prompt
stringlengths 15
655k
| completion
stringlengths 3
32.4k
| api
stringlengths 8
52
|
---|---|---|
from tkinter import *
from tkinter.filedialog import *
from tkinter.messagebox import showerror
from tkinter import messagebox
from tkinter import ttk
import os
import numpy as np
import pandas as pd
from pandas import *
import gdal
from gdal import *
import cython
from cython.parallel import *
from multiprocessing import Pool
import math
import numpy
import statsmodels.api
import statsmodels as sm
import statsmodels.robust
from rasterstats import zonal_stats
from sklearn.svm import SVR
from sklearn.neural_network import MLPRegressor
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import *
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.neighbors import KNeighborsRegressor
#Field_sites,Independent_bands =0,0
# ask_yes_no.py
import shutil
from shutil import copyfile
import glob
#1
def normalize(array1,maxmins='not'):
try:
array1=np.array(array1)
except:
pass
if maxmins=='not':
maxmins=[]
#i=-1
for i in range(np.shape(array1)[1]):
#print(i)
column1=array1[:,i]
if maxmins=='not':
max1,min1=max(column1),min(column1)
else:
max1,min1=maxmins[i]
for j in range(len(column1)):
column1[j]=(float(column1[j])-float(min1))/(float(max1)-float(min1))
array1[:,i]=column1
return array1,maxmins
#array1,maxmins=normalize(xx)
def inv_normalize(array1,maxmins):
for i in range(np.shape(array1)[1]):
column1=array1[:,i]
for i in range(len(column1)):
max1,min1=maxmins[i]
column1[i]=float(column1[i])*(float(max1)-float(min1))+float(min1)
array1[:,i]=column1
return column1
def FindFilesInFolder(folder1,extension):
dr=os.getcwd()
os.chdir(folder1)
files=glob.glob(extension)
os.chdir(dr)
return files
#1
def object_zonal_stats(shp,TIF):
stats = zonal_stats(shp, TIF,stats=['mean'])
return list([f['mean'] for f in stats])
def object_zonal_stats_list(shp,TIFs_list):#for the all images of the same band same dataset(all subsets)
for tif in TIFs_list:
#statsall=[]
stats=np.array(object_zonal_stats(shp,tif))
try:
statsall=statsall+stats
except:
statsall=np.array(stats)
return statsall
#test
#shp='C:/Users/ahalboabidallah/Desktop/Hi_RS_Data/tree_Segments.shp'
#TIFs_list=['C:/Users/ahalboabidallah/Desktop/20151209-01/20150630-WV3-NPA-PIX-GBR-PAN-L3-01.tif', 'C:/Users/ahalboabidallah/Desktop/20151209-01/20150630-WV3-NPA-PIX-GBR-MS8-L3-01.tif']
#stats0=object_zonal_stats(shp,TIFs_list[0])
#stats1=object_zonal_stats(shp,TIFs_list[1])
#statsall=object_zonal_stats_list(shp,TIFs_list)
from gdal import *
#import ntpath
#def copy_tif(raster, outraster):
# #src_ds = gdal.Open(raster)
# #driver = gdal.GetDriverByName('GTiff')
# #dst_ds = driver.CreateCopy(outraster, src_ds, 0 )
# Once we're done, close properly the dataset
#dst_ds = None
#src_ds = None
#folder1, file1= os.path.split(raster)#ntpath.split(raster)
# folder2, file2=os.path.split(outraster)
# l=len(file1[:-4])
# files=FindFilesInFolder(folder1,file1[:l]+'*')
# for f in files:
# shutil.copy(folder1+'/'+f,folder2+'/'+file2[:-4]+f[l:])
def shift_raster(raster, Dx,Dy,Dt, outraster):#Dx,Dy,Dt=sp_errorsX[L],sp_errorsY[L],sp_errorsT[L]*3.14/180
shutil.copy(raster,outraster)
#copy_tif(raster, outraster)
dataset = gdal.Open(raster)
projection = dataset.GetProjection()
geotransform = np.array(dataset.GetGeoTransform())+(Dx,0,Dt,Dy,Dt,0)
dataset2 = gdal.Open(outraster, gdal.GA_Update)
dataset2.SetGeoTransform( geotransform )
dataset2.SetProjection( projection )
#test
#raster='C:/Users/ahalboabidallah/Desktop/20151209-01/20150630-WV3-NPA-PIX-GBR-PAN-L3-01.tif'
#outraster='C:/Users/ahalboabidallah/Desktop/test.tif'
#Dx,Dy,Dt=10.0,1.0,np.pi/4
#shift_raster(raster,Dx,Dy,Dt , outraster)
def writetofile(path,file1,list1,NoOfColumns=3):
try:
os.stat(path)
except:
os.makedirs(path)
#convert to pandas
df=DataFrame(list1)
#write to csv
df.to_csv(path+file1,index=False,header=False)
def readtopandas(path1,file1,alradyhasheader=0):#
#F='C:/Users/ahalboabidallah/Desktop/test.csv'
F=path1+file1
#add header to the file if there is no header #
if alradyhasheader==0:
#generate a header
df = pd.read_csv(F,header=None)
else:
df = pd.read_csv(F)#needs a csv with a header line
return df
def readtolist(path,file1,NoOfColumns=3,alradyhasheader=0):
df=readtopandas(path,file1,alradyhasheader=0)
list1=df.values.tolist()
return list1
def img2pandas(path1,file1):
#open file
try:
src_dataset = gdal.Open(path1+file1)
except:
src_dataset = gdal.Open(path1+'/'+file1)
z = src_dataset.ReadAsArray()
#read georeferencing
(xmin,res1,tilt1,ymin,tilt2,res2)=src_dataset.GetGeoTransform()
ys,xs=np.shape(z)
x = np.array([list(np.linspace(xmin, xmin+(xs-1)*res1, xs))]*(ys))
y = np.transpose(np.array([list(np.linspace(ymin, ymin+(ys-1)*res1, ys))]*(xs)))
#z1=list(z.ravel())
#y1=list(y.ravel())
#1=list(x.ravel())
data=np.array([list(x.ravel()),list(y.ravel()),list(z.ravel())])
#'C:/Users/ahalboabidallah/Desktop/ash_farm_new/profiles/profiles/results/AllGround.tiff'
return pd.DataFrame(data,index=['X','Y','Z']).transpose()
def frrot3(theta,U0=numpy.matrix(numpy.identity(3))):
ct = np.mat([[math.cos(theta[0])],[math.cos(theta[1])],[math.cos(theta[2])]])
st = np.mat([[math.sin(theta[0])],[math.sin(theta[1])],[math.sin(theta[2])]])
if max((theta.shape)) > 0:
R1 = np.mat([[1,0,0],[0,ct[0],-st[0]],[0,st[0],ct[0]]])
R = R1;
if max((theta.shape)) > 1:
R2 = np.mat([[float(ct[1]),0,-st[1]],[0,1,0],[st[1],0,ct[1]]]);
R = R2*R;
if max((theta.shape)) > 2:
R3 = np.mat([[float(ct[2]),-st[2],0],[st[2],ct[2],0],[0,0,1]]);
R = R3*R;
R = R*U0;
#checked and vetted
return (R,R1,R2,R3)
def add_degree(xx):
cols=list(xx.columns.values)
#cols = cols[-1] + cols[:-1]
xx1 = xx[cols[:-1]]
yy=cols[-1]
xx2=xx1*1
cols=list(xx1.columns.values)
i=len(cols)
i_up=i
i_down=i
for col in cols:
for ii in range(i_down):
i_up+=1
xx2[i_up] = xx1[col]*xx1[cols[-ii]]
print('i_up',i_up,'col',col,'*',cols[-ii])
i_down-=1
cols=list(xx2.columns.values)
cols = cols[-1:] + cols[:-1]
xx2['yy']=xx[yy]
return xx2
import copy
from sklearn.externals import joblib
#joblib.dump(Reg, 'filename.pkl')
def iteration1(table1):#
#table1=tables[0]
print('>',end="")
#if 1==1:
[field_data,RStable,Processing,model_spec]=table1[:]
RStable2=[]
i=0
#to include all subsets
#if 1==1:
for fd1 in field_data:
#fd1=field_data[0]
#print('fd1',fd1)
i+=1
RStable1=RStable[:]
for rs in RStable1:
#rs=RStable1[2]
#print('f',rs)
rs1=[rs[0]+'subset/'+str(i)+'/']
if rs[-1]==1 or rs[-1]=='1':
expected_spectral_error=rs[0]+'subset/'+str(i)+'/error'+rs[1]
else:
expected_spectral_error=rs[-2]
rs1.extend(rs[1:-2])
rs1.extend([expected_spectral_error,rs[-1]])
RStable2.append(rs1)
RStable=RStable2[:]
if Processing[0]=='Pixel':#if it is a pixel based model
RStable=sorted(RStable,key=lambda l:-float(l[4]))#sort by resolution
Lowest_resolution=float(RStable[0][4])# find lowest resolution
fields,Fsp_errorsX,Fsp_errorsY,Fsp_errorsT=add_error(field_data)# adds errors to the field data
#fields=list(filter(lambda a: a[2] > 0 and a[2] < 100000,fields[0]))
rss0=no_error(RStable)
fields0=no_error(field_data)
Biomass0,rs_bands0=creat_table4corlation(rss0,fields0,RStable)
Biomass0= np.asarray(Biomass0, dtype=float)
while len(Biomass0[0])==1:# to get rid of unnecessary brackets
Biomass0=list(map(lambda x:x[0], Biomass0))
rs_bands0[0]=list(filter(lambda a: a[2] > 0 and a[2] < 100000,rs_bands0[0]))
yy0=regression_images(rs_bands0[0],Lowest_resolution,Lowest_resolution,Biomass0)
xx0=[np.array(rs_bands0[0])[:,2].tolist()]
for i in rs_bands0[1:]:
#print('i')
try:
xx0.append(regression_images(rs_bands0[0],Lowest_resolution,Lowest_resolution,i))#
except:
print ('error')
xx0.append(yy0)# now the pixel based table is ready for the model
xx0=pd.DataFrame(xx0)
xx0=xx0.transpose()
xx0=xx0.dropna()
#XX0=
rss,Rsp_errorsX,Rsp_errorsY,Rsp_errorsT=add_error(RStable)# adds errors to the rss data
Biomass,rs_bands=creat_table4corlation(rss,fields,RStable)# combines field data #combines any similar band and dataset RS inputs because they are subsetted from the same origional raster
Biomass1 = np.asarray(Biomass, dtype=float)
#k=0
while len(Biomass1[0])==1:# to get rid of unnecessary brackets
#k+=1
#print('k')
Biomass1=list(map(lambda x:x[0], Biomass1))
print('<<>>')
#Biomass1=list(filter(lambda a: a > -0.0001 and a[2] < 100000,Biomass1))
rs_bands[0]=list(filter(lambda a: a[2] > 0 and a[2] < 100000,rs_bands[0]))
yy=regression_images(rs_bands[0],Lowest_resolution,Lowest_resolution,Biomass1)
xx=[np.array(rs_bands[0])[:,2].tolist()]
for i in rs_bands[1:]:
#print('i')
try:
xx.append(regression_images(rs_bands[0],Lowest_resolution,Lowest_resolution,i))#
except:
print ('error')
xx.append(yy)# now the pixel based table is ready for the model
xx=pd.DataFrame(xx)
xx=xx.transpose()
xx=xx.dropna()
else:
#if it is an object based
fields,Fsp_errorsX,Fsp_errorsY,Fsp_errorsT=add_error_object(field_data,Processing[1])
rss,Rsp_errorsX,Rsp_errorsY,Rsp_errorsT=add_error_object(RStable,Processing[1])
Biomass,rs_bands=creat_table4corlation_object(rss,fields,RStable)
xx=(np.array(rs_bands)).tolist()
#xx=np.transpose(np.array(rs_bands)).tolist()
xx.extend([Biomass])
xx=(np.transpose(np.array(xx)).tolist())
#filter sum(n < 0 for n in nums)
xx=list(filter(lambda a: sum(n <= 0 for n in a)==0,xx))
xx=(np.transpose(np.array(xx)).tolist())
xx=pd.DataFrame(xx)
xx=xx.transpose()
xx=xx.dropna()
#
fields0=no_error_object(field_data,Processing[1])
rss0=no_error_object(RStable,Processing[1])
Biomass0,rs_bands0=creat_table4corlation_object(rss0,fields0,RStable)
xx0=(np.array(rs_bands0)).tolist()
#xx=np.transpose(np.array(rs_bands)).tolist()
xx0.extend([Biomass0])
xx0=(np.transpose(np.array(xx0)).tolist())
#filter sum(n < 0 for n in nums)
xx0=list(filter(lambda a: sum(n <= 0 for n in a)==0,xx0))
xx0=(np.transpose(np.array(xx0)).tolist())
xx0=pd.DataFrame(xx0)
xx0=xx0.transpose()
xx0=xx0.dropna()
print('xx0',xx0)
#xx.to_csv('C:/Users/ahalboabidallah/Desktop/mont_carlo/xx.csv',index=False,header=False)
if model_spec[0]=='Parametric_Regression':#if the model is regression
xx=xx.values.tolist()
yy=list(map(lambda x:x[-1], xx))
xx=list(map(lambda x:x[0:-1], xx))
xx0=xx0.values.tolist()
#yy0=list(map(lambda x:x[-1], xx))
xx0=list(map(lambda x:x[0:-1], xx0))
if model_spec[1]>1:
xx=add_degrees(xx,model_spec[1])
xx0=add_degrees(xx0,model_spec[1])
model = sm.api.OLS(yy,xx)#len(final_table[1:].values.tolist())==len(final_table[0].values.tolist())
results = model.fit()
print(results.summary())
#print('Parameters: ', results.params)
#print('R2: ', results.rsquared)
#record.append([i,[results.params],results.rsquared])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','results_rsquared.csv',[results.rsquared])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','results_params.csv',list(results.params))
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','RS_spatial_errors_Dx.csv',Rsp_errorsX)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','RS_spatial_errors_Dy.csv',Rsp_errorsY)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','RS_spatial_errors_Dt.csv',Rsp_errorsT)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','F_spatial_errors_Dx.csv',Fsp_errorsX)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','F_spatial_errors_Dy.csv',Fsp_errorsY)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','F_spatial_errors_Dt.csv',Fsp_errorsT)
#Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','maxmins.csv',maxmins)
file1='C:/Users/ahalboabidallah/Desktop/reg/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
joblib.dump(model, file1)
yy1=results.predict(xx0)
#yy1=results.predict(xx)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
#print('yy1',yy1)
elif model_spec[0]=='Support_Vector_Machine':#if the model is 'Support_Vector_Machine'
#http://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html#sphx-glr-auto-examples-svm-plot-svm-regression-py
#http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=170DE91A676E6D5C328F5438063F57FF?doi=10.1.1.114.4288&rep=rep1&type=pdf
#n_samples, n_features = 10, 5
#np.random.seed(0)
#y = np.random.randn(n_samples)
#X = np.random.randn(n_samples, n_features)
xx=xx.values.tolist()
xx,maxmins=normalize(xx)
xx=list(xx)
yy=np.array(list(map(lambda x:x[-1], xx)))
xx=np.array(list(map(lambda x:x[0:-1], xx)))
#yy0=np.array(list(map(lambda x:x[-1], xx0)))
xx0=np.array(list(map(lambda x:x[0:-1], xx0)))
kernel,degree=model_spec[1:]
Reg = SVR(kernel=kernel,C=2000, epsilon=0.2,degree=degree)
Reg.fit(xx, yy)
R2=np.corrcoef([yy,Reg.predict(xx)])[0,1]
file1='C:/Users/ahalboabidallah/Desktop/SVM/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/SVM/','results_rsquared.csv',[file1,R2])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/SVM/','maxmins.csv',[maxmins])
#read the last in the csv file
#add line to the csv file
#s = pickle.dumps(Reg)
joblib.dump(Reg, file1)#joblib.dump(Reg, 'filename.pkl')
#Reg1 = joblib.load(file1) #Reg = joblib.load('filename.pkl')
xx0=xx0.values.tolist()
xx0,maxmins=normalize(xx0,maxmins=maxmins)
xx0=list(xx0)
yy1=Reg.predict(xx0)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
elif model_spec[0]=='Neural Network':#if the model is 'Neural Network'
NumberOfLayers,Layers=model_spec[1:]
xx=xx.values.tolist()
xx,maxmins=normalize(xx)
xx=list(xx)
yy=np.array(list(map(lambda x:x[-1], xx)))
xx=np.array(list(map(lambda x:x[0:-1], xx)))
#
Reg = MLPRegressor(hidden_layer_sizes=Layers, activation='relu', solver='adam', alpha=0.001, batch_size='auto',learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=1000, shuffle=True,random_state=9, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-05)
Reg.fit(xx, yy)
R2=np.corrcoef([yy,Reg.predict(xx)])[0,1]
file1='C:/Users/ahalboabidallah/Desktop/Neural/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Neural/','files.csv',[file1])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Neural/','results_rsquared.csv',[R2])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Neural/','maxmins.csv',[maxmins])
#read the last in the csv file
#add line to the csv file
#s = pickle.dumps(Reg)
joblib.dump(Reg, file1)#joblib.dump(Reg, 'filename.pkl')
#Reg1 = joblib.load(file1) #Reg = joblib.load('filename.pkl')
xx0=xx0.values.tolist()
xx0,maxmins=normalize(xx0,maxmins=maxmins)
xx0=list(xx0)
yy1=Reg.predict(xx0)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
elif model_spec[0]=='Gaussian_Process':#if the model is 'Gaussian_Process'
Gaussian_Process_kernal=model_spec[1]
xx=xx.values.tolist()
xx,maxmins=normalize(xx)
xx=list(xx)
yy=np.array(list(map(lambda x:x[-1], xx)))
xx=np.array(list(map(lambda x:x[0:-1], xx)))
#
Reg = GaussianProcessRegressor(kernel=Gaussian_Process_kernal)
Reg.fit(xx, yy)
R2=np.corrcoef([yy,Reg.predict(xx)])[0,1]
file1='C:/Users/ahalboabidallah/Desktop/Gaussian_Process/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Gaussian_Process/','files.csv',[file1])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Gaussian_Process/','results_rsquared.csv',[R2])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Gaussian_Process/','maxmins.csv',[maxmins])
#read the last in the csv file
#add line to the csv file
#s = pickle.dumps(Reg)
joblib.dump(Reg, file1)#joblib.dump(Reg, 'filename.pkl')
#Reg1 = joblib.load(file1) #Reg = joblib.load('filename.pkl') '''
xx0=xx0.values.tolist()
xx0,maxmins=normalize(xx0,maxmins=maxmins)
xx0=list(xx0)
yy1=Reg.predict(xx0)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
elif model_spec[0]=='Random_Forest':#if the model is 'Random_Forest'
Random_Forest_Bootstrap=model_spec[1]
xx=xx.values.tolist()
xx,maxmins=normalize(xx)
xx=list(xx)
yy=np.array(list(map(lambda x:x[-1], xx)))
xx=np.array(list(map(lambda x:x[0:-1], xx)))
#
Reg = RandomForestRegressor(bootstrap=Random_Forest_Bootstrap)
Reg.fit(xx, yy)
R2=np.corrcoef([yy,Reg.predict(xx)])[0,1]
file1='C:/Users/ahalboabidallah/Desktop/Random_Forest/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','files.csv',[file1])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','results_rsquared.csv',[R2])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','maxmins.csv',[maxmins])
#read the last in the csv file
#add line to the csv file
#s = pickle.dumps(Reg)
joblib.dump(Reg, file1)#joblib.dump(Reg, 'filename.pkl')
#Reg1 = joblib.load(file1) #Reg = joblib.load('filename.pkl') '''
xx0=xx0.values.tolist()
xx0,maxmins=normalize(xx0,maxmins=maxmins)
xx0=list(xx0)
yy1=Reg.predict(xx0)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
elif model_spec[0]=='K_Nearest_Neighbours':#if the model is 'K_Nearest_Neighbours'
K_Nearest_Neighbours_weights,K_Nearest_Neighbours_k=model_spec[1:]
xx=xx.values.tolist()
xx,maxmins=normalize(xx)
xx=list(xx)
yy=np.array(list(map(lambda x:x[-1], xx)))
xx=np.array(list(map(lambda x:x[0:-1], xx)))
#
Reg = KNeighborsRegressor(n_neighbors=2,weights =K_Nearest_Neighbours_weights)
Reg.fit(xx, yy)
R2=np.corrcoef([yy,Reg.predict(xx)])[0,1]
file1='C:/Users/ahalboabidallah/Desktop/Random_Forest/'+str(randint(1000, 9999))+str(randint(1000, 9999))+'.pkl'
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','files.csv',[file1])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','results_rsquared.csv',[R2])
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/Random_Forest/','maxmins.csv',[maxmins])
#read the last in the csv file
#add line to the csv file
#s = pickle.dumps(Reg)
joblib.dump(Reg, file1)#joblib.dump(Reg, 'filename.pkl')
#Reg1 = joblib.load(file1) #Reg = joblib.load('filename.pkl') '''
xx0=xx0.values.tolist()
xx0,maxmins=normalize(xx0,maxmins=maxmins)
xx0=list(xx0)
yy1=Reg.predict(xx0)
Add_line_to_file('C:/Users/ahalboabidallah/Desktop/mont_carlo/','YY.csv',yy1.tolist())
print(np.shape(xx0))
#return yy1,xx0
def spatial_error_xy(table3): #images of the same dataset should take the same spatial error
datasets=np.array((np.array(table3)[:,3]),dtype=float)
sp_errors=list(datasets)
for data1 in list(set(datasets)):
#print ('data1',data1)
expected_spatial_error=float(list(filter(lambda x: float(x[3])==data1, table3))[0][7])
e=np.random.normal(0, expected_spatial_error, 1)[0]
sp_errors=list(map(lambda x:x if x!=data1 else e,sp_errors))
#replace sp_errors dataset with a random error
return sp_errors
def spatial_error_t(table3): #images of the same dataset should take the same spatial error
datasets=np.array((np.array(table3)[:,3]),dtype=float)
sp_errors=list(datasets)
for data1 in list(set(datasets)):
#print ('data1',data1)
expected_orientation_error=float(list(filter(lambda x: float(x[3])==data1, table3))[0][8])
if expected_orientation_error != 0:
e=
|
np.random.normal(0, expected_orientation_error, 1)
|
numpy.random.normal
|
import os
import cv2
import numpy as np
from oc_stereo.builders.config_builder_util import ConfigObj
from oc_stereo.dataloader.kitti import calib_utils, depth_map_utils, instance_utils, evaluation
# KITTI difficulty thresholds (easy, moderate, hard)
HEIGHT = (40, 25, 25)
OCCLUSION = (0, 1, 2)
TRUNCATION = (0.15, 0.3, 0.5)
# Mean object heights from hist_labels.py
MEAN_HEIGHTS = {
'Car': 1.526,
'Pedestrian': 1.761,
'Cyclist': 1.737,
}
class Difficulty:
# Values as integers for indexing
EASY = 0
MODERATE = 1
HARD = 2
ALL = 3
# Mappings from difficulty to string
DIFF_TO_STR_MAPPING = {
EASY: 'easy',
MODERATE: 'moderate',
HARD: 'hard',
ALL: 'all',
}
# Mappings from strings to difficulty
STR_TO_DIFF_MAPPING = {
'easy': EASY,
'moderate': MODERATE,
'hard': HARD,
'all': ALL,
}
@staticmethod
def to_string(difficulty):
return Difficulty.DIFF_TO_STR_MAPPING[difficulty]
@staticmethod
def from_string(difficulty_str):
return Difficulty.STR_TO_DIFF_MAPPING[difficulty_str]
class ObjectFilter:
def __init__(self, config):
self.classes = config.classes
self.difficulty = Difficulty.from_string(config.difficulty_str)
self.box_2d_height = config.box_2d_height
self.truncation = config.truncation
self.occlusion = config.occlusion
self.depth_range = config.depth_range
@staticmethod
def create_obj_filter(classes,
difficulty,
occlusion,
truncation,
box_2d_height,
depth_range):
config = ConfigObj()
config.classes = classes
config.difficulty_str = Difficulty.to_string(difficulty)
config.occlusion = occlusion
config.truncation = truncation
config.box_2d_height = box_2d_height
config.depth_range = depth_range
return ObjectFilter(config)
class ObjectLabel:
"""Object Label
Fields:
type (str): Object type, one of
'Car', 'Van', 'Truck', 'Pedestrian', 'Person_sitting',
'Cyclist', 'Tram', 'Misc', or 'DontCare'
truncation (float): Truncation level, float from 0 (non-truncated) to 1 (truncated),
where truncated refers to the object leaving image boundaries
occlusion (int): Occlusion level, indicating occlusion state:
0 = fully visible,
1 = partly occluded,
2 = largely occluded,
3 = unknown
alpha (float): Observation angle of object [-pi, pi]
x1, y1, x2, y2 (float): 2D bounding box of object in the image. (top left, bottom right)
h, w, l: 3D object dimensions: height, width, length (in meters)
t: 3D object centroid x, y, z in camera coordinates (in meters)
ry: Rotation around Y-axis in camera coordinates [-pi, pi]
score: Only for results, indicating confidence in detection, needed for p/r curves.
"""
def __init__(self):
self.type = None # Type of object
self.truncation = 0.0
self.occlusion = 0
self.alpha = 0.0
self.x1 = 0.0
self.y1 = 0.0
self.x2 = 0.0
self.y2 = 0.0
self.h = 0.0
self.w = 0.0
self.l = 0.0
self.t = (0.0, 0.0, 0.0)
self.ry = 0.0
self.score = 0.0
def __eq__(self, other):
"""Compares the given object to the current ObjectLabel instance.
:param other: object to compare to this instance against
:return: True, if other and current instance is the same
"""
if not isinstance(other, ObjectLabel):
return False
if self.__dict__ != other.__dict__:
return False
else:
return True
def __repr__(self):
return '({}, a:{}, t:{} lwh:({:.03f}, {:.03f}, {:.03f}), ry:{:.03f})'.format(
self.type, self.alpha, self.t, self.l, self.w, self.h, self.ry)
def read_labels(label_dir, sample_name):
"""Reads in label data file from Kitti Dataset
Args:
label_dir: label directory
sample_name: sample_name
Returns:
obj_list: list of ObjectLabels
"""
# Check label file
label_path = label_dir + '/{}.txt'.format(sample_name)
if not os.path.exists(label_path):
raise ValueError('Label file could not be found:', label_path)
if os.stat(label_path).st_size == 0:
return []
labels = np.loadtxt(label_path, delimiter=' ', dtype=str, ndmin=2)
num_rows, num_cols = labels.shape
if num_cols not in [15, 16]:
raise ValueError('Invalid label format')
num_labels = num_rows
is_results = num_cols == 16
obj_list = []
for obj_idx in np.arange(num_labels):
obj = ObjectLabel()
# Fill in the object list
obj.type = labels[obj_idx, 0]
obj.truncation = float(labels[obj_idx, 1])
obj.occlusion = float(labels[obj_idx, 2])
obj.alpha = float(labels[obj_idx, 3])
obj.x1, obj.y1, obj.x2, obj.y2 = (labels[obj_idx, 4:8]).astype(np.float32)
obj.h, obj.w, obj.l = (labels[obj_idx, 8:11]).astype(np.float32)
obj.t = (labels[obj_idx, 11:14]).astype(np.float32)
obj.ry = float(labels[obj_idx, 14])
if is_results:
obj.score = float(labels[obj_idx, 15])
else:
obj.score = 0.0
obj_list.append(obj)
return np.asarray(obj_list)
def filter_labels_by_class(obj_labels, classes):
"""Filters object labels by classes.
Args:
obj_labels: List of object labels
classes: List of classes to keep, e.g. ['Car', 'Pedestrian', 'Cyclist']
Returns:
obj_labels: List of filtered labels
class_mask: Mask of labels to keep
"""
class_mask = [(obj.type in classes) for obj in obj_labels]
return obj_labels[class_mask], class_mask
def filter_labels_by_difficulty(obj_labels, difficulty):
"""Filters object labels by difficulty.
Args:
obj_labels: List of object labels
difficulty: Difficulty level
Returns:
obj_labels: List of filtered labels
difficulty_mask: Mask of labels to keep
"""
difficulty_mask = [_check_difficulty(obj, difficulty) for obj in obj_labels]
return obj_labels[difficulty_mask], difficulty_mask
def _check_difficulty(obj, difficulty):
if difficulty == Difficulty.ALL:
return True
return ((obj.occlusion <= OCCLUSION[difficulty]) and
(obj.truncation <= TRUNCATION[difficulty]) and
(obj.y2 - obj.y1) >= HEIGHT[difficulty])
def filter_labels_by_box_2d_height(obj_labels, box_2d_height):
"""Filters object labels by 2D box height.
Args:
obj_labels: List of object labels
box_2d_height: Minimum 2D box height
Returns:
obj_labels: List of filtered labels
height_mask: Mask of labels to keep
"""
height_mask = [(obj_label.y2 - obj_label.y1) > box_2d_height
for obj_label in obj_labels]
return obj_labels[height_mask], height_mask
def filter_labels_by_truncation(obj_labels, truncation):
"""Filters object labels by truncation.
Args:
obj_labels: List of object labels
truncation: Maximum truncation
Returns:
obj_labels: List of filtered labels
trunc_mask: Mask of labels to keep
"""
trunc_mask = [obj_label.truncation < truncation
for obj_label in obj_labels]
return obj_labels[trunc_mask], trunc_mask
def filter_labels_by_occlusion(obj_labels, occlusion):
"""Filters object labels by truncation.
Args:
obj_labels: List of object labels
occlusion: Maximum occlusion
Returns:
obj_labels: List of filtered labels
occ_mask: Mask of labels to keep
"""
occ_mask = [obj_label.occlusion < occlusion
for obj_label in obj_labels]
return obj_labels[occ_mask], occ_mask
def filter_labels_by_depth_range(obj_labels, depth_range):
"""Filters object labels within a range of depth values.
Args:
obj_labels: List of object labels
depth_range: Range of depth to keep objects
Returns:
obj_labels: List of filtered labels
depth_mask: Mask of labels to keep
"""
depth_mask = [depth_range[0] < obj_label.t[2] < depth_range[1]
for obj_label in obj_labels]
return obj_labels[depth_mask], depth_mask
def filter_labels(obj_labels, classes=None, difficulty=None,
box_2d_height=None, occlusion=None, truncation=None, depth_range=None):
"""Filters object labels by various metrics.
Args:
obj_labels: List of object labels
classes: List of classes to keep, e.g. ['Car', 'Pedestrian', 'Cyclist']
difficulty: Difficulty level
box_2d_height: Minimum 2D box height
occlusion: Minimum occlusion level
truncation: Minimum truncation level
depth_range: Range of depth to keep objects
Returns:
obj_labels: List of filtered labels
obj_mask: Mask of labels to keep
"""
obj_mask = np.full(len(obj_labels), True)
if classes is not None:
_, class_mask = filter_labels_by_class(obj_labels, classes)
obj_mask &= class_mask
if difficulty is not None:
_, difficulty_mask = filter_labels_by_difficulty(obj_labels, difficulty)
obj_mask &= difficulty_mask
if box_2d_height is not None:
_, height_mask = filter_labels_by_box_2d_height(obj_labels, box_2d_height)
obj_mask &= height_mask
if occlusion is not None:
_, occ_mask = filter_labels_by_occlusion(obj_labels, occlusion)
obj_mask &= occ_mask
if truncation is not None:
_, trunc_mask = filter_labels_by_truncation(obj_labels, truncation)
obj_mask &= trunc_mask
if depth_range is not None:
_, depth_mask = filter_labels_by_depth_range(obj_labels, depth_range)
obj_mask &= depth_mask
return obj_labels[obj_mask], obj_mask
def apply_obj_filter(obj_labels, obj_filter):
"""Applies an ObjectFilter to a list of labels
Args:
obj_labels:
obj_filter (ObjectFilter):
Returns:
obj_labels: List of filtered labels
obj_mask: Mask of labels to keep
"""
obj_labels, obj_mask = filter_labels(
obj_labels,
classes=obj_filter.classes,
difficulty=obj_filter.difficulty,
box_2d_height=obj_filter.box_2d_height,
occlusion=obj_filter.occlusion,
truncation=obj_filter.truncation,
depth_range=obj_filter.depth_range)
return obj_labels, obj_mask
def boxes_2d_from_obj_labels(obj_labels):
return np.asarray([object_label_to_box_2d(obj_label)
for obj_label in obj_labels], np.float32)
def boxes_3d_from_obj_labels(obj_labels):
return np.asarray([object_label_to_box_3d(obj_label)
for obj_label in obj_labels], np.float32)
def obj_classes_from_obj_labels(obj_labels):
return np.asarray([obj_label.type
for obj_label in obj_labels])
def get_image(sample_name, image_dir):
image_path = image_dir + '/{}.png'.format(sample_name)
image = cv2.imread(image_path)
return image
def get_instance_masks(sample_name, instance_dir, num_objs):
"""Gets the instance masks
Args:
sample_name: Sample name
instance_dir: Instance directory
num_objs: Total number of objects in the scene
Returns:
instance_masks: (N, H, W) Instance masks
"""
instance_img = instance_utils.get_instance_image(sample_name, instance_dir)
instance_masks = instance_utils.get_instance_mask_list(instance_img, num_objs)
return instance_masks
def read_lidar(velo_dir, sample_name):
"""Reads the lidar bin file for a sample
Args:
velo_dir: velodyne directory
sample_name: sample name
Returns:
xyzi: (N, 4) points and intensities
"""
velo_path = velo_dir + '/{}.bin'.format(sample_name)
if os.path.exists(velo_path):
with open(velo_path, 'rb') as fid:
data_array = np.fromfile(fid, np.single)
xyzi = data_array.reshape(-1, 4)
return xyzi
else:
raise ValueError('Velodyne file not found')
def get_lidar_point_cloud(sample_name, frame_calib, velo_dir):
"""Gets the lidar point cloud in cam0 frame.
Args:
sample_name: Sample name
frame_calib: FrameCalib
velo_dir: Velodyne directory
Returns:
(3, N) point_cloud in the form [[x,...][y,...][z,...]]
"""
xyzi = read_lidar(velo_dir, sample_name)
# Calculate the point cloud
points_in_lidar_frame = xyzi[:, 0:3]
points = calib_utils.lidar_to_cam_frame(points_in_lidar_frame, frame_calib)
return points.T
def get_lidar_point_cloud_for_cam(sample_name, frame_calib, velo_dir,
image_shape=None, cam_idx=2):
"""Gets the lidar point cloud in cam0 frame, and optionally returns only the
points that are projected to an image.
Args:
sample_name: sample name
frame_calib: FrameCalib frame calibration
velo_dir: velodyne directory
image_shape: (optional) image shape [h, w] to filter points inside image
cam_idx: (optional) cam index (2 or 3) for filtering
Returns:
(3, N) point_cloud in the form [[x,...][y,...][z,...]]
"""
# Get points in camera frame
point_cloud = get_lidar_point_cloud(sample_name, frame_calib, velo_dir)
# Only keep points in front of camera (positive z)
point_cloud = point_cloud[:, point_cloud[2] > 1.0]
if image_shape is None:
return point_cloud
else:
# Project to image frame
if cam_idx == 2:
cam_p = frame_calib.p2
elif cam_idx == 3:
cam_p = frame_calib.p3
else:
raise ValueError('Invalid cam_idx', cam_idx)
# Project to image
points_in_img = calib_utils.project_pc_to_image(point_cloud, cam_p=cam_p)
points_in_img_rounded = np.round(points_in_img)
# Filter based on the given image shape
image_filter = (points_in_img_rounded[0] >= 0) & \
(points_in_img_rounded[0] < image_shape[1]) & \
(points_in_img_rounded[1] >= 0) & \
(points_in_img_rounded[1] < image_shape[0])
filtered_point_cloud = point_cloud[:, image_filter].astype(np.float32)
return filtered_point_cloud
def get_stereo_point_cloud(sample_name, calib_dir, disp_dir):
"""
Gets the point cloud for an image calculated from the disparity map
:param sample_name: sample name
:param calib_dir: directory with calibration files
:param disp_dir: directory with disparity images
:return: (3, N) point_cloud in the form [[x,...][y,...][z,...]]
"""
# Read calibration info
frame_calib = calib_utils.get_frame_calib(calib_dir, sample_name)
stereo_calibration_info = calib_utils.get_stereo_calibration(frame_calib.p2,
frame_calib.p3)
# Read disparity
disp = cv2.imread(disp_dir + '/{}.png'.format(sample_name),
cv2.IMREAD_ANYDEPTH)
disp = np.float32(disp)
disp = np.divide(disp, 256)
disp[disp == 0] = 0.1
# Calculate the point cloud
point_cloud = calib_utils.depth_from_disparity(disp, stereo_calibration_info)
return point_cloud
def get_depth_map_path(sample_name, depth_dir):
return depth_dir + '/{}.png'.format(sample_name)
def get_disp_map_path(sample_name, disp_dir):
return disp_dir + '/{}.png'.format(sample_name)
def get_disp_map(sample_name, disp_dir):
disp_map_path = get_disp_map_path(sample_name, disp_dir)
disp_map = cv2.imread(disp_map_path, cv2.IMREAD_ANYDEPTH)
disp_map = disp_map / 256.0
return disp_map
def get_depth_map(sample_name, depth_dir):
depth_map_path = get_depth_map_path(sample_name, depth_dir)
depth_map = depth_map_utils.read_depth_map(depth_map_path)
return depth_map
def get_depth_map_point_cloud(sample_name, frame_calib, depth_dir):
"""Calculates the point cloud from a depth map
Args:
sample_name: sample name
frame_calib: FrameCalib frame calibration
depth_dir: folder with depth maps
cam_idx: cam index (2 or 3)
Returns:
(3, N) point_cloud in the form [[x,...][y,...][z,...]]
"""
depth_map_path = get_depth_map_path(sample_name, depth_dir)
depth_map = depth_map_utils.read_depth_map(depth_map_path)
depth_map_shape = depth_map.shape[0:2]
# Calculate point cloud from depth map
cam_p = frame_calib.p2
# cam_p = frame_calib.p2 if cam_idx == 2 else frame_calib.p3
# # TODO: Call depth_map_utils version
return depth_map_utils.get_depth_point_cloud(depth_map, cam_p)
# Calculate points from depth map
depth_map_flattened = depth_map.flatten()
xx, yy = np.meshgrid(np.arange(0, depth_map_shape[1], 1),
np.arange(0, depth_map_shape[0], 1))
xx = xx.flatten() - cam_p[0, 2]
yy = yy.flatten() - cam_p[1, 2]
temp = np.divide(depth_map_flattened, cam_p[0, 0])
x = np.multiply(xx, temp)
y = np.multiply(yy, temp)
z = depth_map_flattened
# Get x offset (b_cam) from calibration: cam_mat[0, 3] = (-f_x * b_cam)
x_offset = -cam_p[0, 3] / cam_p[0, 0]
point_cloud = np.asarray([x + x_offset, y, z])
return point_cloud.astype(np.float32)
def compute_obj_label_corners_3d(object_label):
"""
Computes the 3D bounding box corner positions from an ObjectLabel
:param object_label: ObjectLabel to compute corners from
:return: a numpy array of 3D corners if the box is in front of the camera,
an empty array otherwise
"""
# compute rotational matrix
rot = np.array([[+np.cos(object_label.ry), 0, +np.sin(object_label.ry)],
[0, 1, 0],
[-np.sin(object_label.ry), 0, +np.cos(object_label.ry)]])
l = object_label.l
w = object_label.w
h = object_label.h
# 3D BB corners
x_corners = np.array(
[l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2])
y_corners = np.array([0, 0, 0, 0, -h, -h, -h, -h])
z_corners = np.array(
[w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2])
corners_3d = np.dot(rot, np.array([x_corners, y_corners, z_corners]))
corners_3d[0, :] = corners_3d[0, :] + object_label.t[0]
corners_3d[1, :] = corners_3d[1, :] + object_label.t[1]
corners_3d[2, :] = corners_3d[2, :] + object_label.t[2]
return corners_3d
def compute_box_3d_corners(box_3d):
"""Computes box corners
:param box_3d: input 3D boxes 1 x 7 array represented as [x, y, z, l, w, h, ry]
:return: corners_3d: array of box corners 8 x [x y z]
"""
tx, ty, tz, l, w, h, ry = box_3d
half_l = l / 2
half_w = w / 2
# Compute rotation matrix
rot = np.array([[+np.cos(ry), 0, +np.sin(ry)],
[0, 1, 0],
[-np.sin(ry), 0, +np.cos(ry)]])
# 3D BB corners
x_corners = np.array(
[half_l, half_l, -half_l, -half_l, half_l, half_l, -half_l, -half_l])
y_corners = np.array([0, 0, 0, 0, -h, -h, -h, -h])
z_corners = np.array(
[half_w, -half_w, -half_w, half_w, half_w, -half_w, -half_w, half_w])
corners_3d = np.dot(rot, np.array([x_corners, y_corners, z_corners]))
corners_3d[0, :] = corners_3d[0, :] + tx
corners_3d[1, :] = corners_3d[1, :] + ty
corners_3d[2, :] = corners_3d[2, :] + tz
return np.array(corners_3d)
def points_in_box_3d(box_3d, points):
"""Finds the points inside a box_3d.
Args:
box_3d: box_3d
points: (N, 3) points
Returns:
points in box_3d
mask of points
"""
# Find box corners
corners_3d = compute_box_3d_corners(box_3d).T
# Compute box's principle axes
u = corners_3d[0, :] - corners_3d[1, :]
v = corners_3d[0, :] - corners_3d[3, :]
w = corners_3d[0, :] - corners_3d[4, :]
# Compute test bounds for point to be included inside bounding box
up0 = np.dot(u, corners_3d[0, :])
up1 = np.dot(u, corners_3d[1, :])
vp0 = np.dot(v, corners_3d[0, :])
vp3 = np.dot(v, corners_3d[3, :])
wp0 = np.dot(w, corners_3d[0, :])
wp4 = np.dot(w, corners_3d[4, :])
# Compute dot product between point cloud and principle axes
u_dot = np.matmul(points, u)
v_dot = np.matmul(points, v)
w_dot = np.matmul(points, w)
# Create mask from bounds and return points inside bounding box
mask_u = np.logical_and(u_dot <= up0, u_dot >= up1)
mask_v = np.logical_and(v_dot <= vp0, v_dot >= vp3)
mask_w = np.logical_and(w_dot <= wp0, w_dot >= wp4)
mask = np.logical_and(mask_u, mask_v)
mask =
|
np.logical_and(mask, mask_w)
|
numpy.logical_and
|
# Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Numpy implementations of TensorFlow functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow_probability.python.internal.backend.numpy import _utils as utils
from tensorflow_probability.python.internal.backend.numpy import ops
from tensorflow_probability.python.internal.backend.numpy.numpy_math import softmax as _softmax
__all__ = [
'stateless_binomial',
'stateless_categorical',
'gamma',
'stateless_gamma',
'stateless_normal',
'stateless_poisson',
'stateless_shuffle',
'stateless_uniform',
'set_seed',
# 'all_candidate_sampler',
# 'experimental',
# 'fixed_unigram_candidate_sampler',
# 'learned_unigram_candidate_sampler',
# 'log_uniform_candidate_sampler',
# 'stateless_truncated_normal',
# 'truncated_normal',
# 'uniform_candidate_sampler',
]
JAX_MODE = False
def _ensure_tuple(t):
try:
return tuple(t)
except TypeError:
return (t,)
def _bcast_shape(base_shape, args):
base_shape = _ensure_tuple(base_shape)
if not args:
return base_shape
bc_arr = np.zeros(base_shape + (0,))
for arg in args:
if arg is not None:
bc_arr = bc_arr + np.zeros(np.shape(arg) + (0,))
return bc_arr.shape[:-1]
def _binomial(shape, seed, counts, probs, output_dtype=np.int32, name=None): # pylint: disable=unused-argument
rng = np.random if seed is None else np.random.RandomState(seed & 0xffffffff)
probs = np.where(counts > 0, probs, 0)
samps = rng.binomial(np.int64(counts), np.float64(probs), shape)
return samps.astype(utils.numpy_dtype(output_dtype))
def _categorical(logits, num_samples, dtype=None, seed=None, name=None): # pylint: disable=unused-argument
rng = np.random if seed is None else np.random.RandomState(seed & 0xffffffff)
dtype = utils.numpy_dtype(dtype or np.int64)
if not hasattr(logits, 'shape'):
logits = np.array(logits, np.float32)
probs = _softmax(logits)
n = logits.shape[-1]
return np.apply_along_axis(lambda p: rng.choice(n, p=p, size=num_samples), 1,
probs)
def _categorical_jax(logits, num_samples, dtype=None, seed=None, name=None): # pylint: disable=unused-argument
"""Jax implementation of `tf.random.stateless_categorical`."""
dtype = utils.numpy_dtype(dtype or np.int64)
if not hasattr(logits, 'shape') or not hasattr(logits, 'dtype'):
logits = np.array(logits, np.float32)
import jax.random as jaxrand # pylint: disable=g-import-not-at-top
if seed is None:
raise ValueError('Must provide PRNGKey to sample in JAX.')
z = jaxrand.gumbel(
key=seed, shape=logits.shape + (num_samples,), dtype=logits.dtype)
return np.argmax(np.expand_dims(logits, -1) + z, axis=-2).astype(dtype)
def _gamma(shape, alpha, beta=None, dtype=np.float32, seed=None,
name=None): # pylint: disable=unused-argument
rng = np.random if seed is None else np.random.RandomState(seed & 0xffffffff)
dtype = utils.common_dtype([alpha, beta], dtype_hint=dtype)
scale = 1. if beta is None else (1. / beta)
shape = _ensure_tuple(shape)
return rng.gamma(shape=alpha, scale=scale, size=shape).astype(dtype)
def _gamma_jax(shape, alpha, beta=None, dtype=np.float32, seed=None, name=None): # pylint: disable=unused-argument
"""JAX-based reparameterized gamma sampler."""
dtype = utils.common_dtype([alpha, beta], dtype_hint=dtype)
alpha = np.array(alpha, dtype=dtype)
beta = None if beta is None else np.array(beta, dtype=dtype)
shape = _ensure_tuple(shape)
import jax.random as jaxrand # pylint: disable=g-import-not-at-top
if seed is None:
raise ValueError('Must provide PRNGKey to sample in JAX.')
# TODO(srvasude): Sample in the given dtype once
# https://github.com/google/jax/issues/2130 is fixed.
samps = jaxrand.gamma(
key=seed, a=alpha, shape=shape, dtype=np.float64).astype(dtype)
# Match the 0->tiny behavior of tf.random.gamma.
return np.maximum(np.finfo(dtype).tiny,
samps if beta is None else samps / beta)
def _normal(shape, mean=0.0, stddev=1.0, dtype=np.float32, seed=None,
name=None): # pylint: disable=unused-argument
rng = np.random if seed is None else np.random.RandomState(seed & 0xffffffff)
dtype = utils.common_dtype([mean, stddev], dtype_hint=dtype)
shape = _bcast_shape(shape, [mean, stddev])
return rng.normal(loc=mean, scale=stddev, size=shape).astype(dtype)
def _normal_jax(shape, mean=0.0, stddev=1.0, dtype=np.float32, seed=None,
name=None): # pylint: disable=unused-argument
dtype = utils.common_dtype([mean, stddev], dtype_hint=dtype)
shape = _bcast_shape(shape, [mean, stddev])
import jax.random as jaxrand # pylint: disable=g-import-not-at-top
if seed is None:
raise ValueError('Must provide PRNGKey to sample in JAX.')
return jaxrand.normal(key=seed, shape=shape, dtype=dtype) * stddev + mean
def _poisson(shape, lam, dtype=np.float32, seed=None,
name=None): # pylint: disable=unused-argument
rng = np.random if seed is None else
|
np.random.RandomState(seed & 0xffffffff)
|
numpy.random.RandomState
|
import numpy as np
import tensorflow as tf
from waymo_open_dataset import dataset_pb2
from waymo_open_dataset.utils import range_image_utils, transform_utils
def convert_range_image_to_point_cloud(
frame, range_images, camera_projections, range_image_top_pose
):
"""Convert range images to point cloud.
Args:
frame: open dataset frame
range_images: A dict of {laser_name, [range_image_first_return,
range_image_second_return]}.
camera_projections: A dict of {laser_name,
[camera_projection_from_first_return,
camera_projection_from_second_return]}.
range_image_top_pose: range image pixel pose for top lidar.
Returns:
points: {[N, 3]} list of 3d lidar points of length 5 (number of lidars).
cp_points: {[N, 6]} list of camera projections of length 5
(number of lidars).
"""
calibrations = sorted(frame.context.laser_calibrations, key=lambda c: c.name)
points = []
r_points = []
i_points = []
e_points = []
cp_points = []
frame_pose = tf.convert_to_tensor(value=np.reshape(np.array(frame.pose.transform), [4, 4]))
# [H, W, 6]
range_image_top_pose_tensor = tf.reshape(
tf.convert_to_tensor(value=range_image_top_pose.data), range_image_top_pose.shape.dims
)
# [H, W, 3, 3]
range_image_top_pose_tensor_rotation = transform_utils.get_rotation_matrix(
range_image_top_pose_tensor[..., 0],
range_image_top_pose_tensor[..., 1],
range_image_top_pose_tensor[..., 2],
)
range_image_top_pose_tensor_translation = range_image_top_pose_tensor[..., 3:]
range_image_top_pose_tensor = transform_utils.get_transform(
range_image_top_pose_tensor_rotation, range_image_top_pose_tensor_translation
)
for c in calibrations:
for ri_index in range(2):
range_image = range_images[c.name][ri_index]
if len(c.beam_inclinations) == 0: # pylint: disable=g-explicit-length-test
beam_inclinations = range_image_utils.compute_inclination(
tf.constant([c.beam_inclination_min, c.beam_inclination_max]),
height=range_image.shape.dims[0],
)
else:
beam_inclinations = tf.constant(c.beam_inclinations)
beam_inclinations = tf.reverse(beam_inclinations, axis=[-1])
extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4])
range_image_tensor = tf.reshape(
tf.convert_to_tensor(value=range_image.data), range_image.shape.dims
)
pixel_pose_local = None
frame_pose_local = None
if c.name == dataset_pb2.LaserName.TOP:
pixel_pose_local = range_image_top_pose_tensor
pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0)
frame_pose_local = tf.expand_dims(frame_pose, axis=0)
range_image_mask = range_image_tensor[..., 0] > 0
label_zone_mask = range_image_tensor[..., -1] != 1
range_image_mask = tf.logical_and(range_image_mask, label_zone_mask)
range_image_cartesian = range_image_utils.extract_point_cloud_from_range_image(
tf.expand_dims(range_image_tensor[..., 0], axis=0),
tf.expand_dims(extrinsic, axis=0),
tf.expand_dims(tf.convert_to_tensor(value=beam_inclinations), axis=0),
pixel_pose=pixel_pose_local,
frame_pose=frame_pose_local,
)
range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0)
range_image_cartesian = range_image_cartesian[range_image_mask]
range_image_features = range_image_tensor[..., :-1]
range_image_features = range_image_features[range_image_mask]
cp = camera_projections[c.name][ri_index]
cp_tensor = tf.reshape(tf.convert_to_tensor(value=cp.data), cp.shape.dims)
cp_points_tensor = cp_tensor[range_image_mask]
points.append(range_image_cartesian.numpy())
r_points.append(range_image_features[..., 0].numpy())
i_points.append(range_image_features[..., 1].numpy())
e_points.append(range_image_features[..., 2].numpy())
cp_points.append(cp_points_tensor.numpy())
points =
|
np.concatenate(points, axis=0)
|
numpy.concatenate
|
from typing import Callable, Any, Union
from copy import deepcopy, copy
import numpy as np
from scipy.integrate import solve_ivp
from scipy import interpolate as sci_interp
from bioptim import SolutionIntegrator, Shooting, OptimalControlProgram, Solution, ControlType
import biorbd
class Integration:
"""
Integration
Attributes
----------
ocp: SimplifiedOCP
The OCP simplified
ns: list
The number of shooting point for each phase
is_interpolated: bool
If the current structure is interpolated
is_integrated: bool
If the current structure is integrated
is_merged: bool
If the phases were merged
vector: np.ndarray
The data in the vector format
_states: list
The data structure that holds the states
_controls: list
The data structure that holds the controls
parameters: dict
The data structure that holds the parameters
phase_time: list
The total time for each phases
Methods
-------
copy(self, skip_data: bool = False) -> Any
Create a deepcopy of the Solution
@property
states(self) -> Union[list, dict]
Returns the state in list if more than one phases, otherwise it returns the only dict
@property
controls(self) -> Union[list, dict]
Returns the controls in list if more than one phases, otherwise it returns the only dict
integrate(self, shooting_type: Shooting = Shooting.MULTIPLE, keep_intermediate_points: bool = True,
merge_phases: bool = False, continuous: bool = True) -> Solution
Integrate the states
interpolate(self, n_frames: Union[int, list, tuple]) -> Solution
Interpolate the states
merge_phases(self) -> Solution
Get a data structure where all the phases are merged into one
_merge_phases(self, skip_states: bool = False, skip_controls: bool = False) -> tuple
Actually performing the phase merging
_complete_control(self)
Controls don't necessarily have dimensions that matches the states. This method aligns them
graphs(self, automatically_organize: bool, show_bounds: bool,
show_now: bool, shooting_type: Shooting)
Show the graphs of the simulation
animate(self, n_frames: int = 0, show_now: bool = True, **kwargs: Any) -> Union[None, list]
Animate the simulation
print(self, cost_type: CostType = CostType.ALL)
Print the objective functions and/or constraints to the console
"""
def __init__(
self,
ocp: OptimalControlProgram,
solution: Solution,
state_keys: list = None,
control_keys: list = None,
function: Callable = None,
**extra_variables,
):
"""
Parameters
----------
ocp: OptimalControlProgram
The OCP
state_keys: list
The state keys
control_keys: list
The control keys
function: Callable
The function that will be used to evaluate the system dynamics
extra_variables: dict
The extra variables that will be used to evaluate the system dynamics
"""
self.is_integrated = False
self.is_interpolated = False
self.is_merged = False
self.recomputed_time_steps = False
self.ocp = ocp
self.ns = [nlp.ns for nlp in self.ocp.nlp]
self.model = [biorbd.Model(nlp.model.path().absolutePath().to_string()) for nlp in self.ocp.nlp]
self.control_keys = control_keys
self.state_keys = state_keys
# Extract the data now for further use
self._states = self._update_variable_with_keys(solution._states, self.state_keys)
self._controls = self._update_variable_with_keys(solution._controls, self.control_keys)
self.parameters = solution.parameters
self.vector = solution.vector
self.time_vector = None
self.phase_time = solution.phase_time
self.function = function if function is not None else [nlp.dynamics for nlp in self.ocp.nlp]
@staticmethod
def _update_variable_with_keys(variable: list[dict], keys: list) -> list:
"""
Update the variable removing the key of the dictionary
"""
cleaned_list = [{k: v for k, v in d.items() if k in keys} for d in variable]
# add all key gathering all the keys in one item
for i, phase_list in enumerate(cleaned_list):
# empty numpy array named all_variables
all_variables = np.empty((0, 0))
# concatenate all the data of all items of the dictionary
for key, value in phase_list.items():
all_variables = value if all_variables.size == 0 else np.concatenate((all_variables, value), axis=0)
# add the data to the dictionary
cleaned_list[i]["all"] = all_variables
return cleaned_list
@property
def states(self) -> Union[list, dict]:
"""
Returns the state in list if more than one phases, otherwise it returns the only dict
Returns
-------
The states data
"""
return self._states[0] if len(self._states) == 1 else self._states
@property
def controls(self) -> Union[list, dict]:
"""
Returns the controls in list if more than one phases, otherwise it returns the only dict
Returns
-------
The controls data
"""
if not self._controls:
raise RuntimeError(
"There is no controls in the solution. "
"This may happen in "
"previously integrated and interpolated structure"
)
return self._controls[0] if len(self._controls) == 1 else self._controls
def integrate(
self,
shooting_type: Shooting = Shooting.SINGLE_CONTINUOUS,
keep_intermediate_points: bool = False,
merge_phases: bool = False,
continuous: bool = True,
integrator: SolutionIntegrator = SolutionIntegrator.DEFAULT,
) -> Any:
"""
Integrate the states
Parameters
----------
shooting_type: Shooting
Which type of integration
keep_intermediate_points: bool
If the integration should returns the intermediate values of the integration [False]
or only keep the node [True] effective keeping the initial size of the states
merge_phases: bool
If the phase should be merged in a unique phase
continuous: bool
If the arrival value of a node should be discarded [True] or kept [False]. The value of an integrated
arrival node and the beginning of the next one are expected to be almost equal when the problem converged
integrator: SolutionIntegrator
Use the ode defined by OCP or use a separate integrator provided by scipy
Returns
-------
A Solution data structure with the states integrated. The controls are removed from this structure
"""
# Sanity check
if self.is_integrated:
raise RuntimeError("Cannot integrate twice")
if self.is_interpolated:
raise RuntimeError("Cannot integrate after interpolating")
if self.is_merged:
raise RuntimeError("Cannot integrate after merging phases")
if shooting_type == Shooting.MULTIPLE and not keep_intermediate_points:
raise ValueError(
"Shooting.MULTIPLE and keep_intermediate_points=False cannot be used simultaneously "
"since it would do nothing"
)
if shooting_type == Shooting.SINGLE_CONTINUOUS and not continuous:
raise ValueError(
"Shooting.SINGLE_CONTINUOUS and continuous=False cannot be used simultaneously it is a contradiction"
)
out = self.__perform_integration(shooting_type, keep_intermediate_points, continuous, merge_phases, integrator)
if merge_phases:
if continuous:
out = out.interpolate(sum(out.ns) + 1)
else:
out._states, _, out.phase_time, out.ns = out._merge_phases(skip_controls=True, continuous=continuous)
out.is_merged = True
out.is_integrated = True
return out
def _generate_time_vector(
self,
time_phase,
keep_intermediate_points: bool,
continuous: bool,
merge_phases: bool,
integrator: SolutionIntegrator,
):
"""
Generate time integration vector, at which the points from intagrate are evaluated
"""
t_integrated = []
last_t = 0
for phase_idx, nlp in enumerate(self.ocp.nlp):
n_int_steps = (
nlp.ode_solver.steps_scipy if integrator != SolutionIntegrator.DEFAULT else nlp.ode_solver.steps
)
dt_ns = time_phase[phase_idx + 1] / nlp.ns
time_phase_integrated = []
last_t_int = copy(last_t)
for _ in range(nlp.ns):
if nlp.ode_solver.is_direct_collocation and integrator == SolutionIntegrator.DEFAULT:
time_phase_integrated += (np.array(nlp.dynamics[0].step_time) * dt_ns + last_t_int).tolist()
else:
time_interval = np.linspace(last_t_int, last_t_int + dt_ns, n_int_steps + 1)
if continuous and _ != nlp.ns - 1:
time_interval = time_interval[:-1]
if not keep_intermediate_points:
if _ == nlp.ns - 1:
time_interval = time_interval[[0, -1]]
else:
time_interval = np.array([time_interval[0]])
time_phase_integrated += time_interval.tolist()
if not continuous and _ == nlp.ns - 1:
time_phase_integrated += [time_phase_integrated[-1]]
last_t_int += dt_ns
if continuous and merge_phases and phase_idx != len(self.ocp.nlp) - 1:
t_integrated += time_phase_integrated[:-1]
else:
t_integrated += time_phase_integrated
last_t += time_phase[phase_idx + 1]
return t_integrated
def copy(self, skip_data: bool = False) -> Any:
"""
Create a deepcopy of the Solution
Parameters
----------
skip_data: bool
If data should be ignored in the copy
Returns
-------
Return a Solution data structure
"""
new = Solution(self.ocp, None)
new.vector = deepcopy(self.vector)
new.is_interpolated = deepcopy(self.is_interpolated)
new.is_integrated = deepcopy(self.is_integrated)
new.is_merged = deepcopy(self.is_merged)
new.phase_time = deepcopy(self.phase_time)
new.ns = deepcopy(self.ns)
new.time_vector = deepcopy(self.time_vector)
if skip_data:
new._states, new._controls, new.parameters = [], [], {}
else:
new._states = deepcopy(self._states)
new._controls = deepcopy(self._controls)
new.parameters = deepcopy(self.parameters)
return new
def __perform_integration(
self,
shooting_type: Shooting,
keep_intermediate_points: bool,
continuous: bool,
merge_phases: bool,
integrator: SolutionIntegrator,
):
n_direct_collocation = sum([nlp.ode_solver.is_direct_collocation for nlp in self.ocp.nlp])
if n_direct_collocation > 0 and integrator == SolutionIntegrator.DEFAULT:
if continuous:
raise RuntimeError(
"Integration with direct collocation must be not continuous if a scipy integrator is used"
)
if shooting_type != Shooting.MULTIPLE:
raise RuntimeError(
"Integration with direct collocation must using shooting_type=Shooting.MULTIPLE "
"if a scipy integrator is not used"
)
# Copy the data
out = self.copy(skip_data=True)
out.recomputed_time_steps = integrator != SolutionIntegrator.DEFAULT
out._states = []
out.time_vector = self._generate_time_vector(
out.phase_time, keep_intermediate_points, continuous, merge_phases, integrator
)
for _ in range(len(self._states)):
out._states.append({})
sum_states_len = 0
params = self.parameters["all"]
x0 = self._states[0]["all"][:, 0]
for p, nlp in enumerate(self.ocp.nlp):
param_scaling = nlp.parameters.scaling
n_states = self._states[p]["all"].shape[0]
n_steps = nlp.ode_solver.steps_scipy if integrator != SolutionIntegrator.DEFAULT else nlp.ode_solver.steps
if not continuous:
n_steps += 1
if keep_intermediate_points:
out.ns[p] *= n_steps
out._states[p]["all"] = np.ndarray((n_states, out.ns[p] + 1))
# Get the first frame of the phase
if shooting_type == Shooting.SINGLE_CONTINUOUS:
if p != 0:
u0 = self._controls[p - 1]["all"][:, -1]
val = self.ocp.phase_transitions[p - 1].function(np.vstack((x0, x0)), np.vstack((u0, u0)), params)
if val.shape[0] != x0.shape[0]:
raise RuntimeError(
f"Phase transition must have the same number of states ({val.shape[0]}) "
f"when integrating with Shooting.SINGLE_CONTINUOUS. If it is not possible, "
f"please integrate with Shooting.SINGLE"
)
x0 += np.array(val)[:, 0]
else:
col = (
slice(0, n_steps)
if nlp.ode_solver.is_direct_collocation and integrator == SolutionIntegrator.DEFAULT
else 0
)
x0 = self._states[p]["all"][:, col]
for s in range(self.ns[p]):
if nlp.control_type == ControlType.CONSTANT:
u = self._controls[p]["all"][:, s]
elif nlp.control_type == ControlType.LINEAR_CONTINUOUS:
u = self._controls[p]["all"][:, s : s + 2]
else:
raise NotImplementedError(f"ControlType {nlp.control_type} " f"not yet implemented in integrating")
if integrator != SolutionIntegrator.DEFAULT:
t_init = sum(out.phase_time[:p]) / nlp.ns
t_end = sum(out.phase_time[: (p + 2)]) / nlp.ns
n_points = n_steps + 1 if continuous else n_steps
t_eval = np.linspace(t_init, t_end, n_points) if keep_intermediate_points else [t_init, t_end]
integrated = solve_ivp(
# lambda t, x: np.array(nlp.dynamics_func(x, u, params))[:, 0],
lambda t, x: np.array(self.function(self.model[p], x, u, params)),
[t_init, t_end],
x0,
t_eval=t_eval,
method=integrator.value,
).y
next_state_col = (
(s + 1) * (nlp.ode_solver.steps + 1) if nlp.ode_solver.is_direct_collocation else s + 1
)
cols_in_out = [s * n_steps, (s + 1) * n_steps] if keep_intermediate_points else [s, s + 2]
# else:
# if nlp.ode_solver.is_direct_collocation:
# if keep_intermediate_points:
# integrated = x0 # That is only for continuous=False
# cols_in_out = [s * n_steps, (s + 1) * n_steps]
# else:
# integrated = x0[:, [0, -1]]
# cols_in_out = [s, s + 2]
# next_state_col = slice((s + 1) * n_steps, (s + 2) * n_steps)
#
# else:
# if keep_intermediate_points:
# integrated = np.array(nlp.dynamics[s](x0=x0, p=u, params=params / param_scaling)["xall"])
# cols_in_out = [s * n_steps, (s + 1) * n_steps]
# else:
# integrated = np.concatenate(
# (x0[:, np.newaxis], nlp.dynamics[s](x0=x0, p=u, params=params / param_scaling)["xf"]),
# axis=1,
# )
# cols_in_out = [s, s + 2]
# next_state_col = s + 1
cols_in_out = slice(
cols_in_out[0],
cols_in_out[1] + 1 if continuous and keep_intermediate_points else cols_in_out[1],
)
out._states[p]["all"][:, cols_in_out] = integrated
x0 = (
np.array(self._states[p]["all"][:, next_state_col])
if shooting_type == Shooting.MULTIPLE
else integrated[:, -1]
)
if not continuous:
out._states[p]["all"][:, -1] = self._states[p]["all"][:, -1]
# Dispatch the integrated values to all the keys
for key in nlp.states:
out._states[p][key] = out._states[p]["all"][nlp.states[key].index, :]
sum_states_len += out._states[p]["all"].shape[1]
return out
def interpolate(self, n_frames: Union[int, list, tuple]) -> Any:
"""
Interpolate the states
Parameters
----------
n_frames: Union[int, list, tuple]
If the value is an int, the Solution returns merges the phases,
otherwise, it interpolates them independently
Returns
-------
A Solution data structure with the states integrated. The controls are removed from this structure
"""
out = self.copy(skip_data=True)
t_all = []
for p, data in enumerate(self._states):
nlp = self.ocp.nlp[p]
if nlp.ode_solver.is_direct_collocation and not self.recomputed_time_steps:
time_offset = sum(out.phase_time[: p + 1])
step_time = np.array(nlp.dynamics[0].step_time)
dt = out.phase_time[p + 1] / nlp.ns
t_tp = np.array([step_time * dt + s * dt + time_offset for s in range(nlp.ns)]).reshape(-1, 1)
t_all.append(np.concatenate((t_tp, [[t_tp[-1, 0]]]))[:, 0])
else:
t_all.append(np.linspace(sum(out.phase_time[: p + 1]), sum(out.phase_time[: p + 2]), out.ns[p] + 1))
if isinstance(n_frames, int):
data_states, _, out.phase_time, out.ns = self._merge_phases(skip_controls=True)
t_all = [np.concatenate((np.concatenate([_t[:-1] for _t in t_all]), [t_all[-1][-1]]))]
n_frames = [n_frames]
out.is_merged = True
elif isinstance(n_frames, (list, tuple)) and len(n_frames) == len(self._states):
data_states = self._states
else:
raise ValueError(
"n_frames should either be a int to merge_phases phases "
"or a list of int of the number of phases dimension"
)
out._states = []
for _ in range(len(data_states)):
out._states.append({})
for p in range(len(data_states)):
x_phase = data_states[p]["all"]
n_elements = x_phase.shape[0]
t_phase = t_all[p]
t_phase, time_index = np.unique(t_phase, return_index=True)
t_int =
|
np.linspace(t_phase[0], t_phase[-1], n_frames[p])
|
numpy.linspace
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 1 23:04:36 2019
@author: rainfall
"""
from __future__ import absolute_import, division, print_function
import os
import time
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.externals import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from collections import Counter
from src.meteoro_skills import CategoricalScores
from src.meteoro_skills import ContinuousScores
from keras.models import load_model
import tensorflow as tf
from tensorflow import keras
from keras import backend
from tensorflow.keras import layers
from keras.layers import GaussianNoise
from keras.layers import GaussianDropout
from keras.models import Sequential
from keras.layers import Dense
#from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import model_from_yaml
print('TF version '+tf.__version__)
# ------------------------------------------------------------------------------
def tic():
global _start_time
_start_time = time.time()
def tac():
t_sec = round(time.time() - _start_time)
(t_min, t_sec) = divmod(t_sec, 60)
(t_hour, t_min) = divmod(t_min, 60)
print('Time passed: {}hour:{}min:{}sec'.format(t_hour, t_min, t_sec))
def mean_squared_error(y_true, y_pred):
return K.mean(K.square(y_pred - y_true), axis=-1)
# ------------------------------------------------------------------------------
class Prediction:
"""
This module is intended to automate the TensorFlow Neural Network training.
"""
PCA = PCA()
seed = 0
run_prefix = ''
tver = ''
vernick = ''
file = ''
path = ''
fig_title = ''
path_fig = ''
mod_out_pth = ''
mod_out_name = ''
ymlv = ''
ymlp = ''
ymlf = ''
def __init__(self, random_seed=0,
run_prefix='',
version='',
version_nickname='',
file_csv='',
path_csv='',
fig_title='',
figure_path='',
model_out_path='',
model_out_name='',
yaml_version='',
yaml_path='',
yaml_file=''):
self.seed=random_seed
self.run_prefix=run_prefix
self.tver=version
self.vernick=version_nickname
self.file=file_csv
self.path=path_csv
self.path_fig=figure_path
self.fig_title=run_prefix+version+version_nickname
self.mod_out_pth=model_out_path
self.mod_out_name=model_out_name
self.ymlv=yaml_version
self.ymlp=yaml_path
self.ymlf=yaml_file
# -------------------------------------------------------------------------
# DROP DATA OUTSIDE INTERVAL
# -------------------------------------------------------------------------
@staticmethod
def keep_interval(keepfrom: 0.0, keepto: 1.0, dataframe, target_col: str):
keepinterval = np.where((dataframe[target_col] >= keepfrom) &
(dataframe[target_col] <= keepto))
result = dataframe.iloc[keepinterval]
return result
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
def PredictScreening(self):
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
## load YAML and create model
# yaml_file = open(self.ymlp+'screening_'+self.ymlv+'.yaml', 'r')
# loaded_model_yaml = yaml_file.read()
# yaml_file.close()
# loaded_model = model_from_yaml(loaded_model_yaml)
# # load weights into new model
# loaded_model.load_weights(self.ymlp+'screening_'+self.ymlv+'.h5')
# print("Loaded models yaml and h5 from disk!")
# loaded_model = keras.models.load_model(self.ymlp+self.ymlf)
# loaded_model.summary()
loaded_model = joblib.load('screening_TESTE.pkl')
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Fix random seed for reproducibility:
np.random.seed(self.seed)
# Load dataset:
df = pd.read_csv(os.path.join(self.path, self.file), sep=',', decimal='.')
x = df.loc[:,['36V', '89V', '166V', '190V']]
y = df.loc[:,['TagRain']]
y_true = np.ravel(y)
x_arr = np.asanyarray(x)
# Scaling the input paramaters:
# scaler_min_max = MinMaxScaler()
norm_sc = Normalizer()
x_normalized= norm_sc.fit_transform(x_arr)
# Split the dataset in test and train samples:
# x_train, x_test, y_train, y_test = train_test_split(x_normalized,
# y_arr, test_size=0.10,
# random_state=101)
# Doing prediction from the test dataset:
y_pred = loaded_model.predict_classes(x_normalized)
y_pred = np.ravel(y_pred)
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# Appplying meteorological skills to verify the performance of the model, in this case, categorical scores:
skills = CategoricalScores()
val_accuracy, val_bias, val_pod, val_pofd, val_far, val_csi, val_ph, val_ets, val_hss, val_hkd, val_num_pixels = skills.metrics(y_true, y_pred)
#converting to text file
print("converting arrays to text files")
my_scores = {'val_accuracy': val_accuracy,
'val_bias': val_bias,
'val_pod': val_pod,
'val_pofd': val_pofd,
'val_far': val_far,
'val_csi': val_csi,
'val_ph': val_ph,
'val_ets': val_ets,
'val_hss': val_hss,
'val_hkd': val_hkd,
'val_num_pixels': val_num_pixels}
with open('cateorical_scores_TESTE.txt', 'w') as myfile:
myfile.write(str(my_scores))
print("Text file saved!")
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
df['SCR'] = ""
df['SCR'] = y_pred
filename=self.file[22:58]
filename = 'validation_SCR_TESTE'+filename+'.csv'
df.to_csv(os.path.join(self.path, filename), index=False, sep=",", decimal='.')
return df
def PredictRetrieval(self):
#------------------------------------------------------------------------------
#load YAML and create model
yaml_file = open(self.ymlp+'final_'+self.ymlv+'.yaml', 'r')
loaded_model_yaml = yaml_file.read()
yaml_file.close()
loaded_model = model_from_yaml(loaded_model_yaml)
# load weights into new model
loaded_model.load_weights(self.ymlp+'final_'+self.ymlv+'.h5')
print("Loaded models yaml and h5 from disk!")
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Fix random seed for reproducibility:
|
np.random.seed(self.seed)
|
numpy.random.seed
|
#---------------------------------
# AUTHOR: <NAME>
#---------------------------------
import tensorflow as tf
import numpy as np
import argparse
import pprint as pp
import sys
from replay_buffer import ReplayBuffer
from AandC import *
from noise import *
from gym_torcs import TorcsEnv
mu = np.array([0.0, 0.5, 0.01])
theta = np.array([0.0, 0.0, 0.0])
sigma =
|
np.array([0.1, 0.1, 0.1])
|
numpy.array
|
"""Utilities for computing active and inactive subspaces."""
import numpy as np
from .utils.misc import process_inputs, process_inputs_outputs
from .utils.response_surfaces import PolynomialApproximation
from .gradients import local_linear_gradients
SQRTEPS = np.sqrt(np.finfo(float).eps)
class Subspaces():
"""A class for computing active and inactive subspaces.
Attributes
----------
eigenvals : ndarray
m-by-1 matrix of eigenvalues
eigenvecs : ndarray
m-by-m matrix, eigenvectors oriented column-wise
W1 : ndarray
m-by-n matrix, basis for the active subspace
W2 : ndarray
m-by-(m-n) matrix, basis for the inactive subspace
e_br : ndarray
m-by-2 matrix, bootstrap ranges for the eigenvalues
sub_br : ndarray
m-by-3 matrix, bootstrap ranges (first and third column) and the
mean (second column) of the error in the estimated active subspace
approximated by bootstrap
Notes
-----
The attributes `W1` and `W2` are convenience variables. They are identical
to the first n and last (m-n) columns of `eigenvecs`, respectively.
"""
eigenvals, eigenvecs = None, None
W1, W2 = None, None
e_br, sub_br = None, None
def compute(self, X=None, f=None, df=None, weights=None, sstype='AS', ptype='EVG', nboot=0):
"""Compute the active and inactive subspaces.
Given input points and corresponding outputs, or given samples of the
gradients, estimate an active subspace. This method has four different
algorithms for estimating the active subspace: 'AS' is the standard
active subspace that requires gradients, 'OLS' uses a global linear
model to estimate a one-dimensional active subspace, 'QPHD' uses a
global quadratic model to estimate subspaces, and 'OPG' uses a set of
local linear models computed from subsets of give input/output pairs.
The function also sets the dimension of the active subspace (and,
consequently, the dimenison of the inactive subspace). There are three
heuristic choices for the dimension of the active subspace. The default
is the largest gap in the eigenvalue spectrum, which is 'EVG'. The other
two choices are 'RS', which estimates the error in a low-dimensional
response surface using the eigenvalues and the estimated subspace
errors, and 'LI' which is a heuristic from Bing Li on order
determination.
Note that either `df` or `X` and `f` must be given, although formally
all are optional.
Parameters
----------
X : ndarray, optional
M-by-m matrix of samples of inputs points, arranged as rows (default
None)
f : ndarray, optional
M-by-1 matrix of outputs corresponding to rows of `X` (default None)
df : ndarray, optional
M-by-m matrix of samples of gradients, arranged as rows (default
None)
weights : ndarray, optional
M-by-1 matrix of weights associated with rows of `X`
sstype : str, optional
defines subspace type to compute. Default is 'AS' for active
subspace, which requires `df`. Other options are `OLS` for a global
linear model, `QPHD` for a global quadratic model, and `OPG` for
local linear models. The latter three require `X` and `f`.
ptype : str, optional
defines the partition type. Default is 'EVG' for largest
eigenvalue gap. Other options are 'RS', which is an estimate of the
response surface error, and 'LI', which is a heuristic proposed by
Bing Li based on subspace errors and eigenvalue decay.
nboot : int, optional
number of bootstrap samples used to estimate the error in the
estimated subspace (default 0 means no bootstrap estimates)
Notes
-----
Partition type 'RS' and 'LI' require nboot to be greater than 0 (and
probably something more like 100) to get bootstrap estimates of the
subspace error.
"""
# Check inputs
if X is not None:
X, M, m = process_inputs(X)
elif df is not None:
df, M, m = process_inputs(df)
else:
raise Exception('One of input/output pairs (X,f) or gradients (df) must not be None')
if weights is None:
# default weights is for Monte Carlo
weights = np.ones((M, 1)) / M
# Compute the subspace
if sstype == 'AS':
if df is None:
raise Exception('df is None')
e, W = active_subspace(df, weights)
ssmethod = lambda X, f, df, weights: active_subspace(df, weights)
elif sstype == 'OLS':
if X is None or f is None:
raise Exception('X or f is None')
e, W = ols_subspace(X, f, weights)
ssmethod = lambda X, f, df, weights: ols_subspace(X, f, weights)
elif sstype == 'QPHD':
if X is None or f is None:
raise Exception('X or f is None')
e, W = qphd_subspace(X, f, weights)
ssmethod = lambda X, f, df, weights: qphd_subspace(X, f, weights)
elif sstype == 'OPG':
if X is None or f is None:
raise Exception('X or f is None')
e, W = opg_subspace(X, f, weights)
ssmethod = lambda X, f, df, weights: opg_subspace(X, f, weights)
else:
e, W = None, None
ssmethod = None
raise Exception('Unrecognized subspace type: {}'.format(sstype))
self.eigenvals, self.eigenvecs = e, W
# Compute bootstrap ranges and partition
if nboot > 0:
e_br, sub_br, li_F = _bootstrap_ranges(e, W, X, f, df, weights, ssmethod, nboot)
else:
if ptype == 'RS' or ptype == 'LI':
raise Exception('Need to run bootstrap for partition type {}'.format(ptype))
e_br, sub_br = None, None
self.e_br, self.sub_br = e_br, sub_br
# Compute the partition
if ptype == 'EVG':
n = eig_partition(e)[0]
elif ptype == 'RS':
sub_err = sub_br[:,1].reshape((m-1, 1))
n = errbnd_partition(e, sub_err)[0]
elif ptype == 'LI':
n = ladle_partition(e, li_F)[0]
else:
raise Exception('Unrecognized partition type: {}'.format(ptype))
self.partition(n)
def partition(self, n):
"""Partition the eigenvectors to define the active subspace.
A convenience function for partitioning the full set of eigenvectors to
separate the active from inactive subspaces.
Parameters
----------
n : int
the dimension of the active subspace
"""
if not isinstance(n, int):
#raise TypeError('n should be an integer')
n = int(n)
#print(Warning("n should be an integer. Performing conversion."))
m = self.eigenvecs.shape[0]
if n<1 or n>m:
raise ValueError('n must be positive and less than the dimension of the eigenvectors.')
self.W1, self.W2 = self.eigenvecs[:,:n], self.eigenvecs[:,n:]
def active_subspace(df, weights):
"""Compute the active subspace.
Parameters
----------
df : ndarray
M-by-m matrix containing the gradient samples oriented as rows
weights : ndarray
M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace
Returns
-------
e : ndarray
m-by-1 vector of eigenvalues
W : ndarray
m-by-m orthogonal matrix of eigenvectors
"""
df, M, m = process_inputs(df)
# compute the matrix
C = np.dot(df.transpose(), df * weights)
return sorted_eigh(C)
def ols_subspace(X, f, weights):
"""Estimate one-dimensional subspace with global linear model.
Parameters
----------
X : ndarray
M-by-m matrix of input samples, oriented as rows
f : ndarray
M-by-1 vector of output samples corresponding to the rows of `X`
weights : ndarray
M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace
Returns
-------
e : ndarray
m-by-1 vector of eigenvalues
W : ndarray
m-by-m orthogonal matrix of eigenvectors
Notes
-----
Although the method returns a full set of eigenpairs (to be consistent with
the other subspace functions), only the first eigenvalue will be nonzero,
and only the first eigenvector will have any relationship to the input
parameters. The remaining m-1 eigenvectors are only orthogonal to the first.
"""
X, f, M, m = process_inputs_outputs(X, f)
# solve weighted least squares
A = np.hstack((np.ones((M, 1)), X)) * np.sqrt(weights)
b = f * np.sqrt(weights)
u = np.linalg.lstsq(A, b, rcond=None)[0]
w = u[1:].reshape((m, 1))
# compute rank-1 C
C = np.dot(w, w.transpose())
return sorted_eigh(C)
def qphd_subspace(X, f, weights):
"""Estimate active subspace with global quadratic model.
This approach is similar to Ker-Chau Li's approach for principal Hessian
directions based on a global quadratic model of the data. In contrast to
Li's approach, this method uses the average outer product of the gradient
of the quadratic model, as opposed to just its Hessian.
Parameters
----------
X : ndarray
M-by-m matrix of input samples, oriented as rows
f : ndarray
M-by-1 vector of output samples corresponding to the rows of `X`
weights : ndarray
M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace
Returns
-------
e : ndarray
m-by-1 vector of eigenvalues
W : ndarray
m-by-m orthogonal matrix of eigenvectors
"""
X, f, M, m = process_inputs_outputs(X, f)
# check if the points are uniform or Gaussian, set 2nd moment
if np.amax(X) > 1.0 or np.amin(X) < -1.0:
gamma = 1.0
else:
gamma = 1.0 / 3.0
# compute a quadratic approximation
pr = PolynomialApproximation(2)
pr.train(X, f, weights)
# get regression coefficients
b, A = pr.g, pr.H
# compute C
C = np.outer(b, b.transpose()) + gamma*np.dot(A, A.transpose())
return sorted_eigh(C)
def opg_subspace(X, f, weights):
"""Estimate active subspace with local linear models.
This approach is related to the sufficient dimension reduction method known
sometimes as the outer product of gradient method. See the 2001 paper
'Structure adaptive approach for dimension reduction' from Hristache, et al.
Parameters
----------
X : ndarray
M-by-m matrix of input samples, oriented as rows
f : ndarray
M-by-1 vector of output samples corresponding to the rows of `X`
weights : ndarray
M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace
Returns
-------
e : ndarray
m-by-1 vector of eigenvalues
W : ndarray
m-by-m orthogonal matrix of eigenvectors
"""
X, f, M, m = process_inputs_outputs(X, f)
# Obtain gradient approximations using local linear regressions
df = local_linear_gradients(X, f, weights=weights)
# Use gradient approximations to compute active subspace
opg_weights = np.ones((df.shape[0], 1)) / df.shape[0]
e, W = active_subspace(df, opg_weights)
return e, W
def eig_partition(e):
"""Partition the active subspace according to largest eigenvalue gap.
Parameters
----------
e : ndarray
m-by-1 vector of eigenvalues
Returns
-------
n : int
dimension of active subspace
ediff : float
largest eigenvalue gap
"""
# dealing with zeros for the log
ediff = np.fabs(np.diff(e.reshape((e.size,))))
# crappy threshold for choosing active subspace dimension
n = np.argmax(ediff) + 1
return n, ediff
def errbnd_partition(e, sub_err):
"""Partition the active subspace according to response surface error.
Uses an a priori estimate of the response surface error based on the
eigenvalues and subspace error to determine the active subspace dimension.
Parameters
----------
e : ndarray
m-by-1 vector of eigenvalues
sub_err : ndarray
m-by-1 vector of estimates of subspace error
Returns
-------
n : int
dimension of active subspace
errbnd : float
estimate of error bound
Notes
-----
The error bound should not be used as an estimated error. The bound is only
used to estimate the subspace dimension.
"""
m = e.shape[0]
errbnd = np.zeros((m-1, 1))
for i in range(m-1):
errbnd[i] = np.sqrt(np.sum(e[:i+1]))*sub_err[i] + np.sqrt(np.sum(e[i+1:]))
n = np.argmin(errbnd) + 1
return n, errbnd
def ladle_partition(e, li_F):
"""Partition the active subspace according to Li's criterion.
Uses a criterion proposed by Bing Li that combines estimates of the subspace
with estimates of the eigenvalues.
Parameters
----------
e : ndarray
m-by-1 vector of eigenvalues
li_F : float
measures error in the subspace
Returns
-------
n : int
dimension of active subspace
G : ndarray
metrics used to determine active subspace dimension
"""
G = li_F + e.reshape((e.size, 1)) / np.sum(e)
n = np.argmin(G) + 1
return n, G
def _bootstrap_ranges(e, W, X, f, df, weights, ssmethod, nboot=100):
"""Compute bootstrap ranges for eigenvalues and subspaces.
An implementation of the nonparametric bootstrap that we use in
conjunction with the subspace estimation methods to estimate the errors in
the eigenvalues and subspaces.
Parameters
----------
e : ndarray
m-by-1 vector of eigenvalues
W : ndarray
m-by-m orthogonal matrix of eigenvectors
X : ndarray
M-by-m matrix of input samples, oriented as rows
f : ndarray
M-by-1 vector of outputs corresponding to rows of `X`
df : ndarray
M-by-m matrix of gradient samples
weights : ndarray
M-by-1 vector of weights corresponding to samples
ssmethod : function
a function that returns eigenpairs given input/output or gradient
samples
nboot : int, optional
number of bootstrap samples (default 100)
Returns
-------
e_br : ndarray
m-by-2 matrix, first column contains bootstrap lower bound on
eigenvalues, second column contains bootstrap upper bound on
eigenvalues
sub_br : ndarray
(m-1)-by-3 matrix, first column contains bootstrap lower bound on
estimated subspace error, second column contains estimated mean of
subspace error (a reasonable subspace error estimate), third column
contains estimated upper bound on subspace error
li_F : float
Bing Li's metric for order determination based on determinants
"""
if df is not None:
df, M, m = process_inputs(df)
else:
X, M, m = process_inputs(X)
e_boot = np.zeros((m, nboot))
sub_dist =
|
np.zeros((m-1, nboot))
|
numpy.zeros
|
import numpy as np
# Gotran generated code for the "grandi" model
def init_state_values_single(**values):
"""
Initialize state values
"""
# Init values
# m=0.003793087414436, h=0.626221949492493, j=0.624553572490432,
# x_kr=0.0210022533039071, x_ks=0.00428016666258923,
# x_to_s=0.000440445885642567, y_to_s=0.785115828275182,
# x_to_f=0.000440438103758954, y_to_f=0.999995844038706,
# d=2.92407183949469e-06, f=0.995135796703515,
# f_Ca_Bj=0.0246760872105795, f_Ca_Bsl=0.0152723084239416,
# Ry_Rr=0.890806040818203, Ry_Ro=7.40481128853622e-07,
# Ry_Ri=9.07666168960848e-08, Na_Bj=3.4543773303328,
# Na_Bsl=0.753740951477775, Tn_CL=0.00893455096919132,
# Tn_CHc=0.117412025936615, Tn_CHm=0.0106160166692932,
# CaM=0.000295573424135051, Myo_c=0.00192322252438022,
# Myo_m=0.137560495022823, SRB=0.00217360235649355,
# SLL_j=0.00740524521680039, SLL_sl=0.00990339304377132,
# SLH_j=0.0735890020284214, SLH_sl=0.114583623436917,
# Csqn_b=1.19723145924432, Ca_sr=0.554760499828172,
# Na_j=8.40537012592918, Na_sl=8.40491910001025, Na_i=8.40513364344858,
# K_i=120, Ca_j=0.000175882395147342, Ca_sl=0.000106779509977354,
# Ca_i=8.72509677797499e-05, V_m=-81.4552030512661
init_values = np.array(
[
0.003793087414436,
0.626221949492493,
0.624553572490432,
0.0210022533039071,
0.00428016666258923,
0.000440445885642567,
0.785115828275182,
0.000440438103758954,
0.999995844038706,
2.92407183949469e-06,
0.995135796703515,
0.0246760872105795,
0.0152723084239416,
0.890806040818203,
7.40481128853622e-07,
9.07666168960848e-08,
3.4543773303328,
0.753740951477775,
0.00893455096919132,
0.117412025936615,
0.0106160166692932,
0.000295573424135051,
0.00192322252438022,
0.137560495022823,
0.00217360235649355,
0.00740524521680039,
0.00990339304377132,
0.0735890020284214,
0.114583623436917,
1.19723145924432,
0.554760499828172,
8.40537012592918,
8.40491910001025,
8.40513364344858,
120,
0.000175882395147342,
0.000106779509977354,
8.72509677797499e-05,
-81.4552030512661,
],
dtype=np.float_,
)
# State indices and limit checker
state_ind = dict(
[
("m", 0),
("h", 1),
("j", 2),
("x_kr", 3),
("x_ks", 4),
("x_to_s", 5),
("y_to_s", 6),
("x_to_f", 7),
("y_to_f", 8),
("d", 9),
("f", 10),
("f_Ca_Bj", 11),
("f_Ca_Bsl", 12),
("Ry_Rr", 13),
("Ry_Ro", 14),
("Ry_Ri", 15),
("Na_Bj", 16),
("Na_Bsl", 17),
("Tn_CL", 18),
("Tn_CHc", 19),
("Tn_CHm", 20),
("CaM", 21),
("Myo_c", 22),
("Myo_m", 23),
("SRB", 24),
("SLL_j", 25),
("SLL_sl", 26),
("SLH_j", 27),
("SLH_sl", 28),
("Csqn_b", 29),
("Ca_sr", 30),
("Na_j", 31),
("Na_sl", 32),
("Na_i", 33),
("K_i", 34),
("Ca_j", 35),
("Ca_sl", 36),
("Ca_i", 37),
("V_m", 38),
]
)
for state_name, value in values.items():
if state_name not in state_ind:
raise ValueError("{0} is not a state.".format(state_name))
ind = state_ind[state_name]
# Assign value
init_values[ind] = value
return init_values
def init_parameter_values_single(**values):
"""
Initialize parameter values
"""
# Param values
# Fjunc=0.11, Fjunc_CaL=0.9, cellLength=100, cellRadius=10.25,
# distJuncSL=0.5, distSLcyto=0.45, junctionLength=0.16,
# junctionRadius=0.015, GNa=23, GNaB=0.000597, IbarNaK=1.8,
# KmKo=1.5, KmNaip=11, Q10KmNai=1.39, Q10NaK=1.63, GKr=0.035,
# GKp=0.002, GKs=0.0035, pNaK=0.01833, GK1=0.35, Gto=0.13, epi=1,
# GClB=0.009, GClCa=0.0548125, KdClCa=0.1, GCaL=0.5, Q10CaL=1.8,
# pCa=0.00054, pK=2.7e-07, pNa=1.5e-08, IbarNCX=4.5, Kdact=0.00015,
# KmCai=0.00359, KmCao=1.3, KmNai=12.29, KmNao=87.5, Q10NCX=1.57,
# ksat=0.32, nu=0.27, IbarSLCaP=0.0673, KmPCa=0.0005,
# Q10SLCaP=2.35, GCaB=0.0005513, Kmf=0.000246, Kmr=1.7, MaxSR=15,
# MinSR=1, Q10SRCaP=2.6, Vmax_SRCaP=0.0053114, ec50SR=0.45,
# hillSRCaP=1.787, kiCa=0.5, kim=0.005, koCa=10, kom=0.06, ks=25,
# Bmax_Naj=7.561, Bmax_Nasl=1.65, koff_na=0.001, kon_na=0.0001,
# Bmax_CaM=0.024, Bmax_SR=0.0171, Bmax_TnChigh=0.14,
# Bmax_TnClow=0.07, Bmax_myosin=0.14, koff_cam=0.238,
# koff_myoca=0.00046, koff_myomg=5.7e-05, koff_sr=0.06,
# koff_tnchca=3.2e-05, koff_tnchmg=0.00333, koff_tncl=0.0196,
# kon_cam=34, kon_myoca=13.8, kon_myomg=0.0157, kon_sr=100,
# kon_tnchca=2.37, kon_tnchmg=0.003, kon_tncl=32.7,
# Bmax_SLhighj0=0.000165, Bmax_SLhighsl0=0.0134, Bmax_SLlowj0=0.00046,
# Bmax_SLlowsl0=0.0374, koff_slh=0.03, koff_sll=1.3, kon_slh=100,
# kon_sll=100, Bmax_Csqn0=0.14, DcaJuncSL=1.64e-06,
# DcaSLcyto=1.22e-06, J_ca_juncsl=8.2413e-13, J_ca_slmyo=3.7243e-12,
# koff_csqn=65, kon_csqn=100, DnaJuncSL=1.09e-05, DnaSLcyto=1.79e-05,
# J_na_juncsl=1.8313e-14, J_na_slmyo=1.6386e-12, Nao=140, Ko=5.4,
# Cao=1.8, Cli=15, Clo=150, Mgi=1, Cmem=1.381e-10, Frdy=96485,
# R=8314, Temp=310, stim_amplitude=40.0, stim_duration=1.0,
# stim_period=1000.0, stim_start=0.0
init_values = np.array(
[
0.11,
0.9,
100,
10.25,
0.5,
0.45,
0.16,
0.015,
23,
0.000597,
1.8,
1.5,
11,
1.39,
1.63,
0.035,
0.002,
0.0035,
0.01833,
0.35,
0.13,
1,
0.009,
0.0548125,
0.1,
0.5,
1.8,
0.00054,
2.7e-07,
1.5e-08,
4.5,
0.00015,
0.00359,
1.3,
12.29,
87.5,
1.57,
0.32,
0.27,
0.0673,
0.0005,
2.35,
0.0005513,
0.000246,
1.7,
15,
1,
2.6,
0.0053114,
0.45,
1.787,
0.5,
0.005,
10,
0.06,
25,
7.561,
1.65,
0.001,
0.0001,
0.024,
0.0171,
0.14,
0.07,
0.14,
0.238,
0.00046,
5.7e-05,
0.06,
3.2e-05,
0.00333,
0.0196,
34,
13.8,
0.0157,
100,
2.37,
0.003,
32.7,
0.000165,
0.0134,
0.00046,
0.0374,
0.03,
1.3,
100,
100,
0.14,
1.64e-06,
1.22e-06,
8.2413e-13,
3.7243e-12,
65,
100,
1.09e-05,
1.79e-05,
1.8313e-14,
1.6386e-12,
140,
5.4,
1.8,
15,
150,
1,
1.381e-10,
96485,
8314,
310,
40.0,
1.0,
1000.0,
0.0,
],
dtype=np.float_,
)
# Parameter indices and limit checker
param_ind = dict(
[
("Fjunc", 0),
("Fjunc_CaL", 1),
("cellLength", 2),
("cellRadius", 3),
("distJuncSL", 4),
("distSLcyto", 5),
("junctionLength", 6),
("junctionRadius", 7),
("GNa", 8),
("GNaB", 9),
("IbarNaK", 10),
("KmKo", 11),
("KmNaip", 12),
("Q10KmNai", 13),
("Q10NaK", 14),
("GKr", 15),
("GKp", 16),
("GKs", 17),
("pNaK", 18),
("GK1", 19),
("Gto", 20),
("epi", 21),
("GClB", 22),
("GClCa", 23),
("KdClCa", 24),
("GCaL", 25),
("Q10CaL", 26),
("pCa", 27),
("pK", 28),
("pNa", 29),
("IbarNCX", 30),
("Kdact", 31),
("KmCai", 32),
("KmCao", 33),
("KmNai", 34),
("KmNao", 35),
("Q10NCX", 36),
("ksat", 37),
("nu", 38),
("IbarSLCaP", 39),
("KmPCa", 40),
("Q10SLCaP", 41),
("GCaB", 42),
("Kmf", 43),
("Kmr", 44),
("MaxSR", 45),
("MinSR", 46),
("Q10SRCaP", 47),
("Vmax_SRCaP", 48),
("ec50SR", 49),
("hillSRCaP", 50),
("kiCa", 51),
("kim", 52),
("koCa", 53),
("kom", 54),
("ks", 55),
("Bmax_Naj", 56),
("Bmax_Nasl", 57),
("koff_na", 58),
("kon_na", 59),
("Bmax_CaM", 60),
("Bmax_SR", 61),
("Bmax_TnChigh", 62),
("Bmax_TnClow", 63),
("Bmax_myosin", 64),
("koff_cam", 65),
("koff_myoca", 66),
("koff_myomg", 67),
("koff_sr", 68),
("koff_tnchca", 69),
("koff_tnchmg", 70),
("koff_tncl", 71),
("kon_cam", 72),
("kon_myoca", 73),
("kon_myomg", 74),
("kon_sr", 75),
("kon_tnchca", 76),
("kon_tnchmg", 77),
("kon_tncl", 78),
("Bmax_SLhighj0", 79),
("Bmax_SLhighsl0", 80),
("Bmax_SLlowj0", 81),
("Bmax_SLlowsl0", 82),
("koff_slh", 83),
("koff_sll", 84),
("kon_slh", 85),
("kon_sll", 86),
("Bmax_Csqn0", 87),
("DcaJuncSL", 88),
("DcaSLcyto", 89),
("J_ca_juncsl", 90),
("J_ca_slmyo", 91),
("koff_csqn", 92),
("kon_csqn", 93),
("DnaJuncSL", 94),
("DnaSLcyto", 95),
("J_na_juncsl", 96),
("J_na_slmyo", 97),
("Nao", 98),
("Ko", 99),
("Cao", 100),
("Cli", 101),
("Clo", 102),
("Mgi", 103),
("Cmem", 104),
("Frdy", 105),
("R", 106),
("Temp", 107),
("stim_amplitude", 108),
("stim_duration", 109),
("stim_period", 110),
("stim_start", 111),
]
)
for param_name, value in values.items():
if param_name not in param_ind:
raise ValueError("{0} is not a parameter.".format(param_name))
ind = param_ind[state_name]
# Assign value
init_values[ind] = value
return init_values
def state_indices(*states):
"""
State indices
"""
state_inds = dict(
[
("m", 0),
("h", 1),
("j", 2),
("x_kr", 3),
("x_ks", 4),
("x_to_s", 5),
("y_to_s", 6),
("x_to_f", 7),
("y_to_f", 8),
("d", 9),
("f", 10),
("f_Ca_Bj", 11),
("f_Ca_Bsl", 12),
("Ry_Rr", 13),
("Ry_Ro", 14),
("Ry_Ri", 15),
("Na_Bj", 16),
("Na_Bsl", 17),
("Tn_CL", 18),
("Tn_CHc", 19),
("Tn_CHm", 20),
("CaM", 21),
("Myo_c", 22),
("Myo_m", 23),
("SRB", 24),
("SLL_j", 25),
("SLL_sl", 26),
("SLH_j", 27),
("SLH_sl", 28),
("Csqn_b", 29),
("Ca_sr", 30),
("Na_j", 31),
("Na_sl", 32),
("Na_i", 33),
("K_i", 34),
("Ca_j", 35),
("Ca_sl", 36),
("Ca_i", 37),
("V_m", 38),
]
)
indices = []
for state in states:
if state not in state_inds:
raise ValueError("Unknown state: '{0}'".format(state))
indices.append(state_inds[state])
if len(indices) > 1:
return indices
else:
return indices[0]
def parameter_indices(*params):
"""
Parameter indices
"""
param_inds = dict(
[
("Fjunc", 0),
("Fjunc_CaL", 1),
("cellLength", 2),
("cellRadius", 3),
("distJuncSL", 4),
("distSLcyto", 5),
("junctionLength", 6),
("junctionRadius", 7),
("GNa", 8),
("GNaB", 9),
("IbarNaK", 10),
("KmKo", 11),
("KmNaip", 12),
("Q10KmNai", 13),
("Q10NaK", 14),
("GKr", 15),
("GKp", 16),
("GKs", 17),
("pNaK", 18),
("GK1", 19),
("Gto", 20),
("epi", 21),
("GClB", 22),
("GClCa", 23),
("KdClCa", 24),
("GCaL", 25),
("Q10CaL", 26),
("pCa", 27),
("pK", 28),
("pNa", 29),
("IbarNCX", 30),
("Kdact", 31),
("KmCai", 32),
("KmCao", 33),
("KmNai", 34),
("KmNao", 35),
("Q10NCX", 36),
("ksat", 37),
("nu", 38),
("IbarSLCaP", 39),
("KmPCa", 40),
("Q10SLCaP", 41),
("GCaB", 42),
("Kmf", 43),
("Kmr", 44),
("MaxSR", 45),
("MinSR", 46),
("Q10SRCaP", 47),
("Vmax_SRCaP", 48),
("ec50SR", 49),
("hillSRCaP", 50),
("kiCa", 51),
("kim", 52),
("koCa", 53),
("kom", 54),
("ks", 55),
("Bmax_Naj", 56),
("Bmax_Nasl", 57),
("koff_na", 58),
("kon_na", 59),
("Bmax_CaM", 60),
("Bmax_SR", 61),
("Bmax_TnChigh", 62),
("Bmax_TnClow", 63),
("Bmax_myosin", 64),
("koff_cam", 65),
("koff_myoca", 66),
("koff_myomg", 67),
("koff_sr", 68),
("koff_tnchca", 69),
("koff_tnchmg", 70),
("koff_tncl", 71),
("kon_cam", 72),
("kon_myoca", 73),
("kon_myomg", 74),
("kon_sr", 75),
("kon_tnchca", 76),
("kon_tnchmg", 77),
("kon_tncl", 78),
("Bmax_SLhighj0", 79),
("Bmax_SLhighsl0", 80),
("Bmax_SLlowj0", 81),
("Bmax_SLlowsl0", 82),
("koff_slh", 83),
("koff_sll", 84),
("kon_slh", 85),
("kon_sll", 86),
("Bmax_Csqn0", 87),
("DcaJuncSL", 88),
("DcaSLcyto", 89),
("J_ca_juncsl", 90),
("J_ca_slmyo", 91),
("koff_csqn", 92),
("kon_csqn", 93),
("DnaJuncSL", 94),
("DnaSLcyto", 95),
("J_na_juncsl", 96),
("J_na_slmyo", 97),
("Nao", 98),
("Ko", 99),
("Cao", 100),
("Cli", 101),
("Clo", 102),
("Mgi", 103),
("Cmem", 104),
("Frdy", 105),
("R", 106),
("Temp", 107),
("stim_amplitude", 108),
("stim_duration", 109),
("stim_period", 110),
("stim_start", 111),
]
)
indices = []
for param in params:
if param not in param_inds:
raise ValueError("Unknown param: '{0}'".format(param))
indices.append(param_inds[param])
if len(indices) > 1:
return indices
else:
return indices[0]
def monitor_indices(*monitored):
"""
Monitor indices
"""
monitor_inds = dict(
[
("Vcell", 0),
("Vmyo", 1),
("Vsr", 2),
("Vsl", 3),
("Vjunc", 4),
("SAjunc", 5),
("SAsl", 6),
("Fsl", 7),
("Fsl_CaL", 8),
("mss", 9),
("taum", 10),
("ah", 11),
("bh", 12),
("tauh", 13),
("hss", 14),
("aj", 15),
("bj", 16),
("tauj", 17),
("jss", 18),
("I_Na_junc", 19),
("I_Na_sl", 20),
("I_Na", 21),
("I_nabk_junc", 22),
("I_nabk_sl", 23),
("I_nabk", 24),
("sigma", 25),
("fnak", 26),
("I_nak_junc", 27),
("I_nak_sl", 28),
("I_nak", 29),
("gkr", 30),
("xrss", 31),
("tauxr", 32),
("rkr", 33),
("I_kr", 34),
("kp_kp", 35),
("I_kp_junc", 36),
("I_kp_sl", 37),
("I_kp", 38),
("eks", 39),
("gks_junc", 40),
("gks_sl", 41),
("xsss", 42),
("tauxs", 43),
("I_ks_junc", 44),
("I_ks_sl", 45),
("I_ks", 46),
("GtoSlow", 47),
("GtoFast", 48),
("xtoss", 49),
("ytoss", 50),
("tauxtos", 51),
("tauytos", 52),
("I_tos", 53),
("tauxtof", 54),
("tauytof", 55),
("I_tof", 56),
("I_to", 57),
("I_ClCa_junc", 58),
("I_ClCa_sl", 59),
("I_ClCa", 60),
("I_Clbk", 61),
("fss", 62),
("dss", 63),
("taud", 64),
("tauf", 65),
("fcaCaMSL", 66),
("fcaCaj", 67),
("ibarca_j", 68),
("ibarca_sl", 69),
("ibark", 70),
("ibarna_j", 71),
("ibarna_sl", 72),
("I_Ca_junc", 73),
("I_Ca_sl", 74),
("I_Ca", 75),
("I_CaK", 76),
("I_CaNa_junc", 77),
("I_CaNa_sl", 78),
("I_CaNa", 79),
("I_Catot", 80),
("Ka_junc", 81),
("Ka_sl", 82),
("s1_junc", 83),
("s1_sl", 84),
("s2_junc", 85),
("s3_junc", 86),
("s2_sl", 87),
("s3_sl", 88),
("I_ncx_junc", 89),
("I_ncx_sl", 90),
("I_ncx", 91),
("I_pca_junc", 92),
("I_pca_sl", 93),
("I_pca", 94),
("I_cabk_junc", 95),
("I_cabk_sl", 96),
("I_cabk", 97),
("kCaSR", 98),
("koSRCa", 99),
("kiSRCa", 100),
("RI", 101),
("J_SRCarel", 102),
("J_serca", 103),
("J_SRleak", 104),
("J_CaB_cytosol", 105),
("Bmax_SLlowsl", 106),
("Bmax_SLlowj", 107),
("Bmax_SLhighsl", 108),
("Bmax_SLhighj", 109),
("J_CaB_junction", 110),
("J_CaB_sl", 111),
("Bmax_Csqn", 112),
("I_Na_tot_junc", 113),
("I_Na_tot_sl", 114),
("I_Na_tot_sl2", 115),
("I_Na_tot_junc2", 116),
("I_K_tot", 117),
("I_Ca_tot_junc", 118),
("I_Ca_tot_sl", 119),
("i_Stim", 120),
("I_Na_tot", 121),
("I_Cl_tot", 122),
("I_Ca_tot", 123),
("I_tot", 124),
("FoRT", 125),
("ena_junc", 126),
("ena_sl", 127),
("ek", 128),
("eca_junc", 129),
("eca_sl", 130),
("ecl", 131),
("Qpow", 132),
("aki", 133),
("bki", 134),
("kiss", 135),
("I_K1", 136),
("dm_dt", 137),
("dh_dt", 138),
("dj_dt", 139),
("dx_kr_dt", 140),
("dx_ks_dt", 141),
("dx_to_s_dt", 142),
("dy_to_s_dt", 143),
("dx_to_f_dt", 144),
("dy_to_f_dt", 145),
("dd_dt", 146),
("df_dt", 147),
("df_Ca_Bj_dt", 148),
("df_Ca_Bsl_dt", 149),
("dRy_Rr_dt", 150),
("dRy_Ro_dt", 151),
("dRy_Ri_dt", 152),
("dNa_Bj_dt", 153),
("dNa_Bsl_dt", 154),
("dTn_CL_dt", 155),
("dTn_CHc_dt", 156),
("dTn_CHm_dt", 157),
("dCaM_dt", 158),
("dMyo_c_dt", 159),
("dMyo_m_dt", 160),
("dSRB_dt", 161),
("dSLL_j_dt", 162),
("dSLL_sl_dt", 163),
("dSLH_j_dt", 164),
("dSLH_sl_dt", 165),
("dCsqn_b_dt", 166),
("dCa_sr_dt", 167),
("dNa_j_dt", 168),
("dNa_sl_dt", 169),
("dNa_i_dt", 170),
("dK_i_dt", 171),
("dCa_j_dt", 172),
("dCa_sl_dt", 173),
("dCa_i_dt", 174),
("dV_m_dt", 175),
]
)
indices = []
for monitor in monitored:
if monitor not in monitor_inds:
raise ValueError("Unknown monitored: '{0}'".format(monitor))
indices.append(monitor_inds[monitor])
if len(indices) > 1:
return indices
else:
return indices[0]
def rhs(states, t, parameters, values=None):
"""
Compute the right hand side of the grandi ODE
"""
# Assign states
assert len(states) == 39
(
m,
h,
j,
x_kr,
x_ks,
x_to_s,
y_to_s,
x_to_f,
y_to_f,
d,
f,
f_Ca_Bj,
f_Ca_Bsl,
Ry_Rr,
Ry_Ro,
Ry_Ri,
Na_Bj,
Na_Bsl,
Tn_CL,
Tn_CHc,
Tn_CHm,
CaM,
Myo_c,
Myo_m,
SRB,
SLL_j,
SLL_sl,
SLH_j,
SLH_sl,
Csqn_b,
Ca_sr,
Na_j,
Na_sl,
Na_i,
K_i,
Ca_j,
Ca_sl,
Ca_i,
V_m,
) = states
# Assign parameters
assert len(parameters) == 112
Fjunc = parameters[0]
Fjunc_CaL = parameters[1]
cellLength = parameters[2]
cellRadius = parameters[3]
GNa = parameters[8]
GNaB = parameters[9]
IbarNaK = parameters[10]
KmKo = parameters[11]
KmNaip = parameters[12]
GKr = parameters[15]
GKp = parameters[16]
GKs = parameters[17]
pNaK = parameters[18]
GK1 = parameters[19]
Gto = parameters[20]
epi = parameters[21]
GClB = parameters[22]
GClCa = parameters[23]
KdClCa = parameters[24]
GCaL = parameters[25]
Q10CaL = parameters[26]
pCa = parameters[27]
pK = parameters[28]
pNa = parameters[29]
IbarNCX = parameters[30]
Kdact = parameters[31]
KmCai = parameters[32]
KmCao = parameters[33]
KmNai = parameters[34]
KmNao = parameters[35]
Q10NCX = parameters[36]
ksat = parameters[37]
nu = parameters[38]
IbarSLCaP = parameters[39]
KmPCa = parameters[40]
Q10SLCaP = parameters[41]
GCaB = parameters[42]
Kmf = parameters[43]
Kmr = parameters[44]
MaxSR = parameters[45]
MinSR = parameters[46]
Q10SRCaP = parameters[47]
Vmax_SRCaP = parameters[48]
ec50SR = parameters[49]
hillSRCaP = parameters[50]
kiCa = parameters[51]
kim = parameters[52]
koCa = parameters[53]
kom = parameters[54]
ks = parameters[55]
Bmax_Naj = parameters[56]
Bmax_Nasl = parameters[57]
koff_na = parameters[58]
kon_na = parameters[59]
Bmax_CaM = parameters[60]
Bmax_SR = parameters[61]
Bmax_TnChigh = parameters[62]
Bmax_TnClow = parameters[63]
Bmax_myosin = parameters[64]
koff_cam = parameters[65]
koff_myoca = parameters[66]
koff_myomg = parameters[67]
koff_sr = parameters[68]
koff_tnchca = parameters[69]
koff_tnchmg = parameters[70]
koff_tncl = parameters[71]
kon_cam = parameters[72]
kon_myoca = parameters[73]
kon_myomg = parameters[74]
kon_sr = parameters[75]
kon_tnchca = parameters[76]
kon_tnchmg = parameters[77]
kon_tncl = parameters[78]
Bmax_SLhighj0 = parameters[79]
Bmax_SLhighsl0 = parameters[80]
Bmax_SLlowj0 = parameters[81]
Bmax_SLlowsl0 = parameters[82]
koff_slh = parameters[83]
koff_sll = parameters[84]
kon_slh = parameters[85]
kon_sll = parameters[86]
Bmax_Csqn0 = parameters[87]
J_ca_juncsl = parameters[90]
J_ca_slmyo = parameters[91]
koff_csqn = parameters[92]
kon_csqn = parameters[93]
J_na_juncsl = parameters[96]
J_na_slmyo = parameters[97]
Nao = parameters[98]
Ko = parameters[99]
Cao = parameters[100]
Cli = parameters[101]
Clo = parameters[102]
Mgi = parameters[103]
Cmem = parameters[104]
Frdy = parameters[105]
R = parameters[106]
Temp = parameters[107]
stim_amplitude = parameters[108]
stim_duration = parameters[109]
stim_period = parameters[110]
stim_start = parameters[111]
# Init return args
if values is None:
values = np.zeros_like(states)
else:
assert isinstance(values, np.ndarray) and values.shape == states.shape
# Expressions for the Geometry component
Vcell = 1e-15 * np.pi * cellLength * (cellRadius * cellRadius)
Vmyo = 0.65 * Vcell
Vsr = 0.035 * Vcell
Vsl = 0.02 * Vcell
Vjunc = 0.0005390000000000001 * Vcell
Fsl = 1 - Fjunc
Fsl_CaL = 1 - Fjunc_CaL
# Expressions for the Reversal potentials component
FoRT = Frdy / (R * Temp)
ena_junc = np.log(Nao / Na_j) / FoRT
ena_sl = np.log(Nao / Na_sl) / FoRT
ek = np.log(Ko / K_i) / FoRT
eca_junc = np.log(Cao / Ca_j) / (2 * FoRT)
eca_sl = np.log(Cao / Ca_sl) / (2 * FoRT)
ecl = np.log(Cli / Clo) / FoRT
Qpow = -31 + Temp / 10
# Expressions for the I_Na component
mss = 1.0 / (
(1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
* (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
)
taum = 0.1292 * np.exp(
-(
(2.9465894465894467 + 0.06435006435006435 * V_m)
* (2.9465894465894467 + 0.06435006435006435 * V_m)
)
) + 0.06487 * np.exp(
-(
(-0.09434663536776214 + 0.019561815336463225 * V_m)
* (-0.09434663536776214 + 0.019561815336463225 * V_m)
)
)
ah = np.where(
V_m >= -40, 0, 4.4312679295805147e-07 * np.exp(-0.14705882352941177 * V_m)
)
bh = np.where(
V_m >= -40,
0.77 / (0.13 + 0.049758141083938695 * np.exp(-0.0900900900900901 * V_m)),
310000.0 * np.exp(0.3485 * V_m) + 2.7 * np.exp(0.079 * V_m),
)
tauh = 1.0 / (ah + bh)
hss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
aj = np.where(
V_m >= -40,
0,
(37.78 + V_m)
* (-25428.0 * np.exp(0.2444 * V_m) - 6.948e-06 * np.exp(-0.04391 * V_m))
/ (1 + 50262745825.95399 * np.exp(0.311 * V_m)),
)
bj = np.where(
V_m >= -40,
0.6 * np.exp(0.057 * V_m) / (1 + 0.040762203978366204 * np.exp(-0.1 * V_m)),
0.02424
* np.exp(-0.01052 * V_m)
/ (1 + 0.003960868339904256 * np.exp(-0.1378 * V_m)),
)
tauj = 1.0 / (aj + bj)
jss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
values[0] = (-m + mss) / taum
values[1] = (-h + hss) / tauh
values[2] = (-j + jss) / tauj
I_Na_junc = Fjunc * GNa * (m * m * m) * (-ena_junc + V_m) * h * j
I_Na_sl = GNa * (m * m * m) * (-ena_sl + V_m) * Fsl * h * j
# Expressions for the I_NaBK component
I_nabk_junc = Fjunc * GNaB * (-ena_junc + V_m)
I_nabk_sl = GNaB * (-ena_sl + V_m) * Fsl
# Expressions for the I_NaK component
sigma = -1 / 7 + np.exp(0.01485884101040119 * Nao) / 7
fnak = 1.0 / (
1 + 0.1245 * np.exp(-0.1 * FoRT * V_m) + 0.0365 * np.exp(-FoRT * V_m) * sigma
)
I_nak_junc = (
Fjunc
* IbarNaK
* Ko
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_j, 4)) * (KmKo + Ko))
)
I_nak_sl = (
IbarNaK
* Ko
* Fsl
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_sl, 4)) * (KmKo + Ko))
)
I_nak = I_nak_junc + I_nak_sl
# Expressions for the I_Kr component
gkr = 0.4303314829119352 * GKr * np.sqrt(Ko)
xrss = 1.0 / (1 + np.exp(-2 - V_m / 5))
tauxr = 230 / (1 + np.exp(2 + V_m / 20)) + 3300 / (
(1 + np.exp(-22 / 9 - V_m / 9)) * (1 + np.exp(11 / 9 + V_m / 9))
)
values[3] = (-x_kr + xrss) / tauxr
rkr = 1.0 / (1 + np.exp(37 / 12 + V_m / 24))
I_kr = (-ek + V_m) * gkr * rkr * x_kr
# Expressions for the I_Kp component
kp_kp = 1.0 / (1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
I_kp_junc = Fjunc * GKp * (-ek + V_m) * kp_kp
I_kp_sl = GKp * (-ek + V_m) * Fsl * kp_kp
I_kp = I_kp_junc + I_kp_sl
# Expressions for the I_Ks component
eks = np.log((Ko + Nao * pNaK) / (pNaK * Na_i + K_i)) / FoRT
gks_junc = GKs
gks_sl = GKs
xsss = 1.0 / (1 + 0.7659283383646487 * np.exp(-0.07017543859649122 * V_m))
tauxs = 990.1 / (1 + 0.8415404088681017 * np.exp(-0.0708215297450425 * V_m))
values[4] = (-x_ks + xsss) / tauxs
I_ks_junc = Fjunc * (x_ks * x_ks) * (-eks + V_m) * gks_junc
I_ks_sl = (x_ks * x_ks) * (-eks + V_m) * Fsl * gks_sl
I_ks = I_ks_junc + I_ks_sl
# Expressions for the I_to component
GtoSlow = np.where(epi == 1, 0.12 * Gto, 0.28919999999999996 * Gto)
GtoFast = np.where(epi == 1, 0.88 * Gto, 0.010799999999999999 * Gto)
xtoss = 1.0 / (1 + np.exp(19 / 13 - V_m / 13))
ytoss = 1.0 / (1 + 49.40244910553019 * np.exp(V_m / 5))
tauxtos = 0.5 + 9 / (1 + np.exp(1 / 5 + V_m / 15))
tauytos = 30 + 800 / (1 + np.exp(6 + V_m / 10))
values[5] = (-x_to_s + xtoss) / tauxtos
values[6] = (-y_to_s + ytoss) / tauytos
I_tos = (-ek + V_m) * GtoSlow * x_to_s * y_to_s
tauxtof = 0.5 + 8.5 * np.exp(-((9 / 10 + V_m / 50) * (9 / 10 + V_m / 50)))
tauytof = 7 + 85 * np.exp(-((40 + V_m) * (40 + V_m)) / 220)
values[7] = (-x_to_f + xtoss) / tauxtof
values[8] = (-y_to_f + ytoss) / tauytof
I_tof = (-ek + V_m) * GtoFast * x_to_f * y_to_f
I_to = I_tof + I_tos
# Expressions for the I_K1 component
aki = 1.02 / (1 + 7.35454251046446e-07 * np.exp(0.2385 * V_m - 0.2385 * ek))
bki = (
0.7626240065063081 * np.exp(0.08032 * V_m - 0.08032 * ek)
+ 1.1534056351865558e-16 * np.exp(0.06175 * V_m - 0.06175 * ek)
) / (1 + 0.08677229415769332 * np.exp(0.5143 * ek - 0.5143 * V_m))
kiss = aki / (aki + bki)
I_K1 = 0.4303314829119352 * GK1 * np.sqrt(Ko) * (-ek + V_m) * kiss
# Expressions for the I_ClCa component
I_ClCa_junc = Fjunc * GClCa * (-ecl + V_m) / (1 + KdClCa / Ca_j)
I_ClCa_sl = GClCa * (-ecl + V_m) * Fsl / (1 + KdClCa / Ca_sl)
I_ClCa = I_ClCa_junc + I_ClCa_sl
I_Clbk = GClB * (-ecl + V_m)
# Expressions for the I_Ca component
fss = 1.0 / (1 + np.exp(35 / 9 + V_m / 9)) + 0.6 / (1 + np.exp(5 / 2 - V_m / 20))
dss = 1.0 / (1 + np.exp(-5 / 6 - V_m / 6))
taud = (1 - np.exp(-5 / 6 - V_m / 6)) * dss / (0.17500000000000002 + 0.035 * V_m)
tauf = 1.0 / (
0.02
+ 0.0197
* np.exp(
-(
(0.48865000000000003 + 0.0337 * V_m)
* (0.48865000000000003 + 0.0337 * V_m)
)
)
)
values[9] = (-d + dss) / taud
values[10] = (-f + fss) / tauf
values[11] = -0.0119 * f_Ca_Bj + 1.7 * (1 - f_Ca_Bj) * Ca_j
values[12] = -0.0119 * f_Ca_Bsl + 1.7 * (1 - f_Ca_Bsl) * Ca_sl
fcaCaMSL = 0
fcaCaj = 0
ibarca_j = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibarca_sl = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_sl * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibark = (
Frdy
* GCaL
* pK
* (-0.75 * Ko + 0.75 * K_i * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_j = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_j * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_sl = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_sl * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
I_Ca_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarca_j
)
I_Ca_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarca_sl
)
I_CaK = (
0.45
* np.power(Q10CaL, Qpow)
* (Fjunc_CaL * (1 + fcaCaj - f_Ca_Bj) + (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL)
* d
* f
* ibark
)
I_CaNa_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarna_j
)
I_CaNa_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarna_sl
)
# Expressions for the I_NCX component
Ka_junc = 1.0 / (1 + (Kdact * Kdact) / (Ca_j * Ca_j))
Ka_sl = 1.0 / (1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
s1_junc = Cao * (Na_j * Na_j * Na_j) * np.exp(nu * FoRT * V_m)
s1_sl = Cao * (Na_sl * Na_sl * Na_sl) * np.exp(nu * FoRT * V_m)
s2_junc = (Nao * Nao * Nao) * Ca_j * np.exp((-1 + nu) * FoRT * V_m)
s3_junc = (
Cao * (Na_j * Na_j * Na_j)
+ KmCao * (Na_j * Na_j * Na_j)
+ (Nao * Nao * Nao) * Ca_j
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_j * Na_j * Na_j) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_j / KmCai) * Ca_j
)
s2_sl = (Nao * Nao * Nao) * Ca_sl * np.exp((-1 + nu) * FoRT * V_m)
s3_sl = (
Cao * (Na_sl * Na_sl * Na_sl)
+ KmCao * (Na_sl * Na_sl * Na_sl)
+ (Nao * Nao * Nao) * Ca_sl
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_sl * Na_sl * Na_sl) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_sl / KmCai) * Ca_sl
)
I_ncx_junc = (
Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_junc + s1_junc)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
I_ncx_sl = (
IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_sl + s1_sl)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
# Expressions for the I_PCa component
I_pca_junc = (
Fjunc
* IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_j, 1.6)
/ (np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
)
I_pca_sl = (
IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_sl, 1.6)
* Fsl
/ (np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
)
# Expressions for the I_CaBK component
I_cabk_junc = Fjunc * GCaB * (-eca_junc + V_m)
I_cabk_sl = GCaB * (-eca_sl + V_m) * Fsl
# Expressions for the SR Fluxes component
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + np.power(ec50SR / Ca_sr, 2.5))
koSRCa = koCa / kCaSR
kiSRCa = kiCa * kCaSR
RI = 1 - Ry_Ri - Ry_Ro - Ry_Rr
values[13] = (
kim * RI + kom * Ry_Ro - (Ca_j * Ca_j) * Ry_Rr * koSRCa - Ca_j * Ry_Rr * kiSRCa
)
values[14] = (
kim * Ry_Ri
- kom * Ry_Ro
+ (Ca_j * Ca_j) * Ry_Rr * koSRCa
- Ca_j * Ry_Ro * kiSRCa
)
values[15] = (
-kim * Ry_Ri - kom * Ry_Ri + (Ca_j * Ca_j) * RI * koSRCa + Ca_j * Ry_Ro * kiSRCa
)
J_SRCarel = ks * (-Ca_j + Ca_sr) * Ry_Ro
J_serca = (
Vmax_SRCaP
* np.power(Q10SRCaP, Qpow)
* (np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP))
/ (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
J_SRleak = 5.348e-06 * Ca_sr - 5.348e-06 * Ca_j
# Expressions for the Na Buffers component
values[16] = -koff_na * Na_Bj + kon_na * (Bmax_Naj - Na_Bj) * Na_j
values[17] = -koff_na * Na_Bsl + kon_na * (Bmax_Nasl - Na_Bsl) * Na_sl
# Expressions for the Cytosolic Ca Buffers component
values[18] = -koff_tncl * Tn_CL + kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
values[19] = (
-koff_tnchca * Tn_CHc + kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
)
values[20] = -koff_tnchmg * Tn_CHm + Mgi * kon_tnchmg * (
