 2019 @author: Tim """ #Sepecify these few things and the whole thing will test number_random = 100 all_data_path =\ r"E:\PhD project\ozone\08212019_All_Data_Norm\All_Data.csv" train_valid_path =\ r"E:\PhD project\ozone\08212019_All_Data_Norm\All_Data_norm.csv" import numpy as np import pandas as pd from statistics import mode #function that deletes unnecessary stuff def clean_dataframe_list(df,delete_list): header = list(df) for i in range(0,len(delete_list)): index = header.index(delete_list[i]) del df[header[index]] del header[index] return df #load data in df_data_all = pd.read_csv(all_data_path) df_valid_train = pd.read_csv(train_valid_path) header_all = list(df_data_all) #delete the list of variables we dont care about delete_list = ['date','Sensor'] df_valid_train = clean_dataframe_list(df_valid_train,delete_list) header_vt = list(df_valid_train) #get different random locations shapes = df_valid_train.shape #sets up storage random_indexes =\ np.random.randint(0,shapes[0],number_random).reshape(-1,1) fail_headers = [] pass_fail = np.zeros(number_random,dtype = bool) value_save = np.zeros(number_random) for i in range(0,number_random,1): #ranodmely checks certain rows and finds a match temp_train = df_valid_train.loc[random_indexes[i]] header_temp = list(temp_train) temp_store = [] for j in range(0,len(header_temp),1): value_temp = np.array(temp_train[header_temp[j]]) array_check_temp =\ np.array(df_data_all[header_temp[j]]) error =
np.abs(value_temp-array_check_temp)
numpy.abs
import numpy as np print(np.sum([1, 2, 3, 4, 5])) print() idades = np.random.randint(24, 50, size=30) print(idades) print() # Media: soma todos e divide pela qtd de elementos print(int(idades.mean())) # Mediana: ordena a lista e pega o valor do meio. # Se a lista conter qtd impar de elementos, pega os dois do meio, soma e divide por 2 print(np.median(idades)) print() # Operações vetorizadas idades1 =
np.random.randint(24, 50, size=31)
numpy.random.randint
# mgauss.py """ Multiple Gauss-function fits. The multiple-Gauss function used in trace.py is specialized for IFU use, so here is a general-purpose fitter that also takes care of fitting thick things with multiple components. """ import numpy as np import matplotlib.pyplot as plt import sys from scipy.signal import find_peaks, peak_widths, peak_prominences from astropy.modeling.models import Gaussian1D, Const1D, Polynomial1D from astropy.modeling.fitting import LevMarLSQFitter from pyFU.utils import smooth, multiple_gauss_function class MultipleGaussians (object) : def __init__ (self) : self._model = None self._ipeaks = None self._wpeaks = None self._apeaks = None self._fit = None def find_peaks (self, x, y, max_peaks=5) : """ Find main peaks in y. The default max_peaks=5 is simply so that pyFU's standard ampl_format can list 16 coefficients (3*5+1) as a single hex number. """ ipeaks = list(np.array(find_peaks(y)[0],dtype=int)) wpeaks = list(np.array(peak_widths (y, ipeaks, rel_height=np.exp(-0.5))[0]/2,dtype=int)) # SIGMAS apeaks = list(peak_prominences (y, ipeaks)[0]) """ print (ipeaks) print (wpeaks) print ('#, ipeak, xpeak, xwid-, xwid+') for i in range(len(ipeaks)) : print (i,ipeaks[i],x[ipeaks[i]],x[int(ipeaks[i]-wpeaks[i])],x[int(ipeaks[i]+wpeaks[i])]) print (apeaks) """ # Separate really wide peak into multiple peaks imin = np.argmin(wpeaks) imax =
np.argmax(wpeaks)
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Tue Nov 3 15:07:16 2017 @author: <NAME> """ from __future__ import division, print_function, unicode_literals, absolute_import import unittest import os import sys import h5py import numpy as np import dask.array as da import shutil sys.path.append("../../pyUSID/") from pyUSID.io import hdf_utils, write_utils, USIDataset from tests.io import data_utils if sys.version_info.major == 3: unicode = str class TestModel(unittest.TestCase): def setUp(self): data_utils.make_beps_file() data_utils.make_sparse_sampling_file() data_utils.make_incomplete_measurement_file() data_utils.make_relaxation_file() def tearDown(self): for file_path in [data_utils.std_beps_path, data_utils.sparse_sampling_path, data_utils.incomplete_measurement_path, data_utils.relaxation_path]: data_utils.delete_existing_file(file_path) class TestGetDimensionality(TestModel): def test_legal_no_sort(self): self.__helper_no_sort(hdf_dsets=True) self.__helper_no_sort(hdf_dsets=False) def __helper_no_sort(self, hdf_dsets=True): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_dsets = [h5_f['/Raw_Measurement/Spectroscopic_Indices'], h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'], h5_f['/Raw_Measurement/Position_Indices']] expected_shapes = [[7, 2], [7], [5, 3]] for h5_dset, exp_shape in zip(h5_dsets, expected_shapes): if not hdf_dsets: h5_dset = h5_dset[()] self.assertTrue(np.all(exp_shape == hdf_utils.get_dimensionality(h5_dset))) def test_legal_w_sort(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_dsets = [h5_f['/Raw_Measurement/Spectroscopic_Indices'], h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'], h5_f['/Raw_Measurement/Position_Indices']] expected_shapes = [[2, 7], [7], [3, 5]] sort_orders = [[1, 0], [0], [1, 0]] for h5_dset, s_oder, exp_shape in zip(h5_dsets, sort_orders, expected_shapes): self.assertTrue(np.all(exp_shape == hdf_utils.get_dimensionality(h5_dset, index_sort=s_oder))) def test_not_hdf_dset(self): for obj in [15, 'srds']: with self.assertRaises(TypeError): _ = hdf_utils.get_dimensionality(obj) def test_invalid_sort(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_dset = h5_f['/Raw_Measurement/Spectroscopic_Indices'] with self.assertRaises(ValueError): _ = hdf_utils.get_dimensionality(h5_dset, index_sort=[3, 4]) _ = hdf_utils.get_dimensionality(h5_dset, index_sort=['a', np.arange(5)]) class TestGetSortOrder(TestModel): def test_invalid_types(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: for obj in ['fdfdfd', h5_f]: with self.assertRaises(TypeError): _ = hdf_utils.get_sort_order(obj) def test_simple(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_dsets = [h5_f['/Raw_Measurement/Spectroscopic_Indices'], h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'], h5_f['/Raw_Measurement/Position_Indices']] expected_order = [[0, 1], [0], [0, 1]] for h5_dset, exp_order in zip(h5_dsets, expected_order): self.assertTrue(np.all(exp_order == hdf_utils.get_sort_order(h5_dset))) def test_reversed(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_dsets = [np.flipud(h5_f['/Raw_Measurement/Spectroscopic_Indices']), h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'], np.fliplr(h5_f['/Raw_Measurement/Position_Indices'])] expected_order = [[1, 0], [0], [1, 0]] for h5_dset, exp_order in zip(h5_dsets, expected_order): self.assertTrue(np.all(exp_order == hdf_utils.get_sort_order(h5_dset))) class TestGetUnitValues(TestModel): def test_source_spec_all(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] h5_vals = h5_f['/Raw_Measurement/Spectroscopic_Values'] expected = {} for dim_name in ['Bias', 'Cycle']: expected[dim_name] = h5_f['/Raw_Measurement/' + dim_name][()] ret_val = hdf_utils.get_unit_values(h5_inds, h5_vals) self.assertEqual(len(expected), len(ret_val)) for key, exp in expected.items(): self.assertTrue(np.allclose(exp, ret_val[key])) def test_source_spec_all_explicit(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] h5_vals = h5_f['/Raw_Measurement/Spectroscopic_Values'] expected = {} for dim_name in ['Bias', 'Cycle']: expected[dim_name] = h5_f['/Raw_Measurement/' + dim_name][()] ret_val = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Cycle', 'Bias']) self.assertEqual(len(expected), len(ret_val)) for key, exp in expected.items(): self.assertTrue(np.allclose(exp, ret_val[key])) def test_illegal_key(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] h5_vals = h5_f['/Raw_Measurement/Spectroscopic_Values'] with self.assertRaises(KeyError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Cycle', 'Does not exist']) def test_illegal_dset(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] h5_vals = h5_f['/Raw_Measurement/Ancillary'] with self.assertRaises(ValueError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Cycle', 'Bias']) def test_source_spec_single(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] h5_vals = h5_f['/Raw_Measurement/Spectroscopic_Values'] expected = {'Bias': h5_f['/Raw_Measurement/Bias'][()]} ret_val = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names='Bias') self.assertEqual(len(expected), len(ret_val)) for key, exp in expected.items(): self.assertTrue(np.allclose(exp, ret_val[key])) def test_source_pos_all(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Position_Indices'] h5_vals = h5_f['/Raw_Measurement/Position_Values'] expected = {} for dim_name in ['X', 'Y']: expected[dim_name] = h5_f['/Raw_Measurement/' + dim_name][()] ret_val = hdf_utils.get_unit_values(h5_inds, h5_vals) self.assertEqual(len(expected), len(ret_val)) for key, exp in expected.items(): self.assertTrue(np.allclose(exp, ret_val[key])) def test_source_pos_single(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Position_Indices'] h5_vals = h5_f['/Raw_Measurement/Position_Values'] expected = {'Y': h5_f['/Raw_Measurement/Y'][()]} ret_val = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names='Y') self.assertEqual(len(expected), len(ret_val)) for key, exp in expected.items(): self.assertTrue(np.allclose(exp, ret_val[key])) def test_all_dim_names_not_provided(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_inds = h5_f['/Raw_Measurement/Position_Indices'][()] h5_vals = h5_f['/Raw_Measurement/Position_Values'][()] with self.assertRaises(TypeError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Y']) def test_dependent_dim(self): with h5py.File(data_utils.relaxation_path, mode='r') as h5_f: h5_inds = h5_f['/Measurement_000/Channel_000/Spectroscopic_Indices'] h5_vals = h5_f['/Measurement_000/Channel_000/Spectroscopic_Values'] spec_dim_names = hdf_utils.get_attr(h5_inds, 'labels') ret_dict = hdf_utils.get_unit_values(h5_inds, h5_vals) for dim_ind, dim_name in enumerate(spec_dim_names): exp_val = hdf_utils.get_attr(h5_inds, 'unit_vals_dim_' + str(dim_ind)) act_val = ret_dict[dim_name] self.assertTrue(np.allclose(exp_val, act_val)) def test_sparse_samp_no_attr(self): # What should the user expect this function to do? throw an error. # Without the attribute, this function will have no idea that it is looking at a sparse sampling case # it will return the first and second columns of vals blindly with h5py.File(data_utils.sparse_sampling_path, mode='r') as h5_f: h5_inds = h5_f['/Measurement_000/Channel_000/Position_Indices'] h5_vals = h5_f['/Measurement_000/Channel_000/Position_Values'] dim_names = hdf_utils.get_attr(h5_inds, 'labels') ret_dict = hdf_utils.get_unit_values(h5_inds, h5_vals) for dim_ind, dim_name in enumerate(dim_names): exp_val = h5_vals[:, dim_ind] act_val = ret_dict[dim_name] self.assertTrue(np.allclose(exp_val, act_val)) def test_sparse_samp_w_attr(self): # What should the user expect this function to do? throw an error. with h5py.File(data_utils.sparse_sampling_path, mode='r') as h5_f: h5_inds = h5_f['/Measurement_000/Channel_001/Position_Indices'] h5_vals = h5_f['/Measurement_000/Channel_001/Position_Values'] with self.assertRaises(ValueError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Y']) def test_incomp_dim_no_attr(self): # What should the user expect this function to do? throw an error. # Given that the unit values for each tile are different, it should throw a ValueError for X. # Even though we know Y is incomplete, it won't know since it wasn't looking at X. # However, now this function will automatically find unit values for ALL dimensions just to catch such scenarios with h5py.File(data_utils.incomplete_measurement_path, mode='r') as h5_f: h5_inds = h5_f['/Measurement_000/Channel_000/Position_Indices'] h5_vals = h5_f['/Measurement_000/Channel_000/Position_Values'] with self.assertRaises(ValueError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals) with self.assertRaises(ValueError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['X']) with self.assertRaises(ValueError): _ = hdf_utils.get_unit_values(h5_inds, h5_vals, dim_names=['Y']) class TestReshapeToNDims(TestModel): def test_h5_already_sorted(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: nd_slow_to_fast = h5_f['/Raw_Measurement/n_dim_form'][()] h5_main = h5_f['/Raw_Measurement/source_main'] # Data is always slowest to fastest # Anc dims arranged from fastest to slowest # Expecting data dims to be arranged according to anc dims order n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_main, get_labels=True, sort_dims=False, lazy=False, verbose=True) self.assertTrue(np.all([x == y for x, y in zip(labels, ['X', 'Y', 'Bias', 'Cycle'])])) self.assertTrue(success) nd_fast_to_slow = nd_slow_to_fast.transpose(1, 0, 3, 2) self.assertTrue(np.allclose(nd_fast_to_slow, n_dim)) # Anc dims arranged from fastest to slowest # Expecting data dims to be arranged according to slow to fast n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_main, get_labels=True, sort_dims=True, lazy=False, verbose=True) self.assertTrue(success) self.assertTrue(np.all([x == y for x, y in zip(labels, ['Y', 'X', 'Cycle', 'Bias'])])) self.assertTrue(np.allclose(nd_slow_to_fast, n_dim)) def test_h5_manually_provided_anc_dsets_h5(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: nd_slow_to_fast = h5_f['/Raw_Measurement/n_dim_form'][()] nd_fast_to_slow = nd_slow_to_fast.transpose(1, 0, 3, 2) exp_labs = ['X', 'Y', 'Bias', 'Cycle'] h5_main = h5_f['/Raw_Measurement/source_main'] h5_pos_inds = h5_f['/Raw_Measurement/Position_Indices'] h5_spec_inds = h5_f['/Raw_Measurement/Spectroscopic_Indices'] # BOTH POS AND SPEC n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_main, h5_pos=h5_pos_inds, h5_spec=h5_spec_inds, get_labels=True, sort_dims=False, lazy=False, verbose=True) self.assertTrue(np.all([x == y for x, y in zip(labels, exp_labs)])) self.assertTrue(success) self.assertTrue(np.allclose(nd_fast_to_slow, n_dim)) # ONLY POS: n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_main, h5_pos=h5_pos_inds, h5_spec=None, get_labels=True, sort_dims=False, lazy=False, verbose=True) self.assertTrue(np.all([x == y for x, y in zip(labels, exp_labs)])) self.assertTrue(success) self.assertTrue(np.allclose(nd_fast_to_slow, n_dim)) # ONLY SPEC n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_main, h5_pos=None, h5_spec=h5_spec_inds, get_labels=True, sort_dims=False, lazy=False, verbose=True) self.assertTrue(np.all([x == y for x, y in zip(labels, exp_labs)])) self.assertTrue(success) self.assertTrue(np.allclose(nd_fast_to_slow, n_dim)) def test_h5_not_main_dset(self): with h5py.File(data_utils.std_beps_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/Ancillary'] h5_pos = h5_f['/Raw_Measurement/Position_Indices'] h5_spec = h5_f['/Raw_Measurement/Spectroscopic_Indices'] # Not main with self.assertRaises(ValueError): _ = hdf_utils.reshape_to_n_dims(h5_main) # Not main and not helping that we are supplign incompatible ancillary datasets with self.assertRaises(ValueError): _ = hdf_utils.reshape_to_n_dims(h5_main, h5_pos=h5_pos, h5_spec=h5_spec) # main but we are supplign incompatible ancillary datasets h5_main = h5_f['/Raw_Measurement/source_main-Fitter_000/results_main'] with self.assertRaises(ValueError): _ = hdf_utils.reshape_to_n_dims(h5_main, h5_pos=h5_pos, h5_spec=h5_spec) def build_main_anc_4d(self): num_rows = 3 num_cols = 5 num_cycles = 2 num_cycle_pts = 7 # arrange as fast, slow pos_inds = np.vstack((np.tile(np.arange(num_cols), num_rows), np.repeat(np.arange(num_rows), num_cols))).T # arrange as fast, slow spec_inds = np.vstack((np.tile(np.arange(num_cycle_pts), num_cycles), np.repeat(np.arange(num_cycles), num_cycle_pts))) # Data is arranged from slowest to fastest main_nd = np.zeros(shape=(num_rows, num_cols, num_cycles, num_cycle_pts), dtype=np.uint8) for row_ind in range(num_rows): for col_ind in range(num_cols): for cycle_ind in range(num_cycles): # for bias_ind in range(num_cycle_pts): val = 1E+3*row_ind + 1E+2*col_ind + 1E+1*cycle_ind + np.arange(num_cycle_pts) main_nd[row_ind, col_ind, cycle_ind] = val return main_nd, pos_inds, spec_inds def base_comparison_4d(self, flip_pos_inds, flip_spec_inds, lazy_in=False, lazy_out=False, verbose=False): # Generated Data dims from slowest to fastest exp_nd_s2f, pos_inds, spec_inds = self.build_main_anc_4d() # nd (Y, X, Cycle, Bias) main_2d = exp_nd_s2f.reshape(np.prod(exp_nd_s2f.shape[:2]), np.prod(exp_nd_s2f.shape[2:])) # Dimension names arranged from slowest to fastest labs_s2f = ['Position Dimension 1', 'Position Dimension 0', 'Spectral Dimension 1', 'Spectral Dimension 0'] # Generated ancillary dimensions are arranged from fastest to slowest # Unless any flipping is requested, as-is order should be fast to slow as_is_nd_order = [1, 0, 3, 2] # Unless any flipping is requested, s2f order is already in place s2f_lab_order = [0, 1, 2, 3] if flip_pos_inds: # arranged as slow to fast pos_inds = np.fliplr(pos_inds) as_is_nd_order = as_is_nd_order[:2][::-1] + as_is_nd_order[2:] s2f_lab_order = [1, 0] + s2f_lab_order[2:] if flip_spec_inds: # arranged as slow to fast as_is_nd_order = as_is_nd_order[:2] + as_is_nd_order[2:][::-1] s2f_lab_order = s2f_lab_order[:2] + [3, 2] spec_inds = np.flipud(spec_inds) if lazy_in: main_2d = da.from_array(main_2d, chunks=main_2d.shape) pos_inds = da.from_array(pos_inds, chunks=pos_inds.shape) spec_inds = da.from_array(spec_inds, chunks=spec_inds.shape) n_dim, suc, labs = hdf_utils.reshape_to_n_dims(main_2d, h5_pos=pos_inds, h5_spec=spec_inds, sort_dims=True, get_labels=True, lazy=lazy_out, verbose=verbose) if lazy_out: self.assertIsInstance(n_dim, da.core.Array) self.assertTrue(np.allclose(exp_nd_s2f, n_dim)) self.assertTrue(suc) # labels were auto-generated and these will be flipped blindly exp_labs = np.array(labs_s2f)[s2f_lab_order] self.assertTrue(np.all([x == y for x, y in zip(labs, exp_labs)])) if verbose: print('~~~~~~~~~~~~~~~~~~~~~~ UNSORTED ~~~~~~~~~~~~~~~~~~~~~~~~~') n_dim, suc, labs = hdf_utils.reshape_to_n_dims(main_2d, h5_pos=pos_inds, h5_spec=spec_inds, sort_dims=False, get_labels=True, lazy=lazy_out, verbose=verbose) if lazy_out: self.assertIsInstance(n_dim, da.core.Array) # Rearrange the dim labels and N-dim form from slow-to-fast to: if verbose: print('N-dim order will be permuted as: {}'.format(as_is_nd_order)) print('Labels will be permuted as: {}'.format([1, 0, 3, 2])) exp_nd = exp_nd_s2f.transpose(tuple(as_is_nd_order)) """ This is sort of confusing: No matter how the pos / spec dims are ordered, the names will always start as P0, P1, S0, S1 """ exp_labs = np.array(labs_s2f)[[1, 0, 3, 2]] if verbose: print('Expected N-dim shape: {} and labels: {}' ''.format(exp_nd.shape, exp_labs)) self.assertTrue(np.allclose(exp_nd, n_dim)) self.assertTrue(suc) self.assertTrue(np.all([x == y for x, y in zip(labs, exp_labs)])) def test_numpy_ordinary(self): self.base_comparison_4d(False, False) def test_dask_input(self): self.base_comparison_4d(False, False, lazy_in=True, lazy_out=False) def test_dask_output(self): self.base_comparison_4d(False, False, lazy_in=False, lazy_out=True) def test_dask_all(self): self.base_comparison_4d(False, False, lazy_in=True, lazy_out=True) def test_numpy_pos_inds_order_flipped(self): self.base_comparison_4d(True, False) def test_numpy_spec_inds_order_flipped(self): # This is the same situation as in BEPS self.base_comparison_4d(False, True) def test_numpy_both_inds_order_flipped(self): self.base_comparison_4d(True, True) def test_dask_all_both_inds_order_flipped(self): self.base_comparison_4d(True, True, lazy_in=True, lazy_out=True) def build_main_anc_1_2d(self, is_2d=True, is_spec=False): num_rows = 2 num_cols = 3 # arrange as fast, slow pos_inds = np.vstack((np.tile(np.arange(num_cols), num_rows), np.repeat(np.arange(num_rows), num_cols))).T # Data is arranged from slowest to fastest main_nd = np.random.randint(0, high=255, size=(num_rows, num_cols), dtype=np.uint8) if not is_2d: pos_inds = np.expand_dims(np.arange(num_rows), axis=1) main_nd = np.random.randint(0, high=255, size=num_rows, dtype=np.uint8) spec_inds= np.expand_dims([0], axis=0) if is_spec: return main_nd, spec_inds, pos_inds.T return main_nd, pos_inds, spec_inds def base_comparison_1_2d(self, is_2d, is_spec, flip_inds, lazy_in=False, lazy_out=False): # Data is always stored from fastest to slowest # By default the ancillary dimensions are arranged from fastest to slowest main_nd, pos_inds, spec_inds = self.build_main_anc_1_2d(is_2d=is_2d, is_spec=is_spec) main_2d = main_nd.reshape(-1, 1) main_nd_w_sing = np.expand_dims(main_nd, axis=-1) if is_spec: main_2d = main_2d.T main_nd_w_sing = np.expand_dims(main_nd, axis=0) # nd (Y, X) order = [1, 0, 2] if is_spec: order = [0, 2, 1] if flip_inds: # arranged as slow to fast if is_spec: spec_inds = np.flipud(spec_inds) order = [0] + order[1:][::-1] else: pos_inds = np.fliplr(pos_inds) order = order[:2][::-1] + [2] print('2D: {}, Spec: {}, Flip: {}'.format(is_2d, is_spec, flip_inds)) print('Main data shapes ND: {}, 2D: {}'.format(main_nd.shape, main_2d.shape)) print(main_nd) print(main_2d) if lazy_in: main_2d = da.from_array(main_2d, chunks=main_2d.shape) n_dim, success = hdf_utils.reshape_to_n_dims(main_2d, h5_pos=pos_inds, h5_spec=spec_inds, sort_dims=True, get_labels=False, lazy=lazy_out, verbose=True) if lazy_out: self.assertIsInstance(n_dim, da.core.Array) self.assertTrue(np.allclose(main_nd_w_sing, n_dim)) print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') n_dim, success = hdf_utils.reshape_to_n_dims(main_2d, h5_pos=pos_inds, h5_spec=spec_inds, sort_dims=False, get_labels=False, lazy=lazy_out, verbose=True) if lazy_out: self.assertIsInstance(n_dim, da.core.Array) if is_2d: main_nd_w_sing = main_nd_w_sing.transpose(order) self.assertTrue(np.allclose(main_nd_w_sing, n_dim)) def test_numpy_ordinary_1d_pos(self): self.base_comparison_1_2d(False, False, False) def test_dask_in_ordinary_1d_pos(self): self.base_comparison_1_2d(False, False, False, lazy_in=True, lazy_out=False) def test_dask_out_ordinary_1d_pos(self): self.base_comparison_1_2d(False, False, False, lazy_in=False, lazy_out=True) def test_dask_all_ordinary_1d_pos(self): self.base_comparison_1_2d(False, False, False, lazy_in=True, lazy_out=True) def test_numpy_ordinary_1d_spec(self): self.base_comparison_1_2d(False, True, False) def test_dask_in_ordinary_1d_spec(self): self.base_comparison_1_2d(False, True, False, lazy_in=True, lazy_out=False) def test_dask_out_ordinary_1d_spec(self): self.base_comparison_1_2d(False, True, False, lazy_in=False, lazy_out=True) def test_dask_all_ordinary_1d_spec(self): self.base_comparison_1_2d(False, True, False, lazy_in=True, lazy_out=True) def test_numpy_ordinary_2d_pos(self): self.base_comparison_1_2d(True, False, False) def test_numpy_ordinary_2d_spec(self): self.base_comparison_1_2d(True, True, False) def test_h5_both_inds_flipped(self): # Flipping both the spec and pos dimensions means that the order in which # the data is stored is the same order in which dimensions are arranged # In other words, sort should make no difference at all! file_path = 'reshape_to_n_dim_sort_required.h5' data_utils.delete_existing_file(file_path) with h5py.File(file_path, mode='w') as h5_f: h5_raw_grp = h5_f.create_group('Raw_Measurement') main_nd, source_pos_data, source_spec_data = self.build_main_anc_4d() # arrange as slow, fast instead of fast, slow source_pos_data = np.fliplr(source_pos_data) # make spectroscopic slow, fast instead of fast, slow source_spec_data = np.flipud(source_spec_data) source_dset_name = 'source_main' # Arrange from slow to fast pos_attrs = {'units': ['nm', 'um'], 'labels': ['Y', 'X']} #def build_ind_val_dsets(name, inds, attrs, is_spec): h5_pos_inds = h5_raw_grp.create_dataset('Position_Indices', data=source_pos_data, dtype=np.uint16) data_utils.write_aux_reg_ref(h5_pos_inds, pos_attrs['labels'], is_spec=False) data_utils.write_string_list_as_attr(h5_pos_inds, pos_attrs) h5_pos_vals = h5_raw_grp.create_dataset('Position_Values', data=source_pos_data, dtype=np.float32) data_utils.write_aux_reg_ref(h5_pos_vals, pos_attrs['labels'], is_spec=False) data_utils.write_string_list_as_attr(h5_pos_vals, pos_attrs) source_main_data = main_nd.reshape(np.prod(main_nd.shape[:2]), np.prod(main_nd.shape[2:])) h5_source_main = h5_raw_grp.create_dataset(source_dset_name, data=source_main_data) data_utils.write_safe_attrs(h5_source_main, {'units': 'A', 'quantity': 'Current'}) # Remember to set from slow to faset source_spec_attrs = {'units': ['', 'V'], 'labels': ['Cycle', 'Bias']} h5_source_spec_inds = h5_raw_grp.create_dataset('Spectroscopic_Indices', data=source_spec_data, dtype=np.uint16) data_utils.write_aux_reg_ref(h5_source_spec_inds, source_spec_attrs['labels'], is_spec=True) data_utils.write_string_list_as_attr(h5_source_spec_inds, source_spec_attrs) h5_source_spec_vals = h5_raw_grp.create_dataset('Spectroscopic_Values', data=source_spec_data, dtype=np.float32) data_utils.write_aux_reg_ref(h5_source_spec_vals, source_spec_attrs['labels'], is_spec=True) data_utils.write_string_list_as_attr(h5_source_spec_vals, source_spec_attrs) # Now need to link as main! for dset in [h5_pos_inds, h5_pos_vals, h5_source_spec_inds, h5_source_spec_vals]: h5_source_main.attrs[dset.name.split('/')[-1]] = dset.ref n_dim, success, labels = hdf_utils.reshape_to_n_dims(h5_source_main, get_labels=True, sort_dims=True, lazy=False, verbose=False) self.assertTrue(np.all([x == y for x, y in zip(labels, ['Y', 'X', 'Cycle', 'Bias'])])) self.assertTrue(
np.allclose(main_nd, n_dim)
numpy.allclose
import tensorflow as tf from random import random from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, BatchNormalization, Activation from tensorflow.keras import Input from tensorflow.keras.initializers import RandomUniform, RandomNormal, Constant import matplotlib.pyplot as plt import cv2 as cv from random import random import numpy as np class Model(): def __init__(self, input_shape = 2, n_hidden_layers = 8, n_neurons = 16, activation = 'tanh', init = RandomNormal(), *args): self.model = Sequential() self.model.add(Input(shape = (input_shape))) initializer = init(*args) self.model.add(Dense(units = n_neurons, kernel_initializer = initializer, use_bias=True, bias_initializer = 'glorot_uniform')) self.model.add(Activation(activation)) for _ in range(n_hidden_layers): self.model.add(Dense(units = n_neurons, kernel_initializer = initializer, use_bias=False)) self.model.add(Activation(activation)) self.model.add(Dense(units = 1, kernel_initializer = initializer, use_bias=False)) self.model.add(Activation('sigmoid')) def predict(self, data): return self.model.predict(data) def generate_pixel_map(w, h, zoom): body = cv.resize(cv.imread('body.jpg', 0), (w, h)) pixel_map = np.zeros(shape=(h, w, 3)) pixel_map = pixel_map.tolist() a = 0 for i in range(h): for j in range(w): pixel_map[i][j][0]=a a+=1 a = 0 """for i in range((int)(w/2)): for j in range(a, h-a): pixel_map[j][i]=a a+=1 a = 0 for i in range((int)(w/2)): for j in range(a, h-a): pixel_map[j][w-1-i]=a a+=1 a = 0 for i in range((int)(h/2)): for j in range(a, w-a): pixel_map[h-1-i][j]=a a+=1""" pixel_map = np.array(pixel_map) max_px = pixel_map.max() pixel_map = pixel_map.tolist() for i in range(h): for j in range(w): pixel_map[i][j][0] = (pixel_map[i][j][0]/max_px-0.5)*zoom #pixel_map[i][j][1] = (pixel_map[i][j][1]/max_px-0.5)*zoom pixel_map[i][j][1] = np.sqrt((i/h-0.5)**2+(j/w-0.5)**2) if i>h/2: pixel_map[i][j][2] = 0 else: pixel_map[i][j][2] = ((1-(body[i][j]/255))-0.5)*pixel_map[i][j][0] #pixel_map[i][j][2]=((i/h)-0.5)**2+((j/w)-0.5)**2 pixel_map =
np.array(pixel_map)
numpy.array
import os,sys import numpy as np import random import multiprocessing import concurrent.futures from concurrent.futures import ProcessPoolExecutor NCPU = 4 os.environ["CUDA_VISIBLE_DEVICES"] = "3" ##################### input parameters ############################### FILEDIR = sys.argv[1] INDIR = sys.argv[2] # native npz dir nb_epochs = int(sys.argv[3]) n2d_layers = int(sys.argv[4]) n2d_filters = int(sys.argv[5]) method = sys.argv[6] # FILEDIR = "/dl/suhong/project/TemptrRosetta/DB/DB13989" # INDIR = "/dl/yangjy/project/distance/npz" # native npz dir # nb_epochs = 1 # n2d_layers = 11 # n2d_filters = 8 test_file = "%s/test_lst"%(FILEDIR) all_file = "%s/list"%(FILEDIR) TEMPDIR = "%s/temp_npz1"%(FILEDIR) # template npz dir # test set with open(test_file) as f: test_ids = f.read().splitlines() # all set: containing train and test list with open(all_file) as f: IDs = f.read().splitlines() maxseq = 20000 minseq = 1 dmax = 20.0 dmin = 2.0 nbins = 36 kmin = 6 bins = np.linspace(dmin, dmax, nbins+1) bins180 = np.linspace(0.0, np.pi, 13) bins360 = np.linspace(-np.pi, np.pi, 25) def npz_loader(ID, DIR = INDIR, DIR2 = TEMPDIR): name = DIR + '/' + ID + '.npz' name_temp = DIR2 + '/' + ID + '_T01' + '.npz' npz =
np.load(name)
numpy.load
# from imports import * import threading import pandas as pd # from plyfile import PlyData from sklearn.decomposition import PCA from multiprocessing import Process import random import os from time import time import numpy as np import ezdxf import open3d as o3d from math import sqrt, floor import laspy from shapely.geometry.collection import GeometryCollection from shapely.geometry.polygon import Polygon from shapely.geometry import Point, MultiPoint, LineString from shapely import ops from shapely.geometry.multilinestring import MultiLineString def SaveRenderOptions(vis): print("Saving camera parameters") params = vis.get_view_control().convert_to_pinhole_camera_parameters() o3d.io.write_pinhole_camera_parameters("./data/camera.json", params) return False def MaskTrajectoryFile(vis): trajectory_file = "./data/camera_trajectory.json" mask_trajectory_file = "./data/camera_trajectory.json.mask" if(os.path.exists(trajectory_file)): os.rename(trajectory_file, mask_trajectory_file) elif(os.path.exists(mask_trajectory_file)): os.rename(mask_trajectory_file, trajectory_file) return False class TrajectoryRecorder(): def __init__(self): self.trajectory = [] self.trajectory_file = "./data/camera_trajectory.json" if(os.path.exists(self.trajectory_file)): os.remove(self.trajectory_file) def record(self, vis): params = vis.get_view_control().convert_to_pinhole_camera_parameters() self.trajectory.append(params) def save(self, vis): trajectory = o3d.camera.PinholeCameraTrajectory() trajectory.parameters = self.trajectory o3d.io.write_pinhole_camera_trajectory(self.trajectory_file, trajectory) def delete(self, vis): self.trajectory = [] if(os.path.exists(self.trajectory_file)): os.remove(self.trajectory_file) def AppendCameraTrajectory(vis): print("Append camera trajectory.") params = vis.get_view_control().convert_to_pinhole_camera_parameters() trajectory = o3d.camera.PinholeCameraTrajectory() if(os.path.exists("./data/camera_trajectory.json")): trajectory = o3d.io.read_pinhole_camera_trajectory("./data/camera_trajectory.json") trajectory.parameters = trajectory.parameters + [params] o3d.io.write_pinhole_camera_trajectory("./data/camera_trajectory.json", trajectory) return False def LoadRenderOptions(vis, returnVis = False): # time.sleep(1) # sleep 1 second paramsFile = "./data/camera.json" if(not os.path.exists(paramsFile)): return False print("Loading camera parameters") params = o3d.io.read_pinhole_camera_parameters(paramsFile) vis.get_view_control().convert_from_pinhole_camera_parameters(params) if(returnVis): return vis else: return False def AnimationCallBack(vis): ctr = vis.get_view_control() ctr.rotate(0.2, 0.0) # ctr.scale(1/80) return False class PlayTrajectory(): def __init__(self): assert(os.path.exists("./data/camera_trajectory.json")) self.trajectory = o3d.io.read_pinhole_camera_trajectory("./data/camera_trajectory.json").parameters self.i = 0 self.time = time() def StepTrajectory(self, vis): if(self.i < len(self.trajectory)): # and time() - self.time > 1): ctr = vis.get_view_control() ctr.convert_from_pinhole_camera_parameters(self.trajectory[self.i]) self.time = time() self.i += 1 class DataTool: def __init__(self, piece_size = 1000000, threads_allowed = 1000, pointSize = 5): self.piece_size = piece_size self.threads_allowed = threads_allowed self.vis = None self.bBox = None self.pointCloud = None self.displayCloud = None self.pointSize = pointSize def ReadPointCloudTxt(self, path, pcData): t = time() pcFile = open(path, 'r') self.pointCloud = None threads = [None] * self.threads_allowed points_read = 0 thread_index = 0 while True: if(threads[thread_index] is not None and threads[thread_index].isAlive()): print("Wait for thread {}".format(thread_index), end=" \r") threads[thread_index].join() chunk = pcFile.readlines(self.piece_size) if(len(chunk) < 1): break if(pcData.shape[0] <= points_read + len(chunk)): if(pcData.shape[0] == 0): pcData.resize((points_read + len(chunk))*2, axis=0) else: pcData.resize(pcData.shape[0]*2, axis=0) # if(type(self.pointCloud) is np.ndarray): # self.pointCloud = np.append(self.pointCloud, np.zeros(shape=(len(chunk), 7), dtype="float32"), axis=0) # else: # self.pointCloud = np.zeros(shape=(len(chunk), 7), dtype="float32") threads[thread_index] = threading.Thread(target= self.__ReadPCChunkTxt, args=(chunk, points_read, pcData)) threads[thread_index].start() points_read += len(chunk) thread_index += 1 if(thread_index >= self.threads_allowed): thread_index = 0 print("{0} points read".format(points_read), end='\r') for i in range(self.threads_allowed): if(threads[i] is not None): print("Join thread {}".format(i), end=" \r") threads[i].join() pcData.resize(points_read, axis=0) pcFile.close() print("PC Finished reading {} points in {:.2f} min".format(pcData.shape[0], (time() - t)/60)) return self.pointCloud def __ReadPCChunkTxt(self, chunk, start_index, pcData): for i in range(len(chunk)): if(chunk[i] != ""): flts = chunk[i].replace('\n','').split() # self.pointCloud[start_index + i] = np.array([float(flts[0]), float(flts[1]), float(flts[2]), float(flts[3]), # float(flts[4]), float(flts[5]), float(flts[6])]) pcData[start_index + i] = np.array([float(flts[0]), float(flts[1]), float(flts[2]), float(flts[3]), float(flts[4]), float(flts[5]), float(flts[6])]) del chunk def ReadPointLabelsTxt(self, path): t = time() labelsFile = open(path, 'r') labelsArr = labelsFile.read().split('\n') if(labelsArr[-1] == ''): del labelsArr[-1] self.labels = np.array(labelsArr, dtype='int') print("Finished reading {} labels in {:.2f} min".format(self.labels.shape[0], (time() - t)/60)) return self.labels def ConvertToBin(self, path_to_pointcloud, path_to_pointlabels, output_path, extension = ".hdf5"): if(os.path.isfile(output_path+extension)): return else: print("Converting: ",output_path) t = time() pointcloud = np.array(pd.read_csv(path_to_pointcloud, sep=" ", dtype=np.float32, header=None), dtype=np.float32) h5File = None if(extension == ".hdf5"): h5File = h5py.File(output_path+".hdf5", 'w') h5File.create_dataset("pointcloud", data=pointcloud, dtype='float32', compression="lzf") del pointcloud if(path_to_pointlabels): labels = np.array(pd.read_csv(path_to_pointlabels, dtype=np.int8, header=None)) if(extension == ".hdf5"): h5File.create_dataset("labels", data=labels, dtype='int8', compression="lzf") elif(extension == ".npy"): pointcloud = np.concatenate((pointcloud, labels.astype(np.float32)), 1) del labels print("Done reading") if(extension == ".hdf5"): h5File.close() elif(extension == ".npy"): np.save(output_path, pointcloud, allow_pickle=False) print("done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) def ConvertDatasets(self, folder, outputFolder): pcFiles = [f for f in listdir(folder) if isfile(join(folder, f)) and f.endswith('.txt')] os.makedirs(outputFolder, exist_ok=True) for file in pcFiles: name = file.replace('.txt', '') if(not isfile(join(folder, name+'.labels'))): self.ConvertToBin(join(folder, name+'.txt'), None, join(outputFolder, name)) else: self.ConvertToBin(join(folder, name+'.txt'), join(folder, name+'.labels'), join(outputFolder, name)) def createWindow(self, windowName = "Pointcloud"): # vis = o3d.visualization.Visualizer() self.vis = o3d.visualization.VisualizerWithKeyCallback() self.vis.create_window(windowName, 800, 800) opt = self.vis.get_render_option() # opt.line_width = 100 opt.point_size = self.pointSize # opt.background_color = np.asarray([0, 0, 0]) def addPointCloud(self, pointCloud, downSample = False, color = None): pc = o3d.geometry.PointCloud() pc.points = o3d.utility.Vector3dVector(pointCloud) if(color != None): pc.paint_uniform_color(np.asarray(color)) if(downSample): pc = o3d.geometry.voxel_down_sample(pc, voxel_size=0.02) self.vis.add_geometry(pc) def setPointCloud(self, pointCloud, downSample = False, color = None): pc = o3d.geometry.PointCloud() pc.points = o3d.utility.Vector3dVector(pointCloud) if(downSample): pc = o3d.geometry.voxel_down_sample(pc, voxel_size=0.02) if(self.pointCloud == None): self.pointCloud = pc else: self.pointCloud.points = pc.points if(color != None): self.pointCloud.paint_uniform_color(np.asarray(color)) def addBoundingBox(self, bBox, color = []): self.addBbox(self.vis, bBox, color) def addPolyline(self, points, color = []): self.addLine(self.vis, points, color) @staticmethod def addLine(vis, points, color = []): lines = [] for i in range(len(points)-1): lines.append([i, i+1]) colors = [color for _ in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(np.array(points)) line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) vis.add_geometry(line_set) @staticmethod def addBbox(vis, bBox, color = []): lines = [[0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5, 7], [6, 7],[0, 4], [1, 5], [2, 6], [3, 7]] box = [[bBox[0], bBox[2], bBox[4]], [bBox[1], bBox[2], bBox[4]], [bBox[0], bBox[3], bBox[4]], [bBox[1], bBox[3], bBox[4]], [bBox[0], bBox[2], bBox[5]], [bBox[1], bBox[2], bBox[5]], [bBox[0], bBox[3], bBox[5]], [bBox[1], bBox[3], bBox[5]]] if(len(color) == 0): colors = [[1,0,0] for _ in range(len(lines))] else: colors = [color for _ in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(np.array(box)) line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) vis.add_geometry(line_set) def setBoundingBox(self, bBox, color = None): box = [[bBox[0], bBox[2], bBox[4]], [bBox[1], bBox[2], bBox[4]], [bBox[0], bBox[3], bBox[4]], [bBox[1], bBox[3], bBox[4]], [bBox[0], bBox[2], bBox[5]], [bBox[1], bBox[2], bBox[5]], [bBox[0], bBox[3], bBox[5]], [bBox[1], bBox[3], bBox[5]]] if(color == None): colors = [[1,0,0] for _ in range(12)] #len(lines) else: colors = [color for _ in range(12)] if(self.bBox == None): lines = [[0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5, 7], [6, 7],[0, 4], [1, 5], [2, 6], [3, 7]] line_set = o3d.geometry.LineSet() line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.points = o3d.utility.Vector3dVector(np.array(box)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) self.bBox = line_set else: self.bBox.points = o3d.utility.Vector3dVector(np.array(box)) self.bBox.colors = o3d.utility.Vector3dVector(np.array(colors)) def setDisplayedCloud(self, bBox): if(self.pointCloud == None or bBox == None): return points = np.asarray(self.pointCloud.points) rows = np.where((points[:,0] >= bBox[0]) & (points[:,0] <= bBox[1]) & (points[:,1] >= bBox[2]) & (points[:,1] <= bBox[3]) & (points[:,2] >= bBox[4]) & (points[:,2] <= bBox[5]) ) if(self.displayCloud == None): self.displayCloud = o3d.geometry.PointCloud() self.displayCloud.points = o3d.utility.Vector3dVector(points[rows]) def VisualizePointCloudAsync(self, dataset = [], dataColors = None, downSample = False, deleteZeros = False, bBoxes = None, lines = None, boxesColors = [], linesColors = [], windowName = None, animationFunction = None, loadCameraSettings = False, recordTrajectory = False): p = Process(target=self.VisualizePointCloud, args=(dataset, dataColors, downSample, deleteZeros, bBoxes, lines, boxesColors, linesColors, windowName, animationFunction, loadCameraSettings, recordTrajectory)) p.start() def VisualizePointCloud(self, dataset, dataColors = None, downSample = False, deleteZeros = False, bBoxes = None, lines = None, boxesColors = [], linesColors = [], windowName = None, animationFunction = None, loadCameraSettings = False, recordTrajectory = False): # if(len(dataset) == 0): # return if(windowName is None): pointCount = sum(0 if (data is None) else len(data) for data in dataset) windowName = f"Point count: {pointCount}" self.createWindow(windowName=windowName) for i in range(len(dataset)): if(dataset[i] is None): continue if(len(dataset[i]) == 0): continue dataset[i] = np.array(dataset[i]) if (deleteZeros): if(len(dataset[i][0]) == 3): indexes = np.where((dataset[i][:, 0] == 0.0) & (dataset[i][:, 1] == 0.0) & (dataset[i][:, 2] == 0.0)) else: indexes = np.where((dataset[i][:, 0] == 0.0) & (dataset[i][:, 1] == 0.0) & (dataset[i][:, 2] == 0.0) & (dataset[i][:, 3] == 0.0)) dataset[i] = np.delete(dataset[i], indexes, axis=0) print("Adding dataset {}/{} to visualization ".format(i+1, len(dataset)), end = '\r') pc = o3d.geometry.PointCloud() if(len(dataset[i][0]) == 3): pc.points = o3d.utility.Vector3dVector(dataset[i]) else: pc.points = o3d.utility.Vector3dVector(dataset[i][:,:3]) if(not (dataColors is None)): if(not (dataColors[i] is None)): if(len(dataColors[i]) == len(dataset[i]) and len(dataset[i]) != 3): pc.colors = o3d.utility.Vector3dVector(np.asarray(dataColors[i])) elif(len(dataColors) == len(dataset)): pc.paint_uniform_color(np.asarray(dataColors[i])) if(not (downSample is None) and downSample != False): if(not isinstance(downSample, float)): downSample = 0.02 pc = o3d.geometry.PointCloud.voxel_down_sample(pc, voxel_size=downSample) self.vis.add_geometry(pc) print("") if(bBoxes is not None): print("Adding {} bBoxes to visualization".format(len(bBoxes)), end = '\r') for i in range(len(bBoxes)): # print("Adding bBox {}/{} to visualization".format(i+1, len(bBoxes)), end = '\r') color = [] if(len(boxesColors) > i and boxesColors[i] is not None): color = boxesColors[i] self.addBoundingBox(bBoxes[i], color) if(not lines is None): opt = self.vis.get_render_option() opt.point_size = 2 for i in range(len(lines)): print("Adding {}/{} line to visualization".format(i, len(lines)), end = '\r') color = [1.0, 0.0, 0.0] if linesColors is None or len(linesColors)-1 < i else linesColors[i] self.addPolyline(lines[i], color) self.vis.register_key_callback(ord("s"), SaveRenderOptions) self.vis.register_key_callback(ord("S"), SaveRenderOptions) self.vis.register_key_callback(ord("l"), LoadRenderOptions) self.vis.register_key_callback(ord("L"), LoadRenderOptions) self.vis.register_key_callback(ord("m"), MaskTrajectoryFile) self.vis.register_key_callback(ord("M"), MaskTrajectoryFile) if recordTrajectory: recorder = TrajectoryRecorder() self.vis.register_key_callback(ord("a"), recorder.record) self.vis.register_key_callback(ord("A"), recorder.record) self.vis.register_key_callback(ord("r"), recorder.save) self.vis.register_key_callback(ord("R"), recorder.save) self.vis.register_key_callback(ord("d"), recorder.delete) self.vis.register_key_callback(ord("D"), recorder.delete) # paramFiles = "./data/camera.json" # if(os.path.exists(paramFiles)): # os.remove(paramFiles) if not (animationFunction is None): self.vis.register_animation_callback(animationFunction) if(loadCameraSettings): self.vis = LoadRenderOptions(self.vis, returnVis=True) self.vis.run() self.vis.destroy_window() def DoBoxesQA(self, pointcloud = None, bBoxes = None, downSamplePC = False): if(len(pointcloud) == 0 and len(self.pointCloud) == 0): return elif(len(pointcloud) != 0): self.setPointCloud(pointcloud, downSamplePC) acceptedBoxes = [] def darkMode(vis): opt = vis.get_render_option() opt.background_color = np.asarray([0, 0, 0]) return False def acceptBox(vis): print("Accept") acceptedBoxes.append(bBoxes[self.boxIndex]) vis.close() return False def discardBox(vis): print("Discard") vis.close() return False key_to_callback = {} key_to_callback[ord("Y")] = acceptBox key_to_callback[ord("N")] = discardBox