prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import numpy as np from cohere.src_py.beamlines.viz import CXDViz import math as m import xrayutilities.experiment as xuexp from xrayutilities.io import spec as spec def parse_spec(specfile, scan): """ Reads parameters necessary to run visualization from spec file for given scan. Parameters ---------- specfile : str spec file name scan : int scan number to use to recover the saved measurements Returns ------- delta, gamma, theta, phi, chi, scanmot, scanmot_del, detdist, detector_name, energy """ # Scan numbers start at one but the list is 0 indexed try: ss = spec.SPECFile(specfile)[scan - 1] except Exception as ex: print(str(ex)) print ('Could not parse ' + specfile ) return None,None,None,None,None,None,None,None,None,None # Stuff from the header try: detector_name = str(ss.getheader_element('UIMDET')) except: detector_name = None try: command = ss.command.split() scanmot = command[1] scanmot_del = (float(command[3]) - float(command[2])) / int(command[4]) except: scanmot = None scanmot_del = None # Motor stuff from the header try: delta = ss.init_motor_pos['INIT_MOPO_Delta'] except: delta = None try: gamma = ss.init_motor_pos['INIT_MOPO_Gamma'] except: gamma = None try: theta = ss.init_motor_pos['INIT_MOPO_Theta'] except: theta = None try: phi = ss.init_motor_pos['INIT_MOPO_Phi'] except: phi = None try: chi = ss.init_motor_pos['INIT_MOPO_Chi'] except: chi = None try: detdist = ss.init_motor_pos['INIT_MOPO_camdist'] except: detdist = None try: energy = ss.init_motor_pos['INIT_MOPO_Energy'] except: energy = None # returning the scan motor name as well. Sometimes we scan things # other than theta. So we need to expand the capability of the display # code. return delta, gamma, theta, phi, chi, scanmot, scanmot_del, detdist, detector_name, energy class DispalyParams: """ This class encapsulates parameters defining image display. The parameters are read from config file on construction. This class is basically an information agglomerator for the viz generation. """ def __init__(self, config): """ The constructor gets config file and fills out the class members. Parameters ---------- config : str configuration file name Returns ------- none """ self.detector = None deg2rad = np.pi / 180.0 try: specfile = config['specfile'] last_scan = config['last_scan'] # get stuff from the spec file. self.delta, self.gamma, self.th, self.phi, self.chi, self.scanmot, self.scanmot_del, self.detdist, self.detector, self.energy = parse_spec(specfile, last_scan) except: pass # drop the ':' from detector name if self.detector is not None and self.detector.endswith(':'): self.detector = self.detector[:-1] try: self.diffractometer = config['diffractometer'] except: raise ValueError('diffractometer name not in config file') # override the parsed parameters with entries in config file try: self.detector = config['detector'] except KeyError: if self.detector is None: raise ValueError('detector not in spec, please configure') try: self.energy = config['energy'] except KeyError: if self.energy is None: raise ValueError('energy not in spec, please configure') try: self.delta = config['delta'] except KeyError: if self.delta is None: raise ValueError('delta not in spec, please configure') try: self.gamma = config['gamma'] except KeyError: if self.gamma is None: raise ValueError('gamma not in spec, please configure') try: self.detdist = config['detdist'] except KeyError: if self.detdist is None: raise ValueError('detdist not in spec, please configure') try: self.th = config['theta'] except KeyError: if self.th is None: raise ValueError('theta not in spec, please configure') try: self.chi = config['chi'] except KeyError: if self.chi is None: raise ValueError('chi not in spec, please configure') try: self.phi = config['phi'] except KeyError: if self.phi is None: raise ValueError('phi not in spec, please configure') try: self.scanmot = config['scanmot'] except KeyError: if self.scanmot is None: raise ValueError('scanmot not in spec, please configure') try: self.scanmot_del = config['scanmot_del'] except KeyError: if self.scanmot_del is None: raise ValueError('scanmot_del not in spec, please configure') try: self.rampups = config['rampups'] except: self.rampups = 1 try: self.binning = [] binning = config['binning'] for i in range(len(binning)): self.binning.append(binning[i]) for _ in range(3 - len(self.binning)): self.binning.append(1) except KeyError: self.binning = [1, 1, 1] try: self.crop = [] crop = config['crop'] for i in range(len(crop)): if crop[i] > 1: crop[i] = 1.0 self.crop.append(crop[i]) for _ in range(3 - len(self.crop)): self.crop.append(1.0) crop[0], crop[1] = crop[1], crop[0] except KeyError: self.crop = (1.0, 1.0, 1.0) def set_instruments(self, detector, diffractometer): # for beamline aps_34idc both detector and diffractometer must be defined if detector is None: print ('detector must be defined') return False if diffractometer is None: print ('diffractometer must be defined') return False for attr in diffractometer.__class__.__dict__.keys(): if not attr.startswith('__'): self.__dict__[attr] = diffractometer.__class__.__dict__[attr] for attr in diffractometer.__dict__.keys(): if not attr.startswith('__'): self.__dict__[attr] = diffractometer.__dict__[attr] for attr in detector.__class__.__dict__.keys(): if not attr.startswith('__'): self.__dict__[attr] = detector.__class__.__dict__[attr] for attr in detector.__dict__.keys(): if not attr.startswith('__'): self.__dict__[attr] = detector.__dict__[attr] return True def set_geometry(shape, p): """ Sets geometry. Parameters ---------- shape : tuple shape of reconstructed array p : DisplayParmas object Returns ------- nothing """ # DisplayParams is not expected to do any modifications of params (units, etc) px = p.pixel[0] * p.binning[0] py = p.pixel[1] * p.binning[1] detdist = p.detdist / 1000.0 # convert to meters scanmot = p.scanmot.strip() enfix = 1 # if energy is given in kev convert to ev for xrayutilities if m.floor(m.log10(p.energy)) < 3: enfix = 1000 energy = p.energy * enfix # x-ray energy in eV if scanmot == 'en': scanen = np.array((energy, energy + p.scanmot_del * enfix)) else: scanen = np.array((energy,)) qc = xuexp.QConversion(p.sampleaxes, p.detectoraxes, p.incidentaxis, en=scanen) # compute for 4pixel (2x2) detector qc.init_area(p.pixelorientation[0], p.pixelorientation[1], shape[0], shape[1], 2, 2, distance=detdist, pwidth1=px, pwidth2=py) # I think q2 will always be (3,2,2,2) (vec, scanarr, px, py) # should put some try except around this in case something goes wrong. if scanmot == 'en': # seems en scans always have to be treated differently since init is unique q2 = np.array(qc.area(p.th, p.chi, p.phi, p.delta, p.gamma, deg=True)) elif scanmot in p.sampleaxes_name: # based on scanmot args are made for qc.area args = [] axisindex = p.sampleaxes_name.index(scanmot) for n in range(len(p.sampleaxes_name)): if n == axisindex: scanstart = p.__dict__[scanmot] args.append(
np.array((scanstart, scanstart + p.scanmot_del * p.binning[2]))
numpy.array
#!/usr/bin/env python3 # # Copyright (c) 2019-2021 LG Electronics, Inc. # # This software contains code licensed as described in LICENSE. # from environs import Env import lgsvl import time import yaml import numpy as np from numba import njit from argparse import Namespace import math import matplotlib.pyplot as plt ####################################################################################### ##################### PLANNER HELPERS ########################################## ####################################################################################### njit(fastmath=False, cache=True) def nearest_point_on_trajectory(point, trajectory): ''' Return the nearest point along the given piecewise linear trajectory. Same as nearest_point_on_line_segment, but vectorized. This method is quite fast, time constraints should not be an issue so long as trajectories are not insanely long. Order of magnitude: trajectory length: 1000 --> 0.0002 second computation (5000fps) point: size 2 numpy array trajectory: Nx2 matrix of (x,y) trajectory waypoints - these must be unique. If they are not unique, a divide by 0 error will destroy the world ''' diffs = trajectory[1:,:] - trajectory[:-1,:] l2s = diffs[:,0]**2 + diffs[:,1]**2 # this is equivalent to the elementwise dot product # dots = np.sum((point - trajectory[:-1,:]) * diffs[:,:], axis=1) dots = np.empty((trajectory.shape[0]-1, )) for i in range(dots.shape[0]): dots[i] = np.dot((point - trajectory[i, :]), diffs[i, :]) t = dots / l2s t[t<0.0] = 0.0 t[t>1.0] = 1.0 # t = np.clip(dots / l2s, 0.0, 1.0) projections = trajectory[:-1,:] + (t*diffs.T).T # dists = np.linalg.norm(point - projections, axis=1) dists = np.empty((projections.shape[0],)) for i in range(dists.shape[0]): temp = point - projections[i] dists[i] = np.sqrt(np.sum(temp*temp)) min_dist_segment = np.argmin(dists) return projections[min_dist_segment], dists[min_dist_segment], t[min_dist_segment], min_dist_segment @njit(fastmath=False, cache=True) def first_point_on_trajectory_intersecting_circle(point, radius, trajectory, t=0.0, wrap=False): ''' starts at beginning of trajectory, and find the first point one radius away from the given point along the trajectory. Assumes that the first segment passes within a single radius of the point http://codereview.stackexchange.com/questions/86421/line-segment-to-circle-collision-algorithm ''' start_i = int(t) start_t = t % 1.0 first_t = None first_i = None first_p = None trajectory = np.ascontiguousarray(trajectory) for i in range(start_i, trajectory.shape[0]-1): start = trajectory[i,:] end = trajectory[i+1,:]+1e-6 V = np.ascontiguousarray(end - start) a = np.dot(V,V) b = 2.0*np.dot(V, start - point) c = np.dot(start, start) + np.dot(point,point) - 2.0*np.dot(start, point) - radius*radius discriminant = b*b-4*a*c if discriminant < 0: continue # print "NO INTERSECTION" # else: # if discriminant >= 0.0: discriminant = np.sqrt(discriminant) t1 = (-b - discriminant) / (2.0*a) t2 = (-b + discriminant) / (2.0*a) if i == start_i: if t1 >= 0.0 and t1 <= 1.0 and t1 >= start_t: first_t = t1 first_i = i first_p = start + t1 * V break if t2 >= 0.0 and t2 <= 1.0 and t2 >= start_t: first_t = t2 first_i = i first_p = start + t2 * V break elif t1 >= 0.0 and t1 <= 1.0: first_t = t1 first_i = i first_p = start + t1 * V break elif t2 >= 0.0 and t2 <= 1.0: first_t = t2 first_i = i first_p = start + t2 * V break # wrap around to the beginning of the trajectory if no intersection is found1 if wrap and first_p is None: for i in range(-1, start_i): start = trajectory[i % trajectory.shape[0],:] end = trajectory[(i+1) % trajectory.shape[0],:]+1e-6 V = end - start a =
np.dot(V,V)
numpy.dot
import numpy as np from scipy.special import logsumexp from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleStaeckel from galpy.df import quasiisothermaldf aAS= actionAngleStaeckel(delta=0.4,pot=MWPotential2014,c=True) _R0 = 8. _z0 = 0.025 def gaussian_1d(v_R, v_z, R, z, med_z, params=[30.]): sigmaR = params[0] vo = 0. A_R = (1./(sigmaR*np.sqrt(2*np.pi))) E_R = (-(v_R-vo)**2)/(2*sigmaR**2) p = A_R*np.exp(E_R) logp = np.log(p) logp = np.sum(logp[np.isfinite(logp)]) return logp def gaussian_fixedv0(v_R, v_z, R, z, med_z, params=[np.log10(30.),np.log10(30.),0.1]): sigmaR, sigmaz, contfrac = params sigmaR, sigmaz = 10**sigmaR, 10**sigmaz vo = 0. contA = (contfrac)*(1./(100*np.sqrt(2*np.pi))) contE_R = (-(v_R-vo)**2/(2*100**2)) contE_z = (-(v_z-vo)**2/(2*100**2)) A_R = (1-contfrac)*(1./(sigmaR*np.sqrt(2*np.pi))) A_z = (1-contfrac)*(1./(sigmaz*np.sqrt(2*np.pi))) E_R = (-(v_R-vo)**2)/(2*sigmaR**2) E_z = (-(v_z-vo)**2)/(2*sigmaz**2) Es = np.dstack([E_R, E_z, contE_R, contE_z])[0] As = np.dstack([A_R, A_z, contA, contA])[0] logp = logsumexp(Es, b=As, axis=1) logp = np.sum(logp) return logp def gaussian_expR_quadz_fixedv0(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.01], return_each=False): vo = 0. sigmacont = 100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz sigmaR, sigmaz = 10**sigmaR, 10**sigmaz sigmacontR, sigmacontz = np.sqrt(sigmacont**2+cov_vRvTvz[:,0,0]), np.sqrt(sigmacont**2+cov_vRvTvz[:,2,2]) z = np.fabs(z) sigma_fRz_R = np.sqrt(((a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)))**2+cov_vRvTvz[:,0,0]) A_R = (1-contfrac)*(1./(sigma_fRz_R*np.sqrt(2*np.pi))) E_R = (-(v_R-vo)**2)/(2*sigma_fRz_R**2) sigma_fRz_z = np.sqrt(((a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)))**2+cov_vRvTvz[:,2,2]) A_z = (1-contfrac)*(1./(sigma_fRz_z*np.sqrt(2*np.pi))) E_z = (-(v_z-vo)**2)/(2*sigma_fRz_z**2) contA_R = (contfrac)*(1./(sigmacontR*np.sqrt(2*np.pi))) contA_z = (contfrac)*(1./(sigmacontz*np.sqrt(2*np.pi))) contE_R = (-(v_R-vo)**2/(2*sigmacontR**2)) contE_z = (-(v_z-vo)**2/(2*sigmacontz**2)) As = np.dstack([A_R, A_z, contA_R, contA_z])[0] Es = np.dstack([E_R, E_z, contE_R, contE_z])[0] logp = logsumexp(Es, b=As, axis=1) if return_each: return logp logp = np.sum(logp) return logp def gaussian_expR_quadz(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.,0.,0.01]): vo = 0. sigmacont=100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, v_Ro, v_zo, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz sigmaR, sigmaz = 10**sigmaR, 10**sigmaz sigmacontR, sigmacontz = np.sqrt(sigmacont**2+cov_vRvTvz[:,0,0]), np.sqrt(sigmacont**2+cov_vRvTvz[:,2,2]) z = np.fabs(z) sigma_fRz_R = np.sqrt(((a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)))**2+cov_vRvTvz[:,0,0]) A_R = (1-contfrac)*(1./(sigma_fRz_R*np.sqrt(2*np.pi))) E_R = (-(v_R-v_Ro)**2)/(2*sigma_fRz_R**2) sigma_fRz_z = np.sqrt(((a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)))**2+cov_vRvTvz[:,2,2]) A_z = (1-contfrac)*(1./(sigma_fRz_z*np.sqrt(2*np.pi))) E_z = (-(v_z-v_zo)**2)/(2*sigma_fRz_z**2) contA_R = (contfrac)*(1./(sigmacontR*np.sqrt(2*np.pi))) contA_z = (contfrac)*(1./(sigmacontz*np.sqrt(2*np.pi))) contE_R = (-(v_R-vo)**2/(2*sigmacontR**2)) contE_z = (-(v_z-vo)**2/(2*sigmacontz**2)) As = np.dstack([A_R, A_z, contA_R, contA_z])[0] Es = np.dstack([E_R, E_z, contE_R, contE_z])[0] logp = logsumexp(Es, b=As, axis=1) logp = np.sum(logp) return logp def gaussian_expR_expz_fixedv0(v_R, v_z, R, z, med_z, params=[1/8.,1/8.,np.log10(50.),1/8.,1/8.,np.log10(50.),0.01]): vo = 0. hRsigmaR, hzsigmaR, sigmaR, hRsigmaz, hzsigmaz, sigmaz, contfrac = params sigmaR, sigmaz = 10**sigmaR, 10**sigmaz sigmacont = 200. z = np.fabs(z) sigma_fRz_R = sigmaR*np.exp(-hRsigmaR*(R-_R0)-hzsigmaR*(z-med_z)) sigma_fRz_z = sigmaz*np.exp(-hRsigmaz*(R-_R0)-hzsigmaz*(z-med_z)) A_R = (1-contfrac)*(1./(sigma_fRz_R*np.sqrt(2*np.pi))) E_R = (-(v_R-vo)**2)/(2*sigma_fRz_R**2) A_z = (1-contfrac)*(1./(sigma_fRz_z*np.sqrt(2*np.pi))) E_z = (-(v_z-vo)**2)/(2*sigma_fRz_z**2) contA = (contfrac)*(1./(sigmacont*np.sqrt(2*np.pi))) contE_R = (-(v_R-vo)**2/(2*sigmacont**2)) contE_z = (-(v_z-vo)**2/(2*sigmacont**2)) As = np.dstack([A_R, A_z, np.ones(len(v_R))*contA, np.ones(len(v_R))*contA])[0] Es = np.dstack([E_R, E_z, contE_R, contE_z])[0] logp = logsumexp(Es, b=As, axis=1) logp = np.sum(logp) return logp def gaussian_expR_expz(v_R, v_z, R, z, med_z, params=[1/8.,1/8.,np.log10(50.),1/8.,1/8.,np.log10(50.),0.,0.,0.01]): vo = 0. hRsigmaR, hzsigmaR, sigmaR, hRsigmaz, hzsigmaz, sigmaz, v_Ro, v_zo, contfrac = params sigmaR, sigmaz = 10**sigmaR, 10**sigmaz z = np.fabs(z) sigma_fRz_R = sigmaR*np.exp(-hRsigmaR*(R-_R0)-hzsigmaR*(z-med_z)) sigma_fRz_z = sigmaz*np.exp(-hRsigmaz*(R-_R0)-hzsigmaz*(z-med_z)) A_R = (1-contfrac)*(1./(sigma_fRz_R*np.sqrt(2*np.pi))) E_R = (-(v_R-v_Ro)**2)/(2*sigma_fRz_R**2) A_z = (1-contfrac)*(1./(sigma_fRz_z*np.sqrt(2*np.pi))) E_z = (-(v_z-v_zo)**2)/(2*sigma_fRz_z**2) contA = (contfrac)*(1./(100*np.sqrt(2*np.pi))) contE_R = (-(v_R-vo)**2/(2*100**2)) contE_z = (-(v_z-vo)**2/(2*100**2)) As = np.dstack([A_R, A_z, np.ones(len(v_R))*contA, np.ones(len(v_R))*contA])[0] Es = np.dstack([E_R, E_z, contE_R, contE_z])[0] logp = logsumexp(Es, b=As, axis=1) logp = np.sum(logp) return logp def ellipsoid_old(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.,0.,0.01]): vo = 0. sigmacont = 100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, alpha_0,alpha_1, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz sigmaR, sigmaz = 10**sigmaR, 10**sigmaz z = np.fabs(z) sigma_fRz_R = (a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)) sigma_fRz_z = (a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)) tana= alpha_0+alpha_1*z/R #+params[11]*(z/R)**2. sig2rz= (sigma_fRz_R**2.-sigma_fRz_z**2.)*tana/(1.-tana**2.) #Do likelihood out= 0. for ii in range(len(v_R)): vv= np.array([v_R[ii],v_z[ii]]) VV= np.array([[sigma_fRz_R[ii]**2.+cov_vRvTvz[ii,0,0], sig2rz[ii]+cov_vRvTvz[ii,0,2]], [sig2rz[ii]+cov_vRvTvz[ii,0,2], sigma_fRz_z[ii]**2.+cov_vRvTvz[ii,2,2]]]) outVV= np.array([[sigmacont**2.+cov_vRvTvz[ii,0,0], cov_vRvTvz[ii,0,2]], [cov_vRvTvz[ii,0,2], sigmacont**2.+cov_vRvTvz[ii,2,2]]]) #print VV, outVV, numpy.linalg.det(VV), numpy.linalg.det(outVV) detVV= np.linalg.det(VV) if detVV < 0.: return -np.finfo(np.dtype(np.float64)).max ''' out += np.log(contfrac/np.sqrt(np.linalg.det(outVV))\ *np.exp(-0.5*np.dot(vv, np.dot(np.linalg.inv(outVV),vv))) +(1.-contfrac)/np.sqrt(detVV) *np.exp(-0.5*np.dot(vv, np.dot(np.linalg.inv(VV),vv)))) ''' Bs = np.array([contfrac/np.sqrt(np.linalg.det(outVV)), (1.-contfrac)/np.sqrt(detVV)]) As = np.array([-0.5*np.dot(vv,np.dot(np.linalg.inv(outVV),vv)), -0.5*np.dot(vv,np.dot(np.linalg.inv(VV),vv))]) out += logsumexp(As, b=Bs) return out def ellipsoid(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.,0.,0.01]): vo = 0. sigmacont = 100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, alpha_0,alpha_1, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz v_R0, v_z0 = 0., 0. sigmaR, sigmaz = 10**sigmaR, 10**sigmaz z = np.fabs(z) sigma_fRz_R = (a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)) sigma_fRz_z = (a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)) tana= alpha_0+alpha_1*z/R #+params[11]*(z/R)**2. sig2rz= (sigma_fRz_R**2.-sigma_fRz_z**2.)*tana/(1.-tana**2.) vvs = np.zeros((len(v_R), 2)) vvs[:,0] = v_R-v_R0 vvs[:,1] = v_z-v_z0 VVs = np.zeros((len(v_R),2,2)) VVs[:,0,0] = sigma_fRz_R**2.+cov_vRvTvz[:,0,0] VVs[:,0,1] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,0] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,1] = sigma_fRz_z**2.+cov_vRvTvz[:,2,2] outVVs = np.zeros((len(v_R),2,2)) outVVs[:,0,0] = sigmacont**2.+cov_vRvTvz[:,0,0] outVVs[:,0,1] = cov_vRvTvz[:,0,2] outVVs[:,1,0] = cov_vRvTvz[:,0,2] outVVs[:,1,1] = sigmacont**2.+cov_vRvTvz[:,2,2] detVVs = np.linalg.det(VVs) if (detVVs < 0.).any(): return -np.finfo(np.dtype(np.float64)).max detoutVVs = np.linalg.det(outVVs) vvVVvv = np.einsum('ij,ij->i', vvs, np.einsum('aij,aj->ai', np.linalg.inv(VVs), vvs)) vvoutVVvv = np.einsum('ij,ij->i', vvs, np.einsum('aij,aj->ai', np.linalg.inv(outVVs), vvs)) #Do likelihood out= 0. Bs = np.dstack([contfrac/(2*np.pi*np.sqrt(detoutVVs)), (1.-contfrac)/(2*np.pi*np.sqrt(detVVs))])[0] As = np.dstack([-0.5*vvoutVVvv, -0.5*vvVVvv])[0] logsums = logsumexp(As, b=Bs, axis=1) out = np.sum(logsums) return out def ellipsoid_varying_v0(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.,0.,0.,0.,0.01]): vo = 0. sigmacont = 100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, alpha_0,alpha_1, v_R0, v_z0, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz sigmaR, sigmaz = 10**sigmaR, 10**sigmaz z = np.fabs(z) sigma_fRz_R = (a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)) sigma_fRz_z = (a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)) tana= alpha_0+alpha_1*z/R #+params[11]*(z/R)**2. sig2rz= (sigma_fRz_R**2.-sigma_fRz_z**2.)*tana/(1.-tana**2.) vvs = np.zeros((len(v_R), 2)) vvs[:,0] = v_R-v_R0 vvs[:,1] = v_z-v_z0 VVs = np.zeros((len(v_R),2,2)) VVs[:,0,0] = sigma_fRz_R**2.+cov_vRvTvz[:,0,0] VVs[:,0,1] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,0] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,1] = sigma_fRz_z**2.+cov_vRvTvz[:,2,2] outVVs = np.zeros((len(v_R),2,2)) outVVs[:,0,0] = sigmacont**2.+cov_vRvTvz[:,0,0] outVVs[:,0,1] = cov_vRvTvz[:,0,2] outVVs[:,1,0] = cov_vRvTvz[:,0,2] outVVs[:,1,1] = sigmacont**2.+cov_vRvTvz[:,2,2] detVVs = np.linalg.det(VVs) if (detVVs < 0.).any(): return -np.finfo(np.dtype(np.float64)).max detoutVVs = np.linalg.det(outVVs) vvVVvv = np.einsum('ij,ij->i', vvs, np.einsum('aij,aj->ai', np.linalg.inv(VVs), vvs)) vvoutVVvv = np.einsum('ij,ij->i', vvs, np.einsum('aij,aj->ai', np.linalg.inv(outVVs), vvs)) #Do likelihood out= 0. Bs = np.dstack([contfrac/(2*np.pi*np.sqrt(detoutVVs)), (1.-contfrac)/(2*np.pi*np.sqrt(detVVs))])[0] As = np.dstack([-0.5*vvoutVVvv, -0.5*vvVVvv])[0] logsums = logsumexp(As, b=Bs, axis=1) out = np.sum(logsums) return out def ellipsoid_v0_R(v_R, v_z, R, z, cov_vRvTvz, med_z, params=[1/8.,np.log10(50.),1.,1.,1/8.,np.log10(50.),1.,1.,0.,0.,1/10.,0.,1/10.,0.,0.01]): vo = 0. sigmacont = 100. h_sigmaR, sigmaR, a_R, b_R, h_sigmaz, sigmaz, a_z, b_z, alpha_0,alpha_1, h_vr0, v_R0, h_vz0, v_z0, contfrac = params h_sigmaR, h_sigmaz = 1/h_sigmaR, 1/h_sigmaz v_R0_R = v_R0*np.exp((R-_R0)*h_vr0) v_z0_R = v_z0*np.exp((R-_R0)*h_vz0) sigmaR, sigmaz = 10**sigmaR, 10**sigmaz z = np.fabs(z) sigma_fRz_R = (a_R*(z-med_z)**2+b_R*(z-med_z)+sigmaR)*(np.exp(-1*(R-_R0)/h_sigmaR)) sigma_fRz_z = (a_z*(z-med_z)**2+b_z*(z-med_z)+sigmaz)*(np.exp(-1*(R-_R0)/h_sigmaz)) tana= alpha_0+alpha_1*z/R #+params[11]*(z/R)**2. sig2rz= (sigma_fRz_R**2.-sigma_fRz_z**2.)*tana/(1.-tana**2.) vvs = np.zeros((len(v_R), 2)) vvs[:,0] = v_R-v_R0_R vvs[:,1] = v_z-v_z0_R VVs = np.zeros((len(v_R),2,2)) VVs[:,0,0] = sigma_fRz_R**2.+cov_vRvTvz[:,0,0] VVs[:,0,1] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,0] = sig2rz+cov_vRvTvz[:,0,2] VVs[:,1,1] = sigma_fRz_z**2.+cov_vRvTvz[:,2,2] outVVs = np.zeros((len(v_R),2,2)) outVVs[:,0,0] = sigmacont**2.+cov_vRvTvz[:,0,0] outVVs[:,0,1] = cov_vRvTvz[:,0,2] outVVs[:,1,0] = cov_vRvTvz[:,0,2] outVVs[:,1,1] = sigmacont**2.+cov_vRvTvz[:,2,2] detVVs = np.linalg.det(VVs) if (detVVs < 0.).any(): return -np.finfo(np.dtype(np.float64)).max detoutVVs =
np.linalg.det(outVVs)
numpy.linalg.det
import numpy as np import argparse import time import re import sys from operator import itemgetter parser = argparse.ArgumentParser(description="plot data in A3C log file and update it periodically") parser.add_argument('filename') parser.add_argument('-x', '--x-column', type=int, default=1, help="column index of x-axis (0 origin)") parser.add_argument('-y', '--y-column', type=int, default=2, help="column index of y-axis (0 origin)") parser.add_argument('-a', '--average-number-of-samples', dest="ans", type=int, default=100, help="average number of samples") parser.add_argument('-s', '--scale', type=float, default=1e6, help="scale factor: data in x-column is divided by SCALE") parser.add_argument('-xl', '--xlabel', default="M steps", help="label of x-axis") parser.add_argument('-yl', '--ylabel', default="Score", help="label of y-axis") parser.add_argument('-t', '--title', default=None, help="title of figure") parser.add_argument('-n', '--interval', type=int, default=10, help="interval of refresh (0 means no refresh)") parser.add_argument('-e', '--endmark', default="END", help="End Mark of in reward line") parser.add_argument('--save', action='store_true', help="save graph to file 'filename.png' and don't display it") parser.add_argument('-i', '--info', choices=["r", "lives", "s", "tes", "v", "pr"], default="r", help="information in y-axis : r (reward), lives (OHL), s (OHL) tes (OHL), v, pr (psc-reward)") def read_data(f): data = [] line = f.readline() while line != "": match = prog.match(line) if match: t = float(match.group(1)) s = float(match.group(2)) r = float(match.group(3)) data.append([t, s, r]) line = f.readline() return data def draw_graph(ax, data): ans = args.ans if len(data) < 5: return elif len(data) < args.ans: ans = len(data) - 1 # sort data along args.x_column and make it np.array again data = sorted(data, key=itemgetter(args.x_column)) data = np.array(data) x = data[:, args.x_column] y = data[:, args.y_column] x_max = np.max(x) x_min = np.min(x) y_max = np.max(y) y_min = np.min(y) # print("ymax=", y_max, "ymin=", y_min) y_width = y_max - y_min if y_width == 0: if y_max == 0: y_width = 1.0 else: y_min = 0 y_width = y_max ax.set_xlim(xmax = x_max / args.scale) ax.set_xlim(xmin = 0) ax.set_ylim(ymax = y_max + y_width * 0.05) ax.set_ylim(ymin = y_min - y_width * 0.05) x = x / args.scale ax.plot(x, y, ',') weight = np.ones(ans, dtype=np.float)/ans y_average = np.convolve(y, weight, 'valid') rim = ans - 1 rim_l = rim // 2 rim_r = rim - rim_l ax.plot(x[rim_l:-rim_r], y_average) ax.set_xlabel(args.xlabel) ax.set_ylabel(args.ylabel) ax.grid(linewidth=1, linestyle="-", alpha=0.1) def draw_ohl_graph(ax, data): # sort data along args.x_column and make it np.array again all_data = sorted(data, key=itemgetter(args.x_column)) scores = list({e[0] for e in all_data}) scores.sort() print("scores=", scores) np_all_data = np.array(all_data) all_x = np_all_data[:, args.x_column] all_y = np_all_data[:, args.y_column] x_max = np.max(all_x) x_min = np.min(all_x) y_max = np.max(all_y) y_min = np.min(all_y) # print("ymax=", y_max, "ymin=", y_min) y_width = y_max - y_min if y_width == 0: if y_max == 0: y_width = 1.0 else: y_min = 0 y_width = y_max ax.set_xlim(xmax = x_max / args.scale) ax.set_xlim(xmin = 0) ax.set_ylim(ymax = y_max + y_width * 0.05) ax.set_ylim(ymin = y_min - y_width * 0.05) for score in scores: # print("score=", score) data = list(filter(lambda e: e[0] == score, all_data)) data = np.array(data) x = data[:, args.x_column] y = data[:, args.y_column] x = x / args.scale ans = args.ans if len(data) < 5: ax.plot(x, y, '.', label=str(score)) continue elif len(data) * 0.1 < args.ans: ans = int(len(data) * 0.1) if ans < 4: ans = 4 # print("ans=", ans) weight =
np.ones(ans, dtype=np.float)
numpy.ones
# -*- coding:utf-8 -*- """ Created on Aug 8, 2011 @author: grant """ import math import numpy from OpenGL import GL, GLU import TriModel # TODO: try and remove cgkit, use numpy matrix instead from cgkit.cgtypes import quat import numpyTransform class Joint: def __init__(self, *args, **kwargs): ''' Function Signatures: Joint() Joint(location, ...) Arguments {default value}: location array like object of form [x,y,z] containing x, y, and z coordinates of this Joint. { [0,0,0] } Keywords: parentJoint Joint object of which this Joint is a child. {None} models TriModel object of list of TriModel objects that represent bones that are attached to this joint. { [] } name Name of joint initialOrientation quaternion (type cgkit.cgtypes.quat) representing the initial orientation. { quat(1,0,0,0) } showAxis Boolean that determines whether or not a 3D representation of the Joint is visible. { False } axisScale Number that determines the size of the drawn axis. Must be greater than 0. { 1.0 } ''' # self.translateMat = cgtypes.mat4.identity() self.scaleMat = numpy.matrix(numpy.identity(4)) self.rotateMat = numpy.matrix(numpy.identity(4)) if len(args) > 0: self.location = numpy.array(args[0], dtype=float) else: self.location = numpy.array([0.0, 0.0, 0.0], dtype=float) self.initialLocationMat = numpy.matrix([[1.0, 0.0, 0.0, self.location[0]], [0.0, 1.0, 0.0, self.location[1]], [0.0, 0.0, 1.0, self.location[2]], [0.0, 0.0, 0.0, 1.0]]) self.translateMat = numpy.matrix([[1.0, 0.0, 0.0, self.location[0]], [0.0, 1.0, 0.0, self.location[1]], [0.0, 0.0, 1.0, self.location[2]], [0.0, 0.0, 0.0, 1.0]]) self.transformICP = numpy.matrix(numpy.identity(4)) self.childJoints = [] # self.scale = 1.0 self.locationUnityScale = self.location.copy() self.type = 'ball' self.length = 10.0 self.proximodistalVec = numpy.array([1.0, 0.0, 0.0]) self.secondaryVec = numpy.array([0.0, 1.0, 0.0]) self.tertiaryVec = numpy.array([0.0, 0.0, 1.0]) self.proximodistalVecTransformed = numpy.array([1.0, 0.0, 0.0]) self.secondaryVecTransformed = numpy.array([0.0, 1.0, 0.0]) self.tertiaryVecTransformed = numpy.array([0.0, 0.0, 1.0]) self.proximodistalVecScaled = self.length * self.proximodistalVec self.proximodistalVecTransformedScaled = self.length * self.proximodistalVecTransformed self.DOFvec = numpy.array([0, 0, 10.0]) self.DOFangle = math.radians(45.0) self.DOFtrans = 5.0 if 'parentJoint' in kwargs and isinstance(kwargs['parentJoint'], Joint): self.parentJoint = kwargs['parentJoint'] self.parentJoint.childJoints.append(self) else: self.parentJoint = None self.models = [] if 'models' in kwargs: try: for model in kwargs['models']: if isinstance(model, TriModel): self.models.append(model) self.models[-1].setJoint(self) except TypeError: if isinstance(kwargs['models'], TriModel): self.models.append(kwargs['models']) self.models[-1].setJoint(self) if 'initialOrientation' in kwargs and isinstance(kwargs['initialOrientation'], quat): self.orientation = kwargs['initialOrientation'] else: self.orientation = quat(1, 0, 0, 0) self.xAngle = 0.0 self.yAngle = 0.0 self.zAngle = 0.0 if 'showAxis' in kwargs and isinstance(kwargs['showAxis'], bool): self.showAxis = kwargs['showAxis'] else: self.showAxis = False if 'axisScale' in kwargs and kwargs['axisScale'] > 0.0: self.axisScale = kwargs['axisScale'] else: self.axisScale = 1.0 if 'name' in kwargs: self.name = kwargs['name'] else: self.name = 'Joint' for model in self.models: model.initialRotationCenter = self.location.copy() if self.parentJoint is None: self.initalLocationRelativeToParentJoint = self.location.copy() self.initialRelativeOrientationFromParent = self.orientation * quat(1, 0, 0, 0).inverse() else: self.initalLocationRelativeToParentJoint = self.location - self.parentJoint.location self.initialRelativeOrientationFromParent = self.orientation * self.parentJoint.orientation.inverse() self.relativeOrientationFromParent = quat(self.initialRelativeOrientationFromParent) self.createAxis(self.showAxis) def translate(self, coord, absolute=True): ''' Arguements {Default value} coord array like object with dimensions 1x3 in format [x,y,z] absolute boolean that tells whether coord is the point to set joint to, or the step by with to move the joint from its current location ''' coord = numpy.array(coord) if coord.shape != (3,): raise Exception("Incorrect input parameters") if absolute: self.translateMat = numpyTransform.translation(coord) else: self.translateMat *= numpyTransform.translation(coord) def rotate(self, *args, **kwargs): ''' Function Signatures: rotate(q, ...) rotate(mat, ...) rotate(angle, axis, ...) rotate(xAngle, yAngle, zAngle, ...) rotate(elevation, azimuth, spin, sphericalCoord=True, ...) Arguments {default value}: q quaternion (cgkit.cgtypes.quat) that defines joint orientation (relative or absolute) mat 4x4 rotation matrix (cgkit.cgtypes.mat4) that defines joint orientation angle angle (degrees or radians, radians default) which to rotate around axis axis vector [i,j,k] which defines axis to rotate around xAngle angle (degrees or radians, radians default) which to rotate around x axis yAngle angle (degrees or radians, radians default) which to rotate around y axis zAngle angle (degrees or radians, radians default) which to rotate around z axis elevation elevation angle (spherical coordinate system) azimuth azimuth angle (spherical coordinate system) spin spin angle around vector defined by elevation and azimuth Keywords: relative defines whether the change in orientation is relative or absolute {False} updateModels flag that determines if child models should be updated {True} angleOrder string that determines the order that Euler angle rotations are applied. {'xyz'} unitsDegrees flag that indicates what units the passed angles are in, degrees or radians. {False} sphericalCoord flag that indicates passed angles are spherical coordinates. In the spherical coordinate system, elevation rotates around the x axis first, then azimuth rotates around the y axis, finally spin rotates around the vector created by elevation and azimuth {False} ''' if 'relative' in kwargs: relative = kwargs['relative'] else: relative = False if 'updateModels' in kwargs: updateModels = kwargs['updateModels'] else: updateModels = True if 'sphericalCoord' in kwargs: sphericalCoord = kwargs['sphericalCoord'] else: sphericalCoord = False # the baseOrientation of the joint is either its current orientation, relativeAngle=True # or the baseOrientation is the initial relative orientation from the parent joint, relativeAngle=False if relative: baseOrientation = quat(self.orientation) # change by original orientation difference, to regain original orientation, relative to parent elif self.parentJoint is None: baseOrientation = self.initialRelativeOrientationFromParent * quat(1, 0, 0, 0) else: baseOrientation = self.initialRelativeOrientationFromParent * self.parentJoint.orientation if len(args) == 1: # Quaternion rotation if isinstance(args[0], quat): rotateMat = args[0].toMat4() else: rotateMat = args[0] elif len(args) == 2: # angle and axis rotation angle = args[0] axis = args[1] # convert angle units to radians if required if 'unitsDegrees' in kwargs and kwargs['unitsDegrees']: angle = math.radians(angle) angle = NormalizeAngleRad(angle) # create rotate matrix rotateMat = numpyTransform.rotation(angle, axis, N=4) elif len(args) == 3: # Euler angle rotation xAngle = args[0] yAngle = args[1] zAngle = args[2] if 'angleOrder' in kwargs and not sphericalCoord: angleOrder = kwargs['angleOrder'].lower() if len(angleOrder) != 3 or angleOrder.find('x') < 0 or angleOrder.find('y') < 0 or angleOrder.find('z') < 0: raise Exception('invalid angle order string') else: angleOrder = 'xyz' if 'unitsDegrees' in kwargs and kwargs['unitsDegrees']: xAngle = math.radians(xAngle) yAngle = math.radians(yAngle) zAngle = math.radians(zAngle) if 'relative' in kwargs and kwargs['relative']: self.xAngle += xAngle self.yAngle += yAngle self.zAngle += zAngle else: self.xAngle = xAngle self.yAngle = yAngle self.zAngle = zAngle if sphericalCoord: self.xAngle = NormalizeAngleRad(self.xAngle, -math.pi / 2, math.pi / 2, math.pi) self.yAngle = NormalizeAngleRad(self.yAngle) self.zAngle = NormalizeAngleRad(self.zAngle) else: self.xAngle = NormalizeAngleRad(self.xAngle) self.yAngle = NormalizeAngleRad(self.yAngle) self.zAngle = NormalizeAngleRad(self.zAngle) rotateMat = numpy.matrix(numpy.identity(4)) # create orientation quaternion by multiplying rotations around local # x,y, and z axis # TODO: maybe flip the order of this rotation application? # FIXME: Spherical rotation not working for i in xrange(3): if angleOrder[i] == 'x': rotateMat *= numpyTransform.rotation(self.xAngle, [1.0, 0.0, 0.0], N=4) if angleOrder[i] == 'y': rotateMat *= numpyTransform.rotation(self.yAngle, [0.0, 1.0, 0.0], N=4) if angleOrder[i] == 'z': rotateMat *= numpyTransform.rotation(self.zAngle, [0.0, 0.0, 1.0], N=4) else: # invalid signature raise Exception("Invalid Function Signature") if relative: self.rotateMat *= rotateMat else: self.rotateMat = rotateMat # def setScale(self,*args,**kwargs): # #TODO:remove after mat4 transformation is done, also rename scaleTempname to scale, remote scale float value # self.scaleTempname(*args,**kwargs) def scale(self, *args, **kwargs): ''' Arguments {Default value} scale(scale, ...) scale(scaleX,scaleY,scaleZ, ...) scale([scaleX,scaleY,scaleZ], ...) scale scale in the X,Y, and Z direction scaleX scale in the X dimension scaleY scale in the Y dimension scaleZ scale in the Z dimension keyword arguments absolute {True} boolean that tells whether scale is the new scale (True) or an amount to adjust current scale by (False) ''' if len(args) == 1: scale = numpy.array(args[0], dtype=float) if scale.shape != (3,): if scale.shape == (): scale = numpy.repeat(scale, 3) else: scale = numpy.repeat(scale[0], 3) elif len(args) == 3: scale = numpy.array([args[0], args[1], args[2]], dtype=float) if 'absolute' in kwargs and kwargs['absolute'] is False: self.scaleMat *= numpyTransform.scaling(scale, N=4) else: self.scaleMat = numpyTransform.scaling(scale, N=4) def createAxis(self, axisVisible): self.xAxis = TriModel.createCone(self.axisScale / 4, self.axisScale, self.location, name='axis_X', joint=self, axis='x', updateOnlyFromGrandparentJoints=True, visible=axisVisible, color=[1.0, 0.0, 0.0, 1.0]) self.yAxis = TriModel.createCone(self.axisScale / 4, self.axisScale, self.location, name='axis_Y', joint=self, axis='y', updateOnlyFromGrandparentJoints=True, visible=axisVisible, color=[0.0, 1.0, 0.0, 1.0]) self.zAxis = TriModel.createCone(self.axisScale / 4, self.axisScale, self.location, name='axis_Z', joint=self, axis='z', updateOnlyFromGrandparentJoints=True, visible=axisVisible, color=[0.0, 0.0, 1.0, 1.0]) def OpenGLPaint(self, colorDrivenMaterial=None, useCallLists=True, parentTransform=numpy.matrix(numpy.identity(4))): # push matrix GL.glPushMatrix() # matrix transformations steps: (applied in reverse order) # 1: move model initial rotation center to origin # 2: scale model # 3: rotate model to new orientation # 4: move model to parent joint position if self.name == 'Neck': pass GL.glTranslatef(self.translateMat[0, 3], self.translateMat[1, 3], self.translateMat[2, 3]) # aka GL.glMultMatrixf(numpy.array(self.translateMat)) GL.glMultMatrixf(numpy.array(self.rotateMat).T) # need to transpose this because numpy matrices are row-major but OpenGl is expecting column-major matrix # axis, angle = numpyTransform.axisAngleFromMatrix(self.rotateMat, angleInDegrees=True) # GL.glRotated(angle, axis[0], axis[1], axis[2]) GL.glScalef(self.scaleMat[0, 0], self.scaleMat[1, 1], self.scaleMat[2, 2]) GL.glTranslatef(-self.initialLocationMat[0, 3], -self.initialLocationMat[1, 3], -self.initialLocationMat[2, 3]) # if self.name == 'Neck': # print 'Neck Draw Transform' # print 'Rotation:' # print self.rotateMat # print 'Translation:' # print self.translateMat # print 'Scale' # print self.scaleMat # print 'Original location' # print self.initialLocationMat # print 'Transform' # tform = self.translateMat * self.rotateMat * self.scaleMat * self.initialLocationMat.I # print tform # draw models for model in self.models: model.OpenGLPaint(colorDrivenMaterial, useCallLists) # recursivly paint child joints for childJoint in self.childJoints: childJoint.OpenGLPaint(colorDrivenMaterial, useCallLists) # pop matrix GL.glPopMatrix() def transformVertices(self, baseTransform=numpy.matrix(numpy.identity(4)), modelID=None): # create transform matrix transform = numpy.matrix(baseTransform) transform *= self.translateMat transform *= self.rotateMat transform *= self.scaleMat transform *= self.initialLocationMat.I # transform *= numpyTransform.translation( (-self.initialLocationMat[0,3], -self.initialLocationMat[1,3], -self.initialLocationMat[2,3]) ) # self.location = (transform * numpy.matrix([[self.locationUnityScale[0]], [self.locationUnityScale[1]], [self.locationUnityScale[2]], [1.0]])).getA().squeeze()[:3] self.location = numpyTransform.transformPoints(transform, self.locationUnityScale) transformRotScaleOnly = numpy.matrix(numpy.identity(4)) transformRotScaleOnly[:3, :3] = transform[:3, :3] self.proximodistalVecTransformed = numpyTransform.transformPoints(transformRotScaleOnly, self.proximodistalVec[numpy.newaxis, :]).squeeze() self.proximodistalVecTransformedScaled = numpyTransform.transformPoints(transformRotScaleOnly, self.length * self.proximodistalVec[numpy.newaxis, :]).squeeze() self.secondaryVecTransformed = numpyTransform.transformPoints(transformRotScaleOnly, self.secondaryVec[numpy.newaxis, :]).squeeze() self.tertiaryVecTransformed = numpyTransform.transformPoints(transformRotScaleOnly, self.tertiaryVec[numpy.newaxis, :]).squeeze() for model in self.models: model.transformVertices(transform, modelID) for childJoint in self.childJoints: childJoint.transformVertices(transform, modelID) def getCummulativeTransform(self, jointID, baseTransform=numpy.matrix(numpy.identity(4))): transform = numpy.matrix(baseTransform) transform *= self.translateMat transform *= self.rotateMat transform *= self.scaleMat transform *= self.initialLocationMat.I if id(self) == jointID: return transform else: retTform = None for childJoint in self.childJoints: tempTform = childJoint.getCummulativeTransform(jointID, transform) if tempTform is not None: retTform = tempTform break return retTform def createKDTrees(self): for model in self.models: if model.visible and model.name[:5] != 'axis_': # ignore models that are not visible and models that illustrate the axis model.createKDTrees() for childJoint in self.childJoints: childJoint.createKDTrees() def getBoundingBox(self, baseTransform=numpy.matrix(numpy.identity(4))): # TODO: change this to use lists and then use numpy to search for max and min along axis=0 instead of constantly comparing values points = [] minPoint = None maxPoint = None # create transform matrix transform =
numpy.matrix(baseTransform)
numpy.matrix
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_PO Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #t-C #source: van Beijma et al. (2018) initAGB_min = 233-72 #t-C initAGB_max = 233 + 72 #t-C #parameters for oil palm plantation. Source: Khasanah et al. (2015) tf_palmoil = 26 #years a_nucleus = 2.8167 b_nucleus = 6.8648 a_plasma = 2.5449 b_plasma = 5.0007 c_cont_po_nucleus = 0.5448 #fraction of carbon content in biomass c_cont_po_plasma = 0.5454 #fraction of carbon content in biomass tf = 201 #years a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) c_firewood_energy_S2nu = df2nu['Firewood_other_energy_use'].values c_firewood_energy_S2pl = df2pl['Firewood_other_energy_use'].values c_firewood_energy_Enu = df3nu['Firewood_other_energy_use'].values c_firewood_energy_Epl = df3pl['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') c_pellets_Enu = dfEnu['Wood_pellets'].values c_pellets_Epl = dfEpl['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) decomp_emissions = df['C_remainAGB'].values #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') #product lifetime #building materials B = 35 TestDSM2nu = DynamicStockModel(t = df2nu['Year'].values, i = df2nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM2pl = DynamicStockModel(t = df2pl['Year'].values, i = df2pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3nu = DynamicStockModel(t = df3nu['Year'].values, i = df3nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3pl = DynamicStockModel(t = df3pl['Year'].values, i = df3pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr2nu, ExitFlag2nu = TestDSM2nu.dimension_check() CheckStr2pl, ExitFlag2pl = TestDSM2pl.dimension_check() CheckStr3nu, ExitFlag3nu = TestDSM3nu.dimension_check() CheckStr3pl, ExitFlag3pl = TestDSM3pl.dimension_check() Stock_by_cohort2nu, ExitFlag2nu = TestDSM2nu.compute_s_c_inflow_driven() Stock_by_cohort2pl, ExitFlag2pl = TestDSM2pl.compute_s_c_inflow_driven() Stock_by_cohort3nu, ExitFlag3nu = TestDSM3nu.compute_s_c_inflow_driven() Stock_by_cohort3pl, ExitFlag3pl = TestDSM3pl.compute_s_c_inflow_driven() S2nu, ExitFlag2nu = TestDSM2nu.compute_stock_total() S2pl, ExitFlag2pl = TestDSM2pl.compute_stock_total() S3nu, ExitFlag3nu = TestDSM3nu.compute_stock_total() S3pl, ExitFlag3pl = TestDSM3pl.compute_stock_total() O_C2nu, ExitFlag2nu = TestDSM2nu.compute_o_c_from_s_c() O_C2pl, ExitFlag2pl = TestDSM2pl.compute_o_c_from_s_c() O_C3nu, ExitFlag3nu = TestDSM3nu.compute_o_c_from_s_c() O_C3pl, ExitFlag3pl = TestDSM3pl.compute_o_c_from_s_c() O2nu, ExitFlag2nu = TestDSM2nu.compute_outflow_total() O2pl, ExitFlag2pl = TestDSM2pl.compute_outflow_total() O3nu, ExitFlag3nu = TestDSM3nu.compute_outflow_total() O3pl, ExitFlag3pl = TestDSM3pl.compute_outflow_total() DS2nu, ExitFlag2nu = TestDSM2nu.compute_stock_change() DS2pl, ExitFlag2pl = TestDSM2pl.compute_stock_change() DS3nu, ExitFlag3nu = TestDSM3nu.compute_stock_change() DS3pl, ExitFlag3pl = TestDSM3pl.compute_stock_change() Bal2nu, ExitFlag2nu = TestDSM2nu.check_stock_balance() Bal2pl, ExitFlag2pl = TestDSM2pl.check_stock_balance() Bal3nu, ExitFlag3nu = TestDSM3nu.check_stock_balance() Bal3pl, ExitFlag3pl = TestDSM3pl.check_stock_balance() #print output flow print(TestDSM2nu.o) print(TestDSM2pl.o) print(TestDSM3nu.o) print(TestDSM3pl.o) #%% #Step (5): Biomass growth #Model I Oil Palm Biomass Growth (Khasanah et al. (2015)) A = range(0,tf_palmoil,1) #calculate the biomass and carbon content of palm oil trees over time def Y_nucleus(A): return (44/12*1000*c_cont_po_nucleus*(a_nucleus*A + b_nucleus)) output_Y_nucleus = np.array([Y_nucleus(Ai) for Ai in A]) print(output_Y_nucleus) def Y_plasma(A): return (44/12*1000*c_cont_po_plasma*(a_plasma*A + b_plasma)) output_Y_plasma = np.array([Y_plasma(Ai) for Ai in A]) print(output_Y_plasma) ##8 times 25-year cycle of new AGB of oil palm, one year gap between the cycle #nucleus counter = range(0,8,1) y_nucleus = [] for i in counter: y_nucleus.append(output_Y_nucleus) flat_list_nucleus = [] for sublist in y_nucleus: for item in sublist: flat_list_nucleus.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_nucleus = flat_list_nucleus[:len(flat_list_nucleus)-7] #plasma y_plasma = [] for i in counter: y_plasma.append(output_Y_plasma) flat_list_plasma = [] for sublist in y_plasma: for item in sublist: flat_list_plasma.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_plasma = flat_list_plasma[:len(flat_list_plasma)-7] #plotting t = range (0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_nucleus) plt.plot(t, flat_list_plasma, color='seagreen') plt.fill_between(t, flat_list_nucleus, flat_list_plasma, color='darkseagreen', alpha=0.4) plt.xlabel('Time (year)') plt.ylabel('AGB (tCO2-eq/ha)') plt.show() ###Yearly Sequestration ###Nucleus #find the yearly sequestration by calculating the differences between elements in list 'flat_list_nucleus(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_nucleus = [p - q for q, p in zip(flat_list_nucleus, flat_list_nucleus[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_nuclues' with 0 values flat_list_nucleus = [0 if i < 0 else i for i in flat_list_nucleus] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_nucleus.insert(0,var) #make 'flat_list_nucleus' elements negative numbers to denote sequestration flat_list_nucleus = [ -x for x in flat_list_nucleus] print(flat_list_nucleus) #Plasma #find the yearly sequestration by calculating the differences between elements in list 'flat_list_plasma(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_plasma = [t - u for u, t in zip(flat_list_plasma, flat_list_plasma[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_plasma' with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) flat_list_plasma = [0 if i < 0 else i for i in flat_list_plasma] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_plasma.insert(0,var) #make 'flat_list_plasma' elements negative numbers to denote sequestration flat_list_plasma = [ -x for x in flat_list_plasma] print(flat_list_plasma) #%% #Step(6): post-harvest processing of wood/palm oil #post-harvest wood processing df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_HWP_S2nu = df2nu['PH_Emissions_HWP'].values PH_Emissions_HWP_S2pl = df2pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Enu = df3pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Epl = df3pl['PH_Emissions_HWP'].values #post-harvest palm oil processing df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_PO_S2nu = df2nu['PH_Emissions_PO'].values PH_Emissions_PO_S2pl = df2pl['PH_Emissions_PO'].values PH_Emissions_PO_Enu = df3pl['PH_Emissions_PO'].values PH_Emissions_PO_Epl = df3pl['PH_Emissions_PO'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S2nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) def decomp_CH4_S2nu(t,remainAGB_CH4_S2nu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S2nu #set zero matrix output_decomp_CH4_S2nu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S2nu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S2nu[i:,i] = decomp_CH4_S2nu(t[:len(t)-i],remain_part_CH4_S2nu) print(output_decomp_CH4_S2nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S2nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S2nu[:,i] = np.diff(output_decomp_CH4_S2nu[:,i]) i = i + 1 print(subs_matrix_CH4_S2nu[:,:4]) print(len(subs_matrix_CH4_S2nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S2nu = subs_matrix_CH4_S2nu.clip(max=0) print(subs_matrix_CH4_S2nu[:,:4]) #make the results as absolute values subs_matrix_CH4_S2nu = abs(subs_matrix_CH4_S2nu) print(subs_matrix_CH4_S2nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S2nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S2nu) subs_matrix_CH4_S2nu = np.vstack((zero_matrix_CH4_S2nu, subs_matrix_CH4_S2nu)) print(subs_matrix_CH4_S2nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S2nu = (tf,1) decomp_tot_CH4_S2nu = np.zeros(matrix_tot_CH4_S2nu) i = 0 while i < tf: decomp_tot_CH4_S2nu[:,0] = decomp_tot_CH4_S2nu[:,0] + subs_matrix_CH4_S2nu[:,i] i = i + 1 print(decomp_tot_CH4_S2nu[:,0]) #S2pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') tf = 201 t = np.arange(tf) def decomp_CH4_S2pl(t,remainAGB_CH4_S2pl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S2pl #set zero matrix output_decomp_CH4_S2pl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S2pl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S2pl[i:,i] = decomp_CH4_S2pl(t[:len(t)-i],remain_part_CH4_S2pl) print(output_decomp_CH4_S2pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S2pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S2pl[:,i] = np.diff(output_decomp_CH4_S2pl[:,i]) i = i + 1 print(subs_matrix_CH4_S2pl[:,:4]) print(len(subs_matrix_CH4_S2pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S2pl = subs_matrix_CH4_S2pl.clip(max=0) print(subs_matrix_CH4_S2pl[:,:4]) #make the results as absolute values subs_matrix_CH4_S2pl = abs(subs_matrix_CH4_S2pl) print(subs_matrix_CH4_S2pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S2pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S2pl) subs_matrix_CH4_S2pl = np.vstack((zero_matrix_CH4_S2pl, subs_matrix_CH4_S2pl)) print(subs_matrix_CH4_S2pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S2pl = (tf,1) decomp_tot_CH4_S2pl = np.zeros(matrix_tot_CH4_S2pl) i = 0 while i < tf: decomp_tot_CH4_S2pl[:,0] = decomp_tot_CH4_S2pl[:,0] + subs_matrix_CH4_S2pl[:,i] i = i + 1 print(decomp_tot_CH4_S2pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CH4_Enu(t,remainAGB_CH4_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Enu #set zero matrix output_decomp_CH4_Enu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Enu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Enu[i:,i] = decomp_CH4_Enu(t[:len(t)-i],remain_part_CH4_Enu) print(output_decomp_CH4_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Enu[:,i] = np.diff(output_decomp_CH4_Enu[:,i]) i = i + 1 print(subs_matrix_CH4_Enu[:,:4]) print(len(subs_matrix_CH4_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Enu = subs_matrix_CH4_Enu.clip(max=0) print(subs_matrix_CH4_Enu[:,:4]) #make the results as absolute values subs_matrix_CH4_Enu = abs(subs_matrix_CH4_Enu) print(subs_matrix_CH4_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Enu) subs_matrix_CH4_Enu = np.vstack((zero_matrix_CH4_Enu, subs_matrix_CH4_Enu)) print(subs_matrix_CH4_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Enu = (tf,1) decomp_tot_CH4_Enu= np.zeros(matrix_tot_CH4_Enu) i = 0 while i < tf: decomp_tot_CH4_Enu[:,0] = decomp_tot_CH4_Enu[:,0] + subs_matrix_CH4_Enu[:,i] i = i + 1 print(decomp_tot_CH4_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CH4_Epl(t,remainAGB_CH4_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Epl #set zero matrix output_decomp_CH4_Epl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Epl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Epl[i:,i] = decomp_CH4_Epl(t[:len(t)-i],remain_part_CH4_Epl) print(output_decomp_CH4_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Epl[:,i] = np.diff(output_decomp_CH4_Epl[:,i]) i = i + 1 print(subs_matrix_CH4_Epl[:,:4]) print(len(subs_matrix_CH4_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Epl = subs_matrix_CH4_Epl.clip(max=0) print(subs_matrix_CH4_Epl[:,:4]) #make the results as absolute values subs_matrix_CH4_Epl = abs(subs_matrix_CH4_Epl) print(subs_matrix_CH4_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Epl) subs_matrix_CH4_Epl = np.vstack((zero_matrix_CH4_Epl, subs_matrix_CH4_Epl)) print(subs_matrix_CH4_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Epl = (tf,1) decomp_tot_CH4_Epl = np.zeros(matrix_tot_CH4_Epl) i = 0 while i < tf: decomp_tot_CH4_Epl[:,0] = decomp_tot_CH4_Epl[:,0] + subs_matrix_CH4_Epl[:,i] i = i + 1 print(decomp_tot_CH4_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S2nu,label='CH4_S2nu') plt.plot(t,decomp_tot_CH4_S2pl,label='CH4_S2pl') plt.plot(t,decomp_tot_CH4_Enu,label='CH4_Enu') plt.plot(t,decomp_tot_CH4_Epl,label='CH4_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S2nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) def decomp_CO2_S2nu(t,remainAGB_CO2_S2nu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S2nu #set zero matrix output_decomp_CO2_S2nu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S2nu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S2nu[i:,i] = decomp_CO2_S2nu(t[:len(t)-i],remain_part_CO2_S2nu) print(output_decomp_CO2_S2nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S2nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S2nu[:,i] = np.diff(output_decomp_CO2_S2nu[:,i]) i = i + 1 print(subs_matrix_CO2_S2nu[:,:4]) print(len(subs_matrix_CO2_S2nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S2nu = subs_matrix_CO2_S2nu.clip(max=0) print(subs_matrix_CO2_S2nu[:,:4]) #make the results as absolute values subs_matrix_CO2_S2nu = abs(subs_matrix_CO2_S2nu) print(subs_matrix_CO2_S2nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S2nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S2nu) subs_matrix_CO2_S2nu = np.vstack((zero_matrix_CO2_S2nu, subs_matrix_CO2_S2nu)) print(subs_matrix_CO2_S2nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S2nu = (tf,1) decomp_tot_CO2_S2nu = np.zeros(matrix_tot_CO2_S2nu) i = 0 while i < tf: decomp_tot_CO2_S2nu[:,0] = decomp_tot_CO2_S2nu[:,0] + subs_matrix_CO2_S2nu[:,i] i = i + 1 print(decomp_tot_CO2_S2nu[:,0]) #S2pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') tf = 201 t = np.arange(tf) def decomp_CO2_S2pl(t,remainAGB_CO2_S2pl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S2pl #set zero matrix output_decomp_CO2_S2pl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S2pl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S2pl[i:,i] = decomp_CO2_S2pl(t[:len(t)-i],remain_part_CO2_S2pl) print(output_decomp_CO2_S2pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S2pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S2pl[:,i] = np.diff(output_decomp_CO2_S2pl[:,i]) i = i + 1 print(subs_matrix_CO2_S2pl[:,:4]) print(len(subs_matrix_CO2_S2pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S2pl = subs_matrix_CO2_S2pl.clip(max=0) print(subs_matrix_CO2_S2pl[:,:4]) #make the results as absolute values subs_matrix_CO2_S2pl = abs(subs_matrix_CO2_S2pl) print(subs_matrix_CO2_S2pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S2pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S2pl) subs_matrix_CO2_S2pl = np.vstack((zero_matrix_CO2_S2pl, subs_matrix_CO2_S2pl)) print(subs_matrix_CO2_S2pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S2pl = (tf,1) decomp_tot_CO2_S2pl = np.zeros(matrix_tot_CO2_S2pl) i = 0 while i < tf: decomp_tot_CO2_S2pl[:,0] = decomp_tot_CO2_S2pl[:,0] + subs_matrix_CO2_S2pl[:,i] i = i + 1 print(decomp_tot_CO2_S2pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CO2_Enu(t,remainAGB_CO2_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Enu #set zero matrix output_decomp_CO2_Enu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Enu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Enu[i:,i] = decomp_CO2_Enu(t[:len(t)-i],remain_part_CO2_Enu) print(output_decomp_CO2_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Enu[:,i] = np.diff(output_decomp_CO2_Enu[:,i]) i = i + 1 print(subs_matrix_CO2_Enu[:,:4]) print(len(subs_matrix_CO2_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Enu = subs_matrix_CO2_Enu.clip(max=0) print(subs_matrix_CO2_Enu[:,:4]) #make the results as absolute values subs_matrix_CO2_Enu = abs(subs_matrix_CO2_Enu) print(subs_matrix_CO2_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Enu) subs_matrix_CO2_Enu = np.vstack((zero_matrix_CO2_Enu, subs_matrix_CO2_Enu)) print(subs_matrix_CO2_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Enu = (tf,1) decomp_tot_CO2_Enu= np.zeros(matrix_tot_CO2_Enu) i = 0 while i < tf: decomp_tot_CO2_Enu[:,0] = decomp_tot_CO2_Enu[:,0] + subs_matrix_CO2_Enu[:,i] i = i + 1 print(decomp_tot_CO2_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CO2_Epl(t,remainAGB_CO2_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Epl #set zero matrix output_decomp_CO2_Epl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Epl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Epl[i:,i] = decomp_CO2_Epl(t[:len(t)-i],remain_part_CO2_Epl) print(output_decomp_CO2_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Epl[:,i] = np.diff(output_decomp_CO2_Epl[:,i]) i = i + 1 print(subs_matrix_CO2_Epl[:,:4]) print(len(subs_matrix_CO2_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Epl = subs_matrix_CO2_Epl.clip(max=0) print(subs_matrix_CO2_Epl[:,:4]) #make the results as absolute values subs_matrix_CO2_Epl = abs(subs_matrix_CO2_Epl) print(subs_matrix_CO2_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Epl) subs_matrix_CO2_Epl = np.vstack((zero_matrix_CO2_Epl, subs_matrix_CO2_Epl)) print(subs_matrix_CO2_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Epl = (tf,1) decomp_tot_CO2_Epl =
np.zeros(matrix_tot_CO2_Epl)
numpy.zeros
import sys import os sys.path.append(os.path.relpath("./scripts")) from lib import * import numpy as np import matplotlib.pyplot as plt SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 26 plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['mathtext.fontset'] = 'stix' plt.rcParams['font.family'] = 'STIXGeneral' def get_throughputs(confs, format_str): y_throughputs = [] for rate, nodes in confs: logs_dir = os.path.join('archive', format_str.format(rate, nodes)) # logs_dir = os.path.join('archive', 'outlier_detection_{}_{}_optimizer_greedy_ns3'.format(rate, nodes)) # logs_dir = os.path.join('logs') _, latencies = read_preprocess_latency_data(logs_dir) _, throughputs = read_preprocess_throughput_data(logs_dir) median_latency = np.percentile(latencies, 50) ten_latency =
np.percentile(latencies, 10)
numpy.percentile
#coding=utf-8 # Copyright 2017 - 2018 Baidu Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FGSM tutorial on mnist using advbox tool. FGSM method is non-targeted attack while FGSMT is targeted attack. """ import sys sys.path.append("..") import logging logging.basicConfig(level=logging.INFO,format="%(filename)s[line:%(lineno)d] %(levelname)s %(message)s") logger=logging.getLogger(__name__) #import matplotlib.pyplot as plt import numpy as np from PIL import Image #pip install Pillow from advbox.adversary import Adversary from advbox.attacks.deepfool import DeepFoolAttack from advbox.models.keras import KerasModel from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.preprocessing.image import img_to_array,array_to_img from keras.applications.resnet50 import decode_predictions import keras #pip install keras==2.1 def main(modulename,imagename): ''' Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 ''' # 设置为测试模式 keras.backend.set_learning_phase(0) model = ResNet50(weights=modulename) logging.info(model.summary()) img = image.load_img(imagename, target_size=(224, 224)) imagedata = image.img_to_array(img) #imagedata=imagedata[:, :, ::-1] imagedata = np.expand_dims(imagedata, axis=0) #logit fc1000 logits=model.get_layer('fc1000').output #keras中获取指定层的方法为: #base_model.get_layer('block4_pool').output) # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) KerasMode内部在进行预测和计算梯度时会进行预处理 # imagenet数据集归一化时 标准差为1 mean为[104, 116, 123] m = KerasModel( model, model.input, None, logits, None, bounds=(0, 255), channel_axis=3, preprocess=([104, 116, 123],1), featurefqueezing_bit_depth=8) attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 10} #y设置为空 会自动计算 adversary = Adversary(imagedata[:, :, ::-1],None) # deepfool non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print( 'attack success, adversarial_label=%d' % (adversary.adversarial_label) ) #对抗样本保存在adversary.adversarial_example adversary_image=np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成iunt8 #::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB adversary_image=adversary_image[:,:,::-1] adversary_image = np.array(adversary_image).astype("uint8").reshape([224,224,3]) logging.info(adversary_image - imagedata) img=array_to_img(adversary_image) img.save('adversary_image_nontarget.jpg') print("deepfool non-target attack done") attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 10} adversary = Adversary(imagedata[:, :, ::-1],None) tlabel = 489 adversary.set_target(is_targeted_attack=True, target_label=tlabel) # deepfool targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print( 'attack success, adversarial_label=%d' % (adversary.adversarial_label) ) #对抗样本保存在adversary.adversarial_example adversary_image=
np.copy(adversary.adversarial_example)
numpy.copy
import os import glob import numpy as np from sklearn import svm from sklearn import neural_network from sklearn.externals import joblib import cv2 import preprocessing from defs import * def load_data(desc, piece): X = None Y = None ratio = piece_to_ratio[piece] for piece_dir in pieces: piece_class = 0 if piece == piece_dir: piece_class = 1 for filename in glob.glob(os.path.join("feature_data", desc, str(ratio), piece_dir, "*.npy")): data = np.load(filename) if X is None: X = np.array(data) Y = np.array([piece_class]) else: X = np.vstack( (X, data) ) Y = np.hstack( (Y, [piece_class]) ) return (X, Y) ######################################################## #### #### #### SIFT #### #### #### ######################################################## def train_sift(): for piece in pieces: X, Y = load_data("SIFT", piece) clf = svm.SVC(class_weight=piece_weights[piece], probability=True) clf.fit(X, Y) joblib.dump(clf, "classifiers/classifier_sift_" + piece + ".pkl") ######################################################## #### #### #### Dense SIFT #### #### #### ######################################################## def train_dsift(): for piece in pieces: X, Y = load_data("DSIFT", piece) clf = svm.SVC(class_weight={0: 1, 1: 2}) clf.fit(X, Y) joblib.dump(clf, "classifiers/classifier_dsift_" + piece + ".pkl") ######################################################## #### #### #### HOG #### #### #### ######################################################## def train_hog(): for piece in pieces: X, Y = load_data_hog(piece) clf = svm.SVC(class_weight=piece_weights[piece], probability=True) clf.fit(X, Y) joblib.dump(clf, "classifiers/classifier_hog_" + piece + ".pkl") def load_data_hog(piece): X = None Y = None ratio = piece_to_ratio[piece] for piece_dir in pieces: piece_class = 0 if piece == piece_dir: piece_class = 1 for filename in glob.glob(os.path.join("feature_data", "HOG", str(ratio), piece_dir, "*.npy")): data =
np.load(filename)
numpy.load
#!/usr/bin/env python import argparse from cvfit import cvfit import cv2 import cv2.ximgproc import numpy as np import os import skimage import skimage.color import sys # construct the argument parser and parse the arguments def parse_args(): parser = argparse.ArgumentParser(prog=sys.argv[0], description="A command-line utility to test functionality of 3-D color homography color transfer model algorithm based on" \ "<NAME>., <NAME>., <NAME>. and <NAME>., 2017. 3D color homography model for photo-realistic color transfer re-coding. The Visual Computer, pp.1-11.") parser.add_argument('-s', '--source', action='store', required=True, help="Source image filepath.") parser.add_argument('-t', '--target', action='store', help="Target image filepath.") parser.add_argument('-c', '--convert', action='store_true', help="Flag to indicate that we are simply converting the source image using precalculated homography matrix + shading LUT.") parser.add_argument('-H', '--homography', action='store', required=True, help="Homography matrix (chromacity + shade-mapping interpolator function) filename, stored as compressed numpy archive.") parser.add_argument('-r', '--rescale', type=float, default=1.0, help="Factor to scale images by before calculating homography matrix H and shading map matrix D.") parser.add_argument('-o', '--output', action='store', help="Color-correct image filename if specified.") parsed = parser.parse_args(sys.argv[1:]) return(parsed) #cf_3D_H estimates a 2-D color homography color transfer model. # # CF_3D_H() returns the colour transfered source and the homography matrix # image source according to the target image target # # Options (opt.*): # * downsampling_res: specify the resolution of downsampled images # for faster color transfer approximation. [] for disabling. # * use_denoise: enable deniose by bilaterial filtering. # * use_curve: enable tone-mapping esimation by polynomial models. # # Copyright 2018 <NAME> <<EMAIL>>, University of East # Anglia. # References: # <NAME>., <NAME>., <NAME>.: Recoding color transfer as a # color homography. In: British Machine Vision Conference. BMVA (2016) def cf_3D_H(source, target, rescale=1.0, use_curve = True, use_denoise = True): osource = source.reshape((-1,3)) #The original image in flattened n-pixel RGB format osourceT = osource.T if rescale != 1.0: # downsampling ssource = cv2.resize(source, (0,0), fx=rescale, fy=rescale) starget = cv2.resize(target, (0,0), fx=rescale, fy=rescale) else: # use full res-images ssource = source.copy() starget = target.copy() ssource = ssource.reshape((-1,3)) # Reshape to flat n-pixel RGB image starget = starget.reshape((-1,3)) # Reshape to flat n-pixel RGB image sshape = ssource.shape ssourceT = ssource.T stargetT = starget.T ssshape = sshape #Estimate 3D homography P = np.vstack((ssourceT, np.ones((1,ssourceT.shape[1])))) #Stack row-wise Q = np.vstack((stargetT, np.ones((1,stargetT.shape[1])))) #Stack row-wise msk = (np.min(P,axis=0) > 1/255) & (np.min(Q,axis=0) > 1/255) (H,err,d) = uea_H_from_x_als(P[:,msk],Q[:,msk],10) #Apply 3D homography Pe = H @ P #Apply chromatic homography projection Pe = Pe[0:3,:]/Pe[3,:] Pe = np.maximum(Pe,0) #Element-wise max - zeros-out under-saturated pixels Pe = np.minimum(Pe,1) #Element-wise max - one-out over-saturated pixels #Brightness transfer PeMean = np.mean(Pe[:,msk],axis=0).T # transformed brightness TeMean = np.mean(stargetT[:,msk],axis=0).T # target brightness if use_curve: # estimate brightness transfer pp = cvfit(PeMean,TeMean,'quad') # b-b mapping else: # histogram matching pp = cvfit(PeMean,TeMean,'hist') # b-b mapping #Re-apply to a higher res image Pe = H @ np.vstack((osourceT, np.ones((1,osourceT.shape[1])))) Pe = Pe[0:3,:]/Pe[3,:] Pe = np.maximum(Pe,0) #Element-wise max - zeros-out under-saturated pixels Pe = np.minimum(Pe,1) #Element-wise max - one-out over-saturated pixels n = Pe.shape[1] #Number of pixels (or columns) PeMean = np.mean(Pe,axis=0).T # transformed brightness luIdx = (1+np.floor(PeMean*999)).astype('uint') # Need to convert to integer to be used as index to lookup table FMean = pp[luIdx] FMean = np.maximum(FMean,0) #Element-wise max - one-out over-saturated pixels D = FMean/(PeMean.reshape((-1,1))) # convert brightness change to shading - scaling factors D[PeMean < (1/255)] = 1 # discard dark pixel shadings -- or scaling factor is equal to 1 Ei = Pe.T.reshape(source.shape) ImD = D.reshape(source.shape[0:2]) #Reshape to source image size if use_denoise: # denoise the shading field grey = skimage.color.rgb2gray(source) #https://people.csail.mit.edu/sparis/bf_course/slides/03_definition_bf.pdf #Need to convert fields to 32-bit floats, otherwise stupid cv2 will error ImD = cv2.ximgproc.jointBilateralFilter(im2float(grey), im2float(ImD), d=-1, sigmaColor=0.1, sigmaSpace=len(D)/16) #Heuristics for sigmaSpatial are 2% of length of image diagonal -- sigma color depends on mean/median of image gradients ImD = im2double(ImD) #Manually broadcast and reshape, otherwise it appears that the broadcasting doesn't happen the way I expect ImD = np.repeat(ImD, 3).reshape((*ImD.shape,3)) Ei = np.minimum(np.maximum(Ei*ImD,0),1) #Now apply shading return (Ei,H,pp) def cf_3D_convert(source, H, pp, use_denoise=True): #Re-apply to a higher res image ssource = source.reshape((-1,3)) #Reshape to n-pixels by 3 columns for RGB ssourceT = ssource.T Pe = H @ np.vstack((ssourceT, np.ones((1,ssourceT.shape[1])))) Pe = Pe[0:3,:]/Pe[3,:] Pe = np.maximum(Pe,0) #Element-wise max - zeros-out under-saturated pixels Pe =
np.minimum(Pe,1)
numpy.minimum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 10 13:20:30 2019 recipes: use : cvr=run_ML(RI_proc=False,model_name='KRR',time_period=['2005','2019'], cv={'rkfold':[5,5]},regressors=['ch4', 'anom_nino3p4', 'qbo_cdas'], lms=None,plevels=82,swoosh_latlon=True, gridsearch=True) to run a non-linear KRR model gridsearch with reapeated kfolds get best params and best estimator: best_params = cvr.best_params_ best_model = cvr.best_estimator_ @author: shlomi """ # TODO: build GridSearchCV support directley like ultioutput regressors # for various models from strat_paths import work_chaim from strat_paths import adams_path from sklearn_xarray import RegressorWrapper from xarray.core.dataset import Dataset from pathlib import Path # import warnings filter from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) sound_path = work_chaim / 'sounding' def train_model_and_apply(train_period=['2004-08', '2019'], test_period=['1984', '2004-07'], model_name='KRR', regressors=['ch4', 'anom_nino3p4', 'qbo_cdas'], param_grid=None, skip_cv=False, plevels=None, model_params='KRR', lms=None, return_just_test=False): import xarray as xr from sklearn.metrics import r2_score from aux_functions_strat import xr_order from aux_functions_strat import dim_intersection # first run grid search on train set: train_args = dict(species='h2o', swoosh_field='combinedanomfillanom', model_name=model_name, RI_proc=False, time_period=train_period, cv={'rkfold': [5, 5]}, regressors=regressors, lms=lms, gridsearch=True, lat_slice=[-60, 60], swoosh_latlon=False, param_grid=param_grid, plevels=plevels, data_file='swoosh_latpress-2.5deg.nc') if not skip_cv: print('running GridSearchCV first:') cvr = run_ML(**train_args) if lms is not None: # for now support for just one level model = cvr['best_model'].item() else: model = cvr.best_estimator_ ml_params = model.get_params() args = train_args.copy() args.update(cv=None, gridsearch=False, ml_params=ml_params) rds_train = run_ML(**args) model = rds_train else: ml_params_krr=dict(alpha=2.0, coef0=1, degree=2, gamma=1.0, kernel='rbf', kernel_params=None) args = train_args.copy() if model_params is not None: if model_params == 'KRR': ml_params = ml_params_krr else: ml_params = None args.update(cv=None, gridsearch=False, ml_params=ml_params) rds_train = run_ML(**args) model = rds_train test_args = train_args.copy() test_args.update(cv=None, gridsearch=False, time_period=test_period) Pset = PredictorSet(**test_args, loadpath=Path().cwd() / 'regressors') X = Pset.pre_process() Target = TargetArray(**test_args, loadpath=work_chaim) y = Target.pre_process() # if not skip_cv: # predict = y.copy(data=model.predict(X)) # else: if lms is not None: predict = run_model_with_shifted_plevels(model, X, y, Target, plevel=plevels, lms=lms, just_predict=True) predict = predict.rename({'regressors': 'lat'}) predict['lat'] = y.unstack('samples')['lat'] predict['level'] = y.unstack('samples')['level'] predict = predict.stack(regressors=['lat', 'level']) else: predict = model.predict(X) predict = predict.rename({'regressors': 'samples'}) times = dim_intersection([predict, y], dropna=True) y = y.sel(time=times) predict = predict.sel(time=times) rds_test = xr.Dataset() rds_test['original'] = y rds_test['predict'] = predict r2 = r2_score(y, predict, multioutput='raw_values') rds_test['r2'] = xr.DataArray(r2, dims=['samples']) if not isinstance(model, ImprovedRegressor): rds_test['params'] = xr.DataArray(model.coef_, dims=['samples', 'regressors']) r2_adj = 1.0 - (1.0 - rds_test['r2']) * (len(y) - 1.0) / \ (len(y) - X.shape[1]) rds_test['r2_adj'] = r2_adj rds_test['predict'].attrs = y.attrs rds_test['resid'] = y - rds_test['predict'] rds_test['resid'].attrs = y.attrs rds_test['resid'].attrs['long_name'] = 'Residuals' rds_test = rds_test.unstack('samples') # order: rds_test = xr_order(rds_test) # put coords attrs back: for coord, attr in y.attrs['coords_attrs'].items(): rds_test[coord].attrs = attr # remove coords attrs from original, predict and resid: rds_test.original.attrs.pop('coords_attrs') rds_test.predict.attrs.pop('coords_attrs') rds_test.resid.attrs.pop('coords_attrs') all_var_names = [x for x in rds_test.data_vars.keys()] sample_types = [x for x in rds_test.data_vars.keys() if 'time' in rds_test[x].dims] feature_types = [x for x in rds_test.data_vars.keys() if 'regressors' in rds_test[x].dims] error_types = list(set(all_var_names) - set(sample_types + feature_types)) rds_test.attrs['sample_types'] = sample_types rds_test.attrs['feature_types'] = feature_types rds_test.attrs['error_types'] = error_types rds_test.attrs['sample_dim'] = 'time' rds_test.attrs['feature_dim'] = 'regressors' # add X to results: rds_test['X'] = X print(model) das = [x for x in rds_train.results_ if x in rds_test] # don't use r2... rds_train = rds_train.results_[das] rds = xr.concat([rds_train, rds_test], 'time') rds = rds.sortby('time') if return_just_test: return rds_test else: return rds class Parameters: """a parameters class for stratosphere gases modelling using ML methods""" def __init__(self, model_name='LR', season=None, # regressors_file='Regressors.nc', swoosh_field='combinedanomfillanom', regressors=None, # default None means all regressors # reg_add_sub=None, poly_features=None, special_run=None, reg_time_shift=None, add_poly_reg=None, data_name='swoosh', species='h2o', time_period=['1994', '2019'], area_mean=False, lat_slice=[-20, 20], plevels=None, # original_data_file='swoosh_lonlatpress-20deg-5deg.nc', data_file='swoosh_latpress-2.5deg.nc' ,**kwagrs): self.filing_order = ['data_name', 'field', 'model_name', 'season', 'reg_selection', 'special_run'] self.delimeter = '_' self.model_name = model_name self.season = season self.lat_slice = lat_slice self.plevels = plevels self.reg_time_shift = reg_time_shift self.poly_features = poly_features # self.reg_add_sub = reg_add_sub self.regressors = regressors self.special_run = special_run self.add_poly_reg = add_poly_reg # self.regressors_file = regressors_file # self.sw_field_list = ['combinedanomfillanom', 'combinedanomfill', # 'combinedanom', 'combinedeqfillanom', # 'combinedeqfill', 'combinedeqfillseas', # 'combinedseas', 'combined'] self.swoosh_field = swoosh_field self.run_on_cluster = False # False to run locally mainly to test stuff self.data_name = data_name # merra, era5 self.species = species # can be T or phi for era5 self.time_period = time_period self.area_mean = area_mean self.data_file = data_file # original data filename (in work_path) self.work_path = work_chaim self.cluster_path = adams_path # update attrs from dict containing keys as attrs and vals as attrs vals # to be updated def from_dict(self, d): self.__dict__.update(d) return self def show(self, name='all'): from aux_functions_strat import text_blue if name == 'all': for attr, value in vars(self).items(): text_blue(attr, end=" "), print('=', value, end=" ") print('') elif hasattr(self, name): text_blue(name, end=" "), print('=', getattr(self, name), end=" ") print('') # def load(self, name='regressors'): # import xarray as xr # if name == 'regressors': # data = xr.open_dataset(self.regressors_file) # elif name == 'original': # data = xr.open_dataset(self.work_path + self.original_data_file) # return data def load_regressors(self): from make_regressors import load_all_regressors return load_all_regressors() def select_model(self, model_name=None, ml_params=None): # pick ml model from ML_models class dict: ml = ML_Switcher() if model_name is not None: ml_model = ml.pick_model(model_name) self.model_name = model_name else: ml_model = ml.pick_model(self.model_name) # set external parameters if i want: if ml_params is not None: ml_model.set_params(**ml_params) self.param_grid = ml.param_grid return ml_model class ML_Switcher(object): def pick_model(self, model_name): """Dispatch method""" # from sklearn.model_selection import GridSearchCV self.param_grid = None method_name = str(model_name) # Get the method from 'self'. Default to a lambda. method = getattr(self, method_name, lambda: "Invalid ML Model") # if gridsearch: # return(GridSearchCV(method(), self.param_grid, n_jobs=-1, # return_train_score=True)) # else: # Call the method as we return it return method() def LR(self): from sklearn.linear_model import LinearRegression return LinearRegression(n_jobs=-1, copy_X=True) def RANSAC(self): from sklearn.linear_model import RANSACRegressor return RANSACRegressor(random_state=42) def GPSR(self): from gplearn.genetic import SymbolicRegressor return SymbolicRegressor(random_state=42, n_jobs=1, metric='mse') def LASSOCV(self): from sklearn.linear_model import LassoCV import numpy as np return LassoCV(random_state=42, cv=5, n_jobs=-1, alphas=
np.logspace(-5, 1, 60)
numpy.logspace
""" Simple two-level AMR using TF """ import numpy as np np.set_printoptions(edgeitems=30, linewidth=200, formatter=dict(float=lambda x: "%.3g" % x)) import tensorflow.compat.v1 as tf from my_libs.utils import grid_points, int2digits, digits2int, linear_interp_coeff import matplotlib.pyplot as plt from matplotlib import tri as mtri from matplotlib import collections as mc from matplotlib.backends.backend_pdf import PdfPages def my_show(): try: pdf.savefig() except: plt.show() def plot_amr(mesh, field, edges, colorbar=False): fig1, ax1 = plt.subplots(figsize=(7,7)) triang = mtri.Triangulation(mesh[:,0], mesh[:,1], None) ax1.set_aspect(1) tpc = ax1.tripcolor(triang, field.ravel(), vmin=0, vmax=1) if colorbar: fig1.colorbar(tpc) lines = mesh[edges] pbc_flag = np.where(np.linalg.norm(lines[:,0]-lines[:,1],axis=1)< (N1+1)) lines = lines[pbc_flag] ax1.add_collection(mc.LineCollection(lines, colors='r', linewidths=0.7)) #, colors=np.random.rand([len(edges),3]), linewidths=1.1)) my_show() class amr_state_variables: # def __init__(self, dim, shape_all, shape0, mask1, mask1_where, field0, field1, shared_interface, shared_edge3d, mask_all, field_all, edge_all, type_all=None, refine_threshold=0.001, periodic=True): def __init__(self, dim, shape_all, shape0, field_all, type_all=None, refine_threshold=0.001, periodic=True, buffer=0, eval_freq=1): # """" # shared_interface: flag of shape [shape0, dim, 2] # shared_edge3d: [shape0, dim, dim, 2, 2] # """" assert periodic, 'Must be periodic' self.dim = dim self.shape_all = tuple(shape_all) self.n_all = np.prod(shape_all) self.ijk2int = tf.convert_to_tensor([shape_all[1],1] if dim==2 else [shape_all[1]*shape_all[2],shape_all[2],1], dtype=tf.int64) # edge_all = tf.tensordot(edge_all, ijk2int, 1) self.shape0 = tuple(shape0) shape0 = np.array(shape0) self.n0 = np.prod(shape0) shape1 = np.array(shape_all) // np.array(shape0) self.shape1 = tuple(shape1) self.shape1_plus1 = (-1,) + tuple(np.array(shape1)+1) assert np.all(np.array(shape_all) == (np.array(shape0)*shape1)), 'Incompatible shapes' self.interpolator1 = tf.constant(linear_interp_coeff(self.shape1).astype(np.float32)) # mesh0 = np.reshape(np.stack(np.meshgrid(*[np.arange(0,shape_all[d],shape1[d]) for d in range(dim)], indexing='ij'),-1), (-1, dim)) mesh0_0 = grid_points(shape0-1) mesh0 = mesh0_0*shape1 self.mesh0 = tf.convert_to_tensor(mesh0) # indices_per1_corner = np.reshape(np.stack(np.meshgrid(*[[0,N] for N in shape1], indexing='ij'),-1), (1,-1, dim)) indices_per1_corner = grid_points([1]*dim)*shape1 self.n_per1_corner = 2**dim # self.mesh0_corner = tf.convert_to_tensor(((mesh0[:,None] + indices_per1_corner) % shape_all).reshape((-1,dim))) self.mesh0_corner_ = tf.convert_to_tensor(((mesh0[:,None] + indices_per1_corner) % shape_all)) # indices_per1_whole = np.reshape(np.stack(np.meshgrid(*[np.arange(N+1) for N in shape1], indexing='ij'),-1), (1,-1, dim)) indices_per1_whole = grid_points(shape1) self.indices_per1_whole = tf.constant(indices_per1_whole) self.n_per1_whole = indices_per1_whole.shape[-2] self.mesh0_whole = tf.convert_to_tensor(((mesh0[:,None] + indices_per1_whole) % shape_all)) # print(f'debug mesh0 {self.mesh0.shape} mesh0corner {self.mesh0_corner.shape} mesh0_whole {self.mesh0_whole.shape}') self.field_all = tf.convert_to_tensor(field_all) assert self.field_all.shape[-1] == 1, ValueError(f'Only one field implemented so far, got {self.field_all.shape[-1]}') # self.mask1 = mask1 # self.mask1_where = mask1_where # self.field0 = field0 # self.field1 = field1 # self.shared_interface = shared_interface # self.shared_edge3d = shared_edge3d self.periodic = periodic self.buffer = buffer self.eval_freq = eval_freq # self.n1 = mask1_where.shape[0] # self.n1_all = np.prod(shape0) # self.mask_all = mask_all # self.field_all = field_all # self.edge_all = edge_all type_all = np.zeros(self.shape_all+(1,), dtype=np.int32) if type_all is None else np.reshape(np.array(type_all, dtype=np.int32), self.shape_all+(1,)) self.type_all = tf.convert_to_tensor(type_all) self.refine_threshold = refine_threshold # mesh_all = grid_points(np.array(shape_all)-1)# np.reshape(np.stack(np.meshgrid(*[np.arange(N) for N in shape_all], indexing='ij'),-1), (-1, dim)) mesh_all = grid_points(
np.array(shape_all)
numpy.array
import numpy as np from os import path import matplotlib.pyplot as plt import sklearn from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import torch import torch.nn as nn import torch.optim as optim from captum.attr import LayerConductance, LayerActivation, LayerIntegratedGradients from captum.attr import IntegratedGradients, DeepLift, GradientShap, NoiseTunnel, FeatureAblation boston = load_boston() feature_names = boston.feature_names X = boston.data y = boston.target torch.manual_seed(1234) np.random.seed(1234) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) fig, axs = plt.subplots(nrows=3, ncols=5, figsize=(30, 20)) for i, (ax, col) in enumerate(zip(axs.flat, feature_names)): x = X[:, i] pf = np.polyfit(x, y, 1) p = np.poly1d(pf) ax.plot(x, y, "o") ax.plot(x, p(x), "r--") ax.set_title(col + " vs Prices") ax.set_xlabel(col) ax.set_ylabel("Prices") X_train = torch.tensor(X_train).float() y_train = torch.tensor(y_train).view(-1, 1).float() X_test = torch.tensor(X_test).float() y_test = torch.tensor(y_test).view(-1, 1).float() datasets = torch.utils.data.TensorDataset(X_train, y_train) train_iter = torch.utils.data.DataLoader(datasets, batch_size=10, shuffle=True) batch_size = 50 num_epochs = 200 learning_rate = 0.0001 size_hidden1 = 100 size_hidden2 = 50 size_hidden3 = 10 size_hidden4 = 1 class BostonModel(nn.Module): def __init__(self): super().__init__() self.lin1 = nn.Linear(13, size_hidden1) self.relu1 = nn.ReLU() self.lin2 = nn.Linear(size_hidden1, size_hidden2) self.relu2 = nn.ReLU() self.lin3 = nn.Linear(size_hidden2, size_hidden3) self.relu3 = nn.ReLU() self.lin4 = nn.Linear(size_hidden3, size_hidden4) def forward(self, input): return self.lin4(self.relu3(self.lin3(self.relu2(self.lin2(self.relu1(self.lin1(input))))))) model = BostonModel() model.train() criterion = nn.MSELoss(reduction="sum") def train(model_inp, num_epochs=num_epochs): optimizer = torch.optim.RMSprop(model_inp.parameters(), lr=learning_rate) for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in train_iter: outputs = model_inp(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() running_loss += loss.item() optimizer.step() if epoch % 20 == 0: print( "Epoch [%d]/[%d] running accumulative loss across all batches: %.3f" % (epoch + 1, num_epochs, running_loss) ) running_loss = 0.0 def train_load_save_model(model_obj, model_path): if path.isfile(model_path): print("Loading pre-trained model from: {}".format(model_path)) model_obj.load_state_dict(torch.load(model_path)) else: train(model_obj) print("Finished training the model. Saving the model to the path: {}".format(model_path)) torch.save(model_obj.state_dict(), model_path) SAVED_MODEL_PATH = ".save/boston_model.pt" train_load_save_model(model, SAVED_MODEL_PATH) model.eval() outputs = model(X_test) err = np.sqrt(mean_squared_error(outputs.detach().numpy(), y_test.detach().numpy())) print("model err: ", err) ig = IntegratedGradients(model) ig_nt = NoiseTunnel(ig) dl = DeepLift(model) gs = GradientShap(model) fa = FeatureAblation(model) ig_attr_test = ig.attribute(X_test, n_steps=50) ig_nt_attr_test = ig_nt.attribute(X_test) dl_attr_test = dl.attribute(X_test) gs_attr_test = gs.attribute(X_test, X_train) fa_attr_test = fa.attribute(X_test) x_axis_data = np.arange(X_test.shape[1]) x_axis_data_labels = list(map(lambda idx: feature_names[idx], x_axis_data)) ig_attr_test_sum = ig_attr_test.detach().numpy().sum(0) ig_attr_test_norm_sum = ig_attr_test_sum / np.linalg.norm(ig_attr_test_sum, ord=1) ig_nt_attr_test_sum = ig_nt_attr_test.detach().numpy().sum(0) ig_nt_attr_test_norm_sum = ig_nt_attr_test_sum / np.linalg.norm(ig_nt_attr_test_sum, ord=1) dl_attr_test_sum = dl_attr_test.detach().numpy().sum(0) dl_attr_test_norm_sum = dl_attr_test_sum / np.linalg.norm(dl_attr_test_sum, ord=1) gs_attr_test_sum = gs_attr_test.detach().numpy().sum(0) gs_attr_test_norm_sum = gs_attr_test_sum / np.linalg.norm(gs_attr_test_sum, ord=1) fa_attr_test_sum = fa_attr_test.detach().numpy().sum(0) fa_attr_test_norm_sum = fa_attr_test_sum /
np.linalg.norm(fa_attr_test_sum, ord=1)
numpy.linalg.norm
import numpy import matplotlib.pyplot as plt from firmament import Renderer from firmament.planets import earth config = { 'size_x': 1000, 'size_y': 1000, 'ray_samples': 16, 'light_samples': 8, 'exposure': 2.0, 'zoom': 2.5, 'eye_pos': numpy.array([0, -3, 1.1]), 'eye_dir': numpy.array([0, 1, -0.35]) } sun_range = (0, 360, 10) renderer = Renderer(config, earth) for i in numpy.arange(*sun_range): sun = (
numpy.cos(i*2*numpy.pi/360)
numpy.cos
import numpy as np from numba import jit from netket.operator import LocalOperator import numbers class FermionLocalOperator(LocalOperator): @staticmethod @jit(nopython=True) def _get_conn_flattened_kernel( x, sections, local_states, basis, constant, diag_mels, n_conns, all_mels, all_x_prime, acting_on, acting_size, pad=False, ): batch_size = x.shape[0] n_sites = x.shape[1] assert sections.shape[0] == batch_size n_operators = n_conns.shape[0] xs_n = np.empty((batch_size, n_operators), dtype=np.intp) tot_conn = 0 max_conn = 0 for b in range(batch_size): # diagonal element conn_b = 1 # counting the off-diagonal elements for i in range(n_operators): acting_size_i = acting_size[i] xs_n[b, i] = 0 x_b = x[b] x_i = x_b[acting_on[i, :acting_size_i]] for k in range(acting_size_i): xs_n[b, i] += (
np.searchsorted(local_states, x_i[acting_size_i - k - 1])
numpy.searchsorted
import mpsort from runtests.mpi import MPITest, MPITestFixture import numpy from numpy.testing import assert_array_equal from itertools import product import pytest def split(array, comm, localsize=None): array = comm.bcast(array) if localsize is None: sp = numpy.array_split(array, comm.size) return comm.scatter(sp) else: g = comm.allgather(localsize) return comm.scatter(numpy.array_split(array, numpy.cumsum(g)[:-1])) def heal(array, comm): a = comm.allgather(array) a = numpy.concatenate(a, axis=0) return a def adjustsize(size, comm): ressize = size + 1 - 2 * ((comm.rank) % 2) if comm.size % 2 == 1: if comm.rank == 0: ressize = size return ressize @MPITest(commsize=(1, 2, 3, 4)) def test_sort_i4(comm): s = numpy.int32(numpy.random.random(size=1000) * 1000 - 400) local = split(s, comm) s = heal(local, comm) mpsort.sort(local, orderby=None, out=None, comm=comm) r = heal(local, comm) s.sort() assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_i8(comm): s = numpy.int64(numpy.random.random(size=1000) * 1000 - 400) local = split(s, comm) s = heal(local, comm) mpsort.sort(local, orderby=None, out=None, comm=comm) r = heal(local, comm) s.sort() assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_u8(comm): s = numpy.uint64(numpy.random.random(size=1000) * 1000 - 400) local = split(s, comm) s = heal(local, comm) mpsort.sort(local, orderby=None, out=None, comm=comm) r = heal(local, comm) s.sort() assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_u4(comm): s = numpy.uint32(numpy.random.random(size=1000) * 1000 - 400) local = split(s, comm) s = heal(local, comm) mpsort.sort(local, orderby=None, out=None, comm=comm) r = heal(local, comm) s.sort() assert_array_equal(s, r) TUNINGS = [ [], ['DISABLE_SPARSE_ALLTOALLV'], ['REQUIRE_SPARSE_ALLTOALLV'], ['REQUIRE_GATHER_SORT'], ['DISABLE_GATHER_SORT'], ] comm = MPITestFixture([1, 2, 3, 4], scope='function') @pytest.mark.parametrize("tuning", TUNINGS) def test_sort_tunings(comm, tuning): s = numpy.int32(numpy.random.random(size=1000) * 1000) local = split(s, comm) s = heal(local, comm) g = comm.allgather(local.size) mpsort.sort(local, orderby=None, out=None, comm=comm, tuning=tuning) r = heal(local, comm) s.sort() assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_inplace(comm): s = numpy.int32(numpy.random.random(size=1000) * 1000) local = split(s, comm) s = heal(local, comm) g = comm.allgather(local.size) mpsort.sort(local, local, out=None, comm=comm) r = heal(local, comm) s.sort() assert_array_equal(s, r) @MPITest(commsize=(4)) def test_sort_mismatched_zeros(comm): s = numpy.int32(numpy.random.random(size=1000) * 1000) local = split(s, comm, [0, 400, 0, 600][comm.rank]) s = heal(local, comm) res = split(s, comm, [200, 200, 0, 600][comm.rank]) res[:] = numpy.int32(numpy.random.random(size=res.size) * 1000) mpsort.sort(local, local, out=res, comm=comm, tuning=['REQUIRE_GATHER_SORT']) s.sort() r = heal(res, comm) assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_outplace(comm): s = numpy.int32(numpy.random.random(size=1000) * 1000) local = split(s, comm) s = heal(local, comm) res = numpy.zeros(adjustsize(local.size, comm), dtype=local.dtype) mpsort.sort(local, local, out=res, comm=comm) s.sort() r = heal(res, comm) assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_flatiter(comm): s = numpy.int32(numpy.random.random(size=1000) * 1000) local = split(s, comm) s = heal(local, comm) res = numpy.zeros(adjustsize(local.size, comm), dtype=local.dtype) mpsort.sort(local.flat, local.flat, out=res.flat, comm=comm) s.sort() r = heal(res, comm) assert_array_equal(s, r) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_struct(comm): s = numpy.empty(10, dtype=[ ('value', 'i8'), ('key', 'i8')]) numpy.random.seed(1234) s['value'] = numpy.int32(numpy.random.random(size=10) * 1000-400) s['key'] = s['value'] backup = s.copy() local = split(s, comm) s = heal(local, comm) res = numpy.zeros_like(local) mpsort.sort(local, 'key', out=res, comm=comm) r = heal(res, comm) backup.sort(order='key') assert_array_equal(backup['value'], r['value']) @MPITest(commsize=(1, 2, 3, 4)) def test_sort_struct_vector(comm): s = numpy.empty(10, dtype=[ ('value', 'i8'), ('key', 'i8'), ('vkey', ('i8', 2))]) s['value'] = numpy.int32(numpy.random.random(size=len(s)) * 1000) # use a scalar key to trick numpy # numpy sorts as byte streams for vector fields. s['key'][:][...] = s['value'] s['vkey'][:, 0][...] = s['value'] s['vkey'][:, 1][...] = s['value'] local = split(s, comm) s = heal(local, comm) res = numpy.zeros_like(local) mpsort.sort(local, 'vkey', out=res, comm=comm) r = heal(res, comm) s.sort(order='key')
assert_array_equal(s['value'], r['value'])
numpy.testing.assert_array_equal
import sys import os sys.path.append(os.pardir) import numpy as np import unittest import coropy.utils as cu class TestUtils(unittest.TestCase): """Class for `utils.py` tests.""" def test_normalize(self): self.assertIsNone( np.testing.assert_array_equal(cu.normalize([10, 50]), [0., 1.])) self.assertIsNone( np.testing.assert_array_almost_equal( cu.normalize(range(100)), np.linspace(0, 1, 100), decimal=2)) self.assertIsNone( np.testing.assert_array_equal(cu.normalize([-1, 1]), [0., 1.])) self.assertRaises(ValueError, cu.normalize, 5.) self.assertRaises(AssertionError, cu.normalize, [[1, 2, 3]]) self.assertRaises(AssertionError, cu.normalize, [5]) self.assertRaises(ValueError, cu.normalize, [-np.nan, 50]) self.assertWarns(RuntimeWarning, cu.normalize, [0, 0, 0]) def test_restore(self): self.assertIsNone( np.testing.assert_array_equal( cu.restore([0., 1.], [10, 50]), [10., 50.])) self.assertIsNone( np.testing.assert_array_almost_equal( cu.restore(np.linspace(0, 1, 100), range(100)), range(100), decimal=2)) self.assertRaises(ValueError, cu.restore, [5.], 0) self.assertRaises(AssertionError, cu.restore, [[1, 2, 3]], [0, 3]) self.assertRaises(ValueError, cu.restore, [0, 1], [-np.nan, 50]) def test_moving_average(self): a = np.array([1, 2, 3, 4, 5]) a_2 =
np.array([1.5, 2.5, 3.5, 4.5])
numpy.array
import tensorflow as tf import mesh_renderer from scipy.io import loadmat,savemat import numpy as np # define facemodel for reconstruction class BFM(): def __init__(self): model_path = './BFM/BFM_model_front.mat' model = loadmat(model_path) self.meanshape = model['meanshape'] # mean face shape self.idBase = model['idBase'] # identity basis self.exBase = model['exBase'] # expression basis self.meantex = model['meantex'] # mean face texture self.texBase = model['texBase'] # texture basis self.point_buf = model['point_buf'] # adjacent face index for each vertex, starts from 1 (only used for calculating face normal) self.tri = model['tri'] # vertex index for each triangle face, starts from 1 self.keypoints = np.squeeze(model['keypoints']).astype(np.int32) - 1 # 68 face landmark index, starts from 0 # compute vertex normal using one-ring neighborhood # input: face_shape with shape [1,N,3] # output: v_norm with shape [1,N,3] def Compute_norm(face_shape,facemodel): face_id = facemodel.tri # vertex index for each triangle face, with shape [F,3], F is number of faces point_id = facemodel.point_buf # adjacent face index for each vertex, with shape [N,8], N is number of vertex shape = face_shape face_id = (face_id - 1).astype(np.int32) point_id = (point_id - 1).astype(np.int32) v1 = shape[:,face_id[:,0],:] v2 = shape[:,face_id[:,1],:] v3 = shape[:,face_id[:,2],:] e1 = v1 - v2 e2 = v2 - v3 face_norm = np.cross(e1,e2) # compute normal for each face face_norm = np.concatenate([face_norm,np.zeros([1,1,3])], axis = 1) # concat face_normal with a zero vector at the end v_norm = np.sum(face_norm[:,point_id,:], axis = 2) # compute vertex normal using one-ring neighborhood v_norm = v_norm/np.expand_dims(np.linalg.norm(v_norm,axis = 2),2) # normalize normal vectors return v_norm # input: coeff with shape [1,257] def Split_coeff(coeff): id_coeff = coeff[:,:80] # identity(shape) coeff of dim 80 ex_coeff = coeff[:,80:144] # expression coeff of dim 64 tex_coeff = coeff[:,144:224] # texture(albedo) coeff of dim 80 angles = coeff[:,224:227] # ruler angles(x,y,z) for rotation of dim 3 gamma = coeff[:,227:254] # lighting coeff for 3 channel SH function of dim 27 translation = coeff[:,254:] # translation coeff of dim 3 return id_coeff,ex_coeff,tex_coeff,angles,gamma,translation # compute vertex texture(albedo) with tex_coeff # input: tex_coeff with shape [1,N,3] # output: face_texture with shape [1,N,3], RGB order, range from 0-255 def Texture_formation(tex_coeff,facemodel): face_texture = np.einsum('ij,aj->ai',facemodel.texBase,tex_coeff) + facemodel.meantex face_texture = np.reshape(face_texture,[1,-1,3]) return face_texture # compute rotation matrix based on 3 ruler angles # input: angles with shape [1,3] # output: rotation matrix with shape [1,3,3] def Compute_rotation_matrix(angles): angle_x = angles[:,0][0] angle_y = angles[:,1][0] angle_z = angles[:,2][0] # compute rotation matrix for X,Y,Z axis respectively rotation_X = np.array([1.0,0,0,\ 0,np.cos(angle_x),-np.sin(angle_x),\ 0,np.sin(angle_x),np.cos(angle_x)]) rotation_Y = np.array([np.cos(angle_y),0,np.sin(angle_y),\ 0,1,0,\ -np.sin(angle_y),0,np.cos(angle_y)]) rotation_Z = np.array([np.cos(angle_z),-np.sin(angle_z),0,\ np.sin(angle_z),np.cos(angle_z),0,\ 0,0,1]) rotation_X = np.reshape(rotation_X,[1,3,3]) rotation_Y = np.reshape(rotation_Y,[1,3,3]) rotation_Z = np.reshape(rotation_Z,[1,3,3]) rotation = np.matmul(np.matmul(rotation_Z,rotation_Y),rotation_X) rotation = np.transpose(rotation, axes = [0,2,1]) #transpose row and column (dimension 1 and 2) return rotation # compute vertex color using face_texture and SH function lighting approximation # input: face_texture with shape [1,N,3] # norm with shape [1,N,3] # gamma with shape [1,27] # output: face_color with shape [1,N,3], RGB order, range from 0-255 # lighting with shape [1,N,3], color under uniform texture def Illumination_layer(face_texture,norm,gamma): num_vertex = np.shape(face_texture)[1] init_lit = np.array([0.8,0,0,0,0,0,0,0,0]) gamma = np.reshape(gamma,[-1,3,9]) gamma = gamma + np.reshape(init_lit,[1,1,9]) # parameter of 9 SH function a0 = np.pi a1 = 2*np.pi/np.sqrt(3.0) a2 = 2*np.pi/np.sqrt(8.0) c0 = 1/np.sqrt(4*np.pi) c1 = np.sqrt(3.0)/np.sqrt(4*np.pi) c2 = 3*np.sqrt(5.0)/
np.sqrt(12*np.pi)
numpy.sqrt