Bmax_TnChigh - Tn_CHc - Tn_CHm
)
values[21] = -koff_cam * CaM + kon_cam * (Bmax_CaM - CaM) * Ca_i
values[22] = -koff_myoca * Myo_c + kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
values[23] = -koff_myomg * Myo_m + Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
values[24] = -koff_sr * SRB + kon_sr * (Bmax_SR - SRB) * Ca_i
J_CaB_cytosol = (
-koff_cam * CaM
- koff_myoca * Myo_c
- koff_myomg * Myo_m
- koff_sr * SRB
- koff_tnchca * Tn_CHc
- koff_tnchmg * Tn_CHm
- koff_tncl * Tn_CL
+ Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
+ Mgi * kon_tnchmg * (Bmax_TnChigh - Tn_CHc - Tn_CHm)
+ kon_cam * (Bmax_CaM - CaM) * Ca_i
+ kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
+ kon_sr * (Bmax_SR - SRB) * Ca_i
+ kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
+ kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
)
# Expressions for the Junctional and SL Ca Buffers component
Bmax_SLlowsl = Bmax_SLlowsl0 * Vmyo / Vsl
Bmax_SLlowj = Bmax_SLlowj0 * Vmyo / Vjunc
Bmax_SLhighsl = Bmax_SLhighsl0 * Vmyo / Vsl
Bmax_SLhighj = Bmax_SLhighj0 * Vmyo / Vjunc
values[25] = -koff_sll * SLL_j + kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
values[26] = -koff_sll * SLL_sl + kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
values[27] = -koff_slh * SLH_j + kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
values[28] = -koff_slh * SLH_sl + kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
J_CaB_junction = (
-koff_slh * SLH_j
- koff_sll * SLL_j
+ kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
+ kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
)
J_CaB_sl = (
-koff_slh * SLH_sl
- koff_sll * SLL_sl
+ kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
+ kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
)
# Expressions for the SR Ca Concentrations component
Bmax_Csqn = Bmax_Csqn0 * Vmyo / Vsr
values[29] = -koff_csqn * Csqn_b + kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
values[30] = (
-J_SRCarel
+ koff_csqn * Csqn_b
- kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
- J_SRleak * Vmyo / Vsr
+ J_serca
)
# Expressions for the Na Concentrations component
I_Na_tot_junc = (
3 * I_nak_junc + 3 * I_ncx_junc + I_CaNa_junc + I_Na_junc + I_nabk_junc
)
I_Na_tot_sl = 3 * I_nak_sl + 3 * I_ncx_sl + I_CaNa_sl + I_Na_sl + I_nabk_sl
values[31] = (
-values[16]
+ J_na_juncsl * (-Na_j + Na_sl) / Vjunc
- Cmem * I_Na_tot_junc / (Frdy * Vjunc)
)
values[32] = (
-values[17]
+ J_na_juncsl * (-Na_sl + Na_j) / Vsl
+ J_na_slmyo * (-Na_sl + Na_i) / Vsl
- Cmem * I_Na_tot_sl / (Frdy * Vsl)
)
values[33] = J_na_slmyo * (-Na_i + Na_sl) / Vmyo
# Expressions for the K Concentration component
I_K_tot = -2 * I_nak + I_CaK + I_K1 + I_kp + I_kr + I_ks + I_to
values[34] = 0
# Expressions for the Ca Concentrations component
I_Ca_tot_junc = -2 * I_ncx_junc + I_Ca_junc + I_cabk_junc + I_pca_junc
I_Ca_tot_sl = -2 * I_ncx_sl + I_Ca_sl + I_cabk_sl + I_pca_sl
values[35] = (
-J_CaB_junction
+ J_ca_juncsl * (-Ca_j + Ca_sl) / Vjunc
+ J_SRCarel * Vsr / Vjunc
+ J_SRleak * Vmyo / Vjunc
- Cmem * I_Ca_tot_junc / (2 * Frdy * Vjunc)
)
values[36] = (
-J_CaB_sl
+ J_ca_juncsl * (-Ca_sl + Ca_j) / Vsl
+ J_ca_slmyo * (-Ca_sl + Ca_i) / Vsl
- Cmem * I_Ca_tot_sl / (2 * Frdy * Vsl)
)
values[37] = (
-J_CaB_cytosol + J_ca_slmyo * (-Ca_i + Ca_sl) / Vmyo - J_serca * Vsr / Vmyo
)
# Expressions for the Membrane potential component
i_Stim = np.where(
np.logical_and(
t - stim_period * np.floor(t / stim_period) <= stim_duration + stim_start,
t - stim_period * np.floor(t / stim_period) >= stim_start,
),
-stim_amplitude,
0,
)
I_Na_tot = I_Na_tot_junc + I_Na_tot_sl
I_Cl_tot = I_ClCa + I_Clbk
I_Ca_tot = I_Ca_tot_junc + I_Ca_tot_sl
I_tot = I_Ca_tot + I_Cl_tot + I_K_tot + I_Na_tot
values[38] = -I_tot - i_Stim
# Return results
return values
def monitor(states, t, parameters, monitored=None):
"""
Computes monitored expressions of the grandi ODE
"""
# Assign states
assert len(states) == 39
(
m,
h,
j,
x_kr,
x_ks,
x_to_s,
y_to_s,
x_to_f,
y_to_f,
d,
f,
f_Ca_Bj,
f_Ca_Bsl,
Ry_Rr,
Ry_Ro,
Ry_Ri,
Na_Bj,
Na_Bsl,
Tn_CL,
Tn_CHc,
Tn_CHm,
CaM,
Myo_c,
Myo_m,
SRB,
SLL_j,
SLL_sl,
SLH_j,
SLH_sl,
Csqn_b,
Ca_sr,
Na_j,
Na_sl,
Na_i,
K_i,
Ca_j,
Ca_sl,
Ca_i,
V_m,
) = states
# Assign parameters
assert len(parameters) == 112
Fjunc = parameters[0]
Fjunc_CaL = parameters[1]
cellLength = parameters[2]
cellRadius = parameters[3]
junctionLength = parameters[6]
junctionRadius = parameters[7]
GNa = parameters[8]
GNaB = parameters[9]
IbarNaK = parameters[10]
KmKo = parameters[11]
KmNaip = parameters[12]
GKr = parameters[15]
GKp = parameters[16]
GKs = parameters[17]
pNaK = parameters[18]
GK1 = parameters[19]
Gto = parameters[20]
epi = parameters[21]
GClB = parameters[22]
GClCa = parameters[23]
KdClCa = parameters[24]
GCaL = parameters[25]
Q10CaL = parameters[26]
pCa = parameters[27]
pK = parameters[28]
pNa = parameters[29]
IbarNCX = parameters[30]
Kdact = parameters[31]
KmCai = parameters[32]
KmCao = parameters[33]
KmNai = parameters[34]
KmNao = parameters[35]
Q10NCX = parameters[36]
ksat = parameters[37]
nu = parameters[38]
IbarSLCaP = parameters[39]
KmPCa = parameters[40]
Q10SLCaP = parameters[41]
GCaB = parameters[42]
Kmf = parameters[43]
Kmr = parameters[44]
MaxSR = parameters[45]
MinSR = parameters[46]
Q10SRCaP = parameters[47]
Vmax_SRCaP = parameters[48]
ec50SR = parameters[49]
hillSRCaP = parameters[50]
kiCa = parameters[51]
kim = parameters[52]
koCa = parameters[53]
kom = parameters[54]
ks = parameters[55]
Bmax_Naj = parameters[56]
Bmax_Nasl = parameters[57]
koff_na = parameters[58]
kon_na = parameters[59]
Bmax_CaM = parameters[60]
Bmax_SR = parameters[61]
Bmax_TnChigh = parameters[62]
Bmax_TnClow = parameters[63]
Bmax_myosin = parameters[64]
koff_cam = parameters[65]
koff_myoca = parameters[66]
koff_myomg = parameters[67]
koff_sr = parameters[68]
koff_tnchca = parameters[69]
koff_tnchmg = parameters[70]
koff_tncl = parameters[71]
kon_cam = parameters[72]
kon_myoca = parameters[73]
kon_myomg = parameters[74]
kon_sr = parameters[75]
kon_tnchca = parameters[76]
kon_tnchmg = parameters[77]
kon_tncl = parameters[78]
Bmax_SLhighj0 = parameters[79]
Bmax_SLhighsl0 = parameters[80]
Bmax_SLlowj0 = parameters[81]
Bmax_SLlowsl0 = parameters[82]
koff_slh = parameters[83]
koff_sll = parameters[84]
kon_slh = parameters[85]
kon_sll = parameters[86]
Bmax_Csqn0 = parameters[87]
J_ca_juncsl = parameters[90]
J_ca_slmyo = parameters[91]
koff_csqn = parameters[92]
kon_csqn = parameters[93]
J_na_juncsl = parameters[96]
J_na_slmyo = parameters[97]
Nao = parameters[98]
Ko = parameters[99]
Cao = parameters[100]
Cli = parameters[101]
Clo = parameters[102]
Mgi = parameters[103]
Cmem = parameters[104]
Frdy = parameters[105]
R = parameters[106]
Temp = parameters[107]
stim_amplitude = parameters[108]
stim_duration = parameters[109]
stim_period = parameters[110]
stim_start = parameters[111]
# Init return args
if monitored is None:
monitored = np.zeros((176,), dtype=np.float_)
else:
assert isinstance(monitored, np.ndarray) and monitored.shape == (176,)
# Expressions for the Geometry component
monitored[0] = 1e-15 * np.pi * cellLength * (cellRadius * cellRadius)
monitored[1] = 0.65 * monitored[0]
monitored[2] = 0.035 * monitored[0]
monitored[3] = 0.02 * monitored[0]
monitored[4] = 0.0005390000000000001 * monitored[0]
monitored[5] = 40300 * np.pi * junctionLength * junctionRadius
monitored[6] = 2 * np.pi * cellLength * cellRadius
monitored[7] = 1 - Fjunc
monitored[8] = 1 - Fjunc_CaL
# Expressions for the Reversal potentials component
monitored[125] = Frdy / (R * Temp)
monitored[126] = np.log(Nao / Na_j) / monitored[125]
monitored[127] = np.log(Nao / Na_sl) / monitored[125]
monitored[128] = np.log(Ko / K_i) / monitored[125]
monitored[129] = np.log(Cao / Ca_j) / (2 * monitored[125])
monitored[130] = np.log(Cao / Ca_sl) / (2 * monitored[125])
monitored[131] = np.log(Cli / Clo) / monitored[125]
monitored[132] = -31 + Temp / 10
# Expressions for the I_Na component
monitored[9] = 1.0 / (
(1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
* (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
)
monitored[10] = 0.1292 * np.exp(
-(
(2.9465894465894467 + 0.06435006435006435 * V_m)
* (2.9465894465894467 + 0.06435006435006435 * V_m)
)
) + 0.06487 * np.exp(
-(
(-0.09434663536776214 + 0.019561815336463225 * V_m)
* (-0.09434663536776214 + 0.019561815336463225 * V_m)
)
)
monitored[11] = np.where(
V_m >= -40, 0, 4.4312679295805147e-07 * np.exp(-0.14705882352941177 * V_m)
)
monitored[12] = np.where(
V_m >= -40,
0.77 / (0.13 + 0.049758141083938695 * np.exp(-0.0900900900900901 * V_m)),
310000.0 * np.exp(0.3485 * V_m) + 2.7 * np.exp(0.079 * V_m),
)
monitored[13] = 1.0 / (monitored[11] + monitored[12])
monitored[14] = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
monitored[15] = np.where(
V_m >= -40,
0,
(37.78 + V_m)
* (-25428.0 * np.exp(0.2444 * V_m) - 6.948e-06 * np.exp(-0.04391 * V_m))
/ (1 + 50262745825.95399 * np.exp(0.311 * V_m)),
)
monitored[16] = np.where(
V_m >= -40,
0.6 * np.exp(0.057 * V_m) / (1 + 0.040762203978366204 * np.exp(-0.1 * V_m)),
0.02424
* np.exp(-0.01052 * V_m)
/ (1 + 0.003960868339904256 * np.exp(-0.1378 * V_m)),
)
monitored[17] = 1.0 / (monitored[15] + monitored[16])
monitored[18] = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
monitored[137] = (-m + monitored[9]) / monitored[10]
monitored[138] = (-h + monitored[14]) / monitored[13]
monitored[139] = (-j + monitored[18]) / monitored[17]
monitored[19] = Fjunc * GNa * (m * m * m) * (-monitored[126] + V_m) * h * j
monitored[20] = GNa * (m * m * m) * (-monitored[127] + V_m) * h * j * monitored[7]
monitored[21] = monitored[19] + monitored[20]
# Expressions for the I_NaBK component
monitored[22] = Fjunc * GNaB * (-monitored[126] + V_m)
monitored[23] = GNaB * (-monitored[127] + V_m) * monitored[7]
monitored[24] = monitored[22] + monitored[23]
# Expressions for the I_NaK component
monitored[25] = -1 / 7 + np.exp(0.01485884101040119 * Nao) / 7
monitored[26] = 1.0 / (
1
+ 0.1245 * np.exp(-0.1 * V_m * monitored[125])
+ 0.0365 * np.exp(-V_m * monitored[125]) * monitored[25]
)
monitored[27] = (
Fjunc
* IbarNaK
* Ko
* monitored[26]
/ ((1 + np.power(KmNaip, 4) / np.power(Na_j, 4)) * (KmKo + Ko))
)
monitored[28] = (
IbarNaK
* Ko
* monitored[26]
* monitored[7]
/ ((1 + np.power(KmNaip, 4) / np.power(Na_sl, 4)) * (KmKo + Ko))
)
monitored[29] = monitored[27] + monitored[28]
# Expressions for the I_Kr component
monitored[30] = 0.4303314829119352 * GKr * np.sqrt(Ko)
monitored[31] = 1.0 / (1 + np.exp(-2 - V_m / 5))
monitored[32] = 230 / (1 + np.exp(2 + V_m / 20)) + 3300 / (
(1 + np.exp(-22 / 9 - V_m / 9)) * (1 + np.exp(11 / 9 + V_m / 9))
)
monitored[140] = (-x_kr + monitored[31]) / monitored[32]
monitored[33] = 1.0 / (1 + np.exp(37 / 12 + V_m / 24))
monitored[34] = (-monitored[128] + V_m) * monitored[30] * monitored[33] * x_kr
# Expressions for the I_Kp component
monitored[35] = 1.0 / (1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
monitored[36] = Fjunc * GKp * (-monitored[128] + V_m) * monitored[35]
monitored[37] = GKp * (-monitored[128] + V_m) * monitored[35] * monitored[7]
monitored[38] = monitored[36] + monitored[37]
# Expressions for the I_Ks component
monitored[39] = np.log((Ko + Nao * pNaK) / (pNaK * Na_i + K_i)) / monitored[125]
monitored[40] = GKs
monitored[41] = GKs
monitored[42] = 1.0 / (1 + 0.7659283383646487 * np.exp(-0.07017543859649122 * V_m))
monitored[43] = 990.1 / (1 + 0.8415404088681017 * np.exp(-0.0708215297450425 * V_m))
monitored[141] = (-x_ks + monitored[42]) / monitored[43]
monitored[44] = Fjunc * (x_ks * x_ks) * (-monitored[39] + V_m) * monitored[40]
monitored[45] = (
(x_ks * x_ks) * (-monitored[39] + V_m) * monitored[41] * monitored[7]
)
monitored[46] = monitored[44] + monitored[45]
# Expressions for the I_to component
monitored[47] = np.where(epi == 1, 0.12 * Gto, 0.28919999999999996 * Gto)
monitored[48] = np.where(epi == 1, 0.88 * Gto, 0.010799999999999999 * Gto)
monitored[49] = 1.0 / (1 + np.exp(19 / 13 - V_m / 13))
monitored[50] = 1.0 / (1 + 49.40244910553019 * np.exp(V_m / 5))
monitored[51] = 0.5 + 9 / (1 + np.exp(1 / 5 + V_m / 15))
monitored[52] = 30 + 800 / (1 + np.exp(6 + V_m / 10))
monitored[142] = (-x_to_s + monitored[49]) / monitored[51]
monitored[143] = (-y_to_s + monitored[50]) / monitored[52]
monitored[53] = (-monitored[128] + V_m) * monitored[47] * x_to_s * y_to_s
monitored[54] = 0.5 + 8.5 * np.exp(-((9 / 10 + V_m / 50) * (9 / 10 + V_m / 50)))
monitored[55] = 7 + 85 * np.exp(-((40 + V_m) * (40 + V_m)) / 220)
monitored[144] = (-x_to_f + monitored[49]) / monitored[54]
monitored[145] = (-y_to_f + monitored[50]) / monitored[55]
monitored[56] = (-monitored[128] + V_m) * monitored[48] * x_to_f * y_to_f
monitored[57] = monitored[53] + monitored[56]
# Expressions for the I_K1 component
monitored[133] = 1.02 / (
1 + 7.35454251046446e-07 * np.exp(0.2385 * V_m - 0.2385 * monitored[128])
)
monitored[134] = (
0.7626240065063081 * np.exp(0.08032 * V_m - 0.08032 * monitored[128])
+ 1.1534056351865558e-16 * np.exp(0.06175 * V_m - 0.06175 * monitored[128])
) / (1 + 0.08677229415769332 * np.exp(0.5143 * monitored[128] - 0.5143 * V_m))
monitored[135] = monitored[133] / (monitored[133] + monitored[134])
monitored[136] = (
0.4303314829119352
* GK1
* np.sqrt(Ko)
* (-monitored[128] + V_m)
* monitored[135]
)
# Expressions for the I_ClCa component
monitored[58] = Fjunc * GClCa * (-monitored[131] + V_m) / (1 + KdClCa / Ca_j)
monitored[59] = (
GClCa * (-monitored[131] + V_m) * monitored[7] / (1 + KdClCa / Ca_sl)
)
monitored[60] = monitored[58] + monitored[59]
monitored[61] = GClB * (-monitored[131] + V_m)
# Expressions for the I_Ca component
monitored[62] = 1.0 / (1 + np.exp(35 / 9 + V_m / 9)) + 0.6 / (
1 + np.exp(5 / 2 - V_m / 20)
)
monitored[63] = 1.0 / (1 + np.exp(-5 / 6 - V_m / 6))
monitored[64] = (
(1 - np.exp(-5 / 6 - V_m / 6))
* monitored[63]
/ (0.17500000000000002 + 0.035 * V_m)
)
monitored[65] = 1.0 / (
0.02
+ 0.0197
* np.exp(
-(
(0.48865000000000003 + 0.0337 * V_m)
* (0.48865000000000003 + 0.0337 * V_m)
)
)
)
monitored[146] = (-d + monitored[63]) / monitored[64]
monitored[147] = (-f + monitored[62]) / monitored[65]
monitored[148] = -0.0119 * f_Ca_Bj + 1.7 * (1 - f_Ca_Bj) * Ca_j
monitored[149] = -0.0119 * f_Ca_Bsl + 1.7 * (1 - f_Ca_Bsl) * Ca_sl
monitored[66] = 0
monitored[67] = 0
monitored[68] = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * V_m * monitored[125]))
* V_m
* monitored[125]
/ (-1 + np.exp(2 * V_m * monitored[125]))
)
monitored[69] = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_sl * np.exp(2 * V_m * monitored[125]))
* V_m
* monitored[125]
/ (-1 + np.exp(2 * V_m * monitored[125]))
)
monitored[70] = (
Frdy
* GCaL
* pK
* (-0.75 * Ko + 0.75 * K_i * np.exp(V_m * monitored[125]))
* V_m
* monitored[125]
/ (-1 + np.exp(V_m * monitored[125]))
)
monitored[71] = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_j * np.exp(V_m * monitored[125]))
* V_m
* monitored[125]
/ (-1 + np.exp(V_m * monitored[125]))
)
monitored[72] = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_sl * np.exp(V_m * monitored[125]))
* V_m
* monitored[125]
/ (-1 + np.exp(V_m * monitored[125]))
)
monitored[73] = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, monitored[132])
* (1 + monitored[67] - f_Ca_Bj)
* d
* f
* monitored[68]
)
monitored[74] = (
0.45
* np.power(Q10CaL, monitored[132])
* (1 + monitored[66] - f_Ca_Bsl)
* d
* f
* monitored[69]
* monitored[8]
)
monitored[75] = monitored[73] + monitored[74]
monitored[76] = (
0.45
* np.power(Q10CaL, monitored[132])
* (
Fjunc_CaL * (1 + monitored[67] - f_Ca_Bj)
+ (1 + monitored[66] - f_Ca_Bsl) * monitored[8]
)
* d
* f
* monitored[70]
)
monitored[77] = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, monitored[132])
* (1 + monitored[67] - f_Ca_Bj)
* d
* f
* monitored[71]
)
monitored[78] = (
0.45
* np.power(Q10CaL, monitored[132])
* (1 + monitored[66] - f_Ca_Bsl)
* d
* f
* monitored[72]
* monitored[8]
)
monitored[79] = monitored[77] + monitored[78]
monitored[80] = monitored[75] + monitored[76] + monitored[79]
# Expressions for the I_NCX component
monitored[81] = 1.0 / (1 + (Kdact * Kdact) / (Ca_j * Ca_j))
monitored[82] = 1.0 / (1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
monitored[83] = Cao * (Na_j * Na_j * Na_j) * np.exp(nu * V_m * monitored[125])
monitored[84] = Cao * (Na_sl * Na_sl * Na_sl) * np.exp(nu * V_m * monitored[125])
monitored[85] = (Nao * Nao * Nao) * Ca_j * np.exp((-1 + nu) * V_m * monitored[125])
monitored[86] = (
Cao * (Na_j * Na_j * Na_j)
+ KmCao * (Na_j * Na_j * Na_j)
+ (Nao * Nao * Nao) * Ca_j
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_j * Na_j * Na_j) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_j / KmCai) * Ca_j
)
monitored[87] = (Nao * Nao * Nao) * Ca_sl * np.exp((-1 + nu) * V_m * monitored[125])
monitored[88] = (
Cao * (Na_sl * Na_sl * Na_sl)
+ KmCao * (Na_sl * Na_sl * Na_sl)
+ (Nao * Nao * Nao) * Ca_sl
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_sl * Na_sl * Na_sl) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_sl / KmCai) * Ca_sl
)
monitored[89] = (
Fjunc
* IbarNCX
* np.power(Q10NCX, monitored[132])
* (-monitored[85] + monitored[83])
* monitored[81]
/ ((1 + ksat * np.exp((-1 + nu) * V_m * monitored[125])) * monitored[86])
)
monitored[90] = (
IbarNCX
* np.power(Q10NCX, monitored[132])
* (-monitored[87] + monitored[84])
* monitored[7]
* monitored[82]
/ ((1 + ksat * np.exp((-1 + nu) * V_m * monitored[125])) * monitored[88])
)
monitored[91] = monitored[89] + monitored[90]
# Expressions for the I_PCa component
monitored[92] = (
Fjunc
* IbarSLCaP
* np.power(Q10SLCaP, monitored[132])
* np.power(Ca_j, 1.6)
/ (np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
)
monitored[93] = (
IbarSLCaP
* np.power(Q10SLCaP, monitored[132])
* np.power(Ca_sl, 1.6)
* monitored[7]
/ (np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
)
monitored[94] = monitored[92] + monitored[93]
# Expressions for the I_CaBK component
monitored[95] = Fjunc * GCaB * (-monitored[129] + V_m)
monitored[96] = GCaB * (-monitored[130] + V_m) * monitored[7]
monitored[97] = monitored[95] + monitored[96]
# Expressions for the SR Fluxes component
monitored[98] = MaxSR - (MaxSR - MinSR) / (1 + np.power(ec50SR / Ca_sr, 2.5))
monitored[99] = koCa / monitored[98]
monitored[100] = kiCa * monitored[98]
monitored[101] = 1 - Ry_Ri - Ry_Ro - Ry_Rr
monitored[150] = (
kim * monitored[101]
+ kom * Ry_Ro
- (Ca_j * Ca_j) * Ry_Rr * monitored[99]
- Ca_j * Ry_Rr * monitored[100]
)
monitored[151] = (
kim * Ry_Ri
- kom * Ry_Ro
+ (Ca_j * Ca_j) * Ry_Rr * monitored[99]
- Ca_j * Ry_Ro * monitored[100]
)
monitored[152] = (
-kim * Ry_Ri
- kom * Ry_Ri
+ (Ca_j * Ca_j) * monitored[101] * monitored[99]
+ Ca_j * Ry_Ro * monitored[100]
)
monitored[102] = ks * (-Ca_j + Ca_sr) * Ry_Ro
monitored[103] = (
Vmax_SRCaP
* np.power(Q10SRCaP, monitored[132])
* (np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP))
/ (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
monitored[104] = 5.348e-06 * Ca_sr - 5.348e-06 * Ca_j
# Expressions for the Na Buffers component
monitored[153] = -koff_na * Na_Bj + kon_na * (Bmax_Naj - Na_Bj) * Na_j
monitored[154] = -koff_na * Na_Bsl + kon_na * (Bmax_Nasl - Na_Bsl) * Na_sl
# Expressions for the Cytosolic Ca Buffers component
monitored[155] = -koff_tncl * Tn_CL + kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
monitored[156] = (
-koff_tnchca * Tn_CHc + kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
)
monitored[157] = -koff_tnchmg * Tn_CHm + Mgi * kon_tnchmg * (
Bmax_TnChigh - Tn_CHc - Tn_CHm
)
monitored[158] = -koff_cam * CaM + kon_cam * (Bmax_CaM - CaM) * Ca_i
monitored[159] = (
-koff_myoca * Myo_c + kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
)
monitored[160] = -koff_myomg * Myo_m + Mgi * kon_myomg * (
Bmax_myosin - Myo_c - Myo_m
)
monitored[161] = -koff_sr * SRB + kon_sr * (Bmax_SR - SRB) * Ca_i
monitored[105] = (
-koff_cam * CaM
- koff_myoca * Myo_c
- koff_myomg * Myo_m
- koff_sr * SRB
- koff_tnchca * Tn_CHc
- koff_tnchmg * Tn_CHm
- koff_tncl * Tn_CL
+ Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
+ Mgi * kon_tnchmg * (Bmax_TnChigh - Tn_CHc - Tn_CHm)
+ kon_cam * (Bmax_CaM - CaM) * Ca_i
+ kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
+ kon_sr * (Bmax_SR - SRB) * Ca_i
+ kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
+ kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
)
# Expressions for the Junctional and SL Ca Buffers component
monitored[106] = Bmax_SLlowsl0 * monitored[1] / monitored[3]
monitored[107] = Bmax_SLlowj0 * monitored[1] / monitored[4]
monitored[108] = Bmax_SLhighsl0 * monitored[1] / monitored[3]
monitored[109] = Bmax_SLhighj0 * monitored[1] / monitored[4]
monitored[162] = -koff_sll * SLL_j + kon_sll * (-SLL_j + monitored[107]) * Ca_j
monitored[163] = -koff_sll * SLL_sl + kon_sll * (-SLL_sl + monitored[106]) * Ca_sl
monitored[164] = -koff_slh * SLH_j + kon_slh * (-SLH_j + monitored[109]) * Ca_j
monitored[165] = -koff_slh * SLH_sl + kon_slh * (-SLH_sl + monitored[108]) * Ca_sl
monitored[110] = (
-koff_slh * SLH_j
- koff_sll * SLL_j
+ kon_slh * (-SLH_j + monitored[109]) * Ca_j
+ kon_sll * (-SLL_j + monitored[107]) * Ca_j
)
monitored[111] = (
-koff_slh * SLH_sl
- koff_sll * SLL_sl
+ kon_slh * (-SLH_sl + monitored[108]) * Ca_sl
+ kon_sll * (-SLL_sl + monitored[106]) * Ca_sl
)
# Expressions for the SR Ca Concentrations component
monitored[112] = Bmax_Csqn0 * monitored[1] / monitored[2]
monitored[166] = -koff_csqn * Csqn_b + kon_csqn * (-Csqn_b + monitored[112]) * Ca_sr
monitored[167] = (
-monitored[102]
+ koff_csqn * Csqn_b
- kon_csqn * (-Csqn_b + monitored[112]) * Ca_sr
- monitored[104] * monitored[1] / monitored[2]
+ monitored[103]
)
# Expressions for the Na Concentrations component
monitored[113] = (
3 * monitored[27]
+ 3 * monitored[89]
+ monitored[19]
+ monitored[22]
+ monitored[77]
)
monitored[114] = (
3 * monitored[28]
+ 3 * monitored[90]
+ monitored[20]
+ monitored[23]
+ monitored[78]
)
monitored[115] = 3 * monitored[28] + 3 * monitored[90] + monitored[78]
monitored[116] = 3 * monitored[27] + 3 * monitored[89] + monitored[77]
monitored[168] = (
-monitored[153]
+ J_na_juncsl * (-Na_j + Na_sl) / monitored[4]
- Cmem * monitored[113] / (Frdy * monitored[4])
)
monitored[169] = (
-monitored[154]
+ J_na_juncsl * (-Na_sl + Na_j) / monitored[3]
+ J_na_slmyo * (-Na_sl + Na_i) / monitored[3]
- Cmem * monitored[114] / (Frdy * monitored[3])
)
monitored[170] = J_na_slmyo * (-Na_i + Na_sl) / monitored[1]
# Expressions for the K Concentration component
monitored[117] = (
-2 * monitored[29]
+ monitored[136]
+ monitored[34]
+ monitored[38]
+ monitored[46]
+ monitored[57]
+ monitored[76]
)
monitored[171] = 0
# Expressions for the Ca Concentrations component
monitored[118] = -2 * monitored[89] + monitored[73] + monitored[92] + monitored[95]
monitored[119] = -2 * monitored[90] + monitored[74] + monitored[93] + monitored[96]
monitored[172] = (
-monitored[110]
+ J_ca_juncsl * (-Ca_j + Ca_sl) / monitored[4]
+ monitored[102] * monitored[2] / monitored[4]
+ monitored[104] * monitored[1] / monitored[4]
- Cmem * monitored[118] / (2 * Frdy * monitored[4])
)
monitored[173] = (
-monitored[111]
+ J_ca_juncsl * (-Ca_sl + Ca_j) / monitored[3]
+ J_ca_slmyo * (-Ca_sl + Ca_i) / monitored[3]
- Cmem * monitored[119] / (2 * Frdy * monitored[3])
)
monitored[174] = (
-monitored[105]
+ J_ca_slmyo * (-Ca_i + Ca_sl) / monitored[1]
- monitored[103] * monitored[2] / monitored[1]
)
# Expressions for the Membrane potential component
monitored[120] = np.where(
np.logical_and(
t - stim_period * np.floor(t / stim_period) <= stim_duration + stim_start,
t - stim_period * np.floor(t / stim_period) >= stim_start,
),
-stim_amplitude,
0,
)
monitored[121] = monitored[113] + monitored[114]
monitored[122] = monitored[60] + monitored[61]
monitored[123] = monitored[118] + monitored[119]
monitored[124] = monitored[117] + monitored[121] + monitored[122] + monitored[123]
monitored[175] = -monitored[120] - monitored[124]
# Return results
return monitored
def FE(states, t, dt, parameters):
"""
Compute a forward step using the explicit Euler algorithm to the grandi ODE
"""
# Assign states
assert len(states) == 39
(
m,
h,
j,
x_kr,
x_ks,
x_to_s,
y_to_s,
x_to_f,
y_to_f,
d,
f,
f_Ca_Bj,
f_Ca_Bsl,
Ry_Rr,
Ry_Ro,
Ry_Ri,
Na_Bj,
Na_Bsl,
Tn_CL,
Tn_CHc,
Tn_CHm,
CaM,
Myo_c,
Myo_m,
SRB,
SLL_j,
SLL_sl,
SLH_j,
SLH_sl,
Csqn_b,
Ca_sr,
Na_j,
Na_sl,
Na_i,
K_i,
Ca_j,
Ca_sl,
Ca_i,
V_m,
) = states
# Assign parameters
assert len(parameters) == 112
Fjunc = parameters[0]
Fjunc_CaL = parameters[1]
cellLength = parameters[2]
cellRadius = parameters[3]
GNa = parameters[8]
GNaB = parameters[9]
IbarNaK = parameters[10]
KmKo = parameters[11]
KmNaip = parameters[12]
GKr = parameters[15]
GKp = parameters[16]
GKs = parameters[17]
pNaK = parameters[18]
GK1 = parameters[19]
Gto = parameters[20]
epi = parameters[21]
GClB = parameters[22]
GClCa = parameters[23]
KdClCa = parameters[24]
GCaL = parameters[25]
Q10CaL = parameters[26]
pCa = parameters[27]
pK = parameters[28]
pNa = parameters[29]
IbarNCX = parameters[30]
Kdact = parameters[31]
KmCai = parameters[32]
KmCao = parameters[33]
KmNai = parameters[34]
KmNao = parameters[35]
Q10NCX = parameters[36]
ksat = parameters[37]
nu = parameters[38]
IbarSLCaP = parameters[39]
KmPCa = parameters[40]
Q10SLCaP = parameters[41]
GCaB = parameters[42]
Kmf = parameters[43]
Kmr = parameters[44]
MaxSR = parameters[45]
MinSR = parameters[46]
Q10SRCaP = parameters[47]
Vmax_SRCaP = parameters[48]
ec50SR = parameters[49]
hillSRCaP = parameters[50]
kiCa = parameters[51]
kim = parameters[52]
koCa = parameters[53]
kom = parameters[54]
ks = parameters[55]
Bmax_Naj = parameters[56]
Bmax_Nasl = parameters[57]
koff_na = parameters[58]
kon_na = parameters[59]
Bmax_CaM = parameters[60]
Bmax_SR = parameters[61]
Bmax_TnChigh = parameters[62]
Bmax_TnClow = parameters[63]
Bmax_myosin = parameters[64]
koff_cam = parameters[65]
koff_myoca = parameters[66]
koff_myomg = parameters[67]
koff_sr = parameters[68]
koff_tnchca = parameters[69]
koff_tnchmg = parameters[70]
koff_tncl = parameters[71]
kon_cam = parameters[72]
kon_myoca = parameters[73]
kon_myomg = parameters[74]
kon_sr = parameters[75]
kon_tnchca = parameters[76]
kon_tnchmg = parameters[77]
kon_tncl = parameters[78]
Bmax_SLhighj0 = parameters[79]
Bmax_SLhighsl0 = parameters[80]
Bmax_SLlowj0 = parameters[81]
Bmax_SLlowsl0 = parameters[82]
koff_slh = parameters[83]
koff_sll = parameters[84]
kon_slh = parameters[85]
kon_sll = parameters[86]
Bmax_Csqn0 = parameters[87]
J_ca_juncsl = parameters[90]
J_ca_slmyo = parameters[91]
koff_csqn = parameters[92]
kon_csqn = parameters[93]
J_na_juncsl = parameters[96]
J_na_slmyo = parameters[97]
Nao = parameters[98]
Ko = parameters[99]
Cao = parameters[100]
Cli = parameters[101]
Clo = parameters[102]
Mgi = parameters[103]
Cmem = parameters[104]
Frdy = parameters[105]
R = parameters[106]
Temp = parameters[107]
stim_amplitude = parameters[108]
stim_duration = parameters[109]
stim_period = parameters[110]
stim_start = parameters[111]
# Expressions for the Geometry component
Vcell = 1e-15 * np.pi * cellLength * (cellRadius * cellRadius)
Vmyo = 0.65 * Vcell
Vsr = 0.035 * Vcell
Vsl = 0.02 * Vcell
Vjunc = 0.0005390000000000001 * Vcell
Fsl = 1 - Fjunc
Fsl_CaL = 1 - Fjunc_CaL
# Expressions for the Reversal potentials component
FoRT = Frdy / (R * Temp)
ena_junc = np.log(Nao / Na_j) / FoRT
ena_sl = np.log(Nao / Na_sl) / FoRT
ek = np.log(Ko / K_i) / FoRT
eca_junc = np.log(Cao / Ca_j) / (2 * FoRT)
eca_sl = np.log(Cao / Ca_sl) / (2 * FoRT)
ecl = np.log(Cli / Clo) / FoRT
Qpow = -31 + Temp / 10
# Expressions for the I_Na component
mss = 1.0 / (
(1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
* (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
)
taum = 0.1292 * np.exp(
-(
(2.9465894465894467 + 0.06435006435006435 * V_m)
* (2.9465894465894467 + 0.06435006435006435 * V_m)
)
) + 0.06487 * np.exp(
-(
(-0.09434663536776214 + 0.019561815336463225 * V_m)
* (-0.09434663536776214 + 0.019561815336463225 * V_m)
)
)
ah = np.where(
V_m >= -40, 0, 4.4312679295805147e-07 * np.exp(-0.14705882352941177 * V_m)
)
bh = np.where(
V_m >= -40,
0.77 / (0.13 + 0.049758141083938695 * np.exp(-0.0900900900900901 * V_m)),
310000.0 * np.exp(0.3485 * V_m) + 2.7 * np.exp(0.079 * V_m),
)
tauh = 1.0 / (ah + bh)
hss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
aj = np.where(
V_m >= -40,
0,
(37.78 + V_m)
* (-25428.0 * np.exp(0.2444 * V_m) - 6.948e-06 * np.exp(-0.04391 * V_m))
/ (1 + 50262745825.95399 * np.exp(0.311 * V_m)),
)
bj = np.where(
V_m >= -40,
0.6 * np.exp(0.057 * V_m) / (1 + 0.040762203978366204 * np.exp(-0.1 * V_m)),
0.02424
* np.exp(-0.01052 * V_m)
/ (1 + 0.003960868339904256 * np.exp(-0.1378 * V_m)),
)
tauj = 1.0 / (aj + bj)
jss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
dm_dt = (-m + mss) / taum
states[0] = dt * dm_dt + m
dh_dt = (-h + hss) / tauh
states[1] = dt * dh_dt + h
dj_dt = (-j + jss) / tauj
states[2] = dt * dj_dt + j
I_Na_junc = Fjunc * GNa * (m * m * m) * (-ena_junc + V_m) * h * j
I_Na_sl = GNa * (m * m * m) * (-ena_sl + V_m) * Fsl * h * j
# Expressions for the I_NaBK component
I_nabk_junc = Fjunc * GNaB * (-ena_junc + V_m)
I_nabk_sl = GNaB * (-ena_sl + V_m) * Fsl
# Expressions for the I_NaK component
sigma = -1 / 7 + np.exp(0.01485884101040119 * Nao) / 7
fnak = 1.0 / (
1 + 0.1245 * np.exp(-0.1 * FoRT * V_m) + 0.0365 * np.exp(-FoRT * V_m) * sigma
)
I_nak_junc = (
Fjunc
* IbarNaK
* Ko
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_j, 4)) * (KmKo + Ko))
)
I_nak_sl = (
IbarNaK
* Ko
* Fsl
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_sl, 4)) * (KmKo + Ko))
)
I_nak = I_nak_junc + I_nak_sl
# Expressions for the I_Kr component
gkr = 0.4303314829119352 * GKr * np.sqrt(Ko)
xrss = 1.0 / (1 + np.exp(-2 - V_m / 5))
tauxr = 230 / (1 + np.exp(2 + V_m / 20)) + 3300 / (
(1 + np.exp(-22 / 9 - V_m / 9)) * (1 + np.exp(11 / 9 + V_m / 9))
)
dx_kr_dt = (-x_kr + xrss) / tauxr
states[3] = dt * dx_kr_dt + x_kr
rkr = 1.0 / (1 + np.exp(37 / 12 + V_m / 24))
I_kr = (-ek + V_m) * gkr * rkr * x_kr
# Expressions for the I_Kp component
kp_kp = 1.0 / (1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
I_kp_junc = Fjunc * GKp * (-ek + V_m) * kp_kp
I_kp_sl = GKp * (-ek + V_m) * Fsl * kp_kp
I_kp = I_kp_junc + I_kp_sl
# Expressions for the I_Ks component
eks = np.log((Ko + Nao * pNaK) / (pNaK * Na_i + K_i)) / FoRT
gks_junc = GKs
gks_sl = GKs
xsss = 1.0 / (1 + 0.7659283383646487 * np.exp(-0.07017543859649122 * V_m))
tauxs = 990.1 / (1 + 0.8415404088681017 * np.exp(-0.0708215297450425 * V_m))
dx_ks_dt = (-x_ks + xsss) / tauxs
states[4] = dt * dx_ks_dt + x_ks
I_ks_junc = Fjunc * (x_ks * x_ks) * (-eks + V_m) * gks_junc
I_ks_sl = (x_ks * x_ks) * (-eks + V_m) * Fsl * gks_sl
I_ks = I_ks_junc + I_ks_sl
# Expressions for the I_to component
GtoSlow = np.where(epi == 1, 0.12 * Gto, 0.28919999999999996 * Gto)
GtoFast = np.where(epi == 1, 0.88 * Gto, 0.010799999999999999 * Gto)
xtoss = 1.0 / (1 + np.exp(19 / 13 - V_m / 13))
ytoss = 1.0 / (1 + 49.40244910553019 * np.exp(V_m / 5))
tauxtos = 0.5 + 9 / (1 + np.exp(1 / 5 + V_m / 15))
tauytos = 30 + 800 / (1 + np.exp(6 + V_m / 10))
dx_to_s_dt = (-x_to_s + xtoss) / tauxtos
states[5] = dt * dx_to_s_dt + x_to_s
dy_to_s_dt = (-y_to_s + ytoss) / tauytos
states[6] = dt * dy_to_s_dt + y_to_s
I_tos = (-ek + V_m) * GtoSlow * x_to_s * y_to_s
tauxtof = 0.5 + 8.5 * np.exp(-((9 / 10 + V_m / 50) * (9 / 10 + V_m / 50)))
tauytof = 7 + 85 * np.exp(-((40 + V_m) * (40 + V_m)) / 220)
dx_to_f_dt = (-x_to_f + xtoss) / tauxtof
states[7] = dt * dx_to_f_dt + x_to_f
dy_to_f_dt = (-y_to_f + ytoss) / tauytof
states[8] = dt * dy_to_f_dt + y_to_f
I_tof = (-ek + V_m) * GtoFast * x_to_f * y_to_f
I_to = I_tof + I_tos
# Expressions for the I_K1 component
aki = 1.02 / (1 + 7.35454251046446e-07 * np.exp(0.2385 * V_m - 0.2385 * ek))
bki = (
0.7626240065063081 * np.exp(0.08032 * V_m - 0.08032 * ek)
+ 1.1534056351865558e-16 * np.exp(0.06175 * V_m - 0.06175 * ek)
) / (1 + 0.08677229415769332 * np.exp(0.5143 * ek - 0.5143 * V_m))
kiss = aki / (aki + bki)
I_K1 = 0.4303314829119352 * GK1 * np.sqrt(Ko) * (-ek + V_m) * kiss
# Expressions for the I_ClCa component
I_ClCa_junc = Fjunc * GClCa * (-ecl + V_m) / (1 + KdClCa / Ca_j)
I_ClCa_sl = GClCa * (-ecl + V_m) * Fsl / (1 + KdClCa / Ca_sl)
I_ClCa = I_ClCa_junc + I_ClCa_sl
I_Clbk = GClB * (-ecl + V_m)
# Expressions for the I_Ca component
fss = 1.0 / (1 + np.exp(35 / 9 + V_m / 9)) + 0.6 / (1 + np.exp(5 / 2 - V_m / 20))
dss = 1.0 / (1 + np.exp(-5 / 6 - V_m / 6))
taud = (1 - np.exp(-5 / 6 - V_m / 6)) * dss / (0.17500000000000002 + 0.035 * V_m)
tauf = 1.0 / (
0.02
+ 0.0197
* np.exp(
-(
(0.48865000000000003 + 0.0337 * V_m)
* (0.48865000000000003 + 0.0337 * V_m)
)
)
)
dd_dt = (-d + dss) / taud
states[9] = dt * dd_dt + d
df_dt = (-f + fss) / tauf
states[10] = dt * df_dt + f
df_Ca_Bj_dt = -0.0119 * f_Ca_Bj + 1.7 * (1 - f_Ca_Bj) * Ca_j
states[11] = dt * df_Ca_Bj_dt + f_Ca_Bj
df_Ca_Bsl_dt = -0.0119 * f_Ca_Bsl + 1.7 * (1 - f_Ca_Bsl) * Ca_sl
states[12] = dt * df_Ca_Bsl_dt + f_Ca_Bsl
fcaCaMSL = 0
fcaCaj = 0
ibarca_j = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibarca_sl = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_sl * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibark = (
Frdy
* GCaL
* pK
* (-0.75 * Ko + 0.75 * K_i * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_j = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_j * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_sl = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_sl * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
I_Ca_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarca_j
)
I_Ca_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarca_sl
)
I_CaK = (
0.45
* np.power(Q10CaL, Qpow)
* (Fjunc_CaL * (1 + fcaCaj - f_Ca_Bj) + (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL)
* d
* f
* ibark
)
I_CaNa_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarna_j
)
I_CaNa_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarna_sl
)
# Expressions for the I_NCX component
Ka_junc = 1.0 / (1 + (Kdact * Kdact) / (Ca_j * Ca_j))
Ka_sl = 1.0 / (1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
s1_junc = Cao * (Na_j * Na_j * Na_j) * np.exp(nu * FoRT * V_m)
s1_sl = Cao * (Na_sl * Na_sl * Na_sl) * np.exp(nu * FoRT * V_m)
s2_junc = (Nao * Nao * Nao) * Ca_j * np.exp((-1 + nu) * FoRT * V_m)
s3_junc = (
Cao * (Na_j * Na_j * Na_j)
+ KmCao * (Na_j * Na_j * Na_j)
+ (Nao * Nao * Nao) * Ca_j
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_j * Na_j * Na_j) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_j / KmCai) * Ca_j
)
s2_sl = (Nao * Nao * Nao) * Ca_sl * np.exp((-1 + nu) * FoRT * V_m)
s3_sl = (
Cao * (Na_sl * Na_sl * Na_sl)
+ KmCao * (Na_sl * Na_sl * Na_sl)
+ (Nao * Nao * Nao) * Ca_sl
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_sl * Na_sl * Na_sl) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_sl / KmCai) * Ca_sl
)
I_ncx_junc = (
Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_junc + s1_junc)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
I_ncx_sl = (
IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_sl + s1_sl)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
# Expressions for the I_PCa component
I_pca_junc = (
Fjunc
* IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_j, 1.6)
/ (np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
)
I_pca_sl = (
IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_sl, 1.6)
* Fsl
/ (np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
)
# Expressions for the I_CaBK component
I_cabk_junc = Fjunc * GCaB * (-eca_junc + V_m)
I_cabk_sl = GCaB * (-eca_sl + V_m) * Fsl
# Expressions for the SR Fluxes component
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + np.power(ec50SR / Ca_sr, 2.5))
koSRCa = koCa / kCaSR
kiSRCa = kiCa * kCaSR
RI = 1 - Ry_Ri - Ry_Ro - Ry_Rr
dRy_Rr_dt = (
kim * RI + kom * Ry_Ro - (Ca_j * Ca_j) * Ry_Rr * koSRCa - Ca_j * Ry_Rr * kiSRCa
)
states[13] = dt * dRy_Rr_dt + Ry_Rr
dRy_Ro_dt = (
kim * Ry_Ri
- kom * Ry_Ro
+ (Ca_j * Ca_j) * Ry_Rr * koSRCa
- Ca_j * Ry_Ro * kiSRCa
)
states[14] = dt * dRy_Ro_dt + Ry_Ro
dRy_Ri_dt = (
-kim * Ry_Ri - kom * Ry_Ri + (Ca_j * Ca_j) * RI * koSRCa + Ca_j * Ry_Ro * kiSRCa
)
states[15] = dt * dRy_Ri_dt + Ry_Ri
J_SRCarel = ks * (-Ca_j + Ca_sr) * Ry_Ro
J_serca = (
Vmax_SRCaP
* np.power(Q10SRCaP, Qpow)
* (np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP))
/ (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
J_SRleak = 5.348e-06 * Ca_sr - 5.348e-06 * Ca_j
# Expressions for the Na Buffers component
dNa_Bj_dt = -koff_na * Na_Bj + kon_na * (Bmax_Naj - Na_Bj) * Na_j
states[16] = dt * dNa_Bj_dt + Na_Bj
dNa_Bsl_dt = -koff_na * Na_Bsl + kon_na * (Bmax_Nasl - Na_Bsl) * Na_sl
states[17] = dt * dNa_Bsl_dt + Na_Bsl
# Expressions for the Cytosolic Ca Buffers component
dTn_CL_dt = -koff_tncl * Tn_CL + kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
states[18] = dt * dTn_CL_dt + Tn_CL
dTn_CHc_dt = (
-koff_tnchca * Tn_CHc + kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
)
states[19] = dt * dTn_CHc_dt + Tn_CHc
dTn_CHm_dt = -koff_tnchmg * Tn_CHm + Mgi * kon_tnchmg * (
Bmax_TnChigh - Tn_CHc - Tn_CHm
)
states[20] = dt * dTn_CHm_dt + Tn_CHm
dCaM_dt = -koff_cam * CaM + kon_cam * (Bmax_CaM - CaM) * Ca_i
states[21] = dt * dCaM_dt + CaM
dMyo_c_dt = -koff_myoca * Myo_c + kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
states[22] = dt * dMyo_c_dt + Myo_c
dMyo_m_dt = -koff_myomg * Myo_m + Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
states[23] = dt * dMyo_m_dt + Myo_m
dSRB_dt = -koff_sr * SRB + kon_sr * (Bmax_SR - SRB) * Ca_i
states[24] = dt * dSRB_dt + SRB
J_CaB_cytosol = (
-koff_cam * CaM
- koff_myoca * Myo_c
- koff_myomg * Myo_m
- koff_sr * SRB
- koff_tnchca * Tn_CHc
- koff_tnchmg * Tn_CHm
- koff_tncl * Tn_CL
+ Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
+ Mgi * kon_tnchmg * (Bmax_TnChigh - Tn_CHc - Tn_CHm)
+ kon_cam * (Bmax_CaM - CaM) * Ca_i
+ kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
+ kon_sr * (Bmax_SR - SRB) * Ca_i
+ kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
+ kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
)
# Expressions for the Junctional and SL Ca Buffers component
Bmax_SLlowsl = Bmax_SLlowsl0 * Vmyo / Vsl
Bmax_SLlowj = Bmax_SLlowj0 * Vmyo / Vjunc
Bmax_SLhighsl = Bmax_SLhighsl0 * Vmyo / Vsl
Bmax_SLhighj = Bmax_SLhighj0 * Vmyo / Vjunc
dSLL_j_dt = -koff_sll * SLL_j + kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
states[25] = dt * dSLL_j_dt + SLL_j
dSLL_sl_dt = -koff_sll * SLL_sl + kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
states[26] = dt * dSLL_sl_dt + SLL_sl
dSLH_j_dt = -koff_slh * SLH_j + kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
states[27] = dt * dSLH_j_dt + SLH_j
dSLH_sl_dt = -koff_slh * SLH_sl + kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
states[28] = dt * dSLH_sl_dt + SLH_sl
J_CaB_junction = (
-koff_slh * SLH_j
- koff_sll * SLL_j
+ kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
+ kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
)
J_CaB_sl = (
-koff_slh * SLH_sl
- koff_sll * SLL_sl
+ kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
+ kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
)
# Expressions for the SR Ca Concentrations component
Bmax_Csqn = Bmax_Csqn0 * Vmyo / Vsr
dCsqn_b_dt = -koff_csqn * Csqn_b + kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
states[29] = dt * dCsqn_b_dt + Csqn_b
dCa_sr_dt = (
-J_SRCarel
+ koff_csqn * Csqn_b
- kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
- J_SRleak * Vmyo / Vsr
+ J_serca
)
states[30] = dt * dCa_sr_dt + Ca_sr
# Expressions for the Na Concentrations component
I_Na_tot_junc = (
3 * I_nak_junc + 3 * I_ncx_junc + I_CaNa_junc + I_Na_junc + I_nabk_junc
)
I_Na_tot_sl = 3 * I_nak_sl + 3 * I_ncx_sl + I_CaNa_sl + I_Na_sl + I_nabk_sl
dNa_j_dt = (
-dNa_Bj_dt
+ J_na_juncsl * (-Na_j + Na_sl) / Vjunc
- Cmem * I_Na_tot_junc / (Frdy * Vjunc)
)
states[31] = dt * dNa_j_dt + Na_j
dNa_sl_dt = (
-dNa_Bsl_dt
+ J_na_juncsl * (-Na_sl + Na_j) / Vsl
+ J_na_slmyo * (-Na_sl + Na_i) / Vsl
- Cmem * I_Na_tot_sl / (Frdy * Vsl)
)
states[32] = dt * dNa_sl_dt + Na_sl
dNa_i_dt = J_na_slmyo * (-Na_i + Na_sl) / Vmyo
states[33] = dt * dNa_i_dt + Na_i
# Expressions for the K Concentration component
I_K_tot = -2 * I_nak + I_CaK + I_K1 + I_kp + I_kr + I_ks + I_to
dK_i_dt = 0
states[34] = dt * dK_i_dt + K_i
# Expressions for the Ca Concentrations component
I_Ca_tot_junc = -2 * I_ncx_junc + I_Ca_junc + I_cabk_junc + I_pca_junc
I_Ca_tot_sl = -2 * I_ncx_sl + I_Ca_sl + I_cabk_sl + I_pca_sl
dCa_j_dt = (
-J_CaB_junction
+ J_ca_juncsl * (-Ca_j + Ca_sl) / Vjunc
+ J_SRCarel * Vsr / Vjunc
+ J_SRleak * Vmyo / Vjunc
- Cmem * I_Ca_tot_junc / (2 * Frdy * Vjunc)
)
states[35] = dt * dCa_j_dt + Ca_j
dCa_sl_dt = (
-J_CaB_sl
+ J_ca_juncsl * (-Ca_sl + Ca_j) / Vsl
+ J_ca_slmyo * (-Ca_sl + Ca_i) / Vsl
- Cmem * I_Ca_tot_sl / (2 * Frdy * Vsl)
)
states[36] = dt * dCa_sl_dt + Ca_sl
dCa_i_dt = (
-J_CaB_cytosol + J_ca_slmyo * (-Ca_i + Ca_sl) / Vmyo - J_serca * Vsr / Vmyo
)
states[37] = dt * dCa_i_dt + Ca_i
# Expressions for the Membrane potential component
i_Stim = np.where(
np.logical_and(
t - stim_period * np.floor(t / stim_period) <= stim_duration + stim_start,
t - stim_period * np.floor(t / stim_period) >= stim_start,
),
-stim_amplitude,
0,
)
I_Na_tot = I_Na_tot_junc + I_Na_tot_sl
I_Cl_tot = I_ClCa + I_Clbk
I_Ca_tot = I_Ca_tot_junc + I_Ca_tot_sl
I_tot = I_Ca_tot + I_Cl_tot + I_K_tot + I_Na_tot
dV_m_dt = -I_tot - i_Stim
states[38] = dt * dV_m_dt + V_m
# Return results
return states
def GRL1(states, t, dt, parameters):
"""
Compute a forward step using the rush larsen algorithm to the grandi ODE
"""
# Assign states
assert len(states) == 39
(
m,
h,
j,
x_kr,
x_ks,
x_to_s,
y_to_s,
x_to_f,
y_to_f,
d,
f,
f_Ca_Bj,
f_Ca_Bsl,
Ry_Rr,
Ry_Ro,
Ry_Ri,
Na_Bj,
Na_Bsl,
Tn_CL,
Tn_CHc,
Tn_CHm,
CaM,
Myo_c,
Myo_m,
SRB,
SLL_j,
SLL_sl,
SLH_j,
SLH_sl,
Csqn_b,
Ca_sr,
Na_j,
Na_sl,
Na_i,
K_i,
Ca_j,
Ca_sl,
Ca_i,
V_m,
) = states
# Assign parameters
assert len(parameters) == 112
Fjunc = parameters[0]
Fjunc_CaL = parameters[1]
cellLength = parameters[2]
cellRadius = parameters[3]
GNa = parameters[8]
GNaB = parameters[9]
IbarNaK = parameters[10]
KmKo = parameters[11]
KmNaip = parameters[12]
GKr = parameters[15]
GKp = parameters[16]
GKs = parameters[17]
pNaK = parameters[18]
GK1 = parameters[19]
Gto = parameters[20]
epi = parameters[21]
GClB = parameters[22]
GClCa = parameters[23]
KdClCa = parameters[24]
GCaL = parameters[25]
Q10CaL = parameters[26]
pCa = parameters[27]
pK = parameters[28]
pNa = parameters[29]
IbarNCX = parameters[30]
Kdact = parameters[31]
KmCai = parameters[32]
KmCao = parameters[33]
KmNai = parameters[34]
KmNao = parameters[35]
Q10NCX = parameters[36]
ksat = parameters[37]
nu = parameters[38]
IbarSLCaP = parameters[39]
KmPCa = parameters[40]
Q10SLCaP = parameters[41]
GCaB = parameters[42]
Kmf = parameters[43]
Kmr = parameters[44]
MaxSR = parameters[45]
MinSR = parameters[46]
Q10SRCaP = parameters[47]
Vmax_SRCaP = parameters[48]
ec50SR = parameters[49]
hillSRCaP = parameters[50]
kiCa = parameters[51]
kim = parameters[52]
koCa = parameters[53]
kom = parameters[54]
ks = parameters[55]
Bmax_Naj = parameters[56]
Bmax_Nasl = parameters[57]
koff_na = parameters[58]
kon_na = parameters[59]
Bmax_CaM = parameters[60]
Bmax_SR = parameters[61]
Bmax_TnChigh = parameters[62]
Bmax_TnClow = parameters[63]
Bmax_myosin = parameters[64]
koff_cam = parameters[65]
koff_myoca = parameters[66]
koff_myomg = parameters[67]
koff_sr = parameters[68]
koff_tnchca = parameters[69]
koff_tnchmg = parameters[70]
koff_tncl = parameters[71]
kon_cam = parameters[72]
kon_myoca = parameters[73]
kon_myomg = parameters[74]
kon_sr = parameters[75]
kon_tnchca = parameters[76]
kon_tnchmg = parameters[77]
kon_tncl = parameters[78]
Bmax_SLhighj0 = parameters[79]
Bmax_SLhighsl0 = parameters[80]
Bmax_SLlowj0 = parameters[81]
Bmax_SLlowsl0 = parameters[82]
koff_slh = parameters[83]
koff_sll = parameters[84]
kon_slh = parameters[85]
kon_sll = parameters[86]
Bmax_Csqn0 = parameters[87]
J_ca_juncsl = parameters[90]
J_ca_slmyo = parameters[91]
koff_csqn = parameters[92]
kon_csqn = parameters[93]
J_na_juncsl = parameters[96]
J_na_slmyo = parameters[97]
Nao = parameters[98]
Ko = parameters[99]
Cao = parameters[100]
Cli = parameters[101]
Clo = parameters[102]
Mgi = parameters[103]
Cmem = parameters[104]
Frdy = parameters[105]
R = parameters[106]
Temp = parameters[107]
stim_amplitude = parameters[108]
stim_duration = parameters[109]
stim_period = parameters[110]
stim_start = parameters[111]
# Expressions for the Geometry component
Vcell = 1e-15 * np.pi * cellLength * (cellRadius * cellRadius)
Vmyo = 0.65 * Vcell
Vsr = 0.035 * Vcell
Vsl = 0.02 * Vcell
Vjunc = 0.0005390000000000001 * Vcell
Fsl = 1 - Fjunc
Fsl_CaL = 1 - Fjunc_CaL
# Expressions for the Reversal potentials component
FoRT = Frdy / (R * Temp)
ena_junc = np.log(Nao / Na_j) / FoRT
ena_sl = np.log(Nao / Na_sl) / FoRT
ek = np.log(Ko / K_i) / FoRT
eca_junc = np.log(Cao / Ca_j) / (2 * FoRT)
eca_sl = np.log(Cao / Ca_sl) / (2 * FoRT)
ecl = np.log(Cli / Clo) / FoRT
Qpow = -31 + Temp / 10
# Expressions for the I_Na component
mss = 1.0 / (
(1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
* (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m))
)
taum = 0.1292 * np.exp(
-(
(2.9465894465894467 + 0.06435006435006435 * V_m)
* (2.9465894465894467 + 0.06435006435006435 * V_m)
)
) + 0.06487 * np.exp(
-(
(-0.09434663536776214 + 0.019561815336463225 * V_m)
* (-0.09434663536776214 + 0.019561815336463225 * V_m)
)
)
ah = np.where(
V_m >= -40, 0, 4.4312679295805147e-07 * np.exp(-0.14705882352941177 * V_m)
)
bh = np.where(
V_m >= -40,
0.77 / (0.13 + 0.049758141083938695 * np.exp(-0.0900900900900901 * V_m)),
310000.0 * np.exp(0.3485 * V_m) + 2.7 * np.exp(0.079 * V_m),
)
tauh = 1.0 / (ah + bh)
hss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
aj = np.where(
V_m >= -40,
0,
(37.78 + V_m)
* (-25428.0 * np.exp(0.2444 * V_m) - 6.948e-06 * np.exp(-0.04391 * V_m))
/ (1 + 50262745825.95399 * np.exp(0.311 * V_m)),
)
bj = np.where(
V_m >= -40,
0.6 * np.exp(0.057 * V_m) / (1 + 0.040762203978366204 * np.exp(-0.1 * V_m)),
0.02424
* np.exp(-0.01052 * V_m)
/ (1 + 0.003960868339904256 * np.exp(-0.1378 * V_m)),
)
tauj = 1.0 / (aj + bj)
jss = 1.0 / (
(1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
* (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m))
)
dm_dt = (-m + mss) / taum
dm_dt_linearized = -1 / taum
states[0] = (
np.where(
np.abs(dm_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dm_dt_linearized)) * dm_dt / dm_dt_linearized,
dt * dm_dt,
)
+ m
)
dh_dt = (-h + hss) / tauh
dh_dt_linearized = -1 / tauh
states[1] = (
np.where(
np.abs(dh_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dh_dt_linearized)) * dh_dt / dh_dt_linearized,
dt * dh_dt,
)
+ h
)
dj_dt = (-j + jss) / tauj
dj_dt_linearized = -1 / tauj
states[2] = (
np.where(
np.abs(dj_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dj_dt_linearized)) * dj_dt / dj_dt_linearized,
dt * dj_dt,
)
+ j
)
I_Na_junc = Fjunc * GNa * (m * m * m) * (-ena_junc + V_m) * h * j
I_Na_sl = GNa * (m * m * m) * (-ena_sl + V_m) * Fsl * h * j
# Expressions for the I_NaBK component
I_nabk_junc = Fjunc * GNaB * (-ena_junc + V_m)
I_nabk_sl = GNaB * (-ena_sl + V_m) * Fsl
# Expressions for the I_NaK component
sigma = -1 / 7 + np.exp(0.01485884101040119 * Nao) / 7
fnak = 1.0 / (
1 + 0.1245 * np.exp(-0.1 * FoRT * V_m) + 0.0365 * np.exp(-FoRT * V_m) * sigma
)
I_nak_junc = (
Fjunc
* IbarNaK
* Ko
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_j, 4)) * (KmKo + Ko))
)
I_nak_sl = (
IbarNaK
* Ko
* Fsl
* fnak
/ ((1 + np.power(KmNaip, 4) / np.power(Na_sl, 4)) * (KmKo + Ko))
)
I_nak = I_nak_junc + I_nak_sl
# Expressions for the I_Kr component
gkr = 0.4303314829119352 * GKr * np.sqrt(Ko)
xrss = 1.0 / (1 + np.exp(-2 - V_m / 5))
tauxr = 230 / (1 + np.exp(2 + V_m / 20)) + 3300 / (
(1 + np.exp(-22 / 9 - V_m / 9)) * (1 + np.exp(11 / 9 + V_m / 9))
)
dx_kr_dt = (-x_kr + xrss) / tauxr
dx_kr_dt_linearized = -1 / tauxr
states[3] = (
np.where(
np.abs(dx_kr_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dx_kr_dt_linearized)) * dx_kr_dt / dx_kr_dt_linearized,
dt * dx_kr_dt,
)
+ x_kr
)
rkr = 1.0 / (1 + np.exp(37 / 12 + V_m / 24))
I_kr = (-ek + V_m) * gkr * rkr * x_kr
# Expressions for the I_Kp component
kp_kp = 1.0 / (1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
I_kp_junc = Fjunc * GKp * (-ek + V_m) * kp_kp
I_kp_sl = GKp * (-ek + V_m) * Fsl * kp_kp
I_kp = I_kp_junc + I_kp_sl
# Expressions for the I_Ks component
eks = np.log((Ko + Nao * pNaK) / (pNaK * Na_i + K_i)) / FoRT
gks_junc = GKs
gks_sl = GKs
xsss = 1.0 / (1 + 0.7659283383646487 * np.exp(-0.07017543859649122 * V_m))
tauxs = 990.1 / (1 + 0.8415404088681017 * np.exp(-0.0708215297450425 * V_m))
dx_ks_dt = (-x_ks + xsss) / tauxs
dx_ks_dt_linearized = -1 / tauxs
states[4] = (
np.where(
np.abs(dx_ks_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dx_ks_dt_linearized)) * dx_ks_dt / dx_ks_dt_linearized,
dt * dx_ks_dt,
)
+ x_ks
)
I_ks_junc = Fjunc * (x_ks * x_ks) * (-eks + V_m) * gks_junc
I_ks_sl = (x_ks * x_ks) * (-eks + V_m) * Fsl * gks_sl
I_ks = I_ks_junc + I_ks_sl
# Expressions for the I_to component
GtoSlow = np.where(epi == 1, 0.12 * Gto, 0.28919999999999996 * Gto)
GtoFast = np.where(epi == 1, 0.88 * Gto, 0.010799999999999999 * Gto)
xtoss = 1.0 / (1 + np.exp(19 / 13 - V_m / 13))
ytoss = 1.0 / (1 + 49.40244910553019 * np.exp(V_m / 5))
tauxtos = 0.5 + 9 / (1 + np.exp(1 / 5 + V_m / 15))
tauytos = 30 + 800 / (1 + np.exp(6 + V_m / 10))
dx_to_s_dt = (-x_to_s + xtoss) / tauxtos
dx_to_s_dt_linearized = -1 / tauxtos
states[5] = (
np.where(
np.abs(dx_to_s_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dx_to_s_dt_linearized))
* dx_to_s_dt
/ dx_to_s_dt_linearized,
dt * dx_to_s_dt,
)
+ x_to_s
)
dy_to_s_dt = (-y_to_s + ytoss) / tauytos
dy_to_s_dt_linearized = -1 / tauytos
states[6] = (
np.where(
np.abs(dy_to_s_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dy_to_s_dt_linearized))
* dy_to_s_dt
/ dy_to_s_dt_linearized,
dt * dy_to_s_dt,
)
+ y_to_s
)
I_tos = (-ek + V_m) * GtoSlow * x_to_s * y_to_s
tauxtof = 0.5 + 8.5 * np.exp(-((9 / 10 + V_m / 50) * (9 / 10 + V_m / 50)))
tauytof = 7 + 85 * np.exp(-((40 + V_m) * (40 + V_m)) / 220)
dx_to_f_dt = (-x_to_f + xtoss) / tauxtof
dx_to_f_dt_linearized = -1 / tauxtof
states[7] = (
np.where(
np.abs(dx_to_f_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dx_to_f_dt_linearized))
* dx_to_f_dt
/ dx_to_f_dt_linearized,
dt * dx_to_f_dt,
)
+ x_to_f
)
dy_to_f_dt = (-y_to_f + ytoss) / tauytof
dy_to_f_dt_linearized = -1 / tauytof
states[8] = (
np.where(
np.abs(dy_to_f_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dy_to_f_dt_linearized))
* dy_to_f_dt
/ dy_to_f_dt_linearized,
dt * dy_to_f_dt,
)
+ y_to_f
)
I_tof = (-ek + V_m) * GtoFast * x_to_f * y_to_f
I_to = I_tof + I_tos
# Expressions for the I_K1 component
aki = 1.02 / (1 + 7.35454251046446e-07 * np.exp(0.2385 * V_m - 0.2385 * ek))
bki = (
0.7626240065063081 * np.exp(0.08032 * V_m - 0.08032 * ek)
+ 1.1534056351865558e-16 * np.exp(0.06175 * V_m - 0.06175 * ek)
) / (1 + 0.08677229415769332 * np.exp(0.5143 * ek - 0.5143 * V_m))
kiss = aki / (aki + bki)
I_K1 = 0.4303314829119352 * GK1 * np.sqrt(Ko) * (-ek + V_m) * kiss
# Expressions for the I_ClCa component
I_ClCa_junc = Fjunc * GClCa * (-ecl + V_m) / (1 + KdClCa / Ca_j)
I_ClCa_sl = GClCa * (-ecl + V_m) * Fsl / (1 + KdClCa / Ca_sl)
I_ClCa = I_ClCa_junc + I_ClCa_sl
I_Clbk = GClB * (-ecl + V_m)
# Expressions for the I_Ca component
fss = 1.0 / (1 + np.exp(35 / 9 + V_m / 9)) + 0.6 / (1 + np.exp(5 / 2 - V_m / 20))
dss = 1.0 / (1 + np.exp(-5 / 6 - V_m / 6))
taud = (1 - np.exp(-5 / 6 - V_m / 6)) * dss / (0.17500000000000002 + 0.035 * V_m)
tauf = 1.0 / (
0.02
+ 0.0197
* np.exp(
-(
(0.48865000000000003 + 0.0337 * V_m)
* (0.48865000000000003 + 0.0337 * V_m)
)
)
)
dd_dt = (-d + dss) / taud
dd_dt_linearized = -1 / taud
states[9] = (
np.where(
np.abs(dd_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dd_dt_linearized)) * dd_dt / dd_dt_linearized,
dt * dd_dt,
)
+ d
)
df_dt = (-f + fss) / tauf
df_dt_linearized = -1 / tauf
states[10] = (
np.where(
np.abs(df_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * df_dt_linearized)) * df_dt / df_dt_linearized,
dt * df_dt,
)
+ f
)
df_Ca_Bj_dt = -0.0119 * f_Ca_Bj + 1.7 * (1 - f_Ca_Bj) * Ca_j
df_Ca_Bj_dt_linearized = -0.0119 - 1.7 * Ca_j
states[11] = (
np.where(
np.abs(df_Ca_Bj_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * df_Ca_Bj_dt_linearized))
* df_Ca_Bj_dt
/ df_Ca_Bj_dt_linearized,
dt * df_Ca_Bj_dt,
)
+ f_Ca_Bj
)
df_Ca_Bsl_dt = -0.0119 * f_Ca_Bsl + 1.7 * (1 - f_Ca_Bsl) * Ca_sl
df_Ca_Bsl_dt_linearized = -0.0119 - 1.7 * Ca_sl
states[12] = (
np.where(
np.abs(df_Ca_Bsl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * df_Ca_Bsl_dt_linearized))
* df_Ca_Bsl_dt
/ df_Ca_Bsl_dt_linearized,
dt * df_Ca_Bsl_dt,
)
+ f_Ca_Bsl
)
fcaCaMSL = 0
fcaCaj = 0
ibarca_j = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibarca_sl = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_sl * np.exp(2 * FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(2 * FoRT * V_m))
)
ibark = (
Frdy
* GCaL
* pK
* (-0.75 * Ko + 0.75 * K_i * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_j = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_j * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
ibarna_sl = (
Frdy
* GCaL
* pNa
* (-0.75 * Nao + 0.75 * Na_sl * np.exp(FoRT * V_m))
* FoRT
* V_m
/ (-1 + np.exp(FoRT * V_m))
)
I_Ca_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarca_j
)
I_Ca_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarca_sl
)
I_CaK = (
0.45
* np.power(Q10CaL, Qpow)
* (Fjunc_CaL * (1 + fcaCaj - f_Ca_Bj) + (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL)
* d
* f
* ibark
)
I_CaNa_junc = (
0.45
* Fjunc_CaL
* np.power(Q10CaL, Qpow)
* (1 + fcaCaj - f_Ca_Bj)
* d
* f
* ibarna_j
)
I_CaNa_sl = (
0.45
* np.power(Q10CaL, Qpow)
* (1 + fcaCaMSL - f_Ca_Bsl)
* Fsl_CaL
* d
* f
* ibarna_sl
)
# Expressions for the I_NCX component
Ka_junc = 1.0 / (1 + (Kdact * Kdact) / (Ca_j * Ca_j))
Ka_sl = 1.0 / (1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
s1_junc = Cao * (Na_j * Na_j * Na_j) * np.exp(nu * FoRT * V_m)
s1_sl = Cao * (Na_sl * Na_sl * Na_sl) * np.exp(nu * FoRT * V_m)
s2_junc = (Nao * Nao * Nao) * Ca_j * np.exp((-1 + nu) * FoRT * V_m)
s3_junc = (
Cao * (Na_j * Na_j * Na_j)
+ KmCao * (Na_j * Na_j * Na_j)
+ (Nao * Nao * Nao) * Ca_j
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_j * Na_j * Na_j) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_j / KmCai) * Ca_j
)
s2_sl = (Nao * Nao * Nao) * Ca_sl * np.exp((-1 + nu) * FoRT * V_m)
s3_sl = (
Cao * (Na_sl * Na_sl * Na_sl)
+ KmCao * (Na_sl * Na_sl * Na_sl)
+ (Nao * Nao * Nao) * Ca_sl
+ KmCai
* (Nao * Nao * Nao)
* (1 + (Na_sl * Na_sl * Na_sl) / (KmNai * KmNai * KmNai))
+ (KmNao * KmNao * KmNao) * (1 + Ca_sl / KmCai) * Ca_sl
)
I_ncx_junc = (
Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_junc + s1_junc)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
I_ncx_sl = (
IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_sl + s1_sl)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
# Expressions for the I_PCa component
I_pca_junc = (
Fjunc
* IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_j, 1.6)
/ (np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
)
I_pca_sl = (
IbarSLCaP
* np.power(Q10SLCaP, Qpow)
* np.power(Ca_sl, 1.6)
* Fsl
/ (np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
)
# Expressions for the I_CaBK component
I_cabk_junc = Fjunc * GCaB * (-eca_junc + V_m)
I_cabk_sl = GCaB * (-eca_sl + V_m) * Fsl
# Expressions for the SR Fluxes component
kCaSR = MaxSR - (MaxSR - MinSR) / (1 + np.power(ec50SR / Ca_sr, 2.5))
koSRCa = koCa / kCaSR
kiSRCa = kiCa * kCaSR
RI = 1 - Ry_Ri - Ry_Ro - Ry_Rr
dRy_Rr_dt = (
kim * RI + kom * Ry_Ro - (Ca_j * Ca_j) * Ry_Rr * koSRCa - Ca_j * Ry_Rr * kiSRCa
)
dRy_Rr_dt_linearized = -kim - (Ca_j * Ca_j) * koSRCa - Ca_j * kiSRCa
states[13] = (
np.where(
np.abs(dRy_Rr_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dRy_Rr_dt_linearized))
* dRy_Rr_dt
/ dRy_Rr_dt_linearized,
dt * dRy_Rr_dt,
)
+ Ry_Rr
)
dRy_Ro_dt = (
kim * Ry_Ri
- kom * Ry_Ro
+ (Ca_j * Ca_j) * Ry_Rr * koSRCa
- Ca_j * Ry_Ro * kiSRCa
)
dRy_Ro_dt_linearized = -kom - Ca_j * kiSRCa
states[14] = (
np.where(
np.abs(dRy_Ro_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dRy_Ro_dt_linearized))
* dRy_Ro_dt
/ dRy_Ro_dt_linearized,
dt * dRy_Ro_dt,
)
+ Ry_Ro
)
dRy_Ri_dt = (
-kim * Ry_Ri - kom * Ry_Ri + (Ca_j * Ca_j) * RI * koSRCa + Ca_j * Ry_Ro * kiSRCa
)
dRy_Ri_dt_linearized = -kim - kom - (Ca_j * Ca_j) * koSRCa
states[15] = (
np.where(
np.abs(dRy_Ri_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dRy_Ri_dt_linearized))
* dRy_Ri_dt
/ dRy_Ri_dt_linearized,
dt * dRy_Ri_dt,
)
+ Ry_Ri
)
J_SRCarel = ks * (-Ca_j + Ca_sr) * Ry_Ro
J_serca = (
Vmax_SRCaP
* np.power(Q10SRCaP, Qpow)
* (np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP))
/ (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
J_SRleak = 5.348e-06 * Ca_sr - 5.348e-06 * Ca_j
# Expressions for the Na Buffers component
dNa_Bj_dt = -koff_na * Na_Bj + kon_na * (Bmax_Naj - Na_Bj) * Na_j
dNa_Bj_dt_linearized = -koff_na - kon_na * Na_j
states[16] = Na_Bj + np.where(
np.abs(dNa_Bj_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dNa_Bj_dt_linearized)) * dNa_Bj_dt / dNa_Bj_dt_linearized,
dt * dNa_Bj_dt,
)
dNa_Bsl_dt = -koff_na * Na_Bsl + kon_na * (Bmax_Nasl - Na_Bsl) * Na_sl
dNa_Bsl_dt_linearized = -koff_na - kon_na * Na_sl
states[17] = Na_Bsl + np.where(
np.abs(dNa_Bsl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dNa_Bsl_dt_linearized))
* dNa_Bsl_dt
/ dNa_Bsl_dt_linearized,
dt * dNa_Bsl_dt,
)
# Expressions for the Cytosolic Ca Buffers component
dTn_CL_dt = -koff_tncl * Tn_CL + kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
dTn_CL_dt_linearized = -koff_tncl - kon_tncl * Ca_i
states[18] = (
np.where(
np.abs(dTn_CL_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dTn_CL_dt_linearized))
* dTn_CL_dt
/ dTn_CL_dt_linearized,
dt * dTn_CL_dt,
)
+ Tn_CL
)
dTn_CHc_dt = (
-koff_tnchca * Tn_CHc + kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
)
dTn_CHc_dt_linearized = -koff_tnchca - kon_tnchca * Ca_i
states[19] = (
np.where(
np.abs(dTn_CHc_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dTn_CHc_dt_linearized))
* dTn_CHc_dt
/ dTn_CHc_dt_linearized,
dt * dTn_CHc_dt,
)
+ Tn_CHc
)
dTn_CHm_dt = -koff_tnchmg * Tn_CHm + Mgi * kon_tnchmg * (
Bmax_TnChigh - Tn_CHc - Tn_CHm
)
dTn_CHm_dt_linearized = -koff_tnchmg - Mgi * kon_tnchmg
states[20] = (
np.where(
np.abs(dTn_CHm_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dTn_CHm_dt_linearized))
* dTn_CHm_dt
/ dTn_CHm_dt_linearized,
dt * dTn_CHm_dt,
)
+ Tn_CHm
)
dCaM_dt = -koff_cam * CaM + kon_cam * (Bmax_CaM - CaM) * Ca_i
dCaM_dt_linearized = -koff_cam - kon_cam * Ca_i
states[21] = CaM + np.where(
np.abs(dCaM_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCaM_dt_linearized)) * dCaM_dt / dCaM_dt_linearized,
dt * dCaM_dt,
)
dMyo_c_dt = -koff_myoca * Myo_c + kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
dMyo_c_dt_linearized = -koff_myoca - kon_myoca * Ca_i
states[22] = Myo_c + np.where(
np.abs(dMyo_c_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dMyo_c_dt_linearized)) * dMyo_c_dt / dMyo_c_dt_linearized,
dt * dMyo_c_dt,
)
dMyo_m_dt = -koff_myomg * Myo_m + Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
dMyo_m_dt_linearized = -koff_myomg - Mgi * kon_myomg
states[23] = Myo_m + np.where(
np.abs(dMyo_m_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dMyo_m_dt_linearized)) * dMyo_m_dt / dMyo_m_dt_linearized,
dt * dMyo_m_dt,
)
dSRB_dt = -koff_sr * SRB + kon_sr * (Bmax_SR - SRB) * Ca_i
dSRB_dt_linearized = -koff_sr - kon_sr * Ca_i
states[24] = (
np.where(
np.abs(dSRB_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dSRB_dt_linearized)) * dSRB_dt / dSRB_dt_linearized,
dt * dSRB_dt,
)
+ SRB
)
J_CaB_cytosol = (
-koff_cam * CaM
- koff_myoca * Myo_c
- koff_myomg * Myo_m
- koff_sr * SRB
- koff_tnchca * Tn_CHc
- koff_tnchmg * Tn_CHm
- koff_tncl * Tn_CL
+ Mgi * kon_myomg * (Bmax_myosin - Myo_c - Myo_m)
+ Mgi * kon_tnchmg * (Bmax_TnChigh - Tn_CHc - Tn_CHm)
+ kon_cam * (Bmax_CaM - CaM) * Ca_i
+ kon_myoca * (Bmax_myosin - Myo_c - Myo_m) * Ca_i
+ kon_sr * (Bmax_SR - SRB) * Ca_i
+ kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm) * Ca_i
+ kon_tncl * (Bmax_TnClow - Tn_CL) * Ca_i
)
# Expressions for the Junctional and SL Ca Buffers component
Bmax_SLlowsl = Bmax_SLlowsl0 * Vmyo / Vsl
Bmax_SLlowj = Bmax_SLlowj0 * Vmyo / Vjunc
Bmax_SLhighsl = Bmax_SLhighsl0 * Vmyo / Vsl
Bmax_SLhighj = Bmax_SLhighj0 * Vmyo / Vjunc
dSLL_j_dt = -koff_sll * SLL_j + kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
dSLL_j_dt_linearized = -koff_sll - kon_sll * Ca_j
states[25] = (
np.where(
np.abs(dSLL_j_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dSLL_j_dt_linearized))
* dSLL_j_dt
/ dSLL_j_dt_linearized,
dt * dSLL_j_dt,
)
+ SLL_j
)
dSLL_sl_dt = -koff_sll * SLL_sl + kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
dSLL_sl_dt_linearized = -koff_sll - kon_sll * Ca_sl
states[26] = (
np.where(
np.abs(dSLL_sl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dSLL_sl_dt_linearized))
* dSLL_sl_dt
/ dSLL_sl_dt_linearized,
dt * dSLL_sl_dt,
)
+ SLL_sl
)
dSLH_j_dt = -koff_slh * SLH_j + kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
dSLH_j_dt_linearized = -koff_slh - kon_slh * Ca_j
states[27] = (
np.where(
np.abs(dSLH_j_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dSLH_j_dt_linearized))
* dSLH_j_dt
/ dSLH_j_dt_linearized,
dt * dSLH_j_dt,
)
+ SLH_j
)
dSLH_sl_dt = -koff_slh * SLH_sl + kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
dSLH_sl_dt_linearized = -koff_slh - kon_slh * Ca_sl
states[28] = (
np.where(
np.abs(dSLH_sl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dSLH_sl_dt_linearized))
* dSLH_sl_dt
/ dSLH_sl_dt_linearized,
dt * dSLH_sl_dt,
)
+ SLH_sl
)
J_CaB_junction = (
-koff_slh * SLH_j
- koff_sll * SLL_j
+ kon_slh * (-SLH_j + Bmax_SLhighj) * Ca_j
+ kon_sll * (-SLL_j + Bmax_SLlowj) * Ca_j
)
J_CaB_sl = (
-koff_slh * SLH_sl
- koff_sll * SLL_sl
+ kon_slh * (-SLH_sl + Bmax_SLhighsl) * Ca_sl
+ kon_sll * (-SLL_sl + Bmax_SLlowsl) * Ca_sl
)
# Expressions for the SR Ca Concentrations component
Bmax_Csqn = Bmax_Csqn0 * Vmyo / Vsr
dCsqn_b_dt = -koff_csqn * Csqn_b + kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
dCsqn_b_dt_linearized = -koff_csqn - kon_csqn * Ca_sr
states[29] = Csqn_b + np.where(
np.abs(dCsqn_b_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCsqn_b_dt_linearized))
* dCsqn_b_dt
/ dCsqn_b_dt_linearized,
dt * dCsqn_b_dt,
)
dCa_sr_dt = (
-J_SRCarel
+ koff_csqn * Csqn_b
- kon_csqn * (-Csqn_b + Bmax_Csqn) * Ca_sr
- J_SRleak * Vmyo / Vsr
+ J_serca
)
dJ_serca_dCa_sr = -Vmax_SRCaP * hillSRCaP * np.power(Q10SRCaP, Qpow) * np.power(
Ca_sr / Kmr, hillSRCaP
) / (
(1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP)) * Ca_sr
) - Vmax_SRCaP * hillSRCaP * np.power(
Q10SRCaP, Qpow
) * np.power(
Ca_sr / Kmr, hillSRCaP
) * (
np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP)
) / (
(
(1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
* (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
* Ca_sr
)
dCa_sr_dt_linearized = (
-kon_csqn * (-Csqn_b + Bmax_Csqn)
- ks * Ry_Ro
- 5.348e-06 * Vmyo / Vsr
+ dJ_serca_dCa_sr
)
states[30] = Ca_sr + np.where(
np.abs(dCa_sr_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCa_sr_dt_linearized)) * dCa_sr_dt / dCa_sr_dt_linearized,
dt * dCa_sr_dt,
)
# Expressions for the Na Concentrations component
I_Na_tot_junc = (
3 * I_nak_junc + 3 * I_ncx_junc + I_CaNa_junc + I_Na_junc + I_nabk_junc
)
I_Na_tot_sl = 3 * I_nak_sl + 3 * I_ncx_sl + I_CaNa_sl + I_Na_sl + I_nabk_sl
dNa_j_dt = (
-dNa_Bj_dt
+ J_na_juncsl * (-Na_j + Na_sl) / Vjunc
- Cmem * I_Na_tot_junc / (Frdy * Vjunc)
)
dI_CaNa_junc_dibarna_j = (
0.45 * Fjunc_CaL * np.power(Q10CaL, Qpow) * (1 + fcaCaj - f_Ca_Bj) * d * f
)
ds3_junc_dNa_j = (
3 * Cao * (Na_j * Na_j)
+ 3 * KmCao * (Na_j * Na_j)
+ 3 * KmCai * (Nao * Nao * Nao) * (Na_j * Na_j) / (KmNai * KmNai * KmNai)
)
dena_junc_dNa_j = -1 / (FoRT * Na_j)
ds1_junc_dNa_j = 3 * Cao * (Na_j * Na_j) * np.exp(nu * FoRT * V_m)
dI_nabk_junc_dena_junc = -Fjunc * GNaB
dibarna_j_dNa_j = (
0.75
* Frdy
* GCaL
* pNa
* FoRT
* V_m
* np.exp(FoRT * V_m)
/ (-1 + np.exp(FoRT * V_m))
)
dI_Na_junc_dena_junc = -Fjunc * GNa * (m * m * m) * h * j
dI_ncx_junc_ds1_junc = (
Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
dI_nak_junc_dNa_j = (
4
* Fjunc
* IbarNaK
* Ko
* np.power(KmNaip, 4)
* fnak
/ (
(
(1 + np.power(KmNaip, 4) / np.power(Na_j, 4))
* (1 + np.power(KmNaip, 4) / np.power(Na_j, 4))
)
* (KmKo + Ko)
* np.power(Na_j, 5)
)
)
dI_ncx_junc_ds3_junc = (
-Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_junc + s1_junc)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * (s3_junc * s3_junc))
)
dNa_j_dt_linearized = -J_na_juncsl / Vjunc - Cmem * (
3 * dI_nak_junc_dNa_j
+ dI_CaNa_junc_dibarna_j * dibarna_j_dNa_j
+ dI_Na_junc_dena_junc * dena_junc_dNa_j
+ dI_nabk_junc_dena_junc * dena_junc_dNa_j
+ 3 * dI_ncx_junc_ds1_junc * ds1_junc_dNa_j
+ 3 * dI_ncx_junc_ds3_junc * ds3_junc_dNa_j
) / (Frdy * Vjunc)
states[31] = Na_j + np.where(
np.abs(dNa_j_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dNa_j_dt_linearized)) * dNa_j_dt / dNa_j_dt_linearized,
dt * dNa_j_dt,
)
dNa_sl_dt = (
-dNa_Bsl_dt
+ J_na_juncsl * (-Na_sl + Na_j) / Vsl
+ J_na_slmyo * (-Na_sl + Na_i) / Vsl
- Cmem * I_Na_tot_sl / (Frdy * Vsl)
)
dI_nabk_sl_dena_sl = -GNaB * Fsl
dI_CaNa_sl_dibarna_sl = (
0.45 * np.power(Q10CaL, Qpow) * (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL * d * f
)
dibarna_sl_dNa_sl = (
0.75
* Frdy
* GCaL
* pNa
* FoRT
* V_m
* np.exp(FoRT * V_m)
/ (-1 + np.exp(FoRT * V_m))
)
dI_Na_sl_dena_sl = -GNa * (m * m * m) * Fsl * h * j
dI_ncx_sl_ds1_sl = (
IbarNCX
* np.power(Q10NCX, Qpow)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
ds3_sl_dNa_sl = (
3 * Cao * (Na_sl * Na_sl)
+ 3 * KmCao * (Na_sl * Na_sl)
+ 3 * KmCai * (Nao * Nao * Nao) * (Na_sl * Na_sl) / (KmNai * KmNai * KmNai)
)
dI_nak_sl_dNa_sl = (
4
* IbarNaK
* Ko
* np.power(KmNaip, 4)
* Fsl
* fnak
/ (
(
(1 + np.power(KmNaip, 4) / np.power(Na_sl, 4))
* (1 + np.power(KmNaip, 4) / np.power(Na_sl, 4))
)
* (KmKo + Ko)
* np.power(Na_sl, 5)
)
)
dI_ncx_sl_ds3_sl = (
-IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_sl + s1_sl)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * (s3_sl * s3_sl))
)
dena_sl_dNa_sl = -1 / (FoRT * Na_sl)
ds1_sl_dNa_sl = 3 * Cao * (Na_sl * Na_sl) * np.exp(nu * FoRT * V_m)
dNa_sl_dt_linearized = (
-J_na_juncsl / Vsl
- J_na_slmyo / Vsl
- Cmem
* (
3 * dI_nak_sl_dNa_sl
+ dI_CaNa_sl_dibarna_sl * dibarna_sl_dNa_sl
+ dI_Na_sl_dena_sl * dena_sl_dNa_sl
+ dI_nabk_sl_dena_sl * dena_sl_dNa_sl
+ 3 * dI_ncx_sl_ds1_sl * ds1_sl_dNa_sl
+ 3 * dI_ncx_sl_ds3_sl * ds3_sl_dNa_sl
)
/ (Frdy * Vsl)
)
states[32] = Na_sl + np.where(
np.abs(dNa_sl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dNa_sl_dt_linearized)) * dNa_sl_dt / dNa_sl_dt_linearized,
dt * dNa_sl_dt,
)
dNa_i_dt = J_na_slmyo * (-Na_i + Na_sl) / Vmyo
dNa_i_dt_linearized = -J_na_slmyo / Vmyo
states[33] = Na_i + np.where(
np.abs(dNa_i_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dNa_i_dt_linearized)) * dNa_i_dt / dNa_i_dt_linearized,
dt * dNa_i_dt,
)
# Expressions for the K Concentration component
I_K_tot = -2 * I_nak + I_CaK + I_K1 + I_kp + I_kr + I_ks + I_to
dK_i_dt = 0
states[34] = dt * dK_i_dt + K_i
# Expressions for the Ca Concentrations component
I_Ca_tot_junc = -2 * I_ncx_junc + I_Ca_junc + I_cabk_junc + I_pca_junc
I_Ca_tot_sl = -2 * I_ncx_sl + I_Ca_sl + I_cabk_sl + I_pca_sl
dCa_j_dt = (
-J_CaB_junction
+ J_ca_juncsl * (-Ca_j + Ca_sl) / Vjunc
+ J_SRCarel * Vsr / Vjunc
+ J_SRleak * Vmyo / Vjunc
- Cmem * I_Ca_tot_junc / (2 * Frdy * Vjunc)
)
dI_Ca_junc_dibarca_j = (
0.45 * Fjunc_CaL * np.power(Q10CaL, Qpow) * (1 + fcaCaj - f_Ca_Bj) * d * f
)
dI_cabk_junc_deca_junc = -Fjunc * GCaB
dibarca_j_dCa_j = (
1.364
* Frdy
* GCaL
* pCa
* FoRT
* V_m
* np.exp(2 * FoRT * V_m)
/ (-1 + np.exp(2 * FoRT * V_m))
)
dKa_junc_dCa_j = (
2
* (Kdact * Kdact)
/ (
(
(1 + (Kdact * Kdact) / (Ca_j * Ca_j))
* (1 + (Kdact * Kdact) / (Ca_j * Ca_j))
)
* (Ca_j * Ca_j * Ca_j)
)
)
dJ_CaB_junction_dCa_j = kon_slh * (-SLH_j + Bmax_SLhighj) + kon_sll * (
-SLL_j + Bmax_SLlowj
)
dI_ncx_junc_ds2_junc = (
-Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* Ka_junc
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
ds2_junc_dCa_j = (Nao * Nao * Nao) * np.exp((-1 + nu) * FoRT * V_m)
ds3_junc_dCa_j = (
(Nao * Nao * Nao)
+ (KmNao * KmNao * KmNao) * (1 + Ca_j / KmCai)
+ (KmNao * KmNao * KmNao) * Ca_j / KmCai
)
dJ_SRCarel_dCa_j = -ks * Ry_Ro
dI_pca_junc_dCa_j = 1.6 * Fjunc * IbarSLCaP * np.power(Q10SLCaP, Qpow) * np.power(
Ca_j, 0.6000000000000001
) / (
np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6)
) - 1.6 * Fjunc * IbarSLCaP * np.power(
Q10SLCaP, Qpow
) * np.power(
Ca_j, 2.2
) / (
(np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
* (np.power(KmPCa, 1.6) + np.power(Ca_j, 1.6))
)
dI_ncx_junc_dKa_junc = (
Fjunc
* IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_junc + s1_junc)
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc)
)
deca_junc_dCa_j = -1 / (2 * Ca_j * FoRT)
dCa_j_dt_linearized = (
-dJ_CaB_junction_dCa_j
- J_ca_juncsl / Vjunc
- 5.348e-06 * Vmyo / Vjunc
+ Vsr * dJ_SRCarel_dCa_j / Vjunc
- Cmem
* (
dI_Ca_junc_dibarca_j * dibarca_j_dCa_j
+ dI_cabk_junc_deca_junc * deca_junc_dCa_j
- 2 * dI_ncx_junc_dKa_junc * dKa_junc_dCa_j
- 2 * dI_ncx_junc_ds2_junc * ds2_junc_dCa_j
- 2 * dI_ncx_junc_ds3_junc * ds3_junc_dCa_j
+ dI_pca_junc_dCa_j
)
/ (2 * Frdy * Vjunc)
)
states[35] = Ca_j + np.where(
np.abs(dCa_j_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCa_j_dt_linearized)) * dCa_j_dt / dCa_j_dt_linearized,
dt * dCa_j_dt,
)
dCa_sl_dt = (
-J_CaB_sl
+ J_ca_juncsl * (-Ca_sl + Ca_j) / Vsl
+ J_ca_slmyo * (-Ca_sl + Ca_i) / Vsl
- Cmem * I_Ca_tot_sl / (2 * Frdy * Vsl)
)
dI_Ca_sl_dibarca_sl = (
0.45 * np.power(Q10CaL, Qpow) * (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL * d * f
)
ds2_sl_dCa_sl = (Nao * Nao * Nao) * np.exp((-1 + nu) * FoRT * V_m)
dKa_sl_dCa_sl = (
2
* (Kdact * Kdact)
/ (
(
(1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
* (1 + (Kdact * Kdact) / (Ca_sl * Ca_sl))
)
* (Ca_sl * Ca_sl * Ca_sl)
)
)
ds3_sl_dCa_sl = (
(Nao * Nao * Nao)
+ (KmNao * KmNao * KmNao) * (1 + Ca_sl / KmCai)
+ (KmNao * KmNao * KmNao) * Ca_sl / KmCai
)
dI_ncx_sl_dKa_sl = (
IbarNCX
* np.power(Q10NCX, Qpow)
* (-s2_sl + s1_sl)
* Fsl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
dibarca_sl_dCa_sl = (
1.364
* Frdy
* GCaL
* pCa
* FoRT
* V_m
* np.exp(2 * FoRT * V_m)
/ (-1 + np.exp(2 * FoRT * V_m))
)
dI_pca_sl_dCa_sl = 1.6 * IbarSLCaP * np.power(Q10SLCaP, Qpow) * np.power(
Ca_sl, 0.6000000000000001
) * Fsl / (
np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6)
) - 1.6 * IbarSLCaP * np.power(
Q10SLCaP, Qpow
) * np.power(
Ca_sl, 2.2
) * Fsl / (
(np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
* (np.power(KmPCa, 1.6) + np.power(Ca_sl, 1.6))
)
dJ_CaB_sl_dCa_sl = kon_slh * (-SLH_sl + Bmax_SLhighsl) + kon_sll * (
-SLL_sl + Bmax_SLlowsl
)
deca_sl_dCa_sl = -1 / (2 * Ca_sl * FoRT)
dI_ncx_sl_ds2_sl = (
-IbarNCX
* np.power(Q10NCX, Qpow)
* Fsl
* Ka_sl
/ ((1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_sl)
)
dI_cabk_sl_deca_sl = -GCaB * Fsl
dCa_sl_dt_linearized = (
-dJ_CaB_sl_dCa_sl
- J_ca_juncsl / Vsl
- J_ca_slmyo / Vsl
- Cmem
* (
dI_Ca_sl_dibarca_sl * dibarca_sl_dCa_sl
+ dI_cabk_sl_deca_sl * deca_sl_dCa_sl
- 2 * dI_ncx_sl_dKa_sl * dKa_sl_dCa_sl
- 2 * dI_ncx_sl_ds2_sl * ds2_sl_dCa_sl
- 2 * dI_ncx_sl_ds3_sl * ds3_sl_dCa_sl
+ dI_pca_sl_dCa_sl
)
/ (2 * Frdy * Vsl)
)
states[36] = Ca_sl + np.where(
np.abs(dCa_sl_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCa_sl_dt_linearized)) * dCa_sl_dt / dCa_sl_dt_linearized,
dt * dCa_sl_dt,
)
dCa_i_dt = (
-J_CaB_cytosol + J_ca_slmyo * (-Ca_i + Ca_sl) / Vmyo - J_serca * Vsr / Vmyo
)
dJ_serca_dCa_i = Vmax_SRCaP * hillSRCaP * np.power(Q10SRCaP, Qpow) * np.power(
Ca_i / Kmf, hillSRCaP
) / (
(1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP)) * Ca_i
) - Vmax_SRCaP * hillSRCaP * np.power(
Q10SRCaP, Qpow
) * np.power(
Ca_i / Kmf, hillSRCaP
) * (
np.power(Ca_i / Kmf, hillSRCaP) - np.power(Ca_sr / Kmr, hillSRCaP)
) / (
(
(1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
* (1 + np.power(Ca_i / Kmf, hillSRCaP) + np.power(Ca_sr / Kmr, hillSRCaP))
)
* Ca_i
)
dJ_CaB_cytosol_dCa_i = (
kon_cam * (Bmax_CaM - CaM)
+ kon_myoca * (Bmax_myosin - Myo_c - Myo_m)
+ kon_sr * (Bmax_SR - SRB)
+ kon_tnchca * (Bmax_TnChigh - Tn_CHc - Tn_CHm)
+ kon_tncl * (Bmax_TnClow - Tn_CL)
)
dCa_i_dt_linearized = (
-dJ_CaB_cytosol_dCa_i - J_ca_slmyo / Vmyo - Vsr * dJ_serca_dCa_i / Vmyo
)
states[37] = Ca_i + np.where(
np.abs(dCa_i_dt_linearized) > 1e-08,
(-1.0 + np.exp(dt * dCa_i_dt_linearized)) * dCa_i_dt / dCa_i_dt_linearized,
dt * dCa_i_dt,
)
# Expressions for the Membrane potential component
i_Stim = np.where(
np.logical_and(
t - stim_period * np.floor(t / stim_period) <= stim_duration + stim_start,
t - stim_period * np.floor(t / stim_period) >= stim_start,
),
-stim_amplitude,
0,
)
I_Na_tot = I_Na_tot_junc + I_Na_tot_sl
I_Cl_tot = I_ClCa + I_Clbk
I_Ca_tot = I_Ca_tot_junc + I_Ca_tot_sl
I_tot = I_Ca_tot + I_Cl_tot + I_K_tot + I_Na_tot
dV_m_dt = -I_tot - i_Stim
dI_nak_sl_dfnak = (
IbarNaK
* Ko
* Fsl
/ ((1 + np.power(KmNaip, 4) / np.power(Na_sl, 4)) * (KmKo + Ko))
)
dibarca_j_dV_m = (
4
* Frdy
* GCaL
* pCa
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * FoRT * V_m))
* FoRT
/ (-1 + np.exp(2 * FoRT * V_m))
- 8
* Frdy
* GCaL
* pCa
* (FoRT * FoRT)
* (-0.341 * Cao + 0.341 * Ca_j * np.exp(2 * FoRT * V_m))
* V_m
* np.exp(2 * FoRT * V_m)
/ ((-1 + np.exp(2 * FoRT * V_m)) * (-1 + np.exp(2 * FoRT * V_m)))
+ 2.728
* Frdy
* GCaL
* pCa
* (FoRT * FoRT)
* Ca_j
* V_m
* np.exp(2 * FoRT * V_m)
/ (-1 + np.exp(2 * FoRT * V_m))
)
dI_Na_sl_dV_m = GNa * (m * m * m) * Fsl * h * j
ds1_junc_dV_m = Cao * nu * (Na_j * Na_j * Na_j) * FoRT * np.exp(nu * FoRT * V_m)
ds2_junc_dV_m = (
(Nao * Nao * Nao) * (-1 + nu) * Ca_j * FoRT * np.exp((-1 + nu) * FoRT * V_m)
)
dI_ncx_junc_dV_m = Fjunc * IbarNCX * np.power(Q10NCX, Qpow) * (
-ds2_junc_dV_m + ds1_junc_dV_m
) * Ka_junc / (
(1 + ksat * np.exp((-1 + nu) * FoRT * V_m)) * s3_junc
) - Fjunc * IbarNCX * ksat * np.power(
Q10NCX, Qpow
) * (
-1 + nu
) * (
-s2_junc + s1_junc
) * FoRT * Ka_junc * np.exp(
(-1 + nu) * FoRT * V_m
) / (
(
(1 + ksat * np.exp((-1 + nu) * FoRT * V_m))
* (1 + ksat * np.exp((-1 + nu) * FoRT * V_m))
)
* s3_junc
)
dibark_dV_m = (
Frdy
* GCaL
* pK
* (-0.75 * Ko + 0.75 * K_i * np.exp(FoRT * V_m))
* FoRT
/ (-1 + np.exp(FoRT * V_m))
- Frdy
* GCaL
* pK
* (FoRT * FoRT)
* (-0.75 * Ko + 0.75 * K_i * np.exp(FoRT * V_m))
* V_m
* np.exp(FoRT * V_m)
/ ((-1 + np.exp(FoRT * V_m)) * (-1 + np.exp(FoRT * V_m)))
+ 0.75
* Frdy
* GCaL
* pK
* (FoRT * FoRT)
* K_i
* V_m
* np.exp(FoRT * V_m)
/ (-1 + np.exp(FoRT * V_m))
)
dI_kp_sl_dkp_kp = GKp * (-ek + V_m) * Fsl
dI_CaK_dibark = (
0.45
* np.power(Q10CaL, Qpow)
* (Fjunc_CaL * (1 + fcaCaj - f_Ca_Bj) + (1 + fcaCaMSL - f_Ca_Bsl) * Fsl_CaL)
* d
* f
)
dI_kp_junc_dkp_kp = Fjunc * GKp * (-ek + V_m)
dI_ClCa_sl_dV_m = GClCa * Fsl / (1 + KdClCa / Ca_sl)
dkp_kp_dV_m = (
298.741733340907
* np.exp(-0.16722408026755853 * V_m)
/ (
(1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
* (1 + 1786.4755653786237 * np.exp(-0.16722408026755853 * V_m))
)
)
drkr_dV_m = -np.exp(37 / 12 + V_m / 24) / (
24 * ((1 + np.exp(37 / 12 + V_m / 24)) * (1 + np.exp(37 / 12 + V_m / 24)))
)
dI_ks_sl_dV_m = (x_ks * x_ks) * Fsl * gks_sl
dI_tos_dV_m = GtoSlow * x_to_s * y_to_s
dfnak_dV_m = (
0.012450000000000001 * FoRT * np.exp(-0.1 * FoRT * V_m)
+ 0.0365 * FoRT * np.exp(-FoRT * V_m) * sigma
) / (
(1 + 0.1245 *
|
np.exp(-0.1 * FoRT * V_m)
|
numpy.exp
|
import os,sys
import bpy
import numpy as np
from random import randint
from random import random
from numpy.random import normal
from random import uniform
from random import choice as Rchoice
from random import sample
import cv2
import yaml
import itertools
from math import radians,degrees,tan,cos
from numpy.linalg import inv
# visible vertices
import bmesh
from mathutils import Vector
from bpy_extras.object_utils import world_to_camera_view
ply_header = '''ply
format ascii 1.0
element vertex %(vert_num)d
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''
pcd_header = '''VERSION 0.7
FIELDS x y z rgb
SIZE 4 4 4 4
TYPE F F F F
COUNT 1 1 1 1
WIDTH 640
HEIGHT 480
VIEWPOINT 0 0 0 1 0 0 0
POINTS 307200
DATA ascii
'''
#Height : 480 for kinect, 512 for ensenso
#Points : 307200 for kinect, 327680 for ensenso
# tless: 720x540
def getVerticesVisible(obj):
scene = bpy.context.scene
cam = bpy.data.objects['cam_R']
mesh = obj.data
mat_world = obj.matrix_world
cs, ce = cam.data.clip_start, cam.data.clip_end
# edit mode to edit meshes
scene.objects.active = obj
bpy.ops.object.mode_set(mode='EDIT')
#bpy.ops.mesh.remove_doubles(threshold=0.0001)
bm = bmesh.from_edit_mesh(mesh)
limit = 0.1
#vertices = [mat_world * v.co for v in obj.data.vertices]
#for i, v in enumerate( vertices ):
for v in bm.verts:
v.select = True # need it for vertices hidden in last iteration
vec = mat_world * v.co
co_ndc = world_to_camera_view(scene, cam, vec)
#co_ndc = world_to_camera_view(scene, cam, v)
#check wether point is inside frustum
#if (0.0 < co_ndc.x < 1.0 and
# 0.0 < co_ndc.y < 1.0 and
# cs < co_ndc.z < ce):
# ray_cast if point is visible
# results, obj, mat, location, normal = scene.ray_cast(cam.location, (vec - cam.location).normalized() )
# if location and (vec - location).length < limit:
# v.select = False
# else:
# v.select = True
#else:
# v.select = True
# limit selection to visible from certain camera view
#bpy.ops.mesh.hide(unselected=False)
#bmesh.update_edit_mesh(mesh, False, False)
bpy.ops.object.mode_set(mode='OBJECT')
def getVisibleBoundingBox(objectPassIndex):
S = bpy.context.scene
width = int( S.render.resolution_x * S.render.resolution_percentage / 100 )
height = int( S.render.resolution_y * S.render.resolution_percentage / 100 )
depth = 4
pixels = np.array( bpy.data.images['Render Result'].pixels[:] ).reshape( [height, width, depth] )
# Keep only one value for each pixel (white pixels have 1 in all RGBA channels anyway), thus converting the image to black and white
pixels = np.array( [ [ pixel[0] for pixel in row ] for row in pixels ] )
bbox = np.argwhere( pixels == objectPassIndex )
(ystart, xstart), (ystop, xstop) = bbox.min(0), bbox.max(0) + 1
bb = (xstart, xstart, height - ystart, height - ystop)
return bb, bbox
print('---------------')
print('###############')
print('---------------')
# Quasi Main
print('Setting variables and clear memory')
#Realsense D415
# vanilla
#Image sensor OV2740
#1,4 x 1,4 um/pixel
#image sensor: 2.7288 x 1.5498 mm
#1920 x 1080
#f=1.93 mm
#Fov_h = 42.5
#Fov-v = 69.4
#Realsense D415
#cropped and resized
#crop to
#640 x 480
#fov_h = 42.5
#fov_v = 54.89, blender says 54.4
#image_sensor = 2.0466 x 1.5498
#F(mm) = F(pixels) * SensorWidth(mm) / ImageWidth (pixel)
f_x = ((bpy.data.cameras['Camera.001'].lens) * 640) / 2.0466
f_y = ((bpy.data.cameras['Camera.001'].lens) * 480) / 1.5498
print('fx: ', f_x, 'fy: ', f_y)
# 23.4.2018
# render image 350 of object 23
# cam_K: [1076.74064739, 0.0, 215.98264967, 0.0, 1075.17825536, 204.59181836, 0.0, 0.0, 1.0]
# depth_scale: 0.1
# elev: 45
# mode: 0
# cam_R_m2c: [0.62268218, -0.78164004, -0.03612308, -0.56354950, -0.41595975, -0.71371609, 0.54284357, 0.46477486, -0.69950372]
# cam_t_m2c: [-9.10674129, -2.47862668, 634.81667094]
# obj_bb: [120, 121, 197, 190]
# obj_id: 23
# f = 580
# b = 0.0075
#base_dir = "/home/sthalham/data/LINEMOD/models_stl_red_13"
base_dir = "/home/stefan/data/Meshes/CIT_color"
back_img_path = '/home/stefan/data/datasets/cocoval2017'
all_backgrounds = os.listdir(back_img_path)
total_set = 5 #10000 set of scenes, each set has identical objects with varied poses to anchor pose (+-15)
pair_set = 5 #number of pair scene for each set, 10
sample_dir = '/home/stefan/data/renderings/CIT_render' #directory for temporary files (cam_L, cam_R, masks..~)
target_dir = '/home/stefan/data/renderings/CIT_render/patches'
index=0
isfile=True
while isfile:
prefix='{:08}_'.format(index)
if(os.path.exists(os.path.join(target_dir,prefix+'gt.yaml'))):
index+=1
else:
isfile=False
if not(os.path.exists(target_dir+"/mask")):
os.makedirs(target_dir+"/mask")
if not(os.path.exists(target_dir+"/rgb")):
os.makedirs(target_dir+"/rgb")
model_file=[]
model_solo=[]
for root, dirs, files in os.walk(base_dir):
for file in sorted(files):
if file.endswith(".ply"):
temp_fn =os.path.join(root, file)
model_file.append(temp_fn)
model_solo.append(file)
#print(len(model_file),temp_fn)
dis_objects = ['dis1_1', 'dis1_2', 'dis1_3', 'dis2_1', 'dis2_2', 'dis2_3']
# FOR BACKGROUND OBJECTS
print('Done')
print('----------------')
print('Start looping through scenes')
iteration_counter = 0
for num_set in np.arange(total_set):
bpy.ops.object.select_all(action='DESELECT')
scene = bpy.context.scene
scene.objects.active = bpy.data.objects["template"]
for obj in scene.objects:
if obj.type == 'MESH':
if obj.name == 'template':
obj.select = False
elif obj.name[0:5] == 'Plane':
obj.select = False
elif obj.name[0:3] == 'dis':
obj.select = False
elif obj.name == 'InvisibleCube':
obj.select = False
else:
obj.select = True
if obj.name[0:6] == 'light_':
obj.select = True
bpy.ops.object.delete()
bpy.ops.object.select_all(action='DESELECT')
obj_object = bpy.data.objects["template"]
obj_object.pass_index = 1
mat = obj_object.active_material
# memory is leaking
# that should fix it
for block in bpy.data.meshes:
if block.users == 0:
bpy.data.meshes.remove(block)
for block in bpy.data.materials:
if block.users == 0:
bpy.data.materials.remove(block)
for block in bpy.data.textures:
if block.users == 0:
bpy.data.textures.remove(block)
for block in bpy.data.images:
if block.users == 0:
bpy.data.images.remove(block)
print('----------------')
print('Loading and placing objects')
# load ply
# sample object drop location
# objects are dropped thorugh physics
# sample objects
num_object = np.random.randint(low=4, high=12)
num_distractor = np.random.randint(low=2, high=4)
ObjDraw = np.random.choice(np.arange(len(model_solo)), size=num_object, replace=True)
DisDraw = np.random.choice(np.arange(len(dis_objects)), size=num_distractor, replace=False)
object_label =[]
anchor_pose = np.zeros(((num_distractor + num_object+1),6))
object_idx = 0
for file_idx in ObjDraw:
file_model = model_file[file_idx]
solo_model = model_solo[file_idx]
imported_object = bpy.ops.import_mesh.ply(filepath=file_model, filter_glob="*.ply", files=[{"name":solo_model, "name":solo_model}], directory=root)
obj_object = bpy.context.selected_objects[0]
object_label.append(int(obj_object.name[:2]))
mat_obj = mat.copy()
nodes = mat_obj.node_tree.nodes
pbr = nodes.get("Principled BSDF")
attr = nodes.get("Attribute")
if obj_object.name[:2] == '01':
#ior = 1.49 # Polypropylen
ior = 1.3 + random() * 0.3
#pbr.inputs[0].default_value[:3] = (0.66, 0.66, 0.66)
#pbr.inputs[0].default_value[:3] = (143/255, 155/255, 174/255)
pbr.inputs[0].default_value[:3] = (152/255, 164/255, 174/255) #Pantone 7543c
pbr.inputs[4].default_value = 0.0 # Metallic
pbr.inputs[5].default_value = np.power(((ior - 1)/(ior + 1)), 2)/0.08 # specular
#pbr.inputs[6].default_value = 0.9 # specular tint
#pbr.inputs[7].default_value = 0.4 # reoghness
pbr.inputs[6].default_value = 0.6 + random() * 0.4 # specular tint
pbr.inputs[7].default_value = 0.2 + random() * 0.5 # reoghness
# plastics 1.3 - 1.6, higly refractive ~ 1.75
# polished stainless steel 2.75
#pbr.inputs[14].default_value = ior
elif obj_object.name[:2] == '03' or obj_object.name[:2] == '06':
ior = 2.75
# stainless steel 224, 223, 219
#pbr.inputs[0].default_value[:3] = (0.879, 0.874, 0.859)
#pbr.inputs[4].default_value = 1.0 # Metallic
#pbr.inputs[5].default_value = np.power(((ior - 1)/(ior + 1)), 2)/0.08 # specular
#pbr.inputs[5].default_value = 0.8
#pbr.inputs[6].default_value = 0.1 # specular tint
#pbr.inputs[7].default_value = 0.2 # reoghness
pbr.inputs[4].default_value = 0.8 + random() * 0.2 # Metallic
pbr.inputs[5].default_value = 0.6 + random() * 0.4
pbr.inputs[6].default_value = 0.0 + random() * 0.2
pbr.inputs[7].default_value = random() * 0.5 # reoghness
# plastics 1.3 - 1.6, higly refractive ~ 1.75
# polished stainless steel 2.75
#pbr.inputs[14].default_value = ior
else:
#pbr.inputs[0].default_value[:3] = (0.7725, 0.7843, 0.8078)
pbr.inputs[0].default_value[:3] = (152/255, 164/255, 174/255) #Pantone 7543c
#pbr.inputs[0].default_value[:3] = (143/255, 155/255, 174/255)
#ior = 1.49 # Polypropylen
ior = 1.3 + random() * 0.3
pbr.inputs[4].default_value = 0.0 # Metallic
#print(np.power(((ior - 1)/(ior + 1)), 2)/0.08)
pbr.inputs[5].default_value = np.power(((ior - 1)/(ior + 1)), 2)/0.08 # specular
#pbr.inputs[6].default_value = 0.8 # specular tint
#pbr.inputs[7].default_value = 0.2 # reoghness
pbr.inputs[6].default_value = 0.6 + random() * 0.4 # specular tint
pbr.inputs[7].default_value = 0.0 + random() * 0.4 # reoghness
# plastics 1.3 - 1.6, higly refractive ~ 1.75
# polished stainless steel 2.75
#pbr.inputs[14].default_value = ior
obj_object.active_material = mat_obj
obj_object.pass_index = object_idx +2 # don't add?
#anchor_pose[object_idx+1,0] = random()*0.5 - 0.25
#anchor_pose[object_idx+1, 1] = random()*0.5 - 0.25
anchor_pose[object_idx+1,0] = normal(loc=0, scale=0.05)
anchor_pose[object_idx+1, 1] = normal(loc=0, scale=0.05)
anchor_pose[object_idx+1,2] = 0.3 + random()*0.5
anchor_pose[object_idx+1,3] = radians(random()*360.0)
anchor_pose[object_idx+1,4] = radians(random()*360.0)
anchor_pose[object_idx+1,5] = radians(random()*360.0)
object_idx += 1
print('object_labels: ', object_label)
print("FOREGROUND IMPORTED")
# Background objects
for name in dis_objects:
obj_object = bpy.data.objects[name]
obj_object.hide_render = True
for file_idx in DisDraw:
#object_label.append(object_idx + num_object)
obj_object = bpy.data.objects[dis_objects[file_idx]]
obj_object.hide_render = False
mat_obj = mat.copy()
nodes = mat_obj.node_tree.nodes
pbr = nodes.get("Principled BSDF")
attr = nodes.get("Attribute")
#ior = 1.8
#pbr.inputs[4].default_value = 0.5 # Metallic
#pbr.inputs[5].default_value = np.power(((ior - 1)/(ior + 1)), 2)/0.08 # specular
#pbr.inputs[6].default_value = 0.7 # specular tint
#pbr.inputs[7].default_value = 0.5 # reoghness
ior = 1 + random() * 0.8
pbr.inputs[4].default_value = 0.4 + random() * 0.3 # Metallic
pbr.inputs[5].default_value = np.power(((ior - 1)/(ior + 1)), 2)/0.08 # specular
pbr.inputs[6].default_value = 0.1 + random() * 0.4 # specular tint
pbr.inputs[7].default_value = 0.2 + random() * 0.5 # reoghness
obj_object.active_material = mat_obj
obj_object.pass_index = object_idx+2
#anchor_pose[object_idx+1,0] = random()*0.5 - 0.25
#anchor_pose[object_idx+1, 1] = random()*0.5 - 0.25
anchor_pose[object_idx+1,0] = normal(loc=0, scale=0.05)
anchor_pose[object_idx+1, 1] = normal(loc=0, scale=0.05)
anchor_pose[object_idx+1,2] = 0.3 + random()*0.5
anchor_pose[object_idx+1,3] = radians(random()*360.0)
anchor_pose[object_idx+1,4] = radians(random()*360.0)
anchor_pose[object_idx+1,5] = radians(random()*360.0)
object_idx += 1
# FOR BACKGROUND OBJECTS
print("BACKGROUND IMPORTED")
#bpy.data.worlds["World"].light_settings.use_ambient_occlusion = True
#Set object physics
scene = bpy.context.scene
scene.objects.active = bpy.data.objects["template"]
for obj in scene.objects:
if obj.type == 'MESH':
#print("objects parsed: ", obj)
if obj.name == 'template':
obj.select = False
elif obj.name[0:5] == 'Plane':
obj.select = False
elif obj.name == 'InvisibleCube':
obj.select = False
else:
obj.select = True
print("BACKGROUND objects set to inactive for physics")
bpy.ops.rigidbody.object_settings_copy()
#Define Object position&rotation
tree = bpy.context.scene.node_tree
nodes = tree.nodes
ind_obj_counter = 0
scene.frame_set(0)
for obj in scene.objects:
if obj.type == 'MESH':
obj_object= bpy.data.objects[obj.name]
if obj.name[0:5] == 'Plane':
obj_object= bpy.data.objects[obj.name]
img_choice = Rchoice(all_backgrounds)
img_path = os.path.join(back_img_path, img_choice)
mat_now = obj_object.active_material
tree_mesh = mat_now.node_tree
nodes_mesh = tree_mesh.nodes
image = bpy.data.images.load(filepath = img_path)
nodes_mesh['Image Texture'].image = image
if obj_object.pass_index > 1:
idx = obj_object.pass_index -1
print(obj_object, obj_object.pass_index, idx)
obj_object.location.x=anchor_pose[idx,0]
obj_object.location.y=anchor_pose[idx,1]
obj_object.location.z=anchor_pose[idx,2]
obj_object.rotation_euler.x= anchor_pose[idx,3]
obj_object.rotation_euler.y= anchor_pose[idx,4]
obj_object.rotation_euler.z= anchor_pose[idx,5]
# assign different color
rand_color = (random(), random(), random())
obj_object.active_material.diffuse_color = rand_color
if obj.name[:3] == 'dis':
#if obj_object.pass_index > (num_object+1):
obj_object.pass_index = 0
#if obj.name == 'InvisibleCube':
#obj_object.rotation_euler.x=radians(random()*60.0 + 15.0) #0~90
#obj_object.rotation_euler.y=radians(random()*5.0 - 10.0) #-45-45
#obj_object.rotation_euler.z=radians(random()*360.0) #0-360
#if obj.type == 'CAMERA' and obj.name=='cam_L':
#obj_object = bpy.data.objects[obj.name]
#obj_object.location.z = random()*0.2+0.5 #1.0-2.5
print("Running physics")
#Run physics
count = 60
scene.frame_start = 1
scene.frame_end = count + 1
print("Start physics")
for f in range(1,scene.frame_end+1):
print("scene iteration: ", f, "/60")
scene.frame_set(f)
if f <= 1:
continue
print("Done")
print('---------------')
print('Creating pairs')
print('---> randomize camera location')
print('---> randomize lights')
for iii in np.arange(pair_set):
#randomize camera
obj_object = bpy.data.objects['InvisibleCube']
obj_object.rotation_euler.x=radians(random()*60.0 + 15.0) #0~90
obj_object.rotation_euler.y=radians(random()*5.0 - 10.0) #-45-45
obj_object.rotation_euler.z=radians(random()*360.0) #0-360
obj_object = bpy.data.objects['cam_L']
obj_object.location.z = random()*0.2+0.5 #1.0-2.5
# spawn lamps and randomize properties
print('Spawning lamps')
# need to remove old lamps first
for lam in bpy.data.lamps:
bpy.data.lamps.remove(lamp=lam)
# randomize lights and position
lights = np.random.randint(low=2, high=4)
for lamp in range(0, lights):
lamp_types = ['SPOT', 'AREA']
lamp_type = Rchoice(lamp_types)
lamp_name = 'light_' + str(lamp)
lamp_position = ((random()*5.0-2.5), (random()*2.5-1.25), (random()*2.0+1.5))
lamp_data = bpy.data.lamps.new(name=lamp_name, type=lamp_type)
lamp_object = bpy.data.objects.new(name=lamp_name, object_data=lamp_data)
scene.objects.link(lamp_object)
lamp_object.location = lamp_position
lamp_object.select = True
bpy.data.lamps[lamp_name].use_nodes = True
# light emission has to be adjusted depending on the lamp type
emission = (100.0 + random()* 50.0) * (1/lights) # to normalize scene illuminations
if lamp_type == 'AREA':
bpy.data.lamps[lamp_name].shape = 'RECTANGLE'
bpy.data.lamps[lamp_name].size = 0.5 + random() * 0.5
bpy.data.lamps[lamp_name].size_y = 0.1
elif lamp_type == 'SPOT':
emission *= 2.0
#elif lamp_type == 'SUN':
# emission *= 0.1
bpy.data.lamps[lamp_name].node_tree.nodes["Emission"].inputs[1].default_value = emission
bpy.data.lamps[lamp_name].node_tree.nodes["Emission"].inputs[0].default_value[:3] = (random() * 0.03 + 0.97, random() * 0.1 + 0.9, random() * 0.2 + 0.8)
#bpy.data.lamps[lamp_name].node_tree.nodes["Emission"].inputs[0].default_value[:3] = (random() * 0.03 + 0.97, random() * 0.06 + 0.94, random() * 0.1 + 0.9)
print('Done')
print('---------------')
print("Rendering images")
#When Rander cam_L, render mask together
prefix='{:08}_'.format(index)
index+=1
scene.cycles.samples=250
maskfile = os.path.join(target_dir+'/mask' , 'mask.png') # correspondence mask
rgbfile= os.path.join(target_dir+"/rgb", prefix+'rgb.png') # rgb image
tree = bpy.context.scene.node_tree
nodes = tree.nodes
for ob in scene.objects:
if ob.type == 'CAMERA':
if ob.name=='cam_L': #ob.name =='mask':
#Render image and Mask
bpy.context.scene.camera = ob
print('Set camera %s for IR' % ob.name )
file_L = os.path.join(sample_dir , ob.name )
auto_file = os.path.join(sample_dir, ob.name+'0061.png')
node= nodes['maskout']
node.file_slots[0].path = ob.name
node_mix = nodes['ColorRamp']
link_mask= tree.links.new(node_mix.outputs["Image"], node.inputs[0])
node.base_path=sample_dir
auto_file_rgb = os.path.join(sample_dir+'/rgb/', ob.name+'0061.png')
node= nodes['rgbimage.001']
node.file_slots[0].path = ob.name
node_mix = nodes['Render Layers']
link_rgb = tree.links.new(node_mix.outputs["Image"], node.inputs[0])
node.base_path=sample_dir+'/rgb/'
scene.render.filepath = file_L
bpy.ops.render.render( write_still=True )
tree.links.remove(link_mask)
tree.links.remove(link_rgb)
os.rename(auto_file, maskfile)
os.rename(auto_file_rgb, rgbfile)
print('Done')
print('------------------')
# Compute annotations and export
# Visibility ratios are not calculated here, needs separate step.
# computationally too expensive in blender because of rendering step
print('Computing annotations')
mask = cv2.imread(maskfile)
minmax_vu = np.zeros((num_object,4),dtype=np.int) #min v, min u, max v, max u
label_vu = np.zeros((mask.shape[0],mask.shape[1]),dtype=np.int8) #min v, min u, max v, max u
colors = np.zeros((num_object,3),dtype=mask.dtype)
n_label=0
color_index=np.array([ [ 0, 0, 0],
[ 0, 100, 0],
[ 0, 139, 0],
[ 0, 167, 0],
[ 0, 190, 0],
[ 0, 210, 0],
[ 0, 228, 0],
[ 0, 244, 0],
[ 0, 252, 50],
[ 0, 236, 112],
[ 0, 220, 147],
[ 0, 201, 173],
[ 0, 179, 196],
[ 0, 154, 215],
[ 0, 122, 232],
[ 0, 72, 248],
[ 72, 0, 248],
[122, 0, 232],
[154, 0, 215],
[179, 0, 196],
[201, 0, 173],
[220, 0, 147],
[236, 0, 112],
[252, 0, 50],
[255, 87, 87],
[255, 131, 131],
[255, 161, 161],
[255, 185, 185],
[255, 206, 206],
[255, 224, 224],
[255, 240, 240],
[255, 255, 255]])
for v in np.arange(mask.shape[0]):
for u in np.arange(mask.shape[1]):
has_color = False
if not(mask[v,u,0] ==0 and mask[v,u,1] ==0 and mask[v,u,2] ==0):
for ob_index in np.arange(n_label):
if colors[ob_index,0]== mask[v,u,0] and colors[ob_index,1]== mask[v,u,1] and colors[ob_index,2]== mask[v,u,2]:
has_color = True
minmax_vu[ob_index,0] = min(minmax_vu[ob_index,0], v)
minmax_vu[ob_index,1] = min(minmax_vu[ob_index,1], u)
minmax_vu[ob_index,2] = max(minmax_vu[ob_index,2], v)
minmax_vu[ob_index,3] = max(minmax_vu[ob_index,3], u)
label_vu[v,u]=ob_index+1
continue
if has_color ==False: #new label
colors[n_label] = mask[v,u]
label_vu[v,u]=n_label+1 #identical to object_index in blender
minmax_vu[n_label,0] = v
minmax_vu[n_label,1] = u
minmax_vu[n_label,2] = v
minmax_vu[n_label,3] = u
n_label=n_label+1
else:
label_vu[v,u]=0
bbox_refined = mask
color_map=np.zeros(n_label)
for k in np.arange(n_label):
for i in np.arange(color_index.shape[0]):
if(color_index[i,0] == colors[k,0] and color_index[i,1] == colors[k,1] and color_index[i,2] == colors[k,2] ):
color_map[k]=i
continue
object_no=[]
refined=[]
for ob_index in np.arange(n_label):
min_v=minmax_vu[ob_index,0]
min_u=minmax_vu[ob_index,1]
max_v=minmax_vu[ob_index,2]
max_u=minmax_vu[ob_index,3]
bbox = label_vu[min_v:max_v,min_u:max_u]
bbox=bbox.reshape(-1)
counts = np.bincount(bbox)
if(counts.shape[0]>1):
if(np.argmax(counts[1:]) ==(ob_index)): #(mask.shape[0],mask.shape[1]
#if(min_v>30 and min_u>30 and max_v < (mask.shape[0]-30) and max_u < (mask.shape[1]-30) ):
#cv2.rectangle(bbox_refined,(min_u,min_v),(max_u,max_v),(0,255,0),1)
refined.append(ob_index)
object_no.append(color_map[ob_index])
#cv2.imwrite(os.path.join(sample_dir,'bbox_refined.png'),bbox_refined)
bbox_refined = minmax_vu[refined]
poses =np.zeros((len(object_no),4,4),dtype=np.float)
names = ['a'] * len(object_no)
camera_rot =np.zeros((4,4),dtype=np.float)
for obj in scene.objects:
if obj.type == 'MESH':
if obj.pass_index in object_no:
idx = object_no.index(obj.pass_index)
poses[idx]=obj.matrix_world
img_name = obj.name + '.png'
#names[idx] = os.path.join(sample_dir, img_name)
if obj.name=='InvisibleCube':
camera_rot[:,:] = obj.matrix_world
camera_rot = camera_rot[:3,:3] #only rotation (z was recorded seprately)
init_rot = np.zeros((3,3))
init_rot[0,0]=1
init_rot[1,1]=-1
init_rot[2,2]=-1
fin_rot =np.matmul(camera_rot,init_rot)
fin_rot = inv(fin_rot)
world_rot=np.zeros((4,4))
world_rot[:3,:3] = fin_rot
world_rot[3,3]=1
if obj.type == 'CAMERA' and obj.name=='cam_L':
obj_object = bpy.data.objects[obj.name]
camera_z = obj_object.location.z
#camera_ext[:,:] = obj_object.matrix_world
#camera_ext = camera_ext.reshape(-1)
np.save(target_dir+"/mask/"+prefix+"mask.npy",label_vu)
cam_trans = -np.matmul(camera_rot[:3, :3],np.array([0,0,camera_z]))
world_trans =
|
np.zeros((4,4))
|
numpy.zeros
|
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: visualizer
Project Name: octNet
Author : 康
Date: 2018/9/22
-------------------------------------------------
Change Activity:
2018/9/22:
-------------------------------------------------
"""
import cv2
import torch
import visdom
import numpy as np
class Visualizer(object):
def __init__(self, env='main', port=8097, **kwargs):
self.viz = visdom.Visdom(env=env, port=port, **kwargs)
# 画的第几个数,相当于横坐标
# 比如(’loss',23) 即loss的第23个点
self.index = {}
self.log_text = ''
# plot line
def plot_multi_win(self, d, loop_flag=None):
'''
一次plot多个或者一个
@params d: dict (name, value) i.e. ('loss', 0.11)
'''
long_update = True
if loop_flag == 0:
long_update = False
for k, v in d.items():
self.plot(k, v, long_update)
def plot_single_win(self, d, win, loop_i=1):
"""
:param d: dict (name, value) i.e. ('loss', 0.11)
:param win: only one win
:param loop_i: i.e. plot testing loss and label
:return:
"""
for k, v in d.items():
x = self.index.get(k, 0)
self.viz.line(
Y=np.array([v]),
X=np.array([x]),
name=k,
win=win,
opts=dict(title=win, showlegend=True),
update='append' if (x > 0 and loop_i > 0) else None)
# update=None if (x == 0 or loop_i == 0) else 'append')
self.index[k] = x + 1
def plot_legend(self, win, name, y, long_update=True, **kwargs):
'''
plot different line in different time in the same window
One mame, one win: only one lie in a win.
'''
# eg.
# self.vis.plot_legend(win='iou', name='val', y=iou.mean())
x = self.index.get(
name, 0) # dict.get(key, default=None). 返回指定键的值,如果值不在字典中返回default值
self.viz.line(
Y=np.array([y]),
X=
|
np.array([x])
|
numpy.array
|
import numpy
from scipy import optimize
import sys
home_dir = '../'
sys.path.append(home_dir)
import Util.CG as CG
class Solver:
def __init__(self, X=None, y=None):
if (X is not None) and (y is not None):
self.n, self.d = X.shape
print('logistic solver')
print(X.shape)
print(y.shape)
self.xMat = X
self.yVec = y
# self.xMat = X * y.reshape(self.n, 1)
def fit(self, xMat, yVec):
self.n, self.d = xMat.shape
# self.xMat = xMat * yVec.reshape(self.n, 1)
self.xMat = xMat
self.yVec = yVec
def objFun(self, wVec, *args):
gamma = args[0]
zVec = numpy.dot(self.xMat, wVec.reshape(self.d, 1))
# add label yVec
zVec = numpy.multiply(zVec, self.yVec)
lVec = numpy.log(1 + numpy.exp(-zVec))
return numpy.mean(lVec) + gamma / 2 * numpy.sum(wVec ** 2)
def grad(self, wVec, *args):
gamma = args[0]
zVec = numpy.dot(self.xMat, wVec.reshape(self.d, 1))
# add label yVec
zVec = numpy.multiply(zVec, self.yVec)
expZVec = numpy.exp(zVec)
vec1 = 1 + expZVec
vec2 = -1 / vec1
# add label yVec
vec2 = numpy.multiply(vec2, self.yVec)
# grad1 = numpy.mean(self.xMat.T * vec2, axis=0)
grad1 = self.xMat.T * vec2
grad = grad1 / self.n + gamma * wVec.reshape(self.d, 1)
return grad
def cg(self, gamma, tol=1e-20, maxiter=5000):
wVec0 = numpy.zeros(self.d)
args = (gamma,)
print(self.objFun(wVec0, *args))
wVec, _, _, gradCalls, _ = optimize.fmin_cg(self.objFun, wVec0, args=args, fprime=self.grad, gtol=tol,
maxiter=maxiter, disp=True, full_output=True)
print(self.objFun(wVec, *args))
return wVec
def newton(self, gamma, maxIter=50, tol=1e-15):
wVec = numpy.zeros((self.d, 1))
etaList = 1 / (2 **
|
numpy.arange(0, 10)
|
numpy.arange
|
import numpy as np
import scipy as sp
from ffthompy.trigpol import Grid, get_Nodd, mean_index, fft_form_default
from ffthompy.matvecs import Matrix
from ffthompy.tensors import Tensor
import itertools
def scalar(N, Y, NyqNul=True, tensor=True, fft_form=fft_form_default):
"""
Assembly of discrete kernels in Fourier space for scalar elliptic problems.
Parameters
----------
N : numpy.ndarray
no. of discretization points
Y : numpy.ndarray
size of periodic unit cell
Returns
-------
G1l : numpy.ndarray
discrete kernel in Fourier space; provides projection
on curl-free fields with zero mean
G2l : numpy.ndarray
discrete kernel in Fourier space; provides projection
on divergence-free fields with zero mean
"""
if fft_form in ['r']:
fft_form_r=True
fft_form=0
else:
fft_form_r=False
d = np.size(N)
N = np.array(N, dtype=np.int)
if NyqNul:
Nred = get_Nodd(N)
else:
Nred = N
xi = Grid.get_xil(Nred, Y, fft_form=fft_form)
xi2 = []
for m in np.arange(d):
xi2.append(xi[m]**2)
G0l = np.zeros(np.hstack([d, d, Nred]))
G1l = np.zeros(np.hstack([d, d, Nred]))
G2l = np.zeros(np.hstack([d, d, Nred]))
num = np.zeros(np.hstack([d, d, Nred]))
denom = np.zeros(Nred)
ind_center = mean_index(Nred, fft_form=fft_form)
for m in np.arange(d): # diagonal components
Nshape = np.ones(d, dtype=np.int)
Nshape[m] = Nred[m]
Nrep = np.copy(Nred)
Nrep[m] = 1
a = np.reshape(xi2[m], Nshape)
num[m][m] = np.tile(a, Nrep) # numerator
denom = denom + num[m][m]
G0l[m, m][ind_center] = 1
for m in np.arange(d): # upper diagonal components
for n in np.arange(m+1, d):
NshapeM = np.ones(d, dtype=np.int)
NshapeM[m] = Nred[m]
NrepM = np.copy(Nred)
NrepM[m] = 1
NshapeN = np.ones(d, dtype=np.int)
NshapeN[n] = Nred[n]
NrepN = np.copy(Nred)
NrepN[n] = 1
num[m][n] = np.tile(np.reshape(xi[m], NshapeM), NrepM) \
* np.tile(np.reshape(xi[n], NshapeN), NrepN)
# avoiding a division by zero
denom[ind_center] = 1
# calculation of projections
for m in np.arange(d):
for n in np.arange(m, d):
G1l[m][n] = num[m][n]/denom
G2l[m][n] = (m == n)*np.ones(Nred) - G1l[m][n]
G2l[m][n][ind_center] = 0
# symmetrization
for m in np.arange(1, d):
for n in np.arange(m):
G1l[m][n] = G1l[n][m]
G2l[m][n] = G2l[n][m]
if tensor:
G0l = Tensor(name='hG0', val=G0l, order=2, N=N, multype=21, Fourier=True, fft_form=fft_form)
G1l = Tensor(name='hG1', val=G1l, order=2, N=N, multype=21, Fourier=True, fft_form=fft_form)
G2l = Tensor(name='hG2', val=G2l, order=2, N=N, multype=21, Fourier=True, fft_form=fft_form)
else:
G0l = Matrix(name='hG0', val=G0l, Fourier=True)
G1l = Matrix(name='hG1', val=G1l, Fourier=True)
G2l = Matrix(name='hG2', val=G2l, Fourier=True)
if NyqNul:
G0l = G0l.enlarge(N)
G1l = G1l.enlarge(N)
G2l = G2l.enlarge(N)
if fft_form_r:
for tensor in [G0l, G1l, G2l]:
tensor.set_fft_form(fft_form='r')
tensor.val/=np.prod(tensor.N)
return G0l, G1l, G2l
def elasticity(N, Y, NyqNul=True, tensor=True, fft_form=fft_form_default):
"""
Projection matrix on a space of admissible strain fields
INPUT =
N : ndarray of e.g. stiffness coefficients
d : dimension; d = 2
D : dimension in engineering notation; D = 3
Y : the size of periodic unit cell
OUTPUT =
G1h,G1s,G2h,G2s : projection matrices of size DxDxN
"""
if fft_form in ['r']:
fft_form_r=True
fft_form=0
else:
fft_form_r=False
xi = Grid.get_xil(N, Y, fft_form=fft_form)
N = np.array(N, dtype=np.int)
d = N.size
D = int(d*(d+1)/2)
if NyqNul:
Nred = get_Nodd(N)
else:
Nred = N
xi2 = []
for ii in range(d):
xi2.append(xi[ii]**2)
num = np.zeros(np.hstack([d, d, Nred]))
norm2_xi = np.zeros(Nred)
for mm in np.arange(d): # diagonal components
Nshape = np.ones(d, dtype=np.int)
Nshape[mm] = Nred[mm]
Nrep = np.copy(Nred)
Nrep[mm] = 1
num[mm][mm] = np.tile(np.reshape(xi2[mm], Nshape), Nrep) # numerator
norm2_xi += num[mm][mm]
norm4_xi = norm2_xi**2
ind_center = mean_index(Nred, fft_form=fft_form)
# avoid division by zero
norm2_xi[ind_center] = 1
norm4_xi[ind_center] = 1
for m in np.arange(d): # upper diagonal components
for n in np.arange(m+1, d):
NshapeM = np.ones(d, dtype=np.int)
NshapeM[m] = Nred[m]
NrepM = np.copy(Nred)
NrepM[m] = 1
NshapeN = np.ones(d, dtype=np.int)
NshapeN[n] = Nred[n]
NrepN = np.copy(Nred)
NrepN[n] = 1
num[m][n] = np.tile(np.reshape(xi[m], NshapeM), NrepM) \
* np.tile(np.reshape(xi[n], NshapeN), NrepN)
# G1h = np.zeros([D,D]).tolist()
G1h = np.zeros(np.hstack([D, D, Nred]))
G1s = np.zeros(np.hstack([D, D, Nred]))
IS0 = np.zeros(np.hstack([D, D, Nred]))
mean = np.zeros(np.hstack([D, D, Nred]))
Lamh = np.zeros(np.hstack([D, D, Nred]))
S = np.zeros(np.hstack([D, D, Nred]))
W = np.zeros(np.hstack([D, D, Nred]))
WT = np.zeros(np.hstack([D, D, Nred]))
for m in np.arange(d):
S[m][m] = 2*num[m][m]/norm2_xi
for n in np.arange(d):
G1h[m][n] = num[m][m]*num[n][n]/norm4_xi
Lamh[m][n] =
|
np.ones(Nred)
|
numpy.ones
|
"""
Imperceptible ASR attack (https://arxiv.org/abs/1903.10346)
"""
import math
from typing import List, Optional, Tuple
import numpy as np
import speechbrain as sb
import torch
import torch.nn as nn
import torch.optim as optim
from scipy.signal import argrelextrema
from torch.autograd import Variable
import robust_speech as rs
from robust_speech.adversarial.attacks.attacker import Attacker
class ImperceptibleASRAttack(Attacker):
"""
An implementation of the Imperceptible ASR attack
(https://arxiv.org/abs/1903.10346).
