prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
#-*- coding: utf-8 -*- import numpy as n from scipy.io import wavfile as w H=n.hstack V=n.vstack f_a = 44100. # Hz, frequência de amostragem ############## 2.2.1 Tabela de busca (LUT) Lambda_tilde=Lt=1024.*16 # Senoide foo=n.linspace(0,2*n.pi,Lt,endpoint=False) S_i=n.sin(foo) # um período da senóide com T amostras # Quadrada: Q_i=n.hstack( ( n.ones(Lt/2)*-1 , n.ones(Lt/2) ) ) # Triangular: foo=n.linspace(-1,1,Lt/2,endpoint=False) Tr_i=n.hstack( ( foo , foo*-1 ) ) # Dente de Serra: D_i=n.linspace(-1,1,Lt) def v(f=200,d=2.,tab=S_i,fv=2.,nu=2.,tabv=S_i): Lambda=n.floor(f_a*d) ii=n.arange(Lambda) Lv=float(len(tabv)) Gammav_i=n.floor(ii*fv*Lv/f_a) # índices para a LUT Gammav_i=n.array(Gammav_i,n.int) # padrão de variação do vibrato para cada amostra Tv_i=tabv[Gammav_i%int(Lv)] # frequência em Hz em cada amostra F_i=f*( 2.**( Tv_i*nu/12. ) ) # a movimentação na tabela por amostra D_gamma_i=F_i*(Lt/float(f_a)) Gamma_i=n.cumsum(D_gamma_i) # a movimentação na tabela total Gamma_i=n.floor( Gamma_i) # já os índices Gamma_i=n.array( Gamma_i, dtype=n.int) # já os índices return tab[Gamma_i%int(Lt)] # busca dos índices na tabela def A(fa=2.,V_dB=10.,d=2.,taba=S_i): Lambda=n.floor(f_a*d) ii=n.arange(Lambda) Lt=float(len(taba)) Gammaa_i=n.floor(ii*fa*Lt/f_a) # índices para a LUT Gammaa_i=n.array(Gammaa_i,n.int) # variação da amplitude em cada amostra A_i=taba[Gammaa_i%int(Lt)] A_i=A_i*10.**(V_dB/20.) return A_i def adsr(som,A=10.,D=20.,S=-20.,R=100.,xi=1e-2): a_S=10**(S/20.) Lambda=len(som) Lambda_A=int(A*f_a*0.001) Lambda_D=int(D*f_a*0.001) Lambda_R=int(R*f_a*0.001) ii=n.arange(Lambda_A,dtype=n.float) A=ii/(Lambda_A-1) A_i=A ii=n.arange(Lambda_A,Lambda_D+Lambda_A,dtype=n.float) D=1-(1-a_S)*( ( ii-Lambda_A )/( Lambda_D-1) ) A_i=n.hstack( (A_i, D ) ) S=
n.ones(Lambda-Lambda_R-(Lambda_A+Lambda_D),dtype=n.float)
numpy.ones
# SPDX-FileCopyrightText: 2021 Division of Intelligent Medical Systems, DKFZ # SPDX-FileCopyrightText: 2021 <NAME> # SPDX-License-Identifier: MIT from simpa.utils import Tags from simpa.utils.settings import Settings from simpa.core.simulation_modules.reconstruction_module import ReconstructionAdapterBase from simpa.core.device_digital_twins import LinearArrayDetectionGeometry import numpy as np import scipy.io as sio import subprocess import os import inspect class TimeReversalAdapter(ReconstructionAdapterBase): """ The time reversal adapter includes the time reversal reconstruction algorithm implemented by the k-Wave toolkit into SIMPA. Time reversal reconstruction uses the time series data and computes the forward simulation model backwards in time:: Treeby, <NAME>., <NAME>, and <NAME>. "Photoacoustic tomography in absorbing acoustic media using time reversal." Inverse Problems 26.11 (2010): 115003. """ def get_acoustic_properties(self, input_data: dict, detection_geometry): """ This method extracts the acoustic tissue properties from the settings dictionary and amends the information to the input_data. :param input_data: a dictionary containing the information needed for time reversal. :param detection_geometry: PA device that is used for reconstruction """ if Tags.ACOUSTIC_SIMULATION_3D not in self.component_settings or not \ self.component_settings[Tags.ACOUSTIC_SIMULATION_3D]: axes = (0, 1) else: axes = (0, 2) pa_device = detection_geometry pa_device.check_settings_prerequisites(self.global_settings) # spacing if Tags.SPACING_MM in self.component_settings and self.component_settings[Tags.SPACING_MM]: spacing_in_mm = self.component_settings[Tags.SPACING_MM] elif Tags.SPACING_MM in self.global_settings and self.global_settings[Tags.SPACING_MM]: spacing_in_mm = self.global_settings[Tags.SPACING_MM] else: raise AttributeError("Please specify a value for SPACING_MM") detector_positions = detection_geometry.get_detector_element_positions_accounting_for_device_position_mm() detector_positions_voxels = np.round(detector_positions / spacing_in_mm).astype(int) volume_x_dim = int(np.ceil(self.global_settings[Tags.DIM_VOLUME_X_MM] / spacing_in_mm) + 1) # plus 2 because of off- volume_y_dim = int(np.ceil(self.global_settings[Tags.DIM_VOLUME_Y_MM] / spacing_in_mm) + 1) # by-one error in matlab volume_z_dim = int(np.ceil(self.global_settings[Tags.DIM_VOLUME_Z_MM] / spacing_in_mm) + 1) # otherwise if Tags.ACOUSTIC_SIMULATION_3D not in self.component_settings or not \ self.component_settings[Tags.ACOUSTIC_SIMULATION_3D]: sizes = (volume_z_dim, volume_x_dim) sensor_map = np.zeros(sizes) sensor_map[detector_positions_voxels[:, 2]+1, detector_positions_voxels[:, 0]+1] = 1 else: sizes = (volume_z_dim, volume_y_dim, volume_x_dim) sensor_map = np.zeros(sizes) sensor_map[detector_positions_voxels[:, 2]+1, detector_positions_voxels[:, 1]+1, detector_positions_voxels[:, 0]+1] = 1 # check that the spacing is large enough for all detector elements to be on the sensor map det_elements_sensor_map = np.count_nonzero(sensor_map) if det_elements_sensor_map != pa_device.number_detector_elements: raise AttributeError("The spacing is too large to fit every detector element on the sensor map." "Please increase it! " f"Expected {pa_device.number_detector_elements} elements but it " f"were {det_elements_sensor_map}.") # TODO: Include possibility to possible_acoustic_properties = [Tags.DATA_FIELD_SPEED_OF_SOUND, Tags.DATA_FIELD_DENSITY, Tags.DATA_FIELD_ALPHA_COEFF ] input_data[Tags.KWAVE_PROPERTY_SENSOR_MASK] = sensor_map for acoustic_property in possible_acoustic_properties: if acoustic_property in self.component_settings: try: input_data[acoustic_property] = self.component_settings[acoustic_property] except ValueError or KeyError: self.logger.error("{} not specified.".format(acoustic_property)) return input_data, spacing_in_mm def reorder_time_series_data(self, time_series_sensor_data, detection_geometry): """ Reorders the time series data to match the order that is assumed by kwave during image reconstruction with TimeReversal. The main issue here is, that, while forward modelling allows for the definition of 3D cuboid bounding boxes for the detector elements, TimeReversal does not implement this feature. Instead, a binary mask is given and these are indexed in a column-row-wise manner in the output. The default np.argsort() method does not yield the same result as expected by k-Wave. Hence, this workaround. """ detector_positions = detection_geometry.get_detector_element_positions_base_mm() angles = np.arctan2(detector_positions[:, 2], detector_positions[:, 0]) matlab_order = np.argsort(angles) return time_series_sensor_data[matlab_order] def reconstruction_algorithm(self, time_series_sensor_data, detection_geometry): input_data = dict() # If the detecttion_geometry is something else than linear, the time series data have to be reordered for matlab if not isinstance(detection_geometry, LinearArrayDetectionGeometry): time_series_sensor_data = self.reorder_time_series_data(time_series_sensor_data, detection_geometry) input_data[Tags.DATA_FIELD_TIME_SERIES_DATA] = time_series_sensor_data input_data, spacing_in_mm = self.get_acoustic_properties(input_data, detection_geometry) acoustic_path = self.global_settings[Tags.SIMPA_OUTPUT_PATH] + ".mat" possible_k_wave_parameters = [Tags.MODEL_SENSOR_FREQUENCY_RESPONSE, Tags.KWAVE_PROPERTY_ALPHA_POWER, Tags.GPU, Tags.KWAVE_PROPERTY_PMLInside, Tags.KWAVE_PROPERTY_PMLAlpha, Tags.KWAVE_PROPERTY_PlotPML, Tags.RECORDMOVIE, Tags.MOVIENAME, Tags.SENSOR_DIRECTIVITY_PATTERN] pa_device = detection_geometry k_wave_settings = Settings({ Tags.SENSOR_NUM_ELEMENTS: pa_device.number_detector_elements, Tags.SENSOR_DIRECTIVITY_SIZE_M: pa_device.detector_element_width_mm / 1000, Tags.SENSOR_CENTER_FREQUENCY_HZ: pa_device.center_frequency_Hz, Tags.SENSOR_BANDWIDTH_PERCENT: pa_device.bandwidth_percent, Tags.SPACING_MM: spacing_in_mm }) for parameter in possible_k_wave_parameters: if parameter in self.component_settings: k_wave_settings[parameter] = self.component_settings[parameter] elif parameter in self.global_settings: k_wave_settings[parameter] = self.global_settings[parameter] if Tags.K_WAVE_SPECIFIC_DT in self.global_settings and Tags.K_WAVE_SPECIFIC_NT in self.global_settings: k_wave_settings["dt"] = self.global_settings[Tags.K_WAVE_SPECIFIC_DT] k_wave_settings["Nt"] = self.global_settings[Tags.K_WAVE_SPECIFIC_NT] else: num_samples = time_series_sensor_data.shape[1] time_per_sample_s = 1 / (self.component_settings[Tags.SENSOR_SAMPLING_RATE_MHZ] * 1000000) k_wave_settings["dt"] = time_per_sample_s k_wave_settings["Nt"] = num_samples input_data["settings"] = k_wave_settings sio.savemat(acoustic_path, input_data, long_field_names=True) if Tags.ACOUSTIC_SIMULATION_3D in self.component_settings and \ self.component_settings[Tags.ACOUSTIC_SIMULATION_3D]: time_reversal_script = "time_reversal_3D" axes = (0, 2) else: time_reversal_script = "time_reversal_2D" axes = (0, 1) base_script_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) cmd = list() cmd.append(self.component_settings[Tags.ACOUSTIC_MODEL_BINARY_PATH]) cmd.append("-nodisplay") cmd.append("-nosplash") cmd.append("-automation") cmd.append("-wait") cmd.append("-r") cmd.append("addpath('" + base_script_path + "');" + time_reversal_script + "('" + acoustic_path + "');exit;") cur_dir = os.getcwd() os.chdir(self.global_settings[Tags.SIMULATION_PATH]) self.logger.info(cmd) subprocess.run(cmd) reconstructed_data = sio.loadmat(acoustic_path + "tr.mat")[Tags.DATA_FIELD_RECONSTRUCTED_DATA] reconstructed_data = np.flipud(np.rot90(reconstructed_data, 1, axes)) field_of_view_mm = detection_geometry.get_field_of_view_mm() field_of_view_voxels = (field_of_view_mm / spacing_in_mm).astype(np.int32) self.logger.debug(f"FOV (voxels): {field_of_view_voxels}") # In case it should be cropped from A to A, then crop from A to A+1 x_offset_correct = 1 if (field_of_view_voxels[1] - field_of_view_voxels[0]) < 1 else 0 y_offset_correct = 1 if (field_of_view_voxels[3] - field_of_view_voxels[2]) < 1 else 0 z_offset_correct = 1 if (field_of_view_voxels[5] - field_of_view_voxels[4]) < 1 else 0 if len(
np.shape(reconstructed_data)
numpy.shape
''' Stresses in a sphere compressed between rigid platens Model from HIRAMATSYU, Y., and OKA, Y., 1966, Int. J . Rock Mech. Min. Sci., 3, 89. With corrections from <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, Compression testing spherical particles for strength: Theory of the meridian crack test and implementation for microscopic fused quartz, Journal of the Mechanics and Physics of Solids, Volume 99, 2017, Pages 70-92, ISSN 0022-5096, https://doi.org/10.1016/j.jmps.2016.11.009. This code implements the mathematical model of HIRAMATSYU and OKA. It models a hard sphere being compressed between two stiff platens. It determines the stress distribution within the sphere. The platen has a spherical indents of radius a, so the force is distributed on the sphere ### Code Written by: <NAME>, at Oak Ridge National Laboratory <EMAIL> May 21, 2018 ### ''' #### Import BLock #### # the import block imports needed modules, and spits out a json file with # version numbers so the code can be repeatable file = open("ModuleVersions.json", 'w') modules = {} import os import itertools import sys modules['Python'] = dict([('version', sys.version_info)]) import json modules['json'] = dict([('version', json.__version__)]) import numpy modules['numpy'] = dict([('version', numpy.__version__)]) from numpy.polynomial.legendre import legval as Leg json.dump(modules, file, indent=4, sort_keys=True) file.close() #### END Import Block #### def DiskCordGeneration(density,tol): ''' This function creates a uniform distrubution of points on the disk, to be sampled or calculated. It generates points at a constant angle with a constant spacing Additional points are added when two angles diverge far enough from each other points are spaced from angle .0001 to pi/2 angle 0 causes divide by zero issues in the calculations points are spaced from radius 0 to 1-tol the calculations have gibbs instability at radius=1, so points are created some distance tol from the edge of the disk for numeric stability Inputs: ### density: the spacing between points format: float Example: 0.05 smaller values increase the number of sample points tol: defines the distance between the disk edge and the edge points Format: float example: .005 ### The code outputs a tuple containing the angles and the radius example: (angles,r) angles is a list of values r is a list of lists, where r[n] contains a list of radi corresponding to the nth angle ''' # create initial points, at the borders of the disk angles=[] r=[] angles.append(.0001) r.append(numpy.append(numpy.arange(0,1-tol,density),1-tol)) angles.append(numpy.pi/2) r.append(numpy.append(numpy.arange(density,1-tol,density),1-tol)) # loop adding angles until there is no more space CandidateAngle = numpy.pi/4 # first angle is in between the first two loop=0 while 1==1: # calculates the radius when the newer angle can place a point r0=density/CandidateAngle if r0>1: break # end loop if the calculated radius exceeds 1 # creates new points starting ar r0 for all the new angles. for arc in range(0,2**loop): angles.append(numpy.pi/2-CandidateAngle-CandidateAngle*2*arc) r.append(numpy.append(numpy.arange(r0,1-tol,density),1-tol)) # at each angle addition, the angle is divided by 2 CandidateAngle=CandidateAngle/2 loop=loop+1 return (angles,r) def Calcs(a,v,MaxIter,density,rtol,vtol,Verbose=True): ''' This function performs the stress calculations on the compressed sphere. It calls the DiskCordGeneration to get points, and calculates the stresses at each angle, using vectorized operations. Inputs: ### a: the radius of the indenter format: float Example: 0.1 v: The poisson ratio of the sphere Format: float example: .33 MaxIter: The maximum number of iterations to perform. The calculations use Legendre Polynomials, and more iterations will be more accurate Format: Integer example: 1000 If this value is set too low, and the rtol value is set too low, inaccurate results at the disk edge may be obtained. density: the spacing between points format: float Example: 0.05 smaller values increase the number of sample points rtol: defines the distance between the disk edge and the edge points format: float example: .005 vtol: Defines the tolerance of the iterative calculations As each Legendre Polynomial is added, the result will change by some value. If the change of all the values along an angle is less than this number, the answer is deemed accurate and is outputed format: float example: .000001 Verbose: A switch to print diagnostic values to the console Prints the iteration loop that it breaks on, and prints the number of angles left to calculate format: Bool example: True ### The code outputs a tuple containing the angles and radius of the sample points, and the 3x3 stress matrix at each sample point. example: (ang,r,StressTensor) ang is a list of angle values r is a list of radius values, StressTensor is a list of 3x3 matricies, where StressTensor[n] is the stress tensor at ang[n] and radius [n] ''' # gets sample points for calculations (angles,rlist)=DiskCordGeneration(density,rtol) R=1 # unit sphere alpha = numpy.arccos(1-2*(a/R)**2)/2 # sets alpha value, size of the platen contact area # initialize values, legendre polynomials Palpha=numpy.zeros(MaxIter) PalphaM1=numpy.zeros(MaxIter) PPrimeAlpha=numpy.zeros(MaxIter) # precalc Leg, legendre polynomials, values at alpha, iterative formula LegVals=[] LegVals.append(1) x=numpy.cos(alpha) LegVals.append(x) for n in range(2,2*MaxIter+1): LegVals.append((2*n-1)/n*x*LegVals[n-1]-(n-1)/n*LegVals[n-2]) # precalc Palpha value used in calculations for i in range(1,MaxIter): Palpha[i] = LegVals[2*i] PalphaM1[i] = LegVals[2*i-1] PPrimeAlpha[i] = (2*i)/(numpy.cos(alpha)**2-1) * (numpy.cos(alpha)*Palpha[i]-PalphaM1[i]) # initialize list to store Stress matrix values StressTensor = [[] for i in range(len(angles))] k=0 # index for StressTensor list storage # loop over each sample angle for z,ang in enumerate(angles): r=rlist[z] # get the list of radius points for the given angle # get initial values of equations A1, A2, A3, and A4 SigmaTheta = -.5+numpy.zeros(len(r)) SigmaPhi = -.5+numpy.zeros(len(r)) SigmaR = -.5+numpy.zeros(len(r)) Shear = 0+numpy.zeros(len(r)) # checks change in value as the calculation is iterativerly performed SigmaPhiold=numpy.array(SigmaPhi) # precalc Leg values at ang, iterative formula LegVals=[] LegVals.append(1) x=numpy.cos(ang) LegVals.append(x) for n in range(2,2*MaxIter+1): LegVals.append((2*n-1)/n*x*LegVals[n-1]-(n-1)/n*LegVals[n-2]) # loop over the iterative formula # each iteration is a better and better apporximation, using higher order # legendre polynomials # start iteration at for i in range(1,MaxIter): # A1 and A2 term 1 c1 = ( (-(4*i+1)*(i-1)+(4*i+1)**2*v)/(2*i*(4*i**2+2*i+1)+2*i*(4*i+1)*v) )*(r/R)**(2*i) # A1 and A2 term 2 c2 = ( ((4*i+1)*(4*i**2+4*i-1)+2*(4*i+1)*v)/(2*(4*i**2-1)*(4*i**2+2*i+1)+2*(4*i+1)*(4*i**2-1)*v) )*(r/R)**(2*i-2) # A1 and A2 term 3 c3 = 1+numpy.cos(alpha) # A1 and A2 term 4 c4 = ( (-(4*i+1)*(2*i+5)+4*(4*i+1)*v)/(4*i*(2*i+1)*(4*i**2+2*i+1)+4*i*(2*i+1)*(4*i+1)*v) )*(r/R)**(2*i) # A1 and A2 term 5 c5 = ( ((4*i+1)*(4*i**2+4*i-1)+2*(4*i+1)*v)/(4*i*(4*i**2-1)*(4*i**2+2*i+1)+4*i*(4*i+1)*(4*i**2-1)*v) )*(r/R)**(2*i-2) # get P, legendre polynomial, terms Pang = LegVals[2*i] PangM1 = LegVals[2*i-1] PangM2 = LegVals[2*i-2] # and get the derivatives dPang = (2*i)/(numpy.sin(ang)) * (numpy.cos(ang)*Pang-PangM1) dPangM1 = (2*i)/(numpy.sin(ang)) * (numpy.cos(ang)*PangM1-PangM2) d2Pdang = -(2*i)/(numpy.tan(ang)*numpy.sin(ang)) * (numpy.cos(ang)*Pang-PangM1) + (2*i)/(numpy.sin(ang)) * (-numpy.sin(ang)*Pang+numpy.cos(ang)*dPang-dPangM1) # calculate A1 and A2, adding to previous terms SigmaTheta = SigmaTheta -(1/2)*((c1+c2)*c3*PPrimeAlpha[i]*Pang+(c4+c5)*c3*PPrimeAlpha[i]*d2Pdang) SigmaPhi = SigmaPhi -(1/2)*((c1+c2)*c3*PPrimeAlpha[i]*Pang+(c4+c5)*c3*PPrimeAlpha[i]*dPang/numpy.tan(ang)) # A3 term 1 c1 = (2*(1+v)*(1-2*v)*(4*i+1)*(numpy.cos(alpha)*Palpha[i]-PalphaM1[i])) # A3 term 2 c2 = ((8*i**2+8*i+3)*(2*v)+(8*i**2+4*i+2)*(1-2*v)) # A3 term 3 c3 = ((4*i**2-2*i-3)*v)/((1+v)*(1-2*v))*(r/R)**(2*i) # A3 term 4 c4 = (2*i+1)*(2*i-2)/(2*(1+v))*(r/R)**(2*i) # A3 term 5 c5 = (4*i**2*(2*i+2)*v)/((2*i+1)*(1+v)*(1-2*v))*(r/R)**(2*i-2) # A3 term 6 c6 = (2*i*(4*i**2+4*i-1))/(2*(2*i+1)*(1+v))*(r/R)**(2*i-2) # calculate A3, adding to previous terms SigmaR = SigmaR - (1/2)*(1/(1-numpy.cos(alpha)))*(c1/c2)*(c3+c4-c5-c6)*Pang # A4 term 1 c1 = -(4*i+1)*(4*i**2+4*i-1)-2*(4*i+1)*v\ # A4 term 2 c2 = 4*i*(2*i+1)*(4*i**2+2*i+1)+4*i*(2*i+1)*(4*i+1)*v # A4 term 3 c3 = (r/R)**(2*i)-(r/R)**(2*i-2) # A4 term 4 c4 = 1+numpy.cos(alpha) # calculate A4, adding to previous terms Shear = Shear -(1/2)*(c1/c2)*c3*c4*PPrimeAlpha[i]*dPang # ends calculation iterations when the change is less than vtol test=numpy.abs(SigmaPhi-SigmaPhiold) if numpy.max(test) < vtol: if Verbose: print(i) break # update the value to compare to next iteration SigmaPhiold=numpy.array(SigmaPhi) if Verbose: print(len(angles)-z) # save values to StressTensor for i in range(0,len(r)): StressTensor[k].append(stress) k=k+1 # update index for next angle # flatten the angle, r, and stress list of lists to a single list ang=[ [angles[i]]*len(rlist[i]) for i in range(len(rlist))] ang=list(itertools.chain(*ang)) r=list(itertools.chain(*rlist)) StressTensor=numpy.array(list(itertools.chain(*StressTensor))) return (ang,r,StressTensor) def StressPlotter(Title,ColorLevels,Label,ang,r,Stress,ShowSamplePoints=True): ### things to import import matplotlib matplotlib.use('Agg') # no UI backend import matplotlib.pyplot as plt ### ### set up plotting area plt.rc('xtick',labelsize=8) plt.rc('ytick',labelsize=8) dx=7.5 dy=6.5 fig = plt.figure(figsize=(dx, dy)) plot = fig.add_axes([.5/dx,.5/dy,5/dx,5/dy],projection='polar') Stress=numpy.array(Stress) if ShowSamplePoints==True: plot.plot(ang,r,'.',markersize=.5,markeredgewidth=0.0,color=[1,0,0]) ax=plot.tricontourf(ang,r,Stress,levels=ColorLevels) plot.set_theta_zero_location("N") plot.set_theta_direction(-1) plot.set_thetalim(0,numpy.pi/2) ### ### add labels and save fig plot.set_title(Title,pad=40) colorbar=fig.add_axes([6.25/dx,.5/dy,.5/dx,5/dy]) fig.colorbar(ax,cax=colorbar,ticks=ColorLevels) colorbar.set_ylabel(Label) RadiusShow=fig.add_axes([.5/dx,6/dy,a*5/dx,.1/dy]) RadiusShow.patch.set_color('b') RadiusShow.xaxis.set_visible(False) RadiusShow.yaxis.set_visible(False) fig.savefig(Title+'.png',dpi=1000) #savefig, don't show ### if __name__ == "__main__": R=1 # radius of sphere a=.1 # radius of indentation v=.33 #poisson ratio MaxIter = 7000 rtol=.01 vtol=.00001 density=.01 (ang,r,StressTensor)=Calcs(a,v,MaxIter,density,rtol,vtol) Title='Tension, Compressive Radius = '+str(a)+', Poisson Ratio = '+str(v) Label='Normalized Tensile First Principal Stress Distribution' ColorLevels=numpy.linspace(0,1,num=30) Tension=[] for stress in StressTensor: Pstress =
numpy.linalg.eig(stress)
numpy.linalg.eig
import os import shutil from typing import Iterable, Optional, Set from urllib.request import urlopen import numpy as np import gzip from fasttext import load_model from sklearn.feature_extraction.text import TfidfVectorizer from d3l.utils.constants import FASTTEXTURL, STOPWORDS from d3l.utils.functions import shingles class FasttextTransformer: def __init__( self, token_pattern: str = r"(?<KEY>", max_df: float = 0.5, stop_words: Iterable[str] = STOPWORDS, embedding_model_lang="en", cache_dir: Optional[str] = None, ): """ Instantiate a new embedding-based transformer Parameters ---------- token_pattern : str The regex used to identify tokens. The default value is scikit-learn's TfidfVectorizer default. max_df : float Percentage of values the token can appear in before it is ignored. stop_words : Iterable[str] A collection of stopwords to ignore that defaults to NLTK's English stopwords. embedding_model_lang : str The embedding model language. cache_dir : Optional[str] An exising directory path where the model will be stored. If not given, the current working directory will be used. """ self._token_pattern = token_pattern self._max_df = max_df self._stop_words = stop_words self._embedding_model_lang = embedding_model_lang self._cache_dir = ( cache_dir if cache_dir is not None and os.path.isdir(cache_dir) else None ) self._embedding_model = self.get_embedding_model( overwrite=False, ) def __getstate__(self): d = self.__dict__ self_dict = {k: d[k] for k in d if k != "_embedding_model"} return self_dict def __setstate__(self, state): self.__dict__ = state self._embedding_model = self.get_embedding_model(overwrite=False) @property def cache_dir(self) -> Optional[str]: return self._cache_dir def _download_fasttext(self, model_file_name: str, chunk_size: int = 2 ** 13): """ Download pre-trained common-crawl vectors from fastText's website https://fasttext.cc/docs/en/crawl-vectors.html Parameters ---------- model_file_name : str The model file name to download. chunk_size : int The Fasttext models are commonly large - several GBs. The disk writing will therefore be made in chunks. Returns ------- """ url = FASTTEXTURL + model_file_name print("Downloading %s" % url) response = urlopen(url) downloaded = 0 write_file_name = ( os.path.join(self._cache_dir, model_file_name) if self._cache_dir is not None else model_file_name ) download_file_name = write_file_name + ".part" with open(download_file_name, "wb") as f: while True: chunk = response.read(chunk_size) downloaded += len(chunk) if not chunk: break f.write(chunk) # print("{} downloaded ...".format(downloaded)) os.rename(download_file_name, write_file_name) def _download_model(self, if_exists: str = "strict"): """ Download the pre-trained model file. Parameters ---------- if_exists : str Supported values: - *ignore*: The model will not be downloaded - *strict*: This is the defaul. The model will be downloaded only if it does not exist at the *cache_dir*. - *overwrite*: The model will be downloaded even if it already exists at the *cache_dir*. Returns ------- """ base_file_name = "cc.%s.300.bin" % self._embedding_model_lang file_name = ( os.path.join(self._cache_dir, base_file_name) if self._cache_dir is not None else base_file_name ) gz_file_name = "%s.gz" % base_file_name if os.path.isfile(file_name): if if_exists == "ignore": return file_name elif if_exists == "strict": print("File exists. Use --overwrite to download anyway.") return file_name elif if_exists == "overwrite": pass absolute_gz_file_name = ( os.path.join(self._cache_dir, gz_file_name) if self._cache_dir is not None else gz_file_name ) if not os.path.isfile(absolute_gz_file_name): self._download_fasttext(gz_file_name) with gzip.open(absolute_gz_file_name, "rb") as f: with open(file_name, "wb") as f_out: shutil.copyfileobj(f, f_out) """Cleanup""" if os.path.isfile(absolute_gz_file_name): os.remove(absolute_gz_file_name) return file_name def get_embedding_model( self, overwrite: bool = False, ): """ Download, if not exists, and load the pretrained FastText embedding model in the working directory. Note that the default gzipped English Common Crawl FastText model has 4.2 GB and its unzipped version has 6.7 GB. Parameters ---------- overwrite : bool If True overwrites the model if exists. Returns ------- """ if_exists = "strict" if not overwrite else "overwrite" model_file = self._download_model(if_exists=if_exists) embedding_model = load_model(model_file) return embedding_model def get_embedding_dimension(self) -> int: """ Retrieve the embedding dimensions of the underlying model. Returns ------- int The dimensions of each embedding """ return self._embedding_model.get_dimension() def get_vector(self, word: str) -> np.ndarray: """ Retrieve the embedding of the given word. If the word is out of vocabulary a zero vector is returned. Parameters ---------- word : str The word to retrieve the vector for. Returns ------- np.ndarray A vector of float numbers. """ vector = self._embedding_model.get_word_vector( str(word).strip().lower(), np.random.randn(self.get_embedding_dimension()) ) return vector def get_tokens(self, input_values: Iterable[str]) -> Set[str]: """ Extract the most representative tokens of each value and return the token set. Here, the most representative tokens are the ones with the lowest TF/IDF scores - tokens that describe what the values are about. Parameters ---------- input_values : Iterable[str] The collection of values to extract tokens from. Returns ------- Set[str] A set of representative tokens """ if len(input_values) < 1: return set() try: vectorizer = TfidfVectorizer( decode_error="ignore", strip_accents="unicode", lowercase=True, analyzer="word", stop_words=self._stop_words, token_pattern=self._token_pattern, max_df=self._max_df, use_idf=True, ) vectorizer.fit_transform(input_values) except ValueError: return set() weight_map = dict(zip(vectorizer.get_feature_names(), vectorizer.idf_)) tokenset = set() tokenizer = vectorizer.build_tokenizer() for value in input_values: value = value.lower().replace("\n", " ").strip() for shingle in shingles(value): tokens = [t for t in tokenizer(shingle)] if len(tokens) < 1: continue token_weights = [weight_map.get(t, 0.0) for t in tokens] min_tok_id = np.argmin(token_weights) tokenset.add(tokens[min_tok_id]) return tokenset def transform(self, input_values: Iterable[str]) -> np.ndarray: """ Extract the embeddings of the most representative tokens of each value and return their **mean** embedding. Here, the most representative tokens are the ones with the lowest TF/IDF scores - tokens that describe what the values are about. Given that the underlying embedding model is a n-gram based one, the number of out-of-vocabulary tokens should be relatively small or zero. Parameters ---------- input_values : Iterable[str] The collection of values to extract tokens from. Returns ------- np.ndarray A Numpy vector representing the mean of all token embeddings. """ embeddings = [self.get_vector(token) for token in self.get_tokens(input_values)] if len(embeddings) == 0: return np.empty(0) return np.mean(
np.array(embeddings)
numpy.array
import numpy as np from scipy.signal import fftconvolve class KDE(object): """ This class implements a Gaussian kernel density estimator in arbitrary dimensions with a first order renormalization at the boundary of parameter space """ def __init__(self, bandwidth_scale=1, nbins=None): """ :param bandwidth_scale: scales the kernel bandwidth, or the variance of each Gaussian :param nbins: number of bins in the KDE """ self.bandwidth_scale = bandwidth_scale self._nbins = nbins def _scotts_factor(self, n, d): """ Implements the kernel bandwidth using Scotts factor :param n: number of data points :param d: number of dimensions :return: kernel bandwidth """ return 1.05 * n ** (-1. / (d + 4)) def _gaussian_kernel(self, inverse_cov_matrix, coords_centered, dimension, n_reshape): """ Computes the multivariate gaussian KDE from the covariance matrix and observation array :param inverse_cov_matrix: inverse of the covariance matrix estimated from observations :param coords_centered: array of observations transformed into pixel space :param dimension: number of dimensions :param n_reshape: shape of output :return: gaussian KDE evalauted at coords """ def _gauss(_x): return np.exp(-0.5 * np.dot(np.dot(_x, inverse_cov_matrix), _x)) z = [_gauss(coord) for coord in coords_centered] return np.reshape(z, tuple([n_reshape] * dimension)) def _get_coordinates(self, ranges): """ Builds an array of coordinate values from the specified parameter ranges :param ranges: parameter ranges :return: array of coordinate values """ points = [] for i in range(0, len(ranges)): points.append(np.linspace(ranges[i][0], ranges[i][1], self._nbins)) return points def NDhistogram(self, data, weights, ranges): """ :param data: data to make the histogram. Shape (nsamples, ndim) :param coordinates: np.linspace(min, max, nbins) for each dimension :param ranges: parameter ranges corresponding to columns in data :param weights: param weights :return: histogram """ coordinates = self._get_coordinates(ranges) histbins = [] for i, coord in enumerate(coordinates): histbins.append(np.linspace(ranges[i][0], ranges[i][-1], len(coord) + 1)) H, _ = np.histogramdd(data, range=ranges, bins=histbins, weights=weights) return H.T def __call__(self, data, ranges, weights, boundary_order=1): """ :param data: data to make the histogram, shape = (n_observations, ndim) :param ranges: a list of parameter ranges corresponding to each dimension :param weights: importance weights for each observation :return: the KDE estimate of the data """ # compute coordinate arrays for each parameter coordinates = self._get_coordinates(ranges) # shift coordinate arrays so that the center is at (0, 0) X = np.meshgrid(*coordinates) cc_center = np.vstack([X[i].ravel() - np.mean(ranges[i]) for i in range(len(X))]).T try: dimension = int(np.shape(data)[1]) except: dimension = 1 histbins = [] for i, coord in enumerate(coordinates): histbins.append(np.linspace(ranges[i][0], ranges[i][-1], len(coord) + 1)) # Compute the N-dimensional histogram H = self.NDhistogram(data, weights, ranges) # compute the covariance, scale by the bandwidth bandwidth = self.bandwidth_scale * self._scotts_factor(data.shape[0], dimension) covariance = bandwidth * np.cov(data.T) # invert covariance matrix if dimension > 1: c_inv = np.linalg.inv(covariance) else: c_inv = 1 / covariance n = len(coordinates[0]) gaussian_kernel = self._gaussian_kernel(c_inv, cc_center, dimension, n) # now compute the guassian KDE density = fftconvolve(H, gaussian_kernel, mode='same') # renormalize the boundary to remove bias if boundary_order == 1: boundary_kernel = np.ones(
np.shape(H)
numpy.shape
#!/usr/bin/env python import os import pickle import numpy as np from numpy.testing import (assert_allclose, assert_, assert_raises, assert_equal) import pywt def test_wavelet_packet_structure(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') assert_(wp.data == [1, 2, 3, 4, 5, 6, 7, 8]) assert_(wp.path == '') assert_(wp.level == 0) assert_(wp['ad'].maxlevel == 3) def test_traversing_wp_tree(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') assert_(wp.maxlevel == 3) # First level assert_allclose(wp['a'].data, np.array([2.12132034356, 4.949747468306, 7.778174593052, 10.606601717798]), rtol=1e-12) # Second level assert_allclose(wp['aa'].data, np.array([5., 13.]), rtol=1e-12) # Third level assert_allclose(wp['aaa'].data, np.array([12.727922061358]), rtol=1e-12) def test_acess_path(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') assert_(wp['a'].path == 'a') assert_(wp['aa'].path == 'aa') assert_(wp['aaa'].path == 'aaa') # Maximum level reached: assert_raises(IndexError, lambda: wp['aaaa'].path) # Wrong path assert_raises(ValueError, lambda: wp['ac'].path) def test_access_node_attributes(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') assert_allclose(wp['ad'].data, np.array([-2., -2.]), rtol=1e-12) assert_(wp['ad'].path == 'ad') assert_(wp['ad'].node_name == 'd') assert_(wp['ad'].parent.path == 'a') assert_(wp['ad'].level == 2) assert_(wp['ad'].maxlevel == 3) assert_(wp['ad'].mode == 'symmetric') # tuple-based access is also supported node = wp[('a', 'd')] # can access a node's path as either a single string or in tuple form assert_(node.path == 'ad') assert_(node.path_tuple == ('a', 'd')) def test_collecting_nodes(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') # All nodes in natural order assert_([node.path for node in wp.get_level(3, 'natural')] == ['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']) # and in frequency order. assert_([node.path for node in wp.get_level(3, 'freq')] == ['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']) assert_raises(ValueError, wp.get_level, 3, 'invalid_order') def test_reconstructing_data(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') # Create another Wavelet Packet and feed it with some data. new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='symmetric') new_wp['aa'] = wp['aa'].data new_wp['ad'] = [-2., -2.] # For convenience, :attr:`Node.data` gets automatically extracted # from the :class:`Node` object: new_wp['d'] = wp['d'] # Reconstruct data from aa, ad, and d packets. assert_allclose(new_wp.reconstruct(update=False), x, rtol=1e-12) # The node's :attr:`~Node.data` will not be updated assert_(new_wp.data is None) # When `update` is True: assert_allclose(new_wp.reconstruct(update=True), x, rtol=1e-12) assert_allclose(new_wp.data, np.arange(1, 9), rtol=1e-12) assert_([n.path for n in new_wp.get_leaf_nodes(False)] == ['aa', 'ad', 'd']) assert_([n.path for n in new_wp.get_leaf_nodes(True)] == ['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']) def test_removing_nodes(): x = [1, 2, 3, 4, 5, 6, 7, 8] wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric') wp.get_level(2) dataleafs = [n.data for n in wp.get_leaf_nodes(False)] expected = np.array([[5., 13.], [-2, -2], [-1, -1], [0, 0]]) for i in range(4): assert_allclose(dataleafs[i], expected[i, :], atol=1e-12) node = wp['ad'] del(wp['ad']) dataleafs = [n.data for n in wp.get_leaf_nodes(False)] expected = np.array([[5., 13.], [-1, -1], [0, 0]]) for i in range(3): assert_allclose(dataleafs[i], expected[i, :], atol=1e-12) wp.reconstruct() # The reconstruction is: assert_allclose(wp.reconstruct(),
np.array([2., 3., 2., 3., 6., 7., 6., 7.])
numpy.array
import numpy as np from numba import jit, njit, prange def is_symmetric(A, rtol=1e-05, atol=1e-08): # https://stackoverflow.com/questions/42908334/checking-if-a-matrix-is-symmetric-in-numpy return np.allclose(A, A.T, rtol=rtol, atol=atol) def is_square(A): return A.shape[0] == A.shape[1] @njit def vec(A): # https://stackoverflow.com/questions/25248290/most-elegant-implementation-of-matlabs-vec-function-in-numpy return A.T.ravel().reshape(-1, 1) def vech(A): if not is_square(A): raise Exception("It must be a square matrix.") return A.T[np.triu_indices_from(A)].reshape(-1, 1) @njit(fastmath=True) def kron(A, B=None): if B is not None: return np.kron(
np.ascontiguousarray(A)
numpy.ascontiguousarray
#!/usr/bin/env python3 # # Copyright 2020 IBM # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.IBM Confidential # # coding: utf-8 from __future__ import absolute_import from flask import json from six import BytesIO from unittest import mock import botocore from botocore.response import StreamingBody import numpy as np from swagger_server.models.error import Error # noqa: E501 from swagger_server.models.parameter import Parameter # noqa: E501 from swagger_server.models.link import Link # noqa: E501 from swagger_server.models.prediction import Prediction # noqa: E501 from swagger_server.models.prediction_response import PredictionResponse # noqa: E501 from swagger_server.test import BaseTestCase from swagger_server.controllers.run_controller import prediction class TestRunController(BaseTestCase): """RunController integration test stubs""" @mock.patch("swagger_server.controllers.run_controller.botocore.client.BaseClient") @mock.patch("swagger_server.controllers.run_controller.boto3.client") def test_prediction(self, mock_boto_client, mock_invoke_endpoint): """Test case for prediction Call Prediction of specified deployment """ mock_boto_client.return_value = botocore.client.BaseClient() buffer = BytesIO() x = np.array(['this on returned', 2, 3])
np.save(buffer, x)
numpy.save
import numpy as np from alphago.elo import compute_log_likelihood, run_mm, update_gamma def test_compute_log_likelihood(): gamma = np.array([1, 2, 3]) wins = np.array([[0, 3, 4], [1, 0, 2], [2, 0, 0]]) expected = 3 * np.log(1/(1+2)) + 4 * np.log(1/(1+3)) + \ 1 * np.log(2/(2+1)) + 2 * np.log(2/(2+3)) + 2 * np.log(3/(3+1)) computed = compute_log_likelihood(wins, gamma) assert expected == computed def test_run_mm(): initial_gamma = np.array([1, 1, 1]) wins = np.array([[0, 30, 40], [1, 0, 20], [2, 0, 0]]) initial_ll = compute_log_likelihood(wins, initial_gamma) gamma = run_mm(initial_gamma, wins) final_ll = compute_log_likelihood(wins, gamma) assert initial_ll < final_ll def test_run_mm_large(): # Generate fake data according to the Bradley-Terry model. hidden_gamma = np.array([10, 20, 1, 1, 5, 3, 100, 8, 100, 10]) hidden_gamma = hidden_gamma /
np.sum(hidden_gamma)
numpy.sum
from matplotlib import pyplot as plt import improc as imp import numpy as np import os import scipy.io as scio patchSize = [480, 480, 4] patchSize = [240, 240, 4] # patchSize = [32, 32, 4] numPatches = 5000 numSelPtcs = 500 sortway = 'ascent' sortway = 'descent' sortway = None seed = 2019 seed = None startid = 0 noise = 'wgn' # noise = None SNR = 100 tranformway = 'orig' tranformway = 'flipud' tranformway = 'fliplr' tranformway = 'transpose' tranformway = 'rot90' tranformway = 'flipud(fliplr)' tranformway = 'fliplr(rot90)' # tranformway = 'fliplr(transpose)' WriteImg = False # -------------------------------------- datasetname = 'RSSRAI2019TRAIN' folderIN = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/train/train/' folderOUT = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/train/samples3/' num = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20] # datasetname = 'RSSRAI2019VALID' # folderIN = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/valid/valid/' # folderOUT = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/valid/samples3/' # num = [10, 15] folderA = 'img_2017' folderB = 'img_2018' folderC = 'mask' folderAin = os.path.join(folderIN, folderA) folderBin = os.path.join(folderIN, folderB) folderCin = os.path.join(folderIN, folderC) folderAout = os.path.join(folderOUT, folderA) folderBout = os.path.join(folderOUT, folderB) folderCout = os.path.join(folderOUT, folderC) os.makedirs(folderAout, exist_ok=True) os.makedirs(folderBout, exist_ok=True) os.makedirs(folderCout, exist_ok=True) imageNameA = 'image_2017_960_960_' imageNameB = 'image_2018_960_960_' imageNameC = 'mask_2017_2018_960_960_' imgspathA = [] imgspathB = [] imgspathC = [] for n in num: imgspathA.append(folderAin + '/' + imageNameA + str(n) + '.tif') imgspathB.append(folderBin + '/' + imageNameB + str(n) + '.tif') imgspathC.append(folderCin + '/' + imageNameC + str(n) + '.tif') print(imgspathA) print(imgspathB) print(imgspathC) A = [] B = [] C = [] cc = np.zeros((960, 960, 4), dtype='uint8') for n in range(len(num)): A.append(imp.imreadadv(imgspathA[n])) B.append(imp.imreadadv(imgspathB[n])) c = imp.imreadadv(imgspathC[n]) # print(c.shape) cc[:, :, 0] = c cc[:, :, 1] = c cc[:, :, 2] = c cc[:, :, 3] = c # print(cc.min(), cc.max()) C.append(cc.copy()) # N-H-W-C --> H-W-C-N A = np.transpose(np.array(A), (1, 2, 3, 0)) B = np.transpose(np.array(B), (1, 2, 3, 0)) C = np.transpose(np.array(C), (1, 2, 3, 0)) plt.figure() plt.subplot(231) plt.imshow(A[:, :, 0:3, 0]) plt.subplot(232) plt.imshow(B[:, :, 0:3, 0]) plt.subplot(233) plt.imshow(C[:, :, 0:3, 0]) print("===tranformway:", tranformway) if tranformway is 'flipud': A = np.flipud(A) B = np.flipud(B) C = np.flipud(C) if tranformway is 'fliplr': A = np.fliplr(A) B = np.fliplr(B) C = np.fliplr(C) if tranformway is 'transpose': A = np.transpose(A, (1, 0, 2, 3)) B = np.transpose(B, (1, 0, 2, 3)) C = np.transpose(C, (1, 0, 2, 3)) if tranformway is 'rot90': A = np.rot90(A) B =
np.rot90(B)
numpy.rot90
import numpy as np import math from e2cnn.kernels.basis import KernelBasis from e2cnn.kernels.utils import offset_iterator, psi, psichi, chi from e2cnn.group import Group, IrreducibleRepresentation from e2cnn.group import cyclic_group, dihedral_group, so2_group, o2_group from e2cnn.group import CyclicGroup, DihedralGroup, SO2, O2 from typing import Union, Tuple class IrrepBasis(KernelBasis): def __init__(self, group, in_irrep, out_irrep, dim): r""" Abstract class for bases implementing the kernel constraint solutions associated to irreducible input and output representations. Args: group: in_irrep: out_irrep: dim: """ self.group = group self.in_irrep = in_irrep self.out_irrep = out_irrep super(IrrepBasis, self).__init__(dim, (out_irrep.size, in_irrep.size)) class R2FlipsSolution(IrrepBasis): def __init__( self, group, in_irrep, out_irrep, axis, max_frequency = None, max_offset = None, ): if isinstance(group, int): group = cyclic_group(2) assert isinstance(group, CyclicGroup) and group.order() == 2 assert max_frequency is not None or max_offset is not None, ( "Error! Either the maximum frequency or the maximum offset for the" " frequencies must be set" ) self.max_frequency = max_frequency self.max_offset = max_offset assert max_frequency is None or ( isinstance(max_frequency, int) and max_frequency >= 0 ) assert max_offset is None or (isinstance(max_offset, int) and max_offset >= 0) assert isinstance(axis, float) self.axis = axis if isinstance(in_irrep, int): in_irrep = group.irrep(in_irrep) elif isinstance(in_irrep, str): in_irrep = group.irreps[in_irrep] elif not isinstance(in_irrep, IrreducibleRepresentation): raise ValueError( "'in_irrep' should be a non-negative integer, a string or an instance" f" of IrreducibleRepresentation but {in_irrep} found" ) if isinstance(out_irrep, int): out_irrep = group.irrep(out_irrep) elif isinstance(out_irrep, str): out_irrep = group.irreps[out_irrep] elif not isinstance(out_irrep, IrreducibleRepresentation): raise ValueError( "'out_irrep' should be a non-negative integer, a string or an instance" f" of IrreducibleRepresentation but {in_irrep} found" ) self.N = 1 self.fi = in_irrep.attributes["frequency"] self.fo = out_irrep.attributes["frequency"] self.ts = [] self.gamma = ((self.fi + self.fo) % 2) * np.pi / 2 mus = [] # for each available frequency offset, build the corresponding basis vector for t in offset_iterator( 0, 1, self.max_offset, self.max_frequency, non_negative=True ): # the current shifted frequency mu = t if self.max_offset is not None: assert math.fabs(t) <= self.max_offset, (t, self.max_offset) if self.max_frequency is not None: assert math.fabs(mu) <= self.max_frequency, (t, mu, self.max_frequency) if mu > 0 or self.gamma == 0.0: # don't add sin(0*theta) as a basis since it is zero everywhere mus.append(mu) self.ts.append(t) self.mu = np.array(mus).reshape(-1, 1) self._non_zero_frequencies = self.mu != 0 self._has_non_zero_frequencies = np.any(self._non_zero_frequencies) dim = self.mu.shape[0] super(R2FlipsSolution, self).__init__(group, in_irrep, out_irrep, dim) def sample(self, angles, out = None): r""" Sample the continuous basis elements on the discrete set of angles in ``angles``. Optionally, store the resulting multidimentional array in ``out``. A value of ``nan`` is interpreted as the angle of a point placed on the origin of the axes. ``angles`` must be an array of shape `(1, N)`, where `N` is the number of points. Args: angles (~numpy.ndarray): angles where to evaluate the basis elements out (~numpy.ndarray, optional): pre-existing array to use to store the output Returns: the sampled basis """ assert len(angles.shape) == 2 assert angles.shape[0] == 1 if out is None: out = np.empty((self.shape[0], self.shape[1], self.dim, angles.shape[1])) assert out.shape == (self.shape[0], self.shape[1], self.dim, angles.shape[1]) # find points in the origin origin = np.isnan(angles) angles = angles.copy() angles[origin] = 0.0 angles -= self.axis if self.shape[0] == 1 and self.shape[1] == 1: out[0, 0, ...] = np.cos(self.mu * angles + self.gamma) else: raise ValueError(f"Shape {self.shape} not recognized!") if self._has_non_zero_frequencies: # In the origin, only 0-frequencies are permitted. # Therefore, any non-0 frequency base is set to 0 in the origin if np.any(origin): mask = self._non_zero_frequencies * origin out *= 1 - mask assert not np.isnan(out).any() return out def __getitem__(self, idx): assert idx < self.dim attr = {} attr["frequency"] = self.mu[idx, 0] attr["gamma"] = self.gamma attr["offset"] = self.ts[idx] attr["idx"] = idx return attr def __eq__(self, other): if not isinstance(other, R2FlipsSolution): return False elif ( self.in_irrep != other.in_irrep or self.out_irrep != other.out_irrep or self.axis != other.axis ): return False else: return np.allclose(self.mu, other.mu) and np.allclose( self.gamma, other.gamma ) def __hash__(self): return ( hash(self.in_irrep) + hash(self.out_irrep) + hash(self.mu.tostring()) + hash(self.gamma) ) class R2DiscreteRotationsSolution(IrrepBasis): def __init__( self, group, in_irrep, out_irrep, max_frequency = None, max_offset = None, ): if isinstance(group, int): group = cyclic_group(group) assert isinstance(group, CyclicGroup) assert max_frequency is not None or max_offset is not None, ( "Error! Either the maximum frequency or the maximum offset for the" " frequencies must be set" ) self.max_frequency = max_frequency self.max_offset = max_offset assert max_frequency is None or ( isinstance(max_frequency, int) and max_frequency >= 0 ) assert max_offset is None or (isinstance(max_offset, int) and max_offset >= 0) if isinstance(in_irrep, int): in_irrep = group.irrep(in_irrep) elif isinstance(in_irrep, str): in_irrep = group.irreps[in_irrep] elif not isinstance(in_irrep, IrreducibleRepresentation): raise ValueError( "'in_irrep' should be a non-negative integer, a string or an instance" f" of IrreducibleRepresentation but {in_irrep} found" ) self.n = in_irrep.attributes["frequency"] if isinstance(out_irrep, int): out_irrep = group.irrep(out_irrep) elif isinstance(out_irrep, str): out_irrep = group.irreps[out_irrep] elif not isinstance(out_irrep, IrreducibleRepresentation): raise ValueError( "'out_irrep' should be a non-negative integer, a string or an instance" f" of IrreducibleRepresentation but {in_irrep} found" ) self.m = out_irrep.attributes["frequency"] self.N = group.order() self.ts = [] if in_irrep.size == 2 and out_irrep.size == 2: # m, n > 0 gammas = [] mus = [] ss = [] for gamma in [0.0, np.pi / 2]: for s in [0, 1]: k = self.m - self.n * (-1) ** s # for each available frequency offset, build the corresponding basis vector for t in offset_iterator( k, self.N, self.max_offset, self.max_frequency ): # the current shifted frequency mu = k + t * self.N if self.max_offset is not None: assert math.fabs(t) <= self.max_offset, (t, self.max_offset) if self.max_frequency is not None: assert math.fabs(mu) <= self.max_frequency, ( k, t, mu, self.max_frequency, ) gammas.append(gamma) mus.append(mu) ss.append(s) self.ts.append(t) self.gamma = np.array(gammas).reshape(-1, 1) self.mu = np.array(mus).reshape(-1, 1) self.s = np.array(ss).reshape(-1, 1) elif in_irrep.size == 2 and out_irrep.size == 1: assert self.m == 0 or (self.m == self.N // 2 and self.N % 2 == 0) # n > 0, m = 0 or N/2 gammas = [] mus = [] for gamma in [0.0, np.pi / 2]: k = self.n + self.m # for each available frequency offset, build the corresponding basis vector for t in offset_iterator( k, self.N, self.max_offset, self.max_frequency ): # the current shifted frequency mu = k + t * self.N if self.max_offset is not None: assert math.fabs(t) <= self.max_offset, (t, self.max_offset) if self.max_frequency is not None: assert math.fabs(mu) <= self.max_frequency, ( k, t, mu, self.max_frequency, ) gammas.append(gamma) mus.append(mu) self.ts.append(t) self.gamma = np.array(gammas).reshape(-1, 1) self.mu = np.array(mus).reshape(-1, 1) elif in_irrep.size == 1 and out_irrep.size == 2: assert self.n == 0 or (self.n == self.N // 2 and self.N % 2 == 0) # m > 0, n = 0 or N/2 gammas = [] mus = [] for gamma in [0.0, np.pi / 2]: k = self.n + self.m # for each available frequency offset, build the corresponding basis vector for t in offset_iterator( k, self.N, self.max_offset, self.max_frequency ): # the current shifted frequency mu = k + t * self.N if self.max_offset is not None: assert math.fabs(t) <= self.max_offset, (t, self.max_offset) if self.max_frequency is not None: assert math.fabs(mu) <= self.max_frequency, ( k, t, mu, self.max_frequency, ) gammas.append(gamma) mus.append(mu) self.ts.append(t) self.gamma = np.array(gammas).reshape(-1, 1) self.mu = np.array(mus).reshape(-1, 1) elif in_irrep.size == 1 and out_irrep.size == 1: assert self.n == 0 or (self.n == self.N // 2 and self.N % 2 == 0) assert self.m == 0 or (self.m == self.N // 2 and self.N % 2 == 0) gammas = [] mus = [] for gamma in [0.0, np.pi / 2]: k = self.m - self.n # for each available frequency offset, build the corresponding basis vector for t in offset_iterator( k, self.N, self.max_offset, self.max_frequency, non_negative=True ): # the current shifted frequency mu = k + t * self.N if self.max_offset is not None: assert math.fabs(t) <= self.max_offset, (t, self.max_offset) if self.max_frequency is not None: assert math.fabs(mu) <= self.max_frequency, ( k, t, mu, self.max_frequency, ) if mu > 0 or gamma == 0.0: # don't add sin(0*theta) as a basis since it is zero everywhere gammas.append(gamma) mus.append(mu) self.ts.append(t) self.gamma = np.array(gammas).reshape(-1, 1) self.mu = np.array(mus).reshape(-1, 1) self._non_zero_frequencies = self.mu != 0 self._has_non_zero_frequencies = np.any(self._non_zero_frequencies) dim = self.gamma.shape[0] super(R2DiscreteRotationsSolution, self).__init__( group, in_irrep, out_irrep, dim ) def sample(self, angles, out = None): r""" Sample the continuous basis elements on the discrete set of angles in ``angles``. Optionally, store the resulting multidimentional array in ``out``. A value of ``nan`` is interpreted as the angle of a point placed on the origin of the axes. ``angles`` must be an array of shape `(1, N)`, where `N` is the number of points. Args: angles (~numpy.ndarray): angles where to evaluate the basis elements out (~numpy.ndarray, optional): pre-existing array to use to store the output Returns: the sampled basis """ assert len(angles.shape) == 2 assert angles.shape[0] == 1 if out is None: out = np.empty((self.shape[0], self.shape[1], self.dim, angles.shape[1])) assert out.shape == (self.shape[0], self.shape[1], self.dim, angles.shape[1]) # find points in the origin origin = np.isnan(angles) angles = angles.copy() angles[origin] = 0.0 # the basis vectors depends on the shape of the input and output irreps, # while their frequencies depend on the irreps frequencies if self.shape[0] == 2 and self.shape[1] == 2: out = psichi(angles, s=self.s, k=self.mu, gamma=self.gamma, out=out) elif self.shape[0] == 1 and self.shape[1] == 2: out[0, 0, ...] =
np.cos(self.mu * angles + self.gamma)
numpy.cos
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Perform ResNet autoTVM tuning on VTA using Relay.""" import argparse, os, time from mxnet.gluon.model_zoo import vision import numpy as np from PIL import Image import topi import tvm from tvm import rpc, autotvm, relay from tvm.autotvm.measure.measure_methods import request_remote from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner from tvm.contrib import graph_runtime, util, download from tvm.contrib.debugger import debug_runtime import vta from vta.testing import simulator from vta.top import graph_pack from tvm.autotvm.task import extract_from_program def parse_arguments(): parser = argparse.ArgumentParser(description='Train a model for image classification.') parser.add_argument('--model', type=str, default='resnet18_v1', choices=['resnet18_v1'], help='Input model name.') parser.add_argument('--start-name', type=str, default='nn.max_pool2d', help='The name of the node where packing starts') parser.add_argument('--stop-name', type=str, default='nn.global_avg_pool2d', help='The name of the node where packing stops') parser.add_argument('--debug-profile', action='store_true', help='Show layer-wise time cost profiling results') parser.add_argument('--device', default='vta', choices=['vta', 'arm_cpu'], help='Select device target') parser.add_argument('--measurements', type=int, default=1, help='Number of measurements during AutoTVM search') parser.add_argument('--tuner', type=str, default="random", help='AutoTVM search strategy') parser.add_argument('--log-filename', type=str, default="resnet-18.log", help='AutoTVM log file name') return parser.parse_args() def register_vta_tuning_tasks(): from tvm.autotvm.task.topi_integration import TaskExtractEnv, deserialize_args @tvm.tag_scope(tag=topi.tag.ELEMWISE) def my_clip(x, a_min, a_max): """Unlike topi's current clip, put min and max into two stages.""" const_min = tvm.const(a_min, x.dtype) const_max = tvm.const(a_max, x.dtype) x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA") x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB") return x # init autotvm env to register VTA operator TaskExtractEnv() @autotvm.task.register("topi_nn_conv2d", override=True) def _topi_nn_conv2d(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" args = deserialize_args(args) A, W = args[:2] with tvm.target.vta(): res = topi.nn.conv2d(*args, **kwargs) res = topi.right_shift(res, 8) res = my_clip(res, 0, 127) res = topi.cast(res, "int8") if tvm.target.Target.current().device_name == 'vta': s = topi.generic.schedule_conv2d_nchw([res]) else: s = tvm.create_schedule([res.op]) return s, [A, W, res] @autotvm.task.register("topi_nn_dense", override=True) def _topi_nn_dense(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" args = deserialize_args(args) A, W = args[:2] with tvm.target.vta(): res = topi.nn.dense(*args, **kwargs) res = topi.right_shift(res, 8) res = my_clip(res, 0, 127) res = topi.cast(res, "int8") if tvm.target.Target.current().device_name == 'vta': s = topi.generic.schedule_dense([res]) else: s = tvm.create_schedule([res.op]) return s, [A, W, res] def compile_network(opt, env, target): # Populate the shape and data type dictionary dtype_dict = {"data": 'float32'} shape_dict = {"data": (env.BATCH, 3, 224, 224)} # Get off the shelf gluon model, and convert to relay gluon_model = vision.get_model(opt.model, pretrained=True) mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict) # Update shape and type dictionary shape_dict.update({k: v.shape for k, v in params.items()}) dtype_dict.update({k: str(v.dtype) for k, v in params.items()}) # Perform quantization in Relay # Note: We set opt_level to 3 in order to fold batch norm with relay.build_config(opt_level=3): with relay.quantize.qconfig(global_scale=8.0, skip_conv_layers=[0]): relay_prog = relay.quantize.quantize(mod["main"], params=params) # Perform graph packing and constant folding for VTA target if target.device_name == "vta": assert env.BLOCK_IN == env.BLOCK_OUT relay_prog = graph_pack( relay_prog, env.BATCH, env.BLOCK_OUT, env.WGT_WIDTH, start_name=opt.start_name, stop_name=opt.stop_name) return relay_prog, params def tune_tasks(tasks, measure_option, tuner='xgb', n_trial=1000, early_stopping=None, log_filename='tuning.log', use_transfer_learning=True, try_winograd=True): # create tmp log file tmp_log_file = log_filename + ".tmp" if os.path.exists(tmp_log_file): os.remove(tmp_log_file) for i, tsk in enumerate(reversed(tasks)): prefix = "[Task %2d/%2d] " % (i+1, len(tasks)) # create tuner if tuner == 'xgb' or tuner == 'xgb-rank': tuner_obj = XGBTuner(tsk, loss_type='rank') elif tuner == 'ga': tuner_obj = GATuner(tsk, pop_size=50) elif tuner == 'random': tuner_obj = RandomTuner(tsk) elif tuner == 'gridsearch': tuner_obj = GridSearchTuner(tsk) else: raise ValueError("Invalid tuner: " + tuner) if use_transfer_learning: if os.path.isfile(tmp_log_file): tuner_obj.load_history(autotvm.record.load_from_file(tmp_log_file)) # do tuning n_trial_ = min(n_trial, len(tsk.config_space)) tuner_obj.tune(n_trial_, early_stopping=early_stopping, measure_option=measure_option, callbacks=[ autotvm.callback.progress_bar(n_trial_, prefix=prefix), autotvm.callback.log_to_file(tmp_log_file)]) # pick best records to a cache file autotvm.record.pick_best(tmp_log_file, log_filename) os.remove(tmp_log_file) if __name__ == '__main__': opt = parse_arguments() # Make sure that TVM was compiled with RPC=1 assert tvm.runtime.enabled("rpc") # Read in VTA environment env = vta.get_env() # Get remote from fleet node tracker_host = os.environ.get("TVM_TRACKER_HOST", None) tracker_port = os.environ.get("TVM_TRACKER_PORT", None) if not tracker_host or not tracker_port: print("Set your AutoTVM tracker node host and port variables to run the autotuner") exit() # Get remote if env.TARGET != "sim": # Measure build start time reconfig_start = time.time() # Get remote from fleet node remote = autotvm.measure.request_remote(env.TARGET, tracker_host, int(tracker_port), timeout=10000) # Reconfigure the JIT runtime and FPGA. # You can program the FPGA with your own custom bitstream # by passing the path to the bitstream file instead of None. vta.reconfig_runtime(remote) vta.program_fpga(remote, bitstream=None) # Report on reconfiguration time reconfig_time = time.time() - reconfig_start print("Reconfigured FPGA and RPC runtime in {0:.2f}s!".format(reconfig_time)) # In simulation mode, host the RPC server locally. else: remote = rpc.LocalSession() # VTA target and execution context target = env.target if opt.device == "vta" else env.target_vta_cpu ctx = remote.ext_dev(0) if opt.device == "vta" else remote.cpu(0) # Compile Relay program print("Initial compile...") relay_prog, params = compile_network(opt, env, target) # Register VTA tuning tasks register_vta_tuning_tasks() # Perform task extraction on Relay program print("Extracting tasks...") tasks = extract_from_program(func=relay_prog, params=params, ops=(tvm.relay.op.nn.conv2d,), target=target, target_host=env.target_host) # Perform Autotuning print("Tuning...") tuning_opt = { 'log_filename': opt.log_filename, 'tuner': opt.tuner, 'n_trial': 1e9, 'early_stopping': None, 'measure_option': autotvm.measure_option( builder=autotvm.LocalBuilder(build_func=vta.vta_autotvm_build_func), runner=autotvm.RPCRunner(env.TARGET, tracker_host, tracker_port, number=4, min_repeat_ms=150, repeat=opt.measurements, timeout=60, check_correctness=True)) } tune_tasks(tasks, **tuning_opt) # Compile kernels with history best records with autotvm.tophub.context(target, extra_files=[opt.log_filename]): # Compile network print("Compiling network with best tuning parameters...") with relay.build_config(opt_level=3, disabled_pass={"AlterOpLayout"}): if target.device_name != "vta": graph, lib, params = relay.build( relay_prog, target=target, params=params, target_host=env.target_host) else: with vta.build_config(): graph, lib, params = relay.build( relay_prog, target=target, params=params, target_host=env.target_host) # Export library temp = util.tempdir() lib.save(temp.relpath("graphlib.o")) remote.upload(temp.relpath("graphlib.o")) lib = remote.load_module("graphlib.o") # If detailed runtime info is needed build with debug runtime if opt.debug_profile: m = debug_runtime.create(graph, lib, ctx) else: m = graph_runtime.create(graph, lib, ctx) # Set the network parameters and synthetic input image = tvm.nd.array( (np.random.uniform(size=(1, 3, 224, 224))).astype('float32')) m.set_input(**params) m.set_input('data', image) # Perform inference timer = m.module.time_evaluator("run", ctx, number=4, repeat=opt.measurements) tcost = timer() prof_res =
np.array(tcost.results)
numpy.array
import numpy as np from skimage.io import imread from skimage.transform import resize from sklearn.feature_extraction.image import extract_patches_2d from keras.utils import Sequence, to_categorical from numpy.core.defchararray import add, replace import matplotlib.pyplot as plt class ImageGenerator(Sequence): ''' Class for generating image batches from the image files :param image_filenames: 1D numpy array (or list) of file names of the images :param labels: 1D numpy array with the labels corresponding to each image :param batch_size: integer giving the batch size to be used in training the network :param image_shape: tuple of two integers. All images will be compressed to this shape ''' def __init__(self, image_filenames, labels, batch_size, image_shape): self.image_filenames, self.labels = image_filenames, labels self.image_shape, self.batch_size = image_shape, batch_size def __len__(self): return int(np.ceil(len(self.image_filenames) / float(self.batch_size))) # Helper function to read and preprocess images def _read_image(self, filename): image = resize(imread(filename), self.image_shape) # Normalize pixel values between 0 and 1 image = image / 255 return image def __getitem__(self, idx): batch_x = self.image_filenames[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = self.labels[idx * self.batch_size:(idx + 1) * self.batch_size] return np.array([self._read_image(file_name) for file_name in batch_x]),\ to_categorical(np.array(batch_y), num_classes=5) class PatchGenerator(ImageGenerator): def __init__(self, image_filenames, labels, batch_size, patch_shape, n_patches): self.image_filenames, self.labels = image_filenames, labels self.batch_size = batch_size self.patch_shape, self.n_patches = patch_shape, n_patches def _read_image(self, filename): image = imread(filename) # Normalize pixel values between 0 and 1 image = image / 255 patches = extract_patches_2d(image, patch_size=self.patch_shape, max_patches=self.n_patches, random_state=38) return patches class ArrayGenerator(Sequence): ''' Class for generating arrays for training :param filenames: 1D array of filenames to read from, ending with .npy :param labels: 1D array of strings, labels :param batch_size: integer giving the batch size to be used in training the network ''' def __init__(self, filenames, labels, batch_size): self.filenames = filenames self.labels, self.batch_size = labels, batch_size def __len__(self): return int(np.ceil(len(self.filenames) / float(self.batch_size))) def read_array(self, filename): array = np.load(filename) return array def __getitem__(self, idx): batch_x = self.filenames[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = self.labels[idx * self.batch_size:(idx + 1) * self.batch_size] return np.array([np.load(file_name) for file_name in batch_x]),\ to_categorical(np.array(batch_y), num_classes=5) def get_generators(n_total, batch_size, image_shape=None, type='array', zeros_left=5000): ''' Construct generators for training and validation data Zero grade images are downsampled :param n_total: number of total images to use (training plus validation) :param batch_size: batch size used in training :param image_shape: image size used in training :param zeros_left: how many images of grade zero should be left in the pool use a negative value to keep all the zeros :return: train_gen: generator of training data test_gen: generator of validation data ''' # Set the number of training samples n_train = int(np.ceil(n_total * 0.8)) n_test = int(np.floor(n_total * 0.2)) # Read filenames from a text file listing all the images full_filenames = np.genfromtxt('../data/train_filenames.txt', dtype=str) # Read the labels file full_labels = np.genfromtxt('../data/trainLabels.csv', skip_header=1, dtype=str, delimiter=',') # Keep only labels of data that can be used in training full_samples = replace(full_filenames, ".jpeg", "") full_mask = np.isin(full_labels[:, 0], full_samples) trainable_labels = np.copy(full_labels[full_mask, :]) # Downsample the zero grade, keeping only the first 5000 # Randomize order np.random.seed(1234) np.random.shuffle(trainable_labels) # Arrange by a stable sort (mergesort) trainable_labels = np.copy(trainable_labels[trainable_labels[:,1].argsort(kind='mergesort')]) # Remove extra zeros if zeros_left > 0: _, counts =
np.unique(trainable_labels[:,1], return_counts=True)
numpy.unique
from scipy import ndimage, interpolate import numpy as np from makebeam import makebeam import matplotlib.pyplot as plt from sauron_colormap import sauron from astropy.convolution import convolve_fft #Masking Code def emisChannels(cube, start, stop): emis = cube[:,:,start:stop] noise = np.concatenate((cube[:,:,:start],cube[:,:,stop:]), axis=2) return emis, noise def innersquare(cube, N): ''' cuts out the inner square (spatial) of the data cube or image ''' start = int(len(cube[1])*(7./16.)) #If really bad, use 7/16 and 9/16 stop = int(len(cube[1])*(9./16.)) if N == 3: return cube[start:stop, start:stop, :] elif N == 2: return cube[start:stop, start:stop] else: print("Enter a correct value for N") def clip(emiscube, noisecube, cutoff): ''' "clip" the cube: set all pixels with a value lower than a certain times sigma to zero ''' #Since the PB correction has already been applied, measure the rms in the inner square of the spatial axes (PB correction makes the outer edges more noisy, so we don't want to use those if we measure the rms innersq = innersquare(noisecube, 3) sigma = np.std(innersq[np.isfinite(innersq)]) emiscube[emiscube<cutoff*sigma] = 0 return emiscube def smoothclip(cube, cutoff, beamsize, cellsize, start, stop, psf): ''' Apply a Gaussian smoothing to the data cube. cube = the raw data cube emiscube = the part of the cube that contains the emission line cutoff = the level at which you want to clip (in multiples of the rms noise of the cube) beamsize = Array of [Bmin, Bmaj, Bpa] start = first channel that contains emission stop = last channel that contains emission ''' #copy the datacube cube_copy = cube.copy() #a copy of the data cube will be used to do the smoothing. This smoothed cube will then be used as a mask to clip the orignial cube emiscube = cube.copy()[:,:,start:stop] # extract relevant information from header (pixel size, beam size) beam = beamsize[1] / cellsize #beam size in pixels, use the major axis # convert the FWHM of the beam to the std dev in the Gaussian distribution and use 1.5 times the beam size to convolve with sigma = 1.5 * beam / np.sqrt(8.*np.log(2.)) #apply a Gaussian blur, using sigma = 4 in the velocity direction (seems to work best). The mode 'nearest' seems to give the best results. # cube_smoothed = ndimage.filters.gaussian_filter(cube_copy, (4.,sigma,sigma), order=0, mode='nearest') cube_smoothed = cube_copy.copy() * 0 w2do = np.where(cube.sum(axis=0).sum(axis=0) >0)[0] for i in range(0,w2do.size): cube_smoothed[:,:,w2do[i]] = convolve_fft(cube[:,:,w2do[i]], psf) #clip the copied cube, using the smaller cube where the emission is smoothemis, smoothnoise = emisChannels(cube_smoothed, start, stop) #this separates the channels with emission from the ones without emission and glues the latter bits together in one "noise cube" clipped = clip(smoothemis, smoothnoise, cutoff) #mask the original cube with the smoothed cube emiscube[clipped == 0] = 0 return emiscube #Plotting def makeplots(f,xsize,ysize,vsize,cellsize,dv,beamsize,posang=0,overcube=False,pvdthick=2,nconts=11.,title=False, **kwargs): # ;;;; Create plot data from cube ;;;; mom0rot=f.sum(axis=2) if np.any(overcube): mom0over=overcube.sum(axis=2) x1=
np.arange(-xsize/2.,xsize/2.,cellsize)
numpy.arange
# Licensed under a 3-clause BSD style license - see LICENSE ''' Provides the mathematical framework for simulating distributions of proper motions based on the distance and Galactic coordinates of a set of Galactic stars. ''' import numpy as np import multiprocessing import itertools __all__ = ['calculate_proper_motions'] def calculate_proper_motions(d, l, b, temp, N): ''' Calculates the statistical distribution of proper motions of a sightline, from a set of theoretical sources within the particular sky area. Parameters ---------- d : numpy.ndarray The set of distances to each theoretical source. l : numpy.ndarray The Galactic longitudes of each simulated source. b : numpy.ndarray The Galactic latitude of each source. temp : numpy.ndarray The simulated effective temperature of each object. N : integer The number of realisations of each object's Galactic velocities to draw from its dispersion relation. Returns ------- pm : numpy.ndarray The Galactic and Equatorial proper motions of the ``len(d)`` simulated sources, for the three simulated Galactic components each with ``N`` velocity dispersion realisations. type_fracs : numpy.ndarray The density-based weightings of each of the three Galactic components for each source in ``d``, broadcast to shape ``(len(d), 3, N)`` to match the shape of ``pm``. ''' # Height of the Sun above the Galactic plane from Juric et al. (2008, ApJ, 673, 864). z_sol = 0.025 # Solar Galactic radius from Mroz et al. (2019, ApJ, 870, 10). r_sol = 8.09 # Scale lengths also from Juric et al. (2008). l_thin, h_thin = 2.6, 0.3 l_thick, h_thick = 3.6, 0.9 f_thick = 0.13 f_h, q, n = 0.0051, 0.64, 2.77 h_b = 0.8 # Bulge-to-disc normalisation, from Jackson et al. (2002, MNRAS, 337, 749). zeta_b = 2 # These coordinates do not account for any z_sol offset, and hence z = 0 is at b = 0. r, z = convert_dist_coord_to_cylindrical(d, l, b, r_sol) # This comes out with shape (len(d), 3); have to factor an additional 1/N in the weights # so that when we histogram an extra N times as many proper motions we smooth to the same # counts as the original data. fractions = fraction_density_component(r, z, r_sol, z_sol, l_thin, h_thin, l_thick, h_thick, f_thick, f_h, q, n, zeta_b, h_b).T / N # We then tile it to (len(d), len(types), N) type_fracs = np.tile(fractions[:, :, np.newaxis], (1, 1, N)) # V_a values come from Robin et al. (2003), A&A, 409, 523; Pasetto et al. (2012), A&A, 547, # A70; & (220km/s Halo drift velocity from Reddy (2009), Proc. IAU Symp., 265) # 240 km/s Halo V_a from Golubov et al. (2013), A&A, 557, A92. drift_vels = np.array([10, 49, 240], dtype=float) # Assume our rotation curve was constructed from thin disc objects, so take the relative # asymmetric drift from that. Objects in Mroz et al. are Classical Cepheids, so that's fine. drift_vels -= drift_vels[0] # Derive Oort constants from Pecaut & Mamajek (2013, ApJS, 208, 9) and # <NAME> (2003, ApJ, 599, 275). # First, get (B - V)_0 from Teff based on P&M scalings: bv0 = np.empty_like(temp) bv0[temp < 10000] = 5.07836 * np.exp(-0.27083 * temp[temp < 10000] / 1000) - 0.40739 bv0[temp >= 10000] = 0.69012 * np.exp(-0.08179 * temp[temp >= 10000] / 1000) - 0.35093 # Next, get A/B from O&D based on intrinsic B-V colour: A = 1.94553 * bv0 + 11.33138 B = -2.63360 * bv0 - 13.60611 rng = np.random.default_rng() pm = np.empty((len(d), 3, N, 4)) n_pool = 40 pool = multiprocessing.Pool(n_pool) counter = np.arange(0, len(d)) iter_group = zip(counter, itertools.repeat(drift_vels), itertools.repeat(rng), itertools.repeat([l, b, d]), itertools.repeat(N), itertools.repeat([r, z]), itertools.repeat([r_sol, z_sol]), itertools.repeat([A, B]), itertools.repeat([l_thin, l_thick])) for stuff in pool.imap_unordered(calc_pm, iter_group, chunksize=max(1, len(d) // n_pool)): j, mu_a, mu_d, mu_l, mu_b = stuff pm[j, :, :, 0] = mu_a pm[j, :, :, 1] = mu_d pm[j, :, :, 2] = mu_l pm[j, :, :, 3] = mu_b pool.close() return pm, type_fracs def convert_dist_coord_to_cylindrical(d, l, b, r_sol): ''' Convert distance and Galactic lat/lon to Galactocentric Cartesian coordinates. Parameters ---------- d : numpy.ndarray Distance to a set of theoretical objects. l : numpy.ndarray Galactic longitude for each source. b : numpy.ndarray Galactic latitude for all sources. r_sol : float Galactocentric Cylindrical radius of the Sun from the Galactic center in kpc. Returns ------- r : numpy.ndarray The Galactocentric Cylindrical radius of each object from the Galactic center. z : numpy.ndarray The Galactocentric Cylindrical height of each object from the Galactic plane. ''' # Following notation where X points towards the GC from the Sun, with a right-handed system, # but choice of handedness is irrelevant here since we only care about radial distance. x = d * np.cos(np.radians(l)) * np.cos(np.radians(b)) - r_sol y = d * np.sin(np.radians(l)) * np.cos(np.radians(b)) z = d * np.sin(np.radians(b)) r = np.sqrt(x**2 + y**2) return r, z def fraction_density_component(r, z, r_sol, z_sol, l_thin, h_thin, l_thick, h_thick, f_thick, f_halo, q, n, zeta_b, h_b): ''' Calculates the relative densities of each of the Galactic components used in simulating potential proper motions of objects. At present, this is the thin and thick discs, and the (outer) Galactic halo. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. r_sol : float The Sun's Galactocentric Cylindrical radius. z_sol : float Solar Galactocentric Cylindrical height above the plane. l_thin : float Scale length of the thin disc in the radial direction. h_thin : float Vertical scale length of the thin disc. l_thick : float Thick disc radial scale length. h_thick : float Thick disc vertical scale length. f_thick : float Relative normalisation of the thick disc to the thin disc density. f_halo : float Normalisation of the outer Galactic halo to the thin disc. q : float Oblateness of the outer Galactic halo in the vertical direction. n : float Scaling relation of the halo with Galactocentric (oblate) Spherical distance. zeta_b : float Relative normalisation of the Galactic bulge to the thin disc. h_b : float Spherical scale length of the Galactic bulge. Returns ------- rel_dens : numpy.ndarray The relative densities of the implemented Galactic components. ''' # First three densities from eq 22-24 and table 10 of Juric et al. (2008), plus # corrections and extension from eq 9-12 of Ivezic et al. (2008, ApJ, 684, 287), albeit with the # exception of the removal of rho_d(r_sol, 0) as a normalising factor in all functions f_thin = thin_disc_density(r, z, r_sol, z_sol, l_thin, h_thin) f_thick = thick_disc_density(r, z, r_sol, z_sol, l_thick, h_thick, f_thick) f_halo = halo_density(r, z, r_sol, f_halo, q, n) # To avoid a singularity within the solar circle, just set the halo component density # to its value at r_sol, allowing for the thin+thick disc to overcome it towards # the Galactic center. Test with e.g. Sandage (1987), AJ, 93, 610, Fig 2b. f_halo[r < r_sol] = f_halo[np.argmin(np.abs(r - r_sol))] # Currently not using f_bulge due to no parameterisation for its proper # motion at present. # f_bulge = bulge_density(r, z, zeta_b, h_b, q) norm = f_thin + f_thick + f_halo # + f_bulge return np.array([f_thin, f_thick, f_halo]) / norm def thin_disc_density(r, z, r_sol, z_sol, l_thin, h_thin): ''' Calculates the relative density of the thin disc. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. r_sol : float The Sun's Galactocentric Cylindrical radius. z_sol : float Solar Galactocentric Cylindrical height above the plane. l_thin : float Scale length of the thin disc in the radial direction. h_thin : float Vertical scale length of the thin disc. Returns ------- disc_density : numpy.ndarray The density of the thin disc evaluated at ``r`` and ``z``. ''' return disc_density(r, z, l_thin, h_thin, r_sol, z_sol) def disc_density(r, z, l, h, r_sol, z_sol): ''' Calculates the relative density of an exponential disc, either the thin or thick discs, depending on ``l`` and ``h``. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. r_sol : float The Sun's Galactocentric Cylindrical radius. z_sol : float Solar Galactocentric Cylindrical height above the plane. l : float Scale length of the disc in the radial direction. h : float Vertical scale length of the disc. Returns ------- disc_density : numpy.ndarray The density of the disc evaluated at ``r`` and ``z``. ''' return np.exp(-(r - r_sol) / l - np.abs(z + z_sol)/h) def thick_disc_density(r, z, r_sol, z_sol, l_thick, h_thick, f_thick): ''' Calculates the relative density of the thick disc. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. r_sol : float The Sun's Galactocentric Cylindrical radius. z_sol : float Solar Galactocentric Cylindrical height above the plane. l_thick : float Scale length of the thick disc in the radial direction. h_thick : float Vertical scale length of the thick disc. f_thick : float Relative scaling between the thin disc and thick disc. Returns ------- disc_density : numpy.ndarray The density of the thick disc evaluated at ``r`` and ``z``. ''' return f_thick * disc_density(r, z, l_thick, h_thick, r_sol, z_sol) def halo_density(r, z, r_sol, f_h, q, n): ''' Calculates the relative density of the halo. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. r_sol : float The Sun's Galactocentric Cylindrical radius. f_h : float The normalising constant between thin disc and halo parameterisations. q : float Oblateness of the halo. n : float Power law scaling relation for halo density. Returns ------- halo_density : numpy.ndarray The density of the halo evaluated at ``r`` and ``z``. ''' return f_h * (r_sol / np.sqrt(r**2 + (z/q)**2))**n def bulge_density(r, z, zeta_b, h_b): ''' Calculates the relative density of the Galactic bulge. Currently not implemented. Parameters ---------- r : numpy.ndarray Galactocentric Cylindrical radii for each source used to simulate proper motions for the particular sightline. z : numpy.ndarray Galactocentric Cylindrical heights above the Galactic plane for each source. zeta_b : float Normalising constant, setting the relative densities between the bulge and thin disc. h_b : float Scale length of the bulge density. Returns ------- bulge_density : numpy.ndarray The density of the bulge evaluated at ``r`` and ``z``. ''' # Bulge parameters from Jackson et al. (2002), equation 8. x = np.sqrt(r**2 + z**2) # We drop C entirely, assuming it to be the equivalent of rho_d(r_sol, 0) for Jackson et al. return zeta_b * np.exp(-x/h_b) def calc_pm(iterable): ''' Calculate an individual simulated object's distribution of proper motions based on its different motions if it were a thin disc, thick disc, or outer halo object, combined with relative weightings for its assignment to those components of the Galaxy. Parameters ---------- iterable : list The list of various variables passed through to ``calc_pm`` by ``multiprocessing``. Returns ------- j : integer The index of the particular simulated source having proper motions derived for it. mu_a : numpy.ndarray The simulated proper motions for this object, ``N`` simulated velocities per ``drift_vels`` Galactic component, in right ascension. mu_d : numpy.ndarray The corresponding declination proper motions to ``mu_a``. _mu_l : numpy.ndarray Transposed Galactic longitude proper motions for the source's ``mu_a`` and ``mu_d``. _mu_b : numpy.ndarray Transposed Galactic latitude proper motions for the source's ``mu_a`` and ``mu_d``. ''' j, drift_vels, rng, [l, b, d], N, [r, z], [r_sol, z_sol], \ [A, B], [l_thin, l_thick] = iterable mu_a, mu_d = np.empty((len(drift_vels), N), float), np.empty((len(drift_vels), N), float) _mu_l, _mu_b = np.empty((len(drift_vels), N), float), np.empty((len(drift_vels), N), float) sinl, cosl = np.sin(np.radians(l[j])), np.cos(np.radians(l[j])) sinb, cosb = np.sin(np.radians(b[j])), np.cos(np.radians(b[j])) d_ip = cosb * d[j] # Rotation+mirror matrix, to put R-phi-z dispersion along Vr-Vt-Vz plane rot = np.array( [[(r[j]**2 + d_ip**2 - r_sol**2) / (2 * r[j] * d_ip), r_sol / r[j] * sinl, 0], [r_sol / r[j] * sinl, -(r[j]**2 + d_ip**2 - r_sol**2) / (2 * r[j] * d_ip), 0], [0, 0, 1]]) Us, Vs, Ws = 0, 0, 0 Usol, Vsol, Wsol = 11.1, 12.2, 7.3 # km/s sinbeta = d[j] * sinl / r[j] cosbeta = (r_sol**2 + r[j]**2 - d[j]**2) / (2 * r_sol * r[j]) Theta_sol = 233.6 # km/s __b = 0.72 a1, a2, a3 = 235.0, 0.89, 1.31 x = (r[j] / r_sol) / a2 theta_d_sq = a1**2 * __b * 1.97 * x**1.22 / (x**2 + 0.78**2)**1.43 theta_h_sq = a1**2 * (1 - __b) * x**2 * (1 + a3**2) / (x**2 + a3**2) Theta_r = np.sqrt(theta_d_sq + theta_h_sq) U1 = Us * cosbeta + (Vs + Theta_r) * sinbeta - Usol V1 = -Us*sinbeta + (Vs + Theta_r) * cosbeta - Vsol - Theta_sol W1 = Ws - Wsol # Based on Mroz et al. (2019), our components of Heliocentric Cylindrical # coordinates are: Vr = U1 * cosl + V1 * sinl Vt = V1 * cosl - U1 * sinl Vz = W1 for i in range(len(drift_vels)): drift_vel_rtz = np.matmul(rot, np.array([[0], [-drift_vels[i]], [0]])) mean = np.array([Vr + drift_vel_rtz[0, 0], Vt + drift_vel_rtz[1, 0], Vz]) if i == 0: cov = find_thin_disc_dispersion(r[j], z[j], l[j], b[j], d[j], A[j], B[j], l_thin, r_sol) if i == 1: cov = find_thick_disc_dispersion(r[j], l[j], b[j], d[j], l_thick, r_sol) if i == 2: cov = find_halo_dispersion(l[j], b[j], d[j]) new_uvw = rng.multivariate_normal(mean, cov, N) v_d, v_l, v_z = new_uvw[:, 0], new_uvw[:, 1], new_uvw[:, 2] # 1 km/s/kpc = 0.2108 mas/year mu_lstar = v_l / d[j] * 0.2108 mu_b = 0.2108/d[j] * (v_z * cosb - v_d * sinb) mu_a[i, :], mu_d[i, :] = galactic_to_equatorial(np.radians(l[j]), np.radians(b[j]), mu_lstar, mu_b) _mu_l[i, :], _mu_b[i, :] = mu_lstar, mu_b return (j, mu_a, mu_d, _mu_l, _mu_b) def find_thin_disc_dispersion(r, z, l, b, d, A, B, h, r_sol): ''' Calculate the dispersion in the thin disc as a function of Galactic position. Parameters ---------- r : float The Galactic Cylindrical radius of the object. z : float The Galactic Cylindrical height of the source. l : float Galactic longitude of the star. b : float Galactic latitude of the star. A : float Oort constant. B : float Oort constant. h : float Scale length of the thin disc. r_sol : float Galactic Cylindrical radius of the Sun. Returns ------- cov_rtz : numpy.ndarray The covariance matrix dispersion vector, in Galactic Cylindrical coordinates. ''' # Data from Pasetto et al. (2012), A&A, 547, A71, tables 4-9 _r_sol = 8.5 # kpc; have to use the Pasetto et al. result of R0 ~ 8.4-8.6 kpc for consistency # Assume that sig_rr^2 goes as R^2 exp(-2 R / h) by a stable Toomre Parameter (Lewis & Freeman # 1989, AJ, 97, 139) where rotation curve is flat (Mroz et al.), where h is the scale length # of the disc. Pasetto et al. have a sig_rr^2(R0, 0) ~ 715 km^2/s^2 sig_rr2_00 = 715.93 # km^2/s^2 sig_rr2_r0 = sig_rr2_00 * (r / _r_sol)**2 * np.exp(-2 * (r - _r_sol) / h) # Now assume that the vertical gradient of the thin disc of Pasetto et al. goes for ~1kpc # with a gradient of roughly 1200km^2/s^2/kpc at R=R0, but scaling the same as the dispersion. sig_rr2_z_grad_0 = 1236.97 # km^2/s^2/kpc sig_rr2_z_grad = sig_rr2_z_grad_0 # * (r / r_sol)**2 * np.exp(-2 * (r - r_sol) / h) sig_rr2 = sig_rr2_r0 + min(1, np.abs(z)) * sig_rr2_z_grad # Assume that the phi variance sigma can be approximated from the relation with # the R sigma: sig_phiphi2 = (-B / (A - B)) * sig_rr2 # We assume the correlation along the R-phi covariance is zero, following Vallenari et al. sig_rphi2 = 0 # Following the Pasetto et al. discussion, we conclude that the phi-z dispersion is # essentially zero, to their uncertainties, and force it to be so: sig_phiz2 = 0 # Similar to sig_rr, we assume that sig_zz^2 = sig_zz^2(R0, 0) * exp(-(r - r_sol) / h) # where sig_zz^2(R0, 0) ~ 243 km^2/s^2 sig_zz2_00 = 243.71 # km^2/s^2 sig_zz2_r0 = sig_zz2_00 * np.exp(-(r - _r_sol) / h) # Now, again, extrapolate the vertical gradient seen in sig_zz(R, z) to 1 kpc above/below plane # with a gradient, again, that scales with the radial gradient. Assume ~300km^2/s^2/kpc R = R0. sig_zz2_z_grad_0 = 306.84 # km^2/s^2/kpc sig_zz2_z_grad = sig_zz2_z_grad_0 # * np.exp(-(r - r_sol) / h) sig_zz2 = sig_zz2_r0 + min(1, np.abs(z)) * sig_zz2_z_grad # Given Vallenari et al. (2006), A&A, 451, 125, following Cuddeford & Amendt (1991), we # assume that the vertical tilt goes as the gradient of sig^2_rz, which is given by # the difference between sig^2_rr(R, 0) and sig^2_zz(R, 0); we assume lambda = 0.6, for now. dsig2_rz_dz = 0.6 * (sig_rr2_r0 - sig_zz2_r0) / r sig_rz2 = z * dsig2_rz_dz # If correlation gets above one, force sig_rz2 = +- sqrt(sig_rr^2) * sqrt(sig_zz^2) at largest if np.abs(sig_rz2) > np.sqrt(sig_rr2) * np.sqrt(sig_zz2): sig_rz2 = 0.99 * np.sign(sig_rz2) * np.sqrt(sig_rr2) * np.sqrt(sig_zz2) cov = np.empty((3, 3), float) cov[0, 0] = sig_rr2 cov[1, 1] = sig_phiphi2 cov[2, 2] = sig_zz2 cov[0, 1] = cov[1, 0] = sig_rphi2 cov[0, 2] = cov[2, 0] = sig_rz2 cov[1, 2] = cov[2, 1] = sig_phiz2 d_ip = np.cos(np.radians(b)) * d # Rotation matrix, to put R-phi-z dispersion along Vr-Vt-Vz plane sinl = np.sin(np.radians(l)) rot = np.array( [[(r**2 + d_ip**2 - r_sol**2) / (2 * r * d_ip), r_sol / r * sinl, 0], [r_sol / r * sinl, -(r**2 + d_ip**2 - r_sol**2) / (2 * r * d_ip), 0], [0, 0, 1]]) cov_rtz = np.matmul(rot, np.matmul(cov, rot.T)) return cov_rtz def find_thick_disc_dispersion(r, l, b, d, h, r_sol): ''' Calculate the dispersion in the thick disc as a function of Galactic position. Parameters ---------- r : float The Galactic Cylindrical radius of the object. z : float The Galactic Cylindrical height of the source. l : float Galactic longitude of the star. b : float Galactic latitude of the star. A : float Oort constant. B : float Oort constant. h : float Scale length of the thick disc. r_sol : float Galactic Cylindrical radius of the Sun. Returns ------- cov_rtz : numpy.ndarray The covariance matrix dispersion vector, in Galactic Cylindrical coordinates. ''' # Data from Pasetto et al. (2012), A&A, 547, A70, table 3-4 # Assume sig_phiphi / sig_rr = const, so scale both the same. Currently assume there are no # cross-term products. _r_sol = 8.5 # kpc; use the Pasetto et al. thin disc rough R0, figuring it should be equal if r < _r_sol: sig_rr2 = 60.2**2 * (r / _r_sol)**2 * np.exp(-2 * (r - _r_sol) / h) sig_rphi2 = 0 # 37.6 km/s(!) sig_rz2 = 0 # 13.3 km/s(!) sig_phiphi2 = 44.7**2 * (r / _r_sol)**2 * np.exp(-2 * (r - _r_sol) / h) sig_phiz2 = 0 # 4.0 km/s(!) sig_zz2 = 37.2**2 * np.exp(-(r - _r_sol) / h) else: sig_rr2 = 55.8**2 * (r / _r_sol)**2 * np.exp(-2 * (r - _r_sol) / h) sig_rphi2 = 0 # 35.5 km/s(!) sig_rz2 = 0 # 9.6 km/s(!) sig_phiphi2 = 45.2**2 * (r / _r_sol)**2 * np.exp(-2 * (r - _r_sol) / h) sig_phiz2 = 0 # 3.8 km/s(!) sig_zz2 = 36.3**2 *
np.exp(-(r - _r_sol) / h)
numpy.exp
import numpy as np from scipy.spatial.distance import cdist from time import time # this is to recompute each time the attractivities of cells is modified during simulation def sum_by_group(values, groups): """ see: https://stackoverflow.com/questions/4373631/sum-array-by-number-in-numpy alternative method with meshgrid led to memory error """ order = np.argsort(groups) groups = groups[order] values = values[order] values.cumsum(out=values) index = np.ones(groups.shape[0], 'bool') index[:-1] = groups[1:] != groups[:-1] values = values[index] groups = groups[index] values[1:] = values[1:] - values[:-1] return values, groups def vectorized_choice(prob_matrix, axis=1): """ selects index according to weights in `prob_matrix` rows (if `axis`==0), cols otherwise see https://stackoverflow.com/questions/34187130/fast-random-weighted-selection-across-all-rows-of-a-stochastic-matrix """ s = prob_matrix.cumsum(axis=axis) r = np.random.rand(prob_matrix.shape[1-axis]).reshape(2*(1-axis)-1, 2*axis - 1) k = (s < r).sum(axis=axis) k = k.astype(np.uint32) return k for _ in range(100): n_cells, n_squares_per_side = 100, 10 n_squares = n_squares_per_side ** 2 cells = np.arange(0, n_cells) squares = np.arange(0, n_squares) attractivity_cells = np.random.uniform(size=n_cells).astype(np.float32) cells_squares = np.random.choice(squares, size=n_cells) squares_with_cells =
np.unique(cells_squares)
numpy.unique
