prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import os import numpy as np from PIL import Image import tensorflow as tf from absl import app, flags, logging from absl.flags import FLAGS from tqdm import trange import contextlib2 flags.DEFINE_string('dataset', '../dataset/train', '训练集路径') flags.DEFINE_string('train_record_path', '../dataset/record/train.record', '训练集存储路径') flags.DEFINE_string('val_record_path', '../dataset/record/val.record', '验证集存储路径') flags.DEFINE_string('test_record_path', '../dataset/record/test.record', '验证集存储路径') flags.DEFINE_string('train_txt', '../dataset/train.txt', '训练集txt路径') flags.DEFINE_string('val_txt', '../dataset/val.txt', '验证集txt路径') def get_files(file_dir, ratio=0.9): images = [] labels = [] for image in os.listdir(file_dir): image_path = os.path.join(file_dir, image) label_path = file_dir[0:-5] + 'masks/' + image[0:-4] + '.png' images.append(image_path) labels.append(label_path) # 按比例划分训练集和验证集 s1 = np.int(len(images) * ratio) # 组合训练集和验证集 tmp_list =
np.array([images, labels])
numpy.array
import os import numpy as np from astropy.io import fits as pyfits from astropy.nddata import Cutout2D from reproject import reproject_interp from reproject.mosaicking import reproject_and_coadd, find_optimal_celestial_wcs import fits_magic as fm import utils import glob import sys class polarisation_mosaic: """ Class to produce polarisation mosaics in Stokes Q, U and V. """ module_name = 'POLARISATION MOSAIC' def __init__(self, file_=None, **kwargs): self.default = utils.load_config(self, file_) utils.set_mosdirs(self) self.config_file_name = file_ def go(self): """ Function to generate the polarisation mosaics """ utils.gen_poldirs(self) utils.collect_paramfiles(self) veri = self.check_polimages() utils.copy_polimages(self, veri) utils.copy_polbeams(self) cbeam = utils.get_common_psf(self, veri, format='array') for sb in range(24): qimages, uimages, pbimages = utils.get_polfiles(self, sb) if len(qimages) != 0: self.make_polmosaic(qimages, uimages, pbimages, sb, cbeam, pbclip=self.pol_pbclip) else: print('No data for subband ' + str(sb).zfill(2)) self.make_polcubes() def check_polimages(self): """ Sort out any beams or planes, which are useless for the imaging """ # Collect the beam and noise parameters from the main parameter file rms_array = np.full((40, 24, 2), np.nan) bmaj_array = np.full((40, 24, 2), np.nan) bmin_array = np.full((40, 24, 2), np.nan) bpa_array = np.full((40, 24, 2), np.nan) for beam in range(0, 40, 1): try: rms_array[beam, :] = utils.get_param(self, 'polarisation_B' + str(beam).zfill(2) + '_targetbeams_qu_imagestats')[:, 2, :] bmaj_array[beam, :] = utils.get_param(self, 'polarisation_B' + str(beam).zfill(2) + '_targetbeams_qu_beamparams')[:, 0, :] bmin_array[beam, :] = utils.get_param(self, 'polarisation_B' + str(beam).zfill(2) + '_targetbeams_qu_beamparams')[:, 1, :] bpa_array[beam, :] = utils.get_param(self, 'polarisation_B' + str(beam).zfill(2) + '_targetbeams_qu_beamparams')[:, 2, :] except KeyError: print('Synthesised beam parameters and/or noise statistics of beam ' + str(beam).zfill(2) + ' are not available. Excluding beam!') np.savetxt(self.polmosaicdir + '/Qrms.npy', rms_array[:,:,0]) np.savetxt(self.polmosaicdir + '/Qbmaj.npy', bmaj_array[:,:,0]) np.savetxt(self.polmosaicdir + '/Qbmin.npy', bmin_array[:,:,0]) np.savetxt(self.polmosaicdir + '/Qbpa.npy', bpa_array[:,:,0]) np.savetxt(self.polmosaicdir + '/Urms.npy', rms_array[:, :, 1]) np.savetxt(self.polmosaicdir + '/Ubmaj.npy', bmaj_array[:,:,1]) np.savetxt(self.polmosaicdir + '/Ubmin.npy', bmin_array[:,:,1]) np.savetxt(self.polmosaicdir + '/Ubpa.npy', bpa_array[:,:,1]) # Create an array for the accepted beams accept_array = np.full((40, 24), True) # Iterate through the rms and beam sizes of all cubes and filter the images for b in range(40): for sb in range(24): if rms_array[b, sb, 0] > self.pol_rmsclip or np.isnan(rms_array[b, sb, 0]): accept_array[b, sb] = False else: continue for sb in range(24): if rms_array[b, sb, 1] > self.pol_rmsclip or np.isnan(rms_array[b, sb, 1]): accept_array[b, sb] = False else: continue for sb in range(24): if bmin_array[b, sb, 0] > self.pol_bmin or bmin_array[b, sb, 1] > self.pol_bmin: accept_array[b, sb] = False else: continue for sb in range(24): if bmaj_array[b, sb, 0] > self.pol_bmaj or bmaj_array[b, sb, 1] > self.pol_bmaj: accept_array[b, sb] = False else: continue np.savetxt(self.polmosaicdir + '/accept_array.npy', accept_array) # Generate the main array for accepting the beams bacc_array = np.full(40, True, dtype=bool) badim_array = np.zeros((40)) # Count number of False for each beam and filter all beams out where more than x planes or more are bad for b in range(40): badim_array[b] = len(np.where(accept_array[b, :] == False)[0]) if badim_array[b] > self.pol_badim: bacc_array[b] = False accept_array[b, :] = False else: continue np.savetxt(self.polmosaicdir + '/badim.npy', badim_array) np.savetxt(self.polmosaicdir + '/bacc.npy', bacc_array) # Generate the array for accepting the subbands sb_acc = np.full(24, True, dtype=bool) for sb in range(24): if np.sum(accept_array[:, sb]) < np.sum(bacc_array): sb_acc[sb] = False np.savetxt(self.polmosaicdir + '/sbacc.npy', sb_acc) final_acc_arr = np.full((40, 24), True) for b in range(40): for sb in range(24): if bacc_array[b] and sb_acc[sb]: final_acc_arr[b,sb] = True else: final_acc_arr[b,sb] = False np.savetxt(self.polmosaicdir + '/final_accept.npy', final_acc_arr) return final_acc_arr def make_polmosaic(self, qimages, uimages, pbimages, sb, psf, reference=None, pbclip=None): """ Function to generate the polarisation mosaic in Q and U """ # Set the directories for the mosaicking utils.set_mosdirs(self) # Get the common psf common_psf = psf qcorrimages = [] # to mosaic ucorrimages = [] # to mosaic qpbweights = [] # of the pixels upbweights = [] # of the pixels qrmsweights = [] # of the images themself urmsweights = [] # of the images themself qfreqs = [] ufreqs = [] # weight_images = [] for qimg, uimg, pb in zip(qimages, uimages, pbimages): # prepare the images (squeeze, transfer_coordinates, reproject, regrid pbeam, correct...) with pyfits.open(qimg) as f: qimheader = f[0].header qfreqs.append(qimheader['CRVAl3']) qtg = qimheader['OBJECT'] with pyfits.open(uimg) as f: uimheader = f[0].header ufreqs.append(uimheader['CRVAl3']) utg = uimheader['OBJECT'] qimg = fm.fits_squeeze(qimg) # remove extra dimentions uimg = fm.fits_squeeze(uimg) # remove extra dimentions pb = fm.fits_transfer_coordinates(qimg, pb) # transfer_coordinates pb = fm.fits_squeeze(pb) # remove extra dimensions with pyfits.open(qimg) as f: qimheader = f[0].header qimdata = f[0].data with pyfits.open(uimg) as f: uimheader = f[0].header uimdata = f[0].data with pyfits.open(pb) as f: pbhdu = f[0] autoclip = np.nanmin(f[0].data) # reproject qreproj_arr, qreproj_footprint = reproject_interp(pbhdu, qimheader) ureproj_arr, ureproj_footprint = reproject_interp(pbhdu, uimheader) pbclip = self.pol_pbclip or autoclip print('PB is clipped at %f level', pbclip) qreproj_arr = np.float32(qreproj_arr) ureproj_arr = np.float32(ureproj_arr) qreproj_arr[qreproj_arr < pbclip] = np.nan ureproj_arr[ureproj_arr < pbclip] = np.nan qpb_regr_repr = pb.replace('.fits', '_repr.fits') upb_regr_repr = pb.replace('.fits', '_repr.fits') pyfits.writeto(qpb_regr_repr, qreproj_arr, qimheader, overwrite=True) pyfits.writeto(upb_regr_repr, ureproj_arr, uimheader, overwrite=True) # convolution with common psf qreconvolved_image = qimg.replace('.fits', '_reconv.fits') qreconvolved_image = fm.fits_reconvolve_psf(qimg, common_psf, out=qreconvolved_image) ureconvolved_image = uimg.replace('.fits', '_reconv.fits') ureconvolved_image = fm.fits_reconvolve_psf(uimg, common_psf, out=ureconvolved_image) # PB correction qpbcorr_image = qreconvolved_image.replace('_reconv.fits', '_pbcorr.fits') qpbcorr_image = fm.fits_operation(qreconvolved_image, qreproj_arr, operation='/', out=qpbcorr_image) upbcorr_image = ureconvolved_image.replace('_reconv.fits', '_pbcorr.fits') upbcorr_image = fm.fits_operation(ureconvolved_image, ureproj_arr, operation='/', out=upbcorr_image) # cropping qcropped_image = qimg.replace('.fits', '_mos.fits') qcropped_image, qcutout = fm.fits_crop(qpbcorr_image, out=qcropped_image) qcorrimages.append(qcropped_image) ucropped_image = uimg.replace('.fits', '_mos.fits') ucropped_image, ucutout = fm.fits_crop(upbcorr_image, out=ucropped_image) ucorrimages.append(ucropped_image) # primary beam weights qwg_arr = qreproj_arr - pbclip # the edges weight ~0 qwg_arr[np.isnan(qwg_arr)] = 0 # the NaNs weight 0 qwg_arr = qwg_arr / np.nanmax(qwg_arr) # normalize qwcut = Cutout2D(qwg_arr, qcutout.input_position_original, qcutout.shape) qpbweights.append(qwcut.data) uwg_arr = ureproj_arr - pbclip # the edges weight ~0 uwg_arr[np.isnan(uwg_arr)] = 0 # the NaNs weight 0 uwg_arr = uwg_arr / np.nanmax(uwg_arr) # normalize uwcut = Cutout2D(uwg_arr, ucutout.input_position_original, ucutout.shape) upbweights.append(uwcut.data) # weight the images by RMS noise over the edges ql, qm = qimdata.shape[0]//10, qimdata.shape[1]//10 qmask = np.ones(qimdata.shape, dtype=np.bool) qmask[ql:-ql,qm:-qm] = False qimg_noise = np.nanstd(qimdata[qmask]) qimg_weight = 1 / qimg_noise**2 qrmsweights.append(qimg_weight) ul, um = uimdata.shape[0]//10, uimdata.shape[1]//10 umask = np.ones(uimdata.shape, dtype=np.bool) umask[ul:-ul,um:-um] = False uimg_noise = np.nanstd(uimdata[umask]) uimg_weight = 1 / uimg_noise**2 urmsweights.append(uimg_weight) # merge the image rms weights and the primary beam pixel weights: qweights = [qp*qr/max(qrmsweights) for qp, qr in zip(qpbweights, qrmsweights)] uweights = [up * ur / max(urmsweights) for up, ur in zip(upbweights, urmsweights)] # create the wcs and footprint for the output mosaic qwcs_out, qshape_out = find_optimal_celestial_wcs(qcorrimages, auto_rotate=False, reference=reference) uwcs_out, ushape_out = find_optimal_celestial_wcs(ucorrimages, auto_rotate=False, reference=reference) qarray, qfootprint = reproject_and_coadd(qcorrimages, qwcs_out, shape_out=qshape_out, reproject_function=reproject_interp, input_weights=qweights) uarray, ufootprint = reproject_and_coadd(ucorrimages, uwcs_out, shape_out=ushape_out, reproject_function=reproject_interp, input_weights=uweights) qarray = np.float32(qarray) uarray = np.float32(uarray) # insert common PSF into the header qpsf = common_psf.to_header_keywords() qhdr = qwcs_out.to_header() qhdr.insert('RADESYS', ('FREQ', np.nanmean(qfreqs))) qhdr.insert('RADESYS', ('BMAJ', qpsf['BMAJ'])) qhdr.insert('RADESYS', ('BMIN', qpsf['BMIN'])) qhdr.insert('RADESYS', ('BPA', qpsf['BPA'])) upsf = common_psf.to_header_keywords() uhdr = qwcs_out.to_header() uhdr.insert('RADESYS', ('FREQ', np.nanmean(ufreqs))) uhdr.insert('RADESYS', ('BMAJ', upsf['BMAJ'])) uhdr.insert('RADESYS', ('BMIN', upsf['BMIN'])) uhdr.insert('RADESYS', ('BPA', upsf['BPA'])) pyfits.writeto(self.polmosaicdir + '/' + str(qtg).upper() + '_' + str(sb).zfill(2) + '_Q.fits', data=qarray, header=qhdr, overwrite=True) pyfits.writeto(self.polmosaicdir + '/' + str(utg).upper() + '_' + str(sb).zfill(2) + '_U.fits', data=uarray, header=uhdr, overwrite=True) utils.clean_polmosaic_tmp_data(self, sb) def make_polcubes(self): """ Function to generate the cubes in Q and U from the polarisation mosaics """ # Set the directories for the mosaicking utils.set_mosdirs(self) # Get the fits files Qmoss = sorted(glob.glob(self.polmosaicdir + '/*_[0-9][0-9]_Q.fits')) Umoss = sorted(glob.glob(self.polmosaicdir + '/*_[0-9][0-9]_U.fits')) # Check if the same number of mosaics is available for Q and U Qmoss_chk = [] Umoss_chk = [] for qchk in Qmoss: qnew = qchk.replace('_Q','') Qmoss_chk.append(qnew) for uchk in Umoss: unew = uchk.replace('_U','') Umoss_chk.append(unew) if Qmoss_chk == Umoss_chk: pass else: print('Different number of Q and U mosaics. Cannot generate cubes!') sys.exit() # Find the smallest mosaic image allim = sorted(Qmoss + Umoss) naxis1 = [] naxis2 = [] for mos in allim: with pyfits.open(mos) as m: imheader = m[0].header naxis1.append(imheader['NAXIS1']) naxis2.append(imheader['NAXIS2']) impix = np.array(naxis1) * np.array(naxis2) smim = allim[np.argmin(impix)] # Reproject the rest of the images to this one # Load the header of the reference image hduref = pyfits.open(smim)[0] hduref_hdr = hduref.header # Reproject the other images to the reference for image in allim: hdu = pyfits.open(image)[0] hdu_hdr = hdu.header hduref_hdr['FREQ'] = hdu_hdr['FREQ'] repr_image = reproject_interp(hdu, hduref_hdr, return_footprint=False) pyfits.writeto(image.replace('.fits','_repr.fits'), repr_image, hduref_hdr, overwrite=True) # Generate a mask to limit the valid area for all images to the largest common valid one allreprims = sorted(glob.glob(self.polmosaicdir + '/*_repr.fits')) nall = len(allreprims) # Generate an array for all the images alldata = np.full((nall, hduref_hdr['NAXIS2'], hduref_hdr['NAXIS1']), np.nan) for i, image in enumerate(allreprims): hdu = pyfits.open(image)[0] hdu_data = hdu.data alldata[i,:,:] = hdu_data # Generate the mask immask = np.sum(alldata, axis=0) immask[np.isfinite(immask)] = 1.0 # Apply the mask for m, mimage in enumerate(allreprims): mhdu = pyfits.open(mimage)[0] mhdu_data = mhdu.data mhdu_hdr = mhdu.header mdata = mhdu_data*immask pyfits.writeto(mimage.replace('_repr.fits','_mask.fits'), mdata, mhdu_hdr, overwrite=True) # Finally create the frequency image cubes qfinimages = sorted(glob.glob(self.polmosaicdir + '/*Q_mask.fits')) ufinimages = sorted(glob.glob(self.polmosaicdir + '/*U_mask.fits')) nq = len(qfinimages) nu = len(ufinimages) qdata = np.full((nq, hduref_hdr['NAXIS2'], hduref_hdr['NAXIS1']), np.nan) udata = np.full((nu, hduref_hdr['NAXIS2'], hduref_hdr['NAXIS1']), np.nan) freqs = [] # Generate the Q cube for q, qim in enumerate(qfinimages): qhdu = pyfits.open(qim)[0] qhdu_data = qhdu.data qhdu_hdr = qhdu.header freqs.append(qhdu_hdr['FREQ']) qdata[q,:,:] = qhdu_data qhdu_hdr.insert('NAXIS2', ('NAXIS3', len(qfinimages)), after=True) qhdu_hdr.insert('CTYPE2', ('CRPIX3', 1.0), after=True) qhdu_hdr.insert('CRPIX3', ('CDELT3', 6250000.0), after=True) qhdu_hdr.insert('CDELT3', ('CRVAL3', freqs[0]), after=True) qhdu_hdr.insert('CRVAL3', ('CTYPE3', 'FREQ-OBS'), after=True) pyfits.writeto(self.polmosaicdir + '/Qcube.fits', np.float32(qdata), qhdu_hdr, overwrite=True) # Write the frequency file with open(self.polmosaicdir + '/freq.txt', 'w') as f: for item in freqs: f.write("%s\n" % item) # Generate the U cube for u, uim in enumerate(ufinimages): uhdu = pyfits.open(uim)[0] uhdu_data = uhdu.data uhdu_hdr = uhdu.header udata[u,:,:] = uhdu_data uhdu_hdr.insert('NAXIS2', ('NAXIS3', len(ufinimages)), after=True) uhdu_hdr.insert('CTYPE2', ('CRPIX3', 1.0), after=True) uhdu_hdr.insert('CRPIX3', ('CDELT3', 6250000.0), after=True) uhdu_hdr.insert('CDELT3', ('CRVAL3', freqs[0]), after=True) uhdu_hdr.insert('CRVAL3', ('CTYPE3', 'FREQ-OBS'), after=True) pyfits.writeto(self.polmosaicdir + '/Ucube.fits', np.float32(udata), uhdu_hdr, overwrite=True) # Write a file with the central coordinates of each pointing used coord_arr =
np.full((40,3), np.nan)
numpy.full
# coding: utf-8 # In[2]: import numpy as np import pandas as pd import gseapy as gp import logging, sys # In[3]: np.seterr(divide='ignore') print("GSEApy version: %s"%gp.__version__) # In[15]: # identical function with gseapy.algorithm.enrichment_score_tensor def enrichment_score_tensor(gene_mat, cor_mat, gene_sets, weighted_score_type, nperm=1000, scale=False, single=False, rs=np.random.RandomState()): """Next generation algorithm of GSEA and ssGSEA. :param gene_mat: the ordered gene list(vector) or gene matrix. :param cor_mat: correlation vector or matrix (e.g. signal to noise scores) corresponding to the genes in the gene list or matrix. :param dict gene_sets: gmt file dict. :param float weighted_score_type: weighting by the correlation. options: 0(classic), 1, 1.5, 2. default:1 for GSEA and 0.25 for ssGSEA. :param int nperm: permutation times. :param bool scale: If True, normalize the scores by number of genes_mat. :param bool single: If True, use ssGSEA algorithm, otherwise use GSEA. :param rs: Random state for initialize gene list shuffling. Default: np.random.RandomState(seed=None) :return: ES: Enrichment score (real number between -1 and +1), it's true for ssGSEA, only scaled ESNULL: Enrichment score calculated from random permutation Hits_Indices: Indices of genes if genes are included in gene_set. RES: Numerical vector containing the running enrichment score for all locations in the gene list . """ # gene_mat -> 1d: prerank, ssSSEA or 2d: GSEA keys = sorted(gene_sets.keys()) if weighted_score_type == 0: # don't bother doing calcuation, just set to 1 cor_mat = np.ones(cor_mat.shape) elif weighted_score_type > 0: pass else: logging.error("Using negative values of weighted_score_type, not allowed") sys.exit(0) cor_mat = np.abs(cor_mat) if cor_mat.ndim ==1: # ssGSEA or Prerank #genestes->M, genes->N, perm-> axis=2 N, M = len(gene_mat), len(keys) # generate gene hits matrix # for 1d ndarray of gene_mat, set assume_unique=True, # means the input arrays are both assumed to be unique, # which can speed up the calculation. tag_indicator = np.vstack([np.in1d(gene_mat, gene_sets[key], assume_unique=True) for key in keys]) # index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in tag_indicator ] # generate permutated hits matrix perm_tag_tensor = np.repeat(tag_indicator, nperm+1).reshape((M,N,nperm+1)) # shuffle matrix, last matrix is not shuffled when nperm > 0 if nperm: np.apply_along_axis(lambda x: np.apply_along_axis(rs.shuffle,0,x),1, perm_tag_tensor[:,:,:-1]) # missing hits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,np.newaxis])** weighted_score_type elif cor_mat.ndim == 2: # GSEA # 2d ndarray, gene_mat and cor_mat are shuffled already # reshape matrix cor_mat, gene_mat = cor_mat.T, gene_mat.T # genestes->M, genes->N, perm-> axis=2 # don't use assume_unique=True in 2d array when use np.isin(). # elements in gene_mat are not unique, or will cause unwanted results perm_tag_tensor = np.stack([np.isin(gene_mat, gene_sets[key]) for key in keys], axis=0) #index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in perm_tag_tensor[:,:,-1] ] # nohits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,:])** weighted_score_type else: logging.error("Program die because of unsupported input") sys.exit(0) # Nhint = tag_indicator.sum(1) # Nmiss = N - Nhint axis=1 P_GW_denominator = np.sum(rank_alpha, axis=axis, keepdims=True) P_NG_denominator = np.sum(no_tag_tensor, axis=axis, keepdims=True) REStensor = np.cumsum(rank_alpha / P_GW_denominator - no_tag_tensor / P_NG_denominator, axis=axis) # ssGSEA: scale es by gene numbers ? # https://gist.github.com/gaoce/39e0907146c752c127728ad74e123b33 if scale: REStensor = REStensor / len(gene_mat) if single: #ssGSEA esmatrix = np.sum(REStensor, axis=axis) else: #GSEA esmax, esmin = REStensor.max(axis=axis), REStensor.min(axis=axis) esmatrix = np.where(np.abs(esmax)>np.abs(esmin), esmax, esmin) es, esnull, RES = esmatrix[:,-1], esmatrix[:,:-1], REStensor[:,:,-1] return es, esnull, hit_ind, RES # In[16]: gex = pd.read_table("./data/testSet_rand1200.gct", comment='#', index_col=0) # In[18]: gmt = gp.parser.gsea_gmt_parser("./data/randomSets.gmt") # In[24]: df = pd.DataFrame(index=sorted(gmt.keys())) rs =
np.random.RandomState(0)
numpy.random.RandomState
#encoding: utf-8 import copy import numpy as np def count_star(A,N,neiN,motif,edge_adj): print('开始搜索motif: ',motif) n=0 a=copy.copy(A) for i in range(N): if (np.sum(a[i])>neiN-1): #print('{} star center is {}'.format(motif,i)) n+=1 edge_num = neiN while edge_num > 0: for k in range(len(a[i])): if a[i][k] >0: edge_adj[i][k] += str(motif) edge_adj[k][i] += str(motif) edge_num -= 1 for j in range(i): a[N-j-1][i]=0 x=np.nonzero(a[i]) nei_Index=x[0][:neiN] a[i].fill(0) for j in nei_Index: a[j].fill(0) for k in range(N): a[k][j]=0 return n def count_star_5and8(A,nodN,edge_adj): n_motif5=0 n_motif8=0 for i in range(nodN): x0 = np.nonzero(A[i]) x=x0[0] degree=len(x) if degree<3: continue for a_3 in range(degree-2): for b_3 in range(a_3+1,degree-1): for c_3 in range(b_3+1,degree): n_motif5+=1 #print('star 5 center {} to {} {} {}'.format(i,x[a_3],x[b_3],x[c_3])) edge_adj[i][x[a_3]] += '5' edge_adj[x[a_3]][i] += '5' edge_adj[i][x[b_3]] += '5' edge_adj[x[b_3]][i] += '5' edge_adj[i][x[c_3]] += '5' edge_adj[x[c_3]][i] += '5' if degree>=4: for a_4 in range(degree-3): for b_4 in range(a_4+1,degree-2): for c_4 in range(b_4+1,degree-1): for d_4 in range(c_4+1,degree): n_motif8+=1 #print('star 8 center {} to {} {} {} {}'.format(i, x[a_4], x[b_4], x[c_4],x[d_4])) edge_adj[i][x[a_4]] += '8' edge_adj[x[a_4]][i] += '8' edge_adj[i][x[b_4]] += '8' edge_adj[x[b_4]][i] += '8' edge_adj[i][x[c_4]] += '8' edge_adj[x[c_4]][i] += '8' edge_adj[i][x[d_4]] += '8' edge_adj[x[d_4]][i] += '8' return n_motif5,n_motif8 def find_next_2(a,N,i,rest,stack,motif,edge_adj,n): if rest==0: #print('当前搜索完成!',stack) for j in range(len(stack)-1): edge_adj[stack[j]][stack[j+1]]+=str(motif) edge_adj[stack[j+1]][stack[j]] += str(motif) return n+1 else: if np.sum(a[i])>0: x =
np.nonzero(a[i])
numpy.nonzero
# ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ # MIT License # # Copyright (c) 2022 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~ import numpy as np from tqdm import tqdm from disent.util.inout.files import AtomicSaveFile # ========================================================================= # # Save Numpy Files # # ========================================================================= # def save_dataset_array(array: np.ndarray, out_file: str, overwrite: bool = False, save_key: str = 'images'): assert array.ndim == 4, f'invalid array shape, got: {array.shape}, must be: (N, H, W, C)' assert array.dtype == 'uint8', f'invalid array dtype, got: {array.dtype}, must be: "uint8"' # save the data with AtomicSaveFile(out_file, overwrite=overwrite) as temp_file:
np.savez_compressed(temp_file, **{save_key: array})
numpy.savez_compressed
""" QTNM base field module. Provides the abstract classes, QtnmBaseField and QtnmBaseSolver. New concrete implementations of this class should be compatible with other python code within the Electron-Tracking package. """ from abc import ABC, abstractmethod import numpy as np import matplotlib.pyplot as plt from scipy.constants import electron_mass as me, elementary_charge as qe from scipy.integrate import solve_ivp from utils import calculate_omega class QtnmBaseSolver(ABC): def __init__(self, charge=-qe, mass=me, b_field=1.0, calc_b_field=None): self.mass = mass self.charge = charge self.b_field = b_field self.calc_b_field = calc_b_field if calc_b_field is not None: # Handle cases where calc_b_field returns a single component if np.size(calc_b_field(0, 0, 0)) == 1: self.calc_b_field = lambda x, y, z: \ np.array([0.0, 0.0, calc_b_field(x, y, z)]) # If calc_b_field not provided, assume constant field, and store omega if calc_b_field is None: omega0 = calculate_omega(b_field, mass=mass, charge=charge) if np.size(omega0) == 3: self.omega0 = omega0 elif np.size(omega0) == 1: self.omega0 = np.array([0, 0, omega0], dtype=float) else: raise ValueError('Calculate omega returned erroneous size') def get_omega(self, pos=np.zeros(3)): """ Calculate omega as a function of position """ # Use pre-calculated value if possible if self.calc_b_field is None: return self.omega0 bfield = self.calc_b_field(pos[0], pos[1], pos[2]) return calculate_omega(bfield, mass=self.mass, charge=self.charge, energy=0.0) @abstractmethod def rhs(self, t, x): """ Return RHS of equation as a function of time(t) and x(vars solved for) """ @abstractmethod def rhs_1d(self, t, x): """ Return RHS of equation as a function of time(t) and x(vars solved for), assuming a one dimensional B-field (in z-direction) """ def analytic_solution(self, time, x0=np.array([1.0, 0.0, 0.0]), v0=np.array([0.0, 1.0, 0.0])): """ Return analytic solution as a function of time , assuming a uniform field """ return None def analytic_solution_1d(self, time, x0=np.array([1.0, 0.0, 0.0]), v0=
np.array([0.0, 1.0, 0.0])
numpy.array
import cmsisdsp as dsp import numpy as np from numpy.testing import assert_allclose from scipy.stats import entropy,tstd, tvar from scipy.special import logsumexp from scipy.linalg import cholesky,ldl,solve_triangular from scipy import signal def imToReal1D(a): ar=np.zeros(np.array(a.shape) * 2) ar[0::2]=a.real ar[1::2]=a.imag return(ar) def realToIm1D(ar): return(ar[0::2] + 1j * ar[1::2]) print("Max and AbsMax") a=np.array([1.,-3.,4.,0.,-10.,8.]) i=dsp.arm_absmax_no_idx_f32(a) print(i) assert i==10.0 i=dsp.arm_absmax_no_idx_f64(a) print(i) assert i==10.0 r,i=dsp.arm_absmax_f64(a) assert i==4 assert r==10.0 r,i=dsp.arm_max_f64(a) assert i==5 assert r==8.0 i=dsp.arm_max_no_idx_f32(a) print(i) assert i==8 i=dsp.arm_max_no_idx_f64(a) print(i) assert i==8 print("Min and AbsMin") a=np.array([1.,-3.,4.,0.5,-10.,8.]) i=dsp.arm_absmin_no_idx_f32(a) print(i) assert i==0.5 i=dsp.arm_absmin_no_idx_f64(a) print(i) assert i==0.5 r,i=dsp.arm_absmin_f64(a) assert i==3 assert r==0.5 r,i=dsp.arm_min_f64(a) assert i==4 assert r==-10 i=dsp.arm_min_no_idx_f32(a) print(i) assert i==-10 i=dsp.arm_min_no_idx_f64(a) print(i) assert i==-10 print("Barycenter") a=[0] * 12 w=np.array([[2] * 12]) w[0,11]=3 a[0] =[0., 0., -0.951057] a[1] =[0., 0., 0.951057] a[2] =[-0.850651, 0., -0.425325] a[3] =[0.850651, 0., 0.425325] a[4] =[0.688191, -0.5, -0.425325] a[5] =[0.688191, 0.5, -0.425325] a[6] =[-0.688191, -0.5, 0.425325] a[7] =[-0.688191, 0.5, 0.425325] a[8] =[-0.262866, -0.809017, -0.425325] a[9] =[-0.262866, 0.809017, -0.425325] a[10]=[0.262866, -0.809017, 0.425325] a[11]=[0.262866, 0.809017, 0.425325] scaled=a * w.T ref=np.sum(scaled,axis=0)/np.sum(w) print(ref) result=dsp.arm_barycenter_f32(np.array(a).reshape(12*3),w.reshape(12),12,3) print(result) assert_allclose(ref,result,1e-6) print("Weighted sum") nb=10 s = np.random.randn(nb) w = np.random.randn(nb) ref=np.dot(s,w)/np.sum(w) print(ref) res=dsp.arm_weighted_sum_f32(s,w) print(res) assert_allclose(ref,res,2e-5) print("Entropy") s = np.abs(np.random.randn(nb)) s = s / np.sum(s) ref=entropy(s) print(ref) res=dsp.arm_entropy_f32(s) print(res) assert_allclose(ref,res,1e-6) res=dsp.arm_entropy_f64(s) print(res) assert_allclose(ref,res,1e-10) print("Kullback-Leibler") sa = np.abs(np.random.randn(nb)) sa = sa / np.sum(sa) sb = np.abs(np.random.randn(nb)) sb = sb / np.sum(sb) ref=entropy(sa,sb) print(ref) res=dsp.arm_kullback_leibler_f32(sa,sb) print(res) assert_allclose(ref,res,1e-6) res=dsp.arm_kullback_leibler_f64(sa,sb) print(res) assert_allclose(ref,res,1e-10) print("Logsumexp") s = np.abs(np.random.randn(nb)) s = s / np.sum(s) ref=logsumexp(s) print(ref) res=dsp.arm_logsumexp_f32(s) print(res) assert_allclose(ref,res,1e-6) print("Logsumexp dot prod") sa = np.abs(np.random.randn(nb)) sa = sa / np.sum(sa) sb = np.abs(np.random.randn(nb)) sb = sb / np.sum(sb) d = 0.001 # It is a proba so must be in [0,1] # But restricted to ]d,1] so that the log exists sa = (1-d)*sa + d sb = (1-d)*sb + d ref=np.log(np.dot(sa,sb)) print(ref) sa = np.log(sa) sb = np.log(sb) res=dsp.arm_logsumexp_dot_prod_f32(sa,sb) print(res) assert_allclose(ref,res,3e-6) print("vexp") sa = np.random.randn(nb) ref = np.exp(sa) print(ref) res=dsp.arm_vexp_f32(sa) print(res) assert_allclose(ref,res,1e-6) res=dsp.arm_vexp_f64(sa) print(res) assert_allclose(ref,res,1e-10) print("vlog") sa = np.abs(np.random.randn(nb)) + 0.001 ref = np.log(sa) print(ref) res=dsp.arm_vlog_f32(sa) print(res) assert_allclose(ref,res,2e-5,1e-5) res=dsp.arm_vlog_f64(sa) print(res) assert_allclose(ref,res,2e-9,1e-9) print("Cholesky") a=np.array([[4,12,-16],[12,37,-43],[-16,-43,98]]) ref=cholesky(a,lower=True) print(ref) status,res=dsp.arm_mat_cholesky_f32(a) print(res) assert_allclose(ref,res,1e-6,1e-6) status,res=dsp.arm_mat_cholesky_f64(a) print(res) assert_allclose(ref,res,1e-10,1e-10) print("LDLT") def swaprow(m,k,j): tmp = np.copy(m[j,:]) m[j,:] = np.copy(m[k,:]) m[k,:] = tmp return(m) # F32 test status,resl,resd,resperm=dsp.arm_mat_ldlt_f32(a) n=3 p=np.identity(n) for k in range(0,n): p = swaprow(p,k,resperm[k]) res=resl.dot(resd).dot(resl.T) permutedSrc=p.dot(a).dot(p.T) print(res) print(permutedSrc) assert_allclose(permutedSrc,res,1e-5,1e-5) # F64 test print("LDLT F64") status,resl,resd,resperm=dsp.arm_mat_ldlt_f64(a) n=3 p=np.identity(n) for k in range(0,n): p = swaprow(p,k,resperm[k]) res=resl.dot(resd).dot(resl.T) permutedSrc=p.dot(a).dot(p.T) print(res) print(permutedSrc) assert_allclose(permutedSrc,res,1e-9,1e-9) print("Solve lower triangular") a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) b = np.array([[4,2,4,2],[8,4,8,4]]).T x = solve_triangular(a, b,lower=True) print(a) print(b) print(x) b = np.array([[4,2,4,2],[8,4,8,4]]).T status,res=dsp.arm_mat_solve_lower_triangular_f32(a,b) print(res) assert_allclose(x,res,1e-5,1e-5) b = np.array([[4,2,4,2],[8,4,8,4]]).T status,res=dsp.arm_mat_solve_lower_triangular_f64(a,b) print(res) assert_allclose(x,res,1e-9,1e-9) print("Solve upper triangular") a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) b = np.array([[4,2,4,2],[8,4,8,4]]).T x = solve_triangular(a.T, b,lower=False) print(a.T) print(b) print(x) b = np.array([[4,2,4,2],[8,4,8,4]]).T status,res=dsp.arm_mat_solve_upper_triangular_f32(a.T,b) print(res) assert_allclose(x,res,1e-5,1e-5) b = np.array([[4,2,4,2],[8,4,8,4]]).T status,res=dsp.arm_mat_solve_upper_triangular_f64(a.T,b) print(res) assert_allclose(x,res,1e-9,1e-9) print("Mat mult f64") a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) b = np.array([[4,2,4,2],[8,4,8,4]]).T ref =a.dot(b) print(ref) status,res = dsp.arm_mat_mult_f64(a,b) print(res) assert_allclose(ref,res,1e-10,1e-10) print("mat sub f64") a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) b = a.T ref = a - b print(ref) status,res = dsp.arm_mat_sub_f64(a,b) print(res) assert_allclose(ref,res,1e-10,1e-10) print("abs f64") s = np.random.randn(nb) ref = np.abs(s) res=dsp.arm_abs_f64(s) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("add f64") sa = np.random.randn(nb) sb = np.random.randn(nb) ref = sa + sb res=dsp.arm_add_f64(sa,sb) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("sub f64") sa = np.random.randn(nb) sb = np.random.randn(nb) ref = sa - sb res=dsp.arm_sub_f64(sa,sb) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("dot prod f64") sa = np.random.randn(nb) sb = np.random.randn(nb) ref = sa.dot(sb) res=dsp.arm_dot_prod_f64(sa,sb) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("mult f64") sa = np.random.randn(nb) sb = np.random.randn(nb) ref = sa * sb res=dsp.arm_mult_f64(sa,sb) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("negate f64") sa = np.random.randn(nb) ref = -sa res=dsp.arm_negate_f64(sa) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("offset f64") sa = np.random.randn(nb) ref = sa + 0.1 res=dsp.arm_offset_f64(sa,0.1) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("scale f64") sa = np.random.randn(nb) ref = sa * 0.1 res=dsp.arm_scale_f64(sa,0.1) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("mean f64") sa = np.random.randn(nb) ref = np.mean(sa) res=dsp.arm_mean_f64(sa) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("power f64") sa = np.random.randn(nb) ref = np.sum(sa * sa) res=dsp.arm_power_f64(sa) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("std f64") sa = np.random.randn(nb) ref = tstd(sa) res=dsp.arm_std_f64(sa) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("variance f64") sa = np.random.randn(nb) ref = tvar(sa) res=dsp.arm_var_f64(sa) print(ref) print(res) assert_allclose(ref,res,1e-10,1e-10) print("fill f64") nb=20 ref = np.ones(nb)*4.0 res = dsp.arm_fill_f64(4.0,nb)
assert_allclose(ref,res,1e-10,1e-10)
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- ''' author: ysoftman python version : 3.x desc : 미분, 기울기(gradient) 함수 ''' # pip3 install numpy matplotlib import numpy as np import matplotlib.pylab as plt # for 3d graph from mpl_toolkits.mplot3d import axes3d from activation_function import graph # 수치 미분 # 함수f에서 임의 x 위치에서 변화량으로 미분에 근사한 값을 구한다. def numerical_differentiation(f, x): h = 1e-4 # 0.001 더 작으면 파이썬에 0으로 취급된다. # 함수 f 위에 x+h(시간 또는 거리)와 x-h 두점을 기준으로 접선(변화량)을 계산 return (f(x + h) - f(x - h)) / (2 * h) def function_1(x): return 0.01 * x**2 + 0.1 * x def function_2(x): return x[0]**2 + x[1]**2 def function_3(x): if x.ndim == 1: return np.sum(x**2) else: return np.sum(x**2, axis=1) def function_4(x1): return x1**2 + 4.0**2 def function_5(x2): return 3.0**2 + x2**2 # 기울기 구하기 def numerical_gradient(f, x): h = 1e-4 # 0.001 더 작으면 파이썬에 0으로 취급된다. grad =
np.zeros_like(x)
numpy.zeros_like
# -*- coding: utf-8 -*- """ Created on Thu May 31 16:02:02 2018 @author: gregz """ import matplotlib matplotlib.use('agg') import argparse as ap import matplotlib.pyplot as plt import numpy as np import os.path as op import sys import cosmics from astropy.convolution import Gaussian2DKernel, Gaussian1DKernel, convolve from astropy.io import fits from astropy.modeling.fitting import LevMarLSQFitter from astropy.modeling.models import Moffat2D from astropy.table import Table from astropy.visualization import AsinhStretch from astropy.visualization.mpl_normalize import ImageNormalize from copy import copy from fiber_utils import bspline_x0 from input_utils import setup_logging from photutils import detect_sources from reducelrs2 import ReduceLRS2 from scipy.interpolate import interp1d from scipy.signal import savgol_filter from sklearn.gaussian_process.kernels import Matern, WhiteKernel from sklearn.gaussian_process.kernels import ConstantKernel from sklearn.gaussian_process import GaussianProcessRegressor from utils import biweight_location, biweight_midvariance from wave_utils import get_new_wave, get_red_wave, get_single_shift def get_script_path(): return op.dirname(op.realpath(sys.argv[0])) DIRNAME = get_script_path() parser = ap.ArgumentParser(add_help=True) parser.add_argument("-f", "--filename", help='''Filename that contains list of files''', type=str, default=None) parser.add_argument("-s", "--side", help='''blue for LRS2-B and red for LRS2-R''', type=str, default='blue') parser.add_argument("-rc", "--recalculate_wavelength", help='''recalculate_wavelength''', action="count", default=0) parser.add_argument("-em", "--emission", help='''Find emission line object?''', action="count", default=0) parser.add_argument("-es", "--extract_side", help='''blue for LRS2-B and red for LRS2-R''', type=str, default='orange') parser.add_argument("-we", "--wave_extract", help='''blue for LRS2-B and red for LRS2-R''', type=float, default=None) args = parser.parse_args(args=None) args.log = setup_logging('combine_amp_reductions') attrs = ['filename', 'side'] for attr in attrs: if getattr(args, attr) is None: args.log.error('Need a "--%s" argument.' % attr) sys.exit(1) args.side = args.side.lower() def make_avg_spec(wave, spec, binsize=35, knots=None): if knots is None: knots = wave.shape[1] ind = np.argsort(wave.ravel()) N, D = wave.shape wchunks = np.array_split(wave.ravel()[ind], N * D / binsize) schunks = np.array_split(spec.ravel()[ind], N * D / binsize) nwave = np.array([np.mean(chunk) for chunk in wchunks]) B, c = bspline_x0(nwave, nknots=knots) nspec = np.array([biweight_location(chunk) for chunk in schunks]) sol = np.linalg.lstsq(c, nspec)[0] smooth = np.dot(c, sol) nwave, nind = np.unique(nwave, return_index=True) return nwave, smooth[nind] def safe_division(num, denom, eps=1e-8, fillval=0.0): good = np.isfinite(denom) * (np.abs(denom) > eps) div = num * 0. if num.ndim == denom.ndim: div[good] = num[good] / denom[good] div[~good] = fillval else: div[:, good] = num[:, good] / denom[good] div[:, ~good] = fillval return div def rectify(wave, spec, lims, fac=2.5): N, D = wave.shape rect_wave = np.linspace(lims[0], lims[1], int(D*fac)) rect_spec = np.zeros((N, len(rect_wave))) for i in np.arange(N): dw = np.diff(wave[i]) dw = np.hstack([dw[0], dw]) I = interp1d(wave[i], spec[i] / dw, kind='quadratic', bounds_error=False, fill_value=-999.) rect_spec[i, :] = I(rect_wave) return rect_wave, rect_spec def gather_sn_fibers(fibconv, noise, cols): hightolow = np.argsort(np.median(fibconv[:, cols], axis=1))[::-1] s = 0. ss = np.zeros((len(cols),)) nn = noise[cols] inds = [] for ind in hightolow: news = fibconv[ind, cols] + ss newn = np.sqrt(nn**2 + noise[cols]**2) rat = np.median(news / newn) if rat > (s+0.5): nn = newn ss = news s = rat inds.append(ind) else: continue return inds, s def find_centroid(image, x, y, B): G = Moffat2D() G.alpha.value = 3.5 G.alpha.fixed = True fit = LevMarLSQFitter()(G, x, y, image) signal_to_noise = fit.amplitude.value / biweight_midvariance(image) d = np.sqrt((x - fit.x_0.value)**2 + (y - fit.y_0.value)**2) ratio = fit(x, y) / B ind = np.argsort(ratio) dthresh = np.interp(.01, ratio[ind], d[ind]) return (fit.x_0.value, fit.y_0.value, fit.alpha.value, fit.gamma.value, fit.fwhm, signal_to_noise, dthresh) def build_weight_matrix(x, y, sig=1.5): d = np.sqrt((x - x[:, np.newaxis])**2 + (y - y[:, np.newaxis])**2) G =
np.exp(-0.5 * (d / sig)**2)
numpy.exp
# -*- coding: UTF-8 -*- """ @version: 2.0 @author: Jonah @file: features.py @Created time: 2020/12/15 00:00 @Last Modified: 2021/12/24 21:59 """ from plot_format import plot_norm from collections import Counter import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import math import time from tqdm import tqdm import array import csv import sqlite3 from kmeans import KernelKMeans, ICA from utils import * from wave_freq import * import warnings from matplotlib.pylab import mpl from plotwindow import PlotWindow from scipy.signal import savgol_filter warnings.filterwarnings("ignore") mpl.rcParams['axes.unicode_minus'] = False #显示负号 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' class Features: def __init__(self, color_1, color_2, time, trai, status, output, device): self.color_1 = color_1 self.color_2 = color_2 self.Time = time self.TRAI = trai self.convert = lambda x, a, b: pow(x, a) * pow(10, b) self.status = status self.output = output self.device = device def __cal_linear_interval(self, tmp, interval): """ Take the linear interval to get the first number in each order and the interval between grids :param tmp: Energy/Amplitude/Duration in order of magnitude :param interval: Number of bins in each order of magnitude :return: """ tmp_max = int(max(tmp)) tmp_min = int(min(tmp)) mid = [] if tmp_min <= 0: inter = [0] + [pow(10, i) for i in range(len(str(tmp_max)))] else: inter = [pow(10, i) for i in range(len(str(tmp_min)) - 1, len(str(tmp_max)))] for idx in range(len(inter)): try: mid.extend([(inter[idx + 1] - inter[idx]) / interval]) except IndexError: mid.extend([9 * inter[idx] / interval]) return inter, mid def __cal_log_interval(self, tmp): """ Take the logarithmic interval to get the first number in each order :param tmp: Energy/Amplitude/Duration in order of magnitude :return: """ tmp_min = math.floor(np.log10(min(tmp))) tmp_max = math.ceil(np.log10(max(tmp))) inter = [i for i in range(tmp_min, tmp_max + 1)] return inter def __cal_negtive_interval(self, res, interval): """ :param res: :param interval: :return: """ tmp = sorted(np.array(res)) tmp_min, tmp_max = math.floor(np.log10(min(tmp))), math.ceil(np.log10(max(tmp))) inter = [pow(10, i) for i in range(tmp_min, tmp_max + 1)] mid = [interval * pow(10, i) for i in range(tmp_min + 1, tmp_max + 2)] return inter, mid def __cal_linear(self, tmp, inter, mid, interval_num, idx=0): """ Calculate the probability density value at linear interval :param tmp: Energy/Amplitude/Duration in order of magnitude :param inter: The first number of each order of magnitude :param mid: Bin spacing per order of magnitude :param interval_num: Number of bins divided in each order of magnitude :param idx: :return: """ # 初始化横坐标 x = np.array([]) for i in inter: if i != 0: x = np.append(x, np.linspace(i, i * 10, interval_num, endpoint=False)) else: x = np.append(x, np.linspace(i, 1, interval_num, endpoint=False)) # 初始化纵坐标 y = np.zeros(x.shape[0]) for i, n in Counter(tmp).items(): while True: try: if x[idx] <= i < x[idx + 1]: y[idx] += n break except IndexError: if x[idx] <= i: y[idx] += n break idx += 1 # 对横坐标作进一步筛选,计算概率分布值 x, y = x[y != 0], y[y != 0] xx = np.zeros(x.shape[0]) yy = y / sum(y) # 取区间终点作为该段的横坐标 for idx in range(len(x) - 1): xx[idx] = (x[idx] + x[idx + 1]) / 2 xx[-1] = x[-1] + pow(10, len(str(int(x[-1])))) * (0.9 / interval_num) / 2 # 计算分段区间长度,从而求得概率密度值 interval = [] for i, j in enumerate(mid): try: # num = len(np.intersect1d(np.where(inter[i] <= xx)[0], # np.where(xx < inter[i + 1])[0])) num = len(np.where((inter[i] <= xx) & (xx < inter[i + 1]))[0]) interval.extend([j] * num) except IndexError: num = len(np.where(inter[i] <= xx)[0]) interval.extend([j] * num) yy = yy / np.array(interval) # # 取对数变换为线性关系 # log_xx = np.log10(xx) # log_yy = np.log10(yy) # fit = np.polyfit(log_xx, log_yy, 1) # alpha = abs(fit[0]) # fit_x = np.linspace(min(log_xx), max(log_xx), 100) # fit_y = np.polyval(fit, fit_x) return xx, yy def __cal_log(self, tmp, inter, interval_num, idx=0): """ Calculate the probability density value at logarithmic interval :param tmp: Energy/Amplitude/Duration in order of magnitude :param inter: The first number of each order of magnitude :param interval_num: Number of bins divided in each order of magnitude :param idx: :return: """ x, xx, interval = np.array([]), np.array([]), np.array([]) for i in inter: logspace = np.logspace(i, i + 1, interval_num, endpoint=False) tmp_inter = [logspace[i + 1] - logspace[i] for i in range(len(logspace) - 1)] tmp_xx = [(logspace[i + 1] + logspace[i]) / 2 for i in range(len(logspace) - 1)] tmp_inter.append(10 * logspace[0] - logspace[-1]) tmp_xx.append((10 * logspace[0] + logspace[-1]) / 2) x = np.append(x, logspace) interval = np.append(interval, np.array(tmp_inter)) xx = np.append(xx, np.array(tmp_xx)) y = np.zeros(x.shape[0]) for i, n in Counter(tmp).items(): while True: try: if x[idx] <= i < x[idx + 1]: y[idx] += n break except IndexError: if x[idx] <= i: y[idx] += n break idx += 1 xx, y, interval = xx[y != 0], y[y != 0], interval[y != 0] yy = y / (sum(y) * interval) return xx, yy def __cal_N_Naft(self, tmp, eny_lim): N_ms, N_as = 0, 0 main_peak = np.where(eny_lim[0] < tmp)[0] if len(main_peak): for i in range(main_peak.shape[0] - 1): if main_peak[i] >= eny_lim[1]: continue elif main_peak[i + 1] - main_peak[i] == 1: N_ms += tmp[main_peak[i]] continue N_ms += tmp[main_peak[i]] N_as += np.max(tmp[main_peak[i] + 1:main_peak[i + 1]]) if main_peak[-1] < tmp.shape[0] - 1: N_as += np.max(tmp[main_peak[-1] + 1:]) N_ms += tmp[main_peak[-1]] return N_ms + N_as, N_as def __cal_OmiroLaw_helper(self, tmp, eny_lim): res = [[] for _ in range(len(eny_lim))] for idx in range(len(eny_lim)): main_peak = np.where((eny_lim[idx][0] < tmp) & (tmp < eny_lim[idx][1]))[0] if len(main_peak): for i in range(main_peak.shape[0] - 1): for j in range(main_peak[i] + 1, main_peak[i + 1] + 1): if tmp[j] < eny_lim[idx][1]: k = self.Time[j] - self.Time[main_peak[i]] res[idx].append(k) else: break if main_peak[-1] < tmp.shape[0] - 1: for j in range(main_peak[-1] + 1, tmp.shape[0]): k = self.Time[j] - self.Time[main_peak[-1]] res[idx].append(k) return res def cal_PDF(self, tmp, xlabel, ylabel, LIM=None, INTERVAL_NUM=None, COLOR='black', FIT=False, bin_method='log'): """ Calculate Probability Density Distribution Function :param tmp: Energy/Amplitude/Duration in order of magnitude of original data :param xlabel: 'Amplitude (μV)', 'Duration (μs)', 'Energy (aJ)' :param ylabel: 'PDF (A)', 'PDF (D)', 'PDF (E)' :param LIM: Use in function fitting, support specific values or indexes, value: [0, float('inf')], [100, 900], ... index: [0, None], [11, -2], ... :param INTERVAL_NUM: Number of bins divided in each order of magnitude :param COLOR: Color when drawing with original data, population I and population II respectively :param FIT: Whether to fit parameters, support True or False :param bin_method: Method to divide the bin, Support linear partition and logarithmic partition :return: """ if INTERVAL_NUM is None: INTERVAL_NUM = 6 if LIM is None: LIM = [0, None] plotWindow = PlotWindow('PDF--%s' % xlabel, 6, 3.9) fig = plotWindow.static_canvas.figure fig.subplots_adjust(left=0.133, bottom=0.179, right=0.975, top=0.962) fig.text(0.15, 0.2, self.status, fontdict={'family': 'Arial', 'fontweight': 'bold', 'fontsize': 12}) ax = fig.add_subplot() if bin_method == 'linear': inter, mid = self.__cal_linear_interval(tmp, INTERVAL_NUM) xx, yy = self.__cal_linear(tmp, inter, mid, INTERVAL_NUM) elif bin_method == 'log': inter = self.__cal_log_interval(tmp) xx, yy = self.__cal_log(tmp, inter, INTERVAL_NUM) if FIT: fit = np.polyfit(np.log10(xx[LIM[0]:LIM[1]]), np.log10(yy[LIM[0]:LIM[1]]), 1) alpha, b = fit[0], fit[1] fit_x = np.linspace(xx[LIM[0]], xx[-1], 100) fit_y = self.convert(fit_x, alpha, b) ax.plot(fit_x, fit_y, '-.', lw=1, color=COLOR) ax.loglog(xx, yy, '.', marker='.', markersize=8, color=COLOR, label='slope-{:.2f}'.format(abs(alpha))) plot_norm(ax, xlabel, ylabel, legend_loc='upper right', legend=True) else: ax.loglog(xx, yy, '.', marker='.', markersize=8, color=COLOR) plot_norm(ax, xlabel, ylabel, legend=False) with open('/'.join([self.output, self.status]) + '_%s.txt' % ylabel, 'w') as f: f.write('{}, {}\n'.format(xlabel, ylabel)) for i, j in zip(xx, yy): f.write('{}, {}\n'.format(i, j)) return plotWindow def cal_CCDF(self, tmp, xlabel, ylabel, LIM=None, COLOR='black', FIT=False): """ Calculate Complementary Cumulative Distribution Function :param tmp: Energy/Amplitude/Duration in order of magnitude of original data :param xlabel: 'Amplitude (μV)', 'Duration (μs)', 'Energy (aJ)' :param ylabel: 'CCDF (A)', 'CCDF (D)', 'CCDF (E)' :param LIM: Use in function fitting, support specific values or indexes, value: [0, float('inf')], [100, 900], ... index: [0, None], [11, -2], ... :param FIT: Whether to fit parameters, support True or False :param COLOR: Color when drawing with original data, population I and population II respectively :return: """ if LIM is None: LIM = [0, float('inf')] N = len(tmp) plotWindow = PlotWindow('CCDF--%s' % xlabel, 6, 3.9) fig = plotWindow.static_canvas.figure fig.subplots_adjust(left=0.133, bottom=0.179, right=0.975, top=0.962) fig.text(0.15, 0.2, self.status, fontdict={'family': 'Arial', 'fontweight': 'bold', 'fontsize': 12}) ax = fig.add_subplot() xx, yy = [], [] for i in range(N - 1): xx.append(np.mean([tmp[i], tmp[i + 1]])) yy.append((N - i + 1) / N) if FIT: xx, yy = np.array(xx), np.array(yy) fit_lim = np.where((xx > LIM[0]) & (xx < LIM[1]))[0] fit = np.polyfit(np.log10(xx[fit_lim[0]:fit_lim[-1]]), np.log10(yy[fit_lim[0]:fit_lim[-1]]), 1) alpha, b = fit[0], fit[1] fit_x = np.linspace(xx[fit_lim[0]], xx[fit_lim[-1]], 100) fit_y = self.convert(fit_x, alpha, b) ax.plot(fit_x, fit_y, '-.', lw=1, color=COLOR) ax.loglog(xx, yy, color=COLOR, label='slope-{:.2f}'.format(abs(alpha))) plot_norm(ax, xlabel, ylabel, legend_loc='upper right') else: ax.loglog(xx, yy, color=COLOR) plot_norm(ax, xlabel, ylabel, legend=False) with open('/'.join([self.output, self.status]) + '_CCDF(%s).txt' % xlabel[0], 'w') as f: f.write('{}, {}\n'.format(xlabel, ylabel)) for i, j in zip(xx, yy): f.write('{}, {}\n'.format(i, j)) return plotWindow def cal_ML(self, tmp, xlabel, ylabel, COLOR='black', ECOLOR=None): """ Calculate the maximum likelihood function distribution :param tmp: Energy/Amplitude/Duration in order of magnitude of original data :param xlabel: 'Amplitude (μV)', 'Duration (μs)', 'Energy (aJ)' :param ylabel: 'ML (A)', 'ML (D)', 'ML (E)' :param COLOR: Color when drawing with original data, population I and population II respectively :param ECOLOR: Line color of error bar, corresponding parameter COLOR :return: """ if not ECOLOR: ECOLOR = [0.7, 0.7, 0.7] N = len(tmp) plotWindow = PlotWindow('ML--%s' % xlabel, 6, 3.9) fig = plotWindow.static_canvas.figure fig.subplots_adjust(left=0.131, bottom=0.179, right=0.975, top=0.944) fig.text(0.96, 0.2, self.status, fontdict={'family': 'Arial', 'fontweight': 'bold', 'fontsize': 12}, horizontalalignment="right") ax = fig.add_subplot() ax.set_xscale("log", nonposx='clip') ML_y, Error_bar = [], [] for j in range(N): valid_x = sorted(tmp)[j:] E0 = valid_x[0] Sum = np.sum(np.log(valid_x / E0)) N_prime = N - j alpha = 1 + N_prime / Sum error_bar = (alpha - 1) / pow(N_prime, 0.5) ML_y.append(alpha) Error_bar.append(error_bar) ax.errorbar(sorted(tmp), ML_y, yerr=Error_bar, fmt='o', ecolor=ECOLOR, color=COLOR, elinewidth=1, capsize=2, ms=3) plot_norm(ax, xlabel, ylabel, y_lim=[1.25, 3], legend=False) with open('/'.join([self.output, self.status]) + '_ML(%s).txt' % xlabel[0], 'w') as f: f.write('{}, {}, Error bar\n'.format(xlabel, ylabel)) for i, j, k in zip(tmp, ML_y, Error_bar): f.write('{}, {}, {}\n'.format(i, j, k)) return plotWindow def cal_contour(self, tmp_1, tmp_2, xlabel, ylabel, x_lim, y_lim, size_x=40, size_y=40, method='linear_bin', padding=False, colorbar=False, clabel=False): tmp_1, tmp_2 = 20 * np.log10(tmp_1), 20 *
np.log10(tmp_2)
numpy.log10
import numpy as np from impedance.models.circuits.fitting import rmse from impedance.models.circuits.elements import circuit_elements, K # noqa def linKK(f, Z, c=0.85, max_M=50, fit_type='real', add_cap=False): """ A method for implementing the Lin-KK test for validating linearity [1] Parameters ---------- f: np.ndarray measured frequencies Z: np.ndarray of complex numbers measured impedances c: np.float cutoff for mu max_M: int the maximum number of RC elements fit_type: str selects which components of data are fit ('real', 'imag', or 'complex') add_cap: bool option to add a serial capacitance that helps validate data with no low-frequency intercept Returns ------- M: int number of RC elements used mu: np.float under- or over-fitting measure Z_fit: np.ndarray of complex numbers impedance of fit at input frequencies resids_real: np.ndarray real component of the residuals of the fit at input frequencies resids_imag: np.ndarray imaginary component of the residuals of the fit at input frequencies Notes ----- The lin-KK method from Schönleber et al. [1] is a quick test for checking the validity of EIS data. The validity of an impedance spectrum is analyzed by its reproducibility by a Kramers-Kronig (KK) compliant equivalent circuit. In particular, the model used in the lin-KK test is an ohmic resistor, :math:`R_{Ohm}`, and :math:`M` RC elements. .. math:: \\hat Z = R_{Ohm} + \\sum_{k=1}^{M} \\frac{R_k}{1 + j \\omega \\tau_k} The :math:`M` time constants, :math:`\\tau_k`, are distributed logarithmically, .. math:: \\tau_1 = \\frac{1}{\\omega_{max}} ; \\tau_M = \\frac{1}{\\omega_{min}} ; \\tau_k = 10^{\\log{(\\tau_{min}) + \\frac{k-1}{M-1}\\log{{( \\frac{\\tau_{max}}{\\tau_{min}}}})}} and are not fit during the test (only :math:`R_{Ohm}` and :math:`R_{k}` are free parameters). In order to prevent under- or over-fitting, Schönleber et al. propose using the ratio of positive resistor mass to negative resistor mass as a metric for finding the optimal number of RC elements. .. math:: \\mu = 1 - \\frac{\\sum_{R_k \\ge 0} |R_k|}{\\sum_{R_k < 0} |R_k|} The argument :code:`c` defines the cutoff value for :math:`\\mu`. The algorithm starts at :code:`M = 3` and iterates up to :code:`max_M` until a :math:`\\mu < c` is reached. The default of 0.85 is simply a heuristic value based off of the experience of Schönleber et al., but a lower value may give better results. If the argument :code:`c` is :code:`None`, then the automatic determination of RC elements is turned off and the solution is calculated for :code:`max_M` RC elements. This manual mode should be used with caution as under- and over-fitting should be avoided. [1] <NAME> al. A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta 131, 20–27 (2014) `doi: 10.1016/j.electacta.2014.01.034 <https://doi.org/10.1016/j.electacta.2014.01.034>`_. """ if c is not None: M = 0 mu = 1 while mu > c and M <= max_M: M += 1 ts = get_tc_distribution(f, M) elements, mu = fit_linKK(f, ts, M, Z, fit_type, add_cap) if M % 10 == 0: print(M, mu, rmse(eval_linKK(elements, ts, f), Z)) else: M = max_M ts = get_tc_distribution(f, M) elements, mu = fit_linKK(f, ts, M, Z, fit_type, add_cap) Z_fit = eval_linKK(elements, ts, f) resids_real = residuals_linKK(elements, ts, Z, f, residuals='real') resids_imag = residuals_linKK(elements, ts, Z, f, residuals='imag') return M, mu, Z_fit, resids_real, resids_imag def get_tc_distribution(f, M): """ Returns the distribution of time constants for the linKK method """ t_max = 1/(2 * np.pi * np.min(f)) t_min = 1/(2 * np.pi * np.max(f)) ts = np.zeros(shape=(M,)) ts[0] = t_min ts[-1] = t_max if M > 1: for k in range(2, M): ts[k-1] = 10**(np.log10(t_min) + ((k-1)/(M-1))*np.log10(t_max/t_min)) return ts def fit_linKK(f, ts, M, Z, fit_type='real', add_cap=False): """ Fits the linKK model using linear regression Parameters ---------- f: np.ndarray measured frequencies ts: np.ndarray logarithmically spaced time constants of RC elements M: int the number of RC elements Z: np.ndarray of complex numbers measured impedances fit_type: str selects which components of data are fit ('real', 'imag', or 'complex') add_cap: bool option to add a serial capacitance that helps validate data with no low-frequency intercept Returns ------- elements: np.ndarray values of fit :math:`R_k` in RC elements and series :math:`R_0`, L, and optionally C. mu: np.float under- or over-fitting measure Notes ----- Since we have a system of equations, :math:`Ax ~= b`, that's linear wrt :math:`R_k`, we can fit the model by calculating the pseudo-inverse of A. :math:`Ax` is our model fit, :math:`\\hat{Z}`, and :math:`b` is the normalized real or imaginary component of the impedance data, :math:`Re(Z)/|Z|` or :math:`Im(Z)/|Z|`, respectively. :math:`\\hat{Z} = R_0 + \\sum^M_{k=1}(R_k / |Z|(1 + j * w * \\tau_k))`. :math:`x` is an (M+1) :math:`\\times` 1 matrix where the first row contains :math:`R_0` and subsequent rows contain :math:`R_k` values. A is an N :math:`\\times` (M+1) matrix, where N is the number of data points, and M is the number of RC elements. Examples -------- Fitting the real part of data, the first column of A contains values of :math:`\\frac{1}{|Z|}`, the second column contains :math:`Re(1 / |Z| (1 + j * w * \\tau_1))`, the third contains :math:`Re(1 / |Z| (1 + j * w * \\tau_2))` and so on. The :math:`R_k` values within the x matrix are found using :code:`numpy.linalg.pinv` when fit_type = 'real' or 'imag'. When fit_type = 'complex' the coefficients are found "manually" using :math:`r = ||A'x - b'||^2 + ||A''x - b'||^2` according to Eq 14 of Schonleber [1]. [1] <NAME>. et al. A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta 131, 20–27 (2014) `doi: 10.1016/j.electacta.2014.01.034 <https://doi.org/10.1016/j.electacta.2014.01.034>`_. """ w = 2 * np.pi * f # Fitting model has M RC elements plus 1 series resistance and 1 series # inductance a_re = np.zeros((f.size, M+2)) a_im = np.zeros((f.size, M+2)) if add_cap: a_re = np.zeros((f.size, M+3)) a_im = np.zeros((f.size, M+3)) # Column for series capacitance. Real part = 0. a_im[:, -2] = - 1 / (w * np.abs(Z)) # Column for series resistance, R_o in model. Imaginary part = 0. a_re[:, 0] = 1 / np.abs(Z) # Column for series inductance to capture inevitable contributions from # the measurement system. Real part = 0. a_im[:, -1] = w / np.abs(Z) # Columns for series RC elements for i, tau in enumerate(ts): a_re[:, i+1] = K([1, tau], f).real / np.abs(Z) a_im[:, i+1] = K([1, tau], f).imag / np.abs(Z) if fit_type == 'real': elements = np.linalg.pinv(a_re).dot(Z.real / np.abs(Z)) # After fitting real part, need to use imaginary component of fit to # find values of series inductance and capacitance a_im = np.zeros((f.size, 2)) a_im[:, -1] = w /
np.abs(Z)
numpy.abs
import numpy as np #import dataset AbsErr =
np.loadtxt("data/test/dataErrorTestAbsolute.csv",delimiter=",")
numpy.loadtxt
"""Module for the Graph abstract class.""" from abc import ABC import matplotlib.pyplot as plt import numpy as np from styles.style import Style from util.savable_graph import SavableGraph class Graph(ABC): """Abstract base class for all kind of graphs.""" def __init__(self, title=None, size=(10.5, 6), color_offset=0): """Initialize the Graph object.""" self._figsize = size self._title = title # TODO(CustomColorOrder) Allow custom ordering of the color palette. self.style = Style.load_from_yaml('default_style.yaml') self._gridColor = '#AAAAAA' self._gridWidth = 1.0 self._hide_labels = False self._xticks = None self._yticks = None self._spines = set(['bottom', 'left']) self._xlimit = None self._ylimit = None # Label self._xlabel_fn = None self._xlabel = '' self._ylabel = '' self._label_color = '#222222' def size(self, width, height): """Set the size of the figure.""" self._figsize = (width, height) return self # def title(self, title): # """Set the title of the graph.""" # self._title = title # return self def hide_labels(self): """Hide the labels of the graph.""" self._hide_labels = True return self def xticks(self, ticks): """Set the ticks for the x-axis.""" self._xticks = ticks return self def yticks(self, ticks): """Set the ticks for the y-axis.""" self._yticks = ticks return self def spines(self, spines): """Define what spines to show. Can be any number out of the following: 'bottom', 'top', 'left', 'right' """ self._spines = self._spines | set(spines) return self def xlim(self, xmin, xmax): """Set the limit for the x-axis.""" self._xlimit = (xmin, xmax) return self def ylim(self, ymin, ymax): """Set the limit for the y-axis.""" self._ylimit = (ymin, ymax) return self def xlabel(self, xlabel): """Set label for the x-axis.""" self._xlabel = xlabel return self def ylabel(self, ylabel): """Set label for the y-axis.""" self._ylabel = ylabel return self def labels(self, xlabel, ylabel): """Set labels for both x- and y-axis.""" self.xlabel(xlabel) self.ylabel(ylabel) return self def xlabel_fn(self, fn): """Apply the given function to all labels on the x-axis. Can for example be used when labels should be mapped to a dictionary. """ self._xlabel_fn = fn return self def label_color(self, color): """Set the color for the labels of both axes.""" self._label_color = color return self def legends(self, legend_labels, position=None): """.""" self._legend_labels = legend_labels return self def _prepare_plot(self, x_min, x_max, y_min, y_max): plt.close() # ?? fig, ax = plt.subplots(figsize=self._figsize, facecolor='white', edgecolor='white') ax.axes.tick_params(labelcolor=self._label_color, labelsize='10') # if self._xticks is not None: xticks = self._xticks else: step_size = (x_max - x_min) / 6. # FIXME Round maybe? step_size = max(step_size, 0.1) # Prevent 0 values. xticks =
np.arange(x_min, x_max + step_size, step_size)
numpy.arange
"""Central data base keeping track of positions, velocities, relative positions, and distances of all simulated fishes """ import math import random import numpy as np from scipy.spatial.distance import cdist import sys U_LED_DX = 86 # [mm] leds x-distance on BlueBot U_LED_DZ = 86 # [mm] leds z-distance on BlueBot class Environment(): """Simulated fish environment Fish get their visible neighbors and corresponding relative positions and distances from here. Fish also update their own positions after moving in here. Environmental tracking data is used for simulation analysis. """ def __init__(self, pos, vel, fish_specs, arena): # Arguments self.pos = pos # x, y, z, phi; [no_robots X 4] self.vel = vel # pos_dot self.v_range = fish_specs[0] # visual range, [mm] self.w_blindspot = fish_specs[1] # width of blindspot, [mm] self.r_sphere = fish_specs[2] # radius of blocking sphere for occlusion, [mm] self.n_magnitude = fish_specs[3] # visual noise magnitude, [% of distance] self.arena_size = arena # x, y, z # Parameters self.no_robots = self.pos.shape[0] self.no_states = self.pos.shape[1] # Initialize robot states self.init_states() # Initialize tracking self.init_tracking() # Initialize LEDs #self.leds_pos = [np.zeros((3,3))]*self.no_robots # empty init, filled with update_leds() below #for robot in range(self.no_robots): # self.update_leds(robot) def log_to_file(self, filename): """Logs tracking data to file """ #np.savetxt('./logfiles/{}_data.txt'.format(filename), self.tracking, fmt='%.2f', delimiter=',') np.savetxt('./logfiles/{}.txt'.format(filename), self.tracking, fmt='%.2f', delimiter=',') def init_tracking(self): """Initializes tracking """ pos = np.reshape(self.pos, (1,self.no_robots*self.no_states)) vel = np.reshape(self.vel, (1,self.no_robots*self.no_states)) self.tracking = np.concatenate((pos,vel), axis=1) self.updates = 0 def update_tracking(self): """Updates tracking after every fish took a turn """ pos = np.reshape(self.pos, (1,self.no_robots*self.no_states)) vel = np.reshape(self.vel, (1,self.no_robots*self.no_states)) current_state = np.concatenate((pos,vel), axis=1) self.tracking = np.concatenate((self.tracking,current_state), axis=0) def update_leds(self, source_index): """ Updates the position of the three leds based on self.pos, which is the position of led1 """ pos = self.pos[source_index,:3] phi = self.pos[source_index,3] x1 = pos[0] x2 = x1 x3 = x1 + math.cos(phi)*U_LED_DX y1 = pos[1] y2 = y1 y3 = y1 + math.sin(phi)*U_LED_DX z1 = pos[2] z2 = z1 + U_LED_DZ z3 = z1 self.leds_pos[source_index] = np.array([[x1, x2, x3],[y1, y2, y3],[z1, z2, z3]]) def init_states(self): """Initializes fish positions and velocities """ # Restrict initial positions to arena size self.pos[:,0] = np.clip(self.pos[:,0], 0, self.arena_size[0]) self.pos[:,1] = np.clip(self.pos[:,1], 0, self.arena_size[1]) self.pos[:,2] = np.clip(self.pos[:,2], 0, self.arena_size[2]) # Initial relative positions a_ = np.reshape(self.pos, (1, self.no_robots*self.no_states)) a = np.tile(a_, (self.no_robots,1)) b = np.tile(self.pos, (1,self.no_robots)) self.rel_pos = a - b # [4*no_robots X no_robots] # Initial distances self.dist = cdist(self.pos[:,:3], self.pos[:,:3], 'euclidean') # without phi; [no_robots X no_robots] def update_states(self, source_id, pos, vel): # add noise """Updates a fish state and affected realtive positions and distances """ # Position and velocity self.pos[source_id,0] = np.clip(pos[0], 0, self.arena_size[0]) self.pos[source_id,1] = np.clip(pos[1], 0, self.arena_size[1]) self.pos[source_id,2] = np.clip(pos[2], 0, self.arena_size[2]) self.pos[source_id,3] = pos[3] self.vel[source_id,:] = vel # Relative positions pos_others = np.reshape(self.pos, (1,self.no_robots*self.no_states)) pos_self = np.tile(self.pos[source_id,:], (1,self.no_robots)) rel_pos = pos_others - pos_self self.rel_pos[source_id,:] = rel_pos # row rel_pos_ = np.reshape(rel_pos, (self.no_robots, self.no_states)) self.rel_pos[:,source_id*self.no_states:source_id*self.no_states+self.no_states] = -rel_pos_ # columns # Relative distances dist = np.linalg.norm(rel_pos_[:,:3], axis=1) # without phi self.dist[source_id,:] = dist self.dist[:,source_id] = dist.T # Update LEDs #self.update_leds(source_id) # Update tracking self.updates += 1 if self.updates >= self.no_robots: self.updates = 0 self.update_tracking() def get_robots(self, source_id, visual_noise=False): """Provides visible neighbors and relative positions and distances to a fish """ robots = set(range(self.no_robots)) # all robots robots.discard(source_id) # discard self rel_pos = np.reshape(self.rel_pos[source_id], (self.no_robots, self.no_states)) return (robots, rel_pos, self.dist[source_id]) # perfect vision here ''' self.visual_range(source_id, robots) self.blind_spot(source_id, robots, rel_pos) self.occlusions(source_id, robots, rel_pos) leds = self.calc_relative_leds(source_id, robots) if self.n_magnitude: # no overwrites of self.rel_pos and self.dist n_rel_pos, n_dist = self.visual_noise(source_id, rel_pos) return (robots, n_rel_pos, n_dist, leds) return (robots, rel_pos, self.dist[source_id], leds) ''' def visual_range(self, source_id, robots): """Deletes fishes outside of visible range """ conn_drop = 0.005 candidates = robots.copy() for robot in candidates: d_robot = self.dist[source_id][robot] x = conn_drop * (d_robot - self.v_range) if x < -5: sigmoid = 1 elif x > 5: sigmoid = 0 else: sigmoid = 1 / (1 + math.exp(x)) prob = random.random() if sigmoid < prob: robots.remove(robot) def blind_spot(self, source_id, robots, rel_pos): """Omits fishes within the blind spot behind own body """ r_blockage = self.w_blindspot/2 phi = self.pos[source_id,3] phi_xy = [math.cos(phi), math.sin(phi)] mag_phi =
np.linalg.norm(phi_xy)
numpy.linalg.norm
"""Gym environment for block pushing tasks (2D Shapes and 3D Cubes).""" import numpy as np import utils import gym from gym import spaces from gym.utils import seeding import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from PIL import Image import skimage.draw def square(r0, c0, width, im_size): rr, cc = [r0, r0 + width, r0 + width, r0], [c0, c0, c0 + width, c0 + width] return skimage.draw.polygon(rr, cc, im_size) def triangle(r0, c0, width, im_size): rr, cc = [r0, r0 + width, r0 + width], [c0 + width // 2, c0, c0 + width] return skimage.draw.polygon(rr, cc, im_size) def fig2rgb_array(fig): fig.canvas.draw() buffer = fig.canvas.tostring_rgb() width, height = fig.canvas.get_width_height() return np.fromstring(buffer, dtype=np.uint8).reshape(height, width, 3) def render_cubes(positions, width): voxels = np.zeros((width, width, width), dtype=np.bool) colors = np.empty(voxels.shape, dtype=object) cols = ['purple', 'green', 'orange', 'blue', 'brown'] for i, pos in enumerate(positions): voxels[pos[0], pos[1], 0] = True colors[pos[0], pos[1], 0] = cols[i] fig = plt.figure() ax = Axes3D(fig) ax.w_zaxis.set_pane_color((0.5, 0.5, 0.5, 1.0)) ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.w_zaxis.line.set_lw(0.) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.voxels(voxels, facecolors=colors, edgecolor='k') im = fig2rgb_array(fig) plt.close(fig) im = np.array( # Crop and resize Image.fromarray(im[215:455, 80:570]).resize((50, 50), Image.ANTIALIAS)) return im / 255. class BlockPushing(gym.Env): """Gym environment for block pushing task.""" def __init__(self, width=5, height=5, render_type='cubes', num_objects=5, seed=None): self.width = width self.height = height self.render_type = render_type self.num_objects = num_objects self.num_actions = 4 * self.num_objects # Move NESW self.colors = utils.get_colors(num_colors=max(9, self.num_objects)) self.np_random = None self.game = None self.target = None # Initialize to pos outside of env for easier collision resolution. self.objects = [[-1, -1] for _ in range(self.num_objects)] # If True, then check for collisions and don't allow two # objects to occupy the same position. self.collisions = True self.action_space = spaces.Discrete(self.num_actions) self.observation_space = spaces.Box( low=0, high=1, shape=(3, self.width, self.height), dtype=np.float32 ) self.seed(seed) self.reset() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def render(self): if self.render_type == 'grid': im = np.zeros((3, self.width, self.height)) for idx, pos in enumerate(self.objects): im[:, pos[0], pos[1]] = self.colors[idx][:3] return im elif self.render_type == 'circles': im = np.zeros((self.width * 10, self.height * 10, 3), dtype=np.float32) for idx, pos in enumerate(self.objects): rr, cc = skimage.draw.circle( pos[0] * 10 + 5, pos[1] * 10 + 5, 5, im.shape) im[rr, cc, :] = self.colors[idx][:3] return im.transpose([2, 0, 1]) elif self.render_type == 'shapes': im = np.zeros((self.width * 10, self.height * 10, 3), dtype=np.float32) for idx, pos in enumerate(self.objects): if idx % 3 == 0: rr, cc = skimage.draw.circle( pos[0] * 10 + 5, pos[1] * 10 + 5, 5, im.shape) im[rr, cc, :] = self.colors[idx][:3] elif idx % 3 == 1: rr, cc = triangle( pos[0] * 10, pos[1] * 10, 10, im.shape) im[rr, cc, :] = self.colors[idx][:3] else: rr, cc = square( pos[0] * 10, pos[1] * 10, 10, im.shape) im[rr, cc, :] = self.colors[idx][:3] return im.transpose([2, 0, 1]) elif self.render_type == 'cubes': im = render_cubes(self.objects, self.width) return im.transpose([2, 0, 1]) def get_state(self): im = np.zeros( (self.num_objects, self.width, self.height), dtype=np.int32) for idx, pos in enumerate(self.objects): im[idx, pos[0], pos[1]] = 1 return im def reset(self): self.objects = [[-1, -1] for _ in range(self.num_objects)] # Randomize object position. for i in range(len(self.objects)): # Resample to ensure objects don't fall on same spot. while not self.valid_pos(self.objects[i], i): self.objects[i] = [ np.random.choice(
np.arange(self.width)
numpy.arange
""" Author: <NAME>, University of Leeds, Oct 2019 this function processes the HighD data to Input-Output data for a car-following model In the data, we would have the following files: 1. Recording Meta Information (XX_recordingMeta.csv) This file contains metadata for each recording. The metadata provides a general overview, e.g. of the time of recording, the highway section considered and the total number of vehicles recorded. 2.Track Meta Information (XX_tracksMeta.csv) This file contains an overview of all tracks. For each track there are summary values like the distance covered or the average speed. The purpose of this file is to allow to filter tracks e.g. by class or driving direction. 3.Tracks (XX_tracks.csv) This file contains all time dependent values for each track. Information such as current velocities, viewing ranges and information about surrounding vehicles are included. This function processes all of these files TODO: 1. Empirical analysis: Identify cases/situations in the data 2. Throw the data to a DL 3. Simulate and see if it's reproduce the data 4. If not, then we separate the cases to each model 5. 1. Distance to the leading vehicle 2. Driver heterogeneity : different models for each class of drivers 3. Cooperative & uncooperative behaviours 4. Find out whether a car nearby is changing their lanes 5. Rare situations: in the data or not in the data but the model needs to give estimates """ #import pickle import pandas as pd import numpy as np #import os minSec =10 # in seconds, we focus on vehicles that stay at least 40s in the data #prject_path = '~/Documents/Research/highD/' prject_path = 'C:/Research/highD/' dynamic_col_to_use = [0,6,12,13,14,15,24] static_col_to_use = [1,2,6,9,10,11] nearby_index = [2,6] uniqueID = 0 #give an unique ID to the vehicle being processed Location = 2 #focus only on the location number 2 in the dataset L = 0.424 # length of the location under study (in km) NumLane = 2 """ STAGE A: First, we process data into a line-by-line dataset of all related information """ print("Stage A") Car_following_df = [] for i in range(1,60): print("currently at file: " + str(i)) #file names: if i <10: record_name = prject_path + "data/0" + str(i) + "_recordingMeta.csv" tracksMeta_name = prject_path + "./data/0" + str(i) + "_tracksMeta.csv" track_name = prject_path + "./data/0" + str(i) + "_tracks.csv" else: record_name = prject_path + "./data/" + str(i) + "_recordingMeta.csv" tracksMeta_name = prject_path + "./data/" + str(i) + "_tracksMeta.csv" track_name = prject_path + "./data/" + str(i) + "_tracks.csv" #Step A.1: Read the Record Metadata recordMeta_df = pd.read_csv(record_name) #only take the data in the morning (if we take the whole day there will be >1M data lines) #if int(recordMeta_df["startTime"][0][1]) >12: # continue timestamp = pd.to_datetime(recordMeta_df["startTime"][0],format='%H:%M') time_hour =np.array(timestamp.hour+timestamp.minute/60) #only take data if it's on our location of interests if recordMeta_df["locationId"][0] != Location: continue #Step A.2: Read the tracksMeta data (summary about each vehicle) tracksMeta_df = pd.read_csv(tracksMeta_name) #Read the track data (individual vehicle data) all_track_df = pd.read_csv(track_name) #loop through the tracksMeta line-by-line, each line is a vehicle for l in range(0,len(tracksMeta_df.index)): trackID = tracksMeta_df["id"][l] drivingDirection = tracksMeta_df["drivingDirection"][l] #1 for upper lanes (drive to the left), and 2 for lower lanes (drive to the right) numFrames = tracksMeta_df["numFrames"][l] if numFrames < recordMeta_df["frameRate"][0]*minSec: #only focus to vehicles that we can observed for more than minSec seconds continue #sanity check if trackID != tracksMeta_df.iloc[l,0]: print("The trackID is not the same at line: " + str(l)) ############################################################ # find all the static data of the vehicle (e.g. vehicle length, class, etc) static_df_track = np.array(tracksMeta_df.iloc[l,static_col_to_use]) # convert categorical to binary variable (e.g Car vs Truck) if static_df_track[2]=='Car': static_df_track[2]=0 else: static_df_track[2]=1 #otherwise it should be a truck #convert to float for speed static_df_track=static_df_track.astype(float) #META DATA OF static_df_float: width, height, class, minXSpeed, #maxXSpeed,meanXSpeed #Step A.3: Find the dynamic features of each vehicle track_df = all_track_df[all_track_df["id"]==trackID].reset_index(drop=True) # on the upper half of the video, the speed and acceleration is negative # because it uses universal positioning # we need to convert it to the otherway around if drivingDirection==1: track_df["xVelocity"]=-track_df["xVelocity"] track_df["xAcceleration"]=-track_df["xAcceleration"] track_df["precedingXVelocity"]=-track_df["precedingXVelocity"] # loop through each line in the track data for t in range(0,len(track_df.index)-1,recordMeta_df["frameRate"][0]): #loop by each second #print('currently looking at line:' + str(t)) ################################################################# # collect all the dynamic vehicle data (e.g. position, speed, etc) dynamic_df_track = np.array(track_df.iloc[t,dynamic_col_to_use]) # META DATA OF dynamic_df_track: XSpeed, Distance Headway, #Time Headway, Time to Collision, Preceeding XSpeed frameID = dynamic_df_track[0] laneID = dynamic_df_track[-1] #Step A.4: Find traffic-related variables: Density and traffic mean speed if drivingDirection==1: traffic_density = len(all_track_df[(all_track_df["frame"]==frameID) & (all_track_df["laneId"] < NumLane+2)]) / (L*NumLane) else: traffic_density = len(all_track_df[(all_track_df["frame"]==frameID) & (all_track_df["laneId"] > NumLane+1)]) / (L*NumLane) if drivingDirection==1: traffic_speed = -np.mean(all_track_df.loc[(all_track_df["frame"]==frameID) & (all_track_df["laneId"] < NumLane+2),"xVelocity"]) else: traffic_speed = np.mean(all_track_df.loc[(all_track_df["frame"]==frameID) & (all_track_df["laneId"] > NumLane+1),"xVelocity"]) #Step A.5: Now look at the all_track_df data to find the location #and speed of surrounding vehicles #for each vehicle we keep [x_location,speed] if track_df["leftPrecedingId"][t]!=0: leftPreceding_df = np.array(all_track_df.loc[(all_track_df["id"] == track_df["leftPrecedingId"][t]) & (all_track_df["frame"] == track_df["frame"][t])].values[0][nearby_index]) leftPreceding_df[0] = np.abs(leftPreceding_df[0]-track_df["x"][t]) leftPreceding_df[1]= np.abs(leftPreceding_df[1]) else: leftPreceding_df = np.array([0,0]) if track_df["leftFollowingId"][t]!=0: leftFollowing_df = np.array(all_track_df.loc[(all_track_df["id"] == track_df["leftFollowingId"][t]) & (all_track_df["frame"] == track_df["frame"][t])].values[0][nearby_index]) leftFollowing_df[0] = np.abs(leftFollowing_df[0]-track_df["x"][t]) leftFollowing_df[1] = np.abs(leftFollowing_df[1]) else: leftFollowing_df = np.array([0,0]) if track_df["leftAlongsideId"][t]!=0: leftAlongside_df = np.array(all_track_df.loc[(all_track_df["id"] == track_df["leftAlongsideId"][t]) & (all_track_df["frame"] == track_df["frame"][t])].values[0][nearby_index]) leftAlongside_df[0] = np.abs(leftAlongside_df[0]-track_df["x"][t]) leftAlongside_df[1] = np.abs(leftAlongside_df[1]) else: leftAlongside_df = np.array([0,0]) if track_df["rightPrecedingId"][t]!=0: rightPreceding_df =
np.array(all_track_df.loc[(all_track_df["id"] == track_df["rightPrecedingId"][t]) & (all_track_df["frame"] == track_df["frame"][t])].values[0][nearby_index])
numpy.array
""" Target Problem: --------------- * To train a model to predict the brain connectivity for the next time point given the brain connectivity at current time point. Proposed Solution (Machine Learning Pipeline): ---------------------------------------------- * K-NN Input to Proposed Solution: --------------------------- * Directories of training and testing data in csv file format * These two types of data should be stored in n x m pattern in csv file format. Typical Example: ---------------- n x m samples in training csv file (Explain n and m) k x s samples in testing csv file (Explain k and s Output of Proposed Solution: ---------------------------- * Predictions generated by learning model for testing set * They are stored in "results_team12.csv" file. (Change the name file if needed) Code Owner: ----------- * Copyright © Team 12. All rights reserved. * Copyright © Istanbul Technical University, Learning From Data Spring/Fall 2020. All rights reserved. """ import pandas as pd from sklearn.model_selection import KFold import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.neighbors import NearestNeighbors from scipy.stats.stats import pearsonr import random as r r.seed(1) np.random.seed(1) import warnings warnings.filterwarnings('ignore') def load_data(csv): """ The method reads train and test data from their dataset files. Then, it splits train data into features and labels. Parameters ---------- train_file: directory of the file in which train data set is located test_file: directory of the file in which test data set is located """ # reading the data from the csv files df = pd.read_csv(csv, sep=',') # ignoring the index column of the data (0,...,149 or 0,...,79) df = df.drop(columns=['ID']) df_np = df.to_numpy() return df_np def train_model(train_t0, neighbourCount): """ The method creates a learning model and trains it by using training data. Parameters ---------- train_t0: x neighbourCount: number of neigbours in KNN """ nbrs = [] train_t0_single = np.transpose(train_t0) for i in range(train_t0_single.shape[0]): nbrs.append(NearestNeighbors(n_neighbors=neighbourCount, algorithm='ball_tree').fit(train_t0_single[i].reshape(-1,1))) return nbrs def predict(train_t0, train_t1, test_t0, nbrs): """ The method makes predictions for testing data samples by using trained learning model. Parameters ---------- train_t0: x train_t1: y test_t0: x_test nbrs: Nearest Neigbors model for each feature """ train_t0_single = np.transpose(train_t0) train_t1_single = np.transpose(train_t1) test_t0_single = np.transpose(test_t0) prediction = np.zeros_like(test_t0) for i in range(train_t0_single.shape[0]): distances, indices = nbrs[i].kneighbors(test_t0_single[i].reshape(-1,1)) distances = np.ones_like(distances)* 0.7 - distances mul = np.multiply(distances, train_t1_single[i,indices]) pred = np.divide(np.mean(mul, axis =1), np.mean(distances, axis = 1)) prediction[:,i] = pred.reshape(-1) nanLocations = np.isnan(prediction) prediction[nanLocations] = 0 return prediction def cv5(data_t0, data_t1, neighbourCount): kf = KFold(n_splits=5 , shuffle = True, random_state=1) prediction_all = np.zeros_like(data_t1) mses= [] maes = [] pears = [] for trainIndex, testIndex in kf.split(data_t0): train_t0, test_t0 = data_t0[trainIndex], data_t0[testIndex] #Split Data into train and test sets train_t1, test_t1 = data_t1[trainIndex], data_t1[testIndex] train_t0_single = np.transpose(train_t0) # Use features as rows and subjects as columns train_t1_single = np.transpose(train_t1) test_t0_single = np.transpose(test_t0) prediction = np.zeros_like(test_t0) preds = [] for i in range(train_t0_single.shape[0]): #Loop through each feature nbrs = NearestNeighbors(n_neighbors= neighbourCount, algorithm='ball_tree').fit(train_t0_single[i].reshape(-1,1)) distances, indices = nbrs.kneighbors(test_t0_single[i].reshape(-1,1))# Calculate the distances and indices of K closest neighbours of test subjects and train subjects in t0 distances = np.ones_like(distances)* 0.7 - distances # Set distances to (0.7 - d). Neighbours with low distance get larger values and vice versa mul = np.multiply(distances, train_t1_single[i,indices]) # Use the changed distances as weights and multiply the corresponding t1 of the neighbours pred = np.divide(np.mean(mul,axis =1),np.mean(distances, axis = 1)) #Take the mean of the weighted t1's and divide by the mean of distances to normalize prediction[:,i] = pred.reshape(-1) #This is the prediction for this feature acroos all test subjects preds.append(pred.reshape(-1)) nanLocations = np.isnan(prediction) prediction[nanLocations] = 0 # Set nan locations to 0 preds = np.asarray(preds) preds = np.transpose(preds) mses.append( mean_squared_error(preds, test_t1) ) maes.append( mean_absolute_error(preds, test_t1) ) pears.append(pearsonr(preds.flatten(), test_t1.flatten())[0] ) prediction_all[testIndex] = prediction # Put all predictions for each CV fold into prediction_all mse_error = mean_squared_error(data_t1, prediction_all) mae_error = mean_absolute_error(data_t1, prediction_all) print("mses: ", mses) print("maes: ", maes) print("pears", pears) print("Average error of five fold cross validation MSE:",
np.sum(mses)
numpy.sum
import cv2 import math import numpy as np from skimage import transform as trans def transform(data, center, output_size, scale, rotation): scale_ratio = scale rot = float(rotation) * np.pi / 180.0 #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) t1 = trans.SimilarityTransform(scale=scale_ratio) cx = center[0] * scale_ratio cy = center[1] * scale_ratio t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) t3 = trans.SimilarityTransform(rotation=rot) t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) t = t1 + t2 + t3 + t4 M = t.params[0:2] cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) return cropped, M def trans_points2d(pts, M): new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) #print('new_pt', new_pt.shape, new_pt) new_pts[i] = new_pt[0:2] return new_pts def trans_points3d(pts, M): scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) #print(scale) new_pts =
np.zeros(shape=pts.shape, dtype=np.float32)
numpy.zeros
from .common import Benchmark import numpy as np class Core(Benchmark): def setup(self): self.l100 = range(100) self.l50 = range(50) self.float_l1000 = [float(i) for i in range(1000)] self.float64_l1000 = [np.float64(i) for i in range(1000)] self.int_l1000 = list(range(1000)) self.l = [np.arange(1000), np.arange(1000)] self.l_view = [memoryview(a) for a in self.l] self.l10x10 = np.ones((10, 10)) self.float64_dtype = np.dtype(np.float64) def time_array_1(self): np.array(1) def time_array_empty(self): np.array([]) def time_array_l1(self): np.array([1]) def time_array_l100(self): np.array(self.l100) def time_array_float_l1000(self): np.array(self.float_l1000) def time_array_float_l1000_dtype(self): np.array(self.float_l1000, dtype=self.float64_dtype) def time_array_float64_l1000(self): np.array(self.float64_l1000) def time_array_int_l1000(self): np.array(self.int_l1000) def time_array_l(self): np.array(self.l) def time_array_l_view(self): np.array(self.l_view) def time_vstack_l(self): np.vstack(self.l) def time_hstack_l(self): np.hstack(self.l) def time_dstack_l(self): np.dstack(self.l) def time_arange_100(self):
np.arange(100)
numpy.arange
import numpy as np class RanSamMultiplePriorUser: def __init__(self, features, target, power, prior_mask, count = 1): self._features = features self._target = target self._count = count self._power = power self._prior_mask = prior_mask def decision(self, disp, disp_type): dist_to_target = (1 + np.dot(self._features[disp], self._features[self._target])) / 2 dist_to_target = dist_to_target ** self._power dist_to_target = dist_to_target * self._prior_mask[disp_type] dist_to_target = dist_to_target / np.sum(dist_to_target) return disp[np.random.choice(dist_to_target.shape[0], self._count, p=dist_to_target, replace=False)] def decision_ids(self, disp, disp_type): dist_to_target = (1 + np.dot(self._features[disp], self._features[self._target])) / 2 dist_to_target = dist_to_target ** self._power dist_to_target = dist_to_target * self._prior_mask[disp_type] dist_to_target = dist_to_target / np.sum(dist_to_target) return
np.random.choice(dist_to_target.shape[0], self._count, p=dist_to_target, replace=False)
numpy.random.choice
""" Provides functions for parsing an output text file (for a batch calculation) from the pattern index calculator implemented in interface.py and provides functions for calculating various statistics. Functions: process_data, get_statistics, process_data_output, compute_statistics_batchwise, compute_statistics_sizewise, plot_statistics_batchwise, plot_statistics_sizewise """ import re import numpy as np import matplotlib from matplotlib import pyplot as plotter from .io import process_multibatch_output_file font = {'family' : 'normal', 'size' : 28} matplotlib.rc('font', **font) PRI = "Pattern Recurrence Index" TI = "Tangled Index" TPRI = "Tangled Pattern Recurrence Index" def process_data(data_file_name, random_file_name, batchwise=False, sizewise=False): """ Input the names of two files, random_file_name and data_file_name, that contain the output from a batch calculation of the pattern indices of a sequence of randomly sampled words and a sequence of words from data. It then computes various statistics of these batches depending on the argument values. If batchwise = True, it first computes the mean pattern index values for each index and each random sample, and then calculates statistics of this population: mean, median, variance, standard deviation, upper quartile, lower quartile, minimum, and maximum. If sizewise = True, for each word size in the data it computes these statistics for all the pattern indices of every word of that size. Args: data_file_name: String. random_file_name: String. batchwise: Boolean, defaults to False. sizewise: Boolean, defaults to False. """ random_experiments = process_multibatch_output_file(random_file_name) data_output = process_multibatch_output_file(data_file_name) if batchwise: random_sample_statistics_batchwise = compute_statistics_batchwise( random_experiments) plot_statistics_batchwise(random_sample_statistics_batchwise, data_output) if sizewise: data_processed = process_data_output(data_output) random_sample_statistics_sizewise = compute_statistics_sizewise( random_experiments) plot_statistics_sizewise(random_sample_statistics_sizewise, data_processed) def get_statistics(*sequences): """ Args: sequences: List or Tuple of lists of floats or integers. Returns: A dictionary with statistic names as keys and statistic values as values. """ means = [np.mean(sequence) for sequence in sequences] standard_deviations = [np.std(sequence) for sequence in sequences] medians = [np.percentile(sequence, 50) for sequence in sequences] lower_quartiles = [np.percentile(sequence, 25) for sequence in sequences] upper_quartiles = [np.percentile(sequence, 75) for sequence in sequences] minimums = [np.percentile(sequence, 0) for sequence in sequences] maximums = [
np.percentile(sequence, 100)
numpy.percentile
import math import random from copy import deepcopy from os.path import basename import cv2 import numpy def resample(): return random.choice((cv2.INTER_LINEAR, cv2.INTER_CUBIC)) def resize(image, image_size): h, w = image.shape[:2] ratio = image_size / max(h, w) if ratio != 1: shape = (int(w * ratio), int(h * ratio)) image = cv2.resize(image, shape, interpolation=resample()) return image, image.shape[:2] def xy2wh(x): y = numpy.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xyn2xy(x, w, h, pad_w, pad_h): y = numpy.copy(x) y[:, 0] = w * x[:, 0] + pad_w # top left x y[:, 1] = h * x[:, 1] + pad_h # top left y return y def whn2xy(x, w, h, pad_w, pad_h): y = numpy.copy(x) y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + pad_w # top left x y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + pad_h # top left y y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + pad_w # bottom right x y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + pad_h # bottom right y return y def mask2box(mask, w, h): x, y = mask.T inside = (x >= 0) & (y >= 0) & (x <= w) & (y <= h) x, y, = x[inside], y[inside] if any(x): return numpy.array([x.min(), y.min(), x.max(), y.max()]), x, y else: return numpy.zeros((1, 4)), x, y def box_ioa(box1, box2, eps=1E-7): box2 = box2.transpose() # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] # Intersection area area1 = (numpy.minimum(b1_x2, b2_x2) - numpy.maximum(b1_x1, b2_x1)).clip(0) area2 = (numpy.minimum(b1_y2, b2_y2) - numpy.maximum(b1_y1, b2_y1)).clip(0) inter_area = area1 * area2 # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps # Intersection over box2 area return inter_area / box2_area def masks2boxes(segments): boxes = [] for s in segments: x, y = s.T boxes.append([x.min(), y.min(), x.max(), y.max()]) return xy2wh(
numpy.array(boxes)
numpy.array
import copy import random import cv2 import numpy as np from alfworld.gen import constants from alfworld.gen import goal_library as glib def get_pose(event): pose = event.pose return (int(np.round(pose[0] / (1000 * constants.AGENT_STEP_SIZE))), int(np.round(pose[1] / (1000 * constants.AGENT_STEP_SIZE))), int(np.round(pose[2] / (1000 * 90))), int(np.round(pose[3] / (1000)))) def get_object_data(metadata): return [ {"objectName": obj["name"].split("(Clone)")[0], "position": obj["position"], "rotation": obj["rotation"]} for obj in metadata["objects"] if obj["pickupable"] ] def imresize(image, size, rescale=True): if image is None: return None if image.shape[0] != size[0] or image.shape[1] != size[1]: image = cv2.resize(image, size) if rescale: if image.dtype != np.float32: image = image.astype(np.float32) image /= 255.0 return image def depth_imresize(image, size, rescale=True, max_depth=constants.MAX_DEPTH): if image is None: return None if image.shape[0] != size[0] or image.shape[1] != size[1]: image = cv2.resize(image, size) image[image > max_depth] = max_depth if rescale: if image.dtype != np.float32: image = image.astype(np.float32) image /= max_depth return image def get_camera_matrix(pose, camera_height): assert(pose[2] in {0, 1, 2, 3}) sin_x = np.sin(pose[3] * np.pi / 180) cos_x = np.cos(pose[3] * np.pi / 180) x_rotation = np.matrix([ [1, 0, 0], [0, cos_x, -sin_x], [0, sin_x, cos_x]]) sin_y = np.sin(pose[2] * np.pi / 180) cos_y =
np.cos(pose[2] * np.pi / 180)
numpy.cos
#!/usr/bin/env python """ This module provides functions for converting between different types of OperatorStrings. Note ---- Currently, this module only supports the conversion between strings of fermions and strings of Majorana fermions. """ import warnings import itertools as it import numpy as np import scipy.sparse as ss import scipy.sparse.linalg as ssla from .tools import sort_sign, compare from .config import * from .operatorstring import OperatorString from .basis import Basis, Operator from .algebra import product # TODO: add support for permutations or alternative X,Y,Z orderings. def _jordan_wigner(op_string): # Convert a Pauli string to a Majorana string or vice-versa # using the Jordan-Wigner transformation: # a_i = (\prod_{j=1}^{i-1} Z_j) X_i # b_i = (\prod_{j=1}^{i-1} Z_j) Y_i # d_i = Z_i # X_i = (\prod_{j=1}^{i-1} d_j) a_i # Y_i = (\prod_{j=1}^{i-1} d_j) b_i # Z_i = d_i op_type = op_string.op_type total_coeff = op_string.prefactor if op_type == 'Pauli': result = OperatorString([], [], op_type='Majorana') num_orbitals = len(op_string.orbital_operators) for ind_orb in range(num_orbitals): orb_op = op_string.orbital_operators[ind_orb] orb_label = op_string.orbital_labels[ind_orb] if orb_op == 'X': jw_ops = ['D']*orb_label + ['A'] jw_labels = np.arange(orb_label+1) elif orb_op == 'Y': jw_ops = ['D']*orb_label + ['B'] jw_labels = np.arange(orb_label+1) elif orb_op == 'Z': jw_ops = ['D'] jw_labels = [orb_label] else: raise ValueError('Invalid operator {} in OperatorString.'.format(orb_op)) jw_string = OperatorString(jw_ops, jw_labels, 'Majorana') (coeff, result) = product(result, jw_string) total_coeff *= coeff elif op_type == 'Majorana': result = OperatorString([], [], op_type='Pauli') num_orbitals = len(op_string.orbital_operators) for ind_orb in range(num_orbitals): orb_op = op_string.orbital_operators[ind_orb] orb_label = op_string.orbital_labels[ind_orb] if orb_op == 'A': jw_ops = ['Z']*orb_label + ['X'] jw_labels = np.arange(orb_label+1) elif orb_op == 'B': jw_ops = ['Z']*orb_label + ['Y'] jw_labels = np.arange(orb_label+1) elif orb_op == 'D': jw_ops = ['Z'] jw_labels = [orb_label] else: raise ValueError('Invalid operator {} in OperatorString.'.format(orb_op)) jw_string = OperatorString(jw_ops, jw_labels, 'Pauli') (coeff, result) = product(result, jw_string) total_coeff *= coeff else: raise ValueError('Cannot perform Jordan-Wigner transformation on OperatorString of op_type: {}'.format(op_type)) return (total_coeff, result) def _fermion_string_from_cdag_c_labels(prefactor, c_dag_labels, c_labels): # Construct a fermion string operator from the labels of the creation and # anhillation (c^\dagger and c) operators. c_labels_reversed = np.copy(c_labels) c_labels_reversed = c_labels_reversed[::-1] orbital_operators = ['CDag']*len(c_dag_labels) + ['C']*len(c_labels) orbital_labels = np.concatenate((c_dag_labels, c_labels_reversed)) return OperatorString(orbital_operators, orbital_labels, prefactor=prefactor, op_type='Fermion') def _convert_majorana_string(op_string, include_identity=False): # Converts a Majorana string to an Operator # that is a linear combination of Fermion strings. if op_string.op_type != 'Majorana': raise ValueError('Trying to convert a Majorana string to a Fermion string but given an OperatorString of type {}'.format(op_string.op_type)) ops = op_string.orbital_operators labels = op_string.orbital_labels # The identity operator. if len(ops) == 0: if include_identity: return Operator(np.array([1.0]), [OperatorString([], [], 'Fermion')]) else: return Operator([], [], 'Fermion') # Used to make sure that the fermion labels end up normal ordered. # I add this large number to the anhillation operators c_i labels # so that they end up last in the list of operators sorted by labels. large_number = 4*np.maximum(1,np.max(labels)) + 4 [op1, op2, op3] = MAJORANA_OPS num_ops = len(ops) coeffs_fermion = [] op_strings_fermion = [] # Perform the Majorana to Fermion string basis conversion. # Expand a_i = c_i + c_i^\dagger, b_i = -i c_i + i c_i^\dagger, d_i = - 2 c_i^\dagger c_i + I # A "term choice" of 0 (1) corresponds to the first (second) term, e.g., # 1 for a_i is c_i^\dagger, 0 for d_i is -2 c_i^\dagger c_i. possible_term_choices = list(it.product([0,1], repeat=num_ops)) for term_choices in possible_term_choices: coeff = op_string.prefactor fermion_labels = [] num_cdags = 0 num_cs = 0 for ind_op in range(num_ops): label = labels[ind_op] if ops[ind_op] == op1: # a_j = c_j + c_j^\dagger if term_choices[ind_op] == 0: # c_j fermion_labels.append(-label + large_number) num_cs += 1 elif term_choices[ind_op] == 1: # c_j^\dagger fermion_labels.append(label) num_cdags += 1 elif ops[ind_op] == op2: # b_j = -i c_j + i c_j^\dagger if term_choices[ind_op] == 0: # -i c_j coeff *= -1j fermion_labels.append(-label + large_number) num_cs += 1 elif term_choices[ind_op] == 1: # i c_j^\dagger coeff *= 1j fermion_labels.append(label) num_cdags += 1 elif ops[ind_op] == op3: # d_j = - 2 c_j^\dagger c_j + I if term_choices[ind_op] == 0: # -2 c_j^\dagger c_j coeff *= -2.0 fermion_labels.append(label) fermion_labels.append(-label + large_number) num_cdags += 1 num_cs += 1 elif term_choices[ind_op] == 1: # I coeff *= 1.0 # Resulting operator is identity I. if len(fermion_labels) == 0 and not include_identity: continue (sorted_fermion_labels, sign) = sort_sign(fermion_labels) coeff *= sign # The i_1,\ldots,i_m labels cdag_labels = sorted_fermion_labels[0:num_cdags] # The j_1,\ldots,j_m labels c_labels = large_number - sorted_fermion_labels[num_cdags:] c_labels = c_labels[::-1] lex_order = compare(cdag_labels, c_labels) # Resulting operator is not lexicographically sorted. Ignore it. if lex_order < 0: continue # Resulting operator is of type 1: c^\dagger_{i_1} \cdots c^\dagger_{i_m} c_{i_m} \cdots c_{i_1}. elif lex_order == 0: coeffs_fermion.append(coeff) op_strings_fermion.append(_fermion_string_from_cdag_c_labels(1.0, cdag_labels, c_labels)) # Resulting operator is of type 2: c^\dagger_{i_1} \cdots c^\dagger_{i_m} c_{j_l} \cdots c_{j_1} + H.c. elif lex_order > 0 and np.abs(np.imag(coeff)) < np.finfo(float).eps: coeffs_fermion.append(np.real(coeff)) op_strings_fermion.append(_fermion_string_from_cdag_c_labels(1.0, cdag_labels, c_labels)) # Resulting operator is of type 3: ic^\dagger_{i_1} \cdots c^\dagger_{i_m} c_{j_l} \cdots c_{j_1} + H.c. elif lex_order > 0 and np.abs(np.real(coeff)) < np.finfo(float).eps: coeffs_fermion.append(np.real(coeff/(1j))) op_strings_fermion.append(_fermion_string_from_cdag_c_labels(1j, cdag_labels, c_labels)) else: raise ValueError('Invalid lex_order = {} and coeff = {}'.format(lex_order, coeff)) return Operator(np.array(coeffs_fermion), op_strings_fermion) def _convert_fermion_string(op_string, include_identity=False): # Converts a Fermion string into an Operator # that is a linear combination of Majorana strings. # Obtain the labels of the CDag and C operators (in ascending order). cdag_labels = [o_lab for (o_lab, o_op) in zip(op_string.orbital_labels, op_string.orbital_operators) if o_op == 'CDag'] c_labels = [o_lab for (o_lab, o_op) in zip(op_string.orbital_labels, op_string.orbital_operators) if o_op == 'C'] c_labels = c_labels[::-1] # Store the operator type (C, CDag, CDagC) of every label. label_types = dict() for cdag_label in cdag_labels: label_types[cdag_label] = 'CDag' for c_label in c_labels: if c_label in label_types: label_types[c_label] = 'CDagC' else: label_types[c_label] = 'C' # Put all the labels together and reorder them so that the resulting # Majorana operator labels are in the correct order. Keep track of the # sign due to reordering when you do this. fermion_labels = cdag_labels + c_labels[::-1] (sorted_fermion_labels, sign) = sort_sign(fermion_labels) # Collect the information about the CDag, C, CDagC fermion operators and their labels into # the ops = [(orbital operator, orbital operator label), ...] list, which has the operators ordered correctly. ops = [] num_ops = 0 for f_label in sorted_fermion_labels: f_op = label_types[f_label] if not (f_op, f_label) in ops: ops.append((f_op, f_label)) num_ops += 1 coeffs_majorana = [] op_strings_majorana = [] # Perform the Fermion to Majorana string basis conversion. # Expand c_j = 1/2(a_j + ib_j), c^\dagger_j = 1/2(a_j - i b_j^\dagger), c^\dagger_j c_j = 1/2 (-d_j + I) # A "term choice" of 0 (1) corresponds to the first (second) term, e.g., # 1 for c_j is i/2 b_j, 0 for c^\dagger_j c_j is -1/2 d_j. possible_term_choices = list(it.product([0,1], repeat=num_ops)) for term_choice in possible_term_choices: coeffM = 1.0 #op_string.prefactor * sign opNameM = '' orbital_operators = [] orbital_labels = [] for ind_op in range(num_ops): (op, op_label) = ops[ind_op] if op == 'CDag' and term_choice[ind_op] == 0: coeffM *= 0.5 orbital_operators.append('A') orbital_labels.append(op_label) elif op == 'CDag' and term_choice[ind_op] == 1: coeffM *= -0.5j orbital_operators.append('B') orbital_labels.append(op_label) elif op == 'C' and term_choice[ind_op] == 0: coeffM *= 0.5 orbital_operators.append('A') orbital_labels.append(op_label) elif op == 'C' and term_choice[ind_op] == 1: coeffM *= 0.5j orbital_operators.append('B') orbital_labels.append(op_label) elif op == 'CDagC' and term_choice[ind_op] == 0: coeffM *= -0.5 orbital_operators.append('D') orbital_labels.append(op_label) elif op == 'CDagC' and term_choice[ind_op] == 1: coeffM *= 0.5 else: raise ValueError('Invalid op and term_choice: {} {}'.format(op, term_choice[ind_op])) # Ignore the identity operator. if len(orbital_operators) == 0 and not include_identity: continue op_string_M = OperatorString(orbital_operators, orbital_labels, 'Majorana') coeffM /= op_string_M.prefactor coeffM *= sign coeffM *= op_string.prefactor # The type 2 and 3 fermion strings have a Hermitian conjugate: (CDag ... C ...) + H.c., # that ensures that the resulting operators are Hermitian. In our conversion, # if an operator ends up being anti-Hermitian, then it cancels with the Hermitian conjugate. # Otherwise, its coefficient doubles because it equals the Hermitian conjugate. if cdag_labels != c_labels: if np.abs(np.imag(coeffM)) > np.finfo(float).eps: #1e-16: continue else: coeffM *= 2.0 coeffs_majorana.append(coeffM) op_strings_majorana.append(op_string_M) return Operator(np.array(coeffs_majorana), op_strings_majorana) def _convert_operator_string(op_string, to_op_type, include_identity=False): # Converts an OperatorString to a linear combination of # OperatorStrings of the given op_type. if op_string.op_type == to_op_type: return Operator(
np.array([1.0])
numpy.array