from dataclasses import dataclass import collections import collections.abc import math from abc import abstractmethod from functools import reduce import pandas as pd import numpy as np import matplotlib import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as mtick import matplotlib.patches as mptch import matplotlib.gridspec as gridspec import matplotlib.path as path import matplotlib.cm as cm from matplotlib.colors import BoundaryNorm from mpl_toolkits.mplot3d import Axes3D # noqa: F401 # not directly used but need to import to plot 3d from scipy.interpolate import griddata from mpl_toolkits.axes_grid1 import make_axes_locatable from pyqstrat.pq_utils import series_to_array, strtup2date, has_display, resample_ts, resample_trade_bars from pyqstrat.pq_types import ReasonCode, Trade from typing import Sequence, Tuple, Mapping, Union, MutableMapping, List, Optional # set_defaults() class DateFormatter(mtick.Formatter): ''' Formats timestamps on plot axes. See matplotlib Formatter ''' def __init__(self, timestamps: np.ndarray, fmt: str) -> None: self.timestamps = timestamps self.fmt = fmt def __call__(self, x, pos: int = 0): 'Return the label for time x at position pos' ind = int(np.round(x)) if ind >= len(self.timestamps) or ind < 0: return '' return mdates.num2date(self.timestamps[ind]).strftime(self.fmt) class HorizontalLine: '''Draws a horizontal line on a subplot''' def __init__(self, y: float, name: str = None, line_type: str = 'dashed', color: str = None) -> None: self.y = y self.name = name self.line_type = line_type self.color = color class VerticalLine: '''Draws a vertical line on a subplot where x axis is not a date-time axis''' def __init__(self, x: float, name: str = None, line_type: str = 'dashed', color: str = None) -> None: self.x = x self.name = name self.line_type = line_type self.color = color class DateLine: '''Draw a vertical line on a plot with a datetime x-axis''' def __init__(self, date: np.datetime64, name: str = None, line_type: str = 'dashed', color: str = None) -> None: self.date = date self.name = name self.line_type = line_type self.color = color class DisplayAttributes: pass @dataclass class BoxPlotAttributes(DisplayAttributes): ''' Attributes: proportional_widths: if set to True, the width each box in the boxplot will be proportional to the number of items in its corresponding array show_means: Whether to display a marker where the mean is for each array show_outliers: Whether to show markers for outliers that are outside the whiskers. Box is at Q1 = 25%, Q3 = 75% quantiles, whiskers are at Q1 - 1.5 * (Q3 - Q1), Q3 + 1.5 * (Q3 - Q1) notched: Whether to show notches indicating the confidence interval around the median ''' proportional_widths: bool = True show_means: bool = True show_all: bool = True show_outliers: bool = False notched: bool = False @dataclass class LinePlotAttributes(DisplayAttributes): line_type: Optional[str] = 'solid' line_width: Optional[int] = None color: Optional[str] = None marker: Optional[str] = None marker_size: Optional[int] = None marker_color: Optional[str] = None @dataclass class ScatterPlotAttributes(DisplayAttributes): marker: str = 'X' marker_size: int = 50 marker_color: str = 'red' @dataclass class SurfacePlotAttributes(DisplayAttributes): ''' Attributes: marker: Adds a marker to each point in x, y, z to show the actual data used for interpolation. You can set this to None to turn markers off. interpolation: Can be ‘linear’, ‘nearest’ or ‘cubic’ for plotting z points between the ones passed in. See scipy.interpolate.griddata for details cmap: Colormap to use (default matplotlib.cm.RdBu_r). See matplotlib colormap for details ''' marker: str = 'X' marker_size: int = 50 marker_color: str = 'red' interpolation: str = 'linear' cmap: matplotlib.colors.Colormap = matplotlib.cm.RdBu_r @dataclass class ContourPlotAttributes(DisplayAttributes): marker: str = 'X' marker_size: int = 50 marker_color: str = 'red' interpolation: str = 'linear' cmap: matplotlib.colors.Colormap = matplotlib.cm.RdBu_r min_level: float = math.nan max_level: float = math.nan @dataclass class CandleStickPlotAttributes(DisplayAttributes): colorup: str = 'darkgreen' colordown: str = '#F2583E' @dataclass class BarPlotAttributes(DisplayAttributes): color: str = 'red' @dataclass class FilledLinePlotAttributes(DisplayAttributes): ''' colorup: Color for bars where close >= open. Default "darkgreen" colordown: Color for bars where open < close. Default "#F2583E" ''' positive_color: str = 'blue' negative_color: str = 'red' class PlotData: name: str display_attributes: DisplayAttributes class TimePlotData(PlotData): timestamps: np.ndarray @abstractmethod def reindex(self, timestamps: np.ndarray, fill: bool) -> None: pass class BucketedValues(PlotData): ''' Data in a subplot where we summarize properties of a numpy array. For example, drawing a boxplot with percentiles. x axis is a categorical ''' def __init__(self, name: str, bucket_names: Sequence[str], bucket_values: Sequence[np.ndarray], display_attributes: DisplayAttributes = None) -> None: ''' Args: name: name used for this data in a plot legend bucket_names: list of strings used on x axis labels bucket_values: list of numpy arrays that are summarized in this plot ''' assert isinstance(bucket_names, list) and isinstance(bucket_values, list) and len(bucket_names) == len(bucket_values) self.display_attributes = BoxPlotAttributes() self.name = name self.bucket_names = bucket_names self.bucket_values = series_to_array(bucket_values) if display_attributes is None: display_attributes = BoxPlotAttributes() self.display_attributes = display_attributes class XYData(PlotData): '''Data in a subplot that has x and y values that are both arrays of floats''' def __init__(self, name: str, x: Union[np.ndarray, pd.Series], y: Union[np.ndarray, pd.Series], display_attributes: DisplayAttributes = None) -> None: self.name = name self.x = series_to_array(x) self.y = series_to_array(y) if display_attributes is None: display_attributes = LinePlotAttributes() self.display_attributes = display_attributes class XYZData(PlotData): '''Data in a subplot that has x, y and z values that are all floats''' def __init__(self, name: str, x: Union[np.ndarray, pd.Series], y: Union[np.ndarray, pd.Series], z: Union[np.ndarray, pd.Series], display_attributes: DisplayAttributes = None) -> None: ''' Args: name: Name to show in plot legend ''' self.name = name self.x = x self.y = y self.z = z if display_attributes is None: display_attributes = ContourPlotAttributes() self.display_attributes = display_attributes class TimeSeries(TimePlotData): '''Data in a subplot where x is an array of numpy datetimes and y is a numpy array of floats''' def __init__(self, name: str, timestamps: Union[pd.Series, np.ndarray], values: Union[pd.Series, np.ndarray], display_attributes: DisplayAttributes = None) -> None: ''' Args: name: Name to show in plot legend ''' self.name = name self.timestamps = series_to_array(timestamps) self.values = series_to_array(values) if display_attributes is None: display_attributes = LinePlotAttributes() self.display_attributes = display_attributes def reindex(self, timestamps: np.ndarray, fill: bool) -> None: '''Reindex this series given a new array of timestamps, forward filling holes if fill is set to True''' s = pd.Series(self.values, index=self.timestamps) s = s.reindex(timestamps, method='ffill' if fill else None) self.timestamps = s.index.values self.values = s.values class TradeBarSeries(TimePlotData): ''' Data in a subplot that contains open, high, low, close, volume bars. volume is optional. ''' def __init__(self, name: str, timestamps: np.ndarray, o: Optional[np.ndarray], h: Optional[np.ndarray], l: Optional[np.ndarray], # noqa: E741: ignore # l ambiguous c: Optional[np.ndarray], v: np.ndarray = None, vwap: np.ndarray = None, display_attributes: DisplayAttributes = None) -> None: ''' Args: name: Name to show in a legend ''' self.name = name self.timestamps = timestamps self.o = o self.h = h self.l = l # noqa: E741: ignore # l ambiguous self.c = c self.v = np.ones(len(self.timestamps), dtype=float) * np.nan if v is None else v self.vwap = np.ones(len(self.timestamps), dtype=float) * np.nan if vwap is None else vwap if display_attributes is None: display_attributes = CandleStickPlotAttributes() self.display_attributes = display_attributes def df(self) -> pd.DataFrame: return pd.DataFrame({'o': self.o, 'h': self.h, 'l': self.l, 'c': self.c, 'v': self.v, 'vwap': self.vwap}, # type: ignore # l ambiguous index=self.timestamps)[['o', 'h', 'l', 'c', 'v', 'vwap']] def reindex(self, all_timestamps: np.ndarray, fill: bool) -> None: df = self.df() df = df.reindex(all_timestamps) self.timestamps = all_timestamps for col in df.columns: setattr(self, col, df[col].values) class TradeSet(TimePlotData): '''Data for subplot that contains a set of trades along with marker properties for these trades''' def __init__(self, name: str, trades: Sequence[Trade], display_attributes: DisplayAttributes = None) -> None: ''' Args: name: String to display in a subplot legend trades: List of Trade objects to plot ''' self.name = name self.trades = trades self.timestamps = np.array([trade.timestamp for trade in trades], dtype='M8[ns]') self.values = np.array([trade.price for trade in trades], dtype=float) if display_attributes is None: display_attributes = ScatterPlotAttributes(marker='P', marker_color='red', marker_size=50) self.display_attributes = display_attributes def reindex(self, all_timestamps: np.ndarray, fill: bool) -> None: s = pd.Series(self.values, index=self.timestamps) s = s.reindex(all_timestamps, method='ffill' if fill else None) self.timestamps = s.index.values self.values = s.values def __repr__(self) -> str: s = '' for trade in self.trades: s += f'{trade.timestamp} {trade.qty} {trade.price}\n' return s def draw_poly(ax: mpl.axes.Axes, left: np.ndarray, bottom: np.ndarray, top: np.ndarray, right: np.ndarray, facecolor: str, edgecolor: str, zorder: int) -> None: '''Draw a set of polygrams given parrallel numpy arrays of left, bottom, top, right points''' XY = np.array([[left, left, right, right], [bottom, top, top, bottom]]).T barpath = path.Path.make_compound_path_from_polys(XY) # Clean path to get rid of 0, 0 points. Seems to be a matplotlib bug. If we don't ylim lower bound is set to 0 v = [] c = [] for seg in barpath.iter_segments(): vertices, command = seg if not (vertices[0] == 0. and vertices[1] == 0.): v.append(vertices) c.append(command) cleaned_path = path.Path(v, c) patch = mptch.PathPatch(cleaned_path, facecolor=facecolor, edgecolor=edgecolor, zorder=zorder) ax.add_patch(patch) def draw_candlestick(ax: mpl.axes.Axes, index: np.ndarray, o: np.ndarray, h: np.ndarray, l: np.ndarray, # noqa: E741: ignore # l ambiguous c: np.ndarray, v: Optional[np.ndarray], vwap: np.ndarray, colorup: str = 'darkgreen', colordown: str = '#F2583E') -> None: '''Draw candlesticks given parrallel numpy arrays of o, h, l, c, v values. v is optional. See TradeBarSeries class __init__ for argument descriptions.''' width = 0.5 # Have to do volume first because of a mpl bug with axes fonts if we use make_axes_locatable after plotting on top axis if v is not None and not np.isnan(v).all(): divider = make_axes_locatable(ax) vol_ax = divider.append_axes('bottom', size='25%', sharex=ax, pad=0) _c = np.nan_to_num(c) _o = np.nan_to_num(o) pos = _c >= _o neg = _c < _o vol_ax.bar(index[pos], v[pos], color=colorup, width=width) vol_ax.bar(index[neg], v[neg], color=colordown, width=width) offset = width / 2.0 mask = ~np.isnan(c) & ~np.isnan(o) mask[mask] &= c[mask] < o[mask] left = index - offset bottom = np.where(mask, o, c) top = np.where(mask, c, o) right = left + width draw_poly(ax, left[mask], bottom[mask], top[mask], right[mask], colordown, 'k', 100) draw_poly(ax, left[~mask], bottom[~mask], top[~mask], right[~mask], colorup, 'k', 100) draw_poly(ax, left + offset, l, h, left + offset, 'k', 'k', 1) if vwap is not None: ax.scatter(index, vwap, marker='o', color='orange', zorder=110) def draw_boxplot(ax: mpl.axes.Axes, names: str, values: Sequence[np.ndarray], proportional_widths: bool = True, notched: bool = False, show_outliers: bool = True, show_means: bool = True, show_all: bool = True) -> None: '''Draw a boxplot. See BucketedValues class for explanation of arguments''' outliers = None if show_outliers else '' meanpointprops = dict(marker='D') assert(isinstance(values, list) and isinstance(names, list) and len(values) == len(names)) widths = None if show_all: all_values = np.concatenate(values) values.append(all_values) names.append('all') if proportional_widths: counts = [len(v) for v in values] total = float(sum(counts)) widths = [c / total for c in counts] ax.boxplot(values, notch=notched, sym=outliers, showmeans=show_means, meanprops=meanpointprops, widths=widths) ax.set_xticklabels(names) def draw_3d_plot(ax: mpl.axes.Axes, x: np.ndarray, y: np.ndarray, z: np.ndarray, plot_type: str = 'contour', marker: str = 'X', marker_size: int = 50, marker_color: str = 'red', interpolation: str = 'linear', cmap: matplotlib.colors.Colormap = matplotlib.cm.RdBu_r, min_level: float = math.nan, max_level: float = math.nan) -> None: '''Draw a 3d plot. See XYZData class for explanation of arguments >>> points = np.random.rand(1000, 2) >>> x = np.random.rand(10) >>> y = np.random.rand(10) >>> z = x ** 2 + y ** 2 >>> if has_display(): ... fig, ax = plt.subplots() ... draw_3d_plot(ax, x = x, y = y, z = z, plot_type = 'contour', interpolation = 'linear'); ''' xi = np.linspace(min(x), max(x)) yi = np.linspace(min(y), max(y)) X, Y = np.meshgrid(xi, yi) Z = griddata((x, y), z, (xi[None, :], yi[:, None]), method=interpolation) Z = np.nan_to_num(Z) if plot_type == 'surface': ax.plot_surface(X, Y, Z, cmap=cmap) if marker is not None: ax.scatter(x, y, z, marker=marker, s=marker_size, c=marker_color) m = cm.ScalarMappable(cmap=cmap) m.set_array(Z) plt.colorbar(m, ax=ax) elif plot_type == 'contour': # extract all colors from the map cmaplist = [cmap(i) for i in range(cmap.N)] # create the new map cmap = cmap.from_list('Custom cmap', cmaplist, cmap.N) Z = np.ma.masked_array(Z, mask=~np.isfinite(Z)) if math.isnan(min_level): min_level = np.min(Z) if math.isnan(max_level): max_level = np.max(Z) # define the bins and normalize and forcing 0 to be part of the colorbar! bounds = np.arange(min_level, max_level, (max_level - min_level) / cmap.N) idx = np.searchsorted(bounds, 0) bounds = np.insert(bounds, idx, 0) norm = BoundaryNorm(bounds, cmap.N) cs = ax.contourf(X, Y, Z, cmap=cmap, norm=norm) if marker is not None: x = x[np.isfinite(z)] y = y[np.isfinite(z)] ax.scatter(x, y, marker=marker, s=marker_size, c=z[np.isfinite(z)], zorder=10, cmap=cmap) LABEL_SIZE = 16 ax.tick_params(axis='both', which='major', labelsize=LABEL_SIZE) ax.tick_params(axis='both', which='minor', labelsize=LABEL_SIZE) cbar = plt.colorbar(cs, ax=ax) cbar.ax.tick_params(labelsize=LABEL_SIZE) else: raise Exception(f'unknown plot type: {plot_type}') def _adjust_axis_limit(lim: Tuple[float, float], values: Union[List, np.ndarray]) -> Tuple[float, float]: '''If values + 10% buffer are outside current xlim or ylim, return expanded xlim or ylim for subplot''' if isinstance(values, list): values = np.array(values) if values.dtype == np.bool_: values = values.astype(float) min_val, max_val = np.nanmin(values), np.nanmax(values) val_range = max_val - min_val lim_min = np.nanmin(values) - .1 * val_range lim_max = np.nanmax(values) - .1 * val_range return (min(lim[0], lim_min), max(lim[1], lim_max)) def _plot_data(ax: mpl.axes.Axes, data: PlotData) -> Optional[List[mpl.lines.Line2D]]: lines = None # Return line objects so we can add legends disp = data.display_attributes if isinstance(data, XYData) or isinstance(data, TimeSeries): x, y = (data.x, data.y) if isinstance(data, XYData) else (np.arange(len(data.timestamps)), data.values) if isinstance(disp, LinePlotAttributes): lines, = ax.plot(x, y, linestyle=disp.line_type, linewidth=disp.line_width, color=disp.color) if disp.marker is not None: # type: ignore ax.scatter(x, y, marker=disp.marker, c=disp.marker_color, s=disp.marker_size, zorder=100) elif isinstance(disp, ScatterPlotAttributes): lines = ax.scatter(x, y, marker=disp.marker, c=disp.marker_color, s=disp.marker_size, zorder=100) elif isinstance(disp, BarPlotAttributes): lines = ax.bar(x, y, color=disp.color) # type: ignore elif isinstance(disp, FilledLinePlotAttributes): x, y = np.nan_to_num(x), np.nan_to_num(y) pos_values = np.where(y > 0, y, 0) neg_values = np.where(y < 0, y, 0) ax.fill_between(x, pos_values, color=disp.positive_color, step='post', linewidth=0.0) ax.fill_between(x, neg_values, color=disp.negative_color, step='post', linewidth=0.0) else: raise Exception(f'unknown plot combination: {type(data)} {type(disp)}') # For scatter and filled line, xlim and ylim does not seem to get set automatically if isinstance(disp, ScatterPlotAttributes) or isinstance(disp, FilledLinePlotAttributes): xmin, xmax = _adjust_axis_limit(ax.get_xlim(), x) if not np.isnan(xmin) and not np.isnan(xmax): ax.set_xlim((xmin, xmax)) ymin, ymax = _adjust_axis_limit(ax.get_ylim(), y) if not np.isnan(ymin) and not np.isnan(ymax): ax.set_ylim((ymin, ymax)) elif isinstance(data, TradeSet) and isinstance(disp, ScatterPlotAttributes): lines = ax.scatter(np.arange(len(data.timestamps)), data.values, marker=disp.marker, c=disp.marker_color, s=disp.marker_size, zorder=100) elif isinstance(data, TradeBarSeries) and isinstance(disp, CandleStickPlotAttributes): if not (data.o is None or data.h is None or data.l is None or data.c is None): draw_candlestick(ax, np.arange(len(data.timestamps)), data.o, data.h, data.l, data.c, data.v, data.vwap, colorup=disp.colorup, colordown=disp.colordown) elif isinstance(data, BucketedValues) and isinstance(disp, BoxPlotAttributes): draw_boxplot( ax, data.bucket_names, data.bucket_values, disp.proportional_widths, disp.notched, # type: ignore disp.show_outliers, disp.show_means, disp.show_all) # type: ignore elif isinstance(data, XYZData) and (isinstance(disp, SurfacePlotAttributes) or isinstance(disp, ContourPlotAttributes)): display_type: str = 'contour' if isinstance(disp, ContourPlotAttributes) else 'surface' draw_3d_plot(ax, data.x, data.y, data.z, display_type, disp.marker, disp.marker_size, disp.marker_color, disp.interpolation, disp.cmap) else: raise Exception(f'unknown plot combination: {type(data)} {type(disp)}') return lines def _draw_date_gap_lines(ax: mpl.axes.Axes, plot_timestamps: np.ndarray) -> None: ''' Draw vertical lines wherever there are gaps between two timestamps. i.e., the gap between two adjacent timestamps is more than the minimum gap in the series. ''' timestamps = mdates.date2num(plot_timestamps) freq = np.nanmin(np.diff(timestamps)) if freq <= 0: raise Exception('could not infer date frequency') date_index = np.arange(len(timestamps)) date_diff = np.diff(timestamps) xs = [] for i in date_index: if i < len(date_diff) and date_diff[i] > (freq + 0.000000001): xs.append(i + 0.5) if len(xs) > 20: return # Too many lines will clutter the graph for x in xs: ax.axvline(x, linestyle='dashed', color='0.5') def draw_date_line(ax: mpl.axes.Axes, plot_timestamps: np.ndarray, date: np.datetime64, linestyle: str, color: Optional[str]) -> mpl.lines.Line2D: '''Draw vertical line on a subplot with datetime x axis''' closest_index = (np.abs(plot_timestamps - date)).argmin() return ax.axvline(x=closest_index, linestyle=linestyle, color=color) def draw_horizontal_line(ax: mpl.axes.Axes, y: float, linestyle: str, color: Optional[str]) -> mpl.lines.Line2D: '''Draw horizontal line on a subplot''' return ax.axhline(y=y, linestyle=linestyle, color=color) def draw_vertical_line(ax: mpl.axes.Axes, x: float, linestyle: str, color: Optional[str]) -> mpl.lines.Line2D: '''Draw vertical line on a subplot''' return ax.axvline(x=x, linestyle=linestyle, color=color) def get_date_formatter(plot_timestamps: np.ndarray, date_format: Optional[str]) -> DateFormatter: '''Create an appropriate DateFormatter for x axis labels. If date_format is set to None, figures out an appropriate date format based on the range of timestamps passed in''' num_timestamps = mdates.date2num(plot_timestamps) if date_format is not None: return DateFormatter(num_timestamps, fmt=date_format) date_range = num_timestamps[-1] - num_timestamps[0] if date_range > 252: date_format = '%d-%b-%Y' elif date_range > 7: date_format = '%b %d' elif date_range > 1: date_format = '%d %H:%M' else: date_format = '%H:%M:%S' formatter = DateFormatter(num_timestamps, fmt=date_format) return formatter class Subplot: '''A top level plot contains a list of subplots, each of which contain a list of data objects to draw''' def __init__(self, data_list: Union[PlotData, Sequence[PlotData]], secondary_y: Sequence[str] = None, title: str = None, xlabel: str = None, ylabel: str = None, zlabel: str = None, date_lines: Sequence[DateLine] = None, horizontal_lines: Sequence[HorizontalLine] = None, vertical_lines: Sequence[VerticalLine] = None, xlim: Union[Tuple[float, float], Tuple[np.datetime64, np.datetime64]] = None, ylim: Union[Tuple[float, float], Tuple[np.datetime64, np.datetime64]] = None, height_ratio: float = 1.0, display_legend: bool = True, legend_loc: str = 'best', log_y: bool = False, y_tick_format: str = None) -> None: ''' Args: data_list: A list of objects to draw. Each element can contain XYData, XYZData, TimeSeries, TradeBarSeries, BucketedValues or TradeSet secondary_y: A list of objects to draw on the secondary y axis title: Title to show for this subplot. Default None zlabel: Only applicable to 3d subplots. Default None date_lines: A list of DateLine objects to draw as vertical lines. Only applicable when x axis is datetime. Default None horizontal_lines: A list of HorizontalLine objects to draw on the plot. Default None vertical_lines: A list of VerticalLine objects to draw on the plot xlim: x limits for the plot as a tuple of numpy datetime objects when x-axis is datetime, or tuple of floats. Default None ylim: y limits for the plot. Tuple of floats. Default None height_ratio: If you have more than one subplot on a plot, use height ratio to determine how high each subplot should be. For example, if you set height_ratio = 0.75 for the first subplot and 0.25 for the second, the first will be 3 times taller than the second one. Default 1.0 display_legend: Whether to show a legend on the plot. Default True legend_loc: Location for the legend. Default 'best' log_y: Whether the y axis should be logarithmic. Default False y_tick_format: Format string to use for y axis labels. For example, you can decide to use fixed notation instead of scientific notation or change number of decimal places shown. Default None ''' if not isinstance(data_list, collections.abc.Sequence): data_list = [data_list] self.time_plot = all([isinstance(data, TimePlotData) for data in data_list]) if self.time_plot and any([not isinstance(data, TimePlotData) for data in data_list]): raise Exception('cannot add a non date subplot on a subplot which has time series plots') if not self.time_plot and date_lines is not None: raise Exception('date lines can only be specified on a time series subplot') self.is_3d = any([isinstance(data.display_attributes, SurfacePlotAttributes) for data in data_list]) if self.is_3d and any([not isinstance(data.display_attributes, SurfacePlotAttributes) for data in data_list]): raise Exception('cannot combine 2d plot and 3d subplots on the same Subplot') self.data_list = data_list self.secondary_y = [] if secondary_y is None else secondary_y self.date_lines = [] if date_lines is None else date_lines self.horizontal_lines = [] if horizontal_lines is None else horizontal_lines self.vertical_lines = [] if vertical_lines is None else vertical_lines self.title = title self.xlabel = xlabel self.ylabel = ylabel self.zlabel = zlabel self.ylim = ylim self.height_ratio = height_ratio self.display_legend = display_legend self.legend_loc = legend_loc self.log_y = log_y self.y_tick_format = y_tick_format def _resample(self, sampling_frequency: Optional[str]) -> None: if sampling_frequency is None: return None for data in self.data_list: if isinstance(data, TimeSeries) or isinstance(data, TradeSet): data.timestamps, data.values = resample_ts(data.timestamps, data.values, sampling_frequency) elif isinstance(data, TradeBarSeries): df_dict = {} cols = ['timestamps', 'o', 'h', 'l', 'c', 'v', 'vwap'] for col in cols: val = getattr(data, col) if val is not None: df_dict[col] = val df = pd.DataFrame(df_dict) df = df.set_index('timestamps') df = resample_trade_bars(df, sampling_frequency) for col in cols: if col in df: setattr(data, col, df[col].values) else: raise Exception(f'unknown type: {data}') def get_all_timestamps(self, date_range: Tuple[Optional[np.datetime64], Optional[np.datetime64]]) -> np.ndarray: timestamps_list = [data.timestamps for data in self.data_list if isinstance(data, TimePlotData)] all_timestamps = np.array(reduce(np.union1d, timestamps_list)) if date_range is not None and date_range[0] is not None and date_range[1] is not None: all_timestamps = all_timestamps[(all_timestamps >= date_range[0]) & (all_timestamps <= date_range[1])] return all_timestamps def _reindex(self, all_timestamps: np.ndarray) -> None: for data in self.data_list: if not isinstance(data, TimePlotData): continue disp = data.display_attributes fill = not isinstance(data, TradeSet) and not (isinstance(disp, BarPlotAttributes) or isinstance(disp, ScatterPlotAttributes)) data.reindex(all_timestamps, fill=fill) def _draw(self, ax: mpl.axes.Axes, plot_timestamps: Optional[np.ndarray], date_formatter: Optional[DateFormatter]) -> None: if self.time_plot: assert plot_timestamps is not None self._reindex(plot_timestamps) if date_formatter is not None: ax.xaxis.set_major_formatter(date_formatter) lines = [] ax2 = None if self.secondary_y is not None and len(self.secondary_y): ax2 = ax.twinx() for data in self.data_list: if ax2 and data.name in self.secondary_y: line = _plot_data(ax2, data) else: line = _plot_data(ax, data) lines.append(line) for date_line in self.date_lines: # vertical lines on time plot assert plot_timestamps is not None line = draw_date_line(ax, plot_timestamps, date_line.date, date_line.line_type, date_line.color) if date_line.name is not None: lines.append(line) for horizontal_line in self.horizontal_lines: line = draw_horizontal_line(ax, horizontal_line.y, horizontal_line.line_type, horizontal_line.color) if horizontal_line.name is not None: lines.append(line) for vertical_line in self.vertical_lines: line = draw_vertical_line(ax, vertical_line.x, vertical_line.line_type, vertical_line.color) if vertical_line.name is not None: lines.append(line) self.legend_names = [data.name for data in self.data_list] self.legend_names += [date_line.name for date_line in self.date_lines if date_line.name is not None] self.legend_names += [horizontal_line.name for horizontal_line in self.horizontal_lines if horizontal_line.name is not None] self.legend_names += [vertical_line.name for vertical_line in self.vertical_lines if vertical_line.name is not None] if self.ylim: ax.set_ylim(self.ylim) if (len(self.data_list) > 1 or len(self.date_lines)) and self.display_legend: ax.legend([line for line in lines if line is not None], [self.legend_names[i] for i, line in enumerate(lines) if line is not None], loc=self.legend_loc) if self.log_y: ax.set_yscale('log') ax.yaxis.set_major_locator(mtick.AutoLocator()) ax.yaxis.set_minor_locator(mtick.NullLocator()) if self.y_tick_format: ax.yaxis.set_major_formatter(mtick.StrMethodFormatter(self.y_tick_format)) if self.title: ax.set_title(self.title) if self.xlabel: ax.set_xlabel(self.xlabel) if self.ylabel: ax.set_ylabel(self.ylabel) if self.zlabel: ax.set_zlabel(self.zlabel) ax.autoscale_view() class Plot: '''Top level plot containing a list of subplots to draw''' def __init__(self, subplot_list: Sequence[Subplot], title: str = None, figsize: Tuple[float, float] = (15, 8), date_range: Union[Tuple[str, str], Tuple[Optional[np.datetime64], Optional[np.datetime64]]] = None, date_format: str = None, sampling_frequency: str = None, show_grid: bool = True, show_date_gaps: bool = True, hspace: Optional[float] = 0.15) -> None: ''' Args: subplot_list: List of Subplot objects to draw title: Title for this plot. Default None figsize: Figure size. Default (15, 8) date_range: Tuple of strings or numpy datetime64 limiting timestamps to draw. e.g. ("2018-01-01 14:00", "2018-01-05"). Default None date_format: Date format to use for x-axis sampling_frequency: Set this to downsample subplots that have a datetime x axis. For example, if you have minute bar data, you might want to subsample to hours if the plot is too crowded. See pandas time frequency strings for possible values. Default None show_grid: If set to True, show a grid on the subplots. Default True show_date_gaps: If set to True, then when there is a gap between timestamps will draw a dashed vertical line. For example, you may have minute bars and a gap between end of trading day and beginning of next day. Even if set to True, this will turn itself off if there are too many gaps to avoid clutter. Default True hspace: Height (vertical) space between subplots. Default 0.15 ''' if isinstance(subplot_list, Subplot): subplot_list = [subplot_list] assert(len(subplot_list)) self.subplot_list = subplot_list self.title = title self.figsize = figsize self.date_range = strtup2date(date_range) self.date_format = date_format self.sampling_frequency = sampling_frequency self.show_date_gaps = show_date_gaps self.show_grid = show_grid self.hspace = hspace def _get_plot_timestamps(self) -> Optional[np.ndarray]: timestamps_list = [] for subplot in self.subplot_list: if not subplot.time_plot: continue subplot._resample(self.sampling_frequency) timestamps_list.append(subplot.get_all_timestamps(self.date_range)) if not len(timestamps_list): return None plot_timestamps = np.array(reduce(np.union1d, timestamps_list)) return plot_timestamps def draw(self, check_data_size: bool = True) -> Optional[Tuple[mpl.figure.Figure, mpl.axes.Axes]]: '''Draw the subplots. Args: check_data_size: If set to True, will not plot if there are > 100K points to avoid locking up your computer for a long time. Default True ''' if not has_display(): print('no display found, cannot plot') return None plot_timestamps = self._get_plot_timestamps() if check_data_size and plot_timestamps is not None and len(plot_timestamps) > 100000: raise Exception(f'trying to plot large data set with {len(plot_timestamps)} points, reduce date range or turn check_data_size flag off') date_formatter = None if plot_timestamps is not None: date_formatter = get_date_formatter(plot_timestamps, self.date_format) height_ratios = [subplot.height_ratio for subplot in self.subplot_list] fig = plt.figure(figsize=self.figsize) gs = gridspec.GridSpec(len(self.subplot_list), 1, height_ratios=height_ratios, hspace=self.hspace) axes = [] for i, subplot in enumerate(self.subplot_list): if subplot.is_3d: ax = plt.subplot(gs[i], projection='3d') else: ax = plt.subplot(gs[i]) axes.append(ax) time_axes = [axes[i] for i, s in enumerate(self.subplot_list) if s.time_plot] if len(time_axes): time_axes[0].get_shared_x_axes().join(*time_axes) for i, subplot in enumerate(self.subplot_list): subplot._draw(axes[i], plot_timestamps, date_formatter) if self.title: axes[0].set_title(self.title) # We may have added new axes in candlestick plot so get list of axes again ax_list = fig.axes for ax in ax_list: if self.show_grid: ax.grid(linestyle='dotted') for ax in ax_list: if ax not in axes: time_axes.append(ax) for ax in time_axes: if self.show_date_gaps and plot_timestamps is not None: _draw_date_gap_lines(ax, plot_timestamps) for ax in ax_list: ax.autoscale_view() return fig, ax_list def _group_trades_by_reason_code(trades: Sequence[Trade]) -> Mapping[str, List[Trade]]: trade_groups: MutableMapping[str, List[Trade]] = collections.defaultdict(list) for trade in trades: trade_groups[trade.order.reason_code].append(trade) return trade_groups def trade_sets_by_reason_code(trades: List[Trade], marker_props: Mapping[str, Mapping] = ReasonCode.MARKER_PROPERTIES, remove_missing_properties: bool = True) -> List[TradeSet]: ''' Returns a list of TradeSet objects. Each TradeSet contains trades with a different reason code. The markers for each TradeSet are set by looking up marker properties for each reason code using the marker_props argument: Args: trades: We look up reason codes using the reason code on the corresponding orders marker_props: Dictionary from reason code string -> dictionary of marker properties. See ReasonCode.MARKER_PROPERTIES for example. Default ReasonCode.MARKER_PROPERTIES remove_missing_properties: If set, we remove any reason codes that dont' have marker properties set. Default True ''' trade_groups = _group_trades_by_reason_code(trades) tradesets = [] for reason_code, trades in trade_groups.items(): if reason_code in marker_props: mp = marker_props[reason_code] disp = ScatterPlotAttributes(marker=mp['symbol'], marker_color=mp['color'], marker_size=mp['size']) tradeset = TradeSet(reason_code, trades, display_attributes=disp) elif remove_missing_properties: continue else: tradeset = TradeSet(reason_code, trades) tradesets.append(tradeset) return tradesets def test_plot() -> None: class MockOrder: def __init__(self, reason_code: str) -> None: self.reason_code = reason_code class MockTrade: def __init__(self, timestamp: np.datetime64, qty: float, price: float, reason_code: str) -> None: self.timestamp = timestamp self.qty = qty self.price = price self.order = MockOrder(reason_code) def __repr__(self) -> str: return f'{self.timestamp} {self.qty} {self.price}' np.random.seed(0) timestamps = np.array(['2018-01-08 15:00:00', '2018-01-09 15:00:00', '2018-01-10 15:00:00', '2018-01-11 15:00:00'], dtype='M8[ns]') pnl_timestamps = np.array(['2018-01-08 15:00:00', '2018-01-09 14:00:00', '2018-01-10 15:00:00', '2018-01-15 15:00:00'], dtype='M8[ns]') positions = (pnl_timestamps, np.array([0., 5., 0., -10.])) trade_timestamps = np.array(['2018-01-09 14:00:00', '2018-01-10 15:00:00', '2018-01-15 15:00:00'], dtype='M8[ns]') trade_price = [9., 10., 9.5] trade_qty = [5, -5, -10] reason_codes = [ReasonCode.ENTER_LONG, ReasonCode.EXIT_LONG, ReasonCode.ENTER_SHORT] trades = [MockTrade(trade_timestamps[i], trade_qty[i], trade_price[i], reason_codes[i]) for i, d in enumerate(trade_timestamps)] disp = LinePlotAttributes(line_type='--') tb_series = TradeBarSeries( 'price', timestamps=timestamps, o=np.array([8.9, 9.1, 9.3, 8.6]), h=np.array([9.0, 9.3, 9.4, 8.7]), l=np.array([8.8, 9.0, 9.2, 8.4]), # noqa: E741 # ambiguous l c=np.array([8.95, 9.2, 9.35, 8.5]), v=np.array([200, 100, 150, 300]), vwap=
np.array([8.9, 9.15, 9.3, 8.55])
numpy.array
from __future__ import division import os, glob import numpy as np import h5py from skimage.transform import resize, warp from transforms3d.euler import euler2mat from transforms3d.affines import compose import nibabel as nib def get_random_transformation(): T = [0, np.random.uniform(-8, 8), np.random.uniform(-8, 8)] R = euler2mat(np.random.uniform(-5, 5) / 180.0 * np.pi, 0, 0, 'sxyz') Z = [1, np.random.uniform(0.9, 1.1), np.random.uniform(0.9, 1.1)] A = compose(T, R, Z) return A def get_tform_coords(im_size): coords0, coords1, coords2 = np.mgrid[:im_size[0], :im_size[1], :im_size[2]] coords = np.array([coords0 - im_size[0] / 2, coords1 - im_size[1] / 2, coords2 - im_size[2] / 2]) return np.append(coords.reshape(3, -1), np.ones((1, np.prod(im_size))), axis=0) def remove_low_high(im_input): im_output = im_input low = np.percentile(im_input, 1) high = np.percentile(im_output, 99) im_output[im_input < low] = low im_output[im_input > high] = high return im_output def normalize(im_input): x_start = im_input.shape[0] // 4 x_range = im_input.shape[0] // 2 y_start = im_input.shape[1] // 4 y_range = im_input.shape[1] // 2 z_start = im_input.shape[2] // 4 z_range = im_input.shape[2] // 2 roi = im_input[x_start : x_start + x_range, y_start : y_start + y_range, z_start : z_start + z_range] im_output = (im_input - np.mean(roi)) / np.std(roi) return im_output def read_label(path, is_training=True): seg = nib.load(glob.glob(os.path.join(path, '*_seg.nii.gz'))[0]).get_data().astype(np.float32) # Crop to 128*128*64 crop_size = (128, 128, 64) crop = [int((seg.shape[0] - crop_size[0]) / 2), int((seg.shape[1] - crop_size[1]) / 2), int((seg.shape[2] - crop_size[2]) / 2)] seg = seg[crop[0] : crop[0] + crop_size[0], crop[1] : crop[1] + crop_size[1], crop[2] : crop[2] + crop_size[2]] label = np.zeros((seg.shape[0], seg.shape[1], seg.shape[2], 3), dtype=np.float32) label[seg == 1, 0] = 1 label[seg == 2, 1] = 1 label[seg == 4, 2] = 1 final_label = np.empty((16, 16, 16, 3), dtype=np.float32) for z in range(label.shape[3]): final_label[..., z] = resize(label[..., z], (16, 16, 16), mode='constant') # Augmentation if is_training: im_size = final_label.shape[:-1] translation = [np.random.uniform(-2, 2), np.random.uniform(-2, 2), np.random.uniform(-2, 2)] rotation = euler2mat(0, 0, np.random.uniform(-5, 5) / 180.0 * np.pi, 'sxyz') scale = [1, 1, 1] warp_mat = compose(translation, rotation, scale) tform_coords = get_tform_coords(im_size) w = np.dot(warp_mat, tform_coords) w[0] = w[0] + im_size[0] / 2 w[1] = w[1] + im_size[1] / 2 w[2] = w[2] + im_size[2] / 2 warp_coords = w[0:3].reshape(3, im_size[0], im_size[1], im_size[2]) for z in range(label.shape[3]): final_label[..., z] = warp(final_label[..., z], warp_coords) return final_label def read_seg(path): seg = nib.load(glob.glob(os.path.join(path, '*_seg.nii.gz'))[0]).get_data().astype(np.float32) return seg def read_image(path, is_training=True): t1 = nib.load(glob.glob(os.path.join(path, '*_t1_corrected.nii.gz'))[0]).get_data().astype(np.float32) t1ce = nib.load(glob.glob(os.path.join(path, '*_t1ce_corrected.nii.gz'))[0]).get_data().astype(np.float32) t2 = nib.load(glob.glob(os.path.join(path, '*_t2.nii.gz'))[0]).get_data().astype(np.float32) flair = nib.load(glob.glob(os.path.join(path, '*_flair.nii.gz'))[0]).get_data().astype(np.float32) assert t1.shape == t1ce.shape == t2.shape == flair.shape if is_training: seg = nib.load(glob.glob(os.path.join(path, '*_seg.nii.gz'))[0]).get_data().astype(np.float32) assert t1.shape == seg.shape nchannel = 5 else: nchannel = 4 image = np.empty((t1.shape[0], t1.shape[1], t1.shape[2], nchannel), dtype=np.float32) #image[..., 0] = remove_low_high(t1) #image[..., 1] = remove_low_high(t1ce) #image[..., 2] = remove_low_high(t2) #image[..., 3] = remove_low_high(flair) image[..., 0] = normalize(t1) image[..., 1] = normalize(t1ce) image[..., 2] = normalize(t2) image[..., 3] = normalize(flair) if is_training: image[..., 4] = seg return image def read_patch(path): image = np.load(path + '.npy') seg = image[..., -1] label = np.zeros((image.shape[0], image.shape[1], image.shape[2], 4), dtype=np.float32) label[seg == 0, 0] = 1 label[seg == 1, 1] = 1 label[seg == 2, 2] = 1 label[seg == 4, 3] = 1 return image[..., :-1], label def generate_patch_locations(patches, patch_size, im_size): nx = round((patches * 8 * im_size[0] * im_size[0] / im_size[1] / im_size[2]) ** (1.0 / 3)) ny = round(nx * im_size[1] / im_size[0]) nz = round(nx * im_size[2] / im_size[0]) x = np.rint(np.linspace(patch_size, im_size[0] - patch_size, num=nx)) y = np.rint(np.linspace(patch_size, im_size[1] - patch_size, num=ny)) z = np.rint(np.linspace(patch_size, im_size[2] - patch_size, num=nz)) return x, y, z def generate_test_locations(patch_size, stride, im_size): stride_size_x = patch_size[0] / stride stride_size_y = patch_size[1] / stride stride_size_z = patch_size[2] / stride pad_x = (int(patch_size[0] / 2), int(np.ceil(im_size[0] / stride_size_x) * stride_size_x - im_size[0] + patch_size[0] / 2)) pad_y = (int(patch_size[1] / 2), int(
np.ceil(im_size[1] / stride_size_y)
numpy.ceil
import numpy as np from itertools import combinations from scipy.special import logsumexp from scipy.stats import multivariate_normal as gaussian def extract_logpdfs_array(posterior_predictive_params): means = [] cov_diags = [] labels = [] for k, k_dict in posterior_predictive_params.items(): means.append(k_dict['mean']) cov_diags.append(k_dict['cov_diag']) labels.append(k) all_logpdfs = [] for mean, cov_diag in zip(means, cov_diags): # For each category. category_logpdfs = [] for mu, var in zip(mean, cov_diag): # For each dimension. dimension_logpdf = gaussian(mu, var).logpdf category_logpdfs.append(dimension_logpdf) all_logpdfs.append(category_logpdfs) return all_logpdfs, labels def extract_logpps_array(u_model, model, teaching_sets): pp_params = model.posterior_predictive_params logpdfs_array, labels = extract_logpdfs_array(pp_params) all_logpps = [] for logpdfs_row in logpdfs_array: assert len(logpdfs_row) == u_model.shape[0] logpps_row = [] for logpdf, u_dim in zip(logpdfs_row, u_model): logpps_row.append(logpdf(u_dim)) all_logpps.append(logpps_row) all_logpps = np.asarray(all_logpps)[:, teaching_sets] return np.sum(all_logpps, axis=-1), labels def normalize_logpps_array(logpps_array): """ Normalize probabilities for each dimension across categories. """ assert len(logpps_array.shape) == 2 norms = logsumexp(logpps_array, axis=-2) return logpps_array - norms def label_to_idx(label, all_labels): return all_labels.index(label) def to_image_space(u_model_vector, teaching_set, model): A = model.A m = model.m relevant_U_dims = model.relevant_U_dims u_vector = np.zeros(m.shape) u_vector[relevant_U_dims] = u_model_vector x_vector = np.matmul(A, u_vector) x_vector[teaching_set] + m[teaching_set] d_vector = model.transform(x_vector, from_space='X', to_space='D') d_vector =
np.squeeze(d_vector)
numpy.squeeze
#TODO: make device (cpu/gpu) an input option, default CPU from __future__ import print_function, division import csv import functools import json import os import shutil import random import warnings import random import numpy as np import torch from tqdm import tqdm from pymatgen.core.structure import Structure from pymatgen.io import cif from sklearn import preprocessing from torch_geometric.data import Data, Dataset, DataLoader import pandas as pd import warnings from ._knn import knn_graph from ._load_sets import AtomCustomJSONInitializer from auglichem.crystal._transforms import ( RotationTransformation, PerturbStructureTransformation, RemoveSitesTransformation, SupercellTransformation, TranslateSitesTransformation, CubicSupercellTransformation, PrimitiveCellTransformation, SwapAxesTransformation, ) from auglichem.utils import ( ATOM_LIST, CHIRALITY_LIST, BOND_LIST, BONDDIR_LIST, random_split, scaffold_split, random_split ) from ._load_sets import read_crystal def collate_pool(dataset_list): """ Collate a list of data and return a batch for predicting crystal properties. Parameters ---------- dataset_list: list of tuples for each data point. (atom_fea, nbr_fea, nbr_fea_idx, target) atom_fea: torch.Tensor shape (n_i, atom_fea_len) nbr_fea: torch.Tensor shape (n_i, M, nbr_fea_len) nbr_fea_idx: torch.LongTensor shape (n_i, M) target: torch.Tensor shape (1, ) cif_id: str or int Returns ------- N = sum(n_i); N0 = sum(i) batch_atom_fea: torch.Tensor shape (N, orig_atom_fea_len) Atom features from atom type batch_nbr_fea: torch.Tensor shape (N, M, nbr_fea_len) Bond features of each atom's M neighbors batch_nbr_fea_idx: torch.LongTensor shape (N, M) Indices of M neighbors of each atom crystal_atom_idx: list of torch.LongTensor of length N0 Mapping from the crystal idx to atom idx target: torch.Tensor shape (N, 1) Target value for prediction batch_cif_ids: list """ batch_atom_fea, batch_nbr_fea, batch_nbr_fea_idx = [], [], [] crystal_atom_idx, batch_target = [], [] batch_cif_ids = [] base_idx = 0 for i, ((atom_fea, nbr_fea, nbr_fea_idx), target, cif_id)\ in enumerate(dataset_list): n_i = atom_fea.shape[0] # number of atoms for this crystal batch_atom_fea.append(atom_fea) batch_nbr_fea.append(nbr_fea) batch_nbr_fea_idx.append(nbr_fea_idx+base_idx) new_idx = torch.LongTensor(np.arange(n_i)+base_idx) crystal_atom_idx.append(new_idx) batch_target.append(target) batch_cif_ids.append(cif_id) base_idx += n_i return (torch.cat(batch_atom_fea, dim=0), torch.cat(batch_nbr_fea, dim=0), torch.cat(batch_nbr_fea_idx, dim=0), crystal_atom_idx),\ torch.stack(batch_target, dim=0),\ batch_cif_ids class CrystalDataset(Dataset): """ The CIFData dataset is a wrapper for a dataset where the crystal structures are stored in the form of CIF files. The dataset should have the following directory structure: root_dir ├── id_prop.csv ├── atom_init.json ├── 0.cif ├── 1.cif ├── ... id_prop.csv: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column recodes the value of target property. atom_init.json: a JSON file that stores the initialization vector for each element. ID.cif: a CIF file that recodes the crystal structure, where ID is the unique ID for the crystal. """ def __init__(self, dataset, data_path=None, transform=None, id_prop_augment=None, atom_init_file=None, id_prop_file=None, ari=None, radius=8, dmin=0, step=0.2, on_the_fly_augment=False, kfolds=0, num_neighbors=8, max_num_nbr=12, seed=None, cgcnn=False, data_src=None): """ Inputs: ------- dataset (str): One of our 5 datasets: lanthanides, perosvkites, band_gap, fermi_energy, or formation_energy. data_path (str, optional): Path for our data, automatically checks if it is there and downloads the data if it isn't. transform (list of AbstractTransformations, optional): The transformations to do on our CIF files id_prop_augment (np.array of floats, shape=(N,2), optional): atom_init_file (str, optional): id_prop_file (str, optional): ari (CustomAtomJSONInitializer, optional): radius (float, optional, default=0): dmin (float, optional, default=0): step (float, optional, default=0.2): on_the_fly_augment (bool, optional, default=Faalse): Setting to true augments cif files on-the-fly, like in MoleculeDataset. This feature is experimental and may significantly slow down run times. kfolds (int, optional, default=0): Number of folds to use in k-fold cross validation. Must be >= 2 in order to run. num_neighbors (int, optional, default=8): Number of neighbors to include for torch_geometric based models. max_num_nbr (int, optional, default=12): Maximum number of neighboring atoms used when building the crystal graph for CGCNN. random_seed (int, optional): Random seed to use for data splitting. cgcnn (bool, optional, default=False): If using built-in CGCNN model, must be set to True. Outputs: -------- None """ super(Dataset, self).__init__() self.dataset = dataset self.data_path = data_path self.data_src = data_src self.transform = transform self._augmented = False # To control runaway augmentation self.num_neighbors = num_neighbors self.seed = seed # If using custom dataset, need to source directory if((self.dataset == "custom") and (self.data_src is None)): error_str = "Need data source directory when using custom data set. " error_str += "Use data_src=/path/to/data." raise RuntimeError(error_str) # After specifying data set if(id_prop_augment is None): self.id_prop_file, self.atom_init_file, self.ari, self.data_path, \ self.target, self.task = read_crystal(dataset, data_path, self.data_src) else: self.id_prop_file = id_prop_file self.atom_init_file = atom_init_file self.ari = ari self.max_num_nbr, self.radius = max_num_nbr, radius assert os.path.exists(self.data_path), 'root_dir does not exist!' assert os.path.exists(self.id_prop_file), 'id_prop_augment.csv does not exist!' if(id_prop_augment is None): with open(self.id_prop_file) as f: reader = csv.reader(f) self.id_prop_augment = [row for row in reader] else: self.id_prop_augment = id_prop_augment assert os.path.exists(self.atom_init_file), 'atom_init.json does not exist!' self.gdf = lambda dist: self._gaussian_distance(dist, dmin=dmin, dmax=self.radius, step=step) # Seeding used for reproducible tranformations self.reproduce_seeds = list(range(self.__len__())) np.random.shuffle(self.reproduce_seeds) self.on_the_fly_augment = on_the_fly_augment if(self.on_the_fly_augment): warnings.warn("On-the-fly augmentations for crystals is untested and can lead to memory issues. Use with caution.", category=RuntimeWarning, stacklevel=2) # Set up for k-fold CV if(kfolds > 1): self._k_fold_cv = True self.kfolds = kfolds self._k_fold_cross_validation() elif(kfolds == 1): raise ValueError("kfolds > 1 to run.") else: self._k_fold_cv = False # Must be true to use built-in CGCNN model self._cgcnn = cgcnn # Set atom featurizer self.atom_featurizer = AtomCustomJSONInitializer(os.path.join(self.data_path, 'atom_init.json')) def _aug_name(self, transformation): if(isinstance(transformation, RotationTransformation)): suffix = '_rotated' elif(isinstance(transformation, PerturbStructureTransformation)): suffix = '_perturbed' elif(isinstance(transformation, RemoveSitesTransformation)): suffix = '_remove_sites' elif(isinstance(transformation, SupercellTransformation)): suffix = '_supercell' elif(isinstance(transformation, TranslateSitesTransformation)): suffix = '_translate' elif(isinstance(transformation, CubicSupercellTransformation)): suffix = '_cubic_supercell' elif(isinstance(transformation, PrimitiveCellTransformation)): suffix = '_primitive_cell' elif(isinstance(transformation, SwapAxesTransformation)): suffix = '_swapaxes' return suffix def data_augmentation(self, transform=None): ''' Function call to deliberately augment the data. Transformations are done one at a time. For example, if we're using the RotationTransformation and SupercellTransformation, 0.cif will turn into 0.cif, 0_supercell.cif, and 0_rotated.cif. Note: 0_supercell_rotated.cif WILL NOT be created. input: ----------------------- transformation (list of AbstractTransformations): The transformations ''' if(self._augmented): print("Augmentation has already been done.") return if(self.on_the_fly_augment): print("Augmentation will be done on-the-fly.") return # Copy directory and rename it to augmented if(self._k_fold_cv): # Copy directory shutil.copytree(self.data_path, self.data_path + "_augmented_{}folds".format(self.kfolds), dirs_exist_ok=True) # Remove k-fold files from original directory for i in range(self.kfolds): os.remove(self.data_path + "/id_prop_train_{}.csv".format(i)) os.remove(self.data_path + "/id_prop_test_{}.csv".format(i)) # Update data path self.data_path += "_augmented_{}folds".format(self.kfolds) else: shutil.copytree(self.data_path, self.data_path + "_augmented", dirs_exist_ok=True) self.data_path += "_augmented" self.atom_featurizer = AtomCustomJSONInitializer(os.path.join(self.data_path, 'atom_init.json')) # Check transforms if(not isinstance(transform, list)): transform = [transform] # Do augmentations new_id_prop_augment = [] for id_prop in tqdm(self.id_prop_augment): new_id_prop_augment.append((id_prop[0], id_prop[1])) # Transform crystal if(transform == [None] and self.transform is None): break for t in transform: # Get augmented file name id_name = id_prop[0] + self._aug_name(t) new_id_prop_augment.append((id_name,id_prop[1])) # Don't create file if it already exists if(os.path.exists(self.data_path + '/' + id_name + '.cif')): continue try: seed_idx = np.argwhere(self.id_prop_augment[:,0] == id_prop[0])[0][0] aug_crystal = t.apply_transformation( Structure.from_file(os.path.join(self.data_path, id_prop[0]+'.cif')), seed=self.reproduce_seeds[seed_idx]) except IndexError: print(int(id_prop[0])) print(len(self.reproduce_seeds)) raise cif.CifWriter(aug_crystal).write_file(self.data_path + '/' + id_name + '.cif') if(not self._k_fold_cv): self.id_prop_augment = np.array(new_id_prop_augment) else: self.id_prop_augment_all = np.array(new_id_prop_augment) self._augmented = True def _updated_train_cifs(self, train_idx, num_transform): ''' When doing k-fold CV. This function adds the augmented cif names to the train_idx ''' updated_train_idx = [] for idx in train_idx: num_idx = int(np.argwhere(self.id_prop_augment[:,0] == idx[0])[0][0]) for jdx in range(num_transform+1): updated_train_idx.append(self.id_prop_augment_all[(num_transform+1)*num_idx+jdx]) return np.array(updated_train_idx) def _check_repeats(self, idx1, idx2): for v in idx1: try: assert not(v[0] in idx2[:,0]) # Only checking if cif file id is repeated except AssertionError: print("ERROR IN TRAIN/TEST/VALIDATION SPLIT") print(len(idx1[:,0])) print(len(idx2[:,0])) print(v[0], v[0] in idx2[:,0], np.argwhere(idx2[:,0] == v[0])[0][0]) print(idx2[:,0][np.argwhere(idx2[:,0]==v[0])[0][0]]) raise def _k_fold_cross_validation(self): ''' k-fold CV data splitting function. Uses class attributes to split into k folds. Works by shuffling original data then selecting folds one at a time. ''' # Set seed and shuffle data np.random.seed(self.seed) np.random.shuffle(self.id_prop_augment) frac = 1./self.kfolds N = len(self.id_prop_augment) for i in range(self.kfolds): # Get all idxs idxs = list(range(N)) # Get train and validation idxs test_idxs = idxs[int(i*frac*N):int((i+1)*frac*N)] del idxs[int(i*frac*N):int((i+1)*frac*N)] # Get train and validation sets test_set = np.array(self.id_prop_augment)[test_idxs] train_set = np.array(self.id_prop_augment)[idxs] self._check_repeats(test_set, train_set) # Save files np.savetxt(self.data_path + "/id_prop_test_{}.csv".format(i), test_set.astype(str), delimiter=',', fmt="%s") np.savetxt(self.data_path + "/id_prop_train_{}.csv".format(i), train_set.astype(str), delimiter=',', fmt="%s") def __len__(self): return len(self.id_prop_augment) def _gaussian_distance(self, distances, dmin, dmax, step, var=None): if var is None: var = step self.filter = np.arange(dmin, dmax+step, step) return
np.exp(-(distances[..., np.newaxis] - self.filter)**2 / var**2)
numpy.exp
import io import cv2 import numpy as np import math import scipy.stats as ss from scipy.optimize import least_squares RECT_SCALE = 1000 bg_R = np.array([150.0 / 255.0, 150.0 / 255.0, 150.0 / 255.0]) def get_average_rgb(image_data): return np.average(image_data, axis=(0, 1)) def crop_image_by_position_and_rect(cv_image, position, rect): # img[y: y + h, x: x + w] height = cv_image.shape[0] width = cv_image.shape[1] position_x = position.x * width position_y = position.y * height rect_x = width * rect.x / RECT_SCALE rect_y = height * rect.y / RECT_SCALE return cv_image[int(position_y):int(position_y) + int(rect_y), int(position_x):int(position_x) + int(rect_x)] def read_matrix(path, n_params): H = None line_arr = np.array([]) count = 0 with open(path) as f: f.readline() for line in f: if "=" in line: count += 1 if H is None: H = line_arr else: H = np.vstack((H, line_arr)) line_arr =
np.array([])
numpy.array
import os,re,time,glob import numpy as np import pickle as pickle import matplotlib.pylab as plt from mpl_toolkits.axes_grid1 import ImageGrid import scipy from scipy.signal import fftconvolve from scipy.ndimage.filters import maximum_filter,minimum_filter,median_filter,gaussian_filter from scipy import ndimage, stats from skimage import morphology, restoration, measure from skimage.segmentation import random_walker from scipy.ndimage import gaussian_laplace import cv2 import multiprocessing as mp from sklearn.decomposition import PCA from scipy.ndimage.interpolation import map_coordinates from . import get_img_info, corrections, alignment_tools from .External import Fitting_v3 from . import _correction_folder,_temp_folder,_distance_zxy,_sigma_zxy,_image_size, _allowed_colors # generate common colors # generate my colors from matplotlib.colors import ListedColormap # red Red_colors = np.ones([256,4]) Red_colors[:,1] = np.linspace(1,0,256) Red_colors[:,2] = np.linspace(1,0,256) myReds = ListedColormap(Red_colors) # blue Blue_colors = np.ones([256,4]) Blue_colors[:,0] = np.linspace(1,0,256) Blue_colors[:,1] = np.linspace(1,0,256) myBlues = ListedColormap(Blue_colors) # green Green_colors = np.ones([256,4]) Green_colors[:,0] = np.linspace(1,0,256) Green_colors[:,2] = np.linspace(1,0,256) myGreens = ListedColormap(Green_colors) _myCmaps = [myReds, myBlues, myGreens] def partition_map(list_,map_, enumerate_all=False): """ Inputs takes a list [e1,e2,e3,e4,e5,e6] and a map (a list of indices [0,0,1,0,1,2]). map can be a list of symbols too. ['aa','aa','bb','aa','bb','cc'] Output returns a sorted list of lists, e.g. [[e1, e2,e4],[e3,e5],[e6]] """ list__=np.array(list_) map__=np.array(map_) if enumerate_all: return [list(list__[map__==_i]) for _i in np.arange(0, np.max(map__)+1)] else: return [list(list__[map__==element]) for element in np.unique(map__)] def old_gauss_ker(sig_xyz=[2,2,2],sxyz=16,xyz_disp=[0,0,0]): '''Create a gaussian kernal, return standard gaussian level within sxyz size and sigma 2,2,2''' dim = len(xyz_disp) xyz=np.indices([sxyz+1]*dim) print(sxyz) for i in range(len(xyz.shape)-1): sig_xyz=np.expand_dims(sig_xyz,axis=-1) xyz_disp=np.expand_dims(xyz_disp,axis=-1) im_ker = np.exp(-np.sum(((xyz-xyz_disp-sxyz/2.)/sig_xyz**2)**2,axis=0)/2.) return im_ker def gauss_ker(sig_xyz=[2,2,2],sxyz=16,xyz_disp=[0,0,0]): """Faster version of gaussian kernel""" dim = len(xyz_disp) xyz=np.swapaxes(np.indices([sxyz+1]*dim), 0,dim) return np.exp(-np.sum(((xyz-np.array(xyz_disp)-sxyz/2.)/np.array(sig_xyz)**2)**2,axis=dim)/2.) def gaussian_kernel_2d(center_xy, sigma_xy=[2,2], radius=8): """Function to generate gaussian kernel in 2d space""" ## check inputs if len(center_xy) != 2: raise IndexError(f"center_xy should be length=2 list or array") if len(sigma_xy) != 2: raise IndexError(f"sigma_xy should be length=2 list or array") radius = int(radius) if radius < 3 * max(sigma_xy): # if radius is smaller than 3-sigma, expand radius = 3*max(sigma_xy) xy_coords=np.swapaxes(np.indices([radius*2+1]*2), 0, 2) return np.exp(-np.sum(((xy_coords-np.array(center_xy)-radius)/np.array(sigma_xy)**2)**2,axis=2)/2.) def add_source(im_,pos=[0,0,0],h=200,sig=[2,2,2],size_fold=10): '''Impose a guassian distribution with given position, height and sigma, onto an existing figure''' im=np.array(im_,dtype=float) pos = np.array(pos) pos_int = np.array(pos,dtype=int) xyz_disp = -pos_int+pos im_ker = gauss_ker(sig, int(max(sig)*size_fold), xyz_disp) im_ker_sz = np.array(im_ker.shape,dtype=int) pos_min = np.array(pos_int-im_ker_sz/2, dtype=np.int) pos_max = np.array(pos_min+im_ker_sz, dtype=np.int) im_shape = np.array(im.shape) def in_im(pos__): pos_=np.array(pos__,dtype=np.int) pos_[pos_>=im_shape]=im_shape[pos_>=im_shape]-1 pos_[pos_<0]=0 return pos_ pos_min_ = in_im(pos_min) pos_max_ = in_im(pos_max) pos_min_ker = pos_min_-pos_min pos_max_ker = im_ker_sz+pos_max_-pos_max slices_ker = tuple(slice(pm,pM) for pm,pM in zip(pos_min_ker,pos_max_ker)) slices_im = tuple(slice(pm,pM) for pm,pM in zip(pos_min_,pos_max_)) im[slices_im] += im_ker[slices_ker]*h return im def subtract_source(im,pfit): return add_source(im,pos=pfit[1:4],h=-pfit[0],sig=pfit[-3:]) def plus_source(im,pfit): return add_source(im,pos=pfit[1:4],h=pfit[0],sig=pfit[-3:]) def sphere(center,radius,imshape=None): """Returns an int array (size: n x len(center)) with the xyz... coords of a sphere(elipsoid) of radius in imshape""" radius_=np.array(radius,dtype=float) if len(radius_.shape)==0: radius_ = np.array([radius]*len(center),dtype=np.int) xyz = np.array(np.indices(2*radius_+1),dtype=float) radius__=np.array(radius_,dtype=float) for i in range(len(xyz.shape)-1): radius__=np.expand_dims(radius__,axis=-1) xyz_keep = np.array(np.where(np.sum((xyz/radius__-1)**2,axis=0)<1)) xyz_keep = xyz_keep-np.expand_dims(np.array(radius_,dtype=int),axis=-1)+np.expand_dims(np.array(center,dtype=int),axis=-1) xyz_keep = xyz_keep.T if imshape is not None: xyz_keep=xyz_keep[np.all((xyz_keep>=0)&(xyz_keep<np.expand_dims(imshape,axis=0)),axis=-1)] return xyz_keep def grab_block(im,center,block_sizes): dims = im.shape slices = [] def in_dim(c,dim): c_ = c if c_<0: c_=0 if c_>dim: c_=dim return c_ for c,block,dim in zip(center,block_sizes,dims): block_ = int(block/2) c=int(c) c_min,c_max = in_dim(c-block_,dim),in_dim(c+block-block_,dim) slices.append(slice(c_min,c_max)) slices.append(Ellipsis) return im[slices] # fit single gaussian def fitsinglegaussian_fixed_width(data,center,radius=10,n_approx=10,width_zxy=_sigma_zxy): """Returns (height, x, y,z, width_x, width_y,width_z,bk) the gaussian parameters of a 2D distribution found by a fit""" data_=np.array(data,dtype=float) dims = np.array(data_.shape) if center is not None: center_z,center_x,center_y = center else: xyz = np.array(list(map(np.ravel,np.indices(data_.shape)))) data__=data_[xyz[0],xyz[1],xyz[2]] args_high = np.argsort(data__)[-n_approx:] center_z,center_x,center_y = np.median(xyz[:,args_high],axis=-1) xyz = sphere([center_z,center_x,center_y],radius,imshape=dims).T if len(xyz[0])>0: data__=data_[xyz[0],xyz[1],xyz[2]] sorted_data = np.sort(data__)#np.sort(np.ravel(data__)) bk = np.median(sorted_data[:n_approx]) height = (np.median(sorted_data[-n_approx:])-bk) width_z,width_x,width_y = np.array(width_zxy) params_ = (height,center_z,center_x,center_y,bk) def gaussian(height,center_z, center_x, center_y, bk=0, width_z=width_zxy[0], width_x=width_zxy[1], width_y=width_zxy[2]): """Returns a gaussian function with the given parameters""" width_x_ = np.abs(width_x) width_y_ = np.abs(width_y) width_z_ = np.abs(width_z) height_ = np.abs(height) bk_ = np.abs(bk) def gauss(z,x,y): g = bk_+height_*np.exp( -(((center_z-z)/width_z_)**2+((center_x-x)/width_x_)**2+ ((center_y-y)/width_y_)**2)/2.) return g return gauss def errorfunction(p): f=gaussian(*p)(*xyz) g=data__ #err=np.ravel(f-g-g*np.log(f/g)) err=np.ravel(f-g) return err p, success = scipy.optimize.leastsq(errorfunction, params_) p=np.abs(p) p = np.concatenate([p,width_zxy]) #p[:1:4]+=0.5 return p,success else: return None,None def fit_seed_points_base(im, centers, width_z=_sigma_zxy[0], width_xy=_sigma_zxy[1], radius_fit=5, n_max_iter = 10, max_dist_th=0.25): '''Basic function used for multiple gaussian fitting, given image:im, seeding_result:centers ''' print("Fitting:" +str(len(centers[0]))+" points") z,x,y = centers # fitting kernels provided by previous seeding if len(x)>0: #estimate height #gfilt_size=0.75 #filt_size=3 #im_plt = gaussian_filter(im,gfilt_size) #max_filt = maximum_filter(im_plt,filt_size) #min_filt = minimum_filter(im_plt,filt_size) #h = max_filt[z,x,y]-min_filt[z,x,y] #inds = np.argsort(h)[::-1] #z,x,y = z[inds],x[inds],y[inds] zxy = np.array([z,x,y],dtype=int).T ps = [] im_subtr = np.array(im,dtype=float) for center in zxy: p,success = fitsinglegaussian_fixed_width(im_subtr,center,radius=radius_fit,n_approx=10,width_zxy=[width_z,width_xy,width_xy]) if p is not None: # If got any successful fitting, substract fitted profile ps.append(p) im_subtr = subtract_source(im_subtr,p) im_add = np.array(im_subtr) max_dist=np.inf n_iter = 0 while max_dist > max_dist_th: ps_1=np.array(ps) ps_1=ps_1[np.argsort(ps_1[:,0])[::-1]] ps = [] ps_1_rem=[] for p_1 in ps_1: center = p_1[1:4] im_add = plus_source(im_add,p_1) p,success = fitsinglegaussian_fixed_width(im_add,center,radius=radius_fit,n_approx=10,width_zxy=[width_z,width_xy,width_xy]) if p is not None: ps.append(p) ps_1_rem.append(p_1) im_add = subtract_source(im_add,p) ps_2=np.array(ps) ps_1_rem=np.array(ps_1_rem) dif = ps_1_rem[:,1:4]-ps_2[:,1:4] max_dist = np.max(np.sum(dif**2,axis=-1)) n_iter+=1 if n_iter>n_max_iter: break return ps_2 else: return np.array([]) ## Fit bead centers def get_STD_centers(im, seeds=None, th_seed=150, dynamic=False, seed_by_per=False, th_seed_percentile=95, min_num_seeds=1, remove_close_pts=True, close_threshold=0.1, fit_radius=5, sort_by_h=False, save=False, save_folder='', save_name='', plt_val=False, force=False, verbose=False): '''Fit beads for one image: Inputs: im: image, ndarray th_seeds: threshold for seeding, float (default: 150) dynamic: whether do dynamic seeding, bool (default:True) th_seed_percentile: intensity percentile for seeding, float (default: 95) remove_close_pts: whether remove points really close to each other, bool (default:True) close_threshold: threshold for removing duplicates within a distance, float (default: 0.01) fit_radius sort_by_h: whether sort fitted points by height, bool (default:False) plt_val: whether making plot, bool (default: False) save: whether save fitting result, bool (default: False) save_folder: full path of save folder, str (default: None) save_name: full name of save file, str (default: None) force: whether force fitting despite of saved file, bool (default: False) verbose: say something!, bool (default: False) Outputs: beads: fitted spots with information, n by 4 array''' import os import pickle as pickle if not force and os.path.exists(save_folder+os.sep+save_name) and save_name != '': if verbose: print("- loading file:,", save_folder+os.sep+save_name) beads = pickle.load(open(save_folder+os.sep+save_name, 'rb')) if verbose: print("--", len(beads), " of beads loaded.") return beads else: # seeding if seeds is None: seeds = get_seed_in_distance(im, center=None, dynamic=dynamic, th_seed_percentile=th_seed_percentile, seed_by_per=seed_by_per, min_dynamic_seeds=min_num_seeds, gfilt_size=0.75, filt_size=3, th_seed=th_seed, hot_pix_th=4, verbose=verbose) # fitting fitter = Fitting_v3.iter_fit_seed_points(im, seeds.T, radius_fit=5) fitter.firstfit() pfits = fitter.ps #pfits = visual_tools.fit_seed_points_base_fast(im,seeds.T,width_z=1.8*1.5/2,width_xy=1.,radius_fit=5,n_max_iter=3,max_dist_th=0.25,quiet=not verbose) # get coordinates for fitted beads if len(pfits) > 0: if sort_by_h: _intensity_order = np.argsort(np.array(pfits)[:,0]) beads = np.array(pfits)[np.flipud(_intensity_order), 1:4] else: beads = np.array(pfits)[:, 1:4] # remove very close spots if remove_close_pts: remove = np.zeros(len(beads), dtype=np.bool) for i, bead in enumerate(beads): if np.isnan(bead).any() or np.sum(np.sum((beads-bead)**2, axis=1) < close_threshold) > 1: remove[i] = True if (bead < 0).any() or (bead > np.array(im.shape)).any(): remove[i] = True beads = beads[remove==False] else: beads = None if verbose: print(f"- fitting {len(pfits)} points") print( f"-- {np.sum(remove)} points removed given smallest distance {close_threshold}") # make plot if required if plt_val: plt.figure() plt.imshow(np.max(im, 0), interpolation='nearest') plt.plot(beads[:, -1], beads[:, -2], 'or') plt.show() # save to pickle if specified if save: if not os.path.exists(save_folder): os.makedirs(save_folder) if verbose: print("-- saving fitted spots to", save_folder+os.sep+save_name) pickle.dump(beads[:,-3:], open(save_folder+os.sep+save_name, 'wb')) return beads def get_seed_points_base(im, gfilt_size=0.75, background_gfilt_size=10, filt_size=3, th_seed=300, hot_pix_th=0, return_h=False): """Base function to do seeding""" # gaussian-filter + max-filter if gfilt_size: max_im = gaussian_filter(im,gfilt_size) else: max_im = im # gaussian_filter (large) + min_filter if background_gfilt_size: min_im = gaussian_filter(im,background_gfilt_size) else: min_im = im max_filt = np.array(maximum_filter(max_im,filt_size), dtype=np.int64) min_filt = np.array(minimum_filter(min_im,filt_size), dtype=np.int64) # get candidate seed points im_plt2 = (max_filt==max_im) & (min_filt!=min_im) & (min_filt!=0) z,x,y = np.where(im_plt2) keep = (max_filt[z,x,y]-min_filt[z,x,y])>th_seed#/np.array(max_filt[z,x,y],dtype=float)>0.5 x,y,z = x[keep],y[keep],z[keep] h = max_filt[z,x,y]-min_filt[z,x,y] #get rid of hot pixels if hot_pix_th>0: xy_str = [str([x_,y_]) for x_,y_ in zip(x,y)] xy_str_,cts_ = np.unique(xy_str,return_counts=True) keep = np.array([xy_str__ not in xy_str_[cts_>hot_pix_th] for xy_str__ in xy_str],dtype=bool) x,y,z = x[keep],y[keep],z[keep] h = h[keep] centers = np.array([z,x,y]) if return_h: centers = np.array([z,x,y,h]) return centers def fit_seed_points_base_fast(im,centers,width_z=_sigma_zxy[0],width_xy=_sigma_zxy[1],radius_fit=5,n_max_iter = 10,max_dist_th=0.25, quiet=False): if not quiet: print("Fitting:" +str(len(centers[0]))+" points") z,x,y = centers if len(x)>0: zxy = np.array([z,x,y],dtype=int).T ps = [] im_subtr = np.array(im,dtype=float) for center in zxy: p,success = fitsinglegaussian_fixed_width(im_subtr,center,radius=radius_fit,n_approx=5,width_zxy=[width_z,width_xy,width_xy]) if p is not None: ps.append(p) im_add = np.array(im_subtr) max_dist=np.inf n_iter = 0 while max_dist>max_dist_th: ps_1=np.array(ps) ps_1=ps_1[np.argsort(ps_1[:,0])[::-1]] ps = [] ps_1_rem=[] for p_1 in ps_1: center = p_1[1:4] p,success = fitsinglegaussian_fixed_width(im_add,center,radius=5,n_approx=10,width_zxy=[1.8,1.,1.]) if p is not None: ps.append(p) ps_1_rem.append(p_1) ps_2=np.array(ps) ps_1_rem=np.array(ps_1_rem) dif = ps_1_rem[:,1:4]-ps_2[:,1:4] max_dist = np.max(np.sum(dif**2,axis=-1)) n_iter+=1 if n_iter>n_max_iter: break return ps_2 else: return np.array([]) # fast alignment of fitted items which are bright and sparse (like beads) def beads_alignment_fast(beads, ref_beads, unique_cutoff=2., check_outlier=True, outlier_sigma=1., verbose=True): '''beads_alignment_fast, for finding pairs of beads when they are sparse Inputs: beads: ndarray of beads coordnates, num_beads by [z,x,y], n-by-3 numpy ndarray ref_beads: similar coorndiates for beads in reference frame, n-by-3 numpy ndarray unique_cutoff: a threshold that assuming there are only unique pairs within it, float check_outlier: whether using Delaunay triangulation neighbors to check outlier_sigma: times for sigma that determine threshold in checking outlier, positive float verbose: whether say something during alignment, bool Outputs: _paired_beads: beads that find their pairs in ref frame, n-by-3 numpy array _paired_ref_beads: ref_beads that find their pairs (sorted), n-by-3 numpy array _shifts: 3d shift of beads (bead - ref_bead), n-by-3 numpy array ''' # initialize _paired_beads, _paired_ref_beads, _shifts = [], [], [] # loop through all beads in ref frame for _rb in ref_beads: _competing_ref_beads = ref_beads[np.sqrt(np.sum((ref_beads - _rb)**2,1)) < unique_cutoff] if len(_competing_ref_beads) > 1: # in this case, other ref_bead exist within cutoff continue else: _candidate_beads = beads[np.sqrt(np.sum((beads - _rb)**2,1)) < unique_cutoff] if len(_candidate_beads) == 1: # if unique pairs identified _paired_beads.append(_candidate_beads[0]) _paired_ref_beads.append(_rb) _shifts.append(_candidate_beads[0] - _rb) # covert to numpy array _paired_beads = np.array(_paired_beads) _paired_ref_beads = np.array(_paired_ref_beads) _shifts = np.array(_shifts) # remove suspicious shifts for _j in range(np.shape(_shifts)[1]): _shift_keeps = np.abs(_shifts)[:,_j] < np.mean(np.abs(_shifts)[:,_j])+outlier_sigma*np.std(np.abs(_shifts)[:,_j]) # filter beads and shifts _paired_beads = _paired_beads[_shift_keeps] _paired_ref_beads = _paired_ref_beads[_shift_keeps] _shifts = _shifts[_shift_keeps] # check outlier if check_outlier: from scipy.spatial import Delaunay from mpl_toolkits.mplot3d import Axes3D # initialize list for shifts calculated by neighboring points _alter_shifts = [] # calculate Delaunay triangulation for ref_beads _tri = Delaunay(_paired_ref_beads) # loop through all beads for _i in range(_paired_ref_beads.shape[0]): # initialize diff, which used to judge whether keep this _keep = True # extract shift _shift = _shifts[_i] # initialize neighboring point ids _neighbor_ids = [] # find neighbors for this point for _simplex in _tri.simplices.copy(): if _i in _simplex: _neighbor_ids.append(_simplex) _neighbor_ids = np.array(np.unique(_neighbor_ids).astype(np.int)) _neighbor_ids = _neighbor_ids[_neighbor_ids != _i] # remove itself _neighbor_ids = _neighbor_ids[_neighbor_ids != -1] # remove error # calculate alternative shift _neighbors = _paired_ref_beads[_neighbor_ids,:] _neighbor_shifts = _shifts[_neighbor_ids,:] _neighbor_weights = 1/np.sqrt(np.sum((_neighbors-_paired_ref_beads[_i])**2,1)) _alter_shift = np.dot(_neighbor_shifts.T, _neighbor_weights) / np.sum(_neighbor_weights) _alter_shifts.append(_alter_shift) #print _i, _alter_shift, _shift # differences between shifts and alternative shifts _diff = [np.linalg.norm(_shift-_alter_shift) for _shift,_alter_shift in zip(_shifts, _alter_shifts)] # determine whether keep this: print('-- differences in original drift and neighboring dirft:', _diff, np.mean(_diff), np.std(_diff)) _keeps = np.array(_diff < np.mean(_diff)+np.std(_diff)*outlier_sigma, dtype=np.bool) # filter beads and shifts _paired_beads = _paired_beads[_keeps] _paired_ref_beads = _paired_ref_beads[_keeps] _shifts = _shifts[_keeps] return np.array(_paired_beads), np.array(_paired_ref_beads), np.array(_shifts) class imshow_mark_3d_v2: def master_reset(self): #self.dic_min_max = {} self.class_ids = [] self.draw_x,self.draw_y,self.draw_z=[],[],[] self.coords = list(zip(self.draw_x,self.draw_y,self.draw_z)) #load vars self.load_coords() self.set_image() def __init__(self,ims,fig=None,image_names=None,rescz=1.,min_max_default = [None,None], given_dic=None,save_file=None,paramaters={}): #internalize #seeding paramaters self.gfilt_size = paramaters.get('gfilt_size',0.75)#first gaussian blur with radius # to avoid false local max from camera fluc self.filt_size = paramaters.get('filt_size',3)#local maxima and minima are computed on blocks of size # self.th_seed = paramaters.get('th_seed',300.)#keep points when difference between local minima and maxima is more than # self.hot_pix_th = paramaters.get('hot_pix_th',0) #fitting paramaters self.width_z = paramaters.get('width_z',1.8*1.5)#fixed width in z # 1.8 presuposes isotropic pixel size self.width_xy = paramaters.get('width_xy',1.)#fixed width in xy self.radius_fit = paramaters.get('radius_fit',5)#neibouring of fitting for each seed point self.paramaters=paramaters self.ims=ims self.rescz = rescz if image_names is None: self.image_names = ['Image '+str(i+1) for i in range(len(ims))] else: self.image_names = image_names self.save_file = save_file #define extra vars self.dic_min_max = {} self.class_ids = [] self.draw_x,self.draw_y,self.draw_z=[],[],[] self.coords = list(zip(self.draw_x,self.draw_y,self.draw_z)) self.delete_mode = False #load vars self.load_coords(_given_dic=given_dic) #construct images self.index_im = 0 self.im_ = self.ims[self.index_im] self.im_xy = np.max(self.im_,axis=0) self.im_z = np.max(self.im_,axis=1) im_z_len = self.im_z.shape[0] indz=np.array(np.round(np.arange(0,im_z_len,self.rescz)),dtype=int) self.im_z = self.im_z[indz[indz<im_z_len],...] #setup plots if fig is None: self.f=plt.figure() else: self.f=fig self.ax1,self.ax2 = ImageGrid(self.f, 111, nrows_ncols=(2, 1), axes_pad=0.1) self.lxy,=self.ax1.plot(self.draw_x, self.draw_y, 'o', markersize=12,markeredgewidth=1,markeredgecolor='y',markerfacecolor='None') self.lz,=self.ax2.plot(self.draw_x, self.draw_z, 'o', markersize=12,markeredgewidth=1,markeredgecolor='y',markerfacecolor='None') self.imshow_xy = self.ax1.imshow(self.im_xy,interpolation='nearest',cmap='gray') self.imshow_z = self.ax2.imshow(self.im_z,interpolation='nearest',cmap='gray') self.min_,self.max_ = min_max_default if self.min_ is None: self.min_ = np.min(self.im_) if self.max_ is None: self.max_ = np.max(self.im_) self.imshow_xy.set_clim(self.min_,self.max_) self.imshow_z.set_clim(self.min_,self.max_) self.ax1.callbacks.connect('ylim_changed', self.xy_on_lims_change) self.ax2.callbacks.connect('ylim_changed', self.z_on_lims_change) self.f.suptitle(self.image_names[self.index_im]) #connect mouse and keyboard cid = self.f.canvas.mpl_connect('button_press_event', self.onclick) cid2 = self.f.canvas.mpl_connect('key_press_event', self.press) cid3 = self.f.canvas.mpl_connect('key_release_event', self.release) self.set_image() if fig is None: plt.show() def onclick(self,event): if event.button==3: #print "click" if event.inaxes is self.ax1: if self.delete_mode: z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() x_,y_,z_ = list(map(np.array,[self.draw_x,self.draw_y,self.draw_z])) #print x_min,x_max,y_min,y_max,z_min,z_max #print x_,y_,z_ keep_in_window = (x_>y_min)&(x_<y_max)&(y_>x_min)&(y_<x_max)&(z_>z_min)&(z_<z_max) keep_class = (np.array(self.class_ids)==self.index_im)&(np.isnan(self.draw_x)==False) keep = keep_in_window&keep_class if np.sum(keep)>0: keep_ind = np.arange(len(keep))[keep] coords_xy_class = list(zip(np.array(self.draw_x)[keep], np.array(self.draw_y)[keep])) difs = np.array(coords_xy_class)-np.array([[event.xdata,event.ydata]]) ind_= np.argmin(np.sum(np.abs(difs),axis=-1)) self.draw_x.pop(keep_ind[ind_]) self.draw_y.pop(keep_ind[ind_]) self.draw_z.pop(keep_ind[ind_]) self.class_ids.pop(keep_ind[ind_]) print(ind_) else: print('test') else: if event.xdata is not None and event.ydata is not None: self.draw_x.append(event.xdata) self.draw_y.append(event.ydata) z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.draw_z.append((z_min+z_max)/2.) self.class_ids.append(self.index_im) if event.inaxes is self.ax2: if event.xdata is not None and event.ydata is not None: z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() x_,y_,z_ = list(map(np.array,[self.draw_x,self.draw_y,self.draw_z])) keep_in_window = (x_>y_min)&(x_<y_max)&(y_>x_min)&(y_<x_max)&(z_>z_min)&(z_<z_max) keep_class = (np.array(self.class_ids)==self.index_im)&(np.isnan(self.draw_x)==False) keep = keep_in_window&keep_class if np.sum(keep)>0: keep_ind = np.arange(len(keep))[keep] coords_x = np.array(self.draw_x)[keep] ind_ = np.argmin(np.abs(coords_x-event.xdata)) self.draw_z[keep_ind[ind_]]=event.ydata self.update_point_plot() def press(self,event): if event.key== 'd': self.index_im = (self.index_im+1)%len(self.ims) self.set_image() if event.key== 'a': self.index_im = (self.index_im-1)%len(self.ims) self.set_image() if event.key=='s': self.save_ims() if event.key== 'x': self.auto_scale() if event.key== 't': self.get_seed_points() if event.key== 'n': self.handle_in_nucleus() if event.key== 'q': prev_im = self.index_im for self.index_im in range(len(self.ims)): self.set_image() self.get_seed_points() self.fit_seed_points() self.index_im = prev_im self.set_image() if event.key== 'y': self.fit_seed_points() if event.key == 'delete': self.draw_x.pop(-1) self.draw_y.pop(-1) self.draw_z.pop(-1) self.class_ids.pop(-1) self.update_point_plot() if event.key == 'shift': self.delete_mode = True def release(self, event): if event.key == 'shift': self.delete_mode = False def populate_draw_xyz(self,flip=False): if len(self.coords)>0: self.draw_x,self.draw_y,self.draw_z = list(zip(*self.coords)) if flip: self.draw_x,self.draw_y,self.draw_z = list(map(list,[self.draw_y,self.draw_x,self.draw_z])) else: self.draw_x,self.draw_y,self.draw_z = list(map(list,[self.draw_x,self.draw_y,self.draw_z])) else: self.draw_x,self.draw_y,self.draw_z = [],[],[] def create_text(self): z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.texts = [] i_ims = np.zeros(len(self.ims),dtype=int) for (xyz,c_id) in zip(self.coords,self.class_ids): i_ims[c_id]+=1 if c_id==self.index_im: if not np.isnan(xyz[0]): if z_min<xyz[2] and z_max>xyz[2] and y_min<xyz[0] and y_max>xyz[0] and x_min<xyz[1] and x_max>xyz[1]: text_ = str(i_ims[c_id]) color_='r' if hasattr(self,'dec_text'): key_dec = tuple(list(np.array(xyz,dtype=int))+[c_id]) if key_dec in self.dec_text: text_=self.dec_text[key_dec]['text'] color_='b' self.texts.append(self.ax1.text(xyz[0],xyz[1],text_,color=color_)) self.texts.append(self.ax2.text(xyz[0],xyz[2],text_,color=color_)) def update_point_plot(self): z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.coords = list(zip(self.draw_x,self.draw_y,self.draw_z)) x_,y_,z_ = list(map(np.array,[self.draw_x,self.draw_y,self.draw_z])) #print x_min,x_max,y_min,y_max,z_min,z_max #print x_,y_,z_ keep_class = np.array(self.class_ids)==self.index_im keep_in_window = (x_>y_min)&(x_<y_max)&(y_>x_min)&(y_<x_max)&(z_>z_min)&(z_<z_max) keep = keep_class&keep_in_window self.lxy.set_xdata(x_[keep]) self.lxy.set_ydata(y_[keep]) self.lz.set_xdata(x_[keep]) self.lz.set_ydata(z_[keep]) self.save_coords() self.remove_text() self.create_text() self.f.canvas.draw() def remove_text(self): if not hasattr(self,'texts'): self.texts = [] for txt in self.texts: txt.remove() def load_coords(self, _given_dic=None): save_file = self.save_file if _given_dic: save_dic = _given_dic elif save_file is not None and os.path.exists(save_file): with open(save_file,'rb') as fid: save_dic = pickle.load(fid) else: return False # load information from save_dic self.coords,self.class_ids = save_dic['coords'],save_dic['class_ids'] if 'pfits' in save_dic: self.pfits_save = save_dic['pfits'] if 'dec_text' in save_dic: self.dec_text=save_dic['dec_text'] self.populate_draw_xyz()#coords to plot list def save_coords(self): save_file = self.save_file if save_file is not None: if not os.path.exists(os.path.dirname(save_file)): os.makedirs(os.path.dirname(save_file)) fid = open(save_file,'wb') self.pfits_save = getattr(self,'pfits_save',{}) self.dec_text = getattr(self,'dec_text',{}) save_dic = {'coords':self.coords,'class_ids':self.class_ids,'pfits':self.pfits_save,'dec_text':self.dec_text} pickle.dump(save_dic,fid) fid.close() def auto_scale(self): z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() im_chop = self.im_[z_min:z_max,x_min:x_max,y_min:y_max,...] min_,max_ = np.min(im_chop),np.max(im_chop) self.imshow_xy.set_clim(min_,max_) self.imshow_z.set_clim(min_,max_) self.dic_min_max[self.index_im] = [min_,max_] self.f.canvas.draw() def del_ext(self,str_): "Deletes extention" if os.path.basename(str_).count('.')>0: return '.'.join(str_.split('.')[:-1]) else: return str_ def save_ims(self): import scipy.misc save_file = self.save_file z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() for index_im,im_ in enumerate(self.ims): im_chop = im_[self.get_z_ind(),x_min:x_max,y_min:y_max,...] im_xy = np.max(im_chop,axis=0) im_z = np.max(im_chop,axis=1) if index_im in self.dic_min_max: min_,max_ = self.dic_min_max[index_im] im_xy = minmax(im_xy,min_=min_,max_=max_) im_z = minmax(im_z,min_=min_,max_=max_) else: min_,max_ = self.min_,self.max_ im_xy = minmax(im_xy,min_=min_,max_=max_) im_z = minmax(im_z,min_=min_,max_=max_) if save_file is not None: if not os.path.exists(os.path.dirname(save_file)): os.makedirs(os.path.dirname(save_file)) save_image = self.del_ext(save_file)+'_'+self.image_names[index_im] scipy.misc.imsave(save_image+'_xy.png', im_xy) scipy.misc.imsave(save_image+'_z.png', im_z) def set_image(self): self.im_ = self.ims[self.index_im] z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.im_sm = self.im_[z_min:z_max,x_min:x_max,y_min:y_max] self.im_xy = np.max(self.im_[z_min:z_max,:,...],axis=0) self.imshow_xy.set_data(self.im_xy) self.im_z = np.max(self.im_[:,x_min:x_max,...],axis=1) self.im_z = self.im_z[self.get_z_ind(),:] self.imshow_z.set_data(self.im_z) if self.index_im in self.dic_min_max: min_,max_ = self.dic_min_max[self.index_im] self.imshow_xy.set_clim(min_,max_) self.imshow_z.set_clim(min_,max_) self.update_point_plot() self.f.suptitle(self.image_names[self.index_im]) self.f.canvas.draw() def get_limits(self): y_min,y_max = self.ax1.get_xlim() x_min,x_max = self.ax1.get_ylim()[::-1] x_min = max(int(x_min),0) x_max = min(int(x_max),self.im_.shape[1]) y_min = max(int(y_min),0) y_max = min(int(y_max),self.im_.shape[2]) z_min,z_max = np.array(self.ax2.get_ylim()[::-1])*self.rescz z_min = max(int(z_min),0) z_max = min(int(z_max),self.im_.shape[0]) return z_min,z_max,x_min,x_max,y_min,y_max def get_z_ind(self): im_z_len = self.im_z.shape[0] indz=np.array(np.round(np.arange(0,im_z_len,self.rescz)),dtype=int) return indz[indz<im_z_len] def xy_on_lims_change(self,ax): z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.im_sm = self.im_[z_min:z_max,x_min:x_max,y_min:y_max] self.im_z = np.max(self.im_[:,x_min:x_max,...],axis=1) self.im_z = self.im_z[self.get_z_ind(),:] self.imshow_z.set_data(self.im_z) self.update_point_plot() def z_on_lims_change(self,ax): z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() self.im_sm = self.im_[z_min:z_max,x_min:x_max,y_min:y_max] self.im_xy = np.max(self.im_[z_min:z_max,:,...],axis=0) self.imshow_xy.set_data(self.im_xy) self.update_point_plot() def fit_seed_points(self): #get default paramaters from self width_z = self.width_z width_xy = self.width_xy radius_fit = self.radius_fit im = self.im_sm z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() y_,x_,z_ = list(map(np.array,[self.draw_x,self.draw_y,self.draw_z])) keep_class = np.array(self.class_ids)==self.index_im keep_in_window = (x_>x_min)&(x_<x_max)&(y_>y_min)&(y_<y_max)&(z_>z_min)&(z_<z_max) keep = keep_class&keep_in_window xyzguess = np.array([z_[keep]-z_min,x_[keep]-x_min,y_[keep]-y_min],dtype=int) self.pfits = fit_seed_points_base(im,xyzguess,width_z=width_z,width_xy=width_xy,radius_fit=3,n_max_iter = 15,max_dist_th=0.25) if len(self.pfits>0): self.pfits[:,1:4]+=[[z_min,x_min,y_min]] #update graph and points keep = np.array(self.class_ids)!=self.index_im self.class_ids,self.draw_z,self.draw_x,self.draw_y = [list(np.array(x)[keep]) for x in [self.class_ids,self.draw_z,self.draw_x,self.draw_y]] if not hasattr(self,'pfits_save'): self.pfits_save={} self.pfits_save[self.index_im]=self.pfits centers_0,centers_1,centers_2 = self.pfits[:,1:4].T self.draw_z.extend(centers_0) self.draw_x.extend(centers_2) self.draw_y.extend(centers_1) self.class_ids.extend([self.index_im]*len(centers_0)) self.update_point_plot() def get_seed_points(self): #get default paramaters from self gfilt_size = self.gfilt_size filt_size = self.filt_size th_seed = self.th_seed hot_pix_th = self.hot_pix_th im = self.im_sm centers = get_seed_points_base(im,gfilt_size=gfilt_size,filt_size=filt_size,th_seed=th_seed,hot_pix_th=hot_pix_th) z_min,z_max,x_min,x_max,y_min,y_max = self.get_limits() keep = np.array(self.class_ids)!=self.index_im self.class_ids,self.draw_z,self.draw_x,self.draw_y = [list(np.array(x)[keep]) for x in [self.class_ids,self.draw_z,self.draw_x,self.draw_y]] self.draw_z.extend(centers[0]+z_min) self.draw_x.extend(centers[2]+y_min) self.draw_y.extend(centers[1]+x_min) self.class_ids.extend([self.index_im]*len(centers[0])) self.update_point_plot() def handle_in_nucleus(self): if hasattr(self,'nucl_x'): i_im = self.index_im class_ids = np.array(self.class_ids) Y,X,Z = np.array(self.draw_x,dtype=int),np.array(self.draw_y,dtype=int),np.array(self.draw_z,dtype=int) keep = class_ids==i_im Y,X,Z=Y[keep],X[keep],Z[keep] nucl_ = np.array([self.nucl_x,self.nucl_y,self.nucl_z],dtype=int).T draw_x,draw_y,draw_z=[],[],[] for x,y,z in zip(X,Y,Z): if np.any(np.sum(np.abs(nucl_-[[x,y,z]]),axis=-1)==0): draw_z.append(z) draw_x.append(y) draw_y.append(x) keep = np.array(self.class_ids)!=self.index_im self.class_ids,self.draw_z,self.draw_x,self.draw_y = [list(np.array(x)[keep]) for x in [self.class_ids,self.draw_z,self.draw_x,self.draw_y]] self.draw_z.extend(draw_z) self.draw_x.extend(draw_x) self.draw_y.extend(draw_y) self.class_ids.extend([self.index_im]*len(draw_x)) self.update_point_plot() class Reader: # Close the file on cleanup. def __del__(self): if self.fileptr: self.fileptr.close() def __enter__(self): return self def __exit__(self, etype, value, traceback): if self.fileptr: self.fileptr.close() # Average multiple frames in a movie. def averageFrames(self, start = False, end = False, verbose = False): if (not start): start = 0 if (not end): end = self.number_frames length = end - start average = np.zeros((self.image_width, self.image_height), np.float) for i in range(length): if verbose and ((i%10)==0): print(" processing frame:", i, " of", self.number_frames) average += self.loadAFrame(i + start) average = average/float(length) return average # returns the film name def filmFilename(self): return self.filename # returns the film size def filmSize(self): return [self.image_width, self.image_height, self.number_frames] # returns the picture x,y location, if available def filmLocation(self): if hasattr(self, "stage_x"): return [self.stage_x, self.stage_y] else: return [0.0, 0.0] # returns the film focus lock target def lockTarget(self): if hasattr(self, "lock_target"): return self.lock_target else: return 0.0 # returns the scale used to display the film when # the picture was taken. def filmScale(self): if hasattr(self, "scalemin") and hasattr(self, "scalemax"): return [self.scalemin, self.scalemax] else: return [100, 2000] # Dax reader class. This is a Zhuang lab custom format. # def batch_load_dax(filename): _im = DaxReader(filename).loadAll() return _im class DaxReader(Reader): # dax specific initialization def __init__(self, filename, swap_axis=False, verbose = 0): import os,re # save the filenames self.filename = filename dirname = os.path.dirname(filename) if (len(dirname) > 0): dirname = dirname + "/" self.inf_filename = dirname + os.path.splitext(os.path.basename(filename))[0] + ".inf" # swap_axis self.swap_axis = swap_axis # defaults self.image_height = None self.image_width = None # extract the movie information from the associated inf file size_re = re.compile(r'frame dimensions = ([\d]+) x ([\d]+)') length_re = re.compile(r'number of frames = ([\d]+)') endian_re = re.compile(r' (big|little) endian') stagex_re = re.compile(r'Stage X = ([\d\.\-]+)') stagey_re = re.compile(r'Stage Y = ([\d\.\-]+)') lock_target_re = re.compile(r'Lock Target = ([\d\.\-]+)') scalemax_re = re.compile(r'scalemax = ([\d\.\-]+)') scalemin_re = re.compile(r'scalemin = ([\d\.\-]+)') inf_file = open(self.inf_filename, "r") while 1: line = inf_file.readline() if not line: break m = size_re.match(line) if m: self.image_height = int(m.group(1)) self.image_width = int(m.group(2)) m = length_re.match(line) if m: self.number_frames = int(m.group(1)) m = endian_re.search(line) if m: if m.group(1) == "big": self.bigendian = 1 else: self.bigendian = 0 m = stagex_re.match(line) if m: self.stage_x = float(m.group(1)) m = stagey_re.match(line) if m: self.stage_y = float(m.group(1)) m = lock_target_re.match(line) if m: self.lock_target = float(m.group(1)) m = scalemax_re.match(line) if m: self.scalemax = int(m.group(1)) m = scalemin_re.match(line) if m: self.scalemin = int(m.group(1)) inf_file.close() # set defaults, probably correct, but warn the user # that they couldn't be determined from the inf file. if not self.image_height: print("Could not determine image size, assuming 256x256.") self.image_height = 256 self.image_width = 256 # open the dax file if os.path.exists(filename): self.fileptr = open(filename, "rb") else: self.fileptr = 0 if verbose: print("dax data not found", filename) # Create and return a memory map the dax file def loadMap(self): if os.path.exists(self.filename): if self.bigendian: self.image_map = np.memmap(self.filename, dtype='>u2', mode='r', shape=(self.number_frames,self.image_width, self.image_height)) else: self.image_map = np.memmap(self.filename, dtype='uint16', mode='r', shape=(self.number_frames,self.image_width, self.image_height)) return self.image_map # load a frame & return it as a np array def loadAFrame(self, frame_number): if self.fileptr: assert frame_number >= 0, "frame_number must be greater than or equal to 0" assert frame_number < self.number_frames, "frame number must be less than " + str(self.number_frames) self.fileptr.seek(frame_number * self.image_height * self.image_width * 2) image_data = np.fromfile(self.fileptr, dtype='uint16', count = self.image_height * self.image_width) if self.swap_axis: image_data = np.transpose(np.reshape(image_data, [self.image_width, self.image_height])) else: image_data = np.reshape(image_data, [self.image_width, self.image_height]) if self.bigendian: image_data.byteswap(True) return image_data # load full movie and retun it as a np array def loadAll(self): image_data = np.fromfile(self.fileptr, dtype='uint16', count = -1) if self.swap_axis: image_data = np.swapaxes(np.reshape(image_data, [self.number_frames,self.image_width, self.image_height]),1,2) else: image_data = np.reshape(image_data, [self.number_frames,self.image_width, self.image_height]) if self.bigendian: image_data.byteswap(True) return image_data def close(self): if self.fileptr.closed: print(f"file {self.filename} has been closed.") else: self.fileptr.close() ## segmentation with DAPI def DAPI_segmentation(ims, names, cap_percentile=0.5, illumination_correction=True, illumination_correction_channel=405, correction_folder=_correction_folder, merge_layer_num = 11, denoise_window = 5, log_window = 13, signal_cap_ratio = 0.15, cell_min_size=1000, shape_ratio_threshold = 0.030, remove_fov_boundary = 40, make_plot=False, verbose=True): """cell segmentation for DAPI images with pooling and convolution layers Inputs: ims: list of images names: list of names, same length as ims cap_percentile: removing top and bottom percentile in each image, float from 0-100 (default: 0.5) illumination_correction: whether correct illumination for each field of view, bool (default: True) illumination_correction_channel: which color channel to correct illumination for each field of view, int or str (default: 405) correction_folder: full directory that contains such correction files, string (default: ) merge_layer_num: number of z-stack layers to merge, int (default: 11) denoise_window: window size used for billateral denoising method, int (default: 31) log_window: window size for laplacian-gaussian filter, int (default: 13) signal_cap_ratio: intensity ratio that considered as signal if intensity over max intensity larger than this, float between 0-1, (default: 0.15) cell_min_size: smallest object size allowed as nucleus, int (default:1000 for 2D) shape_ratio_threshold: min threshold for: areasize of one label / (contour length of a label)^2, float (default: 0.15) remove_fov_boundary: if certain label is too close to fov boundary within this number of pixels, remove, int (default: 50) make_plot: whether making plots for checking purpose, bool verbose: whether say something during the process, bool Output: _ft_seg_labels: list of labels, same dimension as ims, list of bool matrix""" # imports from scipy import ndimage from skimage import morphology from scipy import stats from skimage import restoration, measure from ImageAnalysis3.corrections import Illumination_correction from skimage.segmentation import random_walker from scipy.ndimage import gaussian_laplace # check whether input is a list of images or just one image if isinstance(ims, list): if verbose: print("Start segmenting list of images") _ims = ims _names = names else: if verbose: print("Start segmenting one image") _ims = [ims] _names = [names] # check input length if len(_names) != len(_ims): raise ValueError('input images and names length not compatible!') # illumination correction if illumination_correction: _ims = [corrections.Illumination_correction(_im, illumination_correction_channel, correction_folder=correction_folder, verbose=verbose) for _im in _ims] # rescale image to 0-1 gray scale _limits = [stats.scoreatpercentile(_im, (cap_percentile, 100.