key_to_callback[ord("D")] = darkMode self.boxIndex = 0 for box in bBoxes: self.setDisplayedCloud(box) self.setBoundingBox(box) o3d.visualization.draw_geometries_with_key_callbacks([self.displayCloud, self.bBox], key_to_callback, "QA", 800, 800) self.boxIndex += 1 print("QA done") return acceptedBoxes def QAResults(self, dataFolder, boxesFolder, boxesExportFolder, override = True): pcFiles = [f for f in listdir(boxesFolder) if isfile(join(boxesFolder, f)) and f.endswith('.txt')] for file in pcFiles: name = file.replace('.txt', '').replace('BBOXES_', '') boxesFile = join(boxesFolder, 'BBOXES_'+name+'.txt') dataFile = join(dataFolder, name+'.hdf5') newBoxPath = join(boxesExportFolder, 'BBOXES_'+name+'.txt') if(isfile(dataFile)): if(override == False and isfile(newBoxPath)): print("Already done: "+dataFile) continue print("QA: "+dataFile) pc = self.ReadHDF5XYZ(dataFile) boxes = ReadBoundingBoxes(boxesFile) newBoxes = self.DoBoxesQA(pc, boxes, True) SaveBoundingBoxes(newBoxPath, newBoxes) def SaveHDF5(pointcloud, labels, output_path): if(not output_path.endswith(".hdf5")): output_path += ".hdf5" print("Converting: ",output_path) t = time() h5File = h5py.File(output_path, 'w') h5File.create_dataset("pointcloud", data=pointcloud, dtype='float32', compression="lzf") h5File.create_dataset("labels", data=labels, dtype='int8', compression="lzf") h5File.close() print("done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) def ReadHDF5(path, with_labels = True): print("Reading '{}'".format(path)) t=time() h5File = h5py.File(path, 'r') pointCloud = np.array(h5File["pointcloud"], dtype="float32") if(with_labels): labels = np.array(h5File["labels"], dtype="float32") labels = np.expand_dims(labels, 1) pointCloud = np.append(pointCloud, labels, axis=1) del labels print("Finished reading in {:.2f} min. Shape = {}".format((time() - t)/60, pointCloud.shape)) return pointCloud def ReadXYZ(file, dataName = "pointcloud", verbose = False, readFormat=None): if(verbose): print("Reading pointcloud of '{}'".format(path)) t=time() xyz = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] xyz = pc[:, :3] h5File.close() if(file.endswith(".npy") or readFormat == ".npy"): pc = np.load(file) xyz = pc[:, :3] elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") xyz = np.concatenate((np.expand_dims(lasFile.x,1), np.expand_dims(lasFile.y,1), np.expand_dims(lasFile.z,1)), 1) # xyz *= np.array(lasFile.header.scale) lasFile.close() elif(file.endswith(".ply")): plydata = PlyData.read(file) x = plydata["vertex"].data["x"].astype(np.float32) y = plydata["vertex"].data["y"].astype(np.float32) z = plydata["vertex"].data["z"].astype(np.float32) xyz = np.concatenate((np.expand_dims(x,1), np.expand_dims(y,1), np.expand_dims(z,1)), axis=1) if(verbose): print("Finished reading pointcloud in {:.2f} min. Shape = {}".format((time() - t)/60, xyz.shape)) return xyz def ReadRGB(file, dataName = "pointcloud", verbose = False): t=time() rgb = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] rgb = pc[:, 4:7] h5File.close() if(file.endswith(".npy")): pts = np.load(file) rgb = pts[:, 3:6] elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") rgb = np.concatenate((np.expand_dims(lasFile.Red,1), np.expand_dims(lasFile.Green,1), np.expand_dims(lasFile.Blue,1)), 1) rgb = rgb/65536 #[0,1] lasFile.close() print("Finished reading RGB values in {:.2f} min. Shape = {}".format((time() - t)/60, rgb.shape)) return rgb def PointsInBlock(pts, pt, blocksize): if(not isinstance(blocksize,list) and not isinstance(blocksize, np.ndarray)): blocksize = [blocksize, blocksize] mask_x = np.logical_and(pts[:,0]<pt[0]+blocksize[0]/2, pts[:,0]>pt[0]-blocksize[0]/2) mask_y = np.logical_and(pts[:,1]<pt[1]+blocksize[1]/2, pts[:,1]>pt[1]-blocksize[1]/2) pts = pts[np.where(mask_x & mask_y)[0]] if(len(blocksize) == 3): mask_z = np.logical_and(pts[:,2]<pt[2]+blocksize[2]/2, pts[:,2]>pt[2]-blocksize[2]/2) return pts[np.where(mask_z)[0]] else: return pts def PointsInRange(pts, pt, pointcloud_range, filter_height = True): """ pointcloud_range = [minX, mixY, minZ, maxX, maxY, maxZ] X and Z are relative to pt Z values are just clipped minX, mixY, minZ - negative values """ if(len(pointcloud_range) == 6): minX, minY, minZ, maxX, maxY, maxZ = pointcloud_range else: range_X, range_Y, range_Z, = pointcloud_range minX = -range_X/2 minY = -range_Y/2 minZ = -range_Z/2 maxX = range_X/2 maxY = range_Y/2 maxZ = range_Z/2 mask_x = np.logical_and(pts[:,0]<pt[0]+maxX, pts[:,0]>pt[0]+minX) mask_y = np.logical_and(pts[:,1]<pt[1]+maxY, pts[:,1]>pt[1]+minY) pts = pts[np.where(mask_x & mask_y)[0]] if(len(pts) == 0): return pts if(filter_height): # mask_z = np.logical_and(pts[:,2]<pt[2]+maxZ, pts[:,2]>pt[2]+minZ) mask_z = pts[:,2]<(min(pts[:,2])+(maxZ-minZ)) pts = pts[np.where(mask_z)[0]] return pts def crop_lines(chunk_center, chunk_size, lines, min_z, max_z): min_x = chunk_center[0]-chunk_size[0]/2 max_x = chunk_center[0]+chunk_size[0]/2 min_y = chunk_center[1]-chunk_size[1]/2 max_y = chunk_center[1]+chunk_size[1]/2 coords = ( (min_x, min_y, max_z), (min_x, max_y, max_z), (max_x, max_y, max_z), (max_x, min_y, max_z), (min_x, min_y, min_z), (min_x, max_y, min_z), (max_x, max_y, min_z), (max_x, min_y, min_z), ) polygon = Polygon(coords).convex_hull # multi_line = MultiLineString([ops.clip_by_rect(LineString(line) for line in lines]) # cropped_lines = np.array(ops.clip_by_rect(multi_line, min_x, min_y, max_x, max_y).coords) # cropped_lines = [np.array(line.coords) for line in multi_line.geoms] cropped_lines = [] for line in lines: # new_line = ops.clip_by_rect(LineString(line), min_x, min_y, max_x, max_y) linestring = line if isinstance(line, LineString) else LineString(line) new_line = polygon.intersection(linestring) if(isinstance(new_line, MultiLineString)): split_lines = [np.array(geom.coords) for geom in new_line.geoms] cropped_lines.extend(split_lines) elif(isinstance(new_line, GeometryCollection)): for geom in new_line.geoms: split_lines.append(np.array(geom.coords)) else: cropped_lines.append(np.array(new_line.coords)) # DataTool().VisualizePointCloudAsync([xyz], lines = cropped_lines) # DataTool().VisualizePointCloudAsync([xyz], lines = lines) # return [line[np.logical_not(np.isnan(line).any(1))] for line in cropped_lines if len(line)>0] return [line[1:-1] for line in cropped_lines if len(line)>0] def SelectPointsFromBlock(pts, pt, blocksize, npoints = None): selectedPts = PointsInBlock(pts, pt, blocksize) if(len(selectedPts) == 0): return np.zeros((0, 3)) if(npoints is None): return selectedPts else: return selectedPts[np.random.choice(len(selectedPts), npoints, replace=True)] def TemplatesInBlock(templates, pt, blocksize): if(not isinstance(blocksize,list) and not isinstance(blocksize, np.ndarray)): blocksize = [blocksize, blocksize] mask_x = np.logical_and(templates[:,:,0]<pt[0]+blocksize[0]/2, templates[:,:,0]>pt[0]-blocksize[0]/2) mask_y = np.logical_and(templates[:,:,1]<pt[1]+blocksize[1]/2, templates[:,:,1]>pt[1]-blocksize[1]/2) mask = (mask_x & mask_y).any(axis=1) templates = templates[np.where(mask)[0]] if(len(blocksize) == 3): mask_z = np.logical_and(templates[:,:,2]<pt[2]+blocksize[2]/2, templates[:,:,2]>pt[2]-blocksize[2]/2) mask_z = mask_z.any(axis=1) return templates[np.where(mask_z)[0]] else: return templates def SelectTemplatesFromBlock(templates, pt, blocksize): return TemplatesInBlock(templates, pt, blocksize) def ReadPoints(fileList, curbLabel): ptsList = [] curbPtsList = [] for file in fileList: pts = np.load(os.path.join(Paths.Curbs.forDelineation, (file if file.endswith(".npy") else file+".npy"))) curbPtsIdx = np.where(pts[:,3] == curbLabel) otherPts = np.where(pts[:,3] == 2) curbPtsList.append(pts[curbPtsIdx][:,:3]) ptsList.append(pts[otherPts][:,:3]) return ptsList, curbPtsList def ReadLinesPoint(fileList): linePtsList = [] for file in fileList: file = os.path.basename(file) if not file.endswith(".npy"): file += ".npy" file = os.path.join(Paths.Curbs.denseLines, file) linePtsList.append(np.load(file)) return linePtsList def ReadXYZRGB(file): xyz = ReadXYZ(file) rgb = ReadRGB(file) return xyz.astype(np.float32), rgb.astype(np.float32) def ReadPolyLines(file): dwg = ezdxf.readfile(file, errors = "ignore") lines = [] for entity in dwg.entities: # print(entity.dxftype()) points = [] if(entity.dxftype() == 'LINE'): points = [entity.dxf.start.xyz, entity.dxf.end.xyz] else: for i, point in enumerate(entity.points()): points.append(point.xyz) # print(f"{i} : {x}, {y}, {z}") lines.append(np.array(points)) return lines def ReadLine(points_file, line_file): xyz = ReadXYZ(points_file) # rgb = ReadRGB(points_file) line = np.load(line_file) return xyz, None, line def GroupTiles(xyz, centers, tile_size): tiles = [] for pt in centers: pts = PointsInBlock(xyz, pt, tile_size) if(len(pts) > 0): tiles.append(pts) return tiles def FillTiles(tiles, numberOfPoints): return [pts[np.random.randint(0, len(pts), numberOfPoints)] for pts in tiles] def CalculateTileBoxes(minZ, maxZ, centers, tile_size): bboxes = [BoundingBoxFromVoxel([pt[0], pt[1], 0], tile_size, minZ, maxZ) for pt in centers] return bboxes def CalculateTileCenters(xyz, line, step): points = np.concatenate([xyz, line], axis=0)[:,:2] return np.unique(np.round(points[:,:2] / step) * step, axis=0) def ReadCurbData(line_file, shift = True): cloud_file = os.path.join(Paths.Curbs.forDelineation, os.path.basename(line_file)) if(not os.path.exists(cloud_file) or not os.path.exists(line_file)): return None, None, None xyz, _, line = ReadLine(cloud_file, line_file) if(shift): minXYZ = np.concatenate([xyz, line],axis=-2).min(axis=0) xyz -= minXYZ line -= minXYZ # Prepare point cloud tiles # tiles, centers = SplitCurbIntoTiles(xyz, line, tile_size) # if(visualize): # bboxes = CalculateTileBoxes(tiles, centers, tile_size) # DataTool().VisualizePointCloudAsync(tiles, lines=[line], bBoxes=bboxes) # org_pts_count = sum([len(tile) for tile in tiles]) # tiles = [tile[np.random.randint(len(tile), size=points_in_tile)] for tile in tiles] # sampled_pts_count = sum([len(tile) for tile in tiles]) # Prepare curb line # if(visualize): # DataTool(pointSize=20).VisualizePointCloudAsync([line], dataColors=[[0,0,1]], lines=[line], bBoxes=bboxes) # distances = [] # for i in range(len(line)-1): # distances.append(Distance(line[i], line[i+1])) # print(f"avg distance between points: {np.mean(distances)}") return xyz, np.array(line) def ReadLines(file_name): files = [os.path.splitext(file)[0] for file in os.listdir(Paths.Curbs.forDelineation) if file.startswith(file_name) and os.path.splitext(file)[0][-1].isdigit()] points = [] # colors = [] lines = [] for file in files: pts_file = os.path.join(Paths.Curbs.forDelineation, file+".npy") line_file = os.path.join(Paths.Curbs.denseLines, file+".npy") xyz, _, line = ReadLine(pts_file, line_file) points.append(xyz) lines.append(line) DataTool().VisualizePointCloudAsync(points, [np.random.uniform(0,1,(3,)) for _ in range(len(points))], lines=lines) def NormalizeVector(vec): vec = np.array(vec) length = sqrt(np.sum(vec**2)) return vec / length def Distance2D(a, b): return Distance(a[:2], b[:2]) def Distance(a, b): return np.sqrt(np.sum((a - b)**2, axis=-1)) def DensifyLines(lines, maxGap): newLines = [] for points in lines: newPoints = [points[0]] for i in range(len(points)-1): a = points[i] b = points[i+1] distance = Distance(a, b) addPoints = [] if(distance > maxGap): dirVec = NormalizeVector(b - a) addPoints = [a + (dirVec * dist) for dist in np.linspace(0, distance, num=floor(distance / maxGap)+2, dtype=np.float64)[1:-1]] addPoints.append(b) newPoints = newPoints + addPoints newLines.append(np.array(newPoints)) return newLines def ReadTemplates(fileList, nodes:int, densify = True): templateList = [] separateCurbs = [] for file in fileList: name = os.path.splitext(os.path.basename(file))[0] curbs = [] curbIdx = 0 while True: fileName = os.path.join(Paths.Curbs.denseLines, f"{name}_{curbIdx}.npy") if(os.path.exists(fileName)): curbs.append(np.load(fileName)) curbIdx += 1 else: break assert(len(curbs) > 0) templates = np.zeros((0, nodes, 3)) for curb in curbs: curb_templates = [] for i in range(len(curb[0])): template = [curb[y][i] for y in range(nodes)] curb_templates.append(template) if(densify): curb_templates = DensifyTemplates(curb_templates) templates = np.concatenate([templates, np.array(curb_templates)], axis=0) separateCurbs.append(curb_templates) templateList.append(templates) return templateList, separateCurbs def DensifyTemplates(templates, maxGap = 0.01): newTemplates = [] for i in range(len(templates)-1): ta = templates[i] tb = templates[i+1] lines = [[ta[i], tb[i]] for i in range(len(ta))] lines = DensifyLines(lines, maxGap) # DataTool().VisualizePointCloudAsync(lines, windowName="a") minLen = np.min([len(line) for line in lines]) lines = [line[np.linspace(0, len(line)-1, minLen, dtype=int)] for line in lines] # DataTool().VisualizePointCloudAsync(lines, windowName="b") for i in range(len(lines[0])): template = [lines[y][i] for y in range(len(lines))] newTemplates.append(template) # DataTool().VisualizePointCloudAsync(lines = newTemplates, windowName="c") return newTemplates def ReadCurbs(file, selectOnly = None): nodes = ["node0", "node1", "node2", "node3"] if(not (selectOnly is None)): nodes = [selectOnly] allLines = [] for node in nodes: dwg = ezdxf.readfile(os.path.join(Paths.Curbs.lines, file+"_"+node+".dxf")) lines = [] for entity in dwg.entities: points = [] if(entity.dxftype() == 'LINE'): points = [entity.dxf.start.xyz, entity.dxf.end.xyz] else: for point in entity.points(): points.append(point.xyz) lines.append(np.array(points)) allLines.append(lines) curbs = [] for i in range(len(allLines[0])): curb = np.array([lines[i] for lines in allLines]) curbs.append(curb) return curbs def ConstructCurbPatterns(curbs): patterns = [] for curb in curbs: for i in range(curb.shape[1]): pattern = [curb[y][i] for y in range(curb.shape[0])] patterns.append(np.array(pattern)) return patterns def ConstructCurbLines(curbs): lines = [] for curb in curbs: for points in curb: lines.append(points) return lines def ConstructLinesOutOfTemplates(templates): lines = np.zeros((templates.shape[1], templates.shape[0], templates.shape[2])) for i in range(len(lines)): lines[i] = templates[:, i] return lines def WritePolyLines(lines, file): dwg = ezdxf.new() msp = dwg.modelspace() for line in lines: msp.add_lwpolyline(line) dwg.saveas(file) return lines def NormalizeVector(vec): vec = np.array(vec) length = sqrt(np.sum(vec**2)) return vec / length def sign(points, p2, p3): return (points[:, 0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (points[:, 1] - p3[1]); def PointInTriangle(points, v1, v2, v3): b1 = sign(points, v1, v2) < 0 b2 = sign(points, v2, v3) < 0 b3 = sign(points, v3, v1) < 0 return (b1 == b2) & (b2 == b3) def PointsInRectangle(points, A, B, C, D): a = PointInTriangle(points, A, B, C) b = PointInTriangle(points, A, D, C) return np.where(a | b)[0] def PointsInRectangle(points, start, end, edge): A, B, C, D = CalculateBox(start, end, edge/2) a = PointInTriangle(points, A, B, C) b = PointInTriangle(points, A, D, C) return np.where(a | b)[0] def CalculateBox(start, end, edge): dir = NormalizeVector(end - start) right = np.cross(dir, (0,0,1)) left = np.cross(dir, (0,0,-1)) A = end + left * edge B = end + right * edge C = start + right * edge D = start + left * edge return A, B, C, D def LabelWirePoints(points, lines, maxDistance = 2): labels = np.zeros((len(points),), np.uint8) goodLbl = [] for line in tqdm(lines): start = line[0] end = line[-1] boxPtsIdx = PointsInRectangle(points, start, end, 5) boxPts = points[boxPtsIdx] for i in range(len(line)-1): a = line[i] b = line[i+1] segmentPtsIdx = PointsInRectangle(boxPts, a, b, maxDistance) segmentPts = boxPts[segmentPtsIdx] segmentGoodPtsIdx = np.where((segmentPts[:, 2] >= (np.min([a[2], b[2]])-maxDistance/2)) & (segmentPts[:, 2] <= (np.max([a[2], b[2]])+maxDistance/2))) labels[boxPtsIdx[segmentPtsIdx[segmentGoodPtsIdx]]] = 1 goodLbl += list(boxPtsIdx[segmentPtsIdx[segmentGoodPtsIdx]]) return labels def CutPointsAroundLine(points, line, width, height): a = np.logical_and(points[:, 0] >= np.min(line[:,0])-width, points[:, 0] <= np.max(line[:,0])+width) b = np.logical_and(points[:, 1] >= np.min(line[:,1])-width, points[:, 1] <= np.max(line[:,1])+width) c = np.logical_and(points[:, 2] >= np.min(line[:,2])-height, points[:, 2] <= np.max(line[:,2])+height) idx = np.where(np.logical_and(np.logical_and(a,b), c))[0] pts = points[idx] return pts, idx def LabelCurbPoints(labels, points, lines, width = 0.5, height = 0.7, class_number = 1, margin = 0): if(isinstance(labels, np.ndarray)): labels = [labels] assert(isinstance(labels, list)) # multiple numpy arrays of labels with instance numbers for id, wholeLine in tqdm(enumerate(lines)): id += 1 tempIdx = list(range(len(wholeLine))) size = 20 step = size-1 # one point overlap for lineIdx in [tempIdx[i : i + size] for i in range(0, len(tempIdx), step)]: line = wholeLine[lineIdx] pts, idx = CutPointsAroundLine(points, line, width, height) # for i in tqdm(range(len(line)-1)): for i in range(len(line)-1): a = line[i] b = line[i+1] if(margin > 0): vec = NormalizeVector(a - b)*margin a -= vec b += vec segmentPtsIdx = PointsInRectangle(pts, a, b, width) segmentPts = pts[segmentPtsIdx] # segmentPtsIdx = PointsInRectangle(points, a, b, width) # segmentPts = points[segmentPtsIdx] segmentGoodPtsIdx = np.where((segmentPts[:, 2] >= (np.min([a[2], b[2]])-height/2)) & (segmentPts[:, 2] <= (np.max([a[2], b[2]])+height/2))) for i in range(len(labels)): labels[i][idx[segmentPtsIdx[segmentGoodPtsIdx]]] = [class_number, id] # for pt in tqdm(line): for pt in line: dist = np.sqrt(np.sum(np.power(pts - pt, 2), axis=1)) segmentGoodPtsIdx = np.where(dist <= width/2)[0] for i in range(len(labels)): labels[i][idx[segmentGoodPtsIdx]] = [class_number, id] if(len(labels) == 1): labels = labels[0] return labels # import scipy.spatial as spatial from sklearn.neighbors import KDTree def BuildPointTree(points): print("Building KDTree...") t = time() tree = KDTree(points, leaf_size=10) print("Done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) return tree def LabelNearestPoints(labels, tree, lines, radius, class_number = 1): print("Quering KDTree...") for pt in tqdm(lines): idx = tree.query_radius(pt[:3], radius) if(isinstance(labels, list)): for i in range(len(labels)): labels[i][idx] = class_number else: labels[idx] = class_number return labels def LabelPointsInDistance(labels, src_pts, lines, radius_lbl): src_pts = src_pts[:,:3] for pt in tqdm(lines): dist = np.sqrt(np.sum(np.power(src_pts - pt, 2), axis=1)) for radius, lbl in radius_lbl: idx = np.where(dist <= radius)[0] if(isinstance(labels, list)): for i in range(len(labels)): labels[i][idx] = class_number else: labels[idx] = class_number return labels def CenterOfPoints(pts): return (np.max(pts, axis=0) + np.min(pts, axis=0))/2 # return np.min(pts, axis=0) def NormalizePoints(pts, centerPoint): if(isinstance(pts, list)): return [points - centerPoint for points in pts] else: return pts - centerPoint def ReadLabels(file, verbose = False, readFormat=None): if(verbose): print("Reading labels of '{}'".format(file)) t=time() lbl = None if(file.endswith(".hdf5") or readFormat == ".hdf5"): h5File = h5py.File(file, 'r') lbl = np.array(h5File["labels"]) h5File.close() elif(file.endswith(".las") or readFormat == ".las"): import laspy lasFile = laspy.file.File(file, mode = "r") lbl = lasFile.Classification lasFile.close() elif(file.endswith(".labels") or file.endswith(".txt") or readFormat == ".txt" or readFormat == ".labels"): lbl = np.array(pd.read_csv(file, dtype=np.int8, header=None)) elif(file.endswith(".ply") or readFormat == ".ply"): plydata = PlyData.read(file) lbl = plydata["vertex"].data["class"].astype(np.float32) elif(file.endswith(".npy") or readFormat == ".npy"): pc = np.load(file) if(pc.shape[1] == 7): lbl = pc[:, 6] if(pc.shape[1] == 5): lbl = pc[:, 4] if(pc.shape[1] == 4): lbl = pc[:, 3] lbl = np.expand_dims(lbl, 1) if(len(lbl.shape) == 1): lbl = np.expand_dims(lbl, 1) print("Finished reading labels in {:.2f} min. Shape = {}".format((time() - t)/60, lbl.shape)) return lbl def ReadXYZL(file, lblFile = None, verbose = False): if(verbose): printline("Reading: '{}'".format(os.path.basename(file))) t=time() xyz = None lbl = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] xyz = pc[:, :3] if(lblFile is None): lbl = h5File["labels"] h5File.close() elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") xyz = np.concatenate((np.expand_dims(lasFile.x,1), np.expand_dims(lasFile.y,1), np.expand_dims(lasFile.z,1)), 1) if(lblFile is None): lbl = lasFile.Classification lasFile.close() elif(file.endswith(".ply")): plydata = PlyData.read(file) x = plydata["vertex"].data["x"].astype(np.float32) y = plydata["vertex"].data["y"].astype(np.float32) z = plydata["vertex"].data["z"].astype(np.float32) xyz = np.concatenate((np.expand_dims(x,1), np.expand_dims(y,1), np.expand_dims(z,1)), axis=1) lbl = plydata["vertex"].data["class"].astype(np.float32) if(not (lblFile is None) and lblFile.endswith(".labels")): lbl = ReadLabels(lblFile) if(len(lbl.shape) == 1): lbl = np.expand_dims(lbl, 1) xyzl = np.concatenate((xyz, lbl), 1) printline("Finished in {:.2f} min. Shape = {}".format((time() - t)/60, xyzl.shape)) return xyzl def ReadHDF5Boxes(path): h5File = h5py.File(path, 'r') boxesPos = np.array(h5File["boxes"]) boundindBoxes = [] for vox in boxesPos: boundindBoxes.append(BoundingBoxFromVoxel(Point(vox[0], vox[1], vox[2]), Const.voxelSize)) return boundindBoxes class DataReader: threads = [] dataset = [] def ReadFiles(self, files, pointsDataSet = "points", silent=True, positionData = False): if(type(files) is not list): files = [files] points = [] labels = [] position = [] t=time() count = 0 for f in files: count+=1 h5File = h5py.File(f, 'r') tempLabels = np.asarray(h5File["labels"], dtype="int8") if(tempLabels.shape[1] == 1): tempLabels = np.eye(Const.numOfCategories, dtype="int8")[tempLabels] tempLabels = np.squeeze(tempLabels, axis=2) if(len(points) == 0): points = np.asarray(h5File[pointsDataSet], dtype="float32") labels = tempLabels if(positionData): position = np.asarray(h5File["position"], dtype="float32") else: points = np.concatenate((points, np.asarray(h5File[pointsDataSet], dtype="float32"))) labels = np.concatenate((labels, tempLabels)) if(positionData): position = np.concatenate((position, np.asarray(h5File["position"], dtype="float32"))) if(not silent): print("Read file {}/{}. Voxels got: {}.".format(count, len(files), len(points))) if(not silent): elapsed = round(time() - t) print("{} dataset read in {:.0f} min {:.0f} sec".format(len(files), (elapsed - (elapsed % 60))/60, elapsed % 60)) if(positionData): return points, position, labels else: return points, labels class Point: def __init__(self, x, y, z, label = -1): self.x = x self.y = y self.z = z self.label = label @staticmethod def from_XYZL(XYZL): return Point(XYZL[0], XYZL[1], XYZL[2], XYZL[3]) @staticmethod def from_XYZ(XYZ): return Point(XYZ[0], XYZ[1], XYZ[2]) def GetPointsInBoundingBox(points, boundingBox): if(len(boundingBox) != 6): return None rows = GetPointsIndexInBoundingBox(points, boundingBox) return points[rows] def CountPointsInBox(points, boundingBox): if(len(boundingBox) != 6): return None indices = GetPointsIndexInBoundingBox(points, boundingBox) return len(indices[0]) def GetPointsIndexInBoundingBox(points, boundingBox): if(len(boundingBox) != 6): return None return np.where((points[:,0] >= boundingBox[0]) & (points[:,0] <= boundingBox[1]) & (points[:,1] >= boundingBox[2]) & (points[:,1] <= boundingBox[3]) & (points[:,2] >= boundingBox[4]) & (points[:,2] <= boundingBox[5])) def BoundingBoxFromVoxel(vxlCntr, vxlEdge, minZ = 0, maxZ = 0): if(not(type(vxlCntr) is Point)): vxlCntr = Point(vxlCntr[0], vxlCntr[1], vxlCntr[2]) if type(vxlEdge) is int or type(vxlEdge) is float or type(vxlEdge) is np.float64: subEdgeX = vxlEdge/2 subEdgeY = vxlEdge/2 subEdgeZ = vxlEdge/2 elif(len(vxlEdge) == 3): subEdgeX = vxlEdge[0]/2 subEdgeY = vxlEdge[1]/2 subEdgeZ = vxlEdge[2]/2 minX = vxlCntr.x - subEdgeX maxX = vxlCntr.x + subEdgeX minY = vxlCntr.y - subEdgeY maxY = vxlCntr.y + subEdgeY if(minZ == 0): minZ = vxlCntr.z - subEdgeZ if(maxZ == 0): maxZ = vxlCntr.z + subEdgeZ return [minX, maxX, minY, maxY, minZ, maxZ] def GetGlobalBoundingBox(points, discardZeros = False): if(discardZeros): points = np.array(points) indexes = np.where(points[:] == [0, 0, 0]) points = np.delete(points, indexes, axis=0) mins = np.amin(points, axis = 0) maxs = np.amax(points, axis = 0) return [mins[0], maxs[0], mins[1], maxs[1], mins[2], maxs[2]] def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def LinearGradient(start_hex, finish_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3) ] # Add it to our list of output colors RGB_list.append(curr_vector) return RGB_list def SaveBoundingBoxes(file_path, bBoxes): file = open(file_path,"w") for box in bBoxes: file.write(str(box[0])+" "+str(box[1])+" "+str(box[2])+" "+str(box[3])+" "+str(box[4])+" "+str(box[5])+"\n") file.close() def SaveVoxels(file_path, voxels): file = open(file_path,"w") for vox in voxels: file.write(str(vox[0])+" "+str(vox[1])+" "+str(vox[2])+" "+str(vox[3])+" "+str(vox[4])+" "+str(vox[5])+" "+str(vox[6])+"\n") file.close() def ReadBoundingBoxes(file_path): file = open(file_path,"r") boundingBoxes = [] for line in file: fl = line.split() floats = [] for l in fl: floats.append(float(l)) boundingBoxes.append(floats) file.close() return boundingBoxes def DownsampleAndAddclass(points, classNum, voxelSize = -1): if(voxelSize != -1): pointCloud = o3d.geometry.PointCloud() pointCloud.points = o3d.utility.Vector3dVector(points) pointCloud = o3d.geometry.voxel_down_sample(pointCloud, voxel_size=voxelSize) points = np.asarray(pointCloud.points) labels = np.full((len(points), 1), classNum) points = np.append(points, labels, axis = 1) return points def PrepPointCloud(dataIN, objectLabel, noObjectLabel, downSampleVoxel = -1, verbose = False): dataTool = DataTool() print("Reading: {}".format(dataIN)) worldPoints = ReadXYZ(dataIN) pointLabels = ReadLabels(dataIN) indexes = np.nonzero(pointLabels == Label.cars) carPoints = worldPoints[indexes] worldPoints = np.delete(worldPoints, indexes, axis=0) carPoints = DownsampleAndAddclass(carPoints, objectLabel, downSampleVoxel) worldPoints = DownsampleAndAddclass(worldPoints, noObjectLabel, downSampleVoxel) pointCloud =
np.concatenate((carPoints, worldPoints))
numpy.concatenate
import numpy as np from PIL import Image, ImageDraw import math import torch def RandomBrush( max_tries, s, min_num_vertex = 4, max_num_vertex = 18, mean_angle = 2*math.pi / 5, angle_range = 2*math.pi / 15, min_width = 12, max_width = 48): H, W = s, s average_radius = math.sqrt(H*H+W*W) / 8 mask = Image.new('L', (W, H), 0) for _ in range(np.random.randint(max_tries)): num_vertex = np.random.randint(min_num_vertex, max_num_vertex) angle_min = mean_angle - np.random.uniform(0, angle_range) angle_max = mean_angle + np.random.uniform(0, angle_range) angles = [] vertex = [] for i in range(num_vertex): if i % 2 == 0: angles.append(2*math.pi - np.random.uniform(angle_min, angle_max)) else: angles.append(np.random.uniform(angle_min, angle_max)) h, w = mask.size vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h)))) for i in range(num_vertex): r = np.clip( np.random.normal(loc=average_radius, scale=average_radius//2), 0, 2*average_radius) new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w) new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h) vertex.append((int(new_x), int(new_y))) draw = ImageDraw.Draw(mask) width = int(np.random.uniform(min_width, max_width)) draw.line(vertex, fill=1, width=width) for v in vertex: draw.ellipse((v[0] - width//2, v[1] - width//2, v[0] + width//2, v[1] + width//2), fill=1) if np.random.random() > 0.5: mask.transpose(Image.FLIP_LEFT_RIGHT) if np.random.random() > 0.5: mask.transpose(Image.FLIP_TOP_BOTTOM) mask = np.asarray(mask, np.uint8) if np.random.random() > 0.5: mask = np.flip(mask, 0) if np.random.random() > 0.5: mask = np.flip(mask, 1) return mask def RandomMask(s, hole_range=[0,1]): coef = min(hole_range[0] + hole_range[1], 1.0) while True: mask = np.ones((s, s), np.uint8) def Fill(max_size): w, h = np.random.randint(max_size), np.random.randint(max_size) ww, hh = w // 2, h // 2 x, y = np.random.randint(-ww, s - w + ww), np.random.randint(-hh, s - h + hh) mask[max(y, 0): min(y + h, s), max(x, 0): min(x + w, s)] = 0 def MultiFill(max_tries, max_size): for _ in range(
np.random.randint(max_tries)
numpy.random.randint
import os import numpy as np import time from . import abHighResAlphaMatrix from . import abCellsEstimator from . import abCellsEstimatorParallel from . import abWwiiiObstrFileSaver from . import abWwiiiPropSchObstrFileSaver from .abOptionManager import getOption, printOpts from . import abEtopo1BathyLoader from . import abGebcoBathyLoader from . import abRectangularGridBuilder from . import abCoastalCellDetector from . import abTriangularMesh from .abTriangularMeshGridBuilder import abTriangularMeshGridBuilder ################################################################ ##### IMPLEMENTATION ON REGULAR GRIDS ########################## ################################################################ def regularGridSpecWW3(xmin=0, dx=0, nx=0, ymin=0, dy=0, ny=0, maskFilePath=''): """ regularGridSpecWWIII: contains all the specifications necessary to the creation of an abGrid object based on a regular grid. The mask is a matrix ny x nx with value 1 on sea cells, and 0 on land cells. Here it is loaded from the mask file produced by gridgen """ class specClass: pass rs = specClass() rs.xmin, rs.ymin = xmin, ymin rs.dx, rs.dy = dx, dy rs.nx, rs.ny = nx, ny # loading the mask from the wwiii mask file produced by gridgen mask = np.zeros([ny, nx]) fl = open(maskFilePath) ix = 0 for ln in fl: if ix >= nx: raise Exception('regularGridSpecWWIII: wrong mask file: lon dimension does not match') vlStrs = ln.strip(' \n').split() vls = [int(s) for s in vlStrs] mask[ix, :] = vls ix += 1 rs.mask = mask return rs def abEstimateAndSaveRegularEtopo1(dirs, freqs, gridName, regularGridSpec, etopo1FilePath, outputDirectory, nParWorker, abOptions = None): """ abEstimateAndSaveRegularEtopo1: This method does: - build an instance of _abGrid from the input regularGridSpec object (that represents the logical structure of a latlon mesh, and can be generated with the regularGridSpecWW3 function) - build an instance of highResolutionBathyMatrix from etopo1 - invoke _abEstimateAndSave like abEstimateAndSaveRegularEtopo1 does """ # instatiating the builder of abGrid object for regular grids r = regularGridSpec xmin, ymin = r.xmin, r.ymin dx, dy = r.dx, r.dy nx, ny = r.nx, r.ny mask = r.mask regGridBld = abRectangularGridBuilder.abRectangularGridBuilder(xmin, ymin, dx, dy, nx, ny, mask, nParWorker = nParWorker) # building the high resolution matrix of alpha based on etopo1 llcrnr = getOption(abOptions, 'llcrnr', None) urcrnr = getOption(abOptions, 'urcrnr', None) zlim = -.1 print('loading etopo1 bathymetry ...') x, y, z = abEtopo1BathyLoader.loadBathy(etopo1FilePath, llcrnr, urcrnr) alphamtx = np.ones(z.shape, dtype=bool) alphamtx[z > zlim] = 0 highResolutionBathyMatrix = abHighResAlphaMatrix.abHighResAlphaMatrix(x, y, alphamtx) # creating the detector of the cells located along the coasts of big coastal bodies. # These bodies are resolved correctly by the model, and do not need subscale modelling coastalCellDetector = abCoastalCellDetector.abCoastalCellDetector(abOptions) # creating the grid object (where each cell is represented as a polygon) grid = regGridBld.buildGrid(highResolutionBathyMatrix, coastalCellDetector) if grid.wrapAroundDateline: highResolutionBathyMatrix.wrapAroundDateline() _abEstimateAndSave(dirs, freqs, gridName, grid, highResolutionBathyMatrix, outputDirectory, nParWorker, abOptions) def abEstimateAndSaveRegularGebco(dirs, freqs, gridName, regularGridSpec, etopo1FilePath, outputDirectory, nParWorker, abOptions = None): """ abEstimateAndSaveRegularGebco: This method does: - build an instance of _abGrid from the input regularGridSpec object (that represents the logical structure of a latlon mesh, and can be generated with the regularGridSpecWW3 function) - build an instance of highResolutionBathyMatrix from gebco - invoke _abEstimateAndSave like abEstimateAndSaveRegularEtopo1 does Use with care in large applications: GEBCO 2019 with alphaBetaLab takes 16 times more memory and time with respect to ETOPO1. """ # instatiating the builder of abGrid object for regular grids r = regularGridSpec xmin, ymin = r.xmin, r.ymin dx, dy = r.dx, r.dy nx, ny = r.nx, r.ny mask = r.mask regGridBld = abRectangularGridBuilder.abRectangularGridBuilder(xmin, ymin, dx, dy, nx, ny, mask, nParWorker = nParWorker) # building the high resolution matrix of alpha based on etopo1 llcrnr = getOption(abOptions, 'llcrnr', None) urcrnr = getOption(abOptions, 'urcrnr', None) zlim = -.1 print('loading gebco bathymetry ...') x, y, z = abGebcoBathyLoader.loadBathy(etopo1FilePath, llcrnr, urcrnr) alphamtx = np.ones(z.shape, dtype=bool) alphamtx[z > zlim] = 0 highResolutionBathyMatrix = abHighResAlphaMatrix.abHighResAlphaMatrix(x, y, alphamtx) # creating the detector of the cells located along the coasts of big coastal bodies. # These bodies are resolved correctly by the model, and do not need subscale modelling coastalCellDetector = abCoastalCellDetector.abCoastalCellDetector(abOptions) # creating the grid object (where each cell is represented as a polygon) grid = regGridBld.buildGrid(highResolutionBathyMatrix, coastalCellDetector) if grid.wrapAroundDateline: highResolutionBathyMatrix.wrapAroundDateline() _abEstimateAndSave(dirs, freqs, gridName, grid, highResolutionBathyMatrix, outputDirectory, nParWorker, abOptions) ################################################################ ################################################################ ################################################################ ################################################################ ##### IMPLEMENTATION ON TRIANGULAR MESHES ################## ################################################################ triMeshSpecFromGr3File = abTriangularMesh.loadFromGr3File triMeshSpecFromMshFile = abTriangularMesh.loadFromMshFile def abEstimateAndSaveTriangularEtopo1(dirs, freqs, gridName, triMeshSpec, etopo1FilePath, outputDirectory, nParWorker, abOptions = None): """ abEstimateAndSaveTriangularEtopo1: This method does: - build an instance of _abGrid from the input triMeshSpec object (that should represent the logical structure of a triangular mesh, and should be loaded, for example, from a gmesh file) - build an instance of highResolutionBathyMatrix from etopo1 - invoke _abEstimateAndSave like abEstimateAndSaveRegularEtopo1 does """ gridBld = abTriangularMeshGridBuilder(triMeshSpec, nParWorker = nParWorker) grid = gridBld.buildGrid() llcrnr = getOption(abOptions, 'llcrnr', None) urcrnr = getOption(abOptions, 'urcrnr', None) zlim = -.1 print('loading etopo1 bathymetry ...') x, y, z = abEtopo1BathyLoader.loadBathy(etopo1FilePath, llcrnr, urcrnr) alphamtx =
np.ones(z.shape)
numpy.ones
import skfuzzy as sf import time import numpy as np from math import pi, log class FuzzyPID: def __init__(self, Pmax, Pmin, Imax, Imin, Dmax, Dmin): self.Kpmax = Pmax self.Kpmin = Pmin self.Kimax = Imax self.Kimin = Imin self.Kdmax = Dmax self.Kdmin = Dmin self.sample_time = 0.0 self.current_time = time.time() self.last_time = self.current_time self.tfm = self.tfm_generator(-pi, pi) self.dtfm = self.tfm_generator(-8, 8) self.re = self.rule() self.rde = self.re.T self.rie = self.rule_ki() self.a = self.rule_alpha() self.b = self.a.T self.clear() def tfm_generator(self, xmin, xmax): x = (xmax - xmin) / 2 NB = np.array([xmin, xmin, xmin + 1 / 3 * x], dtype=np.float32) NM = np.array([xmin, xmin + 1 / 3 * x, xmin + 2 / 3 * x], dtype=np.float32) NS = np.array([xmin + 1 / 3 * x, xmin + 2 / 3 * x, xmin + x], dtype=np.float32) ZE = np.array([xmin + 2 / 3 * x, xmin + x, xmax - 2 / 3 * x], dtype=np.float32) PS = np.array([xmin + x, xmax - 2 / 3 * x, xmax - x / 3], dtype=np.float32) PM = np.array([xmax - 2 / 3 * x, xmax - x / 3, xmax], dtype=np.float32) PB = np.array([xmax - 1 / 3 * x, xmax, xmax], dtype=np.float32) return [NB, NM, NS, ZE, PS, PM, PB] def membership(self, x, tfm): x = np.array([x]) return [sf.trimf(x, tfm[0]), sf.trimf(x, tfm[1]), sf.trimf(x, tfm[2]), \ sf.trimf(x, tfm[3]), sf.trimf(x, tfm[4]), sf.trimf(x, tfm[5]), sf.trimf(x, tfm[6])] def rule(self): return np.matrix([[3, 4, 5, 6, 5, 4, 3], [2, 3, 4, 5, 4, 3, 2], [1, 2, 3, 4, 3, 2, 1], \ [0, 1, 2, 3, 2, 1, 0], [1, 2, 3, 4, 3, 2, 1], [2, 3, 4, 5, 4, 3, 2], [3, 4, 5, 6, 5, 4, 3]]) def rule_alpha(self): return np.matrix([[2, 2, 2, 2, 2, 2, 2], [3, 3, 2, 2, 2, 3, 3], [4, 3, 3, 2, 3, 3, 4], \ [5, 4, 3, 3, 3, 4, 5], [4, 3, 3, 2, 3, 3, 4], [3, 3, 2, 2, 2, 3, 3], [2, 2, 2, 2, 2, 2, 2]]) def rule_ki(self): return np.matrix([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 2, 2, 2, 0, 0], \ [0, 2, 4, 2, 4, 2, 0], [0, 0, 2, 2, 2, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) def clear(self): self.SetPoint = 0.0 self.PTerm = 0.0 self.ITerm = 0.0 self.DTerm = 0.0 self.last_error = 0.0 self.int_error = 0.0 self.windup_guard = 10.0 self.output = 0.0 def update_K(self, error, d_error): self.Kp = self.re[np.argmax(self.membership(error, self.tfm)), \ np.argmax(self.membership(d_error, self.dtfm))] / 6 * (self.Kpmax - self.Kpmin) + self.Kpmin self.Kd = self.rde[np.argmax(self.membership(error, self.tfm)), \ np.argmax(self.membership(d_error, self.dtfm))] / 6 * (self.Kdmax - self.Kdmin) + self.Kdmin self.alpha = self.a[np.argmax(self.membership(error, self.tfm)), \ np.argmax(self.membership(d_error, self.dtfm))] self.Ki = self.rie[np.argmax(self.membership(error, self.tfm)), \ np.argmax(self.membership(d_error, self.dtfm))] / 4 * (self.Kimax - self.Kimin) + self.Kimin def update(self, feedback_value, speed): error = self.SetPoint - feedback_value self.current_time = time.time() delta_time = self.current_time - self.last_time delta_error = error - self.last_error d_error = speed self.update_K(error, d_error) if delta_time >= self.sample_time: pTerm = self.Kp * error if pTerm < -self.windup_guard: self.PTerm = -self.windup_guard elif pTerm > self.windup_guard: self.PTerm = self.windup_guard else: self.PTerm = pTerm self.ITerm += self.Ki * error * delta_time if (self.ITerm < -self.windup_guard): self.ITerm = -self.windup_guard elif (self.ITerm > self.windup_guard): self.ITerm = self.windup_guard if delta_time > 0: self.DTerm = self.Kd * delta_error / delta_time if (self.DTerm < -self.windup_guard): self.DTerm = -self.windup_guard elif (self.DTerm > self.windup_guard): self.DTerm = self.windup_guard self.last_time = self.current_time self.last_error = error Output = self.PTerm + (self.ITerm) + (self.DTerm) if Output > 15: self.output = 15 elif Output < -15: self.output = -15 else: self.output = Output def setKp(self, Pmax, Pmin): self.Kpmax = Pmax self.Kpmin = Pmin def setKd(self, Dmax, Dmin): self.Kdmax = Dmax self.Kdmin = Dmin def setKi(self, Imax, Imin): self.Kimax = Imax self.Kimin = Imin def setSampleTime(self, sample_time): self.sample_time = sample_time def setSetPoint(self, setpoint): self.SetPoint = setpoint def demo(): import skfuzzy import time import os import sys lib_path = os.path.abspath(os.path.join(sys.path[0], '..')) sys.path.append(lib_path) # import gym import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import LogNorm import numpy as np import math from tqdm import tqdm Ctl = FuzzyPID(10, 7, 4, 2, 1.15, 0.75) Ctl.setKp(10, 3) Ctl.setKi(9, 0) Ctl.setKd(0.9, 0.3) Ctl.setSampleTime(0.05) Ctl.setSetPoint(0.0) graph = [] Graph = [] a =
np.arange(-pi, pi, pi / 100)
numpy.arange