Based on the ART implementation of Imperceptible
(https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/evasion/imperceptible_asr/imperceptible_asr_pytorch.py)
Arguments
---------
asr_brain : rs.adversarial.brain.ASRBrain
the brain object to attack
targeted: bool
if the attack is targeted (always true for now).
eps: float
Linf bound applied to the perturbation.
learning_rate_1: float
the learning rate for the attack algorithm in phase 1
max_iter_1: int
the maximum number of iterations in phase 1
learning_rate_2: float
the learning rate for the attack algorithm in phase 2
max_iter_2: int
the maximum number of iterations in phase 2
clip_min: float
mininum value per input dimension (ignored: herefor compatibility).
clip_max: float
maximum value per input dimension (ignored: herefor compatibility).
train_mode_for_backward: bool
whether to force training mode in backward passes (necessary for RNN models)
win_length: int
window length for computing spectral density
hop_length: int
hop length for computing spectral density
n_fft: int
number of FFT bins for computing spectral density.
global_max_length: int
max length of a perturbation
initial_rescale: float
initial factor by which to rescale the perturbation
num_iter_decrease_eps: int
Number of times to increase epsilon in case of success
decrease_factor_eps: int
Factor by which to decrease epsilon in case of failure
alpha: float
regularization constant for threshold loss term
num_iter_decrease_alpha: int
Number of times to decrease alpha in case of failure
num_iter_decrease_alpha: int
Number of times to increase alpha in case of success
decrease_factor_alpha: int
Factor by which to decrease alpha in case of failure
increase_factor_alpha: int
Factor by which to increase alpha in case of success
optimizer_1: Optional["torch.optim.Optimizer"]
the optimizer to use in phase 1
optimizer_2: Optional["torch.optim.Optimizer"]
the optimizer to use in phase 2
"""
def __init__(
self,
asr_brain: rs.adversarial.brain.ASRBrain,
eps: float = 0.05,
max_iter_1: int = 10,
max_iter_2: int = 4000,
learning_rate_1: float = 0.001,
learning_rate_2: float = 5e-4,
optimizer_1: Optional["torch.optim.Optimizer"] = None,
optimizer_2: Optional["torch.optim.Optimizer"] = None,
global_max_length: int = 200000,
initial_rescale: float = 1.0,
decrease_factor_eps: float = 0.8,
num_iter_decrease_eps: int = 1,
max_num_decrease_eps: Optional[int] = None,
alpha: float = 1.2,
increase_factor_alpha: float = 1.2,
num_iter_increase_alpha: int = 20,
decrease_factor_alpha: float = 0.8,
num_iter_decrease_alpha: int = 20,
win_length: int = 2048,
hop_length: int = 512,
n_fft: int = 2048,
targeted: bool = True,
train_mode_for_backward: bool = True,
clip_min: Optional[float] = None,
clip_max: Optional[float] = None,
):
self.asr_brain = asr_brain
self.eps = eps
self.max_iter_1 = max_iter_1
self.max_iter_2 = max_iter_2
self.learning_rate_1 = learning_rate_1
self.learning_rate_2 = learning_rate_2
self.global_max_length = global_max_length
self.initial_rescale = initial_rescale
self.decrease_factor_eps = decrease_factor_eps
self.num_iter_decrease_eps = num_iter_decrease_eps
self.alpha = alpha
self.increase_factor_alpha = increase_factor_alpha
self.num_iter_increase_alpha = num_iter_increase_alpha
self.decrease_factor_alpha = decrease_factor_alpha
self.num_iter_decrease_alpha = num_iter_decrease_alpha
self.win_length = win_length
self.hop_length = hop_length
self.n_fft = n_fft
self.clip_min = clip_min # ignored
self.clip_max = clip_max # ignored
assert targeted, (
"%s attack only available for targeted outputs" % self.__class__.__name__
)
self.targeted = targeted
self.train_mode_for_backward = train_mode_for_backward
self._optimizer_arg_1 = optimizer_1
self._optimizer_arg_2 = optimizer_2
self.max_num_decrease_eps = max_num_decrease_eps
if max_num_decrease_eps is None:
self.max_num_decrease_eps = max_iter_1
def perturb(self, batch):
"""
Compute an adversarial perturbation
Arguments
---------
batch : sb.PaddedBatch
The input batch to perturb
Returns
-------
the tensor of the perturbed batch
"""
if self.train_mode_for_backward:
self.asr_brain.module_train()
else:
self.asr_brain.module_eval()
save_device = batch.sig[0].device
batch = batch.to(self.asr_brain.device)
save_input = batch.sig[0]
wav_init = torch.clone(save_input)
batch.sig = wav_init, batch.sig[1]
# First reset delta
global_optimal_delta = torch.zeros(batch.batchsize, self.global_max_length).to(
self.asr_brain.device
)
self.global_optimal_delta = nn.Parameter(global_optimal_delta)
# Next, reset optimizers
if self._optimizer_arg_1 is None:
self.optimizer_1 = torch.optim.Adam(
params=[self.global_optimal_delta], lr=self.learning_rate_1
)
else:
self.optimizer_1 = self._optimizer_arg_1( # type: ignore
params=[self.global_optimal_delta], lr=self.learning_rate_1
)
if self._optimizer_arg_2 is None:
self.optimizer_2 = torch.optim.Adam(
params=[self.global_optimal_delta], lr=self.learning_rate_2
)
else:
self.optimizer_2 = self._optimizer_arg_2( # type: ignore
params=[self.global_optimal_delta], lr=self.learning_rate_2
)
# Then compute the batch
adv_wav = self._generate_batch(batch)
batch.sig = save_input, batch.sig[1]
batch = batch.to(save_device)
self.asr_brain.module_eval()
return adv_wav
def _generate_batch(self, batch):
"""
Run all attack stages
Arguments
---------
batch : sb.PaddedBatch
The input batch to perturb
Returns
-------
the tensor of the perturbed batch
"""
# First stage of attack
original_input = torch.clone(batch.sig[0])
successful_adv_input_1st_stage = self._attack_1st_stage(batch)
successful_perturbation_1st_stage = (
successful_adv_input_1st_stage - original_input
)
if self.max_iter_2 == 0:
return successful_adv_input_1st_stage
# Compute original masking threshold and maximum psd
theta_batch = []
original_max_psd_batch = []
wav_init = batch.sig[0]
lengths = (wav_init.size(1) * batch.sig[1]).long()
wavs = [wav_init[i, : lengths[i]] for i in range(batch.batchsize)]
for _, wav_i in enumerate(wavs):
theta, original_max_psd = None, None
theta, original_max_psd = self._compute_masking_threshold(wav_i)
theta = theta.transpose(1, 0)
theta_batch.append(theta)
original_max_psd_batch.append(original_max_psd)
# Reset delta with new result
local_batch_shape = successful_adv_input_1st_stage.shape
self.global_optimal_delta.data = torch.zeros(
batch.batchsize, self.global_max_length
).to(self.asr_brain.device)
self.global_optimal_delta.data[
: local_batch_shape[0], : local_batch_shape[1]
] = successful_perturbation_1st_stage
# Second stage of attack
successful_adv_input_2nd_stage = self._attack_2nd_stage(
batch,
theta_batch=theta_batch,
original_max_psd_batch=original_max_psd_batch,
)
return successful_adv_input_2nd_stage
def _attack_1st_stage(self, batch) -> Tuple["torch.Tensor", np.ndarray]:
"""
The first stage of the attack.
"""
num_decrease_eps = 0
# Compute local shape
local_batch_size = batch.batchsize
real_lengths = (
(batch.sig[1] * batch.sig[0].size(1)).long().detach().cpu().numpy()
)
local_max_length = np.max(real_lengths)
# Initialize rescale
rescale = (
np.ones([local_batch_size, local_max_length], dtype=np.float32)
* self.initial_rescale
)
# Reformat input
input_mask = np.zeros(
[local_batch_size, local_max_length], dtype=np.float32)
original_input = torch.clone(batch.sig[0])
for local_batch_size_idx in range(local_batch_size):
input_mask[local_batch_size_idx,
: real_lengths[local_batch_size_idx]] = 1
# Optimization loop
successful_adv_input: List[Optional["torch.Tensor"]] = [
None] * local_batch_size
trans = [None] * local_batch_size
for iter_1st_stage_idx in range(self.max_iter_1):
# Zero the parameter gradients
self.optimizer_1.zero_grad()
# Call to forward pass
(
loss,
local_delta,
decoded_output,
masked_adv_input,
_,
) = self._forward_1st_stage(
original_input=original_input,
batch=batch,
local_batch_size=local_batch_size,
local_max_length=local_max_length,
rescale=rescale,
input_mask=input_mask,
real_lengths=real_lengths,
)
loss.backward()
# Get sign of the gradients
self.global_optimal_delta.grad = torch.sign(
self.global_optimal_delta.grad)
# Do optimization
self.optimizer_1.step()
# Save the best adversarial example and adjust the rescale
# coefficient if successful
if iter_1st_stage_idx % self.num_iter_decrease_eps == 0:
for local_batch_size_idx in range(local_batch_size):
tokens = (
batch.tokens[local_batch_size_idx]
.detach()
.cpu()
.numpy()
.reshape(-1)
)
pred = np.array(
decoded_output[local_batch_size_idx]).reshape(-1)
if len(pred) == len(tokens) and (pred == tokens).all():
# print("Found one")
# Adjust the rescale coefficient
max_local_delta = np.max(
np.abs(
local_delta[local_batch_size_idx].detach(
).cpu().numpy()
)
)
if (
rescale[local_batch_size_idx][0] * self.eps
> max_local_delta
):
rescale[local_batch_size_idx] = max_local_delta / self.eps
if num_decrease_eps < self.max_num_decrease_eps:
rescale[local_batch_size_idx] *= self.decrease_factor_eps
num_decrease_eps += 1
# Save the best adversarial example
successful_adv_input[local_batch_size_idx] = masked_adv_input[
local_batch_size_idx
]
trans[local_batch_size_idx] = decoded_output[
local_batch_size_idx
]
# If attack is unsuccessful
if iter_1st_stage_idx == self.max_iter_1 - 1:
for local_batch_size_idx in range(local_batch_size):
if successful_adv_input[local_batch_size_idx] is None:
successful_adv_input[local_batch_size_idx] = masked_adv_input[
local_batch_size_idx
]
trans[local_batch_size_idx] = decoded_output[
local_batch_size_idx
]
result = torch.stack(successful_adv_input) # type: ignore
batch.sig = original_input, batch.sig[1]
return result
def _forward_1st_stage(
self,
original_input: np.ndarray,
batch: sb.dataio.batch.PaddedBatch,
local_batch_size: int,
local_max_length: int,
rescale: np.ndarray,
input_mask: np.ndarray,
real_lengths: np.ndarray,
):
# Compute perturbed inputs
local_delta = self.global_optimal_delta[:
local_batch_size, :local_max_length]
local_delta_rescale = torch.clamp(local_delta, -self.eps, self.eps).to(
self.asr_brain.device
)
local_delta_rescale *= torch.tensor(rescale).to(self.asr_brain.device)
adv_input = local_delta_rescale + torch.tensor(original_input).to(
self.asr_brain.device
)
masked_adv_input = adv_input * torch.tensor(input_mask).to(
self.asr_brain.device
)
# Compute loss and decoded output
batch.sig = masked_adv_input, batch.sig[1]
predictions = self.asr_brain.compute_forward(batch, rs.Stage.ATTACK)
loss = self.asr_brain.compute_objectives(
predictions, batch, rs.Stage.ATTACK)
self.asr_brain.module_eval()
val_predictions = self.asr_brain.compute_forward(batch, sb.Stage.VALID)
decoded_output = self.asr_brain.get_tokens(val_predictions)
if self.train_mode_for_backward:
self.asr_brain.module_train()
return loss, local_delta, decoded_output, masked_adv_input, local_delta_rescale
def _attack_2nd_stage(
self,
batch,
theta_batch: List[np.ndarray],
original_max_psd_batch: List[np.ndarray],
):
# Compute local shape
local_batch_size = batch.batchsize
real_lengths = (
(batch.sig[1] * batch.sig[0].size(1)).long().detach().cpu().numpy()
)
local_max_length = np.max(real_lengths)
# Initialize rescale
rescale = (
np.ones([local_batch_size, local_max_length], dtype=np.float32)
* self.initial_rescale
)
# Reformat input
input_mask = np.zeros(
[local_batch_size, local_max_length], dtype=np.float32)
original_input = torch.clone(batch.sig[0])
for local_batch_size_idx in range(local_batch_size):
input_mask[local_batch_size_idx,
: real_lengths[local_batch_size_idx]] = 1
# Optimization loop
successful_adv_input: List[Optional["torch.Tensor"]] = [
None] * local_batch_size
trans = [None] * local_batch_size
# Initialize alpha and rescale
alpha = np.array([self.alpha] * local_batch_size, dtype=np.float32)
rescale = (
np.ones([local_batch_size, local_max_length], dtype=np.float32)
* self.initial_rescale
)
# Reformat input
input_mask = np.zeros(
[local_batch_size, local_max_length], dtype=np.float32)
original_input = torch.clone(batch.sig[0])
for local_batch_size_idx in range(local_batch_size):
input_mask[local_batch_size_idx,
: real_lengths[local_batch_size_idx]] = 1
# Optimization loop
successful_adv_input: List[Optional["torch.Tensor"]] = [
None] * local_batch_size
best_loss_2nd_stage = [np.inf] * local_batch_size
trans = [None] * local_batch_size
for iter_2nd_stage_idx in range(self.max_iter_2):
# Zero the parameter gradients
self.optimizer_2.zero_grad()
# Call to forward pass of the first stage
(
loss_1st_stage,
_,
decoded_output,
masked_adv_input,
local_delta_rescale,
) = self._forward_1st_stage(
original_input=original_input,
batch=batch,
local_batch_size=local_batch_size,
local_max_length=local_max_length,
rescale=rescale,
input_mask=input_mask,
real_lengths=real_lengths,
)
# Call to forward pass of the first stage
loss_2nd_stage = self._forward_2nd_stage(
local_delta_rescale=local_delta_rescale,
theta_batch=theta_batch,
original_max_psd_batch=original_max_psd_batch,
real_lengths=real_lengths,
)
# Total loss
loss = (
loss_1st_stage.type(torch.float32)
+ torch.tensor(alpha).to(self.asr_brain.device) *
loss_2nd_stage
)
loss = torch.mean(loss)
loss.backward()
# Do optimization
self.optimizer_2.step()
# Save the best adversarial example and adjust the alpha
# coefficient
for local_batch_size_idx in range(local_batch_size):
tokens = (
batch.tokens[local_batch_size_idx]
.detach()
.cpu()
.numpy()
.reshape(-1)
)
pred = np.array(
decoded_output[local_batch_size_idx]).reshape(-1)
if len(pred) == len(tokens) and (pred == tokens).all():
if (
loss_2nd_stage[local_batch_size_idx]
< best_loss_2nd_stage[local_batch_size_idx]
):
# Update best loss at 2nd stage
best_loss_2nd_stage[local_batch_size_idx] = loss_2nd_stage[
local_batch_size_idx
]
# Save the best adversarial example
successful_adv_input[local_batch_size_idx] = masked_adv_input[
local_batch_size_idx
]
trans[local_batch_size_idx] = decoded_output[
local_batch_size_idx
]
# Adjust to increase the alpha coefficient
if iter_2nd_stage_idx % self.num_iter_increase_alpha == 0:
alpha[local_batch_size_idx] *= self.increase_factor_alpha
# Adjust to decrease the alpha coefficient
elif iter_2nd_stage_idx % self.num_iter_decrease_alpha == 0:
alpha[local_batch_size_idx] *= self.decrease_factor_alpha
alpha[local_batch_size_idx] = max(
alpha[local_batch_size_idx], 0.0005
)
# If attack is unsuccessful
if iter_2nd_stage_idx == self.max_iter_2 - 1:
for local_batch_size_idx in range(local_batch_size):
if successful_adv_input[local_batch_size_idx] is None:
successful_adv_input[local_batch_size_idx] = masked_adv_input[
local_batch_size_idx
]
trans[local_batch_size_idx] = decoded_output[
local_batch_size_idx
]
result = torch.stack(successful_adv_input) # type: ignore
return result
def _forward_2nd_stage(
self,
local_delta_rescale: "torch.Tensor",
theta_batch: List[np.ndarray],
original_max_psd_batch: List[np.ndarray],
real_lengths: np.ndarray,
):
# Compute loss for masking threshold
losses = []
relu = torch.nn.ReLU()
for i, _ in enumerate(theta_batch):
psd_transform_delta = self._psd_transform(
delta=local_delta_rescale[i, : real_lengths[i]],
original_max_psd=original_max_psd_batch[i],
)
loss = torch.mean(
relu(psd_transform_delta -
theta_batch[i].to(self.asr_brain.device))
)
losses.append(loss)
losses_stack = torch.stack(losses)
return losses_stack
def _compute_masking_threshold(
self, wav: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute the masking threshold and the maximum psd of the original audio.
:param wav: Samples of shape (seq_length,).
:return: A tuple of the masking threshold and the maximum psd.
"""
# First compute the psd matrix
# Get window for the transformation
# window = scipy.signal.get_window("hann", self.win_length, fftbins=True)
window = torch.hann_window(self.win_length, periodic=True)
# Do transformation
# transformed_wav = librosa.core.stft(
# y=x, n_fft=self.n_fft, hop_length=self.hop_length,
# win_length=self.win_length, window=window, center=False
# )
transformed_wav = torch.stft(
input=wav.detach().cpu(),
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=window,
center=False,
return_complex=True,
).numpy()
transformed_wav *= np.sqrt(8.0 / 3.0)
psd = abs(transformed_wav / self.win_length)
original_max_psd = np.max(psd * psd)
with np.errstate(divide="ignore"):
psd = (20 * np.log10(psd)).clip(min=-200)
psd = 96 - np.max(psd) + psd
# Compute freqs and barks
# freqs = librosa.core.fft_frequencies(
# sr=self.asr_brain.hparams.sample_rate, n_fft=self.n_fft)
freqs = torch.fft.rfftfreq(n=self.n_fft, d=1.0 / 16000)
barks = 13 * np.arctan(0.00076 * freqs) + 3.5 * np.arctan(
pow(freqs / 7500.0, 2)
)
# Compute quiet threshold
ath = np.zeros(len(barks), dtype=np.float32) - np.inf
bark_idx = np.argmax(barks > 1)
ath[bark_idx:] = (
3.64 * pow(freqs[bark_idx:] * 0.001, -0.8)
- 6.5 * np.exp(-0.6 * pow(0.001 * freqs[bark_idx:] - 3.3, 2))
+ 0.001 * pow(0.001 * freqs[bark_idx:], 4)
- 12
)
# Compute the global masking threshold theta
theta = []
for i in range(psd.shape[1]):
# Compute masker index
masker_idx = argrelextrema(psd[:, i], np.greater)[0]
if 0 in masker_idx:
masker_idx = np.delete(masker_idx, 0)
if len(psd[:, i]) - 1 in masker_idx:
masker_idx = np.delete(masker_idx, len(psd[:, i]) - 1)
barks_psd = np.zeros([len(masker_idx), 3], dtype=np.float32)
barks_psd[:, 0] = barks[masker_idx]
barks_psd[:, 1] = 10 * np.log10(
pow(10, psd[:, i][masker_idx - 1] / 10.0)
+ pow(10, psd[:, i][masker_idx] / 10.0)
+ pow(10, psd[:, i][masker_idx + 1] / 10.0)
)
barks_psd[:, 2] = masker_idx
for j in range(len(masker_idx)):
if barks_psd.shape[0] <= j + 1:
break
while barks_psd[j + 1, 0] - barks_psd[j, 0] < 0.5:
quiet_threshold = (
3.64 * pow(freqs[int(barks_psd[j, 2])] * 0.001, -0.8)
- 6.5
* np.exp(
-0.6 *
pow(0.001 * freqs[int(barks_psd[j, 2])] - 3.3, 2)
)
+ 0.001 * pow(0.001 * freqs[int(barks_psd[j, 2])], 4)
- 12
)
if barks_psd[j, 1] < quiet_threshold:
barks_psd = np.delete(barks_psd, j, axis=0)
if barks_psd.shape[0] == j + 1:
break
if barks_psd[j, 1] < barks_psd[j + 1, 1]:
barks_psd = np.delete(barks_psd, j, axis=0)
else:
barks_psd = np.delete(barks_psd, j + 1, axis=0)
if barks_psd.shape[0] == j + 1:
break
# Compute the global masking threshold
delta = 1 * (-6.025 - 0.275 * barks_psd[:, 0])
t_s = []
for psd_id in range(barks_psd.shape[0]):
d_z = barks - barks_psd[psd_id, 0]
zero_idx = np.argmax(d_z > 0)
s_f = np.zeros(len(d_z), dtype=np.float32)
s_f[:zero_idx] = 27 * d_z[:zero_idx]
s_f[zero_idx:] = (-27 + 0.37 * max(barks_psd[psd_id, 1] - 40, 0)) * d_z[
zero_idx:
]
t_s.append(barks_psd[psd_id, 1] + delta[psd_id] + s_f)
t_s_array =
|
np.array(t_s)
|
numpy.array
|
import os, sys
from math import sqrt, copysign
import numpy as np
import helpers as nhp
from helpers import rotmat_dict
from LatticeModel import LatticeModel
from cached_property import cached_property
import random
import plotly as py
import plotly.graph_objs as go
from cached_property import cached_property
class Lattice(LatticeModel):
"""Class containing all that pertains to a particular type of lattice (initialization, allowed moves etc.)
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.steric_hindrance_penalty = 55 # energy penalty for side chains at adjacent indices pointing the same way, Abeln 2014
self.hb_penalty = -50 # energy bonus for forming an H bond, Abeln 2014
self.ca_dist = 3.8 # Distance in A between CAs at adjacent coordinates
self.linker_dist = 20 # Distance tagged CA to dye todo: wild guess based on linker, should MD!
self.cacb_dist = 1.53 # Distance between CA and CB
self.n1_dist = 1.48 # estimate of distance N to CA
self.cm_dist = 4.75 # distance between adjacent centers of mass (deduced from human swissprot dataset)
self.tag_dist = 25
self.pairs_mat = kwargs['pairs_mat']
self.pro_penalty = kwargs.get('pro_penalty', 0.0)
self.sol_energy_factor = kwargs.get('sol_energy_factor', 1.0)
self.p_global = kwargs.get('p_global', 0.1)
self.no_anchoring = kwargs.get('no_anchoring', False)
self.coords = kwargs.get('coords', None)
self.res_coords_mod = kwargs.get('res_coords_mod', None)
self.correct_side_chains()
self.state = np.ones(self.seq_length, dtype=bool) # start off with all in coil state == 1
@property
def rg(self):
"""
Radius of gyration, based on the implementation for pymol: https://pymolwiki.org/index.php/Radius_of_gyration
Uses mass of amino acid, centered at center of mass (actually ca-coords but spaced as if centers of mass)
"""
coord_mods = self.coords[1:, :3] - self.coords[:-1, :3]
cm_list = np.split(coord_mods, axis=0, indices_or_sections=coord_mods.shape[0])
cm_coords = np.zeros_like(self.coords[:, :3], dtype=float)
cm_coords[0, :] = self.coords[0, :3]
for cmi, cm in enumerate(cm_list):
aa1 = nhp.aa_dict[self.aa_sequence[cmi]]
aa2 = nhp.aa_dict[self.aa_sequence[cmi + 1]]
cm_coords[cmi + 1, :] = cm_coords[cmi, :] + cm * nhp.cm_dist_df.loc[aa1, aa2]
# cm_coords = self.coords[:, :3] * self.cm_dist # note: commented, because unit coords are multiplied by modifiers above!
res_mass = np.expand_dims([nhp.aa_mass_dict[rn] for rn in self.aa_sequence], -1)
cm = cm_coords * res_mass
tmass = np.sum(res_mass)
rr = np.sum(cm * cm_coords)
mm = np.sum(np.power(np.sum(cm, axis=0) / tmass, 2))
rg2 = rr / tmass - mm
if rg2 < 0:
return 0.0
return sqrt(rg2)
@cached_property
def start_pos(self):
"""
Placeholder vector for coordinates
"""
# mid_point = self.lattice_dims[0] // 2
# return np.tile((mid_point, mid_point, 0, 1), (self.seq_length, 1))
return np.tile((0, 0, 0), (self.seq_length, 1))
@property
def individual_energies(self):
"""
Energy cost function
"""
e_aa = 0
e_hb = 0
has_neighbor_bool = nhp.inNd(self.res_coords, self.coords)
# AA water contact contribution
e_sol_vec = np.delete(np.invert(has_neighbor_bool) * self.pairs_mat.loc[self.aa_sequence, 'HOH'].to_numpy(),
self.tagged_resi)
e_sol_vec[e_sol_vec < 0] *= self.sol_energy_factor
e_sol = np.sum(e_sol_vec)
# e_sol = np.sum(np.invert(has_neighbor_bool) * self.pairs_mat.loc[aa_seq_noTagged, 'HOH']) * self.sol_energy_factor
# Steric hindrance contribution
# sh_bool_fwd = np.all(self.res_coords_mod[1:, :] - self.res_coords_mod[:-1, :] == 0, axis=1)
# sh_bool_rev = np.all(self.res_coords_mod[:-1, :] - self.res_coords_mod[1:, :] == 0, axis=1)
# e_sh = np.sum(np.logical_or(sh_bool_fwd, sh_bool_rev)) * self.steric_hindrance_penalty
sh_bool = np.all(self.res_coords_mod[1:, :] - self.res_coords_mod[:-1, :] == 0, axis=1)
e_sh = np.sum(sh_bool) * self.steric_hindrance_penalty
for ci in range(self.seq_length):
cur_aa = self.aa_sequence[ci]
neighbor_bool = np.sum(np.abs(self.coords[ci, :] - self.coords), axis=1) == 1
if ci != 0: neighbor_bool[ci - 1] = False # Direct sequential neighbors do NOT count
if ci < self.seq_length - 1: neighbor_bool[ci + 1] = False
# H-bond contribution
if self.state[ci] == 0:
resdir_signed_bool = nhp.inNd(self._res_coords_mod,
self._res_coords_mod[ci, :]) # check: direction same
hbond_disallowed_neighbor_coords = np.vstack((self.coords[ci, :] + self.res_coords_mod[ci, :],
self.coords[ci, :] - self.res_coords_mod[ci, :]))
hbond_neighbor_bool = np.logical_and(neighbor_bool, np.invert(nhp.inNd(self.coords,
hbond_disallowed_neighbor_coords))) # check: neighbor positions, but not in same dimension as side chain extends
hbond_bool = np.logical_and(hbond_neighbor_bool, np.logical_and(resdir_signed_bool, np.invert(
self.state))) # check: in beta-strand state
e_hb += np.sum(hbond_bool) * self.hb_penalty * 0.5
# AA contact contribution
if ci in self.tagged_resi: continue # tagged aa's can't form contacts
if not np.any(neighbor_bool): continue
ni = np.where(neighbor_bool)[0] # neighbor index
# case 1: CA--R R--CA
res_opposite_bool = nhp.inNd(self._res_coords_mod[ni, :], self._res_coords_mod[ci, :] * -1)
res_on_bb_bool = nhp.inNd(self.coords[ni, :], self.res_coords[ci, :])
e_bool1 = np.logical_and(res_on_bb_bool, res_opposite_bool)
# case 2 parallel residues: CA^--R CA^--R
res_parallel_bool = nhp.inNd(self._res_coords_mod[ni, :], self._res_coords_mod[ci, :])
ca_dim = np.where(self.coords[ni, :3] != self.coords[ci, :3])[1]
res_dim = np.array([np.argwhere(self.res_coords[nii, :3] != self.res_coords[ci, :3])[0, 0] for nii in ni])
e_bool2 = np.logical_and(res_parallel_bool, ca_dim != res_dim)
e_bool = np.logical_or(e_bool1, e_bool2)
neighbor_aas = self.aa_sequence[ni[e_bool]]
# res_neighbor_bool = np.sum(np.abs(self.res_coords[ci, :] - self.res_coords), axis=1) == 1
# resmod_unsigned = np.row_stack((self._res_coords_mod[ci, :], self._res_coords_mod[ci, :] * -1))
# resdir_unsigned_bool = nhp.inNd(self._res_coords_mod, resmod_unsigned)
# e_bool = np.logical_and(neighbor_bool, np.logical_and(resdir_unsigned_bool, res_neighbor_bool))
# e_bool = np.logical_and(~self.tagged_resi_bool, e_bool)
# neighbor_aas = self.aa_sequence[e_bool]
e_aa += sum([self.pairs_mat.loc[cur_aa, na] for na in neighbor_aas]) * 0.5
return e_aa, e_hb, e_sol, e_sh
@property
def base_energy(self):
return sum(self.individual_energies)
@cached_property
def tagged_resi_bool(self):
bool_array = np.zeros(self.seq_length, dtype=bool)
bool_array[self.tagged_resi] = True
return bool_array
@staticmethod
def stretched_init(seq_length):
"""
Generate a stretched configuration for a given number of residues
"""
coords = np.zeros((seq_length, 3), dtype=int)
coords[:, 2] += np.arange(seq_length)
return coords
# --- Global mutations ---
@staticmethod
def branch_rotation(c, pivot, dim):
"""
:param c: coordinates to change
:param pivot: point around which to rotate
:param dim: signed dimension in which to perform rotation (1, 2 or 3), pos for fwd, neg for rev
:return: mutated coords
"""
return np.dot(rotmat_dict[dim], (c - pivot).T).T + pivot
@staticmethod
def corner_flip(c1, c2, c3):
return c2 + ((c1 + c3) - 2 * c2)
@staticmethod
def crankshaft_move(c, direction):
da = c[0, :] != c[3, :] # dim in which hinge points differ
db = np.all(c == c[0, :], axis=0) # dim in which all points are same
dc = np.logical_and(np.invert(da), np.invert(db)) # dim in which 'swing' differs from hinge points
c[(1, 2), dc] = c[(0, 3), dc]
c[(1, 2), db] = c[(1, 2), db] + direction
return c[1:3, :]
@staticmethod
def get_neighbors(c, d=1):
neighbors = np.tile(c, (6, 1))
neighbors += np.row_stack((np.eye(3, dtype=int) * d, np.eye(3, dtype=int) * -1) * d)
return neighbors
@property
def coords(self):
return self._coords
@coords.setter
def coords(self, new_coords):
"""
Set coords to newly provided coords if provided, or set with a random walk
"""
# self._coords = self.start_pos
if new_coords is None:
nb_attempts = 500
# Allowed types:
# - stretched
# - serrated
# - free_random
# - anchored_random
if self.starting_structure == 'stretched':
self._coords = self.stretched_init(self.seq_length)
return
# if self.starting_structure == 'free_random':
# for attempt_idx in range(nb_attempts):
# if self.perform_random_walk([]): return
# elif self.starting_structure == 'anchored_random':
# anchors = [idx for idx, aa in enumerate(self.aa_sequence) if idx in self.tagged_resi]
# for attempt_idx in range(nb_attempts):
# if self.perform_random_walk(anchors): return
raise ValueError(f'No feasible random start state reached in {nb_attempts} attempts!')
else:
self._coords = new_coords
@property
def res_coords(self):
"""
Residue coords
"""
return self.coords + self._res_coords_mod
@property
def res_coords_mod(self):
"""
Modifier for residue coords, add to CA coords to get residue coords
"""
return self._res_coords_mod
@property
def res_coords_plottable(self):
"""
residue coords, fit for plotting only; shorter distances for untagged, arbitrarily longer for tagged
"""
coords_mod = self._res_coords_mod * 0.3
coords_mod[self.tagged_resi, :] *= 20
return self.coords + coords_mod
def get_distmat(self, coords, anchors):
"""
return the distances between all lattice points and a number of anchor coordinates
"""
if anchors.ndim == 1:
anchors = np.expand_dims(anchors, 0)
return np.column_stack([np.sum(np.abs(coords - an), axis=1) for an in anchors])
def get_free_neighbor_coords(self, c):
"""
Return free lattice vertices adjacent to given coordinates c, or empty vector if none exist
"""
neighbors = nhp.get_neighbors(c)
neighbor_bool = np.invert(nhp.inNd(neighbors[:, :3], self.coords[:, :3]))
return neighbors[neighbor_bool, :]
def get_adjacent_bb_coords(self, idx):
"""
Get coordinates of CAs at positions adjacent to CA at given index idx
"""
if idx == 0:
return self.coords[idx:idx + 2, :]
elif idx == self.seq_length - 1:
return self.coords[idx - 1:idx, :]
else:
return self.coords[idx - 1:idx + 2, :]
@res_coords_mod.setter
def res_coords_mod(self, new_coords):
self._res_coords_mod = np.zeros((self.seq_length, 3), dtype=int)
if new_coords is None:
mod_idx = np.random.randint(3, size=self.seq_length)
for i in enumerate(mod_idx): self.res_coords_mod[i] = 1
else:
self._res_coords_mod[:] = new_coords
# --- Methods to set initial position residue coordinates ---
def perform_random_walk(self, anchors):
"""
Set residue coordinates with a random walk
:return: True if random walk was succesful, False if walk ended prematurely n times.
"""
nb_attempts = 500
prev_anchor = 0
if 0 in anchors: anchors.remove(
0) # No need to set/anchor coords first residue; by default set at one lattice edge
first = True
anchoring = False
if anchoring:
for an in anchors:
for attempt_idx_1 in range(nb_attempts):
anchors_dist = an - prev_anchor
# Anchor a tagged position to a lattice edge
route_success = self.set_edge_coord(an, anchor=self.coords[prev_anchor, :],
dist=anchors_dist, first=first)
# Find a route between anchors
if route_success:
route_success = self.set_new_coords(prev_anchor + 1, an - 1, anchored=True)
# If both succeed, continue to next anchor
if route_success:
first = False
break
if attempt_idx_1 == nb_attempts - 1:
return False
prev_anchor = an
for attempt_idx_2 in range(nb_attempts): # set route of protein after last anchor
route_success = self.set_new_coords(prev_anchor + 1, self.seq_length - 1, anchored=False)
if route_success: break
if attempt_idx_2 == nb_attempts - 1:
return False
# todo: test, grow lattice to allow free movement after initial constraint
self._lattice_dims = [self.seq_length, self.seq_length, self.seq_length]
return True
def get_edge_candidates(self, limits_bool, anchor, dist):
"""
Find an extreme coordinate (i.e. highest/lowest value in any direction) to initially put a tagged residue at.
:param limits_bool: 2 x 3 matrix, indicating in which dims (columns) and direction (rows) previous anchor is at
edge of current structure (i.e. where new anchor shouldn't be at edge).
:param anchor: previous anchor cooordinates
:param dist: nb of residues to leave between returned position and previous anchor
:return: candidate coordinates at distance dist from anchor, at edge of structure
"""
# convert limits_bool to index array stating [[direction, dim],...] in which to grow
limits_idx = np.vstack(np.where(np.invert(limits_bool))).T
# lat_limits = np.array(([0, 0, 0], self.lattice_dims))
#
# # Option 1: Get a free lattice edge vertex within range
# anchor_bool = np.sum(np.abs(self.free_coords - anchor[:3]), axis=1) <= dist # Check: within dist of anchor
# # Check: on lattice edges determined by limits_idx
# prev_bool = np.zeros(self.free_coords.shape[0], dtype=bool)
# for dir, dim in limits_idx:
# temp_bool = self.free_coords[:, dim] >= lat_limits[dir, dim] if dir else \
# self.free_coords[:, dim] <= lat_limits[dir, dim]
# prev_bool = np.logical_or(temp_bool, prev_bool)
#
# return_bool = np.logical_and(prev_bool, anchor_bool)
# if np.any(return_bool):
# return self.free_coords[return_bool, :3]
# Option 2: get free extreme coordinate not on lattice edge but within range
# determine new direction to grow in
nli = random.randint(0, limits_idx.shape[0] - 1)
dir, dim = limits_idx[nli, :]
# Generate all valid candidate points
mod = np.mgrid[-dist:dist, -dist:dist, -dist:dist].T.reshape(-1, 3)
mod = mod[np.sum(np.abs(mod), axis=1) <= dist, :] # at correct distance
candidates = anchor[:3] + mod
candidates = candidates[(candidates[:, dim] > anchor[dim])] if dir \
else candidates[(candidates[:, dim] < anchor[dim])] # in correct dimension
# non-negative # todo kept to simulate a protein being fixed on a slide, but that could be done better I guess
candidates = candidates[np.invert(np.any(candidates < 0, axis=1)), :]
# # Check if within limits # todo not sure why this was still there...
# inlattice_bool = nhp.inNd(candidates, self.free_coords)
# return candidates[inlattice_bool, :]
return candidates
def set_edge_coord(self, idx, anchor, dist, first=False):
"""
set coordinates for res at idx at a random position at the edge of the lattice.
Provide the previous anchor point and the distance between this anchor and this
point as restraint. Next edge coord will be set a random limit.
"""
# Find which limits previous anchor was at
if first:
limits_bool = np.array([[False, False, True],
[False, False, False]], dtype=bool)
else:
limits = np.percentile(self.coords[:, :3], [0, 100], axis=0)
limits_bool = np.vstack([np.equal(lim.squeeze(), anchor[:3]) for lim in np.split(limits, 2, axis=0)])
# Find possible modifiers in allowed directions
candidates = self.get_edge_candidates(limits_bool, anchor, dist)
# If no options remain (e.g. tags too close to eachother), try the other dim/dir combinations
if candidates.size == 0:
candidates = self.get_edge_candidates(np.invert(limits_bool), anchor, dist)
if candidates.size == 0:
return False
coords = nhp.pick_random_coords(candidates)
self._coords[idx, :] = np.concatenate((coords, [1]))
return True
def set_new_coords(self, idx_start, idx_end, anchored=False):
"""
Set valid random positions for a range of indices. Optionally, anchor between the adjacent positions.
:return: bool, True if route was set succesfully, False if route ran out of free paths before finishing.
"""
route_success = True
if anchored:
try:
next_anchor_idx = idx_end + 1
except:
pass
previous_anchor_idx = idx_start - 1
anchors_dist = next_anchor_idx - previous_anchor_idx - 1
if idx_end < idx_start: # happens when two anchors are adjacent
return True
idx_list = list(range(idx_start, idx_end + 1))
# Set coordinates
for iidx, idx in enumerate(idx_list):
candidates = self.get_free_neighbor_coords(self._coords[idx - 1, :]) # ...free (and within lattice)
if candidates.size == 0:
route_success = False
break
if anchored:
dm = self.get_distmat(candidates, anchors=self._coords[next_anchor_idx, :])
candidates = candidates[dm[:, 0] <= anchors_dist - iidx, :] # ...with enough steps left to reach end
if candidates.size == 0:
route_success = False
break
self._coords[idx, :] = nhp.pick_random_coords(candidates)
# If ran stuck: reset coordinates to zeros
if not route_success:
self._coords[idx_list, :] = np.zeros_like(self._coords[idx_list, :])
return False
return True
# --- Mutations ---
def is_valid_candidate_single(self, candidate):
"""
Check which of given candidates is valid. Last two dims are always considered the number of residues and
coordinates per residue respectively.
:candidates: m x n ... x seq_length x 4 array
:change_idx: list of len m x n x ... with indices of changed residues for this candidate
:return: m x n ... np boolean array, True if candidate is valid
"""
# idx_array = np.meshgrid(*[list(range(0, n)) for n in candidates.shape[:-2]], indexing='ij')
# idx_array = np.column_stack([idx.reshape(-1, 1) for idx in idx_array])
# bool_array = np.zeros(candidates.shape[:-2], dtype=bool) # Default validity as 'False'
#
# for idx in idx_array:
# candidate = candidates[tuple(idx)]
turn_bool = np.any(np.abs(candidate[:-2, :] - candidate[2:, :]) == 2, axis=1)
turn_bool = np.concatenate(([True], turn_bool, [True]))
if np.any(np.logical_and(np.invert(self.state), turn_bool)):
return False # check: no bends at beta coords, else keep 'False'
elif nhp.contains_double_coords(candidate):
return False # check: no double coords, else keep 'False'
elif not self.is_unobstructed(candidate):
return False
return True # If all checks passed: valid candidate
def is_valid_candidate(self, candidates):
"""
Check which of given candidates is valid. Last two dims are always considered the number of residues and
coordinates per residue respectively.
:candidates: m x n ... x seq_length x 4 array
:change_idx: list of len m x n x ... with indices of changed residues for this candidate
:return: m x n ... np boolean array, True if candidate is valid
"""
idx_array = np.meshgrid(*[list(range(0, n)) for n in candidates.shape[:-2]], indexing='ij')
idx_array = np.column_stack([idx.reshape(-1, 1) for idx in idx_array])
bool_array = np.zeros(candidates.shape[:-2], dtype=bool) # Default validity as 'False'
for idx in idx_array:
candidate = candidates[tuple(idx)]
turn_bool = np.any(np.abs(candidate[:-2, :] - candidate[2:, :]) == 2, axis=1)
turn_bool = np.concatenate(([True], turn_bool, [True]))
if np.any(np.logical_and(np.invert(self.state),
turn_bool)): continue # check: no bends at beta coords, else keep 'False'
if nhp.contains_double_coords(candidate): continue # check: no double coords, else keep 'False'
if not self.is_unobstructed(candidate): continue
# if not self.is_within_lattice(candidate): continue
bool_array[tuple(idx)] = True # If all checks passed this loop: valid candidate
return bool_array
def is_unobstructed(self, coords):
"""
Check whether tagged residues can reach edge of lattice unobstructed in a given FULL set of coordinates.
"""
if self.no_anchoring:
return True
coord_ranges = np.row_stack((np.min(coords, axis=0), np.max(coords, axis=0)))
for ti in self.tagged_resi:
ray_bool = False
ray_list = self.to_end(coords[ti, :], coord_ranges)
for ray in ray_list:
if not np.any(nhp.inNd(ray, coord_ranges)):
ray_bool = True
break
if not ray_bool: return False
return True
def to_end(self, coord, ranges):
"""
get coordinates of all lattice vertices from a point until an edge of the lattice
:param d:
:return:
"""
out_list = []
for d in range(3):
ray_fw = np.array([]) if coord[d] == ranges[1, d] else np.arange(coord[d] + 1, ranges[1, d] + 1)
coord_fw = np.tile(coord, (ray_fw.size, 1))
coord_fw[:, d] = ray_fw
out_list.append(coord_fw)
ray_rev = np.array([]) if coord[d] == ranges[0, d] else np.arange(ranges[0, d], coord[d])
coord_rev = np.tile(coord, (ray_rev.size, 1))
coord_rev[:, d] = ray_rev
out_list.append(coord_rev)
return out_list
# --- local mutations ---
def apply_side_chain_move(self, mut_idx=None):
"""
Find all valid positions for side chain moves and apply one at random
:return: bool, True if mutation was succesful, False otherwise
"""
# Pick a random AA
if mut_idx is None:
candidate_idx = np.arange(self.seq_length)[self.state]
if not len(candidate_idx): return False
mut_idx = random.choice(candidate_idx)
if mut_idx in self.tagged_resi and not self.no_anchoring: # Treat tagged residues differently; must always point outward
coord_ranges = np.row_stack((np.min(self.coords, axis=0), np.max(self.coords, axis=0)))
ray_list = self.to_end(self.coords[mut_idx], coord_ranges)
ray_bool = np.ones(len(ray_list), dtype=bool)
for ri, ray in enumerate(ray_list):
if any(nhp.inNd(ray, self.coords)): ray_bool[ri] = False
ray_idx = np.squeeze(np.argwhere(ray_bool), -1)
if ray_idx.size == 0:
return False
cidx = np.random.choice(ray_idx)
new_res_mod = np.zeros(3, dtype=int)
new_res_mod[cidx // 2] = (-1) ** (cidx % 2)
self._res_coords_mod[mut_idx, :] = new_res_mod
return True
candidate_res_coords = self.get_neighbors(self.coords[mut_idx, :])
np.random.shuffle(candidate_res_coords)
bb_coords = np.vstack((self.get_adjacent_bb_coords(mut_idx), self.res_coords[mut_idx, :]))
for candidate in candidate_res_coords:
if nhp.inNd(candidate, bb_coords)[0]: continue
self._res_coords_mod[mut_idx, :] = candidate - self.coords[mut_idx, :]
return True
return False
# res_coord = self.res_coords[mut_idx, :]
# forbidden_coords = np.row_stack((res_coord, bb_coords))
# allowed_bool = np.invert(nhp.inNd(candidate_res_coords, forbidden_coords))
# crc = candidate_res_coords[allowed_bool, :] # candidate residue coords
# new_res_coord = crc[np.random.randint(crc.shape[0]), :]
# self._res_coords_mod[mut_idx, :] = new_res_coord - self.coords[mut_idx, :]
# return True
def correct_side_chains(self, idx_list=None):
"""
Check if side chain positions overlap with backbone, if so, correct
:param idx_list: optionally, provide list of indices of residues to check. Default: checks all
"""
if idx_list is None:
idx_list = range(self.seq_length)
for idx in idx_list:
if nhp.inNd(self.res_coords[idx, :], self.get_adjacent_bb_coords(idx))[0]:
self.apply_side_chain_move(idx) # For pivot position
def apply_state_change(self):
"""
Find all allowed state changes, apply one
"""
# prerequisites for flip to strand state:
# no turn
# if neighbor in strand state, residue must point in opposite direction
turn_bool = np.any(np.abs(self.coords[:-2, :] - self.coords[2:, :]) == 2, axis=1)
turn_bool = np.concatenate(([True], turn_bool, [True]))
left_bool = np.logical_or(self.state[:-1],
np.all(
np.equal(self._res_coords_mod[:-1, :3], np.invert(self._res_coords_mod[1:, :3])),
axis=1))
left_bool = np.concatenate(([True], left_bool))
right_bool = np.logical_or(self.state[1:],
np.all(
np.equal(self._res_coords_mod[1:, :3], np.invert(self._res_coords_mod[:-1, :3])),
axis=1))
right_bool = np.concatenate((right_bool, [True]))
valid_beta_idx = np.argwhere(np.logical_and(turn_bool, np.logical_and(left_bool, right_bool)))
# valid_beta_idx = np.column_stack((valid_beta_idx, np.repeat('b', valid_beta_idx.size)))
# prereq to flip to alpha: must be beta
valid_alpha_idx = np.argwhere(np.invert(self.state))
if valid_alpha_idx.size == 0:
return False
mut_idx = random.choice(np.concatenate((valid_alpha_idx, valid_beta_idx)))
self.state[mut_idx] = np.invert(self.state[mut_idx])
return True
# --- global mutations ---
def apply_branch_rotation(self):
"""
Find valid positions to apply branch rotation, apply one at random. Changes anywhere between all-1 to 1
position(s).
:return: bool, True if mutation was successful, False otherwise
"""
mutations = list(range(-3, 4))
mutations.remove(0)
random.shuffle(mutations) # randomize possible mutations once for entire attempt
candidate_found = False
idx_list = list(range(self.seq_length - 1))
random.shuffle(idx_list) # randomize positions to check
for ci in idx_list: # omit last position, where rotation does not make sense
candidate = np.copy(
self._coords) # requires new copy each idx, as some non rotated postions might have changed
for mi, mut in enumerate(mutations):
candidate[ci + 1:, :] = self.branch_rotation(self._coords[ci + 1:, :], self._coords[ci, :], mut)
if self.is_valid_candidate_single(candidate):
candidate_found = True
break
if candidate_found:
break
if not candidate_found: return False
# Adapt backbone and residual coords
self.coords = candidate
self._res_coords_mod[ci + 1:, :] = self.branch_rotation(self._res_coords_mod[ci + 1:, :], self._coords[ci, :],
mut)
# self.correct_side_chains([ci])
return True
# @nb.njit(parallel=True)
def apply_corner_flip(self):
"""
Find valid positions to apply a corner flip and apply one at random. Changes 1 position.
:return: bool, True if mutation was successful, False otherwise
"""
# Find idx of corners: 2 points spaced by 1 point that differ in 2 coordinates
corner_bool = np.count_nonzero((self._coords[2:, :] - self._coords[:-2, :]), axis=1) == 2
if not np.any(corner_bool): return False
corner_idx = np.squeeze(np.argwhere(corner_bool), axis=1) + 1 # +1 as idx was of left neighbor
np.random.shuffle(corner_idx)
# Generate candidates
# candidates = np.tile(self._coords, (corner_idx.size, 1, 1)) # corner_idx x coords x dims
candidate = np.copy(self._coords)
candidate_found = False
for ci in corner_idx:
old_coords = np.copy(candidate[ci, :3])
candidate[ci, :3] = self.corner_flip(self._coords[ci - 1, :3],
self._coords[ci, :3],
self._coords[ci + 1, :3])
if self.is_valid_candidate_single(candidate):
candidate_found = True
break
else:
candidate[ci, :3] = old_coords
if not candidate_found: return False
self.coords = candidate
# self.correct_side_chains(range(ci - 1, ci + 2))
return True
def apply_crankshaft_move(self):
"""
Find valid positions to apply a crank shaft move and apply one at random. Changes 2 positions.
:return: bool, True if mutation was successful, False otherwise
"""
# Find idx where crank shaft is allowed; a u-shaped loop of 4 AAs.
diff_4pos = self._coords[3:, :] - self._coords[:-3, :]
crank_bool = np.sum(np.absolute(diff_4pos), axis=1) == 1 # if diff is 1 for that postion, it must be a u-loop
if not np.any(crank_bool): return False
crank_idx = np.squeeze(np.argwhere(crank_bool), axis=1) # index of left-most position of the four points!
crank_idx = np.concatenate((crank_idx, crank_idx * -1)) # may swing either way, so double the index
np.random.shuffle(crank_idx)
# generate candidates
candidate = np.copy(self.coords)
candidate_found = False
for ci in crank_idx:
ci_abs = abs(ci)
old_coords = np.copy(self.coords[ci_abs + 1:ci_abs + 3, :])
candidate[ci_abs + 1:ci_abs + 3, :] = self.crankshaft_move(np.copy(self.coords[ci_abs:ci_abs + 4, :]),
copysign(1, ci))
if self.is_valid_candidate_single(candidate):
candidate_found = True
break
else:
candidate[ci_abs + 1:ci_abs + 3, :] = old_coords
if not candidate_found: return False
self.coords = candidate
# self.correct_side_chains(range(ci_abs, ci_abs + 4))
return True
def apply_n_steps(self, n):
"""
Apply n mutations to the structure, chosen at random.
:param n: number of mutations to use
:return: boolean, False if no mutations can be made anymore, else True
"""
global_fun_list = [self.apply_crankshaft_move,
self.apply_branch_rotation,
self.apply_corner_flip]
local_fun_list = [self.apply_side_chain_move, self.apply_state_change]
for _ in range(n):
random.shuffle(global_fun_list)
random.shuffle(local_fun_list)
if not local_fun_list[0]():
_ = local_fun_list[1]() # local mutations cannot fail for now
if random.uniform(0, 1) < self.p_global:
if global_fun_list[0]():
self.correct_side_chains(); continue
elif global_fun_list[1]():
self.correct_side_chains(); continue
elif global_fun_list[2]():
self.correct_side_chains(); continue
else:
return False
return True
def get_N1(self, real_ca1):
"""
get position of first N atom in a free lattice direction
"""
neighbor_coords = nhp.get_neighbors(self.coords[0, :])
neighbor_coords_bool = nhp.inNd(neighbor_coords, self.get_adjacent_bb_coords(0))
neighbor_coords_free = neighbor_coords[np.invert(neighbor_coords_bool), :]
# prefer the direction opposite bond with C
nc_test = self._coords[0, :] + (self._coords[1, :] - self._coords[0, :]) * -1
if nhp.inNd(np.expand_dims(nc_test, 0), neighbor_coords_free)[0]:
nc_out = real_ca1 + ((self._coords[1, :] - self._coords[0, :]) * -1 * self.n1_dist)[:3]
return nc_out
raise ValueError('position of N-terminus is not free!')
# # If not free, pick a random one todo: shouldn't happen
# ncf_choice = np.squeeze(random.choice(np.split(neighbor_coords_free, neighbor_coords_free.shape[0], axis=0)))
# nc_out = np.copy(real_ca1) + ((ncf_choice - self._coords[0, :]) * self.n1_dist)[:3]
# return nc_out
@property
def dist_fingerprint(self):
"""
Return distances in A of tagged residues to N-terminus as list of floats
"""
fingerprint = []
tag_coords = self.coords[self.tagged_resi, :3] * self.ca_dist + self.res_coords_mod[self.tagged_resi,
:3] * self.linker_dist
for i in range(1, len(self.tagged_resi)):
fingerprint.append(float(np.linalg.norm(tag_coords[0, :] - tag_coords[i, :])))
return fingerprint
def get_pdb_coords(self):
"""
Return coordinates in model as PDB-format string (no REMARKS or END)
"""
# translate and rotate
coords_ca = self.coords[:, :3] - self.coords[0, :3]
dir = np.argwhere(coords_ca[1]).squeeze()[()]
if dir != 2:
dir_rot = 2 - dir
coords_ca = np.matmul(coords_ca, nhp.get_rotmat(dir_rot)[:3,:3])
coords_ca = coords_ca * self.ca_dist # unit distances to real distances
# coords_ca = (self.coords[:, :3] + self.coords[:, :3].min().__abs__()) * self.ca_dist
coords_cb = coords_ca + self.res_coords_mod[:, :3] * self.cacb_dist
cn = self.get_N1(coords_ca[0, :])
cn_str = nhp.pdb_coord(cn)
resn = nhp.aa_dict[self.aa_sequence[0]]
txt = f'HETATM 1 N {resn} A 1 {cn_str} 1.00 1.00 N\n'
# Add CA of other residues
ci = 0
# cip = 1
an = 2 # atom number, start at 2 for first N
an_alpha = 1 # tracker of alpha carbon atom number, just for CONECT record
resi = 1
conect = ""
for ci, (ca, cb) in enumerate(zip(coords_ca, coords_cb)):
# --- add alpha carbon CA ---
resn_str = nhp.aa_dict[self.aa_sequence[ci]]
resi_str = str(resi).rjust(4)
ca_str = nhp.pdb_coord(ca)
txt += f'HETATM{str(an).rjust(5)} CA {resn_str} A{resi_str} {ca_str} 1.00 1.00 C\n'
conect += f"CONECT{str(an_alpha).rjust(5)}{str(an).rjust(5)}\n"
an_alpha = an
an += 1
if resn_str != 'GLY':
# --- add beta carbon CB ---
cb_str = nhp.pdb_coord(cb)
txt += f'HETATM{str(an).rjust(5)} CB {resn_str} A{resi_str} {cb_str} 1.00 1.00 C\n'
conect += f"CONECT{str(an_alpha).rjust(5)}{str(an).rjust(5)}\n"
an += 1
if ci in self.tagged_resi:
# --- add placeholder atom for tag CT ---
ct_str = nhp.pdb_coord(ca + self.res_coords_mod[ci, :3] * self.tag_dist)
txt += f'HETATM{str(an).rjust(5)} CT {resn_str} A{resi_str} {ct_str} 1.00 1.00 C\n'
conect += f"\nCONECT{str(an-1).rjust(5)}{str(an).rjust(5)}\n"
an += 1
resi += 1
# Add terminus
an_str = str(an).rjust(5)
resn_str = nhp.aa_dict[self.aa_sequence[-1]]
resi_str = str(resi - 1).rjust(4) # - 1: still on same residue as last CA
txt += f'TER {an_str} {resn_str} A{resi_str}\n'
txt += conect
return txt
def save_pdb(self, fn, rg_list=None):
"""
write current latice model to a readable pdb format file
:param fn: file name
:param rg_list: list of radius of gyration values, to store in pdb remarks 0
"""
txt = f'REMARK 0 BASE ENERGY {self.base_energy}\n'
if rg_list is not None:
for rg in rg_list:
txt += f'REMARK 1 RG {rg}\n'
txt += self.get_pdb_coords()
txt += '\n\nEND'
with open(fn, 'w') as fh:
fh.write(txt)
def plot_structure(self, fn=None, auto_open=False):
cols = [nhp.aa_to_hp_dict[aa] if resi not in self.tagged_resi else 'purple' for resi, aa in enumerate(self.aa_sequence)]
trace_bb = go.Scatter3d(x=self.coords[:, 0],
y=self.coords[:, 1],
z=self.coords[:, 2],
line=dict(color=cols, width=20),
# marker=dict(size=5)
)
trace_list = [trace_bb]
for n in range(self.seq_length):
cur_trace = go.Scatter3d(
x=(self.coords[n, 0], self.res_coords_plottable[n, 0]),
y=(self.coords[n, 1], self.res_coords_plottable[n, 1]),
z=(self.coords[n, 2], self.res_coords_plottable[n, 2]),
line=dict(color=cols[n], width=20),
marker=dict(size=0))
trace_list.append(cur_trace)
all_points = np.row_stack((self.coords, self.res_coords_plottable))[:, :3]
pmin = np.min(all_points)
pmax =
|
np.max(all_points)
|
numpy.max
|
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 19 09:59:02 2018
@author: <NAME>
"""
import pytest
import pandas as pd
import numpy as np
import itertools
from collections import OrderedDict
import numbers
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.pipeline import Pipeline
from sklearn.base import is_classifier, is_regressor, RegressorMixin, TransformerMixin, BaseEstimator
from sklearn.datasets import make_classification, make_regression
import sklearn.model_selection
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit, GroupKFold, cross_val_predict
from sklearn.model_selection._validation import _score#, _multimetric_score # TODO : fix test
from sklearn.exceptions import NotFittedError
from aikit.tools.data_structure_helper import convert_generic
from aikit.enums import DataTypes
from aikit.transformers.model_wrapper import DebugPassThrough
from aikit.pipeline import GraphPipeline
from aikit.cross_validation import (
cross_validation,
create_scoring,
create_cv,
score_from_params_clustering,
is_clusterer,
_score_with_group,
_multimetric_score_with_group,
IndexTrainTestCv,
RandomTrainTestCv,
SpecialGroupCV,
_check_fit_params
)
from aikit.scorer import SCORERS, _GroupProbaScorer, max_proba_group_accuracy
# In[] : verification of sklearn behavior
def test___check_fit_params():
X= np.zeros((20,2))
train = np.arange(10)
fit_params = {"param":"value"}
r1 = _check_fit_params(X, fit_params, train)
assert r1 == {'param': 'value'}
r2 = _check_fit_params(X, {"weight":np.arange(20),"value":"param"}, train)
assert r2.keys() == {"weight","value"}
assert (r2["weight"] == np.arange(10)).all()
assert r2["value"] == "param"
def test_is_classifier_is_regressor_is_clusterer():
""" verif behavior of is_classifier and is_regressor """
rf_c = RandomForestClassifier(n_estimators=10, random_state=123)
assert is_classifier(rf_c)
assert not is_regressor(rf_c)
assert not is_clusterer(rf_c)
rf_r = RandomForestRegressor()
assert not is_classifier(rf_r)
assert is_regressor(rf_r)
assert not is_clusterer(rf_r)
kmeans = KMeans()
assert not is_classifier(kmeans)
assert not is_regressor(kmeans)
assert is_clusterer(kmeans)
sc = StandardScaler()
assert not is_classifier(sc)
assert not is_regressor(sc)
assert not is_clusterer(sc)
pipe_c = Pipeline([("s", StandardScaler()), ("r", RandomForestClassifier(n_estimators=10, random_state=123))])
assert is_classifier(pipe_c)
assert not is_regressor(pipe_c)
assert not is_clusterer(pipe_c)
pipe_r = Pipeline([("s", StandardScaler()), ("r", RandomForestRegressor(n_estimators=10, random_state=123))])
assert not is_classifier(pipe_r)
assert is_regressor(pipe_r)
assert not is_clusterer(pipe_r)
pipe_t = Pipeline([("s", StandardScaler()), ("r", StandardScaler())])
assert not is_classifier(pipe_t)
assert not is_regressor(pipe_t)
assert not is_clusterer(pipe_t)
pipe_cluster = Pipeline([("s", StandardScaler()), ("r", KMeans())])
assert is_clusterer(pipe_cluster)
assert not is_regressor(pipe_cluster)
assert not is_classifier(pipe_cluster)
def test_fit_and_predict_transfrom():
X, y = make_classification(n_samples=100)
X = pd.DataFrame(X, columns=["col_%d" % i for i in range(X.shape[1])])
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=123)
for train, test in cv.split(X, y):
pt = DebugPassThrough()
predictions, _ = sklearn.model_selection._validation._fit_and_predict(
pt, X, y, train, test, verbose=1, fit_params=None, method="transform"
)
assert predictions.shape[0] == test.shape[0]
assert predictions.shape[1] == X.shape[1]
assert type(predictions) == type(X)
def test_fit_and_predict_predict():
X, y = make_classification(n_samples=100)
X = pd.DataFrame(X, columns=["col_%d" % i for i in range(X.shape[1])])
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=123)
for train, test in cv.split(X, y):
logit = LogisticRegression()
predictions, _ = sklearn.model_selection._validation._fit_and_predict(
logit, X, y, train, test, verbose=1, fit_params=None, method="predict"
)
assert predictions.shape[0] == test.shape[0]
assert len(predictions.shape) == 1
def test_fit_and_predict_predict_proba():
X, y = make_classification(n_samples=100)
X = pd.DataFrame(X, columns=["col_%d" % i for i in range(X.shape[1])])
y = np.array(["CL_%d" % i for i in y])
cv = KFold(n_splits=10, shuffle=False)
for train, test in cv.split(X, y):
logit = LogisticRegression()
predictions, _ = sklearn.model_selection._validation._fit_and_predict(
logit, X, y, train, test, verbose=1, fit_params=None, method="predict_proba"
)
assert predictions.shape[0] == test.shape[0]
assert predictions.shape[1] == 2
@pytest.mark.xfail
def test_cross_val_predict():
X, y = make_classification(n_samples=100)
X = pd.DataFrame(X, columns=["col_%d" % i for i in range(X.shape[1])])
ii = np.arange(X.shape[0])
np.random.seed(123)
np.random.shuffle(ii)
pt = DebugPassThrough()
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=123)
Xhat = cross_val_predict(pt, X, y, cv=cv, method="transform")
assert type(Xhat) == type(X) # Fail : cross_val_predict change the type
# In[] cv and scoring
def test_create_scoring():
classifier = RandomForestClassifier()
regressor = RandomForestRegressor()
res = create_scoring(classifier, "accuracy")
assert isinstance(res, OrderedDict)
assert "accuracy" in res
for k, v in res.items():
assert callable(v)
res = create_scoring(regressor, "neg_mean_squared_error")
assert isinstance(res, OrderedDict)
assert "neg_mean_squared_error" in res
for k, v in res.items():
assert callable(v)
res = create_scoring(regressor, ["neg_mean_squared_error", "neg_median_absolute_error"])
assert isinstance(res, OrderedDict)
assert "neg_mean_squared_error" in res
assert "neg_median_absolute_error" in res
for k, v in res.items():
assert callable(v)
res = create_scoring(regressor, res)
assert isinstance(res, OrderedDict)
assert "neg_mean_squared_error" in res
assert "neg_median_absolute_error" in res
for k, v in res.items():
assert callable(v)
assert type(v) == type(res[k])
res = create_scoring(regressor, {"scorer1": "accuracy"})
assert isinstance(res, OrderedDict)
assert "scorer1" in res
for k, v in res.items():
assert callable(v)
assert type(v) == type(res[k])
res = create_scoring(regressor, {"scorer1": SCORERS["accuracy"]})
assert isinstance(res, OrderedDict)
assert "scorer1" in res
for k, v in res.items():
assert callable(v)
assert type(v) == type(res[k])
res = create_scoring(regressor, SCORERS["accuracy"])
assert isinstance(res, OrderedDict)
for k, v in res.items():
assert callable(v)
assert type(v) == type(res[k])
res = create_scoring(regressor, None)
assert "default_score" in res
assert isinstance(res, OrderedDict)
for k, v in res.items():
assert callable(v)
assert type(v) == type(res[k])
def test_create_cv():
y = np.array([0] * 10 + [1] * 10)
X = np.random.randn(20, 3)
cv1 = create_cv(cv=10, y=y, classifier=True)
assert cv1.__class__.__name__ == "StratifiedKFold"
assert len(list(cv1.split(X, y))) == 10
cv1b = create_cv(cv1)
assert cv1b is cv1
y2 = np.random.randn(20)
cv2 = create_cv(cv=10, y=y2)
assert cv2.__class__.__name__ == "KFold"
assert len(list(cv2.split(X, y))) == 10
class PersonalizedCV(object):
def __init__(self):
pass
def split(self, X, y, groups=None):
pass
cv = PersonalizedCV()
cv_res = create_cv(cv)
assert cv is cv_res
@pytest.mark.parametrize("with_groups", [True, False])
def test_cross_validation0(with_groups):
np.random.seed(123)
X = np.random.randn(100, 10)
y = np.random.randn(100)
if with_groups:
groups = np.array([0] * 25 + [1] * 25 + [2] * 25 + [3] * 25)
else:
groups = None
forest = RandomForestRegressor(n_estimators=10)
result = cross_validation(forest, X, y, groups=groups, scoring=["neg_mean_squared_error", "r2"], cv=10)
with pytest.raises(sklearn.exceptions.NotFittedError):
forest.predict(X)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == [
"test_neg_mean_squared_error",
"test_r2",
"train_neg_mean_squared_error",
"train_r2",
"fit_time",
"score_time",
"n_test_samples",
"fold_nb",
]
assert len(result) == 10
forest = RandomForestRegressor(n_estimators=10, random_state=123)
result, yhat = cross_validation(
forest, X, y, groups, scoring=["neg_mean_squared_error", "r2"], cv=10, return_predict=True
)
with pytest.raises(sklearn.exceptions.NotFittedError):
forest.predict(X)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == [
"test_neg_mean_squared_error",
"test_r2",
"train_neg_mean_squared_error",
"train_r2",
"fit_time",
"score_time",
"n_test_samples",
"fold_nb",
]
assert len(result) == 10
assert yhat.shape == (100,)
X = np.random.randn(100, 10)
y = np.array(["A"] * 33 + ["B"] * 33 + ["C"] * 34)
forest = RandomForestClassifier(n_estimators=10, random_state=123)
result = cross_validation(forest, X, y, groups, scoring=["accuracy", "neg_log_loss"], cv=10)
with pytest.raises(sklearn.exceptions.NotFittedError):
forest.predict(X)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == [
"test_accuracy",
"test_neg_log_loss",
"train_accuracy",
"train_neg_log_loss",
"fit_time",
"score_time",
"n_test_samples",
"fold_nb",
]
assert len(result) == 10
forest = RandomForestClassifier(random_state=123, n_estimators=10)
result, yhat = cross_validation(
forest, X, y, groups, scoring=["accuracy", "neg_log_loss"], cv=10, return_predict=True, method="predict"
)
with pytest.raises(sklearn.exceptions.NotFittedError):
forest.predict(X)
assert yhat.shape == (100,)
assert set(np.unique(yhat)) == set(("A", "B", "C"))
forest = RandomForestClassifier(random_state=123, n_estimators=10)
result, yhat = cross_validation(
forest, X, y, groups, scoring=["accuracy", "neg_log_loss"], cv=10, return_predict=True, method="predict_proba"
)
with pytest.raises(sklearn.exceptions.NotFittedError):
forest.predict(X)
assert yhat.shape == (100, 3)
assert isinstance(yhat, pd.DataFrame)
assert list(yhat.columns) == ["A", "B", "C"]
class TransformerFailNoGroups(TransformerMixin, BaseEstimator):
def __init__(self):
pass
def fit(self, X, y, groups=None):
if groups is None:
raise ValueError("I need a groups")
assert X.shape[0] == groups.shape[0]
return self
def fit_transform(self, X, y, groups):
if groups is None:
raise ValueError("I need a groups")
assert X.shape[0] == groups.shape[0]
return X
def transform(self, X):
return X
def test_cross_validation_passing_of_groups():
np.random.seed(123)
X = np.random.randn(100, 10)
y = np.random.randn(100)
groups = np.random.randint(0, 20, size=100)
estimator = TransformerFailNoGroups()
cv_res, yhat = cross_validation(estimator, X, y, groups, cv=10, no_scoring=True, return_predict=True)
# Check that it doesn't fail : meaning the estimator has access to the groups
assert cv_res is None
assert (yhat == X).all()
def test_cross_validation_with_scorer_object_regressor():
np.random.seed(123)
X = np.random.randn(100, 10)
y = np.random.randn(100)
forest = RandomForestRegressor(n_estimators=10, random_state=123)
result1 = cross_validation(forest, X, y, scoring=SCORERS["neg_mean_absolute_error"], cv=10)
assert result1.shape[0] == 10
assert isinstance(result1, pd.DataFrame)
forest = RandomForestRegressor(n_estimators=10, random_state=123)
result2 = cross_validation(forest, X, y, scoring="neg_mean_absolute_error", cv=10)
assert result2.shape[0] == 10
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
assert np.abs(result1.iloc[:, 1] - result2.iloc[:, 1]).max() <= 10 ** (-5)
def test_cross_validation_with_scorer_object_classifier():
X = np.random.randn(100, 10)
y = np.array(["A"] * 33 + ["B"] * 33 + ["C"] * 34)
forest = RandomForestClassifier(n_estimators=10, random_state=123)
result1 = cross_validation(forest, X, y, scoring=SCORERS["accuracy"], cv=10)
assert result1.shape[0] == 10
assert isinstance(result1, pd.DataFrame)
result2 = cross_validation(forest, X, y, scoring="accuracy", cv=10)
assert result2.shape[0] == 10
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
assert np.abs(result1.iloc[:, 1] - result2.iloc[:, 1]).max() <= 10 ** (-5)
result1 = cross_validation(forest, X, y, scoring=SCORERS["neg_log_loss"], cv=10)
assert result1.shape[0] == 10
assert isinstance(result1, pd.DataFrame)
result2 = cross_validation(forest, X, y, scoring="neg_log_loss", cv=10)
assert result2.shape[0] == 10
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
assert np.abs(result1.iloc[:, 1] - result2.iloc[:, 1]).max() <= 10 ** (-5)
# In[] : verification of approx_cross_validation function
@pytest.mark.parametrize(
"add_third_class, x_data_type, y_string_class, shuffle, graph_pipeline, with_groups",
list(
itertools.product(
(True, False),
(DataTypes.DataFrame, DataTypes.NumpyArray, DataTypes.SparseArray),
(True, False),
(True, False),
(True, False),
(True, False),
)
),
)
def test_cross_validation(add_third_class, x_data_type, y_string_class, shuffle, graph_pipeline, with_groups):
X, y = make_classification(n_samples=100, random_state=123)
if with_groups:
groups = np.array([0] * 25 + [1] * 25 + [2] * 25 + [3] * 25)
else:
groups = None
X = convert_generic(X, output_type=x_data_type)
if x_data_type == DataTypes.DataFrame:
X.columns = ["col_%d" % i for i in range(X.shape[1])]
if add_third_class:
y[0:2] = 2
if shuffle:
np.random.seed(123)
ii = np.arange(X.shape[0])
np.random.shuffle(ii)
y = y[ii]
if isinstance(X, pd.DataFrame):
X = X.loc[ii, :]
else:
X = X[ii, :]
if y_string_class:
y = np.array(["CL_%d" % i for i in y])
if add_third_class:
scoring = ["accuracy"]
else:
scoring = ["accuracy", "neg_log_loss"]
if graph_pipeline:
estimator = GraphPipeline({"pt": DebugPassThrough(), "lg": LogisticRegression()}, edges=[("pt", "lg")])
else:
estimator = LogisticRegression()
##################
### Only score ###
##################
cv_res = cross_validation(estimator, X, y, groups, cv=10, scoring=scoring, verbose=0)
assert isinstance(cv_res, pd.DataFrame)
assert cv_res.shape[0] == 10
for s in scoring:
assert ("test_" + s) in set(cv_res.columns)
assert ("train_" + s) in set(cv_res.columns)
with pytest.raises(NotFittedError):
estimator.predict(X)
#####################
### Score + Proba ###
#####################
cv_res, yhat_proba = cross_validation(
estimator, X, y, groups, cv=10, scoring=scoring, verbose=0, return_predict=True
)
assert isinstance(cv_res, pd.DataFrame)
assert cv_res.shape[0] == 10
for s in scoring:
assert ("test_" + s) in set(cv_res.columns)
assert ("train_" + s) in set(cv_res.columns)
assert isinstance(yhat_proba, pd.DataFrame)
if isinstance(X, pd.DataFrame):
assert (yhat_proba.index == X.index).all()
assert yhat_proba.shape == (y.shape[0], 2 + 1 * add_third_class)
assert yhat_proba.min().min() >= 0
assert yhat_proba.max().max() <= 1
assert list(yhat_proba.columns) == list(np.sort(np.unique(y)))
with pytest.raises(NotFittedError):
estimator.predict(X)
#######################
### Score + Predict ###
#######################
cv_res, yhat = cross_validation(
estimator, X, y, groups, cv=10, scoring=scoring, verbose=0, return_predict=True, method="predict"
)
assert isinstance(cv_res, pd.DataFrame)
assert cv_res.shape[0] == 10
for s in scoring:
assert ("test_" + s) in set(cv_res.columns)
assert ("train_" + s) in set(cv_res.columns)
assert yhat.ndim == 1
assert len(np.setdiff1d(yhat, y)) == 0
assert yhat.shape[0] == y.shape[0]
with pytest.raises(NotFittedError):
estimator.predict(X)
####################
### Predict only ###
####################
cv_res, yhat = cross_validation(
estimator,
X,
y,
groups,
cv=10,
scoring=scoring,
verbose=0,
return_predict=True,
method="predict",
no_scoring=True,
)
assert yhat.shape[0] == y.shape[0]
assert cv_res is None
assert yhat.ndim == 1
assert len(np.setdiff1d(yhat, y)) == 0
with pytest.raises(NotFittedError):
estimator.predict(X)
@pytest.mark.parametrize(
"add_third_class, x_data_type, y_string_class, shuffle, graph_pipeline, with_groups",
list(
itertools.product(
(True, False),
(DataTypes.DataFrame, DataTypes.NumpyArray, DataTypes.SparseArray),
(True, False),
(True, False),
(True, False),
(True, False),
)
),
)
def test_approx_cross_validation_early_stop(
add_third_class, x_data_type, y_string_class, shuffle, graph_pipeline, with_groups
):
X, y = make_classification(n_samples=100, random_state=123)
if with_groups:
groups = np.array([0] * 25 + [1] * 25 + [2] * 25 + [3] * 25)
else:
groups = None
if add_third_class:
y[0:2] = 2
X = convert_generic(X, output_type=x_data_type)
if x_data_type == DataTypes.DataFrame:
X.columns = ["col_%d" % i for i in range(X.shape[1])]
if shuffle:
np.random.seed(123)
ii = np.arange(X.shape[0])
np.random.shuffle(ii)
y = y[ii]
if isinstance(X, pd.DataFrame):
X = X.loc[ii, :]
else:
X = X[ii, :]
if y_string_class:
y = np.array(["CL_%d" % i for i in y])
if add_third_class:
scoring = ["accuracy"]
else:
scoring = ["accuracy", "neg_log_loss"]
if graph_pipeline:
estimator = GraphPipeline(
{"pt": DebugPassThrough(), "lg": LogisticRegression(C=1, random_state=123)}, edges=[("pt", "lg")]
)
else:
estimator = LogisticRegression(C=1, random_state=123)
cv_res, yhat = cross_validation(
estimator,
X,
y,
groups,
cv=10,
scoring=scoring,
verbose=0,
return_predict=True,
method="predict",
stopping_round=1,
stopping_threshold=1.01, # So that accuracy is sure to be bellow
)
assert isinstance(cv_res, pd.DataFrame)
assert cv_res.shape[0] == 2
for s in scoring:
assert ("test_" + s) in set(cv_res.columns)
assert ("train_" + s) in set(cv_res.columns)
assert yhat is None
cv_res, yhat = cross_validation(
estimator,
X,
y,
groups,
cv=10,
scoring=scoring,
verbose=0,
return_predict=True,
method="predict",
stopping_round=1,
stopping_threshold=0.0,
)
assert isinstance(cv_res, pd.DataFrame)
assert cv_res.shape[0] == 10
for s in scoring:
assert ("test_" + s) in set(cv_res.columns)
assert ("train_" + s) in set(cv_res.columns)
assert yhat.ndim == 1
assert len(np.setdiff1d(yhat, y)) == 0
@pytest.mark.parametrize(
"x_data_type, shuffle, graph_pipeline, with_groups",
list(
itertools.product(
(DataTypes.DataFrame, DataTypes.NumpyArray, DataTypes.SparseArray),
(True, False),
(True, False),
(True, False),
)
),
)
def test_approx_cross_validation_transformer(x_data_type, shuffle, graph_pipeline, with_groups):
if graph_pipeline:
estimator = GraphPipeline({"ptA": DebugPassThrough(), "ptB": DebugPassThrough()}, edges=[("ptA", "ptB")])
else:
estimator = DebugPassThrough()
X, y = make_classification(n_samples=100, random_state=123)
if with_groups:
groups = np.array([0] * 25 + [1] * 25 + [2] * 25 + [3] * 25)
else:
groups = None
X = convert_generic(X, output_type=x_data_type)
if x_data_type == DataTypes.DataFrame:
X.columns = ["col_%d" % i for i in range(X.shape[1])]
if shuffle:
np.random.seed(123)
ii = np.arange(X.shape[0])
np.random.shuffle(ii)
y = y[ii]
if isinstance(X, pd.DataFrame):
X = X.loc[ii, :]
else:
X = X[ii, :]
scoring = ["accuracy", "neg_log_loss"]
##################
### Score only ###
##################
with pytest.raises(Exception):
cross_validation(estimator, X, y, groups, cv=10, scoring=scoring, verbose=0)
# shouldn't work since DebugPassThrough can't be scored
#################
### Transform ###
#################
cv_res, Xhat = cross_validation(
estimator, X, y, groups, cv=10, scoring=scoring, verbose=0, return_predict=True, no_scoring=True
)
assert type(Xhat) == type(X)
assert cv_res is None
assert Xhat.shape == X.shape
if isinstance(X, pd.DataFrame):
assert (Xhat.index == X.index).all()
assert (Xhat.columns == X.columns).all()
if isinstance(X, pd.DataFrame):
assert np.abs(Xhat - X).max().max() <= 10 ** (10 - 10)
else:
assert np.max(np.abs(Xhat - X)) <= 10 ** (-10)
def test_cross_validation_time_serie_split():
X, y = make_classification(n_samples=100, random_state=123)
cv = TimeSeriesSplit(n_splits=10)
model = RandomForestClassifier(n_estimators=10, random_state=123)
cv_res, yhat = cross_validation(model, X, y, cv=cv, return_predict=True)
assert yhat is None # because I can't return predictions
assert len(cv_res) == 10
assert isinstance(cv_res, pd.DataFrame)
def test_score_from_params_clustering():
np.random.seed(123)
X = np.random.randn(100, 10)
kmeans = KMeans(n_clusters=3, random_state=123)
result1 = score_from_params_clustering(kmeans, X, scoring=["silhouette", "davies_bouldin"])
with pytest.raises(sklearn.exceptions.NotFittedError):
kmeans.predict(X)
assert isinstance(result1, pd.DataFrame)
assert list(result1.columns) == ["test_silhouette", "test_davies_bouldin", "fit_time", "score_time"]
assert len(result1) == 1
kmeans = KMeans(n_clusters=3, random_state=123)
result2, yhat = score_from_params_clustering(
kmeans, X, scoring=["silhouette", "davies_bouldin"], return_predict=True
)
with pytest.raises(sklearn.exceptions.NotFittedError):
kmeans.predict(X)
assert isinstance(result2, pd.DataFrame)
assert list(result2.columns) == ["test_silhouette", "test_davies_bouldin", "fit_time", "score_time"]
assert len(result2) == 1
assert yhat.shape == (100,)
assert len(np.unique(yhat)) == 3
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
assert np.abs(result1.iloc[:, 1] - result2.iloc[:, 1]).max() <= 10 ** (-5)
def test_score_from_params_clustering_with_scorer_object():
X = np.random.randn(100, 10)
kmeans = KMeans(n_clusters=3, random_state=123)
result1 = score_from_params_clustering(kmeans, X, scoring=SCORERS["silhouette"])
assert result1.shape[0] == 1
assert isinstance(result1, pd.DataFrame)
result2 = score_from_params_clustering(kmeans, X, scoring="silhouette")
assert result2.shape[0] == 1
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
result1 = score_from_params_clustering(kmeans, X, scoring=SCORERS["calinski_harabaz"])
assert result1.shape[0] == 1
assert isinstance(result1, pd.DataFrame)
result2 = score_from_params_clustering(kmeans, X, scoring="calinski_harabaz")
assert result2.shape[0] == 1
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
result1 = score_from_params_clustering(kmeans, X, scoring=SCORERS["davies_bouldin"])
assert result1.shape[0] == 1
assert isinstance(result1, pd.DataFrame)
result2 = score_from_params_clustering(kmeans, X, scoring="davies_bouldin")
assert result2.shape[0] == 1
assert isinstance(result2, pd.DataFrame)
assert np.abs(result1.iloc[:, 0] - result2.iloc[:, 0]).max() <= 10 ** (-5)
@pytest.mark.parametrize(
"x_data_type, shuffle, graph_pipeline",
list(
itertools.product(
(DataTypes.DataFrame, DataTypes.NumpyArray, DataTypes.SparseArray), (True, False), (True, False)
)
),
)
def test_score_from_params(x_data_type, shuffle, graph_pipeline):
np.random.seed(123)
X = np.random.randn(100, 10)
X = convert_generic(X, output_type=x_data_type)
if x_data_type == DataTypes.DataFrame:
X.columns = ["col_%d" % i for i in range(X.shape[1])]
if shuffle:
ii = np.arange(X.shape[0])
np.random.shuffle(ii)
if isinstance(X, pd.DataFrame):
X = X.loc[ii, :]
else:
X = X[ii, :]
scoring = ["silhouette", "davies_bouldin", "calinski_harabaz"]
if graph_pipeline:
estimator = GraphPipeline(
{"pt": DebugPassThrough(), "lg": KMeans(n_clusters=3, random_state=123)}, edges=[("pt", "lg")]
)
else:
estimator = KMeans(n_clusters=3, random_state=123)
##################
### Only score ###
##################
res = score_from_params_clustering(estimator, X, scoring=scoring, verbose=0)
assert isinstance(res, pd.DataFrame)
assert res.shape[0] == 1
for s in scoring:
assert ("test_" + s) in set(res.columns)
with pytest.raises(NotFittedError):
estimator.predict(X)
##########################
### Score + Prediction ###
##########################
res, label = score_from_params_clustering(estimator, X, scoring=scoring, verbose=0, return_predict=True)
assert isinstance(res, pd.DataFrame)
assert res.shape[0] == 1
for s in scoring:
assert ("test_" + s) in set(res.columns)
assert isinstance(label, np.ndarray)
assert len(np.unique(label)) == 3
with pytest.raises(NotFittedError):
estimator.predict(X)
####################
### Predict only ###
####################
res, label = score_from_params_clustering(
estimator, X, scoring=scoring, verbose=0, return_predict=True, no_scoring=True
)
assert len(np.unique(label)) == 3
assert res is None
with pytest.raises(NotFittedError):
estimator.predict(X)
class DummyModel(RegressorMixin, BaseEstimator):
def __init__(self):
pass
def fit(self, X, y):
return self
def predict(self, X):
return X[:, 0]
class DummyModelCheckFitParams(RegressorMixin, BaseEstimator):
def __init__(self):
pass
def fit(self, X, y, **fit_params):
assert "param" in fit_params
assert fit_params["param"] == "value"
return self
def predict(self, X):
return X[:, 0]
class DummyModelCheckSampleWeight(RegressorMixin, BaseEstimator):
def __init__(self):
pass
def fit(self, X, y, sample_weight=None):
if sample_weight is not None:
assert X.shape[0] == sample_weight.shape[0]
return self
def predict(self, X):
return X[:, 0]
class DummyModelWithApprox(RegressorMixin, BaseEstimator):
def __init__(self, check_kwargs=False):
self.check_kwargs = check_kwargs
def fit(self, X, y):
return self
def predict(self, X):
return X[:, 0]
def approx_cross_validation(
self,
X,
y,
groups=None,
scoring=None,
cv=10,
verbose=0,
fit_params=None,
return_predict=False,
method="predict",
no_scoring=False,
stopping_round=None,
stopping_threshold=None,
**kwargs
):
if self.check_kwargs:
assert "kwargs_param" in kwargs
assert kwargs["kwargs_param"] == "kwargs_value"
if no_scoring:
cv_res = None
else:
cv_res = {"scoring": scoring}
if return_predict:
return cv_res, X[:, 1]
else:
return cv_res
def test_cross_validation_sample_weight():
X, y = make_classification(n_samples=100, random_state=123)
sample_weight = np.ones(y.shape[0])
estimator = DummyModelCheckSampleWeight()
estimator.fit(X, y, sample_weight=sample_weight)
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict",
fit_params={"sample_weight":sample_weight}
)
# I just need to check that it works
assert yhat.shape[0] == y.shape[0]
estimator = DummyModelCheckSampleWeight()
estimator.fit(X, y)
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict"
)
# I just need to check that it works
assert yhat.shape[0] == y.shape[0]
@pytest.mark.parametrize("approximate_cv", [True, False])
def test_approx_cross_validation_fit_params(approximate_cv):
X, y = make_classification(n_samples=100, random_state=123)
estimator = DummyModelCheckFitParams()
with pytest.raises(AssertionError):
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict",
approximate_cv=approximate_cv,
)
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict",
fit_params={"param": "value"},
approximate_cv=approximate_cv,
)
def test_approx_cross_validation_pass_kwargs():
X, y = make_classification(n_samples=100, random_state=123)
estimator = DummyModelWithApprox(check_kwargs=True)
with pytest.raises(AssertionError):
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict",
fit_params={"param": "value"},
approximate_cv=True,
)
# error because kwargs not passed
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="predict",
fit_params={"param": "value"},
kwargs_param="kwargs_value",
approximate_cv=True,
)
@pytest.mark.parametrize("approximate_cv", [True, False])
def test_approx_cross_validation_dummy(approximate_cv):
X, y = make_classification(n_samples=100, random_state=123)
estimator = DummyModel()
cv_res, yhat = cross_validation(
estimator, X, y, cv=10, no_scoring=True, return_predict=True, method="predict", approximate_cv=approximate_cv
)
assert yhat.ndim == 1
assert np.abs(yhat - X[:, 0]).max() <= 10 ** (-5)
estimator = DummyModel()
cv_res, yhat = cross_validation(
estimator, X, y, cv=10, no_scoring=False, return_predict=True, method="predict", approximate_cv=approximate_cv
)
assert yhat.ndim == 1
assert np.abs(yhat - X[:, 0]).max() <= 10 ** (-5)
@pytest.mark.parametrize("approximate_cv", [True, False])
def test_approx_cross_validation_raise_error(approximate_cv):
X, y = make_classification(n_samples=100, random_state=123)
estimator = DummyModel()
with pytest.raises(ValueError):
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=False,
method="predict",
approximate_cv=approximate_cv,
)
# no_scoring = True AND return_predict = False => Nothing to do ... error
estimator = DummyModel()
with pytest.raises(AttributeError):
cv_res, yhat = cross_validation(
estimator,
X,
y,
cv=10,
no_scoring=True,
return_predict=True,
method="transform",
approximate_cv=approximate_cv,
)
def test_approx_cross_validation_pass_to_method():
X, y = make_classification(n_samples=100, random_state=123)
estimator = DummyModelWithApprox()
cv_res, yhat = cross_validation(
estimator, X, y, cv=10, no_scoring=True, return_predict=True, method="predict", approximate_cv=True
)
assert cv_res is None
assert yhat.ndim == 1
assert np.abs(yhat - X[:, 1]).max() <= 10 ** (-5)
estimator = DummyModelWithApprox()
cv_res, yhat = cross_validation(
estimator, X, y, cv=10, no_scoring=False, return_predict=True, method="predict", approximate_cv=True
)
assert cv_res is not None
assert "scoring" in cv_res
assert yhat.ndim == 1
assert np.abs(yhat - X[:, 1]).max() <= 10 ** (-5)
estimator = DummyModelWithApprox()
cv_res = cross_validation(
estimator, X, y, cv=10, no_scoring=False, return_predict=False, method="predict", approximate_cv=True
)
assert cv_res is not None
assert "scoring" in cv_res
assert yhat.ndim == 1
assert np.abs(yhat - X[:, 1]).max() <= 10 ** (-5)
estimator = DummyModelWithApprox()
cv_res = cross_validation(
estimator,
X,
y,
cv=10,
scoring=["neg_mean_squared_error"],
no_scoring=False,
return_predict=False,
method="predict",
approximate_cv=True,
)
assert cv_res is not None
assert "scoring" in cv_res
assert cv_res["scoring"] == ["neg_mean_squared_error"]
@pytest.mark.parametrize("approximate_cv", [True, False])
def test_approx_cross_validation_cv(approximate_cv):
X, y = make_classification()
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=123)
estimator = DebugPassThrough()
cv_res, yhat = cross_validation(
estimator,
X,
y,
groups=None,
cv=cv,
verbose=1,
fit_params={},
return_predict=True,
method="transform",
no_scoring=True,
stopping_round=None,
stopping_threshold=None,
approximate_cv=approximate_cv,
)
assert cv_res is None
assert yhat.ndim == 2
assert yhat.shape == X.shape
@pytest.mark.skipif(sklearn.__version__ >= "0.21", reason="bug fixed in 0.21")
@pytest.mark.xfail
def test_cross_val_predict_sklearn_few_sample_per_classes():
np.random.seed(123)
X = np.random.randn(100, 2)
y = np.array(["AA"] * 33 + ["BB"] * 33 + ["CC"] * 33 + ["DD"])
cv = StratifiedKFold(n_splits=10)
logit = LogisticRegression()
yhat_proba = cross_val_predict(logit, X, y, cv=cv, method="predict_proba")
assert (yhat_proba.max(axis=1) > 0).all()
@pytest.mark.parametrize("with_groups", [True, False])
def test_cross_validation_few_sample_per_classes(with_groups):
np.random.seed(123)
X = np.random.randn(100, 2)
y = np.array(["AA"] * 33 + ["BB"] * 33 + ["CC"] * 33 + ["DD"])
if with_groups:
groups = np.array([0] * 25 + [1] * 25 + [2] * 25 + [3] * 25)
else:
groups = None
cv = StratifiedKFold(n_splits=10)
logit = LogisticRegression()
_, yhat_proba = cross_validation(logit, X, y, groups=groups, cv=cv, return_predict=True, no_scoring=True)
assert (yhat_proba.max(axis=1) > 0).all()
assert yhat_proba.shape == (100, 4)
assert list(yhat_proba.columns) == ["AA", "BB", "CC", "DD"]
def test_IndexTrainTestCv():
|
np.random.seed(123)
|
numpy.random.seed
|
import numpy as np
def calculateInitialMeanAndVariance(m):
# Calculate Initial Gradient
initialGradient = np.zeros(shape=m.trainingDataCount)
for i, content in enumerate(m.trainingData):
initialGradient[i] = (m.modelLength - 1) / (content.shape[0] - 1)
# Initalize Variables
counter =
|
np.zeros(shape=(m.modelLength, 1))
|
numpy.zeros
|
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
# Author(s): <NAME>
#
# Copyright (C) 2018-2019 Inria
#
# Modification(s):
# - YYYY/MM Author: Description of the modification
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler
from sklearn.neighbors import DistanceMetric
from .preprocessing import DiagramScaler, BirthPersistenceTransform
#############################################
# Finite Vectorization methods ##############
#############################################
class PersistenceImage(BaseEstimator, TransformerMixin):
"""
This is a class for computing persistence images from a list of persistence diagrams. A persistence image is a 2D function computed from a persistence diagram by convolving the diagram points with a weighted Gaussian kernel. The plane is then discretized into an image with pixels, which is flattened and returned as a vector. See http://jmlr.org/papers/v18/16-337.html for more details.
"""
def __init__(self, bandwidth=1., weight=lambda x: 1, resolution=[20,20], im_range=[np.nan, np.nan, np.nan, np.nan]):
"""
Constructor for the PersistenceImage class.
Parameters:
bandwidth (double): bandwidth of the Gaussian kernel (default 1.).
weight (function): weight function for the persistence diagram points (default constant function, ie lambda x: 1). This function must be defined on 2D points, ie lists or numpy arrays of the form [p_x,p_y].
resolution ([int,int]): size (in pixels) of the persistence image (default [20,20]).
im_range ([double,double,double,double]): minimum and maximum of each axis of the persistence image, of the form [x_min, x_max, y_min, y_max] (default [numpy.nan, numpy.nan, numpy.nan, numpyp.nan]). If one of the values is numpy.nan, it can be computed from the persistence diagrams with the fit() method.
"""
self.bandwidth, self.weight = bandwidth, weight
self.resolution, self.im_range = resolution, im_range
def fit(self, X, y=None):
"""
Fit the PersistenceImage class on a list of persistence diagrams: if any of the values in **im_range** is numpy.nan, replace it with the corresponding value computed on the given list of persistence diagrams.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
y (n x 1 array): persistence diagram labels (unused).
"""
if np.isnan(np.array(self.im_range)).any():
new_X = BirthPersistenceTransform().fit_transform(X)
pre = DiagramScaler(use=True, scalers=[([0], MinMaxScaler()), ([1], MinMaxScaler())]).fit(new_X,y)
[mx,my],[Mx,My] = [pre.scalers[0][1].data_min_[0], pre.scalers[1][1].data_min_[0]], [pre.scalers[0][1].data_max_[0], pre.scalers[1][1].data_max_[0]]
self.im_range = np.where(np.isnan(np.array(self.im_range)), np.array([mx, Mx, my, My]), np.array(self.im_range))
return self
def transform(self, X):
"""
Compute the persistence image for each persistence diagram individually and store the results in a single numpy array.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
Returns:
numpy array with shape (number of diagrams) x (number of pixels = **resolution[0]** x **resolution[1]**): output persistence images.
"""
num_diag, Xfit = len(X), []
new_X = BirthPersistenceTransform().fit_transform(X)
for i in range(num_diag):
diagram, num_pts_in_diag = new_X[i], X[i].shape[0]
w = np.empty(num_pts_in_diag)
for j in range(num_pts_in_diag):
w[j] = self.weight(diagram[j,:])
x_values, y_values = np.linspace(self.im_range[0], self.im_range[1], self.resolution[0]), np.linspace(self.im_range[2], self.im_range[3], self.resolution[1])
Xs, Ys = np.tile((diagram[:,0][:,np.newaxis,np.newaxis]-x_values[np.newaxis,np.newaxis,:]),[1,self.resolution[1],1]), np.tile(diagram[:,1][:,np.newaxis,np.newaxis]-y_values[np.newaxis,:,np.newaxis],[1,1,self.resolution[0]])
image = np.tensordot(w, np.exp((-np.square(Xs)-np.square(Ys))/(2*np.square(self.bandwidth)))/(np.square(self.bandwidth)*2*np.pi), 1)
Xfit.append(image.flatten()[np.newaxis,:])
Xfit = np.concatenate(Xfit,0)
return Xfit
class Landscape(BaseEstimator, TransformerMixin):
"""
This is a class for computing persistence landscapes from a list of persistence diagrams. A persistence landscape is a collection of 1D piecewise-linear functions computed from the rank function associated to the persistence diagram. These piecewise-linear functions are then sampled evenly on a given range and the corresponding vectors of samples are concatenated and returned. See http://jmlr.org/papers/v16/bubenik15a.html for more details.
"""
def __init__(self, num_landscapes=5, resolution=100, sample_range=[np.nan, np.nan]):
"""
Constructor for the Landscape class.
Parameters:
num_landscapes (int): number of piecewise-linear functions to output (default 5).
resolution (int): number of sample for all piecewise-linear functions (default 100).
sample_range ([double, double]): minimum and maximum of all piecewise-linear function domains, of the form [x_min, x_max] (default [numpy.nan, numpy.nan]). It is the interval on which samples will be drawn evenly. If one of the values is numpy.nan, it can be computed from the persistence diagrams with the fit() method.
"""
self.num_landscapes, self.resolution, self.sample_range = num_landscapes, resolution, sample_range
self.nan_in_range = np.isnan(np.array(self.sample_range))
self.new_resolution = self.resolution + self.nan_in_range.sum()
def fit(self, X, y=None):
"""
Fit the Landscape class on a list of persistence diagrams: if any of the values in **sample_range** is numpy.nan, replace it with the corresponding value computed on the given list of persistence diagrams.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
y (n x 1 array): persistence diagram labels (unused).
"""
if self.nan_in_range.any():
pre = DiagramScaler(use=True, scalers=[([0], MinMaxScaler()), ([1], MinMaxScaler())]).fit(X,y)
[mx,my],[Mx,My] = [pre.scalers[0][1].data_min_[0], pre.scalers[1][1].data_min_[0]], [pre.scalers[0][1].data_max_[0], pre.scalers[1][1].data_max_[0]]
self.sample_range = np.where(self.nan_in_range, np.array([mx, My]), np.array(self.sample_range))
return self
def transform(self, X):
"""
Compute the persistence landscape for each persistence diagram individually and concatenate the results.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
Returns:
numpy array with shape (number of diagrams) x (number of samples = **num_landscapes** x **resolution**): output persistence landscapes.
"""
num_diag, Xfit = len(X), []
x_values = np.linspace(self.sample_range[0], self.sample_range[1], self.new_resolution)
step_x = x_values[1] - x_values[0]
for i in range(num_diag):
diagram, num_pts_in_diag = X[i], X[i].shape[0]
ls = np.zeros([self.num_landscapes, self.new_resolution])
events = []
for j in range(self.new_resolution):
events.append([])
for j in range(num_pts_in_diag):
[px,py] = diagram[j,:2]
min_idx = np.clip(np.ceil((px - self.sample_range[0]) / step_x).astype(int), 0, self.new_resolution)
mid_idx = np.clip(np.ceil((0.5*(py+px) - self.sample_range[0]) / step_x).astype(int), 0, self.new_resolution)
max_idx = np.clip(np.ceil((py - self.sample_range[0]) / step_x).astype(int), 0, self.new_resolution)
if min_idx < self.new_resolution and max_idx > 0:
landscape_value = self.sample_range[0] + min_idx * step_x - px
for k in range(min_idx, mid_idx):
events[k].append(landscape_value)
landscape_value += step_x
landscape_value = py - self.sample_range[0] - mid_idx * step_x
for k in range(mid_idx, max_idx):
events[k].append(landscape_value)
landscape_value -= step_x
for j in range(self.new_resolution):
events[j].sort(reverse=True)
for k in range( min(self.num_landscapes, len(events[j])) ):
ls[k,j] = events[j][k]
if self.nan_in_range[0]:
ls = ls[:,1:]
if self.nan_in_range[1]:
ls = ls[:,:-1]
ls = np.sqrt(2)*np.reshape(ls,[1,-1])
Xfit.append(ls)
Xfit = np.concatenate(Xfit,0)
return Xfit
class Silhouette(BaseEstimator, TransformerMixin):
"""
This is a class for computing persistence silhouettes from a list of persistence diagrams. A persistence silhouette is computed by taking a weighted average of the collection of 1D piecewise-linear functions given by the persistence landscapes, and then by evenly sampling this average on a given range. Finally, the corresponding vector of samples is returned. See https://arxiv.org/abs/1312.0308 for more details.
"""
def __init__(self, weight=lambda x: 1, resolution=100, sample_range=[np.nan, np.nan]):
"""
Constructor for the Silhouette class.
Parameters:
weight (function): weight function for the persistence diagram points (default constant function, ie lambda x: 1). This function must be defined on 2D points, ie on lists or numpy arrays of the form [p_x,p_y].
resolution (int): number of samples for the weighted average (default 100).
sample_range ([double, double]): minimum and maximum for the weighted average domain, of the form [x_min, x_max] (default [numpy.nan, numpy.nan]). It is the interval on which samples will be drawn evenly. If one of the values is numpy.nan, it can be computed from the persistence diagrams with the fit() method.
"""
self.weight, self.resolution, self.sample_range = weight, resolution, sample_range
def fit(self, X, y=None):
"""
Fit the Silhouette class on a list of persistence diagrams: if any of the values in **sample_range** is numpy.nan, replace it with the corresponding value computed on the given list of persistence diagrams.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
y (n x 1 array): persistence diagram labels (unused).
"""
if np.isnan(np.array(self.sample_range)).any():
pre = DiagramScaler(use=True, scalers=[([0], MinMaxScaler()), ([1], MinMaxScaler())]).fit(X,y)
[mx,my],[Mx,My] = [pre.scalers[0][1].data_min_[0], pre.scalers[1][1].data_min_[0]], [pre.scalers[0][1].data_max_[0], pre.scalers[1][1].data_max_[0]]
self.sample_range = np.where(np.isnan(np.array(self.sample_range)), np.array([mx, My]), np.array(self.sample_range))
return self
def transform(self, X):
"""
Compute the persistence silhouette for each persistence diagram individually and concatenate the results.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
Returns:
numpy array with shape (number of diagrams) x (**resolution**): output persistence silhouettes.
"""
num_diag, Xfit = len(X), []
x_values = np.linspace(self.sample_range[0], self.sample_range[1], self.resolution)
step_x = x_values[1] - x_values[0]
for i in range(num_diag):
diagram, num_pts_in_diag = X[i], X[i].shape[0]
sh, weights = np.zeros(self.resolution), np.zeros(num_pts_in_diag)
for j in range(num_pts_in_diag):
weights[j] = self.weight(diagram[j,:])
total_weight = np.sum(weights)
for j in range(num_pts_in_diag):
[px,py] = diagram[j,:2]
weight = weights[j] / total_weight
min_idx = np.clip(np.ceil((px - self.sample_range[0]) / step_x).astype(int), 0, self.resolution)
mid_idx = np.clip(np.ceil((0.5*(py+px) - self.sample_range[0]) / step_x).astype(int), 0, self.resolution)
max_idx = np.clip(np.ceil((py - self.sample_range[0]) / step_x).astype(int), 0, self.resolution)
if min_idx < self.resolution and max_idx > 0:
silhouette_value = self.sample_range[0] + min_idx * step_x - px
for k in range(min_idx, mid_idx):
sh[k] += weight * silhouette_value
silhouette_value += step_x
silhouette_value = py - self.sample_range[0] - mid_idx * step_x
for k in range(mid_idx, max_idx):
sh[k] += weight * silhouette_value
silhouette_value -= step_x
Xfit.append(np.reshape(np.sqrt(2) * sh, [1,-1]))
Xfit = np.concatenate(Xfit, 0)
return Xfit
class BettiCurve(BaseEstimator, TransformerMixin):
"""
This is a class for computing Betti curves from a list of persistence diagrams. A Betti curve is a 1D piecewise-constant function obtained from the rank function. It is sampled evenly on a given range and the vector of samples is returned. See https://www.researchgate.net/publication/316604237_Time_Series_Classification_via_Topological_Data_Analysis for more details.
"""
def __init__(self, resolution=100, sample_range=[np.nan, np.nan]):
"""
Constructor for the BettiCurve class.
Parameters:
resolution (int): number of sample for the piecewise-constant function (default 100).
sample_range ([double, double]): minimum and maximum of the piecewise-constant function domain, of the form [x_min, x_max] (default [numpy.nan, numpy.nan]). It is the interval on which samples will be drawn evenly. If one of the values is numpy.nan, it can be computed from the persistence diagrams with the fit() method.
"""
self.resolution, self.sample_range = resolution, sample_range
def fit(self, X, y=None):
"""
Fit the BettiCurve class on a list of persistence diagrams: if any of the values in **sample_range** is numpy.nan, replace it with the corresponding value computed on the given list of persistence diagrams.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
y (n x 1 array): persistence diagram labels (unused).
"""
if np.isnan(np.array(self.sample_range)).any():
pre = DiagramScaler(use=True, scalers=[([0], MinMaxScaler()), ([1], MinMaxScaler())]).fit(X,y)
[mx,my],[Mx,My] = [pre.scalers[0][1].data_min_[0], pre.scalers[1][1].data_min_[0]], [pre.scalers[0][1].data_max_[0], pre.scalers[1][1].data_max_[0]]
self.sample_range = np.where(np.isnan(np.array(self.sample_range)), np.array([mx, My]), np.array(self.sample_range))
return self
def transform(self, X):
"""
Compute the Betti curve for each persistence diagram individually and concatenate the results.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
Returns:
numpy array with shape (number of diagrams) x (**resolution**): output Betti curves.
"""
num_diag, Xfit = len(X), []
x_values = np.linspace(self.sample_range[0], self.sample_range[1], self.resolution)
step_x = x_values[1] - x_values[0]
for i in range(num_diag):
diagram, num_pts_in_diag = X[i], X[i].shape[0]
bc = np.zeros(self.resolution)
for j in range(num_pts_in_diag):
[px,py] = diagram[j,:2]
min_idx = np.clip(np.ceil((px - self.sample_range[0]) / step_x).astype(int), 0, self.resolution)
max_idx = np.clip(np.ceil((py - self.sample_range[0]) / step_x).astype(int), 0, self.resolution)
for k in range(min_idx, max_idx):
bc[k] += 1
Xfit.append(np.reshape(bc,[1,-1]))
Xfit = np.concatenate(Xfit, 0)
return Xfit
class Entropy(BaseEstimator, TransformerMixin):
"""
This is a class for computing persistence entropy. Persistence entropy is a statistic for persistence diagrams inspired from Shannon entropy. This statistic can also be used to compute a feature vector, called the entropy summary function. See https://arxiv.org/pdf/1803.08304.pdf for more details. Note that a previous implementation was contributed by <NAME>.
"""
def __init__(self, mode="scalar", normalized=True, resolution=100, sample_range=[np.nan, np.nan]):
"""
Constructor for the Entropy class.
Parameters:
mode (string): what entropy to compute: either "scalar" for computing the entropy statistics, or "vector" for computing the entropy summary functions (default "scalar").
normalized (bool): whether to normalize the entropy summary function (default True). Used only if **mode** = "vector".
resolution (int): number of sample for the entropy summary function (default 100). Used only if **mode** = "vector".
sample_range ([double, double]): minimum and maximum of the entropy summary function domain, of the form [x_min, x_max] (default [numpy.nan, numpy.nan]). It is the interval on which samples will be drawn evenly. If one of the values is numpy.nan, it can be computed from the persistence diagrams with the fit() method. Used only if **mode** = "vector".
"""
self.mode, self.normalized, self.resolution, self.sample_range = mode, normalized, resolution, sample_range
def fit(self, X, y=None):
"""
Fit the Entropy class on a list of persistence diagrams.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
y (n x 1 array): persistence diagram labels (unused).
"""
if np.isnan(np.array(self.sample_range)).any():
pre = DiagramScaler(use=True, scalers=[([0], MinMaxScaler()), ([1], MinMaxScaler())]).fit(X,y)
[mx,my],[Mx,My] = [pre.scalers[0][1].data_min_[0], pre.scalers[1][1].data_min_[0]], [pre.scalers[0][1].data_max_[0], pre.scalers[1][1].data_max_[0]]
self.sample_range = np.where(np.isnan(np.array(self.sample_range)), np.array([mx, My]), np.array(self.sample_range))
return self
def transform(self, X):
"""
Compute the entropy for each persistence diagram individually and concatenate the results.
Parameters:
X (list of n x 2 numpy arrays): input persistence diagrams.
Returns:
numpy array with shape (number of diagrams) x (1 if **mode** = "scalar" else **resolution**): output entropy.
"""
num_diag, Xfit = len(X), []
x_values = np.linspace(self.sample_range[0], self.sample_range[1], self.resolution)
step_x = x_values[1] - x_values[0]
new_X = BirthPersistenceTransform().fit_transform(X)
for i in range(num_diag):
orig_diagram, diagram, num_pts_in_diag = X[i], new_X[i], X[i].shape[0]
new_diagram = DiagramScaler(use=True, scalers=[([1], MaxAbsScaler())]).fit_transform([diagram])[0]
if self.mode == "scalar":
ent = - np.sum( np.multiply(new_diagram[:,1], np.log(new_diagram[:,1])) )
Xfit.append(
|
np.array([[ent]])
|
numpy.array
|
import numpy as np
from gtfblib import Chen
import matplotlib.pyplot as plt
from scipy.io import wavfile
import pickle
from IFModel import generate_impulse_train_multi_channels
DEBUG = False
folder = './data/full/'
# train_x_raw = np.load(folder + 'x_small.npy', allow_pickle=True)
train_x_raw =
|
np.load(folder + 'train_x.npy', allow_pickle=True)
|
numpy.load
|
#
# PheSEIRModel Class
#
# This file is part of EPIMODELS
# (https://github.com/I-Bouros/multi-epi-model-cross-analysis.git) which is
# released under the MIT license. See accompanying LICENSE for copyright
# notice and full license details.
#
"""
This script contains code for modelling the extended SEIR model created by
Public Health England and Univerity of Cambridge and which is the official
model used by the UK government for policy making.
It uses an extended version of an SEIR model and contact and region specific
matrices.
"""
from itertools import chain
import numpy as np
from scipy.stats import nbinom, binom
from scipy.integrate import solve_ivp
import epimodels as em
class PheSEIRModel(object):
r"""PheSEIRModel Class:
Base class for constructing the ODE model: deterministic SEIR used by the
Public Health England to model the Covid-19 epidemic in UK based on region.
The population is structured according to their age-group (:math:`i`) and
region (:math:`r`) and every individual will belong to one of the
compartments of the SEIR model.
The general SEIR Model has four compartments - susceptible individuals
(:math:`S`), exposed but not yet infectious (:math:`E`), infectious
(:math:`I`) and recovered (:math:`R`).
In the PHE model framework, the exposed and infectious compartments are
split in two:
.. math::
:nowrap:
\begin{eqnarray}
\frac{dS(r, t, i)}{dt} = -\lambda_{r, t, i} S(r, t, i) \\
\frac{dE_1(r, t, i)}{dt} = \lambda_{r, t, i} S(
r, t, i) - \kappa E_1(r, t, i) \\
\frac{dE_2(r, t, i)}{dt} = \kappa E_1(r, t, i) - \kappa E_2(
r, t, i) \\
\frac{dI_1(r, t, i)}{dt} = \kappa E_2(r, t, i) - \gamma I_1(
r, t, i) \\
\frac{dI_2(r, t, i)}{dt} = \gamma I_1(r, t, i) - \gamma I_2(
r, t, i) \\
\frac{dR(r, t, i)}{dt} = \gamma I_2(r, t, i)
\end{eqnarray}
where :math:`S(0) = S_0, E(0) = E_0, I(O) = I_0, R(0) = R_0` are also
parameters of the model (evaluation at 0 refers to the compartments'
structure at intial time.
The parameter :math:`\lambda_{r, t, i}` is the time, age and region-varying
rate with which susceptible individuals become infected, which in the
context of the PHE model depends on contact and region-specific relative
susceptibility matrices. The other two parameters, :math:`\kappa` and
:math:`\gamma` are virsus specific and so do not depend with region, age or
time:
.. math::
:nowrap:
\begin{eqnarray}
\kappa = \frac{2}{d_L} \\
\gamma = \frac{2}{d_I}
\end{eqnarray}
where :math:`d_L` refers to mean latent period until disease onset and
:math:`d_I` to mean period of infection.
"""
def __init__(self):
super(PheSEIRModel, self).__init__()
# Assign default values
self._output_names = ['S', 'E1', 'E2', 'I1', 'I2', 'R', 'Incidence']
self._parameter_names = [
'S0', 'E10', 'E20', 'I10', 'I20', 'R0', 'beta', 'kappa', 'gamma']
# The default number of outputs is 7,
# i.e. S, E1, E2, I1, I2, R and Incidence
self._n_outputs = len(self._output_names)
# The default number of outputs is 7,
# i.e. 6 initial conditions and 3 parameters
self._n_parameters = len(self._parameter_names)
self._output_indices = np.arange(self._n_outputs)
def n_outputs(self):
"""
Returns the number of outputs.
"""
return self._n_outputs
def n_parameters(self):
"""
Returns the number of parameters.
"""
return self._n_parameters
def output_names(self):
"""
Returns the (selected) output names.
"""
names = [self._output_names[x] for x in self._output_indices]
return names
def parameter_names(self):
"""
Returns the parameter names.
"""
return self._parameter_names
def set_outputs(self, outputs):
"""
Checks existence of outputs.
"""
for output in outputs:
if output not in self._output_names:
raise ValueError(
'The output names specified must be in correct forms')
output_indices = []
for output_id, output in enumerate(self._output_names):
if output in outputs:
output_indices.append(output_id)
# Remember outputs
self._output_indices = output_indices
self._n_outputs = len(outputs)
def _compute_lambda(self, s, i1, i2, b):
"""
Computes the current time, age and region-varying rate with which
susceptible individuals become infected.
Parameters
----------
s
vector of susceptibles by age group.
i1
vector of 1st infective by age group.
i2
vector of 2nd infective by age group.
b
probability matrix of infectivity.
"""
lam = np.empty_like(s)
for i, l in enumerate(lam):
prod = 1
for j, _ in enumerate(lam):
prod *= (1-b[i, j])**(i1[j]+i2[j])
lam[i] = 1-prod
return lam
def _compute_evaluation_moments(self, times):
"""
Returns the points at which we keep the evaluations of the ODE system.
"""
eval_times = np.around(
np.arange(
times[0], times[-1]+self._delta_t, self._delta_t,
dtype=np.float64),
5)
eval_indices = np.where(
np.array([(t in times) for t in eval_times]))[0].tolist()
ind_in_times = []
j = 0
for i, t in enumerate(eval_times):
if i >= eval_indices[j+1]:
j += 1
ind_in_times.append(j)
return eval_times, ind_in_times
def _right_hand_side(self, t, r, y, c, num_a_groups):
r"""
Constructs the RHS of the equations of the system of ODEs for given a
region and time point. The :math:`\lambda` parameter that accompanies
the susceptible numbers is dependent on the current number of
infectives and is computed using the updated multi-step infectivity
matrix of the system according to the following formula
.. math::
\lambda_{r, t, i} = 1 - \prod_{j=1}^{n_A}[
(1-b_{r,ij}^{t})^{I1(r,t,j)+I2(r,t,j)}]
Parameters
----------
t
(float) Time point at which we compute the evaluation.
r
(int) The index of the region to which the current instance of the
ODEs system refers.
y
(array) Array of all the compartments of the ODE system, segregated
by age-group. It assumes y = [S, E1, E2, I1, I2, R] where each
letter actually refers to all compartment of that type. (e.g. S
refers to the compartments of all ages of susceptibles).
c
(list) List values used to compute the parameters of the ODEs
system. It assumes c = [beta, kappa, gamma], where :math:`beta`
encaplsulates temporal fluctuations in transmition for all ages.
num_a_groups
(int) Number of age groups in which the population is split. It
refers to the number of compartments of each type.
"""
# Read in the number of age-groups
a = num_a_groups
# Split compartments into their types
s, e1, e2, i1, i2, _ = (
y[:a], y[a:(2*a)], y[(2*a):(3*a)],
y[(3*a):(4*a)], y[(4*a):(5*a)], y[(5*a):])
# Read parameters of the system
beta, dL, dI = c
kappa = 2/dL
gamma = 2/dI
# And identify the appropriate MultiTimesInfectivity matrix for the
# ODE system
pos = np.where(self._times <= t)
ind = pos[-1][-1]
b = self.infectivity_timeline.compute_prob_infectivity_matrix(
r, t, s, beta[self._region-1][ind])
# Compute the current time, age and region-varying
# rate with which susceptible individuals become infected
lam = self._compute_lambda(s, i1, i2, b)
# Write actual RHS
lam_times_s = np.multiply(lam, np.asarray(s))
dydt = np.concatenate((
-lam_times_s, lam_times_s - kappa * np.asarray(e1),
kappa * np.asarray(e1) - kappa * np.asarray(e2),
kappa * np.asarray(e2) - gamma * np.asarray(i1),
gamma * np.asarray(i1) - gamma * np.asarray(i2),
gamma * np.asarray(i2)))
return dydt
def _my_solver(self, times, num_a_groups):
"""
Computes the values in each compartment of the PHE ODEs system using
a 'homemade' solver in the context of the discretised time step version
of the model, as suggested in the paper in which it is referenced.
Parameters
----------
times
(list) List of time points at which we wish to evaluate the ODEs
system.
num_a_groups
(int) Number of age groups in which the population is split. It
refers to the number of compartments of each type.
"""
# Split compartments into their types
s, e1, e2, i1, i2, r = np.asarray(self._y_init)[:, self._region-1]
# Read parameters of the system
beta, dL, dI = self._c
kappa = self._delta_t * 2/dL
gamma = self._delta_t * 2/dI
eval_times, ind_in_times = \
self._compute_evaluation_moments(times)
solution = np.ones((len(times), num_a_groups*6))
for ind, t in enumerate(eval_times):
# Add present vlaues of the compartments to the solutions
if t in times:
solution[ind_in_times[ind]] = tuple(
chain(s, e1, e2, i1, i2, r))
# And identify the appropriate MultiTimesInfectivity matrix for the
# ODE system
b = self.infectivity_timeline.compute_prob_infectivity_matrix(
self._region, t, s, beta[self._region-1][ind_in_times[ind]])
# Compute the current time, age and region-varying
# rate with which susceptible individuals become infected
lam = self._compute_lambda(s, i1, i2, b)
# Write down ODE system and compute new values for all compartments
s_ = np.multiply(
np.asarray(s), (np.ones_like(lam) - self._delta_t * lam))
e1_ = (1 - kappa) * np.asarray(e1) + np.multiply(
np.asarray(s), self._delta_t * lam)
e2_ = (1 - kappa) * np.asarray(e2) + kappa * np.asarray(e1)
i1_ = (1 - gamma) * np.asarray(i1) + kappa * np.asarray(e2)
i2_ = (1 - gamma) * np.asarray(i2) + gamma * np.asarray(i1)
r_ = gamma * np.asarray(i2) + r
s, e1, e2, i1, i2, r = (
s_.tolist(), e1_.tolist(), e2_.tolist(),
i1_.tolist(), i2_.tolist(), r_.tolist())
return({'y':
|
np.transpose(solution)
|
numpy.transpose
|
import numpy as np
import os
from .sfr import SFR
from .solar_abundance import solar_abundances
import time
from .data_to_test import likelihood_function, wildcard_likelihood_function, elements_plot, arcturus, sol_norm, plot_processes, save_abundances, cosmic_abundance_standard, ratio_function, star_function, gas_reservoir_metallicity
import multiprocessing as mp
from .wrapper import initialise_stuff, Chempy, Chempy_all_times
try:
from scipy.misc import logsumexp
except ImportError:
from scipy.special import logsumexp ## for scipy version control
import numpy.ma as ma
from .data_to_test import likelihood_evaluation, read_out_wildcard, likelihood_evaluation_int
def gaussian_log(x,x0,xsig):
'''
function to calculate the gaussian probability (its normed to Pmax and given in log)
INPUT:
x = where is the data point or parameter value
x0 = mu
xsig = sigma
'''
return -np.divide((x-x0)*(x-x0),2*xsig*xsig)
def lognorm_log(x,mu,factor):
'''
this function provides Prior probability distribution where the factor away from the mean behaves like the sigma deviation in normal_log
for example if mu = 1 and factor = 2
for 1 it returns 0
for 0,5 and 2 it returns -0.5
for 0.25 and 4 it returns -2.0
and so forth
Can be used to specify the prior on the yield factors
'''
y = np.log(np.divide(x,mu))
y = np.divide(y,np.log(factor))
y = gaussian_log(y,0.,1.)
return y
def gaussian(x,x0,xsig):
'''
function to calculate the gaussian probability (its normed to Pmax and given in log)
INPUT:
x = where is the data point or parameter value
x0 = mu
xsig = sigma
'''
factor = 1. / (np.sqrt(xsig * xsig * 2. * np.pi))
exponent = -np.divide((x - x0) * (x - x0),2 * xsig * xsig)
return factor * np.exp(exponent)
def lognorm(x,mu,factor):
'''
this function provides Prior probability distribution where the factor away from the mean behaves like the sigma deviation in normal_log
BEWARE: this function is not a properly normalized probability distribution. It only provides relative values.
INPUT:
x = where to evaluate the function, can be an array
mu = peak of the distribution
factor = the factor at which the probability decreases to 1 sigma
Can be used to specify the prior on the yield factors
'''
y = np.log(np.divide(x,mu))
y = np.divide(y,np.log(factor))
y = gaussian(y,0.,1.)
return y
def shorten_sfr(a,age=None):
'''
This function crops the SFR to the length of the age of the star and ensures that enough stars are formed at the stellar birth epoch
INPUT:
a = Modelparameters
OUTPUT:
the function will update the modelparameters, such that the simulation will end when the star is born and it will also check whether there is enough sfr left at that epoch
'''
if age==None:
try:
star = np.load('%s.npy' %(a.stellar_identifier))
except Exception as ex:
from . import localpath
star = np.load(localpath + 'input/stars/' + a.stellar_identifier + '.npy')
age_of_star = star['age'][0]
else:
age_of_star=age
assert (age_of_star <= 13.0), "Age of the star must be below 13Gyr"
new_timesteps = int((a.time_steps-1)*a.end/(a.end-age_of_star)+1)
new_end = (a.end-age_of_star)*(new_timesteps-1)/(a.time_steps-1)
## Compute SFR with the new end-point and timesteps
basic_sfr = SFR(a.start,new_end,new_timesteps)
## Also compute old SFR without discretization of final time
# This is to ensure we form the correct amount of mass in the simulation
old_sfr = SFR(a.start,a.end,a.time_steps)
if a.basic_sfr_name == 'gamma_function':
getattr(basic_sfr, a.basic_sfr_name)(S0 = a.S_0 * a.mass_factor,a_parameter = a.a_parameter, loc = a.sfr_beginning, scale = a.sfr_scale)
getattr(old_sfr, a.basic_sfr_name)(S0 = a.S_0 * a.mass_factor,a_parameter = a.a_parameter, loc = a.sfr_beginning, scale = a.sfr_scale)
elif a.basic_sfr_name == 'model_A':
basic_sfr.model_A(a.mass_factor*a.S_0,a.t_0,a.t_1)
old_sfr.model_A(a.mass_factor*a.S_0,a.t_0,a.t_1)
elif a.basic_sfr_name == 'prescribed':
basic_sfr.prescribed(a.mass_factor, a.name_of_file)
old_sfr.prescribed(a.mass_factor, a.name_of_file)
elif a.basic_sfr_name == 'doubly_peaked':
basic_sfr.doubly_peaked(S0 = a.mass_factor*a.S_0, peak_ratio = a.peak_ratio, decay = a.sfr_decay, t0 = a.sfr_t0, peak1t0 = a.peak1t0, peak1sigma = a.peak1sigma)
old_sfr.prescribed(a.mass_factor, a.name_of_file)
# compute a small correction from changing the simulation end time
from scipy.stats import gamma
basic_gamma = np.sum(gamma.pdf(basic_sfr.t,a.a_parameter,a.sfr_beginning,a.sfr_scale))*basic_sfr.dt
old_gamma = np.sum(gamma.pdf(old_sfr.t,a.a_parameter,a.sfr_beginning,a.sfr_scale))*old_sfr.dt
correction = basic_gamma/old_gamma
a.total_mass*=correction
## NB: normalization doesn't matter here since it will be renormalized later
basic_sfr.sfr = a.total_mass * np.divide(basic_sfr.sfr,sum(basic_sfr.sfr))
mass_normalisation = a.total_mass
mean_sfr = sum(basic_sfr.sfr) / new_end
# at which time in the simulation is the star born
star_time = a.end-age_of_star#basic_sfr.t[-1] - age_of_star
cut = [np.where(np.abs(basic_sfr.t - star_time) == np.min(np.abs(basic_sfr.t - star_time)))]
if len(cut[0][0]) != 1:
cut = cut[0][0][0]
# updating the end time and the model steps and rescale the total mass
time_model = float(basic_sfr.t[tuple(cut)])
a.end = time_model
a.time_steps = int(cut[0][0]) + 1
a.total_mass = sum(basic_sfr.sfr[0:a.time_steps])
# check whether the sfr is enough at end to produce reasonable number of stars (which is necessary in order to have a probability to observe a star at all)
sfr_at_end = float(basic_sfr.sfr[tuple(cut)] / basic_sfr.dt)
fraction_of_mean_sfr = sfr_at_end / mean_sfr
a.shortened_sfr_rescaling = a.total_mass / mass_normalisation
if fraction_of_mean_sfr<0.05:
return np.inf
else:
return a
#assert fraction_of_mean_sfr > 0.05, ('The total SFR of the last age bin is below 5% of the mean SFR', 'stellar identifier = ', a.stellar_identifier, 'star time = ', star_time, 'model time = ', time_model )
def cem(changing_parameter,a):
'''
This is the function calculating the chemical evolution for a specific parameter set (changing_parameter) and for a specific observational constraint specified in a (e.g. 'solar_norm' calculates the likelihood of solar abundances coming out of the model). It returns the posterior and a list of blobs. It can be used by an MCMC.
This function actually encapsulates the real cem function in order to capture exceptions and in that case return -inf. This makes the MCMC runs much more stable
INPUT:
changing_parameter = parameter values of the free parameters as an array
a = model parameters specified in parameter.py. There are also the names of free parameters specified here
OUTPUT:
log posterior, array of blobs
the blobs contain the prior values, the likelihoods and the actual values of each predicted data point (e.g. elemental abundance value)
'''
try:
posterior, blobs = cem_real(changing_parameter,a)
return posterior, blobs
except Exception as ex:
import traceback; traceback.print_exc()
return -np.inf, [0]
def cem_real(changing_parameter,a):
'''
real chempy function. description can be found in cem
'''
for i,item in enumerate(a.to_optimize):
setattr(a, item, changing_parameter[i])
val = getattr(a, item)
start_time = time.time()
### PRIOR calculation, values are stored in parameter.py
prior_names = []
prior = []
for name in a.to_optimize:
(mean, std, functional_form) = a.priors.get(name)
val = getattr(a, name)
prior_names.append(name)
if functional_form == 0:
prior.append(gaussian_log(val, mean, std))
elif functional_form == 1:
prior.append(lognorm_log(val, mean, std))
a.prior = prior
for name in a.to_optimize:
(lower, upper) = a.constraints.get(name)
val = getattr(a, name)
if lower is not None and val<lower:
print('%s lower border is violated with %.5f' %(name,val))
return -np.inf, [0]
if upper is not None and val>upper:
print('%s upper border is violated' %(name))
return -np.inf, [0]
if not a.testing_output:
print(changing_parameter,mp.current_process()._identity[0])#,a.observational_constraints_index
else:
print(changing_parameter)
### So that the parameter can be plotted in linear space
if 'log10_N_0' in a.to_optimize:
a.N_0 = np.power(10,a.log10_N_0)
if 'log10_sn1a_time_delay' in a.to_optimize:
a.sn1a_time_delay =
|
np.power(10,a.log10_sn1a_time_delay)
|
numpy.power
|
import cv2
import imutils
import numpy as np
import time
# from face_detection import FaceDetection
# from scipy import signal
import sys
from numpy.linalg import inv
# import dlib
import imutils
import time
import skin_detector
def face_detect_and_thresh(frame):
skinM = skin_detector.process(frame)
skin = cv2.bitwise_and(frame, frame, mask = skinM)
# cv2.imshow("skin2",skin)
# cv2.waitKey(1)
return skin,skinM
def spartialAverage(thresh,frame):
a=list(np.argwhere(thresh>0))
# x=[i[0] for i in a]
# y=[i[1] for i in a]
# p=[x,y]
if a:
ind_img=(np.vstack((a)))
else:
return 0,0,0
sig_fin=np.zeros([np.shape(ind_img)[0],3])
test_fin=[]
for i in range(
|
np.shape(ind_img)
|
numpy.shape
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from scipy.sparse.linalg import LinearOperator, aslinearoperator
import numpy as np
__all__ = ['DeflationOperator', 'DeflatedOperator']
def vec2mat(x):
n = x.shape[0]
if x.shape == (n,):
return np.reshape(a=x, newshape=(n, 1))
return
|
np.array(x)
|
numpy.array
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import collections
import os
import numpy as np
import tensorflow as tf
from scipy.spatial.distance import cdist
from sklearn.neighbors import NearestNeighbors
from tqdm import tqdm
from utils import *
# In[2]:
trainset = sklearn.datasets.load_files(container_path="data", encoding="UTF-8")
trainset.data, trainset.target = separate_dataset(trainset, 1.0)
print(trainset.target_names)
print(len(trainset.data))
print(len(trainset.target))
# In[3]:
def build_dataset(words, n_words, atleast=1):
count = [["PAD", 0], ["GO", 1], ["EOS", 2], ["UNK", 3]]
counter = collections.Counter(words).most_common(n_words)
counter = [i for i in counter if i[1] >= atleast]
count.extend(counter)
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
for word in words:
index = dictionary.get(word, 3)
data.append(index)
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, dictionary, reversed_dictionary
# In[4]:
split = (" ".join(trainset.data)).split()
vocabulary_size = len(list(set(split)))
data, dictionary, rev_dictionary = build_dataset(split, vocabulary_size)
# In[5]:
len(dictionary)
# In[6]:
class Vocabulary:
def __init__(self, dictionary, rev_dictionary):
self._dictionary = dictionary
self._rev_dictionary = rev_dictionary
@property
def start_string(self):
return self._dictionary["GO"]
@property
def end_string(self):
return self._dictionary["EOS"]
@property
def unk(self):
return self._dictionary["UNK"]
@property
def size(self):
return len(self._dictionary)
def word_to_id(self, word):
return self._dictionary.get(word, self.unk)
def id_to_word(self, cur_id):
return self._rev_dictionary.get(cur_id, self._rev_dictionary[3])
def decode(self, cur_ids):
return " ".join([self.id_to_word(cur_id) for cur_id in cur_ids])
def encode(self, sentence, reverse=False, split=True):
if split:
sentence = sentence.split()
word_ids = [self.word_to_id(cur_word) for cur_word in sentence]
if reverse:
return np.array([self.end_string] + word_ids + [self.start_string], dtype=np.int32)
else:
return np.array([self.start_string] + word_ids + [self.end_string], dtype=np.int32)
class UnicodeCharsVocabulary(Vocabulary):
def __init__(self, dictionary, rev_dictionary, max_word_length, **kwargs):
super(UnicodeCharsVocabulary, self).__init__(dictionary, rev_dictionary, **kwargs)
self._max_word_length = max_word_length
self.bos_char = 256
self.eos_char = 257
self.bow_char = 258
self.eow_char = 259
self.pad_char = 260
num_words = self.size
self._word_char_ids = np.zeros([num_words, max_word_length], dtype=np.int32)
def _make_bos_eos(c):
r = np.zeros([self._max_word_length], dtype=np.int32)
r[:] = self.pad_char
r[0] = self.bow_char
r[1] = c
r[2] = self.eow_char
return r
self.bos_chars = _make_bos_eos(self.bos_char)
self.eos_chars = _make_bos_eos(self.eos_char)
for i, word in enumerate(self._dictionary.keys()):
self._word_char_ids[i] = self._convert_word_to_char_ids(word)
self._word_char_ids[self.start_string] = self.bos_chars
self._word_char_ids[self.end_string] = self.eos_chars
@property
def word_char_ids(self):
return self._word_char_ids
@property
def max_word_length(self):
return self._max_word_length
def _convert_word_to_char_ids(self, word):
code = np.zeros([self.max_word_length], dtype=np.int32)
code[:] = self.pad_char
word_encoded = word.encode("utf-8", "ignore")[: (self.max_word_length - 2)]
code[0] = self.bow_char
for k, chr_id in enumerate(word_encoded, start=1):
code[k] = chr_id
code[len(word_encoded) + 1] = self.eow_char
return code
def word_to_char_ids(self, word):
if word in self._dictionary:
return self._word_char_ids[self._dictionary[word]]
else:
return self._convert_word_to_char_ids(word)
def encode_chars(self, sentence, reverse=False, split=True):
if split:
sentence = sentence.split()
chars_ids = [self.word_to_char_ids(cur_word) for cur_word in sentence]
if reverse:
return np.vstack([self.eos_chars] + chars_ids + [self.bos_chars])
else:
return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])
def _get_batch(generator, batch_size, num_steps, max_word_length):
cur_stream = [None] * batch_size
no_more_data = False
while True:
inputs = np.zeros([batch_size, num_steps], np.int32)
if max_word_length is not None:
char_inputs = np.zeros([batch_size, num_steps, max_word_length], np.int32)
else:
char_inputs = None
targets =
|
np.zeros([batch_size, num_steps], np.int32)
|
numpy.zeros
|
'''Helper functions
'''
import os
import re
import six
import zlib
import string
import urllib
import itertools
from dateutil.tz import tzlocal
from functools import wraps
try:
from urllib import unquote
except ImportError:
from urllib.parse import unquote
import numpy as np
from cottoncandy import options
##############################
# Globals
##############################
# S3 AWS
#---------
MB = 2**20
MIN_MPU_SIZE = int(options.config.get('upload_settings', 'min_mpu_size'))*MB # 5MB
MAX_PUT_SIZE = int(options.config.get('upload_settings', 'max_put_size'))*MB # 5GB
MAX_MPU_SIZE = int(options.config.get('upload_settings', 'max_mpu_size_TB'))*MB*MB # 5TB
MAX_MPU_PARTS = int(options.config.get('upload_settings', 'max_mpu_parts')) # 10,000
MPU_THRESHOLD = int(options.config.get('upload_settings', 'mpu_use_threshold'))*MB
MPU_CHUNKSIZE = int(options.config.get('upload_settings', 'mpu_chunksize'))*MB
DASK_CHUNKSIZE = int(options.config.get('upload_settings', 'dask_chunksize'))*MB
SEPARATOR = options.config.get('basic', 'path_separator')
DEFAULT_ACL = options.config.get('basic', 'default_acl')
MANDATORY_BUCKET_PREFIX = options.config.get('basic', 'mandatory_bucket_prefix')
ISBOTO_VERBOSE = options.config.get('login', 'verbose_boto')
##############################
# misc functions
##############################
def sanitize_metadata(metadict):
outdict = {}
for key,val in metadict.items():
outdict[key.lower()] = val
return outdict
def pathjoin(a, *p):
"""Join two or more pathname components, inserting SEPARATOR as needed.