-cap_percentile)).astype(np.float) for _im in _ims] _norm_ims = [(_im-np.min(_limit))/(np.max(_limit)-np.min(_limit)) for _im,_limit in zip(_ims, _limits)] for _im in _norm_ims: _im[_im < 0] = 0 _im[_im > 1] = 1 # find the layer that on focus _focus_layers = [np.argmin(np.array([np.sum(_layer > signal_cap_ratio) for _layer in _im])) for _im in _norm_ims] # stack images close to this focal layer if verbose: print('- find focal plane and slice') _stack_ims = [] for _im, _layer in zip(_norm_ims, _focus_layers): if _im.shape[0] - _layer < np.ceil((merge_layer_num-1)/2): _stack_lims = [_im.shape[0]-merge_layer_num, _im.shape[0]] elif _layer < np.floor((merge_layer_num-1)/2): _stack_lims = [0, merge_layer_num] else: _stack_lims = [_layer-np.ceil((merge_layer_num-1)/2), _layer+np.floor((merge_layer_num-1)/2)] _stack_lims = np.array(_stack_lims, dtype=np.int) # extract image _stack_im = np.zeros([np.max(_stack_lims)-np.min(_stack_lims), np.shape(_im)[1], np.shape(_im)[2]]) # denoise and merge if denoise_window: for _i,_l in enumerate(range(np.min(_stack_lims), np.max(_stack_lims))): _stack_im[_i] = restoration.denoise_bilateral(_im[_l], win_size=int(denoise_window), mode='edge', multichannel=False) else: for _i,_l in enumerate(range(np.min(_stack_lims), np.max(_stack_lims))): _stack_im[_i] = _im[_l] _stack_im = np.mean(_stack_im, axis=0) _stack_ims.append(_stack_im) # laplace of gaussian filter if verbose: print("- apply by laplace-of-gaussian filter") _conv_ims = [gaussian_laplace(_im, log_window) for _im in _stack_ims] # binarilize the image _supercell_masks = [(_cim < -1e-6) *( _sim > signal_cap_ratio) for _cim, _sim in zip(_conv_ims, _stack_ims)] _supercell_masks = [ndimage.binary_dilation(_im, structure=morphology.disk(4)) for _im in _supercell_masks] _supercell_masks = [ndimage.binary_erosion(_im, structure=morphology.disk(12)) for _im in _supercell_masks] _supercell_masks = [ndimage.binary_fill_holes(_im, structure=morphology.disk(3)) for _im in _supercell_masks] # acquire labels if verbose: print("- acquire labels") _open_objects = [morphology.opening(_im, morphology.disk(3)) for _im in _supercell_masks] _close_objects = [morphology.closing(_open, morphology.disk(3)) for _open in _open_objects] _close_objects = [morphology.remove_small_objects(_close, 2000) for _close in _close_objects] _bboxes = [ndimage.find_objects(_close) for _close in _close_objects] _masks = [_close[_bbox[0]] for _bbox, _close in zip(_bboxes, _close_objects)] _labels = [] for _close,_sim in zip(_close_objects,_stack_ims): _label, _num = ndimage.label(_close) _label[(_sim > signal_cap_ratio)*(_label==0)] = 0 _label[(_sim <= signal_cap_ratio)*(_label==0)] = -1 _labels.append(_label) # random walker segmentation if verbose: print ("- random walker segmentation!") _seg_labels = [random_walker(_im, _label, beta=1, mode='bf') for _im, _label in zip(_stack_ims, _labels)] # remove bad labels by shape ratio: A(x)/I(x)^2 if verbose: print ("- remove failed labels by shape ratio: A(x)/I(x)^2") _ft_seg_labels = [] _contours = [] for _i, _seg_label in enumerate(_seg_labels): if verbose: print ("- screen labels in field of view:", names[_i]) _failed_labels = [] for _l in range(np.max(_seg_label)): _contour = measure.find_contours(np.array(_seg_label==_l+1, dtype=np.int), 0)[0] _length = np.sum(np.sqrt(np.sum((_contour[1:] - _contour[:-1])**2, axis=1))) _size = np.sum(_seg_label==_l+1) _center = np.round(ndimage.measurements.center_of_mass(_seg_label==_l+1)) _shape_ratio = _size/_length**2 if _shape_ratio < shape_ratio_threshold: _seg_label[_seg_label==_l+1] = -1 _failed_labels.append(_l+1) if verbose: print("-- fail by shape_ratio, label", _l+1, 'contour length:', _length, 'size:', _size, 'shape_ratio:',_size/_length**2) continue for _coord,_dim in zip(_center[-2:], _seg_label.shape[-2:]): if _coord < remove_fov_boundary or _coord > _dim - remove_fov_boundary: _seg_label[_seg_label==_l+1] = -1 _failed_labels.append(_l+1) if verbose: print("-- fail by center_coordinate, label:", _l+1, "center of this nucleus:", _center[-2:]) break _lb = 1 while _lb <= np.max(_seg_label): if np.sum(_seg_label == _lb) == 0: print ("-- remove", _lb) _seg_label[_seg_label>_lb] -= 1 else: print ("-- pass", _lb) _lb += 1 _ft_seg_labels.append(_seg_label) # plot if make_plot: for _seg_label, _name in zip(_ft_seg_labels, _names): plt.figure() plt.imshow(_seg_label) plt.title(_name) plt.colorbar() plt.show() # return segmentation results return _ft_seg_labels # segmentation with convolution of DAPI images def DAPI_convoluted_segmentation(filenames, correction_channel=405, num_threads=12, cap_percentile=1, single_im_size=_image_size, all_channels=_allowed_colors, num_buffer_frames=10, num_empty_frames=1, illumination_correction=True, illumination_correction_channel=405, correction_folder=_correction_folder, merge_layer_num=11, denoise_window=5, mft_size=25, glft_size=30, max_conv_th=0, min_boundary_th=0.48, signal_cap_ratio=0.20, max_cell_size=40000, min_cell_size=5000, min_shape_ratio=0.035, max_iter=4, shrink_percent=15, dialation_dim=4, random_walker_beta=0.1, remove_fov_boundary=50, save=True, save_folder=None, force=False, save_npy=True, save_postfix="_segmentation", make_plot=False, return_images=False, verbose=True): """cell segmentation for DAPI images with pooling and convolution layers Inputs: ims: list of images names: list of names, same length as ims cap_percentile: removing top and bottom percentile in each image, float from 0-100 (default: 0.5) num_buffer_frames: number of buffer frames, int num_empty_frames: num of empty frames, int illumination_correction: whether correct illumination for each field of view, bool (default: True) illumination_correction_channel: which color channel to correct illumination for each field of view, int or str (default: 405) correction_folder: full directory that contains such correction files, string (default: ) merge_layer_num: number of z-stack layers to merge, int (default: 11) denoise_window: window size used for billateral denoising method, int (default: 31) mft_size: size of max-min filters to get cell boundaries, int (default: 25) glft_size: window size for laplacian-gaussian filter, int (default: 35) binarilize image: max_conv_th: maximum convolution threshold, float(default: -5e-5) min_boundary_th: minimal boundary im threshold, float(default: 0.55) signal_cap_ratio: intensity ratio that considered as signal if intensity over max intensity larger than this, float between 0-1, (default: 0.15) max_cell_size: upper limit for object otherwise undergoes extra screening, int(default: 30000) min_cell_size: smallest object size allowed as nucleus, int (default:5000 for 2D) min_shape_ratio: min threshold for: areasize of one label / (contour length of a label)^2, float (default: 0.15) max_iter: maximum iterations allowed in splitting shapes, int (default:3) shrink_percent: percentage of label areas removed during splitting, float (0-100, default: 13) dialation_dim: dimension for dialation after splitting objects, int (default:4) random_walker_beta: beta used for random walker segementation algorithm, float (default: 0.1) remove_fov_boundary: if certain label is too close to fov boundary within this number of pixels, remove, int (default: 50) make_plot: whether making plots for checking purpose, bool verbose: whether say something during the process, bool Output: _seg_labels: list of labels, same dimension as ims, list of bool matrix""" ## import images if not isinstance(filenames, list): filenames = [filenames] ## load segmentation if already existed: if save_folder is None: save_folder = os.path.dirname(os.path.dirname(filenames[0])) save_folder = os.path.join(save_folder, 'Analysis', 'segmentation') if not os.path.exists(save_folder): # create folder if not exists os.makedirs(save_folder) if save_npy: save_filenames = [os.path.join(save_folder, os.path.basename(_fl).replace('.dax', save_postfix +'.npy')) for _fl in filenames] else: save_filenames = [os.path.join(save_folder, os.path.basename(_fl).replace('.dax', save_postfix +'.pkl')) for _fl in filenames] # decide if directly load _direct_load_flags = [True for _fl in save_filenames if os.path.exists(_fl) and not force] if len(_direct_load_flags) == len(filenames) and not force: if verbose: if len(filenames) == 1: print(f"-- directly load segmentation result from:{save_filenames[0]}") else: print(f"-- directly load segmentation result from folder:{save_folder}, load_npy:{save_npy}") # load segmentation labels if save_npy: _seg_labels = [np.load(_fl) for _fl in save_filenames] else: _seg_labels = [pickle.load(open(_fl, 'rb')) for _fl in save_filenames] # return if return_images: if verbose: print(f"- loading {len(filenames)} images for output") _load_args = [(_fl, correction_channel, None, None, 20, single_im_size, all_channels, num_buffer_frames,num_empty_frames, np.zeros(3), correction_folder) for _fl in filenames] _load_pool = mp.Pool(num_threads) _ims = _load_pool.starmap(corrections.correct_single_image, _load_args, chunksize=1) _load_pool.close() _load_pool.join() _load_pool.terminate() return _seg_labels, _ims else: return _seg_labels else: if verbose: print(f"- loading {len(filenames)} images for segmentation") _load_args = [(_fl, correction_channel, None, None, 20, single_im_size, all_channels, num_buffer_frames,num_empty_frames, np.zeros(3), correction_folder) for _fl in filenames] _load_pool = mp.Pool(num_threads) _ims = _load_pool.starmap(corrections.correct_single_image, _load_args, chunksize=1) _load_pool.close() _load_pool.join() _load_pool.terminate() ## rescaling and stack # rescale image to 0-1 gray scale _limits = [stats.scoreatpercentile(_im, (cap_percentile, 100.-cap_percentile)).astype(np.float) for _im in _ims] _norm_ims = [(_im-np.min(_limit))/(np.max(_limit)-np.min(_limit)) for _im,_limit in zip(_ims, _limits)] for _im in _norm_ims: _im[_im < 0] = 0 _im[_im > 1] = 1 # find the layer that on focus _focus_layers = [np.argmin(np.array([np.sum(_layer > signal_cap_ratio) for _layer in _im])) for _im in _norm_ims] # stack images close to this focal layer if verbose: print('-- find focal plane and slice') _stack_ims = [] for _im, _layer in zip(_norm_ims, _focus_layers): if _im.shape[0] - _layer < np.ceil((merge_layer_num-1)/2): _stack_lims = [_im.shape[0]-merge_layer_num, _im.shape[0]] elif _layer < np.floor((merge_layer_num-1)/2): _stack_lims = [0, merge_layer_num] else: _stack_lims = [_layer-np.ceil((merge_layer_num-1)/2), _layer+np.floor((merge_layer_num-1)/2)] _stack_lims = np.array(_stack_lims, dtype=np.int) # extract image _stack_im = np.zeros([np.max(_stack_lims)-np.min(_stack_lims), np.shape(_im)[1], np.shape(_im)[2]]) # denoise and merge if denoise_window: for _i,_l in enumerate(range(np.min(_stack_lims), np.max(_stack_lims))): _stack_im[_i] = restoration.denoise_bilateral(_im[_l], win_size=int(denoise_window), mode='edge', multichannel=False) else: for _i,_l in enumerate(range(np.min(_stack_lims), np.max(_stack_lims))): _stack_im[_i] = _im[_l] _stack_im = np.mean(_stack_im, axis=0) _stack_ims.append(_stack_im) ## Get boundaries of cells and apply Gaussian-Laplacian filter # get boundaries of cells _diff_ims = [2*ndimage.filters.maximum_filter(_stack_im, mft_size)-ndimage.filters.minimum_filter(_stack_im, mft_size) for _stack_im in _stack_ims] # laplace of gaussian filter if verbose: print("- apply by laplace-of-gaussian filter") _conv_ims = [gaussian_laplace(_im, glft_size) for _im in _diff_ims] ## get rough labels # binarilize the image _supercell_masks = [(_cim < max_conv_th) *( _sim > min_boundary_th) for _cim, _sim in zip(_conv_ims, _diff_ims)] # erosion and dialation _supercell_masks = [ndimage.binary_erosion(_im, structure=morphology.disk(3)) for _im in _supercell_masks] _supercell_masks = [ndimage.binary_dilation(_im, structure=morphology.disk(5)) for _im in _supercell_masks] # filling holes _supercell_masks = [ndimage.binary_fill_holes(_im, structure=morphology.disk(4)) for _im in _supercell_masks] # acquire labels if verbose: print("- acquire labels") _open_objects = [morphology.opening(_im, morphology.disk(3)) for _im in _supercell_masks] _close_objects = [morphology.closing(_open, morphology.disk(3)) for _open in _open_objects] _close_objects = [morphology.remove_small_objects(_close, min_cell_size) for _close in _close_objects] # labeling _labels = [ np.array(ndimage.label(_close)[0], dtype=np.int) for _close in _close_objects] ## Tuning labels def _label_binary_im(_im, obj_size=3): '''Given an binary image, find labels for all isolated objects with given size''' # make sure image is binary _bim = np.array(_im > 0, dtype=np.int) # find objects _open = morphology.opening(_bim, morphology.disk(obj_size)) _close = morphology.closing(_open, morphology.disk(obj_size)) # label objects _label, _num = ndimage.label(_close.astype(bool)) # return return _label, _num def _check_label(_label, _id, _min_shape_ratio, _max_size, verbose=False): """Check whether the label is qualified as a cell""" # get features _length,_size,_center,_ratio = _get_label_features(_label, _id) if _ratio < _min_shape_ratio: if verbose: print(f"--- {_ratio} is smaller than minimum shape ratio, failed") return False if _size > _max_size: if verbose: print(f"--- {_size} is larger than maximum shape size, failed") return False return True def _get_label_features(_label, _id): """Given a label and corresponding label id, return four features of this label""" # get features _contours = measure.find_contours(np.array(_label==_id, dtype=np.int), 0) if len(_contours) > 0: _length = np.sum(np.sqrt(np.sum((np.roll(_contours[0],1,axis=0) - _contours[0])**2, axis=1))) else: _length = 0 _size = np.sum(_label==_id) _center = np.round(ndimage.measurements.center_of_mass(_label==_id)) _shape_ratio = _size/_length**2 return _length, _size, _center, _shape_ratio def _split_single_label(_stack_im, _conv_im, _label, _id, min_size=min_cell_size, shrink_percent=shrink_percent, erosion_dim=2, dialation_dim=dialation_dim): """Function to split suspicious labels and validate""" if shrink_percent > 50 or shrink_percent < 0: raise ValueError(f"Wrong shrink_percent kwd ({shrink_percent}) is given, should be in [0,50]") # get features _length,_size,_center,_ratio = _get_label_features(_label, _id) if _size < 2*min_size: # adjust shrink percentage if shape is small shrink_percent = shrink_percent * 0.8 _mask = np.array(_label == _id, dtype=np.int) _mask *= np.array(_stack_im > stats.scoreatpercentile(_stack_im[_label==_id], shrink_percent), dtype=int) #_mask *= np.array(_conv_im < stats.scoreatpercentile(_conv_im[_label==_id], 100-2*shrink_percent), dtype=int) _mask = ndimage.binary_erosion(_mask, structure=morphology.disk(erosion_dim)) _mask = morphology.remove_small_objects(_mask.astype(bool), min_size) _new_label, _num = _label_binary_im(_mask, 3) for _l in range(_num): _single_label = np.array(_new_label==_l+1, dtype=np.int) _single_label = ndimage.binary_dilation(_single_label, structure=morphology.disk(int(dialation_dim/2))) _new_label[_single_label>0] = _l+1 return _new_label, _num def _iterative_split_labels(_stack_im, _conv_im, _label, max_iter=3, min_shape_ratio=min_shape_ratio, max_size=max_cell_size, min_size=min_cell_size, shrink_percent=15, erosion_dim=2, dialation_dim=10, verbose=False): """Function to iteratively split labels within one fov""" _single_labels = [np.array(_label==_i+1,dtype=np.int) for _i in range(int(np.max(_label))) if np.sum(np.array(_label==_i+1,dtype=np.int))>0] _iter_counts = [0 for _i in range(len(_single_labels))] _final_label = np.zeros(np.shape(_label), dtype=np.int) # start selecting labels while(len(_single_labels)) > 0: _sg_label = _single_labels.pop(0) _iter_ct = _iter_counts.pop(0) if verbose: print(f"- Remaining labels:{len(_single_labels)}, iter_num:{_iter_ct}") # if this cell passes the filter if _check_label(_sg_label, 1, min_shape_ratio, max_size, verbose=verbose): if verbose: print(f"-- saving label: {np.max(_final_label)+1}") _save_label = ndimage.binary_dilation(_sg_label, structure=morphology.disk(int(dialation_dim/2))) _save_label = ndimage.binary_fill_holes(_save_label, structure=morphology.disk(int(dialation_dim/2))) if np.sum(_save_label==1) > min_size: if verbose: print('save1', _get_label_features(_save_label, 1)) _final_label[_save_label==1] = np.max(_final_label)+1 continue # not pass, try to split else: _new_label, _num = _split_single_label(_stack_im, _conv_im, _sg_label, 1, min_size=min_size*(1-shrink_percent/100)**_iter_ct, shrink_percent=shrink_percent, erosion_dim=erosion_dim, dialation_dim=dialation_dim) for _i in range(_num): _cand_label = np.array(_new_label==_i+1, dtype=np.int) if _check_label(_cand_label, 1, min_shape_ratio*0.9**_iter_ct, max_size, verbose=verbose): if verbose: print(f"-- saving label: {np.max(_final_label)+1}") _save_label = ndimage.binary_dilation(_cand_label, structure=morphology.disk(int(dialation_dim/2+1))) _save_label = ndimage.binary_fill_holes(_save_label, structure=morphology.disk(int(dialation_dim/2))) if np.sum(_save_label == 1) > min_size: if verbose: print('save2', _get_label_features(_save_label, 1)) _final_label[_save_label==1] = np.max(_final_label)+1 elif _iter_ct > max_iter: if verbose: print("--- Exceeding max-iteration count, skip.") continue else: if verbose: print("--- Append this cell back to pool") _single_labels.append(_cand_label) _iter_counts.append(_iter_ct+1) return _final_label # initialize updated labels and call functions if verbose: print("- start iterative segmentation") _seg_labels = [] for _i, (_sim, _cim, _label) in enumerate(zip(_stack_ims, _conv_ims, _labels)): _updated_label = _iterative_split_labels(_sim, _cim, _label, max_iter=max_iter, min_shape_ratio=min_shape_ratio, shrink_percent=shrink_percent, max_size=max_cell_size, min_size=min_cell_size, dialation_dim=dialation_dim, verbose=verbose) for _l in range(int(np.max(_updated_label))): _, _, _center, _ = _get_label_features(_updated_label, _l+1) if _center[0] < remove_fov_boundary or _center[1] < remove_fov_boundary or _center[0] >= _updated_label.shape[0]-remove_fov_boundary or _center[1] >= _updated_label.shape[1]-remove_fov_boundary: if verbose: print(f"-- Remove im:{_i}, label {_l+1} for center coordiate too close to edge.") _updated_label[_updated_label==_l+1] = 0 # relabel _relabel_id = 1 _seg_label = np.zeros(np.shape(_updated_label), dtype=np.int) for _l in range(int(np.max(_updated_label))): if np.sum(np.array(_updated_label == _l+1,dtype=np.int)) > 0: _seg_label[_updated_label==_l+1] = _relabel_id _relabel_id += 1 # label background _dialated_mask = ndimage.binary_dilation(np.array(_seg_label>0, dtype=np.int), structure=morphology.disk(int(dialation_dim/2))) _seg_label[(_seg_label==0)*(_dialated_mask==0)] = -1 # save _seg_labels.append(_seg_label) ## random walker segmentation if random_walker_beta: if verbose: print ("- random walker segmentation!") _seg_labels = [random_walker(_im, _label, beta=random_walker_beta, mode='bf') for _im, _label in zip(_stack_ims, _seg_labels)] ## plot if make_plot: for _seg_label, _name in zip(_seg_labels, filenames): plt.figure() plt.imshow(_seg_label) plt.title(_name) plt.colorbar() plt.show() ## save if save: if save_npy: for _fl, _lb in zip(save_filenames, _seg_labels): np.save(_fl, _lb) else: for _fl, _lb in zip(save_filenames, _seg_labels): pickle.dump(_lb, open(_fl, 'wb')) if return_images: return _seg_labels, _ims else: return _seg_labels # merge images to generate "chromosome" def generate_chromosome_from_dic(im_dic, merging_channel, color_dic, bead_label='beads', merge_num=10, ref_frame=0, fft_dim=125, verbose=True): '''Function to generate "chromosomes" by merging first several regions Given: im_dic: dictionary of images loaded by get_img_info.split_channels_by_image, dic merging_channel: use which channel to merge as chromosome, -1 means all channels except beads, int color_dic: dictionary of color usage loaded by get_img_info.Load_Color_Usage, dic merge_num: number of images to be merged, int (default: 10) ref_frame: which frame is used as reference, non-negative int (default: 0) fft_dim: dimension for FFT, positive int (default: 125) verbose: say something!, bool (default: True) Return: _mean_im: merged image, 3d-array _rough_dfts: drifts calculated by FFT, list of 1d-arrays ''' import numpy as np import os from ImageAnalysis3.corrections import fast_translate, fftalign # initialize mean_image as chromosome _mean_im=[] _rough_dfts = [] # get ref frame _ref_name = sorted(list(im_dic.items()), key=lambda k_v: int(k_v[0].split('H')[1].split('R')[0]))[ref_frame][0] _ref_ims = sorted(list(im_dic.items()), key=lambda k_v1: int(k_v1[0].split('H')[1].split('R')[0]))[ref_frame][1] if bead_label not in color_dic[_ref_name.split(os.sep)[0]]: raise ValueError('wrong ref frame, no beads exist in this hybe.') for _i, _label in enumerate(color_dic[_ref_name.split(os.sep)[0]]): # check bead label if bead_label == _label: _ref_bead = _ref_ims[_i] break # loop through all images for this field of view for _name, _ims in sorted(list(im_dic.items()), key=lambda k_v2: int(k_v2[0].split('H')[1].split('R')[0])): if len(_rough_dfts) >= merge_num: # stop if images more than merge_num are already calclulated. break if _name == _ref_name: # pass the ref frame continue if bead_label in color_dic[_name.split(os.sep)[0]]: #if verbose: # print "processing image:", _name # extract bead image for _i, _label in enumerate(color_dic[_name.split(os.sep)[0]]): # check bead label if bead_label == _label: _bead = _ims[_i] break # calculate drift fastly with FFT _rough_dft = fftalign(_ref_bead, _bead) _rough_dfts.append(_rough_dft) # roughly align image and save if merging_channel >=0 and merging_channel < len(_ims): # if merging_channel is provided properly _corr_im = fast_translate(_ims[merging_channel],-_rough_dft) _mean_im.append(_corr_im) else: # if merging_channel is not provided etc: for _i, _label in enumerate(color_dic[_name.split(os.sep)[0]]): if bead_label != _label and _label != '': _corr_im = fast_translate(_ims[_i],-_rough_dft) _mean_im.append(_corr_im) if verbose: print('- number of images to calculate mean: '+str(len(_mean_im))+'\n- number of FFT drift corrections: '+str(len(_rough_dfts))) print("- drifts are: \n", _rough_dfts) _mean_im = np.mean(_mean_im,0) return _mean_im, _rough_dfts # crop cells based on DAPI segmentation result def crop_cell(im, segmentation_label, drift=None, extend_dim=20, overlap_threshold = 0.1, verbose=True): '''basic function to crop image into small ones according to segmentation_label Inputs: im: single nd-image, numpy.ndarray segmentation_label: 2D or 3D segmentaiton label, each cell has unique id, numpy.ndarray (if None, no drift applied) drift: whether applying drift to the cropping, should be relative drift to frame with DAPI, 1darray (default: None) extend_dim: dimension that expand for cropping, int (default: 30) overlap_threshold: upper limit of how much the cropped image include other labels, float<1 (default: 0.1) verbose: say something during processing!, bool (default: True) Outputs: _crop_ims: list of images that has been cropped ''' # imports from scipy.ndimage.interpolation import shift # check dimension _im_dim = np.shape(im) _label_dim = np.shape(segmentation_label) if drift is not None: if len(drift) != len(im.shape): raise ValueError('drift dimension and image dimension doesnt match!') # initialize cropped image list _crop_ims = [] for _l in range(int(np.max(segmentation_label))): #print _l if len(_label_dim) == 3: # 3D _limits = np.zeros([len(_label_dim),2]) # initialize matrix to save cropping limit _binary_label = segmentation_label == _l+1 # extract binary image for _m in range(len(_label_dim)): _1d_label = _binary_label.sum(_m) > 0 _has_label=False for _n in range(len(_1d_label)): if _1d_label[_n] and not _has_label: _limits[_m,0] = max(_n-extend_dim, 0) _has_label = True elif not _1d_label[_n] and _has_label: _limits[_m,1] = min(_n+extend_dim, _im_dim[_m]) _has_label = False if _has_label: _limits[_m,1] = _im_dim[_m] # crop image and save to _crop_ims if drift is None: _crop_ims.append(im[_limits[0,0]:_limits[0,1], _limits[2,0]:_limits[2,1], _limits[1,0]:_limits[1,1]]) else: # do drift correction first and crop # define a new drift limits to do cropping _drift_limits = np.zeros(_limits.shape) for _m, _dim, _d in zip(list(range(len(_label_dim))), _im_dim[-len(_label_dim):], drift[[0,2,1]]): _drift_limits[_m, 0] = max(_limits[_m, 0]-np.ceil(np.max(np.abs(_d))), 0) _drift_limits[_m, 1] = min(_limits[_m, 1]+np.ceil(np.max(np.abs(_d))), _dim) #print _drift_limits # crop image for pre-correction _pre_im = im[_drift_limits[0,0]:_drift_limits[0,1],_drift_limits[2,0]:_drift_limits[2,1],_drift_limits[1,0]:_drift_limits[1,1]] # drift correction _post_im = shift(_pre_im, - drift) # re-crop _limit_diffs = _limits - _drift_limits for _m in range(len(_label_dim)): if _limit_diffs[_m,1] == 0: _limit_diffs[_m,1] = _limits[_m,1] - _limits[_m,0] _limit_diffs = _limit_diffs.astype(np.int) #print _limit_diffs _crop_ims.append(_post_im[_limit_diffs[0,0]:_limit_diffs[0,0]+_limits[0,1]-_limits[0,0],\ _limit_diffs[2,0]:_limit_diffs[2,0]+_limits[2,1]-_limits[2,0],\ _limit_diffs[1,0]:_limit_diffs[1,0]+_limits[1,1]-_limits[1,0]]) else: # 2D _limits = np.zeros([len(_label_dim),2], dtype=np.int) # initialize matrix to save cropping limit _binary_label = segmentation_label == _l+1 # extract binary image for _m in range(len(_label_dim)): _1d_label = _binary_label.sum(_m) > 0 _has_label=False for _n in range(len(_1d_label)): if _1d_label[_n] and not _has_label: _limits[_m,0] = max(_n-extend_dim, 0) _has_label = True elif not _1d_label[_n] and _has_label: _limits[_m,1] = min(_n+extend_dim, _im_dim[1+_m]) _has_label = False if _has_label: # if label touch boundary _limits[_m,1] = _im_dim[1+_m] #print _limits # crop image and save to _crop_ims if drift is None: _crop_ims.append(im[:,_limits[1,0]:_limits[1,1],_limits[0,0]:_limits[0,1]]) else: # do drift correction first and crop # define a new drift limits to do cropping _drift_limits = np.zeros(_limits.shape, dtype=np.int) for _m, _dim in zip(list(range(len(_label_dim))), _im_dim[-len(_label_dim):]): _drift_limits[_m, 0] = max(_limits[_m, 0]-np.ceil(np.abs(drift[2-_m])), 0) _drift_limits[_m, 1] = min(_limits[_m, 1]+np.ceil(np.abs(drift[2-_m])), _dim) #print _drift_limits # crop image for pre-correction _pre_im = im[:,_drift_limits[1,0]:_drift_limits[1,1],_drift_limits[0,0]:_drift_limits[0,1]] # drift correction _post_im = shift(_pre_im, -drift) # re-crop _limit_diffs = (_limits - _drift_limits).astype(np.int) #print _limit_diffs _crop_ims.append(_post_im[:,_limit_diffs[1,0]:_limit_diffs[1,0]+_limits[1,1]-_limits[1,0],_limit_diffs[0,0]:_limit_diffs[0,0]+_limits[0,1]-_limits[0,0]]) return _crop_ims # get limitied points of seed within radius of a center def get_seed_in_distance(im, center=None, num_seeds=0, seed_radius=30, gfilt_size=0.75, background_gfilt_size=10, filt_size=3, seed_by_per=False, th_seed_percentile=95, th_seed=300, dynamic=True, dynamic_iters=10, min_dynamic_seeds=2, distance_to_edge=1, hot_pix_th=4, return_h=False, verbose=False): '''Get seed points with in a distance to a center coordinate Inputs: im: image, 3D-array center: center coordinate to get seeds nearby, 1d array / list of 3 num_seed: maximum number of seeds kept within radius, 0 means keep all, int (default: -1) seed_radius: distance of seed points to center, float (default: 15) gfilt_size: sigma of gaussian filter applied to image before seeding, float (default: 0.5) filt_size: getting local maximum and minimum within in size, int (default: 3) th_seed_percentile: intensity percentile of whole image that used as seeding threshold, float (default: 90.) hot_pix_th: thereshold for hot pixels, int (default: 0, not removing hot pixel) return_h: whether return height of seeds, bool (default: False) Outputs: _seeds: z,x,y coordinates of seeds, 3 by n matrix n = num_seed if return height is true, return h,z,x,y instead. ''' from scipy.stats import scoreatpercentile from scipy.spatial.distance import cdist # check input if center is not None and len(center) != 3: raise ValueError('wrong input dimension of center!') _dim = np.shape(im) _im = im.copy() # seeding threshold if seed_by_per: _im_ints = _im[np.isnan(_im)==False].astype(np.float) _th_seed = scoreatpercentile(_im_ints, th_seed_percentile) - \ scoreatpercentile(_im_ints, 100-th_seed_percentile) else: _th_seed = th_seed if verbose: print(f"-- seeding with threshold: {_th_seed}, per={th_seed_percentile}") # start seeding if center is not None: _center = np.array(center, dtype=np.float) _limits = np.zeros([2, 3], dtype=np.int) _limits[0, 1:] = np.array([np.max([x, y]) for x, y in zip( np.zeros(2), _center[1:]-seed_radius)], dtype=np.int) _limits[0, 0] = np.array( np.max([0, _center[0]-seed_radius/2]), dtype=np.int) _limits[1, 1:] = np.array([np.min([x, y]) for x, y in zip( _dim[1:], _center[1:]+seed_radius)], dtype=np.int) _limits[1, 0] = np.array( np.min([_dim[0], _center[0]+seed_radius/2]), dtype=np.int) _local_center = _center - _limits[0] # crop im _cim = _im[_limits[0, 0]:_limits[1, 0], _limits[0, 1]:_limits[1, 1], _limits[0, 2]:_limits[1, 2]] if dynamic: _dynamic_range = np.linspace(1, 1 / dynamic_iters, dynamic_iters) for _dy_ratio in _dynamic_range: _dynamic_th = _th_seed * _dy_ratio #print(_dynamic_th) # get candidate seeds _cand_seeds = get_seed_points_base(_cim, gfilt_size=gfilt_size, background_gfilt_size=background_gfilt_size, filt_size=filt_size, th_seed=_dynamic_th, hot_pix_th=hot_pix_th, return_h=True) # keep seed within distance _distance = cdist(_cand_seeds[:3].transpose(), _local_center[np.newaxis, :3]).transpose()[0] _keep = _distance < seed_radius _seeds = _cand_seeds[:, _keep] _seeds[:3, :] += _limits[0][:, np.newaxis] if len(_seeds.shape) == 2: if num_seeds > 0 and _seeds.shape[1] >= min(num_seeds, min_dynamic_seeds): break elif num_seeds == 0 and _seeds.shape[1] >= min_dynamic_seeds: break else: # get candidate seeds _seeds = get_seed_points_base(_cim, gfilt_size=gfilt_size, filt_size=filt_size, th_seed=th_seed, hot_pix_th=hot_pix_th, return_h=True) else: # get candidate seeds _seeds = get_seed_points_base(_im, gfilt_size=gfilt_size, filt_size=filt_size, th_seed=_th_seed, hot_pix_th=hot_pix_th, return_h=True) # remove seeds out of boundary #_keep = np.sum(, axis=0) # if limited seeds reported, report top n if _seeds.shape[1] > 1: _intensity_order = np.argsort(_seeds[-1]) _seeds = _seeds[:, np.flipud(_intensity_order[-num_seeds:])] # if not return height, remove height if not return_h: _seeds = _seeds[:3].transpose() else: _seeds = _seeds[:4].transpose() return _seeds # fit single gaussian with varying width given prior def fit_single_gaussian(im, center_zxy, counted_indices=None, width_zxy=[1.35, 1.9, 1.9], fit_radius=5, n_approx=10, height_sensitivity=100., expect_intensity=800., weight_sigma=1000., th_to_end=1e-6): """ Function to fit single gaussian with given prior Inputs: im: image, 3d-array center_zxy: center coordinate of seed, 1d-array or list of 3 counted_indices: z,x,y indices for pixels to be counted, np.ndarray, length=3 width_zxy: prior width of gaussian fit, 1darray or list of 3 (default: [1.35,1,1]) fit_radius: fit_radius that allowed for fitting, float (default: 10) n_approx: number of pixels used for approximation, int (default: 10) height_sensitivity: grant height parameter extra sensitivity compared to others, float (default: 100) expect_intensity: lower limit of penalty function applied to fitting, float (default: 1000) weight_sigma: L1 norm penalty function applied to widths, float (default: 1000) Outputs: p.x, p.success: parameters and whether success Returns (height, x, y,z, width_x, width_y,width_z,bk) the gaussian parameters of a 2D distribution found by a fit""" _im = np.array(im, dtype=np.float32) dims = np.array(_im.shape) # dynamic adjust height_sensitivity if np.max(_im) < height_sensitivity: height_sensitivity = np.ceil(np.max(_im)) * 0.5 if np.max(_im) < expect_intensity: expect_intensity = np.max(_im) * 0.1 if len(center_zxy) == 3: center_z, center_x, center_y = center_zxy else: raise ValueError( "Wrong input for kwd center_zxy, should be of length=3") if counted_indices is not None and len(counted_indices) != 3: raise ValueError( "Length of counted_indices should be 3, for z,x,y coordinates") elif counted_indices is not None: zxy = counted_indices else: # get affected coordinates de novo total_zxy = (np.indices([2*fit_radius+1]*3) + center_zxy[:, np.newaxis, np.newaxis, np.newaxis] - fit_radius).reshape(3, -1) keep = (total_zxy >= 0).all(0) * (total_zxy[0] < _im.shape[0]) * ( total_zxy[1] < _im.shape[1]) * (total_zxy[2] < _im.shape[2]) zxy = total_zxy[:, keep] if len(zxy[0]) > 0: _used_im = _im[zxy[0], zxy[1], zxy[2]] sorted_im = np.sort(_used_im) # np.sort(np.ravel(_used_im)) bk = np.median(sorted_im[:n_approx]) if bk < 0: bk = 0 height = (np.median(sorted_im[-n_approx:])-bk) / height_sensitivity if height < 0: height = 0 width_z, width_x, width_y = np.array(width_zxy) params_ = (height, center_z, center_x, center_y, bk, width_z, width_x, width_y) def gaussian(height, center_z, center_x, center_y, bk=0, width_z=width_zxy[0], width_x=width_zxy[1], width_y=width_zxy[2]): """Returns a gaussian function with the given parameters""" width_x_ = np.abs(width_x) width_y_ = np.abs(width_y) width_z_ = np.abs(width_z) height_ = np.abs(height) bk_ = np.abs(bk) def gauss(z, x, y): g = bk_ + height_ * height_sensitivity * np.exp( -(((center_z-z)/width_z_)**2 + ((center_x-x)/width_x_)**2 + ((center_y-y)/width_y_)**2)/2.) return g return gauss def errorfunction(p): f = gaussian(*p)(*zxy) g = _used_im #err=np.ravel(f-g-g*np.log(f/g)) err = np.ravel(f-g) \ + weight_sigma * np.linalg.norm(p[-3:]-width_zxy, 1) return err p = scipy.optimize.least_squares(errorfunction, params_, bounds=( 0, np.inf), ftol=th_to_end, xtol=th_to_end, gtol=th_to_end/10.) p.x[0] *= height_sensitivity return p.x, p.success else: return None, None # Multi gaussian fitting def fit_multi_gaussian(im, seeds, width_zxy = [1.5, 2, 2], fit_radius=5, height_sensitivity=100., expect_intensity=500., expect_weight=1000., th_to_end=1e-7, n_max_iter=10, max_dist_th=0.25, min_height=100.0, return_im=False, verbose=True): """ Function to fit multiple gaussians (with given prior) Inputs: im: image, 3d-array center_zxy: center coordinate of seed, 1darray or list of 3 width_zxy: prior width of gaussian fit, 1darray or list of 3 (default: [1.35,1,1]) fit_radius: radius that allowed for fitting, float (default: 10) height_sensitivity: grant height parameter extra sensitivity compared to others, float (default: 100) expect_intensity: lower limit of penalty function applied to fitting, float (default: 1000) expect_weight: L1 norm penalty function applied to widths, float (default: 1000) n_max_iter: max iteration count for re-fit existing points, int (default: 10) max_dist_th: maximum allowed distance between original fit and re-fit, float (default: 0.25) min_height: miminal heights required for fitted spots, float (default: 100.) return_im: whether return images of every single fitting, bool (default: False) verbose: whether say something, bool (default: True) Outputs: p: parameters Returns (height, x, y,z, width_x, width_y,width_z,bk) the gaussian parameters of a 2D distribution found by a fit""" if verbose: print(f"-- Multi-Fitting:{len(seeds)} points") # adjust min_height: if np.max(im) * 0.1 < min_height: min_height = np.max(im)*0.05 # seeds _seeds = seeds if len(_seeds) > 0: # initialize ps = [] sub_ims = [] im_subtr = np.array(im,dtype=np.float) # loop through seeds for _seed in _seeds: p, success = fit_single_gaussian(im_subtr,_seed[:3], height_sensitivity=height_sensitivity, expect_intensity=expect_intensity, weight_sigma=expect_weight, fit_radius=fit_radius, width_zxy=width_zxy, th_to_end=th_to_end) if p is not None and success: # If got any successful fitting, substract fitted profile ps.append(p) sub_ims.append(im_subtr) im_subtr = subtract_source(im_subtr,p) return np.array(ps) print("do something") # recheck fitting im_add = np.array(im_subtr) max_dist=np.inf n_iter = 0 while max_dist > max_dist_th: ps_1=
np.array(ps)
numpy.array
import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl from PIL import Image from evaluate import trans_error from drawBox import draw from Reader import Reader from Math import get_R mpl.use('QT5Agg') def get_location_1(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 方法1 2Dbbox中心与3Dbbox中心重合 只存在一个中心点间的对应关系。难以约束。 若是将Z的值替换成真实值,效果还行。Z方向的值与XY相比差距太大。 """ R = get_R(rotation_x, rotation_y) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] h, w, l = dimension[0], dimension[1], dimension[2] constraints = [0, -h/2, 0] corners = [(xmin+xmax)/2, (ymin+ymax)/2] # create pre M (the term with I and the R*X) M = np.zeros([4, 4]) for i in range(0, 4): M[i][i] = 1 # create A, b A = np.zeros([2, 3], dtype=np.float) b = np.zeros([2, 1]) RX = np.dot(R, constraints) M[:3, 3] = RX.reshape(3) M = np.dot(proj_matrix, M) A[0, :] = M[0, :3] - corners[0] * M[2, :3] # [540 0 960] - 1116[0 0 1] b[0] = corners[0] * M[2, 3] - M[0, 3] A[1, :] = M[1, :3] - corners[1] * M[2, :3] # [540 0 960] - 1116[0 0 1] b[1] = corners[1] * M[2, 3] - M[1, 3] loc, error, rank, s = np.linalg.lstsq(A, b, rcond=None) # loc = [loc[0][0], loc[1][0] + dimension[0] / 2, loc[2][0]] loc = [loc[0][0], loc[1][0], loc[2][0]] return loc def get_location_2(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 2D框包含3D框作为约束条件 """ R = get_R(rotation_x, rotation_y, rotation_z) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] # left top right bottom box_corners = [xmin, ymin, xmax, ymax] # get the point constraints constraints = [] left_constraints = [] right_constraints = [] top_constraints = [] bottom_constraints = [] # using a different coord system ; 原数据集中第一个是height(车高度),第二个是width(车两侧的距离),第三个是length(车头到车尾) dx = dimension[2] / 2 # length dy = dimension[0] / 2 # height dz = dimension[1] / 2 # width left_mult = 1 right_mult = -1 switch_mult = -1 # -1 for i in (-2, 0): left_constraints.append([left_mult * dx, i*dy, -switch_mult * dz]) for i in (-2, 0): right_constraints.append([right_mult * dx, i*dy, switch_mult * dz]) for i in (-1, 1): for j in (-1, 1): top_constraints.append([i*dx, -dy*2, j*dz]) for i in (-1, 1): for j in (-1, 1): bottom_constraints.append([i*dx, 0, j*dz]) # now, 64 combinations for left in left_constraints: for top in top_constraints: for right in right_constraints: for bottom in bottom_constraints: constraints.append([left, top, right, bottom]) # filter out the ones with repeats constraints = filter(lambda x: len(x) == len( set(tuple(i) for i in x)), constraints) # create pre M (the term with I and the R*X) pre_M = np.zeros([4, 4]) # 1's down diagonal for i in range(0, 4): pre_M[i][i] = 1 best_loc = None best_error = [1e09] best_X = None # loop through each possible constraint, hold on to the best guess # constraint will be 64 sets of 4 corners count = 0 for constraint in constraints: # each corner Xa = constraint[0] Xb = constraint[1] Xc = constraint[2] Xd = constraint[3] X_array = [Xa, Xb, Xc, Xd] # 4约束,对应上下左右 ,shape=4,3 # M: all 1's down diagonal, and upper 3x1 is Rotation_matrix * [x, y, z] Ma = np.copy(pre_M) Mb = np.copy(pre_M) Mc = np.copy(pre_M) Md = np.copy(pre_M) M_array = [Ma, Mb, Mc, Md] # 4个对角为1的4*4方阵 # create A, b A = np.zeros([4, 3], dtype=np.float) b = np.zeros([4, 1]) # 对于其中某个约束/上/下/左/右 indicies = [0, 1, 0, 1] for row, index in enumerate(indicies): X = X_array[row] M = M_array[row] # 一个对角是1的4*4方阵 .shape = 4*4 # create M for corner Xx RX = np.dot(R, X) # 某边对应的某点在相机坐标系下的坐标, 维度3 .shape = 3,1 # 对角线是1,最后一列前三行分别是RX对应的相机坐标系下的长宽高 .shape = 4,4 M[:3, 3] = RX.reshape(3) # 投影到二维平面的坐标(前三维).shape = 3,4,前三列是project矩阵,最后一列是二维平面的x,y,1 M = np.dot(proj_matrix, M) A[row, :] = M[index, :3] - box_corners[row] * M[2, :3] b[row] = box_corners[row] * M[2, 3] - M[index, 3] # solve here with least squares, since over fit will get some error loc, error, rank, s = np.linalg.lstsq(A, b, rcond=None) # found a better estimation if error < best_error: count += 1 # for debugging best_loc = loc best_error = error best_X = X_array best_loc = [best_loc[0][0], best_loc[1][0], best_loc[2][0]] return best_loc def get_location_3(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 2D框包含3D框作为约束条件,增加left和right的约束 """ R = get_R(rotation_x, rotation_y, rotation_z) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] box_corners = [xmin, ymin, xmax, ymax] # get the point constraints constraints = [] left_constraints = [] right_constraints = [] top_constraints = [] bottom_constraints = [] # using a different coord system ; 原数据集中第一个是height(车高度),第二个是width(车两侧的距离),第三个是length(车头到车尾) dx = dimension[2] / 2 # length dy = dimension[0] / 2 # height dz = dimension[1] / 2 # width for i in (-1, 1): for j in (-1, 1): for k in (-2, 0): left_constraints.append([i * dx, k * dy, j * dz]) for i in (-1, 1): for j in (-1, 1): for k in (-2, 0): right_constraints.append([i * dx, k * dy, j * dz]) # top and bottom are easy, just the top and bottom of car for i in (-1, 1): for j in (-1, 1): top_constraints.append([i*dx, -dy*2, j*dz]) for i in (-1, 1): for j in (-1, 1): bottom_constraints.append([i*dx, 0, j*dz]) # now, 64 combinations for left in left_constraints: for top in top_constraints: for right in right_constraints: for bottom in bottom_constraints: constraints.append([left, top, right, bottom]) # filter out the ones with repeats constraints = filter(lambda x: len(x) == len( set(tuple(i) for i in x)), constraints) # create pre M (the term with I and the R*X) pre_M = np.zeros([4, 4]) # 1's down diagonal for i in range(0, 4): pre_M[i][i] = 1 best_loc = None best_error = [1e09] best_X = None # loop through each possible constraint, hold on to the best guess # constraint will be 64 sets of 4 corners count = 0 for constraint in constraints: # each corner Xa = constraint[0] Xb = constraint[1] Xc = constraint[2] Xd = constraint[3] X_array = [Xa, Xb, Xc, Xd] # 4约束,对应上下左右 ,shape=4,3 # M: all 1's down diagonal, and upper 3x1 is Rotation_matrix * [x, y, z] Ma = np.copy(pre_M) Mb = np.copy(pre_M) Mc = np.copy(pre_M) Md = np.copy(pre_M) M_array = [Ma, Mb, Mc, Md] # 4个对角为1的4*4方阵 # create A, b A = np.zeros([4, 3], dtype=np.float) b = np.zeros([4, 1]) # 对于其中某个约束/上/下/左/右 indicies = [0, 1, 0, 1] for row, index in enumerate(indicies): X = X_array[row] M = M_array[row] # 一个对角是1的4*4方阵 .shape = 4*4 # create M for corner Xx RX = np.dot(R, X) # 某边对应的某点在相机坐标系下的坐标, 维度3 .shape = 3,1 # 对角线是1,最后一列前三行分别是RX对应的相机坐标系下的长宽高 .shape = 4,4 M[:3, 3] = RX.reshape(3) # 投影到二维平面的坐标(前三维).shape = 3,4,前三列是project矩阵,最后一列是二维平面的x,y,1 M = np.dot(proj_matrix, M) A[row, :] = M[index, :3] - box_corners[row] * M[2, :3] b[row] = box_corners[row] * M[2, 3] - M[index, 3] # solve here with least squares, since over fit will get some error loc, error, rank, s = np.linalg.lstsq(A, b, rcond=None) # found a better estimation if error < best_error: count += 1 # for debugging best_loc = loc best_error = error best_X = X_array best_loc = [best_loc[0][0], best_loc[1][0], best_loc[2][0]] return best_loc def get_location_4(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 2D框包含3D框作为约束条件。 固定住坐标系,约束为64-30=34 再考虑长宽置换的情况,最终约束为34*2=68 考虑000这种特殊情况 """ R = get_R(rotation_x, rotation_y, rotation_z) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] # left top right bottom box_corners = [xmin, ymin, xmax, ymax] # get the point constraints constraints = [] left_constraints = [] right_constraints = [] top_constraints = [] bottom_constraints = [] left_constraints_2 = [] right_constraints_2 = [] top_constraints_2 = [] bottom_constraints_2 = [] dx = dimension[2] / 2 # length dy = dimension[0] / 2 # height dz = dimension[1] / 2 # width left_mult = -1 right_mult = 1 for i in (-2, 0): for j in (-1, 1): left_constraints.append([left_mult * dx, i*dy, j * dz]) for i in (-2, 0): for j in (-1, 1): right_constraints.append([right_mult * dx, i*dy, j * dz]) # 考虑长宽的置换 for i in (-2, 0): for j in (-1, 1): left_constraints_2.append([left_mult * dz, i*dy, j * dx]) for i in (-2, 0): for j in (-1, 1): right_constraints_2.append([right_mult * dz, i*dy, j * dx]) for i in (-1, 1): top_constraints.append([i*dx, -dy*2, dz]) for i in (-1, 1): bottom_constraints.append([i*dx, 0, -dz]) # 考虑长宽的置换 for i in (-1, 1): top_constraints_2.append([i*dz, -dy*2, dx]) for i in (-1, 1): bottom_constraints_2.append([i*dz, 0, -dx]) # now, 128 combinations for left in left_constraints: for top in top_constraints: for right in right_constraints: for bottom in bottom_constraints: constraints.append([left, top, right, bottom]) for left in left_constraints_2: for top in top_constraints_2: for right in right_constraints_2: for bottom in bottom_constraints_2: constraints.append([left, top, right, bottom]) # filter out the ones with repeats constraints = filter(lambda x: len(x) == len( set(tuple(i) for i in x)), constraints) # print(len(list(constraints))) # create pre M (the term with I and the R*X) pre_M = np.zeros([4, 4]) # 1's down diagonal for i in range(0, 4): pre_M[i][i] = 1 best_loc = None best_error = [1e09] best_X = None # loop through each possible constraint, hold on to the best guess # constraint will be 64 sets of 4 corners count = 0 for constraint in constraints: # print('constraint:',constraint) # each corner Xa = constraint[0] Xb = constraint[1] Xc = constraint[2] Xd = constraint[3] X_array = [Xa, Xb, Xc, Xd] # 4约束,对应上下左右 ,shape=4,3 # print('X_array:',X_array) # M: all 1's down diagonal, and upper 3x1 is Rotation_matrix * [x, y, z] Ma = np.copy(pre_M) Mb = np.copy(pre_M) Mc = np.copy(pre_M) Md = np.copy(pre_M) M_array = [Ma, Mb, Mc, Md] # 4个对角为1的4*4方阵 # create A, b A = np.zeros([4, 3], dtype=np.float) b = np.zeros([4, 1]) # 对于其中某个约束/上/下/左/右 indicies = [0, 1, 0, 1] for row, index in enumerate(indicies): X = X_array[row] # x_array is four constrains for up bottom left and right; # x is one point in world World coordinate system, .shape = 3 M = M_array[row] # 一个对角是1的4*4方阵 .shape = 4*4 # create M for corner Xx RX = np.dot(R, X) # 某边对应的某点在相机坐标系下的坐标, 维度3 .shape = 3,1 # 对角线是1,最后一列前三行分别是RX对应的相机坐标系下的长宽高 .shape = 4,4 M[:3, 3] = RX.reshape(3) # 投影到二维平面的坐标(前三维).shape = 3,4,前三列是project矩阵,最后一列是二维平面的x,y,1 M = np.dot(proj_matrix, M) A[row, :] = M[index, :3] - box_corners[row] * M[2, :3] b[row] = box_corners[row] * M[2, 3] - M[index, 3] loc, error, rank, s = np.linalg.lstsq(A, b, rcond=None) # found a better estimation if error < best_error: count += 1 # for debugging best_loc = loc best_error = error best_X = X_array best_loc = [best_loc[0][0], best_loc[1][0], best_loc[2][0]] return best_loc def get_location_5(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 2D框包含3D框作为约束条件。 固定住坐标系,约束为64-30=34 再考虑长宽置换的情况,最终约束为34*2=68 不考虑000这种特殊情况 """ R = get_R(rotation_x, rotation_y, rotation_z) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] # left top right bottom box_corners = [xmin, ymin, xmax, ymax] # print('box_corners:',box_corners) # get the point constraints constraints = [] left_constraints = [] right_constraints = [] top_constraints = [] bottom_constraints = [] left_constraints_2 = [] right_constraints_2 = [] top_constraints_2 = [] bottom_constraints_2 = [] dx = dimension[2] / 2 # length dy = dimension[0] / 2 # height dz = dimension[1] / 2 # width left_mult = -1 right_mult = 1 for j in (-1, 1): left_constraints.append([left_mult * dx, -2*dy, j * dz]) for j in (-2, 0): right_constraints.append([right_mult * dx, j*dy, -dz]) left_constraints.append([left_mult * dx, 0, dz]) # 考虑长宽的置换 for j in (-1, 1): left_constraints_2.append([left_mult * dz, -2*dy, j * dx]) for j in (-2, 0): right_constraints.append([right_mult * dz, j*dy, -dx]) left_constraints_2.append([left_mult * dz, 0, dx]) # top and bottom are easy, just the top and bottom of car for i in (-1, 1): top_constraints.append([i*dx, -dy*2, dz]) for i in (-1, 1): bottom_constraints.append([i*dx, 0, -dz]) # 考虑长宽的置换 for i in (-1, 1): top_constraints_2.append([i*dz, -dy*2, dx]) for i in (-1, 1): bottom_constraints_2.append([i*dz, 0, -dx]) # now, 64 combinations for left in left_constraints: for top in top_constraints: for right in right_constraints: for bottom in bottom_constraints: constraints.append([left, top, right, bottom]) for left in left_constraints_2: for top in top_constraints_2: for right in right_constraints_2: for bottom in bottom_constraints_2: constraints.append([left, top, right, bottom]) # filter out the ones with repeats constraints = filter(lambda x: len(x) == len( set(tuple(i) for i in x)), constraints) # print(len(list(constraints))) # create pre M (the term with I and the R*X) pre_M = np.zeros([4, 4]) # 1's down diagonal for i in range(0, 4): pre_M[i][i] = 1 best_loc = None best_error = [1e09] best_X = None # loop through each possible constraint, hold on to the best guess # constraint will be 64 sets of 4 corners count = 0 for constraint in constraints: # print('constraint:',constraint) # each corner Xa = constraint[0] Xb = constraint[1] Xc = constraint[2] Xd = constraint[3] X_array = [Xa, Xb, Xc, Xd] # 4约束,对应上下左右 ,shape=4,3 # print('X_array:',X_array) # M: all 1's down diagonal, and upper 3x1 is Rotation_matrix * [x, y, z] Ma = np.copy(pre_M) Mb = np.copy(pre_M) Mc = np.copy(pre_M) Md = np.copy(pre_M) M_array = [Ma, Mb, Mc, Md] # 4个对角为1的4*4方阵 # create A, b A = np.zeros([4, 3], dtype=np.float) b = np.zeros([4, 1]) # 对于其中某个约束/上/下/左/右 indicies = [0, 1, 0, 1] for row, index in enumerate(indicies): X = X_array[row] M = M_array[row] # 一个对角是1的4*4方阵 .shape = 4*4 # create M for corner Xx RX = np.dot(R, X) # 某边对应的某点在相机坐标系下的坐标, 维度3 .shape = 3,1 # 对角线是1,最后一列前三行分别是RX对应的相机坐标系下的长宽高 .shape = 4,4 M[:3, 3] = RX.reshape(3) # 投影到二维平面的坐标(前三维).shape = 3,4,前三列是project矩阵,最后一列是二维平面的x,y,1 M = np.dot(proj_matrix, M) A[row, :] = M[index, :3] - box_corners[row] * M[2, :3] b[row] = box_corners[row] * M[2, 3] - M[index, 3] # solve here with least squares, since over fit will get some error loc, error, rank, s = np.linalg.lstsq(A, b, rcond=None) # found a better estimation if error < best_error: count += 1 # for debugging best_loc = loc best_error = error best_X = X_array best_loc = [best_loc[0][0], best_loc[1][0], best_loc[2][0]] return best_loc def get_location_6(box_2d, dimension, rotation_x, rotation_y, rotation_z, proj_matrix): """ 2D框包含3D框作为约束条件。 固定住坐标系,约束为64-30=34 再考虑长宽置换的情况,最终约束为34*2=68 不考虑000这种特殊情况 2D框中心也是3D框的中心 """ R = get_R(rotation_x, rotation_y, rotation_z) # format 2d corners xmin = box_2d[0] ymin = box_2d[1] xmax = box_2d[2] ymax = box_2d[3] # left top right bottom box_corners = [xmin, ymin, xmax, ymax] # print('box_corners:',box_corners) # get the point constraints constraints = [] left_constraints = [] right_constraints = [] top_constraints = [] bottom_constraints = [] left_constraints_2 = [] right_constraints_2 = [] top_constraints_2 = [] bottom_constraints_2 = [] # using a different coord system ; 原数据集中第一个是height(车高度),第二个是width(车两侧的距离),第三个是length(车头到车尾) dx = dimension[2] / 2 # length dy = dimension[0] / 2 # height dz = dimension[1] / 2 # width left_mult = -1 right_mult = 1 for j in (-1, 1): left_constraints.append([left_mult * dx, -2*dy, j * dz]) for j in (-2, 0): right_constraints.append([right_mult * dx, j*dy, -dz]) left_constraints.append([left_mult * dx, 0, dz]) # 考虑长宽的置换 for j in (-1, 1): left_constraints_2.append([left_mult * dz, -2*dy, j * dx]) for j in (-2, 0): right_constraints.append([right_mult * dz, j*dy, -dx]) left_constraints_2.append([left_mult * dz, 0, dx]) # top and bottom are easy, just the top and bottom of car for i in (-1, 1): top_constraints.append([i*dx, -dy*2, dz]) for i in (-1, 1): bottom_constraints.append([i*dx, 0, -dz]) # 考虑长宽的置换 for i in (-1, 1): top_constraints_2.append([i*dz, -dy*2, dx]) for i in (-1, 1): bottom_constraints_2.append([i*dz, 0, -dx]) # now, 64 combinations for left in left_constraints: for top in top_constraints: for right in right_constraints: for bottom in bottom_constraints: constraints.append([left, top, right, bottom]) for left in left_constraints_2: for top in top_constraints_2: for right in right_constraints_2: for bottom in bottom_constraints_2: constraints.append([left, top, right, bottom]) # filter out the ones with repeats constraints = filter(lambda x: len(x) == len( set(tuple(i) for i in x)), constraints) # print(len(list(constraints))) # create pre M (the term with I and the R*X) pre_M = np.zeros([4, 4]) # 1's down diagonal for i in range(0, 4): pre_M[i][i] = 1 best_loc = None best_error = [1e09] best_X = None # 约束2 中心点 constraints_center = [0, dy, 0] corners = [(xmin+xmax)/2, (ymin+ymax)/2] # loop through each possible constraint, hold on to the best guess # constraint will be 64 sets of 4 corners # 约束1 count = 0 for constraint in constraints: # print('constraint:',constraint) # each corner Xa = constraint[0] Xb = constraint[1] Xc = constraint[2] Xd = constraint[3] X_array = [Xa, Xb, Xc, Xd] # 4约束,对应上下左右 ,shape=4,3 # print('X_array:',X_array) # M: all 1's down diagonal, and upper 3x1 is Rotation_matrix * [x, y, z] Ma = np.copy(pre_M) Mb =
np.copy(pre_M)
numpy.copy
# Copyright (C) 2019-2021 Ruhr West University of Applied Sciences, Bottrop, Germany # AND Elektronische Fahrwerksysteme GmbH, Gaimersheim Germany # # This Source Code Form is subject to the terms of the Apache License 2.0 # If a copy of the APL2 was not distributed with this # file, You can obtain one at https://www.apache.org/licenses/LICENSE-2.0.txt. from typing import Union, Iterable, List import numpy as np from scipy.stats import norm from scipy.interpolate import interp1d, griddata import matplotlib.pyplot as plt import tikzplotlib from netcal.metrics import _Miscalibration class ReliabilityDiagram(object): """ Plot Confidence Histogram and Reliability Diagram to visualize miscalibration. On classification, plot the gaps between average confidence and observed accuracy bin-wise over the confidence space [1]_, [2]_. On detection, plot the miscalibration w.r.t. the additional regression information provided (1-D or 2-D) [3]_. Parameters ---------- bins : int or iterable, default: 10 Number of bins used by the ACE/ECE/MCE. On detection mode: if int, use same amount of bins for each dimension (nx1 = nx2 = ... = bins). If iterable, use different amount of bins for each dimension (nx1, nx2, ... = bins). equal_intervals : bool, optional, default: True If True, the bins have the same width. If False, the bins are splitted to equalize the number of samples in each bin. detection : bool, default: False If False, the input array 'X' is treated as multi-class confidence input (softmax) with shape (n_samples, [n_classes]). If True, the input array 'X' is treated as a box predictions with several box features (at least box confidence must be present) with shape (n_samples, [n_box_features]). fmin : float, optional, default: None Minimum value for scale color. fmax : float, optional, default: None Maximum value for scale color. metric : str, default: 'ECE' Metric to measure miscalibration. Might be either 'ECE', 'ACE' or 'MCE'. References ---------- .. [1] <NAME>, <NAME>, <NAME> and <NAME>: "On Calibration of Modern Neural Networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017. `Get source online <https://arxiv.org/abs/1706.04599>`_ .. [2] <NAME> and <NAME>: “Predicting good probabilities with supervised learning.” Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 625–632. `Get source online <https://www.cs.cornell.edu/~alexn/papers/calibration.icml05.crc.rev3.pdf>`_ .. [3] <NAME>, <NAME>, <NAME> and <NAME>: "Multivariate Confidence Calibration for Object Detection." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020. `Get source online <https://openaccess.thecvf.com/content_CVPRW_2020/papers/w20/Kuppers_Multivariate_Confidence_Calibration_for_Object_Detection_CVPRW_2020_paper.pdf>`_ """ def __init__(self, bins: Union[int, Iterable[int]] = 10, equal_intervals: bool = True, detection: bool = False, sample_threshold: int = 1, fmin: float = None, fmax: float = None, metric: str = 'ECE', **kwargs): """ Constructor. For detailed parameter documentation view classdocs. """ self.bins = bins self.detection = detection self.sample_threshold = sample_threshold self.fmin = fmin self.fmax = fmax self.metric = metric if 'feature_names' in kwargs: self.feature_names = kwargs['feature_names'] if 'title_suffix' in kwargs: self.title_suffix = kwargs['title_suffix'] self._miscalibration = _Miscalibration(bins=bins, equal_intervals=equal_intervals, detection=detection, sample_threshold=sample_threshold) def plot(self, X: Union[Iterable[np.ndarray], np.ndarray], y: Union[Iterable[np.ndarray], np.ndarray], batched: bool = False, uncertainty: str = None, filename: str = None, tikz: bool = False, title_suffix: str = None, feature_names: List[str] = None, **save_args) -> Union[plt.Figure, str]: """ Reliability diagram to visualize miscalibration. This could be either in classical way for confidences only or w.r.t. additional properties (like x/y-coordinates of detection boxes, width, height, etc.). The additional properties get binned. Afterwards, the miscalibration will be calculated for each bin. This is visualized as a 2-D plots. Parameters ---------- X : iterable of np.ndarray, or np.ndarray of shape=([n_bayes], n_samples, [n_classes/n_box_features]) NumPy array with confidence values for each prediction on classification with shapes 1-D for binary classification, 2-D for multi class (softmax). If 3-D, interpret first dimension as samples from an Bayesian estimator with mulitple data points for a single sample (e.g. variational inference or MC dropout samples). If this is an iterable over multiple instances of np.ndarray and parameter batched=True, interpret this parameter as multiple predictions that should be averaged. On detection, this array must have 2 dimensions with number of additional box features in last dim. y : iterable of np.ndarray with same length as X or np.ndarray of shape=([n_bayes], n_samples, [n_classes]) NumPy array with ground truth labels. Either as label vector (1-D) or as one-hot encoded ground truth array (2-D). If 3-D, interpret first dimension as samples from an Bayesian estimator with mulitple data points for a single sample (e.g. variational inference or MC dropout samples). If iterable over multiple instances of np.ndarray and parameter batched=True, interpret this parameter as multiple predictions that should be averaged. batched : bool, optional, default: False Multiple predictions can be evaluated at once (e.g. cross-validation examinations) using batched-mode. All predictions given by X and y are separately evaluated and their results are averaged afterwards for visualization. uncertainty : str, optional, default: False Define uncertainty handling if input X has been sampled e.g. by Monte-Carlo dropout or similar methods that output an ensemble of predictions per sample. Choose one of the following options: - flatten: treat everything as a separate prediction - this option will yield into a slightly better calibration performance but without the visualization of a prediction interval. - mean: compute Monte-Carlo integration to obtain a simple confidence estimate for a sample (mean) with a standard deviation that is visualized. filename : str, optional, default: None Optional filename to save the plotted figure. tikz : bool, optional, default: False If True, use 'tikzplotlib' package to return tikz-code for Latex rather than a Matplotlib figure. title_suffix : str, optional, default: None Suffix for plot title. feature_names : list, optional, default: None Names of the additional features that are attached to the axes of a reliability diagram. **save_args : args Additional arguments passed to 'matplotlib.pyplot.Figure.savefig' function if 'tikz' is False. If 'tikz' is True, the argument are passed to 'tikzplotlib.get_tikz_code' function. Returns ------- matplotlib.pyplot.Figure if 'tikz' is False else str with tikz code. Raises ------ AttributeError - If parameter metric is not string or string is not 'ACE', 'ECE' or 'MCE' - If parameter 'feature_names' is set but length does not fit to second dim of X - If no ground truth samples are provided - If length of bins parameter does not match the number of features given by X - If more than 3 feature dimensions (including confidence) are provided """ # assign deprecated constructor parameter to title_suffix and feature_names if hasattr(self, 'title_suffix') and title_suffix is None: title_suffix = self.title_suffix if hasattr(self, 'feature_names') and feature_names is None: feature_names = self.feature_names # check if metric is correct if not isinstance(self.metric, str): raise AttributeError('Parameter \'metric\' must be string with either \'ece\', \'ace\' or \'mce\'.') # check metrics parameter if self.metric.lower() not in ['ece', 'ace', 'mce']: raise AttributeError('Parameter \'metric\' must be string with either \'ece\', \'ace\' or \'mce\'.') else: self.metric = self.metric.lower() # perform checks and prepare input data X, matched, sample_uncertainty, bin_bounds, num_features = self._miscalibration.prepare(X, y, batched, uncertainty) if num_features > 3: raise AttributeError("Diagram is not defined for more than 2 additional feature dimensions.") histograms = [] for batch_X, batch_matched, batch_uncertainty, bounds in zip(X, matched, sample_uncertainty, bin_bounds): batch_histograms = self._miscalibration.binning(bounds, batch_X, batch_matched, batch_X[:, 0], batch_uncertainty[:, 0]) histograms.append(batch_histograms[:-1]) # no additional dimensions? compute standard reliability diagram if num_features == 1: fig = self.__plot_confidence_histogram(X, matched, histograms, bin_bounds, title_suffix) # one additional feature? compute 1D-plot elif num_features == 2: fig = self.__plot_1d(histograms, bin_bounds, title_suffix, feature_names) # two additional features? compute 2D plot elif num_features == 3: fig = self.__plot_2d(histograms, bin_bounds, title_suffix, feature_names) # number of dimensions exceeds 3? quit else: raise AttributeError("Diagram is not defined for more than 2 additional feature dimensions.") # if tikz is true, create tikz code from matplotlib figure if tikz: # get tikz code for our specific figure and also pass filename to store possible bitmaps tikz_fig = tikzplotlib.get_tikz_code(fig, filepath=filename, **save_args) # close matplotlib figure when tikz figure is requested to save memory plt.close(fig) fig = tikz_fig # save figure either as matplotlib PNG or as tikz output file if filename is not None: if tikz: with open(filename, "w") as open_file: open_file.write(fig) else: fig.savefig(filename, **save_args) return fig @classmethod def __interpolate_grid(cls, metric_map: np.ndarray) -> np.ndarray: """ Interpolate missing values in a 2D-grid using the mean of the data. The interpolation is done inplace. """ # get all NaNs nans = np.isnan(metric_map) x = lambda z: z.nonzero() # get mean of the remaining values and interpolate missing by the mean mean = float(np.mean(metric_map[~nans])) metric_map[nans] = griddata(x(~nans), metric_map[~nans], x(nans), method='cubic', fill_value=mean) return metric_map def __plot_confidence_histogram(self, X: List[np.ndarray], matched: List[np.ndarray], histograms: List[np.ndarray], bin_bounds: List, title_suffix: str = None) -> plt.Figure: """ Plot confidence histogram and reliability diagram to visualize miscalibration for condidences only. """ # get number of bins (self.bins has not been processed yet) n_bins = len(bin_bounds[0][0])-1 median_confidence = [(bounds[0][1:] + bounds[0][:-1]) * 0.5 for bounds in bin_bounds] mean_acc, mean_conf = [], [] for batch_X, batch_matched, batch_hist, batch_median in zip(X, matched, histograms, median_confidence): acc_hist, conf_hist, _, num_samples_hist = batch_hist empty_bins, = np.nonzero(num_samples_hist == 0) # calculate overall mean accuracy and confidence mean_acc.append(np.mean(batch_matched)) mean_conf.append(np.mean(batch_X)) # set empty bins to median bin value acc_hist[empty_bins] = batch_median[empty_bins] conf_hist[empty_bins] = batch_median[empty_bins] # convert num_samples to relative afterwards (inplace denoted by [:]) num_samples_hist[:] = num_samples_hist / np.sum(num_samples_hist) # get mean histograms and values over all batches acc = np.mean([hist[0] for hist in histograms], axis=0) conf = np.mean([hist[1] for hist in histograms], axis=0) uncertainty = np.sqrt(np.mean([hist[2] for hist in histograms], axis=0)) num_samples = np.mean([hist[3] for hist in histograms], axis=0) mean_acc = np.mean(mean_acc) mean_conf = np.mean(mean_conf) median_confidence = np.mean(median_confidence, axis=0) bar_width = np.mean([np.diff(bounds[0]) for bounds in bin_bounds], axis=0) # compute credible interval of uncertainty p = 0.05 z_score = norm.ppf(1. - (p / 2)) uncertainty = z_score * uncertainty # if no uncertainty is given, set variable uncertainty to None in order to prevent drawing error bars if
np.count_nonzero(uncertainty)
numpy.count_nonzero
import numpy as np import torch import torch.autograd as autograd def weighted_mse(pred, target, weight=None): if weight is None: return torch.mean((pred - target) ** 2) else: return torch.mean(weight * (pred - target) ** 2) def get_3dboundary_points(num_x, # number of points on x axis num_y, # number of points on y axis num_t, # number of points on t axis bot=(0, 0, 0), # lower bound top=(1.0, 1.0, 1.0) # upper bound ): x_top, y_top, t_top = top x_bot, y_bot, t_bot = bot x_arr = np.linspace(x_bot, x_top, num=num_x, endpoint=False) y_arr = np.linspace(y_bot, y_top, num=num_y, endpoint=False) xx, yy = np.meshgrid(x_arr, y_arr, indexing='ij') xarr = np.ravel(xx) yarr = np.ravel(yy) tarr = np.ones_like(xarr) * t_bot point0 = np.stack([xarr, yarr, tarr], axis=0).T # (SxSx1, 3), boundary on t=0 t_arr = np.linspace(t_bot, t_top, num=num_t) yy, tt = np.meshgrid(y_arr, t_arr, indexing='ij') yarr = np.ravel(yy) tarr = np.ravel(tt) xarr = np.ones_like(yarr) * x_bot point2 = np.stack([xarr, yarr, tarr], axis=0).T # (1xSxT, 3), boundary on x=0 xarr = np.ones_like(yarr) * x_top point3 = np.stack([xarr, yarr, tarr], axis=0).T # (1xSxT, 3), boundary on x=2pi xx, tt = np.meshgrid(x_arr, t_arr, indexing='ij') xarr = np.ravel(xx) tarr = np.ravel(tt) yarr = np.ones_like(xarr) * y_bot point4 = np.stack([xarr, yarr, tarr], axis=0).T # (128x1x65, 3), boundary on y=0 yarr = np.ones_like(xarr) * y_top point5 = np.stack([xarr, yarr, tarr], axis=0).T # (128x1x65, 3), boundary on y=2pi points = np.concatenate([point0, point2, point3, point4, point5], axis=0) return points def get_3dboundary(value): boundary0 = value[0, :, :, 0:1] # 128x128x1, boundary on t=0 # boundary1 = value[0, :, :, -1:] # 128x128x1, boundary on t=0.5 boundary2 = value[0, 0:1, :, :] # 1x128x65, boundary on x=0 boundary3 = value[0, -1:, :, :] # 1x128x65, boundary on x=1 boundary4 = value[0, :, 0:1, :] # 128x1x65, boundary on y=0 boundary5 = value[0, :, -1:, :] # 128x1x65, boundary on y=1 part0 = np.ravel(boundary0) # part1 = np.ravel(boundary1) part2 = np.ravel(boundary2) part3 = np.ravel(boundary3) part4 = np.ravel(boundary4) part5 = np.ravel(boundary5) boundary = np.concatenate([part0, part2, part3, part4, part5], axis=0)[:, np.newaxis] return boundary def get_xytgrid(S, T, bot=[0, 0, 0], top=[1, 1, 1]): ''' Args: S: number of points on each spatial domain T: number of points on temporal domain including endpoint bot: list or tuple, lower bound on each dimension top: list or tuple, upper bound on each dimension Returns: (S * S * T, 3) array ''' x_arr = np.linspace(bot[0], top[0], num=S, endpoint=False) y_arr = np.linspace(bot[1], top[1], num=S, endpoint=False) t_arr = np.linspace(bot[2], top[2], num=T) xgrid, ygrid, tgrid = np.meshgrid(x_arr, y_arr, t_arr, indexing='ij') xaxis = np.ravel(xgrid) yaxis = np.ravel(ygrid) taxis = np.ravel(tgrid) points = np.stack([xaxis, yaxis, taxis], axis=0).T return points def get_2dgird(num=31): x =
np.linspace(-1, 1, num)
numpy.linspace
import numpy as np frame =
np.random.rand(64,64,3)
numpy.random.rand
from copy import deepcopy from ELDAmwl.utils.wrapper import scipy_reduce_wrapper from scipy.integrate import cumulative_trapezoid from scipy.stats import sem import numpy as np import xarray as xr def rolling_mean_sem(data, level): """calculate rolling mean and stderror of mean""" means = data.rolling(level=level).reduce(np.mean) # the use of scipy_reduce_wrapper is needed to deal with incompatible axis types sems = data.rolling(level=level).reduce(scipy_reduce_wrapper(sem)) return means, sems def calc_rolling_means_sems(ds, w_width): ww0 = w_width[0, 0] # calculate rolling means, std errs of mean, and rel sem # if window_width are equal for all time slices, # get means and sems at once if np.all(w_width == ww0): means, sems = rolling_mean_sem(ds.data, ww0) # else do it for each time slice separately else: m_list = [] s_list = [] for t in range(ds.dims.time): mean, sems = rolling_mean_sem(ds.data[t], w_width[t, 0]) m_list.append(mean) s_list.append(sems) means = xr.concat(m_list, 'time') sems = xr.concat(s_list, 'time') return means, sems def find_minimum_window(means, sems, w_width, error_threshold): rel_sem = sems / means # find all means with rel_sem < error threshold: # rel_sem.where(rel_sem.data < error_threshold) # => rel_sem values and nans # rel_sem.where(rel_sem.data < error_threshold) / rel_sem # => ones and nans # valid_means = means and nans valid_means = (rel_sem.where(rel_sem.data < error_threshold) / rel_sem * means) # min_idx is the last bin of rolling window with smallest mean win_last_idx = np.nanargmin(valid_means.data, axis=1) win_first_idx = (win_last_idx[:] - w_width[:, 0]) return win_first_idx, win_last_idx def closest_bin(data, error=None, first_bin=None, last_bin=None, search_value=None): """ finds the bin which has the value closest to the search value Args: data(np.array) : 1-dimensional vertical profile of the data error(np.array): vertical profile of absolute data errors. Default = None if provided: if the closest bin is not equal to the search value within its error, returns None. first_bin, last_bin (int): first and last bin of the profile, where the search shall be done. Default: None => the complete profile is used search_value (float): Default=None. if not provided, the mean value of the profile is used returns: idx (int): the index which has the value closest to the search value """ if first_bin is None: first_bin = 0 if last_bin is None: last_bin = data.size _data = data[first_bin:last_bin] if search_value is not None: _search_value = search_value else: _search_value = np.nanmean(_data) diff = np.absolute(_data - _search_value) min_idx = np.argmin(diff) if first_bin is not None: result = first_bin + min_idx else: result = min_idx if error is not None: if abs(data[result] - search_value) > error[result]: result = None return result def integral_profile(data, range_axis=None, extrapolate_ovl_factor=None, first_bin=None, last_bin=None): """ calculates the vertical integral of a profile uses the scipy.integrate.cumulative_trapezoid method. if there are nan values, they are removed before integration and the resulting cumulative integral will be interpolated to the original range axis. Args: data (ndarray, 1 dimensional): the ydata to be integrated range_axis (ndarray, 1 dimensional): the xdata. first_bin (int, optional): (default = 0) the first bin of the integration last_bin (int, optional): (default = ydata.size) the last bin of the integration. if last_bin < first_bin, the integration direction is reversed extrapolate_ovl_factor (float, optional): (default = None) if not None, the profile is extrapolated towards the ground by inserting a new data point with values range_new = 0, data_new = data[0] * extrapolate_ovl_factor Returns: """ ydata = deepcopy(data) xdata = deepcopy(range_axis) if last_bin is None: lb = ydata.size else: lb = last_bin if first_bin is None: fb = 0 else: fb = first_bin # if integration direction is downward -> flip data arrays and exchange fb, lb reverse = False if lb < fb: reverse = True xdata = np.flip(xdata) ydata = np.flip(ydata) lb = ydata.size - lb fb = ydata.size - fb - 1 # use only profile parts between first_bin and last_bin ydata = ydata[fb:lb] xdata = xdata[fb:lb] # remove nan data points fill_nan = False orig_xdata = None if np.any(np.isnan(ydata)): fill_nan = True orig_xdata = xdata nan_idxs = np.where(np.isnan(ydata)) ydata = np.delete(ydata, nan_idxs) xdata = np.delete(xdata, nan_idxs) # fill the overlap region with extrapolated values # this is done by inserting an additional point at # the beginning (if ascending range axis) or end (if descending range axis) of xdata and ydata arrays # the insert_pos is 0 or -1, respectively. # the new point has the values xdata= 0 and ydata = ydata[insert_pos] * extrapolate_ovl_factor # insert_pos = None if extrapolate_ovl_factor is not None: # if the range axis is ascending, insert at position 0 if xdata[0] < xdata[-1]: xdata = np.insert(xdata, 0, np.array([0])) ydata = np.insert(ydata, 0, np.array(ydata[0]) * extrapolate_ovl_factor) # if range axis is descending, append at the end else: xdata = np.append(xdata, np.array([0])) ydata = np.append(ydata, np.array(ydata[-1]) * extrapolate_ovl_factor) # calculate cumulative integral result = cumulative_trapezoid(ydata, x=xdata, initial=0) # add half first bin if ydata.size > 1: result = result + ydata[0] * (xdata[1] - xdata[0]) / 2 else: result = np.array([np.nan]) # if integration direction is downward -> flip result and xdata # note: the integral is usually negative because the differential x axis is negative if reverse: result =
np.flip(result)
numpy.flip
import copy from pathlib import Path import numpy as np import pytest from argoverse.utils.json_utils import read_json_file from argoverse.utils.se2 import SE2 from argoverse.utils.sim2 import Sim2 TEST_DATA_ROOT = Path(__file__).resolve().parent / "test_data" def test_constructor() -> None: """Sim(2) to perform p_b = bSa * p_a""" bRa = np.eye(2) bta = np.array([1, 2]) bsa = 3.0 bSa = Sim2(R=bRa, t=bta, s=bsa) assert isinstance(bSa, Sim2) assert np.allclose(bSa.R_, bRa) assert np.allclose(bSa.t_, bta) assert np.allclose(bSa.s_, bsa) def test_is_eq() -> None: """Ensure object equality works properly (are equal).""" bSa = Sim2(R=
np.eye(2)
numpy.eye
""" Implement principle-component-analysis tools. .. include common links, assuming primary doc root is up one directory .. include:: ../links.rst """ from IPython import embed import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from pypeit import msgs from pypeit import utils from IPython import embed def pca_decomposition(vectors, npca=None, pca_explained_var=99.0, mean=None): r""" Perform principle-component analysis (PCA) for a set of 1D vectors. The vectors are first passed to an unconstrained PCA to determine the growth curve of the accounted variance as a function of the PCA component. If specifying a number of PCA components to use (see `npca`), this yields the percentage of the variance accounted for in the analysis. If instead specifying the target variance percentage (see `pca_explained_var`), this is used to determine the number of PCA components to use in the final analysis. .. note:: This is a fully generalized convenience function for a specific use of `sklearn.decomposition.PCA`_. When used within PypeIt, the vectors to decompose (see, e.g., :class:`pypeit.edgetrace.EdgeTracePCA`) typically have the length of the spectral axis. This means that, within PypeIt, arrays are typically transposed when passed to this function. Args: vectors (`numpy.ndarray`_): A 2D array with vectors to analyze with shape :math:`(N_{\rm vec}, N_{\rm pix})`. All vectors must be the same length and cannot be masked. npca (:obj:`bool`, optional): The number of PCA components to keep, which must be less than :math:`N_{\rm vec}`. If `npca==nvec`, no PCA compression occurs. If None, `npca` is automatically determined by calculating the minimum number of components required to explain a given percentage of variance in the data. (see `pca_explained_var`). pca_explained_var (:obj:`float`, optional): The percentage (i.e., not the fraction) of the variance in the data accounted for by the PCA used to truncate the number of PCA coefficients to keep (see `npca`). Ignored if `npca` is provided directly. mean (`numpy.ndarray`_, optional): The mean value of each vector to subtract from the data before performing the PCA. If None, this is determined directly from the data. Shape must be :math:`N_{\rm vec}`. Returns: Returns four `numpy.ndarray`_ objects: - The coefficients of each PCA component, `coeffs`. Shape is :math:`(N_{\rm vec},N_{\rm comp})`. - The PCA component vectors, `components`. Shape is :math:`(N_{\rm comp},N_{\rm pix})`. - The mean offset of each PCA for each pixel, `pca_mean`. Shape is :math:`(N_{\rm pix},)`. - The mean offset applied to each vector before the PCA, `vec_mean`. Shape is :math:`(N_{\rm vec},)`. To reconstruct the PCA representation of the input vectors, compute:: np.dot(coeffs, components) + pca_mean[None,:] + vec_mean[:,None] """ # Check input if vectors.ndim != 2: raise ValueError('Input trace data must be a 2D array') nvec = vectors.shape[0] if nvec < 2: raise ValueError('There must be at least 2 vectors for the PCA analysis.') # Take out the mean value of each vector if mean is None: mean = np.mean(vectors, axis=1) vec_pca = vectors - mean[:,None] # Perform unconstrained PCA of the vectors pca = PCA() pca.fit(vec_pca) # Compute the cumulative distribution of the variance explained by the PCA components. # TODO: Why round to 6 decimals? Why work in percentages? var_growth = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=6) * 100) # Number of components for a full decomposition npca_tot = var_growth.size msgs.info('The unconstrained PCA yields {0} components.'.format(npca_tot)) if npca is None: # Assign the number of components to use based on the variance # percentage if pca_explained_var is None: raise ValueError('Must provide percentage explained variance.') npca = int(np.ceil(np.interp(pca_explained_var, var_growth, np.arange(npca_tot)+1))) \ if var_growth[0] < pca_explained_var else 1 elif npca_tot < npca: raise ValueError('Too few vectors for a PCA of the requested dimensionality. ' 'The full (uncompressing) PCA has {0} component(s)'.format(npca_tot) + ', which is less than the requested {0} component(s).'.format(npca) + ' Lower the number of requested PCA component(s) or turn off the PCA.') msgs.info('PCA will include {0} component(s), '.format(npca) + 'containing {0:.3f}% of the total variance.'.format(var_growth[npca-1])) # Determine the PCA coefficients with the revised number of # components, and return the results pca = PCA(n_components=npca) pca_coeffs = pca.fit_transform(vec_pca) return pca_coeffs, pca.components_, pca.mean_, mean def fit_pca_coefficients(coeff, order, ivar=None, weights=None, function='legendre', lower=3.0, upper=3.0, maxrej=1, maxiter=25, coo=None, minx=None, maxx=None, debug=False): r""" Fit a parameterized function to a set of PCA coefficients, primarily for the purpose of predicting coefficients at intermediate locations. The coefficients of each PCA component are fit by a low-order polynomial, where the abscissa is set by the `coo` argument (see :func:`pypeit.utils.robust_polyfit_djs`). .. note:: This is a general function, not really specific to the PCA; and is really just a wrapper for :func:`pypeit.utils.robust_polyfit_djs`. Args: coeff (`numpy.ndarray`_): PCA component coefficients. If the PCA decomposition used :math:`N_{\rm comp}` components for :math:`N_{\rm vec}` vectors, the shape of this array must be :math:`(N_{\rm vec}, N_{\rm comp})`. The array can be 1D with shape :math:`(N_{\rm vec},)` if there was only one PCA component. order (:obj:`int`, `numpy.ndarray`_): The order, :math:`o`, of the function used to fit the PCA coefficients. Can be a single number for all PCA components, or an array with an order specific to each component. If the latter, the shape must be :math:`(N_{\rm comp},)`. ivar (`numpy.ndarray`_, optional): Inverse variance in the PCA coefficients to use during the fit; see the `invvar` parameter of :func:`pypeit.utils.robust_polyfit_djs`. If None, fit is not error weighted. If a vector with shape :math:`(N_{\rm vec},)`, the same error will be assumed for all PCA components (i.e., `ivar` will be expanded to match the shape of `coeff`). If a 2D array, the shape must match `coeff`. weights (`numpy.ndarray`_, optional): Weights to apply to the PCA coefficients during the fit; see the `weights` parameter of :func:`pypeit.utils.robust_polyfit_djs`. If None, the weights are uniform. If a vector with shape :math:`(N_{\rm vec},)`, the same weights will be assumed for all PCA components (i.e., `weights` will be expanded to match the shape of `coeff`). If a 2D array, the shape must match `coeff`. function (:obj:`str`, optional): Type of function used to fit the data. lower (:obj:`float`, optional): Number of standard deviations used for rejecting data **below** the mean residual. If None, no rejection is performed. See :func:`utils.robust_polyfit_djs`. upper (:obj:`float`, optional): Number of standard deviations used for rejecting data **above** the mean residual. If None, no rejection is performed. See :func:`utils.robust_polyfit_djs`. maxrej (:obj:`int`, optional): Maximum number of points to reject during fit iterations. See :func:`utils.robust_polyfit_djs`. maxiter (:obj:`int`, optional): Maximum number of rejection iterations allows. To force no rejection iterations, set to 0. coo (`numpy.ndarray`_, optional): Floating-point array with the independent coordinates to use when fitting the PCA coefficients. If None, simply uses a running number. Shape must be :math:`(N_{\rm vec},)`. minx, maxx (:obj:`float`, optional): Minimum and maximum values used to rescale the independent axis data. If None, the minimum and maximum values of `coo` are used. See :func:`utils.robust_polyfit_djs`. debug (:obj:`bool`, optional): Show plots useful for debugging. Returns: Returns four objects: - A boolean `numpy.ndarray`_ masking data (`coeff`) that were rejected during the polynomial fitting. Shape is the same as the input `coeff`. - A `list` of `numpy.ndarray`_ objects (or a single `numpy.ndarray`_), one per PCA component where the length of the 1D array is the number of coefficients fit to the PCA-component coefficients. The number of function coefficients is typically :math:`N_{\rm coeff} = o+1`. - The minimum and maximum coordinate values used to rescale the abscissa during the fitting. """ # Check the input # - Get the shape of the input data to fit _coeff = np.asarray(coeff) if _coeff.ndim == 1: _coeff = np.expand_dims(_coeff, 1) if _coeff.ndim != 2: raise ValueError('Array with coefficiencts cannot be more than 2D') nvec, npca = _coeff.shape # - Check the inverse variance _ivar = None if ivar is None else np.atleast_2d(ivar) if _ivar is not None and _ivar.shape != _coeff.shape: raise ValueError('Inverse variance array does not match input coefficients.') # - Check the weights _weights = np.ones(_coeff.shape, dtype=float) if weights is None else np.asarray(weights) if _weights.ndim == 1: _weights = np.tile(_weights, (_coeff.shape[1],1)).T if _weights.shape != _coeff.shape: raise ValueError('Weights array does not match input coefficients.') # - Set the abscissa of the data if not provided and check its # shape if coo is None: coo = np.arange(nvec, dtype=float) if coo.size != nvec: raise ValueError('Vector coordinates have incorrect shape.') # - Check the order of the functions to fit _order = np.atleast_1d(order) if _order.size == 1: _order = np.full(npca, order, dtype=int) if _order.size != npca: raise ValueError('Function order must be a single number or one number per PCA component.') # - Force the values of minx and maxx if they're not provided directly if minx is None: minx = np.amin(coo) if maxx is None: maxx = np.amax(coo) # Instantiate the output coeff_used = np.ones(_coeff.shape, dtype=bool) fit_coeff = [None]*npca # TODO: This fitting is fast. Maybe we should determine the best # order for each PCA component, up to some maximum, by comparing # reduction in chi-square vs added number of parameters? # Fit the coefficients of each PCA component so that they can be # interpolated to other coordinates. inmask = np.ones_like(coo, dtype=bool) for i in range(npca): coeff_used[:,i], fit_coeff[i] \ = utils.robust_polyfit_djs(coo, _coeff[:,i], _order[i], inmask=inmask, invvar=None if _ivar is None else _ivar[:,i], weights=_weights[:,i], function=function, maxiter=maxiter, lower=lower, upper=upper, maxrej=maxrej, sticky=False, use_mad=_ivar is None, minx=minx, maxx=maxx) if debug: # Visually check the fits xvec = np.linspace(np.amin(coo), np.amax(coo), num=100) rejected = np.invert(coeff_used[:,i]) & inmask plt.scatter(coo[inmask], _coeff[inmask,i], marker='.', color='k', s=100, facecolor='none', label='pca coeff') plt.scatter(coo[np.invert(inmask)], _coeff[np.invert(inmask),i], marker='.', color='orange', s=100, facecolor='none', label='pca coeff, masked from previous') if np.any(rejected): plt.scatter(coo[rejected], _coeff[rejected,i], marker='x', color='C3', s=80, label='robust_polyfit_djs rejected') plt.plot(xvec, utils.func_val(fit_coeff[i], xvec, function, minx=minx, maxx=maxx), linestyle='--', color='C0', label='Polynomial fit of order={0}'.format(_order[i])) plt.xlabel('Trace Coordinate', fontsize=14) plt.ylabel('PCA Coefficient', fontsize=14) plt.title('PCA Fit for Dimension #{0}/{1}'.format(i+1, npca)) plt.legend() plt.show() inmask=coeff_used[:,i] # Return arrays that match the shape of the input data if coeff.ndim == 1: return np.invert(coeff_used)[0], fit_coeff[0], minx, maxx return
np.invert(coeff_used)
numpy.invert
# Copyright 2018/2019 The RLgraph authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import unittest from rlgraph.components.policies import Policy, SharedValueFunctionPolicy, DuelingPolicy from rlgraph.spaces import * from rlgraph.tests import ComponentTest from rlgraph.tests.test_util import config_from_path from rlgraph.utils import softmax, relu class TestPoliciesOnContainerActions(unittest.TestCase): def test_policy_for_discrete_container_action_space(self): # state_space. state_space = FloatBox(shape=(4,), add_batch_rank=True) # Container action space. action_space = dict( type="dict", a=IntBox(2), b=IntBox(3), add_batch_rank=True ) flat_float_action_space = dict( type="dict", a=FloatBox(shape=(2,)), b=FloatBox(shape=(3,)), add_batch_rank=True ) policy = Policy(network_spec=config_from_path("configs/test_simple_nn.json"), action_space=action_space) test = ComponentTest( component=policy, input_spaces=dict( nn_input=state_space, actions=action_space, probabilities=flat_float_action_space, logits=flat_float_action_space ), action_space=action_space ) policy_params = test.read_variable_values(policy.variables) # Some NN inputs (batch size=2). states = state_space.sample(2) # Raw NN-output. expected_nn_output = np.matmul(states, policy_params["policy/test-network/hidden-layer/dense/kernel"]) test.test(("get_nn_output", states), expected_outputs=dict(output=expected_nn_output), decimals=6) # Raw action layers' output. expected_action_layer_outputs = dict( a=np.matmul(expected_nn_output, policy_params["policy/action-adapter-0/action-network/action-layer/dense/kernel"]), b=np.matmul(expected_nn_output, policy_params["policy/action-adapter-1/action-network/action-layer/dense/kernel"]) ) test.test(("get_action_layer_output", states), expected_outputs=dict(output=expected_action_layer_outputs), decimals=5) # Logits, parameters (probs) and skip log-probs (numerically unstable for small probs). expected_probabilities_output = dict( a=np.array(softmax(expected_action_layer_outputs["a"], axis=-1), dtype=np.float32), b=np.array(softmax(expected_action_layer_outputs["b"], axis=-1), dtype=np.float32) ) test.test(("get_logits_probabilities_log_probs", states, ["logits", "probabilities"]), expected_outputs=dict( logits=expected_action_layer_outputs, probabilities=expected_probabilities_output ), decimals=5) print("Probs: {}".format(expected_probabilities_output)) expected_actions = dict( a=np.argmax(expected_action_layer_outputs["a"], axis=-1), b=np.argmax(expected_action_layer_outputs["b"], axis=-1) ) test.test(("get_action", states), expected_outputs=dict(action=expected_actions)) # Stochastic sample. out = test.test(("get_stochastic_action", states), expected_outputs=None) # dict(action=expected_actions)) self.assertTrue(out["action"]["a"].dtype == np.int32) self.assertTrue(out["action"]["a"].shape == (2,)) self.assertTrue(out["action"]["b"].dtype == np.int32) self.assertTrue(out["action"]["b"].shape == (2,)) # Deterministic sample. test.test(("get_deterministic_action", states), expected_outputs=None) # dict(action=expected_actions)) self.assertTrue(out["action"]["a"].dtype == np.int32) self.assertTrue(out["action"]["a"].shape == (2,)) self.assertTrue(out["action"]["b"].dtype == np.int32) self.assertTrue(out["action"]["b"].shape == (2,)) # Distribution's entropy. out = test.test(("get_entropy", states), expected_outputs=None) # dict(entropy=expected_h), decimals=3) self.assertTrue(out["entropy"]["a"].dtype == np.float32) self.assertTrue(out["entropy"]["a"].shape == (2,)) self.assertTrue(out["entropy"]["b"].dtype == np.float32) self.assertTrue(out["entropy"]["b"].shape == (2,)) # Action log-probs. expected_action_log_prob_output = dict( a=np.log(np.array([expected_probabilities_output["a"][0][expected_actions["a"][0]], expected_probabilities_output["a"][1][expected_actions["a"][1]]])), b=np.log(np.array([expected_probabilities_output["b"][0][expected_actions["b"][0]], expected_probabilities_output["b"][1][expected_actions["b"][1]]])), ) test.test( ("get_action_log_probs", [states, expected_actions]), expected_outputs=dict( action_log_probs=expected_action_log_prob_output, logits=expected_action_layer_outputs ), decimals=5 ) def test_shared_value_function_policy_for_discrete_container_action_space(self): # state_space (NN is a simple single fc-layer relu network (2 units), random biases, random weights). state_space = FloatBox(shape=(5,), add_batch_rank=True) # action_space (complex nested container action space). action_space = dict( type="dict", a=IntBox(2), b=Dict(b1=IntBox(3), b2=IntBox(4)), add_batch_rank=True ) flat_float_action_space = dict( type="dict", a=FloatBox(shape=(2,)), b=Dict(b1=FloatBox(shape=(3,)), b2=FloatBox(shape=(4,))), add_batch_rank=True ) # Policy with baseline action adapter. shared_value_function_policy = SharedValueFunctionPolicy( network_spec=config_from_path("configs/test_lrelu_nn.json"), action_space=action_space ) test = ComponentTest( component=shared_value_function_policy, input_spaces=dict( nn_input=state_space, actions=action_space, probabilities=flat_float_action_space, logits=flat_float_action_space ), action_space=action_space, ) policy_params = test.read_variable_values(shared_value_function_policy.variables) base_scope = "shared-value-function-policy/action-adapter-" # Some NN inputs (batch size=2). states = state_space.sample(size=2) # Raw NN-output. expected_nn_output = relu(np.matmul( states, policy_params["shared-value-function-policy/test-network/hidden-layer/dense/kernel"] ), 0.1) test.test(("get_nn_output", states), expected_outputs=dict(output=expected_nn_output), decimals=5) # Raw action layers' output. expected_action_layer_outputs = dict( a=np.matmul(expected_nn_output, policy_params[base_scope + "0/action-network/action-layer/dense/kernel"]), b=dict(b1=np.matmul(expected_nn_output, policy_params[base_scope + "1/action-network/action-layer/dense/kernel"]), b2=np.matmul(expected_nn_output, policy_params[base_scope + "2/action-network/action-layer/dense/kernel"])) ) test.test(("get_action_layer_output", states), expected_outputs=dict(output=expected_action_layer_outputs), decimals=5) # State-values. expected_state_value_output = np.matmul( expected_nn_output, policy_params["shared-value-function-policy/value-function-node/dense-layer/dense/kernel"] ) test.test(("get_state_values", states), expected_outputs=dict(state_values=expected_state_value_output), decimals=5) # logits-values: One for each action-choice per item in the batch (simply take the remaining out nodes). test.test(("get_state_values_logits_probabilities_log_probs", states, ["state_values", "logits"]), expected_outputs=dict(state_values=expected_state_value_output, logits=expected_action_layer_outputs), decimals=5) # Parameter (probabilities). Softmaxed logits. expected_probabilities_output = dict( a=softmax(expected_action_layer_outputs["a"], axis=-1), b=dict( b1=softmax(expected_action_layer_outputs["b"]["b1"], axis=-1), b2=softmax(expected_action_layer_outputs["b"]["b2"], axis=-1) ) ) test.test(("get_logits_probabilities_log_probs", states, ["logits", "probabilities"]), expected_outputs=dict( logits=expected_action_layer_outputs, probabilities=expected_probabilities_output ), decimals=5) print("Probs: {}".format(expected_probabilities_output)) # Action sample. expected_actions = dict( a=np.argmax(expected_action_layer_outputs["a"], axis=-1), b=dict( b1=np.argmax(expected_action_layer_outputs["b"]["b1"], axis=-1), b2=np.argmax(expected_action_layer_outputs["b"]["b2"], axis=-1) ) ) test.test(("get_action", states), expected_outputs=dict(action=expected_actions)) # Stochastic sample. out = test.test(("get_stochastic_action", states), expected_outputs=None) self.assertTrue(out["action"]["a"].dtype == np.int32) self.assertTrue(out["action"]["a"].shape == (2,)) self.assertTrue(out["action"]["b"]["b1"].dtype == np.int32) self.assertTrue(out["action"]["b"]["b1"].shape == (2,)) self.assertTrue(out["action"]["b"]["b2"].dtype == np.int32) self.assertTrue(out["action"]["b"]["b2"].shape == (2,)) # Deterministic sample. out = test.test(("get_deterministic_action", states), expected_outputs=None) self.assertTrue(out["action"]["a"].dtype == np.int32) self.assertTrue(out["action"]["a"].shape == (2,)) self.assertTrue(out["action"]["b"]["b1"].dtype == np.int32) self.assertTrue(out["action"]["b"]["b1"].shape == (2,)) self.assertTrue(out["action"]["b"]["b2"].dtype == np.int32) self.assertTrue(out["action"]["b"]["b2"].shape == (2,)) # Distribution's entropy. out = test.test(("get_entropy", states), expected_outputs=None) self.assertTrue(out["entropy"]["a"].dtype == np.float32) self.assertTrue(out["entropy"]["a"].shape == (2,)) self.assertTrue(out["entropy"]["b"]["b1"].dtype == np.float32) self.assertTrue(out["entropy"]["b"]["b1"].shape == (2,)) self.assertTrue(out["entropy"]["b"]["b2"].dtype == np.float32) self.assertTrue(out["entropy"]["b"]["b2"].shape == (2,)) def test_shared_value_function_policy_for_discrete_container_action_space_with_time_rank_folding(self): # state_space (NN is a simple single fc-layer relu network (2 units), random biases, random weights). state_space = FloatBox(shape=(6,), add_batch_rank=True, add_time_rank=True) # Action_space. action_space = Tuple( IntBox(2), IntBox(3), Dict( a=IntBox(4), ), add_batch_rank=True, add_time_rank=True ) flat_float_action_space = Tuple( FloatBox(shape=(2,)), FloatBox(shape=(3,)), Dict( a=FloatBox(shape=(4,)), ), add_batch_rank=True, add_time_rank=True ) # Policy with baseline action adapter AND batch-apply over the entire policy (NN + ActionAdapter + distr.). network_spec = config_from_path("configs/test_lrelu_nn.json") network_spec["fold_time_rank"] = True shared_value_function_policy = SharedValueFunctionPolicy( network_spec=network_spec, action_adapter_spec=dict(unfold_time_rank=True), action_space=action_space, value_unfold_time_rank=True ) test = ComponentTest( component=shared_value_function_policy, input_spaces=dict( nn_input=state_space, actions=action_space, probabilities=flat_float_action_space, logits=flat_float_action_space ), action_space=action_space, ) policy_params = test.read_variable_values(shared_value_function_policy.variables) base_scope = "shared-value-function-policy/action-adapter-" # Some NN inputs. states = state_space.sample(size=(2, 3)) states_folded = np.reshape(states, newshape=(6, 6)) # Raw NN-output (still folded). expected_nn_output = relu(np.matmul( states_folded, policy_params["shared-value-function-policy/test-network/hidden-layer/dense/kernel"] ), 0.1) test.test(("get_nn_output", states), expected_outputs=dict(output=expected_nn_output), decimals=5) # Raw action layer output; Expected shape=(3,3): 3=batch, 2=action categories + 1 state value expected_action_layer_output = tuple([ np.matmul(expected_nn_output, policy_params[base_scope + "0/action-network/action-layer/dense/kernel"]), np.matmul(expected_nn_output, policy_params[base_scope + "1/action-network/action-layer/dense/kernel"]), dict( a=np.matmul(expected_nn_output, policy_params[base_scope + "2/action-network/action-layer/dense/kernel"]) ) ]) expected_action_layer_output_unfolded = tuple([ np.reshape(expected_action_layer_output[0], newshape=(2, 3, 2)), np.reshape(expected_action_layer_output[1], newshape=(2, 3, 3)), dict( a=np.reshape(expected_action_layer_output[2]["a"], newshape=(2, 3, 4)) ) ]) test.test(("get_action_layer_output", states), expected_outputs=dict(output=expected_action_layer_output_unfolded), decimals=5) # State-values: One for each item in the batch. expected_state_value_output = np.matmul( expected_nn_output, policy_params["shared-value-function-policy/value-function-node/dense-layer/dense/kernel"] ) expected_state_value_output_unfolded = np.reshape(expected_state_value_output, newshape=(2, 3, 1)) test.test(("get_state_values", states), expected_outputs=dict(state_values=expected_state_value_output_unfolded), decimals=5) test.test( ("get_state_values_logits_probabilities_log_probs", states, ["state_values", "logits"]), expected_outputs=dict( state_values=expected_state_value_output_unfolded, logits=expected_action_layer_output_unfolded ), decimals=5 ) # Parameter (probabilities). Softmaxed logits. expected_probabilities_output = tuple([ softmax(expected_action_layer_output_unfolded[0], axis=-1), softmax(expected_action_layer_output_unfolded[1], axis=-1), dict( a=softmax(expected_action_layer_output_unfolded[2]["a"], axis=-1) ) ]) test.test(("get_logits_probabilities_log_probs", states, ["logits", "probabilities"]), expected_outputs=dict( logits=expected_action_layer_output_unfolded, probabilities=expected_probabilities_output ), decimals=5) print("Probs: {}".format(expected_probabilities_output)) expected_actions = tuple([ np.argmax(expected_action_layer_output_unfolded[0], axis=-1), np.argmax(expected_action_layer_output_unfolded[1], axis=-1), dict( a=
np.argmax(expected_action_layer_output_unfolded[2]["a"], axis=-1)
numpy.argmax