import math from aerocalc3 import std_atm as ISA # type: ignore import numpy as np # type: ignore import matplotlib # type: ignore import matplotlib.pylab as pylab # type: ignore import matplotlib.pyplot as plt # type: ignore from intersection import get_intersection_index from typing import Any class AndrasConstraint: def __init__(self): self.VariableName_unit: int = 0 # Variable names ending in an underscore are non-dimensional: self.VariableName_: int = 0 self.DesignGrossWeight_kg: int = 15 self.PropEff: float = 0.6 # Take-off performance self.GroundRun_feet: int = 197 self.TakeOffSpeed_KCAS: int = 31 self.TakeOffElevation_feet: int = 0 # Cruise # The cruising altitude may be viewed in two fundamentalways. First, itmay be a constraint – for # example, due to regulatory requirements the aircraft may have to cruise at, say, 350 feet. It can # also be viewed as a design variable, in which case you may wish to return to this point in the # document and revise it as part of an iterative process of optimization / reinement. self.CruisingAlt_feet: int = 400 self.CruisingSpeed_KTAS: float = 58.3 # Climb Performance # The climb performance of an aircraft and its variation with altitude is the result of # a complex web of interactions between the aerodynamics of lift generation and the # response of its powerplant to varying atmospheric conditions and airspeed. Typically a # range of design points have to be considered, representing a variety of conditions, but # at this early stage in the design process it is best to keep the number of these design # points at a more manageable level. Here we use 80% of the cruise speed for the climb # constraint. self.RateOfClimb_fpm: int = 591 self.ClimbSpeed_KCAS = self.CruisingSpeed_KTAS * 0.8 # The rate of climb constraint will be evaluated at this altitude: self.ROCAlt_feet: int = 0 # Turn Performance # We deine steady, level turn performance in terms of the load factor n (which represents the # ratio of lift and weight). n = 1∕ cos ���, where ��� is the bank angle (so n = 1.41 corresponds to # 45∘, n = 2 corresponds to 60∘, etc.). self.n_cvt_: float = 1.41 # Service Ceiling self.ServiceCeiling_feet: int = 500 # Approach and Landing self.ApproachSpeed_KTAS: float = 29.5 # We deine the margin by which the aircraft operates above its stall speed on inal approach # (e.g., a reserve factor of 1.2 – typical of manned military aircraft – means lying 20% above # stall, a reserve factor of 1.3 – typical of civil aircraft, means 30% above stall; for small UAVs, # lower values may be considered). self.StallReserveFactor: float = 1.1 self.StallSpeedinApproachConf_KTAS = ( self.ApproachSpeed_KTAS / self.StallReserveFactor ) print( f"Stall speed in approach configuration: {self.StallSpeedinApproachConf_KTAS} KTAS" ) # Stall speed in approach configuration: 26.8 KTAS # Maximum lift coeficient in landing coniguration: self.CLmax_approach: float = 1.3 # We also deine the highest altitude AMSL where we would expect the aircraft to be established # on a stable inal approach in landing coniguration: self.TopOfFinalApp_feet: int = 100 # Unit Conversions # All constraint analysis calculations in this document are performed in SI units. However, it is # more common to specify some elements of the design brief in the mix of SI and Imperial units # traditionally used in aviation – here we perform the appropriate conversions. self.CruisingAlt_m = self.CruisingAlt_feet * 0.3048 print(f"Cruising altitude: {self.CruisingAlt_m}") # Cruising altitude: 122 m self.TopOfFinalApp_m = self.TopOfFinalApp_feet * 0.3048 print(f"Top of final approach: {self.TopOfFinalApp_m} m") # Top of final approach: 30 m self.TakeOffElevation_m = self.TakeOffElevation_feet * 0.3048 print(f"Take-off runway elevation: {self.TakeOffElevation_m} m") # Take-off runway elevation: 0 m self.ServiceCeiling_m = self.ServiceCeiling_feet * 0.3048 print(f"Service ceiling: {self.ServiceCeiling_m} m") # Service ceiling: 152 m self.CruisingSpeed_mpsTAS = self.CruisingSpeed_KTAS * 0.5144444444 print(f"Cruising speed: {self.CruisingSpeed_mpsTAS} m/s TAS") # Cruising speed: 30.0 m/s TAS self.ClimbSpeed_mpsCAS = self.ClimbSpeed_KCAS * 0.5144444444 print(f"Climb speed: {self.ClimbSpeed_mpsCAS} m/s CAS") # Climb speed: 24.0 m/s CAS self.ApproachSpeed_mpsTAS = self.ApproachSpeed_KTAS * 0.5144444444 print(f"Approach speed: {self.ApproachSpeed_mpsTAS} m/s TAS") # Approach speed: 15.2 m/s TAS self.StallSpeedinApproachConf_mpsTAS = ( self.StallSpeedinApproachConf_KTAS * 0.51444444444 ) print( f"Stall speed in approach configuration: {self.StallSpeedinApproachConf_mpsTAS} m/s TAS" ) # Stall speed in approach configuration: 13.8 m/s TAS self.RateOfClimb_mps = self.RateOfClimb_fpm * 0.00508 print(f"Rate of climb: {self.RateOfClimb_mps} m/s") # Rate of climb: 3.0 m/s self.TakeOffSpeed_mpsCAS = self.TakeOffSpeed_KCAS * 0.5144444444 print(f"Take-off speed: {self.TakeOffSpeed_mpsCAS} m/s CAS") # Take-off speed: 15.9 m/s CAS self.GroundRun_m = self.GroundRun_feet * 0.3048 print(f"Ground run: {self.GroundRun_m} m") # Ground run: 60 m # Basic Geometry and Initial Guesses # Almost by deinition, the early part of the conceptual design process is the only part of the # product development where we do not yet have a geometry model to refer to. Thus, some of # the all-important aerodynamic igures have to be guessed at this point, largely on the basis of # high level geometrical parameters like the aspect ratio. self.AspectRatio_: float = 9.0 self.CDmin: float = 0.0418 self.WSmax_kgm2: float = 20 self.TWmax: float = 0.6 self.Pmax_kW: float = 4 # Estimated take-off parameters self.CLTO: float = 0.97 self.CDTO: float = 0.0898 self.muTO: float = 0.17 self.Resolution = 2000 self.Start_Pa = 0.1 # Preamble # Some of the computations and visualizations performed in this document may require additional # Python modules; these need to be loaded irst as follows: # get_ipython().run_line_magic("matplotlib", "inline") # Preliminary Calculations # The Operating Environment # The environment in which the aircraft is expected to operate plays a very important role in # many of the conceptual design calculations to follow. The conditions corresponding to the # current design brief are computed as follows: self.SeaLevelDens_kgm3 = ISA.alt2density( 0, alt_units="ft", density_units="kg/m**3" ) print(f" ISA density at Sea level elevation: {self.SeaLevelDens_kgm3} kg/m^3") # ISA density at Sea level elevation: 1.225 kg/m^3 self.TakeOffDens_kgm3 = ISA.alt2density( self.TakeOffElevation_feet, alt_units="ft", density_units="kg/m**3" ) print(f" ISA density at take-off elevation: {self.TakeOffDens_kgm3} kg/m^3") # ISA density at take-off elevation: 1.225 kg/m^3 self.ClimbAltDens_kgm3 = ISA.alt2density( self.ROCAlt_feet, alt_units="ft", density_units="kg/m**3" ) print( f" ISA density at the climb constraint altitude: {self.ClimbAltDens_kgm3} kg/m^3" ) # ISA density at the climb constraint altitude: 1.225 kg/m^3 self.CruisingAltDens_kgm3 = ISA.alt2density( self.CruisingAlt_feet, alt_units="ft", density_units="kg/m**3" ) print(f" ISA density at cruising altitude: {self.CruisingAltDens_kgm3} kg/m^3") # ISA density at cruising altitude: 1.211 kg/m^3 # Concept Design: Initial Constraint Analysis 153 self.TopOfFinalAppDens_kgm3 = ISA.alt2density( self.TopOfFinalApp_feet, alt_units="ft", density_units="kg/m**3" ) print( f" ISA density at the top of the final approach: {self.TopOfFinalAppDens_kgm3} kg/m^3" ) # ISA density at the top of the final approach: 1.221 kg/m^3 # Basic Aerodynamic Performance Calculations # In the absence of a geometry, at this stage any aerodynamic performance estimates will either # be based on very basic physics or simple, empirical equations. # We begin with a very rough estimate of the Oswald span eficiency, only suitable for moderate # aspect ratios and sweep angles below 30∘ (equation due to Raymer): self.e0 = 1.78 * (1 - 0.045 * self.AspectRatio_ ** 0.68) - 0.64 print(f"{self.e0} ") # 0.783 # Lift induced drag factor self.k (Cd = Cd0 # + kC2 # l ): self.k = 1.0 / (math.pi * self.AspectRatio_ * self.e0) print(f"{self.k}") # 0.045 # Dynamic pressure at cruise self.q_cruise_Pa = ( 0.5 * self.CruisingAltDens_kgm3 * (self.CruisingSpeed_mpsTAS ** 2) ) print(f"{self.q_cruise_Pa} Pa") # 544.5 Pa # Dynamic pressure in the climb self.q_climb_Pa = 0.5 * self.ClimbAltDens_kgm3 * (self.ClimbSpeed_mpsCAS ** 2) print(f"{self.q_climb_Pa} Pa") # 352.6 Pa # Dynamic pressure at take-off conditions – for the purposes of this simple approximation we # assume the acceleration during the take-off run to decrease linearly with ���2, so for the ���2 term # we’ll use half of the square of the liftoff velocity (i.e., ��� = ���TO∕ # √ # 2): self.q_TO_Pa = ( 0.5 * self.TakeOffDens_kgm3 * (self.TakeOffSpeed_mpsCAS / math.sqrt(2)) ** 2 ) print(f"{self.q_TO_Pa} Pa") # 77.9 Pa self.q_APP_Pa = ( 0.5 * self.TopOfFinalAppDens_kgm3 * self.StallSpeedinApproachConf_mpsTAS ** 2 ) print(f"{self.q_APP_Pa} Pa") # 116.2 Pa def ConstraintPoly( self, WS_Array: list, TW_Array: list, color: str, color_alfa: float ) -> Any: WS_Array.append(WS_Array[-1]) TW_Array.append(0) WS_Array.append(WS_Array[0]) TW_Array.append(0) WS_Array.append(0) TW_Array.append(TW_Array[-2]) zp = zip(WS_Array, TW_Array) print(zp, "zp") print(type(zp), " type of zp") # print(list(zp), " list of zp") pa = matplotlib.patches.Polygon( list(zp), closed=True, color=color, alpha=color_alfa ) return pa # Next, we deine a method for setting the appropriate bounds on each constraint diagram: def PlotSetUp(self, Xmin, Xmax, Ymin, Ymax, Xlabel, Ylabel): pylab.ylim([Ymin, Ymax]) pylab.xlim([Xmin, Xmax]) pylab.ylabel(Ylabel) pylab.xlabel(Xlabel) # Constraints # With the basic numbers of the current conceptual design iteration in place, we now draw up # the boundaries of the wing loading W∕S versus thrust to weight ratio T∕W design domain. # These boundaries are representations of the basic constraints that enforce the adherence of the # design to the numbers speciied in the design brief. # Constraint 1: Level, Constant Velocity Turn def constant_velocity_turn_constraint(self): # First, we compute the thrust to weight ratio required to maintain a speciic load factor n in a # level turn at the cruise altitude WSlistCVT_Pa = np.linspace(self.Start_Pa, 8500, self.Resolution) TWlistCVT = [] i = 0 for WS in WSlistCVT_Pa: TW = self.q_cruise_Pa * ( self.CDmin / WSlistCVT_Pa[i] + WSlistCVT_Pa[i] * self.k * (self.n_cvt_ / self.q_cruise_Pa) ** 2 ) TWlistCVT.append(TW) i = i + 1 WSlistCVT_kgm2 = [x * 0.101971621 for x in WSlistCVT_Pa] print(WSlistCVT_kgm2[:10]) print(TWlistCVT[:10]) # The load factor n is the inverse of the cosine of the bank angle (denoted here by ���) so the # latter can be calculated as: ��� = cos−1 # ( # 1 # n # ) # so ���, in degrees, equals: theta_deg = math.acos(1 / self.n_cvt_) * 180 / math.pi print(f"{theta_deg}\xb0") # 45∘ ConstVeloTurnPoly = self.ConstraintPoly( WSlistCVT_kgm2, TWlistCVT, "magenta", 0.1 ) figCVT = plt.figure() self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axCVT = figCVT.add_subplot(111) axCVT.add_patch(ConstVeloTurnPoly) return {"combined_data": (WSlistCVT_kgm2, TWlistCVT, "magenta", 0.1)} # Constraint 2: Rate of Climb def rate_of_climb_constraint(self): WSlistROC_Pa = np.linspace(self.Start_Pa, 8500, self.Resolution) TWlistROC = [] i = 0 for WS in WSlistROC_Pa: TW = ( self.RateOfClimb_mps / self.ClimbSpeed_mpsCAS + self.CDmin * self.q_climb_Pa / WSlistROC_Pa[i] + self.k * WSlistROC_Pa[i] / self.q_climb_Pa ) TWlistROC.append(TW) i = i + 1 WSlistROC_kgm2 = [x * 0.101971621 for x in WSlistROC_Pa] RateOfClimbPoly = self.ConstraintPoly(WSlistROC_kgm2, TWlistROC, "blue", 0.1) figROC = plt.figure() self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axROC = figROC.add_subplot(111) axROC.add_patch(RateOfClimbPoly) return {"combined_data": (WSlistROC_kgm2, TWlistROC, "blue", 0.1)} # Constraint 3: Take-Off Ground Run Constraint def take_off_run_constraint(self): WSlistGR_Pa = np.linspace(self.Start_Pa, 8500, self.Resolution) TWlistGR = [] i = 0 for WS in WSlistGR_Pa: TW = ( (self.TakeOffSpeed_mpsCAS ** 2) / (2 * 9.81 * self.GroundRun_m) + self.q_TO_Pa * self.CDTO / WSlistGR_Pa[i] + self.muTO * (1 - self.q_TO_Pa * self.CLTO / WSlistGR_Pa[i]) ) TWlistGR.append(TW) i = i + 1 WSlistGR_kgm2 = [x * 0.101971621 for x in WSlistGR_Pa] TORunPoly = self.ConstraintPoly(WSlistGR_kgm2, TWlistGR, "green", 0.1) figTOR = plt.figure() self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axTOR = figTOR.add_subplot(111) axTOR.add_patch(TORunPoly) return {"combined_data": (WSlistGR_kgm2, TWlistGR, "green", 0.1)} # Desired Cruise Airspeed def cruise_airspeed_constraint(self): WSlistCR_Pa = np.linspace(self.Start_Pa, 8500, self.Resolution) TWlistCR = [] i = 0 for WS in WSlistCR_Pa: TW = ( self.q_cruise_Pa * self.CDmin * (1.0 / WSlistCR_Pa[i]) + self.k * (1 / self.q_cruise_Pa) * WSlistCR_Pa[i] ) TWlistCR.append(TW) i = i + 1 WSlistCR_kgm2 = [x * 0.101971621 for x in WSlistCR_Pa] CruisePoly = self.ConstraintPoly(WSlistCR_kgm2, TWlistCR, "red", 0.1) figCruise = plt.figure() self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axCruise = figCruise.add_subplot(111) axCruise.add_patch(CruisePoly) return {"combined_data": (WSlistCR_kgm2, TWlistCR, "red", 0.1)} # Constraint 5: Approach Speed def approach_speed_constraint(self): self.WS_APP_Pa = self.q_APP_Pa * self.CLmax_approach self.WS_APP_kgm2 = self.WS_APP_Pa * 0.101971621 print(f"{self.WS_APP_kgm2} kg/m^2") # 15.41 kg/m^2 WSlistAPP_kgm2 = [ self.WS_APP_kgm2, self.WSmax_kgm2, self.WSmax_kgm2, self.WS_APP_kgm2, self.WS_APP_kgm2, ] TWlistAPP = [0, 0, self.TWmax, self.TWmax, 0] AppStallPoly = self.ConstraintPoly(WSlistAPP_kgm2, TWlistAPP, "grey", 0.1) figAPP = plt.figure() self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axAPP = figAPP.add_subplot(111) axAPP.add_patch(AppStallPoly) return {"combined_data": (WSlistAPP_kgm2, TWlistAPP, "grey", 0.1)} # Combined Constraint Diagram def combined_constraint_diagram(self): figCOMP = plt.figure(figsize=(10, 10)) self.PlotSetUp( 0, self.WSmax_kgm2, 0, self.TWmax, "$W/S\,[\,kg/m^2]$", "$T/W\,[\,\,]$" ) axCOMP = figCOMP.add_subplot(111) ( WS_Array, TW_Array, color, color_alfa, ) = self.constant_velocity_turn_constraint()["combined_data"] velocity_TW_Array = TW_Array ConstVeloTurnPoly = self.ConstraintPoly(WS_Array, TW_Array, color, color_alfa) axCOMP.add_patch(ConstVeloTurnPoly) (WS_Array, TW_Array, color, color_alfa) = self.rate_of_climb_constraint()[ "combined_data" ] RateOfClimbPoly = self.ConstraintPoly(WS_Array, TW_Array, color, color_alfa) axCOMP.add_patch(RateOfClimbPoly) (WS_Array, TW_Array, color, color_alfa) = self.take_off_run_constraint()[ "combined_data" ] TORunPoly = self.ConstraintPoly(WS_Array, TW_Array, color, color_alfa) axCOMP.add_patch(TORunPoly) (WS_Array, TW_Array, color, color_alfa) = self.cruise_airspeed_constraint()[ "combined_data" ] CruisePoly = self.ConstraintPoly(WS_Array, TW_Array, color, color_alfa) axCOMP.add_patch(CruisePoly) (WS_Array, TW_Array, color, color_alfa) = self.approach_speed_constraint()[ "combined_data" ] AppStallPoly = self.ConstraintPoly(WS_Array, TW_Array, color, color_alfa) axCOMP.add_patch(AppStallPoly) axCOMP.legend(["Turn", "Climb", "T/O run", "Cruise", "App Stall"]) textstr = "\n The feasible aeroplanelives\n in this white space" axCOMP.text( 0.05, 0.95, textstr, transform=axCOMP.transAxes, fontsize=14, verticalalignment="top", ) # Since propeller and piston engine driven aircraft are normally designed in terms of engine # power rather than thrust, we next convert the constraint diagram from thrust to weight # ratio into an installed power requirement by specifying a propulsive eficiency ��� = 0.6 # (note that un-supercharged piston engine power varies with altitude so we also allow for # this in the conversion using the Gagg and Ferrar model (see Gudmundsson [15]) with # PowerSL = Power∕(1.132��� − 0.132) where ��� is the air density ratio): WSlistCVT_Pa = np.linspace(self.Start_Pa, 8500, self.Resolution) PlistCVT_kW = [] i = 0 for WS in WSlistCVT_Pa: TW = self.q_cruise_Pa * ( self.CDmin / WSlistCVT_Pa[i] + WSlistCVT_Pa[i] * self.k * (self.n_cvt_ / self.q_cruise_Pa) ** 2 ) P_kW = ( 9.81 * TW * self.DesignGrossWeight_kg * self.CruisingSpeed_mpsTAS / self.PropEff / (1.132 * self.CruisingAltDens_kgm3 / self.SeaLevelDens_kgm3 - 0.132) / 1000 ) PlistCVT_kW.append(P_kW) i = i + 1 WSlistCVT_kgm2 = [x * 0.101971621 for x in WSlistCVT_Pa] WSlistROC_Pa =
np.linspace(self.Start_Pa, 8500, self.Resolution)
numpy.linspace
# # Author: <NAME> 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy._lib.six import string_types, exec_ import sys import keyword import re import inspect import types import warnings from scipy.misc import doccer from ._distr_params import distcont, distdiscrete from scipy._lib._util import check_random_state from scipy.special import (comb, chndtr, gammaln, hyp0f1, entr, kl_div) # for root finding for discrete distribution ppf, and max likelihood estimation from scipy import optimize # for functions of continuous distributions (e.g. moments, entropy, cdf) from scipy import integrate # to approximate the pdf of a continuous distribution given its cdf from scipy.misc import derivative from numpy import (arange, putmask, ravel, take, ones, sum, shape, product, reshape, zeros, floor, logical_and, log, sqrt, exp, ndarray) from numpy import (place, any, argsort, argmax, vectorize, asarray, nan, inf, isinf, NINF, empty) import numpy as np from ._constants import _EPS, _XMAX try: from new import instancemethod except ImportError: # Python 3 def instancemethod(func, obj, cls): return types.MethodType(func, obj) # These are the docstring parts used for substitution in specific # distribution docstrings docheaders = {'methods': """\nMethods\n-------\n""", 'parameters': """\nParameters\n---------\n""", 'notes': """\nNotes\n-----\n""", 'examples': """\nExamples\n--------\n"""} _doc_rvs = """\ ``rvs(%(shapes)s, loc=0, scale=1, size=1, random_state=None)`` Random variates. """ _doc_pdf = """\ ``pdf(x, %(shapes)s, loc=0, scale=1)`` Probability density function. """ _doc_logpdf = """\ ``logpdf(x, %(shapes)s, loc=0, scale=1)`` Log of the probability density function. """ _doc_pmf = """\ ``pmf(x, %(shapes)s, loc=0, scale=1)`` Probability mass function. """ _doc_logpmf = """\ ``logpmf(x, %(shapes)s, loc=0, scale=1)`` Log of the probability mass function. """ _doc_cdf = """\ ``cdf(x, %(shapes)s, loc=0, scale=1)`` Cumulative density function. """ _doc_logcdf = """\ ``logcdf(x, %(shapes)s, loc=0, scale=1)`` Log of the cumulative density function. """ _doc_sf = """\ ``sf(x, %(shapes)s, loc=0, scale=1)`` Survival function (1-cdf --- sometimes more accurate). """ _doc_logsf = """\ ``logsf(x, %(shapes)s, loc=0, scale=1)`` Log of the survival function. """ _doc_ppf = """\ ``ppf(q, %(shapes)s, loc=0, scale=1)`` Percent point function (inverse of cdf --- percentiles). """ _doc_isf = """\ ``isf(q, %(shapes)s, loc=0, scale=1)`` Inverse survival function (inverse of sf). """ _doc_moment = """\ ``moment(n, %(shapes)s, loc=0, scale=1)`` Non-central moment of order n """ _doc_stats = """\ ``stats(%(shapes)s, loc=0, scale=1, moments='mv')`` Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). """ _doc_entropy = """\ ``entropy(%(shapes)s, loc=0, scale=1)`` (Differential) entropy of the RV. """ _doc_fit = """\ ``fit(data, %(shapes)s, loc=0, scale=1)`` Parameter estimates for generic data. """ _doc_expect = """\ ``expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`` Expected value of a function (of one argument) with respect to the distribution. """ _doc_expect_discrete = """\ ``expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)`` Expected value of a function (of one argument) with respect to the distribution. """ _doc_median = """\ ``median(%(shapes)s, loc=0, scale=1)`` Median of the distribution. """ _doc_mean = """\ ``mean(%(shapes)s, loc=0, scale=1)`` Mean of the distribution. """ _doc_var = """\ ``var(%(shapes)s, loc=0, scale=1)`` Variance of the distribution. """ _doc_std = """\ ``std(%(shapes)s, loc=0, scale=1)`` Standard deviation of the distribution. """ _doc_interval = """\ ``interval(alpha, %(shapes)s, loc=0, scale=1)`` Endpoints of the range that contains alpha percent of the distribution """ _doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf, _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf, _doc_logsf, _doc_ppf, _doc_isf, _doc_moment, _doc_stats, _doc_entropy, _doc_fit, _doc_expect, _doc_median, _doc_mean, _doc_var, _doc_std, _doc_interval]) # Note that the two lines for %(shapes) are searched for and replaced in # rv_continuous and rv_discrete - update there if the exact string changes _doc_default_callparams = """ Parameters ---------- x : array_like quantiles q : array_like lower or upper tail probability %(shapes)s : array_like shape parameters loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : str, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. Default is 'mv'. """ _doc_default_longsummary = """\ Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: """ _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0, scale=1) - Frozen RV object with the same methods but holding the given shape, location, and scale fixed. """ _doc_default_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate a few first moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability density function (``pdf``): >>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s), 100) >>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), ... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') Alternatively, freeze the distribution and display the frozen pdf: >>> rv = %(name)s(%(shapes)s) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') Check accuracy of ``cdf`` and ``ppf``: >>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) >>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) And compare the histogram: >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show() """ _doc_default = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note, _doc_default_example]) _doc_default_before_notes = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note]) docdict = { 'rvs': _doc_rvs, 'pdf': _doc_pdf, 'logpdf': _doc_logpdf, 'cdf': _doc_cdf, 'logcdf': _doc_logcdf, 'sf': _doc_sf, 'logsf': _doc_logsf, 'ppf': _doc_ppf, 'isf': _doc_isf, 'stats': _doc_stats, 'entropy': _doc_entropy, 'fit': _doc_fit, 'moment': _doc_moment, 'expect': _doc_expect, 'interval': _doc_interval, 'mean': _doc_mean, 'std': _doc_std, 'var': _doc_var, 'median': _doc_median, 'allmethods': _doc_allmethods, 'callparams': _doc_default_callparams, 'longsummary': _doc_default_longsummary, 'frozennote': _doc_default_frozen_note, 'example': _doc_default_example, 'default': _doc_default, 'before_notes': _doc_default_before_notes } # Reuse common content between continuous and discrete docs, change some # minor bits. docdict_discrete = docdict.copy() docdict_discrete['pmf'] = _doc_pmf docdict_discrete['logpmf'] = _doc_logpmf docdict_discrete['expect'] = _doc_expect_discrete _doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf', 'ppf', 'isf', 'stats', 'entropy', 'expect', 'median', 'mean', 'var', 'std', 'interval'] for obj in _doc_disc_methods: docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '') docdict_discrete.pop('pdf') docdict_discrete.pop('logpdf') _doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods]) docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods docdict_discrete['longsummary'] = _doc_default_longsummary.replace( 'Continuous', 'Discrete') _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: rv = %(name)s(%(shapes)s, loc=0) - Frozen RV object with the same methods but holding the given shape and location fixed. """ docdict_discrete['frozennote'] = _doc_default_frozen_note _doc_default_discrete_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate a few first moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability mass function (``pmf``): >>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s)) >>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf') >>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5) Alternatively, freeze the distribution and display the frozen ``pmf``: >>> rv = %(name)s(%(shapes)s) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show() Check accuracy of ``cdf`` and ``ppf``: >>> prob = %(name)s.cdf(x, %(shapes)s) >>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) """ docdict_discrete['example'] = _doc_default_discrete_example _doc_default_before_notes = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['callparams'], docdict_discrete['frozennote']]) docdict_discrete['before_notes'] = _doc_default_before_notes _doc_default_disc = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['frozennote'], docdict_discrete['example']]) docdict_discrete['default'] = _doc_default_disc # clean up all the separate docstring elements, we do not need them anymore for obj in [s for s in dir() if s.startswith('_doc_')]: exec('del ' + obj) del obj try: del s except NameError: # in Python 3, loop variables are not visible after the loop pass def _moment(data, n, mu=None): if mu is None: mu = data.mean() return ((data - mu)**n).mean() def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args): if (n == 0): return 1.0 elif (n == 1): if mu is None: val = moment_func(1, *args) else: val = mu elif (n == 2): if mu2 is None or mu is None: val = moment_func(2, *args) else: val = mu2 + mu*mu elif (n == 3): if g1 is None or mu2 is None or mu is None: val = moment_func(3, *args) else: mu3 = g1 * np.power(mu2, 1.5) # 3rd central moment val = mu3+3*mu*mu2+mu*mu*mu # 3rd non-central moment elif (n == 4): if g1 is None or g2 is None or mu2 is None or mu is None: val = moment_func(4, *args) else: mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment mu3 = g1*np.power(mu2, 1.5) # 3rd central moment val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu else: val = moment_func(n, *args) return val def _skew(data): """ skew is third central moment / variance**(1.5) """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m3 = ((data - mu)**3).mean() return m3 / np.power(m2, 1.5) def _kurtosis(data): """ kurtosis is fourth central moment / variance**2 - 3 """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m4 = ((data - mu)**4).mean() return m4 / m2**2 - 3 # Frozen RV class class rv_frozen(object): def __init__(self, dist, *args, **kwds): self.args = args self.kwds = kwds # create a new instance self.dist = dist.__class__(**dist._ctor_param) # a, b may be set in _argcheck, depending on *args, **kwds. Ouch. shapes, _, _ = self.dist._parse_args(*args, **kwds) self.dist._argcheck(*shapes) self.a, self.b = self.dist.a, self.dist.b @property def random_state(self): return self.dist._random_state @random_state.setter def random_state(self, seed): self.dist._random_state = check_random_state(seed) def pdf(self, x): # raises AttributeError in frozen discrete distribution return self.dist.pdf(x, *self.args, **self.kwds) def logpdf(self, x): return self.dist.logpdf(x, *self.args, **self.kwds) def cdf(self, x): return self.dist.cdf(x, *self.args, **self.kwds) def logcdf(self, x): return self.dist.logcdf(x, *self.args, **self.kwds) def ppf(self, q): return self.dist.ppf(q, *self.args, **self.kwds) def isf(self, q): return self.dist.isf(q, *self.args, **self.kwds) def rvs(self, size=None, random_state=None): kwds = self.kwds.copy() kwds.update({'size': size, 'random_state': random_state}) return self.dist.rvs(*self.args, **kwds) def sf(self, x): return self.dist.sf(x, *self.args, **self.kwds) def logsf(self, x): return self.dist.logsf(x, *self.args, **self.kwds) def stats(self, moments='mv'): kwds = self.kwds.copy() kwds.update({'moments': moments}) return self.dist.stats(*self.args, **kwds) def median(self): return self.dist.median(*self.args, **self.kwds) def mean(self): return self.dist.mean(*self.args, **self.kwds) def var(self): return self.dist.var(*self.args, **self.kwds) def std(self): return self.dist.std(*self.args, **self.kwds) def moment(self, n): return self.dist.moment(n, *self.args, **self.kwds) def entropy(self): return self.dist.entropy(*self.args, **self.kwds) def pmf(self, k): return self.dist.pmf(k, *self.args, **self.kwds) def logpmf(self, k): return self.dist.logpmf(k, *self.args, **self.kwds) def interval(self, alpha): return self.dist.interval(alpha, *self.args, **self.kwds) def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): # expect method only accepts shape parameters as positional args # hence convert self.args, self.kwds, also loc/scale # See the .expect method docstrings for the meaning of # other parameters. a, loc, scale = self.dist._parse_args(*self.args, **self.kwds) if isinstance(self.dist, rv_discrete): if kwds: raise ValueError("Discrete expect does not accept **kwds.") return self.dist.expect(func, a, loc, lb, ub, conditional) else: return self.dist.expect(func, a, loc, scale, lb, ub, conditional, **kwds) def valarray(shape, value=nan, typecode=None): """Return an array of all value. """ out = ones(shape, dtype=bool) * value if typecode is not None: out = out.astype(typecode) if not isinstance(out, ndarray): out = asarray(out) return out def _lazywhere(cond, arrays, f, fillvalue=None, f2=None): """ np.where(cond, x, fillvalue) always evaluates x even where cond is False. This one only evaluates f(arr1[cond], arr2[cond], ...). For example, >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]) >>> def f(a, b): return a*b >>> _lazywhere(a > 2, (a, b), f, np.nan) array([ nan, nan, 21., 32.]) Notice it assumes that all `arrays` are of the same shape, or can be broadcasted together. """ if fillvalue is None: if f2 is None: raise ValueError("One of (fillvalue, f2) must be given.") else: fillvalue = np.nan else: if f2 is not None: raise ValueError("Only one of (fillvalue, f2) can be given.") arrays = np.broadcast_arrays(*arrays) temp = tuple(np.extract(cond, arr) for arr in arrays) out = valarray(shape(arrays[0]), value=fillvalue) np.place(out, cond, f(*temp)) if f2 is not None: temp = tuple(np.extract(~cond, arr) for arr in arrays) np.place(out, ~cond, f2(*temp)) return out # This should be rewritten def argsreduce(cond, *args): """Return the sequence of ravel(args[i]) where ravel(condition) is True in 1D. Examples -------- >>> import numpy as np >>> rand = np.random.random_sample >>> A = rand((4, 5)) >>> B = 2 >>> C = rand((1, 5)) >>> cond = np.ones(A.shape) >>> [A1, B1, C1] = argsreduce(cond, A, B, C) >>> B1.shape (20,) >>> cond[2,:] = 0 >>> [A2, B2, C2] = argsreduce(cond, A, B, C) >>> B2.shape (15,) """ newargs = np.atleast_1d(*args) if not isinstance(newargs, list): newargs = [newargs, ] expand_arr = (cond == cond) return [np.extract(cond, arr1 * expand_arr) for arr1 in newargs] parse_arg_template = """ def _parse_args(self, %(shape_arg_str)s %(locscale_in)s): return (%(shape_arg_str)s), %(locscale_out)s def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None): return (%(shape_arg_str)s), %(locscale_out)s, size def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'): return (%(shape_arg_str)s), %(locscale_out)s, moments """ # Both the continuous and discrete distributions depend on ncx2. # I think the function name ncx2 is an abbreviation for noncentral chi squared. def _ncx2_log_pdf(x, df, nc): a = asarray(df/2.0) fac = -nc/2.0 - x/2.0 + (a-1)*log(x) - a*log(2) - gammaln(a) return fac + np.nan_to_num(log(hyp0f1(a, nc * x/4.0))) def _ncx2_pdf(x, df, nc): return np.exp(_ncx2_log_pdf(x, df, nc)) def _ncx2_cdf(x, df, nc): return chndtr(x, df, nc) class rv_generic(object): """Class which encapsulates common functionality between rv_discrete and rv_continuous. """ def __init__(self, seed=None): super(rv_generic, self).__init__() # figure out if _stats signature has 'moments' keyword sign = inspect.getargspec(self._stats) self._stats_has_moments = ((sign[2] is not None) or ('moments' in sign[0])) self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _construct_argparser( self, meths_to_inspect, locscale_in, locscale_out): """Construct the parser for the shape arguments. Generates the argument-parsing functions dynamically and attaches them to the instance. Is supposed to be called in __init__ of a class for each distribution. If self.shapes is a non-empty string, interprets it as a comma-separated list of shape parameters. Otherwise inspects the call signatures of `meths_to_inspect` and constructs the argument-parsing functions from these. In this case also sets `shapes` and `numargs`. """ if self.shapes: # sanitize the user-supplied shapes if not isinstance(self.shapes, string_types): raise TypeError('shapes must be a string.') shapes = self.shapes.replace(',', ' ').split() for field in shapes: if keyword.iskeyword(field): raise SyntaxError('keywords cannot be used as shapes.') if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field): raise SyntaxError( 'shapes must be valid python identifiers') else: # find out the call signatures (_pdf, _cdf etc), deduce shape # arguments shapes_list = [] for meth in meths_to_inspect: shapes_args = inspect.getargspec(meth) shapes_list.append(shapes_args.args) # *args or **kwargs are not allowed w/automatic shapes # (generic methods have 'self, x' only) if len(shapes_args.args) > 2: if shapes_args.varargs is not None: raise TypeError( '*args are not allowed w/out explicit shapes') if shapes_args.keywords is not None: raise TypeError( '**kwds are not allowed w/out explicit shapes') if shapes_args.defaults is not None: raise TypeError('defaults are not allowed for shapes') shapes = max(shapes_list, key=lambda x: len(x)) shapes = shapes[2:] # remove self, x, # make sure the signatures are consistent # (generic methods have 'self, x' only) for item in shapes_list: if len(item) > 2 and item[2:] != shapes: raise TypeError('Shape arguments are inconsistent.') # have the arguments, construct the method from template shapes_str = ', '.join(shapes) + ', ' if shapes else '' # NB: not None dct = dict(shape_arg_str=shapes_str, locscale_in=locscale_in, locscale_out=locscale_out, ) ns = {} exec_(parse_arg_template % dct, ns) # NB: attach to the instance, not class for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']: setattr(self, name, instancemethod(ns[name], self, self.__class__) ) self.shapes = ', '.join(shapes) if shapes else None if not hasattr(self, 'numargs'): # allows more general subclassing with *args self.numargs = len(shapes) def _construct_doc(self, docdict, shapes_vals=None): """Construct the instance docstring with string substitutions.""" tempdict = docdict.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if shapes_vals is None: shapes_vals = () vals = ', '.join(str(_) for _ in shapes_vals) tempdict['vals'] = vals if self.shapes: tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals) else: tempdict['set_vals_stmt'] = '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['callparams', 'default', 'before_notes']: tempdict[item] = tempdict[item].replace( "\n%(shapes)s : array_like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) # correct for empty shapes self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')') def freeze(self, *args, **kwds): """Freeze the distribution for the given arguments. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include ``loc`` and ``scale``. Returns ------- rv_frozen : rv_frozen instance The frozen distribution. """ return rv_frozen(self, *args, **kwds) def __call__(self, *args, **kwds): return self.freeze(*args, **kwds) # The actual calculation functions (no basic checking need be done) # If these are defined, the others won't be looked at. # Otherwise, the other set can be defined. def _stats(self, *args, **kwds): return None, None, None, None # Central moments def _munp(self, n, *args): # Silence floating point warnings from integration. olderr = np.seterr(all='ignore') vals = self.generic_moment(n, *args) np.seterr(**olderr) return vals ## These are the methods you must define (standard form functions) ## NB: generic _pdf, _logpdf, _cdf are different for ## rv_continuous and rv_discrete hence are defined in there def _argcheck(self, *args): """Default check for correct values on args and keywords. Returns condition array of 1's where arguments are correct and 0's where they are not. """ cond = 1 for arg in args: cond = logical_and(cond, (asarray(arg) > 0)) return cond ##(return 1-d using self._size to get number) def _rvs(self, *args): ## Use basic inverse cdf algorithm for RV generation as default. U = self._random_state.random_sample(self._size) Y = self._ppf(U, *args) return Y def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x, *args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self._ppfvec(q, *args) def _isf(self, q, *args): return self._ppf(1.0-q, *args) # use correct _ppf for subclasses # These are actually called, and should not be overwritten if you # want to keep error checking. def rvs(self, *args, **kwds): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). size : int or tuple of ints, optional Defining number of random variates (default=1). random_state : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates If None, rely on self.random_state Default is None. Returns ------- rvs : ndarray or scalar Random variates of given `size`. """ discrete = kwds.pop('discrete', None) rndm = kwds.pop('random_state', None) args, loc, scale, size = self._parse_args_rvs(*args, **kwds) cond = logical_and(self._argcheck(*args), (scale >= 0)) if not np.all(cond): raise ValueError("Domain error in arguments.") # self._size is total size of all output values self._size = product(size, axis=0) if self._size is not None and self._size > 1: size = np.array(size, ndmin=1) if np.all(scale == 0): return loc*ones(size, 'd') # extra gymnastics needed for a custom random_state if rndm is not None: random_state_saved = self._random_state self._random_state = check_random_state(rndm) vals = self._rvs(*args) if self._size is not None: vals = reshape(vals, size) vals = vals * scale + loc # do not forget to restore the _random_state if rndm is not None: self._random_state = random_state_saved # Cast to int if discrete if discrete: if np.isscalar(vals): vals = int(vals) else: vals = vals.astype(int) return vals def stats(self, *args, **kwds): """ Some statistics of the given RV Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional (discrete RVs only) scale parameter (default=1) moments : str, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default='mv') Returns ------- stats : sequence of requested moments. """ args, loc, scale, moments = self._parse_args_stats(*args, **kwds) # scale = 1 by construction for discrete RVs loc, scale = map(asarray, (loc, scale)) args = tuple(map(asarray, args)) cond = self._argcheck(*args) & (scale > 0) & (loc == loc) output = [] default = valarray(shape(cond), self.badvalue) # Use only entries that are valid in calculation if any(cond): goodargs = argsreduce(cond, *(args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] if self._stats_has_moments: mu, mu2, g1, g2 = self._stats(*goodargs, **{'moments': moments}) else: mu, mu2, g1, g2 = self._stats(*goodargs) if g1 is None: mu3 = None else: if mu2 is None: mu2 = self._munp(2, *goodargs) # (mu2**1.5) breaks down for nan and inf mu3 = g1 * np.power(mu2, 1.5) if 'm' in moments: if mu is None: mu = self._munp(1, *goodargs) out0 = default.copy() place(out0, cond, mu * scale + loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2, *goodargs) if mu is None: mu = self._munp(1, *goodargs) mu2 = mu2p - mu * mu if np.isinf(mu): #if mean is inf then var is also inf mu2 = np.inf out0 = default.copy() place(out0, cond, mu2 * scale * scale) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu mu3 = mu3p - 3 * mu * mu2 - mu**3 g1 = mu3 / np.power(mu2, 1.5) out0 = default.copy() place(out0, cond, g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu if mu3 is None: mu3p = self._munp(3, *goodargs) mu3 = mu3p - 3 * mu * mu2 - mu**3 mu4 = mu4p - 4 * mu * mu3 - 6 * mu * mu * mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() place(out0, cond, g2) output.append(out0) else: # no valid args output = [] for _ in moments: out0 = default.copy() output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def entropy(self, *args, **kwds): """ Differential entropy of the RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional (continuous distributions only). Scale parameter (default=1). Notes ----- Entropy is defined base `e`: >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5))) >>> np.allclose(drv.entropy(), np.log(2.0)) True """ args, loc, scale = self._parse_args(*args, **kwds) # NB: for discrete distributions scale=1 by construction in _parse_args args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) output = zeros(shape(cond0), 'd') place(output, (1-cond0), self.badvalue) goodargs = argsreduce(cond0, *args) # I don't know when or why vecentropy got broken when numargs == 0 # 09.08.2013: is this still relevant? cf check_vecentropy test # in tests/test_continuous_basic.py if self.numargs == 0: place(output, cond0, self._entropy() + log(scale)) else: place(output, cond0, self.vecentropy(*goodargs) + log(scale)) return output def moment(self, n, *args, **kwds): """ n'th order non-central moment of distribution. Parameters ---------- n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include "loc" and "scale", as well as other keyword arguments relevant for a given distribution. """ args, loc, scale = self._parse_args(*args, **kwds) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): if self._stats_has_moments: mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]} else: mdict = {} mu, mu2, g1, g2 = self._stats(*args, **mdict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n, k, exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def median(self, *args, **kwds): """ Median of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter, Default is 0. scale : array_like, optional Scale parameter, Default is 1. Returns ------- median : float The median of the distribution. See Also -------- stats.distributions.rv_discrete.ppf Inverse of the CDF """ return self.ppf(0.5, *args, **kwds) def mean(self, *args, **kwds): """ Mean of the distribution Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- mean : float the mean of the distribution """ kwds['moments'] = 'm' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def var(self, *args, **kwds): """ Variance of the distribution Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- var : float the variance of the distribution """ kwds['moments'] = 'v' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def std(self, *args, **kwds): """ Standard deviation of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- std : float standard deviation of the distribution """ kwds['moments'] = 'v' res = sqrt(self.stats(*args, **kwds)) return res def interval(self, alpha, *args, **kwds): """ Confidence interval with equal areas around the median. Parameters ---------- alpha : array_like of float Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1]. arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, Default is 0. scale : array_like, optional scale parameter, Default is 1. Returns ------- a, b : ndarray of float end-points of range that contain ``100 * alpha %`` of the rv's possible values. """ alpha = asarray(alpha) if any((alpha > 1) | (alpha < 0)): raise ValueError("alpha must be between 0 and 1 inclusive") q1 = (1.0-alpha)/2 q2 = (1.0+alpha)/2 a = self.ppf(q1, *args, **kwds) b = self.ppf(q2, *args, **kwds) return a, b ## continuous random variables: implement maybe later ## ## hf --- Hazard Function (PDF / SF) ## chf --- Cumulative hazard function (-log(SF)) ## psf --- Probability sparsity function (reciprocal of the pdf) in ## units of percent-point-function (as a function of q). ## Also, the derivative of the percent-point function. class rv_continuous(rv_generic): """ A generic continuous random variable class meant for subclassing. `rv_continuous` is a base class to construct specific distribution classes and instances from for continuous random variables. It cannot be used directly as a distribution. Parameters ---------- momtype : int, optional The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf. a : float, optional Lower bound of the support of the distribution, default is minus infinity. b : float, optional Upper bound of the support of the distribution, default is plus infinity. xtol : float, optional The tolerance for fixed point calculation for generic ppf. badvalue : object, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the two shape arguments for all its methods. extradoc : str, optional, deprecated This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Methods ------- ``rvs(<shape(s)>, loc=0, scale=1, size=1)`` random variates ``pdf(x, <shape(s)>, loc=0, scale=1)`` probability density function ``logpdf(x, <shape(s)>, loc=0, scale=1)`` log of the probability density function ``cdf(x, <shape(s)>, loc=0, scale=1)`` cumulative density function ``logcdf(x, <shape(s)>, loc=0, scale=1)`` log of the cumulative density function ``sf(x, <shape(s)>, loc=0, scale=1)`` survival function (1-cdf --- sometimes more accurate) ``logsf(x, <shape(s)>, loc=0, scale=1)`` log of the survival function ``ppf(q, <shape(s)>, loc=0, scale=1)`` percent point function (inverse of cdf --- quantiles) ``isf(q, <shape(s)>, loc=0, scale=1)`` inverse survival function (inverse of sf) ``moment(n, <shape(s)>, loc=0, scale=1)`` non-central n-th moment of the distribution. May not work for array arguments. ``stats(<shape(s)>, loc=0, scale=1, moments='mv')`` mean('m'), variance('v'), skew('s'), and/or kurtosis('k') ``entropy(<shape(s)>, loc=0, scale=1)`` (differential) entropy of the RV. ``fit(data, <shape(s)>, loc=0, scale=1)`` Parameter estimates for generic data ``expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`` Expected value of a function with respect to the distribution. Additional kwd arguments passed to integrate.quad ``median(<shape(s)>, loc=0, scale=1)`` Median of the distribution. ``mean(<shape(s)>, loc=0, scale=1)`` Mean of the distribution. ``std(<shape(s)>, loc=0, scale=1)`` Standard deviation of the distribution. ``var(<shape(s)>, loc=0, scale=1)`` Variance of the distribution. ``interval(alpha, <shape(s)>, loc=0, scale=1)`` Interval that with `alpha` percent probability contains a random realization of this distribution. ``__call__(<shape(s)>, loc=0, scale=1)`` Calling a distribution instance creates a frozen RV object with the same methods but holding the given shape, location, and scale fixed. See Notes section. **Parameters for Methods** x : array_like quantiles q : array_like lower or upper tail probability <shape(s)> : array_like shape parameters loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : string, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. (default='mv') n : int order of moment to calculate in method moments Notes ----- **Methods that can be overwritten by subclasses** :: _rvs _pdf _cdf _sf _ppf _isf _stats _munp _entropy _argcheck There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called. **Frozen Distribution** Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = generic(<shape(s)>, loc=0, scale=1) frozen RV object with the same methods but holding the given shape, location, and scale fixed **Subclassing** New random variables can be defined by subclassing rv_continuous class and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized to location 0 and scale 1) which will be given clean arguments (in between a and b) and passing the argument check method. If positive argument checking is not correct for your RV then you will also need to re-define the ``_argcheck`` method. Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride:: _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could. Statistics are computed using numerical integration by default. For speed you can redefine this using ``_stats``: - take shape parameters and return mu, mu2, g1, g2 - If you can't compute one of these, return it as None - Can also be defined with a keyword argument ``moments=<str>``, where <str> is a string composed of 'm', 'v', 's', and/or 'k'. Only the components appearing in string should be computed and returned in the order 'm', 'v', 's', or 'k' with missing values returned as None. Alternatively, you can override ``_munp``, which takes n and shape parameters and returns the nth non-central moment of the distribution. A note on ``shapes``: subclasses need not specify them explicitly. In this case, the `shapes` will be automatically deduced from the signatures of the overridden methods. If, for some reason, you prefer to avoid relying on introspection, you can specify ``shapes`` explicitly as an argument to the instance constructor. Examples -------- To create a new Gaussian distribution, we would do the following:: class gaussian_gen(rv_continuous): "Gaussian distribution" def _pdf(self, x): ... ... """ def __init__(self, momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None, seed=None): super(rv_continuous, self).__init__(seed) # save the ctor parameters, cf generic freeze self._ctor_param = dict( momtype=momtype, a=a, b=b, xtol=xtol, badvalue=badvalue, name=name, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -inf if b is None: self.b = inf self.xtol = xtol self._size = 1 self.moment_type = momtype self.shapes = shapes self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf], locscale_in='loc=0, scale=1', locscale_out='loc, scale') # nin correction self._ppfvec = vectorize(self._ppf_single, otypes='d') self._ppfvec.nin = self.numargs + 1 self.vecentropy = vectorize(self._entropy, otypes='d') self._cdfvec = vectorize(self._cdf_single, otypes='d') self._cdfvec.nin = self.numargs + 1 # backwards compat. these were removed in 0.14.0, put back but # deprecated in 0.14.1: self.vecfunc = np.deprecate(self._ppfvec, "vecfunc") self.veccdf = np.deprecate(self._cdfvec, "veccdf") self.extradoc = extradoc if momtype == 0: self.generic_moment = vectorize(self._mom0_sc, otypes='d') else: self.generic_moment = vectorize(self._mom1_sc, otypes='d') # Because of the *args argument of _mom0_sc, vectorize cannot count the # number of arguments correctly. self.generic_moment.nin = self.numargs + 1 if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if sys.flags.optimize < 2: # Skip adding docstrings if interpreter is run with -OO if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc) else: dct = dict(distcont) self._construct_doc(docdict, dct.get(self.name)) def _construct_default_doc(self, longname=None, extradoc=None): """Construct instance docstring from the default template.""" if longname is None: longname = 'A' if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s continuous random variable.' % longname, '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc(docdict) def _ppf_to_solve(self, x, q, *args): return self.cdf(*(x, )+args)-q def _ppf_single(self, q, *args): left = right = None if self.a > -np.inf: left = self.a if self.b < np.inf: right = self.b factor = 10. if not left: # i.e. self.a = -inf left = -1.*factor while self._ppf_to_solve(left, q, *args) > 0.: right = left left *= factor # left is now such that cdf(left) < q if not right: # i.e. self.b = inf right = factor while self._ppf_to_solve(right, q, *args) < 0.: left = right right *= factor # right is now such that cdf(right) > q return optimize.brentq(self._ppf_to_solve, left, right, args=(q,)+args, xtol=self.xtol) # moment from definition def _mom_integ0(self, x, m, *args): return x**m * self.pdf(x, *args) def _mom0_sc(self, m, *args): return integrate.quad(self._mom_integ0, self.a, self.b, args=(m,)+args)[0] # moment calculated using ppf def _mom_integ1(self, q, m, *args): return (self.ppf(q, *args))**m def _mom1_sc(self, m, *args): return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0] def _pdf(self, x, *args): return derivative(self._cdf, x, dx=1e-5, args=args, order=5) ## Could also define any of these def _logpdf(self, x, *args): return log(self._pdf(x, *args)) def _cdf_single(self, x, *args): return integrate.quad(self._pdf, self.a, x, args=args)[0] def _cdf(self, x, *args): return self._cdfvec(x, *args) ## generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined ## in rv_generic def pdf(self, x, *args, **kwds): """ Probability density function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- pdf : ndarray Probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = asarray((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = zeros(shape(cond), 'd') putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._pdf(*goodargs) / scale) if output.ndim == 0: return output[()] return output def logpdf(self, x, *args, **kwds): """ Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logpdf : array_like Log of the probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = asarray((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._logpdf(*goodargs) - log(scale)) if output.ndim == 0: return output[()] return output def cdf(self, x, *args, **kwds): """ Cumulative distribution function of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- cdf : ndarray Cumulative distribution function evaluated at `x` """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self, x, *args, **kwds): """ Log of the cumulative distribution function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self, x, *args, **kwds): """ Survival function (1-cdf) at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- sf : array_like Survival function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self, x, *args, **kwds): """ Log of the survival function of the given RV. Returns the log of the "survival function," defined as (1 - `cdf`), evaluated at `x`. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logsf : ndarray Log of the survival function evaluated at `x`. """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self, q, *args, **kwds): """ Percent point function (inverse of cdf) at q of the given RV. Parameters ---------- q : array_like lower tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : array_like quantile corresponding to the lower tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 0) cond3 = cond0 & (q == 1) cond = cond0 & cond1 output = valarray(shape(cond), value=self.badvalue) lower_bound = self.a * scale + loc upper_bound = self.b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._ppf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def isf(self, q, *args, **kwds): """ Inverse survival function at q of the given RV. Parameters ---------- q : array_like upper tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : ndarray or scalar Quantile corresponding to the upper tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 1) cond3 = cond0 & (q == 0) cond = cond0 & cond1 output = valarray(shape(cond), value=self.badvalue) lower_bound = self.a * scale + loc upper_bound = self.b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._isf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def _nnlf(self, x, *args): return -sum(self._logpdf(x, *args), axis=0) def nnlf(self, theta, x): '''Return negative loglikelihood function Notes ----- This is ``-sum(log pdf(x, theta), axis=0)`` where theta are the parameters (including loc and scale). ''' try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) cond0 = (x <= self.a) | (self.b <= x) if (any(cond0)): return inf else: N = len(x) return self._nnlf(x, *args) + N * log(scale) def _penalized_nnlf(self, theta, x): ''' Return negative loglikelihood function, i.e., - sum (log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale) ''' try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) loginf = log(_XMAX) if np.isneginf(self.a).all() and np.isinf(self.b).all(): Nbad = 0 else: cond0 = (x <= self.a) | (self.b <= x) Nbad = sum(cond0) if Nbad > 0: x = argsreduce(~cond0, x)[0] N = len(x) return self._nnlf(x, *args) + N*
log(scale)
numpy.log
""" This file is part of tcg. """ from dataclasses import dataclass from copy import deepcopy from itertools import product import numpy as np @dataclass class Loc: """Make Location object to represent location on grid. Locations on a 3x3 grid. Locations are represented by their x and y coordinates. For locations 1,...,9 numbered in the same order as on a phone keypad, the coordinates are: 1: (0, 2), 2: (1, 2), 3: (2, 2), 4: (0, 1), 5: (1, 1), 6: (2, 1), 7: (0, 0), 8: (1, 0), 9: (2, 0). Args: x: An int. The x coordinate on the grid. y: An int. The y coordinate on the grid. """ x: int y: int # Define the build-in + operation. def __add__(self, move): """Return location that results from self + move. Args: move: A string or an integer. Return: Loc object. """ # Use to switch between string, int, and array representation # of move. move_str2arr = { "up": np.array((0, 1)), "right": np.array((1, 0)), "down": np.array((0, -1)), "left": np.array((-1, 0)) } move_int2arr = { 1: np.array((0, 1)), 2: np.array((1, 0)), 3:
np.array((0, -1))
numpy.array
from orangecontrib.recommendation.rating import Learner, Model from orangecontrib.recommendation.utils.format_data import * from orangecontrib.recommendation.optimizers import * from orangecontrib.recommendation.utils.datacaching \ import cache_norms, cache_rows from collections import defaultdict import numpy as np import math import time import warnings __all__ = ['TrustSVDLearner'] __sparse_format__ = lil_matrix def _compute_extra_terms(Y, W, items_u, trustees_u): # Implicit information norm_Iu = math.sqrt(len(items_u)) # TODO: Clean this. Hint: np.nans y_term = 0 if norm_Iu > 0: y_sum = np.sum(Y[items_u, :], axis=0) y_term = y_sum / norm_Iu # Trust information w_term = 0 norm_Tu = math.sqrt(len(trustees_u)) if norm_Tu > 0: w_sum = np.sum(W[trustees_u, :], axis=0) w_term = w_sum / norm_Tu return y_term, w_term, norm_Iu, norm_Tu def _predict(u, j, global_avg, bu, bi, P, Q, Y, W, items_u, trustees_u): # Compute bias bias = global_avg + bu[u] + bi[j] # Compute extra terms y_term, w_term, norm_Iu, norm_Tu = \ _compute_extra_terms(Y, W, items_u, trustees_u) # Compute base p_enhanced = P[u, :] + (y_term + w_term) base_pred = np.einsum('i,i', p_enhanced, Q[j, :]) # Compute prediction and return extra terms and norms return bias + base_pred, y_term, w_term, norm_Iu, norm_Tu def _predict_all_items(u, global_avg, bu, bi, P, Q, Y, W, items_u, trustees_u): # Compute bias bias = global_avg + bu[u] + bi # Compute extra terms y_term, w_term, _, _ = _compute_extra_terms(Y, W, items_u, trustees_u) # Compute base p_enhanced = P[u, :] + (y_term + w_term) # Compute prediction base_pred = np.dot(p_enhanced, Q.T) return bias + base_pred def _matrix_factorization(ratings, trust, bias, shape, shape_t, num_factors, num_iter, learning_rate, bias_learning_rate, lmbda, bias_lmbda, social_lmbda, optimizer, verbose=False, random_state=None, callback=None): # Seed the generator if random_state is not None: np.random.seed(random_state) # Get featured matrices dimensions num_users, num_items = shape num_users = max(num_users, max(shape_t)) # Initialize low-rank matrices P = np.random.rand(num_users, num_factors) # User-feature matrix Q = np.random.rand(num_items, num_factors) # Item-feature matrix Y = np.random.randn(num_items, num_factors) # Feedback-feature matrix W = np.random.randn(num_users, num_factors) # Trust-feature matrix # Compute bias (not need it if learnt) global_avg = bias['globalAvg'] bu = bias['dUsers'] bi = bias['dItems'] # Configure optimizer update_bu = create_opt(optimizer, bias_learning_rate).update update_bj = create_opt(optimizer, bias_learning_rate).update update_pu = create_opt(optimizer, learning_rate).update update_qj = create_opt(optimizer, learning_rate).update update_yi = create_opt(optimizer, learning_rate).update update_wv = create_opt(optimizer, learning_rate).update # Cache rows # >>> From 2 days to 30s users_cache = defaultdict(list) trusters_cache = defaultdict(list) # Cache norms (slower than list, but allows vectorization) # >>> Lists: 6s; Arrays: 12s -> vectorized: 2s norm_I = np.zeros(num_users) # norms of Iu norm_U = np.zeros(num_items) # norms of Ui norm_Tr = np.zeros(num_users) # norms of Tu norm_Tc = np.zeros(num_users) # norms of Tv # Precompute transpose (most costly operation) ratings_T = ratings.T trust_T = trust.T # Print information about the verbosity level if verbose: print('TrustSVD factorization started.') print('\tLevel of verbosity: ' + str(int(verbose))) print('\t\t- Verbosity = 1\t->\t[time/iter]') print('\t\t- Verbosity = 2\t->\t[time/iter, loss]') print('') # Catch warnings with warnings.catch_warnings(): # Turn matching warnings into exceptions warnings.filterwarnings('error') try: # Factorize matrix using SGD for step in range(num_iter): if verbose: start = time.time() print('- Step: %d' % (step + 1)) # Send information about the process if callback: callback(step + 1) # Optimize rating prediction for u, j in zip(*ratings.nonzero()): # Store lists in cache items_u = cache_rows(ratings, u, users_cache) trustees_u = cache_rows(trust, u, trusters_cache) # No need to cast for CV due to max(num_users, shape_t[0]) # Prediction and error ruj_pred, y_term, w_term, norm_Iu, norm_Tu = \ _predict(u, j, global_avg, bu, bi, P, Q, Y, W, items_u, trustees_u) euj = ruj_pred - ratings[u, j] # Store/Compute norms norm_I[u] = norm_Iu norm_Tr[u] = norm_Tu norm_Uj = cache_norms(ratings_T, j, norm_U) # Gradient Bu reg_bu = (bias_lmbda/norm_Iu) * bu[u] if norm_Iu > 0 else 0 dx_bu = euj + reg_bu # Gradient Bi reg_bi = (bias_lmbda/norm_Uj) * bi[j] if norm_Uj > 0 else 0 dx_bi = euj + reg_bi # Update the gradients Bu, Bi at the same time update_bu(dx_bu, bu, u) update_bj(dx_bi, bi, j) # Gradient P reg_p = (lmbda/norm_Iu) * P[u, :] if norm_Iu > 0 else 0 dx_pu = euj * Q[j, :] + reg_p update_pu(dx_pu, P, u) # Gradient Q reg_q = (lmbda/norm_Uj) * Q[j, :] if norm_Uj > 0 else 0 dx_qi = euj * (P[u, :] + y_term + w_term) + reg_q update_qj(dx_qi, Q, j) # Gradient Y if norm_Iu > 0: tempY1 = (euj/norm_Iu) * Q[j, :] norms = cache_norms(ratings_T, items_u, norm_U) norm_b = (lmbda/np.atleast_2d(norms)) dx_yi = tempY1 +
np.multiply(norm_b.T, Y[items_u, :])
numpy.multiply
import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable import numpy as np import datetime class SimpleNet(nn.Module): def __init__(self, name=None, created_time=None): super(SimpleNet, self).__init__() self.created_time = created_time self.name=name def visualize(self, vis, epoch, acc, loss=None, eid='main', is_poisoned=False, name=None): if name is None: name = self.name + '_poisoned' if is_poisoned else self.name vis.line(X=np.array([epoch]), Y=np.array([acc]), name=name, win='vacc_{0}'.format(self.created_time), env=eid, update='append' if vis.win_exists('vacc_{0}'.format(self.created_time), env=eid) else None, opts=dict(showlegend=True, title='Accuracy_{0}'.format(self.created_time), width=700, height=400)) if loss is not None: vis.line(X=np.array([epoch]), Y=
np.array([loss])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 11 13:15:44 2021 @author: <NAME>, PhD Scholar, EEE Dept., IIT Guwahati @reference: <NAME>, <NAME>, <NAME>, and <NAME>, “A unified audio analysis framework for movie genre classification using movie trailers,” in Proc. of the International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE, 2021, pp. 510–515. Implementation details: 1. 34-dimensional features from waveform: ZCR, energy, the entropy of energy, spectral centroid, spectral spread, spectral entropy, spectral flux, spectral roll-off, 13-MFCC, 12-chroma, chroma deviation 2. 34-dimensional features from differenced waveform: pyAudioAnalysis 3. 50ms/25ms frame size and shift is used 4. Total of 200×68 feature matrix is obtained from 5s non-overlapping chunks 5. Every chunk is represented by a mean over 200 frames to obtain 1×68 dimensional feature vectors 6. First and last chunk of every trailer is ignored 7. The chunk representations are segmented using K-means clustering with 10 clusters using 400 trailers. The same trailers are not used for training and validation 8. For every chunk, inverse of euclidian distance from each centroid is computed 9. The inverse distances are appended to the chunk features to form 78-dimension feature vector 10. Mean over the feature vectors of all chunks in a trailer is computed to obtain 1×78 dimension feature vector for every trailer 11. The data is normalized in the range of 0 to 1 12. Classified with AFA-net classifier 13. Training/testing split is 85:15 14. Learning rate of 0.001. Trained for 200 epochs 15. Metric: AU(PRC) 16. Genres: Action, Sci-Fi, Comedy, Horror, Romance """ import numpy as np import os import datetime import lib.misc as misc from tensorflow.keras import optimizers from tensorflow.keras.layers import Dense, Input, Dropout, Activation, BatchNormalization from tensorflow.keras.models import Model import tensorflow as tf from tensorflow.keras.callbacks import CSVLogger, ModelCheckpoint, ReduceLROnPlateau import time from sklearn.metrics import precision_recall_curve, auc, average_precision_score import sys from sklearn.preprocessing import MinMaxScaler, StandardScaler from lib.pyAudioAnalysis import ShortTermFeatures as aF from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances import librosa from tensorflow.keras.initializers import he_uniform from tensorflow.keras.regularizers import l2 from tensorflow.keras.metrics import AUC def start_GPU_session(): gpu_options = tf.compat.v1.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.4) config = tf.compat.v1.ConfigProto( device_count={'GPU': 1 , 'CPU': 1}, gpu_options=gpu_options, intra_op_parallelism_threads=1, inter_op_parallelism_threads=1, ) sess = tf.compat.v1.Session(config=config) tf.compat.v1.keras.backend.set_session(sess) def reset_TF_session(): tf.compat.v1.keras.backend.clear_session() def AFA_net_model(output_dim): # create model input_layer = Input((78,)) x = Dense(256, input_dim=(78,))(input_layer) x = BatchNormalization(axis=-1)(x) x = Dense(256)(x) x = BatchNormalization(axis=-1)(x) x = Dropout(0.4)(x) x = Dense(64)(x) x = BatchNormalization(axis=-1)(x) x = Dense(32)(x) x = BatchNormalization(axis=-1)(x) x = Dropout(0.2)(x) output_layer = Dense(output_dim, activation='sigmoid')(x) model = Model(input_layer, output_layer) learning_rate = 0.001 opt = optimizers.Adam(lr=learning_rate) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[AUC(curve='PR')]) return model, learning_rate def train_model(PARAMS, data_dict, model, weightFile, logFile): csv_logger = CSVLogger(logFile, append=True) mcp = ModelCheckpoint(weightFile, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='min', save_freq='epoch') reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=0.000001, verbose=1, mode='min', min_delta=0.01) trainingTimeTaken = 0 start = time.process_time() train_data = data_dict['train_data'] train_label = data_dict['train_label'] val_data = data_dict['val_data'] val_label = data_dict['val_label'] print('train data: ', np.shape(train_data), np.shape(train_label)) print('genre_list: ', PARAMS['genre_list']) History = model.fit( x=train_data, y=train_label, epochs=PARAMS['epochs'], batch_size=PARAMS['batch_size'], verbose=1, validation_data=(val_data, val_label), callbacks=[csv_logger, mcp, reduce_lr], shuffle=True, ) trainingTimeTaken = time.process_time() - start print('Time taken for model training: ',trainingTimeTaken) return model, trainingTimeTaken, History def perform_training(PARAMS, data_dict): modelName = '@'.join(PARAMS['modelName'].split('.')[:-1]) + '.' + PARAMS['modelName'].split('.')[-1] weightFile = modelName.split('.')[0] + '.h5' architechtureFile = modelName.split('.')[0] + '.json' summaryFile = modelName.split('.')[0] + '_summary.txt' paramFile = modelName.split('.')[0] + '_params.npz' logFile = modelName.split('.')[0] + '_log.csv' modelName = '.'.join(modelName.split('@')) weightFile = '.'.join(weightFile.split('@')) architechtureFile = '.'.join(architechtureFile.split('@')) summaryFile = '.'.join(summaryFile.split('@')) paramFile = '.'.join(paramFile.split('@')) logFile = '.'.join(logFile.split('@')) input_dim = np.shape(data_dict['train_data'])[1] print('Weight file: ', weightFile, input_dim) if not os.path.exists(paramFile): model, learning_rate = AFA_net_model(len(PARAMS['genre_list'])) misc.print_model_summary(summaryFile, model) print(model.summary()) print('Architecture of Sharma et al., IEEE ESCI, 2021') model, trainingTimeTaken, History = train_model(PARAMS, data_dict, model, weightFile, logFile) if PARAMS['save_flag']: with open(architechtureFile, 'w') as f: f.write(model.to_json()) np.savez(paramFile, lr=str(learning_rate), TTT=str(trainingTimeTaken)) trainingTimeTaken = float(np.load(paramFile)['TTT']) model, learning_rate = AFA_net_model(len(PARAMS['genre_list'])) model.load_weights(weightFile) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[AUC(curve='PR')]) print('Sharma et al. model exists! Loaded. Training time required=',trainingTimeTaken) # # print(model.summary()) Train_Params = { 'model': model, 'trainingTimeTaken': trainingTimeTaken, 'learning_rate': learning_rate, 'paramFile': paramFile, 'architechtureFile': architechtureFile, 'weightFile': weightFile, } return Train_Params def test_model(PARAMS, test_data, test_label, Train_Params): start = time.process_time() # loss, performance loss, auc_measure = Train_Params['model'].evaluate(x=test_data, y=test_label) print('evaluation: ', loss, auc_measure) Predictions = Train_Params['model'].predict(test_data) print('Trailer_pred: ', np.shape(Predictions), np.shape(test_label)) P_curve = {} R_curve = {} T = {} AUC_values = {} Precision = {} Recall = {} ConfMat = {} F1_score = {} Threshold = {} macro_avg_auc = 0 macro_weighted_avg_auc = 0 for genre_i in PARAMS['genre_list'].keys(): # print(genre_i, PARAMS['genre_list'][genre_i]) pred = Predictions[:,PARAMS['genre_list'][genre_i]] # print(genre_i, ' pred: ', np.shape(pred)) gt = test_label[:,PARAMS['genre_list'][genre_i]] precision_curve, recall_curve, threshold = precision_recall_curve(gt, pred) fscore_curve = np.divide(2*np.multiply(precision_curve, recall_curve), np.add(precision_curve, recall_curve)+1e-10) Precision[genre_i] = np.round(np.mean(precision_curve),4) Recall[genre_i] = np.round(np.mean(recall_curve),4) F1_score[genre_i] = np.round(np.mean(fscore_curve),4) P_curve[genre_i] = precision_curve R_curve[genre_i] = recall_curve AUC_values[genre_i] = np.round(auc(recall_curve, precision_curve)*100,2) # print(genre_i, ' AUC: ', AUC_values[genre_i]) macro_avg_auc += AUC_values[genre_i] macro_weighted_avg_auc += PARAMS['genre_freq'][genre_i]*AUC_values[genre_i] micro_avg_precision_curve, micro_avg_recall_curve, threshold = precision_recall_curve(test_label.ravel(), Predictions.ravel()) P_curve['micro_avg'] = micro_avg_precision_curve R_curve['micro_avg'] = micro_avg_recall_curve AUC_values['micro_avg'] = np.round(auc(micro_avg_recall_curve, micro_avg_precision_curve)*100,2) AUC_values['macro_avg'] = np.round(macro_avg_auc/len(PARAMS['genre_list']),2) AUC_values['macro_avg_weighted'] = np.round(macro_weighted_avg_auc,2) print('AUC (macro-avg): ', AUC_values['macro_avg']) print('AUC (micro-avg): ', AUC_values['micro_avg']) print('AUC (macro-avg weighted): ', AUC_values['macro_avg_weighted']) AP = {} AP['macro'] = np.round(average_precision_score(y_true=test_label, y_score=Predictions, average='macro')*100,2) AP['micro'] = np.round(average_precision_score(y_true=test_label, y_score=Predictions, average='micro')*100,2) AP['samples'] = np.round(average_precision_score(y_true=test_label, y_score=Predictions, average='samples')*100,2) AP['weighted'] = np.round(average_precision_score(y_true=test_label, y_score=Predictions, average='weighted')*100,2) print('AP (macro): ', AP['macro']) print('AP (micro): ', AP['micro']) print('AP (samples): ', AP['samples']) print('AP (weighted): ', AP['weighted']) testingTimeTaken = time.process_time() - start Test_Params = { 'testingTimeTaken': testingTimeTaken, 'P_curve': P_curve, 'R_curve': R_curve, 'threshold': T, 'AUC': AUC_values, 'Predictions': Predictions, 'test_label': test_label, 'Precision':Precision, 'Recall':Recall, 'ConfMat':ConfMat, 'F1_score':F1_score, 'Threshold': Threshold, 'average_precision': AP, } return Test_Params def get_train_test_files(PARAMS): train_files = {} test_files = {} for clNum in PARAMS['classes'].keys(): class_name = PARAMS['classes'][clNum] train_files[class_name] = [] test_files[class_name] = [] for i in range(PARAMS['CV_folds']): files = PARAMS['cv_file_list'][class_name]['fold'+str(i)] if PARAMS['fold']==i: test_files[class_name].extend(files) else: train_files[class_name].extend(files) return train_files, test_files def compute_features(PARAMS, fName): Xin, fs = librosa.load(PARAMS['audio_path']+'/'+fName.split('/')[-1], mono=True, sr=None) duration = np.round(len(Xin) / float(fs),2) print(fName, ' Xin: ', np.shape(Xin), ' fs=', fs, f'duration = {duration} seconds') Xin -= np.mean(Xin) Xin /= (np.max(Xin)-np.min(Xin)) frameSize = int(PARAMS['Tw']*fs/1000) # frame size in samples frameShift = int(PARAMS['Ts']*fs/1000) # frame shift in samples chunk_size = 5*fs # 5s chunk size in samples # print(len(Xin), chunk_size) FV = np.empty([]) for chunk_start in range(chunk_size,len(Xin),chunk_size): # Starting from 2nd chunk chunk_end = np.min([chunk_start+chunk_size, len(Xin)]) if chunk_end==len(Xin): # ignoring last chunk, as described in paper continue Xin_chunk = Xin[chunk_start:chunk_end] [chunk_fv, feat_names] = aF.feature_extraction(Xin_chunk, fs, frameSize, frameShift) mean_chunk_fv =
np.mean(chunk_fv, axis=1)
numpy.mean
import numpy import datetime import math import time import scipy.integrate def powerGeneration(latitude, velocity, start_time, end_time, cloudy): cloudy = cloudy/100 deltaX = 60 #minutes, defaulted to sample every hour year = start_time.timetuple()[0] month = start_time.timetuple()[1] day = start_time.timetuple()[2] startHour = start_time.timetuple()[3] startMinute = start_time.timetuple()[4] endHour = end_time.timetuple()[3] endMinute = end_time.timetuple()[4] minutes = (endHour - startHour)*60 + (endMinute - startMinute) samples = minutes/deltaX fringe = minutes%deltaX yValues = [] xValues = range(samples) for i in range(samples): yValues.append(totalPower(latitude, datetime.datetime(year, month, day, startHour+int((i*(deltaX/60.0))), (startMinute+i*deltaX) % 60).timetuple())) #fringe yValues.append(totalPower(latitude, datetime.datetime(year, month, day, endHour, endMinute).timetuple())) xValues.append(samples - (fringe/60.0)) result = scipy.integrate.simps(yValues, xValues) result *= (1 - .65*cloudy**2) #I_effective = I_sol * (1-0.65* c^2) return result def totalPower(latitude, timeTuple): global shell_normal global shell_faceO global shell_vertO matrixImport() month = timeTuple[1] day = timeTuple[2] hour = timeTuple[3] heading = 85 # Moving SSE shell_heading = heading shell_azimuths = 180/math.pi*numpy.arctan2(-shell_normal[:,1] ,shell_normal[:,0]) + heading shell_tilts = 90 - 180/math.pi*numpy.arcsin(shell_normal[:,2]) a = shell_vertO[numpy.int_(shell_faceO[:,0]),:] b = shell_vertO[numpy.int_(shell_faceO[:,1]),:] c = shell_vertO[numpy.int_(shell_faceO[:,2]),:] v1 = b - a v2 = c - a temp = numpy.cross(v1,v2)**2 temp = numpy.sum(temp, 1) shell_Area = 0.5*temp**0.5 #shell_area = numpy.sum(shell_Area) shell_flux = incident_radiation(month, day, hour, shell_tilts, shell_azimuths, latitude) shell_power =
numpy.dot(shell_flux,shell_Area)
numpy.dot
""" MCMC for the Cauchy distribution -------------------------------- Figure 5.22 Markov chain monte carlo (MCMC) estimates of the posterior pdf for parameters describing the Cauchy distribution. The data are the same as those used in figure 5.10: the dashed curves in the top-right panel show the results of direct computation on a regular grid from that diagram. The solid curves are the corresponding MCMC estimates using 10,000 sample points. The left and the bottom panels show marginalized distributions. """ # Author: <NAME> (adapted to PyMC3 by <NAME>) # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from scipy.stats import cauchy from matplotlib import pyplot as plt from astroML.plotting.mcmc import convert_to_stdev import pymc3 as pm # ---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. if "setup_text_plots" not in globals(): from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) def cauchy_logL(xi, sigma, mu): """Equation 5.74: cauchy likelihood""" xi = np.asarray(xi) n = xi.size shape = np.broadcast(sigma, mu).shape xi = xi.reshape(xi.shape + tuple([1 for s in shape])) return ((n - 1) * np.log(sigma) - np.sum(np.log(sigma ** 2 + (xi - mu) ** 2), 0)) # ---------------------------------------------------------------------- # Draw the sample from a Cauchy distribution np.random.seed(44) mu_0 = 0 gamma_0 = 2 xi = cauchy(mu_0, gamma_0).rvs(10) # ---------------------------------------------------------------------- # Set up and run MCMC: with pm.Model(): mu = pm.Uniform('mu', -5, 5) log_gamma = pm.Uniform('log_gamma', -10, 10) # set up our observed variable x x = pm.Cauchy('x', mu, np.exp(log_gamma), observed=xi) trace = pm.sample(draws=12000, tune=1000, cores=1) # compute histogram of results to plot below L_MCMC, mu_bins, gamma_bins = np.histogram2d(trace['mu'], np.exp(trace['log_gamma']), bins=(np.linspace(-5, 5, 41), np.linspace(0, 5, 41))) L_MCMC[L_MCMC == 0] = 1E-16 # prevents zero-division errors # ---------------------------------------------------------------------- # Compute likelihood analytically for comparison mu = np.linspace(-5, 5, 70) gamma = np.linspace(0.1, 5, 70) logL = cauchy_logL(xi, gamma[:, np.newaxis], mu) logL -= logL.max() p_mu = np.exp(logL).sum(0) p_mu /= p_mu.sum() * (mu[1] - mu[0]) p_gamma = np.exp(logL).sum(1) p_gamma /= p_gamma.sum() * (gamma[1] - gamma[0]) hist_mu, bins_mu =
np.histogram(trace['mu'], bins=mu_bins, density=True)
numpy.histogram
# -*- coding: UTF-8 -*- import torch from torch import nn from torch.nn import Parameter from torch.nn import functional as F import numpy as np from models.BaseModel import SequentialModel class SRGNN(SequentialModel): @staticmethod def parse_model_args(parser): parser.add_argument('--emb_size', type=int, default=64, help='Size of embedding vectors.') parser.add_argument('--num_layers', type=int, default=1, help='Number of self-attention layers.') return SequentialModel.parse_model_args(parser) def __init__(self, args, corpus): self.emb_size = args.emb_size self.num_layers = args.num_layers super().__init__(args, corpus) def _define_params(self): self.i_embeddings = nn.Embedding(self.item_num, self.emb_size, padding_idx=0) self.linear1 = nn.Linear(self.emb_size, self.emb_size, bias=True) self.linear2 = nn.Linear(self.emb_size, self.emb_size, bias=True) self.linear3 = nn.Linear(self.emb_size, 1, bias=False) self.linear_transform = nn.Linear(self.emb_size * 2, self.emb_size, bias=True) self.gnn = GNN(self.emb_size, self.num_layers) def actions_before_train(self): std = 1.0 / np.sqrt(self.emb_size) for weight in self.parameters(): weight.data.uniform_(-std, std) def _get_slice(self, item_seq): items, n_node, A, alias_inputs = [], [], [], [] max_n_node = item_seq.size(1) item_seq = item_seq.cpu().numpy() for u_input in item_seq: node = np.unique(u_input) items.append(node.tolist() + [0] * (max_n_node - len(node))) u_A = np.zeros((max_n_node, max_n_node)) for i in np.arange(len(u_input) - 1): if u_input[i + 1] == 0: break u =
np.where(node == u_input[i])
numpy.where
from __future__ import print_function, absolute_import import os import numpy as np import math import cv2 import torch from matplotlib import cm def to_numpy(tensor): if torch.is_tensor(tensor): return tensor.cpu().numpy() elif type(tensor).__module__ != 'numpy': raise ValueError("Cannot convert {} to numpy array" .format(type(tensor))) return tensor def to_torch(ndarray): if type(ndarray).__module__ == 'numpy': return torch.from_numpy(ndarray) elif not torch.is_tensor(ndarray): raise ValueError("Cannot convert {} to torch tensor" .format(type(ndarray))) return ndarray def im_to_numpy(img): img = to_numpy(img) img = np.transpose(img, (1, 2, 0)) # H*W*C return img def im_to_torch(img): img = np.transpose(img, (2, 0, 1)) # C*H*W img = to_torch(img).float() return img def resize(img, owidth, oheight): img = im_to_numpy(img) img = cv2.resize( img, (owidth, oheight) ) img = im_to_torch(img) return img def load_image(img_path): # H x W x C => C x H x W img = cv2.imread(img_path) # print(img_path) img = img.astype(np.float32) img = img / 255.0 img = img[:,:,::-1] img = img.copy() return im_to_torch(img) def color_normalize(x, mean, std): if x.size(0) == 1: x = x.repeat(3, 1, 1) for t, m, s in zip(x, mean, std): t.sub_(m) t.div_(s) return x import time ###################################################################### def try_np_load(p): try: return np.load(p) except: return None def make_lbl_set(lbls): print(lbls.shape) t00 = time.time() lbl_set = [
np.zeros(3)
numpy.zeros
# debug_output = False rosDebug = False import numpy as np import os, sys try: import gwtools import gwsurrogate as gws print(" gwsurrogate: ", gws.__file__) print(" gwtools: ", gwtools.__file__) except: print(" - no gwsurrogate - (almost everything from ROMWaveformManager will hard fail if you use it) ") try: import NRSur7dq2 print(" NRSur7dq2: ", NRSur7dq2.__version__, NRSur7dq2.__file__) except: print(" - no NRSur7dq2 - ") import lalsimulation as lalsim import lal from .. import lalsimutils try: import LALHybrid except: print(" - no hybridization - ") from scipy.interpolate import interp1d from scipy.linalg import inv from scipy.interpolate import splrep as _splrep import pickle import h5py try: dirBaseFiles =os.environ["GW_SURROGATE"] # surrogate base directory except: print( " ==> WARNING: GW_SURROGATE environment variable is not set <== ") print( " Only surrogates with direct implementation are available (NRSur7dq2) ") print(" ROMWaveformManager: ILE version") #default_interpolation_kind = 'quadratic' # spline interpolation # very slow! default_interpolation_kind = 'linear' # robust, fast internal_ParametersAvailable ={} # For each interesting simulation, store the definitions in a file # Use 'execfile' to load those defintions now MsunInSec = lal.MSUN_SI*lal.G_SI/lal.C_SI**3 #execfile(dirBaseFiles + "/"+"Sequence-GT-Aligned-UnequalMass/interface.py") def myzero(arg): return 0 def RangeWrap1d(bound, val,fn): """ RangeWrap1d: Uses np.piecewise to construct a piecewise function which is =fn inside the boundary, and 0 outside. SHOULD be syntactic sugar, but depending on the python version the language needed to implement this changes. """ # # return (lambda x: fn(x) if (x>bound[0] and x<bound[1]) else val) # # WARNING: piecewise is much faster, but will fail for numpy versions less than 1.8-ish :http://stackoverflow.com/questions/20800324/scipy-pchipinterpolator-error-array-cannot-be-safely-cast-to-required-type # # Unfortunately that is the version LIGO uses on their clusters. return (lambda x: np.piecewise( x, [ np.logical_and(x> bound[0], x<bound[1]), np.logical_not(np.logical_and(x> bound[0], x<bound[1])) ], [fn, myzero])) # return (lambda x: np.where( np.logical_and(x> bound[0], x<bound[1]), fn(x),0)) # vectorized , but does not protect the call def ModeToString(pair): return "l"+str(pair[0])+"_m"+str(pair[1]) def CreateCompatibleComplexOverlap(hlmf,**kwargs): modes = hlmf.keys() hbase = hlmf[modes[0]] deltaF = hbase.deltaF fNyq = np.max(lalsimutils.evaluate_fvals(hbase)) if debug_output: # for key, value in kwargs.items(): # print (key, value) print(kwargs) print("dF, fNyq, npts = ",deltaF, fNyq, len(hbase.data.data)) IP = lalsimutils.ComplexOverlap(fNyq=fNyq, deltaF=deltaF, **kwargs) return IP def CreateCompatibleComplexIP(hlmf,**kwargs): """ Creates complex IP (no maximization) """ modes = hlmf.keys() hbase = hlmf[modes[0]] deltaF = hbase.deltaF fNyq = np.max(lalsimutils.evaluate_fvals(hbase)) if debug_output: # for key, value in kwargs.items(): # print (key, value) print(kwargs) print("dF, fNyq, npts = ",deltaF, fNyq, len(hbase.data.data)) IP = lalsimutils.ComplexIP(fNyq=fNyq, deltaF=deltaF, **kwargs) return IP class NRError(Exception): """Base class for this module""" pass class NRNoSimulation(NRError): """Nothing""" def __init__(self,expr,msg): print("No known simulation ", expr, msg) pass def SurrogateDimensionlessBasisFunction(sur,k): def w(t): return sur.amp_fit_func(k,t)*np.exp(1j*sur.phase_fit_func(k,t)) return w def sur_identity(t,hp,hc): return t, hp, hc def sur_conj(t,hp,hc): return t, hp, -hc def ConvertWPtoSurrogateParams(P,**kwargs): """ Takes P, returns arguments of the form usually used in gwsurrogate. (currently, just returns 1/q = P.m1/P.m1, the mass ratio parameter usually accepted) """ q = P.m2/P.m1 # return {"q":1./q} return 1./q def ConvertWPtoSurrogateParamsAligned(P,**kwargs): """ Takes P, returns arguments of the form used in gwsurrogate for a nonprecessing binary """ q = P.m2/P.m1 chi1 = np.array([0.0,0.0,P.s1z]) chi2 = np.array([0.0,0.0,P.s2z]) mtot=P.m1+P.m2 tidal = {'Lambda1': P.lambda1,'Lambda2': P.lambda2} dist_mpc = P.dist/1e6/lal.PC_SI val =[1./q, chi1, chi2, mtot, dist_mpc, tidal] return val def ConvertWPtoSurrogateParamsPrecessing(P,**kwargs): """ Takes P, returns arguments of the form usually used in gwsurrogate. (currently, just returns 1/q = P.m1/P.m1, the mass ratio parameter usually accepted) """ q = P.m2/P.m1 chi1 = P.extract_param('chi1') theta1=phi1 =0 if np.abs(chi1)>1e-5: theta1 = np.arccos( P.s1z/chi1) phi1 = np.arctan2(P.s1x,P.s1y) # return {"q":1./q, "chi1": chi1,"theta1":theta1,"phi1":phi1,"chi2z":P.s2z} val =np.array([1./q, chi1,theta1,phi1,P.s2z]) return val def ConvertWPtoSurrogateParamsPrecessingFull(P,**kwargs): """ Takes P, returns arguments of the form usually used in gwsurrogate. (currently, just returns 1/q = P.m1/P.m1, the mass ratio parameter usually accepted) """ q = P.m2/P.m1 val =[1./q, np.array([P.s1x,P.s1y,P.s1z]), np.array([P.s2x,P.s2y,P.s2z]) ] return val class WaveformModeCatalog: """ Class containing ROM model. API is currently **unsafe** for precessing binaries (=ambiguous reference time) Reference for underlying notation: Eq. (30) in http://arxiv.org/pdf/1308.3565v2 group param lmax # specifies modes to attempt to load. Not guaranteed to/required to find all. strain_basis_functions_dimensionless # don't recall mode_list_to_load # ability to constrain the mode list. Passed directly to low-level code build_fourier_time_window # window for FT. NOT USED reflection_symmetric # reflection symmetry used max_nbasis_per_mode # constrain basis size coord_names_internal # coordinate names used by the basis. FUTURE """ def __init__(self, group ,param, lmax=2, strain_basis_functions_dimensionless=None, mode_list_to_load=None,build_fourier_time_window=1000,reflection_symmetric=True,max_nbasis_per_mode=None,coord_names_internal=['q']): self.group = group self.param = param self.deltaToverM =0 self.lmax =lmax self.coord_names=coord_names_internal self.fOrbitLower =0. # Used to clean results. Based on the phase of the 22 mode self.fMinMode ={} self.sur_dict = {} self.post_dict = {} self.post_dict_complex ={} self.post_dict_complex_coef ={} self.parameter_convert = {} self.single_mode_sur = True self.nbasis_per_mode ={} # number of basis functions self.reflection_symmetric = reflection_symmetric lm_list=None lm_list = [] if rosDebug: print(" WARNING: Using a restricted mode set requires a custom modification to gwsurrogate ") Lmax =lmax for l in np.arange(2,Lmax+1): for m in np.arange(-l,l+1): if m<0 and reflection_symmetric: continue lm_list.append( (l,m)) if not(mode_list_to_load is None): lm_list = mode_list_to_load # overrride if rosDebug: print(" ROMWaveformManager: Loading restricted mode set ", lm_list) my_converter = ConvertWPtoSurrogateParams if 'NRSur4d' in param: print(" GENERATING ROM WAVEFORM WITH SPIN PARAMETERS ") my_converter = ConvertWPtoSurrogateParamsPrecessing reflection_symmetric=False if 'NRHyb' in param and not'Tidal' in param: print(" GENERATING hybrid ROM WAVEFORM WITH ALIGNED SPIN PARAMETERS ") my_converter = ConvertWPtoSurrogateParamsAligned self.single_mode_sur=False if 'Tidal' in param: print(" GENERATING hybrid ROM WAVEFORM WITH ALIGNED SPIN AND TIDAL PARAMETERS ") my_converter = ConvertWPtoSurrogateParamsAligned self.single_mode_sur=False if 'NRSur7d' in param: if rosDebug: print(" GENERATING ROM WAVEFORM WITH FULL SPIN PARAMETERS ") my_converter = ConvertWPtoSurrogateParamsPrecessingFull self.single_mode_sur=False reflection_symmetric=False # PENDING: General-purpose interface, based on the coordinate string specified. SHOULD look up these names from the surrogate! def convert_coords(P): vals_out = np.zeros(len(coord_names_internal)) for indx in np.arange(len(coord_names_internal)): vals_out[indx] = P.extract_param( coord_names_internal[indx]) if coord_names_internal[indx] == 'q': vals_out[indx] = 1./vals_out[indx] return vals_out raw_modes =[] if self.single_mode_sur: #(not 'NRSur7d' in param) and (not 'NRHyb' in param): self.sur = gws.EvaluateSurrogate(dirBaseFiles +'/'+group+param,use_orbital_plane_symmetry=reflection_symmetric, ell_m=None) # lm_list) # straight up filename. MODIFY to change to use negative modes # Modified surrogate import call to load *all* modes all the time raw_modes = self.sur.all_model_modes() self.modes_available=[] elif 'NRHybSur' in param: if 'Tidal' in param: self.sur = gws.LoadSurrogate(dirBaseFiles +'/'+group+'/NRHybSur3dq8.h5',surrogate_name_spliced=param) # get the dimensinoless surrogate file? else: self.sur = gws.LoadSurrogate(dirBaseFiles +'/'+group+param) # get the dimensinoless surrogate file? raw_modes = self.sur._sur_dimless.mode_list # raw modes reflection_symmetric = True self.modes_available=[] # self.modes_available=[(2, 0), (2, 1), (2,-1), (2, 2),(2,-2), (3, 0), (3, 1),(3,-1), (3, 2),(3,-2), (3, 3),(3,-3), (4, 2),(4,-2), (4, 3),(4,-3), (4, 4), (4,-4),(5, 5), (5,-5)] # see sur.mode_list t = self.sur._sur_dimless.domain self.ToverMmin = t.min() self.ToverMmax = t.max() self.ToverM_peak=0 # Need to figure out where this is? Let's assume it is zero to make my life easier # for mode in self.modes_available: # # Not used, bt populate anyways # self.post_dict[mode] = sur_identity # self.post_dict_complex[mode] = lambda x: x # to mode # self.post_dict_complex_coef[mode] = lambda x:x # to coefficients. # self.parameter_convert[mode] = my_converter # ConvertWPtoSurrogateParams # default conversion routine # return elif 'NRSur7dq4' in param: print(param) self.sur = gws.LoadSurrogate(dirBaseFiles +'/'+group+param) # get the dimensinoless surrogate file? raw_modes = self.sur._sur_dimless.mode_list # raw modes reflection_symmetric = False self.modes_available=[] print(raw_modes) self.modes_available=raw_modes t = self.sur._sur_dimless.t_coorb self.ToverMmin = t.min() self.ToverMmax = t.max() self.ToverM_peak=0 # Need to figure out where this is? Let's assume it is zero to make my life easier for mode in raw_modes: # # Not used, bt populate anyways self.post_dict[mode] = sur_identity self.post_dict_complex[mode] = lambda x: x # to mode self.post_dict_complex_coef[mode] = lambda x:x # to coefficients. self.parameter_convert[mode] = my_converter # ConvertWPtoSurrogateParams # default conversion routine return else: self.sur = NRSur7dq2.NRSurrogate7dq2() reflection_symmetric = False self.modes_available = [(2, -2), (2, -1), (2, 0), (2, 1), (2, 2), (3, -3), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2), (3, 3), (4, -4), (4, -3), (4, -2), (4, -1), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]; t = self.sur.t_coorb self.ToverMmin = t.min() self.ToverMmax = t.max() self.ToverM_peak=0 for mode in self.modes_available: # Not used, bt populate anyways self.post_dict[mode] = sur_identity self.post_dict_complex[mode] = lambda x: x # to mode self.post_dict_complex_coef[mode] = lambda x:x # to coefficients. self.parameter_convert[mode] = my_converter # ConvertWPtoSurrogateParams # default conversion routine return # Load surrogates from a mode-by-mode basis, and their conjugates for mode in raw_modes: if mode[0]<=self.lmax and mode in lm_list: # latter SHOULD be redundant (because of ell_m=lm_list) print(" Loading mode ", mode) self.modes_available.append(mode) self.post_dict[mode] = sur_identity self.post_dict_complex[mode] = lambda x: x # to mode self.post_dict_complex_coef[mode] = lambda x:x # to coefficients. self.parameter_convert[mode] = my_converter # ConvertWPtoSurrogateParams # default conversion routine if self.single_mode_sur: self.sur_dict[mode] = self.sur.single_mode(mode) print(' mode ', mode, self.sur_dict[mode].B.shape) self.nbasis_per_mode[mode] = (self.sur_dict[mode].B.shape)[1] if max_nbasis_per_mode != None and self.sur_dict[mode].surrogate_mode_type == 'waveform_basis': if max_nbasis_per_mode >0: # and max_nbasis_per_mode < self.nbasis_per_mode[mode]: # See https://arxiv.org/pdf/1308.3565v2.pdf Eqs. 13 - 19 # Must truncate *orthogonal* basis. # Works only for LINEAR basis # B are samples of the basis on some long time, V sur = self.sur_dict[mode] print(" Truncating basis for mode ", mode, " to size ", max_nbasis_per_mode, " but note the number of EIM points remains the same...") V = self.sur_dict[mode].V n_basis = len(V) V_inv = inv(V) mtx_E = np.dot(self.sur_dict[mode].B,V) # print "E ", mtx_E.shape # Zero out the components we don't want if max_nbasis_per_mode < n_basis: mtx_E[:,max_nbasis_per_mode:n_basis] *=0 # Regenerate sur.B = np.dot(mtx_E , V_inv) sur.reB_spline_params = [_splrep(sur.times, sur.B[:,jj].real, k=3) for jj in range(sur.B.shape[1])] sur.imB_spline_params = [_splrep(sur.times, sur.B[:,jj].imag, k=3) for jj in range(sur.B.shape[1])] self.nbasis_per_mode[mode] = len(self.sur_dict[mode].V) # if you truncate over the orthogonal basis, you still need to use the fit at all the EIM points! # This SHOULD update the copies inside the surrogate, so the later interpolation called by EvaluateSingleModeSurrogate will interpolate this data if reflection_symmetric and raw_modes.count((mode[0],-mode[1]))<1: mode_alt = (mode[0],-mode[1]) if rosDebug: print(" Adjoining postprocessing to enable complex conjugate for reflection symmetric case", mode_alt) # if max_nbasis_per_mode: # self.nbasis_per_mode[mode_alt] = np.max([int(max_nbasis_per_mode),1]) # INFRASTRUTCTURE PLAN: Truncate t print " Loading mode ", mode_alt, " via reflection symmetry " self.modes_available.append(mode_alt) self.post_dict[mode_alt] = sur_conj self.post_dict_complex_coef[mode_alt] = lambda x,l=mode[0]: np.power(-1,l)*np.conj(x) # beware, do not apply this twice. self.post_dict_complex[mode_alt] = np.conj # beware, do not apply this twice. self.parameter_convert[mode_alt] = my_converter if self.single_mode_sur: self.nbasis_per_mode[mode_alt] = self.nbasis_per_mode[mode] self.sur_dict[mode_alt] = self.sur_dict[mode] if not self.single_mode_sur: # return after performing all the neat reflection symmetrization setup described above, in case model is *not* a single-mode surrogate print(" ... done setting mode symmetry requirements", self.modes_available) # print raw_modes, self.post_dict return # CURRENTLY ONLY LOAD THE 22 MODE and generate the 2,-2 mode by symmetr t = self.sur_dict[(2,2)].times # end time self.ToverMmin = t.min() self.ToverMmax = t.max() P=lalsimutils.ChooseWaveformParams() # default is q=1 object params_tmp = self.parameter_convert[(2,2)](P) if rosDebug: print(" Passing temporary parameters ", params_tmp, " to find the peak time default ") # print dir(self.sur_dict[(2,2)]) # print self.sur_dict[(2,2)].__dict__.keys() # print self.sur_dict[(2,2)].parameterization # t, hp, hc = self.sur_dict[(2,2)]( **params_tmp ); # calculate merger time -- addresses conventions on peak time location, and uses named arguments t, hp, hc = self.sur_dict[(2,2)]( params_tmp ); # calculate merger time -- addresses conventions on peak time location, and uses named arguments self.ToverM_peak = t[np.argmax(np.abs(hp**2+hc**2))] # discrete maximum time. Sanity check if rosDebug: print(" Peak time for ROM ", self.ToverM_peak) # BASIS MANAGEMENT: Not yet implemented # Assume a DISTINCT BASIS SET FOR AL MODES, which will be ANNOYING self.strain_basis_functions_dimensionless_data ={} self.strain_basis_functions_dimensionless = self.sur_dict[(2,2)].resample_B # We may need to add complex conjugate functions too. And a master index for basis functions associated with different modes def print_params(self): print(" Surrogate model ") print(" Modes available ") for mode in self.sur_dict: print(" " , mode, " nbasis = ", self.nbasis_per_mode[mode]) # same arguments as hlm def complex_hoft(self, P, force_T=False, deltaT=1./16384, time_over_M_zero=0.,sgn=-1): hlmT = self.hlmoft(P, force_T, deltaT,time_over_M_zero) npts = hlmT[(2,2)].data.length wfmTS = lal.CreateCOMPLEX16TimeSeries("h", lal.LIGOTimeGPS(0.), 0., deltaT, lalsimutils.lsu_DimensionlessUnit, npts) wfmTS.data.data[:] = 0 # SHOULD NOT BE NECESARY, but the creation operator doesn't robustly clean memory wfmTS.epoch = hlmT[(2,2)].epoch for mode in hlmT.keys(): # PROBLEM: Be careful with interpretation. The incl and phiref terms are NOT tied to L. if rosDebug: print(mode, np.max(hlmT[mode].data.data), " running max ", np.max(np.abs(wfmTS.data.data))) wfmTS.data.data += np.exp(-2*sgn*1j*P.psi)* hlmT[mode].data.data*lal.SpinWeightedSphericalHarmonic(P.incl,-P.phiref,-2, int(mode[0]),int(mode[1])) return wfmTS def complex_hoff(self,P, force_T=False): htC = self.complex_hoft(P, force_T=force_T,deltaT= P.deltaT) TDlen = int(1./P.deltaF * 1./P.deltaT) assert TDlen == htC.data.length hf = lal.CreateCOMPLEX16FrequencySeries("Template h(f)", htC.epoch, htC.f0, 1./htC.deltaT/htC.data.length, lalsimutils.lsu_HertzUnit, htC.data.length) fwdplan=lal.CreateForwardCOMPLEX16FFTPlan(htC.data.length,0) lal.COMPLEX16TimeFreqFFT(hf, htC, fwdplan) return hf def real_hoft(self,P,Fp=None, Fc=None): """ Returns the real-valued h(t) that would be produced in a single instrument. Translates epoch as needed. Based on 'hoft' in lalsimutils.py """ # Create complex timessereis htC = self.complex_hoft(P,force_T=1./P.deltaF, deltaT= P.deltaT) # note P.tref is NOT used in the low-level code TDlen = htC.data.length if rosDebug: print("Size sanity check ", TDlen, 1/(P.deltaF*P.deltaT)) print(" Raw complex magnitude , ", np.max(htC.data.data)) # Create working buffers to extract data from it -- wasteful. hp = lal.CreateREAL8TimeSeries("h(t)", htC.epoch, 0., P.deltaT, lalsimutils.lsu_DimensionlessUnit, TDlen) hc = lal.CreateREAL8TimeSeries("h(t)", htC.epoch, 0., P.deltaT, lalsimutils.lsu_DimensionlessUnit, TDlen) hT = lal.CreateREAL8TimeSeries("h(t)", htC.epoch, 0., P.deltaT, lalsimutils.lsu_DimensionlessUnit, TDlen) # Copy data components over # - note htC is hp - i hx hp.data.data = np.real(htC.data.data) hc.data.data = (-1) * np.imag(htC.data.data) # transform as in lalsimutils.hoft if Fp!=None and Fc!=None: hp.data.data *= Fp hc.data.data *= Fc hp = lal.AddREAL8TimeSeries(hp, hc) hoft = hp elif P.radec==False: fp = lalsimutils.Fplus(P.theta, P.phi, P.psi) fc = lalsimutils.Fcross(P.theta, P.phi, P.psi) hp.data.data *= fp hc.data.data *= fc hp.data.data = lal.AddREAL8TimeSeries(hp, hc) hoft = hp else: # Note epoch must be applied FIRST, to make sure the correct event time is being used to construct the modulation functions hp.epoch = hp.epoch + P.tref hc.epoch = hc.epoch + P.tref if rosDebug: print(" Real h(t) before detector weighting, ", np.max(hp.data.data), np.max(hc.data.data)) hoft = lalsim.SimDetectorStrainREAL8TimeSeries(hp, hc, # beware, this MAY alter the series length?? P.phi, P.theta, P.psi, lalsim.DetectorPrefixToLALDetector(str(P.detector))) hoft = lal.CutREAL8TimeSeries(hoft, 0, hp.data.length) # force same length as before?? if rosDebug: print("Size before and after detector weighting " , hp.data.length, hoft.data.length) if rosDebug: print(" Real h_{IFO}(t) generated, pre-taper : max strain =", np.max(hoft.data.data)) if P.taper != lalsimutils.lsu_TAPER_NONE: # Taper if requested lalsim.SimInspiralREAL8WaveTaper(hoft.data, P.taper) if P.deltaF is not None: TDlen = int(1./P.deltaF * 1./P.deltaT) print("Size sanity check 2 ", int(1./P.deltaF * 1./P.deltaT), hoft.data.length) assert TDlen >= hoft.data.length npts = hoft.data.length hoft = lal.ResizeREAL8TimeSeries(hoft, 0, TDlen) # Zero out the last few data elements -- NOT always reliable for all architectures; SHOULD NOT BE NECESSARY hoft.data.data[npts:TDlen] = 0 if rosDebug: print(" Real h_{IFO}(t) generated : max strain =", np.max(hoft.data.data)) return hoft def non_herm_hoff(self,P): """ Returns the 2-sided h(f) associated with the real-valued h(t) seen in a real instrument. Translates epoch as needed. Based on 'non_herm_hoff' in lalsimutils.py """ htR = self.real_hoft() # Generate real-valued TD waveform, including detector response if P.deltaF == None: # h(t) was not zero-padded, so do it now TDlen = nextPow2(htR.data.length) htR = lal.ResizeREAL8TimeSeries(htR, 0, TDlen) else: # Check zero-padding was done to expected length TDlen = int(1./P.deltaF * 1./P.deltaT) assert TDlen == htR.data.length fwdplan=lal.CreateForwardCOMPLEX16FFTPlan(htR.data.length,0) htC = lal.CreateCOMPLEX16TimeSeries("hoft", htR.epoch, htR.f0, htR.deltaT, htR.sampleUnits, htR.data.length) # copy h(t) into a COMPLEX16 array which happens to be purely real htC.data.data[:htR.data.length] = htR.data.data # for i in range(htR.data.length): # htC.data.data[i] = htR.data.data[i] hf = lal.CreateCOMPLEX16FrequencySeries("Template h(f)", htR.epoch, htR.f0, 1./htR.deltaT/htR.data.length, lalsimutils.lsu_HertzUnit, htR.data.length) lal.COMPLEX16TimeFreqFFT(hf, htC, fwdplan) return hf def estimateFminHz(self,P,fmin=10.): # This SHOULD use information from the ROM return 2*self.fMin/(MsunInSec*(P.m1+P.m2)/lal.MSUN_SI) def estimateDurationSec(self,P,fmin=10.): """ estimateDuration uses fmin*M from the (2,2) mode to estimate the waveform duration from the *well-posed* part. By default it uses the *entire* waveform duration. CURRENTLY DOES NOT IMPLEMENT frequency-dependent duration """ return (self.ToverMmax - self.ToverMmin)*MsunInSec*(P.m1+P.m2)/lal.MSUN_SI return None def basis_oft(self, P, force_T=False, deltaT=1./16384, time_over_M_zero=0.,return_numpy=False): m_total_s = MsunInSec*(P.m1+P.m2)/lal.MSUN_SI # Create a suitable set of time samples. Zero pad to 2^n samples. T_estimated = np.abs(self.sur_dict[(2,2)].tmin)*m_total_s print(" Estimated duration ", T_estimated) # T_estimated = 20 # FIXME. Time in seconds npts=0 if not force_T: npts_estimated = int(T_estimated/deltaT) npts = lalsimutils.nextPow2(npts_estimated) else: npts = int(force_T/deltaT) if rosDebug: print(" Forcing length T=", force_T, " length ", npts) tvals = (
np.arange(npts)
numpy.arange
import datetime import numpy as np def metadata_to_header(metadata): """ Parameters ---------- metadata : dict Dict of metadata as returned by wradlib.io.read_radolan_composite Returns ------- header : byte string Header byte string conforming to the definition of RADOALN binary files """ if metadata['producttype'] != 'RW': raise NotImplementedError('Currently only RADOALN-RW is supported') len_header_fixed_part = 82 len_header_radar_locations = len( '<' + ','.join(metadata['radarlocations']) + '> ') len_header = len_header_fixed_part + len_header_radar_locations # Generate empty header with only whitespaces header_out = np.array(['', ] * len_header, dtype='S1') header_out[:] = ' ' # Fill header with metadata and tokens header_out[0:2] = list(metadata['producttype']) header_out[2:8] = list( datetime.datetime.strftime(metadata['datetime'], '%d%H%M')) header_out[8:13] = list(metadata['radarid']) header_out[13:17] = list( datetime.datetime.strftime(metadata['datetime'], '%m%y')) header_out[17:19] = list('BY') # Have to add one here to get correct length in header string. # Do not know why. Maybe because of the 'etx' char header_out[19:26] = list(str(metadata['datasize'] + len_header + 1)) header_out[26:28] = list('VS') header_out[28:30] = list( { '100 km and 128 km (mixed)': ' 0', '100 km': ' 1', '128 km': ' 2', '150 km': ' 3' }.get(metadata['maxrange']) ) header_out[30:32] = list('SW') header_out[32:41] = list(metadata['radolanversion'].rjust(9)) header_out[41:43] = list('PR') header_out[43:48] = list( { 0.01: ' E-02', 0.1: ' E-01', 1: ' E-00', }.get(metadata['precision']) ) header_out[48:51] = list('INT') header_out[51:55] = list( str(int(metadata['intervalseconds'] / 60)).rjust(4)) header_out[55:57] = list('GP') header_out[57:66] = list( str(metadata['nrow']).rjust(4) + 'x' + str(metadata['ncol']).rjust(4)) header_out[66:68] = list('MF') header_out[69:77] = list(str(int(metadata['moduleflag'])).zfill(8)) header_out[77:79] = list('MS') header_out[79:82] = list(str(int(len_header_radar_locations)).rjust(3)) header_out[82:(82 + len_header_radar_locations)] = list( '<' + ','.join(metadata['radarlocations']) + '> ') header_out = b''.join(header_out).decode() return header_out def data_to_byte_array(data , metadata): """ Parameters ---------- data metadata Returns ------- """ if metadata['producttype'] != 'RW': raise NotImplementedError('Currently only RADOALN-RW is supported') arr = (data / metadata['precision']).flatten().astype(np.uint16) secondary = np.zeros_like(arr, dtype=np.uint16) secondary[metadata['secondary']] = 0x1000 nodatamask =
np.zeros_like(arr, dtype=np.uint16)
numpy.zeros_like
from collections import OrderedDict from threading import Lock from typing import Dict, List, Tuple, Union import numpy as np from vispy.color import BaseColormap as VispyColormap from vispy.color import get_colormap, get_colormaps from ..translations import trans from .bop_colors import bopd from .colormap import Colormap from .vendored import cm, colorconv ValidColormapArg = Union[ str, VispyColormap, Colormap, Tuple[str, VispyColormap], Tuple[str, Colormap], Dict[str, VispyColormap], Dict[str, Colormap], Dict, ] matplotlib_colormaps = _MATPLOTLIB_COLORMAP_NAMES = OrderedDict( viridis=trans._p('colormap', 'viridis'), magma=trans._p('colormap', 'magma'), inferno=trans._p('colormap', 'inferno'), plasma=trans._p('colormap', 'plasma'), gray=trans._p('colormap', 'gray'), gray_r=trans._p('colormap', 'gray r'), hsv=trans._p('colormap', 'hsv'), turbo=trans._p('colormap', 'turbo'), twilight=trans._p('colormap', 'twilight'), twilight_shifted=trans._p('colormap', 'twilight shifted'), gist_earth=trans._p('colormap', 'gist earth'), PiYG=trans._p('colormap', 'PiYG'), ) _MATPLOTLIB_COLORMAP_NAMES_REVERSE = { v: k for k, v in matplotlib_colormaps.items() } _VISPY_COLORMAPS_ORIGINAL = _VCO = get_colormaps() _VISPY_COLORMAPS_TRANSLATIONS = OrderedDict( autumn=(trans._p('colormap', 'autumn'), _VCO['autumn']), blues=(trans._p('colormap', 'blues'), _VCO['blues']), cool=(trans._p('colormap', 'cool'), _VCO['cool']), greens=(trans._p('colormap', 'greens'), _VCO['greens']), reds=(trans._p('colormap', 'reds'), _VCO['reds']), spring=(trans._p('colormap', 'spring'), _VCO['spring']), summer=(trans._p('colormap', 'summer'), _VCO['summer']), fire=(trans._p('colormap', 'fire'), _VCO['fire']), grays=(trans._p('colormap', 'grays'), _VCO['grays']), hot=(trans._p('colormap', 'hot'), _VCO['hot']), ice=(trans._p('colormap', 'ice'), _VCO['ice']), winter=(trans._p('colormap', 'winter'), _VCO['winter']), light_blues=(trans._p('colormap', 'light blues'), _VCO['light_blues']), orange=(trans._p('colormap', 'orange'), _VCO['orange']), viridis=(trans._p('colormap', 'viridis'), _VCO['viridis']), coolwarm=(trans._p('colormap', 'coolwarm'), _VCO['coolwarm']), PuGr=(trans._p('colormap', 'PuGr'), _VCO['PuGr']), GrBu=(trans._p('colormap', 'GrBu'), _VCO['GrBu']), GrBu_d=(trans._p('colormap', 'GrBu_d'), _VCO['GrBu_d']), RdBu=(trans._p('colormap', 'RdBu'), _VCO['RdBu']), cubehelix=(trans._p('colormap', 'cubehelix'), _VCO['cubehelix']), single_hue=(trans._p('colormap', 'single hue'), _VCO['single_hue']), hsl=(trans._p('colormap', 'hsl'), _VCO['hsl']), husl=(trans._p('colormap', 'husl'), _VCO['husl']), diverging=(trans._p('colormap', 'diverging'), _VCO['diverging']), RdYeBuCy=(trans._p('colormap', 'RdYeBuCy'), _VCO['RdYeBuCy']), ) _VISPY_COLORMAPS_TRANSLATIONS_REVERSE = { v[0]: k for k, v in _VISPY_COLORMAPS_TRANSLATIONS.items() } _PRIMARY_COLORS = OrderedDict( red=(trans._p('colormap', 'red'), [1.0, 0.0, 0.0]), green=(trans._p('colormap', 'green'), [0.0, 1.0, 0.0]), blue=(trans._p('colormap', 'blue'), [0.0, 0.0, 1.0]), cyan=(trans._p('colormap', 'cyan'), [0.0, 1.0, 1.0]), magenta=(trans._p('colormap', 'magenta'), [1.0, 0.0, 1.0]), yellow=(trans._p('colormap', 'yellow'), [1.0, 1.0, 0.0]), ) SIMPLE_COLORMAPS = { name: Colormap( name=name, display_name=display_name, colors=[[0.0, 0.0, 0.0], color] ) for name, (display_name, color) in _PRIMARY_COLORS.items() } # dictionay for bop colormap objects BOP_COLORMAPS = { name: Colormap(value, name=name, display_name=display_name) for name, (display_name, value) in bopd.items() } def _all_rgb(): """Return all 256**3 valid rgb tuples.""" base = np.arange(256, dtype=np.uint8) r, g, b = np.meshgrid(base, base, base, indexing='ij') return np.stack((r, g, b), axis=-1).reshape((-1, 3)) # obtained with colorconv.rgb2luv(_all_rgb().reshape((-1, 256, 3))) LUVMIN =