If any component is an absolute path, all previous path components
will be discarded. An empty last part will result in a path that
ends with a separator."""
path = a
for b in p:
if b.startswith(SEPARATOR):
path = b
elif path == '' or path.endswith(SEPARATOR):
path += b
else:
path += SEPARATOR + b
return path
def string2bool(mstring):
'''
'''
truth_value = False
if mstring in ['True','true', 'tru', 't',
'y','yes', '1']:
truth_value = True
elif mstring == 'None':
truth_value = None
return truth_value
def bytes2human(nbytes):
'''Return string representation of bytes.
Parameters
----------
nbytes : int
Number of bytes
Returns
-------
human_bytes : str
Human readable byte size (e.g. "10.00MB", "1.24GB", etc.).
'''
if nbytes == 0:
return '0.00B'
mapper = {0 : 'B',
10 : 'KB',
20 : 'MB',
30 : 'GB',
40 : 'TB',
50 : 'PB',
60 : 'EB',
70 : 'ZB',
}
exps = sorted(mapper.keys())
exp_coeff = np.log2(nbytes)
exp_closest = int((exps[np.abs(exps - exp_coeff).argmin()]))
if
|
np.log10(nbytes/2.**exp_closest)
|
numpy.log10
|
# openSAP32
# Copyright (c) 2014 <NAME>
# License: BSD 3-clause
# (https://github.com/dukenmarga/openSAP32/blob/master/LICENSE.txt)
import numpy as np
import openSAP32.solver.mathematic as maths
class Truss():
''' Perform truss structure analysis
All index numbering in this class use 2 method:
- ArrayIndexing : index number is using numpy indexing
start from zero (0)
- NormalIndexing : index number is using normal indexing
start from one (1), commonly used for numbering
for human usage.
'''
def __init__(self):
self.list = np.array([[]])
pass
def solve2d(self, model, rec):
'''Solve Truss 2 dimension'''
self.INDEX_AREA = 0
self.INDEX_YOUNG_MODULUS = 3
self.INDEX_LENGTH = 3
self.INDEX_SECTION = 2
self.INDEX_MATERIAL = 2
self.INDEX_SIN = 0
self.INDEX_COS = 1
self.INDEX_ANGLE = 2
self.INDEX_SPRING_STIFF = 1
self.INDEX_NODE_1, self.INDEX_NODE_2 = 0, 1
self.INDEX_POSITION_X, self.INDEX_POSITION_Y = 0, 1
self.INDEX_NODE = 0
self.INDEX_FX = 1
self.INDEX_FY = 2
self.INDEX_DX = 1
self.INDEX_DY = 2
self.DOF = 2 # degree of freedom each node
self.totalNode = np.size(model.node.list, 0)
self.totalMember = np.size(model.structure.list, 0)
self.totalDOF = self.totalNode * self.DOF
self.assembleTrigonometri(model, rec)
self.assembleLocalStiffness(model, rec)
self.assembleGlobalStiffness(model, rec)
self.assembleLoad(model, rec)
self.assembleUnsolvedMatrix(model, rec)
self.solveDeformation(model, rec)
self.solveInternalForceStress(model, rec)
pass
def assembleTrigonometri(self, model, rec):
'''Stores value of sin and cos of angle
that is formed beetween 2 nodes for
each element in structure.
Example
-------
Element 2 in structure is formed beetween
node2: (x2=4,y2=3) and node1: (x1=0, y1=0). So,
:math:`b = y2-y1 = 3-0 = 3`,
:math:`a = x2-x1 = 4-0 = 4`, then using pythagoras
:math:`c = 5`
:math:`Sin = b/c`,
:math:`Cos = a/c`,
:math:`Tan = a/b`
'''
# ELEMENT
structure = model.structure
node = model.node
restrain = model.restrain
for element in structure.list:
if self.totalMember == 0:
break
# NODE_1 & NODE_2 are number of nodes for each element
NODE_1, NODE_2 = element[self.INDEX_NODE_1]-1, element[self.INDEX_NODE_2]-1
length_x = node.list[NODE_2][self.INDEX_POSITION_X] - node.list[NODE_1][self.INDEX_POSITION_X]
length_y = node.list[NODE_2][self.INDEX_POSITION_Y] - node.list[NODE_1][self.INDEX_POSITION_Y]
length_element = maths.hypotenuse(length_y, length_x)
# S=sin C=cos T=tan
S = length_y/length_element
C = length_x/length_element
T = 0
# Store trigonometri data of each element
if rec.pre.T.size == 0:
rec.pre.T = np.array([[S, C, T, length_element]])
else:
rec.pre.T = np.append(rec.pre.T, [[S, C, T, length_element]], axis=0)
# SPRING
for spring in restrain.spring:
# S=sin C=cos T=tan
S = maths.sin(spring[self.INDEX_ANGLE])
C = maths.cos(spring[self.INDEX_ANGLE])
if C < 1e-10:
C = 0
T = 0
length = 0
# Store trigonometri data of each element
if rec.pre.T.size == 0:
rec.pre.T = np.array([[S, C, T, length]])
else:
rec.pre.T = np.append(rec.pre.T, [[S, C, T, length]], axis=0)
pass
def assembleLocalStiffness(self, model, rec):
'''Assemble local stiffness of each element
Local stiffness is also known as element stiffness
'''
i = 0
# LOCAL STIFFNESS FROM ELEMENT
structure = model.structure
section = model.section
material = model.material
restrain = model.restrain
Trig = rec.pre.T
for element in structure.list:
if self.totalMember == 0:
break
NUM_SECTION = element[self.INDEX_SECTION]-1
A = section.list[NUM_SECTION, self.INDEX_AREA]
NUM_MATERIAL = int(section.list[NUM_SECTION, self.INDEX_MATERIAL]-1)
E = material.list[NUM_MATERIAL][self.INDEX_YOUNG_MODULUS]
L = Trig[i][self.INDEX_LENGTH]
K = A * E / L
S = Trig[i][self.INDEX_SIN]
C = Trig[i][self.INDEX_COS]
matrix = [[C*C, C*S, -C*C, -C*S],
[C*S, S*S, -C*S, -S*S],
[-C*C, -C*S, C*C, C*S],
[-C*S, -S*S, C*S, S*S]]
matrix = np.dot(matrix, K)
if rec.pre.localStiffnessMatrix.size == 0:
rec.pre.localStiffnessMatrix = np.array([matrix])
else:
rec.pre.localStiffnessMatrix= np.append(rec.pre.localStiffnessMatrix, \
[matrix], axis=0)
i = i+1
# LOCAL STIFFNESS FROM SPRING
i = self.totalMember
for spring in restrain.spring:
k = spring[self.INDEX_SPRING_STIFF]
S = Trig[i][self.INDEX_SIN]
C = Trig[i][self.INDEX_COS]
matrix = [[C*C, C*S, -C*C, -C*S],
[C*S, S*S, -C*S, -S*S],
[-C*C, -C*S, C*C, C*S],
[-C*S, -S*S, C*S, S*S]]
matrix = np.dot(matrix, k)
if rec.pre.localStiffnessMatrix.size == 0:
rec.pre.localStiffnessMatrix = np.array([matrix])
else:
rec.pre.localStiffnessMatrix= np.append(rec.pre.localStiffnessMatrix, \
[matrix], axis=0)
i = i+1
pass
def assembleGlobalStiffness(self, model, rec):
''' Assemble global stiffness of structures'''
rec.pre.globalStiffnessMatrix = np.array(np.zeros((self.totalDOF, self.totalDOF)))
# ELEMENT
i = 0
structure = model.structure
localStiffnessMatrix = rec.pre.localStiffnessMatrix
for element in structure.list:
# NODE_1 & NODE_2 are number of nodes for each element
NODE_1, NODE_2 = element[self.INDEX_POSITION_X], element[self.INDEX_POSITION_Y]
#ArrayIndexing
a1 = 2*NODE_1-2
a2 = 2*NODE_1
b1 = 2*NODE_2-2
b2 = 2*NODE_2
rec.pre.globalStiffnessMatrix[a1:a2, a1:a2] += localStiffnessMatrix[i, 0:2, 0:2]
rec.pre.globalStiffnessMatrix[a1:a2, b1:b2] += localStiffnessMatrix[i, 0:2, 2:4]
rec.pre.globalStiffnessMatrix[b1:b2, a1:a2] += localStiffnessMatrix[i, 2:4, 0:2]
rec.pre.globalStiffnessMatrix[b1:b2, b1:b2] += localStiffnessMatrix[i, 2:4, 2:4]
i = i+1
pass
# SPRING
i = self.totalMember
restrain = model.restrain
for spring in restrain.spring:
n = spring[self.INDEX_NODE]
#ArrayIndexing
a1 = 2*n-2
a2 = 2*n
rec.pre.globalStiffnessMatrix[a1:a2, a1:a2] += localStiffnessMatrix[i, 0:2, 0:2]
i = i+1
pass
def assembleLoad(self, model, rec):
'''Assemble load matrix'''
rec.pre.loadMatrix = np.array(np.zeros((self.totalDOF,1)))
load = model.load
for load in load.list:
node = load[self.INDEX_NODE]
Fx = load[self.INDEX_FX]
Fy = load[self.INDEX_FY]
rec.pre.loadMatrix[2*node-2:2*node] += [[Fx], [Fy]]
pass
def assembleUnsolvedMatrix(self, model, rec):
'''Construct unsolved matrix.
Unsolved matrix is consist of matrix of global stiffness of node
which are not restrained and matrix of load at unrestrained node.
'''
# construct array number of unrestrained node
sequence = np.arange(self.totalDOF)
unrestrainedNode=[]
restrain = model.restrain
for i in sequence:
if i not in restrain.list:
unrestrainedNode += [i]
rec.pre.unrestrainedNode = np.array(unrestrainedNode)
unsolvedStiffness = rec.pre.globalStiffnessMatrix[np.ix_(rec.pre.unrestrainedNode, rec.pre.unrestrainedNode)]
unsolvedLoad = rec.pre.loadMatrix[np.ix_(rec.pre.unrestrainedNode)]
rec.pre.unsolvedGlobalStiffnessMatrix = np.array(unsolvedStiffness)
rec.pre.unsolvedLoadMatrix =
|
np.array(unsolvedLoad)
|
numpy.array
|
import numpy as np
import pandas as pd
import scipy.io
from matplotlib import pyplot as plt
import pickle
from sklearn.model_selection import train_test_split
from collections import Counter
from tqdm import tqdm
import os
import torch
def preprocess_physionet():
"""
download the raw data from https://physionet.org/content/challenge-2017/1.0.0/,
and put it in challenge2017/
"""
# read label
label_df = pd.read_csv('challenge2017/REFERENCE-v3.csv', header=None)
label = label_df.iloc[:,1].values
print(Counter(label))
# read data
all_data = []
filenames = pd.read_csv('challenge2017/training2017/RECORDS', header=None)
filenames = filenames.iloc[:,0].values
print(filenames)
for filename in tqdm(filenames):
mat = scipy.io.loadmat('challenge2017/training2017/{0}.mat'.format(filename))
mat = np.array(mat['val'])[0]
all_data.append(mat)
all_data = np.array(all_data)
res = {'data':all_data, 'label':label}
with open('challenge2017/challenge2017.pkl', 'wb') as fout:
pickle.dump(res, fout)
def slide_and_cut(X, Y, window_size, stride, output_pid=False):
out_X = []
out_Y = []
out_pid = []
n_sample = X.shape[0]
mode = 0
for i in range(n_sample):
tmp_ts = X[i]
tmp_Y = Y[i]
# This aims to 'augment' or 'balance' the data,
# You can use according to your dataset or just set 'i_stride = stride'
"""
if tmp_Y == 0:
i_stride = stride
elif tmp_Y == 1:
i_stride = stride//6 # use 10 for read_data_physionet_2
elif tmp_Y == 2:
i_stride = stride//2
elif tmp_Y == 3:
i_stride = stride//20
"""
i_stride = stride
for j in range(0, len(tmp_ts)-window_size, i_stride):
out_X.append(tmp_ts[j:j+window_size])
out_Y.append(tmp_Y)
out_pid.append(i)
if output_pid:
return np.array(out_X), np.array(out_Y), np.array(out_pid)
else:
return np.array(out_X), np.array(out_Y)
def read_data_physionet(window_size=2000, stride=1000, is_train=True):
# read pkl
with open('challenge2017/challenge2017.pkl', 'rb') as fin:
res = pickle.load(fin)
## scale data
all_data = res['data']
all_label = res['label']
new_data = []
new_label = []
# exclude noise
for i in range(len(all_label)):
if all_label[i] != '~':
new_data.append(all_data[i])
new_label.append(all_label[i])
all_data = np.array(new_data)
new_label = np.array(new_label)
for i in range(len(all_data)):
tmp_data = all_data[i]
tmp_std = np.std(tmp_data)
tmp_mean = np.mean(tmp_data)
all_data[i] = (tmp_data - tmp_mean) / tmp_std
## encode label
all_label = []
for i in new_label:
if i == 'N':
all_label.append(0)
elif i == 'A':
all_label.append(1)
elif i == 'O':
all_label.append(2)
elif i == '~':
all_label.append(3)
all_label = np.array(all_label)
# slide and cut
X, _, Y = slide_and_cut(all_data, all_label, window_size=window_size, stride=stride, output_pid=True)
# split train test
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1, random_state=0)
# shuffle train
if is_train:
shuffle_pid = np.random.permutation(Y_train.shape[0])
X_train = X_train[shuffle_pid]
Y_train = Y_train[shuffle_pid]
X_train =
|
np.expand_dims(X_train, 1)
|
numpy.expand_dims
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import logging
import os
import sys
import argparse
import random
import numpy as np
import tqdm
import pickle
import pandas as pd
from matplotlib import pyplot as plt
from keras import backend as K
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from sklearn.metrics import fbeta_score, precision_recall_fscore_support, f1_score
import torch
from torch.utils.data.dataloader import DataLoader
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import XLNetTokenizer, XLNetForSequenceClassification, XLNetModel, AdamW
# from Dataset import Dataset
# sys.path.append(os.path.abspath("../.."))
# from skimage.io import imread, imsave
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# In[2]:
def logging_storage(logfile_path):
logging.basicConfig(filename=logfile_path, filemode='a', level=logging.INFO, format='%(asctime)s => %(message)s')
logging.info(torch.__version__)
logging.info(device)
# ### Global Variables
# In[3]:
lr = 2e-5
num_epochs = 3
MAX_LEN = 128
batch_size = 128
dataset = 'quora'
model = 'xlnet'
# In[4]:
ending_path = ('%s_%s_%s_%s_%s' %(model, dataset, MAX_LEN, batch_size, str(lr).replace("-", "")))
# In[5]:
ending_path
# In[6]:
save_model_path = "../models/"
if not os.path.exists(save_model_path):
os.mkdir(save_model_path)
logfile_path = "../logs/" + ending_path
# In[8]:
logging_storage(logfile_path)
# ### Data Loading
# In[9]:
df_train = pd.read_csv('../data/Quora/train.tsv', names = ['Label', 'Q1', 'Q2', 'Id'], sep = "\t")
# In[10]:
df_dev = pd.read_csv('../data/Quora/dev.tsv', names = ['Label', 'Q1', 'Q2', 'Id'], sep = "\t")
# In[11]:
df_test = pd.read_csv('../data/Quora/test.tsv', names = ['Label', 'Q1', 'Q2', 'Id'], sep = "\t")
# In[12]:
print(len(df_train), len(df_test), len(df_dev))
# In[13]:
for i, row in df_train.iterrows():
df_train.at[i, 'input'] = " <cls> " + str(row[1]) + " <sep> " + str(row[2]) + " <cls> "
if(i % 100000) == 0 and i:
print("Completed: %s" %(i))
# In[14]:
for i, row in df_dev.iterrows():
df_dev.at[i, 'input'] = " <cls> " + str(row[1]) + " <sep> " + str(row[2]) + " <cls> "
if(i % 100000) == 0 and i:
print("Completed: %s" %(i))
# In[15]:
for i, row in df_test.iterrows():
df_test.at[i, 'input'] = " <cls> " + str(row[1]) + " <sep> " + str(row[2]) + " <cls> "
if(i % 100000) == 0 and i:
print("Completed: %s" %(i))
# In[16]:
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased', do_lower_case=True, sep_token = '<sep>', cls_token = '<cls>')
# In[45]:
inp_train = df_train['input'].tolist()
labels_train = df_train['Label'].tolist()
# In[46]:
inp_dev = df_dev['input'].tolist()
labels_dev = df_dev['Label'].tolist()
# In[47]:
inp_test = df_test['input'].tolist()
labels_test = df_test['Label'].tolist()
# ### Process Dataset
# In[48]:
tokenized_texts_train = [tokenizer.tokenize(inp) for inp in inp_train]
input_ids_train = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts_train]
# In[49]:
input_ids_train = pad_sequences(input_ids_train, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# In[50]:
attention_masks_train = []
for seq in input_ids_train:
seq_mask = [float(i>0) for i in seq]
attention_masks_train.append(seq_mask)
# In[51]:
train_inputs = torch.tensor(input_ids_train)
train_labels = torch.tensor(labels_train)
train_masks = torch.tensor(attention_masks_train)
# In[52]:
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# ##### Dev
# In[53]:
tokenized_texts_dev = [tokenizer.tokenize(inp) for inp in inp_dev]
input_ids_dev = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts_dev]
# In[54]:
input_ids_dev = pad_sequences(input_ids_dev, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# In[55]:
attention_masks_dev = []
for seq in input_ids_dev:
seq_mask = [float(i>0) for i in seq]
attention_masks_dev.append(seq_mask)
# In[56]:
dev_inputs = torch.tensor(input_ids_dev)
dev_labels = torch.tensor(labels_dev)
dev_masks = torch.tensor(attention_masks_dev)
# In[57]:
dev_data = TensorDataset(dev_inputs, dev_masks, dev_labels)
dev_sampler = RandomSampler(dev_data)
dev_dataloader = DataLoader(dev_data, sampler=dev_sampler, batch_size=batch_size)
# #### Test
# In[58]:
tokenized_texts_test = [tokenizer.tokenize(inp) for inp in inp_test]
input_ids_test = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts_test]
# In[59]:
input_ids_test = pad_sequences(input_ids_test, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# In[60]:
attention_masks_test = []
for seq in input_ids_test:
seq_mask = [float(i>0) for i in seq]
attention_masks_test.append(seq_mask)
# In[61]:
test_inputs = torch.tensor(input_ids_test)
test_labels = torch.tensor(labels_test)
test_masks = torch.tensor(attention_masks_test)
# In[62]:
test_data = TensorDataset(test_inputs, test_masks, test_labels)
#test_sampler = RandomSampler(test_data)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# ## Models and Parameters
# In[63]:
model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased", num_labels=2)
model = nn.DataParallel(model)
model.to(device)
# In[64]:
logging.info("Model Loaded!")
# In[65]:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
# In[66]:
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
# In[67]:
logging.info("Optimizerlr: %s\tLR1_ML: %s" %(optimizer.param_groups[0]['lr'], lr))
# ## Helper Functions
# In[68]:
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
labels_flat = labels_flat.cpu().detach().numpy()
return np.sum(pred_flat == labels_flat), pred_flat
# In[69]:
def train(i):
model.train()
total_loss = 0.0
total_predicted_label = np.array([])
total_actual_label = np.array([])
train_len = 0
f_acc = 0
## adaptive lr
optimizer.param_groups[0]['lr'] *= (0.1)**(1/40.)
logging.info("LR: %s\tEpoch: %s\t" %(optimizer.param_groups[0]['lr'], i))
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
if b_labels.size(0) == 1:
continue
optimizer.zero_grad()
outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
pred = outputs[1].detach().cpu().numpy()
batch_f_acc, pred_flat = flat_accuracy(pred, b_labels)
f_acc += batch_f_acc
loss = outputs[0]
loss.sum().backward()
optimizer.step()
labels_flat = b_labels.flatten().cpu().detach().numpy()
total_actual_label = np.concatenate((total_actual_label, labels_flat))
total_predicted_label = np.concatenate((total_predicted_label, pred_flat))
# print(total_actual_label.shape, total_predicted_label.shape)
total_loss += outputs[0].sum()
train_len += b_input_ids.size(0)
if step%100 == 0 and step:
precision, recall, f1_measure, _ = precision_recall_fscore_support(total_actual_label, total_predicted_label, average='macro')
logging.info("Train: %5.1f\tEpoch: %d\tIter: %d\tLoss: %5.5f\tAcc= %5.3f\tPrecision= %5.3f\tRecall= %5.3f\tF1_score= %5.3f" % (train_len*100.0/train_inputs.size(0), i, step, total_loss/train_len, f_acc*100.0/train_len, precision*100., recall*100., f1_measure*100.))
if torch.cuda.device_count() > 1:
p = 100
path = save_model_path + '/e_' + str(i) + "_" + str(p) + ".ckpt"
torch.save(model.module.state_dict(), path)
else:
torch.save(model.state_dict(), path)
precision, recall, f1_measure, _ = precision_recall_fscore_support(total_actual_label, total_predicted_label, average='macro')
logging.info("Train: %5.1f\tEpoch: %d\tIter: %d\tLoss: %5.5f\tAcc= %5.3f\tPrecision= %5.3f\tRecall= %5.3f\tF1_score= %5.3f" % (train_len*100.0/train_inputs.size(0), i, step, total_loss/train_len, f_acc*100.0/train_len, precision*100., recall*100., f1_measure*100.))
return total_loss/train_len
# In[70]:
def dev(i):
model.eval()
val_len = 0
total_loss = 0
total_predicted_label = np.array([])
total_actual_label =
|
np.array([])
|
numpy.array
|
# The MIT License (MIT)
#
# Copyright (c) 2016-2018 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Classes used to define input motions."""
import enum
import re
import numpy as np
import pyrvt
# Gravity in m/sec²
from scipy.constants import g as GRAVITY
class WaveField(enum.Enum):
outcrop = 0
within = 1
incoming_only = 2
class Motion(object):
def __init__(self, freqs=None):
object.__init__(self)
self._freqs = np.array([] if freqs is None else freqs)
self._pga = None
self._pgv = None
@property
def freqs(self):
return self._freqs
@property
def angular_freqs(self):
return 2 * np.pi * self.freqs
@property
def pgv(self, centimeters=False):
"""Peak-ground velocity [m/sec]."""
if self._pgv is None:
# Compute transfer function -- only over non-zero frequencies
mask = ~np.isclose(self.angular_freqs, 0)
tf = np.zeros_like(mask, dtype=np.complex)
tf[mask] = 1 / (self.angular_freqs[mask] * 1j)
if centimeters:
self._pgv = GRAVITY * 100 * self.calc_peak(tf)
else:
self._pgv = GRAVITY * self.calc_peak(tf)
return self._pgv
@property
def pga(self):
if self._pga is None:
self._pga = self.calc_peak()
return self._pga
class TimeSeriesMotion(Motion):
def __init__(self,
filename,
description,
time_step,
accels,
fa_length=None):
Motion.__init__(self)
self._filename = filename
self._description = description
self._time_step = time_step
self._accels = np.asarray(accels)
self._calc_fourier_spectrum(fa_length)
@property
def accels(self):
return self._accels
@property
def filename(self):
return self._filename
@property
def description(self):
return self._description
@property
def time_step(self):
return self._time_step
@property
def times(self):
return self._time_step *
|
np.arange(self._accels.size)
|
numpy.arange
|
import os
from astropy import table
import numpy as np
from scipy import interpolate
def mass_Noyes1984(bv, bv_err=None):
"""Noyes et al. 1984, ApJ, 279, 763"""
# 0.4 < bv < 1.4
bv = np.atleast_1d(bv)
f = np.poly1d([-0.42, 0.28])
fdot = np.polyder(f)
logtol = 0.01
logmass = f(bv)
mass = 10 ** logmass
if bv_err is not None:
bv_err = np.atleast_1d(bv_err)
bv_var = bv_err ** 2
logmass_var = bv_var * fdot(bv) ** 2 + logtol ** 2
mass_var = logmass_var * (np.log(10) * mass) ** 2
mass_err = np.sqrt(mass_var)
return mass, mass_err
return mass
def teff_Noyes1984(bv, bv_err=None):
"""Noyes et al. 1984, ApJ, 279, 763"""
# 0.4 < bv < 1.4
bv = np.atleast_1d(bv)
f = np.poly1d([-0.234, 3.908])
fdot = np.polyder(f)
logtol = 0.002
logteff = f(bv)
teff = 10 ** logteff
if bv_err is not None:
bv_err = np.atleast_1d(bv_err)
bv_var = bv_err ** 2
logteff_var = bv_var * fdot(bv) ** 2 + logtol ** 2
teff_var = logteff_var * (np.log(10) * teff) ** 2
teff_err = np.sqrt(teff_var)
return teff, teff_err
return teff
def bv_Noyes1984(teff, teff_err=None):
"""Noyes et al. 1984, ApJ, 279, 763"""
# 0.4 < bv < 1.4
teff = np.atleast_1d(teff)
logteff = np.log10(teff)
f = np.poly1d([-1 / 0.234, 3.908 / 0.234])
fdot = np.polyder(f)
bv = f(logteff)
if teff_err is not None:
teff_err = np.atleast_1d(teff_err)
teff_var = teff_err ** 2
logteff_var = teff_var / (np.log(10) * teff) ** 2
bv_var = logteff_var * fdot(logteff) ** 2
bv_err = np.sqrt(bv_var)
return bv, bv_err
return bv
def tau_Noyes1984(bv, bv_err=None):
"""Noyes et al. 1984, ApJ, 279, 763"""
bv = np.atleast_1d(bv)
x = 1 - bv
mask = x < 0
f = np.poly1d([-5.323, 0.025, -0.166, 1.362])
fdot = np.polyder(f)
g = np.poly1d([-0.14, 1.362])
gdot = np.polyder(g)
logtau = f(x)
logtau[mask] = g(x[mask])
tau = 10 ** logtau
if bv_err is not None:
bv_err = np.atleast_1d(bv_err)
bv_var = bv_err ** 2
x_var = bv_var
logtau_var = x_var * fdot(x) ** 2
logtau_var[mask] = (x_var * gdot(x) ** 2)[mask]
tau_var = logtau_var * (np.log(10) * tau) ** 2
tau_err = np.sqrt(tau_var)
return tau, tau_err
return tau
def Rossby_Noyes1984(prot, bv, prot_err=None, bv_err=None):
"""Noyes et al. 1984, ApJ, 279, 763"""
if bv_err is not None:
tau, tau_err = tau_Noyes1984(bv, bv_err)
else:
tau = tau_Noyes1984(bv)
prot = np.atleast_1d(prot)
ro = prot / tau
if prot_err is not None and bv_err is not None:
prot_err = np.atleast_1d(prot_err)
ro_err = np.hypot(prot_err / tau, ro * tau_err / tau)
return ro, ro_err
return ro
def tau_Saar1999(bv, bv_err=None):
"""Saar & Brandenburg 1999, ApJ, 524, 295"""
bv = np.atleast_1d(bv)
mask = bv >= 1
f = np.poly1d([-3.1466, 12.540, -20.063, 15.382, -3.3300])
fdot = np.polyder(f)
logtau = f(bv)
logtau[mask] = np.log10(25.0)
tau = 10 ** logtau
if bv_err is not None:
bv_err = np.atleast_1d(bv_err)
bv_var = bv_err ** 2
logtau_var = bv_var * fdot(bv) ** 2
logtau_var[mask] = 0.0
tau_var = logtau_var * (np.log(10) * tau) ** 2
tau_err = np.sqrt(tau_var)
return tau, tau_err
return tau
def Rossby_Saar1999(prot, bv, prot_err=None, bv_err=None):
"""Saar & Brandenburg 1999, ApJ, 524, 295"""
if bv_err is not None:
tau, tau_err = tau_Saar1999(bv, bv_err)
else:
tau = tau_Saar1999(bv)
prot = np.atleast_1d(prot)
ro = prot / (4 * np.pi * tau)
if prot_err is not None and bv_err is not None:
prot_err = np.atleast_1d(prot_err)
ro_err = np.hypot(prot_err / tau, ro * tau_err / tau) / (4 * np.pi)
return ro, ro_err
return ro
def Gyro_Barneslike(
n,
a,
b,
c,
bv,
n_err=0,
a_err=0,
b_err=0,
c_err=0,
bv_err=None,
age=None,
prot=None,
age_err=None,
prot_err=None,
diff_rot=False,
):
bv = np.atleast_1d(bv)
if age is not None:
logprot = n * np.log(age) + b * np.log(bv - c) + np.log(a)
prot = np.exp(logprot)
if bv_err is not None and age_err is not None:
bv_err = np.atleast_1d(bv_err)
age_err = np.atleast_1d(age_err)
logage_var = (age_err / age) ** 2
bvc_err = np.hypot(bv_err, c_err)
logbvc_var = (bvc_err / (bv - c)) ** 2
n_var = n_err ** 2
b_var = b_err ** 2
loga_var = (a_err / a) ** 2
logprot_var = (
n_var * np.log(age) ** 2
+ logage_var * n ** 2
+ b_var * np.log(bv - c) ** 2
+ logbvc_var * b ** 2
+ loga_var
)
prot_var = logprot_var * prot ** 2
prot_err = np.sqrt(prot_var)
return prot, prot_err
return prot
elif prot is not None:
logage = (np.log(prot) - b * np.log(bv - c) -
|
np.log(a)
|
numpy.log
|
"""
Example usage
-------------
Generate Newton-Cotes quadrature rules::
>>> distribution = chaospy.Uniform(0, 1)
>>> for order in range(5):
... abscissas, weights = chaospy.generate_quadrature(
... order, distribution, rule="newton_cotes")
... print(order, abscissas.round(3), weights.round(3))
0 [[0.5]] [1.]
1 [[0. 1.]] [0.5 0.5]
2 [[0. 0.5 1. ]] [0.167 0.667 0.167]
3 [[0. 0.333 0.667 1. ]] [0.125 0.375 0.375 0.125]
4 [[0. 0.25 0.5 0.75 1. ]] [0.078 0.356 0.133 0.356 0.078]
The first few orders with exponential growth rule::
>>> for order in range(4): # doctest: +NORMALIZE_WHITESPACE
... abscissas, weights = chaospy.generate_quadrature(
... order, distribution, rule="newton_cotes", growth=True)
... print(order, abscissas.round(3), weights.round(3))
0 [[0.5]] [1.]
1 [[0. 0.5 1. ]] [0.167 0.667 0.167]
2 [[0. 0.25 0.5 0.75 1. ]] [0.078 0.356 0.133 0.356 0.078]
3 [[0. 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1. ]]
[ 0.035 0.208 -0.033 0.37 -0.16 0.37 -0.033 0.208 0.035]
Applying Smolyak sparse grid on Newton-Cotes::
>>> distribution = chaospy.Iid(chaospy.Uniform(0, 1), 2)
>>> abscissas, weights = chaospy.generate_quadrature(
... 2, distribution, rule="newton_cotes",
... growth=True, sparse=True)
>>> abscissas.round(3)
array([[0. , 0. , 0. , 0.25, 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.75, 1. ,
1. , 1. ],
[0. , 0.5 , 1. , 0.5 , 0. , 0.25, 0.5 , 0.75, 1. , 0.5 , 0. ,
0.5 , 1. ]])
>>> weights.round(3)
array([ 0.028, 0.022, 0.028, 0.356, 0.022, 0.356, -0.622, 0.356,
0.022, 0.356, 0.028, 0.022, 0.028])
"""
from __future__ import division
try:
from functools import lru_cache
except ImportError: # pragma: no cover
from functools32 import lru_cache
import numpy
from scipy import integrate
from .hypercube import hypercube_quadrature
def newton_cotes(order, domain=(0, 1), growth=False, segments=1):
"""
Generate the abscissas and weights in Newton-Cotes quadrature.
Newton-Cotes quadrature, are a group of formulas for numerical integration
based on evaluating the integrand at equally spaced points.
Args:
order (int, numpy.ndarray:):
Quadrature order.
domain (:func:`chaospy.Distribution`, ;class:`numpy.ndarray`):
Either distribution or bounding of interval to integrate over.
growth (bool):
If True sets the growth rule for the quadrature rule to only
include orders that enhances nested samples.
segments (int):
Split intervals into N subintervals and create a patched
quadrature based on the segmented quadrature. Can not be lower than
`order`. If 0 is provided, default to square root of `order`.
Nested samples only exist when the number of segments are fixed.
Returns:
(numpy.ndarray, numpy.ndarray):
abscissas:
The quadrature points for where to evaluate the model function
with ``abscissas.shape == (len(dist), N)`` where ``N`` is the
number of samples.
weights:
The quadrature weights with ``weights.shape == (N,)``.
Examples:
>>> abscissas, weights = chaospy.quadrature.newton_cotes(4)
>>> abscissas.round(4)
array([[0. , 0.25, 0.5 , 0.75, 1. ]])
>>> weights.round(4)
array([0.0778, 0.3556, 0.1333, 0.3556, 0.0778])
>>> abscissas, weights = chaospy.quadrature.newton_cotes(4, segments=2)
>>> abscissas.round(4)
array([[0. , 0.25, 0.5 , 0.75, 1. ]])
>>> weights.round(4)
array([0.0833, 0.3333, 0.1667, 0.3333, 0.0833])
"""
order = numpy.asarray(order)
order = numpy.where(growth, numpy.where(order, 2**order, 0), order)
return hypercube_quadrature(
_newton_cotes,
order=order,
domain=domain,
segments=segments,
)
@lru_cache(None)
def _newton_cotes(order):
"""Backend for Newton-Cotes quadrature rule."""
if order == 0:
return numpy.full((1, 1), 0.5),
|
numpy.ones(1)
|
numpy.ones
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from .pruner import pruner_registry, Pruner
from heapq import heappush, heappop
from ..utils import logger
import re
@pruner_registry
class GradientSensitivityPruner(Pruner):
def __init__(self, model, local_config, global_config):
super(GradientSensitivityPruner, self).__init__(model, local_config, global_config)
self.parameters = local_config.parameters
self.importance = {}
self.elementwise_prune = False if local_config.parameters is not None else True
def on_epoch_begin(self, epoch):
if epoch == self.start_epoch:
# register hook for FWK model to get actual input tensor
self.model.register_forward_pre_hook()
if self.elementwise_prune:
self.sparsity = self.update_sparsity(epoch)
logger.debug("Start pruning in epoch {} with sparsity {}.".
format(str(epoch), str(self.sparsity)))
self.is_last_epoch = epoch == self.end_epoch
if epoch >= self.start_epoch and epoch <= self.end_epoch:
self.compute_mask()
def on_batch_begin(self, batch_id):
if self.elementwise_prune:
for weight_name in self.weights:
if weight_name in self.masks:
new_weight = self.masks[weight_name].reshape(\
np.array(self.model.get_weight(weight_name).shape)) * \
np.array(self.model.get_weight(weight_name))
self.model.update_weights(weight_name, new_weight)
def on_epoch_end(self):
if self.elementwise_prune:
if self.is_last_epoch:
for weight_name in self.weights:
if weight_name in self.masks:
logger.info(
"Set {} sparsity with mask {} {} {}.".format(
weight_name, str(
self.masks[weight_name].size), str(
self.masks[weight_name].sum()), str(
1 - self.masks[weight_name].sum() /
self.masks[weight_name].size)))
new_weight = self.masks[weight_name].reshape(\
np.array(self.model.get_weight(weight_name).shape)) * \
np.array(self.model.get_weight(weight_name))
self.model.update_weights(weight_name, new_weight)
else:
for weight_name_raw in self.weights:
for weight_name in self.parse_weight_name(weight_name_raw):
self.prune_weight(self.model,
self.importance,
weight_name,
self.parameters)
if self.is_last_epoch:
# remove hooks for FWK model to ensure model saving
self.model.remove_hooks()
def parse_weight_name(self, weight_name_pattern):
# check if asterisk is used to match bert layer indexes
if '*' not in weight_name_pattern:
yield weight_name_pattern
else:
weight_all_names = self.model.get_all_weight_names()
importance_inputs = self.parameters['importance_inputs']
for single_weight_name in weight_all_names:
index_group = re.match(
weight_name_pattern.replace('*', '(\d+)'), single_weight_name)
if index_group is not None:
index = index_group.group(1)
if self.parameters.get(index) is None:
self.parameters['index'] = int(index)
# dynamic change importance_inputs with matched index
self.parameters['importance_inputs'] = [
x.replace('*', index) for x in self.parameters['importance_inputs']]
yield single_weight_name
# change importance_inputs back
self.parameters['importance_inputs'] = importance_inputs
def on_batch_end(self):
if self.elementwise_prune:
for weight_name in self.weights:
self.update_importance_elementwise(self.model,
self.importance,
weight_name)
else:
for weight_name_raw in self.weights:
for weight_name in self.parse_weight_name(weight_name_raw):
if self.parameters['importance_metric'] == 'abs_gradient':
self.update_importance_abs(self.model,
self.importance,
weight_name,
self.parameters)
elif self.parameters['importance_metric'] == 'weighted_gradient':
self.update_importance_weighted(self.model,
self.importance,
weight_name,
self.parameters)
def compute_mask(self):
"""compute masks according to absolute values"""
for weight_name in self.weights:
if weight_name in self.importance.keys():
tensor = self.importance[weight_name]
if len(tensor.shape) in self.tensor_dims:
reduced_tensor = self.pattern.reduce(tensor)
if self.method == "per_channel":
tensor_flat = reduced_tensor.reshape(list(tensor.shape)[:-2], -1)
tensor_flat.sort(axis=-1)
threshold = tensor_flat[..., int(self.sparsity * tensor_flat.shape[-1])]
threshold = np.expand_dims(np.expand_dims(threshold, -1), -1)
threshold = np.repeat(threshold, reduced_tensor.shape[-1], axis=-1)
threshold = np.repeat(threshold, reduced_tensor.shape[-2], axis=-2)
else:
tensor_flat = sorted(np.abs(reduced_tensor.flatten()))
threshold = float(tensor_flat[int(len(tensor_flat) * self.sparsity)])
reduced_mask = threshold <
|
np.abs(reduced_tensor)
|
numpy.abs
|
#https://blog.csdn.net/orangefly0214/article/details/81387077
import MultiTemplate
from MultiTemplate import TaskTemplate
import numpy as np
# https://blog.csdn.net/u013812710/article/details/72886491
# https://blog.csdn.net/ismr_m/article/details/53100896
#https://blog.csdn.net/bcfdsagbfcisbg/article/details/78134172
import kubernetes
import os
import json
import influxdb
import time
import re
from sklearn.externals import joblib
from sklearn.ensemble import RandomForestRegressor
# # from random_job3 import save_job_change_layout
# from random_job3 import save_job_change_resource
import yaml
def load_config(config_file):
# # json串是一个字符串
# f = open('product.json', encoding='utf-8')
# res = f.read()
# product_dic = json.loads(res) # 把json串,变成python的数据类型,只能转换json串内容
# print(product_dic)
# print(product_dic['iphone'])
# # t = json.load(f)
# # print(t) #传一个文件对象,它会帮你直接读json文件,并转换成python数据
# # print(t['iphone'])
# f.close()
f = open(config_file,encoding='utf-8')
res = f.read()
config_content = json.loads(res)
f.close()
return config_content
def save_config(config,filename):
config_content = {}
for key,value in config.items():
# if key != 'job' and key != 'ns':
config_content[key] = value
# task_content['task_id'] = tasks['task_id']
fw = open(filename, 'w', encoding='utf-8')
# ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示
dic_json = json.dumps(config_content, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串
fw.write(dic_json)
fw.close()
def deletehelp(delete_job_name,v1):
try:
v1.delete_namespace(delete_job_name)
except Exception as eeeeee:
print(eeeeee)
command0 = "kubectl get namespace " + delete_job_name + " -o json > /tfdata/tfcnn/deletebuf/" + delete_job_name + ".json"
os.system(command0)
tmp = load_config("/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json")
tmp["spec"]["finalizers"] = []
save_config(tmp, "/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json")
try:
command1 = 'curl -k -H "Content-Type: application/json" -X PUT --data-binary @/tfdata/tfcnn/deletebuf/' + delete_job_name + '.json http://1172.16.31.10:8081/api/v1/namespaces/'+delete_job_name+'/finalize'
os.system(command1)
except Exception as helpe:
print(helpe)
commandopen = 'kubectl proxy --port=8081'
os.system(commandopen)
os.system(command1)
def deletehelp2(delete_job_name,v1):
v1.delete_namespace(delete_job_name)
command0 = "kubectl get namespace " + delete_job_name + " -o json > /tfdata/tfcnn/deletebuf/" + delete_job_name + ".json"
os.system(command0)
tmp = load_config("/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json")
tmp["spec"]["finalizers"] = []
save_config(tmp, "/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json")
try:
command1 = 'curl -k -H "Content-Type: application/json" -X PUT --data-binary @/tfdata/tfcnn/deletebuf/' + delete_job_name + '.json http://127.0.0.1:8081/api/v1/namespaces/' + delete_job_name + '/finalize'
os.system(command1)
except Exception as helpe:
print(helpe)
commandopen = 'kubectl proxy --port=8081'
os.system(commandopen)
os.system(command1)
def check_path(name):
train_dir = os.path.join('/tfdata/k8snfs/', name)
print(train_dir)
if not os.path.exists(train_dir):
os.makedirs(train_dir)
return train_dir
def save_job_change_layout(job_name,ps_n,worker_n):
save_job_path = '/tfdata/k8snfs/%s/%s.json' % (job_name, job_name)
job_config = load_config(save_job_path)
# 'ps_replicas': job.ps_replicas,'worker_replicas': job.worker_replicas
job_config['ps_replicas'] = ps_n
job_config['worker_replicas'] = worker_n
save_config(job_config, save_job_path)
def save_job_change_resource(job_name,cpu_allocate,mem_allocate):
save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job_name, job_name)
job_res_config = load_config(save_res_path)
# save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name)
# save_config(job_config, save_job_path)
job_res_config['cpu_source'] = cpu_allocate
job_res_config['mem_source'] = mem_allocate
save_config(job_res_config, save_res_path)
def check_ns(name):
kubernetes.config.load_kube_config()
v1 = kubernetes.client.CoreV1Api()
# v1.create_namespace()
exist_ns = v1.list_namespace()
exist_ns_name = []
for i in exist_ns.items:
exist_ns_name.append(i.metadata.name)
if name in exist_ns_name:
return True
else:
return False
class clusternode():
def __init__(self,name,total_cpu,total_memory,compute_label,disk_label):
self.total_cpu = total_cpu
self.total_memory = total_memory
self.compute_label = compute_label
self.disk_label = disk_label
self.name = name
class SubTask():
def __init__(self,template_id,ps_replicas,worker_replicas,training_step,batch_size,interval,task_id,rtimes,tag,
dbhost='192.168.128.10',mod=-1,retry=0, update_min_step=400, step_update=200, update_start=0.25,
update_end=0.75, update_delay=2.0):
self.template_id = template_id
self.ps_replicas = ps_replicas
self.worker_replicas = worker_replicas
self.training_step = training_step
self.interval = interval
self.batch_size = batch_size
self.task_id = task_id
self.mod = mod
self.tag = tag
self.rtimes = rtimes
self.dbhost = dbhost
self.retry = retry
kubernetes.config.load_kube_config()
self.v1 = kubernetes.client.CoreV1Api()
self.v1.list_namespace()
self.update_min_step = update_min_step
self.step_update = step_update
self.update_start = update_start
self.update_end = update_end
self.update_delay = update_delay
self.influx_client = influxdb.InfluxDBClient(host='192.168.128.10',port=8086,username='admin',password='<PASSWORD>',database="NODEMESSAGE")
self.node_list = ['k8s-master','k8s-worker0','k8s-worker2','k8s-worker1','k8s-worker3','k8s-worker4',
'k8s-worker5','k8s-worker6','k8s-worker7','k8s-worker8',
'k8s-worker10','k8s-worker11','k8s-worker12','k8s-worker13','k8s-worker14',
'k8s-worker15','k8s-worker16','k8s-worker17','k8s-worker19']
self.node_cpu = {}
self.node_compute = {}
self.ps_rank = [18,10,2]
self.worker_rank = [18,10,4]
self.node_compute['k8s-master'] = 1
self.node_compute['k8s-worker0'] = 1
self.node_compute['k8s-worker2'] = 1
self.node_compute['k8s-worker1'] = 1
self.node_compute['k8s-worker3'] = 0
self.node_compute['k8s-worker4'] = 0
self.node_compute['k8s-worker5'] = 1
self.node_compute['k8s-worker6'] = 0
self.node_compute['k8s-worker7'] = 0
self.node_compute['k8s-worker8'] = 0
# self.node_compute['k8s-worker9'] = 0
self.node_compute['k8s-worker10'] = 0
self.node_compute['k8s-worker11'] = 1
self.node_compute['k8s-worker12'] = 1
self.node_compute['k8s-worker13'] = 1
self.node_compute['k8s-worker14'] = 0
self.node_compute['k8s-worker15'] = 1
self.node_compute['k8s-worker16'] = 0
self.node_compute['k8s-worker17'] = 1
# self.node_compute['k8s-worker18'] = 0
self.node_compute['k8s-worker19'] = 0
# self.node_compute['k8s-worker20'] = 0
self.cpu_allocate = 2048
self.memory_allocate = 2048
self.node_cmtype = {}
self.node_cmtype['k8s-master'] = 2
self.node_cmtype['k8s-worker0'] = 1
self.node_cmtype['k8s-worker2'] = 1
self.node_cmtype['k8s-worker1'] = 2
self.node_cmtype['k8s-worker3'] = 1
self.node_cmtype['k8s-worker4'] = 2
self.node_cmtype['k8s-worker5'] = 1
self.node_cmtype['k8s-worker6'] = 1
self.node_cmtype['k8s-worker7'] = 1
self.node_cmtype['k8s-worker8'] = 1
# self.node_cmtype['k8s-worker9'] = 1
self.node_cmtype['k8s-worker10'] = 1
self.node_cmtype['k8s-worker11'] = 1
self.node_cmtype['k8s-worker12'] = 1
self.node_cmtype['k8s-worker13'] = 1
self.node_cmtype['k8s-worker14'] = 1
self.node_cmtype['k8s-worker15'] = 1
self.node_cmtype['k8s-worker16'] = 1
self.node_cmtype['k8s-worker17'] = 1
# self.node_cmtype['k8s-worker18'] = 1
self.node_cmtype['k8s-worker19'] = 1
# self.node_cmtype['k8s-worker20'] = 1
self.node_disk = {}
self.node_disk['k8s-master'] = 1
self.node_disk['k8s-worker0'] = 1
self.node_disk['k8s-worker2'] = 1
self.node_disk['k8s-worker1'] = 1
self.node_disk['k8s-worker3'] = 0
self.node_disk['k8s-worker4'] = 0
self.node_disk['k8s-worker5'] = 0
self.node_disk['k8s-worker6'] = 0
self.node_disk['k8s-worker7'] = 0
self.node_disk['k8s-worker8'] = 0
# self.node_disk['k8s-worker9'] = 0
self.node_disk['k8s-worker10'] = 0
self.node_disk['k8s-worker11'] = 1
self.node_disk['k8s-worker12'] = 1
self.node_disk['k8s-worker13'] = 1
self.node_disk['k8s-worker14'] = 1
self.node_disk['k8s-worker15'] = 1
self.node_disk['k8s-worker16'] = 0
self.node_disk['k8s-worker17'] = 1
# self.node_disk['k8s-worker18'] = 0
self.node_disk['k8s-worker19'] = 0
# self.node_disk['k8s-worker20'] = 0
self.deadline = 3600
self.starttime = 0
# self.node_cpu['k8s-master'] = 64000 - 2400
# self.node_cpu['k8s-worker0'] = 24000 - 250
# self.node_cpu['k8s-worker2'] = 24000 - 650
# self.node_cpu['k8s-worker1'] = 16000 - 420
# self.node_cpu['k8s-worker3'] = 24000 - 1200
# self.node_cpu['k8s-worker4'] = 24000 - 360
# self.node_cpu['k8s-worker5'] = 32000 - 17000
# self.node_cpu['k8s-worker6'] = 24000 - 160
# self.node_cpu['k8s-worker7'] = 24000 - 160
# self.node_cpu['k8s-worker8'] = 16000 - 160
# self.node_cpu['k8s-worker9'] = 16000 - 160
# self.node_cpu['k8s-worker10'] = 16000 - 160
# self.node_cpu['k8s-worker11'] = 24000 - 200
# self.node_cpu['k8s-worker12'] = 24000 - 170
# self.node_cpu['k8s-worker13'] = 24000 - 210
# self.node_cpu['k8s-worker14'] = 16000 - 210
# self.node_cpu['k8s-worker15'] = 32000 - 210
# self.node_cpu['k8s-worker16'] = 24000 - 210
# self.node_cpu['k8s-worker17'] = 16000 - 210
# # node_cpu['k8s-worker18'] = 16000 - 150
# self.node_cpu['k8s-worker19'] = 32000 - 210
# node_cpu['k8s-worker20'] = 24000 - 150
# self.node_cpu['k8s-master'] = 64000 - 8000
# self.node_cpu['k8s-worker0'] = 24000 - 400
# self.node_cpu['k8s-worker2'] = 24000 - 400
# self.node_cpu['k8s-worker1'] = 16000 - 520
# self.node_cpu['k8s-worker3'] = 24000 - 150
# self.node_cpu['k8s-worker4'] = 24000 - 150
# self.node_cpu['k8s-worker5'] = 24000 - 150
# self.node_cpu['k8s-worker6'] = 16000 - 150
# self.node_cpu['k8s-worker7'] = 16000 - 150
# self.node_cpu['k8s-worker8'] = 16000 - 150
# self.node_cpu['k8s-worker9'] = 16000 - 150
# self.node_cpu['k8s-worker10'] = 16000 - 150
# self.node_cpu['k8s-worker11'] = 24000 - 300
# self.node_cpu['k8s-worker12'] = 16000 - 150
# self.node_cpu['k8s-worker13'] = 16000 - 150
# self.node_cpu['k8s-worker14'] = 16000 - 150
# self.node_cpu['k8s-worker15'] = 16000 - 150
# self.node_cpu['k8s-worker16'] = 16000 - 150
# self.node_cpu['k8s-worker17'] = 24000 - 150
# self.node_cpu['k8s-worker18'] = 16000 - 150
# self.node_cpu['k8s-worker19'] = 32000 - 150
# self.node_cpu['k8s-worker20'] = 24000 - 150
self.node_cpu['k8s-master'] = 64000 - 2500
self.node_cpu['k8s-worker0'] = 24000 - 240
self.node_cpu['k8s-worker2'] = 24000 - 650
self.node_cpu['k8s-worker1'] = 16000 - 300
self.node_cpu['k8s-worker3'] = 24000 - 360
self.node_cpu['k8s-worker4'] = 24000 - 360
self.node_cpu['k8s-worker5'] = 32000 - 320
self.node_cpu['k8s-worker6'] = 24000 - 240
self.node_cpu['k8s-worker7'] = 24000 - 240
self.node_cpu['k8s-worker8'] = 24000 - 240
# self.node_cpu['k8s-worker9'] = 16000 - 240
self.node_cpu['k8s-worker10'] = 24000 - 200
self.node_cpu['k8s-worker11'] = 24000 - 200
self.node_cpu['k8s-worker12'] = 24000 - 240
self.node_cpu['k8s-worker13'] = 24000 - 240
self.node_cpu['k8s-worker14'] = 24000 - 240
self.node_cpu['k8s-worker15'] = 32000 - 220
self.node_cpu['k8s-worker16'] = 24000 - 240
self.node_cpu['k8s-worker17'] = 24000 - 210
# node_cpu['k8s-worker18'] = 16000 - 150
self.node_cpu['k8s-worker19'] = 32000 - 240
self.ps_node_list = ['k8s-worker1','k8s-worker0','k8s-worker10','k8s-worker3']
self.node_memory = {}
self.node_memory['k8s-master'] = float(251 * 1024 - 10000)
self.node_memory['k8s-worker0'] = float(94 * 1024 - 1400)
self.node_memory['k8s-worker2'] = float(94 * 1024 - 3200)
self.node_memory['k8s-worker1'] = float(125 * 1024 - 1600)
self.node_memory['k8s-worker3'] = float(94 * 1024 - 1200)
self.node_memory['k8s-worker4'] = float(188 * 1024 - 1200)
self.node_memory['k8s-worker5'] = float(125 * 1024 - 1800)
self.node_memory['k8s-worker6'] = float(94 * 1024 - 1200)
self.node_memory['k8s-worker7'] = float(94 * 1024 - 1400)
self.node_memory['k8s-worker8'] = float(94 * 1024 - 1250)
# self.node_memory['k8s-worker9'] = float(62 * 1024 - 1600)
self.node_memory['k8s-worker10'] = float(94 * 1024 - 1200)
self.node_memory['k8s-worker11'] = float(94 * 1024 - 1400)
# node_memory['k8s-worker12'] = float(62 * 1024 - 2000)
# node_memory['k8s-worker13'] = float(62 * 1024 - 2000)
self.node_memory['k8s-worker12'] = float(94 * 1024 - 1500)
self.node_memory['k8s-worker13'] = float(94 * 1024 - 1400)
self.node_memory['k8s-worker14'] = float(94 * 1024 - 1800)
# node_memory['k8s-worker15'] = float(62 * 1024 - 2000)
self.node_memory['k8s-worker15'] = float(125 * 1024 - 1800)
# node_memory['k8s-worker16'] = float(62 * 1024 - 2000)
self.node_memory['k8s-worker16'] = float(94 * 1024 - 1800)
# node_memory['k8s-worker17'] = float(94 * 1024 - 2000)
self.node_memory['k8s-worker17'] = float(94 * 1024 - 1400)
# node_memory['k8s-worker18'] = float(62 * 1024 - 2000)
self.node_memory['k8s-worker19'] = float(125 * 1024 - 1400)
# self.node_memory['k8s-master'] = float(251 * 1024 - 9400)
# self.node_memory['k8s-worker0'] = float(94 * 1024 - 1000)
# self.node_memory['k8s-worker2'] = float(94 * 1024 - 3200)
# self.node_memory['k8s-worker1'] = float(125 * 1024 - 1500)
# self.node_memory['k8s-worker3'] = float(94 * 1024 - 1100)
# self.node_memory['k8s-worker4'] = float(188 * 1024 - 1100)
# self.node_memory['k8s-worker5'] = float(125 * 1024 - 4200)
# self.node_memory['k8s-worker6'] = float(94 * 1024 - 2000)
# self.node_memory['k8s-worker7'] = float(94 * 1024 - 1250)
# self.node_memory['k8s-worker8'] = float(62 * 1024 - 1250)
# self.node_memory['k8s-worker9'] = float(62 * 1024 - 1250)
# self.node_memory['k8s-worker10'] = float(62 * 1024 - 1200)
# self.node_memory['k8s-worker11'] = float(94 * 1024 - 1200)
# # node_memory['k8s-worker12'] = float(62 * 1024 - 2000)
# # node_memory['k8s-worker13'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker12'] = float(94 * 1024 - 2000)
# self.node_memory['k8s-worker13'] = float(94 * 1024 - 2000)
# self.node_memory['k8s-worker14'] = float(62 * 1024 - 2000)
# # node_memory['k8s-worker15'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker15'] = float(125 * 1024 - 2000)
# # node_memory['k8s-worker16'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker16'] = float(94 * 1024 - 2000)
# # node_memory['k8s-worker17'] = float(94 * 1024 - 2000)
# self.node_memory['k8s-worker17'] = float(62 * 1024 - 2000)
# # node_memory['k8s-worker18'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker19'] = float(125 * 1024 - 2000)
# self.lasttime =
# self.node_cpu['k8s-master'] = 64000 - 8000
# self.node_cpu['k8s-worker0'] = 24000 - 400
# self.node_cpu['k8s-worker2'] = 24000 - 400
# self.node_cpu['k8s-worker1'] = 16000 - 520
# self.node_cpu['k8s-worker3'] = 24000 - 150
# self.node_cpu['k8s-worker4'] = 24000 - 150
# self.node_cpu['k8s-worker5'] = 24000 - 150
# self.node_cpu['k8s-worker6'] = 16000 - 150
# self.node_cpu['k8s-worker7'] = 16000 - 150
# self.node_cpu['k8s-worker8'] = 16000 - 150
# self.node_cpu['k8s-worker9'] = 16000 - 150
# self.node_cpu['k8s-worker10'] = 16000 - 150
# self.node_cpu['k8s-worker11'] = 24000 - 300
# self.node_cpu['k8s-worker12'] = 16000 - 150
# self.node_cpu['k8s-worker13'] = 16000 - 150
# self.node_cpu['k8s-worker14'] = 16000 - 150
# self.node_cpu['k8s-worker15'] = 16000 - 150
# self.node_cpu['k8s-worker16'] = 16000 - 150
# self.node_cpu['k8s-worker17'] = 24000 - 150
# self.node_cpu['k8s-worker18'] = 16000 - 150
# self.node_cpu['k8s-worker19'] = 32000 - 150
# self.node_cpu['k8s-worker20'] = 24000 - 150
# self.node_cpu['k8s-master'] = 32000 - 8000
# self.node_cpu['k8s-worker0'] = 24000 - 400
# self.node_cpu['k8s-worker2'] = 24000 - 400
# self.node_cpu['k8s-worker1'] = 16000 - 520
# self.node_cpu['k8s-worker3'] = 24000 - 150
# self.node_cpu['k8s-worker4'] = 16000 - 150
# self.node_cpu['k8s-worker5'] = 24000 - 150
self.total_cpu = 0
self.ps_cpu_base = 0.0
self.ps_mem_base = 0.0
self.ws_cpu_base = 0.0
self.ws_mem_base = 0.0
self.total_mem = 0.0
# self.node_memory = {}
# self.node_memory['k8s-master'] = float(251*1024 - 32000)
# self.node_memory['k8s-worker0'] = float(94*1024 - 4000)
# self.node_memory['k8s-worker2'] = float(94*1024 - 3000)
# self.node_memory['k8s-worker1'] = float(125*1024 - 4500)
# self.node_memory['k8s-worker3'] = float(94 * 1024 - 2200)
# self.node_memory['k8s-worker4'] = float(125 * 1024 - 2200)
# self.node_memory['k8s-worker5'] = float(94 * 1024 - 2200)
# self.node_memory['k8s-master'] = float(251 * 1024 - 32000)
# self.node_memory['k8s-worker0'] = float(94 * 1024 - 4000)
# self.node_memory['k8s-worker2'] = float(94 * 1024 - 3000)
# self.node_memory['k8sw-orker1'] = float(125 * 1024 - 4500)
# self.node_memory['k8s-worker3'] = float(94 * 1024 - 2200)
# self.node_memory['k8s-worker4'] = float(188 * 1024 - 2200)
# self.node_memory['k8s-worker5'] = float(94 * 1024 - 2200)
# self.node_memory['k8s-worker6'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker7'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker8'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker9'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker10'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker11'] = float(94 * 1024 - 2200)
# self.node_memory['k8s-worker12'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker13'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker14'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker15'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker16'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker17'] = float(94 * 1024 - 2000)
# self.node_memory['k8s-worker18'] = float(62 * 1024 - 2000)
# self.node_memory['k8s-worker19'] = float(125 * 1024 - 2000)
# self.node_memory['k8s-worker20'] = float(94 * 1024 - 2000)
node_keys = self.node_cpu.keys()
# print(node_keys)
# mem_keys = self.node_memory.keys()
# print(mem_keys)
for key in node_keys:
self.total_cpu = self.total_cpu + self.node_cpu[key]
self.total_mem = self.total_mem + self.node_memory[key]
self.args = ['--training_step='+str(self.training_step),'--batch_size='+str(self.batch_size),'--interval='+str(self.interval),'--task_id='+str(self.task_id),'--rtimes='+str(self.rtimes),"--tag="+self.tag,
'--retry=' + str(self.retry), '--dbhost=' + self.dbhost,
'--update_min_step=' + str(self.update_min_step), '--step_update=' + str(self.step_update),
'--update_start=' + str(self.update_start), '--update_end=' + str(self.update_end),
'--update_delay=' + str(self.update_delay)
]
self.measure = "VGG %d" % self.task_id
def get_node_list(self):
node_list = [i.metadata.name for i in self.v1.list_node().items]
return node_list
def set_deadline(self,deadline,start_time):
self.deadline = deadline
self.starttime = start_time
def set_mod(self,new_mod):
self.mod = new_mod
def get_mod(self):
return self.mod
def set_resource(self,cpu_source,mem_source):
self.cpu_allocate = cpu_source
self.memory_allocate = mem_source
#
# def apply_tf(self,cpu_source,mem_source):
# self.cpu_allocate = cpu_source
# self.memory_allocate = mem_source
def update_step(self):
step_update_influx = influxdb.InfluxDBClient(host=self.dbhost, port=8086, username='admin', password='<PASSWORD>',
database="PREDICT")
pre_list = self.measure.split(" ")
# measure_s = pre_list[0] + 'S' + pre_list[-1]
measure_up = pre_list[0] + 'U' + pre_list[-1]
step_items = [
{
'measurement': measure_up,
'tags': {
'task': self.task_id,
'runtimes': self.rtimes,
'retry': self.retry
},
'fields': {
'ps': self.ps_replicas,
'worker':self.worker_replicas,
'training_step': self.training_step
}
}
]
# print(step_to_train)
step_update_influx.write_points(step_items, time_precision="ms", database="PREDICT")
def schedule_base(self,mode=0):
if mode == 0:
result = self.influx_client.query(
"select * from " + "NODEMESSAGE" + " group by nodes order by desc limit 8")
node_list = self.get_node_list()
result_keys = result.keys()
nodes = [i[-1]['nodes'] for i in result_keys]
if 'k8s-worker9' in nodes:
nodes.remove('k8s-worker9')
# node_mg = [list(result[i]) for i in result_keys]
node_mg = []
for i in result_keys:
if 'worker9' not in i[-1]['nodes']:
node_mg.append(list(result[i]))
# print("load node mess sucess!")
print("node len is %d" % len(node_mg))
cpu_base = {}
memory_base = {}
point_base = {}
point_base_list = []
# memory_base_list = []
# cpu_base_list = []
node_index = {}
# total_cpu = 0
# total_mem = 0
total_cpu_use = 0.0
total_mem_use = 0.0
for i in range(len(node_mg)):
cpu_base[nodes[i]] = 0
memory_base[nodes[i]] = 0
point_base[nodes[i]] = 0.0
for j in range(len(node_mg[0])):
cpu_base[nodes[i]] += node_mg[i][j]['cpu']
memory_base[nodes[i]] += node_mg[i][j]['memory']
cpu_base[nodes[i]] = (cpu_base[nodes[i]] / len(node_mg[0])) / self.node_cpu[nodes[i]]
memory_base[nodes[i]] = (memory_base[nodes[i]] / len(node_mg[0])) / self.node_memory[nodes[i]]
total_cpu_use += (cpu_base[nodes[i]] * self.node_cpu[nodes[i]])
total_mem_use += (memory_base[nodes[i]] * self.node_memory[nodes[i]])
tmp = cpu_base[nodes[i]] * 0.72 + memory_base[nodes[i]] * 0.28
# tmp2 = cpu_base[nodes[i]]*self.node_cpu[nodes[i]]* 0.72/self.total_cpu + memory_base[nodes[i]] * self.node_memory[nodes[i]]* 0.28/self.total_mem
point_base[nodes[i]] = tmp
point_base_list.append(tmp)
total_cpu_use = total_cpu_use / self.total_cpu
total_mem_use = total_mem_use / self.total_mem
list.sort(point_base_list)
for key in nodes:
# command = 'kubectl label nodes ' + key + ' woksch-'
# os.system(command)
# command2 = 'kubectl label nodes ' + key + ' wokpro-'
# os.system(command2)
nod_prori = point_base_list.index(point_base[key])
node_index[key] = nod_prori
# priori = ' wokpro=%d' % nod_prori
# command3 = 'kubectl label nodes ' + key + priori
# os.system(command3)
# if cpu_base[key] <= 0.56 and memory_base[key] <= 0.6:
# command = 'kubectl label nodes ' + key + ' woksch=true'
# os.system(command)
# else:
# command = 'kubectl label nodes ' + key + ' woksch=false'
# os.system(command)
return node_index, cpu_base, memory_base, total_cpu_use, total_mem_use
else:
offset = int(mode)
cpu_base_total = []
memory_base_total = []
node_index_total = []
total_cpu_use_total = []
total_mem_use_total = []
for k in range(offset):
pianyi = k*8
result = self.influx_client.query(
"select * from " + "NODEMESSAGE" + " group by nodes order by desc limit 8 offset "+str(pianyi))
result_keys = result.keys()
# nodes = [i[-1]['nodes'] for i in result_keys]
# node_mg = [list(result[i]) for i in result_keys]
nodes = [i[-1]['nodes'] for i in result_keys]
if 'k8s-worker9' in nodes:
nodes.remove('k8s-worker9')
# node_mg = [list(result[i]) for i in result_keys]
node_mg = []
for i in result_keys:
if 'worker9' not in i[-1]['nodes']:
node_mg.append(list(result[i]))
# print("load node mess sucess!")
print("node len is %d" % len(node_mg))
cpu_base = {}
memory_base = {}
point_base = {}
point_base_list = []
node_index = {}
total_cpu_use = 0.0
total_mem_use = 0.0
for i in range(len(node_mg)):
cpu_base[nodes[i]] = 0
memory_base[nodes[i]] = 0
point_base[nodes[i]] = 0.0
for j in range(len(node_mg[0])):
cpu_base[nodes[i]] += node_mg[i][j]['cpu']
memory_base[nodes[i]] += node_mg[i][j]['memory']
cpu_base[nodes[i]] = (cpu_base[nodes[i]] / len(node_mg[0])) / self.node_cpu[nodes[i]]
memory_base[nodes[i]] = (memory_base[nodes[i]] / len(node_mg[0])) / self.node_memory[nodes[i]]
total_cpu_use += (cpu_base[nodes[i]] * self.node_cpu[nodes[i]])
total_mem_use += (memory_base[nodes[i]] * self.node_memory[nodes[i]])
tmp = cpu_base[nodes[i]] * 0.78 + memory_base[nodes[i]] * 0.22
point_base[nodes[i]] = tmp
point_base_list.append(tmp)
total_cpu_use = total_cpu_use / self.total_cpu
total_mem_use = total_mem_use / self.total_mem
list.sort(point_base_list)
for key in nodes:
nod_prori = point_base_list.index(point_base[key])
node_index[key] = nod_prori
# return node_index, cpu_base, memory_base, total_cpu_use, total_mem_use
node_index_total.append(node_index)
cpu_base_total.append(cpu_base)
memory_base_total.append(memory_base)
total_cpu_use_total.append(total_cpu_use)
total_mem_use_total.append(total_mem_use)
return node_index_total,cpu_base_total,memory_base_total,total_cpu_use_total,total_mem_use_total
def write_retry(self,mode):
write_retry_influx = influxdb.InfluxDBClient(host=self.dbhost, port=8086, username='admin', password='<PASSWORD>',
database="PREDICT")
pre_list = self.measure.split(" ")
# measure_s = pre_list[0] + 'S' + pre_list[-1]
measure_write = pre_list[0] + 'W' + pre_list[-1]
step_items = [
{
'measurement': measure_write,
'tags': {
'task': self.task_id,
'runtimes': self.rtimes,
'retry': self.retry
},
'fields': {
'modulate': int(mode)
}
}
]
# print(step_to_train)
write_retry_influx.write_points(step_items, time_precision="ms", database="PREDICT")
def schedule_label(self):
try:
result = self.influx_client.query(
"select * from " + "NODEMESSAGE" + " group by nodes order by desc limit 8")
except Exception as ee:
time.sleep(5)
result = self.influx_client.query(
"select * from " + "NODEMESSAGE" + " group by nodes order by desc limit 8")
node_list = self.get_node_list()
# print(node_list)
result_keys = result.keys()
nodes = [i[-1]['nodes'] for i in result_keys]
if 'k8s-worker9' in nodes:
nodes.remove('k8s-worker9')
# print(nodes)
# node_mg = [list(result[i]) for i in result_keys]
node_mg = []
for i in result_keys:
if 'worker9' not in i[-1]['nodes']:
node_mg.append(list(result[i]))
# print("load node mess sucess!")
print("node len is %d" % len(node_mg))
cpu_base = {}
memory_base = {}
pcpu_base = {}
pmemory_base = {}
point_base = {}
point_base_list = []
point_base1 = {}
point_base_list1 = []
worker_nodes = nodes[:]
# print(worker_nodes)
# for pk in self.ps_node_list:
# worker_nodes.remove(pk)
wpoint_base = {}
wpoint_base_list = []
wpoint_base1 = {}
wpoint_base_list1 = []
ppoint_base = {}
ppoint_base_list = []
ppoint_base1 = {}
ppoint_base_list1 = []
# memory_base_list = []
# cpu_base_list = []
# node_index = {}
# total_cpu = 0
# total_mem = 0
# total_cpu_use = 0.0
# total_mem_use = 0.0
cpu_tmp_base = []
mem_tmp_base = []
cpu_wok_base = []
mem_wok_base = []
for i in range(len(node_mg)):
point_base[nodes[i]] = 0.0
cpu_base[nodes[i]] = 0
memory_base[nodes[i]] = 0
for j in range(len(node_mg[0])):
cpu_base[nodes[i]] += node_mg[i][j]['cpu']
memory_base[nodes[i]] += node_mg[i][j]['memory']
cpu_base[nodes[i]] = (cpu_base[nodes[i]] / len(node_mg[0])) / self.node_cpu[nodes[i]]
memory_base[nodes[i]] = (memory_base[nodes[i]] / len(node_mg[0])) / self.node_memory[nodes[i]]
cpu_wok_base.append(cpu_base[nodes[i]])
mem_wok_base.append(memory_base[nodes[i]])
# if nodes[i] in self.ps_node_list:
# cpu_base[nodes[i]] = node_mg[i][0]['cpu']
# memory_base[nodes[i]] = node_mg[i][0]['memory']
# for j in range(len(node_mg[0])):
# if cpu_base[nodes[i]] < node_mg[i][j]['cpu']:
# cpu_base[nodes[i]] = node_mg[i][j]['cpu']
# if memory_base[nodes[i]] < node_mg[i][j]['memory']:
# memory_base[nodes[i]] = node_mg[i][j]['memory']
# cpu_base[nodes[i]] = cpu_base[nodes[i]]/self.node_cpu[nodes[i]]
# memory_base[nodes[i]] = memory_base[nodes[i]]/self.node_memory[nodes[i]]
# cpu_tmp_base.append(cpu_base[nodes[i]])
# mem_tmp_base.append(memory_base[nodes[i]])
# else:
# cpu_base[nodes[i]] = 0
# memory_base[nodes[i]] = 0
# for j in range(len(node_mg[0])):
# cpu_base[nodes[i]] += node_mg[i][j]['cpu']
# memory_base[nodes[i]] += node_mg[i][j]['memory']
# cpu_base[nodes[i]] = (cpu_base[nodes[i]] / len(node_mg[0])) / self.node_cpu[nodes[i]]
# memory_base[nodes[i]] = (memory_base[nodes[i]] / len(node_mg[0])) / self.node_memory[nodes[i]]
#
# cpu_wok_base.append(cpu_base[nodes[i]])
# mem_wok_base.append(memory_base[nodes[i]])
# pcpu_base[nodes[i]] = node_mg[i][0]['cpu']
# pmemory_base[nodes[i]] = node_mg[i][0]['memory']
# total_cpu_use += (cpu_base[nodes[i]]*self.node_cpu[nodes[i]])
# total_mem_use += (memory_base[nodes[i]]*self.node_memory[nodes[i]])
tmp = cpu_base[nodes[i]] * 0.78 + memory_base[nodes[i]] * 0.22
tmp2 = cpu_base[nodes[i]]*self.node_cpu[nodes[i]]* 0.72/self.total_cpu + memory_base[nodes[i]] * self.node_memory[nodes[i]]* 0.28/self.total_mem
tmp3 = tmp*0.6+tmp2*0.4
point_base[nodes[i]] = tmp3
point_base_list.append(tmp3)
point_base1[nodes[i]] = tmp
point_base_list1.append(tmp)
# if nodes[i] in self.ps_node_list:
# ppoint_base[nodes[i]] = point_base[nodes[i]]
# ppoint_base1[nodes[i]] = tmp
# ppoint_base_list.append(point_base[nodes[i]])
# ppoint_base_list1.append(tmp)
# else:
# wpoint_base[nodes[i]] = point_base[nodes[i]]
# wpoint_base1[nodes[i]] = tmp
# wpoint_base_list.append(point_base[nodes[i]])
# wpoint_base_list1.append(tmp)
# total_cpu_use = total_cpu_use / self.total_cpu
# total_mem_use = total_mem_use /self.total_mem
list.sort(point_base_list)
list.sort(point_base_list1)
# list.sort(wpoint_base_list)
# list.sort(wpoint_base_list1)
# list.sort(ppoint_base_list)
# list.sort(ppoint_base_list1)
# list.sort(cpu_tmp_base)
# list.sort(mem_tmp_base)
list.sort(cpu_wok_base)
list.sort(mem_wok_base)
# self.ps_cpu_base = (cpu_tmp_base[0]+cpu_tmp_base[1])/2
# self.ps_mem_base = (mem_tmp_base[0]+mem_tmp_base[1])/2
self.ws_cpu_base = (cpu_wok_base[0]+cpu_wok_base[1]+cpu_wok_base[2])/3
self.ws_mem_base = (mem_wok_base[0]+mem_wok_base[1]+mem_wok_base[2])/3
# for key in self.ps_node_list:
# nod_prori = ppoint_base_list.index(ppoint_base[key])
# try:
# command = 'kubectl label nodes ' + key + ' pspro-'
# os.system(command)
# priori = ' pspro=%d' % nod_prori
# command3 = 'kubectl label nodes ' + key + priori
# os.system(command3)
# except Exception as ep0:
# priori = ' pspro=%d' % nod_prori
# command3 = 'kubectl label nodes ' + key + priori
# os.system(command3)
# master_index = wpoint_base_list.index(wpoint_base['k8s-master'])
# k8s2_index = wpoint_base_list.index(wpoint_base['k8s-worker2'])
master_index = point_base_list.index(point_base['k8s-master'])
k8s2_index = point_base_list.index(point_base['k8s-worker2'])
limit_max = max(master_index,k8s2_index)
limit_min = min(master_index,k8s2_index)
# if master_index < 6:
# for key in worker_nodes:
# # command = 'kubectl label nodes ' + key + ' woksch-'
# # os.system(command)
# # command = 'kubectl label nodes ' + key + ' pssch-'
# # os.system(command)
# command2 = 'kubectl label nodes ' + key + ' wokpro-'
# os.system(command2)
# # nod_prori = wpoint_base_list.index(wpoint_base[key])
# nod_prori = point_base_list.index(point_base[key])
# if 'master' in key:
# nod_prori = 6
# if 'k8s-worker2' in key:
# nod_prori = 5
# elif nod_prori > limit_min and nod_prori < limit_max:
# nod_prori = max(nod_prori - 1,0)
# elif nod_prori > limit_max and nod_prori <= 5:
# nod_prori = max(nod_prori-2,0)
#
# # node_index[key] = nod_prori
# priori = ' wokpro=%d' % nod_prori
# command3 = 'kubectl label nodes ' + key + priori
# os.system(command3)
#
# # master_index = 6
if master_index < 6:
for key in worker_nodes:
# command = 'kubectl label nodes ' + key + ' woksch-'
# os.system(command)
# command = 'kubectl label nodes ' + key + ' pssch-'
# os.system(command)
command2 = 'kubectl label nodes ' + key + ' wokpro-'
os.system(command2)
# nod_prori = wpoint_base_list.index(wpoint_base[key])
nod_prori = point_base_list.index(point_base[key])
if 'master' in key:
nod_prori = 6
# if 'k8s-worker2' in key:
# nod_prori = 5
elif nod_prori > master_index and nod_prori <= 6:
if 'worker2' not in key:
nod_prori = max(nod_prori - 1,0)
# node_index[key] = nod_prori
priori = ' wokpro=%d' % nod_prori
command3 = 'kubectl label nodes ' + key + priori
os.system(command3)
# elif k8s2_index < 5:
# for key in worker_nodes:
# # command = 'kubectl label nodes ' + key + ' woksch-'
# # os.system(command)
# # command = 'kubectl label nodes ' + key + ' pssch-'
# # os.system(command)
# command2 = 'kubectl label nodes ' + key + ' wokpro-'
# os.system(command2)
# # nod_prori = wpoint_base_list.index(wpoint_base[key])
# nod_prori = point_base_list.index(point_base[key])
# if 'worker2' in key:
# nod_prori = 5
# # if 'k8s-worker2' in key:
# # nod_prori = 5
# elif nod_prori > k8s2_index and nod_prori <= 5:
# if 'master' not in key:
# nod_prori = max(nod_prori - 1,0)
#
# # node_index[key] = nod_prori
# priori = ' wokpro=%d' % nod_prori
# command3 = 'kubectl label nodes ' + key + priori
# os.system(command3)
else:
for key in worker_nodes:
# command = 'kubectl label nodes ' + key + ' woksch-'
# os.system(command)
# command = 'kubectl label nodes ' + key + ' pssch-'
# os.system(command)
command2 = 'kubectl label nodes ' + key + ' wokpro-'
os.system(command2)
# nod_prori = wpoint_base_list.index(wpoint_base[key])
nod_prori = point_base_list.index(point_base[key])
# if 'master' in key:
# nod_prori = 6
# elif nod_prori > master_index and nod_prori <= 6:
# nod_prori = nod_prori - 1
# node_index[key] = nod_prori
priori = ' wokpro=%d' % nod_prori
command3 = 'kubectl label nodes ' + key + priori
os.system(command3)
# master_index = 6
return point_base.copy(),cpu_base.copy(),memory_base.copy(),point_base_list[:]
# if cpu_base[key] <= 0.4 and memory_base[key] <= 0.5:
# command = 'kubectl label nodes ' + key + ' woksch=true'
# os.system(command)
# else:
# command = 'kubectl label nodes ' + key + ' woksch=false'
# os.system(command)
# return node_index,cpu_base,memory_base,total_cpu_use,total_mem_use
class VGGTask(SubTask):
def __init__(self,template_id,ps_replicas,worker_replicas,training_step,batch_size,interval,task_id,rtimes,tag,channel1,channel2,channel3,channel4,channel5,num_layer1,num_layer2,num_layer3,num_layer4,num_layer5,dbhost='192.168.128.10',mod=-1,retry=0, update_min_step=400, step_update=200, update_start=0.25,
update_end=0.8, update_delay=2.0):
# def __init__(self,template_id,ps_replicas,worker_replicas,training_step,batch_size,interval,task_id,rtimes,tag,
# dbhost='192.168.128.10',mod=-1,retry=0, update_min_step=400, step_update=200, update_start=0.25,
# update_end=0.75, update_delay=2.0)
SubTask.__init__(self,template_id,ps_replicas,worker_replicas,training_step,batch_size,interval,task_id,rtimes,tag,dbhost,mod,retry,update_min_step,step_update,update_start,update_end,update_delay)
# SubTask.__init__(self,template_id,ps_replicas,worker_replicas,training_step,batch_size,interval,task_id,rtimes,tag)
self.channel1 = channel1
self.channel2 = channel2
self.channel3 = channel3
self.channel4 = channel4
self.channel5 = channel5
self.num_layer1 = num_layer1
self.num_layer2 = num_layer2
self.num_layer3 = num_layer3
self.num_layer4 = num_layer4
self.num_layer5 = num_layer5
self.num_layers = num_layer1+num_layer2+num_layer3+num_layer4+num_layer5+3
self.template = TaskTemplate.VGG
# self.v1 = v1
self.name = 'vgg-'+str(self.task_id)+'-'+str(self.rtimes)
self.measure = "VGG %d" % self.task_id
self.mod = mod
def set_mod(self,new_mod):
self.mod = new_mod
def get_mod(self):
return self.mod
def get_node_list(self):
node_list = [i.metadata.name for i in self.v1.list_node().items]
return node_list
def make_args(self):
self.args.append('--channel1='+str(self.channel1))
self.args.append('--channel2='+str(self.channel2))
self.args.append('--channel3='+str(self.channel3))
self.args.append('--channel4='+str(self.channel4))
self.args.append('--channel5='+str(self.channel5))
self.args.append('--num_layer1='+str(self.num_layer1))
self.args.append('--num_layer2='+str(self.num_layer2))
self.args.append('--num_layer3='+str(self.num_layer3))
self.args.append('--num_layer4='+str(self.num_layer4))
self.args.append('--num_layer5='+str(self.num_layer5))
self.args.append('--num_layers='+str(self.num_layers))
def get_remain(self, mode=0):
try:
filepath = '/tfdata/k8snfs/' + self.name + '/worker0/'
file_list = os.listdir(filepath)
except Exception as ee:
# atmp = 0
# step_influx = influxdb.InfluxDBClient(host=self.dbhost, port=8086, username='admin', password='<PASSWORD>',
# database="PREDICT")
# pre_list = self.measure.split(" ")
# measure_s = pre_list[0] + 'S' + pre_list[-1]
# measure_t = pre_list[0] + 'T' + pre_list[-1]
# result = step_influx.query("select training_step from " + measure_t + " order by desc limit 1")
# key = result.keys()
# result_inter = result[key[0]]
# result_items = list(result_inter)
# trains_step = result_items[0]['training_step']
# total_step = int(trains_step)
# remain = total_step - atmp + 2
# if remain <= 0:
# remain = 0
remain = self.training_step
total_step = self.training_step
atmp = 0
return remain, total_step, atmp
step_influx = influxdb.InfluxDBClient(host=self.dbhost, port=8086, username='admin', password='<PASSWORD>',
database="PREDICT")
pre_list = self.measure.split(" ")
measure_s = pre_list[0] + 'S' + pre_list[-1]
measure_t = pre_list[0] + 'T' + pre_list[-1]
result = step_influx.query("select training_step from " + measure_t + " order by desc limit 1")
key = result.keys()
result_inter = result[key[0]]
result_items = list(result_inter)
trains_step = result_items[0]['training_step']
total_step = int(trains_step)
atmp = 0
if mode == 0:
step = []
for i in file_list:
if 'model.ckpt' in i and 'meta' in i:
tmp = re.findall(r'\d+', i)
step.append(int(tmp[0]))
# tiqv.append(i)
if not step:
atmp = 0
else:
atmp = max(step)
else:
res = step_influx.query("select * from " + measure_s + " group by nodes,retry order by desc limit 1")
res_key = list(res.keys())
# keys = res.keys()
if res_key:
retry_time = [int(b['retry']) for a, b in res_key]
retry_time = set(retry_time)
retry = max(retry_time)
# node_list = [b['nodes'] for a, b in keys]
node_list = [b['nodes'] for a, b in res_key]
dic_msg = {}
for node in node_list:
for i in range(len(res_key)):
_, no = res_key[i]
if no['nodes'] == node and int(no['retry']) == retry:
dic_msg[node] = list(res[res_key[i]])
step_list = []
node_key = list(dic_msg.keys())
for node in node_key:
step_list.append(int(dic_msg[node][0]['step']))
if not step_list:
atmp = 0
else:
atmp = min(step_list)
else:
atmp = 0
# for node in node_list:
# for i in range(len(keys)):
# _, no = keys[i]
# if no['nodes'] == node:
# dic_msg[node] = list(res[keys[i]])
remain = total_step - atmp + 2
if remain <= 0:
remain = 0
return remain,total_step,atmp
def predict_min(self,rfr):
job_path = '/tfdata/k8snfs/%s/%s_res.json' % (self.name,self.name)
job_config = load_config(job_path)
# "deadline": 14843,
# "start_time": 1584816589.613,
# "cpu_source": 6046,
# "mem_source": 19225,
# "cpu_high": 8991,
# "memory_base": 8706,
# "batch_res": 785,
# "flops_res": 127834653,
# "params_res": 18273610,
# "step_base": 69,
batch = job_config['batch_res']
flops = job_config['flops_res']
params = job_config['params_res']
cpu_high = job_config['cpu_high']
mem_base = job_config['memory_base']
cpu_alpha = self.cpu_allocate / cpu_high
mem_alpha = self.memory_allocate / mem_base
# bfp = list(zip(list(res['batch']),list(res['flops']),list(res['params']),list(res['cpu_alpha']),list(res['mem_alpha'])))
data =
|
np.array([batch, flops, params,cpu_alpha,mem_alpha])
|
numpy.array
|
# test_arnoldi_sampling.py
import unittest
import numpy as np
import chaospy as cp
from pystatreduce.stochastic_collocation import StochasticCollocation
from pystatreduce.quantity_of_interest import QuantityOfInterest
from pystatreduce.stochastic_arnoldi.arnoldi_sample import ArnoldiSampling
import pystatreduce.examples as examples
class ArnoldiSamplingTest(unittest.TestCase):
def test_modified_GramSchmidt_fullRank(self):
# Generate a random set of vectors and use modGramSchmidt to
# orthogonalize them
systemsize = 10
# Initialize ArnoldiSampling object
alpha = 1.0
num_sample = 4
arnoldi = ArnoldiSampling(alpha, num_sample)
# Create arrays for modified_GramSchmidt
Z = np.random.rand(systemsize, num_sample)
H = np.zeros([num_sample, num_sample-1])
# Populate Z
for i in range(-1, num_sample-1):
arnoldi.modified_GramSchmidt(i, H, Z)
# Check that the vectors are unit normal
self.assertAlmostEqual(np.linalg.norm(Z[:,i+1]), 1, places=14)
# Check that the vectors are orthogonal
for i in range(0, num_sample):
for j in range(i+1, num_sample):
self.assertAlmostEqual(np.dot(Z[:,i], Z[:,j]), 0, places=14)
def test_modified_GramSchmidt_RankDeficient(self):
# Generate a random set of vectors, make one of them a linear combination
# of the others, and use modGramSchmidt to orthogonalize them
systemsize = 10
# Initialize ArnoldiSampling object
alpha = 1.0
num_sample = 4
arnoldi = ArnoldiSampling(alpha, num_sample)
# Create arrays for modified_GramSchmidt
Z = np.random.rand(systemsize, num_sample)
Z[:,num_sample-1] = Z[:,0:num_sample-1].dot(np.random.rand(num_sample-1))
H = np.zeros([num_sample, num_sample-1])
for i in range(-1, num_sample-2):
arnoldi.modified_GramSchmidt(i, H, Z)
# Check that the vectors are unit normal
self.assertAlmostEqual(np.linalg.norm(Z[:,i+1]), 1, places=14)
# calling now should produce lin_depend flag
lin_depend = arnoldi.modified_GramSchmidt(num_sample-2, H, Z)
self.assertTrue(lin_depend)
def test_arnoldiSample_complete(self):
# Compute all of the eigenmodes of an isoprobabilistic Hadamard
# quadratic system using Arnoldi sampling and verify against the exact
# computation
systemsize = 16
eigen_decayrate = 2.0
# Create Hadmard Quadratic object
QoI = examples.HadamardQuadratic(systemsize, eigen_decayrate)
# Initialize chaospy distribution
std_dev = np.random.rand(QoI.systemsize)
sqrt_Sigma =
|
np.diag(std_dev)
|
numpy.diag
|
from __future__ import division, print_function, absolute_import
import numpy as np
import numpy.testing as nt
import warnings
from dipy.utils.six.moves import xrange
from dipy.core.sphere import (Sphere, HemiSphere, unique_edges, unique_sets,
faces_from_sphere_vertices, HemiSphere,
disperse_charges, _get_forces,
unit_octahedron, unit_icosahedron,
hemi_icosahedron)
from dipy.core.subdivide_octahedron import create_unit_sphere
from dipy.core.geometry import cart2sphere, sphere2cart, vector_norm
from numpy.testing.decorators import skipif
try:
from scipy.spatial import Delaunay
except ImportError:
needs_delaunay = skipif(True, "Need scipy.spatial.Delaunay")
else:
needs_delaunay = skipif(False)
verts = unit_octahedron.vertices
edges = unit_octahedron.edges
oct_faces = unit_octahedron.faces
r, theta, phi = cart2sphere(*verts.T)
def test_sphere_construct_args():
nt.assert_raises(ValueError, Sphere)
nt.assert_raises(ValueError, Sphere, x=1, theta=1)
nt.assert_raises(ValueError, Sphere, xyz=1, theta=1)
nt.assert_raises(ValueError, Sphere, xyz=1, theta=1, phi=1)
def test_sphere_edges_faces():
nt.assert_raises(ValueError, Sphere, xyz=1, edges=1, faces=None)
Sphere(xyz=[0, 0, 1], faces=[0, 0, 0])
Sphere(xyz=[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]],
edges=[[0, 1],
[1, 2],
[2, 0]],
faces=[0, 1, 2])
def test_sphere_not_unit():
with warnings.catch_warnings():
warnings.simplefilter('error')
nt.assert_raises(UserWarning, Sphere, xyz=[0, 0, 1.5])
def test_bad_edges_faces():
nt.assert_raises(ValueError, Sphere, xyz=[0, 0, 1.5], edges=[[1, 2]])
def test_sphere_construct():
s0 = Sphere(xyz=verts)
s1 = Sphere(theta=theta, phi=phi)
s2 = Sphere(*verts.T)
nt.assert_array_almost_equal(s0.theta, s1.theta)
nt.assert_array_almost_equal(s0.theta, s2.theta)
nt.assert_array_almost_equal(s0.theta, theta)
nt.assert_array_almost_equal(s0.phi, s1.phi)
nt.assert_array_almost_equal(s0.phi, s2.phi)
nt.assert_array_almost_equal(s0.phi, phi)
def array_to_set(a):
return set(frozenset(i) for i in a)
def test_unique_edges():
faces = np.array([[0, 1, 2],
[1, 2, 0]])
e = array_to_set([[1, 2],
[0, 1],
[0, 2]])
u = unique_edges(faces)
nt.assert_equal(e, array_to_set(u))
u, m = unique_edges(faces, return_mapping=True)
nt.assert_equal(e, array_to_set(u))
edges = [[[0, 1], [1, 2], [2, 0]],
[[1, 2], [2, 0], [0, 1]]]
nt.assert_equal(np.sort(u[m], -1), np.sort(edges, -1))
def test_unique_sets():
sets = np.array([[0, 1, 2],
[1, 2, 0],
[0, 2, 1],
[1, 2, 3]])
e = array_to_set([[0, 1, 2],
[1, 2, 3]])
# Run without inverse
u = unique_sets(sets)
nt.assert_equal(len(u), len(e))
nt.assert_equal(array_to_set(u), e)
# Run with inverse
u, m = unique_sets(sets, return_inverse=True)
nt.assert_equal(len(u), len(e))
nt.assert_equal(array_to_set(u), e)
nt.assert_equal(np.sort(u[m], -1), np.sort(sets, -1))
@needs_delaunay
def test_faces_from_sphere_vertices():
faces = faces_from_sphere_vertices(verts)
faces = array_to_set(faces)
expected = array_to_set(oct_faces)
nt.assert_equal(faces, expected)
def test_sphere_attrs():
s = Sphere(xyz=verts)
nt.assert_array_almost_equal(s.vertices, verts)
nt.assert_array_almost_equal(s.x, verts[:, 0])
nt.assert_array_almost_equal(s.y, verts[:, 1])
nt.assert_array_almost_equal(s.z, verts[:, 2])
@needs_delaunay
def test_edges_faces():
s = Sphere(xyz=verts)
faces = oct_faces
nt.assert_equal(array_to_set(s.faces), array_to_set(faces))
nt.assert_equal(array_to_set(s.edges), array_to_set(edges))
s = Sphere(xyz=verts, faces=[[0, 1, 2]])
nt.assert_equal(array_to_set(s.faces), array_to_set([[0, 1, 2]]))
nt.assert_equal(array_to_set(s.edges),
array_to_set([[0, 1], [1, 2], [0, 2]]))
s = Sphere(xyz=verts, faces=[[0, 1, 2]], edges=[[0, 1]])
nt.assert_equal(array_to_set(s.faces), array_to_set([[0, 1, 2]]))
nt.assert_equal(array_to_set(s.edges),
array_to_set([[0, 1]]))
@needs_delaunay
def test_sphere_subdivide():
sphere1 = unit_octahedron.subdivide(4)
sphere2 = Sphere(xyz=sphere1.vertices)
nt.assert_equal(sphere1.faces.shape, sphere2.faces.shape)
nt.assert_equal(array_to_set(sphere1.faces), array_to_set(sphere2.faces))
sphere1 = unit_icosahedron.subdivide(4)
sphere2 = Sphere(xyz=sphere1.vertices)
nt.assert_equal(sphere1.faces.shape, sphere2.faces.shape)
nt.assert_equal(array_to_set(sphere1.faces), array_to_set(sphere2.faces))
# It might be good to also test the vertices somehow if we can think of a
# good test for them.
def test_sphere_find_closest():
sphere1 = unit_octahedron.subdivide(4)
for ii in range(sphere1.vertices.shape[0]):
nt.assert_equal(sphere1.find_closest(sphere1.vertices[ii]), ii)
def test_hemisphere_find_closest():
hemisphere1 = hemi_icosahedron.subdivide(4)
for ii in range(hemisphere1.vertices.shape[0]):
nt.assert_equal(hemisphere1.find_closest(hemisphere1.vertices[ii]), ii)
nt.assert_equal(hemisphere1.find_closest(-hemisphere1.vertices[ii]),
ii)
nt.assert_equal(hemisphere1.find_closest(hemisphere1.vertices[ii] * 2),
ii)
@needs_delaunay
def test_hemisphere_subdivide():
def flip(vertices):
x, y, z = vertices.T
f = (z < 0) | ((z == 0) & (y < 0)) | ((z == 0) & (y == 0) & (x < 0))
return 1 - 2*f[:, None]
decimals = 6
# Test HemiSphere.subdivide
# Create a hemisphere by dividing a hemi-icosahedron
hemi1 = HemiSphere.from_sphere(unit_icosahedron).subdivide(4)
vertices1 = np.round(hemi1.vertices, decimals)
vertices1 *= flip(vertices1)
order = np.lexsort(vertices1.T)
vertices1 = vertices1[order]
# Create a hemisphere from a subdivided sphere
sphere = unit_icosahedron.subdivide(4)
hemi2 = HemiSphere.from_sphere(sphere)
vertices2 = np.round(hemi2.vertices, decimals)
vertices2 *= flip(vertices2)
order = np.lexsort(vertices2.T)
vertices2 = vertices2[order]
# The two hemispheres should have the same vertices up to their order
nt.assert_array_equal(vertices1, vertices2)
# Create a hemisphere from vertices
hemi3 = HemiSphere(xyz=hemi1.vertices)
nt.assert_array_equal(hemi1.faces, hemi3.faces)
nt.assert_array_equal(hemi1.edges, hemi3.edges)
def test_hemisphere_constructor():
s0 = HemiSphere(xyz=verts)
s1 = HemiSphere(theta=theta, phi=phi)
s2 = HemiSphere(*verts.T)
uniq_verts = verts[::2].T
rU, thetaU, phiU = cart2sphere(*uniq_verts)
nt.assert_array_almost_equal(s0.theta, s1.theta)
nt.assert_array_almost_equal(s0.theta, s2.theta)
|
nt.assert_array_almost_equal(s0.theta, thetaU)
|
numpy.testing.assert_array_almost_equal
|
from constrainedmf.nmf.models import NMF
import numpy as np
import torch
from constrainedmf.utils.plotting import toy_plot
torch.manual_seed(1234)
np.random.seed(1234)
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def gaussian(x, mu, sig):
return np.exp(-
|
np.power(x - mu, 2.0)
|
numpy.power
|
import datetime as dat
import numpy as np
import os
import pandas as pd
import scipy as sp
import scipy.stats as scat
import sys
print(os.getcwd())
c_dir = os.path.join(os.getcwd(), 'model_sources/migliore_etal_2018/MiglioreEtAl2018PLOSCompBiol2018')
res_dir = os.path.join(os.getcwd(), 'results/Tuning Calcium Model/RXD')
os.chdir(c_dir)
from mpl_toolkits.mplot3d import Axes3D
from itertools import cycle
from neuron import h
from os.path import join
from scipy import integrate as spint
from scipy import optimize as spopt
import matplotlib.pyplot as plt
import bokeh.io as bkio
import bokeh.layouts as blay
import bokeh.models as bmod
import bokeh.plotting as bplt
import various_scripts.frequency_analysis as fan
from bokeh.palettes import Category20 as palette
from bokeh.palettes import Category20b as paletteb
from selenium import webdriver
colrs = palette[20] + paletteb[20]
import plot_results as plt_res
#
# module_path = os.getcwd() # os.path.abspath(os.path.join('../..'))
# if module_path not in sys.path:
# sys.path.append(module_path)
import migliore_python as mig_py
mu = u'\u03BC'
delta = u'\u0394'
tau = u'\u03C4'
# chrome_path = r'/usr/local/bin/chromedriver'
# my_opts = webdriver.chrome.options.Options()
# my_opts.add_argument('start-maximized')
# my_opts.add_argument('disable-infobars')
# my_opts.add_argument('--disable-extensions')
# my_opts.add_argument('window-size=1200,1000')
# my_opts.add_argument('--headless')
def single_exponential(x_data, tau):
x_data = np.array(x_data)
return np.exp(-x_data / tau)
def single_exponential_rise(x_data, tau, asym, tshift):
return asym * (1.0 - np.exp(-(x_data - tshift) / tau))
def estimate_decay_constant(t_vals, f_vals, change_tol=0.001):
max_i = np.argmax(f_vals)
plus_i = range(max_i, f_vals.size)
pos_i = np.where(f_vals > 0)
targ_i = np.intersect1d(plus_i, pos_i)
min_val = 0.999 * np.min(f_vals[targ_i])
dec_t = t_vals[targ_i] - t_vals[max_i]
dec_norm = (f_vals[targ_i] - min_val) / (f_vals[max_i] - min_val)
opt_params, pcov = sp.optimize.curve_fit(single_exponential, dec_t, dec_norm)
return opt_params
def run_recharge_simulation(param_dict, sim_dur=180000):
t_path = join(os.getcwd(), 'morphologies/mpg141209_A_idA.asc')
t_steps = np.arange(0, sim_dur, 100)
cell = mig_py.MyCell(t_path, True, param_dict)
# Calreticulin Parameter Values
total_car = param_dict['car_total']
KD_car = param_dict['car_KD']
car_kon = param_dict['car_kon']
car_koff = KD_car * car_kon
carca_init = total_car * 0.001 / (KD_car + 0.01)
car_init = total_car - carca_init
ap_secs = [cell.apical[i] for i in range(10)]
t_secs = cell.somatic + ap_secs
h.CVode().active(True)
h.finitialize(-65.0)
for sec in t_secs:
cell.ca[cell.er].nodes(sec).concentration = 0.001
cell.carca.nodes(sec).concentration = carca_init
cell.car.nodes(sec).concentration = car_init
h.CVode().re_init()
# Create Numpy Arrays For Storing Data
ca_cyt_arr = np.zeros((t_steps.shape[0], 3))
ca_er_arr = np.zeros((t_steps.shape[0], 3))
carca_arr = np.zeros(t_steps.shape)
cbdhca_arr = np.zeros(t_steps.shape)
cbdlca_arr = np.zeros(t_steps.shape)
ogb1ca_arr = np.zeros(t_steps.shape)
# dyeca_arr = np.zeros(t_steps.shape)
#
# e1_arr = np.zeros(t_steps.shape)
# e1_2ca_arr = np.zeros(t_steps.shape)
# e1_2ca_p_arr = np.zeros(t_steps.shape)
# e2_2ca_p_arr = np.zeros(t_steps.shape)
# e2_p_arr = np.zeros(t_steps.shape)
# e2_arr = np.zeros(t_steps.shape)
#
# c1_arr = np.zeros(t_steps.shape)
# c2_arr = np.zeros(t_steps.shape)
# c3_arr = np.zeros(t_steps.shape)
# c4_arr = np.zeros(t_steps.shape)
# o5_arr = np.zeros(t_steps.shape)
# o6_arr = np.zeros(t_steps.shape)
for t_i, t_step in enumerate(t_steps):
h.continuerun(t_step)
ca_cyt_arr[t_i, 0] = cell.ca[cell.cyt].nodes(cell.somatic[0])(0.5)[0].concentration
ca_cyt_arr[t_i, 1] = cell.ca[cell.cyt].nodes(cell.apical[0])(0.5)[0].concentration
ca_cyt_arr[t_i, 2] = cell.ca[cell.cyt].nodes(cell.apical[9])(0.5)[0].concentration
ca_er_arr[t_i, 0] = cell.ca[cell.er].nodes(cell.somatic[0])(0.5)[0].concentration
ca_er_arr[t_i, 1] = cell.ca[cell.er].nodes(cell.apical[0])(0.5)[0].concentration
ca_er_arr[t_i, 2] = cell.ca[cell.er].nodes(cell.apical[9])(0.5)[0].concentration
cbdhca_arr[t_i] = cell.cbdhca[cell.cyt].nodes(cell.somatic[0])(0.5)[0].concentration
cbdlca_arr[t_i] = cell.cbdlca[cell.cyt].nodes(cell.somatic[0])(0.5)[0].concentration
ogb1ca_arr[t_i] = cell.dyeca[cell.cyt].nodes(cell.somatic[0])(0.5)[0].concentration
carca_arr[t_i] = cell.carca[cell.er].nodes(cell.somatic[0])(0.5)[0].concentration
# dyeca_arr[t_i] = dyeca.nodes(soma)(0.5)[0].concentration
#
# e1_arr[t_i] = e1_serca.nodes(soma)(0.5)[0].concentration
# e1_2ca_arr[t_i] = e1_2ca_serca.nodes(soma)(0.5)[0].concentration
# e1_2ca_p_arr[t_i] = e1_2ca_p_serca.nodes(soma)(0.5)[0].concentration
# e2_2ca_p_arr[t_i] = e2_2ca_p_serca.nodes(soma)(0.5)[0].concentration
# e2_p_arr[t_i] = e2_p_serca.nodes(soma)(0.5)[0].concentration
# e2_arr[t_i] = e2_serca.nodes(soma)(0.5)[0].concentration
#
# c1_arr[t_i] = c1_ip3r.nodes(soma)(0.5)[0].concentration
# c2_arr[t_i] = c2_ip3r.nodes(soma)(0.5)[0].concentration
# c3_arr[t_i] = c3_ip3r.nodes(soma)(0.5)[0].concentration
# c4_arr[t_i] = c4_ip3r.nodes(soma)(0.5)[0].concentration
# o5_arr[t_i] = o5_ip3r.nodes(soma)(0.5)[0].concentration
# o6_arr[t_i] = o6_ip3r.nodes(soma)(0.5)[0].concentration
print('Final SERCA States')
# e1 = cell.e1_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# e1_2ca = cell.e1_2ca_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# e1_2ca_p = cell.e1_2ca_p_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# e2_2ca_p = cell.e2_2ca_p_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# e2_p = cell.e2_p_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# e2 = cell.e2_serca.nodes(cell.somatic[0])(0.5)[0].concentration
# total = e1 + e1_2ca + e1_2ca_p + e2_2ca_p + e2_p + e2
#
# print('e1: {}'.format(e1/total))
# print('e1-2ca: {}'.format(e1_2ca / total))
# print('e1-2ca-p: {}'.format(e1_2ca_p / total))
# print('e2-2ca-p: {}'.format(e2_2ca_p / total))
# print('e2-p: {}'.format(e2_p / total))
# print('e2: {}'.format(e2 / total))
result_d = {'t': t_steps,
'sec names': ['Soma', 'Proximal Apical Trunk', 'Distal Apical Trunk'],
'cyt ca': ca_cyt_arr,
'er ca': ca_er_arr,
'carca': carca_arr,
'cbdhca': cbdhca_arr,
'cbdlca': cbdlca_arr,
'ogb1ca': ogb1ca_arr,
}
return result_d
def plot_recharge(result_d):
t_steps = result_d['t'] / 1000.0
ret_figs = []
cyt_ca_fig = bplt.figure(title='Cytosol Calcium vs Time')
ret_figs.append(cyt_ca_fig)
cyt_ca_fig.xaxis.axis_label = 'time (seconds)'
cyt_ca_fig.yaxis.axis_label = 'concentration ({}M)'.format(mu)
er_ca_fig = bplt.figure(title='Endoplasmic Reticulum Calcium vs Time')
ret_figs.append(er_ca_fig)
er_ca_fig.xaxis.axis_label = 'time (seconds)'
er_ca_fig.yaxis.axis_label = 'concentration ({}M)'.format(mu)
carca_fig = bplt.figure(title='Bound Calreticulin vs Time')
ret_figs.append(carca_fig)
carca_fig.xaxis.axis_label = 'time (seconds)'
carca_fig.yaxis.axis_label = 'concentration ({}M)'.format(mu)
carca_fig.line(t_steps, 1000.0*result_d['carca'][:], line_width=3, color=colrs[0], legend='Somatic ER')
cbd_fig = bplt.figure(title='Bound Calbindin-D28k vs Time')
ret_figs.append(cbd_fig)
cbd_fig.xaxis.axis_label = 'time (seconds)'
cbd_fig.yaxis.axis_label = 'concentration ({}M)'.format(mu)
cbd_fig.line(t_steps, 1000.0 * result_d['cbdhca'][:], line_width=3, color=colrs[0], legend='High')
cbd_fig.line(t_steps, 1000.0 * result_d['cbdlca'][:], line_width=3, color=colrs[2], legend='Low')
ogb1_fig = bplt.figure(title='Bound OGB-1 vs Time')
ret_figs.append(ogb1_fig)
ogb1_fig.xaxis.axis_label = 'time (seconds)'
ogb1_fig.yaxis.axis_label = 'concentration ({}M)'.format(mu)
ogb1_fig.line(t_steps, 1000.0 * result_d['ogb1ca'][:], line_width=3, color=colrs[0], legend='High')
# for l_i, loc_name in enumerate(result_d['sec names']):
# if 'soma' in loc_name:
# cyt_ca_fig.line(t_steps, 1000.0*result_d['cyt ca'][:, l_i], line_width=4, color='black', legend='model result')
# er_ca_fig.line(t_steps, 1000.0*result_d['er ca'][:, l_i], line_width=4, color='black', legend='model result')
for l_i, loc_name in enumerate(result_d['sec names']):
cyt_ca_fig.line(t_steps, 1000.0*result_d['cyt ca'][:, l_i], line_width=4, color=colrs[l_i], legend=loc_name)
er_ca_fig.line(t_steps, 1000.0*result_d['er ca'][:, l_i], line_width=4, color=colrs[l_i], legend=loc_name)
cyt_ca_fig.legend.location = 'bottom_right'
return ret_figs
def run_current_injection(rxd_sim, param_dict={}, sim_dur=500, c_int=[50, 100], c_amp=1):
"""
:param cell_type: type of neuron cell to test\n
:param conf_obj: configuration dictionary which holds all of the parameters for the neuron cell to be tested\n
:param swc_path: location of swc_file, required for CA1PyramidalCell class\n
:param sim_dur: simulation duration (msec)\n
:param c_int: interval of time current injection pulse is active\n
:param c_amp: amplitude of current injection\n
:return: t_array, v_array, i_array: t_array\n
time array = numpy array of simulation time steps\n
v_array = numpy array potentials for soma[0](0.5) of cell\n
i_array = numpy array of values for the injected current\n
"""
t_path = join(os.getcwd(), 'morphologies/mpg141209_A_idA.asc')
cell = mig_py.MyCell(t_path, rxd_sim, param_dict)
t_curr = h.IClamp(cell.somatic[0](0.5))
t_curr.delay = c_int[0]
t_curr.amp = c_amp
t_curr.dur = c_int[1] - c_int[0]
# apical[9][0.5] distance to soma[0][1.0] = 105.53 um
# Record Values
i_rec = h.Vector().record(t_curr._ref_i)
t = h.Vector().record(h._ref_t)
soma_v = h.Vector().record(cell.somatic[0](0.5)._ref_v)
apic_v = h.Vector().record(cell.apical[9](0.5)._ref_v)
axon_v = h.Vector().record(cell.axonal[0](0.5)._ref_v)
s_ica_l = h.Vector().record(cell.somatic[0](0.5)._ref_ica_cal)
a_ica_l = h.Vector().record(cell.apical[9](0.5)._ref_ica_cal)
s_ica_n = h.Vector().record(cell.somatic[0](0.5)._ref_ica_can)
a_ica_n = h.Vector().record(cell.apical[9](0.5)._ref_ica_can)
s_ica_t = h.Vector().record(cell.somatic[0](0.5)._ref_ica_cat)
a_ica_t = h.Vector().record(cell.apical[9](0.5)._ref_ica_cat)
if not rxd_sim:
s_ca_cyt = h.Vector().record(cell.somatic[0](0.5)._ref_cai)
a_ca_cyt = h.Vector().record(cell.apical[9](0.5)._ref_cai)
else:
s_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.somatic[0])[0]._ref_concentration)
a_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.apical[9])[0]._ref_concentration)
ax_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.axonal[0])[0]._ref_concentration)
s_ca_er = h.Vector().record(cell.ca[cell.er].nodes(cell.somatic[0])[0]._ref_concentration)
a_ca_er = h.Vector().record(cell.ca[cell.er].nodes(cell.apical[9])[0]._ref_concentration)
s_dyeca = h.Vector().record(cell.dyeca.nodes(cell.somatic[0])[0]._ref_concentration)
a_dyeca = h.Vector().record(cell.dyeca.nodes(cell.apical[9])[0]._ref_concentration)
s_cbdhca = h.Vector().record(cell.cbdhca.nodes(cell.somatic[0])[0]._ref_concentration)
a_cbdhca = h.Vector().record(cell.cbdhca.nodes(cell.apical[9])[0]._ref_concentration)
s_cbdlca = h.Vector().record(cell.cbdlca.nodes(cell.somatic[0])[0]._ref_concentration)
a_cbdlca = h.Vector().record(cell.cbdlca.nodes(cell.apical[9])[0]._ref_concentration)
s_carca = h.Vector().record(cell.carca.nodes(cell.somatic[0])[0]._ref_concentration)
a_carca = h.Vector().record(cell.carca.nodes(cell.apical[9])[0]._ref_concentration)
s_ip3r = h.Vector().record(cell.ro_ip3r.nodes(cell.somatic[0])[0]._ref_concentration)
a_ip3r = h.Vector().record(cell.ro_ip3r.nodes(cell.apical[9])[0]._ref_concentration)
h.cvode.active(1)
h.v_init = -69.4
h.tstop = sim_dur
h.celsius = 34.0
# h.load_file('negative_init.hoc')
# h.init()
h.stdinit()
print('Running current injection, amplitude = {0} nA'.format(c_amp))
h.continuerun(sim_dur)
print('Final IP3R Values')
print('r: {0}'.format(cell.r_ip3r.nodes(cell.somatic[0]).concentration))
print('ri: {0}'.format(cell.ri_ip3r.nodes(cell.somatic[0]).concentration))
print('ro: {0}'.format(cell.ro_ip3r.nodes(cell.somatic[0]).concentration))
print('rc: {0}'.format(cell.rc_ip3r.nodes(cell.somatic[0]).concentration))
print('rc2: {0}'.format(cell.rc2_ip3r.nodes(cell.somatic[0]).concentration))
print('rc3: {0}'.format(cell.rc3_ip3r.nodes(cell.somatic[0]).concentration))
print('rc4: {0}'.format(cell.rc4_ip3r.nodes(cell.somatic[0]).concentration))
print('Final IP3 Production Numbers')
print('ip3: {0}'.format(cell.ip3.nodes(cell.somatic[0]).concentration))
print('plc: {0}'.format(cell.plc_m1.nodes(cell.somatic[0]).concentration))
print('ga_gtp: {0}'.format(cell.ga_gtp_m1.nodes(cell.somatic[0]).concentration))
print('ga_gtp_plc: {0}'.format(cell.ga_gtp_plc_m1.nodes(cell.somatic[0]).concentration))
print('ip5p: {0}'.format(cell.ip5p.nodes(cell.somatic[0]).concentration))
print('ip5p_ip3: {0}'.format(cell.ip5p_ip3.nodes(cell.somatic[0]).concentration))
print('ip3k: {0}'.format(cell.ip3k.nodes(cell.somatic[0]).concentration))
print('ip3k_2ca: {0}'.format(cell.ip3k_2ca.nodes(cell.somatic[0]).concentration))
print('ip3k_2ca_ip3: {0}'.format(cell.ip3k_2ca_ip3.nodes(cell.somatic[0]).concentration))
res_dict = {'t': np.array(t.as_numpy()),
'i_stim': np.array(i_rec.as_numpy()),
'soma_v': np.array(soma_v),
'soma_cyt': np.array(s_ca_cyt),
'axon_v': np.array(axon_v),
'axon_cyt': np.array(ax_ca_cyt),
'apic9_v': np.array(apic_v),
'apic9_cyt': np.array(a_ca_cyt),
'soma_ica_l': np.array(s_ica_l),
'apic9_ica_l': np.array(a_ica_l),
'soma_ica_n': np.array(s_ica_n),
'apic9_ica_n': np.array(a_ica_n),
'soma_ica_t': np.array(s_ica_t),
'apic9_ica_t': np.array(a_ica_t),
}
if rxd_sim:
res_dict['soma_er'] = np.array(s_ca_er)
res_dict['apic9_er'] = np.array(a_ca_er)
res_dict['soma_ip3r_open'] = np.array(s_ip3r)
res_dict['apic9_ip3r_open'] = np.array(a_ip3r)
res_dict['soma_dyeca'] = np.array(s_dyeca)
res_dict['apic9_dyeca'] = np.array(a_dyeca)
res_dict['soma_cbdhca'] = np.array(s_cbdhca)
res_dict['apic9_cbdhca'] = np.array(s_cbdhca)
res_dict['soma_cbdlca'] = np.array(s_cbdlca)
res_dict['apic9_cbdlca'] = np.array(s_cbdlca)
res_dict['soma_carca'] = np.array(s_carca)
res_dict['apic9_carca'] = np.array(a_carca)
return res_dict
def run_current_injection_series(rxd_sim, param_dict={}, sim_dur=500, pulse_times=[50], pulse_amps=[1.0], pulse_length=10):
t_path = join(os.getcwd(), 'morphologies/mpg141209_A_idA.asc')
cell = mig_py.MyCell(t_path, rxd_sim, param_dict)
t_curr = h.IClamp(cell.somatic[0](0.5))
amp_list = []
amp_time = []
for p_time, p_amp in zip(pulse_times, pulse_amps):
amp_list += [p_amp, 0.0]
amp_time += [p_time, p_time+pulse_length]
c_vec = h.Vector().from_python(amp_list)
c_time = h.Vector().from_python(amp_time)
t_curr.delay = 0
t_curr.dur = 1e9
c_vec.play(t_curr._ref_amp, c_time)
# apical[9][0.5] distance to soma[0][1.0] = 105.53 um
# Record Values
i_rec = h.Vector().record(t_curr._ref_i)
t = h.Vector().record(h._ref_t)
soma_v = h.Vector().record(cell.somatic[0](0.5)._ref_v)
apic_v = h.Vector().record(cell.apical[9](0.5)._ref_v)
axon_v = h.Vector().record(cell.axonal[0](0.5)._ref_v)
s_ica_l = h.Vector().record(cell.somatic[0](0.5)._ref_ica_cal)
a_ica_l = h.Vector().record(cell.apical[9](0.5)._ref_ica_cal)
s_ica_n = h.Vector().record(cell.somatic[0](0.5)._ref_ica_can)
a_ica_n = h.Vector().record(cell.apical[9](0.5)._ref_ica_can)
s_ica_t = h.Vector().record(cell.somatic[0](0.5)._ref_ica_cat)
a_ica_t = h.Vector().record(cell.apical[9](0.5)._ref_ica_cat)
if not rxd_sim:
s_ca_cyt = h.Vector().record(cell.somatic[0](0.5)._ref_cai)
a_ca_cyt = h.Vector().record(cell.apical[9](0.5)._ref_cai)
else:
s_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.somatic[0])[0]._ref_concentration)
a_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.apical[9])[0]._ref_concentration)
ax_ca_cyt = h.Vector().record(cell.ca[cell.cyt].nodes(cell.axonal[0])[0]._ref_concentration)
s_ca_er = h.Vector().record(cell.ca[cell.er].nodes(cell.somatic[0])[0]._ref_concentration)
a_ca_er = h.Vector().record(cell.ca[cell.er].nodes(cell.apical[9])[0]._ref_concentration)
s_dyeca = h.Vector().record(cell.dyeca.nodes(cell.somatic[0])[0]._ref_concentration)
a_dyeca = h.Vector().record(cell.dyeca.nodes(cell.apical[9])[0]._ref_concentration)
s_cbdhca = h.Vector().record(cell.cbdhca.nodes(cell.somatic[0])[0]._ref_concentration)
a_cbdhca = h.Vector().record(cell.cbdhca.nodes(cell.apical[9])[0]._ref_concentration)
s_cbdlca = h.Vector().record(cell.cbdlca.nodes(cell.somatic[0])[0]._ref_concentration)
a_cbdlca = h.Vector().record(cell.cbdlca.nodes(cell.apical[9])[0]._ref_concentration)
s_carca = h.Vector().record(cell.carca.nodes(cell.somatic[0])[0]._ref_concentration)
a_carca = h.Vector().record(cell.carca.nodes(cell.apical[9])[0]._ref_concentration)
h.cvode.active(1)
h.v_init = -69.4
h.tstop = sim_dur
h.celsius = 34.0
# h.load_file('negative_init.hoc')
# h.init()
h.stdinit()
print('Running current injection')
h.continuerun(sim_dur)
res_dict = {'t': np.array(t.as_numpy()),
'i_stim': np.array(i_rec.as_numpy()),
'soma_v': np.array(soma_v),
'soma_cyt': np.array(s_ca_cyt),
'apic9_v': np.array(apic_v),
'apic9_cyt': np.array(a_ca_cyt),
'axon_v': np.array(axon_v),
'axon_cyt': np.array(ax_ca_cyt),
'soma_ica_l': np.array(s_ica_l),
'apic9_ica_l': np.array(a_ica_l),
'soma_ica_n': np.array(s_ica_n),
'apic9_ica_n': np.array(a_ica_n),
'soma_ica_t': np.array(s_ica_t),
'apic9_ica_t':
|
np.array(a_ica_t)
|
numpy.array
|
#! /usr/bin/env python
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
from selfdrive.car.honda.interface import CarInterface
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.vehicle_model import VehicleModel
# plot lateral MPC trajectory by defining boundary conditions:
# lane lines, p_poly and vehicle states. Use this script to tune MPC costs
libmpc = libmpc_py.libmpc
mpc_solution = libmpc_py.ffi.new("log_t *")
points_l = np.array([1.1049711, 1.1053879, 1.1073375, 1.1096942, 1.1124474, 1.1154714, 1.1192677, 1.1245866, 1.1321017, 1.1396152, 1.146443, 1.1555313, 1.1662073, 1.1774249, 1.1888939, 1.2009926, 1.2149779, 1.2300836, 1.2450289, 1.2617753, 1.2785473, 1.2974714, 1.3151019, 1.3331807, 1.3545501, 1.3763691, 1.3983455, 1.4215056, 1.4446729, 1.4691089, 1.4927692, 1.5175346, 1.5429921, 1.568854, 1.5968665, 1.6268958, 1.657122, 1.6853137, 1.7152609, 1.7477539, 1.7793678, 1.8098511, 1.8428392, 1.8746407, 1.9089606, 1.9426043, 1.9775689, 2.0136933, 2.0520134, 2.0891454])
points_r = np.array([-2.4442139, -2.4449506, -2.4448867, -2.44377, -2.4422617, -2.4393811, -2.4374201, -2.4334245, -2.4286852, -2.4238286, -2.4177458, -2.4094386, -2.3994849, -2.3904033, -2.380136, -2.3699453, -2.3594661, -2.3474073, -2.3342307, -2.3194637, -2.3046403, -2.2881098, -2.2706163, -2.2530098, -2.235604, -2.2160542, -2.1967411, -2.1758952, -2.1544619, -2.1325269, -2.1091819, -2.0850561, -2.0621953, -2.0364127, -2.0119917, -1.9851667, -1.9590458, -1.9306552, -1.9024918, -1.8745357, -1.8432863, -1.8131843, -1.7822732, -1.7507075, -1.7180918, -1.6845931, -1.650871, -1.6157099, -1.5787286, -1.5418037])
points_c = (points_l + points_r) / 2.0
def compute_path_pinv():
deg = 3
x = np.arange(50.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points):
path_pinv = compute_path_pinv()
return np.dot(path_pinv, map(float, points))
xx = []
yy = []
deltas = []
psis = []
times = []
CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING")
VM = VehicleModel(CP)
v_ref = 32.00 # 45 mph
curvature_factor = VM.curvature_factor(v_ref)
print(curvature_factor)
LANE_WIDTH = 3.9
p_l = map(float, model_polyfit(points_l))
p_r = map(float, model_polyfit(points_r))
p_p = map(float, model_polyfit(points_c))
l_poly = libmpc_py.ffi.new("double[4]", p_l)
r_poly = libmpc_py.ffi.new("double[4]", p_r)
p_poly = libmpc_py.ffi.new("double[4]", p_p)
l_prob = 1.0
r_prob = 1.0
p_prob = 1.0 # This is always 1
mpc_x_points = np.linspace(0., 2.5*v_ref, num=50)
points_poly_l = np.polyval(p_l, mpc_x_points)
points_poly_r = np.polyval(p_r, mpc_x_points)
points_poly_p = np.polyval(p_p, mpc_x_points)
print(points_poly_l)
lanes_x = np.linspace(0, 49)
cur_state = libmpc_py.ffi.new("state_t *")
cur_state[0].x = 0.0
cur_state[0].y = 0.5
cur_state[0].psi = 0.0
cur_state[0].delta = 0.0
xs = []
ys = []
deltas = []
titles = [
'Steer rate cost',
'Heading cost',
'Lane cost',
'Path cost',
]
# Steer rate cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 1.0, 5):
libmpc.init(1.0, 3.0, 1.0, cost)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Heading cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 1.0, 5):
libmpc.init(1.0, 3.0, cost, 1.0)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Lane cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 2.0, 5):
libmpc.init(1.0, cost, 1.0, 1.0)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Path cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in
|
np.logspace(-1, 1.0, 5)
|
numpy.logspace
|
import copy
import json
import warnings
import numpy as np
from matrx.actions import GrabObject, RemoveObject, OpenDoorAction, CloseDoorAction
from matrx.agents.agent_utils.state import State
from matrx.messages import Message
class AgentBrain:
""" An artificial agent whose behaviour can be programmed to be, for example, (semi-)autonomous.
"""
def __init__(self, memorize_for_ticks=None):
""" Defines the behavior of an agent.
This class is the place where all the decision logic of an agent is
contained. This class together with the
:class:`matrx.objects.agent_body.AgentBody` class represent a full agent.
This agent brain simply selects a random action from the possible actions
it can do.
When you wish to create a new agent, this is the class you need
to extend. In specific these are the functions you should override:
* :meth:`matrx.agents.agent_brain.initialize`
Called before a world starts running. Can be used to initialize
variables that can only be initialized after the brain is connected to
its body (which is done by the world).
* :meth:`matrx.agents.agent_brain.filter_observations`
Called before deciding on an action to allow detailed and agent
specific filtering of the received world state.
* :meth:`matrx.agents.agent_brain.decide_on_action`
Called to decide on an action.
* :meth:`matrx.agents.agent_brain.get_log_data`
Called by data loggers to obtain data that should be logged from this
agent internal reasoning.
Attributes
----------
action_set: [str, ...]
List of actions this agent can perform.
agent_id: str
The unique identified of this agent's body in the world.
agent_name: str
The name of this agent.
agent_properties: dict
A dictionary of this agent's
:class:`matrx.objects.agent_body.AgentBody` properties. With as keys
the property name, and as value the property's value.
These can be adjusted iff they are said to be adjustable (e.g. inside
the attribute `keys_of_agent_writable_props`).
keys_of_agent_writable_props: [str, ...]
List of property names that this agent can adjust.
messages_to_send: [Message, ...]
List of messages this agent will send. Use the method
:meth:`matrx.agents.agent_brain.AgentBrain.send_message` to append to
this list.
previous_action: str
The name of the previous performed or attempted action.
previous_action_result: ActionResult
The :class:`matrx.actions.action.ActionResult` of the previously
performed or attempted action.
received_messages: [Message, ...]
The list of received messages.
rnd_gen: Random
The random generator for this agent.
rnd_seed: int
The random seed with which this agent's `rnd_gen` was initialized. This
seed is based on the master random seed given of the
:class:`matrx.grid_world.GridWorld`.
"""
# Class variables for tracking the past action and its result
self.previous_action = None
self.previous_action_result = None
# A list of messages that may be filled by this agent, which is retrieved by the GridWorld and send towards the
# appropriate agents.
self.messages_to_send = []
self.received_messages = []
# Filled by the WorldFactory during self.factory_initialise()
self.agent_id = None
self.agent_name = None
self.action_set = None # list of action names (strings)
self.sense_capability = None
self.rnd_gen = None
self.rnd_seed = None
self.agent_properties = {}
self.keys_of_agent_writable_props = []
self.__memorize_for_ticks = memorize_for_ticks
# The central state property (an extended dict with unique searching capabilities)
self._state = None
def initialize(self):
""" Method called by any world when it starts.
When adding an agent to a :class:`matrx.grid_world.GridWorld`, through
a world builer, you only pass the class of your agent brain, not the
actual instance. Instead, this instance is made by the builder when
a new world is created and ran. At that point this method is called.
That makes this method the ideal place for any initialization or
reset you want your agent brain to do when starting a world or between
worlds.
Importantly, this method is called after the builder assigned things
to it such as its location, name and object ID. As this method is
called afterwards, it allows you to do things related to to those
properties.
An example is when you run the same world multiple times. In that case
the instance of your agent brain will have attributes with values from
the previous run. This method can be used to reset them.
"""
self.previous_action = None
self.previous_action_result = None
self.messages_to_send = []
self.received_messages = []
self._init_state()
def filter_observations(self, state):
""" Filters the world state before deciding on an action.
In this method you filter the received world state to only those
properties and objects the agent is actually supposed to see.
Currently the world returns ALL properties of ALL objects within a
certain range(s), as specified by
:class:`matrx.agents.capabilities.capability.SenseCapability`. But
perhaps some objects are obscured because they are behind walls and
this agent is not supposed to look through walls, or an agent is not
able to see some properties of certain objects (e.g. colour).
The adjusted world state that this function returns is directly fed to
the agent's decide function. Furthermore, this returned world state is
also fed through the MATRX API to any visualisations.
Override this method when creating a new AgentBrain and you need to
filter the world state further.
Parameters
----------
state : State
A state description containing all perceived
:class:`matrx.objects.env_object.EnvObject` and objects inheriting
from this class within a certain range as defined by the
:class:`matrx.agents.capabilities.capability.SenseCapability`.
The keys are the unique identifiers, as values the properties of
an object. See :class:`matrx.objects.env_object.EnvObject` for the
kind of properties that are always included. It will also contain
all properties for more specific objects that inherit from that
class.
Also includes a 'world' key that describes common information about
the world (e.g. its size).
Returns
-------
filtered_state : State
A dictionary similar to `state` but describing the filtered state
this agent perceives of the world.
Notes
-----
A future version of MATRX will include handy utility function to make
state filtering less of a hassle (e.g. to easily remove specific
objects or properties, but also ray casting to remove objects behind
other objects)
"""
return state
def decide_on_action(self, state):
""" Contains the decision logic of the agent.
This method determines what action the agent should perform. The
:class:`matrx.grid_world.GridWorld` is responsible for deciding when
an agent can perform an action, if so this method is called for each
agent and fed with the world state from the `filter_observations`
method.
Two things need to be determined: action name and action arguments.
The action is returned simply as the class name (as a string), and the
action arguments as a dictionary with the keys the names of the keyword
arguments. See the documentation of that action to find out which
arguments.
An argument that is always possible is that of action_duration, which
denotes how many ticks this action should take and overrides the
action duration set by the action implementation.
Parameters
----------
state : State
A state description as given by the agent's
:meth:`matrx.agents.agent_brain.AgentBrain.filter_observations` method.
Returns
-------
action_name : str
A string of the class name of an action that is also in the
`action_set` class attribute. To ensure backwards compatibility
we advise to use Action.__name__ where Action is the intended
action.
action_args : dict
A dictionary with keys any action arguments and as values the
actual argument values. If a required argument is missing an
exception is raised, if an argument that is not used by that
action a warning is printed. The argument applicable to all action
is `action_duration`, which sets the number ticks the agent is put
on hold by the GridWorld until the action's world mutation is
actual performed and the agent can perform a new action (a value of
0 is no wait, 1 means to wait 1 tick, etc.).
Notes
-----
A future version of MATRX will include handy utility function to make
agent decision-making less of a hassle. Think of a
Belief-Desire-Intention (BDI) like structure, and perhaps even support
for learning agents.