import numpy as np import matplotlib import matplotlib.pyplot as plt from fig2_spline import get_feats, get_P matplotlib.rcParams.update({'font.size': 22}) matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 def make_legend_arrow(legend, orig_handle, xdescent, ydescent, width, height, fontsize): p = matplotlib.patches.FancyArrow(0, 0.5*height, width, 0, length_includes_head=True, head_width=0.75*height, color='black') return p def plot_augmentations_polar(S0, theta_star): angles = np.r_[np.linspace(0, 2*np.pi, 1000), np.pi, np.pi/2, 3*np.pi/2] fig, ax = plt.subplots(figsize=(6, 6)) bad_c = 'white' good_c = 'C1' ax.set_facecolor(bad_c) def get_lhs_rhs(x): rho = (np.inner(x, theta_star)) / np.maximum(np.inner(x, x), 1e-16) lhs = rho**2 * S0.dot(x).dot(x) rhs = 2 * rho * S0.dot(x).dot(theta_star) return lhs, rhs for angle in angles: x1v = 2*np.pi * np.cos(angle) x2v = 2*np.pi * np.sin(angle) x = np.asarray([x1v, x2v]) lhs, rhs = get_lhs_rhs(x) if rhs - lhs > -1e-10: plt.plot([0, x1v], [0, x2v], color=good_c, zorder=0) plt.plot([0],[0], color=good_c, zorder=0) plt.axis([-1, 1, -1, 1]) arrow = plt.arrow(0, 0, theta_star[0], theta_star[1], width=0.02, alpha=1, length_includes_head=True, color='black', zorder=100) plt.legend([arrow], [r'$\theta^*$'], loc="lower right", handler_map={matplotlib.patches.FancyArrow : matplotlib.legend_handler.HandlerPatch(patch_func=make_legend_arrow),}) ax = plt.gca() ax.spines['left'].set_position('zero') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('zero') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.set_yticklabels([]) ax.set_xticklabels([]) ax.text(0, 1.1, '$e_2$', horizontalalignment='center') ax.text(1.1, 0, '$e_1$', verticalalignment='center') ################## # Figure 3 ################## matplotlib.rcParams.update({'font.size': 28}) theta_star = np.asarray([1, 0.2]) X = np.diag([1, 2]) S0 = X.T @ X plot_augmentations_polar(S0, theta_star) plt.subplots_adjust(bottom=0.15, left=0.2) plt.savefig('flag_less_skew.png') matplotlib.rcParams.update({'font.size': 28}) theta_star = np.asarray([1, 0.2]) X = np.diag([1, 5]) S0 = X.T @ X plot_augmentations_polar(S0, theta_star) plt.subplots_adjust(bottom=0.15, left=0.2) plt.savefig('flag_more_skew.png') ################## # Figure 7 ################## num_stairs = 10 num_examples = 22 adv_eps = (1.0 / 2) noise_eps = 0.0 x_noise = 0.1 slope = 1 np.set_printoptions(precision=5) discrete_support = True knots = np.r_[np.arange(num_stairs), np.arange(num_stairs)+adv_eps] knots = np.sort(knots) weights_1 = np.asarray([1/5]*5) weights_2 = np.asarray([0.01]*(num_stairs-5)) weights = np.concatenate([weights_1, weights_2]) weights /= np.sum(weights) X = np.r_[np.arange(5).astype(float)] X = np.sort(X) y = slope*np.floor(X) # compute the population \Sigma_0 # first we must rotate the spline basis in a way that the correct norm is being minimized feats = get_feats(X, knots) # add small identity for numerical stability P = get_P(knots) + 1e-10 * np.eye(22) eigvals, eigs = np.linalg.eig(P) eigvals = np.maximum(eigvals, 0) Q = eigs.dot(np.linalg.pinv(np.diag(np.sqrt(eigvals)))).dot(eigs.T) P_half = np.linalg.inv(Q) # Q.T X^T X Q S0_trans = np.zeros((feats.shape[1], feats.shape[1])) for x in range(num_stairs): x1, x2 = get_feats(np.asarray([x, x+adv_eps]), knots).dot(Q) S0_trans += (1 - x_noise) * weights[x] * np.outer(x1, x1) + x_noise * weights[x] * np.outer(x2, x2) def solve_rotated(X, y): feats = get_feats(X, knots) feats_trans = feats.dot(Q) theta_trans = np.linalg.pinv(feats_trans.T.dot(feats_trans)).dot(feats_trans.T.dot(y)) return feats_trans, theta_trans feats_std_trans, theta_std_trans = solve_rotated(X, y) # construct theta_star all_xs = np.r_[np.asarray([i for i in range(num_stairs)]), np.asarray([i + adv_eps for i in range(num_stairs)])] all_xs = np.sort(all_xs) all_ys = slope*np.floor(all_xs) all_feats_trans, theta_star_trans = solve_rotated(all_xs, all_ys) def plot_std_aug(theta_std, theta_aug): X_stairs = np.arange(0, num_stairs).astype(float) y_stairs = slope*X_stairs for X_stair, y_stair in zip(X_stairs, y_stairs): plt.plot([X_stair, X_stair+adv_eps], [y_stair, y_stair], color='black', alpha=0.5) X_t = np.linspace(0, num_stairs-0.5, 100) plt.plot(X_t, get_feats(X_t, knots).dot(Q).dot(theta_std), label='Standard', linestyle='dashed', lw=5) plt.plot(X_t, get_feats(X_t, knots).dot(Q).dot(theta_aug), label='Augmented', linestyle='solid', lw=5) plt.legend() plt.legend() plt.scatter(X, y, color='black', s=75, zorder=1000) plt.xlabel(r'$t$') plt.ylabel(r'$f_{\theta}(t)$') # add 3.5 matplotlib.rcParams.update({'font.size': 18}) X_aug = np.r_[X, 3.5] X_aug = np.sort(X_aug) y_aug = slope*np.floor(X_aug) feats_aug, theta_aug = solve_rotated(X_aug, y_aug) plt.figure(figsize=(5,5)) plot_std_aug(theta_std_trans, theta_aug) plt.axis('equal') plt.xlim([-0.5, 10]) plt.ylim([-0.5, 10]) plt.xticks(np.arange(0, 10, 2.0)) plt.yticks(np.arange(0, 10, 2.0)) plt.scatter([3.5], [3], marker='X', s=75, color='C2', zorder=1000) plt.savefig('spline_add_35.png') # add 4.5 matplotlib.rcParams.update({'font.size': 22}) feats_std_trans, theta_std_trans = solve_rotated(X, y) all_xs = np.r_[np.asarray([i for i in range(num_stairs)]), np.asarray([i + adv_eps for i in range(num_stairs)])] all_xs = np.sort(all_xs) all_ys = slope*np.floor(all_xs) all_feats_trans, theta_star_trans = solve_rotated(all_xs, all_ys)# add 4.5 matplotlib.rcParams.update({'font.size': 18}) X_aug = np.r_[X, 4.5] X_aug = np.sort(X_aug) y_aug = slope*np.floor(X_aug) feats_aug, theta_aug = solve_rotated(X_aug, y_aug) plt.figure(figsize=(5,5)) plot_std_aug(theta_std_trans, theta_aug) plt.axis('equal') plt.xlim([-0.5, 10]) plt.ylim([-0.5, 10]) plt.xticks(np.arange(0, 10, 2.0)) plt.yticks(np.arange(0, 10, 2.0)) plt.scatter([4.5], [4], marker='X', s=75, color='C2', zorder=1000) plt.savefig('spline_add_45.png') # plot the difference in test error as suggested in Theorem 1, Fig 7a plt.clf() # check if a perturbation does/does not satisfy the criterion hatS0 = feats_std_trans.T.dot(feats_std_trans) def proj(S, rank_S=None): eigvals, eigs = np.linalg.eig(S) if rank_S is not None: sort_idx = np.argsort(-eigvals) eigvals[sort_idx[:rank_S]] = 1 eigvals[sort_idx[rank_S:]] = 0 else: eigvals[eigvals <= 1e-8] = 0.0 eigvals[eigvals > 0] = 1.0 return eigs.dot(np.diag(eigvals)).dot(eigs.T).real hat_proj_0 = np.eye(hatS0.shape[0]) - proj(hatS0, rank_S=feats_std_trans.shape[0]) def criterion(S0, theta_star, proj0, x): theta_0 = proj0.dot(theta_star) u = proj0.dot(x) if np.inner(u, u) < 1e-10: return 0 rho = np.inner(theta_0, u) / np.inner(u, u) diff = 2 * rho * S0.dot(theta_0).dot(u) - rho**2 * S0.dot(u).dot(u) return diff matplotlib.rcParams.update({'font.size': 16}) # on the line lines = np.arange(10).astype(float) line_feats = get_feats(lines, knots) line_feats_trans = line_feats.dot(Q) line_diffs = [] for i in range(line_feats_trans.shape[0]): x = line_feats_trans[i] diff = -criterion(S0_trans, theta_star_trans, hat_proj_0, x).real line_diffs.append(diff) # not on the line perts = np.arange(10).astype(float) + adv_eps pert_feats = get_feats(perts, knots) pert_feats_trans = pert_feats.dot(Q) pert_diffs = [] for i in range(pert_feats_trans.shape[0]): x = pert_feats_trans[i] diff = -criterion(S0_trans, theta_star_trans, hat_proj_0, x).real pert_diffs.append(diff) plt.scatter(lines, line_diffs, label='On the line', marker='o', s=90) plt.scatter(perts, pert_diffs, label='Perturbations', marker='^', s=90) plt.ylabel('Bias criterion (Aug - Std)') plt.xlabel(r'Augmentation point ($t$)') plt.xticks(np.arange(0, 10, 1.0)) plt.legend(loc="upper right") plt.subplots_adjust(bottom=0.15, left=0.15) plt.savefig('spline_perturbations.png') matplotlib.rcParams.update({'font.size': 22}) ############### # Fig 4 ############### matplotlib.rcParams.update({'font.size': 28}) # curr dataset X = np.r_[0,1] X = np.sort(X) y = slope*np.floor(X) # rotation matrix P = get_P(knots) + 1e-10 * np.eye(22) eigvals, eigs = np.linalg.eig(P) eigvals = np.maximum(eigvals, 0) Q = eigs.dot(np.linalg.pinv(np.diag(np.sqrt(eigvals)))).dot(eigs.T) X0 = get_feats(X, knots).dot(Q) xaug_raw = np.r_[X, 4.5] Xaug = get_feats(xaug_raw, knots).dot(Q) yaug = np.floor(xaug_raw) # std estimator stdest = np.linalg.pinv(X0.T @ X0) @ (X0.T @ y) augest = np.linalg.pinv(Xaug.T @ Xaug) @ (Xaug.T @ yaug) # sigma S_trans = all_feats_trans.T @ all_feats_trans S_eigs, S_eigv = np.linalg.eig(S_trans) for i in range(S_eigv.shape[1]): if i > 5: break plt.figure() plt.plot(np.arange(S_eigv.shape[0]), S_eigv[:, i], lw=5) plt.xlabel('t') plt.ylabel('f(t)') plt.title('$q_{%d}$' % (i+1)) plt.xticks([]) plt.yticks([]) plt.tight_layout() plt.savefig(f'eig{i}.png') ########## # Fig 8 ########## matplotlib.rcParams.update({'font.size': 23}) def normalize(x): return x /
np.linalg.norm(x)
numpy.linalg.norm
#!/usr/bin/python3 import argparse import cv2 import math import numpy as np import os import pyexiv2 # dnf install python3-exiv2 (py3exiv2) from tqdm import tqdm import matplotlib.pyplot as plt from props import root, getNode import props_json from lib import camera from lib import image parser = argparse.ArgumentParser(description='Align and combine sentera images.') parser.add_argument('--flight', help='Base directory (parent of NIR/RGB directories.') parser.add_argument('--scale', type=float, default=0.4, help='scale image before processing') parser.add_argument('--image', help='image name') parser.add_argument('image1', help='image1 path') parser.add_argument('image2', help='image1 path') args = parser.parse_args() def detect_camera(image_path): camera = "" exif = pyexiv2.ImageMetadata(image_path) exif.read() if 'Exif.Image.Make' in exif: camera = exif['Exif.Image.Make'].value if 'Exif.Image.Model' in exif: camera += '_' + exif['Exif.Image.Model'].value if 'Exif.Photo.LensModel' in exif: camera += '_' + exif['Exif.Photo.LensModel'].value camera = camera.replace(' ', '_') return camera if args.flight and args.image: image1 = os.path.join(args.flight, 'NIR', args.image) image2 = os.path.join(args.flight, 'RGB', args.image) else: image1 = args.image1 image2 = args.image2 cam1 = detect_camera(image1) cam2 = detect_camera(image2) print(cam1) print(cam2) cam1_node = getNode("/camera1", True) cam2_node = getNode("/camera2", True) if props_json.load(os.path.join("../cameras", cam1 + ".json"), cam1_node): print("successfully loaded cam1 config") if props_json.load(os.path.join("../cameras", cam2 + ".json"), cam2_node): print("successfully loaded cam2 config") tmp = [] for i in range(9): tmp.append( cam1_node.getFloatEnum('K', i) ) K1 = np.copy(np.array(tmp)).reshape(3,3) print("K1:", K1) tmp = [] for i in range(5): tmp.append( cam1_node.getFloatEnum('dist_coeffs', i) ) dist1 = np.array(tmp) print("dist1:", dist1) tmp = [] for i in range(9): tmp.append( cam2_node.getFloatEnum('K', i) ) K2 = np.copy(np.array(tmp)).reshape(3,3) print("K2:", K2) tmp = [] for i in range(5): tmp.append( cam2_node.getFloatEnum('dist_coeffs', i) ) dist2 = np.array(tmp) print("dist2:", dist2) i1 = cv2.imread(image1, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) i2 = cv2.imread(image2, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) if i1 is None: print("Error loading:", image1) quit() if i2 is None: print("Error loading:", image2) quit() i1 = cv2.undistort(i1, K1, dist1) i2 = cv2.undistort(i2, K1, dist1) # scale images (anticipating images are identical dimensions, but this # will force that assumption if the happen to not be.) (h, w) = i1.shape[:2] i1 = cv2.resize(i1, (int(w*args.scale), int(h*args.scale))) i2 = cv2.resize(i2, (int(w*args.scale), int(h*args.scale))) detector = cv2.xfeatures2d.SIFT_create() kp1, des1 = detector.detectAndCompute(i1, None) kp2, des2 = detector.detectAndCompute(i2, None) print("Keypoints:", len(kp1), len(kp2)) print("Descriptors:", len(des1), len(des2)) FLANN_INDEX_KDTREE = 1 flann_params = { 'algorithm': FLANN_INDEX_KDTREE, 'trees': 5 } search_params = dict(checks=100) matcher = cv2.FlannBasedMatcher(flann_params, search_params) matches = matcher.knnMatch(des1, des2, k=5) print("Raw matches:", len(matches)) if False: plt.figure() plt.title('match distance fall off') for i, m in enumerate(tqdm(matches)): if i % 10 == 0: for j in m: vals = [] pos = [] for j in range(len(m)): pos.append(j) vals.append(m[j].distance) plt.plot(pos, vals, lw=1) plt.show() def draw_inlier(src1, src2, kpt1, kpt2, inlier, drawing_type): height = max(src1.shape[0], src2.shape[0]) width = src1.shape[1] + src2.shape[1] output = np.zeros((height, width, 3), dtype=np.uint8) output[0:src1.shape[0], 0:src1.shape[1]] = src1 output[0:src2.shape[0], src1.shape[1]:] = src2[:] if drawing_type == 'ONLY_LINES': for i in range(len(inlier)): left = kpt1[inlier[i].queryIdx].pt right = tuple(sum(x) for x in zip(kpt2[inlier[i].trainIdx].pt, (src1 .shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (0, 255, 255)) elif drawing_type == 'LINES_AND_POINTS': for i in range(len(inlier)): left = kpt1[inlier[i].queryIdx].pt right = tuple(sum(x) for x in zip(kpt2[inlier[i].trainIdx].pt, (src1.shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (255, 0, 0)) for i in range(len(inlier)): left = kpt1[inlier[i].queryIdx].pt right = tuple(sum(x) for x in zip(kpt2[inlier[i].trainIdx].pt, (src1.shape[1], 0))) cv2.circle(output, tuple(map(int, left)), 1, (0, 255, 255), 2) cv2.circle(output, tuple(map(int, right)), 1, (0, 255, 0), 2) cv2.imshow('show', output) cv2.waitKey() def decomposeAffine(affine): tx = affine[0][2] ty = affine[1][2] a = affine[0][0] b = affine[0][1] c = affine[1][0] d = affine[1][1] sx = math.sqrt( a*a + b*b ) if a < 0.0: sx = -sx sy = math.sqrt( c*c + d*d ) if d < 0.0: sy = -sy rotate_deg = math.atan2(-b,a) * 180.0/math.pi if rotate_deg < -180.0: rotate_deg += 360.0 if rotate_deg > 180.0: rotate_deg -= 360.0 return (rotate_deg, tx, ty, sx, sy) def make_lut_u(): return np.array([[[i,255-i,0] for i in range(256)]],dtype=np.uint8) def make_lut_v(): return np.array([[[0,255-i,i] for i in range(256)]],dtype=np.uint8) def ndre_helper(lut, a, b, c1, c2): print('range:', a, b) db = c2[0] - c1[0] dg = c2[1] - c1[1] dr = c2[2] - c1[2] for i in range(a, b + 1): percent = (i - a) / (b - a) lut[0][i][0] = int(c1[0] + db * percent) lut[0][i][1] = int(c1[1] + dg * percent) lut[0][i][2] = int(c1[2] + dr * percent) print(' ', i, percent, lut[0][i]) def make_lut_ndre(cutoffs, colors): lut = np.zeros( (1, 256, 3) ).astype('uint8') ndre_helper(lut, 0, cutoffs[0], colors[0], colors[0]) size = len(cutoffs) for i in range(0, size-1): ndre_helper(lut, cutoffs[i], cutoffs[i+1], colors[i], colors[i+1]) ndre_helper(lut, cutoffs[size-1], 255, colors[size-1], colors[size-1]) return lut def normalize(img): min = np.min(img) max = np.max(img) img_norm = (img - min) / (max - min) return img_norm angle_bins = [0] * 91 dist_bins = [0] * (int(math.sqrt(w*w+h*h)/10.0)+1) H = np.identity(3); first_iteration = True while True: print('H:', H) src_pts = np.float32([kp1[i].pt for i in range(len(kp1))]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[i].pt for i in range(len(kp2))]).reshape(-1, 1, 2) src_pts = cv2.perspectiveTransform(src_pts, H) #print('src:', src_pts) #print('dst:', dst_pts) print("collect stats...") match_stats = [] for i, m in enumerate(tqdm(matches)): best_index = 0 best_value = 99999999999999999999999.9 best_angle = 0 best_size = 0 best_dist = 0 ratio = m[0].distance / m[1].distance for j in range(len(m)): p1 = src_pts[m[j].queryIdx] p2 = dst_pts[m[j].trainIdx] #print(p1, p2) raw_dist = np.linalg.norm(p1-p2) if first_iteration: # first iteration don't use distance px_dist = 1 else: px_dist = 1 + raw_dist*raw_dist a1 = np.array(kp1[m[j].queryIdx].angle) a2 = np.array(kp2[m[j].trainIdx].angle) # angle difference mapped to +/- 180 # angle = (a1-a2+180) % 360 - 180 # angle difference mapped to +/- 90 angle = (a1-a2+90) % 180 - 90 #angle = 1 #print(a1, a2, angle) angle_dist = abs(angle) + 1 s1 = np.array(kp1[m[j].queryIdx].size) s2 = np.array(kp2[m[j].trainIdx].size) size_diff = abs(s1 - s2) + 1 metric = (px_dist * angle_dist * size_diff) / ratio #print(" ", j, m[j].distance, px_dist, abs(1 + angle), size_diff, metric) if metric < best_value: best_value = metric best_index = j best_angle = abs(angle) best_size = size_diff best_dist = raw_dist #print(i, best_index, m[best_index].distance, best_angle, best_size, best_value) match_stats.append( [ m[best_index], ratio, best_value, best_angle, best_size, best_dist ] ) dist_bins[int(best_dist/10.0)] += 1 angle_bins[int(round(abs(best_angle)))] += 1 if first_iteration: target_dist = np.argmax(dist_bins)*10 else: target_dist = 0.0 print("target dist:", target_dist) target_angle = np.argmax(angle_bins) print("target angle:", target_angle) # select the best subset of matches filt_matches = [] for i, line in enumerate(tqdm(match_stats)): match = line[0] ratio = line[1] best_value = line[2] best_angle = line[3] best_size = line[4] best_dist = line[5] if ratio < 0.60: # passes ratio test as per Lowe's paper filt_matches.append(match) else: if abs(best_dist - target_dist) > 30: continue if abs(best_angle - target_angle) > 5: continue elif best_size > 2: continue elif (first_iteration and best_value < 5) or (not first_iteration and best_value < 500): print(i, best_index, match.distance, best_angle, best_size, best_value) filt_matches.append(match) print("Filtered matches:", len(filt_matches)) first_iteration = False if False: # dist histogram plt.figure() y_pos = np.arange(len(dist_bins)) plt.bar(y_pos, dist_bins, align='center', alpha=0.5) plt.xticks(y_pos, range(len(dist_bins))) plt.ylabel('count') plt.title('total distance histogram') # angle histogram plt.figure() y_pos = np.arange(len(angle_bins)) plt.bar(y_pos, angle_bins, align='center', alpha=0.5) plt.xticks(y_pos, range(len(angle_bins))) plt.ylabel('count') plt.title('angle histogram') plt.show() if False: sh1 = i1.shape sh2 = i2.shape size1 = (sh1[1], sh1[0]) size2 = (sh2[1], sh2[0]) matchesGMS = cv2.xfeatures2d.matchGMS(size1, size2, kp1, kp2, filt_matches, withRotation=False, withScale=False, thresholdFactor=5.0) print("GMS matches:", len(matchesGMS)) if True: print("Filtering by findHomography") tol = 4.0 src = [] dst = [] for m in filt_matches: src.append( kp1[m.queryIdx].pt ) dst.append( kp2[m.trainIdx].pt ) H, status = cv2.findHomography(np.array([src]).astype(np.float32), np.array([dst]).astype(np.float32), cv2.RANSAC, tol) matches_fit = [] for i, m in enumerate(filt_matches): if status[i]: matches_fit.append(m) print("Fitted matches:", len(matches_fit)) draw_inlier(i1, i2, kp1, kp2, matches_fit, 'ONLY_LINES') if True: src = [] dst = [] for m in matches_fit: src.append( kp1[m.queryIdx].pt ) dst.append( kp2[m.trainIdx].pt ) affine, status = \ cv2.estimateAffinePartial2D(np.array([src]).astype(np.float32), np.array([dst]).astype(np.float32)) (rot, tx, ty, sx, sy) = decomposeAffine(affine) print("Affine:") print("Rotation (deg):", rot) print("Translation (pixels):", tx, ty) print("Skew:", sx, sy) # H, status = cv2.findHomography(np.array([src]).astype(np.float32), # np.array([dst]).astype(np.float32), # cv2.LMEDS) print("Homography:", H) # (rot, tx, ty, sx, sy) = decomposeAffine(affine) # print("Affine:") # print("Rotation (deg):", rot) # print("Translation (pixels):", tx, ty) # print("Skew:", sx, sy) #i1_new = cv2.warpAffine(i1, affine, (i1.shape[1], i1.shape[0])) i1_new = cv2.warpPerspective(i1, H, (i1.shape[1], i1.shape[0])) blend = cv2.addWeighted(i1_new, 0.5, i2, 0.5, 0) if False: cv2.imshow('i1', i1) cv2.imshow('i1_new', i1_new) cv2.imshow('i2', i2) cv2.imshow('blend', blend) if True: # NDRE test ndvi_lut = cv2.imread("NDVI_Scale_LDP.png", flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) ndvi_lut = np.reshape(ndvi_lut, (1, 256, 3)) print(ndvi_lut.shape, ndvi_lut.dtype) #print(make_lut_ndre().shape, make_lut_ndre().dtype) nir, garbage, re = cv2.split(i1_new) g, b, r = cv2.split(i2) if False: cv2.imshow('index nir', nir) cv2.imshow('index re', re) cutoffs = [] if False: # sentera formala for ndre #((-0.341*nir_red + 2.426*nir_blue)- (1.0*nir_red - 0.956*nir_blue))/ ( (-0.341*nir_red + 2.426*nir_blue)+(1.0*nir_red - 0.956*nir_blue)) nnir = normalize(-0.341*re + 2.426*nir) nnir[nnir==0] = 1 nre = normalize(1.0*re - 0.956*nir) nindex = (nnir - nre) / (nnir + nre) cutoffs = [ 32, 60, 80, 110, 168 ] print('nir', nnir.shape, np.min(nnir), np.max(nnir)) print('re', nre.shape, np.min(nre), np.max(nre)) print('ndvi', nindex.shape, np.min(nindex), np.max(nindex)) elif False: # using the inversion of re as a proxy for red (modified NDRE) nnir = nir/255.0 nre = 1.0 - re/255.0 nindex = (nnir - nre) / (nnir + nre) cutoffs = [ 32, 60, 80, 110, 168 ] print('nir', nnir.shape, np.min(nnir), np.max(nnir)) print('re', nre.shape, np.min(nre), np.max(nre)) print('ndvi', nindex.shape, np.min(nindex), np.max(nindex)) elif True: # using nir and r for traditional ndvi nir[nir==0] = 1 nnir = nir/255.0 nre = r/255.0 nindex = (nnir - nre) / (nnir + nre) cutoffs = [ 42, 70, 90, 110, 168 ] print('nir', nnir.shape, np.min(nnir), np.max(nnir)) print('re', nre.shape, np.min(nre), np.max(nre)) print('ndvi', nindex.shape,
np.min(nindex)
numpy.min
import warnings from matplotlib import pyplot as plt import numpy as np import pandas as pd from core.lattice import * class Diffract(object): def __init__(self, lattice, energy, polarization, surface, aziref, absorb): self.lat = lattice self.e = energy self.lam = 1.23984193e4 / energy self.pol = polarization self.n = surface self.azir = aziref self.absorb = absorb def orientate(self, Q): """ Computes tensor that projects crystal frame onto diffraction frame :param Q: :return: """ Q = np.asarray(Q) / np.asarray([self.lat.a,self.lat.b,self.lat.c]) Qnorm = Q / np.linalg.norm(Q) if (Q[0] == 0 and Q[2] == 0): zeta = 0 else: zeta = np.arctan2(np.dot(Qnorm, np.array([0, 0, 1])), np.dot(Qnorm, np.array([1, 0, 0]))) eta = np.arccos(np.dot(Qnorm, np.array([0, 1, 0]))) T = np.array([[-np.cos(zeta) * np.cos(eta), np.sin(eta), -np.sin(zeta) * np.cos(eta)], [ np.sin(zeta), 0, -np.cos(zeta)], [-np.cos(zeta) * np.sin(eta),-np.cos(eta), -np.sin(zeta) * np.sin(eta)]]) az = np.dot(T, self.azir) psi = np.arctan2(-az[1], az[0]) Ru3 = np.array([[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [0, 0, 1]]) return np.dot(Ru3, T) def dspacing(self,Q): """ Evaluate d-spacing of reflection :param Q: wavevector :return: d-spacing """ if(len(np.ravel(Q)) == 3): Q = np.asarray(Q).reshape(1,3) #TODO generalise to triclinc symmetry gg = (Q[:,0] / self.lat.a)**2 + (Q[:,1] / self.lat.b)**2 + (Q[:,2] / self.lat.c)**2 d = np.sqrt(1 / gg) return d def th(self, Q): """ Calculate theta of reflection Q :param Q: in [h,k,l] :return: theta in radians """ d = self.dspacing(Q) with warnings.catch_warnings(): warnings.filterwarnings('error') th = np.arcsin(self.lam / (2.0*d)) return th def tth(self,Q): """ Calculate two-theta of reflection Q :param Q: in [h,k,l] :return: two-theta in radians """ return 2.0*self.th(Q) def xrms_tensor(self, M): """ Calculate XRMS tensor in spherical approximation :param M: magnetic structure factor vector :return: 3 x 3 scattering tensor """ Fm = 1j * np.array([[0, M[2], -M[1]], [-M[2], 0, M[0]], [M[1], -M[0], 0]]) return Fm # ----- Absorption corrections ----- # def calc_absorption(self, Q, psi): th = self.th(Q) delta = self.calc_delta(Q, psi) alpha = th - delta beta = th + delta abs = (1 + np.sin(alpha) / np.sin(beta)) ** -1 return abs, alpha, beta def calc_delta(self, Q, psi): T = self.orientate(Q) # crystal orienation in diffraction frame a = np.dot(T,self.n) delta = np.zeros(len(psi)) for i in range(0, len(psi)): npsi = np.dot(self.rotZ(psi[i]), a) npro = self.nProj(npsi) delta[i] = np.arccos(np.dot(npro, np.array([0, 0, -1]))) if npro[0] <= 0: delta[i] *= -1 return delta def rotZ(self, angle): psi = np.deg2rad(angle) R = np.array([[np.cos(psi), -
np.sin(psi)
numpy.sin
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """CPM train module""" import numpy as np import mindspore.nn as nn from mindspore.common.initializer import initializer from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore import context import mindspore.common.dtype as mstype from mindspore.common.parameter import Parameter from mindspore.ops.operations.comm_ops import _VirtualDataset from mindspore.ops import functional as F from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell from src.cpm_loss import Cross_entropy from src.cpm import CPMModel from src.util import ClipByGlobalNorm class CPMWithLoss(nn.Cell): """ Provide CPM training loss through network. Args: batch_size (int): Batch size of input dataset. seq_length (int): Length of input tensor sequence. vocab_size (int): Size of the vocabulary list. hidden_size (int): Internal feature dimension. config: The config of CPM network. num_hidden_layers (int): Number of hidden layers. num_attention_heads (int): Number of attention heads. Returns: Tensor, the loss of the network. """ def __init__(self, batch_size, seq_length, vocab_size, hidden_size, config, num_hidden_layers, num_attention_heads): super(CPMWithLoss, self).__init__() self.batch_size = batch_size self.seq_length = seq_length self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.squeeze = P.Squeeze() self.expanddims = P.ExpandDims().shard(((config.dp, 1),)) self.expanddims1 = P.ExpandDims().shard(((config.dp,),)) self.tile = P.Tile().shard(((config.dp, 1, 1),)) self.reducesum = P.ReduceSum().shard(((config.dp, 1, 1),)) self.reducesum2 = P.ReduceSum().shard(((config.dp, 1),)) self.reducemean = P.ReduceMean().shard(((1, 1),)) self.cast = P.Cast() self.readdiv = P.RealDiv().shard(((config.dp, 1), (config.dp, 1))) self.readdiv2 = P.RealDiv().shard(((1,), (1,))) self.mul = P.Mul().shard(((config.dp, 1, 1), (config.dp, 1, 1))) self.mul2 = P.Mul().shard(((config.dp, 1), (config.dp, 1))) self.cpm_model = CPMModel(batch_size=self.batch_size, seq_length=self.seq_length, vocab_size=self.vocab_size, hidden_size=self.hidden_size, config=config, hidden_dropout=config.dropout, attention_dropout=config.dropout, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, is_training=True) self.loss_net = Cross_entropy(batch_size=self.batch_size, seq_length=self.seq_length, vocab_size=self.vocab_size, config=config, is_training=True) self.slice = P.StridedSlice().shard(((config.dp, 1),)) self.slice_mask = P.StridedSlice().shard(((config.dp, 1, 1),)) def construct(self, input_ids, attention_mask=None, position_ids=None, loss_mask=None, labels=None): r""" CPM model with loss. """ input_ids = self.slice(input_ids, (0, 0), (self.batch_size, self.seq_length), (1, 1)) position_ids = self.slice(position_ids, (0, 0), (self.batch_size, self.seq_length), (1, 1)) attention_mask_1 = self.slice_mask(attention_mask, (0, 0, 0), (self.batch_size, self.seq_length, self.seq_length), (1, 1, 1)) logist = self.cpm_model(input_ids, position_ids, attention_mask_1) loss_mask_expand = self.expanddims(loss_mask, -1) # 8 725 -> 8, 725, 1 loss_masks = self.tile(loss_mask_expand, (1, 1, self.vocab_size)) # 8 725 30000 loss_mask_sum = self.expanddims1(self.reducesum2(loss_mask, -1), -1) # [8, 725, 30000|8, 725, 30000 logist_mask_mul = self.mul(logist, loss_masks) # 8, 725, 30000->8, 30000 logist_mask_sum = self.reducesum(logist_mask_mul, 1) # 8, 30000| 8 1 output = self.readdiv(logist_mask_sum, loss_mask_sum) # 8 725 | 8 725 label_mul_mask = self.mul2(labels, loss_mask) # 8 725 -> 8 label_mask = self.reducesum2(label_mul_mask, 1) # 8 725 -> 8 loss_mask_for_label = self.reducesum2(loss_mask, -1) # 8 / 8 label_final = self.readdiv2(label_mask, loss_mask_for_label) # batch 1 vocabe_size output = self.expanddims(output, 1) # batchsize 1 label_final = self.expanddims1(label_final, 1) # batchsize 1 losses = self.loss_net(output, self.cast(label_final, mstype.float32)) loss = self.reducemean(losses, 0) return loss GRADIENT_CLIP_TYPE = 1 GRADIENT_CLIP_VALUE = 1.0 clip_grad = C.MultitypeFuncGraph("clip_grad") @clip_grad.register("Number", "Number", "Tensor") def _clip_grad(clip_type, clip_value, grad): """ Clip gradients. Inputs: clip_type (int): The way to clip, 0 for 'value', 1 for 'norm'. clip_value (float): Specifies how much to clip. grad (tuple[Tensor]): Gradients. Outputs: tuple[Tensor], clipped gradients. """ if clip_type not in [0, 1]: return grad dt = F.dtype(grad) if clip_type == 0: new_grad = C.clip_by_value( grad, F.cast(F.tuple_to_array((-clip_value,)), dt), F.cast(F.tuple_to_array((clip_value,)), dt)) else: new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt)) return new_grad class VirtualDatasetOneInputCell(nn.Cell): def __init__(self, backbone): super(VirtualDatasetOneInputCell, self).__init__(auto_prefix=False) self._backbone = backbone self._virtual_dataset = _VirtualDataset() def construct(self, *data): data_ = self._virtual_dataset(*data) return self._backbone(*data_) grad_scale = C.MultitypeFuncGraph("grad_scale") reciprocal = P.Reciprocal() @grad_scale.register("Tensor", "Tensor") def tensor_grad_scale(scale, grad): return grad * reciprocal(scale) class CPMTrainOneStepWithLossScaleCell(TrainOneStepWithLossScaleCell): """ Encapsulation class of CPM network training. Append an optimizer to the training network after that the construct function can be called to create the backward graph. Args: network (Cell): The training network. Note that loss function should have been added. optimizer (Optimizer): Optimizer for updating the weights. scale_update_cell (Cell): Cell to do the loss scale. Default: None. enable_global_norm (Bool): Whether using global normalization. """ def __init__(self, network, optimizer, scale_update_cell=None, enable_global_norm=True): super(CPMTrainOneStepWithLossScaleCell, self).__init__(network, optimizer, scale_update_cell) self.network = network self.weights = optimizer.parameters self.optimizer = optimizer self.default_lr = Tensor([0.0], dtype=mstype.float32) self.enable_global_norm = enable_global_norm self.cast = P.Cast() self.clip = ClipByGlobalNorm(self.weights) def construct(self, input_ids, attention_mask, position_ids, loss_mask, labels, sens=None): """Defines the computation performed.""" weights = self.weights loss = self.network(input_ids, attention_mask, position_ids, loss_mask, labels) scaling_sens = self.scale_sense # alloc status and clear should be right before grad operation. status, scaling_sens = self.start_overflow_check(loss, scaling_sens) scaling_sens_filled = C.ones_like(loss) * F.cast(scaling_sens, F.dtype(loss)) grads = self.grad(self.network, weights)(input_ids, attention_mask, position_ids, loss_mask, labels, scaling_sens_filled) # apply grad reducer on grads. grads = self.grad_reducer(grads) grads = self.hyper_map( F.partial(grad_scale, scaling_sens), grads) if self.enable_global_norm: grads, _ = self.clip(grads) else: grads = self.hyper_map( F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) cond = self.get_overflow_status(status, grads) overflow = self.process_loss_scale(cond) if not overflow: self.optimizer(grads) return loss, cond, scaling_sens cast = P.Cast() update_accu_grads = C.MultitypeFuncGraph("update_accu_grads") @update_accu_grads.register("Tensor", "Tensor") def _update_accu_grads(accu_grad, grad): succ = True return F.depend(succ, F.assign_add(accu_grad, cast(grad, mstype.float32))) zeroslike = P.ZerosLike() reset_accu_grads = C.MultitypeFuncGraph("reset_accu_grads") @reset_accu_grads.register("Tensor") def _reset_accu_grads(accu_grad): succ = True return F.depend(succ, F.assign(accu_grad, zeroslike(accu_grad))) class CPMTrainAccuStepsWithLossScaleCell(TrainOneStepWithLossScaleCell): """ Encapsulation class of CPM network training with loss scale. Append an optimizer to the training network after that the construct function can be called to create the backward graph. Args: network (Cell): The training network. Note that loss function should have been added. optimizer (Optimizer): Optimizer for updating the weights. scale_update_cell (Cell): Cell to do the loss scale. Default: None. enable_global_norm (Bool): Whether using global normalization. """ def __init__(self, network, optimizer, scale_update_cell=None, enable_global_norm=True): super(CPMTrainAccuStepsWithLossScaleCell, self).__init__(network, optimizer, scale_update_cell) self.accumulation = False self.accumulation_steps = context.get_auto_parallel_context("grad_accumulation_step") self.one = Tensor(np.array([1]).astype(np.int32)) self.zero = Tensor(
np.array([0])
numpy.array
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for StabilizerTable class.""" import unittest import numpy as np from scipy.sparse import csr_matrix from qiskit import QiskitError from qiskit.test import QiskitTestCase from qiskit.quantum_info.operators.symplectic import StabilizerTable from qiskit.quantum_info.operators.symplectic import PauliTable def stab_mat(label): """Return stabilizer matrix from a stabilizer label""" mat = np.eye(1, dtype=complex) if label[0] == "-": mat *= -1 if label[0] in ["-", "+"]: label = label[1:] for i in label: if i == "I": mat = np.kron(mat, np.eye(2)) elif i == "X": mat = np.kron(mat, np.array([[0, 1], [1, 0]])) elif i == "Y": mat = np.kron(mat, np.array([[0, 1], [-1, 0]])) elif i == "Z": mat = np.kron(mat, np.array([[1, 0], [0, -1]])) else: raise QiskitError(f"Invalid stabilizer string {i}") return mat class TestStabilizerTableInit(QiskitTestCase): """Tests for StabilizerTable initialization.""" def test_array_init(self): """Test array initialization.""" with self.subTest(msg="bool array"): target = np.array([[False, False], [True, True]]) value = StabilizerTable(target)._array self.assertTrue(np.all(value == target)) with self.subTest(msg="bool array no copy"): target = np.array([[False, True], [True, True]]) value = StabilizerTable(target)._array value[0, 0] = not value[0, 0] self.assertTrue(np.all(value == target)) with self.subTest(msg="bool array raises"): array = np.array([[False, False, False], [True, True, True]]) self.assertRaises(QiskitError, StabilizerTable, array) def test_vector_init(self): """Test vector initialization.""" with self.subTest(msg="bool vector"): target = np.array([False, False, False, False]) value = StabilizerTable(target)._array self.assertTrue(np.all(value == target)) with self.subTest(msg="bool vector no copy"): target = np.array([False, True, True, False]) value = StabilizerTable(target)._array value[0, 0] = not value[0, 0] self.assertTrue(np.all(value == target)) def test_string_init(self): """Test string initialization.""" with self.subTest(msg='str init "I"'): value = StabilizerTable("I")._array target = np.array([[False, False]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "X"'): value = StabilizerTable("X")._array target = np.array([[True, False]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "Y"'): value = StabilizerTable("Y")._array target = np.array([[True, True]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "Z"'): value = StabilizerTable("Z")._array target = np.array([[False, True]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "IX"'): value = StabilizerTable("IX")._array target = np.array([[True, False, False, False]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "XI"'): value = StabilizerTable("XI")._array target = np.array([[False, True, False, False]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "YZ"'): value = StabilizerTable("YZ")._array target = np.array([[False, True, True, True]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) with self.subTest(msg='str init "XIZ"'): value = StabilizerTable("XIZ")._array target = np.array([[False, False, True, True, False, False]], dtype=bool) self.assertTrue(np.all(np.array(value == target))) def test_table_init(self): """Test StabilizerTable initialization.""" with self.subTest(msg="StabilizerTable"): target = StabilizerTable.from_labels(["XI", "IX", "IZ"]) value = StabilizerTable(target) self.assertEqual(value, target) with self.subTest(msg="StabilizerTable no copy"): target = StabilizerTable.from_labels(["XI", "IX", "IZ"]) value = StabilizerTable(target) value[0] = "II" self.assertEqual(value, target) class TestStabilizerTableProperties(QiskitTestCase): """Tests for StabilizerTable properties.""" def test_array_property(self): """Test array property""" with self.subTest(msg="array"): stab = StabilizerTable("II") array = np.zeros([2, 4], dtype=bool) self.assertTrue(np.all(stab.array == array)) with self.subTest(msg="set array"): def set_array(): stab = StabilizerTable("XXX") stab.array = np.eye(4) return stab self.assertRaises(Exception, set_array) def test_x_property(self): """Test X property""" with self.subTest(msg="X"): stab = StabilizerTable.from_labels(["XI", "IZ", "YY"]) array = np.array([[False, True], [False, False], [True, True]], dtype=bool) self.assertTrue(np.all(stab.X == array)) with self.subTest(msg="set X"): stab = StabilizerTable.from_labels(["XI", "IZ"]) val = np.array([[False, False], [True, True]], dtype=bool) stab.X = val self.assertEqual(stab, StabilizerTable.from_labels(["II", "XY"])) with self.subTest(msg="set X raises"): def set_x(): stab = StabilizerTable.from_labels(["XI", "IZ"]) val = np.array([[False, False, False], [True, True, True]], dtype=bool) stab.X = val return stab self.assertRaises(Exception, set_x) def test_z_property(self): """Test Z property""" with self.subTest(msg="Z"): stab = StabilizerTable.from_labels(["XI", "IZ", "YY"]) array = np.array([[False, False], [True, False], [True, True]], dtype=bool) self.assertTrue(np.all(stab.Z == array)) with self.subTest(msg="set Z"): stab = StabilizerTable.from_labels(["XI", "IZ"]) val = np.array([[False, False], [True, True]], dtype=bool) stab.Z = val self.assertEqual(stab, StabilizerTable.from_labels(["XI", "ZZ"])) with self.subTest(msg="set Z raises"): def set_z(): stab = StabilizerTable.from_labels(["XI", "IZ"]) val = np.array([[False, False, False], [True, True, True]], dtype=bool) stab.Z = val return stab self.assertRaises(Exception, set_z) def test_shape_property(self): """Test shape property""" shape = (3, 8) stab = StabilizerTable(np.zeros(shape)) self.assertEqual(stab.shape, shape) def test_size_property(self): """Test size property""" with self.subTest(msg="size"): for j in range(1, 10): shape = (j, 8) stab = StabilizerTable(np.zeros(shape)) self.assertEqual(stab.size, j) def test_num_qubits_property(self): """Test num_qubits property""" with self.subTest(msg="num_qubits"): for j in range(1, 10): shape = (5, 2 * j) stab = StabilizerTable(np.zeros(shape)) self.assertEqual(stab.num_qubits, j) def test_phase_property(self): """Test phase property""" with self.subTest(msg="phase"): phase = np.array([False, True, True, False]) array = np.eye(4, dtype=bool) stab = StabilizerTable(array, phase) self.assertTrue(np.all(stab.phase == phase)) with self.subTest(msg="set phase"): phase = np.array([False, True, True, False]) array = np.eye(4, dtype=bool) stab = StabilizerTable(array) stab.phase = phase self.assertTrue(np.all(stab.phase == phase)) with self.subTest(msg="set phase raises"): phase = np.array([False, True, False]) array = np.eye(4, dtype=bool) stab = StabilizerTable(array) def set_phase_raise(): """Raise exception""" stab.phase = phase self.assertRaises(ValueError, set_phase_raise) def test_pauli_property(self): """Test pauli property""" with self.subTest(msg="pauli"): phase = np.array([False, True, True, False]) array = np.eye(4, dtype=bool) stab = StabilizerTable(array, phase) pauli = PauliTable(array) self.assertEqual(stab.pauli, pauli) with self.subTest(msg="set pauli"): phase = np.array([False, True, True, False]) array = np.zeros((4, 4), dtype=bool) stab = StabilizerTable(array, phase) pauli = PauliTable(np.eye(4, dtype=bool)) stab.pauli = pauli self.assertTrue(np.all(stab.array == pauli.array)) self.assertTrue(np.all(stab.phase == phase)) with self.subTest(msg="set pauli"): phase = np.array([False, True, True, False]) array = np.zeros((4, 4), dtype=bool) stab = StabilizerTable(array, phase) pauli = PauliTable(np.eye(4, dtype=bool)[1:]) def set_pauli_raise(): """Raise exception""" stab.pauli = pauli self.assertRaises(ValueError, set_pauli_raise) def test_eq(self): """Test __eq__ method.""" stab1 = StabilizerTable.from_labels(["II", "XI"]) stab2 = StabilizerTable.from_labels(["XI", "II"]) self.assertEqual(stab1, stab1) self.assertNotEqual(stab1, stab2) def test_len_methods(self): """Test __len__ method.""" for j in range(1, 10): labels = j * ["XX"] stab = StabilizerTable.from_labels(labels) self.assertEqual(len(stab), j) def test_add_methods(self): """Test __add__ method.""" labels1 = ["+XXI", "-IXX"] labels2 = ["+XXI", "-ZZI", "+ZYZ"] stab1 = StabilizerTable.from_labels(labels1) stab2 = StabilizerTable.from_labels(labels2) target = StabilizerTable.from_labels(labels1 + labels2) self.assertEqual(target, stab1 + stab2) def test_add_qargs(self): """Test add method with qargs.""" stab1 = StabilizerTable.from_labels(["+IIII", "-YYYY"]) stab2 = StabilizerTable.from_labels(["-XY", "+YZ"]) with self.subTest(msg="qargs=[0, 1]"): target = StabilizerTable.from_labels(["+IIII", "-YYYY", "-IIXY", "+IIYZ"]) self.assertEqual(stab1 + stab2([0, 1]), target) with self.subTest(msg="qargs=[0, 3]"): target = StabilizerTable.from_labels(["+IIII", "-YYYY", "-XIIY", "+YIIZ"]) self.assertEqual(stab1 + stab2([0, 3]), target) with self.subTest(msg="qargs=[2, 1]"): target = StabilizerTable.from_labels(["+IIII", "-YYYY", "-IYXI", "+IZYI"]) self.assertEqual(stab1 + stab2([2, 1]), target) with self.subTest(msg="qargs=[3, 1]"): target = StabilizerTable.from_labels(["+IIII", "-YYYY", "-YIXI", "+ZIYI"]) self.assertEqual(stab1 + stab2([3, 1]), target) def test_getitem_methods(self): """Test __getitem__ method.""" with self.subTest(msg="__getitem__ single"): labels = ["+XI", "-IY"] stab = StabilizerTable.from_labels(labels) self.assertEqual(stab[0], StabilizerTable(labels[0])) self.assertEqual(stab[1], StabilizerTable(labels[1])) with self.subTest(msg="__getitem__ array"): labels = np.array(["+XI", "-IY", "+IZ", "-XY", "+ZX"]) stab = StabilizerTable.from_labels(labels) inds = [0, 3] self.assertEqual(stab[inds], StabilizerTable.from_labels(labels[inds])) inds = np.array([4, 1]) self.assertEqual(stab[inds], StabilizerTable.from_labels(labels[inds])) with self.subTest(msg="__getitem__ slice"): labels =
np.array(["+XI", "-IY", "+IZ", "-XY", "+ZX"])
numpy.array