np.array([0.0, -83.07790815, -134.09790293])
numpy.array
""" This network uses the last 26 observations of gwl, tide, and rain to predict the next 18 values of gwl for well MMPS-175 """ import pandas as pd from pandas import DataFrame from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler import tensorflow as tf import keras import keras.backend as K from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers import Activation from math import sqrt import matplotlib.pyplot as plt import matplotlib import numpy as np import random as rn import os matplotlib.rcParams.update({'font.size': 8}) # convert time series into supervised learning problem def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg # def create_weights(train_labels): # obs_mean = np.mean(train_labels, axis=-1) # obs_mean = np.reshape(obs_mean, (n_batch, 1)) # obs_mean = np.repeat(obs_mean, n_ahead, axis=1) # weights = (train_labels + obs_mean) / (2 * obs_mean) # return weights # # # def sq_err(y_true, y_pred): # return K.square(y_pred - y_true) # # def mse(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1) def rmse(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def pw_rmse(y_true, y_pred): # num_rows, num_cols = K.int_shape(y_true)[0], K.int_shape(y_true)[1] # print(num_rows, num_cols) act_mean = K.mean(y_true, axis=-1) # print("act_mean 1 is:", act_mean) act_mean = K.reshape(act_mean, (n_batch, 1)) # print("act_mean is: ", act_mean) mean_repeat = K.repeat_elements(act_mean, n_ahead, axis=1) # print("mean_repeat is:", mean_repeat) weights = (y_true+mean_repeat)/(2*mean_repeat) return K.sqrt(K.mean((K.square(y_pred - y_true)*weights), axis=-1)) # configure network n_lags = 116 n_ahead = 18 n_features = 3 n_train = 52551 n_test = 8359 n_epochs = 500 n_neurons = 10 n_batch = 52551 # load dataset dataset_raw = read_csv("C:/Users/<NAME>/Documents/HRSD GIS/Site Data/MMPS_175_no_blanks.csv", index_col=None, parse_dates=True, infer_datetime_format=True) # dataset_raw = dataset_raw[0:len(dataset_raw)-1] # split datetime column into train and test for plots train_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[:n_train] test_dates = dataset_raw[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[n_train:] test_dates = test_dates.reset_index(drop=True) test_dates['Datetime'] = pd.to_datetime(test_dates['Datetime']) # drop columns we don't want to predict dataset = dataset_raw.drop(dataset_raw.columns[[0]], axis=1) values = dataset.values values = values.astype('float32') gwl = values[:, 0] gwl = gwl.reshape(gwl.shape[0], 1) tide = values[:, 1] tide = tide.reshape(tide.shape[0], 1) rain = values[:, 2] rain = rain.reshape(rain.shape[0], 1) # normalize features with individual scalers gwl_scaler, tide_scaler, rain_scaler = MinMaxScaler(), MinMaxScaler(), MinMaxScaler() gwl_scaled = gwl_scaler.fit_transform(gwl) tide_scaled = tide_scaler.fit_transform(tide) rain_scaled = rain_scaler.fit_transform(rain) scaled = np.concatenate((gwl_scaled, tide_scaled, rain_scaled), axis=1) # frame as supervised learning reframed = series_to_supervised(scaled, n_lags, n_ahead) values = reframed.values # split into train and test sets train, test = values[:n_train, :], values[n_train:, :] # split into input and outputs input_cols, label_cols = [], [] for i in range(values.shape[1]): if i <= n_lags*n_features-1: input_cols.append(i) elif i % 3 != 0: input_cols.append(i) elif i % 3 == 0: label_cols.append(i) train_X, train_y = train[:, input_cols], train[:, label_cols] # [start:stop:increment, (cols to include)] test_X, test_y = test[:, input_cols], test[:, label_cols] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) #create weights for peak weighted rmse loss function # weights = create_weights(train_y) # load model here if needed # model = keras.models.load_model("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5", # custom_objects={'pw_rmse':pw_rmse}) # set random seeds for model reproducibility as suggested in: # https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development os.environ['PYTHONHASHSEED'] = '0' np.random.seed(42) rn.seed(12345) session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) tf.set_random_seed(1234) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) # define model model = Sequential() model.add(LSTM(units=n_neurons, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True, input_shape=(None, train_X.shape[2]))) # model.add(LSTM(units=n_neurons, return_sequences=True)) # model.add(LSTM(units=n_neurons)) model.add(Dropout(.1)) model.add(Dense(input_dim=n_neurons, activation='linear', units=n_ahead)) # model.add(Activation('linear')) model.compile(loss=pw_rmse, optimizer='adam') tbCallBack = keras.callbacks.TensorBoard(log_dir='C:/tmp/tensorflow/keras/logs', histogram_freq=0, write_graph=True, write_images=False) earlystop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0.0001, patience=5, verbose=1, mode='auto') history = model.fit(train_X, train_y, batch_size=n_batch, epochs=n_epochs, verbose=2, shuffle=False, callbacks=[earlystop, tbCallBack]) # save model # model.save("C:/Users/<NAME>/PycharmProjects/Tensorflow/keras_models/mmps175.h5") # plot model history # plt.plot(history.history['loss'], label='train') # # plt.plot(history.history['val_loss'], label='validate') # # plt.legend() # # ticks = np.arange(0, n_epochs, 1) # (start,stop,increment) # # plt.xticks(ticks) # plt.xlabel("Epochs") # plt.ylabel("Loss") # plt.tight_layout() # plt.show() # make predictions trainPredict = model.predict(train_X) yhat = model.predict(test_X) inv_trainPredict = gwl_scaler.inverse_transform(trainPredict) inv_yhat = gwl_scaler.inverse_transform(yhat) inv_y = gwl_scaler.inverse_transform(test_y) inv_train_y = gwl_scaler.inverse_transform(train_y) # save test predictions and observed inv_yhat_df = DataFrame(inv_yhat) inv_yhat_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/predicted.csv") inv_y_df = DataFrame(inv_y) inv_y_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/observed.csv") # calculate RMSE for whole test series (each forecast step) RMSE_forecast = [] for i in np.arange(0, n_ahead, 1): rmse = sqrt(mean_squared_error(inv_y[:, i], inv_yhat[:, i])) RMSE_forecast.append(rmse) RMSE_forecast = DataFrame(RMSE_forecast) rmse_avg = sqrt(mean_squared_error(inv_y, inv_yhat)) print('Average Test RMSE: %.3f' % rmse_avg) RMSE_forecast.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/RMSE.csv") # calculate RMSE for each individual time step RMSE_timestep = [] for i in np.arange(0, inv_yhat.shape[0], 1): rmse = sqrt(mean_squared_error(inv_y[i, :], inv_yhat[i, :])) RMSE_timestep.append(rmse) RMSE_timestep = DataFrame(RMSE_timestep) # plot rmse vs forecast steps plt.plot(RMSE_forecast, 'ko') ticks = np.arange(0, n_ahead, 1) # (start,stop,increment) plt.xticks(ticks) plt.ylabel("RMSE (ft)") plt.xlabel("Forecast Step") plt.tight_layout() plt.show() # plot training predictions plt.plot(inv_train_y[:, 0], label='actual') plt.plot(inv_trainPredict[:, 0], label='predicted') plt.xlabel("Timestep") plt.ylabel("GWL (ft)") plt.title("Training Predictions") # ticks = np.arange(0, n_ahead, 1) # plt.xticks(ticks) plt.legend() plt.tight_layout() plt.show() # plot test predictions for Hermine, Julia, and Matthew dates = DataFrame(test_dates[["Datetime"]][n_lags:-n_ahead+1]) dates = dates.reset_index(inplace=False) dates = dates.drop(columns=['index']) dates = dates[5700:8000] dates = dates.reset_index(inplace=False) dates = dates.drop(columns=['index']) dates_9 = DataFrame(test_dates[["Datetime"]][n_lags+8:-n_ahead+9]) dates_9 = dates_9.reset_index(inplace=False) dates_9 = dates_9.drop(columns=['index']) dates_9 = dates_9[5700:8000] dates_9 = dates_9.reset_index(inplace=False) dates_9 = dates_9.drop(columns=['index']) dates_18 = DataFrame(test_dates[["Datetime"]][n_lags+17:]) dates_18 = dates_18.reset_index(inplace=False) dates_18 = dates_18.drop(columns=['index']) dates_18 = dates_18[5700:8000] dates_18 = dates_18.reset_index(inplace=False) dates_18 = dates_18.drop(columns=['index']) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(6.5, 3)) x_ticks = np.arange(0, 2300, 168) ax1.plot(inv_y[5700:8000, 0], 'k-', label='Obs.') ax1.plot(inv_yhat[5700:8000, 0], 'k:', label='Pred.') ax1.set_xticks(x_ticks) ax1.set_xticklabels(dates['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax2.plot(inv_y[5700:8000, 8], 'k-', label='Obs.') ax2.plot(inv_yhat[5700:8000, 8], 'k:', label='Pred.') ax2.set_xticks(x_ticks) ax2.set_xticklabels(dates_9['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax3.plot(inv_y[5700:8000, 17], 'k-', label='Obs.') ax3.plot(inv_yhat[5700:8000, 17], 'k:', label='Pred.') ax3.set_xticks(x_ticks) ax3.set_xticklabels(dates_18['Datetime'][x_ticks].dt.strftime('%Y-%m-%d'), rotation='vertical') ax1.set(ylabel="GWL (ft)", title='t+1') ax2.set(title='t+9') ax3.set(title='t+18') plt.legend() plt.tight_layout() plt.show() # fig.savefig('C:/Users/<NAME>/Documents/HRSD GIS/Presentation Images/Paper Figures/MMPS175_preds.tif', dpi=300) # create dfs of timestamps, obs, and pred data to find peak values and times obs_t1 = np.reshape(inv_y[5700:8000, 0], (2300, 1)) pred_t1 = np.reshape(inv_yhat[5700:8000, 0], (2300,1)) df_t1 = np.concatenate([obs_t1, pred_t1], axis=1) df_t1 = DataFrame(df_t1, index=None, columns=["obs", "pred"]) df_t1 = pd.concat([df_t1, dates], axis=1) df_t1 = df_t1.set_index("Datetime") obs_t9 = np.reshape(inv_y[5700:8000, 8], (2300, 1)) pred_t9 = np.reshape(inv_yhat[5700:8000, 8], (2300,1)) df_t9 = np.concatenate([obs_t9, pred_t9], axis=1) df_t9 = DataFrame(df_t9, index=None, columns=["obs", "pred"]) df_t9 = pd.concat([df_t9, dates_9], axis=1) df_t9 = df_t9.set_index("Datetime") obs_t18 = np.reshape(inv_y[5700:8000, 17], (2300, 1)) pred_t18 = np.reshape(inv_yhat[5700:8000, 17], (2300,1)) df_t18 = np.concatenate([obs_t18, pred_t18], axis=1) df_t18 = DataFrame(df_t18, index=None, columns=["obs", "pred"]) df_t18 = pd.concat([df_t18, dates_18], axis=1) df_t18 = df_t18.set_index("Datetime") HerminePeak_t1 = df_t1.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].max() HerminePeak_t1_time = df_t1.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].idxmax() JuliaPeak_t1 = df_t1.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].max() JuliaPeak_t1_time = df_t1.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].idxmax() MatthewPeak_t1 = df_t1.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].max() MatthewPeak_t1_time = df_t1.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].idxmax() HerminePeak_t9 = df_t9.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].max() HerminePeak_t9_time = df_t9.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].idxmax() JuliaPeak_t9 = df_t9.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].max() JuliaPeak_t9_time = df_t9.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].idxmax() MatthewPeak_t9 = df_t9.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].max() MatthewPeak_t9_time = df_t9.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].idxmax() HerminePeak_t18 = df_t18.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].max() HerminePeak_t18_time = df_t18.loc["2016-09-02T00:00:00.000000000":"2016-09-08T00:00:00.000000000"].idxmax() JuliaPeak_t18 = df_t18.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].max() JuliaPeak_t18_time = df_t18.loc["2016-09-18T00:00:00.000000000":"2016-09-25T00:00:00.000000000"].idxmax() MatthewPeak_t18 = df_t18.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].max() MatthewPeak_t18_time = df_t18.loc["2016-10-07T00:00:00.000000000":"2016-10-14T00:00:00.000000000"].idxmax() peaks_values = DataFrame([HerminePeak_t1, JuliaPeak_t1, MatthewPeak_t1, HerminePeak_t9, JuliaPeak_t9, MatthewPeak_t9, HerminePeak_t18, JuliaPeak_t18, MatthewPeak_t18]) peaks_values = peaks_values.transpose() peaks_values.columns = ['HerminePeak_t1', 'JuliaPeak_t1', 'MatthewPeak_t1', 'HerminePeak_t9', 'JuliaPeak_t9', 'MatthewPeak_t9', 'HerminePeak_t18', 'JuliaPeak_t18', 'MatthewPeak_t18'] peak_times = DataFrame([HerminePeak_t1_time, JuliaPeak_t1_time, MatthewPeak_t1_time, HerminePeak_t9_time, JuliaPeak_t9_time, MatthewPeak_t9_time, HerminePeak_t18_time, JuliaPeak_t18_time, MatthewPeak_t18_time]) peak_times = peak_times.transpose() peak_times.columns = ['HermineTime_t1', 'JuliaTime_t1', 'MatthewTime_t1', 'HermineTime_t9', 'JuliaTime_t9', 'MatthewTime_t9', 'HermineTime_t18', 'JuliaTime_t18', 'MatthewTime_t18'] peaks_df = pd.concat([peaks_values, peak_times], axis=1) cols = ['HerminePeak_t1', 'HermineTime_t1', 'JuliaPeak_t1', 'JuliaTime_t1', 'MatthewPeak_t1', 'MatthewTime_t1', 'HerminePeak_t9', 'HermineTime_t9', 'JuliaPeak_t9', 'JuliaTime_t9', 'MatthewPeak_t9', 'MatthewTime_t9', 'HerminePeak_t18', 'HermineTime_t18', 'JuliaPeak_t18', 'JuliaTime_t18', 'MatthewPeak_t18', 'MatthewTime_t18'] peaks_df = peaks_df[cols] peaks_df.to_csv("C:/Users/<NAME>/PycharmProjects/Tensorflow/mmps175_results/peaks.csv") # plot all test predictions plt.plot(inv_y[5700:8000, 0], label='actual') plt.plot(inv_yhat[5700:8000, 0], label='predicted') plt.xlabel("Timestep") plt.ylabel("GWL (ft)") plt.title("Testing Predictions") # ticks = np.arange(0, n_ahead, 1) # plt.xticks(ticks) plt.legend() plt.tight_layout() plt.show() # # plot test predictions, 18 hours from specific period # plt.plot(inv_y[6275, :], label='actual') # plt.plot(inv_yhat[6275, :], label='predicted') # plt.xlabel("Timestep") # plt.ylabel("GWL (ft)") # plt.title("Testing Predictions") # # ticks = np.arange(0, n_ahead, 1) # # plt.xticks(ticks) # plt.legend() # plt.tight_layout() # plt.show() # combine prediction data with observations start_date, stop_date = "2016-09-17 00:00:00", "2016-09-25 00:00:00" act_cols, pred_cols = [], [] for i in range(n_ahead): gwl_name = "Actual t+{0}".format(i) pred_name = 'Predicted t+{0}'.format(i) act_cols.append(gwl_name) pred_cols.append(pred_name) df_act = DataFrame(inv_y, columns=act_cols) df_pred = DataFrame(inv_yhat, columns=pred_cols) df_gwl = pd.concat([df_act, df_pred], axis=1) df = pd.concat([test_dates, df_gwl], axis=1) df = df[:inv_y.shape[0]] df = df.set_index('Datetime') storm = df.loc[start_date:stop_date] storm.reset_index(inplace=True) # plot test predictions with observed rain and tide ax = storm[["Tide", "Actual t+0", "Predicted t+0"]].plot(color=["k"], style=[":", '-', '-.'], legend=None) start, end = ax.get_xlim() ticks = np.arange(0, end, 24) # (start,stop,increment) ax2 = ax.twinx() # ax2.set_ylim(ymax=2.5, ymin=0) # ax.set_ylim(ymax=4, ymin=-1.25) ax2.invert_yaxis() storm["Precip."].plot.bar(ax=ax2, color="k") ax2.set_xticks([]) ax.set_xticks(ticks) ax.set_xticklabels(storm.loc[ticks, 'Datetime'].dt.strftime('%Y-%m-%d'), rotation='vertical') ax.set_ylabel("Hourly Avg GW/Tide Level (ft)") ax2.set_ylabel("Total Hourly Precip. (in)") lines, labels = ax.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc=1) # location: 0=best, 9=top center plt.tight_layout() plt.show() # save plot for publication # plt.savefig('C:/Users/<NAME>/Documents/HRSD GIS/Presentation Images/Plots/Floods_GWL_comparisons/' # '20160919_bw_averaged.png', dpi=300) # calculate NSE for each forecast period NSE_timestep = [] for i in np.arange(0, inv_yhat.shape[0], 1): num_diff = np.subtract(inv_y[i, :], inv_yhat[i, :]) num_sq =
np.square(num_diff)
numpy.square
#!/usr/bin/env python3 import warnings import numpy as np from typing import TYPE_CHECKING if TYPE_CHECKING: import numpy.typing as npt def pearsons_correlation( x: "npt.ArrayLike", y: "npt.ArrayLike" ) -> float: from scipy.stats import pearsonr from scipy.stats import ( PearsonRNearConstantInputWarning, PearsonRConstantInputWarning ) x_ = np.array(x) y_ = np.array(y) if len(x_.shape) == 1: x_ = x_.reshape(-1, 1) if len(y_.shape) == 1: y_ = y_.reshape(-1, 1) assert x_.shape == y_.shape out = np.zeros(x_.shape[1]) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", category=PearsonRNearConstantInputWarning, ) warnings.filterwarnings( "ignore", category=PearsonRConstantInputWarning, ) for i in range(x_.shape[1]): cor, _ = pearsonr(x_[:, i], y_[:, i]) out[i] = cor if np.all(np.isnan(out)): return np.nan else: return np.nanmean(out) def spearmans_correlation( x: "npt.ArrayLike", y: "npt.ArrayLike" ) -> float: from scipy.stats import spearmanr from scipy.stats import SpearmanRConstantInputWarning x_ = np.array(x) y_ = np.array(y) if len(x_.shape) == 1: x_ = x_.reshape(-1, 1) if len(y_.shape) == 1: y_ = y_.reshape(-1, 1) assert x_.shape == y_.shape out = np.zeros(x_.shape[1]) # Note that spearmanr does accept multi-column # but it will then output a matrix of pairwise correlations.. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", category=SpearmanRConstantInputWarning ) for i in range(x_.shape[1]): cor, _ = spearmanr(x_[:, i], y_[:, i]) out[i] = cor if np.all(
np.isnan(out)
numpy.isnan
# ------------------------------------------------------------------------------------------------------- # This python file contains the implementation of multi-view NMF algorithm # # Reference: # <NAME>, <NAME>, <NAME>, <NAME>, Multi-View Clustering via Joint Nonnegative Matrix Factorization, # SIAM ICDM (SDM), 2013. # Coded by <NAME> # Date: 2020-02-22 # All rights reserved # ------------------------------------------------------------------------------------------------------- import numpy as np from cala import * def preLabel(cV): nCls, nSam = np.shape(cV) B, index = iMax(cV, axis=0) labels = index + 1 return labels def nonneg(Fea): nFea = len(Fea) for i in range(nFea): tmx = Fea[i] nRow, nCol = np.shape(tmx) mVal = np.min(np.min(tmx)) tmx = tmx - mVal Fea[i] = tmx return Fea # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # This function implements the multiplicative algorithm of NMF # Reference: # <NAME> and <NAME>, Algorithms for Non-negative Matrix Factorization, # NIPS, 2000. # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def nmf(X, r, nIter): xRow, xCol = np.shape(X) W = np.random.rand(xRow, r) W = justNorm(W) H = np.random.rand(r, xCol) H = justNorm(H) for ii in range(nIter): # +++++ Update H +++++ tmp = np.dot(np.transpose(W), X) # r * xCol tnp = np.dot(np.transpose(W), W) # r * r tnp = np.dot(tnp, H) # r * xCol tm = tmp / tnp H = H * tm # r * xCol # +++++ Update W +++++ tmp = np.dot(X, np.transpose(H)) # xRow * r tnp = np.dot(W, H) # xRow * xCol tnp = np.dot(tnp, np.transpose(H)) # xRow * r tm = tmp / tnp W = W * tm # +++++ Check the objective +++++ tmp = np.dot(W, H) obj = X - tmp obj = norm(obj, 1) str = 'The %d-th iteration: ' %ii + '%f' %obj print(str) if obj < 1e-7: break return W, H def totalObj(Fea, U, V, cV, lamda): nFea = len(Fea) obj = 0 for i in range(nFea): tmx = Fea[i] tmu = U[i] tmv = V[i] tml = lamda[i] tmp = np.dot(tmu, tmv) tmp = tmx - tmp tm = norm(tmp, 1) q = np.sum(tmu, axis=0) Q = np.diag(q) # r * r tmp = np.dot(Q, tmv) # r * nCol tmp = tmp - cV tn = tml * norm(tmp, 1) tmn = tm + tn obj = obj + tmn return obj def calObj(X, U, V, cV, Q, lamda): tmp = np.dot(U, V) tmp = X - tmp tm = norm(tmp, 1) tmp = np.dot(Q, V) # r * nCol tmp = tmp - cV # r * nCol tn = lamda * norm(tmp, 1) obj = tm + tn return obj def pervNMF(X, U, V, cV, lamda, maxIter): nRow, nCol = np.shape(X) _, r = np.shape(U) obj = 1e7 for ii in range(maxIter): # +++++ Update U +++++ tmp = np.dot(X, np.transpose(V)) # nRow * r tmq = V * cV # r * nCol tmq = np.sum(tmq, axis=1) # r * 1 tmq = repVec(tmq, nRow) # r * nRow tmq = np.transpose(tmq) # nRow * r tm = tmp + lamda * tmq tnp = np.dot(U, V) # nRow * nCol tnp = np.dot(tnp, np.transpose(V)) # nRow * r tnq = V ** 2 tnq = np.sum(tnq, axis=1) # r * 1 tnq = repVec(tnq, nRow) tnq = np.transpose(tnq) # nRow * r tnq = U * tnq # nRow * r tnq =
np.sum(tnq, axis=0)
numpy.sum
""" ======================================================= :mod:`go_benchmark` -- Benchmark optimization functions ======================================================= This module provides a set of benchmark problems for global optimization. .. Copyright 2013 <NAME> .. module:: go_benchmark .. moduleauthor:: <NAME> <<EMAIL>> .. modifiedby:: <NAME> <<EMAIL>> 2016 """ # Array math module implemented in C / C++ import numpy # Optimized mathematical functions from numpy import abs, arctan2, cos, dot, exp, floor, inf, log, log10, pi, prod, sin, sqrt, sum, tan, tanh # Array functions from numpy import arange, asarray, atleast_1d, ones, roll, seterr, sign, where, zeros, zeros_like from numpy.random import uniform from math import factorial # Tell numpy to ignore errors seterr(all='ignore') # -------------------------------------------------------------------------------- # class Benchmark(object): """ Defines a global optimization benchmark problem. This abstract class defines the basic structure of a global optimization problem. Subclasses should implement the ``evaluator`` method for a particular optimization problem. Public Attributes: - *dimensions* -- the number of inputs to the problem - *fun_evals* -- stores the number of function evaluations, as some crappy optimization frameworks (i.e., `nlopt`) do not return this value - *change_dimensionality* -- whether we can change the benchmark function `x` variable length (i.e., the dimensionality of the problem) - *custom_bounds* -- a set of lower/upper bounds for plot purposes (if needed). - *spacing* -- the spacing to use to generate evenly spaced samples across the lower/upper bounds on the variables, for plotting purposes """ def __init__(self, dimensions): self.dimensions = dimensions self.fun_evals = 0 self.change_dimensionality = False self.custom_bounds = None self.record = [] # A record of objective values per evaluations if dimensions == 1: self.spacing = 1001 else: self.spacing = 201 def __str__(self): return "%s (%i dimensions)"%(self.__class__.__name__, self.dimensions) def __repr__(self): return self.__class__.__name__ def generator(self): """The generator function for the benchmark problem.""" return [uniform(l, u) for l, u in self.bounds] def evaluator(self, candidates): """The evaluator function for the benchmark problem.""" raise NotImplementedError def set_dimensions(self, ndim): self.dimensions = ndim def lower_bounds_constraints(self, x): lower = asarray([b[0] for b in self.bounds]) return asarray(x) - lower def upper_bounds_constraints(self, x): upper = asarray([b[1] for b in self.bounds]) return upper - asarray(x) #----------------------------------------------------------------------- # SINGLE-OBJECTIVE PROBLEMS #----------------------------------------------------------------------- class Ackley(Benchmark): """ Ackley test objective function. This class defines the Ackley global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Ackley}}(\\mathbf{x}) = -20e^{-0.2 \\sqrt{\\frac{1}{n} \\sum_{i=1}^n x_i^2}} - e^{ \\frac{1}{n} \\sum_{i=1}^n \\cos(2 \\pi x_i)} + 20 + e Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-32, 32]` for :math:`i=1,...,n`. .. figure:: figures/Ackley.png :alt: Ackley function :align: center **Two-dimensional Ackley function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-32.0] * self.dimensions, [ 32.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 a = 20.0; b = 0.2; c = 2.0*pi return -a*exp(-b*sqrt(1./self.dimensions*sum(x**2)))-exp(1./self.dimensions*sum(cos(c*x)))+a+exp(1.) #----------------------------------------------------------------------- class Adjiman(Benchmark): """ Adjiman test objective function. This class defines the Adjiman global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Adjiman}}(\\mathbf{x}) = \\cos(x_1)\\sin(x_2) - \\frac{x_1}{(x_2^2 + 1)} Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-1, 2]` and :math:`x_2 \\in [-1, 1]`. .. figure:: figures/Adjiman.png :alt: Adjiman function :align: center **Two-dimensional Adjiman function** *Global optimum*: :math:`f(x_i) = -2.02181` for :math:`\\mathbf{x} = [2, 0.10578]` """ def __init__(self, dimensions): Benchmark.__init__(self, 2) self.bounds = [(-1.0, 2.0), (-1.0, 1.0)] self.global_optimum = [2.0, 0.10578] self.fglob = -2.02180678 self.change_dimensionality = False def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return cos(x1)*sin(x2) - x1/(x2**2.0 + 1) # -------------------------------------------------------------------------------- # class Alpine01(Benchmark): """ Alpine 1 test objective function. This class defines the Alpine 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Alpine01}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\lvert {x_i \\sin \\left( x_i \\right) + 0.1 x_i} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Alpine01.png :alt: Alpine 1 function :align: center **Two-dimensional Alpine 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x*sin(x) + 0.1*x)) # -------------------------------------------------------------------------------- # class Alpine02(Benchmark): """ Alpine 2 test objective function. This class defines the Alpine 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Alpine02}}(\\mathbf{x}) = \\prod_{i=1}^{n} \\sqrt{x_i} \\sin(x_i) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,n`. .. figure:: figures/Alpine02.png :alt: Alpine 2 function :align: center **Two-dimensional Alpine 2 function** *Global optimum*: :math:`f(x_i) = -6.1295` for :math:`x_i = 7.917` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [7.91705268, 4.81584232] self.fglob = -6.12950 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return prod(sqrt(x)*sin(x)) # -------------------------------------------------------------------------------- # class AMGM(Benchmark): """ AMGM test objective function. This class defines the Arithmetic Mean - Geometric Mean Equality global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{AMGM}}(\\mathbf{x}) = \\left ( \\frac{1}{n} \\sum_{i=1}^{n} x_i - \\sqrt[n]{ \\prod_{i=1}^{n} x_i} \\right )^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,n`. .. figure:: figures/AMGM.png :alt: AMGM function :align: center **Two-dimensional Arithmetic Mean - Geometric Mean Equality function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_1 = x_2 = ... = x_n` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [1, 1] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions f1 = sum(x) f2 = prod(x) xsum = f1 f1 = f1/n f2 = f2**(1.0/n) return (f1 - f2)**2 # -------------------------------------------------------------------------------- # class BartelsConn(Benchmark): """ Bartels-Conn test objective function. This class defines the Bartels-Conn global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{BartelsConn}}(\\mathbf{x}) = \\lvert {x_1^2 + x_2^2 + x_1x_2} \\rvert + \\lvert {\\sin(x_1)} \\rvert + \\lvert {\\cos(x_2)} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,...,n`. .. figure:: figures/BartelsConn.png :alt: Bartels-Conn function :align: center **Two-dimensional Bartels-Conn function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self): Benchmark.__init__(self, 2) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 1.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return abs(x1**2.0 + x2**2.0 + x1*x2) + abs(sin(x1)) + abs(cos(x2)) # -------------------------------------------------------------------------------- # class Beale(Benchmark): """ Beale test objective function. This class defines the Beale global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Beale}}(\\mathbf{x}) = \\left(x_1 x_2 - x_1 + 1.5\\right)^{2} + \\left(x_1 x_2^{2} - x_1 + 2.25\\right)^{2} + \\left(x_1 x_2^{3} - x_1 + 2.625\\right)^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Beale.png :alt: Beale function :align: center **Two-dimensional Beale function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [3, 0.5]` """ def __init__(self, dimensions): Benchmark.__init__(self, 2) self.bounds = list(zip([-4.5] * self.dimensions, [ 4.5] * self.dimensions)) self.global_optimum = [3.0, 0.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2 # -------------------------------------------------------------------------------- # class Bird(Benchmark): """ Bird test objective function. This class defines the Bird global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bird}}(\\mathbf{x}) = \\left(x_1 - x_2\\right)^{2} + e^{\left[1 - \\sin\\left(x_1\\right) \\right]^{2}} \\cos\\left(x_2\\right) + e^{\left[1 - \\cos\\left(x_2\\right)\\right]^{2}} \\sin\\left(x_1\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-2\\pi, 2\\pi]` for :math:`i=1,2`. .. figure:: figures/Bird.png :alt: Bird function :align: center **Two-dimensional Bird function** *Global optimum*: :math:`f(x_i) = -106.7645367198034` for :math:`\\mathbf{x} = [4.701055751981055 , 3.152946019601391]` or :math:`\\mathbf{x} = [-1.582142172055011, -3.130246799635430]` """ def __init__(self): Benchmark.__init__(self, 2) self.bounds = list(zip([-2.0*pi] * self.dimensions, [ 2.0*pi] * self.dimensions)) self.global_optimum = ([4.701055751981055 , 3.152946019601391], [-1.582142172055011, -3.130246799635430]) self.fglob = -106.7645367198034 def evaluator(self, x, *args): self.fun_evals += 1 return sin(x[0])*exp((1-cos(x[1]))**2) + cos(x[1])*exp((1-sin(x[0]))**2) + (x[0]-x[1])**2 # -------------------------------------------------------------------------------- # class Bohachevsky(Benchmark): """ Bohachevsky test objective function. This class defines the Bohachevsky global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bohachevsky}}(\\mathbf{x}) = \\sum_{i=1}^{n-1}\\left[x_i^2 + 2x_{i+1}^2 - 0.3\\cos(3\\pi x_i) - 0.4\\cos(4\\pi x_{i+1}) + 0.7\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-15, 15]` for :math:`i=1,...,n`. .. figure:: figures/Bohachevsky.png :alt: Bohachevsky function :align: center **Two-dimensional Bohachevsky function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-15.0] * self.dimensions, [ 15.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x0 = x[:-1] x1 = roll(x,-1)[:-1] return sum(x0**2 + 2*x1**2 - 0.3 * cos(3*pi*x0) - 0.4 * cos(4*pi*x1) + 0.7) # -------------------------------------------------------------------------------- # class BoxBetts(Benchmark): """ BoxBetts test objective function. This class defines the Box-Betts global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{BoxBetts}}(\\mathbf{x}) = \\sum_{i=1}^k g(x_i)^2 Where, in this exercise: .. math:: g(x) = e^{-0.1(i+1)x_1} - e^{-0.1(i+1)x_2} - \\left[(e^{-0.1(i+1)}) - e^{-(i+1)}x_3\\right] And :math:`k = 10`. Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [0.9, 1.2], x_2 \\in [9, 11.2], x_3 \\in [0.9, 1.2]`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 10, 1]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = ([0.9, 1.2], [9.0, 11.2], [0.9, 1.2]) self.global_optimum = [1.0, 10.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(1, 11): y += (exp(-0.1*i*x[0]) - exp(-0.1*i*x[1]) - (exp(-0.1*i) - exp(-1.0*i))*x[2])**2.0 return y # -------------------------------------------------------------------------------- # class Branin01(Benchmark): """ Branin 1 test objective function. This class defines the Branin 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Branin01}}(\\mathbf{x}) = \\left(- 1.275 \\frac{x_1^{2}}{\pi^{2}} + 5 \\frac{x_1}{\pi} + x_2 -6\\right)^{2} + \\left(10 - \\frac{5}{4 \\pi} \\right) \\cos\\left(x_1\\right) + 10 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-5, 10], x_2 \\in [0, 15]` .. figure:: figures/Branin01.png :alt: Branin 1 function :align: center **Two-dimensional Branin 1 function** *Global optimum*: :math:`f(x_i) = 0.39788735772973816` for :math:`\\mathbf{x} = [-\\pi, 12.275]` or :math:`\\mathbf{x} = [\\pi, 2.275]` or :math:`\\mathbf{x} = [9.42478, 2.475]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-5., 10.), (0., 15.)] self.global_optimum = [(-pi, 12.275), (pi, 2.275), (9.42478, 2.475)] self.fglob = 0.39788735772973816 def evaluator(self, x, *args): self.fun_evals += 1 return (x[1]-(5.1/(4*pi**2))*x[0]**2+5*x[0]/pi-6)**2+10*(1-1/(8*pi))*cos(x[0])+10 # -------------------------------------------------------------------------------- # class Branin02(Benchmark): """ Branin 2 test objective function. This class defines the Branin 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Branin02}}(\\mathbf{x}) = \\left(- 1.275 \\frac{x_1^{2}}{\pi^{2}} + 5 \\frac{x_1}{\pi} + x_2 -6\\right)^{2} + \\left(10 - \\frac{5}{4 \\pi} \\right) \\cos\\left(x_1\\right) \\cos\\left(x_2\\right) + \\log(x_1^2+x_2^2 +1) + 10 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 15]` for :math:`i=1,2`. .. figure:: figures/Branin02.png :alt: Branin 2 function :align: center **Two-dimensional Branin 2 function** *Global optimum*: :math:`f(x_i) = 5.559037` for :math:`\\mathbf{x} = [-3.2, 12.53]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-5.0, 15.0), (-5.0, 15.0)] self.global_optimum = [-3.2, 12.53] self.fglob = 5.559037 def evaluator(self, x, *args): self.fun_evals += 1 return (x[1]-(5.1/(4*pi**2))*x[0]**2+5*x[0]/pi-6)**2+10*(1-1/(8*pi))*cos(x[0])*cos(x[1])+log(x[0]**2.0+x[1]**2.0+1.0)+10 # -------------------------------------------------------------------------------- # class Brent(Benchmark): """ Brent test objective function. This class defines the Brent global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Brent}}(\\mathbf{x}) = (x_1 + 10)^2 + (x_2 + 10)^2 + e^{(-x_1^2-x_2^2)} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Brent.png :alt: Brent function :align: center **Two-dimensional Brent function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, -10]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-10, 2), (-10, 2)] self.global_optimum = [-10.0, -10.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (x[0] + 10.0)**2.0 + (x[1] + 10.0)**2.0 + exp(-x[0]**2.0 - x[1]**2.0) # -------------------------------------------------------------------------------- # class Brown(Benchmark): """ Brown test objective function. This class defines the Brown global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Brown}}(\\mathbf{x}) = \\sum_{i=1}^{n-1}\\left[ \\left(x_i^2\\right)^{x_{i+1}^2+1} + \\left(x_{i+1}^2\\right)^{x_i^2+1} \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 4]` for :math:`i=1,...,n`. .. figure:: figures/Brown.png :alt: Brown function :align: center **Two-dimensional Brown function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 4.0] * self.dimensions)) self.custom_bounds = [(-1.0, 1.0), (-1.0, 1.0)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x0 = x[:-1] x1 = x[1:] return sum((x0**2.0)**(x1**2.0 + 1.0) + (x1**2.0)**(x0**2.0 + 1.0)) # -------------------------------------------------------------------------------- # class Bukin02(Benchmark): """ Bukin 2 test objective function. This class defines the Bukin 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin02}}(\\mathbf{x}) = 100 (x_2 - 0.01x_1^2 + 1) + 0.01(x_1 + 10)^2 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin02.png :alt: Bukin 2 function :align: center **Two-dimensional Bukin 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*(x[1]**2 - 0.01*x[0]**2 + 1.0) + 0.01*(x[0] + 10.0)**2.0 # -------------------------------------------------------------------------------- # class Bukin04(Benchmark): """ Bukin 4 test objective function. This class defines the Bukin 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin04}}(\\mathbf{x}) = 100 x_2^{2} + 0.01 \\lvert{x_1 + 10} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin04.png :alt: Bukin 4 function :align: center **Two-dimensional Bukin 4 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*x[1]**2 + 0.01*abs(x[0] + 10) # -------------------------------------------------------------------------------- # class Bukin06(Benchmark): """ Bukin 6 test objective function. This class defines the Bukin 6 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin06}}(\\mathbf{x}) = 100 \\sqrt{ \\lvert{x_2 - 0.01 x_1^{2}} \\rvert} + 0.01 \\lvert{x_1 + 10} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin06.png :alt: Bukin 6 function :align: center **Two-dimensional Bukin 6 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*sqrt(abs(x[1] - 0.01*x[0]**2)) + 0.01*abs(x[0] + 10) # -------------------------------------------------------------------------------- # class CarromTable(Benchmark): """ CarromTable test objective function. This class defines the CarromTable global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CarromTable}}(\\mathbf{x}) = - \\frac{1}{30} e^{2 \\left|{1 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\\right|} \\cos^{2}\\left(x_{1}\\right) \\cos^{2}\\left(x_{2}\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CarromTable.png :alt: CarromTable function :align: center **Two-dimensional CarromTable function** *Global optimum*: :math:`f(x_i) = -24.15681551650653` for :math:`x_i = \\pm 9.646157266348881` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(9.646157266348881 , 9.646134286497169), (-9.646157266348881, 9.646134286497169), (9.646157266348881 , -9.646134286497169), (-9.646157266348881, -9.646134286497169)] self.fglob = -24.15681551650653 def evaluator(self, x, *args): self.fun_evals += 1 return -((cos(x[0])*cos(x[1])*exp(abs(1 - sqrt(x[0]**2 + x[1]**2)/pi)))**2)/30 # -------------------------------------------------------------------------------- # class Chichinadze(Benchmark): """ Chichinadze test objective function. This class defines the Chichinadze global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Chichinadze}}(\\mathbf{x}) = x_{1}^{2} - 12 x_{1} + 8 \\sin\\left(\\frac{5}{2} \\pi x_{1}\\right) + 10 \\cos\\left(\\frac{1}{2} \\pi x_{1}\\right) + 11 - 0.2 \\frac{\\sqrt{5}}{e^{\\frac{1}{2} \\left(x_{2} -0.5\\right)^{2}}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-30, 30]` for :math:`i=1,2`. .. figure:: figures/Chichinadze.png :alt: Chichinadze function :align: center **Two-dimensional Chichinadze function** *Global optimum*: :math:`f(x_i) = -42.94438701899098` for :math:`\\mathbf{x} = [6.189866586965680, 0.5]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-30.0] * self.dimensions, [ 30.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [6.189866586965680, 0.5] self.fglob = -42.94438701899098 def evaluator(self, x, *args): self.fun_evals += 1 return x[0]**2 - 12*x[0] + 11 + 10*cos(pi*x[0]/2) + 8*sin(5*pi*x[0]/2) - 1.0/sqrt(5)*exp(-((x[1] - 0.5)**2)/2) # -------------------------------------------------------------------------------- # class Cigar(Benchmark): """ Cigar test objective function. This class defines the Cigar global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Cigar}}(\\mathbf{x}) = x_1^2 + 10^6\\sum_{i=2}^{n} x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Cigar.png :alt: Cigar function :align: center **Two-dimensional Cigar function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return x[0]**2 + 1e6*sum(x[1:]**2) # -------------------------------------------------------------------------------- # class Cola(Benchmark): """ Cola test objective function. This class defines the Cola global optimization problem. The 17-dimensional function computes indirectly the formula :math:`f(n, u)` by setting :math:`x_0 = y_0, x_1 = u_0, x_i = u_{2(i−2)}, y_i = u_{2(i−2)+1}` : .. math:: f_{\\text{Cola}}(\\mathbf{x}) = \\sum_{i<j}^{n} \\left (r_{i,j} - d_{i,j} \\right )^2 Where :math:`r_{i,j}` is given by: .. math:: r_{i,j} = \\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} And :math:`d` is a symmetric matrix given by: .. math:: \\mathbf{d} = \\left [ d_{ij} \\right ] = \\begin{pmatrix} 1.27 & & & & & & & & \\\\ 1.69 & 1.43 & & & & & & & \\\\ 2.04 & 2.35 & 2.43 & & & & & & \\\\ 3.09 & 3.18 & 3.26 & 2.85 & & & & & \\\\ 3.20 & 3.22 & 3.27 & 2.88 & 1.55 & & & & \\\\ 2.86 & 2.56 & 2.58 & 2.59 & 3.12 & 3.06 & & & \\\\ 3.17 & 3.18 & 3.18 & 3.12 & 1.31 & 1.64 & 3.00 & \\\\ 3.21 & 3.18 & 3.18 & 3.17 & 1.70 & 1.36 & 2.95 & 1.32 & \\\\ 2.38 & 2.31 & 2.42 & 1.94 & 2.85 & 2.81 & 2.56 & 2.91 & 2.97 \\end{pmatrix} This function has bounds :math:`0 \\leq x_0 \\leq 4` and :math:`-4 \\leq x_i \\leq 4` for :math:`i = 1,...,n-1`. It has a global minimum of 11.7464. """ def __init__(self, dimensions=17): Benchmark.__init__(self, dimensions) self.bounds = [[0.0, 4.0]] + \ list(zip([-4.0] * (self.dimensions-1), [ 4.0] * (self.dimensions-1))) self.global_optimum = [0.651906, 1.30194, 0.099242, -0.883791, -0.8796, 0.204651, -3.28414, 0.851188, -3.46245, 2.53245, -0.895246, 1.40992, -3.07367, 1.96257, -2.97872, -0.807849, -1.68978] self.fglob = 11.7464 def evaluator(self, x, *args): self.fun_evals += 1 d = asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0], [1.27, 0, 0, 0, 0, 0, 0, 0, 0], [1.69, 1.43, 0, 0, 0, 0, 0, 0, 0], [2.04, 2.35, 2.43, 0, 0, 0, 0, 0, 0], [3.09, 3.18, 3.26, 2.85, 0, 0, 0, 0, 0], [3.20, 3.22, 3.27, 2.88, 1.55, 0, 0, 0, 0], [2.86, 2.56, 2.58, 2.59, 3.12, 3.06, 0, 0, 0], [3.17, 3.18, 3.18, 3.12, 1.31, 1.64, 3.00, 0, 0], [3.21, 3.18, 3.18, 3.17, 1.70, 1.36, 2.95, 1.32, 0], [2.38, 2.31, 2.42, 1.94, 2.85, 2.81, 2.56, 2.91, 2.97]]) # WARNING: This doesn't seem to follow guidelines above... x1 = asarray([0.0, x[0]] + list(x[1::2])) x2 = asarray([0.0, 0.0] + list(x[2::2])) y = 0.0 for i in range(1, len(x1)): y += sum((sqrt((x1[i] - x1[0:i])**2.0 + (x2[i] - x2[0:i])**2.0) - d[i, 0:i])**2.0) return y # -------------------------------------------------------------------------------- # class Colville(Benchmark): """ Colville test objective function. This class defines the Colville global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Colville}}(\\mathbf{x}) = \\left(x_{1} -1\\right)^{2} + 100 \\left(x_{1}^{2} - x_{2}\\right)^{2} + 10.1 \\left(x_{2} -1\\right)^{2} + \\left(x_{3} -1\\right)^{2} + 90 \\left(x_{3}^{2} - x_{4}\\right)^{2} + 10.1 \\left(x_{4} -1\\right)^{2} + 19.8 \\frac{x_{4} -1}{x_{2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*(x[0]**2-x[1])**2+(x[0]-1)**2+(x[2]-1)**2+90*(x[2]**2-x[3])**2+ 10.1*((x[1]-1)**2+(x[3]-1)**2)+19.8*(1/x[1])*(x[3]-1) # -------------------------------------------------------------------------------- # class Corana(Benchmark): """ Corana test objective function. This class defines the Corana global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Corana}}(\\mathbf{x}) = \\begin{cases} \\sum_{i=1}^n 0.15 d_i [z_i - 0.05\\textrm{sgn}(z_i)]^2 & \\textrm{if}|x_i-z_i| < 0.05 \\\\ d_ix_i^2 & \\textrm{otherwise}\\end{cases} Where, in this exercise: .. math:: z_i = 0.2 \\lfloor |x_i/s_i|+0.49999\\rfloor\\textrm{sgn}(x_i), d_i=(1,1000,10,100, ...) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 d = [1., 1000., 10., 100.] r = 0 for j in range(4): zj = floor(abs(x[j]/0.2) + 0.49999)*sign(x[j]) * 0.2 if abs(x[j]-zj) < 0.05: r += 0.15 * ((zj - 0.05*sign(zj))**2) * d[j] else: r += d[j] * x[j] * x[j] return r # -------------------------------------------------------------------------------- # class CosineMixture(Benchmark): """ Cosine Mixture test objective function. This class defines the Cosine Mixture global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CosineMixture}}(\\mathbf{x}) = -0.1 \\sum_{i=1}^n \\cos(5 \\pi x_i) - \\sum_{i=1}^n x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,N`. .. figure:: figures/CosineMixture.png :alt: Cosine Mixture function :align: center **Two-dimensional Cosine Mixture function** *Global optimum*: :math:`f(x_i) = -0.1N` for :math:`x_i = 0` for :math:`i=1,...,N` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.change_dimensionality = True self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -0.1*self.dimensions def evaluator(self, x, *args): self.fun_evals += 1 return -0.1*sum(cos(5.0*pi*x)) - sum(x**2.0) # -------------------------------------------------------------------------------- # class CrossInTray(Benchmark): """ Cross-in-Tray test objective function. This class defines the Cross-in-Tray global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrossInTray}}(\\mathbf{x}) = - 0.0001 \\left(\\left|{e^{\\left|{100 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-15, 15]` for :math:`i=1,2`. .. figure:: figures/CrossInTray.png :alt: Cross-in-Tray function :align: center **Two-dimensional Cross-in-Tray function** *Global optimum*: :math:`f(x_i) = -2.062611870822739` for :math:`x_i = \\pm 1.349406608602084` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(1.349406685353340 , 1.349406608602084), (-1.349406685353340, 1.349406608602084), (1.349406685353340, -1.349406608602084), (-1.349406685353340, -1.349406608602084)] self.fglob = -2.062611870822739 def evaluator(self, x, *args): self.fun_evals += 1 return -0.0001*(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(0.1) # -------------------------------------------------------------------------------- # class CrossLegTable(Benchmark): """ Cross-Leg-Table test objective function. This class defines the Cross-Leg-Table global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrossLegTable}}(\\mathbf{x}) = - \\frac{1}{\\left(\\left|{e^{\\left|{100 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CrossLegTable.png :alt: Cross-Leg-Table function :align: center **Two-dimensional Cross-Leg-Table function** *Global optimum*: :math:`f(x_i) = -1`. The global minimum is found on the planes :math:`x_1 = 0` and :math:`x_2 = 0` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) # WARNING: There was an error here, I added the global optimum self.global_optimum = [0.0, 2.0] self.fglob = -1.0 def evaluator(self, x, *args): self.fun_evals += 1 return -(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(-0.1) # -------------------------------------------------------------------------------- # class CrownedCross(Benchmark): """ Crowned Cross test objective function. This class defines the Crowned Cross global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrownedCross}}(\\mathbf{x}) = 0.0001 \\left(\\left|{e^{\\left|{100- \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CrownedCross.png :alt: Crowned Cross function :align: center **Two-dimensional Crowned Cross function** *Global optimum*: :math:`f(x_i) = 0.0001`. The global minimum is found on the planes :math:`x_1 = 0` and :math:`x_2 = 0` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0, 0] self.fglob = 0.0001 def evaluator(self, x, *args): self.fun_evals += 1 return 0.0001*(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(0.1) # -------------------------------------------------------------------------------- # class Csendes(Benchmark): """ Csendes test objective function. This class defines the Csendes global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Csendes}}(\\mathbf{x}) = \\sum_{i=1}^n x_i^6 \\left[ 2 + \\sin \\left( \\frac{1}{x_i} \\right ) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,N`. .. figure:: figures/Csendes.png :alt: Csendes function :align: center **Two-dimensional Csendes function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`x_i = 0` for :math:`i=1,...,N` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum((x**6.0)*(2.0 + sin(1.0/x))) # -------------------------------------------------------------------------------- # class Cube(Benchmark): """ Cube test objective function. This class defines the Cube global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Cube}}(\\mathbf{x}) = 100(x_2 - x_1^3)^2 + (1 - x1)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,N`. .. figure:: figures/Cube.png :alt: Cube function :align: center **Two-dimensional Cube function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`\\mathbf{x} = [1, 1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [1.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100.0*(x[1] - x[0]**3.0)**2.0 + (1.0 - x[0])**2.0 # -------------------------------------------------------------------------------- # class Damavandi(Benchmark): """ Damavandi test objective function. This class defines the Damavandi global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Damavandi}}(\\mathbf{x}) = \\left[ 1 - \\lvert{\\frac{\\sin[\\pi(x_1-2)]\\sin[\\pi(x2-2)]}{\\pi^2(x_1-2)(x_2-2)}} \\rvert^5 \\right] \\left[2 + (x_1-7)^2 + 2(x_2-7)^2 \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 14]` for :math:`i=1,...,n`. .. figure:: figures/Damavandi.png :alt: Damavandi function :align: center **Two-dimensional Damavandi function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`x_i = 2` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [14.0] * self.dimensions)) self.global_optimum = [2.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x numerator = sin(pi*(x1 - 2.0))*sin(pi*(x2 - 2.0)) denumerator = (pi**2)*(x1 - 2.0)*(x2 - 2.0) factor1 = 1.0 - (abs(numerator / denumerator))**5.0 factor2 = 2 + (x1 - 7.0)**2.0 + 2*(x2 - 7.0)**2.0 return factor1*factor2 # -------------------------------------------------------------------------------- # class Deb01(Benchmark): """ Deb 1 test objective function. This class defines the Deb 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deb01}}(\\mathbf{x}) = - \\frac{1}{N} \\sum_{i=1}^n \\sin^6(5 \\pi x_i) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deb01.png :alt: Deb 1 function :align: center **Two-dimensional Deb 1 function** *Global optimum*: :math:`f(x_i) = 0.0`. The number of global minima is :math:`5^n` that are evenly spaced in the function landscape, where :math:`n` represents the dimension of the problem. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.3, -0.3] self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -(1.0/self.dimensions)*sum(sin(5*pi*x)**6.0) # -------------------------------------------------------------------------------- # class Deb02(Benchmark): """ Deb 2 test objective function. This class defines the Deb 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deb02}}(\\mathbf{x}) = - \\frac{1}{N} \\sum_{i=1}^n \\sin^6 \\left[ 5 \\pi \\left ( x_i^{3/4} - 0.05 \\right) \\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deb02.png :alt: Deb 2 function :align: center **Two-dimensional Deb 2 function** *Global optimum*: :math:`f(x_i) = 0.0`. The number of global minima is :math:`5^n` that are evenly spaced in the function landscape, where :math:`n` represents the dimension of the problem. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.93388314, 0.68141781] self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -(1.0/self.dimensions)*sum(sin(5*pi*(x**0.75 - 0.05))**6.0) # -------------------------------------------------------------------------------- # class Decanomial(Benchmark): """ Decanomial test objective function. This class defines the Decanomial function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Decanomial}}(\\mathbf{x}) = 0.001 \\left(\\lvert{x_{2}^{4} + 12 x_{2}^{3} + 54 x_{2}^{2} + 108 x_{2} + 81.0}\\rvert + \\lvert{x_{1}^{10} - 20 x_{1}^{9} + 180 x_{1}^{8} - 960 x_{1}^{7} + 3360 x_{1}^{6} - 8064 x_{1}^{5} + 13340 x_{1}^{4} - 15360 x_{1}^{3} + 11520 x_{1}^{2} - 5120 x_{1} + 2624.0}\\rvert\\right)^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Decanomial.png :alt: Decanomial function :align: center **Two-dimensional Decanomial function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [2, -3]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(0, 2.5), (-2, -4)] self.global_optimum = [2.0, -3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 F1 = abs(x[0]**10 - 20*x[0]**9 + 180*x[0]**8 - 960*x[0]**7 + 3360*x[0]**6 - 8064*x[0]**5 + \ 13340*x[0]**4 - 15360*x[0]**3 + 11520*x[0]**2 - 5120*x[0] + 2624.0) F2 = abs(x[1]**4 + 12*x[1]**3 + 54*x[1]**2 + 108*x[1] + 81.0) return 0.001*(F1 + F2)**2 # -------------------------------------------------------------------------------- # class Deceptive(Benchmark): """ Deceptive test objective function. This class defines the Deceptive global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deceptive}}(\\mathbf{x}) = - \\left [\\frac{1}{n} \\sum_{i=1}^{n} g_i(x_i) \\right ]^{\\beta} Where :math:`\\beta` is a fixed non-linearity factor; in this exercise, :math:`\\beta = 2`. The function :math:`g_i(x_i)` is given by: .. math:: g_i(x_i) = \\begin{cases} - \\frac{x}{\\alpha_i} + \\frac{4}{5} & \\textrm{if} \\hspace{5pt} 0 \\leq x_i \\leq \\frac{4}{5} \\alpha_i \\\\ \\frac{5x}{\\alpha_i} -4 & \\textrm{if} \\hspace{5pt} \\frac{4}{5} \\alpha_i \\le x_i \\leq \\alpha_i \\\\ \\frac{5(x - \\alpha_i)}{\\alpha_i-1} & \\textrm{if} \\hspace{5pt} \\alpha_i \\le x_i \\leq \\frac{1 + 4\\alpha_i}{5} \\\\ \\frac{x - 1}{1 - \\alpha_i} & \\textrm{if} \\hspace{5pt} \\frac{1 + 4\\alpha_i}{5} \\le x_i \\leq 1 \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deceptive.png :alt: Deceptive function :align: center **Two-dimensional Deceptive function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = \\alpha_i` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) n = self.dimensions self.global_optimum = numpy.arange(1.0, n + 1.0)/(n + 1.0) self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions alpha = numpy.arange(1.0, n + 1.0)/(n + 1.0) beta = 2.0 g = zeros((n, )) for i in range(n): if x[i] <= 0.0: g[i] = x[i] elif x[i] < 0.8*alpha[i]: g[i] = -x[i]/alpha[i] + 0.8 elif x[i] < alpha[i]: g[i] = 5.0*x[i]/alpha[i] - 4.0 elif x[i] < (1.0 + 4*alpha[i])/5.0: g[i] = 5.0*(x[i] - alpha[i])/(alpha[i] - 1.0) + 1.0 elif x[i] <= 1.0: g[i] = (x[i] - 1.0)/(1.0 - alpha[i]) + 4.0/5.0 else: g[i] = x[i] - 1.0 return -((1.0/n)*sum(g))**beta # -------------------------------------------------------------------------------- # class DeckkersAarts(Benchmark): """ Deckkers-Aarts test objective function. This class defines the Deckkers-Aarts global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeckkersAarts}}(\\mathbf{x}) = 10^5x_1^2 + x_2^2 - (x_1^2 + x_2^2)^2 + 10^{-5}(x_1^2 + x_2^2)^4 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-20, 20]` for :math:`i=1,2`. .. figure:: figures/DeckkersAarts.png :alt: DeckkersAarts function :align: center **Two-dimensional Deckkers-Aarts function** *Global optimum*: :math:`f(x_i) = -24777` for :math:`\\mathbf{x} = [0, \\pm 15]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-20.0] * self.dimensions, [ 20.0] * self.dimensions)) # WARNING: Custom bounds was a tuple of lists.. self.custom_bounds = [(-1, 1), (14, 16)] self.global_optimum = [0.0, 15.0] self.fglob = -24776.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 1e5*x1**2.0 + x2**2.0 - (x1**2.0 + x2**2.0)**2.0 + 1e-5*(x1**2.0 + x2**2.0)**4.0 # -------------------------------------------------------------------------------- # class DeflectedCorrugatedSpring(Benchmark): """ DeflectedCorrugatedSpring test objective function. This class defines the Deflected Corrugated Spring function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeflectedCorrugatedSpring}}(\\mathbf{x}) = 0.1\\sum_{i=1}^n \\left[ (x_i - \\alpha)^2 - \\cos \\left( K \\sqrt {\\sum_{i=1}^n (x_i - \\alpha)^2} \\right ) \\right ] Where, in this exercise, :math:`K = 5` and :math:`\\alpha = 5`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 2\\alpha]` for :math:`i=1,...,n`. .. figure:: figures/DeflectedCorrugatedSpring.png :alt: Deflected Corrugated Spring function :align: center **Two-dimensional Deflected Corrugated Spring function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = \\alpha` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) alpha = 5.0 self.bounds = list(zip([0] * self.dimensions, [2*alpha] * self.dimensions)) self.global_optimum = [alpha] * self.dimensions self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 K, alpha = 5.0, 5.0 return -cos(K*sqrt(sum((x - alpha)**2))) + 0.1*sum((x - alpha)**2) # -------------------------------------------------------------------------------- # class DeVilliersGlasser01(Benchmark): """ DeVilliers-Glasser 1 test objective function. This class defines the DeVilliers-Glasser 1 function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeVilliersGlasser01}}(\\mathbf{x}) = \\sum_{i=1}^{24} \\left[ x_1x_2^{t_i} \\sin(x_3t_i + x_4) - y_i \\right ]^2 Where, in this exercise, :math:`t_i = 0.1(i-1)` and :math:`y_i = 60.137(1.371^{t_i}) \\sin(3.112t_i + 1.761)`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [1, 100]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`\\mathbf{x} = [60.137, 1.371, 3.112, 1.761]`. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 1.0] * self.dimensions, [100.0] * self.dimensions)) self.global_optimum = [60.137, 1.371, 3.112, 1.761] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 t_i = 0.1*numpy.arange(24) y_i = 60.137*(1.371**t_i)*sin(3.112*t_i + 1.761) x1, x2, x3, x4 = x return sum((x1*(x2**t_i)*sin(x3*t_i + x4) - y_i)**2.0) # -------------------------------------------------------------------------------- # class DeVilliersGlasser02(Benchmark): """ DeVilliers-Glasser 2 test objective function. This class defines the DeVilliers-Glasser 2 function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeVilliersGlasser01}}(\\mathbf{x}) = \\sum_{i=1}^{24} \\left[ x_1x_2^{t_i} \\tanh \\left [x_3t_i + \\sin(x_4t_i) \\right] \\cos(t_ie^{x_5}) - y_i \\right ]^2 Where, in this exercise, :math:`t_i = 0.1(i-1)` and :math:`y_i = 53.81(1.27^{t_i}) \\tanh (3.012t_i + \\sin(2.13t_i)) \\cos(e^{0.507}t_i)`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [1, 60]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`\\mathbf{x} = [53.81, 1.27, 3.012, 2.13, 0.507]`. """ def __init__(self, dimensions=5): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 1.0] * self.dimensions, [60.0] * self.dimensions)) self.global_optimum = [53.81, 1.27, 3.012, 2.13, 0.507] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 t_i = 0.1*numpy.arange(16) y_i = 53.81*1.27**t_i*tanh(3.012*t_i + sin(2.13*t_i))*cos(exp(0.507)*t_i) x1, x2, x3, x4, x5 = x return sum((x1*(x2**t_i)*tanh(x3*t_i + sin(x4*t_i))*cos(t_i*exp(x5)) - y_i)**2.0) # -------------------------------------------------------------------------------- # class DixonPrice(Benchmark): """ Dixon and Price test objective function. This class defines the Dixon and Price global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DixonPrice}}(\\mathbf{x}) = (x_i - 1)^2 + \\sum_{i=2}^n i(2x_i^2 - x_{i-1})^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/DixonPrice.png :alt: Dixon and Price function :align: center **Two-dimensional Dixon and Price function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 2^{- \\frac{(2^i-2)}{2^i}}` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2, 3), (-2, 3)] self.global_optimum = [2.0**(-(2.0**i-2.0)/2.0**i) for i in range(1, self.dimensions+1)] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 s = 0.0 for i in range(1, self.dimensions): s += i*(2.0*x[i]**2.0 - x[i-1])**2.0 y = s + (x[0] - 1.0)**2.0 return y # -------------------------------------------------------------------------------- # class Dolan(Benchmark): """ Dolan test objective function. This class defines the Dolan global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Dolan}}(\\mathbf{x}) = \\lvert (x_1 + 1.7x_2)\\sin(x_1) - 1.5x_3 - 0.1x_4\\cos(x_5 + x_5 - x_1) + 0.2x_5^2 - x_2 - 1 \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. *Global optimum*: :math:`f(x_i) = 10^{-5}` for :math:`\\mathbf{x} = [8.39045925, 4.81424707, 7.34574133, 68.88246895, 3.85470806]` """ def __init__(self, dimensions=5): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [8.39045925, 4.81424707, 7.34574133, 68.88246895, 3.85470806] self.fglob = 1e-5 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3, x4, x5 = x return abs((x1 + 1.7*x2)*sin(x1) - 1.5*x3 - 0.1*x4*cos(x4 + x5 - x1) + 0.2*x5**2.0 - x2 - 1.0) # -------------------------------------------------------------------------------- # class DropWave(Benchmark): """ DropWave test objective function. This class defines the DropWave global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DropWave}}(\\mathbf{x}) = - \\frac{1 + \\cos\\left(12 \\sqrt{\\sum_{i=1}^{n} x_i^{2}}\\right)}{2 + 0.5 \\sum_{i=1}^{n} x_i^{2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5.12, 5.12]` for :math:`i=1,2`. .. figure:: figures/DropWave.png :alt: DropWave function :align: center **Two-dimensional DropWave function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.12] * self.dimensions, [ 5.12] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.0 def evaluator(self, x, *args): self.fun_evals += 1 norm_x = sum(x**2) return -(1+cos(12 * sqrt(norm_x)))/(0.5 * norm_x + 2) # -------------------------------------------------------------------------------- # class Easom(Benchmark): """ Easom test objective function. This class defines the Easom global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Easom}}(\\mathbf{x}) = a - \\frac{a}{e^{b \\sqrt{\\frac{\\sum_{i=1}^{n} x_i^{2}}{n}}}} + e - e^{\\frac{\\sum_{i=1}^{n} \\cos\\left(c x_i\\right)}{n}} Where, in this exercise, :math:`a = 20, b = 0.2` and :math:`c = 2\\pi`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Easom.png :alt: Easom function :align: center **Two-dimensional Easom function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 a = 20.0 b = 0.2 c = 2*pi n = self.dimensions return -a * exp(-b * sqrt(sum(x**2) / n)) - exp(sum(cos(c * x)) / n) + a + exp(1) # -------------------------------------------------------------------------------- # class EggCrate(Benchmark): """ Egg Crate test objective function. This class defines the Egg Crate global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{EggCrate}}(\\mathbf{x}) = x_1^2 + x_2^2 + 25 \\left[ \\sin^2(x_1) + \\sin^2(x_2) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/EggCrate.png :alt: Egg Crate function :align: center **Two-dimensional Egg Crate function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return x1**2.0 + x2**2.0 + 25.0*(sin(x1)**2.0 + sin(x2)**2.0) # -------------------------------------------------------------------------------- # class EggHolder(Benchmark): """ Egg Holder test objective function. This class defines the Egg Holder global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{EggHolder}}(\\mathbf{x}) = - x_{1} \\sin\\left(\\sqrt{\\lvert{x_{1} - x_{2} -47}\\rvert}\\right) - \\left(x_{2} + 47\\right) \\sin\\left(\\sqrt{\\left|{\\frac{1}{2} x_{1} + x_{2} + 47}\\right|}\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-512, 512]` for :math:`i=1,2`. .. figure:: figures/EggHolder.png :alt: Egg Holder function :align: center **Two-dimensional Egg Holder function** *Global optimum*: :math:`f(x_i) = -959.640662711` for :math:`\\mathbf{x} = [512, 404.2319]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-512.0] * self.dimensions, [ 512.0] * self.dimensions)) self.global_optimum = [512.0, 404.2319] self.fglob = -959.640662711 def evaluator(self, x, *args): self.fun_evals += 1 return -(x[1]+47)*sin(sqrt(abs(x[1]+x[0]/2+47)))-x[0]*sin(sqrt(abs(x[0]-(x[1]+47)))) # -------------------------------------------------------------------------------- # class ElAttarVidyasagarDutta(Benchmark): """ El-Attar-Vidyasagar-Dutta test objective function. This class defines the El-Attar-Vidyasagar-Dutta function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{ElAttarVidyasagarDutta}}(\\mathbf{x}) = (x_1^2 + x_2 - 10)^2 + (x_1 + x_2^2 - 7)^2 + (x_1^2 + x_2^3 - 1)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/ElAttarVidyasagarDutta.png :alt: El-Attar-Vidyasagar-Dutta function :align: center **Two-dimensional El-Attar-Vidyasagar-Dutta function** *Global optimum*: :math:`f(x_i) = 1.712780354` for :math:`\\mathbf{x} = [3.40918683, -2.17143304]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-4, 4), (-4, 4)] self.global_optimum = [3.40918683, -2.17143304] self.fglob = 1.712780354 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (x1**2.0 + x2 - 10)**2.0 + (x1 + x2**2.0 - 7)**2.0 + (x1**2.0 + x2**3.0 - 1)**2.0 # -------------------------------------------------------------------------------- # class Exp2(Benchmark): """ Exp2 test objective function. This class defines the Exp2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Exp2}}(\\mathbf{x}) = \\sum_{i=0}^9 \\left ( e^{-ix_1/10} - 5e^{-ix_2/10} -e^{-i/10} + 5e^{-i} \\right )^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 20]` for :math:`i=1,2`. .. figure:: figures/Exp2.png :alt: Exp2 function :align: center **Two-dimensional Exp2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = [1, 0.1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [20.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [1.0, 0.1] self.fglob = 0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(10): y += (exp(-i*x[0]/10.0) - 5*exp(-i*x[1]*10) - exp(-i/10.0) + 5*exp(-i))**2.0 return y # -------------------------------------------------------------------------------- # class Exponential(Benchmark): """ Exponential test objective function. This class defines the Exponential global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Exponential}}(\\mathbf{x}) = -e^{-0.5 \\sum_{i=1}^n x_i^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Exponential.png :alt: Exponential function :align: center **Two-dimensional Exponential function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -exp(-0.5*sum(x**2.0)) # -------------------------------------------------------------------------------- # class FreudensteinRoth(Benchmark): """ FreudensteinRoth test objective function. This class defines the Freudenstein & Roth global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{FreudensteinRoth}}(\\mathbf{x}) = \\left\{x_1 - 13 + \\left[(5 - x_2)x_2 - 2 \\right] x_2 \\right\}^2 + \\left \{x_1 - 29 + \\left[(x_2 + 1)x_2 - 14 \\right] x_2 \\right\}^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/FreudensteinRoth.png :alt: FreudensteinRoth function :align: center **Two-dimensional FreudensteinRoth function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [5, 4]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-3, 3), (-5, 5)] self.global_optimum = [5.0, 4.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 f1 = (-13.0 + x[0] + ((5.0 - x[1])*x[1] - 2.0)*x[1])**2 f2 = (-29.0 + x[0] + ((x[1] + 1.0)*x[1] - 14.0)*x[1])**2 return f1 + f2 # -------------------------------------------------------------------------------- # class Gear(Benchmark): """ Gear test objective function. This class defines the Gear global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Gear}}(\\mathbf{x}) = \\left \\{ \\frac{1.0}{6.931} - \\frac{\\lfloor x_1\\rfloor \\lfloor x_2 \\rfloor } {\\lfloor x_3 \\rfloor \\lfloor x_4 \\rfloor } \\right\\}^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [12, 60]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 2.7 \\cdot 10^{-12}` for :math:`\\mathbf{x} = [16, 19, 43, 49]`, where the various :math:`x_i` may be permuted. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([12.0] * self.dimensions, [60.0] * self.dimensions)) self.global_optimum = [16, 19, 43, 49] self.fglob = 2.7e-12 def evaluator(self, x, *args): self.fun_evals += 1 return (1.0/6.931 - floor(x[0])*floor(x[1])/(floor(x[2])*floor(x[3])))**2 # -------------------------------------------------------------------------------- # class Giunta(Benchmark): """ Giunta test objective function. This class defines the Giunta global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Giunta}}(\\mathbf{x}) = 0.6 + \\sum_{i=1}^{n} \\left[\\sin^{2}\\left(1 - \\frac{16}{15} x_i\\right) - \\frac{1}{50} \\sin\\left(4 - \\frac{64}{15} x_i\\right) - \\sin\\left(1 - \\frac{16}{15} x_i\\right)\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,2`. .. figure:: figures/Giunta.png :alt: Giunta function :align: center **Two-dimensional Giunta function** *Global optimum*: :math:`f(x_i) = 0.06447042053690566` for :math:`\\mathbf{x} = [0.4673200277395354, 0.4673200169591304]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.4673200277395354, 0.4673200169591304] self.fglob = 0.06447042053690566 def evaluator(self, x, *args): self.fun_evals += 1 arg = 16*x/15.0 - 1 return 0.6 + sum(sin(arg) + sin(arg)**2 + sin(4*arg)/50) # -------------------------------------------------------------------------------- # class GoldsteinPrice(Benchmark): """ Goldstein-Price test objective function. This class defines the Goldstein-Price global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{GoldsteinPrice}}(\\mathbf{x}) = \\left[ 1+(x_1+x_2+1)^2(19-14x_1+3x_1^2-14x_2+6x_1x_2+3x_2^2) \\right] \\left[ 30+(2x_1-3x_2)^2(18-32x_1+12x_1^2+48x_2-36x_1x_2+27x_2^2) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-2, 2]` for :math:`i=1,2`. .. figure:: figures/GoldsteinPrice.png :alt: Goldstein-Price function :align: center **Two-dimensional Goldstein-Price function** *Global optimum*: :math:`f(x_i) = 3` for :math:`\\mathbf{x} = [0, -1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-2.0] * self.dimensions, [ 2.0] * self.dimensions)) self.global_optimum = [0., -1.] self.fglob = 3.0 def evaluator(self, x, *args): self.fun_evals += 1 a = 1+(x[0]+x[1]+1)**2*(19-14*x[0]+3*x[0]**2-14*x[1]+6*x[0]*x[1]+3*x[1]**2) b = 30+(2*x[0]-3*x[1])**2*(18-32*x[0]+12*x[0]**2+48*x[1]-36*x[0]*x[1]+27*x[1]**2) return a*b # -------------------------------------------------------------------------------- # class Griewank(Benchmark): """ Griewank test objective function. This class defines the Griewank global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Griewank}}(\\mathbf{x}) = \\frac{1}{4000}\\sum_{i=1}^n x_i^2 - \\prod_{i=1}^n\\cos\\left(\\frac{x_i}{\\sqrt{i}}\\right) + 1 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-600, 600]` for :math:`i=1,...,n`. .. figure:: figures/Griewank.png :alt: Griewank function :align: center **Two-dimensional Griewank function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-600.0] * self.dimensions, [ 600.0] * self.dimensions)) self.custom_bounds = [(-50, 50), (-50, 50)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**2)/4000.0 - prod(cos(x/sqrt(1.0+arange(len(x))))) + 1.0 # -------------------------------------------------------------------------------- # class Gulf(Benchmark): """ Gulf test objective function. This class defines the Gulf global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Gulf}}(\\mathbf{x}) = \\sum_{i=1}^m \\left( e^{-\\frac{\\lvert y_i - x_2 \\rvert^{x_3}}{x_1} } - t_i \\right) Where, in this exercise: .. math:: t_i = i/100 \\\\ y_i = 25 + [-50 \\log(t_i)]^{2/3} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 60]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [50, 25, 1.5]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [50.0] * self.dimensions)) self.global_optimum = [50.0, 25.0, 1.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3 = x y = 0.0 for i in range(30): ti = (i)*0.01; yi = 25.0 + (-50*log(ti))**(2.0/3.0) ai = yi - x2 y += (exp(-((abs(ai)**x3)/x1)) - ti)**2.0 return y # -------------------------------------------------------------------------------- # class Hansen(Benchmark): """ Hansen test objective function. This class defines the Hansen global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hansen}}(\\mathbf{x}) = \\left[ \\sum_{i=0}^4(i+1)\\cos(ix_1+i+1)\\right ] \\left[\\sum_{j=0}^4(j+1)\\cos[(j+2)x_2+j+1])\\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Hansen.png :alt: Hansen function :align: center **Two-dimensional Hansen function** *Global optimum*: :math:`f(x_i) = -2.3458` for :math:`\\mathbf{x} = [-7.58989583, -7.70831466]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-7.58989583, -7.70831466] self.fglob = -176.54 def evaluator(self, x, *args): self.fun_evals += 1 f1 = f2 = 0.0 for i in range(5): f1 += (i+1)*cos(i*x[0] + i + 1) f2 += (i+1)*cos((i+2)*x[1] + i + 1) return f1*f2 # -------------------------------------------------------------------------------- # class Hartmann3(Benchmark): """ Hartmann3 test objective function. This class defines the Hartmann3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hartmann3}}(\\mathbf{x}) = -\\sum\\limits_{i=1}^{4} c_i e^{-\\sum\\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2} Where, in this exercise: .. math:: \\begin{array}{l|ccc|c|ccr} \\hline i & & a_{ij}& & c_i & & p_{ij} & \\\\ \\hline 1 & 3.0 & 10.0 & 30.0 & 1.0 & 0.689 & 0.1170 & 0.2673 \\\\ 2 & 0.1 & 10.0 & 35.0 & 1.2 & 0.4699 & 0.4387 & 0.7470 \\\\ 3 & 3.0 & 10.0 & 30.0 & 3.0 & 0.1091 & 0.8732 & 0.5547 \\\\ 4 & 0.1 & 10.0 & 35.0 & 3.2 & 0.0381 & 0.5743 & 0.8828 \\\\ \\hline \\end{array} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = -3.86278214782076` for :math:`\\mathbf{x} = [0.1, 0.55592003, 0.85218259]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.1, 0.55592003, 0.85218259] self.fglob = -3.86278214782076 def evaluator(self, x, *args): self.fun_evals += 1 a = asarray([[3.0, 0.1, 3.0, 0.1], [10.0, 10.0, 10.0, 10.0], [30.0, 35.0, 30.0, 35.0]]) p = asarray([[0.36890, 0.46990, 0.10910, 0.03815], [0.11700, 0.43870, 0.87320, 0.57430], [0.26730, 0.74700, 0.55470, 0.88280]]) c = asarray([1.0, 1.2, 3.0, 3.2]) d = zeros_like(c) for i in range(4): d[i] = sum(a[:, i]*(x - p[:, i])**2) return -sum(c*exp(-d)) # -------------------------------------------------------------------------------- # class Hartmann6(Benchmark): """ Hartmann6 test objective function. This class defines the Hartmann6 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hartmann6}}(\\mathbf{x}) = -\\sum\\limits_{i=1}^{4} c_i e^{-\\sum\\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2} Where, in this exercise: .. math:: \\begin{array}{l|cccccc|r} \\hline i & & & a_{ij} & & & & c_i \\\\ \\hline 1 & 10.0 & 3.0 & 17.0 & 3.50 & 1.70 & 8.00 & 1.0 \\\\ 2 & 0.05 & 10.0 & 17.0 & 0.10 & 8.00 & 14.00 & 1.2 \\\\ 3 & 3.00 & 3.50 & 1.70 & 10.0 & 17.00 & 8.00 & 3.0 \\\\ 4 & 17.00 & 8.00 & 0.05 & 10.00 & 0.10 & 14.00 & 3.2 \\\\ \\hline \\end{array} \\newline \\\\ \\newline \\begin{array}{l|cccccr} \\hline i & & & p_{ij} & & & \\\\ \\hline 1 & 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\\\ 2 & 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\\\ 3 & 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\\\ 4 & 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \\\\ \\hline \\end{array} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,6`. *Global optimum*: :math:`f(x_i) = -3.32236801141551` for :math:`\\mathbf{x} = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054]` """ def __init__(self, dimensions=6): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054] self.fglob = -3.32236801141551 def evaluator(self, x, *args): self.fun_evals += 1 a = asarray([[10.00, 0.05, 3.00, 17.00], [3.00, 10.00, 3.50, 8.00], [17.00, 17.00, 1.70, 0.05], [3.50, 0.10, 10.00, 10.00], [1.70, 8.00, 17.00, 0.10], [8.00, 14.00, 8.00, 14.00]]) p = asarray([[0.1312, 0.2329, 0.2348, 0.4047], [0.1696, 0.4135, 0.1451, 0.8828], [0.5569, 0.8307, 0.3522, 0.8732], [0.0124, 0.3736, 0.2883, 0.5743], [0.8283, 0.1004, 0.3047, 0.1091], [0.5886, 0.9991, 0.6650, 0.0381]]) c = asarray([1.0, 1.2, 3.0, 3.2]) d = zeros_like(c) for i in range(4): d[i] = sum(a[:, i]*(x - p[:, i])**2) return -sum(c*exp(-d)) # -------------------------------------------------------------------------------- # class HelicalValley(Benchmark): """ HelicalValley test objective function. This class defines the HelicalValley global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HelicalValley}}(\\mathbf{x}) = 100{[z-10\\Psi(x_1,x_2)]^2+(\\sqrt{x_1^2+x_2^2}-1)^2}+x_3^2 Where, in this exercise: .. math:: 2\\pi\\Psi(x,y) = \\begin{cases} \\arctan(y/x) & \\textrm{for} x > 0 \\\\ \\pi + \\arctan(y/x) & \\textrm{for} x < 0 \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-\infty, \\infty]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 0, 0]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100] * self.dimensions)) self.global_optimum = [1.0, 0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*((x[2] - 10*arctan2(x[1], x[0])/2/pi)**2 + (sqrt(x[0]**2 + x[1]**2) - 1)**2) + x[2]**2 # -------------------------------------------------------------------------------- # class HimmelBlau(Benchmark): """ HimmelBlau test objective function. This class defines the HimmelBlau global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HimmelBlau}}(\\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 -7)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-6, 6]` for :math:`i=1,2`. .. figure:: figures/HimmelBlau.png :alt: HimmelBlau function :align: center **Two-dimensional HimmelBlau function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-6] * self.dimensions, [ 6] * self.dimensions)) self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (x[0] * x[0] + x[1] - 11)**2 + (x[0] + x[1] * x[1] - 7)**2 # -------------------------------------------------------------------------------- # class HolderTable(Benchmark): """ HolderTable test objective function. This class defines the HolderTable global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HolderTable}}(\\mathbf{x}) = - \\left|{e^{\\left|{1 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi} }\\right|} \\sin\\left(x_{1}\\right) \\cos\\left(x_{2}\\right)}\\right| Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/HolderTable.png :alt: HolderTable function :align: center **Two-dimensional HolderTable function** *Global optimum*: :math:`f(x_i) = -19.20850256788675` for :math:`x_i = \\pm 9.664590028909654` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(8.055023472141116 , 9.664590028909654), (-8.055023472141116, 9.664590028909654), (8.055023472141116 , -9.664590028909654), (-8.055023472141116, -9.664590028909654)] self.fglob = -19.20850256788675 def evaluator(self, x, *args): self.fun_evals += 1 return -abs(sin(x[0])*cos(x[1])*exp(abs(1 - sqrt(x[0]**2 + x[1]**2)/pi))) # -------------------------------------------------------------------------------- # class Holzman(Benchmark): """ Holzman test objective function. This class defines the Holzman global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Holzman}}(\\mathbf{x}) = \\sum_{i=0}^{99} \\left [ e^{\\frac{1}{x_1} (u_i-x_2)^{x_3}} -0.1(i+1) \\right ] Where, in this exercise: .. math:: u_i = 25 + (-50 \\log{[0.01(i+1)]})^{2/3} Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [0, 100], x_2 \\in [0, 25.6], x_3 \\in [0, 5]`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [50, 25, 1.5]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = ([0.0, 100.0], [0.0, 25.6], [0.0, 5.0]) self.global_optimum = [50.0, 25.0, 1.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(100): ui = 25.0 + (-50.0*log(0.01*(i+1)))**(2.0/3.0) y += -0.1*(i+1) + exp(1.0/x[0]*(ui-x[1])**x[2]) return y # -------------------------------------------------------------------------------- # class Hosaki(Benchmark): """ Hosaki test objective function. This class defines the Hosaki global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hosaki}}(\\mathbf{x}) = \\left ( 1 - 8x_1 + 7x_1^2 - \\frac{7}{3}x_1^3 + \\frac{1}{4}x_1^4 \\right )x_2^2e^{-x_1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2`. .. figure:: figures/Hosaki.png :alt: Hosaki function :align: center **Two-dimensional Hosaki function** *Global optimum*: :math:`f(x_i) = -2.3458` for :math:`\\mathbf{x} = [4, 2]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(0, 5), (0, 5)] self.global_optimum = [4, 2] self.fglob = -2.3458 def evaluator(self, x, *args): self.fun_evals += 1 return (1 + x[0]*(-8 + x[0]*(7 + x[0]*(-7.0/3.0 + x[0] *1.0/4.0))))*x[1]*x[1] * exp(-x[1]) # -------------------------------------------------------------------------------- # class Infinity(Benchmark): """ Infinity test objective function. This class defines the Infinity global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Infinity}}(\\mathbf{x}) = \\sum_{i=1}^{n} x_i^{6} \\left [ \\sin\\left ( \\frac{1}{x_i} \\right )+2 \\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Infinity.png :alt: Infinity function :align: center **Two-dimensional Infinity function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [1e-16] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**6.0*(sin(1.0/x) + 2.0)) # -------------------------------------------------------------------------------- # class JennrichSampson(Benchmark): """ Jennrich-Sampson test objective function. This class defines the Jennrich-Sampson global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{JennrichSampson}}(\\mathbf{x}) = \\sum_{i=1}^{10} \\left [2 + 2i - (e^{ix_1} + e^{ix_2}) \\right ]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,2`. .. figure:: figures/JennrichSampson.png :alt: Jennrich-Sampson function :align: center **Two-dimensional Jennrich-Sampson function** *Global optimum*: :math:`f(x_i) = 124.3621824` for :math:`\\mathbf{x} = [0.257825, 0.257825]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.custom_bounds = [(-1, 0.34), (-1, 0.34)] self.global_optimum = [0.257825, 0.257825] self.fglob = 124.3621824 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x rng = numpy.arange(1.0, 11.0) return sum((2.0 + 2.0*rng - (exp(rng*x1) + exp(rng*x2)))**2.0) # -------------------------------------------------------------------------------- # class Judge(Benchmark): """ Judge test objective function. This class defines the Judge global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Judge}}(\\mathbf{x}) = \\sum_{i=1}^{20} \\left [ \\left (x_1 + A_i x_2 + B x_2^2 \\right ) - C_i \\right ]^2 Where, in this exercise: .. math:: \\begin{cases} A = [4.284, 4.149, 3.877, 0.533, 2.211, 2.389, 2.145, 3.231, 1.998, 1.379, 2.106, 1.428, 1.011, 2.179, 2.858, 1.388, 1.651, 1.593, 1.046, 2.152] \\\\ B = [0.286, 0.973, 0.384, 0.276, 0.973, 0.543, 0.957, 0.948, 0.543, 0.797, 0.936, 0.889, 0.006, 0.828, 0.399, 0.617, 0.939, 0.784, 0.072, 0.889] \\\\ C = [0.645, 0.585, 0.310, 0.058, 0.455, 0.779, 0.259, 0.202, 0.028, 0.099, 0.142, 0.296, 0.175, 0.180, 0.842, 0.039, 0.103, 0.620, 0.158, 0.704] \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Judge.png :alt: Judge function :align: center **Two-dimensional Judge function** *Global optimum*: :math:`f(x_i) = 16.0817307` for :math:`\\mathbf{x} = [0.86479, 1.2357]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2.0, 2.0), (-2.0, 2.0)] self.global_optimum = [0.86479, 1.2357] self.fglob = 16.0817307 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x Y = asarray([4.284, 4.149, 3.877, 0.533, 2.211, 2.389, 2.145, 3.231, 1.998, 1.379, 2.106, 1.428, 1.011, 2.179, 2.858, 1.388, 1.651, 1.593, 1.046, 2.152]) X2 = asarray([0.286, 0.973, 0.384, 0.276, 0.973, 0.543, 0.957, 0.948, 0.543, 0.797, 0.936, 0.889, 0.006, 0.828, 0.399, 0.617, 0.939, 0.784, 0.072, 0.889]) X3 = asarray([0.645, 0.585, 0.310, 0.058, 0.455, 0.779, 0.259, 0.202, 0.028, 0.099, 0.142, 0.296, 0.175, 0.180, 0.842, 0.039, 0.103, 0.620, 0.158, 0.704]) return sum(((x1 + x2*X2 + (x2**2.0)*X3) - Y)**2.0) # -------------------------------------------------------------------------------- # class Katsuura(Benchmark): """ Katsuura test objective function. This class defines the Katsuura global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Katsuura}}(\\mathbf{x}) = \\prod_{i=0}^{n-1} \\left [ 1 + (i+1) \\sum_{k=1}^{d} \\lfloor (2^k x_i) \\rfloor 2^{-k} \\right ] Where, in this exercise, :math:`d = 32`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 100]` for :math:`i=1,...,n`. .. figure:: figures/Katsuura.png :alt: Katsuura function :align: center **Two-dimensional Katsuura function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = 0` for :math:`i=1,...,n`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(0, 1), (0, 1)] self.global_optimum = [0.0] * self.dimensions self.fglob = 1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 d = 32 prod = 1.0 for i in range(self.dimensions): s = 0.0 for k in range(1, d+1): pow2 = 2.0**k s += round(pow2*x[i])/pow2 prod = prod*(1.0 + (i+1.0)*s) return prod # -------------------------------------------------------------------------------- # class Keane(Benchmark): """ Keane test objective function. This class defines the Keane global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Keane}}(\\mathbf{x}) = \\frac{\\sin^2(x_1 - x_2)\\sin^2(x_1 + x_2)}{\\sqrt{x_1^2 + x_2^2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2`. .. figure:: figures/Keane.png :alt: Keane function :align: center **Two-dimensional Keane function** *Global optimum*: :math:`f(x_i) = 0.673668` for :math:`\\mathbf{x} = [0.0, 1.39325]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(-1, 0.34), (-1, 0.34)] self.global_optimum = [0.0, 1.39325] self.fglob = 0.673668 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (sin(x1 - x2)**2.0*sin(x1 + x2)**2.0)/
sqrt(x1**2.0 + x2**2.0)
numpy.sqrt
import numpy as np import pytest import probnum.statespace as pnss from probnum import randvars from probnum.problems.zoo.linalg import random_spd_matrix from .test_sde import TestLTISDE @pytest.fixture def some_ordint(test_ndim): return test_ndim - 1 class TestIntegrator: """An integrator should be usable as is, but its tests are also useful for IBM, IOUP, etc.""" # Replacement for an __init__ in the pytest language. See: # https://stackoverflow.com/questions/21430900/py-test-skips-test-class-if-constructor-is-defined @pytest.fixture(autouse=True) def _setup(self, some_ordint): self.some_ordint = some_ordint self.integrator = pnss.Integrator(ordint=self.some_ordint, spatialdim=1) def test_proj2coord(self): base = np.zeros(self.some_ordint + 1) base[0] = 1 e_0_expected = np.kron(np.eye(1), base) e_0 = self.integrator.proj2coord(coord=0) np.testing.assert_allclose(e_0, e_0_expected) base = np.zeros(self.some_ordint + 1) base[-1] = 1 e_q_expected = np.kron(np.eye(1), base) e_q = self.integrator.proj2coord(coord=self.some_ordint)
np.testing.assert_allclose(e_q, e_q_expected)
numpy.testing.assert_allclose
#coding=utf-8 from __future__ import division from gaussian_filter import gaussianfilter from numpy import array, zeros, abs, sqrt, arctan2, arctan, pi, real from numpy.fft import fft2, ifft2 # 2.2 Function for Finding gradients # The Canny algorithm basically finds edges where the grayscale intensity of the image changes the most. # These areas are found by determining gradients of the image. # Gradients at each pixel in the smoothed image are determined by applying # what is known as the Sobel-operator. def findinggradient(im): # Given Sobel operator kernels op1 = array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) op2 = array([[-1, -2, -1], [ 0, 0, 0], [ 1, 2, 1]]) kernel1 = zeros(im.shape) kernel1[:op1.shape[0], :op1.shape[1]] = op1 kernel1 = fft2(kernel1) kernel2 =
zeros(im.shape)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse from matplotlib.animation import FuncAnimation, PillowWriter import matplotlib.patches as mpatches from matplotlib.legend_handler import HandlerPatch, HandlerCircleCollection import pandas as pd from mpl_toolkits.mplot3d import Axes3D import os from IPython.display import Image, display #from model_evaluation_3D import plot_covariance_ellipsoide from filterpy.kalman import KalmanFilter from filterpy.common import Q_discrete_white_noise from filterpy.common import Saver DT= 0.01 SIGMA=0.5 class Trajectoy3DGenerattion: def __init__(self,sigma=0.5, T=10.0, fs=100.0): global DT,SIGMA self.fs = fs # Sampling Frequency self.dt = 1.0/fs # Set Global Variables DT = self.dt SIGMA = sigma self.T = T # measuremnt time self.m = int(self.T/self.dt) # number of measurements self.sigma = sigma self.px= 0.0 # x Position Start self.py= 0.0 # y Position Start self.pz= 1.0 # z Position Start self.vx = 10.0 # m/s Velocity at the beginning self.vy = 0.0 # m/s Velocity self.vz = 0.0 # m/s Velocity c = 0.1 # Drag Resistance Coefficient self.Xr=[] self.Yr=[] self.Zr=[] self.Vx=[] self.Vy=[] self.Vz=[] self.ax =[] self.az =[] for i in range(int(self.m)): # Just to simulate a trajectory accx = -c*self.vx**2 self.vx += accx*self.dt self.px += self.vx*self.dt accz = -9.806 + c*self.vz**2 self.vz += accz*self.dt self.pz += self.vz*self.dt self.Xr.append(self.px) self.Yr.append(self.py) self.Zr.append(self.pz) self.Vx.append(self.vx) self.Vy.append(self.vy) self.Vz.append(self.vz) self.az.append(accz) self.ax.append(accx) aux = self.Xr self.Xr = self.Zr self.Zr = aux aux = self.Vx self.Vx = self.Vz self.Vz = aux aux = self.ax self.ax = self.az self.az = aux def get_velocities(self): return self.Vx, self.Vy, self.Vz def get_trajectory_position(self): return np.array(self.Xr), np.array(self.Yr), np.array(self.Zr) def get_acceleration(self): return self.ax, self.az def get_measurements(self): #adding Noise np.random.seed(25) self.Xm = self.Xr + self.sigma * (np.random.randn(self.m)) self.Ym = self.Yr + self.sigma * (np.random.randn(self.m)) self.Zm = self.Zr + self.sigma * (np.random.randn(self.m)) return self.Xm, self.Ym, self.Zm def plot_planets(x, y, z, ax): ax.scatter(x[0], y[0], z[0], c='b', s=850, facecolor='b') ax.scatter(x[-1], y[-1], z[-1], c='gray', s=350, facecolor='b') e_txt = ax.text(x[0]-3, y[0], z[0]-10.5,"Earth", weight='bold', c="b", fontsize=10) m_txt = ax.text(x[-1]-4, y[-1], z[-1]+4,"Moon", weight='bold', c="gray", fontsize=10) return e_txt, m_txt def plot_measurements_3D(traj, ax, title=""): x,y,z = traj.get_measurements() plot_planets(x, y, z, ax) ax.scatter(x, y, z, c='g', alpha=0.3, facecolor=None, label="Measurements") ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_title(title, fontsize=15) #ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) # Axis equal max_range = np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() / 3.0 mean_x = x.mean() mean_y = y.mean() mean_z = z.mean() ax.set_xlim(mean_x - max_range, mean_x + max_range) ax.set_ylim(mean_y - max_range, mean_y + max_range) ax.set_zlim(mean_z - max_range, mean_z + max_range) ax.legend(loc='best',prop={'size':15}) def plot_trajectory_3D(traj, ax, title=""): x,y,z = traj.get_trajectory_position() plot_planets(x, y, z, ax) ax.plot(x, y, z, c='r', lw=2, ls="--", label="Trajectory") ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_title(title, fontsize=15) #ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) # Axis equal max_range = np.array([x.max()-x.min(), y.max()-y.min(), z.max()-z.min()]).max() / 3.0 mean_x = x.mean() mean_y = y.mean() mean_z = z.mean() ax.set_xlim(mean_x - max_range, mean_x + max_range) ax.set_ylim(mean_y - max_range, mean_y + max_range) ax.set_zlim(mean_z - max_range, mean_z + max_range) ax.legend(loc='best',prop={'size':15}) def plot_prediction(preds,traj, ax): global SIGMA xt, yt, zt = preds[:,0], preds[:,1], preds[:,2] Xr, Yr, Zr = traj.get_trajectory_position() Xm, Ym, Zm = traj.get_measurements() print("Xm: ", Xm.shape) print("Ym: ", Ym.shape) print("Zm: ", Zm.shape) plot_planets(Xr, Yr, Zr, ax) ax.plot(xt,yt,zt, lw=2, label='Kalman Filter Estimate') ax.plot(Xr, Yr, Zr, lw=2, label='Real Trajectory Without Noise') ax.scatter(Xm, Ym, Zm, edgecolor='g', alpha=0.1, lw=2, label="Measurements") ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.legend(loc='best',prop={'size':15}) ax.set_title("Kalman Filter Estimate - Sigma={}".format(SIGMA), fontsize=15) # Axis equal max_range = np.array([Xm.max()-Xm.min(), Ym.max()-Ym.min(), Zm.max()-Zm.min()]).max() / 3.0 mean_x = Xm.mean() mean_y = Ym.mean() mean_z = Zm.mean() ax.set_xlim(mean_x - max_range, mean_x + max_range) ax.set_ylim(mean_y - max_range, mean_y + max_range) ax.set_zlim(mean_z - max_range, mean_z + max_range) def plot_x_z_2D(ax, traj, preds): global SIGMA xt, yt, zt = preds[:,0], preds[:,1], preds[:,2] Xr, Yr, Zr = traj.get_trajectory_position() Xm, Ym, Zm = traj.get_measurements() ax.plot(xt,zt, label='Kalman Filter Estimate') ax.scatter(Xm,Zm, label='Measurement', c='gray', s=15, alpha=0.5) ax.plot(Xr, Zr, label='Real') ax.set_title("Kalman Filter Estimate 2D - Sigma={}".format(SIGMA), fontsize=15) ax.legend(loc='best',prop={'size':15}) ax.set_xlabel('X ($m$)') ax.set_ylabel('Y ($m$)') #-------------------------- KALMAN FUNCTIONS ------------------------------------------------- def init_kalman(traj): global SIGMA, DT #Transition_Matrix matrix PHI = np.array([[1.0, 0.0, 0.0, DT, 0.0, 0.0, 1/2.0*DT**2, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, DT, 0.0, 0.0, 1/2.0*DT**2, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, DT, 0.0, 0.0, 1/2.0*DT**2], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, DT, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, DT, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, DT], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]) # Matrix Observation_Matrix #We are looking for the position of the spaceship x,y,z H = np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) x, y, z = traj.get_measurements() vx, vy, vz = traj.get_velocities() ax, az = traj.get_acceleration() #initial state init_states = np.array([x[0], y[0], z[0], vx[0], vy[0], vz[0], ax[0], 0., az[0]]) P = np.eye(9)*(0.5**2) rp = 1 # Noise of Position Measurement R = np.eye(3)* rp G = np.array([ [(DT**2)/2], [(DT**2)/2], [(DT**2)/2], [ DT ], [ DT ], [ DT ], [ 1. ], [ 1. ], [ 1. ]]) acc_noise = 0.1 # acceleration proccess noise Q= np.dot(G, G.T)* acc_noise**2 #Q = Q_discrete_white_noise(3, dt=DT, var=50, block_size=3) return init_states, PHI, H, Q, P, R def Ship_tracker(traj): global DT init_states, PHI, H, Q, P, R = init_kalman(traj) tracker= KalmanFilter(dim_x = 9, dim_z=3) tracker.x = init_states tracker.F = PHI tracker.H = H # Measurement function tracker.P = P # covariance matrix tracker.R = R # state uncertainty tracker.Q = Q # process uncertainty return tracker def run(tracker, traj): x, y, z = traj.get_measurements() zs = np.asarray([ x, y, z]).T preds, cov = [],[] for z in zs: tracker.predict() tracker.update(z=z) preds.append(tracker.x) cov.append(tracker.P) return np.array(preds), np.array(cov) def run_half_measures(tracker, traj): x, y, z = traj.get_measurements() zs = np.asarray([ x, y, z]).T preds, cov = [],[] for i,z in enumerate(zs): tracker.predict() if i <= len(zs)//2: tracker.update(z=z) preds.append(tracker.x) cov.append(tracker.P) return
np.array(preds)
numpy.array
#!/usr/bin/env python # coding: utf-8 # In[ ]: # Make sure the following dependencies are installed. #!pip install albumentations --upgrade #!pip install timm #!pip install iterative-stratification __author__ = 'MPWARE: https://www.kaggle.com/mpware' # In[ ]: # Configure HOME and DATA_HOME according to your setup HOME = "./" DATA_HOME = "./data/" TRAIN_HOME = DATA_HOME + "train/" TRAIN_IMAGES_HOME = TRAIN_HOME + "images/" IMAGE_SIZE = 512 # Image size for training RESIZED_IMAGE_SIZE = 384 # For random crop COMPOSE = None # For RGBY support # Set to True for interactive session PT_SCRIPT = True # True # In[ ]: import sys, os, random, math import numpy as np import h5py import cv2 import torch import torch.nn as nn import operator from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler import albumentations as A import torch.nn.functional as F import functools from collections import OrderedDict import torch.nn.functional as F from torch.optim import Adam, SGD import timm import iterstrat # In[ ]: LABEL = "Label" ID = "ID" EID = "EID" IMAGE_WIDTH = "ImageWidth" IMAGE_HEIGHT = "ImageHeight" META = "META" TOTAL = "Total" EXT = "ext" DEFAULT = "default" # 19 class labels. Some rare classes: Mitotic spindle (0.37%), Negative: (0.15%) class_mapping = { 0: 'Nucleoplasm', 1: 'Nuclear membrane', 2: 'Nucleoli', 3: 'Nucleoli fibrillar center', 4: 'Nuclear speckles', 5: 'Nuclear bodies', 6: 'Endoplasmic reticulum', 7: 'Golgi apparatus', 8: 'Intermediate filaments', 9: 'Actin filaments', 10: 'Microtubules', 11: 'Mitotic spindle', 12: 'Centrosome', 13: 'Plasma membrane', 14: 'Mitochondria', 15: 'Aggresome', 16: 'Cytosol', 17: 'Vesicles and punctate cytosolic patterns', 18: 'Negative', } class_mapping_inv = {v:k for k,v in class_mapping.items()} class_labels = [str(k) for k,v in class_mapping.items()] class_names = [str(v) for k,v in class_mapping.items()] LABELS_OHE_START = 3 # In[ ]: def seed_everything(s): random.seed(s) os.environ['PYTHONHASHSEED'] = str(s) np.random.seed(s) # Torch torch.manual_seed(s) torch.cuda.manual_seed(s) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if torch.cuda.is_available(): torch.cuda.manual_seed_all(s) # In[ ]: def l1_loss(A_tensors, B_tensors): return torch.abs(A_tensors - B_tensors) class ComboLoss(nn.Module): def __init__(self, alpha=1.0, beta=1.0, gamma=1.0, from_logits=True, **kwargs): super().__init__(**kwargs) self.alpha = alpha self.beta = beta self.gamma = gamma self.from_logits = from_logits print("alpha:", self.alpha, "beta:", self.beta, "gamma:", self.gamma) self.loss_classification = nn.BCEWithLogitsLoss(reduction='none') def forward(self, y_pred, y_true, features_single=None, y_pred_tiles=None, features_tiles=None, y_pred_tiled_flatten=None): loss_ = self.alpha * self.loss_classification(y_pred, y_true).mean() if features_tiles is not None and self.beta > 0: logits_reconstruction = y_pred_tiles loss_tiles_class_ = self.loss_classification(logits_reconstruction, y_true).mean() loss_ = loss_ + self.beta * loss_tiles_class_ if features_single is not None and features_tiles is not None and self.gamma > 0: loss_reconstruction_ = l1_loss(features_single, features_tiles).mean() loss_ = loss_ + self.gamma * loss_reconstruction_ return loss_ # In[ ]: # Main configuration class raw_conf: def __init__(self, factory): super().__init__() self.inference = False self.compose = COMPOSE self.normalize = False if factory == "HDF5" else True self.norm_value = None if factory == "HDF5" else 65535.0 # Dataset self.image_size = None if factory == "HDF5" else IMAGE_SIZE self.denormalize = 255 # Model self.mtype = "siamese" # "regular" self.backbone = 'seresnext50_32x4d' # 'gluon_seresnext101_32x4d' # 'cspresnext50' 'regnety_064' self.pretrained_weights = "imagenet" self.INPUT_RANGE = [0, 1] self.IMG_MEAN = [0.485, 0.456, 0.406, 0.485] if self.compose is None else [0.485, 0.456, 0.406] self.IMG_STD = [0.229, 0.224, 0.225, 0.229] if self.compose is None else [0.229, 0.224, 0.225] self.num_classes = 19 self.with_cam = True self.puzzle_pieces = 4 self.hpa_classifier_weights = None self.dropout = None # Model output self.post_activation = "sigmoid" self.output_key = "logits" if self.mtype == "regular" else "single_logits" # None self.output_key_extra = "features" if self.mtype == "regular" else "single_features" # None self.output_key_siamese = None if self.mtype == "regular" else "tiled_logits" self.output_key_extra_siamese = None if self.mtype == "regular" else "tiled_features" # Loss self.alpha = 1.0 # Single image classification loss self.beta = 0.0 if self.mtype == "regular" else 1.0 # Reconstructed image classification loss self.gamma = 0.0 if self.mtype == "regular" else 0.5 # 0.25 self.loss = ComboLoss(alpha=self.alpha, beta=self.beta, gamma=self.gamma) self.sampler = "prob" self.sampler_cap = "auto" # None self.fp16 = True self.finetune = False self.optimizer = "Adam" # "SGD" self.scheduler = None if self.finetune is True or self.optimizer != "Adam" else "ReduceLROnPlateau" # "CosineAnnealingWarmRestarts" self.scheduler_factor = 0.3 self.scheduler_patience = 8 self.lr = 0.0003 self.min_lr = 0.00005 self.beta1 = 0.9 self.train_verbose = True self.valid_verbose = True # Train parameters self.L_DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.map_location = self.L_DEVICE self.WORKERS = 0 if PT_SCRIPT is False else 8 self.BATCH_SIZE = 36 if self.mtype == "siamese" else 48 self.ITERATIONS_LOGS = 30 self.CYCLES = 1 self.EPOCHS_PER_CYCLE = 48 # 36 self.EPOCHS = self.CYCLES * self.EPOCHS_PER_CYCLE self.WARMUP = 0 self.FOLDS = 4 self.METRIC_ = "min" # "max" self.pin_memory = True # In[ ]: # Load CSV data, drop duplicates if any def prepare_data(filename, ext_name=None): train_pd = pd.read_csv(DATA_HOME + filename) train_pd[LABEL] = train_pd[LABEL].apply(literal_eval) train_pd[LABEL] = train_pd[LABEL].apply(lambda x: [int(l) for l in x]) if EXT not in train_pd.columns: train_pd.insert(2, EXT, DEFAULT) if ext_name is not None: train_pd[EXT] = ext_name train_pd = train_pd.drop_duplicates(subset=[ID]).reset_index(drop=True) assert(np.argwhere(train_pd.columns.values == EXT)[0][0] == 2) return train_pd # In[ ]: # Use PIL to support 16 bits, normalize=True to return [0-1.0] float32 image def read_image(filename, compose=None, normalize=False, norm_value=65535.0, images_root=TRAIN_IMAGES_HOME): filename = images_root + filename filename = filename + "_red.png" if "_red.png" not in filename else filename mt_, pi_, nu_, er_ = filename, filename.replace('_red', '_green'), filename.replace('_red', '_blue'), filename.replace('_red', '_yellow') if compose is None: mt = np.asarray(Image.open(mt_)).astype(np.uint16) pi = np.asarray(Image.open(pi_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) er = np.asarray(Image.open(er_)).astype(np.uint16) ret = np.dstack((mt, pi, nu, er)) else: if compose == "RGB": mt = np.asarray(Image.open(mt_)).astype(np.uint16) pi = np.asarray(Image.open(pi_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) ret = np.dstack((mt, pi, nu)) elif compose == "RYB": mt = np.asarray(Image.open(mt_)).astype(np.uint16) er = np.asarray(Image.open(er_)).astype(np.uint16) nu = np.asarray(Image.open(nu_)).astype(np.uint16) ret = np.dstack((mt, er, nu)) elif compose == "RYGYB": mt = np.asarray(Image.open(mt_)) pi = np.asarray(Image.open(pi_)) nu = np.asarray(Image.open(nu_)) er = np.asarray(Image.open(er_)) ret =
np.dstack(((mt + er)/2.0, (pi + er/2)/1.5, nu))
numpy.dstack
#!/usr/bin/env python3 # Copyright: <NAME>, 2021 """ Author: <NAME> Date: 2021Dec17 Brief: Functions to generate SLR pulses """ import os import json import numpy as np import matplotlib.pyplot as plt import sigpy import sigpy.mri.rf as rf # SLR pulse parameters N = 256 # Number of time points TBW = 9.62 # time-bandwidth product PULSE_LEN = 1 #ms PULSE_BW = TBW/PULSE_LEN #kHz PBR = 0.01 # pass-band ripple SBR = 0.01 # stop-band ripple PULSE_TYPE = "ex" # inv, se, ex, sat, st (small-tip) FILTER_TYPE = "min" # 'pm', 'ls', 'ms', 'min', 'max' # Root-flipped pulse parameters ROOT_FLIP = False if PULSE_TYPE == "ex" or PULSE_TYPE == "sat": ROOT_FLIP_ANGLE = 90 elif PULSE_TYPE == "inv" or PULSE_TYPE == "se": ROOT_FLIP_ANGLE = 180 else: ROOT_FLIP_ANGLE = 180 # Multiband pulse parameters MULTI_BAND = False N_BANDS = 2 PHS_TYPE = 'quad_mod' # for n_bands >= 3 only: phs_mod, amp_mod, # for all n_bands: quad_mod, or 'None' BAND_SEP = 6*TBW # separated by BAND_SEP slice widths # Saving SAVE_PULSE = False BASE_PATH = "C:/Users/RudrakshaMajumdar/Documents/GitHub/rf-bloch-simulator/saved_rf_pulses" NAME_PULSE = "SLR_test" def slr_rootflip(flip=ROOT_FLIP_ANGLE): """ flip: Target flip angle in degrees """ flip_rad = np.deg2rad(flip) # code extracted from dzrf(): [bsf, d1, d2] = rf.slr.calc_ripples(PULSE_TYPE, PBR, SBR) b = rf.slr.dzmp(N, TBW, d1, d2) b = b[::-1] b = bsf*b # root flipping the pulse, using the b polynomial [am_rootflip, bRootFlipped] = rf.slr.root_flip(b, d1, flip_rad, TBW) return am_rootflip, bRootFlipped def slr_pulse( num=N, time_bw=TBW, ptype=PULSE_TYPE, ftype=FILTER_TYPE, d_1=PBR, d_2=SBR, root_flip=ROOT_FLIP, multi_band = MULTI_BAND, n_bands = N_BANDS, phs_type = PHS_TYPE, band_sep = BAND_SEP ): """Use Shinnar-Le Roux algorithm to generate pulse""" if root_flip is False: complex_pulse = rf.dzrf(n=num, tb=time_bw, ptype=ptype, ftype=ftype, d1=d_1, d2=d_2) amp_arr = complex_pulse else: amp_arr, b_rootflip = slr_rootflip(ROOT_FLIP_ANGLE) phs_arr = np.zeros(num) for idx in range(num): if amp_arr[idx] < 0: phs_arr[idx] = 180 else: phs_arr[idx] = 0 if multi_band is True: amp_arr = rf.multiband.mb_rf(amp_arr, n_bands, band_sep, phs_type) # prepare pulse for instrument, which takes absolute only # cast negative values to positive amp_arr_abs = np.abs(amp_arr) # shift amplitude such that the lowest value is 0 amp_arr_abs = amp_arr_abs - amp_arr_abs.min() # fold back phase when it exceeds 360 phs_arr = phs_arr % 360 freq_arr = (np.diff(phs_arr)/num)/360 return amp_arr, freq_arr, phs_arr, amp_arr_abs def ck_to_mag(alpha, beta, se=False): """Convert Shinnar-Le Roux parameters to magnetization""" if se is False: m_z = 1-2*np.abs(beta)**2 m_xy = 2 * np.conj(alpha) * beta else: m_z = 1-2*np.abs(beta)**2 m_xy = 1j * (np.conj(alpha) **2 + beta**2) return m_z, m_xy if __name__ == "__main__": am, fm, pm, am_abs = slr_pulse() # simulations if MULTI_BAND is True: space = np.linspace(-20*TBW, 20*TBW, 2000) else: space = np.linspace(-2*TBW, 2*TBW, 200) alpha, beta = sigpy.mri.rf.sim.abrm(am, space, balanced=False) if PULSE_TYPE == "se": m_z, m_xy = ck_to_mag(alpha, beta, se=True) else: m_z, m_xy = ck_to_mag(alpha, beta, se=False) fig = plt.figure() time_ax =