"""
# send a random message once in a while
if self.rnd_gen.random() < 0.1:
# Get all agents in our state.
# The codeline below can return three things:
# - None -> no agents found (impossible as we are in an agent right now)
# - an agent object -> only a single agent found
# - a list of agent objects -> multiple agents found
# Also see for state usage:
# https://github.com/matrx-software/matrx/blob/master/matrx/cases/bw4t/bw4t_agents.py
agents = state[{"isAgent": True}]
# If we found multiple agents, randomly select the ID of one of them or otherwise the ID of the only agent
to_id = self.rnd_gen.choice(agents)['obj_id'] if isinstance(agents, list) else agents['obj_id']
self.send_message(Message(content=f"Hello, my name is (agent) {self.agent_name} and I sent this message at "
f"tick {state['World']['nr_ticks']}",
from_id=self.agent_id,
to_id=to_id))
# Select a random action
if self.action_set:
action = self.rnd_gen.choice(self.action_set)
else:
action = None
action_kwargs = {}
if action == RemoveObject.__name__:
action_kwargs['object_id'] = None
# Get all perceived objects
objects = list(state.keys())
# Remove yourself from the object id list
objects.remove(self.agent_properties["obj_id"])
# Remove all objects that have 'agent' in the name (so we do not remove those, though agents without agent
# in their name can still be removed).
objects = [obj for obj in objects if 'agent' not in obj]
# Choose a random object id (safety for when it is empty)
if objects:
object_id = self.rnd_gen.choice(objects)
# Assign it
action_kwargs['object_id'] = object_id
# Select range as just enough to remove that object
remove_range = int(np.ceil(np.linalg.norm(
np.array(state[object_id]['location']) - np.array(
state[self.agent_properties["obj_id"]]['location']))))
# Safety for if object and agent are in the same location
remove_range = max(remove_range, 0)
# Assign it to the arguments list
action_kwargs['remove_range'] = remove_range
else:
action_kwargs['object_id'] = None
action_kwargs['remove_range'] = 0
# if the agent randomly chose a grab action, choose a random object to pickup
elif action == GrabObject.__name__:
# Set grab range
grab_range = 1
# Set max amount of objects
max_objects = 3
# Assign it to the arguments list
action_kwargs['grab_range'] = grab_range
action_kwargs['max_objects'] = max_objects
# Get all perceived objects
objects = list(state.keys())
# Remove yourself from the object id list
objects.remove(self.agent_properties["obj_id"])
# Remove all objects that have 'agent' in the name (so we do not remove those, though agents without agent
# in their name can still be removed).
objects = [obj for obj in objects if 'agent' not in obj]
# Choose a random object id (safety for when it is empty)
object_in_range = []
for object_id in objects:
# Select range as just enough to grab that object
dist = int(np.ceil(np.linalg.norm(
np.array(state[object_id]['location']) - np.array(
state[self.agent_properties["obj_id"]]['location']))))
if dist <= grab_range and state[object_id]["is_movable"]:
object_in_range.append(object_id)
if object_in_range:
# Select object
object_id = self.rnd_gen.choice(object_in_range)
# Assign it
action_kwargs['object_id'] = object_id
else:
action_kwargs['object_id'] = None
# if we randomly chose to do a open or close door action, find a door to open/close
elif action == OpenDoorAction.__name__ or action == CloseDoorAction.__name__:
action_kwargs['door_range'] = 1 # np.inf
action_kwargs['object_id'] = None
# Get all doors from the perceived objects
objects = list(state.keys())
doors = [obj for obj in objects
if 'class_inheritance' in state[obj] and state[obj]['class_inheritance'][0] == "Door"]
# choose a random door
if len(doors) > 0:
action_kwargs['object_id'] = self.rnd_gen.choice(doors)
return action, action_kwargs
def get_log_data(self):
""" Provides a dictionary of data for any Logger
This method functions to relay data from an agent's decision logic (this AgentBrain class) through the GridWorld
into a Logger. Here it can be further processed and stored.
Returns
-------
data : dict
A dictionary with keys identifiable names and the data as its value.
"""
return {}
def send_message(self, message):
""" Sends a Message from this agent to others
Method that allows you to construct a message that will be send to either a specified agent, a team of agents
or all agents.
Parameters
----------
message : Message
A message object that needs to be send. Should be of type Message. It's to_id can contain a single
recipient, a list of recipients or None. If None, it is send to all other agents.
"""
# Check if the message is a true message
self.__check_message(message, self.agent_id)
# Add the message to our list
self.messages_to_send.append(message)
def is_action_possible(self, action, action_kwargs):
""" Checks if an action would be possible.
This method can be called from the AgentBrain to check if a certain action is possible to perform with the
current state of the GridWorld. It requires as input an action name and its arguments (if any), same as the
decide_on_action method should return.
This method does not guarantees that if the action is return by the brain it actually succeeds, as other agents
may intervene.
Parameters
----------
action : str
The name of an Action class.
action_kwargs : dict
A dictionary with keys any action arguments and as values the actual argument values.
Returns
-------
succeeded : bool
True if the action can be performed, False otherwise.
action_results : ActionResult
An ActionResult object containing the success or failure of the action, and (if failed) the reason why.
"""
action_result = self.__callback_is_action_possible(self.agent_id, action, action_kwargs)
return action_result.succeeded, action_result
@property
def state(self):
return self._state
@state.setter
def state(self, new_state):
# Check if the return filtered state is a differently created State
# object, if so, raise the warning that we are overwriting it.
if new_state is not self.state:
warnings.warn(f"Overwriting State object of {self.agent_id}. This "
f"will cause any stored memory to be gone for good "
f"as this was stored in the previous State object.")
if isinstance(new_state, dict):
raise TypeError(f"The new state should of type State, is of "
f"type {new_state.__class__}")
self._state = new_state
@property
def memorize_for_ticks(self):
return self.__memorize_for_ticks
def create_context_menu_for_other(self, agent_id_who_clicked, clicked_object_id, click_location):
""" Generate options for a context menu for a specific object/location that a user NOT controlling this
human agent opened.
Thus: another human agent selected this agent, opened a context menu by right clicking on an object or location.
This function is called. It should return actions, messages, or other info for what this agent can do relevant
to that object / location. E.g. pick it up, move to it, display information on it, etc.
Example usecase: tasking another agent that is not yourself, e.g. to move to a specific location.
For the default MATRX visualization, the context menu is opened by right clicking on an object. This function
should generate a list of options (actions, messages, or something else) which relate to that object or location.
Each option is in the shape of a text shown in the context menu, and a message which is send to this agent if
the user actually clicks that context menu option.
Parameters
----------
agent_id_who_clicked : str
The ID of the (human) agent that selected this agent and requested for a context menu.
clicked_object_id : str
A string indicating the ID of an object. Is None if the user clicked on a background tile (which has no ID).
click_location : list
A list containing the [x,y] coordinates of the object on which the user right clicked.
Returns
-------
context_menu : list
A list containing context menu items. Each context menu item is a dict with a 'OptionText' key, which is
the text shown in the menu for the option, and a 'Message' key, which is the message instance that is sent
to this agent when the user clicks on the context menu option.
"""
print("Context menu other")
context_menu = []
# Generate a context menu option for every action
for action in self.action_set:
context_menu.append({
"OptionText": f"Do action: {action}",
"Message": Message(content=action, from_id=clicked_object_id, to_id=self.agent_id)
})
return context_menu
def _factory_initialise(self, agent_name, agent_id, action_set, sense_capability, agent_properties,
customizable_properties, rnd_seed, callback_is_action_possible):
""" Private MATRX function.
Initialization of the brain by the WorldBuilder.
Called by the WorldFactory to initialise this agent with all required properties in addition with any custom
properties. This also sets the random number generator with a seed generated based on the random seed of the
world that is generated.
Parameters
----------
agent_name : str
The name of the agent.
agent_id : str
The unique ID given by the world to this agent's avatar. So the agent knows what body is his.
action_set : str
The list of action names this agent is allowed to perform.
sense_capability : SenseCapability
The SenseCapability of the agent denoting what it can see withing what range.
agent_properties : dict
The dictionary of properties containing all mandatory and custom properties.
customizable_properties : list
A list of keys in agent_properties that this agent is allowed to change.
rnd_seed : int
The random seed used to set the random number generator self.rng
callback_is_action_possible : callable
A callback to a GridWorld method that can check if an action is possible.
"""
# The name of the agent with which it is also known in the world
self.agent_name = agent_name
# The id of the agent
self.agent_id = agent_id
# The names of the actions this agent is allowed to perform
self.action_set = action_set
# Setting the random seed and rng
self.rnd_seed = rnd_seed
self._set_rnd_seed(seed=rnd_seed)
# Initializing the State object
self._init_state()
# The SenseCapability of the agent; what it can see and within what range
self.sense_capability = sense_capability
# Contains the agent_properties
self.agent_properties = agent_properties
# Specifies the keys of properties in self.agent_properties which can be changed by this Agent in this file. If
# it is not writable, it can only be updated through performing an action which updates that property (done by
# the environment).
# NOTE: Changing which properties are writable cannot be done during runtime! Only when adding it to the world.
self.keys_of_agent_writable_props = customizable_properties
# A callback to the GridWorld instance that can check whether any action (with its arguments) will succeed and
# if not why not (in the form of an ActionResult).
self.__callback_is_action_possible = callback_is_action_possible
def _get_action(self, state, agent_properties, agent_id):
""" Private MATRX function
The function the environment calls. The environment receives this function object and calls it when it is time
for this agent to select an action.
Note; This method should NOT be overridden!
Parameters
----------
state_dict: dict
A state description containing all properties of EnvObject that are within a certain range as defined by
self.sense_capability. It is a list of properties in a dictionary
agent_properties: dict
The properties of the agent, which might have been changed by the environment as a result of actions of
this or other agents.
agent_id: str
the ID of this agent
Returns
-------
filtered_state : dict
The filtered state of this agent
agent_properties : dict
the agent properties which the agent might have changed,
action : str
an action string, which is the class name of one of the actions in the Action package.
action_kwargs : dict
Keyword arguments for the action
"""
# Process any properties of this agent which were updated in the environment as a result of actions
self.agent_properties = agent_properties
# Update the state property of an agent with the GridWorld's state dictionary
self.state.state_update(state.as_dict())
# Call the filter method to filter the observation
self.state = self.filter_observations(self.state)
# Call the method that decides on an action
action, action_kwargs = self.decide_on_action(self.state)
# Store the action so in the next call the agent still knows what it did
self.previous_action = action
# Return the filtered state, the (updated) properties, the intended actions and any keyword arguments for that
# action if needed.
return self.state, self.agent_properties, action, action_kwargs
def _fetch_state(self, state):
self.state.state_update(state.as_dict())
filtered_state = self.filter_observations(self.state)
return filtered_state
def _get_log_data(self):
return self.get_log_data()
def _set_action_result(self, action_result):
""" A function that the environment calls (similarly as the self.get_action method) to set the action_result of the
action this agent decided upon.
Note, that the result is given AFTER the action is performed (if possible).
Hence it is named the self.previous_action_result, as we can read its contents when we should decide on our
NEXT action after the action whose result this is.
Note; This method should NOT be overridden!
Parameters
----------
action_result : ActionResult
An object that inherits from ActionResult, containing a boolean whether the action succeeded and a string
denoting the reason why it failed (if it did so).
"""
self.previous_action_result = action_result
def _set_rnd_seed(self, seed):
""" The function that seeds this agent's random seed.
Note; This method should NOT be overridden!
Parameters
----------
seed : int
The random seed this agent needs to be seeded with.
"""
self.rnd_seed = seed
self.rnd_gen =
|
np.random.RandomState(self.rnd_seed)
|
numpy.random.RandomState
|
import numpy as np
import cv2
import math
import copy
from opensfm import context
from opensfm import pygeometry
from opensfm import pymap
from opensfm import types
from scipy.stats import special_ortho_group
from scipy.spatial.transform import Rotation
"""
Trying to imitate the following structure
reconstruction = {
"cameras": {
"theta": {
"projection_type": "equirectangular"
}
},
"shots" : {
'im1': {
"camera": "theta",
"rotation": [0.0, 0.0, 0.0],
"translation": [0.0, 0.0, 0.0],
},
'im2': {
"camera": "theta",
"rotation": [0, 0, 0.0],
"translation": [-1, 0, 0.0],
},
},
"points" : {
},
}
"""
# Define original Pose
class Pose(object):
"""Defines the pose parameters of a camera.
The extrinsic parameters are defined by a 3x1 rotation vector which
maps the camera rotation respect to the origin frame (rotation) and
a 3x1 translation vector which maps the camera translation respect
to the origin frame (translation).
Attributes:
rotation (vector): the rotation vector.
translation (vector): the rotation vector.
"""
def __init__(self, rotation=(0, 0, 0), translation=(0, 0, 0)):
self.rotation = rotation
self.translation = translation
@property
def rotation(self):
"""Rotation in angle-axis format."""
return self._rotation
@rotation.setter
def rotation(self, value):
self._rotation = np.asarray(value, dtype=float)
@property
def translation(self):
"""Translation vector."""
return self._translation
@translation.setter
def translation(self, value):
self._translation = np.asarray(value, dtype=float)
def transform(self, point):
"""Transform a point from world to this pose coordinates."""
return self.get_rotation_matrix().dot(point) + self.translation
def transform_many(self, points):
"""Transform points from world coordinates to this pose."""
return points.dot(self.get_rotation_matrix().T) + self.translation
def transform_inverse(self, point):
"""Transform a point from this pose to world coordinates."""
return self.get_rotation_matrix().T.dot(point - self.translation)
def transform_inverse_many(self, points):
"""Transform points from this pose to world coordinates."""
return (points - self.translation).dot(self.get_rotation_matrix())
def get_rotation_matrix(self):
"""Get rotation as a 3x3 matrix."""
return cv2.Rodrigues(self.rotation)[0]
def set_rotation_matrix(self, rotation_matrix, permissive=False):
"""Set rotation as a 3x3 matrix.
>>> pose = Pose()
>>> pose.rotation = np.array([0., 1., 2.])
>>> R = pose.get_rotation_matrix()
>>> pose.set_rotation_matrix(R)
>>> np.allclose(pose.rotation, [0., 1., 2.])
True
>>> pose.set_rotation_matrix([[3,-4, 1], [ 5, 3,-7], [-9, 2, 6]])
Traceback (most recent call last):
...
ValueError: Not orthogonal
>>> pose.set_rotation_matrix([[0, 0, 1], [-1, 0, 0], [0, 1, 0]])
Traceback (most recent call last):
...
ValueError: Determinant not 1
"""
R = np.array(rotation_matrix, dtype=float)
if not permissive:
if not np.isclose(np.linalg.det(R), 1):
raise ValueError("Determinant not 1")
if not np.allclose(np.linalg.inv(R), R.T):
raise ValueError("Not orthogonal")
self.rotation = cv2.Rodrigues(R)[0].ravel()
def get_origin(self):
"""The origin of the pose in world coordinates."""
return -self.get_rotation_matrix().T.dot(self.translation)
def set_origin(self, origin):
"""Set the origin of the pose in world coordinates.
>>> pose = Pose()
>>> pose.rotation = np.array([0., 1., 2.])
>>> origin = [1., 2., 3.]
>>> pose.set_origin(origin)
>>> np.allclose(origin, pose.get_origin())
True
"""
self.translation = -self.get_rotation_matrix().dot(origin)
def get_Rt(self):
"""Get pose as a 3x4 matrix (R|t)."""
Rt = np.empty((3, 4))
Rt[:, :3] = self.get_rotation_matrix()
Rt[:, 3] = self.translation
return Rt
def compose(self, other):
"""Get the composition of this pose with another.
composed = self * other
"""
selfR = self.get_rotation_matrix()
otherR = other.get_rotation_matrix()
R = np.dot(selfR, otherR)
t = selfR.dot(other.translation) + self.translation
res = Pose()
res.set_rotation_matrix(R)
res.translation = t
return res
def inverse(self):
"""Get the inverse of this pose."""
inverse = Pose()
R = self.get_rotation_matrix()
inverse.set_rotation_matrix(R.T)
inverse.translation = -R.T.dot(self.translation)
return inverse
class Camera(object):
"""Abstract camera class.
A camera is unique defined for its identification description (id),
the projection type (projection_type) and its internal calibration
parameters, which depend on the particular Camera sub-class.
Attributes:
id (str): camera description.
projection_type (str): projection type.
"""
pass
class PerspectiveCamera(Camera):
"""Define a perspective camera.
Attributes:
width (int): image width.
height (int): image height.
focal (real): estimated focal length.
k1 (real): estimated first distortion parameter.
k2 (real): estimated second distortion parameter.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'perspective'
self.width = None
self.height = None
self.focal = None
self.k1 = None
self.k2 = None
def __repr__(self):
return '{}({!r}, {!r}, {!r}, {!r}, {!r}, {!r}, {!r})'.format(
self.__class__.__name__,
self.id, self.projection_type, self.width, self.height,
self.focal, self.k1, self.k2)
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
# Normalized image coordinates
xn = point[0] / point[2]
yn = point[1] / point[2]
# Radial distortion
r2 = xn * xn + yn * yn
distortion = 1.0 + r2 * (self.k1 + self.k2 * r2)
return np.array([self.focal * distortion * xn,
self.focal * distortion * yn])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
distortion = np.array([self.k1, self.k2, 0, 0, 0])
K, R, t = self.get_K(), np.zeros(3),
|
np.zeros(3)
|
numpy.zeros
|
import numpy as np
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'nn'))
from nn import nn_utils
def diameter(obj_points):
'''
obj_points: (N, 3) array
'''
dist_sq = -np.dot(obj_points, obj_points.T) * 2 + \
np.square(np.linalg.norm(obj_points, axis=-1, keepdims=True)) + \
np.square(np.linalg.norm(obj_points.T, axis=0, keepdims=True))
dist_max = np.max(dist_sq)
diameter = np.sqrt(dist_max)
return diameter
def find_nn_idx(pc_src, pc_target):
'''
pc_src: (N1, 3) array
pc_target: (N2, 3) array
'''
dist_sq = -np.dot(pc_src, pc_target.T) * 2 + \
np.square(np.linalg.norm(pc_src, axis=-1, keepdims=True)) + \
np.square(np.linalg.norm(pc_target.T, axis=0, keepdims=True))
idx_min = np.argmin(dist_sq, axis=0)
return idx_min
def add_metric(pose_pred, pose_targets, obj_points, diameter, symm=False, percentage=0.1, gpu=True):
diam = diameter * percentage
model_pred = np.dot(obj_points, pose_pred[:, :3].T) + pose_pred[:, 3]
model_targets = np.dot(obj_points, pose_targets[:, :3].T) + pose_targets[:, 3]
if symm:
if gpu:
idxs = nn_utils.find_nearest_point_idx(model_pred, model_targets)
else:
idxs = find_nn_idx(model_pred, model_targets)
mean_dist = np.mean(
|
np.linalg.norm(model_pred[idxs] - model_targets, 2, 1)
|
numpy.linalg.norm
|
import numpy as np
from math import sqrt, acos, cos, sin
import scipy.sparse as sp
import numba
from numba import jit
def find_adjsacent_faces (faces):
""" For every triangle/face in a mesh, it retuns the adjacent triangles/faces """
print ("\nFinding adjacent faces/triangles...")
adjacent_faces = [[] for row in range(len(faces))]
flist = faces[:,[0, 1, 2]].tolist()
for i in range(len(flist)):
set1 = set(flist[i])
for j in range(i+1, len(flist)):
set2 = set(flist[j])
if(len(set1 & set2)==2): #i.e. if 2 same vertex indices are found between set1 and set2 -> set1 and set2 are adjacent
adjacent_faces[i] += [j]
adjacent_faces[j] += [i]
if(len(adjacent_faces[i])>=3): break
return adjacent_faces
@jit(nopython=True, parallel=True)
def compute_v4 (vertices, faces):
v4 = np.zeros((len(faces), 3), dtype = np.float32)
for k in numba.prange(len(faces)):
cross = np.cross(vertices[faces[k, 1],0:3] - vertices[faces[k, 0],0:3], vertices[faces[k, 2],0:3]-vertices[faces[k, 0],0:3])
v4[k] = vertices[faces[k, 0],0:3] + cross / sqrt(np.linalg.norm(cross))
return v4
@jit(nopython=True, parallel=True)
def compute_face_normals(vertices, faces):
face_normals = np.zeros((len(faces), 3), dtype = np.float32)
for k in numba.prange(len(faces)):
cross = np.cross(vertices[faces[k, 1],0:3] - vertices[faces[k, 0],0:3], vertices[faces[k, 2],0:3] - vertices[faces[k, 0],0:3])
face_normals[k] = cross / np.linalg.norm(cross)
return face_normals
def compute_V_inverse_local (vertices, face, v4):
a = np.array([vertices[face[1],0:3] - vertices[face[0],0:3]])
b = np.array([vertices[face[2],0:3] - vertices[face[0],0:3]])
c = np.array([v4 - vertices[face[0],0:3]])
V_inverse_local = np.linalg.solve(np.hstack([a.T, b.T, c.T]), np.identity(3))
return V_inverse_local
def compute_V_inverse (vertices, faces, v4):
V_inverse = np.zeros((len(faces), 3, 3), dtype = np.float32) # inverse matrix of vertices, including v4
for i in range(len(faces)):
V_inverse[i] = compute_V_inverse_local (vertices, faces[i], v4[i])
return V_inverse
#make large matrices and vectors
def makeEs_ATA_ATc(vertices, faces, Vinv):
Adjacent = find_adjsacent_faces(faces)
adj_num = 0
for i in range(len(Adjacent)):
for j in range(len(Adjacent[i])):
adj_num+=1
Es_cVector = sp.csr_matrix((1, adj_num*9), dtype=np.float32)
Es_cVector = Es_cVector.T
Es_A = sp.lil_matrix((adj_num*9, len(vertices)*3 + len(faces)*3), dtype=np.float32)
row = 0
Vinv_list = Vinv.tolist()
Faces = faces.tolist()
len_vertices = len(vertices)
for i in range(len(Adjacent)):
for j in Adjacent[i]:
e1 =
|
np.sum(Vinv[i,0:3,0])
|
numpy.sum
|
#!/usr/bin/env python3
import sys
#sys.path.insert(0, '/home/mike/Dropbox/0_firebird_research/fit_peaks/single_fits/')
import numpy as np
from seas.waveletFunctions import *
import matplotlib.pylab as plt
import matplotlib
import math
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.gridspec import GridSpec
from datetime import datetime
from seas.signalanalysis import local_max, linear_regression, abline, gaussian_smooth_2d, lag_n_autocorr
#sys.path.insert(0, '/home/mike/Dropbox/0_firebird_research/microburst_characterization/')
#from src import remove_dropouts
import operator
#Adapted from __author__ = '<NAME>' : __init__, waveletTransform, plotPower, lagNAutoCorr
#All other functions written by <NAME>
'''
To find the global wavelet spectrum run these two scripts:
waveletAnalysis.globalWaveletSpectrum()
To find events:
Need to work on this. Depending on which range of frequencies, you get varying results
waveletAnalysis.averageWaveletPower(periodLim =[0.25, 8])
To find signal change:
waveletAnalysis.tsSignal()
There seems to be very little difference between binned data and full data
'''
def waveletCoherence(tc1, tc2, fps=10, siglvl=0.95, sigtest=0):
tc1 = np.asarray(np.squeeze(tc1))
tc2 = np.asarray(np.squeeze(tc2))
assert tc1.ndim == 1 and tc2.ndim == 1, 'Timecouses should only be one dimension'
assert tc1.shape[0] == tc2.shape[0], 'Timecourses are not the same shape'
#run wavelet transform
w1 = waveletAnalysis(tc1, fps=fps)
w2 = waveletAnalysis(tc2, fps=fps)
# cross wavelet transform
w1w2 = w1.wave * np.conj(
w2.wave) #/ (np.ones([1, tc1.size]) * w1.scale[:, None])
xwt = np.sqrt(w1w2.real**2 + w1w2.imag**2)
# calculate phase
phase = np.angle(w1w2)
# #set up smoothing window
# win_s = np.floor(w1.wave.shape[1]/w1.dj)+1
# win_t = 2*np.floor(w1.wave.shape[0]/w1.cadence)+1
# win_s = 10
# win_t = 10
# window2D = np.dot(windowFunc(win_t, win_type = 'ham')[:,np.newaxis] , windowFunc(win_s, win_type = 'ham')[:,np.newaxis].T)
#smooth
s1 = gaussian_smooth_2d(w1.power, w1.dj, w1.cadence)
s2 = gaussian_smooth_2d(w2.power, w2.dj, w2.cadence)
s1s2 = gaussian_smooth_2d(w1w2, w1.dj, w1.cadence)
#calculate coherency
coherency = s1s2 / np.sqrt(s1 * s2)
#calculate coherence
coherence = (s1s2.real**2 + s1s2.imag**2) / (s1 * s2)
# significance?
acor1 = 0.5 * (lag_n_autocorr(tc1, 1) + lag_n_autocorr(tc1, 2))
acor2 = 0.5 * (lag_n_autocorr(tc2, 1) + lag_n_autocorr(tc2, 2))
xwt_signif = wave_cohere_signif(([1.0]), ([1.0]),
dt=1 / fps,
sigtest=sigtest,
scale=w1.scale,
x_lag1=acor2,
y_lag1=acor1,
mother=w1.mother,
siglvl=siglvl)
xwt_signif = xwt_signif[:, np.newaxis].dot(np.ones(w1.n)[np.newaxis, :])
return coherency, coherence, xwt, phase, xwt_signif
def wave_cohere_signif(X,
Y,
dt,
scale,
sigtest=-1,
y_lag1=-1,
x_lag1=-1,
siglvl=-1,
dof=-1,
mother=-1,
param=-1):
'''
Modified from waveletFunctions to take into account two time series in calculating the
significance of the cross wavelet transform.
'''
n1 = len(np.atleast_1d(Y))
n2 = len(np.atleast_1d(X))
J1 = len(scale) - 1
s0 = np.min(scale)
dj = np.log2(scale[1] / scale[0])
if n1 == 1:
y_variance = Y
else:
y_variance = np.std(Y)**2
if n2 == 1:
x_variance = X
else:
x_variance = np.std(X)**2
if sigtest == -1:
sigtest = 0
if x_lag1 == -1:
x_lag1 = 0.0
if y_lag1 == -1:
y_lag1 = 0.0
if siglvl == -1:
siglvl = 0.95
if mother == -1:
mother = 'MORLET'
# get the appropriate parameters [see Table(2)]
if mother == 'MORLET': #---------------------------------- Morlet
empir = ([2, -1, -1, -1])
if param == -1 or param == 6:
param = 6.
empir[1:] = ([0.776, 2.39, 0.60])
if param == 4:
empir[1:] = ([1.151, 2.5, 0.60])
k0 = param
fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + k0**2)
) # Scale-->Fourier [Sec.3h]
elif mother == 'PAUL':
empir = ([2, -1, -1, -1])
if param == -1:
param = 4
empir[1:] = ([1.132, 1.17, 1.5])
m = param
fourier_factor = (4 * np.pi) / (2 * m + 1)
elif mother == 'DOG': #-------------------------------------Paul
empir = ([1., -1, -1, -1])
if param == -1 or param == 2:
param = 2.
empir[1:] = ([3.541, 1.43, 1.4])
elif param == 6: #--------------------------------------DOG
empir[1:] = ([1.966, 1.37, 0.97])
m = param
fourier_factor = 2 * np.pi * np.sqrt(2. / (2 * m + 1))
else:
print('Mother must be one of MORLET, PAUL, DOG')
period = scale * fourier_factor
dofmin = empir[0] # Degrees of freedom with no smoothing
Cdelta = empir[1] # reconstruction factor
gamma_fac = empir[2] # time-decorrelation factor
dj0 = empir[3] # scale-decorrelation factor
freq = dt / period # normalized frequency
y_fft_theor = (1 - y_lag1**2) / (
1 - 2 * y_lag1 * np.cos(freq * 2 * np.pi) + y_lag1**2) # [Eqn(16)]
y_fft_theor = y_variance * y_fft_theor # include time-series variance
x_fft_theor = (1 - x_lag1**2) / (
1 - 2 * x_lag1 * np.cos(freq * 2 * np.pi) + x_lag1**2) # [Eqn(16)]
x_fft_theor = x_variance * x_fft_theor # include time-series variance
fft_theor = np.sqrt(y_fft_theor * x_fft_theor)
signif = fft_theor
if len(np.atleast_1d(dof)) == 1:
if dof == -1:
dof = dofmin
if sigtest == 0: # no smoothing, DOF=dofmin [Sec.4]
dof = dofmin
chisquare = chisquare_inv(siglvl, dof) / dof
signif = fft_theor * chisquare # [Eqn(18)]
elif sigtest == 1: # time-averaged significance
if len(np.atleast_1d(dof)) == 1:
dof = np.zeros(J1) + dof
dof[dof < 1] = 1
dof = dofmin * np.sqrt(1 +
(dof * dt / gamma_fac / scale)**2) # [Eqn(23)]
dof[dof < dofmin] = dofmin # minimum DOF is dofmin
for a1 in range(0, J1 + 1):
chisquare = chisquare_inv(siglvl, dof[a1]) / dof[a1]
signif[a1] = fft_theor[a1] * chisquare
# print("Chi squared: %e " % chisquare)
elif sigtest == 2: # time-averaged significance
if len(dof) != 2:
print(
'ERROR: DOF must be set to [S1,S2], the range of scale-averages'
)
if Cdelta == -1:
print('ERROR: Cdelta & dj0 not defined for ' + mother +
' with param = ' + str(param))
s1 = dof[0]
s2 = dof[1]
avg = np.logical_and(scale >= s1, scale < s2) # scales between S1 & S2
navg = np.sum(
np.array(np.logical_and(scale >= s1, scale < s2), dtype=int))
if navg == 0:
print('ERROR: No valid scales between ' + str(s1) + ' and ' +
str(s2))
Savg = 1. / np.sum(1. / scale[avg]) # [Eqn(25)]
Smid = np.exp((np.log(s1) + np.log(s2)) / 2.) # power-of-two midpoint
dof = (dofmin * navg * Savg / Smid) * np.sqrt(
1 + (navg * dj / dj0)**2) # [Eqn(28)]
fft_theor = Savg * np.sum(fft_theor[avg] / scale[avg]) # [Eqn(27)]
chisquare = chisquare_inv(siglvl, dof) / dof
signif = (dj * dt / Cdelta / Savg) * fft_theor * chisquare # [Eqn(26)]
else:
print('ERROR: sigtest must be either 0, 1, or 2')
return signif
def lagWaveletCoherency(tc1, tc2, fps=10, lag=5):
for i in np.arange(0, lag + 1):
if i == 0:
#initialize for proper shape
cor, coh, xwt, phase, xwt_sig = waveletCoherence(tc1, tc2)
# create ouputs
lag_cor = np.zeros(
(2 * lag + 1, cor.shape[0], cor.shape[1])) * np.nan
lag_coh = np.zeros(
(2 * lag + 1, cor.shape[0], cor.shape[1])) * np.nan
lag_xwt = np.zeros(
(2 * lag + 1, cor.shape[0], cor.shape[1])) * np.nan
lag_phase = np.zeros(
(2 * lag + 1, cor.shape[0], cor.shape[1])) * np.nan
lag_xwt_sig = np.zeros(
(2 * lag + 1, cor.shape[0], cor.shape[1])) * np.nan
#store in the proper index
lag_cor[lag] = cor
lag_coh[lag] = coh
lag_xwt[lag] = xwt
lag_phase[lag] = phase
lag_xwt_sig[lag] = xwt_sig
else:
#finish up the remaining lags (right shifted)
lag_cor[lag + i, : , i:], lag_coh[lag + i, : , i:], lag_xwt[lag + i, : , i:],\
lag_phase[lag + i, : , i:], lag_xwt_sig[lag + i, : , i:] = waveletCoherence(tc1[i:],tc2[:-i], fps = fps)
#(left shifted)
lag_cor[lag - i, : , :-i],lag_coh[lag - i, : , :-i],lag_xwt[lag - i, : , :-i],\
lag_phase[lag - i, : , :-i],lag_xwt_sig[lag - i, : , :-i] = waveletCoherence(tc1[:-i],tc2[i:], fps = fps)
return lag_cor, lag_coh, lag_xwt, lag_phase, lag_xwt_sig
class waveletAnalysis:
def __init__(self, data, fps, **kwargs):
"""
Initialize the wavelet parameters
"""
assert data.ndim == 1, 'Time series is the wrong shape. It should be a 1-dim vector'
self.dataCopy = data
self.data = (data - np.mean(data)) / np.std(data, ddof=1)
self.n = len(self.data)
self.cadence = 1 / fps
self.time = np.arange(self.n) * self.cadence
#default parameters
#print/ plot statements
self.verbose = kwargs.get('verbose', False)
self.plot = kwargs.get('plot', False)
#wavelet parameters
self.mother = kwargs.get('mother', 'MORLET')
self.param = kwargs.get('param', 4)
self.j1 = kwargs.get('j1', 80)
self.pad = kwargs.get('pad', 1)
self.dj = kwargs.get('dj', 0.125)
self.s0 = kwargs.get('s0', 2 * self.cadence)
#noies modeling parameter
self.siglvl = kwargs.get('siglvl', 0.95)
self.lag1 = 0.5 * (lag_n_autocorr(data, 1) + lag_n_autocorr(data, 2))
# self.lag1 = self.lagNAutoCorr(data, 1)
self.waveletTransform()
def waveletTransform(self):
# Wavelet transform:
self.wave, self.period, self.scale, self.coi = \
wavelet(self.data, self.cadence, self.pad, self.dj, self.s0, self.j1, self.mother, self.param)
if len(self.time) != len(self.coi):
self.coi = self.coi[1:]
self.power = (np.abs(self.wave))**2 # compute wavelet power spectrum
# Significance levels: (variance=1 for the normalized data)
self.signif = wave_signif(([1.0]), dt=self.cadence, sigtest=0, scale=self.scale, \
lag1=self.lag1, mother=self.mother, siglvl = self.siglvl)
self.sig95 = self.signif[:, np.newaxis].dot(
np.ones(self.n)[np.newaxis, :]) # expand signif --> (J+1)x(N) array
self.sig95 = self.power / self.sig95 # where ratio > 1, power is significant
return
def inverseWaveletTransform(self,
waveFlt=None,
C_d=1.151,
psi0=np.pi**(-0.25) * 0.85):
"""
Supply own C_d and psi0 if not using a DOG m = 2 wavelet.
"""
if waveFlt == None:
waveFlt = self.waveFlt
InvTranform = np.zeros(self.n)
tansformConstant = ((self.dj * math.sqrt(self.cadence)) / (C_d * psi0)
) # Reconstruction constant.
# For more information, see article: "A Practical Guide to Wavelet Analysis", <NAME> and <NAME>, 1998.
for i in range(waveFlt.shape[0]):
waveFlt[i, :] /= math.sqrt(self.period[i])
for i in range(self.n):
InvTranform[i] = np.sum(np.real(waveFlt[:, i]), axis=0)
self.dataFlt = tansformConstant * InvTranform
def plotPower(self, ax=None):
"""
ax is the subplot argument.
"""
self.levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
colors = [
'navy', 'slateblue', 'c', 'g', 'gold', 'orange', 'tomato', 'crimson'
]
if ax == None:
f = plt.figure()
f, ax = plt.subplots(1)
else:
ax = np.ravel(ax)[0]
# Max period is fourier_factor*S0*2^(j1*dj), fourier_factor = 3.97383530632
CS = ax.contourf(self.time,
self.period,
np.log2(self.power),
len(self.levels),
colors=colors)
im = ax.contourf(CS, levels=np.log2(self.levels), colors=colors)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Period (s)')
ax.set_title('Wavelet Power Spectrum')
# 95 significance contour, levels at -99 (fake) and 1 (95# signif)
ax.contour(self.time, self.period, self.sig95, [-99, 1], colors='k')
# # cone-of-influence, anything "below" is dubious
ax.fill_between(self.time,
np.max(self.period),
self.coi,
alpha=0.5,
facecolor='white',
zorder=3)
ax.plot(self.time, self.coi, 'k')
# # format y-scale
# different matplotlib versions available for python < 3.8.
try:
ax.set_yscale('log', base=2, subs=None)
except ValueError:
ax.set_yscale('log', basey=2, subsy=None)
ax.set_ylim([np.min(self.period), np.max(self.period)])
axy = ax.yaxis
axy.set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax.ticklabel_format(
axis='y', style='plain') ## causes issues with tkinter mpl canvas
ax.invert_yaxis()
# set up the size and location of the colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes("bottom", size="5%", pad=0.5)
plt.colorbar(im, cax=cax, orientation='horizontal')
def waveletFilter(self,
lowerPeriod=None,
upperPeriod=None,
movement_vector=None,
sigLevel=1):
"""
NAME: waveletFilter(wave, sig95, l_s = 0, u_s = 29)
USE: This does a band pass and power filtering on the wavelet period-frequency domain. Give it the wavelet amplitude array, the power significance array, and the upper and lower scales that will be used for filtering.
RETURNS: The filtered wavelet amplitude array.
MOD: 2016-04-13
# WAVELET SCALE CALCULATOR #################
# jth scale indicie = ln(S/S0)/(dJ * ln(2))
##################################
"""
self.waveFlt = self.wave.copy()
# Band pass filter
# Proporionally decreases power in specific wavelengths with respect to a 'motion vector'
# More motion, more severe the filtration of power in the given frequencies
if movement_vector is not None:
movement_vector -= movement_vector.min()
movement_vector /= movement_vector.max()
movement_vector = (1. - movement_vector)
if lowerPeriod != None:
if lowerPeriod > self.period[0]:
lower_ind = np.where(self.period < lowerPeriod)[0][-1]
#print('Lower Period: ', self.period[lower_ind], 'Upper Freq: ', 1/self.period[lower_ind])
self.waveFlt[:
lower_ind, :] = self.waveFlt[:lower_ind, :] * movement_vector
if upperPeriod != None:
if upperPeriod < self.period[-1]:
upper_ind = np.where(self.period > upperPeriod)[0][0]
#print('Upper Period: ', self.period[upper_ind], 'Lower Freq: ', 1/self.period[upper_ind])
self.waveFlt[upper_ind:, :] = self.waveFlt[
upper_ind:, :] * movement_vector
# Band pass filter
# Zero out parts of the wavlet space that we don't want to reconstruct.
else:
if lowerPeriod != None:
if lowerPeriod > self.period[0]:
lower_ind = np.where(self.period < lowerPeriod)[0][-1]
#print('Lower Period: ', self.period[lower_ind], 'Lower Freq: ', 1/self.period[lower_ind])
self.waveFlt[:lower_ind, :] = 0
if upperPeriod != None:
if upperPeriod < self.period[-1]:
upper_ind = np.where(self.period > upperPeriod)[0][0]
#print('Upper Period: ', self.period[upper_ind], 'Upper Freq: ', 1/self.period[upper_ind])
self.waveFlt[upper_ind:, :] = 0
# Significance filter
notSigInd = np.where(
self.sig95 < sigLevel
) # Only pass data that has power of (100% - sigThreshold). Usually sigThreshold is 95%. Was 0.25.
self.waveFlt[notSigInd] = 0
############################################
def nanCOI(self):
# get rid of all values outside the cone of influence
# wave = np.log2(wave)
self.nanCOImat = self.power.copy()
for i in range(self.power.shape[1]):
cutoff = np.where(self.coi[i] < self.period)
self.nanCOImat[cutoff, i] = np.nan
def nanSig(self):
# get rid of all values that are not significant
self.nanSigmat = self.wave
self.nanSigmat[np.where(wavelet.sig95 < 1)] = np.nan
def sigLost(self, slope, intercept):
loss = 1 - (intercept + slope * self.n * self.cadence) / intercept
if self.verbose:
print('We have lost approximately {0:.2f} % power over the movie'.
format(loss[0] * 100))
return loss
def binSignal(self, binsz=30): # binsz in seconds
binnum = (self.n * self.cadence) // binsz
padsz = math.ceil(float(self.n) / binnum) * binnum - self.n
binsignal = np.append(self.signal, np.zeros(int(padsz)) * np.nan)
binsignal = np.nanmean(binsignal.reshape(int(binnum), -1), axis=1)
bintime = np.arange(binsz, self.n * self.cadence + 1, binsz) - binsz / 2
return bintime, binsignal
def familySig(self, sigList=[0.9, 0.95, 0.99, 0.999], dof=-1, sigtest=0):
# plot a family of significance curves for visualization and analysis
if isinstance(sigList, float):
if sigtest < 2:
fam_signif = np.zeros((1, self.scale.shape[0])) * np.nan
if sigtest == 2:
fam_signif = np.nan
fam_signif = wave_signif([1.0],
dt=self.cadence,
scale=self.scale,
sigtest=sigtest,
lag1=self.lag1,
siglvl=sigList,
dof=dof,
mother=self.mother,
param=self.param)
if isinstance(sigList, list):
if sigtest < 2:
fam_signif = np.zeros(
(len(sigList), self.scale.shape[0])) * np.nan
if sigtest == 2:
fam_signif = np.zeros((len(sigList), 1)) * np.nan
for i, sig in enumerate(sigList):
fam_signif[i] = wave_signif([1.0],
dt=self.cadence,
scale=self.scale,
sigtest=sigtest,
lag1=self.lag1,
siglvl=sig,
dof=dof,
mother=self.mother,
param=self.param)
return np.squeeze(fam_signif), np.squeeze(sigList)
def sumAcrossPeriod(self, perLim=[0, 100]):
#sum wavelet power across select periods
if self.verbose:
print('Summing across {0} to {1} periods on wavelet run with mother {2} at paramter {3}'.\
format(perLim[0], perLim[1], self.mother, self.param) )
cdelta = None
if self.mother == 'MORLET' and self.param == 6:
cdelta = 0.776
elif self.mother == 'MORLET' and self.param == 4:
cdelta = 1.151
elif self.mother == 'DOG' and self.param == 2:
cdelta = 3.541
elif self.mother == 'DOG' and self.param == 6:
cdelta = 1.966
else:
assert cdelta != None, 'Unknown c value based on wavelet choice'
l_per_lim = np.min(np.where(perLim[0] < self.period))
u_per_lim = np.min(np.where(perLim[1] < self.period))
if not hasattr(self, 'nanCOImat'):
self.nanCOI()
period_sum = (self.dj * self.cadence) / cdelta * np.nansum(
(self.nanCOImat[l_per_lim:u_per_lim]**2 /
self.period[l_per_lim:u_per_lim, None]),
axis=0)
return np.squeeze(period_sum)
def globalWaveletSpectrum(self):
if self.verbose:
print('Assessing wavelet mother {0} at paramter {1}'.format(
self.mother, self.param))
# calulate the global self spectrum
self.nanCOI()
# if np.sum(~np.isnan(self.nanCOImat))!=0:
self.period_size = np.sum(~np.isnan(self.nanCOImat), axis=1)
nan_ind = np.where(self.period_size == 0)[0]
self.gws = np.zeros_like(self.period) * np.nan
if nan_ind.any():
self.gws[:nan_ind[0]] = np.nanmean(self.nanCOImat[:nan_ind[0], :],
axis=1)
self.gws[nan_ind] = 0
else:
self.gws = np.nanmean(self.nanCOImat, axis=1)
if self.period_size.shape[0] != self.period.shape[0]:
dif = self.period_size.shape[0] - self.period.shape[0]
if dif < 0:
self.period_size = np.append(self.period_size,
np.zeros(np.abs(dif)))
else:
self.period_size = self.period_size[:self.period.shape[0]]
# calculate the average significance
self.gws_sig, self.gws_sigList = self.familySig(sigList=[0.95],
dof=self.period_size,
sigtest=1)
if self.verbose:
print('Auto-correlation value: {0:.4g}'.format(self.lag1))
# determine fourier wavelength
if self.mother == 'DOG':
self.flambda = (2 * np.pi * 1 / self.period) / np.sqrt(self.param +
.5)
if self.mother == 'MORLET':
self.flambda = (4 * np.pi * 1 / self.period) / (
self.param + np.sqrt(2 + np.square(self.param)))
mx_wav, mx_gws, mx_sig = local_max(self.period, self.gws, self.gws_sig)
fl_wav, mx_gws, mx_sig = local_max(self.flambda, self.gws, self.gws_sig)
lwav = []
lgws = []
lfl = []
for i in range(len(mx_wav)):
if mx_gws[i] > mx_sig[i]:
lwav.append(mx_wav[i])
lgws.append(mx_gws[i])
lfl.append(fl_wav[i])
lwav_inv = [x**(-1) for x in lwav]
self.gws_localmax_power = lgws
self.gws_localmax_freq = lfl
#find the lowest and highest frequencies that are still significant
hiwav = np.nan
hival = np.nan
lowav = np.nan
loval = np.nan
if np.where(self.gws > self.gws_sig)[0].shape[0] > 0:
hival = self.gws[np.where(self.gws > self.gws_sig)][0]
hiwav = self.flambda[np.where(self.gws > self.gws_sig)][0]
loval = self.gws[np.where(self.gws > self.gws_sig)][-1]
lowav = self.flambda[np.where(self.gws > self.gws_sig)][-1]
self.gws_lo_high_freq = [(lowav, loval), (hiwav, hival)]
if nan_ind.any():
self.gws[nan_ind] = np.nan
if self.verbose:
print('Low frequency: ', lowav)
print('High freqency: ', hiwav)
if self.plot:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True)
nyq = 0.5 * 1 / self.cadence
linetype = ['-', '-.', '--', ':']
fam_signif, sigList = self.familySig(dof=self.period_size,
sigtest=1)
#self period graph
ax1.plot(self.period, self.gws)
ax1.plot(lwav, lgws, 'ro')
for i in range(len(sigList)):
if i >= len(linetype) - 1:
j = len(linetype) - 1
else:
j = i
ax1.plot(self.period,
fam_signif[i],
label=sigList[i],
ls=linetype[j],
color='k')
if not lgws:
ax1.set_ylim([0, 10])
else:
ax1.set_ylim([0, np.ceil(max(lgws))])
if not lwav or np.ceil(max(lwav)) < 10:
ax1.set_xlim([0, 10])
else:
ax1.set_xlim([0, np.ceil(max(lwav))])
# ax1.legend()
ax1.set_xlabel(' Wavelet {0} {1} period(s)'.format(
self.mother, self.param))
ax1.set_ylabel('normalized power (to variance)')
ax1.set_title('Power spectrum by period')
# plt.show()
# #self frequency graph
# plt.plot(1/self.period, gws)
# plt.plot(lwav_inv,lgws, 'ro')
# for i in range(len(sigList)):
# if i >= len(linetype) - 1:
# j = len(linetype) - 1
# else:
# j = i
# plt.plot(1/self.period, fam_signif[i], label = sigList[i], ls = linetype[j], color='k')
# if not lgws:
# plt.ylim([0,10])
# else:
# plt.ylim([0,np.ceil(max(lgws))])
# if not lwav_inv or np.ceil(max(lwav_inv)) < nyq:
# plt.xlim([0,nyq])
# else:
# plt.xlim([0, np.ceil(max(lwav_inv))])
# plt.xlabel(self.mother + ' frequency')
# plt.ylabel('normalized power (to variance)')
# plt.legend()
# plt.show()
#Fourier space lambda
ax2.plot(self.flambda, self.gws)
for i in range(len(sigList)):
if i >= len(linetype) - 1:
j = len(linetype) - 1
else:
j = i
ax2.plot(self.flambda,
fam_signif[i],
label=sigList[i],
ls=linetype[j],
color='k')
if not lgws:
ax2.set_ylim([0, 10])
else:
ax2.set_ylim([0, np.ceil(max(lgws))])
if not lfl or np.ceil(max(lfl)) < nyq:
ax2.set_xlim([0, nyq])
else:
ax2.set_xlim([0, np.ceil(max(lfl))])
ax2.plot(lowav, loval, 'go', label='lowSigFreq')
ax2.plot(hiwav, hival, 'bo', label='highSigFreq')
ax2.plot(lfl, lgws, 'ro', label='localMax')
ax2.legend()
ax2.set_xlabel('Fourier frquency')
ax2.set_title('Power spectrum by frequency')
# ax2.set_ylabel('normalized power (to variance)')
plt.tight_layout()
plt.show()
# return lfl, lgws, [lowav,loval], [hiwav, hival]
def averageWaveletPower(self, periodLim=[0.25, 8]):
assert len(
periodLim) == 2, 'Period limit list must only include 2 values'
if self.verbose:
print('Creating scaled average of the timeseries, \
created with wavelet mother {0} at paramter {1}'.format(
self.mother, self.param))
self.period_sum = self.sumAcrossPeriod(perLim=periodLim)
if self.period_sum.shape[0] != self.time.shape[0]:
dif = self.period_sum.shape[0] - self.time.shape[0]
if dif < 0:
self.period_sum = np.append(self.period_sum,
np.zeros(np.abs(dif)))
else:
self.period_sum = self.period_sum[:self.period.shape[0]]
# calculate the average significance
# sig = wavelet.signif/np.sqrt(1+((self.period_size * wavelet.cadence)/(gamma * wavelet.period)))
self.sig_period_sum, _ = self.familySig(sigList=[0.95],
dof=periodLim,
sigtest=2)
#find coordinates of local max values
mx_wav, mx_gws = local_max(self.time, self.period_sum)
#Return only those above significance threshold
ltime = []
lgws = []
for i in range(len(mx_wav)):
if mx_gws[i] > self.sig_period_sum:
ltime.append(mx_wav[i])
lgws.append(mx_gws[i])
if self.plot:
sigline = np.zeros(self.period_sum.shape[0]) + self.sig_period_sum
plt.plot(self.time, self.period_sum)
plt.plot(self.time, np.squeeze(sigline), 'k--')
plt.plot(ltime, lgws, 'ro')
# plt.xlim([150, 180])
# plt.ylim([0, 20])
# plt.xlim([0,8])
# plt.ylim([0,1])
plt.show()
self.events = ltime
self.events_value = lgws
def tsSignal(self, binSig=False, periodLim=[0.5, 4]):
'''
Using wavelet transforms to assess how the power of signal changes
over time
'''
self.binSig = binSig
assert len(periodLim) == 2, 'Period limits are wrong size'
#determine the time and power across neural signal periods
self.signal = self.sumAcrossPeriod(perLim=periodLim)
self.signal_sig, _ = self.familySig(sigList=[0.95],
dof=periodLim,
sigtest=2)
if self.binSig:
bintime, binsignal = self.binSignal()
self.slope, self.intercept = linear_regression(bintime,
binsignal,
verbose=self.verbose)
self.signalloss = self.sigLost(self.slope, self.intercept)
else:
self.slope, self.intercept = linear_regression(self.time,
self.signal,
verbose=self.verbose)
self.signalloss = self.sigLost(self.slope, self.intercept)
if self.plot:
plt.plot(self.time, self.signal, label='signal power')
plt.plot(self.time,
np.squeeze(np.ones(self.n) * self.signal_sig),
'k--',
label='{0} sign level'.format(self.siglvl))
abline(self.slope,
self.intercept,
self.n * self.cadence,
label='trend',
color=None)
if self.binSig:
plt.scatter(bintime, binsignal, color='r', label='binvalues')
plt.xlabel('time(s)')
plt.ylabel('summed power (period: {0} - {1})'.format(
periodLim[0], periodLim[1]))
plt.legend()
plt.show()
def noiseFilter(self,
lowerPeriod=None,
upperPeriod=10,
movement_vector=None,
sigLevel=0.25):
if lowerPeriod is None:
lowerPeriod = 2 * self.cadence #nyquist sampling rate
if movement_vector is not None:
movement_vector = np.array(np.squeeze(movement_vector),
dtype='float64')
assert movement_vector.shape[
0] == self.n, 'Movement vector is not the same size as the data'
self.waveletFilter(lowerPeriod=lowerPeriod,
upperPeriod=upperPeriod,
movement_vector=movement_vector,
sigLevel=sigLevel)
self.inverseWaveletTransform()
filtData = (self.dataFlt *
|
np.std(self.dataCopy, ddof=1)
|
numpy.std
|
# Copyright 2021 The NetKet Authors - All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import jax.numpy as jnp
import pytest
import numpy as np
import scipy.integrate as sci
from netket.experimental.dynamics import Euler, Heun, Midpoint, RK4, RK12, RK23, RK45
from netket.experimental.dynamics._rk_tableau import (
NamedTableau,
bt_feuler,
bt_heun,
bt_midpoint,
bt_rk12,
bt_rk23,
bt_rk4,
bt_rk4_dopri,
bt_rk4_fehlberg,
)
tableaus = {
"bt_feuler": bt_feuler,
"bt_heun": bt_heun,
"bt_midpoint": bt_midpoint,
"bt_rk12": bt_rk12,
"bt_rk23": bt_rk23,
"bt_rk4": bt_rk4,
"bt_rk4_dopri": bt_rk4_dopri,
"bt_rk4_fehlberg": bt_rk4_fehlberg,
}
explicit_fixed_step_solvers = {
"Euler": Euler,
"Heun": Heun,
"Midpoint": Midpoint,
"RK4": RK4,
}
explicit_adaptive_solvers = {
"RK12": RK12,
"RK23": RK23,
"RK45": RK45,
}
@pytest.mark.parametrize("tableau", tableaus)
def test_tableau(tableau: str):
tableau = tableaus[tableau] # type: NamedTableau
assert tableau.name != ""
td = tableau.data
for x in td.a, td.b, td.c:
assert np.all(np.isfinite(x))
assert td.a.ndim == 2
# a should be strictly upper triangular
np.testing.assert_array_equal(np.triu(td.a), np.zeros_like(td.a))
# c's should be in [0, 1]
assert np.all(td.c >= 0.0)
assert np.all(td.c <= 1.0)
assert len(td.order) in (1, 2)
assert len(td.order) == td.b.ndim
assert td.a.shape[0] == td.a.shape[1]
assert td.a.shape[0] == td.b.shape[-1]
assert td.a.shape[0] == td.c.shape[0]
if len(td.order) == 2:
assert td.b.shape[0] == 2
@pytest.mark.parametrize("method", explicit_fixed_step_solvers)
def test_ode_solver(method):
def ode(t, x, **_):
return -t * x
dt = 0.01
n_steps = 100
solver = explicit_fixed_step_solvers[method](dt=dt)
y0 = np.array([1.0])
times = np.linspace(0, n_steps * dt, n_steps, endpoint=False)
sol = sci.solve_ivp(ode, (0.0, n_steps * dt), y0, t_eval=times)
y_ref = sol.y[0]
solv = solver(ode, 0.0, y0)
t = []
y_t = []
for _ in range(n_steps):
print(solv.t, solv.y)
t.append(solv.t)
y_t.append(solv.y)
solv.step()
y_t = np.asarray(y_t)
assert np.all(np.isfinite(t))
assert np.all(np.isfinite(y_t))
np.testing.assert_allclose(t, times)
# somewhat arbitrary tolerances, that may still help spot
# errors introduced later
rtol = {
"Euler": 1e-2,
"RK4": 5e-4,
}.get(method, 1e-3)
np.testing.assert_allclose(y_t[:, 0], y_ref, rtol=rtol)
@pytest.mark.parametrize("solver", explicit_adaptive_solvers)
def test_adaptive_solver(solver):
solver = explicit_adaptive_solvers[solver]
tol = 1e-7
def ode(t, x, **_):
return -t * x
y0 = np.array([1.0])
solv = solver(dt=0.2, adaptive=True, atol=0.0, rtol=tol)(ode, 0.0, y0)
t = []
y_t = []
last_step = -1
while solv.t <= 2.0:
print(solv._rkstate)
if solv._rkstate.step_no != last_step:
last_step = solv._rkstate.step_no
t.append(solv.t)
y_t.append(solv.y)
solv.step()
y_t =
|
np.asarray(y_t)
|
numpy.asarray
|
import numpy as np
import matplotlib.pyplot as plt
import datetime
from qutip import Qobj, identity, sigmax, sigmay, sigmaz, sigmam, tensor
from qutip.superoperator import liouvillian, sprepost
from qutip.qip.operations import cnot, cr
import qutip.logging_utils as logging
logger = logging.get_logger()
#Set this to None or logging.WARN for 'quiet' execution
log_level = logging.INFO
#QuTiP control modules
import qutip.control.pulseoptim as cpo
#example_name = 'Lindblad'
#The Hamiltoninan model
Sx = sigmax()
Sy = sigmay()
Sz = sigmaz()
#Sm = sigmam()
Si = identity(2)
sm1 = tensor(sigmam(),Si)
sm2 = tensor(Si,sigmam())
sz1 = tensor(Sz,Si)
sz2 = tensor(Si,Sz)
#cnot gate
cnot_gate = cnot()
U_targ = cr(phi=-np.pi/2)
U0 = identity(4)
#Hamiltonian parameters
#<NAME>
w0 = 5. #GHz
w1 = 4.844 #GHz
del12 = w0-w1 #GHz
J = (0.0083)/(2*np.pi) #GHz
coup = (J*0.25/del12)
t01 = (85.86/1e-3) #ns
t02 = (108.53/1e-3) #ns
t11 = (113.13/1e-3) #ns
t12 = (72.74/1e-3) #ns
# Time allowed for the evolution
#evo_times = [140,150,160,175,195]
evo_times = [1312]
#evo_times = [384]
#evo_times = [350]
# Number of time slots
#n_ts = int(float(evo_time/0.222))
#H0 = -(2.22e-1/2.)*tensor(Sz,Si)*0.#toronto
#Hc = [(-(2.22e-1/2.)*tensor(Sz,Si)),(0.5*tensor(Si,Sx)),-(0.5*0.01*tensor(Sz,Sx))]
#H0 = 0.5*tensor(Sz,Sx)+ 0.5*tensor(Sx,Si)
#Hc = [tensor(Si,Sx),tensor(Si,Sy),tensor(Sx,Si),tensor(Sy,Si)]
#H0 = w0*tensor(Sz,Si)+w1*tensor(Si,Sz)
H0 = -0.5*del12*tensor(Sz,Si)
#(-J*0.25/del12)*
#Hc = [tensor(Sz,Sx),tensor(Si,Sx),tensor(Si,Sy),tensor(Sy,Si)]
#Hc = [tensor(Sz,Sx),tensor(Si,Sx),tensor(Si,Sy),tensor(Si,Sz),tensor(Sz,Si),tensor(Sz,Sy),tensor(Sz,Sz)]
#ctrl_term = (tensor(Sz,Si)+tensor(Si,Sx)-tensor(Sz,Sx))#tensor(Sz,Sx)+tensor(Si,Sx)+tensor(Sz,Si)
#Hc = [ctrl_term]#,tensor(Sz,Sz),tensor(Si,Sx),tensor(Si,Sy)]
Hc = [tensor(Si,Sx),
tensor(Si,Sy),
tensor(Si,Sz),
#tensor(identity(2), sigmax()),
#tensor(identity(2), sigmay()),
#tensor(identity(2), sigmaz()),
tensor(Sz, Sx) +
tensor(Sz, Sy) +
tensor(Sz, Sz)]
#Hc = [tensor(Si,Sx),tensor(Sx,Si),tensor(Sx,Sx),tensor(Sy,Sy)]
gamma01 = 1/t01 #ns-1 t1 qubit 1
gamma02 = 1/t02 #ns-1 t1 qubit 2
gamma11 = 1/t11
gamma12 = 1/t12
L0 = liouvillian(H0,[
|
np.sqrt(gamma01)
|
numpy.sqrt
|
# ----------------------------------------------------------------------------
# Copyright 2016 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
"""
Defines PASCAL_VOC datatset handling
"""
from __future__ import division
from builtins import zip, range
import numpy as np
import os
import xml.etree.ElementTree as ET
import tarfile
from PIL import Image
import abc
from generate_anchors import generate_all_anchors
from neon.data.datasets import Dataset
from neon.util.persist import save_obj, load_obj, get_data_cache_dir
from neon import logger as neon_logger
# From Caffe:
# Pixel mean values (BGR order) as a (1, 1, 3) array
# These are the values originally used for training VGG16
# __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
FRCN_PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
# the loaded image will be (H, W, C) need to make it (C, H, W)
FRCN_IMG_DIM_SWAP = (2, 0, 1)
FRCN_EPS = 1.0
BB_XMIN_IDX = 0
BB_YMIN_IDX = 1
BB_XMAX_IDX = 2
BB_YMAX_IDX = 3
NORMALIZE_BBOX_TARGETS = False
BBOX_NORMALIZE_TARGETS_PRECOMPUTED = True # True means the values below are used
BBOX_NORMALIZE_MEANS = [0.0, 0.0, 0.0, 0.0] # taken from py-faster-rcnn caffe implementation
BBOX_NORMALIZE_STDS = [0.1, 0.1, 0.2, 0.2]
ASPECT_RATIO_GROUPING = True
DEBUG = False
dataset_meta = {
'test-2007': dict(size=460032000,
file='VOCtest_06-Nov-2007.tar',
url='http://host.robots.ox.ac.uk/pascal/VOC/voc2007',
subdir='VOCdevkit/VOC2007'),
'trainval-2007': dict(size=451020800,
file='VOCtrainval_06-Nov-2007.tar',
url='http://host.robots.ox.ac.uk/pascal/VOC/voc2007',
subdir='VOCdevkit/VOC2007'),
'trainval-2012': dict(size=2000000000,
file='VOCtrainval_11-May-2012.tar',
url='http://host.robots.ox.ac.uk/pascal/VOC/voc2012',
subdir='VOCdevkit/VOC2012'),
}
class ObjectLocalization(Dataset):
"""
Base class for loading object localization data in the PASCAL_VOC format.
Data must include:
1. index file of images
2. XML file for each image
Args:
n_mb (int, optional): how many minibatch to iterate through, can use
value smaller than nbatches for debugging
path (string, optional): path to the data directory.
img_per_batch (int, optional): how many images processed per batch
rpn_rois_per_img (int, optional): how many rois to pool from each image to train rpn
frcn_rois_per_img (int, optional): how many rois to sample to train frcnn
shuffle (boolean, optional): shuffle the image order during training
rebuild_cache (boolean, optional): force the cache to be built from scratch
subset_pct (float, optional): value between 0 and 100 indicating what percentage of the
dataset partition to use. Defaults to 100.
"""
MAX_SIZE = 1000
MIN_SIZE = 600
FRCNN_ROI_PER_IMAGE = 128 # number of rois to train (needed to initialize global buffers)
RPN_ROI_PER_IMAGE = 256 # number of anchors per image
IMG_PER_BATCH = 1 # number of images per batch
CLASSES = None # list of CLASSES e.g. ['__background__', 'car', 'people',..]
SCALE = 1.0 / 16 # scaling factor of the image layers (e.g. VGG)
# anchor variables
RATIOS = [0.5, 1, 2] # aspect ratios to generate
SCALES = [128, 256, 512] # box areas to generate
NEGATIVE_OVERLAP = 0.3 # negative anchors have < 0.3 overlap with any gt box
POSITIVE_OVERLAP = 0.7 # positive anchors have > 0.7 overlap with at least one gt box
FG_FRACTION = 0.5 # at most, positive anchors are 0.5 of the total rois
def __init__(self, path='.', n_mb=None, img_per_batch=None, conv_size=None,
rpn_rois_per_img=None, frcn_rois_per_img=None, add_flipped=False,
shuffle=False, deterministic=False, rebuild_cache=False, subset_pct=100,
mock_db=None):
self.batch_index = 0
self.path = path
self.mock_db = mock_db
# how many ROIs per image
self.rois_per_img = rpn_rois_per_img if rpn_rois_per_img else self.RPN_ROI_PER_IMAGE
self.img_per_batch = img_per_batch if img_per_batch else self.IMG_PER_BATCH
self.rois_per_batch = self.rois_per_img * self.img_per_batch
# how many ROIs to use to train frcnn
self.frcn_rois_per_img = frcn_rois_per_img if frcn_rois_per_img \
else self.FRCNN_ROI_PER_IMAGE
assert self.img_per_batch == 1, "Only a minibatch of 1 is supported."
self.num_classes = len(self.CLASSES)
self._class_to_index = dict(list(zip(self.CLASSES, list(range(self.num_classes)))))
# shape of the final conv layer
if conv_size:
self._conv_size = conv_size
else:
self._conv_size = int(np.floor(self.MAX_SIZE * self.SCALE))
self._feat_stride = 1 / float(self.SCALE)
self._num_scales = len(self.SCALES) * len(self.RATIOS)
self._total_anchors = self._conv_size * self._conv_size * self._num_scales
self.shuffle = shuffle
self.deterministic = deterministic
self.add_flipped = add_flipped
# load the configure the dataset paths
self.config = self.load_data()
# annotation metadata
self._annotation_file_ext = '.xml'
self._annotation_obj_tag = 'object'
self._annotation_class_tag = 'name'
self._annotation_xmin_tag = 'xmin'
self._annotation_xmax_tag = 'xmax'
self._annotation_ymin_tag = 'ymin'
self._annotation_ymax_tag = 'ymax'
# self.rois_per_batch is 128 (2*64) ROIs
# But the image path batch size is self.img_per_batch
# need to control the batch size here
assert self.img_per_batch is 1, "Only a batch size of 1 image is supported"
neon_logger.display("Backend batchsize is changed to be {} "
"from Object Localization dataset".format(
self.img_per_batch))
self.be.bsz = self.img_per_batch
# 0. allocate buffers
self.allocate()
if not self.mock_db:
# 1. read image index file
assert os.path.exists(self.config['image_path']), \
'Image index file does not exist: {}'.format(self.config['image_path'])
with open(self.config['index_path']) as f:
self.image_index = [x.strip() for x in f.readlines()]
num_images = len(self.image_index)
self.num_image_entries = num_images * 2 if self.add_flipped else num_images
self.ndata = self.num_image_entries * self.rois_per_img
else:
self.num_image_entries = 1
self.ndata = self.num_image_entries * self.rois_per_img
assert (subset_pct > 0 and subset_pct <= 100), ('subset_pct must be between 0 and 100')
if n_mb is not None:
self.nbatches = n_mb
else:
self.nbatches = int(self.num_image_entries / self.img_per_batch * subset_pct / 100)
self.cache_file = self.config['cache_path']
if os.path.exists(self.cache_file) and not rebuild_cache and not self.mock_db:
self.roi_db = load_obj(self.cache_file)
neon_logger.display('ROI dataset loaded from file {}'.format(self.cache_file))
elif not self.mock_db:
# 2. read object Annotations (XML)
roi_db = self.load_roi_groundtruth()
if(self.add_flipped):
roi_db = self.add_flipped_db(roi_db)
# 3. construct acnhor targets
self.roi_db = self.add_anchors(roi_db)
if NORMALIZE_BBOX_TARGETS:
# 4. normalize bbox targets by class
self.roi_db = self.normalize_bbox_targets(self.roi_db)
save_obj(self.roi_db, self.cache_file)
neon_logger.display('wrote ROI dataset to {}'.format(self.cache_file))
else:
assert self.mock_db is not None
roi_db = [self.mock_db]
self.roi_db = self.add_anchors(roi_db)
# 4. map anchors back to full canvas.
# This is neccessary because the network outputs reflect the full canvas.
# We cache the files in the unmapped state (above) to save memory.
self.roi_db = unmap(self.roi_db)
def allocate(self):
# 1. allocate backend tensor for the image
self.image_shape = (3, self.MAX_SIZE, self.MAX_SIZE)
self.img_np = np.zeros(
(3, self.MAX_SIZE, self.MAX_SIZE, self.be.bsz), dtype=np.float32)
self.dev_X_img = self.be.iobuf(self.image_shape, dtype=np.float32)
self.dev_X_img_chw = self.dev_X_img.reshape(
3, self.MAX_SIZE, self.MAX_SIZE, self.be.bsz)
self.shape = self.image_shape
# For training, the RPN needs:
# 1. bounding box target coordinates
# 2. bounding box target masks (keep positive anchors only)
self.dev_y_bbtargets = self.be.zeros((self._total_anchors * 4, 1))
self.dev_y_bbtargets_mask = self.be.zeros((self._total_anchors * 4, 1))
# 3. anchor labels of objectness
# 4. objectness mask (ignore neutral anchors)
self.dev_y_labels_flat = self.be.zeros((1, self._total_anchors), dtype=np.int32)
self.dev_y_labels_onehot = self.be.zeros((2, self._total_anchors), dtype=np.int32)
self.dev_y_labels = self.be.zeros((2 * self._total_anchors, 1), dtype=np.int32)
self.dev_y_labels_mask = self.be.zeros((2 * self._total_anchors, 1), dtype=np.int32)
# For training, Fast-RCNN needs:
# 1. class labels
# 2. bbox targets
# The above are computed during fprop by the ProposalLayer,
# so here we create the buffers to pass that to layer.
self.dev_y_frcn_labels = self.be.zeros(
(self.num_classes, self.frcn_rois_per_img), dtype=np.int32)
self.dev_y_frcn_labels_mask = self.be.zeros(
(self.num_classes, self.frcn_rois_per_img), dtype=np.int32)
self.dev_y_frcn_bbtargets = self.be.zeros(
(self.num_classes * 4, self.frcn_rois_per_img), dtype=np.float32)
self.dev_y_frcn_bbmask = self.be.zeros(
(self.num_classes * 4, self.frcn_rois_per_img), dtype=np.float32)
# we also create some global buffers needed by the ProposalLayer
# 1. image_shape
# 2. gt_boxes
# 3. number of gtboxes
# 4. class label for each gt box
# 5. image scale
# 6. indexes of anchors actually generated for image out of 62x62 possible
self.im_shape = self.be.zeros((2, 1), dtype=np.int32)
self.gt_boxes = self.be.zeros((64, 4), dtype=np.float32)
self.num_gt_boxes = self.be.zeros((1, 1), dtype=np.int32)
self.gt_classes = self.be.zeros((64, 1), dtype=np.int32)
self.im_scale = self.be.zeros((1, 1), dtype=np.float32)
@abc.abstractmethod
def load_data(self):
"""
Abstract class to return a dictionary with data paths.
The dictionary must contain:
config['root'] # root directory of dataset
config['index_path'] # index file with a list of images
config['image_path'] # base directory for the images
config['annot_path'] # base directory for the XML annotations
config['file_ext'] # image file extension (e.g. *.jpg)
"""
pass
def get_global_buffers(self):
global_buffers = dict()
global_buffers['target_buffers'] = ((self.dev_y_frcn_labels, self.dev_y_frcn_labels_mask),
(self.dev_y_frcn_bbtargets, self.dev_y_frcn_bbmask))
global_buffers['img_info'] = (self.im_shape, self.im_scale)
global_buffers['gt_boxes'] = (self.gt_boxes, self.gt_classes, self.num_gt_boxes)
global_buffers['conv_config'] = (self._conv_size, self.SCALE)
return global_buffers
def add_anchors(self, roi_db):
# adds a database of anchors
# 1. for each i in (H,W), generate k=9 anchor boxes centered on i
# 2. compute each anchor box against ground truth
# 3. assign each anchor to positive (1), negative (0), or ignored (-1)
# 4. for positive anchors, store the bbtargets
# 1.
# generate list of K anchor boxes, where K = # ratios * # scales
# anchor boxes are coded as [xmin, ymin, xmax, ymax]
all_anchors = generate_all_anchors(self._conv_size, self._conv_size, self.SCALE)
# all_anchors are in (CHW) order, matching the CHWN output of the conv layer.
assert self._total_anchors == all_anchors.shape[0]
# 2.
# Iterate through each image, and build list of positive/negative anchors
for db in roi_db:
im_scale, im_shape = self.calculate_scale_shape(db['img_shape'])
# only keep anchors inside image
idx_inside = inside_im_bounds(all_anchors, im_shape)
if DEBUG:
neon_logger.display('im shape', im_shape)
neon_logger.display('idx inside', len(idx_inside))
anchors = all_anchors[idx_inside, :]
labels = np.empty((len(idx_inside), ), dtype=np.float32)
labels.fill(-1)
# compute bbox overlaps
overlaps = calculate_bb_overlap(np.ascontiguousarray(anchors, dtype=np.float),
np.ascontiguousarray(db['gt_bb'] * im_scale,
dtype=np.float))
# assign bg labels first
bg_idx = overlaps.max(axis=1) < self.NEGATIVE_OVERLAP
labels[bg_idx] = 0
# assing fg labels
# 1. for each gt box, anchor with higher overlaps [including ties]
gt_idx = np.where(overlaps == overlaps.max(axis=0))[0]
labels[gt_idx] = 1
# 2. any anchor above the overlap threshold with any gt box
fg_idx = overlaps.max(axis=1) >= self.POSITIVE_OVERLAP
labels[fg_idx] = 1
if DEBUG:
neon_logger.display('max_overlap: {}'.format(overlaps.max()))
neon_logger.display('Assigned {} bg labels'.format(bg_idx.sum()))
neon_logger.display('Assigned {}+{} fg labels'.format(fg_idx.sum(), len(gt_idx)))
neon_logger.display('Total fg labels: {}'.format(np.sum(labels == 1)))
neon_logger.display('Total bg labels: {}'.format(np.sum(labels == 0)))
# For every anchor, compute the regression target compared
# to the gt box that it has the highest overlap with
# the indicies of labels should match these targets
bbox_targets = np.zeros((len(idx_inside), 4), dtype=np.float32)
bbox_targets = _compute_targets(db['gt_bb'][overlaps.argmax(axis=1), :] * im_scale,
anchors)
# store class label of max_overlap gt to use in normalization
gt_max_overlap_classes = overlaps.argmax(axis=1)
# store results in database
db['labels'] = labels
db['bbox_targets'] = bbox_targets
db['max_classes'] = gt_max_overlap_classes
db['total_anchors'] = self._total_anchors
db['idx_inside'] = idx_inside
db['im_width'] = im_shape[0]
db['im_height'] = im_shape[1]
return roi_db
def normalize_bbox_targets(self, roi_db):
if BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# Use fixed / precomputed "means" and "stds" instead of empirical values
means = np.tile(
np.array(BBOX_NORMALIZE_MEANS), (self.num_classes, 1))
stds = np.tile(
np.array(BBOX_NORMALIZE_STDS), (self.num_classes, 1))
else:
# Compute values needed for means and stds
# var(x) = E(x^2) - E(x)^2
# Add epsilon for classes with 0 counts
class_counts = np.zeros((self.num_classes, 1)) + 1e-14
sums = np.zeros((self.num_classes, 4))
squared_sums = np.zeros((self.num_classes, 4))
for im_i in (self.num_image_entries):
targets = roi_db[im_i]['bbox_targets']
for cls in range(1, self.num_classes):
cls_inds =
|
np.where(roi_db[im_i]['gt_classes'] == cls)
|
numpy.where
|
import numpy as np
from scipy import stats, signal
def hanning(x,N):
"""
Filter a time series x with a Hanning window of length N. If x is 2D, the time series will be filtered along columns.
Inputs:
x - a numpy array to be filtered
N - width of window
Output: numpy array of filtered time series
"""
wts = signal.hann(N) # filter weights
xf = _filt(x,wts)
return xf
def lancz(x=None,dt=1,T=40,return_weights=False):
"""
Filter a time series x with cosine-Lanczos filter. If x is 2D, the time series will be filtered along columns.
The default half amplitude period of 40 hours corresponds to a frequency of 0.6 cpd. A half amplitude period of 34.29h corresponds to 0.7 cpd. The 40 hour half amplitude period is more effective at reducing diurnal-band variability but shifts periods of variability in low passed time series to >2 days.
Inputs:
x - a numpy array to be filtered
dt - sample interval (hours), default = 1
T - half-amplitude period (hours), default = 40
return_weights - Boolean indicating whether to return the filter weights instead of a filtered time series, default = False
Output:
- numpy array of filtered time series, same size as input with ends NaN values at start and end (default)
- numpy array of filter weights (if `return_weights=True` is specified)
Reference: <NAME> Thomson, 2004, Data Analysis Methods in Physical Oceanography. 2nd Ed., pp. 539-540. Section 5.10.7.4 - The Hanning window.
"""
cph = 1./dt # samples per hour
nwts = int(np.round(120*cph)) # number of weights
# create filter weights
wts = signal.firwin(nwts,
1./T,
window='hanning',
nyq=cph/2.)
xf = _filt(x,wts,return_weights)
return xf
def pl66(x=None,dt=1,T=33,return_weights=False):
"""
Filter a time series x with the PL66 filter. If x is 2D, the time series will be filtered along columns.
Inputs:
x - a numpy array to be filtered
dt - sample interval (hours), default = 1
T - half-amplitude period (hours), default = 33
return_weights - Boolean indicating whether to return the filter weights instead of a filtered time series, default = False
Output:
- numpy array of filtered time series, same size as input with ends NaN values at start and end (default)
- numpy array of filter weights (if `return_weights=True` is specified)
Reference: Rosenfeld (1983), WHOI Technical Report 85-35
Matlab code: http://woodshole.er.usgs.gov/operations/sea-mat/bobstuff-html/pl66tn.html
"""
Tn=float(T)/dt # normalized cutoff period
fqn=1./Tn # normalized cutoff frequency
nw = int(np.round(2.*T/dt)) # number of weights on one side
# create filter weights
j = np.arange(1,nw)
tn = np.pi*j
den=fqn*fqn*tn**3
wts = (2*np.sin(2*fqn*tn)-np.sin(fqn*tn)-np.sin(3*fqn*tn))/den
# make symmetric
wts = np.hstack((wts[::-1],2*fqn,wts))
xf = _filt(x,wts,return_weights)
return xf
def pl64(x=None,dt=1,T=33,return_weights=False):
"""
Filter a time series x with the PL64 filter. If x is 2D, the time series will be filtered along columns.
Inputs:
x - a numpy array to be filtered
dt - sample interval (hours), default = 1
T - half-amplitude period (hours), default = 33
return_weights - Boolean indicating whether to return the filter weights instead of a filtered time series, default = False
Output:
- numpy array of filtered time series, same size as input with ends NaN values at start and end (default)
- numpy array of filter weights (if `return_weights=True` is specified)
Reference: CODE-2: Moored Array and Large-Scale Data Report, WHOI 85-35
"""
Tn=float(T)/dt # normalized cutoff period
fqn=1./Tn # normalized cutoff frequency
nw = int(np.round(64/dt)) # number of weights on one side
# create filter weights
j = np.arange(1,nw)
tn = np.pi*j
den=fqn*fqn*tn**3
wts = (2*np.sin(2*fqn*tn)-np.sin(fqn*tn)-np.sin(3*fqn*tn))/den
# make symmetric
wts = np.hstack((wts[::-1],2*fqn,wts))
xf = _filt(x,wts,return_weights)
return xf
def _filt(x,wts,return_weights):
"""
Private function to filter a time series and pad the ends of the filtered time series with NaN values. For N weights, N/2 values are padded at each end of the time series. The filter weights are normalized so that the sum of weights = 1.
Inputs:
x - the time series (may be 2d, will be filtered along columns)
wts - the filter weights
return_weights - if True, return the filter weights instead of a filtered time series (default: False)
Output:
- the filtered time series (default)
- filter weights (if `return_weights=True` is specified)
"""
# convert to 2D array if necessary (general case)
ndims = np.ndim(x)
if ndims == 1:
x = np.expand_dims(x,axis=1)
# normalize weights
wtsn = wts*sum(wts)**-1 # normalize weights so sum = 1
if return_weights==False:
# Convolve using 'direct' method. In older versions of scipy, this has to
# be specified because the default 'auto' method could decide to use the
# 'fft' method, which does not work for time series with NaNs. In newer
# versions, there is no method option.
try:
xf = signal.convolve(x,wtsn[:,np.newaxis],mode='same',method='direct')
except:
xf = signal.convolve(x,wtsn[:,np.newaxis],mode='same')
# note: np.convolve may be faster
# http://scipy.github.io/old-wiki/pages/Cookbook/ApplyFIRFilter
# pad ends of time series
nwts = len(wts) # number of filter weights
npad = int(np.ceil(0.5*nwts))
xf[:npad,:] = np.nan
xf[-npad:,:] = np.nan
# return array with same number of dimensions as input
if ndims == 1:
xf = xf.flatten()
elif return_weights==True:
# return normalized weights instead of filtered time series
xf = wtsn
else:
raise('return_weights must be a Boolean')
return xf
def princax(u,v=None):
'''
Principal axes of a vector time series.
Usage:
theta,major,minor = princax(u,v) # if u and v are real-valued vector components
or
theta,major,minor = princax(w) # if w is a complex vector
Input:
u,v - 1-D arrays of vector components (e.g. u = eastward velocity, v = northward velocity)
or
w - 1-D array of complex vectors (u + 1j*v)
Output:
theta - angle of major axis (math notation, e.g. east = 0, north = 90)
major - standard deviation along major axis
minor - standard deviation along minor axis
Reference: <NAME> Thomson, 2001, Data Analysis Methods in Physical Oceanography, 2nd ed., pp. 325-328.
Matlab function: http://woodshole.er.usgs.gov/operations/sea-mat/RPSstuff-html/princax.html
'''
# if one input only, decompose complex vector
if v is None:
w = np.copy(u)
u = np.real(w)
v = np.imag(w)
# Make sure inputs are numpy arrays
if type(u) is list:
u = np.array(u)
v = np.array(v)
# only use finite values for covariance matrix
ii = np.isfinite(u+v)
uf = u[ii]
vf = v[ii]
# compute covariance matrix
C = np.cov(uf,vf)
# calculate principal axis angle (ET, Equation 4.3.23b)
theta = 0.5*np.arctan2(2.*C[0,1],(C[0,0] - C[1,1])) * 180/np.pi
# calculate variance along major and minor axes (Equation 4.3.24)
term1 = C[0,0] + C[1,1]
term2 = ((C[0,0] - C[1,1])**2 + 4*(C[0,1]**2))**0.5
major = np.sqrt(0.5*(term1 + term2))
minor = np.sqrt(0.5*(term1 - term2))
return theta,major,minor
def rot(u,v,theta):
"""
Rotate a vector counter-clockwise OR rotate the coordinate system clockwise.
Usage:
ur,vr = rot(u,v,theta)
Input:
u,v - vector components (e.g. u = eastward velocity, v = northward velocity)
theta - rotation angle (degrees)
Output:
ur,vr - rotated vector components
Example:
rot(1,0,90) returns (0,1)
"""
# Make sure inputs are numpy arrays
if type(u) is list:
u = np.array(u)
v = np.array(v)
w = u + 1j*v # complex vector
ang = theta*np.pi/180 # convert angle to radians
wr = w*np.exp(1j*ang) # complex vector rotation
ur = np.real(wr) # return u and v components
vr = np.imag(wr)
return ur,vr
def fillgapwithnan(x,date):
"""
Fill in missing data with NaN values. This is intended for a regular time series that has gaps where no data are reported.
Although this function is intended for regularly-sampled time series (with gaps), it does allow for some slight irregularity (e.g. 13:00,14:00,15:00,15:59,16:59...)
Inputs:
x - a numpy array of data (1 or 2 dimensions)
date - datetime values that correspond to x
Returns:
(newx,newdate)
newx - new array of data
newdate = new datetime values
"""
xnd = np.ndim(x) # remember original number of dims in x
x = np.array(x,ndmin=2) # make array 2D for general use
# ensure that x is oriented correctly and has one dimension with same length as date
flipdim = False
if np.shape(x)[0] != np.shape(date)[0]:
x = x.transpose()
flipdim = True
if np.shape(x)[0] != np.shape(date)[0]:
raise Exception('one dimension of x must have same length as date')
# find most common timedelta
alldeltat = np.diff(date)
# stats.mode returns (value, number of occurences) in arrays
deltat = stats.mode(alldeltat)[0][0]
gapi = np.where(alldeltat > deltat*3/2)[0]
# build new arrays
newdate = date[0:gapi[0]+1]
newx = np.array(x[0:gapi[0]+1,:],ndmin=2)
cnt = 0 # counter for looping through the gaps
for ii in gapi:
tdiff = date[ii+1]-date[ii] # size of gap
# number of new values needed to fill gap
nstep = int(round((tdiff.total_seconds()/deltat.total_seconds())))-1
for step in np.arange(nstep):
t = newdate[-1]+deltat
newdate = np.append(newdate,t)
gapnans = np.nan*np.ones((nstep,np.shape(x)[1]))
newx = np.vstack((newx,gapnans))
if ii!=gapi[-1]:
i1 = ii+1
i2 = gapi[cnt+1]
newdate = np.append(newdate,date[i1:i2+1])
newx = np.vstack((newx,x[i1:i2+1,:]))
else:
newdate = np.append(newdate,date[ii+1:])
newx = np.vstack((newx,x[ii+1:,:]))
cnt=cnt+1
if flipdim:
newx = newx.transpose()
if xnd == 1:
newx = newx.flatten() # reduce back to 1D array if necessary
return (newx,newdate)
def depthavg(x,z,h,ssh=None,surface='mixed',bottom='zero'):
'''
Compute depth average of each row in 2D array x, with corresponding depths z.
Designed to accomodate upward looking ADCP data, with moving sea surface and
blank bins with no data near surface. If no sea surface height is specified,
it is assumed to be at z=0 for all times.
x: variable to be depth-averaged, 2D array with shape N rows, M columns
z: measurement depths (z=0 is surface, z=-h is bottom), array of length M
h: bottom depth (positive value)
ssh: sea surface height (optional, set to zero if None or where value is undefined)
surface: boundary condition for surface
'mixed' (default) or 'extrap'
bottom: boundary condition for bottom
'zero' (default),'mixed' or 'extrap'
'''
# ensure that inputs are arrays of floats
x = np.array(x).astype('float')
z = np.array(z).astype('float')
h = np.array(h).astype('float')
if np.ndim(x) == 1:
x = x[np.newaxis]
ni,nj = np.shape(x)
# If SSH not specified, create an array of zeros
if ssh is None:
ssh = np.zeros(ni)
ssh = np.array(ssh)
if np.ndim(ssh) == 0:
ssh = ssh[np.newaxis]
# ssh in 2D column array
ssh2 = np.array([ssh]).T
# depths in 2D array
sorti = np.argsort(z)
zs = z[sorti]
zs2 = np.tile(zs,[ni,1])
xs2 = x[:,sorti] # sort data in same manner as depths
# water depth in 2D column array
h2 = np.tile(h,[ni,1])
# new 2D x and z arrays to work with, with bottom and surface included
zmat = np.hstack([-h2,zs2,ssh2])
nans2 = np.nan*
|
np.ones([ni,1])
|
numpy.ones
|
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from tensorflow.keras.callbacks import LearningRateScheduler, TensorBoard
def build_model():
model = Sequential()
model.add(Conv2D(6, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', input_shape=(32,32,3)))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Conv2D(16, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation = 'relu', kernel_initializer='he_normal'))
model.add(Dense(84, activation = 'relu', kernel_initializer='he_normal'))
model.add(Dense(10, activation = 'softmax', kernel_initializer='he_normal'))
#sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def scheduler(epoch):
if epoch < 100:
return 0.01
if epoch < 150:
return 0.005
return 0.001
if __name__ == '__main__':
# load data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train_categorical = tf.keras.utils.to_categorical(y_train, 10)
y_test_categorical = tf.keras.utils.to_categorical(y_test, 10)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255.0
x_test /= 255.0
class_names = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
fig = plt.figure(figsize=(8,3))
num_classes = 10
for i in range(num_classes):
ax = fig.add_subplot(2, 5, 1 + i, xticks=[], yticks=[])
idx =
|
np.where(y_train[:]==i)
|
numpy.where
|
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by <NAME>
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import xml.etree.ElementTree as ET
import os, sys, pdb, math
import pickle
import numpy as np
from PIL import Image, ImageDraw, ImageFont
# sys.path.append('/y/dandans/Hand_Object_Detection/faster-rcnn.pytorch/lib/model/utils')
# from lib.datasets.viz_hand_obj_debug import *
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
obj_struct['handstate'] = 0 if obj.find('contactstate').text is None else int(obj.find('contactstate').text)
obj_struct['leftright'] = 0 if obj.find('handside').text is None else int(obj.find('handside').text)
obj_struct['objxmin'] = None if obj.find('objxmin').text in [None, 'None'] else float(obj.find('objxmin').text)
obj_struct['objymin'] = None if obj.find('objymin').text in [None, 'None'] else float(obj.find('objymin').text)
obj_struct['objxmax'] = None if obj.find('objxmax').text in [None, 'None'] else float(obj.find('objxmax').text)
obj_struct['objymax'] = None if obj.find('objymax').text in [None, 'None'] else float(obj.find('objymax').text)
if obj_struct['objxmin'] is not None and obj_struct['objymin'] is not None and obj_struct[
'objxmax'] is not None and obj_struct['objymax'] is not None:
obj_struct['objectbbox'] = [obj_struct['objxmin'], obj_struct['objymin'], obj_struct['objxmax'],
obj_struct['objymax']]
else:
obj_struct['objectbbox'] = None
objects.append(obj_struct)
return objects
def voc_ap(rec, prec, use_07_metric=False):
"""
ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
'''
@description: raw evaluation for fasterrcnn
'''
def voc_eval(detpath,
annopath,
imagesetfile,
classname,
cachedir,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file
print(f'\n\n thd = {ovthresh}\n\n')
# first load gt
if not os.path.isdir(cachedir):
os.mkdir(cachedir)
cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile)
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
if not os.path.isfile(cachefile):
# load annotations
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath.format(imagename))
if i % 100 == 0:
print('Reading annotation for {:d}/{:d}'.format(
i + 1, len(imagenames)))
# save
print('Saving cached annotations to {:s}'.format(cachefile))
with open(cachefile, 'wb') as f:
pickle.dump(recs, f)
else:
# load
with open(cachefile, 'rb') as f:
try:
recs = pickle.load(f)
except:
recs = pickle.load(f, encoding='bytes')
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'].lower() == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:2 + 4]] for x in splitlines])
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
if BB.shape[0] > 0:
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin =
|
np.maximum(BBGT[:, 1], bb[1])
|
numpy.maximum
|
# Copyright 2019 Image Analysis Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# IMPORTS
import optparse
import sys
import numpy as np
import nibabel as nib
import copy
HELPTEXT = """
Script to reduce aparc+aseg to aseg by mapping cortex lables back to left/right GM.
If --outmask is used, it also creates a brainmask by dilating (5) and eroding (4)
the segmentation, and then selecting the largest component. In that case also the
segmentation is masked (to remove small components outside the main brain region).
USAGE:
reduce_to_aseg -i <input_seg> -o <output_seg>
Dependencies:
Python 3.5
Numpy
http://www.numpy.org
Nibabel to read and write FreeSurfer data
http://nipy.org/nibabel/
skimage for erosion, dilation, connected component
https://scikit-image.org/
Original Author: <NAME>
Date: Jul-24-2018
"""
h_input = 'path to input segmentation'
h_output = 'path to ouput segmentation'
h_outmask = 'path to ouput mask'
def options_parse():
"""
Command line option parser for reduce_to_aseg.py
"""
parser = optparse.OptionParser(version='$Id: reduce_to_aseg.py,v 1.0 2018/06/24 11:34:08 mreuter Exp $',
usage=HELPTEXT)
parser.add_option('--input', '-i', dest='input_seg', help=h_input)
parser.add_option('--output', '-o', dest='output_seg', help=h_output)
parser.add_option('--outmask', dest='output_mask', help=h_outmask)
(options, args) = parser.parse_args()
if options.input_seg is None or options.output_seg is None:
sys.exit('ERROR: Please specify input and output segmentations')
return options
def reduce_to_aseg(data_inseg):
print ("Reducing to aseg ...")
# replace 2000... with 42
data_inseg[data_inseg >= 2000] = 42
# replace 1000... with 3
data_inseg[data_inseg >= 1000] = 3
return data_inseg
def create_mask(aseg_data, dnum, enum):
from skimage.morphology import binary_dilation, binary_erosion
from skimage.measure import label
print ("Creating dilated mask ...")
# treat lateral orbital frontal and parsorbitalis special to avoid capturing too much of eye nerve
lat_orb_front_mask = np.logical_or(aseg_data == 2012, aseg_data == 1012)
parsorbitalis_mask = np.logical_or(aseg_data == 2019, aseg_data == 1019)
frontal_mask =
|
np.logical_or(lat_orb_front_mask, parsorbitalis_mask)
|
numpy.logical_or
|
"""
Target is in xmin, ymin, xmax, ymax, label
coordinates are in range of [0, 1] normlised height and width
"""
import json, os
import torch
import pdb, time
import torch.utils as tutils
import pickle
from .transforms import get_clip_list_resized
import torch.nn.functional as F
import numpy as np
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from PIL import Image, ImageDraw
from modules.tube_helper import make_gt_tube
import random as random
from modules import utils
from random import shuffle
logger = utils.get_logger(__name__)
def get_box(box, counts):
box = box.astype(np.float32) - 1
box[2] += box[0] #convert width to xmax
box[3] += box[1] #converst height to ymax
for bi in range(4):
scale = 320 if bi % 2 == 0 else 240
box[bi] /= scale
assert 0<=box[bi]<=1.01, box
# if add_one ==0:
box[bi] = min(1.0, max(0, box[bi]))
if counts is None:
box[bi] = box[bi]*682 if bi % 2 == 0 else box[bi]*512
return box, counts
def get_frame_level_annos_ucf24(annotations, numf, num_classes, counts=None):
frame_level_annos = [ {'labeled':True,'ego_label':0,'boxes':[],'labels':[]} for _ in range(numf)]
add_one = 1
# if num_classes == 24:
# add_one = 0
for tubeid, tube in enumerate(annotations):
# print('numf00', numf, tube['sf'], tube['ef'])
for frame_index, frame_num in enumerate(np.arange(tube['sf'], tube['ef'], 1)): # start of the tube to end frame of the tube
label = tube['label']
# assert action_id == label, 'Tube label and video label should be same'
box, counts = get_box(tube['boxes'][frame_index, :].copy(), counts) # get the box as an array
frame_level_annos[frame_num]['boxes'].append(box)
box_labels = np.zeros(num_classes)
# if add_one == 1:
box_labels[0] = 1
box_labels[label+add_one] = 1
frame_level_annos[frame_num]['labels'].append(box_labels)
frame_level_annos[frame_num]['ego_label'] = label+1
# frame_level_annos[frame_index]['ego_label'][] = 1
if counts is not None:
counts[0,0] += 1
counts[label,1] += 1
return frame_level_annos, counts
def get_filtered_tubes_ucf24(annotations):
filtered_tubes = []
for tubeid, tube in enumerate(annotations):
frames = []
boxes = []
label = tube['label']
count = 0
for frame_index, frame_num in enumerate(np.arange(tube['sf'], tube['ef'], 1)):
frames.append(frame_num+1)
box, _ = get_box(tube['boxes'][frame_index, :].copy(), None)
boxes.append(box)
count += 1
assert count == tube['boxes'].shape[0], 'numb: {} count ={}'.format(tube['boxes'].shape[0], count)
temp_tube = make_gt_tube(frames, boxes, label)
filtered_tubes.append(temp_tube)
return filtered_tubes
def resize(image, size):
image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
return image
def filter_labels(ids, all_labels, used_labels):
"""Filter the used ids"""
used_ids = []
for id in ids:
label = all_labels[id]
if label in used_labels:
used_ids.append(used_labels.index(label))
return used_ids
def get_gt_video_list(anno_file, SUBSETS):
"""Get video list form ground truth videos used in subset
and their ground truth tubes """
with open(anno_file, 'r') as fff:
final_annots = json.load(fff)
video_list = []
for videoname in final_annots['db']:
if is_part_of_subsets(final_annots['db'][videoname]['split_ids'], SUBSETS):
video_list.append(videoname)
return video_list
def get_filtered_tubes(label_key, final_annots, videoname):
key_tubes = final_annots['db'][videoname][label_key]
all_labels = final_annots['all_'+label_key.replace('tubes','labels')]
labels = final_annots[label_key.replace('tubes','labels')]
filtered_tubes = []
for _ , tube in key_tubes.items():
label_id = tube['label_id']
label = all_labels[label_id]
if label in labels:
new_label_id = labels.index(label)
# temp_tube = GtTube(new_label_id)
frames = []
boxes = []
if 'annos' in tube.keys():
for fn, anno_id in tube['annos'].items():
frames.append(int(fn))
anno = final_annots['db'][videoname]['frames'][fn]['annos'][anno_id]
box = anno['box'].copy()
for bi in range(4):
assert 0<=box[bi]<=1.01, box
box[bi] = min(1.0, max(0, box[bi]))
box[bi] = box[bi]*682 if bi % 2 == 0 else box[bi]*512
boxes.append(box)
else:
for fn in tube['frames']:
frames.append(int(fn))
temp_tube = make_gt_tube(frames, boxes, new_label_id)
filtered_tubes.append(temp_tube)
return filtered_tubes
def get_filtered_frames(label_key, final_annots, videoname, filtered_gts):
frames = final_annots['db'][videoname]['frames']
if label_key == 'agent_ness':
all_labels = []
labels = []
else:
all_labels = final_annots['all_'+label_key+'_labels']
labels = final_annots[label_key+'_labels']
for frame_id , frame in frames.items():
frame_name = '{:05d}'.format(int(frame_id))
if frame['annotated']>0:
all_boxes = []
if 'annos' in frame:
frame_annos = frame['annos']
for key in frame_annos:
anno = frame_annos[key]
box = np.asarray(anno['box'].copy())
for bi in range(4):
assert 0<=box[bi]<=1.01, box
box[bi] = min(1.0, max(0, box[bi]))
box[bi] = box[bi]*682 if bi % 2 == 0 else box[bi]*512
if label_key == 'agent_ness':
filtered_ids = [0]
else:
filtered_ids = filter_labels(anno[label_key+'_ids'], all_labels, labels)
if len(filtered_ids)>0:
all_boxes.append([box, filtered_ids])
filtered_gts[videoname+frame_name] = all_boxes
return filtered_gts
def get_av_actions(final_annots, videoname):
label_key = 'av_action'
frames = final_annots['db'][videoname]['frames']
all_labels = final_annots['all_'+label_key+'_labels']
labels = final_annots[label_key+'_labels']
filtered_gts = {}
for frame_id , frame in frames.items():
frame_name = '{:05d}'.format(int(frame_id))
if frame['annotated']>0:
gts = filter_labels(frame[label_key+'_ids'], all_labels, labels)
filtered_gts[videoname+frame_name] = gts
return filtered_gts
def get_video_tubes(final_annots, videoname):
tubes = {}
for key in final_annots['db'][videoname].keys():
if key.endswith('tubes'):
filtered_tubes = get_filtered_tubes(key, final_annots, videoname)
tubes[key] = filtered_tubes
return tubes
def is_part_of_subsets(split_ids, SUBSETS):
is_it = False
for subset in SUBSETS:
if subset in split_ids:
is_it = True
return is_it
class VideoDataset(tutils.data.Dataset):
"""
ROAD Detection dataset class for pytorch dataloader
"""
def __init__(self, args, train=True, input_type='rgb', transform=None,
skip_step=1, full_test=False):
self.ANCHOR_TYPE = args.ANCHOR_TYPE
self.DATASET = args.DATASET
self.SUBSETS = args.SUBSETS
self.SEQ_LEN = args.SEQ_LEN
self.BATCH_SIZE = args.BATCH_SIZE
self.MIN_SEQ_STEP = args.MIN_SEQ_STEP
self.MAX_SEQ_STEP = args.MAX_SEQ_STEP
# self.MULIT_SCALE = args.MULIT_SCALE
self.full_test = full_test
self.skip_step = skip_step #max(skip_step, self.SEQ_LEN*self.MIN_SEQ_STEP/2)
self.num_steps = max(1, int(self.MAX_SEQ_STEP - self.MIN_SEQ_STEP + 1 )//2)
# self.input_type = input_type
self.input_type = input_type+'-images'
self.train = train
self.root = args.DATA_ROOT + args.DATASET + '/'
self._imgpath = os.path.join(self.root, self.input_type)
# self.image_sets = image_sets
self.transform = transform
self.ids = list()
if self.DATASET == 'road':
self._make_lists_road()
elif self.DATASET == 'ucf24':
self._make_lists_ucf24()
self.num_label_types = len(self.label_types)
def _make_lists_ucf24(self):
self.anno_file = os.path.join(self.root, 'pyannot_with_class_names.pkl')
with open(self.anno_file,'rb') as fff:
final_annots = pickle.load(fff)
database = final_annots['db']
self.trainvideos = final_annots['trainvideos']
ucf_classes = final_annots['classes']
self.label_types = ['action_ness', 'action'] #
self.num_classes_list = [1, 24]
self.num_classes = 25 # one for action_ness
self.ego_classes = ['Non_action'] + ucf_classes
self.num_ego_classes = len(self.ego_classes)
counts = np.zeros((24, 2), dtype=np.int32)
ratios = [1.0, 1.1, 1.1, 0.9, 1.1, 0.8, 0.7, 0.8, 1.1, 1.4, 1.0, 0.8, 0.7, 1.2, 1.0, 0.8, 0.7, 1.2, 1.2, 1.0, 0.9]
self.video_list = []
self.numf_list = []
frame_level_list = []
default_ego_label =
|
np.zeros(self.num_ego_classes)
|
numpy.zeros
|
# encoding: UTF-8
# AUTHOR:李来佳
# WeChat/QQ: 28888502
from datetime import datetime
import talib as ta
import numpy
import copy,csv
from pykalman import KalmanFilter
from vnpy.trader.app.ctaStrategy.ctaBase import *
from vnpy.trader.vtConstant import *
DEBUGCTALOG = True
PERIOD_SECOND = 'second' # 秒级别周期
PERIOD_MINUTE = 'minute' # 分钟级别周期
PERIOD_HOUR = 'hour' # 小时级别周期
PERIOD_DAY = 'day' # 日级别周期
class CtaLineBar(object):
"""CTA K线"""
""" 使用方法:
1、在策略构造函数__init()中初始化
self.lineM = None # 1分钟K线
lineMSetting = {}
lineMSetting['name'] = u'M1'
lineMSetting['barTimeInterval'] = 60 # 1分钟对应60秒
lineMSetting['inputEma1Len'] = 7 # EMA线1的周期
lineMSetting['inputEma2Len'] = 21 # EMA线2的周期
lineMSetting['inputBollLen'] = 20 # 布林特线周期
lineMSetting['inputBollStdRate'] = 2 # 布林特线标准差
lineMSetting['minDiff'] = self.minDiff # 最小条
lineMSetting['shortSymbol'] = self.shortSymbol #商品短号
self.lineM = CtaLineBar(self, self.onBar, lineMSetting)
2、在onTick()中,需要导入tick数据
self.lineM.onTick(tick)
self.lineM5.onTick(tick) # 如果你使用2个周期
3、在onBar事件中,按照k线结束使用;其他任何情况下bar内使用,通过对象使用即可,self.lineM.lineBar[-1].close
"""
# 区别:
# -使用tick模式时,当tick到达后,最新一个lineBar[-1]是当前的正在拟合的bar,不断累积tick,传统按照OnBar来计算的话,是使用LineBar[-2]。
# -使用bar模式时,当一个bar到达时,lineBar[-1]是当前生成出来的Bar,不再更新
TICK_MODE = 'tick'
BAR_MODE = 'bar'
# 参数列表,保存了参数的名称
paramList = ['vtSymbol']
def __init__(self, strategy, onBarFunc, setting=None,):
# OnBar事件回调函数
self.onBarFunc = onBarFunc
# 参数列表
self.paramList.append('barTimeInterval')
self.paramList.append('period')
self.paramList.append('inputPreLen')
self.paramList.append('inputEma1Len')
self.paramList.append('inputEma2Len')
self.paramList.append('inputMa1Len')
self.paramList.append('inputMa2Len')
self.paramList.append('inputMa3Len')
self.paramList.append('inputDmiLen')
self.paramList.append('inputDmiMax')
self.paramList.append('inputAtr1Len')
self.paramList.append('inputAtr2Len')
self.paramList.append('inputAtr3Len')
self.paramList.append('inputVolLen')
self.paramList.append('inputRsi1Len')
self.paramList.append('inputRsi2Len')
self.paramList.append('inputCmiLen')
self.paramList.append('inputBollLen')
self.paramList.append('inputBollStdRate')
self.paramList.append('inputKdjLen')
self.paramList.append('inputCciLen')
self.paramList.append('inputMacdFastPeriodLen')
self.paramList.append('inputMacdSlowPeriodLen')
self.paramList.append('inputMacdSignalPeriodLen')
self.paramList.append('inputKF')
self.paramList.append('minDiff')
self.paramList.append('shortSymbol')
self.paramList.append('activeDayJump')
self.paramList.append('name')
# 输入参数
self.name = u'LineBar'
self.mode = self.TICK_MODE # 缺省为tick模式
self.period = PERIOD_SECOND # 缺省为分钟级别周期
self.barTimeInterval = 300
self.barMinuteInterval = self.barTimeInterval / 60
self.inputPreLen = EMPTY_INT #1
self.inputMa1Len = EMPTY_INT # 10
self.inputMa2Len = EMPTY_INT # 20
self.inputMa3Len = EMPTY_INT # 120
self.inputEma1Len = EMPTY_INT # 13
self.inputEma2Len = EMPTY_INT # 21
self.inputDmiLen = EMPTY_INT # 14 # DMI的计算周期
self.inputDmiMax = EMPTY_FLOAT # 30 # Dpi和Mdi的突破阈值
self.inputAtr1Len = EMPTY_INT # 10 # ATR波动率的计算周期(近端)
self.inputAtr2Len = EMPTY_INT # 26 # ATR波动率的计算周期(常用)
self.inputAtr3Len = EMPTY_INT # 50 # ATR波动率的计算周期(远端)
self.inputVolLen = EMPTY_INT # 14 # 平均交易量的计算周期
self.inputRsi1Len = EMPTY_INT # 7 # RSI 相对强弱指数(快曲线)
self.inputRsi2Len = EMPTY_INT # 14 # RSI 相对强弱指数(慢曲线)
self.shortSymbol = EMPTY_STRING # 商品的短代码
self.minDiff = 1 # 商品的最小价格单位
self.round_n = 4 # round() 小数点的截断数量
self.activeDayJump = False # 隔夜跳空
# 当前的Tick
self.curTick = None
self.lastTick = None
self.curTradingDay = EMPTY_STRING
# K 线服务的策略
self.strategy = strategy
# K线保存数据
self.bar = None # K线数据对象
self.lineBar = [] # K线缓存数据队列
self.barFirstTick =False # K线的第一条Tick数据
# K 线的相关计算结果数据
self.preHigh = [] # K线的前inputPreLen的的最高
self.preLow = [] # K线的前inputPreLen的的最低
self.lineMa1 = [] # K线的MA1均线,周期是InputMaLen1,不包含当前bar
self.lineMa2 = [] # K线的MA2均线,周期是InputMaLen2,不包含当前bar
self.lineMa3 = [] # K线的MA2均线,周期是InputMaLen2,不包含当前bar
self.lineEma1 = [] # K线的EMA1均线,周期是InputEmaLen1,不包含当前bar
self.lineEma1MtmRate = [] # K线的EMA1均线 的momentum(3) 动能
self.lineEma2 = [] # K线的EMA2均线,周期是InputEmaLen2,不包含当前bar
self.lineEma2MtmRate = [] # K线的EMA2均线 的momentum(3) 动能
# K线的DMI( Pdi,Mdi,ADX,Adxr) 计算数据
self.barPdi = EMPTY_FLOAT # bar内的升动向指标,即做多的比率
self.barMdi = EMPTY_FLOAT # bar内的下降动向指标,即做空的比率
self.linePdi = [] # 升动向指标,即做多的比率
self.lineMdi = [] # 下降动向指标,即做空的比率
self.lineDx = [] # 趋向指标列表,最大长度为inputM*2
self.barAdx = EMPTY_FLOAT # Bar内计算的平均趋向指标
self.lineAdx = [] # 平均趋向指标
self.barAdxr = EMPTY_FLOAT # 趋向平均值,为当日ADX值与M日前的ADX值的均值
self.lineAdxr = [] # 平均趋向变化指标
# K线的基于DMI、ADX计算的结果
self.barAdxTrend = EMPTY_FLOAT # ADX值持续高于前一周期时,市场行情将维持原趋势
self.barAdxrTrend = EMPTY_FLOAT # ADXR值持续高于前一周期时,波动率比上一周期高
self.buyFilterCond = False # 多过滤器条件,做多趋势的判断,ADX高于前一天,上升动向> inputMM
self.sellFilterCond = False # 空过滤器条件,做空趋势的判断,ADXR高于前一天,下降动向> inputMM
# K线的ATR技术数据
self.lineAtr1 = [] # K线的ATR1,周期为inputAtr1Len
self.lineAtr2 = [] # K线的ATR2,周期为inputAtr2Len
self.lineAtr3 = [] # K线的ATR3,周期为inputAtr3Len
self.barAtr1 = EMPTY_FLOAT
self.barAtr2 = EMPTY_FLOAT
self.barAtr3 = EMPTY_FLOAT
# K线的交易量平均
self.lineAvgVol = [] # K 线的交易量平均
# K线的RSI计算数据
self.lineRsi1 = [] # 记录K线对应的RSI数值,只保留inputRsi1Len*8
self.lineRsi2 = [] # 记录K线对应的RSI数值,只保留inputRsi2Len*8
self.lowRsi = 30 # RSI的最低线
self.highRsi = 70 # RSI的最高线
self.lineRsiTop = [] # 记录RSI的最高峰,只保留 inputRsiLen个
self.lineRsiButtom = [] # 记录RSI的最低谷,只保留 inputRsiLen个
self.lastRsiTopButtom = {} # 最近的一个波峰/波谷
# K线的CMI计算数据
self.inputCmiLen = EMPTY_INT
self.lineCmi = [] # 记录K线对应的Cmi数值,只保留inputCmiLen*8
# K线的布林特计算数据
self.inputBollLen = EMPTY_INT # K线周期
self.inputBollStdRate = 1.5 # 两倍标准差
self.lineBollClose = [] # 用于运算的close价格列表
self.lineUpperBand = [] # 上轨
self.lineMiddleBand = [] # 中线
self.lineLowerBand = [] # 下轨
self.lineBollStd = [] # 标准差
self.lastBollUpper = EMPTY_FLOAT # 最后一根K的Boll上轨数值(与MinDiff取整)
self.lastBollMiddle = EMPTY_FLOAT # 最后一根K的Boll中轨数值(与MinDiff取整)
self.lastBollLower = EMPTY_FLOAT # 最后一根K的Boll下轨数值(与MinDiff取整+1)
# K线的KDJ指标计算数据
self.inputKdjLen = EMPTY_INT # KDJ指标的长度,缺省是9
self.lineK = [] # K为快速指标
self.lineD = [] # D为慢速指标
self.lineJ = [] #
self.lineKdjTop = [] # 记录KDJ最高峰,只保留 inputKdjLen个
self.lineKdjButtom = [] # 记录KDJ的最低谷,只保留 inputKdjLen个
self.lastKdjTopButtom = {} # 最近的一个波峰/波谷
self.lastK = EMPTY_FLOAT # bar内计算时,最后一个未关闭的bar的实时K值
self.lastD = EMPTY_FLOAT # bar内计算时,最后一个未关闭的bar的实时值
self.lastJ = EMPTY_FLOAT # bar内计算时,最后一个未关闭的bar的实时J值
# K线的MACD计算数据
self.inputMacdFastPeriodLen = EMPTY_INT
self.inputMacdSlowPeriodLen = EMPTY_INT
self.inputMacdSignalPeriodLen = EMPTY_INT
self.lineDif = [] # DIF = EMA12 - EMA26,即为talib-MACD返回值macd
self.lineDea = [] # DEA = (前一日DEA X 8/10 + 今日DIF X 2/10),即为talib-MACD返回值
self.lineMacd = [] # (dif-dea)*2,但是talib中MACD的计算是bar = (dif-dea)*1,国内一般是乘以2
# K 线的CCI计算数据
self.inputCciLen = EMPTY_INT
self.lineCci = []
# 卡尔曼过滤器
self.inputKF = False
self.kf = None
self.lineStateMean = []
self.lineStateCovar = []
if setting:
self.setParam(setting)
# 修正精度
if self.minDiff < 1:
self.round_n = 7
## 导入卡尔曼过滤器
if self.inputKF:
try:
self.kf = KalmanFilter(transition_matrices=[1],
observation_matrices=[1],
initial_state_mean=0,
initial_state_covariance=1,
observation_covariance=1,
transition_covariance=0.01)
except :
self.writeCtaLog(u'导入卡尔曼过滤器失败,需先安装 pip install pykalman')
self.inputKF = False
def setParam(self, setting):
"""设置参数"""
d = self.__dict__
for key in self.paramList:
if key in setting:
d[key] = setting[key]
def setMode(self,mode):
"""Tick/Bar模式"""
self.mode = mode
def onTick(self, tick):
"""行情更新
:type tick: object
"""
# Tick 有效性检查
#if (tick.datetime- datetime.now()).seconds > 10:
# self.writeCtaLog(u'无效的tick时间:{0}'.format(tick.datetime))
# return
if tick.datetime.hour == 8 or tick.datetime.hour == 20:
self.writeCtaLog(u'竞价排名tick时间:{0}'.format(tick.datetime))
return
if self.lastTick is None:
self.lastTick = tick
self.curTick = tick
# 3.生成x K线,若形成新Bar,则触发OnBar事件
self.__drawLineBar(tick)
self.lastTick = tick
# 4.执行 bar内计算
self.__recountKdj(countInBar=True)
def addBar(self,bar):
"""予以外部初始化程序增加bar"""
l1 = len(self.lineBar)
if l1 == 0:
self.lineBar.append(bar)
self.curTradingDay = bar.date
self.onBar(bar)
return
# 与最后一个BAR的时间比对,判断是否超过K线的周期
lastBar = self.lineBar[-1]
self.curTradingDay = bar.tradingDay
is_new_bar = False
if self.period == PERIOD_SECOND and (bar.datetime-lastBar.datetime).seconds >= self.barTimeInterval:
is_new_bar = True
elif self.period == PERIOD_MINUTE and (bar.datetime - lastBar.datetime).seconds >= self.barTimeInterval*60:
is_new_bar = True
elif self.period == PERIOD_HOUR:
if self.barTimeInterval == 1 and bar.datetime.hour != lastBar.datetime.hour :
is_new_bar = True
elif self.barTimeInterval == 2 and bar.datetime.hour != lastBar.datetime.hour \
and bar.datetime.hour in {1, 9, 11, 13, 15, 21, 23}:
is_new_bar = True
elif self.barTimeInterval == 4 and bar.datetime.hour != lastBar.datetime.hour \
and bar.datetime.hour in {1, 9, 13, 21}:
is_new_bar = True
elif self.period == PERIOD_DAY and bar.datetime.date != lastBar.datetime.date :
is_new_bar = True
if is_new_bar:
# 添加新的bar
self.lineBar.append(bar)
# 将上一个Bar推送至OnBar事件
self.onBar(lastBar)
return
# 更新最后一个bar
# 此段代码,针对一部分短周期生成长周期的k线更新,如3根5分钟k线,合并成1根15分钟k线。
lastBar.close = bar.close
lastBar.high = max(lastBar.high, bar.high)
lastBar.low = min(lastBar.low, bar.low)
lastBar.volume = lastBar.volume + bar.volume
lastBar.dayVolume = bar.dayVolume
lastBar.mid4 = round((2*lastBar.close + lastBar.high + lastBar.low)/4, self.round_n)
lastBar.mid5 = round((2*lastBar.close + lastBar.open + lastBar.high + lastBar.low)/5, self.round_n)
def onBar(self, bar):
"""OnBar事件"""
# 计算相关数据
bar.mid4 = round((2*bar.close + bar.high + bar.low)/4, self.round_n)
bar.mid5 = round((2*bar.close + bar.open + bar.high + bar.low)/5, self.round_n)
self.__recountPreHighLow()
self.__recountMa()
self.__recountEma()
self.__recountDmi()
self.__recountAtr()
self.__recoundAvgVol()
self.__recountRsi()
self.__recountCmi()
self.__recountKdj()
self.__recountBoll()
self.__recountMacd()
self.__recountCci()
self.__recountKF()
# 回调上层调用者
self.onBarFunc(bar)
def displayLastBar(self):
"""显示最后一个Bar的信息"""
msg = u'['+self.name+u']'
if len(self.lineBar) < 2:
return msg
if self.mode == self.TICK_MODE:
displayBar = self.lineBar[-2]
else:
displayBar = self.lineBar[-1]
msg = msg + u'{0} o:{1};h{2};l:{3};c:{4},v:{5}'.\
format(displayBar.date+' '+displayBar.time, displayBar.open, displayBar.high,
displayBar.low, displayBar.close, displayBar.volume)
if self.inputMa1Len > 0 and len(self.lineMa1) > 0:
msg = msg + u',MA({0}):{1}'.format(self.inputMa1Len, self.lineMa1[-1])
if self.inputMa2Len > 0 and len(self.lineMa2) > 0:
msg = msg + u',MA({0}):{1}'.format(self.inputMa2Len, self.lineMa2[-1])
if self.inputMa3Len > 0 and len(self.lineMa3) > 0:
msg = msg + u',MA({0}):{1}'.format(self.inputMa3Len, self.lineMa3[-1])
if self.inputEma1Len > 0 and len(self.lineEma1) > 0:
msg = msg + u',EMA({0}):{1}'.format(self.inputEma1Len, self.lineEma1[-1])
if self.inputEma2Len > 0 and len(self.lineEma2) > 0:
msg = msg + u',EMA({0}):{1}'.format(self.inputEma2Len, self.lineEma2[-1])
if self.inputDmiLen > 0 and len(self.linePdi) > 0:
msg = msg + u',Pdi:{1};Mdi:{1};Adx:{2}'.format(self.linePdi[-1], self.lineMdi[-1], self.lineAdx[-1])
if self.inputAtr1Len > 0 and len(self.lineAtr1) > 0:
msg = msg + u',Atr({0}):{1}'.format(self.inputAtr1Len, self.lineAtr1[-1])
if self.inputAtr2Len > 0 and len(self.lineAtr2) > 0:
msg = msg + u',Atr({0}):{1}'.format(self.inputAtr2Len, self.lineAtr2[-1])
if self.inputAtr3Len > 0 and len(self.lineAtr3) > 0:
msg = msg + u',Atr({0}):{1}'.format(self.inputAtr3Len, self.lineAtr3[-1])
if self.inputVolLen > 0 and len(self.lineAvgVol) > 0:
msg = msg + u',AvgVol({0}):{1}'.format(self.inputVolLen, self.lineAvgVol[-1])
if self.inputRsi1Len > 0 and len(self.lineRsi1) > 0:
msg = msg + u',Rsi({0}):{1}'.format(self.inputRsi1Len, self.lineRsi1[-1])
if self.inputRsi2Len > 0 and len(self.lineRsi2) > 0:
msg = msg + u',Rsi({0}):{1}'.format(self.inputRsi2Len, self.lineRsi2[-1])
if self.inputKdjLen > 0 and len(self.lineK) > 0:
msg = msg + u',KDJ({0}):{1},{2},{3}'.format(self.inputKdjLen,
round(self.lineK[-1], self.round_n),
round(self.lineD[-1], self.round_n),
round(self.lineJ[-1], self.round_n))
if self.inputCciLen > 0 and len(self.lineCci) > 0:
msg = msg + u',Cci({0}):{1}'.format(self.inputCciLen, self.lineCci[-1])
if self.inputBollLen > 0 and len(self.lineUpperBand)>0:
msg = msg + u',Boll({0}):u:{1},m:{2},l:{3}'.\
format(self.inputBollLen, round(self.lineUpperBand[-1], self.round_n),
round(self.lineMiddleBand[-1], self.round_n), round(self.lineLowerBand[-1]), self.round_n)
if self.inputMacdFastPeriodLen >0 and len(self.lineDif)>0:
msg = msg + u',MACD({0},{1},{2}):Dif:{3},Dea{4},Macd:{5}'.\
format(self.inputMacdFastPeriodLen, self.inputMacdSlowPeriodLen, self.inputMacdSignalPeriodLen,
round(self.lineDif[-1], self.round_n),
round(self.lineDea[-1], self.round_n),
round(self.lineMacd[-1], self.round_n))
if self.inputKF and len(self.lineKfMa) > 0:
msg = msg + u',Kalman:{0}'.format( self.lineKfMa[-1])
return msg
def __firstTick(self, tick):
""" K线的第一个Tick数据"""
self.bar = CtaBarData() # 创建新的K线
# 计算K线的整点分钟周期,这里周期最小是1分钟。如果你是采用非整点分钟,例如1.5分钟,请把这段注解掉
if self.barMinuteInterval and self.period == PERIOD_SECOND:
self.barMinuteInterval = int(self.barTimeInterval / 60)
if self.barMinuteInterval < 1:
self.barMinuteInterval = 1
fixedMin = int( tick.datetime.minute /self.barMinuteInterval) * self.barMinuteInterval
tick.datetime = tick.datetime.replace(minute=fixedMin)
self.bar.vtSymbol = tick.vtSymbol
self.bar.symbol = tick.symbol
self.bar.exchange = tick.exchange
self.bar.openInterest = tick.openInterest
self.bar.open = tick.lastPrice # O L H C
self.bar.high = tick.lastPrice
self.bar.low = tick.lastPrice
self.bar.close = tick.lastPrice
self.bar.mid4 = tick.lastPrice # 4价均价
self.bar.mid5 = tick.lastPrice # 5价均价
# K线的日期时间
self.bar.tradingDay = tick.tradingDay # K线所在的交易日期
self.bar.date = tick.date # K线的日期,(夜盘的话,与交易日期不同哦)
self.bar.datetime = tick.datetime
# K线的日期时间(去除秒)设为第一个Tick的时间
self.bar.datetime = self.bar.datetime.replace(second=0, microsecond=0)
self.bar.time = self.bar.datetime.strftime('%H:%M:%S')
# K线的日总交易量,k线内交易量
self.bar.dayVolume = tick.volume
if self.curTradingDay != self.bar.tradingDay or not self.lineBar:
# bar的交易日与记录的当前交易日不一致:即该bar为新的交易日,bar的交易量为当前的tick.volume
self.bar.volume = tick.volume
self.curTradingDay = self.bar.tradingDay
else:
# bar的交易日与记录的当前交易日一致, 交易量为tick的volume,减去上一根bar的日总交易量
self.bar.volume = tick.volume - self.lineBar[-1].dayVolume
self.barFirstTick = True # 标识该Tick属于该Bar的第一个tick数据
self.lineBar.append(self.bar) # 推入到lineBar队列
# ----------------------------------------------------------------------
def __drawLineBar(self, tick):
"""生成 line Bar """
l1 = len(self.lineBar)
# 保存第一个K线数据
if l1 == 0:
self.__firstTick(tick)
return
# 清除480周期前的数据,
if l1 > 60 * 8:
del self.lineBar[0]
# 与最后一个BAR的时间比对,判断是否超过5分钟
lastBar = self.lineBar[-1]
# 处理日内的间隔时段最后一个tick,如10:15分,11:30分,15:00 和 2:30分
endtick = False
if (tick.datetime.hour == 10 and tick.datetime.minute == 15) \
or (tick.datetime.hour == 11 and tick.datetime.minute == 30) \
or (tick.datetime.hour == 15 and tick.datetime.minute == 00) \
or (tick.datetime.hour == 2 and tick.datetime.minute == 30):
endtick = True
# 夜盘1:30收盘
if self.shortSymbol in NIGHT_MARKET_SQ2 and tick.datetime.hour == 1 and tick.datetime.minute == 00:
endtick = True
# 夜盘23:00收盘
if self.shortSymbol in NIGHT_MARKET_SQ3 and tick.datetime.hour == 23 and tick.datetime.minute == 00:
endtick = True
# 夜盘23:30收盘
if self.shortSymbol in NIGHT_MARKET_ZZ or self.shortSymbol in NIGHT_MARKET_DL:
if tick.datetime.hour == 23 and tick.datetime.minute == 30:
endtick = True
# 满足时间要求
# 1,秒周期,tick的时间,距离最后一个bar的开始时间,已经超出bar的时间周期(barTimeInterval)
# 2,分钟、小时周期,取整=0
# 3、日周期,开盘时间
# 4、不是最后一个结束tick
is_new_bar = False
if ((self.period == PERIOD_SECOND and (tick.datetime-lastBar.datetime).seconds >= self.barTimeInterval) \
or
(self.period == PERIOD_MINUTE and tick.datetime.minute % self.barTimeInterval == 0
and tick.datetime.minute != self.lastTick.datetime.minute)
or
(self.period == PERIOD_HOUR and self.barTimeInterval == 1 and tick.datetime
and tick.datetime.hour != self.lastTick.datetime.hour)
or
(self.period == PERIOD_HOUR and self.barTimeInterval == 2 and tick.datetime
and tick.datetime.hour != self.lastTick.datetime.hour
and tick.datetime.hour in {1, 9, 11, 13, 21, 23})
or
(self.period == PERIOD_HOUR and self.barTimeInterval == 4 and tick.datetime
and tick.datetime.hour != self.lastTick.datetime.hour
and tick.datetime.hour in {1, 9, 13, 21})
or (self.period == PERIOD_DAY and tick.datetime
and (tick.datetime.hour == 21 or tick.datetime.hour == 9)
and 14 <= self.lastTick.datetime.hour <= 15)
) and not endtick:
# 创建并推入新的Bar
self.__firstTick(tick)
# 触发OnBar事件
self.onBar(lastBar)
else:
# 更新当前最后一个bar
self.barFirstTick = False
# 更新最高价、最低价、收盘价、成交量
lastBar.high = max(lastBar.high, tick.lastPrice)
lastBar.low = min(lastBar.low, tick.lastPrice)
lastBar.close = tick.lastPrice
# 更新日内总交易量,和bar内交易量
lastBar.dayVolume = tick.volume
if l1 == 1:
# 针对第一个bar的tick volume更新
lastBar.volume = tick.volume
else:
# 针对新交易日的第一个bar:于上一个bar的时间在14,当前bar的时间不在14点,初始化为tick.volume
if self.lineBar[-2].datetime.hour == 14 and tick.datetime.hour != 14 and not endtick:
lastBar.volume = tick.volume
else:
# 其他情况,bar为同一交易日,将tick的volume,减去上一bar的dayVolume
lastBar.volume = tick.volume - self.lineBar[-2].dayVolume
# 更新Bar的颜色
if lastBar.close > lastBar.open:
lastBar.color = COLOR_RED
elif lastBar.close < lastBar.open:
lastBar.color = COLOR_BLUE
else:
lastBar.color = COLOR_EQUAL
# ----------------------------------------------------------------------
def __recountPreHighLow(self):
"""计算 K线的前周期最高和最低"""
if self.inputPreLen <= 0: # 不计算
return
# 1、lineBar满足长度才执行计算
if len(self.lineBar) < self.inputPreLen:
self.writeCtaLog(u'数据未充分,当前Bar数据数量:{0},计算High、Low需要:{1}'.
format(len(self.lineBar), self.inputPreLen))
return
# 2.计算前inputPreLen周期内(不包含当前周期)的Bar高点和低点
preHigh = EMPTY_FLOAT
preLow = EMPTY_FLOAT
if self.mode == self.TICK_MODE:
idx = 2
else:
idx = 1
for i in range(len(self.lineBar)-idx, len(self.lineBar)-idx-self.inputPreLen, -1):
if self.lineBar[i].high > preHigh or preHigh == EMPTY_FLOAT:
preHigh = self.lineBar[i].high # 前InputPreLen周期高点
if self.lineBar[i].low < preLow or preLow == EMPTY_FLOAT:
preLow = self.lineBar[i].low # 前InputPreLen周期低点
# 保存
if len(self.preHigh) > self.inputPreLen * 8:
del self.preHigh[0]
self.preHigh.append(preHigh)
# 保存
if len(self.preLow)> self.inputPreLen * 8:
del self.preLow[0]
self.preLow.append(preLow)
#----------------------------------------------------------------------
def __recountMa(self):
"""计算K线的MA1 和MA2"""
l = len(self.lineBar)
if not (self.inputMa1Len > 0 or self.inputMa2Len > 0 or self.inputMa3Len > 0): # 不计算
return
# 1、lineBar满足长度才执行计算
if len(self.lineBar) < max(7, self.inputMa1Len, self.inputMa2Len, self.inputMa3Len)+2:
self.debugCtaLog(u'数据未充分,当前Bar数据数量:{0},计算MA需要:{1}'.
format(len(self.lineBar), max(7, self.inputMa1Len, self.inputMa2Len, self.inputMa3Len)+2))
return
# 计算第一条MA均线
if self.inputMa1Len > 0:
if self.inputMa1Len > l:
ma1Len = l
else:
ma1Len = self.inputMa1Len
# 3、获取前InputN周期(不包含当前周期)的K线
if self.mode == self.TICK_MODE:
listClose=[x.close for x in self.lineBar[-ma1Len - 1:-1]]
else:
listClose=[x.close for x in self.lineBar[-ma1Len:]]
barMa1 = ta.MA(numpy.array(listClose, dtype=float), ma1Len)[-1]
barMa1 = round(float(barMa1), self.round_n)
if len(self.lineMa1) > self.inputMa1Len*8:
del self.lineMa1[0]
self.lineMa1.append(barMa1)
# 计算第二条MA均线
if self.inputMa2Len > 0:
if self.inputMa2Len > l:
ma2Len = l
else:
ma2Len = self.inputMa2Len
# 3、获取前InputN周期(不包含当前周期)的K线
if self.mode == self.TICK_MODE:
listClose=[x.close for x in self.lineBar[-ma2Len - 1:-1]]
else:
listClose=[x.close for x in self.lineBar[-ma2Len:]]
barMa2 = ta.MA(
|
numpy.array(listClose, dtype=float)
|
numpy.array
|
import numpy as np
from utils.constant import NEGATIVE, POSITIVE
from utils.utils import mean_to_canonical
import networkx as nx
from collections import Counter
from sklearn.linear_model import LinearRegression, LogisticRegression
import random
from utils.utils import numberToBase
from utils.utils import multi_index_to_index
from utils.utils import sigmoid, outliers_iqr, threshold_matrix
from utils.r_pca import R_pca
class Ivy:
def __init__(self):
self.valid_iv = None
self.w = None
def train(self,IVs,X=None, deps=[], anchor=None, class_balance=None, use_forward=True, use_canonical=True, **kwargs):
# determine valid IVs
if self.valid_iv == None:
self.valid_iv = list(range(IVs.shape[1]))
# self._is_valid_iv(IVs)
# record use_forward and use_canonical
self.use_forward = use_forward
self.use_canonical = use_canonical
# change the encoding of IVs to {-1,1}
IVs = self._convert_iv(IVs)
# assign class balance
if class_balance is None:
# find out class_balance in a heuristic fashion
# other class_balance identification methods can also be used
class_balance = Counter(IVs.flatten())
class_balance = class_balance[1]/(class_balance[-1]+class_balance[1])
class_balance = [1-class_balance, class_balance]
n,p = IVs.shape
# sem: second empirical moment matirx
sem = np.matmul(IVs.T,IVs)/n
# for conditional independent model,
# the inverse graph is the complete graph
inverse_graph = nx.complete_graph(p)
# incidence matrix of the inverse graph
M = nx.incidence_matrix(inverse_graph).T.toarray()
edge_list_M = np.asarray(inverse_graph.edges())
# make sure deps are in increasing order
deps = [[int(x[0]),int(x[1])] for x in deps]
# update M and edge_list_M by removing edges in deps
selector = [(list(x) not in deps) for x in edge_list_M]
M = M[selector,:]
edge_list_M = edge_list_M[selector,:]
if self.use_forward:
# create q
exp_q = np.abs(sem[edge_list_M[:,0],edge_list_M[:,1]])
# handle zeros in exp_q
eps_zero = 1e-12
exp_q[exp_q==0] = eps_zero
# take log of exp_q to get q
q = np.log(exp_q)
# use only positive entries in sem
selector_positive_sem = sem[edge_list_M[:,0],edge_list_M[:,1]]>0
q_positve = q[selector_positive_sem]
M_postive = M[selector_positive_sem,:]
# make sure that M matrix is full-rank
# find the all-zero column
selector_non_zero_column_M_positve = np.sum(M_postive,axis=0)>0
# compute l
# r_cond = None is for using future default
# and silence warning
l_subset,_,_,_ = np.linalg.lstsq(
M_postive[:,selector_non_zero_column_M_positve],
q_positve,rcond=None)
l = np.zeros(M.shape[1])
l[:] = np.nan
l[selector_non_zero_column_M_positve] = l_subset
l[np.isnan(l)] = -100000
self.w = np.exp(l)
# get the w which is the mean parameter
# the following are in {0,1} encoding
self.class_balance = class_balance #[neg, pos]
if self.use_canonical:
# first empirical moments with {-1,1} encoding
fem = np.mean(IVs,axis=0)
# second empirical moments with {-1,1} encoding
sem = ((IVs.T) @ (IVs))/(n)
# augmented with z
fem_aug = np.append(fem,self.class_balance[1]-self.class_balance[0])
sem_aug = np.vstack([sem,self.w])
sem_aug = np.hstack([sem_aug,np.append(self.w,0).reshape(-1,1)])
mean_parameter = np.copy(sem_aug)
np.fill_diagonal(mean_parameter,fem_aug)
self.im, self.theta = mean_to_canonical(deps,mean_parameter,maxiter=100,alpha=0.2)
# update class balance
self.class_balance_im = self.im.infer.query([str(p)],show_progress=False).normalize(inplace=False).values
# use canonical parameters
self.im.infer.calibrate()
self.im.infer.get_cliques()
factor_dict = self.im.infer.get_clique_beliefs()
# create prob_dict
prob_dict = {}
for clique in factor_dict:
prob_index = np.array([numberToBase(x,3,len(clique)) for x in range(3**len(clique))])
prob = []
factor = factor_dict[clique].normalize(inplace=False)
for assignment in prob_index:
# see if assignment is the same dimension of factor
absence_selector = (assignment==1)
if np.sum(absence_selector) == 0:
prob.append(factor.values[tuple((assignment/2).astype(int))])
else:
# if not, marginalize:
margin_factor = factor.marginalize(np.array(factor.scope())[np.where(absence_selector)],inplace=False)
prob.append(margin_factor.values[tuple((assignment[~absence_selector]/2).astype(int))])
# compute condtional probability upon z
selector = (prob_index[:,factor.scope().index(str(p))]==0)
prob = np.array(prob)
prob[selector] = prob[selector]/class_balance[0]
selector = (prob_index[:,factor.scope().index(str(p))]==2)
prob[selector] = prob[selector]/class_balance[1]
prob_dict.update({clique:{"prob_index":np.copy(prob_index),"prob":np.log(prob)}})
self.prob_dict = prob_dict
def dependency_validity(self,IVs,lam=None,mu=None,**kwargs):
# take symmetric matrix as an argument as well
if (IVs.shape[0]==IVs.shape[1]) and np.all(IVs==IVs.T):
Sigma = IVs
else:
Sigma = np.cov(IVs.T)
# compute the inverse covariance matrix
pinv_Sigma = np.linalg.pinv(Sigma)
# set default value of lam and mu
lam_default = 1/np.sqrt(np.max(pinv_Sigma.shape))
mu_default = np.prod(pinv_Sigma.shape)/(4*np.sum(np.abs(pinv_Sigma)))
if lam == None:
lam = lam_default
else:
lam = lam * lam_default
if mu == None:
mu = mu_default
else:
mu = mu * mu_default
rpca = R_pca(pinv_Sigma,lmbda=lam,mu=mu)
L, S = rpca.fit(max_iter=10000, iter_print=10000)
# estimate accuracy
u, s, vh = np.linalg.svd(L)
l = -u[:,0]*np.sqrt(s[0])
score = (Sigma @ l)
return score, S, L
def predict_proba(self,IVs,is_ad_hoc=False):
# compute soft label
IVs = self._convert_iv(IVs)
# w = self.w
# conditional_accuracy = self.conditional_accuracy
n,p = IVs.shape
if self.use_canonical:
# use canonical parameters
pos_posterior = np.zeros(n)
neg_posterior = np.zeros(n)
for clique in self.prob_dict:
iv_index_in_clique = [x for x in range(len(clique)) if list(clique)[x]!= str(p)]
iv_index_in_IVs = np.array(list(clique))[iv_index_in_clique].astype(int)
assignment = np.zeros([n,len(clique)]).astype(int)
assignment[:,iv_index_in_clique] = IVs[:,iv_index_in_IVs]+1
pos_assignment = np.copy(assignment)
neg_assignment = np.copy(assignment)
pos_assignment[:,list(clique).index(str(p))] = 2
neg_assignment[:,list(clique).index(str(p))] = 0
del assignment
# find the index of the assignment
pos_assignment_single_index = multi_index_to_index(pos_assignment)
neg_assignment_single_index = multi_index_to_index(neg_assignment)
# update positve posterior
pos_posterior = pos_posterior + self.prob_dict[clique]["prob"][pos_assignment_single_index]
# update negative posterior
neg_posterior = neg_posterior + self.prob_dict[clique]["prob"][neg_assignment_single_index]
Zprob = sigmoid(-(neg_posterior+np.log(self.class_balance_im[0]))+(pos_posterior+np.log(self.class_balance_im[1])))
else:
raise NotImplementedError("set use_cannonical=True in training!")
return Zprob
def predict(self, IVs, b=0.5):
Zprob = self.predict_proba(IVs)
Z = np.where(Zprob > b, POSITIVE, NEGATIVE)
return Z
def _convert_iv(self,IVs):
IVs = IVs-1
IVs = IVs[:,self.valid_iv]
return IVs
def get_weights(self):
return self.w
def get_dependencies(self,S):
# threshod deps_mat
deps_mat = np.abs(np.copy(S))
np.fill_diagonal(deps_mat,0)
# compute thresh
thresh_list = np.unique(np.abs(deps_mat[np.triu_indices(deps_mat.shape[0],k=1)]))
outlier_index = outliers_iqr(thresh_list)[0]
if len(outlier_index)>0:
min_outlier = np.min(thresh_list[outlier_index])
thresh = np.max(thresh_list[thresh_list<min_outlier])
short_thresh_list = thresh_list[thresh_list>=thresh]
thresh = short_thresh_list[np.argmax(short_thresh_list[1:]/short_thresh_list[0:-1])+1]
# get the edges
deps = threshold_matrix(deps_mat,thresh)
else:
deps = []
return deps
def get_valid_iv_indx(self,score):
# get valid IVs
valid_thresh_list = np.sort(np.abs(score))
# exclue the first one
valid_thresh = valid_thresh_list[
|
np.argmax(valid_thresh_list[2:]/valid_thresh_list[1:-1])
|
numpy.argmax
|
# -*- mode: python; coding: utf-8 -*
# Copyright (c) 2018 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License
"""Tests for BeamFits object.