import argparse import numpy as NP from astropy.io import fits from astropy.io import ascii import scipy.constants as FCNST from scipy import interpolate import matplotlib.pyplot as PLT import matplotlib.colors as PLTC import matplotlib.animation as MOV from scipy.interpolate import griddata import datetime as DT import time import progressbar as PGB import healpy as HP import geometry as GEOM import interferometry as RI import catalog as CTLG import constants as CNST import my_DSP_modules as DSP import my_operations as OPS import primary_beams as PB import baseline_delay_horizon as DLY import ipdb as PDB parser = argparse.ArgumentParser(description='Program to visualize MWA interferometer array simulated data') parser.add_argument('--antenna-file', help='File containing antenna locations', default='/data3/t_nithyanandan/project_MWA/MWA_128T_antenna_locations_MNRAS_2012_Beardsley_et_al.txt', type=file, dest='antenna_file') telescope_group = parser.add_argument_group('Telescope parameters', 'Telescope/interferometer specifications') telescope_group.add_argument('--telescope', help='Telescope name [str, Default = "mwa"]', default='mwa', type=str, dest='telescope', choices=['mwa', 'vla', 'gmrt']) obsparm_group = parser.add_argument_group('Observation setup', 'Parameters specifying the observation') obsparm_group.add_argument('-f', '--freq', help='Foreground center frequency in Hz [float, Default=150e6]', default=150e6, type=float, dest='freq') obsparm_group.add_argument('--dfreq', help='Frequency resolution in Hz [float, Default=40e3]', default=40e3, type=float, dest='freq_resolution') obsparm_group.add_argument('--obs-mode', help='Observing mode [str, Default="track"]', default='track', type=str, dest='obs_mode', choices=['track', 'drift', 'custom']) obsparm_group.add_argument('--nchan', help='Number of frequency channels [int, Default=256]', default=256, type=int, dest='n_channels') fgmodel_group = parser.add_mutually_exclusive_group(required=True) fgmodel_group.add_argument('--ASM', action='store_true') fgmodel_group.add_argument('--DSM', action='store_true') fgmodel_group.add_argument('--SUMSS', action='store_true') fgmodel_group.add_argument('--NVSS', action='store_true') fgmodel_group.add_argument('--MSS', action='store_true') fgmodel_group.add_argument('--GLEAM', action='store_true') fgmodel_group.add_argument('--PS', action='store_true') processing_group = parser.add_argument_group('Processing arguments', 'Processing parameters') processing_group.add_argument('--n-bins-blo', help='Number of bins for baseline orientations [int, Default=4]', default=4, type=int, dest='n_bins_baseline_orientation') processing_group.add_argument('--bl-chunk-size', help='Baseline chunk size [int, Default=100]', default=100, type=int, dest='baseline_chunk_size') processing_group.add_argument('--bl-chunk', help='Baseline chunk indices to process [int(s), Default=None: all chunks]', default=None, type=int, dest='bl_chunk', nargs='*') processing_group.add_argument('--n-bl-chunks', help='Upper limit on baseline chunks to be processed [int, Default=None]', default=None, type=int, dest='n_bl_chunks') processing_group.add_argument('--bpw', help='Bandpass window shape [str, "rect"]', default='rect', type=str, dest='bpass_shape', choices=['rect', 'bnw']) processing_group.add_argument('--f-pad', help='Frequency padding fraction for delay transform [float, Default=1.0]', type=float, dest='f_pad', default=1.0) parser.add_argument('--max-abs-delay', help='Maximum absolute delay (micro seconds) [float, Default=None]', default=None, type=float, dest='max_abs_delay') backdrop_group = parser.add_argument_group('Backdrop arguments', 'Backdrop parameters') backdrop_group.add_argument('--backdrop-coords', help='Backdrop coordinates [str, Default="dircos"]', default='dircos', type=str, dest='backdrop_coords', choices=['radec', 'dircos']) backdrop_group.add_argument('--backdrop-size', help='Backdrop size (x, y) [int, Default=(100,50)]', type=int, dest='backdrop_size', metavar=('xsize', 'ysize'), nargs=2, default=[100,50]) backdrop_group.add_argument('--nside', help='nside parameter for healpix map [int, Default=64]', type=int, dest='nside', default=64, choices=[64, 128]) visual_group = parser.add_argument_group('Visualization arguments', 'Visualization setup parameters') visual_group.add_argument('--fig-size', help='Figure size in inches [float, Default=(14,14)]', default=[14,14], type=float, dest='figsize', metavar=('xsize', 'ysize'), nargs=2) visual_group.add_argument('--fps', help='Frame rate in fps [float, Default=1.0]', default=1.0, type=float, dest='fps', metavar='framerate') visual_group.add_argument('--interval', help='Frame interval in ms [float, Default=100.0]', default=100.0, dest='interval', metavar='interval') visual_group.add_argument('--animation-file', help='Animal filename prefix [str, Default=None]', dest='animation_file', default=None, type=str) visual_group.add_argument('--animation-format', help='Animation file format [str, Default=MP4]', default='MP4', choices=['MP4', 'GIF'], dest='animation_format', type=str) args = vars(parser.parse_args()) try: ant_locs = NP.loadtxt(args['antenna_file'], skiprows=6, comments='#', usecols=(1,2,3)) except IOError: raise IOError('Could not open file containing antenna locations.') freq = args['freq'] freq_resolution = args['freq_resolution'] bpass_shape = args['bpass_shape'] n_bins_baseline_orientation = args['n_bins_baseline_orientation'] baseline_chunk_size = args['baseline_chunk_size'] bl_chunk = args['bl_chunk'] n_bl_chunks = args['n_bl_chunks'] telescope = args['telescope'] obs_mode = args['obs_mode'] bl = RI.baseline_generator(ant_locs, auto=False, conjugate=False) bl_length = NP.sqrt(NP.sum(bl**2, axis=1)) bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) sortind = NP.argsort(bl_length, kind='mergesort') bl = bl[sortind,:] bl_length = bl_length[sortind] bl_orientation = bl_orientation[sortind] neg_bl_orientation_ind = NP.logical_or(bl_orientation < -0.5*180.0/n_bins_baseline_orientation, bl_orientation > 180.0 - 0.5*180.0/n_bins_baseline_orientation) bl[neg_bl_orientation_ind,:] = -1.0 * bl[neg_bl_orientation_ind,:] bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) total_baselines = bl_length.size baseline_bin_indices = range(0,total_baselines,baseline_chunk_size) if bl_chunk is None: bl_chunk = range(len(baseline_bin_indices)) if n_bl_chunks is None: n_bl_chunks = len(bl_chunk) bl_chunk = bl_chunk[:n_bl_chunks] bl = bl[:baseline_bin_indices[n_bl_chunks],:] bl_length = bl_length[:baseline_bin_indices[n_bl_chunks]] bl_orientation = bl_orientation[:baseline_bin_indices[n_bl_chunks]] oversampling_factor = 1.0 + args['f_pad'] n_channels = args['n_channels'] nchan = n_channels max_abs_delay = args['max_abs_delay'] nside = args['nside'] use_GSM = args['ASM'] use_DSM = args['DSM'] use_NVSS = args['NVSS'] use_SUMSS = args['SUMSS'] use_MSS = args['MSS'] use_GLEAM = args['GLEAM'] use_PS = args['PS'] if use_GSM: fg_str = 'asm' elif use_DSM: fg_str = 'dsm' elif use_SUMSS: fg_str = 'sumss' elif use_GLEAM: fg_str = 'gleam' elif use_PS: fg_str = 'point' elif use_NVSS: fg_str = 'nvss' else: fg_str = 'other' PDB.set_trace() lags = None skyvis_lag = None vis_lag = None progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=n_bl_chunks).start() for i in range(0, n_bl_chunks): infile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[i]],bl_length[min(baseline_bin_indices[i]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) hdulist = fits.open(infile+'.fits') # extnames = [hdu.header['EXTNAME'] for hdu in hdulist] if i == 0: lags = hdulist['SPECTRAL INFO'].data.field('lag') vis_lag = hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data skyvis_lag = hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING INFO'].data lst = pointings_table['LST'] if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') else: vis_lag = NP.vstack((vis_lag, hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data)) skyvis_lag = NP.vstack((skyvis_lag, hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data)) hdulist.close() progress.update(i+1) progress.finish() if max_abs_delay is not None: small_delays_ind = NP.abs(lags) <= max_abs_delay * 1e-6 lags = lags[small_delays_ind] vis_lag = vis_lag[:,small_delays_ind,:] skyvis_lag = skyvis_lag[:,small_delays_ind,:] ## Delay limits estimation delay_matrix = DLY.delay_envelope(bl, pointings_dircos, units='mks') ## Binning baselines by orientation # blo = bl_orientation[:min(n_bl_chunks*baseline_chunk_size, total_baselines)] blo = bl_orientation # blo[blo < -0.5*360.0/n_bins_baseline_orientation] = 360.0 - NP.abs(blo[blo < -0.5*360.0/n_bins_baseline_orientation]) PDB.set_trace() bloh, bloe, blon, blori = OPS.binned_statistic(blo, statistic='count', bins=n_bins_baseline_orientation, range=[(-0.5*180.0/n_bins_baseline_orientation, 180.0-0.5*180.0/n_bins_baseline_orientation)]) if use_DSM or use_GSM: backdrop_coords = 'radec' if backdrop_coords == 'radec': xmin = 0.0 xmax = 360.0 ymin = -90.0 ymax = 90.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmin, xmax, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize/2)) xvect = xgrid.ravel() yvect = ygrid.ravel() elif backdrop_coords == 'dircos': xmin = -1.0 xmax = 1.0 ymin = -1.0 ymax = 1.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmin, xmax, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize)) nanind = (xgrid**2 + ygrid**2) > 1.0 goodind = (xgrid**2 + ygrid**2) <= 1.0 zgrid = NP.empty_like(xgrid) zgrid[nanind] = NP.nan zgrid[goodind] = NP.sqrt(1.0 - (xgrid[goodind]**2 + ygrid[goodind]**2)) xvect = xgrid.ravel() yvect = ygrid.ravel() zvect = zgrid.ravel() xyzvect = NP.hstack((xvect.reshape(-1,1), yvect.reshape(-1,1), zvect.reshape(-1,1))) if use_DSM or use_GSM: dsm_file = '/data3/t_nithyanandan/project_MWA/foregrounds/gsmdata{0:0d}.fits'.format(nside) hdulist = fits.open(dsm_file) dsm_table = hdulist[1].data ra_deg = dsm_table['RA'] dec_deg = dsm_table['DEC'] temperatures = dsm_table['T_{0:.0f}'.format(freq/1e6)] fluxes = temperatures backdrop = HP.cartview(temperatures.ravel(), coord=['G','E'], rot=[180,0,0], xsize=backdrop_xsize, return_projected_map=True) elif use_GLEAM or use_SUMSS: if use_GLEAM: catalog_file = '/data3/t_nithyanandan/project_MWA/foregrounds/mwacs_b1_131016.csv' # GLEAM catalog catdata = ascii.read(catalog_file, data_start=1, delimiter=',') dec_deg = catdata['DEJ2000'] ra_deg = catdata['RAJ2000'] fpeak = catdata['S150_fit'] ferr = catdata['e_S150_fit'] freq_catalog = 1.4 # GHz spindex = -0.83 + NP.zeros(fpeak.size) fluxes = fpeak * (freq_catalog * 1e9 / freq)**spindex else: SUMSS_file = '/data3/t_nithyanandan/project_MWA/foregrounds/sumsscat.Mar-11-2008.txt' catalog = NP.loadtxt(SUMSS_file, usecols=(0,1,2,3,4,5,10,12,13,14,15,16)) ra_deg = 15.0 * (catalog[:,0] + catalog[:,1]/60.0 + catalog[:,2]/3.6e3) dec_dd = NP.loadtxt(SUMSS_file, usecols=(3,), dtype="|S3") sgn_dec_str = NP.asarray([dec_dd[i][0] for i in range(dec_dd.size)]) sgn_dec = 1.0*NP.ones(dec_dd.size) sgn_dec[sgn_dec_str == '-'] = -1.0 dec_deg = sgn_dec * (NP.abs(catalog[:,3]) + catalog[:,4]/60.0 + catalog[:,5]/3.6e3) fmajax = catalog[:,7] fminax = catalog[:,8] fpa = catalog[:,9] dmajax = catalog[:,10] dminax = catalog[:,11] PS_ind = NP.logical_and(dmajax == 0.0, dminax == 0.0) ra_deg = ra_deg[PS_ind] dec_deg = dec_deg[PS_ind] fint = catalog[PS_ind,6] * 1e-3 fmajax = fmajax[PS_ind] fminax = fminax[PS_ind] fpa = fpa[PS_ind] dmajax = dmajax[PS_ind] dminax = dminax[PS_ind] bright_source_ind = fint >= 1.0 ra_deg = ra_deg[bright_source_ind] dec_deg = dec_deg[bright_source_ind] fint = fint[bright_source_ind] fmajax = fmajax[bright_source_ind] fminax = fminax[bright_source_ind] fpa = fpa[bright_source_ind] dmajax = dmajax[bright_source_ind] dminax = dminax[bright_source_ind] valid_ind = NP.logical_and(fmajax > 0.0, fminax > 0.0) ra_deg = ra_deg[valid_ind] dec_deg = dec_deg[valid_ind] fint = fint[valid_ind] fmajax = fmajax[valid_ind] fminax = fminax[valid_ind] fpa = fpa[valid_ind] freq_catalog = 0.843 # in GHz spindex = -0.83 + NP.zeros(fint.size) fluxes = fint * (freq_catalog*1e9/freq)**spindex if backdrop_coords == 'radec': backdrop = griddata(NP.hstack((ra_deg.reshape(-1,1), dec_deg.reshape(-1,1))), fluxes, NP.hstack((xvect.reshape(-1,1), yvect.reshape(-1,1))), method='cubic') backdrop = backdrop.reshape(backdrop_xsize/2, backdrop_xsize) elif backdrop_coords == 'dircos': if (telescope == 'mwa_dipole') or (obs_mode == 'drift'): backdrop = PB.primary_beam_generator(xyzvect, freq, telescope=telescope, freq_scale='Hz', skyunits='dircos', phase_center=[0.0,0.0,1.0]) backdrop = backdrop.reshape(backdrop_xsize, backdrop_xsize) else: if backdrop_coords == 'radec': backdrop = griddata(NP.hstack((ra_deg.reshape(-1,1), dec_deg.reshape(-1,1))), fluxes, NP.hstack((xvect.reshape(-1,1), yvect.reshape(-1,1))), method='nearest') backdrop = backdrop.reshape(backdrop_xsize/2, backdrop_xsize) elif backdrop_coords == 'dircos': if (telescope == 'mwa_dipole') or (obs_mode == 'drift'): backdrop = PB.primary_beam_generator(xyzvect, freq, telescope=telescope, freq_scale='Hz', skyunits='dircos', phase_center=[0.0,0.0,1.0]) backdrop = backdrop.reshape(backdrop_xsize, backdrop_xsize) ## Create data for overlay overlays = [] roi_obj_inds = [] for i in xrange(n_snaps): overlay = {} if backdrop_coords == 'radec': havect = lst[i] - xvect altaz = GEOM.hadec2altaz(NP.hstack((havect.reshape(-1,1),yvect.reshape(-1,1))), latitude, units='degrees') roi_altaz = NP.asarray(NP.where(altaz[:,0] >= 0.0)).ravel() pb = PB.primary_beam_generator(altaz[roi_altaz,:], freq, telescope=telescope, skyunits='altaz', freq_scale='Hz', phase_center=pointings_altaz[i,:]) overlay['pbeam'] = pb overlay['roi_obj_inds'] = roi_altaz # roi_obj_inds += [roi_altaz] elif backdrop_coords == 'dircos': havect = lst[i] - ra_deg fg_altaz = GEOM.hadec2altaz(NP.hstack((havect.reshape(-1,1),dec_deg.reshape(-1,1))), latitude, units='degrees') fg_dircos = GEOM.altaz2dircos(fg_altaz, units='degrees') roi_dircos = NP.asarray(NP.where(fg_dircos[:,2] >= 0.0)).ravel() overlay['roi_obj_inds'] = roi_dircos overlay['fg_dircos'] = fg_dircos if obs_mode == 'track': pb = PB.primary_beam_generator(xyzvect, freq, telescope=telescope, skyunits='dircos', freq_scale='Hz', phase_center=pointings_dircos[i,:]) # pb[pb < 0.5] = NP.nan overlay['pbeam'] = pb.reshape(backdrop_xsize, backdrop_xsize) overlays += [overlay] ## Animation set up fps = args['fps'] interval = args['interval'] animation_format = args['animation_format'] if animation_format == 'MP4': anim_format = '.mp4' else: anim_format = 'gif' animation_file = args['animation_file'] if animation_file is None: animation_file = '/data3/t_nithyanandan/project_MWA/multi_baseline_noiseless_visibilities_'+obs_mode+'_'+'{0:0d}'.format(80*baseline_chunk_size)+'_baselines_{0:0d}_orientations_'.format(n_bins_baseline_orientation)+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_8_sectors' if n_bins_baseline_orientation == 4: blo_ax_mapping = [6,3,2,1,4,7,8,9] # if n_bins_baseline_orientation == 4: # blo_ax_mapping = [6,2,4,8] # elif n_bins_baseline_orientation == 8: # blo_ax_mapping = [6,3,2,1,4,7,8,9] fig = PLT.figure(figsize=(14,14)) axs = [] for i in range(2*n_bins_baseline_orientation): ax = fig.add_subplot(3,3,blo_ax_mapping[i]) if i < n_bins_baseline_orientation: ax.set_xlim(0,bloh[i]-1) ax.set_ylim(0.0, NP.amax(lags*1e6)) else: # ax = fig.add_subplot(3,3,blo_ax_mapping[i%n_bins_baseline_orientation]) ax.set_xlim(0,bloh[i%n_bins_baseline_orientation]-1) ax.set_ylim(NP.amin(lags*1e6), 0.0) l = ax.plot([], [], 'k-', [], [], 'k:', [], []) ax.set_title(r'{0:+.1f} <= $\theta_b [deg]$ < {1:+.1f}'.format(bloe[i%n_bins_baseline_orientation], bloe[(i%n_bins_baseline_orientation)+1]), weight='semibold') ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) # ax.set_aspect('auto') axs += [ax] ax = fig.add_subplot(3,3,5) if backdrop_coords == 'radec': ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=12) ax.set_ylabel(r'$\delta$ [degrees]', fontsize=12) elif backdrop_coords == 'dircos': ax.set_xlabel('l') ax.set_ylabel('m') ax.set_title('Sky Model', fontsize=18, weight='semibold') ax.grid(True) ax.tick_params(which='major', length=12, labelsize=12) ax.tick_params(which='minor', length=6) if use_DSM or use_GSM: # linit = ax.imshow(OPS.reverse(backdrop, axis=1), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm()) linit = ax.imshow(backdrop, origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm()) # cbmn = NP.amin(backdrop) # cbmx = NP.amax(backdrop) # cbaxes = fig.add_axes([0.85, 0.1, 0.02, 0.23]) # cbar = fig.colorbar(linit, cax=cbaxes) # cbmd = 10.0**(0.5*(NP.log10(cbmn)+NP.log10(cbmx))) # cbar.set_ticks([cbmn, cbmd, cbmx]) # cbar.set_ticklabels([cbmn, cbmd, cbmx]) else: ax.set_xlim(NP.amin(xvect), NP.amax(xvect)) ax.set_ylim(NP.amin(yvect), NP.amax(yvect)) if backdrop_coords == 'radec': linit = ax.scatter(ra_deg, dec_deg, c=fpeak, marker='.', cmap=PLT.cm.get_cmap("rainbow"), norm=PLTC.LogNorm()) # cbmn = NP.amin(fpeak) # cbmx = NP.amax(fpeak) else: if (obs_mode == 'drift') or (telescope == 'mwa_dipole'): linit = ax.imshow(backdrop, origin='lower', extent=(NP.amin(xvect), NP.amax(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm()) # cbaxes = fig.add_axes([0.65, 0.1, 0.02, 0.23]) # cbar = fig.colorbar(linit, cax=cbaxes) l = ax.plot([], [], 'w.', [], []) # txt = ax.text(0.25, 0.65, '', transform=ax.transAxes, fontsize=18) axs += [ax] tpc = axs[-1].text(0.5, 1.15, '', transform=ax.transAxes, fontsize=12, weight='semibold', ha='center') PLT.tight_layout() fig.subplots_adjust(bottom=0.1) def update(i, pointing_radec, lst, obsmode, telescope, backdrop_coords, bll, blori, lags, vis_lag, delaymatrix, overlays, xv, yv, xv_uniq, yv_uniq, axs, tpc): delay_ranges = NP.dstack((delaymatrix[:,:vis_lag.shape[0],1] - delaymatrix[:,:vis_lag.shape[0],0], delaymatrix[:,:vis_lag.shape[0],1] + delaymatrix[:,:vis_lag.shape[0],0])) delay_horizon = NP.dstack((-delaymatrix[:,:vis_lag.shape[0],0], delaymatrix[:,:vis_lag.shape[0],0])) bl = bll[:vis_lag.shape[0]] label_str = r' $\alpha$ = {0[0]:+.3f} deg, $\delta$ = {0[1]:+.2f} deg'.format(pointing_radec[i,:]) + '\nLST = {0:.2f} deg'.format(lst[i]) for j in range((len(axs)-1)/2): blind = blori[blori[j]:blori[j+1]] sortind = NP.argsort(bl[blind], kind='heapsort') axs[j].lines[0].set_xdata(NP.arange(blind.size)) axs[j].lines[0].set_ydata(delay_ranges[i,blind[sortind],1]*1e6) axs[j].lines[0].set_linewidth(0.5) axs[j].lines[1].set_xdata(NP.arange(blind.size)) axs[j].lines[1].set_ydata(delay_horizon[i,blind[sortind],1]*1e6) axs[j].lines[1].set_linewidth(0.5) axs[j].lines[2] = axs[j].imshow(NP.abs(vis_lag[blind[sortind],NP.floor(0.5*vis_lag.shape[1]):,i].T), origin='lower', extent=(0, blind.size-1, 0.0, NP.amax(lags*1e6)), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(vis_lag)), vmax=NP.amax(NP.abs(vis_lag))), interpolation=None) axs[j].set_aspect('auto') axs[j+(len(axs)-1)/2].lines[0].set_xdata(NP.arange(blind.size)) axs[j+(len(axs)-1)/2].lines[0].set_ydata(delay_ranges[i,blind[sortind],0]*1e6) axs[j+(len(axs)-1)/2].lines[0].set_linewidth(0.5) axs[j+(len(axs)-1)/2].lines[1].set_xdata(NP.arange(blind.size)) axs[j+(len(axs)-1)/2].lines[1].set_ydata(delay_horizon[i,blind[sortind],0]*1e6) axs[j+(len(axs)-1)/2].lines[1].set_linewidth(0.5) axs[j+(len(axs)-1)/2].lines[2] = axs[j+(len(axs)-1)/2].imshow(NP.abs(vis_lag[blind[sortind],:NP.floor(0.5*vis_lag.shape[1]),i].T), origin='lower', extent=(0, blind.size-1, NP.amin(lags*1e6), 1e6*lags[NP.floor(0.5*lags.size)-1]), norm=PLTC.LogNorm(vmin=NP.amin(
NP.abs(vis_lag)
numpy.abs
import sapyen_robot from .base_robot_env import BaseRobotEnv from robot.python.env.physx_utils import mat2transform, transform2mat import transforms3d import numpy as np import os from .path_utils import get_assets_path RGBD_CAMERA_THRESHOLD = 10 CAMERA_TO_LINK = np.zeros([4, 4]) CAMERA_TO_LINK[[0, 1, 2, 3], [2, 0, 1, 3]] = [1, -1, -1, 1] class MOVOEnv(BaseRobotEnv): def __init__(self): """ Sapien Kinova MOVO base class. If you want to use it with sapien object environment, do not use __init__ but _init_robot" (most case) If you just want to load the robot only, you should consider use __init__ but not _init_robot """ urdf_path = os.path.join(get_assets_path(), "robot/all_robot.urdf") gripper_material = self.sim.create_material(3.0, 2.0, 0.01) BaseRobotEnv.__init__(self, urdf_path, gripper_material) print("Initiate MOVO Environment in stand alone version") def _init_robot(self) -> None: """ Load the robot and controllers """ gripper_material = self.sim.create_material(3.0, 2.0, 0.01) self._load_robot('../assets/robot/single_gripper.urdf', gripper_material) def _load_controller(self) -> None: """ Create controllers, set pd and force limit to each joint with fine tuned value """ controllable_wrapper = self.sim.create_controllable_articulation(self.robot) self._head_joint = ["pan_joint", "tilt_joint"] self._gripper_joint = ["right_gripper_finger1_joint", "right_gripper_finger2_joint", "right_gripper_finger3_joint"] self._body_joint = ["linear_joint"] self.manger = sapyen_robot.ControllerManger("movo", controllable_wrapper) self.head_controller = self.manger.create_joint_velocity_controller(self._head_joint, "head") self.gripper_controller = self.manger.create_joint_velocity_controller(self._gripper_joint, "gripper") self.body_controller = self.manger.create_joint_velocity_controller(self._body_joint, "body") # Add joint state publisher to keep in synchronization with ROS # You must use it if you want to do cartesian control self.manger.add_joint_state_publisher(60) self.manger.add_group_trajectory_controller("right_arm") self.arm_planner = self.manger.create_group_planner("right_arm") # Cache gripper limit for execute high level action joint_limit = self.robot.get_qlimits() gripper_index = self.robot_joint_names.index(self._gripper_joint[0]) self.__gripper_limit = joint_limit[gripper_index, :] # Cache robot pose self.root_theta = 0 self.root_pos = np.array([0, 0], dtype=np.float) self.init_qpos = [0, 0, 0, 0.25, -1.9347, 0, -1.5318, 0, 0.9512, -2.24, 0.34, 0.64, -1.413, 0, 0, 0] # Tune PD controller self.robot.set_pd(20000, 3000, 2000,
np.arange(4)
numpy.arange
''' # ambre.analyze.align_seg.py # # Copyright March 2013 by <NAME> # # This program is free software; you may redistribute it and/or modify its # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License or # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # For any other inquiries send an email to: <NAME> (<EMAIL>) ''' import ambre.utils.SAM as SAM import numpy as na import sys import bisect from collections import defaultdict from utils import cigar_listparse, get_frag_interval, CIGARAlignmentScoring, get_mdi_cigar import itertools debug_log = sys.stderr class Alignments(object): def __init__(self): self.frags = defaultdict(lambda : defaultdict(list)) self.frag_lengths = {} self.align_scorer = None def get_frag_length(self, qname): return self.frag_lengths[qname] def get_alignments(self, qname, rname): return self.frags[qname][rname] def get_aligned_frag(self, fp, fe, fl): frag_matched_bp = na.zeros((fl,), dtype=na.int16) if fp>fe: frag_matched_bp[fe:fp+1] = True else: frag_matched_bp[fp:fe+1] = True return frag_matched_bp def get_ascore(self, astr_parts): return self.align_scorer.get_score(astr_parts) def get_segment_rp(self, md_array, i_array, fp_c, ref_start, ref_end, rc): rp_c = [] for i in xrange(1,len(fp_c)): rp_c.append(na.sum(md_array[fp_c[i-1]:fp_c[i]]!='-')+na.sum(i_array[fp_c[i-1]:fp_c[i]])) cumsum_rp_c = na.cumsum(rp_c) if rc: nrp = na.concatenate(([ref_start],(ref_start-cumsum_rp_c))) #assert nrp[-1] == ref_end else: nrp = na.concatenate(([ref_start],(ref_start+cumsum_rp_c))) #assert nrp[-1] == ref_end return nrp def str_concatenate(self, a_strs_list): pass class SAMAlignments(Alignments): def __init__(self, sam_fpath): Alignments.__init__(self) parser = SAM.SAMParser() self.sam_fpath = sam_fpath rev_flag_idx = SAM.SAM_FLAGS_H['rev_strand_of_query'] for frag in parser.parse(sam_fpath): cig_parts = cigar_listparse(frag) c = SAM.get_flag(rev_flag_idx, int(frag.flags)) start, end, frag_length = get_frag_interval(cig_parts, c) #if abs(int(frag.tlen))<150: # continue self.frags[frag.qname][frag.rname].append((int(frag.pos), int(frag.pos) + int(frag.tlen), start, end, cig_parts, c)) self.frag_lengths[frag.qname] = frag_length self.align_scorer = CIGARAlignmentScoring() def get_mdi(self, a_str): return get_mdi_cigar(a_str) def get_segment_a_str(self, fp, a_str, ref_start, ref_end, rc): if len(a_str)>0: if a_str[0][1]=='H' or a_str[0][1]=='S': a_str = a_str[1:] if len(a_str)>0: if a_str[-1][1]=='H' or a_str[-1][1]=='S': a_str = a_str[:-1] if rc: a_str = a_str[::-1] md_array, i_array, idx_array = get_mdi_cigar(a_str) assert (fp[-1]-fp[0])==md_array.size fp_c = fp-fp[0] # In the context of the fragment nrp = self.get_segment_rp(md_array, i_array, fp_c, ref_start, ref_end, rc) # Requires cigar informative splitting of the a_str at segment parts # Create a new a_str with proper breaks and idx array adjustments # with segment_a_str = [] for i in xrange(1,len(fp_c)-1): a_str_idx = idx_array[fp_c[i]] if a_str_idx==idx_array[fp_c[i]-1]: count_to_split = na.sum(idx_array[:fp_c[i]]==a_str_idx) c, t = a_str.pop(a_str_idx) a_str.insert(a_str_idx, (c-count_to_split, t)) a_str.insert(a_str_idx, (count_to_split, t)) idx_array[fp_c[i]:] += 1 a_str_idx = idx_array[fp_c[i]] assert a_str_idx!=idx_array[fp_c[i]-1] segment_a_str.append(a_str[idx_array[fp_c[i-1]]:idx_array[fp_c[i]]]) segment_a_str.append(a_str[idx_array[fp_c[-2]]:]) return segment_a_str, nrp def get_a_str(self, cig_parts): return ''.join(["%d%s"%a for a in cig_parts]) def str_concatenate(self, a_strs_list): for i in xrange(1, len(a_strs_list)): c,t = a_strs_list[i][0] if a_strs_list[i-1][-1][1]==t: a_strs_list[i][0] = (a_strs_list[i-1][-1][0]+c, t) a_strs_list[i-1].pop(-1) return ''.join([self.get_a_str(a_str) for a_str in a_strs_list]) class MaxAlignmentScoreFragFiltering(object): def __init__(self, fpath): self.fpath = fpath self.a = SAMAlignments(fpath) def check_overlaps(self, frag_alignments, top_a_scores=None, remove_encompassed=False): rnames, fps, fes, rps, res, a_strs, rcs = zip(*frag_alignments) a_scores = [self.a.get_ascore(a_str) for a_str in a_strs] frag_alignments = zip(a_scores, rnames, fps, fes, a_strs, rcs) frag_alignments.sort() if not top_a_scores is None: frag_alignments = frag_alignments[:top_a_scores] n = len(frag_alignments) a_scores, rnames, fps, fes, a_strs, rcs = zip(*frag_alignments) breakpoints = list(set(zip(rnames, fps)+zip(rnames, fes))) breakpoints.sort() m = len(breakpoints) nodes = na.zeros((m, n), dtype=na.int) for idx, rname, fp, fe in zip(range(n), rnames, fps, fes): i,j = bisect.bisect_left(breakpoints, (rname, fp)), bisect.bisect_right(breakpoints, (rname, fe)) nodes[i:j,idx] = 1 if remove_encompassed: mark_for_deletion = [] for j in xrange(n): a = nodes[:,j] if na.sum(na.dot(a.reshape((1,m)), nodes)==na.sum(a))>1: mark_for_deletion.append(j) mask = na.ones(n, dtype=na.bool) mask[mark_for_deletion] = False nodes = nodes[:, mask] n = nodes.shape[1] # count overlaps # count encompasses c_overlaps, c_encompasses, encompassment = 0,0,0 for j in xrange(n): a = nodes[:,j] similar_nodes = na.dot(a.reshape((1,m)), nodes) c = na.sum(similar_nodes==na.sum(a)) c_encompasses += c-1 c_overlaps += na.sum(similar_nodes>0)-1 if c>1: encompassment += 1 print >>debug_log, n, c_overlaps, c_encompasses, encompassment def max_scoring_path(self, frag_alignments, breakpoint_weight=-50): n = len(frag_alignments) frag_alignments.sort() rnames, fps, fes, rps, res, a_strs, rcs = zip(*frag_alignments) breakpoints = list(set(fps).union(set(map(lambda x:x+1, fes)))) breakpoints.sort() m = len(breakpoints) nodes = na.zeros((m, n), dtype=na.int) for idx, fp, fe in zip(range(n), fps, fes): i,j = bisect.bisect_left(breakpoints, fp), bisect.bisect_right(breakpoints, fe+1) nodes[i:j,idx] = 1 # Removes alignments that are encompassed by another alignment. mark_for_deletion = [] for j in xrange(n): a = nodes[:,j] if na.sum(na.dot(a.reshape((1,m)), nodes)==na.sum(a))>1: mark_for_deletion.append(j) mask =
na.ones(n, dtype=na.bool)
numpy.ones
import numpy as np import time import precice n = 20 dn = 1 / n # generate mesh y =
np.linspace(0, 1, n + 1)
numpy.linspace
import torch import torch.nn import os.path as osp from baseline.utils.parser import get_opts from baseline.nnutils.stream_modules import ActionClassification from baseline.data.ucf101 import UCF101, split from baseline.logger import Logger from baseline.utils_1 import non_maximal_suppression as nms from baseline.utils_1 import read_class_names import pdb import collections from sklearn.metrics import average_precision_score, recall_score from scipy.ndimage import label import os import numpy as np def process_tcam(attn, tcam, numInputs): # assuming input tcam is 400 x 20 # 400 segments # assuming center of value in tcam designates activation at center of segment if numInputs < 400: return attn[:numInputs], tcam[:numInputs] else: sample_range = numInputs seg_length = 400 sampledN = np.round(np.linspace(0, sample_range, seg_length + 1)).astype(np.int32) K = sampledN[0:-1] K = np.mod(K, np.ones(K.shape) * numInputs).astype(np.int) probe_points = [x for x in range(numInputs)] samples = K #import pdb;pdb.set_trace() interpolated_tcam = np.zeros([len(probe_points), tcam.shape[1]]) for j in range(tcam.shape[1]): interpolated_tcam[:, j] = np.interp(probe_points, samples, tcam[:, j]) interpolated_attn = np.interp(probe_points, samples, attn[:,0]) interpolated_attn =
np.expand_dims(interpolated_attn, axis=1)
numpy.expand_dims
from sklearn.datasets import load_svmlight_file, dump_svmlight_file from sklearn.preprocessing import normalize from sklearn.model_selection import train_test_split from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import numpy as np import os import click class MatrixEditor(object): def __init__(self, indir=None, outdir=None, seed=None, debug=False): self.debug = debug self.indir = os.path.abspath(indir or 'datasets') self.outdir = os.path.abspath(outdir or 'data') self.data = None self.y = None self.index = None self.s = None self.Vh = None self.seed = seed @property def n_features(self): if self.data is None: return None return self.data.shape[1] @property def n_points(self): if self.data is None: return None return self.data.shape[0] pass_editor = click.make_pass_decorator(MatrixEditor) @click.group(chain=True) @click.option('--basepath', default='.') @click.option('--indir', default='datasets') @click.option('--outdir', default='data') @click.option('--seed', type=click.INT, default=None) @click.option('-v', is_flag=True) @click.pass_context def cli(ctx, basepath, indir, outdir, seed, v): indir = os.path.join(basepath, indir) outdir = os.path.join(basepath, outdir) ctx.obj = MatrixEditor(indir, outdir, seed, v) @cli.command('load') @click.argument('dataset') @click.option('--confirm', is_flag=True) @pass_editor def load(editor, dataset, confirm): if editor.data is not None and not confirm: print("There is existing data, pass --confirm flag to load anyway") return False if '.svm' not in dataset: dataset += '.svm' path = os.path.join(editor.indir, dataset) assert os.path.exists(path), f"SVM file '{path}' not found" old_data = editor.data.copy() if editor.data is not None else None old_y = editor.y.copy() if editor.y is not None else None try: editor.data, editor.y = load_svmlight_file(path) editor.index = np.asarray(range(len(editor.y))) editor.data = editor.data.tocsc() if editor.debug: print(f"Loaded '{dataset}', shape {editor.data.shape}") return except Exception as e: print(e) editor.data = old_data editor.y = old_y exit(0) @cli.command('scale') @click.option('--center', is_flag=True) @click.option('--norm', is_flag=True) @pass_editor def scale(editor, center, norm): # from sklearn.preprocessing import scale # editor.data = csc_matrix(scale(editor.data.todense(), with_mean=center, with_std=scale_var)) editor.data = editor.data.todense() if center: editor.data -= np.average(editor.data, axis=0) if norm: editor.data = normalize(editor.data, axis=0, copy=False) editor.data = csc_matrix(editor.data) @cli.command('replace-column') @click.argument('col', type=click.INT) @click.argument('scheme', type=click.Choice(['uniform', 'scale', 'weights'])) @click.option('--scale-col', default=0, help="scale specified column (default 0)") @click.option('--scale-by', default=1.0, help="scale factor for vector specified by `--scale-col` (default 1)") @click.option('--weights', type=click.STRING, default=None, help="string containing python array with length n_col." "values in array correspond weights of each remaining column for replacement linear combination.") @pass_editor def replace_column(editor, col, scheme, scale_col, scale_by, weights): assert editor.data is not None, "load data before attempting to edit" assert not(weights is None and scheme == 'weights'), "specify weighting scheme" n_row, n_col = editor.data.shape if scheme == 'weights': weights = np.fromstring(weights, sep=' ') debug_str=f'A*{np.array2string(weights)}^T' elif scheme == 'scale': weights = np.zeros((n_col-1,)) weights[scale_col] = scale_by debug_str=f'{scale_by}*A[:,{scale_col}]' elif scheme == 'uniform': weights = np.array([1/(n_col-1)]*(n_col-1)) debug_str=f'average of other columns' else: return NotImplementedError weights = np.insert(weights, col, 0) new_col = editor.data * weights from scipy.sparse import csc_matrix editor.data[:,col] = csc_matrix(new_col.reshape((n_row,1))) if editor.debug: print(f"Replaced A[:,{col}] with "+debug_str) return @cli.command('insert-columns') @click.argument('n', type=click.INT) @click.option('--weights', type=click.STRING, default=None) @pass_editor def insert_columns(editor, n, weights): assert editor.data is not None, "load data before attempting to edit" # assert weights is not None or uniform, "either specify weights or use the `--uniform` flag" if weights: from json import loads weights = loads(weights) for spec in weights: _insert_column(editor, spec.get('scheme'), spec.get('scale_col', 0), spec.get('scale_by', 1), spec.get('weights')) return for i in range(n): _insert_column(editor, 'uniform', 0, 1, None) return @cli.command('insert-column') @click.argument('scheme', type=click.Choice(['uniform', 'scale', 'weights', 'ones'])) @click.option('--scale-col', default=0, help="scale specified column (default 0)") @click.option('--scale-by', default=1.0, help="scale factor for vector specified by `--scale-col` (default 1)") @click.option('--weights', type=click.STRING, default=None, help="string containing python array with length n_col." "values in array correspond weights of each remaining column for replacement linear combination.") @pass_editor def insert_column(editor, scheme, scale_col, scale_by, weights): _insert_column(editor, scheme, scale_col, scale_by, weights) def _insert_column(editor, scheme, scale, scale_by, weights): assert editor.data is not None, "load data before attempting to edit" assert not (weights is None and scheme == 'weights'), "specify weighting scheme" n_row, n_col = editor.data.shape debug_str='' if scheme == 'weights': weights = np.fromstring(weights, sep=' ') debug_str=f'A*{
np.array2string(weights)
numpy.array2string
# Created by <NAME> # All right reserved # Department of Computer Science # the University of Warwick # <EMAIL> import itertools as it import math import random import sys from concurrent import futures from copy import deepcopy from os import remove from os.path import abspath import category_encoders as ce import dill import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import torch import torch.nn as nn import torch.optim as optim from matplotlib.widgets import Slider from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import OneHotEncoder from torch.autograd import Variable from torch.distributions import Categorical from torch.multiprocessing import Pool from dbestclient.ml.integral import approx_count, prepare_reg_density_data from dbestclient.ml.embedding import columns2sentences,WordEmbedding # https://www.katnoria.com/mdn/ # https://github.com/sagelywizard/pytorch-mdn """A module for a mixture density network layer For more info on MDNs, see _Mixture Desity Networks_ by Bishop, 1994. """ class MDN(nn.Module): """A mixture density network layer The input maps to the parameters of a MoG probability distribution, where each Gaussian has O dimensions and diagonal covariance. Arguments: in_features (int): the number of dimensions in the input out_features (int): the number of dimensions in the output num_gaussians (int): the number of Gaussians per output dimensions Input: minibatch (BxD): B is the batch size and D is the number of input dimensions. Output: (pi, sigma, mu) (BxG, BxGxO, BxGxO): B is the batch size, G is the number of Gaussians, and O is the number of dimensions for each Gaussian. Pi is a multinomial distribution of the Gaussians. Sigma is the standard deviation of each Gaussian. Mu is the mean of each Gaussian. """ def __init__(self, in_features, out_features, num_gaussians, device): super(MDN, self).__init__() self.in_features = in_features self.out_features = out_features self.num_gaussians = num_gaussians self.pi = nn.Sequential( nn.Linear(in_features, num_gaussians), nn.Softmax(dim=1) ) self.sigma = nn.Linear(in_features, out_features * num_gaussians) self.mu = nn.Linear(in_features, out_features * num_gaussians) self.pi = self.pi.to(device) self.mu = self.mu.to(device) self.sigma = self.sigma.to(device) def forward(self, minibatch): pi = self.pi(minibatch) sigma = torch.exp(self.sigma(minibatch)) sigma = sigma.view(-1, self.num_gaussians, self.out_features) mu = self.mu(minibatch) mu = mu.view(-1, self.num_gaussians, self.out_features) return pi, sigma, mu # ONEOVERSQRT2PI = 1.0 / math.sqrt(2 * math.pi) def gaussian_probability(sigma, mu, data): """Returns the probability of `data` given MoG parameters `sigma` and `mu`. Arguments: sigma (BxGxO): The standard deviation of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. mu (BxGxO): The means of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. data (BxI): A batch of data. B is the batch size and I is the number of input dimensions. Returns: probabilities (BxG): The probability of each point in the probability of the distribution in the corresponding sigma/mu index. """ data = data.unsqueeze(1).expand_as(sigma) ret = 1.0 / math.sqrt(2 * math.pi) * torch.exp(-0.5 * ((data - mu) / sigma) ** 2) / sigma return torch.prod(ret, 2) def mdn_loss(pi, sigma, mu, target, device): """Calculates the error, given the MoG parameters and the target The loss is the negative log likelihood of the data given the MoG parameters. """ prob = pi * gaussian_probability(sigma, mu, target) nll = -torch.log(torch.sum(prob, dim=1)).to(device) return torch.mean(nll) def sample(pi, sigma, mu): """Draw samples from a MoG. """ categorical = Categorical(pi) pis = list(categorical.sample().data) sample = Variable(sigma.data.new(sigma.size(0), sigma.size(2)).normal_()) for i, idx in enumerate(pis): sample[i] = sample[i].mul(sigma[i, idx]).add(mu[i, idx]) return sample def gaussion_predict(weights: list, mus: list, sigmas: list, xs: list, n_jobs=1): if n_jobs == 1: result = np.array([np.multiply(stats.norm(mus, sigmas).pdf(x), weights).sum(axis=1).tolist() for x in xs]).transpose() else: with Pool(processes=n_jobs) as pool: instances = [] results = [] for x in xs: i = pool.apply_async( gaussion_predict, (weights, mus, sigmas, [x], 1)) instances.append(i) for i in instances: result = i.get() # print("partial result", result) results.append(result) result = np.concatenate(results, axis=1) # with futures.ThreadPoolExecutor() as executor: # for x in xs: # future = executor.submit( # gaussion_predict, weights, mus, sigmas, [x], 1) # results.append(future.result()) # result = np.concatenate(results, axis=1) return result def gm(weights: list, mus: list, vars: list, x: list, b_plot=False, n_division=100): """ given a list of points, calculate the gaussian mixture probability Args: weights (list): weights mus (list): the centroids of gaussions. vars (list): the variances. x (list): the targeting points. b_plot (bool, optional): whether return the value for plotting. Defaults to False. n_division (int, optional): number of division, if b_plot=True. Defaults to 100. Returns: float: the pdf of a gaussian mixture. """ if not b_plot: result = [stats.norm(mu_i, vars_i).pdf( x)*weights_i for mu_i, vars_i, weights_i in zip(mus, vars, weights)] result = sum(result) # result = 0 # for index in range(len(weights)): # result += stats.norm(mus[index], vars[index] # ).pdf(x) * weights[index] # print(result) return result else: xs = np.linspace(-1, 1, n_division) # ys = [gm(weights, mus, vars, xi, b_plot=False) for xi in xs] ys = gm(weights, mus, vars, xs, b_plot=False) return xs, ys # plt.plot(xs, ys) # plt.show() def normalize(x_point: float, mean: float, width: float) -> float: """normalize the data point Args: x (float): the data point mean (float): the mean value width (float): the width Returns: float: the normalized value """ return (x_point - mean) / width * 2 def denormalize(x_point: float, mean: float, width: float) -> float: """de-normalize the data point Args: x (float): the data point mean (float): the mean value width (float): the width Returns: float: the de-normalized value """ return 0.5 * width * x_point + mean def de_serialize(file: str): """de-serialize the model from a file. Args: file (str): the file path. Returns: Callable: the model. """ with open(file, 'rb') as f: return dill.load(f) class GenericMdn: def __init__(self, config): self.meanx = None self.widthx = None self.config = config def fit(self, runtime_config): raise NotImplementedError("Method fit() is not implemented.") def fit_grid_search(self, runtime_config): raise NotImplementedError( "Method fit_grid_search() is not implemented.") def predict(self, runtime_config): raise NotImplementedError("Method predict() is not implemented.") def normalize(self, xs: np.array): """normalize the data Args: x (list): the data points to be normalized. mean (float): the mean value of x. width (float): the range of x. Returns: list: the normalized data. """ return (xs - self.meanx) / self.widthx * 2 def denormalize(self, xs): """de-normalize the data Args: x (list): the data points to be de-normalized. mean (float): the mean value of x. width (float): the range of x. Returns: list: the de-normalized data. """ return 0.5 * self.widthx * xs + self.meanx class RegMdnGroupBy(): """ This class implements the regression using mixture density network for group by queries. """ def __init__(self, config, b_store_training_data=False, b_normalize_data=True): if b_store_training_data: self.x_points = None # query range self.y_points = None # aggregate value self.z_points = None # group by balue self.sample_x = None # used in the score() function self.sample_g = None self.sample_average_y = None self.b_store_training_data = b_store_training_data self.meanx = None self.widthx = None self.meany = None self.widthy = None self.model = None self.last_xs = None self.last_pi = None self.last_mu = None self.last_sigma = None self.config = config self.b_normalize_data = b_normalize_data self.enc = None def fit(self, z_group: list, x_points: list, y_points: list, runtime_config, lr: float = 0.001, n_workers=0): """fit the MDN regression model. Args: z_group (list): group by values x_points (list): x points y_points (list): y points n_epoch (int, optional): number of epochs for training. Defaults to 100. n_gaussians (int, optional): the number of gaussions. Defaults to 5. n_hidden_layer (int, optional): the number of hidden layers. Defaults to 1. n_mdn_layer_node (int, optional): the node number in the hidden layer. Defaults to 10. lr (float, optional): the learning rate of the MDN network for training. Defaults to 0.001. Raises: ValueError: The hidden layer should be 1 or 2. Returns: RegMdnGroupBy: The regression model. """ n_epoch = self.config.config["n_epoch"] n_gaussians = self.config.config["n_gaussians_reg"] n_hidden_layer = self.config.config["n_hidden_layer"] n_mdn_layer_node = self.config.config["n_mdn_layer_node_reg"] b_grid_search = self.config.config["b_grid_search"] encoder = self.config.config["encoder"] device = runtime_config["device"] if not b_grid_search: if encoder == "onehot": self.enc = OneHotEncoder(handle_unknown='ignore') zs_encoded = z_group zs_encoded = self.enc.fit_transform(zs_encoded).toarray() elif encoder == "binary": # print(z_group) # prepare column names for binary encoding columns = list(range(len(z_group[0]))) self.enc = ce.BinaryEncoder(cols=columns) zs_encoded = self.enc.fit_transform(z_group).to_numpy() elif encoder == "embedding": sentences = columns2sentences(z_group, x_points, y_points) self.enc = WordEmbedding() self.enc.fit(sentences, gbs=["gb"],dim=self.config.config["n_embedding_dim"]) gbs_data = z_group.reshape(1,-1)[0] zs_encoded = self.enc.predicts(gbs_data) # raise TypeError("embedding is not supported yet.") if self.b_normalize_data: self.meanx = (np.max(x_points) + np.min(x_points)) / 2 self.widthx =
np.max(x_points)
numpy.max
import torch import torch.nn as nn import torch.tensor as tensor import torch.nn.functional as F import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable from logger import Logger import h5py import numpy as np import glob from torch.utils.data import Dataset, DataLoader from tqdm import tqdm import librosa ''' # MNIST Dataset dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) # Data Loader (Input Pipeline) data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=100, shuffle=True) ''' class SpectrogramData(Dataset): """Face Landmarks dataset.""" def __init__(self, data, labels, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.dataTensor = data self.labelTensor = labels self.transform = transform def __len__(self): return len(self.labelTensor) def __getitem__(self, idx): #img_name = os.path.join(self.root_dir, # self.landmarks_frame.iloc[idx, 0]) #image = io.imread(img_name) #landmarks = self.landmarks_frame.iloc[idx, 1:].as_matrix() #landmarks = landmarks.astype('float').reshape(-1, 2) if self.transform: # print(np.shape(self.dataTensor[idx])) sample = np.reshape(self.dataTensor[idx],(1,84,1)) sample = self.transform(sample) sample = sample.type(torch.FloatTensor), self.labelTensor[idx].astype(int) return sample ''' # read hdf5 files and create a compact hdf5 file with all classes, some samples file_count = 0 filenames = glob.glob('D:\\ImplementAI_data\\nsynth-train\\*.h5') print(filenames) h5pySizes = [12675,8773,32690,51821,34201,34477,13911,19474,5501,10208] #65474, for file in glob.glob('D:\\ImplementAI_data\\nsynth-train\\*.h5'): file_count=file_count+1 selection_index = np.random.randint(0,h5pySizes[file_count-1],int(0.25*h5pySizes[file_count-1])) data_f = h5py.File(file,'r'); # data = np.mean(np.array(data_f['train']),axis=3) data = np.array(data_f['train']) labels = file_count*np.ones((np.shape(data)[0],)) data = data[selection_index] labels = labels[selection_index] print(np.shape(data),np.shape(labels)) if file_count==1: Data_tensor = data Label_tensor = labels else: Data_tensor = np.append(Data_tensor,data,axis=0) Label_tensor = np.append(Label_tensor,labels,axis=0) print(np.shape(Data_tensor),np.shape(Label_tensor)) h5f = h5py.File('D:\\ImplementAI_data\\nsynth-train\\train_data_allClasses.h5','w') h5f.create_dataset('Data',data = Data_tensor) h5f.create_dataset('labels',data = Label_tensor) ''' lib_f = h5py.File('train_data_latent_vector.h5','r') lib = lib_f['z_vec'] data = np.load('notearray.npy') data1 = np.zeros((np.shape(data)[0],1,84)) for i in tqdm(range(np.shape(data)[0])): c = np.abs(librosa.cqt(data[i], sr=16000, n_bins=84)) c = np.reshape(c,(1,84,84)) c = np.mean(c,axis=2) data1[i] = c; data = data1/np.max(data1) labels = np.random.randint(0,np.shape(data)[0],np.shape(data)[0]) print(type(data),type(labels),data.dtype,labels.dtype) dataset = SpectrogramData(data,labels,transform=transforms.ToTensor()) data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False) def to_np(x): return x.data.cpu().numpy() def to_var(x): if torch.cuda.is_available(): x = x.cuda() return Variable(x) def accuracy_metric(output,targets): _, predicted = torch.max(output.data,1) # print(output.size(),targets.size(),predicted.size()) accuracy = (predicted==targets.data.type(torch.cuda.LongTensor)).sum()/len(targets) return accuracy #Encoder pretrained_weights = torch.load('Q_encoder_weights_2.pt') class Q_net(nn.Module): def __init__(self,X_dim,N,z_dim): super(Q_net, self).__init__() self.xdim = X_dim self.lin1 = nn.Linear(X_dim, N) # self.lin2 = nn.Linear(N, N) self.lin3 = nn.Linear(N, int(N/2)) self.lin3gauss = nn.Linear(int(N/2), z_dim) def forward(self, x): x = x.view(-1,self.xdim) x = F.dropout(self.lin1(x), p=0.25, training=self.training) x = F.relu(x) # x = F.dropout(self.lin2(x), p=0.25, training=self.training) # x = F.relu(x) x = F.dropout(self.lin3(x), p=0.25, training=self.training) x = F.relu(x) xgauss = self.lin3gauss(x) return xgauss class Q_convNet(nn.Module): def __init__(self,X_dim,N,z_dim): super(Q_net, self).__init__() self.xdim = X_dim self.conv1 = nn.Conv1d(1,16,7,stride=3,padding=3) # 16X28 self.conv2 = nn.Conv1d(16,32,5,stride=2,padding=2) # 32X14 self.lin1 = nn.Linear(32*14, N) # self.lin2 = nn.Linear(N, N) # self.lin3 = nn.Linear(N, int(N/2)) self.lin3gauss = nn.Linear(N, z_dim) def forward(self, x): x = x.view(-1,1,self.xdim) x = F.dropout(self.conv1(x), p=0.25, training=self.training) x = F.relu(x) x = F.dropout(self.conv2(x), p=0.25, training=self.training) x = F.relu(x) x = F.dropout(self.lin1(x), p=0.25, training=self.training) x = F.relu(x) xgauss = self.lin3gauss(x) return xgauss # Decoder class P_net(nn.Module): def __init__(self,X_dim,N,z_dim): super(P_net, self).__init__() self.lin1 = nn.Linear(z_dim, int(N/2)) self.lin2 = nn.Linear(int(N/2), N) # self.lin3 = nn.Linear(N, N) self.lin4 = nn.Linear(N, X_dim) def forward(self, x): x = F.dropout(self.lin1(x), p=0.25, training=self.training) x = F.relu(x) x = F.dropout(self.lin2(x), p=0.25, training=self.training) x = F.relu(x) # x = F.dropout(self.lin3(x), p=0.25, training=self.training) x = self.lin4(x) return F.sigmoid(x) class P_convNet(nn.Module): def __init__(self,X_dim,N,z_dim): super(P_net, self).__init__() self.lin1 = nn.Linear(z_dim, N) self.lin2 = nn.Linear(N, 32*14) # self.lin3 = nn.Linear(N, N) self.lin4 = nn.Linear(N, X_dim) def forward(self, x): x = F.dropout(self.lin1(x), p=0.25, training=self.training) x = F.relu(x) x = F.dropout(self.lin2(x), p=0.25, training=self.training) x = F.relu(x) # x = F.dropout(self.lin3(x), p=0.25, training=self.training) x = self.lin4(x) return F.sigmoid(x) # Discriminator class D_net_gauss(nn.Module): def __init__(self,N,z_dim): super(D_net_gauss, self).__init__() self.lin1 = nn.Linear(z_dim, N) # self.lin2 = nn.Linear(N, N) self.lin3 = nn.Linear(N, int(N/2)) self.lin4 = nn.Linear(int(N/2), 10) def forward(self, x): x = F.dropout(self.lin1(x), p=0.5, training=self.training) x = F.relu(x) # x = F.dropout(self.lin2(x), p=0.5, training=self.training) # x = F.relu(x) x = F.dropout(self.lin3(x), p=0.5, training=self.training) x = F.relu(x) # return F.sigmoid(self.lin3(x)) return F.log_softmax(self.lin4(x)) EPS = 1e-15 z_red_dims = 64 Q = Q_net(84,128,z_red_dims).cuda() P = P_net(84,128,z_red_dims).cuda() D_gauss = D_net_gauss(32,z_red_dims).cuda() Q.load_state_dict(pretrained_weights) # Set the logger logger = Logger('./logs/z_120_fixed_LR_2') # Set learning rates gen_lr = 0.001 reg_lr = 0.001 #encode/decode optimizers optim_P = torch.optim.Adam(P.parameters(), lr=gen_lr) optim_Q_enc = torch.optim.Adam(Q.parameters(), lr=gen_lr) #regularizing optimizers optim_Q_gen = torch.optim.Adam(Q.parameters(), lr=reg_lr) optim_D = torch.optim.Adam(D_gauss.parameters(), lr=reg_lr) data_iter = iter(data_loader) iter_per_epoch = len(data_loader) print("iter per epoch =",iter_per_epoch) total_step = np.shape(data)[0] # Start training for step in tqdm(range(total_step)): # Reset the data_iter if (step+1) % iter_per_epoch == 0: data_iter = iter(data_loader) print(step) # Fetch the images and labels and convert them to variables images, labels = next(data_iter) print(torch.min(images),torch.max(images)) # print(images.size(),labels.size(),images.type(),labels.type()) images, labels = to_var(images.view(images.size(0), -1)), to_var(labels) Q.eval() # z_real_gauss = Variable(torch.randn(images.size()[0], z_red_dims) * 5.).cuda() # D_real_gauss = D_gauss(z_real_gauss) z_out = Q(images) query_vector = to_np(z_out) print(