import os import numpy as np import multiprocessing as mp import math import sys sys.path.append('/ibex/scratch/projects/c2052/Lung_CAD_NMI/source_codes') import Tool_Functions.Functions as Functions import analysis.connected_region2d_and_scale_free_stat as connected_region import analysis.connect_region_detect as connect_3d np.set_printoptions(threshold=np.inf) ibex = False if not ibex: top_directory_rescaled_ct = '/home/zhoul0a/Desktop/prognosis_project/original_follow_up/rescaled_ct_follow_up/' # where the rescaled ct arrays saved: top_directory_rescaled_ct/patient_id/patient_id_time.npy top_directory_check_point = '/home/zhoul0a/Desktop/prognosis_project/check_points/' # where the checkpoints stored: top_directory_check_point/model_type/direction/best_model-direction.pth top_directory_masks = '/home/zhoul0a/Desktop/prognosis_project/original_follow_up/rescaled_masks_refined/' # where to save the predicted masks, which will form: top_directory_output/mask_type/patient_id/id_time_mask.npz top_directory_enhanced = '/home/zhoul0a/Desktop/prognosis_project/original_follow_up/rescaled_ct_enhanced_general_sampling/' # where to save the normalized ct without the air-way and blood-vessels and enhanced the lesion os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1' # use two V100 GPU else: top_directory_rescaled_ct = '/ibex/scratch/projects/c2052/prognosis_project/' top_directory_check_point = '/ibex/scratch/projects/c2052/prognosis_project/' top_directory_output = '/ibex/scratch/projects/c2052/prognosis_project/' def distance_l2(loc_1, loc_2): """ :param loc_1: a tuple (x_1, y_1) :param loc_2: a tuple (x_2, y_2) :return: L2 distance between loc_1 and loc_2 """ x_difference = loc_1[0] - loc_2[0] y_difference = loc_1[1] - loc_2[1] return math.sqrt(x_difference*x_difference + y_difference*y_difference) def func_parallel(func, list_inputs, leave_cpu_num=1): """ :param func: func(list_inputs[i]) :param list_inputs: each element is the input of func :param leave_cpu_num: num of cpu that not use :return: [return_of_func(list_inputs[0]), return_of_func(list_inputs[1]), ...] """ cpu_cores = mp.cpu_count() - leave_cpu_num pool = mp.Pool(processes=cpu_cores) list_outputs = pool.map(func, list_inputs) pool.close() return list_outputs def get_max_diameter_one_region(loc_list, strict=False): """ :param strict: if false, we believe the region is near round, then accelerate the speed by a great extent. :param loc_list: [(x_1, y_1), (x_2, y_2), ...] :return: a float, refer to the max L2 distance among these locations """ max_diameter = 0 num_locations = len(loc_list) if not strict: fist_loc = loc_list[0] for loc in loc_list[1::]: distance = distance_l2(fist_loc, loc) if distance > max_diameter: max_diameter = distance mid_loc = loc_list[int(num_locations / 3)] for loc in loc_list: distance = distance_l2(mid_loc, loc) if distance > max_diameter: max_diameter = distance mid_loc = loc_list[int(2 * num_locations / 3)] for loc in loc_list: distance = distance_l2(mid_loc, loc) if distance > max_diameter: max_diameter = distance return max_diameter else: for central_loc in loc_list[0:int(num_locations/2)]: for loc in loc_list: distance = distance_l2(central_loc, loc) if distance > max_diameter: max_diameter = distance return max_diameter def find_max_diameter_one_slice(id_loc_dict_rim): """ :param id_loc_dict_rim: {connect_id: [(x_1, y_1), (x_2, y_2), ...]} :return: a dict, {connect_id: max L2 distance inside this region} """ key_list = list(id_loc_dict_rim.keys()) id_diameter_dict = {} for key in key_list: max_diameter = get_max_diameter_one_region(id_loc_dict_rim[key]) id_diameter_dict[key] = max_diameter return id_diameter_dict def find_max_diameter(rim_info_list): """ :param rim_info_list: the return of: connected_region.abstract_connected_regions(z_axes_list, 'rim'): each element is [return_array, id_length_dict, id_loc_dict], return_array[:, :, 0] is the length map, return_array[:, :, 1] is the id map :return: a list of dict: [{connect_id: max_diameter}], each list element corresponding to rim_info_list. """ return_list = [] for rim_info in rim_info_list: id_loc_dict = rim_info[2] id_diameter_dict = find_max_diameter_one_slice(id_loc_dict) return_list.append(id_diameter_dict) return return_list def extend_one_round_one_region(loc_rim, loc_region): """ make the region bigger :param loc_rim: a set, record the locations of the rim points for this region, [(x_1, y_1), (x_2, y_2), ...] :param loc_region: a set, record ALL locations of this region, [(x_1, y_1), (x_2, y_2), ...] :return: the new loc_rim and the new loc_region (extended by one round) """ new_loc_rim = set() for loc in loc_rim: new_loc_rim.add((loc[0] - 1, loc[1])) new_loc_rim.add((loc[0] + 1, loc[1])) new_loc_rim.add((loc[0], loc[1] - 1)) new_loc_rim.add((loc[0], loc[1] + 1)) # print("new_loc_rim", new_loc_rim) new_loc_rim = new_loc_rim - (new_loc_rim & loc_region) # note for set, &, -, | are of same priority. # print("new", new_loc_rim) new_loc_region = new_loc_rim | loc_region return new_loc_rim, new_loc_region def subtract_one_round_one_region(loc_rim, loc_region): """ make the region smaller :param loc_rim: a set, record the locations of the rim points for this region, [(x_1, y_1), (x_2, y_2), ...] :param loc_region: a set, record ALL locations of this region, [(x_1, y_1), (x_2, y_2), ...] :return: the new loc_rim and the new loc_region (shrieked by one round) """ new_loc_rim = set() for loc in loc_rim: new_loc_rim.add(loc) new_loc_rim.add((loc[0] - 1, loc[1])) new_loc_rim.add((loc[0] + 1, loc[1])) new_loc_rim.add((loc[0], loc[1] - 1)) new_loc_rim.add((loc[0], loc[1] + 1)) new_loc_rim = (new_loc_rim & loc_region) - loc_rim new_loc_region = loc_region - loc_rim return new_loc_rim, new_loc_region def extend_one_slice(id_loc_dict_rim, id_loc_dict_region, extend_ratio=1.25, max_diameter=70): max_diameter_dict = find_max_diameter_one_slice(id_loc_dict_rim) key_list_2 = list(max_diameter_dict.keys()) key_list = list(id_loc_dict_region.keys()) assert len(key_list_2) >= len(key_list) for key in key_list: if max_diameter_dict[key] > max_diameter: max_diameter_dict[key] = max_diameter for region_id in key_list: loc_rim = set(id_loc_dict_rim[region_id]) loc_region = set(id_loc_dict_region[region_id]) if extend_ratio > 1: num_extend = round((extend_ratio - 1) * round(max_diameter_dict[region_id]) / 2) for layer in range(num_extend): new_loc_rim, new_loc_region = extend_one_round_one_region(loc_rim, loc_region) loc_rim = new_loc_rim loc_region = new_loc_region ''' # observe how the rim is expand layer by layer image = np.zeros([512, 512], 'float32') print("loc_rim", loc_rim) for loc in loc_rim: image[loc[0], loc[1]] = 1 print(loc_rim) print("layer", layer) Functions.image_show(image) ''' id_loc_dict_rim[region_id] = loc_rim id_loc_dict_region[region_id] = loc_region else: num_subtract = int((1 - extend_ratio) * int(max_diameter_dict[region_id]) / 2) for layer in range(num_subtract): new_loc_rim, new_loc_region = subtract_one_round_one_region(loc_rim, loc_region) loc_rim = new_loc_rim loc_region = new_loc_region ''' # observe how the rim is expand layer by layer image = np.zeros([512, 512], 'float32') print("loc_rim", loc_rim) for loc in loc_rim: image[loc[0], loc[1]] = 1 print(loc_rim) print("layer", layer) Functions.image_show(image) ''' id_loc_dict_rim[region_id] = loc_rim id_loc_dict_region[region_id] = loc_region return id_loc_dict_rim, id_loc_dict_region def extend_tubes(input_mask, leave_connected_component=None, extend_ratio=1.25, max_diameter=50): """ :param input_mask: binary numpy array with shape [x, y, z] :param leave_connected_component: how many 3D connected region we leave? if None means do not check 3D connectivity. :param extend_ratio: the mask perform good for bronchial but not very good for big air-way. extend the mask according to there diameter, which will avoid uncovered airway walls. :param max_diameter: if the diameter of the connected component is greater than the max_diameter, replace it by the max_diameter. :return: binary numpy array with shape [x, y, z] in 'float32' """ if leave_connected_component is not None: id_loc_dict = connect_3d.get_sorted_connected_regions(input_mask, strict=False) refined_mask = np.zeros(np.shape(input_mask), 'float32') key = 1 if len(list(id_loc_dict.keys())) < leave_connected_component: leave_connected_component = len(list(id_loc_dict.keys())) while key < leave_connected_component + 1: locations = id_loc_dict[key] for loc in locations: refined_mask[loc] = 1 key += 1 print("finally there are:", np.sum(refined_mask), "positive points") else: refined_mask = input_mask refined_mask = np.swapaxes(refined_mask, 0, 2) z_axes_list = list(refined_mask) extended_mask = np.zeros(np.shape(refined_mask), 'float32') rim_info_list, region_info_list = connected_region.abstract_connected_regions(z_axes_list, 'both') # the length of the rim_info_list is equal to that of region_info_list, like 512 num_slices = len(z_axes_list) for slice_id in range(num_slices): _, extended_region_loc_dict = extend_one_slice(rim_info_list[slice_id][2], region_info_list[slice_id][2], extend_ratio, max_diameter=max_diameter) key_list = list(extended_region_loc_dict.keys()) for key in key_list: for loc in extended_region_loc_dict[key]: extended_mask[slice_id, loc[0], loc[1]] = 1 extended_mask = np.swapaxes(extended_mask, 0, 2) return extended_mask def remove_airway_and_blood_vessel_one_scan_upperlobe(patient_id, time, extend_ratio=1.1, max_diameter=50, show=True): rescaled_ct = np.load(top_directory_rescaled_ct + patient_id + '/' + patient_id + '_' + time + '.npy') lung_mask = np.load(top_directory_masks + 'lung_masks/' + patient_id + '/' + patient_id + '_' + time + '_mask_refine.npz')['array'] lung_mask_box = Functions.get_bounding_box(lung_mask) print("lung_mask_box:", lung_mask_box) lung_length_z = lung_mask_box[2][1] - lung_mask_box[2][0] superior_start = int(lung_mask_box[2][1] - lung_length_z * 0.32988803223955687) superior_end = lung_mask_box[2][1] air_way_merge_z_bounding_box = Functions.get_bounding_box(lung_mask[:, :, superior_start]) upper_start = air_way_merge_z_bounding_box[0][0] upper_end = air_way_merge_z_bounding_box[0][1] - int((air_way_merge_z_bounding_box[0][1] - air_way_merge_z_bounding_box[0][0])/2) print("lung length on z:", lung_length_z, "superior range:", superior_start, superior_end, "upper range:", upper_start, upper_end) upper_superior_mask = np.zeros(np.shape(lung_mask), 'float32') upper_superior_mask[upper_start: upper_end, :, superior_start: superior_end] = 1.0 upper_superior_mask = upper_superior_mask * lung_mask refined_airway_mask = np.load(top_directory_masks + 'air_way_mask_stage_two/' + patient_id + '/' + patient_id + '_' + time + '_mask_refine.npz')['array'] refined_blood_vessel_mask = np.load(top_directory_masks + 'blood_vessel_mask_stage_two/' + patient_id + '/' + patient_id + '_' + time + '_mask_refine.npz')['array'] rescaled_ct = rescaled_ct * lung_mask visible_non_infection = np.array((refined_blood_vessel_mask + refined_airway_mask) * lung_mask > 0.5, 'float32') rescaled_ct_original = np.array(rescaled_ct) assert extend_ratio > 1 print("extending air way") # visible_extended_outer = extend_tubes(visible_non_infection, None, extend_ratio + 0.1, max_diameter) visible_extended = extend_tubes(visible_non_infection, None, extend_ratio, max_diameter) context_mask = visible_extended - visible_non_infection context_mask = context_mask * upper_superior_mask num_context_points = np.sum(context_mask) context = context_mask * rescaled_ct_original + context_mask * 10 context = np.reshape(context, (-1,)) context = np.sort(context) total_points = len(context) percentile = 50 threshold = context[total_points - int(num_context_points * (100 - percentile) / 100)] - 10 print("the context is:", threshold, 'at', percentile) rescaled_ct[np.where(visible_non_infection >= 0.5)] = threshold rescaled_ct = rescaled_ct - threshold * lung_mask # threshold is the value of lung parenchyma rescaled_ct_original = rescaled_ct_original - threshold * lung_mask save_array = np.zeros([512, 1024, 512], 'float32') save_array[:, 0:512, :] = rescaled_ct_original save_array[:, 512::, :] = rescaled_ct if show: image = np.zeros([512, 1024], 'float32') image[:, 0: 512] = rescaled_ct_original[:, :, 220] image[:, 512::] = rescaled_ct[:, :, 220] image = np.clip(image, 0, 0.2) Functions.image_save(image, '/home/zhoul0a/Desktop/prognosis_project/visualize/remove_visible_upperlobe/'+patient_id + '_'+time+'_compare.png', high_resolution=True, gray=True) superior_middle = int((superior_end + superior_start) / 2) image = np.zeros([512, 1024, 3], 'float32') image[:, 0: 512, 0] = rescaled_ct_original[:, :, superior_middle] image[:, 0: 512, 1] = rescaled_ct_original[:, :, superior_middle] image[:, 0: 512, 2] = rescaled_ct_original[:, :, superior_middle] image[:, 512::, 0] = rescaled_ct_original[:, :, superior_middle] + context_mask[:, :, superior_middle] image[:, 512::, 1] = rescaled_ct_original[:, :, superior_middle] - context_mask[:, :, superior_middle] image[:, 512::, 2] = rescaled_ct_original[:, :, superior_middle] - context_mask[:, :, superior_middle] image = np.clip(image, 0, 0.2) Functions.image_save(image, '/home/zhoul0a/Desktop/prognosis_project/visualize/remove_visible_upperlobe/' + patient_id + '_' + time+ '_airway.png', high_resolution=True, gray=False) Functions.save_np_array(top_directory_enhanced, patient_id + '_' + time, save_array) def remove_airway_and_blood_vessel_one_scan_general_sampling(patient_id, time, extend_ratio=1.1, max_diameter=50, show=True): rescaled_ct =
np.load(top_directory_rescaled_ct + patient_id + '/' + patient_id + '_' + time + '.npy')
numpy.load
import threading import numpy as np from scipy.spatial.distance import cosine class MuseReader(threading.Thread): def __init__(self, window, path, msg_queue): threading.Thread.__init__(self) self.window = window self.path = path self.embeds = dict() self.msg_queue = msg_queue self.start() def run(self): with open(self.path, 'r') as _file: num_emb, dim = map(int, _file.readline().split()) for _ in range(num_emb): if self.window.stop: break line = _file.readline().split() key = ' '.join(line[:-dim]) value = list(map(float, line[-dim:])) self.embeds[key] = np.array(value) self.msg_queue.put(self.embeds) def load_embeddings(path_en, path_pt): file_en = open(path_en, 'r') file_pt = open(path_pt, 'r') emb_en = dict() emb_pt = dict() num_emb, dim = map(int, file_en.readline().split()) file_pt.readline() for _ in range(num_emb): line_pt = file_pt.readline().split() key_pt = ' '.join(line_pt[:-dim]) value_pt = list(map(float, line_pt[-dim:])) emb_pt[key_pt] =
np.array(value_pt)
numpy.array
#!/usr/bin/env python # Phylogenetic placement of new sequences to PhyCLIP clustered reference tree # Authors: <NAME> and <NAME> from scipy.stats import levene import re import os import subprocess import argparse import numpy as np import pandas as pd import statsmodels.api as sm import json import multiprocessing as mp import itertools import ete3 # parse phyclip tree output (NEXUS format) def parse_phyclip_output(filename): id_to_taxon = {} cluster_to_taxon = {} fhandle = open(filename, "r").readlines() for line in fhandle: # parse for id, taxon and cluster try: id, taxon = re.search("^\s+(\d+)\s+([^,;]+)[,;]*$", line).group(1, 2) taxon = re.sub("(^'|'$|\*)", "", taxon) try: cluster = re.search("_cluster([\d\.a-z]+)", taxon).group(1) taxon = re.sub("_cluster[\d\.a-z]+", "", taxon) except: cluster = "unclustered" taxon = taxon.strip() id_to_taxon[id] = taxon try: cluster_to_taxon[cluster].append(taxon) except: cluster_to_taxon[cluster] = [taxon] except: pass # parse tree try: tree = re.search("tree[^(]+(\([^;]+;)", line).group(1) tree = re.sub("\[[^\]]+\]", "", tree) except: pass # invalid file if len(id_to_taxon) == 0: sys.exit(1) # replace id with taxon name new_tree = [] prev_end = 0 tree = re.sub("'", "", tree) for expr in re.finditer("[(,](\d+):", tree): new_tree.append(tree[prev_end:expr.start()+1]) id = expr.group(1) new_tree.append(id_to_taxon[id]) prev_end = expr.end()-1 new_tree.append(tree[prev_end:]) return "".join(new_tree), cluster_to_taxon # searches clade tree strings of clusters def cluster_to_clade_tree(ref_tree, c_to_t): eteTree = ete3.Tree(ref_tree) # resolve polytomy eteTree.resolve_polytomy() eteTree.ladderize() data = {"CLUSTER":["REF"], "TRUNK":[True], "TSTRING":[eteTree.write(format=5)], "REFSEQ":[eteTree.get_leaf_names()]} for n, node in enumerate(eteTree.traverse(strategy='levelorder')): n = str(n) if n in c_to_t.keys(): ref_taxa = c_to_t[n] leaves = node.get_leaf_names() unclustered_taxa_subtended = list(set(c_to_t["unclustered"])&set(leaves)) if len(unclustered_taxa_subtended) > 0: ref_taxa = list(set(ref_taxa)|set(unclustered_taxa_subtended)) clade_tree_string = node.write(format=5) # terminal clade tree if set(leaves) != set(ref_taxa): trunk_clade = False # trunk clusters else: cTree = ete3.Tree(clade_tree_string) cTree.prune(ref_taxa) clade_tree_string = cTree.write(format=5) trunk_clade = True data["CLUSTER"].append(n) data["TRUNK"].append(trunk_clade) data["TSTRING"].append(clade_tree_string) data["REFSEQ"].append(ref_taxa) return pd.DataFrame(data), eteTree.get_leaf_names() def parse_aln(filename): data = {} fhandle = open(filename, "r").readlines() for key, group in itertools.groupby(fhandle, key=lambda _: re.search("^>", _)): if key: header = re.sub("^>", "", next(group)).strip() try: data["HEADER"].append(header) except: data["HEADER"] = [header] else: sequence = "".join([line.strip() for line in list(group)]) try: data["SEQUENCE"].append(sequence) except: data["SEQUENCE"] = [sequence] return pd.DataFrame(data) def weighted_high_median(a, wts): N = len(a) wtotal = 0 wdiscardedlow = 0 for i in range(N): wtotal += wts[i] nn = N while True: assert (nn > 0 and len(a) == nn) trial = sorted(a)[int(nn/2)] # Count up the weight to the left of and at the trial point. # Weight to the right of it isn't needed wleft = wtrial = 0 for i in range(nn): if a[i] < trial: wleft += wts[i] elif a[i] == trial: wtrial += wts[i] if 2*(wdiscardedlow + wleft) > wtotal: # Trial value is too high ncandidates = 0 #for i = 1:nn for i in range(nn): if a[i] < trial: a[ncandidates] = a[i] wts[ncandidates] = wts[i] ncandidates += 1 nn = ncandidates elif 2*(wdiscardedlow + wleft + wtrial) > wtotal: # Trial value is just right return trial else: # Trial value is too low ncandidates = 0 #for i = 1:nn for i in range(nn): if a[i] > trial: a[ncandidates] = a[i] wts[ncandidates] = wts[i] ncandidates += 1 nn = ncandidates wdiscardedlow += wleft+wtrial a=a[:nn] wts=wts[:nn] def qn(data): # sort data data = np.sort(data) n = len(data) h = int(n/2) + 1 k = int(h*(h-1)/2) left = np.arange(n+1,1,-1) right = np.full(n,n, dtype= np.int64) work = np.zeros(n) # dtype = np.float64 weight = np.zeros(n, np.int64) P =
np.zeros(n, np.int64)
numpy.zeros
# coding=UTF-8 #!/usr/bin/python3 # -*- coding: UTF-8 -*- from scipy.stats import norm from scipy.stats import binom from scipy.stats import expon from scipy.stats import genexpon import math import random import numpy as np from mdkp import Colony from test_dmachine import AllocationOfMachine import heapq from dconnection import * #import dconnection import time import _thread import logging import json import jsonpickle import os import threading import matplotlib.pyplot as plt from log import slogger #import log machine_queue = [] queue_lock = threading.Lock() # only used for test task_requests = {} tasks = {} machines = {} restricted_index = 0 node_manager = None etcdclient = None recv_stop = False def add_machine(id, cpus=24, mems=240000): global machines global machine_queue machine = AllocationOfMachine(id, cpus, mems) machines[id] = machine heapq.heappush(machine_queue,machine) # to-do:改成多线程,直接运行每个线程 # machine.colony.run() send_colony("create",machine.machineid, str(machine.reliable_cpus), str(machine.reliable_mems)) sync_colony() return machine def pre_allocate(task): global restricted_index global queue_lock global machines if 'bid' in task and task['bid']!='0': # queue_lock.acquire() # machine = heapq.heappop(machine_queue) # 计算每台机器新的heu, 挑选最小的 least_heu = float('inf') selected_machine = {} for id, machine in machines.items(): heu = machine.cpu_value * int(task['cpus']) + machine.mem_value * int(task['mems']) if heu < least_heu: selected_machine = machine least_heu = heu task['machineid'] = selected_machine.machineid task['allocation_type'] = 'none' task['allocation_cpus'] = str(int(task['cpus'])*1000) task['allocation_mems'] = task['mems'] task['allocation_mems_sw'] = str( 2 * int(task['mems']) ) task['allocation_mems_soft'] = str( 2 * int(task['mems']) ) tasks[task['id']] = task # 更新该台机器的MPV, RV不变 machine = selected_machine machine.pre_cpus_wanted += int(task['cpus']) machine.pre_mems_wanted += int(task['mems']) #把该task加入heu_allocations machine.heu_tasks.append(task) # 不满 if(machine.pre_cpus_wanted <= machine.reliable_cpus and machine.pre_mems_wanted <= machine.reliable_mems): # utilization = (machine.pre_cpus_wanted * machine.rareness_ratio + machine.pre_mems_wanted) / (machine.reliable_cpus * machine.rareness_ratio + machine.reliable_mems) utilization = 0.5 * machine.pre_cpus_wanted / machine.reliable_cpus + 0.5 * machine.pre_mems_wanted / machine.reliable_mems machine.cpu_value = 0.01 * machine.rareness_ratio * utilization machine.mem_value = 0.01 * utilization machine.rareness_ratio = ((machine.reliable_mems ** 2) * machine.pre_cpus_wanted) / ((machine.reliable_cpus ** 2) * machine.pre_mems_wanted) # 满,贪心算法,求出获胜者中的最低出价 else: if float(task['bid']) <= machine.cpu_value * int(task['cpus']) + machine.mem_value * int(task['mems']): return task for task in machine.heu_tasks: heu = float(task['bid']) / (int(task['cpus']) * machine.rareness_ratio + int(task['mems'])) task['heu'] = heu sorted_heu = sorted(machine.heu_tasks, key=lambda k: k['heu'],reverse=True) utilized_cpus = 0 utilized_mems = 0 lowest_heu = 0.01 for task in sorted_heu: if utilized_cpus + int(task['cpus']) < machine.reliable_cpus and utilized_mems + int(task['mems']) < machine.reliable_mems: lowest_heu = task['heu'] utilized_cpus += int(task['cpus']) utilized_mems += int(task['mems']) else: break machine.cpu_value = machine.rareness_ratio * lowest_heu machine.mem_value = lowest_heu machine.rareness_ratio = ((machine.reliable_mems ** 2) * utilized_cpus) / ((machine.reliable_cpus ** 2) * utilized_mems) # time.sleep(0.1) else: if(restricted_index >= len(machines)): restricted_index = 0 slogger.debug("restricted_index: ", restricted_index) values = list(machines.values()) task['machineid'] = values[restricted_index].machineid restricted_index += 1 task['allocation_type'] = 'none' task['allocation_cpus'] = str(int(task['cpus'])*1000) task['allocation_mems'] = task['mems'] task['allocation_mems_sw'] = str( 2 * int(task['mems']) ) task['allocation_memsp_soft'] = str( 2 * int(task['mems']) ) tasks[task['id']] = task return task def allocate(id): task = tasks[id] machineid = task['machineid'] machine = machines[machineid] if 'bid' in task and task['bid']!='0': # slogger.debug("dispatch reliable") task = machine.add_reliable_task(task) # slogger.debug("pop machine: id = %s", machine.machineid) send_task(machineid,task,"add") else: # slogger.debug("dispatch restricted") task = machine.add_restricted_task(task) return task def release(id): task = tasks[id] machineid = tasks[id]['machineid'] machine = machines[machineid] if 'bid' in task and task['bid']!='0': slogger.debug("release reliable") machine.release_reliable_task(id) send_task(machine,task,'delete') else: slogger.debug("release restricted") machine.release_restricted_task(id) def after_release(id): task = tasks[id] for index,machine in enumerate(machine_queue): if task['machineid'] == machine.machineid: del machine_queue[index] break machine.total_value -= int(task['bid']) heapq.heappush(machine_queue,machine) del tasks[id] def stop_scheduler(): global queue_lock # print("stop scheduler") queue_lock.acquire() os.system("kill -9 $(pgrep acommdkp) > /dev/null 2>&1") # time.sleep(1) # print("close sockets") close_sync_socket() close_colony_socket() close_task_socket() import dconnection dconnection.recv_run = False queue_lock.release() # time.sleep(1) def init_scheduler(): global queue_lock #启动c程序,后台运行 os.system("rm -rf /home/augustin/docklet/src/aco-mmdkp.log") os.system("/home/augustin/docklet/src/aco-mmdkp/acommdkp >/home/augustin/docklet/src/aco-mmdkp.log 2>&1 &") # time.sleep(1) slogger.setLevel(logging.INFO) slogger.info("init scheduler!") # print("init scheduler") init_sync_socket() init_colony_socket() init_task_socket() init_result_socket() _thread.start_new_thread(recv_result,(machines,machine_queue,queue_lock)) def test_all(): init_scheduler() for i in range(0,2): add_machine("m"+str(i),64,256) slogger.info("add colonies done!") # requests = generate_test_data(64,256,2,"reliable",'uniform',0) # generate_test_data(64,256,1,"restricted",192) requests = parse_test_data('uniform_tasks1.txt',64,256,1,"uniform") for index,request in requests.items(): pre_allocate(request) slogger.info("pre allocate tasks done") for index,request in requests.items(): allocate(request['id']) slogger.info("allocate tasks done") time.sleep(10) for index,request in requests.items(): release(request['id']) slogger.info("release tasks done") for index,request in requests.items(): after_release(request['id']) slogger.info("after release tasks done") def relax_mdp(tasks,cpus,mems,machines): cpus = cpus*machines mems = mems * machines opt = np.zeros((cpus+1,mems+1)) for key,task in tasks.items(): i_cpu = int(task['cpus']) i_mem = int(task['mems']) bid = int(task['bid']) for j in range(cpus,i_cpu-1,-1): for k in range(mems,i_mem-1, -1): # print(j,k) opt[j][k] = max(opt[j][k],opt[j-i_cpu][k-i_mem]+bid) # print(opt) print("relax opt: ",opt[cpus][mems]) return opt[cpus][mems] corr0 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] corr1 = [[1, 0.9, 0.9], [0.9, 1, 0.9], [0.9, 0.9, 1]] #corr1 = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] corr2 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] corr05 = [[1, -0.5, 0.5, -0.5], [-0.5, 1, -0.5, 0.5], [0.5, -0.5, 1, -0.5], [-0.5, 0.5, -0.5, 1]] corr_opt = [[1, -0.9, 0.9, -0.9], [-0.9, 1, -0.9, 0.9], [0.9, -0.9, 1, -0.9], [-0.9, 0.9, -0.9, 1]] corr00 = [[1, 0, 0.5, -0.5], [0, 1, 0, 0.5], [0.5, 0, 1, 0], [0, 0.5, 0, 1]] def generate_uniform_opt(cpu,mem,num_tasks): mean = [0, 0, 0, 0] corr = corr_opt a,b,c,d = np.random.multivariate_normal(mean, corr, num_tasks).T # for i,ia in enumerate(a): # print(a[i],b[i],c[i],d[i],'\n') cpus = [] mems = [] values = [] for ix in a: cpus.append(norm.cdf(ix)*(cpu/4-1)+1) for iy in b: mems.append(norm.cdf(iy)*(mem/4-1)+1) for index in range(len(c)): if a[index]> b[index]: values.append(norm.cdf(c[index])*(100-1)+1) else: values.append(norm.cdf(d[index])*(100-1)+1) # for i,icpus in enumerate(cpus): # print(cpus[i],mems[i],values[i],'\n') # print(np.corrcoef([cpus,mems,values])) return cpus,mems,values def generate_uniform(cpu,mem,num_tasks,corr): mean = [0, 0, 0] if corr == 'corr0': corr = corr0 elif corr == 'corr1': corr = corr1 elif corr == 'corr2': corr = corr2 x, y, z = np.random.multivariate_normal(mean, corr, num_tasks).T # print(np.corrcoef([x,y,z])) cpus = [] mems = [] values = [] for ix in x: cpus.append(norm.cdf(ix)*(cpu/4-1)+1) for iy in y: mems.append(norm.cdf(iy)*(mem/4-1)+1) for iz in z: values.append(norm.cdf(iz)*(100-1)+1) # print( np.corrcoef([cpus,mems,values]) ) return cpus,mems,values def generate_multivariate_binomial(cpu,mem,num_tasks): mean = [0, 0, 0] corr = [[1, -0.5, -0.5], [-0.5, 1, -0.5], [-0.5, -0.5, 1]] x, y, z = np.random.multivariate_normal(mean, corr, num_tasks).T cpus = [] mems = [] values = [] for ix in x: cpus.append(binom.ppf(norm.cdf(ix),cpu,8/cpu)) for iy in y: mems.append(binom.ppf(norm.cdf(iy),mem,8/mem)) for iz in z: values.append(norm.cdf(iz)*(100-1)+1) # print("cpu mem corr: ", np.corrcoef(cpus,mems)[0, 1]) # print("cpus: ",cpus) return cpus,mems,values def generate_ec2(cpu,mem,num_tasks,corr): mean = [0, 0, 0] if corr == 'corr0': corr = corr0 elif corr == 'corr1': corr = corr1 elif corr == 'corr2': corr = corr2 x, y, z =
np.random.multivariate_normal(mean, corr, num_tasks)
numpy.random.multivariate_normal
import matplotlib import numpy as np import sys import json from os import listdir from os.path import isfile, join from collections import defaultdict def load_episodes_from_logs(data_path): discretized_mdp_files = [join(data_path, f) for f in listdir(data_path) if isfile(join(data_path, f)) and f.startswith('discretized')] episodes = [] for discretized_mdp_file in discretized_mdp_files: f = open(discretized_mdp_file) data = json.load(f) episode = [] photo_idx = -1 for i in range(len(data)): timestep = data[i] state = timestep[0] action = timestep[1] reward = timestep[2] photo_idx = state["num_photos"] s = tuple([state["subpolicy"], state["position"], int(state["starting_new_photo"] == True), state["user_position"][0], state["user_position"][1], state["user_position"][2]]) a = action r = [] for raw_reward in reward: scaled_reward = raw_reward - 4 if raw_reward != 0 else 0 r.append(scaled_reward) r = tuple(r) episode.append((s, a, r)) if i == len(data)-1 or data[i+1][0]["starting_new_photo"]: episodes.append(episode) episode = [] return episodes def compute_behavior_policy(subpolicy_to_num_positions, state, action): if action == 100: return 1./3 else: return 2./3*1./subpolicy_to_num_positions[state[0]] def create_random_policy(nA): """ Creates a random policy function. Args: nA: Number of actions in the environment. Returns: A function that takes an observation as input and returns a vector of action probabilities """ A = np.ones(nA, dtype=float) / nA def policy_fn(observation): return A return policy_fn def create_greedy_policy(Q): """ Creates a greedy policy based on Q values. Args: Q: A dictionary that maps from state -> action values Returns: A function that takes an observation as input and returns a vector of action probabilities. """ def policy_fn(state): A = np.zeros_like(Q[state], dtype=float) best_action = np.argmax(Q[state]) A[best_action] = 1.0 return A return policy_fn def mc_control_importance_sampling(episodes, discount_factor=1.0): """ Monte Carlo Control Off-Policy Control using Weighted Importance Sampling. Finds an optimal greedy policy. Args: env: OpenAI gym environment. num_episodes: Number of episodes to sample. behavior_policy: The behavior to follow while generating episodes. A function that given an observation returns a vector of probabilities for each action. discount_factor: Gamma discount factor. Returns: A tuple (Q, policy). Q is a dictionary mapping state -> action values. policy is a function that takes an observation as an argument and returns action probabilities. This is the optimal greedy policy. """ action_space_size = 101 num_rewards = 9 # The final action-value function. # A dictionary that maps state -> action values Qs = [] for i in range(num_rewards): Q = defaultdict(lambda: np.zeros(action_space_size)) Qs.append(Q) # The cumulative denominator of the weighted importance sampling formula # (across all episodes) Cs = [] for i in range(num_rewards): C = defaultdict(lambda: np.zeros(action_space_size)) Cs.append(C) # Our greedily policy we want to learn for i_reward in range(num_rewards): print("Computing Q table for reward " + str(i_reward)) target_policy = create_greedy_policy(Qs[i_reward]) for i_episode in range(1, len(episodes) + 1): # Print out which episode we're on, useful for debugging. print("Episode {}/{}.".format(i_episode, len(episodes))) episode = episodes[i_episode-1] # Sum of discounted returns G = 0.0 # The importance sampling ratio (the weights of the returns) W = 1.0 # For each step in the episode, backwards for t in range(len(episode))[::-1]: state, action, reward = episode[t] # Update the total reward since step t G = discount_factor * G + reward[i_reward] # Update weighted importance sampling formula denominator Cs[i_reward][state][action] += W # Update the action-value function using the incremental update formula (5.7) # This also improves our target policy which holds a reference to Q Qs[i_reward][state][action] += (W / Cs[i_reward][state][action]) * (G - Qs[i_reward][state][action]) target_policy = create_greedy_policy(Qs[i_reward]) # If the action taken by the behavior policy is not the action # taken by the target policy the probability will be 0 and we can break if action != np.argmax(target_policy(state)): break W = W * 1./compute_behavior_policy(subpolicy_to_num_positions, state, action) return Qs subpolicy_to_num_positions = {0: 21, 1: 21, 2: 24, 3: 27} #data_path = '/home/qz257/Projects/PhotoRL/shutter_tarzan/shutter-tarzan-shutter_rl/shutter_tarzan/rl_data_temp_updated/' #output_path = 'Q_table.json' data_path = '/home/aon7/tarzan_ws/src/shutter-tarzan/shutter_tarzan/rl_data_all/' #data_path = '/home/aon7/tarzan_ws/src/shutter-tarzan/shutter_tarzan/rl_data_test_uniform_policy/' episodes = load_episodes_from_logs(data_path) #rewards = np.zeros((len(episodes), 9)) rewards_photo = [] rewards_interaction = [] #print("episodes", episodes) #print(episodes[0]) #print(len(episodes)) for i, episode in enumerate(episodes): #print("ep = ", episode) curr_rewards_photo = []#np.zeros((9)) for j, (state, action, reward) in enumerate(episode): if action == 100: curr_rewards_photo.append(reward[:5]) #print("j", j) if not (np.array(reward[5:]) == 0).all():#j == len(episode)-1: #print("adding rew = ", reward[5:]) rewards_interaction += [reward[5:]] rewards_photo += curr_rewards_photo #rewards_interaction += episode[-1][2][6:] #print("rewards = ", rewards) #print("rewards interaction", rewards_interaction) rewards_photo = np.array(rewards_photo) rewards_interaction = np.array(rewards_interaction) print("\nFor each photo-taking step:") print("Rewards shape =", rewards_photo.shape) print("Avg rewards = ", np.mean(rewards_photo, axis=0)) print("Std rewards = ",
np.std(rewards_photo, axis=0)
numpy.std
from ._base import TimeResolvedModel import numpy as np class MerrifieldExplicit1TT(TimeResolvedModel): r""" A class for time-resolved simulations using a modified version of Merrifield's model. The model explicity includes the :math:`^1(TT)` state, and allows for decay of a single triplet in a :math:`(T..T)` state. Attributes ---------- states : list of str The names of the excited state species. rates : list of str The names of the different rate constants in the model. model_name : str The name of the model. G : float The initial exciton density. Units of per volume. initial_weighting : dict Dictionary of (str, float) pairs. Key is the state name (str) and value is its initial weight (float). The default is {'S1': 1}. t_step : float The first time step taken by the simulation, thereafter the step will increase geometrically. t_end : float The last time point in the simulation. num_points : int The number of time points to compute the simulation at. kSF : float Rate constant for :math:`S_1\rightarrow ^1(TT)`. Units of per time. k_SF : float Rate constant for :math:`^1(TT)\rightarrow S_1`. Units of per time. kHOP : float Rate constant for :math:`^1(TT)\rightarrow (T..T)`. Units of per time. k_HOP : float Rate constant for :math:`(T..T)\rightarrow ^1(TT)`. Units of per time. kHOP2 : float Rate constant for :math:`(T..T)\rightarrow2\times T_1`. Units of per time. kTTA : float Rate constant for :math:`2\times T_1\rightarrow (T..T) or ^1(TT) or S_1`. See :attr:`MerrifieldExplicit1TT.TTA_channel`. Units of volume per time. kRELAX : float Rate constant for mixing between the :math:`(T..T)` states. Units of per time. kSSA : float Singlet-singlet annihilation rate constant. Units of volume per time. kSNR : float Rate constant for the decay of :math:`S_1`. Units of per time. kTTNR : float Rate constant for the decay of :math:`^1(TT)`. Units of per time. kTNR : float Rate constant for the decay of :math:`T_1`, or one of the triplets in :math:`(T..T)`. Units of per time. cslsq : numpy.ndarray 1D array containing the overlap factors between the 9 :math:`(T..T)` states and the singlet. TTA_channel : int Index determining the fate of free triplets. 1 gives :math:`2\times T_1\rightarrow (T..T)`. 2 gives :math:`2\times T_1\rightarrow ^1(TT)`. 3 gives :math:`2\times T_1\rightarrow S_1`. simulation_results : dict Produced by :meth:`simulate`. Keys are the excited-state names (str), values the simulated populations (numpy.ndarray). """ def __init__(self): super().__init__() # metadata self.model_name = 'MerrifieldExplicit1TT' self._number_of_states = 12 self.states = ['S1', 'TT', 'T_T_total', 'T1'] self.rates = ['kSF', 'k_SF', 'kHOP', 'k_HOP', 'kHOP2', 'kTTA', 'kRELAX', 'kSNR', 'kSSA', 'kTTNR', 'kTNR'] self._allowed_initial_states = {'S1', 'TT', 'T1'} self._initial_state_mapping = {'S1': 0, 'TT': 1, 'T1': -1} # rates between excited states self.kSF = 20.0 self.k_SF = 0.03 self.kHOP = 0.067 self.k_HOP = 2.5e-4 self.kHOP2 = 1e-5 self.kTTA = 1e-18 # spin relaxation self.kRELAX = 0 # rates of decay self.kSNR = 0.1 self.kSSA = 0 self.kTTNR = 0.067 self.kTNR = 1e-5 # TTA channel self.TTA_channel = 1 # cslsq values self.cslsq = (1/9)*np.ones(9) def _rate_equations(self, y, t): S1, TT, T_T_1, T_T_2, T_T_3, T_T_4, T_T_5, T_T_6, T_T_7, T_T_8, T_T_9, T1 = y dydt = np.zeros(self._number_of_states) # S1 dydt[0] = -(self.kSNR+self.kSF)*S1 - self.kSSA*S1*S1 + self.k_SF*TT + self._kTTA_3*T1**2 # TT dydt[1] = self.kSF*S1 - (self.k_SF+self.kTTNR+self.kHOP*np.sum(self.cslsq))*TT + self.k_HOP*(self.cslsq[0]*T_T_1+self.cslsq[1]*T_T_2+self.cslsq[2]*T_T_3+self.cslsq[3]*T_T_4+self.cslsq[4]*T_T_5+self.cslsq[5]*T_T_6+self.cslsq[6]*T_T_7+self.cslsq[7]*T_T_8+self.cslsq[8]*T_T_9) + self._kTTA_2*T1**2 # T_T_1 dydt[2] = self.kHOP*self.cslsq[0]*TT - (self.k_HOP*self.cslsq[0]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_1 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_2+T_T_3+T_T_4+T_T_5+T_T_6+T_T_7+T_T_8+T_T_9) # T_T_2 dydt[3] = self.kHOP*self.cslsq[1]*TT - (self.k_HOP*self.cslsq[1]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_2 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_3+T_T_4+T_T_5+T_T_6+T_T_7+T_T_8+T_T_9) # T_T_3 dydt[4] = self.kHOP*self.cslsq[2]*TT - (self.k_HOP*self.cslsq[2]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_3 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_4+T_T_5+T_T_6+T_T_7+T_T_8+T_T_9) # T_T_4 dydt[5] = self.kHOP*self.cslsq[3]*TT - (self.k_HOP*self.cslsq[3]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_4 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_5+T_T_6+T_T_7+T_T_8+T_T_9) # T_T_5 dydt[6] = self.kHOP*self.cslsq[4]*TT - (self.k_HOP*self.cslsq[4]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_5 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_6+T_T_7+T_T_8+T_T_9) # T_T_6 dydt[7] = self.kHOP*self.cslsq[5]*TT - (self.k_HOP*self.cslsq[5]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_6 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_5+T_T_7+T_T_8+T_T_9) # T_T_7 dydt[8] = self.kHOP*self.cslsq[6]*TT - (self.k_HOP*self.cslsq[6]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_7 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_5+T_T_6+T_T_8+T_T_9) # T_T_8 dydt[9] = self.kHOP*self.cslsq[7]*TT - (self.k_HOP*self.cslsq[7]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_8 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_5+T_T_6+T_T_7+T_T_9) # T_T_9 dydt[10] = self.kHOP*self.cslsq[8]*TT - (self.k_HOP*self.cslsq[8]+self.kTNR+self.kHOP2+self.kRELAX)*T_T_9 + (1/9)*self._kTTA_1*T1**2 + (1/8)*self.kRELAX*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_5+T_T_6+T_T_7+T_T_8) # T1 dydt[11] = (self.kTNR+(2.0*self.kHOP2))*(T_T_1+T_T_2+T_T_3+T_T_4+T_T_5+T_T_6+T_T_7+T_T_8+T_T_9) - 2*self._kTTA_1*T1**2 - 2*self._kTTA_2*T1**2 - 2*self._kTTA_3*T1**2 - self.kTNR*T1 # return dydt def _set_tta_rates(self): if self.TTA_channel == 1: # this is T1 + T1 -> (T..T) self._kTTA_1 = self.kTTA self._kTTA_2 = 0 self._kTTA_3 = 0 elif self.TTA_channel == 2: # this is T1 + T1 -> (TT) self._kTTA_1 = 0 self._kTTA_2 = self.kTTA self._kTTA_3 = 0 elif self.TTA_channel == 3: # this is T1 + T1 -> S1 self._kTTA_1 = 0 self._kTTA_2 = 0 self._kTTA_3 = self.kTTA else: raise ValueError('TTA channel must be either 1, 2 or 3') return def _initialise_simulation(self): self._set_tta_rates() self._calculate_time_axis() self._check_initial_weighting() self._set_initial_condition() return def _unpack_simulation(self, y): self.S1 = y[:, 0] self.TT = y[:, 1] self.T_T_total = np.sum(y[:, 2:11], axis=1) self.T1 = y[:, -1] self._wrap_simulation_results() return def _wrap_simulation_results(self): self.simulation_results = dict(zip(self.states, [self.S1, self.TT, self.T_T_total, self.T1])) return class Merrifield(TimeResolvedModel): r""" A class for steady-state simulations using Merrifield's model. Attributes ---------- states : list of str The names of the excited state species. rates : list of str The names of the different rate constants in the model. model_name : str The name of the model. G : float The initial exciton density. Units of per volume. initial_weighting : dict Dictionary of (str, float) pairs. Key is the state name (str) and value is its initial weight (float). The default is {'S1': 1}. t_step : float The first time step taken by the simulation, thereafter the step will increase geometrically. t_end : float The last time point in the simulation. num_points : int The number of time points to compute the simulation at. kSF : float Rate constant for :math:`S_1\rightarrow (TT)`. Units of per time. k_SF : float Rate constant for :math:`(TT)\rightarrow S_1`. Units of per time. kDISS : float Rate constant for :math:`(TT)\rightarrow2\times T_1`. Units of per time. kTTA : float Rate constant for :math:`2\times T_1\rightarrow (TT)`. Units of volume per time. kRELAX : float Rate constant for mixing between the :math:`(T..T)` states. Units of per time. kSSA : float Singlet-singlet annihilation rate constant. Units of volume per time. kSNR : float Rate constant for the decay of :math:`S_1`. Units of per time. kTTNR : float Rate constant for the decay of :math:`(TT)`. Units of per time. kTNR : float Rate constant for the decay of :math:`T_1`. Units of per time. cslsq : numpy.ndarray 1D array containing the overlap factors between the 9 :math:`(T..T)` states and the singlet. simulation_results : dict Produced by :meth:`simulate`. Keys are the excited-state names (str), values the simulated populations (numpy.ndarray). """ def __init__(self): super().__init__() # metadata self.model_name = 'Merrifield' self._number_of_states = 11 self.states = ['S1', 'TT_bright', 'TT_total', 'T1'] self.rates = ['kSF', 'k_SF', 'kDISS', 'kTTA', 'kRELAX', 'kSNR', 'kSSA', 'kTTNR', 'kTNR'] # rates between excited states self.kSF = 20.0 self.k_SF = 0.03 self.kDISS = 0.067 self.kTTA = 1e-18 # spin relaxation (Bardeen addition - not in original Merrifield) self.kRELAX = 0 # rates of decay self.kSNR = 0.1 self.kSSA = 0 self.kTTNR = 0.067 self.kTNR = 1e-5 # cslsq values self.cslsq = (1/9)*np.ones(9) def _rate_equations(self, y, t): S1, TT_1, TT_2, TT_3, TT_4, TT_5, TT_6, TT_7, TT_8, TT_9, T1 = y dydt = np.zeros(self._number_of_states) # S1 dydt[0] = -(self.kSNR+self.kSF*np.sum(self.cslsq))*S1 -self.kSSA*S1*S1+ self.k_SF*(self.cslsq[0]*TT_1+self.cslsq[1]*TT_2+self.cslsq[2]*TT_3+self.cslsq[3]*TT_4+self.cslsq[4]*TT_5+self.cslsq[5]*TT_6+self.cslsq[6]*TT_7+self.cslsq[7]*TT_8+self.cslsq[8]*TT_9) # TT_1 dydt[1] = self.kSF*self.cslsq[0]*S1 - (self.k_SF*self.cslsq[0]+self.kDISS+self.kTTNR+self.kRELAX)*TT_1 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_2+TT_3+TT_4+TT_5+TT_6+TT_7+TT_8+TT_9) # TT_2 dydt[2] = self.kSF*self.cslsq[1]*S1 - (self.k_SF*self.cslsq[1]+self.kDISS+self.kTTNR+self.kRELAX)*TT_2 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_3+TT_4+TT_5+TT_6+TT_7+TT_8+TT_9) # TT_3 dydt[3] = self.kSF*self.cslsq[2]*S1 - (self.k_SF*self.cslsq[2]+self.kDISS+self.kTTNR+self.kRELAX)*TT_3 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_4+TT_5+TT_6+TT_7+TT_8+TT_9) # TT_4 dydt[4] = self.kSF*self.cslsq[3]*S1 - (self.k_SF*self.cslsq[3]+self.kDISS+self.kTTNR+self.kRELAX)*TT_4 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_5+TT_6+TT_7+TT_8+TT_9) # TT_5 dydt[5] = self.kSF*self.cslsq[4]*S1 - (self.k_SF*self.cslsq[4]+self.kDISS+self.kTTNR+self.kRELAX)*TT_5 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_4+TT_6+TT_7+TT_8+TT_9) # TT_6 dydt[6] = self.kSF*self.cslsq[5]*S1 - (self.k_SF*self.cslsq[5]+self.kDISS+self.kTTNR+self.kRELAX)*TT_6 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_4+TT_5+TT_7+TT_8+TT_9) # TT_7 dydt[7] = self.kSF*self.cslsq[6]*S1 - (self.k_SF*self.cslsq[6]+self.kDISS+self.kTTNR+self.kRELAX)*TT_7 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_4+TT_5+TT_6+TT_8+TT_9) # TT_8 dydt[8] = self.kSF*self.cslsq[7]*S1 - (self.k_SF*self.cslsq[7]+self.kDISS+self.kTTNR+self.kRELAX)*TT_8 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_4+TT_5+TT_6+TT_7+TT_9) # TT_9 dydt[9] = self.kSF*self.cslsq[8]*S1 - (self.k_SF*self.cslsq[8]+self.kDISS+self.kTTNR+self.kRELAX)*TT_9 + (1/9)*self.kTTA*T1*T1 + (1/8)*self.kRELAX*(TT_1+TT_2+TT_3+TT_4+TT_5+TT_6+TT_7+TT_8) # T1 dydt[10] = 2.0*self.kDISS*(TT_1+TT_2+TT_3+TT_4+TT_5+TT_6+TT_7+TT_8+TT_9) - 2.0*self.kTTA*T1*T1 - self.kTNR*T1 # return dydt def _unpack_simulation(self, y): self.S1 = y[:, 0] self.TT_bright = self.cslsq[0]*y[:, 1] + self.cslsq[1]*y[:, 2] + self.cslsq[2]*y[:, 3] + self.cslsq[3]*y[:, 4] + self.cslsq[4]*y[:, 5] + self.cslsq[5]*y[:, 6] + self.cslsq[6]*y[:, 7] + self.cslsq[7]*y[:, 8] + self.cslsq[8]*y[:, 9] self.TT_total = np.sum(y[:, 1:10], axis=1) self.T1 = y[:, -1] self._wrap_simulation_results() return def _wrap_simulation_results(self): self.simulation_results = dict(zip(self.states, [self.S1, self.TT_bright, self.TT_total, self.T1])) return class Bardeen(TimeResolvedModel): r""" A class for steady-state simulations using a modified version of Merrifield's model. The model does not include free triplets. Instead Merrifield's :math:`(TT)` states can separate to form 9 :math:`(T..T)` states which can undergo spin relaxation. This is an approximation to triplet-diffusion in the limit of low excitation density. Attributes ---------- states : list of str The names of the excited state species. rates : list of str The names of the different rate constants in the model. model_name : str The name of the model. G : float The initial exciton density. Units of per volume. initial_weighting : dict Dictionary of (str, float) pairs. Key is the state name (str) and value is its initial weight (float). The default is {'S1': 1}. t_step : float The first time step taken by the simulation, thereafter the step will increase geometrically. t_end : float The last time point in the simulation. num_points : int The number of time points to compute the simulation at. kSF : float Rate constant for :math:`S_1\rightarrow (TT)`. Units of per time. k_SF : float Rate constant for :math:`(TT)\rightarrow S_1`. Units of per time. kHOP : float Rate constant for :math:`(TT)\rightarrow (T..T)`. Units of per time. k_HOP : float Rate constant for :math:`(T..T)\rightarrow (TT)`. Units of per time. kRELAX : float Rate constant for mixing between the :math:`(T..T)` states. Units of per time. kSSA : float Singlet-singlet annihilation rate constant. Units of volume per time. kSNR : float Rate constant for the decay of :math:`S_1`. Units of per time. kTTNR : float Rate constant for the decay of :math:`(TT)`. Units of per time. kSPIN : float Rate constant for the decay of :math:`(T..T)`. Units of per time. cslsq : numpy.ndarray 1D array containing the overlap factors between the 9 :math:`(T..T)` states and the singlet. simulation_results : dict Produced by :meth:`simulate`. Keys are the excited-state names (str), values the simulated populations (numpy.ndarray). """ def __init__(self): super().__init__() # metadata self.model_name = 'Bardeen' self._number_of_states = 19 self.states = ['S1', 'TT_bright', 'TT_total', 'T_T_total'] self.rates = ['kSF', 'k_SF', 'kHOP', 'k_HOP', 'kRELAX', 'kSNR', 'kSSA', 'kTTNR', 'kSPIN'] self._allowed_initial_states = {'S1'} self._initial_state_mapping = {'S1': 0} # rates between excited states self.kSF = 20.0 self.k_SF = 0.03 self.kHOP = 0.067 self.k_HOP = 2.5e-4 # spin relaxation self.kRELAX = 0.033 # rates of decay self.kSNR = 0.1 self.kSSA =0 self.kTTNR = 0.067 self.kSPIN = 2.5e-4 # cslsq values self.cslsq = (1/9)*
np.ones(9)
numpy.ones
import numpy as np class Layer(): def __init__(self, in_size, out_size, lam, name): self.in_size = in_size self.out_size = out_size self.name = name self.isActivation = (False if name is "linear" else True) if not self.isActivation: # Weights self.W = np.random.normal(loc=0.0, scale=0.01, size=(out_size, in_size)) # Bias self.b = np.random.normal(loc=0.0, scale=0.01, size=(out_size, 1)) # Weight regularization self.lam = lam self.mom = { 'W' : np.zeros(self.W.shape), 'b' : np.zeros(self.b.shape) } self.resetGrad() # this is a memory variable between forward/backward self.x = np.empty(shape=(self.in_size, 1)) def forward(self, x): assert x is not None # sometimes we need to store input for backward self.x = x #print(self.name + " forward") #print(self.x.shape) def backward(self): assert self.x is not None #print(self.name + " back") #print(self.x.shape) def cost(self): return 0 def resetGrad(self): self.gW = np.zeros(self.W.shape) self.gB = np.zeros(self.b.shape) # for non-activation layers to implement def update(self, l_rate=0.001): pass def updateMom(self, l_rate=0.001, momentum=0.0): pass class Linear(Layer): def __init__(self, in_size, out_size, lam=0, name="linear"): super().__init__(in_size, out_size, lam, name) def forward(self, x): Layer.forward(self, x) # Wx + b return np.dot(self.W, x) + self.b def backward(self, grad): Layer.backward(self) N = self.x.shape[1] self.resetGrad() for i in range(N): p = self.x[:, i] g = grad[i, :] self.gW += np.outer(g, p) self.gB += np.reshape(g, self.gB.shape) # here's the difference in (10) and (11) self.gW = (1.0/N) * self.gW + 2 * self.lam * self.W self.gB /= N return np.dot(grad, self.W) def cost(self): return self.lam * np.power(self.W, 2).sum() def update(self, l_rate=0.001): self.W -= l_rate * self.gW self.b -= l_rate * self.gB def updateMom(self, l_rate=0.001, momentum=0.0): self.mom['W'] = momentum * self.mom['W'] + l_rate * self.gW self.mom['b'] = momentum * self.mom['b'] + l_rate * self.gB self.W -= self.mom['W'] self.b -= self.mom['b'] class ReLU(Layer): def __init__(self, in_size, name="relu"): super().__init__(in_size, in_size, -1, name) def forward(self, x): Layer.forward(self, x) # max(0, x) return self.x * (self.x > 0) def backward(self, grad): Layer.backward(self) return np.multiply(grad, self.x.T > 0) class Softmax(Layer): def __init__(self, in_size, name="softmax"): super().__init__(in_size, in_size, -1, name) def forward(self, x): assert x is not None try: # this should prevent error tried for e = np.exp(x - x.max()) res = e / np.sum(e, axis=0) except FloatingPointError: # Gradient explosion scenario print("jesus take the wheel") res = np.ones(x) Layer.forward(self, res) return res def backward(self, truth): Layer.backward(self) assert self.x.shape[1] == truth.shape[1] N = truth.shape[1] cols = ((truth[:,i], self.x[:,i]) for i in range(N)) grad = [self.softGrad(t, p) for (t, p) in cols] return np.vstack(grad) @staticmethod def softGrad(t, p): # Jacobian according for formulas in Ass1 a = np.outer(p,p) b = np.dot(t, (np.diag(p) - a)) c = np.dot(t, p) return -b/c def cost(self, truth, prob=None): x = self.x if prob is None else prob assert x.shape[1] == truth.shape[1] N = x.shape[1] Py = np.multiply(truth, x).sum(axis=0) Py[Py == 0] = np.finfo(float).eps # fix floats return - np.log(Py).sum() / N class BatchNorm(Layer): # https://wiseodd.github.io/techblog/2016/07/04/batchnorm/ def __init__(self, in_size, mu=None, s=None, name="batch_norm"): super().__init__(in_size, in_size, -1, name) self.mu = mu if mu is not None else np.zeros(shape=(in_size, 1), dtype=float) self.s = s if s is not None else np.eye(in_size, dtype=float) def forward(self, x, train=False): Layer.forward(self, x) # if mu, s is passed: then it's eval time not training self.mu = x.mean(axis=1) if train else self.mu self.s = x.var(axis=1) if train else self.s return
np.dot(self.s, (x.T - self.mu.T).T)
numpy.dot
import holoviews as hv import hvplot import hvplot.pandas import hvplot.streamz import numpy as np import pandas as pd import plotly.graph_objects as go import streamz import umap from bokeh.models import HoverTool from holoviews import streams from plotly.subplots import make_subplots from sklearn.manifold.t_sne import TSNE from sklearn.metrics import auc, classification_report, confusion_matrix, roc_curve from sklearn.neighbors.classification import KNeighborsClassifier from streamz.dataframe import DataFrame as StreamzDataFrame from model_evaluation import plot_classification_report, plot_confussion_matrix def define_visibles(x): """Funcion usada para definir qué traces se muestran en un grafico de plotly Examples -------- >>> define_visibles(x=[2,1,3]) [[True, True, False, False, False, False], [False, False, True, False, False, False], [False, False, False, True, True, True]] Parameters ------- x: list or np.array Contiene el numero de clases/traces por cada dropdown menu. [1,1,1] significa 1 trace, 3 dropdown menus Returns ------- list Lista de listas, contiene solo True or False. """ if isinstance(x, list): x = np.array(x) visible_trace = [] for i, a in enumerate(x): visible_trace.append( [False] * np.sum(x[0:i]) + [True] * x[i] + [False] * np.sum(x[i + 1 :]) ) return visible_trace def time_vs_y(df, time_col, id_col_name, id_list, cols_descr, y_col="y", title=""): """PLot a time series dataset with bars when a certain column is equal to 1 Example -------- time_vs_y(df = df_m2, time_col = 'Timestamp', id_col_name = 'DMA', id_list =['NEWSEVMA','NORFIFMA'], cols_descr = ['PressureBar','m3Volume'], y_col = 'is_leakage', title='Time series of leakage and pressure at DMA level') Parameters ---------- df : pd.DataFrame Dataframe that contains all the information time_col : str Name of column with time id_col_name : str column name to aggregate by. Effectively this sets the dropdown menu id_list : list of str List of ids to display cols_descr : [type] Selected columns to plot against time y_col : str, optional Column of dataset that contains 1 when a gray bar is plotted title : str, optional Title of plot, by default "" Returns ------- plotly.Figure PLotly figure that contains dropdown menu for each id_list """ if len(cols_descr) == 0: print("No selected columns") return 0 fig = go.Figure() buttons = [] visible_start = [True] + [False] * (len(id_list) - 1) # Select which columns are visible for each button visible_trace = define_visibles([len(cols_descr)] * len(id_list)) # Loop over the selected columns and create trace for i, z in enumerate(id_list): df_subset = df.loc[ df[id_col_name] == z, ] # Generate figure and keep data and layout for c in cols_descr: fig.add_trace( go.Scattergl( x=df_subset[time_col], y=df_subset[c], name=f"{c}", visible=visible_start[i], ) ) # Print lines as shapes shapes = list() min_val = 0 for j in np.where(df_subset[y_col] == 1)[0]: if j == 0: continue max_val = ( df_subset[cols_descr] .iloc[ j - 1, ] .max() .max() ) shapes.append( { "type": "line", "xref": "x", "yref": "y", "x0": df_subset[time_col].iloc[j] - pd.Timedelta(1, "h"), "y0": min_val, "x1": df_subset[time_col].iloc[j], "y1": max_val, "fillcolor": "gray", "type": "rect", "opacity": 0.5, "layer": "below", "line_width": 0, } ), if visible_start[i] is True: fig.update_layout(shapes=shapes) # Crear botones buttons.append( dict( label=id_list[i], method="update", args=[{"visible": visible_trace[i]}, {"shapes": shapes}], ) ) # Añadir botones fig.update_layout( updatemenus=[ go.layout.Updatemenu( direction="up", showactive=True, xanchor="center", yanchor="bottom", pad={"l": 150, "b": -390, "t": 0}, buttons=buttons, ) ] ) fig.update_layout(width=1100, height=500, title=title) return fig def visualize_time_series( df, range_dates_zoom=None, range_y_right=[1.5, 5], range_y_left=[-10, 45] ): """[summary] Parameters ---------- df : [type] [description] range_dates_zoom : [type], optional [description], by default None Returns ------- [type] [description] """ # Create figure with secondary y-axis fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Scattergl( x=df["Timestamp"], y=df["m3Volume"], name="m3Volume", marker_color="#636EFA" ), secondary_y=False, ) fig.add_trace( go.Scattergl( x=df["Timestamp"], y=df["PressureBar"], name="PressureBar", marker_color="#EF553B", ), secondary_y=True, ) fig.update_yaxes(range=range_y_right, secondary_y=True) fig.update_yaxes(range=range_y_left, secondary_y=False) # Print lines as shapes shapes = list() min_val =
np.min([range_y_right, range_y_left])
numpy.min
import numpy as np import os import glob import nibabel as nib from dipy.data import get_sphere from dipy.core.sphere import Sphere, HemiSphere from dipy.reconst.shm import sph_harm_lookup, smooth_pinv from dipy.io import read_bvals_bvecs from dipy.core.gradients import gradient_table from dipy.reconst.dti import TensorModel from dipy.reconst.dti import fractional_anisotropy import dipy.reconst.dti as dti from dipy.segment.mask import median_otsu import threading class DataHandler(object): def __init__(self, params, mode): self.params = params self.dwi_path = self.params.data self.brain_mask_path = self.params.bm self.wm_mask_path = self.params.wm if mode == 'train': self.labels_path = self.params.labels else: self.labels_path = None self.dwi = None self.bvals = None self.bvecs = None self.brain_mask = np.array([]) self.wm_mask = np.array([]) if self.dwi_path is not None: self.load_dwi() self.load_b_table() if self.brain_mask_path is not None: self.brain_mask = self.load_mask(self.brain_mask_path) else: self.brain_mask = self.get_bm() if self.wm_mask_path is not None: self.wm_mask = self.load_mask(self.wm_mask_path) else: self.wm_mask = self.get_wm_mask() if self.labels_path is not None: self.load_labels() def load_dwi(self): dwi_file = get_file_path(os.getcwd(), self.dwi_path, "*.nii*") dwi_data = nib.load(dwi_file) self.dwi = dwi_data.get_data().astype("float32") self.affine = dwi_data.affine self.load_b_table() b0 = self.bvals <= 5 single_shell_bval = 1000 b_single = np.logical_and(self.bvals<=single_shell_bval+5, self.bvals>=single_shell_bval-5) ind_0_single= np.logical_or(b0, b_single) self.dwi = self.dwi[:,:,:,ind_0_single] self.bvecs= self.bvecs[ind_0_single,:] self.bvals= self.bvals[ind_0_single] self.gtab = gradient_table(self.bvals, self.bvecs) print(f'Number of single shell directions: {sum(b_single)}') def load_labels(self): data = nib.load(self.labels_path) self.labels = data.get_data().astype("float32") def load_b_table(self): bval_file = get_file_path(os.getcwd(), self.dwi_path, "*.bvals") bvec_file = get_file_path(os.getcwd(), self.dwi_path, "*.bvecs") self.bvals, self.bvecs = read_bvals_bvecs(bval_file, bvec_file) def get_wm_mask(self): tenmodel = TensorModel(self.gtab) tenfit = tenmodel.fit(self.dwi, mask=self.brain_mask) FA = fractional_anisotropy(tenfit.evals) MD = dti.mean_diffusivity(tenfit.evals) wm_mask = (np.logical_or(FA >= 0.25, (np.logical_and(FA >= 0.12, MD >= 0.001)))) return wm_mask def get_bm(self): b0_mask, brain_mask = median_otsu(self.dwi, median_radius=1, numpass=2, vol_idx=[0,0]) return brain_mask def resample_dwi(self, directions=200, sh_order=8, smooth=0.002): print(f'resampling diffusion data on {directions} directions...') # sphere = get_sphere('repulsion200') Xp, Yp, Zp= distribute_on_hemisphere(directions) sphere = Sphere(Xp, Yp, Zp) # self.v = sphere.vertices sph_harm_basis = sph_harm_lookup.get("tournier07") # descoteaux07 Ba, m, n = sph_harm_basis(sh_order, sphere.theta, sphere.phi) self.Ba = Ba self.b0_idx = self.bvals == np.min(self.bvals) self.b0 = self.dwi[:,:,:,self.b0_idx].mean(axis=3) + 1e-6 self.bvecs = self.bvecs[np.logical_not(self.b0_idx)] raw_sphere = Sphere(xyz=self.bvecs) Ba, m, n = sph_harm_basis(sh_order, raw_sphere.theta, raw_sphere.phi) L = -n * (n + 1) self.invB = smooth_pinv(Ba, np.sqrt(smooth) * L) self.dwi = self.dwi[..., np.logical_not(self.b0_idx)] nb_erroneous_voxels = np.sum(self.dwi > self.b0[..., None]) if nb_erroneous_voxels != 0: self.dwi = np.minimum(self.dwi, self.b0[..., None]) self.dwi /= self.b0[..., None] self.mean_val =
np.mean(self.dwi)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : Feb-28-20 22:56 # @Update : Nov-23-20 20:57 # @Author : <NAME> (<EMAIL>) # @Link : http://example.org import os import csv import json import numpy as np import matplotlib.pyplot as plt from utils import read_data from utils import read_TP, read_TN # data path MODEL_SAVES_DIR = "./models-resnetv2/" MODEL_FILE_NAME = "ResNet20v2.025-auc-0.9367.h5" # constants IMAGE_WIDTH = IMAGE_HEIGHT = 224 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) BATCH_SIZE = 16 CURRENT_BEST = 0.98866 MY_BEST = 0.97156 def plot_scores(epoch_auc): """ Load Config """ with open('config.json', 'r') as f: CONFIG = json.load(f) current_best = CONFIG["CURRENT_BEST"] my_best = CONFIG["MY_BEST"] """ Visualize Training """ plt.figure(figsize=(1000/100, 800/100)) plt.plot(epoch_auc[:, 0], epoch_auc[:, 1], color='r', linestyle='-', marker='*', label="Training auc") plt.plot(epoch_auc[:, 0], epoch_auc[:, 2], color='b', linestyle='-', marker='o', label="Score") # 随便选两个epoch坐标把best画出来 plt.scatter(45, current_best, label="Current best") plt.scatter(40, my_best, label="My best") # plt.set_xticks(np.arange(1, epochs, 1)) # plt.set_yticks(np.arange(0, 1, 0.1)) # 设置坐标轴范围 plt.xlim((20, 50)) plt.ylim((0.9, 1)) plt.xlabel("num_epoch") plt.ylabel("train_auc") # 设置坐标轴刻度 plt.xticks(np.arange(20, 50, 1)) plt.yticks(np.arange(0.9, 1, 0.01)) plt.grid(True) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show() def plot_scores2(): """ Load Config """ with open('config.json', 'r') as f: CONFIG = json.load(f) current_best = CURRENT_BEST my_best = MY_BEST """ Read data """ data_acc = read_data(filepath="./ResNet20v2-epoch-auc.csv") epochs_resnet20 = 45 epoch_val_accuracy = read_data( filepath="./ResNet56v2-epoch-val_accuracy.csv") epoch_auc = read_data( filepath="./ResNet56v2-epoch-auc.csv") for i in range(len(epoch_val_accuracy)): epoch_val_accuracy[i, 0] += epochs_resnet20 for i in range(len(epoch_auc)): epoch_auc[i, 0] += epochs_resnet20 """ Visualize Training """ plt.figure(figsize=(1200/100, 800/100)) plt.plot(data_acc[:, 0], data_acc[:, 1], color='r', linestyle='-', marker='*', label="Training auc") plt.plot(data_acc[:, 0], data_acc[:, 2], color='b', linestyle='-', marker='o', label="Score") # 随便选两个epoch坐标把best画出来 plt.scatter(45.5, my_best, color='g', label="My best") plt.scatter(60, current_best, color='m', label="Current best") plt.plot(epoch_val_accuracy[:, 0], epoch_val_accuracy[:, 1], color='r', linestyle='-', marker='*', label="Training accuracy") plt.plot(epoch_val_accuracy[:, 0], epoch_val_accuracy[:, 2], color='b', linestyle='-', marker='o', label="Score") plt.plot(epoch_auc[:, 0], epoch_auc[:, 1], color='r', linestyle='-', marker='*', label="Training auc") plt.plot(epoch_auc[:, 0], epoch_auc[:, 2], color='b', linestyle='-', marker='o', label="Score") # plt.set_xticks(np.arange(1, epochs, 1)) # plt.set_yticks(np.arange(0, 1, 0.1)) # 设置坐标轴范围 EPOCHS = 70 plt.xlim((20, EPOCHS)) plt.ylim((0.65, 1)) plt.xlabel("num_epoch") plt.ylabel("train_auc/acc/score") # 设置坐标轴刻度 plt.xticks(
np.arange(20, EPOCHS, 1)
numpy.arange
import logging import numpy import os from multiprocessing import Process, Manager, Value, Semaphore from random import random from uuid import uuid4 import pysam from Bio import pairwise2 from Bio.Seq import Seq from blast_wrapper import get_blast_matched_ids, make_blast_database from coverage_bias import CoverageBiasDetector, CoverageCorrector from hmm_utils import * from pacbio_haplotyper import PacBioHaplotyper from pomegranate import HiddenMarkovModel as Model from profiler import time_usage from sam_utils import get_reference_genome_of_alignment_file from sam_utils import get_related_reads_and_read_count_in_samfile import settings from utils import is_low_quality_read class SelectedRead: def __init__(self, sequence, logp, vpath, mapq=None, reference_start=None): self.sequence = sequence self.logp = logp self.vpath = vpath self.mapq = mapq self.is_mapped = reference_start is not None def is_mapped(self): return self.is_mapped class VNTRFinder: """Find the VNTR structure of a reference VNTR in NGS data of the donor.""" def __init__(self, reference_vntr): self.reference_vntr = reference_vntr self.min_repeat_bp_to_add_read = 2 if len(self.reference_vntr.pattern) < 30: self.min_repeat_bp_to_add_read = 2 self.min_repeat_bp_to_count_repeats = 2 self.minimum_left_flanking_size = {} self.minimum_right_flanking_size = {69212: 19, 532789: 12, 400825: 10, 468671: 10} self.vntr_start = self.reference_vntr.start_point self.vntr_end = self.vntr_start + self.reference_vntr.get_length() @time_usage def build_vntr_matcher_hmm(self, copies, flanking_region_size=100): patterns = self.reference_vntr.get_repeat_segments() left_flanking_region = self.reference_vntr.left_flanking_region[-flanking_region_size:] right_flanking_region = self.reference_vntr.right_flanking_region[:flanking_region_size] vntr_matcher = get_read_matcher_model(left_flanking_region, right_flanking_region, patterns, copies) return vntr_matcher def get_vntr_matcher_hmm(self, read_length): """Try to load trained HMM for this VNTR If there was no trained HMM, it will build one and store it for later usage """ logging.info('Using read length %s' % read_length) copies = int(round(float(read_length) / len(self.reference_vntr.pattern) + 0.5)) base_name = str(self.reference_vntr.id) + '_' + str(read_length) + '.json' stored_hmm_file = settings.TRAINED_HMMS_DIR + base_name if settings.USE_TRAINED_HMMS and os.path.isfile(stored_hmm_file): model = Model() model = model.from_json(stored_hmm_file) return model flanking_region_size = read_length vntr_matcher = self.build_vntr_matcher_hmm(copies, flanking_region_size) json_str = vntr_matcher.to_json() with open(stored_hmm_file, 'w') as outfile: outfile.write(json_str) return vntr_matcher @time_usage def filter_reads_with_keyword_matching(self, working_directory, read_file, short_reads=True): db_name = 'blast_db__' + os.path.basename(read_file) blast_db_name = working_directory + db_name empty_db = False if not os.path.exists(blast_db_name + '.nsq') and not os.path.exists(blast_db_name + '.nal'): empty_db = make_blast_database(read_file, blast_db_name) word_size = int(len(self.reference_vntr.pattern)/3) if word_size > 11: word_size = 11 if word_size < 5: word_size = 5 word_size = str(word_size) search_results = [] blast_ids = set([]) search_id = str(uuid4()) + str(self.reference_vntr.id) queries = self.reference_vntr.get_repeat_segments() if len(self.reference_vntr.pattern) < 10: min_copies = int(10 / len(self.reference_vntr.pattern)) queries = [self.reference_vntr.pattern * min_copies] identity_cutoff = '0' if not short_reads: queries = [self.reference_vntr.left_flanking_region[-80:], self.reference_vntr.right_flanking_region[:80]] word_size = str('10') identity_cutoff = '70' if not empty_db: for query in queries: search_result = get_blast_matched_ids(query, blast_db_name, max_seq='50000', word_size=word_size, evalue=10, search_id=search_id, identity_cutoff=identity_cutoff) search_results.append(search_result) if short_reads: for search_result in search_results: blast_ids |= search_result else: blast_ids = search_results[0] & search_results[1] logging.info('blast selected %s reads for %s' % (len(blast_ids), self.reference_vntr.id)) if len(blast_ids) == len(self.reference_vntr.get_repeat_segments()) * 50 * 1000: logging.error('maximum number of read selected in filtering for pattern %s' % self.reference_vntr.id) return blast_ids @staticmethod def add_hmm_score_to_list(sema, hmm, read, result_scores): logp, vpath = hmm.viterbi(str(read.seq)) rev_logp, rev_vpath = hmm.viterbi(str(Seq(str(read.seq)).reverse_complement())) if logp < rev_logp: logp = rev_logp result_scores.append(logp) sema.release() def is_true_read(self, read): read_start = read.reference_start reference_name = read.reference_name if not reference_name.startswith('chr'): reference_name = 'chr' + reference_name if reference_name == self.reference_vntr.chromosome and self.vntr_start - len(read.seq) < read_start < self.vntr_end: return True return False def find_score_distribution_of_ref(self, samfile, reference, hmm, false_scores, true_scores): process_list = [] sema = Semaphore(settings.CORES) for read in samfile.fetch(reference, multiple_iterators=True): if read.is_unmapped: continue if read.seq.count('N') > 0: continue if self.is_true_read(read): sema.acquire() p = Process(target=VNTRFinder.add_hmm_score_to_list, args=(sema, hmm, read, true_scores)) else: if random() > settings.SCORE_FINDING_READS_FRACTION: continue sema.acquire() p = Process(target=VNTRFinder.add_hmm_score_to_list, args=(sema, hmm, read, false_scores)) process_list.append(p) p.start() for p in process_list: p.join() def save_scores(self, true_scores, false_scores, alignment_file): with open('true_scores_dist_%s_%s' % (self.reference_vntr.id, os.path.basename(alignment_file)), 'w') as out: for score in true_scores: out.write('%.4f\n' % score) with open('false_scores_dist_%s_%s' % (self.reference_vntr.id, os.path.basename(alignment_file)), 'w') as out: for score in false_scores: out.write('%.4f\n' % score) @time_usage def calculate_min_score_to_select_a_read(self, hmm, alignment_file): """Calculate the score distribution of false positive reads and return score to select the 1e-8 percentile of the distribution """ process_list = [] manager = Manager() false_scores = manager.list() true_scores = manager.list() read_mode = 'r' if alignment_file.endswith('sam') else 'rb' samfile = pysam.AlignmentFile(alignment_file, read_mode) refs = [ref for ref in samfile.references if ref in settings.CHROMOSOMES or 'chr' + ref in settings.CHROMOSOMES] for ref in refs: p = Process(target=self.find_score_distribution_of_ref, args=(samfile, ref, hmm, false_scores, true_scores)) process_list.append(p) p.start() for p in process_list: p.join() if settings.SAVE_SCORE_DISTRIBUTION: self.save_scores(true_scores, false_scores, alignment_file) score =
numpy.percentile(false_scores, 100 - settings.SCORE_SELECTION_PERCENTILE)
numpy.percentile
import json import datetime from typing import List, Tuple from collections.abc import Mapping from pytz import timezone import numpy as np from scipy import interpolate from scipy.signal import (butter, sosfilt, sosfiltfilt, lfilter, iirnotch, filtfilt, medfilt) from scipy.interpolate import UnivariateSpline import matplotlib.pyplot as plt from yacs.config import CfgNode # ======================================================== General utils ======================================================== def count_section_sample(list_of_section): count = 0 for section in list_of_section: count+= section[1]-section[0] +1 return count def round_or_none(number, r): if number != None: return round(number, r) return number def format_timedelta(td): minutes, seconds = divmod(td.seconds + td.days * 86400, 60) hours, minutes = divmod(minutes, 60) return '{:d}:{:02d}:{:02d}'.format(hours, minutes, seconds) def sec_to_time_format(sec): conversion = datetime.timedelta(seconds=sec) return format_timedelta(conversion) def update_parameters(parameters_dict, cfg_new): for key, value in parameters_dict.items(): if isinstance(value, Mapping) and value: update_parameters(parameters_dict.get(key, value), cfg_new[key]) elif value is not None: cfg_new[key] = parameters_dict[key] return cfg_new def convert_to_dict(cfg_node, key_list=[]): _VALID_TYPES = {tuple, list, str, int, float, bool} """ Convert a config node to dictionary """ if not isinstance(cfg_node, CfgNode): return cfg_node else: cfg_dict = dict(cfg_node) for k, v in cfg_dict.items(): cfg_dict[k] = convert_to_dict(v, key_list + [k]) return cfg_dict def json_to_dict(path): with open(path, "r") as fp: dict_data = json.load(fp) return dict_data def sec_to_sample(sec, fs, to_int = True): if to_int: return int(sec*fs) return sec*fs def msec_to_sample(msec, fs, to_int = True): if to_int: return int(msec*fs/1000) return msec*fs/1000 def msec_to_hr(msec): return 60/(msec/1000) def min_to_sample(min, fs): return msec_to_sample(min*60*1000, fs) def sample_to_msec(sample, fs): return sample*1000/fs def sample_to_sec(sample, fs): return sample/fs def sample_to_hr(sample, fs): return int(60/sample_to_sec(sample, fs)) def sample_to_minute(sample, fs): return sample/fs/60 def minute_to_msec(minute): return minute*60*1000 def timestamp_sec_to_datetime(ts, mode = 'bkk', return_object = True): if mode == 'utc': mode = timezone('UTC') elif mode == "gmt": mode = timezone('GMT') elif mode == "bkk": mode = timezone('Asia/Bangkok') else: mode = timezone('GMT') dt_object = datetime.datetime.fromtimestamp(ts, mode) if return_object: return dt_object return dt_object.strftime("%d/%m/%Y %H:%M:%S") def timestamp_msec_to_datetime(ts, mode = 'bkk', return_object=True): return timestamp_sec_to_datetime(ts/1000, mode = mode, return_object = return_object) def list_of_list_to_list(list_of_list): return [element for mylist in list_of_list for element in mylist] # ======================================================== signal utils ============================================ # signals mean square def signal_mean_square(signals, fs, windows = 20): windows = int(windows*fs/1000) return ma(signals*signals, windows) def signal_mean_absolute(signals, fs, windows = 20): windows = int(windows*fs/1000) return ma(np.abs(signals), windows) def signal_second_derivative(signals): second_dif_signals = np.zeros_like(signals) second_dif_signals[1:-1] = np.diff(np.diff(signals)) return second_dif_signals def butter_highpass_parameter(highpass, fs,output ='sos',order = 4): high = highpass / (0.5 * fs) if output == 'sos': sos = butter(order, high, btype='high', analog=False, output=output) return sos elif output == 'ba': b, a = butter(order, high, btype='high', analog=False, output=output) return b, a def butter_highpass(signal, highpass, fs, order = 4, output = 'sos', algo = 'filtfilt'): if output == 'sos': sos = butter_highpass_parameter(highpass, fs, output=output, order = order) if algo == 'filtfilt': return sosfiltfilt(sos, signal) elif algo == 'filt': return sosfilt(sos, signal) if output == 'ba': b, a = butter_highpass_parameter(highpass, fs, output=output, order = order) if algo == 'filtfilt': return filtfilt(b, a, signal) elif algo == 'filt': return lfilter(b,a, signal) raise ValueError("Filter algorithm not support") def butter_lowpass_parameter(lowpass, fs,output ='sos',order = 4): low = lowpass / (0.5 * fs) if output == 'sos': sos = butter(order, low, btype='low', analog=False, output=output) return sos elif output == 'ba': b, a = butter(order, low, btype='low', analog=False, output=output) return b, a def butter_lowpass(signal, lowpass, fs, order = 4, output = 'sos', algo = 'filtfilt'): if output == 'sos': sos = butter_lowpass_parameter(lowpass, fs, output=output, order = order) if algo == 'filtfilt': return sosfiltfilt(sos, signal) elif algo == 'filt': return sosfilt(sos, signal) if output == 'ba': b, a = butter_lowpass_parameter(lowpass, fs, output=output, order = order) if algo == 'filtfilt': return filtfilt(b, a, signal) elif algo == 'filt': return lfilter(b,a, signal) raise ValueError("Filter algorithm not support") def notch_filter_parameter(notch_fs, q_factor, fs): b, a = iirnotch(notch_fs, q_factor, fs) return b, a def notch_filter(signal, notch_fs, q_factor, fs): b, a = notch_filter_parameter(notch_fs, q_factor, fs) return lfilter(b, a, signal) def butter_bandpass(signal, lowpass, highpass, fs, order = 4, output = 'sos', algo = 'filtfilt'): if output == 'sos': sos = butter(order, [lowpass, highpass], btype='band', analog=False, output=output, fs = fs) if algo == 'filtfilt': return sosfiltfilt(sos, signal) elif algo == 'filt': return sosfilt(sos, signal) elif output == 'ba': b,a = butter(order, [lowpass, highpass], btype='band', analog=False, output=output, fs = fs) if algo == 'filtfilt': return filtfilt(b, a, signal) elif algo == 'filt': return lfilter(b,a, signal) raise ValueError("Filter algorithm not support") def ma(signal, sample, algo = 'cumsum'): if algo == 'convolve': return ma_convolve(signal, sample) elif algo == 'cumsum': return ma_cumsum(signal, sample) raise ValueError(f'{algo} not support. Support algo: "convolve", "cumsum"') def ma_cumsum(signal, sample): back = int(sample/2) signal = np.pad(signal, (0, back) ,'edge') signal =
np.cumsum(signal, dtype=float)
numpy.cumsum
import properties import numpy as np from geoana.em.base import BaseMagneticDipole from geoana.em.fdem.base import BaseFDEM, sigma_hat from scipy.constants import mu_0, epsilon_0 from empymod.utils import check_hankel from empymod.transform import get_dlf_points from geoana.kernels.tranverse_electric_reflections import rTE_forward class MagneticDipoleLayeredHalfSpace(BaseMagneticDipole, BaseFDEM): thickness = properties.Array( "Layer thicknesses (m) starting from the top-most layer. The bottom layer is assumed to be infinite.", shape=('*', ), dtype=float ) sigma = properties.Array( "Electrical conductivity (S/m), defined starting from the top most layer", shape=('*', ), dtype=complex, coerce=True ) frequency = properties.Array( "Source frequency (Hz)", shape=('*', ), dtype=float ) mu = properties.Array( "Magnetic permeability (H/m), defined starting from the top most layer", shape=('*', ), dtype=complex, default=np.array([mu_0], dtype=np.complex128) ) epsilon = properties.Array( "Permitivity value (F/m), defined starting from the top most layer", shape=('*', ), dtype=float, default=np.array([epsilon_0], dtype=np.float64) ) def _get_valid_properties(self): thick = self.thickness n_layer = len(thick)+1 sigma = self.sigma epsilon = self.epsilon mu = self.mu if n_layer != 1: sigma = self.sigma if len(sigma) == 1: sigma = np.ones(n_layer)*sigma epsilon = self.epsilon if len(epsilon) == 1: epsilon = np.ones(n_layer)*epsilon mu = self.mu if len(mu) == 1: mu = np.ones(n_layer)*mu return thick, sigma, epsilon, mu @property def sigma_hat(self): _, sigma, epsilon, _ = self._get_valid_properties() return sigma_hat( self.frequency[:, None], sigma, epsilon, quasistatic=self.quasistatic ).T @property def wavenumber(self): raise NotImplementedError() @property def skin_depth(self): raise NotImplementedError() def magnetic_field(self, xyz, field="secondary"): """ Magnetic field due to a magnetic dipole in a layered halfspace at a specific height z Parameters ---------- xyz : numpy.ndarray receiver locations of shape (n_locations, 3). The z component cannot be below the surface (z=0.0). field : ("secondary", "total") Flag for the type of field to return. """ if
np.any(xyz[:, 2] < 0.0)
numpy.any
import argparse import json import os import glob import numpy as np import pandas as pd import tqdm # This function maps the statistics outputted by the hospital model # to the statistics of the true data def compute_true_summary_statistics(csv_df, expected_columns): new_dict = {} for column in expected_columns: if column == 'timestep' or column == 'date': continue elif column == 'n_occupied_beds': new_dict[column] = csv_df['n_InGeneralWard'] + csv_df['n_OffVentInICU'] + csv_df['n_OnVentInICU'] elif column == 'n_InICU': new_dict[column] = csv_df['n_OffVentInICU'] + csv_df['n_OnVentInICU'] else: new_dict[column] = csv_df[column] return pd.DataFrame(new_dict) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_dir', default='results/US/MA-20201111-20210111-20210211') parser.add_argument('--output_dir', default='results/US/MA-20201111-20210111-20210211') parser.add_argument('--config_path', default='results/US/MA-20201111-20210111-20210211/config_after_abc.json') parser.add_argument('--output_template', default='metrics_after_abc') parser.add_argument('--true_stats', default='datasets/US/MA-20201111-20210111-20210211/daily_counts.csv') parser.add_argument('--input_summaries_template', default='summary_after_abc_') parser.add_argument('--coverages', type=str, default='2.5_97.5,10_90,25_75') parser.add_argument('--comma_sep_expected_columns', default='n_InGeneralWard,n_OffVentInICU,n_OnVentInICU,n_InICU,n_occupied_beds,n_TERMINAL,n_TERMINAL_5daysSmoothed') args = parser.parse_args() with open(args.config_path, 'r') as f: config = json.load(f) num_training_timesteps = config['num_training_timesteps'] if args.comma_sep_expected_columns == 'None': expected_columns = None else: expected_columns = args.comma_sep_expected_columns.split(',') true_df = pd.read_csv(args.true_stats) true_df = true_df[true_df['timestep'] > num_training_timesteps] # drop columns from true_df that are not among the expected columns original_columns = true_df.columns for col in original_columns: if col not in expected_columns: true_df = true_df.drop(col, axis=1) true_counts = true_df.values print("------------------------------------------------------") print("Computing MAE for mean") print("------------------------------------------------------") mean_df = pd.read_csv(os.path.join(args.input_dir, "%smean.csv" % (args.input_summaries_template))) mean_df = mean_df[mean_df['timestep'] > num_training_timesteps] if 'n_TERMINAL_5daysSmoothed' in expected_columns: mean_df['n_TERMINAL_5daysSmoothed'] = np.copy(mean_df['n_TERMINAL']) mean_df = compute_true_summary_statistics(mean_df, expected_columns) original_columns = mean_df.columns for col in original_columns: if col not in expected_columns: mean_df = mean_df.drop(col, axis=1) mean_counts = mean_df.values mae_scores = np.mean(np.abs(mean_counts - true_counts), axis=0).reshape((1, len(expected_columns))) max_scores = np.max(np.abs(mean_counts - true_counts), axis=0).reshape((1, len(expected_columns))) mean_true_counts = np.mean(true_counts, axis=0).reshape((1, len(expected_columns))) scores = np.vstack([mae_scores, max_scores, mean_true_counts]) rows = np.array(['Mean Absolute Error', 'Maximum Absolute Error', 'Mean of True Counts']).reshape((3, 1)) df = pd.DataFrame(np.hstack([rows, scores]), columns=['Metric']+expected_columns) df.to_csv( os.path.join(args.output_dir, "mae_scores_%s.csv" % (args.output_template)), index=False, float_format='%.2f') print("------------------------------------------------------") print("Computing coverage for given ranges") print("------------------------------------------------------") T = true_counts.shape[0] coverages = args.coverages.split(',') results_dict = {'Coverages (%)': list(map(lambda x: '%d' % (float(x.split('_')[1]) - float(x.split('_')[0])), coverages))} for coverage in coverages: low, high = list(map(float, coverage.split('_'))) low_df = pd.read_csv(os.path.join(args.input_dir, "%spercentile=%06.2f.csv" % (args.input_summaries_template, low))) low_df = low_df[low_df['timestep'] > num_training_timesteps] if 'n_TERMINAL_5daysSmoothed' in expected_columns: low_df['n_TERMINAL_5daysSmoothed'] = np.copy(low_df['n_TERMINAL']) low_df = compute_true_summary_statistics(low_df, expected_columns) original_columns = low_df.columns for col in original_columns: if col not in expected_columns: low_df = low_df.drop(col, axis=1) high_df = pd.read_csv(os.path.join(args.input_dir, "%spercentile=%06.2f.csv" % (args.input_summaries_template, high))) high_df = high_df[high_df['timestep'] > num_training_timesteps] if 'n_TERMINAL_5daysSmoothed' in expected_columns: high_df['n_TERMINAL_5daysSmoothed'] = np.copy(high_df['n_TERMINAL']) high_df = compute_true_summary_statistics(high_df, expected_columns) original_columns = high_df.columns for col in original_columns: if col not in expected_columns: high_df = high_df.drop(col, axis=1) low_counts = low_df.values high_counts = high_df.values is_in_low = true_counts > low_counts is_in_high = true_counts < high_counts is_in_range = np.logical_and(is_in_low, is_in_high) counts_in_range =
np.sum(is_in_range, axis=0)
numpy.sum
import numpy from skimage.external.tifffile import TiffFile, TiffWriter import skimage.io import skimage.morphology import skimage.transform import random import json import tensorflow from tensorflow import nn import tensorflow.keras as keras from tensorflow.keras.utils import Sequence import re import pathlib import math import unetsl import os.path import scipy.ndimage from matplotlib import pyplot from matplotlib.widgets import Slider """ Data keys """ SOURCE_TYPE = "source type" PAIRED_DIRECTORY = "paired directories" PAIRED_FILES = "paired files" WEIGHTED_DIRECTORY = "weighted directories" LABELS_TO_CATEGORY = "labels to category" INPUT_FOLDERS = "input folders" LABEL_FOLDERS = "label folders" WEIGHTS_FOLDERS = "weights folders" TRAINING_IMAGES = "training images" LABEL_IMAGES = "label images" ROTATIONS = "rotations" CROP = "crop" LABELLER = "labeller" REGION_LABELLER = "region labels" MULTICLASS_LABELS = "multiclass labels" CATEGORICAL_LABELS = "categorical labels" DOUBLE_MEMBRANE_LABELS = "double membrane labels" LINEAR_LABELS = "linear labels" """ Data Functions """ class DataSource: def __init__(self): pass def getDataGenerators(self, stride, batch_size): pass def updateGeometry(self, *args): pass def split(self, *args): return self, None def steps(self, *args): return 0 class RequiredArgument(Exception): pass class IndexedVolumeData: """ Indexed volume pairs two volumes, images together and indexes over them returning each chunk. Usage ivd = Ivd(volume, labels, n_labels, patches, stride, labeller) ivd.generateIndexes() dg = ivd.getDataGenerator() The patches, stride, and indexes are optional, created for splitting the indexed volume. volume: an image with 5 dimensions. [channel, z, y, x] labels: image with the same zyx dimensions [n_labels, z, y, x]. n_labels: number of output channels. patches: size of input stride: distance between """ def __init__(self, volume, labels, n_labels=1, patches=(1,1,1,1), stride = None, indexes=None, labeller=None, normalize_samples=None, padding=None): if padding is not None: raise Exception("padding is not an accepted argument") else: self.padding = [0, 10, 10] if normalize_samples is None: raise RequiredArgument("normalize_samples is a required argument") if stride is None: stride = patches[:] if volume.shape[-3:] != labels.shape[-3:]: raise Exception("label and sample data differ in x,y,z dimensions %s != %s"%(volume.shape[-3:], labels.shape[-3:])) self.volume = volume self.labels = labels self.n_labels = n_labels self.patches = patches self.stride = stride self.indexes = indexes self.labeller=labeller self.normalize_samples=normalize_samples def updateGeometry(self, n_labels, patches, stride=None, padding=None): if stride is None: stride = patches[:] if self.volume.shape[0] != patches[0]: self.volume = splitIntoChannels(patches, self.volume) self.n_labels = n_labels self.patches = patches self.stride = stride def generateIndexes(self): self.indexes=indexVolume(self.volume, self.patches, self.stride, self.padding) def setIndexes(self, indexes): self.indexes=indexes def getDataGenerator(self, batch_size=1): if(self.indexes==None): self.generateIndexes() if self.padding is None: return getDataGenerator(self.volume, self.labels, self.n_labels, self.indexes, self.patches, batch_size=batch_size, labeller=self.labeller, normalize_samples = self.normalize_samples) else: return getPaddedDataGenerator(self.volume, self.labels, self.n_labels, self.indexes, self.patches, batch_size=batch_size, labeller=self.labeller, normalize_samples = self.normalize_samples, padding=self.padding) def size(self): return len(self.indexes) def steps(self, batch_size): n = len(self.indexes) batches = n//batch_size if n == batches*batch_size: return batches else: return batches + 1 def split(self, f, shuffle=True): if(shuffle): random.shuffle(self.indexes); s1 = int(f*len(self.indexes)) return ( IndexedVolumeData(self.volume, self.labels, self.n_labels, self.patches, self.stride, self.indexes[:s1], self.labeller, self.normalize_samples), IndexedVolumeData(self.volume, self.labels, self.n_labels, self.patches, self.stride, self.indexes[s1:], self.labeller, self.normalize_samples) ) def __str__(self): l = 0 if self.indexes: l = len(self.indexes) return "%s shape: %s n_labels: %s indexes %s normalize: %s"%( self.__class__, self.volume.shape, self.n_labels, l, self.normalize_samples) class TimeSeriesDataGenerator: """ Outdated broken until further notice. """ def __init__(self, file_list, patch_size, out_patch, channels, batch, crop, stride): self.n = -1 self.file_list = file_list self.patch_size = patch_size self.out_patch = out_patch self.channels = channels self.batch = batch self.crop = crop self.n_labels = out_patch[0] self.stride = stride self.loadFirstStack() def getCount(self): return self.n//self.batch def getGenerator(self): while True: loaded = list(self.loaded) self.loaded = [] for i in range(len(self.file_list)): #process genx = [] for j in range(self.channels): genx.append(loaded[j].getDataGenerator()) steps = loaded[self.before].steps(self.batch) for j in range(steps): xbatch = [] ybatch = [] for k in range(self.batch): """ x.shape 1, 1, z, y, x y.shape 1, 2, z, y, x normally the batch would be the first index, but since the 'time' is being stored as a channel that are accumulated """ xs = [] ys = [] for c in range(self.channels): x, y = genx[c].__next__() """ we only segment 1 image. The other two are used at different times. """ xs.append(x[0,0]) if c == self.before: #before is time_points//2 so the middle index. ys = y[0] xbatch.append(xs) ybatch.append(ys) yield numpy.array(xbatch), numpy.array(ybatch) #shift for j in range(len(loaded)-1): loaded[j] = loaded[j+1] dex = i + self.after + 1 if dex < len(self.file_list): img, _ = loadImage(self.file_list[dex][0], self.crop) skel, _ = loadImage(self.file_list[dex][1], self.crop) next_stack = IndexedVolumeData(img, skel, self.n_labels, self.patch_size, out_patches=self.out_patch, stride=self.stride, normalize_samples=self.normalize_samples) loaded[-1] = next_stack self.loadFirstStack() def loadFirstStack(self): """ loads the first stack of images. """ self.loaded = [] self.before = self.channels//2 self.after = self.channels//2 img, _ = loadImage(self.file_list[0][0], self.crop) skel, _ = loadImage(self.file_list[0][1], self.crop) current = IndexedVolumeData(img, skel, self.n_labels, self.patch_size, out_patches=self.out_patch, stride = self.stride, normalize_samples=self.normalize_samples) current.generateIndexes() self.n = len(self.file_list)*current.steps(1) for i in range(self.before): self.loaded.append(current) self.loaded.append(current) for i in range(self.after): img, _ = loadImage(self.file_list[1 + i][0], self.crop) skel, _ = loadImage(self.file_list[1 + i][1], self.crop) next_stack = IndexedVolumeData(img, skel, self.n_labels, self.patch_size, out_patches=self.out_patch, stride = self.stride, normalize_samples=self.normalize_samples) self.loaded.append(next_stack) class RotatedIndexedVolumeData(IndexedVolumeData): def __init__(self, volume, labels, angle, n_labels=1, patches=(1, 1, 1, 1), stride = None, indexes=None, labeller=None, normalize_samples=None): """ volume: full image data that will be indexed over labels: label volume data that will be labelled angle: rotation angle in radians n_labels: number of labels patches: size of volumes to be sampled stride: stride to be used for generating indexes. indexes: if the indexes were previously generated. """ self.angle = angle IndexedVolumeData.__init__(self, volume, labels, n_labels, patches, stride, indexes, labeller, normalize_samples) if indexes: #if indexes were already generated can only assume angle/patches are correct. self.rotated_patch_size = getCropStride(self.patches, self.angle); def generateIndexes(self): self.rotated_patch_size = getCropStride(self.patches, self.angle) self.indexes=indexVolume(self.volume, self.rotated_patch_size, self.stride, self.padding) def getDataGenerator(self, batch_size=1): if(self.indexes==None): self.generateIndexes() large_patch_generator = getDataGenerator(self.volume, self.labels, self.n_labels, self.indexes, self.rotated_patch_size, batch_size=batch_size, labeller = self.labeller, normalize_samples = self.normalize_samples) offset = [(np - p)//2 for np, p in zip(self.rotated_patch_size, self.patches)] angle_deg = self.angle*180/math.pi for x_batch, y_batch in large_patch_generator: for sample_czyx in x_batch: for channel_zyx in sample_czyx: for slice_yx in channel_zyx: slice_yx[:, :] = skimage.transform.rotate(slice_yx, angle_deg, preserve_range=True) for sample_czyx in y_batch: for channel_zyx in sample_czyx: for slice_yx in channel_zyx: slice_yx[:, :] = skimage.transform.rotate(slice_yx, angle_deg, preserve_range=True, order=0) #slice_yx[:, :] = rotate2DByPixels(slice_yx, angle_deg) x_batch = x_batch[:, offset[0]:offset[0] + self.patches[0], offset[1]:offset[1] + self.patches[1], offset[2]:offset[2] + self.patches[2], offset[3]:offset[3] + self.patches[3] ] y_batch =y_batch[:, offset[0]:offset[0] + self.n_labels, offset[1]:offset[1] + self.patches[1], offset[2]:offset[2] + self.patches[2], offset[3]:offset[3] + self.patches[3] ] yield x_batch, y_batch def split(self, f): random.shuffle(self.indexes); s1 = int(f*len(self.indexes)) return ( RotatedIndexedVolumeData(self.volume, self.labels, self.angle, self.n_labels, patches = self.patches, stride = self.stride, indexes = self.indexes[:s1], labeller = self.labeller, normalize_samples=self.normalize_samples), RotatedIndexedVolumeData(self.volume, self.labels, self.angle, self.n_labels, patches = self.patches, stride = self.stride, indexes = self.indexes[s1:], labeller = self.labeller, normalize_samples=self.normalize_samples) ) class WeightedIndexedVolumeData(IndexedVolumeData): def __init__(self, volume, labels, weights, n_labels=1, patches=(1,1,1), stride = None, indexes=None, labeller=None, normalize_samples = None): IndexedVolumeData.__init__(self, volume, labels, n_labels, patches, stride, indexes, labeller, normalize_samples) self.weights = weights def split(self, f): random.shuffle(self.indexes); s1 = int(f*len(self.indexes)) return ( WeightedIndexedVolumeData(self.volume, self.labels, self.weights, self.n_labels, patches = self.patches, stride = self.stride, indexes = self.indexes[:s1], labeller=self.labeller, normalize_samples=self.normalize_samples), WeightedIndexedVolumeData(self.volume, self.labels, self.weights, self.n_labels, patches = self.patches, stride = self.stride, indexes = self.indexes[s1:], labeller=self.labeller, normalize_samples=self.normalize_samples) ) def getDataGenerator(self, batch_size=1): if(self.indexes==None): self.generateIndexes() return getWeightedDataGenerator(self.volume, self.labels, self.weights, self.n_labels, self.indexes, self.patches, batch_size=batch_size, labeller = self.labeller, normalize_samples = self.normalize_samples) class InfiniteGenerator: def __init__(self, repeatingGenerators, randomize=True): """ repeatingGenerators needs to be a list of tuples. [ ( n, gen), ...] n is the number of steps before repeating for a generator. gen is the generator """ self.generators = repeatingGenerators self.batches = sum(c[0] for c in repeatingGenerators) gen_steps = [c[0] for c in repeatingGenerators] single_indexes = [i for i in range(len(gen_steps))] self.indexes = numpy.repeat(single_indexes, gen_steps) if randomize: numpy.random.shuffle(self.indexes) self.index = 0 def __iter__(self): return self def getNBatches(self): return self.batches def generator(self): raise Exception("what are you doing!?") while True: #generatorLog("%d Top of the list"%tally) index = 0; for steps, generator in self.generators: for i in range(steps): yield generator.__next__() index += 1 def __next__(self): if self.index==self.batches: self.index = 0 dex = self.indexes[self.index] self.index += 1 return self.generators[dex][1].__next__() def get_dims(n_chan): mx = int(math.sqrt(n_chan)) factors = [] for i in range(1, mx+1): if n_chan%i==0: factors.append((n_chan/i, i)) factors.sort() return factors[-1] class VolumeViewer: def __init__(self, figure_no, data, limits=None): """ figure: int representing which matplotlib figure this should be data: (channel, z, y, x ) data. """ self.figure_no = figure_no self.channels=len(data) self.n_slices = len(data[0]) self.slice = self.n_slices//2 self.plots = [] self.data=data limits = None self.initializeDisplay(limits) def initializeDisplay(self, limits): self.figure = pyplot.figure(self.figure_no) m,n = get_dims(self.channels) for c in range(self.channels): self.figure.add_subplot(m, n, (c+1) ) slc = self.data[c, self.slice] mx = numpy.max(slc) mn = numpy.min(slc) if limits: orig = pyplot.imshow(self.data[c, self.slice], vmax=limits[1], vmin=limits[0]) else: mn = numpy.min(self.data) mx = numpy.max(self.data) if mn == mx: mn = 0 mx = 1 orig = pyplot.imshow(self.data[c, self.slice], vmax = mx, vmin=mn) if mx==mn: mx = mn+1 self.plots.append(orig) pyplot.subplots_adjust(left=0.1, bottom=0.25) axrs = pyplot.axes([0.2, 0.05, 0.65, 0.05], facecolor="blue") self.slider = Slider(axrs, "Slice", 0, self.n_slices-1, valinit=self.slice, valstep=1) self.slider.on_changed(self.setSlice) pyplot.show(False) def setData(self, data): self.data=data self.refresh() pass def setSlice(self, slc): slc = int(slc) if slc >= 0 and slc<self.n_slices: self.slice = slc self.refresh() def refresh(self): for c, plot in enumerate(self.plots): plot.set_data(self.data[c, self.slice]) self.figure.canvas.draw() def adInfinitum(infiniteGenerators): """ Data generators are inifinite but repeat after so many steps, this takes a finite number of steps from a generator then proceeds to the next one. """ return InfiniteGenerator(infiniteGenerators) class Pooler: def __init__(self, shape, pool, operation): np = len(pool) in_dims = len(shape) skip = in_dims - np leaves = shape[:skip] ax = tuple() for i, p in enumerate(pool): leaves += ( shape[i + skip]//p, ) leaves += ( p, ) ax += ( skip + 2*i + 1, ) self.ax = ax self.leaves = leaves self.op = operation def __call__(self, arr): return self.op(arr.reshape(self.leaves), self.ax) def maxPool(arr, pool): """ max pools arr in the pool dimensions. """ return Pooler(arr.shape, pool, numpy.max)(arr) def minPool(arr, pool): """ min pools arr in the pool dimensions. """ return Pooler(arr.shape, pool, numpy.min)(arr) def rotate2DByPixels(in_img, angle_deg): angle=angle_deg*math.pi/180.0 cx = in_img.shape[1]//2 cy = in_img.shape[0]//2 y, x = numpy.where(in_img!=0) out = numpy.zeros(in_img.shape,dtype="uint8") x = x - cx y = y - cy if x.shape[0]==0: return out angle = - angle xp = x*math.cos(angle) - y*math.sin(angle) + (cx) yp = x*math.sin(angle) + y*math.cos(angle) + (cy) mn = (0,0) mx = in_img.shape for dx in (0.15, 0.85): for dy in (0.15, 0.85): cnets = numpy.array([ ( yi + dy, xi + dx) for yi,xi in zip(yp, xp) if xi+dx>=mn[1] and xi+dx<mx[1] and yi+dy>=mn[0] and yi+dy<mx[0] ], dtype="int") if len(cnets)>0: out[cnets[:,0], cnets[:, 1]] = 1 return out def normalizeImages(batch, sigma=1.0): std = batch.std(axis=(-3, -2, -1), keepdims=True) mn = batch.mean(axis=(-3, -2, -1), keepdims=True) std[numpy.where(std<1e-3)] = 1 batch = sigma*(batch - mn)/std return batch def normalizeBatch(batch, sigma=1.0): std = batch.std() mn = batch.mean() if std>1e-3: return (batch - mn)*sigma/std else: return batch def getMultiClassLabels(data, n_labels, fatten=False): """ Translates a labelled volume into a set of binary labels. :param data: numpy array containing the label map with shape: (1, ...). :param labels: integer values of the labels. :return: binary numpy array of shape: (n_samples, n_labels, ...) """ new_shape = [n_labels] + list(data.shape) y = numpy.zeros(new_shape, numpy.int8) for label_index in range(n_labels): y[label_index] = (data>>label_index)&1 if fatten: for i,sli in enumerate(y[label_index]): y[label_index, i]=skimage.morphology.dilation(sli) return y def getLinearLabels(data, n_labels): """ Doesn't change anything, keeps the values 1 to 1, currently stores at 8 bits. :param data: numpy array containing the label map with shape: (n_samples, 1, ...). :param n_labels: integer values of the labels. :return: numpy array of shape: (n_samples, n_labels, ...) """ new_shape = [1] + list(data.shape) y = numpy.zeros(new_shape, numpy.int8) y[0] = data*1 return y def skeletonToMultiClassRegions(data, n_labels): """ performs a connected components, and labels the stack as different regions instead of """ #1 label for membrane, region labels for regions. regions = n_labels - 1 new_shape = [n_labels] + list(data.shape) y = numpy.zeros(new_shape, numpy.int8) for i, slc in enumerate(data): labelled, count = scipy.ndimage.label((slc==0)*1) lim = n_labels if count<regions: lim = count+1 elif count>regions: labelled[labelled>regions]=regions for j in range(lim): y[j, i] = (labelled==j)*1 return y def getCategoricalLabels(data, n_labels): """ Similar to the multi-class labels, except labels are presumed to be unique and 0 is a label value. eg a binary image would be 2-label categries. n_labels has to be the n_non_zero_labels + 1. The 0 value will get changed to the highest value label """ new_shape = [n_labels] + list(data.shape) y = numpy.zeros(new_shape, numpy.int8) for label_index in range(n_labels - 1): y[label_index] = (data>>label_index)&1 y[ label_index - 1] = (data==0)*1 return y def getDoubleMembraneLabels(data, n_labels): """ Translates a labelled volume into a set of binary labels. :param data: numpy array containing the label map with shape: (n_samples, 1, ...). :param labels: integer values of the labels. :return: binary numpy array of shape: (n_samples, n_labels, ...) """ return getMultiClassLabels(data, n_labels, fatten=True) labeller_map = { REGION_LABELLER : skeletonToMultiClassRegions, MULTICLASS_LABELS : getMultiClassLabels, CATEGORICAL_LABELS : getCategoricalLabels, DOUBLE_MEMBRANE_LABELS : getDoubleMembraneLabels, LINEAR_LABELS : getLinearLabels } def fullRange(total, region, stride): """ go from 0 to total-region, even if the last section overlaps. """ x0 = 0 while x0+region < total: yield x0 x0 += stride if x0+region==total: yield x0 else: x0 = total - region yield x0 def getPadding(total, region, stride): strided = total - region remains = strided%stride if remains<strided//4: return stride else: return stride def paddedRange(total, region, stride, padding=None): """ goes from 0 to total-region-padding so that the origin of an index can be shifted any region within padding. If padding is left as none, then the last section will be treated as padding. This can also have overlap on the last frame. """ if padding is None: padding = getPadding(total, region, stride) stridable = total - padding x0 = 0 while x0+region < stridable: yield x0 x0 += stride if x0+region==stridable: yield x0 else: x0 = stridable - region yield x0 def getPaddedDataGenerator(xdata, ydata, n_labels, indexes, patch, batch_size=1, labeller=None, normalize_samples=False, padding=[0, 0, 0]): """ Returns input batches, and output batches as sampled from the provided data. The data is expected to be (c, z, y, x) format and the return is a tuple of (n, ci, zi, yi, xi), (n, co, zo, yo, xo) values. This will repeat indefinitely with a period of len(indexes) xdata: input image ydata: output that will be labelled indexes: list of starting indexes. patch: shape of the input data (c, z, y, x), note that the output data is (n_labels, z, y, x) """ indexes = list(indexes) xbatch = [] ybatch = [] batches = len(indexes)//batch_size bonus = len(indexes) - batches*batch_size for i in range(bonus): indexes.append(indexes[i]) pad = [ random.randint(0, r) for r in padding ] while True: for index in indexes: x = xdata[ 0:patch[0], index[1] + pad[0]:index[1] + pad[0] + patch[1], index[2] + pad[1]:index[2] + pad[1] + patch[2], index[3] + pad[2]:index[3] + pad[2] + patch[3] ] y = labeller(ydata[ 0, index[1] + pad[0]:index[1] + pad[0] + patch[1], index[2] + pad[1]:index[2] + pad[1] + patch[2], index[3] + pad[2]:index[3] + pad[2] + patch[3] ], n_labels) if(x.shape[-3:] != y.shape[-3:]): print("geometry doesn't match! x %s, y %s"%(x.shape[-3:], y.shape[-3:])) xbatch.append(x) ybatch.append(y) if len(xbatch)==batch_size: batch = numpy.array(xbatch) if normalize_samples: batch = normalizeImages(batch) yield batch, numpy.array(ybatch) pad = [ random.randint(0, r) for r in padding ] xbatch = [] ybatch = [] #epoch, re-randomize. possibly should be in a callback. random.shuffle(indexes) pad = [ random.randint(0, r) for r in padding ] def getDataGenerator(xdata, ydata, n_labels, indexes, patch, batch_size=1, labeller=None, normalize_samples=False, shuffle=False): """ Returns input batches, and output batches as sampled from the provided data. The data is expected to be (c, z, y, x) format and the return is a tuple of (n, ci, zi, yi, xi), (n, co, zo, yo, xo) values. This will repeat indefinitely with a period of len(indexes) xdata: input image ydata: output that will be labelled indexes: list of starting indexes. patch: shape of the input data (c, z, y, x), note that the output data is (n_labels, z, y, x) """ indexes = list(indexes) xbatch = [] ybatch = [] batches = len(indexes)//batch_size bonus = len(indexes) - batches*batch_size for i in range(bonus): indexes.append(indexes[i]) while True: for index in indexes: x = xdata[ 0:patch[0], index[1]:index[1] + patch[1], index[2]:index[2] + patch[2], index[3]:index[3] + patch[3] ] y = labeller(ydata[ 0, index[1]:index[1] + patch[1], index[2]:index[2] + patch[2], index[3]:index[3] + patch[3] ], n_labels) if(x.shape[-3:] != y.shape[-3:]): print("geometry doesn't match! x %s, y %s"%(x.shape[-3:], y.shape[-3:])) xbatch.append(x) ybatch.append(y) if len(xbatch)==batch_size: batch =