np.linspace(0, PULSE_LEN, N)
numpy.linspace
# Functions for step algorithms: Newton-Raphson, Rational Function Optimization, # <NAME>. import numpy as np #from .optParams import Params # this will not cause changes in trust to persist from . import optParams as op from .displace import displace from .intcosMisc import qShowForces from .addIntcos import linearBendCheck from math import sqrt, fabs from .printTools import printArray, printMat, print_opt from .misc import symmetrizeXYZ, isDqSymmetric from .linearAlgebra import absMax, symmMatEig, asymmMatEig, symmMatInv, norm from . import v3d from .history import History from . import optExceptions # This function and its components: # 1. Computes Dq, the step in internal coordinates. # 2. Calls displace and attempts to take the step. # 3. Updates history with results. def Dq(Molsys, E, qForces, H, stepType=None, energy_function=None): if len(H) == 0 or len(qForces) == 0: return np.zeros((0), float) if not stepType: stepType = op.Params.step_type if stepType == 'NR': return Dq_NR(Molsys, E, qForces, H) elif stepType == 'RFO': return Dq_RFO(Molsys, E, qForces, H) elif stepType == 'SD': return Dq_SD(Molsys, E, qForces) elif stepType == 'BACKSTEP': return Dq_BACKSTEP(Molsys) elif stepType == 'P_RFO': return Dq_P_RFO(Molsys, E, qForces, H) elif stepType == 'LINESEARCH': return Dq_LINESEARCH(Molsys, E, qForces, H, energy_function) else: raise optExceptions.OPT_FAIL('Dq: step type not yet implemented') # Apply crude maximum step limit by scaling. def applyIntrafragStepScaling(dq): trust = op.Params.intrafrag_trust if sqrt(np.dot(dq, dq)) > trust: scale = trust / sqrt(np.dot(dq, dq)) print_opt("\tStep length exceeds trust radius of %10.5f.\n" % trust) print_opt("\tScaling displacements by %10.5f\n" % scale) dq *= scale return # Compute energy change along one dimension def DE_projected(model, step, grad, hess): if model == 'NR': return (step * grad + 0.5 * step * step * hess) elif model == 'RFO': return (step * grad + 0.5 * step * step * hess) / (1 + step * step) else: raise optExceptions.OPT_FAIL("DE_projected does not recognize model.") # geometry and E are just for passing # at present we are not storing the ACTUAL dq but the attempted def Dq_NR(Molsys, E, fq, H): print_opt("\tTaking NR optimization step.\n") # Hinv fq = dq Hinv = symmMatInv(H, redundant=True) dq = np.dot(Hinv, fq) # applies maximum internal coordinate change applyIntrafragStepScaling(dq) # get norm |q| and unit vector in the step direction nr_dqnorm = sqrt(np.dot(dq, dq)) nr_u = dq.copy() / nr_dqnorm print_opt("\tNorm of target step-size %15.10f\n" % nr_dqnorm) # get gradient and hessian in step direction nr_g = -1 * np.dot(fq, nr_u) # gradient, not force nr_h = np.dot(nr_u, np.dot(H, nr_u)) if op.Params.print_lvl > 1: print_opt('\t|NR target step|: %15.10f\n' % nr_dqnorm) print_opt('\tNR_gradient : %15.10f\n' % nr_g) print_opt('\tNR_hessian : %15.10f\n' % nr_h) DEprojected = DE_projected('NR', nr_dqnorm, nr_g, nr_h) print_opt( "\tProjected energy change by quadratic approximation: %20.10lf\n" % DEprojected) # Scale fq into aJ for printing fq_aJ = qShowForces(Molsys.intcos, fq) displace(Molsys._fragments[0].intcos, Molsys._fragments[0].geom, dq, fq_aJ) dq_actual = sqrt(np.dot(dq, dq)) print_opt("\tNorm of achieved step-size %15.10f\n" % dq_actual) # Symmetrize the geometry for next step # symmetrize_geom() # save values in step data History.appendRecord(DEprojected, dq, nr_u, nr_g, nr_h) # Can check full geometry, but returned indices will correspond then to that. linearList = linearBendCheck(Molsys.intcos, Molsys.geom, dq) if linearList: raise optExceptions.ALG_FAIL("New linear angles", newLinearBends=linearList) return dq # Take Rational Function Optimization step def Dq_RFO(Molsys, E, fq, H): print_opt("\tTaking RFO optimization step.\n") dim = len(fq) dq = np.zeros((dim), float) # To be determined and returned. trust = op.Params.intrafrag_trust # maximum step size max_projected_rfo_iter = 25 # max. # of iterations to try to converge RS-RFO rfo_follow_root = op.Params.rfo_follow_root # whether to follow root rfo_root = op.Params.rfo_root # if following, which root to follow # Determine the eigenvectors/eigenvalues of H. Hevals, Hevects = symmMatEig(H) # Build the original, unscaled RFO matrix. RFOmat = np.zeros((dim + 1, dim + 1), float) for i in range(dim): for j in range(dim): RFOmat[i, j] = H[i, j] RFOmat[i, dim] = RFOmat[dim, i] = -fq[i] if op.Params.print_lvl >= 4: print_opt("Original, unscaled RFO matrix:\n") printMat(RFOmat) symm_rfo_step = False SRFOmat = np.zeros((dim + 1, dim + 1), float) # For scaled RFO matrix. converged = False dqtdq = 10 # square of norm of step alpha = 1.0 # scaling factor for RS-RFO, scaling matrix is sI last_iter_evect = np.zeros((dim), float) if rfo_follow_root and len(History.steps) > 1: last_iter_evect[:] = History.steps[ -2].followedUnitVector # RFO vector from previous geometry step # Iterative sequence to find alpha alphaIter = -1 while not converged and alphaIter < max_projected_rfo_iter: alphaIter += 1 # If we exhaust iterations without convergence, then bail on the # restricted-step algorithm. Set alpha=1 and apply crude scaling instead. if alphaIter == max_projected_rfo_iter: print_opt("\tFailed to converge alpha. Doing simple step-scaling instead.\n") alpha = 1.0 elif op.Params.simple_step_scaling: # Simple_step_scaling is on, not an iterative method. # Proceed through loop with alpha == 1, and then continue alphaIter = max_projected_rfo_iter # Scale the RFO matrix. for i in range(dim + 1): for j in range(dim): SRFOmat[j, i] = RFOmat[j, i] / alpha SRFOmat[dim, i] = RFOmat[dim, i] if op.Params.print_lvl >= 4: print_opt("\nScaled RFO matrix.\n") printMat(SRFOmat) # Find the eigenvectors and eigenvalues of RFO matrix. SRFOevals, SRFOevects = asymmMatEig(SRFOmat) if op.Params.print_lvl >= 4: print_opt("Eigenvectors of scaled RFO matrix.\n") printMat(SRFOevects) if op.Params.print_lvl >= 2: print_opt("Eigenvalues of scaled RFO matrix.\n") printArray(SRFOevals) print_opt("First eigenvector (unnormalized) of scaled RFO matrix.\n") printArray(SRFOevects[0]) # Do intermediate normalization. RFO paper says to scale eigenvector # to make the last element equal to 1. Bogus evect leads can be avoided # using root following. for i in range(dim + 1): # How big is dividing going to make the largest element? # Same check occurs below for acceptability. if fabs(SRFOevects[i][dim]) > 1.0e-10: tval = absMax(SRFOevects[i] / SRFOevects[i][dim]) if tval < op.Params.rfo_normalization_max: for j in range(dim + 1): SRFOevects[i, j] /= SRFOevects[i, dim] if op.Params.print_lvl >= 4: print_opt("All scaled RFO eigenvectors (rows).\n") printMat(SRFOevects) # Use input rfo_root # If root-following is turned off, then take the eigenvector with the rfo_root'th lowest eigvenvalue. # If its the first iteration, then do the same. In subsequent steps, overlaps will be checked. if not rfo_follow_root or len(History.steps) < 2: # Determine root only once at beginning ? if alphaIter == 0: print_opt("\tChecking RFO solution %d.\n" % (rfo_root + 1)) for i in range(rfo_root, dim + 1): # Check symmetry of root. dq[:] = SRFOevects[i, 0:dim] if not op.Params.accept_symmetry_breaking: symm_rfo_step = isDqSymmetric(Molsys.intcos, Molsys.geom, dq) if not symm_rfo_step: # Root is assymmetric so reject it. print_opt("\tRejecting RFO root %d because it breaks the molecular point group.\n"\ % (rfo_root+1)) continue # Check normalizability of root. if fabs(SRFOevects[i][dim]) < 1.0e-10: # don't even try to divide print_opt( "\tRejecting RFO root %d because normalization gives large value.\n" % (rfo_root + 1)) continue tval = absMax(SRFOevects[i] / SRFOevects[i][dim]) if tval > op.Params.rfo_normalization_max: # matching test in code above print_opt( "\tRejecting RFO root %d because normalization gives large value.\n" % (rfo_root + 1)) continue rfo_root = i # This root is acceptable. break else: rfo_root = op.Params.rfo_root # no good one found, use the default # Save initial root. 'Follow' during the RS-RFO iterations. rfo_follow_root = True else: # Do root following. # Find maximum overlap. Dot only within H block. dots = np.array( [v3d.dot(SRFOevects[i], last_iter_evect, dim) for i in range(dim)], float) bestfit = np.argmax(dots) if bestfit != rfo_root: print_opt("Root-following has changed rfo_root value to %d." % (bestfit + 1)) rfo_root = bestfit if alphaIter == 0: print_opt("\tUsing RFO solution %d.\n" % (rfo_root + 1)) last_iter_evect[:] = SRFOevects[rfo_root][0:dim] # omit last column on right # Print only the lowest eigenvalues/eigenvectors if op.Params.print_lvl >= 2: print_opt("\trfo_root is %d\n" % (rfo_root + 1)) for i in range(dim + 1): if SRFOevals[i] < -1e-6 or i < rfo_root: print_opt("Scaled RFO eigenvalue %d: %15.10lf (or 2*%-15.10lf)\n" % (i + 1, SRFOevals[i], SRFOevals[i] / 2)) print_opt("eigenvector:\n") printArray(SRFOevects[i]) dq[:] = SRFOevects[rfo_root][0:dim] # omit last column # Project out redundancies in steps. # Added this projection in 2014; but doesn't seem to help, as f,H are already projected. # project_dq(dq); # zero steps for frozen coordinates? dqtdq = np.dot(dq, dq) # If alpha explodes, give up on iterative scheme if fabs(alpha) > op.Params.rsrfo_alpha_max: converged = False alphaIter = max_projected_rfo_iter - 1 elif sqrt(dqtdq) < (trust + 1e-5): converged = True if alphaIter == 0 and not op.Params.simple_step_scaling: print_opt("\n\tDetermining step-restricting scale parameter for RS-RFO.\n") if alphaIter == 0: print_opt("\tMaximum step size allowed %10.5lf\n" % trust) print_opt("\t Iter |step| alpha rfo_root \n") print_opt("\t------------------------------------------------\n") print_opt("\t%5d%12.5lf%14.5lf%12d\n" % (alphaIter + 1, sqrt(dqtdq), alpha, rfo_root + 1)) elif alphaIter > 0 and not op.Params.simple_step_scaling: print_opt("\t%5d%12.5lf%14.5lf%12d\n" % (alphaIter + 1, sqrt(dqtdq), alpha, rfo_root + 1)) # Find the analytical derivative, d(norm step squared) / d(alpha) Lambda = -1 * v3d.dot(fq, dq, dim) if op.Params.print_lvl >= 2: print_opt("dq:\n") printArray(dq, dim) print_opt("fq:\n") printArray(fq, dim) print_opt("\tLambda calculated by (dq^t).(-f) = %20.10lf\n" % Lambda) # Calculate derivative of step size wrt alpha. # Equation 20, Besalu and Bofill, Theor. Chem. Acc., 1999, 100:265-274 tval = 0 for i in range(dim): tval += (pow(v3d.dot(Hevects[i], fq, dim), 2)) / (pow( (Hevals[i] - Lambda * alpha), 3)) analyticDerivative = 2 * Lambda / (1 + alpha * dqtdq) * tval if op.Params.print_lvl >= 2: print_opt("\tAnalytic derivative d(norm)/d(alpha) = %20.10lf\n" % analyticDerivative) # Calculate new scaling alpha value. # Equation 20, Besalu and Bofill, Theor. Chem. Acc., 1999, 100:265-274 alpha += 2 * (trust * sqrt(dqtdq) - dqtdq) / analyticDerivative # end alpha RS-RFO iterations print_opt("\t------------------------------------------------\n") # Crude/old way to limit step size if RS-RFO iterations if not converged or op.Params.simple_step_scaling: applyIntrafragStepScaling(dq) if op.Params.print_lvl >= 3: print_opt("\tFinal scaled step dq:\n") printArray(dq) # Get norm |dq|, unit vector, gradient and hessian in step direction # TODO double check Hevects[i] here instead of H ? as for NR rfo_dqnorm = sqrt(np.dot(dq, dq)) print_opt("\tNorm of target step-size %15.10f\n" % rfo_dqnorm) rfo_u = dq.copy() / rfo_dqnorm rfo_g = -1 * np.dot(fq, rfo_u) rfo_h = np.dot(rfo_u, np.dot(H, rfo_u)) DEprojected = DE_projected('RFO', rfo_dqnorm, rfo_g, rfo_h) if op.Params.print_lvl > 1: print_opt('\t|RFO target step| : %15.10f\n' % rfo_dqnorm) print_opt('\tRFO gradient : %15.10f\n' % rfo_g) print_opt('\tRFO hessian : %15.10f\n' % rfo_h) print_opt("\tProjected energy change by RFO approximation: %20.10lf\n" % DEprojected) # Scale fq into aJ for printing fq_aJ = qShowForces(Molsys.intcos, fq) # this won't work for multiple fragments yet until dq and fq get cut up. for F in Molsys._fragments: displace(F.intcos, F.geom, dq, fq_aJ) # For now, saving RFO unit vector and using it in projection to match C++ code, # could use actual Dq instead. dqnorm_actual = sqrt(np.dot(dq, dq)) print_opt("\tNorm of achieved step-size %15.10f\n" % dqnorm_actual) # To test step sizes #x_before = original geometry #x_after = new geometry #masses #change = 0.0; #for i in range(Natom): # for xyz in range(3): # change += (x_before[3*i+xyz] - x_after[3*i+xyz]) * (x_before[3*i+xyz] - x_after[3*i+xyz]) # * masses[i] #change = sqrt(change); #print_opt("Step-size in mass-weighted cartesian coordinates [bohr (amu)^1/2] : %20.10lf\n" % change) #print_opt("\tSymmetrizing new geometry\n") #geom = symmetrizeXYZ(geom) History.appendRecord(DEprojected, dq, rfo_u, rfo_g, rfo_h) linearList = linearBendCheck(Molsys.intcos, Molsys.geom, dq) if linearList: raise optExceptions.ALG_FAIL("New linear angles", newLinearBends=linearList) # Before quitting, make sure step is reasonable. It should only be # screwball if we are using the "First Guess" after the back-transformation failed. if sqrt(np.dot(dq, dq)) > 10 * trust: raise optExceptions.ALG_FAIL("opt.py: Step is far too large.") return dq def Dq_P_RFO(Molsys, E, fq, H): Hdim = len(fq) # size of Hessian trust = op.Params.intrafrag_trust # maximum step size rfo_follow_root = op.Params.rfo_follow_root # whether to follow root print_lvl = op.Params.print_lvl if print_lvl > 2: print_opt("Hessian matrix\n") printMat(H) # Diagonalize H (technically only have to semi-diagonalize) hEigValues, hEigVectors = symmMatEig(H) if print_lvl > 2: print_opt("Eigenvalues of Hessian\n") printArray(hEigValues) print_opt("Eigenvectors of Hessian (rows)\n") printMat(hEigVectors) # Construct diagonalized Hessian with evals on diagonal HDiag = np.zeros((Hdim, Hdim), float) for i in range(Hdim): HDiag[i, i] = hEigValues[i] if print_lvl > 2: print_opt("H diagonal\n") printMat(HDiag) print_opt( "\tFor P-RFO, assuming rfo_root=1, maximizing along lowest eigenvalue of Hessian.\n" ) print_opt("\tLarger values of rfo_root are not yet supported.\n") rfo_root = 0 """ TODO: use rfo_root to decide which eigenvectors are moved into the max/mu space. if not rfo_follow_root or len(History.steps) < 2: rfo_root = op.Params.rfo_root print_opt("\tMaximizing along %d lowest eigenvalue of Hessian.\n" % (rfo_root+1) ) else: last_iter_evect = history[-1].Dq dots = np.array([v3d.dot(hEigVectors[i],last_iter_evect,Hdim) for i in range(Hdim)], float) rfo_root = np.argmax(dots) print_opt("\tOverlaps with previous step checked for root-following.\n") print_opt("\tMaximizing along %d lowest eigenvalue of Hessian.\n" % (rfo_root+1) ) """ # number of degrees along which to maximize; assume 1 for now mu = 1 print_opt("\tInternal forces in au:\n") printArray(fq) fqTransformed = np.dot(hEigVectors, fq) #gradient transformation print_opt("\tInternal forces in au, in Hevect basis:\n") printArray(fqTransformed) # Build RFO max maximizeRFO = np.zeros((mu + 1, mu + 1), float) for i in range(mu): maximizeRFO[i, i] = hEigValues[i] maximizeRFO[i, -1] = -fqTransformed[i] maximizeRFO[-1, i] = -fqTransformed[i] if print_lvl > 2: print_opt("RFO max\n") printMat(maximizeRFO) # Build RFO min minimizeRFO = np.zeros((Hdim - mu + 1, Hdim - mu + 1), float) for i in range(0, Hdim - mu): minimizeRFO[i, i] = HDiag[i + mu, i + mu] minimizeRFO[i, -1] = -fqTransformed[i + mu] minimizeRFO[-1, i] = -fqTransformed[i + mu] if print_lvl > 2: print_opt("RFO min\n") printMat(minimizeRFO) RFOMaxEValues, RFOMaxEVectors = symmMatEig(maximizeRFO) RFOMinEValues, RFOMinEVectors = symmMatEig(minimizeRFO) print_opt("RFO min eigenvalues:\n") printArray(RFOMinEValues) print_opt("RFO max eigenvalues:\n") printArray(RFOMaxEValues) if print_lvl > 2: print_opt("RFO min eigenvectors (rows) before normalization:\n") printMat(RFOMinEVectors) print_opt("RFO max eigenvectors (rows) before normalization:\n") printMat(RFOMaxEVectors) # Normalize max and min eigenvectors for i in range(mu + 1): if abs(RFOMaxEVectors[i, mu]) > 1.0e-10: tval = abs(absMax(RFOMaxEVectors[i, 0:mu]) / RFOMaxEVectors[i, mu]) if fabs(tval) < op.Params.rfo_normalization_max: RFOMaxEVectors[i] /= RFOMaxEVectors[i, mu] if print_lvl > 2: print_opt("RFO max eigenvectors (rows):\n") printMat(RFOMaxEVectors) for i in range(Hdim - mu + 1): if abs(RFOMinEVectors[i][Hdim - mu]) > 1.0e-10: tval = abs( absMax(RFOMinEVectors[i, 0:Hdim - mu]) / RFOMinEVectors[i, Hdim - mu]) if fabs(tval) < op.Params.rfo_normalization_max: RFOMinEVectors[i] /= RFOMinEVectors[i, Hdim - mu] if print_lvl > 2: print_opt("RFO min eigenvectors (rows):\n") printMat(RFOMinEVectors) VectorP = RFOMaxEVectors[mu, 0:mu] VectorN = RFOMinEVectors[rfo_root, 0:Hdim - mu] print_opt("Vector P\n") print_opt(str(VectorP) + '\n') print_opt("Vector N\n") print_opt(str(VectorN) + '\n') # Combines the eignvectors from RFO max and min PRFOEVector = np.zeros(Hdim, float) PRFOEVector[0:len(VectorP)] = VectorP PRFOEVector[len(VectorP):] = VectorN PRFOStep = np.dot(hEigVectors.transpose(), PRFOEVector) if print_lvl > 1: print_opt("RFO step in Hessian Eigenvector Basis\n") printArray(PRFOEVector) print_opt("RFO step in original Basis\n") printArray(PRFOStep) dq = PRFOStep #if not converged or op.Params.simple_step_scaling: applyIntrafragStepScaling(dq) # Get norm |dq|, unit vector, gradient and hessian in step direction # TODO double check Hevects[i] here instead of H ? as for NR rfo_dqnorm = sqrt(np.dot(dq, dq)) print_opt("\tNorm of target step-size %15.10f\n" % rfo_dqnorm) rfo_u = dq.copy() / rfo_dqnorm rfo_g = -1 * np.dot(fq, rfo_u) rfo_h = np.dot(rfo_u, np.dot(H, rfo_u)) DEprojected = DE_projected('RFO', rfo_dqnorm, rfo_g, rfo_h) if op.Params.print_lvl > 1: print_opt('\t|RFO target step| : %15.10f\n' % rfo_dqnorm) print_opt('\tRFO gradient : %15.10f\n' % rfo_g) print_opt('\tRFO hessian : %15.10f\n' % rfo_h) print_opt("\tProjected Delta(E) : %15.10f\n\n" % DEprojected) # Scale fq into aJ for printing fq_aJ = qShowForces(Molsys.intcos, fq) # this won't work for multiple fragments yet until dq and fq get cut up. for F in Molsys._fragments: displace(F.intcos, F.geom, dq, fq_aJ) # For now, saving RFO unit vector and using it in projection to match C++ code, # could use actual Dq instead. dqnorm_actual = sqrt(np.dot(dq, dq)) print_opt("\tNorm of achieved step-size %15.10f\n" % dqnorm_actual) History.appendRecord(DEprojected, dq, rfo_u, rfo_g, rfo_h) linearList = linearBendCheck(Molsys.intcos, Molsys.geom, dq) if linearList: raise optExceptions.ALG_FAIL("New linear angles", newLinearBends=linearList) # Before quitting, make sure step is reasonable. It should only be # screwball if we are using the "First Guess" after the back-transformation failed. if sqrt(
np.dot(dq, dq)
numpy.dot
import numpy as np import tensorflow as tf import cv2 import glob import tensorflow.contrib.slim as slim from collections import OrderedDict import os def get_variables_to_restore(scope_to_include, suffix_to_exclude): """to parse which var to include and which var to exclude""" vars_to_include = [] for scope in scope_to_include: vars_to_include += slim.get_variables(scope) vars_to_exclude = set() for scope in suffix_to_exclude: vars_to_exclude |= set( slim.get_variables_by_suffix(scope)) return [v for v in vars_to_include if v not in vars_to_exclude] def remove_first_scope(name): return '/'.join(name.split('/')[1:]) def collect_vars(scope, start=None, end=None, prepend_scope=None): vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope) var_dict = OrderedDict() if isinstance(start, str): for i, var in enumerate(vars): var_name = remove_first_scope(var.op.name) if var_name.startswith(start): start = i break if isinstance(end, str): for i, var in enumerate(vars): var_name = remove_first_scope(var.op.name) if var_name.startswith(end): end = i break for var in vars[start:end]: var_name = remove_first_scope(var.op.name) if prepend_scope is not None: var_name = os.path.join(prepend_scope, var_name) var_dict[var_name] = var return var_dict # 32 means for data augmentation def data_augmentation_together(batch, bg, img_size): batch_size = batch.shape[0] # left-right flip if np.random.rand(1) > 0.5: batch = batch[:, :, ::-1, :] bg = bg[:, :, ::-1, :] # up-down flip if np.random.rand(1) > 0.5: batch = batch[:, ::-1, :, :] bg = bg[:, ::-1, :, :] # rotate 90 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=1) # 90 bg[id, :, :, :] = np.rot90(bg[id, :, :, :], k=1) # rotate 180 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=2) # 180 bg[id, :, :, :] = np.rot90(bg[id, :, :, :], k=2) # 180 # rotate 270 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=-1) # 270 bg[id, :, :, :] = np.rot90(bg[id, :, :, :], k=-1) # 270 # random crop and resize 0.5~1.0 if np.random.rand(1) > 0.5: IMG_SIZE = batch.shape[1] scale = np.random.rand(1) * 0.5 + 0.5 crop_height = int(scale * img_size) crop_width = int(scale * img_size) x_st = int((1 - scale) * np.random.rand(1) * (img_size - 1)) y_st = int((1 - scale) * np.random.rand(1) * (img_size - 1)) x_nd = x_st + crop_width y_nd = y_st + crop_height for id in range(batch_size): cropped_img = batch[id, y_st:y_nd, x_st:x_nd, :] cropped_bg = bg[id, y_st:y_nd, x_st:x_nd, :] batch[id, :, :, :] = cv2.resize(cropped_img, dsize=(img_size, img_size)) bg[id, :, :, :] = cv2.resize(cropped_bg, dsize=(img_size, img_size)) return batch, bg def data_augmentation(batch, img_size): batch_size = batch.shape[0] # left-right flip if np.random.rand(1) > 0.5: batch = batch[:, :, ::-1, :] # up-down flip if np.random.rand(1) > 0.5: batch = batch[:, ::-1, :, :] # rotate 90 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=1) # 90 # rotate 180 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=2) # 180 # rotate 270 if np.random.rand(1) > 0.5: for id in range(batch_size): batch[id, :, :, :] = np.rot90(batch[id, :, :, :], k=-1) # 270 # random crop and resize 0.5~1.0 if np.random.rand(1) > 0.5: IMG_SIZE = batch.shape[1] scale = np.random.rand(1) * 0.5 + 0.5 crop_height = int(scale * img_size) crop_width = int(scale * img_size) x_st = int((1 - scale) * np.random.rand(1) * (img_size - 1)) y_st = int((1 - scale) *
np.random.rand(1)
numpy.random.rand
from matplotlib import pyplot as plt import improc as imp import numpy as np import os import scipy.io as scio patchSize = [480, 480, 4] patchSize = [240, 240, 4] # patchSize = [32, 32, 4] numPatches = 5000 numSelPtcs = 500 sortway = 'ascent' sortway = 'descent' sortway = None seed = 2019 seed = None startid = 0 noise = 'wgn' # noise = None SNR = 100 tranformway = 'orig' tranformway = 'flipud' tranformway = 'fliplr' tranformway = 'transpose' tranformway = 'rot90' tranformway = 'flipud(fliplr)' tranformway = 'fliplr(rot90)' # tranformway = 'fliplr(transpose)' WriteImg = False # -------------------------------------- datasetname = 'RSSRAI2019TRAIN' folderIN = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/train/train/' folderOUT = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/train/samples3/' num = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20] # datasetname = 'RSSRAI2019VALID' # folderIN = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/valid/valid/' # folderOUT = '/mnt/d/DataSets/oi/rsi/RSSRAI2019/new/valid/samples3/' # num = [10, 15] folderA = 'img_2017' folderB = 'img_2018' folderC = 'mask' folderAin = os.path.join(folderIN, folderA) folderBin = os.path.join(folderIN, folderB) folderCin = os.path.join(folderIN, folderC) folderAout = os.path.join(folderOUT, folderA) folderBout = os.path.join(folderOUT, folderB) folderCout = os.path.join(folderOUT, folderC) os.makedirs(folderAout, exist_ok=True) os.makedirs(folderBout, exist_ok=True) os.makedirs(folderCout, exist_ok=True) imageNameA = 'image_2017_960_960_' imageNameB = 'image_2018_960_960_' imageNameC = 'mask_2017_2018_960_960_' imgspathA = [] imgspathB = [] imgspathC = [] for n in num: imgspathA.append(folderAin + '/' + imageNameA + str(n) + '.tif') imgspathB.append(folderBin + '/' + imageNameB + str(n) + '.tif') imgspathC.append(folderCin + '/' + imageNameC + str(n) + '.tif') print(imgspathA) print(imgspathB) print(imgspathC) A = [] B = [] C = [] cc = np.zeros((960, 960, 4), dtype='uint8') for n in range(len(num)): A.append(imp.imreadadv(imgspathA[n])) B.append(imp.imreadadv(imgspathB[n])) c = imp.imreadadv(imgspathC[n]) # print(c.shape) cc[:, :, 0] = c cc[:, :, 1] = c cc[:, :, 2] = c cc[:, :, 3] = c # print(cc.min(), cc.max()) C.append(cc.copy()) # N-H-W-C --> H-W-C-N A = np.transpose(np.array(A), (1, 2, 3, 0)) B = np.transpose(np.array(B), (1, 2, 3, 0)) C = np.transpose(np.array(C), (1, 2, 3, 0)) plt.figure() plt.subplot(231) plt.imshow(A[:, :, 0:3, 0]) plt.subplot(232) plt.imshow(B[:, :, 0:3, 0]) plt.subplot(233) plt.imshow(C[:, :, 0:3, 0]) print("===tranformway:", tranformway) if tranformway is 'flipud': A = np.flipud(A) B = np.flipud(B) C = np.flipud(C) if tranformway is 'fliplr': A = np.fliplr(A) B = np.fliplr(B) C = np.fliplr(C) if tranformway is 'transpose': A = np.transpose(A, (1, 0, 2, 3)) B = np.transpose(B, (1, 0, 2, 3)) C = np.transpose(C, (1, 0, 2, 3)) if tranformway is 'rot90': A = np.rot90(A) B = np.rot90(B) C = np.rot90(C) if tranformway is 'flipud(fliplr)': A = np.flipud(np.fliplr(A)) B = np.flipud(np.fliplr(B)) C = np.flipud(np.fliplr(C)) if tranformway is 'fliplr(rot90)': A = np.fliplr(np.rot90(A)) B = np.fliplr(
np.rot90(B)
numpy.rot90
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Whole population model""" import sys import os.path import tensorflow as tf from absl import app from absl import flags from absl import gfile import cPickle as pickle import matplotlib matplotlib.use('TkAgg') import numpy as np, h5py import scipy.io as sio from scipy import ndimage import random FLAGS = flags.FLAGS flags.DEFINE_float('lam_w', 0.0001, 'sparsitiy regularization of w') flags.DEFINE_float('lam_a', 0.0001, 'sparsitiy regularization of a') flags.DEFINE_integer('ratio_SU', 7, 'ratio of subunits/cells') flags.DEFINE_float('su_grid_spacing', 3, 'grid spacing') flags.DEFINE_integer('np_randseed', 23, 'numpy RNG seed') flags.DEFINE_integer('randseed', 65, 'python RNG seed') flags.DEFINE_float('eta_w', 1e-3, 'learning rate for optimization functions') flags.DEFINE_float('eta_a', 1e-2, 'learning rate for optimization functions') flags.DEFINE_float('bias_init_scale', -1, 'bias initialized at scale*std') flags.DEFINE_string('model_id', 'relu', 'which model to learn?'); flags.DEFINE_float('step_sz', 10, 'step size for learning algorithm') flags.DEFINE_integer('window', 3, 'size of window for each subunit in relu_window model') flags.DEFINE_integer('stride', 3, 'stride for relu_window') flags.DEFINE_string('folder_name', 'experiment4', 'folder where to store all the data') flags.DEFINE_string('save_location', '/home/bhaishahster/', 'where to store logs and outputs?'); flags.DEFINE_string('data_location', '/home/bhaishahster/data_breakdown/', 'where to take data from?') flags.DEFINE_integer('batchsz', 1000, 'batch size for training') flags.DEFINE_integer('n_chunks', 216, 'number of data chunks') # should be 216 flags.DEFINE_integer('n_b_in_c', 1, 'number of batches in one chunk of data') def hex_grid(gridx, d, n): x_log = np.array([]) y_log = np.array([]) for i in range(n): x_log = (np.append(x_log, (((i*d)%gridx) + (np.floor(i*d/gridx)%2)*d/2)) + np.random.randn(1)*0.01) y_log = np.append(y_log, np.floor((i*d/gridx))*d/2) + np.random.randn(1)*0.01 return x_log, y_log def gauss_su(x_log, y_log, gridx=80, gridy=40): ns = x_log.shape[0] wts = np.zeros((3200, ns)) for isu in range(ns): xx = np.zeros((gridy, gridx)) if((np.round(y_log[isu]) >= gridy) | (np.round(y_log[isu]) < 0) | (np.round(x_log[isu]) >= gridx) | (np.round(x_log[isu]) < 0)): continue xx[np.round(y_log[isu]), np.round(x_log[isu])] = 1 blurred_xx = ndimage.gaussian_filter(xx, sigma=2) wts[:,isu] = np.ndarray.flatten(blurred_xx) return wts def initialize_su(n_su=107*10, gridx=80, gridy=40, spacing=5.7): spacing = FLAGS.su_grid_spacing x_log, y_log = hex_grid(gridx, spacing, n_su) wts = gauss_su(x_log, y_log) return wts def get_test_data(): # stimulus.astype('float32')[216000-1000: 216000-1, :] # response.astype('float32')[216000-1000: 216000-1, :] # length test_data_chunks = [FLAGS.n_chunks]; for ichunk in test_data_chunks: filename = FLAGS.data_location + 'Off_par_data_' + str(ichunk) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_part = data['maskedMovdd_part'].T resp_part = data['Y_part'].T test_len = stim_part.shape[0] #logfile.write('\nReturning test data') return stim_part, resp_part, test_len # global stimulus variables stim_train_part = np.array([]) resp_train_part = np.array([]) chunk_order = np.array([]) cells_choose = np.array([]) chosen_mask = np.array([]) def get_next_training_batch(iteration): # stimulus.astype('float32')[tms[icnt: icnt+FLAGS.batchsz], :], # response.astype('float32')[tms[icnt: icnt+FLAGS.batchsz], :] # FLAGS.batchsz # we will use global stimulus and response variables global stim_train_part global resp_train_part global chunk_order togo = True while togo: if(iteration % FLAGS.n_b_in_c == 0): # load new chunk of data ichunk = (iteration / FLAGS.n_b_in_c) % (FLAGS.n_chunks - 1 ) # last one chunks used for testing if (ichunk == 0): # shuffle training chunks at start of training data chunk_order = np.random.permutation(np.arange(FLAGS.n_chunks-1)) # remove first chunk - weired? # if logfile != None : # logfile.write('\nTraining chunks shuffled') if chunk_order[ichunk] + 1 != 1: filename = FLAGS.data_location + 'Off_par_data_' + str(chunk_order[ichunk] + 1) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_train_part = data['maskedMovdd_part'] resp_train_part = data['Y_part'] ichunk = chunk_order[ichunk] + 1 while stim_train_part.shape[1] < FLAGS.batchsz: #print('Need to add extra chunk') if (ichunk> FLAGS.n_chunks): ichunk = 2 filename = FLAGS.data_location + 'Off_par_data_' + str(ichunk) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_train_part = np.append(stim_train_part, data['maskedMovdd_part'], axis=1) resp_train_part = np.append(resp_train_part, data['Y_part'], axis=1) #print(np.shape(stim_train_part), np.shape(resp_train_part)) ichunk = ichunk + 1 # if logfile != None: # logfile.write('\nNew training data chunk loaded at: '+ str(iteration) + ' chunk #: ' + str(chunk_order[ichunk])) ibatch = iteration % FLAGS.n_b_in_c try: stim_train = np.array(stim_train_part[:,ibatch: ibatch + FLAGS.batchsz], dtype='float32').T resp_train = np.array(resp_train_part[:,ibatch: ibatch + FLAGS.batchsz], dtype='float32').T togo=False except: iteration = np.random.randint(1,100000) print('Load exception iteration: ' + str(iteration) + 'chunk: ' + str(chunk_order[ichunk]) + 'batch: ' + str(ibatch) ) togo=True return stim_train, resp_train, FLAGS.batchsz def main(argv): print('\nCode started') print('Model is ' + FLAGS.model_id) np.random.seed(FLAGS.np_randseed) random.seed(FLAGS.randseed) global chunk_order chunk_order = np.random.permutation(np.arange(FLAGS.n_chunks-1)) ## Load data summary filename = FLAGS.data_location + 'data_details.mat' summary_file = gfile.Open(filename, 'r') data_summary = sio.loadmat(summary_file) cells = np.squeeze(data_summary['cells']) nCells = cells.shape[0] stim_dim = np.squeeze(data_summary['stim_dim']) tot_spks = np.squeeze(data_summary['tot_spks']) total_mask = np.squeeze(data_summary['totalMaskAccept_log']).T print(np.shape(total_mask)) print('\ndataset summary loaded') # decide the number of subunits to fit Nsub = FLAGS.ratio_SU*nCells with tf.Session() as sess: stim = tf.placeholder(tf.float32, shape=[None, stim_dim], name='stim') resp = tf.placeholder(tf.float32, name='resp') data_len = tf.placeholder(tf.float32, name='data_len') if FLAGS.model_id == 'relu': # lam_c(X) = sum_s(a_cs relu(k_s.x)) , a_cs>0 short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_bias_init=' + str(FLAGS.bias_init_scale) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'mel_re_pow2': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'relu_logistic': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'relu_proximal': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_eta_w=' + str(FLAGS.eta_w) + '_eta_a=' + str(FLAGS.eta_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_proximal_bg') if FLAGS.model_id == 'relu_eg': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_eta_w=' + str(FLAGS.eta_w) + '_eta_a=' + str(FLAGS.eta_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_eg_bg') if FLAGS.model_id == 'relu_window': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_sfm': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_sfm_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_a_support': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'exp_window_a_support': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') parent_folder = FLAGS.save_location + FLAGS.folder_name + '/' if not gfile.IsDirectory(parent_folder): gfile.MkDir(parent_folder) FLAGS.save_location = parent_folder +short_filename + '/' print(gfile.IsDirectory(FLAGS.save_location)) if not gfile.IsDirectory(FLAGS.save_location): gfile.MkDir(FLAGS.save_location) print(FLAGS.save_location) save_filename = FLAGS.save_location + short_filename ''' # load previous iteration data, if available try: saved_filename = save_filename + '.pkl' saved_file = gfile.Open(saved_filename,'r') saved_data = pickle.load(saved_file) w_load = saved_data['w'] a_load = saved_data['a'] w_init = saved_data['w_init'] a_init = saved_data['a_init'] ls_train_log = np.squeeze(saved_data['ls_train_log']) ls_test_log = np.squeeze(saved_data['ls_test_log']) start_iter = np.squeeze(saved_data['last_iter']) chunk_order = np.squeeze(saved_data['chunk_order']) print(np.shape(w_init),np.shape(a_init)) load_prev = True except: # w and a initialized same for all models! (maybe should be different for exp NL?) w_init = initialize_su(n_su=Nsub) * 0.01 if FLAGS.model_id != 'exp': a_init = np.random.rand(Nsub, nCells) * 0.01 else: a_init = np.random.rand(nCells,1,Nsub) * 0.01 w_load = w_init a_load = a_init ls_train_log = np.array([]) ls_test_log = np.array([]) start_iter=0 print(np.shape(w_init),np.shape(a_init)) load_prev = False ''' w_init = initialize_su(n_su=Nsub) * 0.01 if FLAGS.model_id != 'exp': a_init = np.random.rand(Nsub, nCells) * 0.01 else: a_init = np.random.rand(nCells,1,Nsub) * 0.01 w_load = w_init a_load = a_init ls_train_log = np.array([]) ls_test_log = np.array([]) print(np.shape(w_init),np.shape(a_init)) load_prev = False if FLAGS.model_id == 'relu': # LNL model with RELU nl w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), tf.nn.relu(a)) + 0.0001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam))) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) a_pos = tf.assign(a, (a + tf.abs(a))/2) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'exp': # lam_c(X) = sum_s(exp(k_s.x + b_cs)) ; used in earlier models. w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.transpose(tf.reduce_sum(tf.exp(tf.matmul(stim,w) + a), 2)) loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter train_step = tf.train.AdamOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'mel_re_pow2': # lam_c(X) = sum_s(relu(k_s.x + a_cs)^2); MEL approximation of log-likelihood stimulus,_,_ = get_next_training_batch(10) sigma = np.diag(np.diag(stimulus[1000:2000,:].T.dot(stimulus[1000:2000,: ]))) sig_tf = tf.Variable(sigma,dtype='float32') w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) lam = tf.matmul(tf.pow(tf.nn.relu(tf.matmul(stim, w)), 2), a) + 0.0001 loss_p1 = tf.reduce_sum(tf.matmul(tf.transpose(a / tot_spks),tf.expand_dims(tf.diag_part(tf.matmul(tf.transpose(w),tf.matmul(sig_tf,w))) / 2,1))) loss_inter = (loss_p1 / 120.) - (tf.reduce_sum(resp * tf.log(lam) / tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_logistic': # f(X) = sum_s(a_cs relu(k_s.x)), acs - any sign, logistic loss. w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) b_init = np.random.randn(nCells)#np.log((np.sum(response,0))/(response.shape[0]-np.sum(response,0))) b = tf.Variable(b_init,dtype='float32') f = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + b loss_inter = tf.reduce_sum(tf.nn.softplus(-2 * (resp - 0.5)*f))/ data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) sigmoid_input = -resp*f train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a, b]) a_pos = tf.assign(a, (a + tf.abs(a))/2) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) b_summary = tf.histogram_summary('b', b) if FLAGS.model_id == 'relu_proximal': # lnl model with regularization, with proximal updates w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + 0.0001 loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) # training steps for a. train_step_a = tf.train.AdagradOptimizer(FLAGS.eta_a).minimize(loss_inter, var_list=[a]) # as 'a' is positive, this is op soft-thresholding for L1 and projecting to feasible set soft_th_a = tf.assign(a, tf.nn.relu(a - FLAGS.eta_a * FLAGS.lam_a)) # training steps for w train_step_w = tf.train.AdagradOptimizer(FLAGS.eta_w).minimize(loss_inter, var_list=[w]) # do soft thresholding for 'w' soft_th_w = tf.assign(w, tf.nn.relu(w - FLAGS.eta_w * FLAGS.lam_w) - tf.nn.relu(- w - FLAGS.eta_w * FLAGS.lam_w)) def training(inp_dict): # gradient step for 'w' sess.run(train_step_w, feed_dict=inp_dict) # soft thresholding for w sess.run(soft_th_w, feed_dict=inp_dict) # gradient step for 'a' sess.run(train_step_a, feed_dict=inp_dict) # soft thresholding for a, and project in constraint set sess.run(soft_th_a, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls if FLAGS.model_id == 'relu_eg': a_load = a_load / np.sum(a_load, axis=0)# normalize initial a w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + 0.0001 loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) # steps to update a # as 'a' is positive, this is op soft-thresholding for L1 and projecting to feasible set eta_a_tf = tf.constant(np.squeeze(FLAGS.eta_a),dtype='float32') grads_a = tf.gradients(loss_inter, a) exp_grad_a = tf.squeeze(tf.mul(a,tf.exp(-eta_a_tf * grads_a))) a_update = tf.assign(a,exp_grad_a/tf.reduce_sum(exp_grad_a,0)) # steps to update w # gradient update of 'w'.. train_step_w = tf.train.AdagradOptimizer(FLAGS.eta_w).minimize(loss_inter, var_list=[w]) # do soft thresholding for 'w' soft_th_w = tf.assign(w, tf.nn.relu(w - FLAGS.eta_w * FLAGS.lam_w) - tf.nn.relu(- w - FLAGS.eta_w * FLAGS.lam_w)) def training(inp_dict): # gradient step for 'a' and 'w' sess.run(train_step_w, feed_dict=inp_dict) # soft thresholding for w sess.run(soft_th_w) # update a sess.run(a_update, feed_dict=inp_dict) print('eg training made') def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls if FLAGS.model_id == 'relu_window': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w = tf.Variable(np.array(0.1+ 0.05*np.random.rand(dimx, dimy, n_pix),dtype='float32')) # exp 5 #w = tf.Variable(np.array(np.random.randn(dimx, dimy, n_pix),dtype='float32')) # exp 4 a = tf.Variable(np.array(np.random.rand(dimx*dimy, nCells),dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_wts = tf.nn.relu(tf.reduce_sum(tf.mul(stim_masked, w), 3)) lam = tf.matmul(tf.reshape(stim_wts, [-1,dimx*dimy]),a) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w,a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array(0.1+ 0.05*np.random.rand(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(np.array(np.random.rand(dimx*dimy, nCells),dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) # stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_del = tf.reduce_sum(tf.mul(stim_masked, w_del), 3) su_act = tf.nn.relu(stim_del + stim_convolved) lam = tf.matmul(tf.reshape(su_act, [-1, dimx*dimy]),a) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w_del)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w_mother, w_del, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_del_summary = tf.histogram_summary('w_del', w_del) w_mother_summary = tf.histogram_summary('w_mother', w_mother) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother_sfm': # softmax weights used! # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array(0.1 + 0.05*np.random.randn(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(np.array(
np.random.randn(dimx*dimy, nCells)
numpy.random.randn
# # Copyright © 2020 Intel Corporation. # # This software and the related documents are Intel copyrighted # materials, and your use of them is governed by the express # license under which they were provided to you (License). Unless # the License provides otherwise, you may not use, modify, copy, # publish, distribute, disclose or transmit this software or the # related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with # no express or implied warranties, other than those that are # expressly stated in the License. """Various plotting utilities for DNNs on Loihi.""" import os from typing import TYPE_CHECKING import numpy as np from nxsdk_modules_ncl.dnn.src.utils import normalizeImageDim, importPlt from matplotlib.ticker import IndexLocator, AutoMinorLocator plt = importPlt() if TYPE_CHECKING: from nxsdk_modules_ncl.dnn.src.data_structures import Layer plotproperties = { 'font.size': 12, 'axes.titlesize': 'x-large', 'axes.labelsize': 'x-large', 'xtick.labelsize': 'x-large', 'xtick.major.size': 7, 'xtick.minor.size': 5, 'ytick.labelsize': 'x-large', 'ytick.major.size': 7, 'ytick.minor.size': 5, 'legend.fontsize': 'x-large', 'lines.markersize': 6, 'figure.figsize': (7, 3), 'savefig.format': 'pdf', 'savefig.dpi': 300} # matplotlib.rcParams.update(plotproperties) COLORS = ['firebrick', 'forestgreen', 'gold', 'skyblue', 'maroon', 'darkblue', 'grey'] def plotMat(mat, fontSize=0, backgroundVal=0, showColorBar=False, title=None, savepath=None): """Plot a matrix showing numeric values for each entry. :param np.ndarray mat: Matrix to plot. :param int fontSize: Fontsize for values in ``mat``. :param int backgroundVal: Entries with this value in ``mat`` are considered background. :param bool showColorBar: Whether to display the color bar. :param str title: Figure title. :param str savepath: If given, where to save figure. """ fig, ax = plt.subplots() ax.matshow(mat, cmap='Blues') if fontSize > 0: assert mat.ndim == 2 for i in range(mat.shape[0]): for j in range(mat.shape[1]): val = mat[i, j] if val != backgroundVal: ax.text(j, i, str(val), va='center', ha='center', fontdict={'fontsize': fontSize}) if title is not None: ax.set_title(title) plt.axis('equal') plt.axis('tight') if showColorBar: fig.colorbar() if savepath is not None: fig.savefig(savepath, bbox_inches='tight') def plot_sweep_results(path, sweep, xlabel, shape=None): """Plot the results of a sweep across several network configurations. :param str path: Where to load the data from. :param str sweep: Name of parameter that was varied. :param str xlabel: Label for x-axis of plots. :param tuple | list | np.ndarray shape: Input shape, only used for labels. """ data_path = os.path.join(path, 'partitions') plot_path = os.path.join(path, 'plots') if not os.path.exists(plot_path): os.makedirs(plot_path) data_path_sweep = os.path.join(data_path, sweep) plot_path_sweep = os.path.join(plot_path, sweep) if not os.path.exists(plot_path_sweep): os.makedirs(plot_path_sweep) core_counts = {} core_occupancy = {} for scale in os.listdir(data_path_sweep): core_counts[scale] = 0 core_occupancy[scale] = [] for layer_file in os.listdir(os.path.join(data_path_sweep, scale)): data = np.load(os.path.join(data_path_sweep, scale, layer_file)) core_counts[scale] += data['numCores'] core_occupancy[scale] += list(data['coreOccupancy'].flatten()) scales = [eval(k) for k in core_counts.keys()] if shape is not None: xtick_labels = ['{}'.format(int(scale * shape[0])) for scale in scales] scales = np.array(scales) ** 2 xtick_locs = scales # Scale factor reduces network size quadratically xtick_kwargs = {'fontsize': 11} else: xtick_locs = scales xtick_labels = scales xtick_kwargs = {} plt.figure() plt.scatter(scales, core_counts.values(), label='measured scaling') num_cores_per_chip = 128 form_factors = {'Loihi': 1, 'KapohoBay': 2, 'WolfMountain': 4, 'Nahuku8': 8, 'Nahuku32': 32} for label, form_factor in form_factors.items(): plt.hlines(form_factor * num_cores_per_chip, -0.01, 1.05, colors='k', linewidth=0.5) plt.text(0.8, (0.6 * form_factor) * num_cores_per_chip, label, fontsize=11) # plt.plot([0, 1], [0, core_counts['1']], color='orange', # label='linear scaling') # plt.title("Cost vs network size for ResNet") plt.xlabel(xlabel) plt.ylabel("Num cores") plt.yscale('log', basey=2) plt.xticks(xtick_locs, xtick_labels, **xtick_kwargs) plt.yticks(2**np.arange(7) * num_cores_per_chip, 2**np.arange(7) * num_cores_per_chip) # plt.grid() # plt.legend() plt.xlim(-0.01, 1.05) plt.ylim(32, None) plt.savefig(os.path.join(plot_path_sweep, 'num_cores'), bbox_inches='tight') plt.figure() plt.boxplot([100 * np.array(data) / 1024 for data in core_occupancy.values()], positions=scales, widths=0.02, meanline=True, manage_xticks=False, showmeans=True, showcaps=False) plt.xlabel(xlabel) plt.ylabel("Core occupancy [%]") plt.xticks(xtick_locs, xtick_labels, **xtick_kwargs) plt.xlim(0, None) plt.ylim(-5, 105) plt.savefig(os.path.join(plot_path_sweep, 'core_occupancy'), bbox_inches='tight') plt.figure() for scale, data in zip(scales, core_occupancy.values()): plt.scatter(np.repeat(scale, len(data)), 100 * np.array(data) / 1024, color='steelblue') plt.xlabel(xlabel) plt.ylabel("Core occupancy [%]") plt.xticks(xtick_locs, xtick_labels, **xtick_kwargs) plt.grid() plt.xlim(0, None) plt.ylim(0, 100) plt.savefig(os.path.join(plot_path_sweep, 'core_occupancy2'), bbox_inches='tight') def plot_core_utilization(layers, path): """Plot how efficiently the resources of cores are used. For each layer, draw the distribution of each resource type as a box plot. Resource types include compartments, synaptic memory, input and output axon config entries. :param list[Layer] layers: List of partitioned layers. :param str path: Where to write the output to. """ compartments = [] input_axons = [] output_axons = [] synapses = [] for layer in layers: compartments.append([]) input_axons.append([]) output_axons.append([]) synapses.append([]) for partition in layer.partitions: compartments[-1].append(len(partition.compartmentGroup.cxIds) * 100 / 1024) input_axons[-1].append(partition.inputAxonCost * 100) output_axons[-1].append(partition.outputAxonCost * 100) synapses[-1].append(partition.synapseCost * 100) labels = ['cx', 'inAx', 'outAx', 'syn'] num_cost_terms = len(labels) num_layers = len(layers) xticks = np.arange(num_layers) jitter = (np.arange(num_cost_terms) - (num_cost_terms - 1) / 2) / 10 # colors = plt.cm.get_cmap('Set1', num_cost_terms).colors colors = COLORS fig, ax = plt.subplots() use_boxplot = True for i, data in enumerate([compartments, input_axons, output_axons, synapses]): color = colors[i] if use_boxplot: bp = ax.boxplot(data, positions=xticks+jitter[i], widths=0.09, meanline=True, manage_xticks=False, showmeans=True, showcaps=False, patch_artist=True, medianprops={'linewidth': 10, 'linestyle': ':'}, meanprops={'linewidth': 10}, flierprops={'markerfacecolor': color, 'marker': '.', 'markeredgecolor': color}) # Color for element in ['boxes', 'whiskers', 'fliers', 'medians', 'caps', 'means']: plt.setp(bp[element], color=color) for patch in bp['boxes']: patch.set(facecolor='white') # Legend ax.text(num_layers - 0.4, 100 - i * 5, labels[i], color=color) else: label = labels[i] for j, column in enumerate(data): plt.scatter(np.repeat(j + jitter[i], len(column)), column, color=color, label=label) label = None ax.legend() ax.set_xlabel("Layer number") ax.set_ylabel("Core utilization [%]") ax.xaxis.set_ticks_position('none') ax.set_xticks(np.arange(0, num_layers, num_layers // 5 + 1)) ax.set_xlim(-0.5, num_layers - 0.5) ax.set_ylim(-5, 105) ax.xaxis.set_minor_locator(AutoMinorLocator(2)) ax.grid(b=True, axis='x', which='minor') fig.savefig(os.path.join(path, 'core_utilization'), bbox_inches='tight') np.savez_compressed(os.path.join(path, 'core_utilization'), cx=compartments, in_ax=input_axons, out_ax=output_axons, syn=synapses) def plot_multiplicity(m, path, name): """Plot multiplicityMap. :param np.array m: multiplicityMap. :param str path: Where to save figure. :param str name: Name of partition. """ m = normalizeImageDim(m) fig, ax = plt.subplots() im = ax.imshow(m, cmap='Blues', vmin=0) vals = np.unique(m) fig.colorbar(im, ticks=[0] + list(vals[::(len(vals) // 10) + 1]), fraction=0.02, pad=0.04) ax.set_xticks(np.arange(0, m.shape[1], m.shape[1] // 5 + 1)) ax.set_yticks(np.arange(0, m.shape[0], m.shape[0] // 5 + 1)) ax.set_title('Multiplicity map of input to {}'.format(name)) ax.tick_params(which='both', left=False, bottom=False) ax.xaxis.set_minor_locator(IndexLocator(1, 1)) ax.yaxis.set_minor_locator(IndexLocator(1, 1)) ax.grid(which='minor') fig.savefig(os.path.join(path, 'multiplicityMap_{}'.format(name)), bbox_inches='tight') def plot_coreIdMap(m, path, name): """Plot coreIdMap. :param np.array m: coreIdMap. :param str path: Where to save figure. :param str name: Name of partition. """ yy = normalizeImageDim(m) shape = yy.shape fig, ax = plt.subplots() im = ax.imshow(yy, cmap='Blues', vmin=0) vals = np.unique(yy) fig.colorbar(im, ticks=vals[::len(vals) // 10 + 1], fraction=0.02, pad=0.04) ax.set_xticks(np.arange(0, shape[1], shape[1] // 5 + 1)) ax.set_yticks(np.arange(0, shape[0], shape[0] // 5 + 1)) ax.tick_params(which='both', left=False, bottom=False) ax.xaxis.set_minor_locator(IndexLocator(1, 1)) ax.yaxis.set_minor_locator(IndexLocator(1, 1)) ax.grid(which='minor') if m.ndim == 3: num_depth_partitions = len(np.unique(m[0, 0, :])) num_channels = m.shape[-1] s = '' if num_depth_partitions == 1 else 's' ss = '' if num_channels == 1 else 's' ax.set_title('Core ID map of layer {}\n({} partition{} along ' '{} channel{}.)'.format(name, num_depth_partitions, s, num_channels, ss)) else: ax.set_title('Core ID map of layer {}'.format(name)) fig.savefig(os.path.join(path, 'partition_{}'.format(name)), bbox_inches='tight') def plot_core_occupancy(occ, path, name): """Plot number of compartments per core of a layer. :param np.ndarray occ: Core occupancy to plot. Shape is equal to the number of cores per axis. :param str path: Where to save figure. :param str name: Name of partition. """ occ = normalizeImageDim(occ) fig, ax = plt.subplots() im = ax.imshow(occ, cmap='Blues', vmin=0, vmax=1024) vals = np.unique([0] + list(np.ravel(occ))) if 1024 - np.max(vals) > 100: vals = np.concatenate([vals, [1024]]) fig.colorbar(im, ticks=vals[::(len(vals) // 10) + 1], fraction=0.02, pad=0.04) ax.set_xticks(np.arange(0, occ.shape[1], occ.shape[1] // 10 + 1)) ax.set_yticks(np.arange(0, occ.shape[0], occ.shape[0] // 10 + 1)) ax.tick_params(which='both', left=False, bottom=False) ax.xaxis.set_minor_locator(IndexLocator(1, 1)) ax.yaxis.set_minor_locator(IndexLocator(1, 1)) ax.grid(which='minor') ax.set_title('Core occupancy of layer {}'.format(name)) fig.savefig(os.path.join(path, 'coreOccupancy_{}'.format(name)), bbox_inches='tight') def visualize_partitions(path): """Visualize the partition result of a layer. :param str path: Where to load the data from and save figures. """ data_path = os.path.join(path, 'model_dumps', 'partitions') for layer_name in os.listdir(data_path): data = np.load(os.path.join(data_path, layer_name)) name = data['id'] y = data['multiplicityMap'] if y.size: plot_multiplicity(y, path, name) plot_coreIdMap(data['coreIdMap'], path, name) plot_core_occupancy(data['coreOccupancy'], path, name) def plot_cost_graph(path): """Visualize the cost of a number of layer partitions. :param str path: Where to load the data from. """ filepath = os.path.join(path, 'candidate_costs.npz') if not os.path.exists(filepath): print("Plotting cost graph failed: Could not load {}.".format( filepath)) return data = np.load(filepath) all_costs = data['all_costs'] num_candidates, num_layers = all_costs.shape num_optimal_candidates = int(np.sqrt(num_candidates)) # Candidates are already sorted by cost. optimal_costs = all_costs[:num_optimal_candidates] fig, ax = plt.subplots() # Plot the cost of each candidate of each layer as data points, together # with the mean and variance across the candidates of a layer. colormap = plt.cm.get_cmap('prism', num_candidates) colors = np.array([colormap(i) for i in np.repeat(np.arange( num_optimal_candidates), num_optimal_candidates)]) for layer_num, partition_costs in enumerate(all_costs.T): ax.errorbar(layer_num, np.mean(partition_costs), 2 * np.sqrt(
np.var(partition_costs)
numpy.var
"""Functions for propagation through free space Propagation class initialization options: kernel_type: 'fraunhofer' (alias 'fourier'), 'fresnel', 'fresnel_conv', 'asm' (alias 'angular_spectrum'), or 'kirchoff'. The transfer function approaches may be more accurate fraunhofer: far-field diffraction, purely a Fourier transform fresnel: near-field diffraction with Fresnel approximation, implemented as a multiplication with a transfer function in Fourier domain fresnel_conv: same as fresnel, but implemented as a convolution with a spatial kernel, via FFT conv for speed asm: near-field diffraction with the Angular Spectrum Method, implemented as a transfer function. Note that this may have a 1px shift relative to the others due to the source paper padding the input by an extra pixel (for linear convolution) for derivations kirchoff: near-field diffractoin with the Kirchoff equations, implemented with a spatial kernel propagation_distances: distance or distances from SLM to image plane. Accepts scalars or lists. slm_resolution: number of pixels on SLM slm_pixel_pitch: size of pixels on SLM. image_resolution: number of sampling locations at image plane (optional, default matches SLM resolution) wavelength: laser wavelength, (optional, default 532e-9). propagation_parameters: override parameters for kernel/transfer function construction. Optional. Possible parameters, with defaults given: # for all methods 'padding_type', 'zero': pad complex field with 'median' or 'zero'. Using median may have less ringing, but zero is probably more accurate # for the spatial kernel convolution methods 'circular_prop_mask', True: circular mask for propagation kernels, for bandlimiting the phase function 'apodize_kernel', True: smooth the circular mask 'apodization_width', 50: width of cosine dropoff at edge, in pixels 'prop_mask_fraction', 1: artificially reduces the size of propagation mask (e.g., 2 will use half the radius) 'normalize_output', True: forces output field to have the same average amplitudes as the input when True. Only valid when using a single propagation distance # for the transfer function multiplication methods 'circular_padding', False: doesn't pad the field when True, resulting in implicit circular padding in the Fourier domain for the input field. May reduce ringing at the edges 'normalize_output', False: same as for the spatial kernel methods, but defaults to False because the transfer functions do a better job at energy preservation by default # only for the Angular Spectrum Method 'extra_pixel', True: when not using circular_padding, i.e., for a linear convolution, pad one extra pixel more than required (i.e., linear conv to length a + b instead of the minimum valid a + b - 1). The derivation from Matsushima and Shimobaba (2009) has an extra pixel, may not be correct without it, but set if the pixel shift is important # only for Fraunhofer 'fraunhofer_crop_image', True: when resolution changes, crop image plane instead of SLM plane, details in __init__ for FraunhoferPropagation # only for Fraunhofer with multiple distances 'focal_length', no default: required to determine plane for Fourier relationship (e.g., lens focal length) relative to which the other distances are propagated. device: torch parameter for the device to place the convolution kernel on. If not given, will default to the device of the input_field. Propagation.forward and Propagation.backward: input_field: complex field at starting plane (e.g. SLM for foward) Returns: output_field at the ending plane matching the specified resolution (for single distance) or output_fields, a dictionary of fields at each propagation distance (keys are distances) All units are in meters and radians unless explicitly stated as otherwise. Terms for resolution are in ij (matrix) order, not xy (cartesian) order. input_field should be a torch Tensor, everything else can be either numpy or native python types. input_field is assumed to be a stack of [real, imag] for input to the fft (see the torch.fft implementation for details). The output_field follows the same convention. Example: Propagate some input_field by 10cm with Fresnel approx, 5um pixel pitch on the SLM, with a 1080p SLM and image size equal to it prop = Propagation('fresnel', 10e-2, [1080, 1920], [5e-6, 5e-6]) output_field = prop.forward(input_field) output_field = prop.backward(input_field) Example: Propagate some input_field by to multiple distances, using Kirchhoff propagation. prop = Propagation('kirchhoff', [10e-2, 20e-2, 30e-2], [1080, 1920], [5e-6, 5e-6]) Example: Setting non-default parameters, e.g. wavelength of 632nm, image resolution of 720p, image sampling of 8um, some of the extra propagation parameters, or device to gpu 0 propagation_parameters = {'circular_prop_mask': True, 'apodize_kernel': True} prop = Propagation('fresnel', 10e-2, [1080, 1920], [5e-6, 5e-6], [720, 1280], [8e-6, 8e-6], 632e-9, propagation_parameters, torch.device('cuda:0')) # or with named parameters prop = Propagation(kernel_type='fresnel', propagation_distances=10e-2, slm_resolution=[1080, 1920], slm_pixel_pitch=[5e-6, 5e-6], image_resolution=[720, 1280], wavelength=632e-9, propagation_parameters=propagation_parameters, device=torch.device('cuda:0')) Example: Other propagation kernels, alternate ways to define it prop = Propagation('Fresnel', ...) # not case sensitive prop = Propagation('fraunhofer', ...) # Fraunhofer prop = Propagation('asm', ...) # Angular Spectrum Method Author: <NAME> """ import numpy as np from scipy.signal import fftconvolve import torch import torch.nn as nn import warnings import utils class Propagation: """Convenience class for using different propagation kernels and sets of propagation distances""" def __new__(cls, kernel_type, propagation_distances, slm_resolution, slm_pixel_pitch, image_resolution=None, wavelength=532e-9, propagation_parameters=None, device=None): # process input types for propagation distances if isinstance(propagation_distances, (np.ndarray, torch.Tensor)): propagation_distances = propagation_distances.flatten().tolist() # singleton lists should be made into scalars if (isinstance(propagation_distances, (tuple, list)) and len(propagation_distances) == 1): propagation_distances = propagation_distances[0] # scalar means this is a single distance propagation if not isinstance(propagation_distances, (tuple, list)): cls_out = {'fresnel': FresnelPropagation, 'fresnel_conv': FresnelConvPropagation, 'asm': AngularSpectrumPropagation, 'angular_spectrum': AngularSpectrumPropagation, 'kirchhoff': KirchhoffPropagation, 'fraunhofer': FraunhoferPropagation, 'fourier': FraunhoferPropagation}[kernel_type.lower()] return cls_out(propagation_distances, slm_resolution, slm_pixel_pitch, image_resolution, wavelength, propagation_parameters, device) else: return MultiDistancePropagation( kernel_type, propagation_distances, slm_resolution, slm_pixel_pitch, image_resolution, wavelength, propagation_parameters, device) class PropagationBase(nn.Module): image_native_pitch = None """Interface for propagation functions, with some shared functions""" def __init__(self, propagation_distance, slm_resolution, slm_pixel_pitch, image_resolution=None, wavelength=532e-9, propagation_parameters=None, device=None): super().__init__() self.slm_resolution = np.array(slm_resolution) self.slm_pixel_pitch = np.array(slm_pixel_pitch) self.propagation_distance = propagation_distance self.wavelength = wavelength self.dev = device # default image dimensions to slm dimensions if image_resolution is None: self.image_resolution = self.slm_resolution else: self.image_resolution = np.array(image_resolution) # native image sampling matches slm pitch, unless overridden by a # deriving class (e.g. FraunhoferPropagation) if self.image_native_pitch is None: self.image_native_pitch = self.slm_pixel_pitch # set image pixel pitch to native image sampling self.image_pixel_pitch = self.image_native_pitch # physical size of planes in meters self.slm_size = self.slm_pixel_pitch * self.slm_resolution self.image_size = self.image_pixel_pitch * self.image_resolution # dictionary for extra parameters particular to base class self.propagation_parameters = propagation_parameters if self.propagation_parameters is None: self.propagation_parameters = {} # set default for padding type when convolving try: self.padding_type = self.propagation_parameters.pop('padding_type') except KeyError: self.padding_type = 'zero' def forward(self, input_field): """Returns output_field, which is input_field propagated by propagation_distance, from slm_resolution to image_resolution""" raise NotImplementedError('Must implement in derived class') def backward(self, input_field): """Returns output_field, which is input_field propagated by -propagation_distance, from image_resolution to slm_resolution""" raise NotImplementedError('Must implement in derived class') def to(self, *args, **kwargs): """Moves non-parameter tensors needed for propagation to device Also updates the internal self.dev added to this class """ slf = super().to(*args, **kwargs) device_arg = torch._C._nn._parse_to(*args, **kwargs)[0] if device_arg is not None: slf.dev = device_arg return slf def pad_smaller_dims(self, field, target_shape, pytorch=True, padval=None): if padval is None: padval = self.get_pad_value(field, pytorch) return utils.pad_smaller_dims(field, target_shape, pytorch, padval=padval) def crop_larger_dims(self, field, target_shape, pytorch=True): return utils.crop_larger_dims(field, target_shape, pytorch) def get_pad_value(self, field, pytorch=True): if self.padding_type == 'zero': return 0 elif self.padding_type == 'median': if pytorch: return torch.median(stacked_abs(field)) else: return np.median(np.abs(field)) else: raise ValueError('Unknown padding type') class NearFieldConvPropagationBase(PropagationBase): """Defines functions shared across propagation near field approximations based on convolving a kernel """ def __init__(self, propagation_distance, slm_resolution, slm_pixel_pitch, image_resolution=None, wavelength=532e-9, propagation_parameters=None, device=None): super().__init__(propagation_distance, slm_resolution, slm_pixel_pitch, image_resolution, wavelength, propagation_parameters, device) # diffraction pattern calculations self.max_diffraction_angle = np.arcsin(wavelength / self.slm_pixel_pitch / 2) self.prop_mask_radius = (propagation_distance * np.tan(self.max_diffraction_angle)) # limit zone plate to maximum usable size slm_diagonal = np.sqrt((self.slm_size**2).sum()) image_diagonal = np.sqrt((self.image_size**2).sum()) max_usable_distance = slm_diagonal / 2 + image_diagonal / 2 self.prop_mask_radius = np.minimum(self.prop_mask_radius, max_usable_distance) # force input and output of forward/backward # operations to have the same absolute sum try: self.normalize_output = self.propagation_parameters.pop( 'normalize_output') except KeyError: self.normalize_output = True # sets self.foward_kernel and self.backward_kernel self.compute_conv_kernels(**self.propagation_parameters) if self.dev is not None: self.forward_kernel = self.forward_kernel.to(self.dev) self.backward_kernel = self.backward_kernel.to(self.dev) def compute_conv_kernels(self, *, circular_prop_mask=True, apodize_kernel=True, apodization_width=50, prop_mask_fraction=1., **kwargs): # sampling positions along the x and y dims coords_x = np.arange(self.slm_pixel_pitch[1], self.prop_mask_radius[1] / prop_mask_fraction, self.slm_pixel_pitch[1]) coords_x =
np.concatenate((-coords_x[::-1], [0], coords_x))
numpy.concatenate
#!/usr/local/bin/python # # sound-card APRS decoder # # <NAME>, AB1HL # import numpy import wave import weakaudio import weakutil import time import scipy import sys import os import math from scipy.signal import lfilter, filtfilt import numpy.lib.stride_tricks # optimizable tuning parameters. smoothwindow = 2.0 # symbols, 1.0 0.8 0.7 1.7(for hamming smoother) slicewindow = 25.0 # symbols, 20 30 20 tonegain = 2.0 # 2.0 (useful for track 02) advance = 8.0 # symbols 1.0 8.0 # http://gordoncluster.wordpress.com/2014/02/13/python-numpy-how-to-generate-moving-averages-efficiently-part-2/ def smooth(values, window): #weights = numpy.repeat(1.0, window)/window weights = numpy.hamming(window) sma = numpy.convolve(values, weights, 'valid') sma = sma[0:len(values)] return sma # https://github.com/tcort/va2epr-tnc/blob/master/firmware/aprs.c # <NAME> <<EMAIL>> # update a CRC with one new byte. # initial crc should be 0xffff. def crciter(crc, byte): byte &= 0xff crc ^= byte for i in range(0, 8): if crc & 1: crc = (crc >> 1) ^ 0x8408 else: crc >>= 1 return crc def crc16(bytes): crc = 0xffff for b in bytes: crc = crciter(crc, b) return crc # https://witestlab.poly.edu/blog/capture-and-decode-fm-radio/ def deemphasize(samples, rate): d = rate * 750e-6 # Calculate the # of samples to hit the -3dB point x = numpy.exp(-1/d) # Calculate the decay between each sample b = [1-x] # Create the filter coefficients a = [1,-x] out = scipy.signal.lfilter(b,a,samples) return out class APRSRecv: def __init__(self): self.rate = None # Bell-202 self.baud = 1200 # bits per second self.mark = 1200 self.space = 2200 self.off = 0 self.raw = numpy.array([0]) self.flagpat = None def openwav(self, filename): self.wav = wave.open(filename) self.wav_channels = self.wav.getnchannels() self.wav_width = self.wav.getsampwidth() self.rate = self.wav.getframerate() if False: sys.stdout.write("file=%s chans=%d width=%d rate=%d\n" % (filename, self.wav_channels, self.wav_width, self.rate)) def readwav(self): z = self.wav.readframes(4096) if self.wav_width == 1: zz = numpy.fromstring(z, numpy.int8) elif self.wav_width == 2: zz = numpy.fromstring(z, numpy.int16) else: sys.stderr.write("oops wave_width %d" % (self.wav_width)) sys.exit(1) if self.wav_channels == 1: return zz elif self.wav_channels == 2: return zz[0::2] # left else: sys.stderr.write("oops wav_channels %d" % (self.wav_channels)) sys.exit(1) def gotsamples(self, buf): self.raw = numpy.append(self.raw, buf) # slice one tone, yielding a running <0 for low and >0 for high. # slicing level is a running midway between local min and max. # don't use average since mark and space aren't equally popular. # already filtered/smoothed so no point in using percentiles. def sliceone(self, smoothed): global slicewindow bitsamples = int(self.rate / float(self.baud)) win = int(slicewindow * bitsamples) # average just to the right at start of packet, # and just to the left towards end of packet. # by inserting sliceshift samples from the packet. # to avoid averaging in a lot of non-packet noise. # this is important for packets that end with a # single flag and that are followed by lots of noise # (happens a lot in track 02). sliceshift = int(win/2 + bitsamples) z = numpy.concatenate((smoothed[0:win], smoothed[win:win+sliceshift], smoothed[win:win+64*bitsamples], smoothed[win+64*bitsamples:win+64*bitsamples+sliceshift], smoothed[win+64*bitsamples:])) if (len(z) % win) != 0: # trim z so it's a multiple of win long. z = z[0:-(len(z)%win)] zsplit = numpy.split(z, len(z)/win) # split into win-size pieces maxes = numpy.amax(zsplit, axis=1) # max of each piece mins = numpy.amin(zsplit, axis=1) ii = numpy.arange(0, len(z), 1) ii = ii / win maxv = maxes[ii] minv = mins[ii] if len(maxv) < len(smoothed): maxv = numpy.append(maxv, maxv[0:(len(smoothed)-len(maxv))]) minv = numpy.append(minv, minv[0:(len(smoothed)-len(minv))]) elif len(maxv) > len(smoothed): maxv = maxv[0:len(smoothed)] minv = minv[0:len(smoothed)] if False: # agc -- normalize so that min..max is -0.5..0.5 # XXX this does not help. sliced = numpy.subtract(smoothed, minv) sliced = numpy.divide(sliced, maxv - minv) sliced = sliced - 0.5 return sliced else: midv = (maxv + minv) / 2.0 sliced = numpy.subtract(smoothed, midv) return sliced # correlate against a tone (1200 or 2200 Hz). # idea from <NAME>'s Jul/Aug 2012 QEX article. # (used to use butterworth bandpass filters of order 3 # and width 1100 hz, but the following is slightly better). # combining the cos and sin compensates for the fact that # the phase of the received tone isn't known. def corr(self, samples, tone): global smoothwindow win = int(smoothwindow * self.rate / self.baud) xsin = weakutil.sintone(self.rate, tone, len(samples)) xcos = weakutil.costone(self.rate, tone, len(samples)) c = numpy.sqrt(numpy.add(numpy.square(smooth(xsin * samples, win)), numpy.square(smooth(xcos * samples, win)))) return c # correlate, slice, generate +/- for each sample. # also returns raw correlations, for SNR. def slice(self, samples): markcorr = self.corr(samples, self.mark) spacecorr = self.corr(samples, self.space) m1 = self.sliceone(markcorr) s1 = self.sliceone(spacecorr) sliced = numpy.subtract(m1, s1) return [ sliced, markcorr, spacecorr ] def process(self, eof): global tonegain, advance bitsamples = self.rate / float(self.baud) flagsamples = bitsamples * 9 # HDLC 01111110 flag (9 b/c NRZI) maxpacket = 340 * 8 * bitsamples # guess at number of samples if longest possible packet if self.raw.size < maxpacket and eof == False: return # set up to try multiple emphasis setups. sliced = [ ] # no change in emphasis; best when receiver doesn't de-emph, # but not right for senders that pre-emph. [ sl, markcorr, spacecorr ] = self.slice(self.raw) sliced.append( sl ) # de-emphasize, for a receiver that doesn't de-emph, # but senders that do. # doesn't seem to help for track 01... # [ sl, markcorr, spacecorr ] = self.slice(deemphasize(self.raw, self.rate)) # sliced.append(sl) while self.raw.size >= maxpacket or (eof and self.raw.size > 20*bitsamples): # sliced[0] is a candidate for start of packet, # i.e. first sample of first flag. bestok = 0 bestmsg = None bestnsymbols = 0 beststart = 0 bestsnr = 0 for sl in sliced: [ ok, msg, nsymbols, start, snr ] = self.process1(sl, markcorr, spacecorr) if ok > bestok: bestok = ok bestmsg = msg bestnsymbols = nsymbols beststart = self.off + start bestsnr = snr if bestok > 0 and self.callback: # compute space-to-mark tone strength ratio, to help understand emphasis. # space is 2200 hz, mark is 1200 hz. start = beststart - self.off #indices = numpy.arange(0, bestnsymbols*bitsamples, bitsamples) #indices = indices + (start + 0.5*bitsamples) #indices = numpy.rint(indices).astype(int) #rawsymbols = sliced[0][indices] #rawmark = markcorr[indices] #rawspace = spacecorr[indices] #meanmark = numpy.mean(numpy.where(rawsymbols > 0, rawmark, 0)) #meanspace = numpy.mean(numpy.where(rawsymbols <= 0, rawspace, 0)) #ratio = meanspace / meanmark ratio = 1.0 self.callback(bestok, bestmsg, beststart, ratio, snr) sys.stdout.flush() if bestok == 2: trim = int(bestnsymbols * bitsamples) # skip packet else: trim = int(advance * bitsamples) # skip a few symbols self.off += trim self.raw = self.raw[trim:] markcorr = markcorr[trim:] # for SNR spacecorr = spacecorr[trim:] # for SNR for i in range(0, len(sliced)): sliced[i] = sliced[i][trim:] # does a packet start at sliced[0:] ? # sliced[] likely has far more samples than needed. # returns [ ok, msg, nsymbols, flagstart, snr ] # flag starts at sliced[flagstart]. def process1(self, sliced, markcorr, spacecorr): global advance bitsamples = self.rate / float(self.baud) flagsamples = bitsamples * 9 # HDLC 01111110 flag (9 b/c NRZI) ff = self.findflag(sliced[0:int(round(flagsamples+advance*bitsamples+2))]) if ff != None: indices = numpy.arange(0, len(sliced) - (ff+2*bitsamples), bitsamples) indices = indices + (ff + 0.5*bitsamples) indices = numpy.rint(indices).astype(int) rawsymbols = sliced[indices] symbols = numpy.where(rawsymbols > 0, 1, -1) [ ok, msg, nsymbols ] = self.finishframe(symbols[8:]) if ok >= 1: # SNR sigsum = 0.0 sigcount = 0 noisesum = 0.0 noisecount = 0 # indices into sliced/markcorr/spacecorr for the center of each # symbol in the packet, including starting flag. indices1 = indices[0:nsymbols+8] # indices into markcorr/spacecorr for mark symbols. marki = indices1[
numpy.nonzero(sliced[indices1] > 0)
numpy.nonzero
#!/usr/bin/env python import argparse import logging import os import cv2 import mxnet as mx import numpy as np from lightened_moon import lightened_moon_feature ctx = mx.gpu(0) def main(): _, model_args, model_auxs = mx.model.load_checkpoint(args.model_prefix, args.epoch) symbol = lightened_moon_feature() cnt = correct_cnt = 0 with open(args.test_list, 'r') as f: label = np.ones(40) pred =
np.ones(40)
numpy.ones
import os import subprocess import multiprocessing import json import numpy as np import random num_gpus = 1 #COD CIFS from materials science journals without H (Richard specified no H) CIFS_DIR = r"\\flexo.ads.warwick.ac.uk\shared41\Microscopy\Jeffrey-Ede\crystal_structures\standardized_inorganic_no_H" cif_filepaths = [r"Z:\Jeffrey-Ede\crystal_structures\standardized_inorganic_no_H\666.cif"] PARENT_DIR = r"\\flexo.ads.warwick.ac.uk\shared41\Microscopy\Jeffrey-Ede\models\wavefunctions" default_json_filepath = os.path.join(PARENT_DIR, "default.json") failed_file_filepath = os.path.join(PARENT_DIR, "failed_files.txt") EXE_DIR = r"\\flexo.ads.warwick.ac.uk\shared41\Microscopy\Jeffrey-Ede\models\wavefunctions\clTEM_files" exe_filepath = os.path.join(EXE_DIR, "clTEM_cmd.exe") OUTPUT_DIR = os.path.join(PARENT_DIR, "output_single") if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) NUM_REPEATS = 5000 CONFIG_DIR = os.path.join(PARENT_DIR, "temp_single") config_filepath = os.path.join(CONFIG_DIR, "current_config_single.json") if not os.path.exists(CONFIG_DIR): os.makedirs(CONFIG_DIR) with open(default_json_filepath, "r") as f: default_config = json.load(f) failed_paths = [] with open(failed_file_filepath, 'r') as ff: lines = ff.readlines() for l in lines: failed_paths.append(l.rstrip()) # print(default_config) def random_config(): """Change default configuration to random configuration.""" config = default_config.copy() # Things to randomise # Voltage (use some presets) # aperture size # convergence # defocus spread voltages = [300, 200, 80] config["microscope"]["voltage"] = random.choice(voltages) config["microscope"]["aperture"] = np.random.uniform(5, 30) config["microscope"]["delta"] = np.random.uniform(0, 20) config["microscope"]["alpha"] = np.random.uniform(0.1, 2) # aberrations config["microscope"]["aberrations"]["C10"]["val"] = np.random.uniform(-30, 30) config["microscope"]["aberrations"]["C12"]["mag"] = np.random.uniform(-50, 50) config["microscope"]["aberrations"]["C12"]["ang"] = np.random.uniform(0, 180) config["microscope"]["aberrations"]["C21"]["mag"] = np.random.uniform(-1000, 1000) config["microscope"]["aberrations"]["C21"]["ang"] = np.random.uniform(0, 180) config["microscope"]["aberrations"]["C23"]["mag"] = np.random.uniform(-1000, 1000) config["microscope"]["aberrations"]["C23"]["ang"] = np.random.uniform(0, 180) config["microscope"]["aberrations"]["C30"]["val"] = np.random.uniform(-500, 500) return config def do_sim(cif_filepath): # # This is a real bodge to match the device to the thread.... # device = 1 #int(multiprocessing.current_process().name[-1]) - 1 device_string = "0:%s" % device if cif_filepath in failed_paths: return out_paths = [] for repetition in range(NUM_REPEATS): cif_name = os.path.splitext(os.path.basename(cif_filepath))[0] out_filepath = os.path.join(OUTPUT_DIR, cif_name) out_repeat_filepath = os.path.join(out_filepath, str(repetition)) if os.path.exists(os.path.join(out_repeat_filepath, 'Image.tif')): continue # get out this loop as we already have data here out_paths.append(out_repeat_filepath) if len(out_paths) == 0: return print("\n\nSimulating on device:" + device_string + " using file: " + cif_filepath) #print("\n\n\n") # for repetition in range(NUM_REPEATS): # Number of times to go through CIFs # # # # Create output folder # # # # make a folder for each cif # cif_name = os.path.splitext(os.path.basename(cif_filepath))[0] # out_filepath = os.path.join(OUTPUT_DIR, cif_name) # # make a folder for each repetition # out_repeat_filepath = os.path.join(out_filepath, str(repetition)) # # while os.path.exists(out_repeat_filepath): # # counter += 1 # # out_repeat_filepath = os.path.join(out_filepath, str(counter)) # if os.path.exists(os.path.join(out_repeat_filepath, 'Image.tif')): # continue # get out this loop as we already have data here for out_path in out_paths: try: if not os.path.exists(out_path): os.makedirs(out_path) # # Randomise the simulation parameters # # Save random configuration config = random_config() with open(config_filepath, "w") as f: json.dump(config, f) # # Randomise the structure inputs # # randomise the cell depth (between 5 nm and 100 nm) cell_depth = np.random.uniform(50, 1000) cell_widths = np.random.uniform(50, 100) cell_string = "%s,%s,%s" % (cell_widths, cell_widths, cell_depth) # randomise the zone axis (only up to 2) zone_h =
np.random.randint(0, 3)
numpy.random.randint
import itertools import numpy as np from copy import deepcopy from dcptree.analysis import to_group_data, groups_to_group_data from dcptree.data import check_data from dcptree.group_helper import check_groups from scipy.stats import binom def exact_mcn_test(y, yhat1, yhat2, two_sided = False): """ :param y: true :param yhat1: :param yhat2: :param two_sided: :return: value of the discrete McNemar Test """ f1_correct = np.equal(y, yhat1) f2_correct = np.equal(y, yhat2) table = np.zeros(shape = (2, 2)) for i in range(2): for j in range(2): table[i, j] = np.sum((f1_correct == i) & (f2_correct == j)) b = table[0, 1] #f1 wrong and f2 right c = table[1, 0] #f1 right and f2 wrong n = b + c # envy-freeness requires that # f1 is correct more often than f2 <=> b < c # # We test # # H0: error(f1) = error(f2) # H1: error(f1) > error(f2) # # This requires assuming b /(b+c) ~ Bin(0.5) if two_sided: test_statistic = min(b, c) p = 2.0 * binom.cdf(k = min(b, c), n = b + c, p = 0.5) else: test_statistic = c p = binom.cdf(k = test_statistic, n = n, p = 0.5) return p, test_statistic def check_model_assignment(groups_to_models, groups, models): assert isinstance(groups_to_models, dict) assert isinstance(models, list) splits = [[(k, l) for l in v['labels']] for k, v in groups.items()] splits = set(itertools.product(*splits)) assert set(groups_to_models.keys()).issubset(splits), 'mapper should include map every group in the data' model_indices = list(range(len(models))) assignment_indices = np.array(list(groups_to_models.values())) assert np.array_equal(np.unique(assignment_indices), model_indices), 'every model should cover at least one group' return True def build_model_assignment_map(p): groups_to_models = {} group_labels, group_values = groups_to_group_data(p.groups, stat_field = 'train') split_values = np.unique(group_values, axis = 0) for vals in split_values: s = tuple([(g, z) for g, z in zip(group_labels, vals)]) vals = vals[:, None].transpose() n_matches = 0 for i, l in enumerate(p.leaves): if l.contains(group_labels, vals): groups_to_models[s] = i n_matches += 1 assert n_matches == 1 assert check_model_assignment(groups_to_models, p.groups, models = p.predictors) return groups_to_models class DecoupledClassifierSet(object): def __init__(self, data, groups, pooled_model, decoupled_models, groups_to_models): # check inputs assert check_data(data, ready_for_training = True) assert check_groups(groups, data) # initialize data self._data = { 'X': np.array(data['X']), 'Y': np.array(data['Y']), 'variable_names': list(data['variable_names']) } self._groups = deepcopy(groups) self._pooled_model = pooled_model self._decoupled_models = decoupled_models group_names, group_values = groups_to_group_data(groups) training_values = np.unique(group_values, axis = 0).tolist() training_splits = [tuple(zip(group_names, v)) for v in training_values] assert isinstance(groups_to_models, dict) assert set(training_splits) == set(groups_to_models.keys()), 'mapper should include map every group in the training data' assignment_idx = np.array(list(groups_to_models.values())) assert np.array_equal(np.unique(assignment_idx), np.arange(len(self))), 'every model should cover at least one group' models_to_groups = {k:[] for k in range(len(self))} for group_tuple, model_index in groups_to_models.items(): group_value = [s[1] for s in group_tuple] assert len(group_value) == len(group_names) models_to_groups[model_index].append(group_value) self._splits = training_splits self.groups_to_models = groups_to_models self.models_to_groups = models_to_groups def __len__(self): return len(self._decoupled_models) def __repr__(self): info = [ 'DecoupledClassifierSet', '# group attributes: %d' % len(self._groups), '# groups: %d' % len(self.groups_to_models), '# models: %d' % len(self._decoupled_models), ] info = info + [', '.join(s) for s in self.split_names] return '\n'.join(info) @property def data(self): return self._data @property def groups(self): return self._groups @property def split_names(self): return [['%s = %s' % (a, b) for (a, b) in s] for s in self._splits] @property def pooled_model(self): return self._pooled_model @pooled_model.setter def pooled_model(self, clf): assert callable(clf) self._pooled_model = clf @property def decoupled_models(self): return [clf.predict for clf in self._decoupled_models] @decoupled_models.setter def decoupled_models(self, clf_set): assert len(clf_set) >= 2 assert all([callable(clf) for clf in clf_set]) self._decoupled_models = clf_set def assigned_indices(self, model_index, group_names, group_values): assignment_idx = np.repeat(False, group_values.shape[0]) for s in self.models_to_groups[model_index]: assignment_idx = np.logical_or(assignment_idx, np.all(group_values == s, axis = 1)) return assignment_idx def _parse_data_args(self, **kwargs): """ helper function to parse X, y, group_names, and group_values from keyword inputs to different methods :param kwargs: :return: """ if len(kwargs) == 0: return to_group_data(data = self.data, groups = self.groups, stat_field = 'train') elif set(['X', 'y', 'group_names', 'group_values']).issubset(kwargs): return kwargs['X'], kwargs['y'], kwargs['group_names'], kwargs['group_values'] elif set(['data', 'groups']).issubset(kwargs): return to_group_data(data = kwargs['data'], groups = kwargs['groups'], stat_field = kwargs.get('stat_field') or 'train') else: raise ValueError('unsupport input arguments') def _drop_missing_splits(self, splits, group_values): new = [] for s in splits: group_labels = [t[1] for t in s] if np.all(group_values == group_labels, axis = 1).any(): new.append(s) return new def predict(self, X, group_names, group_values): """ predict using all of the leaves in this partition :param X: :param group_names: :param group_values: :return: """ yhat =
np.repeat(np.nan, X.shape[0])
numpy.repeat
# coding: utf8 """ Unit tests: - :class:`TestMultivariateJacobiOPE` check correct implementation of the corresponding class. """ import unittest import numpy as np from scipy.integrate import quad from scipy.special import eval_jacobi import sys sys.path.append('..') from dppy.multivariate_jacobi_ope import (MultivariateJacobiOPE, compute_ordering_BaHa16, compute_Gautschi_bounds) from dppy.utils import inner1d, check_random_state class TestMultivariateJacobiOPE(unittest.TestCase): """ """ seed = 0 def test_ordering(self): """Make sure the ordering of multi-indices respects the one prescirbed by :cite:`BaHa16` Section 2.1.3 """ ord_d2_N16 = [(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2), (0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)] ord_d3_N27 = [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 2), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 0, 2), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1), (2, 2, 2)] orderings = [ord_d2_N16, ord_d3_N27] for idx, ord_to_check in enumerate(orderings): N, d = len(ord_to_check), len(ord_to_check[0]) self.assertTrue(compute_ordering_BaHa16(N, d), ord_to_check) def test_square_norms(self): N = 100 dims = np.arange(2, 5) max_deg = 50 # to avoid quad warning in dimension 1 for d in dims: jacobi_params = 0.5 - np.random.rand(d, 2) jacobi_params[0, :] = -0.5 dpp = MultivariateJacobiOPE(N, jacobi_params) pol_2_eval = dpp.poly_1D_degrees[:max_deg] quad_square_norms =\ [[quad(lambda x: (1-x)**a * (1+x)**b * eval_jacobi(n, a, b, x)**2, -1, 1)[0] for n, a, b in zip(deg, dpp.jacobi_params[:, 0], dpp.jacobi_params[:, 1])] for deg in pol_2_eval] self.assertTrue(np.allclose( dpp.poly_1D_square_norms[pol_2_eval, range(dpp.dim)], quad_square_norms)) def test_Gautschi_bounds(self): """Test if bounds computed w/wo log scale coincide""" N = 100 dims = np.arange(2, 5) for d in dims: jacobi_params = 0.5 - np.random.rand(d, 2) jacobi_params[0, :] = -0.5 dpp = MultivariateJacobiOPE(N, jacobi_params) with_log_scale = compute_Gautschi_bounds(dpp.jacobi_params, dpp.ordering, log_scale=True) without_log_scale = compute_Gautschi_bounds(dpp.jacobi_params, dpp.ordering, log_scale=False) self.assertTrue(np.allclose(with_log_scale, without_log_scale)) def test_kernel_symmetry(self): """ K(x) == K(x, x) K(x, y) == K(y, x) K(x, Y) == K(Y, x) = [K(x, y) for y in Y] K(X) == [K(x, x) for x in X] K(X, Y) == [K(x, y) for x, y in zip(X, Y)] """ N = 100 dims = np.arange(2, 5) for d in dims: jacobi_params = 0.5 - np.random.rand(d, 2) jacobi_params[0, :] = -0.5 dpp = MultivariateJacobiOPE(N, jacobi_params) x, y = np.random.rand(d), np.random.rand(d) X, Y = np.random.rand(5, d),
np.random.rand(5, d)
numpy.random.rand
# Examine effect of each PC after remove one but kept the others import numpy as np from scipy import stats from ATT.iofunc import iofiles from cnntools import cnntools from torchvision import models from torch import nn import torch import pandas as pd from ATT.algorithm import tools from sklearn.decomposition import PCA cnn_model = models.alexnet(pretrained=False) cnn_model.features = torch.nn.DataParallel(cnn_model.features) cnn_model.cuda() checkpoint = torch.load('/home/user/working_dir/liulab_server_bnuold/models/DNNmodel_param/alexnet_shapebiased.pth.tar') cnn_model.load_state_dict(checkpoint["state_dict"]) sizerank_pd = pd.read_csv('/home/user/working_dir/liulab_server_bnuold/data/PhysicalSize/Real_SizeRanks8.csv') sizerank_pd = sizerank_pd.sort_values('name') ranklabel = sizerank_pd['real_sizerank'].unique() ranklabel.sort() imgnames, actval = cnntools.extract_activation(cnn_model, '/home/user/working_dir/liulab_server_bnuold/data/PhysicalSize/ObjectSize/SizeDataset_2021/Object100_origin', layer_loc=('features', 'module', '8'), batch_size=1, isgpu=True, keeporig=True) actval = actval.reshape(*actval.shape[:2], -1).mean(axis=-1) actval = actval/np.tile(np.linalg.norm(actval,axis=-1), (actval.shape[-1],1)).T iopkl = iofiles.make_ioinstance('/home/user/working_dir/liulab_server_bnuold/models/pca_imgnetval_conv4_alexnetshape.pkl') pcamodel = iopkl.load() pcacomp = np.dot(actval, np.linalg.inv(pcamodel.components_)) # Template real_temp = np.zeros((8,8)) for i in range(8): for j in range(8): real_temp[i,j] = 1-np.abs(i-j)/8 avg_ranksize = [] for lbl in ranklabel: avg_ranksize.append(actval[sizerank_pd['real_sizerank']==lbl].mean(axis=0)) avg_ranksize = np.array(avg_ranksize) r_obj, _ = tools.pearsonr(avg_ranksize, avg_ranksize) r_realsize_baseline, _ = stats.pearsonr(r_obj[
np.triu_indices(8,1)
numpy.triu_indices
__doc__ = """Tests for rod initialisation module""" import numpy as np from numpy.testing import assert_allclose from elastica.utils import MaxDimension, Tolerance import pytest import sys from elastica.rod.data_structures import _RodSymplecticStepperMixin from elastica.rod.factory_function import allocate class MockRodForTest(_RodSymplecticStepperMixin): def __init__( self, n_elements, _vector_states, _matrix_states, radius, mass_second_moment_of_inertia, inv_mass_second_moment_of_inertia, shear_matrix, bend_matrix, density, volume, mass, dissipation_constant_for_forces, dissipation_constant_for_torques, internal_forces, internal_torques, external_forces, external_torques, lengths, rest_lengths, tangents, dilatation, dilatation_rate, voronoi_dilatation, rest_voronoi_lengths, sigma, kappa, rest_sigma, rest_kappa, internal_stress, internal_couple, damping_forces, damping_torques, ): self.n_elems = n_elements self._vector_states = _vector_states self._matrix_states = _matrix_states self.radius = radius self.mass_second_moment_of_inertia = mass_second_moment_of_inertia self.inv_mass_second_moment_of_inertia = inv_mass_second_moment_of_inertia self.shear_matrix = shear_matrix self.bend_matrix = bend_matrix self.density = density self.volume = volume self.mass = mass self.dissipation_constant_for_forces = dissipation_constant_for_forces self.dissipation_constant_for_torques = dissipation_constant_for_torques self.internal_forces = internal_forces self.internal_torques = internal_torques self.external_forces = external_forces self.external_torques = external_torques self.lengths = lengths self.rest_lengths = rest_lengths self.tangents = tangents self.dilatation = dilatation self.dilatation_rate = dilatation_rate self.voronoi_dilatation = voronoi_dilatation self.rest_voronoi_lengths = rest_voronoi_lengths self.sigma = sigma self.kappa = kappa self.rest_sigma = rest_sigma self.rest_kappa = rest_kappa self.internal_stress = internal_stress self.internal_couple = internal_couple self.damping_forces = damping_forces self.damping_torques = damping_torques _RodSymplecticStepperMixin.__init__(self) @classmethod def straight_rod( cls, n_elements, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, # poisson_ratio, *args, **kwargs ): ( n_elements, _vector_states, _matrix_states, radius, mass_second_moment_of_inertia, inv_mass_second_moment_of_inertia, shear_matrix, bend_matrix, density, volume, mass, dissipation_constant_for_forces, dissipation_constant_for_torques, internal_forces, internal_torques, external_forces, external_torques, lengths, rest_lengths, tangents, dilatation, dilatation_rate, voronoi_dilatation, rest_voronoi_lengths, sigma, kappa, rest_sigma, rest_kappa, internal_stress, internal_couple, damping_forces, damping_torques, ) = allocate( n_elements, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, # poisson_ratio, alpha_c=4.0 / 3.0, *args, **kwargs ) return cls( n_elements, _vector_states, _matrix_states, radius, mass_second_moment_of_inertia, inv_mass_second_moment_of_inertia, shear_matrix, bend_matrix, density, volume, mass, dissipation_constant_for_forces, dissipation_constant_for_torques, internal_forces, internal_torques, external_forces, external_torques, lengths, rest_lengths, tangents, dilatation, dilatation_rate, voronoi_dilatation, rest_voronoi_lengths, sigma, kappa, rest_sigma, rest_kappa, internal_stress, internal_couple, damping_forces, damping_torques, ) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_input_and_output_position_array(n_elems): """ This test, tests the case if the input position array valid, allocate sets input position as the rod position array. Parameters ---------- n_elems Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 # Check if the input position vector and output position vector are valid and same correct_position = np.zeros((3, n_elems + 1)) correct_position[0] = np.random.randn(n_elems + 1) correct_position[1] = np.random.randn(n_elems + 1) correct_position[..., 0] = start shear_modulus = youngs_modulus / (poisson_ratio + 1.0) mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, position=correct_position, ) test_position = mockrod.position_collection assert_allclose(correct_position, test_position, atol=Tolerance.atol()) @pytest.mark.xfail(raises=AssertionError) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_input_and_position_array_for_different_start(n_elems): """ This function tests fail check, for which input position array first element is not user defined start position. Parameters ---------- n_elems Returns ------- """ start = np.random.randn(3) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check if the input position vector start position is different than the user defined start position correct_position = np.random.randn(3, n_elems + 1) mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, position=correct_position, ) test_position = mockrod.position_collection assert_allclose(correct_position, test_position, atol=Tolerance.atol()) def test_compute_position_array_using_user_inputs(): """ This test checks if the allocate function can compute correctly position vector using start, direction and base length inputs. Returns ------- """ n_elems = 4 start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check if without input position vector, output position vector is valid mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, ) correct_position = np.zeros((3, n_elems + 1)) correct_position[0, :] = np.array([0.0, 0.25, 0.5, 0.75, 1.0]) test_position = mockrod.position_collection assert_allclose(correct_position, test_position, atol=Tolerance.atol()) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_compute_directors_matrix_using_user_inputs(n_elems): """ This test checks the director array created by allocate function. For this test case we use user defined direction, normal to compute directors. Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check directors, if we dont input any directors, computed ones should be valid correct_directors = np.zeros((MaxDimension.value(), MaxDimension.value(), n_elems)) binormal = np.cross(direction, normal) tangent_collection = np.repeat(direction[:, np.newaxis], n_elems, axis=1) normal_collection = np.repeat(normal[:, np.newaxis], n_elems, axis=1) binormal_collection = np.repeat(binormal[:, np.newaxis], n_elems, axis=1) correct_directors[0, ...] = normal_collection correct_directors[1, ...] = binormal_collection correct_directors[2, ...] = tangent_collection mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, ) test_directors = mockrod.director_collection assert_allclose(correct_directors, test_directors, atol=Tolerance.atol()) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_directors_using_input_position_array(n_elems): """ This test is testing the case for which directors are computed using the input position array and user defined normal. Parameters ---------- n_elems Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check directors, give position as input and let allocate function to compute directors. input_position = np.zeros((3, n_elems + 1)) input_position[0, :] = np.linspace(start[0], start[0] + base_length, n_elems + 1) correct_directors = np.zeros((MaxDimension.value(), MaxDimension.value(), n_elems)) binormal = np.cross(direction, normal) tangent_collection = np.repeat(direction[:, np.newaxis], n_elems, axis=1) normal_collection = np.repeat(normal[:, np.newaxis], n_elems, axis=1) binormal_collection = np.repeat(binormal[:, np.newaxis], n_elems, axis=1) correct_directors[0, ...] = normal_collection correct_directors[1, ...] = binormal_collection correct_directors[2, ...] = tangent_collection mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, position=input_position, ) test_directors = mockrod.director_collection assert_allclose(correct_directors, test_directors, atol=Tolerance.atol()) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_directors_using_input_directory_array(n_elems): """ This test is testing the case for which directors are given as user input. Parameters ---------- n_elems Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) angle = np.random.uniform(0, 2 * np.pi) normal = np.array([0.0, np.cos(angle), np.sin(angle)]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check directors, give position as input and let allocate function to compute directors. input_position = np.zeros((3, n_elems + 1)) input_position[0, :] = np.linspace(start[0], start[0] + base_length, n_elems + 1) correct_directors = np.zeros((MaxDimension.value(), MaxDimension.value(), n_elems)) binormal = np.cross(direction, normal) tangent_collection = np.repeat(direction[:, np.newaxis], n_elems, axis=1) normal_collection = np.repeat(normal[:, np.newaxis], n_elems, axis=1) binormal_collection = np.repeat(binormal[:, np.newaxis], n_elems, axis=1) correct_directors[0, ...] = normal_collection correct_directors[1, ...] = binormal_collection correct_directors[2, ...] = tangent_collection mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, position=input_position, directors=correct_directors, ) test_directors = mockrod.director_collection assert_allclose(correct_directors, test_directors, atol=Tolerance.atol()) @pytest.mark.xfail(raises=AssertionError) def test_director_if_d3_cross_d2_notequal_to_d1(): """ This test is checking the case if the directors, d3xd2 is not equal to d1 and creates an AssertionError. Returns ------- """ n_elems = 10 start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) # Check directors, give directors as input and check their validity. # Let the assertion fail by setting d3=d2 for the input director input_directors = np.zeros((MaxDimension.value(), MaxDimension.value(), n_elems)) binormal = np.cross(direction, normal) normal_collection = np.repeat(normal[:, np.newaxis], n_elems, axis=1) binormal_collection = np.repeat(binormal[:, np.newaxis], n_elems, axis=1) input_directors[0, ...] = normal_collection input_directors[1, ...] = binormal_collection input_directors[2, ...] = binormal_collection MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, directors=input_directors, ) @pytest.mark.xfail(raises=AssertionError) def test_director_if_tangent_and_d3_are_not_same(): """ This test is checking the case if the tangent and d3 of the directors are not equal to each other. Returns ------- """ n_elems = 10 start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) position = np.zeros((3, n_elems + 1)) end = start + direction * base_length for i in range(0, 3): position[i, ...] = np.linspace(start[i], end[i], n_elems + 1) # Set the directors such that tangent and d3 are not same. input_directors = np.zeros((MaxDimension.value(), MaxDimension.value(), n_elems)) binormal = np.cross(direction, normal) normal_collection = np.repeat(binormal[:, np.newaxis], n_elems, axis=1) binormal_collection = np.repeat(normal[:, np.newaxis], n_elems, axis=1) new_direction = np.cross(binormal, normal) direction_collection = np.repeat(new_direction[:, np.newaxis], n_elems, axis=1) input_directors[0, ...] = normal_collection input_directors[1, ...] = binormal_collection input_directors[2, ...] = direction_collection MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, position=position, directors=input_directors, ) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_compute_radius_using_base_radius(n_elems): """ This test is checking the case if user defined base radius is used to generate radius array. Parameters ---------- n_elems Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) base_length = 1.0 base_radius = 0.25 density = 1000 nu = 0.1 youngs_modulus = 1e6 poisson_ratio = 0.3 shear_modulus = youngs_modulus / (poisson_ratio + 1.0) mockrod = MockRodForTest.straight_rod( n_elems, start, direction, normal, base_length, base_radius, density, nu, youngs_modulus, shear_modulus=shear_modulus, ) correct_radius = base_radius * np.ones((n_elems)) test_radius = mockrod.radius assert_allclose(correct_radius, test_radius, atol=Tolerance.atol()) @pytest.mark.parametrize("n_elems", [5, 10, 50]) def test_radius_using_user_defined_radius(n_elems): """ This test is checking if user defined radius array is valid, and allocating radius array of rod correctly. Parameters ---------- n_elems Returns ------- """ start = np.array([0.0, 0.0, 0.0]) direction =
np.array([1.0, 0.0, 0.0])
numpy.array
"""Control system for tracking objects with a telescope. The classes in this module implement the core control system algorithms. """ from datetime import datetime import time from enum import Flag, auto from typing import Callable, NamedTuple, Tuple, Optional, Union import numpy as np from scipy.optimize import minimize import astropy.units as u from astropy.coordinates import SkyCoord, Angle, UnitSphericalRepresentation from astropy.time import Time, TimeDelta from influxdb_client import Point from track.model import MountModel from track.mounts import TelescopeMount, MountEncoderPositions from track.targets import Target from track.telem import TelemLogger def separation(sc1: SkyCoord, sc2: SkyCoord) -> Angle: """Calculate the on-sky separation angle between two coordinates. This is equivalent to `SkyCoord.separation()` but is much faster because it uses the haversine formula rather than the iterative Vincenty formula. We don't need to handle edge cases like antipodal points on the sphere but we do need fast execution. This approach was profiled as ~70 times faster than `SkyCoord.separation()`. Formula reference: https://en.wikipedia.org/wiki/Great-circle_distance Args: sc1: One of the coordinates. sc2: The other coordinate. Returns: The separation between sc1 and sc2. """ us1 = sc1.represent_as(UnitSphericalRepresentation) us2 = sc2.represent_as(UnitSphericalRepresentation) lat_diff = us1.lat.rad - us2.lat.rad lon_diff = us1.lon.rad - us2.lon.rad return Angle( 2 * np.arcsin(np.sqrt( np.sin(lat_diff / 2)**2 + np.cos(us1.lat.rad)*
np.cos(us2.lat.rad)
numpy.cos