"""
from __future__ import absolute_import, division, print_function
import nose.tools as nt
import os
import numpy as np
import astropy
from astropy.io import fits
from pyuvdata import UVBeam
import pyuvdata.tests as uvtest
from pyuvdata.data import DATA_PATH
import pyuvdata.utils as uvutils
filenames = ['HERA_NicCST_150MHz.txt', 'HERA_NicCST_123MHz.txt']
cst_files = [os.path.join(DATA_PATH, f) for f in filenames]
def test_readCST_writereadFITS():
beam_in = UVBeam()
beam_out = UVBeam()
beam_in.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6,
telescope_name='TEST', feed_name='bob',
feed_version='0.1', feed_pol=['x'],
model_name='E-field pattern - Rigging height 4.9m',
model_version='1.0')
# add optional parameters for testing purposes
beam_in.extra_keywords = {'KEY1': 'test_keyword'}
beam_in.reference_input_impedance = 340.
beam_in.reference_output_impedance = 50.
beam_in.receiver_temperature_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.loss_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.mismatch_array = np.random.normal(0.0, 1.0, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.s_parameters = np.random.normal(0.0, 0.3, size=(4, beam_in.Nspws, beam_in.Nfreqs))
write_file = os.path.join(DATA_PATH, 'test/outtest_beam.fits')
beam_in.write_beamfits(write_file, clobber=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# redo for power beam
del(beam_in)
beam_in = UVBeam()
# read in efield and convert to power to test cross-pols
beam_in.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6,
telescope_name='TEST', feed_name='bob',
feed_version='0.1', feed_pol=['x'],
model_name='E-field pattern - Rigging height 4.9m',
model_version='1.0')
beam_in.efield_to_power()
# add optional parameters for testing purposes
beam_in.extra_keywords = {'KEY1': 'test_keyword'}
beam_in.reference_input_impedance = 340.
beam_in.reference_output_impedance = 50.
beam_in.receiver_temperature_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.loss_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.mismatch_array = np.random.normal(0.0, 1.0, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.s_parameters = np.random.normal(0.0, 0.3, size=(4, beam_in.Nspws, beam_in.Nfreqs))
beam_in.write_beamfits(write_file, clobber=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# now replace 'power' with 'intensity' for btype
F = fits.open(write_file)
data = F[0].data
primary_hdr = F[0].header
primary_hdr['BTYPE'] = 'Intensity'
hdunames = uvutils._fits_indexhdus(F)
bandpass_hdu = F[hdunames['BANDPARM']]
prihdu = fits.PrimaryHDU(data=data, header=primary_hdr)
hdulist = fits.HDUList([prihdu, bandpass_hdu])
if float(astropy.__version__[0:3]) < 1.3:
hdulist.writeto(write_file, clobber=True)
else:
hdulist.writeto(write_file, overwrite=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# now remove coordsys but leave ctypes 1 & 2
F = fits.open(write_file)
data = F[0].data
primary_hdr = F[0].header
primary_hdr.pop('COORDSYS')
hdunames = uvutils._fits_indexhdus(F)
bandpass_hdu = F[hdunames['BANDPARM']]
prihdu = fits.PrimaryHDU(data=data, header=primary_hdr)
hdulist = fits.HDUList([prihdu, bandpass_hdu])
if float(astropy.__version__[0:3]) < 1.3:
hdulist.writeto(write_file, clobber=True)
else:
hdulist.writeto(write_file, overwrite=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# now change frequency units
F = fits.open(write_file)
data = F[0].data
primary_hdr = F[0].header
primary_hdr['CUNIT3'] = 'MHz'
primary_hdr['CRVAL3'] = primary_hdr['CRVAL3'] / 1e6
primary_hdr['CDELT3'] = primary_hdr['CRVAL3'] / 1e6
hdunames = uvutils._fits_indexhdus(F)
bandpass_hdu = F[hdunames['BANDPARM']]
prihdu = fits.PrimaryHDU(data=data, header=primary_hdr)
hdulist = fits.HDUList([prihdu, bandpass_hdu])
if float(astropy.__version__[0:3]) < 1.3:
hdulist.writeto(write_file, clobber=True)
else:
hdulist.writeto(write_file, overwrite=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
def test_writeread_healpix():
beam_in = UVBeam()
beam_out = UVBeam()
# fill UVBeam object with dummy data for now for testing purposes
beam_in.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6,
telescope_name='TEST', feed_name='bob',
feed_version='0.1', feed_pol=['x'],
model_name='E-field pattern - Rigging height 4.9m',
model_version='1.0')
beam_in.interpolation_function = 'az_za_simple'
beam_in.to_healpix()
write_file = os.path.join(DATA_PATH, 'test/outtest_beam_hpx.fits')
beam_in.write_beamfits(write_file, clobber=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# redo for power beam
del(beam_in)
beam_in = UVBeam()
# read in efield and convert to power to test cross-pols
beam_in.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6,
telescope_name='TEST', feed_name='bob',
feed_version='0.1', feed_pol=['x'],
model_name='E-field pattern - Rigging height 4.9m',
model_version='1.0')
beam_in.efield_to_power()
# add optional parameters for testing purposes
beam_in.extra_keywords = {'KEY1': 'test_keyword'}
beam_in.reference_input_impedance = 340.
beam_in.reference_output_impedance = 50.
beam_in.receiver_temperature_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.loss_array = np.random.normal(50.0, 5, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.mismatch_array = np.random.normal(0.0, 1.0, size=(beam_in.Nspws, beam_in.Nfreqs))
beam_in.s_parameters = np.random.normal(0.0, 0.3, size=(4, beam_in.Nspws, beam_in.Nfreqs))
# check that data_array is complex
nt.assert_true(np.iscomplexobj(np.real_if_close(beam_in.data_array, tol=10)))
beam_in.interpolation_function = 'az_za_simple'
beam_in.to_healpix()
# check that data_array is complex after interpolation
nt.assert_true(np.iscomplexobj(np.real_if_close(beam_in.data_array, tol=10)))
beam_in.write_beamfits(write_file, clobber=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
# now remove coordsys but leave ctype 1
F = fits.open(write_file)
data = F[0].data
primary_hdr = F[0].header
primary_hdr.pop('COORDSYS')
hdunames = uvutils._fits_indexhdus(F)
hpx_hdu = F[hdunames['HPX_INDS']]
bandpass_hdu = F[hdunames['BANDPARM']]
prihdu = fits.PrimaryHDU(data=data, header=primary_hdr)
hdulist = fits.HDUList([prihdu, hpx_hdu, bandpass_hdu])
if float(astropy.__version__[0:3]) < 1.3:
hdulist.writeto(write_file, clobber=True)
else:
hdulist.writeto(write_file, overwrite=True)
beam_out.read_beamfits(write_file)
nt.assert_equal(beam_in, beam_out)
def test_errors():
beam_in = UVBeam()
beam_out = UVBeam()
beam_in.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6,
telescope_name='TEST', feed_name='bob',
feed_version='0.1', feed_pol=['x'],
model_name='E-field pattern - Rigging height 4.9m',
model_version='1.0')
beam_in.beam_type = 'foo'
write_file = os.path.join(DATA_PATH, 'test/outtest_beam.fits')
nt.assert_raises(ValueError, beam_in.write_beamfits, write_file, clobber=True)
nt.assert_raises(ValueError, beam_in.write_beamfits, write_file,
clobber=True, run_check=False)
beam_in.beam_type = 'efield'
beam_in.antenna_type = 'phased_array'
write_file = os.path.join(DATA_PATH, 'test/outtest_beam.fits')
nt.assert_raises(ValueError, beam_in.write_beamfits, write_file, clobber=True)
# now change values for various items in primary hdu to test errors
beam_in.antenna_type = 'simple'
header_vals_to_change = [{'BTYPE': 'foo'}, {'COORDSYS': 'orthoslant_zenith'},
{'NAXIS': ''}, {'CUNIT1': 'foo'}, {'CUNIT2': 'foo'},
{'CUNIT3': 'foo'}]
for i, hdr_dict in enumerate(header_vals_to_change):
beam_in.write_beamfits(write_file, clobber=True)
keyword = list(hdr_dict.keys())[0]
new_val = hdr_dict[keyword]
F = fits.open(write_file)
data = F[0].data
primary_hdr = F[0].header
hdunames = uvutils._fits_indexhdus(F)
basisvec_hdu = F[hdunames['BASISVEC']]
bandpass_hdu = F[hdunames['BANDPARM']]
if 'NAXIS' in keyword:
ax_num = keyword.split('NAXIS')[1]
if ax_num != '':
ax_num = int(ax_num)
ax_use = len(data.shape) - ax_num
new_arrays = np.split(data, primary_hdr[keyword], axis=ax_use)
data = new_arrays[0]
else:
data = np.squeeze(np.split(data, primary_hdr['NAXIS1'],
axis=len(data.shape) - 1)[0])
else:
primary_hdr[keyword] = new_val
prihdu = fits.PrimaryHDU(data=data, header=primary_hdr)
hdulist = fits.HDUList([prihdu, basisvec_hdu, bandpass_hdu])
if float(astropy.__version__[0:3]) < 1.3:
hdulist.writeto(write_file, clobber=True)
else:
hdulist.writeto(write_file, overwrite=True)
nt.assert_raises(ValueError, beam_out.read_beamfits, write_file)
# now change values for various items in basisvec hdu to not match primary hdu
header_vals_to_change = [{'COORDSYS': 'foo'}, {'CTYPE1': 'foo'},
{'CTYPE2': 'foo'},
{'CDELT1': np.diff(beam_in.axis1_array)[0] * 2},
{'CDELT2':
|
np.diff(beam_in.axis2_array)
|
numpy.diff
|
"""ResNet50 model for Keras.
Adapted from tf.keras.applications.resnet50.ResNet50().
This is ResNet model version 1.5.
Related papers/blogs:
- https://arxiv.org/abs/1512.03385
- https://arxiv.org/pdf/1603.05027v2.pdf
- http://torch.ch/blog/2016/02/04/resnets.html
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import backend
from tensorflow.python.keras import initializers
from tensorflow.python.keras import models
from tensorflow.python.keras import regularizers
layers = tf.keras.layers
def _gen_l2_regularizer(use_l2_regularizer=True, l2_weight_decay=1e-4):
return regularizers.l2(l2_weight_decay) if use_l2_regularizer else None
def fixed_padding(inputs, kernel_size, data_format='channels_last'):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]` or
`[batch, height, width, channels]` depending on `data_format`.
kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d`
operations. Should be a positive integer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A padded `Tensor` of the same `data_format` with size either intact
(if `kernel_size == 1`) or padded (if `kernel_size > 1`).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def identity_block(input_tensor,
kernel_size,
filters,
stage,
block,
use_l2_regularizer=True,
batch_norm_decay=0.9,
batch_norm_epsilon=1e-5,
batch_norm_trainable=True):
"""The identity block is the block that has no conv layer at shortcut.
Args:
input_tensor: input tensor
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
batch_norm_decay: Moment of batch norm layers.
batch_norm_epsilon: Epsilon of batch borm layers.
Returns:
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Kernel: 1
# Strides: 1
x = layers.Conv2D(
filters1,
kernel_size=(1, 1),
strides=(1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2a')(
input_tensor)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2a')(
x)
x = layers.Activation('relu')(x)
# Kernel: 3
# Strides: 1
x = layers.Conv2D(
filters2,
kernel_size=kernel_size,
strides=(1,1),
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
# Kernel: 1
# Strides: 1
x = layers.Conv2D(
filters3,
kernel_size=(1, 1),
strides=(1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
def conv_block(input_tensor,
kernel_size,
filters,
stage,
block,
strides=(2, 2),
use_l2_regularizer=True,
batch_norm_decay=0.9,
batch_norm_epsilon=1e-5,
batch_norm_trainable=True):
"""A block that has a conv layer at shortcut.
Note that from stage 3,
the second conv layer at main path is with strides=(2, 2)
And the shortcut should have strides=(2, 2) as well
Args:
input_tensor: input tensor
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
strides: Strides for the second conv layer in the block.
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
batch_norm_decay: Moment of batch norm layers.
batch_norm_epsilon: Epsilon of batch borm layers.
Returns:
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Kernel: 1
# Stride: Dynamic
shortcut = layers.Conv2D(
filters3,
kernel_size=(1, 1),
strides=strides,
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '1')(input_tensor)
shortcut = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '1')(shortcut)
# Kernel: 1
# Stride: 1
x = layers.Conv2D(
filters1,
kernel_size=(1, 1),
strides=(1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
# Kernel: 3
# Strides: Dynamic
if strides[0] > 1:
x = fixed_padding(x, kernel_size, data_format=backend.image_data_format())
padding = 'valid'
else:
padding = 'same'
x = layers.Conv2D(
filters2,
kernel_size=kernel_size,
strides=strides,
padding=padding,
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
# Kernel: 1
# Stride: 1
x = layers.Conv2D(
filters3,
kernel_size=(1, 1),
strides=(1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name=bn_name_base + '2c')(x)
x = layers.add([x, shortcut])
x = layers.Activation('relu')(x)
return x
def resnet50(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
batch_size=None,
use_l2_regularizer=True,
rescale_inputs=False,
batch_norm_decay=0.9,
batch_norm_epsilon=1e-5,
batch_norm_trainable=True,
width_multiplier=1):
"""Instantiates the ResNet50 architecture.
Args:
num_classes: `int` number of classes for image classification.
batch_size: Size of the batches for each step.
use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
rescale_inputs: whether to rescale inputs from 0 to 1.
batch_norm_decay: Moment of batch norm layers.
batch_norm_epsilon: Epsilon of batch borm layers.
Returns:
A Keras model instance.
"""
if input_tensor is None:
img_input = layers.Input(shape=input_shape, batch_size=batch_size)
else:
if not tf.keras.backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = img_input
if backend.image_data_format() == 'channels_first':
x = layers.Permute((3, 1, 2))(x)
bn_axis = 1
else: # channels_last
bn_axis = 3
block_config = dict(
use_l2_regularizer=use_l2_regularizer,
batch_norm_decay=batch_norm_decay,
batch_norm_epsilon=batch_norm_epsilon,
batch_norm_trainable=batch_norm_trainable)
#x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x)
x = fixed_padding(x, 7, backend.image_data_format())
x = layers.Conv2D(
64 * width_multiplier,
kernel_size=(7, 7),
strides=(2, 2),
padding='valid',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name='conv1')(x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=batch_norm_decay,
epsilon=batch_norm_epsilon,
trainable=batch_norm_trainable,
name='bn_conv1')(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = conv_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='a', strides=(1, 1), **block_config)
x = identity_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='b', **block_config)
x = identity_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='c', **block_config)
x = conv_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='a', **block_config)
x = identity_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='b', **block_config)
x = identity_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='c', **block_config)
x = identity_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='d', **block_config)
x = conv_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='a', **block_config)
x = identity_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='b', **block_config)
x = identity_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='c', **block_config)
x = identity_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='d', **block_config)
x = identity_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='e', **block_config)
x = identity_block(x, 3, np.array([256, 256, 1024]) * width_multiplier, stage=4, block='f', **block_config)
x = conv_block(x, 3, np.array([512, 512, 2048]) * width_multiplier, stage=5, block='a', **block_config)
x = identity_block(x, 3,
|
np.array([512, 512, 2048])
|
numpy.array
|
#!/bin/env python
from matplotlib import pyplot as plt
import numpy as np
import argparse
import os, sys
import regex as re
import pickle as pkl
class Chip:
def __init__(self, file_name_str):
self.file_name = file_name_str
basename = file_name_str.split("/")[-1] #remove parent dirs
basename = basename.split(".")[0] #remove filetype
self.basename = basename
pattern = re.compile("dtc(\d+)isBarrel(\d+)layer(\d+)disk(\d+)module(\d+)chip(\d+)")
result = pattern.match(basename)
if not result:
raise ValueError("{} is not a valid input filename.".format(file_name_str))
values = result.groups()
self.dtc_id = int(values[0])
self.is_barrel = True
if int(values[1])==0: self.is_barrel = False
self.layer = int(values[2])
self.disk = int(values[3])
self.module = int(values[4])
self.chip_id = int(values[5])
def read_nevents_from_dirname(data_dir):
pattern = re.compile(".*output_(\d+k?)evt.*")
result = pattern.match(data_dir)
if not result:
raise ValueError("Error: input dir doesn't indicate number of events, should be in format like input_10kevt...")
value = result.groups()[0]
value = value.replace("k","000")
return int(value)
def load_data(data_dir, cache_file_name=""):
# if there is cache file, load it
if cache_file_name and os.path.exists(cache_file_name):
with open(cache_file_name,'rb') as cache_file:
data = pkl.load(cache_file)
print("Loaded cheched data from file {}".format(cache_file_name))
return data
# otherwise we load data as normal
data = {}
# read the ordered input file names, so that we can match to the physical location of each chip
with open("{}/ordered_file_names.txt".format(data_dir)) as ordered_file_names_txt:
data['chip'] = [Chip(line.replace("\n","")) for line in ordered_file_names_txt.readlines()]
nchips = len(data['chip'])
# read the event length from input file
nevents = read_nevents_from_dirname(data_dir)
data["event_size"] = np.zeros(shape=(nchips, nevents),dtype=np.int32)
print("Reading event length...")
for ichip in range(nchips):
ievent = 0
with open("../"+data["chip"][ichip].file_name, "rb") as chip_binary_input:
byte = chip_binary_input.read(8)
mask = (1 << 63)
len_counting = 0
while (byte):
int_from_byte = int(byte[::-1].hex(),16)
if ( (mask & int_from_byte) == mask ):
# new event
if len_counting == 0:
len_counting += 1
else:
data["event_size"][ichip][ievent]=len_counting
ievent += 1
len_counting = 1
else:
len_counting += 1
byte = chip_binary_input.read(8)
if len_counting > 0:
data["event_size"][ichip][ievent]=len_counting
# read the buffer ocupancy from output file
# estimating nticks assuming maximum 1000 ticks per event
nticks = 1000 * nevents
data["buffer_over_time"] = np.zeros(shape=(nchips, nticks),dtype=np.int32)
input_fn = "{}/output_fifo_data_sizes.txt".format(data_dir)
print("reading buffer occupancies...")
with open(input_fn) as f:
for iline,line in enumerate(f.readlines()):
if iline >= nticks:
nticks = nticks * 2
data["buffer_over_time"].resize( (nchips, nticks) )
numbers = line.replace("\n","").split(",")
assert(nchips == len(numbers))
#print(numbers)
for ichip in range(nchips):
#print(int(numbers[i]))
data["buffer_over_time"][ichip][iline]=int(numbers[ichip])
# Save data into cache file
if cache_file_name:
with open(cache_file_name,'wb') as cache_file:
pkl.dump(data, cache_file)
print("Saved data into cache file {}".format(cache_file_name))
return data
def find_local_maximum(a):
ret = np.zeros(int(len(a)/2),dtype=np.int32)
jentry = 0
for ientry in range(1, len(a)-1):
if (a[ientry] > a[ientry+1]) & (a[ientry] >= a[ientry-1]) & (a[ientry] > 1):
ret[jentry] = a[ientry]
jentry+=1
ret.resize(jentry)
return ret
def get_perchip_tag(data, ichip):
perchip_tag = "DTC={}, ".format(data["chip"][ichip].dtc_id)
if data["chip"][ichip].is_barrel:
perchip_tag += "Barrel"
else:
perchip_tag += "Endcap/Forward"
perchip_tag += "\n Layer={}".format(data["chip"][ichip].layer)
perchip_tag += ", Disk={}".format(data["chip"][ichip].disk)
perchip_tag += ", Module={}".format(data["chip"][ichip].module)
perchip_tag += ", Chip_ID={}".format(data["chip"][ichip].chip_id)
return perchip_tag
def plot_buffer_over_time(data, outdir, args):
buffer_over_time_outdir = "{}/buffer-over-time_plots".format(outdir)
if not os.path.exists(buffer_over_time_outdir):
os.makedirs(buffer_over_time_outdir)
fig,ax = plt.subplots(1,1)
total_buffer_over_time = np.zeros(len(data["buffer_over_time"][0]),dtype=np.int32)
# Plot for inidvidual FIFO
for ichip,buffer_over_time in enumerate(data["buffer_over_time"]):
total_buffer_over_time += buffer_over_time
if args.total_only: continue
x = np.arange(len(buffer_over_time))
ax.plot(x,buffer_over_time*64/1024)
plot_file_name = "{}/{}.png".format(buffer_over_time_outdir, data["chip"][ichip].basename)
ax.set_xlabel("clock tick")
ax.set_ylabel("buffer occupancy (kb)")
perchip_tag = get_perchip_tag(data, ichip)
ax.text(0.5, 0.7, perchip_tag, horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
fig.savefig(plot_file_name)
print("{} saved.".format(plot_file_name))
ax.clear()
# Plot for total
x = np.arange(len(total_buffer_over_time))
ax.plot(x,total_buffer_over_time*64/1024)
plot_file_name = "{}/DTC11Total.png".format(buffer_over_time_outdir)
ax.set_xlabel("clock tick")
ax.set_ylabel("buffer occupancy (kb)")
ax.text(0.5, 0.7, "Sum of FIFO occupancies", horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
fig.savefig(plot_file_name)
print("{} saved.".format(plot_file_name))
ax.clear()
return
def plot_buffer_distribution(data, outdir, args, data_to_compare=None, labels_for_comparison=("ver1", "ver2")):
buffer_dist_outdir = "{}/buffer_distribution_plots".format(outdir)
if args.add_buffer_all_tick:
buffer_dist_outdir += "_hasAllTick"
if args.no_buffer_peak:
buffer_dist_outdir += "_noPeakDist"
if args.no_event_length:
buffer_dist_outdir += "_noEvtLength"
if args.cumulative_use_all:
buffer_dist_outdir += "_cumulativeAllTick"
if args.no_cumulative:
buffer_dist_outdir += "_noCumulative"
if not os.path.exists(buffer_dist_outdir):
os.makedirs(buffer_dist_outdir)
fig, ax = plt.subplots()
# Plot for individual fifos
max_single_chip_buffer = np.max(data["buffer_over_time"])
max_single_chip_evtsize = np.max(data["event_size"])
binning_buffer = np.arange(0,4+max_single_chip_buffer,2)
binning_evtsize = np.arange(0,4+max_single_chip_evtsize,2)
max_xlim = 300
for ichip in range(len(data["chip"])):
if args.total_only:
continue
ax.clear()
output_filename = "{}/bufferplot_ichip{}.png".format(outdir, data["chip"][ichip].basename)
h_event_length,_ = np.histogram(data["event_size"][ichip], bins=binning_evtsize, density=True)
if not args.no_event_length:
ax.plot(binning_evtsize[:-1]/16, h_event_length, label="event length")
max_xlim = max(max_xlim, max(binning_evtsize))
h_buffering_size,_ = np.histogram(data["buffer_over_time"][ichip], bins=binning_buffer, density=True)
if args.add_buffer_all_tick:
ax.plot(binning_buffer[:-1]/16 , h_buffering_size, label="fifo capacity")
max_xlim = max(max_xlim, max(binning_buffer))
h_buffering_local_maximum,_ = np.histogram(find_local_maximum(data["buffer_over_time"][ichip]), bins=binning_buffer, density=True)
if not args.no_buffer_peak:
ax.plot(binning_buffer[:-1]/16, h_buffering_local_maximum, label="fifo capacity at local maximum")
max_xlim = max(max_xlim, max(binning_buffer))
# Plot cumulative
if not args.no_cumulative:
h_cumulative = np.zeros(len(h_buffering_size),dtype=np.float32)
if args.cumulative_use_all:
h_normed = (binning_buffer[1:] - binning_buffer[:-1]) * h_buffering_size
else:
h_normed = (binning_buffer[1:] - binning_buffer[:-1]) * h_buffering_local_maximum
for ibin in range(len(h_cumulative)):
h_cumulative[ibin] = sum(h_normed[ibin:])
ax.plot(binning_buffer[:-1]/16, h_cumulative, label="comprehensive cumulative")
max_xlim = max(max_xlim, max(binning_buffer))
ax.legend()
ax.set_xlim(0,max_xlim/16)
ax.set_yscale('log')
ax.set_xlabel("buffer occupancy (kb)")
ax.set_ylabel("counts")
perchip_tag = get_perchip_tag(data, ichip)
ax.text(0.5, 0.7, perchip_tag, horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
output_filename = "{}/{}.png".format(buffer_dist_outdir, data["chip"][ichip].basename)
fig.savefig(output_filename)
print("{} saved.".format(output_filename))
# Plot for combination of fifos:
fifo_sizes_combined = np.zeros(len(data["buffer_over_time"][0]),dtype=np.int32)
event_length_combined = np.zeros(len(data["event_size"][0]),dtype=np.int32)
for ichip in range(len(data["buffer_over_time"])):
fifo_sizes_combined += np.array(data["buffer_over_time"][ichip])
event_length_combined +=
|
np.array(data["event_size"][ichip])
|
numpy.array
|
import os
import numpy as np
import pytest
import autoarray as aa
from autoarray import exc
class TestRegion1D:
def test__sanity_check__first_pixel_or_column_equal_too_or_bigger_than_second__raise_errors(
self
):
with pytest.raises(exc.RegionException):
aa.Region1D(region=(2, 2))
with pytest.raises(exc.RegionException):
aa.Region1D(region=(2, 1))
def test__sanity_check__negative_coordinates_raise_errors(self):
with pytest.raises(exc.RegionException):
aa.Region1D(region=(-1, 0))
with pytest.raises(exc.RegionException):
aa.Region1D(region=(0, -1))
def test__extraction_via_slice(self):
arr_1d = aa.Array1D.manual_native(
array=np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]), pixel_scales=1.0
)
region = aa.Region1D(region=(0, 2))
new_arr_1d = arr_1d[region.slice]
assert (new_arr_1d == np.array([1.0, 2.0])).all()
region = aa.Region1D(region=(1, 3))
new_arr_1d = arr_1d[region.slice]
assert (new_arr_1d == np.array([2.0, 3.0])).all()
def test__add_region_to_arr_1d_via_slice(self):
arr_1d = aa.Array1D.manual_native(
array=np.array([1.0, 2.0, 3.0, 4.0]), pixel_scales=1.0
)
image = aa.Array1D.full(fill_value=1.0, shape_native=6, pixel_scales=1.0)
region = aa.Region1D(region=(0, 1))
arr_1d[region.slice] += image[region.slice]
assert (arr_1d == np.array([2.0, 2.0, 3.0, 4.0])).all()
arr_1d = aa.Array1D.manual_native(
array=np.array([1.0, 2.0, 3.0, 4.0]), pixel_scales=1.0
)
region = aa.Region1D(region=(2, 4))
arr_1d[region.slice] += image[region.slice]
assert (arr_1d == np.array([1.0, 2.0, 4.0, 5.0])).all()
def test__set_region_to_zero_via_slice(self):
arr_1d = aa.Array1D.manual_native(
array=np.array([1.0, 2.0, 3.0, 4.0]), pixel_scales=1.0
)
region = aa.Region1D(region=(0, 1))
arr_1d[region.slice] = 0
assert (arr_1d == np.array([0.0, 2.0, 3.0, 4.0])).all()
arr_1d = aa.Array1D.manual_native(
array=np.array([1.0, 2.0, 3.0, 4.0]), pixel_scales=1.0
)
region = aa.Region1D(region=(2, 4))
arr_1d[region.slice] = 0
assert (arr_1d ==
|
np.array([1.0, 2.0, 0.0, 0.0])
|
numpy.array
|
# (C) <NAME> and Carnegie Mellon University, 2016
import sys
import re
import math
import os.path
import collections
import scipy.sparse as SS
import scipy.io as SIO
import numpy as NP
import numpy.random as NR
import logging
from tensorlog import config
from tensorlog import mutil
from tensorlog import matrixdb
from tensorlog import declare
from tensorlog import util
conf = config.Config()
conf.normalize_outputs = True; conf.help.normalize_outputs = "In .exam files, l1-normalize the weights of valid outputs"
#
# dealing with labeled training data
#
class Dataset(object):
def __init__(self,xDict,yDict):
# dict which maps mode declaration to X matrices for training
self.xDict = xDict
# likewise for Y matrices
self.yDict = yDict
def isSinglePredicate(self):
"""Returns true if all the examples are for a single predicate."""
return len(list(self.xDict.keys()))==1
def extractMode(self,mode):
"""Return a new Dataset that just contains this mode."""
assert mode in self.xDict, 'dataset does not contain mode %s' % str(mode)
return Dataset({mode:self.xDict[mode]}, {mode:self.yDict[mode]})
def modesToLearn(self):
"""Return list of modes associated with the data."""
return list(self.xDict.keys())
def hasMode(self,mode):
"""True if there are examples of the mode in the dataset."""
return (mode in self.yDict and mode in self.xDict)
def getX(self,mode):
"""Get a matrix of all inputs for the mode."""
return self.xDict[mode]
def getY(self,mode):
"""Get a matrix of all desired outputs for the mode."""
return self.yDict[mode]
def size(self):
return sum([m.nnz for m in list(self.xDict.values())]) + sum([m.nnz for m in list(self.yDict.values())])
def shuffle(self):
for mode in self.xDict:
shuffledRowNums = NP.arange(mutil.numRows(self.xDict[mode]))
NR.shuffle(shuffledRowNums)
self.xDict[mode] = mutil.shuffleRows(self.xDict[mode],shuffledRowNums)
self.yDict[mode] = mutil.shuffleRows(self.yDict[mode],shuffledRowNums)
def minibatchIterator(self,batchSize=100,shuffleFirst=True):
"""Iterate over triples (mode,X',Y') where X' and Y' are sets of
batchSize rows from the full data for mode, randomly selected
(without replacement) from the dataset."""
# randomize the order of the examples
if shuffleFirst: self.shuffle()
# then sample an ordering of the modes
modeList = self.modesToLearn()
modeSampleDict = {}
for modeIndex,mode in enumerate(modeList):
numBatches = int(math.ceil( mutil.numRows(self.getX(mode)) / float(batchSize) ))
modeSampleDict[mode] =
|
NP.ones(numBatches,dtype='int')
|
numpy.ones
|
# Copyright 2019 Graphcore Ltd.
import tensorflow as tf
import numpy as np
import os
# Data file settings
USER_PART = 0 # user id goes first in the data file
ITEM_PART = 1 # item id goes second in the data file
RATING_PART = 2 # rating goes third in the data file
DELIMITER = '\t'
# Dataset generation parameters
SHUFFLE_BUFFER = 10000
class AutoencoderData:
def __init__(self, data_file_name, training_data=None):
self.data_file_name = data_file_name
# When doing validation, we use training data to feed into the model and generate predicted ratings.
# The predictions are then compared to the ground truth in validation
# data.
if training_data is None:
self.user_xlat_map, self.item_xlat_map = {}, {}
do_build_maps = True
user_index, item_index = 0, 0
else:
self.training_dict = training_data.ratings_dict
self.user_xlat_map, self.item_xlat_map = training_data.user_xlat_map, training_data.item_xlat_map
do_build_maps = False
self.ratings_dict = {}
with open(self.data_file_name) as data_file:
for user_item_rating in data_file:
parts = user_item_rating.split(DELIMITER)
if len(parts) != 3:
raise ValueError(
'Line "{}" is invalid in {}'.format(
user_item_rating, self.data_file_name))
user_id_external = int(parts[USER_PART])
item_id_external = int(parts[ITEM_PART])
rating = float(parts[RATING_PART])
# Build dense maps to keep only users or items that have
# training data
if do_build_maps:
if user_id_external not in self.user_xlat_map:
self.user_xlat_map[user_id_external] = user_index
user_index += 1
if item_id_external not in self.item_xlat_map:
self.item_xlat_map[item_id_external] = item_index
item_index += 1
# Mapped user and item ids
user_id_internal = self.user_xlat_map[user_id_external]
item_id_internal = self.item_xlat_map[item_id_external]
if user_id_internal not in self.ratings_dict:
self.ratings_dict[user_id_internal] = []
self.ratings_dict[user_id_internal].append(
(item_id_internal, rating))
self.user_id_list = list(self.ratings_dict.keys())
self._input_size = len(self.item_xlat_map)
# Generate one data sample during training
def generate_sample(self):
index = 0
while index < len(self.user_id_list):
sample = np.zeros(self._input_size, dtype=np.int8)
for (item_number, rating) in self.ratings_dict[self.user_id_list[index]]:
sample[item_number] = rating
index += 1
yield sample
# Generate a pair of observed and ground truth data samples during
# evaluation
def generate_pair(self):
index = 0
while index < len(self.user_id_list):
# sample ground truth
sample_gt = np.zeros(self._input_size, dtype=np.int8)
for (item_number, rating) in self.ratings_dict[self.user_id_list[index]]:
sample_gt[item_number] = rating
# sample observed
sample_observed = np.zeros(self._input_size, dtype=np.int8)
for (item_number, rating) in self.training_dict[self.user_id_list[index]]:
sample_observed[item_number] = rating
index += 1
yield np.concatenate((sample_observed, sample_gt), axis=None)
@property
def size(self):
return len(self.user_id_list)
@property
def input_size(self):
return self._input_size
# Create a tf Dataset with buffering, stats, etc.
def get_dataset(self, opts, is_training):
batch_size = opts.batch_size if is_training else opts.validation_batch_size
dtypes = opts.precision.split('.')
datatype = tf.float16 if dtypes[0] == '16' else tf.float32
# Create a tf Dataset using a binary file or from generator
if is_training:
# We use a binary file to store the preprocessed dataset.
# This way the throughput is more stable.
def generate_entire_dataset_in_numpy():
index = 0
samples =
|
np.zeros((self.size, self._input_size), dtype=np.int8)
|
numpy.zeros
|
# MIT License
#
# Copyright (c) 2019 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from builtins import input
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
import joblib
def calc_avg_emb():
# a function to create a vector of n average embeddings for each
# tinder profile
# get the embeddings per profile
labels = np.load('labels.npy', allow_pickle=True)
# label_strings = np.load('label_strings.npy', allow_pickle=True)
embeddings = np.load('embeddings.npy', allow_pickle=True)
image_list = np.load('image_list.npy', allow_pickle=True)
# determine the n dimension of embeddings
n_emb = embeddings.shape[1]
# find the maximum number of images in a profile
split_image_list = []
profile_list = []
for i in image_list:
split_image_list.append(i.split('.')[1])
# split_image_list.append(i.replace('/', '.').split('.'))
profile_list.append(i.split('.')[0])
# convert profile list to pandas index
pl = pd.Index(profile_list)
pl_unique = pl.value_counts()
# get the summar statics of pl
pl_describe = pl_unique.describe()
print('Summary statistics of profiles with at least one detectable face')
print(pl_describe)
number_of_profiles = int(pl_describe[0])
# number_of_images = int(pl_describe[-1])
# convert the embeddings to a data frame
eb = pd.DataFrame(embeddings, index=pl)
dislike = pd.Series(labels, index=pl)
# if dislike == 1 it means I disliked the person!
# create a blank numpy array for embeddings
new_embeddings = np.zeros((number_of_profiles, n_emb))
new_labels = np.zeros(number_of_profiles)
for i, j in enumerate(pl_unique.index):
temp = eb.loc[j]
# if a profile has more than one face it will be a DataFrame
# else the profile will be a Series
if isinstance(temp, pd.DataFrame):
# get the average of each column
temp_embeddings = np.mean(temp.values, axis=0)
else:
temp_embeddings = temp.values
# save the new embeddings
new_embeddings[i] = temp_embeddings
# Save the profile label, 1 for dislike, 0 for like
new_labels[i] = dislike[j].max()
# save the files
np.save('embeddings_avg_profile.npy', new_embeddings)
np.save('labels_avg_profile.npy', new_labels)
return new_embeddings, new_labels
def calc_avg_emb_temp(embeddings):
# a function to create a vector of n average embeddings for each
# in the temp_images_aligned folder
# embeddings = np.load('temp_embeddings.npy', allow_pickle=True)
# determine the n dimension of embeddings
n_emb = embeddings.shape[1]
# calculate the average embeddings
new_embeddings =
|
np.zeros((1, n_emb))
|
numpy.zeros
|
import geopandas as gpd
import numpy as np
import os
from typing import Union
from netCDF4 import Dataset
import rasterio
from rasterio.warp import calculate_default_transform, reproject, Resampling
def read_grid(raster_file: str, nan_threshold: Union[float, int] = 100,
window: Union[str, list, tuple, np.ndarray] = None,
buffer: Union[float, int] = 100, return_meta: bool = False):
"""
Read
:param raster_file: file to read
:param nan_threshold: numbers with an absolute value greater than this are set to NaN
:param window:
:param buffer:
:return:
"""
assert os.path.exists(raster_file)
raster = rasterio.open(raster_file)
no_data = raster.nodata
if window is not None:
if isinstance(window, str):
assert os.path.exists(window)
shp = gpd.GeoDataFrame.from_file(window)
x1, y1, x2, y2 = np.array(shp.bounds)[0]
else:
assert len(window) == 4
x1, y1, x2, y2 = window[:]
assert all([x2 > x1, y2 > y1])
buffer_value = 0 if buffer is None else buffer
if x1 < raster.bounds.left:
x1 = np.round(raster.bounds.left + 1)
lowest = min([raster.bounds.bottom, raster.bounds.top])
if y1 < lowest:
y1 = np.round(lowest + -1)
if raster.bounds.top < raster.bounds.bottom:
window_object = rasterio.windows.from_bounds(x1 - buffer_value, y2 + buffer_value,
x2 + buffer_value, y1 - buffer_value,
transform=raster.transform)
else:
window_object = rasterio.windows.from_bounds(x1 - buffer_value, y1 - buffer_value,
x2 + buffer_value, y2 + buffer_value,
transform=raster.transform)
z = raster.read(1, window=window_object)
geo_transform = raster.window_transform(window_object)
else:
z = raster.read(1)
# Get affine transform from raster
geo_transform = raster.transform
if return_meta:
geo_meta = raster.meta.copy()
geo_meta.update({"width": z.shape[1],
"height": z.shape[0],
"transform": geo_transform})
else:
geo_meta = None
# extract origin, pixel width and pixel height from affine transform
origin_x = geo_transform[2]
origin_y = geo_transform[5]
pixel_width = geo_transform[0]
pixel_height = geo_transform[4]
# Width and height of raster in pixels
cols = z.shape[1]
rows = z.shape[0]
# Turn into X and Y coordinates
x = origin_x + pixel_width * np.arange(cols)
y = origin_y + pixel_height * np.arange(rows)
# Set values above threshold to NaN
if no_data != np.nan:
z[z < -nan_threshold] = np.NaN
z[z > nan_threshold] = np.NaN
# Close raster
raster.close()
if return_meta:
return x, y, z, geo_meta
else:
return x, y, z
def read_tiff(tiff: str, x_correct: float = None, y_correct: float = None, nan_threshold: Union[float, int] = 9000,
make_y_ascending: bool = False, window: Union[str, list, tuple, np.ndarray] = None,
buffer: Union[float, int]=100, return_meta: bool = False):
"""
Read geotiff, rather than generic raster. Uses read_grid.
:param tiff: Filename
:param x_correct: Offset to get back to GMT convention
:param y_correct: Generally same as x_correct
:param make_y_ascending: flips y and z along y axis so that y[-1] > y[0]
:return:
"""
assert os.path.exists(tiff)
# Read grid into x, y ,z
if return_meta:
x, y, z, geo_meta = read_grid(tiff, nan_threshold=nan_threshold, window=window, buffer=buffer,
return_meta=return_meta)
else:
x, y, z = read_grid(tiff, nan_threshold=nan_threshold, window=window, buffer=buffer)
geo_meta = None
if make_y_ascending and y[0] > y[-1]:
y = y[::-1]
z = z[::-1, :]
# If necessary, sort out problems with pixel vs. gridline registration (need to supply values)
if x_correct is not None:
x += x_correct
print("Adjusting for GMT-Tiff difference")
if y_correct is not None:
y += y_correct
if return_meta:
return x, y, z, geo_meta
else:
return x, y, z
def read_gmt_grid(grd_file: str):
"""
function to read in a netcdf4 format file. Rasterio is really slow to do it.
:param grd_file:
:return:
"""
assert os.path.exists(grd_file)
# Open dataset and check that x,y,z are variable names
fid = Dataset(grd_file, "r")
assert all([a in fid.variables for a in ("x", "y", "z")])
xm, ym, zm = [fid.variables[a][:] for a in ("x", "y", "z")]
fid.close()
# Check arrays are either numpy arrays or masked arrays
for a in (xm, ym, zm):
assert any([isinstance(a, b) for b in (np.ma.MaskedArray, np.ndarray)])
x = xm if isinstance(xm, np.ndarray) else xm.filled(fill_value=np.nan)
y = ym if isinstance(ym, np.ndarray) else ym.filled(fill_value=np.nan)
z = zm if isinstance(zm, np.ndarray) else zm.filled(fill_value=np.nan)
return
|
np.array(x)
|
numpy.array
|
import re
import pandas as pd
import numpy as np
from sciparse import string_to_dict, dict_to_string, ureg
from datetime import datetime as dt
def parse_default(
filename, data=None, metadata=None, read_write='r'):
"""
Default parser for data. Assumes there is a single line of metadata at the top line in the form of a dictionary and the remainder is tabular and can be imported as a pandas DataFrame
:param filename: Name of the file to be written
:param data: Data to write to file
:param metadata: Metadata to write to file
:param read_write: "r" or "w". Read or write.
"""
if read_write == 'r':
with open(filename) as fh:
string_metadata = fh.readline().rstrip('\n')
metadata = string_to_dict(string_metadata)
data = pd.read_csv(fh)
return data, metadata
elif read_write == 'w':
with open(filename, 'w') as fh:
metadata_line = dict_to_string(metadata) + '\n'
fh.write(metadata_line)
if isinstance(data, pd.DataFrame):
data.to_csv(fh, mode='a', index=False)
elif data is None:
pass
else:
raise ValueError(f'This method only implemented for type of pd.DataFrame, you attempted to pass in type {type(data)}.')
def parse_xrd(filename):
"""
Loads XRD data from a given filename
:param filename: The filename to open
:returns (data, metadata): set of data and metadata from XRD file
"""
with open(filename) as file_handle:
count = 0
reg_pattern = re.compile(r'\w+=\S*\w+')
metadata = {}
while True:
line = file_handle.readline()
if line == '[Data]\n' or not line:
break
line = line.rstrip('\n')
if reg_pattern.match(line):
split_string = line.split('=')
name = split_string[0].lower()
val = split_string[1].lower()
interesting_names = [
'drivename', 'startposition', 'date',
'time', 'increment', 'scantype','start',
'steps']
if name in interesting_names:
if name == 'drivename':
current_drive = val
elif name == 'startposition':
metadata[current_drive] = float(val)
else:
try:
metadata[name] = int(val)
except:
try:
metadata[name] = float(val)
except:
metadata[name] = val
data = pd.read_csv(file_handle)
data = data.loc[:, ~data.columns.str.contains('^Unnamed')]
data = data.rename(columns=lambda x: x.strip()) # Strip whitespace
data = data.rename(columns={'Angle': 'Angle (deg)', 'Det1Disc1':
'Counts'})
return data, metadata
def parse_lcr(filename):
metadata = parse_lcr_header(filename)
data_start_line = find_lcr_dataline(filename)
with open(filename, 'r') as dataFile:
lines = dataFile.readlines()
header_line = lines[data_start_line-1]
header_line = header_line.replace("\n", "")
data_types = header_line.split("\t")
data_types = [x for x in data_types if x != ""]
data = pd.DataFrame({})
for dtype in data_types:
data[dtype] = np.array([])
lines = lines[data_start_line:-4]
if len(lines) != metadata['n_samples']:
raise ValueError("number lines not equal to data lines. Issue with parsing.")
for line in lines:
line = line.replace("\n", "")
line_data = line.split("\t")
line_data = [float(x) for x in line_data if x != '']
new_data_row = pd.DataFrame({})
for i, dtype in enumerate(data_types):
new_data_row[dtype] = [line_data[i]]
data = data.append(new_data_row)
return data, metadata
def parse_lcr_header(filename):
metadata = {}
currentID = ''
with open(filename, 'r') as dataFile:
lines = dataFile.readlines()
for line in lines:
line = line.replace(":", " ")
line = line.replace("\n", "")
line = line.replace("\t", "")
lineData = line.split(" ")
if lineData[0] == 'ID':
currentID = lineData[-1]
if lineData[0] == 'MODE':
if currentID == 'A':
mode = lineData[-1]
elif lineData[0] == 'START':
start_voltage = float(lineData[-1])
elif lineData[0] == 'STOP':
stop_voltage = float(lineData[-1])
elif lineData[0] == 'STEP':
step_voltage = float(lineData[-1])
elif lineData[0] == 'DATE':
recorded_date = dt.strptime(lineData[-1], "%m/%d/%Y")
elif lineData[0] == 'TIME':
timeData = lineData[-3] + " " + lineData[-2] + " " + lineData[-1]
recorded_time = dt.strptime(timeData, "%H %M %S")
elif lineData[0] == 'PNTS':
n_samples = int(lineData[-1])
metadata = {
'start_voltage': start_voltage,
'stop_voltage': stop_voltage,
'step_voltage': step_voltage,
'date': recorded_date,
'time': recorded_time,
'n_samples': n_samples,
'mode': mode,
}
return metadata
def find_lcr_dataline(filename):
with open(filename, 'r') as dataFile:
lines = dataFile.readlines()
currentLine = 0
dataLines = []
for line in lines:
lineData = line.split(" ")
if lineData[0] == "DATA:": # begin reading data
data_start_line = currentLine + 3
return data_start_line
currentLine += 1
def convert_lcr_to_standard(data, metadata):
"""
Converts an LCR dataset into standard form (Z, theta).
:param data: Pandas DataFrame containing LCR data in a potentially non-standard form (Cp/Q, Cp/D, Cp/Rp for example)
"""
columns = data.columns.values
if 'frequency' not in metadata and 'f' not in metadata:
raise ValueError(f'Frequency not in metadata. Metadata contains {metadata}')
f = metadata['frequency']
w = 2*np.pi*f
new_data = data.copy()
if 'Z' in columns and 'THETA' in columns:
Z = data['Z']
theta = data['THETA']
del new_data['Z'], new_data['THETA']
elif 'C' in columns and 'Q' in columns:# C assumed to be Cp
Q = new_data['Q']
Cp = new_data['C']
Z = 1 / (w*Cp) * 1 / np.sqrt(1 + 1/(Q**2))
theta = -np.arctan(Q)
del new_data['Q'], new_data['C']
elif 'C' in columns and 'D' in columns: # D = 1/Q. C assumed Cp
D = data['D']
Cp = data['C']
Z = 1 / (w*Cp) * 1 /
|
np.sqrt(1 + (D**2))
|
numpy.sqrt
|
"""
Graphics module for erdorbit.
"""
# third party imports
import numpy as np
from shapely.geometry import LineString
def resize_3d_drawing_to_fit_canvas(input_coords, canvas_height, margins):
"""
This function resizes the drawing to fit the canvas size
Input:
input_coords np array of floats shape (:, 3)
x, y, z, position in km
canvas_height float
margins (int, int, int, int)
left, top, right, bottom canvas margins
Output:
np array of floats shape (:, 3)
x, y, z, position in canvas dimension
"""
# assuming size of object to draw is 2 times largest value in positions array
drawing_size = np.max(np.abs(input_coords)) * 2
return input_coords * (canvas_height - margins[1] - margins[3]) / drawing_size
def resize_2d_drawing_to_fit_canvas(input_coords, canvas_width, canvas_height, margins):
"""
This function resizes the drawing to fit the canvas size
Input:
input_coords np array of floats shape (:, 2)
x, y position in km
canvas_width float
canvas_height float
margins (int, int, int, int)
left, top, right, bottom canvas margins
Output:
np array of floats shape (:, 2)
x, y position in canvas dimension
"""
# find out if portrait or landscape mode
portrait_mode = False
if canvas_height >= canvas_width:
portrait_mode = True
# find out largest dimension of drawing
xdim = np.max(input_coords[:, 0]) - np.min(input_coords[:, 0])
ydim = np.max(input_coords[:, 1]) - np.min(input_coords[:, 1])
# adapt to portrait or landscape mode if necessary
if xdim > ydim and portrait_mode or xdim < ydim and not portrait_mode:
output_coords = np.zeros(input_coords.shape)
output_coords[:, 0] = input_coords[:, 1]
output_coords[:, 1] = input_coords[:, 0]
else:
output_coords = input_coords
# find out along which dimension to scale drawing to constrain proportions
x_scaling = (canvas_width - margins[2] - margins[0]) / (
np.max(output_coords[:, 0]) - np.min(output_coords[:, 0])
)
y_scaling = (canvas_height - margins[1] - margins[3]) / (
np.max(output_coords[:, 1]) - np.min(output_coords[:, 1])
)
if x_scaling < y_scaling: # scale drawing by x dimension and contrain proportions
scaling_factor = x_scaling
# along x: apply standard translation
output_coords[:, 0] = (
margins[0]
+ (output_coords[:, 0] - np.min(output_coords[:, 0])) * scaling_factor
)
# along y: use x scaling factor and replace to center
output_coords[:, 1] = (
(output_coords[:, 1] - np.min(output_coords[:, 1])) * scaling_factor
+ margins[1]
- (np.max(output_coords[:, 1]) - np.min(output_coords[:, 1]))
* scaling_factor
/ 2
+ (canvas_height - margins[1] - margins[3]) / 2
)
else: # scale drawing by y dimension and contrain proportions
scaling_factor = y_scaling
# along y: apply standard translation
output_coords[:, 1] = (
margins[1]
+ (output_coords[:, 1] -
|
np.min(output_coords[:, 1])
|
numpy.min
|
from __future__ import print_function
import matplotlib
import numpy as np
import copy
import re
import warnings
from astropy import log
from astropy import units as u
from six.moves import xrange
from six import string_types
from ..config import mycfg
from ..config import ConfigDescriptor as cfgdec
from . import units
from . import models
from ..specwarnings import warn
from . import interactive
from . import history
from . import widgets
class Registry(object):
"""
This class is a simple wrapper to prevent fitter properties from being globals
"""
def __init__(self):
self.npars = {}
self.multifitters = {}
#to delete
self.peakbgfitters = {}
self.fitkeys = {}
self.associatedkeys = {}
self._interactive_help_message_root = """
'?' will print this help message again. The keys denoted by surrounding / / are
mnemonics.
1. Left-click or hit 'p' (/p/ick) with the cursor over the plot at both of the
two desired X-values to select a fitting range. You can e/x/clude parts of the
spectrum by hitting 'x' at two positions.
2. Then /m/iddle-click or hit 'm' twice to select (/m/ark) a peak and width -
the first mark should be on the peak of the line, the second should be at the
approximate half-max point on the curve.
3. When you're done, right-click or hit 'd' to perform the fit and disconnect
the mouse and keyboard (/d/isconnect because you're /d/one). Any time before
you're /d/one, you can select a different fitter (see below).
To /c/ancel or /c/lear all connections, press 'c'
'?' : get help (this message)
'c' : cancel / clear
'p','1' : pick / selection region for fitting
'm','2' : mark / identify a peak
'd','3' : done / do the fit, then disconnect the fitter
'i' : individual components / show each fitted component
You can select different fitters to use with the interactive fitting routine.
The default is gaussian ('g'), all options are listed below:
"""
self._make_interactive_help_message()
def __copy__(self):
# http://stackoverflow.com/questions/1500718/what-is-the-right-way-to-override-the-copy-deepcopy-operations-on-an-object-in-p
cls = self.__class__
result = cls.__new__(cls)
result.__dict__.update(self.__dict__)
return result
def __deepcopy__(self, memo):
cls = self.__class__
result = cls.__new__(cls)
memo[id(self)] = result
for k, v in self.__dict__.items():
setattr(result, k, copy.deepcopy(v, memo))
return result
def add_fitter(self, name, function, npars, override=False, key=None,
multisingle=None):
'''
Register a fitter function.
Parameters
----------
name: string
The fit function name.
function: function
The fitter function. Single-fitters should take npars + 1 input
parameters, where the +1 is for a 0th order baseline fit. They
should accept an X-axis and data and standard fitting-function
inputs (see, e.g., gaussfitter). Multi-fitters should take N *
npars, but should also operate on X-axis and data arguments.
npars: int
How many parameters does the function being fit accept?
Other Parameters
----------------
override: True | False
Whether to override any existing type if already present.
key: char
Key to select the fitter in interactive mode
'''
if multisingle is not None:
warn("The 'multisingle' keyword is no longer required.",
DeprecationWarning)
if not name in self.peakbgfitters or override:
self.peakbgfitters[name] = function
if not name in self.multifitters or override:
self.multifitters[name] = function
if key is not None:
self.fitkeys[key] = name
self._make_interactive_help_message()
self.npars[name] = npars
self.associated_keys = dict(zip(self.fitkeys.values(),self.fitkeys.keys()))
def _make_interactive_help_message(self):
"""
Generate the interactive help message from the fitkeys
"""
self.interactive_help_message = (
self._interactive_help_message_root +
"\n" +
"\n".join(["'%s' - select fitter %s" % (key,name) for key,name in self.fitkeys.items()]) +
"\n" # trailing \n so that users' input is on a fresh line
)
# Declare default registry built in for all spectra
default_Registry = Registry()
default_Registry.add_fitter('ammonia',models.ammonia_model(),6,key='a')
default_Registry.add_fitter('cold_ammonia',models.ammonia.cold_ammonia_model(),6)
default_Registry.add_fitter('ammonia_tau',models.ammonia_model_vtau(),6)
# not implemented default_Registry.add_fitter(Registry,'ammonia',models.ammonia_model( ),6, ,key='A')
default_Registry.add_fitter('formaldehyde',models.formaldehyde_fitter,3,key='F') # CAN'T USE f! reserved for fitting
# do'nt override default_Registry.add_fitter('formaldehyde',models.formaldehyde_vheight_fitter,3)
default_Registry.add_fitter('gaussian',models.gaussian_fitter(),3,key='g')
default_Registry.add_fitter('vheightgaussian',models.gaussian_vheight_fitter(),4)
default_Registry.add_fitter('voigt',models.voigt_fitter(),4,key='v')
default_Registry.add_fitter('lorentzian',models.lorentzian_fitter(),3,key='L')
#default_Registry.add_fitter('hill5',models.hill5infall.hill5_fitter,5)
#default_Registry.add_fitter('hcn',models.hcn.hcn_vtau_fitter,4)
class Specfit(interactive.Interactive):
def __init__(self, Spectrum, Registry=None):
super(Specfit, self).__init__(Spectrum,
interactive_help_message=Registry.interactive_help_message)
self.model = None
self.parinfo = None
self.modelpars = None
self.modelerrs = None
self.modelplot = []
self.modelcomponents = None
self._plotted_components = []
self.npeaks = 0
#self.nclicks_b1 = 0
#self.nclicks_b2 = 0
#self.xmin = 0
#self.xmax = Spectrum.data.shape[0]
self.button2action = self.guesspeakwidth
self.guesses = []
self.click = 0
self.fitkwargs = {}
self.auto = False
self.fitleg=None
self.residuals=None
self.setfitspec()
self.fittype = 'gaussian'
self.measurements = None
self.vheight=False # vheight must be a boolean, can't be none
self._component_kwargs = {}
self.Registry = Registry
self.autoannotate = mycfg['autoannotate']
self.EQW_plots = []
#self.seterrspec()
@property
def fitter(self):
if hasattr(self, '_fitter'):
return self._fitter
else:
raise AttributeError("The 'specfit' object has no 'fitter' yet. "
"This means you haven't yet run a fit. The "
"fitter is not accessible until after a fit "
"has been run.")
@fitter.setter
def fitter(self, value):
self._fitter = value
@cfgdec
def __call__(self, interactive=False, usemoments=True,
fittype=None,
clear_all_connections=True, debug=False, guesses='moments',
parinfo=None, save=True, annotate=None, show_components=None,
use_lmfit=False, verbose=True, clear=True,
reset_selection=True,
fit_plotted_area=True, use_window_limits=None, vheight=None,
exclude=None, **kwargs):
"""
Fit model functions to a spectrum
Parameters
----------
interactive : boolean
The plotter window will go into interactive mode. See
self.interactive_help_message for details on how to use the
interactive fitter.
fittype : str
[passed to fitting codes; defaults to gaussian]
The model to use. Model must be registered in self.Registry.
gaussian, lorentzian, and voigt profiles are registered by default
guesses : list or 'moments'
A list of guesses. Guesses must have length = n*number of parameters
in model. Guesses are *required* for multifit fits (there is no
automated guessing for most models)
EXAMPLE: for single-fit gaussian
guesses = [height,amplitude,center,width]
for multi-fit gaussian, it is
[amplitude, center, width]
You can also pass the keyword string 'moments' to have the moments
be used to automatically determine the guesses for a *single* peak
parinfo : `pyspeckit.spectrum.parinfo.ParinfoList`
An alternative way to specify guesses. Supercedes guesses.
use_lmfit : boolean
If lmfit-py (https://github.com/newville/lmfit-py) is installed, you
can use it instead of the pure-python (but slow) mpfit.
reset_selection : boolean
Override any selections previously made using `fit_plotted_area` or
other keywords?
fit_plotted_area : boolean
If no other limits are specified, the plotter's xmin/xmax will be
used to define the fit region. Only respects the x-axis limits,
not the y-axis limits.
use_window_limits : boolean
If ``fit_plotted_area==True`` and no other limits are specified,
will use the displayed window area (as set by the zoom tools) as
the fitting range. Only respects the x-axis limits, not the y-axis
limits.
exclude : None or list
Passed to selectregion; specifies regions to exclude in xarr units
Plotter-related Parameters
--------------------------
annotate : None or boolean
If None, will use the default stored in self.annotate, otherwise
overwrites. Annotations will appear on the plot if a plotter
exists.
show_components : boolean
Show the individual components of a multi-component fit (defaults
to blue)
clear : boolean
Clear previous fitter plots before overplotting the fit?
Advanced Parameters
-------------------
clear_all_connections : boolean
Clear all of the interactive connections from a previous interactive
session (e.g., a baseline fitting session) before continuing?
usemoments : boolean
Use the moments of the spectrum as input guesses. Only works
for gaussian and gaussian-like models. Only works for single-fit
mode (not multifit)
DEPRECATED
debug : boolean
Print debug statements?
save : boolean
Save best fits in the FITS header as keywords? ONLY IMPLEMENTED
FOR GAUSSIANS
verbose : boolean
Print out extra stuff
vheight : None or boolean
if None, defaults to self.vheight, otherwise overrides
Determines whether a 0th order baseline will be fit along with the
line
"""
if clear:
self.clear()
if reset_selection:
self.selectregion(verbose=verbose, debug=debug,
fit_plotted_area=fit_plotted_area,
exclude=exclude,
use_window_limits=use_window_limits, **kwargs)
for arg in ['xmin','xmax','xtype','reset']:
if arg in kwargs:
kwargs.pop(arg)
if fittype is not None:
self.fittype = fittype
self.fitter = self.Registry.multifitters[self.fittype]
if 'multifit' in kwargs:
kwargs.pop('multifit')
log.warning("The multifit keyword is no longer required. All fits "
"allow for multiple components.", DeprecationWarning)
if 'guess' in kwargs:
if guesses is None:
guesses = kwargs.pop('guess')
log.warning("The keyword 'guess' is nonstandard; please use 'guesses'")
else:
raise ValueError("Received keywords 'guess' and 'guesses'. "
"Please only use 'guesses'")
self.npeaks = 0
self.fitkwargs = kwargs
log.debug("Additional keyword arguments passed to fitter are: {0}"
.format(kwargs))
if interactive:
if self.Spectrum.plotter.axis is None:
raise Exception("Interactive fitting requires a plotter.")
# reset button count & guesses on every __call__
self.nclicks_b1 = 0
self.nclicks_b2 = 0
self.guesses = []
self.start_interactive(clear_all_connections=clear_all_connections,
reset_selection=True,
debug=debug, **kwargs)
elif (self.fittype in self.Registry.multifitters
or guesses is not None
or parinfo is not None):
if guesses is None and parinfo is None:
raise ValueError("You must input guesses when using multifit."
" Also, baseline (continuum fit) first!")
elif parinfo is not None:
self.guesses = parinfo.values
self.parinfo = parinfo
self.multifit(show_components=show_components, verbose=verbose,
debug=debug, use_lmfit=use_lmfit,
annotate=annotate, parinfo=parinfo,
guesses=None, **kwargs)
elif guesses is not None:
if isinstance(guesses, tuple):
guesses = list(guesses)
self.guesses = guesses
self.multifit(show_components=show_components, verbose=verbose,
debug=debug, use_lmfit=use_lmfit,
fittype=fittype,
guesses=guesses, annotate=annotate, **kwargs)
else:
raise ValueError("Guess and parinfo were somehow invalid.")
else:
raise ValueError("Can't fit with given fittype {0}:"
" it is not Registered as a fitter.".format(self.fittype))
if save:
self.savefit()
def EQW(self, plot=False, plotcolor='g', fitted=True, continuum=None,
components=False, annotate=False, alpha=0.5, loc='lower left',
xmin=None, xmax=None, xunits=None, continuum_as_baseline=False,
xunit='pixel', midpt_location='plot-center'):
"""
Returns the equivalent width (integral of "baseline" or "continuum"
minus the spectrum) over the selected range
(the selected range defaults to self.xmin:self.xmax, so it may include
multiple lines!)
Parameters
----------
plot : bool
Plots a box indicating the EQW if plot==True (i.e., it will have a
width equal to the equivalent width, and a height equal to the
measured continuum)
fitted : bool
Use the fitted model? If false, uses the data
continuum : None or float
Can specify a fixed continuum with this keyword, otherwise will use
the fitted baseline. WARNING: continuum=0 will still "work", but
will give numerically invalid results. Similarly, a negative continuum
will work, but will yield results with questionable physical meaning.
continuum_as_baseline : bool
Replace the baseline with the specified continuum when computing
the absorption depth of the line
components : bool
If your fit is multi-component, will attempt to acquire centroids
for each component and print out individual EQWs
xmin : float
xmax : float
The range over which to compute the EQW
xunit : str
The units of xmin/xmax
midpt_location : 'fitted', 'plot-center'
If 'plot' is set, this determines where the EQW will be drawn. It
can be the fitted centroid or the plot-center, i.e. (xmin+xmax)/2
Returns
-------
Equivalent Width, or widths if components=True
"""
if continuum is not None:
# if continuum is specified, don't bother with checks
if np.median(self.Spectrum.baseline.basespec) == 0:
raise ValueError("Baseline / continuum is zero: equivalent width is undefined.")
elif np.median(self.Spectrum.baseline.basespec) < 0:
if mycfg.WARN: warn( "WARNING: Baseline / continuum is negative: equivalent width is poorly defined." )
if xunits is not None and xunit=='pixel':
# todo: deprecation warning
xunit = xunits
# determine range to use
if xmin is None:
xmin = self.xmin #self.Spectrum.xarr.x_to_pix(self.xmin)
else:
xmin = self.Spectrum.xarr.x_to_pix(xmin, xval_units=xunit)
if xmax is None:
xmax = self.xmax #self.Spectrum.xarr.x_to_pix(self.xmax)
else:
xmax = self.Spectrum.xarr.x_to_pix(xmax, xval_units=xunit)
dx = np.abs(self.Spectrum.xarr[xmin:xmax].cdelt(approx=True).value)
log.debug("xmin={0} xmax={1} dx={2} continuum={3}"
.format(xmin, xmax, dx, continuum))
if components:
centroids = self.fitter.analytic_centroids()
integrals = self.fitter.component_integrals(self.Spectrum.xarr[xmin:xmax],dx=dx)
eqw = []
for cen,integ in zip(centroids,integrals):
center_pix = self.Spectrum.xarr.x_to_pix(cen)
if continuum is None:
continuum = self.Spectrum.baseline.basespec[center_pix]
elif continuum_as_baseline:
integrals[-1] += -(self.Spectrum.baseline.basespec[xmin:xmax] - continuum).sum() * dx
eqw.append(-integ / continuum)
if plot:
plot = False
if mycfg.WARN:
warn("Cannot plot multiple Equivalent Widths")
elif fitted:
model = self.get_model(self.Spectrum.xarr[xmin:xmax],
add_baseline=False)
# EQW is positive for absorption lines
# fitted components are assume to be continuum-subtracted
integral = (-model).sum() * dx
if continuum is None:
# centroid in data units
# (may fail if model has pos + neg values)
center = (model*self.Spectrum.xarr[xmin:xmax]).sum()/model.sum()
center_pix = self.Spectrum.xarr.x_to_pix(center)
continuum = self.Spectrum.baseline.basespec[center_pix]
elif continuum_as_baseline:
integral += -(self.Spectrum.baseline.basespec[xmin:xmax] - continuum).sum() * dx
eqw = integral / continuum
else:
if continuum_as_baseline:
diffspec = (continuum - self.Spectrum.data)
elif self.Spectrum.baseline.subtracted is False:
diffspec = (self.Spectrum.baseline.basespec - self.Spectrum.data)
else:
diffspec = -self.Spectrum.data
sumofspec = diffspec[xmin:xmax].sum() * dx
if continuum is None:
continuum = np.median(self.Spectrum.baseline.basespec)
eqw = sumofspec / continuum
if plot and self.Spectrum.plotter.axis:
if midpt_location == 'plot-center':
midpt_pixel = int(np.round((xmin+xmax)/2.0))
midpt = self.Spectrum.xarr[midpt_pixel].value
elif midpt_location == 'fitted':
try:
shifts = np.array([self.Spectrum.specfit.parinfo[x].value
for x in self.Spectrum.specfit.parinfo.keys()
if 'SHIFT' in x])
except AttributeError:
raise AttributeError("Can only specify midpt_location="
"fitted if there is a SHIFT parameter"
"for the fitted model")
# We choose to display the eqw fit at the center of the fitted
# line set, closest to the passed window.
# Note that this has the potential to show a eqw "rectangle"
# centered on a fitted line other than the one measured for the
# eqw call, if there are more than one fitted lines within the
# window.
midpt_pixel = int((xmin+xmax)/2)
midval = self.Spectrum.xarr[midpt_pixel].value
midpt_index = np.argmin(np.abs(shifts-midval))
midpt = shifts[midpt_index]
midpt_pixel = self.Spectrum.xarr.x_to_pix(midpt)
else:
raise ValueError("midpt_location must be 'plot-center' or "
"fitted")
if continuum_as_baseline:
midpt_level = continuum
else:
midpt_level = self.Spectrum.baseline.basespec[midpt_pixel]
log.debug("EQW plotting: midpt={0}, midpt_pixel={1}, "
"midpt_level={2}, eqw={3}".format(midpt, midpt_pixel,
midpt_level, eqw))
self.EQW_plots.append(self.Spectrum.plotter.axis.fill_between(
[midpt-eqw/2.0,midpt+eqw/2.0], [0,0],
[midpt_level,midpt_level], color=plotcolor, alpha=alpha,
label='EQW: %0.3g' % eqw))
if annotate:
self.Spectrum.plotter.axis.legend(
[(matplotlib.collections.CircleCollection([0],facecolors=[plotcolor],edgecolors=[plotcolor]))],
[('EQW: %0.3g' % eqw)],
markerscale=0.01, borderpad=0.1, handlelength=0.1,
handletextpad=0.1, loc=loc)
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
if hasattr(self.Spectrum,'header'):
history.write_history(self.Spectrum.header, "EQW for %s: %s" %
(self.fittype,eqw))
return eqw
def register_fitter(self,*args,**kwargs):
"""
Register a model fitter
"""
self.Registry.add_fitter(*args,**kwargs)
register_fitter.__doc__ += Registry.add_fitter.__doc__
def seterrspec(self, usestd=None, useresiduals=True):
"""
Simple wrapper function to set the error spectrum; will either use the
input spectrum or determine the error using the RMS of the residuals,
depending on whether the residuals exist.
"""
if (self.Spectrum.error is not None) and not usestd:
if (self.Spectrum.error == 0).all():
if self.residuals is not None and useresiduals:
residuals_std = self.residuals.std()
if residuals_std == 0:
self.errspec = np.ones(self.spectofit.shape[0])
warnings.warn("Residuals have 0 standard deviation. "
"That's probably too good to be true.")
else:
self.errspec = np.ones(self.spectofit.shape[0]) * residuals_std
elif type(self.Spectrum.error) is np.ma.masked_array:
# force errspec to be a non-masked array of ones
self.errspec = self.Spectrum.error.data + 1
else:
self.errspec = self.Spectrum.error + 1
else:
# this is the default behavior if spectrum.error is set
self.errspec = self.Spectrum.error.copy()
elif self.residuals is not None and useresiduals:
self.errspec = np.ones(self.spectofit.shape[0]) * self.residuals.std()
else:
self.errspec = np.ones(self.spectofit.shape[0]) * self.spectofit.std()
def setfitspec(self):
"""
Set the spectrum that will be fit. This is primarily to remove NANs
from consideration: if you simply remove the data from both the X-axis
and the Y-axis, it will not be considered for the fit, and a linear
X-axis is not needed for fitting.
However, it may be possible to do this using masked arrays instead of
setting errors to be 1e10....
"""
if self.Spectrum.data.sum() is np.ma.masked:
self.spectofit = np.zeros_like(self.Spectrum.data)
self.errspec = np.zeros_like(self.Spectrum.data)
self._valid = False
return
# see https://github.com/numpy/numpy/issues/3474
self.spectofit = np.ma.copy(self.Spectrum.data)
if hasattr(self.Spectrum.data, 'mask') and hasattr(self.spectofit,
'mask'):
assert np.all(self.Spectrum.data.mask == self.spectofit.mask)
self._valid = True
if hasattr(self.Spectrum,'baseline'):
if ((not self.Spectrum.baseline.subtracted and
self.Spectrum.baseline.basespec is not None and
len(self.spectofit) == len(self.Spectrum.baseline.basespec))):
self.spectofit -= self.Spectrum.baseline.basespec
OKmask = np.isfinite(self.spectofit)
with warnings.catch_warnings():
# catch a specific np1.7 futurewarning relating to masks
warnings.simplefilter("ignore")
self.spectofit[~OKmask] = 0
self.seterrspec()
# the "OK" mask is just checking that the values are finite
self.errspec[~OKmask] = 1e10
# if an includemask is set *and* there are some included values, "mask out" the rest
# otherwise, if *all* data are excluded, we should assume that means the includemask
# simply hasn't been initialized
if self.includemask is not None and (self.includemask.shape == self.errspec.shape) and any(self.includemask):
self.errspec[~self.includemask] = 1e10*self.errspec.max()
@property
def mask(self):
""" Mask: True means "exclude" """
if ((hasattr(self.spectofit, 'mask') and
self.spectofit.shape==self.spectofit.mask.shape)):
mask = self.spectofit.mask
else:
mask = np.zeros_like(self.spectofit, dtype='bool')
return mask
@property
def dof(self):
""" degrees of freedom in fit """
if not hasattr(self, 'npix_fitted'):
raise AttributeError('No fit has been run, so npix_fitted is not '
'defined and dof cannot be computed.')
return (self.npix_fitted - self.vheight - self.npeaks *
self.Registry.npars[self.fittype] + np.sum(self.parinfo.fixed) +
np.sum([x != '' for x in self.parinfo.tied]))
#self.dof = self.includemask.sum()-self.npeaks*self.Registry.npars[self.fittype]-vheight+np.sum(self.parinfo.fixed)
@property
def mask_sliced(self):
""" Sliced (subset) Mask: True means "exclude" """
return self.mask[self.xmin:self.xmax]
def multifit(self, fittype=None, renormalize='auto', annotate=None,
show_components=None, verbose=True, color=None,
guesses=None, parinfo=None, reset_fitspec=True,
use_window_limits=None, use_lmfit=False, plot=True, **kwargs):
"""
Fit multiple gaussians (or other profiles)
Parameters
----------
fittype : str
What function will be fit? fittype must have been Registryed in the
peakbgfitters dict. Uses default ('gaussian') if not specified
renormalize : 'auto' or bool
if 'auto' or True, will attempt to rescale small data (<1e-9) to be
closer to 1 (scales by the median) so that the fit converges better
parinfo : `~parinfo` structure
Guess structure; supercedes ``guesses``
guesses : list or 'moments'
Either a list of guesses matching the number of parameters * the
number of peaks for the model, or 'moments' to fit a single
spectrum with the moments as guesses
"""
if reset_fitspec:
self.setfitspec()
if not self._valid:
raise ValueError("Data are invalid; cannot be fit.")
#if self.fitkwargs.has_key('negamp'): self.fitkwargs.pop('negamp') # We now do this in gaussfitter.py
if fittype is not None:
self.fittype = fittype
bad_kws = ['fittype','plot']
for kw in bad_kws:
if kw in self.fitkwargs:
del self.fitkwargs[kw]
if guesses is not None and parinfo is not None:
raise ValueError("Both guesses and parinfo were specified, "
"but only one of these is allowed.")
if guesses is None:
if parinfo is not None:
guesses = list(parinfo.values)
else:
guesses = list(self.guesses)
elif isinstance(guesses, string_types) and guesses in ('moment', 'moments'):
guesses = self.moments(vheight=False, **kwargs)
else:
guesses = list(guesses) # needs to be mutable, but needs to be a copy!!
if len(guesses) < self.Registry.npars[self.fittype]:
raise ValueError("Too few parameters input. Need at least %i for %s models" % (self.Registry.npars[self.fittype],self.fittype))
self.npeaks = len(guesses)/self.Registry.npars[self.fittype]
self.fitter = self.Registry.multifitters[self.fittype]
self.vheight = False
if self.fitter.vheight:
# Need to reset the parinfo if vheight has previously been set,
# otherwise npars will disagree, which causes problems if
# renormalization happens
self.fitter.vheight = False
self.fitter.npeaks = self.npeaks
self.fitter._make_parinfo(npeaks=self.npeaks)
# add kwargs to fitkwargs
self.fitkwargs.update(kwargs)
if 'renormalize' in self.fitkwargs:
del self.fitkwargs['renormalize']
# if parinfo was specified, we use it and ignore guesses otherwise, we
# make a parinfo so we can test 'scaleable' below
if parinfo is not None:
pinf_for_scaling = parinfo
else:
pinf_for_scaling, _ = self.fitter._make_parinfo(parvalues=guesses,
npeaks=self.npeaks,
**self.fitkwargs)
scalefactor = 1.0
if renormalize in ('auto',True):
datarange = np.nanmax(self.spectofit[self.xmin:self.xmax]) - np.nanmin(self.spectofit[self.xmin:self.xmax])
if abs(datarange) < 1e-9:
scalefactor = np.nanmedian(np.abs(self.spectofit))
if not np.isfinite(scalefactor):
raise ValueError("non-finite scalefactor = {0} encountered.".format(scalefactor))
elif scalefactor == 0:
raise ValueError("scalefactor = {0} encountered, which will result "
"in divide-by-zero errors".format(scalefactor))
log.info("Renormalizing data by factor %e to improve fitting procedure"
% scalefactor)
self.spectofit /= scalefactor
self.errspec /= scalefactor
# this error should be unreachable, but is included as a sanity check
if self.fitter.npeaks * self.fitter.npars != len(pinf_for_scaling):
raise ValueError("Length of parinfo doesn't agree with "
" npeaks * npars = {0}"
.format(self.fitter.npeaks *
self.fitter.npars))
if len(guesses) != len(pinf_for_scaling):
raise ValueError("Length of parinfo doens't match length of guesses")
# zip guesses with parinfo: truncates parinfo if len(parinfo) > len(guesses)
# actually not sure how/when/if this should happen; this might be a bad hack
# revisit with tests!!
for jj,(guess,par) in enumerate(zip(guesses,pinf_for_scaling)):
if par.scaleable:
guesses[jj] /= scalefactor
# if parinfo was passed in, this will change it
# if it was not, it will change only the placeholder
# (becuase we are passing by reference above)
par.value /= scalefactor
par.limits = [lim / scalefactor for lim in par.limits]
log.debug("Rescaled guesses to {0}".format(guesses))
# all fit data must be float64, otherwise the optimizers may take steps
# less than the precision of the data and get stuck
xtofit = self.Spectrum.xarr[self.xmin:self.xmax][~self.mask_sliced].astype('float64')
spectofit = self.spectofit[self.xmin:self.xmax][~self.mask_sliced].astype('float64')
err = self.errspec[self.xmin:self.xmax][~self.mask_sliced].astype('float64')
if np.all(err == 0):
raise ValueError("Errors are all zero. This should not occur and "
"is a bug. (if you set the errors to all zero, "
"they should be overridden and set to 1)")
if parinfo is not None:
self._validate_parinfo(parinfo, mode='fix')
else:
pinf, _ = self.fitter._make_parinfo(parvalues=guesses,
npeaks=self.npeaks,
**self.fitkwargs)
new_guesses = self._validate_parinfo(pinf, 'guesses')
if any((x!=y) for x,y in zip(guesses, new_guesses)):
warn("Guesses have been changed from {0} to {1}"
.format(guesses, new_guesses))
guesses = new_guesses
mpp,model,mpperr,chi2 = self.fitter(xtofit, spectofit, err=err,
npeaks=self.npeaks,
parinfo=parinfo, # the user MUST be allowed to override parinfo.
params=guesses,
use_lmfit=use_lmfit,
**self.fitkwargs)
any_out_of_range = self._validate_parinfo(self.fitter.parinfo, mode='check')
if any(any_out_of_range):
warn("The fitter returned values that are outside the "
"parameter limits. DEBUG INFO: {0}".format(any_out_of_range))
self.spectofit *= scalefactor
self.errspec *= scalefactor
if hasattr(self.fitter.mp,'status'):
self.mpfit_status = models.mpfit_messages[self.fitter.mp.status]
if model is None:
raise ValueError("Model was not set by fitter. Examine your fitter.")
self.chi2 = chi2
self.model = model * scalefactor
self.parinfo = self.fitter.parinfo
# rescale any scaleable parameters
for par in self.parinfo:
if par.scaleable:
par.value *= scalefactor
if par.error is not None:
par.error *= scalefactor
if par.limits is not None:
par.limits = [lim*scalefactor for lim in par.limits]
self.modelpars = self.parinfo.values
self.modelerrs = self.parinfo.errors
self.residuals = spectofit - self.model
if self.Spectrum.plotter.axis is not None and plot:
if color is not None:
kwargs.update({'composite_fit_color':color})
self.plot_fit(annotate=annotate,
show_components=show_components,
use_window_limits=use_window_limits,
**kwargs)
# Re-organize modelerrs so that any parameters that are tied to others inherit the errors of the params they are tied to
if 'tied' in self.fitkwargs:
for ii, element in enumerate(self.fitkwargs['tied']):
if not element.strip():
continue
if '[' in element and ']' in element:
i1 = element.index('[') + 1
i2 = element.index(']')
loc = int(element[i1:i2])
else: # assume lmfit version
varnames = re.compile('([a-zA-Z][a-zA-Z_0-9]*)').search(element).groups()
if not varnames:
continue
elif len(varnames) > 1:
warn("The 'tied' parameter {0} is not simple enough for error propagation".format(element))
continue
else:
varname = varnames[0]
loc = self.parinfo.names.index(varname)
self.modelerrs[ii] = self.modelerrs[loc]
# make sure the full model is populated
self._full_model()
# calculate the number of pixels included in the fit. This should
# *only* be done when fitting, not when selecting data.
# (see self.dof)
self.npix_fitted = self.includemask.sum() - self.mask.sum()
self.history_fitpars()
def refit(self, use_lmfit=False):
""" Redo a fit using the current parinfo as input """
return self.multifit(parinfo=self.parinfo, use_lmfit=use_lmfit,
reset_fitspec=False)
def history_fitpars(self):
if hasattr(self.Spectrum,'header'):
history.write_history(self.Spectrum.header, "SPECFIT: Fitted "
"profile of type %s" % (self.fittype))
history.write_history(self.Spectrum.header, "Chi^2: %g DOF: %i" %
(self.chi2, self.dof))
for par in self.parinfo:
history.write_history(self.Spectrum.header, str(par))
def peakbgfit(self, usemoments=True, annotate=None, vheight=True, height=0,
negamp=None, fittype=None, renormalize='auto', color=None,
use_lmfit=False, show_components=None, debug=False,
use_window_limits=True, guesses=None,
nsigcut_moments=None, plot=True, parinfo=None, **kwargs):
"""
Fit a single peak (plus a background)
Parameters
----------
usemoments : bool
The initial guess will be set by the fitter's 'moments' function
(this overrides 'guesses')
annotate : bool
Make a legend?
vheight : bool
Fit a (constant) background as well as a peak?
height : float
initial guess for background
negamp : bool
If True, assumes amplitude is negative. If False, assumes positive. If
None, can be either.
fittype : bool
What function will be fit? fittype must have been Registryed in the
peakbgfitters dict
renormalize : 'auto' or bool
if 'auto' or True, will attempt to rescale small data (<1e-9) to be
closer to 1 (scales by the median) so that the fit converges better
nsigcut_moments : bool
pass to moment guesser; can do a sigma cut for moment guessing
"""
self.npeaks = 1
self.auto = True
self.setfitspec()
if fittype is not None:
self.fittype=fittype
NP = self.Registry.peakbgfitters[self.fittype].default_npars
if guesses is not None:
log.debug("Using user-specified guesses.")
self.guesses = guesses
if len(guesses) != NP + vheight:
raise ValueError("Invalid guesses specified for single-fitter."
"Expected {0}, got {1}. Perhaps you should "
"use the multifitter (multifit=True)?"
.format(NP+vheight, len(guesses)))
elif usemoments: # this can be done within gaussfit but I want to save them
# use this INDEPENDENT of fittype for now (voigt and gauss get same guesses)
log.debug("Using moment-based guesses.")
moments_f = self.Registry.peakbgfitters[self.fittype].moments
self.guesses = moments_f(self.Spectrum.xarr[self.xmin:self.xmax],
self.spectofit[self.xmin:self.xmax],
vheight=vheight,
negamp=negamp,
nsigcut=nsigcut_moments,
**kwargs)
else:
if negamp:
self.guesses = [height,-1,0,1]
else:
self.guesses = [height,1,0,1]
# If we're fitting anything but a simple Gaussian, we need the length
# of guesses to be right so we pad with appended zeros
# BUT, if the guesses from the moments have the right number of
# parameters, we don't need to do this.
if NP > len(self.guesses):
for ii in xrange(len(self.guesses),NP):
self.guesses += [0.0]
self.fitter = self.Registry.peakbgfitters[self.fittype]
log.debug("n(guesses): %s Guesses: %s vheight: %s " %
(len(self.guesses),self.guesses,vheight))
scalefactor = 1.0
if renormalize in ('auto',True):
datarange = self.spectofit[self.xmin:self.xmax].max() - self.spectofit[self.xmin:self.xmax].min()
if abs(datarange) < 1e-9:
scalefactor = np.median(np.abs(self.spectofit))
log.info("Renormalizing data by factor %e to improve fitting procedure"
% scalefactor)
self.spectofit /= scalefactor
self.errspec /= scalefactor
self.guesses[0] /= scalefactor
if vheight:
self.guesses[1] /= scalefactor
log.debug("Guesses before fit: {0}".format(self.guesses))
if 'debug' in self.fitkwargs:
debug = self.fitkwargs['debug']
del self.fitkwargs['debug']
mpp,model,mpperr,chi2 = self.fitter(
self.Spectrum.xarr[self.xmin:self.xmax],
self.spectofit[self.xmin:self.xmax],
err=self.errspec[self.xmin:self.xmax], vheight=vheight,
params=self.guesses, parinfo=parinfo, debug=debug,
use_lmfit=use_lmfit, **self.fitkwargs)
log.debug("1. Guesses, fits after: {0}, {1}".format(self.guesses, mpp))
self.spectofit *= scalefactor
self.errspec *= scalefactor
if hasattr(self.fitter.mp,'status'):
self.mpfit_status = models.mpfit_messages[self.fitter.mp.status]
self.parinfo = self.fitter.parinfo
if model is None:
raise ValueError("Model was not set by fitter. Examine your fitter.")
self.chi2 = chi2
self.vheight=vheight
if vheight:
self.Spectrum.baseline.order = 0
self.Spectrum.baseline.baselinepars = [mpp[0]*scalefactor] # first item in list form
self.Spectrum.baseline.basespec = self.Spectrum.data*0 + mpp[0]*scalefactor
self.model = model*scalefactor - mpp[0]*scalefactor
# I removed this recently for some reason, but more code depends on it being in place
# Need to figure out *WHY* anything would want an extra parameter
if len(mpp) == self.fitter.npars+1:
mpp = mpp[1:]
else:
self.model = model*scalefactor
self.residuals = self.spectofit[self.xmin:self.xmax] - self.model*scalefactor
self.modelpars = mpp
self.modelerrs = mpperr
# rescale any scaleable parameters
for par in self.parinfo:
if par.scaleable:
par.value = par.value * scalefactor
if par.error is not None:
par.error = par.error * scalefactor
if self.Spectrum.plotter.axis is not None and plot:
if color is not None:
kwargs.update({'composite_fit_color':color})
self.plot_fit(annotate=annotate,
use_window_limits=use_window_limits,
show_components=show_components,
**kwargs)
# make sure the full model is populated
self._full_model(debug=debug)
self.npix_fitted = self.includemask.sum() - self.mask.sum()
log.debug("2. Guesses, fits after vheight removal: {0},{1}"
.format(self.guesses, mpp))
self.history_fitpars()
def _full_model(self, debug=False, **kwargs):
"""
Compute the model for the whole spectrum
"""
self.fullmodel = self.get_full_model(debug=debug,**kwargs)
self.fullresiduals = self.Spectrum.data - self.fullmodel
def get_full_model(self, debug=False,**kwargs):
""" compute the model over the full axis """
return self.get_model(self.Spectrum.xarr, debug=debug,**kwargs)
def get_model(self, xarr, pars=None, debug=False, add_baseline=None):
""" Compute the model over a given axis """
if pars is None:
return self.get_model_frompars(xarr=xarr, pars=self.parinfo,
add_baseline=add_baseline, debug=debug)
else:
return self.get_model_frompars(xarr=xarr, pars=pars,
add_baseline=add_baseline, debug=debug)
def get_model_frompars(self, xarr, pars, debug=False, add_baseline=None):
""" Compute the model over a given axis """
if ((add_baseline is None and (self.Spectrum.baseline.subtracted or self.vheight))
or add_baseline is False):
return self.fitter.n_modelfunc(pars,**self.fitter.modelfunc_kwargs)(xarr)
else:
return (self.fitter.n_modelfunc(pars,
**self.fitter.modelfunc_kwargs)(xarr)
+ self.Spectrum.baseline.get_model(np.arange(xarr.size)))
def plot_model(self, pars, offset=0.0, annotate=False, clear=False, **kwargs):
"""
Plot a model from specified input parameters
(see plot_fit for kwarg specification)
annotate is set to "false" because arbitrary annotations are not yet implemented
"""
# really, plot_fit should be thin on top of plot_model, but that's
# not how I wrote it, so it will have to wait for a refactor
if clear: self.clear()
return self.plot_fit(pars=pars, offset=offset, annotate=False, **kwargs)
#def assess_npeaks(self):
# """
# Attempt to determine whether any of the peaks are unnecessary
# """
# if self.npeaks <= 1:
# return
# npars = self.fitter.npars
# perpeakpars = [self.parinfo.values[ii*npars:(ii+1)*npars] for ii in
# range(self.npeaks)]
# parsets = [((x[0][0],x[1][0]),x[0][1]+x[1][1]) for x in
# itertools.combinations(perpeakpars, self.npeaks-1)]
# parsets = [x
# for y in itertools.combinations(perpeakpars, self.npeaks-1)
# for x in y]
# chi2_without = [(self.spectofit[self.xmin:self.xmax] -
# self.get_model_frompars(self.xarr, self.pars[ii*npars:
def plot_fit(self, xarr=None, annotate=None, show_components=None,
composite_fit_color='red', lw=0.5,
composite_lw=0.75, pars=None, offset=None,
use_window_limits=None, show_hyperfine_components=None,
plotkwargs={}, **kwargs):
"""
Plot the fit. Must have fitted something before calling this!
It will be automatically called whenever a spectrum is fit (assuming an
axis for plotting exists)
kwargs are passed to the fitter's components attribute
Parameters
----------
xarr : None
If none, will use the spectrum's xarr. Otherwise, plot the
specified xarr. This is useful if you want to plot a well-sampled
model when the input spectrum is undersampled
annotate : None or bool
Annotate the plot? If not specified, defaults to self.autoannotate
show_components : None or bool
show_hyperfine_components : None or bool
Show the individual gaussian components overlaid on the composite fit
use_window_limits : None or bool
If False, will reset the window to include the whole spectrum. If
True, leaves the window as is. Defaults to self.use_window_limits
if None.
pars : parinfo
A parinfo structure or list of model parameters. If none, uses
best-fit
offset : None or float
Y-offset. If none, uses the default self.Spectrum.plotter offset, otherwise,
uses the specified float.
"""
#if self.Spectrum.baseline.subtracted is False and self.Spectrum.baseline.basespec is not None:
# # don't display baseline if it's included in the fit
# plot_offset = self.Spectrum.plotter.offset+(self.Spectrum.baseline.basespec * (~self.vheight))
#else:
if offset is None:
plot_offset = self.Spectrum.plotter.offset
else:
plot_offset = offset
if xarr is None:
xarr = self.Spectrum.xarr
if pars is not None:
model = self.get_model_frompars(xarr, pars)
else:
self._full_model()
model = self.fullmodel
self.modelplot += self.Spectrum.plotter.axis.plot(xarr,
model + plot_offset,
color=composite_fit_color,
linewidth=lw,
**plotkwargs)
# Plot components
if show_components or show_hyperfine_components:
self.plot_components(xarr=xarr,
show_hyperfine_components=show_hyperfine_components,
pars=pars, plotkwargs=plotkwargs)
uwl = use_window_limits if use_window_limits is not None else self.use_window_limits
# plotter kwargs are kwargs for the Spectrum.plotter,
# whereas plotkwargs are for the matplotlib plot command
plotterkwargs = {}
plotterkwargs.update(self.Spectrum.plotter.plotkwargs)
plotterkwargs['use_window_limits'] = uwl
self.Spectrum.plotter.reset_limits(**plotterkwargs)
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
if annotate or ((annotate is None) and self.autoannotate):
self.annotate()
if self.vheight: self.Spectrum.baseline.annotate()
def plot_components(self, xarr=None, show_hyperfine_components=None,
component_yoffset=0.0, component_lw=0.75, pars=None,
component_fit_color='blue', component_kwargs={},
add_baseline=False, plotkwargs={}, **kwargs):
"""
Overplot the individual components of a fit
Parameters
----------
xarr : None
If none, will use the spectrum's xarr. Otherwise, plot the
specified xarr. This is useful if you want to plot a well-sampled
model when the input spectrum is undersampled
show_hyperfine_components : None | bool
Keyword argument to pass to component codes; determines whether to return
individual (e.g., hyperfine) components of a composite model
component_yoffset : float
Vertical (y-direction) offset to add to the components when plotting
component_lw : float
Line width of component lines
component_fitcolor : color
Color of component lines
component_kwargs : dict
Keyword arguments to pass to the fitter.components method
add_baseline : bool
Add the fit to the components before plotting. Makes sense to use
if self.Spectrum.baseline.subtracted == False
pars : parinfo
A parinfo structure or list of model parameters. If none, uses
best-fit
"""
plot_offset = self.Spectrum.plotter.offset
if xarr is None:
xarr = self.Spectrum.xarr
if show_hyperfine_components is not None:
component_kwargs['return_hyperfine_components'] = show_hyperfine_components
self._component_kwargs = component_kwargs
if pars is None:
pars = self.modelpars
self.modelcomponents = self.fitter.components(xarr=xarr, pars=pars, **component_kwargs)
yoffset = plot_offset + component_yoffset
if add_baseline:
yoffset += self.Spectrum.baseline.basespec
for data in self.modelcomponents:
# can have multidimensional components
if len(data.shape) > 1:
for d in data:
self._plotted_components += self.Spectrum.plotter.axis.plot(xarr,
d + yoffset,
color=component_fit_color, linewidth=component_lw, **plotkwargs)
else:
self._plotted_components += self.Spectrum.plotter.axis.plot(xarr,
data + yoffset,
color=component_fit_color, linewidth=component_lw, **plotkwargs)
def fullsizemodel(self):
"""
If the model was fit to a sub-region of the spectrum, expand it (with
zeros wherever the model was not defined) to fill the spectrum.
Examples
--------
>>> noise = np.random.randn(100)
>>> xarr = np.linspace(-50,50,100)
>>> signal = np.exp(-(xarr-5)**2/(2*3.**2))
>>> sp = pyspeckit.Spectrum(data=noise + signal, xarr=xarr, xarrkwargs={'units':'km/s'})
>>> sp.specfit(xmin=-25,xmax=25)
>>> sp.specfit.model.shape
(48,)
>>> sp.specfit.fullsizemodel()
>>> sp.specfit.model.shape
(100,)
"""
if self.model.shape != self.Spectrum.data.shape:
temp = np.zeros(self.Spectrum.data.shape)
temp[self.xmin:self.xmax] = self.model
self.model = temp
self.residuals = self.spectofit - self.model
self.selectregion(reset=True)
def plotresiduals(self, fig=2, axis=None, clear=True, color='k',
linewidth=0.5, drawstyle='steps-mid', yoffset=0.0,
label=True, pars=None, zeroline=None,
set_limits=True, **kwargs):
"""
Plot residuals of the fit. Specify a figure or
axis; defaults to figure(2).
Parameters
----------
fig : int
Figure number. Overridden by axis
axis : axis
The axis to plot on
pars : None or parlist
If set, the residuals will be computed for the input parameters
zeroline : bool or None
Plot the "zero" line through the center of the residuals. If None,
defaults to "True if yoffset!=0, False otherwise"
kwargs are passed to matplotlib plot
"""
self._full_model(pars=pars)
if axis is None:
if isinstance(fig,int):
fig=matplotlib.pyplot.figure(fig)
self.residualaxis = matplotlib.pyplot.gca()
if clear:
self.residualaxis.clear()
else:
self.residualaxis = axis
if clear:
self.residualaxis.clear()
self.residualplot = self.residualaxis.plot(self.Spectrum.xarr,
self.fullresiduals+yoffset,
drawstyle=drawstyle,
linewidth=linewidth,
color=color, **kwargs)
if zeroline or (zeroline is None and yoffset != 0):
self.residualplot += self.residualaxis.plot(self.Spectrum.xarr,
(np.zeros_like(self.Spectrum.xarr.value)+yoffset),
linestyle='--',
color='k',
alpha=0.5)
if set_limits:
if ((self.Spectrum.plotter.xmin is not None) and
(self.Spectrum.plotter.xmax is not None)):
self.residualaxis.set_xlim(self.Spectrum.plotter.xmin.value,
self.Spectrum.plotter.xmax.value)
if ((self.Spectrum.plotter.ymin is not None) and
(self.Spectrum.plotter.ymax is not None)):
self.residualaxis.set_ylim(self.Spectrum.plotter.ymin,
self.Spectrum.plotter.ymax)
if label:
self.residualaxis.set_xlabel(self.Spectrum.plotter.xlabel)
self.residualaxis.set_ylabel(self.Spectrum.plotter.ylabel)
self.residualaxis.set_title("Residuals")
if self.Spectrum.plotter.autorefresh:
self.residualaxis.figure.canvas.draw()
def annotate(self,loc='upper right',labelspacing=0.25, markerscale=0.01,
borderpad=0.1, handlelength=0.1, handletextpad=0.1,
fontsize=10,
frameon=False, chi2=None, optimal_chi2_kwargs={}, **kwargs):
"""
Add a legend to the plot showing the fitted parameters
_clearlegend() will remove the legend
chi2 : {True or 'reduced' or 'optimal' or 'allthree'}
kwargs passed to legend
"""
self._clearlegend()
pl = matplotlib.collections.CircleCollection([0],edgecolors=['k'])
if hasattr(self.fitter,'annotations'):
self._annotation_labels = self.fitter.annotations()
else:
raise Exception("Fitter %s has no annotations." % self.fitter)
#xtypename = units.unit_type_dict[self.Spectrum.xarr.xtype]
xcharconv = units.SmartCaseNoSpaceDict({u.Hz.physical_type:'\\nu',
u.m.physical_type:'\\lambda',
(u.km/u.s).physical_type:'v',
'pixels':'x',
u.dimensionless_unscaled:'x',
'dimensionless':'x',
})
try:
xchar = xcharconv[self.Spectrum.xarr.unit.physical_type]
except AttributeError:
unit_key = self.Spectrum.xarr.unit
xchar = xcharconv[u.Unit(unit_key).physical_type]
self._annotation_labels = [L.replace('x',xchar) if L[1]=='x' else L for
L in self._annotation_labels]
if chi2 is not None:
chi2n_label = '$\\chi^2/\\nu = %0.2g$' % (self.chi2/self.dof)
chi2opt_label = '$\\chi^2_o/\\nu = %0.2g$' % self.optimal_chi2(**optimal_chi2_kwargs)
chi2_label = '$\\chi^2 = %0.2g$' % self.chi2
if chi2 == 'allthree':
self._annotation_labels.append("\n".join([chi2n_label,
chi2_label,
chi2opt_label]))
elif chi2 == 'reduced':
self._annotation_labels.append(chi2n_label)
elif chi2 == 'optimal':
self._annotation_labels.append(chi2opt_label)
else:
self._annotation_labels.append(chi2_label)
if self.Spectrum.plotter.axis:
try:
self.fitleg = self.Spectrum.plotter.axis.legend(
tuple([pl]*len(self._annotation_labels)),
self._annotation_labels, loc=loc, markerscale=markerscale,
borderpad=borderpad, handlelength=handlelength,
handletextpad=handletextpad, labelspacing=labelspacing,
frameon=frameon, fontsize=fontsize, **kwargs)
self.Spectrum.plotter.axis.add_artist(self.fitleg)
except TypeError as ex:
print("Error {0} was raised, which may indicate an outdated mpl version".format(ex))
try:
self.fitleg.set_draggable(True)
except AttributeError:
# wrong version and/or non-interactive backend
pass
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
def print_fit(self, print_baseline=True, **kwargs):
"""
Print the best-fit parameters to the command line
"""
if self.Spectrum.baseline.baselinepars is not None and print_baseline:
print("Baseline: " + " + ".join(["%12g x^%i" % (x,i) for i,x in enumerate(self.Spectrum.baseline.baselinepars[::-1])]))
for i,p in enumerate(self.parinfo):
print("%15s: %12g +/- %12g" % (p['parname'],p['value'],p['error']))
def clear(self, legend=True, components=True):
"""
Remove the fitted model from the plot
Also removes the legend by default
"""
if self.Spectrum.plotter.axis is not None:
for p in self.modelplot:
p.set_visible(False)
if legend:
self._clearlegend()
if components:
self._clearcomponents()
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
# Empty the modelplot array to free memory
self.modelplot = []
# remove residuals from self if they're there.
if hasattr(self,'residualplot'):
for L in self.residualplot:
if L in self.Spectrum.plotter.axis.lines:
self.Spectrum.plotter.axis.lines.remove(L)
def _clearcomponents(self):
for pc in self._plotted_components:
pc.set_visible(False)
if pc in self.Spectrum.plotter.axis.lines:
self.Spectrum.plotter.axis.lines.remove(pc)
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
# Empty the plotted components array to free memory
self._plotted_components = []
def _clearlegend(self):
"""
Remove the legend from the plot window
"""
axis = self.Spectrum.plotter.axis
if axis and axis.legend_ == self.fitleg:
axis.legend_ = None
if axis and self.fitleg is not None:
# don't remove fitleg unless it's in the current axis
# self.fitleg.set_visible(False)
if self.fitleg in axis.artists:
axis.artists.remove(self.fitleg)
if self.Spectrum.plotter.autorefresh:
self.Spectrum.plotter.refresh()
def savefit(self):
"""
Save the fit parameters from a Gaussian fit to the FITS header
.. todo::
THESE SHOULD BE WRITTEN FOR EACH TYPE OF MODEL TO BE FIT
"""
if self.modelpars is not None and hasattr(self.Spectrum,'header'):
for ii,p in enumerate(self.modelpars):
try:
if ii % 3 == 0:
self.Spectrum.header['AMP%1i' % (ii/3)] = (p,"Gaussian best fit amplitude #%i" % (ii/3))
elif ii % 3 == 1:
self.Spectrum.header['CEN%1i' % (ii/3)] = (p,"Gaussian best fit center #%i" % (ii/3))
elif ii % 3 == 2:
self.Spectrum.header['WID%1i' % (ii/3)] = (p,"Gaussian best fit width #%i" % (ii/3))
except ValueError as ex:
log.info("Failed to save fit to header: {0}".format(ex))
def downsample(self,factor):
"""
Downsample the model spectrum (and the spectofit spectra)
This should only be done when Spectrum.smooth is called
"""
if self.model is not None:
self.model = self.model[::factor]
if self.residuals is not None:
self.residuals = self.residuals[::factor]
self.spectofit = self.spectofit[::factor]
self.errspec = self.errspec[::factor]
self.includemask = self.includemask[::factor]
def crop(self,x1pix,x2pix):
"""
When spectrum.crop is called, this must be too
"""
if self.model is not None:
self.model = self.model[x1pix:x2pix]
if hasattr(self,'fullmodel'):
self.fullmodel = self.fullmodel[x1pix:x2pix]
self.includemask = self.includemask[x1pix:x2pix]
self.setfitspec()
def integral(self, analytic=False, direct=False, threshold='auto',
integration_limits=None, integration_limit_units='pixels',
return_error=False, **kwargs):
"""
Return the integral of the fitted spectrum
Parameters
----------
analytic : bool
Return the analytic integral of the fitted function?
.. WARNING:: This approach is only implemented for some models
.. todo:: Implement error propagation for this approach
direct : bool
Return the integral of the *spectrum* (as opposed to the *fit*)
over a range defined by the `integration_limits` if specified or
`threshold` otherwise
threshold : 'auto' or 'error' or float
Determines what data to be included in the integral based off of where
the model is greater than this number
If 'auto', the threshold will be set to peak_fraction * the peak
model value.
If 'error', uses the error spectrum as the threshold
See `self.get_model_xlimits` for details
integration_limits : None or 2-tuple
Manually specify the limits in `integration_limit_units` units
return_error : bool
Return the error on the integral if set.
The error computed by
sigma = sqrt(sum(sigma_i^2)) * dx
kwargs :
passed to `self.fitter.integral` if ``not(direct)``
Returns
-------
np.scalar or np.ndarray with the integral or integral & error
"""
if analytic:
return self.fitter.analytic_integral(modelpars=self.parinfo.values)
xmin,xmax = self.get_model_xlimits(units='pixels', threshold=threshold)
if integration_limits is None:
integration_limits = [xmin,xmax]
integration_limits = [
self.Spectrum.xarr.x_to_pix(x,xval_units=integration_limit_units)
for x in integration_limits]
if xmax - xmin > 1: # can only get cdelt if there's more than 1 pixel
dx = self.Spectrum.xarr[xmin:xmax].cdelt().value
else:
dx = None
if dx is None:
#dx = np.abs(np.concatenate([np.diff(self.Spectrum.xarr),[0]]))
#warn("Irregular X-axis. The last pixel is ignored.")
self.Spectrum.xarr.make_dxarr()
dx = self.Spectrum.xarr.dxarr.value
else:
# shouldn't shape be a 'property'?
dx = np.repeat(np.abs(dx), self.Spectrum.shape)
if direct:
integrand = self.Spectrum.data[xmin:xmax]
if not self.Spectrum.baseline.subtracted:
integrand -= self.Spectrum.baseline.basespec[xmin:xmax]
integ = (integrand * dx[xmin:xmax]).sum()
if return_error:
# compute error assuming a "known mean" (not a sample mean). If sample mean, multiply
# by sqrt(len(dx)/(len(dx)-1)) (which should be very near 1)
error = np.sqrt((dx[xmin:xmax] * self.Spectrum.error[xmin:xmax]**2).sum() / dx[xmin:xmax].sum())
return np.array([integ,error])
else:
return integ
#OK = np.abs( fullmodel ) > threshold
#integ = (self.spectofit[OK] * dx[OK]).sum()
#error = np.sqrt((self.errspec[OK]**2 * dx[OK]).sum()/dx[OK].sum())
else:
if not hasattr(self.fitter,'integral'):
raise AttributeError("The fitter %s does not have an integral implemented" % self.fittype)
# the model considered here must NOT include the baseline!
# if it does, you'll get the integral of the continuum
#fullmodel = self.get_full_model(add_baseline=False)
if self.Spectrum.xarr.cdelt() is not None:
dx = np.median(dx)
integ = self.fitter.integral(self.modelpars, dx=dx, **kwargs)
if return_error:
if mycfg.WARN:
warn("WARNING: The computation of the error "
"on the integral is not obviously "
"correct or robust... it's just a guess.")
OK = self.model_mask(threshold=threshold, add_baseline=False)
error = np.sqrt((self.errspec[OK]**2).sum()) * dx
#raise NotImplementedError("We haven't written up correct error estimation for integrals of fits")
else:
integ = 0
error = 0
warn("An analytic integal could not be computed because the X-axis is irregular. Try direct=True when integrating, or find a way to linearize the X-axis")
if return_error:
return integ,error
else:
return integ
def model_mask(self, **kwargs):
"""
Get a mask (boolean array) of the region where the fitted model is
significant
Parameters
----------
threshold : 'auto' or 'error' or float
The threshold to compare the model values to for selecting the mask
region.
* auto: uses `peak_fraction` times the model peak
* error: use the spectrum error
* float: any floating point number as an absolute threshold
peak_fraction : float
Parameter used if ``threshold=='auto'`` to determine fraction of
model peak to set threshold at
add_baseline : bool
Add the fitted baseline to the model before comparing to threshold?
Returns
-------
mask : `~numpy.ndarray`
A boolean mask array with the same size as the spectrum, set to
``True`` where the fitted model has values above a specified
threshold
"""
return self._compare_to_threshold(**kwargs)
def _compare_to_threshold(self, threshold='auto', peak_fraction=0.01,
add_baseline=False):
"""
Identify pixels that are above some threshold
"""
model = self.get_full_model(add_baseline=add_baseline)
# auto-set threshold from some fraction of the model peak
if threshold=='auto':
threshold = peak_fraction * np.abs(model).max()
elif threshold=='error':
threshold = self.errspec
OK = np.abs(model) > threshold
return OK
def get_model_xlimits(self, threshold='auto', peak_fraction=0.01,
add_baseline=False, unit='pixels', units=None):
"""
Return the x positions of the first and last points at which the model
is above some threshold
Parameters
----------
threshold : 'auto' or 'error' or float
If 'auto', the threshold will be set to peak_fraction * the peak
model value.
If 'error', uses the error spectrum as the threshold
peak_fraction : float
ignored unless threshold == 'auto'
add_baseline : bool
Include the baseline when computing whether the model is above the
threshold? default FALSE. Passed to get_full_model.
units : str
A valid unit type, e.g. 'pixels' or 'angstroms'
"""
OK = self._compare_to_threshold(threshold=threshold,
peak_fraction=peak_fraction,
add_baseline=add_baseline)
# find the first & last "True" values
xpixmin = OK.argmax()
xpixmax = len(OK) - OK[::-1].argmax() - 1
if units is not None and unit =='pixels':
# todo: deprecate
unit = units
if unit == 'pixels':
return [xpixmin,xpixmax]
else:
return self.Spectrum.xarr[[xpixmin,xpixmax]].as_unit(units)
def shift_pars(self, frame=None):
"""
Shift the velocity / wavelength / frequency of the fitted parameters
into a different frame
Right now this only takes care of redshift and only if redshift is defined.
It should be extended to do other things later
"""
for ii,pi in enumerate(self.parinfo):
for partype in ('shift','offset','velo'):
if partype in str.lower(pi['parname']):
if frame is not None:
self.modelpars[ii] = self.Spectrum.xarr.x_in_frame(self.modelpars[ii], frame)
def moments(self, fittype=None, **kwargs):
"""
Return the moments
see the :mod:`~pyspeckit.spectrum.moments` module
Parameters
----------
fittype : None or str
The registered fit type to use for moment computation
"""
if fittype is None:
fittype = self.fittype
return list(self.Registry.multifitters[fittype].moments(
self.Spectrum.xarr[self.xmin:self.xmax],
self.spectofit[self.xmin:self.xmax], **kwargs))
def button3action(self, event, debug=False, nwidths=1):
"""
Disconnect the interactiveness
Perform the fit (or die trying)
Hide the guesses
"""
if self.nclicks_b1 == 0:
# there has been no selection
# therefore, we assume *everything* is selected
self.includemask[:] = True
self.Spectrum.plotter.figure.canvas.mpl_disconnect(self.click)
self.Spectrum.plotter.figure.canvas.mpl_disconnect(self.keyclick)
if self.npeaks > 0:
if hasattr(self, 'fitter'):
self.guesses = self.fitter.parse_3par_guesses(self.guesses)
else:
# default fitter is a Gaussian, which has 3 parameters
if len(self.guesses) % 3 != 0:
log.error("Default fitter is Gaussian, and there were "
"{0} guess parameters, which is not a "
"multiple of 3.".format(len(self.guesses)))
log.info("{0} Guesses : {1} X channel range: {2}-{3}"
.format(len(self.guesses), self.guesses, self.xmin,
self.xmax))
self.multifit(use_window_limits=True)
for p in self.button2plot + self.button1plot:
p.set_visible(False)
# disconnect interactive window (and more importantly, reconnect to
# original interactive cmds)
self.clear_all_connections()
def copy(self, parent=None, registry=None):
"""
Create a copy of the spectral fit - includes copies of the _full_model,
the registry, the fitter, parinfo, modelpars, modelerrs, model, npeaks
Parameters
----------
parent : `pyspeckit.classes.Spectrum`
A `~Spectrum` instance that is the parent of the specfit
instance. This needs to be specified at some point, but defaults
to None to prevent overwriting a previous plot.
"""
if registry is None:
if hasattr(parent, 'Registry'):
registry = parent.Registry
else:
# only make a copy if we're not already given a specific registry
# to inherit
copy.deepcopy(self.Registry)
newspecfit = Specfit(parent, Registry=registry)
newspecfit.parinfo = copy.deepcopy(self.parinfo)
if newspecfit.parinfo is None:
newspecfit.modelpars = None
newspecfit.modelerrs = None
else:
newspecfit.modelpars = newspecfit.parinfo.values
newspecfit.modelerrs = newspecfit.parinfo.errors
newspecfit.includemask = self.includemask.copy()
newspecfit.model = copy.copy(self.model)
newspecfit.npeaks = self.npeaks
if hasattr(self,'fitter'):
newspecfit.fitter = copy.deepcopy(self.fitter)
newspecfit.fitter.parinfo = newspecfit.parinfo
if hasattr(self,'fullmodel'):
newspecfit._full_model()
# this is ridiculous, absurd, and infuriating...
newspecfit.button2action = newspecfit.guesspeakwidth
if parent is not None:
newspecfit.Spectrum.plotter = parent.plotter
else:
newspecfit.Spectrum.plotter = None
return newspecfit
def __copy__(self):
return self.copy(parent=self.Spectrum)
def add_sliders(self, parlimitdict=None, **kwargs):
"""
Add a Sliders window in a new figure appropriately titled
Parameters
----------
parlimitdict: dict
Each parameter needs to have displayed limits; these are set in
min-max pairs. If this is left empty, the widget will try to guess
at reasonable limits, but the guessing is not very sophisticated
yet.
.. todo:: Add a button in the navbar that makes this window pop up
http://stackoverflow.com/questions/4740988/add-new-navigate-modes-in-matplotlib
"""
if parlimitdict is None:
# try to create a reasonable parlimit dict
parlimitdict = {}
for param in self.parinfo:
if not param.parname in parlimitdict:
if any( (x in param['parname'].lower() for x in ('shift','xoff')) ):
lower, upper = (self.Spectrum.xarr[self.includemask].min().value,
self.Spectrum.xarr[self.includemask].max().value)
elif any( (x in param['parname'].lower() for x in ('width','fwhm')) ):
xvalrange = (self.Spectrum.xarr[self.includemask].max().value -
self.Spectrum.xarr[self.includemask].min().value)
lower,upper = (0,xvalrange)
elif any( (x in param['parname'].lower() for x in ('amp','peak','height')) ):
datarange = self.spectofit.max() - self.spectofit.min()
lower,upper = (param['value']-datarange, param['value']+datarange)
else:
lower = param['value'] * 0.1
upper = param['value'] * 10
# override guesses with limits
if param.limited[0]:
# nextafter -> next representable float
lower = np.nextafter(param.limits[0], param.limits[0]+1)
if param.limited[1]:
upper = np.nextafter(param.limits[1], param.limits[1]-1)
parlimitdict[param.parname] = (lower,upper)
if hasattr(self,'fitter'):
self.SliderWidget = widgets.FitterSliders(self,
self.Spectrum.plotter.figure,
npars=self.fitter.npars,
parlimitdict=parlimitdict,
**kwargs)
else:
log.error("Must have a fitter instantiated before creating sliders")
def optimal_chi2(self, reduced=True, threshold='error', **kwargs):
"""
Compute an "optimal" :math:`\chi^2` statistic, i.e. one in which only pixels in
which the model is statistically significant are included
Parameters
----------
reduced : bool
Return the reduced :math:`\chi^2`
threshold : 'auto' or 'error' or float
If 'auto', the threshold will be set to peak_fraction * the peak
model value, where peak_fraction is a kwarg passed to
get_model_xlimits reflecting the fraction of the model peak
to consider significant
If 'error', uses the error spectrum as the threshold
kwargs : dict
passed to :meth:`get_model_xlimits`
Returns
-------
chi2 : float
:math:`\chi^2` statistic or reduced :math:`\chi^2` statistic (:math:`\chi^2/n`)
.. math::
\chi^2 = \sum( (d_i - m_i)^2 / e_i^2 )
"""
modelmask = self._compare_to_threshold(threshold=threshold, **kwargs)
chi2 = np.sum((self.fullresiduals[modelmask]/self.errspec[modelmask])**2)
if reduced:
# vheight included here or not? assuming it should be...
return chi2/self.dof
else:
return chi2
def get_pymc(self, **kwargs):
"""
Create a pymc MCMC sampler from the current fitter. Defaults to 'uninformative' priors
`kwargs` are passed to the fitter's get_pymc method, with parameters defined below.
Parameters
----------
data : np.ndarray
error : np.ndarray
use_fitted_values : bool
Each parameter with a measured error will have a prior defined by
the Normal distribution with sigma = par.error and mean = par.value
Examples
--------
>>> x = pyspeckit.units.SpectroscopicAxis(np.linspace(-10,10,50), unit='km/s')
>>> e = np.random.randn(50)
>>> d = np.exp(-np.asarray(x)**2/2.)*5 + e
>>> sp = pyspeckit.Spectrum(data=d, xarr=x, error=np.ones(50)*e.std())
>>> sp.specfit(fittype='gaussian')
>>> MCuninformed = sp.specfit.get_pymc()
>>> MCwithpriors = sp.specfit.get_pymc(use_fitted_values=True)
>>> MCuninformed.sample(1000)
>>> MCuninformed.stats()['AMPLITUDE0']
>>> # WARNING: This will fail because width cannot be set <0, but it may randomly reach that...
>>> # How do you define a likelihood distribution with a lower limit?!
>>> MCwithpriors.sample(1000)
>>> MCwithpriors.stats()['AMPLITUDE0']
"""
if hasattr(self.fitter,'get_pymc'):
return self.fitter.get_pymc(self.Spectrum.xarr, self.spectofit,
self.errspec, **kwargs)
else:
raise AttributeError("Fitter %r does not have pymc implemented." % self.fitter)
def get_emcee(self, nwalkers=None, **kwargs):
"""
Get an emcee walker ensemble for the data & model using the current model type
Parameters
----------
data : np.ndarray
error : np.ndarray
nwalkers : int
Number of walkers to use. Defaults to 2 * self.fitters.npars
Examples
--------
>>> import pyspeckit
>>> x = pyspeckit.units.SpectroscopicAxis(np.linspace(-10,10,50), unit='km/s')
>>> e = np.random.randn(50)
>>> d = np.exp(-np.asarray(x)**2/2.)*5 + e
>>> sp = pyspeckit.Spectrum(data=d, xarr=x, error=np.ones(50)*e.std())
>>> sp.specfit(fittype='gaussian')
>>> emcee_ensemble = sp.specfit.get_emcee()
>>> p0 = emcee_ensemble.p0 * (np.random.randn(*emcee_ensemble.p0.shape) / 10. + 1.0)
>>> pos,logprob,state = emcee_ensemble.run_mcmc(p0,100)
"""
import emcee
if hasattr(self.fitter,'get_emcee_ensemblesampler'):
nwalkers = (self.fitter.npars * self.fitter.npeaks + self.fitter.vheight) * 2
emc = self.fitter.get_emcee_ensemblesampler(self.Spectrum.xarr,
self.spectofit,
self.errspec, nwalkers)
emc.nwalkers = nwalkers
emc.p0 = np.array([self.parinfo.values] * emc.nwalkers)
return emc
def get_components(self, **kwargs):
"""
If a model has been fitted, return the components of the model
Parameters
----------
kwargs are passed to self.fitter.components
"""
if self.modelpars is not None:
self.modelcomponents = self.fitter.components(self.Spectrum.xarr,
self.modelpars, **kwargs)
return self.modelcomponents
def measure_approximate_fwhm(self, threshold='error', emission=True,
interpolate_factor=1, plot=False,
grow_threshold=2, **kwargs):
"""
Measure the FWHM of a fitted line
This procedure is designed for multi-component *blended* lines; if the
true FWHM is known (i.e., the line is well-represented by a single
gauss/voigt/lorentz profile), use that instead. Do not use this for
multiple independently peaked profiles.
This MUST be run AFTER a fit has been performed!
Parameters
----------
threshold : 'error' | float
The threshold above which the spectrum will be interpreted as part
of the line. This threshold is applied to the *model*. If it is
'noise', self.error will be used.
emission : bool
Is the line absorption or emission?
interpolate_factor : integer
Magnification factor for determining sub-pixel FWHM. If used,
"zooms-in" by using linear interpolation within the line region
plot : bool
Overplot a line at the FWHM indicating the FWHM. kwargs
are passed to matplotlib.plot
grow_threshold : int
Minimum number of valid points. If the total # of points above the
threshold is <= to this number, it will be grown by 1 pixel on each side
Returns
-------
The approximated FWHM, if it can be computed
If there are <= 2 valid pixels, a fwhm cannot be computed
"""
if threshold == 'error':
threshold = self.Spectrum.error
if np.all(self.Spectrum.error==0):
threshold = 1e-3*self.Spectrum.data.max()
if self.Spectrum.baseline.subtracted is False:
data = self.Spectrum.data - self.Spectrum.baseline.basespec
else:
data = self.Spectrum.data * 1
model = self.get_full_model(add_baseline=False)
if np.count_nonzero(model) == 0:
raise ValueError("The model is all zeros. No FWHM can be "
"computed.")
# can modify inplace because data is a copy of self.Spectrum.data
if not emission:
data *= -1
model *= -1
line_region = model > threshold
if line_region.sum() == 0:
raise ValueError("No valid data included in FWHM computation")
if line_region.sum() <= grow_threshold:
line_region[line_region.argmax()-1:line_region.argmax()+1] = True
reverse_argmax = len(line_region) - line_region.argmax() - 1
line_region[reverse_argmax-1:reverse_argmax+1] = True
log.warning("Fewer than {0} pixels were identified as part of the fit."