numpy.array(xbatch)
numpy.array
from crystal_torture.node import Node from crystal_torture.cluster import Cluster from crystal_torture.graph import Graph from crystal_torture import dist from crystal_torture import tort from pymatgen.core import Structure, Molecule, PeriodicSite import numpy as np import itertools import math import copy import sys import time "Functions for setting up a node, cluster and graph using pymatgen" def map_index(uc_neighbours, uc_index, x_d, y_d, z_d): """ Takes a list of neighbour indices for sites in the original unit cell, and maps them on to all of the supercell sites. Args: - uc_neighbours(list(list(int))): list of lists containing neighbour indices for the nodes that are in the primitive cell - uc_index(list(int)): list of indices corresponding to the primitive cell nodes - x_d (int): x dimension of supercell - y_d (int): y dimension of supercell - z_d (int): z dimension of supercell Returns: - neigh ([[int]...[int]]): list of neighbour indices for all nodes """ no_atoms = len(uc_index) count = -1 neigh = [] append = neigh.append for i, index in enumerate(uc_index): for x in range(0, x_d, 1): for y in range(0, y_d, 1): for z in range(0, z_d, 1): count += 1 append( [ dist.shift_index(neighbour, [x, y, z]) for neighbour in uc_neighbours[i] ] ) return neigh def get_all_neighbors_and_image(structure, r, include_index=False): """ Modified from `pymatgen <http://pymatgen.org/_modules/pymatgen/core/structure.html#IStructure.get_all_neighbors>`_ to return image (used for mapping to supercell), and to use the f2py wrapped OpenMP dist subroutine to get the distances (smaller memory footprint and faster than numpy). Get neighbours for each atom in the unit cell, out to a distance r Returns a list of list of neighbors for each site in structure. Use this method if you are planning on looping over all sites in the crystal. If you only want neighbors for a particular site, use the method get_neighbors as it may not have to build such a large supercell However if you are looping over all sites in the crystal, this method is more efficient since it only performs one pass over a large enough supercell to contain all possible atoms out to a distance r. The return type is a [(site, dist) ...] since most of the time, subsequent processing requires the distance. Args: - r (float): Radius of sphere. - include_index (bool): Whether to include the non-supercell site - in the returned data Returns: - A list of a list of nearest neighbors for each site, i.e., [[(site, dist, index, image) ...], ..]. Index only supplied if include_index = True. The index is the index of the site in the original (non-supercell) structure. This is needed for ewaldmatrix by keeping track of which sites contribute to the ewald sum. """ recp_len = np.array(structure.lattice.reciprocal_lattice.abc) maxr = np.ceil((r + 0.15) * recp_len / (2 * math.pi)) nmin = np.floor(np.min(structure.frac_coords, axis=0)) - maxr nmax = np.ceil(np.max(structure.frac_coords, axis=0)) + maxr all_ranges = [
np.arange(x, y)
numpy.arange
# Python modules # 3rd party modules import numpy as np import xml.etree.cElementTree as ElementTree # Our modules import vespa.datasim.util_datasim as util_datasim import vespa.common.minf_parabolic_info as minf import vespa.common.constants as common_constants import vespa.common.mrs_experiment as mrs_experiment import vespa.common.util.xml_ as util_xml import vespa.common.util.generic_spectral as util_spectral from vespa.common.constants import Deflate from vespa.datasim.util_datasim import calc_lw DEFAULT_MMOL_FLAGS = [False,False,False,False,False,True,False] DEFAULT_MMOL_PPMS = [2.346,2.89,2.142,1.638,1.357,0.9,3.81] DEFAULT_MMOL_AREAS = [0.5,0.5,1,1,1,1,6.0] DEFAULT_MMOL_WIDTHS = [0.1575,0.1575,0.2363,0.2756,0.2756,0.3543,0.9449] # in ppm, in hz [20,20,30,35,35,45,120] DEFAULT_MMOL_PHASES = [0.0,0.0,0.0,0.0,0.0,0.0,0.0] DEFAULT_BASE_FLAGS = [False,False] DEFAULT_BASE_PPMS = [4.69,1.0] DEFAULT_BASE_AREAS = [10.0,20.0] DEFAULT_BASE_WIDTHS = [0.3543,0.7] # damping coeff in [sec] ~ 45 Hz DEFAULT_BASE_PHASES = [0.0,0.0] class Datasim(object): """ A container for simulated magnetic resonance spectroscopy data. """ XML_VERSION = "1.0.0" def __init__(self, attributes=None): """ Define parameters to describe how MRS data is simulated. """ self.datasim_filename = '' # Spectral parameter settings self.dims = [2048,1,1,1] self.frequency = 123.9 # in MHz self.sw = 2048.0 # in Hz self.linewidth = 3.0 # in Hz self.resppm = 4.7 # in ppm self.ta = 0.300 # in sec - only for Tab LW display calc, Metab Ta vals control indiv T2 self.tb = 0.105 # in sec - controls T2* globally self.phase0 = 0.0 # in deg self.phase1 = 0.0 # in deg self.phase_1_pivot = 4.7 # in ppm self.b0shift = 0.0 # in Hz self.left_shift = 0 # in points of FID self.zero_fill_multiplier = 1.0 # placeholder for completeness, not read or saved self.echopeak = 0.0 # placeholder for completeness, not read or saved self.comment = '' # simulated metabolite signal basis settings self.loop = [0,0,0] # selected loop indices self.experiment = None self.mets_flags = None self.mets_scales = None self.mets_decays = None self.mets_ppm_start = self.pts2ppm(self.dims[0]-1) self.mets_ppm_end = self.pts2ppm(0) # macromolecule signal contributions self.mmol_flags = np.array(DEFAULT_MMOL_FLAGS) self.mmol_ppms = np.array(DEFAULT_MMOL_PPMS) self.mmol_areas = np.array(DEFAULT_MMOL_AREAS) self.mmol_widths = np.array(DEFAULT_MMOL_WIDTHS) # in ppm self.mmol_phases = np.array(DEFAULT_MMOL_PHASES) self.mmol_lineshape = 'lorentzian' self.mmol_group_scale = 1.0 # baseline signal contributions self.base_flags = np.array(DEFAULT_BASE_FLAGS) self.base_ppms =
np.array(DEFAULT_BASE_PPMS)
numpy.array
"""Functions chop simulation data into subvolumes for independent processing.""" import numpy as np __all__ = ( "calculate_subvolume_id", "points_in_buffered_rectangle", "points_in_rectangle", ) def calculate_subvolume_id(x, y, z, nx, ny, nz, period): """Calculate the subvolume ID for every input point. The function first wraps the input x, y, z into the periodic box, then assigns each point to a rectangular subvolume according to the number of subdivisions in each dimension. The subvolume ID is defined by a dictionary ordering of the digitized values of x, y, z. Parameters ---------- x, y, z : ndarrays of shape (npts, ) nx, ny, nz : integers period : float or 3-element sequence Length of the periodic box Returns ------- x, y, z : ndarrays of shape (npts, ) Identical to the input points except for cases where points have been wrapped around the periodic boundaries ix, iy, iz : ndarrays of shape (npts, ) Integer arrays that together specify the subvolume of each point cellnum : ndarray of shape (npts, ) Integer array that by itself specifies the subvolume of each point, e.g., (ix, iy, iz)=(0, 0, 0) <==> cellnum=0 """ period = _get_3_element_sequence(period) x = np.atleast_1d(np.mod(x, period[0])) y = np.atleast_1d(np.mod(y, period[1])) z = np.atleast_1d(np.mod(z, period[2])) _rescaled_x = nx * x / period[0] _rescaled_y = ny * y / period[1] _rescaled_z = nz * z / period[2] ix = np.floor(_rescaled_x).astype("i4") iy = np.floor(_rescaled_y).astype("i4") iz = np.floor(_rescaled_z).astype("i4") cellnum = np.ravel_multi_index((ix, iy, iz), (nx, ny, nz)) return x, y, z, ix, iy, iz, cellnum def points_in_buffered_rectangle(x, y, z, xyz_mins, xyz_maxs, rmax_xyz, period): """Return the subset of points inside a buffered rectangular subvolume. All returned points will lie within rmax_xyz of (xyz_mins, xyz_maxs), accounting for periodic boundary conditions. Parameters ---------- x, y, z : ndarrays, each with shape (npts, ) xyz_mins : 3-element sequence xyz coordinates of the lower corner of the rectangular subvolume. Must have 0 <= xyz_mins <= xyz_maxs <= period_xyz xyz_maxs : 3-element sequence xyz coordinates of the upper corner of the rectangular subvolume. Must have 0 <= xyz_mins <= xyz_maxs <= period_xyz rmax_xyz : 3-element sequence Search radius distance in the xyz direction. Must have rmax_xyz <= period_xyz/2. period : float or 3-element sequence Length of the periodic box Returns ------- xout, yout, zout : ndarrays, each with shape (npts_buffered_subvol, ) Coordinates of points that lie within the buffered subvolume. The returned points will lie in the range [xyz_mins-rmax_xyz, xyz_maxs+rmax_xyz]. Note that this may spill beyond the range [0, Lbox], as required by the size of the search radius, the size of the box, and the position of the subvolume. The buffered subvolume includes all points relevant to pair-counting within rmax_xyz for points in the rectangular subvolume, and so periodic boundary conditions can be ignored for xout, yout, zout. indx : ndarray, shape (npts_buffered_subvol, ) Index of the corresponding point in the input xyz arrays. xout[i] == x[indx[i]] except for cases where the point has been wrapped around the periodic boundaries. inside_subvol : ndarray, shape (npts_buffered_subvol, ) boolean array is True when the point is in the rectangular subvolume, False when the point is in the +/-rmax_xyz buffering region. """ period_xyz = _get_3_element_sequence(period) xyz_mins = np.array(xyz_mins) xyz_maxs = np.array(xyz_maxs) rmax_xyz = np.array(rmax_xyz) x = np.mod(x, period_xyz[0]) y = np.mod(y, period_xyz[1]) z = np.mod(z, period_xyz[2]) x_collector = [] y_collector = [] z_collector = [] indx_collector = [] in_subvol_collector = [] for subregion in _buffering_rectangular_subregions(xyz_mins, xyz_maxs, rmax_xyz): subregion_ix_iy_iz, subregion_xyz_mins, subregion_xyz_maxs = subregion _points = points_in_rectangle( x, y, z, subregion_xyz_mins, subregion_xyz_maxs, period_xyz ) subregion_x, subregion_y, subregion_z, subregion_indx = _points _npts = len(subregion_x) if _npts > 0: x_collector.append(subregion_x) y_collector.append(subregion_y) z_collector.append(subregion_z) indx_collector.append(subregion_indx) in_subvol = np.zeros_like(subregion_x).astype(bool) + ( subregion_ix_iy_iz == (0, 0, 0) ) in_subvol_collector.append(in_subvol) if len(x_collector) == 0: xout = np.zeros(0, dtype="f4") yout = np.zeros(0, dtype="f4") zout = np.zeros(0, dtype="f4") indx = np.zeros(0, dtype="i8") inside_subvol =
np.zeros(0, dtype=bool)
numpy.zeros
# future from __future__ import annotations # stdlib from functools import partial import os from pathlib import Path import time from typing import Any from typing import Callable from typing import Final from typing import Optional from typing import TYPE_CHECKING from typing import Tuple # relative from ...logger import info if TYPE_CHECKING: # stdlib from dataclasses import dataclass else: from flax.struct import dataclass # third party import jax from jax import numpy as jnp from nacl.signing import VerifyKey import numpy as np from scipy.optimize import minimize_scalar # relative from ...core.node.common.node_manager.user_manager import RefreshBudgetException from ...lib.numpy.array import capnp_deserialize from ...lib.numpy.array import capnp_serialize from ..common.serde.capnp import CapnpModule from ..common.serde.capnp import get_capnp_schema from ..common.serde.capnp import serde_magic_header from ..common.serde.serializable import serializable from .abstract_ledger_store import AbstractDataSubjectLedger from .abstract_ledger_store import AbstractLedgerStore def get_cache_path(cache_filename: str) -> str: here = os.path.dirname(__file__) root_dir = Path(here) / ".." / ".." / "cache" return os.path.abspath(root_dir / cache_filename) def load_cache(filename: str) -> np.ndarray: CACHE_PATH = get_cache_path(filename) if not os.path.exists(CACHE_PATH): raise Exception(f"Cannot load {CACHE_PATH}") cache_array = np.load(CACHE_PATH) info(f"Loaded constant2epsilon cache of size: {cache_array.shape}") return cache_array @dataclass class RDPParams: sigmas: jnp.array l2_norms: jnp.array l2_norm_bounds: jnp.array Ls: jnp.array coeffs: jnp.array @partial(jax.jit, static_argnums=3, donate_argnums=(1, 2)) def first_try_branch( constant: jax.numpy.DeviceArray, rdp_constants: np.ndarray, entity_ids_query: np.ndarray, max_entity: int, ) -> jax.numpy.DeviceArray: summed_constant = constant.take(entity_ids_query) + rdp_constants.take( entity_ids_query ) if max_entity < len(rdp_constants): return rdp_constants.at[entity_ids_query].set(summed_constant) else: pad_length = max_entity - len(rdp_constants) + 1 rdp_constants = jnp.concatenate([rdp_constants, jnp.zeros(shape=pad_length)]) summed_constant = constant + rdp_constants.take(entity_ids_query) return rdp_constants.at[entity_ids_query].set(summed_constant) @partial(jax.jit, static_argnums=1) def compute_rdp_constant(rdp_params: RDPParams, private: bool) -> jax.numpy.DeviceArray: squared_Ls = rdp_params.Ls**2 squared_sigma = rdp_params.sigmas**2 if private: # this is calculated on the private true values squared_l2 = rdp_params.l2_norms**2 else: # bounds is computed on the metadata squared_l2 = rdp_params.l2_norm_bounds**2 return (squared_Ls * squared_l2 / (2 * squared_sigma)) * rdp_params.coeffs @jax.jit def get_budgets_and_mask( epsilon_spend: jnp.array, user_budget: jnp.float64 ) -> Tuple[float, float, jax.numpy.DeviceArray]: # Function to vectorize the result of the budget computation. mask = jnp.ones_like(epsilon_spend) * user_budget < epsilon_spend # get the highest value which was under budget and represented by False in the mask highest_possible_spend = jnp.max(epsilon_spend * (1 - mask)) return (highest_possible_spend, user_budget, mask) @serializable(capnp_bytes=True) class DataSubjectLedger(AbstractDataSubjectLedger): """for a particular data subject, this is the list of all mechanisms releasing informationo about this particular subject, stored in a vectorized form""" CONSTANT2EPSILSON_CACHE_FILENAME = "constant2epsilon_300k.npy" _cache_constant2epsilon = load_cache(filename=CONSTANT2EPSILSON_CACHE_FILENAME) def __init__( self, constants: Optional[np.ndarray] = None, update_number: int = 0, timestamp_of_last_update: Optional[float] = None, ) -> None: self._rdp_constants = ( constants if constants is not None else np.array([], dtype=np.float64) ) self._update_number = update_number self._timestamp_of_last_update = ( timestamp_of_last_update if timestamp_of_last_update is not None else time.time() ) self._pending_save = False def __eq__(self, other: Any) -> bool: if not isinstance(other, DataSubjectLedger): return self == other return ( self._update_number == other._update_number and self._timestamp_of_last_update == other._timestamp_of_last_update and all(self._rdp_constants == other._rdp_constants) ) @property def delta(self) -> float: FIXED_DELTA: Final = 1e-6 return FIXED_DELTA # WARNING: CHANGING DELTA INVALIDATES THE CACHE def bind_to_store_with_key( self, store: AbstractLedgerStore, user_key: VerifyKey ) -> None: self.store = store self.user_key = user_key @staticmethod def get_or_create( store: AbstractLedgerStore, user_key: VerifyKey ) -> Optional[AbstractDataSubjectLedger]: ledger: Optional[AbstractDataSubjectLedger] = None try: # todo change user_key or uid? ledger = store.get(key=user_key) ledger.bind_to_store_with_key(store=store, user_key=user_key) except KeyError: print("Creating new Ledger") ledger = DataSubjectLedger() ledger.bind_to_store_with_key(store=store, user_key=user_key) except Exception as e: print(f"Failed to read ledger from ledger store. {e}") return ledger def get_entity_overbudget_mask_for_epsilon_and_append( self, unique_entity_ids_query: np.ndarray, rdp_params: RDPParams, get_budget_for_user: Callable, deduct_epsilon_for_user: Callable, private: bool = True, ) -> np.ndarray: # coerce to np.int64 entity_ids_query: np.ndarray = unique_entity_ids_query.astype(np.int64) # calculate constants rdp_constants = self._get_batch_rdp_constants( entity_ids_query=entity_ids_query, rdp_params=rdp_params, private=private ) # here we iteratively attempt to calculate the overbudget mask and save # changes to the database mask = self._get_overbudgeted_entities( get_budget_for_user=get_budget_for_user, deduct_epsilon_for_user=deduct_epsilon_for_user, rdp_constants=rdp_constants, ) # at this point we are confident that the database budget field has been updated # so now we should flush the _rdp_constants that we have calculated to storage if self._write_ledger(): return mask def _write_ledger(self) -> bool: self._update_number += 1 try: self._pending_save = False self.store.set(key=self.user_key, value=self) return True except Exception as e: self._pending_save = True print(f"Failed to write ledger to ledger store. {e}") raise e def _increase_max_cache(self, new_size: int) -> None: new_entries = [] current_size = len(self._cache_constant2epsilon) new_alphas = [] for i in range(new_size - current_size): alph, eps = self._get_optimal_alpha_for_constant( constant=i + 1 + current_size ) new_entries.append(eps) new_alphas.append(alph) self._cache_constant2epsilon = np.concatenate( [self._cache_constant2epsilon, np.array(new_entries)] ) def _get_fake_rdp_func(self, constant: int) -> Callable: def func(alpha: float) -> float: return alpha * constant return func def _get_alpha_search_function(self, rdp_compose_func: Callable) -> Callable: log_delta = np.log(self.delta) def fun(alpha: float) -> float: # the input is the RDP's \alpha if alpha <= 1: return np.inf else: alpha_minus_1 = alpha - 1 return np.maximum( rdp_compose_func(alpha) +
np.log(alpha_minus_1 / alpha)
numpy.log
import warnings import numpy as np # Scipy try: import scipy.linalg as spa from scipy.spatial import ConvexHull from scipy.linalg import block_diag except: warnings.warn("You don't have scipy package installed. You may get error while using some feautures.") # Pydrake try: import pydrake.solvers.mathematicalprogram as MP import pydrake.solvers.gurobi as Gurobi_drake import pydrake.solvers.osqp as OSQP_drake # use Gurobi solver global gurobi_solver,OSQP_solver, license gurobi_solver=Gurobi_drake.GurobiSolver() license = gurobi_solver.AcquireLicense() OSQP_solver=OSQP_drake.OsqpSolver() except: warnings.warn("You don't have pydrake installed properly. Methods that rely on optimization may fail.") # Pypolycontain try: import pypolycontain as pp except: warnings.warn("You don't have pypolycontain properly installed. Can not import objects") """ Optimization-based Operations: """ def affine_map( T, P, t=None , get_inverse=True): """ Returns the affine map of a polytope. """ if type(t)==type(None): t=np.zeros((T.shape[0],1)) if P.type=='AH_polytope': return pp.AH_polytope(t=t+np.dot(T,P.t),T=np.dot(T,P.T),P=P.P) elif P.type=='zonotope': return pp.zonotope(x=t+np.dot(T,P.x),G=np.dot(T,P.G)) elif P.type=="H_polytope": if T.shape[0]>=T.shape[1] and get_inverse: Tinv=np.linalg.pinv(T) H=np.dot(P.H,Tinv) # print("inverse error=",np.linalg.norm(np.dot(Tinv,T)-np.eye(T.shape[1]))) assert np.linalg.norm(np.dot(Tinv,T)-np.eye(T.shape[1]))<=1e-2*P.n return pp.H_polytope(H=H,h=P.h+np.dot(H,t)) else: Q=pp.to_AH_polytope(P) return affine_map( T, Q, t ) else: return ValueError('Polytope type: ',P.type," Not recognized") def translate( t, P ): """ Shifts the polytope by t vector """ assert t.shape[0]==P.n # Dimension match if P.type=='AH_polytope': return pp.AH_polytope(t=t+P.t,T=P.T,P=P.P) elif P.type=='zonotope': return pp.zonotope(x=t+P.x,G=P.G) elif P.type=="H_polytope": return pp.H_polytope(H=P.H,h=P.h+np.dot(P.H,t)) else: return ValueError('Polytope type: ',P.type," Not recognized") def point_membership(Q,x,tol=10**-5,solver="gurobi"): if type(Q).__name__=="H_polytope": return Q.if_inside(x,tol) else: Q=pp.to_AH_polytope(Q) prog=MP.MathematicalProgram() zeta=prog.NewContinuousVariables(Q.P.H.shape[1],1,"zeta") prog.AddLinearConstraint(A=Q.P.H,ub=Q.P.h+tol,lb=-np.inf*np.ones((Q.P.h.shape[0],1)),vars=zeta) prog.AddLinearEqualityConstraint(Q.T,x-Q.t,zeta) if solver=="gurobi": result=gurobi_solver.Solve(prog,None,None) elif solver=="osqp": prog.AddQuadraticCost(np.eye(zeta.shape[0]),np.zeros(zeta.shape),zeta) result=OSQP_solver.Solve(prog,None,None) else: result=MP.Solve(prog) return result.is_success() def check_subset(P1,P2,k=-1): """ Checks if .math..`P1 \subseteq P2` Inputs: """ def point_membership_fuzzy(Q,x,tol=10**-5,solver="gurobi"): """ Fuzzy membership check. If x contains NaN, the entry is unconstrained @param Q: Polytope in R^n @param x: n*1 numpy array, may contain NaNs @param tol: @param solver: solver to use @return: boolean of whether x is in Q """ Q=pp.to_AH_polytope(Q) prog=MP.MathematicalProgram() zeta=prog.NewContinuousVariables(Q.P.H.shape[1],1,"zeta") prog.AddLinearConstraint(A=Q.P.H,ub=Q.P.h+tol,lb=-np.inf*np.ones((Q.P.h.shape[0],1)),vars=zeta) assert(x.shape[1]==1) for i, xi in enumerate(x): if not np.isnan(xi): prog.AddLinearEqualityConstraint(np.atleast_2d(Q.T[i,:]),(x[i]-Q.t[i]).reshape([-1,1]),zeta) if solver=="gurobi": result=gurobi_solver.Solve(prog,None,None) elif solver=="osqp": prog.AddQuadraticCost(np.eye(zeta.shape[0]),np.zeros(zeta.shape),zeta) result=OSQP_solver.Solve(prog,None,None) else: result=MP.Solve(prog) return result.is_success() def check_non_empty(Q,tol=10**-5,solver="gurobi"): Q=pp.to_AH_polytope(Q) prog=MP.MathematicalProgram() zeta=prog.NewContinuousVariables(Q.P.H.shape[1],1,"zeta") prog.AddLinearConstraint(A=Q.P.H,ub=Q.P.h+tol,lb=-np.inf*np.ones((Q.P.h.shape[0],1)),vars=zeta) if solver=="gurobi": result=gurobi_solver.Solve(prog,None,None) elif solver=="osqp": prog.AddQuadraticCost(np.eye(zeta.shape[0]),np.zeros(zeta.shape),zeta) result=OSQP_solver.Solve(prog,None,None) else: result=MP.Solve(prog) return result.is_success() #def directed_Hausdorff_distance(Q1,Q2,ball="infinty_norm",solver="gurobi"): # r""" # Computes the directed Hausdorff distance of Q_1 and Q_2 (AH_polytopes) # *************************************************************************** # The optimization problem is: # Minimize epsilon # such that Q1 \subset Q2+epsilon(Ball) # # It is zero if and only if Q1 subset Q2. The method is based on # # Sadraddini&Tedrake, 2019, CDC (available on ArXiv) # # We solve the following problem: # D*ball+Q1 subset Q2 # We solve the following linear program: # ..math:: # \min D # s.t. Lambda_1 H_1=H_2 Gamma_1 # Lambda_2 H_1=H_ball Gamma_2 # Lambda_1 h_1<=h_2 + H_2 beta_1 # Lambda_2 h_2<=D h_ball + H_ball beta_2 # x_2 - X_2 beta_1 - beta_2 = x_1 # X_2 Gamma_1 + Gamma_2 = X_1 # *************************************************************************** # """ # Q1,Q2=pp.to_AH_polytope(Q1),pp.to_AH_polytope(Q2) # n=Q1.t.shape[0] # if ball=="infinty_norm": # HB=np.vstack((np.eye(n),-np.eye(n))) # hB=np.vstack((np.ones((n,1)),np.ones((n,1)))) # elif ball=="l1": # HB,hb=make_ball(ball) # prog=MP.MathematicalProgram() # # Variables # D=prog.NewContinuousVariables(1,1,"D") # Lambda_1=prog.NewContinuousVariables(Q2.P.H.shape[0],Q1.P.H.shape[0],"Lambda_1") # Lambda_2=prog.NewContinuousVariables(HB.shape[0],Q1.P.H.shape[0],"Lambda2") # Gamma_1=prog.NewContinuousVariables(Q2.P.H.shape[1],Q1.P.H.shape[1],"Gamma1") # Gamma_2=prog.NewContinuousVariables(HB.shape[1],Q1.P.H.shape[1],"Gamma1") # beta_1=prog.NewContinuousVariables(Q2.P.H.shape[1],1,"beta1") # beta_2=prog.NewContinuousVariables(HB.shape[1],1,"beta1") # # Constraints # # Lambda_1 and Lambda_2 positive # prog.AddBoundingBoxConstraint(0,np.inf,Lambda_1) # prog.AddBoundingBoxConstraint(0,np.inf,Lambda_2) # # Lambda_1 H_1 # Lambda_H_Gamma(prog,Lambda_1,Q1.P.H,Q2.P.H,Gamma_1) # # Lambda_2 H_1 # Lambda_H_Gamma(prog,Lambda_2,Q1.P.H,HB,Gamma_2) # # Lambda_1 h_1 # Lambda_h_Inequality(prog,Lambda_1,beta_1,Q2.P.H,Q1.P.h,Q2.P.h) # # Lambda_2 h_1 # Lambda_h_Inequality_D(prog,Lambda_2,beta_2,HB,Q1.P.h,hB,D) # # X2 beta_1 # prog.AddLinearEqualityConstraint(-np.hstack((Q2.T,np.eye(n))),Q1.t-Q2.t,np.vstack((beta_1,beta_2))) # # X2 Gamma_1 # Aeq=np.hstack((Q2.T,np.eye(Q2.T.shape[0]))) # for i in range(Gamma_1.shape[1]): # beq=Q1.T[:,i] # var=np.hstack((Gamma_1[:,i],Gamma_2[:,i])) # prog.AddLinearEqualityConstraint(Aeq,beq,var) # # Cost # # Optimize # if solver=="gurobi": # prog.AddLinearCost(D[0,0]) # result=gurobi_solver.Solve(prog,None,None) # elif solver=="osqp": # prog.AddQuadraticCost(D[0,0]*D[0,0]) # result=OSQP_solver.Solve(prog,None,None) # else: # result=MP.Solve(prog) # if result.is_success(): # return np.asscalar(result.GetSolution(D)) # else: # print("Optimization Failed") # #def old_Hausdorff_distance(Q1,Q2,directed=False,ball="infinty_norm",solver="gurobi"): # return max(directed_Hausdorff_distance(Q1,Q2,ball,solver),directed_Hausdorff_distance(Q2,Q1,ball,solver)) def Hausdorff_distance(Q1,Q2,directed=False,ball="infinty_norm",solver="gurobi",k=-1): X,Y=pp.to_AH_polytope(Q1),pp.to_AH_polytope(Q2) prog=MP.MathematicalProgram() # Variables n=Q1.n D1=prog.NewContinuousVariables(1,"D1") D2=prog.NewContinuousVariables(1,"D2") if ball=="infinty_norm": P_ball=pp.unitbox(n).H_polytope elif ball in ["L1",1,"1","l1"]: P_ball=pp.unitball(n,1) else: print("I don't recognize the ball norm") raise NotImplementedError if P_ball.type=='H_polytope': Dball1=pp.H_polytope(P_ball.H,P_ball.h*D1) if not directed: Dball2=pp.H_polytope(P_ball.H,P_ball.h*D2) if P_ball.type=='AH_polytope': Dball1=pp.AH_polytope(t=P_ball.t*D1,T=P_ball.T,\ P=pp.H_polytope(P_ball.P.H,P_ball.P.h*D1)) if not directed: Dball2=pp.AH_polytope(t=P_ball.t*D2,T=P_ball.T,\ P=pp.H_polytope(P_ball.P.H,P_ball.P.h*D2)) X_plus=pp.minkowski_sum(X,Dball1) pp.subset(prog,Y,X_plus,k=k) prog.AddLinearCost(np.array([1]),np.array([0]),D1) if not directed: Y_plus=pp.minkowski_sum(Y,Dball2) pp.subset(prog,X,Y_plus,k=k) prog.AddLinearCost(np.array([1]),np.array([0]),D2) if solver=="gurobi": result=gurobi_solver.Solve(prog,None,None) if result.is_success(): dXY=np.asscalar(result.GetSolution(D1)) if not directed: dYX=np.asscalar(result.GetSolution(D2)) return max(dXY,dYX),dXY,dYX else: return dXY def distance_polytopes(Q1,Q2,ball="infinity",solver="gurobi"): """ Finds the closest two points in two polytopes and their distance. It is zero if polytopes have non-empty intersection """ Q1,Q2=pp.to_AH_polytope(Q1),pp.to_AH_polytope(Q2) n=Q1.n prog=MP.MathematicalProgram() zeta1=prog.NewContinuousVariables(Q1.P.H.shape[1],1,"zeta1") zeta2=prog.NewContinuousVariables(Q2.P.H.shape[1],1,"zeta2") delta=prog.NewContinuousVariables(n,1,"delta") prog.AddLinearConstraint(A=Q1.P.H,ub=Q1.P.h,lb=-np.inf*np.ones((Q1.P.h.shape[0],1)),vars=zeta1) prog.AddLinearConstraint(A=Q2.P.H,ub=Q2.P.h,lb=-np.inf*np.ones((Q2.P.h.shape[0],1)),vars=zeta2) prog.AddLinearEqualityConstraint( np.hstack((Q1.T,-Q2.T,np.eye(n))),Q2.t-Q1.t,np.vstack((zeta1,zeta2,delta)) ) if ball=="infinity": delta_abs=prog.NewContinuousVariables(1,1,"delta_abs") prog.AddBoundingBoxConstraint(0,np.inf,delta_abs) prog.AddLinearConstraint(np.greater_equal( np.dot(np.ones((n,1)),delta_abs),delta,dtype='object' )) prog.AddLinearConstraint(np.greater_equal( np.dot(np.ones((n,1)),delta_abs),-delta,dtype='object' )) cost=delta_abs elif ball=="l1": delta_abs=prog.NewContinuousVariables(n,1,"delta_abs") prog.AddBoundingBoxConstraint(0,np.inf,delta_abs) prog.AddLinearConstraint(np.greater_equal( delta_abs,delta,dtype='object' )) prog.AddLinearConstraint(np.greater_equal( delta_abs,-delta,dtype='object' )) cost=np.dot(np.ones((1,n)),delta_abs) else: raise NotImplementedError if solver=="gurobi": prog.AddLinearCost(cost[0,0]) result=gurobi_solver.Solve(prog,None,None) elif solver=="osqp": prog.AddQuadraticCost(cost[0,0]*cost[0,0]) result=OSQP_solver.Solve(prog,None,None) else: prog.AddLinearCost(cost[0,0]) result=MP.Solve(prog) if result.is_success(): return np.sum(result.GetSolution(delta_abs)),\ np.dot(Q1.T,result.GetSolution(zeta1).reshape(zeta1.shape[0],1))+Q1.t,\ np.dot(Q2.T,result.GetSolution(zeta2).reshape(zeta2.shape[0],1))+Q2.t def _setup_program_distance_point(P,ball="infinity",solver="Gurobi"): """ Initilize the mathematial program Choice of balls: infinity: L-infinity norm l1: l1 norm (Manhattan Distance) l2: l2 norm (Euclidean Distance) """ if P.distance_program is None: prog=MP.MathematicalProgram() Q=pp.to_AH_polytope(P) n=Q.n x=np.zeros((n,1)) P.zeta=prog.NewContinuousVariables(Q.P.H.shape[1],1,"zeta") delta=prog.NewContinuousVariables(n,1,"delta") prog.AddLinearConstraint(A=Q.P.H,ub=Q.P.h,lb=-np.inf*np.ones((Q.P.h.shape[0],1)),vars=P.zeta) P.distance_constraint=prog.AddLinearEqualityConstraint( np.hstack((Q.T,-np.eye(n))),x-Q.t,np.vstack((P.zeta,delta)) ) if ball=="infinity": delta_abs=prog.NewContinuousVariables(1,1,"delta_abs") prog.AddBoundingBoxConstraint(0,np.inf,delta_abs) prog.AddLinearConstraint(np.greater_equal( np.dot(np.ones((n,1)),delta_abs),delta,dtype='object' )) prog.AddLinearConstraint(np.greater_equal( np.dot(np.ones((n,1)),delta_abs),-delta,dtype='object' )) prog.AddLinearCost(delta_abs[0,0]) elif ball=="l1": delta_abs=prog.NewContinuousVariables(n,1,"delta_abs") prog.AddBoundingBoxConstraint(0,np.inf,delta_abs) prog.AddLinearConstraint(np.greater_equal( delta_abs,delta,dtype='object' )) prog.AddLinearConstraint(np.greater_equal( delta_abs,-delta,dtype='object' )) cost=np.dot(np.ones((1,n)),delta_abs) prog.AddLinearCost(cost[0,0]) elif ball=="l2": prog.AddQuadraticCost(np.eye(n),np.zeros(n),delta) else: print(("Not a valid choice of norm",str(ball))) raise NotImplementedError P.distance_program=prog return else: return def distance_point_polytope(P, x, ball="infinity", solver="Gurobi"): """ Computes the distance of point x from AH-polytope Q """ x_vector = np.atleast_2d(x) #in case x is not n*1 vector P = pp.to_AH_polytope(P) _setup_program_distance_point(P,ball,solver) prog=P.distance_program Q=pp.to_AH_polytope(P) a=P.distance_constraint.evaluator() x_vector=x_vector.reshape(max(x_vector.shape),1) a.UpdateCoefficients(np.hstack((Q.T,-np.eye(Q.n))), x_vector - Q.t) if solver=="Gurobi": result=gurobi_solver.Solve(prog,None,None) elif solver=="osqp": result=OSQP_solver.Solve(prog,None,None) else: result=MP.Solve(prog) if result.is_success(): zeta_num=result.GetSolution(P.zeta).reshape(P.zeta.shape[0],1) x_nearest=np.dot(Q.T,zeta_num)+Q.t delta=(x_vector - x_nearest).reshape(Q.n) if ball=="infinity": d=np.linalg.norm(delta,ord=np.inf) elif ball=="l1": d=np.linalg.norm(delta,ord=1) elif ball=="l2": d=np.linalg.norm(delta,ord=2) return d,x_nearest def bounding_box(Q,solver="Gurobi"): r""" Computes the bounding box of a polytope by solving :math:`2n` linear programs. Each linear program is in the form: .. math:: \begin{array}{lll} l_i= & \min & e_i^T x \\ & \text{subject to} & x \in \mathbb{P} \end{array} and .. math:: \begin{array}{lll} u_i= & \max & e_i^T x \\ & \text{subject to} & x \in \mathbb{P} \end{array} where :math:`l,u` define the lower and upper corners of the bounding box. """ Q=pp.to_AH_polytope(Q) prog=MP.MathematicalProgram() zeta=prog.NewContinuousVariables(Q.P.H.shape[1],1,"zeta") x=prog.NewContinuousVariables(Q.n,1,"x") prog.AddLinearConstraint(A=Q.P.H,ub=Q.P.h,lb=-np.inf*np.ones((Q.P.h.shape[0],1)),vars=zeta) prog.AddLinearEqualityConstraint(np.hstack((-Q.T,np.eye(Q.n))),Q.t,np.vstack((zeta,x))) lower_corner=np.zeros((Q.n,1)) upper_corner=np.zeros((Q.n,1)) c=prog.AddLinearCost(np.ones(Q.n),0,x) if solver=="Gurobi": solver=gurobi_solver else: raise NotImplementedError a=
np.zeros((Q.n,1))
numpy.zeros
import warnings import dask.array as dsa import numpy as np import xarray as xr import xarrayutils as xru from xarrayutils.utils import linear_trend from cmip6_preprocessing.postprocessing import _match_datasets, exact_attrs from cmip6_preprocessing.utils import cmip6_dataset_id def _maybe_unpack_date(date): """`Unpacks` cftime from xr.Dataarray if provided""" # I should probably not do this here but instead in the higher level functions... if isinstance(date, xr.DataArray): date = date.data.tolist() if isinstance(date, list): if len(date) != 1: raise RuntimeError( "The passed date has the wrong format. Got [{date}] after conversion to list." ) else: date = date[0] return date def _construct_cfdate(data, units, calendar): # This seems clunky. I feel there must be a more elegant way of doing this? date = xr.DataArray(data, attrs={"units": units, "calendar": calendar}) return xr.decode_cf(date.to_dataset(name="time"), use_cftime=True).time def _datestr_to_cftime(date_str, calendar): # Again I feel this should be more elegant? For now I guess it works return _construct_cfdate([0], f"days since {date_str}", calendar) def replace_time( ds, ref_date=None, ref_idx=0, freq="1MS", calendar=None, time_dim="time" ): """This function replaces the time encoding of a dataset acoording to `ref_date`. The ref date can be any index of ds.time (default is 0; meaning the first timestep of ds will be replaced with `ref_date`). """ #! I might be able to achieve some of this with time.shift # ! if calendar is None: calendar = ds.time.encoding.get("calendar", "standard") if ref_date is None: ref_date = _maybe_unpack_date(ds.time[0]) if isinstance(ref_date, str): ref_date = _maybe_unpack_date(_datestr_to_cftime(ref_date, calendar)) # TODO: Check the frequency. Currently the logic only works on monthly intervals if freq != "1MS": raise ValueError("`replace_time` currently only works with monthly data.") # determine the start date # propagate the date back (this assumes stricly monthly data) year = _maybe_unpack_date(ref_date).year - (ref_idx // 12) month = _maybe_unpack_date(ref_date).month - (ref_idx % 12) if month <= 0: # move the year one more back year -= 1 month = 12 + month attrs = ds.time.attrs start = f"{int(year):04d}-{int(month):02d}" ds = ds.assign_coords( time=xr.cftime_range(start, periods=len(ds.time), freq=freq, calendar=calendar) ) ds.time.attrs = attrs return ds def find_date_idx(time, date): """Finds the index of `date` within an array of cftime dates. This strictly requires monthly data. Might result in undesired behavior for other time frequencies. """ # ! seems like I can refactor this with http://xarray.pydata.org/en/stable/generated/xarray.CFTimeIndex.get_loc.html#xarray.CFTimeIndex.get_loc date = _maybe_unpack_date(date) # easier approach: Find the difference in years and months year_diff = date.year - _maybe_unpack_date(time[0]).year month_diff = date.month - _maybe_unpack_date(time[0]).month return (year_diff * 12) + month_diff def unify_time(parent, child, adjust_to="child"): """Uses the CMIP6 specific metadata (augmented by cmip6_preprocessing....time_preprocessing!!!) to adjust parent time encoding to child experiment. Similar to `switch_to_child_time`, but sets the time parameters (e.g. calendar) explicitly to the child conventions """ branch_time_in_parent = child.attrs.get("branch_time_in_parent") parent_time_units = child.attrs.get("parent_time_units") # if branch time is not in attrs do nothing if branch_time_in_parent is None: child_source_id = child.attrs.get("source_id", "not found") parent_source_id = parent.attrs.get("source_id", "not found") msg = ( f"Could not unify time for [child:{child_source_id}|parent:{parent_source_id}]." "`branch_time_in_parent` not found in attributes." ) warnings.warn(msg, UserWarning) return parent, child else: parent_calendar = parent.time.to_index().calendar child_calendar = child.time.to_index().calendar branch_time_parent = _construct_cfdate( child.attrs.get("branch_time_in_parent"), child.attrs.get("parent_time_units"), parent_calendar, ) branch_time_child = _construct_cfdate( child.attrs.get("branch_time_in_child"), child.time.encoding.get("units"), child_calendar, ) if adjust_to == "child": branch_idx_parent = find_date_idx(parent.time, branch_time_parent) return ( replace_time( parent, branch_time_child, ref_idx=branch_idx_parent, calendar=child_calendar, ), child, ) elif adjust_to == "parent": branch_idx_child = find_date_idx(child.time, branch_time_child) return parent, replace_time( child, branch_time_parent, ref_idx=branch_idx_child, calendar=parent_calendar, ) else: raise ValueError( f"Input for `adjust_to` not valid. Got {adjust_to}. Expected either `child` or `parent`." ) def calculate_drift( reference, ds, variable, trend_years=250, compute_short_trends=False ): """Calculate the linear trend at every grid position for the given time (`trend_years`) starting from the date when `ds` was branched of from `ds_parent`. CMIP6 metadata must be present. Parameters ---------- ds_parent : xr.Dataset The dataset from which the drift (trend) is calculated. Usually the preindustrial control run ds : xr.Dataset The dataset for which the drift is matched. This is usually the historical experiment. !For many models, each historical member is branched trend_years : int, optional The duration of the trend to compute in years, by default 250 (This is the lenght of historical+standard scenario, e.g. 1850-2100) """ for attr in [ "parent_variant_label", "parent_source_id", "branch_time_in_parent", "parent_time_units", "source_id", "variant_label", ]: if not attr in ds.attrs: raise ValueError(f"Could not find {attr} in attributes of `ds`.") # Check if the parent member id matches match_attrs = ["source_id", "variant_label"] for ma in match_attrs: if not ds.attrs[f"parent_{ma}"] in reference.attrs[ma]: raise ValueError( f'`ds_parent` {ma} ({reference.attrs[ma]}) not compatible with `ds` parent_{ma} ({ds.attrs[f"parent_{ma}"]})' ) # find the branch date in the control run branch_time_reference = _construct_cfdate( ds.attrs["branch_time_in_parent"], ds.attrs["parent_time_units"], reference.time.to_index().calendar, ) branch_idx_reference = find_date_idx(reference.time, branch_time_reference) # there might be some cases where this is not true. Figure out what to do when it happens. assert branch_idx_reference >= 0 # cut the referenmce to the appropriate time frame reference_cut = reference.isel( time=slice(branch_idx_reference, branch_idx_reference + (12 * trend_years)) ) if len(reference_cut.time) == 0: raise RuntimeError( f"Selecting from `reference` according to the branch time resulted in empty dataset. Check the metadata." ) return None else: if len(reference_cut.time) < trend_years * 12: if compute_short_trends: warnings.warn( f"reference dataset does not have the full {trend_years} years to calculate trend. Using {int(len(reference_cut.time)/12)} years only" ) else: raise RuntimeError( f"Reference dataset does not have the full {trend_years} years to calculate trend. Set `calculate_short_trend=True` to compute from a shorter timeseries" ) time_range = xr.concat( [ reference_cut.time[0].squeeze().drop_vars("time"), reference_cut.time[-1].squeeze().drop_vars("time"), ], dim="bnds", ).reset_coords(drop=True) # there is some problem when encoding very large years. for now ill preserve these only as # strings time_range = time_range.astype(str) # # The polyfit implementation actually respects the units. # # For now my implementation requires the slope to be in units .../month # # I might be able to change this later and accomodate other time frequencies? # get rid of all the additional coords, which resets the time to an integer index reference_cut = reference_cut[variable] # TODO: This has pretty poor performance...need to find out why. # Reset time dimension to integer index. # reference_cut = reference_cut.drop_vars("time") # linear regression slope is all we need here. # reg = reference_cut.polyfit("time", 1).sel(degree=1).polyfit_coefficients reg_raw = linear_trend( reference_cut, "time", ) #! quite possibly the shittiest fix ever. # I changed the API over at xarrayutils and now I have to pay the price over here. # TODO: Might want to eliminate this ones the new xarrayutils version has matured. if xru.__version__ > "v0.1.3": reg = reg_raw.slope else: reg = reg_raw.sel(parameter="slope").drop_vars("parameter").squeeze() # again drop all the coordinates reg = reg.reset_coords(drop=True) reg = reg.to_dataset(name=variable) # add metadata about regression reg = reg.assign_coords(trend_time_range=time_range) reg.coords["trend_time_range"].attrs.update( { "standard_name": "regression_time_bounds", "long_name": "regression_time_in_reference_run", } ) # reg should carry the attributes of `ds` # ? Maybe I should convert to a dataset? reg.attrs.update(ds.attrs) return reg # TODO: I need a more generalized detrending? Based on indicies --> xarrayutils # Then refactor this one here just for cmip6 def detrend_basic(da, da_slope, start_idx=0, dim="time", keep_attrs=True): """Basic detrending just based on time index, not date""" # now create a trend timeseries at each point # and the time indicies by the ref index. This way the trend is correctly calculated from the reference year. ## this adapts the chunk structure from the input if its a dask array attrs = {k: v for k, v in da.attrs.items()} idx_start = -start_idx idx_stop = len(da.time) - start_idx if isinstance(da.data, dsa.Array): ref_time = da.isel({di: 0 for di in da.dims if di != dim}) chunks = ref_time.chunks trend_time_idx_data = dsa.arange( idx_start, idx_stop, chunks=chunks, dtype=da.dtype ) else: trend_time_idx_data =
np.arange(idx_start, idx_stop, dtype=da.dtype)
numpy.arange
''' Tetris Battle originally Ccreated by <NAME>, <NAME> modified by <NAME> this is a similar version to the ever popular tetris battle game with not many changes" ''' #basic modules needed for game to run import os import pygame import random import numpy as np from .settings import * from copy import deepcopy import time as t from collections import Counter def put_block_in_grid(grid, block, px, py): feasibles = block.return_pos_color(px, py) for x, y, c in feasibles: ''' TODO: y boundary ''' if -1 < x < GRID_WIDTH and -1 < y < len(grid[0]): grid[x][y] = c def collide(grid, block, px, py): feasibles = block.get_feasible() # print(px) # print(block) # excess = len(grid[0]) - GRID_DEPTH for pos in feasibles: # print(px + pos[0], py + pos[1]) if px + pos[0] > GRID_WIDTH - 1: # right return True if px + pos[0] < 0: # left return True if py + pos[1] > len(grid[0]) - 1: # down return True if py + pos[1] < 0: # up continue if grid[px + pos[0]][py + pos[1]] > 0: # print(px, py) # print(px + pos[0], py + pos[1]) # print("Touch") return True return False # collidedown function # for i in range 4(y position) # if px+y=20 then collidedown =true # used for move down and rotation collisions def collideDown(grid, block, px, py): return collide(grid, block, px, py + 1) # collideleft function # for i in range 4(x positions) # if blockx +x =0 then collide left = True # used for moving block and rotation collision def collideLeft(grid, block, px, py): return collide(grid, block, px - 1, py) # collideright function # for i in range 4(x positions) # if blockx +x +1>9 then collide left = True # plus 1 is there cuz pxis on left of the piece # used for moving block and rotation collision def collideRight(grid, block, px, py): return collide(grid, block, px + 1, py) # rotatecollision function # when respective rotate buttons are pressed # this function checks if collide(left right or down has occured) # if it hasnt then rotation occurs def rotateCollide(grid, block, px, py): feasibles = block.get_feasible() left_most = 100 right_most = 0 up_most = 100 down_most = 0 for pos in feasibles: right_most = max(right_most, pos[0]) left_most = min(left_most, pos[0]) down_most = max(down_most, pos[1]) up_most = min(up_most, pos[1]) c = Counter() # print(px) # print(block) excess = len(grid[0]) - GRID_DEPTH for pos in feasibles: # print(px + pos[0], py + pos[1]) if px + pos[0] > 9: # right c.update({"right": 1}) if px + pos[0] < 0: # left c.update({"left": 1}) if py + pos[1] > len(grid[0]) - 1: # down c.update({"down": 1}) # if py + pos[1] < excess: # up # c.update({"up": 1}) if 0 <= px + pos[0] <= 9 and excess <= py + pos[1] <= len(grid[0]) - 1: if grid[px + pos[0]][py + pos[1]] > 0: if pos[0] == left_most: c.update({"left": 1}) elif pos[0] == right_most: c.update({"right": 1}) elif pos[1] == down_most: c.update({"down": 1}) # elif pos[1] == up_most: # c.update({"up": 1}) # print(c) if len(c) == 0: return False else: return c.most_common()[0][0] #this function checks if a tspin has occured #checks all possible tspin positions #then spins the t piece into the spot def tspinCheck(grid, block, px, py): if collideDown(grid, block, px, py) == True: if block.block_type() == 'T': if px + 2 < GRID_WIDTH and py + 3 < len(grid[0]): if grid[px][py + 1] > 0 and grid[px][py + 3] > 0 and grid[px + 2][py + 3] > 0: return True elif grid[px][py + 3] > 0 and grid[px + 2][py + 3] > 0 and grid[px + 2][py + 1] > 0: return True return False # this function rotates the piece # when rotation button is hit the next grid in the piece list becomes the piece def rotate(grid, block, px, py, _dir=1): # print(grid) block.rotate(_dir) # b = block.now_block() collision = rotateCollide(grid, block, px, py) # checks for collisions # print(collision) find = 0 if collision == "left": y_list = [0, 1, -1] for s_x in range(0, 3): for s_y in y_list: if not find and not collide(grid, block, px + s_x, py + s_y): px += s_x py += s_y find = 1 elif collision == "right": y_list = [0, 1, -1] for s_x in reversed(range(-2, 0)): for s_y in y_list: if not find and not collide(grid, block, px + s_x, py + s_y): px += s_x py += s_y find = 1 elif collision == "down": # y_list = [-1, -2] x_list = [0, -1, 1, -2, 2] for s_y in reversed(range(-1, 0)): for s_x in x_list: if not find and not collide(grid, block, px + s_x, py + s_y): px += s_x py += s_y find = 1 elif collision == "up": x_list = [0, -1, 1, -2, 2] for s_y in range(1, 2): for s_x in x_list: if not find and not collide(grid, block, px + s_x, py + s_y): px += s_x py += s_y find = 1 if collision != False and not find: block.rotate(- _dir) # print(collision) tspin = 0 if tspinCheck(grid, block, px, py) == True: tspin = 1 print("Tspin rotate") # return [block, px, py, tspin] return block, px, py, tspin # this function drops the piece as far as it can go until # it collides with a piece below it def hardDrop(grid, block, px, py): y = 0 x = 0 if collideDown(grid, block, px, py) == False: x = 1 if x == 1: while True: py += 1 y += 1 if collideDown(grid, block, px, py) == True: break return y # this function enables you to hold a piece def hold(block, held, _buffer): # when piece is held the block at pos[0] # in the nextlist becomes the newpiece if held == None: held = block block = _buffer.new_block() # the piece switches with the held piece else: block, held = held, block return [block, held] def freeze(last_time): start = t.time() while t.time() - start < last_time: pass def get_infos(board): # board is equal to grid # borrow from https://github.com/scuriosity/machine-learning-tetris/blob/master/tetris.py # This function will calculate different parameters of the current board # Initialize some stuff heights = [0] * len(board) diffs = [0] * (len(board) - 1) holes = 0 diff_sum = 0 # Calculate the maximum height of each column for i in range(0, len(board)): # Select a column for j in range(0, len(board[0])): # Search down starting from the top of the board if int(board[i][j]) > 0: # Is the cell occupied? heights[i] = len(board[0]) - j # Store the height value break # Calculate the difference in heights for i in range(0, len(diffs)): diffs[i] = heights[i + 1] - heights[i] # Calculate the maximum height max_height = max(heights) # Count the number of holes for i in range(0, len(board)): occupied = 0 # Set the 'Occupied' flag to 0 for each new column for j in range(0, len(board[0])): # Scan from top to bottom if int(board[i][j]) > 0: occupied = 1 # If a block is found, set the 'Occupied' flag to 1 if int(board[i][j]) == 0 and occupied == 1: holes += 1 # If a hole is found, add one to the count height_sum = sum(heights) for i in diffs: diff_sum += abs(i) return height_sum, diff_sum, max_height, holes class Piece(object): def __init__(self, _type, possible_shapes): self._type = _type self.possible_shapes = possible_shapes self.current_shape_id = 0 def block_type(self): return self._type def reset(self): self.current_shape_id = 0 def return_pos_color(self, px, py): feasibles = [] block = self.now_block() for x in range(BLOCK_WIDTH): for y in range(BLOCK_LENGTH): if block[x][y] > 0: feasibles.append([px + x, py + y, block[x][y]]) return feasibles def return_pos(self, px, py): feasibles = [] block = self.now_block() for x in range(BLOCK_WIDTH): for y in range(BLOCK_LENGTH): if block[x][y] > 0: feasibles.append([px + x, py + y]) return feasibles def get_feasible(self): feasibles = [] b = self.now_block() for x in range(BLOCK_WIDTH): for y in range(BLOCK_LENGTH): if b[x][y] > 0: feasibles.append([x, y]) return feasibles def now_block(self): return self.possible_shapes[self.current_shape_id] # def move_right(self, unit=1): # self.px += unit # def move_left(self, unit=1): # self.px -= unit # def move_up(self, unit=1): # self.py -= unit # def move_down(self, unit=1): # self.py += unit def rotate(self, _dir=1): self.current_shape_id += _dir self.current_shape_id %= len(self.possible_shapes) class Buffer(object): ''' Stores the coming pieces, every 7 pieces in a group. ''' def __init__(self): self.now_list = [] self.next_list = [] self.fill(self.now_list) self.fill(self.next_list) ''' make sure "now list" are filled now list next list next piece <- [ ] <- [ ] ''' def new_block(self): out = self.now_list.pop(0) self.now_list.append(self.next_list.pop(0)) if len(self.next_list) == 0: self.fill(self.next_list) return out def fill(self, _list): pieces_keys = deepcopy(POSSIBLE_KEYS) random.shuffle(pieces_keys) for key in pieces_keys: _list.append(Piece(key, PIECES_DICT[key])) ''' class for player ''' class Player(object): def __init__(self, info_dict): self._id = info_dict.get("id") self._drop = info_dict.get("drop") self._hold = info_dict.get("hold") self._rotate_right = info_dict.get("rotate_right") self._rotate_left = info_dict.get("rotate_left") self._down = info_dict.get("down") self._left = info_dict.get("left") self._right = info_dict.get("right") @property def id(self): return self._id @property def drop(self): return self._drop @property def hold(self): return self._hold @property def rotate_right(self): return self._rotate_right @property def rotate_left(self): return self._rotate_left @property def down(self): return self._down @property def left(self): return self._left @property def right(self): return self._right ''' class Judge ''' class Judge(object): @staticmethod def check_ko_win(tetris, max_ko): if tetris.KO >= max_ko: return 1 return 0 @staticmethod def who_win(tetris_1, tetris_2): if tetris_2.KO > tetris_1.KO: # Checks who is the winner of the game return tetris_2.get_id() # a is screebn.copy,endgame ends the game,2 is player 2 wins if tetris_1.KO > tetris_2.KO: return tetris_1.get_id() # a is screebn.copy,endgame ends the game,1 is player 1 wins if tetris_1.KO == tetris_2.KO: if tetris_2.sent > tetris_1.sent: return tetris_2.get_id() # a is screebn.copy,endgame ends the game,2 is player 2 wins elif tetris_1.sent > tetris_2.sent: return tetris_1.get_id() # a is screebn.copy,endgame ends the game,1 is player 1 wins elif tetris_1.get_maximum_height() > tetris_2.get_maximum_height(): return tetris_2.get_id() elif tetris_2.get_maximum_height() > tetris_1.get_maximum_height(): return tetris_1.get_id() else: return tetris_1.get_id() # no UI of draw class Tetris(object): def __init__(self, player, gridchoice): if gridchoice == "none": self.o_grid = [[0] * GRID_DEPTH for i in range(GRID_WIDTH)] if gridchoice == "classic": self.o_grid = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] if gridchoice == "comboking": self.o_grid = [[0, 0, 0, 0, 0, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 0, 0, 0, 0, 6, 6, 6, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5], [0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5], [0, 0, 0, 0, 0, 6, 6, 6, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5], [0, 0, 0, 0, 0, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]] if gridchoice == "lunchbox": self.o_grid = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5, 5, 5, 5, 5, 5, 5, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 2, 2, 2, 2, 2, 2, 5, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 2, 4, 4, 4, 4, 2, 5, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 2, 4, 4, 4, 4, 2, 5, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 2, 2, 2, 2, 2, 2, 5, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]] self.player = player self.reset() def reset(self): self.grid = deepcopy(self.o_grid) self.oldko = 0 # these two used to keep track of ko's self._n_used_block = 1 self.buffer = Buffer() # list of the held piece self.held = None self.block = self.buffer.new_block() # amount of lines sent for p1 and p2 self.sent = 0 self.tempsend = 0 # tempsending for p1 and p2 self.oldcombo = self.combo = -1 # used for checking comboas self.tspin = 0 # for t spin self.now_back2back = 0 self.pre_back2back = 0 self.tetris = 0 #for "KO" self._KO = 0 self._attacked = 0 self._is_fallen = 0 self.px = 4 self.py = -2 # DEFINING VARIABLES self.cleared = 0 self.kocounter = 0 self.stopcounter = 0 self.isholded = 0 self.pressedRight = False self.pressedLeft = False self.pressedDown = False self.LAST_ROTATE_TIME = 0 self.LAST_MOVE_SHIFT_TIME = 0 self.LAST_MOVE_DOWN_TIME = 0 self.LAST_COMBO_DRAW_TIME = 0 self.LAST_TETRIS_DRAW_TIME = 0 self.LAST_TSPIN_DRAW_TIME = 0 self.LAST_BACK2BACK_DRAW_TIME = 0 self.LAST_NATRUAL_FALL_TIME = 0 self.LAST_FALL_DOWN_TIME = 0 self.tetris_drawing = 0 self.tspin_drawing = 0 self.back2back_drawing = 0 self.combo_counter = 0 self.natural_down_counter = 0 def increment_timer(self): self.LAST_ROTATE_TIME += 1 self.LAST_MOVE_SHIFT_TIME += 1 self.LAST_MOVE_DOWN_TIME += 1 self.LAST_COMBO_DRAW_TIME += 1 self.LAST_TETRIS_DRAW_TIME += 1 self.LAST_TSPIN_DRAW_TIME += 1 self.LAST_BACK2BACK_DRAW_TIME += 1 self.LAST_NATRUAL_FALL_TIME += 1 self.LAST_FALL_DOWN_TIME += 1 @property def is_fallen(self): return self._is_fallen @property def n_used_block(self): return self._n_used_block @property def KO(self): return self._KO @property def attacked(self): return self._attacked def get_grid(self): excess = len(self.grid[0]) - GRID_DEPTH return_grids = np.zeros(shape=(GRID_WIDTH, GRID_DEPTH), dtype=np.float32) block, px, py = self.block, self.px, self.py excess = len(self.grid[0]) - GRID_DEPTH b = block.now_block() for i in range(len(self.grid)): return_grids[i] =
np.array(self.grid[i][excess:GRID_DEPTH], dtype=np.float32)
numpy.array
from __future__ import print_function # Import smorgasbord import sys import os import pdb current_module = sys.modules[__name__] import numpy as np import scipy.stats import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import astropy.io.fits import astropy.wcs import astropy.convolution import ChrisFuncs # Function to sum all elements in an ellipse centred on the middle of a given array # Args: Array, semi-major axis (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse # Returns: Numpy array containing the sum of the pixel values in the ellipse, total number of pixels counted, and an array containing the pixel values def EllipseSum(array, rad, axial_ratio, angle, i_centre, j_centre): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-rad]))) i_cutout_max = int(np.ceil(min([(array.shape)[0], i_centre+rad]))) j_cutout_min = int(np.floor(max([0, j_centre-rad]))) j_cutout_max = int(np.ceil(min([(array.shape)[1], j_centre+rad]))) array_slice = array[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min if array[int(i_centre),int(j_centre)]!=array_slice[int(i_centre_slice),int(j_centre_slice)]: if np.isnan(array[int(i_centre),int(j_centre)]==False) and np.isnan(array_slice[int(i_centre_slice),int(j_centre_slice)]==False): print('SEVERE ERROR: EllipseSum check failed.') pdb.set_trace() else: array = array_slice i_centre = i_centre_slice j_centre = j_centre_slice # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj = float(rad) semi_min = float(rad) / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, array.shape[0]-1, array.shape[0]) j_linespace = np.linspace(0, array.shape[1]-1, array.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check = (j_trans**2 / semi_maj**2) + (i_trans**2 / semi_min**2 ) # Calculate flux & pixels in aperture, and store pixel values ellipse_where = np.where( (ellipse_check<=1) & (
np.isnan(array)
numpy.isnan
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test numpy functions and ufuncs on Masked arrays and quantities. The tests here are fairly detailed but do not aim for complete coverage. Complete coverage of all numpy functions is done with less detailed tests in test_function_helpers. """ import pytest import numpy as np from numpy.testing import assert_array_equal from astropy import units as u from astropy.units import Quantity from astropy.utils.masked.core import Masked from .test_masked import (MaskedArraySetup, QuantitySetup, LongitudeSetup, assert_masked_equal) class MaskedUfuncTests(MaskedArraySetup): @pytest.mark.parametrize('ufunc', (np.add, np.subtract, np.divide, np.arctan2, np.minimum)) def test_2op_ufunc(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = (self.ma.mask | self.mb.mask) # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize('ufunc', (np.add, np.subtract, np.divide, np.arctan2, np.minimum)) def test_ufunc_inplace(self, ufunc): ma_mb = ufunc(self.ma, self.mb) out = Masked(np.zeros_like(ma_mb.unmasked)) result = ufunc(self.ma, self.mb, out=out) assert result is out assert_masked_equal(result, ma_mb) def test_ufunc_inplace_no_masked_input(self): a_b = np.add(self.a, self.b) out = Masked(np.zeros_like(a_b)) result = np.add(self.a, self.b, out=out) assert result is out assert_array_equal(result.unmasked, a_b) assert_array_equal(result.mask, np.zeros(a_b.shape, bool)) def test_ufunc_inplace_error(self): out = np.zeros(self.ma.shape) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) @pytest.mark.parametrize('ufunc', (np.add.outer, np.minimum.outer)) def test_2op_ufunc_outer(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = np.logical_or.outer(self.mask_a, self.mask_b) # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) def test_3op_ufunc(self): ma_mb = np.clip(self.ma, self.b, self.c) expected_data = np.clip(self.a, self.b, self.c) expected_mask = self.mask_a assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize('axis', (0, 1, None)) def test_add_reduce(self, axis): ma_reduce = np.add.reduce(self.ma, axis=axis) expected_data = np.add.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) out = Masked(np.zeros_like(ma_reduce.unmasked), np.ones_like(ma_reduce.mask)) ma_reduce2 = np.add.reduce(self.ma, axis=axis, out=out) assert ma_reduce2 is out assert_masked_equal(ma_reduce2, ma_reduce) def test_add_reduce_no_masked_input(self): a_reduce = np.add.reduce(self.a, axis=0) out = Masked(np.zeros_like(a_reduce), np.ones(a_reduce.shape, bool)) result = np.add.reduce(self.a, axis=0, out=out) assert result is out assert_array_equal(out.unmasked, a_reduce) assert_array_equal(out.mask, np.zeros(a_reduce.shape, bool)) @pytest.mark.parametrize('axis', (0, 1, None)) def test_minimum_reduce(self, axis): ma_reduce = np.minimum.reduce(self.ma, axis=axis) expected_data = np.minimum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) @pytest.mark.parametrize('axis', (0, 1, None)) def test_maximum_reduce(self, axis): ma_reduce = np.maximum.reduce(self.ma, axis=axis) expected_data = np.maximum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) class TestMaskedArrayUfuncs(MaskedUfuncTests): # multiply.reduce does not work with units, so test only for plain array. @pytest.mark.parametrize('axis', (0, 1, None)) def test_multiply_reduce(self, axis): ma_reduce = np.multiply.reduce(self.ma, axis=axis) expected_data = np.multiply.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) def test_ufunc_not_implemented_for_other(self): """ If the unmasked operation returns NotImplemented, this should lead to a TypeError also for the masked version. """ a = np.array([1, 2]) b = 3 * u.m with pytest.raises(TypeError): a & b ma = Masked(a) with pytest.raises(TypeError): ma & b class TestMaskedQuantityUfuncs(MaskedUfuncTests, QuantitySetup): def test_ufunc_inplace_error2(self): out = Masked(np.zeros(self.ma.shape)) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) class TestMaskedLongitudeUfuncs(MaskedUfuncTests, LongitudeSetup): def test_ufunc_inplace_quantity_initial(self): out = Masked(np.zeros(self.ma.shape) << u.m) result = np.add(self.ma, self.mb, out=out) assert result is out expected = np.add(self.ma, self.mb).view(Quantity) assert_masked_equal(result, expected) class TestMaskedArrayConcatenation(MaskedArraySetup): def test_concatenate(self): mb = self.mb[np.newaxis] concat_a_b = np.concatenate((self.ma, mb), axis=0) expected_data = np.concatenate((self.a, self.b[np.newaxis]), axis=0) expected_mask = np.concatenate((self.mask_a, self.mask_b[np.newaxis]), axis=0) assert_array_equal(concat_a_b.unmasked, expected_data) assert_array_equal(concat_a_b.mask, expected_mask) def test_concatenate_not_all_masked(self): mb = self.mb[np.newaxis] concat_a_b = np.concatenate((self.a, mb), axis=0) expected_data = np.concatenate((self.a, self.b[np.newaxis]), axis=0) expected_mask = np.concatenate((np.zeros(self.a.shape, bool), self.mask_b[np.newaxis]), axis=0) assert_array_equal(concat_a_b.unmasked, expected_data) assert_array_equal(concat_a_b.mask, expected_mask) @pytest.mark.parametrize('obj', (1, slice(2, 3))) def test_insert(self, obj): mc_in_a = np.insert(self.ma, obj, self.mc, axis=-1) expected = Masked(np.insert(self.a, obj, self.c, axis=-1), np.insert(self.mask_a, obj, self.mask_c, axis=-1)) assert_masked_equal(mc_in_a, expected) def test_insert_masked_obj(self): with pytest.raises(TypeError): np.insert(self.ma, Masked(1, mask=False), self.mc, axis=-1) def test_append(self): mc_to_a = np.append(self.ma, self.mc, axis=-1) expected = Masked(np.append(self.a, self.c, axis=-1), np.append(self.mask_a, self.mask_c, axis=-1)) assert_masked_equal(mc_to_a, expected) class TestMaskedQuantityConcatenation(TestMaskedArrayConcatenation, QuantitySetup): pass class TestMaskedLongitudeConcatenation(TestMaskedArrayConcatenation, LongitudeSetup): pass class TestMaskedArrayBroadcast(MaskedArraySetup): def test_broadcast_to(self): shape = self.ma.shape ba = np.broadcast_to(self.mb, shape, subok=True) assert ba.shape == shape assert ba.mask.shape == shape expected = Masked(np.broadcast_to(self.mb.unmasked, shape, subok=True), np.broadcast_to(self.mb.mask, shape, subok=True)) assert_masked_equal(ba, expected) def test_broadcast_to_using_apply(self): # Partially just to ensure we cover the relevant part of _apply. shape = self.ma.shape ba = self.mb._apply(np.broadcast_to, shape=shape, subok=True) assert ba.shape == shape assert ba.mask.shape == shape expected = Masked(np.broadcast_to(self.mb.unmasked, shape, subok=True), np.broadcast_to(self.mb.mask, shape, subok=True)) assert_masked_equal(ba, expected) def test_broadcast_arrays(self): mb = np.broadcast_arrays(self.ma, self.mb, self.mc, subok=True) b = np.broadcast_arrays(self.a, self.b, self.c, subok=True) bm = np.broadcast_arrays(self.mask_a, self.mask_b, self.mask_c) for mb_, b_, bm_ in zip(mb, b, bm): assert_array_equal(mb_.unmasked, b_) assert_array_equal(mb_.mask, bm_) def test_broadcast_arrays_not_all_masked(self): mb = np.broadcast_arrays(self.a, self.mb, self.c, subok=True) assert_array_equal(mb[0], self.a) expected1 = np.broadcast_to(self.mb, self.a.shape, subok=True) assert_masked_equal(mb[1], expected1) expected2 = np.broadcast_to(self.c, self.a.shape, subok=True) assert_array_equal(mb[2], expected2) def test_broadcast_arrays_subok_false(self): # subok affects ndarray subclasses but not masking itself. mb = np.broadcast_arrays(self.ma, self.mb, self.mc, subok=False) assert all(type(mb_.unmasked) is np.ndarray for mb_ in mb) b = np.broadcast_arrays(self.a, self.b, self.c, subok=False) mask_b = np.broadcast_arrays(self.mask_a, self.mask_b, self.mask_c, subok=False) for mb_, b_, mask_ in zip(mb, b, mask_b): assert_array_equal(mb_.unmasked, b_) assert_array_equal(mb_.mask, mask_) class TestMaskedQuantityBroadcast(TestMaskedArrayBroadcast, QuantitySetup): pass class TestMaskedLongitudeBroadcast(TestMaskedArrayBroadcast, LongitudeSetup): pass class TestMaskedArrayCalculation(MaskedArraySetup): @pytest.mark.parametrize('n,axis', [(1, -1), (2, -1), (1, 0)]) def test_diff(self, n, axis): mda = np.diff(self.ma, n=n, axis=axis) expected_data = np.diff(self.a, n, axis) nan_mask = np.zeros_like(self.a) nan_mask[self.ma.mask] = np.nan expected_mask = np.isnan(np.diff(nan_mask, n=n, axis=axis)) assert_array_equal(mda.unmasked, expected_data) assert_array_equal(mda.mask, expected_mask) def test_diff_explicit(self): ma = Masked(np.arange(8.), [True, False, False, False, False, True, False, False]) mda = np.diff(ma) assert np.all(mda.unmasked == 1.) assert np.all(mda.mask == [True, False, False, False, True, True, False]) mda = np.diff(ma, n=2) assert np.all(mda.unmasked == 0.) assert np.all(mda.mask == [True, False, False, True, True, True]) class TestMaskedQuantityCalculation(TestMaskedArrayCalculation, QuantitySetup): pass class TestMaskedLongitudeCalculation(TestMaskedArrayCalculation, LongitudeSetup): pass class TestMaskedArraySorting(MaskedArraySetup): @pytest.mark.parametrize('axis', [-1, 0]) def test_lexsort1(self, axis): ma_lexsort =
np.lexsort((self.ma,), axis=axis)
numpy.lexsort
# import numpy as np import matplotlib.pyplot as plt class Chp003C002(object): def __init__(self): self.name = '' def run(self): plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.title('牛顿法求解示意') self.draw_curve() self.draw_x0() self.draw_x1() plt.show() def draw_curve(self): # 绘制x轴 xx = np.array([0.0, 5.0]) xy = np.array([0.0, 0.0]) plt.plot(xx, xy, '-g') # 绘制曲线 x = np.linspace(0, 5, 100) y = x*x - 2.25 plt.plot(x, y, '-b') plt.annotate(s=r'目标(1.5)',xy=(1.5, 0.0),\ xytext=(1.0,2.0),weight='bold',color='black',\ arrowprops=dict(arrowstyle='-|>',\ connectionstyle='arc3',color='blue'),\ bbox=dict(boxstyle='round,pad=0.5', fc='white', \ ec='k',lw=1 ,alpha=0.4)) def draw_x0(self): # x0点垂线 x00x = np.array([4.5, 4.5]) x00y =
np.array([0.0, 4.5*4.5-2.25])
numpy.array
import unittest import tensorflow as tf import numpy as np from .segment import segment_topk class TestSegmentTopK(unittest.TestCase): def test_top1(self): sess = tf.InteractiveSession() try: preds = tf.constant(np.array([ .3, .7, .33, .33, .66, 1., ])) sample_ids = tf.constant(np.array([ 0, 0, 1, 1, 1, 2, ])) new_preds, idxs, new_ids = segment_topk(preds, sample_ids, 1, 'top1') fetches = [new_preds, idxs, new_ids] fetches = sess.run(fetches=fetches) actual_preds = fetches[0] actual_idxs = fetches[1] actual_new_ids = fetches[2] expected_preds = np.array([.7, .66, 1.]) self.assertTrue(np.allclose(actual_preds, expected_preds), 'expected {} got {}'.format(expected_preds, actual_preds)) expected_idxs = np.array([1, 4, 5]) self.assertTrue(np.all(actual_idxs == expected_idxs), 'expected {} got {}'.format(expected_idxs, actual_idxs)) expected_ids = np.array([0, 1, 2]) self.assertTrue(np.all(expected_ids == actual_new_ids), 'expected {} got {}'.format(expected_ids, actual_new_ids)) finally: sess.close() def test_top2(self): sess = tf.InteractiveSession() try: preds = tf.constant(np.array([ .3, .7, .33, .33, .66, 1., ])) sample_ids = tf.constant(np.array([ 0, 0, 1, 1, 1, 2, ])) new_preds, idxs, new_ids = segment_topk(preds, sample_ids, 2, 'top2') fetches = [new_preds, idxs, new_ids] fetches = sess.run(fetches=fetches) actual_preds = fetches[0] actual_idxs = fetches[1] actual_new_ids = fetches[2] expected_preds = np.array([.7, .3, .66, .33, 1.]) self.assertTrue(np.allclose(actual_preds, expected_preds), 'expected {} got {}'.format(expected_preds, actual_preds)) expected_idxs = np.array([1, 0, 4, 2, 5]) self.assertTrue(np.all(actual_idxs == expected_idxs), 'expected {} got {}'.format(expected_idxs, actual_idxs)) expected_ids = np.array([0, 0, 1, 1, 2]) self.assertTrue(np.all(expected_ids == actual_new_ids), 'expected {} got {}'.format(expected_ids, actual_new_ids)) finally: sess.close() def test_topEmpty(self): sess = tf.InteractiveSession() try: preds = tf.placeholder_with_default( np.empty((0,), dtype=np.float64), shape=[None], ) sample_ids = tf.placeholder_with_default(
np.empty((0,), dtype=np.int64)
numpy.empty
import numpy as np import util from linear_model import LinearModel def main(train_path, eval_path, pred_path): """Problem 1(e): Gaussian discriminant analysis (GDA) Args: train_path: Path to CSV file containing dataset for training. eval_path: Path to CSV file containing dataset for evaluation. pred_path: Path to save predictions. """ # Load dataset x_train, y_train = util.load_dataset(train_path, add_intercept=False) # *** START CODE HERE *** # Train GDA model = GDA() model.fit(x_train, y_train) # Plot data and decision boundary util.plot(x_train, y_train, model.theta, 'output/p01e_{}.png'.format(pred_path[-5])) # Save predictions x_eval, y_eval = util.load_dataset(eval_path, add_intercept=True) y_pred = model.predict(x_eval)
np.savetxt(pred_path, y_pred > 0.5, fmt='%d')
numpy.savetxt
import imutils import numpy as np import cv2 lower =
np.array([0,20,30], dtype="uint8")
numpy.array
import sys import datetime as dt import pytest import numpy as np # Construction class D: def __index__(self) -> int: return 0 class C: def __complex__(self) -> complex: return 3j class B: def __int__(self) -> int: return 4 class A: def __float__(self) -> float: return 4.0 np.complex64(3j) np.complex64(A()) np.complex64(C()) np.complex128(3j) np.complex128(C()) np.complex128(None) np.complex64("1.2") np.complex128(b"2j") np.int8(4) np.int16(3.4) np.int32(4) np.int64(-1) np.uint8(B()) np.uint32() np.int32("1") np.int64(b"2") np.float16(A()) np.float32(16) np.float64(3.0) np.float64(None) np.float32("1") np.float16(b"2.5") if sys.version_info >= (3, 8): np.uint64(D()) np.float32(D()) np.complex64(D()) np.bytes_(b"hello") np.bytes_("hello", 'utf-8') np.bytes_("hello", encoding='utf-8') np.str_("hello") np.str_(b"hello", 'utf-8') np.str_(b"hello", encoding='utf-8') # Array-ish semantics np.int8().real np.int16().imag np.int32().data np.int64().flags np.uint8().itemsize * 2 np.uint16().ndim + 1 np.uint32().strides np.uint64().shape # Time structures np.datetime64() np.datetime64(0, "D") np.datetime64(0, b"D") np.datetime64(0, ('ms', 3)) np.datetime64("2019") np.datetime64(b"2019") np.datetime64("2019", "D") np.datetime64(np.datetime64()) np.datetime64(dt.datetime(2000, 5, 3)) np.datetime64(dt.date(2000, 5, 3)) np.datetime64(None) np.datetime64(None, "D") np.timedelta64() np.timedelta64(0) np.timedelta64(0, "D") np.timedelta64(0, ('ms', 3)) np.timedelta64(0, b"D") np.timedelta64("3") np.timedelta64(b"5") np.timedelta64(np.timedelta64(2)) np.timedelta64(dt.timedelta(2)) np.timedelta64(None) np.timedelta64(None, "D") np.void(1) np.void(np.int64(1)) np.void(True) np.void(np.bool_(True)) np.void(b"test") np.void(np.bytes_("test")) # Protocols i8 = np.int64() u8 = np.uint64() f8 = np.float64() c16 = np.complex128() b_ = np.bool_() td = np.timedelta64() U = np.str_("1") S = np.bytes_("1") AR = np.array(1, dtype=np.float64) int(i8) int(u8) int(f8) int(b_) int(td) int(U) int(S) int(AR) with pytest.warns(np.ComplexWarning): int(c16) float(i8) float(u8) float(f8) float(b_) float(td) float(U) float(S) float(AR) with pytest.warns(np.ComplexWarning): float(c16) complex(i8) complex(u8) complex(f8) complex(c16) complex(b_) complex(td) complex(U) complex(AR) # Misc c16.dtype c16.real c16.imag c16.real.real c16.real.imag c16.ndim c16.size c16.itemsize c16.shape c16.strides c16.squeeze() c16.byteswap() c16.transpose() # Aliases np.str0() np.bool8() np.bytes0() np.string_() np.object0() np.void0(0) np.byte() np.short()
np.intc()
numpy.intc
# tools for calculating/comparing the area under the receiver operator characteristic curve import numpy as np from scipy.stats import norm import scipy as sp # used to calculate exact AUROC (factoring in ties) from sklearn import metrics def calc_auc(pred, target, with_ci=False, alpha=0.05): # calculate the AUROC given one prediction or a set of predictions # returns a float if only one set of predictions given # returns a tuple if multiple predictions are given if type(pred) == 'list': pred = np.asarray(pred,dtype=float) if type(target) == 'list': target = np.asarray(target,dtype=float) if len(pred) == len(target): # we are calculating AUROC for a single prediction # encase it in a tuple for compatibility .. unwrap it later ! pred = [pred] onePred = True else: if 'array' not in (pred[0]): print('Input sizes may not match!') if len(pred[0]) != len(target): print('Input sizes may not match!') onePred = False P = len(pred) N = len(target) W = list() for p in range(P): W.append(metrics.roc_auc_score(target, pred[p])) W = np.asarray(W,dtype=float) # collapse W down from array if only one prediction given if onePred == True: W = W[0] if with_ci == False: return W # calculate confidence interval and also return that S = calc_auc_cov(pred, target) if onePred == True: # collapse S into a single value # this allows auc_ci to be a (2,) sized array, rather than (1,2) S = S[0,0] auc_ci = norm.ppf([alpha/2.0, 1-(alpha/2.0)], loc=W, scale=np.sqrt(S)) return W, auc_ci def calc_auc_no_ties(pred, target): # calculate the AUROC given one prediction or a set of predictions # returns a float if only one set of predictions given # returns a tuple if multiple predictions are given if len(pred) == len(target): # we are calculating AUROC for a single prediction # encase it in a tuple for compatibility .. unwrap it later ! pred = [pred] P = len(pred) N = len(target) W = list() for p in range(P): idx = np.argsort(pred[p]) tar = target[idx]==0 # calculate the number of negative cases below the current case pos = np.cumsum(tar) # index to only positive cases - i.e. number of negative cases below each positive case pos = pos[~tar] # sum the number of negative cases below each positive case W.append(np.sum(pos)) W = np.asarray(W,dtype=float) N0 = np.sum(target==0) N1 = N-N0 W = W / (N0*N1) if len(W)==1: W = W[0] return W def calc_auc_cov(pred, target): P = len(pred) # number of predictors N = len(target) # number of observations # convert from tuple of predictions to matrix of X/Y idx = target==1 # DeLong and DeLong define X as the group with *positive* target # Y as the group with *negative* target N_X = sum( idx) # number of positive cases N_Y = sum(~idx) # number of negative cases X = np.zeros([N_X, P]) Y = np.zeros([N_Y, P]) for p in range(P): X[:,p] = pred[p][ idx] Y[:,p] = pred[p][~idx] theta=np.zeros([P,1],dtype=float); V10=np.zeros([N_X,P],dtype=float); V01=np.zeros([N_Y,P],dtype=float); for p in range(P): # For each X/Y column pair # compare 0s to 1s for i in range(N_X): phi1=np.sum( X[i,p] > Y[:,p] ); # Xi>Y phi2=np.sum( X[i,p] == Y[:,p] ); # Xi=Y V10[i,p]=(phi1+phi2*0.5); theta[p]=theta[p]+phi1+phi2*0.5; theta[p] = theta[p]/(N_X*N_Y); for j in range(N_Y): phi1=np.sum( X[:,p] > Y[j,p] ); # X>Yj phi2=np.sum( X[:,p] == Y[j,p] ); # X=Yj V01[j,p] = (phi1+phi2*0.5); V10 = V10/N_Y V01 = V01/N_X # Calculate S01 and S10, covariance matrices of V01 and V10 theta_svd = np.dot(theta,np.transpose(theta)) S01 = (1.0/(N_Y-1))*(np.dot(np.transpose(V01),V01) - N_Y*theta_svd); S10 = (1.0/(N_X-1))*(np.dot(np.transpose(V10),V10) - N_X*theta_svd); # Combine for S, covariance matrix of theta S = (1.0/N_Y)*S01 + (1.0/N_X)*S10; return S def test_auroc(pred1, pred2, target, alpha=0.95): # compare if two predictions have AUROCs which are statistically significantly different S = calc_auc_cov(pred=(pred1, pred2), target=target); theta = calc_auc(pred=(pred1, pred2), target=target) S_sz = S.shape; theta_sz = theta.shape; L = np.reshape(np.asarray([1, -1]),[1,2]) # the default contrast - compare pred1 to pred2 LSL = np.dot(np.dot(L, S), np.transpose(L)) # Compute p-value using normal distribution mu=np.dot(L,theta); sigma=np.sqrt(LSL); pval = sp.stats.distributions.norm.cdf(0,loc=mu,scale=sigma); pval = pval[0][0] # 2-sided test, double the tails -> double the p-value if mu<0: pval=2*(1-pval); else: pval=2*pval; # also output 95% confidence interval ci = sp.stats.distributions.norm.ppf([alpha/2,1-alpha/2],loc=theta[0],scale=sigma); return pval, ci #TODO: also allow for comparing using contrast matrix / chi2 test # bootstrap AUROC def bootstrap_auc(pred, target, B=100): auc = np.zeros(B,dtype=float) N = len(target) for b in range(B): idx = np.random.randint(0, high=N, size=N) auc[b] = calc_auc(pred[idx], target[idx]) # get confidence intervals using percentiles of AUC ci = np.percentile(auc, [5,95]) auc = calc_auc(pred, target) return auc, ci # === binormal AUROC is a parametric estimate of the ROC curve # can be useful if you have low sample sizes # assumes that the predictor is normally distributed, so sometimes it helps to # transform the predictor to be more normally distributed, e.g. apply log, etc. def binormal_auroc(X, Y): # calculates the AUROC assuming X and Y are normally distributed # this is frequently called the "Binormal AUROC" # X should contain predictions for observations with an outcome of 1 # Y should contain predictions for observations with an outcome of 0 x_mu = np.mean(X) x_s = np.std(X) y_mu = np.mean(Y) y_s = np.std(Y) a = (x_mu - y_mu) / x_s b = y_s / x_s return norm.cdf( a / (np.sqrt(1+(b**2))) ) def binormal_roc(X, Y, thr=None): # calculates the ROC curve assuming X and Y are normally distributed # uses evenly spaced points specified by thr # this is frequently called the "Binormal AUROC" # X should contain predictions for observations with an outcome of 1 # Y should contain predictions for observations with an outcome of 0 if thr is None: # get all possible criterion values c_vec = np.unique(np.concatenate([X, Y])) # create a vector of thresholds c_vec = np.linspace(np.min(c_vec), np.max(c_vec), 101) x_mu = np.mean(X) x_s =
np.std(X)
numpy.std