# -*- coding: utf-8 -*- """ The module contains the Somoclu class that trains and visualizes self-organizing maps and emergent self-organizing maps. Created on Sun July 26 15:07:47 2015 @author: <NAME> """ from __future__ import division, print_function import sys import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.collections as mcoll import numpy as np from scipy.spatial.distance import cdist try: import seaborn as sns from sklearn.metrics.pairwise import pairwise_distances have_heatmap = True except ImportError: have_heatmap = False try: from .somoclu_wrap import train as wrap_train except ImportError: print("Warning: the binary library cannot be imported. You cannot train " "maps, but you can load and analyze ones that you have already saved.") if sys.platform.startswith('win'): print("If you installed Somoclu with pip on Windows, this typically " "means missing DLLs. Please refer to the documentation.") elif sys.platform.startswith('darwin'): print("If you installed Somoclu with pip on macOS, this typically " "means missing a linked library. If you compiled Somoclu with " "GCC, please make sure you have set DYLD_LIBRARY_PATH to include " "the GCC path. For more information, please refer to the " "documentation.") else: print("The problem occurs because either compilation failed when you " "installed Somoclu or a path is missing from the dependencies " "when you are trying to import it. Please refer to the " "documentation to see your options.") def is_pos_real(s): """ Returns True if s is a positive real. """ try: return (float(s) > 0) except ValueError: return False class Somoclu(object): """Class for training and visualizing a self-organizing map. Attributes: codebook The codebook of the self-organizing map. bmus The BMUs corresponding to the data points. :param n_columns: The number of columns in the map. :type n_columns: int. :param n_rows: The number of rows in the map. :type n_rows: int. :param initialcodebook: Optional parameter to start the training with a given codebook. :type initialcodebook: 2D numpy.array of float32. :param kerneltype: Optional parameter to specify which kernel to use: * 0: dense CPU kernel (default) * 1: dense GPU kernel (if compiled with it) :type kerneltype: int. :param maptype: Optional parameter to specify the map topology: * "planar": Planar map (default) * "toroid": Toroid map :type maptype: str. :param gridtype: Optional parameter to specify the grid form of the nodes: * "rectangular": rectangular neurons (default) * "hexagonal": hexagonal neurons :type gridtype: str. :param compactsupport: Optional parameter to cut off map updates beyond the training radius with the Gaussian neighborhood. Default: True. :type compactsupport: bool. :param neighborhood: Optional parameter to specify the neighborhood: * "gaussian": Gaussian neighborhood (default) * "bubble": bubble neighborhood function :type neighborhood: str. :param vect_distance: Optional parameter to specify the vector distance function: * "euclidean": Euclidean (default) * "norm-inf": infinite norm (max absolute distance among components) * "norm-p": p-th root of sum of absolute differences ^ p (only supported by kerneltype 0) :type vect_distance: str. :param std_coeff: Optional parameter to set the coefficient in the Gaussian neighborhood function exp(-||x-y||^2/(2*(coeff*radius)^2)) Default: 0.5 :type std_coeff: float. :param initialization: Optional parameter to specify the initalization: * "random": random weights in the codebook * "pca": codebook is initialized from the first subspace spanned by the first two eigenvectors of the correlation matrix :type initialization: str. :param verbose: Optional parameter to specify verbosity (0, 1, or 2). :type verbose: int. """ def __init__(self, n_columns, n_rows, initialcodebook=None, kerneltype=0, maptype="planar", gridtype="rectangular", compactsupport=True, neighborhood="gaussian", std_coeff=0.5, initialization=None, data=None, verbose=0, vect_distance="euclidean"): """Constructor for the class. """ self._n_columns, self._n_rows = n_columns, n_rows self._kernel_type = kerneltype self._map_type = maptype self._grid_type = gridtype self._compact_support = compactsupport self._neighborhood = neighborhood self._vect_distance = vect_distance self._std_coeff = std_coeff self._verbose = verbose self._check_parameters() self.activation_map = None if initialcodebook is not None and initialization is not None: raise Exception("An initial codebook is given but initilization" " is also requested") self.bmus = None self.umatrix = np.zeros(n_columns * n_rows, dtype=np.float32) self.codebook = initialcodebook if initialization is None or initialization == "random": self._initialization = "random" elif initialization == "pca": self._initialization = "pca" else: raise Exception("Unknown initialization method") self.n_vectors = 0 self.n_dim = 0 self.clusters = None self._data = None if data is not None: print("Warning: passing the data in the constructor is deprecated.") self.update_data(data) def load_bmus(self, filename): """Load the best matching units from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.bmus = np.loadtxt(filename, comments='%', usecols=(1, 2)) if self.n_vectors != 0 and len(self.bmus) != self.n_vectors: raise Exception("The number of best matching units does not match " "the number of data instances") else: self.n_vectors = len(self.bmus) tmp = self.bmus[:, 0].copy() self.bmus[:, 0] = self.bmus[:, 1].copy() self.bmus[:, 1] = tmp if max(self.bmus[:, 0]) > self._n_columns - 1 or \ max(self.bmus[:, 1]) > self._n_rows - 1: raise Exception("The dimensions of the best matching units do not " "match that of the map") def load_umatrix(self, filename): """Load the umatrix from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.umatrix = np.loadtxt(filename, comments='%') if self.umatrix.shape != (self._n_rows, self._n_columns): raise Exception("The dimensions of the U-matrix do not " "match that of the map") def load_codebook(self, filename): """Load the codebook from a file to the Somoclu object. :param filename: The name of the file. :type filename: str. """ self.codebook = np.loadtxt(filename, comments='%') if self.n_dim == 0: self.n_dim = self.codebook.shape[1] if self.codebook.shape != (self._n_rows * self._n_columns, self.n_dim): raise Exception("The dimensions of the codebook do not " "match that of the map") self.codebook.shape = (self._n_rows, self._n_columns, self.n_dim) def train(self, data=None, epochs=10, radius0=0, radiusN=1, radiuscooling="linear", scale0=0.1, scaleN=0.01, scalecooling="linear"): """Train the map on the current data in the Somoclu object. :param data: Optional parameter to provide training data. It is not necessary if the data was added via the method `update_data`. :type data: 2D numpy.array of float32. :param epochs: The number of epochs to train the map for. :type epochs: int. :param radius0: The initial radius on the map where the update happens around a best matching unit. Default value of 0 will trigger a value of min(n_columns, n_rows)/2. :type radius0: float. :param radiusN: The radius on the map where the update happens around a best matching unit in the final epoch. Default: 1. :type radiusN: float. :param radiuscooling: The cooling strategy between radius0 and radiusN: * "linear": Linear interpolation (default) * "exponential": Exponential decay :param scale0: The initial learning scale. Default value: 0.1. :type scale0: float. :param scaleN: The learning scale in the final epoch. Default: 0.01. :type scaleN: float. :param scalecooling: The cooling strategy between scale0 and scaleN: * "linear": Linear interpolation (default) * "exponential": Exponential decay :type scalecooling: str. """ _check_cooling_parameters(radiuscooling, scalecooling) if self._data is None and data is None: raise Exception("No data was provided!") elif data is not None: self.update_data(data) self._init_codebook() self.umatrix.shape = (self._n_rows * self._n_columns, ) self.bmus.shape = (self.n_vectors * 2, ) wrap_train(np.ravel(self._data), epochs, self._n_columns, self._n_rows, self.n_dim, self.n_vectors, radius0, radiusN, radiuscooling, scale0, scaleN, scalecooling, self._kernel_type, self._map_type, self._grid_type, self._compact_support, self._neighborhood == "gaussian", self._std_coeff, self._verbose, self.codebook, self.bmus, self.umatrix, self._vect_distance) self.umatrix.shape = (self._n_rows, self._n_columns) self.bmus.shape = (self.n_vectors, 2) self.codebook.shape = (self._n_rows, self._n_columns, self.n_dim) def update_data(self, data): """Change the data set in the Somoclu object. It is useful when the data is updated and the training should continue on the new data. :param data: The training data. :type data: 2D numpy.array of float32. """ oldn_dim = self.n_dim if data.dtype != np.float32: print("Warning: data was not float32. A 32-bit copy was made") self._data = np.float32(data) else: self._data = data self.n_vectors, self.n_dim = data.shape if self.n_dim != oldn_dim and oldn_dim != 0: raise Exception("The dimension of the new data does not match!") self.bmus = np.zeros(self.n_vectors * 2, dtype=np.intc) def view_component_planes(self, dimensions=None, figsize=None, colormap=cm.Spectral_r, colorbar=False, bestmatches=False, bestmatchcolors=None, labels=None, zoom=None, filename=None): """Observe the component planes in the codebook of the SOM. :param dimensions: Optional parameter to specify along which dimension or dimensions should the plotting happen. By default, each dimension is plotted in a sequence of plots. :type dimension: int or list of int. :param figsize: Optional parameter to specify the size of the figure. :type figsize: (int, int) :param colormap: Optional parameter to specify the color map to be used. :type colormap: matplotlib.colors.Colormap :param colorbar: Optional parameter to include a colormap as legend. :type colorbar: bool. :param bestmatches: Optional parameter to plot best matching units. :type bestmatches: bool. :param bestmatchcolors: Optional parameter to specify the color of each best matching unit. :type bestmatchcolors: list of int. :param labels: Optional parameter to specify the label of each point. :type labels: list of str. :param zoom: Optional parameter to zoom into a region on the map. The first two coordinates of the tuple are the row limits, the second tuple contains the column limits. :type zoom: ((int, int), (int, int)) :param filename: If specified, the plot will not be shown but saved to this file. :type filename: str. """ if self.codebook is None: raise Exception("The codebook is not available. Either train a map" " or load a codebook from a file") if dimensions is None: dimensions = range(self.n_dim) for i in dimensions: plt = self._view_matrix(self.codebook[:, :, i], figsize, colormap, colorbar, bestmatches, bestmatchcolors, labels, zoom, filename) return plt def view_umatrix(self, figsize=None, colormap=cm.Spectral_r, colorbar=False, bestmatches=False, bestmatchcolors=None, labels=None, zoom=None, filename=None): """Plot the U-matrix of the trained map. :param figsize: Optional parameter to specify the size of the figure. :type figsize: (int, int) :param colormap: Optional parameter to specify the color map to be used. :type colormap: matplotlib.colors.Colormap :param colorbar: Optional parameter to include a colormap as legend. :type colorbar: bool. :param bestmatches: Optional parameter to plot best matching units. :type bestmatches: bool. :param bestmatchcolors: Optional parameter to specify the color of each best matching unit. :type bestmatchcolors: list of int. :param labels: Optional parameter to specify the label of each point. :type labels: list of str. :param zoom: Optional parameter to zoom into a region on the map. The first two coordinates of the tuple are the row limits, the second tuple contains the column limits. :type zoom: ((int, int), (int, int)) :param filename: If specified, the plot will not be shown but saved to this file. :type filename: str. """ if self.umatrix is None: raise Exception("The U-matrix is not available. Either train a map" " or load a U-matrix from a file") return self._view_matrix(self.umatrix, figsize, colormap, colorbar, bestmatches, bestmatchcolors, labels, zoom, filename) def view_activation_map(self, data_vector=None, data_index=None, activation_map=None, figsize=None, colormap=cm.Spectral_r, colorbar=False, bestmatches=False, bestmatchcolors=None, labels=None, zoom=None, filename=None): """Plot the activation map of a given data instance or a new data vector :param data_vector: Optional parameter for a new vector :type data_vector: numpy.array :param data_index: Optional parameter for the index of the data instance :type data_index: int. :param activation_map: Optional parameter to pass the an activation map :type activation_map: numpy.array :param figsize: Optional parameter to specify the size of the figure. :type figsize: (int, int) :param colormap: Optional parameter to specify the color map to be used. :type colormap: matplotlib.colors.Colormap :param colorbar: Optional parameter to include a colormap as legend. :type colorbar: bool. :param bestmatches: Optional parameter to plot best matching units. :type bestmatches: bool. :param bestmatchcolors: Optional parameter to specify the color of each best matching unit. :type bestmatchcolors: list of int. :param labels: Optional parameter to specify the label of each point. :type labels: list of str. :param zoom: Optional parameter to zoom into a region on the map. The first two coordinates of the tuple are the row limits, the second tuple contains the column limits. :type zoom: ((int, int), (int, int)) :param filename: If specified, the plot will not be shown but saved to this file. :type filename: str. """ if data_vector is None and data_index is None: raise Exception("Either specify a vector to see its activation " "or give an index of the training data instances") if data_vector is not None and data_index is not None: raise Exception("You cannot specify both a data vector and the " "index of a training data instance") if data_vector is not None and activation_map is not None: raise Exception("You cannot pass a previously computated" "activation map with a data vector") if data_vector is not None: try: d1, _ = data_vector.shape w = data_vector.copy() except ValueError: d1, _ = data_vector.shape w = data_vector.reshape(1, d1) if w.shape[1] == 1: w = w.T matrix = cdist(self.codebook.reshape((self.codebook.shape[0] * self.codebook.shape[1], self.codebook.shape[2])), w, 'euclidean').T matrix.shape = (self.codebook.shape[0], self.codebook.shape[1]) else: if activation_map is None and self.activation_map is None: self.get_surface_state() if activation_map is None: activation_map = self.activation_map matrix = activation_map[data_index].reshape((self.codebook.shape[0], self.codebook.shape[1])) return self._view_matrix(matrix, figsize, colormap, colorbar, bestmatches, bestmatchcolors, labels, zoom, filename) def _view_matrix(self, matrix, figsize, colormap, colorbar, bestmatches, bestmatchcolors, labels, zoom, filename): """Internal function to plot a map with best matching units and labels. """ if zoom is None: zoom = ((0, self._n_rows), (0, self._n_columns)) if figsize is None: figsize = (8, 8 / float(zoom[1][1] / zoom[0][1])) fig = plt.figure(figsize=figsize) if self._grid_type == "hexagonal": offsets = _hexplot(matrix[zoom[0][0]:zoom[0][1], zoom[1][0]:zoom[1][1]], fig, colormap) filtered_bmus = self._filter_array(self.bmus, zoom) filtered_bmus[:, 0] = filtered_bmus[:, 0] - zoom[1][0] filtered_bmus[:, 1] = filtered_bmus[:, 1] - zoom[0][0] bmu_coords = np.zeros(filtered_bmus.shape) for i, (row, col) in enumerate(filtered_bmus): bmu_coords[i] = offsets[col * zoom[1][1] + row] else: plt.imshow(matrix[zoom[0][0]:zoom[0][1], zoom[1][0]:zoom[1][1]], aspect='auto', interpolation='bicubic') plt.set_cmap(colormap) bmu_coords = self._filter_array(self.bmus, zoom) bmu_coords[:, 0] = bmu_coords[:, 0] - zoom[1][0] bmu_coords[:, 1] = bmu_coords[:, 1] - zoom[0][0] if colorbar: cmap = cm.ScalarMappable(cmap=colormap) cmap.set_array(matrix) plt.colorbar(cmap, orientation='horizontal', shrink=0.5) if bestmatches: if bestmatchcolors is None: if self.clusters is None: colors = "white" else: colors = [] for bm in self.bmus: colors.append(self.clusters[bm[1], bm[0]]) colors = self._filter_array(colors, zoom) else: colors = self._filter_array(bestmatchcolors, zoom) plt.scatter(bmu_coords[:, 0], bmu_coords[:, 1], c=colors) if labels is not None: for label, col, row in zip(self._filter_array(labels, zoom), bmu_coords[:, 0], bmu_coords[:, 1]): if label is not None: plt.annotate(label, xy=(col, row), xytext=(10, -5), textcoords='offset points', ha='left', va='bottom', bbox=dict(boxstyle='round,pad=0.3', fc='white', alpha=0.8)) plt.axis('off') if filename is not None: plt.savefig(filename) else: plt.show() return plt def _filter_array(self, a, zoom): filtered_array = [] for index, bmu in enumerate(self.bmus): if bmu[0] >= zoom[1][0] and bmu[0] < zoom[1][1] and \ bmu[1] >= zoom[0][0] and bmu[1] < zoom[0][1]: filtered_array.append(a[index]) return np.array(filtered_array) def _check_parameters(self): """Internal function to verify the basic parameters of the SOM. """ if self._map_type != "planar" and self._map_type != "toroid": raise Exception("Invalid parameter for _map_type: " + self._map_type) if self._grid_type != "rectangular" and self._grid_type != "hexagonal": raise Exception("Invalid parameter for _grid_type: " + self._grid_type) if self._neighborhood != "gaussian" and self._neighborhood != "bubble": raise Exception("Invalid parameter for neighborhood: " + self._neighborhood) if not (self._vect_distance == "euclidean" or self._vect_distance == "norm-inf" or (self._vect_distance[:5] == "norm-" and is_pos_real(self._vect_distance[5:]))): raise Exception("Invalid parameter for vect_distance: " + self._vect_distance) if (self._vect_distance[:5] == "norm-" and self._kernel_type != 0): raise Exception("Invalid parameter for vect_distance: " + self._vect_distance + " when using kernel_type: " + self._kernel_type) if self._kernel_type != 0 and self._kernel_type != 1: raise Exception("Invalid parameter for kernelTye: " + self._kernel_type) if self._verbose < 0 and self._verbose > 2: raise Exception("Invalid parameter for verbose: " + self._kernel_type) def _pca_init(self): try: from sklearn.decomposition import PCA pca = PCA(n_components=2, svd_solver="randomized") except: from sklearn.decomposition import RandomizedPCA pca = RandomizedPCA(n_components=2) coord = np.zeros((self._n_columns * self._n_rows, 2)) for i in range(self._n_columns * self._n_rows): coord[i, 0] = int(i / self._n_columns) coord[i, 1] = int(i % self._n_columns) coord = coord / [self._n_rows - 1, self._n_columns - 1] coord = (coord - .5) * 2 me = np.mean(self._data, 0) self.codebook = np.tile(me, (self._n_columns * self._n_rows, 1)) pca.fit(self._data - me) eigvec = pca.components_ eigval = pca.explained_variance_ norms = np.linalg.norm(eigvec, axis=1) eigvec = ((eigvec.T / norms) * eigval).T for j in range(self._n_columns * self._n_rows): for i in range(eigvec.shape[0]): self.codebook[j, :] = self.codebook[j, :] + \ coord[j, i] * eigvec[i, :] def _init_codebook(self): """Internal function to set the codebook or to indicate it to the C++ code that it should be randomly initialized. """ codebook_size = self._n_columns * self._n_rows * self.n_dim if self.codebook is None: if self._initialization == "random": self.codebook = np.zeros(codebook_size, dtype=np.float32) self.codebook[0:2] = [1000, 2000] else: self._pca_init() elif self.codebook.size != codebook_size: raise Exception("Invalid size for initial codebook") else: if self.codebook.dtype != np.float32: print("Warning: initialcodebook was not float32. A 32-bit " "copy was made") self.codebook = np.float32(self.codebook) self.codebook.shape = (codebook_size, ) def cluster(self, algorithm=None): """Cluster the codebook. The clusters of the data instances can be assigned based on the BMUs. The method populates the class variable Somoclu.clusters. If viewing methods are called after clustering, but without colors for best matching units, colors will be automatically assigned based on cluster membership. :param algorithm: Optional parameter to specify a scikit-learn clustering algorithm. The default is K-means with eight clusters. :type filename: sklearn.base.ClusterMixin. """ import sklearn.base if algorithm is None: import sklearn.cluster algorithm = sklearn.cluster.KMeans() elif not isinstance(algorithm, sklearn.base.ClusterMixin): raise Exception("Cannot use algorithm of type " + type(algorithm)) original_shape = self.codebook.shape self.codebook.shape = (self._n_columns * self._n_rows, self.n_dim) linear_clusters = algorithm.fit_predict(self.codebook) self.codebook.shape = original_shape self.clusters = np.zeros((self._n_rows, self._n_columns), dtype=int) for i, c in enumerate(linear_clusters): self.clusters[i // self._n_columns, i % self._n_columns] = c def get_surface_state(self, data=None): """Return the Euclidean distance between codebook and data. :param data: Optional parameter to specify data, otherwise the data used previously to train the SOM is used. :type data: 2D numpy.array of float32. :returns: The the dot product of the codebook and the data. :rtype: 2D numpy.array """ if data is None: d = self._data else: d = data codebookReshaped = self.codebook.reshape( self.codebook.shape[0] * self.codebook.shape[1], self.codebook.shape[2]) parts = np.array_split(d, 200, axis=0) am = np.empty((0, (self._n_columns * self._n_rows)), dtype="float64") for part in parts: am = np.concatenate( (am, (cdist((part), codebookReshaped, 'euclidean'))), axis=0) if data is None: self.activation_map = am return am def get_bmus(self, activation_map, order='F'): """Returns Best Matching Units indexes of the activation map. :param activation_map: Activation map computed with self.get_surface_state() :type activation_map: 2D numpy.array :param order: order of returned numpy array, 'F' for column-major (Fortran-style) or 'C' for row-major (C-style). :returns: The bmus indexes corresponding to this activation map (same as self.bmus for the training samples). :rtype: 2D numpy.array """ Y, X = np.unravel_index(activation_map.argmin(axis=1), (self._n_rows, self._n_columns)) if order == 'F': return np.vstack((X, Y)).T elif order == 'C': return np.vstack((Y, X)).T def view_similarity_matrix(self, data=None, labels=None, figsize=None, filename=None): """Plot the similarity map according to the activation map :param data: Optional parameter for data points to calculate the similarity with :type data: numpy.array :param figsize: Optional parameter to specify the size of the figure. :type figsize: (int, int) :param labels: Optional parameter to specify the label of each point. :type labels: list of str. :param filename: If specified, the plot will not be shown but saved to this file. :type filename: str. """ if not have_heatmap: raise Exception("Import dependencies missing for viewing " "similarity matrix. You must have seaborn and " "scikit-learn") if data is None and self.activation_map is None: self.get_surface_state() if data is None: X = self.activation_map else: X = data # Calculate the pairwise correlations as a metric for similarity corrmat = 1 - pairwise_distances(X, metric="correlation") # Set up the matplotlib figure if figsize is None: figsize = (12, 9) f, ax = plt.subplots(figsize=figsize) # Y axis has inverted labels (seaborn default, no idea why) if labels is None: xticklabels = [] yticklabels = [] else: xticklabels = labels yticklabels = labels # Draw the heatmap using seaborn sns.heatmap(corrmat, vmax=1, vmin=-1, square=True, xticklabels=xticklabels, yticklabels=yticklabels, cmap="RdBu_r", center=0) f.tight_layout() # This sets the ticks to a readable angle plt.yticks(rotation=0) plt.xticks(rotation=90) # This sets the labels for the two axes ax.set_yticklabels(yticklabels, ha='right', va='center', size=8) ax.set_xticklabels(xticklabels, ha='center', va='top', size=8) # Save and close the figure if filename is not None: plt.savefig(filename, bbox_inches='tight') else: plt.show() return plt def _check_cooling_parameters(radiuscooling, scalecooling): """Helper function to verify the cooling parameters of the training. """ if radiuscooling != "linear" and radiuscooling != "exponential": raise Exception("Invalid parameter for radiuscooling: " + radiuscooling) if scalecooling != "linear" and scalecooling != "exponential": raise Exception("Invalid parameter for scalecooling: " + scalecooling) def _hexplot(matrix, fig, colormap): """Internal function to plot a hexagonal map. """ umatrix_min = matrix.min() umatrix_max = matrix.max() n_rows, n_columns = matrix.shape cmap = plt.get_cmap(colormap) offsets = np.zeros((n_columns * n_rows, 2)) facecolors = [] for row in range(n_rows): for col in range(n_columns): if row % 2 == 0: offsets[row * n_columns + col] = [col + 0.5, 2 * n_rows - 2 * row] facecolors.append(cmap((matrix[row, col] - umatrix_min) / (umatrix_max) * 255)) else: offsets[row * n_columns + col] = [col, 2 * n_rows - 2 * row] facecolors.append(cmap((matrix[row, col] - umatrix_min) / (umatrix_max) * 255)) polygon = np.zeros((6, 2), float) polygon[:, 0] = 1.1 * np.array([0.5, 0.5, 0.0, -0.5, -0.5, 0.0]) polygon[:, 1] = 1.1 * np.array([-np.sqrt(3) / 6, np.sqrt(3) / 6, np.sqrt(3) / 2 + np.sqrt(3) / 6, np.sqrt(3) / 6, -np.sqrt(3) / 6, -np.sqrt(3) / 2 - np.sqrt(3) / 6]) polygons = np.expand_dims(polygon, 0) +
np.expand_dims(offsets, 1)
numpy.expand_dims
# -------------- import numpy as np new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] data = np.genfromtxt(path, delimiter=",", skip_header=1) print(data.shape) census=np.concatenate((data, new_record),axis = 0) print(census.shape) # -------------- #Code starts here import numpy as np age=census[:,0] print(age) max_age = np.max(age) print(max_age) min_age = np.min(age) print(min_age) age_mean =
np.mean(age)
numpy.mean
import numpy as np import sys import TrainNetwork.TN_BaseFunctions as bf from sklearn.neighbors import NearestNeighbors import skimage.measure as measure import cv2 if sys.platform == 'darwin': from mcdc import mcdc else: from DeepConcolic.src.mcdc import mcdc class DetectionRefinement: def __init__(self, input_image, compensatedImages, BackgroundSubtractionDetections, BackgroundSubtractionProperties, model_binary, aveImg_binary, model_regression, aveImg_regression, attack): self.num_of_template = len(compensatedImages) self.img_t = input_image self.img_tminus1 = compensatedImages[self.num_of_template-1] self.img_tminus2 = compensatedImages[self.num_of_template-2] self.img_tminus3 = compensatedImages[self.num_of_template-3] self.original_detections = BackgroundSubtractionDetections self.detections = BackgroundSubtractionDetections self.bgProperties = BackgroundSubtractionProperties self.model_binary = model_binary self.aveImg_binary = aveImg_binary self.model_regression = model_regression self.aveImg_regression = aveImg_regression self.refinedDetectionsID = [] self.regressedDetectionID = [] self.refinementID=None self.attack = attack def doMovingVehicleRefinement(self): img_shape = self.img_t.shape width = img_shape[1] height = img_shape[0] num_points = len(self.original_detections) X = np.ndarray((num_points, 4, 21, 21), dtype=np.float32) mask1 = np.zeros(num_points, dtype=np.bool) for i, thisdetection in enumerate(self.original_detections): minx = np.int32(
np.round(thisdetection[0] - 10)
numpy.round
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths from model.config import cfg from model.test import im_detect from model.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import os, cv2 import argparse from nets.vgg16 import vgg16 from nets.resnet_v1 import resnetv1 import random import torch import xml.etree.ElementTree as ET CLASSES = ('__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') def softmax(ary): ary = ary.flatten() expa = np.exp(ary) dom = np.sum(expa) return expa/dom def choose_model(dir): ''' get the latest model in in dir''' lists = os.listdir(dir) lists.sort(key= lambda fn:os.path.getmtime(os.path.join(dir,fn))) return lists[-1] def load_model(net_file ,path): ''' return caffe.Net''' import caffe net = caffe.Net(net_file, path, caffe.TEST) return net def judge_y(score): '''return : y:np.array len(score) ''' y=[] for s in score: if s==1 or
np.log(s)
numpy.log
''' Copyright 2016 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License ''' import numpy as np import matplotlib.pyplot as plt import scipy.linalg #from scipy.optimize import minimize ## \max_u \mathrm{Cov}(u'X,Y1)^2 - \lambda\mathrm{Cov}(u'X,Y2)^2, s.t. u'u =1 def run(X,y1,y2,dmax=None): D,N = X.shape y1_unique,J1 = np.unique(y1, return_inverse=True) ny1 = y1_unique.size y2_unique,J2 = np.unique(y2, return_inverse=True) ny2 = y2_unique.size Y1 = np.zeros((ny1,N)) Y2 = np.zeros((ny2,N)) Y1[J1,range(N)] = 1. Y2[J2,range(N)] = 1. XY2 = np.dot(X,Y2.T) # D x ny2 XY2Y2X = np.dot(XY2,XY2.T) # D x D XX = np.dot(X,X.T) # D x D P = np.zeros((D,0)) Sj =
np.dot(X,Y1.T)
numpy.dot
""" Credits: Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) Copyright (c) 2017-2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> (Sinergise) This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import unittest import numpy as np from datetime import date, timedelta from eolearn.core import EOPatch, FeatureType from eolearn.features import AddMaxMinNDVISlopeIndicesTask, AddMaxMinTemporalIndicesTask,\ AddSpatioTemporalFeaturesTask def perdelta(start, end, delta): curr = start while curr < end: yield curr curr += delta class TestTemporalFeaturesTasks(unittest.TestCase): def test_temporal_indices(self): """ Test case for computation of argmax/argmin of NDVI and another band Cases with and without data masking are tested """ # EOPatch eopatch = EOPatch() t, h, w, c = 5, 3, 3, 2 # NDVI ndvi_shape = (t, h, w, 1) # VAlid data mask valid_data = np.ones(ndvi_shape, bool) valid_data[0] = 0 valid_data[-1] = 0 # Fill in eopatch eopatch.add_feature(FeatureType.DATA, 'NDVI', np.arange(
np.prod(ndvi_shape)
numpy.prod
# Copyright (c) 2008,2015,2017,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Test the `kinematics` module.""" from collections import namedtuple import numpy as np import pytest import xarray as xr from metpy.calc import (absolute_vorticity, advection, ageostrophic_wind, coriolis_parameter, divergence, frontogenesis, geostrophic_wind, inertial_advective_wind, lat_lon_grid_deltas, montgomery_streamfunction, potential_temperature, potential_vorticity_baroclinic, potential_vorticity_barotropic, q_vector, shearing_deformation, static_stability, storm_relative_helicity, stretching_deformation, total_deformation, vorticity, wind_components) from metpy.constants import g, omega, Re from metpy.testing import (assert_almost_equal, assert_array_almost_equal, assert_array_equal, get_test_data) from metpy.units import concatenate, units def test_default_order(): """Test using the default array ordering.""" u = np.ones((3, 3)) * units('m/s') v = vorticity(u, u, 1 * units.meter, 1 * units.meter) true_v = np.zeros_like(u) / units.sec assert_array_equal(v, true_v) def test_zero_vorticity(): """Test vorticity calculation when zeros should be returned.""" a = np.arange(3) u = np.c_[a, a, a] * units('m/s') v = vorticity(u, u.T, 1 * units.meter, 1 * units.meter, dim_order='xy') true_v = np.zeros_like(u) / units.sec assert_array_equal(v, true_v) def test_vorticity(): """Test vorticity for simple case.""" a = np.arange(3) u = np.c_[a, a, a] * units('m/s') v = vorticity(u, u, 1 * units.meter, 1 * units.meter, dim_order='xy') true_v = np.ones_like(u) / units.sec assert_array_equal(v, true_v) def test_vorticity_asym(): """Test vorticity calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') vort = vorticity(u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_vort = np.array([[-2.5, 3.5, 13.], [8.5, -1.5, -11.], [-5.5, -1.5, 0.]]) / units.sec assert_array_equal(vort, true_vort) # Now try for xy ordered vort = vorticity(u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_array_equal(vort, true_vort.T) def test_zero_divergence(): """Test divergence calculation when zeros should be returned.""" a = np.arange(3) u = np.c_[a, a, a] * units('m/s') c = divergence(u, u.T, 1 * units.meter, 1 * units.meter, dim_order='xy') true_c = 2. * np.ones_like(u) / units.sec assert_array_equal(c, true_c) def test_divergence(): """Test divergence for simple case.""" a = np.arange(3) u = np.c_[a, a, a] * units('m/s') c = divergence(u, u, 1 * units.meter, 1 * units.meter, dim_order='xy') true_c = np.ones_like(u) / units.sec assert_array_equal(c, true_c) def test_horizontal_divergence(): """Test taking the horizontal divergence of a 3D field.""" u = np.array([[[1., 1., 1.], [1., 0., 1.], [1., 1., 1.]], [[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]]]) * units('m/s') c = divergence(u, u, 1 * units.meter, 1 * units.meter) true_c = np.array([[[0., -2., 0.], [-2., 0., 2.], [0., 2., 0.]], [[0., 2., 0.], [2., 0., -2.], [0., -2., 0.]]]) * units('s^-1') assert_array_equal(c, true_c) def test_divergence_asym(): """Test divergence calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') c = divergence(u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_c = np.array([[-2, 5.5, -2.5], [2., 0.5, -1.5], [3., -1.5, 8.5]]) / units.sec assert_array_equal(c, true_c) # Now try for xy ordered c = divergence(u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_array_equal(c, true_c.T) def test_shearing_deformation_asym(): """Test shearing deformation calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') sh = shearing_deformation(u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_sh = np.array([[-7.5, -1.5, 1.], [9.5, -0.5, -11.], [1.5, 5.5, 12.]]) / units.sec assert_array_equal(sh, true_sh) # Now try for yx ordered sh = shearing_deformation(u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_array_equal(sh, true_sh.T) def test_stretching_deformation_asym(): """Test stretching deformation calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') st = stretching_deformation(u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_st = np.array([[4., 0.5, 12.5], [4., 1.5, -0.5], [1., 5.5, -4.5]]) / units.sec assert_array_equal(st, true_st) # Now try for yx ordered st = stretching_deformation(u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_array_equal(st, true_st.T) def test_total_deformation_asym(): """Test total deformation calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') tdef = total_deformation(u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_tdef = np.array([[8.5, 1.58113883, 12.5399362], [10.30776406, 1.58113883, 11.0113578], [1.80277562, 7.7781746, 12.8160056]]) / units.sec assert_almost_equal(tdef, true_tdef) # Now try for xy ordered tdef = total_deformation(u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_almost_equal(tdef, true_tdef.T) def test_frontogenesis_asym(): """Test frontogensis calculation with a complicated field.""" u = np.array([[2, 4, 8], [0, 2, 2], [4, 6, 8]]) * units('m/s') v = np.array([[6, 4, 8], [2, 6, 0], [2, 2, 6]]) * units('m/s') theta = np.array([[303, 295, 305], [308, 310, 312], [299, 293, 289]]) * units('K') fronto = frontogenesis(theta, u, v, 1 * units.meters, 2 * units.meters, dim_order='yx') true_fronto = np.array([[-52.4746386, -37.3658646, -50.3996939], [3.5777088, -2.1221867, -16.9941166], [-23.1417334, 26.0499143, -158.4839684]] ) * units.K / units.meter / units.sec assert_almost_equal(fronto, true_fronto) # Now try for xy ordered fronto = frontogenesis(theta.T, u.T, v.T, 1 * units.meters, 2 * units.meters, dim_order='xy') assert_almost_equal(fronto, true_fronto.T) def test_advection_uniform(): """Test advection calculation for a uniform 1D field.""" u = np.ones((3,)) * units('m/s') s = np.ones_like(u) * units.kelvin a = advection(s, u, (1 * units.meter,), dim_order='xy') truth = np.zeros_like(u) * units('K/sec') assert_array_equal(a, truth) def test_advection_1d_uniform_wind(): """Test advection for simple 1D case with uniform wind.""" u = np.ones((3,)) * units('m/s') s = np.array([1, 2, 3]) * units('kg') a = advection(s, u, (1 * units.meter,), dim_order='xy') truth = -np.ones_like(u) * units('kg/sec') assert_array_equal(a, truth) def test_advection_1d(): """Test advection calculation with varying wind and field.""" u = np.array([1, 2, 3]) * units('m/s') s = np.array([1, 2, 3]) * units('Pa') a = advection(s, u, (1 * units.meter,), dim_order='xy') truth = np.array([-1, -2, -3]) * units('Pa/sec') assert_array_equal(a, truth) def test_advection_2d_uniform(): """Test advection for uniform 2D field.""" u = np.ones((3, 3)) * units('m/s') s = np.ones_like(u) * units.kelvin a = advection(s, [u, u], (1 * units.meter, 1 * units.meter), dim_order='xy') truth = np.zeros_like(u) * units('K/sec') assert_array_equal(a, truth) def test_advection_2d(): """Test advection in varying 2D field.""" u = np.ones((3, 3)) * units('m/s') v = 2 * np.ones((3, 3)) * units('m/s') s = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) * units.kelvin a = advection(s, [u, v], (1 * units.meter, 1 * units.meter), dim_order='xy') truth = np.array([[-6, -4, 2], [-8, 0, 8], [-2, 4, 6]]) * units('K/sec') assert_array_equal(a, truth) def test_advection_2d_asym(): """Test advection in asymmetric varying 2D field.""" u = np.arange(9).reshape(3, 3) * units('m/s') v = 2 * u s = np.array([[1, 2, 4], [4, 8, 4], [8, 6, 4]]) * units.kelvin a = advection(s, [u, v], (2 * units.meter, 1 * units.meter), dim_order='yx') truth = np.array([[0, -20.75, -2.5], [-33., -16., 20.], [-48, 91., 8]]) * units('K/sec') assert_array_equal(a, truth) # Now try xy ordered a = advection(s.T, [u.T, v.T], (2 * units.meter, 1 * units.meter), dim_order='xy') assert_array_equal(a, truth.T) def test_geostrophic_wind(): """Test geostrophic wind calculation with basic conditions.""" z = np.array([[48, 49, 48], [49, 50, 49], [48, 49, 48]]) * 100. * units.meter # Using g as the value for f allows it to cancel out ug, vg = geostrophic_wind(z, g.magnitude / units.sec, 100. * units.meter, 100. * units.meter, dim_order='xy') true_u = np.array([[-2, 0, 2]] * 3) * units('m/s') true_v = -true_u.T assert_array_equal(ug, true_u) assert_array_equal(vg, true_v) def test_geostrophic_wind_asym(): """Test geostrophic wind calculation with a complicated field.""" z = np.array([[1, 2, 4], [4, 8, 4], [8, 6, 4]]) * 200. * units.meter # Using g as the value for f allows it to cancel out ug, vg = geostrophic_wind(z, g.magnitude / units.sec, 200. * units.meter, 100. * units.meter, dim_order='yx') true_u = -np.array([[5, 20, 0], [7, 4, 0], [9, -12, 0]]) * units('m/s') true_v = np.array([[0.5, 1.5, 2.5], [8, 0, -8], [-2, -2, -2]]) * units('m/s') assert_array_equal(ug, true_u) assert_array_equal(vg, true_v) # Now try for xy ordered ug, vg = geostrophic_wind(z.T, g.magnitude / units.sec, 200. * units.meter, 100. * units.meter, dim_order='xy') assert_array_equal(ug, true_u.T) assert_array_equal(vg, true_v.T) def test_geostrophic_geopotential(): """Test geostrophic wind calculation with geopotential.""" z = np.array([[48, 49, 48], [49, 50, 49], [48, 49, 48]]) * 100. * units('m^2/s^2') ug, vg = geostrophic_wind(z, 1 / units.sec, 100. * units.meter, 100. * units.meter, dim_order='xy') true_u = np.array([[-2, 0, 2]] * 3) * units('m/s') true_v = -true_u.T assert_array_equal(ug, true_u) assert_array_equal(vg, true_v) def test_geostrophic_3d(): """Test geostrophic wind calculation with 3D array.""" z = np.array([[48, 49, 48], [49, 50, 49], [48, 49, 48]]) * 100. # Using g as the value for f allows it to cancel out z3d = np.dstack((z, z)) * units.meter ug, vg = geostrophic_wind(z3d, g.magnitude / units.sec, 100. * units.meter, 100. * units.meter, dim_order='xy') true_u = np.array([[-2, 0, 2]] * 3) * units('m/s') true_v = -true_u.T true_u = concatenate((true_u[..., None], true_u[..., None]), axis=2) true_v = concatenate((true_v[..., None], true_v[..., None]), axis=2) assert_array_equal(ug, true_u) assert_array_equal(vg, true_v) def test_geostrophic_gempak(): """Test of geostrophic wind calculation against gempak values.""" z = np.array([[5586387.00, 5584467.50, 5583147.50], [5594407.00, 5592487.50, 5591307.50], [5604707.50, 5603247.50, 5602527.50]]).T \ * (9.80616 * units('m/s^2')) * 1e-3 dx = np.deg2rad(0.25) * Re * np.cos(np.deg2rad(44)) # Inverting dy since latitudes in array increase as you go up dy = -np.deg2rad(0.25) * Re f = (2 * omega * np.sin(np.deg2rad(44))).to('1/s') ug, vg = geostrophic_wind(z * units.m, f, dx, dy, dim_order='xy') true_u = np.array([[21.97512, 21.97512, 22.08005], [31.89402, 32.69477, 33.73863], [38.43922, 40.18805, 42.14609]]) true_v = np.array([[-10.93621, -7.83859, -4.54839], [-10.74533, -7.50152, -3.24262], [-8.66612, -5.27816, -1.45282]]) assert_almost_equal(ug[1, 1], true_u[1, 1] * units('m/s'), 2) assert_almost_equal(vg[1, 1], true_v[1, 1] * units('m/s'), 2) def test_no_ageostrophic_geopotential(): """Test ageostrophic wind calculation with geopotential and no ageostrophic wind.""" z = np.array([[48, 49, 48], [49, 50, 49], [48, 49, 48]]) * 100. * units('m^2/s^2') u = np.array([[-2, 0, 2]] * 3) * units('m/s') v = -u.T uag, vag = ageostrophic_wind(z, 1 / units.sec, 100. * units.meter, 100. * units.meter, u, v, dim_order='xy') true =
np.array([[0, 0, 0]] * 3)
numpy.array
import numpy as np class PriorFactor(object): def __init__(self, var, A, b, sigma): """ Initializes a prior Gaussian factor on a single variable as follows exp^(|| A * x - b ||^2) :param var: Variable corresponding to x :param A: Linear transformation of Variable x :param b: Prior :param sigma: Noise """ assert (A.shape[0] == b.size), "Measurement not in transformation codomain" assert (A.shape[1] == var.dim), "Variable not in transformation domain" assert (sigma.size == b.size), "Measurement and sigma must be the same dimension" self.var = var self.A = A self.b = b self.sigma = sigma class LinearFactor(object): def __init__(self, head, tail, A1, A2, b, sigma): """ Initializes a linear Gaussain factor between two variables, modeled as follows exp^(|| A1 * x1 - A2 * x2 - b ||^2) :param head: Head Variable corresponding to x1 :param tail: Tail Variable corresponding to x2 :param A1: Linear transformation of Variable x1 :param A2: Linear transformation of Variable x2 :param b: Measurement vector :param sigma: Measurement noise """ assert (A1.shape[0] == b.size), "Measurement not in head transformation codomain" assert (A2.shape[0] == b.size), "Measurement not in tail transformation codomain" assert (A1.shape[1] == head.dim), "Head Variable not in transformation domain" assert (A2.shape[1] == tail.dim), "Tail Variable not in transformation domain" assert (sigma.size == b.size), "Measurement and sigma must be the same dimension" self.head = head self.tail = tail self.A1 = A1 self.A2 = A2 self.b = b self.sigma = sigma class OdometryFactor(LinearFactor): def __init__(self, start, end, R, t, sigma): """ Odometry factors are linear Gaussian factors between pairs of position variables modeled as follows exp^(|| p2 - p1 - R*t ||^2) Note that the rotation R transforms t from the robot frame to a shared frame of reference. This can be supplied using the Compass module. :param start: Starting PointVariable :param end: Ending PointVariable :param R: Coordinate frame to express the displacement in :param t: Displacement/translation vector :param sigma: Odometry_noise """ t_ = np.dot(R, t) if np.isscalar(t_): t_ =
np.array([t_])
numpy.array
from abc import ABC, abstractmethod import numpy as np import scipy.signal class smoother(ABC): @abstractmethod def smooth(self, y_true): """ Smooths a 1-D array of values. Parameters: ----------- y_truth : array Actual values. Returns: -------- y_smoothed : array Smoothed values. """ pass def smooth_df(self, df, col, inplace=False, **kwargs): """ Similar to `smooth` method but accepts a DataFrame with a DatetimeIndex and handles NaNs. Parameters ---------- df : DataFrame A DataFrame with a DatetimeIndex. col : str The column containing the vallues to be smoothed. inplace : bool If True updates `df` by storing results in column `$(col)_smoothed`. Returns ------- A DataFrame with a `{$col}_smoothed` column if inplace=False, None otherwise. """ # don't modify input dataframe unless specified if inplace: df.sort_index(ascending=True, inplace=True) else : df = df.sort_index(ascending=True) # find when data is available idx = df.index[~df[col].isnull()] # perform smoothing df.loc[idx, col + '_smoothed'] = self.smooth(df.loc[idx, col].values, **kwargs) if inplace: return None else: return df class geometric(smoother): """ A smoothing function that computes the geometric average of the current day with neighboring days, possibly with unequal, but symmetrical weights. Parameters ---------- weights : array > 0 The length of the array is the number of days in the future and past that will be used in smoothing. The weights are normalised so they sum to 1. If unspecified defaults to [.5, .3, .2]. """ def __init__(self, weights=None): # set default values if weights is None: weights = [.5, .3, .2] # check validity weights = np.asarray(weights) if weights.ndim != 1 or
np.any(weights < 0)
numpy.any
#!/usr/bin/env python """ .. module:: rrlmod :platform: Unix :synopsis: RRL model tools. .. moduleauthor:: <NAME> <<EMAIL>> """ #__docformat__ = 'reStructuredText' from __future__ import division import os import glob import re import pickle import numpy as np from scipy.constants import physical_constants as pc import astropy.units as u import astropy.constants as ac from astropy.constants import h, k_B, c, m_e, Ryd, e from astropy.modeling.blackbody import blackbody_nu from crrlpy import frec_calc as fc from crrlpy.crrls import natural_sort, f2n, n2f, load_ref from crrlpy.utils import best_match_indx LOCALDIR = os.path.dirname(os.path.realpath(__file__)) def beta(n, bn, te, line='RRL_CIalpha'): """ Computes the correction factor for stimulated emission. :param n: principal quantum number. :param bn: level population departure coefficient. :param te: electron temperature. """ qns, freq = load_ref(line) # qns lists the final quantum numbers, nu->nl=qns. nmin_idx = np.argmin(abs(qns - n.min())) nmax_idx = np.argmin(abs(qns - n.max())) freq = freq[nmin_idx:nmax_idx]*1e6 # Hz h_ = pc['Planck constant'][0]*1e7 kboltzmann_ = pc['Boltzmann constant'][0]*1e7 hnukt = h_*freq/kboltzmann_/te beta = (1. - bn[1:]/bn[:-1]*np.exp(-hnukt))/(1. - np.exp(-hnukt)) return beta def bnbeta_approx(n, Te, ne, Tr): """ Approximates :math:`b_{n}\\beta_{n^{\\prime}n}` for a particular set of conditions. Uses Equation (B1) of Salas et al. (2016). :param n: Principal quantum number :type n: int :param Te: Electron temperature in K. :type Te: float :param ne: Electron density per cubic centimeters. :type ne: float :param Tr: Temperature of the radiation field in K at 100 MHz. :type Tr: float :returns: The value of :math:`b_{n}\\beta_{n^{\\prime}n}` given an approximate expression. :rtype: float """ bnbeta0 = load_betabn('5d1', 0.05, other='case_diffuse_2d3') bnbeta0 = bnbeta0[np.where(bnbeta0[:,0] == n), -1] bnbeta = bnbeta0*(Te/50.)*np.power(ne/0.05, 0.5)*np.power(Tr/2000., -0.1) return bnbeta def bnbeta_approx_full(Te, ne, Tr, coefs): """ Approximates :math:`b_{n}\\beta_{n^{\\prime}n}` given a set of coefficients. Uses Equations (5) and (B1)-(B5) of Salas et al. (2016). """ a0 = coefs[0] + coefs[1]*Tr + coefs[2]*np.power(Tr, 2.) a1 = coefs[3] + coefs[4]*Tr b0 = coefs[5] + coefs[6]*Tr + coefs[7]*np.power(Tr, 2.) b1 = coefs[8] + coefs[9]*Tr + coefs[10]*np.power(Tr, 2.) c0 = coefs[11] + coefs[12]*Tr + coefs[13]*np.power(Tr, 2.) c1 = coefs[14] + coefs[15]*Tr + coefs[16]*np.power(Tr, 2.) bnbeta = (a0 + a1*Te)/np.power((b0 + b1*Te)/ne + 1., c0 + c1*Te) return bnbeta def broken_plaw(nu, nu0, T0, alpha1, alpha2): """ Defines a broken power law. .. math:: T(\\nu) = T_{0}\\left(\\dfrac{\\nu}{\\nu_{0}}\\right)^{\\alpha_1}\\mbox{ if }\\nu<\\nu_{0} T(\\nu) = T_{0}\\left(\\dfrac{\\nu}{\\nu_{0}}\\right)^{\\alpha_2}\\mbox{ if }\\nu\\geq\\nu_{0} :param nu: Frequency. :param nu0: Frequency at which the power law breaks. :param T0: Value of the power law at nu0. :param alpha1: Index of the power law for nu<nu0. :param alpha2: Index of the power law for nu>=nu0. :returns: Broken power law evalueated at nu. """ low = plaw(nu, nu0, T0, alpha1) * (nu < nu0) hgh = plaw(nu, nu0, T0, alpha2) * (nu >= nu0) return low + hgh def eta(freq, Te, ne, nion, Z, Tr, trans, n_max=1500): """ Returns the correction factor for the Planck function. """ kl = kappa_line_lte(Te, ne, nion, Z, Tr, trans, n_max=1500) kc = kappa_cont(freq, Te, ne, nion, Z) return (kc + kl*bni)/(kc + kl*bnf*bnfni) def fnnp_app(n, dn): """ Eq. (1) Menzel (1969) """ return n*mdn(dn)*(1. + 1.5*dn/n) def I_Bnu(specie, Z, n, Inu_funct, *args): """ Calculates the product :math:`B_{n+\\Delta n,n}I_{\\nu}` to \ compute the line broadening due to a radiation field :math:`I_{\\nu}`. :param specie: Atomic specie to calculate for. :type specie: string :param n: Principal quantum number at which to evaluate :math:`\\dfrac{2}{\\pi}\\sum\\limits_{\\Delta n}B_{n+\\Delta n,n}I_{n+\\Delta n,n}(\\nu)`. :type n: int or list :param Inu_funct: Function to call and evaluate :math:`I_{n+\\Delta n,n}(\\nu)`. It's first argument must be the frequency. :type Inu_funct: function :param args: Arguments to `Inu_funct`. The frequency must be left out. \ The frequency will be passed internally in units of MHz. Use the same \ unit when required. `Inu_funct` must take the frequency as first parameter. :returns: (Hz) :rtype: array :Example: >>> I_Bnu('CI', 1., 500, I_broken_plaw, 800, 26*u.MHz.to('Hz'), -1., -2.6) array([6.6554062]) """ cte = 2.*np.pi**2.*e.gauss**2./(h.cgs.value*m_e.cgs.value*c.cgs.value**2.*Ryd.to('1/cm')*Z**2.) try: Inu = np.empty((len(n), 5)) BninfInu = np.empty((len(n), 5)) nu = np.empty((len(n), 5)) except TypeError: Inu = np.empty((1, 5)) BninfInu = np.empty((1, 5)) nu = np.empty((1, 5)) for dn in range(1,6): nu[:,dn-1] = n2f(n, specie+fc.set_trans(dn)) Inu[:,dn-1] = Inu_funct(nu[:,dn-1]*1e6, *args).cgs.value BninfInu[:,dn-1] = cte.cgs.value*n**6./(dn*(n + dn)**2.)*mdn(dn)*Inu[:,dn-1] return 2./np.pi*BninfInu.sum(axis=1) def I_broken_plaw(nu, Tr, nu0, alpha1, alpha2): """ Returns the blackbody function evaluated at nu. As temperature a broken power law is used. The power law shape has parameters: Tr, nu0, alpha1 and alpha2. :param nu: Frequency. (Hz) or astropy.units.Quantity_ :type nu: (Hz) or astropy.units.Quantity_ :param Tr: Temperature at nu0. (K) or astropy.units.Quantity_ :param nu0: Frequency at which the spectral index changes. (Hz) or astropy.units.Quantity_ :param alpha1: spectral index for :math:`\\nu<\\nu_0` :param alpha2: spectral index for :math:`\\nu\\geq\\nu_0` :returns: Specific intensity in :math:`\\rm{erg}\\,\\rm{cm}^{-2}\\,\\rm{Hz}^{-1}\\,\\rm{s}^{-1}\\,\\rm{sr}^{-1}`. See `astropy.analytic_functions.blackbody.blackbody_nu`__ :rtype: astropy.units.Quantity_ .. _astropy.units.Quantity: http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity __ blackbody_ .. _blackbody: http://docs.astropy.org/en/stable/api/astropy.analytic_functions.blackbody.blackbody_nu.html#astropy.analytic_functions.blackbody.blackbody_nu """ Tbpl = broken_plaw(nu, nu0, Tr, alpha1, alpha2) bnu_bpl = blackbody_nu(nu, Tbpl) return bnu_bpl def I_cont(nu, Te, tau, I0, unitless=False): """ Computes the specific intensity due to a blackbody at temperature :math:`T_{e}` and optical depth :math:`\\tau`. It considers that there is background radiation with :math:`I_{0}`. :param nu: Frequency. :type nu: (Hz) or astropy.units.Quantity_ :param Te: Temperature of the source function. (K) or astropy.units.Quantity_ :param tau: Optical depth of the medium. :param I0: Specific intensity of the background radiation. Must have units of erg / (cm2 Hz s sr) or see `unitless`. :param unitless: If True the return :returns: The specific intensity of a ray of light after traveling in an LTE \ medium with source function :math:`B_{\\nu}(T_{e})` after crossing an optical \ depth :math:`\\tau_{\\nu}`. The units are erg / (cm2 Hz s sr). See `astropy.analytic_functions.blackbody.blackbody_nu`__ __ blackbody_ .. _blackbody: http://docs.astropy.org/en/stable/api/astropy.analytic_functions.blackbody.blackbody_nu.html#astropy.analytic_functions.blackbody.blackbody_nu """ bnu = blackbody_nu(nu, Te) if unitless: bnu = bnu.cgs.value return bnu*(1. - np.exp(-tau)) + I0*np.exp(-tau) def I_external(nu, Tbkg, Tff, tau_ff, Tr, nu0=100e6*u.MHz, alpha=-2.6): """ This method is equivalent to the IDL routine :param nu: Frequency. (Hz) or astropy.units.Quantity_ .. _astropy.units.Quantity: http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity """ if Tbkg.value != 0: bnu_bkg = blackbody_nu(nu, Tbkg) else: bnu_bkg = 0 if Tff.value != 0: bnu_ff = blackbody_nu(nu, Tff) exp_ff = (1. - np.exp(-tau_ff)) else: bnu_ff = 0 exp_ff = 0 if Tr.value != 0: Tpl = plaw(nu, nu0, Tr, alpha)#Tr*np.power(nu/nu0, alpha) bnu_pl = blackbody_nu(nu, Tpl) else: bnu_pl = 0 return bnu_bkg + bnu_ff*exp_ff + bnu_pl def I_total(nu, Te, tau, I0, eta): """ """ bnu = blackbody_nu(nu, Te) exp = np.exp(-tau) return bnu*eta*(1. - exp) + I0*exp def itau(temp, dens, line, n_min=5, n_max=1000, other='', verbose=False, value='itau', location=LOCALDIR): """ Gives the integrated optical depth for a given temperature and density. It assumes that the background radiation field dominates the continuum emission. The emission measure is unity. The output units are Hz. :param temp: Electron temperature. Must be a string of the form '8d1'. :type temp: string :param dens: Electron density. :type dens: float :param line: Line to load models for. :type line: string :param n_min: Minimum n value to include in the output. Default 1 :type n_min: int :param n_max: Maximum n value to include in the output. Default 1500, Maximum allowed value 9900 :type n_max: int :param other: String to search for different radiation fields and others. :type other: string :param verbose: Verbose output? :type verbose: bool :param value: ['itau'|'bbnMdn'|'None'] Value to output. itau will output the integrated optical depth. \ bbnMdn will output the :math:`\\beta_{n,n^{\\prime}}b_{n}` times the oscillator strenght :math:`M(\\Delta n)`. \ None will output the :math:`\\beta_{n,n^{\\prime}}b_{n}` values. :type value: string :returns: The principal quantum number and its asociated value. """ t = str2val(temp) d = float(dens) dn = fc.set_dn(line) mdn_ = mdn(dn) bbn = load_betabn(temp, dens, other, line, verbose, location=location) nimin = best_match_indx(n_min, bbn[:,0]) nimax = best_match_indx(n_max, bbn[:,0]) n = bbn[nimin:nimax,0] b = bbn[nimin:nimax,1] if value == 'itau': i = itau_norad(n, t, b, dn, mdn_) elif value == 'bbnMdn': i = b*dn*mdn_ else: i = b return n, i def itau_h(temp, dens, trans, n_max=1000, other='', verbose=False, value='itau'): """ Gives the integrated optical depth for a given temperature and density. The emission measure is unity. The output units are Hz. """ t = str2val(temp) d = dens dn = fc.set_dn(trans) mdn_ = mdn(dn) bbn = load_betabn_h(temp, dens, other, trans, verbose) n = bbn[:,0] b = bbn[:,1] b = b[:n_max] n = n[:n_max] if value == 'itau': #i = -1.069e7*dn*mdn*b*np.exp(1.58e5/(np.power(n, 2)*t))/np.power(t, 5./2.) i = itau_norad(n, t, b, dn, mdn_) elif value == 'bbnMdn': i = b*dn*mdn_ else: i = b return n, i def itau_norad(n, Te, b, dn, mdn_): """ Returns the optical depth using the approximate solution to the radiative transfer problem. """ return -1.069e7*dn*mdn_*b*np.exp(1.58e5/(np.power(n, 2.)*Te))/np.power(Te, 5./2.) def itau_lte(n, Te, dn, mdn_, em): """ Returns the CRRL optical depth integrated in velocity in units of Hz. """ return 1.069e7*dn*mdn_*np.exp(1.58e5/(np.power(n, 2.)*Te))/np.power(Te, 5./2.)*em def j_line_lte(n, ne, nion, Te, Z, trans): """ """ trans = fc.set_name(trans) Aninf = np.loadtxt('{0}/rates/einstein_Anm_{1}.txt'.format(LOCALDIR, trans)) cte = h/4./np.pi Nni = level_pop_lte(n, ne, nion, Te, Z) lc = line_center(nu) return cte*Aninf[:,2]*Nni*lc def kappa_cont(freq, Te, ne, nion, Z): """ Computes the absorption coefficient for the free-free process. """ nu = freq.to('GHz').value v = 0.65290+2./3.*np.log10(nu) - np.log10(Te.to('K').value) kc = np.zeros(len(nu)) #mask_1 = v <= -2.6 mask_2 = (v > -5) & (v <= -0.25) mask_3 = v > -0.25 #kc[mask_1] = 6.9391e-8*np.power(Z, 2)*ne*nion*np.power(nu[mask_1], -2.)* \ #np.power(1e4/Te.to('K').value, 1.5)* \ #(4.6950 - np.log10(Z) + 1.5*np.log(Te.to('K').value/1e4) - np.log10(nu[mask_1])) v_2 = v[mask_2] log10I_m0 = -1.232644*v_2 + 0.098747 kc[mask_2] = kappa_cont_base(nu[mask_2], Te.to('K').value, ne.cgs.value, nion.cgs.value, Z)*np.power(10., log10I_m0) v_3 = v[mask_3] log10I_m0 = -1.084191*v_3 + 0.135860 kc[mask_3] = kappa_cont_base(nu[mask_3], Te.to('K').value, ne.cgs.value, nion.cgs.value, Z)*np.power(10., log10I_m0) #if v < -2.: #kc = 6.9391e-8*np.power(Z, 2)*ne*nion*np.power(nu, -2.)*np.power(1e4/Te, 1.5)* \ #(4.6950 - np.log10(Z) + 1.5*np.log(Te/1e4) - np.log10(nu)) #elif v >= -2. and v <= -0.25: #log10I_m0 = -1.232644*v + 0.098747 #elif v > -0.25: #log10I_m0 = -1.084191*v + 0.135860 #if v >= -2.: #kc = 4.6460/np.power(nu, 7./3.)/np.power(Te, 1.5)* \ #(np.exp(4.7993e-2*nu/Te) - 1.)* \ #np.exp(aliv/np.log10(np.exp(1)))#*np.exp(-h*freq/k_B/Te) return kc*u.pc**-1*np.exp(-h.cgs.value*nu/k_B.cgs.value/Te.cgs.value) def kappa_cont_base(nu, Te, ne, nion, Z): """ """ return 4.6460/np.power(nu, 7./3.)/np.power(Te, 1.5)* \ (np.exp(4.7993e-2*nu/Te) - 1.)*np.power(Z, 8./3.)*ne*nion def kappa_line(Te, ne, nion, Z, Tr, trans, n_max=1500): """ Computes the line absorption coefficient for CRRLs between levels :math:`n_{i}` and :math:`n_{f}`, :math:`n_{i}>n_{f}`. This can only go up to :math:`n_{\\rm{max}}` 1500 because of the tables used for the Einstein Anm coefficients. :param Te: Electron temperature of the gas. (K) :type Te: float :param ne: Electron density. (:math:`\\mbox{cm}^{-3}`) :type ne: float :param nion: Ion density. (:math:`\\mbox{cm}^{-3}`) :type nion: float :param Z: Electric charge of the atoms being considered. :type Z: int :param Tr: Temperature of the radiation field felt by the gas. This specifies the temperature of the field at 100 MHz. (K) :type Tr: float :param trans: Transition for which to compute the absorption coefficient. :type trans: string :param n_max: Maximum principal quantum number to include in the output. :type n_max: int<1500 :returns: :rtype: array """ cte = np.power(c, 2.)/(16.*np.pi)*np.power(np.power(h, 2)/(2.*np.pi*m_e*k_B), 3./2.) bn = load_bn(val2str(Te), ne, other='case_diffuse_{0}'.format(val2str(Tr))) bn = bn[:np.where(bn[:,0] == n_max)[0]] Anfni = np.loadtxt('{0}/rates/einstein_Anm_{1}.txt'.format(LOCALDIR, trans)) # Cut the Einstein Amn coefficients table to match the bn values i_bn_i = best_match_indx(bn[0,0], Anfni[:,1]) i_bn_f = best_match_indx(bn[-1,0], Anfni[:,0]) Anfni = Anfni[i_bn_i:i_bn_f+1] ni = Anfni[:,0] nf = Anfni[:,1] omega_ni = 2*np.power(ni, 2) omega_i = 1. xi_ni = xi(ni, Te, Z) xi_nf = xi(nf, Te, Z) exp_ni = np.exp(xi_ni.value) exp_nf = np.exp(xi_nf.value) #print len(Anfni), len(bn[1:,-1]), len(bn[:-1,-1]), len(omega_ni[:]), len(ni), len(exp_ni), len(exp_nf) kl = cte.value/np.power(Te, 3./2.)*ne*nion*Anfni[:,2]*omega_ni[:]/omega_i*(bn[1:,-1]*exp_ni - bn[:-1,-1]*exp_nf) return kl def kappa_line_lte(nu, Te, ne, nion, Z, Tr, line, n_min=1, n_max=1500): """ Returns the line absorption coefficient under LTE conditions. :param nu: Frequency. (Hz) :type nu: array :param Te: Electron temperature of the gas. (K) :type Te: float :param ne: Electron density. (:math:`\\mbox{cm}^{-3}`) :type ne: float :param nion: Ion density. (:math:`\\mbox{cm}^{-3}`) :type nion: float :param Z: Electric charge of the atoms being considered. :type Z: int :param Tr: Temperature of the radiation field felt by the gas. This specifies the temperature of the field at 100 MHz. (K) :type Tr: float :param trans: Transition for which to compute the absorption coefficient. :type trans: string :param n_max: Maximum principal quantum number to include in the output. :type n_max: int<1500 :returns: :rtype: array """ ni = f2n(nu.to('MHz').value, line, n_max) + 1. trans = fc.set_name(line) cte = (np.power(c, 2.)/(8.*np.pi)) Aninf = np.loadtxt('{0}/rates/einstein_Anm_{1}.txt'.format(LOCALDIR, trans)) Aninf = Aninf[np.where(Aninf[:,1] == n_min)[0]:np.where(Aninf[:,1] == n_max)[0]] exp = np.exp(-h*nu/k_B/Te) Nni = level_pop_lte(ni, ne, nion, Te, Z) return cte/np.power(nu, 2.)*Nni*Aninf[:,2]*(1. - exp)#*np.power(Aninf[:,0]/Aninf[:,1], 2.) def level_pop_lte(n, ne, nion, Te, Z): """ Returns the level population of level n. The return has units of :math:`\\mbox{cm}^{-3}`. """ omega_ni = 2.*np.power(n, 2.) omega_i = 1. xi_n = xi(n, Te, Z) exp_xi_n = np.exp(xi_n.value) Nn = ne*nion*np.power(np.power(h, 2.)/(2.*np.pi*m_e*k_B*Te), 1.5)*omega_ni/omega_i/2.*exp_xi_n return Nn def load_bn(te, ne, tr='', ncrit='1.5d3', n_min=5, n_max=1000, verbose=False, location=LOCALDIR): """ Loads the bn values from the CRRL models. :param te: Electron temperature of the model. :type te: string :param ne: Electron density of the model. :type ne: string :param other: Radiation field of the model or any other string with model characteristics. :type other: string :param verbose: Verbose output? :type verbose: bool :returns: The :math:`b_{n}` value for the given model conditions. :rtype: array """ #LOCALDIR = os.path.dirname(os.path.realpath(__file__)) if tr == '-' or tr == '' or tr == 0: model_file = 'Carbon_opt_T_{0}_ne_{1}_ncrit_{2}_vriens_delta_500_vrinc_nmax_9900_dat'.format(te, ne, ncrit) if verbose: print("Loading {0}".format(model_file)) else: model_file = 'Carbon_opt_T_{0}_ne_{1}_ncrit_{2}_{3}_vriens_delta_500_vrinc_nmax_9900_dat'.format(te, ne, ncrit, tr) if verbose: print("Loading {0}".format(model_file)) model_path = glob.glob('{0}/{1}'.format(location, model_file))[0] if verbose: print("Loaded {0}".format(model_path)) bn = np.loadtxt(model_path) nimin = best_match_indx(n_min, bn[:,0]) nimax = best_match_indx(n_max, bn[:,0]) bn = bn[nimin:nimax+1] return bn def load_bn_h(te, ne, other='', n_min=5, n_max=1000, verbose=False): """ Loads the bn values from the HRRL models. :param te: Electron temperature of the model. :type te: string :param ne: Electron density of the model. :type ne: string :param other: Radiation field of the model or any other string with model characteristics. :type other: string :param verbose: Verbose output? :type verbose: bool :returns: The :math:`b_{n}` value for the given model conditions. :rtype: array """ #LOCALDIR = os.path.dirname(os.path.realpath(__file__)) if other == '-' or other == '': mod_file = 'H_bn2/Hydrogen_opt_T_{1}_ne_{2}_ncrit_8d2_vriens_delta_500_vrinc_nmax_9900_dat'.format(LOCALDIR, te, ne) if verbose: print("Loading {0}".format(mod_file)) mod_file = glob.glob('{0}/H_bn2/Hydrogen_opt_T_{1}_ne_{2}*_ncrit_8d2_vriens_delta_500_vrinc_nmax_9900_dat'.format(LOCALDIR, te, ne))[0] else: mod_file = 'H_bn2/Hydrogen_opt_T_{1}_ne_{2}_ncrit_8d2_{3}_vriens_delta_500_vrinc_nmax_9900_dat'.format(LOCALDIR, te, ne, other) if verbose: print("Loading {0}".format(mod_file)) mod_file = glob.glob('{0}/H_bn2/Hydrogen_opt_T_{1}_ne_{2}*_ncrit_8d2_{3}_vriens_delta_500_vrinc_nmax_9900_dat'.format(LOCALDIR, te, ne, other))[0] if verbose: print("Loaded {0}".format(mod_file)) bn = np.loadtxt(mod_file) nimin = best_match_indx(n_min, bn[:,0]) nimax = best_match_indx(n_max, bn[:,0]) bn = bn[nimin:nimax+1] return bn def load_bn_all(n_min=5, n_max=1000, verbose=False, location=LOCALDIR): """ """ models = glob.glob('{0}/bn2/*_dat'.format(location)) natural_sort(models) models =
np.asarray(models)
numpy.asarray
import numpy as np import cv2 import glob import itertools import os from tqdm import tqdm from .frames_data import get_frame_and_ground_truth_crop, get_video_wise_list from .standalone_IoU_model_libs import get_bounding_boxes from ..data_utils.bounding_box_based_network_utils import get_im_patch from ..models.config import IMAGE_ORDERING from .augmentation import augment_seg, two_stream_augment_seg from . import standalone_IoU_model_libs import random random.seed(0) class_colors = [ ( random.randint(0,255),random.randint(0,255),random.randint(0,255) ) for _ in range(5000) ] def get_pairs_from_paths( images_path , segs_path ): images = glob.glob( os.path.join(images_path,"*.jpg") ) + glob.glob( os.path.join(images_path,"*.png") ) + glob.glob( os.path.join(images_path,"*.jpeg") ) segmentations = glob.glob( os.path.join(segs_path,"*.png") ) segmentations_d = dict( zip(segmentations,segmentations )) ret = [] for im in images: seg_bnme = os.path.basename(im).replace(".jpg" , ".png").replace(".jpeg" , ".png") seg = os.path.join( segs_path , seg_bnme ) assert ( seg in segmentations_d ), (im + " is present in "+images_path +" but "+seg_bnme+" is not found in "+segs_path + " . Make sure annotation image are in .png" ) ret.append((im , seg) ) return ret def get_pairs_from_paths_i3d(features_path, segs_path): i3d_feature_paths = glob.glob(os.path.join(features_path, '*.npy')) ret = [] for i3d_feature_path in i3d_feature_paths: filename = os.path.basename(i3d_feature_path) filename_wo_ext, _ = os.path.splitext(filename) segmentation_path = os.path.join(segs_path, f'{filename_wo_ext}.png') ret.append((i3d_feature_path, segmentation_path)) return ret def two_stream_get_pairs_from_paths(images_path, flows_path, segs_path): images = glob.glob(os.path.join(images_path, "*.jpg")) + glob.glob(os.path.join(images_path, "*.png")) + glob.glob( os.path.join(images_path, "*.jpeg")) segmentations = glob.glob(os.path.join(segs_path, "*.png")) flows = glob.glob(os.path.join(flows_path, "*.png")) segmentations_d = dict(zip(segmentations, segmentations)) flows_d = dict(zip(flows, flows)) ret = [] for im in images: seg_bnme = os.path.basename(im).replace(".jpg", ".png").replace(".jpeg", ".png") seg = os.path.join(segs_path, seg_bnme) flw = os.path.join(flows_path, seg_bnme) assert (seg in segmentations_d), ( im + " is present in " + images_path + " but " + seg_bnme + " is not found in " + segs_path + " . Make sure annotation image are in .png") assert (flw in flows_d), ( im + " is present in " + images_path + " but " + seg_bnme + " is not found in " + flows_path + " . Make sure flow image are in .png") ret.append((im, flw, seg)) return ret def get_image_arr( path , width , height , imgNorm="sub_mean" , odering='channels_first' ): if type( path ) is np.ndarray: img = path else: img = cv2.imread(path, 1) if imgNorm == "sub_and_divide": img = np.float32(cv2.resize(img, ( width , height ))) / 127.5 - 1 elif imgNorm == "sub_mean": img = cv2.resize(img, ( width , height )) img = img.astype(np.float32) img[:,:,0] -= 103.939 img[:,:,1] -= 116.779 img[:,:,2] -= 123.68 img = img[ : , : , ::-1 ] elif imgNorm == "divide": img = cv2.resize(img, ( width , height )) img = img.astype(np.float32) img = img/255.0 if odering == 'channels_first': img = np.rollaxis(img, 2, 0) return img def get_segmentation_arr( path , nClasses , width , height , no_reshape=False ): seg_labels = np.zeros(( height , width , nClasses )) if type( path ) is np.ndarray: img = path else: img = cv2.imread(path, 1) img = cv2.resize(img, ( width , height ) , interpolation=cv2.INTER_NEAREST ) img = img[:, : , 0] for c in range(nClasses): seg_labels[: , : , c ] = (img == c ).astype(int) if no_reshape: return seg_labels seg_labels = np.reshape(seg_labels, ( width*height , nClasses )) return seg_labels def verify_segmentation_dataset( images_path , segs_path , n_classes ): img_seg_pairs = get_pairs_from_paths( images_path , segs_path ) assert len(img_seg_pairs)>0 , "Dataset looks empty or path is wrong " for im_fn , seg_fn in tqdm(img_seg_pairs) : img = cv2.imread( im_fn ) seg = cv2.imread( seg_fn ) assert ( img.shape[0]==seg.shape[0] and img.shape[1]==seg.shape[1] ) , "The size of image and the annotation does not match or they are corrupt "+ im_fn + " " + seg_fn assert ( np.max(seg[:,:,0]) < n_classes) , "The pixel values of seg image should be from 0 to "+str(n_classes-1) + " . Found pixel value "+str(np.max(seg[:,:,0])) print("Dataset verified! ") def two_stream_verify_segmentation_dataset(images_path, flows_path, segs_path, n_classes): img_seg_pairs = two_stream_get_pairs_from_paths(images_path, flows_path, segs_path) assert len(img_seg_pairs) > 0, "Dataset looks empty or path is wrong " for im_fn, flow_fn, seg_fn in tqdm(img_seg_pairs): img = cv2.imread(im_fn) flw = cv2.imread(flow_fn) seg = cv2.imread(seg_fn) assert (img.shape[0] == seg.shape[0] and img.shape[1] == seg.shape[ 1]), "The size of image and the annotation does not match or they are corrupt " + im_fn + " " + seg_fn assert (img.shape[0] == flw.shape[0] and img.shape[1] == flw.shape[ 1]), "The size of image and the flow does not match or they are corrupt " + im_fn + " " + flow_fn assert (np.max(seg[:, :, 0]) < n_classes), "The pixel values of seg image should be from 0 to " + str( n_classes - 1) + " . Found pixel value " + str(np.max(seg[:, :, 0])) print("Dataset verified! ") def image_segmentation_generator( images_path , segs_path , batch_size, n_classes , input_height , input_width , output_height , output_width , do_augment=False ): img_seg_pairs = get_pairs_from_paths( images_path , segs_path ) random.shuffle( img_seg_pairs ) zipped = itertools.cycle( img_seg_pairs ) while True: X = [] Y = [] for _ in range(batch_size): im, seg = next(zipped) im = cv2.imread(im, 1) seg = cv2.imread(seg, 1) if do_augment: img, seg[:, :, 0] = augment_seg(img, seg[:, :, 0]) X.append(get_image_arr(im, input_width, input_height, odering=IMAGE_ORDERING)) Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) yield np.array(X), np.array(Y) def image_segmentation_generator_i3d_inception(features_folder, segmentation_folder, batch_size, n_classes, input_height, input_width, output_height, output_width): feature_seg_pairs = get_pairs_from_paths_i3d(features_folder, segmentation_folder) random.shuffle(feature_seg_pairs) zipped = itertools.cycle(feature_seg_pairs) while True: X = [] Y = [] for _ in range(batch_size): feature_volume, seg = next(zipped) feature_volume = np.load(feature_volume) seg = cv2.imread(seg, 1) for frame_number in range(feature_volume.shape[0]): feature_volume[frame_number] = get_image_arr(feature_volume[frame_number], input_width, input_height, odering=IMAGE_ORDERING) X.append(feature_volume) Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) yield np.array(X), np.array(Y) def image_segmentation_generator_with_weighted_output(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): img_seg_pairs = get_pairs_from_paths(images_path, segs_path) random.shuffle(img_seg_pairs) zipped = itertools.cycle(img_seg_pairs) while True: X = [] Y = [] for _ in range(batch_size): im, seg = next(zipped) im = cv2.imread(im, 1) seg = cv2.imread(seg, 1) if do_augment: img, seg[:, :, 0] = augment_seg(im, seg[:, :, 0]) X.append(get_image_arr(im, input_width, input_height, odering=IMAGE_ORDERING)) Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) yield np.array(X), {"main_output_activation": np.array(Y), "second_output_activation": np.array(Y)} def image_segmentation_temporal_generator_with_weighted_output(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): frames_in_cuboid = 3 middle_number = 1 image_paths = glob.glob(os.path.join(images_path, '*.png')) + glob.glob(os.path.join(images_path, '*.jpg')) video_wise = get_video_wise_list(image_paths) video_wise = [video_wise[k] for k in video_wise.keys()] random.shuffle(video_wise) video_wise_paths = itertools.cycle(video_wise) X = [] Y = [] while True: video_frames = next(video_wise_paths) for frame_number in range(len(video_frames) - frames_in_cuboid): __frame_paths = video_frames[frame_number:frame_number + frames_in_cuboid] __frames = [cv2.imread(__frame_path) for __frame_path in __frame_paths] __fname = os.path.splitext(os.path.basename(__frame_paths[middle_number]))[0] gt = cv2.imread(os.path.join(segs_path, __fname + '.png')) frame_patches = [[] for i in range(9)] for __frame in __frames: patches = get_frame_and_ground_truth_crop(__frame) for i in range(len(patches)): frame_patches[i].append( get_image_arr(patches[i], input_width, input_height, odering=IMAGE_ORDERING)) frame_patches = [np.array(frame_patch) for frame_patch in frame_patches] gt_patches = get_frame_and_ground_truth_crop(gt) for frame_patch, gt_patch in zip(frame_patches, gt_patches): X.append(frame_patch) Y.append(get_segmentation_arr(gt_patch, n_classes, output_width, output_height)) if len(X) == batch_size: yield np.array(X), {"main_output_activation": np.array(Y), "second_output_activation": np.array(Y)} X = [] Y = [] def image_segmentation_generator_bounding_box_based_network(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): img_seg_pairs = get_pairs_from_paths(images_path, segs_path) random.shuffle(img_seg_pairs) zipped = itertools.cycle(img_seg_pairs) X = [] Y = [] while True: im, seg = next(zipped) im = cv2.imread(im, 1) seg = cv2.imread(seg, 1) # get height and width of the image height, width, _ = seg.shape # get bounding boxes bounding_boxes = get_bounding_boxes(seg) for bounding_box in bounding_boxes: # get coords x1 = bounding_box['x1'] x2 = bounding_box['x2'] y1 = bounding_box['y1'] y2 = bounding_box['y2'] w = x2 - x1 h = y2 - y1 bbox_coords = (x1, y1, w, h) # get patch from image im_patch, _ = get_im_patch(im, bounding_box) X.append(get_image_arr(im_patch, input_width, input_height, odering=IMAGE_ORDERING)) Y.append(bbox_coords) # check if batch is filled if len(X) == batch_size or len(Y) == batch_size: yield np.array(X), np.array(Y) X = [] Y = [] def image_segmentation_generator_bounding_box_iou_based_network(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): img_seg_pairs = get_pairs_from_paths(images_path, segs_path) random.shuffle(img_seg_pairs) zipped = itertools.cycle(img_seg_pairs) X = [] Y = [] while True: im, seg = next(zipped) im = cv2.imread(im, 1) seg = cv2.imread(seg, 1) # get height and width of the image height, width, _ = seg.shape # get bounding boxes bounding_boxes = get_bounding_boxes(seg) for bounding_box in bounding_boxes: # get coords x1 = bounding_box['x1'] x2 = bounding_box['x2'] y1 = bounding_box['y1'] y2 = bounding_box['y2'] w = x2 - x1 h = y2 - y1 bbox_coords = (x1, y1, w, h) # get patch from image im_patch, _ = get_im_patch(im, bounding_box) X.append(get_image_arr(im_patch, input_width, input_height, odering=IMAGE_ORDERING)) Y.append(bbox_coords) # check if batch is filled if len(X) == batch_size or len(Y) == batch_size: yield np.array(X), np.array(Y).astype(np.float64) X = [] Y = [] def IoU_network_image_segmentation_generator(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): img_seg_pairs = get_pairs_from_paths(images_path, segs_path) random.shuffle(img_seg_pairs) zipped = itertools.cycle(img_seg_pairs) X = [] Y = [] while True: im, seg = next(zipped) im = cv2.imread(im, 1) seg = cv2.imread(seg, 1) bounding_boxes = standalone_IoU_model_libs.get_bounding_boxes(seg) # neglecting any image that has more than one bounding box if len(bounding_boxes) > 1: for bounding_box in bounding_boxes: for new_mask, iou_score, bbox_coords in standalone_IoU_model_libs.generate_augmentations(seg, bounding_box, 100, 0.1): if do_augment: im, seg[:, :, 0] = augment_seg(im, seg[:, :, 0]) im_patch = standalone_IoU_model_libs.get_patch_of_image_with_bounding_box_coords(im, bbox_coords) X.append(get_image_arr(im_patch, input_width, input_height, odering=IMAGE_ORDERING)) # Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) Y.append(iou_score) if len(X) == batch_size: yield np.array(X), np.array(Y) X = [] Y = [] else: if do_augment: im, seg[:, :, 0] = augment_seg(im, seg[:, :, 0]) X.append(get_image_arr(im, input_width, input_height, odering=IMAGE_ORDERING)) # Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) Y.append(0) if len(X) == batch_size: yield np.array(X), np.array(Y) X = [] Y = [] def image_segmentation_generator_i3d(images_path, segs_path, batch_size, n_classes, input_height, input_width, output_height, output_width, do_augment=False): img_seg_pairs = get_pairs_from_paths_i3d(images_path, segs_path) random.shuffle(img_seg_pairs) zipped = itertools.cycle(img_seg_pairs) while True: X = [] Y = [] for _ in range(batch_size): im, seg = next(zipped) im = np.load(im) seg = cv2.imread(seg, 1) # if do_augment: # img, seg[:, :, 0] = augment_seg(img, seg[:, :, 0]) X.append(im) Y.append(get_segmentation_arr(seg, n_classes, output_width, output_height)) yield np.array(X), {"main_output_activation":
np.array(Y)
numpy.array
import numpy as np import os from data_cluster import load_cluster_labels, attach_cluster_id_arr_manual from data_rowreduce import prune_rows from data_settings import DATADIR, PIPELINES_VALID, CELLSTOCLUSTERS_2018SCMCA, NPZ_2018SCMCA_MEMS, NPZ_2018SCMCA_ORIG, \ NPZ_2018SCMCA_ORIG_WITHCLUSTER, NPZ_2014MEHTA_ORIG, PIPELINES_DIRS from data_standardize import save_npz_of_arr_genes_cells, load_npz_of_arr_genes_cells """ Purpose: process standardized expression data (i.e. converted to npz of arr, genes, cells) - cluster data, or load in clustered results and attach it to first row of gene, expression in the npz - save clustered raw data in standard npz format (npz of arr, genes, cells) - convert raw data into "cluster dict": dictionary that maps cluster data to submatrix of genes x cells - binarize data within each cluster dict - create binarized cluster dict - from binarized cluster dict: create "memory" / "cell type" matrix (get representative column from each cluster) - save memory matrix in standard npz format (npz of mems, genes, types) - reduce row number with various pruning techniques - save total row reduction in file "removed_rows.txt" - save reduced memory matrix in standard npz format (npz of mems, genes, types) - use "removed_rows.txt" to delete rows of original raw data - save reduced clustered raw data in standard npz format (npz of arr, genes, cells) - save reduced unclustered raw data in standard npz format (npz of arr, genes, cells) Main output: - reduced memory matrix is used as input to singlecell module """ # TODO pass metadata to all functions? # TODO test and optimize build_basin_states # TODO build remaining functions + unit tests # TODO have report script which stores all processing flags/choices/order # TODO maybe have rundir for results of each proc run # TODO how to save cluster dict? as npz? def binarize_data(xi): return 1.0 * np.where(xi > 0, 1, -1) # mult by 1.0 to cast as float def binarize_cluster_dict(cluster_dict, metadata, binarize_method="by_gene", savedir=None): """ Args: - cluster_dict: {k: N x M array for k in 0 ... K-1 (i.e. cluster index)} - binarize_method: options for different binarization methods: by_cluster or by_gene (default) - savedir: dir to save cluster_dict Returns: - binarized_cluster_dict: {k: N x M array for k in 0 ... K-1 (i.e. cluster index)} """ assert binarize_method in ['by_cluster', 'by_gene'] num_clusters = metadata['num_clusters'] print(num_clusters, np.max(list(cluster_dict.keys())), cluster_dict[0].shape) binarize_cluster_dict = {} if binarize_method == 'by_gene': for k in range(num_clusters): cluster_data = cluster_dict[k] min_gene_vals = np.amin(cluster_data, axis=1) # min value each gene has over all cells in the cluster max_gene_vals = np.amax(cluster_data, axis=1) mids = 0.5 * (min_gene_vals - max_gene_vals) # TODO vectorize this binarized_cluster = np.zeros(cluster_data.shape, dtype=np.int8) for idx in range(cluster_data.shape[0]): binarized_cluster[idx,:] = np.where(cluster_data[idx,:] > mids[idx], 1.0, -1.0) # mult by 1.0 to cast as float binarize_cluster_dict[k] = binarized_cluster else: print("WARNING: binarize_method by_cluster is not stable (data too sparse)") for k in range(num_clusters): cluster_data = cluster_dict[k] min_val = np.min(cluster_data) max_val = np.max(cluster_data) mid = 0.5 * (max_val - min_val) binarized_cluster = 1.0 * np.where(cluster_data > mid, 1, -1) # mult by 1.0 to cast as float binarized_cluster.astype(np.int8) binarize_cluster_dict[k] = binarized_cluster # save cluster_dict if savedir is not None: cdnpz = savedir + os.sep + 'clusterdict_boolean_compressed.npz' save_cluster_dict(cdnpz, binarize_cluster_dict) return binarize_cluster_dict def binary_cluster_dict_to_memories(binarized_cluster_dict, gene_labels, memory_method="default", savedir=None): """ Args: - binarized_cluster_dict: {k: N x M array for k in 0 ... K-1 (i.e. cluster index)} - gene_labels: N x 1 array of 'gene_labels' for each row - memory_method: options for different memory processing algos - savedir: where to save the memory file (None -> don't save) Returns: - memory_array: i.e. xi matrix, will be N x K (one memory from each cluster) """ if gene_labels[0] == 'cluster_id': print("Warning: gene_labels[0] == 'cluster_id', removing first element") gene_labels = gene_labels[1:] num_genes = len(gene_labels) num_clusters = len(list(binarized_cluster_dict.keys())) print("num_genes", num_genes) eps = 1e-4 # used to bias the np.sign(call) to be either 1 or -1 (breaks ties towards on state) memory_array = np.zeros((num_genes, num_clusters)) for k in range(num_clusters): cluster_arr = binarized_cluster_dict[k] cluster_arr_rowsum = np.sum(cluster_arr, axis=1) memory_vec = np.sign(cluster_arr_rowsum + eps) memory_array[:,k] = memory_vec if savedir is not None: npzpath = savedir + os.sep + 'mems_genes_types_compressed.npz' store_memories_genes_clusters(npzpath, memory_array, np.array(gene_labels)) return memory_array def store_memories_genes_clusters(npzpath, mem_arr, genes): # TODO move cluster labels to metadata with gene labels, pass to this function cluster_id = load_cluster_labels(DATADIR + os.sep + '2018_scMCA' + os.sep + 'SI_cluster_labels.csv') clusters = np.array([cluster_id[idx] for idx in range(len(list(cluster_id.keys())))]) save_npz_of_arr_genes_cells(npzpath, mem_arr, genes, clusters) return def load_memories_genes_clusters(npzpath): mem_arr, genes, clusters = load_npz_of_arr_genes_cells(npzpath, verbose=False) return mem_arr, genes, clusters def prune_memories_genes(npzpath): rows_to_delete, mem_arr, genes, clusters = prune_rows(npzpath, save_pruned=True, save_rows=True) return rows_to_delete, mem_arr, genes, clusters def prune_cluster_dict(cluster_dict, rows_to_delete, savedir=None): """ Args: - cluster_dict: {k: N x M array for k in 0 ... K-1 (i.e. cluster index)} - rows_to_delete: rows to delete from each array (val) in cluster_dict - savedir: where to save the memory file (None -> don't save) """ pruned_cluster_dict = {k: 0 for k in list(cluster_dict.keys())} for k in range(len(list(cluster_dict.keys()))): cluster_data = cluster_dict[k] pruned_cluster_dict[k] = np.delete(cluster_data, rows_to_delete, axis=0) # save pruned_cluster_dict if savedir is not None: cdnpz = savedir + os.sep + 'clusterdict_boolean_compressed_pruned.npz' save_cluster_dict(cdnpz, pruned_cluster_dict) return pruned_cluster_dict def save_cluster_dict(npzpath, cluster_dict): # convert int keys to str (and deconvert on loading) print("saving cluster dict at %s..." % npzpath) cluster_dict = {str(k):v for k,v in cluster_dict.items()} np.savez_compressed(npzpath, **cluster_dict) print("done saving cluster dict") return def load_cluster_dict(npzpath): print("loading cluster dict at %s..." % npzpath) cluster_dict =
np.load(npzpath)
numpy.load
from abc import abstractmethod import numpy as np from scipy.interpolate import griddata import matplotlib.pyplot as plt import csv # ********* Geometric ********* class Shape: """ An abstract class for geometric shapes defining some key methods required """ @abstractmethod def get_perimeter(self, start, end, num_points): """ Create a list of points between the user defined start and end positions on the perimeter of the shape :param start: Position at which the list of points should begin :type start: float :param end: Position at which the list of points should end :type end: float :param num_points: Number of points :type num_points: int :return: A list of points (x,y) evenly spaced on the perimeter of the shape between the start and end positions :rtype: numpy.ndarray """ pass @abstractmethod def get_grid(self, spacing): """ Create a grid of points spaced uniformly across the shape :param spacing: Spacing between points in the grid :type spacing: float :return: A list of points (x,y) uniformly space across the shape :rtype: numpy.ndarray """ pass @abstractmethod def is_point_inside(self, point): """ Check whether or not a point is inside the shape :param point: list/tuple of the coordinates (x, y) of a point :type point: list :return: A bool stating whether or not the point is within the shape :rtype: bool """ pass class Circle(Shape): """ A geometric class for a circle Attributes ---------- centre : list A list of coordinates (x, y) describing the centre of the circle radius : float The radius of the circle """ def __init__(self, centre, radius): """ Creates a circle :param centre: The coordinates (x,y) of centre of the circle :type centre: list :param radius: The radius of the circle :type radius: float :rtype: Circle """ self._centre = centre self._radius = radius @property def centre(self): """ A list of coordinates (x, y) describing the centre of the circle :return: (x, y) of the centre of the circle :rtype: list """ return self._centre @property def radius(self): """ The radius of the circle :return: The radius :rtype: float """ return self._radius def get_circular_points(self, start_angle, end_angle, num_points, radius, decimal_places=None): """ Create a list of points between the user defined start and end angles (in degrees) on the perimeter of a new circle sharing the centre point of this circle with a different radius :param start_angle: Position at which the list of points should begin :type start_angle: float :param end_angle: Position at which the list of points should end :type end_angle: float :param num_points: Number of points :type num_points: int :param radius: Radius of the circle on which the points are placed :type radius: float :param decimal_places: Number of decimal places the coordinates are returned with - None: there is no rounding :type decimal_places: int :return: An array of points (x,y) evenly spaced on the perimeter of the new circle between the start and end angles :rtype: numpy.ndarray """ points = np.zeros((num_points, 2), float) full_angle = 180 - abs(abs(end_angle - start_angle) - 180) if full_angle == 0: full_angle = 360 delta_angle = full_angle / num_points for i in range(num_points): points[i][0] = self._centre[0] + np.cos(np.radians(90 + start_angle + delta_angle * i)) * radius points[i][1] = self._centre[1] + np.sin(np.radians(90 + start_angle + delta_angle * i)) * radius if decimal_places is not None: return np.array(np.around(points, decimal_places)) else: return np.array(points) def get_perimeter(self, start_angle, end_angle, num_points, decimal_places=None): """ Create a list of points between the user defined start and end angles on the perimeter of the circle :param start_angle: Position at which the list of points should begin :type start_angle: float :param end_angle: Position at which the list of points should end :type end_angle: float :param num_points: Number of points :type num_points: int :param decimal_places: Number of decimal places the coordinates are returned with - None: there is no rounding :type decimal_places: int :return: A list of points (x,y) evenly spaced on the perimeter of the shape between the start and end angles :rtype: numpy.ndarray """ return np.array(self.get_circular_points(start_angle, end_angle, num_points, self._radius, decimal_places)) def get_grid(self, spacing, alpha=2): """ Create a grid of points spaced uniformly across the circle using the sunflower seed arrangement algorithm :param spacing: Approximate spacing between points in the grid :type spacing: float :param alpha: Determines the evenness of the boundary - 0 is jagged, 2 is smooth. Above 2 is not recommended :type alpha: float :return: A list of points (x,y) uniformly spaced across the circle :rtype: numpy.ndarray """ # Algorithm is found at the stack overflow thread linked below: # https://stackoverflow.com/questions/28567166/uniformly-distribute-x-points-inside-a-circle # Calculates the number of points (n) from the spacing area = np.pi * self._radius**2 n = int(area / spacing**2) points = np.zeros((n, 2), float) b = int(alpha * np.sqrt(n)) # number of boundary points golden_ratio = (np.sqrt(5) + 1) / 2 for point in range(1, n + 1): if point > n - b: r = 1 else: r = np.sqrt(point - 1 / 2) / np.sqrt(n - (b + 1) / 2) theta = 2 * np.pi * point / golden_ratio**2 points[point - 1][0] = self._centre[0] + r*np.cos(theta) * self._radius points[point - 1][1] = self._centre[1] + r*np.sin(theta) * self._radius return np.array(points) def is_point_inside(self, point): """ Check whether or not a point is inside the circle :param point: List/tuple of the coordinates (x, y) of a point :type point: list :return: A bool stating whether or not the point is within the circle :rtype: bool """ # checks if the distance from the centre of the circle to the point, d, is less than or equal to the radius d = np.sqrt((point[0] - self.centre[0])**2 + (point[1] - self.centre[1])**2) return d <= self.radius class Rectangle(Shape): """ A geometric class for a rectangle Attributes ---------- coordinate : list A list of coordinates (x, y) describing the centre or bottom left of the rectangle width : float The width of the rectangle height : float The height of the rectangle coordinate_pos : str Describes the position of the coordinate parameter - either "centre" or "bottom left" """ def __init__(self, coordinate, width, height, coordinate_pos="bottom left"): """ Creates a rectangle :param coordinate: A list of coordinates (x, y) describing the centre or bottom left of the rectangle :type coordinate: list :param width: The width of the rectangle :type width: float :param height: The height of the rectangle :type height: float :param coordinate_pos: Description of the position of the coordinate - "centre" or "bottom left" of the rectangle :type coordinate_pos: str :rtype: Rectangle """ if coordinate_pos == 'centre': self._xy = [coordinate[0] - width / 2, coordinate[1] - height / 2] elif coordinate_pos == 'bottom left': self._xy = coordinate else: print("coordinate_pos must be in \"centre\" or \"bottom left\"") quit(1) self._width = width self._height = height @property def xy(self): """ A list of coordinates (x, y) describing the bottom left of the rectangle :return: (x, y) of the bottom left of the rectangle :rtype: list """ return self._xy @property def width(self): """ The width of the rectangle :return: The width :rtype: float """ return self._width @property def height(self): """ The height of the rectangle :return: The height :rtype: float """ return self._height def get_perimeter(self, start_point, end_point, num_points): pass def get_grid(self, spacing): """ Create a grid of points spaced uniformly across the rectangle :param spacing: Approximate spacing between points in the grid :type spacing: float :return: A list of points (x,y) uniformly spaced across the rectangle :rtype: numpy.ndarray """ num_x = int(np.floor(self._width / spacing)) + 1 num_y = int(np.floor(self._height / spacing)) + 1 num_points = int(num_x * num_y) points = np.zeros((num_points, 2), float) for x in range(num_x): for y in range(num_y): points[y * num_x + x][0] = self._xy[0] + x * spacing points[y * num_x + x][1] = self._xy[1] + y * spacing return np.array(points) def is_point_inside(self, point): """ Check whether or not a point is inside the rectangle :param point: list/tuple of the coordinates (x, y) of a point :type point: tuple :return: A bool stating whether or not the point is within the rectangle :rtype: bool """ # checks that the x and y distance between the point and the bottom_left of the rectangle is less than the # width and height dx = abs(point[0] - self._xy[0]) + abs(self._xy[0] + self._width - point[0]) dy = abs(point[1] - self._xy[1]) + abs(self._xy[1] + self._height - point[1]) return dy <= self._height and dx <= self._width # ********* PyZones specific setup classes ********* class Zone(Circle): """ A sound zone to be used in setup of the soundfield's geometry Attributes ---------- centre : list A list of coordinates (x, y) describing the centre of the circle radius : float The radius of the circle colour : list A list of float values (r, g, b) """ def __init__(self, centre, radius, colour=None): """ Creates a sound zone :param centre: A list of coordinates (x, y) describing the centre of the circle :type centre: list :param radius: The radius of the circle :type radius: float :param colour: A list of float values (r, g, b) - None results in black (0, 0, 0) :type colour: list :rtype: Zone """ if colour is None: self._colour = [0, 0, 0] else: self._colour = colour Circle.__init__(self, centre, radius) @property def colour(self): """ A list of float values (r, g, b) :return: A list of float values (r, g, b) :rtype: list """ return self._colour class Soundfield(Rectangle): """ The soundfield being used in the simulation. Can be thought of as the room, however no room reflections are modelled Attributes ---------- _zones : list A list of the zones used in the simulation. _fig : float The figure from the matplotlib.pyplot _axes : float The axes from the matplotlib.pyplot """ def __init__(self, coordinate, width, height, coordinate_pos="bottom left"): """ Creates a soundfield to be used for simulations. This class is exclusively for the graphics and visualisations :param coordinate: A list of coordinates (x, y) describing the centre or bottom left of the rectangle :type coordinate: list :param width: The width of the rectangle :type width: float :param height: The height of the rectangle :type height: float :param coordinate_pos: The position of the coordinate - "centre" or "bottom left" of the rectangle :type coordinate_pos: str :rtype: Soundfield """ Rectangle.__init__(self, coordinate, width, height, coordinate_pos=coordinate_pos) self._zones = [] self._fig = plt.figure(figsize=(6, 6), dpi=300) self._axes = self._fig.add_subplot(111) self._axes.set_xlim([self.xy[0], self.xy[0] + width]) self._axes.set_ylim([self.xy[1], self.xy[1] + height]) self._cax = self._fig.add_axes([0.125, 0.94, 0.775, 0.04]) def add_zones(self, zones): """ Add the sound zone(s) to the soundfield such that they can be seen in the visualisations of the soundfield :param zones: The zone(s) to be added to the soundfield :type zones: list[Zone] """ if type(zones) is not list: zones = [zones] for zone in zones: circle = plt.Circle(zone.centre, zone.radius, fill=False) circle.set_edgecolor(zone.colour) self._axes.add_patch(circle) self._zones.append(zone) def add_sound_objects(self, *args): """ Add the sound objects to the soundfield such that they can be seen in the visualisations of the soundfield :param args: a single Microphone/Loudspeaker or a MicrophoneArray/LoudspeakerArray """ def add_ls(ls): centre = ls.position x = centre[0] - (ls.width / 2) y = centre[1] - (ls.height / 2) angle = 0 # change the orientation of the loudspeaker such that it's looking at a point (purely aesthetic) if ls.look_at is not None: x_dif = ls.look_at[0] - centre[0] y_dif = ls.look_at[1] - centre[1] if x_dif == 0: angle = 0 elif y_dif == 0: angle = np.pi / 2 elif x_dif > 0: angle = np.arctan(y_dif / x_dif) - np.pi / 2 else: angle = np.arctan(y_dif / x_dif) + np.pi / 2 new_x = (x - centre[0]) * np.cos(angle) - (y - centre[1]) * np.sin(angle) + centre[0] new_y = (x - centre[0]) * np.sin(angle) + (y - centre[1]) *
np.cos(angle)
numpy.cos
from speaksee.data import TextField, ImageDetectionsField from data import COCOControlSetField, FlickrDetectionField, FlickrControlSetField from data.dataset import COCOEntities, FlickrEntities from models import ControllableCaptioningModel from models import ControllableCaptioningModel_NoVisualSentinel, ControllableCaptioningModel_SingleSentinel from speaksee.data import DataLoader, DictionaryDataset, RawField from speaksee.evaluation import Bleu, Meteor, Rouge, Cider, Spice from speaksee.evaluation import PTBTokenizer from utils import NounIoU from utils import SinkhornNet from config import * import torch import random import numpy as np import itertools import argparse import os import munkres from tqdm import tqdm def selfBLEU(caption_set, text_field): caption_set = np.concatenate(caption_set, axis=0) gen = {} for i, cap in enumerate(caption_set): pred_cap = text_field.decode(cap, join_words=False) pred_cap = ' '.join([k for k, g in itertools.groupby(pred_cap)]) gen[i] = [pred_cap] set1 = {} set2 = {} count = 0 for i in range(0, len(gen)): for j in range(i+1, len(gen)): set1[count] = gen[i] set2[count] = gen[j] count += 1 set1_t = PTBTokenizer.tokenize(set1) set2_t = PTBTokenizer.tokenize(set2) val_bleu, _ = Bleu(n=4).compute_score(set1_t, set2_t) method = ['Blue_1', 'Bleu_2', 'Bleu_3', 'Bleu_4'] scores = [] for metric, score in zip(method, val_bleu): scores.append(score) return scores random.seed(1234) torch.manual_seed(1234) device = torch.device('cuda') parser = argparse.ArgumentParser() parser.add_argument('--exp_name', default='ours', type=str, help='model name: ours | ours_without_visual_sentinel | ours_with_single_sentinel') parser.add_argument('--dataset', default='coco', type=str, help='dataset: coco | flickr') parser.add_argument('--sample_rl', action='store_true', help='test the model with cider optimization') parser.add_argument('--sample_rl_nw', action='store_true', help='test the model with cider + nw optimization') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--nb_workers', default=0, type=int, help='number of workers') opt_test = parser.parse_args() print(opt_test) assert(opt_test.exp_name in ['ours', 'ours_without_visual_sentinel', 'ours_with_single_sentinel']) if not opt_test.sample_rl and not opt_test.sample_rl_nw: exp_name ='%s_%s' % (opt_test.exp_name, opt_test.dataset) print('Loading \"%s\" model trained with cross-entropy loss.' % opt_test.exp_name) if opt_test.sample_rl: exp_name = '%s_%s_%s' % (opt_test.exp_name, opt_test.dataset, 'rl') print('Loading \"%s\" model trained with CIDEr optimization.' % opt_test.exp_name) if opt_test.sample_rl_nw: exp_name = '%s_%s_%s' % (opt_test.exp_name, opt_test.dataset, 'rl_nw') print('Loading \"%s\" model trained with CIDEr + NW optimization.' % opt_test.exp_name) saved_data = torch.load('saved_models/%s/%s.pth' % (opt_test.exp_name, exp_name)) opt = saved_data['opt'] saved_data_sinkhorn = torch.load('saved_models/sinkhorn_network/sinkhorn_network_%s.pth' % opt_test.dataset) opt_sinkhorn = saved_data_sinkhorn['opt'] if opt_test.dataset == 'coco': image_field = ImageDetectionsField(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), load_in_tmp=False) det_field = COCOControlSetField(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), classes_path=os.path.join(coco_root, 'object_class_list.txt'), img_shapes_path=os.path.join(coco_root, 'coco_img_shapes.json'), precomp_glove_path=os.path.join(coco_root, 'object_class_glove.pkl'), fix_length=opt_sinkhorn.max_len, max_detections=20) text_field = TextField(init_token='<bos>', eos_token='<eos>', lower=True, remove_punctuation=True, fix_length=20) dataset = COCOEntities(image_field, det_field, text_field, img_root='', ann_root=os.path.join(coco_root, 'annotations'), entities_file=os.path.join(coco_root, 'coco_entities.json'), id_root=os.path.join(coco_root, 'annotations')) test_dataset = COCOEntities(image_field, det_field, RawField(), img_root='', ann_root=os.path.join(coco_root, 'annotations'), entities_file=os.path.join(coco_root, 'coco_entities.json'), id_root=os.path.join(coco_root, 'annotations'), filtering=True) noun_iou = NounIoU(pre_comp_file=os.path.join(coco_root, '%s_noun_glove.pkl' % opt_test.dataset)) elif opt_test.dataset == 'flickr': image_field = FlickrDetectionField(detections_path=os.path.join(flickr_root, 'flickr30k_detections.hdf5')) det_field = FlickrControlSetField(detections_path=os.path.join(flickr_root, 'flickr30k_detections.hdf5'), classes_path=os.path.join(flickr_root, 'object_class_list.txt'), img_shapes_path=os.path.join(flickr_root, 'flickr_img_shapes.json'), precomp_glove_path=os.path.join(flickr_root, 'object_class_glove.pkl'), fix_length=opt_sinkhorn.max_len) text_field = TextField(init_token='<bos>', eos_token='<eos>', lower=True, remove_punctuation=True, fix_length=20) dataset = FlickrEntities(image_field, text_field, det_field, img_root='', ann_file=os.path.join(flickr_root, 'flickr30k_annotations.json'), entities_root=flickr_entities_root) test_dataset = FlickrEntities(image_field, RawField(), det_field, img_root='', ann_file=os.path.join(flickr_root, 'flickr30k_annotations.json'), entities_root=flickr_entities_root) noun_iou = NounIoU(pre_comp_file=os.path.join(flickr_root, '%s_noun_glove.pkl' % opt_test.dataset)) else: raise NotImplementedError train_dataset, val_dataset, _ = dataset.splits text_field.build_vocab(train_dataset, val_dataset, min_freq=5) sinkhorn_net = SinkhornNet(opt_sinkhorn.max_len, opt_sinkhorn.n_iters, opt_sinkhorn.tau).to(device) if opt_test.exp_name == 'ours': model = ControllableCaptioningModel(20, len(text_field.vocab), text_field.vocab.stoi['<bos>'], h2_first_lstm=opt.h2_first_lstm, img_second_lstm=opt.img_second_lstm).to(device) elif opt_test.exp_name == 'ours_without_visual_sentinel': model = ControllableCaptioningModel_NoVisualSentinel(20, len(text_field.vocab), text_field.vocab.stoi['<bos>'], h2_first_lstm=opt.h2_first_lstm, img_second_lstm=opt.img_second_lstm).to(device) elif opt_test.exp_name == 'ours_with_single_sentinel': model = ControllableCaptioningModel_SingleSentinel(20, len(text_field.vocab), text_field.vocab.stoi['<bos>'], h2_first_lstm=opt.h2_first_lstm, img_second_lstm=opt.img_second_lstm).to(device) else: raise NotImplementedError _, _, test_dataset = test_dataset.splits test_dataset = DictionaryDataset(test_dataset.examples, test_dataset.fields, 'image') dataloader_test = DataLoader(test_dataset, batch_size=opt_test.batch_size, num_workers=opt_test.nb_workers) model.eval() model.load_state_dict(saved_data['state_dict']) sinkhorn_net.eval() sinkhorn_net.load_state_dict(saved_data_sinkhorn['state_dict']) predictions = [] gt_captions = [] max_len = 20 diversity_scores = [] with tqdm(desc='Test', unit='it', total=len(iter(dataloader_test))) as pbar: for it, (keys, values) in enumerate(iter(dataloader_test)): detections = keys det_seqs_txt, det_seqs_vis, det_seqs_pos, det_seqs_all, captions = values for i in range(detections.size(0)): det_seqs_all_i = det_seqs_all[i].numpy() if opt_test.dataset == 'coco': det_seqs_all_sum = np.sum(np.abs(det_seqs_all_i), axis=-1) elif opt_test.dataset == 'flickr': det_seqs_all_sum = np.sum(np.abs(det_seqs_vis[i].numpy()), axis=-1) else: raise NotImplementedError _, unique_indices, unique_inverse = np.unique(det_seqs_all_sum, axis=0, return_index=True, return_inverse=True) det_seqs_vis_unique = det_seqs_vis[i][unique_indices] det_seqs_txt_unique = det_seqs_txt[i][unique_indices] det_seqs_pos_unique = det_seqs_pos[i][unique_indices] det_seqs_all_unique = det_seqs_all_i[unique_indices] this_captions = [[captions[i][ii] for ii in range(len(unique_inverse)) if unique_inverse[ii] == jj] for jj in range(det_seqs_all_unique.shape[0])] det_seqs_perm = torch.cat((det_seqs_txt_unique, det_seqs_vis_unique, det_seqs_pos_unique), dim=-1).to(device) matrices = sinkhorn_net(det_seqs_perm) matrices = torch.transpose(matrices, 1, 2) if isinstance(matrices, torch.Tensor): matrices = matrices.detach().cpu().numpy() m = munkres.Munkres() #To generate a diverse set of 5 captions current_div_set = [] for _ in range(0,5): det_seqs_recons = np.zeros(det_seqs_all_unique.shape) for j, matrix in enumerate(matrices): seqs = [] ass = m.compute(munkres.make_cost_matrix(matrix)) perm_matrix = np.zeros_like(matrix) for a in ass: if np.random.random() > 0.8: perm_matrix[a] = 0.2 else: perm_matrix[a] = 0.8 perm = np.reshape(det_seqs_all_unique[j], (det_seqs_all_unique.shape[1], -1)) recons = np.dot(perm_matrix, perm) recons = np.reshape(recons, det_seqs_all_unique.shape[1:]) recons = recons[np.sum(recons, (1, 2)) != 0] last = recons.shape[0] - 1 det_seqs_recons[j, :recons.shape[0]] = recons det_seqs_recons[:, last + 1:] = recons[last:last+1] detections_i, det_seqs_recons = detections[i].to(device), torch.tensor(det_seqs_recons).float().to(device) detections_i = detections_i.unsqueeze(0).expand(det_seqs_recons.size(0), detections_i.size(0), detections_i.size(1)) out, _ = model.beam_search((detections_i, det_seqs_recons), eos_idxs=[text_field.vocab.stoi['<eos>'], -1], beam_size=5, out_size=1) out = out[0].data.cpu().numpy() for o, caps in zip(out, this_captions): predictions.append(np.expand_dims(o, axis=0)) current_div_set.append(