np.shape(query_vector)
numpy.shape
# -*- coding: utf-8 -*- """Copyright 2015 <NAME>. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. 6""" from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import numpy.random as random from numpy.random import randn import numpy as np from filterpy.kalman import UnscentedKalmanFilter as UKF from filterpy.kalman import (unscented_transform, MerweScaledSigmaPoints, JulierSigmaPoints) from filterpy.common import Q_discrete_white_noise import filterpy.stats as stats from math import cos, sin DO_PLOT = False def test_sigma_plot(): """ Test to make sure sigma's correctly mirror the shape and orientation of the covariance array.""" x = np.array([[1, 2]]) P = np.array([[2, 1.2], [1.2, 2]]) kappa = .1 # if kappa is larger, than points shoudld be closer together sp0 = JulierSigmaPoints(n=2, kappa=kappa) sp1 = JulierSigmaPoints(n=2, kappa=kappa*1000) w0, _ = sp0.weights() w1, _ = sp1.weights() Xi0 = sp0.sigma_points (x, P) Xi1 = sp1.sigma_points (x, P) assert max(Xi1[:,0]) > max(Xi0[:,0]) assert max(Xi1[:,1]) > max(Xi0[:,1]) if DO_PLOT: plt.figure() for i in range(Xi0.shape[0]): plt.scatter((Xi0[i,0]-x[0, 0])*w0[i] + x[0, 0], (Xi0[i,1]-x[0, 1])*w0[i] + x[0, 1], color='blue') for i in range(Xi1.shape[0]): plt.scatter((Xi1[i, 0]-x[0, 0]) * w1[i] + x[0,0], (Xi1[i, 1]-x[0, 1]) * w1[i] + x[0,1], color='green') stats.plot_covariance_ellipse([1, 2], P) def test_julier_weights(): for n in range(1,15): for k in
np.linspace(0,5,0.1)
numpy.linspace
from keras.engine import Model from keras.layers import Flatten, Dense, Input from keras_vggface.vggface import VGGFace from os import listdir from os.path import isdir from PIL import Image from matplotlib import pyplot from numpy import savez_compressed from numpy import asarray from mtcnn.mtcnn import MTCNN # develop a classifier for the 5 Celebrity Faces Dataset from numpy import load from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Normalizer from keras.callbacks import ModelCheckpoint #custom parameters nb_class = 2 vgg_custom_vgg_model = VGGFace(include_top=False, input_shape=(224, 224, 3)) last_layer = vgg_custom_vgg_model.get_layer('avg_pool').output x = Flatten(name='flatten')(last_layer) out = Dense(nb_class, activation='softmax', name='classifier')(x) custom_vgg_custom_vgg_model = custom_vgg_model(vgg_custom_vgg_model.input, out) # extract a single face from a given photograph def extract_face(filename, required_size=(160, 160)): # load image from file image = Image.open(filename) # convert to RGB, if needed image = image.convert('RGB') # convert to array pixels = asarray(image) # create the detector, using default weights detector = MTCNN() # detect faces in the image results = detector.detect_faces(pixels) # extract the bounding box from the first face x1, y1, width, height = results[0]['box'] # bug fix x1, y1 = abs(x1), abs(y1) x2, y2 = x1 + width, y1 + height # extract the face face = pixels[y1:y2, x1:x2] # resize pixels to the custom_vgg_model size image = Image.fromarray(face) image = image.resize(required_size) face_array =
asarray(image)
numpy.asarray
import numpy as np import numpy.random as npr import py.test from hypothesis import assume from hypothesis import given from hypothesis.strategies import integers import arlunio as ar import arlunio.mask as mask import arlunio.testing as T @ar.definition def MaskGenerator(width: int, height: int, *, seed=1024) -> mask.Mask: """A generator of random masks.""" gen = npr.default_rng(seed=seed) return mask.Mask(gen.random(size=(height, width)) < 0.5) class TestMask: """Test cases for the :code:`Mask` type.""" @py.test.mark.parametrize( "arr", [np.array([True, False, True]), np.array([[True, False], [False, True]])] ) def test_init(self, arr): """Ensure that masks can be created directly from an existing array,""" m = mask.Mask(arr) assert isinstance(m, mask.Mask) assert (m == arr).all() @py.test.mark.parametrize( "arr", [np.array([True, False, True]), np.array([[True, False], [False, True]])] ) def test_init_view(self, arr): """Ensure that masks can be created as a view on an existing numpy array.""" m = arr.view(mask.Mask) assert isinstance(m, mask.Mask) assert (m == arr).all() @py.test.mark.parametrize( "id, a, b, expected", [ ( "broadcast with 'a = True'", True, mask.Mask(np.array([True, False, True])), mask.Mask(np.full(3, True)), ), ( "broadcast with 'a = False'", False, mask.Mask(np.array([True, False, True])), mask.Mask(np.array([True, False, True])), ), ( "broadcast with 'b = True'", mask.Mask(np.array([True, False, True])), True, mask.Mask(np.full(3, True)), ), ( "broadcast with 'b = False'", mask.Mask(np.array([True, False, True])), False, mask.Mask(np.array([True, False, True])), ), ( "broadcast with a = array", np.array([True, False]), mask.Mask(np.array([[False, True], [True, False]])), mask.Mask(np.array([[True, True], [True, False]])), ), ( "broadcast with b = array", mask.Mask(np.array([[False, True], [True, False]])), np.array([True, False]), mask.Mask(np.array([[True, True], [True, False]])), ), ( "one mask, one array of equal size", mask.Mask(np.array([True, False, True])), np.array([False, True, False]), mask.Mask(np.array([True, True, True])), ), ( "one array, one mask of equal size", np.array([False, True, False]), mask.Mask(np.array([True, False, True])), mask.Mask(np.array([True, True, True])), ), ( "two masks of equal size", mask.Mask(np.array([False, True, False])), mask.Mask(np.array([True, False, True])), mask.Mask(np.array([True, True, True])), ), ], ) def test_add(self, id, a, b, expected): """Ensure that masks can be added together, where 'add' in this case is a boolean OR""" result = a + b assert isinstance(result, mask.Mask), "The result should also be a mask" assert (result == expected).all() @py.test.mark.parametrize( "id, a, b, expected", [ ( "broadcast with 'a = True", True, mask.Mask(np.array([True, False, True])), mask.Mask(np.array([True, False, True])), ), ( "broadcast with 'a = False", False, mask.Mask(np.array([True, False, True])), mask.Mask(np.full(3, False)), ), ( "broadcast with 'b = True'", mask.Mask(np.array([True, False, True])), True, mask.Mask(np.array([True, False, True])), ), ( "broadcast with 'b = False'", mask.Mask(np.array([True, False, True])), False, mask.Mask(np.array([False, False, False])), ), ( "broadcast with a = array", np.array([True, False]), mask.Mask(np.array([[True, False], [False, True]])), mask.Mask(np.array([[True, False], [False, False]])), ), ( "broadcast with b = array", mask.Mask(np.array([[True, False], [False, True]])),
np.array([True, False])
numpy.array
""" Utility functions for contaminante """ import numpy as np import pandas as pd from tqdm import tqdm import warnings import lightkurve as lk from astropy.stats import sigma_clip, sigma_clipped_stats from numpy.linalg import solve from scipy.sparse import csr_matrix, diags import astropy.units as u def search(targetid, mission, search_func=lk.search_targetpixelfile, quarter=None, sector=None, campaign=None): """Convenience function to help lightkurve searches Parameters ---------- targetid : str The ID of the target, either KIC, EPIC or TIC from Kepler, K2 or TESS mission : str Kepler, K2 or TESS search_func : func The search function to use, default is `lk.search_targetpixelfile`. Users may want `lk.search_tesscut` quarter : int, list or None Quarter of Kepler data to use. Specify either using an integer (e.g. `1`) or a range (e.g. `[1, 2, 3]`). `None` will return all quarters. sector : int, list or None Sector of TESS data to use. Specify either using an integer (e.g. `1`) or a range (e.g. `[1, 2, 3]`). `None` will return all sectors. campaign : int, list or None Campaign of K2 data to use. Specify either using an integer (e.g. `1`) or a range (e.g. `[1, 2, 3]`). `None` will return all campaigns. Returns ------- sr : lk.search.SearchResult Search result object containing the valid files. """ if search_func == lk.search_targetpixelfile: with warnings.catch_warnings(): warnings.simplefilter('ignore') if mission.lower() == 'kepler': sr = search_func(targetid, mission=mission, quarter=quarter) elif (mission.lower() == 'ktwo') | (mission.lower() == 'k2'): sr = search_func(targetid, mission=mission, campaign=campaign) elif mission.lower() == 'tess': sr = search_func(targetid, mission=mission, sector=sector) else: raise ValueError("No such mission as `'{}'`".format(mission)) numeric = int(''.join([char for char in "KIC {}".format(targetid) if char.isnumeric()])) numeric_s = np.asarray([int(''.join([char for char in sr.target_name[idx] if char.isnumeric()])) for idx in range(len(sr))]) sr = lk.SearchResult(sr.table[numeric_s == numeric], ) elif search_func == lk.search_tesscut: sr = search_func(targetid, sector=sector) else: raise ValueError('Search Function is wrong') return sr def build_X(tpf, flux, t_model=None, background=False, cbvs=None, spline=True, spline_period=2, sff=False): """Build a design matrix to model pixel in target pixel files Parameters ---------- tpf : lightkurve.TargetPixelFile Input target pixel file to make the design matrix for flux : np.ndarray The SAP flux to use for creating the design matrix t_model: None or np.ndarray The transit model, if None no transit model will be used in the design matrix background: None or np.ndarray Background model, useful for TESS data. If None will not be used in design matrix cbvs: None or np.ndarray Cotrending Basis vectors. If None will not be used in design matrix spline: bool Whether to use a B-Spline in time spline_period: float If using a spline, what time period the knots should be spaced at sff : bool Whether to use the SFF method of buildign centroids Returns ------- SA : scipy.sparse.csr_matrix The design matrix to use to detrend the input TPF """ r, c = np.nan_to_num(tpf.pos_corr1), np.nan_to_num(tpf.pos_corr2) r[np.abs(r) > 10] = 0 c[np.abs(r) > 10] = 0 if sff: r = lk.SFFCorrector(lk.LightCurve(tpf.time, flux)) _ = r.correct() centroids = r.X['sff'] else: breaks = np.where((np.diff(tpf.time) > (0.0202 * 10)))[0] - 1 breaks = breaks[breaks > 0] if r.sum() == 0: ts0 = np.asarray([np.in1d(tpf.time, t) for t in np.array_split(tpf.time, breaks)]) ts1 = np.asarray([np.in1d(tpf.time, t) * (tpf.time - t.mean())/(t[-1] - t[0]) for t in np.array_split(tpf.time, breaks)]) centroids = np.vstack([ts0, ts1, ts1**2]).T else: rs0 = np.asarray([np.in1d(tpf.time, t) for t in np.array_split(tpf.time, breaks)]) rs1 = np.asarray([np.in1d(tpf.time, t) * (r - r[np.in1d(tpf.time, t)].mean()) for t in np.array_split(tpf.time, breaks)]) cs1 = np.asarray([np.in1d(tpf.time, t) * (c - c[np.in1d(tpf.time, t)].mean()) for t in np.array_split(tpf.time, breaks)]) centroids = np.vstack([ rs1, cs1, rs1*cs1, rs1**2, cs1**2, rs1**2*cs1, rs1*cs1**2, rs1**2*cs1**2, rs1**3*cs1**3, rs1**3*cs1**2, rs1**3*cs1, rs1**3, cs1**3, cs1**3*rs1, cs1**3*rs1**2]).T A = np.copy(centroids) if cbvs is not None: A = np.hstack([A, np.nan_to_num(cbvs)]) if background: bkg = lk.DesignMatrix(tpf.flux[:, ~tpf.create_threshold_mask()]).pca(3).values A = np.hstack([A, bkg]) if spline: spline_dm = lk.correctors.designmatrix.create_spline_matrix(tpf.time, n_knots=np.max([4, int((tpf.time[-1] - tpf.time[0])//spline_period)])).values A = np.hstack([A, spline_dm]) SA = np.atleast_2d(flux).T * A if t_model is not None: SA = np.hstack([SA, np.atleast_2d(np.ones(len(tpf.time))).T, np.atleast_2d(t_model).T]) else: SA = np.hstack([SA, np.atleast_2d(np.ones(len(tpf.time))).T]) return csr_matrix(SA) def build_model(tpf, flux, cbvs=None, t_model=None, errors=False, cadence_mask=None, background=False, spline=True): """ Build a model for the pixel level light curve Parameters ---------- tpf : lightkurve.TargetPixelFile Input target pixel file to make the design matrix for flux : np.ndarray The SAP flux to use for creating the design matrix cbvs: None or np.ndarray Cotrending Basis vectors. If None will not be used in design matrix t_model: None or np.ndarray The transit model, if None no transit model will be used in the design matrix errors: bool Whether to return the errors of the models cadence_mask: None or np.ndarray A mask to specify which cadences to use. Cadences where True will not be used in the analysis. background: bool Whether to estimate the background flux, useful for TESS spline: bool Whether to use a B-Spline in time Returns ------- model : np.ndarray Model of the TPF, with shape ncadences x npixels x npixels. model_err: np.ndarray If errors is true, returns model errors transit_pixels : np.ndarray If t_model is specified, the weight of the transit in each pixel. Shape npixel x npixel transit_pixels_err : np.ndarray If t_model is specified, the error of the weight of the transit in each pixel. Shape npixel x npixel aper : bool The aperture that contains the transit signal (npixels x npixels) """ with warnings.catch_warnings(): # I don't want to fix runtime warnings... warnings.simplefilter("ignore", category=RuntimeWarning) if cadence_mask is None: cadence_mask = np.ones(len(tpf.time)).astype(bool) SA = build_X(tpf, flux, t_model=t_model, cbvs=cbvs, spline=spline, background=background, spline_period=10) prior_sigma = np.ones(SA.shape[1]) * 1e-2 prior_mu = np.zeros(SA.shape[1]) if t_model is not None: prior_mu[-2] = 1 else: prior_mu[-1] = 1 model = np.zeros(tpf.flux.shape) if errors: model_err = np.zeros(tpf.flux.shape) if t_model is not None: transit_pixels = np.zeros(tpf.flux.shape[1:]) * np.nan transit_pixels_err = np.zeros(tpf.flux.shape[1:]) * np.nan #SA[:, :-1][t_model !=0 ] *= 0 # Fix Saturation saturated = np.max(np.nan_to_num(tpf.flux), axis=0) > 1.4e5 saturated |= np.abs(np.gradient(saturated.astype(float), axis=0)) != 0 pixels = tpf.flux.copy() pixels_err = tpf.flux_err.copy() for jdx, s in enumerate(saturated.T): if any(s): l = (np.where(s)[0][s.sum()//2]) pixels[:, s, jdx] = np.nan pixels[:, l, jdx] = tpf.flux[:, s, jdx].sum(axis=(1)) pixels_err[:, l, jdx] = ((tpf.flux_err[:, s, jdx]**2).sum(axis=(1))**0.5)/s.sum() for idx in (range(tpf.shape[1])): for jdx in range(tpf.shape[2]): f = pixels[:, idx, jdx] if (f < 0).any(): continue fe = pixels_err[:, idx, jdx] fe /=
np.nanmean(f)
numpy.nanmean
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """redis_hetergraph""" import pgl import redis from redis import BlockingConnectionPool, StrictRedis from redis._compat import b, unicode, bytes, long, basestring from rediscluster.nodemanager import NodeManager from rediscluster.crc import crc16 from collections import OrderedDict import threading import numpy as np import time import json import pgl.graph as pgraph import pickle as pkl from pgl.utils.logger import log import pgl.graph_kernel as graph_kernel from pgl import heter_graph import pgl.redis_graph as rg class RedisHeterGraph(rg.RedisGraph): """Redis Heterogeneous Graph""" def __init__(self, name, edge_types, redis_config, num_parts): super(RedisHeterGraph, self).__init__(name, redis_config, num_parts) self._num_edges = {} self.edge_types = edge_types self.e_type = None self._edge_feat_info = {} self._edge_feat_dtype = {} self._edge_feat_shape = {} def num_edges_by_type(self, e_type): """get edge number by specified edge type""" if e_type not in self._num_edges: self._num_edges[e_type] = int( self._rs.get("%s:num_edges" % e_type)) return self._num_edges[e_type] def num_edges(self): """num_edges""" num_edges = {} for e_type in self.edge_types: num_edges[e_type] = self.num_edges_by_type(e_type) return num_edges def edge_feat_info_by_type(self, e_type): """get edge features information by specified edge type""" if e_type not in self._edge_feat_info: buff = self._rs.get("%s:ef:infos" % e_type) if buff is not None: self._edge_feat_info[e_type] = json.loads(buff.decode()) else: self._edge_feat_info[e_type] = [] return self._edge_feat_info[e_type] def edge_feat_info(self): """edge_feat_info""" edge_feat_info = {} for e_type in self.edge_types: edge_feat_info[e_type] = self.edge_feat_info_by_type(e_type) return edge_feat_info def edge_feat_shape(self, e_type, key): """edge_feat_shape""" if e_type not in self._edge_feat_shape: e_feat_shape = {} for k, shape, _ in self.edge_feat_info()[e_type]: e_feat_shape[k] = shape self._edge_feat_shape[e_type] = e_feat_shape return self._edge_feat_shape[e_type][key] def edge_feat_dtype(self, e_type, key): """edge_feat_dtype""" if e_type not in self._edge_feat_dtype: e_feat_dtype = {} for k, _, dtype in self.edge_feat_info()[e_type]: e_feat_dtype[k] = dtype self._edge_feat_dtype[e_type] = e_feat_dtype return self._edge_feat_dtype[e_type][key] def sample_predecessor(self, e_type, nodes, max_degree, return_eids=False): """sample predecessor with the specified edge type""" query = ["%s:d:%s" % (e_type, n) for n in nodes] rets = rg.hmget_sample_helper(self._rs, query, self.num_parts, max_degree) v = [] eid = [] for buff in rets: if buff is None: v.append(np.array([], dtype="int64")) eid.append(np.array([], dtype="int64")) else: npret = np.frombuffer( buff, dtype="int64").reshape([-1, 2]).astype("int64") v.append(npret[:, 0]) eid.append(npret[:, 1]) if return_eids: return np.array(v), np.array(eid) else: return np.array(v) def sample_successor(self, e_type, nodes, max_degree, return_eids=False): """sample successor with the specified edge type""" query = ["%s:s:%s" % (e_type, n) for n in nodes] rets = rg.hmget_sample_helper(self._rs, query, self.num_parts, max_degree) v = [] eid = [] for buff in rets: if buff is None: v.append(np.array([], dtype="int64")) eid.append(np.array([], dtype="int64")) else: npret = np.frombuffer( buff, dtype="int64").reshape([-1, 2]).astype("int64") v.append(npret[:, 0]) eid.append(npret[:, 1]) if return_eids: return np.array(v), np.array(eid) else: return np.array(v) def predecessor(self, e_type, nodes, return_eids=False): """predecessor with the specified edge type""" query = ["%s:d:%s" % (e_type, n) for n in nodes] ret = rg.hmget_helper(self._rs, query, self.num_parts) v = [] eid = [] for buff in ret: if buff is not None: npret = np.frombuffer( buff, dtype="int64").reshape([-1, 2]).astype("int64") v.append(npret[:, 0]) eid.append(npret[:, 1]) else: v.append(np.array([], dtype="int64")) eid.append(
np.array([], dtype="int64")
numpy.array
""" The main script that serves as the entry-point for all kinds of training experiments. """ import matplotlib.pyplot as plt import numpy as np import pytorch_lightning as pl import torch import torchmetrics import tqdm from das.data.data_args import DataArguments from das.model_analyzer.analysis_tasks.base import AnalysisTask from das.model_analyzer.analyzer_args import AnalysisTaskArguments, AnalyzerArguments from das.model_analyzer.utils import annotate_heatmap, heatmap from das.models.model_args import ModelArguments from das.utils.basic_args import BasicArguments from das.utils.basic_utils import create_logger from das.utils.evaluation import evaluate_clustering from das.utils.metrics import TrueLabelConfidence from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.manifold._t_sne import TSNE # setup logging logger = create_logger(__name__) class SimilarImagesClusteringTask(AnalysisTask): def __init__( self, basic_args: BasicArguments, data_args: DataArguments, model_args: ModelArguments, analyzer_args: AnalyzerArguments, analysis_task_args: AnalysisTaskArguments, ) -> None: super().__init__( "similar_images_clustering", basic_args, data_args, model_args, analyzer_args, analysis_task_args, ) def generate_features(self): # get data collator required for the model self.datamodule.collate_fns = self.model.get_data_collators( self.data_args, None ) # setup the model for feature extraction features_layer = self.model.features_layer() # set up features layer output hook def layer_output_hook(outputs={}): def hook(module, input, output): outputs["result"] = output return hook feature_layer_output = {} if features_layer is not None: features_layer.register_forward_hook( layer_output_hook(feature_layer_output) ) # get predictions over the test set logger.info("Generating features from model...") features_list = [] target_labels = [] with torch.no_grad(): for batch in tqdm.tqdm(self.datamodule.test_dataloader()): for kk, vv in batch.items(): batch[kk] = vv.cuda() self.model(**batch) features_list.append( torch.flatten(feature_layer_output["result"], start_dim=1).cpu() ) target_labels.append(batch["label"].cpu()) features_list = torch.cat(features_list).numpy() target_labels = torch.cat(target_labels) # setup pca if required if self.analysis_task_args.dim_reduction_method == "pca": pca = PCA( **self.analysis_task_args.dim_reduction_args, random_state=self.basic_args.seed, ) pca.fit(features_list) features_list = pca.transform(features_list) elif self.analysis_task_args.dim_reduction_method == "tsne": tsne = TSNE(**self.analysis_task_args.dim_reduction_args) features_list = tsne.fit_transform(features_list) return features_list, target_labels def cluster_features(self, features_list): kmeans = KMeans( n_clusters=self.num_labels, n_jobs=-1, random_state=self.basic_args.seed ) kmeans.fit(features_list) pred_labels = kmeans.labels_ # holds the cluster id and the images { id: [images] } clusters = {} for idx, cluster in enumerate(kmeans.labels_): if cluster not in clusters.keys(): clusters[cluster] = [] clusters[cluster].append(idx) else: clusters[cluster].append(idx) return clusters, pred_labels def generate_metrics(self, target_labels, pred_labels): return evaluate_clustering( target_labels, torch.from_numpy(pred_labels).to(target_labels.device), calc_acc=True, ) def visualize_clusters(self, clusters): dataset = self.datamodule.test_dataset for k, v in clusters.items(): fig = plt.figure(figsize=(25, 25)) files = [dataset[idx]["image_file_path"] for idx in v] labels = [dataset[idx]["label"] for idx in v] if len(files) > 10: files = files[:10] for idx, file in enumerate(files): print(labels[idx]) ax = fig.add_subplot(5, 5, idx + 1) ax.set_xlabel(f"{labels[idx]}") img = plt.imread(file) plt.imshow(img) plt.axis("off") plt.show() def visualize_tsne(self, features_list): logger.info("Visualizing TSNE features...") # scale and move the coordinates so they fit [0; 1] range def scale_to_01_range(x): # compute the distribution range value_range =
np.max(x)
numpy.max
import numpy as np import random as rn #import datetime #import pandas as pd def calculate_crowding(scores): # print('CALCULATE_CROWDING start: ',datetime.datetime.now().strftime("%H:%M:%S.%f")) # Crowding is based on chrmosome scores (not chromosome binary values) # All scores are normalised between low and high # For any one score, all solutions are sorted in order low to high # Crowding for chromsome x for that score is the difference between th enext highest and next lowest score # Total crowding value sums all crowding for all scores population_size=len(scores[:,0]) number_of_scores=len(scores[0,:]) # create crowding matrix of population (row) and score (column) crowding_matrix=np.zeros((population_size,number_of_scores)) # normalise scores normed_scores = (scores-scores.min(0))/scores.ptp(0) # numpy ptp is range (max-min) # Calculate crowding for col in range(number_of_scores): # calculate crowding distance for each score in turn crowding=np.zeros(population_size) # One dimensional array crowding[0]=1 # end points have maximum crowding crowding[population_size-1]=1 # end points have maximum crowding sorted_scores=np.sort(normed_scores[:,col]) # sort scores sorted_scores_index=np.argsort(normed_scores[:,col]) # index of sorted scores crowding[1:population_size-1]=sorted_scores[2:population_size]-sorted_scores[0:population_size-2] # crowding distance re_sort_order=np.argsort(sorted_scores_index) # re-sort to original order step 1 sorted_crowding=crowding[re_sort_order] # re-sort to orginal order step 2 crowding_matrix[:,col]=sorted_crowding # record crowding distances crowding_distances=np.sum(crowding_matrix,axis=1) # Sum croding distances of all scores return crowding_distances # print('CALCULATE_CROWDING stop: ',datetime.datetime.now().strftime("%H:%M:%S")) def crowding_selection(population,scores,number_to_select): # This function selects a number of solutions based on tournament of crowding distances # Two members of the population ar epicked at random # The one with the higher croding dostance is always picked crowding_distances=calculate_crowding(scores) # crowding distances for each member of the population picked_population=np.zeros((number_to_select,len(population[0,:]))) # array of picked solutions (actual solution not ID) picked_scores=np.zeros((number_to_select,len(scores[0,:]))) # array of scores for picked solutions for i in range(number_to_select): population_size=len(population[:,0]) fighter1ID=rn.randint(0,population_size-1) # 1st random ID fighter2ID=rn.randint(0,population_size-1) # 2nd random ID if crowding_distances[fighter1ID]>=crowding_distances[fighter2ID]: # 1st solution picked picked_population[i,:]=population[fighter1ID,:] # add solution to picked solutions array picked_scores[i,:]=scores[fighter1ID,:] # add score to picked solutions array # remove selected solution from available solutions population=np.delete(population,(fighter1ID), axis=0) # remove picked solution - cannot be chosen again scores=np.delete(scores,(fighter1ID), axis=0) # remove picked score (as line above) crowding_distances=np.delete(crowding_distances,(fighter1ID), axis=0) # remove crowdong score (as line above) else: # solution 2 is better. Code as above for 1st solution winning picked_population[i,:]=population[fighter2ID,:] picked_scores[i,:]=scores[fighter2ID,:] population=np.delete(population,(fighter2ID), axis=0) scores=np.delete(scores,(fighter2ID), axis=0) crowding_distances=np.delete(crowding_distances,(fighter2ID), axis=0) return (picked_population,picked_scores) def generate_random_population(rows,cols): population=np.zeros((rows,cols)) # create array of zeros for i in range(rows): x=rn.randint(1,cols) # Number of 1s to add population[i,0:x]=1 # Add requires 1s np.random.shuffle(population[i]) # Shuffle the 1s randomly return population def pareto(scores): # In this method the array 'scores' is passed to the function. # Scores have been normalised so that higher values dominate lower values. # The function returns a Boolean array identifying which rows of the array 'scores' are non-dominated (the Pareto front) # Method based on assuming everything starts on Pareto front and then records dominated points pop_size=len(scores[:,0]) pareto_front=np.ones(pop_size,dtype=bool) for i in range(pop_size): for j in range(pop_size): if all (scores[j]>=scores[i]) and any (scores[j]>scores[i]): # j dominates i pareto_front[i]=0 break return pareto_front def normalise_score(score_matrix,norm_matrix): # normalise 'score matrix' with reference to 'norm matrix' which gives scores that produce zero or one norm_score=np.zeros(np.shape(score_matrix)) # create normlaises score matrix with same dimensions as original scores number_of_scores=len(score_matrix[0,:]) # number of different scores for col in range(number_of_scores): # normaise for each score in turn score_zero=norm_matrix[col,0] score_one=norm_matrix[col,1] score_range=score_one-score_zero norm_score[:,col]=(score_matrix[:,col]-score_zero)/score_range return norm_score def score(population,TARGET_THROMBOLYSIS_ADMISSIONS,FULL_TRAVEL_MATRIX,NODE_ADMISSIONS,TOTAL_ADMISSIONS,pareto_include,CALC_ALL,nscore_parameters,FULL_HOSPITAL_STATUS,ALLOWABLE_THROMBOLYSIS_DELAY,ALLOWABLE_THROMBECTOMY_DELAY,TRAVEL_MATRIX_BETWEEN_ALL_HOSPITALS_AND_CSC,TARGET_THROMBOLYSIS_TIME,TARGET_THROMBECTOMY_TIME,TARGET_THROMBECTOMY_ADMISSIONS,proportion_eligible_thrombectomy,THROMBOLYSIS_TARGET_DISTANCE_1,THROMBOLYSIS_TARGET_DISTANCE_2,THROMBOLYSIS_TARGET_DISTANCE_3,THROMBECTOMY_TARGET_DISTANCE_1,THROMBECTOMY_TARGET_DISTANCE_2,THROMBECTOMY_TARGET_DISTANCE_3,DOOR_TO_NEEDLE,INHOSPITAL_TRANSFER,DOOR_TO_GROINdir): # print('SCORE start: ',datetime.datetime.now().strftime("%H:%M:%S.%f")) #Only calculate the score that is needed by the pareto front, as determined by the array: pareto_include #Unless CALC_ALL=True (set for the last generation) as then print out all the parameter values CALC_ALL=True # MA reporting all # Score_matrix: # 0: Number of hospitals # 1: Average distance # 2: Maximum distance # 3: Minimise Maximum thrombolysis admissions to any one hopsital # 4: Maximise Minimum thrombolysis admissions to any one hopsital # 5: Max/Min Admissions ratio # 6: Proportion thrombolysis patients within target distance 1 (thrombolysis) # 7: Proportion thrombolysis patients within target distance 2 (thrombolysis) # 8: Proportion thrombolysis patients within target distance 3 (thrombolysis) # 9: Proportion thrombolysis patients attending unit with target admission numbers # 10: Proportion of thrombolysis patients meeting distance 1 and admissions target # 11: Proportion of thrombolysis patients meeting distance 2 and admissions target # 12: Proportion of thrombolysis patients meeting distance 3 and admissions target # 13: Clinical benefit if thrombolysis (fixed door to needle = mins + fixed onset to travelling in ambulance time = mins + travel time which is model dependant). Additional benefit per 100 treatable patients # 14: Proportion of patients receiving thrombolysis within target time # 15: Proportion of patients receiving thrombectomy within target time # 16: Proportion patients within target distance 1 (thrombectomy: include the direct travel and if necessary the transfer travel to get to CSC which includes the 60 mins that's been included in the inter travel matrix) # 17: Proportion patients within target distance 2 (thrombectomy: include the direct travel and if necessary the transfer travel to get to CSC which includes the 60 mins that's been included in the inter travel matrix) # 18: Proportion patients within target distance 3 (thrombectomy: include the direct travel and if necessary the transfer travel to get to CSC which includes the 60 mins that's been included in the inter travel matrix) # 19: Proportion of CSC that have > TARGET THROMBECTOMY ADMISSIONS # 20: Minimise the Maximum thrmbectomy admissions to any one hopsital # 21: Maximise the Minimum thrombectomy admissions to any one hopsital # 22: Acerage time to thrombectomy pop_size=len(population[:,0]) # Count number of solutions to evaluate #INITIALISE THE ARRAYS FOR STORING RESULTS score_matrix=np.zeros((pop_size,nscore_parameters)) # Create an empty score matrix thrombolysis_admissions_matrix=np.zeros((pop_size,len(FULL_TRAVEL_MATRIX[0,:])))#store the hospital admissions, col = hospital, row = population thrombectomy_admissions_matrix=np.zeros((pop_size,len(FULL_TRAVEL_MATRIX[0,:])))#Where patients go for their thrombectomy. Store the hospital admissions, col = hospital, row = population transferred_admissions_matrix=np.zeros((pop_size,len(FULL_TRAVEL_MATRIX[0,:])))#Where patients go for their thrombectomy. Store the hospital admissions, col = hospital, row = population total_patients_matrix=np.zeros((pop_size,len(FULL_TRAVEL_MATRIX[0,:])))#Where patients go for their thrombectomy. Store the hospital admissions, col = hospital, row = population for i in range(pop_size): # Loop through population of solutions # print('POPULATION LOOP: ',i, " ",datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results=np.zeros((len(NODE_ADMISSIONS),16)) # Node results stores results by patient node. These are used in the calculation of results # Node results may be of use to export at later date (e.g. for detailed analysis of one scenario) # Col 0: Distance to closest hospital # Col 1: Patients within target distance 1 (boolean) # Col 2: Patients within target distance 2 (boolean) # Col 3: Patients within target distance 3 (boolean) # Col 4: Hospital ID # Col 5: Number of admissions to hospital ID # Col 6: Does hospital meet admissions target (boolean) # Col 7: Admissions and target distance 1 both met (boolean) # Col 8: Admissions and target distance 2 both met (boolean) # Col 9: Admissions and target distance 3 both met (boolean) # Col 10: Time to thrombolysis treatment # Col 11: Time to thrombectomy treatment # Col 12: Number of thrombectomy admissions to hospital ID # Col 13: Travel time to CSC (so either just direct ot CSC, or the direct ot HASU + transfer travel) # Node choice stores by patient node the nearest HASU and CSC and other travel values related to these nearest locations. # Then use the user defined values to decide where that patient goes # Col 0: Distance to closest solution hospital # Col 1: Distance to closest solution CSC # Col 2: ID of closest solution hospital # Col 3: ID of closest solution CSC # Col 4: Distance from HASU to closest CSC from closest solution hosptial # Col 5: ID for the nearest solution CSC from the closest solution hospital #KP REMOVE THIS LINES ONCE GET IT WORKING.... THIS IS JUST A KNOWN CASE TO CHECK IT WORK # population[i] = np.array([0,1,1,0,1,1,0,1,1,0,1,1,0,1]) # Count hospitals in each solution if 0 in pareto_include or CALC_ALL: score_matrix[i,0]=np.sum(population[i]) #SET UP THE MASKS AND THEN MASK THE INPUT DATA # Initiate matrix of number of admissions to each hospital (first hospital), and to each CSC thrombolysis_admissions=np.zeros(np.int(score_matrix[i,0])) thrombectomy_admissions=np.zeros(np.int(score_matrix[i,0])) transferred_admissions=np.zeros(np.int(score_matrix[i,0])) # print('A1.',datetime.datetime.now().strftime("%H:%M:%S.%f")) # Create the mask to extract from the whole dataset just those hospitals open in the solution mask_hospitals_in_solution=np.array(population[i],dtype=bool)#For each hospital in the full list: T/F for those open in the solution # hospital_list=np.where(mask) # list of hospitals in selection. Not currently used # Use this mask to include only the hospital open in the travel data matrix (from patient to hospitals) masked_TRAVEL_MATRIX=FULL_TRAVEL_MATRIX[:,mask_hospitals_in_solution] masked_HOSPITAL_STATUS=FULL_HOSPITAL_STATUS[:,mask_hospitals_in_solution] #COLUMNS ARE ONLY EVER THE FIXED CSC, THEN FOR EACH SOLUTION THE ROWS ARE FILTERED DEPENDING ON THE HOSPITALS OPEN IN THE SOLUTION masked_TRAVEL_MATRIX_BETWEEN_SOLUTION_HOSPITALS_AND_CSC=TRAVEL_MATRIX_BETWEEN_ALL_HOSPITALS_AND_CSC[mask_hospitals_in_solution,:] #Get CSC id from hospital solution set, from the CSC set mask_csc_from_solution_hospitals=masked_HOSPITAL_STATUS==2#For the number of hospitals in the solution, a T/F for if they are a CSC mask_csc_from_solution_hospitals=np.array(mask_csc_from_solution_hospitals).reshape(-1,) #want an array containing the ID's for the hospitals open in the solution that are CSCs. So if fromt he 127 full hospital list, a solution has 90 hosptials open and 40 CSCs then the array will have 40 items for ID between 0-90 that are the CSCs #pull out the locations for all the "Trues" from the array "mask_csc_from_solution_hosptials" csc_id_from_solution_hospitals = np.asarray(np.where(mask_csc_from_solution_hospitals==True)) #Calculate the neareset CSC for each hospital once and use it in the code below # print('A2.',datetime.datetime.now().strftime("%H:%M:%S.%f")) TIME_csc_nearest_to_HASU=np.empty(0) ID_csc_nearest_to_HASU=np.empty(0) for n in range(len(masked_TRAVEL_MATRIX_BETWEEN_SOLUTION_HOSPITALS_AND_CSC)): TIME_csc_nearest_to_HASU=np.append(TIME_csc_nearest_to_HASU,np.amin(masked_TRAVEL_MATRIX_BETWEEN_SOLUTION_HOSPITALS_AND_CSC[n,:])) ID_csc_nearest_to_HASU=np.append(ID_csc_nearest_to_HASU,csc_id_from_solution_hospitals[0,np.argmin(masked_TRAVEL_MATRIX_BETWEEN_SOLUTION_HOSPITALS_AND_CSC[n,:])]) #store the CSC ID (from the hospital solution list) that has the shortest distance from the first hosptial # print('A3.',datetime.datetime.now().strftime("%H:%M:%S.%f")) #mask the travel matrix so patients only choose their nearest CSC masked_CSC_TRAVEL_MATRIX=masked_TRAVEL_MATRIX[:,mask_csc_from_solution_hospitals] #Count number of CSC in SOLUTION #https://stackoverflow.com/questions/28663856/how-to-count-the-occurrence-of-certain-item-in-an-ndarray-in-python CSC_COUNT=(masked_HOSPITAL_STATUS == 2).sum() #THIS SECTION DETERMINES WHERE TO GO FOR THROMBOLYSIS (BASED ON MODEL 1, 2, 3 or 4) # Depending on the model use (1,2,3 or 4) calculate which is each patients first hosptial, and their distance. #Important vairalbes returned are: #1) first_hospital_masked_ID (this is the ID for the number of hospitals open in the solution) #2) node_results[:,0] (the distance to the first_hosptials_masked_ID for each patient) if ALLOWABLE_THROMBECTOMY_DELAY>0: #MODEL4: GO TO HASU FIRST IF DOING SO DOESN'T DELAY GETTING TO CSC BY x MINUTES # print('MODEL4 START',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_choice=np.zeros((len(NODE_ADMISSIONS),10)) #FIND CLOSEST HOSPITAL & CSC FROM THOSE OPEN IN THE SOLUTION node_choice[:,0]=np.amin(masked_TRAVEL_MATRIX,axis=1) # distance to closest solution hospital node_choice[:,1]=np.amin(masked_CSC_TRAVEL_MATRIX,axis=1) # distance to closest solution CSC node_choice[:,2]=np.argmin(masked_TRAVEL_MATRIX,axis=1)# ID for the nearest solution hospital node_choice[:,3]=csc_id_from_solution_hospitals[0,np.argmin(masked_CSC_TRAVEL_MATRIX,axis=1)] #store the CSC ID (from the hospital solution list) that has the shortest distance from the first hosptial #'KP CAN CALCULATE THE NEAREST CSC FROM EACH HASU ONCE AND LOOK IT UP node_choice[:,4]=TIME_csc_nearest_to_HASU[np.int_(node_choice[:,2])] node_choice[:,5]=ID_csc_nearest_to_HASU[np.int_(node_choice[:,2])] # print('B',datetime.datetime.now().strftime("%H:%M:%S.%f")) delayed_thrombectomy=(node_choice[:,0]+node_choice[:,4])-node_choice[:,1] mask_go_to_CSC=delayed_thrombectomy>ALLOWABLE_THROMBECTOMY_DELAY node_results[:,0]=np.invert(mask_go_to_CSC)*node_choice[:,0]+mask_go_to_CSC*node_choice[:,1] first_hospital_masked_ID=np.invert(mask_go_to_CSC)*node_choice[:,2]+mask_go_to_CSC*node_choice[:,3] # print('C',datetime.datetime.now().strftime("%H:%M:%S.%f")) elif ALLOWABLE_THROMBOLYSIS_DELAY>0: #MODEL3: CSC has larger catchment #Take the min distance for the CSC, and compare with the min distance of the other hosptials whilst taking the allowance into consideration node_choice=np.zeros((len(NODE_ADMISSIONS),10)) #FIND CLOSEST HOSPITAL FROM ALL IN SOLUTION node_choice[:,0]=np.amin(masked_TRAVEL_MATRIX,axis=1) # distance to closest solution hospital node_choice[:,1]=np.amin(masked_CSC_TRAVEL_MATRIX,axis=1) # distance to closest solution CSC node_choice[:,2]=np.argmin(masked_TRAVEL_MATRIX,axis=1)# ID for the nearest solution hospital node_choice[:,3]=csc_id_from_solution_hospitals[0,np.argmin(masked_CSC_TRAVEL_MATRIX,axis=1)] #store the CSC ID (from the hospital solution list) that has the shortest distance from the first hosptial #Binary mask for each patient if they go to a CSC first, or a non CSC first mask_go_to_CSC=(node_choice[:,1]-ALLOWABLE_THROMBOLYSIS_DELAY)<node_choice[:,0] #Use Binary mask to take the distance travel to first destination node_results[:,0]=np.invert(mask_go_to_CSC)*node_choice[:,0]+mask_go_to_CSC*node_choice[:,1] #Use Binary mask to take the ID to first destination first_hospital_masked_ID=np.invert(mask_go_to_CSC)*node_choice[:,2]+mask_go_to_CSC*node_choice[:,3] elif ALLOWABLE_THROMBOLYSIS_DELAY<=0: #MODEL 1 (nearest) OR MODEL2 (go to CSC if within set time). Model 2 needs information from Model 1 first #MODEL 1 #Distance to closest hospital [MODDEL1]. # print('MODEL 1&2 START',datetime.datetime.now().strftime("%H:%M:%S.%f")) first_hospital_masked_ID=np.argmin(masked_TRAVEL_MATRIX,axis=1) # ID to first hospital # print('D12',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results[:,0]=np.amin(masked_TRAVEL_MATRIX,axis=1) # distance to first hospital (includes any adjustments for the CSC in model 3 - to be rectified in next step) if ALLOWABLE_THROMBOLYSIS_DELAY<0: #MODEL 2 (go to CSC if within set time) # if ALLOWABLE_THROMBOLYSIS_DELAY<0:#GO TO CSC IF WITHIN x MINUTES, REGARDLESS OF ANOTHER CLOSER CENTRE. ELSE CHOOSE CLOSEST # print('MODEL 2',datetime.datetime.now().strftime("%H:%M:%S.%f")) csc_nearest_distance=np.amin(masked_CSC_TRAVEL_MATRIX,axis=1) # distance to closest solution CSC csc_nearest_ID=csc_id_from_solution_hospitals[0,np.argmin(masked_CSC_TRAVEL_MATRIX,axis=1)] #store the CSC ID (from the hospital solution list) that has the shortest distance from the first hosptial # "mask_go_to_CSC" in this part identifies patients that go to CSC because < n minutes, and not necessarily due to being closest. The next use of this array stores whether go to CSC or not, as more patients may go to a CSC as it's the closest even though it's > n minutes mask_go_to_CSC=csc_nearest_distance<=-ALLOWABLE_THROMBOLYSIS_DELAY # Take the distance from the CSC if go there as < fixed distance... else take it from the min of the full hospital options node_results[:,0]=np.invert(mask_go_to_CSC)*node_results[:,0]+mask_go_to_CSC*csc_nearest_distance # print('F',datetime.datetime.now().strftime("%H:%M:%S.%f")) #Overwrite the "first_hospital_masked_ID" for the CSC ID when that is <45mins first_hospital_masked_ID=np.invert(mask_go_to_CSC)*first_hospital_masked_ID+mask_go_to_CSC* csc_nearest_ID#node_choice[:,3] #FOR ALL MODELS, NOW HAVE THE FIRST LOCATION THE PATIENTS ATTEND, SO NOW ALL GETTING THROMBOLYSIS. CHECK HOW MANY SATISFY THE TARGET DISTANCES: # print('H',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results[:,1]=node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_1 # =1 if target distance 1 met node_results[:,2]=node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_2 # =1 if target distance 2 met node_results[:,3]=node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_3 # =1 if target distance 3 met # print('I',datetime.datetime.now().strftime("%H:%M:%S.