import operator import numpy as np import pandas as pd import pytest import xarray as xr from xarray.core import formatting from xarray.core.npcompat import IS_NEP18_ACTIVE pint = pytest.importorskip("pint") DimensionalityError = pint.errors.DimensionalityError unit_registry = pint.UnitRegistry() Quantity = unit_registry.Quantity pytestmark = [ pytest.mark.skipif( not IS_NEP18_ACTIVE, reason="NUMPY_EXPERIMENTAL_ARRAY_FUNCTION is not enabled" ), # TODO: remove this once pint has a released version with __array_function__ pytest.mark.skipif( not hasattr(unit_registry.Quantity, "__array_function__"), reason="pint does not implement __array_function__ yet", ), # pytest.mark.filterwarnings("ignore:::pint[.*]"), ] def array_extract_units(obj): raw = obj.data if hasattr(obj, "data") else obj try: return raw.units except AttributeError: return None def array_strip_units(array): try: return array.magnitude except AttributeError: return array def array_attach_units(data, unit, convert_from=None): try: unit, convert_from = unit except TypeError: pass if isinstance(data, Quantity): if not convert_from: raise ValueError( "cannot attach unit {unit} to quantity ({data.units})".format( unit=unit, data=data ) ) elif isinstance(convert_from, unit_registry.Unit): data = data.magnitude elif convert_from is True: # intentionally accept exactly true if data.check(unit): convert_from = data.units data = data.magnitude else: raise ValueError( "cannot convert quantity ({data.units}) to {unit}".format( unit=unit, data=data ) ) else: raise ValueError( "cannot convert from invalid unit {convert_from}".format( convert_from=convert_from ) ) # to make sure we also encounter the case of "equal if converted" if convert_from is not None: quantity = (data * convert_from).to( unit if isinstance(unit, unit_registry.Unit) else unit_registry.dimensionless ) else: try: quantity = data * unit except np.core._exceptions.UFuncTypeError: if unit != 1: raise quantity = data return quantity def extract_units(obj): if isinstance(obj, xr.Dataset): vars_units = { name: array_extract_units(value) for name, value in obj.data_vars.items() } coords_units = { name: array_extract_units(value) for name, value in obj.coords.items() } units = {**vars_units, **coords_units} elif isinstance(obj, xr.DataArray): vars_units = {obj.name: array_extract_units(obj)} coords_units = { name: array_extract_units(value) for name, value in obj.coords.items() } units = {**vars_units, **coords_units} elif isinstance(obj, Quantity): vars_units = {"<array>": array_extract_units(obj)} units = {**vars_units} else: units = {} return units def strip_units(obj): if isinstance(obj, xr.Dataset): data_vars = {name: strip_units(value) for name, value in obj.data_vars.items()} coords = {name: strip_units(value) for name, value in obj.coords.items()} new_obj = xr.Dataset(data_vars=data_vars, coords=coords) elif isinstance(obj, xr.DataArray): data = array_strip_units(obj.data) coords = { name: ( (value.dims, array_strip_units(value.data)) if isinstance(value.data, Quantity) else value # to preserve multiindexes ) for name, value in obj.coords.items() } new_obj = xr.DataArray(name=obj.name, data=data, coords=coords, dims=obj.dims) elif hasattr(obj, "magnitude"): new_obj = obj.magnitude else: new_obj = obj return new_obj def attach_units(obj, units): if not isinstance(obj, (xr.DataArray, xr.Dataset)): return array_attach_units(obj, units.get("data", 1)) if isinstance(obj, xr.Dataset): data_vars = { name: attach_units(value, units) for name, value in obj.data_vars.items() } coords = { name: attach_units(value, units) for name, value in obj.coords.items() } new_obj = xr.Dataset(data_vars=data_vars, coords=coords, attrs=obj.attrs) else: # try the array name, "data" and None, then fall back to dimensionless data_units = ( units.get(obj.name, None) or units.get("data", None) or units.get(None, None) or 1 ) data = array_attach_units(obj.data, data_units) coords = { name: ( (value.dims, array_attach_units(value.data, units.get(name) or 1)) if name in units # to preserve multiindexes else value ) for name, value in obj.coords.items() } dims = obj.dims attrs = obj.attrs new_obj = xr.DataArray( name=obj.name, data=data, coords=coords, attrs=attrs, dims=dims ) return new_obj def assert_equal_with_units(a, b): # works like xr.testing.assert_equal, but also explicitly checks units # so, it is more like assert_identical __tracebackhide__ = True if isinstance(a, xr.Dataset) or isinstance(b, xr.Dataset): a_units = extract_units(a) b_units = extract_units(b) a_without_units = strip_units(a) b_without_units = strip_units(b) assert a_without_units.equals(b_without_units), formatting.diff_dataset_repr( a, b, "equals" ) assert a_units == b_units else: a = a if not isinstance(a, (xr.DataArray, xr.Variable)) else a.data b = b if not isinstance(b, (xr.DataArray, xr.Variable)) else b.data assert type(a) == type(b) or ( isinstance(a, Quantity) and isinstance(b, Quantity) ) # workaround until pint implements allclose in __array_function__ if isinstance(a, Quantity) or isinstance(b, Quantity): assert ( hasattr(a, "magnitude") and hasattr(b, "magnitude") ) and np.allclose(a.magnitude, b.magnitude, equal_nan=True) assert (hasattr(a, "units") and hasattr(b, "units")) and a.units == b.units else: assert np.allclose(a, b, equal_nan=True) @pytest.fixture(params=[float, int]) def dtype(request): return request.param class method: def __init__(self, name, *args, **kwargs): self.name = name self.args = args self.kwargs = kwargs def __call__(self, obj, *args, **kwargs): from collections.abc import Callable from functools import partial all_args = list(self.args) + list(args) all_kwargs = {**self.kwargs, **kwargs} func = getattr(obj, self.name, None) if func is None or not isinstance(func, Callable): # fall back to module level numpy functions if not a xarray object if not isinstance(obj, (xr.Variable, xr.DataArray, xr.Dataset)): numpy_func = getattr(np, self.name) func = partial(numpy_func, obj) # remove typical xr args like "dim" exclude_kwargs = ("dim", "dims") all_kwargs = { key: value for key, value in all_kwargs.items() if key not in exclude_kwargs } else: raise AttributeError(f"{obj} has no method named '{self.name}'") return func(*all_args, **all_kwargs) def __repr__(self): return f"method_{self.name}" class function: def __init__(self, name): self.name = name self.func = getattr(np, name) def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) def __repr__(self): return f"function_{self.name}" @pytest.mark.parametrize("func", (xr.zeros_like, xr.ones_like)) def test_replication(func, dtype): array = np.linspace(0, 10, 20).astype(dtype) * unit_registry.s data_array = xr.DataArray(data=array, dims="x") numpy_func = getattr(np, func.__name__) expected = xr.DataArray(data=numpy_func(array), dims="x") result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.xfail( reason="np.full_like on Variable strips the unit and pint does not allow mixed args" ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, DimensionalityError, id="no_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.m, DimensionalityError, id="incompatible_unit"), pytest.param(unit_registry.ms, None, id="compatible_unit"), pytest.param(unit_registry.s, None, id="identical_unit"), ), ) def test_replication_full_like(unit, error, dtype): array = np.linspace(0, 5, 10) * unit_registry.s data_array = xr.DataArray(data=array, dims="x") fill_value = -1 * unit if error is not None: with pytest.raises(error): xr.full_like(data_array, fill_value=fill_value) else: result = xr.full_like(data_array, fill_value=fill_value) expected = np.full_like(array, fill_value=fill_value) assert_equal_with_units(expected, result) class TestDataArray: @pytest.mark.filterwarnings("error:::pint[.*]") @pytest.mark.parametrize( "variant", ( pytest.param( "with_dims", marks=pytest.mark.xfail(reason="units in indexes are not supported"), ), pytest.param("with_coords"), pytest.param("without_coords"), ), ) def test_init(self, variant, dtype): array = np.linspace(1, 2, 10, dtype=dtype) * unit_registry.m x = np.arange(len(array)) * unit_registry.s y = x.to(unit_registry.ms) variants = { "with_dims": {"x": x}, "with_coords": {"y": ("x", y)}, "without_coords": {}, } kwargs = {"data": array, "dims": "x", "coords": variants.get(variant)} data_array = xr.DataArray(**kwargs) assert isinstance(data_array.data, Quantity) assert all( { name: isinstance(coord.data, Quantity) for name, coord in data_array.coords.items() }.values() ) @pytest.mark.filterwarnings("error:::pint[.*]") @pytest.mark.parametrize( "func", (pytest.param(str, id="str"), pytest.param(repr, id="repr")) ) @pytest.mark.parametrize( "variant", ( pytest.param( "with_dims", marks=pytest.mark.xfail(reason="units in indexes are not supported"), ), pytest.param("with_coords"), pytest.param("without_coords"), ), ) def test_repr(self, func, variant, dtype): array = np.linspace(1, 2, 10, dtype=dtype) * unit_registry.m x = np.arange(len(array)) * unit_registry.s y = x.to(unit_registry.ms) variants = { "with_dims": {"x": x}, "with_coords": {"y": ("x", y)}, "without_coords": {}, } kwargs = {"data": array, "dims": "x", "coords": variants.get(variant)} data_array = xr.DataArray(**kwargs) # FIXME: this just checks that the repr does not raise # warnings or errors, but does not check the result func(data_array) @pytest.mark.parametrize( "func", ( pytest.param( function("all"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( function("any"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( function("argmax"), marks=pytest.mark.xfail( reason="comparison of quantity with ndarrays in nanops not implemented" ), ), pytest.param( function("argmin"), marks=pytest.mark.xfail( reason="comparison of quantity with ndarrays in nanops not implemented" ), ), function("max"), function("mean"), pytest.param( function("median"), marks=pytest.mark.xfail( reason="np.median on DataArray strips the units" ), ), function("min"), pytest.param( function("prod"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( function("sum"), marks=pytest.mark.xfail( reason="comparison of quantity with ndarrays in nanops not implemented" ), ), function("std"), function("var"), function("cumsum"), pytest.param( function("cumprod"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( method("all"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( method("any"), marks=pytest.mark.xfail(reason="not implemented by pint yet"), ), pytest.param( method("argmax"), marks=pytest.mark.xfail( reason="comparison of quantities with ndarrays in nanops not implemented" ), ), pytest.param( method("argmin"), marks=pytest.mark.xfail( reason="comparison of quantities with ndarrays in nanops not implemented" ), ), method("max"), method("mean"), method("median"), method("min"), pytest.param( method("prod"), marks=pytest.mark.xfail( reason="comparison of quantity with ndarrays in nanops not implemented" ), ), pytest.param( method("sum"), marks=pytest.mark.xfail( reason="comparison of quantity with ndarrays in nanops not implemented" ), ), method("std"), method("var"), method("cumsum"), pytest.param( method("cumprod"), marks=pytest.mark.xfail(reason="pint does not implement cumprod yet"), ), ), ids=repr, ) def test_aggregation(self, func, dtype): array = np.arange(10).astype(dtype) * unit_registry.m data_array = xr.DataArray(data=array) expected = xr.DataArray(data=func(array)) result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", ( pytest.param(operator.neg, id="negate"), pytest.param(abs, id="absolute"), pytest.param( np.round, id="round", marks=pytest.mark.xfail(reason="pint does not implement round"), ), ), ) def test_unary_operations(self, func, dtype): array = np.arange(10).astype(dtype) * unit_registry.m data_array = xr.DataArray(data=array) expected = xr.DataArray(data=func(array)) result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", ( pytest.param(lambda x: 2 * x, id="multiply"), pytest.param(lambda x: x + x, id="add"), pytest.param(lambda x: x[0] + x, id="add scalar"), pytest.param( lambda x: x.T @ x, id="matrix multiply", marks=pytest.mark.xfail( reason="pint does not support matrix multiplication yet" ), ), ), ) def test_binary_operations(self, func, dtype): array = np.arange(10).astype(dtype) * unit_registry.m data_array = xr.DataArray(data=array) expected = xr.DataArray(data=func(array)) result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "comparison", ( pytest.param(operator.lt, id="less_than"), pytest.param(operator.ge, id="greater_equal"), pytest.param(operator.eq, id="equal"), ), ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, ValueError, id="without_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.s, DimensionalityError, id="incorrect_unit"), pytest.param(unit_registry.m, None, id="correct_unit"), ), ) def test_comparison_operations(self, comparison, unit, error, dtype): array = ( np.array([10.1, 5.2, 6.5, 8.0, 21.3, 7.1, 1.3]).astype(dtype) * unit_registry.m ) data_array = xr.DataArray(data=array) value = 8 to_compare_with = value * unit # incompatible units are all not equal if error is not None and comparison is not operator.eq: with pytest.raises(error): comparison(array, to_compare_with) with pytest.raises(error): comparison(data_array, to_compare_with) else: result = comparison(data_array, to_compare_with) # pint compares incompatible arrays to False, so we need to extend # the multiplication works for both scalar and array results expected = xr.DataArray( data=comparison(array, to_compare_with) * np.ones_like(array, dtype=bool) ) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "units,error", ( pytest.param(unit_registry.dimensionless, None, id="dimensionless"), pytest.param(unit_registry.m, DimensionalityError, id="incorrect unit"), pytest.param(unit_registry.degree, None, id="correct unit"), ), ) def test_univariate_ufunc(self, units, error, dtype): array = np.arange(10).astype(dtype) * units data_array = xr.DataArray(data=array) if error is not None: with pytest.raises(error): np.sin(data_array) else: expected = xr.DataArray(data=np.sin(array)) result = np.sin(data_array) assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="pint's implementation of `np.maximum` strips units") def test_bivariate_ufunc(self, dtype): unit = unit_registry.m array = np.arange(10).astype(dtype) * unit data_array = xr.DataArray(data=array) expected = xr.DataArray(np.maximum(array, 0 * unit)) assert_equal_with_units(expected, np.maximum(data_array, 0 * unit)) assert_equal_with_units(expected, np.maximum(0 * unit, data_array)) @pytest.mark.parametrize("property", ("T", "imag", "real")) def test_numpy_properties(self, property, dtype): array = ( np.arange(5 * 10).astype(dtype) + 1j * np.linspace(-1, 0, 5 * 10).astype(dtype) ).reshape(5, 10) * unit_registry.s data_array = xr.DataArray(data=array, dims=("x", "y")) expected = xr.DataArray( data=getattr(array, property), dims=("x", "y")[:: 1 if property != "T" else -1], ) result = getattr(data_array, property) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", ( method("conj"), method("argsort"), method("conjugate"), method("round"), pytest.param( method("rank", dim="x"), marks=pytest.mark.xfail(reason="pint does not implement rank yet"), ), ), ids=repr, ) def test_numpy_methods(self, func, dtype): array = np.arange(10).astype(dtype) * unit_registry.m data_array = xr.DataArray(data=array, dims="x") expected = xr.DataArray(func(array), dims="x") result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", (method("clip", min=3, max=8), method("searchsorted", v=5)), ids=repr ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, DimensionalityError, id="no_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.s, DimensionalityError, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_numpy_methods_with_args(self, func, unit, error, dtype): array = np.arange(10).astype(dtype) * unit_registry.m data_array = xr.DataArray(data=array) scalar_types = (int, float) kwargs = { key: (value * unit if isinstance(value, scalar_types) else value) for key, value in func.kwargs.items() } if error is not None: with pytest.raises(error): func(data_array, **kwargs) else: expected = func(array, **kwargs) if func.name not in ["searchsorted"]: expected = xr.DataArray(data=expected) result = func(data_array, **kwargs) if func.name in ["searchsorted"]: assert np.allclose(expected, result) else: assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", (method("isnull"), method("notnull"), method("count")), ids=repr ) def test_missing_value_detection(self, func, dtype): array = ( np.array( [ [1.4, 2.3, np.nan, 7.2], [np.nan, 9.7, np.nan, np.nan], [2.1, np.nan, np.nan, 4.6], [9.9, np.nan, 7.2, 9.1], ] ) * unit_registry.degK ) x = np.arange(array.shape[0]) * unit_registry.m y = np.arange(array.shape[1]) * unit_registry.m data_array = xr.DataArray(data=array, coords={"x": x, "y": y}, dims=("x", "y")) expected = func(strip_units(data_array)) result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="ffill and bfill lose units in data") @pytest.mark.parametrize("func", (method("ffill"), method("bfill")), ids=repr) def test_missing_value_filling(self, func, dtype): array = ( np.array([1.4, np.nan, 2.3, np.nan, np.nan, 9.1]).astype(dtype) * unit_registry.degK ) x = np.arange(len(array)) data_array = xr.DataArray(data=array, coords={"x": x}, dims=["x"]) result_without_units = func(strip_units(data_array), dim="x") result = xr.DataArray( data=result_without_units.data * unit_registry.degK, coords={"x": x}, dims=["x"], ) expected = attach_units( func(strip_units(data_array), dim="x"), {"data": unit_registry.degK} ) result = func(data_array, dim="x") assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="fillna drops the unit") @pytest.mark.parametrize( "fill_value", ( pytest.param( -1, id="python scalar", marks=pytest.mark.xfail( reason="python scalar cannot be converted using astype()" ), ), pytest.param(np.array(-1), id="numpy scalar"), pytest.param(np.array([-1]), id="numpy array"), ), ) def test_fillna(self, fill_value, dtype): unit = unit_registry.m array = np.array([1.4, np.nan, 2.3, np.nan, np.nan, 9.1]).astype(dtype) * unit data_array = xr.DataArray(data=array) expected = attach_units( strip_units(data_array).fillna(value=fill_value), {"data": unit} ) result = data_array.fillna(value=fill_value * unit) assert_equal_with_units(expected, result) def test_dropna(self, dtype): array = ( np.array([1.4, np.nan, 2.3, np.nan, np.nan, 9.1]).astype(dtype) * unit_registry.m ) x = np.arange(len(array)) data_array = xr.DataArray(data=array, coords={"x": x}, dims=["x"]) expected = attach_units( strip_units(data_array).dropna(dim="x"), {"data": unit_registry.m} ) result = data_array.dropna(dim="x") assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="pint does not implement `numpy.isin`") @pytest.mark.parametrize( "unit", ( pytest.param(1, id="no_unit"), pytest.param(unit_registry.dimensionless, id="dimensionless"), pytest.param(unit_registry.s, id="incompatible_unit"), pytest.param(unit_registry.cm, id="compatible_unit"), pytest.param(unit_registry.m, id="same_unit"), ), ) def test_isin(self, unit, dtype): array = ( np.array([1.4, np.nan, 2.3, np.nan, np.nan, 9.1]).astype(dtype) * unit_registry.m ) data_array = xr.DataArray(data=array, dims="x") raw_values = np.array([1.4, np.nan, 2.3]).astype(dtype) values = raw_values * unit result_without_units = strip_units(data_array).isin(raw_values) if unit != unit_registry.m: result_without_units[:] = False result_with_units = data_array.isin(values) assert_equal_with_units(result_without_units, result_with_units) @pytest.mark.parametrize( "variant", ( pytest.param( "masking", marks=pytest.mark.xfail(reason="nan not compatible with quantity"), ), pytest.param( "replacing_scalar", marks=pytest.mark.xfail(reason="scalar not convertible using astype"), ), pytest.param( "replacing_array", marks=pytest.mark.xfail( reason="replacing using an array drops the units" ), ), pytest.param( "dropping", marks=pytest.mark.xfail(reason="nan not compatible with quantity"), ), ), ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, DimensionalityError, id="no_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.s, DimensionalityError, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="same_unit"), ), ) def test_where(self, variant, unit, error, dtype): def _strip_units(mapping): return {key: array_strip_units(value) for key, value in mapping.items()} original_unit = unit_registry.m array = np.linspace(0, 1, 10).astype(dtype) * original_unit data_array = xr.DataArray(data=array) condition = data_array < 0.5 * original_unit other = np.linspace(-2, -1, 10).astype(dtype) * unit variant_kwargs = { "masking": {"cond": condition}, "replacing_scalar": {"cond": condition, "other": -1 * unit}, "replacing_array": {"cond": condition, "other": other}, "dropping": {"cond": condition, "drop": True}, } kwargs = variant_kwargs.get(variant) kwargs_without_units = _strip_units(kwargs) if variant not in ("masking", "dropping") and error is not None: with pytest.raises(error): data_array.where(**kwargs) else: expected = attach_units( strip_units(array).where(**kwargs_without_units), {"data": original_unit}, ) result = data_array.where(**kwargs) assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="interpolate strips units") def test_interpolate_na(self, dtype): array = ( np.array([-1.03, 0.1, 1.4, np.nan, 2.3, np.nan, np.nan, 9.1]) * unit_registry.m ) x = np.arange(len(array)) data_array = xr.DataArray(data=array, coords={"x": x}, dims="x").astype(dtype) expected = attach_units( strip_units(data_array).interpolate_na(dim="x"), {"data": unit_registry.m} ) result = data_array.interpolate_na(dim="x") assert_equal_with_units(expected, result) @pytest.mark.xfail(reason="uses DataArray.where, which currently fails") @pytest.mark.parametrize( "unit,error", ( pytest.param(1, DimensionalityError, id="no_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.s, DimensionalityError, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_combine_first(self, unit, error, dtype): array = np.zeros(shape=(2, 2), dtype=dtype) * unit_registry.m other_array = np.ones_like(array) * unit data_array = xr.DataArray( data=array, coords={"x": ["a", "b"], "y": [-1, 0]}, dims=["x", "y"] ) other = xr.DataArray( data=other_array, coords={"x": ["b", "c"], "y": [0, 1]}, dims=["x", "y"] ) if error is not None: with pytest.raises(error): data_array.combine_first(other) else: expected = attach_units( strip_units(data_array).combine_first(strip_units(other)), {"data": unit_registry.m}, ) result = data_array.combine_first(other) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "unit", ( pytest.param(1, id="no_unit"), pytest.param(unit_registry.dimensionless, id="dimensionless"), pytest.param(unit_registry.s, id="incompatible_unit"), pytest.param( unit_registry.cm, id="compatible_unit", marks=pytest.mark.xfail(reason="identical does not check units yet"), ), pytest.param(unit_registry.m, id="identical_unit"), ), ) @pytest.mark.parametrize( "variation", ( "data", pytest.param( "dims", marks=pytest.mark.xfail(reason="units in indexes not supported") ), "coords", ), ) @pytest.mark.parametrize("func", (method("equals"), method("identical")), ids=repr) def test_comparisons(self, func, variation, unit, dtype): data = np.linspace(0, 5, 10).astype(dtype) coord = np.arange(len(data)).astype(dtype) base_unit = unit_registry.m quantity = data * base_unit x = coord * base_unit y = coord * base_unit units = { "data": (unit, base_unit, base_unit), "dims": (base_unit, unit, base_unit), "coords": (base_unit, base_unit, unit), } data_unit, dim_unit, coord_unit = units.get(variation) data_array = xr.DataArray( data=quantity, coords={"x": x, "y": ("x", y)}, dims="x" ) other = attach_units( strip_units(data_array), { None: (data_unit, base_unit if quantity.check(data_unit) else None), "x": (dim_unit, base_unit if x.check(dim_unit) else None), "y": (coord_unit, base_unit if y.check(coord_unit) else None), }, ) # TODO: test dim coord once indexes leave units intact # also, express this in terms of calls on the raw data array # and then check the units equal_arrays = ( np.all(quantity == other.data) and (np.all(x == other.x.data) or True) # dims can't be checked yet and np.all(y == other.y.data) ) equal_units = ( data_unit == unit_registry.m and coord_unit == unit_registry.m and dim_unit == unit_registry.m ) expected = equal_arrays and (func.name != "identical" or equal_units) result = func(data_array, other) assert expected == result @pytest.mark.parametrize( "unit", ( pytest.param(1, id="no_unit"), pytest.param(unit_registry.dimensionless, id="dimensionless"), pytest.param(unit_registry.s, id="incompatible_unit"), pytest.param(unit_registry.cm, id="compatible_unit"), pytest.param(unit_registry.m, id="identical_unit"), ), ) def test_broadcast_equals(self, unit, dtype): left_array = np.ones(shape=(2, 2), dtype=dtype) * unit_registry.m right_array = array_attach_units( np.ones(shape=(2,), dtype=dtype), unit, convert_from=unit_registry.m if left_array.check(unit) else None, ) left = xr.DataArray(data=left_array, dims=("x", "y")) right = xr.DataArray(data=right_array, dims="x") expected = np.all(left_array == right_array[:, None]) result = left.broadcast_equals(right) assert expected == result @pytest.mark.parametrize( "func", ( method("pipe", lambda da: da * 10), method("assign_coords", y2=("y", np.arange(10) * unit_registry.mm)), method("assign_attrs", attr1="value"), method("rename", x2="x_mm"), method("swap_dims", {"x": "x2"}), method( "expand_dims", dim={"z": np.linspace(10, 20, 12) * unit_registry.s}, axis=1, ), method("drop", labels="x"), method("reset_coords", names="x2"), method("copy"), pytest.param( method("astype", np.float32), marks=pytest.mark.xfail(reason="units get stripped"), ), pytest.param( method("item", 1), marks=pytest.mark.xfail(reason="units get stripped") ), ), ids=repr, ) def test_content_manipulation(self, func, dtype): quantity = ( np.linspace(0, 10, 5 * 10).reshape(5, 10).astype(dtype) * unit_registry.pascal ) x = np.arange(quantity.shape[0]) * unit_registry.m y = np.arange(quantity.shape[1]) * unit_registry.m x2 = x.to(unit_registry.mm) data_array = xr.DataArray( name="data", data=quantity, coords={"x": x, "x2": ("x", x2), "y": y}, dims=("x", "y"), ) stripped_kwargs = { key: array_strip_units(value) for key, value in func.kwargs.items() } expected = attach_units( func(strip_units(data_array), **stripped_kwargs), { "data": quantity.units, "x": x.units, "x_mm": x2.units, "x2": x2.units, "y": y.units, }, ) result = func(data_array) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "func", ( pytest.param( method("drop", labels=np.array([1, 5]), dim="x"), marks=pytest.mark.xfail( reason="selecting using incompatible units does not raise" ), ), pytest.param(method("copy", data=np.arange(20))), ), ids=repr, ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, DimensionalityError, id="no_unit"), pytest.param( unit_registry.dimensionless, DimensionalityError, id="dimensionless" ), pytest.param(unit_registry.s, DimensionalityError, id="incompatible_unit"), pytest.param(unit_registry.cm, KeyError, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_content_manipulation_with_units(self, func, unit, error, dtype): quantity = np.linspace(0, 10, 20, dtype=dtype) * unit_registry.pascal x = np.arange(len(quantity)) * unit_registry.m data_array = xr.DataArray(name="data", data=quantity, coords={"x": x}, dims="x") kwargs = { key: (value * unit if isinstance(value, np.ndarray) else value) for key, value in func.kwargs.items() } stripped_kwargs = func.kwargs expected = attach_units( func(strip_units(data_array), **stripped_kwargs), {"data": quantity.units if func.name == "drop" else unit, "x": x.units}, ) if error is not None and func.name == "drop": with pytest.raises(error): func(data_array, **kwargs) else: result = func(data_array, **kwargs) assert_equal_with_units(expected, result) @pytest.mark.parametrize( "indices", ( pytest.param(4, id="single index"), pytest.param([5, 2, 9, 1], id="multiple indices"), ), ) def test_isel(self, indices, dtype): array = np.arange(10).astype(dtype) * unit_registry.s x = np.arange(len(array)) * unit_registry.m data_array = xr.DataArray(data=array, coords={"x": x}, dims=["x"]) expected = attach_units( strip_units(data_array).isel(x=indices), {"data": unit_registry.s, "x": unit_registry.m}, ) result = data_array.isel(x=indices) assert_equal_with_units(expected, result) @pytest.mark.xfail( reason="xarray does not support duck arrays in dimension coordinates" ) @pytest.mark.parametrize( "values", ( pytest.param(12, id="single value"), pytest.param([10, 5, 13], id="list of multiple values"), pytest.param(np.array([9, 3, 7, 12]), id="array of multiple values"), ), ) @pytest.mark.parametrize( "units,error", ( pytest.param(1, KeyError, id="no units"), pytest.param(unit_registry.dimensionless, KeyError, id="dimensionless"), pytest.param(unit_registry.degree, KeyError, id="incorrect unit"), pytest.param(unit_registry.s, None, id="correct unit"), ), ) def test_sel(self, values, units, error, dtype): array = np.linspace(5, 10, 20).astype(dtype) * unit_registry.m x = np.arange(len(array)) * unit_registry.s data_array = xr.DataArray(data=array, coords={"x": x}, dims=["x"]) values_with_units = values * units if error is not None: with pytest.raises(error): data_array.sel(x=values_with_units) else: result_array = array[values] result_data_array = data_array.sel(x=values_with_units) assert_equal_with_units(result_array, result_data_array) @pytest.mark.xfail( reason="xarray does not support duck arrays in dimension coordinates" ) @pytest.mark.parametrize( "values", ( pytest.param(12, id="single value"), pytest.param([10, 5, 13], id="list of multiple values"), pytest.param(np.array([9, 3, 7, 12]), id="array of multiple values"), ), ) @pytest.mark.parametrize( "units,error", ( pytest.param(1, KeyError, id="no units"), pytest.param(unit_registry.dimensionless, KeyError, id="dimensionless"), pytest.param(unit_registry.degree, KeyError, id="incorrect unit"), pytest.param(unit_registry.s, None, id="correct unit"), ), ) def test_loc(self, values, units, error, dtype): array = np.linspace(5, 10, 20).astype(dtype) * unit_registry.m x = np.arange(len(array)) * unit_registry.s data_array = xr.DataArray(data=array, coords={"x": x}, dims=["x"]) values_with_units = values * units if error is not None: with pytest.raises(error): data_array.loc[values_with_units] else: result_array = array[values] result_data_array = data_array.loc[values_with_units] assert_equal_with_units(result_array, result_data_array) @pytest.mark.xfail(reason="tries to coerce using asarray") @pytest.mark.parametrize( "shape", ( pytest.param((10, 20), id="nothing squeezable"), pytest.param((10, 20, 1), id="last dimension squeezable"), pytest.param((10, 1, 20), id="middle dimension squeezable"), pytest.param((1, 10, 20), id="first dimension squeezable"), pytest.param((1, 10, 1, 20), id="first and last dimension squeezable"), ), ) def test_squeeze(self, shape, dtype): names = "xyzt" coords = { name: np.arange(length).astype(dtype) * (unit_registry.m if name != "t" else unit_registry.s) for name, length in zip(names, shape) } array = np.arange(10 * 20).astype(dtype).reshape(shape) * unit_registry.J data_array = xr.DataArray( data=array, coords=coords, dims=tuple(names[: len(shape)]) ) result_array = array.squeeze() result_data_array = data_array.squeeze() assert_equal_with_units(result_array, result_data_array) # try squeezing the dimensions separately names = tuple(dim for dim, coord in coords.items() if len(coord) == 1) for index, name in enumerate(names): assert_equal_with_units( np.squeeze(array, axis=index), data_array.squeeze(dim=name) ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, None, id="no_unit"), pytest.param(unit_registry.dimensionless, None, id="dimensionless"), pytest.param(unit_registry.s, None, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_interp(self, unit, error): array = np.linspace(1, 2, 10 * 5).reshape(10, 5) * unit_registry.degK new_coords = (np.arange(10) + 0.5) * unit coords = { "x": np.arange(10) * unit_registry.m, "y": np.arange(5) * unit_registry.m, } data_array = xr.DataArray(array, coords=coords, dims=("x", "y")) if error is not None: with pytest.raises(error): data_array.interp(x=new_coords) else: new_coords_ = ( new_coords.magnitude if hasattr(new_coords, "magnitude") else new_coords ) result_array = strip_units(data_array).interp( x=new_coords_ * unit_registry.degK ) result_data_array = data_array.interp(x=new_coords) assert_equal_with_units(result_array, result_data_array) @pytest.mark.xfail(reason="tries to coerce using asarray") @pytest.mark.parametrize( "unit,error", ( pytest.param(1, None, id="no_unit"), pytest.param(unit_registry.dimensionless, None, id="dimensionless"), pytest.param(unit_registry.s, None, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_interp_like(self, unit, error): array = np.linspace(1, 2, 10 * 5).reshape(10, 5) * unit_registry.degK coords = { "x": (np.arange(10) + 0.3) * unit_registry.m, "y": (np.arange(5) + 0.3) * unit_registry.m, } data_array = xr.DataArray(array, coords=coords, dims=("x", "y")) new_data_array = xr.DataArray( data=np.empty((20, 10)), coords={"x": np.arange(20) * unit, "y": np.arange(10) * unit}, dims=("x", "y"), ) if error is not None: with pytest.raises(error): data_array.interp_like(new_data_array) else: result_array = ( xr.DataArray( data=array.magnitude, coords={name: value.magnitude for name, value in coords.items()}, dims=("x", "y"), ).interp_like(strip_units(new_data_array)) * unit_registry.degK ) result_data_array = data_array.interp_like(new_data_array) assert_equal_with_units(result_array, result_data_array) @pytest.mark.xfail( reason="pint does not implement np.result_type in __array_function__ yet" ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, None, id="no_unit"), pytest.param(unit_registry.dimensionless, None, id="dimensionless"), pytest.param(unit_registry.s, None, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_reindex(self, unit, error): array = np.linspace(1, 2, 10 * 5).reshape(10, 5) * unit_registry.degK new_coords = (np.arange(10) + 0.5) * unit coords = { "x": np.arange(10) * unit_registry.m, "y": np.arange(5) * unit_registry.m, } data_array = xr.DataArray(array, coords=coords, dims=("x", "y")) if error is not None: with pytest.raises(error): data_array.interp(x=new_coords) else: result_array = strip_units(data_array).reindex( x=( new_coords.magnitude if hasattr(new_coords, "magnitude") else new_coords ) * unit_registry.degK ) result_data_array = data_array.reindex(x=new_coords) assert_equal_with_units(result_array, result_data_array) @pytest.mark.xfail( reason="pint does not implement np.result_type in __array_function__ yet" ) @pytest.mark.parametrize( "unit,error", ( pytest.param(1, None, id="no_unit"), pytest.param(unit_registry.dimensionless, None, id="dimensionless"), pytest.param(unit_registry.s, None, id="incompatible_unit"), pytest.param(unit_registry.cm, None, id="compatible_unit"), pytest.param(unit_registry.m, None, id="identical_unit"), ), ) def test_reindex_like(self, unit, error): array = np.linspace(1, 2, 10 * 5).reshape(10, 5) * unit_registry.degK coords = { "x": (np.arange(10) + 0.3) * unit_registry.m, "y": (np.arange(5) + 0.3) * unit_registry.m, } data_array = xr.DataArray(array, coords=coords, dims=("x", "y")) new_data_array = xr.DataArray( data=np.empty((20, 10)), coords={"x": np.arange(20) * unit, "y":
np.arange(10)
numpy.arange
'''This script is used to generate dummy CSD sources, to test the various kCSD methods ''' import numpy as np from numpy import exp, isfinite from functools import wraps def repeatUntilValid(f): """ A decorator (wrapper). If output of `f(..., seed)` contains either NaN or infinite, repeats calculations for other `seed` (randomly generated for the current `seed`) until the result is valid. :param f: function of two arguments (the latter is `seed`) :return: wrapped function f """ @wraps(f) def wrapper(arg, seed=0): for seed in seedSequence(seed): result = f(arg, seed) if isfinite(result).all(): return result # Python 2.7 walkarround necessary for test purposes if not hasattr(wrapper, '__wrapped__'): setattr(wrapper, '__wrapped__', f) return wrapper def seedSequence(seed): """ Yields a sequence of unique, pseudorandom, deterministic seeds. :param seed: beginning of the sequence :return: seed generator """ previous = set() rstate = np.random.RandomState(seed) while True: yield seed previous.add(seed) while seed in previous: seed = rstate.randint(2 ** 32) def get_states_1D(seed, n=1): """ Used in the random seed generation creates a matrix that will generate seeds, here for gaussians: amplitude (-1., 1.), location (0,1)*ndim, sigma(0,1) """ ndim = 1 if seed == 0: states = np.array([1., 0.5, 0.5], ndmin=2) rstate = np.random.RandomState(seed) states = rstate.random_sample(n * (ndim + 2)).reshape((n, (ndim + 2))) states[:, 0] = (2 * states[:, 0]) - 1. return states, rstate def add_1d_gaussians(x, states): '''Function used for adding multiple 1D gaussians''' f = np.zeros(x.shape) for i in range(states.shape[0]): gauss = states[i, 0]*np.exp(-((x - states[i, 1])**2)/(2.*states[i, 2]) )*(2*np.pi*states[i, 2])**-0.5 f += gauss return f def gauss_1d_mono(x, seed=0): '''Random monopole in 1D''' states, rstate = get_states_1D(seed, n=1) f = add_1d_gaussians(x, states) return f def gauss_1d_dipole(x, seed=0): '''Random dipole source in 1D''' states, rstate = get_states_1D(seed, n=1) offset = rstate.random_sample(1) - 0.5 states = np.tile(states, (2, 1)) states[1, 0] *= -1. # A Sink states[1, 1] += offset f = add_1d_gaussians(x, states) return f def get_states_2D(seed): """ Used in the random seed generation for 2d sources """ rstate = np.random.RandomState(seed) states = rstate.random_sample(24) states[0:12] = 2*states[0:12] - 1. return states @repeatUntilValid def gauss_2d_large(csd_at, seed=0): '''random quadpolar'large source' profile in 2012 paper in 2D''' x, y = csd_at states = get_states_2D(seed) z = 0 zz = states[0:4] zs = states[4:8] mag = states[8:12] loc = states[12:20] scl = states[20:24] f1 = mag[0]*exp( (-1*(x-loc[0])**2 - (y-loc[4])**2) /scl[0])* exp(-(z-zz[0])**2 / zs[0]) /exp(-(zz[0])**2/zs[0]) f2 = mag[1]*exp( (-2*(x-loc[1])**2 - (y-loc[5])**2) /scl[1])* exp(-(z-zz[1])**2 / zs[1]) /exp(-(zz[1])**2/zs[1]); f3 = mag[2]*exp( (-3*(x-loc[2])**2 - (y-loc[6])**2) /scl[2])* exp(-(z-zz[2])**2 / zs[2]) /exp(-(zz[2])**2/zs[2]); f4 = mag[3]*exp( (-4*(x-loc[3])**2 - (y-loc[7])**2) /scl[3])* exp(-(z-zz[3])**2 / zs[3]) /exp(-(zz[3])**2/zs[3]); f = f1+f2+f3+f4 return f def gauss_2d_small(csd_at, seed=0): '''random quadpolar small source in 2D''' x, y = csd_at def gauss2d(x, y, p): """ p: list of parameters of the Gauss-function [XCEN,YCEN,SIGMAX,SIGMAY,AMP,ANGLE] SIGMA = FWHM / (2*sqrt(2*log(2))) ANGLE = rotation of the X,Y direction of the Gaussian in radians Returns ------- the value of the Gaussian described by the parameters p at position (x,y) """ rcen_x = p[0] * np.cos(p[5]) - p[1] * np.sin(p[5]) rcen_y = p[0] * np.sin(p[5]) + p[1] * np.cos(p[5]) xp = x * np.cos(p[5]) - y * np.sin(p[5]) yp = x * np.sin(p[5]) + y * np.cos(p[5]) g = p[4]*np.exp(-(((rcen_x-xp)/p[2])**2 + ((rcen_y-yp)/p[3])**2)/2.) return g states = get_states_2D(seed) angle = states[18]*180. x_amp = 0.038 y_amp = 0.056 f1 = gauss2d(x, y, [states[12], states[14], x_amp, y_amp, 0.5, angle]) f2 = gauss2d(x, y, [states[12], states[15], x_amp, y_amp, -0.5, angle]) f3 = gauss2d(x, y, [states[13], states[14], x_amp, y_amp, 0.5, angle]) f4 = gauss2d(x, y, [states[13], states[15], x_amp, y_amp, -0.5, angle]) f = f1+f2+f3+f4 return f def gauss_2d_random(size_seed=0, n=100): '''random quadpolar source in 2D''' x, y = csd_at np.random.seed(size_seed) large_count = np.random.randint(0, n) small_count = n - large_count random_indices = np.array(([gauss_2d_large]*large_count + [gauss_2d_small]*small_count)) np.random.shuffle(random_indices) return random_indices def get_states_3D(seed): """ Used in the random seed generation for 3D sources """ rstate = np.random.RandomState(seed) # seed here! states = rstate.random_sample(24) return states def gauss_3d_small(csd_at, seed=0): '''A random quadpole small souce in 3D''' x, y, z = csd_at states = get_states_3D(seed) x0, y0, z0 = states[0:3] x1, y1, z1 = states[3:6] if states[6] < 0.01: states[6] *= 25 sig_2 = states[6] / 75. p1, p2, p3 = (ii*0.5 for ii in states[8:11]) A = (2*np.pi*sig_2)**-1 f1 = A*np.exp((-(x-x0)**2 - (y-y0)**2 - (z-z0)**2) / (2*sig_2)) f2 = -1*A*np.exp((-(x-x1)**2 - (y-y1)**2 - (z-z1)**2) / (2*sig_2)) x2 = np.modf(x0+p1)[0] y2 = np.modf(y0+p2)[0] z2 = np.modf(z0+p3)[0] f3 = A*np.exp((-(x-x2)**2 - (y-y2)**2 - (z-z2)**2) / (2*sig_2)) x3 = np.modf(x1+p1)[0] y3 = np.modf(y1+p2)[0] z3 = np.modf(z1+p3)[0] f4 = -1*A*np.exp((-(x-x3)**2 - (y-y3)**2 - (z-z3)**2) / (2*sig_2)) f = f1+f2+f3+f4 return f def gauss_3d_large(csd_at, seed=0): '''A random dipolar Large source in 3D''' x, y, z = csd_at states = get_states_3D(seed) x0, y0, z0 = states[7:10] x1, y1, z1 = states[10:13] if states[1] < 0.01: states[1] *= 25 sig_2 = states[1] * 5 A = (2*np.pi*sig_2)**-1 f1 = A*np.exp((-(x-x0)**2 - (y-y0)**2 - (z-z0)**2) / (2*sig_2)) f2 = -1*A*np.exp((-(x-x1)**2 - (y-y1)**2 - (z-z1)**2) / (2*sig_2)) f = f1+f2 return f def gauss_1d_dipole_f(x): """1D Gaussian dipole source is placed between 0 and 1 to be used to test the CSD Parameters ---------- x : np.array Spatial pts. at which the true csd is evaluated Returns ------- f : np.array The value of the csd at the requested points """ src = 0.5*exp(-((x-0.7)**2)/(2.*0.3))*(2*np.pi*0.3)**-0.5 snk = -0.5*exp(-((x-0.3)**2)/(2.*0.3))*(2*np.pi*0.3)**-0.5 f = src+snk return f def gauss_2d_small_f(csd_at): '''Source from Jan 2012 kCSD paper''' x, y = csd_at def gauss2d(x, y, p): """ p: list of parameters of the Gauss-function [XCEN,YCEN,SIGMAX,SIGMAY,AMP,ANGLE] SIGMA = FWHM / (2*sqrt(2*log(2))) ANGLE = rotation of the X,Y direction of the Gaussian in radians Returns ------- the value of the Gaussian described by the parameters p at position (x,y) """ rcen_x = p[0] * np.cos(p[5]) - p[1] * np.sin(p[5]) rcen_y = p[0] * np.sin(p[5]) + p[1] * np.cos(p[5]) xp = x * np.cos(p[5]) - y * np.sin(p[5]) yp = x * np.sin(p[5]) + y * np.cos(p[5]) g = p[4]*np.exp(-(((rcen_x-xp)/p[2])**2 + ((rcen_y-yp)/p[3])**2)/2.) return g f1 = gauss2d(x, y, [0.3, 0.7, 0.038, 0.058, 0.5, 0.]) f2 = gauss2d(x, y, [0.3, 0.6, 0.038, 0.058, -0.5, 0.]) f3 = gauss2d(x, y, [0.45, 0.7, 0.038, 0.058, 0.5, 0.]) f4 = gauss2d(x, y, [0.45, 0.6, 0.038, 0.058, -0.5, 0.]) f = f1+f2+f3+f4 return f def gauss_2d_large_f(csd_at): '''Fixed 'large source' profile in 2012 paper''' x, y = csd_at z = 0 zz = [0.4, -0.3, -0.1, 0.6] zs = [0.2, 0.3, 0.4, 0.2] f1 = 0.5965*exp((-1*(x-0.1350)**2 - (y-0.8628)**2) / 0.4464)*
exp(-(z-zz[0])**2 / zs[0])
numpy.exp
""" This is the main execution environment for the LSHC procedure. https://github.com/stefanvanberkum/LSHC """ import random import re import time from math import comb import numpy as np import spacy from sklearn.cluster import KMeans from LSH import convert_binary, convert_binary_alt, convert_binary_old, minhash, lsh, common_count from data_loader import load def main(): """ Runs the whole LSHC procedure, and stores results in a csv file. :return: """ identify_common_count = False run_lsh = True write_result = True thresholds = [x / 100 for x in range(5, 100, 5)] bootstraps = 1 random.seed(0) file_path = "data/TVs.json" result_path = "results/" start_time = time.time() data_list, duplicates = load(file_path) if identify_common_count: common_count(data_list) if run_lsh: if write_result: with open(result_path + "results.csv", 'w') as out: out.write( "t,comparisons,pq,pc,f1_star,f1,comparisons_alt,pq_alt,pc_alt,f1_star_alt,f1_alt,comparisons_old," "pq_old,pc_old,f1_star_old,f1_old\n") for t in thresholds: print("t = ", t) # Initialize statistics, where results = [comparisons, pq, pc, f1_star, f1]. results = np.zeros(5) results_alt = np.zeros(5) results_old = np.zeros(5) for run in range(bootstraps): data_sample, duplicates_sample = bootstrap(data_list, duplicates) comparisons_run, pq_run, pc_run, f1_star_run, f1_run = do_lshc(data_sample, duplicates_sample, t) results += np.array([comparisons_run, pq_run, pc_run, f1_star_run, f1_run]) comparisons_alt_run, pq_alt_run, pc_alt_run, f1_star_alt_run, f1_alt_run = do_lshc_alt(data_sample, duplicates_sample, t) results_alt += np.array([comparisons_alt_run, pq_alt_run, pc_alt_run, f1_star_alt_run, f1_alt_run]) comparisons_old_run, pq_old_run, pc_old_run, f1_star_old_run, f1_old_run = do_lshc_old(data_sample, duplicates_sample, t) results_old += np.array([comparisons_old_run, pq_old_run, pc_old_run, f1_star_old_run, f1_old_run]) # Compute average statistics over all bootstraps. statistics = results / bootstraps statistics_alt = results_alt / bootstraps statistics_old = results_old / bootstraps if write_result: with open(result_path + "results.csv", 'a') as out: out.write(str(t)) for stat in statistics: out.write("," + str(stat)) for stat in statistics_alt: out.write("," + str(stat)) for stat in statistics_old: out.write("," + str(stat)) out.write("\n") end_time = time.time() print("Elapsed time:", end_time - start_time, "seconds") def do_lshc(data_list, duplicates, t): """ Bins items using MinHash and LSH, clusters using K-means, and computes and returns performance metrics based on the matrix of true duplicates. :param data_list: a list of items :param duplicates: a binary matrix where item (i, j) is equal to one if items i and j are duplicates, and zero otherwise :param t: the threshold value :return: the fraction of comparisons, pair quality, pair completeness, F_1^* measure, and F_1 measure. """ binary_vec = convert_binary(data_list) n = round(round(0.5 * len(binary_vec)) / 100) * 100 signature = minhash(binary_vec, n) candidates = lsh(signature, t) # Compute number of comparisons. comparisons = np.sum(candidates) / 2 comparison_frac = comparisons / comb(len(data_list), 2) # Compute matrix of correctly binned duplicates, where element (i, j) is equal to one if item i and item j are # duplicates, and correctly classified as such by LSH. correct = np.where(duplicates + candidates == 2, 1, 0) n_correct = np.sum(correct) / 2 # Compute Pair Quality (PQ) pq = n_correct / comparisons # Compute Pair Completeness (PC) pc = n_correct / (np.sum(duplicates) / 2) # Compute F_1^* measure. f1_star = 2 * pq * pc / (pq + pc) # Cluster and compute F_1 measure. tp, precision = cluster(data_list, candidates, duplicates) recall = tp / (np.sum(duplicates) / 2) f1 = 2 * precision * recall / (precision + recall) return comparison_frac, pq, pc, f1_star, f1 def do_lshc_alt(data_list, duplicates, t): """ Bins items using MinHash and LSH, clusters using K-means, and computes and returns performance metrics based on the matrix of true duplicates. :param data_list: a list of items :param duplicates: a binary matrix where item (i, j) is equal to one if items i and j are duplicates, and zero otherwise :param t: the threshold value :return: the fraction of comparisons, pair quality, pair completeness, F_1^* measure, and F_1 measure """ binary_vec = convert_binary_alt(data_list) n = round(round(0.5 * len(binary_vec)) / 100) * 100 signature = minhash(binary_vec, n) candidates = lsh(signature, t) # Compute number of comparisons. comparisons = np.sum(candidates) / 2 comparison_frac = comparisons / comb(len(data_list), 2) # Compute matrix of correctly binned duplicates, where element (i, j) is equal to one if item i and item j are # duplicates, and correctly classified as such by LSH. correct = np.where(duplicates + candidates == 2, 1, 0) n_correct = np.sum(correct) / 2 # Compute Pair Quality (PQ) pq = n_correct / comparisons # Compute Pair Completeness (PC) pc = n_correct / (np.sum(duplicates) / 2) # Compute F_1^* measure. f1_star = 2 * pq * pc / (pq + pc) # Cluster and compute F_1 measure. tp, precision = cluster(data_list, candidates, duplicates) recall = tp / (np.sum(duplicates) / 2) f1 = 2 * precision * recall / (precision + recall) return comparison_frac, pq, pc, f1_star, f1 def do_lshc_old(data_list, duplicates, t): """ Bins items using MinHash and LSH, clusters using K-means, and computes and returns performance metrics based on the matrix of true duplicates. NOTE. This is the old implementation by Hartveld et al. (2018), implemented for evaluation purposes. :param data_list: a list of items :param duplicates: a binary matrix where item (i, j) is equal to one if items i and j are duplicates, and zero otherwise :param t: the threshold value :return: the fraction of comparisons, pair quality, pair completeness, F_1^* measure, and F_1 measure """ binary_vec = convert_binary_old(data_list) n = round(round(0.5 * len(binary_vec)) / 100) * 100 signature = minhash(binary_vec, n) candidates = lsh(signature, t) # Compute number of comparisons. comparisons = np.sum(candidates) / 2 comparison_frac = comparisons / comb(len(data_list), 2) # Compute matrix of correctly binned duplicates, where element (i, j) is equal to one if item i and item j are # duplicates, and correctly classified as such by LSH. correct = np.where(duplicates + candidates == 2, 1, 0) n_correct =
np.sum(correct)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Wed Feb 10 14:36:07 2021 @author: utric """ import matplotlib.pyplot as plt import numpy as np from numpy import cos, sin, arctan2 as atan, sqrt, pi as π, sign, log from scipy.integrate import quad, dblquad from scipy.special import ellipk as ellK, ellipe as ellE from scipy.special import ellipkinc as ellK_inc, ellipeinc as ellE_inc from scipy.constants import mu_0 as μ0 _vec_0 = np.array([0.,0.,0.]) _vec_x = np.array([1.,0.,0.]) _vec_y = np.array([0.,1.,0.]) _vec_z = np.array([0.,0.,1.]) import pycoilib as pycoil z0, r0 = 0., 1000e-3 φ1 = π/10 a0 = 0.5e-3 z, r = 0, r0-a0 def get_A_φ(φ): m = (4*r0*r / ( (r0+r)**2 +(z-z0)**2 ) ) def f2(φ0): ψ = (φ0-φ-π)/2 t1 = (r0**2 + r**2 +(z-z0)**2) /sqrt( (r0+r)**2 +(z-z0)**2) t2 =
sqrt( (r0+r)**2+(z-z0)**2 )
numpy.sqrt
''' This script is helper function for preprocessing. Most of the code are converted from LayoutNet official's matlab code. All functions, naming rule and data flow follow official for easier converting and comparing. Code is not optimized for python or numpy yet. Author: <NAME> Email : <EMAIL> ''' import sys import numpy as np from scipy.ndimage import map_coordinates import cv2 from pylsd import lsd import torch def computeUVN(n, in_, planeID): ''' compute v given u and normal. ''' if planeID == 2: n = np.array([n[1], n[2], n[0]]) elif planeID == 3: n = np.array([n[2], n[0], n[1]]) bc = n[0] * np.sin(in_) + n[1] * np.cos(in_) bs = n[2] out = np.arctan(-bc / (bs + 1e-9)) return out def computeUVN_vec(n, in_, planeID): ''' vectorization version of computeUVN @n N x 3 @in_ MN x 1 @planeID N ''' n = n.copy() if (planeID == 2).sum(): n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1) if (planeID == 3).sum(): n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1) n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0) assert n.shape[0] == in_.shape[0] bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_) bs = n[:, [2]] out = np.arctan(-bc / (bs + 1e-9)) return out def xyz2uvN(xyz, planeID=1): ID1 = (int(planeID) - 1 + 0) % 3 ID2 = (int(planeID) - 1 + 1) % 3 ID3 = (int(planeID) - 1 + 2) % 3 normXY = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2) normXY[normXY < 0.000001] = 0.000001 normXYZ = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2 + xyz[:, [ID3]] ** 2) v = np.arcsin(xyz[:, [ID3]] / normXYZ) u = np.arcsin(xyz[:, [ID1]] / normXY) valid = (xyz[:, [ID2]] < 0) & (u >= 0) u[valid] = np.pi - u[valid] valid = (xyz[:, [ID2]] < 0) & (u <= 0) u[valid] = -np.pi - u[valid] uv = np.hstack([u, v]) uv[np.isnan(uv[:, 0]), 0] = 0 return uv def uv2xyzN(uv, planeID=1): ID1 = (int(planeID) - 1 + 0) % 3 ID2 = (int(planeID) - 1 + 1) % 3 ID3 = (int(planeID) - 1 + 2) % 3 xyz = np.zeros((uv.shape[0], 3)) xyz[:, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0]) xyz[:, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0]) xyz[:, ID3] = np.sin(uv[:, 1]) return xyz def uv2xyzN_vec(uv, planeID): ''' vectorization version of uv2xyzN @uv N x 2 @planeID N ''' assert (planeID.astype(int) != planeID).sum() == 0 planeID = planeID.astype(int) ID1 = (planeID - 1 + 0) % 3 ID2 = (planeID - 1 + 1) % 3 ID3 = (planeID - 1 + 2) % 3 ID = np.arange(len(uv)) xyz = np.zeros((len(uv), 3)) xyz[ID, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0]) xyz[ID, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0]) xyz[ID, ID3] = np.sin(uv[:, 1]) return xyz def warpImageFast(im, XXdense, YYdense): minX = max(1., np.floor(XXdense.min()) - 1) minY = max(1., np.floor(YYdense.min()) - 1) maxX = min(im.shape[1], np.ceil(XXdense.max()) + 1) maxY = min(im.shape[0], np.ceil(YYdense.max()) + 1) im = im[int(round(minY-1)):int(round(maxY)), int(round(minX-1)):int(round(maxX))] assert XXdense.shape == YYdense.shape out_shape = XXdense.shape coordinates = [ (YYdense - minY).reshape(-1), (XXdense - minX).reshape(-1), ] im_warp = np.stack([ map_coordinates(im[..., c], coordinates, order=1).reshape(out_shape) for c in range(im.shape[-1])], axis=-1) return im_warp def rotatePanorama(img, vp=None, R=None): ''' Rotate panorama if R is given, vp (vanishing point) will be overlooked otherwise R is computed from vp ''' sphereH, sphereW, C = img.shape # new uv coordinates TX, TY = np.meshgrid(range(1, sphereW + 1), range(1, sphereH + 1)) TX = TX.reshape(-1, 1, order='F') TY = TY.reshape(-1, 1, order='F') ANGx = (TX - sphereW/2 - 0.5) / sphereW * np.pi * 2 ANGy = -(TY - sphereH/2 - 0.5) / sphereH * np.pi uvNew = np.hstack([ANGx, ANGy]) xyzNew = uv2xyzN(uvNew, 1) # rotation matrix if R is None: R = np.linalg.inv(vp.T) xyzOld = np.linalg.solve(R, xyzNew.T).T uvOld = xyz2uvN(xyzOld, 1) Px = (uvOld[:, 0] + np.pi) / (2*np.pi) * sphereW + 0.5 Py = (-uvOld[:, 1] + np.pi/2) / np.pi * sphereH + 0.5 Px = Px.reshape(sphereH, sphereW, order='F') Py = Py.reshape(sphereH, sphereW, order='F') # boundary imgNew = np.zeros((sphereH+2, sphereW+2, C), np.float64) imgNew[1:-1, 1:-1, :] = img imgNew[1:-1, 0, :] = img[:, -1, :] imgNew[1:-1, -1, :] = img[:, 0, :] imgNew[0, 1:sphereW//2+1, :] = img[0, sphereW-1:sphereW//2-1:-1, :] imgNew[0, sphereW//2+1:-1, :] = img[0, sphereW//2-1::-1, :] imgNew[-1, 1:sphereW//2+1, :] = img[-1, sphereW-1:sphereW//2-1:-1, :] imgNew[-1, sphereW//2+1:-1, :] = img[0, sphereW//2-1::-1, :] imgNew[0, 0, :] = img[0, 0, :] imgNew[-1, -1, :] = img[-1, -1, :] imgNew[0, -1, :] = img[0, -1, :] imgNew[-1, 0, :] = img[-1, 0, :] rotImg = warpImageFast(imgNew, Px+1, Py+1) return rotImg def imgLookAt(im, CENTERx, CENTERy, new_imgH, fov): sphereH = im.shape[0] sphereW = im.shape[1] warped_im = np.zeros((new_imgH, new_imgH, 3)) TX, TY = np.meshgrid(range(1, new_imgH + 1), range(1, new_imgH + 1)) TX = TX.reshape(-1, 1, order='F') TY = TY.reshape(-1, 1, order='F') TX = TX - 0.5 - new_imgH/2 TY = TY - 0.5 - new_imgH/2 r = new_imgH / 2 / np.tan(fov/2) # convert to 3D R = np.sqrt(TY ** 2 + r ** 2) ANGy = np.arctan(- TY / r) ANGy = ANGy + CENTERy X = np.sin(ANGy) * R Y = -np.cos(ANGy) * R Z = TX INDn = np.nonzero(np.abs(ANGy) > np.pi/2) # project back to sphere ANGx = np.arctan(Z / -Y) RZY = np.sqrt(Z ** 2 + Y ** 2) ANGy = np.arctan(X / RZY) ANGx[INDn] = ANGx[INDn] + np.pi ANGx = ANGx + CENTERx INDy = np.nonzero(ANGy < -np.pi/2) ANGy[INDy] = -np.pi - ANGy[INDy] ANGx[INDy] = ANGx[INDy] + np.pi INDx = np.nonzero(ANGx <= -np.pi); ANGx[INDx] = ANGx[INDx] + 2 * np.pi INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi INDx = np.nonzero(ANGx > np.pi); ANGx[INDx] = ANGx[INDx] - 2 * np.pi Px = (ANGx + np.pi) / (2*np.pi) * sphereW + 0.5 Py = ((-ANGy) + np.pi/2) / np.pi * sphereH + 0.5 INDxx = np.nonzero(Px < 1) Px[INDxx] = Px[INDxx] + sphereW im = np.concatenate([im, im[:, :2]], 1) Px = Px.reshape(new_imgH, new_imgH, order='F') Py = Py.reshape(new_imgH, new_imgH, order='F') warped_im = warpImageFast(im, Px, Py) return warped_im def separatePano(panoImg, fov, x, y, imgSize=320): '''cut a panorama image into several separate views''' assert x.shape == y.shape if not isinstance(fov, np.ndarray): fov = fov * np.ones_like(x) sepScene = [ { 'img': imgLookAt(panoImg.copy(), xi, yi, imgSize, fovi), 'vx': xi, 'vy': yi, 'fov': fovi, 'sz': imgSize, } for xi, yi, fovi in zip(x, y, fov) ] return sepScene def lsdWrap(img): ''' Opencv implementation of <NAME>, <NAME>, <NAME>, and <NAME>, LSD: a Line Segment Detector, Image Processing On Line, vol. 2012. [Rafael12] http://www.ipol.im/pub/art/2012/gjmr-lsd/?utm_source=doi @img input image ''' if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) lines = lsd(img, quant=0.7) if lines is None: return np.zeros_like(img), np.array([]) edgeMap = np.zeros_like(img) for i in range(lines.shape[0]): pt1 = (int(lines[i, 0]), int(lines[i, 1])) pt2 = (int(lines[i, 2]), int(lines[i, 3])) width = lines[i, 4] cv2.line(edgeMap, pt1, pt2, 255, int(np.ceil(width / 2))) edgeList = np.concatenate([lines, np.ones_like(lines[:, :2])], 1) return edgeMap, edgeList def edgeFromImg2Pano(edge): edgeList = edge['edgeLst'] if len(edgeList) == 0: return np.array([]) vx = edge['vx'] vy = edge['vy'] fov = edge['fov'] imH, imW = edge['img'].shape R = (imW/2) / np.tan(fov/2) # im is the tangent plane, contacting with ball at [x0 y0 z0] x0 = R * np.cos(vy) * np.sin(vx) y0 = R * np.cos(vy) * np.cos(vx) z0 = R * np.sin(vy) vecposX = np.array([np.cos(vx), -np.sin(vx), 0]) vecposY = np.cross(np.array([x0, y0, z0]), vecposX) vecposY = vecposY / np.sqrt(vecposY @ vecposY.T) vecposX = vecposX.reshape(1, -1) vecposY = vecposY.reshape(1, -1) Xc = (0 + imW-1) / 2 Yc = (0 + imH-1) / 2 vecx1 = edgeList[:, [0]] - Xc vecy1 = edgeList[:, [1]] - Yc vecx2 = edgeList[:, [2]] - Xc vecy2 = edgeList[:, [3]] - Yc vec1 = np.tile(vecx1, [1, 3]) * vecposX + np.tile(vecy1, [1, 3]) * vecposY vec2 = np.tile(vecx2, [1, 3]) * vecposX + np.tile(vecy2, [1, 3]) * vecposY coord1 = [[x0, y0, z0]] + vec1 coord2 = [[x0, y0, z0]] + vec2 normal = np.cross(coord1, coord2, axis=1) normal = normal / np.linalg.norm(normal, axis=1, keepdims=True) panoList = np.hstack([normal, coord1, coord2, edgeList[:, [-1]]]) return panoList def _intersection(range1, range2): if range1[1] < range1[0]: range11 = [range1[0], 1] range12 = [0, range1[1]] else: range11 = range1 range12 = [0, 0] if range2[1] < range2[0]: range21 = [range2[0], 1] range22 = [0, range2[1]] else: range21 = range2 range22 = [0, 0] b = max(range11[0], range21[0]) < min(range11[1], range21[1]) if b: return b b2 = max(range12[0], range22[0]) < min(range12[1], range22[1]) b = b or b2 return b def _insideRange(pt, range): if range[1] > range[0]: b = pt >= range[0] and pt <= range[1] else: b1 = pt >= range[0] and pt <= 1 b2 = pt >= 0 and pt <= range[1] b = b1 or b2 return b def combineEdgesN(edges): ''' Combine some small line segments, should be very conservative OUTPUT lines: combined line segments ori_lines: original line segments line format [nx ny nz projectPlaneID umin umax LSfov score] ''' arcList = [] for edge in edges: panoLst = edge['panoLst'] if len(panoLst) == 0: continue arcList.append(panoLst) arcList = np.vstack(arcList) # ori lines numLine = len(arcList) ori_lines = np.zeros((numLine, 8)) areaXY = np.abs(arcList[:, 2]) areaYZ = np.abs(arcList[:, 0]) areaZX = np.abs(arcList[:, 1]) planeIDs = np.argmax(np.stack([areaXY, areaYZ, areaZX], -1), 1) + 1 # XY YZ ZX for i in range(numLine): ori_lines[i, :3] = arcList[i, :3] ori_lines[i, 3] = planeIDs[i] coord1 = arcList[i, 3:6] coord2 = arcList[i, 6:9] uv = xyz2uvN(np.stack([coord1, coord2]), planeIDs[i]) umax = uv[:, 0].max() + np.pi umin = uv[:, 0].min() + np.pi if umax - umin > np.pi: ori_lines[i, 4:6] = np.array([umax, umin]) / 2 / np.pi else: ori_lines[i, 4:6] = np.array([umin, umax]) / 2 / np.pi ori_lines[i, 6] = np.arccos(( np.dot(coord1, coord2) / (np.linalg.norm(coord1) * np.linalg.norm(coord2)) ).clip(-1, 1)) ori_lines[i, 7] = arcList[i, 9] # additive combination lines = ori_lines.copy() for _ in range(3): numLine = len(lines) valid_line = np.ones(numLine, bool) for i in range(numLine): if not valid_line[i]: continue dotProd = (lines[:, :3] * lines[[i], :3]).sum(1) valid_curr = np.logical_and((np.abs(dotProd) > np.cos(np.pi / 180)), valid_line) valid_curr[i] = False for j in np.nonzero(valid_curr)[0]: range1 = lines[i, 4:6] range2 = lines[j, 4:6] valid_rag = _intersection(range1, range2) if not valid_rag: continue # combine I = np.argmax(np.abs(lines[i, :3])) if lines[i, I] * lines[j, I] > 0: nc = lines[i, :3] * lines[i, 6] + lines[j, :3] * lines[j, 6] else: nc = lines[i, :3] * lines[i, 6] - lines[j, :3] * lines[j, 6] nc = nc / np.linalg.norm(nc) if _insideRange(range1[0], range2): nrmin = range2[0] else: nrmin = range1[0] if _insideRange(range1[1], range2): nrmax = range2[1] else: nrmax = range1[1] u = np.array([[nrmin], [nrmax]]) * 2 * np.pi - np.pi v = computeUVN(nc, u, lines[i, 3]) xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3]) l = np.arccos(np.dot(xyz[0, :], xyz[1, :]).clip(-1, 1)) scr = (lines[i,6]*lines[i,7] + lines[j,6]*lines[j,7]) / (lines[i,6]+lines[j,6]) lines[i] = [*nc, lines[i, 3], nrmin, nrmax, l, scr] valid_line[j] = False lines = lines[valid_line] return lines, ori_lines def combineEdgesN_v2(edges): ''' Combine some small line segments, should be very conservative OUTPUT lines: combined line segments line format [nx ny nz projectPlaneID umin umax LSfov score] coordN_lines: combined line segments with normal, start coordinate, and end coordinate ''' arcList = [] for edge in edges: panoLst = edge['panoLst'] if len(panoLst) == 0: continue arcList.append(panoLst) arcList = np.vstack(arcList) # ori lines numLine = len(arcList) ori_lines = np.zeros((numLine, 8)) ori_coordN_lines = np.zeros((numLine, 9)) # Line containing coordinate and normals areaXY = np.abs(arcList[:, 2]) areaYZ = np.abs(arcList[:, 0]) areaZX = np.abs(arcList[:, 1]) planeIDs = np.argmax(np.stack([areaXY, areaYZ, areaZX], -1), 1) + 1 # XY YZ ZX for i in range(numLine): ori_lines[i, :3] = arcList[i, :3] ori_lines[i, 3] = planeIDs[i] coord1 = arcList[i, 3:6] coord2 = arcList[i, 6:9] uv = xyz2uvN(np.stack([coord1, coord2]), planeIDs[i]) umax = uv[:, 0].max() + np.pi umin = uv[:, 0].min() + np.pi if umax - umin > np.pi: ori_lines[i, 4:6] = np.array([umax, umin]) / 2 / np.pi else: ori_lines[i, 4:6] = np.array([umin, umax]) / 2 / np.pi ori_lines[i, 6] = np.arccos(( np.dot(coord1, coord2) / (
np.linalg.norm(coord1)
numpy.linalg.norm
#!/usr/bin/env python # -*- coding: utf-8 -*- """ MIT License Copyright (c) 2021 by the authors listed in the LICENSE file Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from datetime import datetime import pandas as pd import numpy as np import scipy from scipy import stats from sklearn import metrics from statsmodels.stats import multitest from statistics import median, mean import matplotlib.pyplot as plt from math import log, exp, log10, isnan, sqrt from random import random import os import sys import json import urllib.parse import urllib.request from random import randint import multiprocessing import threading import traceback normalized_suffix = ", normalized" pval_adjust_methods = {"bonferroni": "Bonferoni, one-step correction", "sidak": "Sidak, one-step correction", "holm-sidak": "Holm-Sidak, step down method using Sidak adjustments", "holm": "Holm, step-down method using Bonferroni adjustments", "simes-hochberg": "Simes-Hochberg, step-up method (independent)", "hommel": "Hommel closed method based on Simes tests (non-negative)", "fdr_bh": "Benjamini/Hochberg (non-negative)", "fdr_by": "Benjamini/Yekutieli (negative)", "fdr_tsbh": "two stage Benjamini/Hochberg fdr correction (non-negative)", "fdr_tsbky": "two stage fdr correction (non-negative)" } ttest_types = {"two-sided": "two-sided", "less": "one-sided, less", "greater": "one-sided, greater"} def get_relative_path(file_path): script_path = os.getcwd() if os.path.isabs(file_path): script_tokens = os.path.normpath(script_path).split(os.sep) file_tokens = os.path.normpath(file_path).split(os.sep) if script_tokens[0] == file_tokens[0]: while len(script_tokens) > 0 and len(file_tokens) > 0 and script_tokens[0] == file_tokens[0]: script_tokens = script_tokens[1:] file_tokens = file_tokens[1:] file_path = os.path.join(*[".."] * len(script_tokens), *file_tokens) if len(file_tokens) > 0 else "." return file_path class LNTT(multiprocessing.Process): COLOR_REGULATION_TREATED = "#998ec3" COLOR_REGULATION_TREATED_LABEL = "#6a6388" COLOR_REGULATION_WT = "#f1a340" COLOR_REGULATION_WT_LABEL = "#b67b30" COLOR_UNREGULATED = "grey" COLOR_FC_BOUNDARIES = "darkred" COLOR_DISTRIBUTION_BAR = "#67a9cf" def __init__(self, lntt_queue, external_queue): super(LNTT, self).__init__() self.logging = external_queue self.lntt_queue = lntt_queue self.internal_queue = multiprocessing.Queue() self.interrupt = False def run(self): while True: task = self.lntt_queue.get() if type(task) == dict: self.interrupt = False multiprocessing.Process(target = self.process, args=(task, self.internal_queue)).start() elif type(task) == int: self.internal_queue.put(task) else: self.internal_queue.put(1) break def data_frame_imputation(self, data_frame, column_names, parameters, internal_queue, report): data_frame_imputation = parameters["data_imputation_value"] self.logging.put("Imputing the data containing at most %i missing values per entitiy" % data_frame_imputation) num_pre = len(data_frame) if data_frame_imputation > 0: if report != None: report.append("Values were imputed when an entity contained up to %i missing values." % data_frame_imputation) rows_to_drop = list(data_frame[column_names].isnull().sum(axis = 1) >= data_frame_imputation) rows_to_drop = np.array([idx for idx, v in enumerate(rows_to_drop) if v]) data_frame.drop(rows_to_drop, inplace = True) data_frame.reset_index(inplace = True, drop = True) set_col_names = set(column_names) for ci, col in enumerate(data_frame): try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass if col not in set_col_names: continue l = sorted(list(v for v in data_frame[col] if not isnan(v))) max_val = l[int(len(l) * 0.05)] for i, v in enumerate(data_frame[col].isnull()): if v: data_frame.iloc[i, ci] = max_val * random() else: # delete all rows that are not fully filled if report != None: report.append("All entities at least one with missing value were discarded.") rows_to_drop = list(data_frame[column_names].isnull().any(axis = 1)) rows_to_drop = np.array([idx for idx, v in enumerate(rows_to_drop) if v]) data_frame.drop(rows_to_drop, inplace = True) data_frame.reset_index(inplace = True, drop = True) num_post = len(data_frame) self.logging.put("After data imputation, %s of %s entities remain" % (num_post, num_pre)) if report != None: report.append("After this filtering step, %i entities remained." % len(data_frame)) def cv_filtering(self, data_frame, column_names, parameters, internal_queue, report): cv_threshold = parameters["cv_threshold"] num_pre = len(data_frame) self.logging.put("Filtering out entities having a CV <= %0.3f" % cv_threshold) if report != None: report.append("The entities were filtered by the covariance of variation (CV): when the entities had a CV < %0.1f %% over all measurement (regardless of their conditions), they were discarded." % (cv_threshold * 100)) cv = data_frame[column_names].std(axis = 1, skipna = True) / data_frame[column_names].mean(axis = 1, skipna = True) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass rows_to_drop = np.array([i for i, v in enumerate(list(cv < cv_threshold)) if v]) data_frame.drop(rows_to_drop, inplace = True) data_frame.reset_index(inplace = True, drop = True) num_post = len(data_frame) self.logging.put("After CV filtering, %s of %s entities remain" % (num_post, num_pre)) if report != None: report.append("After CV filtering, %i entities remained." % len(data_frame)) def normalization(self, original_data_frame, output_folder, column_names, conditions, parameters, internal_queue, report): global normalized_suffix reference_titles = conditions[parameters["norm_ref_condition"]] with_plotting = parameters["with_normalization_plotting"] self.logging.put("Normalizing columns applying rank invariant set normalization") if report != None: report.append("Normalization was performed by applying 'global rank-invariant set normalization' (DOI: 10.1186/1471-2105-9-520).") col_cnt = len([c for c in original_data_frame]) data_frame = pd.DataFrame(original_data_frame[column_names]) n_rows, n_cols = len(data_frame), len(data_frame.keys()) # save data_frame before normalization violin_data_frame, violin_data_frame_2, violin_col_names = [], [], [] violin_distribution, violin_distribution_2, vd_col_names = [], [], [] reference, max_val = 0, 0 for col in reference_titles: l = np.sum(~np.isnan(data_frame[col])) if max_val < l: reference = col max_val = l try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass # computing standard deviation of reference columns for median window estimation if len(reference_titles) > 1: std = data_frame[reference_titles].std(axis = 1, skipna = True) # sorting all columns according to reference masked_ref = np.ma.masked_where(np.isnan(data_frame[reference]), data_frame[reference]) sorting = np.argsort(masked_ref) unsorting = np.zeros(len(sorting), dtype = "int64") for i, v in enumerate(sorting): unsorting[v] = i # sort all columns according to the reference column for t in data_frame: data_frame[t] = np.array([data_frame[t][j] for j in sorting], dtype=np.float64) # set the reference columns and its masked version RefX = np.array(data_frame[reference]) masked_X = np.ma.masked_where(np.isnan(RefX), RefX) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass # linear regression for estimating appropriate boundaries for # consecutive moving average window, in equation: y = m * x + n if len(reference_titles) > 1: std = np.array([std[j] for j in sorting], dtype=np.float64) std_not_nan = ~np.isnan(std) ref_not_nan = ~np.isnan(RefX) m, n = np.polyfit(masked_X[ref_not_nan & std_not_nan], std[ref_not_nan & std_not_nan], 1) else: m, n = 1. / 10., 0 # compute boundaries of the median window for all values L = np.searchsorted(RefX, masked_X - 3 * m * masked_X) R = np.searchsorted(masked_X, masked_X + 3 * m * masked_X) reference_col_num = 0 min_points_in_window = 10 num_nan = max(np.sum(np.isnan(RefX)), 1) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass for cc, col_name in enumerate(data_frame): try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass self.logging.put(" - Normalizing column '%s'" % col_name) Y = data_frame[col_name] masked_Y = np.ma.masked_where(np.isnan(Y), Y) violin_data = np.log10(Y) violin_distribution.append(np.array(violin_data[~np.isnan(violin_data)]).tolist()) if col_name == reference: reference_col_num = cc violin_data = np.log10(Y) violin_distribution_2.append(np.array(violin_data[~np.isnan(violin_data)]).tolist()) Y_no_nans = ~np.isnan(Y) vd_col_names.append("%s (%i)" % (col_name, np.sum(Y_no_nans))) original_data_frame.insert(col_cnt, "%s%s" % (col_name, normalized_suffix), np.array([Y[j] for j in unsorting]), True) col_cnt += 1 continue violin_data_col = np.log10(data_frame[col_name] / RefX) violin_data_frame.append(np.array(violin_data_col[~np.isnan(violin_data_col)]).tolist()) Y_l = np.array(Y / RefX) prevL, last = np.zeros(len(Y), dtype = "int64"), 0 Y_no_nans = ~np.isnan(Y_l) for i in range(1, len(Y)): prevL[i] = last if Y_no_nans[i]: last = i nextR, last = np.zeros(len(Y), dtype = "int64"), len(Y) - 1 for i in range(len(Y) - 2, -1, -1): nextR[i] = last if Y_no_nans[i]: last = i min_points = min(min_points_in_window, log(np.sum(Y_no_nans)) + 1) YY = np.array([np.nan] * n_rows, dtype = "float64") nan_start = -1 for z, (l, r, y) in enumerate(zip(L, R, Y)): try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass if np.isnan(RefX[z]): nan_start = z break if np.ma.is_masked(y): continue Y_sub = Y_l[l : r + 1] n = list(Y_sub[~np.isnan(Y_sub)]) while len(n) < min_points: if l > 0: l = prevL[l] if ~np.isnan(Y_l[l]): n.append(Y_l[l]) if r < n_rows - num_nan: r = nextR[r] if ~np.isnan(Y_l[r]): n.append(Y_l[r]) if l == 0 and r >= n_rows - num_nan: break YY[z] = np.median(n) normalized_column_data = Y / YY violin_data_col = np.log10(normalized_column_data / RefX) violin_data_frame_2.append(np.array(violin_data_col[~np.isnan(violin_data_col)]).tolist()) Y_no_nans = ~np.isnan(normalized_column_data / RefX) violin_col_names.append("%s (%i)" % (col_name, np.sum(Y_no_nans))) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass # infer normalization factor for intensities without corresponding reference value # by considering normalized neighbors if np.isnan(RefX[-1]): Y_sorted_index = np.argsort(np.argsort(masked_Y)) for i in range(nan_start, n_rows): try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass if np.isnan(Y[i]): continue n, l, r = [], i, i if not np.isnan(YY[Y_sorted_index[i]]): n.append(YY[Y_sorted_index[i]]) while len(n) < 5: if l > 0: l -= 1 if not np.isnan(YY[Y_sorted_index[l]]): n.append(YY[Y_sorted_index[l]]) if r < n_rows - 1: r += 1 if not np.isnan(YY[Y_sorted_index[r]]): n.append(YY[Y_sorted_index[r]]) YY[i] = np.median(n) normalized_column_data = Y / YY violin_data = np.log10(normalized_column_data) violin_distribution_2.append(np.array(violin_data[~np.isnan(violin_data)]).tolist()) Y_no_nans = ~np.isnan(normalized_column_data) vd_col_names.append("%s (%i)" % (col_name, np.sum(Y_no_nans))) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass # plot a normalization figure to check the normalization quality if with_plotting: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5), sharey = True) #, tight_layout=True) plot_X = RefX[~np.isnan(RefX) & ~np.isnan(Y)] plot_Y = Y[~np.isnan(RefX) & ~np.isnan(Y)] plot_Y_corr = normalized_column_data[~np.isnan(RefX) & ~np.isnan(Y)] plot_YY = YY[~np.isnan(RefX) & ~np.isnan(Y)] ax2.axhline(linewidth=2, color='r') ax1.scatter(np.log10(plot_X), np.log2(plot_Y / plot_X)) ax1.plot(np.log10(plot_X), np.log2(plot_YY), '-', color = "r") ax2.scatter(np.log10(plot_X), np.log2(plot_Y_corr / plot_X)) ax1.set_ylabel("log${}_2$ (protein abundance ratio)") fig.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.xlabel("log${}_{10}$ protein abundances of '%s'" % reference) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass clean_col_name = col_name.replace("/", "").replace("\\", "") clean_col_name = clean_col_name.replace(":", "").replace("*", "") clean_col_name = clean_col_name.replace("?", "").replace("!", "") clean_col_name = clean_col_name.replace("<", "").replace(">", "") clean_col_name = clean_col_name.replace("\"", "").replace("'", "").replace("|", "") fig.suptitle("Condition '%s' against reference\n'%s' during normalization" % (col_name, reference)) #plt.tight_layout() fig_filename = os.path.join(output_folder, "%s-normalization.pdf" % clean_col_name) plt.savefig(fig_filename, dpi = 600) try: result = internal_queue.get_nowait() if result != None: self.interrupt = True return except: pass fig_filename = os.path.join(output_folder, "%s-normalization.png" % clean_col_name) plt.savefig(fig_filename, dpi = 600) plt.cla() # Clear axis plt.clf() # Clear figure plt.close() # Close a figure window original_data_frame.insert(col_cnt, "%s%s" % (col_name, normalized_suffix),
np.array([normalized_column_data[j] for j in unsorting])
numpy.array
import pickle as pkl import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.ticker import FixedLocator, FixedFormatter def log_histogram(data, name): """ Create ridgeline plots, where each individual plot is a log-y scaled histogram. data: 2D Numpy array Each row contains all the values to include in a single histogram. 0th row will be in the lowest ridgeline plot. Every Nth row will be a separate histogram. N is selected according to n_target_rows, below to avoid overwhelming the viewer. name: str A name stem for the results image. """ dpi = 300 border = .125 eps = 1e-6 # n_bins = 50 n_bins = 100 n_target_rows = 16 fig = plt.figure() ax = fig.gca() n_rows, n_cols = data.shape d_keep = np.maximum(1, np.floor(n_rows / n_target_rows)) i_keep = np.arange(0, n_rows, d_keep, dtype=int) data = data[i_keep, :] n_rows, n_cols = data.shape x_min = np.min(data) x_max =
np.max(data)
numpy.max
import math import matplotlib.pyplot as plt import numpy as np import scipy.signal as sg from astropy.io import fits from scipy.interpolate import CubicSpline from scipy.ndimage.filters import percentile_filter from scipy.signal import convolve2d from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.neighbors import KernelDensity from collections import Counter __author__ = 'nate' def cantor(a, b): """Cantor pairing function, used to give unique int name to each observation""" a = int(a) b = int(b) return (a + b) * (a + b + 1) / 2 + b def decantor(z): """Inverse Cantor""" w = math.floor(math.sqrt(8 * z + 1) / 2 - 0.5) t = ((w + 1) * w) / 2 y = z - t x = w - y return int(x), int(y) class APFRunString(str): def __add__(self, x): # If we're trying to add anything but an int, do normal string # addition. if type(x) is not int: return str.__add__(self, x) res = '' i = len(self)-1 while x > 0: # Get the ASCII code of the i-th letter and "normalize" it # so that a is 0, b is 1, etc. # If we are at the end of the string, make it -1, so that if we # need to "add" 1, we get a. if i >= 0: c = ord(self[i]) - 97 else: c = -1 # Calculate the number of positions by which the letter is to be # "rotated". pos = x % 26 # Calculate x for the next letter, add a "carry" if needed. x //= 26 if c + pos >= 26: x += 1 # Do the "rotation". c = (c + pos) % 26 # Add the letter at the beginning of the string. res = chr(c + 97) + res i -= 1 # If we didn't reach the end of the string, add the rest of the string back. if i >= 0: res = self[:i+1] + res return APFRunString(res) def filterbypercentile(arr, top, bottom): topp = np.percentile(arr, top) bottomp = np.percentile(arr, bottom) shortened = [bottomp < x < topp for x in arr] return shortened def reject_outliers(data, m=2.): # this must be modified so that it does a biased above outlier rejection p = 50 # PERCENTILE TO USE for split perc = np.percentile(data, p) upper_half = data[data > perc] d = np.abs(data - np.median(upper_half)) d2 = np.abs(upper_half - np.median(upper_half)) mdev = np.median(d2) s = d / mdev if mdev else 0. return s < m def gauss(x, *p): """ Simple Gaussian function :param x: ind var :param p: coefficients A, mu, sigma :return: numpy array gauss(x) """ A, mu, sigma = p return A * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) def csq_red(model, data, dof=3.): """ Computed a reduced cui square fit of data to model Assumes model sums to one :param model: expectation value of model :param data: observed data :param dof: number of degrees of freedom :return: Reduced chi square (float) """ total = np.sum(data) csq = np.power(np.array(model) * total - np.array(data), 2) error = np.array(data) error[np.where(error < 9)] = 9 csq = csq / error csq = np.sum(csq) csq /= len(data) - dof return csq def minimal_csq(coeffs, data, dof=3., n_it=20, min_thresh=0.005): """ Does a binary search to find a minimal chi square. :param coeffs: gaussian fit coefficients :param data: column to compute fit :param dof: number of DOF for reduced chi square computation :param n_it: number of iterations of Binary Search :param min_thresh: difference in BS iterations deemed "sufficiently close" :return: minimal value of chi square given n_it and min_thresh """ # TODO - anonymize from specific function type indices = np.arange(len(data)) ub = coeffs[1] + 0.9 lb = coeffs[1] - 1 ctr = n_it csq_past = 100 csq_now = 0 quick_csq = lambda x: csq_red(gauss(indices, *[coeffs[0], x, coeffs[2]]), data, dof=dof) while ctr and (csq_past - csq_now > min_thresh or ctr == n_it - 1): csq_past = csq_now midpoint = (ub + lb) / 2. l_midpoint = (lb + midpoint) / 2. r_midpoint = (ub + midpoint) / 2. csq_l = quick_csq(l_midpoint) csq_r = quick_csq(r_midpoint) if csq_r < csq_l: lb = midpoint csq_now = csq_r else: ub = midpoint csq_now = csq_l ctr -= 1 midpoint = (ub + lb) / 2. return csq_red(gauss(indices, *[coeffs[0], midpoint, coeffs[2]]), data, dof=dof) def makegaussian(size, fwhm=3, center=None): """ Adapted from <NAME> on GitHub Make a square gaussian kernel. size is the length of a side of the square fwhm is full-width-half-maximum, which can be thought of as an effective radius. """ x = np.arange(0, size, 1, float) y = x[:, np.newaxis] if center is None: x0 = y0 = size // 2 else: x0 = center[0] y0 = center[1] return np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / fwhm ** 2) def find_nearest(array, value): """Finds nearest value in array""" idx = (np.abs(array - value)).argmin() return array[idx] def pythag_dist_kernel(size=3): s = size + size + 1 offsetx = np.repeat(np.reshape(range(s), (s, 1)), s, axis=1) offsety = np.transpose(offsetx) return np.square(offsetx - size) + np.square(offsety - size) def get_header_info(rolist, info=['RA'], loc='/mir3/iodfitsdb'): """ Get header info for HIRES :param rolist: :param info: :param loc: :return: """ targ = 'Target' info.insert(0, targ) out = [] print (info) for i in rolist: t = fits.open(loc + '/rj' + str(i[0]) + '.' + str(i[1]) + '.fits')[0] prt = [t.header['TARGNAME'].strip(' ')] for j in info[1:]: prt.append(t.header[j]) print (prt) out.append(prt) return out def conv(arr, kernel=[[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]): return convolve2d(arr, kernel) # ------------------------------------------------------------------------------ # Utilities for fitting and interpolation # ------------------------------------------------------------------------------ def spline_interpolate(arr, nseg=20, percentile=50): """ Returns the cubic spline describing data, split into nseg segments. :param arr: input array :param nseg: number of same-size segments :param percentile: what percentile of each segment to use as midpt y value? :return: scipy.interpolate.CubicSpline """ l = len(arr) midpts = [np.median(arr[:int(l // nseg // 2)])] x = [0] for i in range(nseg): x += [int((0.5+i)*(l/nseg))] midpts += [np.percentile(arr[i * (l // nseg):(i + 1) * (l // nseg)], percentile)] x += [l-1] midpts += [np.median(arr[-int(l // nseg / 2):])] return CubicSpline(x,midpts) def poly_interpolator(arr,degree=4, nseg=5,percentile=95): """ Returns the function describing a polynomial fitting the data, split into nseg segments :param arr: input array :param degree: degree of polynpomial fit :param nseg: number of segments of equal length to use. :param percentile: :return: """ l = len(arr) midpts = [np.median(arr[:int(l // nseg // 2)])] x = [0] for i in range(nseg): x += [int((0.5 + i) * (l // nseg))] midpts += [np.percentile(arr[i * (l // nseg):(i + 1) * (l // nseg)], percentile)] x += [l - 1] midpts += [np.median(arr[-int(l // nseg // 2):])] return np.poly1d(np.polyfit(x, midpts, deg=degree)) def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, <NAME>, <NAME>, <NAME> Cambridge University Press ISBN-13: 9780521880688 """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode='valid') # This is the most effective continuum fit def continuum_fit(arr, percentile_kernel = 501,savitzky_kernel = 2001, savitzky_degree=4, perc=50): # This fixes the singularities # Value of 500 chosen arbitrarily - should not have too much of an effect fixval = np.max([np.abs(np.min(arr) * 2),500.]) fix = arr + fixval pcf = percentile_filter(fix, perc, size=percentile_kernel) sav = savitzky_golay(pcf, savitzky_kernel, savitzky_degree) return fix/(sav/np.max(sav)) - fixval def deblaze(arr, method = 'savitzky', percentile_kernel = 101, savitzky_kernel=2001, savitzky_degree=4, perc=50): if method == 'savitzky': return continuum_fit(arr, percentile_kernel=percentile_kernel, savitzky_kernel=savitzky_kernel, savitzky_degree=savitzky_degree, perc=perc) elif method == 'meanshift': median_of_array = np.median((arr) + 1000.) bandwidth = estimate_bandwidth(arr[:, np.newaxis], quantile=0.1) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(arr[:, np.newaxis]) # xvals = np.arange(4608) test = np.array(arr) labels = ms.labels_ # Replace the missing values (not at maximal cluster) with median of array values in cluster in original array test[labels != 0] = np.median(test[labels == 0]) test[test == 0] = 1 med_test = sg.medfilt(test, kernel_size=101) return arr / med_test * median_of_array elif method == 'percentile': # This code has been adapted - the percentile kernel specified is used to Lower Bound only fixval = np.max([np.abs(np.min(arr) * 2), 500.]) fix = arr + fixval pcf = np.max(np.array([percentile_filter(fix, perc, size=percentile_kernel), percentile_filter(fix, perc, size=101)]), axis=0) return fix / (pcf / np.mean(pcf)) - fixval else: raise KeyError('The deblaze method you have passed is not implemented. Please pick from savitzky, bstar, and meanshift') # ------------------------------------------------------------------------------ # Utilities for laser search # ------------------------------------------------------------------------------ def getpercentile(order, perc, method='meanshift', kernel_bandwidth=100, kernel='epanechnikov'): """ Returns value of 'perc'th percentile (usually 75th) count value in 'order' :param order: Spectral order to compute percentile on :param perc: What(th) %ile to compute. """ #TODO - add support for piecewise thresholds if method == 'percentile': nsplits = 1 # Compute percentile piecewise - I have not been maximum_thresh = 0 l=len(order) inc = l / nsplits for i in range(nsplits): sub = order[i * inc:(i + 1) * inc] percentile = np.percentile(sub, perc) if maximum_thresh < percentile: maximum_thresh = percentile return maximum_thresh elif method == 'kde': kde = KernelDensity(kernel=kernel, bandwidth=kernel_bandwidth).fit(order) elif method == 'meanshift': order_subset = order[::10,np.newaxis] try: bandwidth = estimate_bandwidth(order_subset, quantile=0.1) except ValueError: # Replace the NaN with enarest value order_to_estimate = order_subset ind = np.where(~np.isinf(order_to_estimate))[0] first, last = ind[0], ind[-1] order_to_estimate[:first] = order_to_estimate[first] order_to_estimate[last + 1:] = order_to_estimate[last] bandwidth = estimate_bandwidth(order_to_estimate, quantile=0.1) # print ('Bandwidth is {0}'.format(bandwidth)) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(order_subset) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) #for k in range(n_clusters_): # my_members = labels == k # print "cluster {0}: {1}".format(k, order[:, np.newaxis][my_members, 0]) #return cluster_centers[0][0] # print(cluster_centers) # TODO Determine why there is a index error ocurring here - should there be more than 3 clusters # or is this normal behavior? label_counter = Counter(labels) top_labels = filter(lambda x: x[1] > 100, label_counter.most_common()) if top_labels.__len__() == 0: top_labels = filter(lambda x: x[1] > 50, label_counter.most_common()) return np.max(map(lambda x: cluster_centers[x[0]][0],top_labels)) else: raise KeyError def contiguous_regions(condition): """ Borrowed from <NAME> on StackOverflow Finds contiguous True regions of the boolean array 'condition'. Returns a 2D array where the first column is the start index of the region and the second column is the end index. """ # Find the indices of changes in 'condition' d = np.diff(condition) idx, = d.nonzero() # We need to start things after the change in 'condition'. Therefore, # we'll shift the index by 1 to the right. idx += 1 if condition[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if condition[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, condition.size] # Edit # Reshape the result into two columns idx.shape = (-1, 2) return idx def finddeviates(order, thresh, npix=3): """returns a list of deviation indices [start,stop].""" out = [] #plt.plot(order) #plt.show() #print(order, thresh) #plt.cla() for start, stop in contiguous_regions(order > thresh): diff = stop - start if diff >= npix: out.append([diff, start]) return out def findthresh(order, npix=3.0, method='full_deviation'): """ Computes threshold using median absolute deviation (MAD) method note here that 'order' passed to this function is generally: spectral order - 75th percentile count value of spectral order That is, the sum of 3 consecutive points in order being above 0 is the same as sum of 3 being above 75th %ile in spectral order. Returns the Median Absolute (positive) Deviation of npix (usually 3) pixel bins above the percentile set in findhigher. """ # Number of pixels to demand consecutively deviant. 3 is appropriate for HIRES. # Convolution as a way of binning by 3 pixels to see groups that exceed if method == '3pix': binned_ord = np.convolve(np.ones(npix) / npix, order, 'valid') deviations = finddeviates(binned_ord, 0, npix) uppies = [] for j in deviations: for i in range(j[0]): uppies.append(binned_ord[j[1] + i]) elif method == 'full_deviation': deviations = finddeviates(order, 0, npix) uppies = [] for j in deviations: uppies.append(np.median(order[j[1]:j[1] + j[0]])) return np.median(uppies) def has_singularity(order): """ Tests order for a 'Singularity', or a common reduction error resulting in huge counts""" order = order[4:-4] order_c = np.convolve(np.abs(order), [1, 1]) big = np.where(order_c > 500)[0] zero_crossings = np.where(np.diff(np.sign(order)))[0] return True if np.intersect1d(big, zero_crossings).__len__() else False def hires_ignored_wavelengths(wav): """ Ignore results from these wavelength ranges.""" ignore_lb = np.array([6557.78, 4855.78, 4335.78, 3964.78, 3928.46, 3963.25, 5890.7, 5884.73, 7585.0, 7964.0, 6863.0]) ignore_ub = np.array([6568.22, 4866.22, 4346.22, 3975.22, 3938.9, 3973.69, 5901.14, 5895.17, 7660.0, 7965.2, 6920.0]) onesarr = np.ones(len(ignore_lb)) return np.any(np.logical_xor(
np.greater(ignore_lb, wav * onesarr)
numpy.greater
import os import numpy as np import copy from .ann import exportNet import os import numpy as np import copy from .ann import exportNet class WannDataGatherer(): ''' Data recorder for WANN algorithm''' def __init__(self, filename, hyp): """ Args: filename - (string) - path+prefix of file output destination hyp - (dict) - algorithm hyperparameters """ self.filename = filename # File name path + prefix self.p = hyp # Initialize empty fields self.elite = [] self.best = [] self.bestFitVec = [] self.spec_fit = [] self.field = ['x_scale','fit_med','fit_count', 'best_count','elite_count','fit_max','fit_top','fit_peak', 'fit_kl_stat', 'elite_kl_stat', 'best_kl_stat', \ 'node_med','conn_med',\ 'elite','best'] # self.field = ['x_scale','fit_med','fit_var','fit_novelty','best_var','elite_var', 'best_novelty','elite_novelty','fit_max','fit_top','fit_peak','kl_stat',\ # 'node_med','conn_med',\ # 'elite','best'] self.objVals = np.array([]) for f in self.field[:-2]: exec('self.' + f + ' = np.array([])') #e.g. self.fit_max = np.array([]) self.newBest = False def gatherData(self, pop, species): # Readabilityy p = self.p fitness = [ind.fitness for ind in pop] # novelty = [ind.novelty for ind in pop] kl_stat = [ind.kl_stat for ind in pop] count = [ind.count for ind in pop] # var = [ind.var for ind in pop] peakfit = [ind.fitMax for ind in pop] nodes = np.asarray([np.shape(ind.node)[1] for ind in pop]) conns = np.asarray([ind.nConn for ind in pop]) # --- Evaluation Scale --------------------------------------------------- if len(self.x_scale) == 0: self.x_scale = np.append(self.x_scale, len(pop)) else: self.x_scale = np.append(self.x_scale, self.x_scale[-1]+len(pop)) # ------------------------------------------------------------------------ # --- Best Individual ---------------------------------------------------- if p['alg_selection'] == "mean": self.elite.append(pop[np.argmax(fitness)]) if len(self.best) == 0: self.best = copy.deepcopy(self.elite) elif (self.elite[-1].fitness > self.best[-1].fitness): self.best = np.append(self.best,copy.deepcopy(self.elite[-1])) self.newBest = True else: self.best = np.append(self.best,copy.deepcopy(self.best[-1])) self.newBest = False # elif p['alg_selection'] == "novelty": # self.elite.append(pop[np.argmax(novelty)]) # if len(self.best) == 0: # self.best = copy.deepcopy(self.elite) # elif (self.elite[-1].novelty > self.best[-1].novelty): # self.best = np.append(self.best,copy.deepcopy(self.elite[-1])) # self.newBest = True # else: # self.best = np.append(self.best,copy.deepcopy(self.best[-1])) # self.newBest = False elif p['alg_selection'] == "stats": self.elite.append(pop[np.argmax(kl_stat)]) if len(self.best) == 0: self.best = copy.deepcopy(self.elite) elif (self.elite[-1].kl_stat > self.best[-1].kl_stat): self.best = np.append(self.best,copy.deepcopy(self.elite[-1])) self.newBest = True else: self.best = np.append(self.best,copy.deepcopy(self.best[-1])) self.newBest = False elif p['alg_selection'] == "count": self.elite.append(pop[
np.argmax(count)
numpy.argmax
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy import logging import csv import os from skimage.feature import peak_local_max from skimage.morphology import label, closing, disk, watershed from skimage.measure import regionprops from skimage.filters import gaussian from skimage.restoration import denoise_tv_chambolle from . import settings, tiles log = logging.getLogger() class Assignment: """ Representation of an assignment containing all the data (las, dom, dtm) to delineate the individual trees. """ __slots__ = ["tile_number", "tile_buffer", "extent", "params", "resolution", "csv_file", "timberline", "las", "dom", "dtm"] """ Using slots for memory performance boost. See: http://book.pythontips.com/en/latest/__slots__magic.html""" def __init__(self, tile_number, tile_buffer, extent): """ Initialization of an assignment. :param tile_number: The unique tile number :type tile_number: Integer :param tile_buffer: The buffer in meter to extend this assignment before processing :type tile_buffer: Integer :param extent: The extent of the tiles belonging to this assignment :type extent: :class:`treedetection.tiles.Extent` """ self.tile_number = tile_number self.tile_buffer = tile_buffer self.extent = extent self.params = WatershedParams() self.resolution = self.params.resolution self.csv_file = settings.get("data.tmp_trees").format(tile_number=self.tile_number) self.timberline = settings.get("tree_restrictions.timberline") las_path = settings.get("data.las")[tile_number % len(settings.get("data.las"))].format(tile_number=tile_number) dom_path = settings.get("data.dom")[tile_number % len(settings.get("data.dom"))].format(tile_number=tile_number) dtm_path = settings.get("data.dtm")[tile_number % len(settings.get("data.dtm"))].format(tile_number=tile_number) self.las = tiles.LasTile(tile_number, "LAS", las_path, self.resolution, tiles.Neighborhood.CENTER, extent, self.timberline) self.dom = tiles.RasterTile(tile_number, "DOM", dom_path, self.resolution, tiles.Neighborhood.CENTER, extent, self.timberline) self.dtm = tiles.RasterTile(tile_number, "DTM", dtm_path, self.resolution, tiles.Neighborhood.CENTER, extent, self.timberline) def __repr__(self): """ String representation of this object :return: The assignment as a string """ return "Assignment {}".format(self.tile_number) def __eq__(self, other): """ Check equality of two assignments. Two assignments are equal when processing the same tile number. :param other: The assignment to compare this object with :type other: :class:`runner.Assignment` :return: True, if the assignment represent the same tile number, false otherwise. """ return isinstance(other, self.__class__) and self.tile_number == other.tile_number def set_neighbour(self, tile_number, extent, position): """ Append neighboring tiles to this assignment. :param tile_number: The unique tile number :type tile_number: Integer :param extent: The extent of the tiles belonging to this assignment :type extent: :class:`treedetection.tiles.Extent` :param position: The position of this tile in the cartesian 8-neighborhood :type position: :class:`treedetection.tiles.Neighborhood` """ las_path = settings.get("data.las")[tile_number % len(settings.get("data.las"))].format(tile_number=tile_number) dom_path = settings.get("data.dom")[tile_number % len(settings.get("data.dom"))].format(tile_number=tile_number) dtm_path = settings.get("data.dtm")[tile_number % len(settings.get("data.dtm"))].format(tile_number=tile_number) self.las.append(tiles.LasTile(tile_number, "LAS", las_path, self.resolution, position, extent, self.timberline)) self.dom.append( tiles.RasterTile(tile_number, "DOM", dom_path, self.resolution, position, extent, self.timberline)) self.dtm.append( tiles.RasterTile(tile_number, "DTM", dtm_path, self.resolution, position, extent, self.timberline)) def ready(self): """ Check for existence of LAS, DOM and DTM files to run this assignment :return: True, if LAS, DOM and DTM files are existing. False otherwise. :rtype: Boolean """ return self.las.exists() and self.dom.exists() and self.dtm.exists() def clear_data(self): """ Delete some data after delineation of trees to free some memory. """ del self.las del self.dtm del self.dom del self.params log.debug("Removed LAS, DTM and DOM from memory in {}".format(self)) def run(self): """ Main entry point to run this assignment. Checks for existence of required data before. Prepare all the LAS-, DOM- and DTM-files, delineate the trees and export it to a CSV file. """ if not self.ready(): log.info("Skipping {}. Could not find all required data (LAS, DOM and DTM)".format(self)) elif os.path.exists(self.csv_file): log.info("Skipping {}. Trees already delineated".format(self)) else: log.info("Loading data for {}".format(self.tile_number)) self.las.prepare(self.tile_buffer) self.dom.prepare(self.tile_buffer) self.dtm.prepare(self.tile_buffer) log.info("Delineating trees in {}".format(self.las.number)) trees = self._delineate_trees() self.clear_data() self.to_csv(trees) def _delineate_trees(self): """ Private function to get the single trees by watershed segmentation. Forest and open field areas are processed separately with distinct parameters. :return: A list of trees :rtype: Dictionary of :class:`treedetection.assignments.Tree` """ # Closing closed = closing(self.las.image, disk(self.params.closing_radius)) log.debug("Morphologically closed {}".format(self.las.number)) # Create a mask for regions with trees mask = numpy.copy(closed) mask[mask != 0] = 1 del closed veg_dom = numpy.ma.array(self.dom.image, mask=(1 - mask).astype(int), fill_value=0).filled() # Separating field from forest regions regions_field = label(mask) regions_forest = numpy.copy(regions_field) region_props = regionprops(regions_field, intensity_image=self.dtm.image) forest_labels = [r.label for r in region_props if r.filled_area / ( self.params.resolution * self.params.resolution) > self.params.forest_area_threshold or r.mean_intensity > self.params.conifer_height_threshold] regions_forest[numpy.isin(regions_forest, forest_labels, invert=True)] = 0 regions_field[numpy.isin(regions_field, forest_labels)] = 0 field = numpy.ma.array(veg_dom, mask=regions_forest, fill_value=0).filled() forest = numpy.ma.array(veg_dom, mask=regions_field, fill_value=0).filled() log.debug("Separated forest and field areas for {}".format(self.las.number)) del veg_dom trees_field = self._watershed(field, self.las.number, "field", self.params.field_denoising_weight, self.params.field_sigma, self.params.field_truncate, self.params.field_min_distance, self.params.field_compactness) trees_forest = self._watershed(forest, self.las.number, "forest", self.params.forest_denoising_weight, self.params.forest_sigma, self.params.forest_truncate, self.params.forest_min_distance, self.params.forest_compactness) trees = trees_field + (trees_forest * (numpy.max(trees_field) + 1)) del field del forest del trees_field del trees_forest log.info("Found {} trees in {}".format(len(regionprops(trees)), self.las.number)) return self._extract_tree_params(trees) def _extract_tree_params(self, trees): """ Private method to extract tree params from delineated trees. To get the shape the region properties of the trees has to be analyzed with the DOM. To get the height an additional analyzing loop with the DTM is required. Unrealistic trees will be eliminated according the settings. :param trees: Regions of all trees found in the given area. :type trees: numpy Array :return: Dictionary object containing all trees :rtype: Dictionary """ found_trees = {} # Tree position (3D) for tree in regionprops(trees, intensity_image=self.dom.image): # Export with location of weighted_centroid centroid = list(tree.weighted_centroid) if self.params.tile_buffer * self.params.resolution < centroid[0] < self.dom.image.shape[0] - ( self.params.tile_buffer * self.params.resolution) and self.params.tile_buffer * self.params.resolution < \ centroid[1] < self.dom.image.shape[1] - (self.params.tile_buffer * self.params.resolution): x = centroid[1] / self.params.resolution + self.las.extent.min_x y = self.las.extent.max_y - centroid[0] / self.params.resolution z = tree.max_intensity loc_y, loc_x = numpy.where(tree.intensity_image == z) x_height = loc_x[0] y_height = loc_y[0] chm = tree.intensity_image[numpy.nonzero(tree.intensity_image)] minor_axis = max(1 / self.params.resolution, tree.minor_axis_length / self.params.resolution) major_axis = max(1 / self.params.resolution, tree.major_axis_length / self.params.resolution) found_trees[tree.label] = Tree(tree.label, x, y, z, x_height, y_height, dom_max=tree.max_intensity, dom_mean=numpy.mean(chm), dom_median=numpy.median(chm), dom_min=