" To enable statistical measurements, the range has been"
" expanded by 2 pixels including some regions below the"
" threshold.".format(grow_threshold))
# determine peak (because data is neg if absorption, always use max)
peak = data[line_region].max()
xarr = self.Spectrum.xarr[line_region]
xarr.make_dxarr()
cd = xarr.dxarr.min()
if interpolate_factor > 1:
newxarr = units.SpectroscopicAxis(np.arange(xarr.min().value-cd.value,
xarr.max().value+cd.value,
cd.value /
float(interpolate_factor)
),
unit=xarr.unit,
equivalencies=xarr.equivalencies
)
# load the metadata from xarr
# newxarr._update_from(xarr)
data = np.interp(newxarr,xarr,data[line_region])
xarr = newxarr
else:
data = data[line_region]
# need the peak location so we can find left/right half-max locations
peakloc = data.argmax()
hm_left = np.argmin(np.abs(data[:peakloc]-peak/2.))
hm_right = np.argmin(np.abs(data[peakloc:]-peak/2.)) + peakloc
deltax = xarr[hm_right]-xarr[hm_left]
if plot:
# for plotting, use a negative if absorption
sign = 1 if emission else -1
# shift with baseline if baseline is plotted
if not self.Spectrum.baseline.subtracted:
basespec = self.Spectrum.baseline.get_model(xarr)
yoffleft = self.Spectrum.plotter.offset + basespec[hm_left]
yoffright = self.Spectrum.plotter.offset + basespec[hm_right]
else:
yoffleft = yoffright = self.Spectrum.plotter.offset
log.debug("peak={2} yoffleft={0} yoffright={1}".format(yoffleft, yoffright, peak))
log.debug("hm_left={0} hm_right={1} xarr[hm_left]={2} xarr[hm_right]={3}".format(hm_left, hm_right, xarr[hm_left], xarr[hm_right]))
self.Spectrum.plotter.axis.plot([xarr[hm_right].value,
xarr[hm_left].value],
np.array([sign*peak/2.+yoffleft,
sign*peak/2.+yoffright]),
**kwargs)
self.Spectrum.plotter.refresh()
# debug print hm_left,hm_right,"FWHM: ",deltax
# debug self.Spectrum.plotter.axis.plot(xarr,data,color='magenta')
# debug self.Spectrum.plotter.refresh()
# debug raise TheDead
return deltax
def _validate_parinfo(self, parinfo, mode='fix'):
assert mode in ('fix','raise','check','guesses')
any_out_of_range = []
for param in parinfo:
if (param.limited[0] and (param.value < param.limits[0])):
if (
|
np.allclose(param.value, param.limits[0])
|
numpy.allclose
|
import matplotlib.pyplot as plt
import numpy as np
def full(resolution):
i = 0
indexes_array = np.zeros((resolution * resolution, 2))
for j in range(resolution):
for k in range(resolution):
indexes_array[i] =
|
np.array([j, k])
|
numpy.array
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
GOAL
Fig. 5: Plot Arctic sea-ice area (10^6 km^2), computed via compute_area.py
Fig. 6: Plot Arctic sea-ice volume (10^3 km^3), computed via compute_volume.py
PROGRAMMER
<NAME>
LAST UPDATE
17/11/2020
'''
# Standard libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
# Options
save_fig = True
save_var = False
# Working directories
dir_input = '/nobackup/rossby24/proj/rossby/joint_exp/oseaice/'
dir_D000 = dir_input + 'post-proc/D000/'
dir_D012 = dir_input + 'post-proc/D012/'
dir_D013 = dir_input + 'post-proc/D013/'
dir_D014 = dir_input + 'post-proc/D014/'
dir_D015 = dir_input + 'post-proc/D015/'
dir_D016 = dir_input + 'post-proc/D016/'
dir_D017 = dir_input + 'post-proc/D017/'
dir_D018 = dir_input + 'post-proc/D018/'
dir_D019 = dir_input + 'post-proc/D019/'
dir_D020 = dir_input + 'post-proc/D020/'
dir_D021 = dir_input + 'post-proc/D021/'
dir_D022 = dir_input + 'post-proc/D022/'
dir_D023 = dir_input + 'post-proc/D023/'
dir_D024 = dir_input + 'post-proc/D024/'
dir_D025 = dir_input + 'post-proc/D025/'
dir_D027 = dir_input + 'post-proc/D027/'
dir_D028 = dir_input + 'post-proc/D028/'
dir_D029 = dir_input + 'post-proc/D029/'
dir_D030 = dir_input + 'post-proc/D030/'
dir_piomas = dir_input + 'obs/'
dir_fig = dir_input + 'OSeaIce_Paper/'
# Function to retrieve monthly mean and compute seasonal cycle
def compute_monthly(nm,nmy,var):
nyears = int(nm / nmy)
var_mon = np.zeros((nmy,nyears))
var_ym = np.zeros(nmy)
sd_var = np.zeros(nmy)
for i in np.arange(nmy):
for k in np.arange(nyears):
if np.isnan(var[i+k*nmy]) == False:
var_mon[i,k] = var[i+k*nmy]
var_ym[i] = var_ym[i] + var[i+k*nmy]
var_ym[i] = var_ym[i] / nyears
for i in np.arange(nmy):
for k in np.arange(nyears):
if np.isnan(var[i+k*nmy]) == False:
sd_var[i] = sd_var[i] + (var[i+k*nmy] - var_ym[i])**2.
sd_var[i] = np.sqrt(sd_var[i] / nyears)
return var_mon,var_ym,sd_var
# Function to compute trend + SD of trend
def compute_trend(nyears,var):
ndecades = nyears / 10
year = np.arange(nyears) + 1
idx = np.isfinite(year) & np.isfinite(var)
a,b = np.polyfit(year[idx],var[idx],1)
lreg = a * year + b
trend_decade = a * nyears / ndecades
trend_percent = 100 * trend_decade / lreg[0]
n_freedom = nm-2
s_yx = np.sum((var[idx]-lreg[idx])**2)/n_freedom
SS_xx = np.sum((year-np.mean(year))**2)
s_a = np.sqrt(s_yx/SS_xx)
sd_trend = s_a * nyears / ndecades
t_a = a / s_a
alpha = 0.05
t_crit = stats.t.ppf(1-alpha/2,n_freedom)
sig_a = 0
if np.abs(t_a) > t_crit:
sig_a = 1
return trend_decade,sd_trend,trend_percent,sig_a
# Function to compute significativity of difference between two means
def compute_sig(n,var1,var2):
mean_var1 = np.nanmean(var1)
mean_var2 = np.nanmean(var2)
diff = mean_var1 - mean_var2
reldiff = diff / mean_var2
sum_var1 = 0.
sum_var2 = 0.
for i in np.arange(n):
if np.isnan(var1[i]) == False:
sum_var1 = sum_var1 + (var1[i] - mean_var1)**2.
if np.isnan(var2[i]) == False:
sum_var2 = sum_var2 + (var2[i] - mean_var2)**2.
sd = np.sqrt((sum_var1 + sum_var2) / (2. * n - 2.))
es = sd * np.sqrt(2. / n)
t = diff / es
alpha = 0.05
t_crit = stats.t.ppf(1-alpha/2,(2.*n-2.))
sig = 0
if np.abs(t) > t_crit:
sig = 1
return sig
# Load sea-ice area EC-Earth D000
filename = dir_D000 + 'SIarea_D000.npy'
area_D000,area_barents_D000,area_greenland_D000,area_labrador_D000,area_laptev_D000,area_chukchi_D000,area_beaufort_D000,area_central_D000 = np.load(filename)
# Load sea-ice area EC-Earth D012
filename = dir_D012 + 'SIarea_D012.npy'
area_D012a,area_barents_D012a,area_greenland_D012a,area_labrador_D012a,area_laptev_D012a,area_chukchi_D012a,area_beaufort_D012a,area_central_D012a = np.load(filename)
# Load sea-ice area EC-Earth D012 from 2180-2229
filename = dir_D012 + 'SIarea_D012_2180.npy'
area_D012b,area_barents_D012b,area_greenland_D012b,area_labrador_D012b,area_laptev_D012b,area_chukchi_D012b,area_beaufort_D012b,area_central_D012b = np.load(filename)
area_D012 = np.concatenate((area_D012a,area_D012b),axis=0)
# Load sea-ice area EC-Earth D013
filename = dir_D013 + 'SIarea_D013.npy'
area_D013,area_barents_D013,area_greenland_D013,area_labrador_D013,area_laptev_D013,area_chukchi_D013,area_beaufort_D013,area_central_D013 = np.load(filename)
# Load sea-ice area EC-Earth D014
filename = dir_D014 + 'SIarea_D014.npy'
area_D014,area_barents_D014,area_greenland_D014,area_labrador_D014,area_laptev_D014,area_chukchi_D014,area_beaufort_D014,area_central_D014 = np.load(filename)
# Load sea-ice area EC-Earth D015
filename = dir_D015 + 'SIarea_D015.npy'
area_D015,area_barents_D015,area_greenland_D015,area_labrador_D015,area_laptev_D015,area_chukchi_D015,area_beaufort_D015,area_central_D015 = np.load(filename)
# Load sea-ice area EC-Earth D016
filename = dir_D016 + 'SIarea_D016.npy'
area_D016,area_barents_D016,area_greenland_D016,area_labrador_D016,area_laptev_D016,area_chukchi_D016,area_beaufort_D016,area_central_D016 = np.load(filename)
# Load sea-ice area EC-Earth D017
filename = dir_D017 + 'SIarea_D017.npy'
area_D017,area_barents_D017,area_greenland_D017,area_labrador_D017,area_laptev_D017,area_chukchi_D017,area_beaufort_D017,area_central_D017 = np.load(filename)
# Load sea-ice area EC-Earth D018
filename = dir_D018 + 'SIarea_D018.npy'
area_D018,area_barents_D018,area_greenland_D018,area_labrador_D018,area_laptev_D018,area_chukchi_D018,area_beaufort_D018,area_central_D018 = np.load(filename)
# Load sea-ice area EC-Earth D019
filename = dir_D019 + 'SIarea_D019.npy'
area_D019,area_barents_D019,area_greenland_D019,area_labrador_D019,area_laptev_D019,area_chukchi_D019,area_beaufort_D019,area_central_D019 = np.load(filename)
# Load sea-ice area EC-Earth D020
filename = dir_D020 + 'SIarea_D020.npy'
area_D020,area_barents_D020,area_greenland_D020,area_labrador_D020,area_laptev_D020,area_chukchi_D020,area_beaufort_D020,area_central_D020 = np.load(filename)
# Load sea-ice area EC-Earth D021
filename = dir_D021 + 'SIarea_D021.npy'
area_D021a,area_barents_D021a,area_greenland_D021a,area_labrador_D021a,area_laptev_D021a,area_chukchi_D021a,area_beaufort_D021a,area_central_D021a = np.load(filename)
# Load sea-ice area EC-Earth D021 from 2180-2229
filename = dir_D021 + 'SIarea_D021_2180.npy'
area_D021b,area_barents_D021b,area_greenland_D021b,area_labrador_D021b,area_laptev_D021b,area_chukchi_D021b,area_beaufort_D021b,area_central_D021b = np.load(filename)
area_D021 = np.concatenate((area_D021a,area_D021b),axis=0)
# Load sea-ice area EC-Earth D022
filename = dir_D022 + 'SIarea_D022.npy'
area_D022,area_barents_D022,area_greenland_D022,area_labrador_D022,area_laptev_D022,area_chukchi_D022,area_beaufort_D022,area_central_D022 = np.load(filename)
# Load sea-ice area EC-Earth D023
filename = dir_D023 + 'SIarea_D023.npy'
area_D023,area_barents_D023,area_greenland_D023,area_labrador_D023,area_laptev_D023,area_chukchi_D023,area_beaufort_D023,area_central_D023 = np.load(filename)
# Load sea-ice area EC-Earth D024
filename = dir_D024 + 'SIarea_D024.npy'
area_D024,area_barents_D024,area_greenland_D024,area_labrador_D024,area_laptev_D024,area_chukchi_D024,area_beaufort_D024,area_central_D024 = np.load(filename)
# Load sea-ice area EC-Earth D025
filename = dir_D025 + 'SIarea_D025.npy'
area_D025,area_barents_D025,area_greenland_D025,area_labrador_D025,area_laptev_D025,area_chukchi_D025,area_beaufort_D025,area_central_D025 = np.load(filename)
# Load sea-ice area EC-Earth D027
filename = dir_D027 + 'SIarea_D027.npy'
area_D027,area_barents_D027,area_greenland_D027,area_labrador_D027,area_laptev_D027,area_chukchi_D027,area_beaufort_D027,area_central_D027 = np.load(filename)
# Load sea-ice area EC-Earth D028
filename = dir_D028 + 'SIarea_D028.npy'
area_D028,area_barents_D028,area_greenland_D028,area_labrador_D028,area_laptev_D028,area_chukchi_D028,area_beaufort_D028,area_central_D028 = np.load(filename)
# Load sea-ice area EC-Earth D029
filename = dir_D029 + 'SIarea_D029.npy'
area_D029,area_barents_D029,area_greenland_D029,area_labrador_D029,area_laptev_D029,area_chukchi_D029,area_beaufort_D029,area_central_D029 = np.load(filename)
# Load sea-ice area EC-Earth D030
filename = dir_D030 + 'SIarea_D030.npy'
area_D030,area_barents_D030,area_greenland_D030,area_labrador_D030,area_laptev_D030,area_chukchi_D030,area_beaufort_D030,area_central_D030 = np.load(filename)
# Load sea-ice area OSI SAF (OSI-450) 1979-2015
filename = dir_t613 + 'SIarea_OSI-450_1979-2015.npy'
area_obs,area_barents_obs,area_greenland_obs,area_labrador_obs,area_laptev_obs,area_chukchi_obs,area_beaufort_obs,area_central_obs = np.load(filename)
# Load sea-ice volume EC-Earth D000
filename = dir_D000 + 'SIvolume_D000.npy'
volume_D000,volume_barents_D000,volume_greenland_D000,volume_labrador_D000,volume_laptev_D000,volume_chukchi_D000,volume_beaufort_D000,volume_central_D000 = np.load(filename)
# Load sea-ice volume EC-Earth D012
filename = dir_D012 + 'SIvolume_D012.npy'
volume_D012a,volume_barents_D012a,volume_greenland_D012a,volume_labrador_D012a,volume_laptev_D012a,volume_chukchi_D012a,volume_beaufort_D012a,volume_central_D012a = np.load(filename)
# Load sea-ice volume EC-Earth D012 from 2180-2229
filename = dir_D012 + 'SIvolume_D012_2180.npy'
volume_D012b,volume_barents_D012b,volume_greenland_D012b,volume_labrador_D012b,volume_laptev_D012b,volume_chukchi_D012b,volume_beaufort_D012b,volume_central_D012b = np.load(filename)
volume_D012 = np.concatenate((volume_D012a,volume_D012b),axis=0)
# Load sea-ice volume EC-Earth D013
filename = dir_D013 + 'SIvolume_D013.npy'
volume_D013,volume_barents_D013,volume_greenland_D013,volume_labrador_D013,volume_laptev_D013,volume_chukchi_D013,volume_beaufort_D013,volume_central_D013 = np.load(filename)
# Load sea-ice volume EC-Earth D014
filename = dir_D014 + 'SIvolume_D014.npy'
volume_D014,volume_barents_D014,volume_greenland_D014,volume_labrador_D014,volume_laptev_D014,volume_chukchi_D014,volume_beaufort_D014,volume_central_D014 = np.load(filename)
# Load sea-ice volume EC-Earth D015
filename = dir_D015 + 'SIvolume_D015.npy'
volume_D015,volume_barents_D015,volume_greenland_D015,volume_labrador_D015,volume_laptev_D015,volume_chukchi_D015,volume_beaufort_D015,volume_central_D015 = np.load(filename)
# Load sea-ice volume EC-Earth D016
filename = dir_D016 + 'SIvolume_D016.npy'
volume_D016,volume_barents_D016,volume_greenland_D016,volume_labrador_D016,volume_laptev_D016,volume_chukchi_D016,volume_beaufort_D016,volume_central_D016 = np.load(filename)
# Load sea-ice volume EC-Earth D017
filename = dir_D017 + 'SIvolume_D017.npy'
volume_D017,volume_barents_D017,volume_greenland_D017,volume_labrador_D017,volume_laptev_D017,volume_chukchi_D017,volume_beaufort_D017,volume_central_D017 = np.load(filename)
# Load sea-ice volume EC-Earth D018
filename = dir_D018 + 'SIvolume_D018.npy'
volume_D018,volume_barents_D018,volume_greenland_D018,volume_labrador_D018,volume_laptev_D018,volume_chukchi_D018,volume_beaufort_D018,volume_central_D018 = np.load(filename)
# Load sea-ice volume EC-Earth D019
filename = dir_D019 + 'SIvolume_D019.npy'
volume_D019,volume_barents_D019,volume_greenland_D019,volume_labrador_D019,volume_laptev_D019,volume_chukchi_D019,volume_beaufort_D019,volume_central_D019 = np.load(filename)
# Load sea-ice volume EC-Earth D020
filename = dir_D020 + 'SIvolume_D020.npy'
volume_D020,volume_barents_D020,volume_greenland_D020,volume_labrador_D020,volume_laptev_D020,volume_chukchi_D020,volume_beaufort_D020,volume_central_D020 = np.load(filename)
# Load sea-ice volume EC-Earth D021
filename = dir_D021 + 'SIvolume_D021.npy'
volume_D021a,volume_barents_D021a,volume_greenland_D021a,volume_labrador_D021a,volume_laptev_D021a,volume_chukchi_D021a,volume_beaufort_D021a,volume_central_D021a = np.load(filename)
# Load sea-ice volume EC-Earth D021 from 2180-2229
filename = dir_D021 + 'SIvolume_D021_2180.npy'
volume_D021b,volume_barents_D021b,volume_greenland_D021b,volume_labrador_D021b,volume_laptev_D021b,volume_chukchi_D021b,volume_beaufort_D021b,volume_central_D021b = np.load(filename)
volume_D021 = np.concatenate((volume_D021a,volume_D021b),axis=0)
# Load sea-ice volume EC-Earth D022
filename = dir_D022 + 'SIvolume_D022.npy'
volume_D022,volume_barents_D022,volume_greenland_D022,volume_labrador_D022,volume_laptev_D022,volume_chukchi_D022,volume_beaufort_D022,volume_central_D022 = np.load(filename)
# Load sea-ice volume EC-Earth D023
filename = dir_D023 + 'SIvolume_D023.npy'
volume_D023,volume_barents_D023,volume_greenland_D023,volume_labrador_D023,volume_laptev_D023,volume_chukchi_D023,volume_beaufort_D023,volume_central_D023 = np.load(filename)
# Load sea-ice volume EC-Earth D024
filename = dir_D024 + 'SIvolume_D024.npy'
volume_D024,volume_barents_D024,volume_greenland_D024,volume_labrador_D024,volume_laptev_D024,volume_chukchi_D024,volume_beaufort_D024,volume_central_D024 = np.load(filename)
# Load sea-ice volume EC-Earth D025
filename = dir_D025 + 'SIvolume_D025.npy'
volume_D025,volume_barents_D025,volume_greenland_D025,volume_labrador_D025,volume_laptev_D025,volume_chukchi_D025,volume_beaufort_D025,volume_central_D025 = np.load(filename)
# Load sea-ice volume EC-Earth D027
filename = dir_D027 + 'SIvolume_D027.npy'
volume_D027,volume_barents_D027,volume_greenland_D027,volume_labrador_D027,volume_laptev_D027,volume_chukchi_D027,volume_beaufort_D027,volume_central_D027 = np.load(filename)
# Load sea-ice volume EC-Earth D028
filename = dir_D028 + 'SIvolume_D028.npy'
volume_D028,volume_barents_D028,volume_greenland_D028,volume_labrador_D028,volume_laptev_D028,volume_chukchi_D028,volume_beaufort_D028,volume_central_D028 = np.load(filename)
# Load sea-ice volume EC-Earth D029
filename = dir_D029 + 'SIvolume_D029.npy'
volume_D029,volume_barents_D029,volume_greenland_D029,volume_labrador_D029,volume_laptev_D029,volume_chukchi_D029,volume_beaufort_D029,volume_central_D029 = np.load(filename)
# Load sea-ice volume EC-Earth D030
filename = dir_D030 + 'SIvolume_D030.npy'
volume_D030,volume_barents_D030,volume_greenland_D030,volume_labrador_D030,volume_laptev_D030,volume_chukchi_D030,volume_beaufort_D030,volume_central_D030 = np.load(filename)
# Time parameters
nmy = 12
nm = np.size(area)
nm_D000 = np.size(area_D000)
nm_D012 = np.size(area_D012)
nm_D013 = np.size(area_D013)
nm_obs = np.size(area_obs)
nyears = int(nm / nmy)
nyears_D000 = int(nm_D000 / nmy)
nyears_D012 = int(nm_D012 / nmy)
nyears_D013 = int(nm_D013 / nmy)
nyears_obs = int(nm_obs / nmy)
# Load sea-ice volume PIOMAS 1979-2019 (2 last months missing at the time of writing)
year,vol1,vol2,vol3,vol4,vol5,vol6,vol7,vol8,vol9,vol10,vol11,vol12 = np.loadtxt(dir_piomas+'PIOMAS.2sst.monthly.Current.v2.1.txt',unpack=True)
nyears_piomas = np.size(year)
nm_piomas = nyears_piomas*nmy
volume_piomas = np.zeros(nm_piomas)
k = 0
for j in np.arange(nyears_piomas):
volume_piomas[k] = vol1[j]
volume_piomas[k+1] = vol2[j]
volume_piomas[k+2] = vol3[j]
volume_piomas[k+3] = vol4[j]
volume_piomas[k+4] = vol5[j]
volume_piomas[k+5] = vol6[j]
volume_piomas[k+6] = vol7[j]
volume_piomas[k+7] = vol8[j]
volume_piomas[k+8] = vol9[j]
volume_piomas[k+9] = vol10[j]
volume_piomas[k+10] = vol11[j]
volume_piomas[k+11] = vol12[j]
k = k + nmy
volume_piomas[-1] = np.nan
volume_piomas[-2] = np.nan
# Retrieve monthly mean SIA EC-Earth
area_mon,area_ym,sd_area = compute_monthly(nm,nmy,area) # t613 1950-2014
nm_reduced = int((2014-1979+1)*12)
begin_reduced = int((1979-1950)*12)
notused,area_ym2,sd_area2 = compute_monthly(nm_reduced,nmy,area[begin_reduced::]) # t613 1979-2014
area_mon_D000,notused,notused = compute_monthly(nm_D000,nmy,area_D000) # 2014-2213
begin_reduced_D000 = int((2130-2014)*12)
area_mon_D000b,area_ym_D000,sd_area_D000 = compute_monthly(nm_D013,nmy,area_D000[begin_reduced_D000:begin_reduced_D000+nm_D013]) # 2130-2179
area_mon_D012,notused,notused = compute_monthly(nm_D012,nmy,area_D012)
area_mon_D012b,area_ym_D012,sd_area_D012 = compute_monthly(nm_D013,nmy,area_D012a)
area_mon_D013,area_ym_D013,sd_area_D013 = compute_monthly(nm_D013,nmy,area_D013)
area_mon_D014,area_ym_D014,sd_area_D014 = compute_monthly(nm_D013,nmy,area_D014)
area_mon_D015,area_ym_D015,sd_area_D015 = compute_monthly(nm_D013,nmy,area_D015)
area_mon_D016,area_ym_D016,sd_area_D016 = compute_monthly(nm_D013,nmy,area_D016)
area_mon_D017,area_ym_D017,sd_area_D017 = compute_monthly(nm_D013,nmy,area_D017)
area_mon_D018,area_ym_D018,sd_area_D018 = compute_monthly(nm_D013,nmy,area_D018)
area_mon_D019,area_ym_D019,sd_area_D019 = compute_monthly(nm_D013,nmy,area_D019)
area_mon_D020,area_ym_D020,sd_area_D020 = compute_monthly(nm_D013,nmy,area_D020)
area_mon_D021,notused,notused = compute_monthly(nm_D012,nmy,area_D021)
area_mon_D021b,area_ym_D021,sd_area_D021 = compute_monthly(nm_D013,nmy,area_D021a)
area_mon_D022,area_ym_D022,sd_area_D022 = compute_monthly(nm_D013,nmy,area_D022)
area_mon_D023,area_ym_D023,sd_area_D023 = compute_monthly(nm_D013,nmy,area_D023)
area_mon_D024,area_ym_D024,sd_area_D024 = compute_monthly(nm_D013,nmy,area_D024)
area_mon_D025,area_ym_D025,sd_area_D025 = compute_monthly(nm_D013,nmy,area_D025)
area_mon_D027,area_ym_D027,sd_area_D027 = compute_monthly(nm_D013,nmy,area_D027)
area_mon_D028,area_ym_D028,sd_area_D028 = compute_monthly(nm_D013,nmy,area_D028)
area_mon_D029,area_ym_D029,sd_area_D029 = compute_monthly(nm_D013,nmy,area_D029)
area_mon_D030,area_ym_D030,sd_area_D030 = compute_monthly(nm_D013,nmy,area_D030)
# Retrieve monthly mean SIV EC-Earth
volume_mon,volume_ym,sd_volume = compute_monthly(nm,nmy,volume) # 1950-2014
notused,volume_ym2,sd_volume2 = compute_monthly(nm_reduced,nmy,volume[begin_reduced::]) # 1979-2014
volume_mon_D000,notused,notused = compute_monthly(nm_D000,nmy,volume_D000) # 2014-2213
volume_mon_D000b,volume_ym_D000,sd_volume_D000 = compute_monthly(nm_D013,nmy,volume_D000[begin_reduced_D000:begin_reduced_D000+nm_D013]) # 2130-2179
volume_mon_D012,notused,notused = compute_monthly(nm_D012,nmy,volume_D012)
volume_mon_D012b,volume_ym_D012,sd_volume_D012 = compute_monthly(nm_D013,nmy,volume_D012a)
volume_mon_D013,volume_ym_D013,sd_volume_D013 = compute_monthly(nm_D013,nmy,volume_D013)
volume_mon_D014,volume_ym_D014,sd_volume_D014 = compute_monthly(nm_D013,nmy,volume_D014)
volume_mon_D015,volume_ym_D015,sd_volume_D015 = compute_monthly(nm_D013,nmy,volume_D015)
volume_mon_D016,volume_ym_D016,sd_volume_D016 = compute_monthly(nm_D013,nmy,volume_D016)
volume_mon_D017,volume_ym_D017,sd_volume_D017 = compute_monthly(nm_D013,nmy,volume_D017)
volume_mon_D018,volume_ym_D018,sd_volume_D018 = compute_monthly(nm_D013,nmy,volume_D018)
volume_mon_D019,volume_ym_D019,sd_volume_D019 = compute_monthly(nm_D013,nmy,volume_D019)
volume_mon_D020,volume_ym_D020,sd_volume_D020 = compute_monthly(nm_D013,nmy,volume_D020)
volume_mon_D021,notused,notused = compute_monthly(nm_D012,nmy,volume_D021)
volume_mon_D021b,volume_ym_D021,sd_volume_D021 = compute_monthly(nm_D013,nmy,volume_D021a)
volume_mon_D022,volume_ym_D022,sd_volume_D022 = compute_monthly(nm_D013,nmy,volume_D022)
volume_mon_D023,volume_ym_D023,sd_volume_D023 = compute_monthly(nm_D013,nmy,volume_D023)
volume_mon_D024,volume_ym_D024,sd_volume_D024 = compute_monthly(nm_D013,nmy,volume_D024)
volume_mon_D025,volume_ym_D025,sd_volume_D025 = compute_monthly(nm_D013,nmy,volume_D025)
volume_mon_D027,volume_ym_D027,sd_volume_D027 = compute_monthly(nm_D013,nmy,volume_D027)
volume_mon_D028,volume_ym_D028,sd_volume_D028 = compute_monthly(nm_D013,nmy,volume_D028)
volume_mon_D029,volume_ym_D029,sd_volume_D029 = compute_monthly(nm_D013,nmy,volume_D029)
volume_mon_D030,volume_ym_D030,sd_volume_D030 = compute_monthly(nm_D013,nmy,volume_D030)
# Retrieve monthly mean SIA Barents/Kara Sea
area_mon_barents_D000,notused,notused = compute_monthly(nm_D000,nmy,area_barents_D000)
area_mon_barents_D012,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D012a)
area_mon_barents_D013,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D013)
area_mon_barents_D014,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D014)
area_mon_barents_D015,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D015)
area_mon_barents_D016,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D016)
area_mon_barents_D017,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D017)
area_mon_barents_D018,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D018)
area_mon_barents_D019,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D019)
area_mon_barents_D020,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D020)
area_mon_barents_D021,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D021a)
area_mon_barents_D022,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D022)
area_mon_barents_D023,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D023)
area_mon_barents_D024,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D024)
area_mon_barents_D025,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D025)
area_mon_barents_D027,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D027)
area_mon_barents_D028,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D028)
area_mon_barents_D029,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D029)
area_mon_barents_D030,notused,notused = compute_monthly(nm_D013,nmy,area_barents_D030)
# Retrieve monthly mean SIA OSI SAF
area_obs_mon,area_obs_ym,sd_area_obs = compute_monthly(nm_obs,nmy,area_obs) # 1979-2015
nm_obs_reduced = int((2014-1979+1)*12)
notused,area_obs_ym2,sd_area_obs2 = compute_monthly(nm_obs_reduced,nmy,area_obs[0:nm_obs_reduced]) # 1979-2014
# Retrieve monthly mean SIV PIOMAS
volume_piomas_mon,volume_piomas_ym,sd_volume_piomas = compute_monthly(nm_piomas,nmy,volume_piomas) # 1979-2019 (missing 11 and 12/2019)
notused,volume_piomas_ym2,sd_volume_piomas2 = compute_monthly(nm_obs_reduced,nmy,volume_piomas[0:nm_obs_reduced]) # 1979-2014
# Save March/September SIA and SIV
if save_var == True:
filename = dir_fig + 'SIA_March.npy'
np.save(filename,[area_mon_D000b[2,:],area_mon_D012b[2,:],area_mon_D013[2,:],area_mon_D014[2,:],area_mon_D015[2,:],area_mon_D016[2,:],area_mon_D017[2,:],area_mon_D018[2,:],area_mon_D019[2,:],area_mon_D020[2,:],area_mon_D021b[2,:],area_mon_D022[2,:],area_mon_D023[2,:],area_mon_D024[2,:],area_mon_D025[2,:],area_mon_D027[2,:],area_mon_D028[2,:],area_mon_D029[2,:],area_mon_D030[2,:]])
filename = dir_fig + 'SIV_March.npy'
np.save(filename,[volume_mon_D000b[2,:],volume_mon_D012b[2,:],volume_mon_D013[2,:],volume_mon_D014[2,:],volume_mon_D015[2,:],volume_mon_D016[2,:],volume_mon_D017[2,:],volume_mon_D018[2,:],volume_mon_D019[2,:],volume_mon_D020[2,:],volume_mon_D021b[2,:],volume_mon_D022[2,:],volume_mon_D023[2,:],volume_mon_D024[2,:],volume_mon_D025[2,:],volume_mon_D027[2,:],volume_mon_D028[2,:],volume_mon_D029[2,:],volume_mon_D030[2,:]])
filename = dir_fig + 'SIA_September.npy'
np.save(filename,[area_mon_D000b[8,:],area_mon_D012b[8,:],area_mon_D013[8,:],area_mon_D014[8,:],area_mon_D015[8,:],area_mon_D016[8,:],area_mon_D017[8,:],area_mon_D018[8,:],area_mon_D019[8,:],area_mon_D020[8,:],area_mon_D021b[8,:],area_mon_D022[8,:],area_mon_D023[8,:],area_mon_D024[8,:],area_mon_D025[8,:],area_mon_D027[8,:],area_mon_D028[8,:],area_mon_D029[8,:],area_mon_D030[8,:]])
filename = dir_fig + 'SIV_September.npy'
np.save(filename,[volume_mon_D000b[8,:],volume_mon_D012b[8,:],volume_mon_D013[8,:],volume_mon_D014[8,:],volume_mon_D015[8,:],volume_mon_D016[8,:],volume_mon_D017[8,:],volume_mon_D018[8,:],volume_mon_D019[8,:],volume_mon_D020[8,:],volume_mon_D021b[8,:],volume_mon_D022[8,:],volume_mon_D023[8,:],volume_mon_D024[8,:],volume_mon_D025[8,:],volume_mon_D027[8,:],volume_mon_D028[8,:],volume_mon_D029[8,:],volume_mon_D030[8,:]])
###########
# Table 2 #
###########
# Print mean numbers - March Arctic SIA
month = 2
begin_reduced = int(2130-2014)
print('March Arctic SIA (10^6 km^2)')
print('CTRL =',np.round(area_ym_D000[month],1),'+/-',np.round(sd_area_D000[month],1))
print('Obs =',np.round(area_obs_ym[month],1),'+/-',np.round(sd_area_obs[month],1))
print('ATL1+1K =',np.round(area_ym_D013[month],1),'+/-',np.round(sd_area_D013[month],1),compute_sig(nyears_D013,area_mon_D013[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+3K =',np.round(area_ym_D012[month],1),'+/-',np.round(sd_area_D012[month],1),compute_sig(nyears_D013,area_mon_D012[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+5K =',np.round(area_ym_D014[month],1),'+/-',np.round(sd_area_D014[month],1),compute_sig(nyears_D013,area_mon_D014[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+1K =',np.round(area_ym_D016[month],1),'+/-',np.round(sd_area_D016[month],1),compute_sig(nyears_D013,area_mon_D016[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+3K =',np.round(area_ym_D015[month],1),'+/-',np.round(sd_area_D015[month],1),compute_sig(nyears_D013,area_mon_D015[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+5K =',np.round(area_ym_D017[month],1),'+/-',np.round(sd_area_D017[month],1),compute_sig(nyears_D013,area_mon_D017[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+1K =',np.round(area_ym_D019[month],1),'+/-',np.round(sd_area_D019[month],1),compute_sig(nyears_D013,area_mon_D019[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+3K =',np.round(area_ym_D018[month],1),'+/-',np.round(sd_area_D018[month],1),compute_sig(nyears_D013,area_mon_D018[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+5K =',np.round(area_ym_D020[month],1),'+/-',np.round(sd_area_D020[month],1),compute_sig(nyears_D013,area_mon_D020[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+1K =',np.round(area_ym_D027[month],1),'+/-',np.round(sd_area_D027[month],1),compute_sig(nyears_D013,area_mon_D027[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+3K =',np.round(area_ym_D021[month],1),'+/-',np.round(sd_area_D021[month],1),compute_sig(nyears_D013,area_mon_D021[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+5K =',np.round(area_ym_D028[month],1),'+/-',np.round(sd_area_D028[month],1),compute_sig(nyears_D013,area_mon_D028[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+1K =',np.round(area_ym_D029[month],1),'+/-',np.round(sd_area_D029[month],1),compute_sig(nyears_D013,area_mon_D029[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K =',np.round(area_ym_D022[month],1),'+/-',np.round(sd_area_D022[month],1),compute_sig(nyears_D013,area_mon_D022[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+5K =',np.round(area_ym_D030[month],1),'+/-',np.round(sd_area_D030[month],1),compute_sig(nyears_D013,area_mon_D030[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+1K =',np.round(area_ym_D024[month],1),'+/-',np.round(sd_area_D024[month],1),compute_sig(nyears_D013,area_mon_D024[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+3K =',np.round(area_ym_D023[month],1),'+/-',np.round(sd_area_D023[month],1),compute_sig(nyears_D013,area_mon_D023[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+5K =',np.round(area_ym_D025[month],1),'+/-',np.round(sd_area_D025[month],1),compute_sig(nyears_D013,area_mon_D025[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K - PAC3+3K =',compute_sig(nyears_D013,area_mon_D022[month,:],area_mon_D023[month,:]))
print('ATL2+3K - ATL2+1K =',compute_sig(nyears_D013,area_mon_D015[month,:],area_mon_D016[month,:]))
print('ATL3+3K - ATL3+1K =',compute_sig(nyears_D013,area_mon_D018[month,:],area_mon_D019[month,:]))
print('PAC3+3K - PAC3+5K =',compute_sig(nyears_D013,area_mon_D023[month,:],area_mon_D025[month,:]))
print('------------')
# Print mean numbers - September Arctic SIA
month = 8
print('September Arctic SIA (10^6 km^2)')
print('CTRL =',np.round(area_ym_D000[month],1),'+/-',np.round(sd_area_D000[month],1))
print('Obs =',np.round(area_obs_ym[month],1),'+/-',np.round(sd_area_obs[month],1))
print('ATL1+1K =',np.round(area_ym_D013[month],1),'+/-',np.round(sd_area_D013[month],1),compute_sig(nyears_D013,area_mon_D013[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+3K =',np.round(area_ym_D012[month],1),'+/-',np.round(sd_area_D012[month],1),compute_sig(nyears_D013,area_mon_D012[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+5K =',np.round(area_ym_D014[month],1),'+/-',np.round(sd_area_D014[month],1),compute_sig(nyears_D013,area_mon_D014[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+1K =',np.round(area_ym_D016[month],1),'+/-',np.round(sd_area_D016[month],1),compute_sig(nyears_D013,area_mon_D016[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+3K =',np.round(area_ym_D015[month],1),'+/-',np.round(sd_area_D015[month],1),compute_sig(nyears_D013,area_mon_D015[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+5K =',np.round(area_ym_D017[month],1),'+/-',np.round(sd_area_D017[month],1),compute_sig(nyears_D013,area_mon_D017[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+1K =',np.round(area_ym_D019[month],1),'+/-',np.round(sd_area_D019[month],1),compute_sig(nyears_D013,area_mon_D019[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+3K =',np.round(area_ym_D018[month],1),'+/-',np.round(sd_area_D018[month],1),compute_sig(nyears_D013,area_mon_D018[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+5K =',np.round(area_ym_D020[month],1),'+/-',np.round(sd_area_D020[month],1),compute_sig(nyears_D013,area_mon_D020[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+1K =',np.round(area_ym_D027[month],1),'+/-',np.round(sd_area_D027[month],1),compute_sig(nyears_D013,area_mon_D027[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+3K =',np.round(area_ym_D021[month],1),'+/-',np.round(sd_area_D021[month],1),compute_sig(nyears_D013,area_mon_D021[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+5K =',np.round(area_ym_D028[month],1),'+/-',np.round(sd_area_D028[month],1),compute_sig(nyears_D013,area_mon_D028[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+1K =',np.round(area_ym_D029[month],1),'+/-',np.round(sd_area_D029[month],1),compute_sig(nyears_D013,area_mon_D029[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K =',np.round(area_ym_D022[month],1),'+/-',np.round(sd_area_D022[month],1),compute_sig(nyears_D013,area_mon_D022[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+5K =',np.round(area_ym_D030[month],1),'+/-',np.round(sd_area_D030[month],1),compute_sig(nyears_D013,area_mon_D030[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+1K =',np.round(area_ym_D024[month],1),'+/-',np.round(sd_area_D024[month],1),compute_sig(nyears_D013,area_mon_D024[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+3K =',np.round(area_ym_D023[month],1),'+/-',np.round(sd_area_D023[month],1),compute_sig(nyears_D013,area_mon_D023[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+5K =',np.round(area_ym_D025[month],1),'+/-',np.round(sd_area_D025[month],1),compute_sig(nyears_D013,area_mon_D025[month,:],area_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K - PAC3+3K =',compute_sig(nyears_D013,area_mon_D022[month,:],area_mon_D023[month,:]))
print('ATL2+3K - ATL2+1K =',compute_sig(nyears_D013,area_mon_D015[month,:],area_mon_D016[month,:]))
print('ATL3+3K - ATL3+1K =',compute_sig(nyears_D013,area_mon_D018[month,:],area_mon_D019[month,:]))
print('PAC3+3K - PAC3+5K =',compute_sig(nyears_D013,area_mon_D023[month,:],area_mon_D025[month,:]))
print('------------')
# Print mean numbers - March Arctic SIV
month = 2
print('March Arctic SIV (10^3 km^3)')
print('CTRL =',np.round(volume_ym_D000[month],1),'+/-',np.round(sd_volume_D000[month],1))
print('PIOMAS =',np.round(volume_piomas_ym[month],1),'+/-',np.round(sd_volume_piomas[month],1))
print('ATL1+1K =',np.round(volume_ym_D013[month],1),'+/-',np.round(sd_volume_D013[month],1),compute_sig(nyears_D013,volume_mon_D013[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+3K =',np.round(volume_ym_D012[month],1),'+/-',np.round(sd_volume_D012[month],1),compute_sig(nyears_D013,volume_mon_D012[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+5K =',np.round(volume_ym_D014[month],1),'+/-',np.round(sd_volume_D014[month],1),compute_sig(nyears_D013,volume_mon_D014[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+1K =',np.round(volume_ym_D016[month],1),'+/-',np.round(sd_volume_D016[month],1),compute_sig(nyears_D013,volume_mon_D016[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+3K =',np.round(volume_ym_D015[month],1),'+/-',np.round(sd_volume_D015[month],1),compute_sig(nyears_D013,volume_mon_D015[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+5K =',np.round(volume_ym_D017[month],1),'+/-',np.round(sd_volume_D017[month],1),compute_sig(nyears_D013,volume_mon_D017[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+1K =',np.round(volume_ym_D019[month],1),'+/-',np.round(sd_volume_D019[month],1),compute_sig(nyears_D013,volume_mon_D019[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+3K =',np.round(volume_ym_D018[month],1),'+/-',np.round(sd_volume_D018[month],1),compute_sig(nyears_D013,volume_mon_D018[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL3+5K =',np.round(volume_ym_D020[month],1),'+/-',np.round(sd_volume_D020[month],1),compute_sig(nyears_D013,volume_mon_D020[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+1K =',np.round(volume_ym_D027[month],1),'+/-',np.round(sd_volume_D027[month],1),compute_sig(nyears_D013,volume_mon_D027[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+3K =',np.round(volume_ym_D021[month],1),'+/-',np.round(sd_volume_D021[month],1),compute_sig(nyears_D013,volume_mon_D021[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC1+5K =',np.round(volume_ym_D028[month],1),'+/-',np.round(sd_volume_D028[month],1),compute_sig(nyears_D013,volume_mon_D028[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+1K =',np.round(volume_ym_D029[month],1),'+/-',np.round(sd_volume_D029[month],1),compute_sig(nyears_D013,volume_mon_D029[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K =',np.round(volume_ym_D022[month],1),'+/-',np.round(sd_volume_D022[month],1),compute_sig(nyears_D013,volume_mon_D022[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+5K =',np.round(volume_ym_D030[month],1),'+/-',np.round(sd_volume_D030[month],1),compute_sig(nyears_D013,volume_mon_D030[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+1K =',np.round(volume_ym_D024[month],1),'+/-',np.round(sd_volume_D024[month],1),compute_sig(nyears_D013,volume_mon_D024[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+3K =',np.round(volume_ym_D023[month],1),'+/-',np.round(sd_volume_D023[month],1),compute_sig(nyears_D013,volume_mon_D023[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC3+5K =',np.round(volume_ym_D025[month],1),'+/-',np.round(sd_volume_D025[month],1),compute_sig(nyears_D013,volume_mon_D025[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('PAC2+3K - PAC3+3K =',compute_sig(nyears_D013,volume_mon_D022[month,:],volume_mon_D023[month,:]))
print('ATL2+3K - ATL2+1K =',compute_sig(nyears_D013,volume_mon_D015[month,:],volume_mon_D016[month,:]))
print('ATL3+3K - ATL3+1K =',compute_sig(nyears_D013,volume_mon_D018[month,:],volume_mon_D019[month,:]))
print('PAC3+3K - PAC3+5K =',compute_sig(nyears_D013,volume_mon_D023[month,:],volume_mon_D025[month,:]))
print('------------')
# Print mean numbers - September Arctic SIV
month = 8
print('September Arctic SIV (10^3 km^3)')
print('CTRL =',np.round(volume_ym_D000[month],1),'+/-',np.round(sd_volume_D000[month],1))
print('PIOMAS =',np.round(volume_piomas_ym[month],1),'+/-',np.round(sd_volume_piomas[month],1))
print('ATL1+1K =',np.round(volume_ym_D013[month],1),'+/-',np.round(sd_volume_D013[month],1),compute_sig(nyears_D013,volume_mon_D013[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+3K =',np.round(volume_ym_D012[month],1),'+/-',np.round(sd_volume_D012[month],1),compute_sig(nyears_D013,volume_mon_D012[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL1+5K =',np.round(volume_ym_D014[month],1),'+/-',np.round(sd_volume_D014[month],1),compute_sig(nyears_D013,volume_mon_D014[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+1K =',np.round(volume_ym_D016[month],1),'+/-',np.round(sd_volume_D016[month],1),compute_sig(nyears_D013,volume_mon_D016[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+3K =',np.round(volume_ym_D015[month],1),'+/-',np.round(sd_volume_D015[month],1),compute_sig(nyears_D013,volume_mon_D015[month,:],volume_mon_D000[month,begin_reduced:begin_reduced+nyears_D013]))
print('ATL2+5K =',
|
np.round(volume_ym_D017[month],1)
|
numpy.round
|
# Ohter import
import sys
import os
# Matplotlib
import matplotlib.pyplot
# Tensorflow
import tensorflow
import datetime
# Numpy and Pandas
import numpy
import pandas
import math
import scipy
# Csv file manipulatons
import csv
#import time
from sklearn.preprocessing import StandardScaler
from joblib import dump
from sklearn.model_selection import train_test_split
from data_utils import normalize_data, denormalize_data, init_data, split_data, shuffle_data
from datetime import date, time, timedelta
from manage_stocks import add_indicator, add_indicators_to_predict
from stockstats import StockDataFrame
EPOCHS = 35
NB_INDICATORS = 15
TIME_BY_INTERVAL = numpy.array([
('1m', timedelta(minutes=1)),
('2m', timedelta(minutes=2)),
('5m', timedelta(minutes=5)),
('15m', timedelta(minutes=15)),
('30m', timedelta(minutes=30)),
('60m', timedelta(minutes=60)),
('90m', timedelta(minutes=90)),
('1h', timedelta(hours=1)),
('1d', timedelta(days=1)),
('5d', timedelta(days=5)),
('1wk', timedelta(weeks=1)),
('1mo', timedelta(weeks=4)),
('3mo', timedelta(weeks=12))
])
def custom_loss_function(y_actual, y_predicted):
#print('y_actual:', y_actual)
#print('y_predicted', y_predicted)
#tensorflow.print('y_actual', y_actual)
#tensorflow.print('y_predicted', y_predicted)
#time.sleep(1)
custom_loss_value=tensorflow.keras.backend.mean(tensorflow.keras.backend.sum(tensorflow.keras.backend.square((y_actual - y_predicted)/10)))
return custom_loss_value
def create_model(model_path):
model = tensorflow.keras.models.Sequential()
model.add(tensorflow.keras.layers.Dense(256))
model.add(tensorflow.keras.layers.Dense(128))
model.add(tensorflow.keras.layers.Dense(64))
model.add(tensorflow.keras.layers.Dense(6))
model.compile(
loss=tensorflow.keras.losses.MeanSquaredError(),
optimizer=tensorflow.keras.optimizers.Adam(lr=1e-3, decay=1e-4),
)
#Checkpoint model
checkpoint_callback = tensorflow.keras.callbacks.ModelCheckpoint(
model_path, monitor='val_loss', mode='min', save_best_only=True,
verbose=1, save_weights_only=False, save_freq='epoch'
)
return (model, checkpoint_callback)
def print_predict(predict, real, interval):
"""printing predict"""
matplotlib.pyplot.plot(predict, 'r')
matplotlib.pyplot.plot(real, 'b')
matplotlib.pyplot.title('Predict')
matplotlib.pyplot.xlabel(f'interval {interval}')
matplotlib.pyplot.ylabel('Close Price')
matplotlib.pyplot.show()
def test_model(model, x_test, y_test, scaler, interval):
predicted_data = model.predict(x_test)
predicted_data, real_data = denormalize_data(predicted_data, y_test, scaler)
print_predict(predicted_data, real_data, interval)
def predict_one_interval(model, open_data, scaler):
open_data = numpy.reshape(open_data, (-1, NB_INDICATORS))
close_data = model.predict(open_data)
close_data = scaler.inverse_transform(close_data)
return close_data
def get_time_to_add(nb_calls, interval, stock_path):
data = numpy.genfromtxt(stock_path, delimiter=',', dtype=str)
now = datetime.datetime.strptime(str(data[len(data) - 1][0]), "%Y-%m-%d")
for elem in TIME_BY_INTERVAL:
if (elem[0] == interval):
time_to_add = elem[1]
return (now + time_to_add)
def write_predict(stock_path, close_data, interval):
write_predict.nb_calls += 1
time_to_add = get_time_to_add(write_predict.nb_calls, interval, stock_path)
with open(stock_path, 'a+') as file:
writer = csv.DictWriter(file, fieldnames=['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'])
data_to_write = {
'Date' : time_to_add.strftime("%Y-%m-%d"),
'Open' : close_data[0],
'High' : close_data[1],
'Low' : close_data[2],
'Close' : close_data[3],
'Adj Close' : close_data[4],
'Volume' : close_data[5]
}
writer.writerow(data_to_write)
write_predict.nb_calls = 0
def predict_multiple_intervals(model, open_data, scaler, stock_path, interval, nb_intervals):
if nb_intervals == 0:
return
open_data = numpy.reshape(open_data, (-1, NB_INDICATORS))
close_data = model.predict(open_data)
data_to_write = scaler.inverse_transform(close_data)
data_to_write =
|
numpy.ndarray.flatten(data_to_write)
|
numpy.ndarray.flatten
|
import numpy as np
import matplotlib.pyplot as plt
class PCA(object):
"""
Principal component analysis (PCA)
PCA is defined as an orthogonal linear transformation that transforms
the data to a new coordinate system which ıs used for feature reduction.
It provides via eigen-decomposition of the covariance/correlation matrix
on the contrary of sckit-learn which does via SVD.
Parameters:
----------
corr: bool, default: True
if True, the eigen-decomposition will be calculated
using correlation matrix.
Attributes:
----------
p_: int
Number of variables
n_: int
Number of observations
eig_vals: array
Eigen values of the matrix
eig_vecs: matrix
Eigen vector-matrix of the matrix
explained_variance_ratio_: array
The amount of variance explained by each of components
Examples:
---------
from eigpca import PCA
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA()
pca.fit(X)
pca.transform(X, n_components=1)
"""
def __init__(self, corr=True):
self.corr = corr
def fit_transform(self, X, n_components=None):
"""
Fit and apply dimensionality reduction
"""
self.fit(X)
return self.transform(X, n_components)
def transform(self, X, n_components=None):
"""
Apply dimensionality reduction
Parameters
----------
X: array-like, shape (n_observations(n), n_variables(p))
The data
n_components: int, default: None
Number of components
If it's None, then it will be set number of eigen values that are greater than 1.
Reason: Those with eigenvalues less than 1.00 are not considered to be stable.
They account for less variability than does a single variable and are not retained in the analysis.
In this sense, you end up with fewer factors than original number of variables. (Girden, 2001)
reference: https://stats.stackexchange.com/a/80318
Returns
-------
X_new: array-like, shape (n_observations, n_components)
Transformed values
"""
X = self._check_shape(X)
if X.shape[1] != self.p_:
raise ValueError(f"X must have {self.p_} variables. ")
if n_components and (n_components > self.p_ or n_components < 1):
ValueError("Components cannot be greater than number of variables or less than 1")
if not n_components:
return np.dot(X, self.eig_vecs[:, self.eig_vals > 1])
else:
return np.dot(X, self.eig_vecs[:, :n_components])
def fit(self, X):
"""
Eigen-decomposition of X
Parameters
----------
X: array-like, shape (n_observations(n), n_variables(p))
The data
"""
X = self._check_shape(X)
self.p_ = X.shape[1] # variables
self.n_ = X.shape[0] # observations
xs = X - X.mean(axis=0) # standardised
S = np.dot(xs.T, xs) / (self.n_ - 1) # variance-covariance matrix
if self.corr:
# calculate correlation with matrix multiplication
d = S.diagonal().T * np.identity(self.p_)
d_sqrt_inv = (1 / np.sqrt(d).diagonal()).T * np.identity(self.p_)
corr = np.dot(np.dot(d_sqrt_inv, S), d_sqrt_inv)
eig_vals, eig_vecs =
|
np.linalg.eig(corr)
|
numpy.linalg.eig
|
from functools import reduce
import numpy as np
from dataset.pose_dataset import PoseDataset, Batch
def merge_batch(batches):
"""
Merges n=len(batches) batches of size 1 into
one batch of size n
"""
res = {}
for key, tensor in batches[0].items():
elements = [batch[key] for batch in batches]
if type(tensor) is np.ndarray:
elements = reduce(lambda x, y:
|
np.concatenate((x, y), axis=0)
|
numpy.concatenate
|
"""
This file contains the implementation of the main class object: anaRDPacct --- an analytical moment accountant
that keeps track the effects of a hetereogeneous sequence of randomized algorithms using the RDP technique.
In particular it supports amplification of RDP by subsampling without replacement and the amplification of RDP
by poisson sampling, but unfortunately not (yet) together.
"""
import numpy as np
from scipy.optimize import minimize_scalar
import sys
sys.path.append('..')
import autodp
from autodp import utils, rdp_bank
from autodp.privacy_calibrator import subsample_epsdelta
import scipy
import math
def general_upperbound(func, mm, prob):
"""
:param func:
:param mm: alpha in RDP
:param prob: sample probability
:return: the upperbound in theorem 1 in 2019 ICML,could be applied for general case(including poisson distribution)
k_approx = 100 k approximation is applied here
"""
def cgf(x):
return (x - 1) * func(x)
if np.isinf(func(mm)):
return np.inf
if mm == 1 or mm == 0:
return 0
cur_k = np.minimum(50, mm - 1) # choose small k-approx for general upperbound (here is 50) in case of scipy-accuracy
log_term_1 = mm * np.log(1 - prob)
#logBin = utils.get_binom_coeffs(mm)
log_term_2 = np.log(3) - func(mm) + mm * utils.stable_logsumexp_two(np.log(1 - prob), np.log(prob) + func(mm))
neg_term_3 = [np.log(scipy.special.comb(mm,l)) + np.log(3) + (mm - l) * np.log(1 - prob) + l * np.log(prob) +
utils.stable_log_diff_exp((l - 1) * func(mm), cgf(l))[1] for l in
range(3, cur_k + 1)]
neg_term_4 = np.log(mm*(mm - 1)/2) + 2 * np.log(prob) + (mm - 2) * np.log(
1 - prob) + utils.stable_log_diff_exp(np.log(3) + func(mm), func(2))[1]
neg_term_5 = np.log(2) + np.log(prob) + np.log(mm) + (mm - 1) * np.log(1 - prob)
neg_term_6 = mm * np.log(1 - prob) + np.log(3) - func(mm)
pos_term = utils.stable_logsumexp([log_term_1, log_term_2])
neg_term_3.append(neg_term_4)
neg_term_3.append(neg_term_5)
neg_term_3.append(neg_term_6)
neg_term = utils.stable_logsumexp(neg_term_3)
bound = utils.stable_log_diff_exp(pos_term, neg_term)[1]
return bound
def fast_subsampled_cgf_upperbound(func, mm, prob, deltas_local):
# evaulate the fast CGF bound for the subsampled mechanism
# func evaluates the RDP of the base mechanism
# mm is alpha. NOT lambda.
return np.inf
if np.isinf(func(mm)):
return np.inf
if mm == 1:
return 0
secondterm = np.minimum(np.minimum((2) * np.log(np.exp(func(np.inf)) - 1)
+ np.minimum(func(2), np.log(4)),
np.log(2) + func(2)),
np.log(4) + 0.5 * deltas_local[int(2 * np.floor(2 / 2.0)) - 1]
+ 0.5 * deltas_local[int(2 * np.ceil(2 / 2.0)) - 1]
) + 2 * np.log(prob) + np.log(mm) + np.log(mm - 1) - np.log(2)
if mm == 2:
return utils.stable_logsumexp([0, secondterm])
# approximate the remaining terms using a geometric series
logratio1 = np.log(prob) + np.log(mm) + func(mm)
logratio2 = logratio1 + np.log(np.exp(func(np.inf)) - 1)
logratio = np.minimum(logratio1, logratio2)
if logratio1 > logratio2:
coeff = 1
else:
coeff = 2
if mm == 3:
return utils.stable_logsumexp([0, secondterm, np.log(coeff) + 3 * logratio])
# Calculate the sum of the geometric series starting from the third term. This is a total of mm-2 terms.
if logratio < 0:
geometric_series_bound = np.log(coeff) + 3 * logratio - np.log(1 - np.exp(logratio)) \
+ np.log(1 - np.exp((mm - 2) * logratio))
elif logratio > 0:
geometric_series_bound = np.log(coeff) + 3 * logratio + (mm-2) * logratio - np.log(np.exp(logratio) - 1)
else:
geometric_series_bound = np.log(coeff) + np.log(mm - 2)
# we will approximate using (1+h)^mm
logh1 = np.log(prob) + func(mm - 1)
logh2 = logh1 + np.log(np.exp(func(np.inf)) - 1)
binomial_series_bound1 = np.log(2) + mm * utils.stable_logsumexp_two(0, logh1)
binomial_series_bound2 = mm * utils.stable_logsumexp_two(0, logh2)
tmpsign, binomial_series_bound1 \
= utils.stable_sum_signed(True, binomial_series_bound1, False, np.log(2)
+ utils.stable_logsumexp([0, logh1 + np.log(mm), 2 * logh1 + np.log(mm)
+ np.log(mm - 1) - np.log(2)]))
tmpsign, binomial_series_bound2 \
= utils.stable_sum_signed(True, binomial_series_bound2, False,
utils.stable_logsumexp([0, logh2 + np.log(mm), 2 * logh2 + np.log(mm)
+ np.log(mm - 1) - np.log(2)]))
remainder = np.min([geometric_series_bound, binomial_series_bound1, binomial_series_bound2])
return utils.stable_logsumexp([0, secondterm, remainder])
def fast_poission_subsampled_cgf_upperbound(func, mm, prob):
# evaulate the fast CGF bound for the subsampled mechanism
# func evaluates the RDP of the base mechanism
# mm is alpha. NOT lambda.
if np.isinf(func(mm)):
return np.inf
if mm == 1:
return 0
# Bound #1: log [ (1-\gamma + \gamma e^{func(mm)})^mm ]
bound1 = mm * utils.stable_logsumexp_two(np.log(1-prob), np.log(prob) + func(mm))
# Bound #2: log [ (1-gamma)^alpha E [ 1 + gamma/(1-gamma) E[p/q]]^mm ]
# log[ (1-gamma)^\alpha { 1 + alpha gamma / (1-gamma) + gamma^2 /(1-gamma)^2 * alpha(alpha-1) /2 e^eps(2))
# + alpha \choose 3 * gamma^3 / (1-gamma)^3 / e^(-2 eps(alpha)) * (1 + gamma /(1-gamma) e^{eps(alpha)}) ^ (alpha - 3) }
# ]
if mm >= 3:
bound2 = utils.stable_logsumexp([mm * np.log(1-prob), (mm-1) * np.log(1-prob) + np.log(mm) + np.log(prob),
(mm-2)*np.log(1-prob) + 2 * np.log(prob) + np.log(mm) + np.log(mm-1) + func(2),
np.log(mm) + np.log(mm-1) + np.log(mm-2) - np.log(3*2) + 3 * np.log(prob)
+ (mm-3)*np.log(1-prob) + 2 * func(mm) +
(mm-3) * utils.stable_logsumexp_two(0, np.log(prob) - np.log(1-prob) + func(mm))])
else:
bound2 = bound1
#print('www={} func={} mm={}'.format(np.exp(func(mm))-1),func, mm)
#print('bound1 ={} bound2 ={}'.format(bound1,bound2))
return np.minimum(bound1,bound2)
def fast_k_subsample_upperbound(func, mm, prob, k):
"""
:param func:
:param mm:
:param prob: sample probability
:param k: approximate term
:return: k-term approximate upper bound in therorem 11 in ICML-19
"""
def cgf(x):
return (x - 1) * func(x)
if np.isinf(func(mm)):
return np.inf
if mm == 1:
return 0
#logBin = utils.get_binom_coeffs(mm)
cur_k = np.minimum(k, mm - 1)
if (2 * cur_k) >= mm:
exact_term_1 = (mm - 1) * np.log(1 - prob) + np.log(mm * prob - prob + 1)
exact_term_2 = [np.log(scipy.special.comb(mm,l)) + (mm - l) * np.log(1 - prob) + l * np.log(prob) + cgf(l) for l in
range(2, mm + 1)]
exact_term_2.append(exact_term_1)
bound = utils.stable_logsumexp(exact_term_2)
return bound
s, mag1 = utils.stable_log_diff_exp(0, -func(mm - cur_k))
new_log_term_1 = np.log(1 - prob) * mm + mag1
new_log_term_2 = -func(mm - cur_k) + mm * utils.stable_logsumexp_two(np.log(1 - prob),
np.log(prob) + func(mm - cur_k))
new_log_term_3 = [np.log(scipy.special.comb(mm,l)) + (mm - l) * np.log(1 - prob) + l * np.log(prob) +
utils.stable_log_diff_exp((l - 1) * func(mm - cur_k), cgf(l))[1] for l in
range(2, cur_k + 1)]
if len(new_log_term_3) > 0:
new_log_term_3 = utils.stable_logsumexp(new_log_term_3)
else:
return utils.stable_logsumexp_two(new_log_term_1, new_log_term_2)
new_log_term_4 = [np.log(scipy.special.comb(mm,mm-l)) + (mm - l) * np.log(1 - prob) + l * np.log(prob) +
utils.stable_log_diff_exp(cgf(l), (l - 1) * func(mm - cur_k))[1] for l in
range(mm - cur_k + 1, mm + 1)]
new_log_term_4.append(new_log_term_1)
new_log_term_4.append(new_log_term_2)
new_log_term_4 = utils.stable_logsumexp(new_log_term_4)
s, new_log_term_5 = utils.stable_log_diff_exp(new_log_term_4, new_log_term_3)
new_bound = new_log_term_5
return new_bound
class anaRDPacct:
"""A class that keeps track of the analytical expression of the RDP --- 1/(alpha-1)*CGF of the privacy loss R.V."""
def __init__(self, m=100, tol=0.1, m_max=500, m_lin_max=10000, approx = False, verbose=False):
# m_max indicates the number that we calculate binomial coefficients exactly up to.
# beyond that we use Stirling approximation.
# ------ Class Attributes -----------
self.m = m # default number of binomial coefficients to precompute
self.m_max = m_max # An upper bound of the quadratic dependence
self.m_lin_max = m_lin_max # An upper bound of the linear dependence.
self.verbose = verbose
self.approx = approx
self.lambs = np.linspace(1, self.m, self.m).astype(int) # Corresponds to \alpha = 2,3,4,5,.... for RDP
self.alphas = np.linspace(1, self.m, self.m).astype(int)
self.RDPs_int = np.zeros_like(self.alphas, float)
self.n=0
self.RDPs = [] # analytical CGFs
self.coeffs = []
self.RDP_inf = .0 # This is effectively for pure DP.
self.logBinomC = utils.get_binom_coeffs(self.m + 1) # The logBinomC is only needed for subsampling mechanisms.
self.idxhash = {} # save the index of previously used algorithms
self.cache = {} # dictionary to save results from previously seen algorithms
self.deltas_cache = {} # dictionary to save results of all discrete derivative path
self.evalRDP = lambda x: 0
self.flag = True # a flag indicating whether evalCGF is out of date
self.flag_subsample = False # a flag to indicate whether we need to expand the logBinomC.
self.tol = tol
# ---------- Methods ------------
def build_zeroth_oracle(self):
self.evalRDP = lambda x: sum([c * item(x) for (c, item) in zip(self.coeffs, self.RDPs)])
def plot_rdp(self):
if not self.flag:
self.build_zeroth_oracle()
self.flag = True
import matplotlib.pyplot as plt
plt.figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
x = range(0,self.m,1)
y = [self.evalRDP(item) for item in x]
plt.loglog(x, y)
plt.show()
def plot_cgf_int(self):
import matplotlib.pyplot as plt
plt.figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
plt.plot(self.alphas, self.RDPs_int)
plt.xlabel(r'$\lambda$')
plt.ylabel('CGF')
plt.show()
def plot_rdp_int(self):
import matplotlib.pyplot as plt
plt.figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
plt.loglog(self.alphas, self.RDPs_int)
if not self.flag:
self.build_zeroth_oracle()
self.flag = True
x = range(1,self.m_lin_max,1)
y = [self.evalRDP(item) for item in x]
plt.loglog(x, y)
plt.xlabel(r'$\alpha$')
plt.ylabel(r'RDP $\epsilon$')
plt.show()
def get_rdp(self,alphas):
# alphas is a numpy array or a list of numbers
# we will return a numpy array of the corresponding RDP
if not self.flag:
self.build_zeroth_oracle()
self.flag = True
alphas = np.array(alphas)
assert(np.all(alphas >= 1))
rdp_list = []
for alpha in alphas:
rdp_list.append(self.evalRDP(alpha))
return np.array(rdp_list)
def get_eps(self, delta): # minimize over \lambda
if not self.flag:
self.build_zeroth_oracle()
self.flag = True
if delta<0 or delta > 1:
print("Error! delta is a probability and must be between 0 and 1")
if delta == 0:
return self.RDP_inf
else:
def fun(x): # the input the RDP's \alpha
if x <= 1:
return np.inf
else:
return np.log(1 / delta)/(x-1) + self.evalRDP(x)
def fun_int(i): # the input is RDP's \alpha in integer
if i <= 1 | i >= len(self.RDPs_int):
return np.inf
else:
return np.log(1 / delta) / (i-1) + self.RDPs_int[i - 1]
# When do we have computational constraints?
# Only when we have subsampled items.
# First check if the forward difference is positive at self.m, or if it is infinite
while (self.m<self.m_max) and (not np.isposinf(fun(self.m))) and (fun_int(self.m-1)-fun_int(self.m-2) < 0):
# If so, double m, expand logBimomC until the forward difference is positive
if self.flag_subsample:
# The following line is m^2 time.
self.logBinomC = utils.get_binom_coeffs(self.m*2+1)
# Update deltas_caches
for key, val in self.deltas_cache.items():
if type(key) is tuple:
func_tmp = key[0]
else:
func_tmp = key
cgf = lambda x: x*func_tmp(x+1)
deltas,signs_deltas = utils.get_forward_diffs(cgf,self.m*2)
self.deltas_cache[key] = [deltas, signs_deltas]
new_alphas = range(self.m + 1, self.m * 2 + 1, 1)
self.alphas = np.concatenate((self.alphas, np.array(new_alphas))) # array of integers
self.m = self.m * 2
mm = np.max(self.alphas)
rdp_int_new = np.zeros_like(self.alphas, float)
for key,val in self.cache.items():
idx = self.idxhash[key]
rdp = self.RDPs[idx]
newarray = np.zeros_like(self.alphas, float)
for j in range(2,mm+1,1):
newarray[j-1] = rdp(1.0*j)
newarray[0]=newarray[1]
coeff = self.coeffs[idx]
rdp_int_new += newarray * coeff
self.cache[key] = newarray
self.RDPs_int = rdp_int_new
# # update the integer CGF and the cache for each function
# rdp_int_new = np.zeros_like(self.RDPs_int)
# for key,val in self.cache.items():
# idx = self.idxhash[key]
# rdp = self.RDPs[idx]
# newarray = np.zeros_like(self.RDPs_int)
# for j in range(self.m):
# newarray[j] = rdp(1.0*(j+self.m+1))
#
# coeff = self.coeffs[idx]
# rdp_int_new += newarray * coeff
# self.cache[key] = np.concatenate((val, newarray))
#
# # update the corresponding quantities
# self.RDPs_int = np.concatenate((self.RDPs_int, rdp_int_new))
#self.m = self.m*2
bestint = np.argmin(np.log(1 / delta)/(self.alphas[1:]-1) + self.RDPs_int[1:]) + 1
if bestint == self.m-1:
if self.verbose:
print('Warning: Reach quadratic upper bound: m_max.')
# In this case, we matches the maximum qudaratic upper bound
# Fix it by calling O(1) upper bounds and do logarithmic search
cur = fun(bestint)
while (not np.isposinf(cur)) and fun(bestint-1)-fun(bestint-2) < -1e-8:
bestint = bestint*2
cur = fun(bestint)
if bestint > self.m_lin_max and self.approx ==True:
print('Warning: Reach linear upper bound: m_lin_max.')
return cur
results = minimize_scalar(fun, method='Bounded', bounds=[self.m-1, bestint + 2],
options={'disp': False})
if results.success:
return results.fun
else:
return None
#return fun(bestint)
if bestint == 0:
if self.verbose:
print('Warning: Smallest alpha = 1.')
# find the best integer alpha.
bestalpha = self.alphas[bestint]
results = minimize_scalar(fun, method='Bounded',bounds=[bestalpha-1, bestalpha+1],
options={'disp':False})
# the while loop above ensures that bestint+2 is at most m, and also bestint is at least 0.
if results.success:
return results.fun
else:
# There are cases when certain \delta is not feasible.
# For example, let p and q be uniform the privacy R.V. is either 0 or \infty and unless all \infty
# events are taken cared of by \delta, \epsilon cannot be < \infty
return -1
def compose_mechanism(self, func, coeff=1.0):
self.flag = False
if func in self.idxhash:
self.coeffs[self.idxhash[func]] += coeff
# also update the integer CGFs
self.RDPs_int += self.cache[func] * coeff
else:
# book keeping
self.idxhash[func] = self.n
self.n += 1
self.coeffs.append(coeff)
# update the analytical
self.RDPs.append(func)
# also update the integer results
if func in self.cache:
tmp = self.cache[func]
else:
tmp = np.zeros_like(self.RDPs_int, float)
for i in range(self.m):
tmp[i] = func(i+1)
self.cache[func] = tmp # save in cache
self.RDPs_int += tmp * coeff
self.RDP_inf += func(np.inf) * coeff
#795010
#imple 100
def compose_subsampled_mechanism(self, func, prob, coeff=1.0):
# This function is for subsample without replacements.
self.flag = False
self.flag_subsample = True
if (func, prob) in self.idxhash:
idx = self.idxhash[(func, prob)]
# update the coefficients of each function
self.coeffs[idx] += coeff
# also update the integer CGFs
self.RDPs_int += self.cache[(func, prob)] * coeff
else:
def cgf(x):
return x * func(x+1)
# we need forward differences of thpe exp(cgf)
# The following line is the numericall y stable way of implementing it.
# The output is in polar form with logarithmic magnitude
deltas, signs_deltas = utils.get_forward_diffs(cgf,self.m)
#deltas1, signs_deltas1 = get_forward_diffs_direct(func, self.m)
#tmp = deltas-deltas1
self.deltas_cache[(func,prob)] = [deltas,signs_deltas]
def subsample_func_int(x):
# This function evaluates teh CGF at alpha = x, i.e., lamb = x- 1
deltas_local, signs_deltas_local = self.deltas_cache[(func,prob)]
if np.isinf(func(x)):
return np.inf
mm = int(x)
fastupperbound = fast_subsampled_cgf_upperbound(func, mm, prob, deltas_local)
fastupperbound2 = general_upperbound(func, mm, prob)
if self.approx ==True:
if fastupperbound2 <0:
print('general rdp is negative',x)
return fastupperbound2
if mm <= self.alphas[-1]: # compute the bound exactly. Requires book keeping of O(x^2)
moments = [ np.minimum(np.minimum((j)*np.log(np.exp(func(np.inf))-1) + np.minimum(cgf(j-1),np.log(4)),
np.log(2) + cgf(j-1)),
np.log(4) + 0.5*deltas_local[int(2*np.floor(j/2.0))-1]
+ 0.5*deltas_local[int(2*np.ceil(j/2.0))-1]) + j*np.log(prob)
+self.logBinomC[int(mm), j] for j in range(2,int(mm+1),1)]
return np.minimum(fastupperbound, utils.stable_logsumexp([0]+moments))
elif mm <= self.m_lin_max: # compute the bound with stirling approximation. Everything is O(x) now.
moment_bound = lambda j: np.minimum(j * np.log(np.exp(func(np.inf)) - 1)
+ np.minimum(cgf(j - 1), np.log(4)), np.log(2)
+ cgf(j - 1)) + j * np.log(prob) + utils.logcomb(mm, j)
moments = [moment_bound(j) for j in range(2,mm+1,1)]
return np.minimum(fastupperbound, utils.stable_logsumexp([0]+ moments))
else: # Compute the O(1) upper bound
return fastupperbound
def subsample_func(x):
# This function returns the RDP at alpha = x
# RDP with the linear interpolation upper bound of the CGF
epsinf, tmp = subsample_epsdelta(func(np.inf),0,prob)
if np.isinf(x):
return epsinf
if prob == 1.0:
return func(x)
if (x >= 1.0) and (x <= 2.0):
return np.minimum(epsinf, subsample_func_int(2.0) / (2.0-1))
if np.equal(np.mod(x, 1), 0):
return np.minimum(epsinf, subsample_func_int(x) / (x-1) )
xc = math.ceil(x)
xf = math.floor(x)
return np.minimum(
epsinf,
((x-xf)*subsample_func_int(xc) + (1-(x-xf))*subsample_func_int(xf)) / (x-1)
)
# book keeping
self.idxhash[(func, prob)] = self.n # save the index
self.n += 1 # increment the number of unique mechanisms
self.coeffs.append(coeff) # Update the coefficient
self.RDPs.append(subsample_func) # update the analytical functions
# also update the integer results up to m_max.
if (func,prob) in self.cache:
results = self.cache[(func,prob)]
else:
results = np.zeros_like(self.RDPs_int, float)
# m = np.max(self.lambs)
mm = np.max(self.alphas)
for alpha in range(2, mm+1):
results[alpha-1] = subsample_func(alpha)
results[0] = results[1] # Provide the trivial upper bound of RDP at alpha = 1 --- the KL privacy.
self.cache[(func,prob)] = results # save in cache
self.RDPs_int += results * coeff
# update the pure DP
eps, delta = subsample_epsdelta(func(np.inf), 0, prob)
self.RDP_inf += eps * coeff
# mm = np.max(self.alphas)
#
# jvec = np.arange(2, mm+1) #
# logterm3plus = np.zeros_like(results)
# for j in jvec:
# logterm3plus[j-2] = (np.minimum(np.minimum(j * np.log(np.exp(func(np.inf)) - 1)
# + np.minimum(np.log(4),cgf(j-1)), np.log(2) + cgf(j-1)),
# np.log(4) + 0.5 * deltas[int(2 * np.floor(j / 2.0))-1]
# + 0.5 * deltas[int(2 * np.ceil(j / 2.0))-1])
# + j * np.log(prob))
#
# for alpha in range(2, mm+1):
# if np.isinf(logterm3plus[alpha-1]):
# results[alpha-1] = np.inf
# else:
# tmp = utils.stable_logsumexp(logterm3plus[0:alpha-1] + self.logBinomC[alpha, 2:(alpha+1)])
# results[alpha-1] = utils.stable_logsumexp_two(0, tmp) / (1.0*alpha-1)
#
# results[0] = results[1] # Provide the trivial upper bound of RDP at alpha = 1 --- the KL privacy.
#
# self.cache[(func,prob)] = results # save in cache
# self.RDPs_int += results
#
# # For debugging: The following 'results1' should be the same as 'results' above.
# # results1 = np.zeros_like(self.RDPs_int, float)
# # for j in range(self.m):
# # results1[j] = subsample_func(j+1)
#
# eps, delta = subsample_epsdelta(func(np.inf), 0, prob)
# self.RDP_inf += eps
def compose_poisson_subsampled_mechanisms(self, func, prob, coeff=1.0):
# This function implements the lower bound for subsampled RDP.
# It is also the exact formula of poission_subsampled RDP for many mechanisms including Gaussian mech.
#
# At the moment, we do not support mixing poisson subsampling and standard subsampling.
# TODO: modify the caching identifies so that we can distinguish different types of subsampling
#
self.flag = False
self.flag_subsample = True
if (func, prob) in self.idxhash:
idx = self.idxhash[(func, prob)] # TODO: this is really where it needs to be changed.
# update the coefficients of each function
self.coeffs[idx] += coeff
# also update the integer CGFs
self.RDPs_int += self.cache[(func, prob)] * coeff
else: # compute an easy to compute upper bound of it.
def cgf(x):
return x * func(x+1)
def subsample_func_int(x):
# This function evaluates teh CGF at alpha = x, i.e., lamb = x- 1
if np.isinf(func(x)):
return np.inf
mm = int(x)
#
fastbound = fast_poission_subsampled_cgf_upperbound(func, mm, prob)
k = self.alphas[-1]
fastbound_k = fast_k_subsample_upperbound(func, mm, prob,k)
if self.approx == True:
return fastbound_k
#fastbound = min(fastbound, fastbound_k)
if x <= self.alphas[-1]: # compute the bound exactly.
moments = [cgf(j-1) +j*np.log(prob) + (mm-j) * np.log(1-prob)
+ self.logBinomC[mm, j] for j in range(2,mm+1,1)]
return utils.stable_logsumexp([(mm-1)*np.log(1-prob)+np.log(1+(mm-1)*prob)]+moments)
elif mm <= self.m_lin_max:
moments = [cgf(j-1) +j*np.log(prob) + (mm-j) * np.log(1-prob)
+ utils.logcomb(mm,j) for j in range(2,mm+1,1)]
return utils.stable_logsumexp([(mm-1)*np.log(1-prob)+np.log(1+(mm-1)*prob)] + moments)
else:
return fastbound
def subsample_func(x): # linear interpolation upper bound
# This function implements the RDP at alpha = x
if np.isinf(func(x)):
return np.inf
if prob == 1.0:
return func(x)
epsinf, tmp = subsample_epsdelta(func(np.inf),0,prob)
if np.isinf(x):
return epsinf
if (x >= 1.0) and (x <= 2.0):
return np.minimum(epsinf, subsample_func_int(2.0) / (2.0-1))
if np.equal(np.mod(x, 1), 0):
return np.minimum(epsinf, subsample_func_int(x) / (x-1) )
xc = math.ceil(x)
xf = math.floor(x)
return np.minimum(
epsinf,
((x-xf)*subsample_func_int(xc) + (1-(x-xf))*subsample_func_int(xf)) / (x-1)
)
# book keeping
self.idxhash[(func, prob)] = self.n # save the index
self.n += 1 # increment the number of unique mechanisms
self.coeffs.append(coeff) # Update the coefficient
self.RDPs.append(subsample_func) # update the analytical functions
# also update the integer results, with a vectorized computation.
# TODO: pre-computing subsampled RDP for integers is error-prone (implement the same thing twice)
# TODO: and its benefits are not clear. We should consider removing it and simply call the lambda function.
#
if (func,prob) in self.cache:
results = self.cache[(func,prob)]
else:
results = np.zeros_like(self.RDPs_int, float)
mm = np.max(self.alphas) # evaluate the RDP up to order mm
jvec = np.arange(2, mm + 1)
logterm3plus = np.zeros_like(results) # This saves everything from j=2 to j = m+1
for j in jvec:
logterm3plus[j-2] = cgf(j-1) + j * np.log(prob) #- np.log(1-prob))
for alpha in range(2, mm+1):
if np.isinf(logterm3plus[alpha-1]):
results[alpha-1] = np.inf
else:
tmp = utils.stable_logsumexp(logterm3plus[0:alpha-1] + self.logBinomC[alpha , 2:(alpha + 1)]
+ (alpha+1-jvec[0:alpha-1])*np.log(1-prob))
results[alpha-1] = utils.stable_logsumexp_two((alpha-1)*np.log(1-prob)
+ np.log(1+(alpha-1)*prob), tmp) / (1.0*alpha-1)
results[0] = results[1] # Provide the trivial upper bound of RDP at alpha = 1 --- the KL privacy.
self.cache[(func,prob)] = results # save in cache
self.RDPs_int += results * coeff
# update the pure DP tracker
eps, delta = subsample_epsdelta(func(np.inf), 0, prob)
self.RDP_inf += eps * coeff
def compose_poisson_subsampled_mechanisms1(self, func, prob, coeff=1.0):
# This function implements the general amplification bounds for Poisson sampling.
# No additional assumptions are needed.
# At the moment, we do not support mixing poisson subsampling and standard subsampling.
#
self.flag = False
self.flag_subsample = True
if (func, prob) in self.idxhash:
idx = self.idxhash[(func, prob)]
# update the coefficients of each function
self.coeffs[idx] += coeff
# also update the integer CGFs
self.RDPs_int += self.cache[(func, prob)] * coeff
else: # compute an easy to compute upper bound of it.
cgf = lambda x: x*func(x+1)
def subsample_func_int(x):
# This function evaluates the CGF at alpha = x, i.e., lamb = x- 1
if np.isinf(func(x)):
return np.inf
if prob == 1.0:
return func(x)
mm = int(x)
fastbound = fast_poission_subsampled_cgf_upperbound(func, mm, prob)
if x <= self.alphas[-1]: # compute the bound exactly.
moments = [cgf(1) + 2*np.log(prob) + (mm-2) * np.log(1 - prob) + self.logBinomC[mm, 2]]
moments = moments + [cgf(j-1+1) +j*np.log(prob) + (mm-j) * np.log(1 - prob)
+ self.logBinomC[mm, j] for j in range(3,mm+1,1)]
return utils.stable_logsumexp([(mm-1)*
|
np.log(1-prob)
|
numpy.log
|
import os
import numpy as np
from skimage.morphology import binary_dilation
from starfish import ImageStack
from starfish.core.morphology.label_image import LabelImage
from starfish.core.types import Axes, Coordinates
from .factories import binary_mask_collection_2d, label_array_2d
from ..binary_mask import BinaryMaskCollection
def test_from_label_image():
label_image_array, physical_ticks = label_array_2d()
label_image = LabelImage.from_label_array_and_ticks(
label_image_array,
None,
physical_ticks,
None,
)
mask_collection = BinaryMaskCollection.from_label_image(label_image)
assert len(mask_collection) == 2
region_0, region_1 = mask_collection.masks()
assert region_0.name == '0'
assert region_1.name == '1'
assert np.array_equal(region_0, np.ones((1, 6), dtype=bool))
temp = np.ones((2, 3), dtype=bool)
temp[-1, -1] = False
assert np.array_equal(region_1, temp)
assert np.array_equal(region_0[Axes.Y.value], [0])
assert np.array_equal(region_0[Axes.X.value], [0, 1, 2, 3, 4, 5])
assert np.array_equal(region_1[Axes.Y.value], [3, 4])
assert np.array_equal(region_1[Axes.X.value], [3, 4, 5])
assert np.array_equal(region_0[Coordinates.Y.value],
physical_ticks[Coordinates.Y][0:1])
assert np.array_equal(region_0[Coordinates.X.value],
physical_ticks[Coordinates.X][0:6])
assert np.array_equal(region_1[Coordinates.Y.value],
physical_ticks[Coordinates.Y][3:5])
assert np.array_equal(region_1[Coordinates.X.value],
physical_ticks[Coordinates.X][3:6])
def test_from_fiji_roi_set():
# set up empty dapi imagestack of correct size
fake_dapi = ImageStack.from_numpy(array=
|
np.zeros(shape=(1, 1, 1, 2048, 2048))
|
numpy.zeros
|
#! /usr/bin/env python
import pickle
import albumentations as A
import torch
import torchvision
from facenet_pytorch import MTCNN, InceptionResnetV1
import numpy as np
import cv2
import face_recognition
import os
import matplotlib.pyplot as plt
import pandas
test_chip = '/mnt/NAS/Photos/pkls/assigned/batch1/imchip_326465.pkl'
# test_chip = '/mnt/NAS/Photos/pkls/assigned/batch26/imchip_591528.pkl'
def short_vec(image):
h, w = image.shape[:2]
bbox = [(0, w, h, 0)]
encoding = face_recognition.face_encodings(image, known_face_locations = bbox, num_jitters=400, model='large')[0]
return encoding
def long_vec(image):
assert np.abs(image.shape[0] - image.shape[1]) < 3, f"{image.shape[0]} != {image.shape[1]}"
image = cv2.resize(image, (160, 160))
image = np.moveaxis(image, 2, 0)
image = (image - 127.5) / 128
image = torch.Tensor(image)
resnet = InceptionResnetV1(pretrained='vggface2').eval()
encoding = resnet(image.unsqueeze(0))
encoding = encoding.detach().numpy().astype(np.float32)
encoding = list(encoding[0])
return np.array(encoding)
transform = A.Compose([
A.geometric.transforms.Perspective(scale=(0.05, 0.1)),
A.geometric.rotate.Rotate(limit=25),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.05),
A.ColorJitter(hue=0.03, contrast=0.2),
A.RandomFog(p=0.05), ###
A.Blur(blur_limit=11),
A.GaussNoise(var_limit=(10.0, 80.0), p=0.5),
A.CLAHE( p=0.32, clip_limit=(2,3)),
# A.geometric.transforms.ElasticTransform(),
# A.RandomBrightnessContrast(p=0.5, brightness_limit=(-0.1, 0.4), contrast_limit=(-0.2, 0.2),), ###
# A.Flip(),
# # A.ToGray(),
# A.Downscale( p=0.4),
# A.FancyPCA( p=1),
])
def random_center_crop(image, w, h):
oversize = np.random.rand() / 4 + 1
im_h, im_w = image.shape[:2]
c = np.array(image.shape[:2]) // 2
adj_shape = np.min(image.shape[:2]) * 0.03
c_adj = (np.random.randn(2) * adj_shape ).astype(np.int)
c = c + c_adj
l = int(c[0] - w * oversize)
r = int(c[0] + w * oversize)
t = int(c[1] - h * oversize)
b = int(c[1] + h * oversize)
t = np.max( (0, t) )
l = np.max( (0, l) )
b = np.min( (b, im_h) )
r = np.min( (r, im_w) )
new_w = np.abs(l - r)
new_h = np.abs(b - t)
im = image[t:b, l:r, :]
if np.abs(new_w - new_h) > 1:
# Recenter in new chip
c = np.array(im.shape[:2]) // 2
size = np.min((new_w, new_h)) // 2
t_prime = int(c[0] - size)
b_prime = int(c[0] + size)
l_prime = int(c[1] - size)
r_prime = int(c[1] + size)
im = im[t_prime:b_prime, l_prime:r_prime, :]
# print(im.shape)
return im
def augment_image(data_dict, n_iters = 5):
image = data_dict['chipped_image']
w = data_dict['width'] // 2
h = data_dict['height'] // 2
max_extent = max(data_dict['width'], data_dict['height'])
scale_up_size = int(np.ceil(np.sqrt(2) * max_extent))
scale_down = 800 / scale_up_size
# chip_h = data_dict['height'] * np.sqrt(2)
# chip_w = data_dict['width'] * np.sqrt(2)
if scale_up_size > 800:
# Scale down and re-calculate bounding box.
center = np.array(image.shape[:2]) // 2
width = w * scale_down
height = h * scale_down
top = int(center[0] - height)
bot = int(center[0] + height)
lef = int(center[1] - width)
rig = int(center[1] + width)
w = np.ceil(width)
h = np.ceil(height)
w = h = int(np.min((w, h)))
shorts = []
longs = []
for ii in range(n_iters):
im = random_center_crop(image, w, h)
transformed = transform(image=im) # , cropping_bbox=[l, t, w * 2, h * 2])
transformed_image1 = transformed["image"]
enc_512 = long_vec(transformed_image1).astype(np.float16)
enc_128 = short_vec(transformed_image1).astype(np.float16)
if len(enc_512) == 512 and len(enc_128) == 128:
longs.append(enc_512)
shorts.append(enc_128)
return shorts, longs
with open(test_chip, 'rb') as fh :
print(test_chip)
data = pickle.load(fh)
image = data['chipped_image']
w = data['width'] // 2
h = data['height'] // 2
max_extent = max(data['width'], data['height'])
scale_up_size = int(np.ceil(np.sqrt(2) * max_extent))
scale_down = 800 / scale_up_size
# chip_h = data_dict['height'] * np.sqrt(2)
# chip_w = data_dict['width'] * np.sqrt(2)
if scale_up_size > 800:
# Scale down and re-calculate bounding box.
center = np.array(image.shape[:2]) // 2
width = w * scale_down
height = h * scale_down
top = int(center[0] - height)
bot = int(center[0] + height)
lef = int(center[1] - width)
rig = int(center[1] + width)
w = np.ceil(width)
h = np.ceil(height)
w = h = int(
|
np.min((w, h))
|
numpy.min
|
"""A collection of levitation related mathematical implementations.
The fields is one of the most important parts of the package,
containing implementations of various ways to calculate levitate-related physical properties.
To simplify the management and manipulation of the implemented fields they are wrapped
in an additional abstraction layer.
The short version is that the classes implemented in the `~levitate.fields` module
will not return objects of the called class, but typically objects of `~levitate.field_wrappers.Field`.
These objects support algebraic operations, like `+`, `*`, and `abs`. The full description of
what the different operands do can be found in the documentation of `~levitate._field_wrappers`.
.. autosummary::
:nosignatures:
Pressure
Velocity
GorkovPotential
GorkovGradient
GorkovLaplacian
RadiationForce
RadiationForceStiffness
RadiationForceCurl
RadiationForceGradient
SphericalHarmonicsForce
References
----------
.. [Gorkov] <NAME>, “On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid”
Soviet Physics Doklady, vol. 6, p. 773, Mar. 1962.
.. [Sapozhnikov] <NAME> and <NAME>, “Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid”
J Acoust Soc Am, vol. 133, no. 2, pp. 661–676, Feb. 2013.
"""
import numpy as np
from . import materials, utils
from ._field_wrappers import FieldImplementation
class Pressure(FieldImplementation):
"""Complex sound pressure :math:`p`.
Calculates the complex-valued sound pressure.
"""
ndim = 0
values_require = FieldImplementation.requirement(pressure_derivs_summed=0)
jacobians_require = FieldImplementation.requirement(pressure_derivs_individual=0)
def values(self, pressure_derivs_summed): # noqa: D102
return pressure_derivs_summed[0]
def jacobians(self, pressure_derivs_individual): # noqa: D102
return pressure_derivs_individual[0]
class Velocity(FieldImplementation):
r"""Complex sound particle velocity :math:`v`.
Calculates the sound particle velocity
.. math:: v = {1 \over j\omega\rho} \nabla p
from the relation :math:`\dot v = \rho \nabla p`
applied for monofrequent sound fields.
This is a vector value using a Cartesian coordinate system.
"""
ndim = 1
values_require = FieldImplementation.requirement(pressure_derivs_summed=1)
jacobians_require = FieldImplementation.requirement(pressure_derivs_individual=1)
def __init__(self, array, *args, **kwargs):
super().__init__(array, *args, **kwargs)
self.pre_grad_2_vel = 1 / (1j * array.medium.rho * array.omega)
def __eq__(self, other):
return (
super().__eq__(other)
and np.allclose(self.pre_grad_2_vel, other.pre_grad_2_vel, atol=0)
)
def values(self, pressure_derivs_summed): # noqa: D102
return self.pre_grad_2_vel * pressure_derivs_summed[1:4]
def jacobians(self, pressure_derivs_individual): # noqa: D102
return self.pre_grad_2_vel * pressure_derivs_individual[1:4]
class GorkovPotential(FieldImplementation):
r"""Gor'kov's potential :math:`U`.
Calculates the Gor'kov potential [Gorkov]_
.. math:: U = {V \over 4}(f_1 \kappa_0 |p|^2 - {3 \over 2} f_2 \rho_0 |v|^2)
where
.. math::
f_1 = 1 - {\kappa_p \over \kappa_0}, \qquad
f_2 = 2 {\rho_p - \rho_0 \over 2 \rho_p + \rho_0}
and :math:`V` is the volume of the particle.
Note that this is only a suitable measure for small particles, i.e. :math:`ka<<1`,
where :math:`a` is the radius of the particle.
"""
ndim = 0
values_require = FieldImplementation.requirement(pressure_derivs_summed=1)
jacobians_require = FieldImplementation.requirement(pressure_derivs_summed=1, pressure_derivs_individual=1)
def __init__(self, array, radius=1e-3, material=materials.styrofoam, *args, **kwargs): # noqa: D205, D400
"""
Parameters
----------
array : TransducerArray
The object modeling the array.
radius : float, default 1e-3
Radius of the spherical beads.
material : Material
The material of the sphere, default styrofoam.
"""
super().__init__(array, *args, **kwargs)
V = 4 / 3 * np.pi * radius**3
self.mg = V * 9.82 * material.rho
monopole_coefficient = 1 - material.compressibility / array.medium.compressibility # f_1 in H. Bruus 2012
dipole_coefficient = 2 * (material.rho / array.medium.rho - 1) / (2 * material.rho / array.medium.rho + 1) # f_2 in H. Bruus 2012
preToVel = 1 / (array.omega * array.medium.rho) # Converting velocity to pressure gradient using equation of motion
self.pressure_coefficient = V / 4 * array.medium.compressibility * monopole_coefficient
self.gradient_coefficient = V * 3 / 8 * dipole_coefficient * preToVel**2 * array.medium.rho
def __eq__(self, other):
return (
super().__eq__(other)
and np.allclose(self.pressure_coefficient, other.pressure_coefficient, atol=0)
and np.allclose(self.gradient_coefficient, other.gradient_coefficient, atol=0)
)
def values(self, pressure_derivs_summed): # noqa: D102
values = self.pressure_coefficient * np.real(pressure_derivs_summed[0] * np.conj(pressure_derivs_summed[0]))
values -= self.gradient_coefficient * np.real(pressure_derivs_summed[1:4] * np.conj(pressure_derivs_summed[1:4])).sum(axis=0)
return values
def jacobians(self, pressure_derivs_summed, pressure_derivs_individual): # noqa: D102
jacobians = self.pressure_coefficient * 2 * pressure_derivs_individual[0] * np.conj(pressure_derivs_summed[0])
jacobians -= self.gradient_coefficient * 2 * (pressure_derivs_individual[1:4] * np.conj(pressure_derivs_summed[1:4, None])).sum(axis=0)
return jacobians
class GorkovGradient(GorkovPotential):
r"""Gradient of Gor'kov's potential, :math:`\nabla U`.
Calculates the Cartesian spatial gradient of Gor'kov's potential,
see `GorkovPotential` and [Gorkov]_. This is a vector value used to calculate the
radiation force as
.. math:: F = -\nabla U.
Note that this value is not suitable for sound fields with strong
traveling wave components. If this is the case, use the
`RadiationForce` field instead.
"""
ndim = 1
values_require = FieldImplementation.requirement(pressure_derivs_summed=2)
jacobians_require = FieldImplementation.requirement(pressure_derivs_summed=2, pressure_derivs_individual=2)
def values(self, pressure_derivs_summed): # noqa: D102
values = np.real(self.pressure_coefficient * np.conj(pressure_derivs_summed[0]) * pressure_derivs_summed[1:4]) # Pressure parts
values -= np.real(self.gradient_coefficient * np.conj(pressure_derivs_summed[1]) * pressure_derivs_summed[[4, 7, 8]]) # Vx parts
values -= np.real(self.gradient_coefficient * np.conj(pressure_derivs_summed[2]) * pressure_derivs_summed[[7, 5, 9]]) # Vy parts
values -= np.real(self.gradient_coefficient * np.conj(pressure_derivs_summed[3]) * pressure_derivs_summed[[8, 9, 6]]) # Vz parts
return values * 2
def jacobians(self, pressure_derivs_summed, pressure_derivs_individual): # noqa: D102
jacobians = self.pressure_coefficient * (np.conj(pressure_derivs_summed[0]) * pressure_derivs_individual[1:4] + np.conj(pressure_derivs_summed[1:4, None]) * pressure_derivs_individual[0]) # Pressure parts
jacobians -= self.gradient_coefficient * (np.conj(pressure_derivs_summed[1]) * pressure_derivs_individual[[4, 7, 8]] + np.conj(pressure_derivs_summed[[4, 7, 8], None]) * pressure_derivs_individual[1]) # Vx parts
jacobians -= self.gradient_coefficient * (np.conj(pressure_derivs_summed[2]) * pressure_derivs_individual[[7, 5, 9]] + np.conj(pressure_derivs_summed[[7, 5, 9], None]) * pressure_derivs_individual[2]) # Vy parts
jacobians -= self.gradient_coefficient * (np.conj(pressure_derivs_summed[3]) * pressure_derivs_individual[[8, 9, 6]] + np.conj(pressure_derivs_summed[[8, 9, 6], None]) * pressure_derivs_individual[3]) # Vz parts
return jacobians * 2
class GorkovLaplacian(GorkovPotential):
r"""Laplacian of Gor'kov's potential, :math:`\nabla^2 U`.
This calculates the Cartesian parts of the Laplacian of
Gor'kov's potential, see `GorkovPotential` and [Gorkov]_. This is not
really the Laplacian, since the components are not summed.
The results can be seen as the local linear spring stiffness
of the radiation force.
Note that this value is not suitable for sound fields with strong
traveling wave components. If this is the case, use the
`RadiationForceStiffness` field instead.
"""
ndim = 1
values_require = FieldImplementation.requirement(pressure_derivs_summed=3)
jacobians_require = FieldImplementation.requirement(pressure_derivs_summed=3, pressure_derivs_individual=3)
def values(self, pressure_derivs_summed): # noqa: D102
values = np.real(self.pressure_coefficient * (np.conj(pressure_derivs_summed[0]) * pressure_derivs_summed[[4, 5, 6]] + pressure_derivs_summed[[1, 2, 3]] * np.conj(pressure_derivs_summed[[1, 2, 3]])))
values -= np.real(self.gradient_coefficient * (np.conj(pressure_derivs_summed[1]) * pressure_derivs_summed[[10, 15, 17]] + pressure_derivs_summed[[4, 7, 8]] *
|
np.conj(pressure_derivs_summed[[4, 7, 8]])
|
numpy.conj
|
"""
Copyright (c) Facebook, Inc. and its affiliates.
"""
import os
import sys
import math
import copy
import time
import logging
from collections.abc import Iterable
from prettytable import PrettyTable
import Pyro4
import numpy as np
import cv2
from droidlet.shared_data_structs import ErrorWithResponse
from droidlet.dashboard.o3dviz import deserialize as o3d_unpickle
from droidlet.shared_data_structs import RGBDepth
from droidlet.lowlevel.robot_coordinate_utils import (
base_canonical_coords_to_pyrobot_coords,
xyz_pyrobot_to_canonical_coords,
)
from droidlet.lowlevel.robot_mover import MoverInterface
from droidlet.lowlevel.robot_mover_utils import get_camera_angles, angle_diff, transform_pose
from droidlet.shared_data_struct.rotation import (
rotation_matrix_x,
rotation_matrix_y,
rotation_matrix_z,
)
from droidlet.lowlevel.robot_coordinate_utils import (
xyz_pyrobot_to_canonical_coords,
base_canonical_coords_to_pyrobot_coords,
)
from tenacity import retry, stop_after_attempt, wait_fixed
from droidlet.lowlevel.pyro_utils import safe_call
from .data_compression import *
Pyro4.config.SERIALIZER = "pickle"
Pyro4.config.SERIALIZERS_ACCEPTED.add("pickle")
Pyro4.config.PICKLE_PROTOCOL_VERSION = 2
MAX_PAN_RAD = math.pi / 4
# TODO/FIXME: state machines. state machines everywhere
class HelloRobotMover(MoverInterface):
"""Implements methods that call the physical interfaces of the Robot.
Arguments:
ip (string): IP of the Robot.
"""
def __init__(self, ip=None):
self.bot = Pyro4.Proxy("PYRONAME:hello_robot@" + ip)
self.bot._pyroAsync()
self.is_moving = self.bot.is_moving()
self.camera_transform = self.bot.get_camera_transform().value
self.camera_height = self.camera_transform[2, 3]
self.cam = Pyro4.Proxy("PYRONAME:hello_realsense@" + ip)
self.slam = Pyro4.Proxy("PYRONAME:slam@" + ip)
self.nav = Pyro4.Proxy("PYRONAME:navigation@" + ip)
# spin once synchronously
self.nav.is_busy()
# put in async mode
self.nav._pyroAsync()
self.nav_result = self.nav.is_busy()
self.data_logger = Pyro4.Proxy("PYRONAME:hello_data_logger@" + ip)
self.data_logger._pyroAsync()
_ = safe_call(self.data_logger.ready)
intrinsic_mat = safe_call(self.cam.get_intrinsics)
height, width = safe_call(self.cam.get_img_resolution, rotate=False)
self.uv_one_in_cam = HelloRobotMover.compute_uvone(intrinsic_mat, height, width)
def log_data_start(self, seconds):
self.data_logger.save_batch(seconds)
def log_data_stop(self):
self.data_logger.stop()
def bot_step(self):
f = not self.bot.is_moving().value
return f
def relative_pan_tilt(self, dpan, dtilt, turn_base=True):
"""
move the head so its new tilt is current_tilt + dtilt
and pan is current_pan + dpan
Args:
dpan (float): angle in radians to turn head left-right.
positive is right
dtilt (float): angle in radians to turn head up-down.
positive is up
"""
# FIXME handle out-of-range values properly
dtilt = dtilt or 0
dpan = dpan or 0
new_tilt = self.get_tilt() + dtilt
# FIXME: make a safe_base_turn method
if np.abs(dpan) > MAX_PAN_RAD and turn_base:
dyaw = np.sign(dpan) * (np.abs(dpan) - MAX_PAN_RAD)
self.turn(dyaw * 180 / math.pi)
pan_rad = np.sign(dpan) * MAX_PAN_RAD
else:
pan_rad = dpan
new_pan = self.get_pan() + pan_rad
self.bot.set_pan_tilt(new_pan, new_tilt)
return "finished"
def set_look(self, pan_rad, tilt_rad, turn_base=True, world=False):
"""
Sets the agent to look at a specified absolute pan and tilt.
These are "absolute" w.r.t. robot current base, if world==False
and absolute w.r.t. world coords if world=True
Args:
pan_rad (float): angle in radians to turn head left-right.
positive is right
tilt_rad (float): angle in radians to to turn head up-down.
positive is down.
"""
tilt_rad = tilt_rad or self.get_tilt()
# TODO handle out-of-range properly
dtilt = angle_diff(self.get_tilt(), tilt_rad)
if not world:
pan_rad = pan_rad or self.get_pan()
dpan = angle_diff(self.get_pan(), pan_rad)
else:
base_pan = self.get_base_pos_in_canonical_coords()[2]
pan_rad = pan_rad or base_pan + self.get_pan()
dpan = angle_diff(base_pan + self.get_pan(), pan_rad)
return self.relative_pan_tilt(dpan, dtilt, turn_base=turn_base)
def is_obstacle_in_front(self, return_viz=False):
ret = safe_call(self.cam.is_obstacle_in_front, return_viz)
if return_viz:
obstacle, cpcd, crop, bbox, rest = ret
cpcd = o3d_unpickle(cpcd)
crop = o3d_unpickle(crop)
bbox = o3d_unpickle(bbox)
rest = o3d_unpickle(rest)
return obstacle, cpcd, crop, bbox, rest
else:
obstacle = ret
return obstacle
def look_at(self, target, turn_base=True, face=False):
"""
Executes "look at" by setting the pan, tilt of the camera
or turning the base if required.
Uses both the base state and object coordinates in
canonical world coordinates to calculate expected yaw and pitch.
if face == True will move body so head yaw is 0
Args:
target (list): object coordinates as saved in memory.
turn_base: if False, will try to look at point only by moving camera and not base
"""
old_pan = self.get_pan()
old_tilt = self.get_tilt()
pos = self.get_base_pos_in_canonical_coords()
cam_transform = self.bot.get_camera_transform().value
cam_pos = cam_transform[0:3, 3]
# convert cam_pos to canonical co-ordinates
# FIXME ! do this properly in a util, current functions don't do it bc
# we are mixing base pos already converted and cam height
cam_pos = [pos[0], cam_pos[2], pos[1]]
logging.info(f"Current base state (x, z, yaw): {pos}, camera state (x, y, z): {cam_pos}")
logging.info(f"looking at x,y,z: {target}")
pan_rad, tilt_rad = get_camera_angles(cam_pos, target)
# pan_res = angle_diff(pos[2], pan_rad)
# For the Hello camera, negative tilt seems to be up, and positive tilt is down
# For the locobot camera, it is the opposite
# TODO: debug this further, and make things across robots consistent
logging.info(f"Returned new pan and tilt angles (radians): ({pan_rad}, {tilt_rad})")
if face:
# TODO less blocking, make me into state machine
dpan = angle_diff(self.get_base_pos_in_canonical_coords()[2], pan_rad)
self.turn(dpan * 180 / math.pi)
return self.set_look(0, tilt_rad)
else:
self.set_look(pan_rad, tilt_rad, turn_base=True, world=True)
def is_busy(self):
return self.nav.is_busy().value and self.bot.is_busy().value
def stop(self):
"""immediately stop the robot."""
self.nav.stop()
return self.bot.stop()
def unstop(self):
"""remove a runstop flag via software"""
return self.bot.remove_runstop()
def get_pan(self):
"""get yaw in radians."""
return self.bot.get_pan().value
def get_tilt(self):
"""get pitch in radians."""
return self.bot.get_tilt().value
def reset_camera(self):
"""reset the camera to 0 pan and tilt."""
return self.bot.reset()
def move_relative(self, xyt_positions, blocking=True):
"""Command to execute a relative move.
Args:
xzt_positions: a list of relative (x,y,yaw) positions for the bot to execute.
x,y,yaw are in the pyrobot's coordinates.
"""
if not isinstance(next(iter(xyt_positions)), Iterable):
# single xyt position given
xyt_positions = [xyt_positions]
for xyt in xyt_positions:
self.nav_result.wait()
self.nav_result = safe_call(self.nav.go_to_relative, xyt)
if blocking:
self.nav_result.wait()
def move_absolute(self, xzt_positions, blocking=True):
"""Command to execute a move to an absolute position.
It receives positions in canonical world coordinates and converts them to pyrobot's coordinates
before calling the bot APIs.
Args:
xzt_positions: a list of (x_c,z_c,yaw) positions for the bot to move to.
(x_c,z_c,yaw) are in the canonical world coordinates.
"""
if not isinstance(next(iter(xzt_positions)), Iterable):
# single xzt position given
xzt_positions = [xzt_positions]
for xzt in xzt_positions:
logging.info("Move absolute in canonical coordinates {}".format(xzt))
self.nav_result.wait()
robot_coords = base_canonical_coords_to_pyrobot_coords(xzt)
self.nav_result = self.nav.go_to_absolute(robot_coords)
if blocking:
self.nav_result.wait()
return "finished"
def get_base_pos_in_canonical_coords(self):
"""get the current robot position in the canonical coordinate system
the canonical coordinate systems:
from the origin, at yaw=0, front is (x, y, z) = (0, 0, 1),
its right direction is (x,y,z) = (1, 0, 0)
its up direction is (x,y,z) = (0, 1, 0)
yaw is + counterclockwise
return:
(x, z, yaw) of the robot base in canonical coordinates
"""
future = safe_call(self.bot.get_base_state)
x_robot, y_robot, yaw = future.value
z_canonical = x_robot
x_canonical = -y_robot
return
|
np.array([x_canonical, z_canonical, yaw])
|
numpy.array
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 22 17:27:02 2018
Functions to process data for OpenBCI brainwaives reading
@author: vyachez
"""
import sys
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#import sys; sys.path.append('..')
# dropping unnecessary staff
def dip_drop(dset):
dset = dset.drop(columns=[0,9,10,11])
dset = dset.reset_index(drop=True)
print(dset.shape)
return dset
# preparing basics
def basics(dset):
'''cleaning up time column'''
# converting timestamp into seconds (cutting off milisecs)
dset[12] = dset[12].str[1:-4]
dset = dset.rename(columns={12: "sec"})
print('Realigned time column')
return dset
# Cleaning data from spikes to prepare for normalisation
# iterating through each second to clean-up spikes of data
def variance_clean(dset, var):
""" dset - dataset to cleanup
var - max variance - all that above is to catch and remove
"""
for chan in range(8):
for sec in np.unique(dset['sec']):
min_edge = min(dset.loc[dset['sec'] == sec][chan+1])
max_edge = max(dset.loc[dset['sec'] == sec][chan+1])
variance = max_edge - min_edge
idx = dset.loc[dset[chan+1] == max_edge].index[0]
if variance > var:
#print('Channel {} | Second {} | Index {} | Variance:] = {}'.format(chan+1, sec, idx, variance))
dset = dset.drop(index=dset.loc[dset['sec'] == sec].index)
# reseting the index
dset = dset.reset_index(drop=True)
#print('Dropped')
print('Cleaned spikes larger than', var)
return dset
# balancing intervals to set length (optimal number of rows)
def balance_intervals(dset, int_no):
""" dset - dataset to cleanup
int_no - min length of intervals within one second"""
idarr = np.array([[i, len(dset['sec'].loc[dset['sec'] == i])] for i in np.unique(dset['sec'])])
for i in idarr:
if int(i[1]) < int_no:
date = i[0]
# removing short/incomplete
dset = dset.drop(index=dset.loc[dset['sec'] == date].index)
elif int(i[1]) > int_no:
date = i[0]
end_ind = dset.loc[dset['sec'] == date].index[-1]
cut_ind = dset.loc[dset['sec'] == date].index[int_no-1]
# cutting excessive
dset = dset.drop(dset.index[cut_ind:end_ind])
dset = dset.reset_index(drop=True)
return dset
# see if all of intervals have the same length
def balance_check(dset, dur):
for i in np.unique(dset['sec']):
if len(dset['sec'].loc[dset['sec'] == i]) != dur:
print('Seconds are not equal!')
print(np.array([i, len(dset['sec'].loc[dset['sec'] == i])]))
print("Check completed for balanced intervals!")
return True
# checking number of seconds in dataset(unique)
def seconds(dset):
'''takes dataset as a argument and utputs
number of unique seconds'''
print("\nSeconds in dataset now: ", len(np.unique(dset['sec'])))
# see if all of intervals have the same length by second
def sec_disp(dset):
return np.array([[i, len(dset['sec'].loc[dset['sec'] == i])] for i in np.unique(dset['sec'])])
# scaling function
def scaler(dset, secs, dur):
'''Scaling function takes dataset of 8 channels
and returns rescaled dataset.
Rescales by interval (second).
arg 'secs' is number of seconds to take into one scaling tensor.
Scaling is between 1 and 0
All datasets for training should be equalized'''
# first - getting length of dataset modulo number of seconds for scaling
intlv = secs*dur
if len(dset['sec'])/intlv > 1:
lendset = int(len(dset['sec'])/intlv)
dset = dset[0:lendset*intlv]
dset = dset.reset_index(drop=True)
else:
print("Inappropriate length of dataset. Too short. Set up less seconds for batch or choose another dataset.")
seconds(dset)
# now scaling
if balance_check(dset, dur=dur):
for chan in range(8):
for i in range(int(len(dset['sec'])/intlv)):
tmpdat = dset.loc[i*intlv:i*intlv+intlv-1, chan+1]
tmpdat = (tmpdat-min(tmpdat))/(max(tmpdat)-min(tmpdat))
dset.loc[i*intlv:i*intlv+intlv-1, chan+1]= tmpdat
dset = dset.reset_index(drop=True)
print("Dataset has been rescaled \n")
return dset
else:
print("\nDataset intervals are not balanced! Check the code and functions order.")
# equalizing datasets by seconds' intervals
def equalizing(r_dat, w_dat):
'''Taking two datasets and equalising its lengths
To fit training algorithms'''
# taking length of datasets
r_dat_sec = len(np.unique(r_dat['sec']))
w_dat_sec = len(np.unique(w_dat['sec']))
# eualizing
if r_dat_sec > w_dat_sec:
min_len = min(r_dat_sec, w_dat_sec)
for i in range(min_len+1,r_dat_sec+1):
r_dat = r_dat.drop(index=r_dat.loc[r_dat['sec'] == np.unique(r_dat['sec'])[-0]].index)
#print('Dropped second from r_dat')
elif w_dat_sec > r_dat_sec:
min_len = min(r_dat_sec, w_dat_sec)
for i in range(min_len+1,w_dat_sec+1):
w_dat = w_dat.drop(index=w_dat.loc[w_dat['sec'] == np.unique(w_dat['sec'])[-0]].index)
#print('Dropped second from r_dat')
else:
print('Seconds are equal!')
r_dat = r_dat.reset_index(drop=True)
w_dat = w_dat.reset_index(drop=True)
print("Equalized!")
# checking number of unique seconds
r_dat_sec = len(np.unique(r_dat['sec']))
w_dat_sec = len(np.unique(w_dat['sec']))
print("\nSeconds: r_dat:", r_dat_sec)
print("Seconds: w_dat:", w_dat_sec)
print("\nr_dat dim:", r_dat.shape)
print("w_dat dim:", w_dat.shape)
return r_dat, w_dat
# plotting function
def d_plot(dset, chan=0, seconds=0, start=0, dur=0):
'''this can plot each single chanel and within
certain number of seconds'''
sec = np.array(dset.index)
plt.figure(figsize=(20,5))
if chan != 0:
if seconds != 0:
intv = dur*start
intv_1 = intv+dur*seconds
sec = np.array(dset.index[intv:intv_1])
plt.plot(sec, np.array(dset[chan][intv:intv_1]), label='ch')
plt.legend()
_ = plt.ylim()
else:
plt.plot(sec, np.array(dset[chan]), label='ch')
plt.legend()
_ = plt.ylim()
else:
if seconds != 0:
intv = dur*start
intv_1 = intv+dur*seconds
sec = np.array(w_dat.index[intv:intv_1])
plt.plot(sec, np.array(dset[1][intv:intv_1]), label='ch1')
plt.plot(sec, np.array(dset[2][intv:intv_1]), label='ch2')
plt.plot(sec, np.array(dset[3][intv:intv_1]), label='ch3')
plt.plot(sec, np.array(dset[4][intv:intv_1]), label='ch4')
plt.plot(sec, np.array(dset[5][intv:intv_1]), label='ch5')
plt.plot(sec, np.array(dset[6][intv:intv_1]), label='ch6')
plt.plot(sec, np.array(dset[7][intv:intv_1]), label='ch7')
plt.plot(sec, np.array(dset[8][intv:intv_1]), label='ch8')
plt.legend()
_ = plt.ylim()
else:
plt.plot(sec, np.array(dset[1]), label='ch1')
plt.plot(sec, np.array(dset[2]), label='ch2')
plt.plot(sec, np.array(dset[3]), label='ch3')
plt.plot(sec, np.array(dset[4]), label='ch4')
plt.plot(sec, np.array(dset[5]), label='ch5')
plt.plot(sec, np.array(dset[6]), label='ch6')
plt.plot(sec,
|
np.array(dset[7])
|
numpy.array
|
#!/bin/python
import Nio, Ngl
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy
from scipy.fftpack import fftshift
import math
from diag_functions import *
import seaborn as sns
sns.set_style('darkgrid')
dir_in="/glade/scratch/cmc542/tmp/bbenton/WRF_OUTPUT/ctrl/%s"
#dir_in = "/glade/u/home/bbenton/PROJ_WRF/ctrl/%s"
file_in = "/wrfpost_ctrl_%s_%s.nc"
ts_series=[]
if False:
for year in range(950,1105):
for month in range(1,13):
if month < 10: month="0"+str(month)
else: month=str(month)
dat_in = Nio.open_file(dir_in %(year) + file_in %(year,month))
dat_in = dat_in.variables["T_sfc_monthly"][0,:,:]
ts_series.append(np.mean(dat_in))
#ts_series.append(np.mean(tmp))
print(ts_series)
exit()
else:
f1=open("/glade/u/home/bbenton/20XXWRF/wrf_pipeline_tools/diagnostics/ctrl_ts_series_1000_1105.txt")
f2=open("/glade/u/home/bbenton/20XXWRF/wrf_pipeline_tools/diagnostics/ctrl_ts_series_950_1105.txt")
ts_series1=f1.readline().split(",")
ts_series2=f2.readline().split(",")
ts_series1=[float(x) for x in ts_series1]
ts_series2=[float(x) for x in ts_series2]
tmp1=[]
tmp2=[]
avg_len=6
for i in range(int(len(ts_series1)/avg_len)):
tmp1.append(np.mean(ts_series1[avg_len*i:avg_len*(i+1)]))
for i in range(int(len(ts_series2)/avg_len)):
tmp2.append(np.mean(ts_series2[avg_len*i:avg_len*(i+1)]))
ts_series1=tmp1
ts_series2=tmp2
ts_series1=[x-np.mean(ts_series1) for x in ts_series1]
ts_series2=[x-
|
np.mean(ts_series2)
|
numpy.mean
|
from IMLearn.learners import UnivariateGaussian, MultivariateGaussian
import numpy as np
import plotly.graph_objects as go
import plotly.io as pio
pio.templates.default = "simple_white"
def test_univariate_gaussian():
# Question 1 - Draw samples and print fitted model
q1 = np.random.normal(10,1,1000)
x1 = UnivariateGaussian()
x1.fit(q1)
print("("+str(x1.mu_)+","+str(x1.var_)+")")
# Question 2 - Empirically showing sample mean is consistent
ms = np.linspace(10,1000,100).astype(int)
estimate = np.zeros(100)
for i in range(1,estimate.size):
estimate[i] = np.abs(x1.fit(q1[:i*10]).mu_-10)
go.Figure([go.Scatter(x=ms, y=estimate, mode='markers+lines',
name=r'$\widehat\mu$')],
layout=go.Layout(
title=r"$\text{absolute distance between the estimate and "
r"the true value of the expectation}$",
xaxis_title="$m\\text{ - number of samples}$",
yaxis_title="r$\mu$",height=500)).show()
# Question 3 - Plotting Empirical PDF of fitted model
x1.fit(q1)
go.Figure([go.Scatter(x=q1, y=x1.pdf(q1), mode='markers',
name=r'$\widehat\PDF$')],
layout=go.Layout(
title=r"$\text{sample value and their PDFs}$",
xaxis_title="$m\\text{ - number of samples}$",
yaxis_title="r$PDF$")).show()
def test_multivariate_gaussian():
# Question 4 - Draw samples and print fitted model
mu = np.array([0,0,4,0])
sigma = np.array([[1,0.2,0,0.5],[0.2,2,0,0],[0,0,1,0],[0.5,0,0,1]])
q2 = np.random.multivariate_normal(mu, sigma, 1000)
x2 = MultivariateGaussian()
x2.fit(q2)
print("estimated expectation: ")
print(x2.mu_)
print("covariance: ")
print(x2.cov_)
# Question 5 - Likelihood evaluation
f1 = np.array(np.linspace(-10,10,200))
f3 = np.array(np.linspace(-10,10,200))
log_likely = np.array([[MultivariateGaussian.log_likelihood(
np.array([i1,0,i3,0]), sigma, q2) for i3 in f3] for i1 in f1])
np.reshape(log_likely,(200,200))
fig = go.Figure(data=go.Heatmap(x=f1, y=f3, z=np.array(log_likely)),
layout=go.Layout(title="log-likelihood heatmap of models"
" with different expectation"))
fig.show()
# Question 6 - Maximum likelihood
max1,max3 = np.unravel_index(log_likely.argmax(),log_likely.shape)
print(f1[max1], f3[max3])
if __name__ == '__main__':
|
np.random.seed(0)
|
numpy.random.seed
|
#!/usr/bin/env python
import os
import sys
import h5py
ROOT_DIR = os.path.abspath(os.path.pardir)
sys.path.append(ROOT_DIR)
import numpy as np
import utils.provider as provider
class Dataset():
def __init__(self, filename, npoints=1024, box_size=10, dropout_max=0, training=True):
"""Create a dataset holder
npoints (int): Defaults to 8192. The number of point in each input
color (bool): Defaults to True. Whether to use colors or not
box_size (int): Defaults to 10. The size of the extracted cube.
path (float): Defaults to "dataset/semantic_data/".
dropout_max (float): Defaults to 0.875. Maximum dropout to apply on the inputs.
accept_rate (float): Minimum rate (between 0.0 and 1.0) of points in the box to accept it. E.g : npoints = 100, then you need at least 50 points.
"""
# Dataset parameters
self.filename = filename
self.npoints = npoints
self.box_size = box_size
self.dropout_max = dropout_max
self.num_classes = 2
# Load the data
self.load_data()
# Precompute the random scene probabilities
self.compute_random_scene_index_proba()
# Prepare the points weights if it is a training set
if training:
# Compute the weights
labelweights = np.zeros(2)
# First, compute the histogram of each labels
for seg in self.semantic_labels_list:
tmp,_ = np.histogram(seg,range(3))
labelweights += tmp
# Then, an heuristic gives the weights : 1/log(1.2 + probability of occurrence)
labelweights = labelweights.astype(np.float32)
labelweights = labelweights/np.sum(labelweights)
self.labelweights = 1/np.log(1.2+labelweights)
else:
self.labelweights = np.ones(2)
def load_data(self):
print("Loading semantic data...")
self.scene_points_list = list()
self.semantic_labels_list = list()
f = h5py.File(self.filename, "r")
data_points = f["data"][:]
data_labels = f["label"][:]
# sort according to x to speed up computation of boxes and z-boxes
# print np.shape(data_points)
# print np.shape(data_points[:,0])
# print np.shape(data_points[:,:,0])
# sort_idx = np.argsort(data_points[:,:,0])
# print np.shape(sort_idx)
# print np.shape(data_labels)
# data_points = data_points[sort_idx,0]
# data_labels = data_labels[sort_idx]
# self.scene_points_list = data_points
# self.semantic_labels_list = data_labels.astype(np.int8)
#
#
# print np.shape(data_points)
# print np.shape(data_points[:,0])
# print np.shape(data_points[:,:,0])
for i in range(len(data_points)):
#pc = data_points[i]
#sort_idx = np.argsort(pc[:,0])
#print np.shape(sort_idx)
#print np.shape(data_labels)
#pc = data_points[i,sort_idx]
#dl = data_labels[i,sort_idx]
#self.scene_points_list.append(data_points[i])
#self.semantic_labels_list.append(data_labels[i].astype(np.int8))
break
self.scene_points_list = data_points
#self.semantic_labels_list = data_labels.astype(np.int8)
for i in range(len(data_labels)):
self.semantic_labels_list.append([data_labels[i]] * self.npoints)
# Set min to (0,0,0)
self.scene_max_list = list()
self.scene_min_list = list()
self.raw_scene_min_list = list()
for i in range(len(self.scene_points_list)):
self.raw_scene_min_list.append(np.min(self.scene_points_list[i],axis=0))
self.scene_points_list[i] = self.scene_points_list[i]-
|
np.min(self.scene_points_list[i], axis=0)
|
numpy.min
|
def summary(outroot='summary-18.05.17'):
from hsaquery import overlaps
from grizli import utils
overlaps.summary_table(output='pointing_summary')
tab = utils.GTable.gread('pointing_summary.fits')
roots = tab['NAME']
tab['Full'] = ['<a href=https://s3.amazonaws.com/aws-grivam/Pipeline/{0}/Extractions/{0}-full.html?chinu_max=2&bic_diff_min=30&zwidth1_max=0.01>Full</a>'.format(root.replace('+','%2B')) for root in roots]
tab['fp'] = ['<a href=https://s3.amazonaws.com/aws-grivam/Pipeline/{0}_footprint.png> <img height=200 src=https://s3.amazonaws.com/aws-grivam/Pipeline/{0}_footprint.png></a>'.format(root.replace('+','%2B')) for root in roots]
tab['zhist'] = ['<a href=https://s3.amazonaws.com/aws-grivam/Pipeline/{0}/Extractions/{0}_zhist.png> <img height=200 src=https://s3.amazonaws.com/aws-grivam/Pipeline/{0}/Extractions/{0}_zhist.png></a>'.format(root.replace('+','%2B')) for root in roots]
#cols = ['NAME', 'RA', 'DEC', 'E(B-V)', 'GalLat', 'GalLon', 'NFILT', 'filter', 'target', 'target_description', 'proposal_id', 'pi_name', 'TexpG102', 'PAG102', 'TexpG141', 'PAG141', 'MAST', 'Full', 'fp', 'zhist']
cols = ['NAME', 'RA', 'DEC', 'E(B-V)', 'GalLat', 'GalLon', 'NFILT', 'filter', 'target', 'proposal_id', 'pi_name', 'TexpG102', 'PAG102', 'TexpG141', 'PAG141', 'MAST', 'Full', 'fp', 'zhist']
tab[cols].write_sortable_html(outroot+'.html', replace_braces=True, localhost=False, max_lines=50000, table_id=None, table_class='display compact', css=None, filter_columns=['mag_auto', 'z_map', 'bic_diff', 'chinu', 'zwidth1', 'is_point', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII'], use_json=False)
print('aws s3 cp {0}.html s3://aws-grivam/Pipeline/ --acl public-read'.format(outroot))
def regenerate_webpages(outroot='master'):
"""
roots=`python -c "from grizli_aws import catalogs; roots, dates = catalogs.get_roots(verbose=False); print('\n'.join(roots))"`
roots=`ls *phot.fits | sed "s/_phot/ /" | awk '{print $1}'`
# ACS
BUCKET=grizli-grism
roots=`ls ../*footprint.fits | sed "s/\// /g" | sed "s/_foot/ /" | awk '{print $2}'`
for root in $roots; do
if [ ! -e ${root}.info.fits ]; then
aws s3 cp s3://${BUCKET}/Pipeline/${root}/Extractions/${root}.info.fits ./
#aws s3 cp s3://${BUCKET}/Pipeline/${root}/Extractions/${root}_phot.fits ./
else
echo $root
fi
done
for root in $roots; do
aws s3 ls s3://aws-grivam/Pipeline/${root}/Extractions/ > /tmp/x
echo $root
grep beams.fits /tmp/x | wc
grep full.fits /tmp/x | wc
done
"""
import glob
import numpy as np
from grizli import utils
from astropy import table
## retrieve
roots = [file.split('.info')[0] for file in glob.glob('*info.fits')]
fpi = open('sync_to_s3.sh', 'w')
fpi.write('# \n')
fpi.close()
tables = []
for root in roots:
fit = utils.GTable.gread(root+'.info.fits')
phot = utils.GTable.gread(root+'_phot.fits')
ix, dr = phot.match_to_catalog_sky(fit)
fit['phot_dr'] = dr
for c in phot.colnames:
if c not in fit.colnames:
fit[c] = phot[ix][c]
else:
pass
#print(c)
print(root, len(fit))
# # DQ on mag differences
# apcorr = fit['flux_auto']/fit['flux_aper_1']
# m140 = 23.9-2.5*np.log10(fit['f140w_flux_aper_1']*apcorr)
# dm140 = m140-fit['mag_wfc3,ir,f140w']
# mask = fit['{0}_mask_aper_{1}'.format('f140w', 1)]
# bad = mask > 0.2*np.percentile(mask[np.isfinite(mask)], 99.5)
# dm140[bad] = np.nan
#
# m160 = 23.9-2.5*np.log10(fit['f160w_flux_aper_1']*apcorr)
# dm160 = m160-fit['mag_wfc3,ir,f160w']
# mask = fit['{0}_mask_aper_{1}'.format('f160w', 1)]
# bad = mask > 0.2*np.percentile(mask[np.isfinite(mask)], 99.5)
# dm160[bad] = np.nan
#
# dm = dm140
# dm[(~np.isfinite(dm140)) & np.isfinite(dm160)] = dm160[(~np.isfinite(dm140)) & np.isfinite(dm160)]
# dm[~np.isfinite(dm)] = -99
#
# fit['fit_dmag'] = dm
# fit['fit_dmag'].format = '4.1f'
# Point source
pa = np.polyfit([16, 21, 24, 25.5], [4.5, 2.6, 2.3, 2.1], 2)
py = np.polyval(pa, fit['mag_auto'])
point_source = (fit['flux_radius'] < py) #& (fit['mag_auto'] < 23)
fit['is_point'] = point_source*2-1
bad = (fit['mag_auto'] > 22) & (fit['flux_radius'] < 1.2)
fit['too_small'] = bad*2-1
N = len(fit)
aws_col = {}
for c in ['png_stack', 'png_full', 'png_line']:
aws_col[c] = []
for i in range(N):
root = fit['root'][i]
aws = 'https://s3.amazonaws.com/aws-grivam/Pipeline/{0}/Extractions/{0}'.format(root)
for c in ['png_stack', 'png_full', 'png_line']:
pre = fit[c][i]
aws_col[c].append(pre.replace(root, aws).replace(root, root.replace('+','%2B')))
for c in ['png_stack', 'png_full', 'png_line']:
fit['aws_'+c] = aws_col[c]
fit['log_mass'] = np.log10(fit['stellar_mass'])
fit['log_mass'].format = '.2f'
cols = ['root', 'idx','ra', 'dec', 't_g102', 't_g141', 'mag_auto', 'is_point', 'z_map', 'chinu', 'bic_diff', 'zwidth1', 'a_image', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII', 'log_mass', 'png_stack', 'png_full', 'png_line']
# Check grisms
cols = ['root', 'idx','ra', 'dec', 'mag_auto', 'is_point', 'z_map', 'z02', 'z97', 'chinu', 'bic_diff', 'zwidth1', 'a_image', 'flux_radius', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII', 'log_mass', 'aws_png_stack', 'aws_png_full', 'aws_png_line']
for grism in ['g800l', 'g102', 'g141'][::-1]:
if np.isfinite(fit['t_'+grism]).sum() > 0:
cols.insert(4, 't_'+grism)
fit['ra'].format = '.4f'
fit['dec'].format = '.4f'
fit['z02'].format = '.2f'
fit['z97'].format = '.2f'
fit['flux_radius'].format = '.1f'
fit['mag_auto'].format = '.2f'
fit['t_g800l'].format = '.0f'
fit['t_g102'].format = '.0f'
fit['t_g141'].format = '.0f'
fit['zq'].format = '.1f'
fit['zwidth1'].format = '.3f'
fit['bic_diff'].format = '.0f'
fit['a_image'].format = '.1f'
for l in ['Ha','OIII','Hb','OII','SIII']:
fit['sn_'+l].format = '.1f'
fit[cols].write_sortable_html(root+'-full.html', replace_braces=True, localhost=False, max_lines=50000, table_id=None, table_class='display compact', css=None, filter_columns=['mag_auto', 'z_map', 'z02', 'z97', 'bic_diff', 'chinu', 'a_image', 'flux_radius', 'zwidth1', 'is_point', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII'], use_json=True)
if '+' in root:
ext = 'html'
lines = open(root+'-full.'+ext).readlines()
for i, line in enumerate(lines):
if root in line:
lines[i] = line.replace(root, root.replace('+', '%2B'))
fp = open(root+'-full.'+ext,'w')
fp.writelines(lines)
fp.close()
ext = 'json'
lines = open(root+'-full.'+ext).readlines()
for i, line in enumerate(lines):
if (root in line) & ('href' in line):
lines[i] = line.replace(root, root.replace('+', '%2B'))
fp = open(root+'-full.'+ext,'w')
fp.writelines(lines)
fp.close()
fpi = open('sync_to_s3.sh', 'a')
fpi.write('aws s3 cp {0}-full.html s3://aws-grivam/Pipeline/{0}/Extractions/ --acl public-read\n'.format(root))
fpi.write('aws s3 cp {0}-full.json s3://aws-grivam/Pipeline/{0}/Extractions/ --acl public-read\n'.format(root))
fpi.close()
tables.append(fit)
master = table.vstack(tables)
cols = ['root', 'idx','ra', 'dec', 'mag_auto', 'is_point', 'z_map', 'z02', 'z97', 'chinu', 'bic_diff', 'zwidth1', 'a_image', 'flux_radius', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII', 'log_mass', 'aws_png_stack', 'aws_png_full', 'aws_png_line']
for grism in ['g800l', 'g102', 'g141'][::-1]:
if np.isfinite(master['t_'+grism]).sum() > 0:
cols.insert(4, 't_'+grism)
master[cols].write_sortable_html(outroot+'.html', replace_braces=True, localhost=False, max_lines=500000, table_id=None, table_class='display compact', css=None, filter_columns=['mag_auto', 't_g102', 't_g141', 'z_map', 'z02', 'z97', 'bic_diff', 'chinu', 'a_image', 'flux_radius', 'zwidth1', 'is_point', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII', 'log_mass'], use_json=True)
#sel = master['bic_diff'] > 30
#master[sel][cols].write_sortable_html(outroot+'.html', replace_braces=True, localhost=False, max_lines=500000, table_id=None, table_class='display compact', css=None, filter_columns=['mag_auto', 't_g102', 't_g141', 'z_map', 'z02', 'z97', 'bic_diff', 'chinu', 'a_image', 'flux_radius', 'zwidth1', 'is_point', 'sn_SIII', 'sn_Ha', 'sn_OIII', 'sn_Hb', 'sn_OII', 'log_mass'], use_json=True)
new = utils.GTable()
for col in fit.colnames:
new[col] = master[col]
new.write(outroot+'.fits', overwrite=True)
print('aws s3 cp {0}.html s3://aws-grivam/Pipeline/ --acl public-read\n'.format(outroot))
print('aws s3 cp {0}.json s3://aws-grivam/Pipeline/ --acl public-read\n'.format(outroot))
print('aws s3 cp {0}.fits s3://aws-grivam/Pipeline/ --acl public-read\n'.format(outroot))
print ('bash sync_to_s3.sh')
def master_catalog(outroot='grizli-18.05.17-full', bucket='grizli-v1', files=None):
import glob
import numpy as np
from grizli import utils
from astropy import table
## retrieve
if files is None:
files = glob.glob('*info.fits')
roots = [file.split('.info')[0] for file in files]
tabs = [utils.GTable.gread(root+'.info.fits') for root in roots]
fit = utils.GTable(table.vstack(tabs))
fit['flux_radius'].format = '.1f'
N = len(fit)
aws_col = {}
for c in ['png_stack', 'png_full', 'png_line', 'png_rgb']:
aws_col[c] = []
#bucket='aws-grivam'
#bucket='grizli-grism'
#bucket='grizli'
for i in range(N):
root = fit['root'][i]
aws = 'https://s3.amazonaws.com/{0}/Pipeline/{1}/Extractions/{1}'.format(bucket, root)
for c in ['png_stack', 'png_full', 'png_line']:
pre = fit[c].filled()[i]
aws_col[c].append(pre.replace(root, aws).replace(root, root.replace('+','%2B')))
pre = fit['png_rgb'].filled()[i]
aws_col['png_rgb'].append(pre.replace('../Thumbnails/', '').replace(root, aws).replace('Extractions', 'Thumbnails').replace(root, root.replace('+','%2B')))
for c in ['png_stack', 'png_full', 'png_line', 'png_rgb']:
fit['aws_'+c] = aws_col[c]
fit['aws_png_sed'] = [l.replace('full.png','sed.png') for l in fit['aws_png_full']]
psx = [16, 18.5, 21, 24, 25.5]
psy = [8, 4., 2.6, 2.3, 2.1]
# New pixel scale
psy = np.array(psy)*0.06/0.1
# ACS
if False:
psx = [16, 21, 24, 25.5, 27]
psy = [4.5, 2.9, 2.9, 2.6, 2.6]
pa = np.polyfit(psx, psy, 2)
py = np.interp(fit['mag_auto'], psx, psy)
# Point source
point_source = (fit['flux_radius'] < py) & (fit['mag_auto'] < 25.5)
#point_source = (fit['flux_radius'] < py) & (fit['mag_auto'] < 24) # ACS
fit['is_point'] = point_source*1
fit['log_mass'] = np.log10(fit['stellar_mass'])
fit['log_mass'].format = '.2f'
############
# Warnings for ambiguous line IDs
dz_line = np.array([5007, 6563])*(1./5007.-1/6563.)
col = 'ambiguous_HaOIII'
dz_line = np.array([3727, 6563])*(1./3727.-1/6563.)
col = 'ambiguous_HaOII'
zw1 = fit['zwidth1']/(1+fit['z_map'])
zw2 = fit['zwidth2']/(1+fit['z_map'])
fit['zw1'] = zw1
fit['zw1'].format = '.3f'
fit['zw2'] = zw2
fit['zw2'].format = '.3f'
for dz_line, col in zip([np.array([5007, 6563])*(1./5007.-1/6563.), np.array([3727, 6563])*(1./3727.-1/6563.)], ['ambiguous_HaOIII', 'ambiguous_HaOII']):
if col in fit.colnames: fit.remove_column(col)
for dz_i in dz_line:
if col not in fit.colnames:
fit[col] = np.abs(zw1 - dz_i) < 0.008
else:
fit[col] |= np.abs(zw1 - dz_i) < 0.008
amb = fit['ambiguous_HaOIII']*1+fit['ambiguous_HaOII']*2
############
# Reliable redshifts, based on 3D-HST COSMOS
ambiguous = (fit['ambiguous_HaOIII'] | fit['ambiguous_HaOII']) & (zw2 / zw1 < 1.1)
fit['ambiguous'] = ambiguous
# Define ambigous as wide zwidth but <= N isolated peaks with width
# ambig_sigma
ambig_sigma = 0.005
ambig_npeak = 2
ambig_logprob = np.log10(1/np.sqrt(np.pi*ambig_sigma**2)/ambig_npeak)
fit.meta['pdf_max'] = ambig_logprob, 'log_pdf_max limit for ambigous lines'
fit['ambiguous'] = (zw1 > 0.2) & (fit['log_pdf_max'] > ambig_logprob)
min_risk_lim = 0.4
fit['ambiguous'] &= fit['min_risk'] < min_risk_lim
fit.meta['min_risk'] = min_risk_lim, 'min_risk limit for ambigous lines'
fit['ok_width'] = (fit['zw1'] < 0.02) | fit['ambiguous']
fit['ok_width'].format = 'd'
fit['bic_diff_spl'] = fit['bic_spl'] - fit['bic_temp']
fit['bic_diff_spl'].format = '.0f'
# Overall data quality
fit['use_spec'] = (fit['ok_width'])
fit['use_spec'] &= (fit['chinu'] < 10)
fit['use_spec'] &= (fit['bic_diff'] > 0) | ((fit['bic_diff'] > -30) & (fit['min_risk'] < 0.05))
fit['use_spec'] &= (fit['flux_radius'] > 1)
dz_risk = (fit['z_map'] - fit['z_risk'])/(1+fit['z_map'])
fit['use_spec'] &=
|
np.abs(dz_risk)
|
numpy.abs
|
# decompose
import copy
import torch
import torch.nn as nn
import tensorly as tl
from tensorly.decomposition import parafac, partial_tucker
from typing import List
# switch to the PyTorch backend
tl.set_backend('pytorch')
# ================
import numpy as np
from scipy.sparse.linalg import svds
from scipy.optimize import minimize_scalar
def VBMF(Y, cacb, sigma2=None, H=None):
"""Implementation of the analytical solution to Variational Bayes Matrix Factorization.
This function can be used to calculate the analytical solution to VBMF.
This is based on the paper and MatLab code by Nakajima et al.:
"Global analytic solution of fully-observed variational Bayesian matrix factorization."
Notes
-----
If sigma2 is unspecified, it is estimated by minimizing the free energy.
If H is unspecified, it is set to the smallest of the sides of the input Y.
To estimate cacb, use the function EVBMF().
Attributes
----------
Y : numpy-array
Input matrix that is to be factorized. Y has shape (L,M), where L<=M.
cacb : int
Product of the prior variances of the matrices that factorize the input.
sigma2 : int or None (default=None)
Variance of the noise on Y.
H : int or None (default = None)
Maximum rank of the factorized matrices.
Returns
-------
U : numpy-array
Left-singular vectors.
S : numpy-array
Diagonal matrix of singular values.
V : numpy-array
Right-singular vectors.
post : dictionary
Dictionary containing the computed posterior values.
References
----------
.. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37.
.. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012.