%f")) #THROMBECTOMY #THROMBECTOMY #THROMBECTOMY #THROMBECTOMY #THIS SECTION DETERMINES WHERE TO GO FOR THROMBECTOMY. EITHER ALREADY AT A CSC, OR AT A HASU AND NEED A TRANSFER TO NEAREST CSC FROM HASU first_hospital_masked_ID=first_hospital_masked_ID.astype(int) #https://stackoverflow.com/questions/19676538/numpy-array-assignment-with-copy #https://stackoverflow.com/questions/6431973/how-to-copy-data-from-a-numpy-array-to-another?rq=1 #Initialise arrays csc_attended_ID = np.empty_like (first_hospital_masked_ID) np.copyto(csc_attended_ID,first_hospital_masked_ID) transfer_travel=np.empty(0) thrombolysis_to_thrombectomy_time=np.empty(0) csc_attended_ID = np.empty_like (first_hospital_masked_ID) thrombectomy_admissions_transferred = np.empty_like (NODE_ADMISSIONS)#Initialise #Use NUMPY FANCY INDEXING to populate the CSC and TIME using the first_hospital_masked_ID array (which holds the indices want for each patient) transfer_travel=TIME_csc_nearest_to_HASU[first_hospital_masked_ID] csc_attended_ID= ID_csc_nearest_to_HASU[first_hospital_masked_ID] #Which patients are needing a transfer for thrombectomy? i.e which have a different 1st and 2nd hospital (who is not at a CSC for hteir first hosptial) mask_transfer_patient=csc_attended_ID!=first_hospital_masked_ID#Boolean storing whether each patient is moving (=true, has a different first and second hospital location) or not moving (= false, has same first ans second hospital) #For the patients that are needing a transfer, store the number of admissions (usually 10% of stroke admissions) thrombectomy_admissions_transferred=mask_transfer_patient*(NODE_ADMISSIONS*proportion_eligible_thrombectomy)#Populate with admissions if that patient location has a different first and second hospital location #Record thrombectomy admissions transfering to CSC transferred_admissions=np.bincount(np.int_(csc_attended_ID),weights=thrombectomy_admissions_transferred) # np.bincount with weights sums #Record thrombectomy admissions leaving HASU transferred_admissions=transferred_admissions-np.bincount(np.int_(first_hospital_masked_ID),weights=thrombectomy_admissions_transferred) # np.bincount with weights sums # print('N',datetime.datetime.now().strftime("%H:%M:%S.%f")) thrombolysis_to_thrombectomy_time=transfer_travel+INHOSPITAL_TRANSFER+DOOR_TO_GROINdir # print('O',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results[:,4]=first_hospital_masked_ID # stores hospital ID in case table needs to be exported later, but bincount below doesn't work when stored in NumPy array (which defaults to floating decimal) # Create matrix of number of admissions to each hospital (first hospital) thrombolysis_admissions=np.bincount(np.int_(first_hospital_masked_ID),weights=NODE_ADMISSIONS) # np.bincount with weights sums thrombolysis_admissions_matrix[i,mask_hospitals_in_solution]=thrombolysis_admissions#putting the hospital admissions into a matrix with column per hospital, row per solution. Used to output to sheet # print('Q',datetime.datetime.now().strftime("%H:%M:%S.%f")) # Create matrix of number of admissions to each hospital (CSC) #csc_attended_ID use the same ID allocated to each hosptial as for the solution hospitals, and so not start from 0 for the first (i/e could just be ID 5 as a CSC) so use the "mask" to put the values to the matrix, and not "mask_full_CSC" thrombectomy_admissions[0:np.int_((np.amax(csc_attended_ID)+1))]=np.bincount(np.int_(csc_attended_ID),weights=NODE_ADMISSIONS)*proportion_eligible_thrombectomy # np.bincount with weights sums # print('R',datetime.datetime.now().strftime("%H:%M:%S.%f")) thrombectomy_admissions_matrix[i,mask_hospitals_in_solution]=thrombectomy_admissions#putting the hospital admissions into a matrix with column per hospital, row per solution. Used to output to sheet # print('S',datetime.datetime.now().strftime("%H:%M:%S.%f")) transferred_admissions_matrix[i,mask_hospitals_in_solution]=transferred_admissions#putting the hospital admissions into a matrix with column per hospital, row per solution. Used to output to sheet # print('T',datetime.datetime.now().strftime("%H:%M:%S.%f")) # record closest hospital (unused) node_results[:,5]=np.take(thrombolysis_admissions,np.int_(first_hospital_masked_ID)) # Lookup admissions to the thrombectomy hospital patient attends node_results[:,12]=np.take(thrombectomy_admissions,np.int_(csc_attended_ID)) # Lookup admissions to the thrombectomy hospital patient attends node_results[:,6]=node_results[:,5]>TARGET_THROMBOLYSIS_ADMISSIONS # =1 if admissions target met node_results[:,13]=node_results[:,0]+transfer_travel # Calculate average distance by multiplying node distance * admission numbers and divide by total admissions if 1 in pareto_include or CALC_ALL: weighted_distances=np.multiply(node_results[:,0],NODE_ADMISSIONS) average_distance=np.sum(weighted_distances)/TOTAL_ADMISSIONS score_matrix[i,1]=average_distance # Max distance for any one patient if 2 in pareto_include or CALC_ALL: score_matrix[i,2]=np.max(node_results[:,0]) # Max, min and max/min number of thrombolysis admissions to each hospital if 3 in pareto_include or CALC_ALL: score_matrix[i,3]=np.max(thrombolysis_admissions) if 4 in pareto_include or CALC_ALL: score_matrix[i,4]=np.min(thrombolysis_admissions) if 5 in pareto_include or CALC_ALL: if score_matrix[i,4]>0: score_matrix[i,5]=score_matrix[i,3]/score_matrix[i,4] else: score_matrix[i,5]=0 # Calculate proportion patients within target distance/time if 6 in pareto_include or CALC_ALL: score_matrix[i,6]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_1])/TOTAL_ADMISSIONS if 7 in pareto_include or CALC_ALL: score_matrix[i,7]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_2])/TOTAL_ADMISSIONS if 8 in pareto_include or CALC_ALL: score_matrix[i,8]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=THROMBOLYSIS_TARGET_DISTANCE_3])/TOTAL_ADMISSIONS # Calculate proportion patients attending hospital with target admissions if 9 in pareto_include or CALC_ALL: score_matrix[i,9]=np.sum(thrombolysis_admissions[thrombolysis_admissions>=TARGET_THROMBOLYSIS_ADMISSIONS])/TOTAL_ADMISSIONS if 10 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,7]=(node_results[:,1]+node_results[:,6])==2 # true if admissions and target distance 1 both met sum_patients_addmissions_distance1_met=np.sum(NODE_ADMISSIONS[node_results[:,7]==1]) score_matrix[i,10]=sum_patients_addmissions_distance1_met/TOTAL_ADMISSIONS if 11 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,8]=(node_results[:,2]+node_results[:,6])==2 # true if admissions and target distance 2 both met sum_patients_addmissions_distance2_met=np.sum(NODE_ADMISSIONS[node_results[:,8]==1]) score_matrix[i,11]=sum_patients_addmissions_distance2_met/TOTAL_ADMISSIONS if 12 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,9]=(node_results[:,3]+node_results[:,6])==2 # true if admissions and target distance 3 both met sum_patients_addmissions_distance3_met=np.sum(NODE_ADMISSIONS[node_results[:,9]==1]) score_matrix[i,12]=sum_patients_addmissions_distance3_met/TOTAL_ADMISSIONS if 13 in pareto_include or CALC_ALL: # Clinical benefit score_matrix[i,13]=0 if 14 in pareto_include or CALC_ALL: #Time to thrombolysis # print('U',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results[:,10]=node_results[:,0]+DOOR_TO_NEEDLE score_matrix[i,14]=np.sum(NODE_ADMISSIONS[node_results[:,10]<=TARGET_THROMBOLYSIS_TIME])/TOTAL_ADMISSIONS if 15 in pareto_include or CALC_ALL: #Time to thrombectomy = Journey to location1 + thrombolysis at location1 + transfer_time(if going to different location) + door_to_groin (different if in CSC for throbolysis, or transferred in) # print('V',datetime.datetime.now().strftime("%H:%M:%S.%f")) node_results[:,11]=node_results[:,10] + thrombolysis_to_thrombectomy_time score_matrix[i,15]=np.sum(NODE_ADMISSIONS[node_results[:,11]<=TARGET_THROMBECTOMY_TIME])/TOTAL_ADMISSIONS # Calculate proportion patients travel within target distance/time to get to their CSC location (for thrombectomy) if 16 in pareto_include or CALC_ALL: # print('W',datetime.datetime.now().strftime("%H:%M:%S.%f")) score_matrix[i,16]=np.sum(NODE_ADMISSIONS[node_results[:,13]<=THROMBECTOMY_TARGET_DISTANCE_1])/TOTAL_ADMISSIONS if 17 in pareto_include or CALC_ALL: # print('X',datetime.datetime.now().strftime("%H:%M:%S.%f")) score_matrix[i,17]=np.sum(NODE_ADMISSIONS[node_results[:,13]<=THROMBECTOMY_TARGET_DISTANCE_2])/TOTAL_ADMISSIONS if 18 in pareto_include or CALC_ALL: # print('Y',datetime.datetime.now().strftime("%H:%M:%S.%f")) score_matrix[i,18]=np.sum(NODE_ADMISSIONS[node_results[:,13]<=THROMBECTOMY_TARGET_DISTANCE_3])/TOTAL_ADMISSIONS #Proportion of CSC that have > TARGET THROMBECTOMY ADMISSIONS if 19 in pareto_include or CALC_ALL: # print('Z',datetime.datetime.now().strftime("%H:%M:%S.%f")) score_matrix[i,19]=np.sum(thrombectomy_admissions[:]>=TARGET_THROMBECTOMY_ADMISSIONS)/CSC_COUNT # Max and min of thrombectomy admissions to each hospital if 20 in pareto_include or CALC_ALL: score_matrix[i,20]=np.max(thrombectomy_admissions[mask_csc_from_solution_hospitals]) if 21 in pareto_include or CALC_ALL: score_matrix[i,21]=np.min(thrombectomy_admissions[mask_csc_from_solution_hospitals]) # average time to thrombectomy (including door-in-door-out delay) if 22 in pareto_include or CALC_ALL: weighted_distances=np.multiply(node_results[:,13],NODE_ADMISSIONS) average_distance=np.sum(weighted_distances)/TOTAL_ADMISSIONS score_matrix[i,22]=average_distance #output this table for each hospital: #Hospital/Direct admissions (thrombolysis)/Transferred in admissions (for thrombectomy)/Thrombectomy admissions/Total patients #Calculate clinical benefit: Emberson and Lee #Use 115 mins for the onset til travelling in ambulance (30 mins onset to call + 40 mins call to travel + 45 mins door to needle) + ? travel time (as deterined by the combination of hospital open) # if 13 in pareto_include or CALC_ALL: # onset_to_treatment_time = distancekm_to_timemin(node_results[:,0])+115 # #constant to be used in the equation # factor=(0.2948/(1 - 0.2948)) # #Calculate the adjusted odds ratio # clinical_benefit=np.array(factor*np.power(10, (0.326956 + (-0.00086211 * onset_to_treatment_time)))) # # Patients that exceed the licensed onset to treatment time, set to a zero clinical benefit # clinical_benefit[onset_to_treatment_time>270]=0 # #Probabilty of good outcome per node # clinical_benefit = (clinical_benefit / (1 + clinical_benefit)) - 0.2948 # #Number of patients with a good outcome per node # clinical_benefit = clinical_benefit*NODE_ADMISSIONS # score_matrix[i,13]=np.sum(clinical_benefit)/TOTAL_ADMISSIONS *100 #hospital_admissions_matrix[i,:]=np.transpose(hospital_admissions)#putting the column into a row in the matrix #np.savetxt('output/admissions_test.csv',hospital_admissions_matrix[i,:],delimiter=',',newline='\n') total_patients_matrix=thrombolysis_admissions_matrix+transferred_admissions_matrix#putting the hospital admissions into a matrix with column per hospital, row per solution. Used to output to sheet return (score_matrix,thrombolysis_admissions_matrix,transferred_admissions_matrix,thrombectomy_admissions_matrix,total_patients_matrix) def unique_rows(a): # stolen off the interwebs a = np.ascontiguousarray(a) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) def fix_hospital_status(l_population,l_HOSPITAL_STATUS): #Takes the 5th column from the hospital.csv file and if "1" then open, "-1" then closed HOSPITAL_STATUS_POPULATION=np.repeat(l_HOSPITAL_STATUS,len(l_population[:,0]),axis=0)#repeat the row "len(child_population[:,0])" number of times, so have 1 per solution row (matching the size of the child_population matrix) l_population[HOSPITAL_STATUS_POPULATION==1]=1 # Fixes the open hospitals to have a value 1 l_population[HOSPITAL_STATUS_POPULATION==2]=1 # Fixes the open hospitals to have a value 1 l_population[HOSPITAL_STATUS_POPULATION==-1]=0 # Fixes the closed hospitals to have a value 0 return l_population def f_location_crossover(l_parent, l_MAXCROSSOVERPOINTS,l_CHROMOSOMELENGTH): number_crossover_points=rn.randint(1,l_MAXCROSSOVERPOINTS) # random, up to max crossover_points=rn.sample(range(1,l_CHROMOSOMELENGTH), number_crossover_points) # pick random crossover points in gene, avoid first position (zero position) crossover_points=np.append([0],np.sort(crossover_points)) # zero appended at front for calucation of interval to first crossover intervals=crossover_points[1:]-crossover_points[:-1] # this gives array of number of ones, zeros etc in each section. intervals=np.append([intervals],[l_CHROMOSOMELENGTH-np.amax(crossover_points)]) # adds in last interval of last cross-over to end of gene # Build boolean arrays for cross-overs current_bool=True # sub sections will be made up of repeats of boolean true or false, start with true # empty list required for append selection1=[] for interval in intervals: # interval is the interval between crossoevrs (stored in 'intervals') new_section=np.repeat(current_bool,interval) # create subsection of true or false current_bool=not current_bool # swap true to false and vice versa selection1=np.append([selection1],[new_section]) # add the new section to the existing array selection1=np.array([selection1],dtype=bool) # **** not sure why this is needed but selection1 seems to have lost boolean nature selection2=np.invert(selection1) # invert boolean selection for second cross-over product crossover1=np.choose(selection1,l_parent) # choose from parents based on selection vector crossover2=np.choose(selection2,l_parent) children=np.append(crossover1,crossover2,axis=0) return(children) def f_uniform_crossover(l_parent, l_CHROMOSOMELENGTH): #UNIFORM CROSSOVER MEANS EACH GENE HAS EQUAL CHANCE TO COME FROM EACH PARENT fromparent1=np.random.random_integers(0,1,(1,l_CHROMOSOMELENGTH)) # create array of 1 rows and chromosome columns and fill with 0 or 1 for which parent to take the gene from fromparent1=np.array(fromparent1,dtype=bool) fromparent2=
np.invert(fromparent1)
numpy.invert
from typing import Dict, List import networkx as nx import numpy as np from wknml import parse_nml from wknml.nml_generation import generate_graph from wknml.nml_utils import ( ensure_max_edge_length, calculate_distance_between_nodes, approximate_minimal_edge_length, get_vector_between_nodes, vector_length, calculate_angle_between_vectors, ) def test_ensure_max_edge_length(): with open("testdata/nml_with_too_long_edges.nml", "r") as file: test_nml = parse_nml(file) max_length = 2.0 scale =
np.array(test_nml.parameters.scale)
numpy.array
# file: test_loads.py # vim:fileencoding=utf-8:ft=python:fdm=marker # # Author: <NAME> <<EMAIL>> # Created: 2015-08-24 01:34:26 +0200 # Last modified: 2018-12-08T23:02:38+0100 """ Tests for Load classes and load cases. """ import pytest import beammech as bm import numpy as np E = 0.5 * 240000 # Young's Modulus of the beam's material in [MPa] L = 1000 # Length of the beam in [mm] P = -500 # Force in [N] B = 400 H = 30 h = 26 Ix = B * (H ** 3 - h ** 3) / 12 G = 28 A = B * h def test_load_goodargs(): # {{{1 """beammech.Load with correct arguments""" A = bm.Load(kg=1, pos=200) assert A.size == -9.81 assert A.pos == 200 B = bm.Load(force=-20, pos=300) assert B.size == -20 assert B.pos == 300 C = bm.Load(kg="1", pos="200") assert C.size == -9.81 assert C.pos == 200 def test_load_badargs(): # {{{1 """beammech.Load with faulty arguments""" with pytest.raises(KeyError): bm.Load() # All required arguments missing with pytest.raises(KeyError): bm.Load(kg=-20) # Required “pos” argument missing # Required “force” or “kg” argument missing with pytest.raises(KeyError): bm.Load(pos=231) # Required “force” argument misspelt with pytest.raises(KeyError): bm.Load(forse=-200, pos=300) # Argument “pos” or “force” cannot be converted to float with pytest.raises(ValueError): bm.Load(force=-120, pos="end") with pytest.raises(ValueError): bm.Load(force="-q", pos=200) def test_clamped_pointload(): # {{{1 """Clamped beam with point load at end""" results = bm.solve( L, None, bm.Load(force=P, pos=L), np.ones(L + 1) * E * Ix, np.ones(L + 1) * G * A, np.ones(L + 1) * H / 2, -np.ones(L + 1) * H / 2, False, ) deflection_bm = results.y[L] deflection_formula = P * L ** 3 / (3 * E * Ix) reldiff = abs((deflection_bm - deflection_formula) / deflection_formula) assert reldiff < 0.005 def test_clamped_distributed(): # {{{1 """Clamped beam with distributed load""" results = bm.solve( L, None, bm.DistLoad(force=P, start=0, end=L), np.ones(L + 1) * E * Ix, np.ones(L + 1) * G * A, np.ones(L + 1) * H / 2, -np.ones(L + 1) * H / 2, False, ) deflection_bm = results.y[L] deflection_formula = P * L ** 3 / (8 * E * Ix) reldiff = abs((deflection_bm - deflection_formula) / deflection_formula) assert reldiff < 0.005 def test_supported_central_pointload(): # {{{1 """Ends supported beam with central point load""" results = bm.solve( L, (0, L), bm.Load(force=P, pos=L / 2), np.ones(L + 1) * E * Ix, np.ones(L + 1) * G * A, np.ones(L + 1) * H / 2, -np.ones(L + 1) * H / 2, False, ) deflection_bm = results.y[int(L / 2)] deflection_formula = P * L ** 3 / (48 * E * Ix) reldiff = abs((deflection_bm - deflection_formula) / deflection_formula) assert reldiff < 0.005 def test_supported_distributed(): # {{{1 """Ends supported beam with distributed load""" results = bm.solve( L, (0, L), bm.DistLoad(force=P, start=0, end=L), np.ones(L + 1) * E * Ix, np.ones(L + 1) * G * A, np.ones(L + 1) * H / 2, -np.ones(L + 1) * H / 2, False, ) deflection_bm = results.y[int(L / 2)] deflection_formula = 5 * P * L ** 3 / (384 * E * Ix) reldiff = abs((deflection_bm - deflection_formula) / deflection_formula) assert reldiff < 0.005 def test_supported_triangl(): # {{{1 """Ends supported beam with triangle load""" results = bm.solve( L, (0, L), bm.TriangleLoad(force=P, start=0, end=L), np.ones(L + 1) * E * Ix, np.ones(L + 1) * G * A, np.ones(L + 1) * H / 2, -
np.ones(L + 1)
numpy.ones
#!/usr/bin/python # -*- coding: utf-8 -*- # @Author: <NAME> (<EMAIL>) # @Date: 2018-12-07 10:10 import numpy as np import h5py import matplotlib.pyplot as plt from testCases import * from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'
np.random.seed(1)
numpy.random.seed
#!/usr/bin/env python from __future__ import division import numpy as np from scipy.linalg import hankel from scipy.signal import convolve2d import scipy.io as sio import matplotlib.pyplot as plt from ..tools import * def bispectrumdx(x, y, z, nfft=None, wind=None, nsamp=None, overlap=None): """ Parameters: x - data vector or time-series y - data vector or time-series (same dimensions as x) z - data vector or time-series (same dimensions as x) nfft - fft length [default = power of two > segsamp] wind - window specification for frequency-domain smoothing if 'wind' is a scalar, it specifies the length of the side of the square for the Rao-Gabr optimal window [default=5] if 'wind' is a vector, a 2D window will be calculated via w2(i,j) = wind(i) * wind(j) * wind(i+j) if 'wind' is a matrix, it specifies the 2-D filter directly segsamp - samples per segment [default: such that we have 8 segments] - if x is a matrix, segsamp is set to the number of rows overlap - percentage overlap, allowed range [0,99]. [default = 50]; - if x is a matrix, overlap is set to 0. Output: Bspec - estimated bispectrum: an nfft x nfft array, with origin at the center, and axes pointing down and to the right. waxis - vector of frequencies associated with the rows and columns of Bspec; sampling frequency is assumed to be 1. """ (lx, lrecs) = x.shape (ly, nrecs) = y.shape (lz, krecs) = z.shape if lx != ly or lrecs != nrecs or ly != lz or nrecs != krecs: raise Exception('x, y and z should have identical dimensions') if ly == 1: x = x.reshape(1,-1) y = y.reshape(1,-1) z = z.reshape(1,-1) ly = nrecs nrecs = 1 if not overlap: overlap = 50 overlap = max(0,min(overlap,99)) if nrecs > 1: overlap = 0 if not nsamp: nsamp = 0 if nrecs > 1: nsamp = ly if nrecs == 1 and nsamp <= 0: nsamp = np.fix(ly/ (8 - 7 * overlap/100)) if nfft < nsamp: nfft = 2**nextpow2(nsamp) overlap = np.fix(overlap/100 * nsamp) nadvance = nsamp - overlap nrecs = np.fix((ly*nrecs - overlap) / nadvance) # create the 2-D window if not wind: wind = 5 m = n = 0 try: (m, n) = wind.shape except ValueError: (m,) = wind.shape n = 1 except AttributeError: m = n = 1 window = wind # scalar: wind is size of Rao-Gabr window if max(m, n) == 1: winsize = wind if winsize < 0: winsize = 5 # the window size L winsize = winsize - (winsize%2) + 1 # make it odd if winsize > 1: mwind = np.fix(nfft/winsize) # the scale parameter M lby2 = (winsize - 1)/2 theta = np.array([np.arange(-1*lby2, lby2+1)]) # force a 2D array opwind = np.ones([winsize, 1]) * (theta**2) # w(m,n) = m**2 opwind = opwind + opwind.transpose() + (np.transpose(theta) * theta) # m**2 + n**2 + mn opwind = 1 - ((2*mwind/nfft)**2) * opwind Hex = np.ones([winsize,1]) * theta Hex = abs(Hex) + abs(np.transpose(Hex)) + abs(Hex + np.transpose(Hex)) Hex = (Hex < winsize) opwind = opwind * Hex opwind = opwind * (4 * mwind**2) / (7 * np.pi**2) else: opwind = 1 # 1-D window passed: convert to 2-D elif min(m, n) == 1: window = window.reshape(1,-1) if np.any(np.imag(window)) != 0: print("1-D window has imaginary components: window ignored") window = 1 if np.any(window) < 0: print("1-D window has negative components: window ignored") window = 1 lwind = np.size(window) w = window.ravel(order='F') # the full symmetric 1-D windf = np.array(w[range(lwind-1, 0, -1) + [window]]) window = np.array([window], np.zeros([lwind-1,1])) # w(m)w(n)w(m+n) opwind = (windf * np.transpose(windf)) * hankel(np.flipud(window), window) winsize =
np.size(window)
numpy.size
#BSD 3-Clause License #======= # #Copyright (c) 2017, Xilinx Inc. #All rights reserved. # #Based <NAME>'s MNIST example code #Copyright (c) 2015-2016, <NAME> #All rights reserved. # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY #EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED #WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY #DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES #(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND #ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS #SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import sys import os import time from argparse import ArgumentParser import numpy as np np.random.seed(1234) # for reproducibility # specifying the gpu to use # import theano.sandbox.cuda # theano.sandbox.cuda.use('gpu1') import lasagne import theano import theano.tensor as T import cPickle as pickle import gzip import binary_net import lfc from collections import OrderedDict def loadFashionMNIST(prefix="t10k"): # Define functions for loading Fashion MNIST images and labels. import gzip dl_dir = "fashion-mnist-train/" def load_mnist_images(filename): # Read the inputs in Yann LeCun's binary format. with gzip.open(dl_dir + filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) # The inputs are vectors now, we reshape them to monochrome 2D images, # following the shape convention: (examples, channels, rows, columns) data = data.reshape(-1, 1, 28, 28) # The inputs come as bytes, we convert them to float32 in range [0,1]. # (Actually to range [0, 255/256], for compatibility to the version # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.) return data def load_mnist_labels(filename): # Read the labels in Yann LeCun's binary format. with gzip.open(dl_dir+filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) # The labels are vectors of integers now, that's exactly what we want. return data # We can now download and read the images and labels with given prefix X = load_mnist_images('%s-images-idx3-ubyte.gz' % prefix) y = load_mnist_labels('%s-labels-idx1-ubyte.gz' % prefix) return {"X":X, "y":y} if __name__ == "__main__": # Parse some command line options parser = ArgumentParser( description="Train the LFC network on the MNIST dataset") parser.add_argument('-ab', '--activation-bits', type=int, default=1, choices=[1, 2], help="Quantized the activations to the specified number of bits, default: %(default)s") parser.add_argument('-wb', '--weight-bits', type=int, default=1, choices=[1], help="Quantized the weights to the specified number of bits, default: %(default)s") args = parser.parse_args() learning_parameters = OrderedDict() # Quantization parameters learning_parameters.activation_bits = args.activation_bits print("activation_bits = "+str(learning_parameters.activation_bits)) learning_parameters.weight_bits = args.weight_bits print("weight_bits = "+str(learning_parameters.weight_bits)) # BN parameters batch_size = 64 print("batch_size = "+str(batch_size)) # alpha is the exponential moving average factor # alpha = .15 learning_parameters.alpha = .1 print("alpha = "+str(learning_parameters.alpha)) learning_parameters.epsilon = 1e-4 print("epsilon = "+str(learning_parameters.epsilon)) # Training parameters num_epochs = 1000 print("num_epochs = "+str(num_epochs)) # Dropout parameters learning_parameters.dropout_in = .2 # 0. means no dropout print("dropout_in = "+str(learning_parameters.dropout_in)) learning_parameters.dropout_hidden = .5 print("dropout_hidden = "+str(learning_parameters.dropout_hidden)) # W_LR_scale = 1. learning_parameters.W_LR_scale = "Glorot" # "Glorot" means we are using the coefficients from Glorot's paper print("W_LR_scale = "+str(learning_parameters.W_LR_scale)) # Decaying LR LR_start = .003 print("LR_start = "+str(LR_start)) LR_fin = 0.0000003 print("LR_fin = "+str(LR_fin)) LR_decay = (LR_fin/LR_start)**(1./num_epochs) print("LR_decay = "+str(LR_decay)) # BTW, LR decay might good for the BN moving average... save_path = "fashion-mnist-train/fashion_mnist_parameters.npz" print("save_path = "+str(save_path)) shuffle_parts = 1 print("shuffle_parts = "+str(shuffle_parts)) print('Loading Fashion MNIST dataset...') train_set_X = loadFashionMNIST("train")["X"][:1000] train_set_y = loadFashionMNIST("train")["y"][:1000] valid_set_X = loadFashionMNIST("train")["X"][1000:1350] valid_set_y = loadFashionMNIST("train")["y"][1000:1350] test_set_X = loadFashionMNIST("t10k")["X"] test_set_y = loadFashionMNIST("t10k")["y"] # Inputs are originally between [0, 255] # Rescale to put them between [-1, +1] train_set_X = train_set_X / 255. valid_set_X = valid_set_X / 255. test_set_X = test_set_X / 255. train_set_X = 2*(train_set_X.reshape(-1, 1, 28, 28)) - 1. valid_set_X = 2*(valid_set_X.reshape(-1, 1, 28, 28)) - 1. test_set_X = 2*(test_set_X.reshape(-1, 1, 28, 28)) - 1. # Binarise the inputs. train_set_X = np.where(train_set_X < 0, -1, 1).astype(theano.config.floatX) valid_set_X = np.where(valid_set_X < 0, -1, 1).astype(theano.config.floatX) test_set_X = np.where(test_set_X < 0, -1, 1).astype(theano.config.floatX) # flatten targets train_set_y = np.hstack(train_set_y) valid_set_y = np.hstack(valid_set_y) test_set_y = np.hstack(test_set_y) # Onehot the targets train_set_y = np.float32(
np.eye(10)
numpy.eye
import numpy as np import time import threading import sys class KalmanFilter(object): def __init__(self, filter_outliers=True, patience_ms=100., verbose=False): self.tracked_objects = [] self.next_id = -1 self.Q = self.process_noise_covariance() self.R = self.observation_noise_covariance() # H is the measurement model which casts next state onto an ovservation vector self.H = np.array([[1., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0.]], dtype=np.float64) # other parameters self.filter_outliers = filter_outliers self.verbose = verbose self.processing = False self.patience_sec = patience_ms * 1e-3 # start the timer thread self.thread_ = threading.Thread(target=self.timer_thread) self.thread_is_alive = True # Start the thread self.exit_event = threading.Event() self.daemon = True self.thread_.start() def get_new_id(self, max_id=9999): self.next_id = ((self.next_id + 1) % (max_id + 1)) return self.next_id def add_new_object(self, obj_class, x, y, z, yaw): if self.verbose: print('Adding new object: {}'.format(obj_class)) state = [x, y, z, yaw, 0., 0., 0., 0.] state_sigma = np.zeros((8,8), dtype=np.float32) state_sigma[:4,:4] = self.R obj = {'id':self.get_new_id(), 'class':obj_class, 'state_mu':state, 'state_sigma':state_sigma, 'timestamp':time.time()} self.tracked_objects.append(obj) def find_matching_object_idx(self, obj_class, x, y, z, yaw): return_idx = -1 min_dist = 1e5 for i, tracked_obj in enumerate(self.tracked_objects): if obj_class == tracked_obj['class']: dist = np.sqrt((x - tracked_obj['state_mu'][0]) ** 2 + \ (y - tracked_obj['state_mu'][1]) ** 2 + \ (z - tracked_obj['state_mu'][2]) ** 2 ) variance_xyz = [tracked_obj['state_sigma'][0,0], tracked_obj['state_sigma'][1,1], tracked_obj['state_sigma'][2,2]] sigma_dist = np.sqrt(variance_xyz[0] + variance_xyz[1] + variance_xyz[2]) if dist < min_dist and dist < 3*sigma_dist: min_dist = dist # match found return_idx = i return return_idx def timer_thread(self): # If the child thread is still running while self.thread_is_alive: # wait if processing new data while self.processing: time.sleep(0.001) self.processing = True # iterate through each tracked object for i, tracked_obj in enumerate(self.tracked_objects): dt = time.time() - tracked_obj['timestamp'] if dt > self.patience_sec: if self.verbose: print('Removing tracked object [{}] with id: {} - no update received for {} secs'.format( tracked_obj['class'], tracked_obj['id'], dt)) del self.tracked_objects[i] self.processing = False # sleep time.sleep(self.patience_sec) def teardown(self): # wait for '2*patience_sec' to destroy all existing objects time.sleep(2*self.patience_sec) if self.verbose: print('Tearing down the Kalman Filter.') self.thread_is_alive = False @staticmethod def system_matrix(dt=0.033): """ Output: A: 8x8 numpy array for the system matrix. """ A = np.array([[1., 0., 0., 0., dt, 0., 0., 0.], [0., 1., 0., 0., 0., dt, 0., 0.], [0., 0., 1., 0., 0., 0., dt, 0.], [0., 0., 0., 1., 0., 0., 0., dt], [0., 0., 0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 1.]], dtype=np.float64) return A @staticmethod def process_noise_covariance(): """ Output: Q: 8x8 numpy array for the covariance matrix. """ Q = np.zeros((8,8), dtype=np.float64) Q[4:,4:] = np.diag([0.2, 0.2, 0.2, 0.5]) return Q @staticmethod def observation_noise_covariance(): """ Output: R: 4x4 numpy array for the covariance matrix. """ sigma = np.diag([1.0, 1.0, 1.0, 2.0]) return sigma def process(self, measurements): """ Input: measurements: list of dictionary of measurement [class, x, y, z, yaw] """ tracked_objects = [] for measurement in measurements: # wait if processing new data while self.processing: time.sleep(0.001) self.processing = True timestamp = time.time() tracked_obj = None # find association associated_idx = self.find_matching_object_idx( measurement['class'], measurement['x'], measurement['y'], measurement['z'], measurement['yaw'] ) if associated_idx != -1: dt = timestamp - self.tracked_objects[associated_idx]['timestamp'] # print(dt) A = self.system_matrix(dt) # Prediction mu_bar_next = np.dot(A, self.tracked_objects[associated_idx]['state_mu']) sigma_bar_next = np.dot(A, np.dot(self.tracked_objects[associated_idx]['state_sigma'], A.T)) \ + self.Q # compute Kalman Gain kalman_gain_numerator = np.dot(sigma_bar_next, self.H.T) kalman_gain_denominator = np.dot(self.H, np.dot(sigma_bar_next, self.H.T)) + self.R # this is the innovation covariance matrix, S kalman_gain = np.dot(kalman_gain_numerator, np.linalg.inv(kalman_gain_denominator)) # Correction observation = [measurement['x'], measurement['y'], measurement['z'], measurement['yaw']] expected_observation = np.dot(self.H, mu_bar_next) # let's compute Mahalanobis distance S = kalman_gain_denominator deviation = np.sqrt(np.dot((observation - expected_observation).T, np.dot(np.linalg.inv(S), (observation - expected_observation)))) # outlier rejection if not self.filter_outliers or deviation <= 1.5: mu_next = mu_bar_next +
np.dot(kalman_gain, (observation - expected_observation).T)
numpy.dot
import sys import os import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import dok_matrix import qcfractal.interface as ptl import rdkit from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import FragmentMatcher from cmiles.utils import mol_to_map_ordered_qcschema from openforcefield.topology import Molecule from openforcefield.topology import Topology from openforcefield.typing.engines.smirnoff import ForceField import openforcefield import smirnoff99frosst as ff import pickle import time import copy from datetime import timedelta from QUBEKit.mod_seminario import ModSeminario from QUBEKit.parametrisation.base_parametrisation import Parametrisation from QUBEKit.utils import constants from simtk import openmm import simtk from pydantic.error_wrappers import ValidationError import logging logger = logging.getLogger() logger.setLevel(level=logging.ERROR) bohr2angstrom = 0.529177249 angstrom2nm = .1 hartree2kcalmol = 627.5096080306 client = ptl.FractalClient() from geometric.internal import * from geometric.molecule import Molecule as geometric_mol from geometric import optimize def CalcInternalHess(coords, gradx, Hx, IC): """ coords, gradx, hessx : Cartesian coordinates, gradients, and Hessian in atomic units. IC : geomeTRIC internal coordinate system (look at line 1766 for how to create this) """ # Internal coordinate Hessian using analytic transformation Hq = IC.calcHess(coords, gradx, Hx) verbose = False if verbose: print("-=# Hessian of the energy in internal coordinates #=-\n") print("{:20s} {:20s} : {:14s}\n".format('IC1 Name', 'IC2 Name', 'Value')) for (i,j) in itertools.product(*([range(len(IC.Internals))]*2)): print("{:20s} {:20s} : {: 14.6f}".format(str(IC.Internals[i]), str(IC.Internals[j]), Hq[i, j]*(hartree2kcalmol/bohr2angstrom**2))) return Hq #=========================================# #| Set up the internal coordinate system |# #=========================================# # First item in tuple: The class to be initialized # Second item in tuple: Whether to connect nonbonded fragments # Third item in tuple: Whether to throw in all Cartesians (no effect if second item is True) CoordSysDict = {'cart':(CartesianCoordinates, False, False), 'prim':(PrimitiveInternalCoordinates, True, False), 'dlc':(DelocalizedInternalCoordinates, True, False), 'hdlc':(DelocalizedInternalCoordinates, False, True), 'tric':(DelocalizedInternalCoordinates, False, False)} coordsys = 'prim' # kwargs.get('coordsys', 'tric') CVals = None CoordClass, connect, addcart = CoordSysDict[coordsys.lower()] Cons = None def hyphenate_int_tuple(tup, offset=0): return "{:d}".format(tup[0]+offset)+ ("-{:d}"*(len(tup)-1)).format(*([x+offset for x in tup[1:]])) def oFF_key_in_IC_Hessian(index, Internals): #off_str = hyphenate_int_tuple(index) exists = False debug = False i = 0 n_atoms = len(index) debug_lines = [] for i, Internal in enumerate(Internals): hess_atoms = str(Internal).split()[1] permutations = None if(n_atoms == 2): if(type(Internal) is not Distance): continue permutations = itertools.permutations(index) elif(n_atoms == 3): if(type(Internal) is not Angle): continue permutations = [[x[0],index[1],x[1]] for x in itertools.permutations([index[0],index[2]])] elif(n_atoms == 4): if(type(Internal) is OutOfPlane): # geometic molecule puts center as the first index #hess_atoms[0], hess_atoms[1] = hess_atoms[1], hess_atoms[0] reordered_index = tuple([index[1], index[0], index[2], index[3]]) permutations = [[reordered_index[0]] + list(x) for x in itertools.permutations(reordered_index[1:])] elif(type(Internal) is Dihedral): # cross our fingers that dihedrals are sequential permutations = [index, index[::-1]] else: continue else: raise IndexError("Invalid number of atoms.") for order_i in permutations: candidate = hyphenate_int_tuple(order_i) debug_lines.append("comparing oFF indices " + str(candidate) + " to Hessian " + str(hess_atoms) + " failed") if(candidate == hess_atoms): if(debug): print("HIT comparing oFF indices", candidate, "to Hessian", hess_atoms ) return True, i if(debug): print("MISS for", index, "DEBUG:") for line in debug_lines: print(line) print() return False, -1 def flatten_list(l): return [val for vals in l for val in vals ] def get_all_qcmolid_and_grads(td, minimum=False, get_energy=False, TorsionDrive=True, get_hessians=False, get_gradients=False): hessian = None ret_rec = None ene = None if(TorsionDrive): angles = td.get_history(minimum=minimum).keys() opt_rec_list = ([td.get_history(ang, minimum=minimum) for ang in angles]) if(minimum): opt_rec = opt_rec_list if(get_gradients): ret_rec = ([opt.get_trajectory()[-1] for opt in opt_rec]) opt_ang = flatten_list(angles) mol_id = [opt.get_final_molecule() for opt in opt_rec] if(get_energy): ene = [opt.get_final_energy() for opt in opt_rec] else: #TODO: Energy for intermediates opt_rec = flatten_list(opt_rec_list) ret_rec_list = ([opt.get_trajectory() for opt in opt_rec]) ret_rec = flatten_list(ret_rec_list) ang_expand = [a * len(l) for a,l in zip(angles, opt_rec_list)] ang_full = [[a]*l for a,l in zip(flatten_list(ang_expand),[len(x) for x in ret_rec_list])] opt_ang = flatten_list(ang_full) mol_id = [rec.molecule for rec in ret_rec] if(energy): ene = [opt.get_final_energy() for opt in opt_rec] if(not get_gradients): ret_rec = None opt_ang = np.array(opt_ang) srt = opt_ang.argsort() mol_id = [mol_id[i] for i in srt] if(get_gradients): ret_rec = [ret_rec[i] for i in srt] ene = np.array(ene)[srt] opt_ang = opt_ang[srt] info = {} tddict = td.dict(encoding="json") for key in ['keywords', 'id']: info[key] = tddict[key] tddict = None else: opt_rec = td convert = hartree2kcalmol/bohr2angstrom**2 convert = 1 opt_ang = [None] if(minimum): if(get_gradients): ret_rec = [opt.get_trajectory()[-1] for opt in opt_rec] mol_id = [opt.get_final_molecule() for opt in opt_rec] if(get_energy): ene = [opt.get_final_energy() for opt in opt_rec] if(get_hessians): hessian = [] for i in mol_id: try: h = client.query_results(molecule=i.id,driver="hessian")[0].return_result hessian.append(convert*np.array(h)) except (IndexError, TypeError): print("No hessian for this geometry!") hessian.append(None) else: ret_rec = [opt.get_trajectory() for opt in opt_rec] if(get_energy): ene = flatten_list([opt.energies for opt in opt_rec]) mol_id = [rec.molecule for a in ret_rec for rec in a] if(get_hessians): hessian = [] for i in mol_id: try: h = client.query_results(molecule=i.id,driver="hessian")[0].return_result hessian.append(convert*np.array(h)) except (IndexError, TypeError): print("No hessian for this geometry!") hessian.append(None) if(not get_gradients): ret_rec = None srt = np.arange(len(mol_id)) info = {} tddict = td[0].dict(encoding="json") for key in ['keywords', 'id']: info[key] = tddict[key] tddict = None return mol_id, info, ret_rec, hessian, opt_ang, ene, srt def get_qcmol_from_ids(client, mol_ids): return [client.query_molecules(idx)[0] for idx in mol_ids] return client.query_molecules(mol_ids) def dump_qcmol_to_xyz(mols, fname, comment="", idx=None): if(fname is None): fid = None else: fid = open(fname,'w') ret = np.array([qcmol2xyz(mol, fid, comment=comment, idx=idx) for mol in mols]) if(fid is not None): fid.close() return ret def save_hessian(hessian, fid, comment="", map=None, idx=None): #index_str = "all" #if(idx is not None): # index_str = str(idx) # hessian = hessian[idx] n = hessian.shape[0]//3 if(idx is None): idx = range(n) #atom_idx = idx #idx = [(3*j + i) for j in idx for i in range(3)] #print(hessian.shape) #print(idx) #if fid is not None: # for line in hessian: # line = [line[3*map[idx[i]] + j] for i in range(len(idx)) for j in range(3)] # fid.write(("{:16.13f} "*len(line) + '\n').format(*(line))) hess_mapped = np.empty((3*len(idx), 3*len(idx))) # print(hess_mapped.shape, hessian.shape) for (ii,jj),(i,j) in zip(itertools.product(range(len(idx)), range(len(idx))),itertools.product(idx, idx)): hess_mapped[ii*3:ii*3+3,jj*3:jj*3+3] = hessian[map[idx[ii]]*3:map[idx[ii]]*3+3,map[idx[jj]]*3:map[idx[jj]]*3+3] #idx = range(len(idx)) if(fid is not None): fid.write("#{:s}\n{:d}\n".format(comment, len(idx))) pairs = sorted(set([tuple(sorted(k)) for k in itertools.product(range(len(idx)), range(len(idx)))])) for (i, j) in pairs: atomi = i atomj = j if(atomj < atomi): continue # print("[", i,j,"] (",atomi, atomj,")", end=" ") fid.write(("{:4d} {:4d}"+(" {:12.6f}"*9)+"\n").format(idx[atomi],idx[atomj],*hess_mapped[atomi*3:(atomi*3+3),atomj*3:(atomj*3+3)].reshape(-1))) # print("\n") return hess_mapped def dump_hessians(hessians, fname, comment="", map=None, idx=None): # print("Saving hessians to", fname) if(fname is None): fid = None else: fid = open(fname,'w') ret = np.array([save_hessian(hessian_i, fid, comment=comment, map=map, idx=idx) for hessian_i in hessians]) if(fid is not None): fid.close() return ret def qcmol2xyz(mol, fid, comment="", idx=None): #fid.write(mol.to_string('xyz')) #return mol = dict(mol) if(idx is None): idx = np.arange(len(mol['symbols'])) syms = [mol['symbols'][i] for i in idx] xyzs = (mol['geometry'] * bohr2angstrom)[idx] struct = zip(syms, xyzs) N = len(syms) if(fid is not None): fid.write("{:d}\n".format(N)) fid.write("{:s}\n".format(comment)) #print("***************") #print(xyzs) [fid.write(("{:s}"+"{:10.4f}"*3 + "\n").format(s,*xyz)) for s,xyz in struct] return xyzs def get_qcarchive_xyz_grad_ang(mol_smiles, ds, minimum=False, TorsionDrive=True, get_hessians=False, get_gradients=False, get_energy=False): # get the torsiondrivedataset for some smiles pattern #opts are optimizationdataset isTD = (ds.data.collection == "torsiondrivedataset") if(isTD): main_rec = ds.data.records[mol_smiles] td = ds.df.loc[main_rec.name, 'default'] else: td = client.query_procedures(ds.data.records[mol_smiles].object_map["default"]) mol_ids, info, opt_recs, hessian, opt_ang, ene, srt = get_all_qcmolid_and_grads(td, minimum=minimum, get_energy=get_energy, TorsionDrive=isTD, get_hessians=get_hessians, get_gradients=get_gradients) if(minimum): mols = mol_ids else: mols = get_qcmol_from_ids(client, mol_ids) return mols, info, opt_recs, hessian, opt_ang, ene, srt def mm_potential(forcefield, top, xyz, charge=False): if(charge): system = forcefield.create_openmm_system(top) else: mols = [Molecule(mol.reference_molecule) for mol in top.topology_molecules] for i,_ in enumerate(mols): mols[i].partial_charges = simtk.unit.Quantity(np.zeros(mols[i].n_atoms), simtk.unit.elementary_charge) system = forcefield.create_openmm_system(top, charge_from_molecules=mols) integrator = openmm.VerletIntegrator(1.0 * simtk.unit.femtoseconds) context = openmm.Context(system, integrator) context.setPositions(xyz * angstrom2nm) state = context.getState(getEnergy=True) energy = state.getPotentialEnergy().in_units_of(simtk.unit.kilocalories_per_mole) return energy def something(): """ this is supposed to make the index problem go away!! Right now a big problem seems to be maps from rd/off and qcarchive indices Or, it wasn't a problem until I tried to get energy of my systems """ return None def calc_mm_energy(forcefield, top, xyz, component=None, charge=False): if(component is None): ene = mm_potential(forcefield, top, xyz, charge=charge) return ene modff = copy.deepcopy(forcefield) force = modff.get_parameter_handler(component) for term in force.parameters: if(component == "vdW"): term.epsilon *= 0.0 if(component in ["Bonds", "Angles"]): term.k *= 0.0 if(component in ["ProperTorsions", "ImproperTorsions"]): for i,_ in enumerate(term.k): term.k[i] *= 0.0 ene = mm_potential(modff, top, xyz, charge=charge) return ene def calc_vdw_direct(xyz, labels): na = len(xyz) atoms = range(na) ene = 0.0 r = distance.cdist(xyz,xyz) for i in atoms: ii = (i,) for j in atoms: if(j >= i): break jj = (j,) eps = np.sqrt(labels[ii].epsilon * labels[jj].epsilon) / labels[jj].epsilon.unit rmin = (labels[ii].rmin_half + labels[jj].rmin_half)/2.0 rmin = rmin / rmin.unit rij = r[i,j] a = rmin/rij a = a**6 ene += eps * (a**2 - 2*a) #print(i,j,"r", rij, "ene", ene, "rmin", rmin, "eps", eps, "a", a) return ene * simtk.unit.kilocalorie_per_mole def get_frag_matches(frag, ds): #targets = [i.name for i in ds.data.records.values()] targets = ds.data.records.keys() #with open('test2.out', 'w') as fid: # [fid.write(str(i) + '\n') for i in targets] #test = ds.df.index #with open('test3.out', 'w') as fid: # [fid.write(str(i) + '\n') for i in test] #test = [i.name for j,i in ds.data.records.items()] #with open('test4.out', 'w') as fid: # [fid.write(str(i) + '\n') for i in test] p = FragmentMatcher.FragmentMatcher() p.Init(frag) matches = {} hits = 0 for mol_smiles in targets: smiles_pattern = ds.data.records[mol_smiles].name smiles_pattern = ds.data.records[mol_smiles].attributes['canonical_isomeric_explicit_hydrogen_mapped_smiles'] mol = Chem.MolFromSmiles(smiles_pattern) mol = Chem.AddHs(mol) if(p.HasMatch(mol)): for match in p.GetMatches(mol, uniquify=0): # since oFF is a redundant set # deg = mol.GetAtomWithIdx(match[0]).GetDegree() if(not (mol_smiles in matches)): matches[mol_smiles] = [] matches[mol_smiles].append(list(match)) hits += 1 print("Found", len(matches.keys()), "molecules with", hits, "hits") return matches def split_frag_matches(matches, splits): split_matches = {} for split in splits: frags_from_split = {} for mol,match in matches.items(): #frags_from_split[mol] = [list(np.asarray(frag)[split]) for frag in match] #split_matches[tuple(split)] = frags_from_split split_matches[mol] = {tuple(split): [list(np.asarray(frag)[split]) for frag in match] } return split_matches def argsort_labels(l): letter = [i[0] for i in l] num = [int(i[1:]) for i in l] return np.lexsort((num, letter)) def measure_parameters(job_spec, ds, log=sys.stdout, db_out=None, append=False, skip_if_present=False, minimum=True, oFF_label=True, empty=False, out_dir=None, save_mol_xyz=False, save_mol_frag=False, get_gradients=False, get_qm_energy=False, get_mm_energy=False, gen_MM_charge=False, get_hessians=False, save_hessian=False, save_hessian_frag=False, stepTiming=False, totalTiming=False, save_mol_xyz_debug=False, verbose=True): valence_params = ["Bonds", "Angles", "ProperTorsions", "ImproperTorsions"] measure_vtable = {"Bonds": calc_bond_length, "Angles": calc_angle_degree, "ProperTorsions": calc_proper_torsion, "ImproperTorsions": calc_improper_torsion} if(out_dir is None): out_dir = os.getcwd() #TODO: check each job_spec for valid #calcs = parameters #matches = match_db[match_key] #for atom_req, measure_key in zip([2,3,4,4], valence_params): # if(not (measure_key in calcs)): # continue # for smiles,match in matches.items(): # n = len(match) # for n in [m for m in match]: # if (len(n) < atom_req): # log.write( "{:s} calculation requested but smiles {:s} match {:d} has too few atoms\n\n".format(calc, smiles, n)) # return ffversion = 'smirnoff99Frosst-1.0.9.offxml' db = None if (db_out is not None): if(os.path.exists(os.path.join(out_dir,db_out)) and append): if(db_out.split('.')