numpy.min(chm)
numpy.min
from __future__ import division from __future__ import print_function from __future__ import absolute_import import matplotlib from matplotlib.projections import register_projection from matplotlib.ticker import (MultipleLocator, FixedLocator, AutoLocator, ScalarFormatter) from matplotlib.pyplot import rcParams, figure, show, draw from numpy import (ma, array, linspace, logspace, log, cos, sin, pi, zeros, exp, arange, trapz, where, concatenate, nan, isnan, argsort, log10, meshgrid) from datetime import datetime import os import sys # Local thermodynamics stuff, see thermodynamics.py try: from .thermodynamics import ( VirtualTemp, Latentc, VaporPressure, MixRatio, GammaW, VirtualTempFromMixR, MixR2VaporPress, DewPoint, Theta, TempK, Density, DensHumid, ThetaE, ThetaV, barometric_equation_inv) from .thermodynamics import Rs_da, Cp_da, Epsilon, degCtoK except: from thermodynamics import ( VirtualTemp, Latentc, VaporPressure, MixRatio, GammaW, VirtualTempFromMixR, MixR2VaporPress, DewPoint, Theta, TempK, Density, DensHumid, ThetaE, ThetaV, barometric_equation_inv) from thermodynamics import Rs_da, Cp_da, Epsilon, degCtoK # UserDict located in different places depending on Python 2 vs. 3 try: from UserDict import UserDict except ImportError: from collections import UserDict mpl_version = str(matplotlib.__version__) mpl_version_digits = [int(ss) for ss in mpl_version.split('.')] assert mpl_version_digits[0] >= 1, "Requires matplotlib version>1.0.0" if mpl_version_digits[1] < 4: # Thanks <NAME> for providing the original (and presumably, the current) # implementation of the SkewX preojections try: from .skewx_projection_matplotlib_lt_1d4 import SkewXAxes except: from skewx_projection_matplotlib_lt_1d4 import SkewXAxes else: # See: http://matplotlib.org/mpl_examples/api/skewt.py # The _only_ change to the code is on line 113, where I set # rot=45 to suit my axes. try: from .skewx_projection import SkewXAxes except: from skewx_projection import SkewXAxes # SkewT version __version__ = "1.1.0" class SkewXAxes(SkewXAxes): # In the SkewT package, SkewXAxes is a subclass of the one provided # by R<NAME>, either from the example on his webpage (circa 2011) or # the example on the matplotlib page. I add the following methods. def other_housekeeping(self, mixratio=array([])): # Added by <NAME> self.yaxis.grid(True, ls='-', color='y', lw=0.5) majorLocatorDegC = MultipleLocator(10) self.xaxis.set_major_locator(majorLocatorDegC) self.xaxis.grid(True, color='y', lw=0.5, ls='-') # self.set_ylabel('Pressure (hPa)') self.set_xlabel('Temperature (C)') yticks = linspace(100, 1000, 10) if self.pmin < 100: yticks = concatenate((array([50, 20, 10]), yticks)) self.set_yticks(yticks) self.yaxis.set_major_formatter(ScalarFormatter()) self.set_xlim(self.tmin, self.tmax) self.set_ylim(self.pmax, self.pmin) self.spines['right'].set_visible(False) self.get_yaxis().set_tick_params(which="both", size=0) self.get_xaxis().set_tick_params(which="both", size=0) def add_dry_adiabats(self, T0, P, do_labels=True, **kwargs): # Added by <NAME> P0 = 1000. T = array([(st+degCtoK)*(P/P0)**(Rs_da/Cp_da)-degCtoK for st in T0]) labelt = [(st+degCtoK)*1**(Rs_da/Cp_da) for st in T0] # gets a pressure level about 1/4 the way up the plot... pp = 10**(log10(self.pmin**.2*self.pmax**.8)) xi = where(abs(P-pp) - abs(P-pp).min() < 1e-6)[0][0] ndec = log10(self.pmax/pp)/log10(self.pmax/self.pmin) tran = self.tmax - self.tmin tminl = self.tmin - tran * ndec tmaxl = self.tmax - tran * ndec if 'color' in kwargs: col = kwargs['color'] else: col = 'k' for tt, ll in zip(T, labelt): self.plot(tt, P, **kwargs) if do_labels: if tt[xi] > tmaxl - 2: continue if tt[xi] < tminl + 2: continue self.text(tt[xi], P[xi]+10, '%d' % (ll), fontsize=8, ha='center', va='bottom', rotation=-30, color=col, bbox={'facecolor': 'w', 'edgecolor': 'w'}) return T def add_moist_adiabats(self, T0, P0, do_labels=True, **kwargs): # Added by <NAME> moist_adiabats = array([moist_ascent(P0, st) for st in T0]) T = moist_adiabats[:, 1, :] P = moist_adiabats[0, 0, :] # gets a pressure level about 3/4 the way up the plot... pp = 10**(log10(self.pmin**.75*self.pmax**.25)) xi = where(abs(P-pp) - abs(P-pp).min() < 1e-6)[0][0] ndec = log10(self.pmax/pp) / log10(self.pmax/self.pmin) tran = self.tmax - self.tmin tminl = self.tmin - tran * ndec tmaxl = self.tmax - tran * ndec if 'color' in kwargs: col = kwargs['color'] else: col = 'k' for tt in T: self.plot(tt, P, **kwargs) # if (tt[-1]>-60) and (tt[-1]<-10): if do_labels: if tt[xi] > tmaxl - 2: continue if tt[xi] < tminl + 2: continue self.text( tt[xi], P[xi], '%d' % tt[0], ha='center', va='bottom', fontsize=8, bbox={'facecolor': 'w', 'edgecolor': 'w'}, color=col) def add_mixratio_isopleths(self, w, P, do_labels=True, **kwargs): # Added by <NAME> e = array([P*ww/(.622+ww) for ww in w]) T = 243.5 / (17.67 / log(e/6.112) - 1) if 'color' in kwargs: col = kwargs['color'] else: col = 'k' pp = 700. xi = where(abs(P-pp) - abs(P-pp).min() < 1e-6)[0][0] ndec = log10(self.pmax/pp) / log10(self.pmax/self.pmin) tran = self.tmax - self.tmin tminl = self.tmin - tran * ndec tmaxl = self.tmax - tran * ndec for tt, mr in zip(T, w): self.plot(tt, P.flatten(), **kwargs) if do_labels: if tt[xi] > tmaxl - 2: continue if tt[xi] < tminl + 2: continue if mr * 1000 < 0.1: fmt = "%4.2f" elif mr * 1000 <= 1.: fmt = "%4.1f" else: fmt = "%d" self.text( tt[-1], P[-1], fmt % (mr * 1000), color=col, fontsize=8, ha='center', va='bottom', bbox={'facecolor': 'w', 'edgecolor': 'w'}) # Now register the projection with matplotlib so the user can select # it. register_projection(SkewXAxes) class Sounding(UserDict): # Copyright (c) 2013 <NAME> """Utilities to read, write and plot sounding data quickly and without fuss INPUTS: filename: If creating a sounding from a file, the full file name. The format of this file is quite pedantic and needs to conform to the format given by the University of Wyoming soundings (see weather.uwyo.edu/upperair/sounding.html) data: Soundings can be made from atmospheric data. This should be in the form of a python dict with (at minimum) the following fields: TEMP: dry-bulb temperature (Deg C) DWPT: dew point temperature (Deg C) PRES: pressure (hPa) SKNT: wind speed (knots) WDIR: wind direction (deg) The following fields are also used, but not required by the plot_skewt routine: HGHT (m) RELH (%) MIXR (g/kg) THTA (K) THTE (K) THTV (K) """ _AllowedKeys = ['pres', 'hght', 'temp', 'dwpt', 'relh', 'mixr', 'drct', 'sknt', 'thta', 'thte', 'thtv'] def __init__(self, filename=None, soundingdata=None): UserDict.__init__(self) self.soundingdata = {} if soundingdata is None: self.uwyofile(filename) else: for kk in soundingdata.keys(): if kk.lower() not in Sounding._AllowedKeys: self[kk] = soundingdata.pop(kk) else: dd = soundingdata[kk] if hasattr(dd, 'mask'): ddm = dd else: ddm = ma.masked_invalid(dd) ddm = ma.masked_values(ddm, -999) ddm = ma.masked_array(ddm, mask=False).harden_mask() self.soundingdata[kk] = ddm if 'StationNumber' not in self: self['StationNumber'] = '(No Number)' if 'SoundingDate' not in self: self['SoundingDate'] = '(No Date)' def plot_skewt(self, pmax=1050., pmin=100., parcel_type='most_unstable', imagename=None, title=None, **kwargs): """A wrapper for plotting the skewt diagram for a Sounding instance.""" self.make_skewt_axes(pmax, pmin) self.add_profile(**kwargs) if parcel_type is not None: parcel = self.get_parcel(parcel_type) self.lift_parcel(*parcel) self.column_diagnostics() if isinstance(title, str): self.skewxaxis.set_title(title) else: self.skewxaxis.set_title("%s %s" % (self["StationNumber"], self['SoundingDate'])) if imagename is not None: print("saving figure") self.fig.savefig(imagename, dpi=100) def add_profile(self, **kwargs): """Add a new profile to the SkewT plot. This is abstracted from plot_skewt to enable the plotting of multiple profiles on a single axis, by updating the data attribute. For example: >>> S=SkewT.Sounding(soundingdata={}) S.make_skewt_axes() S.uwyofile("../examples/94975.2013062800.txt") S.add_profile(color="b",bloc=0.5) S.uwyofile("../examples/94975.2013070900.txt") S.add_profile(color="r",bloc=1.) >>> Use the kwarg 'bloc' to set the alignment of the wind barbs from the centerline (useful if plotting multiple profiles on the one axis) >>> Modified 25/07/2013: enforce masking of input soundingdata for this function (does not affect the data attribute). """ # I must be a dummy because I can't make # this work any other way!! if 'bloc' in kwargs: bloc = kwargs.pop('bloc') else: bloc = 0.5 try: pres = ma.masked_invalid(self.soundingdata['pres']) except KeyError: raise KeyError("Pres in hPa (PRES) is required!") try: tc = ma.masked_invalid(self.soundingdata['temp']) except KeyError: raise KeyError("Temperature in C (TEMP) is required!") try: dwpt = ma.masked_invalid(self.soundingdata['dwpt']) except KeyError: print("Warning: No DWPT available") dwpt = ma.masked_array(zeros(pres.shape), mask=True) try: sknt = self.soundingdata['sknt'] drct = self.soundingdata['drct'] rdir = (270.-drct)*(pi/180.) uu = ma.masked_invalid(sknt*cos(rdir)) vv = ma.masked_invalid(sknt*sin(rdir)) except KeyError: print("Warning: No SKNT/DRCT available") uu = ma.masked_array(zeros(pres.shape), mask=True) vv = ma.masked_array(zeros(pres.shape), mask=True) tcprof = self.skewxaxis.plot(tc, pres, zorder=5, **kwargs) dpprof = self.skewxaxis.plot(dwpt, pres, zorder=5, **kwargs) # this line should no longer cause an exception nbarbs = (~uu.mask).sum() skip = max(1, int(nbarbs//32)) if 'color' in kwargs: bcol = kwargs['color'] else: bcol = 'k' if 'alpha' in kwargs: balph = kwargs['alpha'] else: balph = 1. self.wbax.barbs((zeros(pres.shape)+bloc)[::skip]-0.5, pres[::skip], uu[::skip], vv[::skip], length=6, color=bcol, alpha=balph, lw=0.5) self.skewxaxis.other_housekeeping() return tcprof def make_skewt_axes(self, pmax=1050., pmin=100., tmin=-40., tmax=30., fig=None): """Set up the skew-t axis the way I like to see it""" if fig is None: self.fig = figure(figsize=(8, 8)) self.fig.clf() else: self.fig = fig rcParams.update({'font.size': 10, }) self.skewxaxis = self.fig.add_axes([.065, .1, .71, .8], projection='skewx') self.skewxaxis.set_yscale('log') self.skewxaxis.pmax = pmax self.skewxaxis.pmin = pmin self.skewxaxis.tmax = tmax self.skewxaxis.tmin = tmin xticklocs = arange(-80, 45, 10) T0 = xticklocs # P=linspace(pmax,pmin,101) P = logspace(log10(pmax), log10(pmin), 101) w = array([0.00001, 0.0001, 0.0004, 0.001, 0.002, 0.004, 0.007, 0.01, 0.016, 0.024, 0.032]) self.skewxaxis.add_mixratio_isopleths( w, P[P >= 700], color='g', ls='--', alpha=1., lw=0.5) self.skewxaxis.add_dry_adiabats( linspace(210, 550, 18)-degCtoK, P, color='g', ls='--', alpha=1., lw=0.5) self.skewxaxis.add_moist_adiabats( linspace(0, 44, 12), pmax, color='g', ls='--', alpha=1., lw=0.5) self.skewxaxis.set_title("%s %s" % (self['StationNumber'], self['SoundingDate'])) self.skewxaxis.other_housekeeping() self.wbax = self.fig.add_axes([0.685, 0.1, 0.1, 0.8], sharey=self.skewxaxis, frameon=False) self.wbax.xaxis.set_ticks([], []) self.wbax.yaxis.grid(True, ls='-', color='y', lw=0.5) for tick in self.wbax.yaxis.get_major_ticks(): # tick.label1On = False pass self.wbax.get_yaxis().set_tick_params(size=0, color='y') self.wbax.set_xlim(-1.5, 1.5) self.wbax.get_yaxis().set_visible(False) self.wbax.set_title('kn', fontsize=10, color='k', ha='right') # Set up standard atmosphere height scale on # LHS of plot. majorLocatorKM = MultipleLocator(2) majorLocatorKFT = MultipleLocator(5) minorLocator = MultipleLocator(1) # determine base height from base pressure (nominally 1050 hPa) # via hydrostatic equilibrium for standard atmosphere # model atmospheric conditions with constant lapse rate and # NIST (1013.25hPa and 20C) zmin = barometric_equation_inv(0, 293.15, 101325., pmax*100.) zmax = barometric_equation_inv(0, 293.15, 101325., pmin*100.) zminf = zmin * 3.2808 zmaxf = zmax * 3.2808 self.kmhax = self.fig.add_axes([0.775, 0.1, 1e-6, 0.8], frameon=True) self.kmhax.xaxis.set_ticks([], []) self.kmhax.spines['left'].set_color('k') self.kmhax.spines['right'].set_visible(False) self.kmhax.tick_params(axis='y', colors='k', labelsize=8) self.kmhax.set_ylim(zmin*1e-3, zmax*1e-3) self.kmhax.set_title("km/kft", fontsize=10) self.kmhax.get_yaxis().set_tick_params(which="both", direction='out') self.kmhax.yaxis.set_major_locator(majorLocatorKM) self.kmhax.yaxis.set_minor_locator(minorLocator) self.fthax = self.kmhax.twinx() self.fthax.xaxis.set_ticks([], []) self.fthax.tick_params(axis='y', colors='k', labelsize=8) self.fthax.set_ylim(zminf*1e-3, zmaxf*1e-3) self.fthax.get_yaxis().set_tick_params(which="both", direction='out') self.fthax.yaxis.set_major_locator(majorLocatorKFT) self.fthax.yaxis.set_minor_locator(minorLocator) def uwyofile(self, fname): """Reads the raw profile data from a Universiy of Wyoming sounding file. This is the primary method of IO for SkewT. The University of Wyoming maintains a nice database of global upper air data which is kept up-to-date. Given a filename, this method updates the sounding data with the text data in the file. NOTES 1. The input file has to conform *Exactly* to the University of Wyoming file format. This is because I look for data fields at specific places on each line. 2. I ignore the diagnostics at the end of the file, because the idea is to calculate these myself. 3. When this no longer works I'll begin reading in a more array-esque way. """ # ------------------------------------------------------------------- # This *should* be a convenient way to read a uwyo sounding # ------------------------------------------------------------------- fid = open(fname) lines = fid.readlines() # New: handle whitespace at top of file if present while not lines[0].strip(): lines.pop(0) nlines = len(lines) lhi = [1, 9, 16, 23, 30, 37, 46, 53, 58, 65, 72] rhi = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77] # initialise output data structure output = {} fields = lines[3].split() units = lines[4].split() # Handle the file header # First line for WRF profiles differs from the UWYO soundings header = lines[0] if header[:5] == '00000': # WRF profile self['StationNumber'] = '00000' self['Longitude'] = float(header.split()[5].strip(",")) self['Latitude'] = float(header.split()[6]) self['SoundingDate'] = header.split()[-1] else: self['StationNumber'] = header[:5] dstr = (' ').join(header.split()[-4:]) self['SoundingDate'] = \ datetime.strptime( dstr, "%HZ %d %b %Y").strftime("%Y-%m-%d_%H:%M:%S") # This is a data pre-initialisation step. I have used the # number of lines minus the number of lines of diagnostics. for ff in fields: # output[ff.lower()]=zeros((nlines-34))-999. output[ff.lower()] = [] lcounter = 5 for line, idx in zip(lines[6:], range(nlines)): lcounter += 1 # Version < 0.1.4 # try: output[fields[0].lower()][idx]=float(line[lhi[0]:rhi[0]]) # except ValueError: break # New code. We test for pressure in the first column. # If there's no pressure, we get out! try: output[fields[0].lower()].append(float(line[lhi[0]:rhi[0]])) except ValueError: break for ii in range(1, len(rhi)): try: # Debug only: # print fields[ii].lower(), # float(line[lhi[ii]:rhi[ii]].strip()) # Version < 0.1.4 # output[fields[ii].lower()\ # [idx]=float(line[lhi[ii]:rhi[ii]].strip()) # New Code. Append to list instead of indexing # pre-allocated data. Explicitly allocate -999 # for invalid data (catch ValueError) textdata = line[lhi[ii]:rhi[ii]].strip() output[fields[ii].lower()].append(float(textdata)) except ValueError: output[fields[ii].lower()].append(-999.) for field in fields: ff = field.lower() # set mask for missing data dd = ma.masked_values(output[ff], -999.) dd = ma.masked_array(dd, mask=False) dd.harden_mask() self.soundingdata[ff] = dd return None def column_diagnostics(self): """Wrapper for column diagnostics""" self['Diagnostics'] = {} dtext = "Column:\n" self['Diagnostics']['TPW'] = self.precipitable_water() dtext += "%4s:%6.1f mm" % ('TPW', self['Diagnostics']['TPW']) self.fig.text(0.825, 0.65, dtext, fontname='monospace', va='top', backgroundcolor='white') def precipitable_water(self): """Calculate Total Precipitable Water (TPW) for sounding. TPW is defined as the total column-integrated water vapour. I calculate it from the dew point temperature because this is the fundamental moisture variable in this module (even though it is RH that is usually measured directly) """ tempk = self.soundingdata['temp'] + degCtoK prespa = self.soundingdata['pres'] * 100. hghtm = self.soundingdata['hght'] # Get Water Vapour Mixing Ratio, by calculation # from dew point temperature try: dwptc = self.soundingdata['dwpt'] except KeyError: print("Warning: No MIXR or DWPT for TPW calculation") return -999. vprespa = VaporPressure(dwptc) mixrkg = MixRatio(vprespa, prespa) # Calculate density of air (accounting for moisture) rho = DensHumid(tempk, prespa, vprespa) # Trapezoidal rule to approximate TPW (units kg/m^2==mm) tpw = trapz(mixrkg*rho, hghtm) return tpw def get_cape(self, startp, startt, startdp, totalcape=False): """Wrapper for the numerics of calculating CAPE. INPUTS: startp,startt,startdp: Definition of the parcel that we will base the calculations on. This can be the output of Sounding.get_parcel() or it can be a user- defined parcel. totalcape [=False] : Flag defining method of identifying the so- called "Equilibrium Level" (Reference). If False (default), use the first stable layer above the LFC, and ignore any CAPE in unstable layers above this. If True, use all CAPE up to the highest equilibrium level. OUTPUTS: P_lcl : The lifted condensation level (LCL) P_lfc : The level of free convection (LFC). Can be the same as the LCL, or can be NaN if there are no unstable layers. P_el : The Equilibrium Level, used to determine the CAPE. If totalcape=True, use the highest equilibrium level, otherwise use the first stable equilibrium level above the LFC. CAPE : CAPE calculated from virtual temperature CIN : CIN calculated from virtual temperature HINT: parcel=S.get_parcel('mu') lcl,lfc,el,cape,cin=get_cape(*parcel) """ from numpy import interp assert startt >= startdp, "Not a valid parcel. Check Td<Tc" # fundamental environmental variables pres = self.soundingdata['pres'] temp = self.soundingdata['temp'] # Get Sub-LCL traces presdry, tempdry, tempiso = dry_ascent( startp, startt, startdp, nsteps=101) # make lcl variables explicit P_lcl = presdry[-1] T_lcl = tempdry[-1] # Now lift a wet parcel from the intersection point # preswet=linspace(P_lcl,100,101) preswet, tempwet = moist_ascent(P_lcl, T_lcl, nsteps=101) # tparcel is the concatenation of tempdry and # tempwet, and so on. tparcel = concatenate((tempdry, tempwet[1:])) pparcel = concatenate((presdry, preswet[1:])) dpparcel = concatenate((tempiso, tempwet[1:])) # Interpolating the environmental profile onto the # parcel pressure coordinate # tempenv=interp(preswet,pres[::-1],temp[::-1]) # NEW, for total column: tempenv = interp(pparcel, pres[::-1], temp[::-1]) # now solve for the equlibrium levels above LCL # (all of them, including unstable ones) # eqlev,stab=solve_eq(preswet[::-1],(tempwet-tempenv)[::-1]) # NEW, for total column: # On second thought, we don't really want/need # any equilibrium levels below LCL # eqlev,stab=solve_eq(pparcel[::-1],(tparcel-tempenv)[::-1]) # This is equivalent to the old statement : eqlev, stab = solve_eq(pparcel[pparcel <= P_lcl][::-1], (tparcel-tempenv)[pparcel <= P_lcl][::-1]) # Sorting index by decreasing pressure I = argsort(eqlev)[::-1] eqlev = eqlev[I] stab = stab[I] # temperatures at the equilibrium level # tempeq=interp(eqlev,preswet[::-1],tempenv[::-1]) # NEW, for total column: tempeq = interp(eqlev, pparcel[::-1], tparcel[::-1]) # This helps with debugging # for ii,eq in enumerate(eqlev): # print "%5.2f %5.2f %2d"%(eq,tempeq[ii],stab[ii]) # need environmental temperature at LCL tenv_lcl = interp(P_lcl, pparcel[::-1], tempenv[::-1]) isstab = where(stab == 1., True, False) unstab = where(stab == 1., False, True) if eqlev.shape[0] == 0: # no unstable layers in entire profile # because the parcel never crosses the tenv P_lfc = nan P_el = nan elif T_lcl > tenv_lcl: # check LCL to see if this is unstable P_lfc = P_lcl if totalcape is True: P_el = eqlev[isstab][-1] else: P_el = eqlev[isstab][0] elif eqlev.shape[0] > 1: # Parcel is stable at LCL so LFC is the # first unstable equilibrium level and # "EQ" level is the first stable equilibrium # level P_lfc = eqlev[unstab][0] if totalcape is True: P_el = eqlev[isstab][-1] else: P_el = eqlev[isstab][0] else: # catch a problem... if there is only # one eqlev and it's unstable (this is # unphysical), then it could be a vertical # resolution thing. This is a kind of # "null" option if isstab[0]: P_el = eqlev[isstab][0] P_lfc = nan else: P_lfc = nan P_el = nan if isnan(P_lfc): return P_lcl, P_lfc, P_el, 0, 0 # need to handle case where dwpt is not available # above a certain level for any reason. Most simplest # thing to do is set it to a reasonably low value; # this should be a conservative approach! dwpt = self.soundingdata['dwpt'].copy().soften_mask() # raise ValueError if dwpt[(pres >= P_el).data*(pres < P_lfc).data].mask.any(): print("WARNING: substituting -200C for masked values of", "DWPT in this sounding") dwpt[dwpt.mask] = -200 # dwptenv=interp(preswet,pres[::-1],dwpt[::-1]) # NEW: dwptenv = interp(pparcel, pres[::-1], dwpt[::-1]) hght = self.soundingdata['hght'] if hght[(pres >= P_el).data].mask.any(): raise NotImplementedError( "TODO: Implement standard atmos. to sub. missing heights") # hghtenv=interp(preswet,pres[::-1],self.soundingdata['hght'][::-1]) # NEW: hghtenv = interp(pparcel, pres[::-1], self.soundingdata['hght'][::-1]) # Areas of POSITIVE Bouyancy cond1 = (tparcel >= tempenv) * (pparcel <= P_lfc) * (pparcel > P_el) # Areas of NEGATIVE Bouyancy if totalcape is True: cond2 = (tparcel < tempenv) * (pparcel > P_el) else: cond2 = (tparcel < tempenv) * (pparcel > P_lfc) # Do CAPE calculation # 1. Virtual temperature of parcel... # remember it's saturated above LCL. # e_parcel=VaporPressure(tempwet) # Tv_parcel=VirtualTemp(tempwet+degCtoK,preswet*100.,e_parcel) # e_env=VaporPressure(dwptenv) # Tv_env=VirtualTemp(tempenv+degCtoK,preswet*100.,e_env) # TODO: Implement CAPE calculation with virtual temperature # (This will affect the significant level calculations as well!!) # e_parcel=VaporPressure(dpparcel) # Tv_parcel=VirtualTemp(tparcel+degCtoK,pparcel*100.,e_parcel) # e_env=VaporPressure(dwptenv) # Tv_env=VirtualTemp(tempenv+degCtoK,pparcel*100.,e_env) # CAPE=trapz(9.81*(Tv_parcel[cond1]-Tv_env[cond1])/\ # Tv_env[cond1],hghtenv[cond1]) # CIN=trapz(9.81*(Tv_parcel[cond2]-Tv_env[cond2])/\ # Tv_env[cond2],hghtenv[cond2]) CAPE = trapz( 9.81*(tparcel[cond1]-tempenv[cond1])/(tempenv[cond1] + 273.15), hghtenv[cond1]) CIN = trapz( 9.81*(tparcel[cond2]-tempenv[cond2])/(tempenv[cond2] + 273.15), hghtenv[cond2]) if False: print("%3s %7s %7s %7s %7s %7s %7s %7s %7s" % ("IX", "PRES", "TPARCEL", "DPPARCE", "TENV", "DPENV", "TV PARC", "TV ENV", "HEIGHT")) for ix, c2 in enumerate(cond2): if c2: print( "%3d %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f" + " %7.3f %7.3f" % (ix, pparcel[ix], tparcel[ix], dpparcel[ix], tempenv[ix], dwptenv[ix], Tv_parcel[ix], Tv_env[ix], hghtenv[ix])) return P_lcl, P_lfc, P_el, CAPE, CIN def lift_parcel(self, *args, **kwargs): """Do a lifted parcel analysis on the sounding data""" from numpy import interp if 'totalcape' in kwargs: totalcape = kwargs.pop('totalcape') else: totalcape = False # Stuff for plotting # zorder zo = 4 # trace colour col = [.6, .6, .6] if len(args) == 4: startp, startt, startdp, ptype = args elif len(args) == 3: startp, startt, startdp = args ptype = '' else: raise NotImplementedError("expected 3 or 4 arguments") # Get Sub-LCL traces presdry, tempdry, tempiso = dry_ascent(startp, startt, startdp) T_lcl = tempdry[-1] # Parcel diagnostics P_lcl, P_lfc, P_el, CAPE, CIN = self.get_cape( startp, startt, startdp, totalcape=totalcape) # Get moist ascent traces preswet, tempwet = moist_ascent(P_lcl, T_lcl) # tparcel is the concatenation of tempdry and # tempwet, and so on. tparcel = concatenate((tempdry, tempwet[1:])) pparcel = concatenate((presdry, preswet[1:])) T_lfc = interp(P_lfc, preswet[::-1], tempwet[::-1]) T_el = interp(P_el, preswet[::-1], tempwet[::-1]) # fundamental environmental variables pres = self.soundingdata['pres'] temp = self.soundingdata['temp'] hght = self.soundingdata['hght'] dwpt = self.soundingdata['dwpt'].copy().soften_mask() dwpt[dwpt.mask] = dwpt.min() # interpolate to preswet coordinates tempenv = interp(pparcel, pres[::-1], temp[::-1]) # Plot traces below LCL self.skewxaxis.plot(tempdry, presdry, color=col, lw=2, zorder=zo) self.skewxaxis.plot(tempiso, presdry, color=col, lw=2, zorder=zo) self.skewxaxis.plot(T_lcl, P_lcl, ls='', marker='o', mec=col, mfc=col, zorder=zo) # Plot trace above LCL self.skewxaxis.plot(tempwet, preswet, color=col, lw=2, zorder=zo) # Plot LFC and EL self.skewxaxis.plot(T_lfc, P_lfc, ls='', marker='o', mew=2, mec='b', mfc='None', zorder=zo) self.skewxaxis.plot(T_el, P_el, ls='', marker='o', mew=2, mec='r', mfc='None', zorder=zo) if not isnan(P_lfc): # Hatch areas of POSITIVE Bouyancy cond1 = (tparcel >= tempenv) * (pparcel <= P_lfc) * \ (pparcel > P_el) self.skewxaxis.fill_betweenx( pparcel, tparcel, tempenv, where=cond1, color="none", hatch='XXX', edgecolor='k', zorder=zo) # Hatch areas of NEGATIVE Bouyancy if totalcape is True: cond2 = (tparcel < tempenv) * (pparcel > P_el) else: cond2 = (tparcel < tempenv) * (pparcel > P_lfc) self.skewxaxis.fill_betweenx( pparcel, tparcel, tempenv, where=cond2, color="none", hatch='///', edgecolor='r', zorder=zo) # Add text to sounding dtext = "Parcel: %s\n" % ptype.upper() dtext += "Ps :%6.1fhPa\n" % startp dtext += "TCs : %4.1fC\n" % startt dtext += "TDs : %4.1fC\n" % startdp dtext += "-------------\n" dtext += "Plcl:%6.1fhPa\n" % P_lcl dtext += "Tlcl: %4.1fC\n" % T_lcl dtext += "Plfc:%6.1fhPa\n" % P_lfc dtext += "P_el:%6.1fhPa\n" % P_el dtext += "CAPE:%6.1fJ\n" % CAPE dtext += "CIN: %6.1fJ" % CIN if False: h_lcl = interp(P_lcl, pres[::-1], hght[::-1]) h_lfc = interp(P_lfc, pres[::-1], hght[::-1]) h_el = interp(P_el, pres[::-1], hght[::-1]) dtext += "\n-------------\n" dtext += "Hlcl:%6.1fm\n" % h_lcl dtext += "Hlfc:%6.1fm\n" % h_lfc dtext += "H_el:%6.1fm\n" % h_el self["Parcel"] = { "Ps": startp, "TCs": startt, "TDs": startdp, "Plcl": P_lcl, "Tlcl": T_lcl} print("\n---- Lifted Parcel Quantities ----") print(dtext) self.fig.text(0.825, 0.895, dtext, fontname="monospace", va='top', backgroundcolor='white') draw() def get_parcel(self, method='ml'): """Automatically generate a parcel based on the sounding characteristics INPUTS method ['mu'] : Parcel type. Choose from the following Mixed Layer : 'ml' Surface Based: 'sb' Most Unstable: 'mu' depth : Both the mixed layer and the most unstable parcel require a threshold on the depth of the layer used to determine the parcel OUTPUTS (pres,temp,dwpt): The parcel characteristics """ self.do_thermodynamics() if method == 'most_unstable' or method == 'mu': return self.most_unstable_parcel() elif method == 'surface' or method == 'sb': return self.surface_parcel() if method == 'mixed_layer' or method == 'ml': return self.mixed_layer_parcel() else: raise NotImplementedError def surface_parcel(self): """Return ACUTAL lowest parcel, handling frequent missing data from lowest levels""" pres = self.soundingdata["pres"] temp = self.soundingdata["temp"] assert 'dwpt' in self.soundingdata, \ "Moisture needed for parcel calculation! Add DWPT" dwpt = self.soundingdata["dwpt"] ii = 0 while True: if dwpt.mask[ii] or temp.mask[ii]: ii += 1 else: return pres[ii], temp[ii], dwpt[ii], 'sb' def most_unstable_parcel(self, depth=300): """Return a parcel representing conditions for the most unstable level in the lowest <depth> hPa""" pres = self.soundingdata['pres'] temp = self.soundingdata['temp'] dwpt = self.soundingdata['dwpt'] thta = self.soundingdata['thta'] cape = zeros(pres.shape) for ii in range((pres > pres[0]-depth).sum()): if temp.mask[ii]: continue if dwpt.mask[ii]: continue theparcel = pres[ii], temp[ii], dwpt[ii] try: thecape = self.get_cape(*theparcel, totalcape=True)[-2] except ValueError: # this is raised when get_cape fails to find # equilibrium levels, which happens when the # parcel doesn't "completely" intersect the # sounding profile. continue cape[ii] = thecape # print "%7.2f %7.2f %7.2f %7.2f"% # (pres[ii],temp[ii],dwpt[ii],thecape) if cape.max() == 0.: return self.surface_parcel() # choose max cape I = where(cape == cape.max())[0][0] # need to descend along adiabat! # convert parcel to equivalent surface parcel # thetheta=thta[I] # parceltemp=(temp[I]+degCtoK)*(pres[0]/pres[I])**(Rs_da/Cp_da)-degCtoK # the_e=VaporPressure(dwpt[I]) # themixr=MixRatio(the_e,pres[I]*100) # parcele=MixR2VaporPress(themixr,pres[0]*100) # parceldwpt=DewPoint(parcele) # return pres[0],parceltemp,parceldwpt,'mu' # return conditions at the mu level. return pres[I], temp[I], dwpt[I], 'mu' def mixed_layer_parcel(self, depth=100): """Returns parameters for a parcel initialised by: 1. Surface pressure (i.e. pressure of lowest level) 2. Surface temperature determined from mean(theta) of lowest <depth> mb 3. Dew point temperature representative of lowest <depth> mbar Inputs: depth (mbar): depth to average mixing ratio over """ pres = self.soundingdata["pres"] temp = self.soundingdata["temp"] dwpt = self.soundingdata["dwpt"] pres0, temp0, dwpt0, null = self.surface_parcel() # identify the layers for averaging layers = pres > (pres0-depth) # average theta over mixheight to give # parcel temperature thta_mix = Theta(temp[layers]+degCtoK, pres[layers]*100.).mean() temp_s = TempK(thta_mix, pres0*100) - degCtoK # average mixing ratio over mixheight vpres = VaporPressure(dwpt) mixr = MixRatio(vpres, pres*100) mixr_mix = mixr[layers].mean() vpres_s = MixR2VaporPress(mixr_mix, pres0*100) # surface dew point temp dwpt_s = DewPoint(vpres_s) # print "----- Mixed Layer Parcel Characteristics -----" # print "Mixed layer depth : %5d mb "%depth # print "Mean mixed layer potential temperature: %5.1f K"%thta_mix # print "Mean mixed layer mixing ratio : %5.2f g/kg"% # (mixr_mix*1e3) return pres0, temp_s, dwpt_s, 'ml' raise NotImplementedError def do_thermodynamics(self): assert 'temp' in self.soundingdata, \ "Temperature needed for thermodynamics! Add TEMP" assert 'pres' in self.soundingdata, \ "Pressure needed for thermodynamics! Add PRES" assert 'dwpt' in self.soundingdata, \ "Moisture needed for thermodynamics! Add DWPT" # primary variables prespa = self.soundingdata['pres'] * 100. tempc = self.soundingdata['temp'] tempk = tempc + degCtoK dwptc = self.soundingdata['dwpt'] # secondary variables e = VaporPressure(dwptc) esat = VaporPressure(tempc) # assign/extract other variables if 'thta' not in self.soundingdata: self.soundingdata['thta'] = Theta(tempk, prespa) if 'thte' not in self.soundingdata: self.soundingdata['thte'] = ThetaE(tempk, prespa, e) if 'thtv' not in self.soundingdata: self.soundingdata['thtv'] = ThetaV(tempk, prespa, e) if 'relh' not in self.soundingdata: self.soundingdata['relh'] = 100. * e / esat return def solve_eq(preswet, func): """Solve the peicewise-linear stability of a parcel INPUTS: variables from the most ascent of a parcel preswet: pressure func : piecewise linear function to solve (tw-te) OUTPUTS: solutions: zeros of the function (tw-te) stability: indication of the stability of this solution. NOTE ABOUT STABILITY Stability is the sign of (d(func)/dP). So if you have used tw-te like you were supposed to, d(tw-te)/dP>0 means this is a stbale equilibrium level (flip the sign to envision d(tw-te)/dz). """ from numpy import sign, diff # Sorry to be annoying but I'm going to force you to use # a monotonically increasing variable assert (sign(diff(preswet)) == 1).all(), \ "Use a monotonically increasing abscissa" # Identify changes in sign of function dsign = sign(func) isdiff = zeros(dsign.shape, dtype=bool) isdiff[1:] = abs(diff(dsign)).astype(bool) # shift to get the value on the other side # of the x-axis shift = zeros(dsign.shape, dtype=bool) shift[:-1] = isdiff[1:] shift[-1] = isdiff[0] # solve by linear interpolation between # values points sols = zeros((isdiff.sum())) stab = zeros((isdiff.sum())) for ii in range(isdiff.sum()): f0 = func[isdiff][ii] f1 = func[shift][ii] p0 = preswet[isdiff][ii] p1 = preswet[shift][ii] slope = (f1-f0) / (p1-p0) sols[ii] = p0-f0 / slope stab[ii] = sign(slope) # Debug with plots ### # fig=figure() # ax=fig.add_subplot(111) # ax.plot(preswet,func) # ax.plot(sols,zeros(sols.shape),ls='',marker='o') # ax.plot(preswet[isdiff],func[isdiff],ls='',marker='+',mew=2) # ax.plot(preswet[shift],func[shift],ls='',marker='x',mew=2) # ax.grid(True) # show() return sols, stab def dry_ascent(startp, startt, startdp, nsteps=101): from numpy import interp # ------------------------------------------------------------------- # Lift a parcel dry adiabatically from startp to LCL. # Init temp is startt in C, Init dew point is stwrtdp, # pressure levels are in hPa # ------------------------------------------------------------------- assert startdp <= startt if startdp == startt: return array([startp]), array([startt]), array([startdp]), # Pres=linspace(startp,600,nsteps) Pres = logspace(log10(startp), log10(600), nsteps) # Lift the dry parcel T_dry = (startt+degCtoK) * (Pres/startp)**(Rs_da/Cp_da) - degCtoK # Mixing ratio isopleth starte = VaporPressure(startdp) startw = MixRatio(starte, startp*100) e = Pres * startw / (.622+startw) T_iso = 243.5 / (17.67/log(e/6.112)-1) # Solve for the intersection of these lines (LCL). # interp requires the x argument (argument 2) # to be ascending in order! P_lcl = interp(0, T_iso-T_dry, Pres) T_lcl =
interp(P_lcl, Pres[::-1], T_dry[::-1])
numpy.interp
import os import glob import shutil import logging import matplotlib.pyplot as plt import numpy as np from scipy import ndimage, misc, signal, spatial from skimage.filters import gaussian import cv2 import math def mkdir(path): if not os.path.exists(path): os.makedirs(path) def re_mkdir(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) def init_log(output_dir): re_mkdir(output_dir) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%Y%m%d-%H:%M:%S', filename=os.path.join(output_dir, 'log.log'), filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) return logging def copy_file(path_s, path_t): shutil.copy(path_s, path_t) def get_files_in_folder(folder, file_ext=None): files = glob.glob(os.path.join(folder, "*" + file_ext)) files_name = [] for i in files: _, name = os.path.split(i) name, ext = os.path.splitext(name) files_name.append(name) return np.asarray(files), np.asarray(files_name) def point_rot(points, theta, b_size, a_size): cosA = np.cos(theta) sinA = np.sin(theta) b_center = [b_size[1]/2.0, b_size[0]/2.0] a_center = [a_size[1]/2.0, a_size[0]/2.0] points = np.dot(points-b_center, np.array([[cosA,-sinA],[sinA,cosA]]))+a_center return points def mnt_reader(file_name): f = open(file_name) minutiae = [] for i, line in enumerate(f): if i < 4 or len(line) == 0: continue w, h, o = [float(x) for x in line.split()] w, h = int(round(w)), int(round(h)) minutiae.append([w, h, o]) f.close() return minutiae def mnt_writer(mnt, image_name, image_size, file_name): f = open(file_name, 'w') f.write('%s\n'%(image_name)) f.write('%d %d %d\n'%(mnt.shape[0], image_size[0], image_size[1])) for i in xrange(mnt.shape[0]): f.write('%d %d %.6f %.4f\n'%(mnt[i,0], mnt[i,1], mnt[i,2], mnt[i,3])) f.close() return def gabor_fn(ksize, sigma, theta, Lambda, psi, gamma): sigma_x = sigma sigma_y = float(sigma) / gamma # Bounding box nstds = 3 xmax = ksize[0]/2 ymax = ksize[1]/2 xmin = -xmax ymin = -ymax (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # Rotation x_theta = x * np.cos(theta) + y * np.sin(theta) y_theta = -x * np.sin(theta) + y * np.cos(theta) gb_cos = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.cos(2 * np.pi / Lambda * x_theta + psi) gb_sin = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.sin(2 * np.pi / Lambda * x_theta + psi) return gb_cos, gb_sin def gabor_bank(stride=2,Lambda=8): filters_cos = np.ones([25,25,180/stride], dtype=float) filters_sin = np.ones([25,25,180/stride], dtype=float) for n, i in enumerate(xrange(-90,90,stride)): theta = i*np.pi/180. kernel_cos, kernel_sin = gabor_fn((24,24),4.5, -theta, Lambda, 0, 0.5) filters_cos[..., n] = kernel_cos filters_sin[..., n] = kernel_sin filters_cos = np.reshape(filters_cos,[25,25,1,-1]) filters_sin = np.reshape(filters_sin,[25,25,1,-1]) return filters_cos, filters_sin def gaussian2d(shape=(5,5),sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) """ m,n = [(ss-1.)/2. for ss in shape] y,x = np.ogrid[-m:m+1,-n:n+1] h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def gausslabel(length=180, stride=2): gaussian_pdf = signal.gaussian(length+1, 3) label = np.reshape(np.arange(stride/2, length, stride), [1,1,-1,1]) y = np.reshape(np.arange(stride/2, length, stride), [1,1,1,-1]) delta = np.array(np.abs(label - y), dtype=int) delta = np.minimum(delta, length-delta)+length/2 return gaussian_pdf[delta] def angle_delta(A, B, max_D=np.pi*2): delta = np.abs(A - B) delta = np.minimum(delta, max_D-delta) return delta def fmeasure(P, R): return 2*P*R/(P+R+1e-10) def distance(y_true, y_pred, max_D=16, max_O=np.pi/6): D = spatial.distance.cdist(y_true[:, :2], y_pred[:, :2], 'euclidean') O = spatial.distance.cdist(np.reshape(y_true[:, 2], [-1, 1]), np.reshape(y_pred[:, 2], [-1, 1]), angle_delta) return (D<=max_D)*(O<=max_O) def metric_P_R_F(y_true, y_pred, maxd=16, maxo=np.pi/6): # Calculate Precision, Recall, F-score if y_pred.shape[0]==0 or y_true.shape[0]==0: return 0,0,0,0,0 y_true, y_pred = np.array(y_true), np.array(y_pred) total_gt, total = float(y_true.shape[0]), float(y_pred.shape[0]) # Using L2 loss dis = spatial.distance.cdist(y_pred[:, :2], y_true[:, :2], 'euclidean') mindis,idx = dis.min(axis=1),dis.argmin(axis=1) #Change to adapt to new annotation: old version. When training, comment it # y_pred[:,2] = -y_pred[:,2] angle = abs(np.mod(y_pred[:,2],2*np.pi) - y_true[idx,2]) angle = np.asarray([angle, 2*np.pi-angle]).min(axis=0) # Satisfy the threshold tmp=(mindis <= maxd) & (angle<=maxo) #print('mindis,idx,angle,tmp=%s,%s,%s,%s'%(mindis,idx,angle,tmp)) precision = len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)]))/float(y_pred.shape[0]) recall = len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)]))/float(y_true.shape[0]) #print('pre=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_pred.shape[0]))) #print('recall=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_true.shape[0]))) if recall!=0: loc = np.mean(mindis[(mindis <= maxd) & (angle<=maxo)]) ori = np.mean(angle[(mindis <= maxd) & (angle<=maxo)]) else: loc = 0 ori = 0 return precision, recall, fmeasure(precision, recall), loc, ori def nms(mnt): if mnt.shape[0]==0: return mnt # sort score mnt_sort = mnt.tolist() mnt_sort.sort(key=lambda x:x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=np.pi/6).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in xrange(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i+1:] = keep_list[i+1:]*(1-inrange[i, i+1:]) return mnt_sort[keep_list.astype(np.bool), :] def fuse_nms(mnt, mnt_set_2): if mnt.shape[0]==0: return mnt # sort score all_mnt = np.concatenate((mnt, mnt_set_2)) mnt_sort = all_mnt.tolist() mnt_sort.sort(key=lambda x:x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=2*np.pi).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in xrange(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i+1:] = keep_list[i+1:]*(1-inrange[i, i+1:]) return mnt_sort[keep_list.astype(np.bool), :] def py_cpu_nms(det, thresh): if det.shape[0]==0: return det dets = det.tolist() dets.sort(key=lambda x:x[3], reverse=True) dets = np.array(dets) box_sz = 25 x1 = np.reshape(dets[:,0],[-1,1]) -box_sz y1 = np.reshape(dets[:,1],[-1,1]) -box_sz x2 = np.reshape(dets[:,0],[-1,1]) +box_sz y2 = np.reshape(dets[:,1],[-1,1]) +box_sz scores = dets[:, 2] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return dets[keep, :] def draw_minutiae(image, minutiae, fname, saveimage= False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image,cmap='gray') plt.hold(True) # Check if no minutiae if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x+r*np.cos(o)], [y, y+r*np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0,image.shape[1],image.shape[0],0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight', pad_inches = 0) plt.close(fig) else: plt.show() return def draw_minutiae_overlay(image, minutiae, mnt_gt, fname, saveimage= False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image,cmap='gray') plt.hold(True) if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:,:3] if mnt_gt.shape[0] > 0: if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:, :3] plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) for x, y, o in mnt_gt: plt.plot([x, x+r*np.cos(o)], [y, y+r*np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o in minutiae: plt.plot([x, x+r*np.cos(o)], [y, y+r*np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0,image.shape[1],image.shape[0],0]) plt.axis('off') plt.show() if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_minutiae_overlay_with_score(image, minutiae, mnt_gt, fname, saveimage=False, r=15): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') plt.hold(True) if mnt_gt.shape[0] > 0: plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) if mnt_gt.shape[1] > 3: for x, y, o, s in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') plt.text(x - 10, y - 5, '%.2f' % s, color='green', fontsize=4) else: for x, y, o in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') plt.text(x-10,y-10,'%.2f'%s,color='yellow',fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_ori_on_img(img, ori, mask, fname, saveimage=False, coh=None, stride=16): ori = np.squeeze(ori) #mask = np.squeeze(np.round(mask)) img = np.squeeze(img) ori = ndimage.zoom(ori, np.array(img.shape)/np.array(ori.shape, dtype=float), order=0) if mask.shape != img.shape: mask = ndimage.zoom(mask, np.array(img.shape)/np.array(mask.shape, dtype=float), order=0) if coh is None: coh = np.ones_like(img) fig = plt.figure() plt.imshow(img,cmap='gray') plt.hold(True) for i in xrange(stride,img.shape[0],stride): for j in xrange(stride,img.shape[1],stride): if mask[i, j] == 0: continue x, y, o, r = j, i, ori[i,j], coh[i,j]*(stride*0.9) plt.plot([x, x+r*np.cos(o)], [y, y+r*np.sin(o)], 'r-') plt.axis([0,img.shape[1],img.shape[0],0]) plt.axis('off') if saveimage: plt.savefig(fname, bbox_inches='tight') plt.close(fig) else: plt.show() return def local_constrast_enhancement(img): img = img.astype(np.float32) meanV = cv2.blur(img,(15,15)) normalized = img - meanV var = abs(normalized) var = cv2.blur(var,(15,15)) normalized = normalized/(var+10) *0.75 normalized = np.clip(normalized, -1, 1) normalized = (normalized+1)*127.5 return normalized def get_quality_map_ori_dict(img, dict, spacing, dir_map = None, block_size = 16): if img.dtype=='uint8': img = img.astype(np.float) img = FastEnhanceTexture(img) h, w = img.shape blkH, blkW = dir_map.shape quality_map = np.zeros((blkH,blkW),dtype=np.float) fre_map = np.zeros((blkH,blkW),dtype=np.float) ori_num = len(dict) #dir_map = math.pi/2 - dir_map dir_ind = dir_map*ori_num/math.pi dir_ind = dir_ind.astype(np.int) dir_ind = dir_ind%ori_num patch_size = np.sqrt(dict[0].shape[1]) patch_size = patch_size.astype(np.int) pad_size = (patch_size-block_size)//2 img = np.lib.pad(img, (pad_size, pad_size), 'symmetric') for i in range(0,blkH): for j in range(0,blkW): ind = dir_ind[i,j] patch = img[i*block_size:i*block_size+patch_size,j*block_size:j*block_size+patch_size] patch = patch.reshape(patch_size*patch_size,) patch = patch - np.mean(patch) patch = patch / (np.linalg.norm(patch)+0.0001) patch[patch>0.05] = 0.05 patch[patch<-0.05] = -0.05 simi = np.dot(dict[ind], patch) similar_ind = np.argmax(abs(simi)) quality_map[i,j] = np.max(abs(simi)) fre_map[i,j] = 1./spacing[ind][similar_ind] quality_map = gaussian(quality_map,sigma=2) return quality_map, fre_map def FastEnhanceTexture(img,sigma=2.5,show=False): img = img.astype(np.float32) h, w = img.shape h2 = 2 ** nextpow2(h) w2 = 2 ** nextpow2(w) FFTsize = np.max([h2, w2]) x, y = np.meshgrid(range(-FFTsize / 2, FFTsize / 2), range(-FFTsize / 2, FFTsize / 2)) r = np.sqrt(x * x + y * y) + 0.0001 r = r/FFTsize L = 1. / (1 + (2 * math.pi * r * sigma)** 4) img_low = LowpassFiltering(img, L) gradim1= compute_gradient_norm(img) gradim1 = LowpassFiltering(gradim1,L) gradim2= compute_gradient_norm(img_low) gradim2 = LowpassFiltering(gradim2,L) diff = gradim1-gradim2 ar1 = np.abs(gradim1) diff[ar1>1] = diff[ar1>1]/ar1[ar1>1] diff[ar1 <= 1] = 0 cmin = 0.3 cmax = 0.7 weight = (diff-cmin)/(cmax-cmin) weight[diff<cmin] = 0 weight[diff>cmax] = 1 u = weight * img_low + (1-weight)* img temp = img - u lim = 20 temp1 = (temp + lim) * 255 / (2 * lim) temp1[temp1 < 0] = 0 temp1[temp1 >255] = 255 v = temp1 if show: plt.imshow(v,cmap='gray') plt.show() return v def compute_gradient_norm(input): input = input.astype(np.float32) Gx, Gy = np.gradient(input) out = np.sqrt(Gx * Gx + Gy * Gy) + 0.000001 return out def LowpassFiltering(img,L): h,w = img.shape h2,w2 = L.shape img = cv2.copyMakeBorder(img, 0, h2-h, 0, w2-w, cv2.BORDER_CONSTANT, value=0) img_fft = np.fft.fft2(img) img_fft =
np.fft.fftshift(img_fft)
numpy.fft.fftshift
""" Tests for the asym_logit.py file. These tests do not include tests of the functions that perform the mathematical calculations necessary to estimate the multinomial Asymmetric Logit model. """ import warnings import unittest from collections import OrderedDict from copy import deepcopy from functools import partial import numpy as np import numpy.testing as npt import pandas as pd from scipy.sparse import csr_matrix from scipy.sparse import diags import pylogit.asym_logit as asym try: # in Python 3 range returns an iterator instead of list # to maintain backwards compatibility use "old" version of range from past.builtins import xrange, range except ImportError: pass class GenericTestCase(unittest.TestCase): """ Defines the common setUp method used for the different type of tests. """ def setUp(self): # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests self.fake_betas = np.array([-0.6]) # Create the fake outside intercepts to be used during the tests self.fake_intercepts = np.array([1, 0.5]) # Create names for the intercept parameters self.fake_intercept_names = ["ASC 1", "ASC 2"] # Record the position of the intercept that is not being estimated self.fake_intercept_ref_pos = 2 # Create the shape parameters to be used during the tests. Note that # these are the reparameterized shape parameters, thus they will be # exponentiated in the fit_mle process and various calculations. self.fake_shapes = np.array([-1, 1]) # Create names for the intercept parameters self.fake_shape_names = ["Shape 1", "Shape 2"] # Record the position of the shape parameter that is being constrained self.fake_shape_ref_pos = 2 # Calculate the 'natural' shape parameters self.natural_shapes = asym._convert_eta_to_c(self.fake_shapes, self.fake_shape_ref_pos) # Create an array of all model parameters self.fake_all_params = np.concatenate((self.fake_shapes, self.fake_intercepts, self.fake_betas)) # The mapping between rows and alternatives is given below. self.fake_rows_to_alts = csr_matrix(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1]])) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. self.fake_design = np.array([[1], [2], [3], [1.5], [3.5]]) # Create the index array for this set of choice situations self.fake_index = self.fake_design.dot(self.fake_betas) # Create the needed dataframe for the Asymmetric Logit constructor self.fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": self.fake_design[:, 0], "intercept": [1 for i in range(5)]}) # Record the various column names self.alt_id_col = "alt_id" self.obs_id_col = "obs_id" self.choice_col = "choice" # Create the index specification and name dictionaryfor the model self.fake_specification = OrderedDict() self.fake_names = OrderedDict() self.fake_specification["x"] = [[1, 2, 3]] self.fake_names["x"] = ["x (generic coefficient)"] # Bundle args and kwargs used to construct the Asymmetric Logit model. self.constructor_args = [self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col, self.fake_specification] # Create a variable for the kwargs being passed to the constructor self.constructor_kwargs = {"intercept_ref_pos": self.fake_intercept_ref_pos, "shape_ref_pos": self.fake_shape_ref_pos, "names": self.fake_names, "intercept_names": self.fake_intercept_names, "shape_names": self.fake_shape_names} # Initialize a basic Asymmetric Logit model whose coefficients will be # estimated. self.model_obj = asym.MNAL(*self.constructor_args, **self.constructor_kwargs) return None # Note that inheritance is used to share the setUp method. class ChoiceObjectTests(GenericTestCase): """ Defines the tests for the Asymmetric Logit model's `__init__` function and its class methods. """ def test_shape_ignore_msg_in_constructor(self): """ Ensures that a UserWarning is raised when the 'shape_ref_pos' keyword argument is not an integer. This warns people against expecting all of the shape parameters of the Asymmetric Logit model to be identified. It also alerts users that they are using a Asymmetric Logit model when they might have been expecting to instantiate a different choice model. """ # Create a variable for the kwargs being passed to the constructor kwargs = deepcopy(self.constructor_kwargs) for pos, item in enumerate(['foo', None]): kwargs["shape_ref_pos"] = item # Check that the warning has been created. # Test to ensure that the ValueError is raised when using a # shape_ref_pos kwarg with an incorrect number of parameters self.assertRaises(ValueError, asym.MNAL, *self.constructor_args, **kwargs) return None def test_ridge_warning_in_fit_mle(self): """ Ensure that a UserWarning is raised when one passes the ridge keyword argument to the `fit_mle` method of an Asymmetric Logit model object. """ # Create a variable for the fit_mle function's kwargs. # The print_res = False arguments are to make sure strings aren't # printed to the console unnecessarily. kwargs = {"ridge": 0.5, "print_res": False} # Test to make sure that the ridge warning message is printed when # using the ridge keyword argument with warnings.catch_warnings(record=True) as w: # Use this filter to always trigger the UserWarnings warnings.simplefilter('always', UserWarning) self.model_obj.fit_mle(self.fake_all_params, **kwargs) self.assertGreaterEqual(len(w), 1) self.assertIsInstance(w[0].category, type(UserWarning)) self.assertIn(asym._ridge_warning_msg, str(w[0].message)) return None def test_init_shapes_length_error_in_fit_mle(self): """ Ensures that ValueError is raised if init_shapes has wrong length. """ # Create a variable for the arguments to the fit_mle function. # Note `None` is the argument passed when using the init_shapes, # init_intercepts and init_coefs keyword arguments. fit_args = [None] # Create base set of kwargs for fit_mle function kwargs = {"init_intercepts": self.fake_intercepts, "init_coefs": self.fake_betas, "print_res": False} for i in [1, -1]: # This will ensure we have too many or too few shape parameters. num_shapes = self.fake_rows_to_alts.shape[1] - 1 + i kwargs["init_shapes"] = np.arange(num_shapes) # Test to ensure that the ValueError is raised when using an # init_shapes kwarg with an incorrect number of parameters self.assertRaises(ValueError, self.model_obj.fit_mle, *fit_args, **kwargs) def test_init_intercepts_length_error_in_fit_mle(self): """ Ensures that ValueError is raised if init_intercepts has wrong length. """ # Create a variable for the arguments to the fit_mle function. # Note `None` is the argument passed when using the init_shapes, # init_intercepts and init_coefs keyword arguments. fit_args = [None] # Create base set of kwargs for fit_mle function kwargs = {"init_shapes": self.fake_shapes, "init_coefs": self.fake_betas, "print_res": False} for i in [1, -1]: # This will ensure we have too many or too few intercepts num_intercepts = self.fake_rows_to_alts.shape[1] - 1 + i kwargs["init_intercepts"] = np.arange(num_intercepts) # Test to ensure that the ValueError when using an init_intercepts # kwarg with an incorrect number of parameters self.assertRaises(ValueError, self.model_obj.fit_mle, *fit_args, **kwargs) return None def test_init_coefs_length_error_in_fit_mle(self): """ Ensures that ValueError is raised if init_coefs has wrong length. """ # Create a variable for the arguments to the fit_mle function. # Note `None` is the argument passed when using the init_shapes, # init_intercepts and init_coefs keyword arguments. fit_args = [None] # Create base set of kwargs for fit_mle function kwargs = {"init_shapes": self.fake_shapes, "init_intercepts": self.fake_intercepts, "print_res": False} # Note there is only one beta, so we can't go lower than zero betas. for i in [1, -1]: # This will ensure we have too many or too few intercepts num_coefs = self.fake_betas.shape[0] + i kwargs["init_coefs"] = np.arange(num_coefs) # Test to ensure that the ValueError when using an init_intercepts # kwarg with an incorrect number of parameters self.assertRaises(ValueError, self.model_obj.fit_mle, *fit_args, **kwargs) return None def test_insufficient_initial_values_in_fit_mle(self): """ Ensure that value errors are raised if neither init_vals OR (init_shapes and init_coefs) are passed. """ # Create a variable for the arguments to the fit_mle function. # Note `None` is the argument passed when using the init_shapes, # init_intercepts and init_coefs keyword arguments. fit_args = [None] # Create base set of incorrect kwargs for fit_mle function kwargs = {"init_shapes": None, "init_intercepts": self.fake_intercepts, "init_coefs": None, "print_res": False} kwargs_2 = {"init_shapes": self.fake_shapes, "init_intercepts": self.fake_intercepts, "init_coefs": None, "print_res": False} kwargs_3 = {"init_shapes": None, "init_intercepts": self.fake_intercepts, "init_coefs": self.fake_betas, "print_res": False} for bad_kwargs in [kwargs, kwargs_2, kwargs_3]: # Test to ensure that the ValueError when not passing # kwarg with an incorrect number of parameters self.assertRaises(ValueError, self.model_obj.fit_mle, *fit_args, **bad_kwargs) return None def test_keyword_argument_constructor_in_fit_mle(self): """ Ensures that the init_vals object can be successfully created from the various init_shapes, init_intercepts, and init_coefs arguments. """ # Create a variable for the arguments to the fit_mle function. # Note `None` is the argument passed when using the init_shapes, # init_intercepts and init_coefs keyword arguments. fit_args = [None] # Create base set of incorrect kwargs for fit_mle function (note the # ridge is the thing that is incorrect) kwargs_1 = {"init_shapes": self.fake_shapes, "init_intercepts": self.fake_intercepts, "init_coefs": self.fake_betas, "ridge": "foo", "print_res": False} kwargs_2 = {"init_shapes": self.fake_shapes, "init_coefs": self.fake_betas, "ridge": "foo", "print_res": False} # Test to ensure that the raised ValueError is printed when using # either of these two kwargs. This ensures that we were able to # create the init_vals object since the ridge error check is after # the creation of this argurment. for kwargs in [kwargs_1, kwargs_2]: self.assertRaisesRegexp(TypeError, "ridge", self.model_obj.fit_mle, *fit_args, **kwargs) return None def test_init_vals_length_error_in_fit_mle(self): """ Ensures that ValueError is raised if init_vals has wrong length. """ # Note there is only one beta, so we can't go lower than zero betas. original_intercept_ref_position = self.fake_intercept_ref_pos for intercept_ref_position in [None, original_intercept_ref_position]: self.model_obj.intercept_ref_position = intercept_ref_position for i in [1, -1]: # This will ensure we have too many or too few intercepts num_coefs = self.fake_betas.shape[0] + i # Test to ensure that the ValueError when using an # init_intercepts kwarg with an incorrect number of parameters self.assertRaisesRegexp(ValueError, "dimension", self.model_obj.fit_mle, np.arange(num_coefs), print_res=False) return None # As before, inheritance is used to share the setUp method. class HelperFuncTests(GenericTestCase): """ Defines tests for the 'helper' functions for estimating the Asymmetric Logit model. """ def test_split_param_vec_with_intercepts(self): """ Ensures that split_param_vec returns (shapes, intercepts, index_coefs) when called from within asym_logit.py. """ # Store the results of split_param_vec() split_results = asym.split_param_vec(self.fake_all_params, self.fake_rows_to_alts, self.fake_design) # Check for expected results. for item in split_results[1:]: self.assertIsInstance(item, np.ndarray) self.assertEqual(len(item.shape), 1) npt.assert_allclose(split_results[0], self.fake_shapes) npt.assert_allclose(split_results[1], self.fake_intercepts) npt.assert_allclose(split_results[2], self.fake_betas) return None def test_split_param_vec_without_intercepts(self): """ Ensures that split_param_vec returns (shapes, intercepts, index_coefs) when called from within asym_logit.py. """ # Store the results of split_param_vec() shapes_and_betas = np.concatenate([self.fake_shapes, self.fake_betas]) split_results = asym.split_param_vec(shapes_and_betas, self.fake_rows_to_alts, self.fake_design) # Check for expected results. for idx in [0, 2]: self.assertIsInstance(split_results[idx], np.ndarray) self.assertEqual(len(split_results[idx].shape), 1) npt.assert_allclose(split_results[0], self.fake_shapes) self.assertIsNone(split_results[1]) npt.assert_allclose(split_results[2], self.fake_betas) return None def test_convert_eta_to_c(self): """ Check general transformation of estimated shape parameters to the original parameterization. Check overflow handling. """ # Create a 2d array of shapes, where each row represents another # vector of shapes to be transformed and tested test_shapes = np.array([[-1, 1], [800, 1], [-1, -800], [0, 0]]) ##### # Determine the expected results ##### expected_results = np.ones((test_shapes.shape[0], 3)) expected_results[-1] = 1.0 / 3 # Explicitly calculate the results for the first row vals_1 = np.array([test_shapes[0, 0], test_shapes[0, 1], 0]) exp_vals_1 = np.exp(vals_1) denom_1 = exp_vals_1.sum() expected_results[0] = exp_vals_1 / denom_1 # Explicitly calculate the results for the middle rows, taking care of # overflow and underflow. vals_2 = np.array([test_shapes[1, 0], test_shapes[1, 1], 0]) exp_vals_2 = np.exp(vals_2) exp_vals_2[0] = asym.max_comp_value denom_2 = exp_vals_2.sum() expected_results[1] = exp_vals_2 / denom_2 vals_3 = np.array([test_shapes[2, 0], test_shapes[2, 1], 0]) exp_vals_3 = np.exp(vals_3) exp_vals_3[1] = asym.min_comp_value denom_3 = exp_vals_3.sum() expected_results[2] = exp_vals_3 / denom_3 # Use _convert_eta_to_c and compare the results for 1D inputs for i in xrange(test_shapes.shape[0]): func_results = asym._convert_eta_to_c(test_shapes[i], self.fake_shape_ref_pos) # Make sure the results are correct self.assertIsInstance(func_results, np.ndarray) self.assertEqual(len(func_results.shape), 1) self.assertEqual(func_results.shape[0], expected_results.shape[1]) npt.assert_allclose(func_results, expected_results[i]) # Check the 2D inputs. Note that for 2D ndarray, we need the array of # shape parameters to be transposed such that we have an array of # shape (num_estimated_shapes, num_samples_of_parameters). # To adequately compare, we need to transpose expected_results too. func_results_2d = asym._convert_eta_to_c(test_shapes.T, self.fake_shape_ref_pos) # Make sure the results are correct self.assertIsInstance(func_results_2d, np.ndarray) self.assertEqual(len(func_results_2d.shape), 2) self.assertEqual(func_results_2d.shape, expected_results.T.shape) npt.assert_allclose(func_results_2d, expected_results.T) return None def test_asym_utility_transform(self): """ Ensures that `_asym_utility_transform()` returns correct results """ # Create a set of systematic utilities that will test the function for # correct calculations, for proper dealing with overflow, and for # proper dealing with underflow. # The first and third elements tests general calculation. # The second element of index_array should lead to the transformation # equaling the 'natural' shape parameter for alternative 2. # The fourth element should test what happens with underflow and should # lead to max_comp_value. # The fifth element should test what happens with overflow and should # lead to -1.0 * max_comp_value index_array = np.array([1, 0, -1, 1e400, -1e400]) # We can use a the following array of the shape parameters to test # the underflow capabilities with respect to the shape # parameters. test_shapes_2 = np.array([-800, 0]) test_shapes_3 = np.array([800, 0]) # Figure out the value of the 'natural' shape parameters natural_shapes_2 = asym._convert_eta_to_c(test_shapes_2, self.fake_shape_ref_pos) natural_shapes_3 = asym._convert_eta_to_c(test_shapes_3, self.fake_shape_ref_pos) # Crerate the array of expected results when using shape parameters # of 'normal' magnitudes. intercept_1 = self.fake_intercepts[0] intercept_2 = self.fake_intercepts[1] intercept_3 = 0 result_1 = (intercept_1 + np.log(self.natural_shapes[0]) * (1 - index_array[0])) result_2 = intercept_2 + np.log(self.natural_shapes[1]) # Note the division by 2 is due to the 'J - 1' term. See the original # definition of the transformation. result_3 = (intercept_3 + np.log(self.natural_shapes[2]) - np.log((1 - self.natural_shapes[2]) / 2) * index_array[2]) expected_results = np.array([result_1, result_2, result_3, asym.max_comp_value + intercept_1, - asym.max_comp_value])[:, None] # Crerate the array of expected results when using shape parameters # of 'abnormally' small magnitudes. # Note the division by 2 is due to the 'J - 1' term. See the original # definition of the transformation. result_2_2 = intercept_2 + np.log(natural_shapes_2[1]) result_3_2 = (intercept_3 + np.log(natural_shapes_2[2]) - np.log((1 - natural_shapes_2[2]) / 2) * index_array[2]) # Note the '0' comes from (1-1) * ln(shape) expected_results_2 = np.array([0 + intercept_1, result_2_2, result_3_2, asym.max_comp_value + intercept_1, -asym.max_comp_value])[:, None] # Create the array of expected results when using shape parameters # of 'abnormally' large magnitudes. result_2_3 = intercept_2 + np.log(natural_shapes_3[1]) result_3_3 = (intercept_3 + np.log(natural_shapes_3[2]) - np.log((1 - natural_shapes_3[2]) / 2) * index_array[2]) expected_results_3 = np.array([0 + intercept_1, result_2_3, result_3_3, 0 + intercept_1, -asym.max_comp_value])[:, None] ##### # Perform various rounds of checking ##### # Use the utility transformation function, round_1 alt_id_vals = self.fake_df[self.alt_id_col].values args = [index_array, alt_id_vals, self.fake_rows_to_alts, self.fake_shapes, self.fake_intercepts] kwargs = {"intercept_ref_pos": self.fake_intercept_ref_pos, "shape_ref_position": self.fake_shape_ref_pos} func_results = asym._asym_utility_transform(*args, **kwargs) # Use the utility transformation function, round_2 args[3] = test_shapes_2 func_results_2 = asym._asym_utility_transform(*args, **kwargs) # Use the utility transformation function, round_3 args[3] = test_shapes_3 func_results_3 = asym._asym_utility_transform(*args, **kwargs) # Check the correctness of the results all_results = [(func_results, expected_results), (func_results_2, expected_results_2), (func_results_3, expected_results_3)] for pos, (test_results, correct_results) in enumerate(all_results): self.assertIsInstance(test_results, np.ndarray) self.assertEqual(len(test_results.shape), 2) self.assertEqual(test_results.shape[1], correct_results.shape[1]) self.assertEqual(test_results.shape[0], correct_results.shape[0]) npt.assert_allclose(test_results, correct_results) return None def test_asym_utility_transform_2d(self): """ Ensures that `_asym_utility_transform()` returns correct results when called with 2 dimensional systematic utility arrays and """ # Create a set of systematic utilities that will test the function for # correct calculations, for proper dealing with overflow, and for # proper dealing with underflow. # The first and third elements tests general calculation. # The second element of index_array should lead to the transformation # equaling the 'natural' shape parameter for alternative 2. # The fourth element should test what happens with underflow and should # lead to max_comp_value. # The fifth element should test what happens with overflow and should # lead to -1.0 * max_comp_value index_array = np.array([1, 0, -1, 1e400, -1e400]) index_array_2d = np.concatenate([index_array[:, None], index_array[:, None]], axis=1) # Create 2d array of shapes shapes_2d = np.concatenate([self.fake_shapes[:, None], self.fake_shapes[:, None]], axis=1) # Create 2d array of intercepts intercepts_2d = np.concatenate([self.fake_intercepts[:, None], self.fake_intercepts[:, None]], axis=1) # We can use a the following array of the shape parameters to test # the underflow capabilities with respect to the shape # parameters. test_shapes_2 = np.array([-800, 0]) test_shapes_2_2d = np.concatenate([test_shapes_2[:, None], test_shapes_2[:, None]], axis=1) test_shapes_3 = np.array([800, 0]) test_shapes_3_2d = np.concatenate([test_shapes_3[:, None], test_shapes_3[:, None]], axis=1) # Figure out the value of the 'natural' shape parameters natural_shapes_2 = asym._convert_eta_to_c(test_shapes_2, self.fake_shape_ref_pos) natural_shapes_3 = asym._convert_eta_to_c(test_shapes_3, self.fake_shape_ref_pos) # Crerate the array of expected results when using shape parameters # of 'normal' magnitudes. intercept_1 = self.fake_intercepts[0] intercept_2 = self.fake_intercepts[1] intercept_3 = 0 result_1 = (intercept_1 + np.log(self.natural_shapes[0]) * (1 - index_array[0])) result_2 = intercept_2 + np.log(self.natural_shapes[1]) # Note the division by 2 is due to the 'J - 1' term. See the original # definition of the transformation. result_3 = (intercept_3 + np.log(self.natural_shapes[2]) - np.log((1 - self.natural_shapes[2]) / 2) * index_array[2]) expected_results = np.array([result_1, result_2, result_3, asym.max_comp_value + intercept_1, - asym.max_comp_value])[:, None] # Crerate the array of expected results when using shape parameters # of 'abnormally' small magnitudes. # Note the division by 2 is due to the 'J - 1' term. See the original # definition of the transformation. result_2_2 = intercept_2 + np.log(natural_shapes_2[1]) result_3_2 = (intercept_3 + np.log(natural_shapes_2[2]) - np.log((1 - natural_shapes_2[2]) / 2) * index_array[2]) # Note the '0' comes from (1-1) * ln(shape) expected_results_2 = np.array([0 + intercept_1, result_2_2, result_3_2, asym.max_comp_value + intercept_1, -asym.max_comp_value])[:, None] # Create the array of expected results when using shape parameters # of 'abnormally' large magnitudes. result_2_3 = intercept_2 + np.log(natural_shapes_3[1]) result_3_3 = (intercept_3 + np.log(natural_shapes_3[2]) - np.log((1 - natural_shapes_3[2]) / 2) * index_array[2]) expected_results_3 = np.array([0 + intercept_1, result_2_3, result_3_3, 0 + intercept_1, -asym.max_comp_value])[:, None] ##### # Perform various rounds of checking ##### # Use the utility transformation function, round_1 alt_id_vals = self.fake_df[self.alt_id_col].values args = [index_array_2d, alt_id_vals, self.fake_rows_to_alts, shapes_2d, intercepts_2d] kwargs = {"intercept_ref_pos": self.fake_intercept_ref_pos, "shape_ref_position": self.fake_shape_ref_pos} func_results = asym._asym_utility_transform(*args, **kwargs) # Use the utility transformation function, round_2 args[3] = test_shapes_2_2d func_results_2 = asym._asym_utility_transform(*args, **kwargs) # Use the utility transformation function, round_3 args[3] = test_shapes_3_2d func_results_3 = asym._asym_utility_transform(*args, **kwargs) # Check the correctness of the results all_results = [(func_results, expected_results), (func_results_2, expected_results_2), (func_results_3, expected_results_3)] for pos, (test_results, correct_results) in enumerate(all_results): self.assertIsInstance(test_results, np.ndarray) self.assertEqual(len(test_results.shape), 2) self.assertEqual(test_results.shape[1], 2) self.assertEqual(test_results.shape[0], correct_results.shape[0]) for col in [0, 1]: npt.assert_allclose(test_results[:, col][:, None], correct_results) return None def test_asym_transform_deriv_v(self): """ Tests basic behavior of the asym_transform_deriv_v. Essentially the only things that can go wrong is underflow or overflow from the shape parameters going to zero or 1.0. """ # Declare set of index values to be tested test_index = np.array([1, 0, -1, -2, 2]) # Figure out how many alternatives are there num_alts = self.fake_rows_to_alts.shape[1] # Test what happens with large shape parameters (that result in # 'natural' shape parameters near 1.0) large_shapes = np.array([800, 0]) large_results = np.array([0, -np.log(asym.min_comp_value), np.log(num_alts - 1), asym.max_comp_value, -np.log(asym.min_comp_value)]) # Test what happens with large shape parameters (that result in # 'natural' shape parameters near 1.0) small_shapes = np.array([-800, 0]) natural_small_shapes = asym._convert_eta_to_c(small_shapes, self.fake_shape_ref_pos) small_results = np.array([-np.log(natural_small_shapes[0]), -np.log(natural_small_shapes[1]), (np.log(num_alts - 1) - np.log(1 - natural_small_shapes[2])), (np.log(num_alts - 1) - np.log(1 - natural_small_shapes[0])), -np.log(natural_small_shapes[2])]) # Bundle the arguments needed for _asym_transform_deriv_v() args = [test_index, self.fake_df[self.alt_id_col].values, self.fake_rows_to_alts, self.fake_shapes] # Create the needed output array num_rows = test_index.shape[0] output = diags(np.ones(num_rows), 0, format='csr') # Validate the results from asym_transform_deriv_v for shape_array, results in [(large_shapes, large_results), (small_shapes, small_results)]: # Get the reslts from asym_transform_deriv_v args[-1] = shape_array kwargs = {"ref_position": self.fake_shape_ref_pos, "output_array": output} derivative = asym._asym_transform_deriv_v(*args, **kwargs) # Ensure the results are as expected self.assertIsInstance(derivative, type(output)) self.assertEqual(len(derivative.shape), 2) self.assertEqual(derivative.shape, (num_rows, num_rows)) npt.assert_allclose(
np.diag(derivative.A)
numpy.diag
from datetime import timedelta from typing import Callable, Dict, List, Optional, Sequence, Tuple, Type import numpy as np import pandas as pd from athenian.api.controllers.features.github.check_run_metrics_accelerated import \ calculate_interval_intersections from athenian.api.controllers.features.histogram import calculate_histogram, Histogram, Scale from athenian.api.controllers.features.metric import make_metric, Metric, MetricFloat, MetricInt, \ MetricTimeDelta from athenian.api.controllers.features.metric_calculator import AverageMetricCalculator, \ BinnedHistogramCalculator, BinnedMetricCalculator, HistogramCalculatorEnsemble, \ make_register_metric, MaxMetricCalculator, MetricCalculator, MetricCalculatorEnsemble, \ RatioCalculator, SumMetricCalculator from athenian.api.controllers.miners.github.check_run import check_suite_completed_column, \ check_suite_started_column, pull_request_closed_column, pull_request_merged_column, \ pull_request_started_column from athenian.api.int_to_str import int_to_str from athenian.api.models.metadata.github import CheckRun from athenian.api.models.web import CodeCheckMetricID metric_calculators: Dict[str, Type[MetricCalculator]] = {} histogram_calculators: Dict[str, Type[MetricCalculator]] = {} register_metric = make_register_metric(metric_calculators, histogram_calculators) class CheckRunMetricCalculatorEnsemble(MetricCalculatorEnsemble): """MetricCalculatorEnsemble adapted for CI check runs.""" def __init__(self, *metrics: str, quantiles: Sequence[float], quantile_stride: int): """Initialize a new instance of CheckRunMetricCalculatorEnsemble class.""" super().__init__(*metrics, quantiles=quantiles, class_mapping=metric_calculators, quantile_stride=quantile_stride) class CheckRunHistogramCalculatorEnsemble(HistogramCalculatorEnsemble): """HistogramCalculatorEnsemble adapted for CI check runs.""" def __init__(self, *metrics: str, quantiles: Sequence[float]): """Initialize a new instance of CheckRunHistogramCalculatorEnsemble class.""" super().__init__(*metrics, quantiles=quantiles, class_mapping=histogram_calculators) class CheckRunBinnedMetricCalculator(BinnedMetricCalculator): """BinnedMetricCalculator adapted for CI check runs.""" ensemble_class = CheckRunMetricCalculatorEnsemble class CheckRunBinnedHistogramCalculator(BinnedHistogramCalculator): """BinnedHistogramCalculator adapted for CI check runs.""" ensemble_class = CheckRunHistogramCalculatorEnsemble def group_check_runs_by_pushers(pushers: List[List[str]], df: pd.DataFrame, ) -> List[np.ndarray]: """Triage check runs by their corresponding commit authors.""" if not pushers or df.empty: return [np.arange(len(df))] indexes = [] for group in pushers: group = np.unique(group).astype("S") pushers = df[CheckRun.author_login.name].values.astype("S") included_indexes = np.nonzero(np.in1d(pushers, group))[0] indexes.append(included_indexes) return indexes def make_check_runs_count_grouper(df: pd.DataFrame) -> Tuple[ Callable[[pd.DataFrame], List[np.ndarray]], np.ndarray, Sequence[int]]: """ Split check runs by parent check suite size. :return: 1. Function to return the groups. \ 2. Check suite node IDs column. \ 3. Check suite sizes. """ suites = df[CheckRun.check_suite_node_id.name].values unique_suites, run_counts = np.unique(suites, return_counts=True) suite_blocks = np.array(np.split(np.argsort(suites), np.cumsum(run_counts)[:-1])) unique_run_counts, back_indexes, group_counts = np.unique( run_counts, return_inverse=True, return_counts=True) run_counts_order = np.argsort(back_indexes) ordered_indexes = np.concatenate(suite_blocks[run_counts_order]) groups = np.split(ordered_indexes, np.cumsum(group_counts * unique_run_counts)[:-1]) def group_check_runs_by_check_runs_count(_) -> List[np.ndarray]: return groups return group_check_runs_by_check_runs_count, suites, unique_run_counts class FirstSuiteEncounters(MetricCalculator[float]): """Indicate check suites that at least tried to execute.""" metric = MetricInt is_pure_dependency = True complete_suite_statuses = [b"COMPLETED", b"FAILURE", b"SUCCESS", b"PENDING"] def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: _, first_suite_encounters = np.unique( facts[CheckRun.check_suite_node_id.name].values, return_index=True) # ignore incomplete suites completed = np.in1d( facts[CheckRun.check_suite_status.name].values[first_suite_encounters].astype("S"), self.complete_suite_statuses) completed[ facts[CheckRun.check_suite_conclusion.name].values[first_suite_encounters].astype("S") == b"SKIPPED"] = False first_suite_encounters = first_suite_encounters[completed] order = np.argsort(facts[check_suite_started_column].values[first_suite_encounters]) return first_suite_encounters[order] def _value(self, samples: np.ndarray) -> Metric[None]: raise NotImplementedError() @register_metric(CodeCheckMetricID.SUITES_COUNT) class SuitesCounter(SumMetricCalculator[int]): """Number of executed check suites metric.""" metric = MetricInt deps = (FirstSuiteEncounters,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: first_suite_encounters = self._calcs[0].peek result = np.full((len(min_times), len(facts)), 0, dtype=int) result[:, first_suite_encounters] = 1 wrong_times = ( (facts[check_suite_started_column].values >= max_times[:, None]) | (facts[check_suite_started_column].values < min_times[:, None]) ) result[wrong_times] = 0 return result @register_metric(CodeCheckMetricID.SUITES_IN_PRS_COUNT) class SuitesInPRsCounter(SumMetricCalculator[int]): """Number of executed check suites in pull requests metric.""" metric = MetricInt deps = (SuitesCounter,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: result = self._calcs[0].peek.copy() result[:, facts[CheckRun.pull_request_node_id.name] == 0] = 0 return result class SuitesInStatusCounter(SumMetricCalculator[int]): """Number of executed check suites metric with the specified `statuses`.""" metric = MetricInt statuses = {} def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: started = facts[check_suite_started_column].values.astype(min_times.dtype) statuses = facts[CheckRun.check_suite_status.name].values.astype("S") conclusions = facts[CheckRun.check_suite_conclusion.name].values.astype("S") relevant = np.zeros_like(started, dtype=bool) for status, status_conclusions in self.statuses.items(): status_mask = statuses == status if status_conclusions: mask = np.zeros_like(status_mask) for sc in status_conclusions: mask |= conclusions == sc mask &= status_mask else: mask = status_mask relevant |= mask _, first_encounters = np.unique( facts[CheckRun.check_suite_node_id.name].values, return_index=True) mask = np.zeros_like(relevant) mask[first_encounters] = True relevant[~mask] = False started[~relevant] = None result = np.zeros((len(min_times), len(facts)), int) result[(min_times[:, None] <= started) & (started < max_times[:, None])] = 1 return result @register_metric(CodeCheckMetricID.SUCCESSFUL_SUITES_COUNT) class SuccessfulSuitesCounter(SuitesInStatusCounter): """Number of successfully executed check suites metric.""" statuses = { b"COMPLETED": [b"SUCCESS", b"NEUTRAL"], b"SUCCESS": [], b"PENDING": [], } @register_metric(CodeCheckMetricID.FAILED_SUITES_COUNT) class FailedSuitesCounter(SuitesInStatusCounter): """Number of failed check suites metric.""" statuses = { b"COMPLETED": [b"FAILURE", b"STALE", b"ACTION_REQUIRED"], b"FAILURE": [], } @register_metric(CodeCheckMetricID.CANCELLED_SUITES_COUNT) class CancelledSuitesCounter(SuitesInStatusCounter): """Number of cancelled check suites metric.""" statuses = { b"COMPLETED": [b"CANCELLED"], } @register_metric(CodeCheckMetricID.SUCCESS_RATIO) class SuiteSuccessRatioCalculator(RatioCalculator): """Ratio of successful check suites divided by the overall count.""" deps = (SuccessfulSuitesCounter, SuitesCounter) SuiteTimeCalculatorAnalysisDType = np.dtype([("elapsed", "timedelta64[s]"), ("size", int)]) SuiteTimeCalculatorAnalysisMetric = make_metric( "SuiteTimeCalculatorAnalysisMetric", __name__, SuiteTimeCalculatorAnalysisDType, np.array((np.timedelta64("NaT"), MetricInt.nan), dtype=SuiteTimeCalculatorAnalysisDType)) class SuiteTimeCalculatorAnalysis(MetricCalculator[None]): """Measure elapsed time and size of each check suite.""" may_have_negative_values = False metric = SuiteTimeCalculatorAnalysisMetric is_pure_dependency = True def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.ndarray: unique_suites, first_encounters, inverse_indexes, run_counts = np.unique( facts[CheckRun.check_suite_node_id.name].values, return_index=True, return_inverse=True, return_counts=True) statuses = facts[CheckRun.check_suite_status.name].values[first_encounters].astype("S") completed = np.in1d(statuses, [b"COMPLETED", b"SUCCESS", b"FAILURE"]) conclusions = facts[CheckRun.check_suite_conclusion.name].values[ first_encounters[completed] ].astype("S") sensibly_completed = np.flatnonzero(completed)[ np.in1d(conclusions, [b"CANCELLED", b"SKIPPED"], invert=True)] # first_encounters[sensibly_completed] gives the indexes of the completed suites first_encounters = first_encounters[sensibly_completed] # measure elapsed time for each suite size group suite_blocks = np.array(np.split(np.argsort(inverse_indexes), np.cumsum(run_counts)[:-1]), dtype=object) unique_run_counts, back_indexes, group_counts = np.unique( run_counts, return_inverse=True, return_counts=True) run_counts_order = np.argsort(back_indexes) ordered_indexes = np.concatenate(suite_blocks[run_counts_order]).astype(int, copy=False) groups = np.split(ordered_indexes, np.cumsum(group_counts * unique_run_counts)[:-1]) suite_started_col = facts[check_suite_started_column].values suite_finished_col = facts[check_suite_completed_column].values suite_finished = np.concatenate([ suite_finished_col[group].reshape(-1, unique_run_count)[:, 0] for group, unique_run_count in zip(groups, unique_run_counts) ]) suite_started = np.concatenate([ suite_started_col[group].reshape(-1, unique_run_count)[:, 0] for group, unique_run_count in zip(groups, unique_run_counts) ]) elapsed = suite_finished - suite_started # reorder the sequence to match unique_suites suite_order = np.argsort(run_counts_order) structs = np.zeros_like(suite_order, dtype=self.dtype) structs["elapsed"] = elapsed[suite_order] structs["size"] = np.repeat(unique_run_counts, group_counts)[suite_order] suite_started = suite_started[suite_order] result = np.full((len(min_times), len(facts)), np.array([(np.timedelta64("NaT"), 0)], dtype=self.dtype)) time_relevant_suite_mask = \ (min_times[:, None] <= suite_started) & (suite_started < max_times[:, None]) result_structs = np.repeat(structs[sensibly_completed][None, :], len(min_times), axis=0) mask = ~time_relevant_suite_mask[:, sensibly_completed] result_structs["elapsed"][mask] = np.timedelta64("NaT") result_structs["size"][mask] = 0 result[:, first_encounters] = result_structs return result def _value(self, samples: np.ndarray) -> Metric[None]: return self.metric.from_fields(False, None, None, None) @register_metric(CodeCheckMetricID.SUITE_TIME) class SuiteTimeCalculator(AverageMetricCalculator[timedelta]): """Average check suite execution time metric.""" may_have_negative_values = False metric = MetricTimeDelta deps = (SuiteTimeCalculatorAnalysis,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **kwargs) -> np.ndarray: return self._calcs[0].peek["elapsed"].astype(self.dtype, copy=False) @register_metric(CodeCheckMetricID.ROBUST_SUITE_TIME) class RobustSuiteTimeCalculator(MetricCalculator[timedelta]): """Average check suite execution time metric, sustainable version.""" metric = MetricTimeDelta deps = (SuiteTimeCalculatorAnalysis,) def __call__(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, quantiles_mounted_at: Optional[int], groups_mask: np.ndarray, **kwargs) -> None: """Completely ignore the default boilerplate and calculate metrics from scratch.""" structs = self._calcs[0].peek elapsed = structs["elapsed"] meaningful_groups_mask = ( groups_mask & (structs["size"] > 0).any(axis=0)[None, :] & (elapsed == elapsed) ) if self._quantiles != (0, 1): discard_mask = self._calculate_discard_mask( elapsed, quantiles_mounted_at, meaningful_groups_mask) meaningful_groups_mask[discard_mask] = False min_times = min_times[:quantiles_mounted_at] # max_times = max_times[:quantiles_mounted_at] elapsed = elapsed[:quantiles_mounted_at] structs = structs[:quantiles_mounted_at] sizes = structs["size"].astype("S") repos = facts[CheckRun.repository_node_id.name].values repos_sizes = np.char.add(int_to_str(repos), np.char.add(b"|", sizes)) self._metrics = metrics = [] for group_mask in meaningful_groups_mask: group_repos_sizes = repos_sizes[:, group_mask] group_elapsed = elapsed[:, group_mask] vocabulary, mapped_indexes = np.unique(group_repos_sizes, return_inverse=True) existing_vocabulary_indexes = np.nonzero(~np.char.endswith(vocabulary, b"|0"))[0] masks_by_reposize = ( mapped_indexes[:, np.newaxis] == existing_vocabulary_indexes ).T.reshape((len(existing_vocabulary_indexes), *group_repos_sizes.shape)) # we don't call mean() because there may be empty slices sums = np.sum(np.broadcast_to(group_elapsed[None, :], (len(masks_by_reposize), *group_elapsed.shape)), axis=-1, where=masks_by_reposize) counts = np.sum(masks_by_reposize, axis=-1) # backfill if (missing := counts == 0).any(): existing_reposizes, existing_ts = np.array(np.nonzero(np.flip(~missing, axis=1))) _, existing_reposizes_counts = np.unique(existing_reposizes, return_counts=True) existing_borders = np.cumsum(existing_reposizes_counts)[:-1] saturated_existing_ts = existing_ts.copy() ts_len = counts.shape[-1] saturated_existing_ts[existing_borders - 1] = ts_len saturated_existing_ts[-1] = ts_len offsets = np.diff(np.insert(saturated_existing_ts, existing_borders, 0), prepend=0) offsets = np.delete(offsets, existing_borders + np.arange(len(existing_borders))) reposize_indexes = np.repeat(existing_reposizes, offsets, axis=-1) ts_indexes = np.repeat(existing_ts, offsets) ts_indexes = \ ts_len - 1 - np.flip(ts_indexes.reshape(len(counts), ts_len), axis=1).ravel() sums[missing] = sums[reposize_indexes, ts_indexes].reshape(sums.shape)[missing] counts[missing] = counts[reposize_indexes, ts_indexes].reshape(sums.shape)[missing] # average the individual backfilled means means = sums / counts if len(means): ts_means = np.mean(means, axis=0) else: ts_means = np.full(len(min_times), None, dtype=elapsed.dtype) # confidence intervals are not implemented metrics.append([self.metric.from_fields(m is not None, m, None, None) for m in ts_means.tolist()]) def _values(self) -> List[List[Metric[timedelta]]]: return self._metrics def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: raise AssertionError("this must be never called") def _value(self, samples: np.ndarray) -> Metric[timedelta]: raise AssertionError("this must be never called") @register_metric(CodeCheckMetricID.SUITES_PER_PR) class SuitesPerPRCounter(AverageMetricCalculator[float]): """Average number of executed check suites per pull request metric.""" may_have_negative_values = False metric = MetricFloat deps = (FirstSuiteEncounters,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: first_suite_encounters = self._calcs[0].peek pull_requests = facts[CheckRun.pull_request_node_id.name].values _, first_pr_encounters, pr_suite_counts = np.unique( pull_requests[first_suite_encounters], return_index=True, return_counts=True) # we don't have to filter out 0-s because mask_pr_times is False for them result = np.full((len(min_times), len(facts)), np.nan, dtype=np.float32) result[:, first_suite_encounters[first_pr_encounters]] = pr_suite_counts mask_pr_times = ( (facts[pull_request_started_column].values.astype(max_times.dtype, copy=False) < max_times[:, None]) & (facts[pull_request_closed_column].values.astype(min_times.dtype, copy=False) >= min_times[:, None]) ) result[~mask_pr_times] = None return result @register_metric(CodeCheckMetricID.SUITE_TIME_PER_PR) class SuiteTimePerPRCalculator(AverageMetricCalculator[timedelta]): """Average check suite execution in PRs time metric.""" may_have_negative_values = False metric = MetricTimeDelta deps = (SuiteTimeCalculator,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: pull_requests = facts[CheckRun.pull_request_node_id.name].values no_prs_mask = pull_requests == 0 result = self._calcs[0].peek.copy() result[:, no_prs_mask] = None return result @register_metric(CodeCheckMetricID.PRS_WITH_CHECKS_COUNT) class PRsWithChecksCounter(SumMetricCalculator[int]): """Number of PRs with executed check suites.""" metric = MetricInt deps = (SuitesPerPRCounter,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: result = self._calcs[0].peek.copy() result[result != result] = 0 result[result > 0] = 1 return result def calculate_check_run_outcome_masks(check_run_statuses: np.ndarray, check_run_conclusions: np.ndarray, check_suite_conclusions: Optional[np.ndarray], with_success: bool, with_failure: bool, with_skipped: bool, ) -> List[np.ndarray]: """Calculate the check run success and failure masks.""" completed = check_run_statuses == b"COMPLETED" if with_success or with_skipped: neutrals = (check_run_conclusions == b"NEUTRAL") result = [] if with_success: result.append( (completed & ( (check_run_conclusions == b"SUCCESS") | (check_suite_conclusions == b"NEUTRAL") & neutrals )) | (check_run_statuses == b"SUCCESS") | (check_run_statuses == b"PENDING") # noqa(C812) ) if with_failure: result.append( (completed & np.in1d(check_run_conclusions, [b"FAILURE", b"STALE", b"ACTION_REQUIRED"])) | (check_run_statuses == b"FAILURE") | (check_run_statuses == b"ERROR") # noqa(C812) ) if with_skipped: result.append((check_suite_conclusions != b"NEUTRAL") & neutrals) return result @register_metric(CodeCheckMetricID.FLAKY_COMMIT_CHECKS_COUNT) class FlakyCommitChecksCounter(SumMetricCalculator[int]): """Number of commits with both successful and failed check suites.""" metric = MetricInt deps = (SuccessfulSuitesCounter, FailedSuitesCounter) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: statuses = facts[CheckRun.status.name].values.astype("S") conclusions = facts[CheckRun.conclusion.name].values.astype("S") check_suite_conclusions = facts[CheckRun.check_suite_conclusion.name].values.astype("S") success_mask, failure_mask = calculate_check_run_outcome_masks( statuses, conclusions, check_suite_conclusions, True, True, False) commits = facts[CheckRun.commit_node_id.name].values.copy() check_run_names = np.char.encode(facts[CheckRun.name.name].values.astype("U"), "UTF-8") commits_with_names = np.char.add(int_to_str(commits), check_run_names) _, unique_map = np.unique(commits_with_names, return_inverse=True) unique_flaky_indexes = np.intersect1d(unique_map[success_mask], unique_map[failure_mask]) flaky_mask = np.in1d(unique_map, unique_flaky_indexes) commits[~flaky_mask] = 0 unique_commits, flaky_indexes = np.unique(commits, return_index=True) if len(unique_commits) and unique_commits[0] == 0: flaky_indexes = flaky_indexes[1:] started = facts[check_suite_started_column].values.astype(min_times.dtype) result = np.zeros((len(min_times), len(facts)), int) mask = np.zeros(len(facts), bool) mask[flaky_indexes] = 1 started[~mask] = None mask = (min_times[:, None] <= started) & (started < max_times[:, None]) result[mask] = 1 return result @register_metric(CodeCheckMetricID.PRS_MERGED_WITH_FAILED_CHECKS_COUNT) class MergedPRsWithFailedChecksCounter(SumMetricCalculator[int]): """Count how many PRs were merged despite failing checks.""" metric = MetricInt @staticmethod def find_prs_merged_with_failed_check_runs(facts: pd.DataFrame, ) -> Tuple[pd.Index, np.array, np.array]: """ Compute the mask in the sorted facts that selects rows with PRs merged with a failing \ check run. :return: 1. Index of the sorted dataframe. \ 2. Column with the pull request node IDs in the sorted dataframe. \ 3. Computed mask. """ if facts.empty: return pd.Int64Index([]), np.array([], dtype="S1"), np.array([], dtype=bool) df = facts[[ CheckRun.pull_request_node_id.name, CheckRun.name.name, CheckRun.started_at.name, CheckRun.status.name, CheckRun.conclusion.name, pull_request_merged_column]] df = df.sort_values(CheckRun.started_at.name, ascending=False) # no inplace=True, yes pull_requests = df[CheckRun.pull_request_node_id.name].values names = np.char.encode(df[CheckRun.name.name].values.astype("U"), "UTF-8") joint = np.char.add(int_to_str(pull_requests), names) _, first_encounters = np.unique(joint, return_index=True) statuses = df[CheckRun.status.name].values.astype("S") conclusions = df[CheckRun.conclusion.name].values.astype("S") failure_mask = np.zeros_like(statuses, dtype=bool) failure_mask[first_encounters] = True merged_timestamps = df[pull_request_merged_column].values failure_mask &= ( calculate_check_run_outcome_masks(statuses, conclusions, None, False, True, False)[0] ) & (pull_requests != 0) & (merged_timestamps == merged_timestamps) return df.index, pull_requests, failure_mask def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: index, pull_requests, failure_mask = self.find_prs_merged_with_failed_check_runs(facts) failing_pull_requests = pull_requests[failure_mask] _, failing_indexes = np.unique(failing_pull_requests, return_index=True) failing_indexes = np.nonzero(failure_mask)[0][failing_indexes] failing_indexes = index.values[failing_indexes] mask_pr_times = ( (facts[pull_request_started_column].values < max_times[:, None]) & (facts[pull_request_closed_column].values >= min_times[:, None]) ) result = np.zeros((len(min_times), len(facts)), dtype=int) result[:, failing_indexes] = 1 result[~mask_pr_times] = 0 return result class MergedPRsCounter(SumMetricCalculator[int]): """Count how many PRs were merged with checks.""" metric = MetricInt def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: pull_requests = facts[CheckRun.pull_request_node_id.name].values.copy() merged = facts[pull_request_merged_column].values pull_requests[merged != merged] = 0 unique_prs, first_encounters = np.unique(pull_requests, return_index=True) first_encounters = first_encounters[unique_prs != 0] mask_pr_times = ( (facts[pull_request_started_column].values < max_times[:, None]) & (facts[pull_request_closed_column].values >= min_times[:, None]) ) result = np.zeros((len(min_times), len(facts)), dtype=int) result[:, first_encounters] = 1 result[~mask_pr_times] = 0 return result @register_metric(CodeCheckMetricID.PRS_MERGED_WITH_FAILED_CHECKS_RATIO) class MergedPRsWithFailedChecksRatioCalculator(RatioCalculator): """Calculate the ratio of PRs merged with failing checks to all merged PRs with checks.""" deps = (MergedPRsWithFailedChecksCounter, MergedPRsCounter) class ConcurrencyCalculator(MetricCalculator[float]): """Calculate the concurrency value for each check run.""" metric = MetricFloat is_pure_dependency = True def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: repos = facts[CheckRun.repository_full_name.name].values.astype("S") names = np.char.encode(facts[CheckRun.name.name].values.astype("U"), "UTF-8") crtypes = np.char.add(np.char.add(repos, b"|"), names) del repos, names started_ats = \ facts[CheckRun.started_at.name].values.astype(min_times.dtype, copy=False) completed_ats = \ facts[CheckRun.completed_at.name].values.astype(min_times.dtype, copy=False) have_completed = completed_ats == completed_ats crtypes = crtypes[have_completed] time_order_started_ats = started_ats[have_completed] time_order_completed_ats = completed_ats[have_completed] _, crtypes_counts = np.unique(crtypes, return_counts=True) crtypes_order = np.argsort(crtypes) crtype_order_started_ats = \ time_order_started_ats[crtypes_order].astype("datetime64[s]") crtype_order_completed_ats = \ time_order_completed_ats[crtypes_order].astype("datetime64[s]") intersections = calculate_interval_intersections( crtype_order_started_ats.view(np.uint64), crtype_order_completed_ats.view(np.uint64), np.cumsum(crtypes_counts), ) intersections = intersections[np.argsort(crtypes_order)] result = np.full((len(min_times), len(facts)), np.nan, np.float32) result[:, have_completed] = intersections mask = (min_times[:, None] <= started_ats) & (started_ats < max_times[:, None]) result[~mask] = np.nan return result def _value(self, samples: np.ndarray) -> Metric[float]: raise AssertionError("disabled for pure dependencies") @register_metric(CodeCheckMetricID.CONCURRENCY) class AvgConcurrencyCalculator(AverageMetricCalculator[float]): """Calculate the average concurrency of the check runs.""" may_have_negative_values = False metric = MetricFloat deps = (ConcurrencyCalculator,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: return self._calcs[0].peek @register_metric(CodeCheckMetricID.CONCURRENCY_MAX) class MaxConcurrencyCalculator(MaxMetricCalculator[int]): """Calculate the maximum concurrency of the check runs.""" may_have_negative_values = False metric = MetricFloat deps = (ConcurrencyCalculator,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: return self._calcs[0].peek def _agg(self, samples: np.ndarray) -> int: return int(super()._agg(samples)) ElapsedTimePerConcurrencyCalculatorDType = np.dtype( [("concurrency", float), ("duration", "timedelta64[s]")]) ElapsedTimePerConcurrencyCalculatorMetric = make_metric( "ElapsedTimePerConcurrencyCalculatorMetric", __name__, ElapsedTimePerConcurrencyCalculatorDType, np.array((np.nan, np.timedelta64("NaT")), dtype=ElapsedTimePerConcurrencyCalculatorDType)) @register_metric(CodeCheckMetricID.ELAPSED_TIME_PER_CONCURRENCY) class ElapsedTimePerConcurrencyCalculator(MetricCalculator[object]): """Calculate the cumulative time spent on each concurrency level.""" metric = ElapsedTimePerConcurrencyCalculatorMetric deps = (ConcurrencyCalculator,) def _analyze(self, facts: pd.DataFrame, min_times: np.ndarray, max_times: np.ndarray, **_) -> np.ndarray: result =