np.expand_dims(o, axis=0)
numpy.expand_dims
import numpy as np import matplotlib.pyplot as plt from PIL import Image import cv2 import imageio import os import argparse import time import numpy.matlib from scipy.signal import medfilt2d from scipy.signal import medfilt from scipy.sparse import coo_matrix from scipy.sparse import bsr_matrix import math from utils import fill_invalid, weighted_median_filter ### # Fast Cost-Volume Filtering for Visual Correspondence and Beyond, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, CVPR 2011 # 이해를 위해 수정해본 코드 ### save_path = './fast_images' os.makedirs(save_path, exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument('--left_image', '-l', default = './source_images/tsukuba-l.png', type=str, help='left image path') parser.add_argument('--right_image', '-r', default = './source_images/tsukuba-r.png', type=str, help='right image path') parser.add_argument('--disparity_image', '-o', default = './fast_images/fast_tsukuba_my.png', type=str, help='disparity image path') parser.add_argument('--bilateral', '-b', action='store_true', help='use bilateral filter for cost aggregation, default=guided filter') args = parser.parse_args() # guided filter constants r = 9 eps = 0.01 # 0.0001 # 엡실론이 작을수록 엣지가 살아나며 클수록 mean필터에 가까워짐 # cost matching constants thresColor = 7./255. thresGrad = 2./255. threshBorder = 3./255. gamma = 0.11 # weight median filter constants sigma_c = 0.1 sigma_s = 9 r_median = 19 # window size def computeDisp(left_image_path, right_image_path, max_disp): # Image read as grayscale left_img_origin = Image.open(left_image_path) img_L = left_img_origin.convert('L') # grayscale left_img_origin = np.asarray(left_img_origin).astype(np.float32) / 255. img_L = np.asarray(img_L).astype(np.float32) / 255. right_img_origin = Image.open(right_image_path) img_R = right_img_origin.convert('L') # grayscale right_img_origin =
np.asarray(right_img_origin)
numpy.asarray
#!/usr/bin/env python # coding: utf-8 import numpy as np import scipy as sc from scipy import ndimage import random as rand from sklearn import preprocessing, linear_model import matplotlib.pyplot as plt import matplotlib from matplotlib.ticker import MaxNLocator from matplotlib.offsetbox import AnnotationBbox, OffsetImage from tabulate import tabulate import dill import copy from core.controllers import PDController from core.dynamics import ConfigurationDynamics from koopman_core.controllers import OpenLoopController, MPCController, PerturbedController, NonlinearMPCControllerNb, BilinearMPCControllerNb from koopman_core.dynamics import LinearLiftedDynamics, BilinearLiftedDynamics from koopman_core.learning import Edmd, BilinearEdmd from koopman_core.basis_functions import PlanarQuadBasis from koopman_core.learning.utils import differentiate_vec from koopman_core.systems import PlanarQuadrotorForceInput class QuadrotorPdOutput(ConfigurationDynamics): def __init__(self, dynamics, xd, t_d, n, m): ConfigurationDynamics.__init__(self, dynamics, 1) self.xd = xd self.t_d = t_d self.xd_dot = differentiate_vec(self.xd, self.t_d) self.n = n self.m = m def proportional(self, x, t): q, q_dot = x[:int(n/2)], x[int(n/2):] return self.y(q) - self.y_d(t) def derivative(self, x, t): q, q_dot = x[:int(n/2)], x[int(n/2):] return self.dydq(q)@q_dot - self.y_d_dot(t) def y(self, q): return q def dydq(self, q): return np.eye(int(self.n/2)) def d2ydq2(self, q): return np.zeros((int(self.n/2), int(self.n/2), int(self.n/2))) def y_d(self, t): return self.desired_state_(t)[:int(self.n/2)] def y_d_dot(self, t): return self.desired_state_(t)[int(self.n/2):] def y_d_ddot(self, t): return self.desired_state_dot_(t)[int(self.n/2):] def desired_state_(self, t): return [np.interp(t, self.t_d.flatten(),self.xd[:,ii].flatten()) for ii in range(self.xd.shape[1])] def desired_state_dot_(self, t): return [np.interp(t, self.t_d.flatten(),self.xd_dot[:,ii].flatten()) for ii in range(self.xd_dot.shape[1])] class PlanarQuadrotorForceInputDiscrete(PlanarQuadrotorForceInput): def __init__(self, mass, inertia, prop_arm, g=9.81, dt=1e-2): PlanarQuadrotorForceInput.__init__(self, mass, inertia, prop_arm, g=g) self.dt=dt def eval_dot(self, x, u, t): return x + self.dt*self.drift(x, t) + self.dt*np.dot(self.act(x, t),u) def get_linearization(self, x0, x1, u0, t): m, J, b, g = self.params A_lin = np.eye(self.n) + self.dt*np.array([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, -(1/m)*np.cos(x0[2])*u0[0] -(1/m)*np.cos(x0[2])*u0[1], 0, 0, 0], [0, 0, -(1/m)*np.sin(x0[2])*u0[0] -(1/m)*np.sin(x0[2])*u0[1], 0, 0, 0], [0, 0, 0, 0, 0, 0],]) B_lin = self.dt*np.array([[0, 0], [0, 0], [0, 0], [-(1/m)*np.sin(x0[2]), -(1/m)*np.sin(x0[2])], [(1/m)*np.cos(x0[2]), (1/m)*
np.cos(x0[2])
numpy.cos
# This is automatically-generated code. # Uses the jinja2 library for templating. import cvxpy as cp import numpy as np import scipy as sp # setup problemID = "huber_0" prob = None opt_val = None # Variable declarations import scipy.sparse as sps np.random.seed(0) m = 5000 n = 200 x0 =
np.random.randn(n)
numpy.random.randn
# -*- coding: utf-8 -*- import math import operator from dataclasses import dataclass from functools import reduce from typing import * import numpy as np from .typing_ import * __all__ = [ 'MetricStats', 'MetricCollector', 'GeneralMetricCollector', 'ScalarMetricCollector', 'ScalarMetricsLogger', ] @dataclass class MetricStats(object): """Mean and std(dev) of a metric.""" __slots__ = ('mean', 'var', 'std') mean: MetricValue var: Optional[MetricValue] std: Optional[MetricValue] def to_json(self, mean_only: bool = False ) -> Union[MetricValue, Dict[str, MetricValue]]: """ Get the JSON representation of this metric stats object. >>> MetricStats(mean=1.0, var=None, std=None).to_json() 1.0 >>> MetricStats(mean=1.0, var=4.0, std=2.0).to_json() {'mean': 1.0, 'std': 2.0} >>> MetricStats(mean=1.0, var=4.0, std=2.0).to_json(mean_only=True) 1.0 Args: mean_only: Whether or not to include only the mean of the metric. Returns: The JSON metric value. """ if mean_only or self.std is None: return self.mean return {'mean': self.mean, 'std': self.std} class MetricCollector(object): """Base class of a metric statistics collector.""" def reset(self): """Reset the collector to initial state.""" raise NotImplementedError() @property def has_stats(self) -> bool: """Whether or not any value has been collected?""" raise NotImplementedError() @property def stats(self) -> Optional[MetricStats]: """ Get the metric object. Returns: The statistics, or :obj:`None` if no value has been collected. """ raise NotImplementedError() def update(self, values: MetricValue, weight: MetricValue = 1.): """ Update the metric statistics from values. This method uses the following equation to update `mean` and `square`: .. math:: \\frac{\\sum_{i=1}^n w_i f(x_i)}{\\sum_{j=1}^n w_j} = \\frac{\\sum_{i=1}^m w_i f(x_i)}{\\sum_{j=1}^m w_j} + \\frac{\\sum_{i=m+1}^n w_i}{\\sum_{j=1}^n w_j} \\Bigg( \\frac{\\sum_{i=m+1}^n w_i f(x_i)}{\\sum_{j=m+1}^n w_j} - \\frac{\\sum_{i=1}^m w_i f(x_i)}{\\sum_{j=1}^m w_j} \\Bigg) Args: values: Values to be collected in batch, numpy array or scalar whose shape ends with ``self.shape``. The leading shape in front of ``self.shape`` is regarded as the batch shape. weight: Weights of the `values`, should be broadcastable against the batch shape. (default is 1) Raises: ValueError: If the shape of `values` does not end with `self.shape`. """ raise NotImplementedError() class GeneralMetricCollector(MetricCollector): """ Class to collect statistics of metric values. To collect statistics of a scalar: >>> collector = GeneralMetricCollector() >>> collector.stats is None True >>> collector.update(1.) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=1.0, var=None, std=None) >>> for value in [2., 3., 4.]: ... collector.update(value) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=2.5, var=1.25, std=1.11803...) >>> collector.update(np.array([5., 6., 7., 8.])) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=4.5, var=5.25, std=2.29128...) weighted statistics: >>> collector = GeneralMetricCollector() >>> for value in [1., 2., 3., 4.]: ... collector.update(value, weight=value) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=3.0, var=1.0, std=1.0) >>> collector.update(np.array([5., 6., 7., 8.]), ... weight=np.array([5., 6., 7., 8.])) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=5.66666..., var=3.88888..., std=1.97202...) To collect element-wise statistics of a vector: >>> collector = GeneralMetricCollector(shape=[3]) >>> x = np.arange(12).reshape([4, 3]) >>> for value in x: ... collector.update(value) >>> collector.stats # doctest: +ELLIPSIS MetricStats(mean=array([4.5, 5.5, 6.5]), var=array([11.25, 11.25, 11.25]), std=array([3.35410..., 3.35410..., 3.35410...])) """ __slots__ = ('shape', 'dtype', 'mean', 'second_order_moment', 'counter', 'weight_sum', '_array_to_value_type', '_value') shape: ArrayShape dtype: np.dtype mean: np.ndarray second_order_moment: np.ndarray counter: int # count the number of times where `add` is called weight_sum: float # sum of all weights of added values _array_to_value_type: Callable[[Any], MetricValue] _value: Optional[MetricStats] def __init__(self, shape: Sequence[int] = (), dtype: np.dtype = np.float64): self.shape = tuple(map(int, shape)) self.dtype = np.dtype(dtype) self.reset() if self.shape == (): self._array_to_value_type = float else: self._array_to_value_type = lambda v: v def reset(self): self.mean = np.zeros(shape=self.shape, dtype=self.dtype) # E[X] self.second_order_moment = np.zeros(shape=self.shape, dtype=self.dtype) # E[X^2] self.counter = 0 self.weight_sum = 0. self._value = None @property def has_stats(self) -> bool: return self.counter > 0 def _make_value(self): if self.counter > 0: mean = self._array_to_value_type(self.mean) if self.counter > 1: var = self._array_to_value_type( np.maximum(self.second_order_moment - self.mean ** 2, 0.)) std = self._array_to_value_type(np.sqrt(var)) else: var = std = None self._value = MetricStats(mean=mean, var=var, std=std) @property def stats(self) -> Optional[MetricStats]: if self._value is None: self._make_value() return self._value def update(self, values: MetricValue, weight: MetricValue = 1.): values = np.asarray(values) if not values.size: return weight =
np.asarray(weight)
numpy.asarray
import numpy as np import matplotlib.pyplot as plt def make_meshgrid(x, y, num_pts=300, lims=None): """Create a mesh of points to plot in Parameters ---------- x: data to base x-axis meshgrid on y: data to base y-axis meshgrid on h: stepsize for meshgrid, optional Returns ------- xx, yy : ndarray """ if lims is None: x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 else: x_min, x_max, y_min, y_max = lims xx, yy = np.meshgrid(np.linspace(x_min, x_max, num_pts), np.linspace(y_min, y_max, num_pts)) return xx, yy def plot_contours(ax, clf, xx, yy, proba=False, transformation=None, **params): """Plot the decision boundaries for a classifier. Parameters ---------- ax: matplotlib axes object clf: a classifier xx: meshgrid ndarray yy: meshgrid ndarray params: dictionary of params to pass to contourf, optional """ X = np.c_[xx.ravel(), yy.ravel()] if transformation is not None: X = transformation(X) if proba == "raw": Z = clf.decision_function(X) Z = Z.reshape(xx.shape) # out = ax.contourf(xx, yy, Z, **params) out = ax.imshow(Z,extent=(np.min(xx), np.max(xx), np.min(yy), np.max(yy)), origin='lower', **params) ax.contour(xx, yy, Z, levels=[0]) elif proba: Z = clf.predict_proba(X)[:,-1] Z = Z.reshape(xx.shape) out = ax.imshow(Z,extent=(np.min(xx),
np.max(xx)
numpy.max
#!/usr/bin/env python # encoding: utf-8 import numpy as np import openmdao.api as om import wisdem.pyframe3dd.pyframe3dd as frame3dd from wisdem.commonse import gravity from wisdem.commonse.csystem import DirectionVector from wisdem.commonse.utilities import find_nearest, nodal2sectional from wisdem.commonse.cross_sections import Tube, IBeam from wisdem.commonse.utilization_constraints import vonMisesStressUtilization RIGID = 1 FREE = 0 def tube_prop(s, Di, ti): L = s.max() - s.min() def equal_pts(xi): if len(xi) < len(s) and len(xi) == 2: x = np.interp((s - s.min()) / L, [0, 1], xi) elif len(xi) == len(s): x = xi else: raise ValueError("Unknown grid of input", str(xi)) return x D = equal_pts(Di) t = equal_pts(ti) return Tube(nodal2sectional(D)[0], nodal2sectional(t)[0]) class Hub_Rotor_LSS_Frame(om.ExplicitComponent): """ Run structural analysis of hub system with the generator rotor and main (LSS) shaft. Parameters ---------- tilt : float, [deg] Shaft tilt s_lss : numpy array[5], [m] Discretized s-coordinates along drivetrain, measured from bedplate (direct) or tower center (geared) lss_diameter : numpy array[2], [m] LSS outer diameter from hub to bearing 2 lss_wall_thickness : numpy array[2], [m] LSS wall thickness hub_system_mass : float, [kg] Hub system mass hub_system_cm : float, [m] Hub system center of mass distance from hub flange hub_system_I : numpy array[6], [kg*m**2] Hub system moment of inertia F_hub : numpy array[3, n_dlcs], [N] Force vector applied to the hub (WITH WEIGHT???) M_hub : numpy array[3, n_dlcs], [N*m] Moment vector applied to the hub s_mb1 : float, [m] Bearing 1 s-coordinate along drivetrain, measured from bedplate (direct) or tower center (geared) s_mb2 : float, [m] Bearing 2 s-coordinate along drivetrain, measured from bedplate (direct) or tower center (geared) s_rotor : float, [m] Generator rotor attachment to lss s-coordinate measured from bedplate (direct) or tower center (geared) generator_rotor_mass : float, [kg] Generator rotor mass generator_rotor_I : numpy array[3], [kg*m**2] Generator rotor moment of inertia (measured about its cm) gearbox_mass : float, [kg] Gearbox rotor mass gearbox_I : numpy array[3], [kg*m**2] Gearbox moment of inertia (measured about its cm) lss_E : float, [Pa] modulus of elasticity lss_G : float, [Pa] shear modulus lss_rho : float, [kg/m**3] material density lss_Xy : float, [Pa] yield stress Returns ------- torq_deflection : float, [m] Maximum deflection distance at rotor (direct) or gearbox (geared) attachment torq_rotation : float, [rad] Maximum rotation angle at rotor (direct) or gearbox (geared) attachment torq_axial_stress : numpy array[5, n_dlcs], [Pa] Axial stress in Curved_beam structure torq_shear_stress : numpy array[5, n_dlcs], [Pa] Shear stress in Curved_beam structure torq_bending_stress : numpy array[5, n_dlcs], [Pa] Hoop stress in Curved_beam structure calculated with Roarks formulae constr_lss_vonmises : numpy array[5, n_dlcs] Sigma_y/Von_Mises F_mb1 : numpy array[3, n_dlcs], [N] Force vector applied to bearing 1 in hub c.s. F_mb2 : numpy array[3, n_dlcs], [N] Force vector applied to bearing 2 in hub c.s. F_torq : numpy array[3, n_dlcs], [N] Force vector applied to generator rotor (direct) or gearbox (geared) in hub c.s. M_mb1 : numpy array[3, n_dlcs], [N*m] Moment vector applied to bearing 1 in hub c.s. M_mb2 : numpy array[3, n_dlcs], [N*m] Moment vector applied to bearing 2 in hub c.s. M_torq : numpy array[3, n_dlcs], [N*m] Moment vector applied to generator rotor (direct) or gearbox (geared) in hub c.s. """ def initialize(self): self.options.declare("n_dlcs") self.options.declare("direct_drive", default=True) self.options.declare("modeling_options") def setup(self): n_dlcs = self.options["n_dlcs"] self.add_discrete_input("upwind", True) self.add_input("tilt", 0.0, units="deg") self.add_input("s_lss", val=np.zeros(5), units="m") self.add_input("lss_diameter", val=np.zeros(2), units="m") self.add_input("lss_wall_thickness", val=np.zeros(2), units="m") self.add_input("hub_system_mass", 0.0, units="kg") self.add_input("hub_system_cm", 0.0, units="m") self.add_input("hub_system_I", np.zeros(6), units="kg*m**2") self.add_input("F_hub", val=np.zeros((3, n_dlcs)), units="N") self.add_input("M_hub", val=np.zeros((3, n_dlcs)), units="N*m") self.add_input("s_mb1", val=0.0, units="m") self.add_input("s_mb2", val=0.0, units="m") self.add_input("s_rotor", val=0.0, units="m") self.add_input("generator_rotor_mass", val=0.0, units="kg") self.add_input("generator_rotor_I", val=np.zeros(3), units="kg*m**2") self.add_input("gearbox_mass", val=0.0, units="kg") self.add_input("gearbox_I", val=np.zeros(3), units="kg*m**2") self.add_input("brake_mass", val=0.0, units="kg") self.add_input("brake_I", val=np.zeros(3), units="kg*m**2") self.add_input("carrier_mass", val=0.0, units="kg") self.add_input("carrier_I", val=np.zeros(3), units="kg*m**2") self.add_input("lss_E", val=0.0, units="Pa") self.add_input("lss_G", val=0.0, units="Pa") self.add_input("lss_rho", val=0.0, units="kg/m**3") self.add_input("lss_Xy", val=0.0, units="Pa") self.add_output("torq_deflection", val=0.0, units="m") self.add_output("torq_rotation", val=0.0, units="rad") self.add_output("lss_axial_stress", np.zeros((4, n_dlcs)), units="Pa") self.add_output("lss_shear_stress", np.zeros((4, n_dlcs)), units="Pa") self.add_output("constr_lss_vonmises", np.zeros((4, n_dlcs))) self.add_output("F_mb1", val=np.zeros((3, n_dlcs)), units="N") self.add_output("F_mb2", val=np.zeros((3, n_dlcs)), units="N") self.add_output("F_torq", val=np.zeros((3, n_dlcs)), units="N") self.add_output("M_mb1", val=np.zeros((3, n_dlcs)), units="N*m") self.add_output("M_mb2", val=np.zeros((3, n_dlcs)), units="N*m") self.add_output("M_torq", val=np.zeros((3, n_dlcs)), units="N*m") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs upwind = discrete_inputs["upwind"] Cup = -1.0 if upwind else 1.0 tilt = float(np.deg2rad(inputs["tilt"])) s_lss = inputs["s_lss"] D_lss = inputs["lss_diameter"] t_lss = inputs["lss_wall_thickness"] s_mb1 = float(inputs["s_mb1"]) s_mb2 = float(inputs["s_mb2"]) if self.options["direct_drive"]: s_rotor = float(inputs["s_rotor"]) m_rotor = float(inputs["generator_rotor_mass"]) I_rotor = inputs["generator_rotor_I"] m_brake = float(inputs["brake_mass"]) I_brake = inputs["brake_I"] else: m_gearbox = float(inputs["gearbox_mass"]) I_gearbox = inputs["gearbox_I"] m_carrier = float(inputs["carrier_mass"]) I_carrier = inputs["carrier_I"] rho = float(inputs["lss_rho"]) E = float(inputs["lss_E"]) G = float(inputs["lss_G"]) sigma_y = float(inputs["lss_Xy"]) gamma_f = float(self.options["modeling_options"]["gamma_f"]) gamma_m = float(self.options["modeling_options"]["gamma_m"]) gamma_n = float(self.options["modeling_options"]["gamma_n"]) m_hub = float(inputs["hub_system_mass"]) cm_hub = float(inputs["hub_system_cm"]) I_hub = inputs["hub_system_I"] F_hub = inputs["F_hub"] M_hub = inputs["M_hub"] # ------- node data ---------------- n = len(s_lss) inode = np.arange(1, n + 1) ynode = znode = rnode = np.zeros(n) xnode = Cup * s_lss.copy() nodes = frame3dd.NodeData(inode, xnode, ynode, znode, rnode) # Grab indices for later i1 = inode[find_nearest(xnode, Cup * s_mb1)] i2 = inode[find_nearest(xnode, Cup * s_mb2)] iadd = inode[1] # Differences between direct annd geared if self.options["direct_drive"]: itorq = inode[find_nearest(xnode, Cup * s_rotor)] m_torq = m_rotor I_torq = I_rotor m_add = m_brake I_add = I_brake else: itorq = inode[0] m_torq = m_gearbox - m_carrier I_torq = I_gearbox - I_carrier m_add = m_carrier I_add = I_carrier # ------------------------------------ # ------ reaction data ------------ # Reactions at main bearings rnode = np.r_[i1, i2, itorq] Rx = np.array([RIGID, FREE, FREE]) # Upwind bearing restricts translational Ry = np.array([RIGID, FREE, FREE]) # Upwind bearing restricts translational Rz = np.array([RIGID, FREE, FREE]) # Upwind bearing restricts translational Rxx = np.array([FREE, FREE, RIGID]) # Torque is absorbed by stator, so this is the best way to capture that Ryy = np.array([FREE, RIGID, FREE]) # downwind bearing carry moments Rzz = np.array([FREE, RIGID, FREE]) # downwind bearing carry moments reactions = frame3dd.ReactionData(rnode, Rx, Ry, Rz, Rxx, Ryy, Rzz, rigid=RIGID) # ----------------------------------- # ------ frame element data ------------ lsscyl = tube_prop(s_lss, D_lss, t_lss) ielement = np.arange(1, n) N1 = np.arange(1, n) N2 = np.arange(2, n + 1) roll = np.zeros(n - 1) myones = np.ones(n - 1) Ax = lsscyl.Area As = lsscyl.Asx S = lsscyl.S C = lsscyl.C J0 = lsscyl.J0 Jx = lsscyl.Jxx elements = frame3dd.ElementData( ielement, N1, N2, Ax, As, As, J0, Jx, Jx, E * myones, G * myones, roll, rho * myones ) # ----------------------------------- # ------ options ------------ shear = geom = True dx = -1 options = frame3dd.Options(shear, geom, dx) # ----------------------------------- # initialize frameDD3 object myframe = frame3dd.Frame(nodes, reactions, elements, options) # ------ add hub and generator rotor (direct) or gearbox (geared) extra mass ------------ three0 = np.zeros(3).tolist() myframe.changeExtraNodeMass( np.r_[inode[-1], itorq, iadd], [m_hub, m_torq, m_add], [I_hub[0], I_torq[0], I_add[0]], [I_hub[1], I_torq[1], I_add[1]], [I_hub[2], I_torq[2], I_add[2]], three0, three0, three0, [cm_hub, 0.0, 0.0], three0, three0, True, ) # ------------------------------------ # ------- NO dynamic analysis ---------- # myframe.enableDynamics(NFREQ, discrete_inputs['Mmethod'], discrete_inputs['lump'], float(inputs['tol']), float(inputs['shift'])) # ---------------------------- # ------ static load cases ------------ n_dlcs = self.options["n_dlcs"] gy = 0.0 gx = -gravity * np.sin(tilt) gz = -gravity * np.cos(tilt) for k in range(n_dlcs): # gravity in the X, Y, Z, directions (global) load = frame3dd.StaticLoadCase(gx, gy, gz) # point loads # TODO: Are input loads aligned with the lss? If so they need to be rotated. load.changePointLoads( [inode[-1]], [F_hub[0, k]], [F_hub[1, k]], [F_hub[2, k]], [M_hub[0, k]], [M_hub[1, k]], [M_hub[2, k]] ) # ----------------------------------- # Put all together and run myframe.addLoadCase(load) # myframe.write('myframe1.3dd') # Debugging displacements, forces, reactions, internalForces, mass3dd, modal = myframe.run() # Loop over DLCs and append to outputs rotor_gearbox_deflection = np.zeros(n_dlcs) rotor_gearbox_rotation = np.zeros(n_dlcs) outputs["F_mb1"] = np.zeros((3, n_dlcs)) outputs["F_mb2"] = np.zeros((3, n_dlcs)) outputs["F_torq"] = np.zeros((3, n_dlcs)) outputs["M_mb1"] = np.zeros((3, n_dlcs)) outputs["M_mb2"] = np.zeros((3, n_dlcs)) outputs["M_torq"] = np.zeros((3, n_dlcs)) outputs["lss_axial_stress"] = np.zeros((n - 1, n_dlcs)) outputs["lss_shear_stress"] = np.zeros((n - 1, n_dlcs)) outputs["constr_lss_vonmises"] = np.zeros((n - 1, n_dlcs)) for k in range(n_dlcs): # Deflections and rotations at torq attachment rotor_gearbox_deflection[k] = np.sqrt( displacements.dx[k, itorq - 1] ** 2 + displacements.dy[k, itorq - 1] ** 2 + displacements.dz[k, itorq - 1] ** 2 ) rotor_gearbox_rotation[k] = ( displacements.dxrot[k, itorq - 1] + displacements.dyrot[k, itorq - 1] + displacements.dzrot[k, itorq - 1] ) # shear and bending, one per element (convert from local to global c.s.) Fx = forces.Nx[k, 1::2] Vy = forces.Vy[k, 1::2] Vz = -forces.Vz[k, 1::2] F = np.sqrt(Vz ** 2 + Vy ** 2) Mxx = forces.Txx[k, 1::2] Myy = forces.Myy[k, 1::2] Mzz = -forces.Mzz[k, 1::2] M = np.sqrt(Myy ** 2 + Mzz ** 2) # Record total forces and moments outputs["F_mb1"][:, k] = -1.0 * np.array([reactions.Fx[k, 0], reactions.Fy[k, 0], reactions.Fz[k, 0]]) outputs["F_mb2"][:, k] = -1.0 * np.array([reactions.Fx[k, 1], reactions.Fy[k, 1], reactions.Fz[k, 1]]) outputs["F_torq"][:, k] = -1.0 * np.array([reactions.Fx[k, 2], reactions.Fy[k, 2], reactions.Fz[k, 2]]) outputs["M_mb1"][:, k] = -1.0 * np.array([reactions.Mxx[k, 0], reactions.Myy[k, 0], reactions.Mzz[k, 0]]) outputs["M_mb2"][:, k] = -1.0 * np.array([reactions.Mxx[k, 1], reactions.Myy[k, 1], reactions.Mzz[k, 1]]) outputs["M_torq"][:, k] = -1.0 * np.array([reactions.Mxx[k, 2], reactions.Myy[k, 2], reactions.Mzz[k, 2]]) outputs["lss_axial_stress"][:, k] = np.abs(Fx) / Ax + M / S outputs["lss_shear_stress"][:, k] = 2.0 * F / As + np.abs(Mxx) / C hoop = np.zeros(F.shape) outputs["constr_lss_vonmises"][:, k] = vonMisesStressUtilization( outputs["lss_axial_stress"][:, k], hoop, outputs["lss_shear_stress"][:, k], gamma_f * gamma_m * gamma_n, sigma_y, ) outputs["torq_deflection"] = rotor_gearbox_deflection.max() outputs["torq_rotation"] = rotor_gearbox_rotation.max() class HSS_Frame(om.ExplicitComponent): """ Run structural analysis of high speed shaft (HSS) between gearbox and generator (only for geared configurations). Parameters ---------- tilt : float, [deg] Shaft tilt s_hss : numpy array[3], [m] Discretized s-coordinates along drivetrain, measured from bedplate (direct) or tower center (geared) hss_diameter : numpy array[2], [m] Lss discretized diameter values at coordinates hss_wall_thickness : numpy array[2], [m] Lss discretized thickness values at coordinates M_hub : numpy array[3, n_dlcs], [N*m] Moment vector applied to the hub m_generator : float, [kg] Gearbox rotor mass cm_generator : float, [kg] Gearbox center of mass (measured from tower center) I_generator : numpy array[3], [kg*m**2] Gearbox moment of inertia (measured about its cm) hss_E : float, [Pa] modulus of elasticity hss_G : float, [Pa] shear modulus hss_rho : float, [kg/m**3] material density hss_Xy : float, [Pa] yield stress Returns ------- hss_axial_stress : numpy array[5, n_dlcs], [Pa] Axial stress in Curved_beam structure hss_shear_stress : numpy array[5, n_dlcs], [Pa] Shear stress in Curved_beam structure hss_bending_stress : numpy array[5, n_dlcs], [Pa] Hoop stress in Curved_beam structure calculated with Roarks formulae constr_hss_vonmises : numpy array[5, n_dlcs] Sigma_y/Von_Mises F_generator : numpy array[3, n_dlcs], [N] Force vector applied to generator rotor (direct) or gearbox (geared) in hub c.s. M_generator : numpy array[3, n_dlcs], [N*m] Moment vector applied to generator rotor (direct) or gearbox (geared) in hub c.s. """ def initialize(self): self.options.declare("n_dlcs") self.options.declare("modeling_options") def setup(self): n_dlcs = self.options["n_dlcs"] self.add_input("tilt", 0.0, units="deg") self.add_input("s_hss", val=np.zeros(3), units="m") self.add_input("hss_diameter", val=np.zeros(2), units="m") self.add_input("hss_wall_thickness", val=np.zeros(2), units="m") self.add_input("M_hub", val=np.zeros((3, n_dlcs)), units="N*m") self.add_input("gear_ratio", val=1.0) self.add_input("s_generator", val=0.0, units="m") self.add_input("generator_mass", val=0.0, units="kg") self.add_input("generator_I", val=np.zeros(3), units="kg*m**2") self.add_input("brake_mass", val=0.0, units="kg") self.add_input("brake_I", val=np.zeros(3), units="kg*m**2") self.add_input("hss_E", val=0.0, units="Pa") self.add_input("hss_G", val=0.0, units="Pa") self.add_input("hss_rho", val=0.0, units="kg/m**3") self.add_input("hss_Xy", val=0.0, units="Pa") self.add_output("hss_axial_stress", np.zeros((2, n_dlcs)), units="Pa") self.add_output("hss_shear_stress", np.zeros((2, n_dlcs)), units="Pa") self.add_output("hss_bending_stress", np.zeros((2, n_dlcs)), units="Pa") self.add_output("constr_hss_vonmises", np.zeros((2, n_dlcs))) self.add_output("F_generator", val=np.zeros((3, n_dlcs)), units="N") self.add_output("M_generator", val=np.zeros((3, n_dlcs)), units="N*m") def compute(self, inputs, outputs): # Unpack inputs tilt = float(np.deg2rad(inputs["tilt"])) s_hss = inputs["s_hss"] D_hss = inputs["hss_diameter"] t_hss = inputs["hss_wall_thickness"] s_generator = float(inputs["s_generator"]) m_generator = float(inputs["generator_mass"]) I_generator = inputs["generator_I"] m_brake = float(inputs["brake_mass"]) I_brake = inputs["brake_I"] rho = float(inputs["hss_rho"]) E = float(inputs["hss_E"]) G = float(inputs["hss_G"]) sigma_y = float(inputs["hss_Xy"]) gamma_f = float(self.options["modeling_options"]["gamma_f"]) gamma_m = float(self.options["modeling_options"]["gamma_m"]) gamma_n = float(self.options["modeling_options"]["gamma_n"]) M_hub = inputs["M_hub"] gear_ratio = float(inputs["gear_ratio"]) # ------- node data ---------------- n = len(s_hss) inode = np.arange(1, n + 1) ynode = znode = rnode = np.zeros(n) xnode = s_hss.copy() nodes = frame3dd.NodeData(inode, xnode, ynode, znode, rnode) # ------------------------------------ # ------ reaction data ------------ # Reaction at generator attachment rnode = [inode[0]] Rx = Ry = Rz = Rxx = Ryy = Rzz = np.array([RIGID]) reactions = frame3dd.ReactionData(rnode, Rx, Ry, Rz, Rxx, Ryy, Rzz, rigid=RIGID) # ----------------------------------- # ------ frame element data ------------ hsscyl = tube_prop(s_hss, D_hss, t_hss) ielement = np.arange(1, n) N1 = np.arange(1, n) N2 = np.arange(2, n + 1) roll = np.zeros(n - 1) myones = np.ones(n - 1) Ax = hsscyl.Area As = hsscyl.Asx S = hsscyl.S C = hsscyl.C J0 = hsscyl.J0 Jx = hsscyl.Jxx elements = frame3dd.ElementData( ielement, N1, N2, Ax, As, As, J0, Jx, Jx, E * myones, G * myones, roll, rho * myones ) # ----------------------------------- # ------ options ------------ shear = geom = True dx = -1 options = frame3dd.Options(shear, geom, dx) # ----------------------------------- # initialize frameDD3 object myframe = frame3dd.Frame(nodes, reactions, elements, options) # ------ add brake hub and generator rotor (direct) or generator (geared) extra mass ------------ myframe.changeExtraNodeMass( np.r_[inode[1], inode[0]], [m_brake, m_generator], [I_brake[0], I_generator[0]], [I_brake[1], I_generator[1]], [I_brake[2], I_generator[2]], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, s_generator - s_hss[-1]], [0.0, 0.0], [0.0, 0.0], True, ) # ------------------------------------ # ------ static load cases ------------ n_dlcs = self.options["n_dlcs"] gy = 0.0 gx = -gravity * np.sin(tilt) gz = -gravity * np.cos(tilt) for k in range(n_dlcs): # gravity in the X, Y, Z, directions (global) load = frame3dd.StaticLoadCase(gx, gy, gz) # point loads Fx = Fy = Fz = My = Mz = np.zeros(1) Mx = M_hub[0] / gear_ratio load.changePointLoads([inode[-1]], Fx, Fy, Fz, Mx, My, Mz) # ----------------------------------- # Put all together and run myframe.addLoadCase(load) # myframe.write('myframe2.3dd') # Debugging displacements, forces, reactions, internalForces, mass3dd, modal = myframe.run() # Loop over DLCs and append to outputs outputs["F_generator"] = np.zeros((3, n_dlcs)) outputs["M_generator"] = np.zeros((3, n_dlcs)) outputs["hss_axial_stress"] = np.zeros((n - 1, n_dlcs)) outputs["hss_shear_stress"] = np.zeros((n - 1, n_dlcs)) outputs["hss_bending_stress"] = np.zeros((n - 1, n_dlcs)) outputs["constr_hss_vonmises"] = np.zeros((n - 1, n_dlcs)) for k in range(n_dlcs): # shear and bending, one per element (convert from local to global c.s.) Fx = forces.Nx[k, 1::2] Vy = forces.Vy[k, 1::2] Vz = -forces.Vz[k, 1::2] F = np.sqrt(Vz ** 2 + Vy ** 2) Mxx = forces.Txx[k, 1::2] Myy = forces.Myy[k, 1::2] Mzz = -forces.Mzz[k, 1::2] M = np.sqrt(Myy ** 2 + Mzz ** 2) # Record total forces and moments outputs["F_generator"][:, k] = -1.0 * np.array([reactions.Fx[k, 0], reactions.Fy[k, 0], reactions.Fz[k, 0]]) outputs["M_generator"][:, k] = -1.0 * np.array( [reactions.Mxx[k, 0], reactions.Myy[k, 0], reactions.Mzz[k, 0]] ) outputs["hss_axial_stress"][:, k] = np.abs(Fx) / Ax + M / S outputs["hss_shear_stress"][:, k] = 2.0 * F / As + np.abs(Mxx) / C hoop = np.zeros(F.shape) outputs["constr_hss_vonmises"][:, k] = vonMisesStressUtilization( outputs["hss_axial_stress"][:, k], hoop, outputs["hss_shear_stress"][:, k], gamma_f * gamma_m * gamma_n, sigma_y, ) class Nose_Stator_Bedplate_Frame(om.ExplicitComponent): """ Run structural analysis of nose/turret with the generator stator and bedplate Parameters ---------- upwind : boolean Flag whether the design is upwind or downwind tilt : float, [deg] Lss tilt s_nose : numpy array[5], [m] Discretized s-coordinates along drivetrain, measured from bedplate nose_diameter : numpy array[2], [m] Nose outer diameter from bearing 1 to bedplate nose_wall_thickness : numpy array[2], [m] Nose wall thickness x_bedplate : numpy array[12], [m] Bedplate centerline x-coordinates z_bedplate : numpy array[12], [m] Bedplate centerline z-coordinates x_bedplate_inner : numpy array[12], [m] Bedplate lower curve x-coordinates z_bedplate_inner : numpy array[12], [m] Bedplate lower curve z-coordinates x_bedplate_outer : numpy array[12], [m] Bedplate outer curve x-coordinates z_bedplate_outer : numpy array[12], [m] Bedplate outer curve z-coordinates D_bedplate : numpy array[12], [m] Bedplate diameters t_bedplate : numpy array[12], [m] Bedplate wall thickness (mirrors input) s_mb1 : float, [m] Bearing 1 s-coordinate along drivetrain, measured from bedplate s_mb2 : float, [m] Bearing 2 s-coordinate along drivetrain, measured from bedplate mb1_mass : float, [kg] component mass mb1_I : numpy array[3], [kg*m**2] component I mb1_max_defl_ang : float, [rad] Maximum allowable deflection angle mb2_mass : float, [kg] component mass mb2_I : numpy array[3], [kg*m**2] component I mb2_max_defl_ang : float, [rad] Maximum allowable deflection angle s_stator : float, [m] Generator stator attachment to lss s-coordinate measured from bedplate generator_stator_mass : float, [kg] Generator stator mass generator_stator_I : numpy array[3], [kg*m**2] Generator stator moment of inertia (measured about cm) F_mb1 : numpy array[3, n_dlcs], [N] Force vector applied to bearing 1 in hub c.s. F_mb2 : numpy array[3, n_dlcs], [N] Force vector applied to bearing 2 in hub c.s. M_mb1 : numpy array[3, n_dlcs], [N*m] Moment vector applied to bearing 1 in hub c.s. M_mb2 : numpy array[3, n_dlcs], [N*m] Moment vector applied to bearing 2 in hub c.s. other_mass : float, [kg] Mass of other nacelle components that rest on mainplate bedplate_E : float, [Pa] modulus of elasticity bedplate_G : float, [Pa] shear modulus bedplate_rho : float, [kg/m**3] material density bedplate_Xy : float, [Pa] yield stress Returns ------- mb1_deflection : numpy array[n_dlcs], [m] Total deflection distance of bearing 1 mb2_deflection : numpy array[n_dlcs], [m] Total deflection distance of bearing 2 stator_deflection : float, [m] Maximum deflection distance at stator attachment mb1_rotation : numpy array[n_dlcs], [rad] Total rotation angle of bearing 1 mb2_rotation : numpy array[n_dlcs], [rad] Total rotation angle of bearing 2 stator_rotation : float, [rad] Maximum rotation angle at stator attachment base_F : numpy array[3, n_dlcs], [N] Total reaction force at bedplate base in tower top coordinate system base_M : numpy array[3, n_dlcs], [N*m] Total reaction moment at bedplate base in tower top coordinate system bedplate_nose_axial_stress : numpy array[12+3, n_dlcs], [Pa] Axial stress in Curved_beam structure bedplate_nose_shear_stress : numpy array[12+3, n_dlcs], [Pa] Shear stress in Curved_beam structure bedplate_nose_bending_stress : numpy array[12+3, n_dlcs], [Pa] Hoop stress in Curved_beam structure calculated with Roarks formulae constr_bedplate_vonmises : numpy array[12+3, n_dlcs] Sigma_y/Von_Mises constr_mb1_defl : numpy array[n_dlcs] Angular deflection relative to limit of bearing 1 (should be <1) constr_mb2_defl : numpy array[n_dlcs] Angular deflection relative to limit of bearing 2 (should be <1) """ def initialize(self): self.options.declare("n_dlcs") self.options.declare("modeling_options") def setup(self): n_dlcs = self.options["n_dlcs"] self.add_discrete_input("upwind", True) self.add_input("tilt", 0.0, units="deg") self.add_input("s_nose", val=np.zeros(5), units="m") self.add_input("nose_diameter", np.zeros(2), units="m") self.add_input("nose_wall_thickness", np.zeros(2), units="m") self.add_input("x_bedplate", val=np.zeros(12), units="m") self.add_input("z_bedplate", val=np.zeros(12), units="m") self.add_input("x_bedplate_inner", val=np.zeros(12), units="m") self.add_input("z_bedplate_inner", val=np.zeros(12), units="m") self.add_input("x_bedplate_outer", val=np.zeros(12), units="m") self.add_input("z_bedplate_outer", val=np.zeros(12), units="m") self.add_input("D_bedplate", val=np.zeros(12), units="m") self.add_input("t_bedplate", val=np.zeros(12), units="m") self.add_input("s_mb1", val=0.0, units="m") self.add_input("s_mb2", val=0.0, units="m") self.add_input("mb1_mass", 0.0, units="kg") self.add_input("mb1_I", np.zeros(3), units="kg*m**2") self.add_input("mb1_max_defl_ang", 0.0, units="rad") self.add_input("mb2_mass", 0.0, units="kg") self.add_input("mb2_I", np.zeros(3), units="kg*m**2") self.add_input("mb2_max_defl_ang", 0.0, units="rad") self.add_input("s_stator", val=0.0, units="m") self.add_input("generator_stator_mass", val=0.0, units="kg") self.add_input("generator_stator_I", val=np.zeros(3), units="kg*m**2") self.add_input("F_mb1", val=np.zeros((3, n_dlcs)), units="N") self.add_input("F_mb2", val=np.zeros((3, n_dlcs)), units="N") self.add_input("M_mb1", val=
np.zeros((3, n_dlcs))
numpy.zeros
""" This library collects a bunch of Optimizers inspired by the paper The older optimizers are stored in Optimizer.py. Those classes are equipped with a `step_simple` function taking in scores and codes to generate the next batch of codes. """ # from matplotlib import use as use_backend # use_backend("Agg") import matplotlib.pylab as plt # plt.ioff() # import os import time import sys # import utils import numpy as np from numpy.linalg import norm from numpy.random import randn from numpy import sqrt, zeros, abs, floor, log, log2, eye, exp from geometry_utils import ExpMap, VecTransport, radial_proj, orthogonalize, renormalize orig_stdout = sys.stdout #%% Classic Optimizers as Reference class CholeskyCMAES: """ Note this is a variant of CMAES Cholesky suitable for high dimensional optimization""" def __init__(self, space_dimen, population_size=None, init_sigma=3.0, init_code=None, Aupdate_freq=10, maximize=True, random_seed=None, optim_params={}): N = space_dimen self.space_dimen = space_dimen # Overall control parameter self.maximize = maximize # if the program is to maximize or to minimize # Strategy parameter setting: Selection if population_size is None: self.lambda_ = int(4 + floor(3 * log2(N))) # population size, offspring number # the relation between dimension and population size. else: self.lambda_ = population_size # use custom specified population size mu = self.lambda_ / 2 # number of parents/points for recombination # Select half the population size as parents weights = log(mu + 1 / 2) - (log(np.arange(1, 1 + floor(mu)))) # muXone array for weighted recombination self.mu = int(floor(mu)) self.weights = weights / sum(weights) # normalize recombination weights array mueff = self.weights.sum() ** 2 / sum(self.weights ** 2) # variance-effectiveness of sum w_i x_i self.weights.shape = (1, -1) # Add the 1st dim 1 to the weights mat self.mueff = mueff # add to class variable self.sigma = init_sigma # Note by default, sigma is None here. print("Space dimension: %d, Population size: %d, Select size:%d, Optimization Parameters:\nInitial sigma: %.3f" % (self.space_dimen, self.lambda_, self.mu, self.sigma)) # Strategy parameter settiself.weightsng: Adaptation self.cc = 4 / (N + 4) # defaultly 0.0009756 self.cs = sqrt(mueff) / (sqrt(mueff) + sqrt(N)) # 0.0499 self.c1 = 2 / (N + sqrt(2)) ** 2 # 1.1912701410022985e-07 if "cc" in optim_params.keys(): # if there is outside value for these parameter, overwrite them self.cc = optim_params["cc"] if "cs" in optim_params.keys(): self.cs = optim_params["cs"] if "c1" in optim_params.keys(): self.c1 = optim_params["c1"] self.damps = 1 + self.cs + 2 * max(0, sqrt((mueff - 1) / (N + 1)) - 1) # damping for sigma usually close to 1 print("cc=%.3f, cs=%.3f, c1=%.3f damps=%.3f" % (self.cc, self.cs, self.c1, self.damps)) if init_code is not None: self.init_x = np.asarray(init_code) self.init_x.shape = (1, N) else: self.init_x = None # FIXED Nov. 1st self.xmean = zeros((1, N)) self.xold = zeros((1, N)) # Initialize dynamic (internal) strategy parameters and constants self.pc = zeros((1, N)) self.ps = zeros((1, N)) # evolution paths for C and sigma self.A = eye(N, N) # covariant matrix is represent by the factors A * A '=C self.Ainv = eye(N, N) self.eigeneval = 0 # track update of B and D self.counteval = 0 if Aupdate_freq is None: self.update_crit = self.lambda_ / self.c1 / N / 10 else: self.update_crit = Aupdate_freq * self.lambda_ self.chiN = sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2)) # expectation of ||N(0,I)|| == norm(randn(N,1)) in 1/N expansion formula self._istep = 0 def step_simple(self, scores, codes): """ Taking scores and codes to return new codes, without generating images Used in cases when the images are better handled in outer objects like Experiment object """ # Note it's important to decide which variable is to be saved in the `Optimizer` object # Note to confirm with other code, this part is transposed. # set short name for everything to simplify equations N = self.space_dimen lambda_, mu, mueff, chiN = self.lambda_, self.mu, self.mueff, self.chiN cc, cs, c1, damps = self.cc, self.cs, self.c1, self.damps sigma, A, Ainv, ps, pc, = self.sigma, self.A, self.Ainv, self.ps, self.pc, # Sort by fitness and compute weighted mean into xmean if self.maximize is False: code_sort_index = np.argsort( scores) # add - operator it will do maximization. else: code_sort_index = np.argsort(-scores) # scores = scores[code_sort_index] # Ascending order. minimization if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images if self.init_x is None: select_n = len(code_sort_index[0:mu]) temp_weight = self.weights[:, :select_n] / np.sum(self.weights[:, :select_n]) # in case the codes is not enough self.xmean = temp_weight @ codes[code_sort_index[0:mu], :] else: self.xmean = self.init_x else: self.xold = self.xmean self.xmean = self.weights @ codes[code_sort_index[0:mu], :] # Weighted recombination, new mean value # Cumulation statistics through steps: Update evolution paths randzw = self.weights @ self.randz[code_sort_index[0:mu], :] ps = (1 - cs) * ps + sqrt(cs * (2 - cs) * mueff) * randzw pc = (1 - cc) * pc +
sqrt(cc * (2 - cc) * mueff)
numpy.sqrt
#!/usr/bin/env python from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (run_module_suite, assert_allclose, assert_, assert_raises) import pywt # Check that float32, float64, complex64, complex128 are preserved. # Other real types get converted to float64. # complex256 gets converted to complex128 dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64, np.complex128] dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64, np.complex128] # test complex256 as well if it is available try: dtypes_in += [np.complex256, ] dtypes_out += [np.complex128, ] except AttributeError: pass def test_dwt_idwt_basic(): x = [3, 7, 1, 1, -2, 5, 4, 6] cA, cD = pywt.dwt(x, 'db2') cA_expect = [5.65685425, 7.39923721, 0.22414387, 3.33677403, 7.77817459] cD_expect = [-2.44948974, -1.60368225, -4.44140056, -0.41361256, 1.22474487] assert_allclose(cA, cA_expect) assert_allclose(cD, cD_expect) x_roundtrip = pywt.idwt(cA, cD, 'db2') assert_allclose(x_roundtrip, x, rtol=1e-10) # mismatched dtypes OK x_roundtrip2 = pywt.idwt(cA.astype(np.float64), cD.astype(np.float32), 'db2') assert_allclose(x_roundtrip2, x, rtol=1e-7, atol=1e-7) assert_(x_roundtrip.dtype == np.float64) def test_dwt_idwt_dtypes(): wavelet = pywt.Wavelet('haar') for dt_in, dt_out in zip(dtypes_in, dtypes_out): x = np.ones(4, dtype=dt_in) errmsg = "wrong dtype returned for {0} input".format(dt_in) cA, cD = pywt.dwt(x, wavelet) assert_(cA.dtype == cD.dtype == dt_out, "dwt: " + errmsg) x_roundtrip = pywt.idwt(cA, cD, wavelet) assert_(x_roundtrip.dtype == dt_out, "idwt: " + errmsg) def test_dwt_idwt_basic_complex(): x = np.asarray([3, 7, 1, 1, -2, 5, 4, 6]) x = x + 0.5j*x cA, cD = pywt.dwt(x, 'db2') cA_expect = np.asarray([5.65685425, 7.39923721, 0.22414387, 3.33677403, 7.77817459]) cA_expect = cA_expect + 0.5j*cA_expect cD_expect = np.asarray([-2.44948974, -1.60368225, -4.44140056, -0.41361256, 1.22474487]) cD_expect = cD_expect + 0.5j*cD_expect assert_allclose(cA, cA_expect) assert_allclose(cD, cD_expect) x_roundtrip = pywt.idwt(cA, cD, 'db2') assert_allclose(x_roundtrip, x, rtol=1e-10) def test_dwt_idwt_partial_complex(): x = np.asarray([3, 7, 1, 1, -2, 5, 4, 6]) x = x + 0.5j*x cA, cD = pywt.dwt(x, 'haar') cA_rec_expect = np.array([5.0+2.5j, 5.0+2.5j, 1.0+0.5j, 1.0+0.5j, 1.5+0.75j, 1.5+0.75j, 5.0+2.5j, 5.0+2.5j]) cA_rec = pywt.idwt(cA, None, 'haar') assert_allclose(cA_rec, cA_rec_expect) cD_rec_expect = np.array([-2.0-1.0j, 2.0+1.0j, 0.0+0.0j, 0.0+0.0j, -3.5-1.75j, 3.5+1.75j, -1.0-0.5j, 1.0+0.5j]) cD_rec = pywt.idwt(None, cD, 'haar') assert_allclose(cD_rec, cD_rec_expect) assert_allclose(cA_rec + cD_rec, x) def test_dwt_wavelet_kwd(): x = np.array([3, 7, 1, 1, -2, 5, 4, 6]) w = pywt.Wavelet('sym3') cA, cD = pywt.dwt(x, wavelet=w, mode='constant') cA_expect = [4.38354585, 3.80302657, 7.31813271, -0.58565539, 4.09727044, 7.81994027] cD_expect = [-1.33068221, -2.78795192, -3.16825651, -0.67715519, -0.09722957, -0.07045258] assert_allclose(cA, cA_expect) assert_allclose(cD, cD_expect) def test_dwt_coeff_len(): x = np.array([3, 7, 1, 1, -2, 5, 4, 6]) w = pywt.Wavelet('sym3') ln_modes = [pywt.dwt_coeff_len(len(x), w.dec_len, mode) for mode in pywt.Modes.modes] expected_result = [6, ] * len(pywt.Modes.modes) expected_result[pywt.Modes.modes.index('periodization')] = 4 assert_allclose(ln_modes, expected_result) ln_modes = [pywt.dwt_coeff_len(len(x), w, mode) for mode in pywt.Modes.modes] assert_allclose(ln_modes, expected_result) def test_idwt_none_input(): # None input equals arrays of zeros of the right length res1 = pywt.idwt([1, 2, 0, 1], None, 'db2', 'symmetric') res2 = pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'symmetric') assert_allclose(res1, res2, rtol=1e-15, atol=1e-15) res1 = pywt.idwt(None, [1, 2, 0, 1], 'db2', 'symmetric') res2 = pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'symmetric') assert_allclose(res1, res2, rtol=1e-15, atol=1e-15) # Only one argument at a time can be None assert_raises(ValueError, pywt.idwt, None, None, 'db2', 'symmetric') def test_idwt_invalid_input(): # Too short, min length is 4 for 'db4': assert_raises(ValueError, pywt.idwt, [1, 2, 4], [4, 1, 3], 'db4', 'symmetric') def test_dwt_single_axis(): x = [[3, 7, 1, 1], [-2, 5, 4, 6]] cA, cD = pywt.dwt(x, 'db2', axis=-1) cA0, cD0 = pywt.dwt(x[0], 'db2') cA1, cD1 = pywt.dwt(x[1], 'db2') assert_allclose(cA[0], cA0) assert_allclose(cA[1], cA1) assert_allclose(cD[0], cD0)
assert_allclose(cD[1], cD1)
numpy.testing.assert_allclose
#!/usr/bin/env python # vim: set fileencoding=utf-8 ''' opyright (c) <NAME> 2016 Implements the Instruments ojects that are used by the Curve objects to hold attributes of market data and return discount factors. Note that cash and forward instruments calculate discount factors analytically, discount factors for swaps are calculated using a root-finding algorithm. ''' # python libraries from __future__ import division import dateutil.relativedelta import datetime import numpy as np import scipy.interpolate import scipy.optimize import sys import time # qlib libraries from qbootstrapper.swapscheduler import Schedule if sys.version_info > (3,): long = int class Instrument(object): '''Base Instrument convenience class Class is primarily used for the date adjustment methods that are used by the sub-classes. ''' def __init__(self): pass def _date_adjust(self, date, adjustment): '''Method to return a date that is adjusted according to the adjustment convention method defined Arguments: date (datetime) : Date to be adjusted adjustment (str) : Adjustment type available: unadjusted, following, preceding, modified following ''' if adjustment == 'unadjusted': return date elif adjustment == 'following': if date.weekday() < 5: return date else: return date + self._timedelta(7 - date.weekday(), 'days') elif adjustment == 'preceding': if date.weekday() < 5: return date else: return date - self._timedelta(max(0, date.weekday() - 5), 'days') elif adjustment == 'modified following': if date.month == self._date_adjust(date, 'following').month: return self._date_adjust(date, 'following') else: return date - self._timedelta(7 - date.weekday(), 'days') else: raise Exception('Adjustment period "{adjustment}" ' 'not recognized'.format(**locals())) @staticmethod def _timedelta(length_num, length_type): '''Static method to return the date +/- some length with a length type Arguments: length_num (int) : Length of the period (e.g., if the period is 6 months, this is 6) length_type (str) : Period type (e.g., if the period is 6 months, this is months) available: months, weeks, days ''' if length_type == 'months': return dateutil.relativedelta.relativedelta(months=length_num) elif length_type == 'weeks': return dateutil.relativedelta.relativedelta(weeks=length_num) elif length_type == 'days': return dateutil.relativedelta.relativedelta(days=length_num) else: raise Exception('Period length "{length_type}" ' 'not recognized'.format(**locals())) @staticmethod def daycount(effective, maturity, basis): '''Static method to return the accrual length, as a decimal, between an effective and a maturity subject to a basis convention Arguments: effective (datetime) : First day of the accrual period maturity (datetime) : Last day of the accrual period basis (str) : Basis convention available: Act360, Act365, 30360, 30E360 ''' if type(effective) == np.datetime64: timestamp = effective.astype('<M8[s]').astype(np.uint64) effective = datetime.datetime.fromtimestamp(timestamp) timestamp = maturity.astype('<M8[s]').astype(np.uint64) maturity = datetime.datetime.fromtimestamp(timestamp) if basis.lower() == 'act360': accrual_period = (maturity - effective).days / 360 elif basis.lower() == 'act365': accrual_period = (maturity - effective).days / 365 elif basis.lower() == '30360': start, end = min(effective.day, 30), min(maturity.day, 30) months = (30 * (maturity.month - effective.month) + 360 * (maturity.year - effective.year)) accrual_period = (end - start + months) / 360 elif basis.lower() == '30e360': start, end = max(0, 30 - effective.day), min(30, maturity.day) months = 30 * (maturity.month - effective.month - 1) years = 360 * (maturity.year - effective.year) accrual_period = (years + months + start + end) / 360 else: raise Exception('Accrual basis "{basis}" ' 'not recognized'.format(**locals())) return accrual_period class LIBORInstrument(Instrument): '''LIBOR cash instrument class for use with the Swap Curve bootstrapper. This class can be utilized to hold the market data and conventions for a single cash LIBOR-equivalent contract, which is later utilized The forward rate is calculated as the 1 ------------- 1 + (r * accrual_days / days_in_year) Arguments: effective (datetime) : Effective date of the LIBOR-equivalent cash instrument rate (float) : Interest rate of the instrument term_length (int) : Length of the instrument period curve (Curve) : Curve being built, necessary for callbacks to the curve for discount factors kwargs ------ basis (str) : Accrual basis for the period [default: Act360] length_type : Length of the term_length in units [default: months] payment_adjustment (str): Adjustment to the payment date from the end of the accrual period [default: unadjusted] ''' def __init__(self, effective, rate, term_length, curve, basis='Act360', length_type='months', payment_adjustment='unadjusted'): # assignments self.effective = effective self.rate = rate self.term_length = term_length self.basis = basis self.length_type = length_type self.payment_adjustment = payment_adjustment self.instrument_type = 'Cash' # calculations self._date_calculations() self.accrual_period = super(LIBORInstrument, self).daycount(self.effective, self.maturity, self.basis) def _date_calculations(self): '''Method for setting the accrual period and dates for a Cash instrument ''' self._term = super(LIBORInstrument, self)._timedelta(self.term_length, self.length_type) self.maturity = self.effective + self._term self.payment_date = super(LIBORInstrument, self)._date_adjust(self.maturity, self.payment_adjustment) def discount_factor(self): '''Method for returning the discount factor for a Cash rate ''' return np.log(1 / (1 + (self.rate * self.accrual_period))) class FRAInstrumentByDates(Instrument): '''FRA instrument class for use with the Swap Curve bootstrapper. This class can be utilized to hold the market data and conventions for a single FRA contract, which is later utilized The forward rate is calculated as the DF[effective] ------------- 1 + (r * accrual_days / days_in_year) Arguments: effective (datetime) : First day of the accrual period of the FRA maturity (datetime) : Last day of the accrual period of the FRA rate (float) : Fixing rate of the FRA curve (Curve) : Curve being built, necessary for callbacks to the curve for discount factors kwargs ------ basis (str) : Accrual basis for the period [default: Act360] TODO: Add FRAInstrumentByTenor ''' def __init__(self, effective, maturity, rate, curve, basis='Act360'): # assignments self.effective = effective self.maturity = maturity self.rate = rate self.basis = basis self.curve = curve self.accrual_period = super(FRAInstrumentByDates, self).daycount(self.effective, self.maturity, self.basis) self.instrument_type = 'FRA' def discount_factor(self): '''Method for returning the discount factor for a FRA ''' numerator = self.curve.discount_factor(self.effective) denominator = 1 + (self.rate * self.accrual_period) discount_factor = numerator / denominator return np.log(discount_factor) class FuturesInstrumentByDates(Instrument): '''Futures instrument class for use with Swap Curve bootstrapper. This class can be utilized to hold the market data and conventions for a single Futures contract, which is later utilized in when the .build() method is called on the curve where this instrument has been added. The future rate is calculated as the DF[effective] ------------- 1 + ((100 - price) / 100 * accrual_days / days_in_year) Arguments: effective (datetime) : First day of the accrual period of the future maturity (datetime) : Last day of the accrual period of the future price (float) : Price of the future (assumes expiry price of the future is 100) curve (Curve) : Curve being built, necessary for callbacks to the curve for discount factors kwargs ------ basis (str) : Accrual basis for the period [default: Act360] TODO: Add FuturesInstrumentByTicker TODO: Add Futures convexity calculation ''' def __init__(self, effective, maturity, price, curve, basis='Act360'): # assignments self.effective = effective self.maturity = maturity self.price = price self.rate = (100 - price) / 100 self.basis = basis self.curve = curve self.accrual_period = super(FuturesInstrumentByDates, self).daycount(self.effective, self.maturity, self.basis) self.instrument_type = 'Futures' def discount_factor(self): '''Method for returning the discount factor for a future ''' discount_factor = (self.curve.discount_factor(self.effective) / (1 + (self.rate * self.accrual_period))) return np.log(discount_factor) class SwapInstrument(Instrument): '''Base class for swap instruments. See OISSwapInstrument and LIBORSwapInstrument for more detailed specs. ''' def __init__(self, effective, maturity, rate, curve, fixed_basis='30360', float_basis='Act360', fixed_length=6, float_length=6, fixed_period_length='months', float_period_length='months', fixed_period_adjustment='unadjusted', float_period_adjustment='unadjusted', fixed_payment_adjustment='unadjusted', float_payment_adjustment='unadjusted', second=False, penultimate=False, fixing_lag=0, notional=100, rate_period=1, rate_period_length='days', rate_basis='Act360'): # assignments self.effective = effective self.maturity = maturity if bool(second): self.second = second if bool(penultimate): self.penultimate = penultimate self.rate = rate self.curve = curve self.fixing_lag = fixing_lag self.notional = notional self.fixed_basis = fixed_basis self.fixed_length = fixed_length self.fixed_period_length = fixed_period_length self.fixed_period_adjustment = fixed_period_adjustment self.fixed_payment_adjustment = fixed_payment_adjustment self.float_basis = float_basis self.float_length = float_length self.float_period_length = float_period_length self.float_period_adjustment = float_period_adjustment self.float_payment_adjustment = float_payment_adjustment self.rate_period = rate_period self.rate_period_length = rate_period_length self.rate_basis = rate_basis self._set_schedules() def _set_schedules(self): '''Sets the fixed and floating schedules of the swap. ''' if hasattr(self, 'second'): self.fixed_schedule = Schedule(self.effective, self.maturity, self.fixed_length, period_length=self.fixed_period_length, second=self.second, penultimate=self.penultimate, period_adjustment=self.fixed_period_adjustment, payment_adjustment=self.fixed_payment_adjustment) self.float_schedule = Schedule(self.effective, self.maturity, self.float_length, period_length=self.float_period_length, second=self.second, penultimate=self.penultimate, period_adjustment=self.float_period_adjustment, payment_adjustment=self.float_payment_adjustment) else: self.fixed_schedule = Schedule(self.effective, self.maturity, self.fixed_length, period_length=self.fixed_period_length, period_adjustment=self.fixed_period_adjustment, payment_adjustment=self.fixed_payment_adjustment) self.float_schedule = Schedule(self.effective, self.maturity, self.float_length, period_length=self.float_period_length, period_adjustment=self.float_period_adjustment, payment_adjustment=self.float_payment_adjustment) class OISSwapInstrument(SwapInstrument): '''OIS swap instrument class for use with Swap Curve bootstrapper. This class can be utilized to hold the market data and conventions for a single swap, which is later utilized in when the .build() method is called on the curve where this instrument has been added. Arguments: effective (datetime) : First accrual start date of the swap maturity (datetime) : Last accrual end date of the swap rate (float) : Fixed rate curve (Curve object) : Associated curve object. There are callbacks to the curve for prior discount factors, so it must be assigned kwargs (optional) ----------------- fixed_basis (string) : Accrual basis of the fixed leg. See daycount method of base Instrument class for implemented conventions [default: '30360'] float_basis (string) : Accrual basis of the floating leg. See daycount method of base Instrument class for implemented conventions [default: 'Act360'] fixed_length (int) : Length of the fixed accrual period, must be combined with the 'fixed_period_length' argument [default: 6] float_length (int) : Length of the floating accrual period, must be combined with the 'float_period_length' argument. Should usually match the rate_period argument [default: 6] fixed_period_length (string) : Length of the fixed accrual period timescale. See the _timedelta method of the base Instrument class for implemented conventions [default: 'months'] float_period_length (string) : Length of the floating accrual period timescale. See the _timedelta method of the base Instrument class for implemented conventions [default: 'months'] fixed_period_adjustment (string) : Adjustment type for fixed accrual periods. See the _date_adjust method of the base Instrument class for implemented conventions [default: 'unadjusted'] float_period_adjustment (string) : Adjustment type for floating accrual periods. See the _date_adjust method for the base Instrument class for implemented conventions [default: 'unadjusted'] fixed_payment_adjustment (string) : Adjustment type for fixed payment periods. See the _date_adjust method for the base Instrument class for implemented conventions [default: 'unadjusted'] float_payment_adjustment (string) : Adjustment type for floating payment periods. See the _date_adjust method for the base Instrument class for implemented conventions [default: 'unadjusted'] second (datetime) : Specify the first regular roll date for the accrual periods [default: False] penultimate (datetime) : Specify the last regular roll date for the accrual periods [default: False] fixing_lag (int) : Days prior to the first accrual period that the floating rate is fixed [default: 0] notional (int) : Notional amount for use with calculating swap the swap value. Larger numbers will be slower, but more exact. [default: 100] rate_period (int) : Length of the floating rate accrual period, must be combined with the 'rate_period_length' argument. Should usually match the float_length argument. [default: 1] rate_period_length (string) : Length of the rate accrual period timescale. See the _timedelta method of the base Instrument class for implemented convetions [default: 'days'] rate_basis (string) : Accrual basis of the LIBOR rate. See the daycount method of the base Instrument class for implemented conventions. [default: 'Act360'] ''' def __init__(self, *args, **kwargs): super(OISSwapInstrument, self).__init__(*args, **kwargs) self.instrument_type = 'OIS_swap' def discount_factor(self): '''Returns the discount factor for the swap using Newton's method root finder. ''' return scipy.optimize.newton(self._swap_value, 0) def _swap_value(self, guess, args=()): '''Private method used for root finding discount factor The main function for use with the root-finder. This function returns the value of a swap given a discount factor. It appends the discount factor to the existent array with the date of the instrument, calculates each cashflow and PV for each leg, and returns the net value of the pay fixed swap. Arguments: guess (float) : guess to be appended to a copy of the attached curve. ''' if not isinstance(guess, (int, float, long, complex)): # simultaneous bootstrapping sets the guess[0] as the ois guess guess = guess[0] temp_curve = self.curve.curve temp_curve = np.append(self.curve.curve, np.array([(np.datetime64(self.maturity.strftime('%Y-%m-%d')), time.mktime(self.maturity.timetuple()), guess)], dtype=self.curve.curve.dtype)) interpolator = scipy.interpolate.PchipInterpolator(temp_curve['timestamp'], temp_curve['discount_factor']) for period in self.float_schedule.periods: forward_rate = self.__forward_rate(interpolator, period) period['cashflow'] = forward_rate * self.notional payment_dates = self.float_schedule.periods['payment_date'].astype('<M8[s]') discount_factors = np.exp(interpolator(payment_dates.astype(np.uint64))) self.float_schedule.periods['PV'] = self.float_schedule.periods['cashflow'] * discount_factors float_leg = self.float_schedule.periods['PV'].sum() for period in self.fixed_schedule.periods: forward_rate = self.rate accrual_period = super(OISSwapInstrument, self).daycount(period['accrual_start'], period['accrual_end'], self.fixed_basis) period['cashflow'] = forward_rate * accrual_period * self.notional payment_dates = self.fixed_schedule.periods['payment_date'].astype('<M8[s]') discount_factors = np.exp(interpolator(payment_dates.astype(np.uint64))) self.fixed_schedule.periods['PV'] = self.fixed_schedule.periods['cashflow'] * discount_factors fixed_leg = self.fixed_schedule.periods['PV'].sum() return float_leg - fixed_leg def __forward_rate(self, interpolator, period): '''Private method for calculating the compounded forward rate for an OIS swap. The compounded forward rate is calculated as the DF[i] Π [ ------- ] - 1 i DF[i+1] Note that it achieves very speedily by calculating each forward rate (+ 1) for the entire date array, and then calculating the product of the array. Additionally, there are 3 entries for every Friday, as each friday should compound 3 times (no new rates on weekends). Arguments: interpolator (scipy.interpolate): temporary interpolator object that includes the current swap maturity guess discount factor. period (np.recarray) : 1 line of the swapschedule array must contain the accrual start and end dates ''' start_date = period['accrual_start'].astype('<M8[s]') end_date = period['accrual_end'].astype('<M8[s]') one_day = np.timedelta64(1, 'D') start_day = start_date.astype(object).weekday() rate = 1 first_dates =
np.arange(start_date, end_date, one_day)
numpy.arange
import numpy as np import functools class Ket: __slots__ = "data", "_order", "_num", "__dict__" def __init__(self, data: iter): self.data = data self._order = list(range(len(data))) self._num = int(''.join([str(e) for e in data]), 2) def __iter__(self): ''' Returns the Iterator object ''' return iter(self.data) def __len__(self): return len(self.data) def __eq__(self, other): assert False return list(self.data) == list(other.data) and list(self._order) == list(other._order) # this breaks putting it inside a numpy array?! # def __getitem__(self, item): # return self.data[item] def __repr__(self) -> str: SUB = str.maketrans("0123456789", "₀₁₂₃₄₅₆₇₈₉") return f"|{self.num},{self.energy}:" + f"{''.join([['↓', '↑'][int(e)] + str(self._order[i]) for i, e in enumerate(self)])}⟩".translate(SUB) def __lt__(self, other): assert isinstance(other, Ket) return self.energy < other.energy def __add__(self, other): return Ket(np.array(list(self) + list(other))) # THIS IS INELEGANT @functools.cached_property def energy(self) -> int: return sum([int(d) for d in self]) @property def num(self) -> int: return self._num def reorder(self, order): self._order = order self._num = int(''.join([str(e) for e in self.data[self._order]]), 2) class Basis(tuple): @functools.cached_property def num_qubits(self): return int(np.log2(len(self))) def reorder(self, order): x = np.empty((len(self)), dtype=Ket) x[:] = self return Basis(tuple(x[order])) def __repr__(self): return "[" + ' '.join([str(b.num) for b in self]) + "]" def tensor(self, *others): res = self for other in others: res = Basis((i + j for i in res for j in other)) return res @functools.lru_cache(maxsize=1000, typed=False) def canonical_basis(n): return Basis([Ket(np.array(list(f"{i:b}".zfill(n)))) for i in range(2 ** n)]) @functools.lru_cache(maxsize=1000, typed=False) def energy_basis(n): basis = canonical_basis(n) energy = [b.energy for b in basis] nums = [b.num for b in basis] idx =
np.lexsort((nums, energy))
numpy.lexsort
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from math import gcd from collections import namedtuple from typing import Callable, Tuple, Union import numpy as np from scipy import special from scipy.stats import distributions from ... import tensor as mt from ...core import ExecutableTuple from ...typing import TileableType KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue')) Ks_2sampResult = KstestResult def _compute_prob_inside_method(m, n, g, h): # pragma: no cover """ Count the proportion of paths that stay strictly inside two diagonal lines. Parameters ---------- m : integer m > 0 n : integer n > 0 g : integer g is greatest common divisor of m and n h : integer 0 <= h <= lcm(m,n) Returns ------- p : float The proportion of paths that stay inside the two lines. Count the integer lattice paths from (0, 0) to (m, n) which satisfy |x/m - y/n| < h / lcm(m, n). The paths make steps of size +1 in either positive x or positive y directions. We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk. <NAME>., "The Significance Probability of the Smirnov Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86. """ # Probability is symmetrical in m, n. Computation below uses m >= n. if m < n: m, n = n, m mg = m // g ng = n // g # Count the integer lattice paths from (0, 0) to (m, n) which satisfy # |nx/g - my/g| < h. # Compute matrix A such that: # A(x, 0) = A(0, y) = 1 # A(x, y) = A(x, y-1) + A(x-1, y), for x,y>=1, except that # A(x, y) = 0 if |x/m - y/n|>= h # Probability is A(m, n)/binom(m+n, n) # Optimizations exist for m==n, m==n*p. # Only need to preserve a single column of A, and only a sliding window of it. # minj keeps track of the slide. minj, maxj = 0, min(int(np.ceil(h / mg)), n + 1) curlen = maxj - minj # Make a vector long enough to hold maximum window needed. lenA = min(2 * maxj + 2, n + 1) # This is an integer calculation, but the entries are essentially # binomial coefficients, hence grow quickly. # Scaling after each column is computed avoids dividing by a # large binomial coefficient at the end, but is not sufficient to avoid # the large dynamic range which appears during the calculation. # Instead we rescale based on the magnitude of the right most term in # the column and keep track of an exponent separately and apply # it at the end of the calculation. Similarly when multiplying by # the binomial coefficient dtype = np.float64 A = np.zeros(lenA, dtype=dtype) # Initialize the first column A[minj:maxj] = 1 expnt = 0 for i in range(1, m + 1): # Generate the next column. # First calculate the sliding window lastminj, lastlen = minj, curlen minj = max(int(np.floor((ng * i - h) / mg)) + 1, 0) minj = min(minj, n) maxj = min(int(np.ceil((ng * i + h) / mg)), n + 1) if maxj <= minj: return 0 # Now fill in the values A[0:maxj - minj] = np.cumsum(A[minj - lastminj:maxj - lastminj]) curlen = maxj - minj if lastlen > curlen: # Set some carried-over elements to 0 A[maxj - minj:maxj - minj + (lastlen - curlen)] = 0 # Rescale if the right most value is over 2**900 val = A[maxj - minj - 1] _, valexpt = math.frexp(val) if valexpt > 900: # Scaling to bring down to about 2**800 appears # sufficient for sizes under 10000. valexpt -= 800 A = np.ldexp(A, -valexpt) expnt += valexpt val = A[maxj - minj - 1] # Now divide by the binomial (m+n)!/m!/n! for i in range(1, n + 1): val = (val * i) / (m + i) _, valexpt = math.frexp(val) if valexpt < -128: val = np.ldexp(val, -valexpt) expnt += valexpt # Finally scale if needed. return np.ldexp(val, expnt) def _compute_prob_outside_square(n, h): # pragma: no cover """ Compute the proportion of paths that pass outside the two diagonal lines. Parameters ---------- n : integer n > 0 h : integer 0 <= h <= n Returns ------- p : float The proportion of paths that pass outside the lines x-y = +/-h. """ # Compute Pr(D_{n,n} >= h/n) # Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... ) / binom(2n, n) # This formulation exhibits subtractive cancellation. # Instead divide each term by binom(2n, n), then factor common terms # and use a Horner-like algorithm # P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...))))) P = 0.0 k = int(np.floor(n / h)) while k >= 0: p1 = 1.0 # Each of the Ai terms has numerator and denominator with h simple terms. for j in range(h): p1 = (n - k * h - j) * p1 / (n + k * h + j + 1) P = p1 * (1.0 - P) k -= 1 return 2 * P def _count_paths_outside_method(m, n, g, h): # pragma: no cover """ Count the number of paths that pass outside the specified diagonal. Parameters ---------- m : integer m > 0 n : integer n > 0 g : integer g is greatest common divisor of m and n h : integer 0 <= h <= lcm(m,n) Returns ------- p : float The number of paths that go low. The calculation may overflow - check for a finite answer. Raises ------ FloatingPointError: Raised if the intermediate computation goes outside the range of a float. Notes ----- Count the integer lattice paths from (0, 0) to (m, n), which at some point (x, y) along the path, satisfy: m*y <= n*x - h*g The paths make steps of size +1 in either positive x or positive y directions. We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk. <NAME>., "The Significance Probability of the Smirnov Two-Sample Test," <NAME>, 3, No. 43 (1958), 469-86. """ # Compute #paths which stay lower than x/m-y/n = h/lcm(m,n) # B(x, y) = #{paths from (0,0) to (x,y) without previously crossing the boundary} # = binom(x, y) - #{paths which already reached the boundary} # Multiply by the number of path extensions going from (x, y) to (m, n) # Sum. # Probability is symmetrical in m, n. Computation below assumes m >= n. if m < n: m, n = n, m mg = m // g ng = n // g # Not every x needs to be considered. # xj holds the list of x values to be checked. # Wherever n*x/m + ng*h crosses an integer lxj = n + (mg-h)//mg xj = [(h + mg * j + ng-1)//ng for j in range(lxj)] # B is an array just holding a few values of B(x,y), the ones needed. # B[j] == B(x_j, j) if lxj == 0: return np.round(special.binom(m + n, n)) B = np.zeros(lxj) B[0] = 1 # Compute the B(x, y) terms # The binomial coefficient is an integer, but special.binom() may return a float. # Round it to the nearest integer. for j in range(1, lxj): Bj = np.round(special.binom(xj[j] + j, j)) if not np.isfinite(Bj): raise FloatingPointError() for i in range(j): bin = np.round(special.binom(xj[j] - xj[i] + j - i, j-i)) # pylint: disable=redefined-builtin Bj -= bin * B[i] B[j] = Bj if not np.isfinite(Bj): raise FloatingPointError() # Compute the number of path extensions... num_paths = 0 for j in range(lxj): bin = np.round(special.binom((m-xj[j]) + (n - j), n-j)) term = B[j] * bin if not np.isfinite(term): raise FloatingPointError() num_paths += term return np.round(num_paths) def _attempt_exact_2kssamp(n1, n2, g, d, alternative): # pragma: no cover """Attempts to compute the exact 2sample probability. n1, n2 are the sample sizes g is the gcd(n1, n2) d is the computed max difference in ECDFs Returns (success, d, probability) """ lcm = (n1 // g) * n2 h = int(np.round(d * lcm)) d = h * 1.0 / lcm if h == 0: return True, d, 1.0 saw_fp_error, prob = False, np.nan try: if alternative == 'two-sided': if n1 == n2: prob = _compute_prob_outside_square(n1, h) else: prob = 1 - _compute_prob_inside_method(n1, n2, g, h) else: if n1 == n2: # prob = binom(2n, n-h) / binom(2n, n) # Evaluating in that form incurs roundoff errors # from special.binom. Instead calculate directly jrange = np.arange(h) prob = np.prod((n1 - jrange) / (n1 + jrange + 1.0)) else: num_paths = _count_paths_outside_method(n1, n2, g, h) bin = special.binom(n1 + n2, n1) # pylint: disable=redefined-builtin if not np.isfinite(bin) or not np.isfinite(num_paths) or num_paths > bin: saw_fp_error = True else: prob = num_paths / bin except FloatingPointError: saw_fp_error = True if saw_fp_error: return False, d, np.nan if not (0 <= prob <= 1): return False, d, prob return True, d, prob def _calc_prob_2samp(d, n1, n2, alternative, mode): # pragma: no cover MAX_AUTO_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= MAX_AUTO_N g = gcd(n1, n2) n1g = n1 // g n2g = n2 // g prob = -mt.inf original_mode = mode if mode == 'auto': mode = 'exact' if max(n1, n2) <= MAX_AUTO_N else 'asymp' elif mode == 'exact': # If lcm(n1, n2) is too big, switch from exact to asymp if n1g >= np.iinfo(np.int_).max / n2g: mode = 'asymp' warnings.warn( f"Exact ks_2samp calculation not possible with samples sizes " f"{n1} and {n2}. Switching to 'asymp'.", RuntimeWarning) if mode == 'exact': success, d, prob = _attempt_exact_2kssamp(n1, n2, g, d, alternative) if not success: mode = 'asymp' if original_mode == 'exact': warnings.warn(f"ks_2samp: Exact calculation unsuccessful. " f"Switching to mode={mode}.", RuntimeWarning) if mode == 'asymp': # The product n1*n2 is large. Use Smirnov's asymptotic formula. # Ensure float to avoid overflow in multiplication # sorted because the one-sided formula is not symmetric in n1, n2 m, n = sorted([float(n1), float(n2)], reverse=True) en = m * n / (m + n) if alternative == 'two-sided': prob = distributions.kstwo.sf(d, np.round(en)) else: z =
np.sqrt(en)
numpy.sqrt
from cvs import * print ('import tensorflow.....wait...') import tensorflow as tf import numpy as np import time imageSize = 257 width = imageSize height = imageSize def load_model(PATH_TO_CKPT): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph def resizeimg(img, width, height): img = cvs.resize(img, (width,height)) img = img.astype(float) img = img * (2.0 / 255.0) - 1.0 return img def main(): cam=cvs.VideoCapture(0) detection_graph = load_model("frozen_model.pb") with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image = detection_graph.get_tensor_by_name('image:0') heatmaps=detection_graph.get_tensor_by_name('heatmap:0') offsets=detection_graph.get_tensor_by_name('offset_2:0') displacementFwd=detection_graph.get_tensor_by_name('displacement_fwd_2:0') displacementBwd=detection_graph.get_tensor_by_name('displacement_bwd_2:0') fcount=-1 start = time.time() while True: sleep(30) img = cam.read() if img is None : sleep(50) continue fcount=fcount+1 # global lbs lbs = 'Average FPS: '+ str(fcount / (time.time() - start)) cvs.setLbs(lbs) input_image = resizeimg(img,width,height) tmpimg = img tmpimg = cv2.resize(tmpimg, (width,height)) input_image = np.array(input_image,dtype=np.float32) input_image = input_image.reshape(1,width,height,3) heatmaps_result,offsets_result,displacementFwd_result,displacementBwd_result = sess.run( [heatmaps,offsets,displacementFwd,displacementBwd], feed_dict={ image: input_image } ) colors = [[255, 0, 0], [255, 170, 0], [255, 170, 0],[255, 255, 0], [255, 255, 0], [170, 255, 0], [170, 255, 0], [0, 255, 0], [0, 255, 0], [0, 255, 170], [0, 255, 170], [0, 170, 255], [0, 170, 255], [0, 0, 255], [0, 0, 255], [255, 0, 255], [255, 0, 255]] pairs = [[5,6],[5,7],[6,8],[7,9],[8,10],[5,11],[6,12],[11,12],[11,13],[12,14],[13,15],[14,16]] keypoint = [] ckeypoint = [] heatmaps_result = heatmaps_result[0] aaaa= np.transpose(heatmaps_result,(2, 0, 1)) offsets_result=offsets_result[0] bbb= np.transpose(offsets_result,(2, 0, 1)) for k in range(0,17): heatmaps_result=aaaa[k] maxheat=np.max(heatmaps_result) re=
np.where(heatmaps_result==maxheat)
numpy.where
# from tqdm.notebook import tqdm as tqdm_notebook # import os # import glob import pickle import numpy as np from src.support_class import * from matplotlib import pyplot as plt from matplotlib import colors as mcolors from scipy import linalg from codeStore import support_fun as spf colors11 = plt.get_cmap('Blues') colors12 = plt.get_cmap('Reds') colors1 = np.vstack((colors11(np.linspace(1, 0.2, 256)), colors12(np.linspace(0.4, 1, 256)))) cmpBR = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors1) # generate the mobility matrix of the microswimmer from pickle file, # with force and torque free conditions, # ignore head tail interaction. def fun_m_rot(mbase, R): ab = mbase[0:3, 0:3] bb1 = mbase[3:6, 0:3] bb2 = mbase[0:3, 3:6] cb = mbase[3:6, 3:6] m2 = np.zeros_like(mbase) m2[0:3, 0:3] = np.dot(R, np.dot(ab, R.T)) m2[3:6, 0:3] = np.dot(R, np.dot(bb1, R.T)) * np.linalg.det(R) m2[0:3, 3:6] = np.dot(R, np.dot(bb2, R.T)) * np.linalg.det(R) m2[3:6, 3:6] = np.dot(R, np.dot(cb, R.T)) return m2 def cross_matrix(v): assert v.shape == (3,) m = np.zeros((3, 3)) m[0, 1] = -v[2] m[0, 2] = v[1] m[1, 0] = v[2] m[1, 2] = -v[0] m[2, 0] = -v[1] m[2, 1] = v[0] return m def fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, tail_ini_beta, rotM): trs = rb1 * rb2 / np.sqrt((rb1 * np.sin(tail_ini_beta)) ** 2 + (rb2 * np.cos(tail_ini_beta)) ** 2) tl = 2 * rb1 + ch * ph + dist_hs rbc_base = np.array((0, 0, tl / 2 - rb1)) rtc = rbc_base - np.array((0, 0, rb1 + dist_hs + ch * ph / 2)) head_end0 = rbc_base - np.array((0, 0, trs)) rbc = np.dot(rotM.T, (rbc_base - head_end0)) + head_end0 return rbc, rtc def fun_mfull_ufull_core(mhead_base, mtail, dist_hs, beta, rotM, wbc, wtc, rb1, rb2, ch, ph, body_size_fct=1, tail_size_fct=1, ): beta_norm = np.array([0, 1, 0]) rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) mhead = fun_m_rot(fun_m_rot(mhead_base, rotM_beta), rotM.T) rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. drbc = rbc - rc drtc = rtc - rc mhead[0:3, 0:3] = mhead[0:3, 0:3] * body_size_fct ** 1 mhead[0:3, 3:6] = mhead[0:3, 3:6] * body_size_fct ** 2 mhead[3:6, 0:3] = mhead[3:6, 0:3] * body_size_fct ** 2 mhead[3:6, 3:6] = mhead[3:6, 3:6] * body_size_fct ** 3 mtail[0:3, 0:3] = mtail[0:3, 0:3] * tail_size_fct ** 1 mtail[0:3, 3:6] = mtail[0:3, 3:6] * tail_size_fct ** 2 mtail[3:6, 0:3] = mtail[3:6, 0:3] * tail_size_fct ** 2 mtail[3:6, 3:6] = mtail[3:6, 3:6] * tail_size_fct ** 3 # generate M matrix with the force- and torque-free conditions. mfull = np.zeros((18, 18)) mfull[0: 6, 0: 6] = mhead mfull[6:12, 6:12] = mtail mfull[0: 3, 12:15] = -np.eye(3) mfull[0: 3, 15:18] = cross_matrix(drbc) mfull[3: 6, 15:18] = -np.eye(3) mfull[6: 9, 12:15] = -np.eye(3) mfull[6: 9, 15:18] = cross_matrix(drtc) mfull[9:12, 15:18] = -np.eye(3) mfull[12:15, 0: 3] = -np.eye(3) mfull[12:15, 6: 9] = -np.eye(3) mfull[15:18, 0: 3] = -cross_matrix(drbc) mfull[15:18, 3: 6] = -np.eye(3) mfull[15:18, 6: 9] = -cross_matrix(drtc) mfull[15:18, 9:12] = -np.eye(3) # generate boundary conditions. norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) ufull = np.zeros(18) ufull[0: 3] = 0 ufull[3: 6] = wbc * norm_head ufull[6: 9] = 0 ufull[9:12] = wtc * norm_tail mobility_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return mfull, ufull, mobility_kwargs def fun_position_kwargs(case_kwargs): beta_norm = np.array([0, 1, 0]) dist_hs = case_kwargs['dist_hs'] beta = case_kwargs['tail_ini_beta'] theta = case_kwargs['tail_ini_theta'] phi = case_kwargs['tail_ini_phi'] psi = case_kwargs['tail_ini_psi'] rb1 = case_kwargs['rs1'] rb2 = case_kwargs['rs2'] ch = case_kwargs['ch'] ph = case_kwargs['ph'] rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) position_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return position_kwargs def fun_ut_un(u, w): ut = np.dot(u, w) * w / (np.linalg.norm(w) ** 2) un = u - ut return ut, un def mobility_pickle(pickle_dir, beta, theta, phi, psi, dist_hs, wbc, wtc, body_size_fct=1, tail_size_fct=1, ): with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) problem_kwargs = tpick['problem_kwargs'] rb1 = problem_kwargs['rs1'] rb2 = problem_kwargs['rs2'] ch = problem_kwargs['ch'] ph = problem_kwargs['ph'] mhead_base, mtail = tpick['Mhead'], tpick['Mtail'] rotM = Rloc2glb(theta, phi, psi) mfull, ufull, mobility_kwargs = \ fun_mfull_ufull_core(mhead_base, mtail, dist_hs, beta, rotM, wbc, wtc, rb1, rb2, ch, ph, body_size_fct=body_size_fct, tail_size_fct=tail_size_fct) mobility_kwargs['rb1'] = rb1 mobility_kwargs['rb2'] = rb2 mobility_kwargs['ch'] = ch mobility_kwargs['ph'] = ph return mfull, ufull, mobility_kwargs def apx_resistance_pickle(pickle_dir, beta, theta, phi, psi, dist_hs, wbc, wtc): # decoupled method, resistance with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) problem_kwargs = tpick['problem_kwargs'] rb1 = problem_kwargs['rs1'] rb2 = problem_kwargs['rs2'] ch = problem_kwargs['ch'] ph = problem_kwargs['ph'] mhead_base, mtail = tpick['Mhead'], tpick['Mtail'] # Rhead_base = np.linalg.inv(mhead_base) Rhead_base = np.diagflat(np.diag(Rhead_base)) t1 = (Rhead_base[0, 0] + Rhead_base[1, 1]) / 2 Rhead_base[0, 0] = t1 Rhead_base[1, 1] = t1 t1 = (Rhead_base[3, 3] + Rhead_base[4, 4]) / 2 Rhead_base[3, 3] = t1 Rhead_base[4, 4] = t1 Rtail = np.linalg.inv(mtail) beta_norm = np.array([0, 1, 0]) rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) Rhead = fun_m_rot(fun_m_rot(Rhead_base, rotM_beta), rotM.T) Ab_rt = Rhead[0:3, 0:3] Cb_rt = Rhead[3:6, 3:6] At = np.diagflat(np.diag(Rtail[0:3, 0:3])) t1 = (At[0, 0] + At[1, 1]) / 2 At[0, 0] = t1 At[1, 1] = t1 Bt = np.diagflat(np.diag((Rtail[0:3, 3:6] + Rtail[3:6, 0:3]) / 2)) t1 = (Bt[0, 0] + Bt[1, 1]) / 2 * 0 Bt[0, 0] = t1 Bt[1, 1] = t1 Ct = np.diagflat(np.diag(Rtail[3:6, 3:6])) t1 = (Ct[0, 0] + Ct[1, 1]) / 2 Ct[0, 0] = t1 Ct[1, 1] = t1 # rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. # drbc = rbc - rc drtc = rtc - rc dtc = cross_matrix(drtc) norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) # Rfull = np.zeros((6, 6)) Rfull[0:3, 0:3] = Ab_rt + At Rfull[0:3, 3:6] = - np.dot(At, dtc) Rfull[3:6, 0:3] = + np.dot(dtc, At) Rfull[3:6, 3:6] = Cb_rt + Ct + np.dot(dtc, Bt) - np.dot(Bt, dtc) - np.dot(dtc, np.dot(At, dtc)) FFull = np.zeros(6) FFull[0:3] = -np.dot(Bt, wtc * norm_tail) FFull[3:6] = -np.dot(Cb_rt, wbc * norm_head) - \ np.dot(Ct, wtc * norm_tail) - np.dot(dtc, np.dot(Bt, wtc * norm_tail)) resistance_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return Rfull, FFull, resistance_kwargs def fun_alpha_bctc(model, wbc, wtc): mfull, ufull, mobility_kwargs = model.mobility_matrix(wbc, wtc) ffull = linalg.solve(mfull, ufull) pb, pt = mobility_kwargs['norm_head'], mobility_kwargs['norm_tail'] Uc, Wc, Wbc = ffull[12:15], ffull[15:18], wbc * pb Wg = Wc + Wbc alpha_b = np.arccos(np.dot(pb, Wg) / np.linalg.norm(pb) / np.linalg.norm(Wg)) alpha_b = np.pi - alpha_b if alpha_b > np.pi / 2 else alpha_b alpha_t = np.arccos(np.dot(pt, Wg) / np.linalg.norm(pt) / np.linalg.norm(Wg)) alpha_t = np.pi - alpha_t if alpha_t > np.pi / 2 else alpha_t return alpha_b, alpha_t def fun_kappa_alpha(model, wbc, wtc): alpha_b, alpha_t = fun_alpha_bctc(model, wbc, wtc) kappa_alpha = np.abs(alpha_b / alpha_t) return kappa_alpha def fun_hook_torque(model, wbc, wtc): mfull, ufull, mobility_kwargs = model.mobility_matrix(wbc, wtc) ffull = linalg.solve(mfull, ufull) rb1 = mobility_kwargs['rb1'] rbc = mobility_kwargs['rbc'] pb = mobility_kwargs['norm_head'] ds = rbc + rb1 * pb hookT = ffull[3:6] - np.cross(ds, ffull[0:3]) return hookT def plot_3D_Traj(axi, tplt, theta_list): axi.plot(np.zeros(1), np.zeros(1), np.zeros(1), ' ') axi.plot(tplt[:, 0], tplt[:, 1], tplt[:, 2], ' ') spf.set_axes_equal(axi) spf.colorline3d(tplt, theta_list / np.pi, ax0=axi, clb_title='$\\theta / \\pi$', cmap=plt.get_cmap('viridis')) axi.scatter(axi.get_xlim()[0], np.zeros(1), np.zeros(1), marker='.', c='k') axi.scatter(np.zeros(1), axi.get_ylim()[1], np.zeros(1), marker='.', c='k') axi.scatter(np.zeros(1), np.zeros(1), axi.get_zlim()[0], marker='.', c='k') axi.plot(np.ones_like(theta_list) * axi.get_xlim()[0], tplt[:, 1], tplt[:, 2], '--', color='grey') axi.plot(tplt[:, 0], np.ones_like(theta_list) * axi.get_ylim()[1], tplt[:, 2], '--', color='grey') axi.plot(tplt[:, 0], tplt[:, 1], np.ones_like(theta_list) * axi.get_zlim()[0], '--', color='grey') axi.view_init(25, -60) axi.plot(np.zeros(1), np.zeros(1), np.zeros(1), marker='s', c='k') return True def plot_color_line(axi, tx, ty, xlabel, ylabel, c, vmin, vmax, cmap=cmpBR, xscale0='linear', yscale0='linear', s=4, marker='o', label=''): axi.plot(tx, ty, linestyle='None') # axi.relim() # txlim0 = axi.get_xlim() # tylim0 = axi.get_ylim() # print(tylim0, ty.min()) sc = axi.scatter(tx, ty, vmin=vmin, vmax=vmax, c=c, cmap=cmap, s=s, marker=marker, label=label) axi.set_xlabel(xlabel) axi.set_ylabel(ylabel) axi.set_xscale(xscale0) axi.set_yscale(yscale0) # axi.set_xlim(*txlim0) # axi.set_ylim(*tylim0) return sc def fun_cal_kwargs(Uc, Wc, wbc, pb, pt, kappa, mdf_alpha=True): Wbc = wbc * pb Wg = Wc + kappa * Wbc UcWg_t, UcWg_n = fun_ut_un(Uc, Wg) eta = np.arccos(np.dot(Uc, Wg) / np.linalg.norm(Uc) / np.linalg.norm(Wg)) alpha_b = np.arccos(np.dot(pb, Wg) / np.linalg.norm(pb) / np.linalg.norm(Wg)) alpha_t = np.arccos(np.dot(pt, Wg) / np.linalg.norm(pt) / np.linalg.norm(Wg)) if mdf_alpha: alpha_b = np.pi - alpha_b if alpha_b > np.pi / 2 else alpha_b alpha_t = np.pi - alpha_t if alpha_t > np.pi / 2 else alpha_t R = np.linalg.norm(UcWg_n) / np.linalg.norm(Wg) uc_par = np.sign(np.dot(Uc, Wg)) * np.linalg.norm(UcWg_t) cal_kwargs = {'Wg': Wg, 'eta': eta, 'alpha_b': alpha_b, 'alpha_t': alpha_t, 'R': R, 'uc_par': uc_par,} return cal_kwargs class DecouplingModel: def __init__(self, pickle_dir, beta_norm=np.array([0, 1, 0])): with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) self._case_kwargs = tpick['problem_kwargs'] self._rb1 = self._case_kwargs['rs1'] self._rb2 = self._case_kwargs['rs2'] self._ch = self._case_kwargs['ch'] self._ph = self._case_kwargs['ph'] self._mhead_base = tpick['Mhead'] self._mtail_base = tpick['Mtail'] self._beta_norm = beta_norm self._beta = 0 self._theta = 0 self._phi = 0 self._psi = 0 self._dist_hs = 0 self._rotM_beta = np.eye(3) self._rotM = np.eye(3) @property def case_kwargs(self): return self._case_kwargs @property def rb1(self): return self._rb1 @property def rb2(self): return self._rb2 @property def ch(self): return self._ch @property def ph(self): return self._ph @property def mhead_base(self): return self._mhead_base @property def mtail_base(self): return self._mtail_base @property def beta_norm(self): return self._beta_norm @staticmethod def fun_ut_un(u, w): ut = np.dot(u, w) * w / (np.linalg.norm(w) ** 2) un = u - ut return ut, un @staticmethod def fun_MR_rot(mr_base, R): ab = mr_base[0:3, 0:3] bb1 = mr_base[3:6, 0:3] bb2 = mr_base[0:3, 3:6] cb = mr_base[3:6, 3:6] m2 = np.zeros_like(mr_base) m2[0:3, 0:3] = np.dot(R, np.dot(ab, R.T)) m2[3:6, 0:3] = np.dot(R, np.dot(bb1, R.T)) * np.linalg.det(R) m2[0:3, 3:6] = np.dot(R, np.dot(bb2, R.T)) * np.linalg.det(R) m2[3:6, 3:6] = np.dot(R, np.dot(cb, R.T)) return m2 @staticmethod def cross_matrix(v): assert v.shape == (3,) m = np.zeros((3, 3)) m[0, 1] = -v[2] m[0, 2] = v[1] m[1, 0] = v[2] m[1, 2] = -v[0] m[2, 0] = -v[1] m[2, 1] = v[0] return m @staticmethod def fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, tail_ini_beta, rotM): trs = rb1 * rb2 / np.sqrt((rb1 * np.sin(tail_ini_beta)) ** 2 + (rb2 * np.cos(tail_ini_beta)) ** 2) tl = 2 * rb1 + ch * ph + dist_hs rbc_base = np.array((0, 0, tl / 2 - rb1)) rtc = rbc_base - np.array((0, 0, rb1 + dist_hs + ch * ph / 2)) head_end0 = rbc_base - np.array((0, 0, trs)) rbc = np.dot(rotM.T, (rbc_base - head_end0)) + head_end0 return rbc, rtc def fun_position_kwargs(self): beta_norm = self.beta_norm rb1 = self.rb1 rb2 = self.rb2 ch = self.ch ph = self.ph beta = self._beta theta = self._theta phi = self._phi psi = self._psi dist_hs = self._dist_hs left_hand = self.case_kwargs['left_hand'] rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) rbc, rtc = self.fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. if left_hand: norm_head = np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = -np.array((0, 0, 1)) else: norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) position_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, 'rb1': rb1, 'rb2': rb2, 'ch': ch, 'ph': ph} return position_kwargs def fun_mfull_ufull_core(self, wbc, wtc, position_kwargs, body_size_fct=1, tail_size_fct=1): # current version, these factors are prohibited. assert body_size_fct == 1 assert tail_size_fct == 1 mhead_base = self.mhead_base mtail = self.mtail_base rotM = self._rotM rotM_beta = self._rotM_beta rbc = position_kwargs['rbc'] rtc = position_kwargs['rtc'] rc = position_kwargs['rc'] norm_head = position_kwargs['norm_head'] norm_tail = position_kwargs['norm_tail'] mhead = self.fun_MR_rot(self.fun_MR_rot(mhead_base, rotM_beta), rotM.T) drbc = rbc - rc drtc = rtc - rc mhead[0:3, 0:3] = mhead[0:3, 0:3] * body_size_fct ** 1 mhead[0:3, 3:6] = mhead[0:3, 3:6] * body_size_fct ** 2 mhead[3:6, 0:3] = mhead[3:6, 0:3] * body_size_fct ** 2 mhead[3:6, 3:6] = mhead[3:6, 3:6] * body_size_fct ** 3 mtail[0:3, 0:3] = mtail[0:3, 0:3] * tail_size_fct ** 1 mtail[0:3, 3:6] = mtail[0:3, 3:6] * tail_size_fct ** 2 mtail[3:6, 0:3] = mtail[3:6, 0:3] * tail_size_fct ** 2 mtail[3:6, 3:6] = mtail[3:6, 3:6] * tail_size_fct ** 3 # generate M matrix with the force- and torque-free conditions. mfull = np.zeros((18, 18)) mfull[0: 6, 0: 6] = mhead mfull[6:12, 6:12] = mtail mfull[0: 3, 12:15] = -np.eye(3) mfull[0: 3, 15:18] = self.cross_matrix(drbc) mfull[3: 6, 15:18] = -np.eye(3) mfull[6: 9, 12:15] = -np.eye(3) mfull[6: 9, 15:18] = self.cross_matrix(drtc) mfull[9:12, 15:18] = -np.eye(3) mfull[12:15, 0: 3] = -np.eye(3) mfull[12:15, 6: 9] = -np.eye(3) mfull[15:18, 0: 3] = -self.cross_matrix(drbc) mfull[15:18, 3: 6] = -np.eye(3) mfull[15:18, 6: 9] = -self.cross_matrix(drtc) mfull[15:18, 9:12] = -np.eye(3) # generate boundary conditions. ufull = np.zeros(18) ufull[0: 3] = 0 ufull[3: 6] = wbc * norm_head ufull[6: 9] = 0 ufull[9:12] = wtc * norm_tail return mfull, ufull def case_ini(self, beta, theta, phi, psi, dist_hs): beta_norm = self.beta_norm self._beta = beta self._theta = theta self._phi = phi self._psi = psi self._dist_hs = dist_hs self._rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) self._rotM = Rloc2glb(theta, phi, psi) return True def mobility_matrix(self, wbc, wtc, body_size_fct=1, tail_size_fct=1, ): position_kwargs = self.fun_position_kwargs() mfull, ufull = self.fun_mfull_ufull_core(wbc, wtc, position_kwargs, body_size_fct=body_size_fct, tail_size_fct=tail_size_fct) return mfull, ufull, position_kwargs def fun_Rfull_Ffull_core(self, wbc, wtc, position_kwargs, body_size_fct=1, tail_size_fct=1): # current version, these factors are prohibited. assert body_size_fct == 1 assert tail_size_fct == 1 mhead_base = self.mhead_base mtail = self.mtail_base rotM = self._rotM rotM_beta = self._rotM_beta Rhead_base = np.linalg.inv(mhead_base) Rhead_base = np.diagflat(np.diag(Rhead_base)) t1 = (Rhead_base[0, 0] + Rhead_base[1, 1]) / 2 Rhead_base[0, 0] = t1 Rhead_base[1, 1] = t1 t1 = (Rhead_base[3, 3] + Rhead_base[4, 4]) / 2 Rhead_base[3, 3] = t1 Rhead_base[4, 4] = t1 Rtail = np.linalg.inv(mtail) Rhead = fun_m_rot(fun_m_rot(Rhead_base, rotM_beta), rotM.T) Ab_rt = Rhead[0:3, 0:3] Cb_rt = Rhead[3:6, 3:6] At = np.diagflat(np.diag(Rtail[0:3, 0:3])) t1 = (At[0, 0] + At[1, 1]) / 2 At[0, 0] = t1 At[1, 1] = t1 Bt = np.diagflat(np.diag((Rtail[0:3, 3:6] + Rtail[3:6, 0:3]) / 2)) t1 = (Bt[0, 0] + Bt[1, 1]) / 2 * 0 Bt[0, 0] = t1 Bt[1, 1] = t1 Ct = np.diagflat(np.diag(Rtail[3:6, 3:6])) t1 = (Ct[0, 0] + Ct[1, 1]) / 2 Ct[0, 0] = t1 Ct[1, 1] = t1 # rbc = position_kwargs['rbc'] rtc = position_kwargs['rtc'] rc = position_kwargs['rc'] norm_head = position_kwargs['norm_head'] norm_tail = position_kwargs['norm_tail'] # drbc = rbc - rc drtc = rtc - rc dtc = cross_matrix(drtc) Rfull = np.zeros((6, 6)) Rfull[0:3, 0:3] = Ab_rt + At Rfull[0:3, 3:6] = -
np.dot(At, dtc)
numpy.dot
from aiida.orm.data.array import ArrayData import numpy class ForceConstantsData(ArrayData): """ Store the force constants on disk as a numpy array. It requires numpy to be installed. """ def __init__(self, *args, **kwargs): super(ForceConstantsData, self).__init__(*args, **kwargs) self._cached_arrays = {} def get_data(self): """ Return the force constants stored in the node as a numpy array (Natoms x 3 x 3) """ return self.get_array('force_constants') def set_data(self, force_constants): """ Store the force constants as a numpy array. Possibly overwrite the array if it already existed. Internally, it is stored as a force_constants.npy file in numpy format. :param array: The numpy array to store. """ self.set_array('force_constants', numpy.array(force_constants)) def read_from_phonopy_file(self, filename): """ Read the force constants from a phonopy FORCE_CONSTANTS file :param filename: FORCE_CONSTANTS file name """ fcfile = open(filename) num = int((fcfile.readline().strip().split())[0]) force_constants = numpy.zeros((num, num, 3, 3), dtype=float) for i in range(num): for j in range(num): fcfile.readline() tensor = [] for k in range(3): tensor.append([float(x) for x in fcfile.readline().strip().split()]) force_constants[i, j] =
numpy.array(tensor)
numpy.array