# coding=utf-8 # Copyright (C) 2020 NumS Development Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import itertools import pickle import logging from typing import Tuple, List, Any, Iterator import numpy as np import boto3 from nums.core.storage.utils import Batch class ArrayGrid(object): # TODO (hme): Move to array module. @classmethod def from_meta(cls, d: dict): return cls(**d) def __init__(self, shape: Tuple, block_shape: Tuple, dtype: str): self.shape = tuple(shape) self.block_shape = tuple(np.min([shape, block_shape], axis=0)) self.dtype = dict if dtype == "dict" else getattr(np, dtype) self.grid_shape = [] self.grid_slices = [] for i in range(len(self.shape)): dim = self.shape[i] block_dim = block_shape[i] if dim == 0: # Special case of empty array. axis_slices = [] else: axis_slices = Batch(dim, block_dim).batches self.grid_slices.append(axis_slices) self.grid_shape.append(len(axis_slices)) self.grid_shape = tuple(self.grid_shape) def to_meta(self) -> dict: return { "shape": self.shape, "block_shape": self.block_shape, "dtype": self.dtype.__name__ } def copy(self): return self.from_meta(self.to_meta()) def get_entry_iterator(self) -> Iterator[Tuple]: if 0 in self.shape: return [] return itertools.product(*map(range, self.grid_shape)) def get_slice(self, grid_entry): slices = [] for axis, slice_index in enumerate(grid_entry): slices.append(slice(*self.grid_slices[axis][slice_index])) return tuple(slices) def get_slice_tuples(self, grid_entry: Tuple) -> List[Tuple[slice]]: slice_tuples = [] for axis, slice_index in enumerate(grid_entry): slice_tuples.append(tuple(self.grid_slices[axis][slice_index])) return slice_tuples def get_block_shape(self, grid_entry: Tuple): slice_tuples = self.get_slice_tuples(grid_entry) block_shape = [] for slice_tuple in slice_tuples: block_shape.append(slice_tuple[1] - slice_tuple[0]) return tuple(block_shape) class StoredArray(object): # TODO (hme): This is no longer a useful abstraction. def __init__(self, filename: str, grid: ArrayGrid): self.filename = filename self.dirname, self.array_name = os.path.split(self.filename) self.grid = grid def init_grid(self): self.grid = self.get_grid() def get_key(self, grid_entry: Tuple): index_str = "_".join(map(str, grid_entry)) return "%s_%s" % (self.array_name, index_str) def get_meta_key(self): return "%s_meta" % self.array_name def put(self, grid_entry: Tuple, block: np.ndarray) -> Any: raise NotImplementedError() def get(self, grid_entry: Tuple) -> np.ndarray: raise NotImplementedError() def delete(self, grid_entry: Tuple) -> Any: raise NotImplementedError() def get_grid(self) -> ArrayGrid: raise NotImplementedError() def put_grid(self, array_grid: ArrayGrid) -> Any: raise NotImplementedError() def delete_grid(self) -> Any: raise NotImplementedError() def del_array(self) -> Any: raise NotImplementedError() def put_array(self, arr: np.ndarray): grid_entry_iterator = self.grid.get_entry_iterator() for grid_entry in grid_entry_iterator: grid_slice = self.grid.get_slice(grid_entry) block = arr[grid_slice] self.put(grid_entry, block) def get_array(self): grid_shape = self.grid.grid_shape result = np.zeros(shape=self.grid.shape) iterator = list(itertools.product(*map(range, grid_shape))) block_shape = np.array(self.grid.block_shape, dtype=np.int) for grid_entry in iterator: start = block_shape * grid_entry entry_shape = np.array(self.grid.get_block_shape(grid_entry), dtype=np.int) end = start + entry_shape slices = tuple(map(lambda item: slice(*item), zip(*(start, end)))) result[slices] = self.get(grid_entry) return result class StoredArrayS3(StoredArray): def __init__(self, filename: str, grid: ArrayGrid = None): self.client = boto3.client('s3') super(StoredArrayS3, self).__init__(filename, grid) if self.filename[0] == "/": raise Exception("Leading / in s3 filename: %s" % filename) fileparts = self.filename.split("/") self.container_name = fileparts[0] self.array_name = "/".join(fileparts[1:]) def put(self, grid_entry: Tuple, block: np.ndarray) -> Any: block_bytes = block.tobytes() response = self.client.put_object( Bucket=self.container_name, Key=self.get_key(grid_entry), Body=block_bytes, ) return response def get(self, grid_entry: Tuple) -> np.ndarray: try: response = self.client.get_object( Bucket=self.container_name, Key=self.get_key(grid_entry), ) except Exception as e: logging.getLogger().error("[Error] StoredArrayS3: Failed to get %s %s", self.container_name, self.get_key(grid_entry)) raise e block_bytes = response['Body'].read() dtype = self.grid.dtype shape = self.grid.get_block_shape(grid_entry) try: block = np.frombuffer(block_bytes, dtype=dtype).reshape(shape) except Exception as e: logging.getLogger().error("[Error] StoredArrayS3: Failed to read from buffer %s %s", self.container_name, self.get_key(grid_entry)) raise e return block def delete(self, grid_entry: Tuple) -> Any: objects = [{"Key": self.get_key(grid_entry)}] response = self.client.delete_objects( Bucket=self.container_name, Delete={ 'Objects': objects, }, ) return response def delete_grid(self) -> Any: objects = [{"Key": self.get_meta_key()}] response = self.client.delete_objects( Bucket=self.container_name, Delete={ 'Objects': objects, }, ) return response def put_grid(self, array_grid: ArrayGrid) -> Any: self.grid = array_grid body = pickle.dumps(self.grid.to_meta()) response = self.client.put_object( Bucket=self.container_name, Key=self.get_meta_key(), Body=body, ) return response def get_grid(self) -> ArrayGrid: try: response = self.client.get_object(Bucket=self.container_name, Key=self.get_meta_key()) meta_dict = pickle.loads(response['Body'].read()) return ArrayGrid.from_meta(meta_dict) except Exception as _: return None def del_array(self): objects = [] grid_entry_iterator = self.grid.get_entry_iterator() for grid_entry in grid_entry_iterator: objects.append({"Key": self.get_key(grid_entry)}) response = self.client.delete_objects( Bucket=self.container_name, Delete={ 'Objects': objects, }, ) return response class BimodalGaussian(object): @classmethod def get_dataset(cls, n, d, p=0.9, seed=1, dtype=np.float64, theta=None): return cls(10, 2, 30, 4, dim=d, seed=seed, dtype=dtype).sample(n, p=p, theta=theta) def __init__(self, mu1, sigma1, mu2, sigma2, dim=2, seed=1337, dtype=np.float64): self.dtype = dtype self.seed = seed self.rs = np.random.RandomState(self.seed) self.dim = dim self.mu1 = self.to_arr(mu1, 1) self.sigma1 = self.to_arr(sigma1, 1) self.mu2 = self.to_arr(mu2, 1) self.sigma2 = self.to_arr(sigma2, 1) def to_arr(self, sigma, num_axes): assert num_axes == 1 or num_axes == 2 sigma_arr = sigma if not isinstance(sigma, np.ndarray): # Assume it's not diag. sigma_arr = np.empty(self.dim, dtype=self.dtype) sigma_arr[:] = sigma if num_axes == 2: if len(sigma_arr.shape) == 1: sigma_arr = np.diag(sigma_arr).astype(self.dtype) assert len(sigma_arr.shape) == 2 assert sigma_arr.shape[0] == sigma_arr.shape[1] else: assert len(sigma_arr.shape) == num_axes return sigma_arr def sample(self, n, p=0.9, theta=None): # Larger p => more samples of first Gaussian. # Pass theta to sample for regression. n1 = int(n * p) n2 = n - n1 X1 = self.rs.randn(n1, self.dim).astype(self.dtype) * self.sigma1.T + self.mu1.T X2 = self.rs.randn(n2, self.dim).astype(self.dtype) * self.sigma2.T + self.mu2.T if theta is None: y1 =
np.ones(n1, dtype=self.dtype)
numpy.ones
import os import pytest from concurrent import futures import copy import numpy as np import numpy.testing as npt from paramiko.ssh_exception import NoValidConnectionsError from batman.tasks.sample_cache import SampleCache from batman.tasks import (ProviderFunction, ProviderFile, ProviderJob) from batman.input_output import formater @pytest.fixture(scope='module') def sample_spec(): return { 'plabels': ['X1', 'X2'], 'psizes': [1, 1], 'flabels': ['F1', 'F2', 'F3'], 'fsizes': [1, 1, 2], 'space_fname': 'sample-space.json', 'space_format': 'json', 'data_fname': 'sample-data.csv', 'data_format': 'csv', } def test_samplecache(tmp, sample_spec): space_fmt = formater(sample_spec['space_format']) data_fmt = formater(sample_spec['data_format']) savedir = os.path.join(tmp, 'snapshots') datadir = os.path.join(os.path.dirname(__file__), 'data', 'snapshots') cache = SampleCache(savedir=savedir, **sample_spec) # test init --> is empty with proper labels assert len(cache) == 0 # test discover --> load every existing snapshots cache.discover(os.path.join(datadir, '*')) assert len(cache) == 9 space_file = sample_spec['space_fname'] plabels = sample_spec['plabels'] result_space = np.concatenate([ space_fmt.read(os.path.join(datadir, '1', space_file), plabels), space_fmt.read(os.path.join(datadir, '3', space_file), plabels), space_fmt.read(os.path.join(datadir, '5', space_file), plabels), ]) data_file = sample_spec['data_fname'] flabels = sample_spec['flabels'] result_data = np.concatenate([ data_fmt.read(os.path.join(datadir, '1', data_file), flabels), data_fmt.read(os.path.join(datadir, '3', data_file), flabels), data_fmt.read(os.path.join(datadir, '5', data_file), flabels), ]) npt.assert_array_equal(result_space, cache.space) npt.assert_array_equal(result_data, cache.data) # test save --> write to file (and reload) cache.save() assert os.path.isfile(os.path.join(savedir, space_file)) assert os.path.isfile(os.path.join(savedir, data_file)) result_space = space_fmt.read(os.path.join(savedir, space_file), plabels) result_data = data_fmt.read(os.path.join(savedir, data_file), flabels) npt.assert_array_equal(cache.space, result_space) npt.assert_array_equal(cache.data, result_data) cache.save(tmp) assert os.path.isfile(os.path.join(tmp, space_file)) assert os.path.isfile(os.path.join(tmp, data_file)) # test locate --> return proper location for existing and new points points = cache.space[:4] * np.reshape([1, -1, -1, 1], (-1, 1)) index = cache.locate(points) npt.assert_array_equal([0, 9, 10, 3], index) def test_provider_function(tmp, sample_spec): space_fmt = formater(sample_spec['space_format']) data_fmt = formater(sample_spec['data_format']) space_file = sample_spec['space_fname'] plabels = sample_spec['plabels'] data_file = sample_spec['data_fname'] flabels = sample_spec['flabels'] datadir = os.path.join(os.path.dirname(__file__), 'data', 'snapshots') provider = ProviderFunction(module='tests.plugins', function='f_snapshot', discover_pattern=os.path.join(datadir, '*'), **sample_spec) # test return existing points = space_fmt.read(os.path.join(datadir, '3', space_file), plabels) data = data_fmt.read(os.path.join(datadir, '3', data_file), flabels) sample = provider.require_data(points) npt.assert_array_equal(points, sample.space) npt.assert_array_equal(data, sample.data) # test return new points *= -1 data = np.tile([42, 87, 74, 74], (len(points), 1)) sample = provider.require_data(points) npt.assert_array_equal(points, sample.space)
npt.assert_array_equal(data, sample.data)
numpy.testing.assert_array_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 22 12:56:14 2020 Finds latitudes and longitudes (out_lat, out_lon, min_idx) of unmasked grid cells in the grid of the input CMIP6 data array (da) nearest (min_dists) to query latitude/longitude points (qlats, qlons). @author: thermans """ import numpy as np import xarray as xr def angdist(lats,lons,qlats,qlons): #calculate angular distance lat0,lat = np.meshgrid(np.radians(lats),np.radians(qlats)) lon0,lon = np.meshgrid(np.radians(lons),np.radians(qlons)) temp = np.arctan2(np.sqrt((np.cos(lat)*np.sin(lon-lon0))**2 + (np.cos(lat0)*
np.sin(lat)
numpy.sin
import cv2 import os import numpy as np import network import preprocessor def main(): print('OpenCV version {} '.format(cv2.__version__)) current_dir = os.path.dirname(__file__) author = '021' training_folder = os.path.join(current_dir, 'data/training/', author) test_folder = os.path.join(current_dir, 'data/test/', author) training_data = [] for filename in os.listdir(training_folder): img = cv2.imread(os.path.join(training_folder, filename), 0) if img is not None: data = np.array(preprocessor.prepare(img)) data = np.reshape(data, (901, 1)) result = [[0], [1]] if "genuine" in filename else [[1], [0]] result = np.array(result) result = np.reshape(result, (2, 1)) training_data.append((data, result)) test_data = [] for filename in os.listdir(test_folder): img = cv2.imread(os.path.join(test_folder, filename), 0) if img is not None: data = np.array(preprocessor.prepare(img)) data =
np.reshape(data, (901, 1))
numpy.reshape
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for normals.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from six.moves import range import tensorflow as tf from tensorflow_graphics.geometry.representation.mesh import normals from tensorflow_graphics.util import test_case class MeshTest(test_case.TestCase): @parameterized.parameters( (((None, 3), (None, 3)), (tf.float32, tf.int32)), (((3, 6, 3), (3, 5, 4)), (tf.float32, tf.int32)), ) def test_gather_faces_exception_not_raised(self, shapes, dtypes): """Tests that the shape exceptions are not raised.""" self.assert_exception_is_not_raised(normals.gather_faces, shapes, dtypes) @parameterized.parameters( ("Not all batch dimensions are identical", (3, 5, 4, 4), (1, 2, 4, 4)), ("Not all batch dimensions are identical", (5, 4, 4), (1, 2, 4, 4)), ("Not all batch dimensions are identical", (3, 5, 4, 4), (2, 4, 4)), ("vertices must have a rank greater than 1", (4,), (1, 2, 4, 4)), ("indices must have a rank greater than 1", (3, 5, 4, 4), (4,)), ) def test_gather_faces_exception_raised(self, error_msg, *shapes): """Tests that the shape exceptions are properly raised.""" self.assert_exception_is_raised(normals.gather_faces, error_msg, shapes) def test_gather_faces_jacobian_random(self): """Test the Jacobian of the face extraction function.""" tensor_size = np.random.randint(2, 5) tensor_shape = np.random.randint(1, 5, size=tensor_size).tolist() vertex_init = np.random.random(size=tensor_shape) indices_init = np.random.randint(0, tensor_shape[-2], size=tensor_shape) indices_tensor = tf.convert_to_tensor(value=indices_init) def gather_faces(vertex_tensor): return normals.gather_faces(vertex_tensor, indices_tensor) self.assert_jacobian_is_correct_fn(gather_faces, [vertex_init]) @parameterized.parameters( ((((0.,), (1.,)), ((1, 0),)), ((((1.,), (0.,)),),)), ((((0., 1.), (2., 3.)), ((1, 0),)), ((((2., 3.), (0., 1.)),),)), ((((0., 1., 2.), (3., 4., 5.)), ((1, 0),)), ((((3., 4., 5.), (0., 1., 2.)),),)), ) def test_gather_faces_preset(self, test_inputs, test_outputs): """Tests the extraction of mesh faces.""" self.assert_output_is_correct( normals.gather_faces, test_inputs, test_outputs, tile=False) def test_gather_faces_random(self): """Tests the extraction of mesh faces.""" tensor_size = np.random.randint(3, 5) tensor_shape = np.random.randint(1, 5, size=tensor_size).tolist() vertices = np.random.random(size=tensor_shape) indices = np.arange(tensor_shape[-2]) indices = indices.reshape([1] * (tensor_size - 1) + [-1]) indices = np.tile(indices, tensor_shape[:-2] + [1, 1]) expected =
np.expand_dims(vertices, -3)
numpy.expand_dims
import pandas as pd import numpy as np import os from transformers import AutoTokenizer import re from prcs import digit_place_embed from functools import partial import tqdm def pad_list(lst : list): return np.pad(lst, (0, 150-len(lst)), 'constant', constant_values=(0)) def numpy_array(lst :list): #Convert list to array return np.array(lst).tolist() def word2index(word_list, vocabs): return vocabs[word_list] def re_sub(x): return re.sub(r'[,|!?"\':;~()\[\]]', '', x) def null_fill(df, value_mode): def _fillNA(seq, rp_value): return [rp_value if x!=x else x for x in seq ] if value_mode =='VC': df['value'] = df['value'].map(lambda x : _fillNA(x, 0.0)) df['uom'] = df['uom'].map(lambda x : _fillNA(x, ' ')) else: df['value'] = df['value'].map(lambda x : _fillNA(x, ' ')) df['uom'] = df['uom'].map(lambda x : _fillNA(x, ' ')) return df def agg_col(df, value_mode): def _agg(a, b): return [str(x) + str(y) for x,y in zip(a, b)] def _value_split(x): # value seq list seq = [' '.join(str(y)) for y in x ] return seq def _round(seq): return [round(x, 6) if type(x)==float else x for x in seq ] # NV => code_name # VA => code_name + value + uom # DSVA => code_name + value(split) + uom # VC => code_name + uom / value if value_mode == 'NV': df['code_name'] = pd.Series([list(map(str, a)) for a in df['code_name']]) elif value_mode =='VA': df['value'] = df['value'].map(lambda x : _round(x)) df['code_name'] = pd.Series([_agg(a,b) for a, b in zip(df['code_name'], df['value'])]) df['code_name'] = pd.Series([_agg(a,b) for a, b in zip(df['code_name'], df['uom'])]) elif value_mode =='DSVA': df['value'] = df['value'].map(lambda x : _round(x)) df['value'] = df['value'].map(lambda x : _value_split(x)) df['code_name'] = pd.Series([_agg(a,b) for a, b in zip(df['code_name'], df['value'])]) df['code_name'] = pd.Series([_agg(a,b) for a, b in zip(df['code_name'], df['uom'])]) elif value_mode =='VC': df['value'] = df['value'].map(lambda x : _round(x)) df['code_name'] = pd.Series([_agg(a,b) for a, b in zip(df['code_name'], df['uom'])]) return df def making_vocab(df): vocab_dict = {} vocab_dict['[PAD]'] = 0 vocab_dict['[CLS]'] = 1 vocab_dict['[MASK]'] = 2 df['merge_code_set'] = df['code_name'].apply(lambda x : list(set(x))) vocab_set = [] for codeset in df['merge_code_set']: vocab_set.extend(codeset) vocab_set = list(set(vocab_set)) for idx, vocab in enumerate(vocab_set): vocab_dict[vocab] = idx+3 return vocab_dict def _tokenized_max_length(vocab, tokenizer): tokenized_vocab= tokenizer(list(vocab.keys())) max_word_len = max(list(map(len, tokenized_vocab['input_ids']))) return max_word_len def _organize(seq): return re.sub(r'[,|!?"\':;~()\[\]]', '', seq) def tokenize_seq(seq, word_max_len, tokenizer): seq = list(map(_organize, seq)) seq = ['[PAD]' if x=='0.0' else x for x in seq] tokenized_seq= tokenizer(seq, padding = 'max_length', return_tensors='pt', max_length=word_max_len) return tokenized_seq def convert2numpy(input_path, output_path): value_mode_list = ['NV', 'DSVA', 'VC'] sources = ['mimic','eicu'] tokenizer= AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") for src in sources: save_path = f'{output_path}/input/{src}' filename = '{}_df.pkl'.format(src) df = pd.read_pickle(os.path.join(input_path, filename)) print('{} input files load !'.format(src)) for value_mode in value_mode_list: print(value_mode) save_name = f'{src}_input_index_{value_mode}' print('save_name', save_name) df = null_fill(df, value_mode) df = agg_col(df, value_mode) vocab = making_vocab(df) vocab['0.0'] = 0 src2index= partial(word2index, vocabs=vocab) # input_index index =[list(map(src2index, icu)) for icu in df['code_name']] array = np.array(index) np.save(os.path.join(save_path, save_name), array) print('tokenization start!') # tokenized word_max_len = _tokenized_max_length(vocab, tokenizer) token_tmp = [tokenize_seq(seq, word_max_len, tokenizer) for seq in tqdm.tqdm(df['code_name'])] df['input_ids'] =pd.Series([token['input_ids'] for token in token_tmp]) df['token_type_ids'] =pd.Series([token['token_type_ids'] for token in token_tmp]) df['attention_mask'] =pd.Series([token['attention_mask'] for token in token_tmp]) #tokenized save np.save(os.path.join(save_path, f'input_ids_{value_mode}.npy'), np.array(df['input_ids'])) np.save(os.path.join(save_path, f'token_type_ids_{value_mode}.npy'), np.array(df['token_type_ids'])) np.save(os.path.join(save_path, f'attention_mask_{value_mode}.npy'), np.array(df['attention_mask'])) if value_mode == 'NV': #value value =
np.array([df['value']])
numpy.array
# To import required modules: import numpy as np import time import os import sys import matplotlib import matplotlib.cm as cm #for color maps import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.gridspec import GridSpec #for specifying plot attributes from matplotlib import ticker #for setting contour plots to log scale from matplotlib.colors import LogNorm #for log color scales import scipy.integrate #for numerical integration import scipy.misc #for factorial function from scipy.special import erf #error function, used in computing CDF of normal distribution import scipy.interpolate #for interpolation functions import corner #corner.py package for corner plots #matplotlib.rc('text', usetex=True) sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))) from src.functions_general import * from src.functions_compare_kepler import * from src.functions_load_sims import * from src.functions_plot_catalogs import * from src.functions_plot_params import * from src.functions_compute_RVs import * ##### To load the underlying and observed populations: savefigures = False loadfiles_directory = '/Users/hematthi/Documents/GradSchool/Research/ACI/Simulated_Data/AMD_system/Split_stars/Singles_ecc/Params11_KS/Distribute_AMD_per_mass/durations_norm_circ_singles_multis_GF2020_KS/GP_med/Conditional_P8_12d_R1p5_2_transiting/' #'Conditional_Venus/' #'Conditional_P8_12d_R1p5_2_transiting/' savefigures_directory = '/Users/hematthi/Documents/GradSchool/Research/ExoplanetsSysSim_Clusters/Figures/Model_Optimization/AMD_system/Split_stars/Singles_ecc/Params11_KS/Distribute_AMD_per_mass/durations_norm_circ_singles_multis_GF2020_KS/Best_models/GP_med/Systems_conditional/Conditional_P8_12d_R1p5_2_transiting/' #'Conditional_Venus/' #'Conditional_P8_12d_R1p5_2_transiting/' run_number = '' model_name = 'Maximum_AMD_model' + run_number N_sim, cos_factor, P_min, P_max, radii_min, radii_max = read_targets_period_radius_bounds(loadfiles_directory + 'periods%s.out' % run_number) param_vals_all = read_sim_params(loadfiles_directory + 'periods%s.out' % run_number) sssp_per_sys, sssp = compute_summary_stats_from_cat_phys(file_name_path=loadfiles_directory, run_number=run_number, load_full_tables=True) P_cond_bounds, Rp_cond_bounds, Mp_cond_bounds = [8.,11.3137], [1.5874,2.0], [0.,np.inf] #P_cond_bounds, Rp_cond_bounds, Mp_cond_bounds = [8.,12.], [1.8,2.0], [0.,np.inf] #P_cond_bounds, Rp_cond_bounds, Mp_cond_bounds = [8.,12.], [0.9,1.1], [0.,np.inf] #P_cond_bounds, Rp_cond_bounds, Mp_cond_bounds = [8.,12.], [3.,4.], [0.,np.inf] #P_cond_bounds, Rp_cond_bounds, Mp_cond_bounds = [215.,235.], [0.9,1.0], [0.77,0.86] # Venus det = True # set False for Venus conds = conditionals_dict(P_cond_bounds=P_cond_bounds, Rp_cond_bounds=Rp_cond_bounds, Mp_cond_bounds=Mp_cond_bounds, det=det) n_per_sys = sssp_per_sys['Mtot_all'] bools_cond_per_sys = condition_planets_bools_per_sys(sssp_per_sys, conds) i_cond = condition_systems_indices(sssp_per_sys, conds) n_sys_cond = len(i_cond) P_all_cond = sssp_per_sys['P_all'][i_cond] Rp_all_cond = sssp_per_sys['radii_all'][i_cond] det_all_cond = sssp_per_sys['det_all'][i_cond] bools_cond_all_cond = bools_cond_per_sys[i_cond] # To also load in a full simulated catalog for normalizing the relative occurrence of planets in each bin: loadfiles_directory = '/Users/hematthi/Documents/GradSchool/Research/ACI/Simulated_Data/AMD_system/Split_stars/Singles_ecc/Params11_KS/Distribute_AMD_per_mass/durations_norm_circ_singles_multis_GF2020_KS/GP_med/' run_number = '' param_vals_all_full = read_sim_params(loadfiles_directory + 'periods%s.out' % run_number) sssp_per_sys_full, sssp_full = compute_summary_stats_from_cat_phys(file_name_path=loadfiles_directory, run_number=run_number, load_full_tables=True) n_sys_full = len(sssp_per_sys_full['Mtot_all']) P_all_full = sssp_per_sys_full['P_all'] Rp_all_full = sssp_per_sys_full['radii_all'] ##### To plot period-radius diagrams: afs = 20 # axes labels font size tfs = 20 # text labels font size lfs = 16 # legend labels font size mfs = 12 # main numbers font size sfs = 12 # secondary numbers font size bins = 100 ##### Scatter plot of period vs radius for the conditioned systems: #P_max = 256. # if want to further truncate periods for plot n_sys_plot = 1000 P_all_cond_plot = P_all_cond[:n_sys_plot] Rp_all_cond_plot = Rp_all_cond[:n_sys_plot] det_all_cond_plot = det_all_cond[:n_sys_plot] bools_cond_all_cond_plot = bools_cond_all_cond[:n_sys_plot] fig = plt.figure(figsize=(16,8)) plot = GridSpec(6,10,left=0.1,bottom=0.1,right=0.95,top=0.95,wspace=0,hspace=0) ax = plt.subplot(plot[1:,:9]) # Contour plot: #cmap = cm.get_cmap('viridis', 256) corner.hist2d(np.log10(P_all_cond[(~bools_cond_all_cond) & (P_all_cond > 0) & (P_all_cond < P_max)]), np.log10(Rp_all_cond[(~bools_cond_all_cond) & (P_all_cond > 0) & (P_all_cond < P_max)]), bins=30, plot_datapoints=False, plot_density=False, fill_contours=True, contour_kwargs={'colors': ['0.6','0.4','0.2','0']}, data_kwargs={'color': 'k'}) #{'colors': ['0.6','0.4','0.2','0']}; {'colors': [cmap(0.2), cmap(0.4), cmap(0.6), cmap(0.8)]} # Scatter dots: #plt.scatter(np.log10(P_all_cond_plot[bools_cond_all_cond_plot]), np.log10(Rp_all_cond_plot[bools_cond_all_cond_plot]), s=5, marker='.', c='g', label='Conditioned planets') #plt.scatter(np.log10(P_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 1)]), np.log10(Rp_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 1)]), s=5, marker='.', c='b', label='Other planets in the conditioned systems') # Scatter circles with/without outlines for detected/undetected planets: sc11 = plt.scatter(np.log10(P_all_cond_plot[(bools_cond_all_cond_plot) & (det_all_cond_plot == 1)]), np.log10(Rp_all_cond_plot[(bools_cond_all_cond_plot) & (det_all_cond_plot == 1)]), s=10, marker='o', facecolors='g', edgecolors='g', label='Conditioned planets') sc12 = plt.scatter(np.log10(P_all_cond_plot[(bools_cond_all_cond_plot) & (det_all_cond_plot == 0)]), np.log10(Rp_all_cond_plot[(bools_cond_all_cond_plot) & (det_all_cond_plot == 0)]), s=10, marker='o', facecolors='none', edgecolors='g') sc21 = plt.scatter(np.log10(P_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 1)]), np.log10(Rp_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 1)]), s=10, marker='o', facecolors='b', edgecolors='b', label='Other planets in the conditioned systems') sc22 = plt.scatter(np.log10(P_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 0)]), np.log10(Rp_all_cond_plot[(~bools_cond_all_cond_plot) & (P_all_cond_plot > 0) & (det_all_cond_plot == 0)]), s=10, marker='o', facecolors='none', edgecolors='b') ax.tick_params(axis='both', labelsize=20) xtick_vals = np.array([3,10,30,100,300]) ytick_vals = np.array([0.5,1,2,4,8]) plt.xticks(np.log10(xtick_vals), xtick_vals) plt.yticks(np.log10(ytick_vals), ytick_vals) plt.xlim([np.log10(P_min), np.log10(P_max)]) plt.ylim([np.log10(radii_min), np.log10(radii_max)]) plt.xlabel(r'Orbital period $P$ (days)', fontsize=20) plt.ylabel(r'Planet radius $R_p$ ($R_\oplus$)', fontsize=20) legend1 = plt.legend([sc11, sc21], ['Conditioned planets', 'Other planets in the conditioned systems'], loc='upper left', bbox_to_anchor=(0,1), ncol=1, frameon=False, fontsize=lfs) # for conditioned/other planets (colors) #plt.legend([sc21, sc22], ['Kepler-detected', 'Kepler-undetected'], loc='upper right', bbox_to_anchor=(1,1), ncol=1, frameon=False, fontsize=lfs) # for detected/undetected planets (markers) #plt.gca().add_artist(legend1) ax = plt.subplot(plot[0,:9]) # top histogram x_cond = P_all_cond[(~bools_cond_all_cond) & (P_all_cond > 0)] plt.hist(x_cond, bins=np.logspace(np.log10(P_min), np.log10(P_max), bins+1), weights=np.ones(len(x_cond))/len(x_cond), histtype='step', color='b', ls='-', label='Other planets in the conditioned systems') plt.hist(sssp_full['P_all'], bins=np.logspace(np.log10(P_min), np.log10(P_max), bins+1), weights=np.ones(len(sssp_full['P_all']))/len(sssp_full['P_all']), histtype='step', color='k', ls='-', label='Underlying distribution (all systems)') plt.gca().set_xscale("log") plt.xlim([P_min, P_max]) plt.xticks([]) plt.yticks([]) plt.legend(loc='upper left', bbox_to_anchor=(0,1), ncol=1, frameon=False, fontsize=lfs) ax = plt.subplot(plot[1:,9]) # side histogram x_cond = Rp_all_cond[(~bools_cond_all_cond) & (P_all_cond > 0)] plt.hist(x_cond, bins=np.logspace(np.log10(radii_min), np.log10(radii_max), bins+1), weights=np.ones(len(x_cond))/len(x_cond), histtype='step', orientation='horizontal', color='b', ls='-') plt.hist(sssp_full['radii_all'], bins=np.logspace(np.log10(radii_min), np.log10(radii_max), bins+1), weights=np.ones(len(sssp_full['radii_all']))/len(sssp_full['radii_all']), histtype='step', orientation='horizontal', color='k', ls='-') plt.gca().set_yscale("log") plt.ylim([radii_min, radii_max]) plt.xticks([]) plt.yticks([]) if savefigures: fig_name = savefigures_directory + model_name + '_P%s_%s_R%s_%s_cond_PR_loglog.pdf' % (P_cond_bounds[0], P_cond_bounds[1], Rp_cond_bounds[0], Rp_cond_bounds[1]) plt.savefig(fig_name) plt.close() ##### Period-radius grids (custom bins): #P_bins = np.logspace(np.log10(P_min), np.log10(P_max), 5+1) #R_bins = np.array([0.5, 1., 1.5, 2., 3., 5., 10.]) #P_bins = np.array([4., 8., 16., 32., 64., 128., 256.]) #R_bins = np.array([0.5, 1., 1.5, 2., 3., 4., 6.]) P_bins = np.logspace(np.log10(4.), np.log10(256.), 12+1) R_bins = np.logspace(np.log10(0.5), np.log10(8.), 12+1) #np.arange(0.5, 6.1, 0.5) n_P_bins, n_R_bins = len(P_bins)-1, len(R_bins)-1 # Specify edges of GridSpec panels to ensure that the legend is the same size as a cell: bgrid, tgrid = 0.1, 0.9 # bottom and top of grid lgrid, rleg, wcb = 0.08, 0.97, 0.09 # left of grid, width of space for colorbar, and right of legend rgrid = (rleg-lgrid-wcb)*(n_P_bins/(n_P_bins+1)) + lgrid lleg = rgrid + wcb bleg, tleg = tgrid - (tgrid-bgrid)/n_R_bins, tgrid # First, plot overall occurrence rates (all systems): fig = plt.figure(figsize=(16,8)) plot = GridSpec(1,1,left=lgrid,bottom=bgrid,right=rgrid,top=tgrid) plt.figtext(0.5, 0.95, r'Occurrence rates', va='center', ha='center', fontsize=tfs) ax = plt.subplot(plot[:,:]) mpps_grid = np.zeros((n_R_bins, n_P_bins)) mpps_dlnPR_grid = np.zeros((n_R_bins, n_P_bins)) for j in range(n_R_bins): for i in range(n_P_bins): dlnP, dlnR = np.log(P_bins[i+1]/P_bins[i]), np.log(R_bins[j+1]/R_bins[j]) pl_cell_bools_full = (P_all_full > P_bins[i]) & (P_all_full < P_bins[i+1]) & (Rp_all_full > R_bins[j]) & (Rp_all_full < R_bins[j+1]) pl_tot_cell_full = np.sum(pl_cell_bools_full) sys_cell_bools_full = np.any(pl_cell_bools_full, axis=1) sys_tot_cell_full = np.sum(sys_cell_bools_full) print('(i=%s,j=%s): n_pl (all) = %s/%s' % (i,j,pl_tot_cell_full,n_sys_full)) mpps_cell_full = pl_tot_cell_full/n_sys_full # mean number of planets in bin per star, for all systems mpps_dlnPR_cell_full = mpps_cell_full/(dlnP*dlnR) mpps_grid[j,i] = mpps_cell_full mpps_dlnPR_grid[j,i] = mpps_dlnPR_cell_full plt.text(x=(i+0.95)*(1./n_P_bins), y=(j+0.95)*(1./n_R_bins), s=r'${:.3f}$'.format(np.round(mpps_cell_full, 3)), ha='right', va='top', color='b', fontsize=sfs, transform=ax.transAxes) plt.text(x=(i+0.05)*(1./n_P_bins), y=(j+0.5)*(1./n_R_bins), s=r'${:.2f}$'.format(np.round(mpps_dlnPR_cell_full, 2)), ha='left', va='center', color='k', fontsize=mfs, fontweight='bold', transform=ax.transAxes) img = plt.imshow(mpps_dlnPR_grid, cmap='coolwarm', aspect='auto', interpolation="nearest", origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) #cmap='coolwarm' ax.tick_params(axis='both', labelsize=afs) plt.xticks(np.log10(P_bins[::2]), ['{:.1f}'.format(x) for x in P_bins[::2]]) plt.yticks(np.log10(R_bins[::3]), ['{:.1f}'.format(x) for x in R_bins[::3]]) plt.xlabel(r'Orbital period $P$ (days)', fontsize=tfs) plt.ylabel(r'Planet radius $R_p$ ($R_\oplus$)', fontsize=tfs) plot = GridSpec(1,1,left=rgrid+0.01,bottom=bgrid,right=rgrid+0.03,top=tgrid) # colorbar cax = plt.subplot(plot[:,:]) cbar = plt.colorbar(img, cax=cax) cbar.ax.tick_params(labelsize=lfs) cbar.set_label(r'$\frac{\bar{n}_{\rm bin}}{d(\ln{R_p}) d(\ln{P})}$', rotation=270, va='bottom', fontsize=tfs) plot = GridSpec(1,1,left=lleg,bottom=bleg,right=rleg,top=tleg) # legend ax = plt.subplot(plot[:,:]) plt.text(x=0.95, y=0.9, s='(2)', ha='right', va='top', color='b', fontsize=sfs, transform=ax.transAxes) plt.text(x=0.05, y=0.5, s='(1)', ha='left', va='center', color='k', fontsize=mfs, transform=ax.transAxes) plt.text(x=-0.3, y=-1.5, s=r'(1) $\frac{\bar{n}_{\rm bin}}{d(\ln{R_p}) d(\ln{P})}$', ha='left', va='center', color='k', fontsize=lfs, transform=ax.transAxes) plt.text(x=-0.3, y=-2.25, s=r'(2) $\bar{n}_{\rm bin}$', ha='left', va='center', color='b', fontsize=lfs, transform=ax.transAxes) plt.xticks([]) plt.yticks([]) plt.xlabel('Legend', fontsize=tfs) if savefigures: fig_name = savefigures_directory + model_name + '_all_PR_grid_rates.pdf' plt.savefig(fig_name) plt.close() ##### Remake for defense talk: fig = plt.figure(figsize=(16,8)) plot = GridSpec(1,1,left=0.1,bottom=bgrid,right=0.865,top=tgrid,wspace=0,hspace=0) plt.figtext(0.5, 0.95, r'Occurrence rates over all systems', va='center', ha='center', fontsize=tfs) ax = plt.subplot(plot[:,:]) mpps_grid = np.zeros((n_R_bins, n_P_bins)) mpps_dlnPR_grid = np.zeros((n_R_bins, n_P_bins)) for j in range(n_R_bins): for i in range(n_P_bins): dlnP, dlnR = np.log(P_bins[i+1]/P_bins[i]), np.log(R_bins[j+1]/R_bins[j]) pl_cell_bools_full = (P_all_full > P_bins[i]) & (P_all_full < P_bins[i+1]) & (Rp_all_full > R_bins[j]) & (Rp_all_full < R_bins[j+1]) pl_tot_cell_full = np.sum(pl_cell_bools_full) sys_cell_bools_full = np.any(pl_cell_bools_full, axis=1) sys_tot_cell_full = np.sum(sys_cell_bools_full) print('(i=%s,j=%s): n_pl (all) = %s/%s' % (i,j,pl_tot_cell_full,n_sys_full)) mpps_cell_full = pl_tot_cell_full/n_sys_full # mean number of planets in bin per star, for all systems mpps_dlnPR_cell_full = mpps_cell_full/(dlnP*dlnR) mpps_grid[j,i] = mpps_cell_full mpps_dlnPR_grid[j,i] = mpps_dlnPR_cell_full plt.text(x=(i+0.5)*(1./n_P_bins), y=(j+0.5)*(1./n_R_bins), s=r'${:.3f}$'.format(np.round(mpps_cell_full, 3)), ha='center', va='center', color='k', fontsize=16, fontweight='bold', transform=ax.transAxes) img = plt.imshow(mpps_grid, cmap='coolwarm', aspect='auto', interpolation="nearest", vmax=0.072, origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) #cmap='coolwarm' ax.tick_params(axis='both', labelsize=afs) plt.xticks(np.log10(P_bins[::2]), ['{:.1f}'.format(x) for x in P_bins[::2]]) plt.yticks(np.log10(R_bins[::3]), ['{:.1f}'.format(x) for x in R_bins[::3]]) plt.xlabel(r'Orbital period $P$ (days)', fontsize=tfs) plt.ylabel(r'Planet radius $R_p$ ($R_\oplus$)', fontsize=tfs) plot = GridSpec(1,1,left=0.89,bottom=bgrid,right=0.92,top=tgrid) # colorbar cax = plt.subplot(plot[:,:]) cbar = plt.colorbar(img, cax=cax) cbar.ax.tick_params(labelsize=lfs) cbar.set_label(r'$\bar{n}_{\rm bin,all}$', rotation=270, va='bottom', fontsize=tfs) if savefigures: fig_name = savefigures_directory + model_name + '_all_PR_grid_rates_simple.pdf' plt.savefig(fig_name) plt.close() # Occurrence rates in the conditioned systems: fig = plt.figure(figsize=(16,8)) plot = GridSpec(1,1,left=lgrid,bottom=bgrid,right=rgrid,top=tgrid) plt.figtext(0.5, 0.95, r'Occurrence rates conditioned on a planet in $P = [{:.1f},{:.1f}]$d, $R_p = [{:.2f},{:.2f}] R_\oplus$'.format(conds['P_lower'], conds['P_upper'], conds['Rp_lower'], conds['Rp_upper']), va='center', ha='center', fontsize=tfs) #plt.figtext(0.5, 0.95, r'Occurrence rates conditioned on a Venus-like planet', va='center', ha='center', fontsize=tfs) ax = plt.subplot(plot[:,:]) mpps_grid = np.zeros((n_R_bins, n_P_bins)) mpps_dlnPR_grid = np.zeros((n_R_bins, n_P_bins)) fswp_grid = np.zeros((n_R_bins, n_P_bins)) for j in range(n_R_bins): for i in range(n_P_bins): dlnP, dlnR = np.log(P_bins[i+1]/P_bins[i]), np.log(R_bins[j+1]/R_bins[j]) pl_cell_bools = (P_all_cond > P_bins[i]) & (P_all_cond < P_bins[i+1]) & (Rp_all_cond > R_bins[j]) & (Rp_all_cond < R_bins[j+1]) & (~bools_cond_all_cond) # last condition is to NOT count the conditioned planets themselves pl_tot_cell = np.sum(pl_cell_bools) sys_cell_bools = np.any(pl_cell_bools, axis=1) sys_tot_cell = np.sum(sys_cell_bools) mpps_cell = pl_tot_cell/n_sys_cond # mean number of planets in bin per star, for conditioned systems mpps_dlnPR_cell = mpps_cell/(dlnP*dlnR) fswp_cell = sys_tot_cell/n_sys_cond # fraction of stars with planets in bin, for conditioned systems mpps_grid[j,i] = mpps_cell mpps_dlnPR_grid[j,i] = mpps_dlnPR_cell fswp_grid[j,i] = fswp_cell plt.text(x=(i+0.95)*(1./n_P_bins), y=(j+0.95)*(1./n_R_bins), s=r'${:.3f}$'.format(np.round(mpps_cell, 3)), ha='right', va='top', color='b', fontsize=sfs, transform=ax.transAxes) plt.text(x=(i+0.05)*(1./n_P_bins), y=(j+0.5)*(1./n_R_bins), s=r'${:.2f}$'.format(np.round(mpps_dlnPR_cell, 2)), ha='left', va='center', color='k', fontsize=mfs, fontweight='bold', transform=ax.transAxes) img = plt.imshow(mpps_dlnPR_grid, cmap='coolwarm', aspect='auto', interpolation="nearest", origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) #cmap='coolwarm' box_cond = patches.Rectangle(np.log10((conds['P_lower'], conds['Rp_lower'])), np.log10(conds['P_upper']/conds['P_lower']), np.log10(conds['Rp_upper']/conds['Rp_lower']), linewidth=2, edgecolor='g', facecolor='none') ax.add_patch(box_cond) ax.tick_params(axis='both', labelsize=afs) plt.xticks(np.log10(P_bins[::2]), ['{:.1f}'.format(x) for x in P_bins[::2]]) plt.yticks(np.log10(R_bins[::3]), ['{:.1f}'.format(x) for x in R_bins[::3]]) plt.xlabel(r'Orbital period $P$ (days)', fontsize=tfs) plt.ylabel(r'Planet radius $R_p$ ($R_\oplus$)', fontsize=tfs) plot = GridSpec(1,1,left=rgrid+0.01,bottom=bgrid,right=rgrid+0.03,top=tgrid) # colorbar cax = plt.subplot(plot[:,:]) cbar = plt.colorbar(img, cax=cax) cbar.ax.tick_params(labelsize=lfs) cbar.set_label(r'$\frac{\bar{n}_{\rm bin}}{d(\ln{R_p}) d(\ln{P})}$', rotation=270, va='bottom', fontsize=tfs) plot = GridSpec(1,1,left=lleg,bottom=bleg,right=rleg,top=tleg) # legend ax = plt.subplot(plot[:,:]) plt.text(x=0.95, y=0.9, s='(2)', ha='right', va='top', color='b', fontsize=sfs, transform=ax.transAxes) plt.text(x=0.05, y=0.5, s='(1)', ha='left', va='center', color='k', fontsize=mfs, transform=ax.transAxes) plt.text(x=-0.3, y=-1.5, s=r'(1) $\frac{\bar{n}_{\rm bin}}{d(\ln{R_p}) d(\ln{P})}$', ha='left', va='center', color='k', fontsize=lfs, transform=ax.transAxes) plt.text(x=-0.3, y=-2.25, s=r'(2) $\bar{n}_{\rm bin}$', ha='left', va='center', color='b', fontsize=lfs, transform=ax.transAxes) plt.xticks([]) plt.yticks([]) plt.xlabel('Legend', fontsize=tfs) if savefigures: fig_name = savefigures_directory + model_name + '_P%s_%s_R%s_%s_cond_PR_grid_rates.pdf' % (P_cond_bounds[0], P_cond_bounds[1], Rp_cond_bounds[0], Rp_cond_bounds[1]) plt.savefig(fig_name) plt.close() ##### Remake for defense talk: fig = plt.figure(figsize=(16,8)) plot = GridSpec(1,1,left=0.1,bottom=bgrid,right=0.865,top=tgrid,wspace=0,hspace=0) plt.figtext(0.5, 0.95, r'Occurrence rates conditioned on a planet in $P = [{:.1f},{:.1f}]$d, $R_p = [{:.2f},{:.2f}] R_\oplus$'.format(conds['P_lower'], conds['P_upper'], conds['Rp_lower'], conds['Rp_upper']), va='center', ha='center', fontsize=tfs) #plt.figtext(0.5, 0.95, r'Occurrence rates conditioned on a Venus-like planet', va='center', ha='center', fontsize=tfs) ax = plt.subplot(plot[:,:]) mpps_grid = np.zeros((n_R_bins, n_P_bins)) mpps_dlnPR_grid = np.zeros((n_R_bins, n_P_bins)) fswp_grid = np.zeros((n_R_bins, n_P_bins)) for j in range(n_R_bins): for i in range(n_P_bins): dlnP, dlnR = np.log(P_bins[i+1]/P_bins[i]), np.log(R_bins[j+1]/R_bins[j]) pl_cell_bools = (P_all_cond > P_bins[i]) & (P_all_cond < P_bins[i+1]) & (Rp_all_cond > R_bins[j]) & (Rp_all_cond < R_bins[j+1]) & (~bools_cond_all_cond) # last condition is to NOT count the conditioned planets themselves pl_tot_cell = np.sum(pl_cell_bools) sys_cell_bools = np.any(pl_cell_bools, axis=1) sys_tot_cell = np.sum(sys_cell_bools) mpps_cell = pl_tot_cell/n_sys_cond # mean number of planets in bin per star, for conditioned systems mpps_dlnPR_cell = mpps_cell/(dlnP*dlnR) fswp_cell = sys_tot_cell/n_sys_cond # fraction of stars with planets in bin, for conditioned systems mpps_grid[j,i] = mpps_cell mpps_dlnPR_grid[j,i] = mpps_dlnPR_cell fswp_grid[j,i] = fswp_cell plt.text(x=(i+0.5)*(1./n_P_bins), y=(j+0.5)*(1./n_R_bins), s=r'${:.3f}$'.format(np.round(mpps_cell, 3)), ha='center', va='center', color='k', fontsize=16, fontweight='bold', transform=ax.transAxes) img = plt.imshow(mpps_grid, cmap='coolwarm', aspect='auto', interpolation="nearest", vmax=0.072, origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) #cmap='coolwarm' box_cond = patches.Rectangle(np.log10((conds['P_lower'], conds['Rp_lower'])), np.log10(conds['P_upper']/conds['P_lower']), np.log10(conds['Rp_upper']/conds['Rp_lower']), linewidth=2, edgecolor='g', facecolor='none') ax.add_patch(box_cond) ax.tick_params(axis='both', labelsize=afs) plt.xticks(np.log10(P_bins[::2]), ['{:.1f}'.format(x) for x in P_bins[::2]]) plt.yticks(np.log10(R_bins[::3]), ['{:.1f}'.format(x) for x in R_bins[::3]]) plt.xlabel(r'Orbital period $P$ (days)', fontsize=tfs) plt.ylabel(r'Planet radius $R_p$ ($R_\oplus$)', fontsize=tfs) plot = GridSpec(1,1,left=0.89,bottom=bgrid,right=0.92,top=tgrid) # colorbar cax = plt.subplot(plot[:,:]) cbar = plt.colorbar(img, cax=cax) cbar.ax.tick_params(labelsize=lfs) cbar.set_label(r'$\bar{n}_{\rm bin,cond}$', rotation=270, va='bottom', fontsize=tfs) if savefigures: fig_name = savefigures_directory + model_name + '_P%s_%s_R%s_%s_cond_PR_grid_rates_simple.pdf' % (P_cond_bounds[0], P_cond_bounds[1], Rp_cond_bounds[0], Rp_cond_bounds[1]) plt.savefig(fig_name) plt.close() # Relative occurrence rates (intrinsic mean numbers of planets in conditioned systems vs. in general) in each bin: fig = plt.figure(figsize=(16,8)) plot = GridSpec(1,1,left=lgrid,bottom=bgrid,right=rgrid,top=tgrid) plt.figtext(0.5, 0.95, r'Relative occurrence rates conditioned on a planet in $P = [{:.1f},{:.1f}]$d, $R_p = [{:.2f},{:.2f}] R_\oplus$'.format(conds['P_lower'], conds['P_upper'], conds['Rp_lower'], conds['Rp_upper']), va='center', ha='center', fontsize=tfs) #plt.figtext(0.5, 0.95, r'Relative occurrence rates conditioned on a Venus-like planet', va='center', ha='center', fontsize=tfs) ax = plt.subplot(plot[:,:]) rel_mpps_grid = np.zeros((n_R_bins, n_P_bins)) for j in range(n_R_bins): for i in range(n_P_bins): dlnP, dlnR = np.log(P_bins[i+1]/P_bins[i]), np.log(R_bins[j+1]/R_bins[j]) pl_cell_bools = (P_all_cond > P_bins[i]) & (P_all_cond < P_bins[i+1]) & (Rp_all_cond > R_bins[j]) & (Rp_all_cond < R_bins[j+1]) & (~bools_cond_all_cond) # last condition is to NOT count the conditioned planets themselves pl_tot_cell = np.sum(pl_cell_bools) sys_cell_bools = np.any(pl_cell_bools, axis=1) sys_tot_cell = np.sum(sys_cell_bools) pl_cell_bools_full = (P_all_full > P_bins[i]) & (P_all_full < P_bins[i+1]) & (Rp_all_full > R_bins[j]) & (Rp_all_full < R_bins[j+1]) pl_tot_cell_full = np.sum(pl_cell_bools_full) sys_cell_bools_full = np.any(pl_cell_bools_full, axis=1) sys_tot_cell_full = np.sum(sys_cell_bools_full) print('(i=%s,j=%s): n_pl (cond) = %s/%s, n_pl (all) = %s/%s' % (i,j,pl_tot_cell,n_sys_cond,pl_tot_cell_full,n_sys_full)) mpps_cell = pl_tot_cell/n_sys_cond # mean number of planets in bin per star, for conditioned systems mpps_dlnPR_cell = mpps_cell/(dlnP*dlnR) mpps_cell_full = pl_tot_cell_full/n_sys_full # mean number of planets in bin per star, for all systems mpps_dlnPR_cell_full = mpps_cell_full/(dlnP*dlnR) rel_mpps_grid[j,i] = mpps_cell/mpps_cell_full plt.text(x=(i+0.95)*(1./n_P_bins), y=(j+0.7)*(1./n_R_bins), s=r'${:.2f}$'.format(np.round(mpps_dlnPR_cell, 2)), ha='right', va='center', color='b', fontsize=sfs, transform=ax.transAxes) plt.text(x=(i+0.95)*(1./n_P_bins), y=(j+0.3)*(1./n_R_bins), s=r'${:.2f}$'.format(np.round(mpps_dlnPR_cell_full, 2)), ha='right', va='center', color='r', fontsize=sfs, transform=ax.transAxes) plt.text(x=(i+0.05)*(1./n_P_bins), y=(j+0.5)*(1./n_R_bins), s=r'${:.2f}$'.format(np.round(mpps_cell/mpps_cell_full, 2)), ha='left', va='center', color='k', fontsize=mfs, fontweight='bold', transform=ax.transAxes) img = plt.imshow(rel_mpps_grid, cmap='coolwarm', norm=MidPointLogNorm(vmin=0.1,vmax=10.,midpoint=1.), aspect='auto', interpolation="nearest", origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) # log colorscale; norm=matplotlib.colors.LogNorm(vmin=0.1,vmax=10.); MidPointLogNorm(vmin=0.1,vmax=10.,midpoint=1.) #img = plt.imshow(rel_mpps_grid, cmap='coolwarm', norm=matplotlib.colors.TwoSlopeNorm(vcenter=1.), aspect='auto', interpolation="nearest", origin='lower', extent=np.log10((P_bins[0], P_bins[-1], R_bins[0], R_bins[-1]))) # linear colorscale box_cond = patches.Rectangle(np.log10((conds['P_lower'], conds['Rp_lower'])),
np.log10(conds['P_upper']/conds['P_lower'])
numpy.log10
#!/usr/bin/env python # coding: utf-8 import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 18}) def get_k_b(xy1,xy2): k=(xy2[1]-xy1[1])/(xy2[0]-xy1[0]) b=xy1[1]-k*xy1[0] return k,b def moving_average(a, n): ret=np.copy(a) for i in range(n//2,len(a)-n//2): ret[i]=np.mean(a[i-n//2:i+n//2+1]) return ret def get_see_ranges(roi_xy): roi_xy_new_0=np.append(roi_xy[:,0],roi_xy[0,0]) roi_xy_new_1=np.append(roi_xy[:,1],roi_xy[0,1]) roi_xy_new=np.vstack((roi_xy_new_0,roi_xy_new_1)).T # print(roi_xy_new) bum_f_axe=np.arange(np.min(np.array(roi_xy)[:,0])+1,np.max(np.array(roi_xy_new)[:,0])) f0_arange=[] df_arange=[] for j in range(len(roi_xy_new)-1): p1=roi_xy_new[j] p2=roi_xy_new[j+1] f0_arange.append(np.arange(np.minimum(roi_xy_new[j][0],roi_xy_new[j+1][0]),np.maximum(roi_xy_new[j][0],roi_xy_new[j+1][0]))) #~ print(j,p1,p2) k,b=get_k_b(p1,p2) df_arange.append((k*f0_arange[j]+b).astype(np.int)) #~ print("WOW") bum_ranges=[] for jj in range(len(bum_f_axe)): f=bum_f_axe[jj] dfs=[] for j in range(len(f0_arange)): if f in f0_arange[j]: f_ind=np.where(f0_arange[j]==f)[0][0] dfs.append(df_arange[j][f_ind]) bum_ranges.append((f,sorted(dfs))) return bum_ranges db_offset=[-8.7,0,-2.5] spec_db_file="spm_database_100Hz.npy" spec_file="spectrogram_A_n2500.npz" proc_files=[ 'proc_0100.npz', 'proc_0101.npz', 'proc_0120.npz', 'proc_0121.npz', 'proc_0140.npz', 'proc_0141.npz', 'proc_0160.npz', 'proc_0161.npz', 'proc_0180.npz', 'proc_0181.npz', ] SPM_DB=np.load(spec_db_file, allow_pickle=True) data=np.load(spec_file) spectrogram=data['spectrogram'] f_axe=data['f_axe'] t_axe=data['t_axe'] rngs=[[600+i*750,1150+i*750] for i in range(18)] rngs[-1][1]=13500 rngs.insert(0,[0,400]) spm_mean=np.zeros(2500) for i in range(len(rngs)): spm_mean+=np.mean(spectrogram[rngs[i][0]:rngs[i][1],:],axis=0) spm_mean/=len(rngs) # plt.figure() temp=spm_mean[0:360]/spm_mean[350] # plt.plot(temp) k,b=get_k_b([124,temp[124]],[127,temp[127]]); temp[125:127]=np.array([125,126])*k+b k,b=get_k_b([148,temp[148]],[152,temp[152]]); temp[149:152]=np.array(range(149,152))*k+b k,b=get_k_b([167,temp[167]],[171,temp[171]]); temp[168:171]=np.array(range(168,171))*k+b k,b=get_k_b([196,temp[196]],[200,temp[200]]); temp[197:200]=np.array(range(197,200))*k+b k,b=get_k_b([229,temp[229]],[231,temp[231]]); temp[230:231]=np.array(range(230,231))*k+b k,b=get_k_b([248,temp[248]],[252,temp[252]]); temp[249:252]=np.array(range(249,252))*k+b k,b=get_k_b([267,temp[267]],[271,temp[271]]); temp[268:271]=np.array(range(268,271))*k+b k,b=get_k_b([298,temp[298]],[302,temp[302]]); temp[299:302]=np.array(range(299,302))*k+b k,b=get_k_b([348,temp[348]],[352,temp[352]]); temp[349:352]=np.array(range(349,352))*k+b temp=moving_average(temp, 11) temp=temp[0:351] for angle_ind in range(9): for dir_ind in range(2): for session_ind in range(2): for i in range(len(SPM_DB[0][angle_ind][dir_ind][session_ind][0])): ind=np.where(SPM_DB[0][angle_ind][dir_ind][session_ind][2][i,0:2500]==1e-50)[0][-1]+1 SPM_DB[0][angle_ind][dir_ind][session_ind][2][i,ind:ind+351]=SPM_DB[0][angle_ind][dir_ind][session_ind][2][i,ind:ind+351]/temp DM_F0, DM_INT, DM_FREQS =[],[],[] BUM_F0, BUM_INT, BUM_FREQS =[],[],[] BUMD_F0, BUMD_INT, BUMD_FREQS =[],[],[] # file_ind=0 # for file_ind in range(len(proc_files)): for file_ind in [8,9,6,7,4,5,2,3,0,1]: # for file_ind in [7]: # for file_ind in range(9,10): filename=proc_files[file_ind] proc_data=np.load(filename) list(proc_data.keys()) temp_name=filename.split('.')[0].split('_')[-1] site_ind=int(temp_name[0]) series_ind=int(temp_name[1]) angle_ind=int(temp_name[2]) dir_ind=int(temp_name[3]) # site_ind, series_ind, angle_ind, dir_ind interference_mask=proc_data['interference_mask'] if dir_ind==0: interference_mask=np.flipud(interference_mask) roi_bum_xy=proc_data['roi_bum_xy'] roi_bumd_xy=proc_data['roi_bumd_xy'] roi_dm_xy=proc_data['roi_dm_xy'] spectrogram=SPM_DB[site_ind][angle_ind][dir_ind][session_ind][2] spec_log=10*np.log10(spectrogram) spec_filt=spec_log*(1-interference_mask)-200*interference_mask f0_axe=SPM_DB[site_ind][angle_ind][dir_ind][session_ind][0] f_axe=SPM_DB[site_ind][angle_ind][dir_ind][session_ind][1] if dir_ind==0: spec_filt=np.flipud(spec_filt) f0_axe=np.flip(f0_axe) bum_ranges=get_see_ranges(roi_bum_xy) bum_int=np.ones(len(bum_ranges))*np.nan bum_f0=np.zeros(len(bum_ranges)) bum_freqs=np.ones(len(bum_ranges))*np.nan for j in range(len(bum_ranges)): f0=bum_ranges[j][0] f0_ind=np.where(np.abs(f0_axe-f0)==np.min(np.abs(f0_axe-f0)))[0][0] df_min=bum_ranges[j][1][0] df_max=bum_ranges[j][1][1] df_min_ind=np.where(np.abs(f_axe/1000-df_min)==np.min(np.abs(f_axe/1000-df_min)))[0][0] df_max_ind=np.where(np.abs(f_axe/1000-df_max)==np.min(np.abs(f_axe/1000-df_max)))[0][0] bum_f0[j]=f0 bum_int[j]=np.max(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0) bum_freqs[j]=f_axe[df_min_ind+np.argmax(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0)]/1000 BUM_F0.append(bum_f0), BUM_INT.append(bum_int), BUM_FREQS.append(bum_freqs) bumd_ranges=get_see_ranges(roi_bumd_xy) # print(len(bumd_ranges),bumd_ranges) bumd_int=np.ones(len(bumd_ranges))*np.nan bumd_f0=np.zeros(len(bumd_ranges)) bumd_freqs=np.ones(len(bumd_ranges))*np.nan for j in range(len(bumd_ranges)): f0=bumd_ranges[j][0] f0_ind=np.where(np.abs(f0_axe-f0)==np.min(np.abs(f0_axe-f0)))[0][0] df_min=bumd_ranges[j][1][0] df_max=bumd_ranges[j][1][1] df_min_ind=np.where(np.abs(f_axe/1000-df_min)==np.min(np.abs(f_axe/1000-df_min)))[0][0] df_max_ind=np.where(np.abs(f_axe/1000-df_max)==np.min(np.abs(f_axe/1000-df_max)))[0][0] bumd_f0[j]=f0 bumd_int[j]=np.max(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0) bumd_freqs[j]=f_axe[df_min_ind+np.argmax(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0)]/1000 BUMD_F0.append(bumd_f0), BUMD_INT.append(bumd_int), BUMD_FREQS.append(bumd_freqs) dm_ranges=get_see_ranges(roi_dm_xy) dm_int=np.ones(len(dm_ranges))*np.nan dm_f0=np.zeros(len(dm_ranges)) dm_freqs=np.ones(len(dm_ranges))*np.nan for j in range(len(dm_ranges)): f0=dm_ranges[j][0] f0_ind=np.where(np.abs(f0_axe-f0)==np.min(np.abs(f0_axe-f0)))[0][0] df_min=dm_ranges[j][1][0] df_max=dm_ranges[j][1][1] df_min_ind=np.where(np.abs(f_axe/1000-df_min)==np.min(np.abs(f_axe/1000-df_min)))[0][0] df_max_ind=np.where(np.abs(f_axe/1000-df_max)==np.min(np.abs(f_axe/1000-df_max)))[0][0] dm_f0[j]=f0 dm_int[j]=np.max(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0) dm_freqs[j]=f_axe[df_min_ind+np.argmax(spec_filt[f0_ind,df_min_ind:df_max_ind+1],axis=0)]/1000 DM_F0.append(dm_f0), DM_INT.append(dm_int), DM_FREQS.append(dm_freqs) if site_ind==0 and series_ind==1 and angle_ind==0 and dir_ind==0: dm_f0[np.where(dm_f0==5777.)]=np.nan dm_f0[np.where(dm_f0==5837.)]=np.nan dm_f0[np.where(dm_f0==5927.)]=np.nan if site_ind==0 and series_ind==1 and angle_ind==4 and dir_ind==0: dm_f0[np.where(dm_f0==5927.)]=np.nan if site_ind==0 and series_ind==1 and angle_ind==8 and dir_ind==0: dm_f0[np.where(dm_f0==5929.)]=np.nan if site_ind==0 and series_ind==1 and angle_ind==8 and dir_ind==1: dm_f0[np.where(dm_f0==5917.)]=np.nan # ~ plt.figure(figsize=(9,9)) # ~ plt.subplot(211) # ~ # plt.pcolormesh(f0_axe,f_axe/1000,10*np.log10(spectrogram.T),vmin=-120, vmax=-80) # ~ plt.pcolormesh(f0_axe,f_axe/1000,spec_filt.T+db_offset[site_ind],vmin=-120, vmax=-80, cmap='jet') # ~ plt.plot(np.append(roi_bum_xy[:,0],roi_bum_xy[0,0]),np.append(roi_bum_xy[:,1],roi_bum_xy[0,1]),'k',lw=2) # ~ plt.plot(bum_f0,bum_freqs,'k',lw=2) # ~ plt.plot(dm_f0,dm_freqs,'k',lw=2) # ~ if angle_ind in [1,2,3]: # ~ plt.plot(np.append(roi_bumd_xy[:,0],roi_bumd_xy[0,0]),np.append(roi_bumd_xy[:,1],roi_bumd_xy[0,1]),'k',lw=2) # ~ plt.plot(bumd_f0,bumd_freqs,'k',lw=2) # ~ # plt.plot(np.append(roi_dm_xy[:,0],roi_dm_xy[0,0]),np.append(roi_dm_xy[:,1],roi_dm_xy[0,1]),'k',lw=2) # ~ plt.ylim([-50,200]) # ~ plt.xlim(5730,5930) # ~ plt.title(temp_name) # ~ plt.subplot(212) # ~ plt.ylim(-120,-80) # ~ plt.xlim(5730,5930) # ~ plt.plot(bum_f0,bum_int+db_offset[site_ind],'m') # ~ plt.plot(dm_f0,dm_int+db_offset[site_ind],'r') # ~ if angle_ind in [1,2,3]: plt.plot(bumd_f0,bumd_int+db_offset[site_ind],'g') # ~ plt.show() bb=[ [0.05, 0.19999999999999996, 0.13042372881355932-0.05, 0.95-0.19999999999999996], [0.1345084745762712, 0.19999999999999996, 0.2149322033898305-0.1345084745762712, 0.95-0.19999999999999996], [0.24301694915254235, 0.19999999999999996, 0.32344067796610165-0.24301694915254235, 0.95-0.19999999999999996], [0.3275254237288135, 0.19999999999999996, 0.4079491525423728-0.3275254237288135, 0.95-0.19999999999999996], [0.43603389830508466, 0.19999999999999996, 0.516457627118644-0.43603389830508466, 0.95-0.19999999999999996], [0.5205423728813559, 0.19999999999999996, 0.6009661016949152-0.5205423728813559, 0.95-0.19999999999999996], [0.6290508474576271, 0.19999999999999996, 0.7094745762711864-0.6290508474576271, 0.95-0.19999999999999996], [0.7135593220338983, 0.19999999999999996, 0.7939830508474576-0.7135593220338983, 0.95-0.19999999999999996], [0.8220677966101695, 0.19999999999999996, 0.9024915254237288-0.8220677966101695, 0.95-0.19999999999999996], [0.9065762711864407, 0.19999999999999996, 0.987-0.9065762711864407, 0.95-0.19999999999999996] ] #DM_PROC=np.load("dm_proc.npy") dm_proc_table_fname='dm_proc_100Hz.csv' dm_proc_table=np.loadtxt(dm_proc_table_fname,skiprows=1,delimiter=',') step=0 DM_PROC=[] for site_ind in range(3): DM_PROC.append([]) for angle_ind in range(9): DM_PROC[site_ind].append([]) for dir_ind in range(2): DM_PROC[site_ind][angle_ind].append([]) for series_ind in range(2): DM_PROC[site_ind][angle_ind][dir_ind].append((dm_proc_table[step,5],dm_proc_table[step,6],dm_proc_table[step,7],dm_proc_table[step,8])) step+=1 text_size=16 dx=0.011 fig=plt.figure(figsize=(16,15)) axs1=[] i_sh1=0.001 i_sh2=0.001 for i in range(len(bb)): if i in [1,3,5,7,9]: axs1.append(plt.axes(position=[bb[i][0]-dx+0.02-i_sh1*i,bb[i][1]+0.267*2-0.02,bb[i][2]-0.008,bb[i][3]/3])) # print(i) else: axs1.append(plt.axes(position=[bb[i][0]+0.0199-i_sh2*i,bb[i][1]+0.267*2-0.02,bb[i][2]-0.008,bb[i][3]/3])) cbaxes = plt.axes([0.060000000000000005, 0.05+0.269*2+0.10-0.02, 0.9769152542372881-0.060000000000000005, 0.05/3]) angle_inds=[8,6,4,2,0] site_ind=0 series_ind=1 for angle_ind2 in range(5): for dir_ind in range(2): angle_ind=angle_inds[angle_ind2] ind=angle_ind2*2+dir_ind f0_axe=SPM_DB[site_ind][angle_ind][dir_ind][series_ind][0] f_axe=SPM_DB[site_ind][angle_ind][dir_ind][series_ind][1] spectrogram=SPM_DB[site_ind][angle_ind][dir_ind][series_ind][2] pcm=axs1[ind].pcolormesh(f0_axe, f_axe/1000,10*np.log10(spectrogram.T)+db_offset[site_ind],vmax=-80,vmin=-120,cmap='jet',rasterized=True) axs1[ind].set_ylim([-20,150]) axs1[ind].set_xlim([5930,5730]) axs1[ind].set_xticks([5930]) if ind==0: axs1[ind].set_ylabel(r'$\Delta f$, kHz') if ind>0: axs1[ind].set_yticks([]) if dir_ind==1: axs1[ind].set_xticks([5730,5930]) axs1[ind].set_xlim([5730,5930]) cb = plt.colorbar(pcm, cax = cbaxes, orientation='horizontal') cbaxes.set_xlabel('Intensity, dB') axs1[7].text(5985, -12, 'DM', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[7].text(5920, 70, 'BUM', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[2].text(5920, 25, r'BUM$_{\mathrm{D}}$', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[6].text(5930, 25, r'BUM$_{\mathrm{D}}$', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[6].text(5985, 9, 'UM', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[6].annotate('', xy=(5890, 9), xycoords='data', xytext=(5950, 9), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[7].text(5950, 25, r'BUM$_{\mathrm{D}}$', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[7].text(5775, 117, '2BUM', {'ha': 'center', 'va': 'center'}, rotation=0, fontsize=text_size, backgroundcolor='w') axs1[7].annotate('', xy=(5890, -11), xycoords='data', xytext=(5950, -11), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[7].annotate('', xy=(5775, 90), xycoords='data', xytext=(5775, 110), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[7].annotate('', xy=(5790, 50), xycoords='data', xytext=(5870, 70), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[2].annotate('', xy=(5790, 25), xycoords='data', xytext=(5855, 25), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[7].annotate('', xy=(5830, 25), xycoords='data', xytext=(5885, 25), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) axs1[6].annotate('', xy=(5800, 25), xycoords='data', xytext=(5865, 25), textcoords='data', annotation_clip=False, arrowprops=dict(arrowstyle="->",ec="k",lw=2)) fig.text(axs1[1].get_position().bounds[0],0.98,r'$\alpha=-28^\circ$',horizontalalignment='center', verticalalignment='center', fontsize=18) fig.text(axs1[3].get_position().bounds[0],0.98,r'$\alpha=-14^\circ$',horizontalalignment='center', verticalalignment='center', fontsize=18) fig.text(axs1[5].get_position().bounds[0],0.98,r'$\alpha=0^\circ$',horizontalalignment='center', verticalalignment='center', fontsize=18) fig.text(axs1[7].get_position().bounds[0],0.98,r'$\alpha=14^\circ$',horizontalalignment='center', verticalalignment='center', fontsize=18) fig.text(axs1[9].get_position().bounds[0],0.98,r'$\alpha=28^\circ$',horizontalalignment='center', verticalalignment='center', fontsize=18) ###### axs2=[] i_sh=0.002 for i in range(0,len(bb),2): axs2.append(plt.axes(position=[bb[i][0]+0.02-i_sh*i,bb[i][1]+0.267-0.08-0.03,bb[i][2]*2-0.008,bb[i][3]/3])) angle_inds=[8,6,4,2,0] site_ind=0 series_ind=1 for angle_ind2 in range(5): angle_ind=angle_inds[angle_ind2] ind=angle_ind2 dir_ind=0 dm_f0= DM_F0[angle_ind2*2] dm_freq= DM_FREQS[angle_ind2*2] dm_int= DM_INT[angle_ind2*2] bum_f0= BUM_F0[angle_ind2*2] bum_freq= BUM_FREQS[angle_ind2*2] bum_int= BUM_INT[angle_ind2*2] if angle_ind in [1,2,3]: bumd_f0= BUMD_F0[angle_ind2*2] bumd_freq= BUMD_FREQS[angle_ind2*2] bumd_int= BUMD_INT[angle_ind2*2] axs2[ind].plot(bumd_f0,bumd_int+db_offset[site_ind],'g',lw=2, label=r'BUM$_\mathrm{D}$/down') if ind==0: axs2[ind].plot(dm_f0,dm_int+db_offset[site_ind],'r',lw=2,label='DM/down') axs2[ind].plot(bum_f0,bum_int+db_offset[site_ind],'m',lw=2,label='BUM/down') else: axs2[ind].plot(dm_f0,dm_int+db_offset[site_ind],'r',lw=2) axs2[ind].plot(bum_f0,bum_int+db_offset[site_ind],'m',lw=2) dir_ind=1 dm_f0= DM_F0[angle_ind2*2+1] dm_freq= DM_FREQS[angle_ind2*2+1] dm_int= DM_INT[angle_ind2*2+1] bum_f0= BUM_F0[angle_ind2*2+1] bum_freq= BUM_FREQS[angle_ind2*2+1] bum_int= BUM_INT[angle_ind2*2+1] if angle_ind in [1,2,3]: bumd_f0= BUMD_F0[angle_ind2*2+1] bumd_freq= BUMD_FREQS[angle_ind2*2+1] bumd_int= BUMD_INT[angle_ind2*2+1] if ind==3: axs2[ind].plot(bumd_f0,bumd_int+db_offset[site_ind],'c',lw=2,label=r'BUM$_\mathrm{D}$/up') else: axs2[ind].plot(bumd_f0,bumd_int+db_offset[site_ind],'c',lw=2) if ind==0: axs2[ind].plot(dm_f0,dm_int+db_offset[site_ind],'b',lw=2, label= 'DM/up') axs2[ind].plot(bum_f0,bum_int+db_offset[site_ind],'k',lw=2, label= 'BUM/up') axs2[ind].set_ylabel("SEE intensity, dB", labelpad=0) else: axs2[ind].plot(dm_f0,dm_int+db_offset[site_ind],'b',lw=2) axs2[ind].plot(bum_f0,bum_int+db_offset[site_ind],'k',lw=2) axs2[ind].set_ylim([-120,-80]) axs2[ind].set_xlim([5700,5930]) axs2[ind].set_xticks([5730,5830,5930]) if ind>0: axs2[ind].set_yticklabels({''}) axs2[0].legend(loc=2, handlelength=1) axs2[3].legend(loc=3, handlelength=1) ###### axs3=[] i_sh=0.002 for i in range(0,len(bb),2): axs3.append(plt.axes(position=[bb[i][0]+0.02-i_sh*i,bb[i][1]-0.08-0.05,bb[i][2]*2-0.008,bb[i][3]/3])) angle_inds=[8,6,4,2,0] site_ind=0 series_ind=1 for angle_ind2 in range(5): angle_ind=angle_inds[angle_ind2] ind=angle_ind2 dir_ind=0 dm_f0= DM_F0[angle_ind2*2] dm_freq= DM_FREQS[angle_ind2*2] dm_int= DM_INT[angle_ind2*2] bum_f0= BUM_F0[angle_ind2*2] bum_freq= BUM_FREQS[angle_ind2*2] bum_int= BUM_INT[angle_ind2*2] if angle_ind in [1,2,3]: bumd_f0= BUMD_F0[angle_ind2*2] bumd_freq= BUMD_FREQS[angle_ind2*2] bumd_int= BUMD_INT[angle_ind2*2] axs3[ind].plot(bumd_f0,bumd_freq,'g',lw=2) axs3[ind].plot(bum_f0,bum_freq,color=(0.75, 0.0, 0.75, .5),lw=1) axs3[ind].plot(bum_f0,bum_freq,'m',lw=1) dir_ind=1 dm_f0= DM_F0[angle_ind2*2+1] dm_freq= DM_FREQS[angle_ind2*2+1] dm_int= DM_INT[angle_ind2*2+1] bum_f0= BUM_F0[angle_ind2*2+1] bum_freq= BUM_FREQS[angle_ind2*2+1] bum_int= BUM_INT[angle_ind2*2+1] if angle_ind in [1,2,3]: bumd_f0= BUMD_F0[angle_ind2*2+1] bumd_freq= BUMD_FREQS[angle_ind2*2+1] bumd_int= BUMD_INT[angle_ind2*2+1] axs3[ind].plot(bumd_f0,bumd_freq,color=(0.0, 0.75, 0.75, 1.),lw=1) bumd_f0_full=np.arange(5700,5850) bumd_coefs=np.polyfit(bumd_f0[10::],bumd_freq[10::],1) axs3[ind].plot(bumd_f0_full,bumd_f0_full*bumd_coefs[0]+bumd_coefs[1],color=(0.0, 0.75, 0.75, 1.),lw=2) axs3[ind].plot(bum_f0,bum_freq,'k',lw=1) bum_f0_full=np.arange(5700,5800) bum_coefs=np.polyfit(bum_f0[10::],bum_freq[10::],1) if ind==3: bum_coefs=
np.polyfit(bum_f0[10:-10],bum_freq[10:-10],1)
numpy.polyfit
#!/usr/bin/python # -*- coding: utf-8 -*- """The logics of robot calligraphy This module contains all the methods needed to convert a paths extracted from GIFs to trajectory information for UR5 The module would use data.json as the paths extracted from GIFs, please use cv.cv to obtain data.json if you cannot find data.py The module would store all the trajectories it ever calculated in previously_calculated_trajectory. And it would use this information when writing the same string. Please make sure previously_calculated_trajectory.json is existed in ..\data\ Please make sure data.json is existed in ..\data\ """ import time import copy import os import json import math import numpy import easy_ur5 START_POSITION = [0.10018570816351019, -0.4535427417650308, 0.2590640572333883] ORIENTATION = [0, math.pi, 0] R = 0.0 STRAIGHT_HEIGHT = 0.01 * 1.3 STRAIGHT_DEVIATION = 0.01 * 0 STRAIGHT_WIDTH = 0.01 * 0 MIDDLE_HEIGHT = 0.01 * 0.83 MIDDLE_DEVIATION = 0.01 * 0.21 MIDDLE_WIDTH = 0.01 * 000.3 DEEPEST_HEIGHT = 0.01 * 0.37 DEEPEST_DEVIATION = 0.01 * 0.1 DEEPEST_WIDTH = 0.01 * 1.17 MY_PATH = os.path.abspath(os.path.dirname(__file__)) JSON_DIR = os.path.join(MY_PATH, r"..\data\previously_calculated_trajectory.json") CHAR_LIB_DIR = os.path.join(MY_PATH, r"..\data\data.json") def reduce_by_multiple(trajectory, integer): """ keep only control points in given trajectory which are multiple of @integer :param trajectory: array that describes the trajectory :param integer: the multiple used for reducing :return: the reduced trajectory """ reduced = trajectory[0:len(trajectory) - 1:integer] if len(reduced) == 0: return trajectory if reduced[-1] != trajectory[len(trajectory) - 1]: reduced.append(trajectory[len(trajectory) - 1]) return reduced def naive_width2z(width): # assert width <= 0.01 """ a naive way to map width to z axis position :param width: width of a corresponding control point :return: the z axis position """ assert width >= 0 return 0.01 - width def get_mover( map_3d, stroke_info, start_position, orientation, scale_factor, ): """ get calculated trajectory of a stroke :param map_3d: functions for mapping width to z-axis, a polymorphism design :param stroke_info: array that describes a stroke :param start_position: starting position for a character :param orientation: orientation of tool :param scale_factor: a constant scalar, used for adjust the size of character you wanted to write :return: the calculated trajectory of the given stroke """ three_d_trajectory = [] map_3d(stroke_info, three_d_trajectory, scale_factor, start_position) start_lift = copy.deepcopy(three_d_trajectory[0]) start_lift[2] = start_lift[2] + 0.02 # add tilt value if len(three_d_trajectory) > 1: vector_a = numpy.array(three_d_trajectory[0]) vector_b = numpy.array(three_d_trajectory[1]) vector_ba = vector_a - vector_b dev_start = vector_ba / numpy.linalg.norm(vector_ba) * 0.009 start_lift[0] += dev_start[0] start_lift[1] += dev_start[1] three_d_trajectory.insert(0, start_lift) mover = [] for i in three_d_trajectory: real_pos = i real_ori = orientation mover.append(real_pos + real_ori) time.sleep(1) return mover def broke_stroke(trajectory): """ break one stroke into one or multiple sub-stroke for preventing error caused by UR5 cannot maintain a speed :param trajectory: the trajectory of a stroke :return: a array of broken sub-stroke """ stroke_group = [] pointer1 = 0 if len(trajectory) < 11: print(len(trajectory)) stroke_group.append(trajectory) return stroke_group for i in range(5, len(trajectory) - 5): y0 = trajectory[i - 1][1] y1 = trajectory[i][1] y2 = trajectory[i + 1][1] y_dif0 = y1 - y0 y_dif1 = y2 - y1 x0 = trajectory[i - 1][0] x1 = trajectory[i][0] x2 = trajectory[i + 1][0] x_dif0 = x1 - x0 x_dif1 = x2 - x1 max_tolerance = 0.006 if (x_dif0 * x_dif1 < 0 and (abs(x_dif0) > max_tolerance or abs(x_dif1) > max_tolerance)) or (y_dif0 * y_dif1 < 0 \ and (abs(y_dif0) > max_tolerance or abs(y_dif1) > max_tolerance)): stroke_group.append([trajectory[pointer1:i + 1], True]) pointer1 = i + 1 if pointer1 == len(trajectory) - 1: stroke_group[0].append([trajectory[len(trajectory) - 1], False]) else: stroke_group.append([trajectory[pointer1:len(trajectory)], False]) # mark first: stroke_group[0].append(True) for i in range(1, len(stroke_group)): stroke_group[i].append(False) return stroke_group def double_linear3_mapping( stroke_info, three_d_trajectory, scale_factor, start_position, ): """ a way of mapping considering the offset of the brush increases then decreases when z axis position is decreasing :param stroke_info: array that describes the stroke information :param three_d_trajectory: array that describes the 3D trajectory :param scale_factor: a constant scalar, used for adjust the size of character you wanted to write :param start_position: start position of the stroke :return: a array that describes processed position of the tool """ prev_point2d = stroke_info[0][0] for point in stroke_info: point3d = copy.deepcopy(point[0]) direction =
numpy.array(point3d)
numpy.array
#!/usr/bin/env python # coding: utf-8 # <script> # jQuery(document).ready(function($) { # # $(window).load(function(){ # $('#preloader').fadeOut('slow',function(){$(this).remove();}); # }); # # }); # </script> # # <style type="text/css"> # div#preloader { position: fixed; # left: 0; # top: 0; # z-index: 999; # width: 100%; # height: 100%; # overflow: visible; # background: #fff url('http://preloaders.net/preloaders/720/Moving%20line.gif') no-repeat center center; # } # # </style> # # <div id="preloader"></div> # <script> # function code_toggle() { # if (code_shown){ # $('div.input').hide('500'); # $('#toggleButton').val('Show Code') # } else { # $('div.input').show('500'); # $('#toggleButton').val('Hide Code') # } # code_shown = !code_shown # } # # $( document ).ready(function(){ # code_shown=false; # $('div.input').hide() # }); # </script> # <form action="javascript:code_toggle()"><input type="submit" id="toggleButton" value="Show Code"></form> # ### Latex Macros # $\newcommand{\Re}[1]{{\mathbb{R}^{{#1}}}} # \newcommand{\Rez}{{\mathbb{R}}}$ # In[41]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') #%tableofcontents # In[42]: import copy import ipywidgets as widgets import matplotlib.pyplot as plt import networkx as nx import numpy as np import sympy import torch from ipywidgets import fixed, interact, interact_manual, interactive from scipy.stats import ortho_group # compute unitary matrices import spectral_function_library as spec_lib get_ipython().run_line_magic('matplotlib', 'inline') # # Convolution Neural Networks # Material is taken from [this Blog](https://www.instapaper.com/read/1477946505) # # Starting from an RGB image: # # <img src="images/rgb_image_2022-01-24_10-15-38.png" width="800"> # # the idea is pass this image through as series of steps in order to extract information. The filter is used for this task. # # <img src="images/convolution_2022-01-24_10-17-28.png" width="800"> # # after image src. # # <img src="images/multihead_2022-01-24_10-19-47.png" width="800"> # # <img src="images/step-by-step_2022-01-24_10-18-45.png" width="800"> # # # ## Two important points about the convolutional layer: # # 1. The filter is identical for each pixel. This reduces the number of parameters to calculate. # The constant filter helps satisfy the inductive bias of *translation invariance*. # # 2. The convolution is local to the image pixel to which it is applied. Thus, the structure of the image is taken into account during the calculation. # # A typical CNN architecture: # # <img src="images/cnn_2022-01-24_10-25-56.png" width="800"> # jupyter nbextension enable --py widgetsnbextensionjupyter nbextension enable --py widgetsnbextensionjupyter nbextension enable --py widgetsnbextensionjupyter nbextension enable --py widgetsnbextension# Alternative view of CNN # # <img src="images/image_graph_2022-01-24_11-00-16.png" width="800"> # # * An image can be considered to be a graph # * The nodes $V$ are the centers of the pixels # * If a filter has width 3, each nodes is connected to $8 * d$ adjacent nodes, where $d$ is the number of channels # # Motivation # Consider a set of nodes $x_i$, and associated attributes $y_i$. This can be graphed. Let us connect these nodes with edges $e_{ij} = (x_i, x_{i+1})$. # In[43]: @interact(N=(5, 40)) def plot1d(N): x = np.linspace(0, 10, N) plt.plot(x, 0 * x, "-o") plt.show() # Add an attribute to each of these nodes. I will add a random noise in $N(0,\sigma)$ and $\sigma=1.5$, which is fairly large. # # Consider the problem of computing *embeddings* of each node with the requirement that nearby nodes with similar attributes should have similar embeddings. # # Without further constraints imposed on the problem (also called *inductive biases*, we will apply a local transformation to this function, and specifically an averaging operation. We will replace $y_i$ by the average of its neighbors : # $$ y_i \longrightarrow \frac12 (y_{i-1} + y_{i+1})$$ # The boundary points need special treatment. There are three main ehoices: # 1. Do not move the point # 2. Move the point in such a way as to satisfy some condition on the slope. # 3. Develop an algorithm that figures out the proper treatment # # We will consider the first choice for simplicity. For future reference, we call the collection of points $V$, the collection of edges $E$. We denote the boundary nodes by $\partial V$, and the boundary edges (edges attached to $\partial V$ by $\partial E$, which is a common notation in discrete and differential geometry. # In[44]: @interact(seed=(1, 100), eps=(0, 1.5), N=(5, 40)) def plot1d(seed, eps, N): np.random.seed(seed) x = np.linspace(0, 10, N) noise = eps * np.random.randn(N) y = np.sin((x / x[-1]) * 2 * np.pi * 2.5) + noise plt.plot(x, y, "-o") plt.show() # More generally, each point might have multiple attribute. Thus, the node $x_i$, would have $d$ attributes $y_0, \cdots, y_{d-1}$. These attributes could be categorical or continuous, and the categorical attributes could be nominal (there is nor ordering, such as 'red', 'blue', 'orange') or ordinal (bad, poor, average, good, very good excellent). # In[45]: dSlider = widgets.IntSlider(min=1, max=5, value=3, description="Nb Attributes") seedSlider = widgets.IntSlider(min=1, max=100, value=50, description="Seed") epsSlider = widgets.FloatSlider( min=0.0, max=1.5, value=0.30, description="Noise $\sigma$" ) @interact(seed=seedSlider, eps=epsSlider, N=(5, 40), d=dSlider, nb_blur_iter=(0, 5)) def plot1d(seed, eps, N, d, nb_blur_iter): np.random.seed(seed) eps = eps * np.array([1.0, 2.0, 0.5, 3.0, 4.0]) x = np.linspace(0, 10, N) noise = np.random.randn(d, N) y = np.zeros([5, N]) fcts = {} fcts[0] = np.sin((x / x[-1]) * 2 * np.pi * 2.5) fcts[1] = 1.5 * np.cos((x / x[-1]) * 2 * np.pi * 2.5) ** 2 fcts[2] = x ** 2 / 10 * np.exp(3 - 0.5 * x) fcts[3] = np.cos((x / x[-1]) * 2 * np.pi * 4.5) fcts[4] = 1.5 * np.cos((x / x[-1]) * 2 * np.pi * 2.5) for i in range(0, 5): y[i] = fcts[i] for i in range(0, d): y[i] += eps[i] * noise[i] yy = copy.copy(y) for i in range(0, d): for n in range(0, nb_blur_iter): yy[i][0] = y[i][0] yy[i][N - 1] = y[i][N - 1] yy[i][1 : N - 2] = 0.5 * (y[i][0 : N - 3] + y[i][2 : N - 1]) y = copy.copy(yy) for i in range(0, d): plt.plot(x, yy[i], "-o") plt.grid(True) plt.ylim(-2, 5) plt.show() # So far, I am describing vector-valued discrete functions of $x$, which is a 1-D representation of a graph $d$ attributes at each node $x_i$. More generally, nodes are points in *some* space, which can be 1-D, 2-D, higher-D, or more abstract, namely, a space of *points*. # # Now consider adding attributes $y_{Eij}$ to the edges. What kind of transformation functions should one consider? # # This averaging function is an example of a local filter defined in physical space. This filter takes attributes at nodes and transforms them into a new set of number defined at these same nodes. More generally, in Graph Neural networks, we will consider operators that take attributes defined at nodes, edges, and the graph, and transform them into a new set of vectors defined on these same nodes, vectors and graphs. # # Filters can be defined either in physical space or in spectral space. We will illustrate the concept by considering the derivative operator on continuous and discrete grids. # ## First Derivative operator (also a filter) on 1D grid in physical space # Consider points $x_i$, $i=0,\cdots, N-1$ connected by edges $e_{i,i+1} = (x_i, x_{i+1})$. The central difference operator of the function $f_i = f(x_i)$ is defined by # $$ # f'_i = \frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}} # $$ for $i=1,\cdots,N-2$, with one-sided operators defined at the boundaries (which is one of many possibilities): # \begin{align} # f'_0 &= \frac{f_1 - f_0}{x_1-x_0} \\ # f'_{N-1} &= \frac{f_{N-1} - f_{N-2}}{x_{N-1} - x_{N-2}} # \end{align} # where $f'_i$ is the approximation of $f'(x)$ evaluated at $x=x_i$. Note that the derivative can be expressed as a vector # $f' = (f'_0,\cdots,f'_{N-1})$, and $f'_i$ is linear with respect to the values $f_j$. Therefore one can write the matrix # expression: # $$ f' = D f $$ # where $D \in \Re{N\times N}$ is an $N \times N$ matrix. The matrix $D$ is a derivative filter. More specifically, it is a # *global* filter since it updates the values at all nodes at once. To the contrary, a *local* filter is defined as the matrix that updates the derivative at a single point. Thus: # $$ # f'_i = (\begin{matrix}-\alpha & 0 & \alpha\end{matrix})^T # (\begin{matrix} f_{i+1} & 0 & f_{i-1}) \end{matrix} # $$ # where a superscript $T$ denotes transpose, and $\alpha = (x_{i+1} - x_{i-1})^{-1}$. Clearly, the local # filter is local to the point at which it applies. The new value only depends on the values of its immediate neighbors. # *** # # Spectral Analysis of graphs # ## Continuous Fourier Transform (CFT) # When working in the continuous domain $\Rez$, a function $f(x)\in\Rez$ has a Fourier Transform $\hat{f}(k)$ related by # $$ \hat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^\infty e^{\iota k x} f(x) \, dx $$ # Conversely, one can apply a similar operation to recover $f(x)$ from its Fourier Transform: # # $$ f(x) = \frac{1}{2\pi} \int_{-\infty}^\infty e^{-\iota k x} \hat{f}(k) \, dk $$ # # Notice the sign in the exponent: positive when transforming from physical to Fourier space, and negative when returning to physical space. The sign is a convention. Different authors might use the opposite sign. So always pay attention to the conventions in any paper you read. # # (you should all have learned about the Fourier transform previously). # # Let us compute the first derivative of $f(x)$: # $$\frac{d}{dx} f(x) = f'(x)$$ # The conventional approach would be to calculate the derivative manually, or discretize the expression in physical space. However, the alternative is to compute the derivative by first transforming the expression to Fourier (also called spectral) space: # \begin{align} # \frac{d}{dx} f(x) &= \frac{d}{dx} \frac{1}{2\pi} \int_{-\infty}^\infty e^{-\iota k x} \hat{f}(k) d k \\ # &= \frac{1}{2\pi} \int_{-\infty}^\infty (-\iota k) e^{-\iota k x} \hat{f}(k) dk \\ # &= \cal{F}^{-1} [-\iota k \hat{f}(k)] # \end{align} # where # \begin{align} # \cal{F}f(x) &= \hat{f}(k) \\ # \cal{F}^{-1} \hat{f}(k) &= f(x) \\ # \end{align} # So to given a function $f(x)$, one can compute the derivative with the following three steps: # 1. $f(x) \longrightarrow \hat{f}(k)$ # 2. $\hat{f}(k) \longrightarrow (-\iota k) \hat{f}(k)$ # 3. $(-\iota k)\hat{f}(k) \longrightarrow \cal{F}^{-1} \left[(-\iota k)\hat{f}(k)\right] = \frac{d}{dx} f(x)$ # Thus, the derivative operation is applied in Fourier space. A complex operation in physical space becomes a simple multiplication in Fourier space, *at the cost* of two Fourier Transforms. # ### Fourier Spectrum # $\hat{f}(k)$ is called the Fourier Spectrum and is generally a complex variable. # $P(k) = |\hat{f}(k)|^2$ is the power spectrum, and satisfies the property: # $$ # \int_{-\infty}^\infty P(k) dk = \int_{-\infty}^\infty |\hat{f}(k)|^2 dx = \int_{-\infty}^\infty |f(x)|^2 dx # $$ # a rule that generalizes to and holds in $\Re{n}$. # ### Filter # The coefficient $(-\iota k)$ above is an example of a complex operator in Fourier space. This operator tranforms a function $\hat{f}(k)$ into a "filtered" function $\hat{g}(k)$: # $$ # \hat{g}(k) = (-\iota k) \hat{f}(k) # $$ # and in this particular case, results in the Fourier transform of the $x$-derivative of $f(x)$. More generally, one can define an operator $\hat{H}(k)$ acting on $\hat{f}(k)$, which "shapes" the power spectrum, leading to filters with different characteristics: low-pass, band-pass, high-pass, custom. # # Given a function $f(x)$, the resulting filtered function $f_H(x)$ can be defined similarly to the derivative: # # \begin{align} # f(x) & \longrightarrow \cal{F}(f(x)) = \hat{f}(k) \\ # \hat{f}(k) & \longrightarrow \hat{H}(k) \hat{f}(k) \\ # \hat{H}(k)\hat{f}(k) & \longrightarrow \cal{F}^{-1} (\hat{H}(k)\hat{f}(k)) = f_H(x) # \end{align} # # We will often omit the argument $x$ or $k$, letting the "hat" notation indicate whether or not we are in Fourier space. Thus, we can write # $$ # f_H = \cal{F}^{-1} [\hat{H} \; \cal{F}(f) ] # $$ or the equivalent form (requiring the definition of product of operators): # # \begin{align} # f_H &= (\cal{F}^{-1} \, \hat{H} \, \cal{F}) \; f \\ # &= H f # \end{align} # which defines the filter $H(x)$ in physical space, acting on $f(x)$ to produce $f_H(x)$: # $$ # f_H(x) = H(x) * f(x) # $$ # where $*$ denotes the convolution operator: # $$ # H(x) * f(x) = \int_{-\infty}^\infty H(x-s) f(s) \, ds # $$ # ## Formal proof of convolution theorem in continuous space # We start with the relation: # $$ H = \cal{F}^{-1} \hat{H} \cal{F} $$ # and express both sides of the equation in integral form: # \begin{align} # \int e^{-\iota k x} \left( \hat{H}(k)\hat{f}(k)\right) \, dk &= # \int e^{-\iota k x}\, dk \left( \int e^{\iota k x''} H(x'')\,dx'' \int e^{\iota k x'} f(x') \, dx' \right) \\ # &= \int dk \int e^{\iota k (x'' + x' - x)} H(x'') f(x) \, dx' \, dx'' # \end{align} # Now make use of the following integral definition of the Dirac function: # $$ # \int e^{\iota k x} \, dk = 2\pi \delta(x) # $$ # which leads to # \begin{align} # \int e^{-\iota k x} \left( \hat{H}(k)\hat{f}(k)\right) \, dk &= # \int dk \int e^{\iota k (x'' + x' - x)} H(x'') f(x') \, dx' \, dx'' \\ # &= 2\pi \int \delta(x'' + x' - x) H(x'') f(x') \, dx' \, dx'' \\ # &= 2\pi \int H(x-x') f(x') \, dx' \\ # &= C \; H(x) * f(x) = L(x) # \end{align} # where $C$ is a constant of proportionality. # I was not careful with constants in front of the integrals when taking Fourier transforms and their # inverses. # # We thus find that # $$ # \cal{F}^{-1} \left(\hat{H}(k)\hat{f}(k)\right) = H * f # $$ # Careful calculations show that the constant $C=1$. # # Integrating $A(x)$ over $x$ leads to: # $$ # \int \hat{H}(k) \hat{f}(k) \, dk = \int H(x) f(x) \, dx # $$ # often referred to as [Plancherel's identity](https://en.wikipedia.org/wiki/Parseval%27s_identity). # # All integrals are taken over the domain $[-\infty, \infty]$. # --- # # Ideal Low-, Mid-, High-pass filters # ## Low-pass filter # # \begin{align} # H(k) &= 1, \hspace{1in} k < k_0 \\ # &= 0, \hspace{1in} k \ge k_0 # \end{align} # ## Band-pass filter # # \begin{align} # H(k) &= 1, \hspace{1in} k_0 < k < k_1, \; k_0 < k_1 \\ # &= 0 \hspace{1in} \rm{otherwise} # \end{align} # ## High-pass filter # # \begin{align} # H(k) &= 1, \hspace{1in} k > k_0 \\ # &= 0, \hspace{1in} k \le k_0 # \end{align} # # #### Notes: # * np.fft uses the discrete Fourier Tranform since the grid is discrete (we skip over these details) # * The $x$-domain is $[0,0.5]$. # * $\sin(2\pi f_1 x)= 0$ at $x=0$ and $x=0.5$. The $x-derivative is $2\pi f_1\cos(f_1 2\pi x)$, equal # to $2\pi f_1$ at $x=0$ and $2\pi f_1 \cos(\pi f_1)$ at $x=0.5$, equal to 2\pi f_1$ if $f_1$ is even. # Therefore the function is periodic over the domain, since the $f_1$ slider ranges from -40 to 40 by increments of 10. # On the other hand, $\cos(2\pi f_3 x + 0.7)$ is not periodic over the $x$ domain (the phase is 0.7, which is not a multiple of $2\pi$. The frequencies are obtained by # decomposing this function into a series of $\sin$ and $\cos$ at different frequencies with zero phase. # In[46]: grid = widgets.GridspecLayout(3, 3) # In[47]: freq1Slider = widgets.IntSlider(min=0, max=60, value=30) freq2Slider = widgets.IntSlider(min=30, max=120, value=70) freq3Slider = widgets.IntSlider(min=90, max=200, value=110) ampl1Slider = widgets.FloatSlider(min=-15, max=15, value=5) ampl2Slider = widgets.FloatSlider(min=-15, max=15, value=10) ampl3Slider = widgets.FloatSlider(min=-15, max=15, value=10) k0Slider = widgets.IntSlider(min=0, max=50, value=15) k1Slider = widgets.IntSlider(min=5, max=150, value=100, Description="k1") # In[48]: @interact_manual( freq1=freq1Slider, # (-20, 60, 10), freq2=freq2Slider, # (-90, 90, 10), freq3=freq3Slider, # (-300, 300, 15), ampl1=ampl1Slider, # 1, ampl2=ampl2Slider, # 0.5, ampl3=ampl3Slider, # 1, k0=k0Slider, # (0, 50, 5), k1=k1Slider, # (5, 150, 10), ) def plotSin2(freq1, freq2, freq3, ampl1, ampl2, ampl3, k0, k1): fig = plt.figure(figsize=(16, 7)) x = np.linspace(0, 0.5, 500) k = np.linspace(0, 499, 500) # NOTE: These functions are NOT periodic over the domain. # Therefore, the spectrum is not exactly a collection of delta functions # I could be more precise, but that is not the point of this demonstration. s = ( ampl1 * np.sin(freq1 * 2 * np.pi * x) + ampl2 * np.sin(freq2 * 2 * np.pi * x) + ampl3 * np.cos(freq3 * 2 * np.pi * x + 0.7) ) nrows, ncols = 3, 2 # ax1.clear() # to avoid flicker, does not work ax = fig.add_subplot(nrows, ncols, 1) # fig, axes = plt.subplots(nrows, ncols, figsize=(16, 5)) ax.set_ylabel("Amplitude") ax.set_xlabel("Time [s]") ax.plot(x, s) fft = np.fft.fft(s) ifft = np.fft.ifft(s) # print("s: ", s[0:10]) # print("ifft: ", ifft[0:11]) # print("fft[0-10]: ", fft[0:11]) # print("fft[:-10,:]: ", fft[-10:]) power_spec = np.abs(fft) ** 2 # power_spec[0] = 0 # REMOVE MEAN COMPONENT (simply equal to the mean of the function) ax2 = fig.add_subplot(nrows, ncols, 2) ax = ax2 ax.plot(power_spec[0:250]) ax.set_ylabel("Power Spectrum") ax.set_xlabel("k") heaviside = np.where((k > k0) & (k < k1), 1, 0) # Symmetrize this function with respect to $k=500/2$ for i in range(1, 250): # 250 = 500/2 heaviside[500 - i] = heaviside[i] # in Fourier space # print(heaviside) filtered_power_spectrum = power_spec * heaviside # print(list(zip(power_spec, heaviside, filtered_power_spectrum))) # print("power spec: ", power_spec[0:50]) # print("filtered_spec: ", filtered_power_spectrum[0:50]) filtered_function = np.fft.ifft(filtered_power_spectrum) ax = fig.add_subplot(nrows, ncols, 3) ax.plot(filtered_function) ax.set_ylabel("Filtered $f_H(x) = H(x) f(x)$") ax.set_xlabel("x") ax = fig.add_subplot(nrows, ncols, 4) ax.plot(filtered_power_spectrum[0:250]) ax.set_xlabel("k") ax.set_ylabel("Filtered Power Spectrum") filter_phys = np.fft.ifft(heaviside) ax = fig.add_subplot(nrows, ncols, 5) ax.plot(filter_phys) ax.set_ylabel("Filter $H(x)$") ax.set_xlabel("k") ax = fig.add_subplot(nrows, ncols, 6) ax.plot(heaviside[0:250]) ax.set_ylabel("Filter $\hat{H}(k)$") ax.set_xlabel("k") plt.tight_layout() plt.show() sumf2 = np.sum(s ** 2) sump2 = np.sum(power_spec[0:250]) sump3 = np.sum(power_spec) # print(sum2, sump2, sump2 / sumf2, sump3 / sumf2) # print(np.sum(power_spec[0:250]), np.sum(power_spec[0:500]), power_spec.shape) # The ratio sump2 / sumf2 = 250 (when there is no mean component) # The k=0 component has no complex conjugate. All other components have a complex conjugate. # These details are beyond the scope of this lecture. # = Number of points N / 2 # sum f[i]^2 dx = sum f[i]^2 (0.5/N) = sum power_spectrum * normalizing constant # (one must be careful with this constant) # Alternative to @interact # interact(plotSin2, freq1=(-40,40,10), freq2=(-90,90,10), freq3=(-300,300,15), ampl1=1, ampl2=.5, ampl3=1) # The strong oscilations in the Filter $H(x)$ are due to the discontinuity of the filter in Fourier space. # A property of these 1-D filters is that localization in Fourier space (the filter is nonzero for very few $k$) leads # to non-local filters $H(x)$ in physical space, and vice-versa. # # The challenge is to construct filters local in both physical and Fourier space, which is the strength of wavelets (beyond the scope of these lectures). Note that the Fourier transform of a Gaussian is a Gaussian, and it is local in both spaces. (Demonstrate it for yourself as a homework exercise). # # ### Discrete 1D domain # * A set of nodes $x_i$, $i=0,1,\cdots,N-1$, such that $x_i$ is connected to $x_{i+1}$. This graph is acyclic (there are no cycles. # * If the first and last node are connected, we add the edge $(x_{N-1}, x_{0})$ and create a cyclic graph. # * The adjacency matrix of the cyclic graph is as follows: # $$ # A = \left(\begin{matrix} # 0 & 0 & 0 & \cdots & 0 & 1 \\ # 1 & 0 & 0 & \cdots & 0 & 0 \\ # 0 & 1 & 0 & \cdots & 0 & 0 \\ # 0 & 0 & 1 & \cdots & 0 & 0 \\ # \cdots # \end{matrix}\right) # $$ # * A signal $s$ on a graph is defined as the sequence of $N$ elements # $$ x = (x_0, x_1, \cdots, x_{N-1}) $$ # where each $x_i\in\Rez$. # ### 1-D Periodic Domain # #### Fourier Filter # ### 1-D Non-periodic Domain # ## Fourier Transform, Discrete (DFT) # ### 1-D Periodic Domain # ### 1-D Non-periodic Domain # ## Graph Signal Processing, Discrete # ### 1-D cyclic graph # ### 2=D Discrete periodic # ### Adjoint $A$ # ### Degree Matrix $D$ # ### Laplacian $L$ # ### # In[49]: # layout = ['circular','planar','random'] seed_slider = widgets.IntSlider(min=100, max=120, step=2, value=110) N_slider = widgets.IntSlider(min=5, max=40, step=1, value=10) # matrix = ['Adjacency Matrix', 'Laplacian', 'D^-1 A', 'D^-1 L', 'D^-1/2 L D^-1/2'] @interact(N=N_slider, seed=seed_slider) def generate_graph_from_adjacency_matrix(N, seed): """ Arguments N: number of nodes """ np.random.seed(seed) ints = np.random.randint(0, 2, N * N).reshape(N, N) for i in range(N): ints[i,i] = 0 # Symmetric array ints = ints + ints.transpose() ints = np.clip(ints, 0, 1) # the elements should be zero or 1 # Different matrices A = ints D = np.sum(A, axis=0) D = np.diag(D) L = D - A invD = np.linalg.inv(D) invDA = A * invD invDL = invD * L invDLinvD = np.sqrt(invD) * L * np.sqrt(invD) matrix = ["A", "D", "L", "invD", "invDA", "invDL", "invDinvD"] matrices = [A, D, L, invD, invDA, invDL, invDLinvD] # Eigenvalues fig, axes = plt.subplots(3, 3, figsize=(10, 8)) axes = axes.reshape(-1) fig.suptitle("Sorted Eigenvalues of various matrices") for i, m in enumerate(matrices): ax = axes[i] eigs = np.linalg.eigvals(m) eigs = np.sort(eigs)[::-1] ax.set_title(matrix[i]) ax.grid(True) ax.plot(eigs, "-o") for i in range(i + 1, axes.shape[-1]): axes[i].axis("off") plt.tight_layout() plt.show() # ### Notes # * The eigenvalues (spectrum )of A and L are approximatley related (the plots look very similar) but not equal. # * The spectra shape depend very little on the seed (A is filled with random numbers (0,1) and is symmetrized to make sure that the eigenvalues $\lambda_i \in \Rez$. # *** # ## Same plot as above but allowing for different types of graph types. # * Generate the graph, compute the adjacent matrix, and call the previous function # # # In[50]: def generate_graph_from_adjacency_matrix_1(G, N, seed): """ Arguments N: number of nodes """ np.random.seed(seed) # Convert to np.ndArray A = nx.linalg.graphmatrix.adjacency_matrix(G).toarray() nx.linalg # print("Adj: ", A, "\n", A.shape, "\n", type(A)) # Different matrices D = np.sum(A, axis=0) D = np.diag(D) L = D - A invD = np.linalg.inv(D) invDA = A * invD invDL = invD * L invDLinvD = np.sqrt(invD) * L * np.sqrt(invD) Ln = nx.normalized_laplacian_matrix(G) Ln = Ln.toarray() # from sparse array to ndarray matrix = ["A", "D", "L", "invD", "invDA", "invDL", "invDinvD", "Ln"] matrices = [A, D, L, invD, invDA, invDL, invDLinvD, Ln] # Eigenvalues fig, axes = plt.subplots(3, 3, figsize=(10, 8)) axes = axes.reshape(-1) fig.suptitle("Eigenvalues of various matrices") for i, m in enumerate(matrices): ax = axes[i] eigs = np.linalg.eigvals(m) eigs = np.sort(eigs)[::-1] ax.set_title(matrix[i]) ax.grid(True) ax.plot(eigs, "-o") for i in range(i + 2, axes.shape[-1]): axes[i].axis("off") plt.tight_layout() plt.show() # In[51]: prob_slider = widgets.FloatSlider(min=0, max=1, step=0.1, value=0.5) node_slider = widgets.IntSlider(min=3, max=30, step=1, value=10) nb_neigh_slider = widgets.IntSlider(min=1, max=10, step=1, value=4) nb_edges_per_node_slider = widgets.IntSlider(min=1, max=20, step=2, value=5) seed_slider = widgets.IntSlider(int=1, max=50, step=1, value=25) graph_type = ["connected_watts_strogatz", "powerlaw_cluster_graph"] @interact( nb_nodes=node_slider, prob=prob_slider, nb_neigh=nb_neigh_slider, nb_edges_per_node=nb_edges_per_node_slider, seed=seed_slider, graph_type=graph_type, # directed=True, ) def drawGraph(nb_nodes, nb_neigh, prob, seed, nb_edges_per_node, graph_type): if graph_type == "connected_watts_strogatz": nb_edges_per_node_slider.style.handle_color = 'red' nb_neigh_slider.style.handle_color = 'black' nb_tries = 20 edge_prob = prob G = nx.connected_watts_strogatz_graph( nb_nodes, nb_neigh, edge_prob, nb_tries, seed ) elif graph_type == "powerlaw_cluster_graph": nb_neigh_slider.style.handle_color = 'red' nb_edges_per_node_slider.style.handle_color = 'black' add_tri_prob = prob if nb_edges_per_node >= nb_nodes: nb_edges_per_node = nb_nodes - 1 G = nx.powerlaw_cluster_graph(nb_nodes, nb_edges_per_node, add_tri_prob, seed) generate_graph_from_adjacency_matrix_1(G, nb_nodes, seed) # <script> # $(document).ready(function(){ # $('div.prompt').hide(); # $('div.back-to-top').hide(); # $('nav#menubar').hide(); # $('.breadcrumb').hide(); # $('.hidden-print').hide(); # }); # </script> # # <footer id="attribution" style="float:right; color:#999; background:#fff;"> # Created with Jupyter, delivered by Fastly, rendered by Rackspace. # </footer> # # prob_slider = widgets.FloatSlider( # min=0, max=1, step=0.1, value=0.5, description="Probability" # ) # node_slider = widgets.IntSlider(min=3, max=20, step=1, value=7) # nb_neigh_slider = widgets.IntSlider(min=1, max=10, step=1, value=4) # nb_edges_per_node_slider = widgets.IntSlider(min=1, max=20, step=2, value=5) # seed_slider = widgets.IntSlider(int=1, max=50, step=1, value=25) # graph_type = ["connected_watts_strogatz", "powerlaw_cluster_graph", "circular_graph"] # # # Also draw the eigenfunctions for the cyclic case where the nodes are arranged in a circular layout, # # with labels in the nodes # # # @interact_manual( # nb_nodes=node_slider, # prob=prob_slider, # nb_neigh=nb_neigh_slider, # nb_edges_per_node=nb_edges_per_node_slider, # seed=seed_slider, # graph_type=graph_type, # ) # def drawGraphEigenvalues(nb_nodes, nb_neigh, prob, seed, nb_edges_per_node, graph_type): # if graph_type == "connected_watts_strogatz": # nb_edges_per_node_slider.style.handle_color = "red" # nb_neigh_slider.style.handle_color = "black" # nb_tries = 20 # edge_prob = prob # G = nx.connected_watts_strogatz_graph( # nb_nodes, nb_neigh, edge_prob, nb_tries, seed # ) # elif graph_type == "powerlaw_cluster_graph": # nb_neigh_slider.style.handle_color = "red" # nb_edges_per_node_slider.style.handle_color = "black" # add_tri_prob = prob # if nb_edges_per_node >= nb_nodes: # nb_edges_per_node = nb_nodes - 1 # G = nx.powerlaw_cluster_graph(nb_nodes, nb_edges_per_node, add_tri_prob, seed) # elif graph_type == "circular_graph": # nb_neigh_slider.style.handle_color = "red" # nb_edges_per_node_slider.style.handle_color = "red" # nb_neigh_slider.style.handle_color = "red" # prob_slider.style.handle_color = "red" # seed_slider.style.handle_color = "red" # # G = nx.Graph() # for n in range(nb_nodes): # G.add_node(n) # for n in range(nb_nodes): # G.add_edge(n, n + 1) # G.add_edge(nb_nodes - 1, 0) # # spec_lib.generate_eigenvectors_from_adjacency_matrix_1(G, nb_nodes, seed) # In[52]: # Test Eigenfunction, sorting, etc. by creating a matrix whose eigenvalues I know N_slider = widgets.IntSlider(min=3, max=10, step=1, value=5) seed_slider = widgets.IntSlider(min=100, max=200, step=1) @interact(N=N_slider, seed=seed_slider) def test_eigen(N, seed): # generate eigenvalues np.random.seed(seed) # large variance for wider spread of spectrum eigens = (20.0 + 100.0 * np.random.randn(N)) / 20 eigens = np.where(eigens < 0, -eigens, eigens) print("eigens= ", eigens) print("eigens[0]= ", eigens[0]) print("eigens[1]= \n", eigens[1]) # print("eigens= \n", eigens) eigens = np.diag(eigens) ee = np.linalg.eig(eigens) print("ee= \n", ee) print("ee[0]= ", ee[0], type(ee[0])) print("ee[1]= \n", ee[1]) args = np.argsort(ee[0]) print("args:", args, type(args)) ee0 = ee[0][args] ee1 = ee[1][:, args] print("sorted ee") print("ee[0]= ", ee0) print("ee[1]= \n", ee1) recursivelyrecursively # create eigenvectors x = ortho_group.rvs(N) # Similarity transform (eigenvalues of A are invariant) A = x.T @ eigens @ x # A = x @ np.linalg.inv(x) # print("A= \n", A) # print("x.T= \n", x.T) # print("inv(x)= \n", np.linalg.inv(x)) eigens = np.linalg.eig(A) args = np.argsort(eigens[0]) print("===============================") print("args: \n", args) eigs = eigens[0][args] print("unsorted eigs: \n", eigens[0]) print("sorted eigs: \n", eigs) eigv = eigens[1][:, args] print("unsorted x:\n ", x.T) print("unsorted eigv: \n", eigens[1]) print("sorted x: \n", x.T[:, args]) print("sorted eigv= \n", eigv) pass # # Exploration of eigenvalue and eigenfunctions for the 1-D cyclic and non-cyclic cases # As we have seen, a signal $s^1=(s_0, s_1, \cdots, s_{N-1})\in\Re{N}$, is transformed into a signal $s^2\in\Re{N}$ by a filter $H$ according to # $$ s^2 = H s^1$$ where $H$ is a matrix in $\Re{N\times N}$. Applying this filter recursively, one finds that # \begin{align} # s^3 &= H s^2 \\ # s^4 &= H s^3 \\ # s^l &= H s^{l-1} # \end{align} # If this is done a large number of times, and if one assumes convergence of $s^l$ to a vector of finite norm, one finds in the limit: # $$ # s^\infty = H s^\infty # $$ # which states that $s^\infty$ is an eigenvector of the filter $H$ with a unit eigenvalue $\lambda=1$. # ## Cyclic case, directed graph # The adjoint matrix is # $$ # A = \left(\begin{matrix} # 0 & 0 & 0 & \cdots & 0 & 1 \\ # 1 & 0 & 0 & \cdots & 0 & 0 \\ # 0 & 1 & 0 & \cdots & 0 & 0 \\ # 0 & 0 & 1 & \cdots & 0 & 0 \\ # \cdots # \end{matrix}\right) # $$ # Recall: $A_{i,j} = 1$ means an edge goes from node $j$ to node $i$. In this case, there is an edge from node $i+1$ to node $i$ # for all nodes. There is also an edge from node $N-1$ to node $0$. This matrix is periodic. # # Given a signal # $$ # s = (s_0, s_1, \cdots, s_{N-1}) # $$ # the action of $A$ on $s$ simply shifts the value $s_i$ on node $i$ to node $i-1$: # $$ # s^1 = A s = (s_{N-1}, s_0, s_1, \cdots, s_{N-2}) # $$ # # In the next animation, we define a graph over a set of nodes, and a signal on this graph, and we apply the operator # $A$ multiple times. # In[53]: j = -1 @interact_manual(seed=(1, 100), eps=(0, 1.5), N=(5, 40)) def plot1d(seed, eps, N=15): global j np.random.seed(seed) # Define a NxN matrix A = np.zeros([N, N]) for i in range(1, N): A[i, i - 1] = 1 A[0, N - 1] = 1 x = np.linspace(0, 10, N) # Signal s noise = eps * np.random.randn(N) s = np.sin((x / x[-1]) * 2 * np.pi * 2.5) + noise j += 1 Aj = np.linalg.matrix_power(A, j) new_s = Aj @ s print(Aj) plt.plot(x, s, "-o", color="red") plt.plot(x, new_s, "-o") plt.title("Press button to apply $A$") plt.show() # A is called the shift operator in 1-D signal processing. Application of $A$ to a time signal translates the signal by $\Delta t$. The same is true with our graph. Of course, we are working with a special kind of graph. Let us now repeat this process with an undirected cyclic graph. Since node $i$ has a bidirectional connection to node $j$, each row of $A$ has two columns with a unit value. Thus, the adjacency matrix (now symmetric) becomes: # $$ # A = \left(\begin{matrix} # 0 & 1 & 0 & \cdots & 0 & 1 \\ # 1 & 0 & 1 & \cdots & 0 & 0 \\ # 0 & 1 & 0 & \cdots & 0 & 0 \\ # 0 & 0 & 1 & \cdots & 0 & 0 \\ # \cdots \\ # 0 & 0 & 0 & \cdots & 0 & 1 \\ # 1 & 0 & 0 & \cdots & 1 & 0 \\ # \end{matrix}\right) # $$ # # In[54]: j = -1 @interact_manual(seed=(1, 100), eps=(0, 1.5), N=(5, 40)) def plot1d(seed, eps, N=15): global j np.random.seed(seed) # Define a NxN matrix A = np.zeros([N, N]) for i in range(1, N): A[i, i - 1] = 1 A[0, N - 1] = 1 A = A + A.T x = np.linspace(0, 10, N) # Signal s noise = eps * np.random.randn(N) s = np.sin((x / x[-1]) * 2 * np.pi * 2.5) + noise j += 1 Aj = np.linalg.matrix_power(A, j) new_s = Aj @ s print(Aj) plt.plot(x, s, "-", color="red") plt.plot(x, new_s, "-o") plt.title("Press button to apply $A$") plt.show() # The result: instability. The signal $A^n s$ goes to infinity as the number of iterations grows without bound (i.e., $n\rightarrow\infty$). Later, when working with neural networks, we want to avoid weights that converge towards infinity or zero. # # This justifies the use of normalized adjacency matrices. The most common normalization is to premultiply $A$ by $D^{-1}$, where $D$ is the degree matrix. For our graph, all nodes have degree 2. Let us try again. We define a left normalization: # $$ # A^* = D^{-1} A # $$ # Another popular normalization technique is the symmetric version of the preceding one: # $$ # A^* = D^{-1/2} A D^{-1/2} # $$ # In[55]: j = -1 @interact_manual( seed=(1, 100), eps=(0, 1.5), N=(5, 40), jincr=(1, 10), normalization=["left", "symmetric"], ) def plot1d(seed, eps=0.1, N=15, normalization="left", jincr=1): global j np.random.seed(seed) # Define a NxN matrix A = np.zeros([N, N]) for i in range(1, N): A[i, i - 1] = 1 A[0, N - 1] = 1 A = A + A.T D = np.sum(A, axis=1) # works for all A Dinv = np.diag(1.0 / D) if normalization == "left": Dinv = np.diag(1.0 / D) A = Dinv @ A print("DinvSq @ A @ DinvSq= ", A) else: DinvSq = np.sqrt(Dinv) A = DinvSq @ A @ DinvSq x = np.linspace(0, 10, N) # Signal s noise = eps * np.random.randn(N) s = np.sin((x / x[-1]) * 2 * np.pi * 2.5) + noise print("mean(s) = ", np.mean(s)) j += jincr Aj = np.linalg.matrix_power(A, j) new_s = Aj @ s print("mean(new_s) = ", np.mean(new_s)) print("new_s= ", new_s) plt.plot(x, s, "-", color="red") plt.plot(x, new_s, "-o") plt.title("Press button to apply $A$") plt.show() # One observes that after many repetitions of normalized (left or symmetric), $A$, the signal converges to a constant equal to the mean of the original signal: # $$ # \lim_{n\rightarrow\infty} s_{new} = \text{mean}(s) = \frac1N\sum_0^{n-1} s_i # $$ # # From a theoretical point of view, if $s_{new}$ converges to a constant, it means that in the limit of $n\rightarrow\infty$, # $$ # (A^*)^n s_{new} = (A^*)^{n-1} s_{new} # $$ # which implies that # $$ A^* s_{new} = s_{new} $$ # In other words, $\lambda=1$ is an eigenvalue of the normalized adjacency matrix (corresonding to a bidirectional cyclic graph), either # $A^* = D^{-1} A$ or $A^* = D^{-1/2} A D^{-1/2}$. # # One can easily show that if a single eigenvalue is greater than 1, $s_{new} \rightarrow \infty$. Since that does not happen, the maximum eigenvalue must be unity. # # We check this out by computing the eigenvalues of the normalized matrix (which must be real since the matrix is symmetric). One also notices that since $A$ is symmetric, both normalizations produce the same results. # # Exercise: Can you prove this? # In[56]: @interact_manual(N=(5, 40), normalization=["left", "symmetric"]) def plot1d(N=15, normalization="left"): # Define a NxN matrix A = np.zeros([N, N]) # cyclic linear chain with two connections per node for i in range(1, N): A[i, i - 1] = 1 A[0, N - 1] = 1 A = A + A.T D = np.sum(A, axis=1) # works for all A Dinv = np.diag(1.0 / D) if normalization == "left": Dinv = np.diag(1.0 / D) A = Dinv @ A else: DinvSq = np.sqrt(Dinv) A = DinvSq @ A @ DinvSq print("A^*= ", A) evalue, evector =
np.linalg.eig(A)
numpy.linalg.eig
"""Segments detected regions in a chunked dask array. Uses overlapping chunks during segmentation, and determines how to link segments between neighboring chunks by examining the overlapping border regions. Heavily based on dask_image.ndmeasure.label, which uses non-overlapping blocks with a structuring element that links segments at the chunk boundaries. """ import functools import logging import operator import dask import dask.array as da import numpy as np class DistSegError(Exception): """Error in image segmentation.""" try: from dask_image.ndmeasure._utils import _label from sklearn import metrics as sk_metrics except ModuleNotFoundError as e: raise DistSegError("Install 'cellpose[distributed]' for distributed segmentation dependencies") from e logger = logging.getLogger(__name__) def segment( image, channels, model_type, diameter, fast_mode=False, use_anisotropy=True, iou_depth=2, iou_threshold=0.7, ): """Use cellpose to segment nuclei in fluorescence data. Parameters ---------- image : array of shape (z, y, x, channel) Image used for detection of objects channels : array of int with size 2 See cellpose model_type : str "cyto" or "nuclei" diameter : tuple of size 3 Approximate diameter (in pixels) of a segmented region, i.e. cell width fast_mode : bool In fast mode, network averaging, tiling, and augmentation are turned off. use_anisotropy : bool If true, use anisotropy parameter of cellpose iou_depth: dask depth parameter Number of pixels of overlap to use in intersection-over-union calculation when linking segments across neighboring, overlapping dask chunk regions. iou_threshold: float Minimum intersection-over-union in neighboring, overlapping dask chunk regions to be considered the same segment. The region for calculating IOU is given by the iou_depth parameter. Returns: segments : array of int32 with same shape as input Each segmented cell is assigned a number and all its pixels contain that value (0 is background) """ assert image.ndim == 4, image.ndim assert image.shape[-1] in {1, 2}, image.shape assert diameter[1] == diameter[2], diameter diameter_yx = diameter[1] anisotropy = diameter[0] / diameter[1] if use_anisotropy else None image = da.asarray(image) image = image.rechunk({-1: -1}) # color channel is chunked together depth = tuple(np.ceil(diameter).astype(np.int64)) boundary = "reflect" # No chunking in channel direction image = da.overlap.overlap(image, depth + (0,), boundary) block_iter = zip( np.ndindex(*image.numblocks), map( functools.partial(operator.getitem, image), da.core.slices_from_chunks(image.chunks), ), ) labeled_blocks = np.empty(image.numblocks[:-1], dtype=object) total = None for index, input_block in block_iter: labeled_block, n = dask.delayed(segment_chunk, nout=2)( input_block, channels, model_type, diameter_yx, anisotropy, fast_mode, index, ) shape = input_block.shape[:-1] labeled_block = da.from_delayed(labeled_block, shape=shape, dtype=np.int32) n = dask.delayed(np.int32)(n) n = da.from_delayed(n, shape=(), dtype=np.int32) total = n if total is None else total + n block_label_offset = da.where(labeled_block > 0, total, np.int32(0)) labeled_block += block_label_offset labeled_blocks[index[:-1]] = labeled_block total += n # Put all the blocks together block_labeled = da.block(labeled_blocks.tolist()) depth = da.overlap.coerce_depth(len(depth), depth) if np.prod(block_labeled.numblocks) > 1: iou_depth = da.overlap.coerce_depth(len(depth), iou_depth) if any(iou_depth[ax] > depth[ax] for ax in depth.keys()): raise DistSegError("iou_depth (%s) > depth (%s)" % (iou_depth, depth)) trim_depth = {k: depth[k] - iou_depth[k] for k in depth.keys()} block_labeled = da.overlap.trim_internal( block_labeled, trim_depth, boundary=boundary ) block_labeled = link_labels( block_labeled, total, iou_depth, iou_threshold=iou_threshold, ) block_labeled = da.overlap.trim_internal( block_labeled, iou_depth, boundary=boundary ) else: block_labeled = da.overlap.trim_internal( block_labeled, depth, boundary=boundary ) return block_labeled def segment_chunk( chunk, channels, model_type, diameter_yx, anisotropy, fast_mode, index, ): """Perform segmentation on an individual chunk.""" # Cellpose seems to have some randomness, which is made deterministic by using the block # details as a random seed. np.random.seed(index) from cellpose import models model = models.Cellpose(gpu=True, model_type=model_type, net_avg=not fast_mode) logger.info("Evaluating model") segments, _, _, _ = model.eval( chunk, channels=channels, z_axis=0, channel_axis=3, diameter=diameter_yx, do_3D=True, anisotropy=anisotropy, net_avg=not fast_mode, augment=not fast_mode, tile=not fast_mode, ) logger.info("Done segmenting chunk") return segments.astype(np.int32), segments.max() def link_labels(block_labeled, total, depth, iou_threshold=1): """ Build a label connectivity graph that groups labels across blocks, use this graph to find connected components, and then relabel each block according to those. """ label_groups = label_adjacency_graph(block_labeled, total, depth, iou_threshold) new_labeling = _label.connected_components_delayed(label_groups) return _label.relabel_blocks(block_labeled, new_labeling) def label_adjacency_graph(labels, nlabels, depth, iou_threshold): all_mappings = [da.empty((2, 0), dtype=np.int32, chunks=1)] slices_and_axes = get_slices_and_axes(labels.chunks, labels.shape, depth) for face_slice, axis in slices_and_axes: face = labels[face_slice] mapped = _across_block_iou_delayed(face, axis, iou_threshold) all_mappings.append(mapped) i, j = da.concatenate(all_mappings, axis=1) result = _label._to_csr_matrix(i, j, nlabels + 1) return result def _across_block_iou_delayed(face, axis, iou_threshold): """Delayed version of :func:`_across_block_label_grouping`.""" _across_block_label_grouping_ = dask.delayed(_across_block_label_iou) grouped = _across_block_label_grouping_(face, axis, iou_threshold) return da.from_delayed(grouped, shape=(2, np.nan), dtype=np.int32) def _across_block_label_iou(face, axis, iou_threshold): unique = np.unique(face) face0, face1 = np.split(face, 2, axis) intersection = sk_metrics.confusion_matrix(face0.reshape(-1), face1.reshape(-1)) sum0 = intersection.sum(axis=0, keepdims=True) sum1 = intersection.sum(axis=1, keepdims=True) # Note that sum0 and sum1 broadcast to square matrix size. union = sum0 + sum1 - intersection # Ignore errors with divide by zero, which the np.where sets to zero. with np.errstate(divide="ignore", invalid="ignore"): iou =