[-1] == "npz"): db = dict(np.load(db_out, allow_pickle=True)) else: with open(os.path.join(out_dir,db_out),'rb') as fid: db = pickle.load(fid) if(db is None): db = {'frag_info': [], 'oFF': {"ff_version": ffversion, 'oFF_version': openforcefield.__version__} } db['qca_info'] = { "collection_type": ds.data.collection, "collection_name": ds.data.name } db['oFF'].setdefault("a0", {}) db['oFF'].setdefault("b0", {}) db['oFF'].setdefault("i0", {}) db['oFF'].setdefault("t0", {}) db.setdefault("mol_data", {}) # idea here is to only store unique torsiondrive angles once, use hash to determine which td_ang to use db.setdefault("td_ang", {}) if(oFF_label): forcefield = ForceField(os.path.join(ff.get_forcefield_dirs_paths()[0],ffversion), disable_version_check=True) # for mol_n, (target, idx_list) in enumerate(matches.items()): totaltime = time.time() log.write("== Dataset {:s}\n".format(ds.data.name)) for mol_n, (target, config) in enumerate(job_spec.items()): #print(target) mapped = ds.data.records[target].attributes['canonical_isomeric_explicit_hydrogen_mapped_smiles'] real_smiles = ds.data.records[target].name target_smiles = mapped #ds.data.records[target].name if(real_smiles in db['mol_data']): mol_data = db['mol_data'][real_smiles] if(skip_if_present): continue else: mol_data = {'qca_key': target } mol = Chem.MolFromSmiles(target_smiles) n_heavy = mol.GetNumAtoms() mol = Chem.AddHs(mol) n_total = mol.GetNumAtoms() n_hydrogen = n_total - n_heavy ids = AllChem.EmbedMultipleConfs(mol, numConfs=1, params=AllChem.ETKDG()) Chem.rdmolops.AssignStereochemistryFrom3D(mol) superdebug = False if(superdebug): debugfid = open("debug.out", 'w') syms = [a.GetSymbol() for a in mol.GetAtoms()] mol2 = mol_to_map_ordered_qcschema(mol, mapped) orig_xyz = np.array(mol.GetConformer(0).GetPositions())/bohr2angstrom mapped_xyz = np.array(mol2['geometry']).reshape(-1,3) mapped_idx = distance.cdist(orig_xyz, mapped_xyz).argmin(axis=1) if(superdebug): debugfid.write("From smiles built mol\n") [debugfid.write(str(i)+'\n') for i in enumerate(orig_xyz)] debugfid.write("Index map (rd to qc?)\n") [debugfid.write(str(i)+'\n') for i in enumerate(mapped_idx)] debugfid.write("From remapped mol from cmiles\n") [debugfid.write(str(i)+'\n') for i in enumerate(mapped_xyz)] debugfid.write("\n") # putting an from the QCMol indices will give you the index in the analyses (e.g. torsiondrive indices) # qcmol data is 0-based, so is this map; but note that hessian labels are 1-based log.write("Result= {:8d} Molecule= {:50s} ".format(mol_n, real_smiles, )) log.flush() result_time=time.time() elapsed=time.time() try: mols, info, opts, hessian, ang, ene, srt = get_qcarchive_xyz_grad_ang(target, ds, \ minimum=minimum, get_hessians=get_hessians, get_gradients=get_gradients, get_energy=get_qm_energy) except (ValidationError, TypeError) as e: log.write("ERROR: QCArchive returned nothing\n\n") continue log.write("\nQCID= {:>10s} QCDataRecord= {:50s} \n".format(ds.data.records[target].object_map['default'], target)) minstr = ".min" if minimum else ".all" mol_out_fname = os.path.join(out_dir,"mol_"+str(mol_n)+minstr+".xyz") if save_mol_xyz else None atoms = dump_qcmol_to_xyz(mols, mol_out_fname, comment=real_smiles, idx=mapped_idx) if(superdebug): debugfid.write("from qcdata base\n") [debugfid.write(str(j[0]) + " " + str(i[0]) + " " + \ str(i[1]*bohr2angstrom)+'\n') \ for j in enumerate(mols) \ for i in enumerate(dict(j[1])['geometry'])] if('from_qcmol_to_label_map' not in mol_data): mapped_idx_inv = distance.cdist(orig_xyz, mapped_xyz).argmin(axis=0) mol_data['from_qcmol_to_label_map'] = mapped_idx_inv if(superdebug): debugfid.write("Index map (qc to rd?)\n") [debugfid.write(str(i)+'\n') for i in enumerate(mapped_idx_inv)] debugfid.write("mapped from qcdatabase using mapped_idx_inv\n") [debugfid.write(str(j[0]) + " " + str(i[0]) + " " + \ str(j[1].geometry[i[1]] *bohr2angstrom)+'\n') \ for j in enumerate(mols) \ for i in enumerate(mapped_idx_inv)] if(superdebug): debugfid.write("mapped from qcdatabase using mapped_idx\n") [debugfid.write(str(j[0]) + " " + str(i[0]) + " " + \ str(j[1].geometry[i[1]] *bohr2angstrom)+'\n') \ for j in enumerate(mols) \ for i in enumerate(mapped_idx)] debugfid.write("first record in atoms (should be same as above\n") [debugfid.write(str(j[0]) + " " + str(i[0]) + " " + \ str(i[1]*bohr2angstrom)+'\n') \ for j in enumerate(mols) \ for i in enumerate(atoms[j[0]])] debugfid.close() queryelapsed=str(timedelta(seconds=time.time() - elapsed)) if(len(mols) == 0): if(stepTiming): log.write("\n QueryTime= {:s}\n".format(queryelapsed)) log.write("ERROR: QCArchive returned nothing\n\n") continue elapsed=time.time() if('info' not in mol_data): mol_data['info'] = info if('n_hydrogen' not in mol_data): mol_data['n_hydrogen'] = n_hydrogen if('n_heavy' not in mol_data): mol_data['n_heavy'] = n_heavy ang_hash = hash(tuple(ang)) if(ang_hash not in db["td_ang"]): db["td_ang"][ang_hash] = ang if('td_ang' not in mol_data): mol_data["td_ang"] = ang_hash ic_hess = None IC = None if(hessian is not None): if("hessian" not in mol_data): mol_data["hessian"] = {} mol_data["hessian"]["cartesian"] = {} hessian = np.array([hess_i.reshape(len(syms)*3, len(syms)*3) for hess_i in hessian]) if(save_mol_xyz): IC = CoordClass(geometric_mol(mol_out_fname), build=True, connect=connect, addcart=addcart, constraints=Cons, cvals=CVals[0] if CVals is not None else None ) convert = hartree2kcalmol/bohr2angstrom**2 ic_hess = CalcInternalHess(orig_xyz[mapped_idx]/bohr2angstrom, np.array(opts[0].return_result).reshape(-1,3)[mapped_idx].flatten(), hessian[0]/convert, IC) #ic_hess *= (hartree2kcalmol/bohr2angstrom**2) hessian_out_fname = os.path.join(out_dir,"mol_"+str(mol_n)+minstr+".hessian.nxmxmx9.dat") \ if save_hessian else None atom_hessian = dump_hessians(hessian, hessian_out_fname, comment=real_smiles, map=mapped_idx ,idx=None) if(save_mol_xyz_debug): rdmol_out_fname = os.path.join(out_dir,"rdmol_"+str(mol_n)+minstr+".xyz") with open(rdmol_out_fname,'w') as fid: qcmol2xyz({'symbols':syms, "geometry":orig_xyz}, fid, comment="rdkit conformer "+ real_smiles) if(len(syms) != len(mols[0].symbols)): log.write("\nERROR: conformer has different number of atoms than QCMolecule.\n") log.write("Likely H assignment incorrect. Check the mol and rdmol xyz files. Skipping.\n") continue if(get_qm_energy): if('energy' not in mol_data): mol_data['energy'] = {} mol_data['energy']['qm'] = ene if(oFF_label): mmol = Molecule.from_rdkit(mol, allow_undefined_stereo=True) top = Topology().from_molecules(mmol) #topapp = Topology().from_molecules(mmol) # these will use the unmapped indices, which are the indices from the matches labels = forcefield.label_molecules(top)[0] if(get_mm_energy): if('energy' not in mol_data): mol_data['energy'] = {'oFF': {} } elif('oFF' not in mol_data['energy']): mol_data['energy']['oFF'] = {} n_qcmol = len(mols) #reporter = openmm.app.pdbreporter.PDBReporter("min_ene.pdb", 1, False) #systemapp = forcefield.create_openmm_system(topapp) #integratorapp = openmm.VerletIntegrator(1.0 * simtk.unit.femtoseconds) #sim = openmm.app.Simulation(topapp.to_openmm(), systemapp, integratorapp) for qcmol_i,qcmol in enumerate(atoms): #xyz = dict(qcmol)['geometry'] #mmol.conformers[0] = qcmol xyz = qcmol #print("raw0", orig_xyz[0:2], xyz[0:2], labels['vdW'][(0,)], labels['vdW'][(1,)]) #print("raw", orig_xyz[0], xyz[0]* bohr2angstrom) #xyz2 = np.array(xyz)[mapped_idx] * bohr2angstrom #print("real", orig_xyz[0], xyz2[0]) #xyz = np.array(xyz)[mapped_idx_inv] * bohr2angstrom #print("real", orig_xyz[0], xyz[0]) #print("real", orig_xyz[0], mapped_xyz[0]) total_ene = calc_mm_energy(forcefield, top, xyz, charge=gen_MM_charge) log.write(" Conformation energy {:4d}/{:4d}\n".format(qcmol_i+1,n_qcmol)) log.flush() if(get_qm_energy): ene_str = "{:13.8f} a.u.".format(ene[qcmol_i]) log.write(" QM {:18s}= {:s} \n".format("Energy", ene_str)) log.flush() ene_name_str = "Energy" if gen_MM_charge else "EnergyNoElec" log.write(" MM {:18s}= {:10.5f} {:s}\n".format(ene_name_str, (total_ene/total_ene.unit ), str(total_ene.unit))) log.flush() #sim.context.setPositions(xyz * angstrom2nm) #state = sim.context.getState(getEnergy = True, getPositions=True) #sim_ene = state.getPotentialEnergy() #reporter.report(sim, state) #log.write(" MM {:18s}= {:9.4f} {:s}\n\n".format("App Energy", # (sim_ene.value_in_unit(simtk.unit.kilocalorie_per_mole)), # str(simtk.unit.kilocalorie_per_mole))) #log.flush() #sim.minimizeEnergy() #state = sim.context.getState(getEnergy = True, getPositions=True) #sim_min_ene = state.getPotentialEnergy() #reporter.report(sim, state) #log.write(" MM {:18s}= {:9.4f} {:s}\n\n".format("App Min Energy", # (sim_min_ene.value_in_unit(simtk.unit.kilocalorie_per_mole)), # str(simtk.unit.kilocalorie_per_mole))) #log.flush() ene_sum = total_ene #if('direct_vdw' not in mol_data['energy']['oFF']): # mol_data['energy']['oFF']['direct_vdw'] = [] #mol_data['energy']['oFF']['direct_vdw'].append(calc_vdw_direct(xyz, labels['vdW'])) #print(mol_data['energy']['oFF']['direct_vdw']) if('epot' not in mol_data['energy']['oFF']): mol_data['energy']['oFF']['epot'] = [] mol_data["energy"]['oFF']['epot'].append(total_ene) for component in ['vdW' ] + valence_params: energy_sans_component = calc_mm_energy(forcefield, top, xyz, component=component, charge=gen_MM_charge) energy_component = total_ene - energy_sans_component if(component not in mol_data["energy"]['oFF']): mol_data["energy"]['oFF'][component] = [] mol_data["energy"]['oFF'][component].append(energy_component) ene_sum -= energy_component log.write(" MM {:18s}= {:10.5f} {:s}\n".format(component, (energy_component/energy_component.unit ), str(energy_component.unit))) log.flush() if(gen_MM_charge): if('Electrostatics' not in mol_data['energy']['oFF']): mol_data['energy']['oFF']['Electrostatics'] = [] mol_data['energy']['oFF']['Electrostatics'].append(ene_sum) log.write(" MM {:18s}= {:10.5f} {:s}\n\n".format("Electrostatics", (ene_sum/ene_sum.unit ), str(ene_sum.unit))) #log.write(" MM {:18s}= {:10.5f} {:s}\n\n".format("Direct vdW", # (mol_data['energy']['oFF']['direct_vdw'][qcmol_i] / mol_data['energy']['oFF']['direct_vdw'][qcmol_i].unit ), # str(mol_data['energy']['oFF']['direct_vdw'][qcmol_i].unit))) log.flush() log.write("\n Conformation energy summary\n") if(len(ene) > 1): if(get_qm_energy): ene_str = "{:13.8f} +- {:13.8f} a.u.".format(np.mean(ene), np.std(ene)) log.write(" QM {:18s}= {:s} \n".format("Energy", ene_str)) log.write(" MM {:18s}= {:10.5f} +- {:10.5f} {:s}\n\n".format(ene_name_str, np.mean([i/i.unit for i in mol_data["energy"]['oFF']['epot']]), np.std([i/i.unit for i in mol_data["energy"]['oFF']['epot']]), str(mol_data["energy"]['oFF']['epot'][0].unit))) components_to_print = ['vdW' ] + valence_params if(gen_MM_charge): components_to_print += ['Electrostatics'] for component in components_to_print: log.write(" MM {:18s}= {:10.5f} +- {:10.5f} {:s}\n".format(component, np.mean([i/i.unit for i in mol_data["energy"]['oFF'][component]]), np.std([i/i.unit for i in mol_data["energy"]['oFF'][component]]), str(mol_data["energy"]['oFF'][component][0].unit))) #for x in labels.items(): # print(list(x[1])) column_index = {} hits = 0 if(stepTiming and get_mm_energy): elapsed=str(timedelta(seconds=time.time() - elapsed)) log.write("\n EnergyTime= {:s}\n\n".format(elapsed)) elapsed=time.time() for job in config: parameters = job['measure'] query = job['query'] #log.write("==== Fragment {:s}\n".format(query)) db['frag_info'].append({ "query": query, "map": job['splits'], "measurements": parameters, "minimum": minimum }) # job[mol].append({'query': smiles, # 'measure': parameters, # 'splits': splits, # 'matches': split_matches[mol] }) for complete_frag in job['matches']: for split in job['splits']: #for split in job['splits']: match = [complete_frag[i] for i in split] #print("Working on", match) remapped = mapped_idx[match] # print(mol_n, "\nMATCH", match) #calculate the requested measurements for measure_key in parameters: measure_fn = measure_vtable[measure_key] #if(measure_key == "Bonds" and measure_key in column_index): # print("COL KEY BEFORE MOD:", column_index[measure_key]) if(not (measure_key in mol_data)): mol_data[measure_key] = {} mol_data[measure_key]["indices"] = {} column_index[measure_key] = 0 elif(not empty): column_index[measure_key] = max([x['column_idx'] for x in mol_data[measure_key]["indices"].values()]) + 1 #if(measure_key == "Bonds"): # print("COL KEY AFTER MOD:", column_index[measure_key]) measure_db, label_db = build_measurement_db(atoms, match, measure_fn, \ oFF_label=True, labels=labels, measure_key=measure_key, \ improper_flag=("ImproperTorsions" in parameters ), empty=empty) db["oFF"].update(label_db) param_uniq = [] index_uniq = [] # add measurement to molecules data if ("values" not in mol_data[measure_key]): if(not empty): mol_data[measure_key]["values"] = measure_db["values"] index_uniq = measure_db['indices'].keys() else: for param in measure_db["indices"].keys(): #print("Considering", param) n_atoms = len(param) permutations = None if(n_atoms == 2): if(measure_key != "Bonds"): continue permutations = itertools.permutations(param) elif(n_atoms == 3): if(measure_key != "Angles"): continue permutations = [[x[0],param[1],x[1]] for x in itertools.permutations([param[0],param[2]])] elif(n_atoms == 4): if(measure_key == "ImproperTorsions"): permutations = [[x[0],param[1],x[1],x[2]] for x in itertools.permutations([param[0]]+list(param[2:]))] elif(measure_key == "ProperTorsions"): # cross our fingers that dihedrals are sequential permutations = [param, param[::-1]] else: continue exists = False for order_i in permutations: candidate = tuple(order_i) if(candidate in mol_data[measure_key]["indices"] ): exists=True break if(not exists): if(not empty): param_uniq.append(measure_db["indices"][param]["column_idx"]) #print("Not present", param) index_uniq.append(param) #measure_db["indices"][param]["column_idx"] = len(param_uniq) - 1 #else: #print("Already contained, not adding") if(not empty): #for uniq in param_uniq: #print(mol_data[measure_key]["values"].shape, np.atleast_2d(measure_db["values"][:,param_uniq]).shape) mol_data[measure_key]["values"] = np.hstack((mol_data[measure_key]["values"], np.atleast_2d(measure_db["values"][:,param_uniq]))) #print("index_uniq is", index_uniq) add_data = 0 for index_key in index_uniq: if(index_key[::-1] in mol_data[measure_key]["indices"]): index_key = index_idx[::-1] mol_data[measure_key]["indices"][index_key] = measure_db["indices"][index_key] mol_data[measure_key]["indices"][index_key].setdefault("oFF", None) if(not empty): mol_data[measure_key]["indices"][index_key]["column_idx"] = column_index[measure_key] column_index[measure_key] += 1 if(hessian is not None): for (i,j) in itertools.product(*[index_key]*2): if((i,j) not in mol_data["hessian"]["cartesian"]): mol_data["hessian"]["cartesian"][(i,j)] = hessian[:,(i*3):(i*3+3),(j*3):(j*3+3)] #.reshape(-1,9) prefix="frag" if(oFF_label and index_key in measure_db["indices"]): prefix=measure_db["indices"][index_key]['oFF'] frag_fname= os.path.join(out_dir,"mol_"+str(mol_n)+"."+prefix+"_"+hyphenate_int_tuple(index_key,1)+minstr+".hessian.nx9.dat") if save_hessian_frag else None #dump_hessians(hessian, frag_fname, comment=str(remapped[data_key]), idx=remapped[data_key]) #print("idx_key", index_key, "mapped_idx", mapped_idx, "remapped", remapped, "match", match) dump_hessians(hessian, frag_fname, comment=str(index_key), map=mapped_idx, idx=index_key ) #dump_hessians(hessian, frag_fname, comment=str(index_key), idx=index_key) #dump_hessians(hessian, frag_fname, comment=str(remapped), idx=remapped) ############################################## ######################################################################## prefix="frag" if(oFF_label): prefix=measure_db["indices"][index_key]['oFF'] #frag_fname= "mol_"+str(mol_n)+"."+prefix+"_"+"{:d}".format(match[0])+("-{:d}"*(len(match)-1)).format(*(match[1:]))+minstr+".xyz" frag_fname= os.path.join(out_dir,"mol_"+str(mol_n)+"."+prefix+"_"+hyphenate_int_tuple(index_key,1)+minstr+".xyz") if save_mol_frag else None #dump_qcmol_to_xyz(mols, frag_fname, comment=str(remapped), idx=remapped) dump_qcmol_to_xyz(mols, frag_fname, comment=str(index_key), idx=[mapped_idx[i] for i in index_key]) hessian_hits = [] if(oFF_label and (IC is not None)): no_hess_to_label_match = set() hits = 0 #print("starting IC labeling..") if(coordsys not in mol_data["hessian"]): mol_data["hessian"][coordsys] = {} mol_data["hessian"][coordsys]['IC'] = IC mol_data["hessian"][coordsys]['values'] = {} prune_hessian = False if(prune_hessian): for measure_key in valence_params: if(measure_key not in mol_data): continue for (idx_i,index_key_i) in enumerate(mol_data[measure_key]['indices'].keys()): print("trying", index_key_i, mol_data[measure_key]['indices'][index_key_i]['oFF'], end=" ") hess_key_i = tuple([x+1 for x in index_key_i]) exists, i = oFF_key_in_IC_Hessian(hess_key_i, IC.Internals) if(exists): hessian_hits.append(i) hits+=1 print("HIT", i, "total", hits) if(index_key_i not in mol_data["hessian"][coordsys]['values']): mol_data["hessian"][coordsys]['values'][index_key_i] = {} mol_data["hessian"][coordsys]['values'][index_key_i][index_key_i] = ic_hess[i, i] for j,Internal in enumerate(IC.Internals): hess_key_j = tuple(str(Internal).split()[1].split("-")) index_key_j = tuple([int(x)-1 for x in hess_key_j]) mol_data["hessian"][coordsys]['values'][index_key_i][index_key_j] = ic_hess[i, j] if(index_key_j not in mol_data["hessian"][coordsys]['values']): mol_data["hessian"][coordsys]['values'][index_key_j] = {} mol_data["hessian"][coordsys]['values'][index_key_j][index_key_j] = ic_hess[j, j] mol_data["hessian"][coordsys]['values'][index_key_j][index_key_i] = ic_hess[j, i] else: #print("MISS", i) no_hess_to_label_match.add(hess_key_i) else: for i,Internal in enumerate(IC.Internals): hess_key_i = tuple(str(Internal).split()[1].split("-")) index_key_i = tuple([int(x)-1 for x in hess_key_i]) hessian_hits.append(i) if(index_key_i not in mol_data["hessian"][coordsys]['values']): mol_data["hessian"][coordsys]['values'][index_key_i] = {} for j,Internal in enumerate(IC.Internals): hess_key_j = tuple(str(Internal).split()[1].split("-")) index_key_j = tuple([int(x)-1 for x in hess_key_j]) mol_data["hessian"][coordsys]['values'][index_key_i][index_key_j] = ic_hess[i, j] if(index_key_j not in mol_data["hessian"][coordsys]['values']): mol_data["hessian"][coordsys]['values'][index_key_j] = {} mol_data["hessian"][coordsys]['values'][index_key_j][index_key_j] = ic_hess[j, j] mol_data["hessian"][coordsys]['values'][index_key_j][index_key_i] = ic_hess[j, i] # print the parameter search results if(oFF_label): total_keys_with_labels = 0 total_keys_any_labels = 0 for measure_key in valence_params: counts = {} if(measure_key not in mol_data): continue all_params = [param['oFF'] for param in list(mol_data[measure_key]['indices'].values())] for param in all_params: if(param is None): param = "None" counts.setdefault(param, 0) counts[param] += 1 if(param[1] != "0"): total_keys_with_labels += 1 total_keys_any_labels += 1 found_labels = list(counts.keys()) label_sort_idx = argsort_labels(found_labels) label_str = ("{:3d} {:3s} "*len(counts.keys())).format(*flatten_list([(counts[found_labels[i]],found_labels[i]) for i in label_sort_idx])) log.write(" {:18s}= {:3d} | {:s}\n".format(measure_key, sum([val for val in counts.values()]), label_str)) all_labels = 0 for x in valence_params: if(x in labels): all_labels += sum([1 for l in labels[x]]) log.write("\n oFF label coverage: {:8d}/{:8d}\n".format(total_keys_with_labels, all_labels)) if( total_keys_with_labels < all_labels): if(verbose): log.write(" oFF terms not mapped:\n") for param in valence_params: for term in labels[param]: if(param in mol_data): #print(term, term in mol_data[param]["indices"].keys() ) #print(term[::-1], term[::-1] in mol_data[param]["indices"].keys() ) if(term in mol_data[param]["indices"]): continue elif(term[::-1] in mol_data[param]["indices"]): continue term_str=hyphenate_int_tuple(term, 1) log.write(" {:5s} {:s}\n".format(param, term_str)) if(IC is not None): log.write("\n oFF map to IC Hessian: {:8d}/{:8d}\n".format(len(hessian_hits), len(IC.Internals))) if(len(hessian_hits) < len(IC.Internals)): #print("hessian_hits", sorted(hessian_hits)) hessian_misses = [x for x in range(len(IC.Internals)) if x not in hessian_hits] #print("hessian_misses", hessian_misses) #[print(str(internal)) for internal in IC.Internals] log.write(" IC Hessian terms not mapped: {:d}\n".format(len(hessian_misses))) if(verbose): [log.write(" {:s}\n".format(str(IC.Internals[term]))) for term in hessian_misses] log.write("\n") # add this mol to the main db and save to disk db["mol_data"][real_smiles] = mol_data if(db_out is not None): if(db_out.split('.')[-1] == "npz"): np.savez(os.path.join(out_dir,db_out), data=np.arange(items), **db) else: with open(os.path.join(out_dir,db_out),'wb') as fid: pickle.dump(db, fid) elapsed=str(timedelta(seconds=time.time() - elapsed)) result_time = str(timedelta(seconds=time.time() - result_time)) if(stepTiming): log.write(" QueryTime= {:s}\n".format(queryelapsed)) log.write(" AnalysisTime= {:s}\n".format(elapsed)) log.write(" ResultTime= {:s}\n\n".format(result_time)) else: log.write("\n\n") totaltime=str(timedelta(seconds=time.time() - totaltime)) if(totalTiming): log.write("TotalTime= {:s}\n".format(totaltime)) return db def calc_bond_length(atoms, idx): """calculates distance from first atom to remaining atoms""" return np.linalg.norm(atoms[:,idx[1],:] - atoms[:,idx[0],:], axis=1) def calc_angle_degree(atoms, idx): """calculates angle between origin and consecutive atom pairs""" mags = np.linalg.norm(atoms[:,[idx[0],idx[2]],:] - atoms[:,idx[1],:][:,np.newaxis,:], axis=2) atoms_trans = atoms - atoms[:,idx[1],:][:,np.newaxis,:] unit = atoms_trans[:,[idx[0],idx[2]],:] / mags[:,:,np.newaxis] costheta = (unit[:,0,:] * unit[:,1,:]).sum(axis=1) np.clip(costheta, -1.0, 1.0, out=costheta) return np.arccos(costheta)*180/np.pi def calc_proper_torsion(atoms, idx): """calculates proper torsion of [i, j, k, l]""" noncenter = [idx[0]]+idx[2:] mags = np.linalg.norm(atoms[:,noncenter,:] - atoms[:,idx[1],:][:,np.newaxis,:], axis=2) atoms_trans = atoms - atoms[:,idx[1],:][:,np.newaxis,:] unit = atoms_trans[:,noncenter,:] / mags[:,:,np.newaxis] #these are all Nx3 v0 = -unit[:,0,:] v1 = unit[:,1,:] v2 = unit[:,2,:]-unit[:,1,:] w1 = np.cross(v0,v1) w2 = np.cross(v1,v2) w1_mag = np.linalg.norm(w1,axis=1) w2_mag = np.linalg.norm(w2,axis=1) mask = (w1_mag * w2_mag) > 0 # should be Nx1 costhetas costheta = np.ones((atoms.shape[0])) costheta[mask]= (w1[mask] * w2[mask]).sum(axis=1) / (w1_mag[mask]*w2_mag[mask]) np.clip(costheta, -1.0, 1.0, out=costheta) theta = np.arccos(costheta)*180/np.pi #distance = np.zeros((atoms.shape[0])) #distance[mask] = ((w2[mask]*v0[mask]).sum(axis=1)/w2_mag[mask]) ##theta[distance > 0] = 180 - theta[distance > 0] theta[np.abs(theta) >= 180] %= 180.0 return theta def calc_improper_torsion(atoms, idx, match_geometric=True): """calculates improper torsion of [i, center, j, k]""" noncenter = [idx[0]]+idx[2:] mags = np.linalg.norm(atoms[:,noncenter,:] - atoms[:,idx[1],:][:,np.newaxis,:], axis=2) atoms_trans = atoms - atoms[:,idx[1],:][:,np.newaxis,:] unit = atoms_trans[:,noncenter,:] / mags[:,:,np.newaxis] #these are all Nx3 v0 = -unit[:,0,:] v1 = unit[:,1,:]-unit[:,0,:] v2 = unit[:,1,:]-unit[:,2,:] w1 = np.cross(v0,v1) w2 = np.cross(v1,v2) w1_mag = np.linalg.norm(w1,axis=1) w2_mag =
np.linalg.norm(w2,axis=1)
numpy.linalg.norm
""" Path Planning Sample Code with Closed loop RRT for car like robot. author: AtsushiSakai(@Atsushi_twi) """ import random import math import copy import numpy as np import pure_pursuit import matplotlib.pyplot as plt import sys sys.path.append("../ReedsSheppPath/") try: import reeds_shepp_path_planning import unicycle_model except: raise show_animation = True target_speed = 10.0 / 3.6 STEP_SIZE = 0.1 class RRT(): """ Class for RRT Planning """ def __init__(self, start, goal, obstacleList, randArea, maxIter=200): """ Setting Parameter start:Start Position [x,y] goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Ramdom Samping Area [min,max] """ self.start = Node(start[0], start[1], start[2]) self.end = Node(goal[0], goal[1], goal[2]) self.minrand = randArea[0] self.maxrand = randArea[1] self.obstacleList = obstacleList self.maxIter = maxIter def try_goal_path(self): goal = Node(self.end.x, self.end.y, self.end.yaw) newNode = self.steer(goal, len(self.nodeList) - 1) if newNode is None: return if self.CollisionCheck(newNode, self.obstacleList): # print("goal path is OK") self.nodeList.append(newNode) def Planning(self, animation=True): """ Pathplanning animation: flag for animation on or off """ self.nodeList = [self.start] self.try_goal_path() for i in range(self.maxIter): rnd = self.get_random_point() nind = self.GetNearestListIndex(self.nodeList, rnd) newNode = self.steer(rnd, nind) # print(newNode.cost) if newNode is None: continue if self.CollisionCheck(newNode, self.obstacleList): nearinds = self.find_near_nodes(newNode) newNode = self.choose_parent(newNode, nearinds) if newNode is None: continue self.nodeList.append(newNode) self.rewire(newNode, nearinds) self.try_goal_path() if animation and i % 5 == 0: self.DrawGraph(rnd=rnd) # generate coruse path_indexs = self.get_best_last_indexs() flag, x, y, yaw, v, t, a, d = self.search_best_feasible_path( path_indexs) return flag, x, y, yaw, v, t, a, d def search_best_feasible_path(self, path_indexs): print("Start search feasible path") best_time = float("inf") fx = None # pure pursuit tracking for ind in path_indexs: path = self.gen_final_course(ind) flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible( path) if flag and best_time >= t[-1]: print("feasible path is found") best_time = t[-1] fx, fy, fyaw, fv, ft, fa, fd = x, y, yaw, v, t, a, d print("best time is") print(best_time) if fx: fx.append(self.end.x) fy.append(self.end.y) fyaw.append(self.end.yaw) return True, fx, fy, fyaw, fv, ft, fa, fd return False, None, None, None, None, None, None, None def calc_tracking_path(self, path): path = np.array(path[::-1]) ds = 0.2 for i in range(10): lx = path[-1, 0] ly = path[-1, 1] lyaw = path[-1, 2] move_yaw = math.atan2(path[-2, 1] - ly, path[-2, 0] - lx) if abs(lyaw - move_yaw) >= math.pi / 2.0: print("back") ds *= -1 lstate = np.array( [lx + ds * math.cos(lyaw), ly + ds * math.sin(lyaw), lyaw]) # print(lstate) path =
np.vstack((path, lstate))
numpy.vstack
import matplotlib.pyplot as plt import numpy as np from scipy import linalg from scipy import signal import math from matplotlib import rc __author__ = 'ernesto' # if use latex or mathtext rc('text', usetex=False) rc('mathtext', fontset='cm') ########################## #### ESTE ES EL USADO #### ########################## # auxiliar function for plot ticks of equal length in x and y axis despite its scales. def convert_display_to_data_coordinates(transData, length=10): # create a transform which will take from display to data coordinates inv = transData.inverted() # transform from display coordinates to data coordinates in x axis data_coords = inv.transform([(0, 0), (length, 0)]) # get the length of the segment in data units yticks_len = data_coords[1, 0] - data_coords[0, 0] # transform from display coordinates to data coordinates in y axis data_coords = inv.transform([(0, 0), (0, length)]) # get the length of the segment in data units xticks_len = data_coords[1, 1] - data_coords[0, 1] return xticks_len, yticks_len def sample_crosscorrelation(u, x, p): n = len(x) r = np.zeros(p+1) for i in np.arange(p+1): r[i] = np.mean(u[:n-i] * x[i:]) return r #### Parametros del problema #### # Orden del filtro FIR a identificar p = 11 # Largo de la señal de entrada N = 1000 # Número de experimentos para calcular el error cuadrático medio de la estimacion nexp = 10000 # Potencia de la señal de entrada pot_u1 = 1 # Filtro a estimar (FIR con h[n] triangular) h = signal.triang(p) # Potencia de las señales de salida del filtro pot_x1 = pot_u1 * np.sum(np.square(h)) # Potencia del ruido aditivo pot_w = pot_x1 # para snr = 0 dB # pot_w = 1 # Coeficientes del filtro IIR de orden dos para generar el ruido coloreado. b = [1] a = [1, -0.8, 0.64] # polos de magnitud 0.8 y fase pi/3 #a = [1, -0.9, 0.81] # polos de magnitud 0.9 y fase pi/3 # Potencia del ruido coloreado (proceso AR(2)) pot_u2 = (1 + a[2]) / ((1 - a[2]) * ((1 + a[2])**2 - a[1]**2)) # Error cuadratico medio de la estimacion de cada coeficiente mse_h1 = np.zeros(p) mse_h2 = np.zeros(p) r_uu2_accum = np.zeros(p) #np.random.seed(42) np.random.seed(46) for i in np.arange(nexp): ###### Entradas ### 1 - WGN. u1 = math.sqrt(pot_u1) * np.random.randn(N) ### 2 - Ruido coloreado, obtenido mediante el filtrado de ruido blanco con un filtro IIR de orden 2 (Proceso ### autorregresivo de orden 2, AR(2)) # Ruido blanco filtrado u2 = signal.lfilter(b, a, np.random.randn(N)) # normalización a potencia pot_u1 u2 = math.sqrt(pot_u1 / pot_u2) * u2 ###### Salida del sistema a identificar x1 = signal.lfilter(h, 1, u1) x2 = signal.lfilter(h, 1, u2) ###### Salidas observadas contaminadas con ruido blanco, SNR = 0 dB # Ruido aditivo w = math.sqrt(pot_w) * np.random.randn(N) # Salidas observadas x1_obs = x1 + w x2_obs = x2 + w ###### Cálculo de los estimadores MVU de los coeficientes del sistema desconocido ###### Autocorrelacion de la entrada y correlación cruzada entre la entrada y la salida en cada caso ### Entrada u1[n] ### Autocorrelacion r_uu1 = sample_crosscorrelation(u1, u1, p-1) # Correlacion cruzada entre u1[n] y x[n] r_u1x = sample_crosscorrelation(u1, x1_obs, p-1) # Matriz de autocorrelacion Ru1 = linalg.toeplitz(r_uu1) # Estimador de los coeficientes h1_est = linalg.solve(Ru1, r_u1x) ### Entrada u2[n] ### Autocorrelacion r_uu2 = sample_crosscorrelation(u2, u2, p-1) # Correlacion cruzada entre u1[n] y x[n] r_u2x = sample_crosscorrelation(u2, x2_obs, p-1) # Matriz de autocorrelacion Ru2 = linalg.toeplitz(r_uu2) # Estimador de los coeficientes h2_est = linalg.solve(Ru2, r_u2x) # Calculo del error cuadrático medio de la estimacion mse_h1 = mse_h1 + np.square(h1_est - h) mse_h2 = mse_h2 + np.square(h2_est - h) # Calculo de la autocorrelacion de u2 como promedio en todos los experimentos. No se usa, es solo para verificacion. r_uu2_accum = r_uu2_accum + r_uu2 mse_h1 = mse_h1 / nexp mse_h2 = mse_h2 / nexp r_uu2_accum = r_uu2_accum / nexp ###### Cálculo analítico de la psd y la autocorrelación del ruido coloreado # numero de muestras de la fft nfft = 1024 # Respuesta en frecuencia del filtro generador del ruido coloreado w, U2 = signal.freqz(b, a, worN=nfft, whole=True) # PSD del ruido coloreado psd_u2 = np.square(np.absolute(U2)) # Autocorrelacion del ruido coloreado r_uu2_analitic = np.real(np.fft.ifft(psd_u2)) pot_u2_alt = r_uu2_analitic[0] r_uu2_analitic = r_uu2_analitic / pot_u2_alt # Normalizacion a potencia unitaria psd_u2 = psd_u2[:nfft//2] / pot_u2_alt w = w[:nfft//2] ## Gráficas # comparacion de la autocorrelación analitica y muestral (para verificación) plt.figure(0) plt.plot(np.arange(p), r_uu2_analitic[:p], 'sk') plt.plot(np.arange(p), r_uu2_accum[:p], 'sr') plt.title("Autocorrelación muestral y autocorrelación analítica") plt.xlabel("Retardo (muestras)") plt.ylabel("Amplitud") plt.legend(["analítica", "muestral"]) ### Respuesta la impulso del filtro a identificar nmin = 0 nmax = p-1 ymin = 0 ymax = np.amax(h) delta_n = 1 nmin_ax = nmin - delta_n nmax_ax = nmax + 2 * delta_n delta_y = 0.3 ymax_ax = ymax + delta_y ymin_ax = ymin - delta_y n = np.arange(nmin, nmax + 1) baseline = -0.25 fontsize1 = 12 fontsize2 = 14 yt_sep = 0.12 fig = plt.figure(1, figsize=(6, 2), frameon=False) plt.xlim(nmin_ax, nmax_ax) plt.ylim(ymin_ax, ymax_ax) plt.annotate("", xytext=(nmin_ax, 0), xycoords='data', xy=(nmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) (markers, stemlines, bl) = plt.stem(n, h, linefmt='k', markerfmt='sk', use_line_collection=True) plt.setp(markers, markersize=4.5) plt.setp(bl, visible=False) plt.text(nmax_ax, baseline, '$k$', fontsize=fontsize2, ha='right', va='baseline') for i in np.arange(1, p): plt.text(i, baseline, '${}$'.format(i), fontsize=fontsize1, ha='center', va='baseline') i = 0 plt.text(i-yt_sep, baseline, '${}$'.format(i), fontsize=fontsize1, ha='right', va='baseline') plt.text(0.3, ymax_ax, '$h[k]$', fontsize=fontsize2, ha='left', va='center') plt.plot([0, 0.15], [1, 1], 'k') plt.text(-yt_sep, 1, '$1$', fontsize=fontsize1, ha='right', va='center') plt.axis('off') plt.savefig('system_identification_impulse_response.pdf', bbox_inches='tight') # length of the ticks for all plots (6 pixels) display_length = 6 # in pixels ### PSD y autocorrelación de la entrada u2[n] (ruido coloreado) fig = plt.figure(2, figsize=(6, 5), frameon=False) # PSD de u2[n] xmin = 0 xmax = math.pi ymin = 0 ymax = np.amax(psd_u2) delta_x = 0.35 xmin_ax = xmin - 0.1 xmax_ax = xmax + delta_x delta_y = 1.2 ymin_ax = ymin - delta_y ymax_ax = ymax + delta_y baseline = -1 ylm = -0.07 ax = plt.subplot2grid((4, 1), (0, 0), rowspan=2, colspan=1) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.plot(w, psd_u2, color='k', linewidth=2) plt.text(xmax_ax, baseline, '$\omega\,\mathrm{(rad)}$', fontsize=fontsize2, ha='center', va='baseline') # xticks plt.plot([math.pi/3, math.pi/3], [0, xtl], 'k') plt.plot([math.pi/2, math.pi/2], [0, xtl], 'k') plt.plot([math.pi, math.pi], [0, xtl], 'k') plt.plot([math.pi/3, math.pi/3], [0, ymax], 'k--', lw=1) # xticks labels plt.text(math.pi/3, baseline, '$\dfrac{\pi}{3}$', fontsize=fontsize2, ha='center', va='baseline') plt.text(math.pi/2, baseline, '$\dfrac{\pi}{2}$', fontsize=fontsize2, ha='center', va='baseline') plt.text(math.pi, baseline, '$\pi$', fontsize=fontsize2, ha='center', va='baseline') plt.text(-ylm/2, baseline, '$0$', fontsize=fontsize2, ha='left', va='baseline') # yticks and labels for i in np.arange(0, ymax, 4): plt.plot([0, ytl], [i, i], 'k') plt.text(ylm, i, '${:.0f}$'.format(i), fontsize=fontsize2, ha='right', va='center') # y axis label plt.text(-ylm, ymax_ax, '$S_{u_2u_2}(\omega)}$', fontsize=fontsize2, ha='left', va='center') plt.axis('off') # Autocorrelación de u2[n] # se usa la misma escala que la PSD para homogeneidad de las gráficas. ymax = ymax / 2 ymax_ax = (ymax_ax - ymin_ax) / 2 ymin_ax = -ymax_ax baseline = -1.1 ax = plt.subplot2grid((4, 1), (2, 0), rowspan=2, colspan=1) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) plt.annotate("", xytext=(xmin, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) # numero de muestras para las las gráficas M = 31 n = np.linspace(0, xmax, M) # factor de normalizacion de la autocorrelacion fnorm = ymax / np.amax(np.absolute(r_uu2_analitic)) (markers, stemlines, bl) = plt.stem(n, r_uu2_analitic[:M] * fnorm, linefmt='k', markerfmt='sk', use_line_collection=True) plt.setp(markers, markersize=4.5) plt.setp(bl, visible=False) plt.text(xmax_ax, baseline, '$k$', fontsize=fontsize2, ha='right', va='baseline') # plt.plot([math.pi, math.pi], [0, xtl], 'k') # xtick and xticks labels i = [10, 20, 30] for ii in i: plt.text(ii * xmax / (M - 1), baseline, '${:.0f}$'.format(ii), fontsize=fontsize2, ha='center', va='baseline') tt = ii * math.pi / 30 plt.plot([tt, tt], [0, xtl], 'k') # yticks and labels for i in np.arange(-1, 2): plt.plot([0, ytl], [i * fnorm, i * fnorm], 'k') plt.text(ylm, i * fnorm, '${:.0f}$'.format(i), fontsize=fontsize2, ha='right', va='center') # y axis label plt.text(-ylm, ymax_ax, '$r_{u_2u_2}[k]$', fontsize=fontsize2, ha='left', va='center') plt.axis('off') plt.savefig('system_identification_u2_input_v2.pdf', bbox_inches='tight') ### Realización de las entradas u1[n] y u2[v] fig = plt.figure(3, figsize=(9, 5), frameon=False) # u1[n] # número de muestras para las las gráficas M = 101 xmin = 0 xmax = M-1 ymin = -3 ymax = 3 delta_x = 7 xmin_ax = xmin - 2 xmax_ax = xmax + delta_x delta_y = 0 ymin_ax = ymin - delta_y ymax_ax = ymax + delta_y baseline = -0.7 ylm = -1.5 ax = plt.subplot2grid((4, 1), (0, 0), rowspan=2, colspan=1) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) (markers, stemlines, bl) = plt.stem(np.arange(M), u1[:M], linefmt='k', markerfmt='sk', use_line_collection=True) plt.setp(markers, markersize=3.5) plt.setp(stemlines, linewidth=1) plt.setp(bl, visible=False) for i in np.arange(-2, 3): plt.plot([0, ytl], [i, i], 'k') plt.text(ylm, i, '${:.0f}$'.format(i), fontsize=fontsize1, ha='right', va='center') plt.text(xmax_ax, baseline, '$n$', fontsize=fontsize2, ha='right', va='baseline') plt.text(-ylm, ymax_ax, '$u_1[n]$', fontsize=fontsize2, ha='left', va='center') plt.axis('off') ax = plt.subplot2grid((4, 1), (2, 0), rowspan=2, colspan=1) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) (markers, stemlines, bl) = plt.stem(np.arange(M), u2[:M], linefmt='k', markerfmt='sk', use_line_collection=True) plt.setp(markers, markersize=3.5) plt.setp(stemlines, linewidth=1) plt.setp(bl, visible=False) for i in np.arange(-2, 3): plt.plot([0, ytl], [i, i], 'k') plt.text(ylm, i, '${:.0f}$'.format(i), fontsize=fontsize1, ha='right', va='center') plt.text(xmax_ax, baseline, '$n$', fontsize=fontsize2, ha='right', va='baseline') plt.text(-ylm, ymax_ax, '$u_2[n]$', fontsize=fontsize2, ha='left', va='center') plt.axis('off') plt.savefig('system_identification_inputs_v2.pdf', bbox_inches='tight') ### Realización de las salidas x1[n] y x2[v] fig = plt.figure(4, figsize=(9, 5), frameon=False) ymin = -8 ymax = 8 delta_y = 0 ymin_ax = ymin - delta_y ymax_ax = ymax + delta_y baseline = -0.7 * 8 / 3 ylm = -1.5 ax = plt.subplot2grid((4, 1), (0, 0), rowspan=2, colspan=1) plt.xlim(xmin_ax, xmax_ax) plt.ylim(ymin_ax, ymax_ax) # horizontal and vertical ticks length xtl, ytl = convert_display_to_data_coordinates(ax.transData, length=display_length) # axis arrows plt.annotate("", xytext=(xmin, 0), xycoords='data', xy=(xmax_ax, 0), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) plt.annotate("", xytext=(0, ymin_ax), xycoords='data', xy=(0, ymax_ax), textcoords='data', arrowprops=dict(width=0.1, headwidth=6, headlength=8, facecolor='black', shrink=0.002)) (markers, stemlines, bl) = plt.stem(np.arange(M), x1[:M], linefmt='k', markerfmt='sk', use_line_collection=True) plt.setp(markers, markersize=3.5) plt.setp(stemlines, linewidth=1) plt.setp(bl, visible=False) (markers, stemlines, bl) = plt.stem(
np.arange(M)
numpy.arange
import networkx as nx import numpy as np import scipy.sparse.linalg as lg from gem.embedding.static_graph_embedding import StaticGraphEmbedding class LaplacianEigenmaps(StaticGraphEmbedding): hyper_params = { 'method_name': 'lap_eigmap_svd' } def __init__(self, *args, **kwargs): """ Initialize the LaplacianEigenmaps class Args: d: dimension of the embedding """ super(LaplacianEigenmaps, self).__init__(*args, **kwargs) def learn_embedding(self, graph=None, is_weighted=False, no_python=False): if not graph: raise ValueError('graph needed') graph = graph.to_undirected() l_sym = nx.normalized_laplacian_matrix(graph) w, v = lg.eigs(l_sym, k=self._d + 1, which='SM') idx = np.argsort(w) # sort eigenvalues w = w[idx] v = v[:, idx] self._X = v[:, 1:] p_d_p_t = np.dot(v, np.dot(np.diag(w), v.T)) eig_err = np.linalg.norm(p_d_p_t - l_sym) print('Laplacian matrix recon. error (low rank): %f' % eig_err) return self._X.real def get_edge_weight(self, i, j): return np.exp( -np.power(
np.linalg.norm(self._X[i, :] - self._X[j, :])
numpy.linalg.norm
import numpy as np import scipy from scipy.interpolate import BSpline def main(): #test use rmin = 0 rmax = 4 nbins = 5 order = 2 bases = get_bases(rmin, rmax, nbins, order) def write_bases(rmin, rmax, nbins, saveto, ncont=1000, **kwargs): bases = get_bases(rmin, rmax, nbins, ncont=ncont, **kwargs) np.savetxt(saveto, bases.T) return saveto # get knot vectors def get_kvs(rmin, rmax, nbins, order): nknots = order+2 kvs = np.empty((nbins, nknots)) width = (rmax-rmin)/(nbins-order) for i in range(order): val = i+1 kvs[i,:] = np.concatenate((np.full(nknots-val, rmin), np.linspace(rmin+width, rmin+width*val, val))) kvs[nbins-i-1] = np.concatenate((np.linspace(rmax-width*val, rmax-width, val), np.full(nknots-val, rmax))) for j in range(nbins-2*order): idx = j+order kvs[idx] = rmin+width*j + np.arange(0,nknots)*width return kvs def get_bases(rmin, rmax, nbins, order=None, ncont=1000): if not order: print("No order given, defaulting to 1 (linear)") if nbins<order*2: # does it have to be 2*order + 1? seems fine for piecewise, but for higher orders? raise ValueError("nbins must be at least twice the order") kvs = get_kvs(rmin, rmax, nbins, order) rcont =
np.linspace(rmin, rmax, ncont)
numpy.linspace