np.zeros_like(self._calcs[0].peek, dtype=self.dtype)
numpy.zeros_like
# -*- coding: utf-8 -*- """ autoencoder.py ================= Implementation of a neural network using stochastic gradient descent. """ from typing import List import numpy as np import numpy.random as random class Autoencoder(object): def __init__(self, sizes: List[int] = None, learning_rate: float = 0.01, regularization_penalty: float = 0): """ Initializes the neural network creating the layers of neurons, the matrix of weights, the biases and the required data structures for a neural network. This method will require an list of ints that indicates the size of each layer (the number of neurons). The learning rate (alpha) and the regularization penalty (lambda) could be set. :param sizes: array with the sizes of each layer. Default: [8, 3, 8] :param learning_rate: learning rate of the neural network (alpga). Default: 0.01 :param regularization_penalty: regularization penalty (lambda). Default: 0 """ if sizes is None: sizes = [8, 3, 8] self.learning_rate = learning_rate # alpha self.regularization_penalty = regularization_penalty # lambda self.number_of_layers = len(sizes) self.sizes = sizes self.weighted_inputs = None # z's self.activations = None # a's self.deltas = None # deltas self.biases = [random.rand(layer_size, 1) for layer_size in sizes[1:]] self.bias_partial_derivatives = [np.zeros(bias.shape) for bias in self.biases] self.weights = [random.rand(layer_size, prev_layer_size) for layer_size, prev_layer_size in zip(sizes[1:], sizes[:-1])] self.weights_partial_derivatives = [np.zeros(weight.shape) for weight in self.weights] self.cost_gradients = [random.rand(layer_size, prev_layer_size) for layer_size, prev_layer_size in zip(sizes[1:], sizes[:-1])] self.epoch_convergence = None self.errors = [] def gradient_descent_learning(self, training_examples: np.ndarray, epochs: int = 50000, batch_size: int = 8, evaluation: bool = True) -> None: """ Method that trains the neural network and evaluate its results for a given input. The batch size will generate a training input with the indicated number of instances that will be used to update the weights and bias of the neuron, if the batch is smaller than the total training set, this last will be divided in n batch that will be used to train the neural network. :param training_examples: matrix with the inputs to the network :param epochs: integer with the number of times the training will be done. Default: 10000 epochs :param batch_size: size of the training batch used per gradient descent update. Default: 8 samples :param evaluation: true to print the evaluation of the network after each epoch. Default: True :return: """ num_training_examples = training_examples.shape[1] for i in range(int(epochs)): random.shuffle(np.transpose(training_examples)) # randomize the input data batches = [training_examples[:, i:i + batch_size] for i in range(0, num_training_examples, batch_size)] for batch in batches: self.train_neural_network(batch) if evaluation: error = np.sum(self.deltas[-1]) ** 2 self.errors.append(error) correct_results = self.evaluate(training_examples) print('Epoch: {0}. Correct results: {1} of {2}'.format(i, correct_results, num_training_examples)) if correct_results == num_training_examples: if self.epoch_convergence is None: self.epoch_convergence = i print('Converged in {0} epochs'.format(self.epoch_convergence)) if error < 0.01: print("Squared error less than 0.01 in {0} epochs. Value: {1}".format(i, error)) break def train_neural_network(self, input_values: np.ndarray): """ Method that handle the training process for a set of inputs. This method create the structures to save the data during the training process and call the different methods that make the calculations. :param input_values: training values """ input_length = input_values.shape[1] self.weighted_inputs = [np.zeros([layer_size, input_length]) for layer_size in self.sizes[1:]] self.activations = [np.zeros([layer_size, input_length]) for layer_size in self.sizes] self.deltas = [np.zeros([layer_size, input_length]) for layer_size in self.sizes] self.forward_propagation(input_values) self.backwards_propagation(input_values, input_length) self.gradient_descent() def forward_propagation(self, net_input: np.ndarray): """ Forward propagation process. :param net_input: array with the input of the network :return: output of the network """ self.activations[0] = net_input # save the input as the activation of the first layer for i in range(len(self.weights)): weighted_input = np.dot(self.weights[i], net_input) + self.biases[i] # numpy broadcasting net_input = sigmoid(weighted_input) self.weighted_inputs[i] = weighted_input # saved for back propagation -> z self.activations[i + 1] = net_input # saved for back propagation -> a def backwards_propagation(self, expected_outputs: np.ndarray, training_examples_length: int): """ Backwards propagation process. :param expected_outputs: output of the last layer of the neural network should show :param training_examples_length: length of the training example contained in the input. Equal to m """ training_examples_div = (1 / training_examples_length) # 1/m self.deltas[-1] = -(expected_outputs - self.activations[-1]) # -(y - activation_output) # self.deltas[-1] = -(expected_outputs - self.activations[-1]) * sigmoid_derivative(self.activations[-i]) # -(y - activation_output) * f'(z[-1]) self.weights_partial_derivatives[-1] = \ training_examples_div * np.dot(self.deltas[-1], np.transpose(self.activations[-2])) self.bias_partial_derivatives[-1] = training_examples_div * np.sum(self.deltas[-1], axis=1, keepdims=True) for i in range(2, self.number_of_layers): self.deltas[-i] = np.dot(np.transpose(self.weights[-i + 1]), self.deltas[-i + 1]) \ * sigmoid_derivative(self.activations[-i]) self.weights_partial_derivatives[-i] = \ training_examples_div * np.dot(self.deltas[-i], np.transpose(self.activations[-i - 1])) self.bias_partial_derivatives[-i] = training_examples_div * np.sum(self.deltas[-i], axis=1, keepdims=True) def gradient_descent(self): """ Method that handle the gradient descent calculations, take care of the calculation required to update the weights and biases. This method depend of the learning rate set during the creation of the neural network ('learning-rate) and it is capable of doing regularization setting the value of 'regularization_penalty'. """ for i in range(len(self.weights)): self.weights[i] -= \ self.learning_rate * ( self.weights_partial_derivatives[i] + self.regularization_penalty * self.weights[i]) self.biases[i] -= \ self.learning_rate * (self.bias_partial_derivatives[i] + self.regularization_penalty * self.biases[i]) def evaluate(self, data: np.ndarray): """ Function that takes all the training data and check the results that the network returns. The one in the neural network output will be the position where the result is higher and then is compared with the input. :param data: data used to compare the results :return: number of correct results returned by the network """ self.forward_propagation(data) return np.sum(np.argmax(self.activations[-1], axis=0) == np.argmax(data, axis=0)) def sigmoid(z): """ The sigmoid function that applies to the result of the product of the weight and the activation of the neurons plus the biases, known as weighted input. z = w_l*a_l+b :param z: weighted input. :return: activation of the next layer of the network """ return 1.0 / (1 + np.exp(-z)) def sigmoid_derivative(activation_values): """ Derivative of the sigmoid function :param activation_values: activation values :return: result of applying the derivative function """ return activation_values * (1.0 - activation_values) if __name__ == '__main__': # Default training set array = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]) # Creation of the network and training # network = nn.NeuralNetwork(learning_rate=0.1) # If the learning rate or the penalty wants to be changed network = Autoencoder(learning_rate=0.1, regularization_penalty=0.0001) network.gradient_descent_learning(array) # Testing test_input = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]) print('Test input:') print(np.array_str(test_input)) network.forward_propagation(test_input) print('Last layer activation:') print(
np.array_str(network.activations[-1], precision=3, suppress_small=True)
numpy.array_str
# -*- coding: utf-8 -*- """ Created on Tue Mar 07 11:48:18 2017 @author: Gaurav """ import math import random import pickle import warnings import nltk import itertools import numpy as np import keras.backend as K from theano import tensor as T import gensim as gen import scipy.stats as measures from gensim.models import word2vec from scipy.stats.stats import pearsonr from keras.engine.topology import Layer from nltk.tokenize import regexp_tokenize from sklearn.metrics.pairwise import cosine_similarity warnings.simplefilter("ignore") START = '$_START_$' END = '$_END_$' unk_token = '$_UNK_$' #vocab_size = 17000 #embedding_dim = 300 #dimx = 30 #dimy = 30 loss_type = 2 # 1 - l1+l2+l3-L4; 2 - l2+l3-L4; 3 - l1+l2+l3 , 4 - l2+l3 #word_to_index={} #index_to_word=[] #wordVec_model = word2vec.Word2Vec.load_word2vec_format("GoogleNews-vectors-negative300.bin.gz",binary=True) def split(train_l,train_r,label,ratio): total = train_l.shape[0] train_samples = int(total*(1-ratio)) test_samples = total-train_samples tr_l,tst_l,tr_r,tst_r,l_tr,l_tst=[],[],[],[],[],[] dat=random.sample(range(total),train_samples) for a in dat: tr_l.append(train_l[a,:]) tr_r.append(train_r[a,:]) l_tr.append(label[a]) for i in range(test_samples): if i not in dat: tst_l.append(train_l[i,:]) tst_r.append(train_r[i,:]) l_tst.append(label[i]) tr_l = np.array(tr_l) tr_r = np.array(tr_r) tst_l = np.array(tst_l) tst_r = np.array(tst_r) l_tr = np.array(l_tr) l_tst = np.array(l_tst) return tr_l,tst_l,tr_r,tst_r,l_tr,l_tst class ZeroLike(Layer): def __init__(self, **kwargs): super(ZeroLike, self).__init__(**kwargs) def call(self, x, mask=None): return K.zeros_like(x) def get_output_shape_for(self, input_shape): return input_shape def project(model,inp): m = model.predict([inp[0],inp[1]]) return m[2] def sum_corr(view1,view2,flag=''): print("test correlation") corr = 0 for i,j in zip(view1,view2): corr += measures.pearsonr(i,j)[0] print('avg sum corr ::',flag,'::',corr/len(view1)) def cal_sim(model,ind1,ind2=1999): view1 = np.load("test_v1.npy")[0:ind1] view2 =
np.load("test_v2.npy")
numpy.load
""" Test cate/ops/coregistration.py Test coregistration, checks if the values seem as expected when using default upsampling/downsampling methods. """ from unittest import TestCase import numpy as np import xarray as xr from numpy.testing import assert_almost_equal, assert_array_equal from cate.core.op import OP_REGISTRY from cate.util.misc import object_to_qualified_name from cate.ops import coregister from cate.ops.coregistration import _find_intersection from ..util.test_monitor import RecordingMonitor class TestCoregistration(TestCase): """ Test coregistration """ def test_nominal(self): """ Test nominal execution """ ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}).chunk(chunks={'lat': 2, 'lon': 4}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}).chunk(chunks={'lat': 3, 'lon': 3}) # Test that the coarse dataset has been resampled onto the grid # of the finer dataset. rm = RecordingMonitor() ds_coarse_resampled = coregister(ds_fine, ds_coarse, monitor=rm) self.assertEqual([('start', 'coregister dataset', 2), ('progress', 0.0, 'coregister dataarray', 0), ('progress', 0.0, 'coregister dataarray: resample slice', 0), ('progress', 0.125, None, 6), ('progress', 0.125, None, 13), ('progress', 0.125, None, 19), ('progress', 0.125, None, 25), ('progress', 0.0, 'coregister dataarray: resample slice', 25), ('progress', 0.0, 'coregister dataarray: resample slice', 25), ('progress', 0.125, None, 31), ('progress', 0.125, None, 38), ('progress', 0.125, None, 44), ('progress', 0.125, None, 50), ('progress', 0.0, 'coregister dataarray: resample slice', 50), ('progress', 0.0, 'coregister dataarray', 50), ('progress', 0.0, 'coregister dataarray', 50), ('progress', 0.0, 'coregister dataarray: resample slice', 50), ('progress', 0.125, None, 56), ('progress', 0.125, None, 63), ('progress', 0.125, None, 69), ('progress', 0.125, None, 75), ('progress', 0.0, 'coregister dataarray: resample slice', 75), ('progress', 0.0, 'coregister dataarray: resample slice', 75), ('progress', 0.125, None, 81), ('progress', 0.125, None, 88), ('progress', 0.125, None, 94), ('progress', 0.125, None, 100), ('progress', 0.0, 'coregister dataarray: resample slice', 100), ('progress', 0.0, 'coregister dataarray', 100), ('done',)], rm.records) expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([[[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]], [[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]])), 'second': (['time', 'lat', 'lon'], np.array([[[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]], [[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) assert_almost_equal(ds_coarse_resampled['first'].values, expected['first'].values) # Test that the fine dataset has been resampled (aggregated) # onto the grid of the coarse dataset. ds_fine_resampled = coregister(ds_coarse, ds_fine) expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([[[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]], [[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]]])), 'second': (['time', 'lat', 'lon'], np.array([[[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]], [[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]]])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) assert_almost_equal(ds_fine_resampled['first'].values, expected['first'].values) def test_registered(self): """ Test registered operation execution execution """ reg_op = OP_REGISTRY.get_op(object_to_qualified_name(coregister)) ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) # Test that the coarse dataset has been resampled onto the grid # of the finer dataset. ds_coarse_resampled = reg_op(ds_master=ds_fine, ds_replica=ds_coarse) expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([[[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]], [[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]])), 'second': (['time', 'lat', 'lon'], np.array([[[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]], [[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) assert_almost_equal(ds_coarse_resampled['first'].values, expected['first'].values) # Test that the fine dataset has been resampled (aggregated) # onto the grid of the coarse dataset. ds_fine_resampled = reg_op(ds_master=ds_coarse, ds_replica=ds_fine) expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([[[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]], [[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]]])), 'second': (['time', 'lat', 'lon'], np.array([[[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]], [[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]]])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) assert_almost_equal(ds_fine_resampled['first'].values, expected['first'].values) def test_error(self): """ Test error conditions """ # Test unexpected global bounds ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(67.5, 135, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse) self.assertIn('(67.5, 135.0)', str(err.exception)) # Test non-equidistant dataset ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': [-67.5, -20, 20, 67.5], 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse) self.assertIn('not equidistant', str(err.exception)) # Test non-pixel registered dataset ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse_err = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.zeros([2, 5, 10])), 'second': (['time', 'lat', 'lon'], np.zeros([2, 5, 10])), 'lat': np.linspace(-90, 90, 5), 'lon': np.linspace(-162, 162, 10), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse_err) self.assertIn('not pixel-registered', str(err.exception)) ds_coarse_err = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.zeros([2, 5, 10])), 'second': (['time', 'lat', 'lon'], np.zeros([2, 5, 10])), 'lat': np.linspace(-72, 72, 5), 'lon': np.linspace(-180, 180, 10), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse_err) self.assertIn('not pixel-registered', str(err.exception)) # Test unexpected dimensionality ds_fine = xr.Dataset({ 'first': (['lat', 'longertude'], np.eye(4, 8)), 'second': (['lat', 'longertude'], np.eye(4, 8)), 'lat': np.linspace(-67.5, 67.5, 4), 'longertude': np.linspace(-157.5, 157.5, 8)}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse) self.assertIn('longertude', str(err.exception)) ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lon'], np.eye(2, 6)), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) with self.assertRaises(ValueError) as err: coregister(ds_fine, ds_coarse) self.assertIn('select_var', str(err.exception)) def test_find_intersection(self): """ Test the _find_intersection method """ # Test ======= # ========= a = np.linspace(0.5, 9.5, 10) b = np.linspace(5.5, 14.5, 10) result = _find_intersection(a, b, (0, 15)) self.assertEqual((5, 10), result) # Test ======= # ========= a = np.linspace(0.5, 9.5, 10) b = np.linspace(5.5, 14.5, 10) result = _find_intersection(b, a, (0, 15)) self.assertEqual((5, 10), result) # Test ======= # ============== a = np.linspace(5.5, 14.5, 10) b = np.linspace(0.5, 19.5, 20) result = _find_intersection(a, b, (0, 20)) self.assertEqual((5, 15), result) # Test ================== # ======== a = np.linspace(0.5, 19.5, 20) b = np.linspace(5.5, 14.5, 10) result = _find_intersection(a, b, (0, 20)) self.assertEqual((5, 15), result) # Test ============ # ======== a = np.linspace(0.5, 9.5, 10) b = np.linspace(10.5, 19.5, 10) with self.assertRaises(ValueError) as err: _find_intersection(a, b, (0, 20)) self.assertIn('valid intersection', str(err.exception)) # Test ============ # ======== a = np.linspace(0.5, 9.5, 10) b = np.linspace(10.5, 19.5, 10) with self.assertRaises(ValueError) as err: _find_intersection(b, a, (0, 20)) self.assertIn('valid intersection', str(err.exception)) # Test misaligned origins a = np.linspace(0.5, 9.5, 10) b = np.linspace(1, 9, 10) with self.assertRaises(ValueError) as err: _find_intersection(a, b, (0, 10)) self.assertIn('valid intersection', str(err.exception)) # Test differing pixel sizes a = np.linspace(0.5, 9.5, 10) b = np.linspace(5.25, 14.75, 20) result = _find_intersection(b, a, (0, 20)) self.assertEqual((5, 10), result) def test_subset(self): """ Test coregistration being run on a subset """ ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}) lat_slice = slice(-70, 70) lon_slice = slice(-40, 40) ds_coarse = ds_coarse.sel(lat=lat_slice, lon=lon_slice) # Test that the coarse dataset has been resampled onto the grid # of the finer dataset. ds_coarse_resampled = coregister(ds_fine, ds_coarse) assert_array_equal([-67.5, -22.5, 22.5, 67.5], ds_coarse_resampled.lat.values) assert_array_equal([-22.5, 22.5], ds_coarse_resampled.lon.values) # Check if the geospatial attributes have been correctly set self.assertEqual(ds_coarse_resampled.lat.values[0] - 45 * 0.5, ds_coarse_resampled.attrs['geospatial_lat_min']) self.assertEqual(ds_coarse_resampled.lat.values[-1] + 45 * 0.5, ds_coarse_resampled.attrs['geospatial_lat_max']) self.assertEqual(ds_coarse_resampled.lon.values[0] - 45 * 0.5, ds_coarse_resampled.attrs['geospatial_lon_min']) self.assertEqual(ds_coarse_resampled.lon.values[-1] + 45 * 0.5, ds_coarse_resampled.attrs['geospatial_lon_max']) self.assertEqual(45.0, ds_coarse_resampled.attrs['geospatial_lat_resolution']) self.assertEqual(45.0, ds_coarse_resampled.attrs['geospatial_lon_resolution']) def test_recursive(self): """ Test coregistration with more dimensions than lat/lon/time """ slice_fine = np.eye(4, 8) slice_coarse = np.eye(3, 6) ndarr_fine = np.zeros([2, 2, 2, 4, 8]) ndarr_coarse = np.zeros([2, 2, 2, 3, 6]) ndarr_fine_l1 = np.zeros([2, 2, 4, 8]) ndarr_coarse_l1 = np.zeros([2, 2, 3, 6]) ndarr_fine_l2 = np.zeros([2, 2, 4, 8]) ndarr_coarse_l2 = np.zeros([2, 2, 3, 6]) ndarr_fine[:] = slice_fine ndarr_coarse[:] = slice_coarse ndarr_fine_l1[:] = slice_fine ndarr_coarse_l1[:] = slice_coarse ndarr_fine_l2[:] = slice_fine ndarr_coarse_l2[:] = slice_coarse ds_fine = xr.Dataset({ 'first': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_fine), 'second': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_fine), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2]), 'time': np.array([1, 2])}).chunk(chunks={'lat': 2, 'lon': 4}) ds_coarse = xr.Dataset({ 'first': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_coarse), 'second': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_coarse), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2]), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2])}).chunk(chunks={'lat': 3, 'lon': 3}) # Test that the coarse dataset has been resampled onto the grid # of the finer dataset. rm = RecordingMonitor() ds_coarse_resampled = coregister(ds_fine, ds_coarse, monitor=rm) self.assertEqual([('start', 'coregister dataset', 2), ('progress', 0.0, 'coregister dataarray', 0), ('progress', 0.0, 'coregister dataarray: resample slice', 0), ('progress', 0.03125, None, 2), ('progress', 0.03125, None, 3), ('progress', 0.03125, None, 5), ('progress', 0.03125, None, 6), ('progress', 0.0, 'coregister dataarray: resample slice', 6), ('progress', 0.0, 'coregister dataarray: resample slice', 6), ('progress', 0.03125, None, 8), ('progress', 0.03125, None, 9), ('progress', 0.03125, None, 11), ('progress', 0.03125, None, 13), ('progress', 0.0, 'coregister dataarray: resample slice', 13), ('progress', 0.0, 'coregister dataarray: resample slice', 13), ('progress', 0.03125, None, 14), ('progress', 0.03125, None, 16), ('progress', 0.03125, None, 17), ('progress', 0.03125, None, 19), ('progress', 0.0, 'coregister dataarray: resample slice', 19), ('progress', 0.0, 'coregister dataarray: resample slice', 19), ('progress', 0.03125, None, 20), ('progress', 0.03125, None, 22), ('progress', 0.03125, None, 23), ('progress', 0.03125, None, 25), ('progress', 0.0, 'coregister dataarray: resample slice', 25), ('progress', 0.0, 'coregister dataarray: resample slice', 25), ('progress', 0.03125, None, 27), ('progress', 0.03125, None, 28), ('progress', 0.03125, None, 30), ('progress', 0.03125, None, 31), ('progress', 0.0, 'coregister dataarray: resample slice', 31), ('progress', 0.0, 'coregister dataarray: resample slice', 31), ('progress', 0.03125, None, 33), ('progress', 0.03125, None, 34), ('progress', 0.03125, None, 36), ('progress', 0.03125, None, 38), ('progress', 0.0, 'coregister dataarray: resample slice', 38), ('progress', 0.0, 'coregister dataarray: resample slice', 38), ('progress', 0.03125, None, 39), ('progress', 0.03125, None, 41), ('progress', 0.03125, None, 42), ('progress', 0.03125, None, 44), ('progress', 0.0, 'coregister dataarray: resample slice', 44), ('progress', 0.0, 'coregister dataarray: resample slice', 44), ('progress', 0.03125, None, 45), ('progress', 0.03125, None, 47), ('progress', 0.03125, None, 48), ('progress', 0.03125, None, 50), ('progress', 0.0, 'coregister dataarray: resample slice', 50), ('progress', 0.0, 'coregister dataarray', 50), ('progress', 0.0, 'coregister dataarray', 50), ('progress', 0.0, 'coregister dataarray: resample slice', 50), ('progress', 0.03125, None, 52), ('progress', 0.03125, None, 53), ('progress', 0.03125, None, 55), ('progress', 0.03125, None, 56), ('progress', 0.0, 'coregister dataarray: resample slice', 56), ('progress', 0.0, 'coregister dataarray: resample slice', 56), ('progress', 0.03125, None, 58), ('progress', 0.03125, None, 59), ('progress', 0.03125, None, 61), ('progress', 0.03125, None, 63), ('progress', 0.0, 'coregister dataarray: resample slice', 63), ('progress', 0.0, 'coregister dataarray: resample slice', 63), ('progress', 0.03125, None, 64), ('progress', 0.03125, None, 66), ('progress', 0.03125, None, 67), ('progress', 0.03125, None, 69), ('progress', 0.0, 'coregister dataarray: resample slice', 69), ('progress', 0.0, 'coregister dataarray: resample slice', 69), ('progress', 0.03125, None, 70), ('progress', 0.03125, None, 72), ('progress', 0.03125, None, 73), ('progress', 0.03125, None, 75), ('progress', 0.0, 'coregister dataarray: resample slice', 75), ('progress', 0.0, 'coregister dataarray: resample slice', 75), ('progress', 0.03125, None, 77), ('progress', 0.03125, None, 78), ('progress', 0.03125, None, 80), ('progress', 0.03125, None, 81), ('progress', 0.0, 'coregister dataarray: resample slice', 81), ('progress', 0.0, 'coregister dataarray: resample slice', 81), ('progress', 0.03125, None, 83), ('progress', 0.03125, None, 84), ('progress', 0.03125, None, 86), ('progress', 0.03125, None, 88), ('progress', 0.0, 'coregister dataarray: resample slice', 88), ('progress', 0.0, 'coregister dataarray: resample slice', 88), ('progress', 0.03125, None, 89), ('progress', 0.03125, None, 91), ('progress', 0.03125, None, 92), ('progress', 0.03125, None, 94), ('progress', 0.0, 'coregister dataarray: resample slice', 94), ('progress', 0.0, 'coregister dataarray: resample slice', 94), ('progress', 0.03125, None, 95), ('progress', 0.03125, None, 97), ('progress', 0.03125, None, 98), ('progress', 0.03125, None, 100), ('progress', 0.0, 'coregister dataarray: resample slice', 100), ('progress', 0.0, 'coregister dataarray', 100), ('done',)], rm.records) slice_exp = np.array([[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]) ndarr_fine_exp = np.zeros([2, 2, 2, 4, 8]) ndarr_fine_exp[:] = slice_exp expected = xr.Dataset({ 'first': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_fine_exp), 'second': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_fine_exp), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2]), 'time': np.array([1, 2])}) assert_almost_equal(ds_coarse_resampled['first'].values, expected['first'].values) # Test that the fine dataset has been resampled (aggregated) # onto the grid of the coarse dataset. ds_fine_resampled = coregister(ds_coarse, ds_fine) slice_exp = np.array([[0.625, 0.125, 0., 0., 0., 0.], [0.125, 0.5, 0.125, 0., 0., 0.], [0., 0.125, 0.625, 0., 0., 0.]]) ndarr_coarse_exp = np.zeros([2, 2, 2, 3, 6]) ndarr_coarse_exp[:] = slice_exp expected = xr.Dataset({ 'first': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_coarse_exp), 'second': (['time', 'layer', 'layer2', 'lat', 'lon'], ndarr_coarse_exp), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2]), 'time': np.array([1, 2])}) assert_almost_equal(ds_fine_resampled['first'].values, expected['first'].values) # Test that coregistering with data arrays with less than all possible # dimensions works ds_fine = xr.Dataset({ 'first': (['time', 'layer', 'lat', 'lon'], ndarr_fine_l1), 'second': (['time', 'layer2', 'lat', 'lon'], ndarr_fine_l2), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2]), 'time': np.array([1, 2])}).chunk(chunks={'lat': 2, 'lon': 4}) ds_coarse = xr.Dataset({ 'first': (['time', 'layer', 'lat', 'lon'], ndarr_coarse_l1), 'second': (['time', 'layer2', 'lat', 'lon'], ndarr_coarse_l2), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2]), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2])}).chunk(chunks={'lat': 3, 'lon': 3}) ds_fine_resampled = coregister(ds_coarse, ds_fine) ndarr_coarse_exp = np.zeros([2, 2, 3, 6]) ndarr_coarse_exp[:] = slice_exp expected = xr.Dataset({ 'first': (['time', 'layer', 'lat', 'lon'], ndarr_coarse_exp), 'second': (['time', 'layer2', 'lat', 'lon'], ndarr_coarse_exp), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'layer': np.array([1, 2]), 'layer2': np.array([1, 2]), 'time': np.array([1, 2])}) assert_almost_equal(ds_fine_resampled['first'].values, expected['first'].values) def test_2D(self): """ Test a case where a 2D lat/lon dataset is resampled or used for resampling """ # Master dataset is 2D ds_fine = xr.Dataset({ 'first': (['lat', 'lon'], np.eye(4, 8)), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8)}).chunk() ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}).chunk(chunks={'lat': 3, 'lon': 3}) ds_coarse_resampled = coregister(ds_fine, ds_coarse) slice_exp = np.array([[1., 0.28571429, 0., 0., 0., 0., 0., 0.], [0.33333333, 0.57142857, 0.38095238, 0., 0., 0., 0., 0.], [0., 0.47619048, 0.52380952, 0.28571429, 0.04761905, 0., 0., 0.], [0., 0., 0.42857143, 0.85714286, 0.14285714, 0., 0., 0.]]) exp_arr = np.zeros([2, 4, 8]) exp_arr[:] = slice_exp expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], exp_arr), 'second': (['time', 'lat', 'lon'], exp_arr), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}) assert_almost_equal(ds_coarse_resampled['first'].values, expected['first'].values) # replica dataset contains a 2D variable ds_coarse = xr.Dataset({ 'first': (['lat', 'lon'], np.eye(3, 6)), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)])), 'lat': np.linspace(-60, 60, 3), 'lon': np.linspace(-150, 150, 6), 'time': np.array([1, 2])}).chunk(chunks={'lat': 3, 'lon': 3}) ds_coarse_resampled = coregister(ds_fine, ds_coarse) assert_almost_equal(ds_coarse_resampled['first'].values, slice_exp) def test_int_array(self): """ Test coregistration on integer arrays """ ds_fine = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8)], dtype='int32')), 'second': (['time', 'lat', 'lon'], np.array([np.eye(4, 8), np.eye(4, 8,)])), 'lat': np.linspace(-67.5, 67.5, 4), 'lon': np.linspace(-157.5, 157.5, 8), 'time': np.array([1, 2])}).chunk(chunks={'lat': 2, 'lon': 4}) ds_coarse = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.array([np.eye(3, 6), np.eye(3, 6)], dtype='int32')), 'second': (['time', 'lat', 'lon'], np.array([np.eye(3, 6),
np.eye(3, 6)
numpy.eye
import sys import numpy as np import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt from statsmodels.tsa.seasonal import seasonal_decompose import argparse import csv shape_i = 0 baseline_range = {'start':3, 'end':24} crisis_range = {'start':24} #{{{ def get_ws(scores, header): wd = [] we = [] for i in range(len(header)): timepoint = header[i].split(' ') day = timepoint[1] time = timepoint[-1] if day in ['Saturday', 'Sunday']: we.append(scores[i]) else: wd.append(scores[i]) wd_u =
np.mean(wd)
numpy.mean
import matplotlib matplotlib.use('Agg') # check this import matplotlib.pyplot as plt import numpy as np import vaex import pandas as pd import os from glob import glob from astrom_common import Alignment, plotalignment from astrometry.util.fits import fits_table from astrometry.util.plotutils import * from astrometry.libkd.spherematch import match_radec os.environ['NUMEXPR_MAX_THREADS'] = '8' def check_results(fns, tag): def get_field(ds, col): return ds.evaluate(ds[col.upper()]) rr = [] dd = [] for fn in fns: df = pd.read_hdf(fn, key='data') ds = vaex.from_pandas(df) print(len(ds), 'rows') ra = get_field(ds, 'ra') dec = get_field(ds, 'dec') rr.append(ra) dd.append(dec) rr = np.hstack(rr) dd = np.hstack(dd) print('Total of', len(rr), 'stars') T = fits_table() T.ra = rr T.dec = dd T.writeto('all-rd-%s.fits' % tag) plothist(rr, dd, 500) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.savefig('all-radec-%s.png' % tag) I,J,d = match_radec(rr, dd, rr, dd, 0.2/3600, notself=True) plt.clf() plt.hist(d * 3600. * 1000., bins=50) plt.xlabel('Distance between stars (milli-arcsec)') plt.savefig('all-dists-%s.png' % tag) def check_results_2(tag): T = fits_table('all-rd-%s.fits' % tag) I,J,d = match_radec(T.ra, T.dec, T.ra, T.dec, 0.2/3600, notself=True) plt.clf() plt.hist(d * 3600. * 1000., bins=50) plt.xlabel('Distance between stars (milli-arcsec)') plt.savefig('all-dists-%s.png' % tag) plt.clf() plt.hist(d * 3600. * 1000., bins=50, log=True) plt.xlabel('Distance between stars (milli-arcsec)') plt.savefig('all-dists-log-%s.png' % tag) def apply_alignments(aff_fn, corners_fn, infns, pandas=True): from astrom_common import Affine T = fits_table(aff_fn) affs = Affine.fromTable(T) print('Read affines:', affs) ibright = dict([(fn.strip(),i) for i,fn in enumerate(T.filenames)]) corners = {} for line in open(corners_fn).readlines(): line = line.strip() words = line.split() ras = np.array([float(words[i]) for i in [1,3,5,7]]) decs = np.array([float(words[i]) for i in [2,4,6,8]]) corners[words[0]] = (ras,decs) from astrometry.util.miscutils import point_in_poly #fns1 = glob('data/M31-*ST/proc_default/M31-*ST.phot.hdf5') #fns2 = glob('data/M31-*ST/M31-*ST.phot.hdf5') #fns1.sort() #fns2.sort() #fns = fns1 + fns2 fns = infns print('Files:', fns) veto_polys = [] for photfile in fns: basename = os.path.basename(photfile) basename = basename.replace('.phot.hdf5', '') print('Base name:', basename) corner = corners[basename] ras,decs = corner poly = np.vstack((ras, decs)).T outfn2 = 'cut-%s.hdf5' % basename if os.path.exists(outfn2): print('File', outfn2, 'exists; skipping') veto_polys.append(poly) continue brightfn = basename + '-bright.fits' ii = ibright[brightfn] aff = affs[ii] print('Reading', photfile) if pandas: df = pd.read_hdf(photfile, key='data') ds = vaex.from_pandas(df) else: ds = vaex.open(photfile) def get_field(ds, col): if pandas: return ds.evaluate(ds[col]) else: return ds.evaluate(ds[col.upper()]) print(len(ds), 'rows') ra = get_field(ds, 'ra') dec = get_field(ds, 'dec') ra,dec = aff.apply(ra, dec) Tleft = fits_table() Tleft.ra = ra Tleft.dec = dec Tleft.index = np.arange(len(Tleft)) inside = point_in_poly(Tleft.ra, Tleft.dec, poly) print(np.sum(inside), 'of', len(Tleft), 'inside corners of this half-brick') inside_veto = np.zeros(len(Tleft), bool) for vp in veto_polys: inveto = point_in_poly(Tleft.ra, Tleft.dec, vp) inside_veto[inveto] = True print(np.sum(inside_veto), 'stars are inside the corners of previous half-bricks') print('inside:', type(inside), inside.dtype) inside[inside_veto] = False print(np.sum(inside), 'stars are uniquely in this half-brick') veto_polys.append(poly) outfn = 'out/out-%s.hdf5' % basename if pandas: df[inside].to_hdf(outfn, key='data', mode='w', format='table', complevel=9, complib='zlib') else: df = ds.take(np.flatnonzero(inside)).to_pandas_df() df.to_hdf(outfn, key='data', mode='w', format='table', complevel=9, complib='zlib') print('Wrote', outfn) outfn = 'cut/cut-%s.hdf5' % basename if pandas: df[np.logical_not(inside)].to_hdf(outfn, key='data', mode='w', format='table', complevel=9, complib='zlib') else: df = ds.take(np.flatnonzero(np.logical_not(inside))).to_pandas_df() df.to_hdf(outfn, key='data', mode='w', format='table', complevel=9, complib='zlib') print('Wrote', outfn) def to_fits(fns, pandas=True): print('Files:', fns) plt.clf() outfns = [] for photfile in fns: #photfile like 'data/M31-B23-WEST/M31-B23-WEST.phot.hdf5' print() print(photfile) basename = os.path.basename(photfile) basename = basename.replace('.phot.hdf5', '') print('Base name:', basename) outfn = basename + '-bright.fits' outfns.append(outfn) if os.path.exists(outfn): print('Exists:', outfn) st_in = os.stat(photfile) st_out = os.stat(outfn) print('Timestamps: in', st_in.st_mtime, 'out', st_out.st_mtime) if st_out.st_mtime > st_in.st_mtime: continue print('Input file is newer!') basename = basename.replace('_', '-') words = basename.split('-') assert(len(words) == 3) galaxy = words[0] assert(galaxy.startswith('M')) brick = words[1] assert(brick[0] == 'B') brick = int(brick[1:], 10) print('Brick number:', brick) dirn = words[2] #ew = words[2] assert(dirn in ['EAST', 'WEST', 'NW','NN','NE','SW','SS','SE']) #east = (ew == 'EAST') if pandas: df = pd.read_hdf(photfile, key='data') ds = vaex.from_pandas(df) else: ds = vaex.open(photfile) print('Read', photfile) #print(ds) def get_field(ds, col): if pandas: return ds.evaluate(ds[col]) else: return ds.evaluate(ds[col.upper()]) print(len(ds), 'rows') if 'f814w_gst' in ds: good = get_field(ds, 'f814w_gst') print(len(ds), 'rows') #print('good:', good.dtype) from collections import Counter print('good:', Counter(good)) #print('ds:', ds.dtype) #ds = ds[good] #ds = ds[np.flatnonzero(good)] ds = ds.take(np.flatnonzero(good)) #print('ds:', ds) print(len(ds), 'gst on F814W') else: ds.select('(F814W_SNR > 4) & (F814W_SHARP**2 < 0.2)', name='F814W_ST') ds.select('F814W_ST & (F814W_CROWD < 2.25)', name='F814W_GST') ds = ds[ds['F814W_GST']] print(len(ds), 'gst on F814W') # good = ds.evaluate(ds['f475w_gst']) # print(good) # print(len(good)) # print(type(good)) # print(good.dtype) # print('Of those,', np.sum(ds.evaluate(ds['f475w_gst'])), 'are F475W_GST') # print('Of those,', np.sum(ds.evaluate(ds['f336w_gst'])), 'are F336W_GST') # print('Of those,', np.sum(ds.evaluate(ds['f275w_gst'])), 'are F275W_GST') # print('Of those,', np.sum(ds.evaluate(ds['f110w_gst'])), 'are F110W_GST') # print('Of those,', np.sum(ds.evaluate(ds['f160w_gst'])), 'are F160W_GST') mag = get_field(ds, 'f814w_vega') print('Of', len(mag), 'mags,', np.sum(np.isfinite(mag)), 'are finite') print('range:', np.nanmin(mag), np.nanmax(mag)) plt.hist(mag[np.isfinite(mag)], range=(20, 28), bins=50, label=basename) with np.errstate(invalid='ignore'): print('ds', ds) if pandas: #ds = ds[mag < 24] ds = ds.take(np.flatnonzero(mag < 24)) else: ds = ds[ds['F814W_VEGA'] < 24] #ds = ds.take(np.flatnonzero(ds['F814W_VEGA'] < 24)) print('ds cut', ds) print(len(ds), 'with F814W < 24') mag = get_field(ds, 'f814w_vega') xx = get_field(ds, 'x') yy = get_field(ds, 'y') xlo = xx.min() xhi = xx.max() ylo = yy.min() yhi = yy.max() nx = int(np.round((xhi - xlo) / 1000.)) + 1 xbins = np.linspace(xlo, xhi, nx) ny = int(np.round((yhi - ylo) / 1000.)) + 1 ybins = np.linspace(ylo, yhi, ny) print('x bins', xbins) print('y bins', ybins) xbin = np.digitize(xx, xbins) ybin = np.digitize(yy, ybins) xybin = ybin * nx + xbin nbins = nx * ny print('N bins:', nbins) nperbin = int(np.ceil(100000. / nbins)) II = [] for ibin in range(nbins): I = np.flatnonzero(xybin == ibin) if len(I) == 0: continue Ibright = np.argsort(mag[I])[:nperbin] II.append(I[Ibright]) II = np.hstack(II) #I = np.argsort(mag) #I = I[:100000] #print('100k-th star: mag', mag[I[-1]]) ds = ds.take(II) cols = ['ra','dec','x', 'y'] if pandas: cols.append('index') T = fits_table() for col in cols: T.set(col, get_field(ds, col)) for filt in [814, 475, 336, 275, 110, 160]: for col in ['f%iw_vega']: colname = col % filt T.set(colname, get_field(ds, colname)) T.galaxy = np.array([galaxy] * len(T)) T.brick = np.zeros(len(T), np.uint8) + brick #T.east = np.zeros(len(T), bool) #T.east[:] = east T.dirn = np.array([dirn] * len(T)) T.writeto(outfn) plt.legend() plt.xlabel('F814W mag') plt.savefig('mags.png') return outfns def find_alignments(fns, wcsfns, gaia_fn, aff_fn, aligned_fn): from astrometry.libkd.spherematch import tree_build_radec, trees_match from astrometry.libkd.spherematch import match_radec from astrometry.util.plotutils import plothist from astrometry.util.util import Tan import fitsio from astrom_common import getwcsoutline from singles import find_overlaps if True: WCS = [] for fn in wcsfns: wcs = Tan(fn) WCS.append(wcs) names = [fn.replace('-bright.fits', '') for fn in fns] outlines = [getwcsoutline(wcs) for wcs in WCS] overlaps,areas = find_overlaps(outlines) print('Reading tables...') TT = [fits_table(fn) for fn in fns] print('Building trees...') kds = [tree_build_radec(T.ra, T.dec) for T in TT] for T,name in zip(TT, names): T.name = np.array([name]*len(T)) allra = np.hstack([T.ra for T in TT]) alldec = np.hstack([T.dec for T in TT]) minra = np.min(allra) maxra = np.max(allra) mindec = np.min(alldec) maxdec = np.max(alldec) print('RA,Dec range:', minra, maxra, mindec, maxdec) plothist(allra, alldec) plt.axis([maxra, minra, mindec, maxdec]) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.savefig('match-all.png') Tref = fits_table(gaia_fn) r_arcsec = 0.2 I,J,d = match_radec(Tref.ra, Tref.dec, allra, alldec, r_arcsec/3600.) dec = alldec[J] cosdec = np.cos(
np.deg2rad(dec)
numpy.deg2rad
"""flatsys_test.py - test flat system module RMM, 29 Jun 2019 This test suite checks to make sure that the basic functions supporting differential flat systetms are functioning. It doesn't do exhaustive testing of operations on flat systems. Separate unit tests should be created for that purpose. """ from distutils.version import StrictVersion import numpy as np import pytest import scipy as sp import control as ct import control.flatsys as fs import control.optimal as opt class TestFlatSys: """Test differential flat systems""" @pytest.mark.parametrize( "xf, uf, Tf", [([1, 0], [0], 2), ([0, 1], [0], 3), ([1, 1], [1], 4)]) def test_double_integrator(self, xf, uf, Tf): # Define a second order integrator sys = ct.StateSpace([[-1, 1], [0, -2]], [[0], [1]], [[1, 0]], 0) flatsys = fs.LinearFlatSystem(sys) # Define the basis set poly = fs.PolyFamily(6) x1, u1, = [0, 0], [0] traj = fs.point_to_point(flatsys, Tf, x1, u1, xf, uf, basis=poly) # Verify that the trajectory computation is correct x, u = traj.eval([0, Tf]) np.testing.assert_array_almost_equal(x1, x[:, 0]) np.testing.assert_array_almost_equal(u1, u[:, 0]) np.testing.assert_array_almost_equal(xf, x[:, 1]) np.testing.assert_array_almost_equal(uf, u[:, 1]) # Simulate the system and make sure we stay close to desired traj T = np.linspace(0, Tf, 100) xd, ud = traj.eval(T) t, y, x = ct.forced_response(sys, T, ud, x1, return_x=True) np.testing.assert_array_almost_equal(x, xd, decimal=3) @pytest.fixture def vehicle_flat(self): """Differential flatness for a kinematic car""" def vehicle_flat_forward(x, u, params={}): b = params.get('wheelbase', 3.) # get parameter values zflag = [np.zeros(3), np.zeros(3)] # list for flag arrays zflag[0][0] = x[0] # flat outputs zflag[1][0] = x[1] zflag[0][1] = u[0] * np.cos(x[2]) # first derivatives zflag[1][1] = u[0] * np.sin(x[2]) thdot = (u[0]/b) * np.tan(u[1]) # dtheta/dt zflag[0][2] = -u[0] * thdot * np.sin(x[2]) # second derivatives zflag[1][2] = u[0] * thdot * np.cos(x[2]) return zflag def vehicle_flat_reverse(zflag, params={}): b = params.get('wheelbase', 3.) # get parameter values x = np.zeros(3); u = np.zeros(2) # vectors to store x, u x[0] = zflag[0][0] # x position x[1] = zflag[1][0] # y position x[2] = np.arctan2(zflag[1][1], zflag[0][1]) # angle u[0] = zflag[0][1] * np.cos(x[2]) + zflag[1][1] * np.sin(x[2]) thdot_v = zflag[1][2] *
np.cos(x[2])
numpy.cos
import numpy as np import utils from scipy.special import gammaln, psi from formatted_logger import formatted_logger eps = 1e-20 log = formatted_logger('RTM', 'info') class rtm: """ implementation of relational topic model by <NAME> Blei (2009) I implemented the exponential link probability function in here """ def __init__(self, num_topic, num_doc, num_voca, doc_ids, doc_cnt, doc_links, rho): self.D = num_doc self.K = num_topic self.V = num_voca self.alpha = .1 self.gamma = np.random.gamma(100., 1./100, [self.D, self.K]) self.beta = np.random.dirichlet([5]*self.V, self.K) self.nu = 0 self.eta = np.random.normal(0.,1, self.K) self.phi = list() self.pi = np.zeros([self.D, self.K]) for di in xrange(self.D): unique_word = len(doc_ids[di]) cnt = doc_cnt[di] self.phi.append(np.random.dirichlet([10]*self.K, unique_word).T) # list of KxW self.pi[di,:] = np.sum(cnt*self.phi[di],1)/np.sum(cnt*self.phi[di]) self.doc_ids = doc_ids self.doc_cnt = doc_cnt self.doc_links = doc_links self.rho = rho #regularization parameter log.info('Initialize RTM: num_voca:%d, num_topic:%d, num_doc:%d' % (self.V,self.K,self.D)) def posterior_inference(self, max_iter): for iter in xrange(max_iter): self.variation_update() self.parameter_estimation() log.info('%d iter: ELBO = %.3f' % (iter, self.compute_elbo())) def compute_elbo(self): """ compute evidence lower bound for trained model """ elbo = 0 e_log_theta = psi(self.gamma) - psi(np.sum(self.gamma, 1))[:,np.newaxis] # D x K log_beta = np.log(self.beta+eps) for di in xrange(self.D): words = self.doc_ids[di] cnt = self.doc_cnt[di] elbo += np.sum(cnt * (self.phi[di] * log_beta[:,words])) # E_q[log p(w_{d,n}|\beta,z_{d,n})] elbo += np.sum((self.alpha - 1.)*e_log_theta[di,:]) # E_q[log p(\theta_d | alpha)] elbo += np.sum(self.phi[di].T * e_log_theta[di,:]) # E_q[log p(z_{d,n}|\theta_d)] elbo += -gammaln(np.sum(self.gamma[di,:])) + np.sum(gammaln(self.gamma[di,:])) \ - np.sum((self.gamma[di,:] - 1.)*(e_log_theta[di,:])) # - E_q[log q(theta|gamma)] elbo += - np.sum(cnt * self.phi[di] *
np.log(self.phi[di])
numpy.log
# Sample code from the TorchVision 0.3 Object Detection Finetuning Tutorial # http://pytorch.org/tutorials/intermediate/torchvision_tutorial.html import os import numpy as np import torch from PIL import Image import pickle import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor from engine import train_one_epoch, evaluate import utils import transforms as T def get_model_instance_segmentation(num_classes): # load an instance segmentation model pre-trained pre-trained on COCO model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) # get number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # now get the number of input features for the mask classifier in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels hidden_layer = 256 # and replace the mask predictor with a new one model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes) return model def get_transform(train): transforms = [] transforms.append(T.ToTensor()) return T.Compose(transforms) img = Image.open("credit/JPEGImages/image_1.jpg").convert("RGB") mask = Image.open("credit/SegmentationObjectPNG/image_1.png") mask = np.array(mask) print(mask.shape) # instances are encoded as different colors obj_ids = np.unique(mask) # first id is the background, so remove it obj_ids = obj_ids[1:] # split the color-encoded mask into a set # of binary masks masks = mask == obj_ids[:, None, None] print(masks.shape) num_objs = len(obj_ids) boxes = [] for i in range(num_objs): pos = np.where(masks[i]) xmin = np.min(pos[1]) xmax = np.max(pos[1]) ymin =
np.min(pos[0])
numpy.min
#--> This code was developed using Anaconda3 installed as #--> administrator and with PATH option selected during the install so #--> that python can be used from a Windows command line. NOTE: to #--> get command line arguments passed, which is essential for this #--> code, you need need to edit registry to make # Computer\HKEY_CLASSES_ROOT\Applications\python.exe\shell\open\command # "C:\ProgramData\Anaconda3\python.exe" "%1" %* # Thanks to # https://stackoverflow.com/questions/29540541/executable-python-script-not-take-sys-argv-in-windows # Alternately, you can just call python (with the full path to python # if needed) and then specify the full path to the module and then the # module's arguments import importlib import sys import os import socket import time import subprocess import argparse import json import numpy as np from scipy import signal from astropy import log from astropy import wcs from astropy.io import fits from astropy import units as u from astropy.time import Time, TimeDelta if sys.platform == 'win32': # --> also check out pythonnet try: import win32com.client except: log.info('You are missing the win32com.client. This should be in the Anaconda package. MaxIm/telescope control will not work.') else: # http://timgolden.me.uk/pywin32-docs/html/com/win32com/HTML/QuickStartClientCom.html # Use makepy.py -i to poke around in what might be useful try: # 'ASCOM Master Interfaces for .NET and COM' constants. # Use example: win32com.client.constants.shutterOpen win32com.client.gencache.EnsureModule('{76618F90-032F-4424-A680-802467A55742}', 0, 1, 0) except: log.info('ASCOM does not seem to be installed. MaxIm/telescope control will not work.') else: try: # MaxIm constants. The long string is the GUID of MaxIm found by makepy.py win32com.client.gencache.EnsureModule('{B4955EC7-F7F2-11D2-AA9C-444553540000}', 0, 1, 0) except: log.info('MaxIm not found. MaxIm/telescope control will not work.') else: log.info('You are not on a Windows system. The MaxIm/telescope control features of this package will not work unless you are on a Windows system.') import define as D # --> these are things that eventually I would want to store in a # --> configuration file # --> CHANGE ME BACK TO 1s(or 7s) and filter 0 (0.7s or 0.3 on # --> Vega filter 1 works for day) default_exptime = 1 default_filt = 0 default_cent_tol = 5 # Pixels default_guider_exptime = 1 # chage back to 1 for night, 0.2 for day # In principle, it is possible to use only MaxIm guiding stuff for # this, alleviating the need for us to connect directly to the # telescope. In practice, with a GEM and for setting DEC conveniently # in the guider, MaxImControl really needs to be connected to the scope. # Since unexpected behavior may result if there is not a hard failure # when a GEM is not connected, indicate here whether or not you want # that hard failure telescope_must_be_connectable = True # These are necessary for GEMs because MaxIm does not reveal the # contents of the Camera Control -> Guide Tab -> Settings dialog box # -> Advanced Tab -> Guider Motor Control radio buttons to the # scripting interface. As explained in guider_motor_reverse_setup, # when using ACP or otherwise not having MaxIm connected to the # telescope, we need to manage motor reversal ourselves guider_motor_control_reverseX = True guider_motor_control_reverseY = False # Misalignment in deg guider_cal_astrometry_max_misalignment = 10 horizon_limit = 8.5 # --> I may improve this location or the technique of message passing hostname = socket.gethostname() if hostname == "snipe" or hostname == "byted": raw_data_root = '/data/io/IoIO/raw' elif hostname == "greyhound" or hostname == "gigabyte": # --> This doesn't work. I need Unc? #raw_data_root = '//snipe/data/io/IoIO/raw' raw_data_root = r'\\snipe\data\io\IoIO\raw' default_telescope = 'ScopeSim.Telescope' elif socket.gethostname() == "IoIO1U1": raw_data_root = r'C:\Users\PLANETARY SCIENCE\Desktop\IoIO\data' # --> Eventually, it would be nice to have this in a chooser default_telescope = 'AstroPhysicsV2.Telescope' # For weather synchronization with ACP ACPUtil = 'ACP.Util' default_guide_box_command_file = os.path.join(raw_data_root, 'GuideBoxCommand.txt') default_guide_box_log_file = os.path.join(raw_data_root, 'GuideBoxLog.txt') run_level_main_astrometry = os.path.join( raw_data_root, '2021-04_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2021-03_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-09_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-03_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Main_Astrometry_West_of_Pier.fit') #raw_data_root, '2019-02_Astrometry/PinPointSolutionEastofPier.fit') #raw_data_root, '2019-02_Astrometry/PinPointSolutionWestofPier.fit') #raw_data_root, '2018-04_Astrometry/PinPointSolutionEastofPier.fit') # --> Currently only guider WestofPier (looking east) works properly, # --> which might indicate that calculations need to be made with true # --> north of CCD aligned with true north button on mount. Although # --> pier flip doesn't affect N/S because tube rolls over too, E/W is # --> affected run_level_guider_astrometry = os.path.join( raw_data_root, '2021-04_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2021-03_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-09_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-03_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Guider_Astrometry_West_of_Pier.fit') #raw_data_root, '2019-02_Astrometry/GuiderPinPointSolutionWestofPier.fit') #raw_data_root, '2019-02_Astrometry/GuiderPinPointSolutionEastofPier.fit') #raw_data_root, '2018-04_Astrometry/GuiderPinPointSolutionWestofPier.fit') #raw_data_root, '2018-01_Astrometry//GuiderPinPointSolutionEastofPier.fit') def angle_norm(angle, maxang): """Normalize an angle to run up to maxang degrees""" angle += 360 angle %= 360 if angle > maxang: # handles 180 case angle -= 360 return angle def iter_linfit(x, y, max_resid=None): """Performs least squares linear fit iteratively to discard bad points If you actually know the statistical weights on the points, just use polyfit directly. """ # Let polyfit report errors in x and y coefs = np.polyfit(x, y, 1) # We are done if we have just two points if len(x) == 2: return coefs # Our first fit may be significantly pulled off by bad # point(s), particularly if the number of points is small. # Construct a repeat until loop the Python way with # while... break to iterate to squeeze bad points out with # low weights last_redchi2 = None iterations = 1 while True: # Calculate weights roughly based on chi**2, but not going # to infinity yfit = x * coefs[0] + coefs[1] resid = (y - yfit) if resid.all == 0: break # Add 1 to avoid divide by zero error resid2 = resid**2 + 1 # Use the residual as the variance + do the algebra redchi2 = np.sum(1/(resid2)) coefs = np.polyfit(x, y, 1, w=1/resid2) # Converge to a reasonable epsilon if last_redchi2 and last_redchi2 - redchi2 < np.finfo(float).eps*10: break last_redchi2 = redchi2 iterations += 1 # The next level of cleanliness is to exclude any points above # max_resid from the fit (if specified) if max_resid is not None: goodc = np.where(np.abs(resid) < max_resid) # Where returns a tuple of arrays! if len(goodc[0]) >= 2: coefs = iter_linfit(x[goodc], y[goodc]) return coefs # I am either phasing this out or I could potentially make it work # with __enter__ and __exit__ for a context manager def get_HDUList(HDUList_im_or_fname): """Returns an astropy.fits.HDUList given a filename, image or HDUList. If you have a set of HDUs, you'll need to put them together into an HDUList yourself, since this can't guess how to do that""" if isinstance(HDUList_im_or_fname, fits.HDUList): return HDUList_im_or_fname elif isinstance(HDUList_im_or_fname, str): return fits.open(HDUList_im_or_fname) elif isinstance(HDUList_im_or_fname, np.ndarray): hdu = fits.PrimaryHDU(HDUList_im_or_fname) return fits.HDUList(hdu) else: raise ValueError('Not a valid input, HDUList_im_or_fname, expecting, fits.HDUList, string, or np.ndarray') def pier_flip_astrometry(header_in): """Adjust FITS astrometry CD* keywords to emulate a pier flip (rotate FOV 180 deg) header_in : input FITS header return value : copy of header_in with CD* keywords adjusted""" header = header_in.copy() header['CDELT1'] *= -1 header['CDELT2'] *= -1 header['CD1_1'] *= -1 header['CD1_2'] *= -1 header['CD2_1'] *= -1 header['CD2_2'] *= -1 if header.get('PIERSIDE'): if header['PIERSIDE'] == 'EAST': header['PIERSIDE'] = 'WEST' else: header['PIERSIDE'] = 'EAST' header['FLIPAPPL'] = (True, 'Artificially flipped pier side') header['HISTORY'] = 'Artificially flipped pier side, modified CD* and PIERSIDE' return header # --> Really what I think I want is a PGData for all of the center and # --> rate stuff. That will clean up the ObsData property and # --> __init__ class ObsData(): """Base class for observations, enabling object centering, etc. This is intended to work in an active obsering setting, so generally an image array will be received, the desired properties will be calculated from it and those properties will be read by the calling code. """ def __init__(self, HDUList_im_or_fname=None, desired_center=None, recalculate=False, readnoise=5): if HDUList_im_or_fname is None: raise ValueError('No HDUList_im_or_fname provided') self.recalculate = recalculate self.readnoise = readnoise # Set up our basic FITS image info self.header = None self._binning = None self._subframe_origin = None self._HDU_unbinned = None self._we_opened_file = None # Keep property for later use/speedy access self._hist_of_im = None self._back_level = None # These are in pixels self._obj_center = None self._desired_center = desired_center if not self._desired_center is None: self._desired_center = np.asarray(self._desired_center) # --> Work with these self.obj_center_err = np.asarray((1.,1.)) self.desired_center_tolerance = np.asarray((5.,5.)) # 0 -- 10 scale indicating quality of obj_center and # desired_center calculations self.quality = 0 # astropy time object for calc_flex_pix_rate self.TRateChange = None self.Tmidpoint = None # Amount of guide box motion since first observation # units=main camera pixels self.total_flex_dpix = None # one-time motion, just before exposure self.delta_pix = None # Make the guts of __init__ methods that can be overridden # --> Here is where I would make the division between ObsData # and PGData. PGData would init the rates and stuff + read # the ObsData. The ObsData would have a cleanup method that # otherwise would not be called # Read our image self.read_im(HDUList_im_or_fname) # Populate our object self.populate_obj() self.cleanup() def populate_obj(self): """Calculate quantities that will be stored long-term in object""" # Note that if MaxIm is not configured to write IRAF-complient # keywords, IMAGETYP gets a little longer and is capitalized # http://diffractionlimited.com/wp-content/uploads/2016/11/sbfitsext_1r0.pdf kwd = self.header['IMAGETYP'].upper() if 'DARK' in kwd or 'BIAS' in kwd or 'FLAT' in kwd: raise ValueError('Not able to process IMAGETYP = ' + self.header['IMAGETYP']) # Do our work & leave the results in the property self.obj_center self.desired_center # --> CHANGE ME BACK self._desired_center = np.asarray((1100, 1150)) def cleanup(self): """Close open file, deference large arrays""" if self._we_opened_file: self.close_fits() del self.HDUList del self._HDU_unbinned def read_im(self, HDUList_im_or_fname=None): """Populate ObsData with HDUList and associated info""" self.HDUList = get_HDUList(HDUList_im_or_fname) # Store the original shape of our image so we can do # coordinate calculations without it self.oshape = np.asarray(self.HDUList[0].data.shape) if isinstance(HDUList_im_or_fname, np.ndarray): # We don't have any metadata return self.HDUList # All other options should have HDUList already populated with # stuff we need. Copy stuff into our local property as needed if isinstance(HDUList_im_or_fname, str): self._we_opened_file = True # Store the header in our object. This is just a # reference at first, but after HDUList is deleted, this # becomes the only copy # https://stackoverflow.com/questions/22069727/python-garbage-collector-behavior-on-compound-objects self.header = self.HDUList[0].header # Calculate an astropy Time object for the midpoint of the # observation for ease of time delta calculations. # Account for darktime, if available try: exptime = self.header.get('DARKTIME') if exptime is None: exptime = self.header['EXPTIME'] # Use units to help with astropy.time calculations exptime *= u.s self.Tmidpoint = (Time(self.header['DATE-OBS'], format='fits') + exptime/2) except: log.warning('Cannot read DARKTIME and/or EXPTIME keywords from FITS header') try: # Note Astropy Pythonic transpose Y, X order self._binning = (self.header['YBINNING'], self.header['XBINNING']) self._binning = np.asarray(self._binning) # This is in binned coordinates self._subframe_origin = (self.header['YORGSUBF'], self.header['XORGSUBF']) self._subframe_origin = np.asarray(self._subframe_origin) except: log.warning('Could not read binning or subframe origin from image header. Did you pass a valid MaxIm-recorded image and header? Assuming binning = 1, subframe_origin = 0,0') self._binning = np.asarray((1,1)) self._subframe_origin = (0,0) if self.recalculate == True: # We don't want to use values stored in the file, this # forces recalculate return self.HDUList try: cx = self.header['OBJ_CR0'] cy = self.header['OBJ_CR1'] self._obj_center = np.asarray((cy, cx)) dx = self.header['DES_CR0'] dy = self.header['DES_CR1'] self._desired_center = np.asarray((dy, dx)) except: # It was worth a try pass return self.HDUList def unbinned(self, coords): """Returns coords referenced to full CCD given internally stored binning/subim info""" coords = np.asarray(coords) return np.asarray(self._binning * coords + self._subframe_origin) def binned(self, coords): """Assuming coords are referenced to full CCD, return location in binned coordinates relative to the subframe origin""" coords = np.asarray(coords) return np.asarray((coords - self._subframe_origin) / self._binning) def im_unbinned(self, a): """Returns an unbinned version of a. a must be same shape as the primary HDU image """ assert a.shape == self.HDUList[0].data.shape # Don't bother if we are already unbinned if np.sum(self._binning) == 2: return a newshape = self._binning * a.shape # From http://scipy-cookbook.readthedocs.io/items/Rebinning.html assert len(a.shape) == len(newshape) slices = [ slice(0,old, float(old)/new) for old,new in zip(a.shape,newshape) ] coordinates = np.mgrid[slices] indices = coordinates.astype('i') #choose the biggest smaller integer index unbinned = a[tuple(indices)] # Check to see if we need to make a larger array into which to # plop unbinned array if np.sum(self._subframe_origin) > 0: # Note subframe origin reads in binned pixels origin = self.unbinned(self._subframe_origin) full_unbinned = np.zeros(origin + unbinned.shape) full_unbinned[origin[0]:, origin[1]:] = unbinned unbinned = full_unbinned return unbinned @property def HDU_unbinned(self): """Returns an unbinned version of the primary HDU image or the primary HDU image if it is not binned. """ if self._HDU_unbinned is not None: return self._HDU_unbinned self._HDU_unbinned = self.im_unbinned(self.HDUList[0].data) return self._HDU_unbinned def close_fits(self): if self.HDUList.fileinfo is not None: self.HDUList.close() self._we_opened_file = None def imshow(self, im=None): if im is None: im = self.HDUList[0].data plt.imshow(im) plt.show() @property def obj_center(self): """Returns pixel coordinate of the brightests object in the image in UNBINNED Y, X coordinates. Does basic median filtering to get rid of cosmic rays. It is assumed this will be overridden with better object finders, such as one that uses PinPoint astrometry. """ if self._obj_center is not None: return self._obj_center # Take the median to get rid of cosmic rays im = self.HDUList[0].data im = signal.medfilt(im, kernel_size=3) im_center = np.unravel_index(
np.argmax(im)
numpy.argmax
import os import h5py import numpy as np import ujson as json import tensorflow as tf from tqdm import tqdm import sys sys.path.append('../..') from model import QGModel, QGRLModel from eval import evaluate, evaluate_simple, convert_tokens, evaluate_rl, format_generated_ques_for_qpc, \ format_generated_ques_for_qa from LIB.utils import get_batch_dataset, get_dataset, write_metrics, save from utils import get_record_parser from QPC.ELMo_QPC.model import QPCModel from QA.BiDAF_QA.model import BidafQA def train(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.pos_emb_file, "r") as fh: pos_mat = np.array(json.load(fh), dtype=np.float32) with open(config.ner_emb_file, "r") as fh: ner_mat = np.array(json.load(fh), dtype=np.float32) with open(config.label_emb_file, "r") as fh: label_mat = np.array(json.load(fh), dtype=np.float32) with open(config.train_eval_file, "r") as fh: train_eval_file = json.load(fh) with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) with open(config.dev_meta, "r") as fh: meta = json.load(fh) with open(config.word_dictionary, "r") as fh: word_dictionary = json.load(fh) with h5py.File(config.embedding_file, 'r') as fin: embed_weights = fin["embedding"][...] elmo_word_mat = np.zeros((embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=np.float32) elmo_word_mat[1:, :] = embed_weights id2word = {word_dictionary[w]: w for w in word_dictionary} dev_total = meta["total"] print("Building model...") parser = get_record_parser(config) graph = tf.Graph() best_bleu, best_ckpt = 0., 0 with graph.as_default() as g: train_dataset = get_batch_dataset(config.train_record_file, parser, config.batch_size) dev_dataset = get_dataset(config.dev_record_file, parser, config.batch_size) train_iterator = train_dataset.make_one_shot_iterator() dev_iterator = dev_dataset.make_one_shot_iterator() model = QGModel(config, word_mat, elmo_word_mat, label_mat, pos_mat, ner_mat) model.build_graph() model.add_train_op() sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: writer = tf.summary.FileWriter(config.output_dir) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=1000, var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) if os.path.exists(os.path.join(config.output_dir, "checkpoint")): saver.restore(sess, tf.train.latest_checkpoint(config.output_dir)) if os.path.exists(config.best_ckpt): with open(config.best_ckpt, "r") as fh: best_qg_ckpt = json.load(fh) best_bleu, best_ckpt = float(best_qg_ckpt["best_bleu"]), int(best_qg_ckpt["best_ckpt"]) global_step = max(sess.run(model.global_step), 1) train_next_element = train_iterator.get_next() for _ in tqdm(range(global_step, config.num_steps + 1)): global_step = sess.run(model.global_step) + 1 para, para_unk, para_char, que, que_unk, que_char, labels, pos_tags, ner_tags, \ que_labels, que_pos_tags, que_ner_tags, y1, y2, qa_id = sess.run(train_next_element) loss, _ = sess.run([model.loss, model.train_op], feed_dict={ model.para: para, model.para_unk: para_unk, model.que: que, model.labels: labels, model.pos_tags: pos_tags, model.ner_tags: ner_tags, model.dropout: config.dropout, model.qa_id: qa_id, }) if global_step % config.period == 0: loss_sum = tf.Summary(value=[tf.Summary.Value( tag="model/loss", simple_value=loss), ]) writer.add_summary(loss_sum, global_step) if global_step % config.checkpoint == 0: filename = os.path.join( config.output_dir, "model_{}.ckpt".format(global_step)) saver.save(sess, filename) metrics = evaluate_batch(config, model, config.val_num_batches, train_eval_file, sess, train_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "train") metrics = evaluate_batch(config, model, dev_total // config.batch_size + 1, dev_eval_file, sess, dev_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "dev") bleu = metrics["bleu"] if bleu > best_bleu: best_bleu, best_ckpt = bleu, global_step save(config.best_ckpt, {"best_bleu": str(best_bleu), "best_ckpt": str(best_ckpt)}, config.best_ckpt) def evaluate_batch(config, model, num_batches, eval_file, sess, iterator, id2word, evaluate_func=evaluate): answer_dict = {} losses = [] next_element = iterator.get_next() for _ in tqdm(range(1, num_batches + 1)): para, para_unk, para_char, que, que_unk, que_char, labels, pos_tags, ner_tags, \ que_labels, que_pos_tags, que_ner_tags, y1, y2, qa_id = sess.run(next_element) loss, symbols, probs = sess.run([model.loss, model.symbols, model.probs], feed_dict={ model.para: para, model.para_unk: para_unk, model.que: que, model.labels: labels, model.pos_tags: pos_tags, model.ner_tags: ner_tags, model.qa_id: qa_id, model.temperature: config.temperature, model.diverse_rate: config.diverse_rate }) answer_dict_ = convert_tokens(eval_file, qa_id, symbols, probs, id2word) for key in answer_dict_: if key not in answer_dict: answer_dict[key] = answer_dict_[key] losses.append(loss) loss = np.mean(losses) print(len(answer_dict)) metrics = evaluate_func(eval_file, answer_dict) metrics["loss"] = loss return metrics def test(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.pos_emb_file, "r") as fh: pos_mat = np.array(json.load(fh), dtype=np.float32) with open(config.ner_emb_file, "r") as fh: ner_mat = np.array(json.load(fh), dtype=np.float32) with open(config.label_emb_file, "r") as fh: label_mat = np.array(json.load(fh), dtype=np.float32) with open(config.test_eval_file, "r") as fh: eval_file = json.load(fh) with open(config.test_meta, "r") as fh: meta = json.load(fh) with open(config.word_dictionary, "r") as fh: word_dictionary = json.load(fh) with h5py.File(config.embedding_file, 'r') as fin: embed_weights = fin["embedding"][...] elmo_word_mat = np.zeros((embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=np.float32) elmo_word_mat[1:, :] = embed_weights id2word = {word_dictionary[w]: w for w in word_dictionary} total = meta["total"] print(total) graph = tf.Graph() print("Loading model...") with graph.as_default() as g: test_iterator = get_dataset(config.test_record_file, get_record_parser( config, is_test=True), config.test_batch_size).make_one_shot_iterator() model = QGModel(config, word_mat, elmo_word_mat, label_mat, pos_mat, ner_mat, trainable=False) model.build_graph() model.add_train_op() sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True if os.path.exists(config.best_ckpt): with open(config.best_ckpt, "r") as fh: best_ckpt = json.load(fh) checkpoint_to_test = int(best_ckpt["best_ckpt"]) else: print("No Best!") exit() with tf.Session(config=sess_config) as sess: if config.diverse_beam: filename = "{}/diverse{}_beam{}".format(config.output_dir, config.diverse_rate, config.beam_size) elif config.sample: filename = "{}/temperature{}_sample{}".format(config.output_dir, config.temperature, config.sample_size) else: filename = "{}/beam{}".format(config.output_dir, config.beam_size) writer = tf.summary.FileWriter(filename) checkpoint = "{}/model_{}.ckpt".format(config.output_dir, checkpoint_to_test) print(checkpoint) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) saver.restore(sess, checkpoint) global_step = sess.run(model.global_step) metrics = evaluate_batch(config, model, total // config.test_batch_size + 1, eval_file, sess, test_iterator, id2word) print(metrics) write_metrics(metrics, writer, global_step, "test") def train_rl(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.pos_emb_file, "r") as fh: pos_mat = np.array(json.load(fh), dtype=np.float32) with open(config.ner_emb_file, "r") as fh: ner_mat = np.array(json.load(fh), dtype=np.float32) with open(config.label_emb_file, "r") as fh: label_mat = np.array(json.load(fh), dtype=np.float32) with open(config.train_eval_file, "r") as fh: train_eval_file = json.load(fh) with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) with open(config.dev_meta, "r") as fh: meta = json.load(fh) with open(config.word_dictionary, "r") as fh: word_dictionary = json.load(fh) with h5py.File(config.embedding_file, 'r') as fin: embed_weights = fin["embedding"][...] elmo_word_mat = np.zeros((embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=np.float32) elmo_word_mat[1:, :] = embed_weights id2word = {word_dictionary[w]: w for w in word_dictionary} best_bleu, best_ckpt = 0., 0 dev_total = meta["total"] print("Building model...") parser = get_record_parser(config) graph_qg = tf.Graph() with graph_qg.as_default(): train_dataset = get_batch_dataset(config.train_record_file, parser, config.batch_size) dev_dataset = get_dataset(config.dev_record_file, parser, config.batch_size) train_iterator = train_dataset.make_one_shot_iterator() dev_iterator = dev_dataset.make_one_shot_iterator() model_qg = QGRLModel(config, word_mat, elmo_word_mat, label_mat, pos_mat, ner_mat) model_qg.build_graph() model_qg.add_train_op() sess_qg = tf.Session(graph=graph_qg) writer = tf.summary.FileWriter(config.output_dir) with sess_qg.as_default(): with graph_qg.as_default(): sess_qg.run(tf.global_variables_initializer()) saver_qg = tf.train.Saver(max_to_keep=1000, var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) if os.path.exists(os.path.join(config.output_dir, "checkpoint")): saver_qg.restore(sess_qg, tf.train.latest_checkpoint(config.output_dir)) if os.path.exists(config.best_ckpt): with open(config.best_ckpt, "r") as fh: best_qg_ckpt = json.load(fh) best_bleu, best_ckpt = float(best_qg_ckpt["best_bleu"]), int(best_qg_ckpt["best_ckpt"]) global_step = max(sess_qg.run(model_qg.global_step), 1) train_next_element = train_iterator.get_next() for _ in tqdm(range(global_step, config.num_steps + 1)): global_step = sess_qg.run(model_qg.global_step) + 1 para, para_unk, para_char, que, que_unk, que_char, labels, pos_tags, ner_tags, \ que_labels, que_pos_tags, que_ner_tags, y1, y2, qa_id = sess_qg.run(train_next_element) # get greedy search questions as baseline and sampled questions symbols, symbols_rl = sess_qg.run([model_qg.symbols, model_qg.symbols_rl], feed_dict={ model_qg.para: para, model_qg.para_unk: para_unk, model_qg.que: que, model_qg.labels: labels, model_qg.pos_tags: pos_tags, model_qg.ner_tags: ner_tags, model_qg.qa_id: qa_id }) # get rewards and format sampled questions reward, reward_rl, reward_base, que_rl = evaluate_rl(train_eval_file, qa_id, symbols, symbols_rl, id2word, metric=config.rl_metric) # update model with policy gradient loss_ml, _ = sess_qg.run([model_qg.loss_ml, model_qg.train_op], feed_dict={ model_qg.para: para, model_qg.para_unk: para_unk, model_qg.que: que, model_qg.labels: labels, model_qg.pos_tags: pos_tags, model_qg.ner_tags: ner_tags, model_qg.dropout: config.dropout, model_qg.qa_id: qa_id, model_qg.sampled_que: que_rl, model_qg.reward: reward }) if global_step % config.period == 0: loss_sum = tf.Summary(value=[tf.Summary.Value( tag="model/loss", simple_value=loss_ml), ]) writer.add_summary(loss_sum, global_step) reward_base_sum = tf.Summary(value=[tf.Summary.Value( tag="model/reward_base", simple_value=np.mean(reward_base)), ]) writer.add_summary(reward_base_sum, global_step) reward_rl_sum = tf.Summary(value=[tf.Summary.Value( tag="model/reward_rl", simple_value=np.mean(reward_rl)), ]) writer.add_summary(reward_rl_sum, global_step) if global_step % config.checkpoint == 0: filename = os.path.join( config.output_dir, "model_{}.ckpt".format(global_step)) saver_qg.save(sess_qg, filename) metrics = evaluate_batch(config, model_qg, config.val_num_batches, train_eval_file, sess_qg, train_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "train") metrics = evaluate_batch(config, model_qg, dev_total // config.batch_size + 1, dev_eval_file, sess_qg, dev_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "dev") bleu = metrics["bleu"] if bleu > best_bleu: best_bleu, best_ckpt = bleu, global_step save(config.best_ckpt, {"best_bleu": str(best_bleu), "best_ckpt": str(best_ckpt)}, config.best_ckpt) def train_qpp(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.pos_emb_file, "r") as fh: pos_mat = np.array(json.load(fh), dtype=np.float32) with open(config.ner_emb_file, "r") as fh: ner_mat = np.array(json.load(fh), dtype=np.float32) with open(config.label_emb_file, "r") as fh: label_mat = np.array(json.load(fh), dtype=np.float32) with open(config.train_eval_file, "r") as fh: train_eval_file = json.load(fh) with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) with open(config.dev_meta, "r") as fh: meta = json.load(fh) with open(config.word_dictionary, "r") as fh: word_dictionary = json.load(fh) with h5py.File(config.embedding_file, 'r') as fin: embed_weights = fin["embedding"][...] elmo_word_mat = np.zeros((embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=np.float32) elmo_word_mat[1:, :] = embed_weights id2word = {word_dictionary[w]: w for w in word_dictionary} dev_total = meta["total"] best_bleu, best_ckpt = 0., 0 print("Building model...") parser = get_record_parser(config) graph_qg = tf.Graph() graph_qqp = tf.Graph() with graph_qg.as_default(): train_dataset = get_batch_dataset(config.train_record_file, parser, config.batch_size) dev_dataset = get_dataset(config.dev_record_file, parser, config.batch_size) train_iterator = train_dataset.make_one_shot_iterator() dev_iterator = dev_dataset.make_one_shot_iterator() with graph_qg.as_default() as g: model_qg = QGRLModel(config, word_mat, elmo_word_mat, label_mat, pos_mat, ner_mat) model_qg.build_graph() model_qg.add_train_op() with graph_qqp.as_default() as g: model_qqp = QPCModel(config, dev=True, trainable=False, graph=g) sess_qg = tf.Session(graph=graph_qg) sess_qqp = tf.Session(graph=graph_qqp) writer = tf.summary.FileWriter(config.output_dir) with sess_qg.as_default(): with graph_qg.as_default(): sess_qg.run(tf.global_variables_initializer()) saver_qg = tf.train.Saver(max_to_keep=1000, var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) if os.path.exists(os.path.join(config.output_dir, "checkpoint")): print(tf.train.latest_checkpoint(config.output_dir)) saver_qg.restore(sess_qg, tf.train.latest_checkpoint(config.output_dir)) if os.path.exists(config.best_ckpt): with open(config.best_ckpt, "r") as fh: best_qg_ckpt = json.load(fh) best_bleu, best_ckpt = float(best_qg_ckpt["best_bleu"]), int(best_qg_ckpt["best_ckpt"]) with sess_qqp.as_default(): with graph_qqp.as_default(): sess_qqp.run(tf.global_variables_initializer()) saver_qqp = tf.train.Saver() if os.path.exists(config.best_ckpt_qpc): with open(config.best_ckpt_qpc, "r") as fh: best_qpc_ckpt = json.load(fh) best_ckpt = int(best_qpc_ckpt["best_ckpt"]) print("{}/model_{}.ckpt".format(config.output_dir_qpc, best_ckpt)) saver_qqp.restore(sess_qqp, "{}/model_{}.ckpt".format(config.output_dir_qpc, best_ckpt)) else: print("NO the best QPC model to load!") exit() global_step = max(sess_qg.run(model_qg.global_step), 1) train_next_element = train_iterator.get_next() for _ in tqdm(range(global_step, config.num_steps + 1)): global_step = sess_qg.run(model_qg.global_step) + 1 para, para_unk, para_char, que, que_unk, que_char, labels, pos_tags, ner_tags, \ que_labels, que_pos_tags, que_ner_tags, y1, y2, qa_id = sess_qg.run(train_next_element) symbols, symbols_rl = sess_qg.run([model_qg.symbols, model_qg.symbols_rl], feed_dict={ model_qg.para: para, model_qg.para_unk: para_unk, model_qg.que: que, model_qg.labels: labels, model_qg.pos_tags: pos_tags, model_qg.ner_tags: ner_tags, model_qg.qa_id: qa_id }) # format questions for QPC que_base, que_unk_base, que_rl, que_unk_rl = \ format_generated_ques_for_qpc(qa_id, symbols, symbols_rl, config.batch_size, config.ques_limit, id2word) label = np.zeros((config.batch_size, 2), dtype=np.int32) # QQP reward reward_base = sess_qqp.run(model_qqp.pos_prob, feed_dict={ model_qqp.que1: que_unk, model_qqp.que2: que_unk_base, model_qqp.label: label, model_qqp.qa_id: qa_id, }) reward_rl = sess_qqp.run(model_qqp.pos_prob, feed_dict={ model_qqp.que1: que_unk, model_qqp.que2: que_unk_rl, model_qqp.label: label, model_qqp.qa_id: qa_id, }) reward = [rr - rb for rr, rb in zip(reward_rl, reward_base)] # train with rl loss_ml, _ = sess_qg.run([model_qg.loss_ml, model_qg.train_op], feed_dict={ model_qg.para: para, model_qg.para_unk: para_unk, model_qg.labels: labels, model_qg.pos_tags: pos_tags, model_qg.ner_tags: ner_tags, model_qg.dropout: config.dropout, model_qg.qa_id: qa_id, model_qg.que: que, model_qg.sampled_que: que_rl, model_qg.reward: reward }) if global_step % config.period == 0: loss_sum = tf.Summary(value=[tf.Summary.Value( tag="model/loss", simple_value=loss_ml), ]) writer.add_summary(loss_sum, global_step) reward_base_sum = tf.Summary(value=[tf.Summary.Value( tag="model/reward_base", simple_value=np.mean(reward_base)), ]) writer.add_summary(reward_base_sum, global_step) reward_rl_sum = tf.Summary(value=[tf.Summary.Value( tag="model/reward_rl", simple_value=np.mean(reward_rl)), ]) writer.add_summary(reward_rl_sum, global_step) if global_step % config.checkpoint == 0: filename = os.path.join( config.output_dir, "model_{}.ckpt".format(global_step)) saver_qg.save(sess_qg, filename) metrics = evaluate_batch(config, model_qg, config.val_num_batches, train_eval_file, sess_qg, train_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "train") metrics = evaluate_batch(config, model_qg, dev_total // config.batch_size + 1, dev_eval_file, sess_qg, dev_iterator, id2word, evaluate_func=evaluate_simple) write_metrics(metrics, writer, global_step, "dev") bleu = metrics["bleu"] if bleu > best_bleu: best_bleu, best_ckpt = bleu, global_step save(config.best_ckpt, {"best_bleu": str(best_bleu), "best_ckpt": str(best_ckpt)}, config.best_ckpt) def train_qap(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.char_emb_file, "r") as fh: char_mat = np.array(json.load(fh), dtype=np.float32) with open(config.pos_emb_file, "r") as fh: pos_mat = np.array(json.load(fh), dtype=np.float32) with open(config.ner_emb_file, "r") as fh: ner_mat = np.array(json.load(fh), dtype=np.float32) with open(config.label_emb_file, "r") as fh: label_mat = np.array(json.load(fh), dtype=np.float32) with open(config.train_eval_file, "r") as fh: train_eval_file = json.load(fh) with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) with open(config.dev_meta, "r") as fh: meta = json.load(fh) with open(config.word_dictionary, "r") as fh: word_dictionary = json.load(fh) with open(config.char_dictionary, "r") as fh: char_dictionary = json.load(fh) with h5py.File(config.embedding_file, 'r') as fin: embed_weights = fin["embedding"][...] elmo_word_mat = np.zeros((embed_weights.shape[0] + 1, embed_weights.shape[1]), dtype=np.float32) elmo_word_mat[1:, :] = embed_weights id2word = {word_dictionary[w]: w for w in word_dictionary} dev_total = meta["total"] best_bleu, best_ckpt = 0., 0 print("Building model...") parser = get_record_parser(config) graph_qg = tf.Graph() graph_qa = tf.Graph() with graph_qg.as_default(): train_dataset = get_batch_dataset(config.train_record_file, parser, config) dev_dataset = get_dataset(config.dev_record_file, parser, config) train_iterator = train_dataset.make_one_shot_iterator() dev_iterator = dev_dataset.make_one_shot_iterator() with graph_qg.as_default() as g: model_qg = QGRLModel(config, word_mat, elmo_word_mat, label_mat, pos_mat, ner_mat) with graph_qa.as_default() as g: model_qa = BidafQA(config, word_mat, char_mat, dev=True, trainable=False) sess_qg = tf.Session(graph=graph_qg) sess_qa = tf.Session(graph=graph_qa) writer = tf.summary.FileWriter(config.output_dir) with sess_qg.as_default(): with graph_qg.as_default(): model_qg.build_graph() model_qg.add_train_op() sess_qg.run(tf.global_variables_initializer()) saver_qg = tf.train.Saver(max_to_keep=1000, var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) if os.path.exists(os.path.join(config.output_dir, "checkpoint")): print(tf.train.latest_checkpoint(config.output_dir)) saver_qg.restore(sess_qg, tf.train.latest_checkpoint(config.output_dir)) if os.path.exists(config.best_ckpt): with open(config.best_ckpt, "r") as fh: best_qg_ckpt = json.load(fh) best_bleu, best_ckpt = float(best_qg_ckpt["best_bleu"]), int(best_qg_ckpt["best_ckpt"]) with sess_qa.as_default(): with graph_qa.as_default(): model_qa.build_graph() model_qa.add_train_op() sess_qa.run(tf.global_variables_initializer()) saver_qa = tf.train.Saver(max_to_keep=1000, var_list=[p for p in tf.global_variables() if "word_mat" not in p.name]) if os.path.exists(config.best_ckpt_qa): with open(config.best_ckpt_qa, "r") as fh: best_qpc_ckpt = json.load(fh) best_ckpt = int(best_qpc_ckpt["best_ckpt"]) print("{}/model_{}.ckpt".format(config.output_dir_qa, best_ckpt)) saver_qa.restore(sess_qa, "{}/model_{}.ckpt".format(config.output_dir_qa, best_ckpt)) else: print("NO the best QA model to load!") exit() global_step = max(sess_qg.run(model_qg.global_step), 1) train_next_element = train_iterator.get_next() for _ in tqdm(range(global_step, config.num_steps + 1)): global_step = sess_qg.run(model_qg.global_step) + 1 para, para_unk, para_char, que, que_unk, que_char, labels, pos_tags, ner_tags, \ que_labels, que_pos_tags, que_ner_tags, y1, y2, qa_id = sess_qg.run(train_next_element) symbols, symbols_rl = sess_qg.run([model_qg.symbols, model_qg.symbols_rl], feed_dict={ model_qg.para: para, model_qg.para_unk: para_unk, model_qg.que: que, model_qg.labels: labels, model_qg.pos_tags: pos_tags, model_qg.ner_tags: ner_tags, model_qg.qa_id: qa_id }) # format questions for QA que_base, que_unk_base, que_char_base, que_rl, que_unk_rl, que_char_rl = \ format_generated_ques_for_qa(train_eval_file, qa_id, symbols, symbols_rl, config.batch_size, config.ques_limit, config.char_limit, id2word, char_dictionary) # QAP reward base_qa_loss = sess_qa.run(model_qa.batch_loss, feed_dict={ model_qa.para: para_unk, model_qa.para_char: para_char, model_qa.que: que_unk_base, model_qa.que_char: que_char_base, model_qa.y1: y1, model_qa.y2: y2, model_qa.qa_id: qa_id, }) qa_loss = sess_qa.run(model_qa.batch_loss, feed_dict={ model_qa.para: para_unk, model_qa.para_char: para_char, model_qa.que: que_unk_rl, model_qa.que_char: que_char_rl, model_qa.y1: y1, model_qa.y2: y2, model_qa.qa_id: qa_id, }) reward_base = list(map(lambda x:
np.exp(-x)
numpy.exp
# -*- coding: utf-8 -*- """ Python version of the LODE implementation. Currently, only the exponent p=1 with the optimal radial basis r^l for each angular channel l=0,1,2,...,lmax is supported. """ import logging import numpy as np from scipy.special import gammainc from scipy.integrate import quad try: from tqdm import tqdm except ImportError: tqdm = (lambda i, **kwargs: i) from .kvec_generator import KvectorGenerator from .radial_basis import RadialBasis from .spherical_harmonics import evaluate_spherical_harmonics logger = logging.getLogger(__name__) def gammainc_upper_numerical(n, zz): """ Implement upper incomplete Gamma function """ yy = np.zeros_like(zz) integrand = lambda x: x**(n-1) * np.exp(-x) for iz, z in enumerate(zz): yy[iz] = quad(integrand, z, np.inf)[0] return yy class DensityProjectionCalculator(): """ Compute the spherical expansion coefficients. Initialize the calculator using the hyperparameters. All the needed splines that only depend on the hyperparameters are prepared as well by storing the values. Parameters ---------- max_radial : int Number of radial functions max_angular : int Number of angular functions cutoff_radius : float Environment cutoff (Å) smearing : float Smearing of the Gaussain (Å). Note that computational cost scales cubically with 1/smearing. radial_basis : str The radial basis. Currently implemented are 'GTO_primitive', 'GTO', 'monomial'. For monomial: Only use one radial basis r^l for each angular channel l leading to a total of (lmax+1)^2 features. compute_gradients : bool Compute gradients potential_exponent : int potential exponent: p=0 uses Gaussian densities, p=1 is LODE using 1/r (Coulomb) densities" subtract_center_contribution : bool Subtract contribution from the central atom. Attributes ---------- features : array the computed projection coefficients in the format: The projection coefficients as an array of dimension: num_environ x num_chem_species x num_radial x num_lm_coefficients, where: num_environ = total number of atoms in the system summed over all frames num_chem_species = number of chemical species num_radial = nmax num_lm_coefficients = (lmax+1)^2 feature_gradients : array the gradients of the projection coefficients The returned array has dimensions: num_environm_squared x 3 x num_chemical_species x num_radial x num_lm_coefficients, The factor of 3 corresponds to x,y,z-components. Otherwise, the specification is almost identical to get_features, except that the first axis specifying the atomic environment now runs over all pairs (i,j). Example: For a structure containing 3 atoms labeled as (0,1,2), the gradients are stored as gradients[0] = dV_0/dr_0 gradients[1] = dV_0/dr_1 gradients[2] = dV_0/dr_2 gradients[3] = dV_1/dr_0 gradients[4] = dV_1/dr_1 ... gradients[8] = dV_2/dr_2 If multiple frames are present, all these coefficients are concatenated along the 0-th axis, as usual e.g. for SOAP vectors in librascal. representation_info : array Stuff for interacting to interact with atomistic-ml-storage. """ def __init__(self, max_radial, max_angular, cutoff_radius, smearing, radial_basis, compute_gradients=False, potential_exponent=1, subtract_center_contribution=False, fast_implementation=True): # Store the input variables self.max_radial = max_radial self.max_angular = max_angular self.cutoff_radius = cutoff_radius self.radial_basis = radial_basis.lower() self.smearing = smearing self.potential_exponent = potential_exponent self.compute_gradients = compute_gradients self.subtract_center_contribution = subtract_center_contribution self.fast_implementation = fast_implementation # Make sure that the provided parameters are consistent if self.potential_exponent not in [0, 1, 2, 3, 4, 5, 6]: raise ValueError("Potential exponent has to be 0, 1, 2, ..., 6") if self.radial_basis not in ["monomial", "gto", "gto_primitive"]: raise ValueError(f"{self.radial_basis} is not an implemented basis" ". Try 'monomial', 'GTO' or GTO_primitive.") if self.radial_basis == "monomial" and self.max_radial != 1: raise ValueError("For monomial basis only `max_radial=1` " "is allowed.") # Auxilary quantity: the actual number of features is this number # times the number of chemical species self.num_features_bare = self.max_radial * (self.max_angular + 1)**2 # Initialize radial basis class to precompute the quantities # only related to the choice of radial basis, namely the # projections of the spherical Bessel functions j_l(kr) onto the # radial basis and (if desired) the center contributions self.radial_proj = RadialBasis(self.max_radial, self.max_angular, self.cutoff_radius, self.smearing, self.radial_basis, potential_exponent, self.subtract_center_contribution) self.radial_proj.compute(np.pi/self.smearing) def transform(self, frames, show_progress=False): """ Computes the features and (if compute_gradients == True) gradients for all the provided frames. The features and gradients are stored in features and feature_gradients attribute. Parameters ---------- frames : ase.Atoms List containing all ase.Atoms structures show_progress : bool Show progress bar for frame analysis Returns ------- None, but stores the projection coefficients and (if desired) gradients as arrays as `features` and `features_gradients`. """ self.frames = frames # Check that the provided cells are large enough: # Roughly speaking, all cell dimensions L need to be at least # twice the used smearing: L > 2 * smearing too_small_frames_list = [] length_min = 1e15 for iframe, frame in enumerate(frames): cell = frame.get_cell() basis_vector_lengths = np.linalg.norm(cell, axis=1) length_min_cell = max(basis_vector_lengths) if length_min > length_min_cell: length_min = length_min_cell if 2*self.smearing >= length_min_cell: too_small_frames_list.append(iframe) if self.smearing >= length_min/2: raise ValueError(f"Given `smearing` ({self.smearing} Å) is too large for " f"structures {too_small_frames_list}. Smearing must be" f"smaller than half of the shortest" f"box length ({length_min} Å)! " f"Use a smearing > {length_min/2}") # Generate a dictionary to map atomic species to array indices # In general, the species are sorted according to atomic number # and assigned the array indices 0,1,2,... # Example: for H2O: H is mapped to 0 and O is mapped to 1. species = set() for frame in frames: for atom in frame: species.add(atom.number) species = sorted(species) self.species_dict = {} for frame in frames: #Get atomic species in dataset self.species_dict.update({atom.symbol: species.index(atom.number) for atom in frame}) # Define variables determining size of feature vector coming from frames self.num_atoms_per_frame = np.array([len(frame) for frame in frames]) num_atoms_total = np.sum(self.num_atoms_per_frame) num_chem_species = len(self.species_dict) # Initialize arrays in which to store all features self.features = np.zeros((num_atoms_total, num_chem_species, self.max_radial, (self.max_angular+1)**2)) if self.compute_gradients: num_gradients = np.sum(self.num_atoms_per_frame**2) self.feature_gradients = np.zeros((num_gradients, 3, num_chem_species, self.max_radial, (self.max_angular+1)**2)) # For each frame, compute the projection coefficients current_index = 0 gradient_index = 0 if show_progress: frame_generator = tqdm(self.frames) else: frame_generator = self.frames for i_frame, frame in enumerate(frame_generator): number_of_atoms = self.num_atoms_per_frame[i_frame] results = self._transform_single_frame(frame) # Returned values are features + gradients if self.compute_gradients: features = results[0] self.feature_gradients[gradient_index:gradient_index+number_of_atoms**2] += results[1] # Returned values are only the features else: features = results self.features[current_index:current_index+number_of_atoms] += features current_index += number_of_atoms gradient_index += number_of_atoms**2 def _transform_single_frame(self, frame): """ Compute features for single frame and return to the transform() method which loops over all structures to obtain the complete vector for all environments. """ ### # Initialization ### # Define useful shortcuts lmax = self.max_angular nmax = self.max_radial num_lm = (lmax+1)**2 num_atoms = len(frame) num_chem_species = len(self.species_dict) iterator_species = np.zeros(num_atoms, dtype=int) for i, symbol in enumerate(frame.get_chemical_symbols()): iterator_species[i] = self.species_dict[symbol] # Initialize arrays in which to store all features frame_features = np.zeros((num_atoms, num_chem_species, self.max_radial, (self.max_angular+1)**2)) if self.compute_gradients: num_gradients = np.sum(num_atoms**2) frame_gradients = np.zeros((num_gradients, 3, num_chem_species, self.max_radial, (self.max_angular+1)**2)) # Debug log logger.debug(f"num_atoms = {num_atoms}") logger.debug(f"shape frame_features = {frame_features.shape}") # Extra phase dependent on angular channel for convenience angular_phases =
np.zeros(lmax+1)