np.where(intersection > 0, intersection / union, 0)
numpy.where
import os import cv2 import numpy as np import tensorflow as tf model = tf.keras.models.load_model('./model_Rain100H/') path = './Rain100H/rain/' file_list = os.listdir(path) step = 0 for pic in file_list: p = tf.io.read_file('./Rain100H/rain/'+pic) pics_1 = tf.io.decode_image(p) pics_1 = pics_1.numpy()[np.newaxis,:,:,:] pics = pics_1/255 a = model.predict(pics) output_img1 =
np.squeeze(a)
numpy.squeeze
import numbers import numpy as np from scipy.sparse import coo_matrix from sklearn.utils.validation import check_array from .cabess import pywrap_PCA, pywrap_RPCA from .bess_base import bess_base def fix_docs(cls): # This function is to inherit the docstring from base class # and avoid unnecessary duplications on description. index = cls.__doc__.find("Examples\n --------\n") if index != -1: cls.__doc__ = cls.__doc__[:index] + \ cls.__bases__[0].__doc__ + cls.__doc__[index:] return cls @fix_docs class SparsePCA(bess_base): """ Adaptive Best-Subset Selection(ABESS) algorithm for principal component analysis. Parameters ---------- splicing_type: {0, 1}, optional The type of splicing in `fit()` (in Algorithm.h). "0" for decreasing by half, "1" for decresing by one. Default: splicing_type = 1. Examples -------- >>> ### Sparsity known >>> >>> from abess.decomposition import SparsePCA >>> import numpy as np >>> np.random.seed(12345) >>> model = SparsePCA(support_size = 10) >>> >>> ### X known >>> X = np.random.randn(100, 50) >>> model.fit(X) >>> print(model.coef_) >>> >>> ### X unknown, but Sigma known >>> model.fit(Sigma = np.cov(X.T)) >>> print(model.coef_) """ def __init__(self, max_iter=20, exchange_num=5, path_type="seq", is_warm_start=True, support_size=None, s_min=None, s_max=None, ic_type="ebic", ic_coef=1.0, cv=1, screening_size=-1, always_select=None, thread=1, sparse_matrix=False, splicing_type=1 ): super().__init__( algorithm_type="abess", model_type="PCA", normalize_type=1, path_type=path_type, max_iter=max_iter, exchange_num=exchange_num, is_warm_start=is_warm_start, support_size=support_size, s_min=s_min, s_max=s_max, ic_type=ic_type, ic_coef=ic_coef, cv=cv, screening_size=screening_size, always_select=always_select, thread=thread, sparse_matrix=sparse_matrix, splicing_type=splicing_type ) def transform(self, X): """ For PCA model, apply dimensionality reduction to given data. Parameters ---------- X : array-like of shape (n_samples, p_features) Test data. """ X = self.new_data_check(X) return X.dot(self.coef_) def ratio(self, X): """ Give new data, and it returns the explained ratio. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. """ X = self.new_data_check(X) s = np.cov(X.T) if len(self.coef_.shape) == 1: explain = self.coef_.T.dot(s).dot(self.coef_) else: explain = np.sum(np.diag(self.coef_.T.dot(s).dot(self.coef_))) if isinstance(s, (int, float)): full = s else: full = np.sum(np.diag(s)) return explain / full def fit(self, X=None, is_normal=False, group=None, Sigma=None, number=1, n=None, A_init=None): """ The fit function is used to transfer the information of data and return the fit result. Parameters ---------- X : array-like of shape (n_samples, p_features) Training data is_normal : bool, optional whether normalize the variables array before fitting the algorithm. Default: is_normal=False. weight : array-like of shape (n_samples,) Individual weights for each sample. Only used for is_weight=True. Default is 1 for each observation. group : int, optional The group index for each variable. Default: group = \\code{numpy.ones(p)}. Sigma : array-like of shape (n_features, n_features), optional Sample covariance matrix. For PCA, it can be given as input, instead of X. But if X is given, Sigma will be set to \\code{np.cov(X.T)}. Default: Sigma = \\code{np.cov(X.T)}. number : int, optional Indicates the number of PCs returned. Default: 1 n : int, optional Sample size. If X is given, it would be X.shape[0]; if Sigma is given, it would be 1 by default. Default: X.shape[0] or 1. """ # Input check if isinstance(X, (list, np.ndarray, np.matrix, coo_matrix)): if isinstance(X, coo_matrix): self.sparse_matrix = True X = check_array(X, accept_sparse=True) n = X.shape[0] p = X.shape[1] X = X - X.mean(axis=0) Sigma = np.cov(X.T) self.n_features_in_ = p elif isinstance(Sigma, (list, np.ndarray, np.matrix)): if self.cv > 1: raise ValueError("X should be given to use CV.") Sigma = check_array(Sigma) if (Sigma.shape[0] != Sigma.shape[1] or np.any(Sigma.T != Sigma)): raise ValueError("Sigma should be symmetrical matrix.") if np.any(np.linalg.eigvals(Sigma) < 0): raise ValueError("Sigma should be semi-positive definite.") if n is None: n = 1 p = Sigma.shape[0] X = np.zeros((1, p)) self.n_features_in_ = p is_normal = False else: raise ValueError("X or Sigma should be given in PCA.") # # Algorithm_type # if self.algorithm_type == "abess": # algorithm_type_int = 6 # else: # raise ValueError("algorithm_type should not be " + # str(self.algorithm_type)) # for PCA, # model_type_int = 7 path_type_int = 1 # Ic_type if self.ic_type == "aic": ic_type_int = 1 elif self.ic_type == "bic": ic_type_int = 2 elif self.ic_type == "gic": ic_type_int = 3 elif self.ic_type == "ebic": ic_type_int = 4 else: raise ValueError( "ic_type should be \"aic\", \"bic\", \"ebic\" or \"gic\"") # cv if (not isinstance(self.cv, int) or self.cv <= 0): raise ValueError("cv should be an positive integer.") if self.cv > n: raise ValueError("cv should be smaller than n.") # Group if group is None: g_index = list(range(p)) else: group = np.array(group) if group.ndim > 1: raise ValueError("group should be an 1D array of integers.") if group.size != p: raise ValueError( "The length of group should be equal to X.shape[1].") g_index = [] group.sort() group_set = list(set(group)) j = 0 for i in group_set: while group[j] != i: j += 1 g_index.append(j) # path parameter (note that: path_type_int = 1) if self.support_size is None: support_sizes = np.ones(((int(p / 3) + 1), number)) else: if isinstance(self.support_size, (numbers.Real, numbers.Integral)): support_sizes =
np.zeros((self.support_size, 1))
numpy.zeros
''' Created on May 15, 2018 @author: melnikov ''' import numpy from scipy import stats, signal, spatial import base64 import random import matplotlib from matplotlib import pyplot as plt import multiprocessing as mp import ctypes try: from workflow_lib import workflow_logging logger = workflow_logging.getLogger() except: import logging logger = logging.getLogger("MeshBest") def triangle(x0, y0, length): x = numpy.linspace(0, 99, 100) array = y0 - 2 * y0 * numpy.abs(x - x0) / length array = array * (array > 0) return array def From64ToSpotArray(string64): array = numpy.frombuffer(base64.b64decode(string64)) array = array.reshape((int(array.size/5), 5)) return array def AMPDiter(array): L = int(len(array) / 2) matrix = numpy.zeros((L, len(array))) for k in range(1, L + 1): for i in range(1, len(array) + 1): if i >= k + 2 and i < len(array) - k + 2: # W = 2 * k if array[i - 2] > array[i - k - 2] and array[i - 2] > array[i + k - 2]: matrix[k - 1, i - 1] = 0 else: matrix[k - 1, i - 1] = 1 + random.random() / 2 else: matrix[k - 1, i - 1] = 1 + random.random() / 2 gammas = numpy.sum(matrix, axis=1) # logger.debug(gammas) Lambda = numpy.where(gammas == numpy.min(gammas))[0][0] + 1 # logger.debug(Lambda) matrix = matrix[:Lambda, :] Sigma = numpy.std(matrix, axis=0) peaks = [] for i in range(len(Sigma)): if Sigma[i] == 0: if (i - 1) / float(len(array)) > 0.00: peaks.append(i - 1) peaks = numpy.array(peaks, dtype=int) # logger.debug('AMPD-result_PEAKS: ', peaks) return peaks, Lambda def AMPD(array_orig): fullpeaklist = numpy.array([], dtype=int) for cycle in range(10): M = numpy.mean(array_orig) # SD = numpy.std(array_orig) X = numpy.arange(0, len(array_orig)) linfit = stats.linregress(X, array_orig) array = array_orig - (linfit[0] * X + linfit[1]) array = array * (array > 0) MAX = numpy.max(array) - M allpeaks = numpy.array([], dtype=int) while True: substract = numpy.zeros(len(array_orig)) peaks, Lambda = AMPDiter(array) peaks = peaks[(array_orig[peaks] - M > MAX / 5)] if len(peaks) > 0: pass else: break allpeaks = numpy.append(allpeaks, peaks) for peak in peaks: substract += triangle(peak, array[peak], Lambda)[:len(array_orig)] array = array - substract array = array * (array > 0) if len(numpy.atleast_1d(allpeaks)) == 0: break allpeaks = numpy.sort(allpeaks) allpeaks = allpeaks.astype(int) dels = [] for i in range(len(allpeaks)): peak = allpeaks[i] if peak > 1 and peak < (len(array_orig) - 1): if array_orig[peak] < array_orig[peak + 1] or array_orig[peak] < array_orig[peak - 1]: dels.append(i) allpeaks = numpy.delete(allpeaks, dels) fullpeaklist = numpy.append(fullpeaklist, allpeaks) fullpeaklist = numpy.unique(fullpeaklist) # fig = plt.plot(array_orig) # sc = plt.scatter(fullpeaklist, array_orig[fullpeaklist], color='red') # plt.show() if len(fullpeaklist)>1: return fullpeaklist else: return None def CalcSeff(array): # N = numpy.size(array) / 5 rarray = numpy.sqrt((array[:, 1] - BeamCenter[0])**2+(array[:, 2] - BeamCenter[1])**2) rmax = min(int(BeamCenter[0]), int(BeamCenter[1])) HIST = numpy.histogram(rarray, bins=50, range=(0, rmax)) binsize = HIST[1][1]-HIST[1][0] Rspace = numpy.linspace(0, rmax, 50) density = numpy.zeros(50) for i in range(50): density[i] = HIST[0][i]/(2*3.14159*(binsize**2)*(i+0.5)) Sdetec = numpy.diff(Rspace**2, 1) Sdetec = numpy.append(Sdetec, [0]) Sreal = (DetectorPixel**2)*(Sdetec*DetectorDistance/(Wavelength**2)) / (numpy.sqrt(DetectorDistance**2+(DetectorPixel*Rspace)**2))**3 Seff = numpy.sum(Sreal*(density>0)) # plt.plot(density) # plt.show() return Seff def SaltRingCheck_MP(queue, BeamCenter, Buffer): while True: spot = queue.get() if spot == None: break try: string = spot['dozorSpotList'] array = From64ToSpotArray(string) if len(numpy.atleast_1d(array)) > 250: xsize = int(BeamCenter[0]) * 2 + 1 ysize = int(BeamCenter[1]) * 2 + 1 detector = numpy.zeros((ysize, xsize)) for i in range(numpy.shape(array)[0]): detector[int(array[i, 2]), int(array[i, 1])] = 1 radius_array = numpy.sqrt((array[:, 1] - BeamCenter[0]) ** 2 + (array[:, 2] - BeamCenter[1]) ** 2) density = numpy.zeros(numpy.size(radius_array)) for i in range(numpy.shape(array)[0]): x0, y0 = int(array[i, 1]), int(array[i, 2]) density[i] = numpy.mean(detector[y0 - 5:y0 + 5, x0 - 5:x0 + 5]) HIST = numpy.histogram(radius_array, bins=400, range=(10, min(BeamCenter)), weights=(density))[0] #---SALT_RING_CHECK_ANALYSIS--- M = numpy.mean(HIST) # remove_outliers X = numpy.arange(400) p = numpy.polyfit(X[(HIST < 3 * M)], HIST[X[(HIST < 3 * M)]], 2) V = numpy.poly1d(p) based = HIST - 2 * V(X) * (V(X) > 0) based = based * (based > 0) M1 = numpy.mean(based[X[(HIST < 3 * M)]]) SD = numpy.std(based[X[(HIST < 3 * M)]]) peaks = X[(based > M1 + 10 * SD) * (HIST > 0.1)] #---EXCLUDE_BAD_REGIONS--- Excluded_regions = [((peak - 2) * (min(BeamCenter) - 10) / 399 + 10, (peak + 2) * (min(BeamCenter) - 10) / 399 + 10) for peak in peaks] r = numpy.zeros(numpy.shape(array)[0]) for ring in Excluded_regions: r += (radius_array > ring[0]) * (radius_array < ring[1]) array = numpy.delete(array, numpy.where(r), 0) if len(array) > 5: newstring = base64.b64encode(array).decode() Buffer[spot['index']] = newstring except KeyError: pass def MakeHistogram_MP(queue): limits = (0.001, 0.04) while True: spot = queue.get() if spot == None: break if 'dozorSpotList_saltremoved' in spot.keys(): string = spot['dozorSpotList_saltremoved'] array = From64ToSpotArray(string) elif 'dozorSpotList' in spot.keys(): string = spot['dozorSpotList'] array = From64ToSpotArray(string) else: string = False result = numpy.zeros(100) if string != False: if array.size > 5: RealCoords = numpy.zeros((numpy.shape(array)[0], 5)) x = (array[:, 1] - BeamCenter[0]) * DetectorPixel y = (array[:, 2] - BeamCenter[1]) * DetectorPixel divider = Wavelength * numpy.sqrt(x ** 2 + y ** 2 + DetectorDistance ** 2) RealCoords[:, 0] = x / divider RealCoords[:, 1] = y / divider RealCoords[:, 2] = (1/Wavelength) - DetectorDistance/divider # RealCoords[i, 3] = array[i, 0] # RealCoords[i, 4] = float(array[i, 3]) / float(array[i, 4]) array = spatial.distance.pdist(RealCoords[:, :3], metric='euclidean') # array = numpy.array([]) # # for i in range(len(RealCoords[:, 0])): # for j in range(i + 1, len(RealCoords[:, 0])): # if numpy.abs(RealCoords[i, 3] - RealCoords[j, 3]) < 15: # L = numpy.sqrt((RealCoords[i, 0] - RealCoords[j, 0]) ** 2 + (RealCoords[i, 1] - RealCoords[j, 1]) ** 2 + (RealCoords[i, 2] - RealCoords[j, 2]) ** 2) # if L < limits[1] and L >= limits[0]: # array = numpy.append(array, L) if len(array) > 1: result = numpy.histogram(array, bins=100, range=limits)[0] # string = str(base64.b64encode(result)) # Buffer[spot['index']] = ' '.join(result.astype(str).tolist()) Buffer[spot['index']] = base64.b64encode(result.astype(float)).decode() def MakeHistogram(spot): limits = (0.001, 0.04) if 'dozorSpotList_saltremoved' in spot.keys(): string = spot['dozorSpotList_saltremoved'] array = From64ToSpotArray(string) elif 'dozorSpotList' in spot.keys(): string = spot['dozorSpotList'] array = From64ToSpotArray(string) else: string = False if string != False: if len(numpy.atleast_1d(array)) > 5: RealCoords = numpy.zeros((numpy.shape(array)[0], 5)) x = (array[:, 1] - BeamCenter[0]) * DetectorPixel y = (array[:, 2] - BeamCenter[1]) * DetectorPixel divider = Wavelength * numpy.sqrt(x ** 2 + y ** 2 + DetectorDistance ** 2) RealCoords[:, 0] = x / divider RealCoords[:, 1] = y / divider RealCoords[:, 2] = (1/Wavelength) - DetectorDistance/divider # RealCoords[i, 3] = array[i, 0] # RealCoords[i, 4] = float(array[i, 3]) / float(array[i, 4]) array = spatial.distance.pdist(RealCoords[:, :3], metric='euclidean') # array = numpy.array([]) # # for i in range(len(RealCoords[:, 0])): # for j in range(i + 1, len(RealCoords[:, 0])): # if numpy.abs(RealCoords[i, 3] - RealCoords[j, 3]) < 15: # L = numpy.sqrt((RealCoords[i, 0] - RealCoords[j, 0]) ** 2 + (RealCoords[i, 1] - RealCoords[j, 1]) ** 2 + (RealCoords[i, 2] - RealCoords[j, 2]) ** 2) # if L < limits[1] and L >= limits[0]: # array = numpy.append(array, L) if array.size > 1: histogr = numpy.histogram(array, bins=100, range=limits) return histogr[0] def OverlapCheck_MP(queue, base_regions): while True: item = queue.get() if item == None: break Buffer[item['index']] = 0 try: array = From64ToSpotArray(item['dozorSpotList_saltremoved']) except KeyError: array = From64ToSpotArray(item['dozorSpotList']) N = array.size / 5 Smax = CalcSeff(array) H0 = numpy.frombuffer(base64.b64decode(item['DVHistogram'])) # H0 = numpy.array(item['DVHistogram'].split(' ')).astype(int) H = H0[base_regions] X = numpy.linspace(0.001, 0.04, 100)[base_regions] if numpy.all(H==0): k = 0 else: k = numpy.mean(X*H)/numpy.mean(X*X) std = numpy.sqrt(numpy.mean((k*X-H)**2)) weights = numpy.exp((N/450.0)*(k*X-H)/std) k =
numpy.mean(X*H*weights)
numpy.mean
"""Tools for project.""" import os import json import pickle from pathlib import Path from copy import deepcopy import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors rootpath = os.path.dirname(os.path.abspath(__file__)) FIGPATH = os.path.join(rootpath, 'figures') mpl.rcParams['font.size'] = 7 mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 mpl.rcParams['font.family'] = 'arial' def get_figname(save_path, figname=''): # For backward compatability if isinstance(save_path, str): save_name = os.path.split(save_path)[-1] else: # ugly hack to get experiment name save_name = os.path.split(os.path.split(save_path[0])[-2])[-1] path = os.path.join(FIGPATH, save_name) os.makedirs(path, exist_ok=True) figname = os.path.join(path, save_name + figname) return figname def save_fig(save_path, figname='', dpi=300, pdf=True, show=False): figname = get_figname(save_path, figname) plt.savefig(os.path.join(figname + '.png'), dpi=dpi) print('Figure saved at: ' + figname) if pdf: plt.savefig(os.path.join(figname + '.pdf'), transparent=True) # plt.savefig(os.path.join(figname + '.svg'), transparent=True, format='svg') if show: plt.show() # plt.close() def save_config(config, save_path, also_save_as_text = True): """Save config.""" config_dict = config.__dict__ with open(os.path.join(save_path, 'config.json'), 'w') as f: json.dump(config_dict, f) if also_save_as_text: with open(os.path.join(save_path, 'config.txt'), "w") as f: for k, v in config_dict.items(): f.write(str(k) + ' >>> ' + str(v) + '\n\n') def load_config(save_path): """Load config.""" import configs with open(os.path.join(save_path, 'config.json'), 'r') as f: config_dict = json.load(f) model_type = config_dict.get('model', None) if model_type == 'full': if 'meta_lr' in config_dict: config = configs.MetaConfig() else: config = configs.FullConfig() elif model_type == 'rnn': config = configs.RNNConfig() else: config = configs.BaseConfig() for key, val in config_dict.items(): setattr(config, key, val) try: config.n_trueclass_ratio = config.n_trueclass / config.N_CLASS except AttributeError: pass return config def vary_config(base_config, config_ranges, mode): """Return configurations. Args: base_config: dict, a base configuration config_ranges: a dictionary of hyperparameters values config_ranges = { 'hp1': [hp1_val1, hp1_val2, ...], 'hp2': [hp2_val1, hp2_val2, ...], } mode: str, can take 'combinatorial', 'sequential', and 'control' Return: configs: a list of config dict [config1, config2, ...] """ if mode == 'combinatorial': _vary_config = _vary_config_combinatorial elif mode == 'sequential': _vary_config = _vary_config_sequential elif mode == 'control': _vary_config = _vary_config_control else: raise ValueError('Unknown mode {}'.format(str(mode))) configs, config_diffs = _vary_config(base_config, config_ranges) # Automatic set names for configs # configs = autoname(configs, config_diffs) for i, config in enumerate(configs): config.model_name = str(i).zfill(6) # default name return configs # def autoname(configs, config_diffs): # """Helper function for automatically naming models based on configs.""" # new_configs = list() # for config, config_diff in zip(configs, config_diffs): # name = 'model' # for key, val in config_diff.items(): # name += '_' + str(key) + str(val) # config['save_path'] = Path(config['save_path']) / name # new_configs.append(config) # return new_configs def _vary_config_combinatorial(base_config, config_ranges): """Return combinatorial configurations. Args: base_config: dict, a base configuration config_ranges: a dictionary of hyperparameters values config_ranges = { 'hp1': [hp1_val1, hp1_val2, ...], 'hp2': [hp2_val1, hp2_val2, ...], } Return: configs: a list of config dict [config1, config2, ...] Loops over all possible combinations of hp1, hp2, ... config_diffs: a list of config diff from base_config """ # Unravel the input index keys = config_ranges.keys() dims = [len(config_ranges[k]) for k in keys] n_max = int(np.prod(dims)) configs, config_diffs = list(), list() for i in range(n_max): new_config = deepcopy(base_config) config_diff = dict() indices = np.unravel_index(i, dims=dims) # Set up new config for key, index in zip(keys, indices): val = config_ranges[key][index] setattr(new_config, key, val) config_diff[key] = val configs.append(new_config) config_diffs.append(config_diff) return configs, config_diffs def _vary_config_sequential(base_config, config_ranges): """Return sequential configurations. Args: base_config: dict, a base configuration config_ranges: a dictionary of hyperparameters values config_ranges = { 'hp1': [hp1_val1, hp1_val2, ...], 'hp2': [hp2_val1, hp2_val2, ...], } Return: configs: a list of config dict [config1, config2, ...] Loops over all hyperparameters hp1, hp2 together sequentially config_diffs: a list of config diff from base_config """ keys = config_ranges.keys() dims = [len(config_ranges[k]) for k in keys] n_max = dims[0] configs, config_diffs = list(), list() for i in range(n_max): new_config = deepcopy(base_config) config_diff = dict() for key in keys: val = config_ranges[key][i] setattr(new_config, key, val) config_diff[key] = val configs.append(new_config) config_diffs.append(config_diff) return configs, config_diffs def _vary_config_control(base_config, config_ranges): """Return control configurations. Each config_range is gone through sequentially. The base_config is trained only once. Args: base_config: dict, a base configuration config_ranges: a dictionary of hyperparameters values config_ranges = { 'hp1': [hp1_val1, hp1_val2, ...], 'hp2': [hp2_val1, hp2_val2, ...], } Return: configs: a list of config dict [config1, config2, ...] Loops over all hyperparameters hp1, hp2 independently config_diffs: a list of config diff from base_config """ keys = list(config_ranges.keys()) # Remove the baseconfig value from the config_ranges new_config_ranges = {} for key, val in config_ranges.items(): base_config_val = getattr(base_config, key) new_config_ranges[key] = [v for v in val if v != base_config_val] # Unravel the input index dims = [len(new_config_ranges[k]) for k in keys] n_max = int(np.sum(dims)) configs, config_diffs = list(), list() configs.append(deepcopy(base_config)) config_diffs.append({}) for i in range(n_max): new_config = deepcopy(base_config) index = i for j, dim in enumerate(dims): if index >= dim: index -= dim else: break config_diff = dict() key = keys[j] val = new_config_ranges[key][index] setattr(new_config, key, val) config_diff[key] = val configs.append(new_config) config_diffs.append(config_diff) return configs, config_diffs def _islikemodeldir(d): """Check if directory looks like a model directory.""" try: files = os.listdir(d) except NotADirectoryError: return False fs = ['model.ckpt', 'model.pkl', 'model.pt', 'log.pkl', 'log.npz'] for f in fs: if f in files: return True return False def _get_alldirs(dir, model, sort): """Return sorted model directories immediately below path. Args: model: bool, if True find directories containing model files sort: bool, if True, sort directories by name """ dirs = os.listdir(dir) if model: dirs = [d for d in dirs if _islikemodeldir(os.path.join(dir, d))] if _islikemodeldir(dir): # if root is mode directory, return it return [dir] if sort: ixs = np.argsort([int(n) for n in dirs]) # sort by epochs dirs = [os.path.join(dir, dirs[n]) for n in ixs] return dirs def select_modeldirs(modeldirs, select_dict=None, acc_min=None): """Select model directories. Args: modeldirs: list of model directories select_dict: dict, config must match select_dict to be selected acc_min: None or float, minimum validation acc to be included """ new_dirs = [] for d in modeldirs: selected = True if select_dict is not None: config = load_config(d) # epoch modeldirs have no configs for key, val in select_dict.items(): if key == 'data_dir': # If data_dir, only compare last if Path(config.data_dir).name != Path(val).name: selected = False break else: if getattr(config, key) != val: selected = False break if acc_min is not None: log = load_log(d) if log['val_acc'][-1] < acc_min: selected = False if selected: new_dirs.append(d) return new_dirs def exclude_modeldirs(modeldirs, exclude_dict=None): """Exclude model directories.""" new_dirs = [] for d in modeldirs: excluded = False if exclude_dict is not None: config = load_config(d) # epoch modeldirs have no configs for key, val in exclude_dict.items(): if key == 'data_dir': # If data_dir, only compare last if Path(config.data_dir).name == Path(val).name: excluded = True break else: if getattr(config, key) == val: excluded = True break if not excluded: new_dirs.append(d) return new_dirs def sort_modeldirs(modeldirs, key): """Sort modeldirs by value of key.""" val = [] for d in modeldirs: config = load_config(d) val.append(getattr(config, key)) ind_sort = np.argsort(val) modeldirs = [modeldirs[i] for i in ind_sort] return modeldirs def get_modeldirs(path, select_dict=None, exclude_dict=None, acc_min=None): dirs = _get_alldirs(path, model=True, sort=True) dirs = select_modeldirs(dirs, select_dict=select_dict, acc_min=acc_min) dirs = exclude_modeldirs(dirs, exclude_dict=exclude_dict) return dirs def get_experiment_name(model_path): """Get experiment name for saving.""" if _islikemodeldir(model_path): config = load_config(model_path) experiment_name = config.experiment_name if experiment_name is None: # model_path is assumed to be experiment_name/model_name experiment_name = os.path.normpath(model_path).split(os.path.sep)[-2] else: # Assume this is path to experiment experiment_name = os.path.split(model_path)[-1] return experiment_name def get_model_name(model_path): """Get model name for saving.""" if _islikemodeldir(model_path): config = load_config(model_path) model_name = config.model_name if model_name is None: # model_path is assumed to be experiment_name/model_name model_name = os.path.split(model_path)[-1] else: # Assume this is path to experiment model_name = os.path.split(model_path)[-1] return model_name def save_pickle(modeldir, obj, epoch=None): """Save model weights in numpy. Args: modeldir: str, model directory obj: dictionary of numpy arrays epoch: int or None, epoch of training """ if epoch is not None: modeldir = os.path.join(modeldir, 'epoch', str(epoch).zfill(4)) os.makedirs(modeldir, exist_ok=True) fname = os.path.join(modeldir, 'model.npz') np.savez_compressed(fname, **obj) def load_pickle(modeldir): file_np = os.path.join(modeldir, 'model.npz') file_pkl = os.path.join(modeldir, 'model.pkl') if os.path.isfile(file_np): var_dict = np.load(file_np) else: with open(file_pkl, 'rb') as f: var_dict = pickle.load(f) return var_dict def load_pickles(dir, var): """Load pickle by epoch in sorted order.""" out = [] dirs = get_modeldirs(dir) for i, d in enumerate(dirs): var_dict = load_pickle(d) try: cur_val = var_dict[var] out.append(cur_val) except: print(var + ' is not in directory:' + d) return out def save_log(modeldir, log): np.savez_compressed(os.path.join(modeldir, 'log.npz'), **log) def load_log(modeldir): file_np = os.path.join(modeldir, 'log.npz') file_pkl = os.path.join(modeldir, 'log.pkl') if os.path.isfile(file_np): log = np.load(file_np) else: with open(file_pkl, 'rb') as f: log = pickle.load(f) save_log(modeldir, log) # resave with npz return log def has_nobadkc(modeldir, bad_kc_threshold=0.2): """Check if model has too many bad KCs.""" log = load_log(modeldir) if 'bad_KC' not in log: return True # After training, bad KC proportion should lower 'bad_kc_threshold' return log['bad_KC'][-1] < bad_kc_threshold def filter_modeldirs_badkc(modeldirs, bad_kc_threshold=0.2): """Filter model dirs with too many bad KCs.""" return [d for d in modeldirs if has_nobadkc(d, bad_kc_threshold)] def has_singlepeak(modeldir, peak_threshold=None): """Check if model has a single peak.""" # TODO: Use this method throughout to replace similar methods log = load_log(modeldir) if ('lin_bins' not in log) or ('lin_hist' not in log): return True config = load_config(modeldir) if peak_threshold is None: peak_threshold = 2./config.N_PN # heuristic if config.kc_prune_weak_weights: thres = config.kc_prune_threshold else: thres = log['thres_inferred'][-1] # last epoch if len(log['lin_bins'].shape) == 1: bins = log['lin_bins'][:-1] else: bins = log['lin_bins'][-1, :-1] bin_size = bins[1] - bins[0] hist = log['lin_hist'][-1] # last epoch # log['lin_bins'] shape (nbin+1), log['lin_hist'] shape (n_epoch, nbin) ind_thres = np.argsort(np.abs(bins - thres))[0] ind_grace = int(0.01 / bin_size) # grace distance to start find peak hist_abovethres = hist[ind_thres + ind_grace:] ind_peak = np.argmax(hist_abovethres) # Value at threshold and at peak thres_value = hist_abovethres[0] peak_value = hist_abovethres[ind_peak] if (ind_peak + ind_grace) * bin_size <= peak_threshold or ( peak_value < 1.3 * thres_value): # peak should be at least 'peak_threshold' away from threshold return False else: return True def filter_modeldirs_badpeak(modeldirs, peak_threshold=None): """Filter model dirs without a strong second peak.""" return [d for d in modeldirs if has_singlepeak(d, peak_threshold)] def filter_modeldirs(modeldirs, exclude_badkc=False, exclude_badpeak=False): """Select model directories. Args: modeldirs: list of model directories exclude_badkc: bool, if True, exclude models with too many bad KCs exclude_badpeak: bool, if True, exclude models with bad peaks Return: modeldirs: list of filtered model directories """ print('Analyzing {} model directories'.format(len(modeldirs))) if exclude_badkc: modeldirs = filter_modeldirs_badkc(modeldirs) print('{} remain after filtering bad kcs'.format(len(modeldirs))) if exclude_badpeak: modeldirs = filter_modeldirs_badpeak(modeldirs) print('{} remain after filtering bad peaks'.format(len(modeldirs))) return modeldirs def load_all_results(path, select_dict=None, exclude_dict=None, argLast=True, ix=None, exclude_early_models=False, none_to_string=True): """Load results from path. Args: path: str or list, if str, root path of all models loading results from if list, directories of all models Returns: res: dictionary of numpy arrays, containing information from all models """ if isinstance(path, str): dirs = get_modeldirs(path) else: dirs = path dirs = select_modeldirs(dirs, select_dict=select_dict) dirs = exclude_modeldirs(dirs, exclude_dict=exclude_dict) from collections import defaultdict res = defaultdict(list) for i, d in enumerate(dirs): log = load_log(d) config = load_config(d) n_actual_epoch = len(log['val_acc']) if exclude_early_models and n_actual_epoch < config.max_epoch: continue # Add logger values for key, val in log.items(): if key == 'meta_update_lr': # special handling key = 'meta_update_lr_trained' if len(val) == n_actual_epoch: if argLast: res[key].append(val[-1]) # store last value in log elif ix is not None: res[key].append(val[ix]) else: res[key].append(val) else: res[key].append(val) if 'loss' in key: res['log_' + key].append(np.log(val)) if 'kc_prune_weak_weights' in dir(config) and \ config.kc_prune_weak_weights: k_smart_key = 'K' else: k_smart_key = 'K_inferred' if k_smart_key in res.keys(): res['K_smart'].append(res[k_smart_key][-1]) # Adding configuration values for k in dir(config): if k == 'coding_level': # name conflict with log entry res['coding_level_set'].append(config.coding_level) elif k == 'data_dir': res['data_dir'].append(Path(config.data_dir).name) elif k[0] != '_': v = getattr(config, k) if v is None and none_to_string: v = '_none' res[k].append(v) # Add pn2kc peak information clean_pn2kc = has_nobadkc(d) and has_singlepeak(d) res['clean_pn2kc'].append(clean_pn2kc) for key, val in res.items(): try: res[key] = np.array(val) except ValueError: print('Cannot turn ' + key + ' into np array, probably non-homogeneous shape') return res nicename_dict = { '_none': 'None', 'ORN_NOISE_STD': 'Noise level', 'N_PN': 'Number of PNs', 'N_KC': 'Number of KCs', 'N_ORN_DUPLICATION': 'ORNs per type', 'kc_inputs': 'PN inputs per KC', 'glo_score': 'GloScore', 'or_glo_score': 'OR to ORN GloScore', 'combined_glo_score': 'OR to PN GloScore', 'train_acc': 'Training Accuracy', 'train_loss': 'Training Loss', 'log_train_loss': 'Log Training Loss', 'val_acc': 'Accuracy', 'val_loss': 'Loss', 'log_val_loss': 'Log Loss', 'epoch': 'Epoch', 'kc_dropout': 'KC Dropout Rate', 'kc_loss_alpha': r'$\alpha$', 'kc_loss_beta': r'$\beta$', 'initial_pn2kc': 'Initial PN-KC Weights', 'initializer_pn2kc': 'Initializer', 'mean_claw': 'Average Number of KC Claws', 'zero_claw': '% of KC with No Input', 'kc_out_sparse_mean': '% of Active KCs', 'coding_level': '% of Active KCs', 'N_CLASS': 'Number of Classes', 'n_glo': 'Number of ORs per PN', 'n_trueclass': 'Number of Odor Prototypes', 'n_trueclass_ratio': 'Odor Prototypes Per Class', 'n_restricted_patterns': 'N Stereotyped Patterns', 'weight_perturb': 'Weight Perturb.', 'lr': 'Learning rate', 'train_kc_bias': 'Training KC bias', 'pn_norm_pre': 'PN normalization', 'kc_norm_pre': 'KC normalization', 'kc_norm': 'KC normalization', 'batch_norm': 'Batch Norm', 'layer_norm': 'Layer Norm', 'olsen': 'Divisive Norm', 'mean_center': 'Zero Mean', 'kc_dropout_rate': 'KC dropout rate', 'pn_dropout_rate': 'PN dropout rate', 'K_inferred': 'K', 'K': 'fixed threshold K', 'lin_hist_': 'Distribution', 'lin_bins_': 'PN to KC Weight', 'lin_hist': 'Distribution', 'lin_bins': 'PN to KC Weight', 'kc_prune_threshold': 'KC prune threshold', 'n_or_per_orn': 'Number of ORs per ORN', 'K_smart': 'K', 'kc_prune_weak_weights': 'Prune PN-KC weights', 'kc_recinh': 'KC recurrent inhibition', 'kc_recinh_coeff': 'KC rec. inh. strength', 'kc_recinh_step': 'KC rec. inh. step', 'orn_corr': 'ORN correlation', 'w_orn': 'ORN-PN connectivity', 'w_or': 'OR-ORN connectivity', 'w_glo': 'PN-KC connectivity', 'w_combined': 'OR-PN effective connectivity', 'glo_in': 'PN Input', 'glo': 'PN Activity', 'kc_in': 'KC Input', 'kc': 'KC Activity', 'sign_constraint_orn2pn': 'Non-negative ORN-PN', 'meta_lr': 'Meta learning rate', 'meta_num_samples_per_class': '# Samples/Class', 'meta_update_lr': 'Initial inner learning rate', 'skip_orn2pn': 'Skip ORN-PN', 'data_dir': 'Dataset', 'fixed_activity': 'Fixed activity', 'spread_orn_activity': 'ORN activity spread', 'training_type': 'Fixed Weights', 'train_pn2kc': 'Train PN-KC weights', } def nicename(name, mode='dict'): """Return nice name for publishing.""" if mode in ['lr', 'meta_lr']: return np.format_float_scientific(name, precision=0, exp_digits=1) elif mode in ['N_KC', 'N_PN']: if name >= 1000: return '{:.1f}K'.format(name/1000) else: return name elif mode == 'kc_recinh_coeff': return '{:0.1f}'.format(name) elif mode == 'coding_level': return '{:0.2f}'.format(name) elif mode == 'n_trueclass_ratio': return '{:d}'.format(int(name)) elif mode == 'data_dir': # Right now this is only used for pn_normalization experiment if Path(name).name == Path( './datasets/proto/concentration').name: return 'low' elif Path(name).name == Path( './datasets/proto/concentration_mask_row_0').name: return 'medium' elif Path(name).name == Path( './datasets/proto/concentration_mask_row_0.6').name: return 'high' elif name == 'data_dir': return 'spread' else: return name elif mode == 'scaling': name = Path(name).name if name == 'dim': return 'Max dimension' elif name == 'angle': return 'Angle robustness' elif name == 'vary_or': return 'Train' elif name == 'meta_vary_or': return 'Meta learning' else: return name else: return nicename_dict.get(name, name) # get(key, default value) # colors from https://visme.co/blog/color-combinations/ # 14 blue = np.array([2,148,165])/255. red = np.array([193,64,61])/255. gray = np.array([167, 156, 147])/255. darkblue = np.array([3, 53, 62])/255. green = np.array([65,89,57])/255. # From # 24 def reshape_worn(w_orn, unique_orn, mode='tile'): """Reshape w_orn.""" n_orn, n_pn = w_orn.shape w_orn_by_pn = w_orn n_duplicate_orn = n_orn // unique_orn if mode == 'repeat': w_orn_by_pn = np.reshape(w_orn_by_pn, (unique_orn, n_duplicate_orn, n_pn)) w_orn_by_pn = np.swapaxes(w_orn_by_pn, 0, 1) elif mode == 'tile': w_orn_by_pn = np.reshape(w_orn_by_pn, (n_duplicate_orn, unique_orn, n_pn)) else: raise ValueError('Unknown mode' + str(mode)) return w_orn_by_pn def reshape_worn_by_wor(w_orn, w_or): ind_max = np.argmax(w_or, axis=0) w_orn = w_orn[ind_max,:] return w_orn, ind_max def compute_glo_score(w_orn, unique_ors, mode='tile', w_or = None): """Compute the glomeruli score in numpy. This function returns the glomeruli score, a number between 0 and 1 that measures how close the connectivity is to glomeruli connectivity. For one glomeruli neuron, first we compute the average connections from each ORN group. Then we sort the absolute connection weights by ORNs. The glomeruli score is simply: (Max weight - Second max weight) / (Max weight + Second max weight) Args: w_orn: numpy array (n_orn, n_pn). This matrix has to be organized in the following ways: In the mode=='repeat' neurons from the same orn type are indexed consecutively for example, neurons from the 0-th type would be 0, 1, 2, ... In the mode=='tile' neurons from the same orn type are spaced by the number of types, for example, neurons from the 0-th type would be 0, 50, 100, ... unique_ors: int, the number of unique ORNs mode: the way w_orn is organized Return: avg_glo_score: scalar, average glomeruli score glo_scores: numpy array (n_pn,), all glomeruli scores """ n_orn, n_pn = w_orn.shape if mode == 'tile' or mode == 'repeat': w_orn_by_pn = reshape_worn(w_orn, unique_ors, mode) w_orn_by_pn = w_orn_by_pn.mean(axis=0) elif mode == 'matrix': _, ind_max = reshape_worn_by_wor(w_orn, w_or) w_orn_by_pn = np.zeros((unique_ors, unique_ors)) for i in range(unique_ors): out = np.mean(w_orn[ind_max == i, :], axis=0) out[np.isnan(out)] = 0 w_orn_by_pn[i, :] = out else: raise ValueError('reshaping format is not recognized {}'.format(mode)) glo_scores = list() for i in range(n_pn): w_tmp = w_orn_by_pn[:, i] # all projections to the i-th PN neuron indsort = np.argsort(w_tmp)[::-1] w_max = w_tmp[indsort[0]] w_second = w_tmp[indsort[1]] glo_score = (w_max - w_second) / (w_max + w_second) glo_scores.append(glo_score) avg_glo_score = np.round(np.mean(glo_scores),4) return avg_glo_score, glo_scores def compute_sim_score(w_orn, unique_orn, mode='tile'): """Compute the similarity score in numpy. This function returns the glomeruli score, a number between 0 and 1 that measures how close the connectivity is to glomeruli connectivity. For one glomeruli neuron, first we compute the average connections from each ORN group. Then we sort the absolute connection weights by ORNs. The glomeruli score is simply: (Max weight - Second max weight) / (Max weight + Second max weight) Args: w_orn: numpy array (n_orn, n_pn). This matrix has to be organized in the following ways: In the mode=='repeat' neurons from the same orn type are indexed consecutively for example, neurons from the 0-th type would be 0, 1, 2, ... In the mode=='tile' neurons from the same orn type are spaced by the number of types, for example, neurons from the 0-th type would be 0, 50, 100, ... unique_orn: int, the number of unique ORNs mode: the way w_orn is organized Return: avg_glo_score: scalar, average glomeruli score glo_scores: numpy array (n_pn,), all glomeruli scores """ from sklearn.metrics.pairwise import cosine_similarity n_orn, n_pn = w_orn.shape w_orn_by_pn = reshape_worn(w_orn, unique_orn, mode) n_duplicate_orn = n_orn // unique_orn if n_duplicate_orn == 1: return 0, [0]*unique_orn sim_scores = list() for i in range(unique_orn): w_tmp = w_orn_by_pn[:, i, :] sim_tmp = cosine_similarity(w_tmp) sim_scores.append(sim_tmp.mean()) avg_sim_score = np.mean(sim_scores) return avg_sim_score, sim_scores # def get_colormap(): # def make_colormap(seq): # """Return a LinearSegmentedColormap # seq: a sequence of floats and RGB-tuples. The floats should be increasing # and in the interval (0,1). # """ # # seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] # cdict = {'red': [], 'green': [], 'blue': []} # for i, item in enumerate(seq): # if isinstance(item, float): # r1, g1, b1 = seq[i - 1] # r2, g2, b2 = seq[i + 1] # cdict['red'].append([item, r1, r2]) # cdict['green'].append([item, g1, g2]) # cdict['blue'].append([item, b1, b2]) # return colors.LinearSegmentedColormap('CustomMap', cdict, N=512) # # c = colors.ColorConverter().to_rgb # a = 'tomato' # b = 'darkred' # cmap = make_colormap([c('white'), c(a), .5, c(a), c(b), .8, c(b)]) # return cmap def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(
np.linspace(minval, maxval, n)
numpy.linspace
from ir_sim.env import env_base from math import sqrt, pi from gym import spaces from gym_env.envs.rvo_inter import rvo_inter import numpy as np class ir_gym(env_base): def __init__(self, world_name, neighbors_region=5, neighbors_num=10, vxmax = 1.5, vymax = 1.5, env_train=True, acceler = 0.5, **kwargs): super(ir_gym, self).__init__(world_name=world_name, **kwargs) # self.obs_mode = kwargs.get('obs_mode', 0) # 0 drl_rvo, 1 drl_nrvo # self.reward_mode = kwargs.get('reward_mode', 0) self.radius_exp = kwargs.get('radius_exp', 0.2) self.env_train = env_train self.nr = neighbors_region self.nm = neighbors_num self.rvo = rvo_inter(neighbors_region, neighbors_num, vxmax, vymax, acceler, env_train, self.radius_exp) self.observation_space = spaces.Box(-np.inf, np.inf, shape=(5,), dtype=np.float32) self.action_space = spaces.Box(low=np.array([-1, -1]), high=np.array([1, 1]), dtype=np.float32) self.reward_parameter = kwargs.get('reward_parameter', (0.2, 0.1, 0.1, 0.2, 0.2, 1, -20, 20)) self.acceler = acceler self.arrive_flag_cur = False self.rvo_state_dim = 8 def cal_des_omni_list(self): des_vel_list = [robot.cal_des_vel_omni() for robot in self.robot_list] return des_vel_list def rvo_reward_list_cal(self, action_list, **kwargs): ts = self.components['robots'].total_states() # robot_state_list, nei_state_list, obs_circular_list, obs_line_list rvo_reward_list = list(map(lambda robot_state, action: self.rvo_reward_cal(robot_state, ts[1], ts[2], ts[3], action, self.reward_parameter, **kwargs), ts[0], action_list)) return rvo_reward_list def rvo_reward_cal(self, robot_state, nei_state_list, obs_cir_list, obs_line_list, action, reward_parameter=(0.2, 0.1, 0.1, 0.2, 0.2, 1, -10, 20), **kwargs): vo_flag, min_exp_time, min_dis = self.rvo.config_vo_reward(robot_state, nei_state_list, obs_cir_list, obs_line_list, action, **kwargs) des_vel = np.round(np.squeeze(robot_state[-2:]), 2) p1, p2, p3, p4, p5, p6, p7, p8 = reward_parameter dis_des = sqrt((action[0] - des_vel[0] )**2 + (action[1] - des_vel[1])**2) max_dis_des = 3 dis_des_reward = - dis_des / max_dis_des # (0-1) exp_time_reward = - 0.2/(min_exp_time+0.2) # (0-1) # rvo reward if vo_flag: rvo_reward = p2 + p3 * dis_des_reward + p4 * exp_time_reward if min_exp_time < 0.1: rvo_reward = p2 + p1 * p4 * exp_time_reward else: rvo_reward = p5 + p6 * dis_des_reward rvo_reward =
np.round(rvo_reward, 2)
numpy.round
# coding: utf-8 # /*########################################################################## # Copyright (C) 2016-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ """Tests for utils module""" import numpy import os import re import shutil import tempfile import unittest from .. import utils try: import h5py except ImportError: h5py_missing = True else: h5py_missing = False from ..utils import h5ls try: import fabio except ImportError: fabio = None __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "11/01/2017" expected_spec1 = r"""#F .* #D .* #S 1 Ordinate1 #D .* #N 2 #L Abscissa Ordinate1 1 4\.00 2 5\.00 3 6\.00 """ expected_spec2 = expected_spec1 + """ #S 2 Ordinate2 #D .* #N 2 #L Abscissa Ordinate2 1 7\.00 2 8\.00 3 9\.00 """ expected_csv = r"""Abscissa;Ordinate1;Ordinate2 1;4\.00;7\.00e\+00 2;5\.00;8\.00e\+00 3;6\.00;9\.00e\+00 """ expected_csv2 = r"""x;y0;y1 1;4\.00;7\.00e\+00 2;5\.00;8\.00e\+00 3;6\.00;9\.00e\+00 """ class TestSave(unittest.TestCase): """Test saving curves as SpecFile: """ def setUp(self): self.tempdir = tempfile.mkdtemp() self.spec_fname = os.path.join(self.tempdir, "savespec.dat") self.csv_fname = os.path.join(self.tempdir, "savecsv.csv") self.npy_fname = os.path.join(self.tempdir, "savenpy.npy") self.x = [1, 2, 3] self.xlab = "Abscissa" self.y = [[4, 5, 6], [7, 8, 9]] self.ylabs = ["Ordinate1", "Ordinate2"] def tearDown(self): if os.path.isfile(self.spec_fname): os.unlink(self.spec_fname) if os.path.isfile(self.csv_fname): os.unlink(self.csv_fname) if os.path.isfile(self.npy_fname): os.unlink(self.npy_fname) shutil.rmtree(self.tempdir) def test_save_csv(self): utils.save1D(self.csv_fname, self.x, self.y, xlabel=self.xlab, ylabels=self.ylabs, filetype="csv", fmt=["%d", "%.2f", "%.2e"], csvdelim=";", autoheader=True) csvf = open(self.csv_fname) actual_csv = csvf.read() csvf.close() self.assertRegexpMatches(actual_csv, expected_csv) def test_save_npy(self): """npy file is saved with numpy.save after building a numpy array and converting it to a named record array""" npyf = open(self.npy_fname, "wb") utils.save1D(npyf, self.x, self.y, xlabel=self.xlab, ylabels=self.ylabs) npyf.close() npy_recarray =
numpy.load(self.npy_fname)
numpy.load
import pandas as pd import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib import cm, colors from astropy.modeling import models, fitting cmap = cm.ScalarMappable(colors.Normalize(1, 5200), cm.viridis) # Reading in all data files at once import glob path_normal ='/projects/p30137/ageller/testing/EBLSST/add_m5/output_files' allFiles_normal = glob.glob(path_normal + "/*.csv") path_fast = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/output_files' allFiles_fast = glob.glob(path_fast + "/*.csv") path_obsDist = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/obsDist/output_files' allFiles_obsDist = glob.glob(path_obsDist + "/*.csv") #will want to remove old when the updates come in from Katie #normal =[] #fast=[] #obsDist = [] #normal_03 =[] #fast_03=[] #obsDist_03 = [] #normal_1 =[] #fast_1 =[] #obsDist_1 = [] #normal_10 =[] #fast_10=[] #obsDist_10 = [] #normal_30 =[] #fast_30=[] #obsDist_30 = [] #normal_100 =[] #fast_100 =[] #obsDist_100 = [] #normal_1000 =[] #fast_1000 =[] #obsDist_1000 = [] #normal_overall =[] #fast_overall=[] #obsDist_overall = [] #normal_overall_03 =[] #fast_overall_03=[] #obsDist_overall_03 = [] #normal_overall_1 =[] #fast_overall_1 =[] #obsDist_overall_1 = [] #normal_overall_10 =[] #fast_overall_10=[] #obsDist_overall_10 = [] #normal_overall_30 =[] #fast_overall_30=[] #obsDist_overall_30 = [] #normal_overall_100 =[] #fast_overall_100 =[] #obsDist_overall_100 = [] #normal_overall_1000=[] #fast_overall_1000 =[] #obsDist_overall_1000 = [] N_totalnormal_array = [] N_totalobservablenormal_array = [] N_totalrecoverablenormal_array = [] N_totalnormal_array_03 = [] N_totalobservablenormal_array_03 = [] N_totalrecoverablenormal_array_03 = [] N_totalnormal_array_1 = [] N_totalobservablenormal_array_1 = [] N_totalrecoverablenormal_array_1 = [] N_totalnormal_array_10 = [] N_totalobservablenormal_array_10 = [] N_totalrecoverablenormal_array_10 = [] N_totalnormal_array_30 = [] N_totalobservablenormal_array_30 = [] N_totalrecoverablenormal_array_30 = [] N_totalnormal_array_100 = [] N_totalobservablenormal_array_100 = [] N_totalrecoverablenormal_array_100 = [] N_totalnormal_array_1000 = [] N_totalobservablenormal_array_1000 = [] N_totalrecoverablenormal_array_1000 = [] N_totalnormal22_array = [] N_totalobservablenormal22_array = [] N_totalrecoverablenormal22_array = [] N_totalnormal22_array_03 = [] N_totalobservablenormal22_array_03 = [] N_totalrecoverablenormal22_array_03 = [] N_totalnormal22_array_1 = [] N_totalobservablenormal22_array_1 = [] N_totalrecoverablenormal22_array_1 = [] N_totalnormal22_array_10 = [] N_totalobservablenormal22_array_10 = [] N_totalrecoverablenormal22_array_10 = [] N_totalnormal22_array_30 = [] N_totalobservablenormal22_array_30 = [] N_totalrecoverablenormal22_array_30 = [] N_totalnormal22_array_100 = [] N_totalobservablenormal22_array_100 = [] N_totalrecoverablenormal22_array_100 = [] N_totalnormal22_array_1000 = [] N_totalobservablenormal22_array_1000 = [] N_totalrecoverablenormal22_array_1000 = [] N_totalnormal195_array = [] N_totalobservablenormal195_array = [] N_totalrecoverablenormal195_array = [] N_totalnormal195_array_03 = [] N_totalobservablenormal195_array_03 = [] N_totalrecoverablenormal195_array_03 = [] N_totalnormal195_array_1 = [] N_totalobservablenormal195_array_1 = [] N_totalrecoverablenormal195_array_1 = [] N_totalnormal195_array_10 = [] N_totalobservablenormal195_array_10 = [] N_totalrecoverablenormal195_array_10 = [] N_totalnormal195_array_30 = [] N_totalobservablenormal195_array_30 = [] N_totalrecoverablenormal195_array_30 = [] N_totalnormal195_array_100 = [] N_totalobservablenormal195_array_100 = [] N_totalrecoverablenormal195_array_100 = [] N_totalnormal195_array_1000 = [] N_totalobservablenormal195_array_1000 = [] N_totalrecoverablenormal195_array_1000 = [] N_totalfast_array = [] N_totalobservablefast_array = [] N_totalrecoverablefast_array = [] N_totalfast_array_03 = [] N_totalobservablefast_array_03 = [] N_totalrecoverablefast_array_03 = [] N_totalfast_array_1 = [] N_totalobservablefast_array_1 = [] N_totalrecoverablefast_array_1 = [] N_totalfast_array_10 = [] N_totalobservablefast_array_10 = [] N_totalrecoverablefast_array_10 = [] N_totalfast_array_30 = [] N_totalobservablefast_array_30 = [] N_totalrecoverablefast_array_30 = [] N_totalfast_array_100 = [] N_totalobservablefast_array_100 = [] N_totalrecoverablefast_array_100 = [] N_totalfast_array_1000 = [] N_totalobservablefast_array_1000 = [] N_totalrecoverablefast_array_1000 = [] N_totalfast22_array = [] N_totalobservablefast22_array = [] N_totalrecoverablefast22_array = [] N_totalfast22_array_03 = [] N_totalobservablefast22_array_03 = [] N_totalrecoverablefast22_array_03 = [] N_totalfast22_array_1 = [] N_totalobservablefast22_array_1 = [] N_totalrecoverablefast22_array_1 = [] N_totalfast22_array_10 = [] N_totalobservablefast22_array_10 = [] N_totalrecoverablefast22_array_10 = [] N_totalfast22_array_30 = [] N_totalobservablefast22_array_30 = [] N_totalrecoverablefast22_array_30 = [] N_totalfast22_array_100 = [] N_totalobservablefast22_array_100 = [] N_totalrecoverablefast22_array_100 = [] N_totalfast22_array_1000 = [] N_totalobservablefast22_array_1000 = [] N_totalrecoverablefast22_array_1000 = [] N_totalfast195_array = [] N_totalobservablefast195_array = [] N_totalrecoverablefast195_array = [] N_totalfast195_array_03 = [] N_totalobservablefast195_array_03 = [] N_totalrecoverablefast195_array_03 = [] N_totalfast195_array_1 = [] N_totalobservablefast195_array_1 = [] N_totalrecoverablefast195_array_1 = [] N_totalfast195_array_10 = [] N_totalobservablefast195_array_10 = [] N_totalrecoverablefast195_array_10 = [] N_totalfast195_array_30 = [] N_totalobservablefast195_array_30 = [] N_totalrecoverablefast195_array_30 = [] N_totalfast195_array_100 = [] N_totalobservablefast195_array_100 = [] N_totalrecoverablefast195_array_100 = [] N_totalfast195_array_1000 = [] N_totalobservablefast195_array_1000 = [] N_totalrecoverablefast195_array_1000 = [] N_totalobsDist_array = [] N_totalobservableobsDist_array = [] N_totalrecoverableobsDist_array = [] N_totalobsDist_array_03 = [] N_totalobservableobsDist_array_03 = [] N_totalrecoverableobsDist_array_03 = [] N_totalobsDist_array_1 = [] N_totalobservableobsDist_array_1 = [] N_totalrecoverableobsDist_array_1 = [] N_totalobsDist_array_10 = [] N_totalobservableobsDist_array_10 = [] N_totalrecoverableobsDist_array_10 = [] N_totalobsDist_array_30 = [] N_totalobservableobsDist_array_30 = [] N_totalrecoverableobsDist_array_30 = [] N_totalobsDist_array_100 = [] N_totalobservableobsDist_array_100 = [] N_totalrecoverableobsDist_array_100 = [] N_totalobsDist_array_1000 = [] N_totalobservableobsDist_array_1000 = [] N_totalrecoverableobsDist_array_1000 = [] N_totalobsDist22_array = [] N_totalobservableobsDist22_array = [] N_totalrecoverableobsDist22_array = [] N_totalobsDist22_array_03 = [] N_totalobservableobsDist22_array_03 = [] N_totalrecoverableobsDist22_array_03 = [] N_totalobsDist22_array_1 = [] N_totalobservableobsDist22_array_1 = [] N_totalrecoverableobsDist22_array_1 = [] N_totalobsDist22_array_10 = [] N_totalobservableobsDist22_array_10 = [] N_totalrecoverableobsDist22_array_10 = [] N_totalobsDist22_array_30 = [] N_totalobservableobsDist22_array_30 = [] N_totalrecoverableobsDist22_array_30 = [] N_totalobsDist22_array_100 = [] N_totalobservableobsDist22_array_100 = [] N_totalrecoverableobsDist22_array_100 = [] N_totalobsDist22_array_1000 = [] N_totalobservableobsDist22_array_1000 = [] N_totalrecoverableobsDist22_array_1000 = [] N_totalobsDist195_array = [] N_totalobservableobsDist195_array = [] N_totalrecoverableobsDist195_array = [] N_totalobsDist195_array_03 = [] N_totalobservableobsDist195_array_03 = [] N_totalrecoverableobsDist195_array_03 = [] N_totalobsDist195_array_1 = [] N_totalobservableobsDist195_array_1 = [] N_totalrecoverableobsDist195_array_1 = [] N_totalobsDist195_array_10 = [] N_totalobservableobsDist195_array_10 = [] N_totalrecoverableobsDist195_array_10 = [] N_totalobsDist195_array_30 = [] N_totalobservableobsDist195_array_30 = [] N_totalrecoverableobsDist195_array_30 = [] N_totalobsDist195_array_100 = [] N_totalobservableobsDist195_array_100 = [] N_totalrecoverableobsDist195_array_100 = [] N_totalobsDist195_array_1000 = [] N_totalobservableobsDist195_array_1000 = [] N_totalrecoverableobsDist195_array_1000 = [] colorvalue_normal = [] colorvalue_fast = [] colorvalue_obsDist = [] def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https://sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit fbFit= fitRagfb() mbins = np.arange(0,10, 0.1, dtype='float') for filenormal_ in sorted(allFiles_normal): filename1 = filenormal_[60:] fileid1 = filename1.strip('output_file.csv') colorvalue1 = int(fileid1) colorvalue_normal.append(colorvalue1) print ("I'm starting " + fileid1) datnormal = pd.read_csv(filenormal_, sep = ',', header=2) ########################################################## datnormal1 = pd.read_csv(filenormal_, sep = ',', header=0, nrows=1) N_tri1 = datnormal1["NstarsTRILEGAL"][0] print("N_tri1 = ", N_tri1) m1hAll01, m1b1 = np.histogram(datnormal["m1"], bins=mbins) dm11 = np.diff(m1b1) m1val1 = m1b1[:-1] + dm11/2. fb1 = np.sum(m1hAll01*dm11*fbFit(m1val1)) N_mult1 = N_tri1*fb1 ########################################################## PeriodIn1 = datnormal['p'] if len(PeriodIn1) == 0.: continue if N_tri1 == 0: continue else: # input period -- 'p' in data file print('length period in = ', len(PeriodIn1)) PeriodOut1 = datnormal['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean1 = datnormal['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) print('length period out = ', len(PeriodOut1)) observable1 = np.where(PeriodOut1 != -999)[0] observable1_03 = np.where(PeriodIn1[observable1] <= 0.3)[0] observable1_1 = np.where(PeriodIn1[observable1] <= 1)[0] observable1_10 = np.where(PeriodIn1[observable1] <= 10)[0] observable1_30 = np.where(PeriodIn1[observable1] <= 30)[0] observable1_100 = np.where(PeriodIn1[observable1] <= 100)[0] observable1_1000 =
np.where(PeriodIn1[observable1] <= 1000)
numpy.where
#!/usr/bin/env python3 # from __future__ import division, print_function import os import sys import pints import numpy as np import myokit import argparse if __name__=="__main__": import platform parallel = True if platform.system() == 'Darwin': import multiprocessing multiprocessing.set_start_method('fork') elif platform.system() == 'Windows': parallel = False # Check input arguments parser = argparse.ArgumentParser( description='Fit all the hERG models to sine wave data') parser.add_argument('--cell', type=int, default=2, metavar='N', help='repeat number : 1, 2, 3, 4, 5, 6') parser.add_argument('--model', type=str, default='wang', metavar='N', help='which model to use') parser.add_argument('--repeats', type=int, default=25, metavar='N', help='number of CMA-ES runs from different initial guesses') parser.add_argument('--protocol', type=int, default=1, metavar='N', help='which protocol is used to fit the data: 1 for staircase #1, \ 2 for sine wave, 3 for complex AP') parser.add_argument("--big_pop_size", action='store_true', default=False, help="whether to use big population size of 100 rather than default") args = parser.parse_args() cell = args.cell # Load project modules sys.path.append(os.path.abspath(os.path.join('python'))) import priors import cells import transformation import data import model # Get model string and params if args.model == 'mazhari': model_str = 'Mazhari' x_found = np.loadtxt('cmaesfits/parameter-sets/mazhari-params.txt', unpack=True) elif args.model == 'mazhari-reduced': model_str = 'Maz-red' x_found = np.loadtxt('cmaesfits/parameter-sets/mazhari-reduced-params.txt', unpack=True) elif args.model == 'wang': model_str = 'Wang' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-params.txt', unpack=True) elif args.model == 'wang-r1': model_str = 'Wang-r1' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r1-params.txt', unpack=True) for i in {0, 2, 4, 5, 6, 8, 13}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r2': model_str = 'Wang-r2' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r2-params.txt', unpack=True) for i in {0, 2, 4, 5, 6, 8, 12}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r3': model_str = 'Wang-r3' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r3-params.txt', unpack=True) for i in {0, 2, 4, 5, 6, 8, 11}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r4': model_str = 'Wang-r4' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r4-params.txt', unpack=True) for i in {0, 1, 3, 4, 5, 7, 10}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r5': model_str = 'Wang-r5' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r5-params.txt', unpack=True) for i in {0, 2, 3, 4, 6, 9}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r6': model_str = 'Wang-r6' x_found =
np.loadtxt('cmaesfits/parameter-sets/wang-r6-params.txt', unpack=True)
numpy.loadtxt
"""Module to load data. Consists of functions to load data from four different datasets (IMDb, Rotten Tomatoes, Tweet Weather, Amazon Reviews). Each of these functions do the following: - Read the required fields (texts and labels). - Do any pre-processing if required. For example, make sure all label values are in range [0, num_classes-1]. - Split the data into training and validation sets. - Shuffle the training data. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import numpy as np import pandas as pd def load_imdb_sentiment_analysis_dataset(data_path, seed=123): """Loads the Imdb movie reviews sentiment analysis dataset. # Arguments data_path: string, path to the data directory. seed: int, seed for randomizer. # Returns A tuple of training and validation data. Number of training samples: 25000 Number of test samples: 25000 Number of categories: 2 (0 - negative, 1 - positive) # References Mass et al., http://www.aclweb.org/anthology/P11-1015 Download and uncompress archive from: http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz """ imdb_data_path = os.path.join(data_path, 'aclImdb') # Load the training data train_texts = [] train_labels = [] for category in ['pos', 'neg']: train_path = os.path.join(imdb_data_path, 'train', category) for fname in sorted(os.listdir(train_path)): if fname.endswith('.txt'): with open(os.path.join(train_path, fname)) as f: train_texts.append(f.read()) train_labels.append(0 if category == 'neg' else 1) # Load the validation data. test_texts = [] test_labels = [] for category in ['pos', 'neg']: test_path = os.path.join(imdb_data_path, 'test', category) for fname in sorted(os.listdir(test_path)): if fname.endswith('.txt'): with open(os.path.join(test_path, fname)) as f: test_texts.append(f.read()) test_labels.append(0 if category == 'neg' else 1) # Shuffle the training data and labels. random.seed(seed) random.shuffle(train_texts) random.seed(seed) random.shuffle(train_labels) return ((train_texts, np.array(train_labels)), (test_texts,
np.array(test_labels)
numpy.array
import unittest import numpy import sys import os sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)) + '/../') import common.numpy import common.eval import random class TestEval(unittest.TestCase): def distributionAt(self, label, confidence, labels=10): probabilities = [0] * labels probabilities[label] = confidence for i in range(len(probabilities)): if i == label: continue probabilities[i] = (1 - confidence) / (labels - 1) self.assertAlmostEqual(1, numpy.sum(probabilities)) return probabilities def testCleanEvaluationNotCorrectShape(self): labels = numpy.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) probabilities = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) self.assertRaises(AssertionError, common.eval.CleanEvaluation, probabilities, labels) labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) probabilities = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) self.assertRaises(AssertionError, common.eval.CleanEvaluation, probabilities, labels) labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) probabilities = numpy.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ]) self.assertRaises(AssertionError, common.eval.CleanEvaluation, probabilities, labels) def testCleanEvaluationNotCorrectClasses(self): labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 8]) probabilities = numpy.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ]) self.assertRaises(AssertionError, common.eval.CleanEvaluation, probabilities, labels) def testCleanEvaluationNotProbabilities(self): labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 8]) probabilities = numpy.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.09], [0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ]) self.assertRaises(AssertionError, common.eval.CleanEvaluation, probabilities, labels) def testCleanEvaluationTestErrorNoValidation(self): labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) probabilities = numpy.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], # ok [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], # ok [0.05, 0.05, 0.55, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05], # slightly different [0.099, 0.099, 0.099, 0.109, 0.099, 0.099, 0.099, 0.099, 0.099, 0.099], # hard [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ]) eval = common.eval.CleanEvaluation(probabilities, labels, validation=0) self.assertEqual(eval.test_N, eval.N) self.assertEqual(eval.N, 10) self.assertEqual(eval.test_error(), 0) test_errors = [ 1, 7, 99, 73, ] for test_error in test_errors: labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) labels = numpy.tile(labels, 10) probabilities = common.numpy.one_hot(labels, 10) indices = numpy.array(random.sample(range(100), test_error)) self.assertEqual(numpy.unique(indices).shape[0], indices.shape[0]) for i in indices: probabilities[i] = numpy.flip(probabilities[i]) eval = common.eval.CleanEvaluation(probabilities, labels, validation=0) self.assertEqual(eval.test_error(), test_error/100) self.assertRaises(AssertionError, eval.confidence_at_tpr, 0.1) for threshold in numpy.linspace(0, 1, 50): self.assertEqual(eval.test_error_at_confidence(threshold), test_error/100) def testCleanEvaluationTestErrorValidation(self): test_errors = [ 1, 7, 89, 73, ] for test_error in test_errors: labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) labels = numpy.tile(labels, 10) self.assertTrue(labels.shape[0], 110) probabilities = common.numpy.one_hot(labels, 10) indices = numpy.array(random.sample(range(90), test_error)) self.assertEqual(numpy.unique(indices).shape[0], indices.shape[0]) for i in indices: probabilities[i] = numpy.flip(probabilities[i]) eval = common.eval.CleanEvaluation(probabilities, labels, validation=0.1) self.assertEqual(eval.N, 100) self.assertEqual(eval.test_N, 90) self.assertEqual(eval.validation_N, 10) self.assertAlmostEqual(eval.test_error(), test_error/90) for threshold in numpy.linspace(0, 1, 50): self.assertAlmostEqual(eval.test_error_at_confidence(threshold), test_error/90) def testCleanEvaluationTestErrorAtConfidence(self): labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) labels = numpy.tile(labels, 10) probabilities = common.numpy.one_hot(labels, 10) i = 0 for probability in numpy.linspace(0.1, 1, 101)[1:]: probabilities_i = probabilities[i] probabilities_i *= probability probabilities_i[probabilities_i == 0] = (1 - probability)/9 probabilities[i] = probabilities_i i += 1 eval = common.eval.CleanEvaluation(probabilities, labels, validation=0) self.assertEqual(eval.test_error(), 0) for threshold in numpy.linspace(0, 1, 100): self.assertAlmostEqual(eval.test_error_at_confidence(threshold), 0) test_errors = [ 1, 7, 73, 99, ] for test_error in test_errors: labels = numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) labels = numpy.tile(labels, 10) probabilities = common.numpy.one_hot(labels, 10) i = 0 self.assertEqual(numpy.linspace(0.11, 1, 101)[1:].shape[0], probabilities.shape[0]) for probability in numpy.linspace(0.11, 1, 101)[1:]: probabilities_i = probabilities[i] label = numpy.argmax(probabilities_i) probabilities_i *= probability probabilities_i[probabilities_i == 0] = (1 - probability) / 9 probabilities[i] = probabilities_i self.assertEqual(label, labels[i]) self.assertEqual(labels[i], numpy.argmax(probabilities[i])) i += 1 numpy.testing.assert_array_equal(labels, numpy.argmax(probabilities, axis=1)) indices = numpy.array(random.sample(range(100), test_error)) self.assertEqual(
numpy.unique(indices)
numpy.unique
""" A module for unit tests of the logic module Todo: * automate the creation of particle arrays so that it isn't harcoded in each test func """ import unittest import numpy as np from unittest.mock import Mock from ..sbelt import logic ATTR_COUNT = 7 # Number of attributes associated with a Particle # For reference: # [0] = x-coord # [1] = diameter, # [2] = y-coord (elevation), # [3] = uid, # [4] = active (boolean) # [5] = age counter # [6] = loop age counter class TestGetEventParticlesWithOneSubregion(unittest.TestCase): """ Test that getting event particles with one Subregion returns a valid list of event particles. A 'valid list' will change depending on the function. See function docstrings for more details. Attributes: test_length: the length of the bed num_particles: the number of model particles mock_sub_list: list of Mock-type subregions entrainment_events: number of entrainment events to request per subregion level_limit: random int representing level limit """ def setUp(self): self.test_length = 10 self.num_particles = 3 mock_subregion = Mock() mock_subregion.leftBoundary.return_value = 0 mock_subregion.rightBoundary.return_value = self.test_length mock_subregion.getName.return_value = 'Mock_Subregion' self.mock_sub_list = [mock_subregion] self.entrainment_events = 3 self.level_limit = np.random.randint(0, np.random.randint(2, 10)) def test_all_active_returns_valid_list(self): """If there are N active particles in 1 subregion and N events requested per subregion then a valid list will be a list of all particles. """ model_particles = np.zeros((self.num_particles, ATTR_COUNT)) model_particles[:,3] = np.arange(self.num_particles) # unique ids model_particles[:,4] = np.ones(self.num_particles) # all active model_particles[:,0] = np.random.randint( self.test_length, size=self.num_particles ) # random placement list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list, model_particles, self.level_limit ) self.assertCountEqual(list, model_particles[:,3]) # Height dependancy should not effect list results here hp_list = list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list, model_particles, self.level_limit, height_dependant=True ) self.assertCountEqual(hp_list, model_particles[:,3]) self.assertCountEqual(hp_list, list) def test_not_all_active_returns_list_of_2(self): """If there are N particles in 1 subregion and N-1 are _active_, and if N events are requested per subregion then a valid list will be a list of the two active particles. """ mp_one_inactive = np.zeros((self.num_particles, ATTR_COUNT)) mp_one_inactive[:,3] = np.arange(self.num_particles) mp_one_inactive[0][4] = 1 mp_one_inactive[1][4] = 1 mp_one_inactive[:,0] = np.random.randint(self.test_length, size=self.num_particles) list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list, mp_one_inactive, self.level_limit ) self.assertEqual(len(list), self.num_particles - 1) active_list = mp_one_inactive[mp_one_inactive[:,4] != 0] self.assertCountEqual(list, active_list[:,3]) def test_none_active_returns_empty_list(self): """If there are N particles in 1 subregion and 0 are _active_ and if N events are requested per subregion, then a valid list will be an empty list. """ np_none_active = np.zeros((self.num_particles, ATTR_COUNT)) np_none_active[:,3] = np.arange(self.num_particles) np_none_active[:,0] = np.random.randint(self.test_length, size=self.num_particles) empty_list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list, np_none_active, self.level_limit ) self.assertEqual(len(empty_list), 0) def test_all_ghost_particles_returns_ghost_particles(self): """If there are N particles in 1 subregion and all N particles are 'ghost' particles (at -1), and if N particles are requested per subregion, then a valid list will be a list of all the ghost particles (all the particles). """ np_all_ghost = np.zeros((self.num_particles, ATTR_COUNT)) np_all_ghost[:,3] = np.arange(self.num_particles) np_all_ghost[:,0] = -1 ghost_list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list, np_all_ghost, self.level_limit ) self.assertCountEqual(ghost_list, np_all_ghost[:,3]) class TestGetEventParticlesWithNSubregions(unittest.TestCase): """ Test that getting event particles with N Subregion returns a valid list of event particles. A 'valid list' will change depending on the function. See function docstrings for more details. Attributes: test_length: the length of the bed num_particles: the number of model particles mock_sub_list_2: list of Mock-type subregions entrainment_events: number of entrainment events to request per subregion level_limit: random int representing level limit """ def setUp(self): self.test_length = 20 self.num_particles = 6 mock_subregion_0 = Mock() mock_subregion_0.leftBoundary.return_value = 0 mock_subregion_0.rightBoundary.return_value = self.test_length / 2 mock_subregion_0.getName.return_value = 'Mock_Subregion_0' mock_subregion_1 = Mock() mock_subregion_1.leftBoundary.return_value = self.test_length / 2 mock_subregion_1.rightBoundary.return_value = self.test_length mock_subregion_1.getName.return_value = 'Mock_Subregion_1' self.mock_sub_list_2 = [mock_subregion_0, mock_subregion_1] self.entrainment_events = 3 self.level_limit = np.random.randint(0, np.random.randint(2, 10)) def test_all_active_returns_3_per_subregion(self): """If there are M active particles in each of the N subregions and there are M events requested per subregion, then a valid list will be a list of all M*N particles. """ model_particles = np.zeros((self.num_particles, ATTR_COUNT)) model_particles[:,3] = np.arange(self.num_particles) # unique ids model_particles[:,4] = np.ones(self.num_particles) # all active # Randomly place first three particles in Subregion 1 model_particles[0:3, 0] = np.random.randint( 9, size=3 ) # Randomly place last three particles in Subregion 2 model_particles[3:6, 0] = np.random.randint( 11, self.test_length, size=3 ) list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list_2, model_particles, self.level_limit ) self.assertCountEqual(list, model_particles[:,3]) self.assertEqual(len(list), self.entrainment_events * 2) # Height dependancy should not effect list results here hp_list = list = logic.get_event_particles( self.entrainment_events, self.mock_sub_list_2, model_particles, self.level_limit, height_dependant=True ) self.assertCountEqual(hp_list, model_particles[:,3]) self.assertCountEqual(hp_list, list) def test_active_in_1_subregion_returns_only_active(self): """If there are M active particles in each 1..K subregions and 0 active in K+1...N subregions, and there are M events requested per subregion, then a valid list will be a list of the M*K active particles. This is simplified down to only 2 subregions. """ mp_half_active = np.zeros((self.num_particles, ATTR_COUNT)) mp_half_active[:,3] = np.arange(self.num_particles) mp_half_active[0:3, 4] = np.ones(int((self.num_particles/2))) # First half active mp_half_active[0:3, 0] =
np.random.randint(10,size=3 )
numpy.random.randint
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import numpy as np import scipy.misc import itertools from math import pow import seaborn as sns import matplotlib.pyplot as plt IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm'] class Data_Generator(object): """ Generate one dimensional simulated data. Randomly sample \mu from uniform distribution. Velocity is fixed. Place vector is generated from a Gaussian distribution. """ def __init__(self, num_interval=1000, min=0, max=1, to_use_3D_map=False): """ Sigma is the variance in the Gaussian distribution. """ self.to_use_3D_map = to_use_3D_map self.num_interval = num_interval self.min, self.max = min, max self.interval_length = (self.max - self.min) / (self.num_interval - 1) def generate(self, num_data, velocity=None, num_step=1, dtype=2, test=False, visualize=False): if self.to_use_3D_map: if dtype == 1: place_pair = self.generate_multi_type1(num_data, 3) elif dtype == 2: place_pair = self.generate_multi_type2(num_data, velocity, num_step, 3, test=test, visualize=visualize) elif dtype == 4: place_pair = self.generate_two_dim_multi_type4(num_data) else: raise NotImplementedError else: if dtype == 1: place_pair = self.generate_multi_type1(num_data, 2) elif dtype == 2: place_pair = self.generate_multi_type2(num_data, velocity, num_step, 2, test=test, visualize=visualize) elif dtype == 4: place_pair = self.generate_two_dim_multi_type4(num_data) else: raise NotImplementedError return place_pair def generate_multi_type1(self, num_data, num_dim): """sample n-dimentional location pairs""" mu_before = np.random.choice(self.num_interval, size=[num_data, num_dim]) mu_after = np.random.choice(self.num_interval, size=[num_data, num_dim]) vel = np.sqrt(np.sum((mu_after - mu_before) ** 2, axis=1)) * self.interval_length place_pair = {'before': mu_before, 'after': mu_after, 'vel': vel} return place_pair def generate_multi_type2(self, num_data, velocity, num_step, num_dim, test=False, visualize=False): """sample discretized motions and corresponding place pairs""" num_vel = len(velocity) if not test: # if pow(num_vel, num_step) < num_data: # vel_list = np.asarray(list(itertools.product(np.arange(num_vel), repeat=num_step))) # num_vel_list = len(vel_list) # # div, rem = num_data // num_vel_list, num_data % num_vel_list # vel_idx = np.vstack((np.tile(vel_list, [div, 1]), vel_list[np.random.choice(num_vel_list, size=rem)])) # np.random.shuffle(vel_idx) # else: vel_idx = np.random.choice(num_vel, size=[num_data, num_step]) vel_grid = np.take(velocity, vel_idx, axis=0) vel = vel_grid * self.interval_length vel_grid_cumsum = np.cumsum(vel_grid, axis=1) mu_max = np.fmin(self.num_interval, np.min(self.num_interval - vel_grid_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_grid_cumsum, axis=1)) mu_start = np.random.sample(size=[num_data, num_dim]) mu_start = np.expand_dims(np.round(mu_start * (mu_max - mu_min) + mu_min - 0.5), axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_grid_cumsum), axis=1) else: if visualize: mu_start = np.reshape([4, 4], newshape=(1, 1, 2)) vel_pool = np.where((velocity[:, 0] >= -1) & (velocity[:, 1] >= -1)) vel_idx = np.random.choice(vel_pool[0], size=[num_data * 10, num_step]) vel_grid_cumsum = np.cumsum(np.take(velocity, vel_idx, axis=0), axis=1) mu_seq = np.concatenate((np.tile(mu_start, [num_data * 10, 1, 1]), vel_grid_cumsum + mu_start), axis=1) mu_seq_new, vel_idx_new = [], [] for i in range(len(mu_seq)): mu_seq_sub = mu_seq[i] if len(np.unique(mu_seq_sub, axis=0)) == len(mu_seq_sub): mu_seq_new.append(mu_seq[i]) vel_idx_new.append(vel_idx[i]) mu_seq, vel_idx = np.stack(mu_seq_new, axis=0), np.stack(vel_idx_new, axis=0) mu_seq_rs = np.reshape(mu_seq, [-1, (num_step + 1) * 2]) select_idx = np.where(np.sum(mu_seq_rs >= self.num_interval, axis=1) == 0)[0][:num_data] vel_idx = vel_idx[select_idx] mu_seq = mu_seq[select_idx] vel = np.take(velocity, vel_idx, axis=0) * self.interval_length else: vel_idx = np.random.choice(num_vel, size=[num_data * num_dim, num_step]) vel_grid_cumsum = np.cumsum(np.take(velocity, vel_idx, axis=0), axis=1) mu_max = np.fmin(self.num_interval, np.min(self.num_interval - vel_grid_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_grid_cumsum, axis=1)) select_idx = np.where(np.sum(mu_max < mu_min, axis=1) == 0)[0][:num_data] vel_idx, vel_grid_cumsum = vel_idx[select_idx], vel_grid_cumsum[select_idx] vel_grid = np.take(velocity, vel_idx, axis=0) mu_max, mu_min = mu_max[select_idx], mu_min[select_idx] mu_start = np.random.sample(size=[num_data, num_dim]) mu_start = np.expand_dims(np.round(mu_start * (mu_max - mu_min) + mu_min - 0.5), axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_grid_cumsum), axis=1) vel = vel_grid * self.interval_length # sns.distplot(vel, rug=True, hist=False) # plt.show() place_seq = {'seq': mu_seq, 'vel': vel, 'vel_idx': vel_idx} return place_seq def generate_two_dim_multi_type3(self, num_data, max_vel, num_step, test=False): """sample discretized motions and corresponding place pairs""" max_vel = max_vel * self.interval_length if not test: r = np.sqrt(np.random.random(size=[num_data, num_step])) * max_vel theta = np.random.uniform(low=-np.pi, high=np.pi, size=[num_data, num_step]) vel = np.zeros(shape=(num_data, num_step, 2), dtype=float) vel[:, :, 0] = r * np.cos(theta) vel[:, :, 1] = r * np.sin(theta) vel_cumsum = np.cumsum(vel, axis=1) mu_max = np.fmin(1, np.min(1 - vel_cumsum, axis=1)) mu_min = np.fmax(0, np.max(- vel_cumsum, axis=1)) mu_start = np.random.random(size=(num_data, 2)) * (mu_max - mu_min) + mu_min mu_start = np.expand_dims(mu_start, axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_cumsum), axis=1) / self.interval_length else: if num_data == 1: mu_start = np.reshape([6, 6], newshape=(1, 1, 2)) * self.interval_length r = np.sqrt(np.random.random(size=[num_data * 10, num_step])) * max_vel theta = np.random.uniform(low=-np.pi, high=np.pi, size=[num_data * 10, num_step]) vel = np.zeros(shape=(num_data * 10, num_step, 2), dtype=float) vel[:, :, 0] = r * np.cos(theta) vel[:, :, 1] = r * np.sin(theta) vel[np.where(vel <= 0)[0]] = vel[np.where(vel <= 0)[0]] * 0.3 vel_cumsum = np.cumsum(vel, axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_cumsum), axis=1) / self.interval_length select_idx = np.where(
np.sum(mu_seq > self.num_interval - 1, axis=1)
numpy.sum
# -*- coding: utf-8 -*- """ Created on 01/26/2022 @author: maxcurie """ import numpy as np import csv from mpi4py import MPI from Dispersion import VectorFinder_auto_Extensive from MPI_tools import task_dis comm=MPI.COMM_WORLD rank=comm.Get_rank() size=comm.Get_size() #make sure the csv exist and have the first line: #omega_omega_n,gamma_omega_n,nu,zeff,eta,shat,beta,ky,ModIndex,mu,xstar #************Start of user block****************** #para= [nu, zeff,eta, shat, beta, ky, mu] para_min=[0.1, 1., 0.5, 0.001,0.0005, 0.01, 0.] para_max=[10, 5., 5., 0.05, 0.02, 0.2, 10.] path='.' Output_csv=path+'0MTM_scan_CORI_np_rand.csv' xstar=10. ModIndex=1 #************End of user block****************** para_min=np.array(para_min) para_max=np.array(para_max) width=(para_max-para_min) while 1==1: param=para_min+width*
np.random.rand(7)
numpy.random.rand
""" post-process results from two-phase cellulose-only EH model (presumed generated from c++ implementation) """ # <NAME>, 2021 import numpy as np from matplotlib.pyplot import * ion() # hard-coded parameters MwE = 65000.0 MwG = 162.0 Mwg = 180.0 rhol = 1000.0 rhoT = rhol rGg = MwG/Mwg # hard-coded intial values in the c++ file, and derived values lmbde = 0.03 fis0 = 0.05 dilution_factor = 0.5 xG0 = 1.0 xX0 = 0.0 rhog0 = 0.0 rhox0 = 1.0*dilution_factor rhof0 = 0.0*dilution_factor conversion_xylan = 0.5 yF0 = 0.2 + 0.6*conversion_xylan fG0 = xG0*fis0 fGF0 = yF0*fG0 fGR0 = (1-yF0)*fG0 fX0 = xX0*fis0 fL0 = (1 - xG0 - xX0)*fis0 fliq0 = 1 - fis0 fg0 = rhog0*fliq0/rhol fET = lmbde*fG0 ### read in the results ### data =
np.loadtxt("eh_results.csv", skiprows=1, delimiter=",")
numpy.loadtxt
""" The module ``ti_milp`` provides an implementation of the task allocation algorithm for for robotic networks with periodic connectivity. """ """ Copyright 2019 by California Institute of Technology. ALL RIGHTS RESERVED. United States Government sponsorship acknowledged. Any commercial use must be negotiated with the Office of Technology Transfer at the California Institute of Technology. This software may be subject to U.S. export control laws and regulations. By accepting this document, the user agrees to comply with all applicable U.S. export laws and regulations. User has the responsibility to obtain export licenses, or other export authority as may be required before exporting such information to foreign countries or providing access to foreign persons. This software is a copy and may not be current. The latest version is maintained by and may be obtained from the Mobility and Robotics Sytstem Section (347) at the Jet Propulsion Laboratory. Suggestions and patches are welcome and should be sent to the software's maintainer. """ # pylint:disable=E1101 import numpy as np import time try: import cplex # This will be problematic on ARM CPLEXAvailable = True except: CPLEXAvailable = False try: # Install pyglpk by bradforboyle. Will not work with Python-GLPK. import glpk GLPKAvailable = True except: GLPKAvailable = False try: import pyscipopt as scip SCIPAvailable = True except: SCIPAvailable = False import json from mosaic_schedulers.common.utilities.contact_plan_handler import compute_time_invariant_bandwidth class MILPTasks: """A class containing a representation of the tasks for the MILP scheduler. :param OptionalTasks: a dict with Tasks as keys. OT[Task] is True iff the task is optional. :type OptionalTasks: dict :param TaskReward: a dict with Tasks as keys. TR[Task] is the reward obtained for performing the task, a float. :type TaskReward: dict :param ProductsBandwidth: a dict with Tasks as keys. PB[Task] is the bandwidth required to stream of the products of Task (in storage units per time units), a float. :type ProductsBandwidth: dict :param ProductsDataSize: a dict with Tasks as keys. PDS[Task] is the size of the products of Task (in storage units), a float. :type ProductsDataSize: dict :param DependencyList: a dict with Tasks as keys. DL[Task] is a list of tasks whose data products are required to compute Task. :type DependencyList: dict :param MaxLatency: a dict with keys task1, task2. MaxLatency[T1][T2] is the maximum latency that the data products of T2 (a dependency of T1) can tolerate before they are ingested by task T1. :type MaxLatency: dict """ def __init__(self, OptionalTasks={}, TaskReward={}, ProductsBandwidth={}, ProductsDataSize={}, DependencyList={}, MaxLatency={}, ): self.OptionalTasks = OptionalTasks self.TaskReward = TaskReward self.ProductsBandwidth = ProductsBandwidth self.ProductsDataSize = ProductsDataSize self.DependencyList = DependencyList self.MaxLatency = MaxLatency self.validate() def validate(self): """ Ensure the Tasks structure is valid, i.e. the keys to the various components are consistent """ assert set(self.ProductsBandwidth.keys()) == set( self.ProductsDataSize.keys()) assert set(self.DependencyList.keys()) <= ( set(self.ProductsBandwidth.keys())) assert set(self.DependencyList.keys()) == set(self.MaxLatency.keys()) for task in self.MaxLatency.keys(): assert set(self.MaxLatency[task].keys()) == set( self.DependencyList[task]) if self.OptionalTasks.keys(): # If this is not empty assert set(self.ProductsBandwidth.keys()) == set( self.OptionalTasks.keys()) assert set(self.OptionalTasks.keys()) == set( self.TaskReward.keys()) else: for task in self.ProductsBandwidth.keys(): self.OptionalTasks[task] = False self.TaskReward[task] = 0. self.RequiringTasks = {} for child in self.DependencyList.keys(): for parent in self.DependencyList[child]: if parent not in self.RequiringTasks.keys(): self.RequiringTasks[parent] = [] self.RequiringTasks[parent] += [child] class MILPAgentCapabilities: """A class containing a representation of the agent capabilities for the MILP scheduler. :param ComputationLoad: a dictionary with keys Agent, Task. The value of ComputationLoad[Agent][Task] is the amount of Agent's computational resources required to complete Task. :type ComputationLoad: dict :param EnergyCost: a dictionary with keys Agent, Task. EnergyCost[A][T] is the energy cost when agent A computes task T. :type EnergyCost: dict :param MaxComputationLoad: a dict with keys Agents. MaxComputationLoad[A] is the maximum computational resources of agent A. :type MaxComputationLoad: dict :param LinkComputationalLoadIn: a dict with keys Agent, Agent. LinkComputationalLoadIn[A1][A2] is the computational load required to decode messages on link [A1][A2] at A2. :type LinkComputationalLoadIn: dict :param LinkComputationalLoadOut: a dict with keys Agent, Agent. LinkComputationalLoadOut[A1][A2] is the computational load required to encode messages on link [A1][A2] at A1. :type LinkComputationalLoadOut: dict """ def __init__(self, ComputationLoad={}, EnergyCost={}, MaxComputationLoad={}, LinkComputationalLoadIn={}, LinkComputationalLoadOut={}, ): self.ComputationLoad = ComputationLoad self.EnergyCost = EnergyCost self.MaxComputationLoad = MaxComputationLoad self.LinkComputationalLoadIn = LinkComputationalLoadIn self.LinkComputationalLoadOut = LinkComputationalLoadOut class CommunicationNetwork: """ A class containing the properties of the communication network used by the time-invariant scheduler. :param Bandwidth: a dictionary with keys Agent, Agent. Bandwidth[A1][A2] is the bandwidth from agent A1 to agent A2. If Bandwidth[A1][A2] is zero, the link is not considered in the optimization problem. :type Bandwidth: dict :param Latency: a dictionary with keys Agent, Agent. Latency[A1][A2] is the latency of the link. Note that the latency of a datagram should be (but isn't at this time) computed as Latency[A1][A2] + datagram_size/Bandwidth[A1][A2]. :type Latency: dict :param EnergyCost: a dictionary with keys Agent, Agent. EnergyCost[A1][A2] is the energy cost to transmit one bit on link A1-A2. The actual energy cost is computed as EnergyCost[A1][A2]*bit_rate[A1][A2]. :type EnergyCost: dict """ def __init__(self, Bandwidth={}, Latency={}, EnergyCost={}, ): self.Bandwidth = Bandwidth self.Latency = Latency self.EnergyCost = EnergyCost class JSONSolver: """ Creates an instance of the time-invariant problem based on a problem input in the format described in the :doc:`API`. :param JSONProblemDescription: a JSON description of the problem. See the :doc:`API` for a detailed description. :type JSONProblemDescription: str, optional :param Verbose: whether to print status and debug messages. Defaults to False :type Verbose: bool, optional :param solver: the solver to use. Should be 'GLPK', 'CPLEX', or 'SCIP', defaults to 'GLPK'. :type solver: str, optional :param TimeLimit: a time limit after which to stop the optimizer. Defaults to None (no time limit). Note that certain solvers (in particular, GLPK) may not honor the time limit. :type TimeLimit: float, optional :raises AssertionError: if the JSONProblemDescription is not valid. .. warning :: This solver does not support disjunctive prerequirements (do this task OR that task). If a problem with disjunctive prerequirement is passed, the solver will assert. """ def __init__(self, JSONProblemDescription, Verbose=False, solver='GLPK', TimeLimit=None): if solver not in ['GLPK', 'CPLEX', 'SCIP']: if CPLEXAvailable: print("WARNING: invalid solver. Defaulting to CPLEX") solver = "CPLEX" else: print("WARNING: invalid solver. Defaulting to GLPK") solver = "GLPK" if solver == "CPLEX" and (CPLEXAvailable is False): print("WARNING: CPLEX not available. Switching to GLPK") solver = "GLPK" if solver == "SCIP" and (SCIPAvailable is False): print("WARNING: SCIP not available. Switching to GLPK") solver = "GLPK" if solver == "GLPK" and (GLPKAvailable is False): print("WARNING: GLPK not available. Aborting.") return if type(JSONProblemDescription) is dict: JSONInput = JSONProblemDescription else: # Attempt to deserialize JSONInput = json.loads(JSONProblemDescription) # Time Thor = JSONInput["Time"]["Thor"] # Tasks # Translate tasks to TI format. Check that disjunctive requirements are not included DepList = {} for task in JSONInput["Tasks"]["DependencyList"].keys(): if JSONInput["Tasks"]["DependencyList"][task]: DepList[task] = [] for dep in JSONInput["Tasks"]["DependencyList"][task]: if dep: assert len( dep) == 1, 'Disjunctive prerequirements are not supported yet' DepList[task] += [dep[0]] if not DepList[task]: # If the list is empty, pop it DepList.pop(task) # Convert products size to average bandwidth needed PrBw = {} for task in JSONInput["Tasks"]["ProductsSize"]: # Average bandwidth to finish by the end of the horizon PrBw[task] = float(JSONInput["Tasks"] ["ProductsSize"][task])/float(Thor) # Clean up latency by removing entries corresponding to dependencies that have been removed # This will ensure that the MILPTasks object is valid, specifically that DependencyList # and MaxLatency have the same keys MaxLatency = {} for task in JSONInput["Tasks"]["MaxLatency"]: if JSONInput["Tasks"]["MaxLatency"][task]: MaxLatency[task] = JSONInput["Tasks"]["MaxLatency"][task] Tasks = MILPTasks( OptionalTasks=JSONInput["Tasks"]["OptionalTasks"], TaskReward=JSONInput["Tasks"]["TaskReward"], ProductsDataSize=JSONInput["Tasks"]["ProductsSize"], ProductsBandwidth=PrBw, DependencyList=DepList, MaxLatency=MaxLatency, ) # Agent capabilities # Convert computational load from instantaneous to average CompLoad = {} for task in JSONInput["AgentCapabilities"]["ComputationTime"].keys(): for agent in JSONInput["AgentCapabilities"]["ComputationTime"][task].keys(): if agent not in CompLoad.keys(): CompLoad[agent] = {} CompLoad[agent][task] = float(JSONInput["AgentCapabilities"]["ComputationLoad"][task][agent])*float( JSONInput["AgentCapabilities"]["ComputationTime"][task][agent]) / float(Thor) TILinkLoadIn = JSONInput["AgentCapabilities"]["LinkComputationalLoadIn"] TILinkLoadOut = JSONInput["AgentCapabilities"]["LinkComputationalLoadOut"] for agent1 in TILinkLoadIn.keys(): for agent2 in TILinkLoadIn[agent1].keys(): TILinkLoadIn[agent1][agent2] = float( TILinkLoadIn[agent1][agent2])/float(Thor) TILinkLoadOut[agent1][agent2] = float( TILinkLoadOut[agent1][agent2])/float(Thor) AgentCapabilities = MILPAgentCapabilities( ComputationLoad=CompLoad, EnergyCost=flipNestedDictionary( JSONInput["AgentCapabilities"]["EnergyCost"]), MaxComputationLoad=JSONInput["AgentCapabilities"]["MaxComputationLoad"], LinkComputationalLoadIn=TILinkLoadIn, LinkComputationalLoadOut=TILinkLoadOut ) # Communication network TVBandwidth = JSONInput["CommunicationNetwork"] Bandwidth, Latency, EnergyCost = compute_time_invariant_bandwidth( agents_list=JSONInput["AgentCapabilities"]["MaxComputationLoad"].keys( ), TVBandwidth=TVBandwidth, Thor=Thor) CommNet = CommunicationNetwork( Bandwidth=Bandwidth, Latency=Latency, EnergyCost=EnergyCost, ) # Options Options = JSONInput["Options"] # Cost function if 'CostFunction' in JSONInput.keys(): if 'CostFunction' in Options.keys(): disp("WARNING: overriding cost function in Options with 'CostFunction'") Options['CostFunction'] = JSONInput['CostFunction'] # Create the problem if solver == "GLPK": self.Scheduler = MOSAICGLPKSolver( AgentCapabilities=AgentCapabilities, Tasks=Tasks, CommunicationNetwork=CommNet, Options=Options, Verbose=Verbose ) elif solver == "CPLEX": self.Scheduler = MOSAICCPLEXSolver( AgentCapabilities=AgentCapabilities, Tasks=Tasks, CommunicationNetwork=CommNet, Options=Options, Verbose=Verbose ) elif solver == "SCIP": self.Scheduler = MOSAICSCIPSolver( AgentCapabilities=AgentCapabilities, Tasks=Tasks, CommunicationNetwork=CommNet, Options=Options, Verbose=Verbose ) else: print("ERROR: unsupported solver (how did you get here?)") return if TimeLimit is not None: self.Scheduler.setTimeLimits(ClockTimeLimit=TimeLimit) def schedule(self): """ Solve the scheduling problem. :return: A solution in the JSON format described in the :doc:`API`. :rtype: str """ self.Scheduler.schedule() return self.Scheduler.formatToBenchmarkIO() class MOSAICMILPSolver: """ .. warning :: For an easier-to-use and more consistent interface, you most likely want to call :class:`JSONSolver` instead of this class and its subclasses. Abstract implementation of the MILP task allocator. Subclassed by :class:`MOSAICCPLEXSolver`, :class:`MOSAICSCIPSolver`, and :class:`MOSAICGLPKSolver`. :param AgentCapabilities: detailing what the agents can do :type AgentCapabilities: MOSAICTISolver.MILPAgentCapabilities :param Tasks: detailing the tasks that must be achieved :type Tasks: MOSAICTISolver.MILPTasks :param CommunicationNetwork: detailing the communication network availability :type CommunicationNetwork: MOSAICTISolver.CommunicationNetwork :param Options: additional solver-specific options, defaults to {} :type Options: dict, optional :param Verbose: if True, prints status and debug messages. Defaults to False :type Verbose: bool, optional """ def __init__(self, AgentCapabilities, Tasks, CommunicationNetwork, Options={}, Verbose=False): self.AgentCapabilities = AgentCapabilities self.Tasks = Tasks self.CommNetwork = CommunicationNetwork self.Options = Options self.Verbose = Verbose self.problemIsSetUp = False self.problemIsSolved = False self.problemIsFeasible = False self.JSONIsFormed = False self.solverSpecificInit() self.TaskAssignment = None self.CommSchedule = None self.RawOutput = None for i in self.CommNetwork.Bandwidth.keys(): if self.CommNetwork.Bandwidth[i][i] != 0: self.CommNetwork.Bandwidth[i][i] = 0 self._verbprint( "WARNING: removing bandwidth self-loop for agent {}".format(i)) def solverSpecificInit(self): ''' A place to define solver-specific initializations in subclasses ''' pass def _verbprint(self, _str): ''' Helper function to only print if the verbose flag is set''' if self.Verbose: print(_str) def getRawOutput(self): """ Return raw problem output from the scheduler """ if self.problemIsSolved is False: self.solve() return self.TaskAssignment, self.CommSchedule, self.RawOutput def schedule(self): """ Set up and solve the scheduling problem """ self.setUp() self.solve() if self.problemIsFeasible is False: print("Problem infeasible!") return (None, None) return (self.TaskAssignment, self.CommSchedule) def setTimeLimits(self, DetTicksLimit=1e75, ClockTimeLimit=1e75): ''' Sets a time limit for the overall process. May be ignored by certain solvers. ''' raise NotImplementedError def setSolverParameters(self, Properties): ''' Passes a dictionary of parameters to the solver ''' raise NotImplementedError def setUp(self): """ Set up the optimization problem. Solver-specific. """ raise NotImplementedError def solve(self): """ Solve the optimization problem. Solver-specific. """ raise NotImplementedError def setMIPStart(self, MIPStart): """ Provide a warm start to the solver. Solver-specific. """ raise NotImplementedError def getSolverState(self): """ Get the solver state. Solver-specific. """ raise NotImplementedError def getProblem(self): """ Get the solver problem object. """ raise NotImplementedError def getOptimizationTerminator(self): ''' Gets an object that can be called to stop the optimization process ''' raise NotImplementedError def formatToBenchmarkIO(self): ''' Formats the scheduler output to the JSON format described in the :doc:`API` ''' tasks_output = [] if self.problemIsSolved is False: self._verbprint("Calling solver") self.solve() if self.problemIsFeasible is False: self.Timeline = None self._verbprint("Problem infeasible!") return None TasksList = list(self.Tasks.OptionalTasks.keys()) # AgentsList = list(self.AgentCapabilities.ComputationLoad[TasksList[0]].keys()) # TaskSchedule = self.TaskAssignment['TaskSchedule'] TaskAgent = self.TaskAssignment['TaskAgent'] # ComputationTime = None #self.AgentCapabilities.ComputationTime # TimeStep = self.TimeStep CommSchedule = self.CommSchedule for taskid in TasksList: if (TaskAgent[taskid] is not None): _agent = TaskAgent[taskid] _time = None # float(TaskSchedule[taskid]) * TimeStep # float(ComputationTime[taskid][_agent]) * TimeStep _duration = None _name = taskid task_output = { "duration": _duration, "start_time": _time, "id": _name, "name": _name, "params": { "agent": _agent, }, } tasks_output.append(task_output) for comm in CommSchedule: _agent = comm[0] _time = None # float(comm[3]) * TimeStep _bandwidth = float(comm[3]) _taskname = comm[2] _receiver = comm[1] _duration = None # product size / _bandwidth task_output = { "duration": _duration, "start_time": _time, "id": "transfer_data", "name": "transfer_data", "params": { "transmitter": _agent, "data_type": _taskname, "agent": _agent, "receiver": _receiver, "bandwidth": _bandwidth, }, } tasks_output.append(task_output) def sort_by_time(val): if val["start_time"] is None: return float("inf") else: return val["start_time"] tasks_output.sort(key=sort_by_time) out_dict = {"tasks": tasks_output} return json.dumps(out_dict) if CPLEXAvailable is False: class MOSAICCPLEXSolver(MOSAICMILPSolver): ''' A dummy implementation of the MILP scheduler if CPLEX is not available. ''' def solverSpecificInit(self): print("WARNING: CPLEX not installed. This will not work.") else: class MOSAICCPLEXSolver(MOSAICMILPSolver): """ An implementation of the MILP scheduler that uses the IBM ILOG CPLEX solver. """ def solverSpecificInit(self): # Create the CPLEX problem self.cpx = cplex.Cplex() self.cpx.objective.set_sense(self.cpx.objective.sense.minimize) self.aborter = self.cpx.use_aborter(cplex.Aborter()) def setUp(self): if self.problemIsSetUp: return SetupStartTime = time.time() # This used to be a part of a larger function. # By redefining these variables as local, we save a lot of typing # and possible errors. AgentCapabilities = self.AgentCapabilities Tasks = self.Tasks CommBandwidth = self.CommNetwork.Bandwidth LinkLatency = self.CommNetwork.Latency # Options = self.Options TasksList = list(Tasks.ProductsBandwidth.keys()) AgentsList = list(AgentCapabilities.ComputationLoad.keys()) # We find things ix = 0 X = {} X_cost_energy = [] X_cost_optional = [] X_name = [] for i in AgentsList: X[i] = {} for m in TasksList: X[i][m] = ix ix += 1 X_cost_energy.append(AgentCapabilities.EnergyCost[i][m]) X_cost_optional.append( -float(Tasks.OptionalTasks[m])*Tasks.TaskReward[m]) X_name.append('X[{},{}]'.format(i, m)) x_vars_len = ix B = {} B_name = [] B_cost_energy = [] B_cost_optional = [] B_upper_bound = [] for i in AgentsList: B[i] = {} for j in AgentsList: if CommBandwidth[i][j] > 0: B[i][j] = {} for m in Tasks.RequiringTasks.keys(): B[i][j][m] = ix B_name.append('B[{},{},{}]'.format(i, j, m)) B_cost_energy.append( (self.CommNetwork.EnergyCost[i][j])*self.CommNetwork.Bandwidth[i][j]) B_cost_optional.append(0.) B_upper_bound.append( self.CommNetwork.Bandwidth[i][j]) ix += 1 b_vars_len = ix - x_vars_len communication_cost_optional_tasks = 1e-8 C = {} C_name = [] C_cost_energy = [] C_cost_optional = [] C_upper_bound = [] for i in AgentsList: C[i] = {} for j in AgentsList: if CommBandwidth[i][j] > 0: C[i][j] = {} for m in Tasks.RequiringTasks.keys(): C[i][j][m] = {} for mm in Tasks.RequiringTasks[m]: C[i][j][m][mm] = ix C_name.append( 'C[{},{},{},{}]'.format(i, j, m, mm)) C_cost_energy.append(0) C_cost_optional.append( communication_cost_optional_tasks) C_upper_bound.append( self.CommNetwork.Bandwidth[i][j]) ix += 1 comm_vars_length = ix - b_vars_len - x_vars_len if "CostFunction" in self.Options.keys(): CostFunction = self.Options["CostFunction"] else: CostFunction = {"energy": 0.0, "total_task_reward": 1.0, "total_time": 0.0} print("WARNING: default cost function used.") if CostFunction["total_time"] != 0: print( "WARNING: minimum-makespan optimization is not supported at this time.") X_cost = CostFunction["total_task_reward"] * np.array( X_cost_optional, dtype=float) + CostFunction["energy"] * np.array(X_cost_energy, dtype=float) B_cost = CostFunction["total_task_reward"] * np.array( B_cost_optional, dtype=float) + CostFunction["energy"] * np.array(B_cost_energy, dtype=float) C_cost = CostFunction["total_task_reward"] * np.array( C_cost_optional, dtype=float) + CostFunction["energy"] *
np.array(C_cost_energy, dtype=float)
numpy.array