"""dual grid method""" import time import path_magic from mesh import TransfiniteMesh, CrazyMesh from function_space import FunctionSpace from inner_product import MeshFunction, inner import numpy as np import scipy.io import numpy.testing as npt from scipy.sparse import coo_matrix from forms import Form from basis_forms import BasisForm from coboundaries import d, d_21_lobatto_outer from assemble import assemble from scipy import sparse import matplotlib.pyplot as plt from matplotlib.pyplot import plot, draw, show from quadrature import gauss_quad, extended_gauss_quad, lobatto_quad from polynomials import lagrange_basis, edge_basis from dof_map import dof_map_crazy_ext_gauss_nodes, dof_map_crazy_lobatto_edges_discontinous, dof_map_crazy_lobatto_faces from my_functions import assemble_cochain, assemble_cochain2, mass_matrix_1_form_local start_time = time.time() """define source term""" # def source(x, y): return -8 * np.pi**2 * np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y) # def source(x, y): return -36 * np.pi**2 * np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y) # def source(x, y): return -36 * np.pi**2 * np.sin(2 * np.pi * x) * np.sin(2 * # np.pi * y) + 24 * np.pi**2 * np.cos(2 * np.pi * x) * np.cos(2 * np.pi * y) """define anisotropic tensor""" def k_11(x, y): alpha = 1e-4 return (1e-3 * x**2 + y**2 + alpha) / (x**2 + y**2 + alpha) def k_12(x, y): alpha = 1e-4 return ((1e-3 - 1) * x * y) / (x**2 + y**2 + alpha) def k_22(x, y): alpha = 1e-4 return (x**2 + 1e-3 * y**2 + alpha) / (x**2 + y**2 + alpha) def k11_dx(x, y): alpha = 1e-4 return (2 * 1e-3 * x * (x**2 + y**2 + alpha) - 2 * x * (1e-3 * x**2 + y**2 + alpha)) / (x**2 + y**2 + alpha) ** 2 def k12_dx(x, y): alpha = 1e-4 return ((x**2 + y**2 + alpha) * (1e-3 - 1) * y - 2 * (1e-3 - 1) * x**2 * y) / (x**2 + y**2 + alpha) ** 2 def k12_dy(x, y): alpha = 1e-4 return ((x**2 + y**2 + alpha) * (1e-3 - 1) * x - 2 * (1e-3 - 1) * x * y**2) / (x**2 + y**2 + alpha) ** 2 def k22_dy(x, y): alpha = 1e-4 return (2 * 0.001 * y * (x**2 + y**2 + alpha) - 2 * y * (x**2 + 0.001 * y**2 + alpha)) / (x**2 + y**2 + alpha) ** 2 """define manufactured solution""" def manufactured_solution(x, y): return np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y) def phi_exact(x, y): return
np.sin(2 * np.pi * x)
numpy.sin
# @File: route_following.py # @Info: to create an agent of ROUTE FOLLOWING based on the insect brain model in insect_brain_model.py # @Author: <NAME>, UoL, UK # @Time: 2020-02-17 import numpy as np from insect_brain_model import CentralComplexModel, AOTuVisualPathwayModel from image_processing import visual_sense class RouteFollowingAgent(object): """Class for the implementation of route following model """ def __init__(self, world, route_mem, home_mem, zm_n_max, num_neurons=30): # central complex self.cx = CentralComplexModel() # simulated 3D world, an array with size Nx3 self.world = world # a dictionary with keys: ['imgs', 'h', 'ZM_Ps', 'pos', 'ZM_As'] self.route_mem = route_mem # a dictionary with keys: ['imgs', 'h', 'ZM_Ps', 'pos', 'ZM_As'] self.home_mem = home_mem # frequency encoding parameters self.zm_n_max = zm_n_max if self.zm_n_max % 2: self.zm_coeff_num = int(((1 + zm_n_max) / 2) * ((3 + zm_n_max) / 2)) else: self.zm_coeff_num = int((zm_n_max / 2.0 + 1) ** 2) # re arrange the memory mem_scene = self.route_mem['ZM_As'][:, :self.zm_coeff_num].copy() mem_phase = self.route_mem['ZM_Ps'][:, 16].copy() mem_phase_ring = np.zeros([len(mem_phase), 8]) for i in range(len(mem_phase)): mem_scene[i, :] = (mem_scene[i, :] -
np.min(mem_scene[i, :])
numpy.min
import pytest import numpy as np import spharpy.samplings as samplings from spharpy.samplings.coordinates import Coordinates, SamplingSphere from spharpy.special import spherical_bessel_zeros from scipy.special import spherical_jn def test_sph_bessel_zeros(): roots = spherical_bessel_zeros(3, 3) jn_zeros = np.ones(roots.shape) for n in range(0, 4): jn_zeros[n, :] = spherical_jn(n, roots[n, :]) zeros =
np.zeros((4, 3), dtype=np.float)
numpy.zeros
''' @name: ros_env_cont_img.py @brief: This class is a simulation environment wrapper for the X-Image Representation with continuous action space. @author: <NAME> @version: 3.5 @date: 2019/04/05 ''' # ros-relevant import rospy # python relevant import numpy as np from gym import spaces #custom classes from rl_agent.env_wrapper.ros_env_img import RosEnvImg # Messages from geometry_msgs.msg import Twist # Parameters GOAL_RADIUS = 0.4 WAYPOINT_RADIUS = 0.2 class RosEnvContImg(RosEnvImg): ''' This class is a simulation environment wrapper for the X-Image Representation with continuous action space. ''' def __init__(self, ns, state_collector, stack_offset, stack_size, robot_radius = 0.46, reward_fnc=6, debug=False, execution_mode="train", task_mode="static"): img_width = rospy.get_param("%s/rl_agent/img_width_pos"%ns) + rospy.get_param("%s/rl_agent/img_width_neg"%ns) img_height = rospy.get_param("%s/rl_agent/img_height"%ns) state_size = (img_height, img_width, 1) observation_space = spaces.Box(low=0, high=100, shape=state_size, dtype=np.float) action_space = spaces.Box(low=np.array([0.0, -1.2]), high=
np.array([0.8, 1.2])
numpy.array
# -*- coding: utf-8 -*- """Soft Margin SVM classification with kernels for machine learning. Soft margin SVM is basically an SVM (see folder **supportVectorMachine**) which has some 'slack' and allows features to be 'wrongly' classified to avoid overfitting the classifier. This also includes kernels. Kernels use the inner product to help us transform the feature space to make it possible for Support Vector Machines to create a good hyperplane with non-linear feature sets. This file can basically do the same as the "from scratch" algorithm in folder "supportVectorMachine", but this is much more complex to account for margins and more dimensions involved. This also involves more complex math, matrix algebra and Lagrange multipliers. Example: $ python howItWorksSoftMarginSVM.py.py Todo: * """ import numpy as np from numpy import linalg # Because I made a convex solver in 'howItWorksSupportVectorMachine.py' I will # just use a library for it now because it's simpler. import cvxopt import cvxopt.solvers def linear_kernel(x1, x2): """Linear kernel function. if this kernel is used then the decision boundary hyperplane will have a linear form. """ return np.dot(x1, x2) def polynomial_kernel(x, y, p=3): """Polynomial kernel function. if this kernel is used then the decision boundary hyperplane will have a Polynomial form. """ return (1 + np.dot(x, y))**p def gaussian_kernel(x, y, sigma=5.0): """Gaussian kernel function. if this kernel is used then the decision boundary hyperplane will have a Gaussian form. """ return np.exp(-linalg.norm(x - y)**2 / (2 * (sigma**2))) class SVM(object): """Support Vector Machine (SVM) class. This class is for creating an instance of a SVM. To avoid retraining or refitting (as it's also called) every time it is used. """ def __init__(self, kernel=linear_kernel, C=None): """The __init__ method of the SVM class. Args: kernel (function name): The kernel that will be used. Default linear kernel. C: the max sum of all the distances of the features that are wrongly classified during fitting/training. Default is 'None', if C is None then it's a hard margin SVM with no slack. """ self.kernel = kernel self.C = C if self.C is not None: self.C = float(self.C) def fit(self, X, y): """Method to train the SVM object as a convex optimization problem. Return: (void) Args: X (np.array): the features y (np.array): the labels """ n_samples, n_features = X.shape # Creating all the values for the quadratic Programming solver K = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in range(n_samples): K[i, j] = self.kernel(X[i], X[j]) P = cvxopt.matrix(np.outer(y, y) * K) q = cvxopt.matrix(np.ones(n_samples) * -1) A = cvxopt.matrix(y, (1, n_samples)) b = cvxopt.matrix(0.0) if self.C is None: G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1)) h = cvxopt.matrix(np.zeros(n_samples)) else: tmp1 = np.diag(np.ones(n_samples) * -1) tmp2 = np.identity(n_samples) G = cvxopt.matrix(np.vstack((tmp1, tmp2))) tmp1 = np.zeros(n_samples) tmp2 = np.ones(n_samples) * self.C h = cvxopt.matrix(np.hstack((tmp1, tmp2))) # solve Quadratic Programming problem solution = cvxopt.solvers.qp(P, q, G, h, A, b) # Lagrange multipliers a = np.ravel(solution['x']) # Support vectors have non zero Lagrange multipliers sv = a > 1e-5 # due to floating point errors ind = np.arange(len(a))[sv] self.a = a[sv] self.sv = X[sv] self.sv_y = y[sv] print("%d support vectors out of %d points" % (len(self.a), n_samples)) # find the Intercept/ bias b self.b = 0 for n in range(len(self.a)): self.b += self.sv_y[n] self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv]) self.b /= len(self.a) # find the Weight vector w if self.kernel == linear_kernel: self.w = np.zeros(n_features) for n in range(len(self.a)): self.w += self.a[n] * self.sv_y[n] * self.sv[n] else: self.w = None def project(self, X): """Method is useful for getting the prediction depending on kernel. Return: (int or np.array of ints) A number which indicate the classification of the features by being positive or negative. """ if self.w is not None: return np.dot(X, self.w) + self.b else: y_predict = np.zeros(len(X)) for i in range(len(X)): s = 0 for a, sv_y, sv in zip(self.a, self.sv_y, self.sv): s += a * sv_y * self.kernel(X[i], sv) y_predict[i] = s return y_predict + self.b def predict(self, X): """Method to predict features X.""" return np.sign(self.project(X)) if __name__ == '__main__': def gen_lin_seperable_data(): """Function to generate linearly seperable 2d training data.""" mean1 = np.array([0, 2]) mean2 =
np.array([2, 0])
numpy.array
"""Executing hardware timed configuration changes on the FPGA timing system in "Piano Player" mode. Author: <NAME> Date created: 2015-05-01 Date last modified: 2019-05-09 """ __version__ = "6.6.1" # issue: queue_sequeces: dictionary size changed during iteration from logging import error,info,warn,debug from numpy import nan,isnan class Sequence(object): parameters = {} def __init__(self,**kwargs): """Arguments: delay=100e-12,laser_on=1,...""" from collections import OrderedDict from numpy import nan keys = timing_sequencer.parameters self.parameters = OrderedDict(zip(keys,[nan]*len(keys))) for name in kwargs: alt_name = name.replace("_on",".on") if not (name in keys or alt_name in keys): warn("Sequence: unsupported parameter %r" % name) for key in kwargs: setattr(self,key,kwargs[key]) self.set_defaults() def __getattr__(self,name): """A property""" # Called when 'x.name' is evaluated. # It is only invoked if the attribute wasn't found the usual ways. alt_name = name.replace("_on",".on") if name in self.parameters: return self.parameters[name] elif alt_name in self.parameters: return self.parameters[alt_name] else: return object.__getattribute__(self,name) def __setattr__(self,name,value): """Set a property""" # Called when 'x.name = y' is evaluated. alt_name = name.replace("_on",".on") if name.startswith("__"): object.__setattr__(self,name,value) elif name in self.parameters: self.parameters[name] = value elif alt_name in self.parameters: self.parameters[alt_name] = value else: object.__setattr__(self,name,value) def set_defaults(self): """Fill in unspecified parameters with default values.""" from numpy import isnan from timing_system import timing_system for key in self.parameters: if key in ["pass_number","image_number"]: continue if isnan(self.parameters[key]): self.parameters[key] = timing_sequencer.get_default(key) @property def descriptor(self): """Text representation of the parameters for generating this sequence""" p = self.parameters description = ",".join(["%s=%g"%(k,v) for k,v in zip(p.keys(),p.values())])+"," description += "generator=%r," % "timing_sequence" description += "generator_version=%r," % __version__ return description @property def register_counts(self): """list of registers, list of arrays of values""" from timing_system import timing_system,round_next from numpy import isnan,where,arange,rint,floor,ceil,array,cumsum from numpy import zeros,maximum,clip,unique from sparse_array import sparse_array delay = self.delay Tbase = timing_system.hsct # Period of the 987-Hz clock waitt = round_next(self.waitt,timing_system.waitt.stepsize) burst_waitt = round_next(self.burst_waitt,timing_system.burst_waitt.stepsize) burst_delay = round_next(self.burst_delay,timing_system.burst_delay.stepsize) n = int(rint(waitt/Tbase)) # Sequence length period in 987-Hz cycles ndt = int(rint(burst_waitt/Tbase)) # X-ray repetition period, in 987-Hz cycles n_burst_delay = int(rint(burst_delay/Tbase)) # X-ray burst delay, in 987-Hz cycles n = max(n,ndt*int(self.npulses)) # Make sure the period is long enough for npulses delay_coarse = int(floor(delay/Tbase)) delay_value = delay - delay_coarse*Tbase it0 = n_burst_delay + ndt - 2 # First X-ray pulse, in 987-Hz cycles # The high-speed chopper determines the X-ray pulse timing. xd = -timing_system.hsc.delay.offset # If the chopper timing shift is more than 100 ns, # assume the chopper selects a different bunch with a different timing. # (e.g super bunch versus single bunch) # However, if the time shift is more than 4 us, assume the tunnel # 1-unch selection mode is used so the transmitted X-ray pulse # arrives at nominally t=0. if 100e-9 < abs(timing_system.hsc.delay.value) < 4e-6: xd += timing_system.hsc.delay.value it_laser = it0-delay_coarse + arange(0,int(self.npulses)*ndt,ndt) it_xray = it0 + arange(0,int(self.npulses)*ndt,ndt) t_xray = it_xray*Tbase+xd t_laser = t_xray - delay # Trigger X-ray millsecond shutter pulse_length = timing_system.ms.pulse_length if self.burst_waitt < 0.010: # Assume the X-ray is continuously firing at 120 Hz. t_ms_open = min(t_xray) - timing_system.ms.offset t_ms_close = max(t_xray) - timing_system.ms.offset + pulse_length t_ms_open = array([t_ms_open]) t_ms_close = array([t_ms_close]) else: t_ms_open = t_xray - timing_system.ms.offset t_ms_close = t_xray - timing_system.ms.offset + pulse_length it_ms_open = maximum(floor(t_ms_open /Tbase),0).astype(int) it_ms_close = maximum(ceil(t_ms_close/Tbase),0).astype(int) it_ms_open = it_ms_open [it_ms_open<n] it_ms_close = it_ms_close[it_ms_close<n] ms_inc = sparse_array(n) ms_inc[it_ms_open] += 1 ms_inc[it_ms_close] -= 1 ms_state_counts = clip(
cumsum(ms_inc)
numpy.cumsum
""" File name: helper_functions.py Author: <NAME> Date created: 15.02.2018 This file contains helper functions for other scripts. """ import catboost as cat import innvestigate import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import shap from keras import activations from scipy.stats import iqr from sklearn import preprocessing from sklearn.metrics import (accuracy_score, f1_score, recall_score, roc_auc_score, precision_score, brier_score_loss) from vis.utils import utils def subsample(X, y, subsampling_type: str): """ If subsampling type is defined as 'random', randomly sub-samples the given data to yield equal number of label classes. Otherwise if subsampling type is defined as 'none', returns original data. :param X: Data input variables :param y: Data labels :param subsampling_type: Subsampling method to be used. :return: Subsampled data input variables and labels. """ df = pd.concat([X, y], axis=1) label = list(df)[-1] if subsampling_type == "random": df_bad = df[(df[label] == 1)] df_good = df[(df[label] == 0)] df_sub = pd.concat([df_good.sample(len(df_bad.index), random_state=21), df_bad]) X_new, y_new = df_sub.drop(label, axis=1), df_sub[[label]] elif subsampling_type == "none": X_new, y_new = X, y return X_new, y_new def predict_probability(data, model, model_name: str): """ Returns prediction probabilities estimated for the given dataset and model. :param data: Training or test data. :param model: Trained model. :param model_name: Name of the trained model. :return: Prediction probabilities """ if model_name == "MLP": output_activation = model.get_config()["layers"][-1]["config"]["activation"] if output_activation == "softmax": probs = model.predict_proba(data) else: probs = model.predict(data) else: probs = model.predict_proba(data).T[1] return probs def predict_class(data, model, model_name: str): """ Returns predicted classes for the given dataset and model. :param data: Training or test data. :param model: Trained model. :param model_name: Name of the trained model. :return: Predicted classes """ if model_name == "MLP": output_activation = model.get_config()["layers"][-1]["config"]["activation"] if output_activation == "softmax": probs = model.predict(data) preds = probs.argmax(axis=-1) else: preds = model.predict_classes(data) else: preds = model.predict(data).astype("float64") return preds def calc_perf_score(data, labels, model, model_name: str, score_name: str): """ Returns performance based on the given performance measure for the given data and model. :param data: Training or test data input variables. :param labels: Training or test labels. :param model: Trained model. :param model_name: Name of the trained model. :param score_name: Name of the performance measure. :return: Performance score """ global score if isinstance(labels, pd.DataFrame): labels.iloc[:, 0] = labels.iloc[:, 0].astype("float64") probs = predict_probability(data, model, model_name) preds = predict_class(data, model, model_name) #scores using probs if score_name == "AUC": score = roc_auc_score(labels, probs) elif score_name == "brier_score_loss": score =brier_score_loss(labels, probs) #scores using preds else: if score_name == "accuracy": score = accuracy_score(labels, preds) elif score_name == "f1": score = f1_score(labels, preds, pos_label=1) elif score_name == "average_class_accuracy": recall = recall_score(labels, preds, average=None) score = 2 / (1 / recall[0] + 1 / recall[1]) elif score_name == "precision_PPV": precision = precision_score(labels, preds, average=None) score = precision[1] elif score_name == "NPV": precision = precision_score(labels, preds, average=None) score = precision[0] elif score_name == "recall_sensitivity": recall = recall_score(labels, preds, average=None) score = recall[1] elif score_name == "specificity": recall = recall_score(labels, preds, average=None) score = recall[0] return score def linear_shap_value(model): """ Calculates Shapley values for the given training set and linear classifier model. :param dataset: Training or test data. :param model: Trained linear model. :return: Shapley values """ explainer = shap.LinearExplainer(model.best_model, model.X_tr, feature_dependence="independent") shap_values = explainer.shap_values(model.X_te) shap_values_mean_over_samples = np.mean(shap_values, axis=0) return shap_values_mean_over_samples def calc_shap_values(dataset, model): """ Calculates Shapley values for the given training set and tree boosting model. :param dataset: Training or test data. :param model: Trained tree boosting model. :return: Shapley values """ explainer = shap.TreeExplainer(model.best_model) cat_features = [ list(model.X_tr).index(dataset.cat_preds[i]) for i in range(len(dataset.cat_preds)) ] shap_values = explainer.shap_values(cat.Pool(model.X_te, model.y_te, cat_features=cat_features)) # Calculate average over samples (patients) shap_values_mean_over_samples = np.mean(shap_values, axis=0) return shap_values_mean_over_samples def calc_kernel_shap_values(model): """ Calculates Shapley values for the given training set and model. :param dataset: Training or test data. :param model: Trained model. :return: Shapley values """ explainer = shap.KernelExplainer(model.best_model.predict_proba, model.X_tr) shap_values = explainer.shap_values(model.X_te,l1_reg=0.0,nsamples=500)[0] #results are symmetric (-,+) # Calculate average over samples (patients) shap_values_mean_over_samples =
np.mean(shap_values, axis=0)
numpy.mean
import gc import itertools import numpy as np class KMedoids: def __init__(self, dist_matrix, init_type='k++'): self.dist_matrix = np.asarray(dist_matrix) self.n_points = dist_matrix.shape[0] self.inited_medoids = None if init_type not in ['k++', 'random']: raise ValueError('init_type argument must be either k++ or random, but it is ', init_type) self.init_type = init_type def cluster(self, k): """ Performs actual clustering. :param k: number of clusters :return: ids of clusters and ids of medoids """ print('Running k-Medoids with k = {}, init = {}'.format(k, self.init_type)) if self.init_type == 'random': curr_medoids = self.__init_random(k) elif self.init_type == 'k++': curr_medoids = self.__init_kplusplus(k) else: raise AssertionError(self.init_type) # used to plot later self.inited_medoids = curr_medoids # Doesn't matter what we initialize these to. old_medoids = np.array([-1] * k) new_medoids = np.array([-1] * k) print('Medoids initialized: ', curr_medoids) it = 0 clusters = np.zeros(self.dist_matrix.shape[0]) # Until the medoids stop updating, do the following: while not ((old_medoids == curr_medoids).all()): print('Running iter %d' % it) # Assign each point to cluster with closest medoid. clusters = assign_points_to_clusters(self.dist_matrix, curr_medoids) # Update cluster medoids to be lowest cost point. for curr_medoid in curr_medoids: cluster = np.where(clusters == curr_medoid)[0] new_medoids[curr_medoids == curr_medoid] = compute_new_medoid(self.dist_matrix, cluster) old_medoids[:] = curr_medoids[:] curr_medoids[:] = new_medoids[:] it += 1 gc.collect() return clusters, curr_medoids def __init_random(self, k): # Pick k random, unique medoids. curr_medoids = np.array([-1] * k) while not len(np.unique(curr_medoids)) == k: curr_medoids = np.random.randint(0, self.n_points - 1, k) return curr_medoids def __init_kplusplus(self, k): """ Initialize the medoids with kmeans++ algorithm by <NAME> and <NAME>. This is preferd initialization over pure random. :param k: number of clusters :return: ids of data points that are going to be used as medoids """ medoids = np.empty((k,), dtype=int) fst_mean = np.random.randint(0, self.n_points) medoids[0] = fst_mean # get square distances of all points to the mean # dists = dist(common, means[0, np.newaxis], xtx) dists = pdist_from_ids(self.dist_matrix, np.arange(self.n_points), fst_mean) probs = np.empty(self.n_points) for i in range(1, k): # sample a new mean weighted by squared dists np.divide(dists, np.linalg.norm(dists, ord=1), out=probs) new_mean_idx = np.random.choice(self.n_points, replace=False, p=probs) # add new mean medoids[i] = new_mean_idx # calculate new distances to the closest means new_dists = pdist_from_ids(self.dist_matrix, np.arange(self.n_points), new_mean_idx) dists = np.minimum(dists, new_dists) return medoids def assign_points_to_clusters(dist_matrix, medoids): """ Assign each point to cluster with closest medoid. :param dist_matrix :param medoids: IDs of medoids :return: """ medoids = np.array(medoids) distances_to_medoids = dist_matrix[:, medoids] clusters = medoids[np.argmin(distances_to_medoids, axis=1)] clusters[medoids] = medoids return clusters def compute_new_medoid(dist_matrix, cluster): """ Computes the new medoid for the given cluster :param dist_matrix :param cluster: :return: """ mask = np.ones(dist_matrix.shape) mask[np.ix_(cluster, cluster)] = 0. cluster_distances = np.ma.masked_array(data=dist_matrix, mask=mask, fill_value=10e9) costs = cluster_distances.sum(axis=1) return costs.argmin(axis=0, fill_value=10e9) def pdist_from_ids(dist_matrix, list1, list2): """ Returns pair-wise distances between data points with ids in list1 and ids in list2. :param dist_matrix: entri i,j represent the distance between point i and j :param list1: ids of data points in the first set :param list2: ids of data points in the second set :return: result[i, j] = distance between data[list1[i]] and data[list2[j]] """ if not np.isscalar(list2): c = list(itertools.product(list1, list2)) c1, c2 = zip(*c) res = np.asarray(dist_matrix[c1, c2]).reshape((len(list1), len(list2))) else: c1 = list1 c2 = list2 res =
np.asarray(dist_matrix[c1, c2])
numpy.asarray
#!/usr/bin/env python ''' Created on 02 Oct 2020 @author: <NAME> @license: BSD 3-Clause ''' from __future__ import annotations from typing import Callable, Tuple, List, Dict, Any, Union import numpy as np import math from matplotlib import pyplot as plt, patches, axes as plt_axes from causets.shapes import BallSurface, OpenConeSurface, CoordinateShape, CircleEdge, EllipseEdge from causets.calculations import NewtonsMethod as Newton default_samplingsize: int = 128 # default value for sampling lightcones causality_eps: float = 0.00000000000001 # for small causality rounding errors class Spacetime(object): ''' Super-class for the implementation of spacetimes. ''' _dim: int _name: str _metricname: str _params: Dict[str, Any] def __init__(self) -> None: self._dim = 2 self._name = '' self._metricname = 'unknown' self._params = {} def __str__(self): return f'{self._dim}-dimensional {self._name} spacetime' def __repr__(self): return f'{self.__class__.__name__}({self._dim}, **{self._params})' @property def Dim(self) -> int: ''' Returns the dimension of the spacetime. ''' return self._dim @property def Name(self) -> str: ''' Returns the name of the spacetime. ''' return self._name @property def MetricName(self) -> str: ''' Returns the name of the coordinate representation of the metric. ''' return self._metricname def Parameter(self, key: str) -> Any: ''' Returns a parameter for the shape of the spacetime. ''' return self._params[key] def DefaultShape(self) -> CoordinateShape: ''' Returns the default coordinate shape of the embedding region in the spacetime. ''' return CoordinateShape(self.Dim, 'cylinder') def Causality(self) -> Callable[[np.ndarray, np.ndarray], Tuple[bool, bool]]: ''' Returns a handle to a function to determine if two points x and y are causally connected for the spacetime. The function accepts coordinates x and y for two points and returns the causality tuple (x <= y, x > y). ''' # This is an example implementation for a spacetime. def isCausal(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: t_delta: float = y[0] - x[0] return (t_delta >= 0.0, t_delta < 0.0) return isCausal def _T_slice_sampling(self, t: float, origin: np.ndarray, samplingsize: int = -1) -> np.ndarray: ''' Internal function for the time sampling array for a cone from `origin` to time `t`. ''' samplingsize = samplingsize if samplingsize >= 0 \ else default_samplingsize return np.linspace(origin[0], t, samplingsize) def _XT_slice(self, t: float, origin: np.ndarray, xdim: int, samplingsize: int = -1) -> np.ndarray: ''' Internal function for the cone plotting from `origin` to time `t` projected onto a X-T (space-time) plane with space dimension `xdim`. ''' raise NotImplementedError() def _XY_slice(self, t: float, origin: np.ndarray, dims: List[int], samplingsize: int = -1) -> np.ndarray: ''' Internal function for the cone plotting from `origin` to time `t` projected onto a X-Y (space-space) plane with space dimensions `dims`. ''' raise NotImplementedError() def _XYZ_slice(self, t: float, origin: np.ndarray, dims: List[int], samplingsize: int = -1) -> \ Tuple[np.ndarray, np.ndarray, np.ndarray]: ''' Internal function for the cone plotting from `origin` to time `t` projected onto a X-Y-Z (space-space) plane with space dimensions `dims`. ''' raise NotImplementedError() def ConePlotter(self, dims: List[int], plotting_params: Dict[str, Any], timesign: float, axes: plt_axes.Axes = None, dynamicAlpha: Callable[[float], float] = None, samplingsize: int = -1) -> \ Callable[[np.ndarray, float], Union[patches.Patch, List[Tuple[np.ndarray, np.ndarray, np.ndarray]]]]: ''' Returns a function handle to plot past (`timesign == -1`) or future (`timesign == 1`) causal cones for the spacetime `self` into the axes object `axes` (given by gca() by default, with projection='3d' if len(dims) > 2) up to the coordinate time `timeslice` with plotting parameters given in the dictionary `plotting_params`. The time coordinate goes along the axis with index `timeaxis`. As optional parameter `dynamicAlpha` a function (mapping float to float) can be specified to compute the opacity of the cone from its size (radius). The argument `dims` specifies the coordinate axes to be plotted. It is a list of 2 or 3 integers, setting up a 2D or 3D plot. ''' is3d: bool = len(dims) == 3 _axes: plt_axes.Axes if axes is None: if is3d: _axes = plt.gca(projection='3d') else: _axes = plt.gca(projection=None) else: _axes = axes timeaxis: int try: timeaxis = dims.index(0) except ValueError: timeaxis = -1 xaxis: int = (timeaxis + 1) % len(dims) yaxis: int = (timeaxis + 2) % len(dims) if samplingsize <= 0: samplingsize = default_samplingsize def cone(origin: np.ndarray, timeslice: float) -> \ Union[patches.Patch, List[Tuple[np.ndarray, np.ndarray, np.ndarray]]]: ''' Creates matplotlib surface plots for a 3D causal cone, or a patch for a 2D causal cone added to the axes `axes`. The light emanates from the coordinates `origin`, which has to be a `numpy` vector with a length given by the coordinate dimensions of the spacetime. The lightcone reaches up to `timeslice`. The keyword argument `plotting_params` (with a dynamically adjusted 'alpha' parameter) are passed to `plot_surface` methods if it is 3D or to the Patch objects if it is 2D. The function returns `None` if no causal cone can be computed for the respective input parameters. ''' r: float = timesign * (timeslice - origin[0]) if r <= 0.0: # radius non-positive return None if dynamicAlpha is not None: conealpha = dynamicAlpha(r) if conealpha <= 0.0: return None plotting_params.update({'alpha': conealpha}) XY: np.ndarray = None T: np.ndarray samplesize_t: int if timeaxis >= 0: T = self._T_slice_sampling(timeslice, origin, samplingsize) samplesize_t = T.size if is3d: X: np.ndarray Y: np.ndarray Z: np.ndarray if timeaxis < 0: X, Y, Z = self._XYZ_slice(timeslice, origin, dims, samplingsize) else: for i, t in enumerate(T): XY = self._XY_slice(t, origin, [dims[xaxis], dims[yaxis]], samplingsize) if XY is None: return None elif i == 0: s: Tuple[int, int] = (samplesize_t, XY.shape[0]) X, Y, Z = np.zeros(s), np.zeros(s), np.zeros(s) X[i, :], Y[i, :], Z[i, :] = XY[:, 0], XY[:, 1], t # rotate: if timeaxis == 0: X, Y, Z = Z, X, Y elif timeaxis == 1: X, Y, Z = Y, Z, X _axes.plot_surface(X, Y, Z, **plotting_params) return [(X, Y, Z)] else: if timeaxis < 0: XY = self._XY_slice(timeslice, origin, dims, samplingsize) else: XY = self._XT_slice(timeslice, origin, dims[xaxis], samplingsize) if XY is None: return None # rotate: if timeaxis == 0: XY = np.fliplr(XY) p: patches.Patch = patches.Polygon(XY, **plotting_params) _axes.add_patch(p) return p return cone class FlatSpacetime(Spacetime): ''' Initializes Minkowski spacetime for dim >= 1. As additional parameter, the spatial periodicity can be specified (by the key 'period') as float (to be applied for all spatial directions equally) or as tuple (with a float for each spatial dimension). A positive float switches on the periodicity along the respective spatial direction, using this value as period. The default is 0.0, no periodicity in any direction. ''' def __init__(self, dim: int, period: Union[float, Tuple[float, ...]] = 0.0) -> None: if dim < 1: raise ValueError('The spacetime dimension has to be at least 1.') super().__init__() self._dim = dim self._name = 'flat' self._metricname = 'Minkowski' _isPeriodic: bool _periods: np.ndarray = None if isinstance(period, float): _isPeriodic = period > 0.0 if _isPeriodic: _periods = np.array([period] * (dim - 1)) elif isinstance(period, tuple) and (len(period) == dim - 1): _isPeriodic = any(p > 0.0 for p in period) _periods = period else: raise ValueError('The parameter ''periodic'' has to be of ' + 'type float, or a tuple of float with the ' + 'same length as spatial dimensions.') self._params['isPeriodic'] = _isPeriodic if _isPeriodic: self._params['period'] = _periods def __repr__(self): _period: Tuple[float, ...] = self.Parameter('period') return f'{self.__class__.__name__}({self._dim}, period={_period})' def DefaultShape(self) -> CoordinateShape: return CoordinateShape(self.Dim, 'cube') \ if self.Parameter('isPeriodic') \ else CoordinateShape(self.Dim, 'diamond') def Causality(self) -> Callable[[np.ndarray, np.ndarray], Tuple[bool, bool]]: if self.Dim == 1: return super().Causality() if not self.Parameter('isPeriodic'): if self.Dim == 2: def isCausal_flat2D(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: t_delta: float = y[0] - x[0] isCausal: bool = abs(t_delta) >= \ abs(y[1] - x[1]) - causality_eps return ((t_delta >= 0.0) and isCausal, (t_delta < 0.0) and isCausal) return isCausal_flat2D else: def isCausal_flat(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: t_delta: float = y[0] - x[0] isCausal: bool = np.square(t_delta) >= \ sum(np.square(y[1:] - x[1:])) - causality_eps return ((t_delta >= 0.0) and isCausal, (t_delta < 0.0) and isCausal) return isCausal_flat else: _period: np.ndarray = self.Parameter('period') if self.Dim == 2: def isCausal_flat2Dperiodic(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: t_delta: float = y[0] - x[0] r_delta: float = abs(y[1] - x[1]) if _period[0] > 0.0: r_delta = min(r_delta, _period[0] - r_delta) isCausal: bool = abs(t_delta) >= \ abs(r_delta) - causality_eps return ((t_delta >= 0.0) and isCausal, (t_delta < 0.0) and isCausal) return isCausal_flat2Dperiodic else: def isCausal_flatperiodic(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: t_delta: float = y[0] - x[0] r2_delta: float = 0.0 for i in range(1, self.Dim): r_delta_i: float = abs(y[i] - x[i]) if _period[i - 1] > 0.0: r_delta_i = min(r_delta_i, _period[i - 1] - r_delta_i) r2_delta += r_delta_i**2 isCausal: bool = np.square(t_delta) >= \ r2_delta - causality_eps return ((t_delta >= 0.0) and isCausal, (t_delta < 0.0) and isCausal) return isCausal_flatperiodic def ConePlotter(self, dims: List[int], plotting_params: Dict[str, Any], timesign: float, axes: plt_axes.Axes = None, dynamicAlpha: Callable[[float], float] = None, samplingsize: int = -1) -> \ Callable[[np.ndarray, float], Union[patches.Patch, List[Tuple[np.ndarray, np.ndarray, np.ndarray]]]]: is3d: bool = len(dims) == 3 _axes: plt_axes.Axes if axes is None: if is3d: _axes = plt.gca(projection='3d') else: _axes = plt.gca(projection=None) else: _axes = axes timeaxis: int try: timeaxis = dims.index(0) except ValueError: timeaxis = -1 isPeriodic: bool = self.Parameter('isPeriodic') shifts: List[np.ndarray] k_x: float = 0.0 x_s: List[float] k_y: float = 0.0 y_s: List[float] if is3d: k_z: float = 0.0 z_s: List[float] if isPeriodic: if timeaxis == 0: k_y = self.Parameter('period')[dims[1] - 1] k_z = self.Parameter('period')[dims[2] - 1] elif timeaxis == 1: k_z = self.Parameter('period')[dims[2] - 1] k_x = self.Parameter('period')[dims[0] - 1] elif timeaxis == 2: k_x = self.Parameter('period')[dims[0] - 1] k_y = self.Parameter('period')[dims[1] - 1] else: k_x = self.Parameter('period')[dims[0] - 1] k_y = self.Parameter('period')[dims[1] - 1] k_z = self.Parameter('period')[dims[2] - 1] x_s = [-k_x, 0.0, k_x] if k_x > 0.0 else [0.0] y_s = [-k_y, 0.0, k_y] if k_y > 0.0 else [0.0] z_s = [-k_z, 0.0, k_z] if k_z > 0.0 else [0.0] shifts = [np.array([x, y, z]) for x in x_s for y in y_s for z in z_s] else: shifts = [np.array([0.0, 0.0, 0.0])] else: if isPeriodic: if timeaxis == 0: k_y = self.Parameter('period')[dims[1] - 1] elif timeaxis == 1: k_x = self.Parameter('period')[dims[0] - 1] else: k_x = self.Parameter('period')[dims[0] - 1] k_y = self.Parameter('period')[dims[1] - 1] x_s = [-k_x, 0.0, k_x] if k_x > 0.0 else [0.0] y_s = [-k_y, 0.0, k_y] if k_y > 0.0 else [0.0] shifts = [np.array([x, y]) for x in x_s for y in y_s] else: shifts = [np.array([0.0, 0.0])] if samplingsize <= 0: samplingsize = default_samplingsize def cone(origin: np.ndarray, timeslice: float) -> \ Union[patches.Patch, List[Tuple[np.ndarray, np.ndarray, np.ndarray]]]: r: float = timesign * (timeslice - origin[0]) if r <= 0.0: # radius non-positive return None if dynamicAlpha is not None: conealpha = dynamicAlpha(r) if conealpha <= 0.0: return None plotting_params.update({'alpha': conealpha}) origin = origin[dims] if is3d: XYZ_list: List[Tuple[np.ndarray, np.ndarray, np.ndarray]] = [] if timeaxis < 0: for s in shifts: XYZ_list = XYZ_list + BallSurface( origin - s, r, samplingsize) else: for s in shifts: XYZ_list = XYZ_list + OpenConeSurface( origin - s, r, timesign * r, timeaxis, samplingsize) for XYZ in XYZ_list: _axes.plot_surface(*XYZ, **plotting_params) return XYZ_list else: XY: np.array = None XYpart: np.array for i, s in enumerate(shifts): if timeaxis == 0: XYpart = np.array( [origin - s, np.array([timeslice, origin[1] - r]) - s, np.array([timeslice, origin[1] + r]) - s, origin - s]) elif timeaxis == 1: XYpart = np.array( [origin - s, np.array([origin[0] + r, timeslice]) - s, np.array([origin[0] - r, timeslice]) - s, origin - s]) else: XYpart = CircleEdge(origin - s, radius=r, samplingsize=samplingsize) XY = XYpart if i == 0 \ else np.concatenate( (XY, np.array([[np.nan, np.nan]]), XYpart)) p: patches.Patch = patches.Polygon(XY, **plotting_params) _axes.add_patch(p) return p return cone class _dSSpacetime(Spacetime): ''' Implementation of the base class for de Sitter and Anti-de Sitter spacetimes. ''' _alpha: float _alpha_sq: float def __init__(self, dim: int, alpha: float = 1.0) -> None: ''' Initializes (Anti) de Sitter spacetime for dim >= 2. It is parametrized by `alpha` as float. ''' if dim < 2: raise ValueError('The spacetime dimension has to be at least 2.') super().__init__() self._dim = dim self._metricname = 'static' self._alpha = alpha self._alpha_sq = alpha**2 def Causality(self) -> Callable[[np.ndarray, np.ndarray], Tuple[bool, bool]]: raise NotImplementedError() def _XT_slice2(self, t: float, t0: float, x0: float) -> Tuple[float, float]: raise NotImplementedError() def _XT_slice(self, t: float, origin: np.ndarray, xdim: int, samplingsize: int = -1) -> np.ndarray: T: np.ndarray = self._T_slice_sampling(t, origin, samplingsize) XT: np.ndarray = np.zeros((2 * T.size - 1, 2)) if origin.size == 2: x0: float = origin[1] / self._alpha if abs(x0) >= 1.0: return None for i, t in enumerate(T): r: Tuple[float, float] = self._XT_slice2(t, origin[0], x0) XT[-i, 0], XT[i, 0] = min(r), max(r) XT[-i, 1], XT[i, 1] = t, t else: t_X: np.ndarray for i, t in enumerate(T): x_min: float = np.PINF x_max: float = np.NINF for ydim in range(1, origin.size): if ydim == xdim: continue t_X = self._XY_slice(t, origin, [xdim, ydim], samplingsize) if t_X is None: return None x_min = np.min([x_min, np.min(t_X[:, 0])]) x_max = np.max([x_max, np.max(t_X[:, 0])]) XT[-i, 0], XT[i, 0] = x_min, x_max XT[-i, 1], XT[i, 1] = t, t return XT class deSitterSpacetime(_dSSpacetime): ''' Implementation of de Sitter spacetimes, which are globally hyperbolic. ''' def __init__(self, dim: int, r_dS: float = 1.0) -> None: ''' Initializes de Sitter spacetime for dim >= 2. It is parametrized by the radius of the cosmological radius `r_dS` as float. ''' super().__init__(dim, r_dS) self._name = 'de Sitter' if r_dS > 0.0: self._params = {'r_dS': r_dS} else: raise ValueError('The cosmological radius ' + 'has to be positive.') def Causality(self) -> Callable[[np.ndarray, np.ndarray], Tuple[bool, bool]]: def isCausal_dS(x: np.ndarray, y: np.ndarray) -> Tuple[bool, bool]: r2_x: float = sum(np.square(x[1:])) r2_y: float = sum(np.square(y[1:])) if (r2_x >= self._alpha_sq) or (r2_y >= self._alpha_sq): return (False, False) amp_x: float = math.sqrt(self._alpha_sq - r2_x) amp_y: float = math.sqrt(self._alpha_sq - r2_y) x0_x: float = amp_x * math.sinh(x[0] / self._alpha) x1_x: float = amp_x * math.cosh(x[0] / self._alpha) x0_y: float = amp_y * math.sinh(y[0] / self._alpha) x1_y: float = amp_y * math.cosh(y[0] / self._alpha) x0_delta: float = x0_y - x0_x isCausal: bool = x0_delta**2 >= \ sum(np.square(y[1:] - x[1:])) + (x1_y - x1_x)**2 - \ causality_eps return ((x0_delta >= 0.0) and isCausal, (x0_delta < 0.0) and isCausal) return isCausal_dS def _XT_slice2(self, t: float, t0: float, x0: float) -> Tuple[float, float]: return (self._alpha * np.tanh(np.arctanh(x0) - (t - t0) / self._alpha), self._alpha * np.tanh(
np.arctanh(x0)
numpy.arctanh
# ****************************************************************************** # Copyright 2017-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import json import numpy as np import pytest from _pyngraph import VariantInt, VariantString import ngraph as ng from ngraph.exceptions import UserInputError from ngraph.impl import Function, PartialShape, Shape, Type from ngraph.impl.op import Parameter from tests.runtime import get_runtime from tests.test_ngraph.util import run_op_node from tests import (xfail_issue_34323, xfail_issue_35929, xfail_issue_36476, xfail_issue_36479, xfail_issue_36480) def test_ngraph_function_api(): shape = [2, 2] parameter_a = ng.parameter(shape, dtype=np.float32, name="A") parameter_b = ng.parameter(shape, dtype=np.float32, name="B") parameter_c = ng.parameter(shape, dtype=np.float32, name="C") model = (parameter_a + parameter_b) * parameter_c function = Function(model, [parameter_a, parameter_b, parameter_c], "TestFunction") function.get_parameters()[1].set_partial_shape(PartialShape([3, 4, 5])) ordered_ops = function.get_ordered_ops() op_types = [op.get_type_name() for op in ordered_ops] assert op_types == ["Parameter", "Parameter", "Parameter", "Add", "Multiply", "Result"] assert len(function.get_ops()) == 6 assert function.get_output_size() == 1 assert function.get_output_op(0).get_type_name() == "Result" assert function.get_output_element_type(0) == parameter_a.get_element_type() assert list(function.get_output_shape(0)) == [2, 2] assert (function.get_parameters()[1].get_partial_shape()) == PartialShape([3, 4, 5]) assert len(function.get_parameters()) == 3 assert len(function.get_results()) == 1 assert function.get_friendly_name() == "TestFunction" @pytest.mark.parametrize( "dtype", [ np.float32, pytest.param(np.float64, marks=xfail_issue_35929), pytest.param(np.int8, marks=xfail_issue_36479), np.int16, np.int32, np.int64, pytest.param(np.uint8, marks=xfail_issue_36479), np.uint16, pytest.param(np.uint32, marks=xfail_issue_36476), np.uint64, ], ) def test_simple_computation_on_ndarrays(dtype): runtime = get_runtime() shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name="A") parameter_b = ng.parameter(shape, dtype=dtype, name="B") parameter_c = ng.parameter(shape, dtype=dtype, name="C") model = (parameter_a + parameter_b) * parameter_c computation = runtime.computation(model, parameter_a, parameter_b, parameter_c) value_a = np.array([[1, 2], [3, 4]], dtype=dtype) value_b = np.array([[5, 6], [7, 8]], dtype=dtype) value_c = np.array([[9, 10], [11, 12]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[54, 80], [110, 144]], dtype=dtype)) value_a = np.array([[13, 14], [15, 16]], dtype=dtype) value_b = np.array([[17, 18], [19, 20]], dtype=dtype) value_c = np.array([[21, 22], [23, 24]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[630, 704], [782, 864]], dtype=dtype)) def test_serialization(): dtype = np.float32 shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name="A") parameter_b = ng.parameter(shape, dtype=dtype, name="B") parameter_c = ng.parameter(shape, dtype=dtype, name="C") model = (parameter_a + parameter_b) * parameter_c runtime = get_runtime() computation = runtime.computation(model, parameter_a, parameter_b, parameter_c) try: serialized = computation.serialize(2) serial_json = json.loads(serialized) assert serial_json[0]["name"] != "" assert 10 == len(serial_json[0]["ops"]) except Exception: pass def test_broadcast_1(): input_data = np.array([1, 2, 3], dtype=np.int32) new_shape = [3, 3] expected = [[1, 2, 3], [1, 2, 3], [1, 2, 3]] result = run_op_node([input_data], ng.broadcast, new_shape) assert np.allclose(result, expected) def test_broadcast_2(): input_data = np.arange(4, dtype=np.int32) new_shape = [3, 4, 2, 4] expected = np.broadcast_to(input_data, new_shape) result = run_op_node([input_data], ng.broadcast, new_shape) assert np.allclose(result, expected) def test_broadcast_3(): input_data = np.array([1, 2, 3], dtype=np.int32) new_shape = [3, 3] axis_mapping = [0] expected = [[1, 1, 1], [2, 2, 2], [3, 3, 3]] result = run_op_node([input_data], ng.broadcast, new_shape, axis_mapping, "EXPLICIT") assert np.allclose(result, expected) @pytest.mark.xfail(reason="AssertionError: assert dtype('float32') == <class 'bool'") @pytest.mark.parametrize( "destination_type, input_data", [(bool, np.zeros((2, 2), dtype=np.int32)), ("boolean", np.zeros((2, 2), dtype=np.int32))], ) def test_convert_to_bool(destination_type, input_data): expected = np.array(input_data, dtype=bool) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == bool @pytest.mark.parametrize( "destination_type, rand_range, in_dtype, expected_type", [ pytest.param(np.float32, (-8, 8), np.int32, np.float32), pytest.param(np.float64, (-16383, 16383), np.int64, np.float64, marks=xfail_issue_35929), pytest.param("f32", (-8, 8), np.int32, np.float32), pytest.param("f64", (-16383, 16383), np.int64, np.float64, marks=xfail_issue_35929), ], ) def test_convert_to_float(destination_type, rand_range, in_dtype, expected_type): np.random.seed(133391) input_data = np.random.randint(*rand_range, size=(2, 2), dtype=in_dtype) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type @xfail_issue_35929 @pytest.mark.parametrize( "destination_type, expected_type", [ (np.int8, np.int8), (np.int16, np.int16), (np.int32, np.int32), (np.int64, np.int64), ("i8", np.int8), ("i16", np.int16), ("i32", np.int32), ("i64", np.int64), ], ) def test_convert_to_int(destination_type, expected_type): np.random.seed(133391) input_data = np.ceil(-8 + np.random.rand(2, 3, 4) * 16) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type @xfail_issue_35929 @pytest.mark.parametrize( "destination_type, expected_type", [ (np.uint8, np.uint8), (np.uint16, np.uint16), (np.uint32, np.uint32), (np.uint64, np.uint64), ("u8", np.uint8), ("u16", np.uint16), ("u32", np.uint32), ("u64", np.uint64), ], ) def test_convert_to_uint(destination_type, expected_type): np.random.seed(133391) input_data = np.ceil(np.random.rand(2, 3, 4) * 16) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type def test_bad_data_shape(): A = ng.parameter(shape=[2, 2], name="A", dtype=np.float32) B = ng.parameter(shape=[2, 2], name="B") model = A + B runtime = get_runtime() computation = runtime.computation(model, A, B) value_a = np.array([[1, 2]], dtype=np.float32) value_b = np.array([[5, 6], [7, 8]], dtype=np.float32) with pytest.raises(UserInputError): computation(value_a, value_b) def test_constant_get_data_bool(): input_data = np.array([True, False, False, True]) node = ng.constant(input_data, dtype=np.bool) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @pytest.mark.parametrize("data_type", [np.float32, np.float64]) def test_constant_get_data_floating_point(data_type): np.random.seed(133391) input_data = np.random.randn(2, 3, 4).astype(data_type) min_value = -1.0e20 max_value = 1.0e20 input_data = min_value + input_data * max_value * data_type(2) node = ng.constant(input_data, dtype=data_type) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @pytest.mark.parametrize("data_type", [np.int64, np.int32, np.int16, np.int8]) def test_constant_get_data_signed_integer(data_type): np.random.seed(133391) input_data = np.random.randint( np.iinfo(data_type).min, np.iinfo(data_type).max, size=[2, 3, 4], dtype=data_type ) node = ng.constant(input_data, dtype=data_type) retrieved_data = node.get_data() assert
np.allclose(input_data, retrieved_data)
numpy.allclose
import numpy as np import nibabel as nib import scipy.ndimage def normalize_img(img, max_img, min_img, max, min): # Scale between [1 0] img = (img - min_img)/(max_img - min_img) # Scale between [max min] img = img*(max - min) + min return img def unnormalize_img(img, max_img, min_img, max, min): # Undoes normalize_img() img = (img - min)/(max - min)*(max_img - min_img) + min_img return img def get_nii_img(path_nii): nii = nib.load(path_nii) nii_img = nii.get_fdata() return nii_img def nii2torch(nii_img): # Input: (x, y, z, channels) # Output: (1, channels, z, x ,y) # Expand dims => (1, x, y, z, channels) torch_img = np.expand_dims(nii_img, axis=0) # Permute dimensions => (1, channels, z, x ,y) torch_img =
np.transpose(torch_img, axes=(0, 4, 3, 1, 2))
numpy.transpose
# this part copy from Yufeng Shen's Code: #https://github.com/Yufeng-shen/nfHEDMtools/blob/master/Simulation.py import numpy as np from fractions import Fraction from math import floor from hexomap import utility # from matplotlib import path class Detector: def __init__(self): self.Norm = np.array([0, 0, 1]) self.CoordOrigin = np.array([0., 0., 0.]) self.Jvector = np.array([1, 0, 0]) self.Kvector = np.array([0, -1, 0]) self.PixelJ = 0.00148 self.PixelK = 0.00148 self.NPixelJ = 2048 self.NPixelK = 2048 def Move(self, J, K, trans, tilt): self.CoordOrigin -= J * self.Jvector * self.PixelJ + K * self.Kvector * self.PixelK self.CoordOrigin = tilt.dot(self.CoordOrigin) + trans self.Norm = tilt.dot(self.Norm) self.Jvector = tilt.dot(self.Jvector) self.Kvector = tilt.dot(self.Kvector) def IntersectionIdx(self, ScatterSrc, TwoTheta, eta, bIdx=True): #print('eta:{0}'.format(eta)) #self.Print() dist = self.Norm.dot(self.CoordOrigin - ScatterSrc) scatterdir = np.array([np.cos(TwoTheta), np.sin(TwoTheta) * np.sin(eta), np.sin(TwoTheta) * np.cos(eta)]) InterPos = dist / (self.Norm.dot(scatterdir)) * scatterdir + ScatterSrc J = (self.Jvector.dot(InterPos - self.CoordOrigin) / self.PixelJ) K = (self.Kvector.dot(InterPos - self.CoordOrigin) / self.PixelK) if 0 <= int(J) < self.NPixelJ and 0 <= int(K) < self.NPixelK: if bIdx == True: return int(J), int(K) else: return J, K else: return -1 def BackProj(self, HitPos, omega, TwoTheta, eta): """ HitPos: ndarray (3,) The position of hitted point on lab coord, unit in mm """ scatterdir = np.array([np.cos(TwoTheta), np.sin(TwoTheta) * np.sin(eta), np.sin(TwoTheta) * np.cos(eta)]) t = HitPos[2] / (np.sin(TwoTheta) * np.cos(eta)) x = HitPos[0] - t * np.cos(TwoTheta) y = HitPos[1] - t * np.sin(TwoTheta) * np.sin(eta) truex = np.cos(omega) * x + np.sin(omega) * y truey = -np.sin(omega) * x + np.cos(omega) * y return np.array([truex, truey]) def Idx2LabCord(self, J, K): return J * self.PixelJ * self.Jvector + K * self.PixelK * self.Kvector + self.CoordOrigin def Reset(self): self.__init__() def Print(self): print("Norm: ", self.Norm) print("CoordOrigin: ", self.CoordOrigin) print("J vector: ", self.Jvector) print("K vector: ", self.Kvector) class CrystalStr: def __init__(self, material='new'): self.name = material self.AtomPos = [] self.AtomZs = [] self.symtype = None if material == 'gold': self.symtype = 'Cubic' self.PrimA = 4.08 * np.array([1, 0, 0]) self.PrimB = 4.08 * np.array([0, 1, 0]) self.PrimC = 4.08 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 79) self.addAtom([0, 0.5, 0.5], 79) self.addAtom([0.5, 0, 0.5], 79) self.addAtom([0.5, 0.5, 0], 79) elif material == 'copper': self.symtype = 'Cubic' self.PrimA = 3.61 * np.array([1, 0, 0]) self.PrimB = 3.61 * np.array([0, 1, 0]) self.PrimC = 3.61 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0, 0.5, 0.5], 29) self.addAtom([0.5, 0, 0.5], 29) self.addAtom([0.5, 0.5, 0], 29) elif material == 'copperBCC': self.symtype = 'Cubic' self.PrimA = 2.947 * np.array([1, 0, 0]) self.PrimB = 2.947 * np.array([0, 1, 0]) self.PrimC = 2.947 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0.5, 0.5, 0.5], 29) elif material == 'copperFCC': self.symtype = 'Cubic' self.PrimA = 3.692 * np.array([1, 0, 0]) self.PrimB = 3.692 * np.array([0, 1, 0]) self.PrimC = 3.692 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0, 0.5, 0.5], 29) self.addAtom([0.5, 0, 0.5], 29) self.addAtom([0.5, 0.5, 0], 29) elif material == 'stainless_steel': self.symtype = 'Cubic' self.PrimA = 3.59 * np.array([1, 0, 0]) self.PrimB = 3.59 * np.array([0, 1, 0]) self.PrimC = 3.59 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0, 0.5, 0.5], 26) self.addAtom([0.5, 0, 0.5], 26) self.addAtom([0.5, 0.5, 0], 26) elif material == 'iron_bcc': # bcc lattice self.symtype = 'Cubic' self.PrimA = 2.856 * np.array([1, 0, 0]) self.PrimB = 2.856 * np.array([0, 1, 0]) self.PrimC = 2.856 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0.5, 0.5, 0.5], 26) elif material == 'iron_fcc': self.symtype = 'Cubic' self.PrimA = 2.856 * np.array([1, 0, 0]) self.PrimB = 2.856 * np.array([0, 1, 0]) self.PrimC = 2.856 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0, 0.5, 0.5], 26) self.addAtom([0.5, 0, 0.5], 26) self.addAtom([0.5, 0.5, 0], 26) elif material == 'SrTiO3': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 22) self.addAtom([0.5, 0.5, 0.5], 38) self.addAtom([0.5, 0, 0], 8) self.addAtom([0, 0.5, 0], 8) self.addAtom([0, 0, 0.5], 8) elif material == 'SrTiO3_v1': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 8) self.addAtom([0, 0.5, 0.5], 8) self.addAtom([0.5, 0, 0.5], 8) elif material == 'SrTiO3_v2': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) #self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 8) self.addAtom([0, 0.5, 0.5], 8) self.addAtom([0.5, 0, 0.5], 8) elif material == 'SrTiO3_v3': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) #self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 38) self.addAtom([0, 0.5, 0.5], 38) self.addAtom([0.5, 0, 0.5], 38) elif material == 'Ti7': self.symtype = 'Hexagonal' self.PrimA = 2.92539 * np.array([1, 0, 0]) self.PrimB = 2.92539 * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = 4.67399 * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 22) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 22) elif material == 'WE43': # not tested, use Mg to approximate self.symtype = 'Hexagonal' a = 3.2094 c = 5.2107 self.PrimA = a * np.array([1, 0, 0]) self.PrimB = a * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = c * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 12) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 12) elif material == 'Ti64_alpha': self.symtype = 'Hexagonal' self.PrimA = 2.930 * np.array([1, 0, 0]) self.PrimB = 2.930 * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = 4.677 * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 22) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 22) elif material == 'Ti64_beta': # bcc lattice self.symtype = 'Cubic' self.PrimA = 3.224 * np.array([1, 0, 0]) self.PrimB = 3.224 * np.array([0, 1, 0]) self.PrimC = 3.224 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0.5, 0.5, 0.5], 26) elif material == 'UO2': # bcc lattice self.symtype = 'Cubic' self.PrimA = 5.471 * np.array([1, 0, 0]) self.PrimB = 5.471 * np.array([0, 1, 0]) self.PrimC = 5.471 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 92) elif material.lower() in ['zr', ' zirconium']: # hexagonal lattice # unit: angstrom, radian # source: # https://www.webelements.com/zirconium/crystal_structure.html self.symtype = 'Hexagonal' self.PrimA = 3.232 * np.array([1, 0, 0]) self.PrimB = 3.232 * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = 5.147 * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 22) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 22) elif material.endswith(('.yml', '.yaml')): d = utility.load_yaml(material) self.symtype = d['symtype'] if d['symtype'] == 'Hexagonal': self.PrimA = d['PrimA'] * np.array([1, 0, 0]) self.PrimB = d['PrimB'] * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = d['PrimC'] * np.array([0, 0, 1]) elif d['symtype'] == 'Cubic': self.PrimA = d['PrimA'] * np.array([1, 0, 0]) self.PrimB = d['PrimB'] * np.array([0, 1, 0]) self.PrimC = d['PrimC'] * np.array([0, 0, 1]) else: raise NotImplementedError('symType should be Cubic or Hexagonal') for key, value in d['Atom'].items(): self.addAtom(value['pos'], value['atomNumber']) else: raise ValueError("Unknown mateiral type!") def setPrim(self, x, y, z): self.PrimA =
np.array(x)
numpy.array
import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer from keras.layers.merge import _Merge from keras import activations import tensorflow as tf import numpy as np #---------------------------------------------------------------------------- # Resize activation tensor 'inputs' of shape 'si' to match shape 'so'. # class ACTVResizeLayer(Layer): def __init__(self,si,so,**kwargs): self.si = si self.so = so super(ACTVResizeLayer,self).__init__(**kwargs) def call(self, v, **kwargs): assert len(self.si) == len(self.so) and self.si[0] == self.so[0] # Decrease feature maps. Attention: channels last if self.si[-1] > self.so[-1]: v = v[...,:self.so[-1]] # Increase feature maps. Attention:channels last if self.si[-1] < self.so[-1]: z = K.zeros((self.so[:-1] + (self.so[-1] - self.si[-1])),dtype=v.dtype) v = K.concatenate([v,z]) # Shrink spatial axis if len(self.si) == 4 and (self.si[1] > self.so[1] or self.si[2] > self.so[2]): assert self.si[1] % self.so[1] == 0 and self.si[2] % self.so[2] == 0 pool_size = (self.si[1] / self.so[1],self.si[2] / self.so[2]) strides = pool_size v = K.pool2d(v,pool_size=pool_size,strides=strides,padding='same',data_format='channels_last',pool_mode='avg') #Extend spatial axis for i in range(1,len(self.si) - 1): if self.si[i] < self.so[i]: assert self.so[i] % self.si[i] == 0 v = K.repeat_elements(v,rep=int(self.so[i] / self.si[i]),axis=i) return v def compute_output_shape(self, input_shape): return self.so #---------------------------------------------------------------------------- # Resolution selector for fading in new layers during progressive growing. class LODSelectLayer(Layer): def __init__(self,cur_lod,first_incoming_lod=0,ref_idx=0, min_lod=None, max_lod=None,**kwargs): super(LODSelectLayer,self).__init__(**kwargs) self.cur_lod = cur_lod self.first_incoming_lod = first_incoming_lod self.ref_idx = ref_idx self.min_lod = min_lod self.max_lod = max_lod def call(self, inputs): self.input_shapes = [K.int_shape(input) for input in inputs] v = [ACTVResizeLayer(K.int_shape(input), self.input_shapes[self.ref_idx])(input) for input in inputs] lo = np.clip(int(
np.floor(self.min_lod - self.first_incoming_lod)
numpy.floor
from __future__ import division import numpy as np import pdb import scipy as sp import cvxpy as cp import itertools, sys class FTOCP(object): """ Finite Time Optimal Control Problem (FTOCP) Methods: - solve: solves the FTOCP given the initial condition x0, terminal contraints (optinal) and terminal cost (optional) - model: given x_t and u_t computes x_{t+1} = Ax_t + Bu_t """ def __init__(self, N, A, B, Q, R, Hx=None, gx=None, Hu=None, gu=None): # Define variables self.N = N # Horizon Length # System Dynamics (x_{k+1} = A x_k + Bu_k) self.A = A self.B = B self.n = A.shape[1] self.d = B.shape[1] # Linear state constraints (Hx*x <= gx) self.Hx = Hx self.gx = gx # Linear input constraints (Hu*u <= gu) self.Hu = Hu self.gu = gu # Cost (h(x,u) = x^TQx +u^TRu) self.Q = Q self.R = R # FTOCP cost self.costFTOCP = np.inf # def stage_cost_fun(self, x, xf, u): # # Using the cvxpy norm function here # return cp.norm(self.Q**0.5*(x-xf))**2 + cp.norm(self.R**0.5*u)**2 # # def term_cost_fun(self, x, xf): # # Using the cvxpy norm function here # return cp.norm(self.Q**0.5*(x-xf))**2 def solve(self, x0, xf=None, abs_t=None, expl_con=None, SS=None, Qfun=None, CVX=False, verbose=False): """This method solves a FTOCP given: - x0: initial condition - xf: (optional) goal condition, defaults to the origin - abs_t: (required if circular or linear constraints are provided) absolute time step - expl_con: (optional) allowed deviations, can be ellipsoidal or linear constraints - SS: (optional) contains a set of state and the terminal constraint is ConvHull(SS) - Qfun: (optional) cost associtated with the state stored in SS. Terminal cost is BarycentrcInterpolation(SS, Qfun) - CVX: (optional) """ if xf is None: xf = np.zeros(self.n) else: xf = np.reshape(xf, self.n) if expl_con is not None: if 'lin' in expl_con: H = expl_con['lin'][0] g = expl_con['lin'][1] if 'ell' in expl_con: ell_con = expl_con['ell'] # Initialize Variables x = cp.Variable((self.n, self.N+1)) u = cp.Variable((self.d, self.N)) # If SS is given construct a matrix collecting all states and a vector collection all costs if SS is not None: # SS_vector = np.squeeze(list(itertools.chain.from_iterable(SS))).T # From a 3D list to a 2D array # SS_vector = np.hstack(SS) SS_vector = SS[-1] # Only use last trajectory # SS_vector = SS[-1][:,abs_t:min(SS[-1].shape[1],abs_t+int(2*(self.N+1)))] # Qfun_vector = np.expand_dims(np.array(list(itertools.chain.from_iterable(Qfun))), 0) # From a 2D list to a 1D array Qfun_vector =
np.array(Qfun[-1])
numpy.array
import numpy as np class Buffer: def __init__(self, params): history_length = params.history_length width = params.width height = params.height self.dims = (width, height, history_length) self.buffer = np.zeros(self.dims, dtype=np.uint8) def add(self, state): self.buffer[:, :, :-1] = self.buffer[:, :, 1:] self.buffer[:, :, -1] = state def getInput(self): x =
np.reshape(self.buffer, (1,) + self.dims)
numpy.reshape
from matplotlib import pyplot as plt import seaborn as sns import numpy as np from scipy.spatial.distance import cdist import time import itertools import imageio import heapq import pickle sns.set() __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2018" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __version__ = "1.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Thesis" # Class definitions class SearchState: def __init__(self, carPos, eventPos, eventTimes, eventStatus, heuristicVal, costVal, parent,hWeight): self.carPos = carPos self.eventPos = eventPos self.eventTimes = eventTimes self.eventStatus = eventStatus self.time = parent.time+1 if parent is not None else 0 # time is one step ahead of parent self.hval = heuristicVal self.gval = costVal self.hWeight = hWeight self.parent = parent # predecessor in graph self.root = parent is None # true of state is the root, false otherwise return def __lt__(self, other): # make sure comparison is to SearchState object try: assert (isinstance(other, SearchState)) except: raise TypeError("must compare to SearchState object.") # return lt check return self.getFval() < other.getFval() def __eq__(self, other): # make sure comparison is to SearchState object try: assert(isinstance(other, SearchState)) except: raise TypeError("must compare to SearchState object.") # check carEq = np.array_equal(self.carPos, other.carPos) eveEq = np.array_equal(self.eventPos,other.eventPos) etmEq = np.array_equal(self.eventTimes,other.eventTimes) sttEq = np.array_equal(self.eventStatus, other.eventStatus) timEq = self.time == other.time return carEq and eveEq and etmEq and sttEq and timEq def __repr__(self): return "time: {0}, cost: {1}, heuristic: {2}, root: {3}, goal: {4}\n".format(self.time, self.gval, self.hval, self.root, self.goalCheck()) def __hash__(self): carPosVec = np.reshape(self.carPos, self.carPos.size) evePosVec = np.reshape(self.eventPos, self.eventPos.size) eveSttVec = self.eventStatus.astype(np.int32) stateTime = np.reshape(
np.array(self.time)
numpy.array
# -*- coding: utf-8 -*- """ TODO: Please check readme.txt file first! -- This Python2.7 program is to reproduce Figure-7. In this test, we compare GraphStoIHT with six baseline methods on the grid dataset, which can be found in reference [2]. References: [1] <NAME>, <NAME>, and <NAME>. "Linear convergence of stochastic iterative greedy algorithms with sparse constraints." IEEE Transactions on Information Theory 63.11 (2017): 6869-6895. [2] Hegde, Chinmay, <NAME>, and <NAME>. "A nearly-linear time framework for graph-structured sparsity." International Conference on Machine Learning. 2015. [3] Blumensath, Thomas, and <NAME>. "Iterative hard thresholding for compressed sensing." Applied and computational harmonic analysis 27.3 (2009): 265-274. [4] Hegde, Chinmay, <NAME>, and <NAME>. "Fast recovery from a union of subspaces." Advances in Neural Information Processing Systems. 2016. [5] <NAME>. "Random walks on graphs: A survey." Combinatorics, Paul erdos is eighty 2.1 (1993): 1-46. [6] Needell, Deanna, and <NAME>. "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples." Applied and computational harmonic analysis 26.3 (2009): 301-321. [7] Blumensath, Thomas, and <NAME>. "Normalized iterative hard thresholding: Guaranteed stability and performance." IEEE Journal of selected topics in signal processing 4.2 (2010): 298-309. # TODO You need to: 1. install numpy, matplotlib (optional), and networkx (optional). 2. build our sparse_module by executing ./build.sh please check our readme.md file. If you do not know how to compile this library. """ import os import time import pickle import random import multiprocessing from itertools import product import numpy as np try: import sparse_module try: from sparse_module import wrap_head_tail_bisearch except ImportError: print('cannot find wrap_head_tail_bisearch method in sparse_module') sparse_module = None exit(0) except ImportError: print('\n'.join([ 'cannot find the module: sparse_module', 'try run: \'python setup.py build_ext --inplace\' first! '])) def algo_head_tail_bisearch( edges, x, costs, g, root, s_low, s_high, max_num_iter, verbose): """ This is the wrapper of head/tail-projection proposed in [2]. :param edges: edges in the graph. :param x: projection vector x. :param costs: edge costs in the graph. :param g: the number of connected components. :param root: root of subgraph. Usually, set to -1: no root. :param s_low: the lower bound of the sparsity. :param s_high: the upper bound of the sparsity. :param max_num_iter: the maximum number of iterations used in binary search procedure. :param verbose: print out some information. :return: 1. the support of the projected vector 2. the projected vector """ prizes = x * x # to avoid too large upper bound problem. if s_high >= len(prizes) - 1: s_high = len(prizes) - 1 re_nodes = wrap_head_tail_bisearch( edges, prizes, costs, g, root, s_low, s_high, max_num_iter, verbose) proj_w = np.zeros_like(x) proj_w[re_nodes[0]] = x[re_nodes[0]] return re_nodes[0], proj_w def simu_grid_graph(width, height, rand_weight=False): """ Generate a grid graph with size, width x height. Totally there will be width x height number of nodes in this generated graph. :param width: the width of the grid graph. :param height: the height of the grid graph. :param rand_weight: the edge costs in this generated grid graph. :return: 1. list of edges 2. list of edge costs """ np.random.seed() if width < 0 and height < 0: print('Error: width and height should be positive.') return [], [] width, height = int(width), int(height) edges, weights = [], [] index = 0 for i in range(height): for j in range(width): if (index % width) != (width - 1): edges.append((index, index + 1)) if index + width < int(width * height): edges.append((index, index + width)) else: if index + width < int(width * height): edges.append((index, index + width)) index += 1 edges = np.asarray(edges, dtype=int) # random generate costs of the graph if rand_weight: weights = [] while len(weights) < len(edges): weights.append(random.uniform(1., 2.0)) weights = np.asarray(weights, dtype=np.float64) else: # set unit weights for edge costs. weights = np.ones(len(edges), dtype=np.float64) return edges, weights def sensing_matrix(n, x, norm_noise=0.0): """ Generate sensing matrix (design matrix). This generated sensing matrix is a Gaussian matrix, i.e., each entry ~ N(0,\sigma/\sqrt(n)). Please see more details in equation (1.2) shown in reference [6]. :param n: the number of measurements required. :param x: the input signal. :param norm_noise: plus ||norm_noise|| noise on the measurements. :return: 1. the design matrix 2. the vector of measurements 3. the noised vector. """ p = len(x) x_mat = np.random.normal(0.0, 1.0, size=(n * p)) / np.sqrt(n) x_mat = x_mat.reshape((n, p)) y_tr = np.dot(x_mat, x) noise_e = np.random.normal(0.0, 1.0, len(y_tr)) y_e = y_tr + (norm_noise / np.linalg.norm(noise_e)) * noise_e return x_mat, y_tr, y_e def algo_iht(x_mat, y_tr, max_epochs, lr, s, x0, tol_algo): """ Iterative Hard Thresholding Method proposed in reference [3]. The standard iterative hard thresholding method for compressive sensing. :param x_mat: the design matrix. :param y_tr: the array of measurements. :param max_epochs: the maximum epochs (iterations) allowed. :param lr: the learning rate (should be 1.0). :param s: the sparsity parameter. :param x0: x0 is the initial point. :param tol_algo: tolerance parameter for early stopping. :return: 1. the final estimation error, 2. number of epochs(iterations) used, 3. and the run time. """ start_time = time.time() x_hat = x0 (n, p) = x_mat.shape x_tr_t = np.transpose(x_mat) xtx = np.dot(x_tr_t, x_mat) xty = np.dot(x_tr_t, y_tr) num_epochs = 0 for epoch_i in range(max_epochs): num_epochs += 1 bt = x_hat - lr * (np.dot(xtx, x_hat) - xty) bt[np.argsort(np.abs(bt))[0:p - s]] = 0. # thresholding step x_hat = bt # early stopping for diverge cases due to the large learning rate if np.linalg.norm(x_hat) >= 1e3: # diverge cases. break if np.linalg.norm(y_tr - np.dot(x_mat, x_hat)) <= tol_algo: break run_time = time.time() - start_time return num_epochs, run_time, x_hat def cv_iht(x_tr_mat, y_tr, x_va_mat, y_va, max_epochs, lr_list, s, x_star, x0, tol_algo): """ Tuning parameter by using additional validation dataset. """ test_err_mat = np.zeros(shape=len(lr_list)) x_hat_dict = dict() for lr_ind, lr in enumerate(lr_list): num_epochs, run_time, x_hat = algo_iht( x_mat=x_tr_mat, y_tr=y_tr, max_epochs=max_epochs, lr=lr, s=s, x0=x0, tol_algo=tol_algo) y_err = np.linalg.norm(y_va - np.dot(x_va_mat, x_hat)) ** 2. test_err_mat[lr_ind] = y_err x_hat_dict[lr] = (num_epochs, run_time, x_hat) min_index = np.argmin(test_err_mat) best_lr = lr_list[min_index] err = np.linalg.norm(x_star - x_hat_dict[best_lr][2]) num_epochs, run_time = x_hat_dict[best_lr][:2] return err, num_epochs, run_time def algo_sto_iht(x_mat, y_tr, max_epochs, lr, s, x0, tol_algo, b): """ Stochastic Iterative Hard Thresholding Method proposed in [1]. :param x_mat: the design matrix. :param y_tr: the array of measurements. :param max_epochs: the maximum epochs (iterations) allowed. :param lr: the learning rate (should be 1.0). :param s: the sparsity parameter. :param x0: x0 is the initial point. :param tol_algo: tolerance parameter for early stopping. :param b: block size :return: 1. the final estimation error, 2. number of epochs(iterations) used, 3. and the run time. """ np.random.seed() start_time = time.time() x_hat = x0 (n, p) = x_mat.shape x_tr_t = np.transpose(x_mat) b = n if n < b else b num_blocks = int(n) / int(b) prob = [1. / num_blocks] * num_blocks num_epochs = 0 for epoch_i in range(max_epochs): num_epochs += 1 for _ in range(num_blocks): ii = np.random.randint(0, num_blocks) block = range(b * ii, b * (ii + 1)) xtx = np.dot(x_tr_t[:, block], x_mat[block]) xty = np.dot(x_tr_t[:, block], y_tr[block]) gradient = - 2. * (xty - np.dot(xtx, x_hat)) bt = x_hat - (lr / (prob[ii] * num_blocks)) * gradient bt[np.argsort(np.abs(bt))[0:p - s]] = 0. x_hat = bt if np.linalg.norm(x_hat) >= 1e3: # diverge cases. break if np.linalg.norm(y_tr - np.dot(x_mat, x_hat)) <= tol_algo: break run_time = time.time() - start_time return num_epochs, run_time, x_hat def cv_sto_iht(x_tr_mat, y_tr, x_va_mat, y_va, max_epochs, s, x_star, x0, tol_algo, b_list, lr_list): """ Tuning parameter by using additional validation dataset. """ test_err_mat = np.zeros(len(lr_list) * len(b_list)) para_dict = dict() x_hat_dict = dict() for index, (lr, b) in enumerate(product(lr_list, b_list)): num_epochs, run_time, x_hat = algo_sto_iht( x_mat=x_tr_mat, y_tr=y_tr, max_epochs=max_epochs, lr=lr, s=s, x0=x0, tol_algo=tol_algo, b=b) y_err = np.linalg.norm(y_va - np.dot(x_va_mat, x_hat)) ** 2. test_err_mat[index] = y_err para_dict[index] = (lr, b) x_hat_dict[(lr, b)] = (num_epochs, run_time, x_hat) lr, b = para_dict[int(np.argmin(test_err_mat))] err = np.linalg.norm(x_star - x_hat_dict[(lr, b)][2]) num_epochs, run_time = x_hat_dict[(lr, b)][:2] return err, num_epochs, run_time def algo_graph_iht( x_mat, y_tr, max_epochs, lr, x0, tol_algo, edges, costs, g, s, root=-1, gamma=0.1, proj_max_num_iter=50, verbose=0): """ Graph Iterative Hard Thresholding proposed in [4] and projection operator is proposed in [2]. :param x_mat: the design matrix. :param y_tr: the array of measurements. :param max_epochs: the maximum epochs (iterations) allowed. :param lr: the learning rate (should be 1.0). :param x0: x0 is the initial point. :param tol_algo: tolerance parameter for early stopping. :param edges: edges in the graph. :param costs: edge costs :param s: sparsity :param g: number of connected component in the true signal. :param root: the root included in the result (default -1: no root). :param gamma: to control the upper bound of sparsity. :param proj_max_num_iter: maximum number of iterations of projection. :param verbose: print out some information. :return: 1. the final estimation error, 2. number of epochs(iterations) used, 3. and the run time. """ start_time = time.time() x_hat = np.copy(x0) xtx = np.dot(np.transpose(x_mat), x_mat) xty = np.dot(np.transpose(x_mat), y_tr) # graph projection para h_low = int(len(x0) / 2) h_high = int(h_low * (1. + gamma)) t_low = int(s) t_high = int(s * (1. + gamma)) num_epochs = 0 for epoch_i in range(max_epochs): num_epochs += 1 grad = -1. * (xty - np.dot(xtx, x_hat)) head_nodes, proj_gradient = algo_head_tail_bisearch( edges, grad, costs, g, root, h_low, h_high, proj_max_num_iter, verbose) bt = x_hat - lr * proj_gradient tail_nodes, proj_bt = algo_head_tail_bisearch( edges, bt, costs, g, root, t_low, t_high, proj_max_num_iter, verbose) x_hat = proj_bt if np.linalg.norm(x_hat) >= 1e3: # diverge cases. break if np.linalg.norm(y_tr - np.dot(x_mat, x_hat)) <= tol_algo: break run_time = time.time() - start_time return num_epochs, run_time, x_hat def cv_graph_iht(x_tr_mat, y_tr, x_va_mat, y_va, max_epochs, lr_list, x_star, x0, tol_algo, edges, costs, s): """ Tuning parameter by using additional validation dataset. """ test_err_mat = np.zeros(len(lr_list)) x_hat_dict = dict() for lr_ind, lr in enumerate(lr_list): num_epochs, run_time, x_hat = algo_graph_iht( x_mat=x_tr_mat, y_tr=y_tr, max_epochs=max_epochs, lr=lr, x0=x0, tol_algo=tol_algo, edges=edges, costs=costs, g=1, s=s) y_err = np.linalg.norm(y_va - np.dot(x_va_mat, x_hat)) ** 2. test_err_mat[lr_ind] = y_err x_hat_dict[lr] = (num_epochs, run_time, x_hat) min_index = np.argmin(test_err_mat) best_lr = lr_list[min_index] err = np.linalg.norm(x_star - x_hat_dict[best_lr][2]) num_epochs, run_time = x_hat_dict[best_lr][:2] return err, num_epochs, run_time def algo_graph_sto_iht( x_mat, y_tr, max_epochs, lr, x0, tol_algo, edges, costs, g, s, b, root=-1, gamma=0.1, proj_max_num_iter=50, verbose=0): """ Graph Stochastic Iterative Hard Thresholding. :param x_mat: the design matrix. :param y_tr: the array of measurements. :param max_epochs: the maximum epochs (iterations) allowed. :param lr: the learning rate (should be 1.0). :param x0: x0 is the initial point. :param tol_algo: tolerance parameter for early stopping. :param edges: edges in the graph. :param costs: edge costs :param s: sparsity :param b: the block size :param g: number of connected component in the true signal. :param root: the root included in the result (default -1: no root). :param gamma: to control the upper bound of sparsity. :param proj_max_num_iter: maximum number of iterations of projection. :param verbose: print out some information. :return: 1. the final estimation error, 2. number of epochs(iterations) used, 3. and the run time. """ np.random.seed() start_time = time.time() x_hat = np.copy(x0) (n, p) = x_mat.shape x_tr_t = np.transpose(x_mat) b = n if n < b else b num_blocks = int(n) / int(b) prob = [1. / num_blocks] * num_blocks # graph projection para h_low = int(len(x0) / 2) h_high = int(h_low * (1. + gamma)) t_low = int(s) t_high = int(s * (1. + gamma)) num_epochs = 0 for epoch_i in range(max_epochs): num_epochs += 1 for _ in range(num_blocks): ii = np.random.randint(0, num_blocks) block = range(b * ii, b * (ii + 1)) xtx = np.dot(x_tr_t[:, block], x_mat[block]) xty = np.dot(x_tr_t[:, block], y_tr[block]) gradient = -2. * (xty - np.dot(xtx, x_hat)) head_nodes, proj_grad = algo_head_tail_bisearch( edges, gradient, costs, g, root, h_low, h_high, proj_max_num_iter, verbose) bt = x_hat - (lr / (prob[ii] * num_blocks)) * proj_grad tail_nodes, proj_bt = algo_head_tail_bisearch( edges, bt, costs, g, root, t_low, t_high, proj_max_num_iter, verbose) x_hat = proj_bt if np.linalg.norm(x_hat) >= 1e3: # diverge cases. break if np.linalg.norm(y_tr - np.dot(x_mat, x_hat)) <= tol_algo: break run_time = time.time() - start_time return num_epochs, run_time, x_hat def cv_graph_sto_iht(x_tr_mat, y_tr, x_va_mat, y_va, b_list, lr_list, s, max_epochs, tol_algo, x_star, x0, edges, costs): """ Tuning parameter by using additional validation dataset. """ test_err_mat = np.zeros(len(lr_list) * len(b_list)) para_dict = dict() x_hat_dict = dict() for index, (lr, b) in enumerate(product(lr_list, b_list)): num_epochs, run_time, x_hat = algo_graph_sto_iht( x_mat=x_tr_mat, y_tr=y_tr, max_epochs=max_epochs, lr=lr, x0=x0, tol_algo=tol_algo, edges=edges, costs=costs, g=1, s=s, b=b) y_err = np.linalg.norm(y_va - np.dot(x_va_mat, x_hat)) ** 2. test_err_mat[index] = y_err para_dict[index] = (lr, b) x_hat_dict[(lr, b)] = (num_epochs, run_time, x_hat) lr, b = para_dict[int(np.argmin(test_err_mat))] err = np.linalg.norm(x_star - x_hat_dict[(lr, b)][2]) num_epochs, run_time = x_hat_dict[(lr, b)][:2] return err, num_epochs, run_time def algo_niht(x_mat, y_tr, max_epochs, s, x_star, x0, tol_algo): """ Normalized Iterative Hard Thresholding (NIHT) proposed in [7]. :param x_mat: the design matrix. :param y_tr: the array of measurements. :param max_epochs: the maximum epochs (iterations) allowed. :param x0: x0 is the initial point. :param s: :param x_star: :param tol_algo: :return: """ start_time = time.time() x_hat = x0 c = 0.01 kappa = 2. / (1 - c) (m, p) = x_mat.shape x_tr_t = np.transpose(x_mat) xtx, xty = np.dot(x_tr_t, x_mat), np.dot(x_tr_t, y_tr) gamma = np.argsort(np.abs(np.dot(x_tr_t, y_tr)))[-s:] num_epochs = 0 for epoch_i in range(max_epochs): num_epochs += 1 # we obey the implementation used in their code gn = xty - np.dot(xtx, x_hat) tmp_v = np.dot(x_mat[:, gamma], gn[gamma]) xx = np.dot(gn[gamma], gn[gamma]) yy = np.dot(tmp_v, tmp_v) if yy != 0: mu = xx / yy else: mu = 1. bt = x_hat + mu * gn bt[np.argsort(np.abs(bt))[0:p - s]] = 0. w_tmp = bt gamma_next = np.nonzero(w_tmp)[0] if set(gamma_next).__eq__(set(gamma)): x_hat = w_tmp else: xx = np.linalg.norm(w_tmp - x_hat) ** 2. yy = np.linalg.norm(np.dot(x_mat, w_tmp - x_hat)) ** 2. if yy <= 0.0: continue if mu <= (1. - c) * xx / yy: x_hat = w_tmp elif mu > (1. - c) * xx / yy: while True: mu = mu / (kappa * (1. - c)) bt = x_hat + mu * gn bt[np.argsort(np.abs(bt))[0:p - s]] = 0. w_tmp = bt xx =
np.linalg.norm(w_tmp - x_hat)
numpy.linalg.norm
""" solar collectors """ import os import time from itertools import repeat from math import * import geopandas as gpd import numpy as np import pandas as pd from geopandas import GeoDataFrame as gdf from numba import jit import cea.config import cea.inputlocator import cea.utilities.parallel from cea.constants import HOURS_IN_YEAR from cea.technologies.solar import constants from cea.utilities import epwreader from cea.utilities import solar_equations from cea.utilities.standardize_coordinates import get_lat_lon_projected_shapefile from cea.analysis.costs.equations import calc_capex_annualized, calc_opex_annualized __author__ = "<NAME>" __copyright__ = "Copyright 2015, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" # SC heat generation def calc_SC(locator, config, latitude, longitude, weather_data, date_local, building_name): """ This function first determines the surface area with sufficient solar radiation, and then calculates the optimal tilt angles of panels at each surface location. The panels are categorized into groups by their surface azimuths, tilt angles, and global irradiation. In the last, heat generation from SC panels of each group is calculated. :param locator: An InputLocator to locate input files :type locator: cea.inputlocator.InputLocator :param config: cea.config :param latitude: latitude of the case study location :type latitude: float :param longitude: longitude of the case study location :type longitude: float :param weather_data: Data frame containing the weather data in the .epw file as per config :type weather_data: pandas.DataFrame :param date_local: contains the localized (to timezone) dates for each timestep of the year :param building_name: list of building names in the case study :type building_name: Series :return: Building_SC.csv with solar collectors heat generation potential of each building, Building_SC_sensors.csv with sensor data of each SC panel """ t0 = time.perf_counter() type_panel = config.solar.type_SCpanel radiation_csv = locator.get_radiation_building_sensors(building=building_name) metadata_csv = locator.get_radiation_metadata(building=building_name) # solar properties solar_properties = solar_equations.calc_sun_properties(latitude, longitude, weather_data, date_local, config) print('calculating solar properties done for building %s' % building_name) # get properties of the panel to evaluate panel_properties_SC = calc_properties_SC_db(locator.get_database_conversion_systems(), config) print('gathering properties of Solar collector panel for building %s' % building_name) # select sensor point with sufficient solar radiation max_annual_radiation, annual_radiation_threshold, sensors_rad_clean, sensors_metadata_clean = \ solar_equations.filter_low_potential(radiation_csv, metadata_csv, config) print('filtering low potential sensor points done for building %s' % building_name) # Calculate the heights of all buildings for length of vertical pipes tot_bui_height_m = gpd.read_file(locator.get_zone_geometry())['height_ag'].sum() # set the maximum roof coverage if config.solar.custom_roof_coverage: max_roof_coverage = config.solar.max_roof_coverage else: max_roof_coverage = 1.0 if not sensors_metadata_clean.empty: if not config.solar.custom_tilt_angle: # calculate optimal angle and tilt for panels sensors_metadata_cat = solar_equations.optimal_angle_and_tilt(sensors_metadata_clean, latitude, solar_properties, max_annual_radiation, panel_properties_SC, max_roof_coverage) print('calculating optimal tilt angle and separation done for building %s' % building_name) else: # calculate spacing required by user-supplied tilt angle for panels sensors_metadata_cat = solar_equations.calc_spacing_custom_angle(sensors_metadata_clean, solar_properties, max_annual_radiation, panel_properties_SC, config.solar.panel_tilt_angle, max_roof_coverage) print('calculating separation for custom tilt angle done') # group the sensors with the same tilt, surface azimuth, and total radiation sensor_groups = solar_equations.calc_groups(sensors_rad_clean, sensors_metadata_cat) print('generating groups of sensor points done for building %s' % building_name) # calculate heat production from solar collectors Final = calc_SC_generation(sensor_groups, weather_data, date_local, solar_properties, tot_bui_height_m, panel_properties_SC, latitude, config) # save SC generation potential and metadata of the selected sensors panel_type = panel_properties_SC['type'] Final.to_csv(locator.SC_results(building_name, panel_type), index=True, float_format='%.2f', na_rep='nan') sensors_metadata_cat.to_csv(locator.SC_metadata_results(building_name, panel_type), index=True, index_label='SURFACE', float_format='%.2f', na_rep='nan') # print selected metadata of the selected sensors print('Building', building_name, 'done - time elapsed:', (time.perf_counter() - t0), ' seconds') else: # This loop is activated when a building has not sufficient solar potential panel_type = panel_properties_SC['type'] Final = pd.DataFrame( {'SC_' + type_panel + '_walls_north_m2': 0, 'SC_' + type_panel + '_walls_north_Q_kWh': 0, 'SC_' + type_panel + '_walls_north_Tout_C': 0, 'SC_' + type_panel + '_walls_south_m2': 0, 'SC_' + type_panel + '_walls_south_Q_kWh': 0, 'SC_' + type_panel + '_walls_south_Tout_C': 0, 'SC_' + type_panel + '_walls_east_m2': 0, 'SC_' + type_panel + '_walls_east_Q_kWh': 0, 'SC_' + type_panel + '_walls_east_Tout_C': 0, 'SC_' + type_panel + '_walls_west_m2': 0, 'SC_' + type_panel + '_walls_west_Q_kWh': 0, 'SC_' + type_panel + '_walls_west_Tout_C': 0, 'SC_' + type_panel + '_roofs_top_m2': 0, 'SC_' + type_panel + '_roofs_top_Q_kWh': 0, 'SC_' + type_panel + '_roofs_top_Tout_C': 0, 'Q_SC_gen_kWh': 0, 'T_SC_sup_C': 0, 'T_SC_re_C': 0, 'mcp_SC_kWperC': 0, 'Eaux_SC_kWh': 0, 'Q_SC_l_kWh': 0, 'Area_SC_m2': 0, 'radiation_kWh': 0, 'Date':date_local}, index=np.zeros(HOURS_IN_YEAR)) Final.set_index('Date', inplace=True) Final.to_csv(locator.SC_results(building_name, panel_type), index=True, float_format='%.2f', na_rep='nan') sensors_metadata_cat = pd.DataFrame( {'SURFACE': 0, 'AREA_m2': 0, 'BUILDING': 0, 'TYPE': 0, 'Xcoor': 0, 'Xdir': 0, 'Ycoor': 0, 'Ydir': 0, 'Zcoor': 0, 'Zdir': 0, 'orientation': 0, 'total_rad_Whm2': 0, 'tilt_deg': 0, 'B_deg': 0, 'array_spacing_m': 0, 'surface_azimuth_deg': 0, 'area_installed_module_m2': 0, 'CATteta_z': 0, 'CATB': 0, 'CATGB': 0, 'type_orientation': 0}, index=range(2)) sensors_metadata_cat.to_csv(locator.SC_metadata_results(building_name, panel_type), index=True, float_format='%.2f', na_rep="nan") return # ========================= # SC heat production # ========================= def calc_SC_generation(sensor_groups, weather_data, date_local, solar_properties, tot_bui_height, panel_properties_SC, latitude_deg, config): """ To calculate the heat generated from SC panels. :param sensor_groups: properties of sensors in each group :type sensor_groups: dict :param weather_data: weather data read from the epw file :type weather_data: dataframe :param solar_properties: :param tot_bui_height: total height of all buildings [m] :param panel_properties_SC: properties of solar panels :type panel_properties_SC: dataframe :param latitude_deg: latitude of the case study location :param config: user settings from cea.config :return: dataframe """ # local variables type_panel = config.solar.type_SCpanel number_groups = sensor_groups['number_groups'] # number of groups of sensor points prop_observers = sensor_groups['prop_observers'] # mean values of sensor properties of each group of sensors hourly_radiation = sensor_groups['hourlydata_groups'] # mean hourly radiation of sensors in each group [Wh/m2] T_in_C = get_t_in_sc(config) Tin_array_C = np.zeros(HOURS_IN_YEAR) + T_in_C # create lists to store results list_results_from_SC = [0 for i in range(number_groups)] list_areas_groups = [0 for i in range(number_groups)] total_radiation_kWh = [0 for i in range(number_groups)] total_mcp_kWperC = [0 for i in range(number_groups)] total_qloss_kWh = [0 for i in range(number_groups)] total_aux_el_kWh = [0 for i in range(number_groups)] total_Qh_output_kWh = [0 for i in range(number_groups)] potential = pd.DataFrame(index=range(HOURS_IN_YEAR)) panel_orientations = ['walls_south', 'walls_north', 'roofs_top', 'walls_east', 'walls_west'] for panel_orientation in panel_orientations: potential['SC_'+ type_panel + '_' + panel_orientation + '_Q_kWh'] = 0 potential['SC_' + type_panel + '_'+ panel_orientation + '_m2'] = 0 # calculate equivalent length of pipes total_area_module_m2 = prop_observers['area_installed_module_m2'].sum() # total area for panel installation total_pipe_length = cal_pipe_equivalent_length(tot_bui_height, panel_properties_SC, total_area_module_m2) # assign default number of subsdivisions for the calculation if panel_properties_SC['type'] == 'ET': # ET: evacuated tubes panel_properties_SC['Nseg'] = 100 # default number of subsdivisions for the calculation else: panel_properties_SC['Nseg'] = 10 for group in range(number_groups): # calculate radiation types (direct/diffuse) in group radiation_Wperm2 = solar_equations.cal_radiation_type(group, hourly_radiation, weather_data) # load panel angles from each group teta_z_deg = prop_observers.loc[group, 'surface_azimuth_deg'] # azimuth of panels of group tilt_angle_deg = prop_observers.loc[group, 'B_deg'] # tilt angle of panels # calculate incidence angle modifier for beam radiation IAM_b = calc_IAM_beam_SC(solar_properties, teta_z_deg, tilt_angle_deg, panel_properties_SC['type'], latitude_deg) # calculate heat production from a solar collector of each group list_results_from_SC[group] = calc_SC_module(config, radiation_Wperm2, panel_properties_SC, weather_data.drybulb_C.values, IAM_b, tilt_angle_deg, total_pipe_length) # calculate results from each group panel_orientation = prop_observers.loc[group, 'type_orientation'] module_area_per_group_m2 = prop_observers.loc[group, 'area_installed_module_m2'] number_modules_per_group = module_area_per_group_m2 / panel_properties_SC['module_area_m2'] SC_Q_kWh = list_results_from_SC[group][1] * number_modules_per_group potential['SC_' + type_panel + '_' + panel_orientation + '_Q_kWh'] = potential[ 'SC_' + type_panel + '_' + panel_orientation + '_Q_kWh'] + SC_Q_kWh potential['SC_' + type_panel + '_' + panel_orientation + '_m2'] = potential[ 'SC_' + type_panel + '_' + panel_orientation + '_m2'] + module_area_per_group_m2 # assume parallel connections in this group # aggregate results from all modules list_areas_groups[group] = module_area_per_group_m2 total_mcp_kWperC[group] = list_results_from_SC[group][5] * number_modules_per_group total_qloss_kWh[group] = list_results_from_SC[group][0] * number_modules_per_group total_aux_el_kWh[group] = list_results_from_SC[group][2] * number_modules_per_group total_Qh_output_kWh[group] = list_results_from_SC[group][1] * number_modules_per_group total_radiation_kWh[group] = (radiation_Wperm2['I_sol'] * module_area_per_group_m2 / 1000) potential['Area_SC_m2'] = sum(list_areas_groups) potential['radiation_kWh'] = sum(total_radiation_kWh).values potential['Q_SC_gen_kWh'] = sum(total_Qh_output_kWh) potential['mcp_SC_kWperC'] = sum(total_mcp_kWperC) potential['Eaux_SC_kWh'] = sum(total_aux_el_kWh) potential['Q_SC_l_kWh'] = sum(total_qloss_kWh) potential['T_SC_sup_C'] = Tin_array_C T_out_C = (potential['Q_SC_gen_kWh'] / potential['mcp_SC_kWperC']) + T_in_C potential[ 'T_SC_re_C'] = T_out_C if T_out_C is not np.nan else np.nan # assume parallel connections for all panels #FIXME: change here when the flow rate is zero potential['Date'] = date_local potential = potential.set_index('Date') return potential def get_t_in_sc(config): if config.solar.t_in_sc is not None: Tin_C = config.solar.T_in_SC else: if config.solar.type_SCpanel == 'FP': Tin_C = constants.T_IN_SC_FP elif config.solar.type_SCpanel == 'ET': Tin_C = constants.T_IN_SC_ET return Tin_C def cal_pipe_equivalent_length(tot_bui_height_m, panel_prop, total_area_module): """ To calculate the equivalent length of pipings in buildings :param tot_bui_height_m: total heights of buildings :type tot_bui_height_m: float :param panel_prop: properties of the solar panels :type panel_prop: dict :param total_area_module: total installed module area :type total_area_module: float :return: equivalent lengths of pipings in buildings :rtype: dict """ # local variables lv = panel_prop['module_length_m'] # module length total_area_aperture = total_area_module * panel_prop['aperture_area_ratio'] number_modules = round(total_area_module / panel_prop['module_area_m2']) # this is an estimation # main calculation l_ext_mperm2 = (2 * lv * number_modules / total_area_aperture) # pipe length within the collectors l_int_mperm2 = 2 * tot_bui_height_m / total_area_aperture # pipe length from building substation to roof top collectors Leq_mperm2 = l_int_mperm2 + l_ext_mperm2 # in m/m2 aperture pipe_equivalent_lengths = {'Leq_mperm2': Leq_mperm2, 'l_ext_mperm2': l_ext_mperm2, 'l_int_mperm2': l_int_mperm2} return pipe_equivalent_lengths def calc_SC_module(config, radiation_Wperm2, panel_properties, Tamb_vector_C, IAM_b, tilt_angle_deg, pipe_lengths): """ This function calculates the heat production from a solar collector. The method is adapted from TRNSYS Type 832. Assume no no condensation gains, no wind or long-wave dependency, sky factor set to zero. :param config: user settings in cea.config :param radiation_Wperm2: direct and diffuse irradiation :type radiation_Wperm2: dataframe :param panel_properties: properties of SC collectors :type panel_properties: dict :param Tamb_vector_C: ambient temperatures :type Tamb_vector_C: Series :param IAM_b: indicent andgle modifiers for direct(beam) radiation :type IAM_b: ndarray :param tilt_angle_deg: panel tilt angle :type tilt_angle_deg: float :param pipe_lengths: equivalent lengths of aux pipes :type pipe_lengths: dict :return: ..[M. Haller et al., 2012] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. & <NAME>. (2012). TRNSYS Type 832 v5.00 " Dynamic Collector Model by <NAME>". Updated Input-Output Reference. ..[ J. Fonseca et al., 2016] <NAME>., <NAME>., <NAME>., <NAME>. City Energy Analyst: Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy and Buildings, 2016. """ # read variables Tin_C = get_t_in_sc(config) n0 = panel_properties['n0'] # zero loss efficiency at normal incidence [-] c1 = panel_properties['c1'] # collector heat loss coefficient at zero temperature difference and wind speed [W/m2K] c2 = panel_properties['c2'] # temperature difference dependency of the heat loss coefficient [W/m2K2] mB0_r = panel_properties['mB0_r'] # nominal flow rate per aperture area [kg/h/m2 aperture] mB_max_r = panel_properties['mB_max_r'] # maximum flow rate per aperture area mB_min_r = panel_properties['mB_min_r'] # minimum flow rate per aperture area C_eff_Jperm2K = panel_properties['C_eff'] # thermal capacitance of module [J/m2K] IAM_d = panel_properties['IAM_d'] # incident angle modifier for diffuse radiation [-] dP1 = panel_properties['dP1'] # pressure drop [Pa/m2] at zero flow rate dP2 = panel_properties['dP2'] # pressure drop [Pa/m2] at nominal flow rate (mB0) dP3 = panel_properties['dP3'] # pressure drop [Pa/m2] at maximum flow rate (mB_max) dP4 = panel_properties['dP4'] # pressure drop [Pa/m2] at minimum flow rate (mB_min) Cp_fluid_JperkgK = panel_properties['Cp_fluid'] # J/kgK aperature_area_ratio = panel_properties['aperture_area_ratio'] # aperature area ratio [-] area_sc_module = panel_properties['module_area_m2'] Nseg = panel_properties['Nseg'] aperture_area_m2 = aperature_area_ratio * area_sc_module # aperture area of each module [m2] msc_max_kgpers = mB_max_r * aperture_area_m2 / 3600 # maximum mass flow [kg/s] # Do the calculation of every time step for every possible flow condition # get states where highly performing values are obtained. specific_flows_kgpers = [np.zeros(HOURS_IN_YEAR), (np.zeros(HOURS_IN_YEAR) + mB0_r) * aperture_area_m2 / 3600, (np.zeros(HOURS_IN_YEAR) + mB_max_r) * aperture_area_m2 / 3600, (np.zeros(HOURS_IN_YEAR) + mB_min_r) * aperture_area_m2 / 3600, np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] # in kg/s specific_pressure_losses_Pa = [np.zeros(HOURS_IN_YEAR), (np.zeros(HOURS_IN_YEAR) + dP2) * aperture_area_m2, (np.zeros(HOURS_IN_YEAR) + dP3) * aperture_area_m2, (np.zeros(HOURS_IN_YEAR) + dP4) * aperture_area_m2, np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] # in Pa # generate empty lists to store results temperature_out_C = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] temperature_in_C = [np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR), np.zeros(HOURS_IN_YEAR)] temperature_mean_C = [
np.zeros(HOURS_IN_YEAR)
numpy.zeros
# -*- coding: utf-8 -*- import os import sys import h5py from matplotlib import rcParams import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit from presto.utils import rotate_opt rcParams['figure.dpi'] = 108.8 if len(sys.argv) == 2: load_filename = sys.argv[1] print(f"Loading: {os.path.realpath(load_filename)}") else: load_filename = None def load(load_filename): with h5py.File(load_filename, "r") as h5f: num_averages = h5f.attrs["num_averages"] control_freq_1 = h5f.attrs["control_freq_1"] control_freq_2 = h5f.attrs["control_freq_2"] control_if = h5f.attrs["control_if"] readout_freq_1 = h5f.attrs["readout_freq_1"] readout_freq_2 = h5f.attrs["readout_freq_2"] readout_duration = h5f.attrs["readout_duration"] control_duration = h5f.attrs["control_duration"] readout_amp = h5f.attrs["readout_amp"] control_amp_1 = h5f.attrs["control_amp_1"] control_amp_2 = h5f.attrs["control_amp_2"] sample_duration = h5f.attrs["sample_duration"] wait_delay = h5f.attrs["wait_delay"] readout_sample_delay = h5f.attrs["readout_sample_delay"] coupler_dc_bias = h5f.attrs["coupler_dc_bias"] nr_freqs = h5f.attrs["nr_freqs"] nr_amps = h5f.attrs["nr_amps"] coupler_ac_duration = h5f.attrs["coupler_ac_duration"] t_arr = h5f["t_arr"][()] store_arr = h5f["store_arr"][()] coupler_ac_freq_arr = h5f["coupler_ac_freq_arr"][()] coupler_ac_amp_arr = h5f["coupler_ac_amp_arr"][()] t_low = 1500 * 1e-9 t_high = 2000 * 1e-9 idx_low = np.argmin(np.abs(t_arr - t_low)) idx_high = np.argmin(
np.abs(t_arr - t_high)
numpy.abs