numpy.zeros
""" analysis.py Author: <NAME> Affiliation: McGill University Created on: Wed 16 Dec 2020 16:16:41 EST Description: """ import pickle import numpy as np from .models import BubbleModel from scipy.ndimage import gaussian_filter from .inference import tanh_generic, power_law, power_law_max1, \ broken_power_law, broken_power_law_max1, double_power_law, \ extract_params, power_law_lognorm, erf_Q, power_law_Q, lin_Q from .util import labels, bin_e2c, bin_c2e, get_error_2d try: import matplotlib.pyplot as pl from matplotlib.cm import ScalarMappable from matplotlib.colors import LogNorm, Normalize except ImportError: pass _default_modes = np.logspace(-1, 0., 21) _default_colors = ['k', 'b', 'm', 'c', 'r', 'g', 'y', 'orange'] _default_ls = ['-', '--', '-.', ':'] _default_labels = {'Q': r'$Q$', 'R': r'$R$', 'Ts': r'$T_S$', 'sigma': r'$\sigma$', 'gamma': r'$\gamma$', 'Asys': r'$A_{\rm{sys}}$'} _default_limits = {'Q': (-0.05, 1.05), 'R': (3e-1, 30), 'Ts': (1, 200), 'sigma': (0, 2), 'gamma': (-4, -2), 'Asys': (0.2, 2)} _default_z = np.arange(5, 20, 0.05) _default_Q = np.arange(0, 1.01, 0.01) bbox = dict(facecolor='none', edgecolor='k', fc='w', boxstyle='round,pad=0.3', alpha=0.9, zorder=1000) class AnalyzeFit(object): # pragma: no cover def __init__(self, fn): self.fn = fn @property def data(self): if not hasattr(self, '_data'): with open(self.fn, 'rb') as f: self._data = pickle.load(f) return self._data @property def model(self): if not hasattr(self, '_model'): self._model = BubbleModel(**self.data['kwargs']) return self._model @property def custom_labels(self): if not hasattr(self, '_custom_labels'): self._custom_labels = {} return self._custom_labels @custom_labels.setter def custom_labels(self, value): if not hasattr(self, '_custom_labels'): self._custom_labels = {} self._custom_labels.update(value) def get_labels(self, pars, redshifts=None): labels = [] for i, par in enumerate(pars): if par in self.custom_labels: labels.append(self.custom_labels[par]) elif par in _default_labels: if redshifts is not None: s = _default_labels[par] j = s.find('$') k = s.rfind('$') l = s[j+1:k] lab = r'$%s(z=%.2f)$' % (l, redshifts[i]) else: lab = _default_labels[par] labels.append(lab) else: labels.append(par) return labels def check_model_ps(self, z=None, k=None, Ts=(0, np.inf), Q=(0, 1), R=(0, 100), sigma=(0.5, 2), gamma=(-4, 0), skip=0): """ Scroll through models in some specified corner of parameter space and re-compute the power spectrum and plot it. """ pars, redshifts = self.data['pinfo'] fchain = self.data['flatchain'] if np.unique(redshifts).size > 1: assert z is not None, "Must supply `z` if multi-z fit." limits = {'Ts': Ts, 'Q': Q, 'R': R, 'sigma': sigma, 'gamma': gamma} if k is None: k = np.logspace(-1, 0, 11) for i in range(fchain.shape[0]): if i < skip: continue kw = {par:fchain[i,j] for j, par in enumerate(pars)} if self.data['kwargs']['Ts_log10']: kw['Ts'] = 10**kw['Ts'] plot_it = True for par in pars: if limits[par][0] < kw[par] < limits[par][1]: continue plot_it = False if not plot_it: continue print('Generating model from chain link {} with kwargs={}'.format(i, kw)) ps = self.model.get_ps_21cm(redshifts[0], k, **kw) pl.loglog(k, k**3 * ps / 2. / np.pi**2) input('<enter> for next model') pl.clear() def plot_triangle(self, fig=1, axes=None, params=None, redshifts=None, complement=False, bins=20, burn=0, fig_kwargs={}, contours=True, fill=False, nu=[0.95, 0.68], take_log=False, is_log=False, skip=None, smooth=None, skip_params=None, show_1d=True, logL_cut=-np.inf, **kwargs): """ """ has_ax = axes is not None if not has_ax: fig = pl.figure(constrained_layout=True, num=fig, **fig_kwargs) fig.subplots_adjust(hspace=0.05, wspace=0.05) else: axes_by_row = axes all_params, redshifts = self.data['pinfo'] if params is None: params = all_params else: pass elements = range(len(params)) try: labels = self.get_labels(params, redshifts) except IndexError: labels = [''] * len(params) Np = len(params) if type(bins) not in [list, tuple, np.ndarray]: bins = [bins] * Np if type(complement) not in [list, tuple, np.ndarray]: complement = [complement] * Np if type(is_log) not in [list, tuple, np.ndarray]: is_log = [is_log] * Np if type(take_log) not in [list, tuple, np.ndarray]: take_log = [take_log] * Np # Remember, for gridspec, rows are numbered frop top-down. if not has_ax: if show_1d: gs = fig.add_gridspec(Np, Np) axes_by_row = [[] for i in range(Np)] else: axes_by_row = [fig.add_subplot(111)] flatchain = self.data['flatchain'] for i, row in enumerate(range(Np)): for j, col in enumerate(range(Np)): # Skip elements in upper triangle if j > i: continue if (not show_1d) and i == j: continue if skip is not None: if i in skip: continue if j in skip: continue # Create axis if show_1d: if not has_ax: _ax = fig.add_subplot(gs[i,j]) axes_by_row[i].append(_ax) else: _ax = axes_by_row[i][j] else: _ax = axes_by_row[0] if skip_params is not None: if params[i] in skip_params: continue if params[j] in skip_params: continue if params[i] not in all_params: continue if params[j] not in all_params: continue zsamplesi, samplesi = self.get_samples(params[i], burn) zsamplesj, samplesj = self.get_samples(params[j], burn) if zsamplesi.size > 1: iz = np.argmin(np.abs(redshifts[i] - zsamplesi)) idata = samplesi[:,iz] else: idata = samplesi[0,:] if zsamplesj.size > 1: jz = np.argmin(np.abs(redshifts[j] - zsamplesj)) jdata = samplesj[:,jz] else: jdata = samplesj[0,:] # Retrieve data to be used in plot if not is_log[i]: p1 = 1. - idata if complement[i] else idata else: p1 = 10**idata if is_log[i] else idata if take_log[i]: p1 = np.log10(p1) # 2-D PDFs from here on if not is_log[j]: p2 = 1. - jdata if complement[j] else jdata else: p2 = 10**jdata if is_log[j] else jdata if take_log[j]: p2 = np.log10(p2) # 1-D PDFs if i == j: kw = kwargs.copy() if 'colors' in kw: del kw['colors'] if 'linestyles' in kw: del kw['linestyles'] _ax.hist(p2, density=True, bins=bins[j], histtype='step', **kw) if j > 0: _ax.set_yticklabels([]) if j == Np - 1: _ax.set_xlabel(labels[j]) else: _ax.set_xticklabels([]) else: _ax.set_ylabel(r'PDF') ok = np.isfinite(p2) _ax.set_xlim(p2[ok==1].min(), p2[ok==1].max()) continue if contours: hist, be2, be1 = np.histogram2d(p2, p1, [bins[j], bins[i]]) if smooth is not None: hist = gaussian_filter(hist, smooth) bc1 = bin_e2c(be1) bc2 = bin_e2c(be2) nu, levels = get_error_2d(p2, p1, hist, [bc2, bc1], nu=nu) # (columns, rows, histogram) if fill: _ax.contourf(bc2, bc1, hist.T / hist.max(), levels, zorder=4, **kwargs) else: _ax.contour(bc2, bc1, hist.T / hist.max(), levels, zorder=4, **kwargs) else: h, x, y, img = _ax.hist2d(p2, p1, bins=[bins[j], bins[i]], cmap='viridis', norm=LogNorm()) # Get rid of labels/ticks on interior panels. if i < Np - 1: _ax.set_xticklabels([]) else: _ax.set_xlabel(labels[j]) if j > 0: _ax.set_yticklabels([]) else: _ax.set_ylabel(labels[i]) ok1 = np.isfinite(p1) ok2 = np.isfinite(p2) _ax.set_ylim(p1[ok1==1].min(), p1[ok1==1].max()) _ax.set_xlim(p2[ok2==1].min(), p2[ok2==1].max()) # Done return fig, axes_by_row def plot_walker_trajectories(self, burn=0, ax=None, fig=1, **kwargs): params, redshifts = self.data['pinfo'] nrows = len(params) ncols = 1 _j = 0 if ax is None: fig, axes = pl.subplots(nrows, ncols, num=fig, figsize=(ncols * 4, nrows * 4)) steps = np.arange(0, self.data['chain'].shape[1]) ibest = np.argwhere(self.data['lnprob'] == self.data['lnprob'].max())[-1] # This looks slow/lazy but it's to keep ordering. punique = [] for i, par in enumerate(params): if par in punique: continue punique.append(par) zunique = np.unique(redshifts) zunique = zunique[np.isfinite(zunique)] ct = 0 for i, par in enumerate(params): _z_ = redshifts[i] try: parname, parnum = par.split('_') except ValueError: parname = par parnum = None axes[i].annotate(par, (0.05, 0.95), bbox=bbox, xycoords='axes fraction', ha='left', va='top') chain = self.data['chain'][:,burn:,i] axes[i].plot(steps, chain.T, **kwargs) # Plot best one as horizontal line axes[i].plot(steps, chain[ibest[0],ibest[1]] * np.ones_like(steps), color='k', ls='--', zorder=10, lw=3) # Put marker at walker/step where best happens axes[i].scatter(steps[ibest[1]], chain[ibest[0],ibest[1]], marker='|', s=150, color='k', zorder=10) if _j == 0: ylab = par.split('_')[0] axes[i].set_ylabel(ylab) return axes def get_zindex_in_data(self, z, ztol=1e-3): j = np.argmin(np.abs(z - self.data['zfit'])) assert abs(self.data['zfit'][j] - z) < ztol return j def get_ps(self, z=None, ztol=1e-2, burn=0, reshape=True): burn_per_w = burn // self.data['chain'].shape[0] data = self.data sh = data['blobs'].shape try: nsteps, nw, nz, nk = sh except ValueError: nsteps, nw, nz = sh nk = 1 if reshape: _ps = np.reshape(data['blobs'], (nsteps*nw,nz,nk)) else: _ps = data['blobs'] if z is not None: i = self.get_zindex_in_data(z, ztol=ztol) if reshape: ps = _ps[:,i] else: ps = _ps[:,:,i] return self.data['kblobs'], ps[burn_per_w:] else: return self.data['kblobs'], _ps[burn_per_w:] def get_stuck_walkers(self, logL_min=-np.inf, burn=0): nw = self.data['chain'].shape[0] burn_per_w = burn // nw bad_L = self.data['lnprob'][:,burn_per_w:] < logL_min bad_w = np.any(bad_L, axis=1) bad_i = np.argwhere(bad_w).squeeze() return bad_i def plot_ps(self, z=None, use_best=True, ax=None, fig=1, ztol=1e-2, conflevel=0.68, samples=None, show_recovery=True, marker_kw={}, use_cbar=True, show_cbar=True, show_data=True, cmap='jet', burn=0, logL_min=-np.inf, logL_max=np.inf, **kwargs): """ Plot the power spectrum, either at the maximum likelihood point or as a shaded region indicative of a given confidence level. """ if ax is None: fig, ax = pl.subplots(1, 1, num=fig) if use_cbar: norm = Normalize(vmin=min(self.data['zfit']), vmax=max(self.data['zfit'])) cmap = ScalarMappable(norm=norm, cmap=cmap) cmap.set_array([]) sh = self.data['blobs'].shape try: nsteps, nw, nz, nk = sh except ValueError: nsteps, nw, nz = sh nk = 1 burn_per_w = burn // nw ibest = np.argwhere(self.data['lnprob'] == self.data['lnprob'].max())[0] i = self.get_zindex_in_data(z=z, ztol=ztol) _z_ = self.data['zfit'][i] if (logL_min > -np.inf): bad_i = self.get_stuck_walkers(logL_min, burn=burn) if bad_i.size == nw: raise ValueError("No acceptable walkers!") elif bad_i.size > 0: _k, _ps_ = self.get_ps(z=_z_, ztol=ztol, burn=burn, reshape=False) _ps = [] for iw in np.arange(nw): if iw in bad_i: continue _ps.append(_ps_[:,iw,:]) _ps = np.array(_ps) ps = np.reshape(_ps, (_ps.shape[0] * _ps.shape[1], nk)) else: _k, ps = self.get_ps(z=_z_, ztol=ztol, burn=burn, reshape=True) else: _k, ps = self.get_ps(z=_z_, ztol=ztol, burn=burn, reshape=True) if use_cbar: kwargs['color'] = cmap.to_rgba(_z_) if not show_recovery: pass elif use_best: ax.plot(self.data['kblobs'], self.data['blobs'][ibest[1], ibest[0],i], **kwargs) elif samples is not None: ax.plot(self.data['kblobs'], ps[-samples:,:].T, **kwargs) else: _lo = (1. - conflevel) * 100 / 2. _hi = 100 - _lo lo, hi = np.nanpercentile(ps, (_lo, _hi), axis=0) ax.fill_between(self.data['kblobs'], lo, hi, **kwargs) ## # Overplot data if ('data' in self.data.keys()) and show_data: # Use cmap to force match in colors ydat, yerr = self.data['data'][i] if use_cbar: marker_kw['color'] = cmap.to_rgba(_z_) ax.errorbar(self.data['kblobs'], ydat, yerr.T, **marker_kw) ax.set_xlabel(labels['k']) ax.set_ylabel(labels['delta_sq']) ax.set_xscale('log') ax.set_yscale('log') try: ax.set_ylim(self.data['blobs'].min()*0.5, self.data['blobs'].max() * 2) except: ax.set_ylim(1, 1e4) if use_cbar and show_cbar and show_recovery: cax = fig.add_axes([0.91, 0.11, 0.015, 0.77]) cb = pl.colorbar(cmap, ax=ax, cax=cax, orientation='vertical') cb.set_label(r'$z$', fontsize=20) return fig, ax def get_par_from_increments(self): pass def plot_igm_constraints(self, z=None, use_best=False, conflevel=0.68, ax=None, fig=1, burn=0, marker_kw={}, scatter=False, zoffset=0, bins=20, smooth_hist=None, **kwargs): """ Plot contours in Q-T_S space. Kind of the whole point of this package. """ new_ax = False if ax is None: fig, ax = pl.subplots(1, 1, num=fig) new_ax = True params, redshifts = self.data['pinfo'] for _z_ in self.data['zfit']: iT = None iQ = None for j, par in enumerate(params): if (z is not None) and (_z_ != z): continue if (par == 'Ts'): iT = j if (par == 'Q'): iQ = j T = self.data['flatchain'][burn:,iT] Q = self.data['flatchain'][burn:,iQ] x = 1. - Q hist, be1, be2 = np.histogram2d(T, x, bins) bc1 = bin_e2c(be1) bc2 = bin_e2c(be2) if smooth_hist is not None: hist = gaussian_filter(hist, smooth_hist) nu, levels = get_error_2d(T, x, hist, [bc1, bc2], nu=conflevel) ax.contour(bc2, bc1, hist / hist.max(), levels, **kwargs) if new_ax: ax.set_xlabel(r'$x_{\mathrm{HI}} \equiv 1 - Q$') ax.set_ylabel(r'$T_S \ [\mathrm{K}]$') return ax def get_samples(self, par, burn=0): params, redshifts = self.data['pinfo'] chain = self.data['chain'] burn_per_w = burn // self.data['chain'].shape[0] ## # If par in `params`, it's easy. if par in params: z = [] y = [] for i, _z_ in enumerate(redshifts): if params[i] != par: continue z.append(_z_) y.append(self.data['flatchain'][burn:,i]) return np.array(z), np.array(y) # May be repeats -- just take first one ibest = np.argwhere(self.data['lnprob'] == self.data['lnprob'].max()) if ibest.ndim == 2: ibest = ibest[0] # First, deal with parametric results if we have them. for _par_ in ['Q', 'R', 'Ts']: if (par != _par_): continue if (self.data['kwargs']['{}_func'.format(_par_)] is None): continue j = 0 p = [] v = [] while '{}_p{}'.format(_par_, j) in params: pj = params.index('{}_p{}'.format(_par_, j)) vj = chain[:,:,pj] j += 1 p.append(pj) v.append(vj) fname = self.data['kwargs']['{}_func'.format(_par_)] if fname == 'tanh': func = tanh_generic elif fname == 'pl': if _par_ == 'Q': func = power_law_max1 else: func = power_law elif fname == 'bpl': if _par_ == 'Q': func = broken_power_law_max1 else: func = broken_power_law elif fname == 'dpl': assert _par_ == 'Ts' func = double_power_law else: raise NotImplemented('No option for {} yet'.format(fname)) # Make Q(z) (for example) for each MCMC sample v_flat = [self.data['flatchain'][burn:,_p] for _p in p] _pars_ = np.array([element for element in v_flat]) zplot = self.data['zfit'] assert burn < v[0].size, \ "Provided `burn` exceeds size of chain!" y = np.zeros((v[0].size-burn, zplot.size)) for i, _z_ in enumerate(zplot): y[:,i] = func(_z_, _pars_) return np.array(zplot), y def plot_evol(self, par, use_best=False, conflevel=0.68, ax=None, fig=1, burn=0, marker_kw={}, scatter=False, boxplot=False, zoffset=0, samples=None, **kwargs): """ Plot constraints on model parameters vs. redshift. """ if ax is None: fig, ax = pl.subplots(1, 1, num=fig) params, redshifts = self.data['pinfo'] chain = self.data['chain'] # May be repeats -- just take first one ibest = np.argwhere(self.data['lnprob'] == self.data['lnprob'].max()) if ibest.ndim == 2: ibest = ibest[0] # First, deal with parametric results if we have them. for _par_ in ['Q', 'R', 'Ts', 'sigma', 'Asys']: if (par != _par_): continue if (self.data['kwargs']['{}_func'.format(_par_)] is None): continue j = 0 p = [] v = [] while '{}_p{}'.format(_par_, j) in params: pj = params.index('{}_p{}'.format(_par_, j)) vj = chain[:,:,pj] j += 1 p.append(pj) v.append(vj) fname = self.data['kwargs']['{}_func'.format(_par_)] if fname == 'tanh': func = tanh_generic elif fname == 'linear': func = lin_Q elif fname == 'pl': if _par_ == 'Q': func = power_law_max1 elif _par_ == 'Ts': func = power_law_lognorm elif _par_ == 'R': func = power_law_Q else: func = power_law elif fname == 'bpl': if _par_ == 'Q': func = broken_power_law_max1 else: func = broken_power_law elif fname == 'dpl': assert _par_ == 'Ts' func = double_power_law elif fname == 'erf': assert _par_ == 'Asys' func = erf_Q else: raise NotImplemented('No option for {} yet'.format(fname)) pbest = [element[ibest[0],ibest[1]] for element in v] # Make Q(z) for each MCMC sample if use_best: if par in ['R', 'sigma', 'Asys']: ybest = func(_default_Q, pbest) ax.plot(_default_Q, ybest, **kwargs) else: ybest = func(_default_z, pbest) ax.plot(_default_z, ybest, **kwargs) else: v_flat = [self.data['flatchain'][burn:,_p] \ for _p in p] _pars_ = np.array([element for element in v_flat]) if par in ['R', 'Asys']: ybest = func(_default_Q, pbest) xvals = _default_Q else: if scatter or boxplot: zplot = self.data['zfit'] else: zplot = _default_z ybest = func(zplot, pbest) xvals = zplot assert burn < v[0].size, \ "Provided `burn` exceeds size of chain!" y = np.zeros((v[0].size-burn, xvals.size)) for i, _x_ in enumerate(xvals): y[:,i] = func(_x_, _pars_) #zplot, y = self.get_samples _lo = (1. - conflevel) * 100 / 2. _hi = 100 - _lo lo, hi = np.percentile(y, (_lo, _hi), axis=0) if boxplot: kw = kwargs.copy() for i, _x_ in enumerate(xvals): conf = np.array([[_lo / 100., _hi / 100.]]) data = y[:,i]#np.concatenate((y[:,i], ybest[i])) ax.boxplot(data, positions=[_x_], showfliers=False, manage_ticks=False, conf_intervals=conf) #usermedians=[ybest[i]]) #conf_intervals=[[16, 84]]) if 'label' in kw: del kw['label'] elif scatter: kw = kwargs.copy() for i, _x_ in enumerate(zplot): ax.plot([_x_+zoffset]*2, [lo[i], hi[i]], **kw) ax.scatter([_x_+zoffset]*2, [ybest[i]]*2, **marker_kw) if 'label' in kw: del kw['label'] elif samples is not None: ax.plot(xvals, y[-samples:,:].T, **kwargs) else: ax.fill_between(xvals, lo, hi, **kwargs) if par in ['Ts', 'R']: ax.set_yscale('log') if par in ['R', 'sigma', 'Asys']: ax.set_xlabel(r'$Q$') ax.set_xlim(0, 1) else: ax.set_xlabel(r'$z$') ax.set_xlim(min(self.data['zfit'])-1, max(self.data['zfit'])+1) ax.set_ylabel(_default_labels[_par_]) ax.set_ylim(*_default_limits[_par_]) return ax ## # Non-parametric results for i, _par_ in enumerate(params): z = redshifts[i] if (_par_ != par): continue #if (_par_ == 'R') and (self.data['kwargs']['Rxdelta'] is not None): # continue #else: best = chain[ibest[0], ibest[1],i] _chain = self.data['flatchain'][burn:,i] # Get band _lo = (1. - conflevel) * 100 / 2. _hi = 100 - _lo lo, hi =
np.percentile(_chain, (_lo, _hi), axis=0)
numpy.percentile
import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score # Package imports from pypso.optimizers import BPSO, CPSO from pypso.utils import plot_history # Globally load data from sklearn X, y = load_breast_cancer(return_X_y=True) X = (X - X.mean()) / X.std() # Define linear model for comparison with PSO clf = LogisticRegression(solver="lbfgs") clf.fit(X, y) auc_sk = np.round(roc_auc_score(y, clf.predict_proba(X)[:, -1]), 4) # Define objective functions def fobj_lr(w): """Optimize logistic regression weights using AUC metric. Parameters ---------- w : 1d array-like Weights for logistic regression. Returns ------- float AUC metric. """ # Linear combo and create probabilities z = w[0] + np.sum(w[1:]*X, axis=1) p = 1 / (1 + np.exp(-z)) # Want to minimize objective so take 1 - AUC return 1 - roc_auc_score(y, p) def fobj_lr_constraint(w): """Set arbitrary constraint for logistic regression weights. Parameters ---------- w : 1d array-like Weights for logistic regression. Returns ------- 1d array-like Boolean vector indicating if element satisfies condition. """ return abs(w) < 2 def fobj_fs(b): """Optimize feature selection using AUC metric. Parameters ---------- b : 1d array-like Array indicating if feature is selected (1=yes, 0=no). Returns ------- float AUC metric. """ b = b.astype(bool) try: clf = LogisticRegression(solver="lbfgs").fit(X[:, b], y) return 1 - roc_auc_score(y, clf.predict_proba(X[:, b])[:, -1]) except Exception as e: return np.inf def fobj_fs_constraint(b): """Set arbitrary constraint for feature selection to use 50% or less of the total feature space. Parameters ---------- b : 1d array-like Array indicating if feature is selected (1=yes, 0=no). Returns ------- 1d array-like Boolean vector indicating if element satisfies condition. """ return np.sum(b) <= 10 def main(): """Runs toy examples demonstrating pypso. """ # Kwargs for PSO algorithms kwarg_params = { 'n_particles' : 300, 'n_jobs' : 4, 'verbose' : True, 'random_state' : 1718 } ####################### # CONTINUOUS EXAMPLES # ####################### n_dimensions = X.shape[1] + 1 # +1 for bias term lb = [-4] * n_dimensions ub = [4] * n_dimensions """Example 1. Continuous PSO without constraint""" print(f"{'-'*50}\nEXAMPLE 1 - CONTINUOUS PSO WITHOUT CONSTRAINT\n{'-'*50}") pso = CPSO(n_dimensions=n_dimensions, **kwarg_params) w_opt, o_opt = pso.optimize(fobj=fobj_lr, lb=lb, ub=ub, fcons=None) plot_history(pso) # Print solution names = [f"f{i}" for i in range(1, X.shape[1] + 1)] weights = np.round(w_opt, 2).tolist() sol = f"{weights[0]} + " for i in range(X.shape[1]): if (i + 1) % 5 == 0: sol += "\n" sol += f"{weights[i+1]}*{names[i]}" if i < X.shape[1]-1: sol += " + " print(f"\nLinear solution:\n{sol}") # Sanity check print("\nSanity check:") status = np.all((np.array(lb) < w_opt) & (w_opt < np.array(ub))) print(f"\tall weights within bounds? {status}\n") # Compare to sklearn logistic regression auc_pso = np.round(1 - o_opt, 4) print("Comparison to sklearn:") print(f"\tsklearn logistic regression AUC = {auc_sk}") print(f"\tPSO logistic regression AUC = {auc_pso}\n") """Example 2. Continuous PSO with constraint""" print(f"{'-'*50}\nEXAMPLE 2 - CONTINUOUS PSO WITH CONSTRAINT\n{'-'*50}") pso = CPSO(n_dimensions=n_dimensions, **kwarg_params) w_opt, o_opt = pso.optimize(fobj=fobj_lr, lb=lb, ub=ub, fcons=fobj_lr_constraint) plot_history(pso) # Print solution names = [f"f{i}" for i in range(1, X.shape[1] + 1)] weights = np.round(w_opt, 2).tolist() sol = f"{weights[0]} + " for i in range(X.shape[1]): if (i + 1) % 5 == 0: sol += "\n" sol += f"{weights[i+1]}*{names[i]}" if i < X.shape[1]-1: sol += " + " print(f"\nLinear solution:\n{sol}") print("\nSanity check:") status = np.all((np.array(lb) < w_opt) & (w_opt < np.array(ub))) print(f"\tall weights within bounds? {status}") status = np.all(fobj_lr_constraint(w_opt)) print(f"\tall weights satisfy constraint? {status}\n") # Compare to sklearn logistic regression auc_pso = np.round(1 - o_opt, 4) print("Comparison to sklearn:") print(f"\tsklearn logistic regression AUC = {auc_sk}") print(f"\tPSO logistic regression AUC = {auc_pso}\n") ################### # BINARY EXAMPLES # ################### n_dimensions = X.shape[1] lb = [0] * X.shape[1] ub = [1] * X.shape[1] """Example 3. Binary PSO without constraint""" print(f"{'-'*50}\nEXAMPLE 3 - BINARY PSO WITHOUT CONSTRAINT\n{'-'*50}") pso = BPSO(n_dimensions=n_dimensions, **kwarg_params) b_opt, o_opt = pso.optimize(fobj=fobj_fs, lb=lb, ub=ub, fcons=None, max_iter=5) plot_history(pso) # Features selected print("\nFeatures selected:") print(f"\tn = {int(np.sum(b_opt))}") print(f"\tids = {np.where(b_opt)[0]}") # Compare to performance without feature selection auc_pso =
np.round(1 - o_opt, 4)
numpy.round
import re import numpy as np from lumicks import pylake import pytest from lumicks.pylake.kymotracker.detail.calibrated_images import CalibratedKymographChannel from lumicks.pylake.kymo import EmptyKymo import matplotlib.pyplot as plt from matplotlib.testing.decorators import cleanup from .data.mock_confocal import generate_kymo def test_kymo_properties(h5_file): f = pylake.File.from_h5py(h5_file) if f.format_version == 2: kymo = f.kymos["Kymo1"] reference_timestamps = np.array([[2.006250e+10, 2.109375e+10, 2.206250e+10, 2.309375e+10], [2.025000e+10, 2.128125e+10, 2.225000e+10, 2.328125e+10], [2.043750e+10, 2.146875e+10, 2.243750e+10, 2.346875e+10], [2.062500e+10, 2.165625e+10, 2.262500e+10, 2.365625e+10], [2.084375e+10, 2.187500e+10, 2.284375e+10, 2.387500e+10]], np.int64) assert repr(kymo) == "Kymo(pixels=5)" with pytest.deprecated_call(): kymo.json with pytest.deprecated_call(): assert kymo.has_fluorescence with pytest.deprecated_call(): assert not kymo.has_force assert kymo.pixels_per_line == 5 assert len(kymo.infowave) == 64 assert kymo.rgb_image.shape == (5, 4, 3) assert kymo.red_image.shape == (5, 4) assert kymo.blue_image.shape == (5, 4) assert kymo.green_image.shape == (5, 4) np.testing.assert_allclose(kymo.timestamps, reference_timestamps) assert kymo.fast_axis == "X" np.testing.assert_allclose(kymo.pixelsize_um, 10/1000) np.testing.assert_allclose(kymo.line_time_seconds, 1.03125) np.testing.assert_allclose(kymo.center_point_um["x"], 58.075877109272604) np.testing.assert_allclose(kymo.center_point_um["y"], 31.978375270573267) np.testing.assert_allclose(kymo.center_point_um["z"], 0) np.testing.assert_allclose(kymo.size_um, [0.050]) def test_kymo_slicing(h5_file): f = pylake.File.from_h5py(h5_file) if f.format_version == 2: kymo = f.kymos["Kymo1"] kymo_reference = np.transpose([[2, 0, 0, 0, 2], [0, 0, 0, 0, 0], [1, 0, 0, 0, 1], [0, 1, 1, 1, 0]]) assert kymo.red_image.shape == (5, 4)
np.testing.assert_allclose(kymo.red_image.data, kymo_reference)
numpy.testing.assert_allclose
import os from shutil import * import random, math import scipy.misc import numpy as np import tensorflow as tf def clear_duplicated_layers(layers): layers0 = [layers[0]] for layer in layers: if layer.name != layers0[-1].name: layers0.append(layer) return layers0 def allocate_gpu(gpu_id=-1, maxLoad=0.1, maxMem=0.5, order='memory'): if gpu_id == -1: try: import common.GPUtil as GPUtil gpu_id = GPUtil.getFirstAvailable(order=order, maxLoad=maxLoad, maxMemory=maxMem)[0] except: gpu_id = 0 os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) return gpu_id def ini_model(sess): sess.run(tf.global_variables_initializer()) def save_model(saver, sess, checkpoint_dir, step=None): makedirs(checkpoint_dir) model_name = "model" saver.save(sess, checkpoint_dir + model_name, global_step=step) def load_model(saver, sess, checkpoint_dir): print(" [*] Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) return True else: return False from functools import reduce import operator def prod(iterable): return reduce(operator.mul, iterable, 1) def sigmoid(x): return (1 / (1 + np.exp(-x))) def mean(x): try: return np.mean(x).__float__() except: return 0. def std(x): try: return np.std(x).__float__() except: return 0. def copydir(src, dst): if os.path.exists(dst): removedirs(dst) copytree(src, dst) def remove(path): if os.path.exists(path): os.remove(path) def makedirs(path): if not os.path.exists(path): os.makedirs(path) def removedirs(path): if os.path.exists(path): rmtree(path) def str_flags(flags): p = '' for key in np.sort(list(flags.keys())): p += str(key) + ':' + str(flags.get(key)._value) + '\n' return p def rampup(step, rampup_length): p = tf.minimum(1.0, tf.cast(step, tf.float32) / rampup_length) return tf.nn.sigmoid(10.0*(p-0.5)) / sigmoid(5.0) def save_images(images, size, path): if images.shape[3] == 1: images = np.concatenate([images, images, images], 3) images = np.clip(images, -1.0, 1.0) return scipy.misc.toimage(merge(images, size), cmin=-1, cmax=1).save(path) def imread(path, is_grayscale=False): if (is_grayscale): return scipy.misc.imread(path, flatten=True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def imresize(image, resize=1): h, w = image.shape[0], image.shape[1] img = np.zeros((h * resize, w * resize, image.shape[2])) for i in range(h * resize): for j in range(w * resize): img[i, j] = image[i // resize, j // resize] return img def merge(images, size, resize=3): h, w = images.shape[1] * resize, images.shape[2] * resize img = np.zeros((h * size[0], w * size[1], images.shape[3])) assert size[0] * size[1] == images.shape[0] for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = imresize(image, resize) return img def center_crop(x, crop_h, crop_w=None, resize_w=64): h, w = x.shape[:2] if crop_w is None: crop_w = crop_h if crop_h == 0: crop_h = crop_w = min(h, w) j = int(round((h - crop_h) / 2.)) i = int(round((w - crop_w) / 2.)) return scipy.misc.imresize(x[j:j + crop_h, i:i + crop_w], [resize_w, resize_w]) def batch_resize(images, newHeight, newWidth): images_resized = np.zeros([images.shape[0], newHeight, newWidth, 3]) for idx, image in enumerate(images): if (images.shape[3] == 1): image = np.concatenate([image, image, image], 2) images_resized[idx] = scipy.misc.imresize(image, [newHeight, newWidth], 'bilinear') return images_resized def clip_truncated_normal(mean, stddev, shape, minval=None, maxval=None): if minval == None: minval = mean - 2 * stddev if maxval == None: maxval = mean + 2 * stddev return np.clip(np.random.normal(mean, stddev, shape), minval, maxval) def collect(X, x, len): if isinstance(x, np.ndarray): if x.shape.__len__() == 1: x = x.reshape((1,) + x.shape) return x if X is None else np.concatenate([X, x], 0)[-len:] else: return [x] if X is None else (X + [x])[-len:] def get_name(layer_name, cts): if not layer_name in cts: cts[layer_name] = 0 name = layer_name + '_' + str(cts[layer_name]) cts[layer_name] += 1 return name def shuffle_datas(datas): rand_indexes = np.random.permutation(datas.shape[0]) shuffled_images = datas[rand_indexes] return shuffled_images def shuffle_datas_and_labels(datas, labels): rand_indexes = np.random.permutation(datas.shape[0]) shuffled_images = datas[rand_indexes] shuffled_labels = labels[rand_indexes] return shuffled_images, shuffled_labels def data_gen_random(data, num_sample): while True: num_data = len(data) data_index = np.random.choice(num_data, num_sample, replace=True, p=num_data * [1 / num_data]) yield data[data_index] def data_gen_epoch(datas, batch_size, func=None, epoch=None): cur_epoch = 0 while len(datas) < 100 * batch_size: datas = np.concatenate([datas, datas], axis=0) while True:
np.random.shuffle(datas)
numpy.random.shuffle
import numpy as np from eqsig import sdof, functions from eqsig.exceptions import deprecation def calc_significant_duration(motion, dt, start=0.05, end=0.95): """ Deprecated. Use calc_sig_dur_vals Parameters ---------- motion dt start end Returns ------- """ deprecation("Use calc_sig_dur_vals()") return calc_sig_dur_vals(motion, dt, start=start, end=end) def calc_sig_dur_vals(motion, dt, start=0.05, end=0.95, se=False): """ Computes the significant duration using cumulative acceleration according to Trifunac and Brady (1975). Parameters ---------- motion: array-like acceleration time series dt: float time step start: float, default=0.05 threshold to start the duration end: float, default=0.95 threshold to end the duration se: bool, default=False If true then return the start and end times Returns ------- tuple (start_time, end_time) """ cum_acc2 = np.cumsum(motion ** 2) ind2 = np.where((cum_acc2 > start * cum_acc2[-1]) & (cum_acc2 < end * cum_acc2[-1])) start_time = ind2[0][0] * dt end_time = ind2[0][-1] * dt if se: return start_time, end_time return end_time - start_time def calc_sig_dur(asig, start=0.05, end=0.95, im=None, se=False): """ Computes the significant duration according to Trifunac and Brady (1975). Parameters ---------- asig: eqsig.AccSignal acceleration time series object dt: float time step start: float, default=0.05 threshold to start the duration end: float, default=0.95 threshold to end the duration im: function or None (default=None) A function that calculates a cumulative intensity measure, if =None, then use eqsig.im.calc_arias_intensity se: bool, default=False If true then return the start and end times Returns ------- tuple (start_time, end_time) """ if im is None: im_vals = calc_arias_intensity(asig) else: im_vals = im(asig) ind2 = np.where((im_vals > start * im_vals[-1]) & (im_vals < end * im_vals[-1])) start_time = ind2[0][0] * asig.dt end_time = ind2[0][-1] * asig.dt if se: return start_time, end_time return end_time - start_time def calculate_peak(motion): """Calculates the peak absolute response""" deprecation("Use calc_peak instead of calculate_peak") return max(abs(min(motion)), max(motion)) def calc_peak(motion): """Calculates the peak absolute response""" return max(abs(min(motion)), max(motion)) def calc_sir(acc_sig): """ Calculates the shaking intensity rate ref: <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>., 2010. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms, ASCE Journal of Geotechnical and Geoenv. Eng. 136, 918-929 Parameters ---------- acc_sig: eqsig.AccSignal acceleration signal Returns ------- float """ ai_total = acc_sig.arias_intensity t5, t75 = calc_significant_duration(acc_sig.values, acc_sig.dt) return 0.7 * ai_total / (t75 - t5) def _raw_calc_arias_intensity(acc, dt): from scipy.integrate import cumtrapz return np.pi / (2 * 9.81) * cumtrapz(acc ** 2, dx=dt, initial=0) def calc_arias_intensity(acc_sig): """ Calculates the Arias Intensity Parameters ---------- acc_sig: eqsig.AccSignal Returns ------- array_like A time series of the build up of Arias Intensity """ return _raw_calc_arias_intensity(acc_sig.values, acc_sig.dt) def calc_cav(acc_sig): """ Calculates the Cumulative Absolute velocity ref: Electrical Power Research Institute. Standardization of the Cumulative Absolute Velocity. 1991. EPRI TR-100082-1'2, Palo Alto, California. """ from scipy.integrate import cumtrapz abs_acc = np.abs(acc_sig.values) return cumtrapz(abs_acc, dx=acc_sig.dt, initial=0) def calc_cav_dp(asig): """ Calculates standardized cumulative absolute velocity ref: <NAME>, <NAME>. Predictive equations for the horizontal component of standardized cumulative absolute velocity as adapted for use in the shutdown of U.S. nuclear power plants. Nucl Eng Des 2011;241:2558-69. :param asig: :return: """ from scipy.integrate import trapz start = 0 pga_max = 0 cav_dp = 0 points_per_sec = (int(1 / asig.dt)) total_seconds = int(asig.time[-1]) cav_dp_1_series = [] acc_in_g = asig.values / 9.81 for i in range(0, total_seconds): end = start + points_per_sec interval_total_time = (start * asig.dt) + 1 interval_time = np.arange(start * asig.dt, interval_total_time, asig.dt) acc_interval = [] for j in range(start, end + 1): acc_interval.append(acc_in_g[j]) acc_interval = np.array(acc_interval) abs_acc_interval = abs(acc_interval) x_lower = start * asig.dt # the lower limit of x x_upper = end * asig.dt # the upper limit of x x_int = interval_time[np.where((x_lower <= interval_time) * (interval_time <= x_upper))] y_int = np.abs(np.array(abs_acc_interval)[np.where((x_lower <= interval_time) * (interval_time <= x_upper))]) int_acc = trapz(y_int, x_int) # calculation of pga (g) pga = (max(abs_acc_interval)) if pga > pga_max: pga_max = pga if (pga - 0.025) < 0: h = 0 elif (pga - 0.025) >= 0: h = 1 else: raise ValueError("cannot evaluate pga: {0}".format(pga)) cav_dp = cav_dp + (h * int_acc) cav_dp_1_series.append(cav_dp) start = end t1s = np.arange(total_seconds) cav_dp_time_series = np.interp(asig.time, t1s, cav_dp_1_series) return cav_dp_time_series def calc_isv(acc_sig): """ Calculates the integral of the squared velocity See Kokusho (2013) :return: """ from scipy.integrate import cumtrapz return cumtrapz(acc_sig.velocity ** 2, dx=acc_sig.dt, initial=0) def cumulative_response_spectra(acc_signal, fun_name, periods=None, xi=None): if periods is None: periods = acc_signal.response_times else: periods = np.array(periods) if xi is None: xi = 0.05 resp_u, resp_v, resp_a = sdof.response_series(acc_signal.values, acc_signal.dt, periods, xi) if fun_name == "arias_intensity": rs = _raw_calc_arias_intensity(resp_a, acc_signal.dt) else: raise ValueError return rs def calc_max_velocity_period(asig): from eqsig import AccSignal periods = np.logspace(-1, 0.3, 100) new_sig = AccSignal(asig.values, asig.dt) new_sig.generate_response_spectrum(response_times=periods, xi=0.15) max_index = np.argmax(new_sig.s_v) max_period = periods[max_index] return max_period def max_acceleration_period(asig): from eqsig import AccSignal periods = np.logspace(-1, 1, 100) new_sig = AccSignal(asig.values, asig.dt) new_sig.generate_response_spectrum(response_times=periods, xi=0) max_index = np.argmax(new_sig.s_a) max_period = periods[max_index] return max_period def max_fa_period(asig): """Calculates the period corresponding to the maximum value in the Fourier amplitude spectrum""" max_index = np.argmax(asig.fa_spectrum) max_period = 1. / asig.fa_frequencies[max_index] return max_period def calc_bandwidth_freqs(asig, ratio=0.707): """ Lower and upper frequencies of smooth Fourier spectrum bandwidth Parameters ---------- asig: eqsig.AccSignal Acceleration time series object ratio: ratio of maximum value where bandwidth should be computed Returns ------- tuple: (lower, upper) """ fas1_smooth = asig.smooth_fa_spectrum max_fas1 = max(fas1_smooth) lim_fas = max_fas1 * ratio ind2 = np.where(fas1_smooth > lim_fas) min_freq = asig.smooth_fa_frequencies[ind2[0][0]] max_freq = asig.smooth_fa_frequencies[ind2[0][-1]] return min_freq, max_freq def calc_bandwidth_f_min(asig, ratio=0.707): """ Lower frequency of smooth Fourier spectrum bandwidth Parameters ---------- asig: eqsig.AccSignal Acceleration time series object ratio: float ratio of maximum value where bandwidth should be computed Returns ------- float """ fas1_smooth = asig.smooth_fa_spectrum max_fas1 = max(fas1_smooth) lim_fas = max_fas1 * ratio ind2 = np.where(fas1_smooth > lim_fas) min_freq = asig.smooth_fa_frequencies[ind2[0][0]] return min_freq def calc_bandwidth_f_max(asig, ratio=0.707): """ Upper frequency of smooth Fourier spectrum bandwidth Parameters ---------- asig: eqsig.AccSignal Acceleration time series object ratio: float ratio of maximum value where bandwidth should be computed Returns ------- float """ fas1_smooth = asig.smooth_fa_spectrum max_fas1 = max(fas1_smooth) lim_fas = max_fas1 * ratio ind2 = np.where(fas1_smooth > lim_fas) max_freq = asig.smooth_fa_frequencies[ind2[0][-1]] return max_freq def calc_bracketed_duration(asig, threshold): """DEPRECATED: Use calc_brac_dur""" deprecation("Use calc_brac_dur") return calc_brac_dur(asig, threshold) def calc_brac_dur(asig, threshold, se=False): """ Calculates the Bracketed duration based on some threshold Parameters ---------- asig: eqsig.AccSignal Acceleration time series object threshold: float acceleration threshold to calculation duration start and end se: bool, default=False If true then return the start and end times Returns ------- float """ abs_motion = abs(asig.values) time = np.arange(asig.npts) * asig.dt # Bracketed duration ind01 = np.where(abs_motion > threshold) time2 = time[ind01] try: if se: return time2[0], time2[-1] return time2[-1] - time2[0] except IndexError: if se: return None, None return 0 def calc_acc_rms(asig, threshold): """Root mean squared acceleration""" abs_motion = abs(asig.values) # Bracketed duration ind01 = np.where(abs_motion > threshold) try: # rms acceleration in m/s/s a_rms01 = np.sqrt(1 / asig.t_b01 * np.trapz((asig.values[ind01[0][0]:ind01[0][-1]]) ** 2, dx=asig.dt)) except IndexError: a_rms01 = 0 return a_rms01 def calc_a_rms(asig, threshold): """DEPRECATED""" raise ValueError('calc_a_rms has been removed, use calc_acc_rms note that threshold changed to m/s2') def calc_integral_of_abs_velocity(asig): """Integral of absolute velocity - identical to cumulative absolute displacement""" abs_vel = abs(asig.velocity) vel_int = np.cumsum(abs_vel * asig.dt) return vel_int def calc_cumulative_abs_displacement(asig): """Cumulative absolute displacement - identical to integral of absolute velocity""" return calc_integral_of_abs_velocity(asig) def calc_integral_of_abs_acceleration(asig): """Integral of absolute acceleration""" abs_acc = abs(asig.values) acc_int = np.cumsum(abs_acc * asig.dt) return acc_int def calc_n_cyc_array_w_power_law(values, a_ref, b, cut_off=0.01): """ Calculates the equivalent number of uniform amplitude cycles using a power law Parameters ---------- values: array_like Time series of values a_ref: float Reference uniform amplitude b: float or array_like Power law factor cut_off: float Low amplitude cutoff value Returns ------- array_like """ from scipy.interpolate import interp1d peak_indices = functions.get_switched_peak_array_indices(values) csr_peaks = np.abs(np.take(values, peak_indices)) csr_peaks = np.where(csr_peaks < cut_off * np.max(abs(values)), 1.0e-14, csr_peaks) n_ref = 1 perc = 0.5 / (n_ref * (a_ref / csr_peaks)[:, np.newaxis] ** (1 / b)) n_eq = np.cumsum(perc, axis=0) n_eq = np.insert(n_eq, 0, 0, axis=0) peak_indices = np.insert(peak_indices, 0, 0, axis=0) n_eq = np.insert(n_eq, len(n_eq)-1, n_eq[-1], axis=0) peak_indices = np.insert(peak_indices, len(n_eq)-1, len(values), axis=0) f = interp1d(peak_indices, n_eq, kind='previous', axis=0) n_series = f(np.arange(len(values))) return n_series def calc_cyc_amp_array_w_power_law(values, n_cyc, b): """ Calculate the equivalent uniform loading for a given number of cycles and power coefficient (b) :param values: array_like Time series of values :param n_cyc: :param b: :return: """ a1_peak_inds_end = functions.get_switched_peak_array_indices(values) a1_csr_peaks_end = np.abs(np.take(values, a1_peak_inds_end)) csr_peaks_s1 = np.zeros_like(values) np.put(csr_peaks_s1, a1_peak_inds_end, a1_csr_peaks_end) csr_n15_series1 = np.cumsum((np.abs(csr_peaks_s1)[:, np.newaxis] ** (1. / b)) / 2 / n_cyc, axis=0) ** b if not hasattr(b, '__len__'): return np.reshape(csr_n15_series1, len(values)) return csr_n15_series1 def calc_cyc_amp_gm_arrays_w_power_law(values0, values1, n_cyc, b): """ Calculate the geometric mean equivalent uniform amplitude for a given number of cycles and power coefficient (b) :param values0: array_like Time series of values :param values1: array_like Time series of values in orthogonal direction to values0 :param n_cycles: :param b: :return: """ csr_n_series0 = calc_cyc_amp_array_w_power_law(values0, n_cyc=n_cyc, b=b) csr_n_series1 = calc_cyc_amp_array_w_power_law(values1, n_cyc=n_cyc, b=b) csr_n_series = np.sqrt(csr_n_series0 * csr_n_series1) return csr_n_series def calc_cyc_amp_combined_arrays_w_power_law(values0, values1, n_cyc, b): """ Computes the equivalent cyclic amplitude. For a set number of cycles using a power law and assuming both components act equally Parameters ---------- values0: array_like Time series of values values1: array_like Time series of values in orthogonal direction to values0 n_cyc: int or float Number of cycles b: float Power law factor Returns ------- array_like """ peak_inds_a0 = functions.get_switched_peak_array_indices(values0) csr_peaks_a0 = np.abs(np.take(values0, peak_inds_a0)) peak_inds_a1 = functions.get_switched_peak_array_indices(values1) csr_peaks_a1 = np.abs(np.take(values1, peak_inds_a1)) csr_peaks_s0 = np.zeros_like(values0)
np.put(csr_peaks_s0, peak_inds_a0, csr_peaks_a0)
numpy.put
#!/usr/bin/env python import numpy as np import pandas as pd from matplotlib import rcParams #rcParams['font.family'] = ['Nimbus Sans L'] import matplotlib.pyplot as plt import glob import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression import tushare as ts import datetime import argparse import math import ta import os, sys, random import smtplib import imghdr from email.message import EmailMessage from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication from email.mime.text import MIMEText import subprocess import mplfinance as mpf stock_index = ['000001.SH'] code2name = dict() predict_days = 5 api = ts.pro_api(token='<PASSWORD> t<PASSWORD> token') trading_note = """ 本邮件由程序自动发送,勿回复,谢谢! ### 结论 经过这段时间的测试,选出以下指标,其中close为收盘价 - rsi2: 即两日RSI,2周期RSI是一个比较敏感的指标,对短期阶段性的买点判断比较准确,但是对买点判断不准确,只依靠2周期RSI容易卖飞,遇到差行情很容易回撤 - boll_wband20: 20周期的bollinger bands,对于短期趋势的判定很准确,当价格线上穿boll_wband20并且与boll_wband20同趋势的时候,是很强的上升势 - vwap30: 30周期的volume weighted average price,当价格线上穿vwap30并且与vwap30同趋势的时候,是很强的上升势 - kc_wband15: 15周期的keltner channel,当价格线上穿kc_wband15并且与kc_wband15同趋势的时候,是很强的上升势 - macd: 快线5周期,慢线15周期,信号线7周期,当macd线上穿信号线的时候是上升趋势,但是有一定的延时性 - adx15: 15周期average directional movement index, 当+DMI > -DMI的时候是上升势 - trix2: 2周期trix,当trix2上穿价格线并且与价格线同趋势的时候,是很强的上升势 - mi: mass index,当价格线上穿mi并且与mi同趋势的时候,是很强的上升势 - cci5: 5周期的commodity channel index,非常敏感,当cci5 > close并且没有很明显的下降趋势的时候,是上升势 - kst: kst oscillator, 当kst上穿信号线并且同趋势的时候,是很强的上升势,有误判情况 - psar: parabolic stop and reverse,每次价格线上穿psar都是买点 - tsi: true strength index,tsi上穿价格线是很强的上升势 - wr15: 15周期williams percent range,当wr15上穿价格线并持续保持在价格线之上,是上升势 - roc15: 15周期rate of change,当roc15上穿价格线并保持在价格线之上,是上升势 - kama: kaufman's adaptive moving average, 当价格线上穿kama,是上升势 """ def check_stock_data(name): files = glob.glob(name) return (len(files) != 0) def get_stock_data(name, weekly): data = pd.DataFrame() end_date = api.daily().iloc[0]['trade_date'] while True: if weekly: tmp = api.weekly(ts_code=name, end_date=end_date) else: tmp = ts.pro_bar(ts_code=name, api=api, end_date=end_date, adj='qfq') print("get data length: %d, end_date: %s last trade day: %s" % (len(tmp), end_date, tmp.iloc[0].trade_date)) end_date = datetime.datetime.strptime(str(tmp.iloc[-1].trade_date), '%Y%m%d') delta = datetime.timedelta(days=1) end_date = (end_date - delta).strftime("%Y%m%d") data = data.append(tmp) if len(tmp) < 5000: break return data def get_index_data(name, weekly): today = datetime.date.today().strftime("%Y%m%d") data = api.index_daily(ts_code=name) if str(data.iloc[0].trade_date) != today: print("today's index data is not ready, last trading day is %s" % data.iloc[0].trade_date) return data def get_stock_candidates(): today = datetime.date.today().strftime("%Y%m%d") last_trading_day = api.daily().iloc[0]['trade_date'] if today != last_trading_day: print("today's stock data is not ready, get stock candidates of %s" % last_trading_day) df = api.daily_basic(trade_date=last_trading_day) # 选取量在20w以上的, 价格在5-50之间的 candidates = df[(df.float_share * df.turnover_rate_f > 200000.) & (df.close > 5.) & (df.close < 50.)]["ts_code"].tolist() return candidates def get_code_name_map(): global code2name global api df = api.stock_basic() for code, name in zip(df['ts_code'].to_list(), df['name'].to_list()): code2name[code] = name df = api.index_basic() for code, name in zip(df['ts_code'].to_list(), df['name'].to_list()): code2name[code] = name def calculate_index(days, K): global code2name # days 交易日,最近的在前 last_day = api.daily().iloc[0]['trade_date'] print('last trade day: %s' % last_day) open_cal = api.trade_cal(is_open='1', end_date=last_day)['cal_date'].to_list()[-1::-1][:days+20] data = pd.DataFrame() trade_date_ = [] open_ = [] high_ = [] low_ = [] close_ = [] vol_ = [] amount_ = [] top_K = [] r_top_K = [] w_top_K = [] for day in open_cal: df = api.daily(trade_date=day) df2 = api.daily_basic(trade_date=day) df = df[df.ts_code.isin(df2.ts_code.tolist())] df = df.sort_values('ts_code').reset_index() df2 = df2.sort_values('ts_code').reset_index() df['circ_mv'] = df2['circ_mv'] amount = df.circ_mv.sum() df['weight'] = df['circ_mv'] / amount * 100 df['open'] = df['open'] * df['weight'] df['high'] = df['high'] * df['weight'] df['low'] = df['low'] * df['weight'] df['close'] = df['close'] * df['weight'] trade_date_.append(day) open_.append(df.open.sum()) high_.append(df.high.sum()) low_.append(df.low.sum()) close_.append(df.close.sum()) vol_.append(df.vol.sum() / 10000.) amount_.append(df.amount.sum() / 100000.) cand = df.sort_values('weight', ascending=False).iloc[:K][['ts_code', 'weight']].to_numpy() top_ = ["%s%+.3f%%" % (code2name[item[0]], item[1]) for item in cand] w_top_K.append(top_) cand = df.sort_values('close', ascending=False).iloc[:K][['ts_code', 'pct_chg']].to_numpy() top_ = ["%s%+.2f%%" % (code2name[item[0]], item[1]) for item in cand] top_K.append(top_) cand = df.sort_values('close', ascending=True)[['ts_code', 'pct_chg']].to_numpy() temp = [] count = 0 for item in cand: if item[0] in code2name: temp.append("%s%+.2f%%" %(code2name[item[0]], item[1])) count += 1 if count >= K: break r_top_K.append(temp) #time.sleep(0.5) data['Date'] = trade_date_[-1::-1] data['Open'] = open_[-1::-1] data['High'] = high_[-1::-1] data['Low'] = low_[-1::-1] data['Close'] = close_[-1::-1] data['Volume'] = vol_[-1::-1] data['Amount'] = amount_[-1::-1] bb = ta.volatility.BollingerBands(close=data['Close'], n=20, ndev=2) data['BollHBand'] = bb.bollinger_hband() data['BollLBand'] = bb.bollinger_lband() data['BollMAvg'] = bb.bollinger_mavg() return data.iloc[20:], (top_K, r_top_K, w_top_K) def plot_index(df, top_K, savefile): df['Date'] = df['Date'].astype('datetime64[ns]') df = df.set_index('Date') mc = mpf.make_marketcolors(up='r', down='g', ohlc='white') style = mpf.make_mpf_style(base_mpf_style='nightclouds', marketcolors=mc) wconfig = dict() apdict = mpf.make_addplot(df[['BollHBand', 'BollLBand', 'BollMAvg']]) mpf.plot(df, type='ohlc', volume=True, style=style, title='Stock A Index', return_width_config=wconfig, ylabel='Index', figscale=1.5, tight_layout=True, addplot=apdict, scale_width_adjustment=dict(lines=0.7)) print(wconfig) plt.savefig(savefile) plt.close('all') today = datetime.date.today().strftime("%Y%m%d") trade_date = api.trade_cal(end_date=today, is_open='1') print('trade date: %s' % trade_date.iloc[-1]['cal_date']) print('open: %.2f' % df.iloc[-1]['Open']) print('high: %.2f' % df.iloc[-1]['High']) print('low: %.2f' % df.iloc[-1]['Low']) print('close: %.2f' % df.iloc[-1]['Close']) print('volume: %.2f万手' % df.iloc[-1]['Volume']) print('amount: %.2f亿' % df.iloc[-1]['Amount']) print('percent change: %+.2f%%' % ((df.iloc[-1]['Close'] - df.iloc[-2]['Close']) / df.iloc[-2]['Close'] * 100.)) print("权重占比前十: %s" % ' '.join(top_K[2][0])) print('指数占比前十: %s' % ' '.join(top_K[0][0])) print('指数占比倒数前十: %s' % ' '.join(top_K[1][0])) def add_preday_info(data): new_data = data.reset_index(drop=True) extend = pd.DataFrame() pre_open = [] pre_high = [] pre_low = [] pre_change = [] pre_pct_chg = [] pre_vol = [] pre_amount = [] for idx in range(len(new_data) - 1): pre_open.append(new_data.iloc[idx + 1].open) pre_high.append(new_data.iloc[idx + 1].high) pre_low.append(new_data.iloc[idx + 1].low) pre_change.append(new_data.iloc[idx + 1].change) pre_pct_chg.append(new_data.iloc[idx + 1].pct_chg) pre_vol.append(new_data.iloc[idx + 1].vol) pre_amount.append(new_data.iloc[idx + 1].amount) pre_open.append(0.) pre_high.append(0.) pre_low.append(0.) pre_change.append(0.) pre_pct_chg.append(0.) pre_vol.append(0.) pre_amount.append(0.) new_data['pre_open'] = pre_open new_data['pre_high'] = pre_high new_data['pre_low'] = pre_low new_data['pre_change'] = pre_change new_data['pre_pct_chg'] = pre_pct_chg new_data['pre_vol'] = pre_vol new_data['pre_amount'] = pre_amount # fill predicting target days = [[] for i in range(predict_days)] for idx in range(predict_days - 1, len(new_data)): for i in range(len(days)): days[i].append(new_data.iloc[idx - i].pct_chg) # fill invalid days with 0. for i in range(len(days)): for idx in range(predict_days - 1): days[i].insert(0, 0.) # extend pandas frame for i in range(len(days)): col = "pct_chg%d" % (i + 1) new_data[col] = days[i] return new_data def add_ma_info(data): new_data = data.reset_index(drop=True) days = [5, 10, 15, 20, 30, 50, 100, 200] # add simple ma info cols = ["sma%d" % d for d in days] for day, col in zip(days, cols): new_data[col] = ta.utils.sma(new_data.iloc[-1::-1].close, periods=day)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp # add exponential ma info # scaling = s / (1 + d), s is smoothing, typically 2, d is ma days # ema(t) = v * scaling + ema(t - 1) * (1 - scaling), v is time(t)'s price cols = ["ema%d" % d for d in days] for day, col in zip(days, cols): new_data[col] = ta.utils.ema(new_data.iloc[-1::-1].close, periods=day)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_rsi_info(data): new_data = data.reset_index(drop=True) ''' RSI = 100 - 100 / (1 + RS) RS = average up / average down average up = sum(up moves) / N average downn = sum(down moves) / N ''' # calculate ups and downs N = [2,3,4,5,6] cols = ["rsi%d" % n for n in N] for n, col in zip(N, cols): new_data[col] = ta.momentum.rsi(new_data.iloc[-1::-1].close, n=n)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_crossover_info(data): # this project is for short-swing trading, so I just # track 5-day period ema crossover with 10-day, 15-day, 20-day, # 30-day, 50-day, 100-day, 200-day, # -1 for breakdowns, 0 for normal, 1 for breakouts new_data = data.reset_index(drop=True) tracking_day = 'ema5' cross_day = ['ema10', 'ema15', 'ema20', 'ema30', 'ema50', 'ema100', 'ema200'] cross_cols = ['cross5-10', 'cross5-15', 'cross5-20', 'cross5-30', 'cross5-50', 'cross5-100', 'cross5-200'] for ema, cross_col in zip(cross_day, cross_cols): prestatus = 0 if new_data.iloc[-2][tracking_day] >= new_data.iloc[-2][ema]: prestatus = 1 else: prestatus = -1 crossover = [] crossover.append(prestatus) for idx in range(len(new_data) - 2, -1, -1): if prestatus == -1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(1) prestatus = 1 else: crossover.append(0) elif prestatus == 1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(0) else: crossover.append(-1) prestatus = -1 new_data[cross_col] = crossover[-1::-1] precross_cols = ['pre_cross5-10', 'pre_cross5-15', 'pre_cross5-20', 'pre_cross5-30', 'pre_cross5-50', 'pre_cross5-100', 'pre_cross5-200'] for cross_col, precross_col in zip(cross_cols, precross_cols): vals = new_data.iloc[1:][cross_col].tolist() vals.append(0) new_data[precross_col] = vals return new_data def add_long_crossover_info(data): # add 50-day 100-day crossover info, I think # it is not important for short-swing trading, # but sometimes it happens, just add this feature new_data = data.reset_index(drop=True) tracking_day = 'ema50' cross_day = ['ema100'] cross_cols = ['longcross'] for ema, cross_col in zip(cross_day, cross_cols): prestatus = 0 if new_data.iloc[-2][tracking_day] >= new_data.iloc[-2][ema]: prestatus = 1 else: prestatus = -1 crossover = [] crossover.append(prestatus) for idx in range(len(new_data) - 2, -1, -1): if prestatus == -1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(1) prestatus = 1 else: crossover.append(0) elif prestatus == 1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(0) else: crossover.append(-1) prestatus = -1 new_data[cross_col] = crossover[-1::-1] precross_cols = ['pre_longcross'] for cross_col, precross_col in zip(cross_cols, precross_cols): vals = new_data.iloc[1:][cross_col].tolist() vals.append(0) new_data[precross_col] = vals return new_data def add_bollinger_band_info(data): new_data = data.reset_index(drop=True) #N = [20, 14, 12, 10, 5, 4, 3, 2] N = [20, 10] for n in N: bb = ta.volatility.BollingerBands(close=new_data.iloc[-1::-1].close, n=n, ndev=2) col = 'boll_hband%d' % n new_data[col] = bb.bollinger_hband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_lband%d' % n new_data[col] = bb.bollinger_lband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_hband_ind%d' % n new_data[col] = bb.bollinger_hband_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_lband_ind%d' % n new_data[col] = bb.bollinger_lband_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_mavg%d' % n new_data[col] = bb.bollinger_mavg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_pband%d' % n new_data[col] = bb.bollinger_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_wband%d' % n new_data[col] = bb.bollinger_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp return new_data def add_obv_info(data): new_data = data.reset_index(drop=True) obv = ta.volume.OnBalanceVolumeIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) new_data['obv'] = obv.on_balance_volume() temp = new_data.iloc[1:]['obv'].tolist() temp.append(np.nan) new_data['pre_obv'] = temp return new_data def add_adi_info(data): new_data = data.reset_index(drop=True) adi = ta.volume.AccDistIndexIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) new_data['adi'] = adi.acc_dist_index() temp = new_data.iloc[1:]['adi'].tolist() temp.append(np.nan) new_data['pre_adi'] = temp return new_data def add_cmf_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: cmf = ta.volume.ChaikinMoneyFlowIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=day) col = "cmf%d" % day new_data[col] = cmf.chaikin_money_flow() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_fi_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: fi = ta.volume.ForceIndexIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=day) col = "fi%d" % day new_data[col] = fi.force_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_eom_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: eom = ta.volume.EaseOfMovementIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, volume=new_data.iloc[-1::-1].vol, n=day) col = "eom%d" % day new_data[col] = eom.ease_of_movement() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "sma_eom%d" % day new_data[col] = eom.sma_ease_of_movement() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vpt_info(data): new_data = data.reset_index(drop=True) vpt = ta.volume.VolumePriceTrendIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) col = "vpt" new_data[col] = vpt.volume_price_trend() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_nvi_info(data): new_data = data.reset_index(drop=True) nvi = ta.volume.NegativeVolumeIndexIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) col = "nvi" new_data[col] = nvi.negative_volume_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vwap_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: vwap = ta.volume.VolumeWeightedAveragePrice(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, volume=new_data.iloc[-1::-1].vol, close=new_data.iloc[-1::-1].close, n=day) col = "vwap%d" % day new_data[col] = vwap.volume_weighted_average_price() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_atr_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30,14] for day in days: atr = ta.volatility.AverageTrueRange(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "atr%d" % day new_data[col] = atr.average_true_range() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: kc = ta.volatility.KeltnerChannel(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "kc_mband%d" % day new_data[col] = kc.keltner_channel_mband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kc_pband%d" % day new_data[col] = kc.keltner_channel_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kc_wband%d" % day new_data[col] = kc.keltner_channel_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: dc = ta.volatility.DonchianChannel(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "dc_mband%d" % day new_data[col] = dc.donchian_channel_mband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "dc_pband%d" % day new_data[col] = dc.donchian_channel_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "dc_wband%d" % day new_data[col] = dc.donchian_channel_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_macd_info(data): new_data = data.reset_index(drop=True) macd = ta.trend.MACD(close=new_data.iloc[-1::-1].close, n_slow=15, n_fast=5, n_sign=7) col = "macd" new_data[col] = macd.macd() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "macd_diff" new_data[col] = macd.macd_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "macd_signal" new_data[col] = macd.macd_signal() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_adx_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30,14,10] for day in days: adx = ta.trend.ADXIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "adx%d" % day new_data[col] = adx.adx() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "adx_neg%d" % day new_data[col] = adx.adx_neg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "adx_pos%d" % day new_data[col] = adx.adx_pos() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vi_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: vi = ta.trend.VortexIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "vi_diff%d" % day new_data[col] = vi.vortex_indicator_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "vi_neg%d" % day new_data[col] = vi.vortex_indicator_neg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "vi_pos%d" % day new_data[col] = vi.vortex_indicator_pos() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_trix_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: trix = ta.trend.TRIXIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "trix%d" % day new_data[col] = trix.trix() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_mi_info(data): new_data = data.reset_index(drop=True) mi = ta.trend.MassIndex(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "mi" new_data[col] = mi.mass_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_cci_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: cci = ta.trend.CCIIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "cci%d" % day new_data[col] = cci.cci() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dpo_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: dpo = ta.trend.DPOIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "dpo%d" % day new_data[col] = dpo.dpo() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kst_info(data): new_data = data.reset_index(drop=True) kst = ta.trend.KSTIndicator(close=new_data.iloc[-1::-1].close) col = "kst" new_data[col] = kst.kst() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kst_diff" new_data[col] = kst.kst_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kst_sig" new_data[col] = kst.kst_sig() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_ichimoku_info(data): new_data = data.reset_index(drop=True) ichimoku = ta.trend.IchimokuIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "ichimoku_a" new_data[col] = ichimoku.ichimoku_a() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_b" new_data[col] = ichimoku.ichimoku_b() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_base" new_data[col] = ichimoku.ichimoku_base_line() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_conv" new_data[col] = ichimoku.ichimoku_conversion_line() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_psar_info(data): new_data = data.reset_index(drop=True) psar = ta.trend.PSARIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close) col = "psar" new_data[col] = psar.psar() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_down" new_data[col] = psar.psar_down() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_down_idc" new_data[col] = psar.psar_down_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_up" new_data[col] = psar.psar_up() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_up_idc" new_data[col] = psar.psar_up_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_tsi_info(data): new_data = data.reset_index(drop=True) tsi = ta.momentum.TSIIndicator(close=new_data.iloc[-1::-1].close) col = "tsi" new_data[col] = tsi.tsi() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_uo_info(data): new_data = data.reset_index(drop=True) uo = ta.momentum.UltimateOscillator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close) col = "uo" new_data[col] = uo.uo() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_so_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: so = ta.momentum.StochasticOscillator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "stoch%d" % day new_data[col] = so.stoch() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "stoch_signal%d" % day new_data[col] = so.stoch_signal() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_wr_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: wr = ta.momentum.WilliamsRIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, lbp=day) col = "wr%d" % day new_data[col] = wr.wr() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_ao_info(data): new_data = data.reset_index(drop=True) ao = ta.momentum.AwesomeOscillatorIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "ao" new_data[col] = ao.ao() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kama_info(data): new_data = data.reset_index(drop=True) kama = ta.momentum.KAMAIndicator(close=new_data.iloc[-1::-1].close) col = "kama" new_data[col] = kama.kama() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_roc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: roc = ta.momentum.ROCIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "roc%d" % day new_data[col] = roc.roc() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dr_info(data): new_data = data.reset_index(drop=True) dr = ta.others.DailyReturnIndicator(close=new_data.iloc[-1::-1].close) col = "dr" new_data[col] = dr.daily_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dlr_info(data): new_data = data.reset_index(drop=True) dlr = ta.others.DailyLogReturnIndicator(close=new_data.iloc[-1::-1].close) col = "dlr" new_data[col] = dlr.daily_log_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_cr_info(data): new_data = data.reset_index(drop=True) cr = ta.others.CumulativeReturnIndicator(close=new_data.iloc[-1::-1].close) col = "cr" new_data[col] = cr.cumulative_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_mfi_info(data): new_data = data.reset_index(drop=True) mfi = ta.volume.MFIIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=5) col = "mfi" new_data[col] = mfi.money_flow_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data # support and resistance def add_sr_info(data): new_data = data.reset_index(drop=True) v = new_data['vol'].to_numpy() p = new_data['close'].to_numpy() h = new_data['high'].to_numpy() l = new_data['low'].to_numpy() avg = (p + h + l) / 3. sr = [v * p for v, p in zip(v, avg)] new_data['sup_res'] = sr boll = ta.volatility.BollingerBands(close=new_data.iloc[-1::-1]['sup_res']) new_data['sup_res_h'] = boll.bollinger_hband() new_data['sup_res_l'] = boll.bollinger_lband() new_data['sup_res_mavg'] = boll.bollinger_mavg() new_data['sup_res_p'] = boll.bollinger_pband() return new_data def add_features(data): new_data = data.reset_index(drop=True) # previous day info #new_data = add_preday_info(new_data) # moving average info new_data = add_ma_info(new_data) # rsi info new_data = add_rsi_info(new_data) # crossover of moving average #new_data = add_crossover_info(new_data) # long crossover of moving average #new_data = add_long_crossover_info(new_data) # bollinger bands new_data = add_bollinger_band_info(new_data) # on-balance volume #new_data = add_obv_info(new_data) # accumulation/distribution index #new_data = add_adi_info(new_data) # chaikin money flow #new_data = add_cmf_info(new_data) # force index #new_data = add_fi_info(new_data) # ease of movement #new_data = add_eom_info(new_data) # volume price trend #new_data = add_vpt_info(new_data) # negative volume index #new_data = add_nvi_info(new_data) # volume weighted average price #new_data = add_vwap_info(new_data) # average true range #new_data = add_atr_info(new_data) # keltner channel #new_data = add_kc_info(new_data) # donchian channel #new_data = add_dc_info(new_data) # moving average convergence divergence #new_data = add_macd_info(new_data) # average directional movement index new_data = add_adx_info(new_data) # vortex indicator #new_data = add_vi_info(new_data) # trix indicator #new_data = add_trix_info(new_data) # mass index #new_data = add_mi_info(new_data) # commodity channel index #new_data = add_cci_info(new_data) # detrended price oscillator #new_data = add_dpo_info(new_data) # kst oscillator #new_data = add_kst_info(new_data) # ichimoku kinko hyo #new_data = add_ichimoku_info(new_data) # parabolic stop and reverse new_data = add_psar_info(new_data) # true strength index #new_data = add_tsi_info(new_data) # ultimate oscillator #new_data = add_uo_info(new_data) # stochastic oscillator #new_data = add_so_info(new_data) # williams %R #new_data = add_wr_info(new_data) # awesome oscillator #new_data = add_ao_info(new_data) # kaufman's adaptive moving average #new_data = add_kama_info(new_data) # rate of change #new_data = add_roc_info(new_data) # daily return #new_data = add_dr_info(new_data) # daily log return #new_data = add_dlr_info(new_data) # cumulative return #new_data = add_cr_info(new_data) # money flow index #new_data = add_mfi_info(new_data) # support and resistance new_data = add_sr_info(new_data) return new_data def plot_data(data, days, close, cols, filename, stock): x = [i for i in range(days)] count = 0 plt.figure() fig, ax = plt.subplots(len(cols), figsize=[6.4 * 3, 4 * len(cols)]) if not isinstance(ax, np.ndarray): ax = [ax] for col in cols: if 'ema' in col or 'boll_band' in col or 'pct_chg' in col: vals2 = data.iloc[0:days].iloc[-1::-1][close].to_numpy() vals3 = data.iloc[0:days].iloc[-1::-1]['ema5'].to_numpy() sns.lineplot(x=x, y=vals3, ax=ax[count]) sns.lineplot(x=x, y=vals2, ax=ax[count]) elif 'vol' in col: vals = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) elif 'gap' in col: vals2 = data.iloc[0:days].iloc[-1::-1][close].to_numpy() vals2 = StandardScaler().fit_transform(vals2.reshape(-1, 1)).flatten() sns.lineplot(x=x, y=vals2, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() vals = StandardScaler().fit_transform(vals.reshape(-1, 1)).flatten() sns.lineplot(x=x, y=vals, ax=ax[count]) max_ = max([np.amax(vals2), np.amax(vals)]) min_ = min([np.amin(vals2),
np.amin(vals)
numpy.amin
import numpy as np import cv2 try: from picamera import PiCamera from picamera.array import PiRGBArray CAMERA_ACTIVE = True except ModuleNotFoundError: CAMERA_ACTIVE = False import pickle import glob import os import time import peakutils.peak from IPython.display import Image def show_image(img): cv2.imwrite('testimage.png',img) display(Image(filename="testimage.png")) def smooth(y, box_pts): box = np.ones(box_pts)/box_pts y_smooth = np.convolve(y, box, mode='same') return y_smooth class robo_camera: def __init__(self,resolution="1920x1080",shutter_speed=2000,camera_matrix="camera_matrix.pckl"): self.mtx = None self.dist = None self.cam_calibrated = False if(camera_matrix is not None): pickfle = open(camera_matrix, "rb") mtx,dist = pickle.load(pickfle) self.mtx = mtx self.dist = dist self.cam_calibrated = True if(CAMERA_ACTIVE): self.camera = PiCamera() self.camera.resolution = resolution self.camera.shutter_speed = 2000 def init_blob_detector(self,mint=130,maxt=500,mina=27,maxa=130,mincir=0.9,mincon=0.95,minin=.8): #################BLOB DETECTOR############### params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = mint params.maxThreshold = maxt # Filter by Area. params.filterByArea = True params.minArea = mina params.maxArea = maxa # Filter by Circularity params.filterByCircularity = True params.minCircularity = mincir # Filter by Convexity params.filterByConvexity = True params.minConvexity = mincon # Filter by Inertia params.filterByInertia = True params.minInertiaRatio = minin # Create a detector with the parameters detector = cv2.SimpleBlobDetector_create(params) return detector def detect_colonies(self,impath,image_transform,vector_transform,display_image=False,save_image=True,\ mint=130,maxt=500,mina=27,maxa=130,mincir=0.9,mincon=0.95,minin=.8): img = cv2.imread(os.path.join('.','pictures',impath)) x = time.localtime() tstamp = str(x.tm_year)[2:]+str(x.tm_mon)+str(x.tm_mday)+str(x.tm_hour)+str(x.tm_min) colonypick_path = os.path.join('.','pictures',str(tstamp+'_picked_'+impath)) #this next part warps the image so that it is rectified and in the middle of the frame transform = image_transform warp = cv2.warpPerspective(img,transform,(500,550)) #transforming the calibrated image warp_gray = cv2.cvtColor(warp,cv2.COLOR_BGR2GRAY) #making a mask for colony finding warp_empty = np.zeros(shape=[550, 500, 1], dtype=np.uint8) center_coordinates = (230, 250) axesLength = (170, 140) warp_colony_mask = cv2.ellipse(warp_empty,center_coordinates,axesLength,0,0,360,255,-1) warp_gray_inv = 255-warp_gray warp_blur = cv2.GaussianBlur(warp_gray_inv,(101,101),50,borderType=cv2.BORDER_DEFAULT) #background subtraction colony_nobg = cv2.subtract(warp_gray_inv,warp_blur) colony_crop = (255-cv2.bitwise_and(colony_nobg, colony_nobg, mask=warp_colony_mask))*4 #colony_crop = colony_crop.convertTo(colony_crop,cv2.CV_8U) maxval = np.max(colony_crop) #maximum pixel value in the image minval = np.min(colony_crop) #minimum pixel value in the image gaus = cv2.adaptiveThreshold(colony_crop, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 91, 12) gaus_eroded = cv2.dilate(gaus,np.ones([3,3]),iterations=1) gaus_eroded = cv2.erode(gaus_eroded,np.ones([3,3]),iterations=1) #gaus_eroded = gaus #cv2.imwrite('testimage.png',gaus_eroded) #display(Image('testimage.png')) detector = self.init_blob_detector(mint=mint,maxt=maxt,mina=mina,maxa=maxa,mincir=mincir,mincon=mincon,minin=minin) #blob detection keypoints = detector.detect(gaus_eroded) #print(keypoints) print(len(keypoints)) warp_with_keypoints = cv2.drawKeypoints(warp, keypoints,\ np.array([]), 255, cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) if(save_image): cv2.imwrite(colonypick_path, warp_with_keypoints) if(display_image): display(Image(filename=colonypick_path)) elif(display_image): cv2.imwrite("testimage.png", warp_with_keypoints) display(Image(filename="testimage.png")) imstripe = warp[30:110, 215:235] imstripe_gray = cv2.cvtColor(imstripe, cv2.COLOR_BGR2GRAY) im_trace = np.mean(imstripe_gray, axis=1) im_deriv = smooth(-np.gradient(im_trace, 10), 4) im_base = peakutils.baseline(im_deriv, 2) im_deriv_debased = im_deriv-im_base highs = peakutils.peak.indexes( im_deriv_debased, thres=1/max(im_deriv_debased), min_dist=20 ) filteredhighs = [] for high in highs: if(high >15 and high < 70): filteredhighs += [high] high_data = [] for high in filteredhighs: yval = im_deriv_debased[high] high_data += [[yval,high]] #plt.plot([a[1] for a in high_data],[a[0] for a in high_data],'o') if(len(filteredhighs) != 2): agar_to_rim_distance = 34 #default assumption else: agar_to_rim_distance = filteredhighs[1]-filteredhighs[0] #print("agar to rim distance is "+str(agar_to_rim_distance)) return keypoints def capture(self,savepath=None): if(not CAMERA_ACTIVE): return None rawCapture = PiRGBArray(self.camera) self.camera.capture(rawCapture,format="bgr") img = rawCapture.array if(self.cam_calibrated): #undistort the camera if it is calibrated h, w = img.shape[:2] newcameramtx, roi=cv2.getOptimalNewCameraMatrix(self.mtx,self.dist,\ (w,h),1,(w,h)) dst = cv2.undistort(img, self.mtx, self.dist, None, newcameramtx) x,y,w,h = roi dst = dst[y:y+h, x:x+w] img = dst if(savepath is not None): #save it if that is desired cv2.imwrite(savepath,img) return img def mask_lit_background(self,bg_image = None): if(bg_image is None): bg_image = self.capture() bgimg_gray = cv2.cvtColor(bg_image,cv2.COLOR_BGR2GRAY) #bg_subtractor = cv2.createBackgroundSubtractorMOG2() #fgmask = bg_subtractor.apply(bgimg_gray) #the first image is the background #kernel = np.ones((5,5), np.uint8) kernel = np.array([[0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0]], dtype=np.uint8) ret,thresh = cv2.threshold(bgimg_gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) thresh = cv2.erode(thresh,kernel,iterations=1) #get rid of noise thresh = cv2.dilate(thresh,kernel,iterations=2) #fill up the holes thresh = cv2.erode(thresh,kernel,iterations=10) #make it smaller return thresh, bgimg_gray #bg_subtractor def detect_needle(self,bg_image=None,thresh=None,bg_subtractor=None,needle_image=None): """detects a needle on top of a lit backdrop""" #setup background subtraction kernel = np.ones((3,3), np.uint8) if(bg_image is None): assert((thresh is not None) and (bg_subtractor is not None)) else: thresh,bg_subtractor = self.mask_lit_background(bg_image) #show_image(bg_subtractor) #cv2.imshow("",bg_subtractor) #now the mask which represents the table is called "thresh" if(needle_image is None): needle_image = self.capture() gray = 255-cv2.cvtColor(needle_image,cv2.COLOR_BGR2GRAY) bgmask = cv2.subtract(gray,255-bg_subtractor) #show_image(bgmask) bgmask = cv2.erode(bgmask,kernel,iterations=1) #erode a bit to get rid of junk #bgmask = cv2.dilate(bgmask,kernel,iterations=1) #erode a bit to get rid of junk ret,binary_needlepic = cv2.threshold(bgmask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) outputvalues = cv2.findContours(binary_needlepic, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #following is for compatibility with the raspberry pi version of opencv if(len(outputvalues)== 3): contours = outputvalues[1] elif(len(outputvalues)==2): contours = outputvalues[0] biggest_contour = np.zeros((binary_needlepic.shape[0],binary_needlepic.shape[1],1),np.uint8) newcontours = [] area_thresh = 100 for contour in contours: carea = cv2.contourArea(contour) if(carea > area_thresh): newcontours += [contour] cv2.drawContours(biggest_contour, newcontours, -1, (255, 255, 255), -1) result = cv2.bitwise_and(thresh,biggest_contour) corners = cv2.goodFeaturesToTrack(biggest_contour, 1, .1, 10,mask=thresh,useHarrisDetector=True) corners = np.int0(corners) assert(len(corners[0])==1) return corners[0][0] def needle_jog_calibration(self,bgimg_path,needlepath_dict): """performs the calibration that is required for rectifying an image given four pictures of the colony picking needle in different positions.. bgimg_path: path to an image of the background with no needle needlepath_dict: a dictionary containing a needle image path as the key with the corresponding x,y,z coordinates as the value.""" bgimg = cv2.imread(bgimg_path) thresh,bg_subtractor = self.mask_lit_background(bgimg) needlepoints = {} needle_positions = [] for needle_image in needlepath_dict: needle_pos = tuple(needlepath_dict[needle_image]) needle_positions += [needle_pos] img = cv2.imread(needle_image) npoint = self.detect_needle(thresh = thresh,\ bg_subtractor=bg_subtractor,needle_image=img) needlepoints[needle_pos]= npoint needle_xs = [a[0] for a in needle_positions] needle_ys = [a[1] for a in needle_positions] #needle_zs = [a[2] for a in needle_positions] sorted_positions = [ (max(needle_xs),min(needle_ys)), (max(needle_xs),max(needle_ys)), (min(needle_xs),max(needle_ys)), (min(needle_xs),min(needle_ys)), ] sorted_needlepoint = [] for sorted_pos in sorted_positions: sorted_needlepoint += [needlepoints[sorted_pos]] squarelist = [[0,200],[150,200],[150,50],[0,50]] square = np.array(squarelist,np.float32)+150 trapezoid = np.array(sorted_needlepoint,np.float32) transform = cv2.getPerspectiveTransform(trapezoid,square) #the transformation matrix square_2d = square #robo_x = rm.colonyPicker.load_posfile(posfilename="robot_positions.csv")["needle_pos"]["backlit_plate"]["X"] #robo_y = rm.colonyPicker.load_posfile(posfilename="robot_positions.csv")["needle_pos"]["backlit_plate"]["Y"] robot_square =
np.array(needle_positions,np.float32)
numpy.array
# -*- coding: utf-8 -*- """Testing :mod:`~discO.utils.random`.""" __all__ = [ "Test_NumpyRNGContext", ] ############################################################################## # IMPORTS # THIRD PARTY import numpy as np import pytest # PROJECT-SPECIFIC from discO.tests.helper import ObjectTest from discO.utils import random ############################################################################## # PARAMETERS ############################################################################## # TESTS ############################################################################## class Test_NumpyRNGContext(ObjectTest, obj=random.NumpyRNGContext): ####################################################### # Method tests def test___init__(self): """Test method ``__init__``.""" # seed None obj = self.obj(None) assert obj.seed is None # int obj = self.obj(2) assert obj.seed == 2 # RandomState obj = self.obj(np.random.RandomState(3)) name1, state1, *rest1 = obj.seed.get_state() name2, state2, *rest2 = np.random.RandomState(3).get_state() assert name1 == name2 assert all(np.equal(state1, state2)) assert rest1 == rest2 # Generator obj = self.obj(np.random.default_rng(3)) assert ( obj.seed.__getstate__() == np.random.default_rng(3).__getstate__() ) # /def def test___enter__(self): """Test method ``__enter__``.""" # seed None with self.obj(None): ns = np.random.rand(5) assert len(ns) == 5 # int with self.obj(2): ns = np.random.rand(5) assert np.allclose( ns, np.array( [0.4359949, 0.02592623, 0.54966248, 0.43532239, 0.4203678], ), ) # RandomState with self.obj(np.random.RandomState(3)): ns = np.random.rand(5) assert np.allclose( ns, np.array( [ 0.5507979, 0.70814782, 0.29090474, 0.51082761, 0.89294695, ], ), ) # Generator with pytest.warns(UserWarning): with self.obj(
np.random.default_rng(3)
numpy.random.default_rng
from dataiku.customrecipe import * import dl_image_toolbox_utils as utils from sklearn.model_selection import train_test_split from keras import optimizers, initializers, metrics, regularizers from keras.callbacks import ModelCheckpoint, TensorBoard from keras.layers import Dropout, Dense from keras.models import Model from keras.utils.training_utils import multi_gpu_model from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf import pandas as pd import constants import math import shutil import numpy as np import dataiku ################################################################################################################### ## LOADING ALL REQUIRED INFO AND ## SETTING VARIABLES ################################################################################################################### # Recipe config recipe_config = get_recipe_config() should_use_gpu = recipe_config.get('should_use_gpu', False) list_gpu = recipe_config["list_gpu"] gpu_allocation = recipe_config["gpu_allocation"] train_ratio = float(recipe_config["train_ratio"]) input_shape = (int(recipe_config["image_width"]),int(recipe_config["image_height"]),3) batch_size = int(recipe_config["batch_size"]) optimizer = recipe_config["model_optimizer"] learning_rate = recipe_config["model_learning_rate"] custom_params_opti = recipe_config.get("model_custom_params_opti", []) nb_epochs = int(recipe_config["nb_epochs"]) nb_steps_per_epoch = int(recipe_config["nb_steps_per_epoch"]) nb_validation_steps = int(recipe_config["nb_validation_steps"]) data_augmentation = recipe_config["data_augmentation"] n_augmentation = int(recipe_config["n_augmentation"]) custom_params_data_augment = recipe_config.get("model_custom_params_data_augmentation", []) tensorboard = recipe_config["tensorboard"] random_seed = int(recipe_config["random_seed"]) # gpu gpu_options = utils.load_gpu_options(should_use_gpu, list_gpu, gpu_allocation) n_gpu = gpu_options.get("n_gpu", 0) # Folders image_folder_input_name = get_input_names_for_role('image_folder')[0] image_folder = dataiku.Folder(image_folder_input_name) utils.check_managed_folder_filesystem(image_folder) image_folder_path = image_folder.get_path() model_folder_input_name = get_input_names_for_role('model_folder')[0] model_folder = dataiku.Folder(model_folder_input_name) utils.check_managed_folder_filesystem(model_folder) model_folder_path = model_folder.get_path() output_model_folder_name = get_output_names_for_role('model_output')[0] output_model_folder = dataiku.Folder(output_model_folder_name) utils.check_managed_folder_filesystem(output_model_folder) output_model_folder_path = output_model_folder.get_path() # Label Dataset : Keeping only the two relevant columns label_dataset_input_name = get_input_names_for_role('label_dataset')[0] label_dataset = dataiku.Dataset(label_dataset_input_name) renaming_mapping = { recipe_config["col_filename"]: constants.FILENAME, recipe_config["col_label"]: constants.LABEL } label_df = label_dataset.get_dataframe().rename(columns=renaming_mapping)[renaming_mapping.values()] # Model config model_config = utils.get_config(model_folder_path) ################################################################################################################### ## BUILD TRAIN/TEST SETS ################################################################################################################### df_train, df_test = train_test_split(label_df, stratify=label_df[constants.LABEL], train_size=train_ratio, random_state=random_seed) labels = list(np.unique(label_df[constants.LABEL])) n_classes = len(labels) ################################################################################################################### ## LOAD MODEL ################################################################################################################### # Loading pre-trained model def load_model_and_apply_recipe_params(model_folder_path, input_shape, n_classes, recipe_config): pooling = recipe_config["model_pooling"] reg = recipe_config["model_reg"] dropout = float(recipe_config["model_dropout"]) model_and_pp = utils.load_instantiate_keras_model_preprocessing(model_folder_path, goal=constants.RETRAINING, input_shape=input_shape, pooling=pooling, reg=reg, dropout=dropout, n_classes=n_classes) model = model_and_pp["model"] preprocessing = model_and_pp["preprocessing"] model_params = model_and_pp["model_params"] # CHOOSING LAYER TO RETRAIN layer_to_retrain = recipe_config["layer_to_retrain"] print("Will Retrain layer(s) with mode: {}".format(layer_to_retrain)) if layer_to_retrain == "all" : for lay in model.layers : lay.trainable = True elif layer_to_retrain == "last" : for lay in model.layers[:-1] : lay.trainable = False lay = model.layers[-1] lay.trainable = True elif layer_to_retrain == "n_last" : n_last = int(recipe_config["layer_to_retrain_n"]) for lay in model.layers[:-n_last] : lay.trainable = False for lay in model.layers[-n_last:] : lay.trainable = True model.summary() return model, preprocessing, model_params if should_use_gpu and n_gpu > 1: with tf.device('/cpu:0'): base_model, preprocessing, model_params = load_model_and_apply_recipe_params(model_folder_path, input_shape, n_classes, recipe_config) model = multi_gpu_model(base_model, n_gpu) else: model, preprocessing, model_params = load_model_and_apply_recipe_params(model_folder_path, input_shape, n_classes, recipe_config) ################################################################################################################### ## BUILD GENERATORS ## Info: Generators must loop infinitely, each loop yielding the batches of preprocessed data. ## It will be used at each epoch, hence the infinite loop. ################################################################################################################### @utils.threadsafe_generator def augmentation_generator(df_imgs, image_folder_path, batch_size, n_augmentation, input_shape, labels, preprocessing, TrainImageGen): nb_imgs = df_imgs.shape[0] batch_size_adapted = int( batch_size / n_augmentation ) nb_batch = int(math.ceil( nb_imgs * 1.0 / batch_size_adapted )) while True: for num_batch in range(nb_batch): df_imgs_batch = df_imgs.iloc[num_batch * batch_size_adapted : (num_batch + 1) * batch_size_adapted, :] nb_imgs_batch = df_imgs_batch.shape[0] X_batch_list = [] y_batch_list = [] for num_img in range(nb_imgs_batch): row = df_imgs_batch.iloc[num_img, :] img_filename = row[constants.FILENAME] img_path = utils.get_file_path(image_folder_path, img_filename) label = row[constants.LABEL] label_index = labels.index(label) try: x = utils.preprocess_img(img_path, input_shape, preprocessing) x =
np.tile(x, (n_augmentation, 1, 1, 1))
numpy.tile
import numpy as np from dl.nn import Module from dl.graph import Variable, batchNorm class BatchNormLayer(Module): """ BatchNorm Layer object. """ def __init__(self, dim: int, eps=1e-5, momentum=0.1): """ BatchNorm Layer object. Parameters ---------- dim: input dimension. eps: epsilon to avoid divide by zero momentum: momentum used to compute moving average of mean and stddev. """ super().__init__() self.dim = dim self.gamma = Variable(np.ones((dim, 1))) self.beta = Variable(
np.zeros((dim, 1))
numpy.zeros