from summit.utils.dataset import DataSet from summit.domain import * from summit.experiment import Experiment from summit import get_summit_config_path from summit.utils import jsonify_dict, unjsonify_dict import torch import torch.nn.functional as F from skorch import NeuralNetRegressor from skorch.utils import to_device from sklearn.compose import ColumnTransformer, TransformedTargetRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer from sklearn.model_selection import ( train_test_split, cross_validate, GridSearchCV, ParameterGrid, ) from sklearn.model_selection._search import BaseSearchCV, _check_param_grid from sklearn.base import ( BaseEstimator, RegressorMixin, is_classifier, clone, TransformerMixin, ) from sklearn.model_selection._split import check_cv from sklearn.model_selection._validation import ( _fit_and_score, _score, _aggregate_score_dicts, ) from sklearn.metrics import r2_score from sklearn.utils.validation import ( _deprecate_positional_args, indexable, check_is_fitted, _check_fit_params, ) from sklearn.utils import check_array, _safe_indexing from sklearn.utils.fixes import delayed from sklearn.metrics._scorer import _check_multimetric_scoring from scipy.sparse import issparse from tqdm.auto import tqdm from joblib import Parallel import pathlib import numpy as np from numpy.random import default_rng import pandas as pd from copy import deepcopy from itertools import product from collections import defaultdict from copy import deepcopy import pkg_resources import time import json import types import warnings __all__ = [ "ExperimentalEmulator", "ANNRegressor", "get_bnn", "RegressorRegistry", "registry", "get_pretrained_reizman_suzuki_emulator", "get_pretrained_baumgartner_cc_emulator", "ReizmanSuzukiEmulator", "BaumgartnerCrossCouplingEmulator", ] class ExperimentalEmulator(Experiment): """Experimental Emulator Train a machine learning model based on experimental data. The model acts a benchmark for testing optimisation strategies. Parameters ---------- model_name : str Name of the model, ideally with no spaces domain : :class:`~summit.domain.Domain` The domain of the emulator dataset : :class:`~summit.dataset.Dataset`, optional Dataset used for training/validation regressor : :class:`torch.nn.Module`, optional Pytorch LightningModule class. Defaults to the ANNRegressor output_variable_names : str or list, optional The names of the variables that should be trained by the predictor. Defaults to all objectives in the domain. descriptors_features : list, optional A list of input categorical variable names that should be transformed into their descriptors instead of using one-hot encoding. clip : bool or list, optional Whether to clip predictions to the limits of the objectives in the domain. True (default) means clipping is activated for all outputs and False means it is not activated at all. A list of specific outputs to clip can also be passed. Notes ----- By default, categorical features are pre-processed using one-hot encoding. If descriptors are avaialble, they can be used on a feature-by-feature basis by specifying names of categorical variables in the descriptors_features keyword argument. Examples -------- >>> from summit.benchmarks import ExperimentalEmulator, ReizmanSuzukiEmulator >>> from summit.utils.dataset import DataSet >>> import matplotlib.pyplot as plt >>> import pathlib >>> import pkg_resources >>> # Steal domain and data from Reizman example >>> DATA_PATH = pathlib.Path(pkg_resources.resource_filename("summit", "benchmarks/data")) >>> model_name = f"reizman_suzuki_case_1" >>> domain = ReizmanSuzukiEmulator.setup_domain() >>> ds = DataSet.read_csv(DATA_PATH / f"{model_name}.csv") >>> # Create emulator and train (bump max_epochs to 1000 to get better training) >>> exp = ExperimentalEmulator(model_name,domain,dataset=ds) >>> res = exp.train(max_epochs=10, cv_folds=2, random_state=100, test_size=0.2) >>> # Plot to show the quality of the fit >>> fig, ax = exp.parity_plot(include_test=True) >>> plt.show() >>> # Get scores on the test set >>> scores = exp.test() # doctest: +SKIP """ def __init__(self, model_name, domain, **kwargs): super().__init__(domain, **kwargs) self.model_name = model_name # Data self.ds = kwargs.get("dataset") self.descriptors_features = kwargs.get("descriptors_features", []) if self.ds is not None: self.n_features = self._caclulate_input_dimensions( self.domain, self.descriptors_features ) self.n_examples = self.ds.shape[0] self.output_variable_names = kwargs.get( "output_variable_names", [v.name for v in self.domain.output_variables], ) # Create the regressor self.regressor = kwargs.get("regressor", ANNRegressor) self.predictors = kwargs.get("predictors") self.clip = kwargs.get("clip", True) def _run(self, conditions, **kwargs): input_columns = [v.name for v in self.domain.input_variables] X = conditions[input_columns].to_numpy() if X.shape[0] == len(input_columns): X = X[np.newaxis, :] X = pd.DataFrame(X, columns=input_columns) y_pred, y_pred_std = self._predict(X) return_std = kwargs.get("return_std", False) for i, name in enumerate(self.output_variable_names): if type(conditions) == pd.Series: y = y_pred[0, i] y_std = y_pred_std[0, i] else: y = y_pred[:, i] y_std = y_pred_std[:, i] conditions.at[(name, "DATA")] = y if return_std: conditions.at[(f"{name}_std", "METADATA")] = y_std return conditions, {} def _predict(self, X, **kwargs): """Get a prediction Parameters ---------- X : pd.DataFrame A pandas dataframe with inputs to the predictor Returns ------- mean, std Numpy arrays with the average and standard deviation of the ensemble """ y_pred = np.array( [estimator.predict(X, **kwargs) for estimator in self.predictors] ) if self.clip: for i, v in enumerate(self.domain.output_variables): if type(self.clip) == list: if v.name not in self.clip: continue y_pred[:, :, i] = np.clip(y_pred[:, :, i], v.lower_bound, v.upper_bound) return y_pred.mean(axis=0), y_pred.std(axis=0) def train(self, **kwargs): """Train the model on the dataset This will automatically do a train-test split and then train via cross-validation on the train set. Parameters --------- test_size : float, optional The size of the test as a fraction of the total dataset. Defaults to 0.1. cv_folds : int, optional The number of cross validation folds. Defaults to 5. max_epochs : int, optional The max number of epochs for each CV fold. Defaults to 100. scoring : str or list, optional A list of scoring functions or names of them. Defaults to R2 and MSE. See here for more https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter search_params : dict, optional A dictionary with parameter values to change in a gridsearch. regressor_kwargs : dict, optional You can pass extra arguments to the regressor here. callbacks : None, "disable" or list of Callbacks Skorch callbacks passed to skorch.net. See: https://skorch.readthedocs.io/en/latest/net.html verbose : int 0 for no logging, 1 for logging Notes ------ If predictor was set in the initialization, it will not be overwritten. Returns ------- A dictionary containing the results of the training. Examples ------- >>> from summit import * >>> import pkg_resources, pathlib >>> DATA_PATH = pathlib.Path(pkg_resources.resource_filename("summit", "benchmarks/data")) >>> model_name = f"reizman_suzuki_case_1" >>> domain = ReizmanSuzukiEmulator.setup_domain() >>> ds = DataSet.read_csv(DATA_PATH / f"{model_name}.csv") >>> exp = ExperimentalEmulator(model_name, domain, dataset=ds, regressor=ANNRegressor) >>> # Test grid search cross validation and training >>> params = { "regressor__net__max_epochs": [1, 1000]} >>> exp.train(cv_folds=5, random_state=100, search_params=params, verbose=0) # doctest: +SKIP """ if self.ds is None: raise ValueError("Dataset is required for training.") # Create predictor predictor = self._create_predictor( self.regressor, self.domain, self.n_features, self.n_examples, output_variable_names=self.output_variable_names, descriptors_features=self.descriptors_features, **kwargs, ) # Get data input_columns = [v.name for v in self.domain.input_variables] X = self.ds[input_columns].to_numpy() y = self.ds[self.output_variable_names].to_numpy().astype(float) # Sklearn columntransformer expects a pandas dataframe not a dataset X = pd.DataFrame(X, columns=input_columns) # Train-test split test_size = kwargs.get("test_size", 0.1) random_state = kwargs.get("random_state") self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( X, y, test_size=test_size, random_state=random_state ) y_train, y_test = ( torch.tensor(self.y_train).float(), torch.tensor(self.y_test).float(), ) # Training scoring = kwargs.get("scoring", ["r2", "neg_root_mean_squared_error"]) folds = kwargs.get("cv_folds", 5) search_params = kwargs.get("search_params", {}) # Run grid search if requested if search_params: self.logger.info("Starting grid search.") gs = ProgressGridSearchCV( predictor, search_params, refit="r2", cv=folds, scoring=scoring ) gs.fit(self.X_train, y_train) best_params = gs.best_params_ params = {} for param in search_params.keys(): params[param] = best_params[param] predictor.set_params(**params) # Run final training using cross validation initializing = kwargs.get("initializing", False) if not initializing: self.logger.info("Starting training.") res = cross_validate( predictor, self.X_train, y_train, scoring=scoring, cv=folds, return_estimator=True, ) self.predictors = res.pop("estimator") # Rename from test to validation for name in scoring: scores = res.pop(f"test_{name}") res[f"val_{name}"] = scores return res def test(self, **kwargs): """Get test results This requires that train has already been called or the ExperimentalEmulator was initialized from a pretrained model. Parameters ---------- scoring : str or list, optional A list of scoring functions or names of them. Defaults to R2 and MSE. See here for more https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter X_test : np.ndarray, optional Test X inputs y_test : np.ndarray, optional Corresponding test labels Notes ------ The method loops over the predictors, so the resulting are scores averaged over all objectives for each of the predictors. In contrast, the parity_plot code gives the scores for each objective averaged over the predictors. Returns ------ scores_dict : dict A dictionary of scores with test_SCORE as the key and values as an array of scores for each of the models in the ensemble. """ X_test = kwargs.get("X_test", self.X_test) y_test = kwargs.get("y_test", self.y_test) if X_test is None: raise ValueError("X_test is not set or passed") if y_test is None: raise ValueError("y_test is not set or passed") scoring = kwargs.get("scoring", ["r2", "neg_root_mean_squared_error"]) scores_list = [] for predictor in self.predictors: if callable(scoring): scorers = scoring elif scoring is None or isinstance(scoring, str): scorers = check_scoring(predictor, scoring) else: scorers = _check_multimetric_scoring(predictor, scoring) scores_list.append(_score(predictor, X_test, y_test, scorers)) scores_dict = _aggregate_score_dicts(scores_list) for name in scoring: scores = scores_dict.pop(name) scores_dict[f"test_{name}"] = scores return scores_dict @classmethod def _create_predictor( cls, regressor, domain, input_dimensions, num_examples, output_variable_names, **kwargs, ): # Preprocessors output_variable_names = kwargs.get( "output_variable_names", [v.name for v in domain.output_variables] ) X_preprocessor = cls._create_input_preprocessor(domain, **kwargs) y_preprocessor = cls._create_output_preprocessor(output_variable_names) # Create network regressor_kwargs = kwargs.get("regressor_kwargs", {}) regressor_kwargs.update( dict( module__input_dim=input_dimensions, module__output_dim=len(output_variable_names), module__n_examples=num_examples, ) ) verbose = kwargs.get("verbose", 0) net = NeuralNetRegressor( regressor, train_split=None, max_epochs=kwargs.get("max_epochs", 100), callbacks=kwargs.get("callbacks"), verbose=verbose, **regressor_kwargs, ) # Create predictor # TODO: also create an inverse function ds_to_tensor = FunctionTransformer(numpy_to_tensor, check_inverse=False) pipe = Pipeline( steps=[ ("preprocessor", X_preprocessor), ("dst", ds_to_tensor), ("net", net), ] ) return UpdatedTransformedTargetRegressor( regressor=pipe, transformer=StandardScaler(), check_inverse=False ) @staticmethod def _caclulate_input_dimensions(domain: Domain, descriptors_features): num_dimensions = 0 for v in domain.input_variables: if v.variable_type == "continuous": num_dimensions += 1 elif v.variable_type == "categorical": if v.name in descriptors_features: if v.ds is not None: num_dimensions += len(v.ds.data_columns) else: raise DomainError( ( f"Descriptors not available for {v.name})," f" but it is list in descriptors_features." "Make sure descriptors is set on the categorical variable." ) ) else: num_dimensions += len(v.levels) return num_dimensions @staticmethod def _create_input_preprocessor(domain, **kwargs): """Create feature preprocessors """ transformers = [] # Numeric transforms numeric_features = [ v.name for v in domain.input_variables if v.variable_type == "continuous" ] if len(numeric_features) > 0: transformers.append(("num", StandardScaler(), numeric_features)) # Categorical transforms descriptors_features = kwargs.get("descriptors_features", []) categorical_features = [ v.name for v in domain.input_variables if (v.variable_type == "categorical") and (v.name not in descriptors_features) ] categories = [ v.levels for v in domain.input_variables if (v.variable_type == "categorical") and (v.name not in descriptors_features) ] if len(categorical_features) > 0: transformers.append( ("cat", OneHotEncoder(categories=categories), categorical_features) ) if len(descriptors_features) > 0: datasets = [ v.ds for v in domain.input_variables if v.name in descriptors_features ] transformers.append( ( "des", DescriptorEncoder(datasets=datasets), descriptors_features, ) ) # Create preprocessor if len(numeric_features) == 0 and len(categorical_features) > 0: raise DomainError( "With only categorical features, you can do a simple lookup." ) elif ( len(numeric_features) > 0 or len(categorical_features) > 0 or len(descriptors_features) > 0 ): preprocessor = ColumnTransformer(transformers=transformers) else: raise DomainError( "No continuous or categorical features were found in the dataset." ) return preprocessor @staticmethod def _create_output_preprocessor(output_variable_names): """"Create target preprocessors""" transformers = [ ("scale", StandardScaler(), output_variable_names), ("dst", FunctionTransformer(numpy_to_tensor), output_variable_names), ] return ColumnTransformer(transformers=transformers) def to_dict(self, **experiment_params): """Convert emulator parameters to dictionary Notes ------ This does not save the weights and biases of the regressor. You need to use save_regressor method. """ # Predictors predictors = [ self._create_predictor_dict(predictor) for predictor in self.predictors ] # Update experiment_params experiment_params.update( { "model_name": self.model_name, "regressor_name": str(self.regressor.__name__), "n_features": self.n_features, "n_examples": self.n_examples, "descriptors_features": self.descriptors_features, "output_variable_names": self.output_variable_names, "predictors": predictors, "clip": self.clip, } ) return super().to_dict(**experiment_params) @staticmethod def _create_predictor_dict(predictor): num = predictor.regressor_.named_steps.preprocessor.named_transformers_.num input_preprocessor = { # Numerical "num": { "mean_": num.mean_, "var_": num.var_, "scale_": num.scale_, "n_samples_seen_": num.n_samples_seen_, } # Categorical and descriptors is automatic from the domain / kwargs } out = predictor.transformer_ output_preprocessor = { "mean_": out.mean_, "var_": out.var_, "scale_": out.scale_, "n_samples_seen_": out.n_samples_seen_, } return jsonify_dict( { "input_preprocessor": input_preprocessor, "output_preprocessor": output_preprocessor, } ) @classmethod def from_dict(cls, d, **kwargs): """Create ExperimentalEmulator from a dictionary Notes ----- This does not load the regressor weights and biases. After calling from_dict, call load_regressor to load the weights and biases. """ params = d["experiment_params"] domain = Domain.from_dict(d["domain"]) # Load regressor regressor = registry[params["regressor_name"]] d["experiment_params"]["regressor"] = regressor # Load predictors predictors_params = params["predictors"] predictors = [ cls._create_predictor( regressor, domain, params["n_features"], params["n_examples"], output_variable_names=params["output_variable_names"], descriptors_features=params["descriptors_features"], verbose=0, ) for predictor_params in predictors_params ] d["experiment_params"]["predictor"] = predictors # Dataset dataset = kwargs.get("dataset") d["experiment_params"]["dataset"] = dataset # Instantiate the class exp = super().from_dict(d) # Set runtime parameters exp.n_features = params["n_features"] exp.n_examples = params["n_examples"] # One round of training to initialize all variables if dataset is None: exp.ds = generate_data(domain, params["n_features"] + 1) exp.train(max_epochs=1, verbose=0, initializing=True) if dataset is None: exp.ds = None exp.X_train, exp.y_train, exp.X_test, exp.y_test = None, None, None, None # Set parameters on predictors for predictor, predictor_params in zip(exp.predictors, predictors_params): exp.set_predictor_params(predictor, unjsonify_dict(predictor_params)) return exp @staticmethod def set_predictor_params(predictor, predictor_params): # Input transforms num = predictor.regressor_.named_steps.preprocessor.named_transformers_.num input_preprocessor = RecursiveNamespace( **predictor_params["input_preprocessor"] ) num.mean_ = input_preprocessor.num.mean_ num.var_ = input_preprocessor.num.var_ num.scale_ = input_preprocessor.num.scale_ num.n_samples_seen_ = input_preprocessor.num.n_samples_seen_ # Output transforms out = predictor.transformer_ output_preprocessor = RecursiveNamespace( **predictor_params["output_preprocessor"] ) out.mean_ = output_preprocessor.mean_ out.var_ = output_preprocessor.var_ out.scale_ = output_preprocessor.scale_ out.n_samples_seen_ = output_preprocessor.n_samples_seen_ def save_regressor(self, save_dir): """Save the weights and biases of the regressor to disk Parameters ---------- save_dir : str or pathlib.Path The directory used for saving emulator files. """ save_dir = pathlib.Path(save_dir) if self.predictors is None: raise ValueError( "No predictors available. First, run training using the train method." ) for i, predictor in enumerate(self.predictors): predictor.regressor_.named_steps.net.save_params( f_params=save_dir / f"{self.model_name}_predictor_{i}.pt" ) def load_regressor(self, save_dir): """Load the weights and biases of the regressor from disk Parameters ---------- save_dir : str or pathlib.Path The directory used for saving emulator files. """ save_dir = pathlib.Path(save_dir) for i, predictor in enumerate(self.predictors): net = predictor.regressor_.named_steps.net net.initialize() net.load_params(f_params=save_dir / f"{self.model_name}_predictor_{i}.pt") predictor.regressor_.named_steps.net = net def save(self, save_dir): """Save all the essential parameters of the ExperimentalEmulator to disk Parameters ---------- save_dir : str or pathlib.Path The directory used for saving emulator files. Notes ------ This saves the parameters needed to reproduce results but not the associated data. You can separately save X_test, y_test, X_train, and y_train attributes if you want to be able to reproduce splits, test results and parity plots. Examples -------- >>> from summit import * >>> import pkg_resources, pathlib >>> DATA_PATH = pathlib.Path(pkg_resources.resource_filename("summit", "benchmarks/data")) >>> model_name = f"reizman_suzuki_case_1" >>> domain = ReizmanSuzukiEmulator.setup_domain() >>> ds = DataSet.read_csv(DATA_PATH / f"{model_name}.csv") >>> exp = ExperimentalEmulator(model_name, domain, dataset=ds, regressor=ANNRegressor) >>> res = exp.train(max_epochs=10) >>> exp.save("reizman_test/") >>> #Load data for new experimental emulator >>> exp_new = ExperimentalEmulator.load(model_name, "reizman_test/") >>> exp_new.X_train, exp_new.y_train, exp_new.X_test, exp_new.y_test = exp.X_train, exp.y_train, exp.X_test, exp.y_test >>> res = exp_new.test() >>> fig, ax = exp_new.parity_plot(include_test=True) """ save_dir = pathlib.Path(save_dir) save_dir.mkdir(exist_ok=True) with open(save_dir / f"{self.model_name}.json", "w") as f: json.dump(self.to_dict(), f) self.save_regressor(save_dir) @classmethod def load(cls, model_name, save_dir, **kwargs): """Load all the essential parameters of the ExperimentalEmulator from disk Parameters ---------- save_dir : str or pathlib.Path The directory from which to load emulator files. Notes ------ This loads the parameters needed to reproduce results but not the associated data. You can separately load X_test, y_test, X_train, and y_train attributes if you want to be able to reproduce splits, test results and parity plots. Examples -------- >>> from summit import * >>> import pkg_resources, pathlib >>> DATA_PATH = pathlib.Path(pkg_resources.resource_filename("summit", "benchmarks/data")) >>> model_name = f"reizman_suzuki_case_1" >>> domain = ReizmanSuzukiEmulator.setup_domain() >>> ds = DataSet.read_csv(DATA_PATH / f"{model_name}.csv") >>> exp = ExperimentalEmulator(model_name, domain, dataset=ds, regressor=ANNRegressor) >>> res = exp.train(max_epochs=10) >>> exp.save("reizman_test") >>> #Load data for new experimental emulator >>> exp_new = ExperimentalEmulator.load(model_name, "reizman_test") >>> exp_new.X_train, exp_new.y_train, exp_new.X_test, exp_new.y_test = exp.X_train, exp.y_train, exp.X_test, exp.y_test >>> res = exp_new.test() >>> fig, ax = exp_new.parity_plot(include_test=True) """ save_dir = pathlib.Path(save_dir) with open(save_dir / f"{model_name}.json", "r") as f: d = json.load(f) exp = cls.from_dict(d, **kwargs) exp.load_regressor(save_dir) return exp def parity_plot(self, **kwargs): """Produce a parity plot based for the trained model using matplotlib Parameters --------- output_variable_names : str or list, optional The output variables to plot. Defaults to all. include_test : bool, optional Include the performance of the model on the test set. Defaults to False. train_color : str, optional Hex string for the train points. Defaults to "#6f3666" test_color : str, optional Hex string for the train points. Defaults to "#3c328c" """ import matplotlib.pyplot as plt include_test = kwargs.get("include_test", False) train_color = kwargs.get("train_color", "#6f3666") test_color = kwargs.get("test_color", "#3c328c") clip = kwargs.get("clip") vars = kwargs.get("output_variable_names", self.output_variable_names) if type(vars) == str: vars = [vars] fig, axes = plt.subplots(1, len(vars), figsize=(10, 5)) fig.subplots_adjust(wspace=0.5) if len(vars) > 1: fig.subplots_adjust(wspace=0.2) if type(axes) != np.ndarray: axes = np.array([axes]) # Do predictions with torch.no_grad(): y_train_pred, y_train_pred_std = self._predict(self.X_train) if include_test: y_test_pred, y_train_pred_std = self._predict(self.X_test) plots = 0 for i, v in enumerate(self.output_variable_names): if v in vars: if include_test: kwargs = dict( y_test=self.y_test[:, i], y_test_pred=y_test_pred[:, i] ) else: kwargs = {} make_parity_plot( self.y_train[:, i], y_train_pred[:, i], ax=axes[plots], train_color=train_color, test_color=test_color, title=v, **kwargs, ) plots += 1 return fig, axes def generate_data(domain, n_examples, random_state=None): data = {} random =
default_rng(random_state)
numpy.random.default_rng
import matplotlib from matplotlib import pyplot as plt import numpy as np import pywt from scipy.ndimage import uniform_filter from scipy import ndimage as ndi from skimage.feature import match_descriptors, ORB from skimage.feature import hog, daisy, CENSURE from skimage import color, exposure, transform from skimage.transform import pyramid_gaussian # from skimage.util.montage import montage2d from skimage.filters import gabor_kernel from sklearn.feature_extraction.image import extract_patches_2d # from numba import jit def extract_features(imgs, feature_fns, verbose=True): """ Given pixel data for images and several feature functions that can operate on single images, apply all feature functions to all images, concatenating the feature vectors for each image and storing the features for all images in a single matrix. Inputs: - imgs: N x H X W X C array of pixel data for N images. - feature_fns: List of k feature functions. The ith feature function should take as input an H x W x D array and return a (one-dimensional) array of length F_i. - verbose: Boolean; if true, print progress. Returns: An array of shape (F_1 + ... + F_k, N) where each column is the concatenation of all features for a single image. """ num_images = imgs.shape[0] if num_images == 0: return np.array([]) # Use the first image to determine feature dimensions feature_dims = [] first_image_features = [] for feature_fn in feature_fns: feats = feature_fn(imgs[0].squeeze()) assert len(feats.shape) == 1, 'Feature func. must be one-dimensional' feature_dims.append(feats.size) first_image_features.append(feats) # Now that we know the dimensions of the features, we can allocate a single # big array to store all features as columns. total_feature_dim = sum(feature_dims) imgs_features = np.zeros((total_feature_dim, num_images)) imgs_features[:total_feature_dim, 0] = np.hstack(first_image_features) # Extract features for the rest of the images. for i in xrange(1, num_images): # idx = 0 for feature_fn, feature_dim in zip(feature_fns, feature_dims): # next_idx = idx + feature_dim # imgs_features[idx:next_idx, i] = feature_fn(imgs[i].squeeze()) # idx = next_idx imgs_features[:, i] = feature_fn(imgs[i].squeeze()) if verbose and i % 100 == 0: print("Done extracting features for {}/{} images" .format(i, num_images)) return imgs_features.T def rgb2gray(img): """Convert RGB image to grayscale Parameters: rgb : RGB image Returns: gray : grayscale image """ return np.dot(img[..., :3], [0.299, 0.587, 0.144]) def padding_imgs(img, max_width=0, max_height=0): w, h, c = img.shape img = rgb2gray(img) if max_width != 0 and max_height != 0: if max_width > max_height: img = np.pad(img, ((0, max_width - w), (max_width - h, 0)), 'constant', constant_values=0) else: img = np.pad(img, ((0, max_height - w), (max_height - h, 0)), 'constant', constant_values=0) else: if h > w: img = np.pad(img, ((0, h-w), (0, 0)), 'constant', constant_values=0) else: img = np.pad(img, ((0, 0), (w-h, 0)), 'constant', constant_values=0) return img def hog_feature(im): """Compute Histogram of Gradient (HOG) feature for an image Modified from skimage.feature.hog http://pydoc.net/Python/scikits-image/0.4.2/skimage.feature.hog Reference: Histograms of Oriented Gradients for Human Detection <NAME> and <NAME>, CVPR 2005 Parameters: im : an input grayscale or rgb square image Returns: feat: Histogram of Gradient (HOG) feature """ # convert rgb to grayscale if needed if im.ndim == 3: image = rgb2gray(im) # if im.ndim[0] > im.ndim[1] or im.ndim[1] > im.ndim[0]: # image = padding_imgs(im) # w, h = image.shape # if h > w: # image = np.pad(image, ((0, h-w), (0, 0)), 'constant', # constant_values=0) # else: # image = np.pad(image, ((0, 0), (w-h, 0)), 'constant', # constant_values=0) else: image = np.atleast_2d(im) sx, sy = image.shape # image size orientations = 9 # number of gradient bins cx, cy = (8, 8) # pixels per cell gx = np.zeros(image.shape) gy = np.zeros(image.shape) gx[:, :-1] = np.diff(image, n=1, axis=1) # compute gradient on x-direction gy[:-1, :] = np.diff(image, n=1, axis=0) # compute gradient on y-direction grad_mag = np.sqrt(gx ** 2 + gy ** 2) # gradient magnitude grad_ori = np.arctan2(gy, (gx + 1e-15)) * (180 / np.pi) + 90 # gradient orientation n_cellsx = int(np.floor(sx / cx)) # number of cells in x n_cellsy = int(np.floor(sy / cy)) # number of cells in y # compute orientations integral images orientation_histogram = np.zeros((n_cellsx, n_cellsy, orientations)) for i in range(orientations): # create new integral image for this orientation # isolate orientations in this range temp_ori = np.where(grad_ori < 180 / orientations * (i + 1), grad_ori, 0) temp_ori = np.where(grad_ori >= 180 / orientations * i, temp_ori, 0) # select magnitudes for those orientations cond2 = temp_ori > 0 temp_mag = np.where(cond2, grad_mag, 0) orientation_histogram[:, :, i] = uniform_filter( temp_mag, size=(cx, cy))[cx/2::cx, cy/2::cy].T return orientation_histogram.ravel() def color_histogram_hsv(im, nbin=10, xmin=0, xmax=255, normalized=True): """ Compute color histogram for an image using hue. Inputs: - im: H x W x C array of pixel data for an RGB image. - nbin: Number of histogram bins. (default: 10) - xmin: Minimum pixel value (default: 0) - xmax: Maximum pixel value (default: 255) - normalized: Whether to normalize the histogram (default: True) Returns: 1D vector of length nbin giving the color histogram over the hue of the input image. """ ndim = im.ndim bins = np.linspace(xmin, xmax, nbin+1) hsv = matplotlib.colors.rgb_to_hsv(im/xmax) * xmax imhist, bin_edges = np.histogram(hsv[:, :, 0], bins=bins, density=normalized) imhist = imhist * np.diff(bin_edges) # return histogram return imhist.ravel() def histogram_equalization(img): # Contrast stretching p2 = np.percentile(img, 2) p98 = np.percentile(img, 98) img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98)) # Equalization img_eq = exposure.equalize_hist(img) # Adaptive equalization img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03) return img_rescale, img_eq, img_adapteq def plot_hog(img): image = color.rgb2gray(img) fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualise=True) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True) ax1.axis('off') ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title('Input image') ax1.set_adjustable('box-forced') # Rescale histogram for better display hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02)) ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') ax1.set_adjustable('box-forced') plt.show() def pyramid(img): w, h, c = img.shape pyramid = tuple(pyramid_gaussian(img, downscale=2)) composite_image = np.zeros((w, h + h // 2, 3), dtype=np.float32) composite_image[:w, :h, :] = pyramid[0] row_count = 0 for p in pyramid[1:]: n_rows, n_cols = p.shape[:2] composite_image[row_count:row_count + n_rows, h: h + n_cols] = p row_count += n_rows return composite_image def daisy_feat(img): img = color.rgb2gray(img) descs, descs_img = daisy(img, step=180, radius=58, rings=2, histograms=6, orientations=8, visualize=True) return descs.ravel() def censure(img): img = color.rgb2gray(img) # tform = tf.AffineTransform(scale=(1.5, 1.5), rotation=0.5, # translation=(150, -200)) # img_warp = tf.warp(img, tform) detector = CENSURE() detector.detect(img) # return detector.keypoints, detector.scales return detector.scales def orb(img): img1 = rgb2gray(img) img2 = transform.rotate(img1, 180) tform = transform.AffineTransform(scale=(1.3, 1.1), rotation=0.5, translation=(0, -200)) img3 = transform.warp(img1, tform) descriptor_extractor = ORB(n_keypoints=200) descriptor_extractor.detect_and_extract(img1) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img2) keypoints2 = descriptor_extractor.keypoints descriptors2 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img3) keypoints3 = descriptor_extractor.keypoints descriptors3 = descriptor_extractor.descriptors matches1 = match_descriptors(descriptors1, descriptors2, cross_check=True) matches2 = match_descriptors(descriptors1, descriptors3, cross_check=True) return np.hstack((keypoints1[matches1[:, 0]].ravel(), keypoints2[matches2[:, 1]].ravel())) # return descriptors1, descriptors2, descriptors3 def gabor_filters(img): """Prepare filter-bank kernels""" img = rgb2gray(img) kernels = [] for theta in range(4): theta = theta / 4. * np.pi for sigma in (1, 3): for frequency in (0.05, 0.25): kernel = np.real(gabor_kernel(frequency, theta=theta, sigma_x=sigma, sigma_y=sigma)) kernels.append(kernel) feats = np.zeros((len(kernels), 2), dtype=np.double) for k, kernel in enumerate(kernels): filtered = ndi.convolve(img, kernel, mode='wrap') feats[k, 0] = filtered.mean() feats[k, 1] = filtered.var() return np.hstack((feats[:, 0].ravel(), feats[:, 1].ravel())).ravel() def mean_removal(img): img[:, :, 0] -= 104.006 img[:, :, 1] -= 116.669 img[:, :, 2] -= 122.679 return img def remove_mean(X): mean_img = np.mean(X, axis=0) X -= mean_img return X def whitening(X, k=8): # STEP 1a: Implement PCA to obtain the rotation matrix, U, which is # the eigenbases sigma. # Covariance matrix [column-wise variables]: Sigma = (X-mu)' * (X-mu) / N Sigma =
np.dot(X, X.T)
numpy.dot
""" """ import matplotlib matplotlib.rc('text', usetex=True) matplotlib.rcParams['font.size'] = 17 matplotlib.rc('xtick', labelsize=14) matplotlib.rc('axes', linewidth=1.1) matplotlib.rcParams['legend.fontsize'] = 11 matplotlib.rcParams['legend.handlelength'] = 3 matplotlib.rcParams['xtick.major.size'] = 5 matplotlib.rcParams['ytick.major.size'] = 5 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.animation as animation import pyfits as pf import numpy as np def visualiseWavelengthDependency2D(d1, d2, d3, outname, logscale=True): """ """ plt.subplots(ncols=3, figsize=(18, 7)) ax1 = plt.subplot(1, 3, 1, frame_on=False) ax2 = plt.subplot(1, 3, 2, frame_on=False) ax3 = plt.subplot(1, 3, 3, frame_on=False) ax1.imshow(d1, origin='lower') ax2.imshow(d2, origin='lower') ax3.imshow(d3, origin='lower') if logscale: ax1.set_title(r'$\lambda = 400$nm, logscale') ax2.set_title(r'$\lambda = 550$nm, logscale') ax3.set_title(r'$\lambda = 800$nm, logscale') else: ax1.set_title(r'$\lambda = 400$nm, linscale') ax2.set_title(r'$\lambda = 550$nm, linscale') ax3.set_title(r'$\lambda = 800$nm, linscale') #turn of ticks ax1.axes.get_xaxis().set_visible(False) ax1.axes.get_yaxis().set_visible(False) ax2.axes.get_xaxis().set_visible(False) ax2.axes.get_yaxis().set_visible(False) ax3.axes.get_xaxis().set_visible(False) ax3.axes.get_yaxis().set_visible(False) plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.savefig(outname) plt.close() def visualiseWavelengthDependency3D(d1, d2, d3, outname, PSF=True): """ """ stopy, stopx = d1.shape X, Y = np.meshgrid(np.arange(0, stopx, 1),
np.arange(0, stopy, 1)
numpy.arange
from .groundwater import Groundwater from .overland import OverlandFlow import numpy as np from landlab import Component class CRESTPHYS(Component): _name= "CREST-Physical" _cite_as= ''' add later ''' _info = { "WM__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "m", "mapping": "node", "doc": "Mean Max Soil Capacity" }, "IM__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units":"%", "mapping": "node", "doc":"impervious area ratio for generating fast runoff" }, "manning_n__param":{ "dtype": np.float32, "intent": "in", "optional": True, "units": "-", "mapping": "node", "doc": "manning roughness" }, "B__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "Exponent of VIC model" }, "KE__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "Evaporation factor -> from PET to AET" }, "Ksat_groundwater__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "m/s", "mapping": "link", "doc": "horizontal hydraulic conductivity in groundwater" }, "Ksat_soil__param":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "m/s", "mapping": "node", "doc": "vertical Soil saturated hydraulic conductivity in vadose zone" }, "topographic__elevation":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "m", "mapping": "node", "doc": "Surface elevation" }, "aquifer_base__elevation":{ "dtype": np.float32, "intent": "in", "optional": False, "units": "m", "mapping": "node", "doc": "Base elevation of aquifer" }, "surface_water__discharge":{ "dtype": np.float32, "intent": "out", "optional": False, "units": "m^3/s", "mapping": "node", "doc": "Surface discharge" }, "ground_water__discharge":{ "dtype": np.float32, "intent": "out", "optional": False, "units": "m^3/s", "mapping": "node", "doc": "Groundwater discharge" }, "soil_moisture__content":{ "dtype": np.float32, "intent": "out", "optional": False, "units": "mm", "mapping": "node", "doc": "Soil Moisture Content" }, "surface_water__elevation":{ "dtype": np.float32, "intent": "out", "optional": False, "units": "m", "mapping": "node", "doc": "Surface water elevation" }, "ground_water__elevation":{ "dtype": np.float32, "intent": "inout", "optional": True, "units": "m", "mapping": "node", "doc": "Ground water table" }, } def __init__(self, grid, porosity=1, proj=None): super().__init__(grid) self.initialize_output_fields() #===store some parameters for use=========# self._im= self._grid['node']['IM__param']/100. # convert to unitness value self._im[self._im>1]=1 self._im[self._im<0]=0 self._ksat_soil= self._grid['node']['Ksat_soil__param'] self._ksat_gw= self._grid['link']['Ksat_groundwater__param'] self._ke= self._grid['node']['KE__param'] self._b= self._grid['node']['B__param'] self._b[self._b<0]=1 self._wm= self._grid['node']['WM__param'] self._wm[self._wm<0]= 100 self._ksat_soil[self._ksat_soil<0]=1 self._manning_n= self._grid['node']['manning_n__param'] self._manning_n_link= self._grid.map_mean_of_link_nodes_to_link(self._manning_n) self._zsf= self._grid['node']['surface_water__elevation'] self._elev= self._grid['node']['topographic__elevation'] self._zgw= self._grid['node']['ground_water__elevation'] self._z_base= self._grid['node']['aquifer_base__elevation'] self._qsf = self._grid['node']['surface_water__discharge'] self._qgw= self._grid['node']['ground_water__discharge'] self._sm= self._grid['node']['soil_moisture__content'] self._sm[self._sm<0]=0 self._zsf[self._grid.status_at_node==self._grid.BC_NODE_IS_CLOSED]= 0 self._zgw[self._grid.status_at_node==self._grid.BC_NODE_IS_CLOSED]= 0 self._qsf[self._grid.status_at_node==self._grid.BC_NODE_IS_CLOSED]= 0 self._qgw[self._grid.status_at_node==self._grid.BC_NODE_IS_CLOSED]= 0 #===instantiate groundwater and flow accumulator component===# self._router= OverlandFlow( self._grid, rainfall_intensity=0, mannings_n= self._manning_n_link, steep_slopes=True ) self._gw= Groundwater( self._grid, hydraulic_conductivity=self._ksat_gw, porosity=porosity, recharge_rate=0, regularization_f=0.01, courant_coefficient=1) self.lons= self._grid.x_of_node.reshape(self._grid.shape)[0,:] self.lats= self._grid.y_of_node.reshape(self._grid.shape)[:,0] def run_one_step(self, dt): ''' control function to link overland flow and ground water ''' if not hasattr(self, '_precip') or not hasattr(self, '_evap'): msg= 'Missing precipitation or evaporation information, please check...' raise ValueError(msg) zsf= self._grid['node']['surface_water__elevation'] zgw= self._grid['node']['ground_water__elevation'] # here we combine surface water and precipitation to turn on reinfiltration precip= self._precip * dt #convert to mm for convenience evap= self._evap * dt adjPET= evap * self._ke # condition 1: precipitation > PET cond= (precip>\ adjPET) # precip[precip<adjPET]= adjPET[precip<adjPET] # First generate fast runoff precipSoil= np.zeros_like(precip) precipImperv= np.zeros_like(precip) precipSoil[cond]= (precip[cond] - adjPET[cond]) * (1-self._im[cond]) precipImperv[cond]= precip[cond] - adjPET[cond] - precipSoil[cond] # infiltration interflowExcess=
np.zeros_like(precip)
numpy.zeros_like
''' By Real2CAD group at ETH Zurich 3DV Group 14 <NAME>, <NAME>, <NAME>, <NAME> Editted based on the codes of the JointEmbedding paper (https://github.com/xheon/JointEmbedding) As for our contributions, please check our report ''' import argparse import json from typing import List, Tuple, Dict import os from datetime import datetime import random import math import numpy as np import scipy.spatial import matplotlib.pyplot as plt import matplotlib.patches as mpatches import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from tqdm import tqdm from sklearn.manifold import TSNE import wandb import open3d as o3d import data import metrics import utils from models import * from typing import List, Tuple, Any def main(opt: argparse.Namespace): # Configure environment utils.set_gpu(opt.gpu) device = torch.device("cuda") ts = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # begining timestamp run_name = opt.name + "_" + ts # modified to a name that is easier to index run_path = os.path.join(opt.output_root, run_name) if not os.path.exists(run_path): os.mkdir(run_path) assert os.access(run_path, os.W_OK) print(f"Start testing {run_path}") print(vars(opt)) # Set wandb visualize_on = False if opt.wandb_vis_on: utils.setup_wandb() wandb.init(project="ScanCADJoint", entity="real2cad", config=vars(opt), dir=run_path) # team 'real2cad' #wandb.init(project="ScanCADJoint", config=vars(opt), dir=run_path) # your own worksapce wandb.run.name = run_name visualize_on = True # Model if opt.skip_connection_sep: separation_model: nn.Module = HourGlassMultiOutSkip(ResNetEncoderSkip(1), ResNetDecoderSkip(1)) else: separation_model: nn.Module = HourGlassMultiOut(ResNetEncoder(1), ResNetDecoder(1)) if opt.skip_connection_com: completion_model: nn.Module = HourGlassMultiOutSkip(ResNetEncoderSkip(1), ResNetDecoderSkip(1)) else: completion_model: nn.Module = HourGlassMultiOut(ResNetEncoder(1),ResNetDecoder(1)) #multiout for classification classification_model: nn.Module = CatalogClassifier([256, 1, 1, 1], 8) #classification (8 class) if opt.offline_sample: embedding_model: nn.Module = TripletNet(ResNetEncoder(1)) #for offline assiging else: embedding_model: nn.Module = TripletNetBatchMix(ResNetEncoder(1)) #for online mining (half anchor scan + half positive cad) if opt.representation == "tdf": trans = data.truncation_normalization_transform else: # binary_occupancy trans = data.to_occupancy_grid # Load checkpoints resume_run_path = opt.resume.split("/")[0] checkpoint_name = opt.resume.split("/")[1] resume_run_path = os.path.join(opt.output_root, resume_run_path) if not os.path.exists(os.path.join(resume_run_path, f"{checkpoint_name}.pt")): checkpoint_name = "best" print("Resume from checkpoint " + checkpoint_name) loaded_model = torch.load(os.path.join(resume_run_path, f"{checkpoint_name}.pt")) if opt.separation_model_on: separation_model.load_state_dict(loaded_model["separation"]) separation_model = separation_model.to(device) separation_model.eval() else: separation_model = None completion_model.load_state_dict(loaded_model["completion"]) classification_model.load_state_dict(loaded_model["classification"]) embedding_model.load_state_dict(loaded_model["metriclearning"]) completion_model = completion_model.to(device) classification_model = classification_model.to(device) embedding_model = embedding_model.to(device) # Make sure models are in evaluation mode completion_model.eval() classification_model.eval() embedding_model.eval() print("Begin evaluation") if opt.scenelist_file is None: # test_scan_list = ["scene0000_00", "scene0001_00", "scene0002_00", "scene0003_00", "scene0004_00", "scene0005_00", # "scene0006_00", "scene0007_00", "scene0008_00", "scene0009_00", "scene0010_00", "scene0011_00", "scene0012_00", "scene0013_00", "scene0014_00", "scene0015_00"] test_scan_list =["scene0030_00", "scene0031_00", "scene0032_00", "scene0033_00"] else: with open(opt.scenelist_file) as f: test_scan_list = json.load(f) scan_base_path = None if opt.scan_dataset_name == "scannet": scan_base_path = opt.scannet_path elif opt.scan_dataset_name == "2d3ds": scan_base_path = opt.s2d3ds_path # Compute similarity metrics # TODO: Update scan2cad_quat_file for 2d3ds dataset # retrieval_metrics = evaluate_retrieval_metrics(separation_model, completion_model, classification_model, embedding_model, device, # opt.similarity_file, scan_base_path, opt.shapenet_voxel_path, opt.scan2cad_quat_file, # opt.scan_dataset_name, opt.separation_model_on, opt.batch_size, trans, # opt.rotation_trial_count, opt.filter_val_pool, opt.val_max_sample_count, # wb_visualize_on = visualize_on, vis_sample_count = opt.val_vis_sample_count) # Compute cad embeddings if opt.embed_mode: embed_cad_pool(embedding_model, device, opt.modelpool_file, opt.shapenet_voxel_path, opt.cad_embedding_path, opt.batch_size, trans, opt.rotation_trial_count) # embed_scan_objs(separation_model, completion_model, classification_model, embedding_model, device, # opt.scan2cad_file, scan_base_path, opt.scan_embedding_path, opt.scan_dataset_name, # opt.separation_model_on, opt.batch_size, trans) # accomplish Real2CAD task # TODO: add evaluation based on CD retrieve_in_scans(separation_model, completion_model, classification_model, embedding_model, device, test_scan_list, opt.cad_embedding_path, opt.cad_apperance_file, scan_base_path, opt.shapenet_voxel_path, opt.shapenet_pc_path, opt.real2cad_result_path, opt.scan_dataset_name, opt.separation_model_on, opt.batch_size, trans, opt.rotation_trial_count, opt.filter_val_pool, opt.in_the_wild_mode, opt.init_scale_method, opt.icp_reg_mode, opt.icp_dist_thre, opt.icp_with_scale_on, opt.only_rot_z, opt.only_coarse_reg, visualize_on) # print(retrieval_metrics) # TSNE plot # embedding_tsne(opt.cad_embedding_path, opt.scan_embedding_path, opt.tsne_img_path, True, visualize_on) # Compute domain confusion # TODO update (use together with TSNE) # train_confusion_results = evaluate_confusion(separation_model, completion_model, embedding_model, # device, opt.confusion_train_path, opt.scannet_path, opt.shapenet_path, # opt.confusion_num_neighbors, "train") # print(train_confusion_results) #confusion_mean, conditional_confusions_mean # # val_confusion_results = evaluate_confusion(separation_model, completion_model, embedding_model, # device, opt.confusion_val_path, opt.scannet_path, opt.shapenet_path, # opt.confusion_num_neighbors, "validation") # print(val_confusion_results) #confusion_mean, conditional_confusions_mean pass def evaluate_confusion(separation: nn.Module, completion: nn.Module, triplet: nn.Module, device, dataset_path: str, scannet_path: str, shapenet_path: str, num_neighbors: int, data_split: str, batch_size: int = 1, trans=data.to_occupancy_grid, verbose: bool = False) -> Tuple[np.array, list]: # Configure datasets dataset: Dataset = data.TrainingDataset(dataset_path, scannet_path, shapenet_path, "all", [data_split], scan_rep="sdf", transformation=trans) dataloader: DataLoader = DataLoader(dataset, shuffle=False, batch_size=batch_size, num_workers=0) embeddings: List[torch.Tensor] = [] # contains all embedding vectors names: List[str] = [] # contains the names of the samples category: List[int] = [] # contains the category label of the samples domains: List[int] = [] # contains number labels for domains (scan=0/cad=1) # Iterate over data for scan, cad in tqdm(dataloader, total=len(dataloader)): # Move data to GPU scan_data = scan["content"].to(device) cad_data = cad["content"].to(device) with torch.no_grad(): # Pass scan through networks scan_foreground, _ = separation(scan_data) scan_completed, _ = completion(torch.sigmoid(scan_foreground)) scan_latent = triplet.embed(torch.sigmoid(scan_completed)).view(batch_size, -1) embeddings.append(scan_latent) names.append(f"/scan/{scan['name']}") domains.append(0) # scan # Embed cad cad_latent = triplet.embed(cad_data).view(batch_size, -1) embeddings.append(cad_latent) names.append(f"/cad/{cad['name']}") domains.append(1) # cad embedding_space = torch.cat(embeddings, dim=0) # problem embedding_space = embedding_space.cpu().numpy() domain_labels: np.array = np.asarray(domains) cat_labels: np.array = np.asarray(category) # Compute distances between all samples distance_matrix = metrics.compute_distance_matrix(embedding_space) confusion, conditional_confusions = metrics.compute_knn_confusions(distance_matrix, domain_labels, num_neighbors) confusion_mean = np.average(confusion) conditional_confusions_mean = [np.average(conf) for conf in conditional_confusions] return confusion_mean, conditional_confusions_mean def evaluate_retrieval_metrics(separation_model: nn.Module, completion_model: nn.Module, classification_model: nn.Module, embedding_model: nn.Module, device, similarity_dataset_path: str, scan_base_path: str, cad_base_path: str, gt_quat_file: str = None, scan_dataset_name: str = "scannet", separation_model_on: bool = False, batch_size: int = 1, trans=data.to_occupancy_grid, rotation_count: int = 1, filter_pool: bool = False, test_sample_limit: int = 999999, wb_visualize_on = True, vis_name: str = "eval/", vis_sample_count: int = 5, verbose: bool = True): # interested_categories = ["02747177", "02808440", "02818832", "02871439", "02933112", "03001627", "03211117", # "03337140", "04256520", "04379243"] unique_scan_objects, unique_cad_objects, sample_idx = get_unique_samples(similarity_dataset_path, rotation_count, test_sample_limit) if separation_model_on: scan_input_format = ".sdf" scan_input_folder_extension = "_object_voxel" scan_pc_folder_extension = "_object_pc" input_only_mask = False else: scan_input_format = ".mask" scan_input_folder_extension = "_mask_voxel" scan_pc_folder_extension = "_mask_pc" input_only_mask = True scan_dataset: Dataset = data.InferenceDataset(scan_base_path, unique_scan_objects, scan_input_format, "scan", transformation=trans, scan_dataset = scan_dataset_name, input_only_mask=input_only_mask) scan_dataloader = torch.utils.data.DataLoader(dataset=scan_dataset, shuffle=True, batch_size=batch_size) rotation_ranking_on = False if rotation_count > 1: rotation_ranking_on = True # eval mode # separation_model.eval() # completion_model.eval() # classification_model.eval() # embedding_model.eval() record_test_cloud = True # vis_sep_com_count = vis_sample_count # load all the scan object and cads that are waiting for testing # # Evaluate all unique scan segments' embeddings embeddings: Dict[str, np.array] = {} mid_pred_cats: Dict[str, str] = {} for names, elements in tqdm(scan_dataloader, total=len(scan_dataloader)): # Move data to GPU elements = elements.to(device) with torch.no_grad(): if separation_model_on: scan_foreground, _ = separation_model(elements) scan_foreground = torch.sigmoid(scan_foreground) scan_completed, hidden = completion_model(scan_foreground) else: scan_completed, hidden = completion_model(elements) mid_pred_cat = classification_model.predict_name(torch.sigmoid(hidden)) # class str scan_completed = torch.sigmoid(scan_completed) # scan_completed = torch.where(scan_completed > 0.5, scan_completed, torch.zeros(scan_completed.shape)) scan_latent = embedding_model.embed(scan_completed) for idx, name in enumerate(names): embeddings[name] = scan_latent[idx].cpu().numpy().squeeze() mid_pred_cats[name] = mid_pred_cat[idx] #embeddings[names[0]] = scan_latent.cpu().numpy().squeeze() # why [0] ? now works only for batch_size = 1 #mid_pred_cats[name[0]] = mid_pred_cat if wb_visualize_on: # TODO, may have bug scan_voxel = elements[0].cpu().detach().numpy().reshape((32, 32, 32)) scan_cloud = data.voxel2point(scan_voxel) wb_vis_dict = {vis_name + "input scan object": wandb.Object3D(scan_cloud)} if separation_model_on: foreground_voxel = scan_foreground[0].cpu().detach().numpy().reshape((32, 32, 32)) foreground_cloud = data.voxel2point(foreground_voxel, color_mode='prob') wb_vis_dict[vis_name + "point_cloud_foreground"] = wandb.Object3D(foreground_cloud) completed_voxel = scan_completed[0].cpu().detach().numpy().reshape((32, 32, 32)) completed_cloud = data.voxel2point(completed_voxel, color_mode='prob', visualize_prob_threshold = 0.75) wb_vis_dict[vis_name + "point_cloud_completed"] = wandb.Object3D(completed_cloud) wandb.log(wb_vis_dict) # Evaluate all unique cad embeddings # update unique_cad_objects cad_dataset: Dataset = data.InferenceDataset(cad_base_path, unique_cad_objects, ".df", "cad", transformation=trans) cad_dataloader = torch.utils.data.DataLoader(dataset=cad_dataset, shuffle=False, batch_size=batch_size) for names, elements in tqdm(cad_dataloader, total=len(cad_dataloader)): # Move data to GPU elements = elements.to(device) with torch.no_grad(): #cad_latent = embedding_model.embed(elements).view(-1) cad_latent = embedding_model.embed(elements) for idx, name in enumerate(names): embeddings[name] = cad_latent[idx].cpu().numpy().squeeze() #embeddings[name[0]] = cad_latent.cpu().numpy().squeeze() # Load GT alignment quat file with open(gt_quat_file) as qf: # rotation quaternion of the cad models relative to the scan object quat_content = json.load(qf) json_quat = quat_content["scan2cad_objects"] # Evaluate metrics with open(similarity_dataset_path) as f: samples = json.load(f).get("samples") test_sample_limit = min(len(samples), test_sample_limit) samples = list(samples[i] for i in sample_idx) retrieved_correct = 0 retrieved_total = 0 retrieved_cat_correct = 0 retrieved_cat_total = 0 ranked_correct = 0 ranked_total = 0 # Top 7 categories and the others selected_categories = ["03001627", "04379243", "02747177", "02818832", "02871439", "02933112", "04256520", "other"] category_name_dict = {"03001627": "Chair", "04379243": "Table","02747177": "Trash bin","02818832": "Bed", "02871439":"Bookshelf", "02933112":"Cabinet","04256520":"Sofa","other":"Other"} category_idx_dict = {"03001627": 0, "04379243": 1, "02747177": 2, "02818832": 3, "02871439": 4, "02933112": 5, "04256520": 6, "other": 7} per_category_retrieved_correct = {category: 0 for category in selected_categories} per_category_retrieved_total = {category: 0 for category in selected_categories} per_category_ranked_correct = {category: 0 for category in selected_categories} per_category_ranked_total = {category: 0 for category in selected_categories} idx = 0 visualize = False vis_sample = [] if vis_sample_count > 0: visualize = True vis_sample = random.sample(samples, vis_sample_count) # Iterate over all annotations for sample in tqdm(samples, total=len(samples)): reference_name = sample["reference"]["name"].replace("/scan/", "") reference_quat = json_quat.get(reference_name, [1.0, 0.0, 0.0, 0.0]) reference_embedding = embeddings[reference_name][np.newaxis, :] #reference_embedding = embeddings[reference_name] # only search nearest neighbor in the pool (the "ranked" list should be a subset of the "pool") pool_names = [p["name"].replace("/cad/", "") for p in sample["pool"]] # Filter pool with classification result if filter_pool: mid_pred_cat = mid_pred_cats[reference_name] # class str if mid_pred_cat != 'other': temp_pool_names = list(filter(lambda x: x.split('/')[0] == mid_pred_cat, pool_names)) else: # deal with other categories temp_pool_names = list(filter(lambda x: x.split('/')[0] not in selected_categories, pool_names)) if len(temp_pool_names) != 0: pool_names = temp_pool_names #print("filter pool on") pool_names = np.asarray(pool_names) pool_names_all = [] if rotation_ranking_on: pool_embeddings = [] deg_step = np.around(360.0 / rotation_count) for p in pool_names: for i in range(rotation_count): cur_rot = int(i * deg_step) cur_rot_p = p + "_" + str(cur_rot) pool_names_all.append(cur_rot_p) pool_embeddings.append(embeddings[cur_rot_p]) pool_names_all = np.asarray(pool_names_all) else: pool_embeddings = [embeddings[p] for p in pool_names] pool_names_all = pool_names pool_embeddings = np.asarray(pool_embeddings) # Compute distances in embedding space distances = scipy.spatial.distance.cdist(reference_embedding, pool_embeddings, metric="euclidean") sorted_indices = np.argsort(distances, axis=1) sorted_distances = np.take_along_axis(distances, sorted_indices, axis=1) # [1, filtered_pool_size * rotation_trial_count] sorted_distances = sorted_distances[0] # [filtered_pool_size * rotation_trial_count] predicted_ranking = np.take(pool_names_all, sorted_indices)[0].tolist() ground_truth_names = [r["name"].replace("/cad/", "") for r in sample["ranked"]] ground_truth_cat = ground_truth_names[0].split("/")[0] # ground_truth_cat = reference_name.split("_")[4] #only works for scannet (scan2cad) predicted_cat = predicted_ranking[0].split("/")[0] # retrieval accuracy (top 1 [nearest neighbor] model is in the ranking list [1-3]) sample_retrieved_correct = 1 if metrics.is_correctly_retrieved(predicted_ranking, ground_truth_names) else 0 retrieved_correct += sample_retrieved_correct retrieved_total += 1 # the top 1's category is correct [specific category str belongs to 'other' would also be compared] sample_cat_correct = 1 if metrics.is_category_correctly_retrieved(predicted_cat, ground_truth_cat) else 0 #sample_cat_correct = 1 if metrics.is_category_correctly_retrieved(mid_pred_cat, ground_truth_cat) else 0 retrieved_cat_correct += sample_cat_correct retrieved_cat_total += 1 # per-category retrieval accuracy reference_category = metrics.get_category_from_list(ground_truth_cat, selected_categories) per_category_retrieved_correct[reference_category] += sample_retrieved_correct per_category_retrieved_total[reference_category] += 1 # ranking quality sample_ranked_correct = metrics.count_correctly_ranked_predictions(predicted_ranking, ground_truth_names) ranked_correct += sample_ranked_correct ranked_total += len(ground_truth_names) per_category_ranked_correct[reference_category] += sample_ranked_correct per_category_ranked_total[reference_category] += len(ground_truth_names) if wb_visualize_on and visualize and sample in vis_sample: idx = idx + 1 # raw scan segment parts = reference_name.split("_") if scan_dataset_name == 'scannet': scan_name = parts[0] + "_" + parts[1] object_name = scan_name + "__" + parts[3] scan_cat_name = utils.get_category_name(parts[4]) scan_cat = utils.wandb_color_lut(parts[4]) scan_path = os.path.join(scan_base_path, scan_name, scan_name + scan_input_folder_extension, object_name + scan_input_format) elif scan_dataset_name == '2d3ds': area_name = parts[0]+"_"+parts[1] room_name = parts[2]+"_"+parts[3] scan_cat_name = parts[4] scan_cat = utils.wandb_color_lut(utils.get_category_code_from_2d3ds(scan_cat_name)) scan_path = os.path.join(scan_base_path, area_name, room_name, room_name + scan_input_folder_extension, reference_name + scan_input_format) if separation_model_on: scan_voxel_raw = data.load_raw_df(scan_path) scan_voxel = data.to_occupancy_grid(scan_voxel_raw).tdf.reshape((32, 32, 32)) else: scan_voxel_raw = data.load_mask(scan_path) scan_voxel = scan_voxel_raw.tdf.reshape((32, 32, 32)) scan_grid2world = scan_voxel_raw.matrix scan_voxel_res = scan_voxel_raw.size #print("Scan voxel shape:", scan_voxel.shape) scan_wb_obj = data.voxel2point(scan_voxel, scan_cat, name=scan_cat_name + ":" + object_name) wb_vis_retrieval_dict = {vis_name+"input scan object " + str(idx): wandb.Object3D(scan_wb_obj)} # ground truth cad to scan rotation Rsc = data.get_rot_cad2scan(reference_quat) # ground truth cad if scan_dataset_name == 'scannet': gt_cad = os.path.join(parts[4], parts[5]) elif scan_dataset_name == '2d3ds': gt_cad = ground_truth_names[0] gt_cad_path = os.path.join(cad_base_path, gt_cad+ ".df") gt_cad_voxel = data.to_occupancy_grid(data.load_raw_df(gt_cad_path)).tdf gt_cad_voxel_rot = data.rotation_augmentation_interpolation_v3(gt_cad_voxel, "cad", aug_rotation_z = 0, pre_rot_mat = Rsc).reshape((32, 32, 32)) gt_cad_wb_obj = data.voxel2point(gt_cad_voxel_rot, scan_cat, name=scan_cat_name + ":" + gt_cad) wb_vis_retrieval_dict[vis_name+"ground truth cad " + str(idx)] = wandb.Object3D(gt_cad_wb_obj) # Top K choices top_k = 4 for top_i in range(top_k): predicted_cad = predicted_ranking[top_i] predicted_cad_path = os.path.join(cad_base_path, predicted_cad.split("_")[0] + ".df") predicted_cad_voxel = data.to_occupancy_grid(data.load_raw_df(predicted_cad_path)).tdf predicted_rotation = int(predicted_cad.split("_")[1]) # deg predicted_cad_voxel_rot = data.rotation_augmentation_interpolation_v3(predicted_cad_voxel, "dummy", aug_rotation_z = predicted_rotation).reshape((32, 32, 32)) predicted_cat = utils.wandb_color_lut(predicted_cad.split("/")[0]) predicted_cat_name = utils.get_category_name(predicted_cad.split("/")[0]) predicted_cad_wb_obj = data.voxel2point(predicted_cad_voxel_rot, predicted_cat, name=predicted_cat_name + ":" + predicted_cad) wb_title = vis_name + "Top " + str(top_i+1) + " retrieved cad with rotation " + str(idx) wb_vis_retrieval_dict[wb_title] = wandb.Object3D(predicted_cad_wb_obj) wandb.log(wb_vis_retrieval_dict) print("retrieval accuracy") cat_retrieval_accuracy = retrieved_cat_correct / retrieved_cat_total print(f"correct: {retrieved_cat_correct}, total: {retrieved_cat_total}, category level (rough) accuracy: {cat_retrieval_accuracy:4.3f}") cad_retrieval_accuracy = retrieved_correct/retrieved_total print(f"correct: {retrieved_correct}, total: {retrieved_total}, cad model level (fine-grained) accuracy: {cad_retrieval_accuracy:4.3f}") if verbose: for (category, correct), total in zip(per_category_retrieved_correct.items(), per_category_retrieved_total.values()): category_name = utils.get_category_name(category) if total == 0: print( f"{category}:[{category_name}] {correct:>5d}/{total:>5d} --> Nan") else: print( f"{category}:[{category_name}] {correct:>5d}/{total:>5d} --> {correct / total:4.3f}") ranking_accuracy = ranked_correct / ranked_total # print("ranking quality") # print(f"correct: {ranked_correct}, total: {ranked_total}, ranking accuracy: {ranking_accuracy:4.3f}") # if verbose: # for (category, correct), total in zip(per_category_ranked_correct.items(), # per_category_ranked_total.values()): # category_name = utils.get_category_name(category) # if 0 == total: # print( # f"{category}:[{category_name}] {correct:>5d}/{total:>5d} --> Nan") # else: # print( # f"{category}:[{category_name}] {correct:>5d}/{total:>5d} --> {correct / total:4.3f}") return cat_retrieval_accuracy, cad_retrieval_accuracy, ranking_accuracy def embed_scan_objs(separation_model: nn.Module, completion_model: nn.Module, classification_model: nn.Module, embedding_model: nn.Module, device, scan_obj_list_path: str, scan_base_path: str, output_path: str, scan_dataset_name: str = "scannet", separation_model_on: bool = False, batch_size: int = 1, trans=data.to_occupancy_grid, output: bool = True): #load scan list with open(scan_obj_list_path) as f: scenes = json.load(f)["scan2cad_objects"] unique_scan_objects = list(set(scenes.keys())) scan_seg_count = len(unique_scan_objects) if separation_model_on: scan_input_format = ".sdf" scan_input_folder_extension = "_object_voxel" scan_pc_folder_extension = "_object_pc" input_only_mask = False else: scan_input_format = ".mask" scan_input_folder_extension = "_mask_voxel" scan_pc_folder_extension = "_mask_pc" input_only_mask = True scan_dataset: Dataset = data.InferenceDataset(scan_base_path, unique_scan_objects, scan_input_format, "scan", transformation=trans, scan_dataset = scan_dataset_name, input_only_mask=input_only_mask) scan_dataloader = torch.utils.data.DataLoader(dataset=scan_dataset, shuffle=False, batch_size=batch_size) # # Evaluate all unique scan segments' embeddings embeddings_all: Dict[str, Dict] = {} for names, elements in tqdm(scan_dataloader, total=len(scan_dataloader)): # Move data to GPU elements = elements.to(device) with torch.no_grad(): if separation_model_on: scan_foreground, _ = separation_model(elements) scan_foreground = torch.sigmoid(scan_foreground) scan_completed, _ = completion_model(scan_foreground) else: scan_completed, _ = completion_model(elements) scan_completed = torch.sigmoid(scan_completed) scan_latent = embedding_model.embed(scan_completed) for idx, name in enumerate(names): cur_scan_embedding = scan_latent[idx].cpu().numpy().squeeze() if scan_dataset_name == "scannet": cat = name.split("_")[4] elif scan_dataset_name == "2d3ds": cat = utils.get_category_code_from_2d3ds(name.split("_")[4]) if cat not in embeddings_all.keys(): embeddings_all[cat] = {name: cur_scan_embedding} else: embeddings_all[cat][name] = cur_scan_embedding print("Embed [", scan_seg_count, "] scan segments") if output: torch.save(embeddings_all, output_path) print("Output scan segement embeddings to [", output_path, "]") # TODO better to have a different data input for scan2cad_file def embed_cad_pool(embedding_model: nn.Module, device, modelpool_path: str, shapenet_path: str, output_path: str, batch_size: int = 1, trans=data.to_occupancy_grid, rotation_count: int = 1, output: bool = True): #load model pool with open(modelpool_path) as f: model_pool = json.load(f) # delete duplicate elements from each list for cat, cat_list in model_pool.items(): cat_list_filtered = list(set(cat_list)) model_pool[cat] = cat_list_filtered rotation_ranking_on = False if rotation_count > 1: rotation_ranking_on = True # get unique cad names (with rotation) unique_cads = [] categories = list(model_pool.keys()) for category in categories: cat_pool = model_pool[category] for cad_element in cat_pool: cad = cad_element.replace("/cad/", "") if rotation_ranking_on: deg_step = np.around(360.0 / rotation_count) for i in range(rotation_count): cur_rot = int(i * deg_step) cur_cad = cad + "_" + str(cur_rot) unique_cads.append(cur_cad) else: unique_cads.append(cad) # unique_cads = list(unique_cads) cad_dataset: Dataset = data.InferenceDataset(shapenet_path, unique_cads, ".df", "cad", transformation=trans) cad_dataloader = torch.utils.data.DataLoader(dataset=cad_dataset, shuffle=False, batch_size=batch_size) cad_count = len(unique_cads) embeddings_all: Dict[str, Dict] = {} for category in categories: embeddings_all[category] = {} print("Embed [", cad_count, "] CAD models with [",rotation_count, "] rotations from [", len(categories), "] categories") for names, elements in tqdm(cad_dataloader, total=len(cad_dataloader)): # Move data to GPU elements = elements.to(device) with torch.no_grad(): cad_latent = embedding_model.embed(elements) for idx, name in enumerate(names): cur_cat = name.split("/")[0] embeddings_all[cur_cat][name] = cad_latent[idx].cpu().numpy().squeeze() if output: torch.save(embeddings_all, output_path) print("Output CAD embeddings to [", output_path, "]") def embedding_tsne(cad_embeddings_path: str, scan_embeddings_path: str, out_path: str, joint_embedding: bool = True, visualize_on: bool = True, rot_count: int = 12): rotation_step = 360 / rot_count cad_embeddings_dict = torch.load(cad_embeddings_path) scan_embeddings_dict = torch.load(scan_embeddings_path) sample_rate_cad = 20 sample_rate_scan = 10 cad_embeddings = [] cad_cat = [] cad_rot = [] cad_flag = [] count = 0 cats = list(cad_embeddings_dict.keys()) for cat, cat_embeddings_dict in cad_embeddings_dict.items(): for cad_id, cad_embedding in cat_embeddings_dict.items(): if np.random.randint(sample_rate_cad)==0: # random selection rot = int(int(cad_id.split('_')[1])/rotation_step) #print(rot) cad_embeddings.append(cad_embedding) cad_cat.append(cat) cad_rot.append(rot) cad_flag.append(0) # is cad count += 1 cad_embeddings = np.asarray(cad_embeddings) if joint_embedding: scan_embeddings = [] scan_cat = [] scan_flag = [] count = 0 cats = list(scan_embeddings_dict.keys()) for cat, cat_embeddings_dict in scan_embeddings_dict.items(): for scan_id, scan_embedding in cat_embeddings_dict.items(): if np.random.randint(sample_rate_scan)==0: # random selection scan_embeddings.append(scan_embedding) scan_cat.append(cat) scan_flag.append(1) # is scan count += 1 scan_embeddings = np.asarray(scan_embeddings) joint_embeddings = np.vstack((cad_embeddings, scan_embeddings)) joint_cat = cad_cat + scan_cat joint_flag = cad_flag + scan_flag print("Visualize the joint embedding space of scan and CAD") tsne = TSNE(n_components=2, init='pca', random_state=501) embedding_tsne = tsne.fit_transform(joint_embeddings) else: print("Visualize the embedding space of CAD") tsne = TSNE(n_components=2, init='pca', random_state=501) embedding_tsne = tsne.fit_transform(cad_embeddings) # Visualization (2 dimensional) x_min, x_max = embedding_tsne.min(0), embedding_tsne.max(0) embedding_tsne = (embedding_tsne - x_min) / (x_max - x_min) # normalization marker_list = ['o', '>', 'x', '.', ',', '+', 'v', '^', '<', 's', 'd', '8'] legends = [] cat_names = [] cat_idxs = [] # deal with 'others' category for cat in cats: cat_name = utils.get_category_name(cat) cat_idx = utils.get_category_idx(cat)+1 if cat_name not in cat_names: cat_names.append(cat_name) if cat_idx not in cat_idxs: cat_idxs.append(cat_idx) for i in range(len(cat_names)): legend = mpatches.Patch(color=plt.cm.Set1(cat_idxs[i]), label=cat_names[i]) legends.append(legend) legends = list(set(legends)) plt.figure(figsize=(10, 10)) for i in range(embedding_tsne.shape[0]): if joint_embedding: if joint_flag[i] == 0: # cad plt.scatter(embedding_tsne[i, 0], embedding_tsne[i, 1], s=40, color=plt.cm.Set1(utils.get_category_idx(joint_cat[i])+1), marker=marker_list[0], alpha = 0.5) else: # scan plt.scatter(embedding_tsne[i, 0], embedding_tsne[i, 1], s=40, color=plt.cm.Set1(utils.get_category_idx(joint_cat[i])+1), marker=marker_list[1]) else: # only cad embeddings plt.scatter(embedding_tsne[i, 0], embedding_tsne[i, 1], s=40, color=plt.cm.Set1(utils.get_category_idx(cad_cat[i])+1), marker=marker_list[cad_rot[i]], alpha = 0.8) # cad only plt.xticks([]) plt.yticks([]) # plt.legend(handles=lengends, loc='upper left', fontsize=12) plt.legend(handles=legends, loc='best', fontsize=16) #plt.savefig(os.path.join(out_path, "cad_embedding_tsne.jpg"), dpi=1000) if joint_embedding: save_path = out_path+"_joint_embedding_tsne.jpg" else: save_path = out_path+"_cad_embedding_tsne.jpg" plt.savefig(save_path, dpi=1000) print("TSNE image saved to [", save_path, " ]") if visualize_on: wandb.log({"embedding_tsne": plt}) ''' Retrieve cads in a list of scans and then apply CAD to scan alignment ''' def retrieve_in_scans(separation_model: nn.Module, completion_model: nn.Module, classification_model: nn.Module, embedding_model: nn.Module, device, test_scan_list: List[str], cad_embeddings_path: str, cad_appearance_file: str, scan_base_path: str, cad_voxel_base_path: str, cad_pc_base_path: str, result_out_path: str, scan_dataset_name: str = "scannet", separation_model_on: bool = False, batch_size: int = 1, trans=data.to_occupancy_grid, rotation_count: int = 1, filter_pool: bool = True, in_the_wild: bool = True, init_scale_method: str = "naive", icp_mode: str = "p2p", corr_dist_thre_scale = 4.0, estimate_scale_icp: bool = False, rot_only_around_z: bool = False, use_coarse_reg_only: bool = False, visualize: bool = False, wb_vis_name: str = "2d3ds_test/"): cad_embeddings = torch.load(cad_embeddings_path) all_categories = list(cad_embeddings.keys()) selected_categories = ["03001627", "04379243", "02747177", "02818832", "02871439", "02933112", "04256520", "other"] #{"03001627": "Chair", "04379243": "Table", "02747177": "Trash bin", "02818832": "Bed", "02871439": "Bookshelf", "02933112": "Cabinet", "04256520": "Sofa"} other_categories = list(set(all_categories).difference(set(selected_categories))) if separation_model_on: scan_input_format = ".sdf" scan_input_folder_extension = "_object_voxel" scan_pc_folder_extension = "_object_pc" input_only_mask = False else: scan_input_format = ".mask" scan_input_folder_extension = "_mask_voxel" scan_pc_folder_extension = "_mask_pc" input_only_mask = True if not in_the_wild: with open(cad_appearance_file) as f: cad_appearance_dict = json.load(f) unique_scan_objects, scene_scan_objects = get_scan_objects_in_scenes(test_scan_list, scan_base_path, extension = scan_input_format, folder_extension=scan_input_folder_extension) scan_dataset: Dataset = data.InferenceDataset(scan_base_path, unique_scan_objects, scan_input_format, "scan", transformation=trans, scan_dataset = scan_dataset_name, input_only_mask=input_only_mask) scan_dataloader = torch.utils.data.DataLoader(dataset=scan_dataset, shuffle=False, batch_size=batch_size) rotation_ranking_on = False if rotation_count > 1: rotation_ranking_on = True deg_step = np.around(360.0 / rotation_count) # load all the scan object and cads that are waiting for testing # # Evaluate all unique scan segments' embeddings scan_embeddings: Dict[str, np.array] = {} completed_voxels: Dict[str, np.array] = {} # saved the completed scan object (tensor) [potential issue: limited memory] mid_pred_cats: Dict[str, str] = {} for names, elements in tqdm(scan_dataloader, total=len(scan_dataloader)): # Move data to GPU elements = elements.to(device) with torch.no_grad(): if separation_model_on: scan_foreground, _ = separation_model(elements) scan_foreground = torch.sigmoid(scan_foreground) scan_completed, hidden = completion_model(scan_foreground) else: scan_completed, hidden = completion_model(elements) mid_pred_cat = classification_model.predict_name(torch.sigmoid(hidden)) # class str scan_completed = torch.sigmoid(scan_completed) scan_latent = embedding_model.embed(scan_completed) for idx, name in enumerate(names): scan_embeddings[name] = scan_latent[idx].cpu().numpy().squeeze() mid_pred_cats[name] = mid_pred_cat[idx] if init_scale_method == "bbx": # record the completed object completed_voxels[name] = scan_completed[idx].cpu().numpy() results = [] # TODO: try to make it running in parallel to speed up for scene_name, scan_objects in scene_scan_objects.items(): scene_results = {"id_scan": scene_name, "aligned_models": []} print("Process scene [", scene_name, "]") print("---------------------------------------------") for scan_object in tqdm(scan_objects, total=len(scan_objects)): print("Process scan segement [", scan_object, "]") scan_object_embedding = scan_embeddings[scan_object][np.newaxis, :] if not in_the_wild: cad_embeddings_in_scan = {} cad_list_in_scan = list(cad_appearance_dict[scene_name].keys()) for cad in cad_list_in_scan: parts = cad.split("_") cat = parts[0] cad_id = parts[1] if cat not in cad_embeddings_in_scan.keys(): cad_embeddings_in_scan[cat] = {} if rotation_ranking_on: for i in range(rotation_count): cur_rot = int(i * deg_step) cad_str = cat+"/"+cad_id+"_" + str(cur_rot) cad_embeddings_in_scan[cat][cad_str] = cad_embeddings[cat][cad_str] else: cad_str = cat+"/"+cad_id cad_embeddings_in_scan[cat][cad_str] = cad_embeddings[cat][cad_str] else: cad_embeddings_in_scan = cad_embeddings all_categories = list(cad_embeddings_in_scan.keys()) other_categories = list(set(all_categories).difference(set(selected_categories))) filtered_cad_embeddings = {} mid_pred_cat = mid_pred_cats[scan_object] # class str print("Predicted category:", utils.get_category_name(mid_pred_cat)) if mid_pred_cat != 'other': if filter_pool and mid_pred_cat in all_categories: filtered_cad_embeddings = cad_embeddings_in_scan[mid_pred_cat] else: # search in the whole model pool (when we do not enable pool filtering or when the category prediction is not in the pool's category keys) for cat in all_categories: filtered_cad_embeddings = {**filtered_cad_embeddings, **cad_embeddings_in_scan[cat]} else: # if is classified as 'other', search in the categories of 'other' (when other categories do exsit in the model pool's keys) if filter_pool and len(other_categories)>0: for cat in other_categories: filtered_cad_embeddings = {**filtered_cad_embeddings, **cad_embeddings_in_scan[cat]} else: for cat in all_categories: filtered_cad_embeddings = {**filtered_cad_embeddings, **cad_embeddings_in_scan[cat]} pool_names = list(filtered_cad_embeddings.keys()) pool_embeddings = [filtered_cad_embeddings[p] for p in pool_names] pool_embeddings = np.asarray(pool_embeddings) # Compute distances in embedding space distances = scipy.spatial.distance.cdist(scan_object_embedding, pool_embeddings, metric="euclidean") # figure out which distance is the better sorted_indices = np.argsort(distances, axis=1) sorted_distances = np.take_along_axis(distances, sorted_indices, axis=1) # [1, filtered_pool_size * rotation_trial_count] sorted_distances = sorted_distances[0] # [filtered_pool_size * rotation_trial_count] predicted_ranking = np.take(pool_names, sorted_indices)[0].tolist() # apply registration # load scan segment (target cloud) parts = scan_object.split("_") if scan_dataset_name == 'scannet': scan_name = parts[0] + "_" + parts[1] object_name = scan_name + "__" + parts[3] scan_path = os.path.join(scan_base_path, scan_name, scan_name + scan_input_folder_extension, scan_object + scan_input_format) scan_pc_path = os.path.join(scan_base_path, scan_name, scan_name + scan_pc_folder_extension, scan_object + ".pcd") elif scan_dataset_name == '2d3ds': area_name = parts[0]+"_"+parts[1] room_name = parts[2]+"_"+parts[3] scan_path = os.path.join(scan_base_path, area_name, room_name, room_name + scan_input_folder_extension, scan_object + scan_input_format) scan_pc_path = os.path.join(scan_base_path, area_name, room_name, room_name + scan_pc_folder_extension, scan_object + ".pcd") if separation_model_on: scan_voxel_raw = data.load_raw_df(scan_path) scan_voxel = data.to_occupancy_grid(scan_voxel_raw).tdf.reshape((32, 32, 32)) else: scan_voxel_raw = data.load_mask(scan_path) scan_voxel = scan_voxel_raw.tdf.reshape((32, 32, 32)) scan_grid2world = scan_voxel_raw.matrix scan_voxel_res = scan_voxel_raw.size #print("Scan voxel shape:", scan_voxel.shape) #res = scan_grid2world[0,0] if init_scale_method == "bbx": # get the completed scan object (voxel representation) scan_completed_voxel = completed_voxels[scan_object] # np.array # rotate to CAD's canonical system if rotation_ranking_on: top_1_predicted_rotation = int(predicted_ranking[0].split("_")[1]) # deg else: top_1_predicted_rotation = 0 scan_completed_voxel_rot = data.rotation_augmentation_interpolation_v3(scan_completed_voxel, "dummy", aug_rotation_z = -top_1_predicted_rotation).reshape((32, 32, 32)) # calculate bbx length of the rotated completed scan object in voxel space (unit: voxel) scan_bbx_length = data.cal_voxel_bbx_length(scan_completed_voxel_rot) # output: np.array([bbx_lx, bbx_ly, bbx_lz]) scan_voxel_wb = data.voxel2point(scan_voxel, name=scan_object) if visualize: wandb_vis_dict = {wb_vis_name+"input scan object": wandb.Object3D(scan_voxel_wb)} # load point cloud scan_seg_pcd = o3d.io.read_point_cloud(scan_pc_path) scan_seg_pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=scan_voxel_res, max_nn=30)) # initialization candidate_cads = [] candidate_cad_pcds = [] candidate_rotations = [] candidate_cads_voxel_wb = [] candidate_T_init = [] candidate_T_reg = [] candidate_fitness_reg = [] # Apply registration corr_dist_thre = corr_dist_thre_scale * scan_voxel_res top_k = 4 for top_i in range(top_k): # load cad (source cloud) predicted_cad = predicted_ranking[top_i] title_str = "Top "+ str(top_i+1) + " retrieved model " print(title_str, predicted_cad) if rotation_ranking_on: predicted_rotation = int(predicted_cad.split("_")[1]) # deg else: predicted_rotation = 0 predicted_cat = utils.wandb_color_lut(predicted_cad.split("/")[0]) predicted_cat_name = utils.get_category_name(predicted_cad.split("/")[0]) cad_voxel_path = os.path.join(cad_voxel_base_path, predicted_cad.split("_")[0] + ".df") cad_voxel = data.to_occupancy_grid(data.load_raw_df(cad_voxel_path)).tdf cad_voxel_rot = data.rotation_augmentation_interpolation_v3(cad_voxel, "dummy", aug_rotation_z = predicted_rotation).reshape((32, 32, 32)) cad_voxel_wb = data.voxel2point(cad_voxel_rot, predicted_cat, name=predicted_cat_name + ":" + predicted_cad) if visualize: wandb_vis_dict[wb_vis_name + title_str] = wandb.Object3D(cad_voxel_wb) cad_pcd_path = os.path.join(cad_pc_base_path, predicted_cad.split("_")[0] + ".pcd") cad_pcd = o3d.io.read_point_cloud(cad_pcd_path) if icp_mode == "p2l": # requires normal cad_pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.05, max_nn=30)) if init_scale_method == "bbx": # calculate bbx length of the (none rotated) retrieved cad in voxel space (unit: voxel) cad_bbx_length = data.cal_voxel_bbx_length(cad_voxel) # output: np.array([bbx_lx, bbx_ly, bbx_lz]) cad_scale_multiplier = scan_bbx_length / cad_bbx_length # potential issue (int/int), result should be float direct_scale_on = False elif init_scale_method == "learning": direct_scale_on = True cad_scale_multiplier = np.ones(3) # comment later, replace with the predicted value else: # init_scale_method == "naive": cad_scale_multiplier = np.ones(3) direct_scale_on = False # Transformation initial guess T_init = data.get_tran_init_guess(scan_grid2world, predicted_rotation, direct_scale = direct_scale_on, cad_scale_multiplier=cad_scale_multiplier) # Apply registration if icp_mode == "p2l": # point-to-plane distance metric T_reg, eval_reg = data.reg_icp_p2l_o3d(cad_pcd, scan_seg_pcd, corr_dist_thre, T_init, estimate_scale_icp, rot_only_around_z) else: # point-to-point distance metric T_reg, eval_reg = data.reg_icp_p2p_o3d(cad_pcd, scan_seg_pcd, corr_dist_thre, T_init, estimate_scale_icp, rot_only_around_z) fitness_reg = eval_reg.fitness candidate_cads.append(predicted_cad) candidate_cad_pcds.append(cad_pcd) candidate_rotations.append(predicted_rotation) candidate_cads_voxel_wb.append(cad_voxel_wb) candidate_T_init.append(T_init) candidate_T_reg.append(T_reg) candidate_fitness_reg.append(fitness_reg) candidate_fitness_reg = np.array(candidate_fitness_reg) best_idx =
np.argsort(candidate_fitness_reg)
numpy.argsort
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: <NAME> Enable an agent to follow a hard coded trajectory in the form of a square with rounded corners using trained straight and circle models. """ import argparse import cProfile import pstats import sys import time import math import yaml import joblib import matplotlib.pyplot as plt import numpy as np from rllab.misc import tensor_utils from aa_simulation.envs.renderer import _Renderer def render(renderer, state, action): """ Render simulation environment. """ renderer.update(state, action) def modify_state_curve(state, move_param): """ Convert state [x, y, yaw, x_dot, y_dot, yaw_dot] to [dx, theta, ddx, dtheta] """ x_0, y_0, r = move_param x, y, yaw, x_dot, y_dot, yaw_dot = state x -= x_0 y -= y_0 dx = np.sqrt(np.square(x) + np.square(y)) - r theta = _normalize_angle(np.arctan2(-x, y) + np.pi - yaw) ddx = x/(x**2 + y**2)**0.5*x_dot + y/(x**2 + y**2)**0.5*y_dot dtheta = x/(x**2 + y**2)*x_dot - y/(x**2 + y**2)*y_dot - yaw_dot return np.array([dx, theta, ddx, dtheta]) def _normalize_angle(angle): """ Normalize angle to [-pi, pi). """ angle = angle % (2*np.pi) if (angle >= np.pi): angle -= 2*np.pi return angle def _normalize_angle2(angle): """ Normalize angle to [0, 2 * pi). """ angle = angle % (2*np.pi) return angle def modify_state_straight(state, move_param): """ Add target direction and target velocity to state, to feed in the NN. """ x_0, y_0, target_dir = move_param x, y, yaw, x_dot, y_dot, dyaw = state target_dir = _normalize_angle2(target_dir) new_x, new_y = _cal_distance(x, y, move_param) yaw = _normalize_angle2(yaw) - target_dir yaw = _normalize_angle(yaw) new_x_dot = x_dot * np.cos(target_dir) + y_dot * np.sin(target_dir) new_y_dot = y_dot * np.cos(target_dir) - x_dot * np.sin(target_dir) return
np.array([new_y, yaw, new_x_dot, new_y_dot, dyaw])
numpy.array
#!/usr/bin/env python # coding: utf-8 import pdb import IPython.display as ipd import soundfile as sf import IPython import matplotlib.pyplot as plt from scipy.interpolate import interp1d import numpy as np import scipy as sp import scipy.interpolate import scipy.io.wavfile import aubio import librosa from librosa.util import frame import os from utils import Create_Phoneme_Labels, pitch_shift, time_stretch from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift, Shift, SpecCompose, SpecChannelShuffle, SpecFrequencyMask # Spectrogram parameters frame_sizes = [4096] num_specs = [64] num_frames = 48 hop_size = 512 delta_bool = False # Augmentation parameters augment_waveform = Compose( [ AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.05, p=0.5), ] ) augment_spectrogram = SpecCompose( [ SpecFrequencyMask(p=0.75), ] ) # Create AVP Test Dataset print('AVP Test') path_audio = 'data/external/AVP_Dataset/Personal' list_wav = [] list_csv = [] for path, subdirs, files in os.walk(path_audio): for filename in files: if filename.endswith('.wav'): list_wav.append(os.path.join(path, filename)) if filename.endswith('.csv'): list_csv.append(os.path.join(path, filename)) list_wav = sorted(list_wav) list_csv = sorted(list_csv) list_wav.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_csv.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_wav = list_wav[2::5] list_csv = list_csv[2::5] for i in range(len(list_wav)): onsets = np.loadtxt(list_csv[i], delimiter=',', usecols=0) Classes = np.loadtxt(list_csv[i], delimiter=',', usecols=1, dtype=np.unicode_) Onset_Phonemes = np.loadtxt(list_csv[i], delimiter=',', usecols=2, dtype=np.unicode_) Nucleus_Phonemes = np.loadtxt(list_csv[i], delimiter=',', usecols=3, dtype=np.unicode_) Onset_Phonemes_Labels, Nucleus_Phonemes_Labels, Onset_Phonemes_Reduced_Labels, Nucleus_Phonemes_Reduced_Labels = Create_Phoneme_Labels(Onset_Phonemes, Nucleus_Phonemes) audio, fs = librosa.load(list_wav[i], sr=44100) audio = audio/np.max(abs(audio)) onsets_samples = onsets*fs onsets_samples = onsets_samples.astype(int) for j in range(len(num_specs)): for w in range(len(frame_sizes)): frame_size = frame_sizes[w] num_spec = num_specs[j] audio = audio.astype(np.float32) spec = librosa.feature.melspectrogram(np.concatenate((audio,np.zeros(1024))), sr=44100, n_fft=frame_size, hop_length=hop_size, n_mels=num_spec, power=1.0).T #spec = np.abs(librosa.stft(audio, n_fft=frame_size, hop_length=hop_size, win_length=None, window='hann', center=True, dtype=None, pad_mode='reflect')[:frame_size//2].T) if delta_bool: delta = librosa.feature.delta(spec) Dataset_Spec = np.concatenate((spec, delta), axis=1) else: Dataset_Spec = spec Onsets = np.zeros(spec.shape[0]) location = np.floor(onsets_samples/hop_size) if (location.astype(int)[-1]<len(Onsets)): Onsets[location.astype(int)] = 1 else: Onsets[location.astype(int)[:-1]] = 1 num_onsets = int(np.sum(Onsets)) Spec_Matrix = np.zeros((num_onsets,num_spec,num_frames)) L = len(Onsets) count = 0 for n in range(L): if Onsets[n]==1: c = 1 while Onsets[n+c]==0 and (n+c)<L-1: c += 1 Spec = Dataset_Spec[n:n+c] if c<num_frames: Spec = np.concatenate((Spec,np.zeros((num_frames-c,num_spec)))) elif c>=num_frames: Spec = Spec[:num_frames] Spec_Matrix[count] = np.flipud(Spec.T) count += 1 list_num = [Spec_Matrix.shape[0],len(Classes),len(Onset_Phonemes_Labels),len(Nucleus_Phonemes_Labels),len(Onset_Phonemes_Reduced_Labels),len(Nucleus_Phonemes_Reduced_Labels)] if list_num.count(list_num[0])!=len(list_num): print(list_num) print(list_wav[i]) np.save('data/interim/AVP/Dataset_Test_' + str(i).zfill(2), Spec_Matrix) np.save('data/interim/AVP/Classes_Test_' + str(i).zfill(2), Classes) np.save('data/interim/AVP/Syll_Onset_Test_' + str(i).zfill(2), Onset_Phonemes_Labels) np.save('data/interim/AVP/Syll_Nucleus_Test_' + str(i).zfill(2), Nucleus_Phonemes_Labels) np.save('data/interim/AVP/Syll_Onset_Reduced_Test_' + str(i).zfill(2), Onset_Phonemes_Reduced_Labels) np.save('data/interim/AVP/Syll_Nucleus_Reduced_Test_' + str(i).zfill(2), Nucleus_Phonemes_Reduced_Labels) # Create AVP Test Aug Dataset print('AVP Test Aug') path_audio = 'data/external/AVP_Dataset/Personal' list_wav = [] list_csv = [] for path, subdirs, files in os.walk(path_audio): for filename in files: if filename.endswith('.wav'): list_wav.append(os.path.join(path, filename)) if filename.endswith('.csv'): list_csv.append(os.path.join(path, filename)) list_wav = sorted(list_wav) list_csv = sorted(list_csv) list_wav.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_csv.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_wav = list_wav[2::5] list_csv = list_csv[2::5] for i in range(len(list_wav)): onsets = np.loadtxt(list_csv[i], delimiter=',', usecols=0) Classes = np.loadtxt(list_csv[i], delimiter=',', usecols=1, dtype=np.unicode_) audio, fs = librosa.load(list_wav[i], sr=44100) audio_ref = audio/np.max(abs(audio)) onsets_samples = onsets*fs onsets_ref = onsets_samples.astype(int) for j in range(len(num_specs)): for w in range(len(frame_sizes)): frame_size = frame_sizes[w] num_spec = num_specs[j] Spec_Matrix_All = np.zeros((1,num_spec,num_frames)) Classes_All = np.zeros(1) Onset_Phonemes_Labels_All = np.zeros(1) Nucleus_Phonemes_Labels_All = np.zeros(1) Onset_Phonemes_Reduced_Labels_All = np.zeros(1) Nucleus_Phonemes_Reduced_Labels_All = np.zeros(1) for k in range(14): Classes = np.loadtxt(list_csv[i], delimiter=',', usecols=1, dtype=np.unicode_) Onset_Phonemes = np.loadtxt(list_csv[i], delimiter=',', usecols=2, dtype=np.unicode_) Nucleus_Phonemes = np.loadtxt(list_csv[i], delimiter=',', usecols=3, dtype=np.unicode_) Onset_Phonemes_Labels, Nucleus_Phonemes_Labels, Onset_Phonemes_Reduced_Labels, Nucleus_Phonemes_Reduced_Labels = Create_Phoneme_Labels(Onset_Phonemes, Nucleus_Phonemes) kn = np.random.randint(0,2) pt = np.random.uniform(low=-1.5, high=1.5, size=None) st = np.random.uniform(low=0.8, high=1.2, size=None) if kn==0: audio = pitch_shift(audio_ref, fs, pt) audio = time_stretch(audio, st) onsets = onsets_ref/st onsets = onsets.astype(int) elif kn==1: audio = time_stretch(audio_ref, st) audio = pitch_shift(audio, fs, pt) onsets = onsets_ref/st onsets = onsets.astype(int) audio = audio.astype(np.float32) audio = augment_waveform(samples=audio, sample_rate=44100) spec = librosa.feature.melspectrogram(np.concatenate((audio,np.zeros(1024))), sr=44100, n_fft=frame_size, hop_length=hop_size, n_mels=num_spec, power=1.0).T #spec = np.abs(librosa.stft(audio, n_fft=frame_size, hop_length=hop_size, win_length=None, window='hann', center=True, dtype=None, pad_mode='reflect')[:frame_size//2]) if delta_bool: delta = librosa.feature.delta(spec) Dataset_Spec = np.concatenate((spec, delta), axis=1) else: Dataset_Spec = spec Onsets = np.zeros(spec.shape[0]) location = np.floor(onsets/hop_size) if (location.astype(int)[-1]<len(Onsets)): Onsets[location.astype(int)] = 1 else: Onsets[location.astype(int)[:-1]] = 1 num_onsets = int(np.sum(Onsets)) if num_onsets!=len(Classes): raise('num_onsets==len(Classes)') Spec_Matrix = np.zeros((num_onsets,num_spec,num_frames)) L = len(Onsets) count = 0 for n in range(L): if Onsets[n]==1: c = 1 while Onsets[n+c]==0 and (n+c)<L-1: c += 1 Spec = Dataset_Spec[n:n+c] if c<num_frames: Spec = np.concatenate((Spec,np.zeros((num_frames-c,num_spec)))) elif c>=num_frames: Spec = Spec[:num_frames] Spec_Matrix[count] = np.flipud(Spec.T) count += 1 for n in range(Spec_Matrix.shape[0]): spec = Spec_Matrix[n] spec = np.expand_dims(spec,-1) spec = augment_spectrogram(spec) spec = spec.reshape(spec.shape[0],spec.shape[1]) Spec_Matrix[n] = spec Spec_Matrix_All = np.vstack((Spec_Matrix_All,Spec_Matrix)) Classes_All = np.concatenate((Classes_All,Classes)) Onset_Phonemes_Labels_All = np.concatenate((Onset_Phonemes_Labels_All,Onset_Phonemes_Labels)) Nucleus_Phonemes_Labels_All = np.concatenate((Nucleus_Phonemes_Labels_All,Nucleus_Phonemes_Labels)) Onset_Phonemes_Reduced_Labels_All = np.concatenate((Onset_Phonemes_Reduced_Labels_All,Onset_Phonemes_Reduced_Labels)) Nucleus_Phonemes_Reduced_Labels_All = np.concatenate((Nucleus_Phonemes_Reduced_Labels_All,Nucleus_Phonemes_Reduced_Labels)) list_num = [Spec_Matrix_All.shape[0],len(Classes_All),len(Onset_Phonemes_Labels_All),len(Nucleus_Phonemes_Labels_All),len(Onset_Phonemes_Reduced_Labels_All),len(Nucleus_Phonemes_Reduced_Labels_All)] if list_num.count(list_num[0])!=len(list_num): print(list_num) print(list_wav[i]) Spec_Matrix_All = Spec_Matrix_All[1:] Classes_All = Classes_All[1:] Onset_Phonemes_Labels_All = Onset_Phonemes_Labels_All[1:] Nucleus_Phonemes_Labels_All = Nucleus_Phonemes_Labels_All[1:] Onset_Phonemes_Reduced_Labels_All = Onset_Phonemes_Reduced_Labels_All[1:] Nucleus_Phonemes_Reduced_Labels_All = Nucleus_Phonemes_Reduced_Labels_All[1:] np.save('data/interim/AVP/Dataset_Test_Aug_' + str(i).zfill(2), Spec_Matrix_All) np.save('data/interim/AVP/Classes_Test_Aug_' + str(i).zfill(2), Classes_All) np.save('data/interim/AVP/Syll_Onset_Test_Aug_' + str(i).zfill(2), Onset_Phonemes_Labels_All) np.save('data/interim/AVP/Syll_Nucleus_Test_Aug_' + str(i).zfill(2), Nucleus_Phonemes_Labels_All) np.save('data/interim/AVP/Syll_Onset_Reduced_Test_Aug_' + str(i).zfill(2), Onset_Phonemes_Reduced_Labels_All) np.save('data/interim/AVP/Syll_Nucleus_Reduced_Test_Aug_' + str(i).zfill(2), Nucleus_Phonemes_Reduced_Labels_All) # Create Train Dataset print('AVP Train') fs = 44100 path_audio = 'data/external/AVP_Dataset/Personal' list_wav_all = [] list_csv_all = [] for path, subdirs, files in os.walk(path_audio): for filename in files: if filename.endswith('.wav'): list_wav_all.append(os.path.join(path, filename)) if filename.endswith('.csv'): list_csv_all.append(os.path.join(path, filename)) list_wav_all = sorted(list_wav_all) list_csv_all = sorted(list_csv_all) list_wav_all.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_csv_all.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_wav = list_wav_all[::5] + list_wav_all[1::5] + list_wav_all[3::5] + list_wav_all[4::5] list_csv = list_csv_all[::5] + list_csv_all[1::5] + list_csv_all[3::5] + list_csv_all[4::5] list_wav_all = sorted(list_wav) list_csv_all = sorted(list_csv) list_wav_all.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) list_csv_all.sort(key = lambda f:int(''.join(filter(str.isdigit,f)))) for j in range(len(num_specs)): for k in range(len(frame_sizes)): frame_size = frame_sizes[k] num_spec = num_specs[j] for part in range(28): Spec_Matrix_All = np.zeros((1,num_spec,num_frames)) Classes_All = np.zeros(1) Onset_Phonemes_Labels_All = np.zeros(1) Nucleus_Phonemes_Labels_All = np.zeros(1) Onset_Phonemes_Reduced_Labels_All = np.zeros(1) Nucleus_Phonemes_Reduced_Labels_All = np.zeros(1) for i in range(4): onsets = np.loadtxt(list_csv_all[4*part+i], delimiter=',', usecols=0) Classes = np.loadtxt(list_csv_all[4*part+i], delimiter=',', usecols=1, dtype=np.unicode_) audio, fs = librosa.load(list_wav_all[4*part+i], sr=44100) audio_ref = audio/np.max(abs(audio)) onsets_samples = onsets*fs onsets_ref = onsets_samples.astype(int) for k in range(1): Classes = np.loadtxt(list_csv_all[4*part+i], delimiter=',', usecols=1, dtype=np.unicode_) Onset_Phonemes = np.loadtxt(list_csv_all[4*part+i], delimiter=',', usecols=2, dtype=np.unicode_) Nucleus_Phonemes =
np.loadtxt(list_csv_all[4*part+i], delimiter=',', usecols=3, dtype=np.unicode_)