import os import errno import numpy as np import scipy import scipy.misc def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def get_image(image_path , image_size , is_crop=True, resize_w=64 , is_grayscale = False): return transform(imread(image_path , is_grayscale), image_size, is_crop , resize_w) def transform(image, npx=64 , is_crop=False, resize_w=64): # npx : # of pixels width/height of image if is_crop: cropped_image = center_crop(image , npx , resize_w = resize_w) else: cropped_image = image cropped_image = scipy.misc.imresize(cropped_image , [resize_w , resize_w]) return np.array(cropped_image)/127.5 - 1 def center_crop(x, crop_h, crop_w=None, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) rate = np.random.uniform(0, 1, size=1) if rate < 0.5: x = np.fliplr(x) #first crop tp 178x178 and resize to 128x128 return scipy.misc.imresize(x[20:218-20, 0: 178], [resize_w, resize_w]) #Another cropped method # return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], # [resize_w, resize_w]) def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, is_grayscale=False): if (is_grayscale): return scipy.misc.imread(path, flatten=True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def imsave(images, size, path): return scipy.misc.imsave(path, merge(images, size)) def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w: i * w + w, :] = image return img def inverse_transform(image): return ((image + 1)* 127.5).astype(np.uint8) def read_image_list(category): filenames = [] print("list file") list = os.listdir(category) list.sort() for file in list: if 'jpg' or 'png' in file: filenames.append(category + "/" + file) print("list file ending!") length = len(filenames) perm = np.arange(length) np.random.shuffle(perm) filenames = np.array(filenames) filenames = filenames[perm] return filenames class CelebA(object): def __init__(self, images_path, image_size, attri_id): self.dataname = "CelebA" self.dims = image_size*image_size self.shape = [image_size, image_size, 3] self.image_size = image_size self.channel = 3 self.images_path = images_path self.attri_id = attri_id self.dom_1_train_data_list, self.dom_2_train_data_list = self.load_celebA() self.train_len = len(self.dom_1_train_data_list) def load_celebA(self): # get the list of image path return read_image_list_file(self.images_path, is_test= False, attri_id= self.attri_id) def load_test_celebA(self): # get the list of image path return read_image_list_file(self.images_path, is_test= True, attri_id= self.attri_id) def getShapeForData(self, filenames): array = [get_image(batch_file, 128, is_crop=True, resize_w=self.image_size, is_grayscale=False) for batch_file in filenames] sample_images = np.array(array) return sample_images def getTestNextBatch(self, batch_num=0, batch_size=64): ro_num = len(self.test_data_list) / batch_size if batch_num % ro_num == 0: length = len(self.test_data_list) perm = np.arange(length) np.random.shuffle(perm) self.test_data_list =
np.array(self.test_data_list)
numpy.array
from typing import Tuple import numpy as np from numpy.linalg import norm, eig def eigenvalue(A, v): return np.dot(v, np.dot(A, v)) / np.dot(v, v) def eigendecomp(A: np.ndarray, eps: float = 0.01) \ -> Tuple[np.ndarray, np.ndarray]: """ Calculates the eigendecomposition of matrix A using power method. :param A: matrix of shape (n, n) :param eps: precision of iterations :return: tuple vector, matrix - (eigenvalues, eigenvectors) """ n = A.shape[0] eigvals = np.zeros(n) eigvecs = np.zeros(A.shape) for i in range(n): eig_vec = np.random.rand(n) eig_val = eigenvalue(A, eig_vec) while True: Av = A.dot(eig_vec) eig_vec_new = Av /
np.linalg.norm(Av)
numpy.linalg.norm
import tensorflow as tf import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import skimage.transform import sys from core.utils import * from core.bleu import evaluate import numpy as np from core.log import * from datetime import datetime from tqdm import tqdm from core.utils import initialize_uninitialized class GAN(object): def __init__(self, sess, generator, discriminator, pretrained_model=None, dis_dropout_keep_prob=1.): self.generator = generator self.discriminator = discriminator self.pretrained_model = pretrained_model self.dis_dropout_keep_prob = dis_dropout_keep_prob self.prev_gen_loss = -1 self.prev_disc_acc = -1 self.prev_disc_loss = -1 self.sess = sess initialize_uninitialized(self.sess) # ---load pretrained model self.saver = tf.train.Saver(max_to_keep=40) if pretrained_model is not None: print("Pretrained gan loaded") self.saver.restore(sess=self.sess, save_path=os.path.join(pretrained_model, 'model.ckpt')) initialize_uninitialized(self.sess) def get_reward(self, sess, features_batch, emotions_batch, captions_batch, rollout_num): rewards = [] for i in range(rollout_num): # given_num between 1 to sequence_length - 1 for a part completed sentence feed_dict = {self.generator.features: features_batch, self.generator.emotions: emotions_batch} generated_captions = sess.run(self.generator.generated_captions, feed_dict) for seq_length in range(1, self.generator.T): feed_dict = {self.discriminator.input_x: np.column_stack((generated_captions[:,:seq_length], np.zeros((generated_captions.shape[0], self.generator.T-seq_length), dtype=np.int64))) , self.discriminator.dropout_keep_prob: 1.0} ypred_for_auc = sess.run(self.discriminator.ypred_for_auc, feed_dict) ypred = np.array([item[1] for item in ypred_for_auc]) if i == 0: rewards.append(ypred) else: rewards[seq_length - 1] += ypred # the last token reward feed_dict = {self.discriminator.input_x: captions_batch[:,:self.generator.T], self.discriminator.dropout_keep_prob: 1.0} ypred_for_auc = sess.run(self.discriminator.ypred_for_auc, feed_dict) ypred = np.array([item[1] for item in ypred_for_auc]) if i == 0: rewards.append(ypred) else: # completed sentence reward rewards[self.generator.T - 1] += ypred rewards = np.transpose(
np.array(rewards)
numpy.array
# -*- coding: utf-8 -*- # @Time : 2019/8/23 21:52 # @Author : zhoujun import math import numbers import random import cv2 import numpy as np from skimage.util import random_noise class RandomNoise: def __init__(self, random_rate): self.random_rate = random_rate def __call__(self, data: dict): """ 对图片加噪声 :param data: {'img':,'text_polys':,'texts':,'ignore_tags':} :return: """ if random.random() > self.random_rate: return data data['img'] = (random_noise(data['img'], mode='gaussian', clip=True) * 255).astype(im.dtype) return data class RandomScale: def __init__(self, scales, random_rate): """ :param scales: 尺度 :param ramdon_rate: 随机系数 :return: """ self.random_rate = random_rate self.scales = scales def __call__(self, data: dict) -> dict: """ 从scales中随机选择一个尺度,对图片和文本框进行缩放 :param data: {'img':,'text_polys':,'texts':,'ignore_tags':} :return: """ if random.random() > self.random_rate: return data im = data['img'] text_polys = data['text_polys'] tmp_text_polys = text_polys.copy() rd_scale = float(np.random.choice(self.scales)) im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale) tmp_text_polys *= rd_scale data['img'] = im data['text_polys'] = tmp_text_polys return data class RandomRotateImgBox: def __init__(self, degrees, random_rate, same_size=False): """ :param degrees: 角度,可以是一个数值或者list :param ramdon_rate: 随机系数 :param same_size: 是否保持和原图一样大 :return: """ if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") degrees = (-degrees, degrees) elif isinstance(degrees, list) or isinstance(degrees, tuple) or isinstance(degrees, np.ndarray): if len(degrees) != 2: raise ValueError("If degrees is a sequence, it must be of len 2.") degrees = degrees else: raise Exception('degrees must in Number or list or tuple or np.ndarray') self.degrees = degrees self.same_size = same_size self.random_rate = random_rate def __call__(self, data: dict) -> dict: """ 从scales中随机选择一个尺度,对图片和文本框进行缩放 :param data: {'img':,'text_polys':,'texts':,'ignore_tags':} :return: """ if random.random() > self.random_rate: return data im = data['img'] text_polys = data['text_polys'] # ---------------------- 旋转图像 ---------------------- w = im.shape[1] h = im.shape[0] angle = np.random.uniform(self.degrees[0], self.degrees[1]) if self.same_size: nw = w nh = h else: # 角度变弧度 rangle = np.deg2rad(angle) # 计算旋转之后图像的w, h nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) # 构造仿射矩阵 rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, 1) # 计算原图中心点到新图中心点的偏移量 rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) # 更新仿射矩阵 rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] # 仿射变换 rot_img = cv2.warpAffine(im, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) # ---------------------- 矫正bbox坐标 ---------------------- # rot_mat是最终的旋转矩阵 # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下 rot_text_polys = list() for bbox in text_polys: point1 = np.dot(rot_mat, np.array([bbox[0, 0], bbox[0, 1], 1])) point2 = np.dot(rot_mat, np.array([bbox[1, 0], bbox[1, 1], 1])) point3 = np.dot(rot_mat, np.array([bbox[2, 0], bbox[2, 1], 1])) point4 = np.dot(rot_mat, np.array([bbox[3, 0], bbox[3, 1], 1])) rot_text_polys.append([point1, point2, point3, point4]) data['img'] = rot_img data['text_polys'] =
np.array(rot_text_polys)
numpy.array
# imports import numpy as np import pandas as pd from scipy.interpolate import griddata, Akima1DInterpolator from scipy.stats import norm from sklearn.neighbors import KernelDensity from sklearn.utils.fixes import parse_version from utils import fit, modify from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.pyplot import cm from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import collections, colors, transforms # formatting plt.rcParams['legend.title_fontsize'] = 'large' plt.rcParams['legend.fontsize'] = 'medium' fontP = FontProperties() fontP.set_size('medium') plt.style.use(['science', 'ieee', 'std-colors']) # plt.style.use(['science', 'scatter']) fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) def plot_scatter(dficts, xparameter='y', yparameter='z', min_cm=0.5, z0=0, take_abs=False, figsize=(6, 4), scattersize=2): """ Plot all data (xparameter, yparameter) as scatter points with different colors. :param dficts: :param xparameter: :param yparameter: :param min_cm: :param z0: :return: """ fig, ax = plt.subplots(figsize=figsize) #cscatter = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dficts.keys())))) for name, df in dficts.items(): # filter dataframe if min_cm: df = df[df['cm'] > min_cm] # sort by x-parameter and get x- and y-arrays for plotting if xparameter is None or xparameter == 'index': x = df.index else: df = df.sort_values(by=xparameter) x = df[xparameter] y = df[yparameter] if z0: y = y - z0 # take absolute value if take_abs: y = np.abs(y) # plot #cs = next(cscatter) ax.scatter(x, y, s=scattersize) # ax.set_xlabel(xparameter, fontsize=18) # ax.set_ylabel(yparameter, fontsize=18) # ax.grid(alpha=0.125) # ax.legend(dficts.keys(), prop=fontP, title=r'$dz$ (mm)', loc='upper right', fancybox=True, shadow=False) return fig, ax def plot_mean(dficts, xparameter='y', yparameter='z', min_cm=0.5, z0=0, take_abs=False, fit_function=None): """ Plot all data (xparameter, yparameter) as scatter points with different colors. :param dficts: :param xparameter: :param yparameter: :param min_cm: :param z0: :return: """ cscatter = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dficts.keys())))) cerror = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dficts.keys())))) fig, ax = plt.subplots(figsize=(7.25, 4.25)) means = [] for name, df in dficts.items(): # filter dataframe df = df[df['cm'] > min_cm] y = df[yparameter] - z0 # take absolute value if take_abs: y = np.abs(y) yerr = np.std(y) y = np.mean(y) means.append(y) # plot cs = next(cscatter) ax.errorbar(name, y, yerr=yerr * 2, fmt='o', color=cs, ecolor=next(cerror), elinewidth=3, capsize=4, alpha=0.75) ax.scatter(name, y, color=cs) ax.set_xlabel(xparameter, fontsize=18) ax.set_ylabel(yparameter, fontsize=18) ax.grid(alpha=0.125) ax.legend(dficts.keys(), prop=fontP, title=r'$dz$ (mm)', loc='upper left', fancybox=True, shadow=False) # fit the function if fit_function is not None: names = list(dficts.keys()) popt, pcov, fit_func = fit.fit(names, means, fit_function=fit_function) # plot fitted function xfit = np.linspace(0, np.max(names), 100) ax.plot(xfit, fit_function(xfit, *popt), color='black', linewidth=2, linestyle='--', alpha=0.5) return fig, ax def plot_errorbars(dfbicts, xparameter='index', yparameter='z', min_cm=0.5, z0=0): """ Plot all data (xparameter, yparameter) as scatter points with different colors. :param dficts: :param xparameter: :param yparameter: :param min_cm: :param z0: :return: """ fig, ax = plt.subplots(figsize=(7.25, 4.25)) cscatter = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dfbicts.keys())))) cerror = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dfbicts.keys())))) for name, df in dfbicts.items(): # filter dataframe df = df[df['cm'] > min_cm] # sort by x-parameter and get x- and y-arrays for plotting if xparameter is None or xparameter == 'index': x = df.index else: df = df.sort_values(by=xparameter) x = df[xparameter] y = df[yparameter] - z0 # plot cs = next(cscatter) ax.errorbar(x, y, yerr=df.z_std * 2, fmt='o', color=cs, ecolor=next(cerror), elinewidth=1, capsize=2, alpha=0.75) ax.scatter(x, y, color=cs) ax.set_xlabel(xparameter, fontsize=18) ax.set_ylabel(yparameter, fontsize=18) ax.grid(alpha=0.125) ax.legend(dfbicts.keys(), prop=fontP, title=r'$dz$ (mm)', loc='upper left', fancybox=True, shadow=False) return fig, ax def plot_fit_and_scatter(fit_function, dficts, xparameter='index', yparameter='z', min_cm=0.5, z0=0, auto_format=False): """ Plot fitted curve and data (xparameter, yparameter) as scatter points with different colors. :param dficts: :param xparameter: :param yparameter: :param min_cm: :param z0: :return: """ fig, ax = plt.subplots(figsize=(7.25, 4.25)) cscatter = iter(cm.Spectral(np.linspace(0.95, 0.2, len(dficts.keys())))) for name, df in dficts.items(): # drop NaN's df = df.dropna(axis=0, subset=[yparameter]) # filter dataframe df = df[df['cm'] > min_cm] # sort by x-parameter and get x- and y-arrays for plotting if xparameter is None or xparameter == 'index': x = df.index else: df = df.sort_values(by=xparameter) x = df[xparameter] y = df[yparameter] - z0 # plot scatter points cs = next(cscatter) ax.scatter(x, y, color=cs) # fit the function popt, pcov, fit_func = fit.fit(x, y, fit_function=fit_function) # plot fitted function xfit = np.linspace(0, x.max(), 100) ax.plot(xfit, fit_function(xfit, popt[0], popt[1], popt[2]), color=cs, linewidth=3, alpha=0.9) ax.set_xlabel(xparameter, fontsize=18) ax.set_ylabel(yparameter, fontsize=18) ax.grid(alpha=0.125) if auto_format: ax.legend(dficts.keys(), prop=fontP, title=r'$dz$ (mm)', loc='upper left', fancybox=True, shadow=False) return fig, ax def plot_dfbicts_local(dfbicts, parameters='rmse_z', h=1, colors=None, linestyles=None, show_legend=False, scale=None, scatter_on=True, scatter_size=10, label_dict=None, ylabel=None, xlabel=None, semilogx=False, nrows=None, ncols=None): """ Notes: 1. Plots the dataframe index on x-axis. 2. If only one parameter is passed (len(parameters) == 1), then no ax2 is returned. :param dfbicts: :param parameters: :param h: :param colors: :param linestyles: :param show_legend: :param scale: :param scatter_on: :param scatter_size: :param ylabel: :param xlabel: :return: """ # format figure if isinstance(colors, list): colors = colors cscatter = None cscatterr = None elif colors == 'Blues': cscatter = iter(cm.Blues(np.linspace(0.1, 0.9, len(dfbicts.keys())))) cscatterr = iter(cm.Blues(np.linspace(0.1, 0.9, len(dfbicts.keys())))) elif colors == 'inferno': cscatter = iter(cm.inferno(np.linspace(0.1, 0.9, len(dfbicts.keys())))) cscatterr = iter(cm.inferno(np.linspace(0.1, 0.9, len(dfbicts.keys())))) else: # get colors from cycler colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] if len(dfbicts) > len(colors): colors_repeats = colors + colors colors = colors_repeats[:len(dfbicts)] cscatter = None cscatterr = None if isinstance(linestyles, list): lstyle = iter(linestyles) else: lstyle = iter('-' for i in list(dfbicts.keys())) if not scale: if nrows: fig, [ax, ax2] = plt.subplots(nrows=2, sharex=True) elif ncols: fig, [ax, ax2] = plt.subplots(ncols=2) else: fig, ax = plt.subplots() else: if isinstance(scale, (int, float)): scalex, scaley = scale, scale else: scalex, scaley = scale[0], scale[1] fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() size_x_pixels, size_y_pixels = fig.get_size_inches() * fig.dpi plt.close(fig) if nrows: fig, [ax, ax2] = plt.subplots(nrows=2, sharex=True, figsize=(size_x_inches * scalex, size_y_inches * scaley)) elif ncols: fig, [ax, ax2] = plt.subplots(ncols=2, figsize=(size_x_inches * scalex, size_y_inches * scaley)) else: fig, ax = plt.subplots(figsize=(size_x_inches*scalex, size_y_inches*scaley)) # organize data if (isinstance(parameters, str)) or (isinstance(parameters, list) and len(parameters) == 1): parameter = parameters parameterr = None parameter3 = None parameter4 = None elif isinstance(parameters, list) and len(parameters) == 2: parameter = parameters[0] parameterr = parameters[1] parameter3 = None parameter4 = None elif isinstance(parameters, list) and len(parameters) == 3: parameter = parameters[0] parameterr = parameters[1] parameter3 = parameters[2] parameter4 = None elif isinstance(parameters, list) and len(parameters) == 4: parameter = parameters[0] parameterr = parameters[1] parameter3 = parameters[2] parameter4 = parameters[3] if parameter == 'rmse_z': for item, clr in zip(dfbicts.items(), colors): if cscatter is not None: cs = next(cscatter) ls = next(lstyle) ax.plot(item[1].index, item[1][parameter] / h) if scatter_on: ax.scatter(item[1].index, item[1][parameter] / h) else: if label_dict: lbl = label_dict[item[0]]['label'] else: lbl = None ls = next(lstyle) if scatter_on: ax.scatter(item[1].index, item[1][parameter] / h, color=clr, s=scatter_size) ax.plot(item[1].index, item[1][parameter] / h, color=clr, linestyle=ls, label=lbl) else: ax.plot(item[1].index, item[1][parameter] / h, color=clr, label=lbl, linestyle=ls) else: for item, clr in zip(dfbicts.items(), colors): if cscatter is not None: ax.plot(item[1].index, item[1][parameter]) if scatter_on: ax.scatter(item[1].index, item[1][parameter]) else: if label_dict: lbl = label_dict[item[0]]['label'] else: lbl = None ls = next(lstyle) if semilogx: ax.semilogx(item[1].index, item[1][parameter] / h) else: if scatter_on: ax.scatter(item[1].index, item[1][parameter] / h, s=scatter_size, color=clr) ax.plot(item[1].index, item[1][parameter] / h, color=clr, linestyle=ls, label=lbl) else: ax.plot(item[1].index, item[1][parameter] / h, color=clr, linestyle=ls, label=lbl) if parameterr is not None: if not nrows: ax2 = ax.twinx() for item, clr in zip(dfbicts.items(), colors): if nrows: ax2.plot(item[1].index, item[1][parameterr], color=clr) else: ax2.plot(item[1].index, item[1][parameterr], color=clr, linestyle='--') if parameter3 is not None: ax2.plot(item[1].index, item[1][parameter3], color=clr, linestyle=':') if parameter4 is not None: ax2.plot(item[1].index, item[1][parameter4], color=clr, linestyle='-.') if ylabel: ax.set_ylabel(ylabel) elif h != 1 and parameter == 'rmse_z': ax.set_ylabel(r'$\sigma_{z}\left(z\right) / h$') elif parameter == 'rmse_z': ax.set_ylabel(r'$\sigma_{z}\left(z\right)$') else: ax.set_ylabel(parameter) if xlabel: if nrows: ax2.set_xlabel(xlabel) else: ax.set_xlabel(xlabel) else: if nrows: ax2.set_xlabel('z ($\mu m$)') else: ax.set_xlabel('z ($\mu m$)') ax.grid(alpha=0.25) if nrows: ax2.grid(alpha=0.25) if show_legend: ax.legend(dfbicts.keys(), title=r'$\sigma$') if parameterr is not None: return fig, ax, ax2 else: return fig, ax def plot_dfbicts_global(dfbicts, parameters='rmse_z', xlabel='parameter', h=1, print_values=False, scale=None, fig=None, ax=None, ax2=None, ax2_ylim=None, color=None, scatter_size=10, smooth=False, ylabel=None): if fig is None and ax is None: if not scale: fig, ax = plt.subplots() else: if isinstance(scale, (int, float)): scalex, scaley = scale, scale else: scalex, scaley = scale[0], scale[1] fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) fig, ax = plt.subplots(figsize=(size_x_inches * scalex, size_y_inches * scaley)) if ax2 is None and isinstance(parameters, list) and len(parameters) > 1: ax2 = ax.twinx() # organize data if isinstance(parameters, str) or len(parameters) == 1: parameter = parameters parameterr = None parameterrr = None names = dfbicts.keys() means = np.array([m[parameter].mean() for m in dfbicts.values()]) sort_by_name = sorted(list(zip(names, means)), key=lambda x: x[0]) names = [x[0] for x in sort_by_name] means = np.array([x[1] for x in sort_by_name]) elif isinstance(parameters, list) and len(parameters) == 2: parameter = parameters[0] parameterr = parameters[1] parameterrr = None names = dfbicts.keys() means = np.array([m[parameter].mean() for m in dfbicts.values()]) means_prr = np.array([m[parameterr].mean() for m in dfbicts.values()]) sort_by_name = sorted(list(zip(names, means, means_prr)), key=lambda x: x[0]) names = [x[0] for x in sort_by_name] means = np.array([x[1] for x in sort_by_name]) means_prr = np.array([x[2] for x in sort_by_name]) elif isinstance(parameters, list) and len(parameters) == 3: parameter = parameters[0] parameterr = parameters[1] parameterrr = parameters[2] names = dfbicts.keys() means = np.array([m[parameter].mean() for m in dfbicts.values()]) means_prr = np.array([m[parameterr].mean() for m in dfbicts.values()]) means_prrr = np.array([m[parameterrr].mean() for m in dfbicts.values()]) sort_by_name = sorted(list(zip(names, means, means_prr, means_prrr)), key=lambda x: x[0]) names = [x[0] for x in sort_by_name] means = np.array([x[1] for x in sort_by_name]) means_prr = np.array([x[2] for x in sort_by_name]) means_prrr = np.array([x[3] for x in sort_by_name]) else: raise ValueError("parameters must be a string or a list of strings") # smooth data if smooth: names = np.array(names) names_interp = np.linspace(np.min(names), np.max(names), 500) means_interp = Akima1DInterpolator(names, means)(names_interp) means = means_interp if parameterr: means_prr_interp = Akima1DInterpolator(names, means_prr)(names_interp) means_prr = means_prr_interp if parameterrr: means_prrr_interp = Akima1DInterpolator(names, means_prrr)(names_interp) means_prrr = means_prrr_interp names = names_interp # plot figure if parameter == 'rmse_z' and h != 1: ax.plot(names, means / h, color=color) if scatter_size: ax.scatter(names, means / h, s=scatter_size, color=color) else: ax.plot(names, means, color=color) if scatter_size: ax.scatter(names, means, s=scatter_size, color=color) if parameter == 'rmse_z': ax.set_ylabel(r'$\overline{\sigma_{z}} / h$') elif ylabel: ax.set_ylabel(ylabel) else: ax.set_ylabel(parameter) if parameterr is not None and parameterrr is None: ax2.plot(names, means_prr, linestyle='--', color=color) ax2.set_ylim(ax2_ylim) elif parameterrr is not None: ax2.plot(names, means_prr, color=color, linestyle='--') ax2.plot(names, means_prrr, color=color, linestyle=':') ax2.set_ylim(ax2_ylim) ax.set_xlabel(xlabel) ax.grid(alpha=0.25) # print results if print_values: print(names) print('{}: {}'.format(parameter, means / h)) if parameterr: print('{}: {}'.format(parameterr, means_prr)) return fig, ax, ax2 def plot_dfbicts_list_global(dfbicts_list, parameters='rmse_z', xlabel='parameter', h=1, print_values=False, scale=None, colors=None, ax2_ylim=None, scatter_size=10, smooth=False, ylabel=None): # format figure if not colors: # get colors from cycler colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] if not scale: fig, ax = plt.subplots() else: if isinstance(scale, (int, float)): scalex, scaley = scale, scale else: scalex, scaley = scale[0], scale[1] fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) fig, ax = plt.subplots(figsize=(size_x_inches * scalex, size_y_inches * scaley)) if isinstance(parameters, list) and len(parameters) > 1: ax2 = ax.twinx() else: ax2 = None for dfbicts, color in zip(dfbicts_list, colors): fig, ax, ax2 = plot_dfbicts_global(dfbicts, parameters, xlabel, h, print_values, scale=scale, fig=fig, ax=ax, ax2=ax2, ax2_ylim=ax2_ylim, color=color, scatter_size=scatter_size, smooth=smooth, ylabel=ylabel) return fig, ax, ax2 def plot_scatter_z_color(dficts, xparameter='x', yparameter='y', zparameter='z', min_cm=0.5, z0=0, take_abs=False): """ Plot all data (xparameter, yparameter, zparameter) as scatter points with z-parameter as colors. """ for name, df in dficts.items(): ax = plt.subplot() # filter dataframe df = df[df['cm'] > min_cm] # get x and y values x = df[xparameter] y = df[yparameter] # adjust for z-offset z = df[zparameter] - z0 # take absolute value if take_abs: z = np.abs(z) # plot data = ax.scatter(x, y, c=z) ax.set_xlabel(xparameter, fontsize=18) ax.set_ylabel(yparameter, fontsize=18) ax.set_title(name, fontsize=18) ax.grid(alpha=0.125) # color bar divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.5) plt.colorbar(data, cax=cax) plt.show() plt.close('all') # --------------------------------- DATAFRAMES --------------------------------------------------------------------- def plot_scatter_3d(df, fig=None, ax=None, elev=5, azim=-40, color=None, alpha=0.75): """ :param df: dataframe with 'x', 'y', and 'z' columns :param fig: figure :param ax: axes to plot on :param elev: the elevation angle in the z-plane. :param azim: the azimuth angle in the x-y plane. :return: """ if not fig: fig = plt.figure(figsize=(6, 6)) if not ax: ax = fig.add_subplot(projection='3d') if isinstance(df, list): x, y, z = df else: x, y, z = df.x, df.y, df.z if color is None: color = z ax.scatter(x, y, z, marker='o', c=color, alpha=alpha) ax.view_init(elev, azim) return fig, ax def plot_scatter_3d_multi_angle(df, z_param='z'): fig = plt.figure(figsize=(6.5, 5)) for i, v in zip(np.arange(1, 5), [45, 0, 315, 270]): ax = fig.add_subplot(2, 2, i, projection='3d') sc = ax.scatter(df.x, df.y, df[z_param], c=df[z_param]) ax.view_init(5, v) ax.patch.set_alpha(0.0) if i == 2: plt.colorbar(sc, shrink=0.5) ax.get_xaxis().set_ticks([]) ax.set_ylabel(r'$y \: (pixels)$') ax.set_zlabel(r'$z \: (\mu m)$') elif i == 4: ax.get_yaxis().set_ticks([]) ax.set_xlabel(r'$x \: (pixels)$') ax.set_zlabel(r'$z \: (\mu m)$') else: ax.set_xlabel(r'$x \: (pixels)$') ax.set_ylabel(r'$y \: (pixels)$') ax.get_zaxis().set_ticklabels([]) plt.suptitle('title', y=0.875) plt.subplots_adjust(hspace=-0.1, wspace=0.15) return fig, ax def plot_heatmap(df, fig=None, ax=None): # drop NaNs dfc = df.dropna(axis=0, subset=['z']) # move x, y, z series to numpy arrays x = dfc.x.to_numpy() y = dfc.y.to_numpy() z = dfc.z.to_numpy() # get spatial coordinate extents xspace = np.max(x) - np.min(x) yspace = np.max(y) - np.min(y) zspace = np.max(z) - np.min(z) # contour surface levels: 1 level = 1 micron lvls_surface = int(np.round(zspace + 1)) lvls_lines = int(lvls_surface / 5) # ----------------------- # Interpolation on a grid # ----------------------- # A contour plot of irregularly spaced data coordinates # via interpolation on a grid. ngridx = int(xspace) ngridy = int(yspace) # Create grid values first. xi = np.linspace(np.min(x), np.max(x), ngridx) yi = np.linspace(np.min(y), np.max(y), ngridy) # Linearly interpolate the data (x, y) on a grid defined by (xi, yi). zi = griddata((x, y), z, (xi[None, :], yi[:, None]), method='linear') if fig is None and ax is None: fig, ax = plt.subplots(figsize=(8, 8)) # plot level surfaces cntr = ax.contourf(xi, yi, zi, levels=lvls_surface, cmap="RdBu_r") # plot level lines ax.contour(xi, yi, zi, levels=lvls_lines, linewidths=0.5, colors='gray') # plot data points ax.scatter(x, y, c=z, cmap="RdBu_r") cbar = fig.colorbar(cntr, ax=ax) cbar.ax.set_title(r'$\delta z$') ax.set_xlabel('$x$', fontsize=18) ax.set_ylabel(r'$y$', fontsize=18) return fig, ax # ------------------------------------- ARRAYS --------------------------------------------------------------------- def scatter_xy_color_z(df, param_z): fig, ax = plt.subplots() sc = ax.scatter(df.x, df.y, c=df[param_z], s=3) plt.colorbar(sc, shrink=0.75) ax.set_xlabel('x') ax.set_ylabel('y') return fig def scatter_z_by_xy(df, z_params): if not isinstance(z_params, list): z_params = [z_params] fig, ax = plt.subplots(ncols=2, sharey=True, figsize=(size_x_inches*2, size_y_inches)) for z_param in z_params: ax[0].scatter(df.x, df[z_param], s=3) ax[1].scatter(df.y, df[z_param], s=3, label=z_param) ax[0].set_xlabel('x') ax[0].set_ylabel('z') ax[1].set_xlabel('y') ax[1].legend(loc='upper left', bbox_to_anchor=(1, 1)) plt.tight_layout() return fig, ax def plot_fitted_plane_and_points(df, dict_fit_plane): param_z = dict_fit_plane['z_f'] rmse, r_squared = dict_fit_plane['rmse'], dict_fit_plane['r_squared'] tilt_x, tilt_y = dict_fit_plane['tilt_x_degrees'], dict_fit_plane['tilt_y_degrees'] px, py, pz = dict_fit_plane['px'], dict_fit_plane['py'], dict_fit_plane['pz'] normal = dict_fit_plane['normal'] d = dict_fit_plane['d'] fig = plt.figure(figsize=(6.5, 5)) for i, v in zip(np.arange(1, 5), [45, 0, 315, 270]): ax = fig.add_subplot(2, 2, i, projection='3d') sc = ax.scatter(df.x, df.y, df[param_z], c=df[param_z], s=1) ax.plot_surface(px, py, pz, alpha=0.4, color='red') ax.view_init(5, v) ax.patch.set_alpha(0.0) if i == 2: plt.colorbar(sc, shrink=0.5) ax.get_xaxis().set_ticks([]) ax.set_ylabel(r'$y \: (pixels)$') ax.set_zlabel(r'$z \: (\mu m)$') elif i == 4: ax.get_yaxis().set_ticks([]) ax.set_xlabel(r'$x \: (pixels)$') ax.set_zlabel(r'$z \: (\mu m)$') else: ax.set_xlabel(r'$x \: (pixels)$') ax.set_ylabel(r'$y \: (pixels)$') ax.get_zaxis().set_ticklabels([]) # title plt.suptitle('RMSE: {}, '.format(np.round(rmse, 3)) + r'$R^2$' + ': {}'.format(np.round(r_squared, 3)) + '\n' + r'$(\theta_{x}, \theta_{y})=$' + ' ({}, {} deg.)'.format(np.round(tilt_x, 3),
np.round(tilt_y, 3)
numpy.round
import numpy as np import pdb from scipy.interpolate import interp1d def rotate(vec, theta): ''' rotate a 2D vector. Args: vec (1darray): the 2D vector. theta (float): the angle for rotation. Returns: 1darray: the rotated vector. ''' mat = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return mat.dot(np.transpose(vec)).T def intersection(line, theta, align): ''' get the intersection point from direction specified by theta. Args: line (2darray): an array of points. theta (float): direction of the intersection line. align (len-2 tuple): align to this point in the free dimension. Returns: tuple: the nearest intersection point. ''' def trans(line, theta): return rotate(line, - theta)[...,::-1] def trans_r(line, theta): return rotate(
np.asarray(line)
numpy.asarray
""" drivese_omdao.py Created by <NAME>, <NAME> and <NAME> 2014. Copyright (c) NREL. All rights reserved. Functions nacelle_example_5MW_baseline_[34]pt() did not define blade_mass We've added prob['blade_mass'] = 17740.0 (copied from hubse_omdao.py) GNS 2019 05 13 GNS 2019 06 05: nacelle_example_*() now return prob Classes with declarations like class ObjName_OM(Component) are OpenMDAO wrappers for pure-python objects that define the parts of a wind turbine drivetrain. These objects are defined in drivese_components.py (which contains NO OpenMDAO code). """ import numpy as np import sys from drivese.drivese_components import LowSpeedShaft4pt, LowSpeedShaft3pt, Gearbox, MainBearing, Bedplate, YawSystem, \ Transformer, HighSpeedSide, Generator, NacelleSystemAdder, AboveYawMassAdder, RNASystemAdder from drivese.hubse_omdao import HubSE, HubMassOnlySE, Hub_CM_Adder_OM from openmdao.api import Group, Component, IndepVarComp, Problem, view_connections #------------------------------------------------------------------------- # Components #------------------------------------------------------------------------- class LowSpeedShaft4pt_OM(Component): ''' LowSpeedShaft class The LowSpeedShaft class is used to represent the low speed shaft component of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, mb1Type, mb2Type, IEC_Class, debug=False): super(LowSpeedShaft4pt_OM, self).__init__() # variables self.add_param('rotor_bending_moment_x', val=0.0, units='N*m', desc='The bending moment about the x axis') self.add_param('rotor_bending_moment_y', val=0.0, units='N*m', desc='The bending moment about the y axis') self.add_param('rotor_bending_moment_z', val=0.0, units='N*m', desc='The bending moment about the z axis') self.add_param('rotor_thrust', val=0.0, units='N', desc='The force along the x axis applied at hub center') self.add_param('rotor_force_y', val=0.0, units='N', desc='The force along the y axis applied at hub center') self.add_param('rotor_force_z', val=0.0, units='N', desc='The force along the z axis applied at hub center') self.add_param('rotor_mass', val=0.0, units='kg', desc='rotor mass') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('machine_rating', val=0.0, units='kW', desc='machine_rating machine rating of the turbine') self.add_param('gearbox_mass', val=0.0, units='kg', desc='Gearbox mass') self.add_param('carrier_mass', val=0.0, units='kg', desc='Carrier mass') self.add_param('overhang', val=0.0, units='m', desc='Overhang distance') self.add_param('distance_hub2mb', val=0.0, units='m', desc='distance between hub center and upwind main bearing') self.add_param('drivetrain_efficiency', val=0.0, desc='overall drivettrain efficiency') # parameters self.add_param('shrink_disc_mass', val=0.0, units='kg', desc='Mass of the shrink disc') self.add_param('gearbox_cm', val=np.zeros(3), units='m', desc='center of mass of gearbox') self.add_param('gearbox_length', val=0.0, units='m', desc='gearbox length') self.add_param('flange_length', val=0.0, units='m', desc='flange length') self.add_param('shaft_angle', val=0.0, units='rad', desc='Angle of the LSS inclination with respect to the horizontal') self.add_param('shaft_ratio', val=0.0, desc='Ratio of inner diameter to outer diameter. Leave zero for solid LSS') self.add_param('hub_flange_thickness', val=0.0, desc='Shell thickness for spherical hub') # outputs self.add_output('lss_design_torque', val=0.0, units='N*m', desc='lss design torque') self.add_output('lss_design_bending_load', val=0.0, units='N', desc='lss design bending load') self.add_output('lss_length', val=0.0, units='m', desc='lss length') self.add_output('lss_diameter1', val=0.0, units='m', desc='lss outer diameter at main bearing') self.add_output('lss_diameter2', val=0.0, units='m', desc='lss outer diameter at second bearing') self.add_output('lss_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('lss_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('lss_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.add_output('lss_mb1_facewidth', val=0.0, units='m', desc='facewidth of upwind main bearing') self.add_output('lss_mb2_facewidth', val=0.0, units='m', desc='facewidth of main bearing') self.add_output('lss_mb1_mass', val=0.0, units='kg', desc='main bearing mass') self.add_output('lss_mb2_mass', val=0.0, units='kg', desc='second bearing mass') self.add_output('lss_mb1_cm', val=np.zeros(3), units='m', desc='main bearing 1 center of mass') self.add_output('lss_mb2_cm', val=np.zeros(3), units='m', desc='main bearing 2 center of mass') self.lss4pt = LowSpeedShaft4pt(mb1Type, mb2Type, IEC_Class, debug=debug) def solve_nonlinear(self, inputs, outputs, resid): (outputs['lss_design_torque'], outputs['lss_design_bending_load'], outputs['lss_length'], outputs['lss_diameter1'], outputs['lss_diameter2'], outputs['lss_mass'], outputs['lss_cm'], outputs['lss_I'], \ outputs['lss_mb1_facewidth'], outputs['lss_mb2_facewidth'], outputs['lss_mb1_mass'], outputs['lss_mb2_mass'], outputs['lss_mb1_cm'], outputs['lss_mb2_cm']) \ = self.lss4pt.compute(inputs['rotor_diameter'], inputs['rotor_mass'], inputs['rotor_thrust'], inputs['rotor_force_y'], inputs['rotor_force_z'], \ inputs['rotor_bending_moment_x'], inputs['rotor_bending_moment_y'], inputs['rotor_bending_moment_z'], \ inputs['overhang'], inputs['machine_rating'], inputs['drivetrain_efficiency'], \ inputs['gearbox_mass'], inputs['carrier_mass'], inputs['gearbox_cm'], inputs['gearbox_length'], \ inputs['shrink_disc_mass'], inputs['flange_length'], inputs['distance_hub2mb'], inputs['shaft_angle'], inputs['shaft_ratio'], \ inputs['hub_flange_thickness']) return outputs #------------------------------------------------------------------------- class LowSpeedShaft3pt_OM(Component): ''' LowSpeedShaft class The LowSpeedShaft class is used to represent the low speed shaft component of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, mb1Type, IEC_Class, debug=False): super(LowSpeedShaft3pt_OM, self).__init__() # variables self.add_param('rotor_bending_moment_x', val=0.0, units='N*m', desc='The bending moment about the x axis') self.add_param('rotor_bending_moment_y', val=0.0, units='N*m', desc='The bending moment about the y axis') self.add_param('rotor_bending_moment_z', val=0.0, units='N*m', desc='The bending moment about the z axis') self.add_param('rotor_thrust', val=0.0, units='N', desc='The force along the x axis applied at hub center') self.add_param('rotor_force_y', val=0.0, units='N', desc='The force along the y axis applied at hub center') self.add_param('rotor_force_z', val=0.0, units='N', desc='The force along the z axis applied at hub center') self.add_param('rotor_mass', val=0.0, units='kg', desc='rotor mass') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('machine_rating', val=0.0, units='kW', desc='machine_rating machine rating of the turbine') self.add_param('gearbox_mass', val=0.0, units='kg', desc='Gearbox mass') self.add_param('carrier_mass', val=0.0, units='kg', desc='Carrier mass') self.add_param('overhang', val=0.0, units='m', desc='Overhang distance') self.add_param('distance_hub2mb', val=0.0, units='m', desc='distance between hub center and upwind main bearing') self.add_param('drivetrain_efficiency', val=0.0, desc='overall drivettrain efficiency') # parameters self.add_param('shrink_disc_mass', val=0.0, units='kg', desc='Mass of the shrink disc') self.add_param('gearbox_cm', val=np.zeros(3), units='m', desc='center of mass of gearbox') self.add_param('gearbox_length', val=0.0, units='m', desc='gearbox length') self.add_param('flange_length', val=0.0, units='m', desc='flange length') self.add_param('shaft_angle', val=0.0, units='rad', desc='Angle of the LSS inclination with respect to the horizontal') self.add_param('shaft_ratio', val=0.0, desc='Ratio of inner diameter to outer diameter. Leave zero for solid LSS') self.add_param('hub_flange_thickness', val=0.0, desc='Shell thickness for spherical hub') # outputs self.add_output('lss_design_torque', val=0.0, units='N*m', desc='lss design torque') self.add_output('lss_design_bending_load', val=0.0, units='N', desc='lss design bending load') self.add_output('lss_length', val=0.0, units='m', desc='lss length') self.add_output('lss_diameter1', val=0.0, units='m', desc='lss outer diameter at main bearing') self.add_output('lss_diameter2', val=0.0, units='m', desc='lss outer diameter at second bearing') self.add_output('lss_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('lss_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('lss_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.add_output('lss_mb1_facewidth', val=0.0, units='m', desc='facewidth of upwind main bearing') self.add_output('lss_mb2_facewidth', val=0.0, units='m', desc='facewidth of main bearing') self.add_output('lss_mb1_mass', val=0.0, units='kg', desc='main bearing mass') self.add_output('lss_mb2_mass', val=0.0, units='kg', desc='second bearing mass') self.add_output('lss_mb1_cm', val=np.zeros(3), units='m', desc='main bearing 1 center of mass') self.add_output('lss_mb2_cm', val=np.zeros(3), units='m', desc='main bearing 2 center of mass') self.lss3pt = LowSpeedShaft3pt(mb1Type, IEC_Class, debug=debug) def solve_nonlinear(self, inputs, outputs, resid): (outputs['lss_design_torque'], outputs['lss_design_bending_load'], outputs['lss_length'], outputs['lss_diameter1'], outputs['lss_diameter2'], outputs['lss_mass'], outputs['lss_cm'], outputs['lss_I'], \ outputs['lss_mb1_facewidth'], outputs['lss_mb2_facewidth'], outputs['lss_mb1_mass'], outputs['lss_mb2_mass'], outputs['lss_mb1_cm'], outputs['lss_mb2_cm']) \ = self.lss3pt.compute(inputs['rotor_diameter'], inputs['rotor_mass'], inputs['rotor_thrust'], inputs['rotor_force_y'], inputs['rotor_force_z'], \ inputs['rotor_bending_moment_x'], inputs['rotor_bending_moment_y'], inputs['rotor_bending_moment_z'], \ inputs['overhang'], inputs['machine_rating'], inputs['drivetrain_efficiency'], \ inputs['gearbox_mass'], inputs['carrier_mass'], inputs['gearbox_cm'], inputs['gearbox_length'], \ inputs['shrink_disc_mass'], inputs['flange_length'], inputs['distance_hub2mb'], inputs['shaft_angle'], inputs['shaft_ratio'], inputs['hub_flange_thickness']) return outputs #------------------------------------------------------------------------- class MainBearing_OM(Component): ''' MainBearings class The MainBearings class is used to represent the main bearing components of a wind turbine drivetrain. It contains two subcomponents (main bearing and second bearing) which also inherit from the SubComponent class. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, bearing_position): super(MainBearing_OM, self).__init__() # variables self.add_param('bearing_mass', val=0.0, units='kg', desc='bearing mass from LSS model') self.add_param('lss_diameter', val=0.0, units='m', desc='lss outer diameter at main bearing') self.add_param('lss_design_torque', val=0.0, units='N*m', desc='lss design torque') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('lss_mb_cm', val=np.array([0., 0., 0.]), units='m', desc='x,y,z location from shaft model') # returns self.add_output('mb_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('mb_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('mb_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.mb = MainBearing(bearing_position) def solve_nonlinear(self, inputs, outputs, resid): (outputs['mb_mass'], outputs['mb_cm'], outputs['mb_I']) \ = self.mb.compute(inputs['bearing_mass'], inputs['lss_diameter'], inputs['lss_design_torque'], inputs['rotor_diameter'], inputs['lss_mb_cm']) return outputs #------------------------------------------------------------------------- class Gearbox_OM(Component): ''' Gearbox class The Gearbox class is used to represent the gearbox component of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, gear_configuration, shaft_factor, debug=False): super(Gearbox_OM, self).__init__() # variables self.add_param('gear_ratio', val=0.0, desc='overall gearbox speedup ratio') self.add_param('planet_numbers', val=np.array([0, 0, 0,]), desc='number of planets in each stage', pass_by_obj=True) self.add_param('rotor_rpm', val=0.0, units='rpm', desc='rotor rpm at rated power') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('rotor_torque', val=0.0, units='N*m', desc='rotor torque at rated power') self.add_param('gearbox_input_xcm', val=0.00, units='m', desc='gearbox position along x-axis') # outputs self.add_output('stage_masses', val=np.zeros(3), units='kg', desc='individual gearbox stage gearbox_masses') self.add_output('gearbox_mass', val=0.0, units='kg', desc='overall component gearbox_mass') self.add_output('gearbox_cm', val=np.zeros(3), desc='center of gearbox_mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('gearbox_I', val=np.zeros(3), desc=' moments of gearbox_Inertia for the component [gearbox_Ixx, gearbox_Iyy, gearbox_Izz] around its center of gearbox_mass') self.add_output('gearbox_length', val=0.0, units='m', desc='gearbox length') self.add_output('gearbox_height', val=0.0, units='m', desc='gearbox height') self.add_output('gearbox_diameter', val=0.0, units='m', desc='gearbox diameter') self.gearbox = Gearbox(gear_configuration, shaft_factor, debug=debug) def solve_nonlinear(self, inputs, outputs, resid): (outputs['stage_masses'], outputs['gearbox_mass'], outputs['gearbox_cm'], outputs['gearbox_I'], outputs['gearbox_length'], outputs['gearbox_height'], outputs['gearbox_diameter']) \ = self.gearbox.compute(inputs['gear_ratio'], inputs['planet_numbers'], inputs['rotor_rpm'], inputs['rotor_diameter'], inputs['rotor_torque'], inputs['gearbox_input_xcm']) return outputs #------------------------------------------------------------------- class HighSpeedSide_OM(Component): ''' HighSpeedShaft class The HighSpeedShaft class is used to represent the high speed shaft and mechanical brake components of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self): super(HighSpeedSide_OM, self).__init__() # variables self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('rotor_torque', val=0.0, units='N*m', desc='rotor torque at rated power') self.add_param('gear_ratio', val=0.0, desc='overall gearbox ratio') self.add_param('lss_diameter', val=0.0, units='m', desc='low speed shaft outer diameter') self.add_param('gearbox_length', val=0.0, units='m', desc='gearbox length') self.add_param('gearbox_height', val=0.0, units='m', desc='gearbox height') self.add_param('gearbox_cm', val=np.zeros(3), units='m', desc='gearbox cm [x,y,z]') self.add_param('hss_input_length', val=0.0, units='m', desc='high speed shaft length determined by user. Default 0.5m') # returns self.add_output('hss_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('hss_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('hss_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.add_output('hss_length', val=0.0, desc='length of high speed shaft') self.hss = HighSpeedSide() def solve_nonlinear(self, inputs, outputs, resid): (outputs['hss_mass'], outputs['hss_cm'], outputs['hss_I'], outputs['hss_length']) \ = self.hss.compute(inputs['rotor_diameter'], inputs['rotor_torque'], inputs['gear_ratio'], inputs['lss_diameter'], inputs['gearbox_length'], inputs['gearbox_height'], inputs['gearbox_cm'], inputs['hss_input_length']) return outputs #---------------------------------------------------------------------------------------------- class Generator_OM(Component): '''Generator class The Generator class is used to represent the generator of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, drivetrain_design): super(Generator_OM, self).__init__() # variables self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('machine_rating', val=0.0, units='kW', desc='machine rating of generator') self.add_param('gear_ratio', val=0.0, desc='overall gearbox ratio') self.add_param('hss_length', val=0.0, units='m', desc='length of high speed shaft and brake') self.add_param('hss_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='cm of high speed shaft and brake') self.add_param('rotor_rpm', val=0.0, units='rpm', desc='Speed of rotor at rated power') #returns self.add_output('generator_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('generator_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('generator_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.gen = Generator(drivetrain_design) def solve_nonlinear(self, inputs, outputs, resid): (outputs['generator_mass'], outputs['generator_cm'], outputs['generator_I']) \ = self.gen.compute(inputs['rotor_diameter'], inputs['machine_rating'], inputs['gear_ratio'], inputs['hss_length'], inputs['hss_cm'], inputs['rotor_rpm']) return outputs #-------------------------------------------- class RNASystemAdder_OM(Component): ''' RNASystem class This analysis is only to be used in placing the transformer of the drivetrain. The Rotor-Nacelle-Group class is used to represent the RNA of the turbine without the transformer and bedplate (to resolve circular dependency issues). It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self): super(RNASystemAdder_OM, self).__init__() # inputs self.add_param('lss_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb1_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb2_mass', val=0.0, units='kg', desc='component mass') self.add_param('gearbox_mass', val=0.0, units='kg', desc='component mass') self.add_param('hss_mass', val=0.0, units='kg', desc='component mass') self.add_param('generator_mass', val=0.0, units='kg', desc='component mass') self.add_param('lss_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('mb1_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('mb2_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('gearbox_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('hss_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('generator_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('overhang', val=0.0, units='m', desc='nacelle overhang') self.add_param('rotor_mass', val=0.0, units='kg', desc='component mass') self.add_param('machine_rating', val=0.0, units='kW', desc='machine rating') # returns self.add_output('RNA_mass', val=0.0, units='kg', desc='mass of total RNA') self.add_output('RNA_cm', val=0.0, units='m', desc='RNA CM along x-axis') self.rnaadder = RNASystemAdder() def solve_nonlinear(self, inputs, outputs, resid): (outputs['RNA_mass'], outputs['RNA_cm']) \ = self.rnaadder.compute(inputs['lss_mass'], inputs['mb1_mass'], inputs['mb2_mass'], inputs['gearbox_mass'], inputs['hss_mass'], inputs['generator_mass'], \ inputs['lss_cm'], inputs['mb1_cm'], inputs['mb2_cm'], inputs['gearbox_cm'], inputs['hss_cm'], inputs['generator_cm'], inputs['overhang'], inputs['rotor_mass'], inputs['machine_rating']) return outputs #------------------------------------------------------------------------------- class Transformer_OM(Component): ''' Transformer class The transformer class is used to represent the transformer of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component if it is in fact uptower''' def __init__(self, uptower_transformer): super(Transformer_OM, self).__init__() # inputs self.add_param('machine_rating', val=0.0, units='kW', desc='machine rating of the turbine') self.add_param('tower_top_diameter', val=0.0, units='m', desc='tower top diameter for comparision of nacelle CM') self.add_param('rotor_mass', val=0.0, units='kg', desc='rotor mass') self.add_param('generator_cm', val=np.zeros(3), desc='center of mass of the generator in [x,y,z]') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter of turbine') self.add_param('RNA_mass', val=0.0, units='kg', desc='mass of total RNA') self.add_param('RNA_cm', val=0.0, units='m', desc='RNA CM along x-axis') # outputs self.add_output('transformer_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('transformer_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('transformer_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.transformer = Transformer(uptower_transformer) def solve_nonlinear(self, inputs, outputs, resid): (outputs['transformer_mass'], outputs['transformer_cm'], outputs['transformer_I']) \ = self.transformer.compute(inputs['machine_rating'], inputs['tower_top_diameter'], inputs['rotor_mass'], inputs['generator_cm'], inputs['rotor_diameter'], inputs['RNA_mass'], inputs['RNA_cm']) return outputs #------------------------------------------------------------------------- class Bedplate_OM(Component): ''' Bedplate class The Bedplate class is used to represent the bedplate of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, uptower_transformer, debug=False): super(Bedplate_OM, self).__init__() # variables self.add_param('gearbox_length', val=0.0, units='m', desc='gearbox length') self.add_param('gearbox_location', val=0.0, units='m', desc='gearbox CM location') self.add_param('gearbox_mass', val=0.0, units='kg', desc='gearbox mass') self.add_param('hss_location', val=0.0, units='m', desc='HSS CM location') self.add_param('hss_mass', val=0.0, units='kg', desc='HSS mass') self.add_param('generator_location', val=0.0, units='m', desc='generator CM location') self.add_param('generator_mass', val=0.0, units='kg', desc='generator mass') self.add_param('lss_location', val=0.0, units='m', desc='LSS CM location') self.add_param('lss_mass', val=0.0, units='kg', desc='LSS mass') self.add_param('lss_length', val=0.0, units='m', desc='LSS length') self.add_param('lss_mb1_facewidth', val=0.0, units='m', desc='Upwind main bearing facewidth') self.add_param('mb1_cm', val=np.zeros(3), units='m', desc='Upwind main bearing CM location') self.add_param('mb1_mass', val=0.0, units='kg', desc='Upwind main bearing mass') self.add_param('mb2_cm', val=np.zeros(3), units='m', desc='Downwind main bearing CM location') self.add_param('mb2_mass', val=0.0, units='kg', desc='Downwind main bearing mass') self.add_param('transformer_mass', val=0.0, units='kg', desc='Transformer mass') self.add_param('transformer_cm', val=np.zeros(3), units='m', desc='transformer CM location') self.add_param('tower_top_diameter', val=0.0, units='m', desc='diameter of the top tower section at the yaw gear') self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('machine_rating', val=0.0, units='kW', desc='machine_rating machine rating of the turbine') self.add_param('rotor_mass', val=0.0, units='kg', desc='rotor mass') self.add_param('rotor_bending_moment_y', val=0.0, units='N*m', desc='The bending moment about the y axis') self.add_param('rotor_force_z', val=0.0, units='N', desc='The force along the z axis applied at hub center') self.add_param('flange_length', val=0.0, units='m', desc='flange length') self.add_param('distance_hub2mb', val=0.0, units='m', desc='length between rotor center and upwind main bearing') # outputs self.add_output('bedplate_mass', val=0.0, units='kg', desc='overall component bedplate_mass') self.add_output('bedplate_cm', val=np.zeros(3), desc='center of bedplate_mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('bedplate_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of bedplate_mass') self.add_output('bedplate_length', val=0.0, units='m', desc='length of bedplate') self.add_output('bedplate_height', val=0.0, units='m', desc='max height of bedplate') self.add_output('bedplate_width', val=0.0, units='m', desc='width of bedplate') self.bpl = Bedplate(uptower_transformer, debug=debug) self.debug = debug def solve_nonlinear(self, inputs, outputs, resid): (outputs['bedplate_mass'], outputs['bedplate_cm'], outputs['bedplate_I'], outputs['bedplate_length'], outputs['bedplate_height'], outputs['bedplate_width']) \ = self.bpl.compute(inputs['gearbox_length'], inputs['gearbox_location'], inputs['gearbox_mass'], inputs['hss_location'], inputs['hss_mass'], inputs['generator_location'], inputs['generator_mass'], \ inputs['lss_location'], inputs['lss_mass'], inputs['lss_length'], inputs['mb1_cm'], inputs['lss_mb1_facewidth'], inputs['mb1_mass'], inputs['mb2_cm'], inputs['mb2_mass'], \ inputs['transformer_mass'], inputs['transformer_cm'], \ inputs['tower_top_diameter'], inputs['rotor_diameter'], inputs['machine_rating'], inputs['rotor_mass'], inputs['rotor_bending_moment_y'], inputs['rotor_force_z'], \ inputs['flange_length'], inputs['distance_hub2mb']) return outputs #------------------------------------------------------------------------------- class AboveYawMassAdder_OM(Component): ''' AboveYawMassAdder_OM class The AboveYawMassAdder_OM class is used to represent the masses of all parts of a wind turbine drivetrain that are above the yaw system. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, crane, debug=False): super(AboveYawMassAdder_OM, self).__init__() # variables self.add_param('machine_rating', val=0.0, units='kW', desc='machine rating') self.add_param('lss_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb1_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb2_mass', val=0.0, units='kg', desc='component mass') self.add_param('gearbox_mass', val=0.0, units='kg', desc='component mass') self.add_param('hss_mass', val=0.0, units='kg', desc='component mass') self.add_param('generator_mass', val=0.0, units='kg', desc='component mass') self.add_param('bedplate_mass', val=0.0, units='kg', desc='component mass') self.add_param('bedplate_length', val=0.0, units='m', desc='component length') self.add_param('bedplate_width', val=0.0, units='m', desc='component width') self.add_param('transformer_mass', val=0.0, units='kg', desc='component mass') # returns self.add_output('electrical_mass', val=0.0, units='kg', desc='component mass') self.add_output('vs_electronics_mass', val=0.0, units='kg', desc='component mass') self.add_output('hvac_mass', val=0.0, units='kg', desc='component mass') self.add_output('controls_mass', val=0.0, units='kg', desc='component mass') self.add_output('platforms_mass', val=0.0, units='kg', desc='component mass') self.add_output('crane_mass', val=0.0, units='kg', desc='component mass') self.add_output('mainframe_mass', val=0.0, units='kg', desc='component mass') self.add_output('cover_mass', val=0.0, units='kg', desc='component mass') self.add_output('above_yaw_mass', val=0.0, units='kg', desc='total mass above yaw system') self.add_output('nacelle_length', val=0.0, units='m', desc='component length') self.add_output('nacelle_width', val=0.0, units='m', desc='component width') self.add_output('nacelle_height', val=0.0, units='m', desc='component height') self.aboveyawmass = AboveYawMassAdder(crane) self.debug = debug def solve_nonlinear(self, inputs, outputs, resid): (outputs['electrical_mass'], outputs['vs_electronics_mass'], outputs['hvac_mass'], outputs['controls_mass'], outputs['platforms_mass'], outputs['crane_mass'], outputs['mainframe_mass'], outputs['cover_mass'], outputs['above_yaw_mass'], outputs['nacelle_length'], outputs['nacelle_width'], outputs['nacelle_height']) \ = self.aboveyawmass.compute(inputs['machine_rating'], inputs['lss_mass'], inputs['mb1_mass'], inputs['mb2_mass'], inputs['gearbox_mass'], inputs['hss_mass'], inputs['generator_mass'], inputs['bedplate_mass'], inputs['bedplate_length'], inputs['bedplate_width'], inputs['transformer_mass']) if self.debug: print('AYMA IN: {:.1f} kW BPl {:.1f} m BPw {:.1f} m'.format( inputs['machine_rating'],inputs['bedplate_length'], inputs['bedplate_width'])) print('AYMA IN masses (kg): LSS {:.1f} MB1 {:.1f} MB2 {:.1f} GBOX {:.1f} HSS {:.1f} GEN {:.1f} BP {:.1f} TFRM {:.1f}'.format( inputs['lss_mass'], inputs['mb1_mass'], inputs['mb2_mass'], inputs['gearbox_mass'], inputs['hss_mass'], inputs['generator_mass'], inputs['bedplate_mass'], inputs['transformer_mass'])) print('AYMA OUT masses (kg) : E {:.1f} VSE {:.1f} HVAC {:.1f} CNTL {:.1f} PTFM {:.1f} CRN {:.1f} MNFRM {:.1f} CVR {:.1f} AYM {:.1f}'.format( outputs['electrical_mass'], outputs['vs_electronics_mass'], outputs['hvac_mass'], outputs['controls_mass'], outputs['platforms_mass'], outputs['crane_mass'], outputs['mainframe_mass'], outputs['cover_mass'], outputs['above_yaw_mass'])) print('AYMA OUT nacelle (m): L {:.2f} W {:.2f} H {:.2f}'.format( outputs['nacelle_length'], outputs['nacelle_width'], outputs['nacelle_height'])) return outputs #--------------------------------------------------------------------------------------------------------------- class YawSystem_OM(Component): ''' YawSystem class The YawSystem class is used to represent the yaw system of a wind turbine drivetrain. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self, yaw_motors_number): super(YawSystem_OM, self).__init__() # variables self.add_param('rotor_diameter', val=0.0, units='m', desc='rotor diameter') self.add_param('rotor_thrust', val=0.0, units='N', desc='maximum rotor thrust') self.add_param('tower_top_diameter', val=0.0, units='m', desc='tower top diameter') self.add_param('above_yaw_mass', val=0.0, units='kg', desc='above yaw mass') self.add_param('bedplate_height', val=0.0, units='m', desc='bedplate height') # outputs self.add_output('yaw_mass', val=0.0, units='kg', desc='overall component mass') self.add_output('yaw_cm', val=np.zeros(3), desc='center of mass of the component in [x,y,z] for an arbitrary coordinate system') self.add_output('yaw_I', val=np.zeros(3), desc=' moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.yaw = YawSystem(yaw_motors_number) def solve_nonlinear(self, inputs, outputs, resid): (outputs['yaw_mass'], outputs['yaw_cm'], outputs['yaw_I']) \ = self.yaw.compute(inputs['rotor_diameter'], inputs['rotor_thrust'], inputs['tower_top_diameter'], inputs['above_yaw_mass'], inputs['bedplate_height']) return outputs #-------------------------------------------- class NacelleSystemAdder_OM(Component): #added to drive to include transformer ''' NacelleSystem class The Nacelle class is used to represent the overall nacelle of a wind turbine. It contains the general properties for a wind turbine component as well as additional design load and dimensional attributes as listed below. It contains an update method to determine the mass, mass properties, and dimensions of the component. ''' def __init__(self): super(NacelleSystemAdder_OM, self).__init__() # variables self.add_param('above_yaw_mass', val=0.0, units='kg', desc='mass above yaw system') self.add_param('yaw_mass', val=0.0, units='kg', desc='mass of yaw system') self.add_param('lss_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb1_mass', val=0.0, units='kg', desc='component mass') self.add_param('mb2_mass', val=0.0, units='kg', desc='component mass') self.add_param('gearbox_mass', val=0.0, units='kg', desc='component mass') self.add_param('hss_mass', val=0.0, units='kg', desc='component mass') self.add_param('generator_mass', val=0.0, units='kg', desc='component mass') self.add_param('bedplate_mass', val=0.0, units='kg', desc='component mass') self.add_param('mainframe_mass', val=0.0, units='kg', desc='component mass') self.add_param('lss_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('mb1_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('mb2_cm', val=np.array([0.0,0.0,0.0]), units='m', desc='component CM') self.add_param('gearbox_cm', val=
np.array([0.0,0.0,0.0])
numpy.array
#!/usr/bin/env python """UTILS.PY - Utility functions """ from __future__ import print_function __authors__ = '<NAME> <<EMAIL>>' __version__ = '20200112' # yyyymmdd import os import numpy as np import warnings from scipy import sparse from scipy.interpolate import interp1d from dlnpyutils import utils as dln import matplotlib.pyplot as plt # Ignore these warnings, it's a bug warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") cspeed = 2.99792458e5 # speed of light in km/s # Convert wavelengths to pixels for a dispersion solution def w2p(dispersion,w,extrapolate=True): """ Convert wavelength values to pixels for a "dispersion solution". Parameters ---------- dispersion : 1D array The dispersion solution. This is basically just a 1D array of monotonically increasing (or decreasing) wavelengths. w : array Array of wavelength values to convert to pixels. extrapolate : bool, optional Extrapolate beyond the dispersion solution, if necessary. This is True by default. Returns ------- x : array Array of converted pixel values. Examples -------- x = w2p(disp,w) """ x = interp1d(dispersion,np.arange(len(dispersion)),kind='cubic',bounds_error=False,fill_value=(np.nan,np.nan),assume_sorted=False)(w) # Need to extrapolate if ((np.min(w)<np.min(dispersion)) | (
np.max(w)
numpy.max
#! /usr/bin/env python3 import numpy as np from collections import Counter from scipy.stats import norm from scipy.special import logsumexp, loggamma from scipy.stats import t from lsbm.mvt import dmvt ################################################################################ ### LSBM embeddings with weighted inner product of basis functions GP kernel ### ################################################################################ class lsbm_gibbs: ## Initialise the class with the number of components and embedding def __init__(self, X, K, W_function, fixed_function={}, K_fixed=True, first_linear=False): self.X = X self.n = X.shape[0] self.d = X.shape[1] self.K = K if isinstance(K_fixed,bool): self.K_fixed = K_fixed else: raise TypeError('K_fixed must be a boolean value.') ## Function to obtain the design matrix self.fW = W_function self.fixed_function = fixed_function Fs = Counter() for k,_ in self.fW: Fs[k] += 1 self.kappa = len(Fs) if self.kappa != self.K and self.K_fixed: raise ValueError('The number of latent functions in W_function must be equal to K (when K is fixed).') ## Set up first_linear if isinstance(first_linear, bool): self.first_linear = (self.K if self.K_fixed else self.kappa) * [first_linear] else: self.first_linear = first_linear if np.sum([isinstance(k,bool) for k in first_linear]) != self.K and self.K_fixed: raise ValueError('If K is fixed, first_linear is either a boolean or a K-vector of booleans.') if np.sum([isinstance(k,bool) for k in first_linear]) != self.kappa and not self.K_fixed: raise ValueError('If K is not fixed, first_linear is either a boolean or a vector of booleans of size equal to the number of possible kernels.') ## Initialise the model parameters def initialise(self, z, theta, Lambda_0=1.0, a_0=1.0, b_0=1.0, nu=1.0, mu_theta=0.0, sigma_theta=1.0, omega=0.9, g_prior=True): ## Initial cluster configuration self.z = z if np.min(self.z) == 1: self.z -= 1 self.theta = theta ## Theta hyperparameters self.mu_theta = mu_theta self.sigma_theta = sigma_theta ## K hyperparameters self.omega = omega ## Basis functions self.g_prior = g_prior self.W = {} ## for j in range(self.d): ## for k in range(self.K): for k,j in self.fW: self.W[k,j] = np.array([self.fW[k,j](self.theta[i]) for i in range(self.n)]) self.fixed_W = {} ## for j in self.fixed_function: ## for k in range(self.K): for k,j in self.fixed_function: self.fixed_W[j] = np.array([self.fixed_function[k,j](self.theta[i]) for i in range(self.n)])[:,0] ## rewrite using only one coefficient (1) ## If K_fixed, match each cluster with a set of functions if not self.K_fixed: self.fk = np.zeros(self.K, dtype=int) ## Prior parameters self.nu = nu self.a0 = a_0 self.b0 = b_0 self.lambda_coef = Lambda_0 self.Lambda0 = {}; self.Lambda0_inv = {} for j in range(self.d): for k in range(self.K if self.K_fixed else self.kappa): if g_prior: self.Lambda0_inv[k,j] = Lambda_0 * np.dot(self.W[k,j].T,self.W[k,j]) else: self.Lambda0_inv[k,j] = np.diag(np.ones(len(self.fW[k,j](1))) * Lambda_0) self.Lambda0[k,j] = np.linalg.inv(self.Lambda0_inv[k,j]) self.nu = nu ## Initialise hyperparameter vectors self.nk = np.zeros(self.K, dtype=int) ## Counter(self.z) for ind in self.z: self.nk[ind] += 1 self.a = np.zeros(self.K) for k in range(self.K): self.a[k] = self.a0 + self.nk[k] / 2 self.b = {}; self.WtW = {}; self.WtX = {}; self.Lambda_inv = {}; self.Lambda = {}; self.mu = {} for j in range(self.d): self.b[j] = {}; self.WtW[j] = {}; self.WtX[j] = {}; self.Lambda_inv[j] = {}; self.Lambda[j] = {}; self.mu[j] = {} for k in range(self.K): X = self.X[self.z == k][:,j] if j in self.fixed_function: X -= self.fixed_W[j][self.z == k] if j == 0 and self.first_linear[k if self.K_fixed else self.fk[k]]: self.b[j][k] = self.b0 + np.sum((X - self.theta[self.z == k]) ** 2) / 2 else: W = self.W[k if self.K_fixed else self.fk[k],j][self.z == k] self.WtW[j][k] = np.dot(W.T,W) self.WtX[j][k] = np.dot(W.T,X) self.Lambda_inv[j][k] = self.WtW[j][k] + self.Lambda0_inv[k if self.K_fixed else self.fk[k],j] self.Lambda[j][k] = np.linalg.inv(self.Lambda_inv[j][k]) self.mu[j][k] = np.dot(self.Lambda[j][k], self.WtX[j][k]) self.b[j][k] = self.b0 + (np.dot(X.T,X) - np.dot(self.mu[j][k].T, np.dot(self.Lambda_inv[j][k],self.mu[j][k]))) / 2 ######################################################## ### a. Resample the allocations using Gibbs sampling ### ######################################################## def gibbs_communities(self,l=1): ## Change the value of l when too large if l > self.n: l = self.n ## Update the latent allocations in randomised order ## Loop over the indices WtW_old = {}; WtX_old = {}; Lambda_inv_old = {}; Lambda_old = {}; mu_old = {}; b_old = {}; position = {} for i in np.random.choice(self.n, size=l, replace=False): zold = self.z[i] ## Update parameters of the distribution self.a[zold] -= .5 self.nk[zold] -= 1 for j in range(self.d): position[j] = self.X[i,j] if j in self.fixed_function: position[j] -= self.fixed_W[j][i] if j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]: b_old[j] = float(np.copy(self.b[j][zold])) self.b[j][zold] -= (position[j] - self.theta[i]) ** 2 / 2 else: b_old[j] = float(np.copy(self.b[j][zold])) self.b[j][zold] -= (position[j] ** 2 - np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold]))) / 2 WtW_old[j] = np.copy(self.WtW[j][zold]) WtX_old[j] = np.copy(self.WtX[j][zold]) self.WtW[j][zold] -= np.outer(self.W[zold if self.K_fixed else self.fk[zold],j][i],self.W[zold if self.K_fixed else self.fk[zold],j][i]) self.WtX[j][zold] -= self.W[zold if self.K_fixed else self.fk[zold],j][i] * position[j] Lambda_inv_old[j] = np.copy(self.Lambda_inv[j][zold]) Lambda_old[j] = np.copy(self.Lambda[j][zold]) self.Lambda_inv[j][zold] = self.WtW[j][zold] + self.Lambda0_inv[zold if self.K_fixed else self.fk[zold],j] self.Lambda[j][zold] = np.linalg.inv(self.Lambda_inv[j][zold]) mu_old[j] = np.copy(self.mu[j][zold]) self.mu[j][zold] = np.dot(self.Lambda[j][zold], self.WtX[j][zold]) self.b[j][zold] -= np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold])) / 2 ## Calculate probabilities for community allocations community_probs = np.log((np.array([self.nk[k] for k in range(self.K)]) + self.nu/self.K) / (self.n - 1 + self.nu)) for k in range(self.K): for j in range(self.d): if j == 0 and self.first_linear[k if self.K_fixed else self.fk[k]]: community_probs[k] += t.logpdf(position[j], df=2*self.a[k], loc=self.theta[i], scale=np.sqrt(self.b[j][k] / self.a[k])) else: community_probs[k] += t.logpdf(position[j], df=2*self.a[k], loc=np.dot(self.W[k if self.K_fixed else self.fk[k],j][i],self.mu[j][k]), scale=np.sqrt(self.b[j][k] / self.a[k] * (1 + np.dot(self.W[k if self.K_fixed else self.fk[k],j][i].T, np.dot(self.Lambda[j][k], self.W[k if self.K_fixed else self.fk[k],j][i]))))) ## Raise error if nan probabilities are computed if np.isnan(community_probs).any(): print(community_probs) raise ValueError("Error in the allocation probabilities. Check invertibility of the covariance matrices.") ## Update allocation znew = np.random.choice(self.K, p=np.exp(community_probs - logsumexp(community_probs))) self.z[i] = np.copy(znew) ## Update parameters self.a[znew] += .5 self.nk[znew] += 1 if znew == zold: ## Re-update to old values for j in range(self.d): self.b[j][znew] = b_old[j] if not (j == 0 and self.first_linear[znew if self.K_fixed else self.fk[znew]]): self.WtW[j][znew] = WtW_old[j] self.WtX[j][znew] = WtX_old[j] self.Lambda_inv[j][znew] = Lambda_inv_old[j] self.Lambda[j][znew] = Lambda_old[j] self.mu[j][znew] = mu_old[j] else: ## Update to new values for j in range(self.d): if j == 0 and self.first_linear[znew if self.K_fixed else self.fk[znew]]: self.b[j][znew] += (position[j] - self.theta[i]) ** 2 / 2 else: self.b[j][znew] += np.dot(self.mu[j][znew].T,np.dot(self.Lambda_inv[j][znew],self.mu[j][znew])) / 2 self.WtW[j][znew] += np.outer(self.W[znew if self.K_fixed else self.fk[znew],j][i],self.W[znew if self.K_fixed else self.fk[znew],j][i]) self.WtX[j][znew] += self.W[znew if self.K_fixed else self.fk[znew],j][i] * position[j] self.Lambda_inv[j][znew] = self.WtW[j][znew] + self.Lambda0_inv[znew if self.K_fixed else self.fk[znew],j] self.Lambda[j][znew] = np.linalg.inv(self.Lambda_inv[j][znew]) self.mu[j][znew] = np.dot(self.Lambda[j][znew], self.WtX[j][znew]) self.b[j][znew] += (position[j] ** 2 - np.dot(self.mu[j][znew].T,np.dot(self.Lambda_inv[j][znew],self.mu[j][znew]))) / 2 return None ############################################## ### b. Resample the latent positions theta ### ############################################## def resample_theta(self, l=1, sigma_prop=0.1): ## Change the value of l when too large if l > self.n: l = self.n ## Update the latent allocations in randomised order ## Loop over the indices WtW_old = {}; WtX_old = {}; Lambda_inv_old = {}; Lambda_old = {}; mu_old = {}; b_old = {}; position = {} position_prop = {}; W_prop = {}; W_prop_fixed = {} for i in np.random.choice(self.n, size=l, replace=False): zold = self.z[i] theta_old = self.theta[i] ## Update parameters of the distribution self.a[zold] -= .5 self.nk[zold] -= 1 for j in range(self.d): position[j] = self.X[i,j] if j in self.fixed_function: position[j] -= self.fixed_W[j][i] if j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]: b_old[j] = float(np.copy(self.b[j][zold])) self.b[j][zold] -= (position[j] - theta_old) ** 2 / 2 else: b_old[j] = float(np.copy(self.b[j][zold])) self.b[j][zold] -= (position[j] ** 2 - np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold]))) / 2 WtW_old[j] = np.copy(self.WtW[j][zold]) WtX_old[j] = np.copy(self.WtX[j][zold]) self.WtW[j][zold] -= np.outer(self.W[zold if self.K_fixed else self.fk[zold],j][i],self.W[zold if self.K_fixed else self.fk[zold],j][i]) self.WtX[j][zold] -= self.W[zold if self.K_fixed else self.fk[zold],j][i] * position[j] Lambda_inv_old[j] = np.copy(self.Lambda_inv[j][zold]) Lambda_old[j] = np.copy(self.Lambda[j][zold]) self.Lambda_inv[j][zold] = self.WtW[j][zold] + self.Lambda0_inv[zold if self.K_fixed else self.fk[zold],j] self.Lambda[j][zold] = np.linalg.inv(self.Lambda_inv[j][zold]) mu_old[j] = np.copy(self.mu[j][zold]) self.mu[j][zold] = np.dot(self.Lambda[j][zold], self.WtX[j][zold]) self.b[j][zold] -= np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold])) / 2 ## Calculate proposal theta_prop = np.random.normal(loc=theta_old, scale=sigma_prop) for j in range(self.d): position_prop[j] = self.X[i,j] for k in range(self.K if self.K_fixed else self.kappa): W_prop[k,j] = self.fW[k,j](theta_prop) if j in self.fixed_function: W_prop_fixed[j] = self.fixed_function[j](theta_prop) position_prop[j] -= W_prop_fixed[j] ## Calculate acceptance ratio numerator_accept = norm.logpdf(theta_prop,loc=self.mu_theta,scale=self.sigma_theta) for j in range(self.d): if j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]: numerator_accept += t.logpdf(position_prop[j], df=2*self.a[zold], loc=theta_prop, scale=np.sqrt(self.b[j][zold] / self.a[zold])) else: numerator_accept += t.logpdf(position_prop[j], df=2*self.a[zold], loc=np.dot(W_prop[zold if self.K_fixed else self.fk[zold],j],self.mu[j][zold]), scale=np.sqrt(self.b[j][zold] / self.a[zold] * (1 + np.dot(W_prop[zold if self.K_fixed else self.fk[zold],j].T, np.dot(self.Lambda[j][zold], W_prop[zold if self.K_fixed else self.fk[zold],j]))))) denominator_accept = norm.logpdf(theta_old,loc=self.mu_theta,scale=self.sigma_theta) for j in range(self.d): if j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]: denominator_accept += t.logpdf(position[j], df=2*self.a[zold], loc=theta_old, scale=np.sqrt(self.b[j][zold] / self.a[zold])) else: denominator_accept += t.logpdf(position[j], df=2*self.a[zold], loc=np.dot(self.W[zold if self.K_fixed else self.fk[zold],j][i],self.mu[j][zold]), scale=np.sqrt(self.b[j][zold] / self.a[zold] * (1 + np.dot(self.W[zold if self.K_fixed else self.fk[zold],j][i].T, np.dot(self.Lambda[j][zold], self.W[zold if self.K_fixed else self.fk[zold],j][i]))))) ## Calculate acceptance probability accept_ratio = numerator_accept - denominator_accept accept = (-np.random.exponential(1) < accept_ratio) ## Update parameters self.a[zold] += .5 self.nk[zold] += 1 if accept: self.theta[i] = theta_prop if not accept: ## Re-update to old values for j in range(self.d): self.b[j][zold] = b_old[j] if not (j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]): self.WtW[j][zold] = WtW_old[j] self.WtX[j][zold] = WtX_old[j] self.Lambda_inv[j][zold] = Lambda_inv_old[j] self.Lambda[j][zold] = Lambda_old[j] self.mu[j][zold] = mu_old[j] else: ## Update to new values for j in range(self.d): ## Update design matrix for k in range(self.K if self.K_fixed else self.kappa): self.W[k,j][i] = W_prop[k,j] if j in self.fixed_function: self.fixed_W[j][i] = W_prop_fixed[j] if j == 0 and self.first_linear[zold if self.K_fixed else self.fk[zold]]: self.b[j][zold] += (position[j] - self.theta[i]) ** 2 / 2 else: self.b[j][zold] += np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold])) / 2 self.WtW[j][zold] += np.outer(self.W[zold if self.K_fixed else self.fk[zold],j][i],self.W[zold if self.K_fixed else self.fk[zold],j][i]) self.WtX[j][zold] += self.W[zold if self.K_fixed else self.fk[zold],j][i] * position_prop[j] self.Lambda_inv[j][zold] = self.WtW[j][zold] + self.Lambda0_inv[zold if self.K_fixed else self.fk[zold],j] self.Lambda[j][zold] = np.linalg.inv(self.Lambda_inv[j][zold]) self.mu[j][zold] = np.dot(self.Lambda[j][zold], self.WtX[j][zold]) self.b[j][zold] += (position_prop[j] ** 2 - np.dot(self.mu[j][zold].T,np.dot(self.Lambda_inv[j][zold],self.mu[j][zold]))) / 2 return None ################################################# ### c. Propose to add/remove an empty cluster ### ################################################# def propose_empty(self, verbose=False): if self.K_fixed: raise ValueError('propose_empty can only be run if K_fixed is set to False.') ## Propose K if self.K == 1: K_prop = 2 elif (self.K == self.n): K_prop = self.n - 1 else: ## If there are no empty clusters and K_prop = K-1, reject the proposal if not np.any(self.nk == 0): K_prop = self.K+1 else: K_prop = np.random.choice([self.K-1, self.K+1]) ## Assign values to the variable remove if K_prop < self.K: remove = True else: remove = False ## Propose functional form for new cluster if not remove: fk_prop = np.random.choice(self.kappa) ## Propose a new (empty) vector of cluster allocations if remove: ## Delete empty cluster with largest index (or sample at random) ind_delete = np.random.choice(np.where(self.nk == 0)[0]) nk_prop = np.delete(self.nk, ind_delete) else: nk_prop = np.append(self.nk, 0) ## Common term for the acceptance probability accept_ratio = self.K * loggamma(self.nu / self.K) - K_prop * loggamma(self.nu / K_prop) + \ np.sum(loggamma(nk_prop + self.nu / K_prop)) - np.sum(loggamma(self.nk + self.nu / self.K)) + \ (K_prop - self.K) * np.log(1 - self.omega) * np.log(.5) * int(self.K == 1) - np.log(.5) * int(self.K == self.n) ## Accept or reject the proposal accept = (-np.random.exponential(1) < accept_ratio) ## Scale all the values if an empty cluster is added if verbose: print('\t',['Add','Remove'][int(remove)], accept, np.exp(accept_ratio), K_prop, end='') if accept: self.nk = nk_prop if not remove: self.fk = np.append(self.fk, fk_prop) self.a = np.append(self.a, self.a0) for j in range(self.d): self.b[j][K_prop-1] = self.b0 if not (j == 0 and self.first_linear[fk_prop]): self.WtW[j][K_prop-1] = np.zeros((self.W[fk_prop,j].shape[1], self.W[fk_prop,j].shape[1])) self.WtX[j][K_prop-1] = np.zeros(self.W[fk_prop,j].shape[1]) self.Lambda_inv[j][K_prop-1] = np.copy(self.Lambda0_inv[fk_prop,j]) self.Lambda[j][K_prop-1] = np.copy(self.Lambda0[fk_prop,j]) self.mu[j][K_prop-1] = np.zeros(self.W[fk_prop,j].shape[1]) else: ## Delete old values fk_old = self.fk[ind_delete] self.fk = np.delete(self.fk, ind_delete) self.a = np.delete(self.a,ind_delete) for j in range(self.d): del self.b[j][ind_delete] if not (j == 0 and self.first_linear[fk_old]): del self.WtW[j][ind_delete] del self.WtX[j][ind_delete] del self.Lambda_inv[j][ind_delete] del self.Lambda[j][ind_delete] del self.mu[j][ind_delete] ## Relabel groups Q = np.arange(self.K)[np.arange(self.K) > ind_delete] for k in Q: self.z[self.z == k] = k-1 for j in range(self.d): self.b[j][k-1] = self.b[j][k]; del self.b[j][k] if not (j == 0 and self.first_linear[self.fk[k-1]]): self.WtW[j][k-1] = self.WtW[j][k]; del self.WtW[j][k] self.WtX[j][k-1] = self.WtX[j][k]; del self.WtX[j][k] self.Lambda_inv[j][k-1] = self.Lambda_inv[j][k]; del self.Lambda_inv[j][k] self.Lambda[j][k-1] = self.Lambda[j][k]; del self.Lambda[j][k] self.mu[j][k-1] = self.mu[j][k]; del self.mu[j][k] ## Update K self.K = K_prop return None ################################## ### d. Split-merge communities ### ################################## def split_merge(self, verbose=False): if self.K_fixed: raise ValueError('propose_empty can only be run if K_fixed is set to False.') # Randomly choose two nodes q, q_prime = np.random.choice(self.n, size=2, replace=False) # Propose a split or merge move according to the sampled values if self.z[q] == self.z[q_prime]: split = True z = self.z[q] z_prime = self.K fk_prop = self.fk[z] fk_temp = [fk_prop, fk_prop] else: split = False z = np.min([self.z[q],self.z[q_prime]]) z_prime = np.max([self.z[q],self.z[q_prime]]) fk_prop = np.random.choice([self.fk[z], self.fk[z_prime]]) fk_temp = [self.fk[z], self.fk[z_prime]] # Proposed K K_prop = self.K + (1 if split else -1) # Preprocessing for split / merge move nk_prop = np.ones(2, dtype=int) a_prop = self.a0 + np.ones(2) / 2 b_prop = {}; WtW_prop = {}; WtX_prop = {}; Lambda_inv_prop = {}; Lambda_prop = {}; mu_prop = {} for j in range(self.d): b_prop[j] = np.ones(2) * self.b0; WtW_prop[j] = {}; WtX_prop[j] = {}; Lambda_inv_prop[j] = {}; Lambda_prop[j] = {}; mu_prop[j] = {} if j == 0 and self.first_linear[self.fk[z]]: b_prop[j][0] += (self.X[q,j] - self.theta[q]) ** 2 / 2 else: WtW_prop[j][0] = np.outer(self.W[fk_temp[0],j][q], self.W[fk_temp[0],j][q]) WtX_prop[j][0] = np.multiply(self.W[fk_temp[0],j][q], self.X[q,j]) Lambda_inv_prop[j][0] = self.Lambda0_inv[self.fk[z],j] + WtW_prop[j][0] Lambda_prop[j][0] = np.linalg.inv(Lambda_inv_prop[j][0]) mu_prop[j][0] = np.dot(Lambda_prop[j][0], WtX_prop[j][0]) b_prop[j][0] += (self.X[q,j] ** 2 - np.dot(mu_prop[j][0].T,np.dot(Lambda_inv_prop[j][0],mu_prop[j][0]))) / 2 if j == 0 and self.first_linear[self.fk[z if split else z_prime]]: b_prop[j][1] += (self.X[q_prime,j] - self.theta[q_prime]) ** 2 / 2 else: WtW_prop[j][1] = np.outer(self.W[fk_temp[1],j][q_prime], self.W[fk_temp[1],j][q_prime]) WtX_prop[j][1] = np.multiply(self.W[fk_temp[1],j][q_prime], self.X[q_prime,j]) Lambda_inv_prop[j][1] = self.Lambda0_inv[self.fk[z if split else z_prime],j] + WtW_prop[j][1] Lambda_prop[j][1] = np.linalg.inv(Lambda_inv_prop[j][1]) mu_prop[j][1] = np.dot(Lambda_prop[j][1], WtX_prop[j][1]) b_prop[j][1] += (self.X[q_prime,j] ** 2 - np.dot(mu_prop[j][1].T,np.dot(Lambda_inv_prop[j][1],mu_prop[j][1]))) / 2 ## Indices if split: indices = np.where(self.z == z)[0] else: indices = np.where(np.logical_or(self.z == z, self.z == z_prime))[0] indices = indices[np.logical_and(indices != q, indices != q_prime)] if not split: ## Calculate parameters for merge move nk_merge = self.nk[z] + self.nk[z_prime] a_merge = self.a0 + nk_merge / 2 b_merge = {}; WtW_merge = {}; WtX_merge = {}; Lambda_inv_merge = {}; Lambda_merge = {}; mu_merge = {} for j in range(self.d): b_merge[j] = self.b0 if j == 0 and self.first_linear[self.fk[z]]: b_merge[j] += (self.X[q,j] - self.theta[q]) ** 2 / 2 b_merge[j] += (self.X[q_prime,j] - self.theta[q_prime]) ** 2 / 2 b_merge[j] += np.sum((self.X[indices,j] - self.theta[indices]) ** 2 / 2) else: X = self.X[np.append([q,q_prime],indices)][:,j] W = self.W[fk_prop,j][np.append([q,q_prime],indices)] WtW_merge[j] = np.dot(W.T,W) WtX_merge[j] = np.dot(W.T,X) Lambda_inv_merge[j] = self.Lambda0_inv[fk_prop,j] + WtW_merge[j] Lambda_merge[j] = np.linalg.inv(Lambda_inv_merge[j]) mu_merge[j] = np.dot(Lambda_merge[j], WtX_merge[j]) b_merge[j] += (self.X[q,j] ** 2 + self.X[q_prime,j] ** 2 + np.dot(self.X[indices][:,j].T,self.X[indices][:,j]) - np.dot(mu_merge[j].T,np.dot(Lambda_inv_merge[j],mu_merge[j]))) / 2 ## Random allocation of indices indices = np.random.choice(indices,size=len(indices),replace=False) ## Calculate q probabilities qprob = 0 zz = [] for i in indices: ## Calculate probabilities for community allocations community_probs = np.log(nk_prop + self.nu/2) for j in range(self.d): if j == 0 and self.first_linear[self.fk[z]]: community_probs[0] += t.logpdf(self.X[i,j], df=2*a_prop[0], loc=self.theta[i], scale=np.sqrt(b_prop[j][0] / a_prop[0])) else: community_probs[0] += t.logpdf(self.X[i,j], df=2*a_prop[0], loc=np.dot(self.W[fk_temp[0],j][i], mu_prop[j][0]), scale=np.sqrt(b_prop[j][0] / a_prop[0] * (1 + np.dot(self.W[fk_temp[0],j][i].T, np.dot(Lambda_prop[j][0], self.W[fk_temp[0],j][i]))))) if j == 0 and self.first_linear[self.fk[z if split else z_prime]]: community_probs[1] += t.logpdf(self.X[i,j], df=2*a_prop[1], loc=self.theta[i], scale=np.sqrt(b_prop[j][1] / a_prop[1])) else: community_probs[1] += t.logpdf(self.X[i,j], df=2*a_prop[1], loc=np.dot(self.W[fk_temp[1],j][i], mu_prop[j][1]), scale=np.sqrt(b_prop[j][1] / a_prop[1] * (1 + np.dot(self.W[fk_temp[1],j][i].T, np.dot(Lambda_prop[j][1], self.W[fk_temp[1],j][i]))))) ## Raise error if nan probabilities are computed if np.isnan(community_probs).any(): print(community_probs) raise ValueError("Error in the allocation probabilities. Check invertibility of the covariance matrices.") ## Update allocation community_probs = np.exp(community_probs - logsumexp(community_probs)) if split: znew = np.random.choice(2, p=community_probs) else: znew = int(self.z[i] == z_prime) zz = np.append(zz, znew) qprob += np.log(community_probs)[znew] knew = fk_temp[znew] ## Update parameters a_prop[znew] += 0.5 nk_prop[znew] += 1 for j in range(self.d): if j == 0 and self.first_linear[knew]: b_prop[j][znew] += (self.X[i,j] - self.theta[i]) ** 2 / 2 else: b_prop[j][znew] += np.dot(mu_prop[j][znew].T,np.dot(Lambda_inv_prop[j][znew],mu_prop[j][znew])) / 2 WtW_prop[j][znew] += np.outer(self.W[knew,j][i],self.W[knew,j][i]) WtX_prop[j][znew] += self.W[knew,j][i] * self.X[i,j] Lambda_inv_prop[j][znew] = WtW_prop[j][znew] + self.Lambda0_inv[knew,j] Lambda_prop[j][znew] = np.linalg.inv(Lambda_inv_prop[j][znew]) mu_prop[j][znew] = np.dot(Lambda_prop[j][znew], WtX_prop[j][znew]) b_prop[j][znew] += (self.X[i,j] ** 2 - np.dot(mu_prop[j][znew].T,np.dot(Lambda_inv_prop[j][znew],mu_prop[j][znew]))) / 2 ## Calculate acceptance ratio acceptance_ratio = self.K * loggamma(self.nu / self.K) - K_prop * loggamma(self.nu / K_prop) nk_ast = np.copy(self.nk) if split: nk_ast[z] = nk_prop[0]; nk_ast = np.append(nk_ast, nk_prop[1]) else: nk_ast[z] = nk_merge; nk_ast = np.delete(arr=nk_ast, obj=z_prime) acceptance_ratio += np.sum(loggamma(nk_ast + self.nu / K_prop)) - np.sum(loggamma(self.nk + self.nu / self.K)) acceptance_ratio += (K_prop - self.K) * np.log(1 - self.omega) ## acceptance_ratio += np.log(.5) * int(self.K == 1) - np.log(.5) * int(self.K == self.n) acceptance_ratio -= (1 if split else -1) * qprob if split: indices0 = np.append([q],indices[zz == 0]) indices1 = np.append([q_prime],indices[zz == 1]) indices_all = np.append([q,q_prime],indices) for j in range(self.d): if j == 0 and self.first_linear[fk_prop]: acceptance_ratio += np.sum(loggamma(a_prop) - loggamma(self.a0) + self.a0 * loggamma(self.b0) - nk_prop/2 * loggamma(2*np.pi)) acceptance_ratio -= a_prop[0] * loggamma(self.b0 + np.sum((self.X[:,j][indices0] - self.theta[indices0]) ** 2) / 2) acceptance_ratio -= a_prop[1] * loggamma(self.b0 + np.sum((self.X[:,j][indices1] - self.theta[indices1]) ** 2) / 2) acceptance_ratio -= loggamma(self.a[z]) - loggamma(self.a0) + self.a0 * loggamma(self.b0) - self.nk[z]/2 * loggamma(2*np.pi) acceptance_ratio += self.a[z] * loggamma(self.b0 + np.sum((self.X[:,j][indices_all] - self.theta[indices_all]) ** 2) / 2) else: S0 = np.dot(self.W[fk_prop,j][indices0], np.dot(self.Lambda0[fk_prop,j], self.W[fk_prop,j][indices0].T)) + np.diag(np.ones(nk_prop[0])) acceptance_ratio += dmvt(x=self.X[indices0,j], mu=np.zeros(nk_prop[0]), Sigma=self.b0 / self.a0 * S0, nu=2*self.a0) S1 = np.dot(self.W[fk_prop,j][indices1], np.dot(self.Lambda0[fk_prop,j], self.W[fk_prop,j][indices1].T)) + np.diag(np.ones(nk_prop[1])) acceptance_ratio += dmvt(x=self.X[indices1,j], mu=np.zeros(nk_prop[1]), Sigma=self.b0 / self.a0 * S1, nu=2*self.a0) S_all = np.dot(self.W[fk_prop,j][indices_all], np.dot(self.Lambda0[fk_prop,j], self.W[fk_prop,j][indices_all].T)) + np.diag(np.ones(self.nk[z])) acceptance_ratio -= dmvt(x=self.X[indices_all,j], mu=np.zeros(self.nk[z]), Sigma=self.b0 / self.a0 * S_all, nu=2*self.a0) else: indices0 = np.append([q],indices[zz == 0]) indices1 = np.append([q_prime],indices[zz == 1]) indices_all = np.append([q,q_prime],indices) for j in range(self.d): if j == 0 and self.first_linear[fk_prop]: acceptance_ratio -= np.sum(loggamma(a_prop) - loggamma(self.a0) + self.a0 * loggamma(self.b0) - nk_prop/2 * loggamma(2*np.pi)) acceptance_ratio += a_prop[0] * loggamma(self.b0 + np.sum((self.X[:,j][indices0] - self.theta[indices0]) ** 2) / 2) acceptance_ratio += a_prop[1] * loggamma(self.b0 + np.sum((self.X[:,j][indices1] - self.theta[indices1]) ** 2) / 2) acceptance_ratio += loggamma(a_merge) - loggamma(self.a0) + self.a0 * loggamma(self.b0) - nk_merge/2 * loggamma(2*np.pi) acceptance_ratio -= a_merge * loggamma(self.b0 + np.sum((self.X[:,j][indices_all] - self.theta[indices_all]) ** 2) / 2) else: S0 = np.dot(self.W[fk_temp[0],j][indices0], np.dot(self.Lambda0[fk_temp[0],j], self.W[fk_temp[0],j][indices0].T)) + np.diag(np.ones(nk_prop[0])) acceptance_ratio -= dmvt(x=self.X[indices0,j], mu=np.zeros(nk_prop[0]), Sigma=self.b0 / self.a0 * S0, nu=2*self.a0) S1 = np.dot(self.W[fk_temp[1],j][indices1], np.dot(self.Lambda0[fk_temp[1],j], self.W[fk_temp[1],j][indices1].T)) + np.diag(np.ones(nk_prop[1])) acceptance_ratio -= dmvt(x=self.X[indices1,j], mu=np.zeros(nk_prop[1]), Sigma=self.b0 / self.a0 * S1, nu=2*self.a0) S_all = np.dot(self.W[fk_prop,j][indices_all], np.dot(self.Lambda0[fk_prop,j], self.W[fk_prop,j][indices_all].T)) + np.diag(np.ones(nk_merge)) acceptance_ratio += dmvt(x=self.X[indices_all,j], mu=np.zeros(nk_merge), Sigma=self.b0 / self.a0 * S_all, nu=2*self.a0) # Accept / reject using Metropolis-Hastings accept = (-np.random.exponential(1) < acceptance_ratio) if verbose: print('\t',['Merge','Split'][int(split)], bool(accept), z, z_prime, K_prop, end='') # Update if move is accepted if accept: if split: self.z[indices1] = z_prime self.fk = np.append(self.fk, values=fk_prop) self.nk[z] = nk_prop[0]; self.nk = np.append(self.nk, nk_prop[1]) self.a[z] = a_prop[0]; self.a = np.append(self.a, a_prop[1]) for j in range(self.d): self.b[j][z] = b_prop[j][0]; self.b[j][self.K] = b_prop[j][1] if not (j == 0 and self.first_linear[fk_prop]): self.WtW[j][z] = WtW_prop[j][0]; self.WtW[j][self.K] = WtW_prop[j][1] self.WtX[j][z] = WtX_prop[j][0]; self.WtX[j][self.K] = WtX_prop[j][1] self.Lambda_inv[j][z] = Lambda_inv_prop[j][0]; self.Lambda_inv[j][self.K] = Lambda_inv_prop[j][1] self.Lambda[j][z] = Lambda_prop[j][0]; self.Lambda[j][self.K] = Lambda_prop[j][1] self.mu[j][z] = mu_prop[j][0]; self.mu[j][self.K] = mu_prop[j][1] else: self.z[self.z == z_prime] = z self.fk[z] = fk_prop; self.fk = np.delete(arr=self.fk, obj=z_prime) self.nk[z] = nk_merge; self.nk = np.delete(arr=self.nk, obj=z_prime) self.a[z] = a_merge; self.a = np.delete(arr=self.a, obj=z_prime) for j in range(self.d): self.b[j][z] = b_merge[j]; del self.b[j][z_prime] if not (j == 0 and self.first_linear[fk_prop]): self.WtW[j][z] = WtW_merge[j]; del self.WtW[j][z_prime] self.WtX[j][z] = WtX_merge[j]; del self.WtX[j][z_prime] self.Lambda_inv[j][z] = Lambda_inv_merge[j]; del self.Lambda_inv[j][z_prime] self.Lambda[j][z] = Lambda_merge[j]; del self.Lambda[j][z_prime] self.mu[j][z] = mu_merge[j]; del self.mu[j][z_prime] ## Relabel groups Q = np.arange(self.K)[np.arange(self.K) > z_prime] for k in Q: self.z[self.z == k] = k-1 for j in range(self.d): self.b[j][k-1] = self.b[j][k]; del self.b[j][k] if not (j == 0 and self.first_linear[self.fk[k-1]]): self.WtW[j][k-1] = self.WtW[j][k]; del self.WtW[j][k] self.WtX[j][k-1] = self.WtX[j][k]; del self.WtX[j][k] self.Lambda_inv[j][k-1] = self.Lambda_inv[j][k]; del self.Lambda_inv[j][k] self.Lambda[j][k-1] = self.Lambda[j][k]; del self.Lambda[j][k] self.mu[j][k-1] = self.mu[j][k]; del self.mu[j][k] ## Update K self.K = K_prop return None ###################################################### ### e. Resample community-specific functional form ### ###################################################### def resample_kernel(self, verbose=False): ## Sample existing community k_group = np.random.choice(self.K) fk_old = self.fk[k_group] ## Initialise hyperparameter vectors S = {}; b_kernels = {}; WtW_kernels = {}; WtX_kernels = {}; Lambda_inv_kernels = {}; Lambda_kernels = {}; mu_kernels = {} X = self.X[self.z == k_group] theta = self.theta[self.z == k_group] ## Calculate vector of probabilities probs = np.zeros(self.kappa) for k in range(self.kappa): b_kernels[k] = {}; WtW_kernels[k] = {}; WtX_kernels[k] = {}; Lambda_inv_kernels[k] = {}; Lambda_kernels[k] = {}; mu_kernels[k] = {} XX = np.copy(X) for j in range(self.d): if j in self.fixed_function: XX[:,j] -= self.fixed_W[j][self.z == k_group] if j == 0 and self.first_linear[k]: b_kernels[k][j] = self.b0 + np.sum((XX[:,j] - theta) ** 2) / 2 probs[k] += loggamma(self.a[k_group]) - loggamma(self.a0) - self.nk[k_group] *
np.log(2*np.pi)
numpy.log
import numpy as np from tqdm import tqdm from numpy.linalg import norm def iterate(nApT, nAnT, seed, c, epsilon, beta, gamma, max_iters, handles_deadend, verbose): ''' Perform power iteration for SRWR query inputs nApT: csr_matrix positive semi row-normalized adjacency matrix (transpose) nAnT: csr_matrix negative semi row-normalized adjacency matrix (transpose) seed: int seed (query) node c: float restart probability epsilon: float error tolerance for power iteration beta: float balance attenuation factor gamma: float balance attenuation factor max_iters: int maximum number of iterations for power iteration handles_deadend: bool if true, it will handle the deadend issue in power iteration otherwise, it won't, i.e., no guarantee for sum of SRWR scores to be 1 in directed graphs verbose: bool if true, it will show a progress bar over iterations outputs: rd: ndarray relative trustworthiness score vector w.r.t. seed rp: ndarray positive SRWR vector w.r.t. seed rn: ndarray negative SRWR vector w.r.t. seed residuals: list list of residuals of power iteration, e.g., residuals[i] is i-th residual ''' m, n = nApT.shape q = np.zeros((n, 1)) q[seed] = 1.0 rp = q rn = np.zeros((n, 1)) rt =
np.row_stack((rp, rn))
numpy.row_stack