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D def pcol( x, y, data, **kwargs): """function h=pcol(x,y,v) function h=pcol(x,y,v, projection = mp ) plots 2D scalar fields v on the MITgcm cubed sphere grid with pcolor. x,y are really 'xg', and 'yg', that is, they should be the coordinates of the points one half grid cell to the left and bottom, that is vorticity points for tracers, etc. The optional flag 'sphere' results in a 3D visualization on the sphere without any specific projection. Good for debugging. If present, 'projection' (a basemap instance) is used to transform coordinates. Unfortunatly, cylindrical and conic maps are limited to the [-180 180] range. projection = 'sphere' results in a 3D visualization on the sphere without any specific projection. Good for debugging. Example script to use pcol.py: from mpl_toolkits.basemap import Basemap import MITgcmutils as mit import matplotlib.pyplot as plt from sq import sq x=mit.rdmds('XG'); y=mit.rdmds('YG'); e=mit.rdmds('Eta',np.Inf) fig = plt.figure(); mp = Basemap(projection='moll',lon_0 = 0., resolution = 'l', area_thresh = 1000.) plt.clf() h = mit.cs.pcol(x,y,sq(e), projection = mp) mp.fillcontinents(color = 'grey') mp.drawmapboundary() mp.drawmeridians(np.arange(0, 360, 30)) mp.drawparallels(np.arange(-90, 90, 30)) plt.show() """ # pcol first divides the 2D cs-field(6*n,n) into six faces. Then for # each face, an extra row and colum is added from the neighboring faces in # order to fool pcolor into drawing the entire field and not just # (n-1,m-1) data points. There are two corner points that have no explicit # coordinates so that they have to be found by # interpolation/averaging. Then each face is divided into 4 tiles, # assuming cs-geometry, and each tile is plotted individually in # order to avoid problems due to ambigous longitude values (the jump # between -180 and 180, or 360 and 0 degrees). As long as the poles # are at the centers of the north and south faces and the first tile is # symmetric about its center this should work. # get the figure handle fig=plt.gcf() mapit = 0 if 'projection' in kwargs: mp = kwargs['projection'] if mp=='sphere': mapit=-1 else: mapit = 1 # convert to [-180 180[ representation x = np.where(x>180,x-360.,x) ny,nx = data.shape # determine range for color range cax = [data.min(),data.max()] if cax[1]-cax[0]==0: cax = [cax[0]-1,cax[1]+1] if mapit == -1: # set up 3D plot if len(fig.axes)>0: # if present, remove and replace the last axis of fig geom=fig.axes[-1].get_geometry() plt.delaxes(fig.axes[-1]) else: # otherwise use full figure geom = ((1,1,1)) ax = fig.add_subplot(geom[0],geom[1],geom[2],projection = '3d', axisbg='None') # define color range tmp = data - data.min() N = tmp/tmp.max() # use this colormap colmap = cm.jet colmap.set_bad('w',1.0) mycolmap = colmap(N) #cm.jet(N) ph=np.array([]) jc=x.shape[0]/2 xxf=np.empty((jc+1,jc+1,4)) yyf=xxf ffld=np.empty((jc,jc,4)) xff=[] yff=[] fldf=[] for k in range(0,6): ix = np.arange(0,ny) + k*ny xff.append(x[0:ny,ix]) yff.append(y[0:ny,ix]) fldf.append(data[0:ny,ix]) # find the missing corners by interpolation (one in the North Atlantic) xfodd = (xff[0][-1,0]+xff[2][-1,0]+xff[4][-1,0])/3. yfodd = (yff[0][-1,0]+yff[2][-1,0]+yff[4][-1,0])/3. # and one south of Australia xfeven= (xff[1][0,-1]+xff[3][0,-1]+xff[5][0,-1])/3. yfeven= (yff[1][0,-1]+yff[3][0,-1]+yff[5][0,-1])/3. # loop over tiles for k in range(0,6): kodd = 2*(k/2) kodd2 = kodd if kodd==4: kodd2=kodd-6 keven = 2*(k/2) keven2 = keven if keven==4: keven2=keven-6 fld = fldf[k] if np.mod(k+1,2): xf = np.vstack( [ np.column_stack( [xff[k],xff[1+kodd][:,0]] ), np.flipud(np.append(xff[2+kodd2][:,0],xfodd))] ) yf = np.vstack( [ np.column_stack( [yff[k],yff[1+kodd][:,0]] ), np.flipud(np.append(yff[2+kodd2][:,0],yfodd))] ) else: xf = np.column_stack( [np.vstack( [xff[k],xff[2+keven2][0,:]] ), np.flipud(np.append(xff[3+keven2][0,:], xfeven))] ) yf = np.column_stack( [np.vstack( [yff[k],yff[2+keven2][0,:]] ), np.flipud(np.append(yff[3+keven2][0,:], yfeven))] ) if mapit==-1: ix = np.arange(0,ny) + k*ny # no projection at all (projection argument is 'sphere'), # just convert to cartesian coordinates and plot a 3D sphere deg2rad=np.pi/180. xcart,ycart,zcart = sph2cart( xf*deg2rad, yf*deg2rad ) ax.plot_surface(xcart,ycart,zcart,rstride=1,cstride=1, facecolors=mycolmap[0:ny,ix], linewidth=2,shade=False) ph =
np.append(ph, ax)
numpy.append
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging from datetime import datetime from typing import Any, Optional, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.detectors.detector import DetectorModel from kats.detectors.detector_consts import ( AnomalyResponse, ChangePointInterval, ConfidenceBand, PercentageChange, ) from kats.utils.decomposition import TimeSeriesDecomposition """Statistical Significance Detector Module This module contains simple detectors that apply a t-test over a rolling window to compare check if there is a statistically significant increase or decrease between the control and test time periods. In addition to the univariate version of this test, this module includes a multivariate version that uses a false discovery rate (FDR) controlling procedure to reduce noise. """ class StatSigDetectorModel(DetectorModel): """ StatSigDetectorModel is a simple detector, which compares a control and test period. The detector assumes that the time series data comes from a iid normal distribution, and applies a t-test to check if the means between the control and test period are significantly different. We start with the history data, and then as for the current data, we apply a rolling window, adding one data point at a time from the current data, and detecting significant change. We return the t-statistic as a score, which reflects the severity of the change. We suggest using n_control >= 30 to get good estimates Attributes: n_control: number of data points(or time units) of history to compare with n_test: number of points(or time_units) to compare the history with serialized_model: serialized json containing the parameters time_units: units of time used to measure the intervals. If not provided we infer it from the provided data. rem_season: default value is False, if remove seasonality for historical data and data seasonal_period: str, default value is 'weekly'. Other possible values: 'daily', 'biweekly', 'monthly', 'yearly' use_corrected_scores: bool, default value is False, using original t-scores or correct t-scores. max_split_ts_length: int, default value is 500. If the given TS (except historical part) is longer than max_split_ts_length, we will transform a long univariate TS into a multi-variate TS and then use multistatsig detector, which is faster, >>> # Example usage: >>> # history and ts_pt are TimeSeriesData objects and history is larger >>> # than (n_control + n_test) so that we have sufficient history to >>> # run the detector >>> n_control = 28 >>> n_test = 7 >>> import random >>> control_time = pd.date_range(start='2018-01-01', freq='D', periods=(n_control + n_test)) >>> test_time = pd.date_range(start='2018-02-05', freq='D', periods=n_test) >>> control_val = [random.normalvariate(100,10) for _ in range(n_control + n_test)] >>> test_val = [random.normalvariate(120,10) for _ in range(n_test)] >>> hist_ts = TimeSeriesData(time=control_time, value=pd.Series(control_val)) >>> data_ts = TimeSeriesData(time=test_time, value=pd.Series(test_val)) >>> ss_detect = StatSigDetectorModel(n_control=n_control, n_test=n_test) >>> anom = ss_detect.fit_predict(data=data_ts, historical_data=hist_ts) """ data: Optional[TimeSeriesData] = None def __init__( self, n_control: Optional[int] = None, n_test: Optional[int] = None, serialized_model: Optional[bytes] = None, time_unit: Optional[str] = None, rem_season: bool = False, seasonal_period: str = "weekly", use_corrected_scores: bool = True, max_split_ts_length: int = 500, ) -> None: if serialized_model: model_dict = json.loads(serialized_model) self.n_test: int = model_dict["n_test"] self.n_control: int = model_dict["n_control"] self.time_unit: str = model_dict["time_unit"] # for seasonality self.rem_season: bool = model_dict.get("rem_season", rem_season) self.seasonal_period: str = model_dict.get( "seasonal_period", seasonal_period ) # for big data and correct t-scores self.use_corrected_scores: bool = model_dict.get( "use_corrected_scores", use_corrected_scores ) # threshold for splitting long TS self.max_split_ts_length: int = model_dict.get( "max_split_ts_length", max_split_ts_length ) else: self.n_test: Optional[int] = n_test self.n_control: Optional[int] = n_control self.time_unit: Optional[str] = time_unit # for seasonality self.rem_season: bool = rem_season self.seasonal_period: str = seasonal_period # big data and t-scores self.use_corrected_scores: bool = use_corrected_scores # threshold for splitting long TS self.max_split_ts_length: int = max_split_ts_length if (self.n_control is None) or (self.n_test is None): raise ValueError( "You must either provide serialized model or values for control " "and test intervals." ) self.control_interval: Optional[ChangePointInterval] = None self.test_interval: Optional[ChangePointInterval] = None self.response: Optional[AnomalyResponse] = None self.is_initialized = False # flag on whether initialized or not self.last_N = 0 # this is the size of the last chunk of data we saw self.data_history: Optional[TimeSeriesData] = None # for seasonality self.data_season: Optional[TimeSeriesData] = None # big data strategy self.bigdata_trans_flag: Optional[bool] = None self.remaining: Optional[int] = None def serialize(self) -> bytes: """ Serializes by putting model parameters in a json """ model_dict = { "n_control": self.n_control, "n_test": self.n_test, "time_unit": self.time_unit, "rem_season": self.rem_season, "seasonal_period": self.seasonal_period, "use_corrected_scores": self.use_corrected_scores, "max_split_ts_length": self.max_split_ts_length, } return json.dumps(model_dict).encode("utf-8") def fit_predict( self, data: TimeSeriesData, historical_data: Optional[TimeSeriesData] = None, **kwargs: Any, ) -> AnomalyResponse: """ This is the main working function. The function returns an AnomalyResponse object of length equal to the length of the data. We require len(historical_data) > (n_control + n_test). Args: data: TimeSeriesData, A univariate TimeSeriesData for which we are running the StatSigDetectorModel historical_data: Optional[TimeSeriesData] Historical data used to do detection for initial points in data """ if not data.is_univariate(): msg = "Input is multivariate but StatSigDetector expected univariate input." logging.error(msg) raise ValueError(msg) self._set_time_unit(data=data, historical_data=historical_data) self.last_N = len(data) # this ensures we start with a default response of # the size of the data self._init_response(data) response = self.response assert response is not None # when there is no need to update # just return the initial response of zeros if not self._should_update(data=data, historical_data=historical_data): return response # handle cases where there is either no historical data, or # not enough historical data data, historical_data = self._handle_not_enough_history( data=data, historical_data=historical_data, ) # remove seasonality if self.rem_season: sh_data = SeasonalityHandler( data=data, seasonal_period=self.seasonal_period ) self.data_season = sh_data.get_seasonality() data = sh_data.remove_seasonality() if historical_data: sh_hist_data = SeasonalityHandler( data=historical_data, seasonal_period=self.seasonal_period, ) historical_data = sh_hist_data.remove_seasonality() self.data = data # first initialize this with the historical data self._init_data(historical_data) # if using new t-scores if self.use_corrected_scores: if ( len(data) > self.max_split_ts_length # pyre-ignore[16]: `Optional` has no attribute `time`. and pd.infer_freq(historical_data.time) == pd.infer_freq(data.time) ): self.bigdata_trans_flag = True else: self.bigdata_trans_flag = False else: self.bigdata_trans_flag = False # if need trans to multi-TS if self.bigdata_trans_flag: new_data_ts = self._reorganize_big_data(self.max_split_ts_length) ss_detect = MultiStatSigDetectorModel( n_control=self.n_control, n_test=self.n_test, time_unit=self.time_unit, rem_season=False, seasonal_period=self.seasonal_period, skip_rescaling=True, use_corrected_scores=self.use_corrected_scores, ) anom = ss_detect.fit_predict(data=new_data_ts) self._reorganize_back(anom) else: self._init_control_test( data if historical_data is None else historical_data ) # set the flag to true self.is_initialized = True # now run through the data to get the prediction for i in range(len(data)): current_time = data.time.iloc[i] ts_pt = TimeSeriesData( time=pd.Series(current_time, copy=False), value=pd.Series(data.value.iloc[i], copy=False), ) self._update_data(ts_pt) self._update_control_test(ts_pt) self._update_response(ts_pt.time.iloc[0]) # add seasonality back if self.rem_season: data_season = self.data_season confidence_band = response.confidence_band predicted_ts = response.predicted_ts assert data_season is not None assert confidence_band is not None assert predicted_ts is not None start_idx = len(response.scores) - len(data_season) datatime = response.scores.time self.response = AnomalyResponse( scores=response.scores, confidence_band=ConfidenceBand( upper=TimeSeriesData( time=datatime, value=pd.concat( [ pd.Series( confidence_band.upper.value.values[:start_idx], copy=False, ), pd.Series( np.asarray( confidence_band.upper.value.values[start_idx:] ) + np.asarray(data_season.value.values), copy=False, ), ], copy=False, ), ), lower=TimeSeriesData( time=datatime, value=pd.concat( [ pd.Series( confidence_band.lower.value.values[:start_idx], copy=False, ), pd.Series( np.asarray( confidence_band.lower.value.values[start_idx:] ) + np.asarray(data_season.value.values), copy=False, ), ], copy=False, ), ), ), predicted_ts=TimeSeriesData( time=datatime, value=pd.concat( [ pd.Series( predicted_ts.value.values[:start_idx], copy=False ), pd.Series(
np.asarray(predicted_ts.value.values[start_idx:])
numpy.asarray
from __future__ import division # in case this script is used in python 2 import h5py as h5 import numpy as np import string import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.gridspec as gridspec import matplotlib.gridspec as gridspec # import matplotlib import matplotlib.pyplot as plt # for e.g., minor ticks from matplotlib.ticker import (FormatStrFormatter, AutoMinorLocator) #Set latex environment for plots/labels import matplotlib matplotlib.rc('font', **{'family': 'sans-serif'})#, 'sans-serif': ['Helvetica']}) matplotlib.rc('text', usetex=True) matplotlib.rcParams['text.latex.preamble'] = [r'\boldmath'] from matplotlib.offsetbox import AnchoredText from matplotlib import rc from matplotlib import rcParams import seaborn as sns from astropy import units as u from astropy import constants as const from scipy.spatial.distance import cdist rc('font', family='serif', weight = 'bold') rc('text', usetex=True) matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"] matplotlib.rcParams['text.latex.preamble'] = [r'\boldmath'] rc('axes', linewidth=2) matplotlib.rcParams['xtick.major.size'] = 12 matplotlib.rcParams['ytick.major.size'] = 12 matplotlib.rcParams['xtick.minor.size'] = 8 matplotlib.rcParams['ytick.minor.size'] = 8 matplotlib.rcParams['font.weight']= 'bold' matplotlib.rcParams.update({'font.weight': 'bold'}) fs = 24 # fontsize for plots rc('axes', linewidth=2) def layoutAxes(ax, nameX='', nameY='', \ labelSizeMajor = 10, fontsize = 25, second=False, labelpad=None, setMinor=True): """ Tiny code to do the layout for axes in matplotlib """ tickLengthMajor = 10 tickLengthMinor = 5 tickWidthMajor = 1.5 tickWidthMinor = 1.5 #rc('axes', linewidth=2) #label1 always refers to first axis not the twin if not second: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') if second: for tick in ax.xaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1.2) ax.tick_params(length=tickLengthMajor, width=tickWidthMajor, which='major') ax.tick_params(length=tickLengthMinor, width=tickWidthMinor, which='minor') ax.set_xlabel(nameX, fontsize=fontsize,labelpad=labelpad)#,fontweight='bold') ax.set_ylabel(nameY, fontsize=fontsize,labelpad=labelpad)#, fontweight='bold') if setMinor==True: # add minor ticks: ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.yaxis.set_minor_locator(AutoMinorLocator()) return ax def layoutAxesNoXandYlabel(ax, nameX='', nameY='', \ labelSizeMajor = 10, fontsize = 25, second=False, labelpad=None, setMinor=True): """ Tiny code to do the layout for axes in matplotlib """ tickLengthMajor = 10 tickLengthMinor = 5 tickWidthMajor = 1.5 tickWidthMinor = 1.5 #rc('axes', linewidth=2) #label1 always refers to first axis not the twin if not second: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') if second: for tick in ax.xaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1.2) ax.tick_params(length=tickLengthMajor, width=tickWidthMajor, which='major') ax.tick_params(length=tickLengthMinor, width=tickWidthMinor, which='minor') # ax.set_xlabel(nameX, fontsize=fontsize,labelpad=labelpad)#,fontweight='bold') # ax.set_ylabel(nameY, fontsize=fontsize,labelpad=labelpad)#, fontweight='bold') if setMinor==True: # add minor ticks: ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.yaxis.set_minor_locator(AutoMinorLocator()) return ax def layoutAxesNoXlabel(ax, nameX='', nameY='', \ labelSizeMajor = 10, fontsize = 25, second=False, labelpad=None, setMinor=True, rotation=90): """ Tiny code to do the layout for axes in matplotlib """ tickLengthMajor = 10 tickLengthMinor = 5 tickWidthMajor = 1.5 tickWidthMinor = 1.5 #rc('axes', linewidth=2) #label1 always refers to first axis not the twin if not second: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') if second: for tick in ax.xaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for tick in ax.yaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1.2) ax.tick_params(length=tickLengthMajor, width=tickWidthMajor, which='major') ax.tick_params(length=tickLengthMinor, width=tickWidthMinor, which='minor') # ax.set_xlabel(nameX, fontsize=fontsize,labelpad=labelpad)#,fontweight='bold') ax.set_ylabel(nameY, fontsize=fontsize,labelpad=labelpad, rotation=rotation, va="center")#, fontweight='bold') if setMinor==True: # add minor ticks: ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.yaxis.set_minor_locator(AutoMinorLocator()) return ax def layoutAxesNoYlabel(ax, nameX='', nameY='', \ labelSizeMajor = 10, fontsize = 25, second=False, labelpad=None, setMinor=True, rotation=0): """ Tiny code to do the layout for axes in matplotlib """ tickLengthMajor = 10 tickLengthMinor = 5 tickWidthMajor = 1.5 tickWidthMinor = 1.5 #rc('axes', linewidth=2) #label1 always refers to first axis not the twin if not second: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') # for tick in ax.yaxis.get_major_ticks(): # tick.label1.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') if second: for tick in ax.xaxis.get_major_ticks(): tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') # for tick in ax.yaxis.get_major_ticks(): # tick.label2.set_fontsize(fontsize) #tick.label1.set_fontweight('bold') for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1.2) ax.tick_params(length=tickLengthMajor, width=tickWidthMajor, which='major') ax.tick_params(length=tickLengthMinor, width=tickWidthMinor, which='minor') ax.set_xlabel(nameX, fontsize=fontsize,labelpad=labelpad, rotation=rotation, va="center")#,fontweight='bold') # ax.set_ylabel(nameY, fontsize=fontsize,labelpad=labelpad)#, fontweight='bold') if setMinor==True: # add minor ticks: ax.xaxis.set_minor_locator(AutoMinorLocator()) ax.yaxis.set_minor_locator(AutoMinorLocator()) return ax bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.75) # for box around text in plot dictChannelsBHNSListBolt = [r'\textbf{case A}', r'\textbf{case B}', r'\textbf{case C}',\ r'\textbf{case B only stable}',\ r'\textbf{case B immediate CE}', r'\textbf{case C immediate} \textbf{CE}',\ r'\textbf{double-core CE}', r'\textbf{other}'] zorderlist = { 'stable B':10, 'stable B no CEE':13, \ 'case B immediate CE':12,'stable C':15,\ r'case C immediate CE':17, 'stable A':14, \ r'double-core CE':11, 'other':16\ } dictChannelsBHNSListBolt = [r'\textbf{(I) Classic}', \ r'\textbf{(II) Only stable mass transfer}',\ r'\textbf{(III) Single-core CE as first mass transfer}',\ r'\textbf{(IV) Double-core CE as first mass transfer}', r'\textbf{(V) Other}'] dictChannelsBHNSList = ['classic', \ 'stable B no CEE', \ 'immediate CE',\ r'double-core CE', 'other'] zorderlist = { 'classic':10, 'stable B no CEE':13, \ 'immediate CE':12,\ r'double-core CE':11, 'other':16\ } # default settings for labels and names of BPS models DCOname_dict = {'BHNS':'BHNS', 'BBH':'BHBH', 'BNS':'NSNS'} nModels=20 # BPSnameslist = list(string.ascii_uppercase)[0:nModels] modelDirList = ['fiducial', 'massTransferEfficiencyFixed_0_25', 'massTransferEfficiencyFixed_0_5', 'massTransferEfficiencyFixed_0_75', \ 'unstableCaseBB', 'unstableCaseBB','alpha0_1', 'alpha0_5', 'alpha2_0', 'alpha10', 'fiducial', 'rapid', 'maxNSmass2_0', 'maxNSmass3_0', 'noPISN', 'ccSNkick_100km_s', 'ccSNkick_30km_s', 'noBHkick', 'wolf_rayet_multiplier_0_1', 'wolf_rayet_multiplier_5'] alphabetDirDict = {BPSnameslist[i]: modelDirList[i] for i in range(len(BPSnameslist))} BPScolors = sns.color_palette("husl", nModels) colorDirDict = {BPSnameslist[i]: BPScolors[i] for i in range(len(BPSnameslist))} # physicalNamesBPSmodels = [r'\textbf{fiducial}',\ # r'$\beta=0.25$', r'$\beta=0.5$', r'$\beta=0.75$',r'\textbf{unstable case BB}',r'\textbf{unstable case BB + optimistic CE}',\ # r'$\alpha_{\rm{CE}}=0.1$', r'$\alpha_{\rm{CE}}=0.5$', r'$\alpha_{\rm{CE}}=2$', r'$\alpha_{\rm{CE}}=10$', r'\textbf{optimistic CE}',\ # r'\textbf{rapid SN}', r'$\rm{max} \ m_{\rm{NS}}=2.0\,\rm{M}_{\odot}$', r'$\rm{max} \ m_{\rm{NS}}=3.0\,\rm{M}_{\odot}$',\ # r'\textbf{no PISN}', r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}=100\,\rm{km}\,\rm{s}^{-1}$',r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}=30\,\rm{km}\,\rm{s}^{-1}$',\ # r'\textbf{SN} '+ r'$v_{\rm{k,BH}}=0\,\rm{km}\,\rm{s}^{-1}$', r'$\rm{f}_{\rm{WR}} = 0.1$', r'$\rm{f}_{\rm{WR}} = 5$' ] physicalNamesBPSmodels = [r'\textbf{fiducial}',\ r'$\beta=0.25$', r'$\beta=0.5$', r'$\beta=0.75$',r'\textbf{unstable case BB}',r'\textbf{E + K}',\ r'$\alpha_{\rm{CE}}=0.1$', r'$\alpha_{\rm{CE}}=0.5$', r'$\alpha_{\rm{CE}}=2$', r'$\alpha_{\rm{CE}}=10$', r'\textbf{optimistic CE}',\ r'\textbf{rapid SN}', r'$\rm{max} \ m_{\rm{NS}}=2.0\,\rm{M}_{\odot}$', r'$\rm{max} \ m_{\rm{NS}}=3.0\,\rm{M}_{\odot}$',\ r'\textbf{no PISN}', r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}=100\,\rm{km}\,\rm{s}^{-1}$',r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}=30\,\rm{km}\,\rm{s}^{-1}$',\ r'\textbf{SN} '+ r'$v_{\rm{k,BH}}=0\,\rm{km}\,\rm{s}^{-1}$', r'$\rm{f}_{\rm{WR}} = 0.1$', r'$\rm{f}_{\rm{WR}} = 5$' ] DCOtypeColorsDict = {'BHNS':'#66c2a5', 'BHBH':'#8da0cb', 'BBH':'#8da0cb', 'NSNS':'#fc8d62', 'BNS':'#fc8d62'} alphabetPhysicalNameDict = {BPSnameslist[i]: physicalNamesBPSmodels[i] for i in range(len(BPSnameslist))} physicalNamesBPSmodelsWithEnter = [r'\textbf{fiducial}',\ r'$\beta=0.25$', r'$\beta=0.5$', r'$\beta=0.75$',r'\textbf{unstable}' + '\n'+ r'\textbf{case BB}', r'\textbf{E + K}',\ r'$\alpha_{\rm{CE}}=0.1$', r'$\alpha_{\rm{CE}}=0.5$', r'$\alpha_{\rm{CE}}=2$', r'$\alpha_{\rm{CE}}=10$', r'\textbf{optimistic}' +'\n' + r'\textbf{CE}',\ r'\textbf{rapid SN}', r'$\rm{max} \ m_{\rm{NS}}$' +'\n' + r'$2.0\,\rm{M}_{\odot}$', r'$\rm{max} \ m_{\rm{NS}}$' +'\n' + r'$3.0\,\rm{M}_{\odot}$',\ r'\textbf{no PISN}', r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}$' +'\n' + r'$100\,\rm{km}\,\rm{s}^{-1}$',r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}$' +'\n' + r'$30\,\rm{km}\,\rm{s}^{-1}$',\ r'\textbf{SN} '+ r'$v_{\rm{k,BH}}$' +'\n' + r'$0\,\rm{km}\,\rm{s}^{-1}$' , r'$\rm{f}_{\rm{WR}} = 0.1$', r'$\rm{f}_{\rm{WR}} = 5$'] alphabetPhysicalNameDictWithEnter = {BPSnameslist[i]: physicalNamesBPSmodelsWithEnter[i] for i in range(len(BPSnameslist))} # physicalNamesBPSmodelsWithEnter = [r'\textbf{fiducial}',\ # r'$\beta=0.25$', r'$\beta=0.5$', r'$\beta=0.75$',r'\textbf{unstable}' + '\n'+ r'\textbf{case BB}',\ # r'$\alpha_{\rm{CE}}=0.5$', r'$\alpha_{\rm{CE}}=2$', r'\textbf{optimistic CE}',\ # r'\textbf{rapid SN}', r'$\rm{max} \ m_{\rm{NS}}$' +'\n' + r'$2.0\,\rm{M}_{\odot}$', r'$\rm{max} \ m_{\rm{NS}}$' +'\n' + r'$3.0\,\rm{M}_{\odot}$',\ # r'\textbf{no PISN}', r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}$' +'\n' + r'$100\,\rm{km}\,\rm{s}^{-1}$',r'\textbf{SN} '+ r'$\sigma_{\rm{rms}}^{\rm{1D}}$' +'\n' + r'$30\,\rm{km}\,\rm{s}^{-1}$',\ # r'\textbf{SN} '+ r'$v_{\rm{k,BH}}$' +'\n' + r'$0\,\rm{km}\,\rm{s}^{-1}$' , r'$\rm{f}_{\rm{WR}} = 0.1$', r'$\rm{f}_{\rm{WR}} = 5$'] # alphabetPhysicalNameDictWithEnter = {BPSnameslist[i]: physicalNamesBPSmodelsWithEnter[i] for i in range(len(BPSnameslist))} colorlist = [ '#118AB2', '#EF476F', '#FFD166', '#073B4C', 'gray'] GWTC_indexDict = {'Mass1':0, 'Mass2':1, 'Mtot':2, 'Mchirp':3, 'q':4} def obtainDataSTROOPWAFEL(param, pathToDirectory): """returns for STROOPWAFEL (AIS) simulation the data of wanted variable combines the data from AIS_oratory and AIS_sampling param = [xparam, fxparam] , are the name of the variable and hdf5 keyname where it is in e.g. param = ['M1', 'doubleCompactObjects'] (see also: print(list(f.keys()))) pathToDirectory is pathname to Directory where AIS_oratory & AIS_sampling directories are """ xparam, fxparam = param pathAIS = pathToDirectory +'/COMPASOutput.h5' fAIS = h5.File(pathAIS) ##### get parameter from two directories and combine them ############ xvalues = fAIS[fxparam][xparam][...].squeeze() return xvalues def maskTargetDCOsSTROOPWAFEL(DCOtype, boolDCOmask, f, otherSelection, otherparam): """returns mask of DCOs of interest fxparam is hdf5 keyname of file where variable for which you want to mask DCOs is in DCOtype = 'BBH' / 'ALL' / 'BHNS' or 'BNS' boolDCOmask = [Hubble, RLOF, Pessimistic] # boolean values whether to mask mergers in a HUbble time, binaries that have RLOFSecondaryAfterCEE = True, and Pessimistic binaries (i.e. optimisticCEFlag == 0) pathToDirectory is pathname to Directory where _oratory & _sampling directories are """ Hubble, RLOF, Pessimistic = boolDCOmask fDCO = f['doubleCompactObjects'] # mask binaries of given DCO type if DCOtype == 'BNS': mask0 = ((fDCO['stellarType1'][...] == 13) & (fDCO['stellarType2'][...] == 13)) elif (DCOtype == 'BHNS') | (DCOtype == 'NSBH'): mask0 = ((fDCO['stellarType1'][...] == 13) & (fDCO['stellarType2'][...] == 14)) | \ ((fDCO['stellarType1'][...] == 14) & (fDCO['stellarType2'][...] == 13) ) elif DCOtype == 'BBH': mask0 = ((fDCO['stellarType1'][...] == 14) & (fDCO['stellarType2'][...] == 14)) elif (DCOtype == 'all') | (DCOtype == 'ALL') : mask0 = ((fDCO['stellarType1'][...] == 14) | (fDCO['stellarType1'][...] == 13)) else: print('error: DCO type not known') # Hubble mask if Hubble: mask1 = (fDCO['mergesInHubbleTimeFlag'][...]==True) elif not Hubble: mask1 = (fDCO['mergesInHubbleTimeFlag'][...]==True) | (fDCO['mergesInHubbleTimeFlag'][...]==False) # RLOF mask if RLOF: mask2 = (fDCO['RLOFSecondaryAfterCEE'][...]==False) elif not RLOF: mask2 = (fDCO['RLOFSecondaryAfterCEE'][...]==False) | (fDCO['RLOFSecondaryAfterCEE'][...]==True) # Pessimistic mask : if True mask systems that have optimistic CE flag ==1 if Pessimistic: mask3 = np.logical_not(fDCO["optimisticCEFlag"][...] == 1) elif not Pessimistic: mask3 = np.logical_not(fDCO["optimisticCEFlag"][...] == 1) + \ np.logical_not(fDCO["optimisticCEFlag"][...] == 0) # combine the different masks and the oratory and refinement masks combinedmask = mask0 * mask1 * mask2 * mask3 combinedmask = combinedmask.squeeze() if otherSelection =='UFD': KpcToKM = 3.086 * 10**(16) # kpc to km MyrToYr = 1E6 # yrs YrToSec = 3.154 *1E7 #sec UFD_epsilon = otherparam[0] UFD_Rvir = otherparam[1] Xbh1 = otherparam[2] Rns = otherparam[3] fSN = f['supernovae'] seedsOfIntererst = fDCO['seed'][...].squeeze() seedsSN = fSN['randomSeed'][...].squeeze() bools = np.in1d(seedsSN, seedsOfIntererst) tc = fDCO['tc'][...].squeeze() vsys = fSN['systemicVelocity'][...].squeeze()[bools] vsysSN2 = vsys[1:][::2] traveldistance = tc * vsysSN2 * MyrToYr * YrToSec radiusUFDgalaxy = UFD_epsilon * UFD_Rvir * KpcToKM maskCandidatesUFD = (traveldistance <= radiusUFDgalaxy) | ((vsysSN2 <= 44) & (tc * MyrToYr *YrToSec<= radiusUFDgalaxy)) combinedmask = maskCandidatesUFD*combinedmask return combinedmask def obtainweightsSTROOPWAFEL(pathToDirectory): """returns weights for all DCOs and all systems for STROOPWAFEL pathToDirectory is pathname to Directory where AIS_oratory & AIS_sampling directories are """ pathAIS = pathToDirectory +'/COMPASOutput.h5' # '/home/floor/Data_Thesis/bdMC/Z0_002' fAIS = h5.File(pathAIS) ##### get the DCO and all system weights ############ DCOsweights = fAIS['doubleCompactObjects']['weight'][...].squeeze() systemsweights = fAIS['systems']['weight'][...].squeeze() return DCOsweights, systemsweights def chirpmass(m1, m2): numer = (m1*m2)**(3./5) denom = (m1+m2)**(1./5) return numer/denom def obtainM1BHandM2BHassymetric(m1, m2): m1bh, m2bh = np.zeros_like(m1), np.zeros_like(m1) maskm1heavier = ( m1 >= m2) maskm2heavier = (m1 < m2) m1bh[maskm1heavier] = m1[maskm1heavier] m1bh[maskm2heavier] = m2[maskm2heavier] m2bh[maskm1heavier] = m2[maskm1heavier] m2bh[maskm2heavier] = m1[maskm2heavier] return m1bh, m2bh # m1bh has all the heaviest systems def getMaskBHNS(m1bh, m2bh): # add later on the 2nd explodes first maskBHNS = m1bh >= m2bh # we have a BH=NS return maskBHNS def below3Msun(m1bh): # add later on the 2nd explodes first maskBHNS = m1bh <= 3 # we have a BH=NS return maskBHNS class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. weights : array_like, shape (n, ), optional, default: None An array of weights, of the same shape as `x`. Each value in `x` only contributes its associated weight towards the bin count (instead of 1). Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. neff : float Effective sample size using Kish's approximation. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) kde.pdf(points) : ndarray Alias for ``kde.evaluate(points)``. kde.set_bandwidth(bw_method='scott') : None Computes the bandwidth, i.e. the coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. .. versionadded:: 0.11.0 kde.covariance_factor : float Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`. Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] <NAME>, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] <NAME>, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] <NAME>, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] <NAME> and <NAME>, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): >>> "Measurement model, return two coupled measurements." >>> m1 = np.random.normal(size=n) >>> m2 = np.random.normal(scale=0.5, size=n) >>> return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None, weights=None): self.dataset = np.atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape if weights is not None: self.weights = weights / np.sum(weights) else: self.weights = np.ones(self.n) / self.n # Compute the effective sample size # http://surveyanalysis.org/wiki/Design_Effects_and_Effective_Sample_Size#Kish.27s_approximate_formula_for_computing_effective_sample_size self.neff = 1.0 / np.sum(self.weights ** 2) self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = np.atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = np.reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) # compute the normalised residuals chi2 = cdist(points.T, self.dataset.T, 'mahalanobis', VI=self.inv_cov) ** 2 # compute the pdf result = np.sum(np.exp(-.5 * chi2) * self.weights, axis=1) / self._norm_factor return result __call__ = evaluate def scotts_factor(self): return np.power(self.neff, -1./(self.d+4)) def silverman_factor(self): return np.power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method): # and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): # Compute the mean and residuals _mean = np.sum(self.weights * self.dataset, axis=1) _residual = (self.dataset - _mean[:, None]) # Compute the biased covariance self._data_covariance = np.atleast_2d(np.dot(_residual * self.weights, _residual.T)) # Correct for bias (http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance) self._data_covariance /= (1 -
np.sum(self.weights ** 2)
numpy.sum
import numpy as np import onnxruntime import pytest from dnnv.nn.converters.onnx import * from dnnv.nn.operations import * def test_Mul(): x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.float32) z = x * y # expected output [4., 10., 18.] op = Mul(x, y) onnx_model = convert(OperationGraph([op])) results = onnxruntime.backend.run(onnx_model, []) assert len(results) == 1 result = results[0] assert np.allclose(result, z) op = Mul(Input((3,), np.dtype(np.float32)), Input((3,),
np.dtype(np.float32)
numpy.dtype
import numpy as np import gym from gym import error, spaces, utils from gym.utils import seeding ###################### # TicTacToeEnv class ###################### class TicTacToeEnv(gym.Env): metadata = {'render.modes': ['human', 'ansi']} BOARD_ROWS = 3 BOARD_COLS = 3 def __init__(self): super().__init__() board = Board(self.BOARD_ROWS, self.BOARD_COLS) self.action_space = spaces.Discrete(board.board.size) self.observation_space = spaces.Box( low=0, high=len(board.STONE_TYPES), shape=board.board.shape ) p1 = HumanPlayer(is_p1=True) p2 = RandomPlayer(is_p1=False) #p2 = AIPlayer(is_p1=False, rows=self.BOARD_ROWS, cols=self.BOARD_COLS) self.env = TicTacToe(board, p1, p2) self.reward_range = [-100., 1.] self.np_random = None def step(self, action): x, y = divmod(action, 3) x, y, symbol = self.env.p1.act(self.env.board.board, x=x, y=y) self.env.board.put(x, y, symbol) result = self.env.board.judge() done = np.any(result == True) if done: if result[0]: # p1 won reward = 1 elif result[1]: # p2 won reward = 0 else: # draw reward = 0.5 info = {} return self.env.board.board, reward, done, info x, y, symbol = self.env.p2.act(self.env.board.board) self.env.board.put(x, y, symbol) result = self.env.board.judge() done = np.any(result == True) if result[0]: # p1 won reward = 1 elif result[1]: # p2 won reward = 0 else: # draw reward = 0.5 info = {} return self.env.board.board, reward, done, info def reset(self): #self.env.p2.backup() #self.env.p2.reset() self.env.board.reset() return self.env.board.board def render(self, mode='human', close=False): if mode == 'human': self.env.board.show() elif mode == 'ansi': return self.env.board.hash() else: super().render(mode=mode) def close(self): pass def seed(self, seed=None): return self.env.p2.seed(seed) ############### # Board class ############### class Board: STONE_TYPES = [ '.', # 0: empty 'x', # 1: stone 1 'o', # 2: stone 2 ] def __init__(self, nrows, ncols): self.nrows = nrows self.ncols = ncols self.board = np.zeros((nrows, ncols), dtype=np.int32) def reset(self): self.board = np.zeros((self.nrows, self.ncols), dtype=np.int32) def show(self): print('------') for i in range(self.nrows): for j in range(self.ncols): print(self.STONE_TYPES[self.board[i, j]], end=' ') print() print('------') def hash(self): return str(self.board) def is_end(self): return np.any(self.judge() == True) def check(self, x, y): if x < 0 or x >= self.nrows: #print('invalid x') return False if y < 0 or y >= self.ncols: #print('invalid y') return False if self.board[x, y] != 0: #print('cannot put onto ({}, {})'.format(x, y)) return False return True def put(self, x, y, symbol): if not self.check(x, y): return False self.board[x, y] = symbol return True def next_state(self, x, y, symbol): new_board = self.new_board() new_board.board[x, y] = symbol return new_board def new_board(self): new_board = Board(self.nrows, self.ncols) new_board.board = np.copy(self.board) return new_board def judge(self): p1_won = False p2_won = False # check vertical p1_won = np.any(np.all(self.board == 1, axis=0)) p2_won = np.any(np.all(self.board == 2, axis=0)) # check horizontal p1_won = np.any(np.all(self.board == 1, axis=1)) or p1_won p2_won = np.any(np.all(self.board == 2, axis=1)) or p2_won # check diagonal p1_won = np.all(np.diag(self.board) == 1) or p1_won p2_won = np.all(np.diag(self.board) == 2) or p2_won p1_won = np.all(np.diag(
np.fliplr(self.board)
numpy.fliplr
# #------------------------------------------------------------------------------ # Copyright (c) 2013-2014, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ # # eea_int.py - This file is part of the PySptools package. # """ PPI, NFINDR, ATGP, FIPPI classes """ import numpy as np from . import eea from .inval import * from .docstring import * def _normalize(M): """ Normalizes M to be in range [0, 1]. Parameters: M: `numpy array` 1D, 2D or 3D data. Returns: `numpy array` Normalized data. """ minVal = np.min(M) maxVal =
np.max(M)
numpy.max
import numpy as np import pickle import os # import scipy.io as sio import utils from PIL import Image from Libs.Datasets.Places365Dataset import Places365Dataset # Define dataset dataset_name = 'places365_standard' # Paths dataset_dir = os.path.join('Data', 'Datasets', dataset_name) StatisticsPath = os.path.join('Attribution Results', dataset_name) MatricesPath = os.path.join(StatisticsPath, 'Occlusion Matrices') ResultsPath = os.path.join(StatisticsPath, 'Statistics') # Intialize Dataset dataset = Places365Dataset(dataset_dir, "val") # Files names dataset_filenames = dataset.filenames # Scene Classes scene_classes = dataset.classes n_scenes = len(scene_classes) # Semantic Classes sem_classes = utils.readSemanticClasses(dataset_dir) n_semantic = len(sem_classes) # Ground Truth labels = dataset.labels labels_index = dataset.labelsindex labels_index = np.asarray(labels_index) # Predictions with open(os.path.join(StatisticsPath, 'Validation_Predictions.pkl'), 'rb') as f: predictions = pickle.load(f) predictions = np.squeeze(np.asarray(predictions)) for scene_index, scene in enumerate(scene_classes): print('Extracting statistics from scene {} ({}/{})'.format(scene, scene_index, n_scenes - 1)) # Create folder for scene scene_folder = os.path.join(ResultsPath, scene) if not os.path.isdir(scene_folder): os.makedirs(scene_folder) # Index which detections are predicted as scene index Det = np.squeeze(np.argwhere(predictions == scene_index)) n_det = len(Det) # Index those GT frames that are scene index GT = np.squeeze(np.argwhere(labels_index == scene_index)) n_gt = len(GT) # Compute True Positives and False Negatives tp = np.asarray([x for x in Det if x in GT]) fn = np.asarray([x for x in GT if x not in Det]) # Number of correct and non correct predictions n_correct_predictions = tp.shape[0] n_error_predictions = fn.shape[0] # Define matrices dec_aciertos = {'Score Deviation': [], 'Sample': [], 'Pred': [], 'GT': []} dec_distractors = {'Score Deviation': [], 'Sample': [], 'Pred': [], 'GT': []} dec_predictions = {'Score Deviation': [], 'Sample': [], 'Pred': [], 'GT': []} sem_hist_gt = [] sem_hist_pred = [] # Global statistics for ground truth. Only correct images for Score Deviation Maps for sample_GT in GT: # Load Matrix of predictions. with open(os.path.join(MatricesPath, 'RGB_matrix_pred_' + str(sample_GT+1).zfill(5) + '.pkl'), 'rb') as f: sample_mat = pickle.load(f) # Read Semantic Image and compute histogram of labels sem_path = os.path.join(dataset_dir, 'noisy_annotations_RGB', 'val', labels[sample_GT], dataset_filenames[sample_GT].split('.')[0] + '.png') sem = np.asarray(Image.open(sem_path)) # Top@1 Semantic Labels are encoded in the last channel sem = sem[:, :, 2] # Histogram sem_hist_gt.append(np.histogram(sem, bins=np.arange(n_semantic + 1))[0]) if sample_GT in tp: # GT sample is in True Positives # Subtraction of original probability againts the obtained by occluding semantic classes dec_aciertos['Score Deviation'].append(sample_mat[0, scene_index] - sample_mat[1:, scene_index]) dec_aciertos['Sample'].append(sample_GT) dec_aciertos['Pred'].append(predictions[sample_GT]) dec_aciertos['GT'].append(labels_index[sample_GT]) else: # GT Sample is False negative # Get which semantic class inhibition gets the max scene value row, col = np.where(sample_mat[1:, :] == np.max(sample_mat[1:, :])) # If is the same as scene_index is a distractor if scene_index in col: dec_distractors['Score Deviation'].append(row) dec_distractors['Sample'].append(sample_GT) dec_distractors['Pred'].append(predictions[sample_GT]) dec_distractors['GT'].append(labels_index[sample_GT]) # Global statistics for detections. Correct and non correct images for sample_det in Det: # Load Matrix of predictions. with open(os.path.join(MatricesPath, 'RGB_matrix_pred_' + str(sample_det+1).zfill(5) + '.pkl'), 'rb') as f: sample_mat = pickle.load(f) # Read Semantic Image and compute histogram of labels sem_path = os.path.join(dataset_dir, 'noisy_annotations_RGB', 'val', labels[sample_det], dataset_filenames[sample_det].split('.')[0] + '.png') sem = np.asarray(Image.open(sem_path)) # Top@1 Semantic Labels are encoded in the last channel sem = sem[:, :, 2] # Histogram sem_hist_pred.append(np.histogram(sem, bins=np.arange(n_semantic + 1))[0]) # Subtraction of original probability against the obtained by occluding semantic classes dec_predictions['Score Deviation'].append(sample_mat[0, scene_index] - sample_mat[1:, scene_index]) dec_predictions['Sample'].append(sample_det) dec_predictions['Pred'].append(predictions[sample_det]) dec_predictions['GT'].append(labels_index[sample_det]) # Aggregate histograms of semantic masks and obtain probability distributions sem_hist_gt = np.sum(np.asarray(sem_hist_gt), axis=0) sem_hist_gt = sem_hist_gt /
np.sum(sem_hist_gt, axis=0)
numpy.sum
import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d df = pd.read_pickle('forces/PROJ9712_RUN3_CLONE18_310.pkl') df = df.loc[df['resName'] == 'K+'] qs = np.array([np.array(i) for i in df['q']]) x, y, z = qs.T f_nb = np.array([
np.array(i)
numpy.array
from __future__ import division import gc import numpy as np """ Class for encapsulating a single Multiple Sequence Alignment(MSA) """ class Alignment: def __init__(self): self.desc = '' #not used for now # chrom has identifier like 'cluster123', which mark a division on the core-genome, which is a conserved region found cross all reference genomes self.chrom = '' self.nseqs = 0 self.ncols = 0 # number of sites self.seqs = [] # actual sequence for each sample self.sample_ids = [] """ attributes below were described in function update() """ self.char_mat = [] self.local_pos = [] self.count_mat = [] self.freq_mat = [] self.ref_alleles = [] self.alt_alleles = [] self.third_alleles = [] self.forth_alleles = [] self.ref_prob_mat = [] self.alt_prob_mat = [] self.third_prob_mat = [] self.forth_prob_mat = [] self.sample_presence = [] self.ref_freqs = [] self.alt_freqs = [] self.third_freqs = [] self.forth_freqs = [] self.prevalence = [] self.aligned_pctg = [] def update(self): assert len(self.seqs) > 1 self.nseqs = len(self.seqs) self.ncols = len(self.seqs[0].seq) self.sample_ids = [seq.id for seq in self.seqs] """ generate char matrix from the aligned sequences example: sample1: ATCG sample2: ATGG sample3: ATGC the char matrix is the transpose of [[A, T, G, C],[A, T, G, G],[A, T, G, C]] """ self.char_mat = np.array([np.fromstring(seq.seq, dtype='c') for seq in self.seqs]) #print self.char_mat.shape #print self.char_mat.nbytes """ count A, T, G, C, N and - for each site on the sequences local_pos stores all local positions of each site on this core-genome division (or alignment) """ As = np.sum(self.char_mat == b'A', axis=0) Ts = np.sum(self.char_mat == b'T', axis=0) Gs = np.sum(self.char_mat == b'G', axis=0) Cs = np.sum(self.char_mat == b'C', axis=0) Ns = np.sum(self.char_mat == b'N', axis=0) Gaps =
np.sum(self.char_mat == b'-', axis=0)
numpy.sum
import numpy as np import pandas as pd from typing import Union from sklearn.covariance import EmpiricalCovariance from modules.filters.dml.map_representation import from_map_representation_to_xy from modules.features.segment_feature import SegmentFeature from modules.features.landmark_feature import LandmarkFeature from modules.features.global_positioning_feature import GlobalPositioningFeature from modules.features.feature import Feature # TODO LIST: # * Remove weights from the state. They are only used during update. # * Rename from 'DMLMCL' to 'DMMCL' class DMLMCL: """ Implements the 'Digital Map-based Monte Carlo Localization' method. """ def __init__(self): self.routes = {} self.particles = None self.n_particles = 0 return # STATE # ========================== def check_is_localized(self) -> bool: """ Indicates whether the estimation is reliable (localized) or not. Returns ==== bool. True if the estimation is localized (one hypothesis on the set of hypotheses). False otherwise. """ p_routes = self.particles[:,1] unique_routes = set(p_routes) if len(unique_routes) > 1: return False return True def get_mean(self) -> np.array: """ Get the state mean in x,y coordinates. Warning: it does not check if the method is localized! Returns ========= mean: numpy.array. The mean (x,y) position of the estimation. """ pointcloud = self.get_particles_as_pointcloud() mean = np.mean( pointcloud, axis=0 ) return def get_covariance(self) -> np.array: """ Get the covariance of the estimation in x,y coordinates. Warning: it does not check if the method is localized! Returns ========= covariance: numpy.array. The covariance of the estimation. """ pointcloud = self.get_particles_as_pointcloud() covariance = EmpiricalCovariance().fit(pointcloud).covariance_ return covariance def get_mean_and_covariance(self) -> Union[np.array, np.array] : """ Get the mean and covariance in x,y coordinates. Warning: it does not check if the method is localized! Returns ========= mean: numpy.array. The mean (x,y) position of the estimation. covariance: numpy.array. The covariance of the estimation. """ pointcloud = self.get_particles_as_pointcloud() mean = np.mean( pointcloud, axis=0 ) covariance = EmpiricalCovariance().fit(pointcloud).covariance_ return mean, covariance # ========================== # MAP # ========================== def add_route(self, route_id : int, ways : pd.DataFrame): """ Add a route to the set of routes. Parameters =========== route_id: int. The identifier of the route. ways: pandas.DataFrame. The DataFrame of the information of ways contained in the route. """ self.routes[route_id] = ways return def get_particles_as_pointcloud(self) -> np.array: """ Provide the particles as a 2D array of their x,y positions. Returns ========== coords_array: numpy.array. (n_particles,2) array of the xy positions. """ coords_array = np.empty((self.n_particles,2)) for row_id in range(self.n_particles): x, r, w = self.particles[row_id,:] p_coords = from_map_representation_to_xy(x, self.routes[int(r)]) coords_array[row_id, :] = p_coords return coords_array # ========================== # PARTICLES' MANAGEMENT # ========================== def sample_on_route(self, mean : float, std : float, route_id : int, n_particles : int): """ Sample particles from a gaussian distribution Parameters ========== mean: float. Mean of the gaussian distribution. std: float. Standard deviation of the gaussian distribution. route_id: int. The route index to be assigned for each particle. """ assert route_id in self.routes, "Error: route not initialized yet!" particles_x = np.random.normal(loc=mean, scale=std, size=(n_particles,1)) particles_r = np.full((n_particles,1), fill_value=route_id ,dtype="uint32") particles_w = np.ones((n_particles,1),dtype=float) particles = np.hstack((particles_x, particles_r, particles_w)) if( self.particles is None ): self.particles = particles else: self.particles = np.vstack((self.particles, particles)) self.n_particles = self.particles.shape[0] return def copy_to_route(self, from_idx : int, to_idx : int): """ Copies particles from a route to another route. Parameters ======= from_idx: int. The identifier of the route from which the hypothesis's distribution is going to be copied. to_idx: int. The identifier of the route to which the hypothesis's distribution is going to be copied. """ ids_copy = np.where( self.particles[:,1] == from_idx ) particles_copy = np.copy(self.particles[ids_copy,:]).reshape(-1,3) particles_copy[:,1] = to_idx stack =
np.vstack([self.particles, particles_copy])
numpy.vstack
# <Source: https://github.com/rtqichen/ffjord/blob/master/lib/toy_data.py > import numpy as np import sklearn import torch import sklearn.datasets from PIL import Image import os # Dataset iterator def inf_train_gen(data, rng=None, batch_size=200): if rng is None: rng = np.random.RandomState() #rng = np.random.RandomState(42) #print(rng) if data == "1Normal": z_dist = torch.distributions.Normal(loc=2, scale=.5) z = z_dist.sample((batch_size, 1)) return z if data == "2spirals-8gaussians": data1 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) return np.concatenate([data1, data2], axis=1) if data == "4-2spirals-8gaussians": data1 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) data3 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data4 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) return np.concatenate([data1, data2, data3, data4], axis=1) if data == "8-2spirals-8gaussians": data1 = inf_train_gen("4-2spirals-8gaussians", rng=rng, batch_size=batch_size) data2 = inf_train_gen("4-2spirals-8gaussians", rng=rng, batch_size=batch_size) return np.concatenate([data1, data2], axis=1) if data == "3-MIX_DEP": data1 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) data3 = inf_train_gen("circles", rng=rng, batch_size=batch_size) p = rng.randint(0, 2, batch_size).reshape(-1, 1) p = np.concatenate([p, p], axis=1) dist = 2*((data1[:, 0]**2 + data1[:, 1]**2)**.5).reshape(-1, 1) - .5 data3 = np.concatenate([dist, dist], axis=1) * data2*.5 + rng.randn(batch_size, 2) * .1 return np.concatenate([data1, data2, data3], axis=1).astype(data2.dtype) if data == "7-pyramid": data1 = inf_train_gen("circles", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) data3 = rng.randn(batch_size, 1) + data1.max(1).reshape(-1, 1) data4 = rng.randn(batch_size, 1) + data2.min(1).reshape(-1, 1) p = rng.randint(0, 2, batch_size).reshape(-1, 1) data5 = p * np.sin(data3 + data4) + (1 - p) * np.cos(data3 + data4) + rng.randn(batch_size, 1) return np.concatenate([data1, data2, data3, data4, data5], axis=1).astype(data2.dtype) if data == "8-MIX": data1 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) data3 = inf_train_gen("swissroll", rng=rng, batch_size=batch_size) data4 = inf_train_gen("circles", rng=rng, batch_size=batch_size) data8 = inf_train_gen("moons", rng=rng, batch_size=batch_size) data6 = inf_train_gen("pinwheel", rng=rng, batch_size=batch_size) data7 = inf_train_gen("checkerboard", rng=rng, batch_size=batch_size) data5 = inf_train_gen("line", rng=rng, batch_size=batch_size) std = np.array([1.604934 , 1.584863 , 2.0310535, 2.0305095, 1.337718 , 1.4043778, 1.6944685, 1.6935346, 1.7434783, 1.0092416, 1.4860426, 1.485661 , 2.3067558, 2.311637 , 1.4430547, 1.4430547], dtype=np.float32) data = np.concatenate([data1, data2, data3, data4, data5, data6, data7, data8], axis=1) return data/std if data == "7-MIX": data1 = inf_train_gen("2spirals", rng=rng, batch_size=batch_size) data2 = inf_train_gen("8gaussians", rng=rng, batch_size=batch_size) data3 = inf_train_gen("swissroll", rng=rng, batch_size=batch_size) data4 = inf_train_gen("circles", rng=rng, batch_size=batch_size) data5 = inf_train_gen("moons", rng=rng, batch_size=batch_size) data6 = inf_train_gen("pinwheel", rng=rng, batch_size=batch_size) data7 = inf_train_gen("checkerboard", rng=rng, batch_size=batch_size) std = np.array([1.604934 , 1.584863 , 2.0310535, 2.0305095, 1.337718 , 1.4043778, 1.6944685, 1.6935346, 1.7434783, 1.0092416, 1.4860426, 1.485661 , 2.3067558, 2.311637], dtype=np.float32) data = np.concatenate([data1, data2, data3, data4, data5, data6, data7], axis=1) return data/std if data == "swissroll": data = sklearn.datasets.make_swiss_roll(n_samples=batch_size, noise=1.0)[0] data = data.astype("float32")[:, [0, 2]] data /= 5 return data elif data == "circles": data = sklearn.datasets.make_circles(n_samples=batch_size, factor=.5, noise=0.08)[0] data = data.astype("float32") data *= 3 return data elif data == "moons": data = sklearn.datasets.make_moons(n_samples=batch_size, noise=0.1)[0] data = data.astype("float32") data = data * 2 + np.array([-1, -0.2]) data = data.astype("float32") return data elif data == "8gaussians": scale = 4. centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)), (1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2))] centers = [(scale * x, scale * y) for x, y in centers] dataset = [] for i in range(batch_size): point = rng.randn(2) * 0.5 idx = rng.randint(8) center = centers[idx] point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype="float32") dataset /= 1.414 return dataset elif data == "2gaussians": scale = 4. centers = [(.5, -.5), (-.5, .5)] centers = [(scale * x, scale * y) for x, y in centers] dataset = [] for i in range(batch_size): point = rng.randn(2) * .75 idx = rng.randint(2) center = centers[idx] point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype="float32") #dataset /= 1.414 return dataset elif data == "4gaussians": scale = 4. centers = [(.5, -.5), (-.5, .5), (.5, .5), (-.5, -.5)] centers = [(scale * x, scale * y) for x, y in centers] dataset = [] for i in range(batch_size): point = rng.randn(2) * .75 idx = rng.randint(4) center = centers[idx] point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype="float32") # dataset /= 1.414 return dataset elif data == "2igaussians": scale = 4. centers = [(.5, 0.), (-.5, .0)] centers = [(scale * x, scale * y) for x, y in centers] dataset = [] for i in range(batch_size): point = rng.randn(2) * .75 idx = rng.randint(2) center = centers[idx] point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype="float32") # dataset /= 1.414 return dataset elif data == "conditionnal8gaussians": scale = 4. centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)), (1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2))] centers = [(scale * x, scale * y) for x, y in centers] dataset = [] context = np.zeros((batch_size, 8)) for i in range(batch_size): point = rng.randn(2) * 0.5 idx = rng.randint(8) context[i, idx] = 1 center = centers[idx] point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype="float32") dataset /= 1.414 return dataset, context elif data == "pinwheel": radial_std = 0.3 tangential_std = 0.1 num_classes = 5 num_per_class = batch_size // 5 rate = 0.25 rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False) features = rng.randn(num_classes*num_per_class, 2) \ * np.array([radial_std, tangential_std]) features[:, 0] += 1. labels = np.repeat(np.arange(num_classes), num_per_class) angles = rads[labels] + rate *
np.exp(features[:, 0])
numpy.exp
import supereeg as se import numpy as np import scipy import sys import pycwt as wavelet import matplotlib.pyplot as plt import sklearn if __name__ == "__main__": fname = sys.argv[1] # try: bo = se.load(fname) freqs = np.logspace(
np.log10(2)
numpy.log10
''' Tests the model ''' import numpy as np import sys import os import json from tqdm import tqdm from keras.models import load_model from keras.models import model_from_json from keras import backend as K import argparse import pickle def dist(x,y): s = 0 z = x-y for element in z: s += element**2 return np.sqrt(s) def closest(dictionary, vec): min_dist = 1000000000000 for key,val in dictionary.items(): v = np.array(val)[0] d = dist(v, vec) if d < min_dist: min_dist = d closest = key closest_vec = val return closest, np.array(closest_vec) if __name__ == '__main__': ########## PARSE ARGUMENTS ########## parser = argparse.ArgumentParser(description="Arguments for training.") parser.add_argument('--include_grammar', required=True, action='store', dest='INCLUDE_POS', default="Y", help='Y to include the parts of speech in training,\ N to exclude parts of speech in training.') parser = parser.parse_args() ########## SET DIRECTORIES ########## DATA_DIR = os.path.join("data", "train", "cleaned") MAPPING_FILE = os.path.join("utils", "mapping.pkl") if parser.INCLUDE_POS.lower() == 'y': INCLUDE_POS = True RNN_MODEL = os.path.join("models", "rnn_model_pos.hdf5") elif parser.INCLUDE_POS.lower() == 'n': INCLUDE_POS = False RNN_MODEL = os.path.join("models", "rnn_model_no_pos.hdf5") else: print("Invalid argument for \"--include_grammar\"") sys.exit() NUM_POS_TAGS = 47 ########## IMPORT DATA ########## with open(MAPPING_FILE, 'rb') as f: mapping = pickle.load(f) print("**** Data Loaded ****") ########## LOAD MODEL ########## model = load_model(RNN_MODEL) print("**** Models Loaded ****") ########## GENERATE ########## print("**** Generating Sentences ****") # set up start token token = mapping['ST'] token = np.array(token) token = np.reshape(token, (1,) + token.shape) if INCLUDE_POS: final_shape = token.shape[-1] + NUM_POS_TAGS else: final_shape = token.shape[-1] tmp = np.zeros(shape=(1,1,final_shape)) tmp[0,0,:len(token[0,0])] = token[0,0,:] token = tmp noise = np.random.rand(token.shape[0], token.shape[1], token.shape[2]) noise /= 10 #small amount of noise print(token.shape) print(noise.shape) en_count = 0 words = [] words.append('ST') # generate words while en_count <= 50: out = model.predict([token, noise]) # snap the network's prediction to the closest real word, and also # snap the network's prediction to the closest vector in our space # so that it predicts with real words as previous values closest_word, closest_vec = closest(mapping, out[0,0,:]) token = np.zeros(shape=out.shape) token[0,0,:] = closest_vec # fix shapes tmp =
np.zeros(shape=(1,1,final_shape))
numpy.zeros
""" Scales have guides and these are what help users make sense of the data mapped onto the scale. Common examples of guides include the x-axis, the y-axis, the keyed legend and a colorbar legend. The guides have demarcations(breaks), some of which must be labelled. The `*_format` functions below create functions that convert data values as understood by a specific scale and return string representations of those values. Manipulating the string representation of a value helps improve readability of the guide. """ import re from bisect import bisect_right from warnings import warn import numpy as np from matplotlib.dates import DateFormatter, date2num from matplotlib.ticker import ScalarFormatter from .breaks import timedelta_helper from .utils import round_any, precision, match from .utils import same_log10_order_of_magnitude __all__ = ['custom_format', 'currency_format', 'dollar_format', 'percent_format', 'scientific_format', 'date_format', 'mpl_format', 'log_format', 'timedelta_format', 'pvalue_format', 'ordinal_format', 'number_bytes_format'] class custom_format: """ Custom format Parameters ---------- fmt : str, optional Format string. Default is the generic new style format braces, ``{}``. style : 'new' | 'old' Whether to use new style or old style formatting. New style uses the :meth:`str.format` while old style uses ``%``. The format string must be written accordingly. Examples -------- >>> formatter = custom_format('{:.2f} USD') >>> formatter([3.987, 2, 42.42]) ['3.99 USD', '2.00 USD', '42.42 USD'] """ def __init__(self, fmt='{}', style='new'): self.fmt = fmt self.style = style def __call__(self, x): """ Format a sequence of inputs Parameters ---------- x : array Input Returns ------- out : list List of strings. """ if self.style == 'new': return [self.fmt.format(val) for val in x] elif self.style == 'old': return [self.fmt % val for val in x] else: raise ValueError( "style should be either 'new' or 'old'") # formatting functions class currency_format: """ Currency formatter Parameters ---------- prefix : str What to put before the value. suffix : str What to put after the value. digits : int Number of significant digits big_mark : str The thousands separator. This is usually a comma or a dot. Examples -------- >>> x = [1.232, 99.2334, 4.6, 9, 4500] >>> currency_format()(x) ['$1.23', '$99.23', '$4.60', '$9.00', '$4500.00'] >>> currency_format('C$', digits=0, big_mark=',')(x) ['C$1', 'C$99', 'C$5', 'C$9', 'C$4,500'] """ def __init__(self, prefix='$', suffix='', digits=2, big_mark=''): self.prefix = prefix self.suffix = suffix self.digits = digits self.big_mark = big_mark def __call__(self, x): """ Format a sequence of inputs Parameters ---------- x : array Input Returns ------- out : list List of strings. """ # create {:.2f} or {:,.2f} big_mark = self.big_mark comma = ',' if big_mark else '' tpl = ''.join((self.prefix, '{:', comma, '.', str(self.digits), 'f}', self.suffix)) labels = [tpl.format(val) for val in x] if big_mark and big_mark != ',': labels = [val.replace(',', big_mark) for val in labels] return labels dollar_format = currency_format dollar = dollar_format() class comma_format: """ Format number with commas separating thousands Parameters ---------- digits : int Number of digits after the decimal point. Examples -------- >>> comma_format()([1000, 2, 33000, 400]) ['1,000', '2', '33,000', '400'] """ def __init__(self, digits=0): self.formatter = currency_format( prefix='', digits=digits, big_mark=',') def __call__(self, x): """ Format a sequence of inputs Parameters ---------- x : array Input Returns ------- out : list List of strings. """ return self.formatter(x) class percent_format: """ Percent formatter Multiply by one hundred and display percent sign Parameters ---------- use_comma : bool If True, use a comma to separate the thousands. Default is False. Examples -------- >>> formatter = percent_format() >>> formatter([.45, 9.515, .01]) ['45%', '952%', '1%'] >>> formatter([.654, .8963, .1]) ['65.4%', '89.6%', '10.0%'] """ def __init__(self, use_comma=False): self.big_mark = ',' if use_comma else '' def __call__(self, x): """ Format a sequence of inputs Parameters ---------- x : array Input Returns ------- out : list List of strings. """ if len(x) == 0: return [] _precision = precision(x) x = round_any(x, _precision / 100) * 100 # When the precision is less than 1, we show if _precision > 1: digits = 0 else: digits = abs(int(np.log10(_precision))) formatter = currency_format(prefix='', suffix='%', digits=digits, big_mark=self.big_mark) labels = formatter(x) # Remove unnecessary zeros after the decimal pattern = re.compile(r'\.0+%$') if all(pattern.search(val) for val in labels): labels = [pattern.sub('%', val) for val in labels] return labels percent = percent_format() class scientific_format: """ Scientific formatter Parameters ---------- digits : int Significant digits. Examples -------- >>> x = [.12, .23, .34, 45] >>> scientific_format()(x) ['1.2e-01', '2.3e-01', '3.4e-01', '4.5e+01'] Notes ----- Be careful when using many digits (15+ on a 64 bit computer). Consider of the `machine epsilon`_. .. _machine epsilon: https://en.wikipedia.org/wiki/Machine_epsilon """ def __init__(self, digits=3): tpl = ''.join(['{:.', str(digits), 'e}']) self.formatter = custom_format(tpl) def __call__(self, x): if len(x) == 0: return [] zeros_re = re.compile(r'(0+)e') def count_zeros(s): match = zeros_re.search(s) if match: return len(match.group(1)) else: return 0 # format and then remove superfluous zeros labels = self.formatter(x) n = min([count_zeros(val) for val in labels]) if n: labels = [val.replace('0'*n+'e', 'e') for val in labels] return labels scientific = scientific_format() def _format(formatter, x): """ Helper to format and tidy up """ # For MPL to play nice formatter.create_dummy_axis() # For sensible decimal places formatter.set_locs([val for val in x if ~np.isnan(val)]) try: oom = int(formatter.orderOfMagnitude) except AttributeError: oom = 0 labels = [formatter(tick) for tick in x] # Remove unnecessary decimals pattern = re.compile(r'\.0+$') for i, label in enumerate(labels): match = pattern.search(label) if match: labels[i] = pattern.sub('', label) # MPL does not add the exponential component if oom: labels = ['{}e{}'.format(s, oom) if s != '0' else s for s in labels] return labels class mpl_format: """ Format using MPL formatter for scalars Examples -------- >>> mpl_format()([.654, .8963, .1]) ['0.6540', '0.8963', '0.1000'] """ def __init__(self): self.formatter = ScalarFormatter(useOffset=False) def __call__(self, x): """ Format a sequence of inputs Parameters ---------- x : array Input Returns ------- out : list List of strings. """ return _format(self.formatter, x) class log_format: """ Log Formatter Parameters ---------- base : int Base of the logarithm. Default is 10. exponent_limits : tuple limits (int, int) where if the any of the powers of the numbers falls outside, then the labels will be in exponent form. This only applies for base 10. Examples -------- >>> log_format()([0.001, 0.1, 100]) ['0.001', '0.1', '100'] >>> log_format()([0.0001, 0.1, 10000]) ['1e-4', '1e-1', '1e4'] """ def __init__(self, base=10, exponent_limits=(-4, 4), **kwargs): self.base = base self.exponent_limits = exponent_limits if 'exponent_threshold' in kwargs: warn( "`exponent_threshold` parameter has been deprecated ", "Use exponent_limits instead", DeprecationWarning) def _tidyup_labels(self, labels): """ Make all labels uniform in format and remove redundant zeros for labels in exponential format. Parameters ---------- labels : list-like Labels to be tidied. Returns ------- out : list-like Labels """ def remove_zeroes(s): """ Remove unnecessary zeros for float string s """ tup = s.split('e') if len(tup) == 2: mantissa = tup[0].rstrip('0').rstrip('.') exponent = int(tup[1]) if exponent: s = '%se%d' % (mantissa, exponent) else: s = mantissa return s def as_exp(s): """ Float string s as in exponential format """ return s if 'e' in s else '{:1.0e}'.format(float(s)) # If any are in exponential format, make all of # them expontential has_e =
np.array(['e' in x for x in labels])
numpy.array
# Copyright 2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import pytest import cunumeric as num def compare_assert(a_np, a_num): if not num.allclose(a_np, a_num): print("numpy, shape " + str(a_np.shape) + ":") print(a_np) print("cuNumeric, shape " + str(a_num.shape) + ":") print(a_num) assert False def check_sort_axis(a_np, a_num, axis): compare_assert(a_np, a_num) print("Sorting axis " + str(axis) + ":") sort_np = np.sort(a_np, axis, kind="stable") sort_num = num.sort(a_num, axis, kind="stable") compare_assert(sort_np, sort_num) sort_np = np.sort(a_np, axis) sort_num = num.sort(a_num, axis) compare_assert(sort_np, sort_num) argsort_np = np.argsort(a_np, axis, kind="stable") argsort_num = num.argsort(a_num, axis, kind="stable") compare_assert(argsort_np, argsort_num) def check_1D(): np.random.seed(42) A_np = np.array(np.random.randint(10, size=30), dtype=np.int32) A_num = num.array(A_np) print("Sorting array : " + str(A_np)) sortA_np = np.sort(A_np) print("Result numpy : " + str(sortA_np)) sortA_num = num.sort(A_num) print("Result cunumeric: " + str(sortA_num)) compare_assert(sortA_np, sortA_num) A_num.sort() print("Result (inplace): " + str(A_num)) compare_assert(sortA_np, A_num) def check_2D(): np.random.seed(42) x_dim = 5 y_dim = 3 A_np = np.array(
np.random.randint(10, size=x_dim * y_dim)
numpy.random.randint
import torch import numpy as np import torch.utils.data as dataloader import os from config import Config from models.segmentor_v1 import HybridUNet_single_out_consistency from miscellaneous.metrics import dice, rAVD, hd, brier, nll, ece import pandas as pd from data.datagenerator import CTData_test from miscellaneous.utils import Evaluation from matplotlib import pyplot as plt import h5py import time import cv2 as cv from sklearn.metrics import brier_score_loss from sklearn.calibration import calibration_curve def online_eval(model, dataloader, txtlog, submit_path, uncertaintys_path, save_segmentation, save_uncertainty): txtlog.write( "Dice_mean fg|bg|hausdorff_dist|ravd|ece|nll|sklearn_brier\n") my_evaluation = Evaluation() start_time = time.time() with torch.no_grad(): dice_new_list = [] data_dict_list = [] hausdorff_dist_list = [] ravd_list = [] shape_list = [] testset_list_pre = [] testset_list_gt = [] nll_list = [] brier_list = [] brier_sklearn_list = [] ece_list = [] for data_val in dataloader: images_val, targets_val, subject, slice, images_origin = data_val model.eval() images_val = images_val.to(device) targets_val = targets_val.to(device) outputs = model(images_val, test_config.lamda_sem) # final_out [i-1,i,i+1] outputs_val = outputs.final_out softmax = outputs.softmax_out # calculate predicted entropy as uncertainty softmax_1 = torch.unsqueeze(softmax[:,1,...],dim=1) softmax_2 = torch.unsqueeze(softmax[:, 3, ...], dim=1) softmax_3 = torch.unsqueeze(softmax[:, 5, ...], dim=1) softmax_fg = torch.cat((softmax_1, softmax_2, softmax_3), dim=1) softmax_fg_numpy = softmax_fg.data.cpu().numpy() softmax_fg_numpy = np.squeeze(softmax_fg_numpy, axis=0) mean_fg = np.mean(softmax_fg_numpy, axis=0) entropy = -mean_fg*np.log(mean_fg) # softmax outputs for uncertainty quantification softmax_final_out = softmax[:,6:8,...] softmax_final_out = np.squeeze(softmax_final_out.data.cpu().numpy(), axis=0) # 逐切片处理 outputs_val_1 = outputs_val[:,0:2, ...] image_origin = images_origin.data.cpu().numpy() image_origin1 = np.squeeze(image_origin, axis=0) image_origin1 = image_origin1[:, :, 1] _, predicted_1 = torch.max(outputs_val_1.data, 1) # ----------Compute dice----------- predicted_val_1 = predicted_1.data.cpu().numpy() subject_val = subject.data.cpu().numpy() slice_val = slice.data.cpu().numpy() slice_val_1 = slice_val[0][1] targets_val = targets_val.data.cpu().numpy() targets_val_1 = targets_val[:,1, ...] shape_list.append(predicted_val_1.shape) data_dict_list.append({"subject": subject_val[0], "slice": slice_val_1, "pre": np.squeeze(predicted_val_1,axis=0), "target": np.squeeze(targets_val_1, axis=0), "image": image_origin1, "uncertainty": entropy, "softmax_out":softmax_final_out}) # test the elaps of uncertainty quantification end_time = time.time() print("elapsed:{}".format(end_time-start_time)) # 利用pandas分组 pd_data = pd.DataFrame(data_dict_list) for subject, volume_data in pd_data.groupby("subject"): pre = volume_data["pre"] tar = volume_data["target"] slices = volume_data["slice"] image = volume_data["image"] uncertain = volume_data["uncertainty"] softmax_prob = volume_data["softmax_out"] pre_array = pre.values target_array = tar.values image_array = image.values uncertain_arr = uncertain.values slices_arr = slices.values softmax_prob_arr = softmax_prob.values pre_temp = np.zeros((len(pre_array), pre_array[0].shape[0], pre_array[0].shape[1]), dtype="int16") target_temp = np.zeros((len(pre_array), target_array[0].shape[0], target_array[0].shape[1]), dtype="int16") # dimentions: slices*class*width*height softmax_probs_temp = np.zeros((len(pre_array), softmax_prob_arr[0].shape[0], softmax_prob_arr[0].shape[1],softmax_prob_arr[0].shape[2]), dtype="float32") for i in range(len(pre_array)): pre_temp[i, :, :] = pre_array[i] target_temp[i, :, :] = target_array[i] softmax_probs_temp[i,:,:,:] = softmax_prob_arr[i] # 保存预测结果与GT及图像 if save_segmentation: image_slice = image_array[i] # save image and segmentation my_evaluation.save_contour_label(image_slice.astype("int16"), target_array[i],save_path=submit_path, color="red", file_name=str(subject)+"_"+ str(slices_arr[i])+"label",show_mask=True) my_evaluation.save_contour_label(image_slice.astype("int16"), pre_array[i], save_path=submit_path, color="blue", file_name=str(subject)+"_"+ str(slices_arr[i])+"pre", show_mask=True) orig_path = os.path.join(submit_path, str(subject)+"_"+str(slices_arr[i])+'.png') cv.imwrite(orig_path, image_slice.astype("uint8")) if save_uncertainty: # Predicted error map error = np.abs(pre_array[i]-target_array[i]) error_name = str(subject) + "_" + str(slices_arr[i]) + "error.png" error_file_path = os.path.join(uncertaintys_path, error_name) plt.figure() plt.imshow(error, cmap=plt.cm.Reds, interpolation='nearest') # Visulization of the uncertainty file_name = str(subject) + "_" + str(slices_arr[i]) + ".png" file_path = os.path.join(uncertaintys_path, file_name) plt.colorbar() plt.xticks([]) plt.yticks([]) plt.savefig(error_file_path) plt.clf() plt.cla() plt.close() plt.figure() plt.imshow(uncertain_arr[i], cmap=plt.cm.rainbow, interpolation='nearest') plt.colorbar() plt.xticks([]) plt.yticks([]) # plt.axes('off') plt.savefig(file_path) plt.clf() plt.cla() plt.close() dsc_list1 = [] if 0 == np.count_nonzero(pre_temp): print("zero"+"_"+str(subject)) continue # calculate the dice metric for i in range(0, test_config.num_classes): dsc_i = dice(pre_temp, target_temp, i) dsc_list1.append(dsc_i) # Calculate Hausdorff Distance 以及ravd hausdorff_dist = hd(pre_temp, target_temp, [5, 0.42, 0.42]) # we measure the absolute volume difference ravd = abs(rAVD(pre_temp, target_temp)) # calculate the volume of ICH for GT and predictions volume_gt = calculate_volume(target_temp) volume_pre = calculate_volume(pre_temp) # Evaluate uncertainty qualification with nll, brier, ece softmax_probs_temp = softmax_probs_temp.transpose(1,0,2,3) brier_socre = brier(torch.from_numpy(softmax_probs_temp).float(), torch.from_numpy(target_temp).long()) ece_subject_wise,_,_= ece(softmax_probs_temp[1,:,:,:], target_temp, 10) # Test sklearn target_onehot_temp = one_hot(target_temp, 2) brier_sklearn = brier_score_loss(target_onehot_temp[0, ...].flatten(), softmax_probs_temp[0, ...].flatten())+\ brier_score_loss(target_onehot_temp[1,...].flatten(), softmax_probs_temp[1,...].flatten()) nll_score = nll(torch.from_numpy(softmax_probs_temp).float(), torch.from_numpy(target_temp).long()) print("nll_score:{} brier_socre:{}".format(nll_score.data.numpy(), brier_socre.data.numpy())) print("dice_bg:{} dice_fg:{} Hausdorff_dist:{} ravd:{}".format(dsc_list1[0], dsc_list1[1],hausdorff_dist, ravd)) txtlog.write("ID{:30} {:3f} {:3f} {:3f} {:3f} {:3f} {:3f} {:3f} {:3f} {:3f} \n".format(subject, dsc_list1[0], dsc_list1[1], hausdorff_dist, ravd, ece_subject_wise, nll_score, brier_sklearn,volume_gt, volume_pre)) dice_new_list.append(dsc_list1) hausdorff_dist_list.append(hausdorff_dist) ravd_list.append(ravd) brier_list.append(brier_socre.data.numpy()) nll_list.append(nll_score.data.numpy()) brier_sklearn_list.append(brier_sklearn) ece_list.append(ece_subject_wise) # store all the test data testset_list_pre.append(softmax_probs_temp[1,:,:,:]) testset_list_gt.append(target_temp) dice_array = np.array(dice_new_list) dice_mean = np.mean(dice_array, axis=0) haus_dist_arr = np.array(hausdorff_dist_list) hausdorff_dist_mean = np.mean(haus_dist_arr, axis=0) ravd_arr = np.array(ravd_list) ravd_mean = np.mean(ravd_arr, axis=0) # uncertainty quantification brier_array = np.mean(
np.array(brier_list)
numpy.array
import cv2 import numpy as np import math def read_class_names(class_file_name): '''loads class name from a file''' names = {} with open(class_file_name, 'r') as data: for ID, name in enumerate(data): names[ID] = name.strip('\n') return names def py_nms(boxes, scores, max_boxes=80, iou_thresh=0.5): """ Pure Python NMS baseline. Arguments: boxes: shape of [-1, 4], the value of '-1' means that dont know the exact number of boxes scores: shape of [-1,] max_boxes: representing the maximum of boxes to be selected by non_max_suppression iou_thresh: representing iou_threshold for deciding to keep boxes """ assert boxes.shape[1] == 4 and len(scores.shape) == 1 x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1) * (y2 - y1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= iou_thresh)[0] order = order[inds + 1] return keep[:max_boxes] def image_preporcess(image, target_size, gt_boxes=None): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) ih, iw = target_size h, w, _ = image.shape scale = min(iw/w, ih/h) nw, nh = int(scale * w), int(scale * h) image_resized = cv2.resize(image, (nw, nh)) image_paded = np.full(shape=[ih, iw, 3], fill_value=128.0, dtype=np.float32) dw, dh = (iw - nw) // 2, (ih-nh) // 2 image_paded[dh:nh+dh, dw:nw+dw, :] = image_resized image_paded = image_paded / 255. if gt_boxes is None: return image_paded else: gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh return image_paded, gt_boxes def post_process(detections, org_img_shape, input_size, down_ratio, score_threshold): bboxes = detections[0, :, 0:4] scores = detections[0, :, 4] classes = detections[0, :, 5] org_h, org_w = org_img_shape resize_ratio = min(input_size[1] / org_w, input_size[0] / org_h) dw = (input_size[1] - resize_ratio * org_w) / 2 dh = (input_size[0] - resize_ratio * org_h) / 2 bboxes[:, 0::2] = 1.0 * (bboxes[:, 0::2] * down_ratio - dw) / resize_ratio bboxes[:, 1::2] = 1.0 * (bboxes[:, 1::2] * down_ratio - dh) / resize_ratio bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, org_w) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, org_h) score_mask = scores >= score_threshold bboxes, socres, classes = bboxes[score_mask], scores[score_mask], classes[score_mask] return np.concatenate([bboxes, socres[:, np.newaxis], classes[:, np.newaxis]], axis=-1) def bboxes_draw_on_img(img, classes_id, scores, bboxes, class_names, thickness=2): colors_tableau = [(158, 218, 229), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207)] scale = 0.4 text_thickness = 1 line_type = 8 for i in range(bboxes.shape[0]): bbox = bboxes[i] color = colors_tableau[int(classes_id[i])] # Draw bounding boxes x1_src = int(bbox[0]) y1_src = int(bbox[1]) x2_src = int(bbox[2]) y2_src = int(bbox[3]) cv2.rectangle(img, (x1_src, y1_src), (x2_src, y2_src), color, thickness) # Draw text s = '%s: %.2f' % (class_names[int(classes_id[i])], scores[i]) # text_size is (width, height) text_size, baseline = cv2.getTextSize(s, cv2.FONT_HERSHEY_SIMPLEX, scale, text_thickness) p1 = (y1_src - text_size[1], x1_src) cv2.rectangle(img, (p1[1] - thickness//2, p1[0] - thickness - baseline), (p1[1] + text_size[0], p1[0] + text_size[1]), color, -1) cv2.putText(img, s, (p1[1], p1[0] + baseline), cv2.FONT_HERSHEY_SIMPLEX, scale, (255,255,255), text_thickness, line_type) return img class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.average = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.average = self.sum / float(self.count) def get_preds_gpu(detections, image_id): ''' Given the y_pred of an input image, get the predicted bbox and label info. return: pred_content: 2d list. ''' cls_in_img = list(set(detections[:, 5])) results = [] pred_content = [] for c in cls_in_img: cls_mask = (detections[:, 5] == c) classified_det = detections[cls_mask] classified_bboxes = classified_det[:, :4] classified_scores = classified_det[:, 4] inds = py_nms(classified_bboxes, classified_scores, max_boxes=50, iou_thresh=0.5) # results.extend(classified_det[inds]) results.extend(classified_det[inds].tolist()) for bbox in results: import cfg if bbox[4] >= cfg.score_threshold: x_min, y_min, x_max, y_max = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]) score = float(bbox[4]) label = int(bbox[5]) pred_content.append([image_id, x_min, y_min, x_max, y_max, score, label]) # print("results is", results) # print("pred_content is", pred_content) return pred_content def parse_line(line): ''' Given a line from the training/test txt file, return parsed info. line format: line_index, img_path, img_width, img_height, [box_info_1 (5 number)], ... return: line_idx: int64 pic_path: string. boxes: shape [N, 4], N is the ground truth count, elements in the second dimension are [x_min, y_min, x_max, y_max] labels: shape [N]. class index. img_width: int. img_height: int ''' if 'str' not in str(type(line)): line = line.decode() s = line.strip().split(' ') line_idx = s[0] pic_path = s[1] img_width = int(s[2]) img_height = int(s[3]) s = s[4:] box_cnt = len(s) assert box_cnt > 0 boxes = [] labels = [] gt_labels = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in s]) # print(labels) for idx, label in enumerate(gt_labels): # box = label[:4] # class_name = label[4] class_name, x_min, y_min, x_max, y_max = label[4], label[0], label[1], label[2], label[3] boxes.append([x_min, y_min, x_max, y_max]) labels.append(class_name) boxes = np.asarray(boxes, np.float32) labels = np.asarray(labels, np.float32) return pic_path, boxes, labels, img_width, img_height gt_dict = {} # key: img_id, value: gt object list def parse_gt_rec(gt_filename, target_img_size, letterbox_resize=True): ''' parse and re-organize the gt info. return: gt_dict: dict. Each key is a img_id, the value is the gt bboxes in the corresponding img. ''' global gt_dict if not gt_dict: new_width, new_height = target_img_size with open(gt_filename, 'r') as f: for img_id, line in enumerate(f): pic_path, boxes, labels, ori_width, ori_height = parse_line(line) objects = [] for i in range(len(labels)): x_min, y_min, x_max, y_max = boxes[i] label = labels[i] if letterbox_resize: resize_ratio = min(new_width / ori_width, new_height / ori_height) resize_w = int(resize_ratio * ori_width) resize_h = int(resize_ratio * ori_height) dw = int((new_width - resize_w) / 2) dh = int((new_height - resize_h) / 2) objects.append([x_min * resize_ratio + dw, y_min * resize_ratio + dh, x_max * resize_ratio + dw, y_max * resize_ratio + dh, label]) else: # objects.append([x_min * new_width / ori_width, # y_min * new_height / ori_height, # x_max * new_width / ori_width, # y_max * new_height / ori_height, # label]) objects.append([x_min, y_min, x_max, y_max , label]) gt_dict[img_id] = objects return gt_dict # The following two functions are modified from FAIR's Detectron repo to calculate mAP: # https://github.com/facebookresearch/Detectron/blob/master/detectron/datasets/voc_eval.py def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap =
np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
numpy.sum
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import pandas as pd import numpy as np import matplotlib.pylab as plt import action_selection as asl import seaborn as sns import pandas as pd from scipy.stats import entropy plt.style.use('seaborn-whitegrid') from pandas.plotting import table from misc import params_list, simulate, make_title, test_vals, calc_dkl, cols import pickle as pickle import time import os as os import itertools as itertools import string as string path = os.getcwd() + '\\parameter_data\\' tests = np.asarray(['conflict', 'agreement','goal', 'habit'],dtype="object") # %% ''' used parameters ''' pols = [8,81] bs = [3] As = [1] ws = [1] ss = [0.0004] selectors = ['rdm', 'ardm'] # path = os.getcwd() + '\\parameter_data\\' tests = np.asarray(['conflict', 'agreement','goal', 'habit'],dtype="object") par_list = [] for p in itertools.product(pols, selectors, bs, ws, ss, As, params_list): par_list.append([p[0]]+[p[1]] + [p[2]]+ [p[3]]+ [p[4]] + [p[5]] + [p[6]]) #%% ''' function definitions ''' def test(df,size=4000): if not df.shape[0] == size: raise ValueError('WRONG SELECTION') def load_file(ttl): with open (ttl, 'rb') as fp: data = pickle.load(fp) return data def extract_params(ttl): names = ['standard', 'post_prior1', 'post_prior0', 'like_prior1', 'like_prior0'] params_dict = { 'standard_b': [False, False, True], 'post_prior1': [True, False, True], 'post_prior0': [True, False, False], 'like_prior1': [False, True, True], 'like_prior0': [False, True, False] } pars = ttl.split('_') a_present = False for indx, par in enumerate(pars): if par == 'b': if not len(pars[indx+1]) == 1: b = float(pars[indx+1]) else: b = int(pars[indx+1]) if par == 's': s = float(pars[indx+1]) if par == 'wd': if not len(pars[indx+1]) == 1: wd = float(pars[indx+1]) else: wd = int(pars[indx+1]) if par == 'a': a_present = True if not len(pars[indx+1]) == 1: a = float(pars[indx+1]) else: a = int(pars[indx+1]) # a = float(pars[indx+1]) # print(pars) npi = int(pars[1]) selector = pars[2] regime = '_'.join(pars[3:5]) pars = params_dict[regime] if regime == 'standard_b': regime = 'standard' if a_present: return [npi, selector, b, wd,s, a, pars + [regime]] else: return [npi, selector, b, wd,s, 1, pars + [regime]] def extract_post(npi=3, nmodes=4): x_positions = [] for i in range(nmodes): x_positions.append([x for x in range(i*npi + i, i*npi + i + npi)]) polss = np.asarray([3,8,81,2]) i = np.where(polss == npi)[0][0] posts = np.zeros([nmodes, npi]) # translate the posteriors post = np.asarray(test_vals)[i,:,0] # into a numpy array for indx, p in enumerate(post): posts[indx,:] = np.asarray(p) return posts, x_positions def load_fits(trials=1000): tests = np.asarray(['conflict', 'agreement','goal', 'habit'],dtype="object") names = ['npi', 'selector','b','w','s','A', 'regime', 'post_fit','individual_fit','avg_fit','ID','file_ttl','stats'] nmodes = 4 path = os.getcwd() + '/parameter_data/' files = os.listdir(path) total = len(files) npis = np.zeros(total) selectors = np.zeros(total, dtype='object') bs = np.zeros(total, dtype="float") ws = np.zeros(total) ss = np.zeros(total) As = np.zeros(total) regimes = np.zeros(total, dtype="object") post_fit = np.zeros(total) individual_fit = np.zeros(total, dtype="object") post_fit_avg = np.zeros(total) polss = np.array([3,8,81]) ID = np.zeros(total) titles = np.zeros(total, dtype="object") stats = np.zeros(total, dtype="object") fucked = [] for ind, f in enumerate(files): if ind < total: p = extract_params(f) # print(ind) # print(f) npi = p[0] y =
np.where(polss == npi)
numpy.where
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import tensorflow as tf import numpy as np import collections from ops import input_ops FLAGS = tf.flags.FLAGS def read_vocab_embs(vocabulary_file, embedding_matrix_file): tf.logging.info("Reading vocabulary from %s", vocabulary_file) with tf.gfile.GFile(vocabulary_file, mode="r") as f: lines = list(f.readlines()) vocab = [line.strip() for line in lines] with open(embedding_matrix_file, "r") as f: embedding_matrix = np.load(f) tf.logging.info("Loaded embedding matrix with shape %s", embedding_matrix.shape) word_embedding_dict = collections.OrderedDict( zip(vocab, embedding_matrix)) return word_embedding_dict def read_vocab(vocabulary_file): tf.logging.info("Reading vocabulary from %s", vocabulary_file) with tf.gfile.GFile(vocabulary_file, mode="r") as f: lines = list(f.readlines()) reverse_vocab = [line.strip() for line in lines] tf.logging.info("Loaded vocabulary with %d words.", len(reverse_vocab)) #tf.logging.info("Loading embedding matrix from %s", embedding_matrix_file) # Note: tf.gfile.GFile doesn't work here because np.load() calls f.seek() # with 3 arguments. word_embedding_dict = collections.OrderedDict( zip(reverse_vocab, range(len(reverse_vocab)))) return word_embedding_dict class s2v(object): """Skip-thoughts model.""" def __init__(self, config, mode="train", input_reader=None, input_queue=None): """Basic setup. The actual TensorFlow graph is constructed in build(). Args: config: Object containing configuration parameters. mode: "train", "eval" or "encode". input_reader: Subclass of tf.ReaderBase for reading the input serialized tf.Example protocol buffers. Defaults to TFRecordReader. Raises: ValueError: If mode is invalid. """ if mode not in ["train", "eval", "encode"]: raise ValueError("Unrecognized mode: %s" % mode) self.config = config self.mode = mode self.reader = input_reader if input_reader else tf.TFRecordReader() self.input_queue = input_queue # Initializer used for non-recurrent weights. self.uniform_initializer = tf.random_uniform_initializer( minval=-FLAGS.uniform_init_scale, maxval=FLAGS.uniform_init_scale) # Input sentences represented as sequences of word ids. "encode" is the # source sentence, "decode_pre" is the previous sentence and "decode_post" # is the next sentence. # Each is an int64 Tensor with shape [batch_size, padded_length]. self.encode_ids = None # Boolean masks distinguishing real words (1) from padded words (0). # Each is an int32 Tensor with shape [batch_size, padded_length]. self.encode_mask = None # Input sentences represented as sequences of word embeddings. # Each is a float32 Tensor with shape [batch_size, padded_length, emb_dim]. self.encode_emb = None # The output from the sentence encoder. # A float32 Tensor with shape [batch_size, num_gru_units]. self.thought_vectors = None # The total loss to optimize. self.total_loss = None def build_inputs(self): if self.mode == "encode": encode_ids = tf.placeholder(tf.int64, (None, None), name="encode_ids") encode_mask = tf.placeholder(tf.int8, (None, None), name="encode_mask") else: # Prefetch serialized tf.Example protos. input_queue = input_ops.prefetch_input_data( self.reader, FLAGS.input_file_pattern, shuffle=FLAGS.shuffle_input_data, capacity=FLAGS.input_queue_capacity, num_reader_threads=FLAGS.num_input_reader_threads) # Deserialize a batch. serialized = input_queue.dequeue_many(FLAGS.batch_size) encode = input_ops.parse_example_batch(serialized) encode_ids = tf.identity(encode.ids, name="encode_ids") encode_mask = tf.identity(encode.mask, name="encode_mask") self.encode_ids = encode_ids self.encode_mask = encode_mask def build_word_embeddings(self): rand_init = self.uniform_initializer self.word_embeddings = [] self.encode_emb = [] self.init = None for v in self.config.vocab_configs: if v.mode == 'fixed': if self.mode == "train": word_emb = tf.get_variable( name=v.name, shape=[v.size, v.dim], trainable=False) embedding_placeholder = tf.placeholder( tf.float32, [v.size, v.dim]) embedding_init = word_emb.assign(embedding_placeholder) rand = np.random.rand(1, v.dim) word_vecs = np.load(v.embs_file) load_vocab_size = word_vecs.shape[0] assert(load_vocab_size == v.size - 1) word_init = np.concatenate((rand, word_vecs), axis=0) self.init = (embedding_init, embedding_placeholder, word_init) else: word_emb = tf.get_variable( name=v.name, shape=[v.size, v.dim]) encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids) self.word_emb = word_emb self.encode_emb.extend([encode_emb, encode_emb]) if v.mode == 'trained': for inout in ["", "_out"]: word_emb = tf.get_variable( name=v.name + inout, shape=[v.size, v.dim], initializer=rand_init) if self.mode == 'train': self.word_embeddings.append(word_emb) encode_emb = tf.nn.embedding_lookup(word_emb, self.encode_ids) self.encode_emb.append(encode_emb) if v.mode == 'expand': for inout in ["", "_out"]: encode_emb = tf.placeholder(tf.float32, ( None, None, v.dim), v.name + inout) self.encode_emb.append(encode_emb) word_emb_dict = read_vocab_embs(v.vocab_file + inout + ".txt", v.embs_file + inout + ".npy") self.word_embeddings.append(word_emb_dict) if v.mode != 'expand' and self.mode == 'encode': word_emb_dict = read_vocab(v.vocab_file) self.word_embeddings.extend([word_emb_dict, word_emb_dict]) def _initialize_cell(self, num_units, cell_type="GRU"): if cell_type == "GRU": return tf.contrib.rnn.GRUCell(num_units=num_units) elif cell_type == "LSTM": return tf.contrib.rnn.LSTMCell(num_units=num_units) else: raise ValueError("Invalid cell type") def bow(self, word_embs, mask): mask_f = tf.expand_dims(tf.cast(mask, tf.float32), -1) word_embs_mask = word_embs * mask_f bow = tf.reduce_sum(word_embs_mask, axis=1) return bow def rnn(self, word_embs, mask, scope, encoder_dim, cell_type="GRU"): length = tf.to_int32(tf.reduce_sum(mask, 1), name="length") if self.config.bidir: if encoder_dim % 2: raise ValueError( "encoder_dim must be even when using a bidirectional encoder.") num_units = encoder_dim // 2 cell_fw = self._initialize_cell(num_units, cell_type=cell_type) cell_bw = self._initialize_cell(num_units, cell_type=cell_type) outputs, states = tf.nn.bidirectional_dynamic_rnn( cell_fw=cell_fw, cell_bw=cell_bw, inputs=word_embs, sequence_length=length, dtype=tf.float32, scope=scope) if cell_type == "LSTM": states = [states[0][1], states[1][1]] state = tf.concat(states, 1) else: cell = self._initialize_cell(encoder_dim, cell_type=cell_type) outputs, state = tf.nn.dynamic_rnn( cell=cell, inputs=word_embs, sequence_length=length, dtype=tf.float32, scope=scope) if cell_type == "LSTM": state = state[1] return state def build_encoder(self): """Builds the sentence encoder. Inputs: self.encode_emb self.encode_mask Outputs: self.thought_vectors Raises: ValueError: if config.bidirectional_encoder is True and config.encoder_dim is odd. """ names = ["","_out"] self.thought_vectors = [] # print(self.config.encoder) # encode_emb = tf.compat.v1.Print(self.encode_emb, [tf.shape(self.encode_emb)], "encode_emb shape: ") encode_emb = self.encode_emb for i in range(2): with tf.variable_scope("encoder" + names[i]) as scope: if self.config.encoder == "gru": sent_rep = self.rnn(encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="GRU") elif self.config.encoder == "lstm": sent_rep = self.rnn(encode_emb[i], self.encode_mask, scope, self.config.encoder_dim, cell_type="LSTM") elif self.config.encoder == 'bow': sent_rep = self.bow(encode_emb[i], self.encode_mask) else: raise ValueError("Invalid encoder") if self.config.encoder_norm: # sent_rep = tf.compat.v1.Print(sent_rep, [tf.shape(sent_rep)], "sent_rep shape: ") sent_rep = tf.nn.l2_normalize(sent_rep, axis=1) thought_vectors = tf.identity(sent_rep, name="thought_vectors") self.thought_vectors.append(thought_vectors) def build_loss(self): """Builds the loss Tensor. Outputs: self.total_loss """ loss_config = self.config.loss_config all_sen_embs = self.thought_vectors losses = [] to_log = {} print(self.config) print(loss_config) # Positive pair targets # diag = all zeros pos_targets_np = np.zeros((FLAGS.batch_size, FLAGS.batch_size)) ctxt_sent_pos = list(range(-FLAGS.context_size, FLAGS.context_size + 1)) ctxt_sent_pos.remove(0) for ctxt_pos in ctxt_sent_pos: pos_targets_np += np.eye(FLAGS.batch_size, k=ctxt_pos) pos_targets_np_sum = np.sum(pos_targets_np, axis=1, keepdims=True) pos_targets_np = pos_targets_np / pos_targets_np_sum # matmul scores if FLAGS.dropout: mask_shp = [1, self.config.encoder_dim] bin_mask = tf.random_uniform(mask_shp) > FLAGS.dropout_rate bin_mask = tf.where(bin_mask, tf.ones(mask_shp), tf.zeros(mask_shp)) src = all_sen_embs[0] * bin_mask dst = all_sen_embs[1] * bin_mask mm_scores = tf.matmul(src, dst, transpose_b=True) else: mm_scores = tf.matmul(all_sen_embs[0], all_sen_embs[1], transpose_b=True) if loss_config.c != 0: c_scores = mm_scores / loss_config.ct # Ignore source sentence if self.config.encoder_norm: nodiag_mask_np = np.ones((FLAGS.batch_size, FLAGS.batch_size), dtype=np.bool) np.fill_diagonal(nodiag_mask_np, False) nodiag_pos_targets_np = pos_targets_np[nodiag_mask_np].reshape(FLAGS.batch_size, FLAGS.batch_size - 1) pos_targets = tf.constant(nodiag_pos_targets_np, dtype=tf.float32) # still normalized since diag(pos_targets_np) = 0 nodiag_mask = tf.constant(nodiag_mask_np) c_scores = tf.reshape(c_scores[nodiag_mask], [FLAGS.batch_size, FLAGS.batch_size - 1]) else: pos_targets = tf.constant(pos_targets_np, dtype=tf.float32) c_scores = tf.matrix_set_diag(c_scores,
np.zeros(FLAGS.batch_size)
numpy.zeros