# Copyright (c) 2015, 2014 Computational Molecular Biology Group, Free University # Berlin, 14195 Berlin, Germany. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest import numpy as np import os import mdtraj from itertools import combinations, product # from pyemma.coordinates.data import featurizer as ft from pyemma.coordinates.data.featurizer import MDFeaturizer, CustomFeature, _parse_pairwise_input # from pyemma.coordinates.tests.test_discretizer import create_water_topology_on_disc path = os.path.join(os.path.split(__file__)[0], 'data') xtcfile = os.path.join(path, 'bpti_mini.xtc') pdbfile = os.path.join(path, 'bpti_ca.pdb') asn_leu_pdb = """ ATOM 559 N ASN A 69 19.168 -0.936 -10.274 1.00 27.50 N ATOM 560 CA ASN A 69 20.356 -0.049 -10.419 1.00 25.52 C ATOM 561 C ASN A 69 21.572 -0.418 -9.653 1.00 24.26 C ATOM 562 O ASN A 69 22.687 -0.336 -10.171 1.00 24.33 O ATOM 563 CB ASN A 69 19.965 1.410 -10.149 1.00 26.49 C ATOM 564 CG ASN A 69 18.932 1.881 -11.124 1.00 26.35 C ATOM 565 OD1 ASN A 69 18.835 1.322 -12.224 1.00 26.77 O ATOM 566 ND2 ASN A 69 18.131 2.864 -10.745 1.00 24.85 N ATOM 567 N LEU A 70 21.419 -0.824 -8.404 1.00 23.02 N ATOM 568 CA LEU A 70 22.592 -1.275 -7.656 1.00 23.37 C ATOM 569 C LEU A 70 23.391 -2.325 -8.448 1.00 25.78 C ATOM 570 O LEU A 70 24.647 -2.315 -8.430 1.00 25.47 O ATOM 571 CB LEU A 70 22.202 -1.897 -6.306 1.00 22.17 C ATOM 572 CG LEU A 70 23.335 -2.560 -5.519 1.00 22.49 C ATOM 573 CD1 LEU A 70 24.578 -1.665 -5.335 1.00 22.56 C ATOM 574 CD2 LEU A 70 22.853 -3.108 -4.147 1.00 24.47 C """ *2 ### asn-leu-asn-leu def verbose_assertion_minrmsd(ref_Y, test_Y, test_obj): for jj in np.arange(test_Y.shape[1]): ii = np.argmax(np.abs(ref_Y-test_Y[:,jj])) assert np.allclose(ref_Y, test_Y[:,jj], atol=test_obj.atol), \ 'Largest discrepancy between reference (ref_frame %u)' \ ' and test: %8.2e, for the pair %f, %f at frame %u'%\ (test_obj.ref_frame, (ref_Y-test_Y[:,jj])[ii], ref_Y[ii], test_Y[ii,jj], ii) class TestFeaturizer(unittest.TestCase): @classmethod def setUpClass(cls): import tempfile cls.asn_leu_pdbfile = tempfile.mkstemp(suffix=".pdb")[1] with open(cls.asn_leu_pdbfile, 'w') as fh: fh.write(asn_leu_pdb) cls.asn_leu_traj = tempfile.mktemp(suffix='.xtc') # create traj for asn_leu n_frames = 4001 traj = mdtraj.load(cls.asn_leu_pdbfile) ref = traj.xyz new_xyz = np.empty((n_frames, ref.shape[1], 3)) noise = np.random.random(new_xyz.shape) new_xyz[:, :,: ] = noise + ref traj.xyz=new_xyz traj.time=np.arange(n_frames) traj.save(cls.asn_leu_traj) super(TestFeaturizer, cls).setUpClass() @classmethod def tearDownClass(cls): try: os.unlink(cls.asn_leu_pdbfile) except EnvironmentError: pass super(TestFeaturizer, cls).tearDownClass() def setUp(self): self.pdbfile = pdbfile self.traj = mdtraj.load(xtcfile, top=self.pdbfile) self.feat = MDFeaturizer(self.pdbfile) self.atol = 1e-5 self.ref_frame = 0 self.atom_indices = np.arange(0, self.traj.n_atoms/2) def test_select_backbone(self): inds = self.feat.select_Backbone() def test_select_all(self): self.feat.add_all() assert (self.feat.dimension() == self.traj.n_atoms * 3) refmap = np.reshape(self.traj.xyz, (len(self.traj), self.traj.n_atoms * 3)) assert (np.all(refmap == self.feat.map(self.traj))) def test_select(self): sel = np.array([1, 2, 5, 20], dtype=int) self.feat.add_selection(sel) assert (self.feat.dimension() == sel.shape[0] * 3) refmap = np.reshape(self.traj.xyz[:, sel, :], (len(self.traj), sel.shape[0] * 3)) assert (np.all(refmap == self.feat.map(self.traj))) def test_distances(self): sel = np.array([1, 2, 5, 20], dtype=int) pairs_expected = np.array([[1, 5], [1, 20], [2, 5], [2, 20], [5, 20]]) pairs = self.feat.pairs(sel, excluded_neighbors=2) assert(pairs.shape == pairs_expected.shape) assert(np.all(pairs == pairs_expected)) self.feat.add_distances(pairs, periodic=False) # unperiodic distances such that we can compare assert(self.feat.dimension() == pairs_expected.shape[0]) X = self.traj.xyz[:, pairs_expected[:, 0], :] Y = self.traj.xyz[:, pairs_expected[:, 1], :] D = np.sqrt(np.sum((X - Y) ** 2, axis=2)) assert(np.allclose(D, self.feat.map(self.traj))) def test_inverse_distances(self): sel = np.array([1, 2, 5, 20], dtype=int) pairs_expected = np.array([[1, 5], [1, 20], [2, 5], [2, 20], [5, 20]]) pairs = self.feat.pairs(sel, excluded_neighbors=2) assert(pairs.shape == pairs_expected.shape) assert(np.all(pairs == pairs_expected)) self.feat.add_inverse_distances(pairs, periodic=False) # unperiodic distances such that we can compare assert(self.feat.dimension() == pairs_expected.shape[0]) X = self.traj.xyz[:, pairs_expected[:, 0], :] Y = self.traj.xyz[:, pairs_expected[:, 1], :] Dinv = 1.0/np.sqrt(np.sum((X - Y) ** 2, axis=2)) assert(np.allclose(Dinv, self.feat.map(self.traj))) def test_ca_distances(self): sel = self.feat.select_Ca() assert(np.all(sel == range(self.traj.n_atoms))) # should be all for this Ca-traj pairs = self.feat.pairs(sel, excluded_neighbors=0) self.feat.add_distances_ca(periodic=False) # unperiodic distances such that we can compare assert(self.feat.dimension() == pairs.shape[0]) X = self.traj.xyz[:, pairs[:, 0], :] Y = self.traj.xyz[:, pairs[:, 1], :] D = np.sqrt(np.sum((X - Y) ** 2, axis=2)) assert(np.allclose(D, self.feat.map(self.traj))) def test_contacts(self): sel = np.array([1, 2, 5, 20], dtype=int) pairs_expected = np.array([[1, 5], [1, 20], [2, 5], [2, 20], [5, 20]]) pairs = self.feat.pairs(sel, excluded_neighbors=2) assert(pairs.shape == pairs_expected.shape) assert(np.all(pairs == pairs_expected)) self.feat.add_contacts(pairs, threshold=0.5, periodic=False) # unperiodic distances such that we can compare assert(self.feat.dimension() == pairs_expected.shape[0]) X = self.traj.xyz[:, pairs_expected[:, 0], :] Y = self.traj.xyz[:, pairs_expected[:, 1], :] D = np.sqrt(np.sum((X - Y) ** 2, axis=2)) C = np.zeros(D.shape) I = np.argwhere(D <= 0.5) C[I[:, 0], I[:, 1]] = 1.0 assert(np.allclose(C, self.feat.map(self.traj))) def test_angles(self): sel = np.array([[1, 2, 5], [1, 3, 8], [2, 9, 10]], dtype=int) self.feat.add_angles(sel) assert(self.feat.dimension() == sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) self.assertEqual(len(self.feat.describe()), self.feat.dimension()) def test_angles_deg(self): sel = np.array([[1, 2, 5], [1, 3, 8], [2, 9, 10]], dtype=int) self.feat.add_angles(sel, deg=True) assert(self.feat.dimension() == sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -180.0)) assert(np.alltrue(Y <= 180.0)) def test_angles_cossin(self): sel = np.array([[1, 2, 5], [1, 3, 8], [2, 9, 10]], dtype=int) self.feat.add_angles(sel, cossin=True) assert(self.feat.dimension() == 2 * sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) desc = self.feat.describe() self.assertEqual(len(desc), self.feat.dimension()) def test_dihedrals(self): sel = np.array([[1, 2, 5, 6], [1, 3, 8, 9], [2, 9, 10, 12]], dtype=int) self.feat.add_dihedrals(sel) assert(self.feat.dimension() == sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) self.assertEqual(len(self.feat.describe()), self.feat.dimension()) def test_dihedrals_deg(self): sel = np.array([[1, 2, 5, 6], [1, 3, 8, 9], [2, 9, 10, 12]], dtype=int) self.feat.add_dihedrals(sel, deg=True) assert(self.feat.dimension() == sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -180.0)) assert(np.alltrue(Y <= 180.0)) self.assertEqual(len(self.feat.describe()), self.feat.dimension()) def test_dihedrials_cossin(self): sel = np.array([[1, 2, 5, 6], [1, 3, 8, 9], [2, 9, 10, 12]], dtype=int) self.feat.add_dihedrals(sel, cossin=True) assert(self.feat.dimension() == 2 * sel.shape[0]) Y = self.feat.map(self.traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) desc = self.feat.describe() self.assertEqual(len(desc), self.feat.dimension()) def test_backbone_dihedrals(self): self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile) self.feat.add_backbone_torsions() traj = mdtraj.load(self.asn_leu_pdbfile) Y = self.feat.map(traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) desc = self.feat.describe() self.assertEqual(len(desc), self.feat.dimension()) def test_backbone_dihedrals_deg(self): self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile) self.feat.add_backbone_torsions(deg=True) traj = mdtraj.load(self.asn_leu_pdbfile) Y = self.feat.map(traj) assert(np.alltrue(Y >= -180.0)) assert(np.alltrue(Y <= 180.0)) desc = self.feat.describe() self.assertEqual(len(desc), self.feat.dimension()) def test_backbone_dihedrals_cossin(self): self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile) self.feat.add_backbone_torsions(cossin=True) traj = mdtraj.load(self.asn_leu_traj, top=self.asn_leu_pdbfile) Y = self.feat.map(traj) self.assertEqual(Y.shape, (len(traj), 3*4)) # (3 phi + 3 psi)*2 [cos, sin] assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) desc = self.feat.describe() assert "COS" in desc[0] assert "SIN" in desc[1] self.assertEqual(len(desc), self.feat.dimension()) def test_backbone_dihedrials_chi(self): self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile) self.feat.add_chi1_torsions() traj = mdtraj.load(self.asn_leu_pdbfile) Y = self.feat.map(traj) assert(np.alltrue(Y >= -np.pi)) assert(np.alltrue(Y <= np.pi)) desc = self.feat.describe() self.assertEqual(len(desc), self.feat.dimension()) def test_backbone_dihedrials_chi_cossin(self): self.feat = MDFeaturizer(topfile=self.asn_leu_pdbfile) self.feat.add_chi1_torsions(cossin=True) traj = mdtraj.load(self.asn_leu_pdbfile) Y = self.feat.map(traj) assert(np.alltrue(Y >= -np.pi)) assert(
np.alltrue(Y <= np.pi)
numpy.alltrue
# -*- coding: UTF-8 -*- # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import numpy as np from ..meas_info import create_info from ...transforms import rotation3d_align_z_axis from ...channels import make_dig_montage from ..constants import FIFF from ...utils import warn, _check_pandas_installed from ..pick import pick_info _supported_megs = ['neuromag306'] _unit_dict = {'m': 1, 'cm': 1e-2, 'mm': 1e-3, 'V': 1, 'mV': 1e-3, 'uV': 1e-6, 'T': 1, 'T/m': 1, 'T/cm': 1e2} NOINFO_WARNING = 'Importing FieldTrip data without an info dict from the ' \ 'original file. Channel locations, orientations and types ' \ 'will be incorrect. The imported data cannot be used for ' \ 'source analysis, channel interpolation etc.' def _validate_ft_struct(ft_struct): """Run validation checks on the ft_structure.""" if isinstance(ft_struct, list): raise RuntimeError('Loading of data in cell arrays is not supported') def _create_info(ft_struct, raw_info): """Create MNE info structure from a FieldTrip structure.""" if raw_info is None: warn(NOINFO_WARNING) sfreq = _set_sfreq(ft_struct) ch_names = ft_struct['label'] if raw_info: info = raw_info.copy() missing_channels = set(ch_names) - set(info['ch_names']) if missing_channels: warn('The following channels are present in the FieldTrip data ' 'but cannot be found in the provided info: %s.\n' 'These channels will be removed from the resulting data!' % (str(missing_channels), )) missing_chan_idx = [ch_names.index(ch) for ch in missing_channels] new_chs = [ch for ch in ch_names if ch not in missing_channels] ch_names = new_chs ft_struct['label'] = ch_names if 'trial' in ft_struct: if ft_struct['trial'].ndim == 2: ft_struct['trial'] = np.delete(ft_struct['trial'], missing_chan_idx, axis=0) if 'avg' in ft_struct: if ft_struct['avg'].ndim == 2: ft_struct['avg'] = np.delete(ft_struct['avg'], missing_chan_idx, axis=0) info['sfreq'] = sfreq ch_idx = [info['ch_names'].index(ch) for ch in ch_names] pick_info(info, ch_idx, copy=False) else: montage = _create_montage(ft_struct) info = create_info(ch_names, sfreq) info.set_montage(montage) chs = _create_info_chs(ft_struct) info['chs'] = chs info._update_redundant() return info def _create_info_chs(ft_struct): """Create the chs info field from the FieldTrip structure.""" all_channels = ft_struct['label'] ch_defaults = dict(coord_frame=FIFF.FIFFV_COORD_UNKNOWN, cal=1.0, range=1.0, unit_mul=FIFF.FIFF_UNITM_NONE, loc=np.array([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]), unit=FIFF.FIFF_UNIT_V) try: elec = ft_struct['elec'] except KeyError: elec = None try: grad = ft_struct['grad'] except KeyError: grad = None if elec is None and grad is None: warn('The supplied FieldTrip structure does not have an elec or grad ' 'field. No channel locations will extracted and the kind of ' 'channel might be inaccurate.') chs = list() for idx_chan, cur_channel_label in enumerate(all_channels): cur_ch = ch_defaults.copy() cur_ch['ch_name'] = cur_channel_label cur_ch['logno'] = idx_chan + 1 cur_ch['scanno'] = idx_chan + 1 if elec and cur_channel_label in elec['label']: cur_ch = _process_channel_eeg(cur_ch, elec) elif grad and cur_channel_label in grad['label']: cur_ch = _process_channel_meg(cur_ch, grad) else: if cur_channel_label.startswith('EOG'): cur_ch['kind'] = FIFF.FIFFV_EOG_CH cur_ch['coil_type'] = FIFF.FIFFV_COIL_EEG elif cur_channel_label.startswith('ECG'): cur_ch['kind'] = FIFF.FIFFV_ECG_CH cur_ch['coil_type'] = FIFF.FIFFV_COIL_EEG_BIPOLAR elif cur_channel_label.startswith('STI'): cur_ch['kind'] = FIFF.FIFFV_STIM_CH cur_ch['coil_type'] = FIFF.FIFFV_COIL_NONE else: warn('Cannot guess the correct type of channel %s. Making ' 'it a MISC channel.' % (cur_channel_label,)) cur_ch['kind'] = FIFF.FIFFV_MISC_CH cur_ch['coil_type'] = FIFF.FIFFV_COIL_NONE chs.append(cur_ch) return chs def _create_montage(ft_struct): """Create a montage from the FieldTrip data.""" # try to create a montage montage_pos, montage_ch_names = list(), list() for cur_ch_type in ('grad', 'elec'): if cur_ch_type in ft_struct: cur_ch_struct = ft_struct[cur_ch_type] available_channels = np.where(np.in1d(cur_ch_struct['label'], ft_struct['label']))[0] tmp_labels = cur_ch_struct['label'] if not isinstance(tmp_labels, list): tmp_labels = [tmp_labels] cur_labels = np.asanyarray(tmp_labels) montage_ch_names.extend( cur_labels[available_channels]) montage_pos.extend( cur_ch_struct['chanpos'][available_channels]) montage = None if (len(montage_ch_names) > 0 and len(montage_pos) > 0 and len(montage_ch_names) == len(montage_pos)): montage = make_dig_montage( ch_pos=dict(zip(montage_ch_names, montage_pos)), # XXX: who grants 'head'?? this is BACKCOMPAT but seems a BUG coord_frame='head', ) return montage def _set_sfreq(ft_struct): """Set the sample frequency.""" try: sfreq = ft_struct['fsample'] except KeyError: try: t1 = ft_struct['time'][0] t2 = ft_struct['time'][1] difference = abs(t1 - t2) sfreq = 1 / difference except KeyError: raise ValueError('No Source for sfreq found') return sfreq def _set_tmin(ft_struct): """Set the start time before the event in evoked data if possible.""" times = ft_struct['time'] time_check = all(times[i][0] == times[i - 1][0] for i, x in enumerate(times)) if time_check: tmin = times[0][0] else: tmin = None return tmin def _create_events(ft_struct, trialinfo_column): """Create an event matrix from the FieldTrip structure.""" event_type = ft_struct['trialinfo'] event_number = range(len(event_type)) if trialinfo_column < 0: raise ValueError('trialinfo_column must be positive') available_ti_cols = 1 if event_type.ndim == 2: available_ti_cols = event_type.shape[1] if trialinfo_column > (available_ti_cols - 1): raise ValueError('trialinfo_column is higher than the amount of' 'columns in trialinfo.') event_trans_val = np.zeros(len(event_type)) if event_type.ndim == 2: event_type = event_type[:, trialinfo_column] events = np.vstack([np.array(event_number), event_trans_val, event_type]).astype('int').T return events def _create_event_metadata(ft_struct): """Create event metadata from trialinfo.""" pandas = _check_pandas_installed(strict=False) if not pandas: warn('The Pandas library is not installed. Not returning the original ' 'trialinfo matrix as metadata.') return None metadata = pandas.DataFrame(ft_struct['trialinfo']) return metadata def _process_channel_eeg(cur_ch, elec): """Convert EEG channel from FieldTrip to MNE. Parameters ---------- cur_ch: dict Channel specific dictionary to populate. elec: dict elec dict as loaded from the FieldTrip structure Returns ------- cur_ch: dict The original dict (cur_ch) with the added information """ all_labels =
np.asanyarray(elec['label'])
numpy.asanyarray
from __future__ import division import numpy as np from .fft import fftfreq, fft, ifft try: from accelerate.mkl.fftpack import fft, ifft except ImportError: try: from pyfftw.interfaces.numpy_fft import fft, ifft except ImportError: from numpy.fft import fft, ifft __authors__ = "<NAME>, <NAME>" __all__ = ['gaussian', 'hamming', 'hilbert_transform'] def gaussian(X, rate, center, sd): time = X.shape[-1] freq = fftfreq(time, 1./rate) k = np.exp((-(np.abs(freq) - center)**2)/(2 * (sd**2))) k /= np.linalg.norm(k) return k def hamming(X, rate, min_freq, max_freq): time = X.shape[-1] freq = fftfreq(time, 1./rate) pos_in_window = np.logical_and(freq >= min_freq, freq <= max_freq) neg_in_window = np.logical_and(freq <= -min_freq, freq >= -max_freq) k = np.zeros(len(freq)) window_size = np.count_nonzero(pos_in_window) window = np.hamming(window_size) k[pos_in_window] = window window_size = np.count_nonzero(neg_in_window) window = np.hamming(window_size) k[neg_in_window] = window k /= np.linalg.norm(k) return k def hilbert_transform(X, rate, filters=None, phase=None, X_fft_h=None): """ Apply bandpass filtering with Hilbert transform using a prespecified set of filters. Parameters ---------- X : ndarray (n_channels, n_time) Input data, dimensions rate : float Number of samples per second. filters : filter or list of filters (optional) One or more bandpass filters Returns ------- Xh : ndarray, complex Bandpassed analytic signal """ if not isinstance(filters, list): filters = [filters] time = X.shape[-1] freq = fftfreq(time, 1. / rate) Xh = np.zeros((len(filters),) + X.shape, dtype=np.complex) if X_fft_h is None: # Heavyside filter h = np.zeros(len(freq)) h[freq > 0] = 2. h[0] = 1. h = h[np.newaxis, :] X_fft_h =
fft(X)
numpy.fft.fft
# -*- coding: utf-8 -*- """ Created on Tue Oct 26 14:47:27 2021 @author: vader """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix import cv2 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm_notebook as tqdm import itertools import pandas as pd import tifffile from tifffile import memmap import imageio as io import os import shutil def min_max(img_list): min_val=np.ones((img_list[0].shape[-1]))*999999 max_val=np.zeros((img_list[0].shape[-1])) for img in img_list: mx=np.max(img,axis=(0,1)) mn=np.min(img,axis=(0,1)) min_val=np.minimum(min_val,mn) max_val=np.maximum(max_val,mx) return min_val,max_val def norm_img(img,min_val,max_val): img=img.astype(np.float32) # for i in range(img[0].shape[-1]): # img[:,:,i] = (img[:,:,i] - min_val[i]) /(max_val[i] - min_val[i]) img = (img - min_val) /(max_val - min_val) return img def store_to_disk(x,name): # shutil.copyfile(path,name) # return memmap(name, mode='r+',dtype=np.float32) if type(x)==str: x=memmap(x, mode='r') x=x.astype(np.float32) np.save(name,x) return np.load(name+'.npy',mmap_mode='r+') def collect_data(img,gt,backround_labels=[0]): samples,labels=[],[] if img.shape[0] == gt.shape[0] and img.shape[1] == gt.shape[1]: for label in np.unique(gt): if label in backround_labels: continue else: ind=np.nonzero(gt == label) samples += list(img[ind]) labels += len(ind[0])*[label] else: print ('Images have different shapes') return np.asarray(samples),np.asarray(labels) def conc_images(img1,gt1,img2,gt2,dtype='int16'): top, bottom, left, right = [10]*4 img1=cv2.copyMakeBorder(img1,top,bottom,left,right,cv2.BORDER_CONSTANT,value=[0]) img2=cv2.copyMakeBorder(img2,top,bottom,left,right,cv2.BORDER_CONSTANT,value=[0]) gt1=cv2.copyMakeBorder(gt1,top,bottom,left,right,cv2.BORDER_CONSTANT,value=[0]) gt2=cv2.copyMakeBorder(gt2,top,bottom,left,right,cv2.BORDER_CONSTANT,value=[0]) dif=img1.shape[1]-img2.shape[1] if dif <= 0: # if dif==0:dif=-1 a=np.zeros((img1.shape[0],dif*(-1),img1.shape[2]), dtype=dtype) im1=
np.concatenate((img1,a),axis=1)
numpy.concatenate
""" This script compare results (in VTK format) from SRH-2D and HEC-RAS 2D """ import numpy as np from scipy import interpolate from matplotlib import pyplot as plt import pyHMT2D from pyHMT2D.Misc.tools import setNumpyArrayValueToNaN plt.rc('text', usetex=False) #allow the use of Latex for math expressions and equations plt.rc('font', family='serif') #specify the default font family to be "serif" def plot_1D_profile(): vtk_handler = pyHMT2D.Misc.vtkHandler() # Define the filename of VTK file srh_filename = 'SRH-2D/SRH2D_backwater_curve_C_0024.vtk' hec_filename = 'HEC-RAS-2D/RAS2D_channel_0012.vtk' # Set the points between which the line is constructed. p1 = [259651, 4.52109e+06, 0] p2 = [269601, 4.52104e+06, 0] # Define the numer of interpolation points numPoints = 100 # for SRH-2D reader = vtk_handler.readVTK_UnstructuredGrid(srh_filename) # read the VTKfile line = vtk_handler.createVtkLine(p1, p2, numPoints) # Create the line points, U, elev_srh_2d = vtk_handler.probeUnstructuredGridVTKOverLine(line, reader, 'Water_Elev_m') # interpolate the data over the line # print(points) # print(U) max_x = np.max(points[:, 0]) min_x = np.min(points[:, 0]) U = setNumpyArrayValueToNaN(U, 0) # Set the zero's to NaN's plt.plot((points[:, 0] - max_x) / 1000, U, label='SRH-2D') # plot the data # plot the bottom plt.plot((points[:, 0] - max_x) / 1000, elev_srh_2d, color='k') # for HEC-RAS reader = vtk_handler.readVTK_UnstructuredGrid(hec_filename) # read the VTKfile line = vtk_handler.createVtkLine(p1, p2, numPoints) # Create the line points, U, elev_ras_2d = vtk_handler.probeUnstructuredGridVTKOverLine(line, reader, 'Water_Elev_m') # interpolate the data over the line # print(points) # print(U) max_x = np.max(points[:, 0]) min_x = np.min(points[:, 0]) U = setNumpyArrayValueToNaN(U, 0) # Set the zero's to NaN's plt.scatter(((points[:, 0] - max_x) / 1000)[::5], U[::5], marker='o', facecolors='none', edgecolors='r', s=10, label='HEC-RAS 2D') # plot the bottom plt.plot((points[:, 0] - max_x) / 1000, elev_ras_2d, color='k') # Also perform a 1D backwater calculation #load Backwater_1D_Data configuration data my_backwater_1D_data = pyHMT2D.Hydraulic_Models_Data.Backwater_1D_Data("Backwater-1D/backwater_1d.json") #create a Backwater_1D_Model object my_backwater_1D_model = pyHMT2D.Hydraulic_Models_Data.Backwater_1D_Model() #set the simulation case in the Backwater_1D_Model object my_backwater_1D_model.set_simulation_case(my_backwater_1D_data) #run the Backwater_1D_Model model my_backwater_1D_model.run_model() #sample some results as manufactured solution xmin = np.min(my_backwater_1D_data.gridx) xmax =
np.max(my_backwater_1D_data.gridx)
numpy.max
""" CNN script for v6 of the lensing estimation testing - like v5 but with a wider field of view but keeping the high resolution. Incorporating Sequence approach to loading training data. """ import os import pathlib import sys import time # pylint: disable=wrong-import-position os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' import matplotlib.pyplot as plt import numpy as np import tensorflow.keras as keras import pymaster as nmt class TrainingGenerator(keras.utils.Sequence): """ Generator to load training data in batches. """ def __init__(self, file_mask, x_arr_id, y_arr_id, n_files, batches_per_file=1, shuffle=True, augment=True): self.file_mask = file_mask self.x_arr_id = x_arr_id self.y_arr_id = y_arr_id self.batches_per_file = batches_per_file self.n_batches = n_files * batches_per_file self.shuffle = shuffle self.augment = augment self.file_xy = None self.batch_size = None def __len__(self): return self.n_batches @staticmethod def augment_data(xy, shuffle=True): """ Augment data by applying 7 unique combinations of rotations and reflections. Expecting data in shape (n_samples, 2, npix, npix, 1). Will return data in shape (8*n_samples, 2, npix, npix, 1). """ n_samp = xy.shape[0] npix = xy.shape[2] shape = (n_samp, 2, npix, npix, 1) assert xy.shape == shape, xy.shape xy_out = np.concatenate((xy, np.full((7 * n_samp, 2, npix, npix, 1), np.nan)), axis=0) xy = xy_out[:n_samp, ...] # Rotate 90 xy_out[n_samp:(2 * n_samp), ...] = np.rot90(xy, 1, axes=(3, 2)) # Rotate 180 xy_out[(2 * n_samp):(3 * n_samp), ...] = np.rot90(xy, 2, axes=(3, 2)) # Rotate 270 xy_out[(3 * n_samp):(4 * n_samp), ...] = np.rot90(xy, 3, axes=(3, 2)) # Flip vert xy_out[(4 * n_samp):(5 * n_samp), ...] = np.flip(xy, axis=2) # Flip horiz xy_out[(5 * n_samp):(6 * n_samp), ...] = np.flip(xy, axis=3) # Rotate 90 + flip vert xy_out[(6 * n_samp):(7 * n_samp), ...] = np.flip(xy_out[n_samp:(2 * n_samp), ...], axis=2) # Rotate 90 + flip horiz xy_out[(7 * n_samp):(8 * n_samp), ...] = np.flip(xy_out[n_samp:(2 * n_samp), ...], axis=3) # Shuffle if shuffle: np.random.default_rng().shuffle(xy_out, axis=0) return xy_out def __getitem__(self, idx): idx_within_file = idx % self.batches_per_file # If first batch in file, load data and stack into a single array of shape (n_samp, n_pix, n_pix, n_channel) if idx_within_file == 0: train_path = self.file_mask.format(idx=idx) with np.load(train_path) as data: self.file_xy = np.stack((data[self.x_arr_id], data[self.y_arr_id]), axis=1) self.file_xy = self.file_xy[..., np.newaxis] self.batch_size = int(np.ceil(self.file_xy.shape[0] / self.batches_per_file)) # Select slice for this batch batch_start_idx = idx_within_file * self.batch_size batch_stop_idx = batch_start_idx + self.batch_size batch_xy = self.file_xy[batch_start_idx:batch_stop_idx, ...] # Augment and shuffle if self.augment: batch_xy = self.__class__.augment_data(batch_xy, shuffle=self.shuffle) # Re-split into x and y, do some checks and return x = batch_xy[:, 0, ...] y = batch_xy[:, 1, ...] assert np.all(np.isfinite(x)), x assert np.all(np.isfinite(y)), y assert np.amin(x) > 0, np.amin(x) assert np.amax(x) < 1, np.amax(x) assert np.amin(y) > 0, np.amin(y) assert np.amax(y) < 1, np.amax(y) return x, y def load_validation_data(data_path, x_arr_id, y_arr_id, shuffle=True): """ Loads validation data from a single npz file where x and y are in data[x_arr_id] and data[y_arr_id]. Shuffles if requested, but doesn't augment. """ # Load data and stack into a single array of shape (n_samp, n_pix, n_pix, n_channel) with np.load(data_path) as data: x = data[x_arr_id] y = data[y_arr_id] xy = np.stack((x, y), axis=1) xy = xy[..., np.newaxis] print('Loaded validation data, length', len(xy)) # Shuffle if shuffle: np.random.default_rng().shuffle(xy, axis=0) # Split into x and y x = xy[:, 0, ...] y = xy[:, 1, ...] # Do some final checks and return assert np.all(
np.isfinite(x)
numpy.isfinite
#### # # The MIT License (MIT) # # Copyright 2019, 2020 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # #### import unittest import numpy as np from rosvm.ranksvm.mkl_utils import frobenius_product, kernel_alignment, LinearMKLer from sklearn.model_selection import ShuffleSplit from sklearn.datasets import make_classification from sklearn.metrics.pairwise import linear_kernel class TestFrobeniusProduct(unittest.TestCase): def test_correctness(self): for _ in range(100): A = np.random.uniform(-10, 10, (25, 60)) B = np.random.uniform(-5, 5, (25, 60)) # <A, A>_F AA_F = frobenius_product(A) np.testing.assert_allclose(AA_F, np.trace(A.T @ A)) # <A, B>_F AB_F = frobenius_product(A, B) np.testing.assert_allclose(AB_F, np.trace(A.T @ B)) class TestKernelAlignment(unittest.TestCase): def test_corner_cases(self): A = np.random.uniform(-10, 10, (25, 60)) KA = A @ A.T # Kernel aligned with it self np.testing.assert_equal(kernel_alignment(KA, KA, False), 1.0) np.testing.assert_equal(kernel_alignment(KA, KA, True), 1.0) def test_correctness(self): self.skipTest("How to test?") class TestLinearMKLer(unittest.TestCase): def test_unimkl(self): # Set up list of features X = [ np.random.RandomState(1932).randn(102, 738), np.random.RandomState(455).randn(102, 12), np.random.RandomState(212).randn(102, 231), np.random.RandomState(32).randn(102, 324) ] # Set up list of kernels Kx = [ X[0] @ X[0].T, X[1] @ X[1].T, X[2] @ X[2].T, X[3] @ X[3].T ] # Split training and test train, test = next(ShuffleSplit(random_state=102).split(Kx[0])) # Fit the transformer trans = LinearMKLer(method="unimkl").fit([Kx_k[np.ix_(train, train)] for Kx_k in Kx]) assert (isinstance(trans, LinearMKLer)), "Fit function must return a 'LinearMKLer'." # Check the kernel weights np.testing.assert_equal(trans._kernel_weights, np.ones((4,)) / 4) # Transform (combine) the kernels np.testing.assert_equal( trans.transform([Kx_k[np.ix_(train, train)] for Kx_k in Kx]), np.mean(np.array([Kx_k[np.ix_(train, train)] for Kx_k in Kx]), axis=0)) np.testing.assert_equal( trans.transform([Kx_k[np.ix_(test, train)] for Kx_k in Kx]), np.mean(np.array([Kx_k[np.ix_(test, train)] for Kx_k in Kx]), axis=0)) def test_align(self): # Create simple classification dataset n_features = 6 n_informative = 2 n_redundant = 2 X, y = make_classification(n_redundant=n_redundant, n_features=n_features, n_informative=n_informative, n_samples=200, random_state=192, shuffle=False, n_clusters_per_class=1) y[y == 0] = -1 # Calculate kernels for the different types features and the output n_noise = n_features - n_informative - n_redundant Kx_inf = linear_kernel(X[:, :n_informative]) Kx_red = linear_kernel(X[:, n_informative:(n_informative + n_redundant)]) Kx_noise = linear_kernel(X[:, -n_noise:]) Ky = np.outer(y, y) # -------------------------------------- # Fit the transformer trans = LinearMKLer(method="align").fit([Kx_inf, Kx_red, Kx_noise, Kx_noise], Ky) assert (isinstance(trans, LinearMKLer)), "Fit function must return a 'LinearMKLer'." # Check the kernel weights np.testing.assert_allclose(np.round(trans._kernel_weights, 6), np.array([0.719934, 0.670636, 0.000601, 0.000601])) # Transform (combine) the kernels Kx_mkl = trans.transform([Kx_inf, Kx_red, Kx_noise, Kx_noise]) self.assertTrue(kernel_alignment(Kx_mkl, Ky, True) > 0.7) # -------------------------------------- # Fit the transformer trans = LinearMKLer(method="align", center_before_combine=True).fit([Kx_inf, Kx_red, Kx_noise, Kx_noise], Ky) assert (isinstance(trans, LinearMKLer)), "Fit function must return a 'LinearMKLer'." # Check the kernel weights np.testing.assert_allclose(np.round(trans._kernel_weights, 6), np.array([0.719934, 0.670636, 0.000601, 0.000601])) # Transform (combine) the kernels Kx_mkl = trans.transform([Kx_inf, Kx_red, Kx_noise, Kx_noise]) self.assertTrue(kernel_alignment(Kx_mkl, Ky, True) > 0.7) np.testing.assert_allclose(np.sum(Kx_mkl, axis=0), np.zeros((Kx_mkl.shape[0],)), atol=1e-12) def test_alignf(self): # Create simple classification dataset n_features = 6 n_informative = 2 n_redundant = 2 X, y = make_classification(n_redundant=n_redundant, n_features=n_features, n_informative=n_informative, n_samples=200, random_state=192, shuffle=False, n_clusters_per_class=1) y[y == 0] = -1 # Calculate kernels for the different types features and the output n_noise = n_features - n_informative - n_redundant Kx_inf = linear_kernel(X[:, :n_informative]) Kx_red = linear_kernel(X[:, n_informative:(n_informative + n_redundant)]) Kx_noise = linear_kernel(X[:, -n_noise:]) Ky = np.outer(y, y) # -------------------------------------- # Fit the transformer Kx_l = [Kx_red, Kx_noise, Kx_noise, Kx_inf] trans = LinearMKLer(method="alignf").fit(Kx_l, Ky) # Check the kernel weights np.testing.assert_equal(trans._kernel_weights, np.array([0, 0, 0, 1])) self.assertEqual(np.linalg.norm(trans._kernel_weights), 1.) # Transform (combine) the kernels Kx_mkl = trans.transform(Kx_l) np.testing.assert_equal(kernel_alignment(Kx_mkl, Ky), kernel_alignment(Kx_inf, Ky)) # -------------------------------------- # Fit the transformer Kx_l = [Kx_red, Kx_noise, Kx_noise, Kx_inf] trans = LinearMKLer(method="alignf", center_before_combine=True).fit(Kx_l, Ky) # Check the kernel weights np.testing.assert_equal(trans._kernel_weights,
np.array([0, 0, 0, 1])
numpy.array
""" Unit tests for the NURBS curve computations """ # -------------------------------------------------------------------------------------------------------------------- # # Importing packages # -------------------------------------------------------------------------------------------------------------------- # import sys import os import time import pdb import numpy as np import nurbspy as nrb import scipy.integrate # -------------------------------------------------------------------------------------------------------------------- # # Prepare the NURBS curve test suite # -------------------------------------------------------------------------------------------------------------------- # def test_nurbs_curve_float_input(): """ Test the Bezier curve computation in scalar mode for real and complex input """ # Define the array of control points P = np.zeros((2, 2)) P[:, 0] = [0.00, 0.00] P[:, 1] = [1.00, 1.00] # Create the NURBS curve bezierCurve = nrb.NurbsCurve(control_points=P) # Check real values_real = bezierCurve.get_value(u=0.5).flatten() assert np.sum((values_real - np.asarray([0.5, 0.5])) ** 2) ** (1 / 2) < 1e-6 # Check complex values_complex = bezierCurve.get_value(u=0.5 + 0.5j).flatten() assert np.sum((values_complex - np.asarray([0.5 + 0.5j, 0.5 + 0.5j])) ** 2) ** (1 / 2) < 1e-6 def test_nurbs_curve_integer_input(): """ Test the Bezier curve computation in scalar mode for real and complex input """ # Define the array of control points P = np.zeros((2, 2)) P[:, 0] = [0.00, 0.00] P[:, 1] = [1.00, 1.00] # Create the NURBS curve bezierCurve = nrb.NurbsCurve(control_points=P) # Check u=0 values_real = bezierCurve.get_value(u=0).flatten() assert np.sum((values_real - np.asarray([0.0, 0.0])) ** 2) ** (1 / 2) < 1e-6 # Check u=1 values_real = bezierCurve.get_value(u=1).flatten() assert np.sum((values_real - np.asarray([1.0, 1.0])) ** 2) ** (1 / 2) < 1e-6 def test_nurbs_curve_endpoint_interpolation(): """ Test the NURBS curve end-point interpolation property """ # Define the array of control points P = np.zeros((3, 4)) P[:, 0] = [1.00, 2.00, 1.00] P[:, 1] = [2.00, 1.00, 2.00] P[:, 2] = [3.00, 2.00, 3.00] P[:, 3] = [4.00, 1.00, 4.00] # Define the array of control point weights W = np.asarray([2.00, 3.00, 1.00, 2.00]) # Maximum index of the control points (counting from zero) n = np.shape(P)[1] - 1 # Define the order of the basis polynomials p = 2 # Define the knot vector (clamped spline) # p+1 zeros, n-p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 U = np.concatenate((np.zeros(p), np.linspace(0, 1, n - p + 2), np.ones(p))) # Create the NURBS curve nurbsCurve = nrb.NurbsCurve(control_points=P, weights=W, degree=p, knots=U) # Check the corner point values assert np.sum((nurbsCurve.get_value(u=0.00).flatten() - P[:, 0]) ** 2) ** (1 / 2) < 1e-6 assert np.sum((nurbsCurve.get_value(u=1.00).flatten() - P[:, -1]) ** 2) ** (1 / 2) < 1e-6 def test_nurbs_curve_endpoint_curvature(): """ Test the NURBS curve end-point curvature property """ # Define the array of control points P = np.zeros((3,11)) P[:, 0] = [0.00, 0.00, 0.00] P[:, 1] = [0.10, 0.50, 0.00] P[:, 2] = [0.20, 0.00, 0.50] P[:, 3] = [0.30, 0.50, 1.00] P[:, 4] = [0.40, 0.00, 0.50] P[:, 5] = [0.50, 0.50, 0.00] P[:, 6] = [0.60, 0.00, 0.50] P[:, 7] = [0.70, 0.50, 1.00] P[:, 8] = [0.80, 0.00, 0.50] P[:, 9] = [0.90, 0.00, 0.00] P[:, 10] = [1.00, 0.00, 0.00] # Maximum index of the control points (counting from zero) n = np.shape(P)[1] - 1 # Define the array of control point weights W = np.asarray([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3]) # Define the order of the basis polynomials p = 4 # Define the knot vector (clamped spline) # p+1 zeros, n-p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 U = np.concatenate((np.zeros(p), np.linspace(0, 1, n - p + 2), np.ones(p))) # Create the NURBS curve myCurve = nrb.NurbsCurve(control_points=P, weights=W, degree=p, knots=U) # Get NURBS curve parameters p = myCurve.p U = myCurve.U P = myCurve.P W = myCurve.W n = np.shape(P)[1] - 1 # Get the endpoint curvature numerically curvature_1a = myCurve.get_curvature(u=0.00)[0] curvature_1b = myCurve.get_curvature(u=1.00)[0] # Get the endpoint curvature analytically curvature_2a = (p - 1) / p * (U[p+1] / U[p+2]) * (W[2] * W[0] / W[1]**2) * \ np.sum(np.cross(P[:, 1] - P[:, 0], P[:, 2] - P[:, 0])**2)**(1/2) * \ np.sum((P[:, 1] - P[:, 0])**2)**(-3/2) curvature_2b = (p - 1) / p * (1 - U[n]) / (1 - U[n-1]) * (W[n] * W[n-2] / W[n-1]**2) * \ np.sum(np.cross(P[:, n-1] - P[:, n], P[:, n-2] - P[:, n])**2)**(1/2) * \ np.sum((P[:, n-1] - P[:, n])**2)**(-3/2) # Check the error error_curvature_start = np.sqrt((curvature_1a - curvature_2a) ** 2) error_curvature_end = np.sqrt((curvature_1b - curvature_2b) ** 2) print('Start point curvature error : ', error_curvature_start) print('End point curvature error : ', error_curvature_end) assert error_curvature_start < 1e-10 assert error_curvature_end < 1e-6 def test_nurbs_curve_arclength(): """ Test the NURBS curve arc-length computation """ # Define the array of control points P = np.zeros((3,11)) P[:, 0] = [0.00, 0.00, 0.00] P[:, 1] = [0.10, 0.50, 0.00] P[:, 2] = [0.20, 0.00, 0.50] P[:, 3] = [0.30, 0.50, 1.00] P[:, 4] = [0.40, 0.00, 0.50] P[:, 5] = [0.50, 0.50, 0.00] P[:, 6] = [0.60, 0.00, 0.50] P[:, 7] = [0.70, 0.50, 1.00] P[:, 8] = [0.80, 0.00, 0.50] P[:, 9] = [0.90, 0.00, 0.00] P[:, 10] = [1.00, 0.00, 0.00] # Maximum index of the control points (counting from zero) n = np.shape(P)[1] - 1 # Define the array of control point weights W = np.asarray([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3]) # Define the order of the basis polynomials p = 4 # Define the knot vector (clamped spline) # p+1 zeros, n-p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 U = np.concatenate((np.zeros(p), np.linspace(0, 1, n - p + 2), np.ones(p))) # Create the NURBS curve myCurve = nrb.NurbsCurve(control_points=P, weights=W, degree=p, knots=U) # Compute the arc length using fixed order quadrature length_fixed = myCurve.get_arclength() # Compute the arc length using adaptative quadrature def get_arclegth_differential(u): dCdu = myCurve.get_derivative(u, order=1) dLdu = np.sqrt(np.sum(dCdu ** 2, axis=0)) # dL/du = [(dx_0/du)^2 + ... + (dx_n/du)^2]^(1/2) return dLdu length_adaptative = scipy.integrate.quad(get_arclegth_differential, 0, 1)[0] # Check the arc length error arc_length_error = np.abs(length_fixed - length_adaptative) print("The arc length computation error is : ", arc_length_error) assert arc_length_error < 0.04 def test_nurbs_curve_example_1(): """ Test the B-Spline curve computation against a known example (Ex2.2 from the NURBS book) """ # Define the array of control points P2 = np.asarray([1, 3, 5]) P3 = np.asarray([2, 1, 4]) P4 = np.asarray([3, 0, 6]) P = np.zeros((3, 8)) P[:, 2] = P2 P[:, 3] = P3 P[:, 4] = P4 # Define the order of the basis polynomials p = 2 # Define the knot vector (clamped spline) # p+1 zeros, n-p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 # u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 U = np.asarray([0.00, 0.00, 0.00, 1.00, 2.00, 3.00, 4.00, 4.00, 5.00, 5.00, 5.00]) # Create the B-Spline curve myBSpline = nrb.NurbsCurve(control_points=P, knots=U, degree=p) # Evaluate the B-Spline curve numerically u = 5/2 # u-parameter values_numeric = myBSpline.get_value(u) # Evaluate the B-Spline curve analytically (NURBS book page 82) values_analytic = (1/8*P2 + 6/8*P3 + 1/8*P4)[:, np.newaxis] # Check the error error = np.sum((values_analytic - values_numeric) ** 2) ** (1 / 2) print('The two-norm of the evaluation error is : ', error) assert error < 1e-8 def test_nurbs_curve_example_2(): """ Test the NURBS curve value against a known example (NURBS book section 7.5) """ # Create a circle using 4 arcs of 90 degrees # Define the array of control points P = np.zeros((2, 9)) P[:, 0] = [1.00, 0.00] P[:, 1] = [1.00, 1.00] P[:, 2] = [0.00, 1.00] P[:, 3] = [-1.00, 1.00] P[:, 4] = [-1.00, 0.00] P[:, 5] = [-1.00, -1.00] P[:, 6] = [0.00, -1.00] P[:, 7] = [1.00, -1.00] P[:, 8] = [1.00, 0.00] # Define the array of control point weights W = np.asarray([1, np.sqrt(2) / 2, 1, np.sqrt(2) / 2, 1, np.sqrt(2) / 2, 1, np.sqrt(2) / 2, 1]) # Define the order of the basis polynomials p = 2 # Define the knot vector (clamped spline) # p+1 zeros, n minus p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 U = np.asarray([0, 0, 0, 1 / 4, 1 / 4, 1 / 2, 1 / 2, 3 / 4, 3 / 4, 1, 1, 1]) # Create the NURBS curve myCircle = nrb.NurbsCurve(P, W, p, U) # Define the u-parametrization u = np.linspace(0, 1, 101) # Check the radius error coords = myCircle.get_value(u) radius_error = np.sum((np.sum((coords)**2, axis=0) - 1) ** 2) ** (1/2) print('The two-norm of the evaluation error is : ', radius_error) assert radius_error < 1e-8 def test_nurbs_curve_example_3(): """ Test the NURBS curve value against a known example (NURBS book section 7.5) """ # Create a circle using 3 arcs of 120 degrees # Define the array of control points a = np.cos(np.pi / 6) P = np.zeros((2, 7)) P[:, 0] = [a, 1 / 2] P[:, 1] = [0, 2] P[:, 2] = [-a, 1 / 2] P[:, 3] = [-2 * a, -1] P[:, 4] = [0, -1] P[:, 5] = [2 * a, -1] P[:, 6] = [a, 1 / 2] # Define the array of control point weights W = np.asarray([1, 1 / 2, 1, 1 / 2, 1, 1 / 2, 1]) # Define the order of the basis polynomials p = 2 # Define the knot vector (clamped spline) # p+1 zeros, n minus p equispaced points between 0 and 1, and p+1 ones. In total r+1 points where r=n+p+1 U = np.asarray([0, 0, 0, 1 / 3, 1 / 3, 2 / 3, 2 / 3, 1, 1, 1]) # Create the NURBS curve myCircle = nrb.NurbsCurve(P, W, p, U) # Define the u-parametrization u = np.linspace(0, 1, 101) # Check the radius error coords = myCircle.get_value(u) radius_error = np.sum((np.sum((coords)**2, axis=0) - 1) ** 2) ** (1/2) print('The two-norm of the evaluation error is : ', radius_error) assert radius_error < 1e-8 def test_nurbs_curve_example_4(): """ Test the computation of a circular NURBS curve value, curvature and arc-length in 2D """ # Set defining parameters O = np.asarray([0.00, 1.00]) # Circle center X = np.asarray([1.00, 0.00]) # Abscissa direction Y = np.asarray([0.00, 1.00]) # Ordinate direction R = 0.5 # Circle radius theta_start = 1 / 6 * np.pi # Start angle theta_end = 3 / 2 * np.pi - 1 / 6 * np.pi # End angle # Create and plot the circular arc my_circular_arc = nrb.CircularArc(O, X, Y, R, theta_start, theta_end).NurbsCurve # Define the u-parametrization u = np.linspace(0, 1, 101) # Check the radius error coords = my_circular_arc.get_value(u) radius_error = np.sum((np.sum((coords-O[:, np.newaxis])**2, axis=0) - R**2) ** 2) ** (1/2) print('The two-norm of the radius error is : ', radius_error) assert radius_error < 1e-8 # CHeck the curvature error curvature = my_circular_arc.get_curvature(u) curvature_error = np.sum((curvature - 1 / R) ** 2) ** (1 / 2) print("The two-norm of the curvature error is : ", curvature_error) assert curvature_error < 1e-8 # Check the arc length error arc_length = my_circular_arc.get_arclength() arc_length_error = arc_length - R * np.abs(theta_end - theta_start) print("The arc length computation error is : ", arc_length_error) assert arc_length_error < 1e-2 def test_nurbs_curve_example_5(): """ Test the computation of a circular NURBS curve value, curvature and arc-length in 3D """ # Set defining parameters O = np.asarray([0.00, 0.00, 0.50]) # Circle center X = np.asarray([3.00, 0.00, 0.00]) # Abscissa direction Y = np.asarray([0.00, 1.00, 0.00]) # Ordinate direction R = 0.5 # Circle radius theta_start = 0.00 # Start angle theta_end = np.pi/2 # End angle # Create and plot the circular arc my_circular_arc = nrb.CircularArc(O, X, Y , R, theta_start, theta_end).NurbsCurve # Define the u-parametrization u = np.linspace(0, 1, 101) # Check the radius error coords = my_circular_arc.get_value(u) radius_error = np.sum((np.sum((coords-O[:, np.newaxis])**2, axis=0) - R**2) ** 2) ** (1/2) print('The two-norm of the radius error is : ', radius_error) assert radius_error < 1e-8 # CHeck the curvature error curvature = my_circular_arc.get_curvature(u) curvature_error = np.sum((curvature - 1 / R) ** 2) ** (1 / 2) print("The two-norm of the curvature error is : ", curvature_error) assert curvature_error < 1e-8 # Check the arc length error arc_length = my_circular_arc.get_arclength() arc_length_error = arc_length - R * np.abs(theta_end - theta_start) print("The arc length computation error is : ", arc_length_error) assert arc_length_error < 1e-2 # Check the Frenet-Serret frame of reference computation (starting point) assert np.sum((my_circular_arc.get_tangent(u=0.00) - np.asarray([0, 1, 0])[:, np.newaxis]) ** 2) ** (1 / 2) < 1e-6 assert np.sum((my_circular_arc.get_normal(u=0.00) -
np.asarray([-1, 0, 0])
numpy.asarray