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Wed Feb 10 14:30:52 2016 @author: gawe """ # ========================================================================== # # ========================================================================== # # This section is to improve python compataibilty between py27 and py3 from __future__ import absolute_import, with_statement, absolute_import, division, print_function, unicode_literals __metaclass__ = type # ========================================================================== # import numpy as _np from scipy import linalg as _la import matplotlib.mlab as _mlab import matplotlib.pyplot as _plt from pybaseutils.Struct import Struct from pybaseutils.utils import detrend_mean, detrend_none, detrend_linear from pybaseutils import utils as _ut try: from FFT.windows import windows except: from .windows import windows # end try # ========================================================================== # # ========================================================================== # def fft_pwelch(tvec, sigx, sigy, tbounds=None, Navr=None, windowoverlap=None, windowfunction=None, useMLAB=None, plotit=None, verbose=None, detrend_style=None, onesided=None, **kwargs): """ function [freq, Pxy, Pxx, Pyy, Cxy, phi_xy, info] = fft_pwelch(tvec, sigx, sigy, tbounds, Navr, windowoverlap, windowfunction, useMLAB, plotit, verbose, plottofig) This function computes the spectra from an input and reference signal. It detrends the input, calculates the cross- and auto-power spectra, normalizes everything, and saves parameters necessary for future work this function includes a trend removal! # ------------------------------------------------------------------- # inputs tvec - [s], time-series of signal sigx - [V], signal X, ntx x nsigs (ntx can be shorter than nt) sigy - [V], signal Y, nt x nsigs tbounds - [s], time-window for analysis. [tstart,tend] def:[1,len(tvec)] Navr - [#], number of segments to split the input signals into windowoverlap - [#], 0 to 1, fraction of segment overlap, def: 0 windowfunction - [string], type of window function, def: 'box' The hamming, hanning, and kaiser window are also supported, and feel free to add more useMLAB - [Boolean], use CPSD and mscohere for FFT analysis, def:homebrew! plotit - [Boolean], plot the linear amplitude spectra / coherence? verbose - [Boolean], print to the screen plottofig - [fig_handle], plot to this figure outputs freq - [Hz], frequency vector Pxy - [V], Linear cross-power spectra of signal X and Y Pxx - [V], Linear auto-power spectra of signal X Pyy - [V], Linear auto-power spectra of signal Y Cxy - [-], Coherence between signal X and signal Y phi_xy - [rad], cross-phase between signal X and signal Y info - [structure], contains all the calculations and extras including - fftinfo.ENBW -> Convert back to power spectral densities by Pxy = Pxy/ENBW [V^2/Hz] + much more # ------------------------------------------------------------------- # Written by GMW - Feb 7th, 2013 in Matlab Revisions: Feb 10th, 2016 - GMW - Ported to Python for use at W7-X Mar 8th, 2016 - GMW - Extensive revisions: - Made inputs work with column vectors for speed - Added uncertainty analysis of the power spectra so that it takes into account the complex part of the signal - Added the mean_angle definition for averaging the phase with uncertainty propagation - Added the coh_var definition for propagating uncertainty to the coherence - Converted the main module into a class that calls this function Major revisions compiled July, 29th, 2019: multi-channel support different length inputs signals: resampling and tiling windows to match length (nT-crossphase stuff) upgraded window input selection by automatically selecting recomended overlap percentage added option to input minimum resolvable frequency instead of number of windows. added normalized auto- and cross-correlation calculations (getting this right is a pain) """ if Navr is None: calcNavr = True if windowfunction is None: # windowfunction = 'SFT3F' # very low overlap correlation, wider peak to get lower frequencies # windowfunction = 'SFT3M' # very low overlap correlation, low sidebands windowfunction = 'Hanning' # moderate overlap correlation, perfect amplitude flattness at optimum overlap if windowoverlap is None: # get recommended overlap by function name windowoverlap = windows(windowfunction, verbose=False) if useMLAB is None: useMLAB=False if plotit is None: plotit=True if verbose is None: verbose=False if detrend_style is None: detrend_style=1 if tbounds is None: tbounds = [tvec[0], tvec[-1]] # end if if onesided is None: onesided = True if _np.iscomplexobj(sigx) or _np.iscomplexobj(sigy): onesided = False # end if # end if # Matlab returns the power spectral denstiy in [V^2/Hz], and doesn't # normalize it's FFT by the number of samples or the power in the windowing # function. These can be handled by controlling the inputs and normalizing # the output: # dt = 0.5*(tvec[2]-tvec[0]) #[s], time-step in time-series # Fs = 1.0/dt #[Hz], sampling frequency Fs = (len(tvec)-1)/(tvec[-1]-tvec[0]) # dt = 1.0/Fs # ==================================================================== # # ==================================================================== # # Detrend the two signals to get FFT's i0 = int( _np.floor( Fs*(tbounds[0]-tvec[0] ) ) ) i1 = int( _np.floor( 1+Fs*(tbounds[1]-tvec[0] ) ) ) # i0 = _np.where(tvec>tbounds[0])[0] # if len(_np.atleast_1d(i0))==0: i0 = 0 # end if # i1 = _np.where(tvec>tbounds[1])[0] # if len(_np.atleast_1d(i0))==0: i0 = 0 # end if nsig = _np.size( tvec[i0:i1] ) # Must know two of these inputs to determine third # k = # windows, M = Length of data to be segmented, L = length of segments, # K = (M-NOVERLAP)/(L-NOVERLAP) # Navr = (nsig-noverlap)/(nwins-noverlap) # nwins = (nsig - noverlap)/Navr + noverlap # noverlap = (nsig - nwins*Navr)/(1-Navr) # noverlap = windowoverlap*nwins # nwins = nsig/(Navr-Navr*windowoverlap + windowoverlap) # # Integral number of periods in data set, need 2 to detect signal # sigx = _np.atleast_2d(sigx) # multi-channel input only supported for sigy sigy = _np.atleast_2d(sigy) if _np.shape(sigy)[1] == len(tvec): sigy = sigy.T # end if nch = _np.size(sigy, axis=1) # ====================================================================== # if _np.size(sigx, axis=0) != _np.size(sigy, axis=0): nTmodel = True if calcNavr: nwins = _np.size(sigx, axis=0) else: nwins = fftanal._getNwins(nsig, Navr, windowoverlap) # end if else: nTmodel = False # override Navr if someone requested a period for each window, or a minimum frequency to resolve if 'minFreq' in kwargs: kwargs['tper'] = 2.0/kwargs['minFreq'] if 'tper' in kwargs : nwins = int(Fs*kwargs['tper']) else: if Navr is None: Navr = 8 # end if calcNavr = False nwins = fftanal._getNwins(nsig, Navr, windowoverlap) # end if # end if # get the number of points to overlap based on unique data noverlap = fftanal._getNoverlap(nwins, windowoverlap) # Reflect the data in the first and last windows at the end-points reflecting = False if i0 == 0 and i1 == len(tvec): reflecting = True # sigx=_np.r_['0', sigx[nwins-1:0:-1],sigx,sigx[-1:-nwins:-1]] # sigy=_np.r_['0',sigy[nwins-1:0:-1,:],sigy,sigy[-1:-nwins:-1,:]] # concatenate along axis 0 sigx = _np.concatenate((sigx[nwins-1:0:-1,...],sigx,sigx[-1:-nwins:-1,...]), axis=0) sigy = _np.concatenate((sigy[nwins-1:0:-1,...],sigy,sigy[-1:-nwins:-1,...]), axis=0) nsig = sigx.shape[0] # end if # if necessary get the number of averaging windows if calcNavr: # nTmodel or 'tper' in kwargs: Navr = fftanal._getNavr(nsig, nwins, noverlap) # Navr = int( (nsig-noverlap)/(nwins-noverlap) ) # end if # ====================================================================== # if nwins>=nsig: Navr = 1 nwins = nsig # endif # nfft = max(2^12,2^nextpow2(nwins)) nfft = nwins Nnyquist = fftanal._getNnyquist(nfft) # Remember that since we are not dealing with infinite series, the lowest # frequency we actually resolve is determined by the period of the window # fhpf = 1.0/(nwins*dt) # everything below this should be set to zero (when background subtraction is applied) # ==================================================================== # # =================================================================== # # Define windowing function for apodization win, winparams = windows(windowfunction, nwins=nwins, verbose=verbose, msgout=True) # Instantiate the information class that will be output fftinfo = fftinfosc() fftinfo.win = win fftinfo.winparams = winparams fftinfo.windowoverlap = windowoverlap fftinfo.ibnds = [i0, i1] # time-segment # Define normalization constants fftinfo.S1 = fftanal._getS1(win) fftinfo.S2 = fftanal._getS2(win) # Normalized equivalent noise bandwidth fftinfo.NENBW = fftanal._getNENBW(Nnyquist, fftinfo.S1, fftinfo.S2) fftinfo.ENBW = fftanal._getENBW(Fs, fftinfo.S1, fftinfo.S2) # Effective noise bandwidth # ================================================================ # detrend = fftanal._detrend_func(detrend_style=detrend_style) # ================================================================ # if useMLAB: if onesided: # True is boolean 1 sides = 'onesided' else: sides = 'twosided' # end if # sides = 'twosided' # Use MLAB for the power spectral density calculations if verbose: print('using matlab built-ins for spectra/coherence calculations') # endif verbose tx = tvec if nTmodel: # # Does not work very well. amplitude is all wrong, and coherence is very low # sigx = _np.hstack((sigx, _np.zeros((nsig-len(sigx)+1,), dtype=sigx.dtype))) # sigx = _np.tile(sigx, _np.size(sigy, axis=0)//len(sigx)+1) # sigx = sigx[:len(tvec)] while sigx.shape[0]<sigy.shape[0]: # Wrap the data periodically # sigx=_np.r_[sigx[nwins-1:0:-1],sigx,sigx[-1:-nwins:-1]] sigx=_np.r_[sigx, sigx[-1:-nwins:-1]] # end while if sigx.shape[0]>sigy.shape[0]: sigx = sigx[:sigy.shape[0]] # end if # end if x_in = sigx[i0:i1] y_in = sigy[i0:i1,:] # Power spectral density (auto-power spectral density), and # cross-power spectral density of signal 1 and signal 2, # Pyy = Yfft.*conj(Yfft), and the linear amplitude spectrum, Lxx: Pxx, freq = _mlab.csd(x_in, x_in, nfft, Fs=Fs, detrend=detrend, window=win, noverlap=noverlap, sides=sides, scale_by_freq=True) Pyy = _np.zeros((nch, len(freq)), dtype=_np.float64) Pxy = _np.zeros((nch, len(freq)), dtype=_np.complex128) for ii in range(nch): # [V^2/Hz], RMS power spectral density calculation Pyy[ii,:], freq = _mlab.csd(y_in[:,ii], y_in[:,ii], nfft, Fs=Fs, detrend=detrend, window=win, noverlap=noverlap, sides=sides, scale_by_freq=True) Pxy[ii,:], freq = _mlab.csd(x_in, y_in[:,ii], nfft, Fs=Fs, detrend=detrend, window=win, noverlap=noverlap, sides=sides, scale_by_freq=True) # end if # Get the coherence # if (Navr==1): # Cxy2 = _np.ones_like(Pxx) # else: # # returns mean squared coherence # [Cxy2, freq] = _mlab.cohere(y_in, x_in, nfft, Fs, detrend=detrend, # window=win, noverlap=noverlap, sides=sides, # scale_by_freq=False) # #endif # Cxy = _np.sqrt(_np.abs(Cxy2)) if onesided: # They also return the nyquist value # freq = freq[:Nnyquist-1] # Pxx = Pxx[:Nnyquist-1] # Pyy = Pyy[:,:Nnyquist-1] # Pxy = Pxy[:,:Nnyquist-1] freq = freq[:Nnyquist] Pxx = Pxx[:Nnyquist] Pyy = Pyy[:,:Nnyquist] Pxy = Pxy[:,:Nnyquist] # end if Pyy = Pyy.T # nfreq x nch Pxy = Pxy.T # ================================================================= # else: # Without Matlab: Welch's average periodogram method: if verbose: print('using home-brew functions for spectra/coherence calculations') # endif verbose # ============ # # Pre-allocate Pxx_seg = _np.zeros((Navr, nfft), dtype=_np.complex128) Pyy_seg = _np.zeros((nch, Navr, nfft), dtype=_np.complex128) Pxy_seg = _np.zeros((nch, Navr, nfft), dtype=_np.complex128) Xfft = _np.zeros((Navr, nfft), dtype=_np.complex128) Yfft = _np.zeros((nch, Navr, nfft), dtype=_np.complex128) if nTmodel: tx = tvec[:len(sigx)] # assume that one of the signals is the length of 1 window x_in = sigx # reference signal is the model Doppler signal y_in = sigy[i0:i1,:] # noisy long signal is the model CECE signal else: tx = tvec x_in = sigx[i0:i1] y_in = sigy[i0:i1,:] # end if x_in = detrend(x_in, axis=0) y_in = detrend(y_in, axis=0) ist = _np.arange(Navr)*(nwins - noverlap) ist = ist.astype(int) # for gg in _np.arange(Navr): for gg in range(Navr): istart = ist[gg] # Starting point of this window iend = istart+nwins # End point of this window if nTmodel: xtemp = _np.copy(x_in) else: xtemp = x_in[istart:iend] # end if ytemp = y_in[istart:iend,:] # Windowed signal segment # To get the most accurate spectrum, minimally detrend xtemp = win*xtemp ytemp = (_np.atleast_2d(win).T*_np.ones((1,nch), dtype=ytemp.dtype))*ytemp # xtemp = win*detrend(xtemp, axis=0) # ytemp = (_np.atleast_2d(win).T*_np.ones((1,nch), dtype=ytemp.dtype))*detrend(ytemp, axis=0) # The FFT output from matlab isn't normalized: # y_n = sum[ y_m.*exp( 2_np.pi*1i*(n/N)*m ) ] # The inverse is normalized:: # y_m = (1/N)*sum[ y_n.*exp( -2_np.pi*1i*(n/N)*m ) ] # # Python normalizations are optional, pick it to match MATLAB Xfft[gg, :nfft] = _np.fft.fft(xtemp, n=nfft, axis=0) # defaults to last axis Yfft[:, gg, :nfft] = _np.fft.fft(ytemp, n=nfft, axis=0).T # nch x Navr x nfft #endfor loop over fft windows #Auto- and cross-power spectra Pxx_seg[:Navr, :nfft] = Xfft*_np.conj(Xfft) Pyy_seg[:,:Navr, :nfft] = Yfft*_np.conj(Yfft) Pxy_seg[:,:Navr, :nfft] = Yfft*(_np.ones((nch,1,1), dtype=Xfft.dtype)*_np.conj(Xfft)) # Get the frequency vector freq = _np.fft.fftfreq(nfft, 1.0/Fs) # freq = Fs*_np.arange(0.0, 1.0, 1.0/nfft) # if (nfft%2): # # freq = Fs*(0:1:1/(nfft+1)) # freq = Fs*_np.arange(0.0,1.0,1.0/(nfft+1)) # # end if nfft is odd if onesided: # freq = freq[:Nnyquist-1] # [Hz] # Pxx_seg = Pxx_seg[:, :Nnyquist-1] # Pyy_seg = Pyy_seg[:, :, :Nnyquist-1] # Pxy_seg = Pxy_seg[:, :, :Nnyquist-1] freq = freq[:Nnyquist] # [Hz] Pxx_seg = Pxx_seg[:, :Nnyquist] Pyy_seg = Pyy_seg[:, :, :Nnyquist] Pxy_seg = Pxy_seg[:, :, :Nnyquist] # All components but DC split their energy between positive + # negative frequencies: One sided spectra, Pxx_seg[:, 1:-1] = 2*Pxx_seg[:, 1:-1] # [V^2/Hz], Pyy_seg[:, :, 1:-1] = 2*Pyy_seg[:, :, 1:-1] # [V^2/Hz], Pxy_seg[:, :, 1:-1] = 2*Pxy_seg[:, :, 1:-1] # [V^2/Hz], if nfft%2: # Odd Pxx_seg[:, -1] = 2*Pxx_seg[:, -1] Pyy_seg[:, :, -1] = 2*Pyy_seg[:, :, -1] Pxy_seg[:, :, -1] = 2*Pxy_seg[:, :, -1] # endif nfft is odd else: freq = _np.fft.fftshift(freq) Pxx_seg = _np.fft.fftshift(Pxx_seg, axes=-1) Pyy_seg = _np.fft.fftshift(Pyy_seg, axes=-1) Pxy_seg = _np.fft.fftshift(Pxy_seg, axes=-1) # end if # Remove gain of the window function to yield the RMS Power spectrum # in each segment (constant peak amplitude) ... doing this after cutting the number of pionts in half if one-sided Pxx_seg = (1.0/(fftinfo.S1**2))*Pxx_seg # [Vrms^2] Pyy_seg = (1.0/(fftinfo.S1**2))*Pyy_seg # [Vrms^2] Pxy_seg = (1.0/(fftinfo.S1**2))*Pxy_seg # [Vrms^2] # Compute the power spectral density from the RMS power spectrum # (constant noise floor) Pxx_seg = Pxx_seg/fftinfo.ENBW # [V^2/Hz] Pyy_seg = Pyy_seg/fftinfo.ENBW # [V^2/Hz] Pxy_seg = Pxy_seg/fftinfo.ENBW # [V^2/Hz] # Average the different realizations: This is the output from cpsd.m # RMS Power spectrum Pxx = _np.mean(Pxx_seg, axis=0) # [V^2/Hz] Pyy = _np.mean(Pyy_seg, axis=1).T # nfft x nch Pxy = _np.mean(Pxy_seg, axis=1).T # Estimate the variance in the power spectra # fftinfo.varPxx = _np.var((Pxx_seg[:Navr, :Nnyquist]), axis=0) # fftinfo.varPyy = _np.var((Pyy_seg[:Navr, :Nnyquist]), axis=0) # fftinfo.varPxy = _np.var((Pxy_seg[:Navr, :Nnyquist]), axis=0) # # use the RMS for the standard deviation # fftinfo.varPxx = _np.mean(Pxx_seg**2.0, axis=0) # fftinfo.varPyy = _np.mean(Pyy_seg**2.0, axis=0) # fftinfo.varPxy = _np.mean(Pxy_seg**2.0, axis=0) # fftinfo.varPxy = _np.var(_np.real(Pxy_seg), axis=0) + 1j*_np.var(_np.imag(Pxy_seg), axis=0) # Save the cross-phase in each segmentas well phixy_seg = _np.angle(Pxy_seg) # [rad], Cross-phase of each segment #[ phixy_seg[0:Navr,0:Nnyquist], varphi_seg[0:Navr,0:Nnyquist] ] = \ # varangle(Pxy_seg, fftinfo.varPxy) # Right way to average cross-phase: # mean and variance in cross-phase varphi_seg = _np.zeros_like(phixy_seg) # [phi_xy, fftinfo.varPhxy] = mean_angle(phixy_seg[0:Navr, :], # varphi_seg[0:Navr,:], dim=0) # # # Now take the power and linear spectra # Segmented data ... useful for making spectrograms fftinfo.Pxx_seg = Pxx_seg fftinfo.Pyy_seg = Pyy_seg fftinfo.Pxy_seg = Pxy_seg fftinfo.Xfft_seg = Xfft fftinfo.Yfft_seg = Yfft fftinfo.phixy_seg = phixy_seg fftinfo.varphi_seg = varphi_seg # ====================== # # endif # Calculate the mean-squared and complex coherence # take the absolute value of Cxy to get the RMS coherence # take the abs. value of Cxy2 and the sqrt to get the RMS coherence Cxy, Cxy2 = Cxy_Cxy2(Pxx, Pyy, Pxy) # complex numbers returned # ========================== # # Uncertainty and phase part # # ========================== # # derived using error propagation from eq 23 for gamma^2 in # <NAME>, Journal of Sound an Vibration 59(3), 405-421, 1978 fftinfo.varCxy = ((1.0-Cxy*_np.conjugate(Cxy))/_np.sqrt(2*Navr))**2.0 # fftinfo.varCxy = ((1.0-Cxy2)/_np.sqrt(2*Navr))**2.0 fftinfo.varCxy2 = 4.0*Cxy2*fftinfo.varCxy # d/dx x^2 = 2 *x ... var: (2*x)^2 * varx # Estimate the variance in the power spectra: this requires building # a distribution by varying the parameters used in the FFT, nwindows, # nfft, windowfunction, etc. I don't do this right now fftinfo.varPxx = (Pxx/_np.sqrt(Navr))**2.0 fftinfo.varPyy = (Pyy/_np.sqrt(Navr))**2.0 fftinfo.varPxy = (Pxy/_np.sqrt(Navr))**2.0 # fftinfo.varPxy = Pxx*Pyy*(1.0-Cxy)/Navr # this gives nice results ... similar to above as Cxy is a measure of shared power # <NAME>, <NAME>, 17 056103, 2010 # Doesn't so far give a convincing answer... # fftinfo.varPhxy = _np.zeros(Pxy.shape, dtype=_np.float64) #fftinfo.varPhxy = (_np.sqrt(1-Cxy2)/_np.sqrt(2*Navr*Cxy))**2.0 # fftinfo.varPhxy = (_np.sqrt(1-_np.abs(Cxy*_np.conj(Cxy)))/_np.sqrt(2*Navr*_np.abs(Cxy)))**2.0 # fftinfo.varPhxy = (_np.sqrt(1.0-Cxy2))/_np.sqrt(2*Navr*_np.sqrt(Cxy2))**2.0 fftinfo.varPhxy = (_np.sqrt(1.0-_np.abs(Cxy2)))/_np.sqrt(2*Navr*_np.sqrt(_np.abs(Cxy2)))**2.0 # ========================== # # Save the cross-phase as well # phi_xy = _np.angle(Pxy) phi_xy = _np.arctan2(Pxy.imag, Pxy.real) # ========================== # # Linear amplitude spectrum from the power spectral density # RMS Linear amplitude spectrum (constant amplitude values) fftinfo.Lxx = _np.sqrt(_np.abs(fftinfo.ENBW*Pxx)) # [V_rms] fftinfo.Lyy = _np.sqrt(_np.abs(fftinfo.ENBW*Pyy)) # [V_rms] fftinfo.Lxy = _np.sqrt(_np.abs(fftinfo.ENBW*Pxy)) # [V_rms] if onesided: # Rescale RMS values to Amplitude values (assumes a zero-mean sine-wave) # Just the points that split their energy into negative frequencies fftinfo.Lxx[1:-1] = _np.sqrt(2)*fftinfo.Lxx[1:-1] # [V], fftinfo.Lyy[1:-1,:] = _np.sqrt(2)*fftinfo.Lyy[1:-1,:] # [V], fftinfo.Lxy[1:-1,:] = _np.sqrt(2)*fftinfo.Lxy[1:-1,:] # [V], if nfft%2: # Odd fftinfo.Lxx[-1] = _np.sqrt(2)*fftinfo.Lxx[-1] fftinfo.Lyy[-1,:] = _np.sqrt(2)*fftinfo.Lyy[-1,:] fftinfo.Lxy[-1,:] = _np.sqrt(2)*fftinfo.Lxy[-1,:] # endif nfft/2 is odd # ======================================================================= # # Cross and auto-correlation from power spectra fftinfo.Rxx = Pxx.copy() fftinfo.Rxx[1:-1, ...] *= 0.5 if nfft%2: fftinfo.Rxx[-1, ...] *= 0.5 fftinfo.Rxx = _np.fft.irfft(fftinfo.Rxx, n=nfft, axis=0) fftinfo.Ryy = Pyy.copy() fftinfo.Ryy[1:-1, ...] *= 0.5 if nfft%2: fftinfo.Ryy[-1, ...] *= 0.5 fftinfo.Ryy = _np.fft.irfft(fftinfo.Ryy, n=nfft, axis=0) fftinfo.Rxy = Pxy.copy() fftinfo.Rxy[1:-1, ...] *= 0.5 if nfft%2: fftinfo.Rxy[-1, ...] *= 0.5 fftinfo.Rxy = _np.fft.irfft(fftinfo.Rxy, n=nfft, axis=0) fftinfo.iCxy = Cxy.copy() fftinfo.iCxy = _np.fft.irfft(fftinfo.iCxy, n=nfft, axis=0) # ======================================================================= # else: # ======================================================================= # # Cross and auto-correlation from power spectra # fftinfo.Rxy_seg = _np.fft.fftshift(_np.sqrt(nfft)*_np.fft.ifft( # _np.fft.fftshift(Pxy_seg, axes=-1), n=nfft, axis=-1), axes=-1) fftinfo.Rxx = _np.fft.ifft(_np.fft.ifftshift(Pxx, axes=0), n=nfft, axis=0) fftinfo.Ryy = _np.fft.ifft(_np.fft.ifftshift(Pyy, axes=0), n=nfft, axis=0) fftinfo.Rxy = _np.fft.ifft(_np.fft.ifftshift(Pxy, axes=0), n=nfft, axis=0) fftinfo.iCxy = _np.fft.ifft(_np.fft.ifftshift(Cxy, axes=0), n=nfft, axis=0) # fftinfo.iCxy = _np.fft.ifft(_np.fft.ifftshift(_np.sqrt(_np.abs(Cxy2)), axes=0), n=nfft, axis=0).real # ======================================================================= # # end if fftinfo.Rxx *= _np.sqrt(nfft) fftinfo.Ryy *= _np.sqrt(nfft) fftinfo.Rxy *= _np.sqrt(nfft) fftinfo.iCxy *= _np.sqrt(nfft) # Calculate the normalized auto- and cross-correlations fftinfo.Ex = fftinfo.Rxx[0, ...].copy() # power in the x-spectrum, int( |u(f)|^2, df) fftinfo.Ey = fftinfo.Ryy[0, ...].copy() # power in the y-spectrum, int( |v(f)|^2, df) # fftinfo.Rxx /= fftinfo.Ex # fftinfo.Ryy /= fftinfo.Ey fftinfo.corrcoef = fftinfo.Rxy/_np.sqrt(_np.ones((nfft,1), dtype=fftinfo.Rxy.dtype)*(fftinfo.Ex*fftinfo.Ey)) fftinfo.Rxx = _np.fft.fftshift(fftinfo.Rxx, axes=0) fftinfo.Ryy = _np.fft.fftshift(fftinfo.Ryy, axes=0) fftinfo.Rxy = _np.fft.fftshift(fftinfo.Rxy, axes=0) fftinfo.iCxy = _np.fft.fftshift(fftinfo.iCxy, axes=0) fftinfo.corrcoef = _np.fft.fftshift(fftinfo.corrcoef, axes=0) fftinfo.lags = (_np.asarray(range(1, nfft+1), dtype=int)-Nnyquist)/Fs # ======================================================================= # fftinfo.varLxx = (fftinfo.Lxx**2)*(fftinfo.varPxx/_np.abs(Pxx)**2) fftinfo.varLyy = (fftinfo.Lyy**2)*(fftinfo.varPyy/_np.abs(Pyy)**2) fftinfo.varLxy = (fftinfo.Lxy**2)*(fftinfo.varPxy/_np.abs(Pxy)**2) if nch == 1: Pyy = Pyy.flatten() Pxy = Pxy.flatten() Cxy = Cxy.flatten() Cxy2 = Cxy2.flatten() phi_xy = phi_xy.flatten() fftinfo.lags = fftinfo.lags.flatten() fftinfo.Rxx = fftinfo.Rxx.flatten() fftinfo.Ryy = fftinfo.Ryy.flatten() fftinfo.Rxy = fftinfo.Rxy.flatten() fftinfo.corrcoef = fftinfo.corrcoef.flatten() fftinfo.iCxy = fftinfo.iCxy.flatten() fftinfo.Lxx = fftinfo.Lxx.flatten() fftinfo.Lyy = fftinfo.Lyy.flatten() fftinfo.Lxy = fftinfo.Lxy.flatten() fftinfo.varLxx = fftinfo.varLxx.flatten() fftinfo.varLyy = fftinfo.varLyy.flatten() fftinfo.varLxy = fftinfo.varLxy.flatten() fftinfo.varCxy = fftinfo.varCxy.flatten() fftinfo.varCxy2 = fftinfo.varCxy2.flatten() fftinfo.varPxx = fftinfo.varPxx.flatten() fftinfo.varPyy = fftinfo.varPyy.flatten() fftinfo.varPxy = fftinfo.varPxy.flatten() fftinfo.varPhxy = fftinfo.varPhxy.flatten() # end if # Store everything fftinfo.nch = nch fftinfo.Fs = Fs fftinfo.Navr = Navr fftinfo.nwins = nwins fftinfo.noverlap = noverlap fftinfo.overlap = windowoverlap fftinfo.window = windowfunction fftinfo.minFreq = 2.0*Fs/nwins fftinfo.freq = freq.copy() fftinfo.Pxx = Pxx.copy() fftinfo.Pyy = Pyy.copy() fftinfo.Pxy = Pxy.copy() fftinfo.Cxy = Cxy.copy() fftinfo.Cxy2 = Cxy2.copy() fftinfo.phi_xy = phi_xy.copy() # ==================================================================== # # Plot the comparisons if plotit: if reflecting: # sigx = sigx[(nwins//2-1):-nwins//2] # sigy = sigy[(nwins//2-1):-nwins//2,:] sigx = sigx[(nwins-1):-nwins+1] sigy = sigy[(nwins-1):-nwins+1,:] # end if afont = {'fontname':'Arial','fontsize':14} # plot the signals if 'hfigSig' in kwargs: hfig1 = _plt.figure(kwargs['hfigSig']) else: hfig1 = _plt.figure() if 'axSig' in kwargs: _ax = kwargs['axSig'] else: _ax = _plt.subplot(1,1,1) if _np.iscomplexobj(sigx) and _np.iscomplexobj(sigy): _ax.plot(tx, _np.real(sigx), 'b-') _ax.plot(tx, _np.imag(sigx), 'b--') _ax.plot(tvec, _np.real(sigy), 'r-') _ax.plot(tvec, _np.imag(sigy), 'r--') elif _np.iscomplexobj(sigx) and not _np.iscomplexobj(sigy): _ax.plot(tvec, sigy, 'r-') _ax.plot(tx, _np.real(sigx), 'b-') _ax.plot(tx, _np.imag(sigx), 'b--') elif _np.iscomplexobj(sigy) and not _np.iscomplexobj(sigx): _ax.plot(tx, sigx, 'b-') _ax.plot(tvec, _np.real(sigy), 'r-') _ax.plot(tvec, _np.imag(sigy), 'r--') else: _ax.plot(tx, sigx, 'b-', tvec, sigy, 'r-') # end if _ax.set_title('Input Signals', **afont) _ax.set_xlabel('t[s]', **afont) _ax.set_ylabel('sig_x,sig_y[V]', **afont) if tbounds is not None: _plt.axvline(x=tbounds[0], color='k') _plt.axvline(x=tbounds[1], color='k') # end if #The correlations and spectra if 'hfigSpec' in kwargs: hfig2 = _plt.figure(kwargs['hfigSpec']) else: hfig2 = _plt.figure() if 'axSpec' in kwargs: _ax1 = kwargs['axSpec'][0] else: _ax1 = _plt.subplot(2,2,1) # _plt.plot(1e3*fftinfo.lags, fftinfo.iCxy, 'r-') _ax1.plot(1e3*fftinfo.lags, fftinfo.corrcoef, 'b-') _plt.ylabel(r'$\rho$', **afont) _plt.xlabel('lags [ms]', **afont) _plt.title('Cross-corrrelation') if 'axSpec' in kwargs: _ax2 = kwargs['axSpec'][1] else: _ax2 = _plt.subplot(2,2,2) # frq = 1e-3*freq; xlbl = 'f[KHz]' frq = freq; xlbl = 'f[Hz]' if 0: # _ax2.plot(frq,_np.abs(fftinfo.Lxx), 'b-'); ylbl = r'L$_{ij}$ [I.U.]' # _ax2.plot(frq,_np.abs(fftinfo.Lyy), 'r-'); tlbl = 'Linear Amplitude Spectra' # _ax2.plot(frq,_np.abs(fftinfo.Lxy), 'k-'); _ax2.plot(frq,_np.abs(Pxx), 'b-'); ylbl = r'P$_{ij}$ [I.U.$^2$/Hz]' _ax2.plot(frq,_np.abs(Pyy), 'r-'); tlbl = 'Power Spectra' _ax2.plot(frq,_np.abs(Pxy), 'k-'); if onesided: _ax2.set_xlim(0,1.01*frq[-1]) else: _ax2.set_xlim(-1.01*frq[-1],1.01*frq[-1]) # end if elif onesided: _ax2.loglog(frq, _np.abs(Pxx), 'b-'); _ax2.loglog(frq, _np.abs(Pyy), 'r-'); ylbl = r'P$_{ij}$ [dB/Hz]' _ax2.loglog(frq, _np.abs(Pxy), 'k-'); tlbl = 'Power Spectra' xlims = _ax2.get_xlim() _ax2.set_xlim(xlims[0], 1.01*frq[-1]) else: _ax2.semilogy(frq, _np.abs(Pxx), 'b-'); ylbl = r'P$_{ij}$ [dB/Hz]' _ax2.semilogy(frq, _np.abs(Pyy), 'r-'); tlbl = 'Power Spectra' _ax2.semilogy(frq, _np.abs(Pxy), 'k-'); _ax2.set_xlim(-1.01*frq[-1],1.01*frq[-1]) # end if _ax2.set_title(tlbl, **afont) _ax2.set_ylabel(ylbl, **afont), _ax2.set_xlabel(xlbl, **afont) if 'axSpec' in kwargs: _ax3 = kwargs['axSpec'][2] else: _ax3 = _plt.subplot(2, 2, 3, sharex=_ax2) # _ax3.plot(frq, _np.sqrt(_np.abs(Cxy2)), 'k-') # _ax3.plot(frq, _np.abs(Cxy).real, 'k-') # _plt.axhline(y=1.0/_np.sqrt(Navr), color='k') # _ax3.set_title('Coherence', **afont) # _ax3.set_ylabel(r'C$_{xy}$', **afont) # _ax3.set_ylabel(r'$|\gamma|$', **afont) _ax3.plot(frq, _np.abs(Cxy2), 'k-') _plt.axhline(y=1.0/Navr, color='k') _ax3.set_title('Mean-Squared Coherence', **afont) # _ax3.set_ylabel(r'C$_{xy}^2$', **afont) _ax3.set_ylabel(r'$\gamma^2$', **afont) _ax3.set_xlabel(xlbl, **afont) if 'axSpec' in kwargs: _ax4 = kwargs['axSpec'][3] else: _ax4 = _plt.subplot(2, 2, 4, sharex=_ax2) _ax4.plot(frq, phi_xy, 'k-') _ax4.set_title('Cross-Phase', **afont) _ax4.set_ylabel(r'$\phi_{xy}$', **afont) _ax4.set_xlabel(xlbl, **afont) _plt.tight_layout() # _plt.subplots_adjust(top=0.85) # if windowoverlap>0: # _plt.suptitle('Analysis using %i overlapping %s windows\n%s'%(Navr,winparams[0],winparams[1])) # else: # _plt.suptitle('Analysis using %i non-overlapping %s windows\n%s'%(Navr,winparams[0],winparams[1])) # # end if _plt.draw() # _plt.show() fftinfo.hfig1 = hfig1 fftinfo.hfig2 = hfig2 fftinfo.axSig = _ax fftinfo.ax = [__ax for __ax in [_ax1, _ax2, _ax3, _ax4]] # endif plotit return freq, Pxy, Pxx, Pyy, Cxy, phi_xy, fftinfo # end fft_pwelch # ========================================================================== # class fftinfosc(Struct): def __init__(self): self.S1 = _np.array( [], dtype=_np.float64) self.S2 = _np.array( [], dtype=_np.float64) self.NENBW = _np.array( [], dtype=_np.float64) self.ENBW = _np.array( [], dtype=_np.float64) self.freq = _np.array( [], dtype=_np.float64) self.Pxx = _np.array( [], dtype = _np.complex128 ) self.Pyy = _np.array( [], dtype = _np.complex128 ) self.Pxy = _np.array( [], dtype = _np.complex128 ) self.Cxy = _np.array( [], dtype=_np.complex128) self.varcoh = _np.array( [], dtype=_np.complex128) self.phi_xy = _np.array( [], dtype=_np.float64) self.varphi = _np.array( [], dtype=_np.float64) self.Lxx = _np.array( [], dtype = _np.complex128 ) self.Lyy = _np.array( [], dtype = _np.complex128 ) self.Lxy = _np.array( [], dtype = _np.complex128 ) self.varLxx = _np.array( [], dtype = _np.complex128 ) self.varLyy = _np.array( [], dtype = _np.complex128 ) self.varLxy = _np.array( [], dtype = _np.complex128 ) #Segment data self.Pxx_seg = _np.array( [], dtype = _np.complex128 ) self.Pyy_seg = _np.array( [], dtype = _np.complex128 ) self.Pxy_seg = _np.array( [], dtype = _np.complex128 ) self.Xfft_seg = _np.array( [], dtype = _np.complex128 ) self.Yfft_seg = _np.array( [], dtype = _np.complex128 ) # end class # =========================================================================== # # =========================================================================== # def integratespectra(freq, Pxy, Pxx, Pyy, frange, varPxy=None, varPxx=None, varPyy=None): """ function [Pxy_i, Pxx_i, Pyy_i, Cxy_i, ph_i, info] = integrate_spectrum(freq, Pxy, Pxx, Pyy, frange, varPxy, varPxx, varPyy) This is a simple function that integrates a power spectrum over a specified frequency range. It propagates the errors from spectra variances. Required inputs: freq - [Hz], frequency vector Pxy - [Complex], cross-power spectrum between signals 1 and 2 Pxx - [Real (or Complex)], auto-power of signal 1 Pyy - [Real (or Complex)], auto-power of signal 2 frange - [lower frequency, upper frequency] - [Hz], frequency range to integrate over Optional inputs: varPxy - [Complex], variance in cross-power spectrum between signals 1 and 2 varPxx - [Real (or Complex)], variance in auto-power of signal 1 varPyy - [Real (or Complex)], variance in auto-power of signal 2 Outputs: Pxy_i - integrated cross-power Pxx_i - integrated auto-power of signal 1 Pyy_i - integrated auto-power of signal 2 Cxy_i - coherence between signal 1 and signal 2 in frequency range determined by frange ph_i - cross-phase between signal 1 and signal 2 in frequency range determined by frange info - Structure containing propagated variances requires: trapz_var - integrates using a trapezoidal rule and propagates uncertainty varcoh - calculates coherence and propagates uncertainty varphi - calculates angle and propagates uncertainty """ if varPyy is None: varPyy = _np.size_like(Pyy) # end if if varPxx is None: varPxx = _np.size_like(Pxx) # end if if varPxy is None: varPxy = _np.size_like(Pxy) # end if # Integrate over the frequency range specified # ifl = find( freq>frange(1), 1, 'first')-1 # ifh = find( freq>frange(2), 1, 'first')-1 # Pxy_i = trapz(freq(ifl:ifh), Pxy(ifl:ifh)) # Pxx_i = trapz(freq(ifl:ifh), Pxx(ifl:ifh)) # Pyy_i = trapz(freq(ifl:ifh), Pyy(ifl:ifh)) Pxy = _ut.reshapech(Pxy) varPxy = _ut.reshapech(varPxy) Pxx = _ut.reshapech(Pxx) varPxx = _ut.reshapech(varPxx) Pyy = _ut.reshapech(Pyy) varPyy = _ut.reshapech(varPyy) inds = _np.where( (freq>=frange[0])*(freq<=frange[1]) )[0] [Pxy_real, varPxy_real, _, _] = \ _ut.trapz_var(freq[inds], _np.real(Pxy[inds,:]), None, _np.real(varPxy[inds,:]), dim=0) [Pxy_imag, varPxy_imag, _, _] = \ _ut.trapz_var(freq[inds], _np.imag(Pxy[inds,:]), None, _np.imag(varPxy[inds,:]), dim=0) Pxy_i = Pxy_real + 1j*Pxy_imag varPxy_i = varPxy_real + 1j*varPxy_imag [Pxx_i, varPxx_i, _, _] = \ _ut.trapz_var(freq[inds], Pxx[inds,:], None, varPxx[inds,:], dim=0) [Pyy_i, varPyy_i, _, _] = \ _ut.trapz_var(freq[inds], Pyy[inds,:], None, varPyy[inds,:], dim=0) # Calculate coherence from integrated peak # Cxy_i = Pxy_i.*(Pxy_i').'./(Pxx_i.*Pyy_i); %Mean-squared Coherence between the two signals # Cxy_i = sqrt( abs( Cxy_i ) ); % Coherence meansquared = 0 #Return the coherence, not the mean-squared coherence [Cxy_i, varCxy_i] = varcoh(Pxy_i, varPxy_i, Pxx_i, varPxx_i, Pyy_i, varPyy_i, meansquared) # Calculate cross-phase from integrated peak # ph_i = atan( Pxy_imag./Pxy_real ) # [rad], Cross-phase angle_range = _np.pi [ph_i, varph_i] = varphi(Pxy_real, Pxy_imag, varPxy_real, varPxy_imag, angle_range) # Store it all for outputting info = Struct() info.frange = _np.asarray([frange[0], frange[1]]) info.ifrange = inds info.Pxy_i = Pxy_i info.varPxy_i = varPxy_i info.Pxx_i = Pxx_i info.varPxx_i = varPxx_i info.Pyy_i = Pyy_i info.varPyy_i = varPyy_i info.angle_range = angle_range info.ph_i = ph_i info.varph_i = varph_i info.meansquared = meansquared info.Cxy_i = Cxy_i info.varCxy_i = varCxy_i # Cross-power weighted average frequency - (center of gravity) info.fweighted = _np.dot(freq[inds].reshape(len(inds),1), _np.ones((1,_np.size(Pxy,axis=1)), dtype=float)) info.fweighted = _np.trapz( info.fweighted*_np.abs(Pxy[inds,:])) info.fweighted /= _np.trapz(_np.abs(Pxy[inds,:])) return Pxy_i, Pxx_i, Pyy_i, Cxy_i, ph_i, info # end def integratespectra def getNpeaks(Npeaks, tvec, sigx, sigy, **kwargs): kwargs.setdefault('tbounds',None) kwargs.setdefault('Navr', None) kwargs.setdefault('windowoverlap', None) kwargs.setdefault('windowfunction', None) kwargs.setdefault('useMLAB', None) kwargs.setdefault('plotit', None) kwargs.setdefault('verbose', None) kwargs.setdefault('detrend_style', None) kwargs.setdefault('onesided', True) fmin = kwargs.pop('fmin', None) fmax = kwargs.pop('fmax', None) minsep = kwargs.pop('minsep', 6) freq, Pxy, Pxx, Pyy, Cxy, phi_xy, fftinfo = fft_pwelch(tvec, sigx, sigy, **kwargs) Lxx = fftinfo.Lxx Lyy = fftinfo.Lyy Lxy = fftinfo.Lxy # fmin = 0.0 if fmin is None else fmin # fmax = freq[-1] if fmax is None else fmax # iff = _np.ones((len(freq),), dtype=bool) # iff[(freq<=fmin)*(freq>=fmax)] = False # freq = freq[iff] # Lyy = Lyy[iff] # phi_xy = phi_xy[iff] # # threshold = kwargs.pop('threshold', -1) ## mph = kwargs.pop('mph', None) # mph = kwargs.pop('mph', 0.5*(_np.nanmax(sigy)-_np.nanmin(sigy))/(20*Npeaks)) # ind = _ut.detect_peaks(Lyy, mpd=int(10*minsep/(freq[10]-freq[0])), mph=mph, threshold=threshold, show=True) # # out = [] # for ii in range(Npeaks): # out.append([ Lyy[ind[ii]], freq[ind[ii]], phi_xy[ind[ii]] ]) # # end for # build a boolean index array and replace peaks with false (+- an equivalent noise bandwidth) nfreq = len(freq) ENBW = fftinfo.ENBW # equiv. noise bandwidth ENBW = max((ENBW, minsep)) iff = _np.ones((nfreq,), dtype=bool) irem = int(2*nfreq*ENBW/(freq[-1]-freq[0])) # Remove frequencies that are outside of the selected range fmin = 0.0 if fmin is None else fmin fmax = freq[-1] if fmax is None else fmax iff[(freq<=fmin)*(freq>=fmax)] = False freq = freq[iff] nfreq = len(freq) Lxx = Lxx[iff] Lyy = Lyy[iff] Lxy = Lxy[iff] phi_xy = phi_xy[iff] iff = iff[iff] out = [] for ii in range(Npeaks): # Find the maximum peak in the cross-power spectrum imax = _np.argmax(Lxy) # Use the amplitude from the linear amplitude signal spectrum Ai = _np.copy(Lyy[imax]) # freqency and phase from the big calculation fi = _np.copy(freq[imax]) pi = _np.copy(phi_xy[imax]) # Store the amplitude, frequency, and phase for output out.append([Ai, fi, pi]) # Remove frequencies from the calculation that are around the current # peak +- an equivalent noise bandwdith if (imax-irem//2>=0) and (imax+irem//2<nfreq): iff[imax-irem//2:imax+irem//2] = False elif (imax+irem//2<nfreq): iff[:imax+irem//2] = False elif (imax-irem//2>=0): iff[-(imax+irem//2):] = False # end if freq = freq[iff] nfreq = len(freq) Lxx = Lxx[iff] Lyy = Lyy[iff] Lxy = Lxy[iff] phi_xy = phi_xy[iff] iff = iff[iff] # end for return tuple(out) # =========================================================================== # # =========================================================================== # """ Functions to extend the usage of the matplotlib "mlab" functions """ def fft_pmlab(sig1,sig2,dt,plotit=False): #nfft=2**_mlab.nextpow2(_np.length(sig1)) nfft = _np.size(sig1) (ps1, ff) = _mlab.psd(sig1, NFFT=nfft, Fs=1./dt, detrend=_mlab.detrend_mean, \ sides='onesided', noverlap=0, scale_by_freq=True ) (ps2, ff) = _mlab.psd(sig2, NFFT=nfft, Fs=1./dt, detrend=_mlab.detrend_mean, \ sides='onesided', noverlap=0, scale_by_freq=True ) #(p12, ff) = mlab.csd(sig1, sig2, NFFT=sig1.len, Fs=1./dt,sides='default', scale_by_freq=False) (p12, ff) = _mlab.csd(sig1, sig2, NFFT=nfft, Fs=1./dt, detrend=_mlab.detrend_mean, \ sides='onesided', noverlap=0, scale_by_freq=True ) if plotit: _plt.figure(num='Power Spectral Density') _plt.plot(ff*1e-9, _np.abs(ps1), 'b-') _plt.plot(ff*1e-9, _np.abs(ps2), 'g-') _plt.plot(ff*1e-9, _np.abs(p12), 'r-') _plt.xlabel('freq [GHz]') _plt.ylabel('PSD') _plt.show() #end plotit return ff, ps1, ps2, p12 def coh(x,y,fs,nfft=2048,fmin=0.0, fmax=500e3, detrend='mean', ov=0.67): """ Calculate mean-squared coherence of data and return it below a maximum frequency """ # print('using nfft=%i\n')%(nfft) # Cxy, F = _mlab.cohere(x,y,NFFT=nfft,Fs=fs,detrend=detrend,pad_to=None,noverlap=int(_np.floor(nfft*ov)),window=_mlab.window_hanning) # ind=_np.where((_np.abs(F)<=fmax) & (_np.abs(F)>=fmin)) window=_mlab.window_hanning noverlap=int(ov*nfft) pad_to=None sides='default' scale_by_freq=None Pxx, F = _mlab.psd(x, nfft, fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) Pyy, F = _mlab.psd(y, nfft, fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) Pxy, F = _mlab.csd(x, y, nfft, fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) Cxy2 = _np.divide(_np.absolute(Pxy)**2, Pxx*Pyy) Cxy2.shape = (len(F),) ind=_np.where((F<=fmax) & (F>=fmin)) co=Cxy2[ind] fo=F[ind] # return co,fo return _np.sqrt(co),fo def coh2(x,y,fs,nfft=4096, fmin=0, fmax=500e3, detrend='none', peak_treshold=None): """ Calculate mean-squared coherence, cross-phase, and auto-power spectra (w.r.t x) of data and return it below a maximum frequency """ fxx, f = _mlab.csd(x,x,NFFT=nfft,Fs=fs,noverlap=nfft/2,window=_mlab.window_hanning,scale_by_freq=True) fyy, f = _mlab.csd(y,y,NFFT=nfft,Fs=fs,noverlap=nfft/2,window=_mlab.window_hanning,scale_by_freq=True) fxy, f = _mlab.csd(x,y,NFFT=nfft,Fs=fs,noverlap=nfft/2,window=_mlab.window_hanning,scale_by_freq=True) Kxy = _np.real(fxy) Qxy = _np.imag(fxy) COH = _np.array([_np.abs(fxy[i]*_np.conj(fxy[i]))/(fxx[i]*fyy[i]) for i in range(len(f))]) PHA = _np.array([_np.arctan2(Qxy[i],Kxy[i]) for i in range(len(f))]) PSD = _np.array(_np.abs(fxx)) ind=_np.where(_np.abs(f)<=fmax) co=COH[ind] fo=f[ind] do=PHA[ind] po=PSD[ind] return {'coh': co, 'f': fo, 'PS': po, 'pha':do} def psd(x, fs, nfft=2048, fmin=None, fmax=None, detrend='none', peak_threshold=None, ov=0.67): """ Calculate power spectral density of data and return spectra within frequency range """ P,F=_mlab.psd(x,NFFT=nfft,Fs=fs,detrend=detrend,pad_to=None,noverlap=int(_np.floor(ov*nfft)),window=_mlab.window_hanning) # ind=_np.where((_np.abs(F)<=fmax) & (_np.abs(F)>=fmin)) threshold = _np.ones(P.shape, dtype=bool) if fmin is not None: threshold = threshold & (F>=fmin) if fmax is not None: threshold = threshold & (F<=fmax) # threshold = (F<=fmax) & (F>=fmin) if peak_threshold is not None: threshold = threshold & (P>peak_threshold) ind=_np.where(threshold) pso=P[ind] fo=F[ind] return pso,fo def csd(x,y,fs,nfft=2048,fmin=0,fmax=500e3, detrend='none', peak_threshold=None, ov=0.67): """ Calculate cross-power spectral density of data and return spectra within frequency range x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None """ P,F=_mlab.csd(x, y, NFFT=nfft, Fs=fs, detrend=detrend, pad_to=None, noverlap=int(_np.floor(ov*nfft)), window=_mlab.window_hanning) # ind=_np.where((_np.abs(F)<=fmax) & (_np.abs(F)>=fmin)) threshold = _np.ones(P.shape, dtype=bool) if fmin is not None: threshold = threshold & (F>=fmin) if fmax is not None: threshold = threshold & (F<=fmax) # threshold = (F<=fmax) & (F>=fmin) if peak_threshold is not None: threshold = threshold & (P>peak_threshold) ind=_np.where(threshold) pso=P[ind] fo=F[ind] return pso,fo # =========================================================================== # # =========================================================================== # """ Test functions for propagating estimated uncertainties """ def monticoh(Pxy, varPxy, Pxx, varPxx, Pyy, varPyy, nmonti=1000, meansquared=True): nmonti = int(nmonti) sh = _np.shape(Pxy) Pxy = _np.atleast_2d(Pxy) if _np.size(Pxy, axis=0)==1: Pxy = Pxy.T # endif Pxx = _np.atleast_2d(Pxx) if _np.size(Pxx, axis=0)==1: Pxx = Pxx.T # endif Pyy = _np.atleast_2d(Pyy) if _np.size(Pyy, axis=0)==1: Pyy = Pyy.T # endif varPxy = _np.atleast_2d(varPxy) if _np.size(varPxy, axis=0)==1: varPxy = varPxy.T # endif varPxx = _np.atleast_2d(varPxx) if _np.size(varPxx, axis=0)==1: varPxx = varPxx.T # endif varPyy = _np.atleast_2d(varPyy) if _np.size(varPyy, axis=0)==1: varPyy = varPyy.T # endif Pxy_s = Pxy.copy() varPxy_s = varPxy.copy() Pxx_s = Pxx.copy() varPxx_s = varPxx.copy() Pyy_s = Pyy.copy() varPyy_s = varPyy.copy() g2 = _np.zeros( (nmonti, _np.size(Pxy,axis=0), _np.size(Pxy, axis=1)), dtype=float) for ii in range(nmonti): Pxy = Pxy_s + _np.sqrt(varPxy_s)*_np.random.normal(0.0, 1.0, len(Pxy)) Pxx = Pxx_s + _np.sqrt(varPxx_s)*_np.random.normal(0.0, 1.0, len(Pxx)) Pyy = Pyy_s + _np.sqrt(varPyy_s)*_np.random.normal(0.0, 1.0, len(Pyy)) g2[ii] = _np.abs( Pxy*_np.conj( Pxy ) )/( _np.abs(Pxx)*_np.abs(Pyy) ) # end for varg2 = _np.nanvar(g2, axis=0) g2 = _np.nanmean(g2, axis=0) if meansquared: return g2.reshape(sh), varg2.reshape(sh) else: return _np.sqrt(g2.reshape(sh)), _np.sqrt(varg2.reshape(sh)) # end if # end def def varcoh(Pxy, varPxy, Pxx, varPxx, Pyy, varPyy, meansquared=True): # function [Coh,varCoh]=varcoh(Pxy,varPxy,Pxx,varPxx,Pyy,varPyy) # Only works when varPxy was formed by separating real and imaginary # components. As is done in fft_pwelch.m ms = _np.imag(Pxy) mc = _np.real(Pxy) vs = _np.imag(varPxy) vc = _np.real(varPxy) Coh = _np.array( _np.size(Pxy),dtype=_np.complex128) varCoh = _np.zeros_like( Coh ) if meansquared: Coh = _np.abs( Pxy*_np.conj( Pxy ) )/( _np.abs(Pxx)*_np.abs(Pyy) ) # C = ( T*T' )/(XY) = (R^2 + I^2)/(XY) # d()/dR = 2R/(XY) # d()/dI = 2I/(XY) # d()/dX = -(R^2+I^2)/(X^2*Y) # d()/dY = -(R^2+I^2)/(X*Y^2) # vC = C^2 * ( vR*(2R/(R^2+I^2))^2 + vI*(2I/(R^2+I^2))^2 + vX/X^2+ vY/Y2) varCoh = Coh**2*( vc*( 2*mc/( mc**2+ms**2) )**2 + \ vs*( 2*ms/( mc**2+ms**2) )**2 + \ varPxx*(1/Pxx)**2 + varPyy*(1/Pyy)**2 ) # if meansquared is False: # # Return the coherence, not the mean-squared coherence # varCoh = 0.25*varCoh/Coh # (0.5*(Coh**-0.5))**2.0 * varCoh # Coh = _np.sqrt(Coh) # # endif else: # return the complex coherence Coh = Pxy / _np.sqrt( _np.abs(Pxx)*_np.abs(Pyy) ) # vardenom = ... # varCoh = Coh**2.0*( varPxy + varCoh = Coh**2*( vc*( 2*mc/( mc**2+ms**2) )**2 + \ vs*( 2*ms/( mc**2+ms**2) )**2 + \ varPxx*(1/Pxx)**2 + varPyy*(1/Pyy)**2 ) # Return the coherence, not the mean-squared coherence varCoh = 0.25*varCoh/Coh # (0.5*(Coh**-0.5))**2.0 * varCoh Coh = _np.sqrt(Coh) # end if return Coh, varCoh # end function varcoh def montiphi(Pxy, varPxy, nmonti=1000, angle_range=_np.pi): nmonti = int(nmonti) sh = _np.shape(Pxy) Pxy = _np.atleast_2d(Pxy) if _np.size(Pxy, axis=0)==1: Pxy = Pxy.T # endif varPxy = _np.atleast_2d(varPxy) if _np.size(varPxy, axis=0)==1: varPxy = varPxy.T # endif Pxy_s = Pxy.copy() varPxy_s = varPxy.copy() ph = _np.zeros( (nmonti, _np.size(Pxy,axis=0), _np.size(Pxy, axis=1)), dtype=float) for ii in range(nmonti): Pxy = Pxy_s + _np.sqrt(varPxy_s)*_np.random.normal(0.0, 1.0, len(Pxy)) # the angle function computes atan2( 1/n sum(sin(phi)),1/n sum(cos(phi)) ) if angle_range>0.5*_np.pi: ph[ii] = _np.arctan2( _np.imag(Pxy), _np.real(Pxy) ) else: ph[ii] = _np.arctan( _np.imag(Pxy) / _np.real(Pxy) ) # endif # # This function might not work becasue of wrapping issues? # ph[ii] = _np.unwrap(ph[ii]) # end for varph = _np.nanvar(ph, axis=0) ph = _np.nanmean(ph, axis=0) return ph.reshape(sh), varph.reshape(sh) def varphi(Pxy_real, Pxy_imag, varPxy_real, varPxy_imag, angle_range=_np.pi): #def varphi(Pxy, varPxy, angle_range=_np.pi): # Pxy_real = _np.real(Pxy) # Pxy_imag = _np.imag(Pxy) # # varPxy_real = _np.real(varPxy) # varPxy_imag = _np.imag(varPxy) # the angle function computes atan2( 1/n sum(sin(phi)),1/n sum(cos(phi)) ) if angle_range>0.5*_np.pi: ph = _np.arctan2( Pxy_imag, Pxy_real ) else: ph = _np.arctan( Pxy_imag / Pxy_real ) # endif # substitute variables and propagate errors into the tangent function _tangent = Pxy_imag/Pxy_real # tangent = sin / cos # vt = (tt**2)*( vsa/(msa**2) + vca/(mca**2) ) # variance in tangent # vt = vsa/(mca**2) + vca*msa**2/(mca**4) # variance in tangent # vt = (tt**2)*( varPxy_imag/(Pxy_imag**2) + varPxy_real/(Pxy_real**2) ) _vartang = (varPxy_imag+varPxy_real*_tangent**2)/(Pxy_real**2) # the variance of the arctangent function is related to the derivative # d(arctangent)/dx = 1/(1+x^2) using a = atan( tan(a) ) # varph = vt/(1+tt**2)**2 varph = _vartang/(1+_tangent**2)**2 return ph, varph # ========================================================================== # def mean_angle(phi, vphi=None, dim=0, angle_range=0.5*_np.pi, vsyst=None): """ Proper way to average a phase angle is to convert from polar (imaginary) coordinates to a cartesian representation and average the components. """ if vphi is None: vphi = _np.zeros_like(phi) # endif if vsyst is None: vsyst = _np.zeros_like(phi) # endif nphi = _np.size(phi, dim) complex_phase = _np.exp(1.0j*phi) complex_var = vphi*(_np.abs(complex_phase))**2 complex_vsy = vsyst*(_np.abs(complex_phase))**2 # Get the real and imaginary parts of the complex phase ca = _np.real(complex_phase) sa = _np.imag(complex_phase) # Take the mean and variance of these components # mca = _np.mean(ca, dim) # msa = _np.mean(sa, dim) # # vca = _np.var(ca, dim) + _np.sum(complex_var, dim)/(nphi**2) # vsa = _np.var(sa, dim) + _np.sum(complex_var, dim)/(nphi**2) mca = _np.nanmean(ca, axis=dim) msa = _np.nanmean(sa, axis=dim) # Stat error vca = _np.nanvar(ca, axis=dim) + _np.nansum(complex_var, axis=dim)/(nphi**2) vsa = _np.nanvar(sa, axis=dim) + _np.nansum(complex_var, axis=dim)/(nphi**2) # Add in systematic error vca += (_np.nansum( _np.sqrt(complex_vsy), axis=dim )/nphi)**2.0 vsa += (_np.nansum( _np.sqrt(complex_vsy), axis=dim )/nphi)**2.0 mean_phi, var_phi = varphi(Pxy_real=mca, Pxy_imag=msa, varPxy_real=vca, varPxy_imag=vsa, angle_range=angle_range) return mean_phi, var_phi # end mean_angle # # the angle function computes atan2( 1/n sum(sin(phi)),1/n sum(cos(phi)) ) # if angle_range > 0.5*_np.pi: # mean_phi = _np.arctan2(msa, mca) # else: # mean_phi = _np.arctan(msa/mca) # # endif # # # substitute variables and propagate errors into the tangent function # tt = msa/mca # tangent = sin / cos # # vt = (tt**2)*( vsa/(msa**2) + vca/(mca**2) ) # variance in tangent # vt = vsa/(mca**2) + vca*msa**2/(mca**4) # variance in tangent # # # the variance of the arctangent function is related to the derivative # # d(arctangent)/dx = 1/(1+x^2) using a = atan( tan(a) ) # var_phi = vt/(1+tt**2)**2 # return mean_phi, var_phi ## end mean_angle def unwrap_tol(data, scal=_np.pi, atol=None, rtol=None, itol=None): if atol is None and rtol is None: atol = 0.2 # endif if atol is None and rtol is not None: atol = rtol*scal # endif if itol is None: itol = 1 # endif tt = _np.asarray(range(len(data))) ti = tt[::itol] diffdata = _np.diff(data[::itol])/scal diffdata = _np.sign(diffdata)*_np.floor(_np.abs(diffdata) + atol) data[1:] = data[1:]-_np.interp(tt[1:], ti[1:], scal*_np.cumsum(diffdata)) return data #end unwrap_tol # ========================================================================= # # ========================================================================= # """ Functinos for taking the derivative of a signal using fft's (fft_deriv) """ def rescale(xx, yy, scaley=True, scalex=True): slope = 1.0 offset = 0.0 xslope = 1.0 xoffset = 0.0 if scaley: slope = _np.nanmax(yy)-_np.nanmin(yy) # maximum 1.0 offset = _np.nanmin(yy) # minimum 0.0 if slope == 0: slope = 1.0 # end if yy = (yy.copy()-offset)/slope if scalex: xslope = _np.nanmax(xx)-_np.nanmin(xx) # shrink so maximum is less than 1.0 xoffset = -1e-4 # prevent 0 from being in problem if xslope == 0: xslope = 1.0 # end if xx = (xx.copy()-xoffset)/xslope # end if return xx, yy, (slope, offset, xslope, xoffset) def unscale(xx, yy, scl, dydx=None): slope = scl[0] offset = scl[1] xslope = scl[2] xoffset = scl[3] xx = xx*xslope+xoffset yy = slope*yy+offset if dydx is not None: dydx = dydx*slope/xslope return xx, yy, dydx else: return xx, yy def fft_deriv(sig, xx=None, lowpass=True, Fs_new=None, modified=True, detrend=detrend_none, window=None): """ inputs: sig - (nx,) - signal, dependent variable xx - (nx,) - grid on domain, independent variable (default: 0:nx) lowpass - [Hz or Bool], filter frequency pre-fft (default: nyquist freq. if True) modified - [Bool], See documentation below (default:True) detrend - [function handle], detrending function pre-LPF and pre-fft (default: detrend_none) window - [function handle], window function for signal (default: None) outputs: dsdx - (nd,) - derivative of the signal xx - (nd,) - independent variable of signal Note: nd = len(xx), downsampled signal to have twice the LPF frequency Documentation: dfdx = ifft( wavenumber*fft(f) ) Ringing artifacts are present in the derivative calculated by FFT's due to the lack of periodicity and high-frequency content in real signals. There are several methods to decrease ringing: 1) use a modified wavenumber in the derivative calculation this decreases ringing everywhere, but ringing is still present at edges due to lack of periodicity wavenumber = 1.0j*k if unmodified wavenumber = 1.0j*sin(k*dx)/dx if modified 2) use a window function this decreases ringing everywhere, but decreases the accuracy of the derivative near the edges of the domain (the signal is multiplied by zero at the end-points) """ if xx is None: N = len(sig) xx = 1.0*_np.asarray(range(0, N)) # end if # ======= =# # Low pass filter the data before calculating the FFT if requested # if 0: if lowpass: dxo = xx[1] - xx[0] if lowpass is True: # lowpass = 0.1*1.0/dxo lowpass = 0.5*1.0/dxo # end if # b, a = butter_lowpass(lowpass, fnyq=0.5/dxo, order=2) # sig = _dsp.filtfilt(b, a, sig) Fs = 1.0/dxo if Fs_new is None: Fs_new = min(5.0*lowpass, Fs) # end if if Fs_new<Fs: sig = downsample_efficient(sig, Fs=Fs, Fs_new=Fs_new, plotit=False, halforder=2, lowpass=lowpass) xx = xx[0] + _np.arange(0, len(xx)/Fs, 1.0/Fs_new) Fs = Fs_new # end if # end if # ======= =# # Scale the data to make it simple xx, sig, scl = rescale(xx, sig, scaley=True, scalex=True) # offset = _np.nanmean(sig, axis=0) # sig -= offset sig = detrend(sig) # ======= =# N = len(xx) nfft = N dx = xx[1] - xx[0] L = N*dx # Get the wavenumber vector k = _np.fft.fftfreq(nfft, d=dx/L) k *= 2.0*_np.pi if modified: # Modified wave number # - Windowed with a sinc function to kill some of the ringing near the center # - Sunaina et al 2018 Eur. J. Phys. 39 065806 wavenumber = 1.0j*_np.sin(k*dx)/(dx) else: # Naive fft derivative (subject to ringing) wavenumber = 1.0j*k # end if wavenumber /= L # Calculate the derivative using fft if window is None: win = _np.ones_like(sig) else: win = window(nfft) # periodic hamming window is a good choice for the center of the domain # end if sig = win*sig # accurate at center of signal, no ringing, bad outside center # Calculate the derivative using fft ds0 = (sig[1]-sig[0])/(xx[1]-xx[0]) # beginning of boundary ds1 = (sig[-1]-sig[-2])/(xx[-1]-xx[-2]) # end point of boundary sig = _np.real(_np.fft.ifft(wavenumber*_np.fft.fft(sig, n=nfft), n=nfft)) # Unnormalize the center of the window sig /= win # accurate at center of signal, no ringing, bad outside center # discontinuity at end-points when not windowing sig[0] = ds0 sig[-1] = ds1 # Rescale back to the original data scale # sig += offset xx, _, sig = unscale(xx, sig.copy(), scl=scl, dydx=sig) # ======= =# # Low pass filter the data after calculating the FFT if requested if 0: # if lowpass: dx = xx[1] - xx[0] if lowpass is True: lowpass = 0.5*1.0/dx # end if Fs = 1.0/dx if Fs_new is None: Fs_new = min(5.0*lowpass, Fs) # end if if Fs_new<Fs: sig = downsample_efficient(sig, Fs=Fs, Fs_new=Fs_new, plotit=False, halforder=2, lowpass=lowpass) xx = xx[0] + _np.arange(0, len(xx)/Fs, 1.0/Fs_new) Fs = Fs_new # end if # end if # ======= =# return sig, xx # end def def test_fft_deriv(modified=True): for jj in range(1): if jj == 0: win = 'Unwindowed:' window = None elif jj == 1: win = 'Windowed:' window = _np.hamming for ii in range(5): N = int(2e3) L = 13.0 #interval of data dx = L/N xx = dx*_np.asarray(range(N)) if ii == 0: # Test with a rectangle function yy = _ut.rect(2.0*xx/L-0.75) dy_analytic = _ut.delta(2.0*xx/L-0.75+0.5) - _ut.delta(2.0*xx/L-0.75-0.5) titl = '%s Box function'%(win,) elif ii == 1: # Test with a gaussian function yy = _np.exp(-0.5*(xx/L)*(xx/L)/(0.25*0.25)) dy_analytic = (-1.0*(xx/L)*(1.0/L)/(0.25*0.25))*yy titl = '%s Gaussian function'%(win,) elif ii == 2: # Test with a line yy = _np.linspace(-1.2, 11.3, num=len(xx), endpoint=True) a = (yy[-1]-yy[0])/(xx[-1]-xx[0]) # b = yy[0] - a*xx[0] dy_analytic = a*_np.ones_like(yy) titl = '%s Linear function'%(win,) elif ii == 3: # Test with a sine yy = _np.sin(xx) dy_analytic = _np.cos(xx) titl = '%s Sine function: aperiodic boundary'%(win,) elif ii == 4: # Test with a sine xx = 6.0*_np.pi*xx/L yy = _np.sin(xx) dy_analytic = _np.cos(xx) xx = xx[:-1] yy = yy[:-1] dy_analytic = dy_analytic[:-1] titl = '%s Sine function: periodic boundary'%(win,) # end if # # add some random noise ## yy += 0.05*(_np.nanmax(yy)-_np.nanmin(yy))*_np.random.random(size=xx.shape) # yy += 0.05*yy*_np.random.random(size=xx.shape) dydt, xo = fft_deriv(yy, xx, modified=modified, window=window) _plt.figure('%s wavenumber: Test (%i,%i)'%('Modified' if modified else 'Unmodified',jj,ii+1)) _plt.plot(xx, yy, '-', label='function') _plt.plot(xx, dy_analytic, '-', label='analytical der') _plt.plot(xo, dydt, '*', label='fft der') _plt.title(titl) _plt.legend(loc='lower left') # end for # end for # _plt.savefig('images/fft-der.png') _plt.show() # end def test_fft_deriv() # ========================================================================= # # ========================================================================= # def Cxy_Cxy2(Pxx, Pyy, Pxy, ibg=None): #, thresh=1.e-6): Pxx = Pxx.copy() Pyy = Pyy.copy() Pxy = Pxy.copy() # Mean-squared coherence Pxx = _np.atleast_2d(Pxx) if _np.size(Pxx, axis=1) != _np.size(Pyy, axis=1): Pxx = Pxx.T*_np.ones( (1, _np.size(Pyy, axis=1)), dtype=Pxx.dtype) # end if Cxy2 = Pxy*_np.conj( Pxy )/( _np.abs(Pxx)*_np.abs(Pyy) ) # Cxy2 = _np.abs(Cxy2) # mean-squared coherence # Cxy = _np.sqrt(Cxy2) # RMS coherence # Complex coherence Cxy = Pxy/_np.sqrt( _np.abs(Pxx)*_np.abs(Pyy) ) if ibg is None: return Cxy, Cxy2 # Imaginary coherence iCxy = _np.imag(Cxy)/(1.0-_np.real(Cxy)) # Background subtracted coherence Cprime = _np.real(Cxy-_np.mean(Cxy[:,ibg], axis=-1)) \ /(1.0-_np.real(Cxy-_np.mean(Cxy[:,ibg], axis=-1))) return iCxy, Cprime # ========================================================================= # # ========================================================================= # #class fftmch(fftanal): class fftanal(Struct): afont = {'fontname':'Arial','fontsize':14} def __init__(self, tvec=None, sigx=None, sigy=None, **kwargs): self.verbose = kwargs.get( 'verbose', True) if tvec is None or sigx is None: if self.verbose: print('Please give at least a time-vector [s]' + ' and a signal vector [a.u.]') # end if return else: self.init(tvec, sigx, sigy, **kwargs) # self.fftpwelch() # endif # end __init__ def init(self, tvec=None, sigx=None, sigy=None, **kwargs): if sigy is None or sigx is sigy: self.nosigy = True else: self.nosigy = False #endif self.tvec = tvec self.sigx = sigx self.sigy = sigy # ======== # self.tbounds = kwargs.get( 'tbounds', [ tvec.min(), tvec.max() ] ) self.useMLAB = kwargs.get( 'useMLAB', False ) self.plotit = kwargs.get( 'plotit', False) self.verbose = kwargs.get( 'verbose', True) self.Navr = kwargs.get( 'Navr', None) self.window = kwargs.get( 'windowfunction', 'Hanning') #'SFT3F') if self.window is None: self.window = 'Hanning' # end if self.overlap = kwargs.get( 'windowoverlap', windows(self.window, verbose=False)) self.tvecy = kwargs.get( 'tvecy', None) self.onesided = kwargs.get('onesided', None) self.detrendstyle = kwargs.get('detrend', 1) # >0 mean, 0 None, <0 linear self.frange = kwargs.get('frange', None) self.axes = kwargs.get('axes', -1) if self.onesided is None: self.onesided = True if _np.iscomplexobj(sigx) or _np.iscomplexobj(sigy): self.onesided = False # end if # end if # ======== # # put the signals on the same time base for fourier tranfsormation if self.tvecy is not None: self.tvec, self.sigx, self.sigy = self.resample(tvec, sigx, self.tvecy, sigy) # end if self.Fs = self.__Fs__(self.tvec) self.ibounds = self.__ibounds__(self.tvec, self.tbounds) self.nsig = _np.size( self.__trimsig__(tvec, self.ibounds) ) calcNavr = False if self.Navr is None: calcNavr = True self.Navr = 8 # end if # if the window time is specified ... overwrite nwins, noverlap and Navr if 'minFreq' in kwargs: # if the minimum resolvable frequency is specificed kwargs['tper'] = 2.0/kwargs['minFreq'] # end if if 'tper' in kwargs: self.tper = kwargs['tper'] self.nwins = int(self.Fs*self.tper) else: calcNavr = False self.nwins = self.getNwins() # end if self.noverlap = self.getNoverlap() if calcNavr: self.Navr = self.getNavr() # end if self.win, self.winparams = self.makewindowfn(self.window, self.nwins, self.verbose) self.getNnyquist() self.getNorms() # end def init def update(self, d=None): if d is not None: if type(d) != dict: d = d.dict_from_class() # endif super(fftanal, self).__init__(d) # endif # end def update # =========================================================== # def fftpwelch(self): # Call the fft_pwelch function that is defined above self.freq, self.Pxy, self.Pxx, self.Pyy, \ self.Cxy, self.phi_xy, self.fftinfo = \ fft_pwelch(self.tvec, self.sigx, self.sigy, self.tbounds, Navr=self.Navr, windowoverlap=self.overlap, windowfunction=self.window, useMLAB=self.useMLAB, plotit=self.plotit, verbose=self.verbose, detrend_style=self.detrendstyle, onesided=self.onesided) self.update(self.fftinfo) def stft(self): if self.useMLAB: import scipy.signal as _dsp if not self.onesided or (type(self.onesided)==type('') and self.onesided.find('two')>-1): onesided = False elif self.onesided or (type(self.onesided)==type('') and self.onesided.find('one')>-1): onesided = True # end if self.freq, self.tseg, self.Xseg = _dsp.stft(self.sigx, fs=self.Fs, window=self.win, nperseg=self.nwins, noverlap=self.noverlap, nfft=self.nwins, detrend=self.detrend, return_onesided=onesided, boundary='zeros', padded=True, axis=self.axes) _, _, self.Yseg = _dsp.stft(self.sigy, fs=self.Fs, window=self.win, nperseg=self.nwins, noverlap=self.noverlap, nfft=self.nwins, detrend=self.detrend, return_onesided=onesided, boundary='zeros', padded=True, axis=self.axes) self.Pstft() self.averagewins() else: self.pwelch() # end if def pwelch(self): self.Xstft() if not self.nosigy: self.Ystft() self.Pstft() self.averagewins() # =============== # def crosscorr(self): #, fbnds=None): # cross correlation from the FFT # if we calculated one-sided spectra, then we have to add back # in the Nyquist components before inverse tranforming. # ==================== # nfft = self.nwins for param in ['Pxx', 'Pyy', 'Pxy']: if hasattr(self, param): tmp = getattr(self, param).copy() if self.onesided: # remaking the two-sided spectra for the auto-power tmp[..., 1:-1] *= 0.5 if nfft%2: # odd tmp[-1] *= 0.5 # end if tmp = _np.sqrt(nfft)*_np.fft.irfft(tmp, n=nfft, axis=-1) else: tmp = _np.fft.ifftshift(tmp, axes=-1) tmp = _np.sqrt(nfft)*_np.fft.ifft(tmp, n=nfft, axis=-1) # end if # cauchy energy integral == auto-correlation at zero-time lag if param.find('Pxx')>-1: setattr(self, 'Ex', tmp[..., 0].copy()) if param.find('Pyy')>-1: setattr(self, 'Ey', tmp[..., 0].copy()) # end if # shift the time-series of lagged correlations to be the normal smallest to largest tmp = _np.fft.fftshift(tmp, axes=-1) setattr(self, 'R'+param[1:], tmp) # end if # end for if hasattr(self, 'Rxy'): self.corrcoef = self.Rxy.copy()/(_np.ones((self.nch,1), dtype=self.Ey.dtype)*_np.sqrt(self.Ex*self.Ey)) # end if self.lags = (_np.asarray(range(1, nfft+1), dtype=int)-self.Nnyquist)/self.Fs # end def def crosscorr_stft(self): #, fbnds=None): # cross correlation from the FFT # if we calculated one-sided spectra, then we have to add back # in the Nyquist components before inverse tranforming. # ==================== # nfft = self.nwins for param in ['Pxx_seg', 'Pyy_seg', 'Pxy_seg']: if hasattr(self, param): tmp_seg = getattr(self, param).copy() if self.onesided: # remaking the two-sided spectra for the auto-power tmp_seg[...,1:-1] *= 0.5 if nfft%2: # odd tmp_seg[..., -1] *= 0.5 # end if tmp_seg = _np.sqrt(nfft)*_np.fft.irfft(tmp_seg, n=nfft, axis=-1) else: tmp_seg = _np.fft.ifftshift(tmp_seg, axes=-1) tmp_seg = _np.sqrt(nfft)*_np.fft.ifft(tmp_seg, n=nfft, axis=-1) # end if # cauchy energy integral == auto-correlation at zero-time lag if param.find('Pxx')>-1: setattr(self, 'Ex_seg', tmp_seg[..., 0].copy()) if param.find('Pyy')>-1: setattr(self, 'Ey_seg', tmp_seg[..., 0].copy()) # end if # shift the time-series of lagged correlations to be the normal smallest to largest tmp_seg = _np.fft.fftshift(tmp_seg, axes=-1) setattr(self, 'R'+param[1:], tmp_seg) # end if # end for if hasattr(self, 'Rxy_seg'): self.corrcoef_seg = self.Rxy_seg.copy()/(_np.ones((self.nch,1), dtype=self.Ey_seg.dtype)*_np.sqrt(self.Ex_seg*self.Ey_seg)) # end if self.lags = (_np.asarray(range(1, nfft+1), dtype=int)-self.Nnyquist)/self.Fs # end def # =============== # def Xstft(self): # Perform the loop over averaging windows to generate the short time four. xform # Note that the zero-frequency component is in the middle of the array (2-sided transform) sig = self.__trimsig__(self.sigx, self.ibounds) tvec = self.__trimsig__(self.tvec, self.ibounds) self.tseg, self.freq, self.Xseg, self.Xpow = self.fft_win(sig, tvec) # frequency [cycles/s], STFT [Navr, nfft] self.Xfft = _np.mean(self.Xseg, axis=0) return self.freq, self.Xseg def Ystft(self): # Perform the loop over averaging windows to generate the short time four. xform # Note that the zero-frequency component is in the middle of the array (2-sided transform) sig = self.__trimsig__(self.sigy, self.ibounds) tvec = self.__trimsig__(self.tvec, self.ibounds) self.tseg, self.freq, self.Yseg, self.Ypow = self.fft_win(sig, tvec) # frequency [cycles/s], STFT [Navr, nfft] self.Yfft = _np.mean(self.Yseg, axis=0) #self.tseg = self.tbounds[0]+(self.arange(self.Navr)+0.5)*self.tper return self.freq, self.Yseg def Pstft(self): if hasattr(self,'Xseg'): self.Pxx_seg = self.Xseg*_np.conj(self.Xseg) self.Lxx_seg = _np.sqrt(_np.abs(self.ENBW*self.Pxx_seg)) # [V_rms] if self.onesided: self.Lxx_seg = _np.sqrt(2)*self.Lxx_seg # V_amp if hasattr(self,'Yseg'): self.Pyy_seg = self.Yseg*_np.conj(self.Yseg) self.Lyy_seg = _np.sqrt(_np.abs(self.ENBW*self.Pyy_seg)) # [V_rms] if self.onesided: self.Lyy_seg = _np.sqrt(2)*self.Lyy_seg # V_amp if hasattr(self, 'Xseg') and hasattr(self,'Yseg'): self.Pxy_seg = self.Xseg*_np.conj(self.Yseg) self.Lxy_seg = _np.sqrt(_np.abs(self.ENBW*self.Pxy_seg)) # [V_rms] if self.onesided: self.Lxy_seg = _np.sqrt(2)*self.Lxy_seg # V_amp # Save the cross-phase as well self.phixy_seg = _np.angle(self.Pxy_seg) # [rad], Cross-phase of each segment # Mean-squared Coherence self.Cxy_seg, self.Cxy2_seg = Cxy_Cxy2(self.Pxx_seg, self.Pyy_seg, self.Pxy_seg) # end def # =============== # def averagewins(self): for param in ['Pxx', 'Pyy', 'Pxy']: if hasattr(self, param+'_seg'): # Use the mean of the windows # self.Pxx = _np.mean(self.Pxx_seg, axis=0) setattr(self, param, _np.mean(getattr(self, param+'_seg'), axis=0)) # use the RMS for the standard deviation # self.varPxx = _np.mean(self.Pxx_seg**2.0, axis=0) # setattr(self, 'var'+param, _np.mean(getattr(self, param+'_seg')**2.0, axis=0) ) # Else use the normal statistical estimate: # self.varPxx = (self.Pxx/_np.sqrt(self.Navr))**2.0 setattr(self, 'var'+param, (getattr(self, param)/_np.sqrt(self.Navr))**2.0) # end if # end for if hasattr(self, 'Pxy'): # Cross-phase as well self.phi_xy = _np.angle(self.Pxy) # Complex coherence and Mean-squared coherence self.Cxy, self.Cxy2 = Cxy_Cxy2(self.Pxx, self.Pyy, self.Pxy) # ========================== # # Uncertainty and phase part # Estimate the variance in the power spectra: this requires building # a distribution by varying the parameters used in the FFT, nwindows, # nfft, windowfunction, etc. I don't do this right now # self.varPxy = self.Pxx*self.Pyy*(1.0-self.Cxy)/self.Navr # <NAME>, Phys. Plasmas, 17 056103, 2010 # Doesn't so far give a convincing answer... # fftinfo.varPhxy = _np.zeros(Pxy.shape, dtype=_np.float64) self.varPhxy = (_np.sqrt(1.0-self.Cxy2)/_np.sqrt(2.0*self.Navr*self.Cxy))**2.0 # derived using error propagation from eq 23 for gamma^2 in # <NAME>, Journal of Sound an Vibration 59(3), 405-421, 1978 # fftinfo.varCxy = _np.zeros_like(Cxy) self.varCxy = ((1-self.Cxy2)/_np.sqrt(2*self.Navr))**2.0 self.varCxy2 = 4.0*self.Cxy2*self.varCxy # d/dx x^2 = 2 *x ... var: (2*x)^2 * varx # end if # end def averagewins # =============== # def convert2amplitudes(self): # Linear amplitude spectrum from the power spectral density # RMS Linear amplitude spectrum (constant amplitude values) # for param in ['Pxx', 'Pyy', 'Pxy']: if hasattr(self, param): # self.Lxx = _np.sqrt(_np.abs(self.ENBW*self.Pxx)) # [V_rms] tmp = _np.sqrt(_np.abs(self.ENBW*getattr(self, param))) # [V_rms]) if self.onesided: # Rescale RMS values to Amplitude values (assumes a zero-mean sine-wave) # Just the points that split their energy into negative frequencies # self.Lxx[1:-1] = _np.sqrt(2)*self.Lxx[1:-1] # [V], tmp[1:-1] = _np.sqrt(2)*tmp[1:-1] # [V], if self.nfft%2: # Odd # self.Lxx[-1] = _np.sqrt(2)*self.Lxx[-1] tmp[-1] = _np.sqrt(2)*tmp[-1] # [V], TODO:! test! # endif nfft/2 is odd # end if onesided setattr(self, 'L'+param[1:], tmp) # [V]) # self.varLxx = (self.Lxx**2)*(self.varPxx/_np.abs(self.Pxx)**2) setattr(self, 'varL'+param[1:], (tmp**2)*(getattr(self, 'var'+param)/_np.abs(getattr(self, param))**2) ) # end if # end for # end def # ====================================================================== # # ====================================================================== # def getNavr(self): self.Navr = fftanal._getNavr(self.nsig, self.nwins, self.noverlap) return self.Navr # end def getNavr def getNwins(self): self.nwins = fftanal._getNwins(self.nsig, self.Navr, self.overlap) return self.nwins # end def getNwins def getNoverlap(self): # Number of points to overlap self.noverlap = fftanal._getNoverlap(self.nwins, self.overlap) return self.noverlap def getNnyquist(self): self.Nnyquist = self._getNnyquist(self.nwins) return self.Nnyquist def getNorms(self): # Define normalization constants self.S1, self.S2, self.NENBW, self.ENBW = fftanal._getNorms(self.win, self.Nnyquist, self.Fs) # end def # ===================================================================== # def integrate_spectra(self): # TODO: CHECK ACCURACY OF THIS! self.integrated = Struct() [ self.integrated.Pxy, self.integrated.Pxx, self.integrated.Pyy, self.integrated.Cxy, self.integrated.ph, self.integrated.info ] = \ integratespectra(self.freq, self.Pxy, self.Pxx, self.Pyy, self.frange, self.varPxy, self.varPxx, self.varPyy) # end def # ===================================================================== # def detrend(self, sig): detrender = fftanal._detrend_func(detrend_style=self.detrendstyle) return detrender(sig) def fft(self, sig, nfft=None, axes=None): #The FFT output from matlab isn't normalized: # y_n = sum[ y_m.*exp( 2_np.pi*1i*(n/N)*m ) ] # The inverse is normalized:: # y_m = (1/N)*sum[ y_n.*exp( -2_np.pi*1i*(n/N)*m ) ] # # Python normalizations are optional, pick it to match MATLAB if axes is None: axes = self.axes # end if if nfft is None: nfft = self.nfft # end if return _np.fft.fft(sig, n=nfft, axis=axes) def ifft(self, sig, nfft=None, axes=None): #The FFT output from matlab isn't normalized: # y_n = sum[ y_m.*exp( 2_np.pi*1i*(n/N)*m ) ] # The inverse is normalized:: # y_m = (1/N)*sum[ y_n.*exp( -2_np.pi*1i*(n/N)*m ) ] # # Python normalizations are optional, pick it to match MATLAB if axes is None: axes = self.axes # end if if nfft is None: nfft = self.nfft # end if return _np.fft.ifft(sig, n=nfft, axis=axes) def fftshift(self, sig, axes=None): if axes is None: axes = self.axes # end if return _np.fft.fftshift(sig, axes=axes) def ifftshift(self, sig, axes=None): if axes is None: axes = self.axes # end if return _np.fft.ifftshift(sig, axes=axes) def fft_win(self, sig, tvec=None, detrendwin=False): x_in = sig.copy() if tvec is None: tvec = _np.linspace(0.0, 1.0, len(x_in)) # endif win = self.win nwins = self.nwins Navr = self.Navr noverlap = self.noverlap # Fs = self.Fs Fs = self.__Fs__(tvec) Nnyquist = self.Nnyquist nfft = nwins # Define normalization constants for the window S1 = self.S1 S2 = self.S2 ENBW = self.ENBW # Equivalent noise bandwidth # ===== # # detrend the whole background, like most programs do it if not detrendwin: x_in = self.detrend(x_in) # end if # ===== # ist = _np.arange(Navr)*(nwins-noverlap) Xfft = _np.zeros((Navr, nfft), dtype=_np.complex128) tt = _np.zeros( (Navr,), dtype=float) pseg = _np.zeros( (Navr,), dtype=float) for gg in _np.arange(Navr): istart = ist[gg] #Starting point of this window iend = istart+nwins #End point of this window if gg == 0: self.tper = tvec[iend]-tvec[istart] # endif tt[gg] = _np.mean(tvec[istart:iend]) xtemp = x_in[istart:iend] # Windowed signal segment: # - To get the most accurate spectrum, background subtract # xtemp = win*_dsp.detrend(xtemp, type='constant') if detrendwin: # this is only good when the background is not evolving! xtemp = self.detrend(xtemp) # end if xtemp = win*xtemp pseg[gg] = _np.trapz(xtemp*_np.conj(xtemp), x=tvec[istart:iend]).real Xfft[gg,:] = self.fft(xtemp, nfft) #endfor loop over fft windows freq = _np.fft.fftfreq(nfft, 1.0/Fs) if self.onesided: freq = freq[:Nnyquist] # [Hz] Xfft = Xfft[:,:Nnyquist] # freq = freq[:Nnyquist-1] # [Hz] # Xfft = Xfft[:,:Nnyquist-1] # Real signals equally split their energy between positive and negative frequencies Xfft[:, 1:-1] = _np.sqrt(2)*Xfft[:, 1:-1] if nfft%2: # odd Xfft[:,-1] = _np.sqrt(2)*Xfft[:,-1] # endif else: freq = self.fftshift(freq, axes=0) Xfft = self.fftshift(Xfft, axes=-1) # end if # Remove gain of the window function to yield the RMS Power spectrum # in each segment (constant peak amplitude) Xfft /= S1 # Vrms pseg /= S2 # Compute the spectral density from the RMS spectrum # (constant noise floor) Xfft /= _np.sqrt(ENBW) # [V/Hz^0.5] return tt, freq, Xfft, pseg # ===================================================================== # # ===================================================================== # def plotall(self): # The input signals versus time self.fig = _plt.figure(figsize=(15,15)) self.ax1 = _plt.subplot(2,3,1) # time-series self.ax2 = _plt.subplot(2,3,2) # correlation coeff self.ax3 = _plt.subplot(2,3,3) # power spectra self.ax4 = _plt.subplot(2,3,4, sharex=self.ax2) # spectrogram self.ax5 = _plt.subplot(2,3,5, sharex=self.ax3) # phase coherence self.ax6 = _plt.subplot(2,3,6, sharex=self.ax3) # cross-phase _ax1 = self.plottime(_ax=self.ax1) _ax2 = self.plotCorr(_ax=self.ax2) _ax3 = self.plotPxy(_ax=self.ax3) _ax4 = self.plotspec(param='Pxy', logscale=True, _ax=self.ax4) # _ax4, _ax2 = self.plotCorrelations(_ax=[self.ax4, self.ax2]) _ax5 = self.plotCxy(_ax=self.ax5) _ax6 = self.plotphxy(_ax=self.ax6) _plt.tight_layout() _plt.draw() return _ax1, _ax2, _ax3, _ax4, _ax5, _ax6 def plotspec(self, param='Pxy', logscale=False, _ax=None, vbnds=None, cmap=None): # spectrogram # Minimum resolvable frequency, Maximum resolvable frequency (or bounded if the freq vector has been trimmed) fbounds = [1e-3*max((2.0*self.Fs/self.nwins, self.freq.min())), 1e-3*min((self.Fs/2.0, self.freq.max()))] _ax = fftanal._plotspec(self.tseg, self.freq, getattr(self, param+'_seg').copy(), logscale=logscale, _ax=_ax, vbnds=vbnds, cmap=cmap, titl=param, ylbl='freq [KHz]', xlbl='time [s]', tbounds=self.tbounds, fbounds=fbounds) # spectrogram return _ax # end def def plotCorrelations(self, axs=None): plotCorr = fftanal._plotCorr if axs is None: _plt.figure() _ax1 = _plt.subplot(4,1,1) _ax2 = _plt.subplot(4,1,2, sharex=_ax1, sharey=_ax1) _ax3 = _plt.subplot(4,1,3, sharex=_ax1, sharey=_ax1) _ax4 = _plt.subplot(4,1,4, sharex=_ax1) axs = [_ax1, _ax2, _ax3, _ax4] # end if axs = _np.atleast_1d(axs) if len(axs) == 1: _ax = plotCorr(self.lags, self.corrcoef, _ax=axs[0], scl=1e6, afont=self.afont, titl=None, ylbl=r'$\rho_{xy}$', fmt='k-') return _ax elif len(axs) == 2: _ax1 = plotCorr(self.lags, self.Rxx, _ax=axs[0], scl=1e6, afont=self.afont, titl='Correlations', xlbl=None, ylbl=r'$R_{xx}$', fmt='b-') plotCorr(self.lags, self.Ryy, _ax=axs[0], scl=1e6, afont=self.afont, titl=None, xlbl=None, ylbl=r'$R_{yy}$', fmt='r-') plotCorr(self.lags, self.Rxy, _ax=axs[0], scl=1e6, afont=self.afont, titl=None, xlbl=None, ylbl=r'$R_{xy}$', fmt='k-') _ax2 = plotCorr(self.lags, self.corrcoef, _ax=axs[1], scl=1e6, afont=self.afont, titl='Cross-Correlation', ylbl=r'$\rho_{xy}$', fmt='k-') return _ax1, _ax2 elif len(axs) == 3: _ax1 = plotCorr(self.lags, self.Rxx, _ax=axs[0], scl=1e6, afont=self.afont, titl='Auto-Correlation', xlbl=None, ylbl=r'$R_{xx}$', fmt='b-') _ax2 = plotCorr(self.lags, self.Ryy, _ax=axs[1], scl=1e6, afont=self.afont, titl='Auto-Correlation', xlbl=None, ylbl=r'$R_{yy}$', fmt='r-') _ax3 = plotCorr(self.lags, self.Rxy, _ax=axs[2], scl=1e6, afont=self.afont, titl='Cross-Correlation', xlbl=None, ylbl=r'$R_{xy}$', fmt='k-') return _ax1, _ax2, _ax3 else: _ax1 = plotCorr(self.lags, self.Rxx, _ax=axs[0], scl=1e6, afont=self.afont, titl='Cross-Correlation', xlbl='', ylbl=r'$R_{xx}$', fmt='b-') _ax2 = plotCorr(self.lags, self.Ryy, _ax=axs[1], scl=1e6, afont=self.afont, titl=None, xlbl='', ylbl=r'$R_{yy}$', fmt='r-') _ax3 = plotCorr(self.lags, self.Rxy, _ax=axs[2], scl=1e6, afont=self.afont, titl=None, xlbl='', ylbl=r'$R_{xy}$', fmt='k-') _ax4 = plotCorr(self.lags, self.corrcoef, _ax=axs[3], scl=1e6, afont=self.afont, titl=None, ylbl=r'$\rho_{xy}$', fmt='k-') return _ax1, _ax2, _ax3, _ax4 # end if # end def # ===================================================================== # def plottime(self, _ax=None): _ax = fftanal._plotSignal([self.tvec, self.tvec], [self.sigx, self.sigy], _ax=_ax, scl=1.0, afont=self.afont, titl='Input Signals', ylbl='Sigx, Sigy', fmt='k-', tbounds=self.tbounds) return _ax def plotCorr(self, _ax=None): _ax = fftanal._plotCorr(self.lags, self.corrcoef, _ax=_ax, scl=1e6, afont=self.afont, titl=None, ylbl=r'$\rho_{xy}$', fmt='k-') return _ax def plotPxy(self, _ax=None): _ax = fftanal._plotlogAmp(self.freq, self.Pxx, self.Pyy, self.Pxy, afont=self.afont, _ax=_ax, scl=1e-3) return _ax def plotCxy(self, _ax=None): _ax = fftanal._plotMeanSquaredCoherence(self.freq, self.Cxy2, afont=self.afont, _ax=_ax, scl=1e-3, Navr=self.Navr) return _ax def plotphxy(self, _ax=None): _ax = fftanal._plotPhase(self.freq, self.phi_xy, afont=self.afont, _ax=_ax, scl=1e-3) return _ax # ===================================================================== # # ===================================================================== # def __calcAmp__(self, tvec, sigx, sigy, tbounds, nn=8, ol=0.5, ww='hanning'): # The amplitude is most accurately calculated by using several windows self.frqA, self.Axy, self.Axx, self.Ayy, self.aCxy, _, _ = \ fft_pwelch(tvec, sigx, sigy, tbounds, Navr=nn, windowoverlap=ol, windowfunction=ww, useMLAB=self.useMLAB, plotit=0, verbose=self.verbose, detrend_style=self.detrendstyle, onesided=self.onesided) self.__plotAmp__() # end def def __calcPh1__(self, tvec, sigx, sigy, tbounds, nn=1, ol=0.0, ww='box'): # The amplitude is most accurately calculated by using several windows self.frqP, _, _, _, _, self.ph, _ = \ fft_pwelch(tvec, sigx, sigy, tbounds, Navr=nn, windowoverlap=ol, windowfunction=ww, useMLAB=self.useMLAB, plotit=0, verbose=self.verbose, detrend_style=self.detrendstyle, onesided=self.onesided) self.__plotPh1__() # end def def __plotAmp__(self, _ax=None): fftanal._plotlogAmp(self.frqA, self.Axx, self.Ayy, self.Axy, afont=self.afont, _ax=_ax, scl=1e-3) def __plotPh1__(self, _ax=None): fftanal._plotPhase(self.frqP, self.ph, afont=self.afont, _ax=_ax, scl=1e-3) # ===================================================================== # def __preallocateFFT__(self): #Inputs self.tvec = _np.array([], dtype=_np.float64) #Outputs self.freq = _np.array([], dtype=_np.float64) self.Pxy = _np.array([], dtype = _np.complex128) self.Pxx = _np.array([], dtype = _np.complex128) self.Pyy = _np.array([], dtype = _np.complex128) self.varPxy = _np.array([], dtype = _np.complex128) self.varPxx = _np.array([], dtype = _np.complex128) self.varPyy = _np.array([], dtype = _np.complex128) self.Coh = _np.array([], dtype=_np.float64) self.varCoh = _np.array([], dtype=_np.float64) self.phi = _np.array([], dtype=_np.float64) self.varphi = _np.array([], dtype=_np.float64) #end __preallocateFFT__ # ===================================================================== # # ===================================================================== # @staticmethod def resample(tvx, sigx, tvy, sigy): Fsx = fftanal.__Fs__(tvx) Fsy = fftanal.__Fs__(tvy) if len(sigx) > len(sigy): sigy = upsample(sigy, Fsy, Fsx) tvec = tvx elif len(sigy) > len(sigx): sigx = upsample(sigx, Fsx, Fsy) tvec = tvy return tvec, sigx, sigy @staticmethod def __Fs__(tvec): return (len(tvec)-1)/(tvec[-1]-tvec[0]) @staticmethod def __ibounds__(tvec, tbounds): ib1 = int(_np.floor((tbounds[0]-tvec[0])*fftanal.__Fs__(tvec))) ib2 = int(_np.floor(1 + (tbounds[1]-tvec[0])*fftanal.__Fs__(tvec))) return [ib1, ib2] @staticmethod def __trimsig__(sigt, ibounds): return sigt[ibounds[0]:ibounds[1]] # ===================================================================== # @staticmethod def makewindowfn(windowfunction, nwins, verbose=True): #Define windowing function for apodization win, winparams = windows(windowfunction, nwins=nwins, verbose=verbose, msgout=True) return win, winparams # ===================================================================== # """ Must know two of these inputs to determine third k = # windows, M = Length of data to be segmented, L = length of segments, K = (M-NOVERLAP)/(L-NOVERLAP) Navr = (nsig-noverlap)/(nwins-noverlap) nwins = (nsig - noverlap)/Navr + noverlap noverlap = (nsig - nwins*Navr)/(1-Navr) noverlap = windowoverlap*nwins nwins = nsig/(Navr-Navr*windowoverlap + windowoverlap) """ @staticmethod def _getNwins(nsig, Navr, windowoverlap): # Heliotron-J nwins = int(_np.floor(nsig*1.0/(Navr-Navr*windowoverlap + windowoverlap))) if nwins>=nsig: nwins = nsig # end if return nwins @staticmethod def _getNoverlap(nwins, windowoverlap): return int( _np.ceil( windowoverlap*nwins ) ) @staticmethod def _getNavr(nsig, nwins, noverlap): if nwins>= nsig: return int(1) else: return (nsig-noverlap)//(nwins-noverlap) # end def getNavr @staticmethod def __getNwins(nsig, Navr, noverlap): nwins = (nsig-noverlap)//Navr+noverlap if nwins>= nsig: return nsig else: return nwins # end def getNwins @staticmethod def __getNoverlap(nsig, nwins, Navr): if nwins>= nsig: return 0 else: return (nsig-nwins*Navr)//(1-Navr) # end if # end def getNoverlap @staticmethod def _getMINoverlap(nsig, nwins, Navr): noverlap = 1 while fftanal._checkCOLA(nsig, nwins, noverlap) == False and noverlap<1e4: noverlap += 1 # end while return noverlap @staticmethod def _getMAXoverlap(nsig, nwins, Navr): noverlap = _np.copy(nwins)-1 while fftanal._checkCOLA(nsig, nwins, noverlap) == False and noverlap>0: noverlap -= 1 # end while return noverlap @staticmethod def _checkCOLA(nsig, nwins, noverlap): return (nsig - nwins) % (nwins-noverlap) == 0 @staticmethod def _getNnyquist(nfft): Nnyquist = nfft//2 # Even if nfft % 2: # Odd # nyq = nfft//2 +1 Nnyquist = (nfft+1)//2 # end if # Nnyquist = nfft//2 + 1 # if (nfft%2): # odd # Nnyquist = (nfft+1)//2 # # end if the remainder of nfft / 2 is odd ## Nnyquist = nfft//2 return Nnyquist @staticmethod def _getS1(win): return _np.sum(win) @staticmethod def _getS2(win): return _np.sum(win**2.0) @staticmethod def _getNENBW(Nnyquist, S1, S2): return Nnyquist*1.0*S2/(S1**2) # Normalized equivalent noise bandwidth @staticmethod def _getENBW(Fs, S1, S2): return Fs*S2/(S1**2) # Effective noise bandwidth @staticmethod def _getNorms(win, Nnyquist, Fs): S1 = fftanal._getS1(win) S2 = fftanal._getS2(win) # Normalized equivalent noise bandwidth NENBW = fftanal._getNENBW(Nnyquist, S1, S2) ENBW = fftanal._getENBW(Fs, S1, S2) # Effective noise bandwidth return S1, S2, NENBW, ENBW # ===================================================================== # @staticmethod def intspectra(freq, sigft, ifreq=None, ispan=None, ENBW=None): """ This function integrates the spectra over a specified range. """ if ifreq is None: ifreq = _np.argmax(_np.abs(sigft), axis=0) if ENBW is not None: ispan = 2*_np.where(freq>=ENBW)[0][0] elif ispan is None: ispan = 6 # end if ilow = ifreq-ispan//2 ihigh = ifreq+ispan//2 elif ispan is None: ilow = 0 ihigh = len(sigft) # end Isig = _np.trapz(sigft[ilow:ihigh], freq[ilow:ihigh], axis=0) Ivar = _np.zeros_like(Isig) # TODO!: decide if you want to use trapz_var or not return Isig, Ivar @staticmethod def _detrend_func(detrend_style=None): if detrend_style is None: detrend_style = 0 # end if if detrend_style > 0: detrend = detrend_mean # ------- Mean detrending ========= # elif detrend_style < 0: detrend = detrend_linear # ------ Linear detrending ======== # else: # detrend_style == 0: detrend = detrend_none # -------- No detrending ========== # # end if return detrend # ===================================================================== # @staticmethod def _fft_win(sig, **kwargs): x_in = sig.copy() tvec = kwargs.get('tvec', None) detrendwin = kwargs.get('detrendwin', False) onesided = kwargs.get('onesided', False) win = kwargs['win'] nwins = kwargs['nwins'] Navr = kwargs['Navr'] noverlap = kwargs['noverlap'] Nnyquist = kwargs['Nnyquist'] detrender = fftanal._detrend_func(detrend_style=kwargs['detrend_style']) # Define normalization constants for the window S1 = kwargs['S1'] S2 = kwargs['S2'] ENBW = kwargs['ENBW'] # Equivalent noise bandwidth if tvec is None: tvec = _np.linspace(0.0, 1.0, len(x_in)) # endif Fs = kwargs.get('Fs', fftanal.__Fs__(tvec)) nfft = nwins nch = 1 if len(x_in.shape)>1: _, nch = x_in.shape # end if # ===== # # detrend the whole background, like most programs do it if not detrendwin: x_in = detrender(x_in) # end if # ===== # ist = _np.arange(Navr)*(nwins-noverlap) Xfft = _np.zeros((nch, Navr, nfft), dtype=_np.complex128) tt = _np.zeros( (Navr,), dtype=float) pseg = _np.zeros( (nch, Navr,), dtype=float) for gg in _np.arange(Navr): istart = ist[gg] #Starting point of this window iend = istart+nwins #End point of this window tt[gg] = _np.mean(tvec[istart:iend]) xtemp = x_in[istart:iend, ...] # Windowed signal segment: # - To get the most accurate spectrum, background subtract # xtemp = win*_dsp.detrend(xtemp, type='constant') if detrendwin: # this is only good when the background is not evolving! xtemp = detrender(xtemp, axes=0) # end if xtemp = (_np.atleast_2d(win).T*_np.ones((1,nch), dtype=xtemp.dtype))*xtemp pseg[..., gg] = _np.trapz(xtemp**2.0, x=tvec[istart:iend], axes=0) Xfft[..., gg,:nfft] = _np.fft.fft(xtemp, n=nfft, axes=0).T # nch, Navr, nfft #endfor loop over fft windows freq = _np.fft.fftfreq(nfft, 1.0/Fs) if onesided: freq = freq[:Nnyquist] # [Hz] Xfft = Xfft[...,:Nnyquist] # Real signals equally split their energy between positive and negative frequencies Xfft[..., 1:-1] = _np.sqrt(2)*Xfft[..., 1:-1] if nfft%2: # odd Xfft[...,-1] = _np.sqrt(2)*Xfft[...,-1] # endif else: freq = _np.fft.fftshift(freq, axes=0) Xfft = _np.fft.fftshift(Xfft, axes=-1) # end if # in the case of one-channel input, don't over expand stuff pseg = pseg.squeeze() Xfft = Xfft.squeeze() # Remove gain of the window function to yield the RMS Power spectrum # in each segment (constant peak amplitude) Xfft /= S1 # Vrms pseg /= S2 # Compute the spectral density from the RMS spectrum # (constant noise floor) Xfft /= _np.sqrt(ENBW) # [V/Hz^0.5] return tt, freq, Xfft, pseg @staticmethod def _plotspec(tseg, freq, Pxy_seg, logscale=False, _ax=None, vbnds=None, cmap=None, tbounds=None, titl=r'P$_{xy}', ylbl='freq [KHz]', xlbl='time [s]', fbounds=None): # spectrogram spec =
_np.abs(Pxy_seg)
numpy.abs
#!/usr/bin/env python import sys import os.path from os.path import join as PJ import re import json import numpy as np from tqdm import tqdm import igraph as ig import jgf import pandas as pd import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numbers def isFloat(value): if(value is None): return False try: numericValue = float(value) return np.isfinite(numericValue) except ValueError: return False def isNumberObject(value): return isinstance(value, numbers.Number) class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): ret = int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): ret = float(obj) elif isinstance(obj, (np.ndarray,)): ret = obj.tolist() else: ret = json.JSONEncoder.default(self, obj) if isinstance(ret, (float)): if math.isnan(ret): ret = None if isinstance(ret, (bytes, bytearray)): ret = ret.decode("utf-8") return ret results = {"errors": [], "warnings": [], "brainlife": [], "datatype_tags": [], "tags": []} def warning(msg): global results results['warnings'].append(msg) #results['brainlife'].append({"type": "warning", "msg": msg}) print(msg) def error(msg): global results results['errors'].append(msg) #results['brainlife'].append({"type": "error", "msg": msg}) print(msg) def exitApp(): global results with open("product.json", "w") as fp: json.dump(results, fp, cls=NumpyEncoder) if len(results["errors"]) > 0: sys.exit(1) else: sys.exit() def exitAppWithError(msg): global results results['errors'].append(msg) #results['brainlife'].append({"type": "error", "msg": msg}) print(msg) exitApp() configFilename = "config.json" argCount = len(sys.argv) if(argCount > 1): configFilename = sys.argv[1] outputDirectory = "output" figuresOutputDirectory = PJ(outputDirectory,"figures") with open("template/index.html", "r") as fd: htmlTemplate = fd.read(); with open("template/styles.css", "r") as fd: stylesTemplate = fd.read(); if(not os.path.exists(outputDirectory)): os.makedirs(outputDirectory) if(not os.path.exists(figuresOutputDirectory)): os.makedirs(figuresOutputDirectory) with open(configFilename, "r") as fd: config = json.load(fd) # "transform":"absolute", //"absolute" or "signed" # "retain-weights":false, # "threshold": "none" networks = jgf.igraph.load(config["network"], compressed=True) nullNetworks = None if("nullmodels" in config and config["nullmodels"]): nullNetworks = jgf.igraph.load(config["nullmodels"], compressed=True) binsCount = 25 if(len(networks)>1): warning("Input files have more than one network. Only the first entry was used to compose the report.") if(len(networks)==0): exitAppWithError("The network file should contain at least one network.") else: network = networks[0]; networkAttributesKeys = network.attributes() networkAttributes = [[] for _ in networkAttributesKeys]; distributionPlots = []; for keyIndex,key in enumerate(networkAttributesKeys): value = network[key] if(isFloat(value)): networkAttributes[keyIndex].append("%.3g"%value) else: networkAttributes[keyIndex].append(value) if(nullNetworks): nullValues = [] if(isFloat(value)): for nullNetwork in nullNetworks: if(key in nullNetwork.attributes()): if(isFloat(nullNetwork[key])): nullValues.append(nullNetwork[key]); if(nullValues): nullAverage =
np.average(nullValues)
numpy.average
import h5py import numpy as np from numpy.fft import fft2, ifft2, fftshift, ifftshift import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') def spectral_derivative(array, wvn): return ifft2((1j * wvn * (fft2(array)))) # Load the data: filename = 'scalar_fixed_noRand' data_path = '../../data/{}.hdf5'.format(filename) data_file = h5py.File(data_path, 'r') # Loading grid array data: x, y = data_file['grid/x'], data_file['grid/y'] X, Y = np.meshgrid(x[:], y[:]) Nx, Ny = x[:].size, y[:].size dx, dy = x[1] - x[0], y[1] - y[0] # k-space arrays and meshgrid: dkx = 2 * np.pi / (Nx * dx) dky = 2 * np.pi / (Ny * dy) # K-space spacing kx = np.fft.fftshift(np.arange(-Nx // 2, Nx // 2) * dkx) ky = np.fft.fftshift(np.arange(-Ny // 2, Ny // 2) * dky) Kx, Ky = np.meshgrid(kx, ky) # K-space meshgrid psi = data_file['initial_state/psi'][:, :] # Calculate the mass current: dpsi_x = spectral_derivative(psi, Kx) dpsi_y = spectral_derivative(psi, Ky) nv_x = (np.conj(psi) * dpsi_x - np.conj(dpsi_x) * psi) / (2 * 1j) nv_y = (np.conj(psi) * dpsi_y - np.conj(dpsi_y) * psi) / (2 * 1j) dnv_x_y = spectral_derivative(nv_x, Ky) dnv_y_x = spectral_derivative(nv_y, Kx) pseudo_vort = -dnv_x_y + dnv_y_x fig, ax = plt.subplots(1, 2, figsize=(16, 8)) for axis in ax: axis.set_aspect('equal') axis.set_xlabel(r'$x/\xi$') ax[0].set_ylabel(r'$y/\xi$') ax[0].set_title(r'$|\psi|^2$') ax[1].set_title(r'$\nabla \times n\vec{v}$') vort_cvals =
np.linspace(-500, 500, 100)
numpy.linspace
import numpy as np # Load parameters params = np.loadtxt("input/parameters.txt", dtype=str, delimiter=':') # Random numbers seed seed = int(params[params[:, 0] == "seed", 1]) rng = np.random.default_rng(seed) # nu values max_nu = float(params[params[:, 0] == "max nu", 1]) # Load training set training_set = np.loadtxt("input/training_set.csv", dtype=float, delimiter=',') # Number of samples n_samples = training_set.shape[0] # Number of features n_features = training_set.shape[1] # Number of presenters sets n_presenters_sets = int(params[params[:, 0] == "presenters sets", 1]) # Number of detectors n_detectors = n_features * n_presenters_sets # Load training set cluster labels labels = np.loadtxt("input/labels.csv", dtype=int, delimiter=',') # Unique clusters and number of samples in each one clusters, clusters_n_samples = np.unique(labels, return_counts=True) # Number of clusters n_clusters = len(clusters) # Empty clusters clusters_samples = [] # Assign samples to clusters for cluster, cluster_index in zip(clusters, range(n_clusters)): clusters_samples.append(np.empty((clusters_n_samples[cluster_index]), dtype=int)) sample_count = 0 for label, sample_index in zip(labels, range(n_samples)): if (label == cluster): clusters_samples[cluster_index][sample_count] = sample_index sample_count += 1 # Build samples queue samples_queue =
np.ravel(clusters_samples)
numpy.ravel
import argparse import numpy as np import os import imageio import tensorflow as tf import matplotlib matplotlib.use('TkAgg') # Need Tk for interactive plots. import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from scipy.special import softmax from dirl_core import triplet_loss_distribution from dirl_core import dirl_utils from dirl_core import plot_utils from sklearn.neighbors import KDTree from collections import Counter from scipy.special import softmax # cpu_cores = [12,11,10,9,8,7] # Cores (numbered 0-11) # os.system("taskset -pc {} {}".format(",".join(str(i) for i in cpu_cores), os.getpid())) from tensorflow.python.client import device_lib tf.ConfigProto().gpu_options.allow_growth = False print([x.name for x in device_lib.list_local_devices()if x.device_type == 'GPU']) def sample_data(mean, cov0=None, num_dim=2, num_classes=2, num_instances=100, class_ratio=0.5, noise_sf=0.15): std = 0.1 N_class = [] cov_mat = [] X_source = np.empty((0, num_dim), float) Y_source = np.asarray([], dtype=int) N_class.append(int(num_instances * class_ratio)) N_class.append(int(num_instances * (1.0 - class_ratio))) for class_id in range(num_classes): if cov0 is None: cov = np.eye(num_dim) * std cov_noise = np.random.randn(num_dim, num_dim) * noise_sf cov_noise = np.dot(cov_noise, cov_noise.transpose()) cov += cov_noise cov_mat.append(cov) else: cov_mat.append(cov[class_id]) x, y = np.random.multivariate_normal(mean[class_id], cov_mat[class_id], N_class[class_id]).T X = np.concatenate([x.reshape(len(x), 1), y.reshape(len(y), 1)], axis=1) X_source =
np.append(X_source, X, axis=0)
numpy.append
#!/usr/local/sci/bin/python # PYTHON3 # # Author: <NAME> # Created: 8th October 2015 # Last update: 24th July 2020 # Location: /data/local/hadkw/HADCRUH2/UPDATE2014/PROGS/PYTHON/ # this will probably change # GitHub: https://github.com/Kate-Willett/Climate_Explorer/tree/master/PYTHON/ # ----------------------- # CODE PURPOSE AND OUTPUT # ----------------------- # Reads in monthly mean anomaly regional average time series for q, T and RH from HadISDH # Can plot monthly or annual data # Can plot one region or all four # For a one region plot it can be annual, monthly or seasonal (DJF, MAM, JJA, SON) # Plots a T q scatter with each year as the point (or MONYY for monthly) # Colours the points by simultaneous RH value # Plots RH colour bar to the right # Adds Tq and TRH correlation to plot # Adds Tq and TRH slope to plot # # NO MISSING DATA IN TIME SERIES!!!! # # <references to related published material, e.g. that describes data set> # # ----------------------- # LIST OF MODULES # ----------------------- # Inbuilt: # import matplotlib.pyplot as plt # import numpy as np # import numpy.ma as ma # import sys, os # import scipy.stats as ss # for pearsonr # import struct # import datetime as dt # from matplotlib.dates import date2num,num2date # from scipy.io import netcdf # import matplotlib.colors as mc # import matplotlib.cm as mpl_cm # import pdb # # Other: # ReadNetCDFTS - infile function to read in netCDF timeseries, written by <NAME> # PlotScatter - infile function to plot, written by <NAME> # # ----------------------- # DATA # ----------------------- # directory for regional timeseries: # /data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/ # files currently worked on: # Specific humidity: # HadISDH.landq.2.0.1.2014p_FLATgridIDPHA5by5_JAN2015_areaTS_19732014.nc # Relative humidity: # HadISDH.landRH.2.0.1.2014p_FLATgridIDPHA5by5_JAN2015_areaTS_19732014.nc # Temperature: # HadISDH.landT.2.0.1.2014p_FLATgridIDPHA5by5_JAN2015_areaTS_19732014.nc # # ----------------------- # HOW TO RUN THE CODE # ----------------------- # Select 'TimeRes' to be 'M' or 'Y' for month or year # Ensure correct file paths and files # Ensure start year (styr) and end year (edyr) are correct # Select 'Region' to be 'A', 'G','N','T' or 'S' for All, Globe, NHemi, Tropics, SHemi # # run: # python2.7 PlotTqRhScatter_OCT2015.py # python3 # > module load scitools/default-current # > python PlotTqRHScatter_PCT2015.py # # ----------------------- # OUTPUT # ----------------------- # directory for output images: # /data/local/hadkw/HADCRUH2/UPDATE2014/IMAGES/ANALYSIS/ # Output image file: (nowmon+nowyear= e.g., OCT2015): # ScatterTqRH_HadISDH.landq.2.0.1.2014p_'+nowmon+nowyear+ # # ----------------------- # VERSION/RELEASE NOTES # ----------------------- # # Version 3 16 April 2018 # --------- # # Enhancements # python 3 # netCDF4 # masked arrays to deal with missing data # Can now do seasonal for individual regions # # Changes # # Bug fixes # # Version 3 16 April 2018 # --------- # # Enhancements # Updated editable info so fewer edits are required to run for the most recent version/year # # Changes # # Bug fixes # # Version 2 9 August 2016 # --------- # # Enhancements # Can also plot T vs RH coloured by q anomaly # # Changes # # Bug fixes # # Version 1 8 October 2015 # --------- # # Enhancements # # Changes # # Bug fixes # # ----------------------- # OTHER INFORMATION # ----------------------- # #************************************************************************ # Set up python imports import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma import sys, os import scipy.stats as ss # for pearsonr import struct import datetime as dt from matplotlib.dates import date2num,num2date #from scipy.io import netcdf import netCDF4 as nc4 import matplotlib.colors as mc import matplotlib.cm as mpl_cm import pdb #stop: pdb.set_trace(), start: c import numpy.ma as ma # Set up initial run choices TimeRes='Y' # M=month, Y=year Region='S' # A=All, G=Globe, N=NHemi, T=Tropics, S=SHemi Seasons=True # If Region is G, N, T, or S and Seasons == True then plot seasonally (or False for not) M and Y still works homogtype='IDPHA' # 'IDPHA','PHA','PHADPD' thenmon='JAN' thenyear='2020' version='4.2.0.2019f' styr=1973 edyr=2019 nyrs=(edyr-styr)+1 nmons=(nyrs)*12 if (TimeRes == 'Y'): ntims=nyrs else: ntims=nmons YrStr=np.array(range(styr,edyr+1),dtype=str) YrStr=np.array(([i[2:5] for i in YrStr])) # now a string array of the last two digits # Set up directories and files INDIR='/data/users/hadkw/WORKING_HADISDH/UPDATE'+str(edyr)+'/STATISTICS/TIMESERIES/' OUTDIR='/data/users/hadkw/WORKING_HADISDH/UPDATE'+str(edyr)+'/IMAGES/ANALYSIS/' In_q='HadISDH.landq.'+version+'_FLATgridIDPHA5by5_anoms8110_'+thenmon+thenyear+'_areaTS_1973'+str(edyr)+'.nc' In_RH='HadISDH.landRH.'+version+'_FLATgridIDPHA5by5_anoms8110_'+thenmon+thenyear+'_areaTS_1973'+str(edyr)+'.nc' In_T='HadISDH.landT.'+version+'_FLATgridIDPHA5by5_anoms8110_'+thenmon+thenyear+'_areaTS_1973'+str(edyr)+'.nc' OutPlotTq='ScatterTqbyRH_HadISDH.'+version+'_'+TimeRes+'_'+Region OutPlotTRH='ScatterTRHbyq_HadISDH.'+version+'_'+TimeRes+'_'+Region if (Seasons): OutPlotTq = 'ScatterTqbyRH_HadISDH.'+version+'_'+TimeRes+'_'+Region+'_SEASONS' OutPlotTRH = 'ScatterTRHbyq_HadISDH.'+version+'_'+TimeRes+'_'+Region+'_SEASONS' # Set up variables q_arr=0 #set once file read in T_arr=0 #set once file read in RH_arr=0 #set once file read in #************************************************************************ # Subroutines #************************************************************************ # READNETCDFTS def ReadNetCDFTS(FileName,ReadInfo,TheData): ''' Open the NetCDF File Get the data FileName: stroing containing filepath/name TheData: an empty 2D array big enough for 1 or 4 regions worth of data ReadInfo: list of 1 or 4 strings of variable name/s for the globe, N Hemi, Tropics and S.Hemi ''' ncf=nc4.Dataset(FileName,'r') # ncf.variables this lists the variable names for loo in range(len(ReadInfo)): print(loo) var=ncf.variables[ReadInfo[loo]] #pdb.set_trace() TheData[loo,:]=np.copy(var[:]) # # Maybe I've done something wrong but its reading it transposed # TheData=np.transpose(TheData) ncf.close() return TheData # ReadNetCDFTS #************************************************************************ # MakeUpSteps def MakeUpSteps(TheArray,stepsies=9): ''' Given a max and min, make up NICE step sizes for a 9 element colourbar ''' ''' Currently works with a minimum range of 0.2 and a maximum or 3.0 ''' ''' Can only deal with symmetric ranges ''' ''' READS: TheArray - an array of data ''' ''' stepsies (OPTIONAL) - number of colours in colourbar - default 9 is NICE ''' ''' RETURNS: vmin - minimum threshold of range ''' ''' vmax - maximum threshold of range ''' ''' bounds - stepsies linear increments through the range from vmin to vmax ''' ''' strcounds - strings of the bounds for labelling the colourbar ''' vmax=np.int(np.ceil(np.max(abs(TheArray))*10))/10. vmin=-vmax nsteps = stepsies if (vmax <= 0.2): vmax = 0.2 vmin = -0.2 if (vmax <= 0.3): vmax = 0.32 vmin = -0.32 elif (vmax <= 0.4): vmax = 0.4 vmin = -0.4 elif (vmax <= 0.6): vmax = 0.6 vmin = -0.6 elif (vmax <= 0.8): vmax = 0.8 vmin = -0.8 elif (vmax <= 1.0): vmax = 1.0 vmin = -1.0 elif (vmax <= 1.2): vmax = 1.2 vmin = -1.2 elif (vmax <= 1.6): vmax = 1.6 vmin = -1.6 elif (vmax <= 2.0): vmax = 2.0 vmin = -2.0 elif (vmax <= 3.0): vmax = 3.0 vmin = -3.0 # pdb.set_trace() # stop here and play bounds=np.linspace(vmin,vmax,nsteps) strbounds=["%4.1f" % i for i in bounds] return vmax,vmin,strbounds,bounds #************************************************************************ # PlotScatter def PlotScatter(TheFileTq,TheFileTRH,TheYrStr,Thentims,Theq_arr,TheRH_arr,TheT_arr,TheReg,TheSeasons,ThePointees): ''' Plot Tq scatter with colours related to RH''' ''' Plot TRH scatter with colours related to q''' ''' Points are either the last two years YY or MONYY ''' ''' Save as png and eps ''' ''' TheFile - the filepath and filename for the image ''' ''' TheYrStr - a string array of the last two digits for years NYrs long ''' ''' Thentims - an integer for the number of points to be plotted ''' ''' Theq_arr - the specific humidity data (can be monthly or yearly ''' ''' TheRH_arr - the relative humidity data (can be monthly or yearly ''' ''' TheT_arr - the temperature data (can be monthly or yearly ''' # Load colours and set up bounds cmap=plt.get_cmap('BrBG') # BrownBlueGreen cmaplist=[cmap(i) for i in range(cmap.N)] for loo in range(np.int(cmap.N/2)-30,np.int(cmap.N/2)+30): cmaplist.remove(cmaplist[np.int(cmap.N/2)-30]) # remove the very pale colours in the middle # #cmaplist.remove(cmaplist[(cmap.N/2)-10:(cmap.N/2)+10]) # remove the very pale colours in the middle # ## remove the darkest and lightest (white and black) - and reverse # for loo in range(40): # cmaplist.remove(cmaplist[0]) ## cmaplist.reverse() ## for loo in range(10): ## cmaplist.remove(cmaplist[0]) ## cmaplist.reverse() cmap=cmap.from_list('this_cmap',cmaplist,cmap.N) # FIRST MAKE UP THE TqbyRH plot # Call MakeUpSteps routine to get a NICE set of colourbar indices vmin,vmax,strbounds,bounds=MakeUpSteps(TheRH_arr) norm=mpl_cm.colors.BoundaryNorm(bounds,cmap.N) ytitlee='Specific Humidity Anomalies (g kg$^{-1}$)' xtitlee='Temperature Anomalies ($^{o}$C)' titleesR=['Globe 70$^{o}$S to 70$^{o}$N','N. Hemisphere 20$^{o}$N to 70$^{o}$N','Tropics 20$^{o}$S to 20$^{o}$N','S. Hemisphere 70$^{o}$S to 20$^{o}$S'] titleesS=['December-February','March-May','June-August','September-November'] # set up max and min of q and T for axes - keep same for all regions qmax=np.ceil(np.max(abs(Theq_arr))/0.1)*0.1 qmin=-qmax tmax=np.ceil(np.max(abs(TheT_arr))/0.1)*0.1 tmin=-tmax # set up plot - are we working with one region or four? if (TheReg != 'A'): # Is it to be a seasonal (four plot) scenario? if (TheSeasons): fig,ax=plt.subplots(4,figsize=(8,8)) #6,18 plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) TheLetter=['a)','b)','c)','d)'] xstart=[0.1,0.48,0.1,0.48] xwide=0.36 ystart=[0.54,0.54,0.08,0.08] ytall=0.36 for pp in range(4): ax[pp]=plt.axes([xstart[pp],ystart[pp],xwide,ytall]) # left, bottom, width, height ax[pp].set_xlim([tmin,tmax]) ax[pp].set_ylim([qmin,qmax]) # make blank plot with zero lines on ax[pp].plot(np.zeros(100),np.linspace(qmin,qmax,100),color='black',linewidth=2) ax[pp].plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax[pp].plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot black dots for the goods #pdb.set_trace() for vv in range(Thentims): scats=ax[pp].scatter(TheT_arr[pp,vv],Theq_arr[pp,vv],c=TheRH_arr[pp,vv],marker=r"$ {} $".format(ThePointees[pp,vv]),s=200,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 if (pp == 2) | (pp == 3): ax[pp].set_xlabel(xtitlee,size=12) if (pp == 0) | (pp == 2): ax[pp].set_ylabel(ytitlee,size=12) if (pp == 0) | (pp == 1): ax[pp].xaxis.set_ticklabels([]) if (pp == 1) | (pp == 3): ax[pp].yaxis.set_ticklabels([]) ax[pp].tick_params(axis='both', which='major', labelsize=12) plt.figtext((xstart[pp]+0.02),ystart[pp]+ytall-0.05,TheLetter[pp],size=14) ax[pp].set_title(titleesS[pp],size=14) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[pp,:],Theq_arr[pp,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[pp,:],Theq_arr[pp,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.05,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.07,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.09,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed #pdb.set_trace() ax[pp].plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=12) plt.figtext(0.97,0.5,'RH Anomalies (%rh)',size=12,ha='center',rotation='vertical',va='center') else: # Single plot scenario fig = plt.figure(1,figsize=(8,8)) plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) ax1=plt.axes([0.1,0.1,0.75,0.8]) # left, bottom, width, height ax1.set_xlim([tmin,tmax]) ax1.set_ylim([qmin,qmax]) # make blank plot with zero lines on ax1.plot(np.zeros(100),np.linspace(qmin,qmax,100),color='black',linewidth=2) ax1.plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax1.plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot black dots for the goods for vv in range(Thentims): #print(vv,TheT_arr[0,vv],Theq_arr[0,vv],TheRH_arr[0,vv],r"$ {} $".format(Pointees[vv])) scats=ax1.scatter(TheT_arr[0,vv],Theq_arr[0,vv],c=TheRH_arr[0,vv],marker=r"$ {} $".format(ThePointees[vv]),s=250,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 ax1.set_xlabel(xtitlee,size=14) ax1.set_ylabel(ytitlee,size=14) ax1.tick_params(axis='both', which='major', labelsize=14) cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=14) plt.figtext(0.97,0.5,'RH Anomalies (%rh)',size=14,ha='center',rotation='vertical',va='center') # add watermark and plot labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) # plt.figtext(0.02,0.96,TheLetter,size=18) if (TheReg == 'G'): PointTitle=0 if (TheReg == 'N'): PointTitle=1 if (TheReg == 'T'): PointTitle=2 if (TheReg == 'S'): PointTitle=3 ax1.set_title(titleesR[PointTitle],size=18) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[0,:],Theq_arr[0,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[0,:],Theq_arr[0,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext(0.05,0.96,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext(0.05,0.9,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext(0.05,0.84,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed ax1.plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') else: # Four plot scenario fig,ax=plt.subplots(4,figsize=(8,8)) #6,18 plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) TheLetter=['a)','b)','c)','d)'] xstart=[0.1,0.48,0.1,0.48] xwide=0.36 ystart=[0.54,0.54,0.08,0.08] ytall=0.36 for pp in range(4): ax[pp]=plt.axes([xstart[pp],ystart[pp],xwide,ytall]) # left, bottom, width, height ax[pp].set_xlim([tmin,tmax]) ax[pp].set_ylim([qmin,qmax]) # make blank plot with zero lines on ax[pp].plot(np.zeros(100),np.linspace(qmin,qmax,100),color='black',linewidth=2) ax[pp].plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax[pp].plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot black dots for the goods for vv in range(Thentims): scats=ax[pp].scatter(TheT_arr[pp,vv],Theq_arr[pp,vv],c=TheRH_arr[pp,vv],marker=r"$ {} $".format(ThePointees[vv]),s=200,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 if (pp == 2) | (pp == 3): ax[pp].set_xlabel(xtitlee,size=12) if (pp == 0) | (pp == 2): ax[pp].set_ylabel(ytitlee,size=12) if (pp == 0) | (pp == 1): ax[pp].xaxis.set_ticklabels([]) if (pp == 1) | (pp == 3): ax[pp].yaxis.set_ticklabels([]) ax[pp].tick_params(axis='both', which='major', labelsize=12) plt.figtext((xstart[pp]+0.02),ystart[pp]+ytall-0.05,TheLetter[pp],size=14) ax[pp].set_title(titlees[pp],size=14) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[pp,:],Theq_arr[pp,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[pp,:],Theq_arr[pp,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.05,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.07,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.09,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed #pdb.set_trace() ax[pp].plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=12) plt.figtext(0.97,0.5,'RH Anomalies (%rh)',size=12,ha='center',rotation='vertical',va='center') # add watermark and plot labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) #plt.show() plt.savefig(TheFileTq+".eps") plt.savefig(TheFileTq+".png") # raw_input("stop") # REALLY USEFUL TO INTERACT WITHIN SUBROUTINE ctrl C # plt.ion() # plt.show() can then zoom and save #*********************************** # SECOND MAKE UP THE TRHbyq plot # Call MakeUpSteps routine to get a NICE set of colourbar indices vmin,vmax,strbounds,bounds=MakeUpSteps(Theq_arr) norm=mpl_cm.colors.BoundaryNorm(bounds,cmap.N) ytitlee='Relative Humidity Anomalies (%rh)' xtitlee='Temperature Anomalies ($^{o}$C)' titlees=['Globe 70$^{o}$S to 70$^{o}$N','N. Hemisphere 20$^{o}$N to 70$^{o}$N','Tropics 20$^{o}$S to 20$^{o}$N','S. Hemisphere 70$^{o}$S to 20$^{o}$S'] # set up max and min of RH and T for axes - keep same for all regions rhmax=np.ceil(np.max(abs(TheRH_arr))/0.1)*0.1 rhmin=-rhmax tmax=np.ceil(np.max(abs(TheT_arr))/0.1)*0.1 tmin=-tmax # set up plot - are we working with one region or four? if (TheReg != 'A'): if (Seasons): # Four plot scenario fig,ax=plt.subplots(4,figsize=(8,8)) #6,18 plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) TheLetter=['a)','b)','c)','d)'] xstart=[0.1,0.48,0.1,0.48] xwide=0.36 ystart=[0.54,0.54,0.08,0.08] ytall=0.36 for pp in range(4): ax[pp]=plt.axes([xstart[pp],ystart[pp],xwide,ytall]) # left, bottom, width, height ax[pp].set_xlim([tmin,tmax]) ax[pp].set_ylim([rhmin,rhmax]) # make blank plot with zero lines on ax[pp].plot(np.zeros(100),np.linspace(rhmin,rhmax,100),color='black',linewidth=2) ax[pp].plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax[pp].plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot black dots for the goods for vv in range(Thentims): scats=ax[pp].scatter(TheT_arr[pp,vv],TheRH_arr[pp,vv],c=Theq_arr[pp,vv],marker=r"$ {} $".format(ThePointees[pp,vv]),s=200,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 if (pp == 2) | (pp == 3): ax[pp].set_xlabel(xtitlee,size=12) if (pp == 0) | (pp == 2): ax[pp].set_ylabel(ytitlee,size=12) if (pp == 0) | (pp == 1): ax[pp].xaxis.set_ticklabels([]) if (pp == 1) | (pp == 3): ax[pp].yaxis.set_ticklabels([]) ax[pp].tick_params(axis='both', which='major', labelsize=12) plt.figtext((xstart[pp]+0.02),ystart[pp]+ytall-0.05,TheLetter[pp],size=14) ax[pp].set_title(titleesS[pp],size=14) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[pp,:],TheRH_arr[pp,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[pp,:],TheRH_arr[pp,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.05,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.07,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.09,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed ax[pp].plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=12) plt.figtext(0.97,0.5,'q Anomalies (g kg$^{-1}$)',size=12,ha='center',rotation='vertical',va='center') # add watermark and plot labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) else: # Single plot scenario fig = plt.figure(1,figsize=(8,8)) plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) ax1=plt.axes([0.1,0.1,0.75,0.8]) # left, bottom, width, height ax1.set_xlim([tmin,tmax]) ax1.set_ylim([rhmin,rhmax]) # make blank plot with zero lines on ax1.plot(np.zeros(100),np.linspace(rhmin,rhmax,100),color='black',linewidth=2) ax1.plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax1.plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot YEAR LABELS for the goods for vv in range(Thentims): #print(vv,TheT_arr[0,vv],Theq_arr[0,vv],TheRH_arr[0,vv],r"$ {} $".format(Pointees[vv])) scats=ax1.scatter(TheT_arr[0,vv],TheRH_arr[0,vv],c=Theq_arr[0,vv],marker=r"$ {} $".format(ThePointees[vv]),s=250,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 ax1.set_xlabel(xtitlee,size=14) ax1.set_ylabel(ytitlee,size=14) ax1.tick_params(axis='both', which='major', labelsize=14) cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=14) plt.figtext(0.97,0.5,'q Anomalies (g kg$^{-1}$)',size=14,ha='center',rotation='vertical',va='center') # add watermark and plot labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) # plt.figtext(0.02,0.96,TheLetter,size=18) if (TheReg == 'G'): PointTitle=0 if (TheReg == 'N'): PointTitle=1 if (TheReg == 'T'): PointTitle=2 if (TheReg == 'S'): PointTitle=3 ax1.set_title(titlees[PointTitle],size=18) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[0,:],TheRH_arr[0,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[0,:],TheRH_arr[0,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext(0.05,0.96,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext(0.05,0.9,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext(0.05,0.84,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed ax1.plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') else: # Four plot scenario fig,ax=plt.subplots(4,figsize=(8,8)) #6,18 plt.clf() # needs to be called after figure!!! (create the figure, then clear the plot space) TheLetter=['a)','b)','c)','d)'] xstart=[0.1,0.48,0.1,0.48] xwide=0.36 ystart=[0.54,0.54,0.08,0.08] ytall=0.36 for pp in range(4): ax[pp]=plt.axes([xstart[pp],ystart[pp],xwide,ytall]) # left, bottom, width, height ax[pp].set_xlim([tmin,tmax]) ax[pp].set_ylim([rhmin,rhmax]) # make blank plot with zero lines on ax[pp].plot(np.zeros(100),np.linspace(rhmin,rhmax,100),color='black',linewidth=2) ax[pp].plot(np.linspace(tmin,tmax,100),np.zeros(100),color='black',linewidth=2) # # plot 1:1 line dashed # ax[pp].plot(np.linspace(-5,5,100),np.linspace(-5,5,100),color='black',linewidth=2,linestyle='dashed') # plot black dots for the goods for vv in range(Thentims): scats=ax[pp].scatter(TheT_arr[pp,vv],TheRH_arr[pp,vv],c=Theq_arr[pp,vv],marker=r"$ {} $".format(ThePointees[vv]),s=200,cmap=cmap,norm=norm, edgecolors='none' ) # s=1 if (pp == 2) | (pp == 3): ax[pp].set_xlabel(xtitlee,size=12) if (pp == 0) | (pp == 2): ax[pp].set_ylabel(ytitlee,size=12) if (pp == 0) | (pp == 1): ax[pp].xaxis.set_ticklabels([]) if (pp == 1) | (pp == 3): ax[pp].yaxis.set_ticklabels([]) ax[pp].tick_params(axis='both', which='major', labelsize=12) plt.figtext((xstart[pp]+0.02),ystart[pp]+ytall-0.05,TheLetter[pp],size=14) ax[pp].set_title(titlees[pp],size=14) # Get correlation and slope of scatter and add to plot #pcorr = ss.pearsonr(TheT_arr[pp,:],TheRH_arr[pp,:]) # element 0 = pearson correlation coefficient, element 1 = two-tailed p-value linvals = ss.linregress(TheT_arr[pp,:],TheRH_arr[pp,:]) # 0 = slope, 1 = intercept, 2 = r-value, 3 = two-tailed p-value, 4 = sterr plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.05,'r = '+"{:3.2f}".format(linvals[2]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.07,'m = '+"{:3.2f}".format(linvals[0]),size=12) plt.figtext((xstart[pp]+0.05),ystart[pp]+ytall-0.09,'p = '+"{:1.2f}".format(linvals[3]),size=12) # plot regression line dashed ax[pp].plot(np.linspace(tmin,tmax,100),np.linspace(linvals[0]*tmin,linvals[0]*tmax,100),color='black',linewidth=2,linestyle='dashed') cbax=fig.add_axes([0.85,0.1,0.025,0.8]) cb=plt.colorbar(scats,cax=cbax,orientation='vertical',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=12) plt.figtext(0.97,0.5,'q Anomalies (g kg$^{-1}$)',size=12,ha='center',rotation='vertical',va='center') # add watermark and plot labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) #plt.show() plt.savefig(TheFileTRH+".eps") plt.savefig(TheFileTRH+".png") # raw_input("stop") # REALLY USEFUL TO INTERACT WITHIN SUBROUTINE ctrl C # plt.ion() # plt.show() can then zoom and save return #PlotNiceDotsMap #************************************************************************ # MAIN PROGRAM #************************************************************************ # Read in region data for each variable if (Region == 'A'): nReg=4 else: nReg=1 tmpq_arr=np.empty((nReg,nmons)) tmpRH_arr=np.empty((nReg,nmons)) tmpT_arr=np.empty((nReg,nmons)) q_arr=np.empty((nReg,ntims)) RH_arr=np.empty((nReg,ntims)) T_arr=np.empty((nReg,ntims)) MyFile=INDIR+In_q if (Region == 'A'): ReadInfo=['glob_q_anoms','nhem_q_anoms','trop_q_anoms','shem_q_anoms'] elif (Region == 'G'): ReadInfo=['glob_q_anoms'] elif (Region == 'N'): ReadInfo=['nhem_q_anoms'] elif (Region == 'T'): ReadInfo=['trop_q_anoms'] elif (Region == 'S'): ReadInfo=['shem_q_anoms'] tmpq_arr=ReadNetCDFTS(MyFile,ReadInfo,tmpq_arr) MyFile=INDIR+In_RH if (Region == 'A'): ReadInfo=['glob_RH_anoms','nhem_RH_anoms','trop_RH_anoms','shem_RH_anoms'] elif (Region == 'G'): ReadInfo=['glob_RH_anoms'] elif (Region == 'N'): ReadInfo=['nhem_RH_anoms'] elif (Region == 'T'): ReadInfo=['trop_RH_anoms'] elif (Region == 'S'): ReadInfo=['shem_RH_anoms'] tmpRH_arr=ReadNetCDFTS(MyFile,ReadInfo,tmpRH_arr) MyFile=INDIR+In_T if (Region == 'A'): ReadInfo=['glob_T_anoms','nhem_T_anoms','trop_T_anoms','shem_T_anoms'] elif (Region == 'G'): ReadInfo=['glob_T_anoms'] elif (Region == 'N'): ReadInfo=['nhem_T_anoms'] elif (Region == 'T'): ReadInfo=['trop_T_anoms'] elif (Region == 'S'): ReadInfo=['shem_T_anoms'] tmpT_arr=ReadNetCDFTS(MyFile,ReadInfo,tmpT_arr) #pdb.set_trace() # If annual - convert monthly mean anomalies to annual mean anomalies # THERE SHOULD BE NO MISSING DATA IN THESE!!!! # However, there are because of April 2015 so we need to set up as masked array. tmpq_arr = ma.masked_where(tmpq_arr < -1000,tmpq_arr) # mdi is -1e30 but floating point inaccuracy means it may not match? tmpT_arr = ma.masked_where(tmpT_arr < -1000,tmpT_arr) # mdi is -1e30 but floating point inaccuracy means it may not match? tmpRH_arr = ma.masked_where(tmpRH_arr < -1000,tmpRH_arr) # mdi is -1e30 but floating point inaccuracy means it may not match? if (Seasons): SeasonPointer = np.reshape(np.arange(nmons),(nyrs,12)) DJF = np.reshape(SeasonPointer[:,(0,1,11,)],nyrs*3) MAM = np.reshape(SeasonPointer[:,(2,3,4,)],nyrs*3) JJA =
np.reshape(SeasonPointer[:,(5,6,7,)],nyrs*3)
numpy.reshape
import copy import logging import operator import random import numpy as np import torch import wandb from fedml_api.utils.client import Client from fedml_api.utils.testInfo import TestInfo class FedTiAPI(object): def __init__(self, dataset, device, args, model_trainer): self.device = device self.args = args [train_data_num, test_data_num, train_data_global, test_data_global, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num] = dataset logging.info("inside of fedti init, client num:" + str(self.args.client_num_in_total)) self.train_global = train_data_global self.test_global = test_data_global self.val_global = None self.train_data_num_in_total = train_data_num self.test_data_num_in_total = test_data_num self.client_list = [] self.train_data_local_num_dict = train_data_local_num_dict self.train_data_local_dict = train_data_local_dict self.test_data_local_dict = test_data_local_dict self.model_trainer = model_trainer self._setup_clients(train_data_local_num_dict, train_data_local_dict, test_data_local_dict, model_trainer) def _setup_clients(self, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, model_trainer): logging.info("############setup_clients (START)#############") logging.info("client_num_in_total:" + str(self.args.client_num_in_total)) for client_idx in range(self.args.client_num_in_total): c = Client(client_idx, train_data_local_dict[client_idx], test_data_local_dict[client_idx], train_data_local_num_dict[client_idx], self.args, self.device, model_trainer, 0, 0, 0, 0) self.client_list.append(c) logging.info("number of clients in client_list:" + str(len(self.client_list))) logging.info("############setup_clients (END)#############") def train(self, is_show_info): return self.train_for_truthfulness(truth_ratio=1, is_show_info=is_show_info, is_test_truthfulness=False) # used to test truthfulness def train_for_truthfulness(self, truth_ratio, is_show_info, is_test_truthfulness): w_global = self.model_trainer.get_model_params() np.random.seed(self.args.comm_round) payment_list = [] bidding_price_list = [] running_time_list = [] client_utility_list = [] social_cost_list = [] server_cost_list = [] truth_index = 0 for round_idx in range(self.args.comm_round): logging.info("################Communication round : {}".format(round_idx)) w_locals = [] """ for scalability: following the original FedAvg algorithm, we uniformly sample a fraction of clients in each round. Instead of changing the 'Client' instances, our implementation keeps the 'Client' instances and then updates their local dataset """ # bids init for client in self.client_list: client.update_bid(training_intensity=np.random.randint(50, 100), cost=
np.random.random()
numpy.random.random