"""
L, M = Y.shape # has to be L<=M
if H is None:
H = L
# SVD of the input matrix, max rank of H
U, s, V = np.linalg.svd(Y)
U = U[:, :H]
s = s[:H]
V = V[:H].T
# Calculate residual
residual = 0.
if H < L:
residual = np.sum(np.sum(Y ** 2) - np.sum(s ** 2))
# Estimation of the variance when sigma2 is unspecified
if sigma2 is None:
upper_bound = (np.sum(s ** 2) + residual) / (L + M)
if L == H:
lower_bound = s[-1] ** 2 / M
else:
lower_bound = residual / ((L - H) * M)
sigma2_opt = minimize_scalar(VBsigma2, args=(L, M, cacb, s, residual), bounds=[lower_bound, upper_bound],
method='Bounded')
sigma2 = sigma2_opt.x
print("Estimated sigma2: ", sigma2)
# Threshold gamma term
# Formula above (21) from [1]
thresh_term = (L + M + sigma2 / cacb ** 2) / 2
threshold = np.sqrt(sigma2 * (thresh_term + np.sqrt(thresh_term ** 2 - L * M)))
# Number of singular values where gamma>threshold
pos = np.sum(s > threshold)
# Formula (10) from [2]
d = np.multiply(s[:pos],
1 - np.multiply(sigma2 / (2 * s[:pos] ** 2),
L + M + np.sqrt((M - L) ** 2 + 4 * s[:pos] ** 2 / cacb ** 2)))
# Computation of the posterior
post = {}
zeta = sigma2 / (2 * L * M) * (L + M + sigma2 / cacb ** 2 - np.sqrt((L + M + sigma2 / cacb ** 2) ** 2 - 4 * L * M))
post['ma'] = np.zeros(H)
post['mb'] = np.zeros(H)
post['sa2'] = cacb * (1 - L * zeta / sigma2) * np.ones(H)
post['sb2'] = cacb * (1 - M * zeta / sigma2) * np.ones(H)
delta = cacb / sigma2 * (s[:pos] - d - L * sigma2 / s[:pos])
post['ma'][:pos] = np.sqrt(np.multiply(d, delta))
post['mb'][:pos] = np.sqrt(np.divide(d, delta))
post['sa2'][:pos] = np.divide(sigma2 * delta, s[:pos])
post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos]))
post['sigma2'] = sigma2
post['F'] = 0.5 * (L * M *
|
np.log(2 * np.pi * sigma2)
|
numpy.log
|
import pickle as pk
import pandas as pd
import numpy as np
from numpy import *
import time
import matplotlib.pyplot as plt
from tqdm import *
from pylab import *
from multiprocessing import Pool
import pickle
import os
import statsmodels.api as sm
import torch
import julian
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import copy
from scipy.interpolate import griddata
from scipy.stats import multivariate_normal as mn
from itertools import permutations
from scipy import stats
from matplotlib.pyplot import figure
from matplotlib.transforms import Bbox
#import torch
from torch.distributions.multivariate_normal import MultivariateNormal
nasa_julian = 98
cnes_julian = 90
import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import r2_score
def y_hat_esti(X_,y_,Beta,Sigma,Lambda,n):
""" Estimate y_hat
- Beta: (K,nb_fea,nb_tar)
- Sigma: (K,nb_tar,nb_tar)
- Lambda: (K,1)
- n: nb of samples
"""
K = Beta.shape[0]
tars = Beta.shape[2]
X = torch.from_numpy(X_).cuda()
Y = torch.from_numpy(y_).cuda()
Beta_hat = torch.from_numpy(Beta).cuda()
Sigma_hat = torch.from_numpy(Sigma).cuda()
Lambda_hat = torch.from_numpy(Lambda).cuda()
pi_hat = torch.zeros(n,Lambda.shape[0]).cuda()
y_hat = torch.zeros(n,tars).cuda()
sum_prob = torch.zeros(n,1).cuda()
for k in range(K):
# Compute the sum of products of the likelihood with a class's prior for each profile (formula 5)
sum_prob = sum_prob + Lambda_hat[k]*torch.exp(MultivariateNormal(X@Beta_hat[k,:,:],Sigma_hat[k,:,:]).log_prob(Y)).reshape(n,1)
for k in range(K):
# Compute how many percentage each class representing in each profile (formla 7)
pi_hat[:,k]= Lambda_hat[k]*torch.exp(MultivariateNormal(X@Beta_hat[k,:,:],Sigma_hat[k,:,:]).log_prob(Y))/sum_prob[:,0]
for k in range(K):
y_hat = y_hat + torch.mul(pi_hat[:,k].reshape(n,1),X@Beta_hat[k,:,:])
y_hat_np = y_hat.cpu().numpy()
pi_hat_np = pi_hat.cpu().numpy()
return y_hat_np,pi_hat_np
def likli_plot(log_likli,coln,row,nb_class,nb_iter_,iter_EM):
""" plot the log likelihood of models
"""
figure(num=None, figsize=(20, 10), dpi=80, facecolor='w', edgecolor='k')
for cla_ in range(len(nb_class)):
plt.subplot(row, coln, cla_ + 1)
for iter_ in range(nb_iter_):
plt.plot(range(iter_EM),np.asarray(log_likli[cla_,iter_,:]))
plt.ylabel('Log likelihood')
plt.xlabel('EM iterations')
plt.title('Model with: '+str(nb_class[cla_])+' classes')
def bic_box(bic,nb_class):
""" plot box plot of model's bics
"""
fig = plt.figure(figsize=(7,7))
ax = fig.add_axes([1,1,1,1])
labels = [min(nb_class)+i for i in range(len(nb_class))]
plt.boxplot(bic, labels = labels)
plt.title("Boxplot BIC")
xlabel("Nb_of_class")
ylabel("BIC")
def extract_bsl(beta_,sigma_,lambda_,X,y,nb_class,th_class,nb):
"""
Etract beta, sigma, lambda of a specific class
- th_class: the class number extracted
- nb th experience
"""
index = 0
th = 0
for c in range(len(nb_class)):
beta_c = beta_[c,index:index + nb_class[th],:,:]
sigma_c = sigma_[c,index:index + nb_class[th],:,:]
lambda_c = lambda_[c,index:index + nb_class[th],:]
if nb_class[c] == th_class:
beta = open('beta_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(beta_c, beta)
sigma = open('sigma_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(sigma_c, sigma)
lambda_ = open('lambda_E'+str(nb)+'_'+str(th_class)+'.pkl', 'wb')
pickle.dump(lambda_c, lambda_)
beta.close()
sigma.close()
lambda_.close()
return beta_c,sigma_c,lambda_c
break
index = index + nb_class[th]
th = th +1
def y_eval(beta_,sigma_,lambda_,X,y,nb_class,coln,row, save,nb, test):
"""
Evaluate the y and its estimation
- save: the class saved for result visualization
- test: if test True, save as test result
- nb: nb th experience
"""
index = 0
th = 0
figure(num=None, figsize=(15, 15), dpi=80, facecolor='w', edgecolor='k')
x_linsp = np.linspace(-5,35,50)
markers = 0.1*np.full((y.shape[0], 1), 1)
for c in range(len(nb_class)):
beta_c = beta_[c,index:index + nb_class[th],:,:]
sigma_c = sigma_[c,index:index + nb_class[th],:,:]
lambda_c = lambda_[c,index:index + nb_class[th],:]
# y_esti,_ = y_hat_esti(X,y,beta_c,sigma_c,lambda_c,X.shape[0])
# save interesting class
if nb_class[c] == save:
y_esti,_ = y_hat_esti(X,y,beta_c,sigma_c,lambda_c,X.shape[0]) ## new
if test:
np.savetxt('y_h_test_E'+str(nb)+'_'+str(nb_class[c])+'.txt',y_esti)
else:
np.savetxt('y_h_train_E'+str(nb)+'_'+str(nb_class[c])+'.txt',y_esti)
plt.subplot(row, coln, c+1)
plt.scatter(y,y_esti, marker = ".", s = markers, c ='b', label = "r2_score = " +str(r2_score(y, y_esti)))
plt.plot(x_linsp,x_linsp,'k')
plt.ylabel('Predicted Temperature')
plt.xlabel('GT Temperature')
plt.title('Model with: '+str(nb_class[c])+' classes')
plt.legend()
index = index + nb_class[th]
th = th +1
def sal_eval(beta_,sigma_,lambda_,X,y,nb_class,coln,row, save,nb, test, fx1 =30 , fx2 = 40):
"""
Evaluate the y and its estimation
- save: the class saved for result visualization
- test: if test True, save as test result
- nb: nb th experience
"""
index = 0
th = 0
figure(num=None, figsize=(15, 15), dpi=80, facecolor='w', edgecolor='k')
x_linsp = np.linspace(fx1,fx2,50)
markers = 0.1*np.full((y.shape[0], 1), 1)
for c in range(len(nb_class)):
beta_c = beta_[c,index:index + nb_class[th],:,:]
sigma_c = sigma_[c,index:index + nb_class[th],:,:]
lambda_c = lambda_[c,index:index + nb_class[th],:]
y_esti,_ = y_hat_esti(X,y,beta_c,sigma_c,lambda_c,X.shape[0])
# save interesting class
if nb_class[c] == save:
if test:
np.savetxt('y_h_test_E'+str(nb)+'_'+str(nb_class[c])+'.txt',y_esti)
else:
np.savetxt('y_h_train_E'+str(nb)+'_'+str(nb_class[c])+'.txt',y_esti)
plt.subplot(row, coln, c+1)
plt.scatter(y,y_esti, marker = ".", s = markers, c ='b', label = "r2_score = " +str(r2_score(y, y_esti)))
plt.plot(x_linsp,x_linsp,'k')
plt.ylabel('Predicted Salanity')
plt.xlabel('GT Salanity')
plt.title('Model with: '+str(nb_class[c])+' classes')
plt.legend()
index = index + nb_class[th]
th = th +1
def pi_hat(X_,y_,Beta,Sigma,Lambda,n,nb,th_class, test):
""" Estimate p_hat
- Beta: (K,nb_fea,nb_tar)
- Sigma: (K,nb_tar,nb_tar)
- Lambda: (K,1)
- n: nb of samples
- nb: nb th experience
- test : if test is true, save file as test
"""
K = Beta.shape[0]
tars = Beta.shape[2]
X = torch.from_numpy(X_).cuda()
Y = torch.from_numpy(y_).cuda()
Beta_hat = torch.from_numpy(Beta).cuda()
Sigma_hat = torch.from_numpy(Sigma).cuda()
Lambda_hat = torch.from_numpy(Lambda).cuda()
pi_hat = torch.zeros(n,Lambda.shape[0]).cuda()
y_hat = torch.zeros(n,tars).cuda()
sum_prob = torch.zeros(n,1).cuda()
for k in range(K):
# Compute the sum of products of the likelihood with a class's prior for each profile (formula 5)
sum_prob = sum_prob + Lambda_hat[k]*torch.exp(MultivariateNormal(X@Beta_hat[k,:,:],Sigma_hat[k,:,:]).log_prob(Y)).reshape(n,1)
for k in range(K):
# Compute how many percentage each class representing in each profile (formla 7)
pi_hat[:,k]= Lambda_hat[k]*torch.exp(MultivariateNormal(X@Beta_hat[k,:,:],Sigma_hat[k,:,:]).log_prob(Y))/sum_prob[:,0]
for k in range(K):
y_hat = y_hat + torch.mul(pi_hat[:,k].reshape(n,1),X@Beta_hat[k,:,:])
pi_hat_np = pi_hat.cpu().numpy()
if test:
np.savetxt('pi_h_test_E'+str(nb)+'_'+str(th_class)+'.txt',pi_hat_np)
else:
np.savetxt('pi_h_train_E'+str(nb)+'_'+str(th_class)+'.txt',pi_hat_np)
def temp_plot(lon_test,lat_test,map,temp):
"Plot surface temperature"
lons = lon_test
lats = lat_test
x, y = map(lons, lats)
figure(num=None, figsize=(7, 7), dpi=80, facecolor='w', edgecolor='k')
markers = np.full((lon_test.shape[0], 1), 1)
ax = plt.gca()
# map.scatter(x, y, c = temp, s = markers, cmap='coolwarm')
map.scatter(x, y, c = temp, s = markers, cmap='Greys')
map.drawcoastlines()
# plot colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax)
def mode(lon_test,lat_test,map,pi_hat, m, title, combine = False, subplot = 221):
"Plot dynamical mode distributions"
lons = lon_test
lats = lat_test
x, y = map(lons, lats)
if combine:
plt.subplot(subplot)
markers = np.full((len(pi_hat), 1), 1)
map.scatter(x, y, c = pi_hat, label = "mode"+str(m+1), s = markers)
map.drawcoastlines()
plt.legend()
plt.title(title)
def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
'''
Function to offset the "center" of a colormap. Useful for
data with a negative min and positive max and you want the
middle of the colormap's dynamic range to be at zero.
https://stackoverflow.com/questions/7404116/defining-the-midpoint-of-a-colormap-in-matplotlib
Input
-----
cmap : The matplotlib colormap to be altered
start : Offset from lowest point in the colormap's range.
Defaults to 0.0 (no lower offset). Should be between
0.0 and `midpoint`.
midpoint : The new center of the colormap. Defaults to
0.5 (no shift). Should be between 0.0 and 1.0. In
general, this should be 1 - vmax / (vmax + abs(vmin))
For example if your data range from -15.0 to +5.0 and
you want the center of the colormap at 0.0, `midpoint`
should be set to 1 - 5/(5 + 15)) or 0.75
stop : Offset from highest point in the colormap's range.
Defaults to 1.0 (no upper offset). Should be between
`midpoint` and 1.0.
'''
cdict = {
'red': [],
'green': [],
'blue': [],
'alpha': []
}
# regular index to compute the colors
reg_index = np.linspace(start, stop, 257)
# shifted index to match the data
shift_index = np.hstack([
np.linspace(0.0, midpoint, 128, endpoint=False),
np.linspace(midpoint, 1.0, 129, endpoint=True)
])
for ri, si in zip(reg_index, shift_index):
r, g, b, a = cmap(ri)
cdict['red'].append((si, r, r))
cdict['green'].append((si, g, g))
cdict['blue'].append((si, b, b))
cdict['alpha'].append((si, a, a))
newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
plt.register_cmap(cmap=newcmap)
return newcmap
#########################################
## Plot target prediction #
#########################################
def full_extent(ax, pad=0.0):
"""Get the full extent of an axes, including axes labels, tick labels, and
titles."""
# For text objects, we need to draw the figure first, otherwise the extents
# are undefined.
ax.figure.canvas.draw()
items = ax.get_xticklabels() + ax.get_yticklabels()
# items += [ax, ax.title, ax.xaxis.label, ax.yaxis.label]
# items += [ax.get_xaxis().get_label(), ax.get_yaxis().get_label()]
items += [ax, ax.title]
bbox = Bbox.union([item.get_window_extent() for item in items])
return bbox.expanded(1.0 + pad, 1.0 + pad)
def target_predict(lon, lat, pres, Nx, Ny, map, gt_targ, est_targ, error, prd_var, neigboors, savename, cmap_temp = True, surf = 0):
"""
Target prediction in time and space
- lat: latitude of the data
- lon: longitude of the data
- neigboors: for selecting the interpolated region
- Nx: number of point discritizing the x axis
- Ny: number of point discritizing the y axis
- prd_var: predicting variable on which we find targets
* a determined pressure at which we present data ± 15
* a latiude
* a longitude
- surf : int
* 0: surface target prediction
* 1: predict a target on a longitude
* 2: ... latitude
"""
# create a 2D coordinate grid
if surf == 0:
x = np.linspace(min(lon),max(lon),Nx)
y = np.linspace(min(lat),max(lat),Ny)
# interpolating data mask
prd_mask = (prd_var-15 < pres)*(pres < prd_var + 15)
elif surf == 1:
x = np.linspace(min(lat),max(lat),Nx)
y = np.linspace(min(pres),max(pres),Ny)
prd_mask = (prd_var-3 < lon)*(lon < prd_var + 3)
elif surf == 2:
x = np.linspace(min(lon),max(lon),Nx)
y = np.linspace(min(pres),max(pres),Ny)
prd_mask = (prd_var-3 < lat)*(lat < prd_var + 3)
else:
print("Surf is not a valid number")
## interpolating grid
xx, yy = np.meshgrid(x,y)
xx = xx.reshape(xx.shape[0]*xx.shape[1],1)
yy = yy.reshape(xx.shape[0]*xx.shape[1],1)
zz = prd_var*np.ones((xx.shape[0]*xx.shape[1],1))
## interpolating data
ipres = pres[prd_mask]
ilat = lat[prd_mask]
ilon = lon[prd_mask]
igt = gt_targ[prd_mask]
iest = est_targ[prd_mask]
ierror = error[prd_mask]
## data points
N = ilon.shape[0]
features = np.concatenate((ilat.reshape(N,1),ilon.reshape(N,1), ipres.reshape(N,1)),axis = 1)
if surf == 0:
points = np.concatenate((yy,xx,zz),axis = 1)
elif surf == 1:
points = np.concatenate((xx,zz,yy),axis = 1)
elif surf == 2:
points = np.concatenate((zz,xx,yy),axis = 1)
gt_interpol = griddata(features,igt,points, rescale=True)
gt_interpol = gt_interpol.reshape(Ny,Nx)
est_interpol = griddata(features,iest,points, rescale=True)
est_interpol = est_interpol.reshape(Ny,Nx)
err_interpol = griddata(features,ierror,points, rescale=True)
err_interpol = err_interpol.reshape(Ny,Nx)
# mean squared error
mse = np.abs(ierror).mean()**2
vmin = np.min(err_interpol[~np.isnan(err_interpol)])
vmax = np.max(err_interpol[~np.isnan(err_interpol)])
midpoint = 1 - vmax/(vmax + abs(vmin))
if cmap_temp:
cmap = 'coolwarm'
cmap2 =shiftedColorMap(matplotlib.cm.bwr, midpoint =midpoint)
else:
cmap = 'jet'
cmap2 =shiftedColorMap(matplotlib.cm.bwr, midpoint =midpoint)
if surf == 0:
fig = plt.figure(figsize = (15,10))
subplots_adjust(wspace = 0.2, hspace = 0.2)
## select interpolated region where the data exists
mask_pres = pres < 30
pres_under_30 = pres[prd_mask]
lon_30 = lon[prd_mask]
lat_30 = lat[prd_mask]
# existing data region mask (care only about the surface)
mask_region = np.ones((Nx,Ny)) < 2
for k in range(len(lon_30)):
i = np.argmin(abs(y - lat_30[k]))
j = np.argmin(abs(x - lon_30[k]))
mask_region[i-neigboors:i+neigboors,j-neigboors:j+neigboors] = False
# apply the mask
gt_interpol[mask_region] = nan
est_interpol[mask_region] = nan
err_interpol[mask_region] = nan
plon, plat = map(x, y)
xxlon,xxlat = meshgrid(plon,plat)
parallels = np.arange(0.,81,5.) # lat
meridians = np.arange(10.,351.,5.) # lon
ax2 = fig.add_subplot(222)
cs = map.contourf(xxlon, xxlat, est_interpol, cmap = cmap)
plt.title("EST-PRES-%.f"%prd_var)
map.drawcoastlines()
map.drawparallels(parallels,labels=[True,False,True,False],linewidth=0.3);
map.drawmeridians(meridians,labels=[True,False,False,True],linewidth=0.3);
divider = make_axes_locatable(ax2)
cax2 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax2)
extent = full_extent(ax2).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sEST.jpg'%savename,bbox_inches=extent.expanded(1.3, 1.15))
ax1 = fig.add_subplot(221)
map.contourf(xxlon, xxlat, gt_interpol, cmap = cmap,levels = cs.levels)
plt.title("GT-PRES-%.f"%prd_var)
map.drawcoastlines()
map.drawparallels(parallels,labels=[True,False,True,False],linewidth=0.3);
map.drawmeridians(meridians,labels=[True,False,False,True],linewidth=0.3);
divider = make_axes_locatable(ax1)
cax1 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax1)
extent = full_extent(ax1).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sGT.jpg'%savename,bbox_inches=extent.expanded(1.3, 1.15))
ax3 = subplot2grid((2,8), (1, 2), colspan=4)
map.contourf(xxlon, xxlat, err_interpol, cmap = cmap2, levels = 20)
plt.title("%.f-Global-MSE-%.2f"%(prd_var,mse))
map.drawcoastlines()
map.drawparallels(parallels,labels=[True,False,True,False],linewidth=0.3);
map.drawmeridians(meridians,labels=[True,False,False,True],linewidth=0.3);
divider = make_axes_locatable(ax3)
cax3 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax3)
extent = full_extent(ax3).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sMSE.jpg'%savename,bbox_inches=extent.expanded(1.3, 1.15))
else:
fig = plt.figure(figsize = (15,10))
subplots_adjust(wspace = 0.2, hspace = 0.35)
if surf == 1:
label_, label, labelx ='W','LON', 'LAT'
elif surf == 2:
label_, label, labelx = 'N','LAT', 'LON'
xx = xx.reshape(Nx,Ny)
yy = yy.reshape(Nx,Ny)
ax2 = fig.add_subplot(222)
cs = plt.contourf(xx,yy,est_interpol, cmap = cmap)
plt.grid()
ax2.set_ylim(ax2.get_ylim()[::-1])
if surf == 1:
ax2.set_xlim(ax2.get_xlim()[::-1])
plt.title("EST:%s %.f°%s"%(label,prd_var,label_))
plt.xlabel("%s"%labelx)
plt.ylabel("PRES")
divider = make_axes_locatable(ax2)
cax2 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax2)
extent = full_extent(ax2).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sEST.jpg'%savename,bbox_inches=extent.expanded(1.2, 1.15))
ax1 = fig.add_subplot(221)
plt.contourf(xx, yy, gt_interpol, cmap = cmap,levels = cs.levels)
plt.grid()
ax1.set_ylim(ax1.get_ylim()[::-1])
if surf == 1:
ax1.set_xlim(ax1.get_xlim()[::-1])
plt.title("GT:%s %.f°%s"%(label,prd_var,label_))
plt.xlabel("%s"%labelx)
plt.ylabel("PRES")
divider = make_axes_locatable(ax1)
cax1 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax1)
extent = full_extent(ax1).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sGT.jpg'%savename,bbox_inches=extent.expanded(1.2, 1.15))
ax3 = subplot2grid((2,8), (1, 2), colspan=4)
divider = make_axes_locatable(ax3)
plt.contourf(xx, yy, err_interpol, cmap = cmap2, levels = 20)
plt.grid()
ax3.set_ylim(ax3.get_ylim()[::-1])
if surf == 1:
ax3.set_xlim(ax3.get_xlim()[::-1])
plt.title("MSE:%.3f - %s %.f°%s"%(mse,label,prd_var,label_))
plt.xlabel("%s"%labelx)
plt.ylabel("PRES")
cax3 = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(cax=cax3)
extent = full_extent(ax3).transformed(fig.dpi_scale_trans.inverted())
plt.savefig('.\\figs\\%sMSE.jpg'%savename,bbox_inches=extent.expanded(1.22, 1.15))
############################################
# Plot temporal dynamical mode distribution#
############################################
def temp_dyna_mode_var(pi_hat, lon, lat, juld, pres, sel_lat, sel_lon, sel_pres, lon_thres, lat_thres, pres_thres, thres = 20):
"""
Plot temporal dynamical mode variation in a specific region in the ocean
Args:
-----
- pi_hat: priors of dynamical modes
- lon: global longitude
- lat: global latitude
- pres: global pressure
- sel_lon: selected longitude
- sel_lat: selected latitude
- lon_thres: longitude threshold
- thres: threshold for dynamical trends
...
"""
lat_mask = np.abs(lat - sel_lat) < lat_thres
lon_mask = np.abs(lon - sel_lon) < lon_thres
pres_mask = np.abs(pres - sel_pres) < pres_thres
mask = lat_mask*lon_mask*pres_mask
print("Number of data points N= "+str(len(np.where(mask)[0])))
# extracted julian days and mode's priori
ex_jul = juld[mask]
encoded_juld = [julian.from_jd(round(x), fmt='mjd') for x in ex_jul]
days_in_year = np.asarray([x.day + (x.month -1)*30 for x in encoded_juld])
ex_priori = pi_hat[mask,:]
# monthly mode priors and its variances
N = pi_hat.shape[1]
mon_mod_pri = np.zeros((365,N))
# cacluate the mode's prior for each day
for d in tqdm(range(365), disable=False):
day_mask = days_in_year == d
for mod in range(N):
mon_mod_pri[d,mod] = np.mean(ex_priori[day_mask,mod])
# find trend of temporal dynamical modes
for id_ in range(N):
mon_mod_pri[~np.isnan(mon_mod_pri[:,id_]),id_] = sm.tsa.filters.hpfilter(mon_mod_pri[~np.isnan(mon_mod_pri[:,id_]),id_], thres)[1]
# select pairs of modes which together have a preferring most negative correlation
mod_bag = range(8)
perms = list(permutations(mod_bag,2))
pearson_coeffs = [stats.pearsonr(mon_mod_pri[~np.isnan(mon_mod_pri[:,k[0]]),k[0]], mon_mod_pri[~np.isnan(mon_mod_pri[:,k[1]]),k[1]])[0] for k in perms]
selected_perms = []
while(len(perms) != 0):
delete_items = []
delete_pearson = []
max_index = np.argmin(pearson_coeffs)
selected_perms.append(perms[max_index])
delete_items.append(perms[max_index])
delete_pearson.append(pearson_coeffs[max_index])
for index, item in enumerate(perms):
if item[0] == perms[max_index][0] or item[1] == perms[max_index][1] or item[0] == perms[max_index][1] or item[1] == perms[max_index][0]:
if delete_items.count(item) == 0:
delete_items.append(item)
delete_pearson.append(pearson_coeffs[index])
for del_item in delete_items:
perms.remove(del_item)
for del_pearson in delete_pearson:
pearson_coeffs.remove(del_pearson)
fig = plt.figure(figsize = (20,10))
subplots_adjust(wspace = 0.2, hspace = 0.2)
for count, sel_item in enumerate(selected_perms):
pearson_coeff = stats.pearsonr(mon_mod_pri[~np.isnan(mon_mod_pri[:,sel_item[0]]),sel_item[0]], mon_mod_pri[~np.isnan(mon_mod_pri[:,sel_item[1]]),sel_item[1]])[0]
plt.subplot(221+count)
plt.plot(mon_mod_pri[:,sel_item[0]], label = 'Dyn-Mode-'+str(sel_item[0]+1))
plt.plot(mon_mod_pri[:,sel_item[1]], label = 'Dyn-Mode - '+str(sel_item[1]+1))
plt.title('Pearson-coeff= %.2f'%pearson_coeff)
x_labels = ['Jan','Feb','Mar','Apr','May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
spots = np.asarray([30*i for i in range(12)])
plt.xticks(spots,x_labels)
plt.grid(True)
plt.legend()
#############################################
## Plot spatial dynamical mode distribution #
#############################################
def spa_dyna_mode_dis(pi_hat, lon, lat, pres, Nx, Ny, prd_var ,neigboors, map, cmaptemp = True, surf = 1):
"""
Plot the spatial dynamical mode distribution between two depth levels in the ocean.
Args:
-----
- pi_hat: the prior probabilities for dynamical modes
- lon: ...
- lat: ...
- pres: infos of the pressure at each point in the ocean
- prd_mod: predicting variable based modes
- map: a basemap object
- surf: 0 (surface), 1 (longitude), 2 (latitude)
"""
import timeit
start = timeit.timeit()
# create a 2D coordinate grid
if surf == 0:
x = np.linspace(min(lon),max(lon),Nx)
y = np.linspace(min(lat),max(lat),Ny)
# interpolating data mask
prd_mask = np.array(np.where((prd_var-50 < pres)*(pres < prd_var + 50))[0])
elif surf == 1:
x = np.linspace(min(lat),max(lat),Nx)
y = np.linspace(min(pres),max(pres),Ny)
prd_mask = np.array(np.where((prd_var-3 < lon)*(lon < prd_var + 3))[0])
elif surf == 2:
x = np.linspace(min(lon),max(lon),Nx)
y = np.linspace(min(pres),max(pres),Ny)
prd_mask = np.array(np.where((prd_var-3 < lat)*(lat < prd_var + 3))[0])
else:
print("Surf is not a valid number")
#prd_mask = prd_mask.reshape(prd_mask.shape[0],1)
## interpolating grid
xx, yy = np.meshgrid(x,y)
xx = xx.reshape(xx.shape[0]*xx.shape[1],1)
yy = yy.reshape(xx.shape[0]*xx.shape[1],1)
zz = prd_var*
|
np.ones((xx.shape[0]*xx.shape[1],1))
|
numpy.ones
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 21 13:59:39 2017
@author: epicodic
"""
import matplotlib
matplotlib.use('Qt5Agg')
import numpy as np
import matplotlib.pyplot as plt
import scipy.misc
import sys
import os
from enum import Enum
#import skimage
#from skimage import morphology
#from skimage import io
#from skimage import img_as_float
#from skimage import exposure
import skimage.draw
#im_raw = io.imread('keepme.tif',mode='RGBA')
import math
from matplotlib.lines import Line2D
from matplotlib.artist import Artist
from matplotlib.mlab import dist_point_to_segment
from matplotlib.patches import Polygon
from matplotlib import colors
#from scipy import interpolate
from scipy.interpolate import CubicSpline
def color_for_class(cl):
if(cl==1):
return '#FF00FF'
else:
return '#FFFF00'
class PolygonInteractor(object):
"""
An polygon editor.
Key-bindings
't' toggle vertex markers on and off. When vertex markers are on,
you can move them, delete them
'd' delete the vertex under point
'i' insert a vertex at point. You must be within epsilon of the
line connecting two existing vertices
"""
showverts = True
epsilon = 5 # max pixel distance to count as a vertex hit
def __init__(self, ax, poly):
if poly.figure is None:
raise RuntimeError('You must first add the polygon to a figure or canvas before defining the interactor')
self.ax = ax
canvas = poly.figure.canvas
self.poly = poly
x, y = zip(*self.poly.xy)
self.line = Line2D(x, y, color = 'yellow', marker='o', markerfacecolor='yellow', animated=True)
self.ax.add_line(self.line)
#self._update_line(poly)
#cid = self.poly.add_callback(self.poly_changed)
self._ind = None # the active vert
self.set_class(0)
self.cid=[]
self.cid.append( canvas.mpl_connect('draw_event', self.draw_callback) )
self.cid.append( canvas.mpl_connect('button_press_event', self.button_press_callback) )
self.cid.append( canvas.mpl_connect('key_press_event', self.key_press_callback) )
self.cid.append( canvas.mpl_connect('button_release_event', self.button_release_callback) )
self.cid.append( canvas.mpl_connect('motion_notify_event', self.motion_notify_callback) )
self.canvas = canvas
def remove(self):
self.line.remove()
for i in range(4):
self.canvas.mpl_disconnect(self.cid[i])
def __del__(self):
#print ("deling", self)
pass
def draw_callback(self, event):
self.background = self.canvas.copy_from_bbox(self.ax.bbox)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
#self.canvas.blit(self.ax.bbox)
pass
def poly_changed(self, poly):
'this method is called whenever the polygon object is called'
# only copy the artist props to the line (except visibility)
print("Poly Changed")
vis = self.line.get_visible()
Artist.update_from(self.line, poly)
self.line.set_visible(vis) # don't use the poly visibility state
def get_ind_under_point(self, event):
'get the index of the vertex under point if within epsilon tolerance'
# display coords
xy = np.asarray(self.poly.xy)
xyt = self.poly.get_transform().transform(xy)
xt, yt = xyt[:, 0], xyt[:, 1]
d = np.sqrt((xt - event.x)**2 + (yt - event.y)**2)
indseq = np.nonzero(np.equal(d, np.amin(d)))[0]
ind = indseq[0]
if d[ind] >= self.epsilon:
ind = None
return ind
def button_press_callback(self, event):
if(self.canvas.manager.toolbar._active != None):
return
'whenever a mouse button is pressed'
if not self.showverts:
return
if event.inaxes is None:
return
if event.button != 1:
return
self._ind = self.get_ind_under_point(event)
def button_release_callback(self, event):
'whenever a mouse button is released'
if not self.showverts:
return
if event.button != 1:
return
self._ind = None
def key_press_callback(self, event):
'whenever a key is pressed'
if not event.inaxes:
return
if event.key == 't':
self.showverts = not self.showverts
self.line.set_visible(self.showverts)
if not self.showverts:
self._ind = None
elif event.key == 'd':
ind = self.get_ind_under_point(event)
if ind is not None:
self.poly.xy = [tup for i, tup in enumerate(self.poly.xy) if i != ind]
self.line.set_data(zip(*self.poly.xy))
elif event.key == 'i':
xys = self.poly.get_transform().transform(self.poly.xy)
p = event.x, event.y # display coords
for i in range(len(xys) - 1):
s0 = xys[i]
s1 = xys[i + 1]
d = dist_point_to_segment(p, s0, s1)
if d <= self.epsilon:
self.poly.xy = np.array(
list(self.poly.xy[:i]) +
[(event.xdata, event.ydata)] +
list(self.poly.xy[i:]))
self.line.set_data(zip(*self.poly.xy))
break
elif event.key == 'k':
self.set_class(1-self.cl)
#elif event.key == 'l':
# self.set_class(0)
self.canvas.draw()
def motion_notify_callback(self, event):
'on mouse movement'
if not self.showverts:
return
if self._ind is None:
return
if event.inaxes is None:
return
if event.button != 1:
return
x, y = event.xdata, event.ydata
self.poly.xy[self._ind] = x, y
if self._ind == 0:
self.poly.xy[-1] = x, y
elif self._ind == len(self.poly.xy) - 1:
self.poly.xy[0] = x, y
self.line.set_data(zip(*self.poly.xy))
self.canvas.restore_region(self.background)
self.ax.draw_artist(self.poly)
self.ax.draw_artist(self.line)
self.canvas.blit(self.ax.bbox)
def set_class(self,cl):
self.cl = cl
self.line.set_color(color_for_class(self.cl))
self.line.set_markerfacecolor(color_for_class(self.cl))
self.poly.set_color(color_for_class(self.cl))
class Mode(Enum):
IDLE = 1
CREATE = 2
EDIT = 3
class ImageToggle(Enum):
FULL = 0
R = 1
G = 2
B = 3
RN = 4
class Label:
def __init__(self):
self.jd = None
self.tx = None
self.ty = None
self.h = None
self.ht = None
self.D = None
self.cl = 0
class Tool(object):
def __init__(self, filename):
self.mode = Mode.IDLE
self.filename = filename
self.im_raw = scipy.misc.imread(filename,mode='RGBA')
self.im_r = self.im_raw[:,:,0]
self.im_r_norm = colors.LogNorm(self.im_r.mean() + 0.5 * self.im_r.std(), self.im_r.max(), clip='True')
self.im_g = self.im_raw[:,:,1]
self.im_b = self.im_raw[:,:,2]
self.img_median = np.array([0,0,0])
self.img_median[0] = np.median(self.im_r)
self.img_median[1] = np.median(self.im_g)
self.img_median[2] = np.median(self.im_b)
self.fig, self.ax = plt.subplots()
self.infotext = None
self.fig.tight_layout()
self.canvas = self.fig.canvas
self.imgh = None
self.imgtoggle = ImageToggle.FULL
self.update_image()
self.ax.set_ylim(bottom=10000, top=-10000,auto=True)
self.marks = []
self.clicks = []
self.p = None
self.labels = []
self.nextjd = 1
self.edit_label = None
#canvas.mpl_connect('draw_event', self.draw_callback)
self.canvas.mpl_connect('button_press_event', self.button_press_callback)
self.canvas.mpl_connect('key_press_event', self.key_press_callback)
self.canvas.mpl_connect('key_release_event', self.key_release_callback)
self.canvas.mpl_connect('resize_event', self.resize_callback)
self.load_labels(filename+".txt")
self.update()
def update_image(self):
if(self.imgh):
self.imgh.remove()
if(self.imgtoggle == ImageToggle.FULL):
self.imgh = self.ax.imshow(self.im_raw)
elif(self.imgtoggle == ImageToggle.R):
self.imgh = self.ax.imshow(self.im_r,cmap='gray')
elif(self.imgtoggle == ImageToggle.RN):
self.imgh = self.ax.imshow(self.im_r,cmap='gray', norm=self.im_r_norm)
elif(self.imgtoggle == ImageToggle.G):
self.imgh = self.ax.imshow(self.im_g,cmap='gray')
elif(self.imgtoggle == ImageToggle.B):
self.imgh = self.ax.imshow(self.im_b,cmap='gray')
self.update()
def resize_callback(self, event):
aspect = event.width / event.height
x1,x2 = self.ax.get_xlim()
y1,y2 = self.ax.get_ylim()
cx = (x1+x2)/2
# cy = (y1+y2)/2
# w = x2-x1
h = y1-y2
tw = h*aspect
# th = w/aspect
self.ax.set_xlim(left=cx-tw/2, right=cx+tw/2)
def button_press_callback(self, event):
if(self.canvas.manager.toolbar._active != None):
return
if(self.mode == Mode.EDIT): # we are in ellipse edit mode
return
if(event.button==3):
return
if event.dblclick:
print(event.button)
self.clear_clicks()
# find clicked label
clickedLabelIdx = -1
for i in range(len(self.labels)):
dx = abs(event.xdata-self.labels[i].tx)
dy = abs(event.ydata-self.labels[i].ty)
r = 10
if(dx<r and dy<r):
print("CLICKED LABEL: %d" % self.labels[i].jd)
clickedLabelIdx = i
break
if(clickedLabelIdx>=0):
self.mode = Mode.EDIT
l = self.labels[clickedLabelIdx]
xx = l.D[0,:]
yy = l.D[1,:]
self.add_ellipse_from_poly(xx,yy)
self.p.set_class(l.cl)
l.h.remove()
l.h = None
l.ht.remove()
l.ht = None
self.edit_label = l
self.update()
else:
self.mode = Mode.IDLE
self.update()
return
self.mode = Mode.CREATE
line = Line2D([event.xdata], [event.ydata], marker='+', color='r')
event.inaxes.add_line(line)
self.marks.append(line)
self.clicks.append((event.xdata, event.ydata))
if(len(self.clicks)>=3):
if(self.add_ellipse(self.clicks)):
self.edit_label = None
self.mode = Mode.EDIT
else:
self.mode = Mode.IDLE
self.clear_clicks()
self.update()
def key_press_callback(self, event):
if(event.key==' ' and self.p!=None):
if(self.edit_label != None):
self.update_label(self.p.poly.xy.T, self.p.cl, self.edit_label,False)
else:
self.add_label(self.p.poly.xy.T, self.p.cl)
self.p.remove()
self.p = None
self.mode = Mode.IDLE
self.update()
if(event.key=='escape' or event.key=='delete'):
self.clear_clicks()
self.mode = Mode.IDLE
if(self.p!=None):
self.p.remove()
self.p = None
if(self.edit_label != None):
if(event.key=='delete'):
self.delete_label(self.edit_label)
else:
self.update_label(None, self.p.cl,self.edit_label,True)
self.update()
if(event.key=='r' or event.key=='v' or event.key=='x'):
self.imgtoggle = ImageToggle.FULL if self.imgtoggle==ImageToggle.R else ImageToggle.R
self.update_image()
# if(event.key=='v' or event.key=='x'):
# self.imgtoggle = ImageToggle.FULL if self.imgtoggle==ImageToggle.RN else ImageToggle.RN
# self.update_image()
if(event.key=='g'):
self.imgtoggle = ImageToggle.FULL if self.imgtoggle==ImageToggle.G else ImageToggle.G
self.update_image()
if(event.key=='b'):
self.imgtoggle = ImageToggle.FULL if self.imgtoggle==ImageToggle.B else ImageToggle.B
self.update_image()
if(event.key=='e'):
self.evaluate()
def key_release_callback(self, event):
self.update()
def clear_clicks(self):
for mark in self.marks:
mark.remove()
self.marks = []
self.clicks = []
self.update()
def add_ellipse_from_poly(self,xx,yy):
poly = Polygon(list(zip(xx, yy)), animated=True, fill=False, color='yellow', linewidth=0.5)
self.ax.add_patch(poly)
self.p = PolygonInteractor(self.ax, poly)
def add_ellipse(self,clicks):
pts=np.array(clicks)
x=pts[:,0]
y=pts[:,1]
cx=(x[0]+x[1])/2
cy=(y[0]+y[1])/2
phi = math.atan2(y[1]-y[0],x[1]-x[0])
a = math.cos(phi)*(x[0]-cx) + math.sin(phi)*(y[0]-cy)
p3x = math.cos(phi)*(x[2]-cx) + math.sin(phi)*(y[2]-cy)
p3y = - math.sin(phi)*(x[2]-cx) + math.cos(phi)*(y[2]-cy)
sqdenum = a**2-p3x**2;
if(sqdenum<=0):
print("Invalid points")
return False
b = abs( (a*p3y)/math.sqrt(a**2-p3x**2) )
#R = np.arange(0,2.0*np.pi, 0.01)
R = np.linspace(0,2.0*np.pi, 9)
xx = cx + a*np.cos(R)*np.cos(phi) - b*np.sin(R)*np.sin(phi)
yy = cy + a*np.cos(R)*np.sin(phi) + b*np.sin(R)*np.cos(phi)
self.add_ellipse_from_poly(xx,yy)
return True
def to_smooth_poly(self, D):
theta = np.linspace(0,1,D.shape[1])
cs = CubicSpline(theta,D.T, bc_type='periodic')
ts = np.linspace(0, 1, 50)
out=cs(ts);
return out[:,0],out[:,1]
def draw_label(self, l):
xx,yy = self.to_smooth_poly(l.D)
l.h, = self.ax.plot(xx,yy, color = color_for_class(l.cl))
if(l.ht==None):
l.ht = self.ax.text(l.tx, l.ty, ("%d" % l.jd), fontsize=10, color=color_for_class(l.cl), ha='center', va='center')
def insert_label(self, D, jd, cl):
l = Label()
l.jd = jd
l.cl = cl
l.tx = np.mean(D[0,:])
l.ty = np.mean(D[1,:])
l.D = D
self.labels.append(l)
self.draw_label(l)
if(jd>=self.nextjd):
self.nextjd=jd+1
return l
def update_label(self,D,cl,l,revert):
if(not revert):
l.D = D
l.cl = cl
l.tx = np.mean(D[0,:])
l.ty =
|
np.mean(D[1,:])
|
numpy.mean
|
import numpy as np
from desc.backend import jnp, put, Tristate
from desc.grid import Grid
from desc.basis import DoubleFourierSeries
from desc.transform import Transform
def format_bdry(bdry, Rb_basis:DoubleFourierSeries,
Zb_basis:DoubleFourierSeries, mode:str='spectral'):
"""Formats arrays for boundary conditions and converts between
real space and fourier representations
Parameters
----------
bdry : ndarray, shape(Nbdry,4)
array of fourier coeffs [m,n,Rcoeff, Zcoeff]
or array of real space coordinates, [theta,phi,R,Z]
Rb_basis : DoubleFourierSeries
spectral basis for R boundary coefficients
Zb_basis : DoubleFourierSeries
spectral basis for Z boundary coefficients
mode : str
one of 'real', 'spectral'. Whether bdry is specified in real or spectral space.
Returns
-------
cRb : ndarray
spectral coefficients for R boundary
cZb : ndarray
spectral coefficients for Z boundary
"""
if mode == 'real':
theta = bdry[:, 0]
phi = bdry[:, 1]
rho = np.ones_like(theta)
nodes = np.array([rho, theta, phi]).T
grid = Grid(nodes)
Rb_transf = Transform(grid, Rb_basis)
Zb_transf = Transform(grid, Zb_basis)
# fit real data to spectral coefficients
cRb = Rb_transf.fit(bdry[:, 2])
cZb = Zb_transf.fit(bdry[:, 3])
else:
cRb = np.zeros((Rb_basis.num_modes,))
cZb = np.zeros((Zb_basis.num_modes,))
for m, n, bR, bZ in bdry:
idx_R = np.where(np.logical_and(Rb_basis.modes[:, 1] == int(m),
Rb_basis.modes[:, 2] == int(n)))[0]
idx_Z = np.where(np.logical_and(Zb_basis.modes[:, 1] == int(m),
Zb_basis.modes[:, 2] == int(n)))[0]
cRb = put(cRb, idx_R, bR)
cZb = put(cZb, idx_Z, bZ)
return cRb, cZb
# XXX: Note that this method cannot be improved with FFT due to non-uniform grid
def compute_bdry_err(cR, cZ, cL, cRb, cZb, R1_transform, Z1_transform, L_transform, bdry_ratio):
"""Compute boundary error in (theta,phi) Fourier coefficients from non-uniform interpolation grid
Parameters
----------
cR : ndarray, shape(RZ_transform.num_modes,)
spectral coefficients of R
cZ : ndarray, shape(RZ_transform.num_modes,)
spectral coefficients of Z
cL : ndarray, shape(L_transform.num_modes,)
spectral coefficients of lambda
cRb : ndarray, shape(bdry_basis.num_modes,)
spectral coefficients of R boundary
cZb : ndarray, shape(bdry_basis.num_modes,)
spectral coefficients of Z boundary
bdry_ratio : float
fraction in range [0,1] of the full non-axisymmetric boundary to use
R1_transform : Transform
transforms cR to physical space at the boundary
Z1_transform : Transform
transforms cZ to physical space at the boundary
L_transform : Transform
transforms cL to physical space
Returns
-------
errR : ndarray, shape(N_bdry_pts,)
vector of R errors in boundary spectral coeffs
errZ : ndarray, shape(N_bdry_pts,)
vector of Z errors in boundary spectral coeffs
"""
# coordinates
rho = L_transform.grid.nodes[:, 0]
vartheta = L_transform.grid.nodes[:, 1]
zeta = L_transform.grid.nodes[:, 2]
lamda = L_transform.transform(cL)
theta = vartheta - lamda
phi = zeta
# cannot use Transform object with JAX
nodes = jnp.array([rho, theta, phi]).T
if L_transform.basis.sym == None:
A = L_transform.basis.evaluate(nodes)
pinv_R = jnp.linalg.pinv(A, rcond=1e-6)
pinv_Z = pinv_R
ratio_Rb = jnp.where(L_transform.basis.modes[:, 2] != 0, bdry_ratio, 1)
ratio_Zb = ratio_Rb
else:
Rb_basis = DoubleFourierSeries(
M=L_transform.basis.M, N=L_transform.basis.N,
NFP=L_transform.basis.NFP, sym=Tristate(True))
Zb_basis = DoubleFourierSeries(
M=L_transform.basis.M, N=L_transform.basis.N,
NFP=L_transform.basis.NFP, sym=Tristate(False))
AR = Rb_basis.evaluate(nodes)
AZ = Zb_basis.evaluate(nodes)
pinv_R = jnp.linalg.pinv(AR, rcond=1e-6)
pinv_Z = jnp.linalg.pinv(AZ, rcond=1e-6)
ratio_Rb = jnp.where(Rb_basis.modes[:, 2] != 0, bdry_ratio, 1)
ratio_Zb = jnp.where(Zb_basis.modes[:, 2] != 0, bdry_ratio, 1)
# LCFS transform and fit
R = R1_transform.transform(cR)
Z = Z1_transform.transform(cZ)
cR_lcfs = jnp.matmul(pinv_R, R)
cZ_lcfs = jnp.matmul(pinv_Z, Z)
# compute errors
errR = cR_lcfs - cRb*ratio_Rb
errZ = cZ_lcfs - cZb*ratio_Zb
return errR, errZ
# FIXME: this method might not be stable, but could yield speed improvements
def compute_bdry_err_sfl(cR, cZ, cL, cRb, cZb, RZ_transform, L_transform, bdry_transform, bdry_ratio):
"""Compute boundary error in (theta,phi) Fourier coefficients from non-uniform interpolation grid
Parameters
----------
cR : ndarray, shape(RZ_transform.num_modes,)
spectral coefficients of R
cZ : ndarray, shape(RZ_transform.num_modes,)
spectral coefficients of Z
cL : ndarray, shape(L_transform.num_modes,)
spectral coefficients of lambda
cRb : ndarray, shape(bdry_basis.num_modes,)
spectral coefficients of R boundary
cZb : ndarray, shape(bdry_basis.num_modes,)
spectral coefficients of Z boundary
bdry_ratio : float
fraction in range [0,1] of the full non-axisymmetric boundary to use
RZ_transform : Transform
transforms cR and cZ to physical space
L_transform : Transform
transforms cL to physical space
bdry_transform : Transform
transforms cRb and cZb to physical space
Returns
-------
errR : ndarray, shape(N_bdry_pts,)
vector of R errors in boundary spectral coeffs
errZ : ndarray, shape(N_bdry_pts,)
vector of Z errors in boundary spectral coeffs
"""
# coordinates
rho = L_transform.grid.nodes[:, 0]
vartheta = L_transform.grid.nodes[:, 1]
zeta = L_transform.grid.nodes[:, 2]
lamda = L_transform.transform(cL)
theta = vartheta - lamda
phi = zeta
# boundary transform
nodes = np.array([rho, theta, phi]).T
grid = Grid(nodes)
transf = Transform(grid, bdry_transform.basis)
# transform to real space and fit back to sfl spectral basis
R = transf.transform(cRb)
Z = transf.transform(cZb)
cRb_sfl = bdry_transform.fit(R)
cZb_sfl = bdry_transform.fit(Z)
# compute errors
errR =
|
np.zeros_like(cRb_sfl)
|
numpy.zeros_like
|
import numpy as np
ROWS, COLUMNS = 20, 10
TILES = np.array([
[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]],
[[[0, 0, 0, 0], [7, 7, 7, 7], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 0, 7, 0], [0, 0, 7, 0], [0, 0, 7, 0], [0, 0, 7, 0]],
[[0, 0, 0, 0], [7, 7, 7, 7], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 0, 7, 0], [0, 0, 7, 0], [0, 0, 7, 0], [0, 0, 7, 0]]],
[[[0, 0, 0, 0], [2, 2, 2, 0], [0, 0, 2, 0], [0, 0, 0, 0]],
[[0, 2, 0, 0], [0, 2, 0, 0], [2, 2, 0, 0], [0, 0, 0, 0]],
[[2, 0, 0, 0], [2, 2, 2, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 2, 2, 0], [0, 2, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0]]],
[[[0, 0, 0, 0], [3, 3, 3, 0], [3, 0, 0, 0], [0, 0, 0, 0]],
[[3, 3, 0, 0], [0, 3, 0, 0], [0, 3, 0, 0], [0, 0, 0, 0]],
[[0, 0, 3, 0], [3, 3, 3, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 3, 0, 0], [0, 3, 0, 0], [0, 3, 3, 0], [0, 0, 0, 0]]],
[[[4, 4, 0, 0], [0, 4, 4, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 4, 0, 0], [4, 4, 0, 0], [4, 0, 0, 0], [0, 0, 0, 0]],
[[4, 4, 0, 0], [0, 4, 4, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 4, 0, 0], [4, 4, 0, 0], [4, 0, 0, 0], [0, 0, 0, 0]]],
[[[0, 5, 5, 0], [5, 5, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 0, 0, 0], [5, 5, 0, 0], [0, 5, 0, 0], [0, 0, 0, 0]],
[[0, 5, 5, 0], [5, 5, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 0, 0, 0], [5, 5, 0, 0], [0, 5, 0, 0], [0, 0, 0, 0]]],
[[[0, 6, 0, 0], [6, 6, 6, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[0, 6, 0, 0], [0, 6, 6, 0], [0, 6, 0, 0], [0, 0, 0, 0]],
[[0, 0, 0, 0], [6, 6, 6, 0], [0, 6, 0, 0], [0, 0, 0, 0]],
[[0, 6, 0, 0], [6, 6, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0]]],
], dtype=np.int32)
NUM_TILES = TILES.shape[0]
TILE_SIZE = TILES.shape[-1]
PADDING = TILE_SIZE - 1
# get the tiles indexed by positions
def make_indices(positions):
batch_size = positions.shape[0]
# index upper left corner
tile_indices = np.arange(TILE_SIZE, dtype=np.intp)
# offset corner by tile position
rows_offsets = positions[:, 0, np.newaxis] + tile_indices
columns_offsets = positions[:, 1, np.newaxis] + tile_indices
# generate indices, every '1' will be subject to broadcasting
batch_index = np.arange(batch_size, dtype=np.intp).reshape((-1, 1, 1))
rows_index = rows_offsets.reshape((-1, TILE_SIZE, 1))
columns_index = columns_offsets.reshape((-1, 1, TILE_SIZE))
# return ready-to-use tuple
return batch_index, rows_index, columns_index
# test move for validity
def test_multiple_tiles(boards, tiles, positions):
indices = make_indices(positions)
# cut tile location from board
cutouts = boards[indices]
# check for overlap
return np.any(np.logical_and(tiles, cutouts), axis=(1, 2))
# insert tiles into the board
def put_tiles_in_boards(boards, tiles, positions):
indices = make_indices(positions)
boards[indices] += tiles
return boards
# get depth maps
def multiple_board_depths(boards):
return (boards != 0).argmax(axis=1)
# return maximum drop depth for a given tile
def drop_depths(tiles, boards, positions):
# get columns overlapping with tile
tile_indices = np.arange(TILE_SIZE, dtype=np.intp)
columns_offsets = positions[:, 1, np.newaxis] + tile_indices
batch_index = np.arange(boards.shape[0], dtype=np.intp)[:, np.newaxis, np.newaxis]
rows_index = np.arange(boards.shape[1], dtype=np.intp)[np.newaxis, :, np.newaxis]
columns_index = columns_offsets[:, np.newaxis, :]
# index board
relevant_columns = boards[batch_index, rows_index, columns_index]
# find downwards tile extent
tile_extent = TILE_SIZE - np.argmax(tiles[:, ::-1, :], axis=1)
# correct tile extent with the amount the tile has already dropped
tile_extent += positions[:, 0, np.newaxis]
# mask: true if field is below tile extent
is_below_tile_extent = np.arange(relevant_columns.shape[1])[np.newaxis, :, np.newaxis] >= tile_extent[:, np.newaxis, :]
# find first collision point below tile extent
collisions = np.logical_and(relevant_columns != 0, is_below_tile_extent)
collision_depths = np.argmax(collisions, axis=1)
# find how much a tile can be dropped from its original position
relative_collision_depths = collision_depths - tile_extent
# filter out columns which the tile does not overlap by setting depth to max
no_overlap = np.logical_not(np.any(tiles, axis=1))
relevant_relative_collision_depths = np.where(no_overlap, ROWS, relative_collision_depths)
# the drop depth is the minimum collision depth over the valid columns
depths = np.min(relevant_relative_collision_depths, axis=1)
return depths
# clear full rows
def clear_multiple_boards(boards):
keep = np.logical_not(
|
np.all(boards, axis=2)
|
numpy.all
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from gnpy.core.utils import (load_json,
itufs,
freq2wavelength,
lin2db,
db2lin)
from gnpy.core import network
topology = load_json('edfa_example_network.json')
nw = network.network_from_json(topology)
pch2d_legend_data = np.loadtxt('Pchan2DLegend.txt')
pch2d = np.loadtxt('Pchan2D.txt')
ch_spacing = 0.05
fc = itufs(ch_spacing)
lc = freq2wavelength(fc) / 1000
nchan = np.arange(len(lc))
df = np.ones(len(lc)) * ch_spacing
edfa1 = [n for n in nw.nodes() if n.uid == 'Edfa1'][0]
edfa1.gain_target = 20.0
edfa1.tilt_target = -0.7
edfa1.calc_nf()
results = []
for Pin in pch2d:
chgain = edfa1.gain_profile(Pin)
pase = edfa1.noise_profile(chgain, fc, df)
pout = lin2db(db2lin(Pin + chgain) + db2lin(pase))
results.append(pout)
# Generate legend text
pch2d_legend = []
for ea in pch2d_legend_data:
s = ''.join([chr(xx) for xx in ea.astype(dtype=int)]).strip()
pch2d_legend.append(s)
# Plot
axis_font = {'fontname': 'Arial', 'size': '16', 'fontweight': 'bold'}
title_font = {'fontname': 'Arial', 'size': '17', 'fontweight': 'bold'}
tic_font = {'fontname': 'Arial', 'size': '12'}
plt.rcParams["font.family"] = "Arial"
plt.figure()
plt.plot(nchan, pch2d.T, '.-', lw=2)
plt.xlabel('Channel Number', **axis_font)
plt.ylabel('Channel Power [dBm]', **axis_font)
plt.title('Input Power Profiles for Different Channel Loading', **title_font)
plt.legend(pch2d_legend, loc=5)
plt.grid()
plt.ylim((-100, -10))
plt.xlim((0, 110))
plt.xticks(np.arange(0, 100, 10), **tic_font)
plt.yticks(
|
np.arange(-110, -10, 10)
|
numpy.arange
|
# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from datetime import timedelta
from hypothesis import given, settings, strategies as st
from hypothesis.extra.numpy import arrays, array_shapes
import numpy as np
from numpy.testing import assert_allclose
import pytest
from cotede.fuzzy import fuzzy_uncertainty
from ..qctests.compare import compare_compound_feature_input_types
CFG = {
"output": {
"low": {"type": "trimf", "params": [0.0, 0.225, 0.45]},
"medium": {"type": "trimf", "params": [0.275, 0.5, 0.725]},
"high": {"type": "smf", "params": [0.55, 0.775]},
},
"features": {
"f1": {
"weight": 1,
"low": {"type": "zmf", "params": [0.07, 0.2]},
"medium": {"type": "trapmf", "params": [0.07, 0.2, 2, 6]},
"high": {"type": "smf", "params": [2, 6]},
},
"f2": {
"weight": 1,
"low": {"type": "zmf", "params": [3, 4]},
"medium": {"type": "trapmf", "params": [3, 4, 5, 6]},
"high": {"type": "smf", "params": [5, 6]},
},
"f3": {
"weight": 1,
"low": {"type": "zmf", "params": [0.5, 1.5]},
"medium": {"type": "trapmf", "params": [0.5, 1.5, 3, 4]},
"high": {"type": "smf", "params": [3, 4]},
},
},
}
def test_fuzzy_uncertainty():
features = {"f1": np.array([1.0]), "f2":
|
np.array([5.2])
|
numpy.array
|
# %%
import numpy as np
import csv
# import predict as util
# %%
w1 = np.matrix([
[0.01, 0.05, 0.07],
[0.2, 0.041, 0.11],
[0.04, 0.56, 0.13],
[0.1, 0.1, 0.1]
])
w2 = np.matrix([
[0.04, 0.78],
[0.4, 0.45],
[0.65, 0.23],
[0.1, 0.1]
])
w3 = np.matrix([
[0.04],
[0.41],
[0.1]
])
x_size=4
z1_size=6
z2_size=6
z3_size=4
w1=np.random.normal(-1,1,(x_size,z1_size))
w2=np.random.normal(-1,1,(z1_size+1,z2_size))
w3=np.random.normal(-1,1,(z2_size+1,z3_size))
# x=[0.1, -0.1, -0.22, 0.3]
# x=np.random.randint(7, size=(10,4))/3.5-1
x=np.random.normal(-1,1,(2,x_size))
z2 = np.dot(x, w1)
a2 = np.tanh(z2)
ba2 = np.ones((x.shape[0], 1))
a2 = np.concatenate((a2, ba2), axis=1)
z3 = np.dot(a2, w2)
a3 = np.tanh(z3)
# we add the the 1 unit (bias) at the output of the second layer
ba3 = np.ones((a3.shape[0], 1))
a3 = np.concatenate((a3, ba3), axis=1)
# output layer, prediction of our network
z4 = np.dot(a3, w3)
a4 = np.tanh(z4)
r = []
for a_ in a4:
r.append(np.where(a_ ==
|
np.amax(a_)
|
numpy.amax
|
# -*- coding: utf-8 -*-
"""
Unit tests for the kCSD methods
This was written by :
<NAME>,
Laboratory of Neuroinformatics,
Nencki Institute of Exprimental Biology, Warsaw.
:license: Modified BSD, see LICENSE.txt for details.
"""
import unittest
import numpy as np
from kcsd import ValidateKCSD1D, ValidateKCSD2D, ValidateKCSD3D
from kcsd import csd_profile as CSD
from kcsd import KCSD1D, KCSD2D, MoIKCSD, KCSD3D
class KCSD1D_TestCase(unittest.TestCase):
def setUp(self):
dim = 1
utils = ValidateKCSD1D(csd_seed=42)
self.ele_pos = utils.generate_electrodes(total_ele=10,
ele_lims=[0.1, 0.9])
self.csd_profile = CSD.gauss_1d_mono
self.csd_at, self.csd = utils.generate_csd(self.csd_profile,
csd_seed=42)
pots = utils.calculate_potential(self.csd, self.csd_at, self.ele_pos,
h=1., sigma=0.3)
self.pots = np.reshape(pots, (-1, 1))
self.test_method = 'KCSD1D'
self.test_params = {'h': 1., 'sigma': 0.3, 'R_init': 0.2,
'n_src_init': 100, 'xmin': 0., 'xmax': 1.,}
def test_kcsd1d_estimate(self, cv_params={}):
self.test_params.update(cv_params)
result = KCSD1D(self.ele_pos, self.pots,
**self.test_params)
result.cross_validate()
vals = result.values()
true_csd = self.csd_profile(result.estm_x, 42)
rms = np.linalg.norm(
|
np.array(vals[:, 0])
|
numpy.array
|
import numpy as np
import theano
from theano import tensor as tt
import pymc3 as pm
from pymc3.distributions.dist_math import rho2sd, log_normal, log_normal_mv
from pymc3.variational.opvi import Approximation
from pymc3.theanof import memoize
__all__ = [
'MeanField',
'FullRank',
'Empirical',
'sample_approx'
]
class MeanField(Approximation):
"""Mean Field approximation to the posterior where spherical Gaussian family
is fitted to minimize KL divergence from True posterior. It is assumed
that latent space variables are uncorrelated that is the main drawback
of the method
Parameters
----------
local_rv : dict[var->tuple]
mapping {model_variable -> local_variable (:math:`\\mu`, :math:`\\rho`)}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details
model : :class:`pymc3.Model`
PyMC3 model for inference
start : `Point`
initial mean
cost_part_grad_scale : `scalar`
Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; <NAME>,
<NAME>, <NAME>, 2016) for details
scale_cost_to_minibatch : `bool`
Scale cost to minibatch instead of full dataset, default False
random_seed : None or int
leave None to use package global RandomStream or other
valid value to create instance specific one
References
----------
- <NAME>, <NAME>, <NAME>, 2016
Sticking the Landing: A Simple Reduced-Variance Gradient for ADVI
approximateinference.org/accepted/RoederEtAl2016.pdf
"""
@property
def mean(self):
return self.shared_params['mu']
@property
def rho(self):
return self.shared_params['rho']
@property
def cov(self):
return tt.diag(rho2sd(self.rho)**2)
@property
def std(self):
return rho2sd(self.rho)
def create_shared_params(self, **kwargs):
start = kwargs.get('start')
if start is None:
start = self.model.test_point
else:
start_ = self.model.test_point.copy()
pm.sampling._update_start_vals(start_, start, self.model)
start = start_
start = self.gbij.map(start)
return {'mu': theano.shared(
pm.floatX(start),
'mu'),
'rho': theano.shared(
np.zeros((self.global_size,), dtype=theano.config.floatX),
'rho')
}
def log_q_W_global(self, z):
"""
log_q_W samples over q for global vars
"""
mu = self.scale_grad(self.mean)
rho = self.scale_grad(self.rho)
z = z[self.global_slc]
logq = tt.sum(log_normal(z, mu, rho=rho))
return logq
def random_global(self, size=None, no_rand=False):
initial = self.initial(size, no_rand, l=self.global_size)
sd = rho2sd(self.rho)
mu = self.mean
return sd * initial + mu
class FullRank(Approximation):
"""Full Rank approximation to the posterior where Multivariate Gaussian family
is fitted to minimize KL divergence from True posterior. In contrast to
MeanField approach correlations between variables are taken in account. The
main drawback of the method is computational cost.
Parameters
----------
local_rv : dict[var->tuple]
mapping {model_variable -> local_variable (:math:`\\mu`, :math:`\\rho`)}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details
model : PyMC3 model for inference
start : Point
initial mean
cost_part_grad_scale : float or scalar tensor
Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; <NAME>,
<NAME>, <NAME>, 2016) for details
scale_cost_to_minibatch : bool, default False
Scale cost to minibatch instead of full dataset
random_seed : None or int
leave None to use package global RandomStream or other
valid value to create instance specific one
Other Parameters
----------------
gpu_compat : bool
use GPU compatible version or not
References
----------
- <NAME>, <NAME>, <NAME>, 2016
Sticking the Landing: A Simple Reduced-Variance Gradient for ADVI
approximateinference.org/accepted/RoederEtAl2016.pdf
"""
def __init__(self, local_rv=None, model=None, cost_part_grad_scale=1,
scale_cost_to_minibatch=False,
gpu_compat=False, random_seed=None, **kwargs):
super(FullRank, self).__init__(
local_rv=local_rv, model=model,
cost_part_grad_scale=cost_part_grad_scale,
scale_cost_to_minibatch=scale_cost_to_minibatch,
random_seed=random_seed, **kwargs
)
self.gpu_compat = gpu_compat
@property
def L(self):
return self.shared_params['L_tril'][self.tril_index_matrix]
@property
def mean(self):
return self.shared_params['mu']
@property
def cov(self):
L = self.L
return L.dot(L.T)
@property
def num_tril_entries(self):
n = self.global_size
return int(n * (n + 1) / 2)
@property
def tril_index_matrix(self):
n = self.global_size
num_tril_entries = self.num_tril_entries
tril_index_matrix = np.zeros([n, n], dtype=int)
tril_index_matrix[np.tril_indices(n)] = np.arange(num_tril_entries)
tril_index_matrix[np.tril_indices(n)[::-1]] =
|
np.arange(num_tril_entries)
|
numpy.arange
|
"""
initialize.py
Initializes grid
"""
import sys
sys.path.append("..")
import numpy as np
from ..common.NC import NC
def initialize(self, DISP=False, factor=True):
#Number of points
self.Na = (self.NP-1) * self.NMa + 1
self.Nr = (self.NP-1) * self.NMr + 1
self.Nelem = self.Na * self.Nr
#Coordinate properties
self.xa = np.linspace(0, np.pi, self.Na+1)
self.ha = self.xa[1] - self.xa[0]
self.xa = self.xa + self.ha/2
self.xa = self.xa[:-1]
self.xa = (self.xa - np.flipud(self.xa - np.pi))/2
self.xr = np.linspace(0, self.L, self.Nr+1)
self.hr = self.xr[1] - self.xr[0]
self.xr = self.xr + self.hr/2
self.xr = self.xr[:-1]
Nrange = len(self.i1)
#Boundary region
self.bcN = int(np.floor(max([self.i1.shape[0], self.i2.shape[0]])/2))
self.bXr = np.linspace(1, self.bcN,self.bcN)*self.hr + self.xr[-1]
self.bXr, self.bXa = np.meshgrid(self.bXr, self.xa)
self.bXa = np.reshape(self.bXa, self.Na * self.bcN, order="F")
self.bXr = np.reshape(self.bXr, self.Na * self.bcN, order="F")
#Second grid
self.Xr, self.Xa = np.meshgrid(self.xr, self.xa)
self.Xa = np.reshape(self.Xa, self.Na * self.Nr, order="F")
self.Xr =
|
np.reshape(self.Xr, self.Na * self.Nr, order="F")
|
numpy.reshape
|
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_core.ipynb (unless otherwise specified).
__all__ = ['grid_search', 'random_search', 'latin_hyper_cube', 'jittered_sampling', 'multi_jittered', 'is_valid',
'poisson_disk']
# Cell
import numpy as np
import matplotlib.pyplot as plt
# Cell
plt.style.use("bmh")
plt.rcParams["figure.figsize"] = (10, 10)
# Cell
def grid_search(x_range, y_range, n=10):
visited = set()
iteration = 0
while True:
divisions = 2 ** iteration + 1
x = np.linspace(*x_range, divisions)
y = np.linspace(*y_range, divisions)[::-1]
mesh = np.array(np.meshgrid(x, y))
mesh_reshaped = mesh.reshape(2, divisions**2).T
for point in mesh_reshaped:
point_tuple = tuple(point)
if point_tuple not in visited:
visited.add(point_tuple)
yield point
if len(visited) == n:
return
iteration += 1
# Cell
def random_search(x_range, y_range, n=10, seed=42):
RNG = np.random.default_rng(seed)
xs, ys = RNG.uniform(0, 1, size=(n, 2)).T
x_lower, x_upper = x_range
xs = xs * (x_upper - x_lower) + x_lower
y_lower, y_upper = y_range
ys = ys * (y_upper - y_lower) + y_lower
for point in zip(xs, ys):
yield point
# Cell
def latin_hyper_cube(x_range, y_range, n=10, seed=42):
x_lower, x_upper = x_range
y_lower, y_upper = y_range
visited = set()
iteration = 0
RNG_x = np.random.default_rng(seed)
RNG_y = np.random.default_rng(seed+1)
RNG_shuffler = np.random.default_rng(seed+2)
RNG_init = np.random.default_rng(seed)
divisions = 2
limits = np.linspace(0, 1, divisions+1)
lower_limits = limits[:-1]
upper_limits = limits[1:]
xs, ys = zip(*RNG_init.uniform(low=lower_limits, high=upper_limits, size=(2, divisions)).T)
xs = np.array(xs)
ys = np.array(ys)
RNG_shuffler.shuffle(ys)
for point in zip(xs, ys):
visited.add(tuple(point))
x_scale = point[0] * (x_upper - x_lower) + x_lower
y_scale = point[1] * (y_upper - y_lower) + y_lower
yield (x_scale, y_scale)
if len(visited) >= n:
return
while True:
divisions *= 2
limits = np.linspace(0, 1, divisions+1)
lower_limits = limits[:-1]
upper_limits = limits[1:]
indexes_empty_x = []
indexes_empty_y = []
for index, (lower, upper) in enumerate(zip(lower_limits, upper_limits)):
is_occupied_x = any(lower < point[0] < upper for point in visited)
indexes_empty_x.append(is_occupied_x)
is_occupied_y = any(lower < point[1] < upper for point in visited)
indexes_empty_y.append(is_occupied_y)
indexes_empty_x = np.array(indexes_empty_x)
indexes_empty_y = np.array(indexes_empty_y)
xs = RNG_x.uniform(low=lower_limits[~indexes_empty_x], high=upper_limits[~indexes_empty_x])
ys = RNG_y.uniform(low=lower_limits[~indexes_empty_y], high=upper_limits[~indexes_empty_y])
RNG_shuffler.shuffle(ys)
for point in zip(xs, ys):
visited.add(tuple(point))
x_scale = point[0] * (x_upper - x_lower) + x_lower
y_scale = point[1] * (y_upper - y_lower) + y_lower
yield (x_scale, y_scale)
if len(visited) >= n:
return
# Cell
def jittered_sampling(x_range, y_range, n=10, seed=42):
x_lower, x_upper = x_range
y_lower, y_upper = y_range
visited = set()
iteration = 0
RNG_x = np.random.default_rng(seed)
RNG_y = np.random.default_rng(seed+1)
RNG_shuffler = np.random.default_rng(seed+2)
RNG_init = np.random.default_rng(seed)
divisions = 2
limits = np.linspace(0, 1, divisions+1)
lower_limits, upper_limits = limits[:-1], limits[1:]
for lower_x, upper_x in zip(lower_limits, upper_limits):
for lower_y, upper_y in zip(lower_limits, upper_limits):
x = RNG_x.uniform(low=lower_x, high=upper_x)
y = RNG_y.uniform(low=lower_y, high=upper_y)
point = (x, y)
visited.add(point)
x_scale = x * (x_upper - x_lower) + x_lower
y_scale = y * (y_upper - y_lower) + y_lower
yield (x_scale, y_scale)
if len(visited) >= n:
return
while True:
divisions *= 2
limits = np.linspace(0, 1, divisions+1)
lower_limits, upper_limits = limits[:-1], limits[1:]
for lower_x, upper_x in zip(lower_limits, upper_limits):
for lower_y, upper_y in zip(lower_limits, upper_limits):
empty = not any(lower_x < point[0] < upper_x and lower_y < point[1] < upper_y for point in visited)
if empty:
x = RNG_x.uniform(low=lower_x, high=upper_x)
y = RNG_y.uniform(low=lower_y, high=upper_y)
point = (x, y)
visited.add(point)
x_scale = x * (x_upper - x_lower) + x_lower
y_scale = y * (y_upper - y_lower) + y_lower
yield (x_scale, y_scale)
if len(visited) >= n:
return
# Cell
def multi_jittered(x_range, y_range, n=10, seed=42):
x_lower, x_upper = x_range
y_lower, y_upper = y_range
RNG_x = np.random.default_rng(seed)
RNG_y = np.random.default_rng(seed+1)
RNG_shuffler_x = np.random.default_rng(seed+2)
RNG_shuffler_y = np.random.default_rng(seed+3)
side = int(n ** 0.5 + 0.5)
resolution_x, resolution_y = (side, side)
cells = resolution_x * resolution_y
xs_ = np.linspace(0, 1, resolution_x, endpoint=False)
ys_ = np.linspace(0, 1, resolution_y, endpoint=False)
xs, ys = np.meshgrid(xs_, ys_)
xs = (xs.T + ys_ / resolution_x).T
ys = ys + xs_ / resolution_y
xs += RNG_x.random(size=xs.shape) / cells
ys += RNG_y.random(size=ys.shape) / cells
RNG_shuffler_x.shuffle(xs.T)
RNG_shuffler_y.shuffle(ys)
xs_flat = np.ndarray.flatten(xs)
ys_flat = np.ndarray.flatten(ys)
points = 0
for x, y in zip(xs_flat, ys_flat):
x_scale = x * (x_upper - x_lower) + x_lower
y_scale = y * (y_upper - y_lower) + y_lower
yield (x_scale, y_scale)
points += 1
if points >= n:
return
# Cell
def is_valid(x, y, points, radius):
if len(points) == 0:
return True
new_center = np.array([x, y])
for point in points:
center = np.array(point)
if np.linalg.norm(center - new_center) <= radius:
return False
return True
def poisson_disk(x_range, y_range, n=10, seed=42, tries=1e3):
x_lower, x_upper = x_range
y_lower, y_upper = y_range
visited = set()
RNG_x = np.random.default_rng(seed)
RNG_y =
|
np.random.default_rng(seed+1)
|
numpy.random.default_rng
|
from metrics import Metric
import os
import numpy as np
import cv2
import matplotlib as mpl
import matplotlib.cm as cm
import json
from scipy.stats import binned_statistic_2d
from scipy.interpolate import NearestNDInterpolator, LinearNDInterpolator
import time
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
class Evaluator:
def __init__(self, data_root, rgb_shape=(1024, 1920), gated_shape=(720, 1280), bfl_rgb=0.202993 * 2355.722801,
bfl_gated=0.202993 * 2322.4, clip_min=0.001, clip_max=28., nb_bins=14):
self.data_root = data_root
self.gated_height, self.gated_width = gated_shape
self.rgb_height, self.rgb_width = rgb_shape
self.bfl_rgb = bfl_rgb # baseline times focal length
self.bfl_gated = bfl_gated # baseline times focal length
self.clip_min = clip_min
self.clip_max = clip_max
self.metric = Metric()
self.fov_h_camera = 40
self.fov_v_camera = 23
self.nb_metrics = len(Metric.get_header())
self.bins, self.mean_bins = self.calc_bins(self.clip_min, self.clip_max, nb_bins)
self.frames = {
'monodepth': 'rgb_left',
'semodepth': 'rgb_left',
'psmnet': 'rgb_left',
'unsup': 'rgb_left',
'sparse2dense': 'rgb_left',
'sgm': 'rgb_left',
'lidar_hdl64_rgb_left': 'rgb_left',
'depth': 'rgb_left',
'intermetric': 'rgb_left',
}
self.crops = {
# 'rgb_left': [215, 330, 44, 230], # top, right, bottom, left
'rgb_left': [270, 20, 20, 170], # top, right, bottom, left
'gated': [0, 0, 0, 0], # top, right, bottom, left
}
@staticmethod
def calc_bins(clip_min, clip_max, nb_bins):
bins = np.linspace(clip_min, clip_max, num=nb_bins + 1)
mean_bins = np.array([0.5 * (bins[i + 1] + bins[i]) for i in range(0, nb_bins)])
return bins, mean_bins
@staticmethod
def interpolate(depth, method='nearest'):
current_coordinates = np.where(depth > 0)
missing_coordinates = np.where(depth == 0)
if len(missing_coordinates[0]) > 0:
current_depth = depth[current_coordinates]
if method == 'nearest':
interpolator = NearestNDInterpolator(current_coordinates, current_depth)
elif method == 'linear':
interpolator = LinearNDInterpolator(current_coordinates, current_depth, )
depth[missing_coordinates] = interpolator(missing_coordinates)
return depth
def disparity2depth(self, disparity, domain='rgb'):
depth = np.zeros(disparity.shape)
depth[disparity == 0] = float('inf')
if domain == 'rgb':
depth[disparity != 0] = self.bfl_rgb / disparity[disparity != 0]
if domain == 'gated':
depth[disparity != 0] = self.bfl_gated / disparity[disparity != 0]
return depth
def crop_rgb_to_gated(self, rgb):
rgb = rgb[215:980, 230:1590]
return rgb
def crop_eval_region(self, img, frame):
crop = self.crops[frame]
img = img[crop[0]:(img.shape[0] - crop[2]), crop[3]:(img.shape[1] - crop[1])]
return img
def evaluate_samples(self, samples, approach):
metrics = np.zeros((len(samples), self.nb_metrics))
for idx, sample in enumerate(samples):
metrics[idx, :] = self.evaluate_sample(sample, approach, gt_type='intermetric')
metrics = np.mean(metrics, axis=0)
return metrics
def evaluate_samples_binned(self, samples, approach):
metrics = np.zeros((len(samples), len(self.mean_bins) + 1, self.nb_metrics + 1))
for idx, sample in enumerate(samples):
metrics[idx, :, :] = self.evaluate_sample_binned(sample, approach, gt_type='intermetric')
metrics = np.mean(metrics, axis=0)
return metrics
def evaluate_sample(self, sample, approach, gt_type='intermetric'):
depth_gt = self.load_depth_groundtruth(sample.split('_')[0], frame=self.frames[approach], gt_type=gt_type)
depth = self.load_depth(sample, approach)
return self.metric.calc_metrics(depth, depth_gt, clip_min=self.clip_min, clip_max=self.clip_max)
def evaluate_sample_binned(self, sample, approach, gt_type='intermetric'):
depth_gt = self.load_depth_groundtruth(sample.split('_')[0], frame=self.frames[approach],
gt_type=gt_type).flatten()
depth = self.load_depth(sample, approach).flatten()
results = np.vstack([depth, depth_gt])
if len(self.bins) == 1:
inds = np.zeros((results.shape[-1],), dtype=int)
else:
inds = np.digitize(results[1, :], self.bins)
error_binned = np.zeros((len(self.bins) - 1, self.nb_metrics))
for i, bin in enumerate(self.bins[:-1]):
try:
metrics = self.metric.calc_metrics(results[0, inds == i], results[1, inds == i], clip_min=self.clip_min,
clip_max=self.clip_max)
error_binned[i, :] = metrics
except ValueError:
error_binned[i, :] = np.nan
mean_error_binned = np.zeros((self.nb_metrics,))
for i in range(0, self.nb_metrics):
mean_error_binned[i] = np.mean(error_binned[~np.isnan(error_binned[:, i]), i])
error_binned = np.hstack([self.mean_bins.reshape((-1, 1)), error_binned])
mean_error_binned = np.hstack([np.zeros((1,)), mean_error_binned])
metric = np.vstack([mean_error_binned, error_binned])
return metric
def error_image(self, sample, approach, gt_type='intermetric'):
groundtruth = self.load_depth_groundtruth(sample.split('_')[0], frame=self.frames[approach], gt_type=gt_type)
output = self.load_depth(sample, approach)
error_image = np.zeros(groundtruth.shape)
eval_pos = np.logical_and(groundtruth > 0, output > 0)
output = output[eval_pos]
groundtruth = groundtruth[eval_pos]
output = np.clip(output, self.clip_min, self.clip_max)
groundtruth = np.clip(groundtruth, self.clip_min, self.clip_max)
error_image[eval_pos] = np.abs(output - groundtruth)
norm = mpl.colors.Normalize(vmin=0, vmax=self.clip_max - self.clip_min)
cmap = cm.hot
m = cm.ScalarMappable(norm=norm, cmap=cmap)
error_image = m.to_rgba(error_image)[:, :, 0:3]
error_image[~eval_pos] = (0, 0, 0)
error_image = cv2.cvtColor((255 * error_image).astype(np.uint8), cv2.COLOR_BGR2RGB)
return error_image
def depth2points(self, depth, P):
inv_projection_matrix = np.linalg.inv(P)
idx = np.indices((depth.shape[0], depth.shape[1]))
index_matrix = np.vstack((idx[1].flatten(), idx[0].flatten(), np.ones((depth.shape[0] * depth.shape[1]))))
points = depth.flatten() * np.matmul(inv_projection_matrix, index_matrix)
points = points[:, depth.flatten() != 0]
return points
def create_top_view(self, sample, approach):
output = self.load_depth(sample, approach)
if self.frames[approach] == 'rgb_left':
calib_file = 'calib/calib_cam_stereo_left.json'
elif self.frames[approach] == 'gated':
calib_file = 'calib/calib_gated_bwv.json'
with open(calib_file, 'r') as f:
calib = json.load(f)
P = np.array(calib['P']).reshape(3, 4)[:, 0:3]
P_scaling = np.array([[1, 0, -self.crops[self.frames[approach]][3]], [0, 1, -self.crops[self.frames[approach]][0]], [0, 0, 1]])
P = np.dot(P_scaling, P)
pc = self.depth2points(output, P).transpose()
temp = pc.copy()
pc[:, 0] = temp[:, 2] # x to the front
pc[:, 1] = -temp[:, 0] # y to the left
pc[:, 2] = -temp[:, 1] # z to the top
fov_h_camera = 40
fov_v_camera = 23
xbins = 231
ybins = 101
bins = [np.linspace(5, 28, xbins), np.linspace(-5, 5, ybins)]
top_view, xedges, yedges, _ = binned_statistic_2d(pc[:, 0], pc[:, 1], pc[:, 2], 'count', bins)
xbins_middle = np.array([0.5 * (xedges[i] + xedges[i + 1]) for i in range(len(xedges) - 1)])
fov_area = np.tan(0.5 * np.deg2rad(fov_h_camera)) * np.tan(
0.5 * np.deg2rad(self.fov_v_camera)) * xbins_middle ** 2
fov_area = np.tile(fov_area, (ybins - 1, 1)).transpose()
top_view = fov_area * top_view
top_view_norm = mpl.colors.Normalize(vmin=0, vmax=pc.shape[0] / 220.0)
t = cm.ScalarMappable(norm=top_view_norm, cmap=cm.jet)
top_view_color = t.to_rgba(top_view)[:, :, 0:3]
top_view = np.rot90(top_view, axes=(0, 1))
top_view_color = np.rot90(top_view_color, axes=(0, 1))
top_view_color = cv2.cvtColor((255 * top_view_color).astype(np.uint8), cv2.COLOR_BGR2RGB)
return top_view, top_view_color
def load_depth_groundtruth(self, scene, frame='rgb_left', gt_type='intermetric'):
if gt_type == 'intermetric':
path = os.path.join(self.data_root, 'intermetric_{}'.format(frame), scene + '.npz')
elif gt_type == 'lidar':
path = os.path.join(self.data_root, 'lidar_hdl64_{}'.format(frame), scene + '.npz')
depth = np.load(path)['arr_0']
depth = self.crop_eval_region(depth, frame)
return depth
def load_depth(self, sample, approach, interpolate=True):
if approach == 'intermetric':
path = os.path.join(self.data_root, approach + '_' + self.frames[approach], sample + '.npz')
else:
path = os.path.join(self.data_root, approach, sample + '.npz')
depth = np.load(path)['arr_0']
depth = self.pp_depth(depth, approach, interpolate=interpolate)
return depth
def pp_depth(self, depth, approach, interpolate=True):
if approach == 'monodepth':
disparity = depth
disparity = cv2.resize(disparity, (self.rgb_width, self.rgb_height), interpolation=cv2.INTER_AREA)
disparity = disparity * self.rgb_width # it provides relative disparity
depth = self.disparity2depth(disparity, domain='rgb')
elif approach == 'semodepth':
disparity = np.squeeze(depth)
# disparity = np.squeeze(disparity) / 960
disparity = cv2.resize(disparity, (self.rgb_width, self.rgb_height), interpolation=cv2.INTER_AREA)
# disparity = disparity * self.rgb_width
depth = self.disparity2depth(disparity, domain='rgb')
elif approach == 'psmnet':
disparity = depth
disparity = disparity / 960
disparity = cv2.resize(disparity, (self.rgb_width, self.rgb_height), interpolation=cv2.INTER_AREA)
disparity = disparity * self.rgb_width
depth = self.disparity2depth(disparity, domain='rgb')
elif approach == 'unsup':
disparity = depth
disparity = cv2.resize(disparity, (self.rgb_width, self.rgb_height), interpolation=cv2.INTER_AREA)
disparity = disparity * self.rgb_width # it provides relative disparity
depth = self.disparity2depth(disparity, domain='rgb')
elif approach == 'gated2depth':
depth =
|
np.squeeze(depth['arr_0'])
|
numpy.squeeze
|
# Licensed under an MIT open source license - see LICENSE
from fil_finder import fil_finder_2D
from fil_finder.width_profiles import filament_profile
from fil_finder.utilities import eight_con
from astropy.io import fits
import astropy.units as u
import numpy as np
import scipy.ndimage as nd
import matplotlib.pyplot as p
'''
Example of the new radial profiling code for FilFinder.
This functionality is still in testing!
'''
hdu = fits.open("filaments_updatedhdr.fits")[0]
img, hdr = hdu.data, hdu.header
# Add some noise
|
np.random.seed(500)
|
numpy.random.seed
|
import gym
import numpy as np
class TicTacToeEnvV2(gym.Env):
metadata = {'render.modes': ['human']}
reward_range = (-10, 10)
spec = None
# Set these in ALL subclasses
action_space = gym.spaces.Discrete(1)
observation_space = gym.spaces.Discrete(9)
def __init__(self):
self.turn = None
self.state = None
self.done = None
self.winner = None
def step(self, action: int):
if self.state[action] != 0:
self.done = True
reward = -10
return self.state, reward, self.done, {'illegal_action': True}
self.state[action] = self.turn
is_winner = self.is_winner()
reward = 10 if is_winner else -1
if is_winner:
self.winner = self.turn
self.done = is_winner or self.is_done()
self.turn *= -1
return self.state, reward, self.done, {}
def reset(self):
self.state =
|
np.zeros(9)
|
numpy.zeros
|
import argparse
import json
import os.path as osp
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KDTree
from sklearn.preprocessing import normalize
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from itertools import chain
import networkx as nx
import random
import torch
from torch.utils.data import DataLoader
from models.resnet import make_resnet50_base
import sys
sys.path.insert(1, "./ZSL _DataSets")
from image_folder import ImageFolder
from utils import set_gpu, pick_vectors
from utlis_graph_zsl import get_classes, classes_split
class ImagesEmbeddings:
def __init__(self, args, data_path, split_path, save_path):
self.data_path = data_path
self.split_path = split_path
self.images_embed_path = osp.join(save_path, 'matrix_embeds.npy')
self.dict_image_embed_path = osp.join(save_path, 'dict_image_embed.npy')
self.dict_image_class_path = osp.join(save_path, 'dict_image_class.npy')
self.classes_path = osp.join(save_path, 'classes_ordered.npy')
self.args = args
self.seen_classes, self.unseen_classes = self.classes()
self.dict_name_class, self.dict_class_name = self.classes_names_translation()
self.cnn = self.cnn_maker()
def classes(self):
seen_classes, unseen_classes = classes_split(self.args.dataset, self.data_path, self.split_path)
return seen_classes, unseen_classes
def classes_names_translation(self):
awa2_split = json.load(open(self.split_path, 'r'))
train_names = awa2_split['train_names']
test_names = awa2_split['test_names']
seen_classes, unseen_classes = self.classes()
dict_name_class = {name: c for name, c in
zip(chain(train_names, test_names), chain(seen_classes, unseen_classes))}
dict_class_name = {c: name for name, c in
zip(chain(train_names, test_names), chain(seen_classes, unseen_classes))}
return dict_name_class, dict_class_name
def cnn_maker(self):
cnn = make_resnet50_base()
cnn.load_state_dict(torch.load(self.args.cnn))
if self.args.gpu == 0:
cnn = cnn.cuda()
cnn.eval()
return cnn
def one_class_images_embed(self, dataset, embed_matrix, count):
loader = DataLoader(dataset=dataset, batch_size=32,
shuffle=False, num_workers=2)
c = 0
for batch_id, batch in enumerate(loader, 1):
data, label = batch
if cuda:
data = data.cuda()
with torch.no_grad():
embeds = self.cnn(data)
embed_matrix[c:c + loader.batch_size, :] = embeds # (batch_size, d)
count += loader.batch_size
c += loader.batch_size
return embed_matrix, count
def images_embed_calculator(self):
action = 'test'
classes = np.array([])
if osp.exists(self.images_embed_path) and True:
embeds_matrix = np.load(self.images_embed_path, allow_pickle=True)
dict_image_class = np.load(self.dict_image_class_path, allow_pickle=True).item()
dict_image_embed = np.load(self.dict_image_embed_path, allow_pickle=True).item()
else:
count = 0
for i, name in enumerate(
chain(self.dict_class_name[self.unseen_classes], self.dict_class_name[self.seen_classes])):
dataset = ImageFolder(osp.join(self.data_path, 'images'), [name], f'{action}')
embed_matrix = torch.tensor(np.zeros((len(dataset), 2048)))
classes = np.concatenate((classes, np.repeat(name, len(dataset))))
embed_matrix, count = self.one_class_images_embed(dataset, embed_matrix, count)
b = np.array(dataset.data).T[0]
im = np.array([item.split('/')[-1].split('.')[0] for item in b])
if i == 0:
embeds_matrix = embed_matrix
ims = im
else:
embeds_matrix = torch.cat((embeds_matrix, embed_matrix), 1)
ims = np.concatenate((ims, im))
dict_image_class = dict(zip(ims, classes))
dict_image_embed = dict(zip(ims, embeds_matrix.numpy()))
np.save(self.images_embed_path, embeds_matrix)
np.save(self.dict_image_class_path, dict_image_class)
np.save(self.dict_image_embed_path, dict_image_embed)
return embeds_matrix, dict_image_embed, dict_image_class
class Awa2GraphCreator:
def __init__(self, embed_matrix, dict_image_embed, dict_name_class, dict_idx_image_class, images_nodes_percentage,
args):
self.image_graph_path = 'save_data_graph/awa2/image_graph.gpickle'
self.pre_knowledge_graph_path = 'materials/imagenet-induced-graph.json'
self.knowledge_graph_path = 'save_data_graph/awa2/knowledge_graph.gpickle'
self.dict_wnids_class_translation = dict_name_class
self.embeddings = normalize(embed_matrix, norm='l2', axis=0)
self.dict_image_embed = dict_image_embed
self.images = list(dict_image_embed.keys())
self.dict_idx_image_class = dict_idx_image_class
self.images_nodes_percentage = images_nodes_percentage
self.args = args
def index_embed_transform(self):
dict_index_embed = {i: item for i, item in enumerate(self.images)}
dict_embed_index = {item: i for i, item in enumerate(self.images)}
return dict_index_embed, dict_embed_index
def create_image_graph(self):
if osp.exists(self.image_graph_path) and True:
image_gnx = nx.read_gpickle(self.image_graph_path)
else:
image_gnx = nx.Graph()
kdt = KDTree(self.embeddings, leaf_size=40)
# image_graph.add_nodes_from(np.arange(len(self.embeddings)))
count = 0
for i in range(len(self.embeddings)):
neighbors, distances = kdt.query_radius(self.embeddings[i:i + 1], r=self.args.images_threshold,
return_distance=True)
if len(neighbors[0]) == 1:
distances, neighbors = kdt.query(self.embeddings[i:i + 1], k=2,
return_distance=True)
neighbors, distances = neighbors[0], distances[0]
loop_ind = np.where(distances == 0)
if len(loop_ind[0]) > 1:
loop_ind = np.where(neighbors == i)
neighbors = np.delete(neighbors, loop_ind)
distances = np.delete(distances, loop_ind)
# make distance into weights and fix zero distances
edges_weights = [1 / dist if dist > 0 else 1000 for dist in distances]
len_neigh = len(neighbors)
count += len_neigh
mean = count / (i + 1)
if i % 1000 == 0:
print('Progress:', i, '/', len(self.embeddings), '; Current Mean:', mean) # 37273
weight_edges = list(zip(np.repeat(i, len(neighbors)).astype(str), neighbors.astype(str), edges_weights))
image_gnx.add_weighted_edges_from(weight_edges)
nx.write_gpickle(image_gnx, self.image_graph_path)
return image_gnx
def imagenet_knowledge_graph(self):
graph = json.load(open(self.pre_knowledge_graph_path, 'r'))
edges = graph['edges']
nodes = graph['wnids']
# dict_nodes_translation = {i: node for i, node in enumerate(nodes)}
dict_class_nodes_translation = {node: 'c' + str(i) for i, node in enumerate(nodes)}
dict_nodes_class_translation = {'c' + str(i): node for i, node in enumerate(nodes)}
dict_class_nodes_translation = {**dict_class_nodes_translation, **dict_nodes_class_translation}
# edges = [(dict_nodes_translation[x[0]],
# dict_nodes_translation[x[1]]) for x in edges]
edges = [('c' + str(x[0]), 'c' + str(x[1])) for x in edges]
kg_imagenet = nx.Graph()
kg_imagenet.add_edges_from(edges)
return kg_imagenet, dict_class_nodes_translation
def attributed_graph(self, kg_imagenet, att_weight):
graph = json.load(open(self.pre_knowledge_graph_path, 'r'))
nodes = graph['wnids']
all_attributes = graph['vectors']
dict_class_nodes = {node: i for i, node in enumerate(nodes)}
dict_nodes_class = {i: node for i, node in enumerate(nodes)}
dict_class_nodes_translation = {**dict_class_nodes, **dict_nodes_class}
awa2_split = json.load(open('materials/awa2-split.json', 'r'))
seen_classes = awa2_split['train']
unseen_classes = awa2_split['test']
s_u_classes = seen_classes + unseen_classes
s_u_idx = [dict_class_nodes_translation[c] for c in s_u_classes]
kd_idx_to_class_idx = {i: dict_class_nodes_translation[c] for i, c in enumerate(s_u_idx)}
attributes = np.array([all_attributes[idx] for idx in s_u_idx])
attributes = normalize(attributes, norm='l2', axis=1)
kdt = KDTree(attributes, leaf_size=10)
# image_graph.add_nodes_from(np.arange(len(self.embeddings)))
count = 0
for i in range(len(attributes)):
neighbors, distances = kdt.query_radius(attributes[i:i + 1], r=1.15,
return_distance=True)
if len(neighbors[0]) == 1:
distances, neighbors = kdt.query(attributes[i:i + 1], k=2,
return_distance=True)
neighbors, distances = neighbors[0], distances[0]
loop_ind = np.where(distances == 0)
if len(loop_ind[0]) > 1:
loop_ind = np.where(neighbors == i)
neighbors = np.delete(neighbors, loop_ind)
distances = np.delete(distances, loop_ind)
# make distance into weights and fix zero distances
edges_weights = [float(att_weight) / dist if dist > 0 else 1000 for dist in distances]
len_neigh = len(neighbors)
if len_neigh == 0:
print('hi Im number ' + str(i))
count += len_neigh
mean = count / (i + 1)
if i % 10 == 0:
print('Progress:', i, '/', len(attributes), '; Current Mean:', mean) # 37273
neighbors_translation = [dict_class_nodes_translation[kd_idx_to_class_idx[neighbor]] for neighbor in
neighbors]
weight_edges = list(zip(np.repeat(dict_class_nodes_translation[kd_idx_to_class_idx[i]], len(neighbors)),
neighbors_translation, edges_weights))
kg_imagenet.add_weighted_edges_from(weight_edges)
# TODO: add the weight from the attributes to the pre graph and not replace them
# (minor problem because it is sparse graph)
largest_cc = max(nx.connected_components(kg_imagenet), key=len)
kg_imagenet = kg_imagenet.subgraph(largest_cc).copy()
return kg_imagenet
def awa2_knowledge_graph(self):
kg_imagenet = self.imagenet_knowledge_graph()
awa2_split = json.load(open('materials/awa2-split.json', 'r'))
train_wnids = awa2_split['train']
test_wnids = awa2_split['test']
relevant_nodes = list(chain(train_wnids, test_wnids))
kg_awa2 = kg_imagenet.subgraph(relevant_nodes)
return kg_awa2
def create_labels_graph(self, dict_class_nodes_translation):
labels_graph = nx.Graph()
edges = np.array([(key, dict_class_nodes_translation[self.dict_idx_image_class[key]])
for key in list(self.dict_idx_image_class.keys())]).astype(str)
labels_graph.add_edges_from(edges)
return labels_graph
def weighted_graph(self, images_gnx, knowledge_graph, labels_graph, weights_dict):
weighted_graph = nx.Graph()
classes_nodes = knowledge_graph.nodes
images_nodes = images_gnx.nodes
labels_edges = labels_graph.edges
images_edges = images_gnx.edges
classes_edges = knowledge_graph.edges
weighted_graph.add_nodes_from(images_nodes, key='movies')
weighted_graph.add_nodes_from(classes_nodes, key='classes')
# weighted_graph.add_edges_from(images_edges, key='images_edges')
# weighted_graph.add_edges_from(classes_edges, key='classes_edges')
# weighted_graph.add_edges_from(labels_edges, key='labels_edges')
for edge in images_edges:
dict_weight = images_gnx.get_edge_data(edge[0], edge[1])
weight = dict_weight.get('weight')
if weight is not None:
weighted_graph.add_edge(edge[0], edge[1], weight=weight, key='images_edges')
classes_weight = weights_dict['classes_edges']
labels_weight = weights_dict['labels_edges']
for edge in classes_edges:
weighted_graph.add_edge(edge[0], edge[1], weight=classes_weight, key='images_edges')
for edge in labels_edges:
weighted_graph.add_edge(edge[0], edge[1], weight=labels_weight, key='labels_edges')
images_nodes =
|
np.array(images_nodes)
|
numpy.array
|
import copy
import numpy as np
from openmdao.api import Group, ExplicitComponent
from scipy.interpolate import PchipInterpolator
from wisdem.rotorse.precomp import PreComp, Profile, CompositeSection, Orthotropic2DMaterial
from wisdem.commonse.utilities import rotate, arc_length
from wisdem.rotorse.rail_transport import RailTransport
class RunPreComp(ExplicitComponent):
# Openmdao component to run precomp and generate the elastic properties of a wind turbine blade
def initialize(self):
self.options.declare("modeling_options")
self.options.declare("opt_options")
def setup(self):
rotorse_options = self.options["modeling_options"]["WISDEM"]["RotorSE"]
self.n_span = n_span = rotorse_options["n_span"]
self.n_webs = n_webs = rotorse_options["n_webs"]
self.n_layers = n_layers = rotorse_options["n_layers"]
self.n_xy = n_xy = rotorse_options["n_xy"] # Number of coordinate points to describe the airfoil geometry
mat_init_options = self.options["modeling_options"]["materials"]
self.n_mat = n_mat = mat_init_options["n_mat"]
self.verbosity = self.options["modeling_options"]["General"]["verbosity"]
self.te_ss_var = rotorse_options["te_ss"]
self.te_ps_var = rotorse_options["te_ps"]
self.spar_cap_ss_var = rotorse_options["spar_cap_ss"]
self.spar_cap_ps_var = rotorse_options["spar_cap_ps"]
# Outer geometry
self.add_input(
"r",
val=np.zeros(n_span),
units="m",
desc="radial locations where blade is defined (should be increasing and not go all the way to hub or tip)",
)
self.add_input(
"theta",
val=np.zeros(n_span),
units="deg",
desc="Twist angle at each section (positive decreases angle of attack)",
)
self.add_input("chord", val=np.zeros(n_span), units="m", desc="chord length at each section")
self.add_input(
"pitch_axis",
val=np.zeros(n_span),
desc="1D array of the chordwise position of the pitch axis (0-LE, 1-TE), defined along blade span.",
)
self.add_input("precurve", val=np.zeros(n_span), units="m", desc="precurve at each section")
self.add_input("presweep", val=np.zeros(n_span), units="m", desc="presweep at each section")
self.add_input(
"coord_xy_interp",
val=np.zeros((n_span, n_xy, 2)),
desc="3D array of the non-dimensional x and y airfoil coordinates of the airfoils interpolated along span for n_span stations.",
)
# Rotor configuration
self.add_input(
"uptilt", val=0.0, units="deg", desc="Nacelle uptilt angle. A standard machine has positive values."
)
self.add_discrete_input("n_blades", val=3, desc="Number of blades of the rotor.")
# Inner structure
self.add_input(
"web_start_nd",
val=np.zeros((n_webs, n_span)),
desc="2D array of the non-dimensional start point defined along the outer profile of a web. The TE suction side is 0, the TE pressure side is 1. The first dimension represents each web, the second dimension represents each entry along blade span.",
)
self.add_input(
"web_end_nd",
val=np.zeros((n_webs, n_span)),
desc="2D array of the non-dimensional end point defined along the outer profile of a web. The TE suction side is 0, the TE pressure side is 1. The first dimension represents each web, the second dimension represents each entry along blade span.",
)
self.add_input(
"layer_web",
val=np.zeros(n_layers),
desc="1D array of the web id the layer is associated to. If the layer is on the outer profile, this entry can simply stay equal to 0.",
)
self.add_discrete_input(
"definition_layer",
val=np.zeros(n_layers),
desc="1D array of flags identifying how layers are specified in the yaml. 1) all around (skin, paint, ) 2) offset+rotation twist+width (spar caps) 3) offset+user defined rotation+width 4) midpoint TE+width (TE reinf) 5) midpoint LE+width (LE reinf) 6) layer position fixed to other layer (core fillers) 7) start and width 8) end and width 9) start and end nd 10) web layer",
)
self.add_input(
"layer_thickness",
val=np.zeros((n_layers, n_span)),
units="m",
desc="2D array of the thickness of the layers of the blade structure. The first dimension represents each layer, the second dimension represents each entry along blade span.",
)
self.add_input(
"layer_start_nd",
val=np.zeros((n_layers, n_span)),
desc="2D array of the non-dimensional start point defined along the outer profile of a layer. The TE suction side is 0, the TE pressure side is 1. The first dimension represents each layer, the second dimension represents each entry along blade span.",
)
self.add_input(
"layer_end_nd",
val=np.zeros((n_layers, n_span)),
desc="2D array of the non-dimensional end point defined along the outer profile of a layer. The TE suction side is 0, the TE pressure side is 1. The first dimension represents each layer, the second dimension represents each entry along blade span.",
)
self.add_input(
"fiber_orientation",
val=np.zeros((n_layers, n_span)),
units="deg",
desc="2D array of the orientation of the layers of the blade structure. The first dimension represents each layer, the second dimension represents each entry along blade span.",
)
# Materials
self.add_discrete_input("mat_name", val=n_mat * [""], desc="1D array of names of materials.")
self.add_discrete_input(
"orth",
val=np.zeros(n_mat),
desc="1D array of flags to set whether a material is isotropic (0) or orthtropic (1). Each entry represents a material.",
)
self.add_input(
"E",
val=np.zeros([n_mat, 3]),
units="Pa",
desc="2D array of the Youngs moduli of the materials. Each row represents a material, the three columns represent E11, E22 and E33.",
)
self.add_input(
"G",
val=np.zeros([n_mat, 3]),
units="Pa",
desc="2D array of the shear moduli of the materials. Each row represents a material, the three columns represent G12, G13 and G23.",
)
self.add_input(
"nu",
val=np.zeros([n_mat, 3]),
desc="2D array of the Poisson ratio of the materials. Each row represents a material, the three columns represent nu12, nu13 and nu23.",
)
self.add_input(
"rho",
val=np.zeros(n_mat),
units="kg/m**3",
desc="1D array of the density of the materials. For composites, this is the density of the laminate.",
)
self.add_input(
"joint_position",
val=0.0,
desc="Spanwise position of the segmentation joint.",
)
self.add_input("joint_mass", val=0.0, desc="Mass of the joint.")
# Outputs - Distributed beam properties
self.add_output("z", val=np.zeros(n_span), units="m", desc="locations of properties along beam")
self.add_output("A", val=np.zeros(n_span), units="m**2", desc="cross sectional area")
self.add_output("EA", val=np.zeros(n_span), units="N", desc="axial stiffness")
self.add_output(
"EIxx",
val=np.zeros(n_span),
units="N*m**2",
desc="edgewise stiffness (bending about :ref:`x-direction of airfoil aligned coordinate system <blade_airfoil_coord>`)",
)
self.add_output(
"EIyy",
val=np.zeros(n_span),
units="N*m**2",
desc="flapwise stiffness (bending about y-direction of airfoil aligned coordinate system)",
)
self.add_output("EIxy", val=np.zeros(n_span), units="N*m**2", desc="coupled flap-edge stiffness")
self.add_output(
"GJ",
val=np.zeros(n_span),
units="N*m**2",
desc="torsional stiffness (about axial z-direction of airfoil aligned coordinate system)",
)
self.add_output("rhoA", val=np.zeros(n_span), units="kg/m", desc="mass per unit length")
self.add_output("rhoJ", val=np.zeros(n_span), units="kg*m", desc="polar mass moment of inertia per unit length")
self.add_output(
"Tw_iner",
val=np.zeros(n_span),
units="m",
desc="Orientation of the section principal inertia axes with respect the blade reference plane",
)
self.add_output(
"x_ec",
val=np.zeros(n_span),
units="m",
desc="x-distance to elastic center from point about which above structural properties are computed (airfoil aligned coordinate system)",
)
self.add_output(
"y_ec",
val=np.zeros(n_span),
units="m",
desc="y-distance to elastic center from point about which above structural properties are computed",
)
self.add_output(
"x_tc",
val=np.zeros(n_span),
units="m",
desc="X-coordinate of the tension-center offset with respect to the XR-YR axes",
)
self.add_output(
"y_tc",
val=np.zeros(n_span),
units="m",
desc="Chordwise offset of the section tension-center with respect to the XR-YR axes",
)
self.add_output(
"x_sc",
val=np.zeros(n_span),
units="m",
desc="X-coordinate of the shear-center offset with respect to the XR-YR axes",
)
self.add_output(
"y_sc",
val=np.zeros(n_span),
units="m",
desc="Chordwise offset of the section shear-center with respect to the reference frame, XR-YR",
)
self.add_output(
"x_cg",
val=np.zeros(n_span),
units="m",
desc="X-coordinate of the center-of-mass offset with respect to the XR-YR axes",
)
self.add_output(
"y_cg",
val=np.zeros(n_span),
units="m",
desc="Chordwise offset of the section center of mass with respect to the XR-YR axes",
)
self.add_output(
"flap_iner",
val=np.zeros(n_span),
units="kg/m",
desc="Section flap inertia about the Y_G axis per unit length.",
)
self.add_output(
"edge_iner",
val=np.zeros(n_span),
units="kg/m",
desc="Section lag inertia about the X_G axis per unit length",
)
# self.add_output('eps_crit_spar', val=np.zeros(n_span), desc='critical strain in spar from panel buckling calculation')
# self.add_output('eps_crit_te', val=np.zeros(n_span), desc='critical strain in trailing-edge panels from panel buckling calculation')
self.add_output(
"xu_spar",
val=np.zeros(n_span),
desc="x-position of midpoint of spar cap on upper surface for strain calculation",
)
self.add_output(
"xl_spar",
val=np.zeros(n_span),
desc="x-position of midpoint of spar cap on lower surface for strain calculation",
)
self.add_output(
"yu_spar",
val=np.zeros(n_span),
desc="y-position of midpoint of spar cap on upper surface for strain calculation",
)
self.add_output(
"yl_spar",
val=np.zeros(n_span),
desc="y-position of midpoint of spar cap on lower surface for strain calculation",
)
self.add_output(
"xu_te",
val=np.zeros(n_span),
desc="x-position of midpoint of trailing-edge panel on upper surface for strain calculation",
)
self.add_output(
"xl_te",
val=np.zeros(n_span),
desc="x-position of midpoint of trailing-edge panel on lower surface for strain calculation",
)
self.add_output(
"yu_te",
val=np.zeros(n_span),
desc="y-position of midpoint of trailing-edge panel on upper surface for strain calculation",
)
self.add_output(
"yl_te",
val=np.zeros(n_span),
desc="y-position of midpoint of trailing-edge panel on lower surface for strain calculation",
)
# Outputs - Overall beam properties
self.add_output("blade_mass", val=0.0, units="kg", desc="mass of one blade")
self.add_output(
"blade_moment_of_inertia", val=0.0, units="kg*m**2", desc="mass moment of inertia of blade about hub"
)
self.add_output("mass_all_blades", val=0.0, units="kg", desc="mass of all blades")
self.add_output(
"I_all_blades",
shape=6,
units="kg*m**2",
desc="mass moments of inertia of all blades in hub c.s. order:Ixx, Iyy, Izz, Ixy, Ixz, Iyz",
)
self.add_output(
"sc_ss_mats",
val=np.zeros((n_span, n_mat)),
desc="spar cap, suction side, boolean of materials in each composite layer spanwise, passed as floats for differentiablity, used for Fatigue Analysis",
)
self.add_output(
"sc_ps_mats",
val=np.zeros((n_span, n_mat)),
desc="spar cap, pressure side, boolean of materials in each composite layer spanwise, passed as floats for differentiablity, used for Fatigue Analysis",
)
self.add_output(
"te_ss_mats",
val=np.zeros((n_span, n_mat)),
desc="trailing edge reinforcement, suction side, boolean of materials in each composite layer spanwise, passed as floats for differentiablity, used for Fatigue Analysis",
)
self.add_output(
"te_ps_mats",
val=np.zeros((n_span, n_mat)),
desc="trailing edge reinforcement, pressure side, boolean of materials in each composite layer spanwise, passed as floats for differentiablity, used for Fatigue Analysis",
)
def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
##############################
def region_stacking(
i,
idx,
start_nd_arc,
end_nd_arc,
layer_name,
layer_thickness,
fiber_orientation,
layer_mat,
material_dict,
materials,
region_loc,
):
# Recieve start and end of composite sections chordwise, find which composites layers are in each
# chordwise regions, generate the precomp composite class instance
# error handling to makes sure there were no numeric errors causing values very close too, but not exactly, 0 or 1
start_nd_arc = [
0.0 if start_nd_arci != 0.0 and np.isclose(start_nd_arci, 0.0) else start_nd_arci
for start_nd_arci in start_nd_arc
]
end_nd_arc = [
0.0 if end_nd_arci != 0.0 and np.isclose(end_nd_arci, 0.0) else end_nd_arci
for end_nd_arci in end_nd_arc
]
start_nd_arc = [
1.0 if start_nd_arci != 1.0 and np.isclose(start_nd_arci, 1.0) else start_nd_arci
for start_nd_arci in start_nd_arc
]
end_nd_arc = [
1.0 if end_nd_arci != 1.0 and np.isclose(end_nd_arci, 1.0) else end_nd_arci
for end_nd_arci in end_nd_arc
]
# region end points
dp = sorted(list(set(start_nd_arc + end_nd_arc)))
# initialize
n_plies = []
thk = []
theta = []
mat_idx = []
# loop through division points, find what layers make up the stack between those bounds
for i_reg, (dp0, dp1) in enumerate(zip(dp[0:-1], dp[1:])):
n_pliesi = []
thki = []
thetai = []
mati = []
for i_sec, start_nd_arci, end_nd_arci in zip(idx, start_nd_arc, end_nd_arc):
name = layer_name[i_sec]
if start_nd_arci <= dp0 and end_nd_arci >= dp1:
if name in region_loc.keys():
if region_loc[name][i] == None:
region_loc[name][i] = [i_reg]
else:
region_loc[name][i].append(i_reg)
n_pliesi.append(1.0)
thki.append(layer_thickness[i_sec])
if fiber_orientation[i_sec] == None:
thetai.append(0.0)
else:
thetai.append(fiber_orientation[i_sec])
mati.append(material_dict[layer_mat[i_sec]])
n_plies.append(np.array(n_pliesi))
thk.append(np.array(thki))
theta.append(np.array(thetai))
mat_idx.append(np.array(mati))
# print('----------------------')
# print('dp', dp)
# print('n_plies', n_plies)
# print('thk', thk)
# print('theta', theta)
# print('mat_idx', mat_idx)
# print('materials', materials)
sec = CompositeSection(dp, n_plies, thk, theta, mat_idx, materials)
return sec, region_loc
##############################
def web_stacking(
i,
web_idx,
web_start_nd_arc,
web_end_nd_arc,
layer_thickness,
fiber_orientation,
layer_mat,
material_dict,
materials,
flatback,
upperCSi,
):
dp = []
n_plies = []
thk = []
theta = []
mat_idx = []
if len(web_idx) > 0:
dp = np.mean((np.abs(web_start_nd_arc), np.abs(web_start_nd_arc)), axis=0).tolist()
dp_all = [
[-1.0 * start_nd_arci, -1.0 * end_nd_arci]
for start_nd_arci, end_nd_arci in zip(web_start_nd_arc, web_end_nd_arc)
]
web_dp, web_ids = np.unique(dp_all, axis=0, return_inverse=True)
for webi in np.unique(web_ids):
# store variable values (thickness, orientation, material) for layers that make up each web, based on the mapping array web_ids
n_pliesi = [1.0 for i_reg, web_idi in zip(web_idx, web_ids) if web_idi == webi]
thki = [layer_thickness[i_reg] for i_reg, web_idi in zip(web_idx, web_ids) if web_idi == webi]
thetai = [fiber_orientation[i_reg] for i_reg, web_idi in zip(web_idx, web_ids) if web_idi == webi]
thetai = [0.0 if theta_ij == None else theta_ij for theta_ij in thetai]
mati = [
material_dict[layer_mat[i_reg]] for i_reg, web_idi in zip(web_idx, web_ids) if web_idi == webi
]
n_plies.append(np.array(n_pliesi))
thk.append(
|
np.array(thki)
|
numpy.array
|
import os
import json
CONFIG_LOCATION = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir, "data", "path_config.json"))
with open(CONFIG_LOCATION) as _json_file:
CONFIG = json.load(_json_file)
DATA_DIR = CONFIG["main_data_dir"]
if not os.path.exists(DATA_DIR):
PROJECT_ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
DATA_DIR = os.path.join(PROJECT_ROOT_PATH, "data")
os.environ["S2AND_CACHE"] = os.path.join(DATA_DIR, ".feature_cache")
os.environ["OMP_NUM_THREADS"] = "8"
import copy
import argparse
import logging
import pickle
from typing import Dict, Any, Optional, List
from collections import defaultdict
from tqdm import tqdm
import numpy as np
import pandas as pd
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.cluster import DBSCAN
from sklearn.linear_model import BayesianRidge, LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
from sklearn.impute import IterativeImputer
from sklearn.pipeline import make_pipeline
from s2and.data import ANDData
from s2and.featurizer import featurize, FeaturizationInfo
from s2and.model import PairwiseModeler, Clusterer, FastCluster
from s2and.eval import pairwise_eval, cluster_eval, facet_eval
from s2and.consts import FEATURIZER_VERSION, DEFAULT_CHUNK_SIZE, NAME_COUNTS_PATH
from s2and.file_cache import cached_path
from s2and.plotting_utils import plot_facets
from hyperopt import hp
logger = logging.getLogger("s2and")
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
PAIRWISE_ONLY_DATASETS = {"medline"}
BLOCK_TYPE = "s2"
N_VAL_TEST_SIZE = 10000
N_ITER = 25
PREPROCESS = True
def transfer_helper(
source_dataset,
target_dataset,
experiment_name,
random_seed,
featurizer_info,
nameless_featurizer_info,
use_s2_clusters=False,
skip_shap=False,
):
source_name = source_dataset["name"]
target_name = target_dataset["name"]
if use_s2_clusters:
pairwise_metrics = {
"AUROC": None,
"Average Precision": None,
"F1": None,
"Precision": None,
"Recall": None,
}
else:
pairwise_metrics = pairwise_eval(
target_dataset["X_test"],
target_dataset["y_test"],
source_dataset["pairwise_modeler"],
os.path.join(DATA_DIR, "experiments", experiment_name, f"seed_{random_seed}", "figs"),
f"{source_name}_to_{target_name}",
featurizer_info.get_feature_names(),
nameless_classifier=source_dataset["nameless_pairwise_modeler"],
nameless_X=target_dataset["nameless_X_test"],
nameless_feature_names=nameless_featurizer_info.get_feature_names(),
skip_shap=skip_shap,
)
if target_name not in PAIRWISE_ONLY_DATASETS and source_name not in PAIRWISE_ONLY_DATASETS:
cluster_metrics, b3_metrics_per_signature = cluster_eval(
target_dataset["anddata"],
source_dataset["clusterer"],
split="test",
use_s2_clusters=use_s2_clusters,
)
else:
cluster_metrics = {
"B3 (P, R, F1)": (None, None, None),
"Cluster (P, R F1)": (None, None, None),
"Cluster Macro (P, R, F1)": (None, None, None),
"Pred bigger ratio (mean, count)": (None, None),
"True bigger ratio (mean, count)": (None, None),
}
b3_metrics_per_signature = None
if not use_s2_clusters:
metrics = {"pairwise": pairwise_metrics, "cluster": cluster_metrics}
logger.info(f"{source_name}_to_{target_name}: {metrics}")
with open(
os.path.join(
DATA_DIR,
"experiments",
experiment_name,
f"seed_{random_seed}",
"metrics",
f"{source_name}_to_{target_name}.json",
),
"w",
) as _json_file:
json.dump(metrics, _json_file, indent=4)
return pairwise_metrics, cluster_metrics, b3_metrics_per_signature
def summary_features_analysis(
union_firstname_f1,
union_affiliation_f1,
union_email_f1,
union_abstract_f1,
union_venue_f1,
union_references_f1,
union_coauthors_f1,
union_s2_firstname_f1,
union_s2_affiliation_f1,
union_s2_email_f1,
union_s2_abstract_f1,
union_s2_venue_f1,
union_s2_references_f1,
union_s2_coauthors_f1,
):
"""
Aggregates differences in performance for s2and and s2,
across different feature availability indicators.
"""
feature_summary = []
for s2and_feature_facet, s2_feature_facet in zip(
[
union_firstname_f1,
union_affiliation_f1,
union_email_f1,
union_abstract_f1,
union_venue_f1,
union_references_f1,
union_coauthors_f1,
],
[
union_s2_firstname_f1,
union_s2_affiliation_f1,
union_s2_email_f1,
union_s2_abstract_f1,
union_s2_venue_f1,
union_s2_references_f1,
union_s2_coauthors_f1,
],
):
s2and_pres_avg = sum(s2and_feature_facet[1]) / len(s2and_feature_facet[1])
s2and_abs_avg = sum(s2and_feature_facet[0]) / len(s2and_feature_facet[0])
s2_pres_avg = sum(s2_feature_facet[1]) / len(s2_feature_facet[1])
s2_abs_avg = sum(s2_feature_facet[0]) / len(s2_feature_facet[0])
feature_summary.append(
[
s2and_pres_avg,
s2and_abs_avg,
s2_pres_avg,
s2_abs_avg,
]
)
s2and_feature_facet_scores = {
"first_name_diff": np.round(feature_summary[0][0], 3) - np.round(feature_summary[0][1], 3),
"affilition_diff": np.round(feature_summary[1][0], 3) -
|
np.round(feature_summary[1][1], 3)
|
numpy.round
|
import ctaplot.ana.ana as ana
import numpy as np
np.random.seed(42)
def test_logspace_decades_nbin():
ca = ana.logspace_decades_nbin(0.1, 10, n=9)
assert len(ca) == 19
assert ca[0] == 0.1
assert ca[-1] == 10
def test_class_cta_requirement():
for site in ['north', 'south']:
ctaq = ana.cta_requirement(site)
ctaq.get_effective_area()
ctaq.get_angular_resolution()
ctaq.get_energy_resolution()
ctaq.get_sensitivity()
def test_class_cta_performance():
for site in ['north', 'south']:
ctaq = ana.cta_performance(site)
ctaq.get_effective_area()
ctaq.get_angular_resolution()
ctaq.get_energy_resolution()
ctaq.get_sensitivity()
def test_impact_resolution_per_energy():
true_x = np.random.rand(100) * 1000
true_y = np.random.rand(100) * 1000
reco_x = true_x + 1
reco_y = true_y + 1
energy = np.logspace(-2, 2, 100)
E, R = ana.impact_resolution_per_energy(reco_x, reco_y, true_x, true_y, energy)
assert (np.isclose(R, np.sqrt(2))).all()
def test_resolution():
x = np.linspace(0, 10, 100)
assert (ana.resolution(x, x) == np.zeros(3)).all()
# For a normal distribution, the resolution at `percentile=68.27` is equal to 1 sigma
loc = np.random.rand() * 100
scale = np.random.rand() * 10
size = 1000000
y_true = loc * np.ones(size)
y_reco = np.random.normal(loc=loc, scale=scale, size=size)
relative_scaling_method = 's1'
res = ana.resolution(y_true, y_reco, relative_scaling_method=relative_scaling_method)
assert np.isclose(res[0],
scale / ana.relative_scaling(y_true, y_reco, relative_scaling_method).mean(),
rtol=1e-1)
# Test bias
bias = np.random.rand() * 100
y_reco_bias = np.random.normal(loc=loc + bias, scale=scale, size=size)
assert np.isclose(ana.resolution(y_true, y_reco_bias,
bias_correction=True,
relative_scaling_method=relative_scaling_method)[0],
scale / ana.relative_scaling(y_true, y_reco, relative_scaling_method).mean(),
rtol=1e-1)
assert np.isclose(ana.resolution(y_true, y_reco)[0],
ana.resolution(y_true, y_reco, bias_correction=True)[0],
rtol=1e-1,
)
# Test relative scaling
for relative_scaling_method in ['s0', 's1', 's2', 's3', 's4']:
assert np.isclose(ana.resolution(y_true, y_reco_bias,
bias_correction=True,
relative_scaling_method=relative_scaling_method)[0],
scale / ana.relative_scaling(y_true, y_reco, relative_scaling_method).mean(),
rtol=1e-1)
def test_resolution_per_bin():
# For a normal distribution, the resolution at `percentile=68.27` is equal to 1 sigma
size = 1000000
loc = np.random.rand() * 100
scale = np.random.rand() * 10
x = np.linspace(0, 10, size)
y_true = loc * np.ones(size)
y_reco = np.random.normal(loc=loc, scale=scale, size=size)
for scaling in ['s0', 's1', 's2', 's3', 's4']:
bins, res = ana.resolution_per_bin(x, y_true, y_reco, bins=6, relative_scaling_method=scaling)
np.testing.assert_allclose(res[:, 0], scale / ana.relative_scaling(y_true, y_reco, scaling).mean(), rtol=1e-1)
bias = 50
y_reco = np.random.normal(loc=loc + bias, scale=scale, size=size)
bins, res = ana.resolution_per_bin(x, y_true, y_reco, bias_correction=True)
np.testing.assert_allclose(res[:, 0], scale / ana.relative_scaling(y_true, y_reco).mean(), rtol=1e-1)
def test_resolution_per_bin_empty():
'''
testing for empty bins
'''
# For a normal distribution, the resolution at `percentile=68.27` is equal to 1 sigma
size = 1000000
loc = np.random.rand() * 100
scale = np.random.rand() * 10
x = np.linspace(0, 10, size)
bins = np.array([1, 2, 3, 5, 11, 15])
y_true = loc * np.ones(size)
y_reco = np.random.normal(loc=loc, scale=scale, size=size)
for scaling in ['s0', 's1', 's2', 's3', 's4']:
bins, res = ana.resolution_per_bin(x, y_true, y_reco,
bins=bins,
relative_scaling_method=scaling,
bias_correction=True)
v = scale / ana.relative_scaling(y_true, y_reco, scaling).mean()
expected_res = np.array([v, v, v, v, 0])
np.testing.assert_allclose(res[:, 0], expected_res, rtol=1e-1)
def test_resolution_per_energy():
x = np.random.normal(size=100000, scale=1, loc=10)
y = 10 * np.ones(x.shape[0])
E = 10 ** (-3 + 6 * np.random.rand(x.shape[0]))
e_bin, res_e = ana.resolution_per_energy(y, x, E)
assert np.isclose(res_e, 1. / ana.relative_scaling(y, x).mean(), rtol=1e-1).all()
def test_power_law_integrated_distribution():
from ctaplot.ana.ana import power_law_integrated_distribution
emin = 50. # u.GeV
emax = 500.e3 # u.GeV
Nevents = 1e6
spectral_index = -2.1
bins = np.logspace(np.log10(emin),
np.log10(emax),
40)
y = power_law_integrated_distribution(emin, emax, Nevents, spectral_index, bins)
np.testing.assert_allclose(Nevents,
|
np.sum(y)
|
numpy.sum
|
import numpy as np
from sklearn import preprocessing, neighbors, model_selection, svm
import pandas as pd
import pickle
#import serial
import re
import random
from sklearn.metrics import confusion_matrix, plot_confusion_matrix, plot_precision_recall_curve
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
def load_data():
df_B = pd.read_table('sign2/b.txt', header=None, sep=',')#
B = np.array(df_B)
df_C = pd.read_table('sign2/c.txt', header=None, sep=',')#
C = np.array(df_C)
df_D = pd.read_table('sign2/d.txt', header=None, sep=',')#
D = np.array(df_D)
df_F = pd.read_table('sign2/f.txt', header=None, sep=',')#
F = np.array(df_F)
df_H = pd.read_table('sign2/h.txt', header=None, sep=',')#
df_G = pd.read_table('sign2/g.txt', header=None, sep=',')#
G = np.array(df_G)
H = np.array(df_H)
df_I = pd.read_table('sign2/i.txt', header=None, sep=',')#
I = np.array(df_I)
df_K = pd.read_table('sign2/k.txt', header=None, sep=',')#
K = np.array(df_K)
df_L = pd.read_table('sign2/l.txt', header=None, sep=',')#
L = np.array(df_L)
df_P = pd.read_table('sign2/p.txt', header=None, sep=',')#
P = np.array(df_P)
df_V = pd.read_table('sign2/v.txt', header=None, sep=',')#
V = np.array(df_V)
df_O = pd.read_table('sign2/o.txt', header=None, sep=',')#
O = np.array(df_O)
df_Q = pd.read_table('sign2/q.txt', header=None, sep=',')#
Q = np.array(df_Q)
df_R = pd.read_table('sign2/r.txt', header=None, sep=',')#
R = np.array(df_R)
df_W = pd.read_table('sign2/w.txt', header=None, sep=',')#
W = np.array(df_W)
df_A = pd.read_table('sign2/a.txt', header=None, sep=',')
A = np.array(df_A)
df_E = pd.read_table('sign2/e.txt', header=None, sep=',')
E = np.array(df_E)
df_J = pd.read_table('sign2/j.txt', header=None, sep=',')
J = np.array(df_J)
df_M = pd.read_table('sign2/m.txt', header=None, sep=',')
M = np.array(df_M)
df_N = pd.read_table('sign2/n.txt', header=None, sep=',')
N = np.array(df_N)
df_S = pd.read_table('sign2/s.txt', header=None, sep=',')
S = np.array(df_S)
df_T = pd.read_table('sign2/t.txt', header=None, sep=',')
T = np.array(df_T)
df_U = pd.read_table('sign2/u.txt', header=None, sep=',')
U = np.array(df_U)
df_X = pd.read_table('sign2/x.txt', header=None, sep=',')
X = np.array(df_X)
df_Y = pd.read_table('sign2/y.txt', header=None, sep=',')
Y = np.array(df_Y)
df_Z = pd.read_table('sign2/z.txt', header=None, sep=',')
Z = np.array(df_Z)
df = df_A.append(df_B) #
df = df.append(df_C)
df = df.append(df_D)#
df = df.append(df_E)
df = df.append(df_F)#
df = df.append(df_G)#
df = df.append(df_H)#
df = df.append(df_I)#
df = df.append(df_J)
df = df.append(df_K)#
df = df.append(df_L)#
df = df.append(df_M)
df = df.append(df_N)
df = df.append(df_O)#
df = df.append(df_P)#
df = df.append(df_Q)#
df = df.append(df_R)#
df = df.append(df_S)
df = df.append(df_T)
df = df.append(df_U)
df = df.append(df_V)#
df = df.append(df_W)#
df = df.append(df_X)
df = df.append(df_Y)
df = df.append(df_Z)
df = df.drop(df.columns[-1], axis=1)
data = pd.DataFrame(df).to_numpy()
print(type(data))
print(data.shape)
class_a = [0 for i in range(len(A))]
class_b = [1 for i in range(len(B))]#
class_c = [2 for i in range(len(C))]#
class_d = [3 for i in range(len(D))]#
class_e = [4 for i in range(len(E))]
class_f = [5 for i in range(len(F))]#
class_g = [6 for i in range(len(G))]#
class_h = [7 for i in range(len(H))]#
class_i = [8 for i in range(len(I))]#
class_j = [9 for i in range(len(J))]
class_k = [10 for i in range(len(K))]#
class_l = [11 for i in range(len(L))]#
class_m = [12 for i in range(len(M))]
class_n = [13 for i in range(len(N))]
class_o = [14 for i in range(len(O))]#
class_p = [15 for i in range(len(P))]#
class_q = [16 for i in range(len(Q))]#
class_r = [17 for i in range(len(R))]#
class_s = [18 for i in range(len(S))]
class_t = [19 for i in range(len(T))]
class_u = [20 for i in range(len(U))]
class_v = [21 for i in range(len(V))]#
class_w = [22 for i in range(len(W))]#
class_x = [23 for i in range(len(X))]
class_y = [24 for i in range(len(Y))]
class_z = [25 for i in range(len(Z))]
y_label = np.append(class_a, class_b)#
y_label = np.append(y_label, class_c)
y_label =
|
np.append(y_label, class_d)
|
numpy.append
|
from typing import Tuple, Any
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from . import cpu_color, mem_color, \
cpu_delta_color, mem_delta_color,\
cpu_color_rgb, mem_color_rgb, \
heatmap_scale
from ..config import cpu_max, mem_max, y_axis_max
from ..data import get_server_num
from ..utils import rgba
cpu_hover = 'Server %{x}<br>' \
f'Total CPU: {cpu_max} Core<br>' \
'Used: %{customdata[0]} Core<br>' \
'Occupancy: %{customdata[1]:.2f}%' \
'<extra></extra>'
mem_hover = 'Server %{x}<br>' \
f'Total MEM: {mem_max} GB<br>' \
'Used: %{customdata[0]} GB<br>' \
'Occupancy: %{customdata[1]:.2f}%' \
'<extra></extra>'
def __delta_color_marker_helper(delta: Tuple[Any]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
# insert -> True
# delete -> False
return (
np.array(list(cpu_delta_color[x] for x in delta[0] > 0)),
np.array(list(mem_delta_color[x] for x in delta[1] > 0)),
np.array(list(cpu_delta_color[x] for x in delta[2] < 0)),
np.array(list(mem_delta_color[x] for x in delta[3] < 0)),
)
def _get_figure0_small(server_num, n_intervals, df, show_delta):
if n_intervals - show_delta < 0:
trace_data = (np.zeros(server_num),) * 4
else:
trace_data = (
cpu_max - df['server'][n_intervals - show_delta][..., 0, 0],
mem_max - df['server'][n_intervals - show_delta][..., 0, 1],
df['server'][n_intervals - show_delta][..., 1, 0] - cpu_max,
df['server'][n_intervals - show_delta][..., 1, 1] - mem_max
)
rate = (
trace_data[0] / cpu_max * 100,
trace_data[1] / mem_max * 100,
trace_data[2] / cpu_max * 100,
trace_data[3] / mem_max * 100,
)
server_list = list(range(server_num))
fig = go.Figure(layout=dict(yaxis=dict(
range=[-y_axis_max, y_axis_max], autorange=False,
tickmode='array',
tickvals=list(range(-200, 200, 50)),
ticktext=list(map(abs, range(-200, 200, 50))),
zeroline=True, zerolinecolor='gray'
)))
fig.add_traces([
go.Bar(
x=np.append(server_list, server_list),
y=np.append(trace_data[0], trace_data[2]),
offsetgroup='C',
customdata=np.array([np.append(trace_data[0], -trace_data[2]), np.append(rate[0], -rate[2])]).T,
hovertemplate=cpu_hover,
marker_color=cpu_color, # opacity=0.8,
name='CPU'
),
go.Bar(
x=np.append(server_list, server_list),
y=np.append(trace_data[1], trace_data[3]),
offsetgroup='M',
customdata=np.array([np.append(trace_data[1], -trace_data[3]), np.append(rate[1], -rate[3])]).T,
hovertemplate=mem_hover,
marker_color=mem_color, # opacity=0.8,
name='MEM'
),
])
if not show_delta:
return fig
next_trace_data = (
cpu_max - df['server'][n_intervals][..., 0, 0],
mem_max - df['server'][n_intervals][..., 0, 1],
df['server'][n_intervals][..., 1, 0] - cpu_max,
df['server'][n_intervals][..., 1, 1] - mem_max
)
delta_data = tuple(i - j for i, j in zip(next_trace_data, trace_data))
# Delta
delta_color = __delta_color_marker_helper(delta_data)
fig.add_traces([
go.Bar(
x=np.append(server_list, server_list),
y=
|
np.append(delta_data[0], delta_data[2])
|
numpy.append
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.