import csv import numpy as np from numpy import array, linspace, exp, pi, inf, vstack from scipy.interpolate import interp1d from scipy.optimize import fsolve from scipy.integrate import quad,trapz import pandas as pd import tmm import matplotlib.pyplot as plt from matplotlib.pyplot import plot,figure,xlabel,ylabel,show,ylim,legend import sys assert sys.version_info >= (3,6), 'Requires Python 3.6+' from pvlib.pvsystem import singlediode from colour import SpectralDistribution, XYZ_to_sRGB, cctf_decoding, cctf_encoding from colour.colorimetry import sd_to_XYZ_integration from colour.notation import RGB_to_HEX from colour.plotting import ColourSwatch, plot_multi_colour_swatches import os #import tmmPVColor as pvc '''We determine the size and scaling of the photon wavelength scale. Units are um''' num_lams = 500 lams = linspace(0.3,2.5,num=num_lams) #um '''We are constants and help control units''' q = 1.602176634e-19 #coulombs. elementary charge c0 = 299792458 #m/s #Speed of light hPlanck = 6.62607015e-34 #J*s 4.135667516e-15 #eV*s kB = 1.380649e-23 #J/K 8.61733034e-5 #eV/K #pathtodat = os.path.abspath(__file__).replace(__file__,'') pathtodat = os.path.abspath(__file__).replace('/wpv.py','') #print('path to data: ') #print(__file__) #print(pathtodat) #print('printed') class Layer: """ I am a layer class for organizing data for each layer. I should make constructing stacks easier in the future and reduce possible mistakes """ def __init__(self, thickness, fname_root, i_or_c='c', isPV=False, **kwargs): if thickness: self.d = thickness else: self.d = None self.i_or_c = i_or_c #self.nk = 1.0 if fname_root: self.datasource = fname_root if kwargs.get('onecol'): print('dumb data') self.get_dumb_data() else: self.get_sensible_data() else: self.datasource = None self.isPV = isPV self.abs = 0 def get_dumb_data(self): matfilename = 'Data/Materials/' + self.datasource + '.csv' lct = 0 bothdat = [] with open(matfilename, newline='') as csvfile: rawdat = csv.reader(csvfile, delimiter=' ') for row in rawdat: lct += 1 if row: bothdat.append(row[0]) if 'k' in row[0]: kstart = lct lct = 1 nlams = [] ns = [] klams = [] ks = [] for line in bothdat: if lct < kstart-1: if 'n' not in line: nlams.append(float(line.split(',')[0])) ns.append(float(line.split(',')[1])) else: if 'k' not in line: #print(line) klams.append(float(line.split(',')[0])) ks.append(float(line.split(',')[1])) lct += 1 nlams = np.array(nlams) ns = np.array(ns) #print(nlams) klams = np.array(klams) ks = np.array(ks) #print(klams) self.n = interp1d(nlams,ns,fill_value="extrapolate") self.k = interp1d(klams,ks,fill_value="extrapolate") def get_sensible_data(self): """ next we will unpack n and k data from a csv file and turn it into a callable interpolation function """ matfilename = pathtodat + '/Data/Materials/' + self.datasource# + '.csv' #matfilename = './Data/Materials/' + self.datasource# + '.csv' testdat = np.genfromtxt(matfilename,delimiter=',',skip_header=1) nlams = testdat[:,0] ns = testdat[:,1] ks = testdat[:,2] self.n = interp1d(nlams,ns,fill_value="extrapolate") self.k = interp1d(nlams,ks,fill_value="extrapolate") def nk(self,lam): return complex(self.n(lam),self.k(lam)) def plotnk(self,lams): plt.figure() plt.plot(lams, self.n(lams),label='n') plt.plot(lams, self.k(lams),label='k') plt.title(self.datasource) plt.legend() plt.show() def self_summary(self): print(' Material: ' + str(self.datasource) ) print(' Thickness: ' + str(self.d) ) print(' PV?: ' + str(self.isPV)) class Stack: """ I organize layers, interface with tmm, and calculate interesting things like color, VLT, etc. """ def __init__(self, layers,**kwargs): self.layers = layers #import data from NIST solar spectrum alldata = pd.read_excel(pathtodat + '/Data/Spectra/ASTMG173.xls',header=1) Intensities = np.array(alldata['Direct+circumsolar W*m-2*nm-1']) wavelengths = np.array(alldata['Wvlgth nm'].values) self.Is = interp1d(wavelengths/1000.,Intensities*1000) ciedata = pd.read_csv(pathtodat + '/Data/Spectra/CIEPhotopicLuminosity.csv',names=['lams','phis']) self.cieplf = interp1d(np.array(ciedata['lams'])/1000.,np.array(ciedata['phis']),bounds_error=False,fill_value=(0.0,0.0)) def get_visible_light_transmission(self,lams,inc_angle): numerator = trapz(self.Is(lams)*self.cieplf(lams)*self.get_specular_RAT(lams,inc_angle)[2],lams) denominator = trapz(self.Is(lams)*self.cieplf(lams),lams) VLT = numerator/denominator #print(type(Asol.mean)) return VLT def get_specular_RAT(self,lams,inc_angle): Ts = [] Rs = [] for lam in lams: thicks = [tmm.inf] iorcs = ['i'] nks = [1] for layer in self.layers: nks.append(layer.nk(lam)) thicks.append(layer.d) iorcs.append(layer.i_or_c) thicks.append(tmm.inf) iorcs.append('i') nks.append(1) front_spol = tmm.inc_tmm('s',nks,thicks,iorcs,inc_angle,lam) front_ppol = tmm.inc_tmm('p',nks,thicks,iorcs,inc_angle,lam) R = (front_spol['R']+front_ppol['R']) / 2. Rs.append(R) T = (front_spol['T']+front_ppol['T']) / 2. Ts.append(T) Rs = np.array(Rs) Ts = np.array(Ts) As = 1.-Rs-Ts return [Rs,As,Ts] def reverse(self): flippedstack = Stack(self.layers[::-1]) return flippedstack def get_specular_PV_abs(self, lams, inc_angle): ''' note from Byrnes: Assumes the final layer eventually absorbs all transmitted light. Assumes the initial layer eventually absorbs all reflected light. ''' thicks = [inf] iorcs = ['i'] lnum = 0 pvlayer = 0 pvs = [] for layer in self.layers: thicks.append(layer.d) iorcs.append(layer.i_or_c) pvs.append(layer.isPV) if layer.isPV: pvlayer = lnum+1 #+1 because of how tmm is written: always a layer above and below stack lnum += 1 #print('pvlayer: ' + str(pvlayer)) #print('lnum: ' +str(lnum)) #print(any(pvs)) #print(np.invert(any(pvs))) if np.invert(any(pvs)): #print('no PV') return np.zeros(np.shape(lams)) thicks.append(inf) iorcs.append('i') thicks_bw = thicks[::-1] iorcs_bw = iorcs[::-1] pvabs = [] for lam in lams: nks = [1] for layer in self.layers: nks.append(layer.nk(lam)) nks.append(1) #note the plus one because of the assumed before and after layers front_spol = tmm.inc_tmm('s',nks,thicks,iorcs,inc_angle,lam) front_ppol = tmm.inc_tmm('p',nks,thicks,iorcs,inc_angle,lam) pvabs_s = tmm.inc_absorp_in_each_layer(front_spol)[pvlayer] pvabs_p = tmm.inc_absorp_in_each_layer(front_ppol)[pvlayer] pvabs.append( (pvabs_s + pvabs_p) / 2. ) #print(allabs) return pvabs def get_transmitted_color(self,lams,inc_angle): [Rs,As,Ts] = self.get_specular_RAT(lams,inc_angle) nmlams = lams*1000 # get spectral distribution df_spec = pd.Series(data=Ts,index=nmlams) sd_spec = SpectralDistribution(df_spec) # get distribution of illuminant (sun!) df_ill = pd.Series(data=self.Is(lams),index=nmlams) sd_ill = SpectralDistribution(df_ill) # integrate spectrum to get CIE XYZ XYZ = sd_to_XYZ_integration(sd_spec,illuminant=sd_ill) # get sRGB from XYZ (note: not RGB, see https://en.wikipedia.org/wiki/SRGB) #https://colour.readthedocs.io/en/develop/tutorial.html?highlight=colourswatch#convert-to-display-colours #see above for why 100 is below sRGB = XYZ_to_sRGB(XYZ/100.) # remove gamma transfer function to get chromatricity by scaling # see https://en.wikipedia.org/wiki/SRGB#The_forward_transformation_.28CIE_xyY_or_CIE_XYZ_to_sRGB.29 RGB_degamma = cctf_decoding(np.clip(sRGB,0,1),'GAMMA 2.2') # scale the untransformed RGB to get chromatricity RGB_scale = RGB_degamma/np.max(RGB_degamma) # get the chromatricity for display by getting re-transforming RGB_chrom = cctf_encoding(RGB_scale,'GAMMA 2.2') #remove possible negative RGB values sRGB = np.clip(sRGB,0,1) # check scaling without tranforming could lead to a chromatricity change # check if this happens RGB_badchrom = sRGB/np.max(sRGB) HEX_color = RGB_to_HEX(sRGB) HEX_chrom = RGB_to_HEX(RGB_chrom) ''' plot_multi_colour_swatches( [ColourSwatch(sRGB,'sRGB'), ColourSwatch(RGB_chrom,'chromatricity'), ColourSwatch(RGB_badchrom,'~chromatricity')], text_kwargs={'size': 'x-large'}) ''' return {'color':HEX_color,'chromaticity':HEX_chrom} def update_from_dash(self,dashdata): ct = 0 layers = [] for entry in dashdata: if entry['Thickness [μm]']: if float(entry['Thickness [μm]'])>100: ic = 'i' else: ic = 'c' layer = Layer(entry['Thickness [μm]'], entry['Material'], i_or_c=ic, isPV=entry['PV']) layers.append(layer) self.layers = layers return False def get_performance_characteristics(stack,eta,Ti,To,Ui,Uo,Rs,Rsh,AbsorberLayer,Angle): layers = stack.layers spectra = Spectra(layers ,AbsorberLayer,Angle) AbsByAbsorbers = spectra['AbsByAbsorbers'] Ts = spectra['Ts'] Rfs = spectra['Rfs'] Rbs = spectra['Rbs'] As = spectra['As'] sanities = spectra['Total'] Absorbed = GiveEInterp(AbsByAbsorbers) VLTcalc = stack.get_visible_light_transmission(lams,Angle) #cvs.getVLT(Ts,lams)#VLT(layers) Tcell = TcellCalc(As,eta, Ti,To, Absorbed, Ui, Uo, Rs, Rsh) #Absorbed = tpc.GiveEInterp(tpc.Spectra(tpc.GiveLayers(Thickness, Materials),4)['AbsByAbsorbers']) data = GiveIVData(eta, Absorbed, Rs, Rsh,Tcell, n = 1, Ns = 1) Isc = data['i_sc'] Voc = data['v_oc'] Imp = data['i_mp'] Vmp = data['v_mp'] Pmp = data['p_mp'] SHGCcalc = SHGC(Ts, Ti, To, Tcell, Ui) PCE = max_efficiency(eta,Absorbed,Tcell, Rs, Rsh) #print('PCE = ',PCE,'VLT = ', VLTcalc, 'SHGC = ',SHGCcalc, 'Tcell = ',Tcell)#,'time to calculate PCE from scratch in seconds = ', TimePCE, 'Time to run optimizer in minutes = ',TimeOptimize/60) return {'PCE':PCE, 'VLT':VLTcalc, 'SHGC':SHGCcalc, 'Tcell':Tcell,'Isc':Isc, 'Voc': Voc, 'Imp': Imp, 'Vmp': Vmp,'Pmp': Pmp} def self_summary(self): print('=======================================') print('I am a stack with the following layers:') print('=======================================') ct = 0 for layer in self.layers: ct+=1 print(' Layer ' + str(ct)) layer.self_summary() print('') ''' plt.figure() plt.plot(wavelengths/1000,self.cieplf(wavelengths/1000)) plt.show() ''' ''' def get_solar_weighted_absorption(self,lamrange,inc_angle): integ = vegas.Integrator([lamrange]) Asol = integ(lambda lam: self.Is(lam)*self.get_RAT(lam,inc_angle)[1], nitn=10, neval=100)[0] Asol /= integ(self.Is, nitn=10, neval=1000)[0] #print(type(Asol.mean)) return Asol.mean def get_visible_light_transmission_OLD(self,lamrange,inc_angle): integ = vegas.Integrator([lamrange]) numerator = integ(lambda lam: self.Is(lam)*self.cieplf(lam)*self.get_RAT(lam,inc_angle)[2], nitn=10, neval=150)[0] denominator = integ(lambda lam: self.Is(lam)*self.cieplf(lam), nitn=10, neval=150)[0] VLT = numerator/denominator #print(type(Asol.mean)) return VLT.mean ''' # STUFF FROM ADAM ## wierd stuff to fix '''Gives a spectrum of VLT. Used for plotting''' def VLTSpectrum(layers): return Stack(layers) ## other stuff on color ## stuff on PCE # ******************** Here I add PCE calculation *********************# '''This stuff imports a spreadsheet of the solar spectrum''' worksheet = pd.read_excel(pathtodat + '/Data/Spectra/ASTMG173.xls')#('https://www.nrel.gov/grid/solar-resource/assets/data/astmg173.xls') downloaded_array = array(worksheet) # Wavelength is in column 0, AM1.5G data is column 2 AM15 = downloaded_array[1:, [0,2]] # The first line should be 280.0 , 4.7309E-23 # The last line should be 4000.0, 7.1043E-03 # print(AM15) # Interpolate to get a continuous function which I will be able to do integrals on: '''Interpolated solar spectrum when using, inputs must be within 300-2500 nm''' AM15interp = interp1d(AM15[:,0]/1000, AM15[:,1]) # Here’s the plot, it looks correct: '''Plot of the solar spectrum for verification''' ''' y_values = np.array([AM15interp(x) for x in lams]) figure() plot(lams , y_values) xlabel("Wavelength (nm)") ylabel("Spectral intensity (W/m$^2$/nm)") title("Light from the sun"); show() ''' '''I convert wavelength to energy. E_min and max are used for integration limits ''' Ephoton = hPlanck * c0 / lams *1e6 #J E_min = min(Ephoton) #J energy units from hPlanck E_max = max(Ephoton) #J energy units from hPlanck '''I give the number of photons per......''' def SPhotonsPerTEA(Ephoton): λ = hPlanck * c0 / Ephoton *1e6 #um return AM15interp(λ) * (1 / Ephoton) * (hPlanck * c0 / Ephoton**2) * 1e9 '''I give the power for each......''' def PowerPerTEA(Ephoton): return Ephoton * SPhotonsPerTEA(Ephoton) '''I give the solar constant which is the W/m*2 emitted by the sun. Should be ~1000''' def Solar_Constant(Ephoton): #PowerPerTEA = lambda E : E * SPhotonsPerTEA(E) return quad(PowerPerTEA,E_min,E_max, full_output=1)[0] # quad() is ordinary integration; full_output=1 is (surprisingly) how you hide # the messages warning about poor accuracy in integrating. '''This is the solar constant value. It is called by optimization and used in a variety of functions here Should always be ~1000''' solar_constant = Solar_Constant(Ephoton) '''I return an interpolated function of a spectrum relative to photon wavelength. Used for plotting''' def GivelamsInterp(Parameter): Curve = Parameter.round(8) return interp1d(lams, Curve) '''I return an interpolated function of a spectrum relative to photon energy''' def GiveEInterp(Parameter): Curve = Parameter.round(8) return interp1d(Ephoton, Curve) '''I give Q based on a given spectrum. Units are W/m^2 Input is a spectrum interpolated with respect to energy, E eta should only be used if looking at a PV layer. Otherwise it is set to 1''' def GiveQ(Spectra, eta = 1):#Spectra must be an interpolated function def integrand(E): return eta * Spectra(E) * PowerPerTEA(E) return quad(integrand, E_min, E_max, full_output=1)[0] ''' #trapz calcs def GiveQ(Spectra, eta = 1):#Spectra must be an array integrand = eta*Spectra*PowerPerTEA(Ephoton) return -np.trapz(integrand, Ephoton) ''' ''' def GivePhotons(Spectra, eta):#Spectra must be an interpolated function def integrand(E): return eta * Spectra(E) * SPhotonsPerTEA(E) return quad(integrand, E_min, E_max)[0] ''' # Here I input the spectrum of photons absorbed by the absorber material (Absorbed) # and the electron-hole pair extraction efficiency (eta). EQE = eta * Absorbed '''I give the rate of recombination for the solar cell, Units are photons/(s*m**2)''' def RR0(eta,Absorbed,Tcell): integrand = lambda E : eta * Absorbed(E) * (E)**2 / (exp(E / (kB * Tcell)) - 1) integral = quad(integrand, E_min, E_max, full_output=1)[0] return ((2 * pi) / (c0**2 * hPlanck**3)) * integral# / 1.60218e-19 #J/eV #units = photons/(s*m**2) '''I give the amount of energy converted to electricity in terms of photons, units are photons(s/m**2)''' def Generated(eta,Absorbed): integrand = lambda E : eta * Absorbed(E) * SPhotonsPerTEA(E) # integral = quad(integrand, E_min, E_max, full_output=1)[0] return quad(integrand, E_min, E_max, full_output=1)[0] #units photons/(s*m**2) ''' #Using trapezoidal rule for integration instaed of quad #AbsByAbsorbers is an aray of intensities, not an interpolated function. def RR0(eta,Absorbed,Tcell): AbsByAbsorbers = AbsByAbsorbers.round(8) integrand = eta * AbsByAbsorbers * (Ephoton)**2 / (np.exp(Ephoton / (kB * Tcell)) - 1) integral = trapz(integrand, Ephoton) return ((2 * np.pi) / (c0**2 * hPlanck**3)) * integral def Generated(eta,Absorbed): Absorbed = Absorbed.round(8) integrand = eta * Absorbed * SPhotonsPerTEA(Ephoton) # integral = quad(integrand, E_min, E_max, full_output=1)[0] return np.trapz(integrand, Ephoton) ''' '''I use the single diode equation to return the max power of the cell in watts Check PVlib documentation for details''' def Give_Pmp(eta, Absorbed, Rs, Rsh, Tcell, n = 1, Ns = 1): data = singlediode(Generated(eta, Absorbed)*q, RR0(eta, Absorbed,Tcell)*q, Rs, Rsh, n*Ns*kB*Tcell/q, ivcurve_pnts = 500) return data['p_mp'] '''I calculate equilibrium tmperature of the cell assuming the cell is infinitely thin TotalAbs is the full absorptance of the stack as an array of intensities, uninterpolated. Absorbed is PV layer absorptance interpolated Temperature calculation is implicit so the numerical solver fsolve is used. This equation is derived from Wheeler and Wheeler Detailed Balance Analysis of Photovoltaic Windows''' def TcellCalc(TotalAbs, eta, Ti,To, Absorbed, Ui, Uo, Rs, Rsh): AbsTotal = GiveEInterp(TotalAbs) Qabs = GiveQ(AbsTotal) Temp = lambda Tcell: (Qabs - Give_Pmp(eta,Absorbed,Rs,Rsh, Tcell) + Ui*Ti + Uo*To)/(Ui + Uo)-Tcell return fsolve(Temp, 300)[0] '''I use the single diode equation to produce an IV curve and power plot I also return related values such as Voc, Isc, and Pmp in units volts, amps, and watts See pvlib singlediode equation for more information''' def GiveIVData(eta, Absorbed, Rs, Rsh,Tcell, n = 1, Ns = 1): data = singlediode(Generated(eta, Absorbed)*q, RR0(eta, Absorbed, Tcell)*q, Rs, Rsh, n*Ns*kB*Tcell/q, ivcurve_pnts = 500) Vvalues = array(data['v']) Ivalues = array(data['i']) #print('Isc = ', Isc, ', Voc = ', Voc, ', Imp = ', Imp, ', Vmp = ', Vmp, ', Pmp =', Pmp) figure() plot(Vvalues,Ivalues, label = 'IV') xlabel('Voltage, (V)') ylabel('Current (A) or Power (W/m^2)') ylabel('Power (W/m^2)') P_values = array([Ivalues * Vvalues]) plot(Vvalues , P_values.T, label = 'Power') ylim(-1, 150) legend(loc = 'upper right') show() return data '''I give the solar heat gain coefficient. unitless numebr between 0 and 1 Ts is the transmission spectra. Must be a list of intensities, not an interpolated function This equation comes form a combination of Wheeler and Wheeler Detailed Balance Analysis of Photovoltaic Windows and equation 3.18 from Fundamentals of Heat and Mass Transfer 6ed Incropera''' def SHGC(Ts, Ti, To, Tcell, Ui): #Tcell = TcellCalc(As,Ti,To,eta,Absorbed) Rtot = 1/Ui #This is approximate because Ui is assumed #Included in GiveQ for simplicity but should not be used for calculating SHGC TransTotal = GiveEInterp(Ts) Qtrans = GiveQ(TransTotal,1) return (Qtrans + Ui*(Tcell-Ti) - ((To-Ti)/Rtot))/solar_constant '''I give max efficiency also called PCE''' '''Absorbed must be an interpolated function of the absorption spectrum of the PV layer''' def max_efficiency(eta,Absorbed,Tcell, Rs, Rsh): #Tcell = TcellCalc(As,Ti,To,eta,Absorbed) return Give_Pmp(eta, Absorbed, Rs, Rsh, Tcell) / solar_constant '''We determine the incident angle of the sun shining on the cell. Input is in degrees''' def giveincangle(angle): degree = pi/180 return angle*degree '''I assemble a list of layer objects using Thicknesses and Materials''' def GiveLayers(Thickness,Materials): x = len(Materials) if x == len(Thickness): Layers = [] for i in range(x): Layers.append(Materials[i](Thickness[i])) return Layers else: raise ValueError ('layers and Thickness lengths do not match') '''I give important info about a solar cell such as PCE, SHGC, Temperature, etc''' def GiveImportantInfo(Thickness, Materials,eta,Ti,To,Ui,Uo,Rs,Rsh,AbsorberLayer,Angle=0): global inc_angle inc_angle = giveincangle(Angle) layers = GiveLayers(Thickness,Materials) spectra = Spectra(layers ,AbsorberLayer) AbsByAbsorbers = spectra['AbsByAbsorbers'] Ts = spectra['Ts'] Rfs = spectra['Rfs'] Rbs = spectra['Rbs'] As = spectra['As'] sanities = spectra['Total'] Absorbed = GiveEInterp(AbsByAbsorbers) VLTcalc = cvs.getVLT(Ts,lams)#VLT(layers) Tcell = TcellCalc(As,eta, Ti,To, Absorbed, Ui, Uo, Rs, Rsh) #Absorbed = tpc.GiveEInterp(tpc.Spectra(tpc.GiveLayers(Thickness, Materials),4)['AbsByAbsorbers']) data = GiveIVData(eta, Absorbed, Rs, Rsh,Tcell, n = 1, Ns = 1) Isc = data['i_sc'] Voc = data['v_oc'] Imp = data['i_mp'] Vmp = data['v_mp'] Pmp = data['p_mp'] SHGCcalc = SHGC(Ts, Ti, To, Tcell, Ui) PCE = max_efficiency(eta,Absorbed,Tcell, Rs, Rsh) #Spectral Curves figure() plot(lams,Rfs,color='magenta',marker=None,label="$R_f$") plot(lams,Ts,color='green',marker=None,label="$T$") plot(lams,Rbs,color='purple',marker=None,label="$R_b$") plot(lams,As,color='black',marker=None,label="A") plot(lams,AbsByAbsorbers,color='black',linestyle='--',marker=None,label="AbsByAbsorber") plot(lams,sanities,color='gold',marker=None,label="R+A+T") plot(lams,VLTSpectrum(layers).cieplf(lams),color='red',marker=None,label="photopic") xlabel('wavelength, $\mu$m') ylabel('Intensity') legend(loc = 'upper right') show() EphotoneV = Ephoton*6.241509e+18 figure() plot(EphotoneV, Ts, color='magenta',marker=None,label="$T$") plot(EphotoneV, Rfs,color='green',marker=None,label="$R_f$") plot(EphotoneV, Rbs,color='orange',marker=None,label="$R_b$") plot(EphotoneV, AbsByAbsorbers,color='black',marker=None,label="Abs") #plot(Ephoton,tpc.VLTSpectrum(layers).cieplf(lams),color='red',marker=None,label="photopic") legend(loc = 'upper right') xlabel('Energy, eV') ylabel('Intensity') show() GiveColorSwatch(Ts, Rfs) plot_xy_on_fin(Ts, Rfs) print('PCE = ',PCE,'VLT = ', VLTcalc, 'SHGC = ',SHGCcalc, 'Tcell = ',Tcell)#,'time to calculate PCE from scratch in seconds = ', TimePCE, 'Time to run optimizer in minutes = ',TimeOptimize/60) return {'PCE':PCE, 'VLT':VLTcalc, 'SHGC':SHGCcalc, 'Tcell':Tcell,'Isc':Isc, 'Voc': Voc, 'Imp': Imp, 'Vmp': Vmp,'Pmp': Pmp} # Vince hacks some stuff from Adam ''' This needs work. To do: 1) It should be a method within stack. 2) Figure out a better way to do the interpolated curve for spectrum as a function of photon energy 3) Important: fix T_cell calculation. I don't trust it. ''' def get_performance_characteristics(stack,Ti,To,Ui,Uo,Rs,Rsh,Angle): layers = stack.layers eta = 1 [Refs,As,Ts] = stack.get_specular_RAT(lams,Angle) Refs=np.array(Refs) As=np.array(As) Ts=np.array(Ts) #spectra = Spectra(layers ,AbsorberLayer,Angle) #AbsByAbsorbers = spectra['AbsByAbsorbers'] AbsByAbsorbers = stack.get_specular_PV_abs(lams, Angle) AbsByAbsorbers = np.array(AbsByAbsorbers) Absorbed = GiveEInterp(AbsByAbsorbers) #Tcell = TcellCalc(As,eta, Ti,To, Absorbed, Ui, Uo, Rs, Rsh) AbsTotal = GiveEInterp(As) Qabs = GiveQ(AbsTotal) def tsolve(Tcell): return (Qabs - Give_Pmp(eta,Absorbed,Rs,Rsh, Tcell) + Ui*Ti + Uo*To)/(Ui + Uo)-Tcell Tcell= fsolve(tsolve, 300)[0] #print(Tcell) # I don't trust the followinc calculation of the SHGC at all. There is no way it is not a function of Uo SHGCcalc = SHGC(Ts, Ti, To, Tcell, Ui) PCE = max_efficiency(eta,Absorbed,Tcell, Rs, Rsh) #print('PCE = ',PCE,'VLT = ', VLTcalc, 'SHGC = ',SHGCcalc, 'Tcell = ',Tcell)#,'time to calculate PCE from scratch in seconds = ', TimePCE, 'Time to run optimizer in minutes = ',TimeOptimize/60) return {'PCE':PCE,'SHGC':SHGCcalc,'Tcell':Tcell} def get_performance_characteristics_old(stack,eta,Ti,To,Ui,Uo,Rs,Rsh,AbsorberLayer,Angle): layers = stack.layers [Rs,As,Ts] = stack.get_specular_RAT(lams,Angle) Rs=np.array(Rs) As=np.array(As) Ts=np.array(Ts) #spectra = Spectra(layers ,AbsorberLayer,Angle) #AbsByAbsorbers = spectra['AbsByAbsorbers'] AbsByAbsorbers = stack.get_specular_PV_abs(lams, Angle) #spectra = Spectra(layers ,AbsorberLayer,Angle) #AbsByAbsorbers = spectra['AbsByAbsorbers'] #Ts = spectra['Ts'] #Rfs = spectra['Rfs'] #Rbs = spectra['Rbs'] #As = spectra['As'] #sanities = spectra['Total'] Absorbed = GiveEInterp(
np.array(AbsByAbsorbers)
numpy.array
"""Student's t-distribution Fitting methods""" # Author: <NAME> <<EMAIL>> # License: BSD 3 clause import numpy as np from scipy import linalg from scipy.special import gammaln, digamma, polygamma from scipy.optimize import newton from sklearn.utils.extmath import row_norms from sklearn.utils import check_array import warnings ############################################################################### # Functions to be used by the MultivariateTFit class def _check_X(X, n_features=None, ensure_min_samples=1): """Check the input data X. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array, shape (n_samples, n_features) """ X = check_array(X, dtype=[np.float64, np.float32], ensure_min_samples=ensure_min_samples) if n_features is not None and X.shape[1] != n_features: raise ValueError("Expected the input data X have %d features, " "but got %d features" % (n_features, X.shape[1])) return X def _check_shape(param, param_shape, name): """Validate the shape of the input parameter 'param'. Parameters ---------- param : array param_shape : tuple name : string """ param =
np.array(param)
numpy.array
from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import normalize # from sparse_dot_mkl import dot_product_mkl from scipy.sparse import csr_matrix, vstack, issparse import numpy as np import logging __all__ = ['ClusteringAlgo', 'ClusteringAlgoSparse'] def cosine_distances(x, y, intel_mkl=False): x_normalized = normalize(x, copy=True) y_normalized = normalize(y, copy=True) if intel_mkl: # s = dot_product_mkl(x_normalized, y_normalized.T.tocsr(), dense=True) pass else: s = (x_normalized * y_normalized.T).toarray() s *= -1 s += 1 np.clip(s, 0, 2, out=s) if x is y or y is None: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. s[np.diag_indices_from(s)] = 0.0 return s class ClusteringAlgo: def __init__(self, threshold=0.65, window_size=300000, batch_size=8, distance="cosine"): self.M = None self.t = threshold self.w = window_size self.batch_size = batch_size self.zeros_vectors = None self.thread_id = 0 self.distance = distance def add_vectors(self, vectors): self.M = vectors if issparse(vectors): self.zeros_vectors = vectors.getnnz(1) == 0 else: self.zeros_vectors = ~vectors.any(axis=1) def iter_on_matrix(self, ): if self.distance == "precomputed": matrix = self.M[~self.zeros_vectors][:, ~self.zeros_vectors] for idx in range(0, matrix.shape[0], self.batch_size): lim = min(idx + self.batch_size, matrix.shape[0]) vectors = matrix[idx:lim, max(lim - self.w, 0):lim] yield idx, vectors else: matrix = self.M[~self.zeros_vectors] for idx in range(0, matrix.shape[0], self.batch_size): if idx % 10000 == 0: logging.info(idx) vectors = matrix[idx:min(idx + self.batch_size, matrix.shape[0])] yield idx, vectors def brute_nn(self, data, tweets): nn = NearestNeighbors(n_neighbors=1, algorithm='brute', metric=self.distance) if self.distance == "precomputed": nn.fit(np.zeros((tweets.shape[1], tweets.shape[1]))) else: nn.fit(data) distance, neighbor_exact = nn.kneighbors(tweets) return distance.transpose()[0], neighbor_exact.transpose()[0] def incremental_clustering(self, ): if issparse(self.M): T = csr_matrix((self.w, self.M.shape[1])) else: T = np.zeros((self.w, self.M.shape[1]), dtype=self.M.dtype) threads =
np.zeros(self.w, dtype="int")
numpy.zeros
import copy import json import os import time import urllib.request from typing import Any, Dict, List, Tuple, Union import numpy as np from scipy.optimize import linprog global penguin_url, headers penguin_url = "https://penguin-stats.io/PenguinStats/api/" headers = {"User-Agent": "ArkPlanner"} gamedata_langs = ["en_US", "ja_JP", "ko_KR", "zh_CN"] DEFAULT_LANG = "en_US" NON_CN_WORLD_NUM = 4 FILTER_FREQ_DEFAULT = 100 class MaterialPlanning(object): def __init__( self, filter_freq=FILTER_FREQ_DEFAULT, filter_stages=[], url_stats="result/matrix?show_stage_details=true&show_item_details=true", url_rules="formula", path_stats="data/matrix.json", dont_save_data=False, path_rules="data/formula.json", gamedata_path="https://raw.githubusercontent.com/Kengxxiao/ArknightsGameData/" + "master/{}/gamedata/excel/item_table.json", ): """ Object initialization. Args: filter_freq: int or None. The lowest frequency that we consider. No filter will be applied if None. url_stats: string. url to the dropping rate stats data. url_rules: string. url to the composing rules data. path_stats: string. local path to the dropping rate stats data. path_rules: string. local path to the composing rules data. """ if not dont_save_data: try: material_probs, convertion_rules = load_data(path_stats, path_rules) except FileNotFoundError: material_probs, convertion_rules = request_data( penguin_url + url_stats, penguin_url + url_rules, path_stats, path_rules, gamedata_path, ) print("done.") else: material_probs, convertion_rules = request_data( penguin_url + url_stats, penguin_url + url_rules, path_stats, path_rules, gamedata_path, dont_save_data, ) self.itemdata = request_itemdata(gamedata_path) self.itemdata_rv = { lang: {v: k for k, v in dct.items()} for lang, dct in self.itemdata.items() } filtered_probs = [] for dct in material_probs["matrix"]: if ( dct["stage"]["apCost"] > 0.1 and dct["stage"]["code"] not in filter_stages ): if not filter_freq or dct["times"] >= filter_freq: filtered_probs.append(dct) material_probs["matrix"] = filtered_probs self._set_lp_parameters(*self._pre_processing(material_probs, convertion_rules)) def _pre_processing(self, material_probs, convertion_rules): """ Compute costs, convertion rules and items probabilities from requested dictionaries. Args: material_probs: List of dictionaries recording the dropping info per stage per item. Keys of instances: ["itemID", "times", "itemName", "quantity", "apCost", "stageCode", "stageID"]. convertion_rules: List of dictionaries recording the rules of composing. Keys of instances: ["id", "name", "level", "source", "madeof"]. """ # To count items and stages. additional_items = {"30135": u"D32钢", "30125": u"双极纳米片", "30115": u"聚合剂"} exp_unit = 200 * (30.0 - 0.048 * 30) / 7400 gold_unit = 0.004 exp_worths = { "2001": exp_unit, "2002": exp_unit * 2, "2003": exp_unit * 5, "2004": exp_unit * 10, "3003": exp_unit * 2, } gold_worths = {} item_dct = {} stage_dct = {} for dct in material_probs["matrix"]: item_dct[dct["item"]["itemId"]] = dct["item"]["name"] stage_dct[dct["stage"]["code"]] = dct["stage"]["code"] item_dct.update(additional_items) # To construct mapping from id to item names. item_array = [] item_id_array = [] for k, v in item_dct.items(): try: float(k) item_array.append(v) item_id_array.append(k) except ValueError: pass self.item_array = np.array(item_array) self.item_id_array = np.array(item_id_array) self.item_id_rv = {int(v): k for k, v in enumerate(item_id_array)} self.item_dct_rv = {v: k for k, v in enumerate(item_array)} # To construct mapping from stage id to stage names and vice versa. stage_array = [] for k, v in stage_dct.items(): stage_array.append(v) self.stage_array = np.array(stage_array) self.stage_dct_rv = {v: k for k, v in enumerate(self.stage_array)} # To format dropping records into sparse probability matrix probs_matrix = np.zeros([len(stage_array), len(item_array)]) cost_lst = np.zeros(len(stage_array)) cost_exp_offset = np.zeros(len(stage_array)) cost_gold_offset = np.zeros(len(stage_array)) for dct in material_probs["matrix"]: try: cost_lst[self.stage_dct_rv[dct["stage"]["code"]]] = dct["stage"][ "apCost" ] float(dct["item"]["itemId"]) probs_matrix[ self.stage_dct_rv[dct["stage"]["code"]], self.item_dct_rv[dct["item"]["name"]], ] = dct["quantity"] / float(dct["times"]) if cost_lst[self.stage_dct_rv[dct["stage"]["code"]]] != 0: cost_gold_offset[self.stage_dct_rv[dct["stage"]["code"]]] = -dct[ "stage" ]["apCost"] * (12 * gold_unit) except ValueError: pass try: cost_exp_offset[self.stage_dct_rv[dct["stage"]["code"]]] -= ( exp_worths[dct["item"]["itemId"]] * dct["quantity"] / float(dct["times"]) ) except (KeyError, ValueError): pass try: cost_gold_offset[self.stage_dct_rv[dct["stage"]["code"]]] -= ( gold_worths[dct["item"]["itemId"]] * dct["quantity"] / float(dct["times"]) ) except (KeyError, ValueError): pass # Hardcoding: extra gold farmed. cost_gold_offset[self.stage_dct_rv["S4-6"]] -= 3228 * gold_unit cost_gold_offset[self.stage_dct_rv["S5-2"]] -= 2484 * gold_unit # To build equivalence relationship from convert_rule_dct. self.convertions_dct = {} convertion_matrix = [] convertion_outc_matrix = [] convertion_cost_lst = [] for rule in convertion_rules: convertion = np.zeros(len(self.item_array)) convertion[self.item_dct_rv[rule["name"]]] = 1 comp_dct = {comp["id"]: comp["count"] for comp in rule["costs"]} self.convertions_dct[rule["id"]] = comp_dct for item_id in comp_dct: convertion[self.item_id_rv[int(item_id)]] -= comp_dct[item_id] convertion_matrix.append(copy.deepcopy(convertion)) outc_dct = {outc["name"]: outc["count"] for outc in rule["extraOutcome"]} outc_wgh = {outc["name"]: outc["weight"] for outc in rule["extraOutcome"]} weight_sum = float(sum(outc_wgh.values())) for item_id in outc_dct: convertion[self.item_dct_rv[item_id]] += ( outc_dct[item_id] * 0.175 * outc_wgh[item_id] / weight_sum ) convertion_outc_matrix.append(convertion) convertion_cost_lst.append(rule["goldCost"] * 0.004) convertions_group = ( np.array(convertion_matrix), np.array(convertion_outc_matrix), np.array(convertion_cost_lst), ) farms_group = (probs_matrix, cost_lst, cost_exp_offset, cost_gold_offset) return convertions_group, farms_group def _set_lp_parameters(self, convertions_group, farms_group): """ Object initialization. Args: convertion_matrix: matrix of shape [n_rules, n_items]. Each row represent a rule. convertion_cost_lst: list. Cost in equal value to the currency spent in convertion. probs_matrix: sparse matrix of shape [n_stages, n_items]. Items per clear (probabilities) at each stage. cost_lst: list. Costs per clear at each stage. """ ( self.convertion_matrix, self.convertion_outc_matrix, self.convertion_cost_lst, ) = convertions_group ( self.probs_matrix, self.cost_lst, self.cost_exp_offset, self.cost_gold_offset, ) = farms_group assert len(self.probs_matrix) == len(self.cost_lst) assert len(self.convertion_matrix) == len(self.convertion_cost_lst) assert self.probs_matrix.shape[1] == self.convertion_matrix.shape[1] def update( self, filter_freq=FILTER_FREQ_DEFAULT, filter_stages=None, url_stats="result/matrix?show_stage_details=true&show_item_details=true", url_rules="formula", path_stats="data/matrix.json", path_rules="data/formula.json", gamedata_path="https://raw.githubusercontent.com/Kengxxiao/ArknightsGameData/master/{}/gamedata/excel/item_table.json", dont_save_data=False, ): """ To update parameters when probabilities change or new items added. Args: url_stats: string. url to the dropping rate stats data. url_rules: string. url to the composing rules data. path_stats: string. local path to the dropping rate stats data. path_rules: string. local path to the composing rules data. """ material_probs, convertion_rules = request_data( penguin_url + url_stats, penguin_url + url_rules, path_stats, path_rules, gamedata_path, dont_save_data, ) self.itemdata = request_itemdata(gamedata_path) self.itemdata_rv = { lang: {v: k for k, v in dct.items()} for lang, dct in self.itemdata.items() } if filter_freq: if filter_stages is None: filter_stages = [] filtered_probs = [] for dct in material_probs["matrix"]: if ( dct["times"] >= filter_freq and dct["stage"]["code"] not in filter_stages ): filtered_probs.append(dct) material_probs["matrix"] = filtered_probs self._set_lp_parameters(*self._pre_processing(material_probs, convertion_rules)) def _get_plan_no_prioties( self, demand_lst, outcome=False, gold_demand=True, exp_demand=True ): """ To solve linear programming problem without prioties. Args: demand_lst: list of materials demand. Should include all items (zero if not required). Returns: strategy: list of required clear times for each stage. fun: estimated total cost. """ A_ub = ( np.vstack([self.probs_matrix, self.convertion_outc_matrix]) if outcome else np.vstack([self.probs_matrix, self.convertion_matrix]) ).T farm_cost = ( self.cost_lst + (self.cost_exp_offset if exp_demand else 0) + (self.cost_gold_offset if gold_demand else 0) ) convertion_cost_lst = ( self.convertion_cost_lst if gold_demand else
np.zeros(self.convertion_cost_lst.shape)
numpy.zeros
import numpy as np from Materials import CarbonFibre, SiC, AL, AG,\ ElecMix, ElecMixDense, AlHoney1,\ AlHoney2, AlHoney3, PB, TA, SN, CU from shield_structure import Shield_Interactions, Sun_Shield_Interactions from Polygons import Polygon2D class Swift_Structure(object): def __init__(self, Polygon, Material, Name=''): self.Polygon = Polygon self.Material = Material self.Name = Name def set_energy_arr(self, energy): self.energy = energy self.Ne = len(energy) self.tot_rho_mus = self.Material.get_tot_rhomu(self.energy) self.comp_rho_mus = self.Material.get_comp_rhomu(self.energy) self.photoe_rho_mus = self.Material.get_photoe_rhomu(self.energy) if hasattr(self, 'dists'): self.calc_tot_rhomu_dist() def set_batxyzs(self, batxs, batys, batzs): self.batxs = batxs self.batys = batys self.batzs = batzs self.ndets = len(batxs) def set_theta_phi(self, theta, phi): self.theta = theta self.phi = phi self.dists = self.Polygon.calc_intersection_dist(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) if hasattr(self, 'energy'): self.calc_tot_rhomu_dist() def get_dists(self, theta=None, phi=None): if (np.abs(theta - self.theta) > 1e-3) or (np.abs(phi - self.phi) > 1e-3): self.set_theta_phi(theta, phi) return self.dists def calc_tot_rhomu_dist(self): self.tot_rhomu_dists = self.dists[:,np.newaxis]*self.tot_rho_mus def get_trans(self, dist=None): if dist is None: dist = self.dists # trans = np.exp(-dist*self.tot_rho_mus) trans = np.exp(-self.tot_rhomu_dists) return trans def get_tot_rhomu_dist(self): return self.tot_rhomu_dists class Swift_Structure_Compound(object): def __init__(self, ParentPolygon, ChildPolygons, Materials, Name=''): self.Nchild = len(ChildPolygons) self.Parent_Polygon = ParentPolygon self.Child_Polygons = ChildPolygons self.material_list = Materials self.Name = Name def set_energy_arr(self, energy): self.energy = energy self.Ne = len(energy) self.tot_rho_mus_list = [] self.comp_rho_mus_list = [] self.photoe_rho_mus_list = [] for material in self.material_list: self.tot_rho_mus_list.append(material.get_tot_rhomu(self.energy)) self.comp_rho_mus_list.append(material.get_comp_rhomu(self.energy)) self.photoe_rho_mus_list.append(material.get_photoe_rhomu(self.energy)) if hasattr(self, 'parent_dist'): self.calc_tot_rhomu_dist() def set_batxyzs(self, batxs, batys, batzs): self.batxs = batxs self.batys = batys self.batzs = batzs self.ndets = len(batxs) def set_theta_phi(self, theta, phi): self.theta = theta self.phi = phi self.calc_dists() if hasattr(self, 'energy'): self.calc_tot_rhomu_dist() def calc_dists(self): tot_dist = self.Parent_Polygon.calc_intersection_dist(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) tot_child_dist = 0.0 child_dists = [] for child_poly in self.Child_Polygons: dist = child_poly.calc_intersection_dist(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) tot_child_dist += dist child_dists.append(dist) self.parent_dist = tot_dist - tot_child_dist self.child_dists = child_dists # def get_dists(self, theta=None, phi=None): # if (np.abs(theta - self.theta) > 1e-3) or (np.abs(phi - self.phi) > 1e-3): # self.set_theta_phi(theta, phi) # return self.dists def get_trans(self): self.trans = np.exp(-self.tot_rhomu_dists) return self.trans def calc_tot_rhomu_dist(self): self.tot_rhomu_dists = self.parent_dist*self.tot_rho_mus_list[0] for i in range(self.Nchild): self.tot_rhomu_dists += self.child_dists[i]*self.tot_rho_mus_list[i+1] def get_tot_rhomu_dist(self): return self.tot_rhomu_dists class Swift_Structure_wEmbededPolys(object): def __init__(self, ParentPolygon, ChildPolygons, Materials, Name=''): self.Nchild = len(ChildPolygons) self.Parent_Polygon = ParentPolygon self.Child_Polygons = ChildPolygons self.material_list = Materials self.Name = Name def set_energy_arr(self, energy): self.energy = energy self.Ne = len(energy) self.tot_rho_mus_list = [] self.comp_rho_mus_list = [] self.photoe_rho_mus_list = [] for material in self.material_list: self.tot_rho_mus_list.append(material.get_tot_rhomu(self.energy)) self.comp_rho_mus_list.append(material.get_comp_rhomu(self.energy)) self.photoe_rho_mus_list.append(material.get_photoe_rhomu(self.energy)) if hasattr(self, 'parent_dist'): self.calc_tot_rhomu_dist() def set_batxyzs(self, batxs, batys, batzs): self.batxs = batxs self.batys = batys self.batzs = batzs self.ndets = len(batxs) def set_theta_phi(self, theta, phi): self.theta = theta self.phi = phi self.calc_dists() if hasattr(self, 'energy'): self.calc_tot_rhomu_dist() def calc_dists(self): tot_dist = self.Parent_Polygon.calc_intersection_dist(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) tot_child_dist = 0.0 child_dists = [] for child_poly in self.Child_Polygons: dist = child_poly.calc_intersection_dist(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) tot_child_dist += dist child_dists.append(dist) self.parent_dist = tot_dist - tot_child_dist self.child_dists = child_dists # def get_dists(self, theta=None, phi=None): # if (np.abs(theta - self.theta) > 1e-3) or (np.abs(phi - self.phi) > 1e-3): # self.set_theta_phi(theta, phi) # return self.dists def get_trans(self): self.trans = np.exp(-self.tot_rhomu_dists) return self.trans def calc_tot_rhomu_dist(self): self.tot_rhomu_dists = self.parent_dist[:,np.newaxis]*self.tot_rho_mus_list[0] for i in range(self.Nchild): self.tot_rhomu_dists += self.child_dists[i][:,np.newaxis]*self.tot_rho_mus_list[i+1] def get_tot_rhomu_dist(self): return self.tot_rhomu_dists class Swift_Structure_Shield(object): def __init__(self): self.shield_obj = Shield_Interactions() self.ds_base = [0.00254*np.array([3, 3, 2, 1]), 0.00254*np.array([8, 7, 6, 2]), 0.00254*np.array([5, 5, 4, 1]), 0.00254*np.array([3, 3, 2, 1])] self.material_list = [PB, TA, SN, CU] self.Nmaterials = len(self.material_list) self.Name = 'Shield' self.polyIDs2ignore = [] def add_polyID2ignore(self, ID): self.polyIDs2ignore.append(ID) def set_energy_arr(self, energy): self.energy = energy self.Ne = len(energy) self.tot_rho_mus_list = [] self.comp_rho_mus_list = [] self.photoe_rho_mus_list = [] for material in self.material_list: self.tot_rho_mus_list.append(material.get_tot_rhomu(self.energy)) self.comp_rho_mus_list.append(material.get_comp_rhomu(self.energy)) self.photoe_rho_mus_list.append(material.get_photoe_rhomu(self.energy)) if hasattr(self, 'dists'): self.calc_tot_rhomu_dist() def set_batxyzs(self, batxs, batys, batzs): self.batxs = batxs self.batys = batys self.batzs = batzs self.ndets = len(batxs) def set_theta_phi(self, theta, phi): self.theta = theta self.phi = phi self.angs2norm = self.shield_obj.get_angs2norm(self.theta, self.phi) self.calc_dists() if hasattr(self, 'energy'): self.calc_tot_rhomu_dist() def calc_dists(self): self.poly_ids = self.shield_obj.which_poly_it_intersects(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs,\ polyIDs2ignore=self.polyIDs2ignore) self.poly_ids2use = np.unique(self.poly_ids) self.dists = [np.zeros(self.ndets) for i in range(self.Nmaterials)] for polyid in self.poly_ids2use: poly_bl = (self.poly_ids==polyid) if polyid < 0: for i in range(self.Nmaterials): self.dists[i][poly_bl] = 0.0 continue poly = self.shield_obj.get_poly(polyid) layer = self.shield_obj.shield_layer[polyid] base_dists = self.ds_base[layer] cos_ang = np.abs(np.cos(self.angs2norm[polyid])) for i in range(self.Nmaterials): self.dists[i][poly_bl] = base_dists[i]/cos_ang def calc_tot_rhomu_dist(self): self.tot_rhomu_dists = np.zeros((self.ndets,self.Ne)) for i in range(self.Nmaterials): self.tot_rhomu_dists += self.dists[i][:,np.newaxis]*self.tot_rho_mus_list[i] def get_trans(self): self.trans = np.exp(-self.tot_rhomu_dists) return self.trans def get_tot_rhomu_dist(self): return self.tot_rhomu_dists class Swift_Structure_Sun_Shield(object): def __init__(self): self.shield_obj = Sun_Shield_Interactions() self.ds_base = 0.0145 self.material = AG self.Name = 'SunShield' def set_energy_arr(self, energy): self.energy = energy self.Ne = len(energy) self.tot_rho_mus = self.material.get_tot_rhomu(self.energy) self.comp_rho_mus = self.material.get_comp_rhomu(self.energy) self.photoe_rho_mus = self.material.get_photoe_rhomu(self.energy) if hasattr(self, 'dists'): self.calc_tot_rhomu_dist() def set_batxyzs(self, batxs, batys, batzs): self.batxs = batxs self.batys = batys self.batzs = batzs self.ndets = len(batxs) def set_theta_phi(self, theta, phi): self.theta = theta self.phi = phi self.angs2norm = self.shield_obj.get_angs2norm(self.theta, self.phi) self.calc_dists() if hasattr(self, 'energy'): self.calc_tot_rhomu_dist() def calc_dists(self): self.poly_ids = self.shield_obj.which_poly_it_intersects(self.theta, self.phi,\ self.batxs, self.batys,\ self.batzs) self.poly_ids2use =
np.unique(self.poly_ids)
numpy.unique
import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms import torchvision.models as torch_models import matplotlib.pyplot as plt import numpy as np import torch from attacks.geoDict import GeoDict from attacks.imgDict import ImgDict import os # from utils import get_label # from utils import valid_bounds, clip_image_values from PIL import Image from torch.autograd import Variable from numpy import linalg import math import cv2 import os import sys import numpy as np import sys import collections import cv2 import numpy as np if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") def plot_img(img_tensor, file_name): img = np.array(img_tensor[0].cpu().numpy()).transpose(1, 2, 0) * 255. img = img.astype(np.uint8) height, width = img.shape[:2] from PIL import Image im = Image.fromarray(img) im.save("imgs/" + file_name + ".png") class Evolutionary_Geo_Attack(object): def binary_infinity(self, x_a, x, x_img, y, k, model, targeted, batch_indices, ver_lst, depth_lst): ''' linf binary search :param k: the number of binary search iteration ''' b = x_a.size(0) l = torch.zeros(b) u, _ = (x_a - x).reshape(b, -1).abs().max(1) for _ in range(k): mid = (l + u) / 2 adv = self.project_infinity(x_a, x, mid) x_a_adv = self.geoDict.convert_uv_2_ncc(adv) x_a_img = self.geoDict.project_adv_perturbation(x_img, ver_lst, depth_lst, x_a_adv) check = self.is_adversarial(x_a_img, y, targeted, batch_indices) u[check.nonzero().squeeze(1)] = mid[check.nonzero().squeeze(1)] check = check < 1 l[check.nonzero().squeeze(1)] = mid[check.nonzero().squeeze(1)] return self.project_infinity(x_a, x, u) def project_infinity(self, x_a, x, l): ''' linf projection ''' return torch.max(x - l[:, None, None, None], torch.min(x_a, x + l[:, None, None, None])) def __init__(self, model, dict_model, use_geo=True, use_dict=True, dimension_reduction=None, random_background=False, only_one=False): self.model = model self.dict_model = dict_model self.geoDict = GeoDict() self.imgDict = ImgDict() self.use_dict = use_dict self.use_geo = use_geo self.dimension_reduction = dimension_reduction self.count = 0 self.decay_factor = 0.99 self.c = 0.001 self.mu = 1e-2 self.sigma = 3e-2 self.num_trial = 200 self.only_one = only_one self.random_background = random_background self.visualize = False def get_predict_label(self, x, batch_indices): return self.model(x, batch_indices=batch_indices, unnormalization=False).argmax(1) # 0.0048530106 # 0 # 0 # 8700 # tensor(3.8901) # tensor(0.1397) def is_adversarial(self, x, y, targeted=False, batch_indices=0, random_background=False): ''' check whether the adversarial constrain holds for x ''' x = x.to(device).contiguous() if random_background: if torch.min(self.model.get_num_queries(torch.arange(0, x.size(0)))) % 20 != 0: if self.use_geo == True: noised_x = (x + (torch.randn_like(x).to(device) * 0.04) * self.x_back_mask) else: noised_x = (x + torch.randn_like(x).to(device) * 0.02) else: noised_x = x if targeted: return torch.LongTensor((self.get_predict_label(noised_x, batch_indices) == y) + 0) else: return torch.LongTensor((self.get_predict_label(noised_x, batch_indices) != y) + 0) else: if targeted: return torch.LongTensor((self.get_predict_label(x, batch_indices) == y) + 0) else: return torch.LongTensor((self.get_predict_label(x, batch_indices) != y) + 0) def clip_and_mask(self, x, uv_mask, original_uv): x = x * uv_mask x = torch.min(torch.max(x, -original_uv), 1 - original_uv) return x def attack(self, x, y, x_s=None, targeted=False, max_queries=1000, total_search=False): face_features = self.dict_model.get_features(x.to(device)) b = x.size(0) # indices for unsuccessful images indices = torch.ones(b) > 0 num_indices = torch.arange(0, b).long() background_attack_indices = torch.ones(b) > 0 x_dtype = np.float if self.visualize == True: # For visualization plot_img(x, 'x' + str(self.count)) if self.use_geo == True: ver_lst, depth_lst = self.geoDict.get_face_alignment(x) # initialize myT = transforms.Compose([ transforms.ToPILImage(), transforms.RandomHorizontalFlip(p=0.5), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), transforms.ToTensor()]) if targeted: assert x_s is not None original_ncc_codes, used_original_uv_codes = self.geoDict.get_image_color(x, ver_lst, depth_lst) original_uv_img = self.geoDict.convert_ncc_2_uv(original_ncc_codes) target_ver_lst, target_depth_lst = self.geoDict.get_face_alignment(x_s) target_ncc_codes, used_target_uv_codes = self.geoDict.get_image_color(x_s, target_ver_lst, target_depth_lst) # target_ncc_codes[used_original_uv_codes] # target_ncc_codes[torch.logical_and(used_original_uv_codes,used_target_uv_codes)] =target_ncc_codes[torch.logical_and(used_original_uv_codes,used_target_uv_codes)] -original_ncc_codes[torch.logical_and(used_original_uv_codes,used_target_uv_codes)] target_ncc_codes[torch.logical_and(used_original_uv_codes, ~used_target_uv_codes)] = original_ncc_codes[ torch.logical_and(used_original_uv_codes, ~used_target_uv_codes)] # original_ncc_codes[used_original_uv_codes]=target_ncc_codes[used_original_uv_codes]-original_ncc_codes[used_original_uv_codes] x_a_uv_o = self.geoDict.convert_ncc_2_uv(target_ncc_codes) # overlap2 = np.array(x_a_uv_o[0].cpu().numpy()).transpose(1, 2, 0) * 255. # overlap2 = overlap2.astype(np.uint8) # # plot_image(overlap2) x_a_uv = x_a_uv_o - original_uv_img x_a_ncc = self.geoDict.convert_uv_2_ncc(x_a_uv) x_a = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, x_a_ncc) # overlap2 = np.array(x_a[0].cpu().numpy()).transpose(1, 2, 0) * 255. # overlap2 = overlap2.astype(np.uint8) # plot_image(overlap2) check = self.is_adversarial(x_a, y, targeted, batch_indices=num_indices, random_background=self.random_background) background_attack_indices[check == True] = False iters = 0 while check.sum() < np.shape(y)[0]: # Data augmentation for n in num_indices[background_attack_indices]: x_a_uv[n] = myT(x_a_uv_o[n]) - original_uv_img[n] x_a_ncc[background_attack_indices] = self.geoDict.convert_uv_2_ncc( x_a_uv[background_attack_indices]) x_a[background_attack_indices] = self.geoDict.project_adv_perturbation(x[background_attack_indices], ver_lst[ background_attack_indices], depth_lst[ background_attack_indices], x_a_ncc[ background_attack_indices]) check[background_attack_indices] = self.is_adversarial(x_a[background_attack_indices], y[background_attack_indices], targeted, num_indices[background_attack_indices], random_background=self.random_background) background_attack_indices[check == True] = False iters += 1 if iters > self.num_trial: # overlap2 = np.array(x_a[0].cpu().numpy()).transpose(1, 2, 0) * 255. # overlap2 = overlap2.astype(np.uint8) # plot_image(overlap2) print('Initialization Failed!') print('Turn to combination mode') background_attack_indices[check == True] = False x_a[background_attack_indices] = x_s[background_attack_indices] check = self.is_adversarial(x_a, y, targeted, num_indices, random_background=self.random_background) # self.count+=1 # print(self.count, ' Error') break if check.sum() < y.size(0): print('Some initial images do not belong to the target class!') return x, torch.zeros(b) check = self.is_adversarial(x, y, targeted, num_indices) if check.sum() > 0: print('Some original images already belong to the target class!') return x, torch.zeros(b) else: # Untargeted Attack check = self.is_adversarial(x, y, True, num_indices) if check.sum() < y.size(0): print('Some original images do not belong to the original class!') return x, torch.zeros(b) original_ncc_codes = self.geoDict.get_image_color(x, ver_lst) original_uv_img = self.geoDict.convert_ncc_2_uv(original_ncc_codes) if total_search: x_a_uv = self.geoDict.init_item(face_features, original_uv_images=original_uv_img) x_a_uv = torch.min(torch.max(x_a_uv, -original_uv_img), 1 - original_uv_img) # x_a_uv=x_a_uv_o.clone() x_a_ncc = self.geoDict.convert_uv_2_ncc(x_a_uv) x_a = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, x_a_ncc) min_norm = torch.norm(x_a.reshape(b, -1) - x.reshape(b, -1), dim=1) l = self.geoDict.get_len_dict() for i in range(l): x_a_uv_temp = torch.unsqueeze(self.geoDict.uv_dict[i], 0) x_a_uv_temp = torch.min(torch.max(x_a_uv_temp, -original_uv_img), 1 - original_uv_img) x_a_ncc_temp = self.geoDict.convert_uv_2_ncc(x_a_uv_temp) x_a_temp = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, x_a_ncc_temp) check = self.is_adversarial(x_a_temp, y, targeted, num_indices) perturbation_norm = torch.norm(x_a_temp.reshape(b, -1) - x.reshape(b, -1), dim=1) x_a_uv[perturbation_norm < min_norm and check] = x_a_uv_temp[ perturbation_norm < min_norm and check] min_norm[perturbation_norm < min_norm and check] = perturbation_norm[ perturbation_norm < min_norm and check] else: x_a_uv = self.geoDict.init_item(face_features, original_uv_images=original_uv_img) x_a_uv = torch.min(torch.max(x_a_uv, -original_uv_img), 1 - original_uv_img) # x_a_uv=x_a_uv_o.clone() x_a_ncc = self.geoDict.convert_uv_2_ncc(x_a_uv) x_a = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, x_a_ncc) if self.visualize == True: # For visualization from _3DDFA_V2.utils.io import _load, _dump import os.path as osp make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn) ncc_code = _load(make_abs_path('../_3DDFA_V2/configs/ncc_code.npy')).T * 0.6 - \ original_ncc_codes[0].numpy() * 0.2 def _to_ctype(arr): if not arr.flags.c_contiguous: return arr.copy(order='C') return arr ncc_code = _to_ctype(ncc_code) x_a_3d = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, np.expand_dims(ncc_code, 0)) plot_img(x_a_3d, 'x_a_face_img_' + str(self.count)) plot_img(x_a, 'x_a_img_' + str(self.count)) plot_img(x_a_uv * 50 + 0.5, 'x_a_' + str(self.count)) self.x_back_mask = 1 - self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, torch.ones_like(x_a_ncc)) self.x_back_mask = self.x_back_mask.to(device) iters = 0 # print(torch.min(x_a_uv), torch.max(x_a_uv)) check = self.is_adversarial(x_a, y, targeted, num_indices) while check.sum() < np.shape(y)[0]: x_a_uv[check == False] = x_a_uv[check == False] * 1.05 x_a_uv[check == False] = torch.min( torch.max(x_a_uv[check == False], -original_uv_img[check == False]+0.2), 1 - original_uv_img[check == False]-0.2) x_a_ncc[check == False] = self.geoDict.convert_uv_2_ncc(x_a_uv[check == False]) x_a[check == False] = self.geoDict.project_adv_perturbation(x[check == False], ver_lst[check == False], depth_lst[check == False], x_a_ncc[check == False]) check = self.is_adversarial(x_a, y, targeted, num_indices, random_background=self.random_background) iters += 1 if iters > self.num_trial: print('Initialization failed for some images!') break background_attack_indices[check == True] = False if check.sum() < np.shape(y)[0]: iters = 0 x_a[check == False] = self.imgDict.init_item(face_features[check == False], original_images=x[check == False]) check = self.is_adversarial(x_a, y, targeted, num_indices) while check.sum() < np.shape(y)[0]: x_a[check == False] = x_a[check == False] + torch.randn_like( x_a[check == False]) * iters / self.num_trial # x_a[check == False] = x[check == False] + (x_a[check == False] - x[check == False]) * 1.05 x_a[check == False] = x_a[check == False].clamp(0, 1) check = self.is_adversarial(x_a, y, targeted, num_indices, random_background=self.random_background) iters += 1 background_attack_indices[check == True] = False if iters > self.num_trial: print('Initialization failed!') return x, torch.zeros(b) else: # Wihout GeoDict # initialize if targeted: x_a = x_s check = self.is_adversarial(x_a, y, targeted, num_indices) if check.sum() < y.size(0): print('Some initial images do not belong to the target class!') return x, torch.zeros(b) check = self.is_adversarial(x, y, targeted, num_indices) if check.sum() > 0: print('Some original images already belong to the target class!') return x, torch.zeros(b) else: # Untargeted Attack check = self.is_adversarial(x, y, True, num_indices) if check.sum() < y.size(0): print('Some original images do not belong to the original class!') return x, torch.zeros(b) background_attack_indices = indices iters = 0 x_a = self.imgDict.init_item(face_features, original_images=x) check = self.is_adversarial(x_a, y, targeted, num_indices) if self.visualize == True: # For visualization plot_img(x_a, 'x_a_img_' + str(self.count)) while check.sum() < np.shape(y)[0]: # x_a[check == False] = x_a[check == False] + torch.randn_like( # x_a[check == False]) * iters / self.num_trial x_a[check == False] = x[check == False] + (x_a[check == False] - x[check == False]) * 1.05 x_a[check == False] = x_a[check == False].clamp(0, 1) check = self.is_adversarial(x_a, y, targeted, num_indices) iters += 1 if iters > self.num_trial: print('Initialization failed!') return x, torch.zeros(b) background_attack_batch_size = background_attack_indices.sum() if background_attack_batch_size > 0: x_shape = x.size() pert_shape_img = (x_shape[1], *self.dimension_reduction) N_img = np.prod(pert_shape_img) K_img = int(N_img / 20) evolution_path_img = torch.zeros((b, *pert_shape_img)) diagonal_covariances_img = np.ones((b, *pert_shape_img), dtype=x_dtype) mu_img = torch.ones(b) * self.mu stats_adversarial_img = [collections.deque(maxlen=30) for i in range(b)] x_a_img = x_a.clone() if b - background_attack_batch_size > 0: # x_a_uv = self.binary_infinity(x_a_uv,torch.zeros_like(x_a_uv), x,y, 10, self.model, targeted, num_indices,ver_lst,depth_lst) x_uv_shape = x_a_uv.size() pert_shape = (x_uv_shape[1], *self.dimension_reduction) # int(x_uv_shape[2]/resize_factor),int(x_uv_shape[3]/resize_factor)) N = np.prod(pert_shape) K = int(N / 20) evolution_path = torch.zeros((b, *pert_shape)) x_a_uv_c = x_a_uv.clone() diagonal_covariances = np.ones((b, *pert_shape), dtype=x_dtype) x_a_uv_mask = self.geoDict.convert_ncc_2_uv(torch.ones_like(original_ncc_codes)) x_a_uv_mask[:, :, :20, :] = 1 x_a_uv_mask[:, :, 36:76, 36:76] = 1 x_a_uv = x_a_uv * x_a_uv_mask diagonal_covariances = diagonal_covariances * torch.nn.functional.upsample_bilinear(x_a_uv_mask, self.dimension_reduction).numpy() stats_adversarial = [collections.deque(maxlen=30) for i in range(b)] mu = torch.ones(b) * self.mu perturbation = torch.zeros((b, x.size(1), *self.dimension_reduction)) # q_num: current queries step = 0 # x_advs=torch.zeros_like(x) while torch.min(self.model.get_num_queries(num_indices)) < max_queries: # print(torch.norm(x_a - x_s), torch.norm(x_a - x)) # if torch.min(self.model.get_num_queries(num_indices)) %100==0: # print(torch.min(x_a_uv),torch.max(x_a_uv)) Q = self.model.get_num_queries(num_indices) for b_c in torch.arange(0, b)[~background_attack_indices].long(): if self.visualize == True: # For visualization if Q[b_c] % 1000 == 0: if self.use_geo: x_a = self.geoDict.project_adv_perturbation(x, ver_lst, depth_lst, self.geoDict.convert_uv_2_ncc( x_a_uv_mask)) plot_img(x_a, 'x_a_' + str(self.count) + '_' + str(Q[b_c].item())) plot_img(x_a_uv * 50 + 0.5, 'x_a_uv_' + str(self.count) + '_' + str(Q[b_c].item())) if Q[b_c] < max_queries: unnormalized_source_direction = -x_a_uv[b_c] source_norm = torch.norm(unnormalized_source_direction) selection_probability = diagonal_covariances[b_c].reshape(-1) / np.sum(diagonal_covariances[b_c]) selected_indices = np.random.choice(N, K, replace=False, p=selection_probability) perturbation[b_c] = torch.randn(pert_shape) factor = torch.zeros(N) factor[selected_indices] = 1 perturbation[b_c] *= factor.reshape(pert_shape) * np.sqrt(diagonal_covariances[b_c]) if self.dimension_reduction: perturbation_large = torch.nn.functional.upsample_bilinear(perturbation[b_c].unsqueeze(0), x_uv_shape[2:]).squeeze() else: perturbation_large = perturbation[b_c] biased = x_a_uv[b_c] + mu[b_c] * unnormalized_source_direction x_a_uv_c[b_c] = biased + self.sigma * source_norm * perturbation_large / torch.norm( perturbation_large) x_a_uv_c[b_c] = (x_a_uv_c[b_c]) / torch.norm(x_a_uv_c[b_c]) * torch.norm(biased) x_a_uv_c[b_c] = torch.min(torch.max(x_a_uv_c[b_c], -original_uv_img[b_c]), 1 - original_uv_img[b_c]) x_a[b_c] = self.geoDict.project_adv_perturbation(x[b_c].unsqueeze(0), ver_lst[b_c].unsqueeze(0), depth_lst[b_c].unsqueeze(0), self.geoDict.convert_uv_2_ncc( x_a_uv_c[b_c].unsqueeze(0))) for b_c in torch.arange(0, b)[background_attack_indices].long(): if self.visualize == True: # For visualization if Q[b_c] % 1000 == 0: if self.use_geo == False: plot_img(x_a_img, 'x_a_img_final_' + str(self.count)) plot_img((x_a_img[background_attack_indices] - x[background_attack_indices]) * 50 + 0.5, 'x_a_' + str(self.count) + '_' + str(Q[b_c])) if Q[b_c] < max_queries: unnormalized_source_direction = x[b_c] - x_a_img[b_c] source_norm = torch.norm(unnormalized_source_direction) selection_probability = diagonal_covariances_img[b_c].reshape(-1) / np.sum( diagonal_covariances_img[b_c]) selected_indices = np.random.choice(N_img, K_img, replace=False, p=selection_probability) perturbation[b_c] = torch.randn(pert_shape_img) factor = torch.zeros(N_img) factor[selected_indices] = 1 perturbation[b_c] *= factor.reshape(pert_shape_img) *
np.sqrt(diagonal_covariances_img[b_c])
numpy.sqrt
# -*- coding: utf-8 -*- """ Created on Mon Mar 20 11:23:59 2017 @author: mariosm """ import pandas as pd from nltk.corpus import stopwords from collections import Counter import numpy as np import sys from nltk.corpus import stopwords import random from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from scipy.sparse import csr_matrix,hstack #stops = set(stopwords.words("english")) stops = set(["http","www","img","border","home","body","a","about","above","after","again","against","all","am","an", "and","any","are","aren't","as","at","be","because","been","before","being","below","between","both","but","by","can't", "cannot","could","couldn't","did","didn't","do","does","doesn't","doing","don't","down","during","each","few","for","from", "further","had","hadn't","has","hasn't","have","haven't","having","he","he'd","he'll","he's","her","here","here's","hers", "herself","him","himself","his","how","how's","i","i'd","i'll","i'm","i've","if","in","into","is","isn't","it","it's","its", "itself","let's","me","more","most","mustn't","my","myself","no","nor","not","of","off","on","once","only","or","other","ought", "our","ours","ourselves","out","over","own","same","shan't","she","she'd","she'll","she's","should","shouldn't","so","some","such", "than","that","that's","the","their","theirs","them","themselves","then","there","there's","these","they","they'd","they'll","they're", "they've","this","those","through","to","too","under","until","up","very","was","wasn't","we","we'd","we'll","we're","we've","were", "weren't","what","what's","when","when's""where","where's","which","while","who","who's","whom","why","why's","with","won't","would", "wouldn't","you","you'd","you'll","you're","you've","your","yours","yourself","yourselves" ]) weights={} def fromsparsetofile(filename, array, deli1=" ", deli2=":",ytarget=None): zsparse=csr_matrix(array) indptr = zsparse.indptr indices = zsparse.indices data = zsparse.data print(" data lenth %d" % (len(data))) print(" indices lenth %d" % (len(indices))) print(" indptr lenth %d" % (len(indptr))) f=open(filename,"w") counter_row=0 for b in range(0,len(indptr)-1): #if there is a target, print it else , print nothing if ytarget!=None: f.write(str(ytarget[b]) + deli1) for k in range(indptr[b],indptr[b+1]): if (k==indptr[b]): if np.isnan(data[k]): f.write("%d%s%f" % (indices[k],deli2,-1)) else : f.write("%d%s%f" % (indices[k],deli2,data[k])) else : if np.isnan(data[k]): f.write("%s%d%s%f" % (deli1,indices[k],deli2,-1)) else : f.write("%s%d%s%f" % (deli1,indices[k],deli2,data[k])) f.write("\n") counter_row+=1 if counter_row%10000==0: print(" row : %d " % (counter_row)) f.close() # If a word appears only once, we ignore it completely (likely a typo) # Epsilon defines a smoothing constant, which makes the effect of extremely rare words smaller def get_weight(count, eps=5000.0, min_count=2.0): if count < min_count: return 0.0 else: return 1.0 / (count + eps) def word_shares(row,wei,stop): q1 = set(str(row['question1']).lower().split()) q1words = q1.difference(stop) if len(q1words) == 0: return '0:0:0:0:0' q2 = set(str(row['question2']).lower().split()) q2words = q2.difference(stop) if len(q2words) == 0: return '0:0:0:0:0' q1stops = q1.intersection(stop) q2stops = q2.intersection(stop) shared_words = q1words.intersection(q2words) #print(len(shared_words)) shared_weights = [wei.get(w, 0) for w in shared_words] total_weights = [wei.get(w, 0) for w in q1words] + [wei.get(w, 0) for w in q2words] R1 = np.sum(shared_weights) / np.sum(total_weights) #tfidf share R2 = float(len(shared_words)) / (float(len(q1words)) + float(len(q2words))) #count share R31 = float(len(q1stops)) / float(len(q1words)) #stops in q1 R32 = float(len(q2stops)) / float(len(q2words)) #stops in q2 return '{}:{}:{}:{}:{}'.format(R1, R2, float(len(shared_words)), R31, R32) def main(): input_folder="input/" # set your input folder here df_train = pd.read_csv(input_folder + 'train.csv') df_test = pd.read_csv(input_folder + 'test.csv') print("Original data: X_train: {}, X_test: {}".format(df_train.shape, df_test.shape)) train_mix = (df_train['question1']+ " " + df_train['question2']).astype(str).values test_mix = (df_test['question1']+ " " + df_test['question2'] ).astype(str).values print("Features processing, be patient...") train_qs = pd.Series(df_train['question1'].tolist() + df_train['question2'].tolist()).astype(str) words = (" ".join(train_qs)).lower().split() counts = Counter(words) weights = {word: get_weight(count) for word, count in counts.items()} #stops = set(stopwords.words("english")) X = pd.DataFrame() X_test = pd.DataFrame() df_train['word_shares'] = df_train.apply(word_shares, args = (weights,stops,),axis=1, raw=True) df_test['word_shares'] = df_test.apply(word_shares, args = (weights,stops,),axis=1, raw=True) X['word_match'] = df_train['word_shares'].apply(lambda x: float(x.split(':')[0])) X['tfidf_word_match'] = df_train['word_shares'].apply(lambda x: float(x.split(':')[1])) X['shared_count'] = df_train['word_shares'].apply(lambda x: float(x.split(':')[2])) X['stops1_ratio'] = df_train['word_shares'].apply(lambda x: float(x.split(':')[3])) X['stops2_ratio'] = df_train['word_shares'].apply(lambda x: float(x.split(':')[4])) X['diff_stops_r'] = X['stops1_ratio'] - X['stops2_ratio'] X['len_q1'] = df_train['question1'].apply(lambda x: len(str(x))) X['len_q2'] = df_train['question2'].apply(lambda x: len(str(x))) X['diff_len'] = X['len_q1'] - X['len_q2'] X['len_char_q1'] = df_train['question1'].apply(lambda x: len(str(x).replace(' ', ''))) X['len_char_q2'] = df_train['question2'].apply(lambda x: len(str(x).replace(' ', ''))) X['diff_len_char'] = X['len_char_q1'] - X['len_char_q2'] X['len_word_q1'] = df_train['question1'].apply(lambda x: len(str(x).split())) X['len_word_q2'] = df_train['question2'].apply(lambda x: len(str(x).split())) X['diff_len_word'] = X['len_word_q1'] - X['len_word_q2'] X['avg_world_len1'] = X['len_char_q1'] / X['len_word_q1'] X['avg_world_len2'] = X['len_char_q2'] / X['len_word_q2'] X['diff_avg_word'] = X['avg_world_len1'] - X['avg_world_len2'] X['exactly_same'] = (df_train['question1'] == df_train['question2']).astype(int) X_test['word_match'] = df_test['word_shares'].apply(lambda x: float(x.split(':')[0])) X_test['tfidf_word_match'] = df_test['word_shares'].apply(lambda x: float(x.split(':')[1])) X_test['shared_count'] = df_test['word_shares'].apply(lambda x: float(x.split(':')[2])) X_test['stops1_ratio'] = df_test['word_shares'].apply(lambda x: float(x.split(':')[3])) X_test['stops2_ratio'] = df_test['word_shares'].apply(lambda x: float(x.split(':')[4])) X_test['diff_stops_r'] = X_test['stops1_ratio'] - X_test['stops2_ratio'] X_test['len_q1'] = df_test['question1'].apply(lambda x: len(str(x))) X_test['len_q2'] = df_test['question2'].apply(lambda x: len(str(x))) X_test['diff_len'] = X_test['len_q1'] - X_test['len_q2'] X_test['len_char_q1'] = df_test['question1'].apply(lambda x: len(str(x).replace(' ', ''))) X_test['len_char_q2'] = df_test['question2'].apply(lambda x: len(str(x).replace(' ', ''))) X_test['diff_len_char'] = X_test['len_char_q1'] - X_test['len_char_q2'] X_test['len_word_q1'] = df_test['question1'].apply(lambda x: len(str(x).split())) X_test['len_word_q2'] = df_test['question2'].apply(lambda x: len(str(x).split())) X_test['diff_len_word'] = X_test['len_word_q1'] - X_test['len_word_q2'] X_test['avg_world_len1'] = X_test['len_char_q1'] / X_test['len_word_q1'] X_test['avg_world_len2'] = X_test['len_char_q2'] / X_test['len_word_q2'] X_test['diff_avg_word'] = X_test['avg_world_len1'] - X_test['avg_world_len2'] X_test['exactly_same'] = (df_test['question1'] == df_test['question2']).astype(int) print (
np.mean(X['word_match'])
numpy.mean
""" Structure contains the description of a set of atoms in space, for periodic structures it adds a lattice. """ try: import itertools.izip as zip except ImportError: pass import json import os import struct import sys import numpy as np from collections.abc import MutableSequence from itertools import combinations, repeat from math import sin, cos from multiprocessing import Pool from pychemia import pcm_log from pychemia.crystal.lattice import Lattice from pychemia.core.composition import Composition from pychemia.core.delaunay import get_reduced_bases from pychemia.utils.computing import deep_unicode from pychemia.utils.periodic import mass, atomic_number, covalent_radius, valence, atomic_symbols import scipy.spatial class Structure(MutableSequence): """ Define an object that contains information about atomic positions, cell parameters and periodicity and provides methods to manipulate those elements A Structure is basically a set of sites with eventually a lattice each site could have one or more species with occupations equal or lower than one. A Structure could represents a molecule, cluster, wire, slab, crystal structure or alloy with define sites. The positions of the atoms and their atomic symbols are declared in 'positions' and 'symbols' respectively. For periodic structures, the 'periodicity' can be declared. and cell parameters in 'cell' Magnetic moments can be associated in the array vector_info['magnetic_moments']. """ def __init__(self, natom=None, symbols=None, periodicity=False, cell=None, positions=None, reduced=None, mag_moments=None, occupancies=None, sites=None, name=None, comment=None, vector_info=None): """ Structure is a container for geometric structure and composition for both periodic and non periodic atomic structures :param natom: Number of atoms :param symbols: List of atomic symbols :param periodicity: (True) if the structure is periodic, False for finite structures and a list of booleans for structures that are periodic only along specific directions. :param cell: The cell parameters, could be scalar for a cubic cell, a list of 3 numbers for a orthogonal cell or a complete numpy array or list of lists. Each row is considered a cell vector. :param positions: Array of rows with 3 elements for the positions of atoms in cartesian coordinates. :param reduced: Positions of atoms as reduced coordinates relative to the cell vectors ie cell-scaled in range [0,1] :param mag_moments: Magnetic moments for atoms in the structure :param occupancies: Atomic occupancies. 1 by default, lower values for vacancies and non-perfect crystals. :param sites: Atomic sites >>> a = Structure() >>> print(a) Empty structure >>> a = Structure(symbols=['Xe']) >>> print(a.natom) 1 >>> d = 1.104 >>> a = Structure(symbols=['N', 'N'], positions=[[0, 0, 0], [0, 0, d]], periodicity=False) >>> print(a.natom) 2 >>> a = 4.05 >>> b = a/2 >>> fcc = Structure(symbols=['Au'], cell=[[0, b, b], [b, 0, b], [b, b, 0]], periodicity=True) >>> print(fcc.natom) 1 """ self.vector_info = {} self.name = None self.comment = None self.natom = None self.symbols = None self.positions = None self.reduced = None self.cell = None self.periodicity = None self.vector_info['mag_moments'] = None self.sites = None self.occupancies = None self._lattice = None self._composition = None self.vector_info = None # By default the number of atoms will be the value given or zero except if other information overrules # that value if natom is not None: self.natom = int(natom) else: self.natom = 0 if symbols is not None: if symbols in atomic_symbols: self.symbols = [symbols] else: for iatom in list(symbols): assert(iatom in atomic_symbols) self.symbols = list(symbols) self.natom = len(self.symbols) else: if self.natom != 0: raise ValueError('List of atomic symbols not provided for structure with %d atoms', self.natom) # No periodicity will be assumed except if cell or reduced coordinates are provided if periodicity is None: periodicity = 3*[False] if isinstance(periodicity, bool): periodicity = 3*[periodicity] self.set_periodicity(periodicity) if cell is not None: cell = np.array(cell) self.set_cell(cell) self.periodicity = 3*[True] if positions is not None: positions = np.array(positions) self.set_positions(positions) if reduced is not None: reduced = np.array(reduced) self.set_reduced(reduced) self.periodicity = 3*[True] if mag_moments is not None: self.set_mag_moments(np.array(mag_moments)) if occupancies is not None: self.occupancies = list(occupancies) if sites is not None: self.sites = sites if vector_info is None: self.vector_info = {'mag_moments': None} else: self.vector_info = vector_info self.name = name self.comment = comment # This routine completes the missing values and makes all the values coherent. self._autocomplete() if not self._check(): raise ValueError('Arguments non consistent') def __len__(self): """ Number of sites in structure. In for perfect crystals it will match the number of atoms as each atomic site will have a single atom. :return: Number of sites in structure :rtype; int >>> st = Structure(symbols=['H', 'O'], positions= [[0,0,0], [0,0,1]]) >>> len(st) 2 """ return self.nsites def __str__(self): """String representation of Structure :return: Human readable text for Structure >>> st = Structure(symbols=['Xe']) >>> print(st) 1 <BLANKLINE> Symb ( Positions ) Xe ( 0.0000 0.0000 0.0000 ) <BLANKLINE> Non-periodic structure >>> a = 4.05 >>> b = a/2 >>> fcc = Structure(symbols=['Au'], cell=[[0, b, b], [b, 0, b], [b, b, 0]], periodicity=True) >>> print(fcc) 1 <BLANKLINE> Symb ( Positions ) [ Cell-reduced coordinates ] Au ( 0.0000 0.0000 0.0000 ) [ 0.0000 0.0000 0.0000 ] <BLANKLINE> Periodicity: X Y Z <BLANKLINE> Lattice vectors: 0.0000 2.0250 2.0250 2.0250 0.0000 2.0250 2.0250 2.0250 0.0000 <BLANKLINE> """ if self.natom == 0: xyz = 'Empty structure' else: xyz = str(self.natom) + '\n\n' if self.is_crystal: xyz += 'Symb ( Positions ) [ Cell-reduced coordinates ]\n' else: xyz += 'Symb ( Positions )\n' for i in range(self.natom): if self.is_crystal: xyz += ("%4s ( %10.4f %10.4f %10.4f ) [ %10.4f %10.4f %10.4f ]\n" % (self.symbols[i], self.positions[i, 0], self.positions[i, 1], self.positions[i, 2], self.reduced[i, 0], self.reduced[i, 1], self.reduced[i, 2])) else: xyz += ("%4s ( %10.4f %10.4f %10.4f )\n" % (self.symbols[i], self.positions[i, 0], self.positions[i, 1], self.positions[i, 2])) if self.periodicity[0] or self.periodicity[1] or self.periodicity[2]: xyz += '\nPeriodicity: ' if self.periodicity[0]: xyz += ' X' if self.periodicity[1]: xyz += ' Y' if self.periodicity[2]: xyz += ' Z' xyz += '\n\nLattice vectors:\n' for i in range(3): xyz += (" %10.4f %10.4f %10.4f\n" % (self.cell[i, 0], self.cell[i, 1], self.cell[i, 2])) else: xyz += '\nNon-periodic structure' return xyz def __repr__(self): """ Evaluatable representation of Structure :return: String representation of the structure :rtype: str >>> st1 = Structure(symbols=['H']) >>> st2 = eval(repr(st1)) >>> st1 == st2 True >>> st = Structure(symbols='He', cell=[2,2,2]) >>> st Structure(symbols=['He'], cell=2, reduced=[[0.0, 0.0, 0.0]], periodicity=True) """ ret = 'Structure(symbols=' + str(self.symbols) if self.is_periodic: if np.all(np.diag(self.cell.diagonal()) == self.cell): if np.max(self.cell.diagonal()) == np.min(self.cell.diagonal()): ret += ', cell=' + str(self.cell[0, 0]) else: ret += ', cell=' + str(self.cell.diagonal().tolist()) else: ret += ', cell=' + str(self.cell.tolist()) ret += ', reduced=' + str(self.reduced.tolist()) else: ret += ', positions=' + str(self.positions.tolist()) if all([self.periodicity[0] == item for item in self.periodicity]): ret += ', periodicity=' + str(self.periodicity[0]) else: ret += ', periodicity=' + str(self.periodicity) ret += ')' return ret def __delitem__(self, key): self.del_atom(key) def __setitem__(self, key, value): self.add_atom(value['symbols'], value['positions']) def __getitem__(self, item): return SiteSet(self)[item] def __iter__(self): return iter(SiteSet(self)) def insert(self, index, value): self.add_atom(value['symbols'], value['positions']) def _autocomplete(self): if self.natom is None: if self.positions is not None: self.natom = len(self.positions) elif self.reduced is not None: self.natom = len(self.reduced) elif self.symbols is not None: self.natom = len(self.symbols) else: self.natom = 0 if self.symbols is None and self.natom == 0: self.symbols = [] if self.periodicity is None: self.set_periodicity(True) if self.cell is None and self.is_periodic: self.set_cell(1) if self.positions is None: if self.reduced is not None: self.reduced2positions() else: if self.natom == 0: self.positions = np.array([]) elif self.natom == 1: self.positions = np.array([[0.0, 0.0, 0.0]]) else: raise ValueError('Positions must be present for more than 1 atom') if self.reduced is None and self.is_crystal: if self.positions is not None and self.natom > 0: self.positions2reduced() else: self.reduced = np.array([]) if self.sites is None: self.sites = range(self.natom) if self.occupancies is None: self.occupancies = self.natom * [1.0] def _check(self): check = True if len(self.symbols) != self.natom: print('Error: Bad symbols') check = False if len(self.positions) != self.natom: print('Error: Bad positions') check = False if self.is_crystal and len(self.reduced) != self.natom: print('Error: Bad reduced') check = False if self.vector_info['mag_moments'] is not None and len(self.vector_info['mag_moments']) != self.natom: print('Error: Bad mag_moments') check = False return check def add_atom(self, name, coordinates, option='cartesian'): """ Add an atom with a given 'name' and cartesian or reduced 'position' The atom will be added at the end of the list of atoms in the Structure :param name: (str) :param coordinates: (list, numpy.array) :param option: (str) """ assert (name in atomic_symbols) assert (option in ['cartesian', 'reduced']) self.symbols.append(name) self.natom += 1 self._composition = None if option == 'cartesian': if self.natom == 0: self.positions = np.array(coordinates).reshape([-1, 3]) else: self.positions = np.append(self.positions, coordinates).reshape([-1, 3]) self.positions2reduced() elif option == 'reduced': if self.natom == 0: self.reduced = np.array(coordinates).reshape([-1, 3]) else: self.reduced = np.append(self.reduced, coordinates).reshape([-1, 3]) self.reduced2positions() def del_atom(self, index): """ Removes the atom with the given index :param index: :return: """ assert (abs(index) < self.natom) self.symbols.pop(index) np.delete(self.positions, index, 0) if self.is_periodic: np.delete(self.reduced, index, 0) self.natom -= 1 self._composition = None def center_mass(self, list_of_atoms=None): """ Computes the center of mass (CM) of the XYZ object or a partial list of atoms. The default is to compute the CM of all the atoms in the object, if a list is enter only those in the list will be included for the CM Return the CM as a numpy array """ if list_of_atoms is None: list_of_atoms = range(self.natom) total_mass = 0.0 center_of_mass = np.zeros(3) if self.natom == 0: return center_of_mass atomicnumber = atomic_number(list(self.symbols)) for i in range(self.natom): if i in list_of_atoms: total_mass += mass(atomicnumber[i]) center_of_mass += mass(atomicnumber[i]) * self.positions[i] return center_of_mass / total_mass def rotation(self, tx, ty, tz): """ Rotate the molecule in the three directions """ rotationx = np.array([[1, 0, 0], [0, cos(tx), -sin(tx)], [0, sin(tx), cos(tx)]]) rotationy = np.array([[cos(ty), 0, sin(ty)], [0, 1, 0], [-sin(ty), 0, cos(ty)]]) rotationz = np.array([[cos(tz), -sin(tz), 0], [sin(tz), cos(tz), 0], [0, 0, 1]]) rotation = np.dot(np.dot(rotationx, rotationy), rotationz) for i in range(self.natom): self.positions[i] = np.dot(rotation, self.positions[i]) def get_cell(self): if self._lattice is None: self._lattice = Lattice(self.cell) return self._lattice @property def lattice(self): return self.get_cell() def get_composition(self, gcd=True): """ Computes the composition of the Structure as the count of each species in the cell If gcd is True the values are divided by the greatest common divisor :param gcd: bool :rtype : Composition """ if self._composition is None: species = {} for atom in self.symbols: if atom in species: species[atom] += 1 else: species[atom] = 1 self._composition = Composition(species) return self._composition def positions2reduced(self): """ Computes the cell-reduced coordinates from the cartesian dimensional coordinates """ self.reduced = np.linalg.solve(self.cell.T, self.positions.T).T for i in range(3): if self.periodicity[i]: self.reduced[:, i] %= 1.0 def reduced2positions(self): """ Computes the dimensional cartesian coordinates from the adimensional cell-reduced coordinates """ self.positions = np.dot(self.reduced, self.cell) def relocate_to_cm(self, list_of_atoms=None): """ Relocates the system of atoms to the center of mass a partial list of atoms can be used to compute the center, but all the atoms are moved to the computed center :param list_of_atoms: (list) List of atoms that will be considered for computing the center of mass by default all atoms are included """ cm = self.center_mass(list_of_atoms) self.positions += -cm def get_distance(self, iatom, jatom, with_periodicity=True, tolerance=1e-5): """ Calculates the distance between 2 atom, identified by index iatom and jatom :param iatom: (int) index of first atom :param jatom: (int) index of second atom :param with_periodicity: (bool) if the periodic images should be considered to compute the shortest distance :param tolerance: (float) Tolerance for the bases reduction :rtype : (float) distance between iatom and jatom """ if with_periodicity: reduced_bases = get_reduced_bases(self.cell, tolerance) scaled_pos = np.dot(self.positions, np.linalg.inv(reduced_bases)) # move scaled atomic positions into -0.5 < r <= 0.5 for pos in scaled_pos: pos -= pos.round() # Look for the shortest one in surrounded 3x3x3 cells distances_list = [] for i in (-1, 0, 1): for j in (-1, 0, 1): for k in (-1, 0, 1): distances_list.append(np.linalg.norm( np.dot(scaled_pos[iatom] - scaled_pos[jatom] + np.array([i, j, k]), reduced_bases))) ret = min(distances_list) else: posi = self.positions[iatom] posj = self.positions[jatom] ret = np.linalg.norm(posi - posj) return ret @staticmethod def random_cell(composition, method='stretching', stabilization_number=20, nparal=5, periodic=True, factor_optimal_volume=8): """ Generate a random cell There are two algorithms implemented: scaling: Generate a random cell and random distribution of atoms and scale the lattice to separate the atoms. stretching: Generating a random cell and random distribution of atoms and stretching their bonds until the distance between any two atoms is always greater than the sum of covalent radius. :param composition: (pychemia.Composition) :param method: (str) :param stabilization_number: (int) :param nparal: (int) :param periodic: (bool) :param factor_optimal_volume: (float) :return: >>> import os >>> st = Structure.random_cell('LiAlCl4', stabilization_number=3) >>> st.natom 6 >>> st.save_json('test.json') >>> st2 = Structure.load_json('test.json') >>> st == st2 True >>> os.remove('test.json') """ comp = Composition(composition) pcm_log.debug('Generating a random structure with composition: ' + str(comp.composition)) natom = comp.natom symbols = comp.symbols best_volume = sys.float_info.max best_volume = float('inf') best_structure = None optimal_volume = comp.covalent_volume('cubes') stabilization_history = 0 pool = Pool(processes=nparal) trial = 0 while stabilization_history < stabilization_number: args = list(best_volume * np.ones(10)) ret = pool.map(worker_star, zip(repeat(method), repeat(composition), repeat(periodic), args)) ngood = 0 for structure in ret: if structure is not None: # print('SH:%d Vol:%10.3f Factor:%10.3f' % (stabilization_history, # structure.volume, # structure.volume / optimal_volume)) ngood += 1 if best_structure is not None: if structure.volume < best_structure.volume: best_structure = structure else: best_structure = structure # log.debug('Good structures: %d/10 Best volume: %7.3f' % (ngood, best_structure.volume)) if best_structure is not None and best_volume > best_structure.volume: best_volume = best_structure.volume stabilization_history = 0 else: stabilization_history += 1 if best_volume < factor_optimal_volume * optimal_volume: break trial += 1 # log.debug('Trial: %4d Volume: %7.2f Optimal Volume: %7.2f Ratio: %5.2f' % # (trial, best_volume, optimal_volume, best_volume/optimal_volume)) pool.close() if best_structure is not None and periodic: # Analysis of the quality for the best structure rpos = best_structure.reduced for i, j in combinations(range(natom), 2): distance = best_structure.lattice.minimal_distance(rpos[i], rpos[j]) covalent_distance = sum(covalent_radius([symbols[i], symbols[j]])) if distance < covalent_distance: pcm_log.debug('Covalent distance: %7.4f Minimal distance: %7.4f Difference: %7.3e' % (covalent_distance, distance, covalent_distance - distance)) best_structure.canonical_form() return best_structure @staticmethod def random_cluster(composition, method='stretching', stabilization_number=20, nparal=5): st = Structure.random_cell(composition=composition, method=method, stabilization_number=stabilization_number, nparal=nparal, periodic=False) return Structure(symbols=st.symbols, positions=st.positions, periodicity=False) def adjust_reduced(self): for i in range(self.natom): for j in range(3): for value in [0.5, 0.25, 0.75, 0.125]: if abs(value - self.reduced[i, j]) < 1E-4: self.reduced[i, j] = value self.reduced2positions() def set_cell(self, cell): """ Set the vectors defining the cell :param cell: A matrix with the 3 unit cell vectors :return: """ npcell = np.array(cell) if npcell.shape == () or npcell.shape == (1,): self.cell = npcell * np.eye(3) elif npcell.shape == (3,): self.cell = np.diag(npcell) else: self.cell = np.array(cell).reshape((3, 3)) self._lattice = None def set_mag_moments(self, mag_moments): """ Set the magnetic moments with one vector on each atom Args: mag_moments: List or numpy array with one vector for each atom. The values will be converted into a numpy array """ self.vector_info['mag_moments'] = np.array(mag_moments).reshape([-1, 3]) def set_periodicity(self, periodicity): """ Set periodicity of the structure Args: periodicity: (Boolean) a single value means that the structure has that periodicity all along the 3 directions. Otherwise a list of 3 booleans is required """ if isinstance(periodicity, bool): self.periodicity = 3 * [periodicity] elif isinstance(periodicity, list) and len(periodicity) == 1: self.periodicity = 3 * periodicity else: self.periodicity = list(periodicity) def set_positions(self, positions): """ Set the positions of the atoms This contains dimensional values in cartesian coordinates Args: positions: A array of 3 vectors with dimensional coordinates """ self.positions = np.array(positions).reshape([-1, 3]) def set_reduced(self, reduced): """ Set the reduced positions of the atoms This contains adimensional values relative to cell vectors :param reduced: :return: """ self.reduced = np.array(reduced).reshape([-1, 3]) def sort_sites_using_list(self, sorted_indices): sorted_indices = np.array([int(x) for x in sorted_indices]) self.symbols = list(np.array(self.symbols)[sorted_indices]) self.positions = self.positions[sorted_indices] if self.is_periodic: self.reduced = self.reduced[sorted_indices] if self.vector_info is not None: for vi in self.vector_info: if self.vector_info[vi] is not None: self.vector_info[vi] = self.vector_info[vi][sorted_indices] def sort_sites(self): # First: Sort sites using the distance to the origin sorted_indices = np.array([np.linalg.norm(self.positions[i]) for i in range(self.nsites)]).argsort() # print sorted_indices self.sort_sites_using_list(sorted_indices) # Second: Sort again using the atomic number if len(self.species) > 1: sorted_indices = np.array([atomic_number(x) for x in self.symbols]).argsort() self.sort_sites_using_list(sorted_indices) def sort_axes(self): """ Sort the lattice vectors in decremental order of their size. 'a' will be the longest lattice vector 'c' he shortest """ sorted_indices = self.lattice.lengths.argsort()[::-1] self.set_cell(self.cell[sorted_indices]) self.reduced = self.reduced[:, sorted_indices] def align_with_axis(self, axis=0, round_decimals=14): lattice = self.lattice lattice.align_with_axis(axis=axis, round_decimals=round_decimals) self.set_cell(lattice.cell) self.reduced2positions() def align_with_plane(self, axis=2, round_decimals=14): lattice = self.lattice lattice.align_with_plane(axis=axis, round_decimals=round_decimals) self.set_cell(lattice.cell) self.reduced2positions() def align_inertia_momenta(self): ii = self.inertia_matrix() eigval, eigvec = np.linalg.eig(ii) eigvec = eigvec.T[eigval.argsort()[::-1]].T inveigvec = np.linalg.inv(eigvec) self.positions = np.dot(inveigvec, self.positions.T).T def canonical_form(self): if not self.is_periodic: self.relocate_to_cm() self.align_inertia_momenta() self.sort_sites() if self.is_periodic: self.sort_axes() self.align_with_axis() self.align_with_plane() self.atoms_in_box() self.sort_sites() def supercell(self, size): """ Creates a supercell, replicating the positions of atoms in the x,y,z directions a number of size=(nx,ny,nz) times """ new_natom = np.prod(size) * self.natom new_symbols = [] new_positions = np.zeros((new_natom, 3)) size = np.array(size).astype(int) index = 0 for i in range(size[0]): for j in range(size[1]): for k in range(size[2]): for n in range(self.natom): new_symbols.append(self.symbols[n]) new_positions[index] = self.positions[n] + ( i * self.cell[0] + j * self.cell[1] + k * self.cell[2]) index += 1 new_cell = np.zeros((3, 3)) new_cell[0] = size[0] * self.cell[0] new_cell[1] = size[1] * self.cell[1] new_cell[2] = size[2] * self.cell[2] return Structure(symbols=new_symbols, positions=new_positions, cell=new_cell) def copy(self): """ Get a copy of the object """ copy_struct = Structure(name=self.name, comment=self.comment, natom=self.natom, symbols=self.symbols, periodicity=self.periodicity, cell=self.cell, positions=self.positions, reduced=self.reduced, vector_info=self.vector_info, sites=self.sites, occupancies=self.occupancies) return copy_struct @property def to_dict(self): ret = {'natom': self.natom, 'symbols': self.symbols, 'periodicity': self.periodicity, 'positions': self.positions.tolist(), 'nspecies': len(self.species), 'formula': self.formula} if self.is_periodic: ret['cell'] = self.cell.tolist() ret['reduced'] = self.reduced.tolist() ret['density'] = self.density if self.name is not None: ret['name'] = self.name if self.comment is not None: ret['comment'] = self.comment if self.sites != range(self.natom): ret['sites'] = list(self.sites) if self.occupancies != self.natom * [1.0]: ret['occupancies'] = self.occupancies # if len(self.vector_info) != 1 or self.vector_info['mag_moments'] is not None: # ret['vector_info'] = self.vector_info return ret def round(self, decimals=6, pos='reduced'): self.set_cell(np.around(self.cell, decimals)) if pos == 'reduced': self.set_reduced(np.around(self.reduced, decimals)) self.reduced2positions() else: self.set_positions(np.around(self.positions, decimals)) self.positions2reduced() @staticmethod def from_dict(structdict): natom = structdict['natom'] symbols = deep_unicode(structdict['symbols']) periodicity = structdict['periodicity'] positions = np.array(structdict['positions']) if 'name' in structdict: name = structdict['name'] else: name = None if 'comment' in structdict: comment = structdict['comment'] else: comment = None if 'cell' in structdict: cell = np.array(structdict['cell']) else: cell = None if 'reduced' in structdict: reduced = np.array(structdict['reduced']) else: reduced = None if 'vector_info' in structdict: vector_info = structdict['vector_info'] else: vector_info = None if 'sites' in structdict: sites = structdict['sites'] else: sites = range(natom) if 'occupancies' in structdict: occupancies = structdict['occupancies'] else: occupancies = list(np.ones(natom)) return Structure(name=name, comment=comment, natom=natom, symbols=symbols, periodicity=periodicity, cell=cell, positions=positions, reduced=reduced, vector_info=vector_info, sites=sites, occupancies=occupancies) def save_json(self, filename): filep = open(filename, 'w') json.dump(self.to_dict, filep, sort_keys=True, indent=4, separators=(',', ': ')) filep.close() @staticmethod def load_json(filename): filep = open(filename, 'r') structdict = deep_unicode(json.load(filep)) filep.close() return Structure.from_dict(structdict) def distance2(self, atom1, atom2): assert (isinstance(atom1, int)) assert (isinstance(atom2, int)) assert (atom1 < self.natom) assert (atom2 < self.natom) if self.is_periodic: return self.lattice.distance2(self.reduced[atom1], self.reduced[atom2]) else: dm = scipy.spatial.distance_matrix(self.positions, self.positions) return dm[atom1, atom2] def distance_matrix(self): if self.is_periodic: dm = np.zeros((self.nsites, self.nsites)) for i in range(self.nsites - 1): for j in range(i + 1, self.nsites): d = self.lattice.distance2(self.reduced[i], self.reduced[j], radius=1E10, limits=[1, 1, 1]) # print("%d %d - %d" % (i,j, len(d))) dm[i, j] = min([d[x]['distance'] for x in d]) dm[j, i] = dm[i, j] else: dm = scipy.spatial.distance_matrix(self.positions, self.positions) return dm def valence_electrons(self): ret = 0 for key, value in self.composition.items(): ret += value * valence(key) return ret def __eq__(self, other): if self.natom != other.natom: ret = False elif not np.array_equal(self.positions, other.positions): ret = False elif not
np.array_equal(self.periodicity, other.periodicity)
numpy.array_equal
import os import pytest import numpy as np from stwcs import distortion from ..resources import BaseUnit import drizzlepac.adrizzle as adrizzle import drizzlepac.ablot as ablot class TestDriz(BaseUnit): def test_square_with_point(self): """ Test do_driz square kernel with point """ input = os.path.basename(self.get_input_file('input','j8bt06nyq_unit.fits')) output = 'output_square_point.fits' output_difference = 'difference_square_point.txt' output_template = os.path.basename(self.get_data('truth', 'reference_square_point.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_point_image(insci, (500, 200), 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, wcslin_pscale=wcslin.pscale) output_bounds = self.bound_image(outsci) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) template_bounds = self.bound_image(template_data) (min_diff, med_diff, max_diff) = self.centroid_statistics("square with point", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_square_with_grid(self): """ Test do_driz square kernel with grid """ input = os.path.basename(self.get_input_file('input','j8bt06nyq_unit.fits')) output = 'output_square_grid.fits' output_difference = 'difference_square_grid.txt' output_template = os.path.basename(self.get_data('truth', 'reference_square_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("square with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_turbo_with_grid(self): """ Test do_driz turbo kernel with grid """ input = os.path.basename(self.get_input_file('input','j8bt06nyq_unit.fits')) output = 'output_turbo_grid.fits' output_difference = os.path.basename(self.get_data('truth', 'difference_turbo_grid.txt')) output_template = os.path.basename(self.get_data('truth', 'reference_turbo_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, kernel='turbo', wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("turbo with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_gaussian_with_grid(self): """ Test do_driz gaussian kernel with grid """ input = os.path.basename(self.get_input_file('input','j8bt06nyq_unit.fits')) output = 'output_gaussian_grid.fits' output_difference = os.path.basename(self.get_data('truth', 'difference_gaussian_grid.txt')) output_template = os.path.basename(self.get_data('truth', 'reference_gaussian_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, kernel='gaussian', wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("gaussian with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 2.0e-5) def test_lanczos_with_grid(self): """ Test do_driz lanczos kernel with grid """ input = os.path.basename(self.get_input_file('input', 'j8bt06nyq_unit.fits')) output = 'output_lanczos_grid.fits' output_difference = os.path.basename(self.get_data('truth', 'difference_lanczos_grid.txt')) output_template = os.path.basename(self.get_data('truth', 'reference_lanczos_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, kernel='lanczos3', wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("lanczos with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_tophat_with_grid(self): """ Test do_driz tophat kernel with grid """ input = os.path.basename(self.get_input_file('input', 'j8bt06nyq_unit.fits')) output = 'output_tophat_grid.fits' output_difference = os.path.basename(self.get_data('truth', 'difference_tophat_grid.txt')) output_template = os.path.basename(self.get_data('truth', 'reference_tophat_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, kernel='tophat', wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("tophat with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_point_with_grid(self): """ Test do_driz point kernel with grid """ input = os.path.basename(self.get_input_file('input', 'j8bt06nyq_unit.fits')) output = 'output_point_grid.fits' output_difference = os.path.basename(self.get_data('truth', 'difference_point_grid.txt')) output_template = os.path.basename(self.get_data('truth', 'reference_point_grid.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) insci = self.make_grid_image(insci, 64, 100.0) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, kernel='point', wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) (min_diff, med_diff, max_diff) = self.centroid_statistics("point with grid", output_difference, outsci, template_data, 20.0, 8) assert(med_diff < 1.0e-6) assert(max_diff < 1.0e-5) def test_square_with_image(self): """ Test do_driz square kernel """ input = os.path.basename(self.get_input_file('input', 'j8bt06nyq_unit.fits')) output = 'output_square_image.fits' output_template = os.path.basename(self.get_data('truth', 'reference_square_image.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon = np.zeros((1, naxis2, naxis1), dtype='i4') expin = 1.0 wt_scl = expin in_units = 'cps' wcslin = distortion.utils.output_wcs([input_wcs],undistort=False) adrizzle.do_driz(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, expin, in_units, wt_scl, wcslin_pscale=wcslin.pscale) self.write_image(output, output_wcs, outsci, outwht, outcon[0]) template_data = self.read_image(output_template) self.ignore_keywords += ['rootname'] self.compare_outputs([(output, output_template)]) def test_turbo_with_image(self): """ Test do_driz turbo kernel """ input = os.path.basename(self.get_input_file('input', 'j8bt06nyq_unit.fits')) output = 'output_turbo_image.fits' output_template = os.path.basename(self.get_data('truth', 'reference_turbo_image.fits')) insci = self.read_image(input) input_wcs = self.read_wcs(input) inwht = np.ones(insci.shape,dtype=insci.dtype) output_wcs = self.read_wcs(output_template) naxis1, naxis2 = output_wcs.pixel_shape outsci = np.zeros((naxis2, naxis1), dtype='float32') outwht = np.zeros((naxis2, naxis1), dtype='float32') outcon =
np.zeros((1, naxis2, naxis1), dtype='i4')
numpy.zeros
# LatticeBoltzmannDemo.py: a two-dimensional lattice-Boltzmann "wind tunnel" simulation # Uses numpy to speed up all array handling. # Uses matplotlib to plot and animate the curl of the macroscopic velocity field. # Copyright 2013, <NAME> (Weber State University) 2013 # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated data and documentation (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # Except as contained in this notice, the name of the author shall not be used in # advertising or otherwise to promote the sale, use or other dealings in this # Software without prior written authorization. # Credits: # The "wind tunnel" entry/exit conditions are inspired by <NAME>'s code # (http://www.many-core.group.cam.ac.uk/projects/LBdemo.shtml). Additional inspiration from # Thomas Pohl's applet (http://thomas-pohl.info/work/lba.html). Other portions of code are based # on Wagner (http://www.ndsu.edu/physics/people/faculty/wagner/lattice_boltzmann_codes/) and # Gonsalves (http://www.physics.buffalo.edu/phy411-506-2004/index.html; code adapted from Succi, # http://global.oup.com/academic/product/the-lattice-boltzmann-equation-9780199679249). # For related materials see http://physics.weber.edu/schroeder/fluids import numpy, time, matplotlib.pyplot, matplotlib.animation # Define constants: height = 80 # lattice dimensions width = 200 viscosity = 0.005 # fluid viscosity omega = 1 / (3*viscosity + 0.5) # "relaxation" parameter u0 = 0.1 # initial and in-flow speed four9ths = 4.0/9.0 # abbreviations for lattice-Boltzmann weight factors one9th = 1.0/9.0 one36th = 1.0/36.0 performanceData = True # set to True if performance data is desired # Initialize all the arrays to steady rightward flow: n0 = four9ths * (numpy.ones((height,width)) - 1.5*u0**2) # particle densities along 9 directions nN = one9th * (numpy.ones((height,width)) - 1.5*u0**2) nS = one9th * (numpy.ones((height,width)) - 1.5*u0**2) nE = one9th * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2) nW = one9th * (
numpy.ones((height,width))
numpy.ones
import numpy as np from pose import Pose from sensor import ProximitySensor from robot import Robot from math import ceil, exp, sin, cos, tan, pi from helpers import Struct class Khepera3_IRSensor(ProximitySensor): """Inherits from the proximity sensor class. Performs calculations specific to the khepera3 for its characterized proximity sensors""" def __init__(self,pose,robot): # values copied from SimIAm ProximitySensor.__init__(self, pose, robot, (0.02, 0.2, np.radians(20))) def distance_to_value(self,dst): """Returns the distance calculation from the distance readings of the proximity sensors""" if dst < self.rmin : return 3960; else: return (3960*exp(-30*(dst-self.rmin))); class Khepera3(Robot): """Inherts for the simobject--->robot class for behavior specific to the Khepera3""" def __init__(self, pose, color = 0xFFFFFF): Robot.__init__(self, pose, color) # create shape self._p1 = np.array([[-0.031, 0.043, 1], [-0.031, -0.043, 1], [ 0.033, -0.043, 1], [ 0.052, -0.021, 1], [ 0.057, 0 , 1], [ 0.052, 0.021, 1], [ 0.033, 0.043, 1]]) self._p2 = np.array([[-0.024, 0.064, 1], [ 0.033, 0.064, 1], [ 0.057, 0.043, 1], [ 0.074, 0.010, 1], [ 0.074, -0.010, 1], [ 0.057, -0.043, 1], [ 0.033, -0.064, 1], [-0.025, -0.064, 1], [-0.042, -0.043, 1], [-0.048, -0.010, 1], [-0.048, 0.010, 1], [-0.042, 0.043, 1]]) # create IR sensors self.ir_sensors = [] ir_sensor_poses = [ Pose(-0.038, 0.048, np.radians(128)), Pose( 0.019, 0.064, np.radians(75)), Pose( 0.050, 0.050, np.radians(42)), Pose( 0.070, 0.017, np.radians(13)), Pose( 0.070, -0.017, np.radians(-13)), Pose( 0.050, -0.050, np.radians(-42)), Pose( 0.019, -0.064, np.radians(-75)), Pose(-0.038, -0.048,
np.radians(-128)
numpy.radians